xref: /linux/kernel/bpf/verifier.c (revision 5f30ee493044e9ea3a46167e5597a96f5c302adb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <linux/bpf_mem_alloc.h>
30 #include <net/xdp.h>
31 
32 #include "disasm.h"
33 
34 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
35 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
36 	[_id] = & _name ## _verifier_ops,
37 #define BPF_MAP_TYPE(_id, _ops)
38 #define BPF_LINK_TYPE(_id, _name)
39 #include <linux/bpf_types.h>
40 #undef BPF_PROG_TYPE
41 #undef BPF_MAP_TYPE
42 #undef BPF_LINK_TYPE
43 };
44 
45 struct bpf_mem_alloc bpf_global_percpu_ma;
46 static bool bpf_global_percpu_ma_set;
47 
48 /* bpf_check() is a static code analyzer that walks eBPF program
49  * instruction by instruction and updates register/stack state.
50  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
51  *
52  * The first pass is depth-first-search to check that the program is a DAG.
53  * It rejects the following programs:
54  * - larger than BPF_MAXINSNS insns
55  * - if loop is present (detected via back-edge)
56  * - unreachable insns exist (shouldn't be a forest. program = one function)
57  * - out of bounds or malformed jumps
58  * The second pass is all possible path descent from the 1st insn.
59  * Since it's analyzing all paths through the program, the length of the
60  * analysis is limited to 64k insn, which may be hit even if total number of
61  * insn is less then 4K, but there are too many branches that change stack/regs.
62  * Number of 'branches to be analyzed' is limited to 1k
63  *
64  * On entry to each instruction, each register has a type, and the instruction
65  * changes the types of the registers depending on instruction semantics.
66  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
67  * copied to R1.
68  *
69  * All registers are 64-bit.
70  * R0 - return register
71  * R1-R5 argument passing registers
72  * R6-R9 callee saved registers
73  * R10 - frame pointer read-only
74  *
75  * At the start of BPF program the register R1 contains a pointer to bpf_context
76  * and has type PTR_TO_CTX.
77  *
78  * Verifier tracks arithmetic operations on pointers in case:
79  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
80  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
81  * 1st insn copies R10 (which has FRAME_PTR) type into R1
82  * and 2nd arithmetic instruction is pattern matched to recognize
83  * that it wants to construct a pointer to some element within stack.
84  * So after 2nd insn, the register R1 has type PTR_TO_STACK
85  * (and -20 constant is saved for further stack bounds checking).
86  * Meaning that this reg is a pointer to stack plus known immediate constant.
87  *
88  * Most of the time the registers have SCALAR_VALUE type, which
89  * means the register has some value, but it's not a valid pointer.
90  * (like pointer plus pointer becomes SCALAR_VALUE type)
91  *
92  * When verifier sees load or store instructions the type of base register
93  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
94  * four pointer types recognized by check_mem_access() function.
95  *
96  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
97  * and the range of [ptr, ptr + map's value_size) is accessible.
98  *
99  * registers used to pass values to function calls are checked against
100  * function argument constraints.
101  *
102  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
103  * It means that the register type passed to this function must be
104  * PTR_TO_STACK and it will be used inside the function as
105  * 'pointer to map element key'
106  *
107  * For example the argument constraints for bpf_map_lookup_elem():
108  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
109  *   .arg1_type = ARG_CONST_MAP_PTR,
110  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
111  *
112  * ret_type says that this function returns 'pointer to map elem value or null'
113  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
114  * 2nd argument should be a pointer to stack, which will be used inside
115  * the helper function as a pointer to map element key.
116  *
117  * On the kernel side the helper function looks like:
118  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
119  * {
120  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
121  *    void *key = (void *) (unsigned long) r2;
122  *    void *value;
123  *
124  *    here kernel can access 'key' and 'map' pointers safely, knowing that
125  *    [key, key + map->key_size) bytes are valid and were initialized on
126  *    the stack of eBPF program.
127  * }
128  *
129  * Corresponding eBPF program may look like:
130  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
131  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
132  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
133  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
134  * here verifier looks at prototype of map_lookup_elem() and sees:
135  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
136  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
137  *
138  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
139  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
140  * and were initialized prior to this call.
141  * If it's ok, then verifier allows this BPF_CALL insn and looks at
142  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
143  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
144  * returns either pointer to map value or NULL.
145  *
146  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
147  * insn, the register holding that pointer in the true branch changes state to
148  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
149  * branch. See check_cond_jmp_op().
150  *
151  * After the call R0 is set to return type of the function and registers R1-R5
152  * are set to NOT_INIT to indicate that they are no longer readable.
153  *
154  * The following reference types represent a potential reference to a kernel
155  * resource which, after first being allocated, must be checked and freed by
156  * the BPF program:
157  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
158  *
159  * When the verifier sees a helper call return a reference type, it allocates a
160  * pointer id for the reference and stores it in the current function state.
161  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
162  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
163  * passes through a NULL-check conditional. For the branch wherein the state is
164  * changed to CONST_IMM, the verifier releases the reference.
165  *
166  * For each helper function that allocates a reference, such as
167  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
168  * bpf_sk_release(). When a reference type passes into the release function,
169  * the verifier also releases the reference. If any unchecked or unreleased
170  * reference remains at the end of the program, the verifier rejects it.
171  */
172 
173 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
174 struct bpf_verifier_stack_elem {
175 	/* verifier state is 'st'
176 	 * before processing instruction 'insn_idx'
177 	 * and after processing instruction 'prev_insn_idx'
178 	 */
179 	struct bpf_verifier_state st;
180 	int insn_idx;
181 	int prev_insn_idx;
182 	struct bpf_verifier_stack_elem *next;
183 	/* length of verifier log at the time this state was pushed on stack */
184 	u32 log_pos;
185 };
186 
187 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
188 #define BPF_COMPLEXITY_LIMIT_STATES	64
189 
190 #define BPF_MAP_KEY_POISON	(1ULL << 63)
191 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
192 
193 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE  512
194 
195 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
196 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
197 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
198 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
199 static int ref_set_non_owning(struct bpf_verifier_env *env,
200 			      struct bpf_reg_state *reg);
201 static void specialize_kfunc(struct bpf_verifier_env *env,
202 			     u32 func_id, u16 offset, unsigned long *addr);
203 static bool is_trusted_reg(const struct bpf_reg_state *reg);
204 
205 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
206 {
207 	return aux->map_ptr_state.poison;
208 }
209 
210 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
211 {
212 	return aux->map_ptr_state.unpriv;
213 }
214 
215 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
216 			      struct bpf_map *map,
217 			      bool unpriv, bool poison)
218 {
219 	unpriv |= bpf_map_ptr_unpriv(aux);
220 	aux->map_ptr_state.unpriv = unpriv;
221 	aux->map_ptr_state.poison = poison;
222 	aux->map_ptr_state.map_ptr = map;
223 }
224 
225 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
226 {
227 	return aux->map_key_state & BPF_MAP_KEY_POISON;
228 }
229 
230 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
231 {
232 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
233 }
234 
235 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
236 {
237 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
238 }
239 
240 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
241 {
242 	bool poisoned = bpf_map_key_poisoned(aux);
243 
244 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
245 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
246 }
247 
248 static bool bpf_helper_call(const struct bpf_insn *insn)
249 {
250 	return insn->code == (BPF_JMP | BPF_CALL) &&
251 	       insn->src_reg == 0;
252 }
253 
254 static bool bpf_pseudo_call(const struct bpf_insn *insn)
255 {
256 	return insn->code == (BPF_JMP | BPF_CALL) &&
257 	       insn->src_reg == BPF_PSEUDO_CALL;
258 }
259 
260 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
261 {
262 	return insn->code == (BPF_JMP | BPF_CALL) &&
263 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
264 }
265 
266 struct bpf_call_arg_meta {
267 	struct bpf_map *map_ptr;
268 	bool raw_mode;
269 	bool pkt_access;
270 	u8 release_regno;
271 	int regno;
272 	int access_size;
273 	int mem_size;
274 	u64 msize_max_value;
275 	int ref_obj_id;
276 	int dynptr_id;
277 	int map_uid;
278 	int func_id;
279 	struct btf *btf;
280 	u32 btf_id;
281 	struct btf *ret_btf;
282 	u32 ret_btf_id;
283 	u32 subprogno;
284 	struct btf_field *kptr_field;
285 };
286 
287 struct bpf_kfunc_call_arg_meta {
288 	/* In parameters */
289 	struct btf *btf;
290 	u32 func_id;
291 	u32 kfunc_flags;
292 	const struct btf_type *func_proto;
293 	const char *func_name;
294 	/* Out parameters */
295 	u32 ref_obj_id;
296 	u8 release_regno;
297 	bool r0_rdonly;
298 	u32 ret_btf_id;
299 	u64 r0_size;
300 	u32 subprogno;
301 	struct {
302 		u64 value;
303 		bool found;
304 	} arg_constant;
305 
306 	/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
307 	 * generally to pass info about user-defined local kptr types to later
308 	 * verification logic
309 	 *   bpf_obj_drop/bpf_percpu_obj_drop
310 	 *     Record the local kptr type to be drop'd
311 	 *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
312 	 *     Record the local kptr type to be refcount_incr'd and use
313 	 *     arg_owning_ref to determine whether refcount_acquire should be
314 	 *     fallible
315 	 */
316 	struct btf *arg_btf;
317 	u32 arg_btf_id;
318 	bool arg_owning_ref;
319 
320 	struct {
321 		struct btf_field *field;
322 	} arg_list_head;
323 	struct {
324 		struct btf_field *field;
325 	} arg_rbtree_root;
326 	struct {
327 		enum bpf_dynptr_type type;
328 		u32 id;
329 		u32 ref_obj_id;
330 	} initialized_dynptr;
331 	struct {
332 		u8 spi;
333 		u8 frameno;
334 	} iter;
335 	struct {
336 		struct bpf_map *ptr;
337 		int uid;
338 	} map;
339 	u64 mem_size;
340 };
341 
342 struct btf *btf_vmlinux;
343 
344 static const char *btf_type_name(const struct btf *btf, u32 id)
345 {
346 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
347 }
348 
349 static DEFINE_MUTEX(bpf_verifier_lock);
350 static DEFINE_MUTEX(bpf_percpu_ma_lock);
351 
352 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
353 {
354 	struct bpf_verifier_env *env = private_data;
355 	va_list args;
356 
357 	if (!bpf_verifier_log_needed(&env->log))
358 		return;
359 
360 	va_start(args, fmt);
361 	bpf_verifier_vlog(&env->log, fmt, args);
362 	va_end(args);
363 }
364 
365 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
366 				   struct bpf_reg_state *reg,
367 				   struct bpf_retval_range range, const char *ctx,
368 				   const char *reg_name)
369 {
370 	bool unknown = true;
371 
372 	verbose(env, "%s the register %s has", ctx, reg_name);
373 	if (reg->smin_value > S64_MIN) {
374 		verbose(env, " smin=%lld", reg->smin_value);
375 		unknown = false;
376 	}
377 	if (reg->smax_value < S64_MAX) {
378 		verbose(env, " smax=%lld", reg->smax_value);
379 		unknown = false;
380 	}
381 	if (unknown)
382 		verbose(env, " unknown scalar value");
383 	verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval);
384 }
385 
386 static bool type_may_be_null(u32 type)
387 {
388 	return type & PTR_MAYBE_NULL;
389 }
390 
391 static bool reg_not_null(const struct bpf_reg_state *reg)
392 {
393 	enum bpf_reg_type type;
394 
395 	type = reg->type;
396 	if (type_may_be_null(type))
397 		return false;
398 
399 	type = base_type(type);
400 	return type == PTR_TO_SOCKET ||
401 		type == PTR_TO_TCP_SOCK ||
402 		type == PTR_TO_MAP_VALUE ||
403 		type == PTR_TO_MAP_KEY ||
404 		type == PTR_TO_SOCK_COMMON ||
405 		(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
406 		type == PTR_TO_MEM;
407 }
408 
409 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
410 {
411 	struct btf_record *rec = NULL;
412 	struct btf_struct_meta *meta;
413 
414 	if (reg->type == PTR_TO_MAP_VALUE) {
415 		rec = reg->map_ptr->record;
416 	} else if (type_is_ptr_alloc_obj(reg->type)) {
417 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
418 		if (meta)
419 			rec = meta->record;
420 	}
421 	return rec;
422 }
423 
424 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
425 {
426 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
427 
428 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
429 }
430 
431 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog)
432 {
433 	struct bpf_func_info *info;
434 
435 	if (!env->prog->aux->func_info)
436 		return "";
437 
438 	info = &env->prog->aux->func_info[subprog];
439 	return btf_type_name(env->prog->aux->btf, info->type_id);
440 }
441 
442 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog)
443 {
444 	struct bpf_subprog_info *info = subprog_info(env, subprog);
445 
446 	info->is_cb = true;
447 	info->is_async_cb = true;
448 	info->is_exception_cb = true;
449 }
450 
451 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog)
452 {
453 	return subprog_info(env, subprog)->is_exception_cb;
454 }
455 
456 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
457 {
458 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
459 }
460 
461 static bool type_is_rdonly_mem(u32 type)
462 {
463 	return type & MEM_RDONLY;
464 }
465 
466 static bool is_acquire_function(enum bpf_func_id func_id,
467 				const struct bpf_map *map)
468 {
469 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
470 
471 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
472 	    func_id == BPF_FUNC_sk_lookup_udp ||
473 	    func_id == BPF_FUNC_skc_lookup_tcp ||
474 	    func_id == BPF_FUNC_ringbuf_reserve ||
475 	    func_id == BPF_FUNC_kptr_xchg)
476 		return true;
477 
478 	if (func_id == BPF_FUNC_map_lookup_elem &&
479 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
480 	     map_type == BPF_MAP_TYPE_SOCKHASH))
481 		return true;
482 
483 	return false;
484 }
485 
486 static bool is_ptr_cast_function(enum bpf_func_id func_id)
487 {
488 	return func_id == BPF_FUNC_tcp_sock ||
489 		func_id == BPF_FUNC_sk_fullsock ||
490 		func_id == BPF_FUNC_skc_to_tcp_sock ||
491 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
492 		func_id == BPF_FUNC_skc_to_udp6_sock ||
493 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
494 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
495 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
496 }
497 
498 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
499 {
500 	return func_id == BPF_FUNC_dynptr_data;
501 }
502 
503 static bool is_sync_callback_calling_kfunc(u32 btf_id);
504 static bool is_async_callback_calling_kfunc(u32 btf_id);
505 static bool is_callback_calling_kfunc(u32 btf_id);
506 static bool is_bpf_throw_kfunc(struct bpf_insn *insn);
507 
508 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id);
509 
510 static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
511 {
512 	return func_id == BPF_FUNC_for_each_map_elem ||
513 	       func_id == BPF_FUNC_find_vma ||
514 	       func_id == BPF_FUNC_loop ||
515 	       func_id == BPF_FUNC_user_ringbuf_drain;
516 }
517 
518 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
519 {
520 	return func_id == BPF_FUNC_timer_set_callback;
521 }
522 
523 static bool is_callback_calling_function(enum bpf_func_id func_id)
524 {
525 	return is_sync_callback_calling_function(func_id) ||
526 	       is_async_callback_calling_function(func_id);
527 }
528 
529 static bool is_sync_callback_calling_insn(struct bpf_insn *insn)
530 {
531 	return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) ||
532 	       (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm));
533 }
534 
535 static bool is_async_callback_calling_insn(struct bpf_insn *insn)
536 {
537 	return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) ||
538 	       (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm));
539 }
540 
541 static bool is_may_goto_insn(struct bpf_insn *insn)
542 {
543 	return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO;
544 }
545 
546 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx)
547 {
548 	return is_may_goto_insn(&env->prog->insnsi[insn_idx]);
549 }
550 
551 static bool is_storage_get_function(enum bpf_func_id func_id)
552 {
553 	return func_id == BPF_FUNC_sk_storage_get ||
554 	       func_id == BPF_FUNC_inode_storage_get ||
555 	       func_id == BPF_FUNC_task_storage_get ||
556 	       func_id == BPF_FUNC_cgrp_storage_get;
557 }
558 
559 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
560 					const struct bpf_map *map)
561 {
562 	int ref_obj_uses = 0;
563 
564 	if (is_ptr_cast_function(func_id))
565 		ref_obj_uses++;
566 	if (is_acquire_function(func_id, map))
567 		ref_obj_uses++;
568 	if (is_dynptr_ref_function(func_id))
569 		ref_obj_uses++;
570 
571 	return ref_obj_uses > 1;
572 }
573 
574 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
575 {
576 	return BPF_CLASS(insn->code) == BPF_STX &&
577 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
578 	       insn->imm == BPF_CMPXCHG;
579 }
580 
581 static int __get_spi(s32 off)
582 {
583 	return (-off - 1) / BPF_REG_SIZE;
584 }
585 
586 static struct bpf_func_state *func(struct bpf_verifier_env *env,
587 				   const struct bpf_reg_state *reg)
588 {
589 	struct bpf_verifier_state *cur = env->cur_state;
590 
591 	return cur->frame[reg->frameno];
592 }
593 
594 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
595 {
596        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
597 
598        /* We need to check that slots between [spi - nr_slots + 1, spi] are
599 	* within [0, allocated_stack).
600 	*
601 	* Please note that the spi grows downwards. For example, a dynptr
602 	* takes the size of two stack slots; the first slot will be at
603 	* spi and the second slot will be at spi - 1.
604 	*/
605        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
606 }
607 
608 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
609 			          const char *obj_kind, int nr_slots)
610 {
611 	int off, spi;
612 
613 	if (!tnum_is_const(reg->var_off)) {
614 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
615 		return -EINVAL;
616 	}
617 
618 	off = reg->off + reg->var_off.value;
619 	if (off % BPF_REG_SIZE) {
620 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
621 		return -EINVAL;
622 	}
623 
624 	spi = __get_spi(off);
625 	if (spi + 1 < nr_slots) {
626 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
627 		return -EINVAL;
628 	}
629 
630 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
631 		return -ERANGE;
632 	return spi;
633 }
634 
635 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
636 {
637 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
638 }
639 
640 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
641 {
642 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
643 }
644 
645 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
646 {
647 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
648 	case DYNPTR_TYPE_LOCAL:
649 		return BPF_DYNPTR_TYPE_LOCAL;
650 	case DYNPTR_TYPE_RINGBUF:
651 		return BPF_DYNPTR_TYPE_RINGBUF;
652 	case DYNPTR_TYPE_SKB:
653 		return BPF_DYNPTR_TYPE_SKB;
654 	case DYNPTR_TYPE_XDP:
655 		return BPF_DYNPTR_TYPE_XDP;
656 	default:
657 		return BPF_DYNPTR_TYPE_INVALID;
658 	}
659 }
660 
661 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
662 {
663 	switch (type) {
664 	case BPF_DYNPTR_TYPE_LOCAL:
665 		return DYNPTR_TYPE_LOCAL;
666 	case BPF_DYNPTR_TYPE_RINGBUF:
667 		return DYNPTR_TYPE_RINGBUF;
668 	case BPF_DYNPTR_TYPE_SKB:
669 		return DYNPTR_TYPE_SKB;
670 	case BPF_DYNPTR_TYPE_XDP:
671 		return DYNPTR_TYPE_XDP;
672 	default:
673 		return 0;
674 	}
675 }
676 
677 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
678 {
679 	return type == BPF_DYNPTR_TYPE_RINGBUF;
680 }
681 
682 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
683 			      enum bpf_dynptr_type type,
684 			      bool first_slot, int dynptr_id);
685 
686 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
687 				struct bpf_reg_state *reg);
688 
689 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
690 				   struct bpf_reg_state *sreg1,
691 				   struct bpf_reg_state *sreg2,
692 				   enum bpf_dynptr_type type)
693 {
694 	int id = ++env->id_gen;
695 
696 	__mark_dynptr_reg(sreg1, type, true, id);
697 	__mark_dynptr_reg(sreg2, type, false, id);
698 }
699 
700 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
701 			       struct bpf_reg_state *reg,
702 			       enum bpf_dynptr_type type)
703 {
704 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
705 }
706 
707 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
708 				        struct bpf_func_state *state, int spi);
709 
710 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
711 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
712 {
713 	struct bpf_func_state *state = func(env, reg);
714 	enum bpf_dynptr_type type;
715 	int spi, i, err;
716 
717 	spi = dynptr_get_spi(env, reg);
718 	if (spi < 0)
719 		return spi;
720 
721 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
722 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
723 	 * to ensure that for the following example:
724 	 *	[d1][d1][d2][d2]
725 	 * spi    3   2   1   0
726 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
727 	 * case they do belong to same dynptr, second call won't see slot_type
728 	 * as STACK_DYNPTR and will simply skip destruction.
729 	 */
730 	err = destroy_if_dynptr_stack_slot(env, state, spi);
731 	if (err)
732 		return err;
733 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
734 	if (err)
735 		return err;
736 
737 	for (i = 0; i < BPF_REG_SIZE; i++) {
738 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
739 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
740 	}
741 
742 	type = arg_to_dynptr_type(arg_type);
743 	if (type == BPF_DYNPTR_TYPE_INVALID)
744 		return -EINVAL;
745 
746 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
747 			       &state->stack[spi - 1].spilled_ptr, type);
748 
749 	if (dynptr_type_refcounted(type)) {
750 		/* The id is used to track proper releasing */
751 		int id;
752 
753 		if (clone_ref_obj_id)
754 			id = clone_ref_obj_id;
755 		else
756 			id = acquire_reference_state(env, insn_idx);
757 
758 		if (id < 0)
759 			return id;
760 
761 		state->stack[spi].spilled_ptr.ref_obj_id = id;
762 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
763 	}
764 
765 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
766 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
767 
768 	return 0;
769 }
770 
771 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
772 {
773 	int i;
774 
775 	for (i = 0; i < BPF_REG_SIZE; i++) {
776 		state->stack[spi].slot_type[i] = STACK_INVALID;
777 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
778 	}
779 
780 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
781 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
782 
783 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
784 	 *
785 	 * While we don't allow reading STACK_INVALID, it is still possible to
786 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
787 	 * helpers or insns can do partial read of that part without failing,
788 	 * but check_stack_range_initialized, check_stack_read_var_off, and
789 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
790 	 * the slot conservatively. Hence we need to prevent those liveness
791 	 * marking walks.
792 	 *
793 	 * This was not a problem before because STACK_INVALID is only set by
794 	 * default (where the default reg state has its reg->parent as NULL), or
795 	 * in clean_live_states after REG_LIVE_DONE (at which point
796 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
797 	 * verifier state exploration (like we did above). Hence, for our case
798 	 * parentage chain will still be live (i.e. reg->parent may be
799 	 * non-NULL), while earlier reg->parent was NULL, so we need
800 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
801 	 * done later on reads or by mark_dynptr_read as well to unnecessary
802 	 * mark registers in verifier state.
803 	 */
804 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
805 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
806 }
807 
808 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
809 {
810 	struct bpf_func_state *state = func(env, reg);
811 	int spi, ref_obj_id, i;
812 
813 	spi = dynptr_get_spi(env, reg);
814 	if (spi < 0)
815 		return spi;
816 
817 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
818 		invalidate_dynptr(env, state, spi);
819 		return 0;
820 	}
821 
822 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
823 
824 	/* If the dynptr has a ref_obj_id, then we need to invalidate
825 	 * two things:
826 	 *
827 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
828 	 * 2) Any slices derived from this dynptr.
829 	 */
830 
831 	/* Invalidate any slices associated with this dynptr */
832 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
833 
834 	/* Invalidate any dynptr clones */
835 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
836 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
837 			continue;
838 
839 		/* it should always be the case that if the ref obj id
840 		 * matches then the stack slot also belongs to a
841 		 * dynptr
842 		 */
843 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
844 			verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
845 			return -EFAULT;
846 		}
847 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
848 			invalidate_dynptr(env, state, i);
849 	}
850 
851 	return 0;
852 }
853 
854 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
855 			       struct bpf_reg_state *reg);
856 
857 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
858 {
859 	if (!env->allow_ptr_leaks)
860 		__mark_reg_not_init(env, reg);
861 	else
862 		__mark_reg_unknown(env, reg);
863 }
864 
865 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
866 				        struct bpf_func_state *state, int spi)
867 {
868 	struct bpf_func_state *fstate;
869 	struct bpf_reg_state *dreg;
870 	int i, dynptr_id;
871 
872 	/* We always ensure that STACK_DYNPTR is never set partially,
873 	 * hence just checking for slot_type[0] is enough. This is
874 	 * different for STACK_SPILL, where it may be only set for
875 	 * 1 byte, so code has to use is_spilled_reg.
876 	 */
877 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
878 		return 0;
879 
880 	/* Reposition spi to first slot */
881 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
882 		spi = spi + 1;
883 
884 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
885 		verbose(env, "cannot overwrite referenced dynptr\n");
886 		return -EINVAL;
887 	}
888 
889 	mark_stack_slot_scratched(env, spi);
890 	mark_stack_slot_scratched(env, spi - 1);
891 
892 	/* Writing partially to one dynptr stack slot destroys both. */
893 	for (i = 0; i < BPF_REG_SIZE; i++) {
894 		state->stack[spi].slot_type[i] = STACK_INVALID;
895 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
896 	}
897 
898 	dynptr_id = state->stack[spi].spilled_ptr.id;
899 	/* Invalidate any slices associated with this dynptr */
900 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
901 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
902 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
903 			continue;
904 		if (dreg->dynptr_id == dynptr_id)
905 			mark_reg_invalid(env, dreg);
906 	}));
907 
908 	/* Do not release reference state, we are destroying dynptr on stack,
909 	 * not using some helper to release it. Just reset register.
910 	 */
911 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
912 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
913 
914 	/* Same reason as unmark_stack_slots_dynptr above */
915 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
916 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
917 
918 	return 0;
919 }
920 
921 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
922 {
923 	int spi;
924 
925 	if (reg->type == CONST_PTR_TO_DYNPTR)
926 		return false;
927 
928 	spi = dynptr_get_spi(env, reg);
929 
930 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
931 	 * error because this just means the stack state hasn't been updated yet.
932 	 * We will do check_mem_access to check and update stack bounds later.
933 	 */
934 	if (spi < 0 && spi != -ERANGE)
935 		return false;
936 
937 	/* We don't need to check if the stack slots are marked by previous
938 	 * dynptr initializations because we allow overwriting existing unreferenced
939 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
940 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
941 	 * touching are completely destructed before we reinitialize them for a new
942 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
943 	 * instead of delaying it until the end where the user will get "Unreleased
944 	 * reference" error.
945 	 */
946 	return true;
947 }
948 
949 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
950 {
951 	struct bpf_func_state *state = func(env, reg);
952 	int i, spi;
953 
954 	/* This already represents first slot of initialized bpf_dynptr.
955 	 *
956 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
957 	 * check_func_arg_reg_off's logic, so we don't need to check its
958 	 * offset and alignment.
959 	 */
960 	if (reg->type == CONST_PTR_TO_DYNPTR)
961 		return true;
962 
963 	spi = dynptr_get_spi(env, reg);
964 	if (spi < 0)
965 		return false;
966 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
967 		return false;
968 
969 	for (i = 0; i < BPF_REG_SIZE; i++) {
970 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
971 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
972 			return false;
973 	}
974 
975 	return true;
976 }
977 
978 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
979 				    enum bpf_arg_type arg_type)
980 {
981 	struct bpf_func_state *state = func(env, reg);
982 	enum bpf_dynptr_type dynptr_type;
983 	int spi;
984 
985 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
986 	if (arg_type == ARG_PTR_TO_DYNPTR)
987 		return true;
988 
989 	dynptr_type = arg_to_dynptr_type(arg_type);
990 	if (reg->type == CONST_PTR_TO_DYNPTR) {
991 		return reg->dynptr.type == dynptr_type;
992 	} else {
993 		spi = dynptr_get_spi(env, reg);
994 		if (spi < 0)
995 			return false;
996 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
997 	}
998 }
999 
1000 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1001 
1002 static bool in_rcu_cs(struct bpf_verifier_env *env);
1003 
1004 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta);
1005 
1006 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1007 				 struct bpf_kfunc_call_arg_meta *meta,
1008 				 struct bpf_reg_state *reg, int insn_idx,
1009 				 struct btf *btf, u32 btf_id, int nr_slots)
1010 {
1011 	struct bpf_func_state *state = func(env, reg);
1012 	int spi, i, j, id;
1013 
1014 	spi = iter_get_spi(env, reg, nr_slots);
1015 	if (spi < 0)
1016 		return spi;
1017 
1018 	id = acquire_reference_state(env, insn_idx);
1019 	if (id < 0)
1020 		return id;
1021 
1022 	for (i = 0; i < nr_slots; i++) {
1023 		struct bpf_stack_state *slot = &state->stack[spi - i];
1024 		struct bpf_reg_state *st = &slot->spilled_ptr;
1025 
1026 		__mark_reg_known_zero(st);
1027 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1028 		if (is_kfunc_rcu_protected(meta)) {
1029 			if (in_rcu_cs(env))
1030 				st->type |= MEM_RCU;
1031 			else
1032 				st->type |= PTR_UNTRUSTED;
1033 		}
1034 		st->live |= REG_LIVE_WRITTEN;
1035 		st->ref_obj_id = i == 0 ? id : 0;
1036 		st->iter.btf = btf;
1037 		st->iter.btf_id = btf_id;
1038 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1039 		st->iter.depth = 0;
1040 
1041 		for (j = 0; j < BPF_REG_SIZE; j++)
1042 			slot->slot_type[j] = STACK_ITER;
1043 
1044 		mark_stack_slot_scratched(env, spi - i);
1045 	}
1046 
1047 	return 0;
1048 }
1049 
1050 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1051 				   struct bpf_reg_state *reg, int nr_slots)
1052 {
1053 	struct bpf_func_state *state = func(env, reg);
1054 	int spi, i, j;
1055 
1056 	spi = iter_get_spi(env, reg, nr_slots);
1057 	if (spi < 0)
1058 		return spi;
1059 
1060 	for (i = 0; i < nr_slots; i++) {
1061 		struct bpf_stack_state *slot = &state->stack[spi - i];
1062 		struct bpf_reg_state *st = &slot->spilled_ptr;
1063 
1064 		if (i == 0)
1065 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1066 
1067 		__mark_reg_not_init(env, st);
1068 
1069 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1070 		st->live |= REG_LIVE_WRITTEN;
1071 
1072 		for (j = 0; j < BPF_REG_SIZE; j++)
1073 			slot->slot_type[j] = STACK_INVALID;
1074 
1075 		mark_stack_slot_scratched(env, spi - i);
1076 	}
1077 
1078 	return 0;
1079 }
1080 
1081 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1082 				     struct bpf_reg_state *reg, int nr_slots)
1083 {
1084 	struct bpf_func_state *state = func(env, reg);
1085 	int spi, i, j;
1086 
1087 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1088 	 * will do check_mem_access to check and update stack bounds later, so
1089 	 * return true for that case.
1090 	 */
1091 	spi = iter_get_spi(env, reg, nr_slots);
1092 	if (spi == -ERANGE)
1093 		return true;
1094 	if (spi < 0)
1095 		return false;
1096 
1097 	for (i = 0; i < nr_slots; i++) {
1098 		struct bpf_stack_state *slot = &state->stack[spi - i];
1099 
1100 		for (j = 0; j < BPF_REG_SIZE; j++)
1101 			if (slot->slot_type[j] == STACK_ITER)
1102 				return false;
1103 	}
1104 
1105 	return true;
1106 }
1107 
1108 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1109 				   struct btf *btf, u32 btf_id, int nr_slots)
1110 {
1111 	struct bpf_func_state *state = func(env, reg);
1112 	int spi, i, j;
1113 
1114 	spi = iter_get_spi(env, reg, nr_slots);
1115 	if (spi < 0)
1116 		return -EINVAL;
1117 
1118 	for (i = 0; i < nr_slots; i++) {
1119 		struct bpf_stack_state *slot = &state->stack[spi - i];
1120 		struct bpf_reg_state *st = &slot->spilled_ptr;
1121 
1122 		if (st->type & PTR_UNTRUSTED)
1123 			return -EPROTO;
1124 		/* only main (first) slot has ref_obj_id set */
1125 		if (i == 0 && !st->ref_obj_id)
1126 			return -EINVAL;
1127 		if (i != 0 && st->ref_obj_id)
1128 			return -EINVAL;
1129 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1130 			return -EINVAL;
1131 
1132 		for (j = 0; j < BPF_REG_SIZE; j++)
1133 			if (slot->slot_type[j] != STACK_ITER)
1134 				return -EINVAL;
1135 	}
1136 
1137 	return 0;
1138 }
1139 
1140 /* Check if given stack slot is "special":
1141  *   - spilled register state (STACK_SPILL);
1142  *   - dynptr state (STACK_DYNPTR);
1143  *   - iter state (STACK_ITER).
1144  */
1145 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1146 {
1147 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1148 
1149 	switch (type) {
1150 	case STACK_SPILL:
1151 	case STACK_DYNPTR:
1152 	case STACK_ITER:
1153 		return true;
1154 	case STACK_INVALID:
1155 	case STACK_MISC:
1156 	case STACK_ZERO:
1157 		return false;
1158 	default:
1159 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1160 		return true;
1161 	}
1162 }
1163 
1164 /* The reg state of a pointer or a bounded scalar was saved when
1165  * it was spilled to the stack.
1166  */
1167 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1168 {
1169 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1170 }
1171 
1172 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1173 {
1174 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1175 	       stack->spilled_ptr.type == SCALAR_VALUE;
1176 }
1177 
1178 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack)
1179 {
1180 	return stack->slot_type[0] == STACK_SPILL &&
1181 	       stack->spilled_ptr.type == SCALAR_VALUE;
1182 }
1183 
1184 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which
1185  * case they are equivalent, or it's STACK_ZERO, in which case we preserve
1186  * more precise STACK_ZERO.
1187  * Note, in uprivileged mode leaving STACK_INVALID is wrong, so we take
1188  * env->allow_ptr_leaks into account and force STACK_MISC, if necessary.
1189  */
1190 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype)
1191 {
1192 	if (*stype == STACK_ZERO)
1193 		return;
1194 	if (env->allow_ptr_leaks && *stype == STACK_INVALID)
1195 		return;
1196 	*stype = STACK_MISC;
1197 }
1198 
1199 static void scrub_spilled_slot(u8 *stype)
1200 {
1201 	if (*stype != STACK_INVALID)
1202 		*stype = STACK_MISC;
1203 }
1204 
1205 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1206  * small to hold src. This is different from krealloc since we don't want to preserve
1207  * the contents of dst.
1208  *
1209  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1210  * not be allocated.
1211  */
1212 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1213 {
1214 	size_t alloc_bytes;
1215 	void *orig = dst;
1216 	size_t bytes;
1217 
1218 	if (ZERO_OR_NULL_PTR(src))
1219 		goto out;
1220 
1221 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1222 		return NULL;
1223 
1224 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1225 	dst = krealloc(orig, alloc_bytes, flags);
1226 	if (!dst) {
1227 		kfree(orig);
1228 		return NULL;
1229 	}
1230 
1231 	memcpy(dst, src, bytes);
1232 out:
1233 	return dst ? dst : ZERO_SIZE_PTR;
1234 }
1235 
1236 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1237  * small to hold new_n items. new items are zeroed out if the array grows.
1238  *
1239  * Contrary to krealloc_array, does not free arr if new_n is zero.
1240  */
1241 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1242 {
1243 	size_t alloc_size;
1244 	void *new_arr;
1245 
1246 	if (!new_n || old_n == new_n)
1247 		goto out;
1248 
1249 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1250 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1251 	if (!new_arr) {
1252 		kfree(arr);
1253 		return NULL;
1254 	}
1255 	arr = new_arr;
1256 
1257 	if (new_n > old_n)
1258 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1259 
1260 out:
1261 	return arr ? arr : ZERO_SIZE_PTR;
1262 }
1263 
1264 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1265 {
1266 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1267 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1268 	if (!dst->refs)
1269 		return -ENOMEM;
1270 
1271 	dst->acquired_refs = src->acquired_refs;
1272 	return 0;
1273 }
1274 
1275 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1276 {
1277 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1278 
1279 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1280 				GFP_KERNEL);
1281 	if (!dst->stack)
1282 		return -ENOMEM;
1283 
1284 	dst->allocated_stack = src->allocated_stack;
1285 	return 0;
1286 }
1287 
1288 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1289 {
1290 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1291 				    sizeof(struct bpf_reference_state));
1292 	if (!state->refs)
1293 		return -ENOMEM;
1294 
1295 	state->acquired_refs = n;
1296 	return 0;
1297 }
1298 
1299 /* Possibly update state->allocated_stack to be at least size bytes. Also
1300  * possibly update the function's high-water mark in its bpf_subprog_info.
1301  */
1302 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size)
1303 {
1304 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n;
1305 
1306 	/* The stack size is always a multiple of BPF_REG_SIZE. */
1307 	size = round_up(size, BPF_REG_SIZE);
1308 	n = size / BPF_REG_SIZE;
1309 
1310 	if (old_n >= n)
1311 		return 0;
1312 
1313 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1314 	if (!state->stack)
1315 		return -ENOMEM;
1316 
1317 	state->allocated_stack = size;
1318 
1319 	/* update known max for given subprogram */
1320 	if (env->subprog_info[state->subprogno].stack_depth < size)
1321 		env->subprog_info[state->subprogno].stack_depth = size;
1322 
1323 	return 0;
1324 }
1325 
1326 /* Acquire a pointer id from the env and update the state->refs to include
1327  * this new pointer reference.
1328  * On success, returns a valid pointer id to associate with the register
1329  * On failure, returns a negative errno.
1330  */
1331 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1332 {
1333 	struct bpf_func_state *state = cur_func(env);
1334 	int new_ofs = state->acquired_refs;
1335 	int id, err;
1336 
1337 	err = resize_reference_state(state, state->acquired_refs + 1);
1338 	if (err)
1339 		return err;
1340 	id = ++env->id_gen;
1341 	state->refs[new_ofs].id = id;
1342 	state->refs[new_ofs].insn_idx = insn_idx;
1343 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1344 
1345 	return id;
1346 }
1347 
1348 /* release function corresponding to acquire_reference_state(). Idempotent. */
1349 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1350 {
1351 	int i, last_idx;
1352 
1353 	last_idx = state->acquired_refs - 1;
1354 	for (i = 0; i < state->acquired_refs; i++) {
1355 		if (state->refs[i].id == ptr_id) {
1356 			/* Cannot release caller references in callbacks */
1357 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1358 				return -EINVAL;
1359 			if (last_idx && i != last_idx)
1360 				memcpy(&state->refs[i], &state->refs[last_idx],
1361 				       sizeof(*state->refs));
1362 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1363 			state->acquired_refs--;
1364 			return 0;
1365 		}
1366 	}
1367 	return -EINVAL;
1368 }
1369 
1370 static void free_func_state(struct bpf_func_state *state)
1371 {
1372 	if (!state)
1373 		return;
1374 	kfree(state->refs);
1375 	kfree(state->stack);
1376 	kfree(state);
1377 }
1378 
1379 static void clear_jmp_history(struct bpf_verifier_state *state)
1380 {
1381 	kfree(state->jmp_history);
1382 	state->jmp_history = NULL;
1383 	state->jmp_history_cnt = 0;
1384 }
1385 
1386 static void free_verifier_state(struct bpf_verifier_state *state,
1387 				bool free_self)
1388 {
1389 	int i;
1390 
1391 	for (i = 0; i <= state->curframe; i++) {
1392 		free_func_state(state->frame[i]);
1393 		state->frame[i] = NULL;
1394 	}
1395 	clear_jmp_history(state);
1396 	if (free_self)
1397 		kfree(state);
1398 }
1399 
1400 /* copy verifier state from src to dst growing dst stack space
1401  * when necessary to accommodate larger src stack
1402  */
1403 static int copy_func_state(struct bpf_func_state *dst,
1404 			   const struct bpf_func_state *src)
1405 {
1406 	int err;
1407 
1408 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1409 	err = copy_reference_state(dst, src);
1410 	if (err)
1411 		return err;
1412 	return copy_stack_state(dst, src);
1413 }
1414 
1415 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1416 			       const struct bpf_verifier_state *src)
1417 {
1418 	struct bpf_func_state *dst;
1419 	int i, err;
1420 
1421 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1422 					  src->jmp_history_cnt, sizeof(*dst_state->jmp_history),
1423 					  GFP_USER);
1424 	if (!dst_state->jmp_history)
1425 		return -ENOMEM;
1426 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1427 
1428 	/* if dst has more stack frames then src frame, free them, this is also
1429 	 * necessary in case of exceptional exits using bpf_throw.
1430 	 */
1431 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1432 		free_func_state(dst_state->frame[i]);
1433 		dst_state->frame[i] = NULL;
1434 	}
1435 	dst_state->speculative = src->speculative;
1436 	dst_state->active_rcu_lock = src->active_rcu_lock;
1437 	dst_state->active_preempt_lock = src->active_preempt_lock;
1438 	dst_state->in_sleepable = src->in_sleepable;
1439 	dst_state->curframe = src->curframe;
1440 	dst_state->active_lock.ptr = src->active_lock.ptr;
1441 	dst_state->active_lock.id = src->active_lock.id;
1442 	dst_state->branches = src->branches;
1443 	dst_state->parent = src->parent;
1444 	dst_state->first_insn_idx = src->first_insn_idx;
1445 	dst_state->last_insn_idx = src->last_insn_idx;
1446 	dst_state->dfs_depth = src->dfs_depth;
1447 	dst_state->callback_unroll_depth = src->callback_unroll_depth;
1448 	dst_state->used_as_loop_entry = src->used_as_loop_entry;
1449 	dst_state->may_goto_depth = src->may_goto_depth;
1450 	for (i = 0; i <= src->curframe; i++) {
1451 		dst = dst_state->frame[i];
1452 		if (!dst) {
1453 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1454 			if (!dst)
1455 				return -ENOMEM;
1456 			dst_state->frame[i] = dst;
1457 		}
1458 		err = copy_func_state(dst, src->frame[i]);
1459 		if (err)
1460 			return err;
1461 	}
1462 	return 0;
1463 }
1464 
1465 static u32 state_htab_size(struct bpf_verifier_env *env)
1466 {
1467 	return env->prog->len;
1468 }
1469 
1470 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx)
1471 {
1472 	struct bpf_verifier_state *cur = env->cur_state;
1473 	struct bpf_func_state *state = cur->frame[cur->curframe];
1474 
1475 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1476 }
1477 
1478 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1479 {
1480 	int fr;
1481 
1482 	if (a->curframe != b->curframe)
1483 		return false;
1484 
1485 	for (fr = a->curframe; fr >= 0; fr--)
1486 		if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1487 			return false;
1488 
1489 	return true;
1490 }
1491 
1492 /* Open coded iterators allow back-edges in the state graph in order to
1493  * check unbounded loops that iterators.
1494  *
1495  * In is_state_visited() it is necessary to know if explored states are
1496  * part of some loops in order to decide whether non-exact states
1497  * comparison could be used:
1498  * - non-exact states comparison establishes sub-state relation and uses
1499  *   read and precision marks to do so, these marks are propagated from
1500  *   children states and thus are not guaranteed to be final in a loop;
1501  * - exact states comparison just checks if current and explored states
1502  *   are identical (and thus form a back-edge).
1503  *
1504  * Paper "A New Algorithm for Identifying Loops in Decompilation"
1505  * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient
1506  * algorithm for loop structure detection and gives an overview of
1507  * relevant terminology. It also has helpful illustrations.
1508  *
1509  * [1] https://api.semanticscholar.org/CorpusID:15784067
1510  *
1511  * We use a similar algorithm but because loop nested structure is
1512  * irrelevant for verifier ours is significantly simpler and resembles
1513  * strongly connected components algorithm from Sedgewick's textbook.
1514  *
1515  * Define topmost loop entry as a first node of the loop traversed in a
1516  * depth first search starting from initial state. The goal of the loop
1517  * tracking algorithm is to associate topmost loop entries with states
1518  * derived from these entries.
1519  *
1520  * For each step in the DFS states traversal algorithm needs to identify
1521  * the following situations:
1522  *
1523  *          initial                     initial                   initial
1524  *            |                           |                         |
1525  *            V                           V                         V
1526  *           ...                         ...           .---------> hdr
1527  *            |                           |            |            |
1528  *            V                           V            |            V
1529  *           cur                     .-> succ          |    .------...
1530  *            |                      |    |            |    |       |
1531  *            V                      |    V            |    V       V
1532  *           succ                    '-- cur           |   ...     ...
1533  *                                                     |    |       |
1534  *                                                     |    V       V
1535  *                                                     |   succ <- cur
1536  *                                                     |    |
1537  *                                                     |    V
1538  *                                                     |   ...
1539  *                                                     |    |
1540  *                                                     '----'
1541  *
1542  *  (A) successor state of cur   (B) successor state of cur or it's entry
1543  *      not yet traversed            are in current DFS path, thus cur and succ
1544  *                                   are members of the same outermost loop
1545  *
1546  *                      initial                  initial
1547  *                        |                        |
1548  *                        V                        V
1549  *                       ...                      ...
1550  *                        |                        |
1551  *                        V                        V
1552  *                .------...               .------...
1553  *                |       |                |       |
1554  *                V       V                V       V
1555  *           .-> hdr     ...              ...     ...
1556  *           |    |       |                |       |
1557  *           |    V       V                V       V
1558  *           |   succ <- cur              succ <- cur
1559  *           |    |                        |
1560  *           |    V                        V
1561  *           |   ...                      ...
1562  *           |    |                        |
1563  *           '----'                       exit
1564  *
1565  * (C) successor state of cur is a part of some loop but this loop
1566  *     does not include cur or successor state is not in a loop at all.
1567  *
1568  * Algorithm could be described as the following python code:
1569  *
1570  *     traversed = set()   # Set of traversed nodes
1571  *     entries = {}        # Mapping from node to loop entry
1572  *     depths = {}         # Depth level assigned to graph node
1573  *     path = set()        # Current DFS path
1574  *
1575  *     # Find outermost loop entry known for n
1576  *     def get_loop_entry(n):
1577  *         h = entries.get(n, None)
1578  *         while h in entries and entries[h] != h:
1579  *             h = entries[h]
1580  *         return h
1581  *
1582  *     # Update n's loop entry if h's outermost entry comes
1583  *     # before n's outermost entry in current DFS path.
1584  *     def update_loop_entry(n, h):
1585  *         n1 = get_loop_entry(n) or n
1586  *         h1 = get_loop_entry(h) or h
1587  *         if h1 in path and depths[h1] <= depths[n1]:
1588  *             entries[n] = h1
1589  *
1590  *     def dfs(n, depth):
1591  *         traversed.add(n)
1592  *         path.add(n)
1593  *         depths[n] = depth
1594  *         for succ in G.successors(n):
1595  *             if succ not in traversed:
1596  *                 # Case A: explore succ and update cur's loop entry
1597  *                 #         only if succ's entry is in current DFS path.
1598  *                 dfs(succ, depth + 1)
1599  *                 h = get_loop_entry(succ)
1600  *                 update_loop_entry(n, h)
1601  *             else:
1602  *                 # Case B or C depending on `h1 in path` check in update_loop_entry().
1603  *                 update_loop_entry(n, succ)
1604  *         path.remove(n)
1605  *
1606  * To adapt this algorithm for use with verifier:
1607  * - use st->branch == 0 as a signal that DFS of succ had been finished
1608  *   and cur's loop entry has to be updated (case A), handle this in
1609  *   update_branch_counts();
1610  * - use st->branch > 0 as a signal that st is in the current DFS path;
1611  * - handle cases B and C in is_state_visited();
1612  * - update topmost loop entry for intermediate states in get_loop_entry().
1613  */
1614 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st)
1615 {
1616 	struct bpf_verifier_state *topmost = st->loop_entry, *old;
1617 
1618 	while (topmost && topmost->loop_entry && topmost != topmost->loop_entry)
1619 		topmost = topmost->loop_entry;
1620 	/* Update loop entries for intermediate states to avoid this
1621 	 * traversal in future get_loop_entry() calls.
1622 	 */
1623 	while (st && st->loop_entry != topmost) {
1624 		old = st->loop_entry;
1625 		st->loop_entry = topmost;
1626 		st = old;
1627 	}
1628 	return topmost;
1629 }
1630 
1631 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr)
1632 {
1633 	struct bpf_verifier_state *cur1, *hdr1;
1634 
1635 	cur1 = get_loop_entry(cur) ?: cur;
1636 	hdr1 = get_loop_entry(hdr) ?: hdr;
1637 	/* The head1->branches check decides between cases B and C in
1638 	 * comment for get_loop_entry(). If hdr1->branches == 0 then
1639 	 * head's topmost loop entry is not in current DFS path,
1640 	 * hence 'cur' and 'hdr' are not in the same loop and there is
1641 	 * no need to update cur->loop_entry.
1642 	 */
1643 	if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) {
1644 		cur->loop_entry = hdr;
1645 		hdr->used_as_loop_entry = true;
1646 	}
1647 }
1648 
1649 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1650 {
1651 	while (st) {
1652 		u32 br = --st->branches;
1653 
1654 		/* br == 0 signals that DFS exploration for 'st' is finished,
1655 		 * thus it is necessary to update parent's loop entry if it
1656 		 * turned out that st is a part of some loop.
1657 		 * This is a part of 'case A' in get_loop_entry() comment.
1658 		 */
1659 		if (br == 0 && st->parent && st->loop_entry)
1660 			update_loop_entry(st->parent, st->loop_entry);
1661 
1662 		/* WARN_ON(br > 1) technically makes sense here,
1663 		 * but see comment in push_stack(), hence:
1664 		 */
1665 		WARN_ONCE((int)br < 0,
1666 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1667 			  br);
1668 		if (br)
1669 			break;
1670 		st = st->parent;
1671 	}
1672 }
1673 
1674 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1675 		     int *insn_idx, bool pop_log)
1676 {
1677 	struct bpf_verifier_state *cur = env->cur_state;
1678 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1679 	int err;
1680 
1681 	if (env->head == NULL)
1682 		return -ENOENT;
1683 
1684 	if (cur) {
1685 		err = copy_verifier_state(cur, &head->st);
1686 		if (err)
1687 			return err;
1688 	}
1689 	if (pop_log)
1690 		bpf_vlog_reset(&env->log, head->log_pos);
1691 	if (insn_idx)
1692 		*insn_idx = head->insn_idx;
1693 	if (prev_insn_idx)
1694 		*prev_insn_idx = head->prev_insn_idx;
1695 	elem = head->next;
1696 	free_verifier_state(&head->st, false);
1697 	kfree(head);
1698 	env->head = elem;
1699 	env->stack_size--;
1700 	return 0;
1701 }
1702 
1703 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1704 					     int insn_idx, int prev_insn_idx,
1705 					     bool speculative)
1706 {
1707 	struct bpf_verifier_state *cur = env->cur_state;
1708 	struct bpf_verifier_stack_elem *elem;
1709 	int err;
1710 
1711 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1712 	if (!elem)
1713 		goto err;
1714 
1715 	elem->insn_idx = insn_idx;
1716 	elem->prev_insn_idx = prev_insn_idx;
1717 	elem->next = env->head;
1718 	elem->log_pos = env->log.end_pos;
1719 	env->head = elem;
1720 	env->stack_size++;
1721 	err = copy_verifier_state(&elem->st, cur);
1722 	if (err)
1723 		goto err;
1724 	elem->st.speculative |= speculative;
1725 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1726 		verbose(env, "The sequence of %d jumps is too complex.\n",
1727 			env->stack_size);
1728 		goto err;
1729 	}
1730 	if (elem->st.parent) {
1731 		++elem->st.parent->branches;
1732 		/* WARN_ON(branches > 2) technically makes sense here,
1733 		 * but
1734 		 * 1. speculative states will bump 'branches' for non-branch
1735 		 * instructions
1736 		 * 2. is_state_visited() heuristics may decide not to create
1737 		 * a new state for a sequence of branches and all such current
1738 		 * and cloned states will be pointing to a single parent state
1739 		 * which might have large 'branches' count.
1740 		 */
1741 	}
1742 	return &elem->st;
1743 err:
1744 	free_verifier_state(env->cur_state, true);
1745 	env->cur_state = NULL;
1746 	/* pop all elements and return */
1747 	while (!pop_stack(env, NULL, NULL, false));
1748 	return NULL;
1749 }
1750 
1751 #define CALLER_SAVED_REGS 6
1752 static const int caller_saved[CALLER_SAVED_REGS] = {
1753 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1754 };
1755 
1756 /* This helper doesn't clear reg->id */
1757 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1758 {
1759 	reg->var_off = tnum_const(imm);
1760 	reg->smin_value = (s64)imm;
1761 	reg->smax_value = (s64)imm;
1762 	reg->umin_value = imm;
1763 	reg->umax_value = imm;
1764 
1765 	reg->s32_min_value = (s32)imm;
1766 	reg->s32_max_value = (s32)imm;
1767 	reg->u32_min_value = (u32)imm;
1768 	reg->u32_max_value = (u32)imm;
1769 }
1770 
1771 /* Mark the unknown part of a register (variable offset or scalar value) as
1772  * known to have the value @imm.
1773  */
1774 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1775 {
1776 	/* Clear off and union(map_ptr, range) */
1777 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1778 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1779 	reg->id = 0;
1780 	reg->ref_obj_id = 0;
1781 	___mark_reg_known(reg, imm);
1782 }
1783 
1784 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1785 {
1786 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1787 	reg->s32_min_value = (s32)imm;
1788 	reg->s32_max_value = (s32)imm;
1789 	reg->u32_min_value = (u32)imm;
1790 	reg->u32_max_value = (u32)imm;
1791 }
1792 
1793 /* Mark the 'variable offset' part of a register as zero.  This should be
1794  * used only on registers holding a pointer type.
1795  */
1796 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1797 {
1798 	__mark_reg_known(reg, 0);
1799 }
1800 
1801 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1802 {
1803 	__mark_reg_known(reg, 0);
1804 	reg->type = SCALAR_VALUE;
1805 	/* all scalars are assumed imprecise initially (unless unprivileged,
1806 	 * in which case everything is forced to be precise)
1807 	 */
1808 	reg->precise = !env->bpf_capable;
1809 }
1810 
1811 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1812 				struct bpf_reg_state *regs, u32 regno)
1813 {
1814 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1815 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1816 		/* Something bad happened, let's kill all regs */
1817 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1818 			__mark_reg_not_init(env, regs + regno);
1819 		return;
1820 	}
1821 	__mark_reg_known_zero(regs + regno);
1822 }
1823 
1824 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
1825 			      bool first_slot, int dynptr_id)
1826 {
1827 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1828 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1829 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1830 	 */
1831 	__mark_reg_known_zero(reg);
1832 	reg->type = CONST_PTR_TO_DYNPTR;
1833 	/* Give each dynptr a unique id to uniquely associate slices to it. */
1834 	reg->id = dynptr_id;
1835 	reg->dynptr.type = type;
1836 	reg->dynptr.first_slot = first_slot;
1837 }
1838 
1839 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1840 {
1841 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1842 		const struct bpf_map *map = reg->map_ptr;
1843 
1844 		if (map->inner_map_meta) {
1845 			reg->type = CONST_PTR_TO_MAP;
1846 			reg->map_ptr = map->inner_map_meta;
1847 			/* transfer reg's id which is unique for every map_lookup_elem
1848 			 * as UID of the inner map.
1849 			 */
1850 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1851 				reg->map_uid = reg->id;
1852 			if (btf_record_has_field(map->inner_map_meta->record, BPF_WORKQUEUE))
1853 				reg->map_uid = reg->id;
1854 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1855 			reg->type = PTR_TO_XDP_SOCK;
1856 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1857 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1858 			reg->type = PTR_TO_SOCKET;
1859 		} else {
1860 			reg->type = PTR_TO_MAP_VALUE;
1861 		}
1862 		return;
1863 	}
1864 
1865 	reg->type &= ~PTR_MAYBE_NULL;
1866 }
1867 
1868 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
1869 				struct btf_field_graph_root *ds_head)
1870 {
1871 	__mark_reg_known_zero(&regs[regno]);
1872 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
1873 	regs[regno].btf = ds_head->btf;
1874 	regs[regno].btf_id = ds_head->value_btf_id;
1875 	regs[regno].off = ds_head->node_offset;
1876 }
1877 
1878 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1879 {
1880 	return type_is_pkt_pointer(reg->type);
1881 }
1882 
1883 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1884 {
1885 	return reg_is_pkt_pointer(reg) ||
1886 	       reg->type == PTR_TO_PACKET_END;
1887 }
1888 
1889 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
1890 {
1891 	return base_type(reg->type) == PTR_TO_MEM &&
1892 		(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
1893 }
1894 
1895 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1896 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1897 				    enum bpf_reg_type which)
1898 {
1899 	/* The register can already have a range from prior markings.
1900 	 * This is fine as long as it hasn't been advanced from its
1901 	 * origin.
1902 	 */
1903 	return reg->type == which &&
1904 	       reg->id == 0 &&
1905 	       reg->off == 0 &&
1906 	       tnum_equals_const(reg->var_off, 0);
1907 }
1908 
1909 /* Reset the min/max bounds of a register */
1910 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1911 {
1912 	reg->smin_value = S64_MIN;
1913 	reg->smax_value = S64_MAX;
1914 	reg->umin_value = 0;
1915 	reg->umax_value = U64_MAX;
1916 
1917 	reg->s32_min_value = S32_MIN;
1918 	reg->s32_max_value = S32_MAX;
1919 	reg->u32_min_value = 0;
1920 	reg->u32_max_value = U32_MAX;
1921 }
1922 
1923 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1924 {
1925 	reg->smin_value = S64_MIN;
1926 	reg->smax_value = S64_MAX;
1927 	reg->umin_value = 0;
1928 	reg->umax_value = U64_MAX;
1929 }
1930 
1931 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1932 {
1933 	reg->s32_min_value = S32_MIN;
1934 	reg->s32_max_value = S32_MAX;
1935 	reg->u32_min_value = 0;
1936 	reg->u32_max_value = U32_MAX;
1937 }
1938 
1939 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1940 {
1941 	struct tnum var32_off = tnum_subreg(reg->var_off);
1942 
1943 	/* min signed is max(sign bit) | min(other bits) */
1944 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1945 			var32_off.value | (var32_off.mask & S32_MIN));
1946 	/* max signed is min(sign bit) | max(other bits) */
1947 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1948 			var32_off.value | (var32_off.mask & S32_MAX));
1949 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1950 	reg->u32_max_value = min(reg->u32_max_value,
1951 				 (u32)(var32_off.value | var32_off.mask));
1952 }
1953 
1954 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1955 {
1956 	/* min signed is max(sign bit) | min(other bits) */
1957 	reg->smin_value = max_t(s64, reg->smin_value,
1958 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1959 	/* max signed is min(sign bit) | max(other bits) */
1960 	reg->smax_value = min_t(s64, reg->smax_value,
1961 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1962 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1963 	reg->umax_value = min(reg->umax_value,
1964 			      reg->var_off.value | reg->var_off.mask);
1965 }
1966 
1967 static void __update_reg_bounds(struct bpf_reg_state *reg)
1968 {
1969 	__update_reg32_bounds(reg);
1970 	__update_reg64_bounds(reg);
1971 }
1972 
1973 /* Uses signed min/max values to inform unsigned, and vice-versa */
1974 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1975 {
1976 	/* If upper 32 bits of u64/s64 range don't change, we can use lower 32
1977 	 * bits to improve our u32/s32 boundaries.
1978 	 *
1979 	 * E.g., the case where we have upper 32 bits as zero ([10, 20] in
1980 	 * u64) is pretty trivial, it's obvious that in u32 we'll also have
1981 	 * [10, 20] range. But this property holds for any 64-bit range as
1982 	 * long as upper 32 bits in that entire range of values stay the same.
1983 	 *
1984 	 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311]
1985 	 * in decimal) has the same upper 32 bits throughout all the values in
1986 	 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15])
1987 	 * range.
1988 	 *
1989 	 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32,
1990 	 * following the rules outlined below about u64/s64 correspondence
1991 	 * (which equally applies to u32 vs s32 correspondence). In general it
1992 	 * depends on actual hexadecimal values of 32-bit range. They can form
1993 	 * only valid u32, or only valid s32 ranges in some cases.
1994 	 *
1995 	 * So we use all these insights to derive bounds for subregisters here.
1996 	 */
1997 	if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) {
1998 		/* u64 to u32 casting preserves validity of low 32 bits as
1999 		 * a range, if upper 32 bits are the same
2000 		 */
2001 		reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value);
2002 		reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value);
2003 
2004 		if ((s32)reg->umin_value <= (s32)reg->umax_value) {
2005 			reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2006 			reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2007 		}
2008 	}
2009 	if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) {
2010 		/* low 32 bits should form a proper u32 range */
2011 		if ((u32)reg->smin_value <= (u32)reg->smax_value) {
2012 			reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value);
2013 			reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value);
2014 		}
2015 		/* low 32 bits should form a proper s32 range */
2016 		if ((s32)reg->smin_value <= (s32)reg->smax_value) {
2017 			reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2018 			reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2019 		}
2020 	}
2021 	/* Special case where upper bits form a small sequence of two
2022 	 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to
2023 	 * 0x00000000 is also valid), while lower bits form a proper s32 range
2024 	 * going from negative numbers to positive numbers. E.g., let's say we
2025 	 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]).
2026 	 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff,
2027 	 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits,
2028 	 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]).
2029 	 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in
2030 	 * upper 32 bits. As a random example, s64 range
2031 	 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range
2032 	 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister.
2033 	 */
2034 	if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) &&
2035 	    (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) {
2036 		reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2037 		reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2038 	}
2039 	if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) &&
2040 	    (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) {
2041 		reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2042 		reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2043 	}
2044 	/* if u32 range forms a valid s32 range (due to matching sign bit),
2045 	 * try to learn from that
2046 	 */
2047 	if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) {
2048 		reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value);
2049 		reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value);
2050 	}
2051 	/* If we cannot cross the sign boundary, then signed and unsigned bounds
2052 	 * are the same, so combine.  This works even in the negative case, e.g.
2053 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2054 	 */
2055 	if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2056 		reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value);
2057 		reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value);
2058 	}
2059 }
2060 
2061 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2062 {
2063 	/* If u64 range forms a valid s64 range (due to matching sign bit),
2064 	 * try to learn from that. Let's do a bit of ASCII art to see when
2065 	 * this is happening. Let's take u64 range first:
2066 	 *
2067 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2068 	 * |-------------------------------|--------------------------------|
2069 	 *
2070 	 * Valid u64 range is formed when umin and umax are anywhere in the
2071 	 * range [0, U64_MAX], and umin <= umax. u64 case is simple and
2072 	 * straightforward. Let's see how s64 range maps onto the same range
2073 	 * of values, annotated below the line for comparison:
2074 	 *
2075 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2076 	 * |-------------------------------|--------------------------------|
2077 	 * 0                        S64_MAX S64_MIN                        -1
2078 	 *
2079 	 * So s64 values basically start in the middle and they are logically
2080 	 * contiguous to the right of it, wrapping around from -1 to 0, and
2081 	 * then finishing as S64_MAX (0x7fffffffffffffff) right before
2082 	 * S64_MIN. We can try drawing the continuity of u64 vs s64 values
2083 	 * more visually as mapped to sign-agnostic range of hex values.
2084 	 *
2085 	 *  u64 start                                               u64 end
2086 	 *  _______________________________________________________________
2087 	 * /                                                               \
2088 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2089 	 * |-------------------------------|--------------------------------|
2090 	 * 0                        S64_MAX S64_MIN                        -1
2091 	 *                                / \
2092 	 * >------------------------------   ------------------------------->
2093 	 * s64 continues...        s64 end   s64 start          s64 "midpoint"
2094 	 *
2095 	 * What this means is that, in general, we can't always derive
2096 	 * something new about u64 from any random s64 range, and vice versa.
2097 	 *
2098 	 * But we can do that in two particular cases. One is when entire
2099 	 * u64/s64 range is *entirely* contained within left half of the above
2100 	 * diagram or when it is *entirely* contained in the right half. I.e.:
2101 	 *
2102 	 * |-------------------------------|--------------------------------|
2103 	 *     ^                   ^            ^                 ^
2104 	 *     A                   B            C                 D
2105 	 *
2106 	 * [A, B] and [C, D] are contained entirely in their respective halves
2107 	 * and form valid contiguous ranges as both u64 and s64 values. [A, B]
2108 	 * will be non-negative both as u64 and s64 (and in fact it will be
2109 	 * identical ranges no matter the signedness). [C, D] treated as s64
2110 	 * will be a range of negative values, while in u64 it will be
2111 	 * non-negative range of values larger than 0x8000000000000000.
2112 	 *
2113 	 * Now, any other range here can't be represented in both u64 and s64
2114 	 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid
2115 	 * contiguous u64 ranges, but they are discontinuous in s64. [B, C]
2116 	 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX],
2117 	 * for example. Similarly, valid s64 range [D, A] (going from negative
2118 	 * to positive values), would be two separate [D, U64_MAX] and [0, A]
2119 	 * ranges as u64. Currently reg_state can't represent two segments per
2120 	 * numeric domain, so in such situations we can only derive maximal
2121 	 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64).
2122 	 *
2123 	 * So we use these facts to derive umin/umax from smin/smax and vice
2124 	 * versa only if they stay within the same "half". This is equivalent
2125 	 * to checking sign bit: lower half will have sign bit as zero, upper
2126 	 * half have sign bit 1. Below in code we simplify this by just
2127 	 * casting umin/umax as smin/smax and checking if they form valid
2128 	 * range, and vice versa. Those are equivalent checks.
2129 	 */
2130 	if ((s64)reg->umin_value <= (s64)reg->umax_value) {
2131 		reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value);
2132 		reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value);
2133 	}
2134 	/* If we cannot cross the sign boundary, then signed and unsigned bounds
2135 	 * are the same, so combine.  This works even in the negative case, e.g.
2136 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2137 	 */
2138 	if ((u64)reg->smin_value <= (u64)reg->smax_value) {
2139 		reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value);
2140 		reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value);
2141 	}
2142 }
2143 
2144 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg)
2145 {
2146 	/* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit
2147 	 * values on both sides of 64-bit range in hope to have tighter range.
2148 	 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from
2149 	 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff].
2150 	 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound
2151 	 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of
2152 	 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a
2153 	 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff].
2154 	 * We just need to make sure that derived bounds we are intersecting
2155 	 * with are well-formed ranges in respective s64 or u64 domain, just
2156 	 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments.
2157 	 */
2158 	__u64 new_umin, new_umax;
2159 	__s64 new_smin, new_smax;
2160 
2161 	/* u32 -> u64 tightening, it's always well-formed */
2162 	new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value;
2163 	new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value;
2164 	reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2165 	reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2166 	/* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */
2167 	new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value;
2168 	new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value;
2169 	reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2170 	reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2171 
2172 	/* if s32 can be treated as valid u32 range, we can use it as well */
2173 	if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2174 		/* s32 -> u64 tightening */
2175 		new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
2176 		new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
2177 		reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2178 		reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2179 		/* s32 -> s64 tightening */
2180 		new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
2181 		new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
2182 		reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2183 		reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2184 	}
2185 }
2186 
2187 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2188 {
2189 	__reg32_deduce_bounds(reg);
2190 	__reg64_deduce_bounds(reg);
2191 	__reg_deduce_mixed_bounds(reg);
2192 }
2193 
2194 /* Attempts to improve var_off based on unsigned min/max information */
2195 static void __reg_bound_offset(struct bpf_reg_state *reg)
2196 {
2197 	struct tnum var64_off = tnum_intersect(reg->var_off,
2198 					       tnum_range(reg->umin_value,
2199 							  reg->umax_value));
2200 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2201 					       tnum_range(reg->u32_min_value,
2202 							  reg->u32_max_value));
2203 
2204 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2205 }
2206 
2207 static void reg_bounds_sync(struct bpf_reg_state *reg)
2208 {
2209 	/* We might have learned new bounds from the var_off. */
2210 	__update_reg_bounds(reg);
2211 	/* We might have learned something about the sign bit. */
2212 	__reg_deduce_bounds(reg);
2213 	__reg_deduce_bounds(reg);
2214 	/* We might have learned some bits from the bounds. */
2215 	__reg_bound_offset(reg);
2216 	/* Intersecting with the old var_off might have improved our bounds
2217 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2218 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2219 	 */
2220 	__update_reg_bounds(reg);
2221 }
2222 
2223 static int reg_bounds_sanity_check(struct bpf_verifier_env *env,
2224 				   struct bpf_reg_state *reg, const char *ctx)
2225 {
2226 	const char *msg;
2227 
2228 	if (reg->umin_value > reg->umax_value ||
2229 	    reg->smin_value > reg->smax_value ||
2230 	    reg->u32_min_value > reg->u32_max_value ||
2231 	    reg->s32_min_value > reg->s32_max_value) {
2232 		    msg = "range bounds violation";
2233 		    goto out;
2234 	}
2235 
2236 	if (tnum_is_const(reg->var_off)) {
2237 		u64 uval = reg->var_off.value;
2238 		s64 sval = (s64)uval;
2239 
2240 		if (reg->umin_value != uval || reg->umax_value != uval ||
2241 		    reg->smin_value != sval || reg->smax_value != sval) {
2242 			msg = "const tnum out of sync with range bounds";
2243 			goto out;
2244 		}
2245 	}
2246 
2247 	if (tnum_subreg_is_const(reg->var_off)) {
2248 		u32 uval32 = tnum_subreg(reg->var_off).value;
2249 		s32 sval32 = (s32)uval32;
2250 
2251 		if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 ||
2252 		    reg->s32_min_value != sval32 || reg->s32_max_value != sval32) {
2253 			msg = "const subreg tnum out of sync with range bounds";
2254 			goto out;
2255 		}
2256 	}
2257 
2258 	return 0;
2259 out:
2260 	verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] "
2261 		"s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n",
2262 		ctx, msg, reg->umin_value, reg->umax_value,
2263 		reg->smin_value, reg->smax_value,
2264 		reg->u32_min_value, reg->u32_max_value,
2265 		reg->s32_min_value, reg->s32_max_value,
2266 		reg->var_off.value, reg->var_off.mask);
2267 	if (env->test_reg_invariants)
2268 		return -EFAULT;
2269 	__mark_reg_unbounded(reg);
2270 	return 0;
2271 }
2272 
2273 static bool __reg32_bound_s64(s32 a)
2274 {
2275 	return a >= 0 && a <= S32_MAX;
2276 }
2277 
2278 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2279 {
2280 	reg->umin_value = reg->u32_min_value;
2281 	reg->umax_value = reg->u32_max_value;
2282 
2283 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2284 	 * be positive otherwise set to worse case bounds and refine later
2285 	 * from tnum.
2286 	 */
2287 	if (__reg32_bound_s64(reg->s32_min_value) &&
2288 	    __reg32_bound_s64(reg->s32_max_value)) {
2289 		reg->smin_value = reg->s32_min_value;
2290 		reg->smax_value = reg->s32_max_value;
2291 	} else {
2292 		reg->smin_value = 0;
2293 		reg->smax_value = U32_MAX;
2294 	}
2295 }
2296 
2297 /* Mark a register as having a completely unknown (scalar) value. */
2298 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg)
2299 {
2300 	/*
2301 	 * Clear type, off, and union(map_ptr, range) and
2302 	 * padding between 'type' and union
2303 	 */
2304 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2305 	reg->type = SCALAR_VALUE;
2306 	reg->id = 0;
2307 	reg->ref_obj_id = 0;
2308 	reg->var_off = tnum_unknown;
2309 	reg->frameno = 0;
2310 	reg->precise = false;
2311 	__mark_reg_unbounded(reg);
2312 }
2313 
2314 /* Mark a register as having a completely unknown (scalar) value,
2315  * initialize .precise as true when not bpf capable.
2316  */
2317 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2318 			       struct bpf_reg_state *reg)
2319 {
2320 	__mark_reg_unknown_imprecise(reg);
2321 	reg->precise = !env->bpf_capable;
2322 }
2323 
2324 static void mark_reg_unknown(struct bpf_verifier_env *env,
2325 			     struct bpf_reg_state *regs, u32 regno)
2326 {
2327 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2328 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2329 		/* Something bad happened, let's kill all regs except FP */
2330 		for (regno = 0; regno < BPF_REG_FP; regno++)
2331 			__mark_reg_not_init(env, regs + regno);
2332 		return;
2333 	}
2334 	__mark_reg_unknown(env, regs + regno);
2335 }
2336 
2337 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2338 				struct bpf_reg_state *reg)
2339 {
2340 	__mark_reg_unknown(env, reg);
2341 	reg->type = NOT_INIT;
2342 }
2343 
2344 static void mark_reg_not_init(struct bpf_verifier_env *env,
2345 			      struct bpf_reg_state *regs, u32 regno)
2346 {
2347 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2348 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2349 		/* Something bad happened, let's kill all regs except FP */
2350 		for (regno = 0; regno < BPF_REG_FP; regno++)
2351 			__mark_reg_not_init(env, regs + regno);
2352 		return;
2353 	}
2354 	__mark_reg_not_init(env, regs + regno);
2355 }
2356 
2357 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2358 			    struct bpf_reg_state *regs, u32 regno,
2359 			    enum bpf_reg_type reg_type,
2360 			    struct btf *btf, u32 btf_id,
2361 			    enum bpf_type_flag flag)
2362 {
2363 	if (reg_type == SCALAR_VALUE) {
2364 		mark_reg_unknown(env, regs, regno);
2365 		return;
2366 	}
2367 	mark_reg_known_zero(env, regs, regno);
2368 	regs[regno].type = PTR_TO_BTF_ID | flag;
2369 	regs[regno].btf = btf;
2370 	regs[regno].btf_id = btf_id;
2371 	if (type_may_be_null(flag))
2372 		regs[regno].id = ++env->id_gen;
2373 }
2374 
2375 #define DEF_NOT_SUBREG	(0)
2376 static void init_reg_state(struct bpf_verifier_env *env,
2377 			   struct bpf_func_state *state)
2378 {
2379 	struct bpf_reg_state *regs = state->regs;
2380 	int i;
2381 
2382 	for (i = 0; i < MAX_BPF_REG; i++) {
2383 		mark_reg_not_init(env, regs, i);
2384 		regs[i].live = REG_LIVE_NONE;
2385 		regs[i].parent = NULL;
2386 		regs[i].subreg_def = DEF_NOT_SUBREG;
2387 	}
2388 
2389 	/* frame pointer */
2390 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2391 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2392 	regs[BPF_REG_FP].frameno = state->frameno;
2393 }
2394 
2395 static struct bpf_retval_range retval_range(s32 minval, s32 maxval)
2396 {
2397 	return (struct bpf_retval_range){ minval, maxval };
2398 }
2399 
2400 #define BPF_MAIN_FUNC (-1)
2401 static void init_func_state(struct bpf_verifier_env *env,
2402 			    struct bpf_func_state *state,
2403 			    int callsite, int frameno, int subprogno)
2404 {
2405 	state->callsite = callsite;
2406 	state->frameno = frameno;
2407 	state->subprogno = subprogno;
2408 	state->callback_ret_range = retval_range(0, 0);
2409 	init_reg_state(env, state);
2410 	mark_verifier_state_scratched(env);
2411 }
2412 
2413 /* Similar to push_stack(), but for async callbacks */
2414 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2415 						int insn_idx, int prev_insn_idx,
2416 						int subprog, bool is_sleepable)
2417 {
2418 	struct bpf_verifier_stack_elem *elem;
2419 	struct bpf_func_state *frame;
2420 
2421 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2422 	if (!elem)
2423 		goto err;
2424 
2425 	elem->insn_idx = insn_idx;
2426 	elem->prev_insn_idx = prev_insn_idx;
2427 	elem->next = env->head;
2428 	elem->log_pos = env->log.end_pos;
2429 	env->head = elem;
2430 	env->stack_size++;
2431 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2432 		verbose(env,
2433 			"The sequence of %d jumps is too complex for async cb.\n",
2434 			env->stack_size);
2435 		goto err;
2436 	}
2437 	/* Unlike push_stack() do not copy_verifier_state().
2438 	 * The caller state doesn't matter.
2439 	 * This is async callback. It starts in a fresh stack.
2440 	 * Initialize it similar to do_check_common().
2441 	 */
2442 	elem->st.branches = 1;
2443 	elem->st.in_sleepable = is_sleepable;
2444 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2445 	if (!frame)
2446 		goto err;
2447 	init_func_state(env, frame,
2448 			BPF_MAIN_FUNC /* callsite */,
2449 			0 /* frameno within this callchain */,
2450 			subprog /* subprog number within this prog */);
2451 	elem->st.frame[0] = frame;
2452 	return &elem->st;
2453 err:
2454 	free_verifier_state(env->cur_state, true);
2455 	env->cur_state = NULL;
2456 	/* pop all elements and return */
2457 	while (!pop_stack(env, NULL, NULL, false));
2458 	return NULL;
2459 }
2460 
2461 
2462 enum reg_arg_type {
2463 	SRC_OP,		/* register is used as source operand */
2464 	DST_OP,		/* register is used as destination operand */
2465 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2466 };
2467 
2468 static int cmp_subprogs(const void *a, const void *b)
2469 {
2470 	return ((struct bpf_subprog_info *)a)->start -
2471 	       ((struct bpf_subprog_info *)b)->start;
2472 }
2473 
2474 static int find_subprog(struct bpf_verifier_env *env, int off)
2475 {
2476 	struct bpf_subprog_info *p;
2477 
2478 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2479 		    sizeof(env->subprog_info[0]), cmp_subprogs);
2480 	if (!p)
2481 		return -ENOENT;
2482 	return p - env->subprog_info;
2483 
2484 }
2485 
2486 static int add_subprog(struct bpf_verifier_env *env, int off)
2487 {
2488 	int insn_cnt = env->prog->len;
2489 	int ret;
2490 
2491 	if (off >= insn_cnt || off < 0) {
2492 		verbose(env, "call to invalid destination\n");
2493 		return -EINVAL;
2494 	}
2495 	ret = find_subprog(env, off);
2496 	if (ret >= 0)
2497 		return ret;
2498 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2499 		verbose(env, "too many subprograms\n");
2500 		return -E2BIG;
2501 	}
2502 	/* determine subprog starts. The end is one before the next starts */
2503 	env->subprog_info[env->subprog_cnt++].start = off;
2504 	sort(env->subprog_info, env->subprog_cnt,
2505 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2506 	return env->subprog_cnt - 1;
2507 }
2508 
2509 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env)
2510 {
2511 	struct bpf_prog_aux *aux = env->prog->aux;
2512 	struct btf *btf = aux->btf;
2513 	const struct btf_type *t;
2514 	u32 main_btf_id, id;
2515 	const char *name;
2516 	int ret, i;
2517 
2518 	/* Non-zero func_info_cnt implies valid btf */
2519 	if (!aux->func_info_cnt)
2520 		return 0;
2521 	main_btf_id = aux->func_info[0].type_id;
2522 
2523 	t = btf_type_by_id(btf, main_btf_id);
2524 	if (!t) {
2525 		verbose(env, "invalid btf id for main subprog in func_info\n");
2526 		return -EINVAL;
2527 	}
2528 
2529 	name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:");
2530 	if (IS_ERR(name)) {
2531 		ret = PTR_ERR(name);
2532 		/* If there is no tag present, there is no exception callback */
2533 		if (ret == -ENOENT)
2534 			ret = 0;
2535 		else if (ret == -EEXIST)
2536 			verbose(env, "multiple exception callback tags for main subprog\n");
2537 		return ret;
2538 	}
2539 
2540 	ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC);
2541 	if (ret < 0) {
2542 		verbose(env, "exception callback '%s' could not be found in BTF\n", name);
2543 		return ret;
2544 	}
2545 	id = ret;
2546 	t = btf_type_by_id(btf, id);
2547 	if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
2548 		verbose(env, "exception callback '%s' must have global linkage\n", name);
2549 		return -EINVAL;
2550 	}
2551 	ret = 0;
2552 	for (i = 0; i < aux->func_info_cnt; i++) {
2553 		if (aux->func_info[i].type_id != id)
2554 			continue;
2555 		ret = aux->func_info[i].insn_off;
2556 		/* Further func_info and subprog checks will also happen
2557 		 * later, so assume this is the right insn_off for now.
2558 		 */
2559 		if (!ret) {
2560 			verbose(env, "invalid exception callback insn_off in func_info: 0\n");
2561 			ret = -EINVAL;
2562 		}
2563 	}
2564 	if (!ret) {
2565 		verbose(env, "exception callback type id not found in func_info\n");
2566 		ret = -EINVAL;
2567 	}
2568 	return ret;
2569 }
2570 
2571 #define MAX_KFUNC_DESCS 256
2572 #define MAX_KFUNC_BTFS	256
2573 
2574 struct bpf_kfunc_desc {
2575 	struct btf_func_model func_model;
2576 	u32 func_id;
2577 	s32 imm;
2578 	u16 offset;
2579 	unsigned long addr;
2580 };
2581 
2582 struct bpf_kfunc_btf {
2583 	struct btf *btf;
2584 	struct module *module;
2585 	u16 offset;
2586 };
2587 
2588 struct bpf_kfunc_desc_tab {
2589 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2590 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
2591 	 * available, therefore at the end of verification do_misc_fixups()
2592 	 * sorts this by imm and offset.
2593 	 */
2594 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2595 	u32 nr_descs;
2596 };
2597 
2598 struct bpf_kfunc_btf_tab {
2599 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2600 	u32 nr_descs;
2601 };
2602 
2603 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2604 {
2605 	const struct bpf_kfunc_desc *d0 = a;
2606 	const struct bpf_kfunc_desc *d1 = b;
2607 
2608 	/* func_id is not greater than BTF_MAX_TYPE */
2609 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2610 }
2611 
2612 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2613 {
2614 	const struct bpf_kfunc_btf *d0 = a;
2615 	const struct bpf_kfunc_btf *d1 = b;
2616 
2617 	return d0->offset - d1->offset;
2618 }
2619 
2620 static const struct bpf_kfunc_desc *
2621 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2622 {
2623 	struct bpf_kfunc_desc desc = {
2624 		.func_id = func_id,
2625 		.offset = offset,
2626 	};
2627 	struct bpf_kfunc_desc_tab *tab;
2628 
2629 	tab = prog->aux->kfunc_tab;
2630 	return bsearch(&desc, tab->descs, tab->nr_descs,
2631 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2632 }
2633 
2634 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2635 		       u16 btf_fd_idx, u8 **func_addr)
2636 {
2637 	const struct bpf_kfunc_desc *desc;
2638 
2639 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2640 	if (!desc)
2641 		return -EFAULT;
2642 
2643 	*func_addr = (u8 *)desc->addr;
2644 	return 0;
2645 }
2646 
2647 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2648 					 s16 offset)
2649 {
2650 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2651 	struct bpf_kfunc_btf_tab *tab;
2652 	struct bpf_kfunc_btf *b;
2653 	struct module *mod;
2654 	struct btf *btf;
2655 	int btf_fd;
2656 
2657 	tab = env->prog->aux->kfunc_btf_tab;
2658 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2659 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2660 	if (!b) {
2661 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2662 			verbose(env, "too many different module BTFs\n");
2663 			return ERR_PTR(-E2BIG);
2664 		}
2665 
2666 		if (bpfptr_is_null(env->fd_array)) {
2667 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2668 			return ERR_PTR(-EPROTO);
2669 		}
2670 
2671 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2672 					    offset * sizeof(btf_fd),
2673 					    sizeof(btf_fd)))
2674 			return ERR_PTR(-EFAULT);
2675 
2676 		btf = btf_get_by_fd(btf_fd);
2677 		if (IS_ERR(btf)) {
2678 			verbose(env, "invalid module BTF fd specified\n");
2679 			return btf;
2680 		}
2681 
2682 		if (!btf_is_module(btf)) {
2683 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2684 			btf_put(btf);
2685 			return ERR_PTR(-EINVAL);
2686 		}
2687 
2688 		mod = btf_try_get_module(btf);
2689 		if (!mod) {
2690 			btf_put(btf);
2691 			return ERR_PTR(-ENXIO);
2692 		}
2693 
2694 		b = &tab->descs[tab->nr_descs++];
2695 		b->btf = btf;
2696 		b->module = mod;
2697 		b->offset = offset;
2698 
2699 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2700 		     kfunc_btf_cmp_by_off, NULL);
2701 	}
2702 	return b->btf;
2703 }
2704 
2705 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2706 {
2707 	if (!tab)
2708 		return;
2709 
2710 	while (tab->nr_descs--) {
2711 		module_put(tab->descs[tab->nr_descs].module);
2712 		btf_put(tab->descs[tab->nr_descs].btf);
2713 	}
2714 	kfree(tab);
2715 }
2716 
2717 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2718 {
2719 	if (offset) {
2720 		if (offset < 0) {
2721 			/* In the future, this can be allowed to increase limit
2722 			 * of fd index into fd_array, interpreted as u16.
2723 			 */
2724 			verbose(env, "negative offset disallowed for kernel module function call\n");
2725 			return ERR_PTR(-EINVAL);
2726 		}
2727 
2728 		return __find_kfunc_desc_btf(env, offset);
2729 	}
2730 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2731 }
2732 
2733 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2734 {
2735 	const struct btf_type *func, *func_proto;
2736 	struct bpf_kfunc_btf_tab *btf_tab;
2737 	struct bpf_kfunc_desc_tab *tab;
2738 	struct bpf_prog_aux *prog_aux;
2739 	struct bpf_kfunc_desc *desc;
2740 	const char *func_name;
2741 	struct btf *desc_btf;
2742 	unsigned long call_imm;
2743 	unsigned long addr;
2744 	int err;
2745 
2746 	prog_aux = env->prog->aux;
2747 	tab = prog_aux->kfunc_tab;
2748 	btf_tab = prog_aux->kfunc_btf_tab;
2749 	if (!tab) {
2750 		if (!btf_vmlinux) {
2751 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2752 			return -ENOTSUPP;
2753 		}
2754 
2755 		if (!env->prog->jit_requested) {
2756 			verbose(env, "JIT is required for calling kernel function\n");
2757 			return -ENOTSUPP;
2758 		}
2759 
2760 		if (!bpf_jit_supports_kfunc_call()) {
2761 			verbose(env, "JIT does not support calling kernel function\n");
2762 			return -ENOTSUPP;
2763 		}
2764 
2765 		if (!env->prog->gpl_compatible) {
2766 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2767 			return -EINVAL;
2768 		}
2769 
2770 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2771 		if (!tab)
2772 			return -ENOMEM;
2773 		prog_aux->kfunc_tab = tab;
2774 	}
2775 
2776 	/* func_id == 0 is always invalid, but instead of returning an error, be
2777 	 * conservative and wait until the code elimination pass before returning
2778 	 * error, so that invalid calls that get pruned out can be in BPF programs
2779 	 * loaded from userspace.  It is also required that offset be untouched
2780 	 * for such calls.
2781 	 */
2782 	if (!func_id && !offset)
2783 		return 0;
2784 
2785 	if (!btf_tab && offset) {
2786 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2787 		if (!btf_tab)
2788 			return -ENOMEM;
2789 		prog_aux->kfunc_btf_tab = btf_tab;
2790 	}
2791 
2792 	desc_btf = find_kfunc_desc_btf(env, offset);
2793 	if (IS_ERR(desc_btf)) {
2794 		verbose(env, "failed to find BTF for kernel function\n");
2795 		return PTR_ERR(desc_btf);
2796 	}
2797 
2798 	if (find_kfunc_desc(env->prog, func_id, offset))
2799 		return 0;
2800 
2801 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2802 		verbose(env, "too many different kernel function calls\n");
2803 		return -E2BIG;
2804 	}
2805 
2806 	func = btf_type_by_id(desc_btf, func_id);
2807 	if (!func || !btf_type_is_func(func)) {
2808 		verbose(env, "kernel btf_id %u is not a function\n",
2809 			func_id);
2810 		return -EINVAL;
2811 	}
2812 	func_proto = btf_type_by_id(desc_btf, func->type);
2813 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2814 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2815 			func_id);
2816 		return -EINVAL;
2817 	}
2818 
2819 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2820 	addr = kallsyms_lookup_name(func_name);
2821 	if (!addr) {
2822 		verbose(env, "cannot find address for kernel function %s\n",
2823 			func_name);
2824 		return -EINVAL;
2825 	}
2826 	specialize_kfunc(env, func_id, offset, &addr);
2827 
2828 	if (bpf_jit_supports_far_kfunc_call()) {
2829 		call_imm = func_id;
2830 	} else {
2831 		call_imm = BPF_CALL_IMM(addr);
2832 		/* Check whether the relative offset overflows desc->imm */
2833 		if ((unsigned long)(s32)call_imm != call_imm) {
2834 			verbose(env, "address of kernel function %s is out of range\n",
2835 				func_name);
2836 			return -EINVAL;
2837 		}
2838 	}
2839 
2840 	if (bpf_dev_bound_kfunc_id(func_id)) {
2841 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2842 		if (err)
2843 			return err;
2844 	}
2845 
2846 	desc = &tab->descs[tab->nr_descs++];
2847 	desc->func_id = func_id;
2848 	desc->imm = call_imm;
2849 	desc->offset = offset;
2850 	desc->addr = addr;
2851 	err = btf_distill_func_proto(&env->log, desc_btf,
2852 				     func_proto, func_name,
2853 				     &desc->func_model);
2854 	if (!err)
2855 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2856 		     kfunc_desc_cmp_by_id_off, NULL);
2857 	return err;
2858 }
2859 
2860 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2861 {
2862 	const struct bpf_kfunc_desc *d0 = a;
2863 	const struct bpf_kfunc_desc *d1 = b;
2864 
2865 	if (d0->imm != d1->imm)
2866 		return d0->imm < d1->imm ? -1 : 1;
2867 	if (d0->offset != d1->offset)
2868 		return d0->offset < d1->offset ? -1 : 1;
2869 	return 0;
2870 }
2871 
2872 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
2873 {
2874 	struct bpf_kfunc_desc_tab *tab;
2875 
2876 	tab = prog->aux->kfunc_tab;
2877 	if (!tab)
2878 		return;
2879 
2880 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2881 	     kfunc_desc_cmp_by_imm_off, NULL);
2882 }
2883 
2884 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2885 {
2886 	return !!prog->aux->kfunc_tab;
2887 }
2888 
2889 const struct btf_func_model *
2890 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2891 			 const struct bpf_insn *insn)
2892 {
2893 	const struct bpf_kfunc_desc desc = {
2894 		.imm = insn->imm,
2895 		.offset = insn->off,
2896 	};
2897 	const struct bpf_kfunc_desc *res;
2898 	struct bpf_kfunc_desc_tab *tab;
2899 
2900 	tab = prog->aux->kfunc_tab;
2901 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2902 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
2903 
2904 	return res ? &res->func_model : NULL;
2905 }
2906 
2907 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2908 {
2909 	struct bpf_subprog_info *subprog = env->subprog_info;
2910 	int i, ret, insn_cnt = env->prog->len, ex_cb_insn;
2911 	struct bpf_insn *insn = env->prog->insnsi;
2912 
2913 	/* Add entry function. */
2914 	ret = add_subprog(env, 0);
2915 	if (ret)
2916 		return ret;
2917 
2918 	for (i = 0; i < insn_cnt; i++, insn++) {
2919 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2920 		    !bpf_pseudo_kfunc_call(insn))
2921 			continue;
2922 
2923 		if (!env->bpf_capable) {
2924 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2925 			return -EPERM;
2926 		}
2927 
2928 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2929 			ret = add_subprog(env, i + insn->imm + 1);
2930 		else
2931 			ret = add_kfunc_call(env, insn->imm, insn->off);
2932 
2933 		if (ret < 0)
2934 			return ret;
2935 	}
2936 
2937 	ret = bpf_find_exception_callback_insn_off(env);
2938 	if (ret < 0)
2939 		return ret;
2940 	ex_cb_insn = ret;
2941 
2942 	/* If ex_cb_insn > 0, this means that the main program has a subprog
2943 	 * marked using BTF decl tag to serve as the exception callback.
2944 	 */
2945 	if (ex_cb_insn) {
2946 		ret = add_subprog(env, ex_cb_insn);
2947 		if (ret < 0)
2948 			return ret;
2949 		for (i = 1; i < env->subprog_cnt; i++) {
2950 			if (env->subprog_info[i].start != ex_cb_insn)
2951 				continue;
2952 			env->exception_callback_subprog = i;
2953 			mark_subprog_exc_cb(env, i);
2954 			break;
2955 		}
2956 	}
2957 
2958 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2959 	 * logic. 'subprog_cnt' should not be increased.
2960 	 */
2961 	subprog[env->subprog_cnt].start = insn_cnt;
2962 
2963 	if (env->log.level & BPF_LOG_LEVEL2)
2964 		for (i = 0; i < env->subprog_cnt; i++)
2965 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2966 
2967 	return 0;
2968 }
2969 
2970 static int check_subprogs(struct bpf_verifier_env *env)
2971 {
2972 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2973 	struct bpf_subprog_info *subprog = env->subprog_info;
2974 	struct bpf_insn *insn = env->prog->insnsi;
2975 	int insn_cnt = env->prog->len;
2976 
2977 	/* now check that all jumps are within the same subprog */
2978 	subprog_start = subprog[cur_subprog].start;
2979 	subprog_end = subprog[cur_subprog + 1].start;
2980 	for (i = 0; i < insn_cnt; i++) {
2981 		u8 code = insn[i].code;
2982 
2983 		if (code == (BPF_JMP | BPF_CALL) &&
2984 		    insn[i].src_reg == 0 &&
2985 		    insn[i].imm == BPF_FUNC_tail_call)
2986 			subprog[cur_subprog].has_tail_call = true;
2987 		if (BPF_CLASS(code) == BPF_LD &&
2988 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2989 			subprog[cur_subprog].has_ld_abs = true;
2990 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2991 			goto next;
2992 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2993 			goto next;
2994 		if (code == (BPF_JMP32 | BPF_JA))
2995 			off = i + insn[i].imm + 1;
2996 		else
2997 			off = i + insn[i].off + 1;
2998 		if (off < subprog_start || off >= subprog_end) {
2999 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
3000 			return -EINVAL;
3001 		}
3002 next:
3003 		if (i == subprog_end - 1) {
3004 			/* to avoid fall-through from one subprog into another
3005 			 * the last insn of the subprog should be either exit
3006 			 * or unconditional jump back or bpf_throw call
3007 			 */
3008 			if (code != (BPF_JMP | BPF_EXIT) &&
3009 			    code != (BPF_JMP32 | BPF_JA) &&
3010 			    code != (BPF_JMP | BPF_JA)) {
3011 				verbose(env, "last insn is not an exit or jmp\n");
3012 				return -EINVAL;
3013 			}
3014 			subprog_start = subprog_end;
3015 			cur_subprog++;
3016 			if (cur_subprog < env->subprog_cnt)
3017 				subprog_end = subprog[cur_subprog + 1].start;
3018 		}
3019 	}
3020 	return 0;
3021 }
3022 
3023 /* Parentage chain of this register (or stack slot) should take care of all
3024  * issues like callee-saved registers, stack slot allocation time, etc.
3025  */
3026 static int mark_reg_read(struct bpf_verifier_env *env,
3027 			 const struct bpf_reg_state *state,
3028 			 struct bpf_reg_state *parent, u8 flag)
3029 {
3030 	bool writes = parent == state->parent; /* Observe write marks */
3031 	int cnt = 0;
3032 
3033 	while (parent) {
3034 		/* if read wasn't screened by an earlier write ... */
3035 		if (writes && state->live & REG_LIVE_WRITTEN)
3036 			break;
3037 		if (parent->live & REG_LIVE_DONE) {
3038 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
3039 				reg_type_str(env, parent->type),
3040 				parent->var_off.value, parent->off);
3041 			return -EFAULT;
3042 		}
3043 		/* The first condition is more likely to be true than the
3044 		 * second, checked it first.
3045 		 */
3046 		if ((parent->live & REG_LIVE_READ) == flag ||
3047 		    parent->live & REG_LIVE_READ64)
3048 			/* The parentage chain never changes and
3049 			 * this parent was already marked as LIVE_READ.
3050 			 * There is no need to keep walking the chain again and
3051 			 * keep re-marking all parents as LIVE_READ.
3052 			 * This case happens when the same register is read
3053 			 * multiple times without writes into it in-between.
3054 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
3055 			 * then no need to set the weak REG_LIVE_READ32.
3056 			 */
3057 			break;
3058 		/* ... then we depend on parent's value */
3059 		parent->live |= flag;
3060 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
3061 		if (flag == REG_LIVE_READ64)
3062 			parent->live &= ~REG_LIVE_READ32;
3063 		state = parent;
3064 		parent = state->parent;
3065 		writes = true;
3066 		cnt++;
3067 	}
3068 
3069 	if (env->longest_mark_read_walk < cnt)
3070 		env->longest_mark_read_walk = cnt;
3071 	return 0;
3072 }
3073 
3074 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3075 {
3076 	struct bpf_func_state *state = func(env, reg);
3077 	int spi, ret;
3078 
3079 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
3080 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3081 	 * check_kfunc_call.
3082 	 */
3083 	if (reg->type == CONST_PTR_TO_DYNPTR)
3084 		return 0;
3085 	spi = dynptr_get_spi(env, reg);
3086 	if (spi < 0)
3087 		return spi;
3088 	/* Caller ensures dynptr is valid and initialized, which means spi is in
3089 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3090 	 * read.
3091 	 */
3092 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
3093 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
3094 	if (ret)
3095 		return ret;
3096 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
3097 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
3098 }
3099 
3100 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3101 			  int spi, int nr_slots)
3102 {
3103 	struct bpf_func_state *state = func(env, reg);
3104 	int err, i;
3105 
3106 	for (i = 0; i < nr_slots; i++) {
3107 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
3108 
3109 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
3110 		if (err)
3111 			return err;
3112 
3113 		mark_stack_slot_scratched(env, spi - i);
3114 	}
3115 
3116 	return 0;
3117 }
3118 
3119 /* This function is supposed to be used by the following 32-bit optimization
3120  * code only. It returns TRUE if the source or destination register operates
3121  * on 64-bit, otherwise return FALSE.
3122  */
3123 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
3124 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3125 {
3126 	u8 code, class, op;
3127 
3128 	code = insn->code;
3129 	class = BPF_CLASS(code);
3130 	op = BPF_OP(code);
3131 	if (class == BPF_JMP) {
3132 		/* BPF_EXIT for "main" will reach here. Return TRUE
3133 		 * conservatively.
3134 		 */
3135 		if (op == BPF_EXIT)
3136 			return true;
3137 		if (op == BPF_CALL) {
3138 			/* BPF to BPF call will reach here because of marking
3139 			 * caller saved clobber with DST_OP_NO_MARK for which we
3140 			 * don't care the register def because they are anyway
3141 			 * marked as NOT_INIT already.
3142 			 */
3143 			if (insn->src_reg == BPF_PSEUDO_CALL)
3144 				return false;
3145 			/* Helper call will reach here because of arg type
3146 			 * check, conservatively return TRUE.
3147 			 */
3148 			if (t == SRC_OP)
3149 				return true;
3150 
3151 			return false;
3152 		}
3153 	}
3154 
3155 	if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3156 		return false;
3157 
3158 	if (class == BPF_ALU64 || class == BPF_JMP ||
3159 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3160 		return true;
3161 
3162 	if (class == BPF_ALU || class == BPF_JMP32)
3163 		return false;
3164 
3165 	if (class == BPF_LDX) {
3166 		if (t != SRC_OP)
3167 			return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX;
3168 		/* LDX source must be ptr. */
3169 		return true;
3170 	}
3171 
3172 	if (class == BPF_STX) {
3173 		/* BPF_STX (including atomic variants) has multiple source
3174 		 * operands, one of which is a ptr. Check whether the caller is
3175 		 * asking about it.
3176 		 */
3177 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3178 			return true;
3179 		return BPF_SIZE(code) == BPF_DW;
3180 	}
3181 
3182 	if (class == BPF_LD) {
3183 		u8 mode = BPF_MODE(code);
3184 
3185 		/* LD_IMM64 */
3186 		if (mode == BPF_IMM)
3187 			return true;
3188 
3189 		/* Both LD_IND and LD_ABS return 32-bit data. */
3190 		if (t != SRC_OP)
3191 			return  false;
3192 
3193 		/* Implicit ctx ptr. */
3194 		if (regno == BPF_REG_6)
3195 			return true;
3196 
3197 		/* Explicit source could be any width. */
3198 		return true;
3199 	}
3200 
3201 	if (class == BPF_ST)
3202 		/* The only source register for BPF_ST is a ptr. */
3203 		return true;
3204 
3205 	/* Conservatively return true at default. */
3206 	return true;
3207 }
3208 
3209 /* Return the regno defined by the insn, or -1. */
3210 static int insn_def_regno(const struct bpf_insn *insn)
3211 {
3212 	switch (BPF_CLASS(insn->code)) {
3213 	case BPF_JMP:
3214 	case BPF_JMP32:
3215 	case BPF_ST:
3216 		return -1;
3217 	case BPF_STX:
3218 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3219 		    (insn->imm & BPF_FETCH)) {
3220 			if (insn->imm == BPF_CMPXCHG)
3221 				return BPF_REG_0;
3222 			else
3223 				return insn->src_reg;
3224 		} else {
3225 			return -1;
3226 		}
3227 	default:
3228 		return insn->dst_reg;
3229 	}
3230 }
3231 
3232 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3233 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3234 {
3235 	int dst_reg = insn_def_regno(insn);
3236 
3237 	if (dst_reg == -1)
3238 		return false;
3239 
3240 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3241 }
3242 
3243 static void mark_insn_zext(struct bpf_verifier_env *env,
3244 			   struct bpf_reg_state *reg)
3245 {
3246 	s32 def_idx = reg->subreg_def;
3247 
3248 	if (def_idx == DEF_NOT_SUBREG)
3249 		return;
3250 
3251 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3252 	/* The dst will be zero extended, so won't be sub-register anymore. */
3253 	reg->subreg_def = DEF_NOT_SUBREG;
3254 }
3255 
3256 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno,
3257 			   enum reg_arg_type t)
3258 {
3259 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3260 	struct bpf_reg_state *reg;
3261 	bool rw64;
3262 
3263 	if (regno >= MAX_BPF_REG) {
3264 		verbose(env, "R%d is invalid\n", regno);
3265 		return -EINVAL;
3266 	}
3267 
3268 	mark_reg_scratched(env, regno);
3269 
3270 	reg = &regs[regno];
3271 	rw64 = is_reg64(env, insn, regno, reg, t);
3272 	if (t == SRC_OP) {
3273 		/* check whether register used as source operand can be read */
3274 		if (reg->type == NOT_INIT) {
3275 			verbose(env, "R%d !read_ok\n", regno);
3276 			return -EACCES;
3277 		}
3278 		/* We don't need to worry about FP liveness because it's read-only */
3279 		if (regno == BPF_REG_FP)
3280 			return 0;
3281 
3282 		if (rw64)
3283 			mark_insn_zext(env, reg);
3284 
3285 		return mark_reg_read(env, reg, reg->parent,
3286 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3287 	} else {
3288 		/* check whether register used as dest operand can be written to */
3289 		if (regno == BPF_REG_FP) {
3290 			verbose(env, "frame pointer is read only\n");
3291 			return -EACCES;
3292 		}
3293 		reg->live |= REG_LIVE_WRITTEN;
3294 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3295 		if (t == DST_OP)
3296 			mark_reg_unknown(env, regs, regno);
3297 	}
3298 	return 0;
3299 }
3300 
3301 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3302 			 enum reg_arg_type t)
3303 {
3304 	struct bpf_verifier_state *vstate = env->cur_state;
3305 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3306 
3307 	return __check_reg_arg(env, state->regs, regno, t);
3308 }
3309 
3310 static int insn_stack_access_flags(int frameno, int spi)
3311 {
3312 	return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno;
3313 }
3314 
3315 static int insn_stack_access_spi(int insn_flags)
3316 {
3317 	return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK;
3318 }
3319 
3320 static int insn_stack_access_frameno(int insn_flags)
3321 {
3322 	return insn_flags & INSN_F_FRAMENO_MASK;
3323 }
3324 
3325 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3326 {
3327 	env->insn_aux_data[idx].jmp_point = true;
3328 }
3329 
3330 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3331 {
3332 	return env->insn_aux_data[insn_idx].jmp_point;
3333 }
3334 
3335 /* for any branch, call, exit record the history of jmps in the given state */
3336 static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur,
3337 			    int insn_flags)
3338 {
3339 	u32 cnt = cur->jmp_history_cnt;
3340 	struct bpf_jmp_history_entry *p;
3341 	size_t alloc_size;
3342 
3343 	/* combine instruction flags if we already recorded this instruction */
3344 	if (env->cur_hist_ent) {
3345 		/* atomic instructions push insn_flags twice, for READ and
3346 		 * WRITE sides, but they should agree on stack slot
3347 		 */
3348 		WARN_ONCE((env->cur_hist_ent->flags & insn_flags) &&
3349 			  (env->cur_hist_ent->flags & insn_flags) != insn_flags,
3350 			  "verifier insn history bug: insn_idx %d cur flags %x new flags %x\n",
3351 			  env->insn_idx, env->cur_hist_ent->flags, insn_flags);
3352 		env->cur_hist_ent->flags |= insn_flags;
3353 		return 0;
3354 	}
3355 
3356 	cnt++;
3357 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3358 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3359 	if (!p)
3360 		return -ENOMEM;
3361 	cur->jmp_history = p;
3362 
3363 	p = &cur->jmp_history[cnt - 1];
3364 	p->idx = env->insn_idx;
3365 	p->prev_idx = env->prev_insn_idx;
3366 	p->flags = insn_flags;
3367 	cur->jmp_history_cnt = cnt;
3368 	env->cur_hist_ent = p;
3369 
3370 	return 0;
3371 }
3372 
3373 static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st,
3374 						        u32 hist_end, int insn_idx)
3375 {
3376 	if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx)
3377 		return &st->jmp_history[hist_end - 1];
3378 	return NULL;
3379 }
3380 
3381 /* Backtrack one insn at a time. If idx is not at the top of recorded
3382  * history then previous instruction came from straight line execution.
3383  * Return -ENOENT if we exhausted all instructions within given state.
3384  *
3385  * It's legal to have a bit of a looping with the same starting and ending
3386  * insn index within the same state, e.g.: 3->4->5->3, so just because current
3387  * instruction index is the same as state's first_idx doesn't mean we are
3388  * done. If there is still some jump history left, we should keep going. We
3389  * need to take into account that we might have a jump history between given
3390  * state's parent and itself, due to checkpointing. In this case, we'll have
3391  * history entry recording a jump from last instruction of parent state and
3392  * first instruction of given state.
3393  */
3394 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3395 			     u32 *history)
3396 {
3397 	u32 cnt = *history;
3398 
3399 	if (i == st->first_insn_idx) {
3400 		if (cnt == 0)
3401 			return -ENOENT;
3402 		if (cnt == 1 && st->jmp_history[0].idx == i)
3403 			return -ENOENT;
3404 	}
3405 
3406 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
3407 		i = st->jmp_history[cnt - 1].prev_idx;
3408 		(*history)--;
3409 	} else {
3410 		i--;
3411 	}
3412 	return i;
3413 }
3414 
3415 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3416 {
3417 	const struct btf_type *func;
3418 	struct btf *desc_btf;
3419 
3420 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3421 		return NULL;
3422 
3423 	desc_btf = find_kfunc_desc_btf(data, insn->off);
3424 	if (IS_ERR(desc_btf))
3425 		return "<error>";
3426 
3427 	func = btf_type_by_id(desc_btf, insn->imm);
3428 	return btf_name_by_offset(desc_btf, func->name_off);
3429 }
3430 
3431 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3432 {
3433 	bt->frame = frame;
3434 }
3435 
3436 static inline void bt_reset(struct backtrack_state *bt)
3437 {
3438 	struct bpf_verifier_env *env = bt->env;
3439 
3440 	memset(bt, 0, sizeof(*bt));
3441 	bt->env = env;
3442 }
3443 
3444 static inline u32 bt_empty(struct backtrack_state *bt)
3445 {
3446 	u64 mask = 0;
3447 	int i;
3448 
3449 	for (i = 0; i <= bt->frame; i++)
3450 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
3451 
3452 	return mask == 0;
3453 }
3454 
3455 static inline int bt_subprog_enter(struct backtrack_state *bt)
3456 {
3457 	if (bt->frame == MAX_CALL_FRAMES - 1) {
3458 		verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3459 		WARN_ONCE(1, "verifier backtracking bug");
3460 		return -EFAULT;
3461 	}
3462 	bt->frame++;
3463 	return 0;
3464 }
3465 
3466 static inline int bt_subprog_exit(struct backtrack_state *bt)
3467 {
3468 	if (bt->frame == 0) {
3469 		verbose(bt->env, "BUG subprog exit from frame 0\n");
3470 		WARN_ONCE(1, "verifier backtracking bug");
3471 		return -EFAULT;
3472 	}
3473 	bt->frame--;
3474 	return 0;
3475 }
3476 
3477 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3478 {
3479 	bt->reg_masks[frame] |= 1 << reg;
3480 }
3481 
3482 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3483 {
3484 	bt->reg_masks[frame] &= ~(1 << reg);
3485 }
3486 
3487 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3488 {
3489 	bt_set_frame_reg(bt, bt->frame, reg);
3490 }
3491 
3492 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3493 {
3494 	bt_clear_frame_reg(bt, bt->frame, reg);
3495 }
3496 
3497 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3498 {
3499 	bt->stack_masks[frame] |= 1ull << slot;
3500 }
3501 
3502 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3503 {
3504 	bt->stack_masks[frame] &= ~(1ull << slot);
3505 }
3506 
3507 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3508 {
3509 	return bt->reg_masks[frame];
3510 }
3511 
3512 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3513 {
3514 	return bt->reg_masks[bt->frame];
3515 }
3516 
3517 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3518 {
3519 	return bt->stack_masks[frame];
3520 }
3521 
3522 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3523 {
3524 	return bt->stack_masks[bt->frame];
3525 }
3526 
3527 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3528 {
3529 	return bt->reg_masks[bt->frame] & (1 << reg);
3530 }
3531 
3532 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot)
3533 {
3534 	return bt->stack_masks[frame] & (1ull << slot);
3535 }
3536 
3537 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
3538 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3539 {
3540 	DECLARE_BITMAP(mask, 64);
3541 	bool first = true;
3542 	int i, n;
3543 
3544 	buf[0] = '\0';
3545 
3546 	bitmap_from_u64(mask, reg_mask);
3547 	for_each_set_bit(i, mask, 32) {
3548 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3549 		first = false;
3550 		buf += n;
3551 		buf_sz -= n;
3552 		if (buf_sz < 0)
3553 			break;
3554 	}
3555 }
3556 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
3557 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3558 {
3559 	DECLARE_BITMAP(mask, 64);
3560 	bool first = true;
3561 	int i, n;
3562 
3563 	buf[0] = '\0';
3564 
3565 	bitmap_from_u64(mask, stack_mask);
3566 	for_each_set_bit(i, mask, 64) {
3567 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3568 		first = false;
3569 		buf += n;
3570 		buf_sz -= n;
3571 		if (buf_sz < 0)
3572 			break;
3573 	}
3574 }
3575 
3576 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx);
3577 
3578 /* For given verifier state backtrack_insn() is called from the last insn to
3579  * the first insn. Its purpose is to compute a bitmask of registers and
3580  * stack slots that needs precision in the parent verifier state.
3581  *
3582  * @idx is an index of the instruction we are currently processing;
3583  * @subseq_idx is an index of the subsequent instruction that:
3584  *   - *would be* executed next, if jump history is viewed in forward order;
3585  *   - *was* processed previously during backtracking.
3586  */
3587 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3588 			  struct bpf_jmp_history_entry *hist, struct backtrack_state *bt)
3589 {
3590 	const struct bpf_insn_cbs cbs = {
3591 		.cb_call	= disasm_kfunc_name,
3592 		.cb_print	= verbose,
3593 		.private_data	= env,
3594 	};
3595 	struct bpf_insn *insn = env->prog->insnsi + idx;
3596 	u8 class = BPF_CLASS(insn->code);
3597 	u8 opcode = BPF_OP(insn->code);
3598 	u8 mode = BPF_MODE(insn->code);
3599 	u32 dreg = insn->dst_reg;
3600 	u32 sreg = insn->src_reg;
3601 	u32 spi, i, fr;
3602 
3603 	if (insn->code == 0)
3604 		return 0;
3605 	if (env->log.level & BPF_LOG_LEVEL2) {
3606 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3607 		verbose(env, "mark_precise: frame%d: regs=%s ",
3608 			bt->frame, env->tmp_str_buf);
3609 		fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3610 		verbose(env, "stack=%s before ", env->tmp_str_buf);
3611 		verbose(env, "%d: ", idx);
3612 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3613 	}
3614 
3615 	if (class == BPF_ALU || class == BPF_ALU64) {
3616 		if (!bt_is_reg_set(bt, dreg))
3617 			return 0;
3618 		if (opcode == BPF_END || opcode == BPF_NEG) {
3619 			/* sreg is reserved and unused
3620 			 * dreg still need precision before this insn
3621 			 */
3622 			return 0;
3623 		} else if (opcode == BPF_MOV) {
3624 			if (BPF_SRC(insn->code) == BPF_X) {
3625 				/* dreg = sreg or dreg = (s8, s16, s32)sreg
3626 				 * dreg needs precision after this insn
3627 				 * sreg needs precision before this insn
3628 				 */
3629 				bt_clear_reg(bt, dreg);
3630 				if (sreg != BPF_REG_FP)
3631 					bt_set_reg(bt, sreg);
3632 			} else {
3633 				/* dreg = K
3634 				 * dreg needs precision after this insn.
3635 				 * Corresponding register is already marked
3636 				 * as precise=true in this verifier state.
3637 				 * No further markings in parent are necessary
3638 				 */
3639 				bt_clear_reg(bt, dreg);
3640 			}
3641 		} else {
3642 			if (BPF_SRC(insn->code) == BPF_X) {
3643 				/* dreg += sreg
3644 				 * both dreg and sreg need precision
3645 				 * before this insn
3646 				 */
3647 				if (sreg != BPF_REG_FP)
3648 					bt_set_reg(bt, sreg);
3649 			} /* else dreg += K
3650 			   * dreg still needs precision before this insn
3651 			   */
3652 		}
3653 	} else if (class == BPF_LDX) {
3654 		if (!bt_is_reg_set(bt, dreg))
3655 			return 0;
3656 		bt_clear_reg(bt, dreg);
3657 
3658 		/* scalars can only be spilled into stack w/o losing precision.
3659 		 * Load from any other memory can be zero extended.
3660 		 * The desire to keep that precision is already indicated
3661 		 * by 'precise' mark in corresponding register of this state.
3662 		 * No further tracking necessary.
3663 		 */
3664 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
3665 			return 0;
3666 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
3667 		 * that [fp - off] slot contains scalar that needs to be
3668 		 * tracked with precision
3669 		 */
3670 		spi = insn_stack_access_spi(hist->flags);
3671 		fr = insn_stack_access_frameno(hist->flags);
3672 		bt_set_frame_slot(bt, fr, spi);
3673 	} else if (class == BPF_STX || class == BPF_ST) {
3674 		if (bt_is_reg_set(bt, dreg))
3675 			/* stx & st shouldn't be using _scalar_ dst_reg
3676 			 * to access memory. It means backtracking
3677 			 * encountered a case of pointer subtraction.
3678 			 */
3679 			return -ENOTSUPP;
3680 		/* scalars can only be spilled into stack */
3681 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
3682 			return 0;
3683 		spi = insn_stack_access_spi(hist->flags);
3684 		fr = insn_stack_access_frameno(hist->flags);
3685 		if (!bt_is_frame_slot_set(bt, fr, spi))
3686 			return 0;
3687 		bt_clear_frame_slot(bt, fr, spi);
3688 		if (class == BPF_STX)
3689 			bt_set_reg(bt, sreg);
3690 	} else if (class == BPF_JMP || class == BPF_JMP32) {
3691 		if (bpf_pseudo_call(insn)) {
3692 			int subprog_insn_idx, subprog;
3693 
3694 			subprog_insn_idx = idx + insn->imm + 1;
3695 			subprog = find_subprog(env, subprog_insn_idx);
3696 			if (subprog < 0)
3697 				return -EFAULT;
3698 
3699 			if (subprog_is_global(env, subprog)) {
3700 				/* check that jump history doesn't have any
3701 				 * extra instructions from subprog; the next
3702 				 * instruction after call to global subprog
3703 				 * should be literally next instruction in
3704 				 * caller program
3705 				 */
3706 				WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3707 				/* r1-r5 are invalidated after subprog call,
3708 				 * so for global func call it shouldn't be set
3709 				 * anymore
3710 				 */
3711 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3712 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3713 					WARN_ONCE(1, "verifier backtracking bug");
3714 					return -EFAULT;
3715 				}
3716 				/* global subprog always sets R0 */
3717 				bt_clear_reg(bt, BPF_REG_0);
3718 				return 0;
3719 			} else {
3720 				/* static subprog call instruction, which
3721 				 * means that we are exiting current subprog,
3722 				 * so only r1-r5 could be still requested as
3723 				 * precise, r0 and r6-r10 or any stack slot in
3724 				 * the current frame should be zero by now
3725 				 */
3726 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3727 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3728 					WARN_ONCE(1, "verifier backtracking bug");
3729 					return -EFAULT;
3730 				}
3731 				/* we are now tracking register spills correctly,
3732 				 * so any instance of leftover slots is a bug
3733 				 */
3734 				if (bt_stack_mask(bt) != 0) {
3735 					verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
3736 					WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)");
3737 					return -EFAULT;
3738 				}
3739 				/* propagate r1-r5 to the caller */
3740 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3741 					if (bt_is_reg_set(bt, i)) {
3742 						bt_clear_reg(bt, i);
3743 						bt_set_frame_reg(bt, bt->frame - 1, i);
3744 					}
3745 				}
3746 				if (bt_subprog_exit(bt))
3747 					return -EFAULT;
3748 				return 0;
3749 			}
3750 		} else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) {
3751 			/* exit from callback subprog to callback-calling helper or
3752 			 * kfunc call. Use idx/subseq_idx check to discern it from
3753 			 * straight line code backtracking.
3754 			 * Unlike the subprog call handling above, we shouldn't
3755 			 * propagate precision of r1-r5 (if any requested), as they are
3756 			 * not actually arguments passed directly to callback subprogs
3757 			 */
3758 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3759 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3760 				WARN_ONCE(1, "verifier backtracking bug");
3761 				return -EFAULT;
3762 			}
3763 			if (bt_stack_mask(bt) != 0) {
3764 				verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
3765 				WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)");
3766 				return -EFAULT;
3767 			}
3768 			/* clear r1-r5 in callback subprog's mask */
3769 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3770 				bt_clear_reg(bt, i);
3771 			if (bt_subprog_exit(bt))
3772 				return -EFAULT;
3773 			return 0;
3774 		} else if (opcode == BPF_CALL) {
3775 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
3776 			 * catch this error later. Make backtracking conservative
3777 			 * with ENOTSUPP.
3778 			 */
3779 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3780 				return -ENOTSUPP;
3781 			/* regular helper call sets R0 */
3782 			bt_clear_reg(bt, BPF_REG_0);
3783 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3784 				/* if backtracing was looking for registers R1-R5
3785 				 * they should have been found already.
3786 				 */
3787 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3788 				WARN_ONCE(1, "verifier backtracking bug");
3789 				return -EFAULT;
3790 			}
3791 		} else if (opcode == BPF_EXIT) {
3792 			bool r0_precise;
3793 
3794 			/* Backtracking to a nested function call, 'idx' is a part of
3795 			 * the inner frame 'subseq_idx' is a part of the outer frame.
3796 			 * In case of a regular function call, instructions giving
3797 			 * precision to registers R1-R5 should have been found already.
3798 			 * In case of a callback, it is ok to have R1-R5 marked for
3799 			 * backtracking, as these registers are set by the function
3800 			 * invoking callback.
3801 			 */
3802 			if (subseq_idx >= 0 && calls_callback(env, subseq_idx))
3803 				for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3804 					bt_clear_reg(bt, i);
3805 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3806 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3807 				WARN_ONCE(1, "verifier backtracking bug");
3808 				return -EFAULT;
3809 			}
3810 
3811 			/* BPF_EXIT in subprog or callback always returns
3812 			 * right after the call instruction, so by checking
3813 			 * whether the instruction at subseq_idx-1 is subprog
3814 			 * call or not we can distinguish actual exit from
3815 			 * *subprog* from exit from *callback*. In the former
3816 			 * case, we need to propagate r0 precision, if
3817 			 * necessary. In the former we never do that.
3818 			 */
3819 			r0_precise = subseq_idx - 1 >= 0 &&
3820 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3821 				     bt_is_reg_set(bt, BPF_REG_0);
3822 
3823 			bt_clear_reg(bt, BPF_REG_0);
3824 			if (bt_subprog_enter(bt))
3825 				return -EFAULT;
3826 
3827 			if (r0_precise)
3828 				bt_set_reg(bt, BPF_REG_0);
3829 			/* r6-r9 and stack slots will stay set in caller frame
3830 			 * bitmasks until we return back from callee(s)
3831 			 */
3832 			return 0;
3833 		} else if (BPF_SRC(insn->code) == BPF_X) {
3834 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
3835 				return 0;
3836 			/* dreg <cond> sreg
3837 			 * Both dreg and sreg need precision before
3838 			 * this insn. If only sreg was marked precise
3839 			 * before it would be equally necessary to
3840 			 * propagate it to dreg.
3841 			 */
3842 			bt_set_reg(bt, dreg);
3843 			bt_set_reg(bt, sreg);
3844 			 /* else dreg <cond> K
3845 			  * Only dreg still needs precision before
3846 			  * this insn, so for the K-based conditional
3847 			  * there is nothing new to be marked.
3848 			  */
3849 		}
3850 	} else if (class == BPF_LD) {
3851 		if (!bt_is_reg_set(bt, dreg))
3852 			return 0;
3853 		bt_clear_reg(bt, dreg);
3854 		/* It's ld_imm64 or ld_abs or ld_ind.
3855 		 * For ld_imm64 no further tracking of precision
3856 		 * into parent is necessary
3857 		 */
3858 		if (mode == BPF_IND || mode == BPF_ABS)
3859 			/* to be analyzed */
3860 			return -ENOTSUPP;
3861 	}
3862 	return 0;
3863 }
3864 
3865 /* the scalar precision tracking algorithm:
3866  * . at the start all registers have precise=false.
3867  * . scalar ranges are tracked as normal through alu and jmp insns.
3868  * . once precise value of the scalar register is used in:
3869  *   .  ptr + scalar alu
3870  *   . if (scalar cond K|scalar)
3871  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
3872  *   backtrack through the verifier states and mark all registers and
3873  *   stack slots with spilled constants that these scalar regisers
3874  *   should be precise.
3875  * . during state pruning two registers (or spilled stack slots)
3876  *   are equivalent if both are not precise.
3877  *
3878  * Note the verifier cannot simply walk register parentage chain,
3879  * since many different registers and stack slots could have been
3880  * used to compute single precise scalar.
3881  *
3882  * The approach of starting with precise=true for all registers and then
3883  * backtrack to mark a register as not precise when the verifier detects
3884  * that program doesn't care about specific value (e.g., when helper
3885  * takes register as ARG_ANYTHING parameter) is not safe.
3886  *
3887  * It's ok to walk single parentage chain of the verifier states.
3888  * It's possible that this backtracking will go all the way till 1st insn.
3889  * All other branches will be explored for needing precision later.
3890  *
3891  * The backtracking needs to deal with cases like:
3892  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3893  * r9 -= r8
3894  * r5 = r9
3895  * if r5 > 0x79f goto pc+7
3896  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
3897  * r5 += 1
3898  * ...
3899  * call bpf_perf_event_output#25
3900  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
3901  *
3902  * and this case:
3903  * r6 = 1
3904  * call foo // uses callee's r6 inside to compute r0
3905  * r0 += r6
3906  * if r0 == 0 goto
3907  *
3908  * to track above reg_mask/stack_mask needs to be independent for each frame.
3909  *
3910  * Also if parent's curframe > frame where backtracking started,
3911  * the verifier need to mark registers in both frames, otherwise callees
3912  * may incorrectly prune callers. This is similar to
3913  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
3914  *
3915  * For now backtracking falls back into conservative marking.
3916  */
3917 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
3918 				     struct bpf_verifier_state *st)
3919 {
3920 	struct bpf_func_state *func;
3921 	struct bpf_reg_state *reg;
3922 	int i, j;
3923 
3924 	if (env->log.level & BPF_LOG_LEVEL2) {
3925 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
3926 			st->curframe);
3927 	}
3928 
3929 	/* big hammer: mark all scalars precise in this path.
3930 	 * pop_stack may still get !precise scalars.
3931 	 * We also skip current state and go straight to first parent state,
3932 	 * because precision markings in current non-checkpointed state are
3933 	 * not needed. See why in the comment in __mark_chain_precision below.
3934 	 */
3935 	for (st = st->parent; st; st = st->parent) {
3936 		for (i = 0; i <= st->curframe; i++) {
3937 			func = st->frame[i];
3938 			for (j = 0; j < BPF_REG_FP; j++) {
3939 				reg = &func->regs[j];
3940 				if (reg->type != SCALAR_VALUE || reg->precise)
3941 					continue;
3942 				reg->precise = true;
3943 				if (env->log.level & BPF_LOG_LEVEL2) {
3944 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
3945 						i, j);
3946 				}
3947 			}
3948 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3949 				if (!is_spilled_reg(&func->stack[j]))
3950 					continue;
3951 				reg = &func->stack[j].spilled_ptr;
3952 				if (reg->type != SCALAR_VALUE || reg->precise)
3953 					continue;
3954 				reg->precise = true;
3955 				if (env->log.level & BPF_LOG_LEVEL2) {
3956 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
3957 						i, -(j + 1) * 8);
3958 				}
3959 			}
3960 		}
3961 	}
3962 }
3963 
3964 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3965 {
3966 	struct bpf_func_state *func;
3967 	struct bpf_reg_state *reg;
3968 	int i, j;
3969 
3970 	for (i = 0; i <= st->curframe; i++) {
3971 		func = st->frame[i];
3972 		for (j = 0; j < BPF_REG_FP; j++) {
3973 			reg = &func->regs[j];
3974 			if (reg->type != SCALAR_VALUE)
3975 				continue;
3976 			reg->precise = false;
3977 		}
3978 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3979 			if (!is_spilled_reg(&func->stack[j]))
3980 				continue;
3981 			reg = &func->stack[j].spilled_ptr;
3982 			if (reg->type != SCALAR_VALUE)
3983 				continue;
3984 			reg->precise = false;
3985 		}
3986 	}
3987 }
3988 
3989 static bool idset_contains(struct bpf_idset *s, u32 id)
3990 {
3991 	u32 i;
3992 
3993 	for (i = 0; i < s->count; ++i)
3994 		if (s->ids[i] == id)
3995 			return true;
3996 
3997 	return false;
3998 }
3999 
4000 static int idset_push(struct bpf_idset *s, u32 id)
4001 {
4002 	if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
4003 		return -EFAULT;
4004 	s->ids[s->count++] = id;
4005 	return 0;
4006 }
4007 
4008 static void idset_reset(struct bpf_idset *s)
4009 {
4010 	s->count = 0;
4011 }
4012 
4013 /* Collect a set of IDs for all registers currently marked as precise in env->bt.
4014  * Mark all registers with these IDs as precise.
4015  */
4016 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4017 {
4018 	struct bpf_idset *precise_ids = &env->idset_scratch;
4019 	struct backtrack_state *bt = &env->bt;
4020 	struct bpf_func_state *func;
4021 	struct bpf_reg_state *reg;
4022 	DECLARE_BITMAP(mask, 64);
4023 	int i, fr;
4024 
4025 	idset_reset(precise_ids);
4026 
4027 	for (fr = bt->frame; fr >= 0; fr--) {
4028 		func = st->frame[fr];
4029 
4030 		bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4031 		for_each_set_bit(i, mask, 32) {
4032 			reg = &func->regs[i];
4033 			if (!reg->id || reg->type != SCALAR_VALUE)
4034 				continue;
4035 			if (idset_push(precise_ids, reg->id))
4036 				return -EFAULT;
4037 		}
4038 
4039 		bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4040 		for_each_set_bit(i, mask, 64) {
4041 			if (i >= func->allocated_stack / BPF_REG_SIZE)
4042 				break;
4043 			if (!is_spilled_scalar_reg(&func->stack[i]))
4044 				continue;
4045 			reg = &func->stack[i].spilled_ptr;
4046 			if (!reg->id)
4047 				continue;
4048 			if (idset_push(precise_ids, reg->id))
4049 				return -EFAULT;
4050 		}
4051 	}
4052 
4053 	for (fr = 0; fr <= st->curframe; ++fr) {
4054 		func = st->frame[fr];
4055 
4056 		for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
4057 			reg = &func->regs[i];
4058 			if (!reg->id)
4059 				continue;
4060 			if (!idset_contains(precise_ids, reg->id))
4061 				continue;
4062 			bt_set_frame_reg(bt, fr, i);
4063 		}
4064 		for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
4065 			if (!is_spilled_scalar_reg(&func->stack[i]))
4066 				continue;
4067 			reg = &func->stack[i].spilled_ptr;
4068 			if (!reg->id)
4069 				continue;
4070 			if (!idset_contains(precise_ids, reg->id))
4071 				continue;
4072 			bt_set_frame_slot(bt, fr, i);
4073 		}
4074 	}
4075 
4076 	return 0;
4077 }
4078 
4079 /*
4080  * __mark_chain_precision() backtracks BPF program instruction sequence and
4081  * chain of verifier states making sure that register *regno* (if regno >= 0)
4082  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
4083  * SCALARS, as well as any other registers and slots that contribute to
4084  * a tracked state of given registers/stack slots, depending on specific BPF
4085  * assembly instructions (see backtrack_insns() for exact instruction handling
4086  * logic). This backtracking relies on recorded jmp_history and is able to
4087  * traverse entire chain of parent states. This process ends only when all the
4088  * necessary registers/slots and their transitive dependencies are marked as
4089  * precise.
4090  *
4091  * One important and subtle aspect is that precise marks *do not matter* in
4092  * the currently verified state (current state). It is important to understand
4093  * why this is the case.
4094  *
4095  * First, note that current state is the state that is not yet "checkpointed",
4096  * i.e., it is not yet put into env->explored_states, and it has no children
4097  * states as well. It's ephemeral, and can end up either a) being discarded if
4098  * compatible explored state is found at some point or BPF_EXIT instruction is
4099  * reached or b) checkpointed and put into env->explored_states, branching out
4100  * into one or more children states.
4101  *
4102  * In the former case, precise markings in current state are completely
4103  * ignored by state comparison code (see regsafe() for details). Only
4104  * checkpointed ("old") state precise markings are important, and if old
4105  * state's register/slot is precise, regsafe() assumes current state's
4106  * register/slot as precise and checks value ranges exactly and precisely. If
4107  * states turn out to be compatible, current state's necessary precise
4108  * markings and any required parent states' precise markings are enforced
4109  * after the fact with propagate_precision() logic, after the fact. But it's
4110  * important to realize that in this case, even after marking current state
4111  * registers/slots as precise, we immediately discard current state. So what
4112  * actually matters is any of the precise markings propagated into current
4113  * state's parent states, which are always checkpointed (due to b) case above).
4114  * As such, for scenario a) it doesn't matter if current state has precise
4115  * markings set or not.
4116  *
4117  * Now, for the scenario b), checkpointing and forking into child(ren)
4118  * state(s). Note that before current state gets to checkpointing step, any
4119  * processed instruction always assumes precise SCALAR register/slot
4120  * knowledge: if precise value or range is useful to prune jump branch, BPF
4121  * verifier takes this opportunity enthusiastically. Similarly, when
4122  * register's value is used to calculate offset or memory address, exact
4123  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4124  * what we mentioned above about state comparison ignoring precise markings
4125  * during state comparison, BPF verifier ignores and also assumes precise
4126  * markings *at will* during instruction verification process. But as verifier
4127  * assumes precision, it also propagates any precision dependencies across
4128  * parent states, which are not yet finalized, so can be further restricted
4129  * based on new knowledge gained from restrictions enforced by their children
4130  * states. This is so that once those parent states are finalized, i.e., when
4131  * they have no more active children state, state comparison logic in
4132  * is_state_visited() would enforce strict and precise SCALAR ranges, if
4133  * required for correctness.
4134  *
4135  * To build a bit more intuition, note also that once a state is checkpointed,
4136  * the path we took to get to that state is not important. This is crucial
4137  * property for state pruning. When state is checkpointed and finalized at
4138  * some instruction index, it can be correctly and safely used to "short
4139  * circuit" any *compatible* state that reaches exactly the same instruction
4140  * index. I.e., if we jumped to that instruction from a completely different
4141  * code path than original finalized state was derived from, it doesn't
4142  * matter, current state can be discarded because from that instruction
4143  * forward having a compatible state will ensure we will safely reach the
4144  * exit. States describe preconditions for further exploration, but completely
4145  * forget the history of how we got here.
4146  *
4147  * This also means that even if we needed precise SCALAR range to get to
4148  * finalized state, but from that point forward *that same* SCALAR register is
4149  * never used in a precise context (i.e., it's precise value is not needed for
4150  * correctness), it's correct and safe to mark such register as "imprecise"
4151  * (i.e., precise marking set to false). This is what we rely on when we do
4152  * not set precise marking in current state. If no child state requires
4153  * precision for any given SCALAR register, it's safe to dictate that it can
4154  * be imprecise. If any child state does require this register to be precise,
4155  * we'll mark it precise later retroactively during precise markings
4156  * propagation from child state to parent states.
4157  *
4158  * Skipping precise marking setting in current state is a mild version of
4159  * relying on the above observation. But we can utilize this property even
4160  * more aggressively by proactively forgetting any precise marking in the
4161  * current state (which we inherited from the parent state), right before we
4162  * checkpoint it and branch off into new child state. This is done by
4163  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4164  * finalized states which help in short circuiting more future states.
4165  */
4166 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
4167 {
4168 	struct backtrack_state *bt = &env->bt;
4169 	struct bpf_verifier_state *st = env->cur_state;
4170 	int first_idx = st->first_insn_idx;
4171 	int last_idx = env->insn_idx;
4172 	int subseq_idx = -1;
4173 	struct bpf_func_state *func;
4174 	struct bpf_reg_state *reg;
4175 	bool skip_first = true;
4176 	int i, fr, err;
4177 
4178 	if (!env->bpf_capable)
4179 		return 0;
4180 
4181 	/* set frame number from which we are starting to backtrack */
4182 	bt_init(bt, env->cur_state->curframe);
4183 
4184 	/* Do sanity checks against current state of register and/or stack
4185 	 * slot, but don't set precise flag in current state, as precision
4186 	 * tracking in the current state is unnecessary.
4187 	 */
4188 	func = st->frame[bt->frame];
4189 	if (regno >= 0) {
4190 		reg = &func->regs[regno];
4191 		if (reg->type != SCALAR_VALUE) {
4192 			WARN_ONCE(1, "backtracing misuse");
4193 			return -EFAULT;
4194 		}
4195 		bt_set_reg(bt, regno);
4196 	}
4197 
4198 	if (bt_empty(bt))
4199 		return 0;
4200 
4201 	for (;;) {
4202 		DECLARE_BITMAP(mask, 64);
4203 		u32 history = st->jmp_history_cnt;
4204 		struct bpf_jmp_history_entry *hist;
4205 
4206 		if (env->log.level & BPF_LOG_LEVEL2) {
4207 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4208 				bt->frame, last_idx, first_idx, subseq_idx);
4209 		}
4210 
4211 		/* If some register with scalar ID is marked as precise,
4212 		 * make sure that all registers sharing this ID are also precise.
4213 		 * This is needed to estimate effect of find_equal_scalars().
4214 		 * Do this at the last instruction of each state,
4215 		 * bpf_reg_state::id fields are valid for these instructions.
4216 		 *
4217 		 * Allows to track precision in situation like below:
4218 		 *
4219 		 *     r2 = unknown value
4220 		 *     ...
4221 		 *   --- state #0 ---
4222 		 *     ...
4223 		 *     r1 = r2                 // r1 and r2 now share the same ID
4224 		 *     ...
4225 		 *   --- state #1 {r1.id = A, r2.id = A} ---
4226 		 *     ...
4227 		 *     if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
4228 		 *     ...
4229 		 *   --- state #2 {r1.id = A, r2.id = A} ---
4230 		 *     r3 = r10
4231 		 *     r3 += r1                // need to mark both r1 and r2
4232 		 */
4233 		if (mark_precise_scalar_ids(env, st))
4234 			return -EFAULT;
4235 
4236 		if (last_idx < 0) {
4237 			/* we are at the entry into subprog, which
4238 			 * is expected for global funcs, but only if
4239 			 * requested precise registers are R1-R5
4240 			 * (which are global func's input arguments)
4241 			 */
4242 			if (st->curframe == 0 &&
4243 			    st->frame[0]->subprogno > 0 &&
4244 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
4245 			    bt_stack_mask(bt) == 0 &&
4246 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4247 				bitmap_from_u64(mask, bt_reg_mask(bt));
4248 				for_each_set_bit(i, mask, 32) {
4249 					reg = &st->frame[0]->regs[i];
4250 					bt_clear_reg(bt, i);
4251 					if (reg->type == SCALAR_VALUE)
4252 						reg->precise = true;
4253 				}
4254 				return 0;
4255 			}
4256 
4257 			verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4258 				st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4259 			WARN_ONCE(1, "verifier backtracking bug");
4260 			return -EFAULT;
4261 		}
4262 
4263 		for (i = last_idx;;) {
4264 			if (skip_first) {
4265 				err = 0;
4266 				skip_first = false;
4267 			} else {
4268 				hist = get_jmp_hist_entry(st, history, i);
4269 				err = backtrack_insn(env, i, subseq_idx, hist, bt);
4270 			}
4271 			if (err == -ENOTSUPP) {
4272 				mark_all_scalars_precise(env, env->cur_state);
4273 				bt_reset(bt);
4274 				return 0;
4275 			} else if (err) {
4276 				return err;
4277 			}
4278 			if (bt_empty(bt))
4279 				/* Found assignment(s) into tracked register in this state.
4280 				 * Since this state is already marked, just return.
4281 				 * Nothing to be tracked further in the parent state.
4282 				 */
4283 				return 0;
4284 			subseq_idx = i;
4285 			i = get_prev_insn_idx(st, i, &history);
4286 			if (i == -ENOENT)
4287 				break;
4288 			if (i >= env->prog->len) {
4289 				/* This can happen if backtracking reached insn 0
4290 				 * and there are still reg_mask or stack_mask
4291 				 * to backtrack.
4292 				 * It means the backtracking missed the spot where
4293 				 * particular register was initialized with a constant.
4294 				 */
4295 				verbose(env, "BUG backtracking idx %d\n", i);
4296 				WARN_ONCE(1, "verifier backtracking bug");
4297 				return -EFAULT;
4298 			}
4299 		}
4300 		st = st->parent;
4301 		if (!st)
4302 			break;
4303 
4304 		for (fr = bt->frame; fr >= 0; fr--) {
4305 			func = st->frame[fr];
4306 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4307 			for_each_set_bit(i, mask, 32) {
4308 				reg = &func->regs[i];
4309 				if (reg->type != SCALAR_VALUE) {
4310 					bt_clear_frame_reg(bt, fr, i);
4311 					continue;
4312 				}
4313 				if (reg->precise)
4314 					bt_clear_frame_reg(bt, fr, i);
4315 				else
4316 					reg->precise = true;
4317 			}
4318 
4319 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4320 			for_each_set_bit(i, mask, 64) {
4321 				if (i >= func->allocated_stack / BPF_REG_SIZE) {
4322 					verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n",
4323 						i, func->allocated_stack / BPF_REG_SIZE);
4324 					WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)");
4325 					return -EFAULT;
4326 				}
4327 
4328 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4329 					bt_clear_frame_slot(bt, fr, i);
4330 					continue;
4331 				}
4332 				reg = &func->stack[i].spilled_ptr;
4333 				if (reg->precise)
4334 					bt_clear_frame_slot(bt, fr, i);
4335 				else
4336 					reg->precise = true;
4337 			}
4338 			if (env->log.level & BPF_LOG_LEVEL2) {
4339 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4340 					     bt_frame_reg_mask(bt, fr));
4341 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4342 					fr, env->tmp_str_buf);
4343 				fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4344 					       bt_frame_stack_mask(bt, fr));
4345 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4346 				print_verifier_state(env, func, true);
4347 			}
4348 		}
4349 
4350 		if (bt_empty(bt))
4351 			return 0;
4352 
4353 		subseq_idx = first_idx;
4354 		last_idx = st->last_insn_idx;
4355 		first_idx = st->first_insn_idx;
4356 	}
4357 
4358 	/* if we still have requested precise regs or slots, we missed
4359 	 * something (e.g., stack access through non-r10 register), so
4360 	 * fallback to marking all precise
4361 	 */
4362 	if (!bt_empty(bt)) {
4363 		mark_all_scalars_precise(env, env->cur_state);
4364 		bt_reset(bt);
4365 	}
4366 
4367 	return 0;
4368 }
4369 
4370 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4371 {
4372 	return __mark_chain_precision(env, regno);
4373 }
4374 
4375 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4376  * desired reg and stack masks across all relevant frames
4377  */
4378 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4379 {
4380 	return __mark_chain_precision(env, -1);
4381 }
4382 
4383 static bool is_spillable_regtype(enum bpf_reg_type type)
4384 {
4385 	switch (base_type(type)) {
4386 	case PTR_TO_MAP_VALUE:
4387 	case PTR_TO_STACK:
4388 	case PTR_TO_CTX:
4389 	case PTR_TO_PACKET:
4390 	case PTR_TO_PACKET_META:
4391 	case PTR_TO_PACKET_END:
4392 	case PTR_TO_FLOW_KEYS:
4393 	case CONST_PTR_TO_MAP:
4394 	case PTR_TO_SOCKET:
4395 	case PTR_TO_SOCK_COMMON:
4396 	case PTR_TO_TCP_SOCK:
4397 	case PTR_TO_XDP_SOCK:
4398 	case PTR_TO_BTF_ID:
4399 	case PTR_TO_BUF:
4400 	case PTR_TO_MEM:
4401 	case PTR_TO_FUNC:
4402 	case PTR_TO_MAP_KEY:
4403 	case PTR_TO_ARENA:
4404 		return true;
4405 	default:
4406 		return false;
4407 	}
4408 }
4409 
4410 /* Does this register contain a constant zero? */
4411 static bool register_is_null(struct bpf_reg_state *reg)
4412 {
4413 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4414 }
4415 
4416 /* check if register is a constant scalar value */
4417 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32)
4418 {
4419 	return reg->type == SCALAR_VALUE &&
4420 	       tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off);
4421 }
4422 
4423 /* assuming is_reg_const() is true, return constant value of a register */
4424 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32)
4425 {
4426 	return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value;
4427 }
4428 
4429 static bool __is_pointer_value(bool allow_ptr_leaks,
4430 			       const struct bpf_reg_state *reg)
4431 {
4432 	if (allow_ptr_leaks)
4433 		return false;
4434 
4435 	return reg->type != SCALAR_VALUE;
4436 }
4437 
4438 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env,
4439 					struct bpf_reg_state *src_reg)
4440 {
4441 	if (src_reg->type == SCALAR_VALUE && !src_reg->id &&
4442 	    !tnum_is_const(src_reg->var_off))
4443 		/* Ensure that src_reg has a valid ID that will be copied to
4444 		 * dst_reg and then will be used by find_equal_scalars() to
4445 		 * propagate min/max range.
4446 		 */
4447 		src_reg->id = ++env->id_gen;
4448 }
4449 
4450 /* Copy src state preserving dst->parent and dst->live fields */
4451 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4452 {
4453 	struct bpf_reg_state *parent = dst->parent;
4454 	enum bpf_reg_liveness live = dst->live;
4455 
4456 	*dst = *src;
4457 	dst->parent = parent;
4458 	dst->live = live;
4459 }
4460 
4461 static void save_register_state(struct bpf_verifier_env *env,
4462 				struct bpf_func_state *state,
4463 				int spi, struct bpf_reg_state *reg,
4464 				int size)
4465 {
4466 	int i;
4467 
4468 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
4469 	if (size == BPF_REG_SIZE)
4470 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4471 
4472 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4473 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4474 
4475 	/* size < 8 bytes spill */
4476 	for (; i; i--)
4477 		mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]);
4478 }
4479 
4480 static bool is_bpf_st_mem(struct bpf_insn *insn)
4481 {
4482 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4483 }
4484 
4485 static int get_reg_width(struct bpf_reg_state *reg)
4486 {
4487 	return fls64(reg->umax_value);
4488 }
4489 
4490 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4491  * stack boundary and alignment are checked in check_mem_access()
4492  */
4493 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4494 				       /* stack frame we're writing to */
4495 				       struct bpf_func_state *state,
4496 				       int off, int size, int value_regno,
4497 				       int insn_idx)
4498 {
4499 	struct bpf_func_state *cur; /* state of the current function */
4500 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4501 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4502 	struct bpf_reg_state *reg = NULL;
4503 	int insn_flags = insn_stack_access_flags(state->frameno, spi);
4504 
4505 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4506 	 * so it's aligned access and [off, off + size) are within stack limits
4507 	 */
4508 	if (!env->allow_ptr_leaks &&
4509 	    is_spilled_reg(&state->stack[spi]) &&
4510 	    size != BPF_REG_SIZE) {
4511 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
4512 		return -EACCES;
4513 	}
4514 
4515 	cur = env->cur_state->frame[env->cur_state->curframe];
4516 	if (value_regno >= 0)
4517 		reg = &cur->regs[value_regno];
4518 	if (!env->bypass_spec_v4) {
4519 		bool sanitize = reg && is_spillable_regtype(reg->type);
4520 
4521 		for (i = 0; i < size; i++) {
4522 			u8 type = state->stack[spi].slot_type[i];
4523 
4524 			if (type != STACK_MISC && type != STACK_ZERO) {
4525 				sanitize = true;
4526 				break;
4527 			}
4528 		}
4529 
4530 		if (sanitize)
4531 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4532 	}
4533 
4534 	err = destroy_if_dynptr_stack_slot(env, state, spi);
4535 	if (err)
4536 		return err;
4537 
4538 	mark_stack_slot_scratched(env, spi);
4539 	if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) {
4540 		bool reg_value_fits;
4541 
4542 		reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size;
4543 		/* Make sure that reg had an ID to build a relation on spill. */
4544 		if (reg_value_fits)
4545 			assign_scalar_id_before_mov(env, reg);
4546 		save_register_state(env, state, spi, reg, size);
4547 		/* Break the relation on a narrowing spill. */
4548 		if (!reg_value_fits)
4549 			state->stack[spi].spilled_ptr.id = 0;
4550 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4551 		   env->bpf_capable) {
4552 		struct bpf_reg_state *tmp_reg = &env->fake_reg[0];
4553 
4554 		memset(tmp_reg, 0, sizeof(*tmp_reg));
4555 		__mark_reg_known(tmp_reg, insn->imm);
4556 		tmp_reg->type = SCALAR_VALUE;
4557 		save_register_state(env, state, spi, tmp_reg, size);
4558 	} else if (reg && is_spillable_regtype(reg->type)) {
4559 		/* register containing pointer is being spilled into stack */
4560 		if (size != BPF_REG_SIZE) {
4561 			verbose_linfo(env, insn_idx, "; ");
4562 			verbose(env, "invalid size of register spill\n");
4563 			return -EACCES;
4564 		}
4565 		if (state != cur && reg->type == PTR_TO_STACK) {
4566 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4567 			return -EINVAL;
4568 		}
4569 		save_register_state(env, state, spi, reg, size);
4570 	} else {
4571 		u8 type = STACK_MISC;
4572 
4573 		/* regular write of data into stack destroys any spilled ptr */
4574 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4575 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4576 		if (is_stack_slot_special(&state->stack[spi]))
4577 			for (i = 0; i < BPF_REG_SIZE; i++)
4578 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4579 
4580 		/* only mark the slot as written if all 8 bytes were written
4581 		 * otherwise read propagation may incorrectly stop too soon
4582 		 * when stack slots are partially written.
4583 		 * This heuristic means that read propagation will be
4584 		 * conservative, since it will add reg_live_read marks
4585 		 * to stack slots all the way to first state when programs
4586 		 * writes+reads less than 8 bytes
4587 		 */
4588 		if (size == BPF_REG_SIZE)
4589 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4590 
4591 		/* when we zero initialize stack slots mark them as such */
4592 		if ((reg && register_is_null(reg)) ||
4593 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4594 			/* STACK_ZERO case happened because register spill
4595 			 * wasn't properly aligned at the stack slot boundary,
4596 			 * so it's not a register spill anymore; force
4597 			 * originating register to be precise to make
4598 			 * STACK_ZERO correct for subsequent states
4599 			 */
4600 			err = mark_chain_precision(env, value_regno);
4601 			if (err)
4602 				return err;
4603 			type = STACK_ZERO;
4604 		}
4605 
4606 		/* Mark slots affected by this stack write. */
4607 		for (i = 0; i < size; i++)
4608 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type;
4609 		insn_flags = 0; /* not a register spill */
4610 	}
4611 
4612 	if (insn_flags)
4613 		return push_jmp_history(env, env->cur_state, insn_flags);
4614 	return 0;
4615 }
4616 
4617 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4618  * known to contain a variable offset.
4619  * This function checks whether the write is permitted and conservatively
4620  * tracks the effects of the write, considering that each stack slot in the
4621  * dynamic range is potentially written to.
4622  *
4623  * 'off' includes 'regno->off'.
4624  * 'value_regno' can be -1, meaning that an unknown value is being written to
4625  * the stack.
4626  *
4627  * Spilled pointers in range are not marked as written because we don't know
4628  * what's going to be actually written. This means that read propagation for
4629  * future reads cannot be terminated by this write.
4630  *
4631  * For privileged programs, uninitialized stack slots are considered
4632  * initialized by this write (even though we don't know exactly what offsets
4633  * are going to be written to). The idea is that we don't want the verifier to
4634  * reject future reads that access slots written to through variable offsets.
4635  */
4636 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4637 				     /* func where register points to */
4638 				     struct bpf_func_state *state,
4639 				     int ptr_regno, int off, int size,
4640 				     int value_regno, int insn_idx)
4641 {
4642 	struct bpf_func_state *cur; /* state of the current function */
4643 	int min_off, max_off;
4644 	int i, err;
4645 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4646 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4647 	bool writing_zero = false;
4648 	/* set if the fact that we're writing a zero is used to let any
4649 	 * stack slots remain STACK_ZERO
4650 	 */
4651 	bool zero_used = false;
4652 
4653 	cur = env->cur_state->frame[env->cur_state->curframe];
4654 	ptr_reg = &cur->regs[ptr_regno];
4655 	min_off = ptr_reg->smin_value + off;
4656 	max_off = ptr_reg->smax_value + off + size;
4657 	if (value_regno >= 0)
4658 		value_reg = &cur->regs[value_regno];
4659 	if ((value_reg && register_is_null(value_reg)) ||
4660 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4661 		writing_zero = true;
4662 
4663 	for (i = min_off; i < max_off; i++) {
4664 		int spi;
4665 
4666 		spi = __get_spi(i);
4667 		err = destroy_if_dynptr_stack_slot(env, state, spi);
4668 		if (err)
4669 			return err;
4670 	}
4671 
4672 	/* Variable offset writes destroy any spilled pointers in range. */
4673 	for (i = min_off; i < max_off; i++) {
4674 		u8 new_type, *stype;
4675 		int slot, spi;
4676 
4677 		slot = -i - 1;
4678 		spi = slot / BPF_REG_SIZE;
4679 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4680 		mark_stack_slot_scratched(env, spi);
4681 
4682 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4683 			/* Reject the write if range we may write to has not
4684 			 * been initialized beforehand. If we didn't reject
4685 			 * here, the ptr status would be erased below (even
4686 			 * though not all slots are actually overwritten),
4687 			 * possibly opening the door to leaks.
4688 			 *
4689 			 * We do however catch STACK_INVALID case below, and
4690 			 * only allow reading possibly uninitialized memory
4691 			 * later for CAP_PERFMON, as the write may not happen to
4692 			 * that slot.
4693 			 */
4694 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4695 				insn_idx, i);
4696 			return -EINVAL;
4697 		}
4698 
4699 		/* If writing_zero and the spi slot contains a spill of value 0,
4700 		 * maintain the spill type.
4701 		 */
4702 		if (writing_zero && *stype == STACK_SPILL &&
4703 		    is_spilled_scalar_reg(&state->stack[spi])) {
4704 			struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr;
4705 
4706 			if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) {
4707 				zero_used = true;
4708 				continue;
4709 			}
4710 		}
4711 
4712 		/* Erase all other spilled pointers. */
4713 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4714 
4715 		/* Update the slot type. */
4716 		new_type = STACK_MISC;
4717 		if (writing_zero && *stype == STACK_ZERO) {
4718 			new_type = STACK_ZERO;
4719 			zero_used = true;
4720 		}
4721 		/* If the slot is STACK_INVALID, we check whether it's OK to
4722 		 * pretend that it will be initialized by this write. The slot
4723 		 * might not actually be written to, and so if we mark it as
4724 		 * initialized future reads might leak uninitialized memory.
4725 		 * For privileged programs, we will accept such reads to slots
4726 		 * that may or may not be written because, if we're reject
4727 		 * them, the error would be too confusing.
4728 		 */
4729 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4730 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4731 					insn_idx, i);
4732 			return -EINVAL;
4733 		}
4734 		*stype = new_type;
4735 	}
4736 	if (zero_used) {
4737 		/* backtracking doesn't work for STACK_ZERO yet. */
4738 		err = mark_chain_precision(env, value_regno);
4739 		if (err)
4740 			return err;
4741 	}
4742 	return 0;
4743 }
4744 
4745 /* When register 'dst_regno' is assigned some values from stack[min_off,
4746  * max_off), we set the register's type according to the types of the
4747  * respective stack slots. If all the stack values are known to be zeros, then
4748  * so is the destination reg. Otherwise, the register is considered to be
4749  * SCALAR. This function does not deal with register filling; the caller must
4750  * ensure that all spilled registers in the stack range have been marked as
4751  * read.
4752  */
4753 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4754 				/* func where src register points to */
4755 				struct bpf_func_state *ptr_state,
4756 				int min_off, int max_off, int dst_regno)
4757 {
4758 	struct bpf_verifier_state *vstate = env->cur_state;
4759 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4760 	int i, slot, spi;
4761 	u8 *stype;
4762 	int zeros = 0;
4763 
4764 	for (i = min_off; i < max_off; i++) {
4765 		slot = -i - 1;
4766 		spi = slot / BPF_REG_SIZE;
4767 		mark_stack_slot_scratched(env, spi);
4768 		stype = ptr_state->stack[spi].slot_type;
4769 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4770 			break;
4771 		zeros++;
4772 	}
4773 	if (zeros == max_off - min_off) {
4774 		/* Any access_size read into register is zero extended,
4775 		 * so the whole register == const_zero.
4776 		 */
4777 		__mark_reg_const_zero(env, &state->regs[dst_regno]);
4778 	} else {
4779 		/* have read misc data from the stack */
4780 		mark_reg_unknown(env, state->regs, dst_regno);
4781 	}
4782 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4783 }
4784 
4785 /* Read the stack at 'off' and put the results into the register indicated by
4786  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4787  * spilled reg.
4788  *
4789  * 'dst_regno' can be -1, meaning that the read value is not going to a
4790  * register.
4791  *
4792  * The access is assumed to be within the current stack bounds.
4793  */
4794 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4795 				      /* func where src register points to */
4796 				      struct bpf_func_state *reg_state,
4797 				      int off, int size, int dst_regno)
4798 {
4799 	struct bpf_verifier_state *vstate = env->cur_state;
4800 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4801 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4802 	struct bpf_reg_state *reg;
4803 	u8 *stype, type;
4804 	int insn_flags = insn_stack_access_flags(reg_state->frameno, spi);
4805 
4806 	stype = reg_state->stack[spi].slot_type;
4807 	reg = &reg_state->stack[spi].spilled_ptr;
4808 
4809 	mark_stack_slot_scratched(env, spi);
4810 
4811 	if (is_spilled_reg(&reg_state->stack[spi])) {
4812 		u8 spill_size = 1;
4813 
4814 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4815 			spill_size++;
4816 
4817 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4818 			if (reg->type != SCALAR_VALUE) {
4819 				verbose_linfo(env, env->insn_idx, "; ");
4820 				verbose(env, "invalid size of register fill\n");
4821 				return -EACCES;
4822 			}
4823 
4824 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4825 			if (dst_regno < 0)
4826 				return 0;
4827 
4828 			if (size <= spill_size &&
4829 			    bpf_stack_narrow_access_ok(off, size, spill_size)) {
4830 				/* The earlier check_reg_arg() has decided the
4831 				 * subreg_def for this insn.  Save it first.
4832 				 */
4833 				s32 subreg_def = state->regs[dst_regno].subreg_def;
4834 
4835 				copy_register_state(&state->regs[dst_regno], reg);
4836 				state->regs[dst_regno].subreg_def = subreg_def;
4837 
4838 				/* Break the relation on a narrowing fill.
4839 				 * coerce_reg_to_size will adjust the boundaries.
4840 				 */
4841 				if (get_reg_width(reg) > size * BITS_PER_BYTE)
4842 					state->regs[dst_regno].id = 0;
4843 			} else {
4844 				int spill_cnt = 0, zero_cnt = 0;
4845 
4846 				for (i = 0; i < size; i++) {
4847 					type = stype[(slot - i) % BPF_REG_SIZE];
4848 					if (type == STACK_SPILL) {
4849 						spill_cnt++;
4850 						continue;
4851 					}
4852 					if (type == STACK_MISC)
4853 						continue;
4854 					if (type == STACK_ZERO) {
4855 						zero_cnt++;
4856 						continue;
4857 					}
4858 					if (type == STACK_INVALID && env->allow_uninit_stack)
4859 						continue;
4860 					verbose(env, "invalid read from stack off %d+%d size %d\n",
4861 						off, i, size);
4862 					return -EACCES;
4863 				}
4864 
4865 				if (spill_cnt == size &&
4866 				    tnum_is_const(reg->var_off) && reg->var_off.value == 0) {
4867 					__mark_reg_const_zero(env, &state->regs[dst_regno]);
4868 					/* this IS register fill, so keep insn_flags */
4869 				} else if (zero_cnt == size) {
4870 					/* similarly to mark_reg_stack_read(), preserve zeroes */
4871 					__mark_reg_const_zero(env, &state->regs[dst_regno]);
4872 					insn_flags = 0; /* not restoring original register state */
4873 				} else {
4874 					mark_reg_unknown(env, state->regs, dst_regno);
4875 					insn_flags = 0; /* not restoring original register state */
4876 				}
4877 			}
4878 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4879 		} else if (dst_regno >= 0) {
4880 			/* restore register state from stack */
4881 			copy_register_state(&state->regs[dst_regno], reg);
4882 			/* mark reg as written since spilled pointer state likely
4883 			 * has its liveness marks cleared by is_state_visited()
4884 			 * which resets stack/reg liveness for state transitions
4885 			 */
4886 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4887 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
4888 			/* If dst_regno==-1, the caller is asking us whether
4889 			 * it is acceptable to use this value as a SCALAR_VALUE
4890 			 * (e.g. for XADD).
4891 			 * We must not allow unprivileged callers to do that
4892 			 * with spilled pointers.
4893 			 */
4894 			verbose(env, "leaking pointer from stack off %d\n",
4895 				off);
4896 			return -EACCES;
4897 		}
4898 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4899 	} else {
4900 		for (i = 0; i < size; i++) {
4901 			type = stype[(slot - i) % BPF_REG_SIZE];
4902 			if (type == STACK_MISC)
4903 				continue;
4904 			if (type == STACK_ZERO)
4905 				continue;
4906 			if (type == STACK_INVALID && env->allow_uninit_stack)
4907 				continue;
4908 			verbose(env, "invalid read from stack off %d+%d size %d\n",
4909 				off, i, size);
4910 			return -EACCES;
4911 		}
4912 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4913 		if (dst_regno >= 0)
4914 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
4915 		insn_flags = 0; /* we are not restoring spilled register */
4916 	}
4917 	if (insn_flags)
4918 		return push_jmp_history(env, env->cur_state, insn_flags);
4919 	return 0;
4920 }
4921 
4922 enum bpf_access_src {
4923 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
4924 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
4925 };
4926 
4927 static int check_stack_range_initialized(struct bpf_verifier_env *env,
4928 					 int regno, int off, int access_size,
4929 					 bool zero_size_allowed,
4930 					 enum bpf_access_src type,
4931 					 struct bpf_call_arg_meta *meta);
4932 
4933 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4934 {
4935 	return cur_regs(env) + regno;
4936 }
4937 
4938 /* Read the stack at 'ptr_regno + off' and put the result into the register
4939  * 'dst_regno'.
4940  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4941  * but not its variable offset.
4942  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4943  *
4944  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
4945  * filling registers (i.e. reads of spilled register cannot be detected when
4946  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
4947  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
4948  * offset; for a fixed offset check_stack_read_fixed_off should be used
4949  * instead.
4950  */
4951 static int check_stack_read_var_off(struct bpf_verifier_env *env,
4952 				    int ptr_regno, int off, int size, int dst_regno)
4953 {
4954 	/* The state of the source register. */
4955 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4956 	struct bpf_func_state *ptr_state = func(env, reg);
4957 	int err;
4958 	int min_off, max_off;
4959 
4960 	/* Note that we pass a NULL meta, so raw access will not be permitted.
4961 	 */
4962 	err = check_stack_range_initialized(env, ptr_regno, off, size,
4963 					    false, ACCESS_DIRECT, NULL);
4964 	if (err)
4965 		return err;
4966 
4967 	min_off = reg->smin_value + off;
4968 	max_off = reg->smax_value + off;
4969 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
4970 	return 0;
4971 }
4972 
4973 /* check_stack_read dispatches to check_stack_read_fixed_off or
4974  * check_stack_read_var_off.
4975  *
4976  * The caller must ensure that the offset falls within the allocated stack
4977  * bounds.
4978  *
4979  * 'dst_regno' is a register which will receive the value from the stack. It
4980  * can be -1, meaning that the read value is not going to a register.
4981  */
4982 static int check_stack_read(struct bpf_verifier_env *env,
4983 			    int ptr_regno, int off, int size,
4984 			    int dst_regno)
4985 {
4986 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4987 	struct bpf_func_state *state = func(env, reg);
4988 	int err;
4989 	/* Some accesses are only permitted with a static offset. */
4990 	bool var_off = !tnum_is_const(reg->var_off);
4991 
4992 	/* The offset is required to be static when reads don't go to a
4993 	 * register, in order to not leak pointers (see
4994 	 * check_stack_read_fixed_off).
4995 	 */
4996 	if (dst_regno < 0 && var_off) {
4997 		char tn_buf[48];
4998 
4999 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5000 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
5001 			tn_buf, off, size);
5002 		return -EACCES;
5003 	}
5004 	/* Variable offset is prohibited for unprivileged mode for simplicity
5005 	 * since it requires corresponding support in Spectre masking for stack
5006 	 * ALU. See also retrieve_ptr_limit(). The check in
5007 	 * check_stack_access_for_ptr_arithmetic() called by
5008 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
5009 	 * with variable offsets, therefore no check is required here. Further,
5010 	 * just checking it here would be insufficient as speculative stack
5011 	 * writes could still lead to unsafe speculative behaviour.
5012 	 */
5013 	if (!var_off) {
5014 		off += reg->var_off.value;
5015 		err = check_stack_read_fixed_off(env, state, off, size,
5016 						 dst_regno);
5017 	} else {
5018 		/* Variable offset stack reads need more conservative handling
5019 		 * than fixed offset ones. Note that dst_regno >= 0 on this
5020 		 * branch.
5021 		 */
5022 		err = check_stack_read_var_off(env, ptr_regno, off, size,
5023 					       dst_regno);
5024 	}
5025 	return err;
5026 }
5027 
5028 
5029 /* check_stack_write dispatches to check_stack_write_fixed_off or
5030  * check_stack_write_var_off.
5031  *
5032  * 'ptr_regno' is the register used as a pointer into the stack.
5033  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
5034  * 'value_regno' is the register whose value we're writing to the stack. It can
5035  * be -1, meaning that we're not writing from a register.
5036  *
5037  * The caller must ensure that the offset falls within the maximum stack size.
5038  */
5039 static int check_stack_write(struct bpf_verifier_env *env,
5040 			     int ptr_regno, int off, int size,
5041 			     int value_regno, int insn_idx)
5042 {
5043 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5044 	struct bpf_func_state *state = func(env, reg);
5045 	int err;
5046 
5047 	if (tnum_is_const(reg->var_off)) {
5048 		off += reg->var_off.value;
5049 		err = check_stack_write_fixed_off(env, state, off, size,
5050 						  value_regno, insn_idx);
5051 	} else {
5052 		/* Variable offset stack reads need more conservative handling
5053 		 * than fixed offset ones.
5054 		 */
5055 		err = check_stack_write_var_off(env, state,
5056 						ptr_regno, off, size,
5057 						value_regno, insn_idx);
5058 	}
5059 	return err;
5060 }
5061 
5062 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
5063 				 int off, int size, enum bpf_access_type type)
5064 {
5065 	struct bpf_reg_state *regs = cur_regs(env);
5066 	struct bpf_map *map = regs[regno].map_ptr;
5067 	u32 cap = bpf_map_flags_to_cap(map);
5068 
5069 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
5070 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
5071 			map->value_size, off, size);
5072 		return -EACCES;
5073 	}
5074 
5075 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
5076 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
5077 			map->value_size, off, size);
5078 		return -EACCES;
5079 	}
5080 
5081 	return 0;
5082 }
5083 
5084 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
5085 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
5086 			      int off, int size, u32 mem_size,
5087 			      bool zero_size_allowed)
5088 {
5089 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
5090 	struct bpf_reg_state *reg;
5091 
5092 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
5093 		return 0;
5094 
5095 	reg = &cur_regs(env)[regno];
5096 	switch (reg->type) {
5097 	case PTR_TO_MAP_KEY:
5098 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
5099 			mem_size, off, size);
5100 		break;
5101 	case PTR_TO_MAP_VALUE:
5102 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
5103 			mem_size, off, size);
5104 		break;
5105 	case PTR_TO_PACKET:
5106 	case PTR_TO_PACKET_META:
5107 	case PTR_TO_PACKET_END:
5108 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
5109 			off, size, regno, reg->id, off, mem_size);
5110 		break;
5111 	case PTR_TO_MEM:
5112 	default:
5113 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
5114 			mem_size, off, size);
5115 	}
5116 
5117 	return -EACCES;
5118 }
5119 
5120 /* check read/write into a memory region with possible variable offset */
5121 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5122 				   int off, int size, u32 mem_size,
5123 				   bool zero_size_allowed)
5124 {
5125 	struct bpf_verifier_state *vstate = env->cur_state;
5126 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5127 	struct bpf_reg_state *reg = &state->regs[regno];
5128 	int err;
5129 
5130 	/* We may have adjusted the register pointing to memory region, so we
5131 	 * need to try adding each of min_value and max_value to off
5132 	 * to make sure our theoretical access will be safe.
5133 	 *
5134 	 * The minimum value is only important with signed
5135 	 * comparisons where we can't assume the floor of a
5136 	 * value is 0.  If we are using signed variables for our
5137 	 * index'es we need to make sure that whatever we use
5138 	 * will have a set floor within our range.
5139 	 */
5140 	if (reg->smin_value < 0 &&
5141 	    (reg->smin_value == S64_MIN ||
5142 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5143 	      reg->smin_value + off < 0)) {
5144 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5145 			regno);
5146 		return -EACCES;
5147 	}
5148 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
5149 				 mem_size, zero_size_allowed);
5150 	if (err) {
5151 		verbose(env, "R%d min value is outside of the allowed memory range\n",
5152 			regno);
5153 		return err;
5154 	}
5155 
5156 	/* If we haven't set a max value then we need to bail since we can't be
5157 	 * sure we won't do bad things.
5158 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
5159 	 */
5160 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5161 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5162 			regno);
5163 		return -EACCES;
5164 	}
5165 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
5166 				 mem_size, zero_size_allowed);
5167 	if (err) {
5168 		verbose(env, "R%d max value is outside of the allowed memory range\n",
5169 			regno);
5170 		return err;
5171 	}
5172 
5173 	return 0;
5174 }
5175 
5176 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5177 			       const struct bpf_reg_state *reg, int regno,
5178 			       bool fixed_off_ok)
5179 {
5180 	/* Access to this pointer-typed register or passing it to a helper
5181 	 * is only allowed in its original, unmodified form.
5182 	 */
5183 
5184 	if (reg->off < 0) {
5185 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5186 			reg_type_str(env, reg->type), regno, reg->off);
5187 		return -EACCES;
5188 	}
5189 
5190 	if (!fixed_off_ok && reg->off) {
5191 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5192 			reg_type_str(env, reg->type), regno, reg->off);
5193 		return -EACCES;
5194 	}
5195 
5196 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5197 		char tn_buf[48];
5198 
5199 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5200 		verbose(env, "variable %s access var_off=%s disallowed\n",
5201 			reg_type_str(env, reg->type), tn_buf);
5202 		return -EACCES;
5203 	}
5204 
5205 	return 0;
5206 }
5207 
5208 static int check_ptr_off_reg(struct bpf_verifier_env *env,
5209 		             const struct bpf_reg_state *reg, int regno)
5210 {
5211 	return __check_ptr_off_reg(env, reg, regno, false);
5212 }
5213 
5214 static int map_kptr_match_type(struct bpf_verifier_env *env,
5215 			       struct btf_field *kptr_field,
5216 			       struct bpf_reg_state *reg, u32 regno)
5217 {
5218 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5219 	int perm_flags;
5220 	const char *reg_name = "";
5221 
5222 	if (btf_is_kernel(reg->btf)) {
5223 		perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5224 
5225 		/* Only unreferenced case accepts untrusted pointers */
5226 		if (kptr_field->type == BPF_KPTR_UNREF)
5227 			perm_flags |= PTR_UNTRUSTED;
5228 	} else {
5229 		perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5230 		if (kptr_field->type == BPF_KPTR_PERCPU)
5231 			perm_flags |= MEM_PERCPU;
5232 	}
5233 
5234 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5235 		goto bad_type;
5236 
5237 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
5238 	reg_name = btf_type_name(reg->btf, reg->btf_id);
5239 
5240 	/* For ref_ptr case, release function check should ensure we get one
5241 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5242 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
5243 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5244 	 * reg->off and reg->ref_obj_id are not needed here.
5245 	 */
5246 	if (__check_ptr_off_reg(env, reg, regno, true))
5247 		return -EACCES;
5248 
5249 	/* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5250 	 * we also need to take into account the reg->off.
5251 	 *
5252 	 * We want to support cases like:
5253 	 *
5254 	 * struct foo {
5255 	 *         struct bar br;
5256 	 *         struct baz bz;
5257 	 * };
5258 	 *
5259 	 * struct foo *v;
5260 	 * v = func();	      // PTR_TO_BTF_ID
5261 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
5262 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5263 	 *                    // first member type of struct after comparison fails
5264 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5265 	 *                    // to match type
5266 	 *
5267 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5268 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
5269 	 * the struct to match type against first member of struct, i.e. reject
5270 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5271 	 * strict mode to true for type match.
5272 	 */
5273 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5274 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5275 				  kptr_field->type != BPF_KPTR_UNREF))
5276 		goto bad_type;
5277 	return 0;
5278 bad_type:
5279 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5280 		reg_type_str(env, reg->type), reg_name);
5281 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5282 	if (kptr_field->type == BPF_KPTR_UNREF)
5283 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5284 			targ_name);
5285 	else
5286 		verbose(env, "\n");
5287 	return -EINVAL;
5288 }
5289 
5290 static bool in_sleepable(struct bpf_verifier_env *env)
5291 {
5292 	return env->prog->sleepable ||
5293 	       (env->cur_state && env->cur_state->in_sleepable);
5294 }
5295 
5296 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5297  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5298  */
5299 static bool in_rcu_cs(struct bpf_verifier_env *env)
5300 {
5301 	return env->cur_state->active_rcu_lock ||
5302 	       env->cur_state->active_lock.ptr ||
5303 	       !in_sleepable(env);
5304 }
5305 
5306 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5307 BTF_SET_START(rcu_protected_types)
5308 BTF_ID(struct, prog_test_ref_kfunc)
5309 #ifdef CONFIG_CGROUPS
5310 BTF_ID(struct, cgroup)
5311 #endif
5312 #ifdef CONFIG_BPF_JIT
5313 BTF_ID(struct, bpf_cpumask)
5314 #endif
5315 BTF_ID(struct, task_struct)
5316 BTF_ID(struct, bpf_crypto_ctx)
5317 BTF_SET_END(rcu_protected_types)
5318 
5319 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5320 {
5321 	if (!btf_is_kernel(btf))
5322 		return true;
5323 	return btf_id_set_contains(&rcu_protected_types, btf_id);
5324 }
5325 
5326 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field)
5327 {
5328 	struct btf_struct_meta *meta;
5329 
5330 	if (btf_is_kernel(kptr_field->kptr.btf))
5331 		return NULL;
5332 
5333 	meta = btf_find_struct_meta(kptr_field->kptr.btf,
5334 				    kptr_field->kptr.btf_id);
5335 
5336 	return meta ? meta->record : NULL;
5337 }
5338 
5339 static bool rcu_safe_kptr(const struct btf_field *field)
5340 {
5341 	const struct btf_field_kptr *kptr = &field->kptr;
5342 
5343 	return field->type == BPF_KPTR_PERCPU ||
5344 	       (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id));
5345 }
5346 
5347 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field)
5348 {
5349 	struct btf_record *rec;
5350 	u32 ret;
5351 
5352 	ret = PTR_MAYBE_NULL;
5353 	if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) {
5354 		ret |= MEM_RCU;
5355 		if (kptr_field->type == BPF_KPTR_PERCPU)
5356 			ret |= MEM_PERCPU;
5357 		else if (!btf_is_kernel(kptr_field->kptr.btf))
5358 			ret |= MEM_ALLOC;
5359 
5360 		rec = kptr_pointee_btf_record(kptr_field);
5361 		if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE))
5362 			ret |= NON_OWN_REF;
5363 	} else {
5364 		ret |= PTR_UNTRUSTED;
5365 	}
5366 
5367 	return ret;
5368 }
5369 
5370 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5371 				 int value_regno, int insn_idx,
5372 				 struct btf_field *kptr_field)
5373 {
5374 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5375 	int class = BPF_CLASS(insn->code);
5376 	struct bpf_reg_state *val_reg;
5377 
5378 	/* Things we already checked for in check_map_access and caller:
5379 	 *  - Reject cases where variable offset may touch kptr
5380 	 *  - size of access (must be BPF_DW)
5381 	 *  - tnum_is_const(reg->var_off)
5382 	 *  - kptr_field->offset == off + reg->var_off.value
5383 	 */
5384 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5385 	if (BPF_MODE(insn->code) != BPF_MEM) {
5386 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5387 		return -EACCES;
5388 	}
5389 
5390 	/* We only allow loading referenced kptr, since it will be marked as
5391 	 * untrusted, similar to unreferenced kptr.
5392 	 */
5393 	if (class != BPF_LDX &&
5394 	    (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) {
5395 		verbose(env, "store to referenced kptr disallowed\n");
5396 		return -EACCES;
5397 	}
5398 
5399 	if (class == BPF_LDX) {
5400 		val_reg = reg_state(env, value_regno);
5401 		/* We can simply mark the value_regno receiving the pointer
5402 		 * value from map as PTR_TO_BTF_ID, with the correct type.
5403 		 */
5404 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5405 				kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field));
5406 	} else if (class == BPF_STX) {
5407 		val_reg = reg_state(env, value_regno);
5408 		if (!register_is_null(val_reg) &&
5409 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5410 			return -EACCES;
5411 	} else if (class == BPF_ST) {
5412 		if (insn->imm) {
5413 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5414 				kptr_field->offset);
5415 			return -EACCES;
5416 		}
5417 	} else {
5418 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5419 		return -EACCES;
5420 	}
5421 	return 0;
5422 }
5423 
5424 /* check read/write into a map element with possible variable offset */
5425 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5426 			    int off, int size, bool zero_size_allowed,
5427 			    enum bpf_access_src src)
5428 {
5429 	struct bpf_verifier_state *vstate = env->cur_state;
5430 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5431 	struct bpf_reg_state *reg = &state->regs[regno];
5432 	struct bpf_map *map = reg->map_ptr;
5433 	struct btf_record *rec;
5434 	int err, i;
5435 
5436 	err = check_mem_region_access(env, regno, off, size, map->value_size,
5437 				      zero_size_allowed);
5438 	if (err)
5439 		return err;
5440 
5441 	if (IS_ERR_OR_NULL(map->record))
5442 		return 0;
5443 	rec = map->record;
5444 	for (i = 0; i < rec->cnt; i++) {
5445 		struct btf_field *field = &rec->fields[i];
5446 		u32 p = field->offset;
5447 
5448 		/* If any part of a field  can be touched by load/store, reject
5449 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
5450 		 * it is sufficient to check x1 < y2 && y1 < x2.
5451 		 */
5452 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5453 		    p < reg->umax_value + off + size) {
5454 			switch (field->type) {
5455 			case BPF_KPTR_UNREF:
5456 			case BPF_KPTR_REF:
5457 			case BPF_KPTR_PERCPU:
5458 				if (src != ACCESS_DIRECT) {
5459 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
5460 					return -EACCES;
5461 				}
5462 				if (!tnum_is_const(reg->var_off)) {
5463 					verbose(env, "kptr access cannot have variable offset\n");
5464 					return -EACCES;
5465 				}
5466 				if (p != off + reg->var_off.value) {
5467 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5468 						p, off + reg->var_off.value);
5469 					return -EACCES;
5470 				}
5471 				if (size != bpf_size_to_bytes(BPF_DW)) {
5472 					verbose(env, "kptr access size must be BPF_DW\n");
5473 					return -EACCES;
5474 				}
5475 				break;
5476 			default:
5477 				verbose(env, "%s cannot be accessed directly by load/store\n",
5478 					btf_field_type_name(field->type));
5479 				return -EACCES;
5480 			}
5481 		}
5482 	}
5483 	return 0;
5484 }
5485 
5486 #define MAX_PACKET_OFF 0xffff
5487 
5488 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5489 				       const struct bpf_call_arg_meta *meta,
5490 				       enum bpf_access_type t)
5491 {
5492 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5493 
5494 	switch (prog_type) {
5495 	/* Program types only with direct read access go here! */
5496 	case BPF_PROG_TYPE_LWT_IN:
5497 	case BPF_PROG_TYPE_LWT_OUT:
5498 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5499 	case BPF_PROG_TYPE_SK_REUSEPORT:
5500 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5501 	case BPF_PROG_TYPE_CGROUP_SKB:
5502 		if (t == BPF_WRITE)
5503 			return false;
5504 		fallthrough;
5505 
5506 	/* Program types with direct read + write access go here! */
5507 	case BPF_PROG_TYPE_SCHED_CLS:
5508 	case BPF_PROG_TYPE_SCHED_ACT:
5509 	case BPF_PROG_TYPE_XDP:
5510 	case BPF_PROG_TYPE_LWT_XMIT:
5511 	case BPF_PROG_TYPE_SK_SKB:
5512 	case BPF_PROG_TYPE_SK_MSG:
5513 		if (meta)
5514 			return meta->pkt_access;
5515 
5516 		env->seen_direct_write = true;
5517 		return true;
5518 
5519 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5520 		if (t == BPF_WRITE)
5521 			env->seen_direct_write = true;
5522 
5523 		return true;
5524 
5525 	default:
5526 		return false;
5527 	}
5528 }
5529 
5530 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5531 			       int size, bool zero_size_allowed)
5532 {
5533 	struct bpf_reg_state *regs = cur_regs(env);
5534 	struct bpf_reg_state *reg = &regs[regno];
5535 	int err;
5536 
5537 	/* We may have added a variable offset to the packet pointer; but any
5538 	 * reg->range we have comes after that.  We are only checking the fixed
5539 	 * offset.
5540 	 */
5541 
5542 	/* We don't allow negative numbers, because we aren't tracking enough
5543 	 * detail to prove they're safe.
5544 	 */
5545 	if (reg->smin_value < 0) {
5546 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5547 			regno);
5548 		return -EACCES;
5549 	}
5550 
5551 	err = reg->range < 0 ? -EINVAL :
5552 	      __check_mem_access(env, regno, off, size, reg->range,
5553 				 zero_size_allowed);
5554 	if (err) {
5555 		verbose(env, "R%d offset is outside of the packet\n", regno);
5556 		return err;
5557 	}
5558 
5559 	/* __check_mem_access has made sure "off + size - 1" is within u16.
5560 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5561 	 * otherwise find_good_pkt_pointers would have refused to set range info
5562 	 * that __check_mem_access would have rejected this pkt access.
5563 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5564 	 */
5565 	env->prog->aux->max_pkt_offset =
5566 		max_t(u32, env->prog->aux->max_pkt_offset,
5567 		      off + reg->umax_value + size - 1);
5568 
5569 	return err;
5570 }
5571 
5572 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
5573 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5574 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
5575 			    struct btf **btf, u32 *btf_id)
5576 {
5577 	struct bpf_insn_access_aux info = {
5578 		.reg_type = *reg_type,
5579 		.log = &env->log,
5580 	};
5581 
5582 	if (env->ops->is_valid_access &&
5583 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5584 		/* A non zero info.ctx_field_size indicates that this field is a
5585 		 * candidate for later verifier transformation to load the whole
5586 		 * field and then apply a mask when accessed with a narrower
5587 		 * access than actual ctx access size. A zero info.ctx_field_size
5588 		 * will only allow for whole field access and rejects any other
5589 		 * type of narrower access.
5590 		 */
5591 		*reg_type = info.reg_type;
5592 
5593 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5594 			*btf = info.btf;
5595 			*btf_id = info.btf_id;
5596 		} else {
5597 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5598 		}
5599 		/* remember the offset of last byte accessed in ctx */
5600 		if (env->prog->aux->max_ctx_offset < off + size)
5601 			env->prog->aux->max_ctx_offset = off + size;
5602 		return 0;
5603 	}
5604 
5605 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5606 	return -EACCES;
5607 }
5608 
5609 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5610 				  int size)
5611 {
5612 	if (size < 0 || off < 0 ||
5613 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
5614 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
5615 			off, size);
5616 		return -EACCES;
5617 	}
5618 	return 0;
5619 }
5620 
5621 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5622 			     u32 regno, int off, int size,
5623 			     enum bpf_access_type t)
5624 {
5625 	struct bpf_reg_state *regs = cur_regs(env);
5626 	struct bpf_reg_state *reg = &regs[regno];
5627 	struct bpf_insn_access_aux info = {};
5628 	bool valid;
5629 
5630 	if (reg->smin_value < 0) {
5631 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5632 			regno);
5633 		return -EACCES;
5634 	}
5635 
5636 	switch (reg->type) {
5637 	case PTR_TO_SOCK_COMMON:
5638 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5639 		break;
5640 	case PTR_TO_SOCKET:
5641 		valid = bpf_sock_is_valid_access(off, size, t, &info);
5642 		break;
5643 	case PTR_TO_TCP_SOCK:
5644 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5645 		break;
5646 	case PTR_TO_XDP_SOCK:
5647 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5648 		break;
5649 	default:
5650 		valid = false;
5651 	}
5652 
5653 
5654 	if (valid) {
5655 		env->insn_aux_data[insn_idx].ctx_field_size =
5656 			info.ctx_field_size;
5657 		return 0;
5658 	}
5659 
5660 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
5661 		regno, reg_type_str(env, reg->type), off, size);
5662 
5663 	return -EACCES;
5664 }
5665 
5666 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5667 {
5668 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5669 }
5670 
5671 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5672 {
5673 	const struct bpf_reg_state *reg = reg_state(env, regno);
5674 
5675 	return reg->type == PTR_TO_CTX;
5676 }
5677 
5678 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5679 {
5680 	const struct bpf_reg_state *reg = reg_state(env, regno);
5681 
5682 	return type_is_sk_pointer(reg->type);
5683 }
5684 
5685 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5686 {
5687 	const struct bpf_reg_state *reg = reg_state(env, regno);
5688 
5689 	return type_is_pkt_pointer(reg->type);
5690 }
5691 
5692 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5693 {
5694 	const struct bpf_reg_state *reg = reg_state(env, regno);
5695 
5696 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5697 	return reg->type == PTR_TO_FLOW_KEYS;
5698 }
5699 
5700 static bool is_arena_reg(struct bpf_verifier_env *env, int regno)
5701 {
5702 	const struct bpf_reg_state *reg = reg_state(env, regno);
5703 
5704 	return reg->type == PTR_TO_ARENA;
5705 }
5706 
5707 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5708 #ifdef CONFIG_NET
5709 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5710 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5711 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5712 #endif
5713 	[CONST_PTR_TO_MAP] = btf_bpf_map_id,
5714 };
5715 
5716 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5717 {
5718 	/* A referenced register is always trusted. */
5719 	if (reg->ref_obj_id)
5720 		return true;
5721 
5722 	/* Types listed in the reg2btf_ids are always trusted */
5723 	if (reg2btf_ids[base_type(reg->type)] &&
5724 	    !bpf_type_has_unsafe_modifiers(reg->type))
5725 		return true;
5726 
5727 	/* If a register is not referenced, it is trusted if it has the
5728 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5729 	 * other type modifiers may be safe, but we elect to take an opt-in
5730 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5731 	 * not.
5732 	 *
5733 	 * Eventually, we should make PTR_TRUSTED the single source of truth
5734 	 * for whether a register is trusted.
5735 	 */
5736 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5737 	       !bpf_type_has_unsafe_modifiers(reg->type);
5738 }
5739 
5740 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5741 {
5742 	return reg->type & MEM_RCU;
5743 }
5744 
5745 static void clear_trusted_flags(enum bpf_type_flag *flag)
5746 {
5747 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5748 }
5749 
5750 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5751 				   const struct bpf_reg_state *reg,
5752 				   int off, int size, bool strict)
5753 {
5754 	struct tnum reg_off;
5755 	int ip_align;
5756 
5757 	/* Byte size accesses are always allowed. */
5758 	if (!strict || size == 1)
5759 		return 0;
5760 
5761 	/* For platforms that do not have a Kconfig enabling
5762 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5763 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
5764 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5765 	 * to this code only in strict mode where we want to emulate
5766 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
5767 	 * unconditional IP align value of '2'.
5768 	 */
5769 	ip_align = 2;
5770 
5771 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5772 	if (!tnum_is_aligned(reg_off, size)) {
5773 		char tn_buf[48];
5774 
5775 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5776 		verbose(env,
5777 			"misaligned packet access off %d+%s+%d+%d size %d\n",
5778 			ip_align, tn_buf, reg->off, off, size);
5779 		return -EACCES;
5780 	}
5781 
5782 	return 0;
5783 }
5784 
5785 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5786 				       const struct bpf_reg_state *reg,
5787 				       const char *pointer_desc,
5788 				       int off, int size, bool strict)
5789 {
5790 	struct tnum reg_off;
5791 
5792 	/* Byte size accesses are always allowed. */
5793 	if (!strict || size == 1)
5794 		return 0;
5795 
5796 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5797 	if (!tnum_is_aligned(reg_off, size)) {
5798 		char tn_buf[48];
5799 
5800 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5801 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5802 			pointer_desc, tn_buf, reg->off, off, size);
5803 		return -EACCES;
5804 	}
5805 
5806 	return 0;
5807 }
5808 
5809 static int check_ptr_alignment(struct bpf_verifier_env *env,
5810 			       const struct bpf_reg_state *reg, int off,
5811 			       int size, bool strict_alignment_once)
5812 {
5813 	bool strict = env->strict_alignment || strict_alignment_once;
5814 	const char *pointer_desc = "";
5815 
5816 	switch (reg->type) {
5817 	case PTR_TO_PACKET:
5818 	case PTR_TO_PACKET_META:
5819 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
5820 		 * right in front, treat it the very same way.
5821 		 */
5822 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
5823 	case PTR_TO_FLOW_KEYS:
5824 		pointer_desc = "flow keys ";
5825 		break;
5826 	case PTR_TO_MAP_KEY:
5827 		pointer_desc = "key ";
5828 		break;
5829 	case PTR_TO_MAP_VALUE:
5830 		pointer_desc = "value ";
5831 		break;
5832 	case PTR_TO_CTX:
5833 		pointer_desc = "context ";
5834 		break;
5835 	case PTR_TO_STACK:
5836 		pointer_desc = "stack ";
5837 		/* The stack spill tracking logic in check_stack_write_fixed_off()
5838 		 * and check_stack_read_fixed_off() relies on stack accesses being
5839 		 * aligned.
5840 		 */
5841 		strict = true;
5842 		break;
5843 	case PTR_TO_SOCKET:
5844 		pointer_desc = "sock ";
5845 		break;
5846 	case PTR_TO_SOCK_COMMON:
5847 		pointer_desc = "sock_common ";
5848 		break;
5849 	case PTR_TO_TCP_SOCK:
5850 		pointer_desc = "tcp_sock ";
5851 		break;
5852 	case PTR_TO_XDP_SOCK:
5853 		pointer_desc = "xdp_sock ";
5854 		break;
5855 	case PTR_TO_ARENA:
5856 		return 0;
5857 	default:
5858 		break;
5859 	}
5860 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5861 					   strict);
5862 }
5863 
5864 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth)
5865 {
5866 	if (env->prog->jit_requested)
5867 		return round_up(stack_depth, 16);
5868 
5869 	/* round up to 32-bytes, since this is granularity
5870 	 * of interpreter stack size
5871 	 */
5872 	return round_up(max_t(u32, stack_depth, 1), 32);
5873 }
5874 
5875 /* starting from main bpf function walk all instructions of the function
5876  * and recursively walk all callees that given function can call.
5877  * Ignore jump and exit insns.
5878  * Since recursion is prevented by check_cfg() this algorithm
5879  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5880  */
5881 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
5882 {
5883 	struct bpf_subprog_info *subprog = env->subprog_info;
5884 	struct bpf_insn *insn = env->prog->insnsi;
5885 	int depth = 0, frame = 0, i, subprog_end;
5886 	bool tail_call_reachable = false;
5887 	int ret_insn[MAX_CALL_FRAMES];
5888 	int ret_prog[MAX_CALL_FRAMES];
5889 	int j;
5890 
5891 	i = subprog[idx].start;
5892 process_func:
5893 	/* protect against potential stack overflow that might happen when
5894 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5895 	 * depth for such case down to 256 so that the worst case scenario
5896 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
5897 	 * 8k).
5898 	 *
5899 	 * To get the idea what might happen, see an example:
5900 	 * func1 -> sub rsp, 128
5901 	 *  subfunc1 -> sub rsp, 256
5902 	 *  tailcall1 -> add rsp, 256
5903 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5904 	 *   subfunc2 -> sub rsp, 64
5905 	 *   subfunc22 -> sub rsp, 128
5906 	 *   tailcall2 -> add rsp, 128
5907 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5908 	 *
5909 	 * tailcall will unwind the current stack frame but it will not get rid
5910 	 * of caller's stack as shown on the example above.
5911 	 */
5912 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
5913 		verbose(env,
5914 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5915 			depth);
5916 		return -EACCES;
5917 	}
5918 	depth += round_up_stack_depth(env, subprog[idx].stack_depth);
5919 	if (depth > MAX_BPF_STACK) {
5920 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
5921 			frame + 1, depth);
5922 		return -EACCES;
5923 	}
5924 continue_func:
5925 	subprog_end = subprog[idx + 1].start;
5926 	for (; i < subprog_end; i++) {
5927 		int next_insn, sidx;
5928 
5929 		if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) {
5930 			bool err = false;
5931 
5932 			if (!is_bpf_throw_kfunc(insn + i))
5933 				continue;
5934 			if (subprog[idx].is_cb)
5935 				err = true;
5936 			for (int c = 0; c < frame && !err; c++) {
5937 				if (subprog[ret_prog[c]].is_cb) {
5938 					err = true;
5939 					break;
5940 				}
5941 			}
5942 			if (!err)
5943 				continue;
5944 			verbose(env,
5945 				"bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n",
5946 				i, idx);
5947 			return -EINVAL;
5948 		}
5949 
5950 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
5951 			continue;
5952 		/* remember insn and function to return to */
5953 		ret_insn[frame] = i + 1;
5954 		ret_prog[frame] = idx;
5955 
5956 		/* find the callee */
5957 		next_insn = i + insn[i].imm + 1;
5958 		sidx = find_subprog(env, next_insn);
5959 		if (sidx < 0) {
5960 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5961 				  next_insn);
5962 			return -EFAULT;
5963 		}
5964 		if (subprog[sidx].is_async_cb) {
5965 			if (subprog[sidx].has_tail_call) {
5966 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5967 				return -EFAULT;
5968 			}
5969 			/* async callbacks don't increase bpf prog stack size unless called directly */
5970 			if (!bpf_pseudo_call(insn + i))
5971 				continue;
5972 			if (subprog[sidx].is_exception_cb) {
5973 				verbose(env, "insn %d cannot call exception cb directly\n", i);
5974 				return -EINVAL;
5975 			}
5976 		}
5977 		i = next_insn;
5978 		idx = sidx;
5979 
5980 		if (subprog[idx].has_tail_call)
5981 			tail_call_reachable = true;
5982 
5983 		frame++;
5984 		if (frame >= MAX_CALL_FRAMES) {
5985 			verbose(env, "the call stack of %d frames is too deep !\n",
5986 				frame);
5987 			return -E2BIG;
5988 		}
5989 		goto process_func;
5990 	}
5991 	/* if tail call got detected across bpf2bpf calls then mark each of the
5992 	 * currently present subprog frames as tail call reachable subprogs;
5993 	 * this info will be utilized by JIT so that we will be preserving the
5994 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
5995 	 */
5996 	if (tail_call_reachable)
5997 		for (j = 0; j < frame; j++) {
5998 			if (subprog[ret_prog[j]].is_exception_cb) {
5999 				verbose(env, "cannot tail call within exception cb\n");
6000 				return -EINVAL;
6001 			}
6002 			subprog[ret_prog[j]].tail_call_reachable = true;
6003 		}
6004 	if (subprog[0].tail_call_reachable)
6005 		env->prog->aux->tail_call_reachable = true;
6006 
6007 	/* end of for() loop means the last insn of the 'subprog'
6008 	 * was reached. Doesn't matter whether it was JA or EXIT
6009 	 */
6010 	if (frame == 0)
6011 		return 0;
6012 	depth -= round_up_stack_depth(env, subprog[idx].stack_depth);
6013 	frame--;
6014 	i = ret_insn[frame];
6015 	idx = ret_prog[frame];
6016 	goto continue_func;
6017 }
6018 
6019 static int check_max_stack_depth(struct bpf_verifier_env *env)
6020 {
6021 	struct bpf_subprog_info *si = env->subprog_info;
6022 	int ret;
6023 
6024 	for (int i = 0; i < env->subprog_cnt; i++) {
6025 		if (!i || si[i].is_async_cb) {
6026 			ret = check_max_stack_depth_subprog(env, i);
6027 			if (ret < 0)
6028 				return ret;
6029 		}
6030 		continue;
6031 	}
6032 	return 0;
6033 }
6034 
6035 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
6036 static int get_callee_stack_depth(struct bpf_verifier_env *env,
6037 				  const struct bpf_insn *insn, int idx)
6038 {
6039 	int start = idx + insn->imm + 1, subprog;
6040 
6041 	subprog = find_subprog(env, start);
6042 	if (subprog < 0) {
6043 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6044 			  start);
6045 		return -EFAULT;
6046 	}
6047 	return env->subprog_info[subprog].stack_depth;
6048 }
6049 #endif
6050 
6051 static int __check_buffer_access(struct bpf_verifier_env *env,
6052 				 const char *buf_info,
6053 				 const struct bpf_reg_state *reg,
6054 				 int regno, int off, int size)
6055 {
6056 	if (off < 0) {
6057 		verbose(env,
6058 			"R%d invalid %s buffer access: off=%d, size=%d\n",
6059 			regno, buf_info, off, size);
6060 		return -EACCES;
6061 	}
6062 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6063 		char tn_buf[48];
6064 
6065 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6066 		verbose(env,
6067 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
6068 			regno, off, tn_buf);
6069 		return -EACCES;
6070 	}
6071 
6072 	return 0;
6073 }
6074 
6075 static int check_tp_buffer_access(struct bpf_verifier_env *env,
6076 				  const struct bpf_reg_state *reg,
6077 				  int regno, int off, int size)
6078 {
6079 	int err;
6080 
6081 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
6082 	if (err)
6083 		return err;
6084 
6085 	if (off + size > env->prog->aux->max_tp_access)
6086 		env->prog->aux->max_tp_access = off + size;
6087 
6088 	return 0;
6089 }
6090 
6091 static int check_buffer_access(struct bpf_verifier_env *env,
6092 			       const struct bpf_reg_state *reg,
6093 			       int regno, int off, int size,
6094 			       bool zero_size_allowed,
6095 			       u32 *max_access)
6096 {
6097 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
6098 	int err;
6099 
6100 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
6101 	if (err)
6102 		return err;
6103 
6104 	if (off + size > *max_access)
6105 		*max_access = off + size;
6106 
6107 	return 0;
6108 }
6109 
6110 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
6111 static void zext_32_to_64(struct bpf_reg_state *reg)
6112 {
6113 	reg->var_off = tnum_subreg(reg->var_off);
6114 	__reg_assign_32_into_64(reg);
6115 }
6116 
6117 /* truncate register to smaller size (in bytes)
6118  * must be called with size < BPF_REG_SIZE
6119  */
6120 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
6121 {
6122 	u64 mask;
6123 
6124 	/* clear high bits in bit representation */
6125 	reg->var_off = tnum_cast(reg->var_off, size);
6126 
6127 	/* fix arithmetic bounds */
6128 	mask = ((u64)1 << (size * 8)) - 1;
6129 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
6130 		reg->umin_value &= mask;
6131 		reg->umax_value &= mask;
6132 	} else {
6133 		reg->umin_value = 0;
6134 		reg->umax_value = mask;
6135 	}
6136 	reg->smin_value = reg->umin_value;
6137 	reg->smax_value = reg->umax_value;
6138 
6139 	/* If size is smaller than 32bit register the 32bit register
6140 	 * values are also truncated so we push 64-bit bounds into
6141 	 * 32-bit bounds. Above were truncated < 32-bits already.
6142 	 */
6143 	if (size < 4)
6144 		__mark_reg32_unbounded(reg);
6145 
6146 	reg_bounds_sync(reg);
6147 }
6148 
6149 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
6150 {
6151 	if (size == 1) {
6152 		reg->smin_value = reg->s32_min_value = S8_MIN;
6153 		reg->smax_value = reg->s32_max_value = S8_MAX;
6154 	} else if (size == 2) {
6155 		reg->smin_value = reg->s32_min_value = S16_MIN;
6156 		reg->smax_value = reg->s32_max_value = S16_MAX;
6157 	} else {
6158 		/* size == 4 */
6159 		reg->smin_value = reg->s32_min_value = S32_MIN;
6160 		reg->smax_value = reg->s32_max_value = S32_MAX;
6161 	}
6162 	reg->umin_value = reg->u32_min_value = 0;
6163 	reg->umax_value = U64_MAX;
6164 	reg->u32_max_value = U32_MAX;
6165 	reg->var_off = tnum_unknown;
6166 }
6167 
6168 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
6169 {
6170 	s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6171 	u64 top_smax_value, top_smin_value;
6172 	u64 num_bits = size * 8;
6173 
6174 	if (tnum_is_const(reg->var_off)) {
6175 		u64_cval = reg->var_off.value;
6176 		if (size == 1)
6177 			reg->var_off = tnum_const((s8)u64_cval);
6178 		else if (size == 2)
6179 			reg->var_off = tnum_const((s16)u64_cval);
6180 		else
6181 			/* size == 4 */
6182 			reg->var_off = tnum_const((s32)u64_cval);
6183 
6184 		u64_cval = reg->var_off.value;
6185 		reg->smax_value = reg->smin_value = u64_cval;
6186 		reg->umax_value = reg->umin_value = u64_cval;
6187 		reg->s32_max_value = reg->s32_min_value = u64_cval;
6188 		reg->u32_max_value = reg->u32_min_value = u64_cval;
6189 		return;
6190 	}
6191 
6192 	top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6193 	top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6194 
6195 	if (top_smax_value != top_smin_value)
6196 		goto out;
6197 
6198 	/* find the s64_min and s64_min after sign extension */
6199 	if (size == 1) {
6200 		init_s64_max = (s8)reg->smax_value;
6201 		init_s64_min = (s8)reg->smin_value;
6202 	} else if (size == 2) {
6203 		init_s64_max = (s16)reg->smax_value;
6204 		init_s64_min = (s16)reg->smin_value;
6205 	} else {
6206 		init_s64_max = (s32)reg->smax_value;
6207 		init_s64_min = (s32)reg->smin_value;
6208 	}
6209 
6210 	s64_max = max(init_s64_max, init_s64_min);
6211 	s64_min = min(init_s64_max, init_s64_min);
6212 
6213 	/* both of s64_max/s64_min positive or negative */
6214 	if ((s64_max >= 0) == (s64_min >= 0)) {
6215 		reg->smin_value = reg->s32_min_value = s64_min;
6216 		reg->smax_value = reg->s32_max_value = s64_max;
6217 		reg->umin_value = reg->u32_min_value = s64_min;
6218 		reg->umax_value = reg->u32_max_value = s64_max;
6219 		reg->var_off = tnum_range(s64_min, s64_max);
6220 		return;
6221 	}
6222 
6223 out:
6224 	set_sext64_default_val(reg, size);
6225 }
6226 
6227 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6228 {
6229 	if (size == 1) {
6230 		reg->s32_min_value = S8_MIN;
6231 		reg->s32_max_value = S8_MAX;
6232 	} else {
6233 		/* size == 2 */
6234 		reg->s32_min_value = S16_MIN;
6235 		reg->s32_max_value = S16_MAX;
6236 	}
6237 	reg->u32_min_value = 0;
6238 	reg->u32_max_value = U32_MAX;
6239 	reg->var_off = tnum_subreg(tnum_unknown);
6240 }
6241 
6242 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6243 {
6244 	s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6245 	u32 top_smax_value, top_smin_value;
6246 	u32 num_bits = size * 8;
6247 
6248 	if (tnum_is_const(reg->var_off)) {
6249 		u32_val = reg->var_off.value;
6250 		if (size == 1)
6251 			reg->var_off = tnum_const((s8)u32_val);
6252 		else
6253 			reg->var_off = tnum_const((s16)u32_val);
6254 
6255 		u32_val = reg->var_off.value;
6256 		reg->s32_min_value = reg->s32_max_value = u32_val;
6257 		reg->u32_min_value = reg->u32_max_value = u32_val;
6258 		return;
6259 	}
6260 
6261 	top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
6262 	top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
6263 
6264 	if (top_smax_value != top_smin_value)
6265 		goto out;
6266 
6267 	/* find the s32_min and s32_min after sign extension */
6268 	if (size == 1) {
6269 		init_s32_max = (s8)reg->s32_max_value;
6270 		init_s32_min = (s8)reg->s32_min_value;
6271 	} else {
6272 		/* size == 2 */
6273 		init_s32_max = (s16)reg->s32_max_value;
6274 		init_s32_min = (s16)reg->s32_min_value;
6275 	}
6276 	s32_max = max(init_s32_max, init_s32_min);
6277 	s32_min = min(init_s32_max, init_s32_min);
6278 
6279 	if ((s32_min >= 0) == (s32_max >= 0)) {
6280 		reg->s32_min_value = s32_min;
6281 		reg->s32_max_value = s32_max;
6282 		reg->u32_min_value = (u32)s32_min;
6283 		reg->u32_max_value = (u32)s32_max;
6284 		reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max));
6285 		return;
6286 	}
6287 
6288 out:
6289 	set_sext32_default_val(reg, size);
6290 }
6291 
6292 static bool bpf_map_is_rdonly(const struct bpf_map *map)
6293 {
6294 	/* A map is considered read-only if the following condition are true:
6295 	 *
6296 	 * 1) BPF program side cannot change any of the map content. The
6297 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6298 	 *    and was set at map creation time.
6299 	 * 2) The map value(s) have been initialized from user space by a
6300 	 *    loader and then "frozen", such that no new map update/delete
6301 	 *    operations from syscall side are possible for the rest of
6302 	 *    the map's lifetime from that point onwards.
6303 	 * 3) Any parallel/pending map update/delete operations from syscall
6304 	 *    side have been completed. Only after that point, it's safe to
6305 	 *    assume that map value(s) are immutable.
6306 	 */
6307 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
6308 	       READ_ONCE(map->frozen) &&
6309 	       !bpf_map_write_active(map);
6310 }
6311 
6312 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6313 			       bool is_ldsx)
6314 {
6315 	void *ptr;
6316 	u64 addr;
6317 	int err;
6318 
6319 	err = map->ops->map_direct_value_addr(map, &addr, off);
6320 	if (err)
6321 		return err;
6322 	ptr = (void *)(long)addr + off;
6323 
6324 	switch (size) {
6325 	case sizeof(u8):
6326 		*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6327 		break;
6328 	case sizeof(u16):
6329 		*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6330 		break;
6331 	case sizeof(u32):
6332 		*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6333 		break;
6334 	case sizeof(u64):
6335 		*val = *(u64 *)ptr;
6336 		break;
6337 	default:
6338 		return -EINVAL;
6339 	}
6340 	return 0;
6341 }
6342 
6343 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
6344 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
6345 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
6346 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type)  __PASTE(__type, __safe_trusted_or_null)
6347 
6348 /*
6349  * Allow list few fields as RCU trusted or full trusted.
6350  * This logic doesn't allow mix tagging and will be removed once GCC supports
6351  * btf_type_tag.
6352  */
6353 
6354 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
6355 BTF_TYPE_SAFE_RCU(struct task_struct) {
6356 	const cpumask_t *cpus_ptr;
6357 	struct css_set __rcu *cgroups;
6358 	struct task_struct __rcu *real_parent;
6359 	struct task_struct *group_leader;
6360 };
6361 
6362 BTF_TYPE_SAFE_RCU(struct cgroup) {
6363 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6364 	struct kernfs_node *kn;
6365 };
6366 
6367 BTF_TYPE_SAFE_RCU(struct css_set) {
6368 	struct cgroup *dfl_cgrp;
6369 };
6370 
6371 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
6372 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6373 	struct file __rcu *exe_file;
6374 };
6375 
6376 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6377  * because bpf prog accessible sockets are SOCK_RCU_FREE.
6378  */
6379 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6380 	struct sock *sk;
6381 };
6382 
6383 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6384 	struct sock *sk;
6385 };
6386 
6387 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
6388 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6389 	struct seq_file *seq;
6390 };
6391 
6392 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6393 	struct bpf_iter_meta *meta;
6394 	struct task_struct *task;
6395 };
6396 
6397 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6398 	struct file *file;
6399 };
6400 
6401 BTF_TYPE_SAFE_TRUSTED(struct file) {
6402 	struct inode *f_inode;
6403 };
6404 
6405 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6406 	/* no negative dentry-s in places where bpf can see it */
6407 	struct inode *d_inode;
6408 };
6409 
6410 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) {
6411 	struct sock *sk;
6412 };
6413 
6414 static bool type_is_rcu(struct bpf_verifier_env *env,
6415 			struct bpf_reg_state *reg,
6416 			const char *field_name, u32 btf_id)
6417 {
6418 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6419 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6420 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6421 
6422 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6423 }
6424 
6425 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6426 				struct bpf_reg_state *reg,
6427 				const char *field_name, u32 btf_id)
6428 {
6429 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6430 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6431 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6432 
6433 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6434 }
6435 
6436 static bool type_is_trusted(struct bpf_verifier_env *env,
6437 			    struct bpf_reg_state *reg,
6438 			    const char *field_name, u32 btf_id)
6439 {
6440 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6441 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6442 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6443 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6444 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6445 
6446 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6447 }
6448 
6449 static bool type_is_trusted_or_null(struct bpf_verifier_env *env,
6450 				    struct bpf_reg_state *reg,
6451 				    const char *field_name, u32 btf_id)
6452 {
6453 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket));
6454 
6455 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id,
6456 					  "__safe_trusted_or_null");
6457 }
6458 
6459 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6460 				   struct bpf_reg_state *regs,
6461 				   int regno, int off, int size,
6462 				   enum bpf_access_type atype,
6463 				   int value_regno)
6464 {
6465 	struct bpf_reg_state *reg = regs + regno;
6466 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6467 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6468 	const char *field_name = NULL;
6469 	enum bpf_type_flag flag = 0;
6470 	u32 btf_id = 0;
6471 	int ret;
6472 
6473 	if (!env->allow_ptr_leaks) {
6474 		verbose(env,
6475 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6476 			tname);
6477 		return -EPERM;
6478 	}
6479 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6480 		verbose(env,
6481 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6482 			tname);
6483 		return -EINVAL;
6484 	}
6485 	if (off < 0) {
6486 		verbose(env,
6487 			"R%d is ptr_%s invalid negative access: off=%d\n",
6488 			regno, tname, off);
6489 		return -EACCES;
6490 	}
6491 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6492 		char tn_buf[48];
6493 
6494 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6495 		verbose(env,
6496 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6497 			regno, tname, off, tn_buf);
6498 		return -EACCES;
6499 	}
6500 
6501 	if (reg->type & MEM_USER) {
6502 		verbose(env,
6503 			"R%d is ptr_%s access user memory: off=%d\n",
6504 			regno, tname, off);
6505 		return -EACCES;
6506 	}
6507 
6508 	if (reg->type & MEM_PERCPU) {
6509 		verbose(env,
6510 			"R%d is ptr_%s access percpu memory: off=%d\n",
6511 			regno, tname, off);
6512 		return -EACCES;
6513 	}
6514 
6515 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6516 		if (!btf_is_kernel(reg->btf)) {
6517 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6518 			return -EFAULT;
6519 		}
6520 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6521 	} else {
6522 		/* Writes are permitted with default btf_struct_access for
6523 		 * program allocated objects (which always have ref_obj_id > 0),
6524 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6525 		 */
6526 		if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6527 			verbose(env, "only read is supported\n");
6528 			return -EACCES;
6529 		}
6530 
6531 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6532 		    !(reg->type & MEM_RCU) && !reg->ref_obj_id) {
6533 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6534 			return -EFAULT;
6535 		}
6536 
6537 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6538 	}
6539 
6540 	if (ret < 0)
6541 		return ret;
6542 
6543 	if (ret != PTR_TO_BTF_ID) {
6544 		/* just mark; */
6545 
6546 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6547 		/* If this is an untrusted pointer, all pointers formed by walking it
6548 		 * also inherit the untrusted flag.
6549 		 */
6550 		flag = PTR_UNTRUSTED;
6551 
6552 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6553 		/* By default any pointer obtained from walking a trusted pointer is no
6554 		 * longer trusted, unless the field being accessed has explicitly been
6555 		 * marked as inheriting its parent's state of trust (either full or RCU).
6556 		 * For example:
6557 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
6558 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
6559 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6560 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6561 		 *
6562 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
6563 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
6564 		 */
6565 		if (type_is_trusted(env, reg, field_name, btf_id)) {
6566 			flag |= PTR_TRUSTED;
6567 		} else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) {
6568 			flag |= PTR_TRUSTED | PTR_MAYBE_NULL;
6569 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6570 			if (type_is_rcu(env, reg, field_name, btf_id)) {
6571 				/* ignore __rcu tag and mark it MEM_RCU */
6572 				flag |= MEM_RCU;
6573 			} else if (flag & MEM_RCU ||
6574 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6575 				/* __rcu tagged pointers can be NULL */
6576 				flag |= MEM_RCU | PTR_MAYBE_NULL;
6577 
6578 				/* We always trust them */
6579 				if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6580 				    flag & PTR_UNTRUSTED)
6581 					flag &= ~PTR_UNTRUSTED;
6582 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
6583 				/* keep as-is */
6584 			} else {
6585 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6586 				clear_trusted_flags(&flag);
6587 			}
6588 		} else {
6589 			/*
6590 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
6591 			 * aggressively mark as untrusted otherwise such
6592 			 * pointers will be plain PTR_TO_BTF_ID without flags
6593 			 * and will be allowed to be passed into helpers for
6594 			 * compat reasons.
6595 			 */
6596 			flag = PTR_UNTRUSTED;
6597 		}
6598 	} else {
6599 		/* Old compat. Deprecated */
6600 		clear_trusted_flags(&flag);
6601 	}
6602 
6603 	if (atype == BPF_READ && value_regno >= 0)
6604 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6605 
6606 	return 0;
6607 }
6608 
6609 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6610 				   struct bpf_reg_state *regs,
6611 				   int regno, int off, int size,
6612 				   enum bpf_access_type atype,
6613 				   int value_regno)
6614 {
6615 	struct bpf_reg_state *reg = regs + regno;
6616 	struct bpf_map *map = reg->map_ptr;
6617 	struct bpf_reg_state map_reg;
6618 	enum bpf_type_flag flag = 0;
6619 	const struct btf_type *t;
6620 	const char *tname;
6621 	u32 btf_id;
6622 	int ret;
6623 
6624 	if (!btf_vmlinux) {
6625 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6626 		return -ENOTSUPP;
6627 	}
6628 
6629 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6630 		verbose(env, "map_ptr access not supported for map type %d\n",
6631 			map->map_type);
6632 		return -ENOTSUPP;
6633 	}
6634 
6635 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6636 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6637 
6638 	if (!env->allow_ptr_leaks) {
6639 		verbose(env,
6640 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6641 			tname);
6642 		return -EPERM;
6643 	}
6644 
6645 	if (off < 0) {
6646 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
6647 			regno, tname, off);
6648 		return -EACCES;
6649 	}
6650 
6651 	if (atype != BPF_READ) {
6652 		verbose(env, "only read from %s is supported\n", tname);
6653 		return -EACCES;
6654 	}
6655 
6656 	/* Simulate access to a PTR_TO_BTF_ID */
6657 	memset(&map_reg, 0, sizeof(map_reg));
6658 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6659 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6660 	if (ret < 0)
6661 		return ret;
6662 
6663 	if (value_regno >= 0)
6664 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6665 
6666 	return 0;
6667 }
6668 
6669 /* Check that the stack access at the given offset is within bounds. The
6670  * maximum valid offset is -1.
6671  *
6672  * The minimum valid offset is -MAX_BPF_STACK for writes, and
6673  * -state->allocated_stack for reads.
6674  */
6675 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env,
6676                                           s64 off,
6677                                           struct bpf_func_state *state,
6678                                           enum bpf_access_type t)
6679 {
6680 	int min_valid_off;
6681 
6682 	if (t == BPF_WRITE || env->allow_uninit_stack)
6683 		min_valid_off = -MAX_BPF_STACK;
6684 	else
6685 		min_valid_off = -state->allocated_stack;
6686 
6687 	if (off < min_valid_off || off > -1)
6688 		return -EACCES;
6689 	return 0;
6690 }
6691 
6692 /* Check that the stack access at 'regno + off' falls within the maximum stack
6693  * bounds.
6694  *
6695  * 'off' includes `regno->offset`, but not its dynamic part (if any).
6696  */
6697 static int check_stack_access_within_bounds(
6698 		struct bpf_verifier_env *env,
6699 		int regno, int off, int access_size,
6700 		enum bpf_access_src src, enum bpf_access_type type)
6701 {
6702 	struct bpf_reg_state *regs = cur_regs(env);
6703 	struct bpf_reg_state *reg = regs + regno;
6704 	struct bpf_func_state *state = func(env, reg);
6705 	s64 min_off, max_off;
6706 	int err;
6707 	char *err_extra;
6708 
6709 	if (src == ACCESS_HELPER)
6710 		/* We don't know if helpers are reading or writing (or both). */
6711 		err_extra = " indirect access to";
6712 	else if (type == BPF_READ)
6713 		err_extra = " read from";
6714 	else
6715 		err_extra = " write to";
6716 
6717 	if (tnum_is_const(reg->var_off)) {
6718 		min_off = (s64)reg->var_off.value + off;
6719 		max_off = min_off + access_size;
6720 	} else {
6721 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6722 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
6723 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6724 				err_extra, regno);
6725 			return -EACCES;
6726 		}
6727 		min_off = reg->smin_value + off;
6728 		max_off = reg->smax_value + off + access_size;
6729 	}
6730 
6731 	err = check_stack_slot_within_bounds(env, min_off, state, type);
6732 	if (!err && max_off > 0)
6733 		err = -EINVAL; /* out of stack access into non-negative offsets */
6734 	if (!err && access_size < 0)
6735 		/* access_size should not be negative (or overflow an int); others checks
6736 		 * along the way should have prevented such an access.
6737 		 */
6738 		err = -EFAULT; /* invalid negative access size; integer overflow? */
6739 
6740 	if (err) {
6741 		if (tnum_is_const(reg->var_off)) {
6742 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6743 				err_extra, regno, off, access_size);
6744 		} else {
6745 			char tn_buf[48];
6746 
6747 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6748 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n",
6749 				err_extra, regno, tn_buf, off, access_size);
6750 		}
6751 		return err;
6752 	}
6753 
6754 	/* Note that there is no stack access with offset zero, so the needed stack
6755 	 * size is -min_off, not -min_off+1.
6756 	 */
6757 	return grow_stack_state(env, state, -min_off /* size */);
6758 }
6759 
6760 /* check whether memory at (regno + off) is accessible for t = (read | write)
6761  * if t==write, value_regno is a register which value is stored into memory
6762  * if t==read, value_regno is a register which will receive the value from memory
6763  * if t==write && value_regno==-1, some unknown value is stored into memory
6764  * if t==read && value_regno==-1, don't care what we read from memory
6765  */
6766 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6767 			    int off, int bpf_size, enum bpf_access_type t,
6768 			    int value_regno, bool strict_alignment_once, bool is_ldsx)
6769 {
6770 	struct bpf_reg_state *regs = cur_regs(env);
6771 	struct bpf_reg_state *reg = regs + regno;
6772 	int size, err = 0;
6773 
6774 	size = bpf_size_to_bytes(bpf_size);
6775 	if (size < 0)
6776 		return size;
6777 
6778 	/* alignment checks will add in reg->off themselves */
6779 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6780 	if (err)
6781 		return err;
6782 
6783 	/* for access checks, reg->off is just part of off */
6784 	off += reg->off;
6785 
6786 	if (reg->type == PTR_TO_MAP_KEY) {
6787 		if (t == BPF_WRITE) {
6788 			verbose(env, "write to change key R%d not allowed\n", regno);
6789 			return -EACCES;
6790 		}
6791 
6792 		err = check_mem_region_access(env, regno, off, size,
6793 					      reg->map_ptr->key_size, false);
6794 		if (err)
6795 			return err;
6796 		if (value_regno >= 0)
6797 			mark_reg_unknown(env, regs, value_regno);
6798 	} else if (reg->type == PTR_TO_MAP_VALUE) {
6799 		struct btf_field *kptr_field = NULL;
6800 
6801 		if (t == BPF_WRITE && value_regno >= 0 &&
6802 		    is_pointer_value(env, value_regno)) {
6803 			verbose(env, "R%d leaks addr into map\n", value_regno);
6804 			return -EACCES;
6805 		}
6806 		err = check_map_access_type(env, regno, off, size, t);
6807 		if (err)
6808 			return err;
6809 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6810 		if (err)
6811 			return err;
6812 		if (tnum_is_const(reg->var_off))
6813 			kptr_field = btf_record_find(reg->map_ptr->record,
6814 						     off + reg->var_off.value, BPF_KPTR);
6815 		if (kptr_field) {
6816 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6817 		} else if (t == BPF_READ && value_regno >= 0) {
6818 			struct bpf_map *map = reg->map_ptr;
6819 
6820 			/* if map is read-only, track its contents as scalars */
6821 			if (tnum_is_const(reg->var_off) &&
6822 			    bpf_map_is_rdonly(map) &&
6823 			    map->ops->map_direct_value_addr) {
6824 				int map_off = off + reg->var_off.value;
6825 				u64 val = 0;
6826 
6827 				err = bpf_map_direct_read(map, map_off, size,
6828 							  &val, is_ldsx);
6829 				if (err)
6830 					return err;
6831 
6832 				regs[value_regno].type = SCALAR_VALUE;
6833 				__mark_reg_known(&regs[value_regno], val);
6834 			} else {
6835 				mark_reg_unknown(env, regs, value_regno);
6836 			}
6837 		}
6838 	} else if (base_type(reg->type) == PTR_TO_MEM) {
6839 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6840 
6841 		if (type_may_be_null(reg->type)) {
6842 			verbose(env, "R%d invalid mem access '%s'\n", regno,
6843 				reg_type_str(env, reg->type));
6844 			return -EACCES;
6845 		}
6846 
6847 		if (t == BPF_WRITE && rdonly_mem) {
6848 			verbose(env, "R%d cannot write into %s\n",
6849 				regno, reg_type_str(env, reg->type));
6850 			return -EACCES;
6851 		}
6852 
6853 		if (t == BPF_WRITE && value_regno >= 0 &&
6854 		    is_pointer_value(env, value_regno)) {
6855 			verbose(env, "R%d leaks addr into mem\n", value_regno);
6856 			return -EACCES;
6857 		}
6858 
6859 		err = check_mem_region_access(env, regno, off, size,
6860 					      reg->mem_size, false);
6861 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
6862 			mark_reg_unknown(env, regs, value_regno);
6863 	} else if (reg->type == PTR_TO_CTX) {
6864 		enum bpf_reg_type reg_type = SCALAR_VALUE;
6865 		struct btf *btf = NULL;
6866 		u32 btf_id = 0;
6867 
6868 		if (t == BPF_WRITE && value_regno >= 0 &&
6869 		    is_pointer_value(env, value_regno)) {
6870 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
6871 			return -EACCES;
6872 		}
6873 
6874 		err = check_ptr_off_reg(env, reg, regno);
6875 		if (err < 0)
6876 			return err;
6877 
6878 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
6879 				       &btf_id);
6880 		if (err)
6881 			verbose_linfo(env, insn_idx, "; ");
6882 		if (!err && t == BPF_READ && value_regno >= 0) {
6883 			/* ctx access returns either a scalar, or a
6884 			 * PTR_TO_PACKET[_META,_END]. In the latter
6885 			 * case, we know the offset is zero.
6886 			 */
6887 			if (reg_type == SCALAR_VALUE) {
6888 				mark_reg_unknown(env, regs, value_regno);
6889 			} else {
6890 				mark_reg_known_zero(env, regs,
6891 						    value_regno);
6892 				if (type_may_be_null(reg_type))
6893 					regs[value_regno].id = ++env->id_gen;
6894 				/* A load of ctx field could have different
6895 				 * actual load size with the one encoded in the
6896 				 * insn. When the dst is PTR, it is for sure not
6897 				 * a sub-register.
6898 				 */
6899 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
6900 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
6901 					regs[value_regno].btf = btf;
6902 					regs[value_regno].btf_id = btf_id;
6903 				}
6904 			}
6905 			regs[value_regno].type = reg_type;
6906 		}
6907 
6908 	} else if (reg->type == PTR_TO_STACK) {
6909 		/* Basic bounds checks. */
6910 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
6911 		if (err)
6912 			return err;
6913 
6914 		if (t == BPF_READ)
6915 			err = check_stack_read(env, regno, off, size,
6916 					       value_regno);
6917 		else
6918 			err = check_stack_write(env, regno, off, size,
6919 						value_regno, insn_idx);
6920 	} else if (reg_is_pkt_pointer(reg)) {
6921 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
6922 			verbose(env, "cannot write into packet\n");
6923 			return -EACCES;
6924 		}
6925 		if (t == BPF_WRITE && value_regno >= 0 &&
6926 		    is_pointer_value(env, value_regno)) {
6927 			verbose(env, "R%d leaks addr into packet\n",
6928 				value_regno);
6929 			return -EACCES;
6930 		}
6931 		err = check_packet_access(env, regno, off, size, false);
6932 		if (!err && t == BPF_READ && value_regno >= 0)
6933 			mark_reg_unknown(env, regs, value_regno);
6934 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
6935 		if (t == BPF_WRITE && value_regno >= 0 &&
6936 		    is_pointer_value(env, value_regno)) {
6937 			verbose(env, "R%d leaks addr into flow keys\n",
6938 				value_regno);
6939 			return -EACCES;
6940 		}
6941 
6942 		err = check_flow_keys_access(env, off, size);
6943 		if (!err && t == BPF_READ && value_regno >= 0)
6944 			mark_reg_unknown(env, regs, value_regno);
6945 	} else if (type_is_sk_pointer(reg->type)) {
6946 		if (t == BPF_WRITE) {
6947 			verbose(env, "R%d cannot write into %s\n",
6948 				regno, reg_type_str(env, reg->type));
6949 			return -EACCES;
6950 		}
6951 		err = check_sock_access(env, insn_idx, regno, off, size, t);
6952 		if (!err && value_regno >= 0)
6953 			mark_reg_unknown(env, regs, value_regno);
6954 	} else if (reg->type == PTR_TO_TP_BUFFER) {
6955 		err = check_tp_buffer_access(env, reg, regno, off, size);
6956 		if (!err && t == BPF_READ && value_regno >= 0)
6957 			mark_reg_unknown(env, regs, value_regno);
6958 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
6959 		   !type_may_be_null(reg->type)) {
6960 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
6961 					      value_regno);
6962 	} else if (reg->type == CONST_PTR_TO_MAP) {
6963 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
6964 					      value_regno);
6965 	} else if (base_type(reg->type) == PTR_TO_BUF) {
6966 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6967 		u32 *max_access;
6968 
6969 		if (rdonly_mem) {
6970 			if (t == BPF_WRITE) {
6971 				verbose(env, "R%d cannot write into %s\n",
6972 					regno, reg_type_str(env, reg->type));
6973 				return -EACCES;
6974 			}
6975 			max_access = &env->prog->aux->max_rdonly_access;
6976 		} else {
6977 			max_access = &env->prog->aux->max_rdwr_access;
6978 		}
6979 
6980 		err = check_buffer_access(env, reg, regno, off, size, false,
6981 					  max_access);
6982 
6983 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
6984 			mark_reg_unknown(env, regs, value_regno);
6985 	} else if (reg->type == PTR_TO_ARENA) {
6986 		if (t == BPF_READ && value_regno >= 0)
6987 			mark_reg_unknown(env, regs, value_regno);
6988 	} else {
6989 		verbose(env, "R%d invalid mem access '%s'\n", regno,
6990 			reg_type_str(env, reg->type));
6991 		return -EACCES;
6992 	}
6993 
6994 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
6995 	    regs[value_regno].type == SCALAR_VALUE) {
6996 		if (!is_ldsx)
6997 			/* b/h/w load zero-extends, mark upper bits as known 0 */
6998 			coerce_reg_to_size(&regs[value_regno], size);
6999 		else
7000 			coerce_reg_to_size_sx(&regs[value_regno], size);
7001 	}
7002 	return err;
7003 }
7004 
7005 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
7006 			     bool allow_trust_mismatch);
7007 
7008 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
7009 {
7010 	int load_reg;
7011 	int err;
7012 
7013 	switch (insn->imm) {
7014 	case BPF_ADD:
7015 	case BPF_ADD | BPF_FETCH:
7016 	case BPF_AND:
7017 	case BPF_AND | BPF_FETCH:
7018 	case BPF_OR:
7019 	case BPF_OR | BPF_FETCH:
7020 	case BPF_XOR:
7021 	case BPF_XOR | BPF_FETCH:
7022 	case BPF_XCHG:
7023 	case BPF_CMPXCHG:
7024 		break;
7025 	default:
7026 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
7027 		return -EINVAL;
7028 	}
7029 
7030 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
7031 		verbose(env, "invalid atomic operand size\n");
7032 		return -EINVAL;
7033 	}
7034 
7035 	/* check src1 operand */
7036 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
7037 	if (err)
7038 		return err;
7039 
7040 	/* check src2 operand */
7041 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7042 	if (err)
7043 		return err;
7044 
7045 	if (insn->imm == BPF_CMPXCHG) {
7046 		/* Check comparison of R0 with memory location */
7047 		const u32 aux_reg = BPF_REG_0;
7048 
7049 		err = check_reg_arg(env, aux_reg, SRC_OP);
7050 		if (err)
7051 			return err;
7052 
7053 		if (is_pointer_value(env, aux_reg)) {
7054 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
7055 			return -EACCES;
7056 		}
7057 	}
7058 
7059 	if (is_pointer_value(env, insn->src_reg)) {
7060 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
7061 		return -EACCES;
7062 	}
7063 
7064 	if (is_ctx_reg(env, insn->dst_reg) ||
7065 	    is_pkt_reg(env, insn->dst_reg) ||
7066 	    is_flow_key_reg(env, insn->dst_reg) ||
7067 	    is_sk_reg(env, insn->dst_reg) ||
7068 	    (is_arena_reg(env, insn->dst_reg) && !bpf_jit_supports_insn(insn, true))) {
7069 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
7070 			insn->dst_reg,
7071 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
7072 		return -EACCES;
7073 	}
7074 
7075 	if (insn->imm & BPF_FETCH) {
7076 		if (insn->imm == BPF_CMPXCHG)
7077 			load_reg = BPF_REG_0;
7078 		else
7079 			load_reg = insn->src_reg;
7080 
7081 		/* check and record load of old value */
7082 		err = check_reg_arg(env, load_reg, DST_OP);
7083 		if (err)
7084 			return err;
7085 	} else {
7086 		/* This instruction accesses a memory location but doesn't
7087 		 * actually load it into a register.
7088 		 */
7089 		load_reg = -1;
7090 	}
7091 
7092 	/* Check whether we can read the memory, with second call for fetch
7093 	 * case to simulate the register fill.
7094 	 */
7095 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7096 			       BPF_SIZE(insn->code), BPF_READ, -1, true, false);
7097 	if (!err && load_reg >= 0)
7098 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7099 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
7100 				       true, false);
7101 	if (err)
7102 		return err;
7103 
7104 	if (is_arena_reg(env, insn->dst_reg)) {
7105 		err = save_aux_ptr_type(env, PTR_TO_ARENA, false);
7106 		if (err)
7107 			return err;
7108 	}
7109 	/* Check whether we can write into the same memory. */
7110 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7111 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
7112 	if (err)
7113 		return err;
7114 	return 0;
7115 }
7116 
7117 /* When register 'regno' is used to read the stack (either directly or through
7118  * a helper function) make sure that it's within stack boundary and, depending
7119  * on the access type and privileges, that all elements of the stack are
7120  * initialized.
7121  *
7122  * 'off' includes 'regno->off', but not its dynamic part (if any).
7123  *
7124  * All registers that have been spilled on the stack in the slots within the
7125  * read offsets are marked as read.
7126  */
7127 static int check_stack_range_initialized(
7128 		struct bpf_verifier_env *env, int regno, int off,
7129 		int access_size, bool zero_size_allowed,
7130 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
7131 {
7132 	struct bpf_reg_state *reg = reg_state(env, regno);
7133 	struct bpf_func_state *state = func(env, reg);
7134 	int err, min_off, max_off, i, j, slot, spi;
7135 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
7136 	enum bpf_access_type bounds_check_type;
7137 	/* Some accesses can write anything into the stack, others are
7138 	 * read-only.
7139 	 */
7140 	bool clobber = false;
7141 
7142 	if (access_size == 0 && !zero_size_allowed) {
7143 		verbose(env, "invalid zero-sized read\n");
7144 		return -EACCES;
7145 	}
7146 
7147 	if (type == ACCESS_HELPER) {
7148 		/* The bounds checks for writes are more permissive than for
7149 		 * reads. However, if raw_mode is not set, we'll do extra
7150 		 * checks below.
7151 		 */
7152 		bounds_check_type = BPF_WRITE;
7153 		clobber = true;
7154 	} else {
7155 		bounds_check_type = BPF_READ;
7156 	}
7157 	err = check_stack_access_within_bounds(env, regno, off, access_size,
7158 					       type, bounds_check_type);
7159 	if (err)
7160 		return err;
7161 
7162 
7163 	if (tnum_is_const(reg->var_off)) {
7164 		min_off = max_off = reg->var_off.value + off;
7165 	} else {
7166 		/* Variable offset is prohibited for unprivileged mode for
7167 		 * simplicity since it requires corresponding support in
7168 		 * Spectre masking for stack ALU.
7169 		 * See also retrieve_ptr_limit().
7170 		 */
7171 		if (!env->bypass_spec_v1) {
7172 			char tn_buf[48];
7173 
7174 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7175 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
7176 				regno, err_extra, tn_buf);
7177 			return -EACCES;
7178 		}
7179 		/* Only initialized buffer on stack is allowed to be accessed
7180 		 * with variable offset. With uninitialized buffer it's hard to
7181 		 * guarantee that whole memory is marked as initialized on
7182 		 * helper return since specific bounds are unknown what may
7183 		 * cause uninitialized stack leaking.
7184 		 */
7185 		if (meta && meta->raw_mode)
7186 			meta = NULL;
7187 
7188 		min_off = reg->smin_value + off;
7189 		max_off = reg->smax_value + off;
7190 	}
7191 
7192 	if (meta && meta->raw_mode) {
7193 		/* Ensure we won't be overwriting dynptrs when simulating byte
7194 		 * by byte access in check_helper_call using meta.access_size.
7195 		 * This would be a problem if we have a helper in the future
7196 		 * which takes:
7197 		 *
7198 		 *	helper(uninit_mem, len, dynptr)
7199 		 *
7200 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
7201 		 * may end up writing to dynptr itself when touching memory from
7202 		 * arg 1. This can be relaxed on a case by case basis for known
7203 		 * safe cases, but reject due to the possibilitiy of aliasing by
7204 		 * default.
7205 		 */
7206 		for (i = min_off; i < max_off + access_size; i++) {
7207 			int stack_off = -i - 1;
7208 
7209 			spi = __get_spi(i);
7210 			/* raw_mode may write past allocated_stack */
7211 			if (state->allocated_stack <= stack_off)
7212 				continue;
7213 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
7214 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
7215 				return -EACCES;
7216 			}
7217 		}
7218 		meta->access_size = access_size;
7219 		meta->regno = regno;
7220 		return 0;
7221 	}
7222 
7223 	for (i = min_off; i < max_off + access_size; i++) {
7224 		u8 *stype;
7225 
7226 		slot = -i - 1;
7227 		spi = slot / BPF_REG_SIZE;
7228 		if (state->allocated_stack <= slot) {
7229 			verbose(env, "verifier bug: allocated_stack too small");
7230 			return -EFAULT;
7231 		}
7232 
7233 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
7234 		if (*stype == STACK_MISC)
7235 			goto mark;
7236 		if ((*stype == STACK_ZERO) ||
7237 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
7238 			if (clobber) {
7239 				/* helper can write anything into the stack */
7240 				*stype = STACK_MISC;
7241 			}
7242 			goto mark;
7243 		}
7244 
7245 		if (is_spilled_reg(&state->stack[spi]) &&
7246 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
7247 		     env->allow_ptr_leaks)) {
7248 			if (clobber) {
7249 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
7250 				for (j = 0; j < BPF_REG_SIZE; j++)
7251 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
7252 			}
7253 			goto mark;
7254 		}
7255 
7256 		if (tnum_is_const(reg->var_off)) {
7257 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
7258 				err_extra, regno, min_off, i - min_off, access_size);
7259 		} else {
7260 			char tn_buf[48];
7261 
7262 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7263 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
7264 				err_extra, regno, tn_buf, i - min_off, access_size);
7265 		}
7266 		return -EACCES;
7267 mark:
7268 		/* reading any byte out of 8-byte 'spill_slot' will cause
7269 		 * the whole slot to be marked as 'read'
7270 		 */
7271 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
7272 			      state->stack[spi].spilled_ptr.parent,
7273 			      REG_LIVE_READ64);
7274 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
7275 		 * be sure that whether stack slot is written to or not. Hence,
7276 		 * we must still conservatively propagate reads upwards even if
7277 		 * helper may write to the entire memory range.
7278 		 */
7279 	}
7280 	return 0;
7281 }
7282 
7283 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
7284 				   int access_size, bool zero_size_allowed,
7285 				   struct bpf_call_arg_meta *meta)
7286 {
7287 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7288 	u32 *max_access;
7289 
7290 	switch (base_type(reg->type)) {
7291 	case PTR_TO_PACKET:
7292 	case PTR_TO_PACKET_META:
7293 		return check_packet_access(env, regno, reg->off, access_size,
7294 					   zero_size_allowed);
7295 	case PTR_TO_MAP_KEY:
7296 		if (meta && meta->raw_mode) {
7297 			verbose(env, "R%d cannot write into %s\n", regno,
7298 				reg_type_str(env, reg->type));
7299 			return -EACCES;
7300 		}
7301 		return check_mem_region_access(env, regno, reg->off, access_size,
7302 					       reg->map_ptr->key_size, false);
7303 	case PTR_TO_MAP_VALUE:
7304 		if (check_map_access_type(env, regno, reg->off, access_size,
7305 					  meta && meta->raw_mode ? BPF_WRITE :
7306 					  BPF_READ))
7307 			return -EACCES;
7308 		return check_map_access(env, regno, reg->off, access_size,
7309 					zero_size_allowed, ACCESS_HELPER);
7310 	case PTR_TO_MEM:
7311 		if (type_is_rdonly_mem(reg->type)) {
7312 			if (meta && meta->raw_mode) {
7313 				verbose(env, "R%d cannot write into %s\n", regno,
7314 					reg_type_str(env, reg->type));
7315 				return -EACCES;
7316 			}
7317 		}
7318 		return check_mem_region_access(env, regno, reg->off,
7319 					       access_size, reg->mem_size,
7320 					       zero_size_allowed);
7321 	case PTR_TO_BUF:
7322 		if (type_is_rdonly_mem(reg->type)) {
7323 			if (meta && meta->raw_mode) {
7324 				verbose(env, "R%d cannot write into %s\n", regno,
7325 					reg_type_str(env, reg->type));
7326 				return -EACCES;
7327 			}
7328 
7329 			max_access = &env->prog->aux->max_rdonly_access;
7330 		} else {
7331 			max_access = &env->prog->aux->max_rdwr_access;
7332 		}
7333 		return check_buffer_access(env, reg, regno, reg->off,
7334 					   access_size, zero_size_allowed,
7335 					   max_access);
7336 	case PTR_TO_STACK:
7337 		return check_stack_range_initialized(
7338 				env,
7339 				regno, reg->off, access_size,
7340 				zero_size_allowed, ACCESS_HELPER, meta);
7341 	case PTR_TO_BTF_ID:
7342 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
7343 					       access_size, BPF_READ, -1);
7344 	case PTR_TO_CTX:
7345 		/* in case the function doesn't know how to access the context,
7346 		 * (because we are in a program of type SYSCALL for example), we
7347 		 * can not statically check its size.
7348 		 * Dynamically check it now.
7349 		 */
7350 		if (!env->ops->convert_ctx_access) {
7351 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
7352 			int offset = access_size - 1;
7353 
7354 			/* Allow zero-byte read from PTR_TO_CTX */
7355 			if (access_size == 0)
7356 				return zero_size_allowed ? 0 : -EACCES;
7357 
7358 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7359 						atype, -1, false, false);
7360 		}
7361 
7362 		fallthrough;
7363 	default: /* scalar_value or invalid ptr */
7364 		/* Allow zero-byte read from NULL, regardless of pointer type */
7365 		if (zero_size_allowed && access_size == 0 &&
7366 		    register_is_null(reg))
7367 			return 0;
7368 
7369 		verbose(env, "R%d type=%s ", regno,
7370 			reg_type_str(env, reg->type));
7371 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7372 		return -EACCES;
7373 	}
7374 }
7375 
7376 /* verify arguments to helpers or kfuncs consisting of a pointer and an access
7377  * size.
7378  *
7379  * @regno is the register containing the access size. regno-1 is the register
7380  * containing the pointer.
7381  */
7382 static int check_mem_size_reg(struct bpf_verifier_env *env,
7383 			      struct bpf_reg_state *reg, u32 regno,
7384 			      bool zero_size_allowed,
7385 			      struct bpf_call_arg_meta *meta)
7386 {
7387 	int err;
7388 
7389 	/* This is used to refine r0 return value bounds for helpers
7390 	 * that enforce this value as an upper bound on return values.
7391 	 * See do_refine_retval_range() for helpers that can refine
7392 	 * the return value. C type of helper is u32 so we pull register
7393 	 * bound from umax_value however, if negative verifier errors
7394 	 * out. Only upper bounds can be learned because retval is an
7395 	 * int type and negative retvals are allowed.
7396 	 */
7397 	meta->msize_max_value = reg->umax_value;
7398 
7399 	/* The register is SCALAR_VALUE; the access check
7400 	 * happens using its boundaries.
7401 	 */
7402 	if (!tnum_is_const(reg->var_off))
7403 		/* For unprivileged variable accesses, disable raw
7404 		 * mode so that the program is required to
7405 		 * initialize all the memory that the helper could
7406 		 * just partially fill up.
7407 		 */
7408 		meta = NULL;
7409 
7410 	if (reg->smin_value < 0) {
7411 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7412 			regno);
7413 		return -EACCES;
7414 	}
7415 
7416 	if (reg->umin_value == 0 && !zero_size_allowed) {
7417 		verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n",
7418 			regno, reg->umin_value, reg->umax_value);
7419 		return -EACCES;
7420 	}
7421 
7422 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7423 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7424 			regno);
7425 		return -EACCES;
7426 	}
7427 	err = check_helper_mem_access(env, regno - 1,
7428 				      reg->umax_value,
7429 				      zero_size_allowed, meta);
7430 	if (!err)
7431 		err = mark_chain_precision(env, regno);
7432 	return err;
7433 }
7434 
7435 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7436 			 u32 regno, u32 mem_size)
7437 {
7438 	bool may_be_null = type_may_be_null(reg->type);
7439 	struct bpf_reg_state saved_reg;
7440 	struct bpf_call_arg_meta meta;
7441 	int err;
7442 
7443 	if (register_is_null(reg))
7444 		return 0;
7445 
7446 	memset(&meta, 0, sizeof(meta));
7447 	/* Assuming that the register contains a value check if the memory
7448 	 * access is safe. Temporarily save and restore the register's state as
7449 	 * the conversion shouldn't be visible to a caller.
7450 	 */
7451 	if (may_be_null) {
7452 		saved_reg = *reg;
7453 		mark_ptr_not_null_reg(reg);
7454 	}
7455 
7456 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
7457 	/* Check access for BPF_WRITE */
7458 	meta.raw_mode = true;
7459 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
7460 
7461 	if (may_be_null)
7462 		*reg = saved_reg;
7463 
7464 	return err;
7465 }
7466 
7467 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7468 				    u32 regno)
7469 {
7470 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7471 	bool may_be_null = type_may_be_null(mem_reg->type);
7472 	struct bpf_reg_state saved_reg;
7473 	struct bpf_call_arg_meta meta;
7474 	int err;
7475 
7476 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7477 
7478 	memset(&meta, 0, sizeof(meta));
7479 
7480 	if (may_be_null) {
7481 		saved_reg = *mem_reg;
7482 		mark_ptr_not_null_reg(mem_reg);
7483 	}
7484 
7485 	err = check_mem_size_reg(env, reg, regno, true, &meta);
7486 	/* Check access for BPF_WRITE */
7487 	meta.raw_mode = true;
7488 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
7489 
7490 	if (may_be_null)
7491 		*mem_reg = saved_reg;
7492 	return err;
7493 }
7494 
7495 /* Implementation details:
7496  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7497  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7498  * Two bpf_map_lookups (even with the same key) will have different reg->id.
7499  * Two separate bpf_obj_new will also have different reg->id.
7500  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7501  * clears reg->id after value_or_null->value transition, since the verifier only
7502  * cares about the range of access to valid map value pointer and doesn't care
7503  * about actual address of the map element.
7504  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7505  * reg->id > 0 after value_or_null->value transition. By doing so
7506  * two bpf_map_lookups will be considered two different pointers that
7507  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7508  * returned from bpf_obj_new.
7509  * The verifier allows taking only one bpf_spin_lock at a time to avoid
7510  * dead-locks.
7511  * Since only one bpf_spin_lock is allowed the checks are simpler than
7512  * reg_is_refcounted() logic. The verifier needs to remember only
7513  * one spin_lock instead of array of acquired_refs.
7514  * cur_state->active_lock remembers which map value element or allocated
7515  * object got locked and clears it after bpf_spin_unlock.
7516  */
7517 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7518 			     bool is_lock)
7519 {
7520 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7521 	struct bpf_verifier_state *cur = env->cur_state;
7522 	bool is_const = tnum_is_const(reg->var_off);
7523 	u64 val = reg->var_off.value;
7524 	struct bpf_map *map = NULL;
7525 	struct btf *btf = NULL;
7526 	struct btf_record *rec;
7527 
7528 	if (!is_const) {
7529 		verbose(env,
7530 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7531 			regno);
7532 		return -EINVAL;
7533 	}
7534 	if (reg->type == PTR_TO_MAP_VALUE) {
7535 		map = reg->map_ptr;
7536 		if (!map->btf) {
7537 			verbose(env,
7538 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
7539 				map->name);
7540 			return -EINVAL;
7541 		}
7542 	} else {
7543 		btf = reg->btf;
7544 	}
7545 
7546 	rec = reg_btf_record(reg);
7547 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7548 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7549 			map ? map->name : "kptr");
7550 		return -EINVAL;
7551 	}
7552 	if (rec->spin_lock_off != val + reg->off) {
7553 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7554 			val + reg->off, rec->spin_lock_off);
7555 		return -EINVAL;
7556 	}
7557 	if (is_lock) {
7558 		if (cur->active_lock.ptr) {
7559 			verbose(env,
7560 				"Locking two bpf_spin_locks are not allowed\n");
7561 			return -EINVAL;
7562 		}
7563 		if (map)
7564 			cur->active_lock.ptr = map;
7565 		else
7566 			cur->active_lock.ptr = btf;
7567 		cur->active_lock.id = reg->id;
7568 	} else {
7569 		void *ptr;
7570 
7571 		if (map)
7572 			ptr = map;
7573 		else
7574 			ptr = btf;
7575 
7576 		if (!cur->active_lock.ptr) {
7577 			verbose(env, "bpf_spin_unlock without taking a lock\n");
7578 			return -EINVAL;
7579 		}
7580 		if (cur->active_lock.ptr != ptr ||
7581 		    cur->active_lock.id != reg->id) {
7582 			verbose(env, "bpf_spin_unlock of different lock\n");
7583 			return -EINVAL;
7584 		}
7585 
7586 		invalidate_non_owning_refs(env);
7587 
7588 		cur->active_lock.ptr = NULL;
7589 		cur->active_lock.id = 0;
7590 	}
7591 	return 0;
7592 }
7593 
7594 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7595 			      struct bpf_call_arg_meta *meta)
7596 {
7597 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7598 	bool is_const = tnum_is_const(reg->var_off);
7599 	struct bpf_map *map = reg->map_ptr;
7600 	u64 val = reg->var_off.value;
7601 
7602 	if (!is_const) {
7603 		verbose(env,
7604 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7605 			regno);
7606 		return -EINVAL;
7607 	}
7608 	if (!map->btf) {
7609 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7610 			map->name);
7611 		return -EINVAL;
7612 	}
7613 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
7614 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7615 		return -EINVAL;
7616 	}
7617 	if (map->record->timer_off != val + reg->off) {
7618 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7619 			val + reg->off, map->record->timer_off);
7620 		return -EINVAL;
7621 	}
7622 	if (meta->map_ptr) {
7623 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7624 		return -EFAULT;
7625 	}
7626 	meta->map_uid = reg->map_uid;
7627 	meta->map_ptr = map;
7628 	return 0;
7629 }
7630 
7631 static int process_wq_func(struct bpf_verifier_env *env, int regno,
7632 			   struct bpf_kfunc_call_arg_meta *meta)
7633 {
7634 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7635 	struct bpf_map *map = reg->map_ptr;
7636 	u64 val = reg->var_off.value;
7637 
7638 	if (map->record->wq_off != val + reg->off) {
7639 		verbose(env, "off %lld doesn't point to 'struct bpf_wq' that is at %d\n",
7640 			val + reg->off, map->record->wq_off);
7641 		return -EINVAL;
7642 	}
7643 	meta->map.uid = reg->map_uid;
7644 	meta->map.ptr = map;
7645 	return 0;
7646 }
7647 
7648 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7649 			     struct bpf_call_arg_meta *meta)
7650 {
7651 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7652 	struct bpf_map *map_ptr = reg->map_ptr;
7653 	struct btf_field *kptr_field;
7654 	u32 kptr_off;
7655 
7656 	if (!tnum_is_const(reg->var_off)) {
7657 		verbose(env,
7658 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7659 			regno);
7660 		return -EINVAL;
7661 	}
7662 	if (!map_ptr->btf) {
7663 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7664 			map_ptr->name);
7665 		return -EINVAL;
7666 	}
7667 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
7668 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
7669 		return -EINVAL;
7670 	}
7671 
7672 	meta->map_ptr = map_ptr;
7673 	kptr_off = reg->off + reg->var_off.value;
7674 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
7675 	if (!kptr_field) {
7676 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7677 		return -EACCES;
7678 	}
7679 	if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) {
7680 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7681 		return -EACCES;
7682 	}
7683 	meta->kptr_field = kptr_field;
7684 	return 0;
7685 }
7686 
7687 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7688  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7689  *
7690  * In both cases we deal with the first 8 bytes, but need to mark the next 8
7691  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7692  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7693  *
7694  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7695  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7696  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7697  * mutate the view of the dynptr and also possibly destroy it. In the latter
7698  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7699  * memory that dynptr points to.
7700  *
7701  * The verifier will keep track both levels of mutation (bpf_dynptr's in
7702  * reg->type and the memory's in reg->dynptr.type), but there is no support for
7703  * readonly dynptr view yet, hence only the first case is tracked and checked.
7704  *
7705  * This is consistent with how C applies the const modifier to a struct object,
7706  * where the pointer itself inside bpf_dynptr becomes const but not what it
7707  * points to.
7708  *
7709  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7710  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7711  */
7712 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7713 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
7714 {
7715 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7716 	int err;
7717 
7718 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7719 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7720 	 */
7721 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7722 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7723 		return -EFAULT;
7724 	}
7725 
7726 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
7727 	 *		 constructing a mutable bpf_dynptr object.
7728 	 *
7729 	 *		 Currently, this is only possible with PTR_TO_STACK
7730 	 *		 pointing to a region of at least 16 bytes which doesn't
7731 	 *		 contain an existing bpf_dynptr.
7732 	 *
7733 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7734 	 *		 mutated or destroyed. However, the memory it points to
7735 	 *		 may be mutated.
7736 	 *
7737 	 *  None       - Points to a initialized dynptr that can be mutated and
7738 	 *		 destroyed, including mutation of the memory it points
7739 	 *		 to.
7740 	 */
7741 	if (arg_type & MEM_UNINIT) {
7742 		int i;
7743 
7744 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
7745 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7746 			return -EINVAL;
7747 		}
7748 
7749 		/* we write BPF_DW bits (8 bytes) at a time */
7750 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7751 			err = check_mem_access(env, insn_idx, regno,
7752 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7753 			if (err)
7754 				return err;
7755 		}
7756 
7757 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7758 	} else /* MEM_RDONLY and None case from above */ {
7759 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7760 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7761 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7762 			return -EINVAL;
7763 		}
7764 
7765 		if (!is_dynptr_reg_valid_init(env, reg)) {
7766 			verbose(env,
7767 				"Expected an initialized dynptr as arg #%d\n",
7768 				regno);
7769 			return -EINVAL;
7770 		}
7771 
7772 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7773 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7774 			verbose(env,
7775 				"Expected a dynptr of type %s as arg #%d\n",
7776 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7777 			return -EINVAL;
7778 		}
7779 
7780 		err = mark_dynptr_read(env, reg);
7781 	}
7782 	return err;
7783 }
7784 
7785 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7786 {
7787 	struct bpf_func_state *state = func(env, reg);
7788 
7789 	return state->stack[spi].spilled_ptr.ref_obj_id;
7790 }
7791 
7792 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7793 {
7794 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7795 }
7796 
7797 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7798 {
7799 	return meta->kfunc_flags & KF_ITER_NEW;
7800 }
7801 
7802 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7803 {
7804 	return meta->kfunc_flags & KF_ITER_NEXT;
7805 }
7806 
7807 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7808 {
7809 	return meta->kfunc_flags & KF_ITER_DESTROY;
7810 }
7811 
7812 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7813 {
7814 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
7815 	 * kfunc is iter state pointer
7816 	 */
7817 	return arg == 0 && is_iter_kfunc(meta);
7818 }
7819 
7820 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7821 			    struct bpf_kfunc_call_arg_meta *meta)
7822 {
7823 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7824 	const struct btf_type *t;
7825 	const struct btf_param *arg;
7826 	int spi, err, i, nr_slots;
7827 	u32 btf_id;
7828 
7829 	/* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7830 	arg = &btf_params(meta->func_proto)[0];
7831 	t = btf_type_skip_modifiers(meta->btf, arg->type, NULL);	/* PTR */
7832 	t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id);	/* STRUCT */
7833 	nr_slots = t->size / BPF_REG_SIZE;
7834 
7835 	if (is_iter_new_kfunc(meta)) {
7836 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
7837 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7838 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7839 				iter_type_str(meta->btf, btf_id), regno);
7840 			return -EINVAL;
7841 		}
7842 
7843 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7844 			err = check_mem_access(env, insn_idx, regno,
7845 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7846 			if (err)
7847 				return err;
7848 		}
7849 
7850 		err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots);
7851 		if (err)
7852 			return err;
7853 	} else {
7854 		/* iter_next() or iter_destroy() expect initialized iter state*/
7855 		err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots);
7856 		switch (err) {
7857 		case 0:
7858 			break;
7859 		case -EINVAL:
7860 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
7861 				iter_type_str(meta->btf, btf_id), regno);
7862 			return err;
7863 		case -EPROTO:
7864 			verbose(env, "expected an RCU CS when using %s\n", meta->func_name);
7865 			return err;
7866 		default:
7867 			return err;
7868 		}
7869 
7870 		spi = iter_get_spi(env, reg, nr_slots);
7871 		if (spi < 0)
7872 			return spi;
7873 
7874 		err = mark_iter_read(env, reg, spi, nr_slots);
7875 		if (err)
7876 			return err;
7877 
7878 		/* remember meta->iter info for process_iter_next_call() */
7879 		meta->iter.spi = spi;
7880 		meta->iter.frameno = reg->frameno;
7881 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7882 
7883 		if (is_iter_destroy_kfunc(meta)) {
7884 			err = unmark_stack_slots_iter(env, reg, nr_slots);
7885 			if (err)
7886 				return err;
7887 		}
7888 	}
7889 
7890 	return 0;
7891 }
7892 
7893 /* Look for a previous loop entry at insn_idx: nearest parent state
7894  * stopped at insn_idx with callsites matching those in cur->frame.
7895  */
7896 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
7897 						  struct bpf_verifier_state *cur,
7898 						  int insn_idx)
7899 {
7900 	struct bpf_verifier_state_list *sl;
7901 	struct bpf_verifier_state *st;
7902 
7903 	/* Explored states are pushed in stack order, most recent states come first */
7904 	sl = *explored_state(env, insn_idx);
7905 	for (; sl; sl = sl->next) {
7906 		/* If st->branches != 0 state is a part of current DFS verification path,
7907 		 * hence cur & st for a loop.
7908 		 */
7909 		st = &sl->state;
7910 		if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
7911 		    st->dfs_depth < cur->dfs_depth)
7912 			return st;
7913 	}
7914 
7915 	return NULL;
7916 }
7917 
7918 static void reset_idmap_scratch(struct bpf_verifier_env *env);
7919 static bool regs_exact(const struct bpf_reg_state *rold,
7920 		       const struct bpf_reg_state *rcur,
7921 		       struct bpf_idmap *idmap);
7922 
7923 static void maybe_widen_reg(struct bpf_verifier_env *env,
7924 			    struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7925 			    struct bpf_idmap *idmap)
7926 {
7927 	if (rold->type != SCALAR_VALUE)
7928 		return;
7929 	if (rold->type != rcur->type)
7930 		return;
7931 	if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
7932 		return;
7933 	__mark_reg_unknown(env, rcur);
7934 }
7935 
7936 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
7937 				   struct bpf_verifier_state *old,
7938 				   struct bpf_verifier_state *cur)
7939 {
7940 	struct bpf_func_state *fold, *fcur;
7941 	int i, fr;
7942 
7943 	reset_idmap_scratch(env);
7944 	for (fr = old->curframe; fr >= 0; fr--) {
7945 		fold = old->frame[fr];
7946 		fcur = cur->frame[fr];
7947 
7948 		for (i = 0; i < MAX_BPF_REG; i++)
7949 			maybe_widen_reg(env,
7950 					&fold->regs[i],
7951 					&fcur->regs[i],
7952 					&env->idmap_scratch);
7953 
7954 		for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
7955 			if (!is_spilled_reg(&fold->stack[i]) ||
7956 			    !is_spilled_reg(&fcur->stack[i]))
7957 				continue;
7958 
7959 			maybe_widen_reg(env,
7960 					&fold->stack[i].spilled_ptr,
7961 					&fcur->stack[i].spilled_ptr,
7962 					&env->idmap_scratch);
7963 		}
7964 	}
7965 	return 0;
7966 }
7967 
7968 /* process_iter_next_call() is called when verifier gets to iterator's next
7969  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
7970  * to it as just "iter_next()" in comments below.
7971  *
7972  * BPF verifier relies on a crucial contract for any iter_next()
7973  * implementation: it should *eventually* return NULL, and once that happens
7974  * it should keep returning NULL. That is, once iterator exhausts elements to
7975  * iterate, it should never reset or spuriously return new elements.
7976  *
7977  * With the assumption of such contract, process_iter_next_call() simulates
7978  * a fork in the verifier state to validate loop logic correctness and safety
7979  * without having to simulate infinite amount of iterations.
7980  *
7981  * In current state, we first assume that iter_next() returned NULL and
7982  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
7983  * conditions we should not form an infinite loop and should eventually reach
7984  * exit.
7985  *
7986  * Besides that, we also fork current state and enqueue it for later
7987  * verification. In a forked state we keep iterator state as ACTIVE
7988  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
7989  * also bump iteration depth to prevent erroneous infinite loop detection
7990  * later on (see iter_active_depths_differ() comment for details). In this
7991  * state we assume that we'll eventually loop back to another iter_next()
7992  * calls (it could be in exactly same location or in some other instruction,
7993  * it doesn't matter, we don't make any unnecessary assumptions about this,
7994  * everything revolves around iterator state in a stack slot, not which
7995  * instruction is calling iter_next()). When that happens, we either will come
7996  * to iter_next() with equivalent state and can conclude that next iteration
7997  * will proceed in exactly the same way as we just verified, so it's safe to
7998  * assume that loop converges. If not, we'll go on another iteration
7999  * simulation with a different input state, until all possible starting states
8000  * are validated or we reach maximum number of instructions limit.
8001  *
8002  * This way, we will either exhaustively discover all possible input states
8003  * that iterator loop can start with and eventually will converge, or we'll
8004  * effectively regress into bounded loop simulation logic and either reach
8005  * maximum number of instructions if loop is not provably convergent, or there
8006  * is some statically known limit on number of iterations (e.g., if there is
8007  * an explicit `if n > 100 then break;` statement somewhere in the loop).
8008  *
8009  * Iteration convergence logic in is_state_visited() relies on exact
8010  * states comparison, which ignores read and precision marks.
8011  * This is necessary because read and precision marks are not finalized
8012  * while in the loop. Exact comparison might preclude convergence for
8013  * simple programs like below:
8014  *
8015  *     i = 0;
8016  *     while(iter_next(&it))
8017  *       i++;
8018  *
8019  * At each iteration step i++ would produce a new distinct state and
8020  * eventually instruction processing limit would be reached.
8021  *
8022  * To avoid such behavior speculatively forget (widen) range for
8023  * imprecise scalar registers, if those registers were not precise at the
8024  * end of the previous iteration and do not match exactly.
8025  *
8026  * This is a conservative heuristic that allows to verify wide range of programs,
8027  * however it precludes verification of programs that conjure an
8028  * imprecise value on the first loop iteration and use it as precise on a second.
8029  * For example, the following safe program would fail to verify:
8030  *
8031  *     struct bpf_num_iter it;
8032  *     int arr[10];
8033  *     int i = 0, a = 0;
8034  *     bpf_iter_num_new(&it, 0, 10);
8035  *     while (bpf_iter_num_next(&it)) {
8036  *       if (a == 0) {
8037  *         a = 1;
8038  *         i = 7; // Because i changed verifier would forget
8039  *                // it's range on second loop entry.
8040  *       } else {
8041  *         arr[i] = 42; // This would fail to verify.
8042  *       }
8043  *     }
8044  *     bpf_iter_num_destroy(&it);
8045  */
8046 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
8047 				  struct bpf_kfunc_call_arg_meta *meta)
8048 {
8049 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
8050 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
8051 	struct bpf_reg_state *cur_iter, *queued_iter;
8052 	int iter_frameno = meta->iter.frameno;
8053 	int iter_spi = meta->iter.spi;
8054 
8055 	BTF_TYPE_EMIT(struct bpf_iter);
8056 
8057 	cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
8058 
8059 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
8060 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
8061 		verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
8062 			cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
8063 		return -EFAULT;
8064 	}
8065 
8066 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
8067 		/* Because iter_next() call is a checkpoint is_state_visitied()
8068 		 * should guarantee parent state with same call sites and insn_idx.
8069 		 */
8070 		if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
8071 		    !same_callsites(cur_st->parent, cur_st)) {
8072 			verbose(env, "bug: bad parent state for iter next call");
8073 			return -EFAULT;
8074 		}
8075 		/* Note cur_st->parent in the call below, it is necessary to skip
8076 		 * checkpoint created for cur_st by is_state_visited()
8077 		 * right at this instruction.
8078 		 */
8079 		prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
8080 		/* branch out active iter state */
8081 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
8082 		if (!queued_st)
8083 			return -ENOMEM;
8084 
8085 		queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
8086 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
8087 		queued_iter->iter.depth++;
8088 		if (prev_st)
8089 			widen_imprecise_scalars(env, prev_st, queued_st);
8090 
8091 		queued_fr = queued_st->frame[queued_st->curframe];
8092 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
8093 	}
8094 
8095 	/* switch to DRAINED state, but keep the depth unchanged */
8096 	/* mark current iter state as drained and assume returned NULL */
8097 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
8098 	__mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]);
8099 
8100 	return 0;
8101 }
8102 
8103 static bool arg_type_is_mem_size(enum bpf_arg_type type)
8104 {
8105 	return type == ARG_CONST_SIZE ||
8106 	       type == ARG_CONST_SIZE_OR_ZERO;
8107 }
8108 
8109 static bool arg_type_is_release(enum bpf_arg_type type)
8110 {
8111 	return type & OBJ_RELEASE;
8112 }
8113 
8114 static bool arg_type_is_dynptr(enum bpf_arg_type type)
8115 {
8116 	return base_type(type) == ARG_PTR_TO_DYNPTR;
8117 }
8118 
8119 static int int_ptr_type_to_size(enum bpf_arg_type type)
8120 {
8121 	if (type == ARG_PTR_TO_INT)
8122 		return sizeof(u32);
8123 	else if (type == ARG_PTR_TO_LONG)
8124 		return sizeof(u64);
8125 
8126 	return -EINVAL;
8127 }
8128 
8129 static int resolve_map_arg_type(struct bpf_verifier_env *env,
8130 				 const struct bpf_call_arg_meta *meta,
8131 				 enum bpf_arg_type *arg_type)
8132 {
8133 	if (!meta->map_ptr) {
8134 		/* kernel subsystem misconfigured verifier */
8135 		verbose(env, "invalid map_ptr to access map->type\n");
8136 		return -EACCES;
8137 	}
8138 
8139 	switch (meta->map_ptr->map_type) {
8140 	case BPF_MAP_TYPE_SOCKMAP:
8141 	case BPF_MAP_TYPE_SOCKHASH:
8142 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
8143 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
8144 		} else {
8145 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
8146 			return -EINVAL;
8147 		}
8148 		break;
8149 	case BPF_MAP_TYPE_BLOOM_FILTER:
8150 		if (meta->func_id == BPF_FUNC_map_peek_elem)
8151 			*arg_type = ARG_PTR_TO_MAP_VALUE;
8152 		break;
8153 	default:
8154 		break;
8155 	}
8156 	return 0;
8157 }
8158 
8159 struct bpf_reg_types {
8160 	const enum bpf_reg_type types[10];
8161 	u32 *btf_id;
8162 };
8163 
8164 static const struct bpf_reg_types sock_types = {
8165 	.types = {
8166 		PTR_TO_SOCK_COMMON,
8167 		PTR_TO_SOCKET,
8168 		PTR_TO_TCP_SOCK,
8169 		PTR_TO_XDP_SOCK,
8170 	},
8171 };
8172 
8173 #ifdef CONFIG_NET
8174 static const struct bpf_reg_types btf_id_sock_common_types = {
8175 	.types = {
8176 		PTR_TO_SOCK_COMMON,
8177 		PTR_TO_SOCKET,
8178 		PTR_TO_TCP_SOCK,
8179 		PTR_TO_XDP_SOCK,
8180 		PTR_TO_BTF_ID,
8181 		PTR_TO_BTF_ID | PTR_TRUSTED,
8182 	},
8183 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8184 };
8185 #endif
8186 
8187 static const struct bpf_reg_types mem_types = {
8188 	.types = {
8189 		PTR_TO_STACK,
8190 		PTR_TO_PACKET,
8191 		PTR_TO_PACKET_META,
8192 		PTR_TO_MAP_KEY,
8193 		PTR_TO_MAP_VALUE,
8194 		PTR_TO_MEM,
8195 		PTR_TO_MEM | MEM_RINGBUF,
8196 		PTR_TO_BUF,
8197 		PTR_TO_BTF_ID | PTR_TRUSTED,
8198 	},
8199 };
8200 
8201 static const struct bpf_reg_types int_ptr_types = {
8202 	.types = {
8203 		PTR_TO_STACK,
8204 		PTR_TO_PACKET,
8205 		PTR_TO_PACKET_META,
8206 		PTR_TO_MAP_KEY,
8207 		PTR_TO_MAP_VALUE,
8208 	},
8209 };
8210 
8211 static const struct bpf_reg_types spin_lock_types = {
8212 	.types = {
8213 		PTR_TO_MAP_VALUE,
8214 		PTR_TO_BTF_ID | MEM_ALLOC,
8215 	}
8216 };
8217 
8218 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
8219 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
8220 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
8221 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
8222 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
8223 static const struct bpf_reg_types btf_ptr_types = {
8224 	.types = {
8225 		PTR_TO_BTF_ID,
8226 		PTR_TO_BTF_ID | PTR_TRUSTED,
8227 		PTR_TO_BTF_ID | MEM_RCU,
8228 	},
8229 };
8230 static const struct bpf_reg_types percpu_btf_ptr_types = {
8231 	.types = {
8232 		PTR_TO_BTF_ID | MEM_PERCPU,
8233 		PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU,
8234 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
8235 	}
8236 };
8237 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
8238 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
8239 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
8240 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
8241 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
8242 static const struct bpf_reg_types dynptr_types = {
8243 	.types = {
8244 		PTR_TO_STACK,
8245 		CONST_PTR_TO_DYNPTR,
8246 	}
8247 };
8248 
8249 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
8250 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
8251 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
8252 	[ARG_CONST_SIZE]		= &scalar_types,
8253 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
8254 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
8255 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
8256 	[ARG_PTR_TO_CTX]		= &context_types,
8257 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
8258 #ifdef CONFIG_NET
8259 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
8260 #endif
8261 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
8262 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
8263 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
8264 	[ARG_PTR_TO_MEM]		= &mem_types,
8265 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
8266 	[ARG_PTR_TO_INT]		= &int_ptr_types,
8267 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
8268 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
8269 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
8270 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
8271 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
8272 	[ARG_PTR_TO_TIMER]		= &timer_types,
8273 	[ARG_PTR_TO_KPTR]		= &kptr_types,
8274 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
8275 };
8276 
8277 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
8278 			  enum bpf_arg_type arg_type,
8279 			  const u32 *arg_btf_id,
8280 			  struct bpf_call_arg_meta *meta)
8281 {
8282 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8283 	enum bpf_reg_type expected, type = reg->type;
8284 	const struct bpf_reg_types *compatible;
8285 	int i, j;
8286 
8287 	compatible = compatible_reg_types[base_type(arg_type)];
8288 	if (!compatible) {
8289 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
8290 		return -EFAULT;
8291 	}
8292 
8293 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
8294 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
8295 	 *
8296 	 * Same for MAYBE_NULL:
8297 	 *
8298 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
8299 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
8300 	 *
8301 	 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
8302 	 *
8303 	 * Therefore we fold these flags depending on the arg_type before comparison.
8304 	 */
8305 	if (arg_type & MEM_RDONLY)
8306 		type &= ~MEM_RDONLY;
8307 	if (arg_type & PTR_MAYBE_NULL)
8308 		type &= ~PTR_MAYBE_NULL;
8309 	if (base_type(arg_type) == ARG_PTR_TO_MEM)
8310 		type &= ~DYNPTR_TYPE_FLAG_MASK;
8311 
8312 	if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) {
8313 		type &= ~MEM_ALLOC;
8314 		type &= ~MEM_PERCPU;
8315 	}
8316 
8317 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
8318 		expected = compatible->types[i];
8319 		if (expected == NOT_INIT)
8320 			break;
8321 
8322 		if (type == expected)
8323 			goto found;
8324 	}
8325 
8326 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
8327 	for (j = 0; j + 1 < i; j++)
8328 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
8329 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
8330 	return -EACCES;
8331 
8332 found:
8333 	if (base_type(reg->type) != PTR_TO_BTF_ID)
8334 		return 0;
8335 
8336 	if (compatible == &mem_types) {
8337 		if (!(arg_type & MEM_RDONLY)) {
8338 			verbose(env,
8339 				"%s() may write into memory pointed by R%d type=%s\n",
8340 				func_id_name(meta->func_id),
8341 				regno, reg_type_str(env, reg->type));
8342 			return -EACCES;
8343 		}
8344 		return 0;
8345 	}
8346 
8347 	switch ((int)reg->type) {
8348 	case PTR_TO_BTF_ID:
8349 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8350 	case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL:
8351 	case PTR_TO_BTF_ID | MEM_RCU:
8352 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
8353 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
8354 	{
8355 		/* For bpf_sk_release, it needs to match against first member
8356 		 * 'struct sock_common', hence make an exception for it. This
8357 		 * allows bpf_sk_release to work for multiple socket types.
8358 		 */
8359 		bool strict_type_match = arg_type_is_release(arg_type) &&
8360 					 meta->func_id != BPF_FUNC_sk_release;
8361 
8362 		if (type_may_be_null(reg->type) &&
8363 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
8364 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
8365 			return -EACCES;
8366 		}
8367 
8368 		if (!arg_btf_id) {
8369 			if (!compatible->btf_id) {
8370 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
8371 				return -EFAULT;
8372 			}
8373 			arg_btf_id = compatible->btf_id;
8374 		}
8375 
8376 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8377 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8378 				return -EACCES;
8379 		} else {
8380 			if (arg_btf_id == BPF_PTR_POISON) {
8381 				verbose(env, "verifier internal error:");
8382 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
8383 					regno);
8384 				return -EACCES;
8385 			}
8386 
8387 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
8388 						  btf_vmlinux, *arg_btf_id,
8389 						  strict_type_match)) {
8390 				verbose(env, "R%d is of type %s but %s is expected\n",
8391 					regno, btf_type_name(reg->btf, reg->btf_id),
8392 					btf_type_name(btf_vmlinux, *arg_btf_id));
8393 				return -EACCES;
8394 			}
8395 		}
8396 		break;
8397 	}
8398 	case PTR_TO_BTF_ID | MEM_ALLOC:
8399 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC:
8400 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
8401 		    meta->func_id != BPF_FUNC_kptr_xchg) {
8402 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
8403 			return -EFAULT;
8404 		}
8405 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8406 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8407 				return -EACCES;
8408 		}
8409 		break;
8410 	case PTR_TO_BTF_ID | MEM_PERCPU:
8411 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU:
8412 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
8413 		/* Handled by helper specific checks */
8414 		break;
8415 	default:
8416 		verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
8417 		return -EFAULT;
8418 	}
8419 	return 0;
8420 }
8421 
8422 static struct btf_field *
8423 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
8424 {
8425 	struct btf_field *field;
8426 	struct btf_record *rec;
8427 
8428 	rec = reg_btf_record(reg);
8429 	if (!rec)
8430 		return NULL;
8431 
8432 	field = btf_record_find(rec, off, fields);
8433 	if (!field)
8434 		return NULL;
8435 
8436 	return field;
8437 }
8438 
8439 static int check_func_arg_reg_off(struct bpf_verifier_env *env,
8440 				  const struct bpf_reg_state *reg, int regno,
8441 				  enum bpf_arg_type arg_type)
8442 {
8443 	u32 type = reg->type;
8444 
8445 	/* When referenced register is passed to release function, its fixed
8446 	 * offset must be 0.
8447 	 *
8448 	 * We will check arg_type_is_release reg has ref_obj_id when storing
8449 	 * meta->release_regno.
8450 	 */
8451 	if (arg_type_is_release(arg_type)) {
8452 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
8453 		 * may not directly point to the object being released, but to
8454 		 * dynptr pointing to such object, which might be at some offset
8455 		 * on the stack. In that case, we simply to fallback to the
8456 		 * default handling.
8457 		 */
8458 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
8459 			return 0;
8460 
8461 		/* Doing check_ptr_off_reg check for the offset will catch this
8462 		 * because fixed_off_ok is false, but checking here allows us
8463 		 * to give the user a better error message.
8464 		 */
8465 		if (reg->off) {
8466 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
8467 				regno);
8468 			return -EINVAL;
8469 		}
8470 		return __check_ptr_off_reg(env, reg, regno, false);
8471 	}
8472 
8473 	switch (type) {
8474 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
8475 	case PTR_TO_STACK:
8476 	case PTR_TO_PACKET:
8477 	case PTR_TO_PACKET_META:
8478 	case PTR_TO_MAP_KEY:
8479 	case PTR_TO_MAP_VALUE:
8480 	case PTR_TO_MEM:
8481 	case PTR_TO_MEM | MEM_RDONLY:
8482 	case PTR_TO_MEM | MEM_RINGBUF:
8483 	case PTR_TO_BUF:
8484 	case PTR_TO_BUF | MEM_RDONLY:
8485 	case PTR_TO_ARENA:
8486 	case SCALAR_VALUE:
8487 		return 0;
8488 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8489 	 * fixed offset.
8490 	 */
8491 	case PTR_TO_BTF_ID:
8492 	case PTR_TO_BTF_ID | MEM_ALLOC:
8493 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8494 	case PTR_TO_BTF_ID | MEM_RCU:
8495 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8496 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8497 		/* When referenced PTR_TO_BTF_ID is passed to release function,
8498 		 * its fixed offset must be 0. In the other cases, fixed offset
8499 		 * can be non-zero. This was already checked above. So pass
8500 		 * fixed_off_ok as true to allow fixed offset for all other
8501 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8502 		 * still need to do checks instead of returning.
8503 		 */
8504 		return __check_ptr_off_reg(env, reg, regno, true);
8505 	default:
8506 		return __check_ptr_off_reg(env, reg, regno, false);
8507 	}
8508 }
8509 
8510 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8511 						const struct bpf_func_proto *fn,
8512 						struct bpf_reg_state *regs)
8513 {
8514 	struct bpf_reg_state *state = NULL;
8515 	int i;
8516 
8517 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8518 		if (arg_type_is_dynptr(fn->arg_type[i])) {
8519 			if (state) {
8520 				verbose(env, "verifier internal error: multiple dynptr args\n");
8521 				return NULL;
8522 			}
8523 			state = &regs[BPF_REG_1 + i];
8524 		}
8525 
8526 	if (!state)
8527 		verbose(env, "verifier internal error: no dynptr arg found\n");
8528 
8529 	return state;
8530 }
8531 
8532 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8533 {
8534 	struct bpf_func_state *state = func(env, reg);
8535 	int spi;
8536 
8537 	if (reg->type == CONST_PTR_TO_DYNPTR)
8538 		return reg->id;
8539 	spi = dynptr_get_spi(env, reg);
8540 	if (spi < 0)
8541 		return spi;
8542 	return state->stack[spi].spilled_ptr.id;
8543 }
8544 
8545 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8546 {
8547 	struct bpf_func_state *state = func(env, reg);
8548 	int spi;
8549 
8550 	if (reg->type == CONST_PTR_TO_DYNPTR)
8551 		return reg->ref_obj_id;
8552 	spi = dynptr_get_spi(env, reg);
8553 	if (spi < 0)
8554 		return spi;
8555 	return state->stack[spi].spilled_ptr.ref_obj_id;
8556 }
8557 
8558 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8559 					    struct bpf_reg_state *reg)
8560 {
8561 	struct bpf_func_state *state = func(env, reg);
8562 	int spi;
8563 
8564 	if (reg->type == CONST_PTR_TO_DYNPTR)
8565 		return reg->dynptr.type;
8566 
8567 	spi = __get_spi(reg->off);
8568 	if (spi < 0) {
8569 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8570 		return BPF_DYNPTR_TYPE_INVALID;
8571 	}
8572 
8573 	return state->stack[spi].spilled_ptr.dynptr.type;
8574 }
8575 
8576 static int check_reg_const_str(struct bpf_verifier_env *env,
8577 			       struct bpf_reg_state *reg, u32 regno)
8578 {
8579 	struct bpf_map *map = reg->map_ptr;
8580 	int err;
8581 	int map_off;
8582 	u64 map_addr;
8583 	char *str_ptr;
8584 
8585 	if (reg->type != PTR_TO_MAP_VALUE)
8586 		return -EINVAL;
8587 
8588 	if (!bpf_map_is_rdonly(map)) {
8589 		verbose(env, "R%d does not point to a readonly map'\n", regno);
8590 		return -EACCES;
8591 	}
8592 
8593 	if (!tnum_is_const(reg->var_off)) {
8594 		verbose(env, "R%d is not a constant address'\n", regno);
8595 		return -EACCES;
8596 	}
8597 
8598 	if (!map->ops->map_direct_value_addr) {
8599 		verbose(env, "no direct value access support for this map type\n");
8600 		return -EACCES;
8601 	}
8602 
8603 	err = check_map_access(env, regno, reg->off,
8604 			       map->value_size - reg->off, false,
8605 			       ACCESS_HELPER);
8606 	if (err)
8607 		return err;
8608 
8609 	map_off = reg->off + reg->var_off.value;
8610 	err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8611 	if (err) {
8612 		verbose(env, "direct value access on string failed\n");
8613 		return err;
8614 	}
8615 
8616 	str_ptr = (char *)(long)(map_addr);
8617 	if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8618 		verbose(env, "string is not zero-terminated\n");
8619 		return -EINVAL;
8620 	}
8621 	return 0;
8622 }
8623 
8624 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8625 			  struct bpf_call_arg_meta *meta,
8626 			  const struct bpf_func_proto *fn,
8627 			  int insn_idx)
8628 {
8629 	u32 regno = BPF_REG_1 + arg;
8630 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8631 	enum bpf_arg_type arg_type = fn->arg_type[arg];
8632 	enum bpf_reg_type type = reg->type;
8633 	u32 *arg_btf_id = NULL;
8634 	int err = 0;
8635 
8636 	if (arg_type == ARG_DONTCARE)
8637 		return 0;
8638 
8639 	err = check_reg_arg(env, regno, SRC_OP);
8640 	if (err)
8641 		return err;
8642 
8643 	if (arg_type == ARG_ANYTHING) {
8644 		if (is_pointer_value(env, regno)) {
8645 			verbose(env, "R%d leaks addr into helper function\n",
8646 				regno);
8647 			return -EACCES;
8648 		}
8649 		return 0;
8650 	}
8651 
8652 	if (type_is_pkt_pointer(type) &&
8653 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8654 		verbose(env, "helper access to the packet is not allowed\n");
8655 		return -EACCES;
8656 	}
8657 
8658 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8659 		err = resolve_map_arg_type(env, meta, &arg_type);
8660 		if (err)
8661 			return err;
8662 	}
8663 
8664 	if (register_is_null(reg) && type_may_be_null(arg_type))
8665 		/* A NULL register has a SCALAR_VALUE type, so skip
8666 		 * type checking.
8667 		 */
8668 		goto skip_type_check;
8669 
8670 	/* arg_btf_id and arg_size are in a union. */
8671 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8672 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8673 		arg_btf_id = fn->arg_btf_id[arg];
8674 
8675 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8676 	if (err)
8677 		return err;
8678 
8679 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
8680 	if (err)
8681 		return err;
8682 
8683 skip_type_check:
8684 	if (arg_type_is_release(arg_type)) {
8685 		if (arg_type_is_dynptr(arg_type)) {
8686 			struct bpf_func_state *state = func(env, reg);
8687 			int spi;
8688 
8689 			/* Only dynptr created on stack can be released, thus
8690 			 * the get_spi and stack state checks for spilled_ptr
8691 			 * should only be done before process_dynptr_func for
8692 			 * PTR_TO_STACK.
8693 			 */
8694 			if (reg->type == PTR_TO_STACK) {
8695 				spi = dynptr_get_spi(env, reg);
8696 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8697 					verbose(env, "arg %d is an unacquired reference\n", regno);
8698 					return -EINVAL;
8699 				}
8700 			} else {
8701 				verbose(env, "cannot release unowned const bpf_dynptr\n");
8702 				return -EINVAL;
8703 			}
8704 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
8705 			verbose(env, "R%d must be referenced when passed to release function\n",
8706 				regno);
8707 			return -EINVAL;
8708 		}
8709 		if (meta->release_regno) {
8710 			verbose(env, "verifier internal error: more than one release argument\n");
8711 			return -EFAULT;
8712 		}
8713 		meta->release_regno = regno;
8714 	}
8715 
8716 	if (reg->ref_obj_id) {
8717 		if (meta->ref_obj_id) {
8718 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8719 				regno, reg->ref_obj_id,
8720 				meta->ref_obj_id);
8721 			return -EFAULT;
8722 		}
8723 		meta->ref_obj_id = reg->ref_obj_id;
8724 	}
8725 
8726 	switch (base_type(arg_type)) {
8727 	case ARG_CONST_MAP_PTR:
8728 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8729 		if (meta->map_ptr) {
8730 			/* Use map_uid (which is unique id of inner map) to reject:
8731 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8732 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8733 			 * if (inner_map1 && inner_map2) {
8734 			 *     timer = bpf_map_lookup_elem(inner_map1);
8735 			 *     if (timer)
8736 			 *         // mismatch would have been allowed
8737 			 *         bpf_timer_init(timer, inner_map2);
8738 			 * }
8739 			 *
8740 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
8741 			 */
8742 			if (meta->map_ptr != reg->map_ptr ||
8743 			    meta->map_uid != reg->map_uid) {
8744 				verbose(env,
8745 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8746 					meta->map_uid, reg->map_uid);
8747 				return -EINVAL;
8748 			}
8749 		}
8750 		meta->map_ptr = reg->map_ptr;
8751 		meta->map_uid = reg->map_uid;
8752 		break;
8753 	case ARG_PTR_TO_MAP_KEY:
8754 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
8755 		 * check that [key, key + map->key_size) are within
8756 		 * stack limits and initialized
8757 		 */
8758 		if (!meta->map_ptr) {
8759 			/* in function declaration map_ptr must come before
8760 			 * map_key, so that it's verified and known before
8761 			 * we have to check map_key here. Otherwise it means
8762 			 * that kernel subsystem misconfigured verifier
8763 			 */
8764 			verbose(env, "invalid map_ptr to access map->key\n");
8765 			return -EACCES;
8766 		}
8767 		err = check_helper_mem_access(env, regno,
8768 					      meta->map_ptr->key_size, false,
8769 					      NULL);
8770 		break;
8771 	case ARG_PTR_TO_MAP_VALUE:
8772 		if (type_may_be_null(arg_type) && register_is_null(reg))
8773 			return 0;
8774 
8775 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
8776 		 * check [value, value + map->value_size) validity
8777 		 */
8778 		if (!meta->map_ptr) {
8779 			/* kernel subsystem misconfigured verifier */
8780 			verbose(env, "invalid map_ptr to access map->value\n");
8781 			return -EACCES;
8782 		}
8783 		meta->raw_mode = arg_type & MEM_UNINIT;
8784 		err = check_helper_mem_access(env, regno,
8785 					      meta->map_ptr->value_size, false,
8786 					      meta);
8787 		break;
8788 	case ARG_PTR_TO_PERCPU_BTF_ID:
8789 		if (!reg->btf_id) {
8790 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8791 			return -EACCES;
8792 		}
8793 		meta->ret_btf = reg->btf;
8794 		meta->ret_btf_id = reg->btf_id;
8795 		break;
8796 	case ARG_PTR_TO_SPIN_LOCK:
8797 		if (in_rbtree_lock_required_cb(env)) {
8798 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8799 			return -EACCES;
8800 		}
8801 		if (meta->func_id == BPF_FUNC_spin_lock) {
8802 			err = process_spin_lock(env, regno, true);
8803 			if (err)
8804 				return err;
8805 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
8806 			err = process_spin_lock(env, regno, false);
8807 			if (err)
8808 				return err;
8809 		} else {
8810 			verbose(env, "verifier internal error\n");
8811 			return -EFAULT;
8812 		}
8813 		break;
8814 	case ARG_PTR_TO_TIMER:
8815 		err = process_timer_func(env, regno, meta);
8816 		if (err)
8817 			return err;
8818 		break;
8819 	case ARG_PTR_TO_FUNC:
8820 		meta->subprogno = reg->subprogno;
8821 		break;
8822 	case ARG_PTR_TO_MEM:
8823 		/* The access to this pointer is only checked when we hit the
8824 		 * next is_mem_size argument below.
8825 		 */
8826 		meta->raw_mode = arg_type & MEM_UNINIT;
8827 		if (arg_type & MEM_FIXED_SIZE) {
8828 			err = check_helper_mem_access(env, regno,
8829 						      fn->arg_size[arg], false,
8830 						      meta);
8831 		}
8832 		break;
8833 	case ARG_CONST_SIZE:
8834 		err = check_mem_size_reg(env, reg, regno, false, meta);
8835 		break;
8836 	case ARG_CONST_SIZE_OR_ZERO:
8837 		err = check_mem_size_reg(env, reg, regno, true, meta);
8838 		break;
8839 	case ARG_PTR_TO_DYNPTR:
8840 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
8841 		if (err)
8842 			return err;
8843 		break;
8844 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
8845 		if (!tnum_is_const(reg->var_off)) {
8846 			verbose(env, "R%d is not a known constant'\n",
8847 				regno);
8848 			return -EACCES;
8849 		}
8850 		meta->mem_size = reg->var_off.value;
8851 		err = mark_chain_precision(env, regno);
8852 		if (err)
8853 			return err;
8854 		break;
8855 	case ARG_PTR_TO_INT:
8856 	case ARG_PTR_TO_LONG:
8857 	{
8858 		int size = int_ptr_type_to_size(arg_type);
8859 
8860 		err = check_helper_mem_access(env, regno, size, false, meta);
8861 		if (err)
8862 			return err;
8863 		err = check_ptr_alignment(env, reg, 0, size, true);
8864 		break;
8865 	}
8866 	case ARG_PTR_TO_CONST_STR:
8867 	{
8868 		err = check_reg_const_str(env, reg, regno);
8869 		if (err)
8870 			return err;
8871 		break;
8872 	}
8873 	case ARG_PTR_TO_KPTR:
8874 		err = process_kptr_func(env, regno, meta);
8875 		if (err)
8876 			return err;
8877 		break;
8878 	}
8879 
8880 	return err;
8881 }
8882 
8883 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8884 {
8885 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
8886 	enum bpf_prog_type type = resolve_prog_type(env->prog);
8887 
8888 	if (func_id != BPF_FUNC_map_update_elem &&
8889 	    func_id != BPF_FUNC_map_delete_elem)
8890 		return false;
8891 
8892 	/* It's not possible to get access to a locked struct sock in these
8893 	 * contexts, so updating is safe.
8894 	 */
8895 	switch (type) {
8896 	case BPF_PROG_TYPE_TRACING:
8897 		if (eatype == BPF_TRACE_ITER)
8898 			return true;
8899 		break;
8900 	case BPF_PROG_TYPE_SOCK_OPS:
8901 		/* map_update allowed only via dedicated helpers with event type checks */
8902 		if (func_id == BPF_FUNC_map_delete_elem)
8903 			return true;
8904 		break;
8905 	case BPF_PROG_TYPE_SOCKET_FILTER:
8906 	case BPF_PROG_TYPE_SCHED_CLS:
8907 	case BPF_PROG_TYPE_SCHED_ACT:
8908 	case BPF_PROG_TYPE_XDP:
8909 	case BPF_PROG_TYPE_SK_REUSEPORT:
8910 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
8911 	case BPF_PROG_TYPE_SK_LOOKUP:
8912 		return true;
8913 	default:
8914 		break;
8915 	}
8916 
8917 	verbose(env, "cannot update sockmap in this context\n");
8918 	return false;
8919 }
8920 
8921 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8922 {
8923 	return env->prog->jit_requested &&
8924 	       bpf_jit_supports_subprog_tailcalls();
8925 }
8926 
8927 static int check_map_func_compatibility(struct bpf_verifier_env *env,
8928 					struct bpf_map *map, int func_id)
8929 {
8930 	if (!map)
8931 		return 0;
8932 
8933 	/* We need a two way check, first is from map perspective ... */
8934 	switch (map->map_type) {
8935 	case BPF_MAP_TYPE_PROG_ARRAY:
8936 		if (func_id != BPF_FUNC_tail_call)
8937 			goto error;
8938 		break;
8939 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8940 		if (func_id != BPF_FUNC_perf_event_read &&
8941 		    func_id != BPF_FUNC_perf_event_output &&
8942 		    func_id != BPF_FUNC_skb_output &&
8943 		    func_id != BPF_FUNC_perf_event_read_value &&
8944 		    func_id != BPF_FUNC_xdp_output)
8945 			goto error;
8946 		break;
8947 	case BPF_MAP_TYPE_RINGBUF:
8948 		if (func_id != BPF_FUNC_ringbuf_output &&
8949 		    func_id != BPF_FUNC_ringbuf_reserve &&
8950 		    func_id != BPF_FUNC_ringbuf_query &&
8951 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8952 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8953 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
8954 			goto error;
8955 		break;
8956 	case BPF_MAP_TYPE_USER_RINGBUF:
8957 		if (func_id != BPF_FUNC_user_ringbuf_drain)
8958 			goto error;
8959 		break;
8960 	case BPF_MAP_TYPE_STACK_TRACE:
8961 		if (func_id != BPF_FUNC_get_stackid)
8962 			goto error;
8963 		break;
8964 	case BPF_MAP_TYPE_CGROUP_ARRAY:
8965 		if (func_id != BPF_FUNC_skb_under_cgroup &&
8966 		    func_id != BPF_FUNC_current_task_under_cgroup)
8967 			goto error;
8968 		break;
8969 	case BPF_MAP_TYPE_CGROUP_STORAGE:
8970 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
8971 		if (func_id != BPF_FUNC_get_local_storage)
8972 			goto error;
8973 		break;
8974 	case BPF_MAP_TYPE_DEVMAP:
8975 	case BPF_MAP_TYPE_DEVMAP_HASH:
8976 		if (func_id != BPF_FUNC_redirect_map &&
8977 		    func_id != BPF_FUNC_map_lookup_elem)
8978 			goto error;
8979 		break;
8980 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
8981 	 * appear.
8982 	 */
8983 	case BPF_MAP_TYPE_CPUMAP:
8984 		if (func_id != BPF_FUNC_redirect_map)
8985 			goto error;
8986 		break;
8987 	case BPF_MAP_TYPE_XSKMAP:
8988 		if (func_id != BPF_FUNC_redirect_map &&
8989 		    func_id != BPF_FUNC_map_lookup_elem)
8990 			goto error;
8991 		break;
8992 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
8993 	case BPF_MAP_TYPE_HASH_OF_MAPS:
8994 		if (func_id != BPF_FUNC_map_lookup_elem)
8995 			goto error;
8996 		break;
8997 	case BPF_MAP_TYPE_SOCKMAP:
8998 		if (func_id != BPF_FUNC_sk_redirect_map &&
8999 		    func_id != BPF_FUNC_sock_map_update &&
9000 		    func_id != BPF_FUNC_msg_redirect_map &&
9001 		    func_id != BPF_FUNC_sk_select_reuseport &&
9002 		    func_id != BPF_FUNC_map_lookup_elem &&
9003 		    !may_update_sockmap(env, func_id))
9004 			goto error;
9005 		break;
9006 	case BPF_MAP_TYPE_SOCKHASH:
9007 		if (func_id != BPF_FUNC_sk_redirect_hash &&
9008 		    func_id != BPF_FUNC_sock_hash_update &&
9009 		    func_id != BPF_FUNC_msg_redirect_hash &&
9010 		    func_id != BPF_FUNC_sk_select_reuseport &&
9011 		    func_id != BPF_FUNC_map_lookup_elem &&
9012 		    !may_update_sockmap(env, func_id))
9013 			goto error;
9014 		break;
9015 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
9016 		if (func_id != BPF_FUNC_sk_select_reuseport)
9017 			goto error;
9018 		break;
9019 	case BPF_MAP_TYPE_QUEUE:
9020 	case BPF_MAP_TYPE_STACK:
9021 		if (func_id != BPF_FUNC_map_peek_elem &&
9022 		    func_id != BPF_FUNC_map_pop_elem &&
9023 		    func_id != BPF_FUNC_map_push_elem)
9024 			goto error;
9025 		break;
9026 	case BPF_MAP_TYPE_SK_STORAGE:
9027 		if (func_id != BPF_FUNC_sk_storage_get &&
9028 		    func_id != BPF_FUNC_sk_storage_delete &&
9029 		    func_id != BPF_FUNC_kptr_xchg)
9030 			goto error;
9031 		break;
9032 	case BPF_MAP_TYPE_INODE_STORAGE:
9033 		if (func_id != BPF_FUNC_inode_storage_get &&
9034 		    func_id != BPF_FUNC_inode_storage_delete &&
9035 		    func_id != BPF_FUNC_kptr_xchg)
9036 			goto error;
9037 		break;
9038 	case BPF_MAP_TYPE_TASK_STORAGE:
9039 		if (func_id != BPF_FUNC_task_storage_get &&
9040 		    func_id != BPF_FUNC_task_storage_delete &&
9041 		    func_id != BPF_FUNC_kptr_xchg)
9042 			goto error;
9043 		break;
9044 	case BPF_MAP_TYPE_CGRP_STORAGE:
9045 		if (func_id != BPF_FUNC_cgrp_storage_get &&
9046 		    func_id != BPF_FUNC_cgrp_storage_delete &&
9047 		    func_id != BPF_FUNC_kptr_xchg)
9048 			goto error;
9049 		break;
9050 	case BPF_MAP_TYPE_BLOOM_FILTER:
9051 		if (func_id != BPF_FUNC_map_peek_elem &&
9052 		    func_id != BPF_FUNC_map_push_elem)
9053 			goto error;
9054 		break;
9055 	default:
9056 		break;
9057 	}
9058 
9059 	/* ... and second from the function itself. */
9060 	switch (func_id) {
9061 	case BPF_FUNC_tail_call:
9062 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
9063 			goto error;
9064 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
9065 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
9066 			return -EINVAL;
9067 		}
9068 		break;
9069 	case BPF_FUNC_perf_event_read:
9070 	case BPF_FUNC_perf_event_output:
9071 	case BPF_FUNC_perf_event_read_value:
9072 	case BPF_FUNC_skb_output:
9073 	case BPF_FUNC_xdp_output:
9074 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
9075 			goto error;
9076 		break;
9077 	case BPF_FUNC_ringbuf_output:
9078 	case BPF_FUNC_ringbuf_reserve:
9079 	case BPF_FUNC_ringbuf_query:
9080 	case BPF_FUNC_ringbuf_reserve_dynptr:
9081 	case BPF_FUNC_ringbuf_submit_dynptr:
9082 	case BPF_FUNC_ringbuf_discard_dynptr:
9083 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
9084 			goto error;
9085 		break;
9086 	case BPF_FUNC_user_ringbuf_drain:
9087 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
9088 			goto error;
9089 		break;
9090 	case BPF_FUNC_get_stackid:
9091 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
9092 			goto error;
9093 		break;
9094 	case BPF_FUNC_current_task_under_cgroup:
9095 	case BPF_FUNC_skb_under_cgroup:
9096 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
9097 			goto error;
9098 		break;
9099 	case BPF_FUNC_redirect_map:
9100 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
9101 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
9102 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
9103 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
9104 			goto error;
9105 		break;
9106 	case BPF_FUNC_sk_redirect_map:
9107 	case BPF_FUNC_msg_redirect_map:
9108 	case BPF_FUNC_sock_map_update:
9109 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
9110 			goto error;
9111 		break;
9112 	case BPF_FUNC_sk_redirect_hash:
9113 	case BPF_FUNC_msg_redirect_hash:
9114 	case BPF_FUNC_sock_hash_update:
9115 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
9116 			goto error;
9117 		break;
9118 	case BPF_FUNC_get_local_storage:
9119 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
9120 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
9121 			goto error;
9122 		break;
9123 	case BPF_FUNC_sk_select_reuseport:
9124 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
9125 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
9126 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
9127 			goto error;
9128 		break;
9129 	case BPF_FUNC_map_pop_elem:
9130 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9131 		    map->map_type != BPF_MAP_TYPE_STACK)
9132 			goto error;
9133 		break;
9134 	case BPF_FUNC_map_peek_elem:
9135 	case BPF_FUNC_map_push_elem:
9136 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9137 		    map->map_type != BPF_MAP_TYPE_STACK &&
9138 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
9139 			goto error;
9140 		break;
9141 	case BPF_FUNC_map_lookup_percpu_elem:
9142 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
9143 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9144 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
9145 			goto error;
9146 		break;
9147 	case BPF_FUNC_sk_storage_get:
9148 	case BPF_FUNC_sk_storage_delete:
9149 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
9150 			goto error;
9151 		break;
9152 	case BPF_FUNC_inode_storage_get:
9153 	case BPF_FUNC_inode_storage_delete:
9154 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
9155 			goto error;
9156 		break;
9157 	case BPF_FUNC_task_storage_get:
9158 	case BPF_FUNC_task_storage_delete:
9159 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
9160 			goto error;
9161 		break;
9162 	case BPF_FUNC_cgrp_storage_get:
9163 	case BPF_FUNC_cgrp_storage_delete:
9164 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
9165 			goto error;
9166 		break;
9167 	default:
9168 		break;
9169 	}
9170 
9171 	return 0;
9172 error:
9173 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
9174 		map->map_type, func_id_name(func_id), func_id);
9175 	return -EINVAL;
9176 }
9177 
9178 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
9179 {
9180 	int count = 0;
9181 
9182 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
9183 		count++;
9184 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
9185 		count++;
9186 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
9187 		count++;
9188 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
9189 		count++;
9190 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
9191 		count++;
9192 
9193 	/* We only support one arg being in raw mode at the moment,
9194 	 * which is sufficient for the helper functions we have
9195 	 * right now.
9196 	 */
9197 	return count <= 1;
9198 }
9199 
9200 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
9201 {
9202 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
9203 	bool has_size = fn->arg_size[arg] != 0;
9204 	bool is_next_size = false;
9205 
9206 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
9207 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
9208 
9209 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
9210 		return is_next_size;
9211 
9212 	return has_size == is_next_size || is_next_size == is_fixed;
9213 }
9214 
9215 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
9216 {
9217 	/* bpf_xxx(..., buf, len) call will access 'len'
9218 	 * bytes from memory 'buf'. Both arg types need
9219 	 * to be paired, so make sure there's no buggy
9220 	 * helper function specification.
9221 	 */
9222 	if (arg_type_is_mem_size(fn->arg1_type) ||
9223 	    check_args_pair_invalid(fn, 0) ||
9224 	    check_args_pair_invalid(fn, 1) ||
9225 	    check_args_pair_invalid(fn, 2) ||
9226 	    check_args_pair_invalid(fn, 3) ||
9227 	    check_args_pair_invalid(fn, 4))
9228 		return false;
9229 
9230 	return true;
9231 }
9232 
9233 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
9234 {
9235 	int i;
9236 
9237 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9238 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
9239 			return !!fn->arg_btf_id[i];
9240 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
9241 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
9242 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
9243 		    /* arg_btf_id and arg_size are in a union. */
9244 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
9245 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
9246 			return false;
9247 	}
9248 
9249 	return true;
9250 }
9251 
9252 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
9253 {
9254 	return check_raw_mode_ok(fn) &&
9255 	       check_arg_pair_ok(fn) &&
9256 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
9257 }
9258 
9259 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
9260  * are now invalid, so turn them into unknown SCALAR_VALUE.
9261  *
9262  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
9263  * since these slices point to packet data.
9264  */
9265 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
9266 {
9267 	struct bpf_func_state *state;
9268 	struct bpf_reg_state *reg;
9269 
9270 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9271 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
9272 			mark_reg_invalid(env, reg);
9273 	}));
9274 }
9275 
9276 enum {
9277 	AT_PKT_END = -1,
9278 	BEYOND_PKT_END = -2,
9279 };
9280 
9281 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
9282 {
9283 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9284 	struct bpf_reg_state *reg = &state->regs[regn];
9285 
9286 	if (reg->type != PTR_TO_PACKET)
9287 		/* PTR_TO_PACKET_META is not supported yet */
9288 		return;
9289 
9290 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
9291 	 * How far beyond pkt_end it goes is unknown.
9292 	 * if (!range_open) it's the case of pkt >= pkt_end
9293 	 * if (range_open) it's the case of pkt > pkt_end
9294 	 * hence this pointer is at least 1 byte bigger than pkt_end
9295 	 */
9296 	if (range_open)
9297 		reg->range = BEYOND_PKT_END;
9298 	else
9299 		reg->range = AT_PKT_END;
9300 }
9301 
9302 /* The pointer with the specified id has released its reference to kernel
9303  * resources. Identify all copies of the same pointer and clear the reference.
9304  */
9305 static int release_reference(struct bpf_verifier_env *env,
9306 			     int ref_obj_id)
9307 {
9308 	struct bpf_func_state *state;
9309 	struct bpf_reg_state *reg;
9310 	int err;
9311 
9312 	err = release_reference_state(cur_func(env), ref_obj_id);
9313 	if (err)
9314 		return err;
9315 
9316 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9317 		if (reg->ref_obj_id == ref_obj_id)
9318 			mark_reg_invalid(env, reg);
9319 	}));
9320 
9321 	return 0;
9322 }
9323 
9324 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
9325 {
9326 	struct bpf_func_state *unused;
9327 	struct bpf_reg_state *reg;
9328 
9329 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
9330 		if (type_is_non_owning_ref(reg->type))
9331 			mark_reg_invalid(env, reg);
9332 	}));
9333 }
9334 
9335 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
9336 				    struct bpf_reg_state *regs)
9337 {
9338 	int i;
9339 
9340 	/* after the call registers r0 - r5 were scratched */
9341 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9342 		mark_reg_not_init(env, regs, caller_saved[i]);
9343 		__check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK);
9344 	}
9345 }
9346 
9347 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
9348 				   struct bpf_func_state *caller,
9349 				   struct bpf_func_state *callee,
9350 				   int insn_idx);
9351 
9352 static int set_callee_state(struct bpf_verifier_env *env,
9353 			    struct bpf_func_state *caller,
9354 			    struct bpf_func_state *callee, int insn_idx);
9355 
9356 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite,
9357 			    set_callee_state_fn set_callee_state_cb,
9358 			    struct bpf_verifier_state *state)
9359 {
9360 	struct bpf_func_state *caller, *callee;
9361 	int err;
9362 
9363 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
9364 		verbose(env, "the call stack of %d frames is too deep\n",
9365 			state->curframe + 2);
9366 		return -E2BIG;
9367 	}
9368 
9369 	if (state->frame[state->curframe + 1]) {
9370 		verbose(env, "verifier bug. Frame %d already allocated\n",
9371 			state->curframe + 1);
9372 		return -EFAULT;
9373 	}
9374 
9375 	caller = state->frame[state->curframe];
9376 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
9377 	if (!callee)
9378 		return -ENOMEM;
9379 	state->frame[state->curframe + 1] = callee;
9380 
9381 	/* callee cannot access r0, r6 - r9 for reading and has to write
9382 	 * into its own stack before reading from it.
9383 	 * callee can read/write into caller's stack
9384 	 */
9385 	init_func_state(env, callee,
9386 			/* remember the callsite, it will be used by bpf_exit */
9387 			callsite,
9388 			state->curframe + 1 /* frameno within this callchain */,
9389 			subprog /* subprog number within this prog */);
9390 	/* Transfer references to the callee */
9391 	err = copy_reference_state(callee, caller);
9392 	err = err ?: set_callee_state_cb(env, caller, callee, callsite);
9393 	if (err)
9394 		goto err_out;
9395 
9396 	/* only increment it after check_reg_arg() finished */
9397 	state->curframe++;
9398 
9399 	return 0;
9400 
9401 err_out:
9402 	free_func_state(callee);
9403 	state->frame[state->curframe + 1] = NULL;
9404 	return err;
9405 }
9406 
9407 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
9408 				    const struct btf *btf,
9409 				    struct bpf_reg_state *regs)
9410 {
9411 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
9412 	struct bpf_verifier_log *log = &env->log;
9413 	u32 i;
9414 	int ret;
9415 
9416 	ret = btf_prepare_func_args(env, subprog);
9417 	if (ret)
9418 		return ret;
9419 
9420 	/* check that BTF function arguments match actual types that the
9421 	 * verifier sees.
9422 	 */
9423 	for (i = 0; i < sub->arg_cnt; i++) {
9424 		u32 regno = i + 1;
9425 		struct bpf_reg_state *reg = &regs[regno];
9426 		struct bpf_subprog_arg_info *arg = &sub->args[i];
9427 
9428 		if (arg->arg_type == ARG_ANYTHING) {
9429 			if (reg->type != SCALAR_VALUE) {
9430 				bpf_log(log, "R%d is not a scalar\n", regno);
9431 				return -EINVAL;
9432 			}
9433 		} else if (arg->arg_type == ARG_PTR_TO_CTX) {
9434 			ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
9435 			if (ret < 0)
9436 				return ret;
9437 			/* If function expects ctx type in BTF check that caller
9438 			 * is passing PTR_TO_CTX.
9439 			 */
9440 			if (reg->type != PTR_TO_CTX) {
9441 				bpf_log(log, "arg#%d expects pointer to ctx\n", i);
9442 				return -EINVAL;
9443 			}
9444 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
9445 			ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
9446 			if (ret < 0)
9447 				return ret;
9448 			if (check_mem_reg(env, reg, regno, arg->mem_size))
9449 				return -EINVAL;
9450 			if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) {
9451 				bpf_log(log, "arg#%d is expected to be non-NULL\n", i);
9452 				return -EINVAL;
9453 			}
9454 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) {
9455 			/*
9456 			 * Can pass any value and the kernel won't crash, but
9457 			 * only PTR_TO_ARENA or SCALAR make sense. Everything
9458 			 * else is a bug in the bpf program. Point it out to
9459 			 * the user at the verification time instead of
9460 			 * run-time debug nightmare.
9461 			 */
9462 			if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) {
9463 				bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno);
9464 				return -EINVAL;
9465 			}
9466 		} else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
9467 			ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0);
9468 			if (ret)
9469 				return ret;
9470 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
9471 			struct bpf_call_arg_meta meta;
9472 			int err;
9473 
9474 			if (register_is_null(reg) && type_may_be_null(arg->arg_type))
9475 				continue;
9476 
9477 			memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */
9478 			err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta);
9479 			err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type);
9480 			if (err)
9481 				return err;
9482 		} else {
9483 			bpf_log(log, "verifier bug: unrecognized arg#%d type %d\n",
9484 				i, arg->arg_type);
9485 			return -EFAULT;
9486 		}
9487 	}
9488 
9489 	return 0;
9490 }
9491 
9492 /* Compare BTF of a function call with given bpf_reg_state.
9493  * Returns:
9494  * EFAULT - there is a verifier bug. Abort verification.
9495  * EINVAL - there is a type mismatch or BTF is not available.
9496  * 0 - BTF matches with what bpf_reg_state expects.
9497  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
9498  */
9499 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
9500 				  struct bpf_reg_state *regs)
9501 {
9502 	struct bpf_prog *prog = env->prog;
9503 	struct btf *btf = prog->aux->btf;
9504 	u32 btf_id;
9505 	int err;
9506 
9507 	if (!prog->aux->func_info)
9508 		return -EINVAL;
9509 
9510 	btf_id = prog->aux->func_info[subprog].type_id;
9511 	if (!btf_id)
9512 		return -EFAULT;
9513 
9514 	if (prog->aux->func_info_aux[subprog].unreliable)
9515 		return -EINVAL;
9516 
9517 	err = btf_check_func_arg_match(env, subprog, btf, regs);
9518 	/* Compiler optimizations can remove arguments from static functions
9519 	 * or mismatched type can be passed into a global function.
9520 	 * In such cases mark the function as unreliable from BTF point of view.
9521 	 */
9522 	if (err)
9523 		prog->aux->func_info_aux[subprog].unreliable = true;
9524 	return err;
9525 }
9526 
9527 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9528 			      int insn_idx, int subprog,
9529 			      set_callee_state_fn set_callee_state_cb)
9530 {
9531 	struct bpf_verifier_state *state = env->cur_state, *callback_state;
9532 	struct bpf_func_state *caller, *callee;
9533 	int err;
9534 
9535 	caller = state->frame[state->curframe];
9536 	err = btf_check_subprog_call(env, subprog, caller->regs);
9537 	if (err == -EFAULT)
9538 		return err;
9539 
9540 	/* set_callee_state is used for direct subprog calls, but we are
9541 	 * interested in validating only BPF helpers that can call subprogs as
9542 	 * callbacks
9543 	 */
9544 	env->subprog_info[subprog].is_cb = true;
9545 	if (bpf_pseudo_kfunc_call(insn) &&
9546 	    !is_callback_calling_kfunc(insn->imm)) {
9547 		verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
9548 			func_id_name(insn->imm), insn->imm);
9549 		return -EFAULT;
9550 	} else if (!bpf_pseudo_kfunc_call(insn) &&
9551 		   !is_callback_calling_function(insn->imm)) { /* helper */
9552 		verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
9553 			func_id_name(insn->imm), insn->imm);
9554 		return -EFAULT;
9555 	}
9556 
9557 	if (is_async_callback_calling_insn(insn)) {
9558 		struct bpf_verifier_state *async_cb;
9559 
9560 		/* there is no real recursion here. timer and workqueue callbacks are async */
9561 		env->subprog_info[subprog].is_async_cb = true;
9562 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
9563 					 insn_idx, subprog,
9564 					 is_bpf_wq_set_callback_impl_kfunc(insn->imm));
9565 		if (!async_cb)
9566 			return -EFAULT;
9567 		callee = async_cb->frame[0];
9568 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
9569 
9570 		/* Convert bpf_timer_set_callback() args into timer callback args */
9571 		err = set_callee_state_cb(env, caller, callee, insn_idx);
9572 		if (err)
9573 			return err;
9574 
9575 		return 0;
9576 	}
9577 
9578 	/* for callback functions enqueue entry to callback and
9579 	 * proceed with next instruction within current frame.
9580 	 */
9581 	callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false);
9582 	if (!callback_state)
9583 		return -ENOMEM;
9584 
9585 	err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb,
9586 			       callback_state);
9587 	if (err)
9588 		return err;
9589 
9590 	callback_state->callback_unroll_depth++;
9591 	callback_state->frame[callback_state->curframe - 1]->callback_depth++;
9592 	caller->callback_depth = 0;
9593 	return 0;
9594 }
9595 
9596 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9597 			   int *insn_idx)
9598 {
9599 	struct bpf_verifier_state *state = env->cur_state;
9600 	struct bpf_func_state *caller;
9601 	int err, subprog, target_insn;
9602 
9603 	target_insn = *insn_idx + insn->imm + 1;
9604 	subprog = find_subprog(env, target_insn);
9605 	if (subprog < 0) {
9606 		verbose(env, "verifier bug. No program starts at insn %d\n", target_insn);
9607 		return -EFAULT;
9608 	}
9609 
9610 	caller = state->frame[state->curframe];
9611 	err = btf_check_subprog_call(env, subprog, caller->regs);
9612 	if (err == -EFAULT)
9613 		return err;
9614 	if (subprog_is_global(env, subprog)) {
9615 		const char *sub_name = subprog_name(env, subprog);
9616 
9617 		/* Only global subprogs cannot be called with a lock held. */
9618 		if (env->cur_state->active_lock.ptr) {
9619 			verbose(env, "global function calls are not allowed while holding a lock,\n"
9620 				     "use static function instead\n");
9621 			return -EINVAL;
9622 		}
9623 
9624 		/* Only global subprogs cannot be called with preemption disabled. */
9625 		if (env->cur_state->active_preempt_lock) {
9626 			verbose(env, "global function calls are not allowed with preemption disabled,\n"
9627 				     "use static function instead\n");
9628 			return -EINVAL;
9629 		}
9630 
9631 		if (err) {
9632 			verbose(env, "Caller passes invalid args into func#%d ('%s')\n",
9633 				subprog, sub_name);
9634 			return err;
9635 		}
9636 
9637 		verbose(env, "Func#%d ('%s') is global and assumed valid.\n",
9638 			subprog, sub_name);
9639 		/* mark global subprog for verifying after main prog */
9640 		subprog_aux(env, subprog)->called = true;
9641 		clear_caller_saved_regs(env, caller->regs);
9642 
9643 		/* All global functions return a 64-bit SCALAR_VALUE */
9644 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
9645 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9646 
9647 		/* continue with next insn after call */
9648 		return 0;
9649 	}
9650 
9651 	/* for regular function entry setup new frame and continue
9652 	 * from that frame.
9653 	 */
9654 	err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state);
9655 	if (err)
9656 		return err;
9657 
9658 	clear_caller_saved_regs(env, caller->regs);
9659 
9660 	/* and go analyze first insn of the callee */
9661 	*insn_idx = env->subprog_info[subprog].start - 1;
9662 
9663 	if (env->log.level & BPF_LOG_LEVEL) {
9664 		verbose(env, "caller:\n");
9665 		print_verifier_state(env, caller, true);
9666 		verbose(env, "callee:\n");
9667 		print_verifier_state(env, state->frame[state->curframe], true);
9668 	}
9669 
9670 	return 0;
9671 }
9672 
9673 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
9674 				   struct bpf_func_state *caller,
9675 				   struct bpf_func_state *callee)
9676 {
9677 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
9678 	 *      void *callback_ctx, u64 flags);
9679 	 * callback_fn(struct bpf_map *map, void *key, void *value,
9680 	 *      void *callback_ctx);
9681 	 */
9682 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9683 
9684 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9685 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9686 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9687 
9688 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9689 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9690 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9691 
9692 	/* pointer to stack or null */
9693 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9694 
9695 	/* unused */
9696 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9697 	return 0;
9698 }
9699 
9700 static int set_callee_state(struct bpf_verifier_env *env,
9701 			    struct bpf_func_state *caller,
9702 			    struct bpf_func_state *callee, int insn_idx)
9703 {
9704 	int i;
9705 
9706 	/* copy r1 - r5 args that callee can access.  The copy includes parent
9707 	 * pointers, which connects us up to the liveness chain
9708 	 */
9709 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9710 		callee->regs[i] = caller->regs[i];
9711 	return 0;
9712 }
9713 
9714 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9715 				       struct bpf_func_state *caller,
9716 				       struct bpf_func_state *callee,
9717 				       int insn_idx)
9718 {
9719 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9720 	struct bpf_map *map;
9721 	int err;
9722 
9723 	/* valid map_ptr and poison value does not matter */
9724 	map = insn_aux->map_ptr_state.map_ptr;
9725 	if (!map->ops->map_set_for_each_callback_args ||
9726 	    !map->ops->map_for_each_callback) {
9727 		verbose(env, "callback function not allowed for map\n");
9728 		return -ENOTSUPP;
9729 	}
9730 
9731 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9732 	if (err)
9733 		return err;
9734 
9735 	callee->in_callback_fn = true;
9736 	callee->callback_ret_range = retval_range(0, 1);
9737 	return 0;
9738 }
9739 
9740 static int set_loop_callback_state(struct bpf_verifier_env *env,
9741 				   struct bpf_func_state *caller,
9742 				   struct bpf_func_state *callee,
9743 				   int insn_idx)
9744 {
9745 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9746 	 *	    u64 flags);
9747 	 * callback_fn(u32 index, void *callback_ctx);
9748 	 */
9749 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9750 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9751 
9752 	/* unused */
9753 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9754 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9755 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9756 
9757 	callee->in_callback_fn = true;
9758 	callee->callback_ret_range = retval_range(0, 1);
9759 	return 0;
9760 }
9761 
9762 static int set_timer_callback_state(struct bpf_verifier_env *env,
9763 				    struct bpf_func_state *caller,
9764 				    struct bpf_func_state *callee,
9765 				    int insn_idx)
9766 {
9767 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9768 
9769 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9770 	 * callback_fn(struct bpf_map *map, void *key, void *value);
9771 	 */
9772 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9773 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9774 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
9775 
9776 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9777 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9778 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
9779 
9780 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9781 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9782 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
9783 
9784 	/* unused */
9785 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9786 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9787 	callee->in_async_callback_fn = true;
9788 	callee->callback_ret_range = retval_range(0, 1);
9789 	return 0;
9790 }
9791 
9792 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9793 				       struct bpf_func_state *caller,
9794 				       struct bpf_func_state *callee,
9795 				       int insn_idx)
9796 {
9797 	/* bpf_find_vma(struct task_struct *task, u64 addr,
9798 	 *               void *callback_fn, void *callback_ctx, u64 flags)
9799 	 * (callback_fn)(struct task_struct *task,
9800 	 *               struct vm_area_struct *vma, void *callback_ctx);
9801 	 */
9802 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9803 
9804 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9805 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9806 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
9807 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA];
9808 
9809 	/* pointer to stack or null */
9810 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9811 
9812 	/* unused */
9813 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9814 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9815 	callee->in_callback_fn = true;
9816 	callee->callback_ret_range = retval_range(0, 1);
9817 	return 0;
9818 }
9819 
9820 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9821 					   struct bpf_func_state *caller,
9822 					   struct bpf_func_state *callee,
9823 					   int insn_idx)
9824 {
9825 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9826 	 *			  callback_ctx, u64 flags);
9827 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
9828 	 */
9829 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
9830 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
9831 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9832 
9833 	/* unused */
9834 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9835 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9836 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9837 
9838 	callee->in_callback_fn = true;
9839 	callee->callback_ret_range = retval_range(0, 1);
9840 	return 0;
9841 }
9842 
9843 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
9844 					 struct bpf_func_state *caller,
9845 					 struct bpf_func_state *callee,
9846 					 int insn_idx)
9847 {
9848 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
9849 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
9850 	 *
9851 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
9852 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
9853 	 * by this point, so look at 'root'
9854 	 */
9855 	struct btf_field *field;
9856 
9857 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
9858 				      BPF_RB_ROOT);
9859 	if (!field || !field->graph_root.value_btf_id)
9860 		return -EFAULT;
9861 
9862 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
9863 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
9864 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
9865 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
9866 
9867 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9868 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9869 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9870 	callee->in_callback_fn = true;
9871 	callee->callback_ret_range = retval_range(0, 1);
9872 	return 0;
9873 }
9874 
9875 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
9876 
9877 /* Are we currently verifying the callback for a rbtree helper that must
9878  * be called with lock held? If so, no need to complain about unreleased
9879  * lock
9880  */
9881 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
9882 {
9883 	struct bpf_verifier_state *state = env->cur_state;
9884 	struct bpf_insn *insn = env->prog->insnsi;
9885 	struct bpf_func_state *callee;
9886 	int kfunc_btf_id;
9887 
9888 	if (!state->curframe)
9889 		return false;
9890 
9891 	callee = state->frame[state->curframe];
9892 
9893 	if (!callee->in_callback_fn)
9894 		return false;
9895 
9896 	kfunc_btf_id = insn[callee->callsite].imm;
9897 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
9898 }
9899 
9900 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg)
9901 {
9902 	return range.minval <= reg->smin_value && reg->smax_value <= range.maxval;
9903 }
9904 
9905 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
9906 {
9907 	struct bpf_verifier_state *state = env->cur_state, *prev_st;
9908 	struct bpf_func_state *caller, *callee;
9909 	struct bpf_reg_state *r0;
9910 	bool in_callback_fn;
9911 	int err;
9912 
9913 	callee = state->frame[state->curframe];
9914 	r0 = &callee->regs[BPF_REG_0];
9915 	if (r0->type == PTR_TO_STACK) {
9916 		/* technically it's ok to return caller's stack pointer
9917 		 * (or caller's caller's pointer) back to the caller,
9918 		 * since these pointers are valid. Only current stack
9919 		 * pointer will be invalid as soon as function exits,
9920 		 * but let's be conservative
9921 		 */
9922 		verbose(env, "cannot return stack pointer to the caller\n");
9923 		return -EINVAL;
9924 	}
9925 
9926 	caller = state->frame[state->curframe - 1];
9927 	if (callee->in_callback_fn) {
9928 		if (r0->type != SCALAR_VALUE) {
9929 			verbose(env, "R0 not a scalar value\n");
9930 			return -EACCES;
9931 		}
9932 
9933 		/* we are going to rely on register's precise value */
9934 		err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
9935 		err = err ?: mark_chain_precision(env, BPF_REG_0);
9936 		if (err)
9937 			return err;
9938 
9939 		/* enforce R0 return value range */
9940 		if (!retval_range_within(callee->callback_ret_range, r0)) {
9941 			verbose_invalid_scalar(env, r0, callee->callback_ret_range,
9942 					       "At callback return", "R0");
9943 			return -EINVAL;
9944 		}
9945 		if (!calls_callback(env, callee->callsite)) {
9946 			verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n",
9947 				*insn_idx, callee->callsite);
9948 			return -EFAULT;
9949 		}
9950 	} else {
9951 		/* return to the caller whatever r0 had in the callee */
9952 		caller->regs[BPF_REG_0] = *r0;
9953 	}
9954 
9955 	/* callback_fn frame should have released its own additions to parent's
9956 	 * reference state at this point, or check_reference_leak would
9957 	 * complain, hence it must be the same as the caller. There is no need
9958 	 * to copy it back.
9959 	 */
9960 	if (!callee->in_callback_fn) {
9961 		/* Transfer references to the caller */
9962 		err = copy_reference_state(caller, callee);
9963 		if (err)
9964 			return err;
9965 	}
9966 
9967 	/* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite,
9968 	 * there function call logic would reschedule callback visit. If iteration
9969 	 * converges is_state_visited() would prune that visit eventually.
9970 	 */
9971 	in_callback_fn = callee->in_callback_fn;
9972 	if (in_callback_fn)
9973 		*insn_idx = callee->callsite;
9974 	else
9975 		*insn_idx = callee->callsite + 1;
9976 
9977 	if (env->log.level & BPF_LOG_LEVEL) {
9978 		verbose(env, "returning from callee:\n");
9979 		print_verifier_state(env, callee, true);
9980 		verbose(env, "to caller at %d:\n", *insn_idx);
9981 		print_verifier_state(env, caller, true);
9982 	}
9983 	/* clear everything in the callee. In case of exceptional exits using
9984 	 * bpf_throw, this will be done by copy_verifier_state for extra frames. */
9985 	free_func_state(callee);
9986 	state->frame[state->curframe--] = NULL;
9987 
9988 	/* for callbacks widen imprecise scalars to make programs like below verify:
9989 	 *
9990 	 *   struct ctx { int i; }
9991 	 *   void cb(int idx, struct ctx *ctx) { ctx->i++; ... }
9992 	 *   ...
9993 	 *   struct ctx = { .i = 0; }
9994 	 *   bpf_loop(100, cb, &ctx, 0);
9995 	 *
9996 	 * This is similar to what is done in process_iter_next_call() for open
9997 	 * coded iterators.
9998 	 */
9999 	prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL;
10000 	if (prev_st) {
10001 		err = widen_imprecise_scalars(env, prev_st, state);
10002 		if (err)
10003 			return err;
10004 	}
10005 	return 0;
10006 }
10007 
10008 static int do_refine_retval_range(struct bpf_verifier_env *env,
10009 				  struct bpf_reg_state *regs, int ret_type,
10010 				  int func_id,
10011 				  struct bpf_call_arg_meta *meta)
10012 {
10013 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
10014 
10015 	if (ret_type != RET_INTEGER)
10016 		return 0;
10017 
10018 	switch (func_id) {
10019 	case BPF_FUNC_get_stack:
10020 	case BPF_FUNC_get_task_stack:
10021 	case BPF_FUNC_probe_read_str:
10022 	case BPF_FUNC_probe_read_kernel_str:
10023 	case BPF_FUNC_probe_read_user_str:
10024 		ret_reg->smax_value = meta->msize_max_value;
10025 		ret_reg->s32_max_value = meta->msize_max_value;
10026 		ret_reg->smin_value = -MAX_ERRNO;
10027 		ret_reg->s32_min_value = -MAX_ERRNO;
10028 		reg_bounds_sync(ret_reg);
10029 		break;
10030 	case BPF_FUNC_get_smp_processor_id:
10031 		ret_reg->umax_value = nr_cpu_ids - 1;
10032 		ret_reg->u32_max_value = nr_cpu_ids - 1;
10033 		ret_reg->smax_value = nr_cpu_ids - 1;
10034 		ret_reg->s32_max_value = nr_cpu_ids - 1;
10035 		ret_reg->umin_value = 0;
10036 		ret_reg->u32_min_value = 0;
10037 		ret_reg->smin_value = 0;
10038 		ret_reg->s32_min_value = 0;
10039 		reg_bounds_sync(ret_reg);
10040 		break;
10041 	}
10042 
10043 	return reg_bounds_sanity_check(env, ret_reg, "retval");
10044 }
10045 
10046 static int
10047 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
10048 		int func_id, int insn_idx)
10049 {
10050 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
10051 	struct bpf_map *map = meta->map_ptr;
10052 
10053 	if (func_id != BPF_FUNC_tail_call &&
10054 	    func_id != BPF_FUNC_map_lookup_elem &&
10055 	    func_id != BPF_FUNC_map_update_elem &&
10056 	    func_id != BPF_FUNC_map_delete_elem &&
10057 	    func_id != BPF_FUNC_map_push_elem &&
10058 	    func_id != BPF_FUNC_map_pop_elem &&
10059 	    func_id != BPF_FUNC_map_peek_elem &&
10060 	    func_id != BPF_FUNC_for_each_map_elem &&
10061 	    func_id != BPF_FUNC_redirect_map &&
10062 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
10063 		return 0;
10064 
10065 	if (map == NULL) {
10066 		verbose(env, "kernel subsystem misconfigured verifier\n");
10067 		return -EINVAL;
10068 	}
10069 
10070 	/* In case of read-only, some additional restrictions
10071 	 * need to be applied in order to prevent altering the
10072 	 * state of the map from program side.
10073 	 */
10074 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
10075 	    (func_id == BPF_FUNC_map_delete_elem ||
10076 	     func_id == BPF_FUNC_map_update_elem ||
10077 	     func_id == BPF_FUNC_map_push_elem ||
10078 	     func_id == BPF_FUNC_map_pop_elem)) {
10079 		verbose(env, "write into map forbidden\n");
10080 		return -EACCES;
10081 	}
10082 
10083 	if (!aux->map_ptr_state.map_ptr)
10084 		bpf_map_ptr_store(aux, meta->map_ptr,
10085 				  !meta->map_ptr->bypass_spec_v1, false);
10086 	else if (aux->map_ptr_state.map_ptr != meta->map_ptr)
10087 		bpf_map_ptr_store(aux, meta->map_ptr,
10088 				  !meta->map_ptr->bypass_spec_v1, true);
10089 	return 0;
10090 }
10091 
10092 static int
10093 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
10094 		int func_id, int insn_idx)
10095 {
10096 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
10097 	struct bpf_reg_state *regs = cur_regs(env), *reg;
10098 	struct bpf_map *map = meta->map_ptr;
10099 	u64 val, max;
10100 	int err;
10101 
10102 	if (func_id != BPF_FUNC_tail_call)
10103 		return 0;
10104 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
10105 		verbose(env, "kernel subsystem misconfigured verifier\n");
10106 		return -EINVAL;
10107 	}
10108 
10109 	reg = &regs[BPF_REG_3];
10110 	val = reg->var_off.value;
10111 	max = map->max_entries;
10112 
10113 	if (!(is_reg_const(reg, false) && val < max)) {
10114 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
10115 		return 0;
10116 	}
10117 
10118 	err = mark_chain_precision(env, BPF_REG_3);
10119 	if (err)
10120 		return err;
10121 	if (bpf_map_key_unseen(aux))
10122 		bpf_map_key_store(aux, val);
10123 	else if (!bpf_map_key_poisoned(aux) &&
10124 		  bpf_map_key_immediate(aux) != val)
10125 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
10126 	return 0;
10127 }
10128 
10129 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit)
10130 {
10131 	struct bpf_func_state *state = cur_func(env);
10132 	bool refs_lingering = false;
10133 	int i;
10134 
10135 	if (!exception_exit && state->frameno && !state->in_callback_fn)
10136 		return 0;
10137 
10138 	for (i = 0; i < state->acquired_refs; i++) {
10139 		if (!exception_exit && state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
10140 			continue;
10141 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
10142 			state->refs[i].id, state->refs[i].insn_idx);
10143 		refs_lingering = true;
10144 	}
10145 	return refs_lingering ? -EINVAL : 0;
10146 }
10147 
10148 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
10149 				   struct bpf_reg_state *regs)
10150 {
10151 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
10152 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
10153 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
10154 	struct bpf_bprintf_data data = {};
10155 	int err, fmt_map_off, num_args;
10156 	u64 fmt_addr;
10157 	char *fmt;
10158 
10159 	/* data must be an array of u64 */
10160 	if (data_len_reg->var_off.value % 8)
10161 		return -EINVAL;
10162 	num_args = data_len_reg->var_off.value / 8;
10163 
10164 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
10165 	 * and map_direct_value_addr is set.
10166 	 */
10167 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
10168 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
10169 						  fmt_map_off);
10170 	if (err) {
10171 		verbose(env, "verifier bug\n");
10172 		return -EFAULT;
10173 	}
10174 	fmt = (char *)(long)fmt_addr + fmt_map_off;
10175 
10176 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
10177 	 * can focus on validating the format specifiers.
10178 	 */
10179 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
10180 	if (err < 0)
10181 		verbose(env, "Invalid format string\n");
10182 
10183 	return err;
10184 }
10185 
10186 static int check_get_func_ip(struct bpf_verifier_env *env)
10187 {
10188 	enum bpf_prog_type type = resolve_prog_type(env->prog);
10189 	int func_id = BPF_FUNC_get_func_ip;
10190 
10191 	if (type == BPF_PROG_TYPE_TRACING) {
10192 		if (!bpf_prog_has_trampoline(env->prog)) {
10193 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
10194 				func_id_name(func_id), func_id);
10195 			return -ENOTSUPP;
10196 		}
10197 		return 0;
10198 	} else if (type == BPF_PROG_TYPE_KPROBE) {
10199 		return 0;
10200 	}
10201 
10202 	verbose(env, "func %s#%d not supported for program type %d\n",
10203 		func_id_name(func_id), func_id, type);
10204 	return -ENOTSUPP;
10205 }
10206 
10207 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
10208 {
10209 	return &env->insn_aux_data[env->insn_idx];
10210 }
10211 
10212 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
10213 {
10214 	struct bpf_reg_state *regs = cur_regs(env);
10215 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
10216 	bool reg_is_null = register_is_null(reg);
10217 
10218 	if (reg_is_null)
10219 		mark_chain_precision(env, BPF_REG_4);
10220 
10221 	return reg_is_null;
10222 }
10223 
10224 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
10225 {
10226 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
10227 
10228 	if (!state->initialized) {
10229 		state->initialized = 1;
10230 		state->fit_for_inline = loop_flag_is_zero(env);
10231 		state->callback_subprogno = subprogno;
10232 		return;
10233 	}
10234 
10235 	if (!state->fit_for_inline)
10236 		return;
10237 
10238 	state->fit_for_inline = (loop_flag_is_zero(env) &&
10239 				 state->callback_subprogno == subprogno);
10240 }
10241 
10242 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10243 			     int *insn_idx_p)
10244 {
10245 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
10246 	bool returns_cpu_specific_alloc_ptr = false;
10247 	const struct bpf_func_proto *fn = NULL;
10248 	enum bpf_return_type ret_type;
10249 	enum bpf_type_flag ret_flag;
10250 	struct bpf_reg_state *regs;
10251 	struct bpf_call_arg_meta meta;
10252 	int insn_idx = *insn_idx_p;
10253 	bool changes_data;
10254 	int i, err, func_id;
10255 
10256 	/* find function prototype */
10257 	func_id = insn->imm;
10258 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
10259 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
10260 			func_id);
10261 		return -EINVAL;
10262 	}
10263 
10264 	if (env->ops->get_func_proto)
10265 		fn = env->ops->get_func_proto(func_id, env->prog);
10266 	if (!fn) {
10267 		verbose(env, "program of this type cannot use helper %s#%d\n",
10268 			func_id_name(func_id), func_id);
10269 		return -EINVAL;
10270 	}
10271 
10272 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
10273 	if (!env->prog->gpl_compatible && fn->gpl_only) {
10274 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
10275 		return -EINVAL;
10276 	}
10277 
10278 	if (fn->allowed && !fn->allowed(env->prog)) {
10279 		verbose(env, "helper call is not allowed in probe\n");
10280 		return -EINVAL;
10281 	}
10282 
10283 	if (!in_sleepable(env) && fn->might_sleep) {
10284 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
10285 		return -EINVAL;
10286 	}
10287 
10288 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
10289 	changes_data = bpf_helper_changes_pkt_data(fn->func);
10290 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
10291 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
10292 			func_id_name(func_id), func_id);
10293 		return -EINVAL;
10294 	}
10295 
10296 	memset(&meta, 0, sizeof(meta));
10297 	meta.pkt_access = fn->pkt_access;
10298 
10299 	err = check_func_proto(fn, func_id);
10300 	if (err) {
10301 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
10302 			func_id_name(func_id), func_id);
10303 		return err;
10304 	}
10305 
10306 	if (env->cur_state->active_rcu_lock) {
10307 		if (fn->might_sleep) {
10308 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
10309 				func_id_name(func_id), func_id);
10310 			return -EINVAL;
10311 		}
10312 
10313 		if (in_sleepable(env) && is_storage_get_function(func_id))
10314 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10315 	}
10316 
10317 	if (env->cur_state->active_preempt_lock) {
10318 		if (fn->might_sleep) {
10319 			verbose(env, "sleepable helper %s#%d in non-preemptible region\n",
10320 				func_id_name(func_id), func_id);
10321 			return -EINVAL;
10322 		}
10323 
10324 		if (in_sleepable(env) && is_storage_get_function(func_id))
10325 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10326 	}
10327 
10328 	meta.func_id = func_id;
10329 	/* check args */
10330 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
10331 		err = check_func_arg(env, i, &meta, fn, insn_idx);
10332 		if (err)
10333 			return err;
10334 	}
10335 
10336 	err = record_func_map(env, &meta, func_id, insn_idx);
10337 	if (err)
10338 		return err;
10339 
10340 	err = record_func_key(env, &meta, func_id, insn_idx);
10341 	if (err)
10342 		return err;
10343 
10344 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
10345 	 * is inferred from register state.
10346 	 */
10347 	for (i = 0; i < meta.access_size; i++) {
10348 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
10349 				       BPF_WRITE, -1, false, false);
10350 		if (err)
10351 			return err;
10352 	}
10353 
10354 	regs = cur_regs(env);
10355 
10356 	if (meta.release_regno) {
10357 		err = -EINVAL;
10358 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
10359 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
10360 		 * is safe to do directly.
10361 		 */
10362 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
10363 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
10364 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
10365 				return -EFAULT;
10366 			}
10367 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
10368 		} else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) {
10369 			u32 ref_obj_id = meta.ref_obj_id;
10370 			bool in_rcu = in_rcu_cs(env);
10371 			struct bpf_func_state *state;
10372 			struct bpf_reg_state *reg;
10373 
10374 			err = release_reference_state(cur_func(env), ref_obj_id);
10375 			if (!err) {
10376 				bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
10377 					if (reg->ref_obj_id == ref_obj_id) {
10378 						if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) {
10379 							reg->ref_obj_id = 0;
10380 							reg->type &= ~MEM_ALLOC;
10381 							reg->type |= MEM_RCU;
10382 						} else {
10383 							mark_reg_invalid(env, reg);
10384 						}
10385 					}
10386 				}));
10387 			}
10388 		} else if (meta.ref_obj_id) {
10389 			err = release_reference(env, meta.ref_obj_id);
10390 		} else if (register_is_null(&regs[meta.release_regno])) {
10391 			/* meta.ref_obj_id can only be 0 if register that is meant to be
10392 			 * released is NULL, which must be > R0.
10393 			 */
10394 			err = 0;
10395 		}
10396 		if (err) {
10397 			verbose(env, "func %s#%d reference has not been acquired before\n",
10398 				func_id_name(func_id), func_id);
10399 			return err;
10400 		}
10401 	}
10402 
10403 	switch (func_id) {
10404 	case BPF_FUNC_tail_call:
10405 		err = check_reference_leak(env, false);
10406 		if (err) {
10407 			verbose(env, "tail_call would lead to reference leak\n");
10408 			return err;
10409 		}
10410 		break;
10411 	case BPF_FUNC_get_local_storage:
10412 		/* check that flags argument in get_local_storage(map, flags) is 0,
10413 		 * this is required because get_local_storage() can't return an error.
10414 		 */
10415 		if (!register_is_null(&regs[BPF_REG_2])) {
10416 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
10417 			return -EINVAL;
10418 		}
10419 		break;
10420 	case BPF_FUNC_for_each_map_elem:
10421 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10422 					 set_map_elem_callback_state);
10423 		break;
10424 	case BPF_FUNC_timer_set_callback:
10425 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10426 					 set_timer_callback_state);
10427 		break;
10428 	case BPF_FUNC_find_vma:
10429 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10430 					 set_find_vma_callback_state);
10431 		break;
10432 	case BPF_FUNC_snprintf:
10433 		err = check_bpf_snprintf_call(env, regs);
10434 		break;
10435 	case BPF_FUNC_loop:
10436 		update_loop_inline_state(env, meta.subprogno);
10437 		/* Verifier relies on R1 value to determine if bpf_loop() iteration
10438 		 * is finished, thus mark it precise.
10439 		 */
10440 		err = mark_chain_precision(env, BPF_REG_1);
10441 		if (err)
10442 			return err;
10443 		if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) {
10444 			err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10445 						 set_loop_callback_state);
10446 		} else {
10447 			cur_func(env)->callback_depth = 0;
10448 			if (env->log.level & BPF_LOG_LEVEL2)
10449 				verbose(env, "frame%d bpf_loop iteration limit reached\n",
10450 					env->cur_state->curframe);
10451 		}
10452 		break;
10453 	case BPF_FUNC_dynptr_from_mem:
10454 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
10455 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
10456 				reg_type_str(env, regs[BPF_REG_1].type));
10457 			return -EACCES;
10458 		}
10459 		break;
10460 	case BPF_FUNC_set_retval:
10461 		if (prog_type == BPF_PROG_TYPE_LSM &&
10462 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
10463 			if (!env->prog->aux->attach_func_proto->type) {
10464 				/* Make sure programs that attach to void
10465 				 * hooks don't try to modify return value.
10466 				 */
10467 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10468 				return -EINVAL;
10469 			}
10470 		}
10471 		break;
10472 	case BPF_FUNC_dynptr_data:
10473 	{
10474 		struct bpf_reg_state *reg;
10475 		int id, ref_obj_id;
10476 
10477 		reg = get_dynptr_arg_reg(env, fn, regs);
10478 		if (!reg)
10479 			return -EFAULT;
10480 
10481 
10482 		if (meta.dynptr_id) {
10483 			verbose(env, "verifier internal error: meta.dynptr_id already set\n");
10484 			return -EFAULT;
10485 		}
10486 		if (meta.ref_obj_id) {
10487 			verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
10488 			return -EFAULT;
10489 		}
10490 
10491 		id = dynptr_id(env, reg);
10492 		if (id < 0) {
10493 			verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10494 			return id;
10495 		}
10496 
10497 		ref_obj_id = dynptr_ref_obj_id(env, reg);
10498 		if (ref_obj_id < 0) {
10499 			verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
10500 			return ref_obj_id;
10501 		}
10502 
10503 		meta.dynptr_id = id;
10504 		meta.ref_obj_id = ref_obj_id;
10505 
10506 		break;
10507 	}
10508 	case BPF_FUNC_dynptr_write:
10509 	{
10510 		enum bpf_dynptr_type dynptr_type;
10511 		struct bpf_reg_state *reg;
10512 
10513 		reg = get_dynptr_arg_reg(env, fn, regs);
10514 		if (!reg)
10515 			return -EFAULT;
10516 
10517 		dynptr_type = dynptr_get_type(env, reg);
10518 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
10519 			return -EFAULT;
10520 
10521 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
10522 			/* this will trigger clear_all_pkt_pointers(), which will
10523 			 * invalidate all dynptr slices associated with the skb
10524 			 */
10525 			changes_data = true;
10526 
10527 		break;
10528 	}
10529 	case BPF_FUNC_per_cpu_ptr:
10530 	case BPF_FUNC_this_cpu_ptr:
10531 	{
10532 		struct bpf_reg_state *reg = &regs[BPF_REG_1];
10533 		const struct btf_type *type;
10534 
10535 		if (reg->type & MEM_RCU) {
10536 			type = btf_type_by_id(reg->btf, reg->btf_id);
10537 			if (!type || !btf_type_is_struct(type)) {
10538 				verbose(env, "Helper has invalid btf/btf_id in R1\n");
10539 				return -EFAULT;
10540 			}
10541 			returns_cpu_specific_alloc_ptr = true;
10542 			env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true;
10543 		}
10544 		break;
10545 	}
10546 	case BPF_FUNC_user_ringbuf_drain:
10547 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10548 					 set_user_ringbuf_callback_state);
10549 		break;
10550 	}
10551 
10552 	if (err)
10553 		return err;
10554 
10555 	/* reset caller saved regs */
10556 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
10557 		mark_reg_not_init(env, regs, caller_saved[i]);
10558 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10559 	}
10560 
10561 	/* helper call returns 64-bit value. */
10562 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10563 
10564 	/* update return register (already marked as written above) */
10565 	ret_type = fn->ret_type;
10566 	ret_flag = type_flag(ret_type);
10567 
10568 	switch (base_type(ret_type)) {
10569 	case RET_INTEGER:
10570 		/* sets type to SCALAR_VALUE */
10571 		mark_reg_unknown(env, regs, BPF_REG_0);
10572 		break;
10573 	case RET_VOID:
10574 		regs[BPF_REG_0].type = NOT_INIT;
10575 		break;
10576 	case RET_PTR_TO_MAP_VALUE:
10577 		/* There is no offset yet applied, variable or fixed */
10578 		mark_reg_known_zero(env, regs, BPF_REG_0);
10579 		/* remember map_ptr, so that check_map_access()
10580 		 * can check 'value_size' boundary of memory access
10581 		 * to map element returned from bpf_map_lookup_elem()
10582 		 */
10583 		if (meta.map_ptr == NULL) {
10584 			verbose(env,
10585 				"kernel subsystem misconfigured verifier\n");
10586 			return -EINVAL;
10587 		}
10588 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
10589 		regs[BPF_REG_0].map_uid = meta.map_uid;
10590 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
10591 		if (!type_may_be_null(ret_type) &&
10592 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
10593 			regs[BPF_REG_0].id = ++env->id_gen;
10594 		}
10595 		break;
10596 	case RET_PTR_TO_SOCKET:
10597 		mark_reg_known_zero(env, regs, BPF_REG_0);
10598 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
10599 		break;
10600 	case RET_PTR_TO_SOCK_COMMON:
10601 		mark_reg_known_zero(env, regs, BPF_REG_0);
10602 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
10603 		break;
10604 	case RET_PTR_TO_TCP_SOCK:
10605 		mark_reg_known_zero(env, regs, BPF_REG_0);
10606 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
10607 		break;
10608 	case RET_PTR_TO_MEM:
10609 		mark_reg_known_zero(env, regs, BPF_REG_0);
10610 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10611 		regs[BPF_REG_0].mem_size = meta.mem_size;
10612 		break;
10613 	case RET_PTR_TO_MEM_OR_BTF_ID:
10614 	{
10615 		const struct btf_type *t;
10616 
10617 		mark_reg_known_zero(env, regs, BPF_REG_0);
10618 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
10619 		if (!btf_type_is_struct(t)) {
10620 			u32 tsize;
10621 			const struct btf_type *ret;
10622 			const char *tname;
10623 
10624 			/* resolve the type size of ksym. */
10625 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
10626 			if (IS_ERR(ret)) {
10627 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
10628 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
10629 					tname, PTR_ERR(ret));
10630 				return -EINVAL;
10631 			}
10632 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10633 			regs[BPF_REG_0].mem_size = tsize;
10634 		} else {
10635 			if (returns_cpu_specific_alloc_ptr) {
10636 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU;
10637 			} else {
10638 				/* MEM_RDONLY may be carried from ret_flag, but it
10639 				 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
10640 				 * it will confuse the check of PTR_TO_BTF_ID in
10641 				 * check_mem_access().
10642 				 */
10643 				ret_flag &= ~MEM_RDONLY;
10644 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10645 			}
10646 
10647 			regs[BPF_REG_0].btf = meta.ret_btf;
10648 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
10649 		}
10650 		break;
10651 	}
10652 	case RET_PTR_TO_BTF_ID:
10653 	{
10654 		struct btf *ret_btf;
10655 		int ret_btf_id;
10656 
10657 		mark_reg_known_zero(env, regs, BPF_REG_0);
10658 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10659 		if (func_id == BPF_FUNC_kptr_xchg) {
10660 			ret_btf = meta.kptr_field->kptr.btf;
10661 			ret_btf_id = meta.kptr_field->kptr.btf_id;
10662 			if (!btf_is_kernel(ret_btf)) {
10663 				regs[BPF_REG_0].type |= MEM_ALLOC;
10664 				if (meta.kptr_field->type == BPF_KPTR_PERCPU)
10665 					regs[BPF_REG_0].type |= MEM_PERCPU;
10666 			}
10667 		} else {
10668 			if (fn->ret_btf_id == BPF_PTR_POISON) {
10669 				verbose(env, "verifier internal error:");
10670 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
10671 					func_id_name(func_id));
10672 				return -EINVAL;
10673 			}
10674 			ret_btf = btf_vmlinux;
10675 			ret_btf_id = *fn->ret_btf_id;
10676 		}
10677 		if (ret_btf_id == 0) {
10678 			verbose(env, "invalid return type %u of func %s#%d\n",
10679 				base_type(ret_type), func_id_name(func_id),
10680 				func_id);
10681 			return -EINVAL;
10682 		}
10683 		regs[BPF_REG_0].btf = ret_btf;
10684 		regs[BPF_REG_0].btf_id = ret_btf_id;
10685 		break;
10686 	}
10687 	default:
10688 		verbose(env, "unknown return type %u of func %s#%d\n",
10689 			base_type(ret_type), func_id_name(func_id), func_id);
10690 		return -EINVAL;
10691 	}
10692 
10693 	if (type_may_be_null(regs[BPF_REG_0].type))
10694 		regs[BPF_REG_0].id = ++env->id_gen;
10695 
10696 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
10697 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
10698 			func_id_name(func_id), func_id);
10699 		return -EFAULT;
10700 	}
10701 
10702 	if (is_dynptr_ref_function(func_id))
10703 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
10704 
10705 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
10706 		/* For release_reference() */
10707 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
10708 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
10709 		int id = acquire_reference_state(env, insn_idx);
10710 
10711 		if (id < 0)
10712 			return id;
10713 		/* For mark_ptr_or_null_reg() */
10714 		regs[BPF_REG_0].id = id;
10715 		/* For release_reference() */
10716 		regs[BPF_REG_0].ref_obj_id = id;
10717 	}
10718 
10719 	err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta);
10720 	if (err)
10721 		return err;
10722 
10723 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
10724 	if (err)
10725 		return err;
10726 
10727 	if ((func_id == BPF_FUNC_get_stack ||
10728 	     func_id == BPF_FUNC_get_task_stack) &&
10729 	    !env->prog->has_callchain_buf) {
10730 		const char *err_str;
10731 
10732 #ifdef CONFIG_PERF_EVENTS
10733 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
10734 		err_str = "cannot get callchain buffer for func %s#%d\n";
10735 #else
10736 		err = -ENOTSUPP;
10737 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
10738 #endif
10739 		if (err) {
10740 			verbose(env, err_str, func_id_name(func_id), func_id);
10741 			return err;
10742 		}
10743 
10744 		env->prog->has_callchain_buf = true;
10745 	}
10746 
10747 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
10748 		env->prog->call_get_stack = true;
10749 
10750 	if (func_id == BPF_FUNC_get_func_ip) {
10751 		if (check_get_func_ip(env))
10752 			return -ENOTSUPP;
10753 		env->prog->call_get_func_ip = true;
10754 	}
10755 
10756 	if (changes_data)
10757 		clear_all_pkt_pointers(env);
10758 	return 0;
10759 }
10760 
10761 /* mark_btf_func_reg_size() is used when the reg size is determined by
10762  * the BTF func_proto's return value size and argument.
10763  */
10764 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
10765 				   size_t reg_size)
10766 {
10767 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
10768 
10769 	if (regno == BPF_REG_0) {
10770 		/* Function return value */
10771 		reg->live |= REG_LIVE_WRITTEN;
10772 		reg->subreg_def = reg_size == sizeof(u64) ?
10773 			DEF_NOT_SUBREG : env->insn_idx + 1;
10774 	} else {
10775 		/* Function argument */
10776 		if (reg_size == sizeof(u64)) {
10777 			mark_insn_zext(env, reg);
10778 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
10779 		} else {
10780 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
10781 		}
10782 	}
10783 }
10784 
10785 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10786 {
10787 	return meta->kfunc_flags & KF_ACQUIRE;
10788 }
10789 
10790 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10791 {
10792 	return meta->kfunc_flags & KF_RELEASE;
10793 }
10794 
10795 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10796 {
10797 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10798 }
10799 
10800 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10801 {
10802 	return meta->kfunc_flags & KF_SLEEPABLE;
10803 }
10804 
10805 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10806 {
10807 	return meta->kfunc_flags & KF_DESTRUCTIVE;
10808 }
10809 
10810 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10811 {
10812 	return meta->kfunc_flags & KF_RCU;
10813 }
10814 
10815 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta)
10816 {
10817 	return meta->kfunc_flags & KF_RCU_PROTECTED;
10818 }
10819 
10820 static bool is_kfunc_arg_mem_size(const struct btf *btf,
10821 				  const struct btf_param *arg,
10822 				  const struct bpf_reg_state *reg)
10823 {
10824 	const struct btf_type *t;
10825 
10826 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10827 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10828 		return false;
10829 
10830 	return btf_param_match_suffix(btf, arg, "__sz");
10831 }
10832 
10833 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
10834 					const struct btf_param *arg,
10835 					const struct bpf_reg_state *reg)
10836 {
10837 	const struct btf_type *t;
10838 
10839 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10840 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10841 		return false;
10842 
10843 	return btf_param_match_suffix(btf, arg, "__szk");
10844 }
10845 
10846 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
10847 {
10848 	return btf_param_match_suffix(btf, arg, "__opt");
10849 }
10850 
10851 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
10852 {
10853 	return btf_param_match_suffix(btf, arg, "__k");
10854 }
10855 
10856 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
10857 {
10858 	return btf_param_match_suffix(btf, arg, "__ign");
10859 }
10860 
10861 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg)
10862 {
10863 	return btf_param_match_suffix(btf, arg, "__map");
10864 }
10865 
10866 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
10867 {
10868 	return btf_param_match_suffix(btf, arg, "__alloc");
10869 }
10870 
10871 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
10872 {
10873 	return btf_param_match_suffix(btf, arg, "__uninit");
10874 }
10875 
10876 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
10877 {
10878 	return btf_param_match_suffix(btf, arg, "__refcounted_kptr");
10879 }
10880 
10881 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg)
10882 {
10883 	return btf_param_match_suffix(btf, arg, "__nullable");
10884 }
10885 
10886 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg)
10887 {
10888 	return btf_param_match_suffix(btf, arg, "__str");
10889 }
10890 
10891 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
10892 					  const struct btf_param *arg,
10893 					  const char *name)
10894 {
10895 	int len, target_len = strlen(name);
10896 	const char *param_name;
10897 
10898 	param_name = btf_name_by_offset(btf, arg->name_off);
10899 	if (str_is_empty(param_name))
10900 		return false;
10901 	len = strlen(param_name);
10902 	if (len != target_len)
10903 		return false;
10904 	if (strcmp(param_name, name))
10905 		return false;
10906 
10907 	return true;
10908 }
10909 
10910 enum {
10911 	KF_ARG_DYNPTR_ID,
10912 	KF_ARG_LIST_HEAD_ID,
10913 	KF_ARG_LIST_NODE_ID,
10914 	KF_ARG_RB_ROOT_ID,
10915 	KF_ARG_RB_NODE_ID,
10916 	KF_ARG_WORKQUEUE_ID,
10917 };
10918 
10919 BTF_ID_LIST(kf_arg_btf_ids)
10920 BTF_ID(struct, bpf_dynptr_kern)
10921 BTF_ID(struct, bpf_list_head)
10922 BTF_ID(struct, bpf_list_node)
10923 BTF_ID(struct, bpf_rb_root)
10924 BTF_ID(struct, bpf_rb_node)
10925 BTF_ID(struct, bpf_wq)
10926 
10927 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
10928 				    const struct btf_param *arg, int type)
10929 {
10930 	const struct btf_type *t;
10931 	u32 res_id;
10932 
10933 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10934 	if (!t)
10935 		return false;
10936 	if (!btf_type_is_ptr(t))
10937 		return false;
10938 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
10939 	if (!t)
10940 		return false;
10941 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
10942 }
10943 
10944 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
10945 {
10946 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
10947 }
10948 
10949 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
10950 {
10951 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
10952 }
10953 
10954 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
10955 {
10956 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
10957 }
10958 
10959 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
10960 {
10961 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
10962 }
10963 
10964 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
10965 {
10966 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
10967 }
10968 
10969 static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg)
10970 {
10971 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID);
10972 }
10973 
10974 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
10975 				  const struct btf_param *arg)
10976 {
10977 	const struct btf_type *t;
10978 
10979 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
10980 	if (!t)
10981 		return false;
10982 
10983 	return true;
10984 }
10985 
10986 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
10987 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
10988 					const struct btf *btf,
10989 					const struct btf_type *t, int rec)
10990 {
10991 	const struct btf_type *member_type;
10992 	const struct btf_member *member;
10993 	u32 i;
10994 
10995 	if (!btf_type_is_struct(t))
10996 		return false;
10997 
10998 	for_each_member(i, t, member) {
10999 		const struct btf_array *array;
11000 
11001 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
11002 		if (btf_type_is_struct(member_type)) {
11003 			if (rec >= 3) {
11004 				verbose(env, "max struct nesting depth exceeded\n");
11005 				return false;
11006 			}
11007 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
11008 				return false;
11009 			continue;
11010 		}
11011 		if (btf_type_is_array(member_type)) {
11012 			array = btf_array(member_type);
11013 			if (!array->nelems)
11014 				return false;
11015 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
11016 			if (!btf_type_is_scalar(member_type))
11017 				return false;
11018 			continue;
11019 		}
11020 		if (!btf_type_is_scalar(member_type))
11021 			return false;
11022 	}
11023 	return true;
11024 }
11025 
11026 enum kfunc_ptr_arg_type {
11027 	KF_ARG_PTR_TO_CTX,
11028 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
11029 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
11030 	KF_ARG_PTR_TO_DYNPTR,
11031 	KF_ARG_PTR_TO_ITER,
11032 	KF_ARG_PTR_TO_LIST_HEAD,
11033 	KF_ARG_PTR_TO_LIST_NODE,
11034 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
11035 	KF_ARG_PTR_TO_MEM,
11036 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
11037 	KF_ARG_PTR_TO_CALLBACK,
11038 	KF_ARG_PTR_TO_RB_ROOT,
11039 	KF_ARG_PTR_TO_RB_NODE,
11040 	KF_ARG_PTR_TO_NULL,
11041 	KF_ARG_PTR_TO_CONST_STR,
11042 	KF_ARG_PTR_TO_MAP,
11043 	KF_ARG_PTR_TO_WORKQUEUE,
11044 };
11045 
11046 enum special_kfunc_type {
11047 	KF_bpf_obj_new_impl,
11048 	KF_bpf_obj_drop_impl,
11049 	KF_bpf_refcount_acquire_impl,
11050 	KF_bpf_list_push_front_impl,
11051 	KF_bpf_list_push_back_impl,
11052 	KF_bpf_list_pop_front,
11053 	KF_bpf_list_pop_back,
11054 	KF_bpf_cast_to_kern_ctx,
11055 	KF_bpf_rdonly_cast,
11056 	KF_bpf_rcu_read_lock,
11057 	KF_bpf_rcu_read_unlock,
11058 	KF_bpf_rbtree_remove,
11059 	KF_bpf_rbtree_add_impl,
11060 	KF_bpf_rbtree_first,
11061 	KF_bpf_dynptr_from_skb,
11062 	KF_bpf_dynptr_from_xdp,
11063 	KF_bpf_dynptr_slice,
11064 	KF_bpf_dynptr_slice_rdwr,
11065 	KF_bpf_dynptr_clone,
11066 	KF_bpf_percpu_obj_new_impl,
11067 	KF_bpf_percpu_obj_drop_impl,
11068 	KF_bpf_throw,
11069 	KF_bpf_wq_set_callback_impl,
11070 	KF_bpf_preempt_disable,
11071 	KF_bpf_preempt_enable,
11072 	KF_bpf_iter_css_task_new,
11073 	KF_bpf_session_cookie,
11074 };
11075 
11076 BTF_SET_START(special_kfunc_set)
11077 BTF_ID(func, bpf_obj_new_impl)
11078 BTF_ID(func, bpf_obj_drop_impl)
11079 BTF_ID(func, bpf_refcount_acquire_impl)
11080 BTF_ID(func, bpf_list_push_front_impl)
11081 BTF_ID(func, bpf_list_push_back_impl)
11082 BTF_ID(func, bpf_list_pop_front)
11083 BTF_ID(func, bpf_list_pop_back)
11084 BTF_ID(func, bpf_cast_to_kern_ctx)
11085 BTF_ID(func, bpf_rdonly_cast)
11086 BTF_ID(func, bpf_rbtree_remove)
11087 BTF_ID(func, bpf_rbtree_add_impl)
11088 BTF_ID(func, bpf_rbtree_first)
11089 BTF_ID(func, bpf_dynptr_from_skb)
11090 BTF_ID(func, bpf_dynptr_from_xdp)
11091 BTF_ID(func, bpf_dynptr_slice)
11092 BTF_ID(func, bpf_dynptr_slice_rdwr)
11093 BTF_ID(func, bpf_dynptr_clone)
11094 BTF_ID(func, bpf_percpu_obj_new_impl)
11095 BTF_ID(func, bpf_percpu_obj_drop_impl)
11096 BTF_ID(func, bpf_throw)
11097 BTF_ID(func, bpf_wq_set_callback_impl)
11098 #ifdef CONFIG_CGROUPS
11099 BTF_ID(func, bpf_iter_css_task_new)
11100 #endif
11101 BTF_SET_END(special_kfunc_set)
11102 
11103 BTF_ID_LIST(special_kfunc_list)
11104 BTF_ID(func, bpf_obj_new_impl)
11105 BTF_ID(func, bpf_obj_drop_impl)
11106 BTF_ID(func, bpf_refcount_acquire_impl)
11107 BTF_ID(func, bpf_list_push_front_impl)
11108 BTF_ID(func, bpf_list_push_back_impl)
11109 BTF_ID(func, bpf_list_pop_front)
11110 BTF_ID(func, bpf_list_pop_back)
11111 BTF_ID(func, bpf_cast_to_kern_ctx)
11112 BTF_ID(func, bpf_rdonly_cast)
11113 BTF_ID(func, bpf_rcu_read_lock)
11114 BTF_ID(func, bpf_rcu_read_unlock)
11115 BTF_ID(func, bpf_rbtree_remove)
11116 BTF_ID(func, bpf_rbtree_add_impl)
11117 BTF_ID(func, bpf_rbtree_first)
11118 BTF_ID(func, bpf_dynptr_from_skb)
11119 BTF_ID(func, bpf_dynptr_from_xdp)
11120 BTF_ID(func, bpf_dynptr_slice)
11121 BTF_ID(func, bpf_dynptr_slice_rdwr)
11122 BTF_ID(func, bpf_dynptr_clone)
11123 BTF_ID(func, bpf_percpu_obj_new_impl)
11124 BTF_ID(func, bpf_percpu_obj_drop_impl)
11125 BTF_ID(func, bpf_throw)
11126 BTF_ID(func, bpf_wq_set_callback_impl)
11127 BTF_ID(func, bpf_preempt_disable)
11128 BTF_ID(func, bpf_preempt_enable)
11129 #ifdef CONFIG_CGROUPS
11130 BTF_ID(func, bpf_iter_css_task_new)
11131 #else
11132 BTF_ID_UNUSED
11133 #endif
11134 #ifdef CONFIG_BPF_EVENTS
11135 BTF_ID(func, bpf_session_cookie)
11136 #else
11137 BTF_ID_UNUSED
11138 #endif
11139 
11140 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
11141 {
11142 	if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
11143 	    meta->arg_owning_ref) {
11144 		return false;
11145 	}
11146 
11147 	return meta->kfunc_flags & KF_RET_NULL;
11148 }
11149 
11150 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
11151 {
11152 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
11153 }
11154 
11155 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
11156 {
11157 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
11158 }
11159 
11160 static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta)
11161 {
11162 	return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable];
11163 }
11164 
11165 static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta)
11166 {
11167 	return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable];
11168 }
11169 
11170 static enum kfunc_ptr_arg_type
11171 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
11172 		       struct bpf_kfunc_call_arg_meta *meta,
11173 		       const struct btf_type *t, const struct btf_type *ref_t,
11174 		       const char *ref_tname, const struct btf_param *args,
11175 		       int argno, int nargs)
11176 {
11177 	u32 regno = argno + 1;
11178 	struct bpf_reg_state *regs = cur_regs(env);
11179 	struct bpf_reg_state *reg = &regs[regno];
11180 	bool arg_mem_size = false;
11181 
11182 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
11183 		return KF_ARG_PTR_TO_CTX;
11184 
11185 	/* In this function, we verify the kfunc's BTF as per the argument type,
11186 	 * leaving the rest of the verification with respect to the register
11187 	 * type to our caller. When a set of conditions hold in the BTF type of
11188 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
11189 	 */
11190 	if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
11191 		return KF_ARG_PTR_TO_CTX;
11192 
11193 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
11194 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
11195 
11196 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
11197 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
11198 
11199 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
11200 		return KF_ARG_PTR_TO_DYNPTR;
11201 
11202 	if (is_kfunc_arg_iter(meta, argno))
11203 		return KF_ARG_PTR_TO_ITER;
11204 
11205 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
11206 		return KF_ARG_PTR_TO_LIST_HEAD;
11207 
11208 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
11209 		return KF_ARG_PTR_TO_LIST_NODE;
11210 
11211 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
11212 		return KF_ARG_PTR_TO_RB_ROOT;
11213 
11214 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
11215 		return KF_ARG_PTR_TO_RB_NODE;
11216 
11217 	if (is_kfunc_arg_const_str(meta->btf, &args[argno]))
11218 		return KF_ARG_PTR_TO_CONST_STR;
11219 
11220 	if (is_kfunc_arg_map(meta->btf, &args[argno]))
11221 		return KF_ARG_PTR_TO_MAP;
11222 
11223 	if (is_kfunc_arg_wq(meta->btf, &args[argno]))
11224 		return KF_ARG_PTR_TO_WORKQUEUE;
11225 
11226 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
11227 		if (!btf_type_is_struct(ref_t)) {
11228 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
11229 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
11230 			return -EINVAL;
11231 		}
11232 		return KF_ARG_PTR_TO_BTF_ID;
11233 	}
11234 
11235 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
11236 		return KF_ARG_PTR_TO_CALLBACK;
11237 
11238 	if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg))
11239 		return KF_ARG_PTR_TO_NULL;
11240 
11241 	if (argno + 1 < nargs &&
11242 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
11243 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
11244 		arg_mem_size = true;
11245 
11246 	/* This is the catch all argument type of register types supported by
11247 	 * check_helper_mem_access. However, we only allow when argument type is
11248 	 * pointer to scalar, or struct composed (recursively) of scalars. When
11249 	 * arg_mem_size is true, the pointer can be void *.
11250 	 */
11251 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
11252 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
11253 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
11254 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
11255 		return -EINVAL;
11256 	}
11257 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
11258 }
11259 
11260 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
11261 					struct bpf_reg_state *reg,
11262 					const struct btf_type *ref_t,
11263 					const char *ref_tname, u32 ref_id,
11264 					struct bpf_kfunc_call_arg_meta *meta,
11265 					int argno)
11266 {
11267 	const struct btf_type *reg_ref_t;
11268 	bool strict_type_match = false;
11269 	const struct btf *reg_btf;
11270 	const char *reg_ref_tname;
11271 	u32 reg_ref_id;
11272 
11273 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
11274 		reg_btf = reg->btf;
11275 		reg_ref_id = reg->btf_id;
11276 	} else {
11277 		reg_btf = btf_vmlinux;
11278 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
11279 	}
11280 
11281 	/* Enforce strict type matching for calls to kfuncs that are acquiring
11282 	 * or releasing a reference, or are no-cast aliases. We do _not_
11283 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
11284 	 * as we want to enable BPF programs to pass types that are bitwise
11285 	 * equivalent without forcing them to explicitly cast with something
11286 	 * like bpf_cast_to_kern_ctx().
11287 	 *
11288 	 * For example, say we had a type like the following:
11289 	 *
11290 	 * struct bpf_cpumask {
11291 	 *	cpumask_t cpumask;
11292 	 *	refcount_t usage;
11293 	 * };
11294 	 *
11295 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
11296 	 * to a struct cpumask, so it would be safe to pass a struct
11297 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
11298 	 *
11299 	 * The philosophy here is similar to how we allow scalars of different
11300 	 * types to be passed to kfuncs as long as the size is the same. The
11301 	 * only difference here is that we're simply allowing
11302 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
11303 	 * resolve types.
11304 	 */
11305 	if (is_kfunc_acquire(meta) ||
11306 	    (is_kfunc_release(meta) && reg->ref_obj_id) ||
11307 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
11308 		strict_type_match = true;
11309 
11310 	WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
11311 
11312 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
11313 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
11314 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
11315 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
11316 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
11317 			btf_type_str(reg_ref_t), reg_ref_tname);
11318 		return -EINVAL;
11319 	}
11320 	return 0;
11321 }
11322 
11323 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11324 {
11325 	struct bpf_verifier_state *state = env->cur_state;
11326 	struct btf_record *rec = reg_btf_record(reg);
11327 
11328 	if (!state->active_lock.ptr) {
11329 		verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
11330 		return -EFAULT;
11331 	}
11332 
11333 	if (type_flag(reg->type) & NON_OWN_REF) {
11334 		verbose(env, "verifier internal error: NON_OWN_REF already set\n");
11335 		return -EFAULT;
11336 	}
11337 
11338 	reg->type |= NON_OWN_REF;
11339 	if (rec->refcount_off >= 0)
11340 		reg->type |= MEM_RCU;
11341 
11342 	return 0;
11343 }
11344 
11345 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
11346 {
11347 	struct bpf_func_state *state, *unused;
11348 	struct bpf_reg_state *reg;
11349 	int i;
11350 
11351 	state = cur_func(env);
11352 
11353 	if (!ref_obj_id) {
11354 		verbose(env, "verifier internal error: ref_obj_id is zero for "
11355 			     "owning -> non-owning conversion\n");
11356 		return -EFAULT;
11357 	}
11358 
11359 	for (i = 0; i < state->acquired_refs; i++) {
11360 		if (state->refs[i].id != ref_obj_id)
11361 			continue;
11362 
11363 		/* Clear ref_obj_id here so release_reference doesn't clobber
11364 		 * the whole reg
11365 		 */
11366 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
11367 			if (reg->ref_obj_id == ref_obj_id) {
11368 				reg->ref_obj_id = 0;
11369 				ref_set_non_owning(env, reg);
11370 			}
11371 		}));
11372 		return 0;
11373 	}
11374 
11375 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
11376 	return -EFAULT;
11377 }
11378 
11379 /* Implementation details:
11380  *
11381  * Each register points to some region of memory, which we define as an
11382  * allocation. Each allocation may embed a bpf_spin_lock which protects any
11383  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
11384  * allocation. The lock and the data it protects are colocated in the same
11385  * memory region.
11386  *
11387  * Hence, everytime a register holds a pointer value pointing to such
11388  * allocation, the verifier preserves a unique reg->id for it.
11389  *
11390  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
11391  * bpf_spin_lock is called.
11392  *
11393  * To enable this, lock state in the verifier captures two values:
11394  *	active_lock.ptr = Register's type specific pointer
11395  *	active_lock.id  = A unique ID for each register pointer value
11396  *
11397  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
11398  * supported register types.
11399  *
11400  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
11401  * allocated objects is the reg->btf pointer.
11402  *
11403  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
11404  * can establish the provenance of the map value statically for each distinct
11405  * lookup into such maps. They always contain a single map value hence unique
11406  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
11407  *
11408  * So, in case of global variables, they use array maps with max_entries = 1,
11409  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
11410  * into the same map value as max_entries is 1, as described above).
11411  *
11412  * In case of inner map lookups, the inner map pointer has same map_ptr as the
11413  * outer map pointer (in verifier context), but each lookup into an inner map
11414  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
11415  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
11416  * will get different reg->id assigned to each lookup, hence different
11417  * active_lock.id.
11418  *
11419  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
11420  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
11421  * returned from bpf_obj_new. Each allocation receives a new reg->id.
11422  */
11423 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11424 {
11425 	void *ptr;
11426 	u32 id;
11427 
11428 	switch ((int)reg->type) {
11429 	case PTR_TO_MAP_VALUE:
11430 		ptr = reg->map_ptr;
11431 		break;
11432 	case PTR_TO_BTF_ID | MEM_ALLOC:
11433 		ptr = reg->btf;
11434 		break;
11435 	default:
11436 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
11437 		return -EFAULT;
11438 	}
11439 	id = reg->id;
11440 
11441 	if (!env->cur_state->active_lock.ptr)
11442 		return -EINVAL;
11443 	if (env->cur_state->active_lock.ptr != ptr ||
11444 	    env->cur_state->active_lock.id != id) {
11445 		verbose(env, "held lock and object are not in the same allocation\n");
11446 		return -EINVAL;
11447 	}
11448 	return 0;
11449 }
11450 
11451 static bool is_bpf_list_api_kfunc(u32 btf_id)
11452 {
11453 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11454 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11455 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11456 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
11457 }
11458 
11459 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
11460 {
11461 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
11462 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11463 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first];
11464 }
11465 
11466 static bool is_bpf_graph_api_kfunc(u32 btf_id)
11467 {
11468 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
11469 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
11470 }
11471 
11472 static bool is_sync_callback_calling_kfunc(u32 btf_id)
11473 {
11474 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
11475 }
11476 
11477 static bool is_async_callback_calling_kfunc(u32 btf_id)
11478 {
11479 	return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl];
11480 }
11481 
11482 static bool is_bpf_throw_kfunc(struct bpf_insn *insn)
11483 {
11484 	return bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
11485 	       insn->imm == special_kfunc_list[KF_bpf_throw];
11486 }
11487 
11488 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id)
11489 {
11490 	return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl];
11491 }
11492 
11493 static bool is_callback_calling_kfunc(u32 btf_id)
11494 {
11495 	return is_sync_callback_calling_kfunc(btf_id) ||
11496 	       is_async_callback_calling_kfunc(btf_id);
11497 }
11498 
11499 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
11500 {
11501 	return is_bpf_rbtree_api_kfunc(btf_id);
11502 }
11503 
11504 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
11505 					  enum btf_field_type head_field_type,
11506 					  u32 kfunc_btf_id)
11507 {
11508 	bool ret;
11509 
11510 	switch (head_field_type) {
11511 	case BPF_LIST_HEAD:
11512 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
11513 		break;
11514 	case BPF_RB_ROOT:
11515 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
11516 		break;
11517 	default:
11518 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
11519 			btf_field_type_name(head_field_type));
11520 		return false;
11521 	}
11522 
11523 	if (!ret)
11524 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
11525 			btf_field_type_name(head_field_type));
11526 	return ret;
11527 }
11528 
11529 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
11530 					  enum btf_field_type node_field_type,
11531 					  u32 kfunc_btf_id)
11532 {
11533 	bool ret;
11534 
11535 	switch (node_field_type) {
11536 	case BPF_LIST_NODE:
11537 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11538 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
11539 		break;
11540 	case BPF_RB_NODE:
11541 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11542 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
11543 		break;
11544 	default:
11545 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
11546 			btf_field_type_name(node_field_type));
11547 		return false;
11548 	}
11549 
11550 	if (!ret)
11551 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
11552 			btf_field_type_name(node_field_type));
11553 	return ret;
11554 }
11555 
11556 static int
11557 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
11558 				   struct bpf_reg_state *reg, u32 regno,
11559 				   struct bpf_kfunc_call_arg_meta *meta,
11560 				   enum btf_field_type head_field_type,
11561 				   struct btf_field **head_field)
11562 {
11563 	const char *head_type_name;
11564 	struct btf_field *field;
11565 	struct btf_record *rec;
11566 	u32 head_off;
11567 
11568 	if (meta->btf != btf_vmlinux) {
11569 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11570 		return -EFAULT;
11571 	}
11572 
11573 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
11574 		return -EFAULT;
11575 
11576 	head_type_name = btf_field_type_name(head_field_type);
11577 	if (!tnum_is_const(reg->var_off)) {
11578 		verbose(env,
11579 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11580 			regno, head_type_name);
11581 		return -EINVAL;
11582 	}
11583 
11584 	rec = reg_btf_record(reg);
11585 	head_off = reg->off + reg->var_off.value;
11586 	field = btf_record_find(rec, head_off, head_field_type);
11587 	if (!field) {
11588 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
11589 		return -EINVAL;
11590 	}
11591 
11592 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
11593 	if (check_reg_allocation_locked(env, reg)) {
11594 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
11595 			rec->spin_lock_off, head_type_name);
11596 		return -EINVAL;
11597 	}
11598 
11599 	if (*head_field) {
11600 		verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
11601 		return -EFAULT;
11602 	}
11603 	*head_field = field;
11604 	return 0;
11605 }
11606 
11607 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
11608 					   struct bpf_reg_state *reg, u32 regno,
11609 					   struct bpf_kfunc_call_arg_meta *meta)
11610 {
11611 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
11612 							  &meta->arg_list_head.field);
11613 }
11614 
11615 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
11616 					     struct bpf_reg_state *reg, u32 regno,
11617 					     struct bpf_kfunc_call_arg_meta *meta)
11618 {
11619 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
11620 							  &meta->arg_rbtree_root.field);
11621 }
11622 
11623 static int
11624 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
11625 				   struct bpf_reg_state *reg, u32 regno,
11626 				   struct bpf_kfunc_call_arg_meta *meta,
11627 				   enum btf_field_type head_field_type,
11628 				   enum btf_field_type node_field_type,
11629 				   struct btf_field **node_field)
11630 {
11631 	const char *node_type_name;
11632 	const struct btf_type *et, *t;
11633 	struct btf_field *field;
11634 	u32 node_off;
11635 
11636 	if (meta->btf != btf_vmlinux) {
11637 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11638 		return -EFAULT;
11639 	}
11640 
11641 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
11642 		return -EFAULT;
11643 
11644 	node_type_name = btf_field_type_name(node_field_type);
11645 	if (!tnum_is_const(reg->var_off)) {
11646 		verbose(env,
11647 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11648 			regno, node_type_name);
11649 		return -EINVAL;
11650 	}
11651 
11652 	node_off = reg->off + reg->var_off.value;
11653 	field = reg_find_field_offset(reg, node_off, node_field_type);
11654 	if (!field || field->offset != node_off) {
11655 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
11656 		return -EINVAL;
11657 	}
11658 
11659 	field = *node_field;
11660 
11661 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
11662 	t = btf_type_by_id(reg->btf, reg->btf_id);
11663 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
11664 				  field->graph_root.value_btf_id, true)) {
11665 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
11666 			"in struct %s, but arg is at offset=%d in struct %s\n",
11667 			btf_field_type_name(head_field_type),
11668 			btf_field_type_name(node_field_type),
11669 			field->graph_root.node_offset,
11670 			btf_name_by_offset(field->graph_root.btf, et->name_off),
11671 			node_off, btf_name_by_offset(reg->btf, t->name_off));
11672 		return -EINVAL;
11673 	}
11674 	meta->arg_btf = reg->btf;
11675 	meta->arg_btf_id = reg->btf_id;
11676 
11677 	if (node_off != field->graph_root.node_offset) {
11678 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
11679 			node_off, btf_field_type_name(node_field_type),
11680 			field->graph_root.node_offset,
11681 			btf_name_by_offset(field->graph_root.btf, et->name_off));
11682 		return -EINVAL;
11683 	}
11684 
11685 	return 0;
11686 }
11687 
11688 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
11689 					   struct bpf_reg_state *reg, u32 regno,
11690 					   struct bpf_kfunc_call_arg_meta *meta)
11691 {
11692 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11693 						  BPF_LIST_HEAD, BPF_LIST_NODE,
11694 						  &meta->arg_list_head.field);
11695 }
11696 
11697 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
11698 					     struct bpf_reg_state *reg, u32 regno,
11699 					     struct bpf_kfunc_call_arg_meta *meta)
11700 {
11701 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11702 						  BPF_RB_ROOT, BPF_RB_NODE,
11703 						  &meta->arg_rbtree_root.field);
11704 }
11705 
11706 /*
11707  * css_task iter allowlist is needed to avoid dead locking on css_set_lock.
11708  * LSM hooks and iters (both sleepable and non-sleepable) are safe.
11709  * Any sleepable progs are also safe since bpf_check_attach_target() enforce
11710  * them can only be attached to some specific hook points.
11711  */
11712 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env)
11713 {
11714 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
11715 
11716 	switch (prog_type) {
11717 	case BPF_PROG_TYPE_LSM:
11718 		return true;
11719 	case BPF_PROG_TYPE_TRACING:
11720 		if (env->prog->expected_attach_type == BPF_TRACE_ITER)
11721 			return true;
11722 		fallthrough;
11723 	default:
11724 		return in_sleepable(env);
11725 	}
11726 }
11727 
11728 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
11729 			    int insn_idx)
11730 {
11731 	const char *func_name = meta->func_name, *ref_tname;
11732 	const struct btf *btf = meta->btf;
11733 	const struct btf_param *args;
11734 	struct btf_record *rec;
11735 	u32 i, nargs;
11736 	int ret;
11737 
11738 	args = (const struct btf_param *)(meta->func_proto + 1);
11739 	nargs = btf_type_vlen(meta->func_proto);
11740 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
11741 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
11742 			MAX_BPF_FUNC_REG_ARGS);
11743 		return -EINVAL;
11744 	}
11745 
11746 	/* Check that BTF function arguments match actual types that the
11747 	 * verifier sees.
11748 	 */
11749 	for (i = 0; i < nargs; i++) {
11750 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
11751 		const struct btf_type *t, *ref_t, *resolve_ret;
11752 		enum bpf_arg_type arg_type = ARG_DONTCARE;
11753 		u32 regno = i + 1, ref_id, type_size;
11754 		bool is_ret_buf_sz = false;
11755 		int kf_arg_type;
11756 
11757 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
11758 
11759 		if (is_kfunc_arg_ignore(btf, &args[i]))
11760 			continue;
11761 
11762 		if (btf_type_is_scalar(t)) {
11763 			if (reg->type != SCALAR_VALUE) {
11764 				verbose(env, "R%d is not a scalar\n", regno);
11765 				return -EINVAL;
11766 			}
11767 
11768 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
11769 				if (meta->arg_constant.found) {
11770 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11771 					return -EFAULT;
11772 				}
11773 				if (!tnum_is_const(reg->var_off)) {
11774 					verbose(env, "R%d must be a known constant\n", regno);
11775 					return -EINVAL;
11776 				}
11777 				ret = mark_chain_precision(env, regno);
11778 				if (ret < 0)
11779 					return ret;
11780 				meta->arg_constant.found = true;
11781 				meta->arg_constant.value = reg->var_off.value;
11782 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
11783 				meta->r0_rdonly = true;
11784 				is_ret_buf_sz = true;
11785 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
11786 				is_ret_buf_sz = true;
11787 			}
11788 
11789 			if (is_ret_buf_sz) {
11790 				if (meta->r0_size) {
11791 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
11792 					return -EINVAL;
11793 				}
11794 
11795 				if (!tnum_is_const(reg->var_off)) {
11796 					verbose(env, "R%d is not a const\n", regno);
11797 					return -EINVAL;
11798 				}
11799 
11800 				meta->r0_size = reg->var_off.value;
11801 				ret = mark_chain_precision(env, regno);
11802 				if (ret)
11803 					return ret;
11804 			}
11805 			continue;
11806 		}
11807 
11808 		if (!btf_type_is_ptr(t)) {
11809 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
11810 			return -EINVAL;
11811 		}
11812 
11813 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
11814 		    (register_is_null(reg) || type_may_be_null(reg->type)) &&
11815 			!is_kfunc_arg_nullable(meta->btf, &args[i])) {
11816 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
11817 			return -EACCES;
11818 		}
11819 
11820 		if (reg->ref_obj_id) {
11821 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
11822 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
11823 					regno, reg->ref_obj_id,
11824 					meta->ref_obj_id);
11825 				return -EFAULT;
11826 			}
11827 			meta->ref_obj_id = reg->ref_obj_id;
11828 			if (is_kfunc_release(meta))
11829 				meta->release_regno = regno;
11830 		}
11831 
11832 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
11833 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
11834 
11835 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
11836 		if (kf_arg_type < 0)
11837 			return kf_arg_type;
11838 
11839 		switch (kf_arg_type) {
11840 		case KF_ARG_PTR_TO_NULL:
11841 			continue;
11842 		case KF_ARG_PTR_TO_MAP:
11843 			if (!reg->map_ptr) {
11844 				verbose(env, "pointer in R%d isn't map pointer\n", regno);
11845 				return -EINVAL;
11846 			}
11847 			if (meta->map.ptr && reg->map_ptr->record->wq_off >= 0) {
11848 				/* Use map_uid (which is unique id of inner map) to reject:
11849 				 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
11850 				 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
11851 				 * if (inner_map1 && inner_map2) {
11852 				 *     wq = bpf_map_lookup_elem(inner_map1);
11853 				 *     if (wq)
11854 				 *         // mismatch would have been allowed
11855 				 *         bpf_wq_init(wq, inner_map2);
11856 				 * }
11857 				 *
11858 				 * Comparing map_ptr is enough to distinguish normal and outer maps.
11859 				 */
11860 				if (meta->map.ptr != reg->map_ptr ||
11861 				    meta->map.uid != reg->map_uid) {
11862 					verbose(env,
11863 						"workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
11864 						meta->map.uid, reg->map_uid);
11865 					return -EINVAL;
11866 				}
11867 			}
11868 			meta->map.ptr = reg->map_ptr;
11869 			meta->map.uid = reg->map_uid;
11870 			fallthrough;
11871 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11872 		case KF_ARG_PTR_TO_BTF_ID:
11873 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
11874 				break;
11875 
11876 			if (!is_trusted_reg(reg)) {
11877 				if (!is_kfunc_rcu(meta)) {
11878 					verbose(env, "R%d must be referenced or trusted\n", regno);
11879 					return -EINVAL;
11880 				}
11881 				if (!is_rcu_reg(reg)) {
11882 					verbose(env, "R%d must be a rcu pointer\n", regno);
11883 					return -EINVAL;
11884 				}
11885 			}
11886 
11887 			fallthrough;
11888 		case KF_ARG_PTR_TO_CTX:
11889 			/* Trusted arguments have the same offset checks as release arguments */
11890 			arg_type |= OBJ_RELEASE;
11891 			break;
11892 		case KF_ARG_PTR_TO_DYNPTR:
11893 		case KF_ARG_PTR_TO_ITER:
11894 		case KF_ARG_PTR_TO_LIST_HEAD:
11895 		case KF_ARG_PTR_TO_LIST_NODE:
11896 		case KF_ARG_PTR_TO_RB_ROOT:
11897 		case KF_ARG_PTR_TO_RB_NODE:
11898 		case KF_ARG_PTR_TO_MEM:
11899 		case KF_ARG_PTR_TO_MEM_SIZE:
11900 		case KF_ARG_PTR_TO_CALLBACK:
11901 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11902 		case KF_ARG_PTR_TO_CONST_STR:
11903 		case KF_ARG_PTR_TO_WORKQUEUE:
11904 			/* Trusted by default */
11905 			break;
11906 		default:
11907 			WARN_ON_ONCE(1);
11908 			return -EFAULT;
11909 		}
11910 
11911 		if (is_kfunc_release(meta) && reg->ref_obj_id)
11912 			arg_type |= OBJ_RELEASE;
11913 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
11914 		if (ret < 0)
11915 			return ret;
11916 
11917 		switch (kf_arg_type) {
11918 		case KF_ARG_PTR_TO_CTX:
11919 			if (reg->type != PTR_TO_CTX) {
11920 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
11921 				return -EINVAL;
11922 			}
11923 
11924 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11925 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
11926 				if (ret < 0)
11927 					return -EINVAL;
11928 				meta->ret_btf_id  = ret;
11929 			}
11930 			break;
11931 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11932 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
11933 				if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) {
11934 					verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i);
11935 					return -EINVAL;
11936 				}
11937 			} else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) {
11938 				if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
11939 					verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i);
11940 					return -EINVAL;
11941 				}
11942 			} else {
11943 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11944 				return -EINVAL;
11945 			}
11946 			if (!reg->ref_obj_id) {
11947 				verbose(env, "allocated object must be referenced\n");
11948 				return -EINVAL;
11949 			}
11950 			if (meta->btf == btf_vmlinux) {
11951 				meta->arg_btf = reg->btf;
11952 				meta->arg_btf_id = reg->btf_id;
11953 			}
11954 			break;
11955 		case KF_ARG_PTR_TO_DYNPTR:
11956 		{
11957 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
11958 			int clone_ref_obj_id = 0;
11959 
11960 			if (reg->type != PTR_TO_STACK &&
11961 			    reg->type != CONST_PTR_TO_DYNPTR) {
11962 				verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
11963 				return -EINVAL;
11964 			}
11965 
11966 			if (reg->type == CONST_PTR_TO_DYNPTR)
11967 				dynptr_arg_type |= MEM_RDONLY;
11968 
11969 			if (is_kfunc_arg_uninit(btf, &args[i]))
11970 				dynptr_arg_type |= MEM_UNINIT;
11971 
11972 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
11973 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
11974 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
11975 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
11976 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
11977 				   (dynptr_arg_type & MEM_UNINIT)) {
11978 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
11979 
11980 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
11981 					verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
11982 					return -EFAULT;
11983 				}
11984 
11985 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
11986 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
11987 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
11988 					verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
11989 					return -EFAULT;
11990 				}
11991 			}
11992 
11993 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
11994 			if (ret < 0)
11995 				return ret;
11996 
11997 			if (!(dynptr_arg_type & MEM_UNINIT)) {
11998 				int id = dynptr_id(env, reg);
11999 
12000 				if (id < 0) {
12001 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
12002 					return id;
12003 				}
12004 				meta->initialized_dynptr.id = id;
12005 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
12006 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
12007 			}
12008 
12009 			break;
12010 		}
12011 		case KF_ARG_PTR_TO_ITER:
12012 			if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) {
12013 				if (!check_css_task_iter_allowlist(env)) {
12014 					verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n");
12015 					return -EINVAL;
12016 				}
12017 			}
12018 			ret = process_iter_arg(env, regno, insn_idx, meta);
12019 			if (ret < 0)
12020 				return ret;
12021 			break;
12022 		case KF_ARG_PTR_TO_LIST_HEAD:
12023 			if (reg->type != PTR_TO_MAP_VALUE &&
12024 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12025 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
12026 				return -EINVAL;
12027 			}
12028 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
12029 				verbose(env, "allocated object must be referenced\n");
12030 				return -EINVAL;
12031 			}
12032 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
12033 			if (ret < 0)
12034 				return ret;
12035 			break;
12036 		case KF_ARG_PTR_TO_RB_ROOT:
12037 			if (reg->type != PTR_TO_MAP_VALUE &&
12038 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12039 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
12040 				return -EINVAL;
12041 			}
12042 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
12043 				verbose(env, "allocated object must be referenced\n");
12044 				return -EINVAL;
12045 			}
12046 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
12047 			if (ret < 0)
12048 				return ret;
12049 			break;
12050 		case KF_ARG_PTR_TO_LIST_NODE:
12051 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12052 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
12053 				return -EINVAL;
12054 			}
12055 			if (!reg->ref_obj_id) {
12056 				verbose(env, "allocated object must be referenced\n");
12057 				return -EINVAL;
12058 			}
12059 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
12060 			if (ret < 0)
12061 				return ret;
12062 			break;
12063 		case KF_ARG_PTR_TO_RB_NODE:
12064 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
12065 				if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
12066 					verbose(env, "rbtree_remove node input must be non-owning ref\n");
12067 					return -EINVAL;
12068 				}
12069 				if (in_rbtree_lock_required_cb(env)) {
12070 					verbose(env, "rbtree_remove not allowed in rbtree cb\n");
12071 					return -EINVAL;
12072 				}
12073 			} else {
12074 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12075 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
12076 					return -EINVAL;
12077 				}
12078 				if (!reg->ref_obj_id) {
12079 					verbose(env, "allocated object must be referenced\n");
12080 					return -EINVAL;
12081 				}
12082 			}
12083 
12084 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
12085 			if (ret < 0)
12086 				return ret;
12087 			break;
12088 		case KF_ARG_PTR_TO_MAP:
12089 			/* If argument has '__map' suffix expect 'struct bpf_map *' */
12090 			ref_id = *reg2btf_ids[CONST_PTR_TO_MAP];
12091 			ref_t = btf_type_by_id(btf_vmlinux, ref_id);
12092 			ref_tname = btf_name_by_offset(btf, ref_t->name_off);
12093 			fallthrough;
12094 		case KF_ARG_PTR_TO_BTF_ID:
12095 			/* Only base_type is checked, further checks are done here */
12096 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
12097 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
12098 			    !reg2btf_ids[base_type(reg->type)]) {
12099 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
12100 				verbose(env, "expected %s or socket\n",
12101 					reg_type_str(env, base_type(reg->type) |
12102 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
12103 				return -EINVAL;
12104 			}
12105 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
12106 			if (ret < 0)
12107 				return ret;
12108 			break;
12109 		case KF_ARG_PTR_TO_MEM:
12110 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
12111 			if (IS_ERR(resolve_ret)) {
12112 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
12113 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
12114 				return -EINVAL;
12115 			}
12116 			ret = check_mem_reg(env, reg, regno, type_size);
12117 			if (ret < 0)
12118 				return ret;
12119 			break;
12120 		case KF_ARG_PTR_TO_MEM_SIZE:
12121 		{
12122 			struct bpf_reg_state *buff_reg = &regs[regno];
12123 			const struct btf_param *buff_arg = &args[i];
12124 			struct bpf_reg_state *size_reg = &regs[regno + 1];
12125 			const struct btf_param *size_arg = &args[i + 1];
12126 
12127 			if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
12128 				ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
12129 				if (ret < 0) {
12130 					verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
12131 					return ret;
12132 				}
12133 			}
12134 
12135 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
12136 				if (meta->arg_constant.found) {
12137 					verbose(env, "verifier internal error: only one constant argument permitted\n");
12138 					return -EFAULT;
12139 				}
12140 				if (!tnum_is_const(size_reg->var_off)) {
12141 					verbose(env, "R%d must be a known constant\n", regno + 1);
12142 					return -EINVAL;
12143 				}
12144 				meta->arg_constant.found = true;
12145 				meta->arg_constant.value = size_reg->var_off.value;
12146 			}
12147 
12148 			/* Skip next '__sz' or '__szk' argument */
12149 			i++;
12150 			break;
12151 		}
12152 		case KF_ARG_PTR_TO_CALLBACK:
12153 			if (reg->type != PTR_TO_FUNC) {
12154 				verbose(env, "arg%d expected pointer to func\n", i);
12155 				return -EINVAL;
12156 			}
12157 			meta->subprogno = reg->subprogno;
12158 			break;
12159 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
12160 			if (!type_is_ptr_alloc_obj(reg->type)) {
12161 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
12162 				return -EINVAL;
12163 			}
12164 			if (!type_is_non_owning_ref(reg->type))
12165 				meta->arg_owning_ref = true;
12166 
12167 			rec = reg_btf_record(reg);
12168 			if (!rec) {
12169 				verbose(env, "verifier internal error: Couldn't find btf_record\n");
12170 				return -EFAULT;
12171 			}
12172 
12173 			if (rec->refcount_off < 0) {
12174 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
12175 				return -EINVAL;
12176 			}
12177 
12178 			meta->arg_btf = reg->btf;
12179 			meta->arg_btf_id = reg->btf_id;
12180 			break;
12181 		case KF_ARG_PTR_TO_CONST_STR:
12182 			if (reg->type != PTR_TO_MAP_VALUE) {
12183 				verbose(env, "arg#%d doesn't point to a const string\n", i);
12184 				return -EINVAL;
12185 			}
12186 			ret = check_reg_const_str(env, reg, regno);
12187 			if (ret)
12188 				return ret;
12189 			break;
12190 		case KF_ARG_PTR_TO_WORKQUEUE:
12191 			if (reg->type != PTR_TO_MAP_VALUE) {
12192 				verbose(env, "arg#%d doesn't point to a map value\n", i);
12193 				return -EINVAL;
12194 			}
12195 			ret = process_wq_func(env, regno, meta);
12196 			if (ret < 0)
12197 				return ret;
12198 			break;
12199 		}
12200 	}
12201 
12202 	if (is_kfunc_release(meta) && !meta->release_regno) {
12203 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
12204 			func_name);
12205 		return -EINVAL;
12206 	}
12207 
12208 	return 0;
12209 }
12210 
12211 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
12212 			    struct bpf_insn *insn,
12213 			    struct bpf_kfunc_call_arg_meta *meta,
12214 			    const char **kfunc_name)
12215 {
12216 	const struct btf_type *func, *func_proto;
12217 	u32 func_id, *kfunc_flags;
12218 	const char *func_name;
12219 	struct btf *desc_btf;
12220 
12221 	if (kfunc_name)
12222 		*kfunc_name = NULL;
12223 
12224 	if (!insn->imm)
12225 		return -EINVAL;
12226 
12227 	desc_btf = find_kfunc_desc_btf(env, insn->off);
12228 	if (IS_ERR(desc_btf))
12229 		return PTR_ERR(desc_btf);
12230 
12231 	func_id = insn->imm;
12232 	func = btf_type_by_id(desc_btf, func_id);
12233 	func_name = btf_name_by_offset(desc_btf, func->name_off);
12234 	if (kfunc_name)
12235 		*kfunc_name = func_name;
12236 	func_proto = btf_type_by_id(desc_btf, func->type);
12237 
12238 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
12239 	if (!kfunc_flags) {
12240 		return -EACCES;
12241 	}
12242 
12243 	memset(meta, 0, sizeof(*meta));
12244 	meta->btf = desc_btf;
12245 	meta->func_id = func_id;
12246 	meta->kfunc_flags = *kfunc_flags;
12247 	meta->func_proto = func_proto;
12248 	meta->func_name = func_name;
12249 
12250 	return 0;
12251 }
12252 
12253 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name);
12254 
12255 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
12256 			    int *insn_idx_p)
12257 {
12258 	bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable;
12259 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
12260 	struct bpf_reg_state *regs = cur_regs(env);
12261 	const char *func_name, *ptr_type_name;
12262 	const struct btf_type *t, *ptr_type;
12263 	struct bpf_kfunc_call_arg_meta meta;
12264 	struct bpf_insn_aux_data *insn_aux;
12265 	int err, insn_idx = *insn_idx_p;
12266 	const struct btf_param *args;
12267 	const struct btf_type *ret_t;
12268 	struct btf *desc_btf;
12269 
12270 	/* skip for now, but return error when we find this in fixup_kfunc_call */
12271 	if (!insn->imm)
12272 		return 0;
12273 
12274 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
12275 	if (err == -EACCES && func_name)
12276 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
12277 	if (err)
12278 		return err;
12279 	desc_btf = meta.btf;
12280 	insn_aux = &env->insn_aux_data[insn_idx];
12281 
12282 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
12283 
12284 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
12285 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
12286 		return -EACCES;
12287 	}
12288 
12289 	sleepable = is_kfunc_sleepable(&meta);
12290 	if (sleepable && !in_sleepable(env)) {
12291 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
12292 		return -EACCES;
12293 	}
12294 
12295 	/* Check the arguments */
12296 	err = check_kfunc_args(env, &meta, insn_idx);
12297 	if (err < 0)
12298 		return err;
12299 
12300 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
12301 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
12302 					 set_rbtree_add_callback_state);
12303 		if (err) {
12304 			verbose(env, "kfunc %s#%d failed callback verification\n",
12305 				func_name, meta.func_id);
12306 			return err;
12307 		}
12308 	}
12309 
12310 	if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) {
12311 		meta.r0_size = sizeof(u64);
12312 		meta.r0_rdonly = false;
12313 	}
12314 
12315 	if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) {
12316 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
12317 					 set_timer_callback_state);
12318 		if (err) {
12319 			verbose(env, "kfunc %s#%d failed callback verification\n",
12320 				func_name, meta.func_id);
12321 			return err;
12322 		}
12323 	}
12324 
12325 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
12326 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
12327 
12328 	preempt_disable = is_kfunc_bpf_preempt_disable(&meta);
12329 	preempt_enable = is_kfunc_bpf_preempt_enable(&meta);
12330 
12331 	if (env->cur_state->active_rcu_lock) {
12332 		struct bpf_func_state *state;
12333 		struct bpf_reg_state *reg;
12334 		u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER);
12335 
12336 		if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
12337 			verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
12338 			return -EACCES;
12339 		}
12340 
12341 		if (rcu_lock) {
12342 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
12343 			return -EINVAL;
12344 		} else if (rcu_unlock) {
12345 			bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({
12346 				if (reg->type & MEM_RCU) {
12347 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
12348 					reg->type |= PTR_UNTRUSTED;
12349 				}
12350 			}));
12351 			env->cur_state->active_rcu_lock = false;
12352 		} else if (sleepable) {
12353 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
12354 			return -EACCES;
12355 		}
12356 	} else if (rcu_lock) {
12357 		env->cur_state->active_rcu_lock = true;
12358 	} else if (rcu_unlock) {
12359 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
12360 		return -EINVAL;
12361 	}
12362 
12363 	if (env->cur_state->active_preempt_lock) {
12364 		if (preempt_disable) {
12365 			env->cur_state->active_preempt_lock++;
12366 		} else if (preempt_enable) {
12367 			env->cur_state->active_preempt_lock--;
12368 		} else if (sleepable) {
12369 			verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name);
12370 			return -EACCES;
12371 		}
12372 	} else if (preempt_disable) {
12373 		env->cur_state->active_preempt_lock++;
12374 	} else if (preempt_enable) {
12375 		verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name);
12376 		return -EINVAL;
12377 	}
12378 
12379 	/* In case of release function, we get register number of refcounted
12380 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
12381 	 */
12382 	if (meta.release_regno) {
12383 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
12384 		if (err) {
12385 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
12386 				func_name, meta.func_id);
12387 			return err;
12388 		}
12389 	}
12390 
12391 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
12392 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
12393 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
12394 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
12395 		insn_aux->insert_off = regs[BPF_REG_2].off;
12396 		insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
12397 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
12398 		if (err) {
12399 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
12400 				func_name, meta.func_id);
12401 			return err;
12402 		}
12403 
12404 		err = release_reference(env, release_ref_obj_id);
12405 		if (err) {
12406 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
12407 				func_name, meta.func_id);
12408 			return err;
12409 		}
12410 	}
12411 
12412 	if (meta.func_id == special_kfunc_list[KF_bpf_throw]) {
12413 		if (!bpf_jit_supports_exceptions()) {
12414 			verbose(env, "JIT does not support calling kfunc %s#%d\n",
12415 				func_name, meta.func_id);
12416 			return -ENOTSUPP;
12417 		}
12418 		env->seen_exception = true;
12419 
12420 		/* In the case of the default callback, the cookie value passed
12421 		 * to bpf_throw becomes the return value of the program.
12422 		 */
12423 		if (!env->exception_callback_subprog) {
12424 			err = check_return_code(env, BPF_REG_1, "R1");
12425 			if (err < 0)
12426 				return err;
12427 		}
12428 	}
12429 
12430 	for (i = 0; i < CALLER_SAVED_REGS; i++)
12431 		mark_reg_not_init(env, regs, caller_saved[i]);
12432 
12433 	/* Check return type */
12434 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
12435 
12436 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
12437 		/* Only exception is bpf_obj_new_impl */
12438 		if (meta.btf != btf_vmlinux ||
12439 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
12440 		     meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] &&
12441 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
12442 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
12443 			return -EINVAL;
12444 		}
12445 	}
12446 
12447 	if (btf_type_is_scalar(t)) {
12448 		mark_reg_unknown(env, regs, BPF_REG_0);
12449 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
12450 	} else if (btf_type_is_ptr(t)) {
12451 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
12452 
12453 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12454 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
12455 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12456 				struct btf_struct_meta *struct_meta;
12457 				struct btf *ret_btf;
12458 				u32 ret_btf_id;
12459 
12460 				if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set)
12461 					return -ENOMEM;
12462 
12463 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
12464 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
12465 					return -EINVAL;
12466 				}
12467 
12468 				ret_btf = env->prog->aux->btf;
12469 				ret_btf_id = meta.arg_constant.value;
12470 
12471 				/* This may be NULL due to user not supplying a BTF */
12472 				if (!ret_btf) {
12473 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n");
12474 					return -EINVAL;
12475 				}
12476 
12477 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
12478 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
12479 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n");
12480 					return -EINVAL;
12481 				}
12482 
12483 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12484 					if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) {
12485 						verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n",
12486 							ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE);
12487 						return -EINVAL;
12488 					}
12489 
12490 					if (!bpf_global_percpu_ma_set) {
12491 						mutex_lock(&bpf_percpu_ma_lock);
12492 						if (!bpf_global_percpu_ma_set) {
12493 							/* Charge memory allocated with bpf_global_percpu_ma to
12494 							 * root memcg. The obj_cgroup for root memcg is NULL.
12495 							 */
12496 							err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL);
12497 							if (!err)
12498 								bpf_global_percpu_ma_set = true;
12499 						}
12500 						mutex_unlock(&bpf_percpu_ma_lock);
12501 						if (err)
12502 							return err;
12503 					}
12504 
12505 					mutex_lock(&bpf_percpu_ma_lock);
12506 					err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size);
12507 					mutex_unlock(&bpf_percpu_ma_lock);
12508 					if (err)
12509 						return err;
12510 				}
12511 
12512 				struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id);
12513 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12514 					if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) {
12515 						verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n");
12516 						return -EINVAL;
12517 					}
12518 
12519 					if (struct_meta) {
12520 						verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n");
12521 						return -EINVAL;
12522 					}
12523 				}
12524 
12525 				mark_reg_known_zero(env, regs, BPF_REG_0);
12526 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12527 				regs[BPF_REG_0].btf = ret_btf;
12528 				regs[BPF_REG_0].btf_id = ret_btf_id;
12529 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl])
12530 					regs[BPF_REG_0].type |= MEM_PERCPU;
12531 
12532 				insn_aux->obj_new_size = ret_t->size;
12533 				insn_aux->kptr_struct_meta = struct_meta;
12534 			} else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
12535 				mark_reg_known_zero(env, regs, BPF_REG_0);
12536 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12537 				regs[BPF_REG_0].btf = meta.arg_btf;
12538 				regs[BPF_REG_0].btf_id = meta.arg_btf_id;
12539 
12540 				insn_aux->kptr_struct_meta =
12541 					btf_find_struct_meta(meta.arg_btf,
12542 							     meta.arg_btf_id);
12543 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
12544 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
12545 				struct btf_field *field = meta.arg_list_head.field;
12546 
12547 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12548 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
12549 				   meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12550 				struct btf_field *field = meta.arg_rbtree_root.field;
12551 
12552 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12553 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
12554 				mark_reg_known_zero(env, regs, BPF_REG_0);
12555 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
12556 				regs[BPF_REG_0].btf = desc_btf;
12557 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
12558 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
12559 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
12560 				if (!ret_t || !btf_type_is_struct(ret_t)) {
12561 					verbose(env,
12562 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
12563 					return -EINVAL;
12564 				}
12565 
12566 				mark_reg_known_zero(env, regs, BPF_REG_0);
12567 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
12568 				regs[BPF_REG_0].btf = desc_btf;
12569 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
12570 			} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
12571 				   meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
12572 				enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
12573 
12574 				mark_reg_known_zero(env, regs, BPF_REG_0);
12575 
12576 				if (!meta.arg_constant.found) {
12577 					verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
12578 					return -EFAULT;
12579 				}
12580 
12581 				regs[BPF_REG_0].mem_size = meta.arg_constant.value;
12582 
12583 				/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
12584 				regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
12585 
12586 				if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
12587 					regs[BPF_REG_0].type |= MEM_RDONLY;
12588 				} else {
12589 					/* this will set env->seen_direct_write to true */
12590 					if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
12591 						verbose(env, "the prog does not allow writes to packet data\n");
12592 						return -EINVAL;
12593 					}
12594 				}
12595 
12596 				if (!meta.initialized_dynptr.id) {
12597 					verbose(env, "verifier internal error: no dynptr id\n");
12598 					return -EFAULT;
12599 				}
12600 				regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
12601 
12602 				/* we don't need to set BPF_REG_0's ref obj id
12603 				 * because packet slices are not refcounted (see
12604 				 * dynptr_type_refcounted)
12605 				 */
12606 			} else {
12607 				verbose(env, "kernel function %s unhandled dynamic return type\n",
12608 					meta.func_name);
12609 				return -EFAULT;
12610 			}
12611 		} else if (btf_type_is_void(ptr_type)) {
12612 			/* kfunc returning 'void *' is equivalent to returning scalar */
12613 			mark_reg_unknown(env, regs, BPF_REG_0);
12614 		} else if (!__btf_type_is_struct(ptr_type)) {
12615 			if (!meta.r0_size) {
12616 				__u32 sz;
12617 
12618 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
12619 					meta.r0_size = sz;
12620 					meta.r0_rdonly = true;
12621 				}
12622 			}
12623 			if (!meta.r0_size) {
12624 				ptr_type_name = btf_name_by_offset(desc_btf,
12625 								   ptr_type->name_off);
12626 				verbose(env,
12627 					"kernel function %s returns pointer type %s %s is not supported\n",
12628 					func_name,
12629 					btf_type_str(ptr_type),
12630 					ptr_type_name);
12631 				return -EINVAL;
12632 			}
12633 
12634 			mark_reg_known_zero(env, regs, BPF_REG_0);
12635 			regs[BPF_REG_0].type = PTR_TO_MEM;
12636 			regs[BPF_REG_0].mem_size = meta.r0_size;
12637 
12638 			if (meta.r0_rdonly)
12639 				regs[BPF_REG_0].type |= MEM_RDONLY;
12640 
12641 			/* Ensures we don't access the memory after a release_reference() */
12642 			if (meta.ref_obj_id)
12643 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
12644 		} else {
12645 			mark_reg_known_zero(env, regs, BPF_REG_0);
12646 			regs[BPF_REG_0].btf = desc_btf;
12647 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
12648 			regs[BPF_REG_0].btf_id = ptr_type_id;
12649 		}
12650 
12651 		if (is_kfunc_ret_null(&meta)) {
12652 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
12653 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
12654 			regs[BPF_REG_0].id = ++env->id_gen;
12655 		}
12656 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
12657 		if (is_kfunc_acquire(&meta)) {
12658 			int id = acquire_reference_state(env, insn_idx);
12659 
12660 			if (id < 0)
12661 				return id;
12662 			if (is_kfunc_ret_null(&meta))
12663 				regs[BPF_REG_0].id = id;
12664 			regs[BPF_REG_0].ref_obj_id = id;
12665 		} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12666 			ref_set_non_owning(env, &regs[BPF_REG_0]);
12667 		}
12668 
12669 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
12670 			regs[BPF_REG_0].id = ++env->id_gen;
12671 	} else if (btf_type_is_void(t)) {
12672 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12673 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
12674 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
12675 				insn_aux->kptr_struct_meta =
12676 					btf_find_struct_meta(meta.arg_btf,
12677 							     meta.arg_btf_id);
12678 			}
12679 		}
12680 	}
12681 
12682 	nargs = btf_type_vlen(meta.func_proto);
12683 	args = (const struct btf_param *)(meta.func_proto + 1);
12684 	for (i = 0; i < nargs; i++) {
12685 		u32 regno = i + 1;
12686 
12687 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
12688 		if (btf_type_is_ptr(t))
12689 			mark_btf_func_reg_size(env, regno, sizeof(void *));
12690 		else
12691 			/* scalar. ensured by btf_check_kfunc_arg_match() */
12692 			mark_btf_func_reg_size(env, regno, t->size);
12693 	}
12694 
12695 	if (is_iter_next_kfunc(&meta)) {
12696 		err = process_iter_next_call(env, insn_idx, &meta);
12697 		if (err)
12698 			return err;
12699 	}
12700 
12701 	return 0;
12702 }
12703 
12704 static bool signed_add_overflows(s64 a, s64 b)
12705 {
12706 	/* Do the add in u64, where overflow is well-defined */
12707 	s64 res = (s64)((u64)a + (u64)b);
12708 
12709 	if (b < 0)
12710 		return res > a;
12711 	return res < a;
12712 }
12713 
12714 static bool signed_add32_overflows(s32 a, s32 b)
12715 {
12716 	/* Do the add in u32, where overflow is well-defined */
12717 	s32 res = (s32)((u32)a + (u32)b);
12718 
12719 	if (b < 0)
12720 		return res > a;
12721 	return res < a;
12722 }
12723 
12724 static bool signed_add16_overflows(s16 a, s16 b)
12725 {
12726 	/* Do the add in u16, where overflow is well-defined */
12727 	s16 res = (s16)((u16)a + (u16)b);
12728 
12729 	if (b < 0)
12730 		return res > a;
12731 	return res < a;
12732 }
12733 
12734 static bool signed_sub_overflows(s64 a, s64 b)
12735 {
12736 	/* Do the sub in u64, where overflow is well-defined */
12737 	s64 res = (s64)((u64)a - (u64)b);
12738 
12739 	if (b < 0)
12740 		return res < a;
12741 	return res > a;
12742 }
12743 
12744 static bool signed_sub32_overflows(s32 a, s32 b)
12745 {
12746 	/* Do the sub in u32, where overflow is well-defined */
12747 	s32 res = (s32)((u32)a - (u32)b);
12748 
12749 	if (b < 0)
12750 		return res < a;
12751 	return res > a;
12752 }
12753 
12754 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
12755 				  const struct bpf_reg_state *reg,
12756 				  enum bpf_reg_type type)
12757 {
12758 	bool known = tnum_is_const(reg->var_off);
12759 	s64 val = reg->var_off.value;
12760 	s64 smin = reg->smin_value;
12761 
12762 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
12763 		verbose(env, "math between %s pointer and %lld is not allowed\n",
12764 			reg_type_str(env, type), val);
12765 		return false;
12766 	}
12767 
12768 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
12769 		verbose(env, "%s pointer offset %d is not allowed\n",
12770 			reg_type_str(env, type), reg->off);
12771 		return false;
12772 	}
12773 
12774 	if (smin == S64_MIN) {
12775 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
12776 			reg_type_str(env, type));
12777 		return false;
12778 	}
12779 
12780 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
12781 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
12782 			smin, reg_type_str(env, type));
12783 		return false;
12784 	}
12785 
12786 	return true;
12787 }
12788 
12789 enum {
12790 	REASON_BOUNDS	= -1,
12791 	REASON_TYPE	= -2,
12792 	REASON_PATHS	= -3,
12793 	REASON_LIMIT	= -4,
12794 	REASON_STACK	= -5,
12795 };
12796 
12797 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
12798 			      u32 *alu_limit, bool mask_to_left)
12799 {
12800 	u32 max = 0, ptr_limit = 0;
12801 
12802 	switch (ptr_reg->type) {
12803 	case PTR_TO_STACK:
12804 		/* Offset 0 is out-of-bounds, but acceptable start for the
12805 		 * left direction, see BPF_REG_FP. Also, unknown scalar
12806 		 * offset where we would need to deal with min/max bounds is
12807 		 * currently prohibited for unprivileged.
12808 		 */
12809 		max = MAX_BPF_STACK + mask_to_left;
12810 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
12811 		break;
12812 	case PTR_TO_MAP_VALUE:
12813 		max = ptr_reg->map_ptr->value_size;
12814 		ptr_limit = (mask_to_left ?
12815 			     ptr_reg->smin_value :
12816 			     ptr_reg->umax_value) + ptr_reg->off;
12817 		break;
12818 	default:
12819 		return REASON_TYPE;
12820 	}
12821 
12822 	if (ptr_limit >= max)
12823 		return REASON_LIMIT;
12824 	*alu_limit = ptr_limit;
12825 	return 0;
12826 }
12827 
12828 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
12829 				    const struct bpf_insn *insn)
12830 {
12831 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
12832 }
12833 
12834 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
12835 				       u32 alu_state, u32 alu_limit)
12836 {
12837 	/* If we arrived here from different branches with different
12838 	 * state or limits to sanitize, then this won't work.
12839 	 */
12840 	if (aux->alu_state &&
12841 	    (aux->alu_state != alu_state ||
12842 	     aux->alu_limit != alu_limit))
12843 		return REASON_PATHS;
12844 
12845 	/* Corresponding fixup done in do_misc_fixups(). */
12846 	aux->alu_state = alu_state;
12847 	aux->alu_limit = alu_limit;
12848 	return 0;
12849 }
12850 
12851 static int sanitize_val_alu(struct bpf_verifier_env *env,
12852 			    struct bpf_insn *insn)
12853 {
12854 	struct bpf_insn_aux_data *aux = cur_aux(env);
12855 
12856 	if (can_skip_alu_sanitation(env, insn))
12857 		return 0;
12858 
12859 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
12860 }
12861 
12862 static bool sanitize_needed(u8 opcode)
12863 {
12864 	return opcode == BPF_ADD || opcode == BPF_SUB;
12865 }
12866 
12867 struct bpf_sanitize_info {
12868 	struct bpf_insn_aux_data aux;
12869 	bool mask_to_left;
12870 };
12871 
12872 static struct bpf_verifier_state *
12873 sanitize_speculative_path(struct bpf_verifier_env *env,
12874 			  const struct bpf_insn *insn,
12875 			  u32 next_idx, u32 curr_idx)
12876 {
12877 	struct bpf_verifier_state *branch;
12878 	struct bpf_reg_state *regs;
12879 
12880 	branch = push_stack(env, next_idx, curr_idx, true);
12881 	if (branch && insn) {
12882 		regs = branch->frame[branch->curframe]->regs;
12883 		if (BPF_SRC(insn->code) == BPF_K) {
12884 			mark_reg_unknown(env, regs, insn->dst_reg);
12885 		} else if (BPF_SRC(insn->code) == BPF_X) {
12886 			mark_reg_unknown(env, regs, insn->dst_reg);
12887 			mark_reg_unknown(env, regs, insn->src_reg);
12888 		}
12889 	}
12890 	return branch;
12891 }
12892 
12893 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
12894 			    struct bpf_insn *insn,
12895 			    const struct bpf_reg_state *ptr_reg,
12896 			    const struct bpf_reg_state *off_reg,
12897 			    struct bpf_reg_state *dst_reg,
12898 			    struct bpf_sanitize_info *info,
12899 			    const bool commit_window)
12900 {
12901 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
12902 	struct bpf_verifier_state *vstate = env->cur_state;
12903 	bool off_is_imm = tnum_is_const(off_reg->var_off);
12904 	bool off_is_neg = off_reg->smin_value < 0;
12905 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
12906 	u8 opcode = BPF_OP(insn->code);
12907 	u32 alu_state, alu_limit;
12908 	struct bpf_reg_state tmp;
12909 	bool ret;
12910 	int err;
12911 
12912 	if (can_skip_alu_sanitation(env, insn))
12913 		return 0;
12914 
12915 	/* We already marked aux for masking from non-speculative
12916 	 * paths, thus we got here in the first place. We only care
12917 	 * to explore bad access from here.
12918 	 */
12919 	if (vstate->speculative)
12920 		goto do_sim;
12921 
12922 	if (!commit_window) {
12923 		if (!tnum_is_const(off_reg->var_off) &&
12924 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
12925 			return REASON_BOUNDS;
12926 
12927 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
12928 				     (opcode == BPF_SUB && !off_is_neg);
12929 	}
12930 
12931 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
12932 	if (err < 0)
12933 		return err;
12934 
12935 	if (commit_window) {
12936 		/* In commit phase we narrow the masking window based on
12937 		 * the observed pointer move after the simulated operation.
12938 		 */
12939 		alu_state = info->aux.alu_state;
12940 		alu_limit = abs(info->aux.alu_limit - alu_limit);
12941 	} else {
12942 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
12943 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
12944 		alu_state |= ptr_is_dst_reg ?
12945 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
12946 
12947 		/* Limit pruning on unknown scalars to enable deep search for
12948 		 * potential masking differences from other program paths.
12949 		 */
12950 		if (!off_is_imm)
12951 			env->explore_alu_limits = true;
12952 	}
12953 
12954 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
12955 	if (err < 0)
12956 		return err;
12957 do_sim:
12958 	/* If we're in commit phase, we're done here given we already
12959 	 * pushed the truncated dst_reg into the speculative verification
12960 	 * stack.
12961 	 *
12962 	 * Also, when register is a known constant, we rewrite register-based
12963 	 * operation to immediate-based, and thus do not need masking (and as
12964 	 * a consequence, do not need to simulate the zero-truncation either).
12965 	 */
12966 	if (commit_window || off_is_imm)
12967 		return 0;
12968 
12969 	/* Simulate and find potential out-of-bounds access under
12970 	 * speculative execution from truncation as a result of
12971 	 * masking when off was not within expected range. If off
12972 	 * sits in dst, then we temporarily need to move ptr there
12973 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
12974 	 * for cases where we use K-based arithmetic in one direction
12975 	 * and truncated reg-based in the other in order to explore
12976 	 * bad access.
12977 	 */
12978 	if (!ptr_is_dst_reg) {
12979 		tmp = *dst_reg;
12980 		copy_register_state(dst_reg, ptr_reg);
12981 	}
12982 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
12983 					env->insn_idx);
12984 	if (!ptr_is_dst_reg && ret)
12985 		*dst_reg = tmp;
12986 	return !ret ? REASON_STACK : 0;
12987 }
12988 
12989 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
12990 {
12991 	struct bpf_verifier_state *vstate = env->cur_state;
12992 
12993 	/* If we simulate paths under speculation, we don't update the
12994 	 * insn as 'seen' such that when we verify unreachable paths in
12995 	 * the non-speculative domain, sanitize_dead_code() can still
12996 	 * rewrite/sanitize them.
12997 	 */
12998 	if (!vstate->speculative)
12999 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
13000 }
13001 
13002 static int sanitize_err(struct bpf_verifier_env *env,
13003 			const struct bpf_insn *insn, int reason,
13004 			const struct bpf_reg_state *off_reg,
13005 			const struct bpf_reg_state *dst_reg)
13006 {
13007 	static const char *err = "pointer arithmetic with it prohibited for !root";
13008 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
13009 	u32 dst = insn->dst_reg, src = insn->src_reg;
13010 
13011 	switch (reason) {
13012 	case REASON_BOUNDS:
13013 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
13014 			off_reg == dst_reg ? dst : src, err);
13015 		break;
13016 	case REASON_TYPE:
13017 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
13018 			off_reg == dst_reg ? src : dst, err);
13019 		break;
13020 	case REASON_PATHS:
13021 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
13022 			dst, op, err);
13023 		break;
13024 	case REASON_LIMIT:
13025 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
13026 			dst, op, err);
13027 		break;
13028 	case REASON_STACK:
13029 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
13030 			dst, err);
13031 		break;
13032 	default:
13033 		verbose(env, "verifier internal error: unknown reason (%d)\n",
13034 			reason);
13035 		break;
13036 	}
13037 
13038 	return -EACCES;
13039 }
13040 
13041 /* check that stack access falls within stack limits and that 'reg' doesn't
13042  * have a variable offset.
13043  *
13044  * Variable offset is prohibited for unprivileged mode for simplicity since it
13045  * requires corresponding support in Spectre masking for stack ALU.  See also
13046  * retrieve_ptr_limit().
13047  *
13048  *
13049  * 'off' includes 'reg->off'.
13050  */
13051 static int check_stack_access_for_ptr_arithmetic(
13052 				struct bpf_verifier_env *env,
13053 				int regno,
13054 				const struct bpf_reg_state *reg,
13055 				int off)
13056 {
13057 	if (!tnum_is_const(reg->var_off)) {
13058 		char tn_buf[48];
13059 
13060 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
13061 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
13062 			regno, tn_buf, off);
13063 		return -EACCES;
13064 	}
13065 
13066 	if (off >= 0 || off < -MAX_BPF_STACK) {
13067 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
13068 			"prohibited for !root; off=%d\n", regno, off);
13069 		return -EACCES;
13070 	}
13071 
13072 	return 0;
13073 }
13074 
13075 static int sanitize_check_bounds(struct bpf_verifier_env *env,
13076 				 const struct bpf_insn *insn,
13077 				 const struct bpf_reg_state *dst_reg)
13078 {
13079 	u32 dst = insn->dst_reg;
13080 
13081 	/* For unprivileged we require that resulting offset must be in bounds
13082 	 * in order to be able to sanitize access later on.
13083 	 */
13084 	if (env->bypass_spec_v1)
13085 		return 0;
13086 
13087 	switch (dst_reg->type) {
13088 	case PTR_TO_STACK:
13089 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
13090 					dst_reg->off + dst_reg->var_off.value))
13091 			return -EACCES;
13092 		break;
13093 	case PTR_TO_MAP_VALUE:
13094 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
13095 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
13096 				"prohibited for !root\n", dst);
13097 			return -EACCES;
13098 		}
13099 		break;
13100 	default:
13101 		break;
13102 	}
13103 
13104 	return 0;
13105 }
13106 
13107 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
13108  * Caller should also handle BPF_MOV case separately.
13109  * If we return -EACCES, caller may want to try again treating pointer as a
13110  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
13111  */
13112 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
13113 				   struct bpf_insn *insn,
13114 				   const struct bpf_reg_state *ptr_reg,
13115 				   const struct bpf_reg_state *off_reg)
13116 {
13117 	struct bpf_verifier_state *vstate = env->cur_state;
13118 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13119 	struct bpf_reg_state *regs = state->regs, *dst_reg;
13120 	bool known = tnum_is_const(off_reg->var_off);
13121 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
13122 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
13123 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
13124 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
13125 	struct bpf_sanitize_info info = {};
13126 	u8 opcode = BPF_OP(insn->code);
13127 	u32 dst = insn->dst_reg;
13128 	int ret;
13129 
13130 	dst_reg = &regs[dst];
13131 
13132 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
13133 	    smin_val > smax_val || umin_val > umax_val) {
13134 		/* Taint dst register if offset had invalid bounds derived from
13135 		 * e.g. dead branches.
13136 		 */
13137 		__mark_reg_unknown(env, dst_reg);
13138 		return 0;
13139 	}
13140 
13141 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
13142 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
13143 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13144 			__mark_reg_unknown(env, dst_reg);
13145 			return 0;
13146 		}
13147 
13148 		verbose(env,
13149 			"R%d 32-bit pointer arithmetic prohibited\n",
13150 			dst);
13151 		return -EACCES;
13152 	}
13153 
13154 	if (ptr_reg->type & PTR_MAYBE_NULL) {
13155 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
13156 			dst, reg_type_str(env, ptr_reg->type));
13157 		return -EACCES;
13158 	}
13159 
13160 	switch (base_type(ptr_reg->type)) {
13161 	case PTR_TO_CTX:
13162 	case PTR_TO_MAP_VALUE:
13163 	case PTR_TO_MAP_KEY:
13164 	case PTR_TO_STACK:
13165 	case PTR_TO_PACKET_META:
13166 	case PTR_TO_PACKET:
13167 	case PTR_TO_TP_BUFFER:
13168 	case PTR_TO_BTF_ID:
13169 	case PTR_TO_MEM:
13170 	case PTR_TO_BUF:
13171 	case PTR_TO_FUNC:
13172 	case CONST_PTR_TO_DYNPTR:
13173 		break;
13174 	case PTR_TO_FLOW_KEYS:
13175 		if (known)
13176 			break;
13177 		fallthrough;
13178 	case CONST_PTR_TO_MAP:
13179 		/* smin_val represents the known value */
13180 		if (known && smin_val == 0 && opcode == BPF_ADD)
13181 			break;
13182 		fallthrough;
13183 	default:
13184 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
13185 			dst, reg_type_str(env, ptr_reg->type));
13186 		return -EACCES;
13187 	}
13188 
13189 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
13190 	 * The id may be overwritten later if we create a new variable offset.
13191 	 */
13192 	dst_reg->type = ptr_reg->type;
13193 	dst_reg->id = ptr_reg->id;
13194 
13195 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
13196 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
13197 		return -EINVAL;
13198 
13199 	/* pointer types do not carry 32-bit bounds at the moment. */
13200 	__mark_reg32_unbounded(dst_reg);
13201 
13202 	if (sanitize_needed(opcode)) {
13203 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
13204 				       &info, false);
13205 		if (ret < 0)
13206 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
13207 	}
13208 
13209 	switch (opcode) {
13210 	case BPF_ADD:
13211 		/* We can take a fixed offset as long as it doesn't overflow
13212 		 * the s32 'off' field
13213 		 */
13214 		if (known && (ptr_reg->off + smin_val ==
13215 			      (s64)(s32)(ptr_reg->off + smin_val))) {
13216 			/* pointer += K.  Accumulate it into fixed offset */
13217 			dst_reg->smin_value = smin_ptr;
13218 			dst_reg->smax_value = smax_ptr;
13219 			dst_reg->umin_value = umin_ptr;
13220 			dst_reg->umax_value = umax_ptr;
13221 			dst_reg->var_off = ptr_reg->var_off;
13222 			dst_reg->off = ptr_reg->off + smin_val;
13223 			dst_reg->raw = ptr_reg->raw;
13224 			break;
13225 		}
13226 		/* A new variable offset is created.  Note that off_reg->off
13227 		 * == 0, since it's a scalar.
13228 		 * dst_reg gets the pointer type and since some positive
13229 		 * integer value was added to the pointer, give it a new 'id'
13230 		 * if it's a PTR_TO_PACKET.
13231 		 * this creates a new 'base' pointer, off_reg (variable) gets
13232 		 * added into the variable offset, and we copy the fixed offset
13233 		 * from ptr_reg.
13234 		 */
13235 		if (signed_add_overflows(smin_ptr, smin_val) ||
13236 		    signed_add_overflows(smax_ptr, smax_val)) {
13237 			dst_reg->smin_value = S64_MIN;
13238 			dst_reg->smax_value = S64_MAX;
13239 		} else {
13240 			dst_reg->smin_value = smin_ptr + smin_val;
13241 			dst_reg->smax_value = smax_ptr + smax_val;
13242 		}
13243 		if (umin_ptr + umin_val < umin_ptr ||
13244 		    umax_ptr + umax_val < umax_ptr) {
13245 			dst_reg->umin_value = 0;
13246 			dst_reg->umax_value = U64_MAX;
13247 		} else {
13248 			dst_reg->umin_value = umin_ptr + umin_val;
13249 			dst_reg->umax_value = umax_ptr + umax_val;
13250 		}
13251 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
13252 		dst_reg->off = ptr_reg->off;
13253 		dst_reg->raw = ptr_reg->raw;
13254 		if (reg_is_pkt_pointer(ptr_reg)) {
13255 			dst_reg->id = ++env->id_gen;
13256 			/* something was added to pkt_ptr, set range to zero */
13257 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
13258 		}
13259 		break;
13260 	case BPF_SUB:
13261 		if (dst_reg == off_reg) {
13262 			/* scalar -= pointer.  Creates an unknown scalar */
13263 			verbose(env, "R%d tried to subtract pointer from scalar\n",
13264 				dst);
13265 			return -EACCES;
13266 		}
13267 		/* We don't allow subtraction from FP, because (according to
13268 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
13269 		 * be able to deal with it.
13270 		 */
13271 		if (ptr_reg->type == PTR_TO_STACK) {
13272 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
13273 				dst);
13274 			return -EACCES;
13275 		}
13276 		if (known && (ptr_reg->off - smin_val ==
13277 			      (s64)(s32)(ptr_reg->off - smin_val))) {
13278 			/* pointer -= K.  Subtract it from fixed offset */
13279 			dst_reg->smin_value = smin_ptr;
13280 			dst_reg->smax_value = smax_ptr;
13281 			dst_reg->umin_value = umin_ptr;
13282 			dst_reg->umax_value = umax_ptr;
13283 			dst_reg->var_off = ptr_reg->var_off;
13284 			dst_reg->id = ptr_reg->id;
13285 			dst_reg->off = ptr_reg->off - smin_val;
13286 			dst_reg->raw = ptr_reg->raw;
13287 			break;
13288 		}
13289 		/* A new variable offset is created.  If the subtrahend is known
13290 		 * nonnegative, then any reg->range we had before is still good.
13291 		 */
13292 		if (signed_sub_overflows(smin_ptr, smax_val) ||
13293 		    signed_sub_overflows(smax_ptr, smin_val)) {
13294 			/* Overflow possible, we know nothing */
13295 			dst_reg->smin_value = S64_MIN;
13296 			dst_reg->smax_value = S64_MAX;
13297 		} else {
13298 			dst_reg->smin_value = smin_ptr - smax_val;
13299 			dst_reg->smax_value = smax_ptr - smin_val;
13300 		}
13301 		if (umin_ptr < umax_val) {
13302 			/* Overflow possible, we know nothing */
13303 			dst_reg->umin_value = 0;
13304 			dst_reg->umax_value = U64_MAX;
13305 		} else {
13306 			/* Cannot overflow (as long as bounds are consistent) */
13307 			dst_reg->umin_value = umin_ptr - umax_val;
13308 			dst_reg->umax_value = umax_ptr - umin_val;
13309 		}
13310 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
13311 		dst_reg->off = ptr_reg->off;
13312 		dst_reg->raw = ptr_reg->raw;
13313 		if (reg_is_pkt_pointer(ptr_reg)) {
13314 			dst_reg->id = ++env->id_gen;
13315 			/* something was added to pkt_ptr, set range to zero */
13316 			if (smin_val < 0)
13317 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
13318 		}
13319 		break;
13320 	case BPF_AND:
13321 	case BPF_OR:
13322 	case BPF_XOR:
13323 		/* bitwise ops on pointers are troublesome, prohibit. */
13324 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
13325 			dst, bpf_alu_string[opcode >> 4]);
13326 		return -EACCES;
13327 	default:
13328 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
13329 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
13330 			dst, bpf_alu_string[opcode >> 4]);
13331 		return -EACCES;
13332 	}
13333 
13334 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
13335 		return -EINVAL;
13336 	reg_bounds_sync(dst_reg);
13337 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
13338 		return -EACCES;
13339 	if (sanitize_needed(opcode)) {
13340 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
13341 				       &info, true);
13342 		if (ret < 0)
13343 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
13344 	}
13345 
13346 	return 0;
13347 }
13348 
13349 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
13350 				 struct bpf_reg_state *src_reg)
13351 {
13352 	s32 smin_val = src_reg->s32_min_value;
13353 	s32 smax_val = src_reg->s32_max_value;
13354 	u32 umin_val = src_reg->u32_min_value;
13355 	u32 umax_val = src_reg->u32_max_value;
13356 
13357 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
13358 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
13359 		dst_reg->s32_min_value = S32_MIN;
13360 		dst_reg->s32_max_value = S32_MAX;
13361 	} else {
13362 		dst_reg->s32_min_value += smin_val;
13363 		dst_reg->s32_max_value += smax_val;
13364 	}
13365 	if (dst_reg->u32_min_value + umin_val < umin_val ||
13366 	    dst_reg->u32_max_value + umax_val < umax_val) {
13367 		dst_reg->u32_min_value = 0;
13368 		dst_reg->u32_max_value = U32_MAX;
13369 	} else {
13370 		dst_reg->u32_min_value += umin_val;
13371 		dst_reg->u32_max_value += umax_val;
13372 	}
13373 }
13374 
13375 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
13376 			       struct bpf_reg_state *src_reg)
13377 {
13378 	s64 smin_val = src_reg->smin_value;
13379 	s64 smax_val = src_reg->smax_value;
13380 	u64 umin_val = src_reg->umin_value;
13381 	u64 umax_val = src_reg->umax_value;
13382 
13383 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
13384 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
13385 		dst_reg->smin_value = S64_MIN;
13386 		dst_reg->smax_value = S64_MAX;
13387 	} else {
13388 		dst_reg->smin_value += smin_val;
13389 		dst_reg->smax_value += smax_val;
13390 	}
13391 	if (dst_reg->umin_value + umin_val < umin_val ||
13392 	    dst_reg->umax_value + umax_val < umax_val) {
13393 		dst_reg->umin_value = 0;
13394 		dst_reg->umax_value = U64_MAX;
13395 	} else {
13396 		dst_reg->umin_value += umin_val;
13397 		dst_reg->umax_value += umax_val;
13398 	}
13399 }
13400 
13401 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
13402 				 struct bpf_reg_state *src_reg)
13403 {
13404 	s32 smin_val = src_reg->s32_min_value;
13405 	s32 smax_val = src_reg->s32_max_value;
13406 	u32 umin_val = src_reg->u32_min_value;
13407 	u32 umax_val = src_reg->u32_max_value;
13408 
13409 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
13410 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
13411 		/* Overflow possible, we know nothing */
13412 		dst_reg->s32_min_value = S32_MIN;
13413 		dst_reg->s32_max_value = S32_MAX;
13414 	} else {
13415 		dst_reg->s32_min_value -= smax_val;
13416 		dst_reg->s32_max_value -= smin_val;
13417 	}
13418 	if (dst_reg->u32_min_value < umax_val) {
13419 		/* Overflow possible, we know nothing */
13420 		dst_reg->u32_min_value = 0;
13421 		dst_reg->u32_max_value = U32_MAX;
13422 	} else {
13423 		/* Cannot overflow (as long as bounds are consistent) */
13424 		dst_reg->u32_min_value -= umax_val;
13425 		dst_reg->u32_max_value -= umin_val;
13426 	}
13427 }
13428 
13429 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
13430 			       struct bpf_reg_state *src_reg)
13431 {
13432 	s64 smin_val = src_reg->smin_value;
13433 	s64 smax_val = src_reg->smax_value;
13434 	u64 umin_val = src_reg->umin_value;
13435 	u64 umax_val = src_reg->umax_value;
13436 
13437 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
13438 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
13439 		/* Overflow possible, we know nothing */
13440 		dst_reg->smin_value = S64_MIN;
13441 		dst_reg->smax_value = S64_MAX;
13442 	} else {
13443 		dst_reg->smin_value -= smax_val;
13444 		dst_reg->smax_value -= smin_val;
13445 	}
13446 	if (dst_reg->umin_value < umax_val) {
13447 		/* Overflow possible, we know nothing */
13448 		dst_reg->umin_value = 0;
13449 		dst_reg->umax_value = U64_MAX;
13450 	} else {
13451 		/* Cannot overflow (as long as bounds are consistent) */
13452 		dst_reg->umin_value -= umax_val;
13453 		dst_reg->umax_value -= umin_val;
13454 	}
13455 }
13456 
13457 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
13458 				 struct bpf_reg_state *src_reg)
13459 {
13460 	s32 smin_val = src_reg->s32_min_value;
13461 	u32 umin_val = src_reg->u32_min_value;
13462 	u32 umax_val = src_reg->u32_max_value;
13463 
13464 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
13465 		/* Ain't nobody got time to multiply that sign */
13466 		__mark_reg32_unbounded(dst_reg);
13467 		return;
13468 	}
13469 	/* Both values are positive, so we can work with unsigned and
13470 	 * copy the result to signed (unless it exceeds S32_MAX).
13471 	 */
13472 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
13473 		/* Potential overflow, we know nothing */
13474 		__mark_reg32_unbounded(dst_reg);
13475 		return;
13476 	}
13477 	dst_reg->u32_min_value *= umin_val;
13478 	dst_reg->u32_max_value *= umax_val;
13479 	if (dst_reg->u32_max_value > S32_MAX) {
13480 		/* Overflow possible, we know nothing */
13481 		dst_reg->s32_min_value = S32_MIN;
13482 		dst_reg->s32_max_value = S32_MAX;
13483 	} else {
13484 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13485 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13486 	}
13487 }
13488 
13489 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
13490 			       struct bpf_reg_state *src_reg)
13491 {
13492 	s64 smin_val = src_reg->smin_value;
13493 	u64 umin_val = src_reg->umin_value;
13494 	u64 umax_val = src_reg->umax_value;
13495 
13496 	if (smin_val < 0 || dst_reg->smin_value < 0) {
13497 		/* Ain't nobody got time to multiply that sign */
13498 		__mark_reg64_unbounded(dst_reg);
13499 		return;
13500 	}
13501 	/* Both values are positive, so we can work with unsigned and
13502 	 * copy the result to signed (unless it exceeds S64_MAX).
13503 	 */
13504 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
13505 		/* Potential overflow, we know nothing */
13506 		__mark_reg64_unbounded(dst_reg);
13507 		return;
13508 	}
13509 	dst_reg->umin_value *= umin_val;
13510 	dst_reg->umax_value *= umax_val;
13511 	if (dst_reg->umax_value > S64_MAX) {
13512 		/* Overflow possible, we know nothing */
13513 		dst_reg->smin_value = S64_MIN;
13514 		dst_reg->smax_value = S64_MAX;
13515 	} else {
13516 		dst_reg->smin_value = dst_reg->umin_value;
13517 		dst_reg->smax_value = dst_reg->umax_value;
13518 	}
13519 }
13520 
13521 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
13522 				 struct bpf_reg_state *src_reg)
13523 {
13524 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13525 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13526 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13527 	u32 umax_val = src_reg->u32_max_value;
13528 
13529 	if (src_known && dst_known) {
13530 		__mark_reg32_known(dst_reg, var32_off.value);
13531 		return;
13532 	}
13533 
13534 	/* We get our minimum from the var_off, since that's inherently
13535 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
13536 	 */
13537 	dst_reg->u32_min_value = var32_off.value;
13538 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
13539 
13540 	/* Safe to set s32 bounds by casting u32 result into s32 when u32
13541 	 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
13542 	 */
13543 	if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
13544 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13545 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13546 	} else {
13547 		dst_reg->s32_min_value = S32_MIN;
13548 		dst_reg->s32_max_value = S32_MAX;
13549 	}
13550 }
13551 
13552 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
13553 			       struct bpf_reg_state *src_reg)
13554 {
13555 	bool src_known = tnum_is_const(src_reg->var_off);
13556 	bool dst_known = tnum_is_const(dst_reg->var_off);
13557 	u64 umax_val = src_reg->umax_value;
13558 
13559 	if (src_known && dst_known) {
13560 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13561 		return;
13562 	}
13563 
13564 	/* We get our minimum from the var_off, since that's inherently
13565 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
13566 	 */
13567 	dst_reg->umin_value = dst_reg->var_off.value;
13568 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
13569 
13570 	/* Safe to set s64 bounds by casting u64 result into s64 when u64
13571 	 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
13572 	 */
13573 	if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
13574 		dst_reg->smin_value = dst_reg->umin_value;
13575 		dst_reg->smax_value = dst_reg->umax_value;
13576 	} else {
13577 		dst_reg->smin_value = S64_MIN;
13578 		dst_reg->smax_value = S64_MAX;
13579 	}
13580 	/* We may learn something more from the var_off */
13581 	__update_reg_bounds(dst_reg);
13582 }
13583 
13584 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
13585 				struct bpf_reg_state *src_reg)
13586 {
13587 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13588 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13589 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13590 	u32 umin_val = src_reg->u32_min_value;
13591 
13592 	if (src_known && dst_known) {
13593 		__mark_reg32_known(dst_reg, var32_off.value);
13594 		return;
13595 	}
13596 
13597 	/* We get our maximum from the var_off, and our minimum is the
13598 	 * maximum of the operands' minima
13599 	 */
13600 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
13601 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13602 
13603 	/* Safe to set s32 bounds by casting u32 result into s32 when u32
13604 	 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
13605 	 */
13606 	if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
13607 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13608 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13609 	} else {
13610 		dst_reg->s32_min_value = S32_MIN;
13611 		dst_reg->s32_max_value = S32_MAX;
13612 	}
13613 }
13614 
13615 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
13616 			      struct bpf_reg_state *src_reg)
13617 {
13618 	bool src_known = tnum_is_const(src_reg->var_off);
13619 	bool dst_known = tnum_is_const(dst_reg->var_off);
13620 	u64 umin_val = src_reg->umin_value;
13621 
13622 	if (src_known && dst_known) {
13623 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13624 		return;
13625 	}
13626 
13627 	/* We get our maximum from the var_off, and our minimum is the
13628 	 * maximum of the operands' minima
13629 	 */
13630 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
13631 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13632 
13633 	/* Safe to set s64 bounds by casting u64 result into s64 when u64
13634 	 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
13635 	 */
13636 	if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
13637 		dst_reg->smin_value = dst_reg->umin_value;
13638 		dst_reg->smax_value = dst_reg->umax_value;
13639 	} else {
13640 		dst_reg->smin_value = S64_MIN;
13641 		dst_reg->smax_value = S64_MAX;
13642 	}
13643 	/* We may learn something more from the var_off */
13644 	__update_reg_bounds(dst_reg);
13645 }
13646 
13647 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
13648 				 struct bpf_reg_state *src_reg)
13649 {
13650 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13651 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13652 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13653 
13654 	if (src_known && dst_known) {
13655 		__mark_reg32_known(dst_reg, var32_off.value);
13656 		return;
13657 	}
13658 
13659 	/* We get both minimum and maximum from the var32_off. */
13660 	dst_reg->u32_min_value = var32_off.value;
13661 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13662 
13663 	/* Safe to set s32 bounds by casting u32 result into s32 when u32
13664 	 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
13665 	 */
13666 	if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
13667 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13668 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13669 	} else {
13670 		dst_reg->s32_min_value = S32_MIN;
13671 		dst_reg->s32_max_value = S32_MAX;
13672 	}
13673 }
13674 
13675 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
13676 			       struct bpf_reg_state *src_reg)
13677 {
13678 	bool src_known = tnum_is_const(src_reg->var_off);
13679 	bool dst_known = tnum_is_const(dst_reg->var_off);
13680 
13681 	if (src_known && dst_known) {
13682 		/* dst_reg->var_off.value has been updated earlier */
13683 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13684 		return;
13685 	}
13686 
13687 	/* We get both minimum and maximum from the var_off. */
13688 	dst_reg->umin_value = dst_reg->var_off.value;
13689 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13690 
13691 	/* Safe to set s64 bounds by casting u64 result into s64 when u64
13692 	 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
13693 	 */
13694 	if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
13695 		dst_reg->smin_value = dst_reg->umin_value;
13696 		dst_reg->smax_value = dst_reg->umax_value;
13697 	} else {
13698 		dst_reg->smin_value = S64_MIN;
13699 		dst_reg->smax_value = S64_MAX;
13700 	}
13701 
13702 	__update_reg_bounds(dst_reg);
13703 }
13704 
13705 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13706 				   u64 umin_val, u64 umax_val)
13707 {
13708 	/* We lose all sign bit information (except what we can pick
13709 	 * up from var_off)
13710 	 */
13711 	dst_reg->s32_min_value = S32_MIN;
13712 	dst_reg->s32_max_value = S32_MAX;
13713 	/* If we might shift our top bit out, then we know nothing */
13714 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
13715 		dst_reg->u32_min_value = 0;
13716 		dst_reg->u32_max_value = U32_MAX;
13717 	} else {
13718 		dst_reg->u32_min_value <<= umin_val;
13719 		dst_reg->u32_max_value <<= umax_val;
13720 	}
13721 }
13722 
13723 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13724 				 struct bpf_reg_state *src_reg)
13725 {
13726 	u32 umax_val = src_reg->u32_max_value;
13727 	u32 umin_val = src_reg->u32_min_value;
13728 	/* u32 alu operation will zext upper bits */
13729 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13730 
13731 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13732 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
13733 	/* Not required but being careful mark reg64 bounds as unknown so
13734 	 * that we are forced to pick them up from tnum and zext later and
13735 	 * if some path skips this step we are still safe.
13736 	 */
13737 	__mark_reg64_unbounded(dst_reg);
13738 	__update_reg32_bounds(dst_reg);
13739 }
13740 
13741 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
13742 				   u64 umin_val, u64 umax_val)
13743 {
13744 	/* Special case <<32 because it is a common compiler pattern to sign
13745 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
13746 	 * positive we know this shift will also be positive so we can track
13747 	 * bounds correctly. Otherwise we lose all sign bit information except
13748 	 * what we can pick up from var_off. Perhaps we can generalize this
13749 	 * later to shifts of any length.
13750 	 */
13751 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
13752 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
13753 	else
13754 		dst_reg->smax_value = S64_MAX;
13755 
13756 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
13757 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
13758 	else
13759 		dst_reg->smin_value = S64_MIN;
13760 
13761 	/* If we might shift our top bit out, then we know nothing */
13762 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
13763 		dst_reg->umin_value = 0;
13764 		dst_reg->umax_value = U64_MAX;
13765 	} else {
13766 		dst_reg->umin_value <<= umin_val;
13767 		dst_reg->umax_value <<= umax_val;
13768 	}
13769 }
13770 
13771 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
13772 			       struct bpf_reg_state *src_reg)
13773 {
13774 	u64 umax_val = src_reg->umax_value;
13775 	u64 umin_val = src_reg->umin_value;
13776 
13777 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
13778 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
13779 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13780 
13781 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
13782 	/* We may learn something more from the var_off */
13783 	__update_reg_bounds(dst_reg);
13784 }
13785 
13786 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
13787 				 struct bpf_reg_state *src_reg)
13788 {
13789 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13790 	u32 umax_val = src_reg->u32_max_value;
13791 	u32 umin_val = src_reg->u32_min_value;
13792 
13793 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13794 	 * be negative, then either:
13795 	 * 1) src_reg might be zero, so the sign bit of the result is
13796 	 *    unknown, so we lose our signed bounds
13797 	 * 2) it's known negative, thus the unsigned bounds capture the
13798 	 *    signed bounds
13799 	 * 3) the signed bounds cross zero, so they tell us nothing
13800 	 *    about the result
13801 	 * If the value in dst_reg is known nonnegative, then again the
13802 	 * unsigned bounds capture the signed bounds.
13803 	 * Thus, in all cases it suffices to blow away our signed bounds
13804 	 * and rely on inferring new ones from the unsigned bounds and
13805 	 * var_off of the result.
13806 	 */
13807 	dst_reg->s32_min_value = S32_MIN;
13808 	dst_reg->s32_max_value = S32_MAX;
13809 
13810 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
13811 	dst_reg->u32_min_value >>= umax_val;
13812 	dst_reg->u32_max_value >>= umin_val;
13813 
13814 	__mark_reg64_unbounded(dst_reg);
13815 	__update_reg32_bounds(dst_reg);
13816 }
13817 
13818 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
13819 			       struct bpf_reg_state *src_reg)
13820 {
13821 	u64 umax_val = src_reg->umax_value;
13822 	u64 umin_val = src_reg->umin_value;
13823 
13824 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13825 	 * be negative, then either:
13826 	 * 1) src_reg might be zero, so the sign bit of the result is
13827 	 *    unknown, so we lose our signed bounds
13828 	 * 2) it's known negative, thus the unsigned bounds capture the
13829 	 *    signed bounds
13830 	 * 3) the signed bounds cross zero, so they tell us nothing
13831 	 *    about the result
13832 	 * If the value in dst_reg is known nonnegative, then again the
13833 	 * unsigned bounds capture the signed bounds.
13834 	 * Thus, in all cases it suffices to blow away our signed bounds
13835 	 * and rely on inferring new ones from the unsigned bounds and
13836 	 * var_off of the result.
13837 	 */
13838 	dst_reg->smin_value = S64_MIN;
13839 	dst_reg->smax_value = S64_MAX;
13840 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
13841 	dst_reg->umin_value >>= umax_val;
13842 	dst_reg->umax_value >>= umin_val;
13843 
13844 	/* Its not easy to operate on alu32 bounds here because it depends
13845 	 * on bits being shifted in. Take easy way out and mark unbounded
13846 	 * so we can recalculate later from tnum.
13847 	 */
13848 	__mark_reg32_unbounded(dst_reg);
13849 	__update_reg_bounds(dst_reg);
13850 }
13851 
13852 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
13853 				  struct bpf_reg_state *src_reg)
13854 {
13855 	u64 umin_val = src_reg->u32_min_value;
13856 
13857 	/* Upon reaching here, src_known is true and
13858 	 * umax_val is equal to umin_val.
13859 	 */
13860 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
13861 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
13862 
13863 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
13864 
13865 	/* blow away the dst_reg umin_value/umax_value and rely on
13866 	 * dst_reg var_off to refine the result.
13867 	 */
13868 	dst_reg->u32_min_value = 0;
13869 	dst_reg->u32_max_value = U32_MAX;
13870 
13871 	__mark_reg64_unbounded(dst_reg);
13872 	__update_reg32_bounds(dst_reg);
13873 }
13874 
13875 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
13876 				struct bpf_reg_state *src_reg)
13877 {
13878 	u64 umin_val = src_reg->umin_value;
13879 
13880 	/* Upon reaching here, src_known is true and umax_val is equal
13881 	 * to umin_val.
13882 	 */
13883 	dst_reg->smin_value >>= umin_val;
13884 	dst_reg->smax_value >>= umin_val;
13885 
13886 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
13887 
13888 	/* blow away the dst_reg umin_value/umax_value and rely on
13889 	 * dst_reg var_off to refine the result.
13890 	 */
13891 	dst_reg->umin_value = 0;
13892 	dst_reg->umax_value = U64_MAX;
13893 
13894 	/* Its not easy to operate on alu32 bounds here because it depends
13895 	 * on bits being shifted in from upper 32-bits. Take easy way out
13896 	 * and mark unbounded so we can recalculate later from tnum.
13897 	 */
13898 	__mark_reg32_unbounded(dst_reg);
13899 	__update_reg_bounds(dst_reg);
13900 }
13901 
13902 static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn,
13903 					     const struct bpf_reg_state *src_reg)
13904 {
13905 	bool src_is_const = false;
13906 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
13907 
13908 	if (insn_bitness == 32) {
13909 		if (tnum_subreg_is_const(src_reg->var_off)
13910 		    && src_reg->s32_min_value == src_reg->s32_max_value
13911 		    && src_reg->u32_min_value == src_reg->u32_max_value)
13912 			src_is_const = true;
13913 	} else {
13914 		if (tnum_is_const(src_reg->var_off)
13915 		    && src_reg->smin_value == src_reg->smax_value
13916 		    && src_reg->umin_value == src_reg->umax_value)
13917 			src_is_const = true;
13918 	}
13919 
13920 	switch (BPF_OP(insn->code)) {
13921 	case BPF_ADD:
13922 	case BPF_SUB:
13923 	case BPF_AND:
13924 	case BPF_XOR:
13925 	case BPF_OR:
13926 	case BPF_MUL:
13927 		return true;
13928 
13929 	/* Shift operators range is only computable if shift dimension operand
13930 	 * is a constant. Shifts greater than 31 or 63 are undefined. This
13931 	 * includes shifts by a negative number.
13932 	 */
13933 	case BPF_LSH:
13934 	case BPF_RSH:
13935 	case BPF_ARSH:
13936 		return (src_is_const && src_reg->umax_value < insn_bitness);
13937 	default:
13938 		return false;
13939 	}
13940 }
13941 
13942 /* WARNING: This function does calculations on 64-bit values, but the actual
13943  * execution may occur on 32-bit values. Therefore, things like bitshifts
13944  * need extra checks in the 32-bit case.
13945  */
13946 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
13947 				      struct bpf_insn *insn,
13948 				      struct bpf_reg_state *dst_reg,
13949 				      struct bpf_reg_state src_reg)
13950 {
13951 	u8 opcode = BPF_OP(insn->code);
13952 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
13953 	int ret;
13954 
13955 	if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) {
13956 		__mark_reg_unknown(env, dst_reg);
13957 		return 0;
13958 	}
13959 
13960 	if (sanitize_needed(opcode)) {
13961 		ret = sanitize_val_alu(env, insn);
13962 		if (ret < 0)
13963 			return sanitize_err(env, insn, ret, NULL, NULL);
13964 	}
13965 
13966 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
13967 	 * There are two classes of instructions: The first class we track both
13968 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
13969 	 * greatest amount of precision when alu operations are mixed with jmp32
13970 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
13971 	 * and BPF_OR. This is possible because these ops have fairly easy to
13972 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
13973 	 * See alu32 verifier tests for examples. The second class of
13974 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
13975 	 * with regards to tracking sign/unsigned bounds because the bits may
13976 	 * cross subreg boundaries in the alu64 case. When this happens we mark
13977 	 * the reg unbounded in the subreg bound space and use the resulting
13978 	 * tnum to calculate an approximation of the sign/unsigned bounds.
13979 	 */
13980 	switch (opcode) {
13981 	case BPF_ADD:
13982 		scalar32_min_max_add(dst_reg, &src_reg);
13983 		scalar_min_max_add(dst_reg, &src_reg);
13984 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
13985 		break;
13986 	case BPF_SUB:
13987 		scalar32_min_max_sub(dst_reg, &src_reg);
13988 		scalar_min_max_sub(dst_reg, &src_reg);
13989 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
13990 		break;
13991 	case BPF_MUL:
13992 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
13993 		scalar32_min_max_mul(dst_reg, &src_reg);
13994 		scalar_min_max_mul(dst_reg, &src_reg);
13995 		break;
13996 	case BPF_AND:
13997 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
13998 		scalar32_min_max_and(dst_reg, &src_reg);
13999 		scalar_min_max_and(dst_reg, &src_reg);
14000 		break;
14001 	case BPF_OR:
14002 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
14003 		scalar32_min_max_or(dst_reg, &src_reg);
14004 		scalar_min_max_or(dst_reg, &src_reg);
14005 		break;
14006 	case BPF_XOR:
14007 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
14008 		scalar32_min_max_xor(dst_reg, &src_reg);
14009 		scalar_min_max_xor(dst_reg, &src_reg);
14010 		break;
14011 	case BPF_LSH:
14012 		if (alu32)
14013 			scalar32_min_max_lsh(dst_reg, &src_reg);
14014 		else
14015 			scalar_min_max_lsh(dst_reg, &src_reg);
14016 		break;
14017 	case BPF_RSH:
14018 		if (alu32)
14019 			scalar32_min_max_rsh(dst_reg, &src_reg);
14020 		else
14021 			scalar_min_max_rsh(dst_reg, &src_reg);
14022 		break;
14023 	case BPF_ARSH:
14024 		if (alu32)
14025 			scalar32_min_max_arsh(dst_reg, &src_reg);
14026 		else
14027 			scalar_min_max_arsh(dst_reg, &src_reg);
14028 		break;
14029 	default:
14030 		break;
14031 	}
14032 
14033 	/* ALU32 ops are zero extended into 64bit register */
14034 	if (alu32)
14035 		zext_32_to_64(dst_reg);
14036 	reg_bounds_sync(dst_reg);
14037 	return 0;
14038 }
14039 
14040 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
14041  * and var_off.
14042  */
14043 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
14044 				   struct bpf_insn *insn)
14045 {
14046 	struct bpf_verifier_state *vstate = env->cur_state;
14047 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
14048 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
14049 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
14050 	u8 opcode = BPF_OP(insn->code);
14051 	int err;
14052 
14053 	dst_reg = &regs[insn->dst_reg];
14054 	src_reg = NULL;
14055 
14056 	if (dst_reg->type == PTR_TO_ARENA) {
14057 		struct bpf_insn_aux_data *aux = cur_aux(env);
14058 
14059 		if (BPF_CLASS(insn->code) == BPF_ALU64)
14060 			/*
14061 			 * 32-bit operations zero upper bits automatically.
14062 			 * 64-bit operations need to be converted to 32.
14063 			 */
14064 			aux->needs_zext = true;
14065 
14066 		/* Any arithmetic operations are allowed on arena pointers */
14067 		return 0;
14068 	}
14069 
14070 	if (dst_reg->type != SCALAR_VALUE)
14071 		ptr_reg = dst_reg;
14072 	else
14073 		/* Make sure ID is cleared otherwise dst_reg min/max could be
14074 		 * incorrectly propagated into other registers by find_equal_scalars()
14075 		 */
14076 		dst_reg->id = 0;
14077 	if (BPF_SRC(insn->code) == BPF_X) {
14078 		src_reg = &regs[insn->src_reg];
14079 		if (src_reg->type != SCALAR_VALUE) {
14080 			if (dst_reg->type != SCALAR_VALUE) {
14081 				/* Combining two pointers by any ALU op yields
14082 				 * an arbitrary scalar. Disallow all math except
14083 				 * pointer subtraction
14084 				 */
14085 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
14086 					mark_reg_unknown(env, regs, insn->dst_reg);
14087 					return 0;
14088 				}
14089 				verbose(env, "R%d pointer %s pointer prohibited\n",
14090 					insn->dst_reg,
14091 					bpf_alu_string[opcode >> 4]);
14092 				return -EACCES;
14093 			} else {
14094 				/* scalar += pointer
14095 				 * This is legal, but we have to reverse our
14096 				 * src/dest handling in computing the range
14097 				 */
14098 				err = mark_chain_precision(env, insn->dst_reg);
14099 				if (err)
14100 					return err;
14101 				return adjust_ptr_min_max_vals(env, insn,
14102 							       src_reg, dst_reg);
14103 			}
14104 		} else if (ptr_reg) {
14105 			/* pointer += scalar */
14106 			err = mark_chain_precision(env, insn->src_reg);
14107 			if (err)
14108 				return err;
14109 			return adjust_ptr_min_max_vals(env, insn,
14110 						       dst_reg, src_reg);
14111 		} else if (dst_reg->precise) {
14112 			/* if dst_reg is precise, src_reg should be precise as well */
14113 			err = mark_chain_precision(env, insn->src_reg);
14114 			if (err)
14115 				return err;
14116 		}
14117 	} else {
14118 		/* Pretend the src is a reg with a known value, since we only
14119 		 * need to be able to read from this state.
14120 		 */
14121 		off_reg.type = SCALAR_VALUE;
14122 		__mark_reg_known(&off_reg, insn->imm);
14123 		src_reg = &off_reg;
14124 		if (ptr_reg) /* pointer += K */
14125 			return adjust_ptr_min_max_vals(env, insn,
14126 						       ptr_reg, src_reg);
14127 	}
14128 
14129 	/* Got here implies adding two SCALAR_VALUEs */
14130 	if (WARN_ON_ONCE(ptr_reg)) {
14131 		print_verifier_state(env, state, true);
14132 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
14133 		return -EINVAL;
14134 	}
14135 	if (WARN_ON(!src_reg)) {
14136 		print_verifier_state(env, state, true);
14137 		verbose(env, "verifier internal error: no src_reg\n");
14138 		return -EINVAL;
14139 	}
14140 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
14141 }
14142 
14143 /* check validity of 32-bit and 64-bit arithmetic operations */
14144 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
14145 {
14146 	struct bpf_reg_state *regs = cur_regs(env);
14147 	u8 opcode = BPF_OP(insn->code);
14148 	int err;
14149 
14150 	if (opcode == BPF_END || opcode == BPF_NEG) {
14151 		if (opcode == BPF_NEG) {
14152 			if (BPF_SRC(insn->code) != BPF_K ||
14153 			    insn->src_reg != BPF_REG_0 ||
14154 			    insn->off != 0 || insn->imm != 0) {
14155 				verbose(env, "BPF_NEG uses reserved fields\n");
14156 				return -EINVAL;
14157 			}
14158 		} else {
14159 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
14160 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
14161 			    (BPF_CLASS(insn->code) == BPF_ALU64 &&
14162 			     BPF_SRC(insn->code) != BPF_TO_LE)) {
14163 				verbose(env, "BPF_END uses reserved fields\n");
14164 				return -EINVAL;
14165 			}
14166 		}
14167 
14168 		/* check src operand */
14169 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14170 		if (err)
14171 			return err;
14172 
14173 		if (is_pointer_value(env, insn->dst_reg)) {
14174 			verbose(env, "R%d pointer arithmetic prohibited\n",
14175 				insn->dst_reg);
14176 			return -EACCES;
14177 		}
14178 
14179 		/* check dest operand */
14180 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
14181 		if (err)
14182 			return err;
14183 
14184 	} else if (opcode == BPF_MOV) {
14185 
14186 		if (BPF_SRC(insn->code) == BPF_X) {
14187 			if (BPF_CLASS(insn->code) == BPF_ALU) {
14188 				if ((insn->off != 0 && insn->off != 8 && insn->off != 16) ||
14189 				    insn->imm) {
14190 					verbose(env, "BPF_MOV uses reserved fields\n");
14191 					return -EINVAL;
14192 				}
14193 			} else if (insn->off == BPF_ADDR_SPACE_CAST) {
14194 				if (insn->imm != 1 && insn->imm != 1u << 16) {
14195 					verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n");
14196 					return -EINVAL;
14197 				}
14198 				if (!env->prog->aux->arena) {
14199 					verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n");
14200 					return -EINVAL;
14201 				}
14202 			} else {
14203 				if ((insn->off != 0 && insn->off != 8 && insn->off != 16 &&
14204 				     insn->off != 32) || insn->imm) {
14205 					verbose(env, "BPF_MOV uses reserved fields\n");
14206 					return -EINVAL;
14207 				}
14208 			}
14209 
14210 			/* check src operand */
14211 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
14212 			if (err)
14213 				return err;
14214 		} else {
14215 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
14216 				verbose(env, "BPF_MOV uses reserved fields\n");
14217 				return -EINVAL;
14218 			}
14219 		}
14220 
14221 		/* check dest operand, mark as required later */
14222 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
14223 		if (err)
14224 			return err;
14225 
14226 		if (BPF_SRC(insn->code) == BPF_X) {
14227 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
14228 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
14229 
14230 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
14231 				if (insn->imm) {
14232 					/* off == BPF_ADDR_SPACE_CAST */
14233 					mark_reg_unknown(env, regs, insn->dst_reg);
14234 					if (insn->imm == 1) { /* cast from as(1) to as(0) */
14235 						dst_reg->type = PTR_TO_ARENA;
14236 						/* PTR_TO_ARENA is 32-bit */
14237 						dst_reg->subreg_def = env->insn_idx + 1;
14238 					}
14239 				} else if (insn->off == 0) {
14240 					/* case: R1 = R2
14241 					 * copy register state to dest reg
14242 					 */
14243 					assign_scalar_id_before_mov(env, src_reg);
14244 					copy_register_state(dst_reg, src_reg);
14245 					dst_reg->live |= REG_LIVE_WRITTEN;
14246 					dst_reg->subreg_def = DEF_NOT_SUBREG;
14247 				} else {
14248 					/* case: R1 = (s8, s16 s32)R2 */
14249 					if (is_pointer_value(env, insn->src_reg)) {
14250 						verbose(env,
14251 							"R%d sign-extension part of pointer\n",
14252 							insn->src_reg);
14253 						return -EACCES;
14254 					} else if (src_reg->type == SCALAR_VALUE) {
14255 						bool no_sext;
14256 
14257 						no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
14258 						if (no_sext)
14259 							assign_scalar_id_before_mov(env, src_reg);
14260 						copy_register_state(dst_reg, src_reg);
14261 						if (!no_sext)
14262 							dst_reg->id = 0;
14263 						coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
14264 						dst_reg->live |= REG_LIVE_WRITTEN;
14265 						dst_reg->subreg_def = DEF_NOT_SUBREG;
14266 					} else {
14267 						mark_reg_unknown(env, regs, insn->dst_reg);
14268 					}
14269 				}
14270 			} else {
14271 				/* R1 = (u32) R2 */
14272 				if (is_pointer_value(env, insn->src_reg)) {
14273 					verbose(env,
14274 						"R%d partial copy of pointer\n",
14275 						insn->src_reg);
14276 					return -EACCES;
14277 				} else if (src_reg->type == SCALAR_VALUE) {
14278 					if (insn->off == 0) {
14279 						bool is_src_reg_u32 = get_reg_width(src_reg) <= 32;
14280 
14281 						if (is_src_reg_u32)
14282 							assign_scalar_id_before_mov(env, src_reg);
14283 						copy_register_state(dst_reg, src_reg);
14284 						/* Make sure ID is cleared if src_reg is not in u32
14285 						 * range otherwise dst_reg min/max could be incorrectly
14286 						 * propagated into src_reg by find_equal_scalars()
14287 						 */
14288 						if (!is_src_reg_u32)
14289 							dst_reg->id = 0;
14290 						dst_reg->live |= REG_LIVE_WRITTEN;
14291 						dst_reg->subreg_def = env->insn_idx + 1;
14292 					} else {
14293 						/* case: W1 = (s8, s16)W2 */
14294 						bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
14295 
14296 						if (no_sext)
14297 							assign_scalar_id_before_mov(env, src_reg);
14298 						copy_register_state(dst_reg, src_reg);
14299 						if (!no_sext)
14300 							dst_reg->id = 0;
14301 						dst_reg->live |= REG_LIVE_WRITTEN;
14302 						dst_reg->subreg_def = env->insn_idx + 1;
14303 						coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
14304 					}
14305 				} else {
14306 					mark_reg_unknown(env, regs,
14307 							 insn->dst_reg);
14308 				}
14309 				zext_32_to_64(dst_reg);
14310 				reg_bounds_sync(dst_reg);
14311 			}
14312 		} else {
14313 			/* case: R = imm
14314 			 * remember the value we stored into this reg
14315 			 */
14316 			/* clear any state __mark_reg_known doesn't set */
14317 			mark_reg_unknown(env, regs, insn->dst_reg);
14318 			regs[insn->dst_reg].type = SCALAR_VALUE;
14319 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
14320 				__mark_reg_known(regs + insn->dst_reg,
14321 						 insn->imm);
14322 			} else {
14323 				__mark_reg_known(regs + insn->dst_reg,
14324 						 (u32)insn->imm);
14325 			}
14326 		}
14327 
14328 	} else if (opcode > BPF_END) {
14329 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
14330 		return -EINVAL;
14331 
14332 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
14333 
14334 		if (BPF_SRC(insn->code) == BPF_X) {
14335 			if (insn->imm != 0 || insn->off > 1 ||
14336 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
14337 				verbose(env, "BPF_ALU uses reserved fields\n");
14338 				return -EINVAL;
14339 			}
14340 			/* check src1 operand */
14341 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
14342 			if (err)
14343 				return err;
14344 		} else {
14345 			if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
14346 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
14347 				verbose(env, "BPF_ALU uses reserved fields\n");
14348 				return -EINVAL;
14349 			}
14350 		}
14351 
14352 		/* check src2 operand */
14353 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14354 		if (err)
14355 			return err;
14356 
14357 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
14358 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
14359 			verbose(env, "div by zero\n");
14360 			return -EINVAL;
14361 		}
14362 
14363 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
14364 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
14365 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
14366 
14367 			if (insn->imm < 0 || insn->imm >= size) {
14368 				verbose(env, "invalid shift %d\n", insn->imm);
14369 				return -EINVAL;
14370 			}
14371 		}
14372 
14373 		/* check dest operand */
14374 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
14375 		err = err ?: adjust_reg_min_max_vals(env, insn);
14376 		if (err)
14377 			return err;
14378 	}
14379 
14380 	return reg_bounds_sanity_check(env, &regs[insn->dst_reg], "alu");
14381 }
14382 
14383 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
14384 				   struct bpf_reg_state *dst_reg,
14385 				   enum bpf_reg_type type,
14386 				   bool range_right_open)
14387 {
14388 	struct bpf_func_state *state;
14389 	struct bpf_reg_state *reg;
14390 	int new_range;
14391 
14392 	if (dst_reg->off < 0 ||
14393 	    (dst_reg->off == 0 && range_right_open))
14394 		/* This doesn't give us any range */
14395 		return;
14396 
14397 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
14398 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
14399 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
14400 		 * than pkt_end, but that's because it's also less than pkt.
14401 		 */
14402 		return;
14403 
14404 	new_range = dst_reg->off;
14405 	if (range_right_open)
14406 		new_range++;
14407 
14408 	/* Examples for register markings:
14409 	 *
14410 	 * pkt_data in dst register:
14411 	 *
14412 	 *   r2 = r3;
14413 	 *   r2 += 8;
14414 	 *   if (r2 > pkt_end) goto <handle exception>
14415 	 *   <access okay>
14416 	 *
14417 	 *   r2 = r3;
14418 	 *   r2 += 8;
14419 	 *   if (r2 < pkt_end) goto <access okay>
14420 	 *   <handle exception>
14421 	 *
14422 	 *   Where:
14423 	 *     r2 == dst_reg, pkt_end == src_reg
14424 	 *     r2=pkt(id=n,off=8,r=0)
14425 	 *     r3=pkt(id=n,off=0,r=0)
14426 	 *
14427 	 * pkt_data in src register:
14428 	 *
14429 	 *   r2 = r3;
14430 	 *   r2 += 8;
14431 	 *   if (pkt_end >= r2) goto <access okay>
14432 	 *   <handle exception>
14433 	 *
14434 	 *   r2 = r3;
14435 	 *   r2 += 8;
14436 	 *   if (pkt_end <= r2) goto <handle exception>
14437 	 *   <access okay>
14438 	 *
14439 	 *   Where:
14440 	 *     pkt_end == dst_reg, r2 == src_reg
14441 	 *     r2=pkt(id=n,off=8,r=0)
14442 	 *     r3=pkt(id=n,off=0,r=0)
14443 	 *
14444 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
14445 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
14446 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
14447 	 * the check.
14448 	 */
14449 
14450 	/* If our ids match, then we must have the same max_value.  And we
14451 	 * don't care about the other reg's fixed offset, since if it's too big
14452 	 * the range won't allow anything.
14453 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
14454 	 */
14455 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14456 		if (reg->type == type && reg->id == dst_reg->id)
14457 			/* keep the maximum range already checked */
14458 			reg->range = max(reg->range, new_range);
14459 	}));
14460 }
14461 
14462 /*
14463  * <reg1> <op> <reg2>, currently assuming reg2 is a constant
14464  */
14465 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14466 				  u8 opcode, bool is_jmp32)
14467 {
14468 	struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off;
14469 	struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off;
14470 	u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value;
14471 	u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value;
14472 	s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value;
14473 	s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value;
14474 	u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value;
14475 	u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value;
14476 	s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value;
14477 	s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value;
14478 
14479 	switch (opcode) {
14480 	case BPF_JEQ:
14481 		/* constants, umin/umax and smin/smax checks would be
14482 		 * redundant in this case because they all should match
14483 		 */
14484 		if (tnum_is_const(t1) && tnum_is_const(t2))
14485 			return t1.value == t2.value;
14486 		/* non-overlapping ranges */
14487 		if (umin1 > umax2 || umax1 < umin2)
14488 			return 0;
14489 		if (smin1 > smax2 || smax1 < smin2)
14490 			return 0;
14491 		if (!is_jmp32) {
14492 			/* if 64-bit ranges are inconclusive, see if we can
14493 			 * utilize 32-bit subrange knowledge to eliminate
14494 			 * branches that can't be taken a priori
14495 			 */
14496 			if (reg1->u32_min_value > reg2->u32_max_value ||
14497 			    reg1->u32_max_value < reg2->u32_min_value)
14498 				return 0;
14499 			if (reg1->s32_min_value > reg2->s32_max_value ||
14500 			    reg1->s32_max_value < reg2->s32_min_value)
14501 				return 0;
14502 		}
14503 		break;
14504 	case BPF_JNE:
14505 		/* constants, umin/umax and smin/smax checks would be
14506 		 * redundant in this case because they all should match
14507 		 */
14508 		if (tnum_is_const(t1) && tnum_is_const(t2))
14509 			return t1.value != t2.value;
14510 		/* non-overlapping ranges */
14511 		if (umin1 > umax2 || umax1 < umin2)
14512 			return 1;
14513 		if (smin1 > smax2 || smax1 < smin2)
14514 			return 1;
14515 		if (!is_jmp32) {
14516 			/* if 64-bit ranges are inconclusive, see if we can
14517 			 * utilize 32-bit subrange knowledge to eliminate
14518 			 * branches that can't be taken a priori
14519 			 */
14520 			if (reg1->u32_min_value > reg2->u32_max_value ||
14521 			    reg1->u32_max_value < reg2->u32_min_value)
14522 				return 1;
14523 			if (reg1->s32_min_value > reg2->s32_max_value ||
14524 			    reg1->s32_max_value < reg2->s32_min_value)
14525 				return 1;
14526 		}
14527 		break;
14528 	case BPF_JSET:
14529 		if (!is_reg_const(reg2, is_jmp32)) {
14530 			swap(reg1, reg2);
14531 			swap(t1, t2);
14532 		}
14533 		if (!is_reg_const(reg2, is_jmp32))
14534 			return -1;
14535 		if ((~t1.mask & t1.value) & t2.value)
14536 			return 1;
14537 		if (!((t1.mask | t1.value) & t2.value))
14538 			return 0;
14539 		break;
14540 	case BPF_JGT:
14541 		if (umin1 > umax2)
14542 			return 1;
14543 		else if (umax1 <= umin2)
14544 			return 0;
14545 		break;
14546 	case BPF_JSGT:
14547 		if (smin1 > smax2)
14548 			return 1;
14549 		else if (smax1 <= smin2)
14550 			return 0;
14551 		break;
14552 	case BPF_JLT:
14553 		if (umax1 < umin2)
14554 			return 1;
14555 		else if (umin1 >= umax2)
14556 			return 0;
14557 		break;
14558 	case BPF_JSLT:
14559 		if (smax1 < smin2)
14560 			return 1;
14561 		else if (smin1 >= smax2)
14562 			return 0;
14563 		break;
14564 	case BPF_JGE:
14565 		if (umin1 >= umax2)
14566 			return 1;
14567 		else if (umax1 < umin2)
14568 			return 0;
14569 		break;
14570 	case BPF_JSGE:
14571 		if (smin1 >= smax2)
14572 			return 1;
14573 		else if (smax1 < smin2)
14574 			return 0;
14575 		break;
14576 	case BPF_JLE:
14577 		if (umax1 <= umin2)
14578 			return 1;
14579 		else if (umin1 > umax2)
14580 			return 0;
14581 		break;
14582 	case BPF_JSLE:
14583 		if (smax1 <= smin2)
14584 			return 1;
14585 		else if (smin1 > smax2)
14586 			return 0;
14587 		break;
14588 	}
14589 
14590 	return -1;
14591 }
14592 
14593 static int flip_opcode(u32 opcode)
14594 {
14595 	/* How can we transform "a <op> b" into "b <op> a"? */
14596 	static const u8 opcode_flip[16] = {
14597 		/* these stay the same */
14598 		[BPF_JEQ  >> 4] = BPF_JEQ,
14599 		[BPF_JNE  >> 4] = BPF_JNE,
14600 		[BPF_JSET >> 4] = BPF_JSET,
14601 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
14602 		[BPF_JGE  >> 4] = BPF_JLE,
14603 		[BPF_JGT  >> 4] = BPF_JLT,
14604 		[BPF_JLE  >> 4] = BPF_JGE,
14605 		[BPF_JLT  >> 4] = BPF_JGT,
14606 		[BPF_JSGE >> 4] = BPF_JSLE,
14607 		[BPF_JSGT >> 4] = BPF_JSLT,
14608 		[BPF_JSLE >> 4] = BPF_JSGE,
14609 		[BPF_JSLT >> 4] = BPF_JSGT
14610 	};
14611 	return opcode_flip[opcode >> 4];
14612 }
14613 
14614 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
14615 				   struct bpf_reg_state *src_reg,
14616 				   u8 opcode)
14617 {
14618 	struct bpf_reg_state *pkt;
14619 
14620 	if (src_reg->type == PTR_TO_PACKET_END) {
14621 		pkt = dst_reg;
14622 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
14623 		pkt = src_reg;
14624 		opcode = flip_opcode(opcode);
14625 	} else {
14626 		return -1;
14627 	}
14628 
14629 	if (pkt->range >= 0)
14630 		return -1;
14631 
14632 	switch (opcode) {
14633 	case BPF_JLE:
14634 		/* pkt <= pkt_end */
14635 		fallthrough;
14636 	case BPF_JGT:
14637 		/* pkt > pkt_end */
14638 		if (pkt->range == BEYOND_PKT_END)
14639 			/* pkt has at last one extra byte beyond pkt_end */
14640 			return opcode == BPF_JGT;
14641 		break;
14642 	case BPF_JLT:
14643 		/* pkt < pkt_end */
14644 		fallthrough;
14645 	case BPF_JGE:
14646 		/* pkt >= pkt_end */
14647 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
14648 			return opcode == BPF_JGE;
14649 		break;
14650 	}
14651 	return -1;
14652 }
14653 
14654 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;"
14655  * and return:
14656  *  1 - branch will be taken and "goto target" will be executed
14657  *  0 - branch will not be taken and fall-through to next insn
14658  * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value
14659  *      range [0,10]
14660  */
14661 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14662 			   u8 opcode, bool is_jmp32)
14663 {
14664 	if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32)
14665 		return is_pkt_ptr_branch_taken(reg1, reg2, opcode);
14666 
14667 	if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) {
14668 		u64 val;
14669 
14670 		/* arrange that reg2 is a scalar, and reg1 is a pointer */
14671 		if (!is_reg_const(reg2, is_jmp32)) {
14672 			opcode = flip_opcode(opcode);
14673 			swap(reg1, reg2);
14674 		}
14675 		/* and ensure that reg2 is a constant */
14676 		if (!is_reg_const(reg2, is_jmp32))
14677 			return -1;
14678 
14679 		if (!reg_not_null(reg1))
14680 			return -1;
14681 
14682 		/* If pointer is valid tests against zero will fail so we can
14683 		 * use this to direct branch taken.
14684 		 */
14685 		val = reg_const_value(reg2, is_jmp32);
14686 		if (val != 0)
14687 			return -1;
14688 
14689 		switch (opcode) {
14690 		case BPF_JEQ:
14691 			return 0;
14692 		case BPF_JNE:
14693 			return 1;
14694 		default:
14695 			return -1;
14696 		}
14697 	}
14698 
14699 	/* now deal with two scalars, but not necessarily constants */
14700 	return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32);
14701 }
14702 
14703 /* Opcode that corresponds to a *false* branch condition.
14704  * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2
14705  */
14706 static u8 rev_opcode(u8 opcode)
14707 {
14708 	switch (opcode) {
14709 	case BPF_JEQ:		return BPF_JNE;
14710 	case BPF_JNE:		return BPF_JEQ;
14711 	/* JSET doesn't have it's reverse opcode in BPF, so add
14712 	 * BPF_X flag to denote the reverse of that operation
14713 	 */
14714 	case BPF_JSET:		return BPF_JSET | BPF_X;
14715 	case BPF_JSET | BPF_X:	return BPF_JSET;
14716 	case BPF_JGE:		return BPF_JLT;
14717 	case BPF_JGT:		return BPF_JLE;
14718 	case BPF_JLE:		return BPF_JGT;
14719 	case BPF_JLT:		return BPF_JGE;
14720 	case BPF_JSGE:		return BPF_JSLT;
14721 	case BPF_JSGT:		return BPF_JSLE;
14722 	case BPF_JSLE:		return BPF_JSGT;
14723 	case BPF_JSLT:		return BPF_JSGE;
14724 	default:		return 0;
14725 	}
14726 }
14727 
14728 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */
14729 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14730 				u8 opcode, bool is_jmp32)
14731 {
14732 	struct tnum t;
14733 	u64 val;
14734 
14735 	/* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */
14736 	switch (opcode) {
14737 	case BPF_JGE:
14738 	case BPF_JGT:
14739 	case BPF_JSGE:
14740 	case BPF_JSGT:
14741 		opcode = flip_opcode(opcode);
14742 		swap(reg1, reg2);
14743 		break;
14744 	default:
14745 		break;
14746 	}
14747 
14748 	switch (opcode) {
14749 	case BPF_JEQ:
14750 		if (is_jmp32) {
14751 			reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
14752 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
14753 			reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
14754 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
14755 			reg2->u32_min_value = reg1->u32_min_value;
14756 			reg2->u32_max_value = reg1->u32_max_value;
14757 			reg2->s32_min_value = reg1->s32_min_value;
14758 			reg2->s32_max_value = reg1->s32_max_value;
14759 
14760 			t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off));
14761 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
14762 			reg2->var_off = tnum_with_subreg(reg2->var_off, t);
14763 		} else {
14764 			reg1->umin_value = max(reg1->umin_value, reg2->umin_value);
14765 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
14766 			reg1->smin_value = max(reg1->smin_value, reg2->smin_value);
14767 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
14768 			reg2->umin_value = reg1->umin_value;
14769 			reg2->umax_value = reg1->umax_value;
14770 			reg2->smin_value = reg1->smin_value;
14771 			reg2->smax_value = reg1->smax_value;
14772 
14773 			reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off);
14774 			reg2->var_off = reg1->var_off;
14775 		}
14776 		break;
14777 	case BPF_JNE:
14778 		if (!is_reg_const(reg2, is_jmp32))
14779 			swap(reg1, reg2);
14780 		if (!is_reg_const(reg2, is_jmp32))
14781 			break;
14782 
14783 		/* try to recompute the bound of reg1 if reg2 is a const and
14784 		 * is exactly the edge of reg1.
14785 		 */
14786 		val = reg_const_value(reg2, is_jmp32);
14787 		if (is_jmp32) {
14788 			/* u32_min_value is not equal to 0xffffffff at this point,
14789 			 * because otherwise u32_max_value is 0xffffffff as well,
14790 			 * in such a case both reg1 and reg2 would be constants,
14791 			 * jump would be predicted and reg_set_min_max() won't
14792 			 * be called.
14793 			 *
14794 			 * Same reasoning works for all {u,s}{min,max}{32,64} cases
14795 			 * below.
14796 			 */
14797 			if (reg1->u32_min_value == (u32)val)
14798 				reg1->u32_min_value++;
14799 			if (reg1->u32_max_value == (u32)val)
14800 				reg1->u32_max_value--;
14801 			if (reg1->s32_min_value == (s32)val)
14802 				reg1->s32_min_value++;
14803 			if (reg1->s32_max_value == (s32)val)
14804 				reg1->s32_max_value--;
14805 		} else {
14806 			if (reg1->umin_value == (u64)val)
14807 				reg1->umin_value++;
14808 			if (reg1->umax_value == (u64)val)
14809 				reg1->umax_value--;
14810 			if (reg1->smin_value == (s64)val)
14811 				reg1->smin_value++;
14812 			if (reg1->smax_value == (s64)val)
14813 				reg1->smax_value--;
14814 		}
14815 		break;
14816 	case BPF_JSET:
14817 		if (!is_reg_const(reg2, is_jmp32))
14818 			swap(reg1, reg2);
14819 		if (!is_reg_const(reg2, is_jmp32))
14820 			break;
14821 		val = reg_const_value(reg2, is_jmp32);
14822 		/* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X)
14823 		 * requires single bit to learn something useful. E.g., if we
14824 		 * know that `r1 & 0x3` is true, then which bits (0, 1, or both)
14825 		 * are actually set? We can learn something definite only if
14826 		 * it's a single-bit value to begin with.
14827 		 *
14828 		 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have
14829 		 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor
14830 		 * bit 1 is set, which we can readily use in adjustments.
14831 		 */
14832 		if (!is_power_of_2(val))
14833 			break;
14834 		if (is_jmp32) {
14835 			t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val));
14836 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
14837 		} else {
14838 			reg1->var_off = tnum_or(reg1->var_off, tnum_const(val));
14839 		}
14840 		break;
14841 	case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */
14842 		if (!is_reg_const(reg2, is_jmp32))
14843 			swap(reg1, reg2);
14844 		if (!is_reg_const(reg2, is_jmp32))
14845 			break;
14846 		val = reg_const_value(reg2, is_jmp32);
14847 		if (is_jmp32) {
14848 			t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val));
14849 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
14850 		} else {
14851 			reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val));
14852 		}
14853 		break;
14854 	case BPF_JLE:
14855 		if (is_jmp32) {
14856 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
14857 			reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
14858 		} else {
14859 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
14860 			reg2->umin_value = max(reg1->umin_value, reg2->umin_value);
14861 		}
14862 		break;
14863 	case BPF_JLT:
14864 		if (is_jmp32) {
14865 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1);
14866 			reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value);
14867 		} else {
14868 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1);
14869 			reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value);
14870 		}
14871 		break;
14872 	case BPF_JSLE:
14873 		if (is_jmp32) {
14874 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
14875 			reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
14876 		} else {
14877 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
14878 			reg2->smin_value = max(reg1->smin_value, reg2->smin_value);
14879 		}
14880 		break;
14881 	case BPF_JSLT:
14882 		if (is_jmp32) {
14883 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1);
14884 			reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value);
14885 		} else {
14886 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1);
14887 			reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value);
14888 		}
14889 		break;
14890 	default:
14891 		return;
14892 	}
14893 }
14894 
14895 /* Adjusts the register min/max values in the case that the dst_reg and
14896  * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K
14897  * check, in which case we have a fake SCALAR_VALUE representing insn->imm).
14898  * Technically we can do similar adjustments for pointers to the same object,
14899  * but we don't support that right now.
14900  */
14901 static int reg_set_min_max(struct bpf_verifier_env *env,
14902 			   struct bpf_reg_state *true_reg1,
14903 			   struct bpf_reg_state *true_reg2,
14904 			   struct bpf_reg_state *false_reg1,
14905 			   struct bpf_reg_state *false_reg2,
14906 			   u8 opcode, bool is_jmp32)
14907 {
14908 	int err;
14909 
14910 	/* If either register is a pointer, we can't learn anything about its
14911 	 * variable offset from the compare (unless they were a pointer into
14912 	 * the same object, but we don't bother with that).
14913 	 */
14914 	if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE)
14915 		return 0;
14916 
14917 	/* fallthrough (FALSE) branch */
14918 	regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32);
14919 	reg_bounds_sync(false_reg1);
14920 	reg_bounds_sync(false_reg2);
14921 
14922 	/* jump (TRUE) branch */
14923 	regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32);
14924 	reg_bounds_sync(true_reg1);
14925 	reg_bounds_sync(true_reg2);
14926 
14927 	err = reg_bounds_sanity_check(env, true_reg1, "true_reg1");
14928 	err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2");
14929 	err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1");
14930 	err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2");
14931 	return err;
14932 }
14933 
14934 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
14935 				 struct bpf_reg_state *reg, u32 id,
14936 				 bool is_null)
14937 {
14938 	if (type_may_be_null(reg->type) && reg->id == id &&
14939 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
14940 		/* Old offset (both fixed and variable parts) should have been
14941 		 * known-zero, because we don't allow pointer arithmetic on
14942 		 * pointers that might be NULL. If we see this happening, don't
14943 		 * convert the register.
14944 		 *
14945 		 * But in some cases, some helpers that return local kptrs
14946 		 * advance offset for the returned pointer. In those cases, it
14947 		 * is fine to expect to see reg->off.
14948 		 */
14949 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
14950 			return;
14951 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
14952 		    WARN_ON_ONCE(reg->off))
14953 			return;
14954 
14955 		if (is_null) {
14956 			reg->type = SCALAR_VALUE;
14957 			/* We don't need id and ref_obj_id from this point
14958 			 * onwards anymore, thus we should better reset it,
14959 			 * so that state pruning has chances to take effect.
14960 			 */
14961 			reg->id = 0;
14962 			reg->ref_obj_id = 0;
14963 
14964 			return;
14965 		}
14966 
14967 		mark_ptr_not_null_reg(reg);
14968 
14969 		if (!reg_may_point_to_spin_lock(reg)) {
14970 			/* For not-NULL ptr, reg->ref_obj_id will be reset
14971 			 * in release_reference().
14972 			 *
14973 			 * reg->id is still used by spin_lock ptr. Other
14974 			 * than spin_lock ptr type, reg->id can be reset.
14975 			 */
14976 			reg->id = 0;
14977 		}
14978 	}
14979 }
14980 
14981 /* The logic is similar to find_good_pkt_pointers(), both could eventually
14982  * be folded together at some point.
14983  */
14984 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
14985 				  bool is_null)
14986 {
14987 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
14988 	struct bpf_reg_state *regs = state->regs, *reg;
14989 	u32 ref_obj_id = regs[regno].ref_obj_id;
14990 	u32 id = regs[regno].id;
14991 
14992 	if (ref_obj_id && ref_obj_id == id && is_null)
14993 		/* regs[regno] is in the " == NULL" branch.
14994 		 * No one could have freed the reference state before
14995 		 * doing the NULL check.
14996 		 */
14997 		WARN_ON_ONCE(release_reference_state(state, id));
14998 
14999 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
15000 		mark_ptr_or_null_reg(state, reg, id, is_null);
15001 	}));
15002 }
15003 
15004 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
15005 				   struct bpf_reg_state *dst_reg,
15006 				   struct bpf_reg_state *src_reg,
15007 				   struct bpf_verifier_state *this_branch,
15008 				   struct bpf_verifier_state *other_branch)
15009 {
15010 	if (BPF_SRC(insn->code) != BPF_X)
15011 		return false;
15012 
15013 	/* Pointers are always 64-bit. */
15014 	if (BPF_CLASS(insn->code) == BPF_JMP32)
15015 		return false;
15016 
15017 	switch (BPF_OP(insn->code)) {
15018 	case BPF_JGT:
15019 		if ((dst_reg->type == PTR_TO_PACKET &&
15020 		     src_reg->type == PTR_TO_PACKET_END) ||
15021 		    (dst_reg->type == PTR_TO_PACKET_META &&
15022 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15023 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
15024 			find_good_pkt_pointers(this_branch, dst_reg,
15025 					       dst_reg->type, false);
15026 			mark_pkt_end(other_branch, insn->dst_reg, true);
15027 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
15028 			    src_reg->type == PTR_TO_PACKET) ||
15029 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15030 			    src_reg->type == PTR_TO_PACKET_META)) {
15031 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
15032 			find_good_pkt_pointers(other_branch, src_reg,
15033 					       src_reg->type, true);
15034 			mark_pkt_end(this_branch, insn->src_reg, false);
15035 		} else {
15036 			return false;
15037 		}
15038 		break;
15039 	case BPF_JLT:
15040 		if ((dst_reg->type == PTR_TO_PACKET &&
15041 		     src_reg->type == PTR_TO_PACKET_END) ||
15042 		    (dst_reg->type == PTR_TO_PACKET_META &&
15043 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15044 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
15045 			find_good_pkt_pointers(other_branch, dst_reg,
15046 					       dst_reg->type, true);
15047 			mark_pkt_end(this_branch, insn->dst_reg, false);
15048 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
15049 			    src_reg->type == PTR_TO_PACKET) ||
15050 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15051 			    src_reg->type == PTR_TO_PACKET_META)) {
15052 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
15053 			find_good_pkt_pointers(this_branch, src_reg,
15054 					       src_reg->type, false);
15055 			mark_pkt_end(other_branch, insn->src_reg, true);
15056 		} else {
15057 			return false;
15058 		}
15059 		break;
15060 	case BPF_JGE:
15061 		if ((dst_reg->type == PTR_TO_PACKET &&
15062 		     src_reg->type == PTR_TO_PACKET_END) ||
15063 		    (dst_reg->type == PTR_TO_PACKET_META &&
15064 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15065 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
15066 			find_good_pkt_pointers(this_branch, dst_reg,
15067 					       dst_reg->type, true);
15068 			mark_pkt_end(other_branch, insn->dst_reg, false);
15069 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
15070 			    src_reg->type == PTR_TO_PACKET) ||
15071 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15072 			    src_reg->type == PTR_TO_PACKET_META)) {
15073 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
15074 			find_good_pkt_pointers(other_branch, src_reg,
15075 					       src_reg->type, false);
15076 			mark_pkt_end(this_branch, insn->src_reg, true);
15077 		} else {
15078 			return false;
15079 		}
15080 		break;
15081 	case BPF_JLE:
15082 		if ((dst_reg->type == PTR_TO_PACKET &&
15083 		     src_reg->type == PTR_TO_PACKET_END) ||
15084 		    (dst_reg->type == PTR_TO_PACKET_META &&
15085 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15086 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
15087 			find_good_pkt_pointers(other_branch, dst_reg,
15088 					       dst_reg->type, false);
15089 			mark_pkt_end(this_branch, insn->dst_reg, true);
15090 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
15091 			    src_reg->type == PTR_TO_PACKET) ||
15092 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15093 			    src_reg->type == PTR_TO_PACKET_META)) {
15094 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
15095 			find_good_pkt_pointers(this_branch, src_reg,
15096 					       src_reg->type, true);
15097 			mark_pkt_end(other_branch, insn->src_reg, false);
15098 		} else {
15099 			return false;
15100 		}
15101 		break;
15102 	default:
15103 		return false;
15104 	}
15105 
15106 	return true;
15107 }
15108 
15109 static void find_equal_scalars(struct bpf_verifier_state *vstate,
15110 			       struct bpf_reg_state *known_reg)
15111 {
15112 	struct bpf_func_state *state;
15113 	struct bpf_reg_state *reg;
15114 
15115 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
15116 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
15117 			copy_register_state(reg, known_reg);
15118 	}));
15119 }
15120 
15121 static int check_cond_jmp_op(struct bpf_verifier_env *env,
15122 			     struct bpf_insn *insn, int *insn_idx)
15123 {
15124 	struct bpf_verifier_state *this_branch = env->cur_state;
15125 	struct bpf_verifier_state *other_branch;
15126 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
15127 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
15128 	struct bpf_reg_state *eq_branch_regs;
15129 	u8 opcode = BPF_OP(insn->code);
15130 	bool is_jmp32;
15131 	int pred = -1;
15132 	int err;
15133 
15134 	/* Only conditional jumps are expected to reach here. */
15135 	if (opcode == BPF_JA || opcode > BPF_JCOND) {
15136 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
15137 		return -EINVAL;
15138 	}
15139 
15140 	if (opcode == BPF_JCOND) {
15141 		struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
15142 		int idx = *insn_idx;
15143 
15144 		if (insn->code != (BPF_JMP | BPF_JCOND) ||
15145 		    insn->src_reg != BPF_MAY_GOTO ||
15146 		    insn->dst_reg || insn->imm || insn->off == 0) {
15147 			verbose(env, "invalid may_goto off %d imm %d\n",
15148 				insn->off, insn->imm);
15149 			return -EINVAL;
15150 		}
15151 		prev_st = find_prev_entry(env, cur_st->parent, idx);
15152 
15153 		/* branch out 'fallthrough' insn as a new state to explore */
15154 		queued_st = push_stack(env, idx + 1, idx, false);
15155 		if (!queued_st)
15156 			return -ENOMEM;
15157 
15158 		queued_st->may_goto_depth++;
15159 		if (prev_st)
15160 			widen_imprecise_scalars(env, prev_st, queued_st);
15161 		*insn_idx += insn->off;
15162 		return 0;
15163 	}
15164 
15165 	/* check src2 operand */
15166 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
15167 	if (err)
15168 		return err;
15169 
15170 	dst_reg = &regs[insn->dst_reg];
15171 	if (BPF_SRC(insn->code) == BPF_X) {
15172 		if (insn->imm != 0) {
15173 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
15174 			return -EINVAL;
15175 		}
15176 
15177 		/* check src1 operand */
15178 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
15179 		if (err)
15180 			return err;
15181 
15182 		src_reg = &regs[insn->src_reg];
15183 		if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
15184 		    is_pointer_value(env, insn->src_reg)) {
15185 			verbose(env, "R%d pointer comparison prohibited\n",
15186 				insn->src_reg);
15187 			return -EACCES;
15188 		}
15189 	} else {
15190 		if (insn->src_reg != BPF_REG_0) {
15191 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
15192 			return -EINVAL;
15193 		}
15194 		src_reg = &env->fake_reg[0];
15195 		memset(src_reg, 0, sizeof(*src_reg));
15196 		src_reg->type = SCALAR_VALUE;
15197 		__mark_reg_known(src_reg, insn->imm);
15198 	}
15199 
15200 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
15201 	pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32);
15202 	if (pred >= 0) {
15203 		/* If we get here with a dst_reg pointer type it is because
15204 		 * above is_branch_taken() special cased the 0 comparison.
15205 		 */
15206 		if (!__is_pointer_value(false, dst_reg))
15207 			err = mark_chain_precision(env, insn->dst_reg);
15208 		if (BPF_SRC(insn->code) == BPF_X && !err &&
15209 		    !__is_pointer_value(false, src_reg))
15210 			err = mark_chain_precision(env, insn->src_reg);
15211 		if (err)
15212 			return err;
15213 	}
15214 
15215 	if (pred == 1) {
15216 		/* Only follow the goto, ignore fall-through. If needed, push
15217 		 * the fall-through branch for simulation under speculative
15218 		 * execution.
15219 		 */
15220 		if (!env->bypass_spec_v1 &&
15221 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
15222 					       *insn_idx))
15223 			return -EFAULT;
15224 		if (env->log.level & BPF_LOG_LEVEL)
15225 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
15226 		*insn_idx += insn->off;
15227 		return 0;
15228 	} else if (pred == 0) {
15229 		/* Only follow the fall-through branch, since that's where the
15230 		 * program will go. If needed, push the goto branch for
15231 		 * simulation under speculative execution.
15232 		 */
15233 		if (!env->bypass_spec_v1 &&
15234 		    !sanitize_speculative_path(env, insn,
15235 					       *insn_idx + insn->off + 1,
15236 					       *insn_idx))
15237 			return -EFAULT;
15238 		if (env->log.level & BPF_LOG_LEVEL)
15239 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
15240 		return 0;
15241 	}
15242 
15243 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
15244 				  false);
15245 	if (!other_branch)
15246 		return -EFAULT;
15247 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
15248 
15249 	if (BPF_SRC(insn->code) == BPF_X) {
15250 		err = reg_set_min_max(env,
15251 				      &other_branch_regs[insn->dst_reg],
15252 				      &other_branch_regs[insn->src_reg],
15253 				      dst_reg, src_reg, opcode, is_jmp32);
15254 	} else /* BPF_SRC(insn->code) == BPF_K */ {
15255 		/* reg_set_min_max() can mangle the fake_reg. Make a copy
15256 		 * so that these are two different memory locations. The
15257 		 * src_reg is not used beyond here in context of K.
15258 		 */
15259 		memcpy(&env->fake_reg[1], &env->fake_reg[0],
15260 		       sizeof(env->fake_reg[0]));
15261 		err = reg_set_min_max(env,
15262 				      &other_branch_regs[insn->dst_reg],
15263 				      &env->fake_reg[0],
15264 				      dst_reg, &env->fake_reg[1],
15265 				      opcode, is_jmp32);
15266 	}
15267 	if (err)
15268 		return err;
15269 
15270 	if (BPF_SRC(insn->code) == BPF_X &&
15271 	    src_reg->type == SCALAR_VALUE && src_reg->id &&
15272 	    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
15273 		find_equal_scalars(this_branch, src_reg);
15274 		find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
15275 	}
15276 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
15277 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
15278 		find_equal_scalars(this_branch, dst_reg);
15279 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
15280 	}
15281 
15282 	/* if one pointer register is compared to another pointer
15283 	 * register check if PTR_MAYBE_NULL could be lifted.
15284 	 * E.g. register A - maybe null
15285 	 *      register B - not null
15286 	 * for JNE A, B, ... - A is not null in the false branch;
15287 	 * for JEQ A, B, ... - A is not null in the true branch.
15288 	 *
15289 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
15290 	 * not need to be null checked by the BPF program, i.e.,
15291 	 * could be null even without PTR_MAYBE_NULL marking, so
15292 	 * only propagate nullness when neither reg is that type.
15293 	 */
15294 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
15295 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
15296 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
15297 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
15298 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
15299 		eq_branch_regs = NULL;
15300 		switch (opcode) {
15301 		case BPF_JEQ:
15302 			eq_branch_regs = other_branch_regs;
15303 			break;
15304 		case BPF_JNE:
15305 			eq_branch_regs = regs;
15306 			break;
15307 		default:
15308 			/* do nothing */
15309 			break;
15310 		}
15311 		if (eq_branch_regs) {
15312 			if (type_may_be_null(src_reg->type))
15313 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
15314 			else
15315 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
15316 		}
15317 	}
15318 
15319 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
15320 	 * NOTE: these optimizations below are related with pointer comparison
15321 	 *       which will never be JMP32.
15322 	 */
15323 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
15324 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
15325 	    type_may_be_null(dst_reg->type)) {
15326 		/* Mark all identical registers in each branch as either
15327 		 * safe or unknown depending R == 0 or R != 0 conditional.
15328 		 */
15329 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
15330 				      opcode == BPF_JNE);
15331 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
15332 				      opcode == BPF_JEQ);
15333 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
15334 					   this_branch, other_branch) &&
15335 		   is_pointer_value(env, insn->dst_reg)) {
15336 		verbose(env, "R%d pointer comparison prohibited\n",
15337 			insn->dst_reg);
15338 		return -EACCES;
15339 	}
15340 	if (env->log.level & BPF_LOG_LEVEL)
15341 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
15342 	return 0;
15343 }
15344 
15345 /* verify BPF_LD_IMM64 instruction */
15346 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
15347 {
15348 	struct bpf_insn_aux_data *aux = cur_aux(env);
15349 	struct bpf_reg_state *regs = cur_regs(env);
15350 	struct bpf_reg_state *dst_reg;
15351 	struct bpf_map *map;
15352 	int err;
15353 
15354 	if (BPF_SIZE(insn->code) != BPF_DW) {
15355 		verbose(env, "invalid BPF_LD_IMM insn\n");
15356 		return -EINVAL;
15357 	}
15358 	if (insn->off != 0) {
15359 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
15360 		return -EINVAL;
15361 	}
15362 
15363 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
15364 	if (err)
15365 		return err;
15366 
15367 	dst_reg = &regs[insn->dst_reg];
15368 	if (insn->src_reg == 0) {
15369 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
15370 
15371 		dst_reg->type = SCALAR_VALUE;
15372 		__mark_reg_known(&regs[insn->dst_reg], imm);
15373 		return 0;
15374 	}
15375 
15376 	/* All special src_reg cases are listed below. From this point onwards
15377 	 * we either succeed and assign a corresponding dst_reg->type after
15378 	 * zeroing the offset, or fail and reject the program.
15379 	 */
15380 	mark_reg_known_zero(env, regs, insn->dst_reg);
15381 
15382 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
15383 		dst_reg->type = aux->btf_var.reg_type;
15384 		switch (base_type(dst_reg->type)) {
15385 		case PTR_TO_MEM:
15386 			dst_reg->mem_size = aux->btf_var.mem_size;
15387 			break;
15388 		case PTR_TO_BTF_ID:
15389 			dst_reg->btf = aux->btf_var.btf;
15390 			dst_reg->btf_id = aux->btf_var.btf_id;
15391 			break;
15392 		default:
15393 			verbose(env, "bpf verifier is misconfigured\n");
15394 			return -EFAULT;
15395 		}
15396 		return 0;
15397 	}
15398 
15399 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
15400 		struct bpf_prog_aux *aux = env->prog->aux;
15401 		u32 subprogno = find_subprog(env,
15402 					     env->insn_idx + insn->imm + 1);
15403 
15404 		if (!aux->func_info) {
15405 			verbose(env, "missing btf func_info\n");
15406 			return -EINVAL;
15407 		}
15408 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
15409 			verbose(env, "callback function not static\n");
15410 			return -EINVAL;
15411 		}
15412 
15413 		dst_reg->type = PTR_TO_FUNC;
15414 		dst_reg->subprogno = subprogno;
15415 		return 0;
15416 	}
15417 
15418 	map = env->used_maps[aux->map_index];
15419 	dst_reg->map_ptr = map;
15420 
15421 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
15422 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
15423 		if (map->map_type == BPF_MAP_TYPE_ARENA) {
15424 			__mark_reg_unknown(env, dst_reg);
15425 			return 0;
15426 		}
15427 		dst_reg->type = PTR_TO_MAP_VALUE;
15428 		dst_reg->off = aux->map_off;
15429 		WARN_ON_ONCE(map->max_entries != 1);
15430 		/* We want reg->id to be same (0) as map_value is not distinct */
15431 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
15432 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
15433 		dst_reg->type = CONST_PTR_TO_MAP;
15434 	} else {
15435 		verbose(env, "bpf verifier is misconfigured\n");
15436 		return -EINVAL;
15437 	}
15438 
15439 	return 0;
15440 }
15441 
15442 static bool may_access_skb(enum bpf_prog_type type)
15443 {
15444 	switch (type) {
15445 	case BPF_PROG_TYPE_SOCKET_FILTER:
15446 	case BPF_PROG_TYPE_SCHED_CLS:
15447 	case BPF_PROG_TYPE_SCHED_ACT:
15448 		return true;
15449 	default:
15450 		return false;
15451 	}
15452 }
15453 
15454 /* verify safety of LD_ABS|LD_IND instructions:
15455  * - they can only appear in the programs where ctx == skb
15456  * - since they are wrappers of function calls, they scratch R1-R5 registers,
15457  *   preserve R6-R9, and store return value into R0
15458  *
15459  * Implicit input:
15460  *   ctx == skb == R6 == CTX
15461  *
15462  * Explicit input:
15463  *   SRC == any register
15464  *   IMM == 32-bit immediate
15465  *
15466  * Output:
15467  *   R0 - 8/16/32-bit skb data converted to cpu endianness
15468  */
15469 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
15470 {
15471 	struct bpf_reg_state *regs = cur_regs(env);
15472 	static const int ctx_reg = BPF_REG_6;
15473 	u8 mode = BPF_MODE(insn->code);
15474 	int i, err;
15475 
15476 	if (!may_access_skb(resolve_prog_type(env->prog))) {
15477 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
15478 		return -EINVAL;
15479 	}
15480 
15481 	if (!env->ops->gen_ld_abs) {
15482 		verbose(env, "bpf verifier is misconfigured\n");
15483 		return -EINVAL;
15484 	}
15485 
15486 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
15487 	    BPF_SIZE(insn->code) == BPF_DW ||
15488 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
15489 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
15490 		return -EINVAL;
15491 	}
15492 
15493 	/* check whether implicit source operand (register R6) is readable */
15494 	err = check_reg_arg(env, ctx_reg, SRC_OP);
15495 	if (err)
15496 		return err;
15497 
15498 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
15499 	 * gen_ld_abs() may terminate the program at runtime, leading to
15500 	 * reference leak.
15501 	 */
15502 	err = check_reference_leak(env, false);
15503 	if (err) {
15504 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
15505 		return err;
15506 	}
15507 
15508 	if (env->cur_state->active_lock.ptr) {
15509 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
15510 		return -EINVAL;
15511 	}
15512 
15513 	if (env->cur_state->active_rcu_lock) {
15514 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
15515 		return -EINVAL;
15516 	}
15517 
15518 	if (env->cur_state->active_preempt_lock) {
15519 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_preempt_disable-ed region\n");
15520 		return -EINVAL;
15521 	}
15522 
15523 	if (regs[ctx_reg].type != PTR_TO_CTX) {
15524 		verbose(env,
15525 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
15526 		return -EINVAL;
15527 	}
15528 
15529 	if (mode == BPF_IND) {
15530 		/* check explicit source operand */
15531 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
15532 		if (err)
15533 			return err;
15534 	}
15535 
15536 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
15537 	if (err < 0)
15538 		return err;
15539 
15540 	/* reset caller saved regs to unreadable */
15541 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
15542 		mark_reg_not_init(env, regs, caller_saved[i]);
15543 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
15544 	}
15545 
15546 	/* mark destination R0 register as readable, since it contains
15547 	 * the value fetched from the packet.
15548 	 * Already marked as written above.
15549 	 */
15550 	mark_reg_unknown(env, regs, BPF_REG_0);
15551 	/* ld_abs load up to 32-bit skb data. */
15552 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
15553 	return 0;
15554 }
15555 
15556 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name)
15557 {
15558 	const char *exit_ctx = "At program exit";
15559 	struct tnum enforce_attach_type_range = tnum_unknown;
15560 	const struct bpf_prog *prog = env->prog;
15561 	struct bpf_reg_state *reg;
15562 	struct bpf_retval_range range = retval_range(0, 1);
15563 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
15564 	int err;
15565 	struct bpf_func_state *frame = env->cur_state->frame[0];
15566 	const bool is_subprog = frame->subprogno;
15567 
15568 	/* LSM and struct_ops func-ptr's return type could be "void" */
15569 	if (!is_subprog || frame->in_exception_callback_fn) {
15570 		switch (prog_type) {
15571 		case BPF_PROG_TYPE_LSM:
15572 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
15573 				/* See below, can be 0 or 0-1 depending on hook. */
15574 				break;
15575 			fallthrough;
15576 		case BPF_PROG_TYPE_STRUCT_OPS:
15577 			if (!prog->aux->attach_func_proto->type)
15578 				return 0;
15579 			break;
15580 		default:
15581 			break;
15582 		}
15583 	}
15584 
15585 	/* eBPF calling convention is such that R0 is used
15586 	 * to return the value from eBPF program.
15587 	 * Make sure that it's readable at this time
15588 	 * of bpf_exit, which means that program wrote
15589 	 * something into it earlier
15590 	 */
15591 	err = check_reg_arg(env, regno, SRC_OP);
15592 	if (err)
15593 		return err;
15594 
15595 	if (is_pointer_value(env, regno)) {
15596 		verbose(env, "R%d leaks addr as return value\n", regno);
15597 		return -EACCES;
15598 	}
15599 
15600 	reg = cur_regs(env) + regno;
15601 
15602 	if (frame->in_async_callback_fn) {
15603 		/* enforce return zero from async callbacks like timer */
15604 		exit_ctx = "At async callback return";
15605 		range = retval_range(0, 0);
15606 		goto enforce_retval;
15607 	}
15608 
15609 	if (is_subprog && !frame->in_exception_callback_fn) {
15610 		if (reg->type != SCALAR_VALUE) {
15611 			verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n",
15612 				regno, reg_type_str(env, reg->type));
15613 			return -EINVAL;
15614 		}
15615 		return 0;
15616 	}
15617 
15618 	switch (prog_type) {
15619 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
15620 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
15621 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
15622 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG ||
15623 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
15624 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
15625 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME ||
15626 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
15627 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME ||
15628 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME)
15629 			range = retval_range(1, 1);
15630 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
15631 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
15632 			range = retval_range(0, 3);
15633 		break;
15634 	case BPF_PROG_TYPE_CGROUP_SKB:
15635 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
15636 			range = retval_range(0, 3);
15637 			enforce_attach_type_range = tnum_range(2, 3);
15638 		}
15639 		break;
15640 	case BPF_PROG_TYPE_CGROUP_SOCK:
15641 	case BPF_PROG_TYPE_SOCK_OPS:
15642 	case BPF_PROG_TYPE_CGROUP_DEVICE:
15643 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
15644 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
15645 		break;
15646 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
15647 		if (!env->prog->aux->attach_btf_id)
15648 			return 0;
15649 		range = retval_range(0, 0);
15650 		break;
15651 	case BPF_PROG_TYPE_TRACING:
15652 		switch (env->prog->expected_attach_type) {
15653 		case BPF_TRACE_FENTRY:
15654 		case BPF_TRACE_FEXIT:
15655 			range = retval_range(0, 0);
15656 			break;
15657 		case BPF_TRACE_RAW_TP:
15658 		case BPF_MODIFY_RETURN:
15659 			return 0;
15660 		case BPF_TRACE_ITER:
15661 			break;
15662 		default:
15663 			return -ENOTSUPP;
15664 		}
15665 		break;
15666 	case BPF_PROG_TYPE_SK_LOOKUP:
15667 		range = retval_range(SK_DROP, SK_PASS);
15668 		break;
15669 
15670 	case BPF_PROG_TYPE_LSM:
15671 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
15672 			/* Regular BPF_PROG_TYPE_LSM programs can return
15673 			 * any value.
15674 			 */
15675 			return 0;
15676 		}
15677 		if (!env->prog->aux->attach_func_proto->type) {
15678 			/* Make sure programs that attach to void
15679 			 * hooks don't try to modify return value.
15680 			 */
15681 			range = retval_range(1, 1);
15682 		}
15683 		break;
15684 
15685 	case BPF_PROG_TYPE_NETFILTER:
15686 		range = retval_range(NF_DROP, NF_ACCEPT);
15687 		break;
15688 	case BPF_PROG_TYPE_EXT:
15689 		/* freplace program can return anything as its return value
15690 		 * depends on the to-be-replaced kernel func or bpf program.
15691 		 */
15692 	default:
15693 		return 0;
15694 	}
15695 
15696 enforce_retval:
15697 	if (reg->type != SCALAR_VALUE) {
15698 		verbose(env, "%s the register R%d is not a known value (%s)\n",
15699 			exit_ctx, regno, reg_type_str(env, reg->type));
15700 		return -EINVAL;
15701 	}
15702 
15703 	err = mark_chain_precision(env, regno);
15704 	if (err)
15705 		return err;
15706 
15707 	if (!retval_range_within(range, reg)) {
15708 		verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name);
15709 		if (!is_subprog &&
15710 		    prog->expected_attach_type == BPF_LSM_CGROUP &&
15711 		    prog_type == BPF_PROG_TYPE_LSM &&
15712 		    !prog->aux->attach_func_proto->type)
15713 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
15714 		return -EINVAL;
15715 	}
15716 
15717 	if (!tnum_is_unknown(enforce_attach_type_range) &&
15718 	    tnum_in(enforce_attach_type_range, reg->var_off))
15719 		env->prog->enforce_expected_attach_type = 1;
15720 	return 0;
15721 }
15722 
15723 /* non-recursive DFS pseudo code
15724  * 1  procedure DFS-iterative(G,v):
15725  * 2      label v as discovered
15726  * 3      let S be a stack
15727  * 4      S.push(v)
15728  * 5      while S is not empty
15729  * 6            t <- S.peek()
15730  * 7            if t is what we're looking for:
15731  * 8                return t
15732  * 9            for all edges e in G.adjacentEdges(t) do
15733  * 10               if edge e is already labelled
15734  * 11                   continue with the next edge
15735  * 12               w <- G.adjacentVertex(t,e)
15736  * 13               if vertex w is not discovered and not explored
15737  * 14                   label e as tree-edge
15738  * 15                   label w as discovered
15739  * 16                   S.push(w)
15740  * 17                   continue at 5
15741  * 18               else if vertex w is discovered
15742  * 19                   label e as back-edge
15743  * 20               else
15744  * 21                   // vertex w is explored
15745  * 22                   label e as forward- or cross-edge
15746  * 23           label t as explored
15747  * 24           S.pop()
15748  *
15749  * convention:
15750  * 0x10 - discovered
15751  * 0x11 - discovered and fall-through edge labelled
15752  * 0x12 - discovered and fall-through and branch edges labelled
15753  * 0x20 - explored
15754  */
15755 
15756 enum {
15757 	DISCOVERED = 0x10,
15758 	EXPLORED = 0x20,
15759 	FALLTHROUGH = 1,
15760 	BRANCH = 2,
15761 };
15762 
15763 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
15764 {
15765 	env->insn_aux_data[idx].prune_point = true;
15766 }
15767 
15768 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
15769 {
15770 	return env->insn_aux_data[insn_idx].prune_point;
15771 }
15772 
15773 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
15774 {
15775 	env->insn_aux_data[idx].force_checkpoint = true;
15776 }
15777 
15778 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
15779 {
15780 	return env->insn_aux_data[insn_idx].force_checkpoint;
15781 }
15782 
15783 static void mark_calls_callback(struct bpf_verifier_env *env, int idx)
15784 {
15785 	env->insn_aux_data[idx].calls_callback = true;
15786 }
15787 
15788 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx)
15789 {
15790 	return env->insn_aux_data[insn_idx].calls_callback;
15791 }
15792 
15793 enum {
15794 	DONE_EXPLORING = 0,
15795 	KEEP_EXPLORING = 1,
15796 };
15797 
15798 /* t, w, e - match pseudo-code above:
15799  * t - index of current instruction
15800  * w - next instruction
15801  * e - edge
15802  */
15803 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
15804 {
15805 	int *insn_stack = env->cfg.insn_stack;
15806 	int *insn_state = env->cfg.insn_state;
15807 
15808 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
15809 		return DONE_EXPLORING;
15810 
15811 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
15812 		return DONE_EXPLORING;
15813 
15814 	if (w < 0 || w >= env->prog->len) {
15815 		verbose_linfo(env, t, "%d: ", t);
15816 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
15817 		return -EINVAL;
15818 	}
15819 
15820 	if (e == BRANCH) {
15821 		/* mark branch target for state pruning */
15822 		mark_prune_point(env, w);
15823 		mark_jmp_point(env, w);
15824 	}
15825 
15826 	if (insn_state[w] == 0) {
15827 		/* tree-edge */
15828 		insn_state[t] = DISCOVERED | e;
15829 		insn_state[w] = DISCOVERED;
15830 		if (env->cfg.cur_stack >= env->prog->len)
15831 			return -E2BIG;
15832 		insn_stack[env->cfg.cur_stack++] = w;
15833 		return KEEP_EXPLORING;
15834 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
15835 		if (env->bpf_capable)
15836 			return DONE_EXPLORING;
15837 		verbose_linfo(env, t, "%d: ", t);
15838 		verbose_linfo(env, w, "%d: ", w);
15839 		verbose(env, "back-edge from insn %d to %d\n", t, w);
15840 		return -EINVAL;
15841 	} else if (insn_state[w] == EXPLORED) {
15842 		/* forward- or cross-edge */
15843 		insn_state[t] = DISCOVERED | e;
15844 	} else {
15845 		verbose(env, "insn state internal bug\n");
15846 		return -EFAULT;
15847 	}
15848 	return DONE_EXPLORING;
15849 }
15850 
15851 static int visit_func_call_insn(int t, struct bpf_insn *insns,
15852 				struct bpf_verifier_env *env,
15853 				bool visit_callee)
15854 {
15855 	int ret, insn_sz;
15856 
15857 	insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
15858 	ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
15859 	if (ret)
15860 		return ret;
15861 
15862 	mark_prune_point(env, t + insn_sz);
15863 	/* when we exit from subprog, we need to record non-linear history */
15864 	mark_jmp_point(env, t + insn_sz);
15865 
15866 	if (visit_callee) {
15867 		mark_prune_point(env, t);
15868 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
15869 	}
15870 	return ret;
15871 }
15872 
15873 /* Visits the instruction at index t and returns one of the following:
15874  *  < 0 - an error occurred
15875  *  DONE_EXPLORING - the instruction was fully explored
15876  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
15877  */
15878 static int visit_insn(int t, struct bpf_verifier_env *env)
15879 {
15880 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
15881 	int ret, off, insn_sz;
15882 
15883 	if (bpf_pseudo_func(insn))
15884 		return visit_func_call_insn(t, insns, env, true);
15885 
15886 	/* All non-branch instructions have a single fall-through edge. */
15887 	if (BPF_CLASS(insn->code) != BPF_JMP &&
15888 	    BPF_CLASS(insn->code) != BPF_JMP32) {
15889 		insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
15890 		return push_insn(t, t + insn_sz, FALLTHROUGH, env);
15891 	}
15892 
15893 	switch (BPF_OP(insn->code)) {
15894 	case BPF_EXIT:
15895 		return DONE_EXPLORING;
15896 
15897 	case BPF_CALL:
15898 		if (is_async_callback_calling_insn(insn))
15899 			/* Mark this call insn as a prune point to trigger
15900 			 * is_state_visited() check before call itself is
15901 			 * processed by __check_func_call(). Otherwise new
15902 			 * async state will be pushed for further exploration.
15903 			 */
15904 			mark_prune_point(env, t);
15905 		/* For functions that invoke callbacks it is not known how many times
15906 		 * callback would be called. Verifier models callback calling functions
15907 		 * by repeatedly visiting callback bodies and returning to origin call
15908 		 * instruction.
15909 		 * In order to stop such iteration verifier needs to identify when a
15910 		 * state identical some state from a previous iteration is reached.
15911 		 * Check below forces creation of checkpoint before callback calling
15912 		 * instruction to allow search for such identical states.
15913 		 */
15914 		if (is_sync_callback_calling_insn(insn)) {
15915 			mark_calls_callback(env, t);
15916 			mark_force_checkpoint(env, t);
15917 			mark_prune_point(env, t);
15918 			mark_jmp_point(env, t);
15919 		}
15920 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
15921 			struct bpf_kfunc_call_arg_meta meta;
15922 
15923 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
15924 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
15925 				mark_prune_point(env, t);
15926 				/* Checking and saving state checkpoints at iter_next() call
15927 				 * is crucial for fast convergence of open-coded iterator loop
15928 				 * logic, so we need to force it. If we don't do that,
15929 				 * is_state_visited() might skip saving a checkpoint, causing
15930 				 * unnecessarily long sequence of not checkpointed
15931 				 * instructions and jumps, leading to exhaustion of jump
15932 				 * history buffer, and potentially other undesired outcomes.
15933 				 * It is expected that with correct open-coded iterators
15934 				 * convergence will happen quickly, so we don't run a risk of
15935 				 * exhausting memory.
15936 				 */
15937 				mark_force_checkpoint(env, t);
15938 			}
15939 		}
15940 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
15941 
15942 	case BPF_JA:
15943 		if (BPF_SRC(insn->code) != BPF_K)
15944 			return -EINVAL;
15945 
15946 		if (BPF_CLASS(insn->code) == BPF_JMP)
15947 			off = insn->off;
15948 		else
15949 			off = insn->imm;
15950 
15951 		/* unconditional jump with single edge */
15952 		ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
15953 		if (ret)
15954 			return ret;
15955 
15956 		mark_prune_point(env, t + off + 1);
15957 		mark_jmp_point(env, t + off + 1);
15958 
15959 		return ret;
15960 
15961 	default:
15962 		/* conditional jump with two edges */
15963 		mark_prune_point(env, t);
15964 		if (is_may_goto_insn(insn))
15965 			mark_force_checkpoint(env, t);
15966 
15967 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
15968 		if (ret)
15969 			return ret;
15970 
15971 		return push_insn(t, t + insn->off + 1, BRANCH, env);
15972 	}
15973 }
15974 
15975 /* non-recursive depth-first-search to detect loops in BPF program
15976  * loop == back-edge in directed graph
15977  */
15978 static int check_cfg(struct bpf_verifier_env *env)
15979 {
15980 	int insn_cnt = env->prog->len;
15981 	int *insn_stack, *insn_state;
15982 	int ex_insn_beg, i, ret = 0;
15983 	bool ex_done = false;
15984 
15985 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15986 	if (!insn_state)
15987 		return -ENOMEM;
15988 
15989 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15990 	if (!insn_stack) {
15991 		kvfree(insn_state);
15992 		return -ENOMEM;
15993 	}
15994 
15995 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
15996 	insn_stack[0] = 0; /* 0 is the first instruction */
15997 	env->cfg.cur_stack = 1;
15998 
15999 walk_cfg:
16000 	while (env->cfg.cur_stack > 0) {
16001 		int t = insn_stack[env->cfg.cur_stack - 1];
16002 
16003 		ret = visit_insn(t, env);
16004 		switch (ret) {
16005 		case DONE_EXPLORING:
16006 			insn_state[t] = EXPLORED;
16007 			env->cfg.cur_stack--;
16008 			break;
16009 		case KEEP_EXPLORING:
16010 			break;
16011 		default:
16012 			if (ret > 0) {
16013 				verbose(env, "visit_insn internal bug\n");
16014 				ret = -EFAULT;
16015 			}
16016 			goto err_free;
16017 		}
16018 	}
16019 
16020 	if (env->cfg.cur_stack < 0) {
16021 		verbose(env, "pop stack internal bug\n");
16022 		ret = -EFAULT;
16023 		goto err_free;
16024 	}
16025 
16026 	if (env->exception_callback_subprog && !ex_done) {
16027 		ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start;
16028 
16029 		insn_state[ex_insn_beg] = DISCOVERED;
16030 		insn_stack[0] = ex_insn_beg;
16031 		env->cfg.cur_stack = 1;
16032 		ex_done = true;
16033 		goto walk_cfg;
16034 	}
16035 
16036 	for (i = 0; i < insn_cnt; i++) {
16037 		struct bpf_insn *insn = &env->prog->insnsi[i];
16038 
16039 		if (insn_state[i] != EXPLORED) {
16040 			verbose(env, "unreachable insn %d\n", i);
16041 			ret = -EINVAL;
16042 			goto err_free;
16043 		}
16044 		if (bpf_is_ldimm64(insn)) {
16045 			if (insn_state[i + 1] != 0) {
16046 				verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
16047 				ret = -EINVAL;
16048 				goto err_free;
16049 			}
16050 			i++; /* skip second half of ldimm64 */
16051 		}
16052 	}
16053 	ret = 0; /* cfg looks good */
16054 
16055 err_free:
16056 	kvfree(insn_state);
16057 	kvfree(insn_stack);
16058 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
16059 	return ret;
16060 }
16061 
16062 static int check_abnormal_return(struct bpf_verifier_env *env)
16063 {
16064 	int i;
16065 
16066 	for (i = 1; i < env->subprog_cnt; i++) {
16067 		if (env->subprog_info[i].has_ld_abs) {
16068 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
16069 			return -EINVAL;
16070 		}
16071 		if (env->subprog_info[i].has_tail_call) {
16072 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
16073 			return -EINVAL;
16074 		}
16075 	}
16076 	return 0;
16077 }
16078 
16079 /* The minimum supported BTF func info size */
16080 #define MIN_BPF_FUNCINFO_SIZE	8
16081 #define MAX_FUNCINFO_REC_SIZE	252
16082 
16083 static int check_btf_func_early(struct bpf_verifier_env *env,
16084 				const union bpf_attr *attr,
16085 				bpfptr_t uattr)
16086 {
16087 	u32 krec_size = sizeof(struct bpf_func_info);
16088 	const struct btf_type *type, *func_proto;
16089 	u32 i, nfuncs, urec_size, min_size;
16090 	struct bpf_func_info *krecord;
16091 	struct bpf_prog *prog;
16092 	const struct btf *btf;
16093 	u32 prev_offset = 0;
16094 	bpfptr_t urecord;
16095 	int ret = -ENOMEM;
16096 
16097 	nfuncs = attr->func_info_cnt;
16098 	if (!nfuncs) {
16099 		if (check_abnormal_return(env))
16100 			return -EINVAL;
16101 		return 0;
16102 	}
16103 
16104 	urec_size = attr->func_info_rec_size;
16105 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
16106 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
16107 	    urec_size % sizeof(u32)) {
16108 		verbose(env, "invalid func info rec size %u\n", urec_size);
16109 		return -EINVAL;
16110 	}
16111 
16112 	prog = env->prog;
16113 	btf = prog->aux->btf;
16114 
16115 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
16116 	min_size = min_t(u32, krec_size, urec_size);
16117 
16118 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
16119 	if (!krecord)
16120 		return -ENOMEM;
16121 
16122 	for (i = 0; i < nfuncs; i++) {
16123 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
16124 		if (ret) {
16125 			if (ret == -E2BIG) {
16126 				verbose(env, "nonzero tailing record in func info");
16127 				/* set the size kernel expects so loader can zero
16128 				 * out the rest of the record.
16129 				 */
16130 				if (copy_to_bpfptr_offset(uattr,
16131 							  offsetof(union bpf_attr, func_info_rec_size),
16132 							  &min_size, sizeof(min_size)))
16133 					ret = -EFAULT;
16134 			}
16135 			goto err_free;
16136 		}
16137 
16138 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
16139 			ret = -EFAULT;
16140 			goto err_free;
16141 		}
16142 
16143 		/* check insn_off */
16144 		ret = -EINVAL;
16145 		if (i == 0) {
16146 			if (krecord[i].insn_off) {
16147 				verbose(env,
16148 					"nonzero insn_off %u for the first func info record",
16149 					krecord[i].insn_off);
16150 				goto err_free;
16151 			}
16152 		} else if (krecord[i].insn_off <= prev_offset) {
16153 			verbose(env,
16154 				"same or smaller insn offset (%u) than previous func info record (%u)",
16155 				krecord[i].insn_off, prev_offset);
16156 			goto err_free;
16157 		}
16158 
16159 		/* check type_id */
16160 		type = btf_type_by_id(btf, krecord[i].type_id);
16161 		if (!type || !btf_type_is_func(type)) {
16162 			verbose(env, "invalid type id %d in func info",
16163 				krecord[i].type_id);
16164 			goto err_free;
16165 		}
16166 
16167 		func_proto = btf_type_by_id(btf, type->type);
16168 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
16169 			/* btf_func_check() already verified it during BTF load */
16170 			goto err_free;
16171 
16172 		prev_offset = krecord[i].insn_off;
16173 		bpfptr_add(&urecord, urec_size);
16174 	}
16175 
16176 	prog->aux->func_info = krecord;
16177 	prog->aux->func_info_cnt = nfuncs;
16178 	return 0;
16179 
16180 err_free:
16181 	kvfree(krecord);
16182 	return ret;
16183 }
16184 
16185 static int check_btf_func(struct bpf_verifier_env *env,
16186 			  const union bpf_attr *attr,
16187 			  bpfptr_t uattr)
16188 {
16189 	const struct btf_type *type, *func_proto, *ret_type;
16190 	u32 i, nfuncs, urec_size;
16191 	struct bpf_func_info *krecord;
16192 	struct bpf_func_info_aux *info_aux = NULL;
16193 	struct bpf_prog *prog;
16194 	const struct btf *btf;
16195 	bpfptr_t urecord;
16196 	bool scalar_return;
16197 	int ret = -ENOMEM;
16198 
16199 	nfuncs = attr->func_info_cnt;
16200 	if (!nfuncs) {
16201 		if (check_abnormal_return(env))
16202 			return -EINVAL;
16203 		return 0;
16204 	}
16205 	if (nfuncs != env->subprog_cnt) {
16206 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
16207 		return -EINVAL;
16208 	}
16209 
16210 	urec_size = attr->func_info_rec_size;
16211 
16212 	prog = env->prog;
16213 	btf = prog->aux->btf;
16214 
16215 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
16216 
16217 	krecord = prog->aux->func_info;
16218 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
16219 	if (!info_aux)
16220 		return -ENOMEM;
16221 
16222 	for (i = 0; i < nfuncs; i++) {
16223 		/* check insn_off */
16224 		ret = -EINVAL;
16225 
16226 		if (env->subprog_info[i].start != krecord[i].insn_off) {
16227 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
16228 			goto err_free;
16229 		}
16230 
16231 		/* Already checked type_id */
16232 		type = btf_type_by_id(btf, krecord[i].type_id);
16233 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
16234 		/* Already checked func_proto */
16235 		func_proto = btf_type_by_id(btf, type->type);
16236 
16237 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
16238 		scalar_return =
16239 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
16240 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
16241 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
16242 			goto err_free;
16243 		}
16244 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
16245 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
16246 			goto err_free;
16247 		}
16248 
16249 		bpfptr_add(&urecord, urec_size);
16250 	}
16251 
16252 	prog->aux->func_info_aux = info_aux;
16253 	return 0;
16254 
16255 err_free:
16256 	kfree(info_aux);
16257 	return ret;
16258 }
16259 
16260 static void adjust_btf_func(struct bpf_verifier_env *env)
16261 {
16262 	struct bpf_prog_aux *aux = env->prog->aux;
16263 	int i;
16264 
16265 	if (!aux->func_info)
16266 		return;
16267 
16268 	/* func_info is not available for hidden subprogs */
16269 	for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++)
16270 		aux->func_info[i].insn_off = env->subprog_info[i].start;
16271 }
16272 
16273 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
16274 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
16275 
16276 static int check_btf_line(struct bpf_verifier_env *env,
16277 			  const union bpf_attr *attr,
16278 			  bpfptr_t uattr)
16279 {
16280 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
16281 	struct bpf_subprog_info *sub;
16282 	struct bpf_line_info *linfo;
16283 	struct bpf_prog *prog;
16284 	const struct btf *btf;
16285 	bpfptr_t ulinfo;
16286 	int err;
16287 
16288 	nr_linfo = attr->line_info_cnt;
16289 	if (!nr_linfo)
16290 		return 0;
16291 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
16292 		return -EINVAL;
16293 
16294 	rec_size = attr->line_info_rec_size;
16295 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
16296 	    rec_size > MAX_LINEINFO_REC_SIZE ||
16297 	    rec_size & (sizeof(u32) - 1))
16298 		return -EINVAL;
16299 
16300 	/* Need to zero it in case the userspace may
16301 	 * pass in a smaller bpf_line_info object.
16302 	 */
16303 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
16304 			 GFP_KERNEL | __GFP_NOWARN);
16305 	if (!linfo)
16306 		return -ENOMEM;
16307 
16308 	prog = env->prog;
16309 	btf = prog->aux->btf;
16310 
16311 	s = 0;
16312 	sub = env->subprog_info;
16313 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
16314 	expected_size = sizeof(struct bpf_line_info);
16315 	ncopy = min_t(u32, expected_size, rec_size);
16316 	for (i = 0; i < nr_linfo; i++) {
16317 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
16318 		if (err) {
16319 			if (err == -E2BIG) {
16320 				verbose(env, "nonzero tailing record in line_info");
16321 				if (copy_to_bpfptr_offset(uattr,
16322 							  offsetof(union bpf_attr, line_info_rec_size),
16323 							  &expected_size, sizeof(expected_size)))
16324 					err = -EFAULT;
16325 			}
16326 			goto err_free;
16327 		}
16328 
16329 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
16330 			err = -EFAULT;
16331 			goto err_free;
16332 		}
16333 
16334 		/*
16335 		 * Check insn_off to ensure
16336 		 * 1) strictly increasing AND
16337 		 * 2) bounded by prog->len
16338 		 *
16339 		 * The linfo[0].insn_off == 0 check logically falls into
16340 		 * the later "missing bpf_line_info for func..." case
16341 		 * because the first linfo[0].insn_off must be the
16342 		 * first sub also and the first sub must have
16343 		 * subprog_info[0].start == 0.
16344 		 */
16345 		if ((i && linfo[i].insn_off <= prev_offset) ||
16346 		    linfo[i].insn_off >= prog->len) {
16347 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
16348 				i, linfo[i].insn_off, prev_offset,
16349 				prog->len);
16350 			err = -EINVAL;
16351 			goto err_free;
16352 		}
16353 
16354 		if (!prog->insnsi[linfo[i].insn_off].code) {
16355 			verbose(env,
16356 				"Invalid insn code at line_info[%u].insn_off\n",
16357 				i);
16358 			err = -EINVAL;
16359 			goto err_free;
16360 		}
16361 
16362 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
16363 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
16364 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
16365 			err = -EINVAL;
16366 			goto err_free;
16367 		}
16368 
16369 		if (s != env->subprog_cnt) {
16370 			if (linfo[i].insn_off == sub[s].start) {
16371 				sub[s].linfo_idx = i;
16372 				s++;
16373 			} else if (sub[s].start < linfo[i].insn_off) {
16374 				verbose(env, "missing bpf_line_info for func#%u\n", s);
16375 				err = -EINVAL;
16376 				goto err_free;
16377 			}
16378 		}
16379 
16380 		prev_offset = linfo[i].insn_off;
16381 		bpfptr_add(&ulinfo, rec_size);
16382 	}
16383 
16384 	if (s != env->subprog_cnt) {
16385 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
16386 			env->subprog_cnt - s, s);
16387 		err = -EINVAL;
16388 		goto err_free;
16389 	}
16390 
16391 	prog->aux->linfo = linfo;
16392 	prog->aux->nr_linfo = nr_linfo;
16393 
16394 	return 0;
16395 
16396 err_free:
16397 	kvfree(linfo);
16398 	return err;
16399 }
16400 
16401 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
16402 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
16403 
16404 static int check_core_relo(struct bpf_verifier_env *env,
16405 			   const union bpf_attr *attr,
16406 			   bpfptr_t uattr)
16407 {
16408 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
16409 	struct bpf_core_relo core_relo = {};
16410 	struct bpf_prog *prog = env->prog;
16411 	const struct btf *btf = prog->aux->btf;
16412 	struct bpf_core_ctx ctx = {
16413 		.log = &env->log,
16414 		.btf = btf,
16415 	};
16416 	bpfptr_t u_core_relo;
16417 	int err;
16418 
16419 	nr_core_relo = attr->core_relo_cnt;
16420 	if (!nr_core_relo)
16421 		return 0;
16422 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
16423 		return -EINVAL;
16424 
16425 	rec_size = attr->core_relo_rec_size;
16426 	if (rec_size < MIN_CORE_RELO_SIZE ||
16427 	    rec_size > MAX_CORE_RELO_SIZE ||
16428 	    rec_size % sizeof(u32))
16429 		return -EINVAL;
16430 
16431 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
16432 	expected_size = sizeof(struct bpf_core_relo);
16433 	ncopy = min_t(u32, expected_size, rec_size);
16434 
16435 	/* Unlike func_info and line_info, copy and apply each CO-RE
16436 	 * relocation record one at a time.
16437 	 */
16438 	for (i = 0; i < nr_core_relo; i++) {
16439 		/* future proofing when sizeof(bpf_core_relo) changes */
16440 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
16441 		if (err) {
16442 			if (err == -E2BIG) {
16443 				verbose(env, "nonzero tailing record in core_relo");
16444 				if (copy_to_bpfptr_offset(uattr,
16445 							  offsetof(union bpf_attr, core_relo_rec_size),
16446 							  &expected_size, sizeof(expected_size)))
16447 					err = -EFAULT;
16448 			}
16449 			break;
16450 		}
16451 
16452 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
16453 			err = -EFAULT;
16454 			break;
16455 		}
16456 
16457 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
16458 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
16459 				i, core_relo.insn_off, prog->len);
16460 			err = -EINVAL;
16461 			break;
16462 		}
16463 
16464 		err = bpf_core_apply(&ctx, &core_relo, i,
16465 				     &prog->insnsi[core_relo.insn_off / 8]);
16466 		if (err)
16467 			break;
16468 		bpfptr_add(&u_core_relo, rec_size);
16469 	}
16470 	return err;
16471 }
16472 
16473 static int check_btf_info_early(struct bpf_verifier_env *env,
16474 				const union bpf_attr *attr,
16475 				bpfptr_t uattr)
16476 {
16477 	struct btf *btf;
16478 	int err;
16479 
16480 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
16481 		if (check_abnormal_return(env))
16482 			return -EINVAL;
16483 		return 0;
16484 	}
16485 
16486 	btf = btf_get_by_fd(attr->prog_btf_fd);
16487 	if (IS_ERR(btf))
16488 		return PTR_ERR(btf);
16489 	if (btf_is_kernel(btf)) {
16490 		btf_put(btf);
16491 		return -EACCES;
16492 	}
16493 	env->prog->aux->btf = btf;
16494 
16495 	err = check_btf_func_early(env, attr, uattr);
16496 	if (err)
16497 		return err;
16498 	return 0;
16499 }
16500 
16501 static int check_btf_info(struct bpf_verifier_env *env,
16502 			  const union bpf_attr *attr,
16503 			  bpfptr_t uattr)
16504 {
16505 	int err;
16506 
16507 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
16508 		if (check_abnormal_return(env))
16509 			return -EINVAL;
16510 		return 0;
16511 	}
16512 
16513 	err = check_btf_func(env, attr, uattr);
16514 	if (err)
16515 		return err;
16516 
16517 	err = check_btf_line(env, attr, uattr);
16518 	if (err)
16519 		return err;
16520 
16521 	err = check_core_relo(env, attr, uattr);
16522 	if (err)
16523 		return err;
16524 
16525 	return 0;
16526 }
16527 
16528 /* check %cur's range satisfies %old's */
16529 static bool range_within(const struct bpf_reg_state *old,
16530 			 const struct bpf_reg_state *cur)
16531 {
16532 	return old->umin_value <= cur->umin_value &&
16533 	       old->umax_value >= cur->umax_value &&
16534 	       old->smin_value <= cur->smin_value &&
16535 	       old->smax_value >= cur->smax_value &&
16536 	       old->u32_min_value <= cur->u32_min_value &&
16537 	       old->u32_max_value >= cur->u32_max_value &&
16538 	       old->s32_min_value <= cur->s32_min_value &&
16539 	       old->s32_max_value >= cur->s32_max_value;
16540 }
16541 
16542 /* If in the old state two registers had the same id, then they need to have
16543  * the same id in the new state as well.  But that id could be different from
16544  * the old state, so we need to track the mapping from old to new ids.
16545  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
16546  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
16547  * regs with a different old id could still have new id 9, we don't care about
16548  * that.
16549  * So we look through our idmap to see if this old id has been seen before.  If
16550  * so, we require the new id to match; otherwise, we add the id pair to the map.
16551  */
16552 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
16553 {
16554 	struct bpf_id_pair *map = idmap->map;
16555 	unsigned int i;
16556 
16557 	/* either both IDs should be set or both should be zero */
16558 	if (!!old_id != !!cur_id)
16559 		return false;
16560 
16561 	if (old_id == 0) /* cur_id == 0 as well */
16562 		return true;
16563 
16564 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
16565 		if (!map[i].old) {
16566 			/* Reached an empty slot; haven't seen this id before */
16567 			map[i].old = old_id;
16568 			map[i].cur = cur_id;
16569 			return true;
16570 		}
16571 		if (map[i].old == old_id)
16572 			return map[i].cur == cur_id;
16573 		if (map[i].cur == cur_id)
16574 			return false;
16575 	}
16576 	/* We ran out of idmap slots, which should be impossible */
16577 	WARN_ON_ONCE(1);
16578 	return false;
16579 }
16580 
16581 /* Similar to check_ids(), but allocate a unique temporary ID
16582  * for 'old_id' or 'cur_id' of zero.
16583  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
16584  */
16585 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
16586 {
16587 	old_id = old_id ? old_id : ++idmap->tmp_id_gen;
16588 	cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
16589 
16590 	return check_ids(old_id, cur_id, idmap);
16591 }
16592 
16593 static void clean_func_state(struct bpf_verifier_env *env,
16594 			     struct bpf_func_state *st)
16595 {
16596 	enum bpf_reg_liveness live;
16597 	int i, j;
16598 
16599 	for (i = 0; i < BPF_REG_FP; i++) {
16600 		live = st->regs[i].live;
16601 		/* liveness must not touch this register anymore */
16602 		st->regs[i].live |= REG_LIVE_DONE;
16603 		if (!(live & REG_LIVE_READ))
16604 			/* since the register is unused, clear its state
16605 			 * to make further comparison simpler
16606 			 */
16607 			__mark_reg_not_init(env, &st->regs[i]);
16608 	}
16609 
16610 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
16611 		live = st->stack[i].spilled_ptr.live;
16612 		/* liveness must not touch this stack slot anymore */
16613 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
16614 		if (!(live & REG_LIVE_READ)) {
16615 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
16616 			for (j = 0; j < BPF_REG_SIZE; j++)
16617 				st->stack[i].slot_type[j] = STACK_INVALID;
16618 		}
16619 	}
16620 }
16621 
16622 static void clean_verifier_state(struct bpf_verifier_env *env,
16623 				 struct bpf_verifier_state *st)
16624 {
16625 	int i;
16626 
16627 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
16628 		/* all regs in this state in all frames were already marked */
16629 		return;
16630 
16631 	for (i = 0; i <= st->curframe; i++)
16632 		clean_func_state(env, st->frame[i]);
16633 }
16634 
16635 /* the parentage chains form a tree.
16636  * the verifier states are added to state lists at given insn and
16637  * pushed into state stack for future exploration.
16638  * when the verifier reaches bpf_exit insn some of the verifer states
16639  * stored in the state lists have their final liveness state already,
16640  * but a lot of states will get revised from liveness point of view when
16641  * the verifier explores other branches.
16642  * Example:
16643  * 1: r0 = 1
16644  * 2: if r1 == 100 goto pc+1
16645  * 3: r0 = 2
16646  * 4: exit
16647  * when the verifier reaches exit insn the register r0 in the state list of
16648  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
16649  * of insn 2 and goes exploring further. At the insn 4 it will walk the
16650  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
16651  *
16652  * Since the verifier pushes the branch states as it sees them while exploring
16653  * the program the condition of walking the branch instruction for the second
16654  * time means that all states below this branch were already explored and
16655  * their final liveness marks are already propagated.
16656  * Hence when the verifier completes the search of state list in is_state_visited()
16657  * we can call this clean_live_states() function to mark all liveness states
16658  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
16659  * will not be used.
16660  * This function also clears the registers and stack for states that !READ
16661  * to simplify state merging.
16662  *
16663  * Important note here that walking the same branch instruction in the callee
16664  * doesn't meant that the states are DONE. The verifier has to compare
16665  * the callsites
16666  */
16667 static void clean_live_states(struct bpf_verifier_env *env, int insn,
16668 			      struct bpf_verifier_state *cur)
16669 {
16670 	struct bpf_verifier_state_list *sl;
16671 
16672 	sl = *explored_state(env, insn);
16673 	while (sl) {
16674 		if (sl->state.branches)
16675 			goto next;
16676 		if (sl->state.insn_idx != insn ||
16677 		    !same_callsites(&sl->state, cur))
16678 			goto next;
16679 		clean_verifier_state(env, &sl->state);
16680 next:
16681 		sl = sl->next;
16682 	}
16683 }
16684 
16685 static bool regs_exact(const struct bpf_reg_state *rold,
16686 		       const struct bpf_reg_state *rcur,
16687 		       struct bpf_idmap *idmap)
16688 {
16689 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16690 	       check_ids(rold->id, rcur->id, idmap) &&
16691 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16692 }
16693 
16694 enum exact_level {
16695 	NOT_EXACT,
16696 	EXACT,
16697 	RANGE_WITHIN
16698 };
16699 
16700 /* Returns true if (rold safe implies rcur safe) */
16701 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
16702 		    struct bpf_reg_state *rcur, struct bpf_idmap *idmap,
16703 		    enum exact_level exact)
16704 {
16705 	if (exact == EXACT)
16706 		return regs_exact(rold, rcur, idmap);
16707 
16708 	if (!(rold->live & REG_LIVE_READ) && exact == NOT_EXACT)
16709 		/* explored state didn't use this */
16710 		return true;
16711 	if (rold->type == NOT_INIT) {
16712 		if (exact == NOT_EXACT || rcur->type == NOT_INIT)
16713 			/* explored state can't have used this */
16714 			return true;
16715 	}
16716 
16717 	/* Enforce that register types have to match exactly, including their
16718 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
16719 	 * rule.
16720 	 *
16721 	 * One can make a point that using a pointer register as unbounded
16722 	 * SCALAR would be technically acceptable, but this could lead to
16723 	 * pointer leaks because scalars are allowed to leak while pointers
16724 	 * are not. We could make this safe in special cases if root is
16725 	 * calling us, but it's probably not worth the hassle.
16726 	 *
16727 	 * Also, register types that are *not* MAYBE_NULL could technically be
16728 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
16729 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
16730 	 * to the same map).
16731 	 * However, if the old MAYBE_NULL register then got NULL checked,
16732 	 * doing so could have affected others with the same id, and we can't
16733 	 * check for that because we lost the id when we converted to
16734 	 * a non-MAYBE_NULL variant.
16735 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
16736 	 * non-MAYBE_NULL registers as well.
16737 	 */
16738 	if (rold->type != rcur->type)
16739 		return false;
16740 
16741 	switch (base_type(rold->type)) {
16742 	case SCALAR_VALUE:
16743 		if (env->explore_alu_limits) {
16744 			/* explore_alu_limits disables tnum_in() and range_within()
16745 			 * logic and requires everything to be strict
16746 			 */
16747 			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16748 			       check_scalar_ids(rold->id, rcur->id, idmap);
16749 		}
16750 		if (!rold->precise && exact == NOT_EXACT)
16751 			return true;
16752 		/* Why check_ids() for scalar registers?
16753 		 *
16754 		 * Consider the following BPF code:
16755 		 *   1: r6 = ... unbound scalar, ID=a ...
16756 		 *   2: r7 = ... unbound scalar, ID=b ...
16757 		 *   3: if (r6 > r7) goto +1
16758 		 *   4: r6 = r7
16759 		 *   5: if (r6 > X) goto ...
16760 		 *   6: ... memory operation using r7 ...
16761 		 *
16762 		 * First verification path is [1-6]:
16763 		 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
16764 		 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
16765 		 *   r7 <= X, because r6 and r7 share same id.
16766 		 * Next verification path is [1-4, 6].
16767 		 *
16768 		 * Instruction (6) would be reached in two states:
16769 		 *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
16770 		 *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
16771 		 *
16772 		 * Use check_ids() to distinguish these states.
16773 		 * ---
16774 		 * Also verify that new value satisfies old value range knowledge.
16775 		 */
16776 		return range_within(rold, rcur) &&
16777 		       tnum_in(rold->var_off, rcur->var_off) &&
16778 		       check_scalar_ids(rold->id, rcur->id, idmap);
16779 	case PTR_TO_MAP_KEY:
16780 	case PTR_TO_MAP_VALUE:
16781 	case PTR_TO_MEM:
16782 	case PTR_TO_BUF:
16783 	case PTR_TO_TP_BUFFER:
16784 		/* If the new min/max/var_off satisfy the old ones and
16785 		 * everything else matches, we are OK.
16786 		 */
16787 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
16788 		       range_within(rold, rcur) &&
16789 		       tnum_in(rold->var_off, rcur->var_off) &&
16790 		       check_ids(rold->id, rcur->id, idmap) &&
16791 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16792 	case PTR_TO_PACKET_META:
16793 	case PTR_TO_PACKET:
16794 		/* We must have at least as much range as the old ptr
16795 		 * did, so that any accesses which were safe before are
16796 		 * still safe.  This is true even if old range < old off,
16797 		 * since someone could have accessed through (ptr - k), or
16798 		 * even done ptr -= k in a register, to get a safe access.
16799 		 */
16800 		if (rold->range > rcur->range)
16801 			return false;
16802 		/* If the offsets don't match, we can't trust our alignment;
16803 		 * nor can we be sure that we won't fall out of range.
16804 		 */
16805 		if (rold->off != rcur->off)
16806 			return false;
16807 		/* id relations must be preserved */
16808 		if (!check_ids(rold->id, rcur->id, idmap))
16809 			return false;
16810 		/* new val must satisfy old val knowledge */
16811 		return range_within(rold, rcur) &&
16812 		       tnum_in(rold->var_off, rcur->var_off);
16813 	case PTR_TO_STACK:
16814 		/* two stack pointers are equal only if they're pointing to
16815 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
16816 		 */
16817 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
16818 	case PTR_TO_ARENA:
16819 		return true;
16820 	default:
16821 		return regs_exact(rold, rcur, idmap);
16822 	}
16823 }
16824 
16825 static struct bpf_reg_state unbound_reg;
16826 
16827 static __init int unbound_reg_init(void)
16828 {
16829 	__mark_reg_unknown_imprecise(&unbound_reg);
16830 	unbound_reg.live |= REG_LIVE_READ;
16831 	return 0;
16832 }
16833 late_initcall(unbound_reg_init);
16834 
16835 static bool is_stack_all_misc(struct bpf_verifier_env *env,
16836 			      struct bpf_stack_state *stack)
16837 {
16838 	u32 i;
16839 
16840 	for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) {
16841 		if ((stack->slot_type[i] == STACK_MISC) ||
16842 		    (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack))
16843 			continue;
16844 		return false;
16845 	}
16846 
16847 	return true;
16848 }
16849 
16850 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env,
16851 						  struct bpf_stack_state *stack)
16852 {
16853 	if (is_spilled_scalar_reg64(stack))
16854 		return &stack->spilled_ptr;
16855 
16856 	if (is_stack_all_misc(env, stack))
16857 		return &unbound_reg;
16858 
16859 	return NULL;
16860 }
16861 
16862 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
16863 		      struct bpf_func_state *cur, struct bpf_idmap *idmap,
16864 		      enum exact_level exact)
16865 {
16866 	int i, spi;
16867 
16868 	/* walk slots of the explored stack and ignore any additional
16869 	 * slots in the current stack, since explored(safe) state
16870 	 * didn't use them
16871 	 */
16872 	for (i = 0; i < old->allocated_stack; i++) {
16873 		struct bpf_reg_state *old_reg, *cur_reg;
16874 
16875 		spi = i / BPF_REG_SIZE;
16876 
16877 		if (exact != NOT_EXACT &&
16878 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16879 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16880 			return false;
16881 
16882 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)
16883 		    && exact == NOT_EXACT) {
16884 			i += BPF_REG_SIZE - 1;
16885 			/* explored state didn't use this */
16886 			continue;
16887 		}
16888 
16889 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
16890 			continue;
16891 
16892 		if (env->allow_uninit_stack &&
16893 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
16894 			continue;
16895 
16896 		/* explored stack has more populated slots than current stack
16897 		 * and these slots were used
16898 		 */
16899 		if (i >= cur->allocated_stack)
16900 			return false;
16901 
16902 		/* 64-bit scalar spill vs all slots MISC and vice versa.
16903 		 * Load from all slots MISC produces unbound scalar.
16904 		 * Construct a fake register for such stack and call
16905 		 * regsafe() to ensure scalar ids are compared.
16906 		 */
16907 		old_reg = scalar_reg_for_stack(env, &old->stack[spi]);
16908 		cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]);
16909 		if (old_reg && cur_reg) {
16910 			if (!regsafe(env, old_reg, cur_reg, idmap, exact))
16911 				return false;
16912 			i += BPF_REG_SIZE - 1;
16913 			continue;
16914 		}
16915 
16916 		/* if old state was safe with misc data in the stack
16917 		 * it will be safe with zero-initialized stack.
16918 		 * The opposite is not true
16919 		 */
16920 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
16921 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
16922 			continue;
16923 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16924 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16925 			/* Ex: old explored (safe) state has STACK_SPILL in
16926 			 * this stack slot, but current has STACK_MISC ->
16927 			 * this verifier states are not equivalent,
16928 			 * return false to continue verification of this path
16929 			 */
16930 			return false;
16931 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
16932 			continue;
16933 		/* Both old and cur are having same slot_type */
16934 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
16935 		case STACK_SPILL:
16936 			/* when explored and current stack slot are both storing
16937 			 * spilled registers, check that stored pointers types
16938 			 * are the same as well.
16939 			 * Ex: explored safe path could have stored
16940 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
16941 			 * but current path has stored:
16942 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
16943 			 * such verifier states are not equivalent.
16944 			 * return false to continue verification of this path
16945 			 */
16946 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
16947 				     &cur->stack[spi].spilled_ptr, idmap, exact))
16948 				return false;
16949 			break;
16950 		case STACK_DYNPTR:
16951 			old_reg = &old->stack[spi].spilled_ptr;
16952 			cur_reg = &cur->stack[spi].spilled_ptr;
16953 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
16954 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
16955 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16956 				return false;
16957 			break;
16958 		case STACK_ITER:
16959 			old_reg = &old->stack[spi].spilled_ptr;
16960 			cur_reg = &cur->stack[spi].spilled_ptr;
16961 			/* iter.depth is not compared between states as it
16962 			 * doesn't matter for correctness and would otherwise
16963 			 * prevent convergence; we maintain it only to prevent
16964 			 * infinite loop check triggering, see
16965 			 * iter_active_depths_differ()
16966 			 */
16967 			if (old_reg->iter.btf != cur_reg->iter.btf ||
16968 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
16969 			    old_reg->iter.state != cur_reg->iter.state ||
16970 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
16971 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16972 				return false;
16973 			break;
16974 		case STACK_MISC:
16975 		case STACK_ZERO:
16976 		case STACK_INVALID:
16977 			continue;
16978 		/* Ensure that new unhandled slot types return false by default */
16979 		default:
16980 			return false;
16981 		}
16982 	}
16983 	return true;
16984 }
16985 
16986 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
16987 		    struct bpf_idmap *idmap)
16988 {
16989 	int i;
16990 
16991 	if (old->acquired_refs != cur->acquired_refs)
16992 		return false;
16993 
16994 	for (i = 0; i < old->acquired_refs; i++) {
16995 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
16996 			return false;
16997 	}
16998 
16999 	return true;
17000 }
17001 
17002 /* compare two verifier states
17003  *
17004  * all states stored in state_list are known to be valid, since
17005  * verifier reached 'bpf_exit' instruction through them
17006  *
17007  * this function is called when verifier exploring different branches of
17008  * execution popped from the state stack. If it sees an old state that has
17009  * more strict register state and more strict stack state then this execution
17010  * branch doesn't need to be explored further, since verifier already
17011  * concluded that more strict state leads to valid finish.
17012  *
17013  * Therefore two states are equivalent if register state is more conservative
17014  * and explored stack state is more conservative than the current one.
17015  * Example:
17016  *       explored                   current
17017  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
17018  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
17019  *
17020  * In other words if current stack state (one being explored) has more
17021  * valid slots than old one that already passed validation, it means
17022  * the verifier can stop exploring and conclude that current state is valid too
17023  *
17024  * Similarly with registers. If explored state has register type as invalid
17025  * whereas register type in current state is meaningful, it means that
17026  * the current state will reach 'bpf_exit' instruction safely
17027  */
17028 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
17029 			      struct bpf_func_state *cur, enum exact_level exact)
17030 {
17031 	int i;
17032 
17033 	if (old->callback_depth > cur->callback_depth)
17034 		return false;
17035 
17036 	for (i = 0; i < MAX_BPF_REG; i++)
17037 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
17038 			     &env->idmap_scratch, exact))
17039 			return false;
17040 
17041 	if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
17042 		return false;
17043 
17044 	if (!refsafe(old, cur, &env->idmap_scratch))
17045 		return false;
17046 
17047 	return true;
17048 }
17049 
17050 static void reset_idmap_scratch(struct bpf_verifier_env *env)
17051 {
17052 	env->idmap_scratch.tmp_id_gen = env->id_gen;
17053 	memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
17054 }
17055 
17056 static bool states_equal(struct bpf_verifier_env *env,
17057 			 struct bpf_verifier_state *old,
17058 			 struct bpf_verifier_state *cur,
17059 			 enum exact_level exact)
17060 {
17061 	int i;
17062 
17063 	if (old->curframe != cur->curframe)
17064 		return false;
17065 
17066 	reset_idmap_scratch(env);
17067 
17068 	/* Verification state from speculative execution simulation
17069 	 * must never prune a non-speculative execution one.
17070 	 */
17071 	if (old->speculative && !cur->speculative)
17072 		return false;
17073 
17074 	if (old->active_lock.ptr != cur->active_lock.ptr)
17075 		return false;
17076 
17077 	/* Old and cur active_lock's have to be either both present
17078 	 * or both absent.
17079 	 */
17080 	if (!!old->active_lock.id != !!cur->active_lock.id)
17081 		return false;
17082 
17083 	if (old->active_lock.id &&
17084 	    !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
17085 		return false;
17086 
17087 	if (old->active_rcu_lock != cur->active_rcu_lock)
17088 		return false;
17089 
17090 	if (old->active_preempt_lock != cur->active_preempt_lock)
17091 		return false;
17092 
17093 	if (old->in_sleepable != cur->in_sleepable)
17094 		return false;
17095 
17096 	/* for states to be equal callsites have to be the same
17097 	 * and all frame states need to be equivalent
17098 	 */
17099 	for (i = 0; i <= old->curframe; i++) {
17100 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
17101 			return false;
17102 		if (!func_states_equal(env, old->frame[i], cur->frame[i], exact))
17103 			return false;
17104 	}
17105 	return true;
17106 }
17107 
17108 /* Return 0 if no propagation happened. Return negative error code if error
17109  * happened. Otherwise, return the propagated bit.
17110  */
17111 static int propagate_liveness_reg(struct bpf_verifier_env *env,
17112 				  struct bpf_reg_state *reg,
17113 				  struct bpf_reg_state *parent_reg)
17114 {
17115 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
17116 	u8 flag = reg->live & REG_LIVE_READ;
17117 	int err;
17118 
17119 	/* When comes here, read flags of PARENT_REG or REG could be any of
17120 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
17121 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
17122 	 */
17123 	if (parent_flag == REG_LIVE_READ64 ||
17124 	    /* Or if there is no read flag from REG. */
17125 	    !flag ||
17126 	    /* Or if the read flag from REG is the same as PARENT_REG. */
17127 	    parent_flag == flag)
17128 		return 0;
17129 
17130 	err = mark_reg_read(env, reg, parent_reg, flag);
17131 	if (err)
17132 		return err;
17133 
17134 	return flag;
17135 }
17136 
17137 /* A write screens off any subsequent reads; but write marks come from the
17138  * straight-line code between a state and its parent.  When we arrive at an
17139  * equivalent state (jump target or such) we didn't arrive by the straight-line
17140  * code, so read marks in the state must propagate to the parent regardless
17141  * of the state's write marks. That's what 'parent == state->parent' comparison
17142  * in mark_reg_read() is for.
17143  */
17144 static int propagate_liveness(struct bpf_verifier_env *env,
17145 			      const struct bpf_verifier_state *vstate,
17146 			      struct bpf_verifier_state *vparent)
17147 {
17148 	struct bpf_reg_state *state_reg, *parent_reg;
17149 	struct bpf_func_state *state, *parent;
17150 	int i, frame, err = 0;
17151 
17152 	if (vparent->curframe != vstate->curframe) {
17153 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
17154 		     vparent->curframe, vstate->curframe);
17155 		return -EFAULT;
17156 	}
17157 	/* Propagate read liveness of registers... */
17158 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
17159 	for (frame = 0; frame <= vstate->curframe; frame++) {
17160 		parent = vparent->frame[frame];
17161 		state = vstate->frame[frame];
17162 		parent_reg = parent->regs;
17163 		state_reg = state->regs;
17164 		/* We don't need to worry about FP liveness, it's read-only */
17165 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
17166 			err = propagate_liveness_reg(env, &state_reg[i],
17167 						     &parent_reg[i]);
17168 			if (err < 0)
17169 				return err;
17170 			if (err == REG_LIVE_READ64)
17171 				mark_insn_zext(env, &parent_reg[i]);
17172 		}
17173 
17174 		/* Propagate stack slots. */
17175 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
17176 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
17177 			parent_reg = &parent->stack[i].spilled_ptr;
17178 			state_reg = &state->stack[i].spilled_ptr;
17179 			err = propagate_liveness_reg(env, state_reg,
17180 						     parent_reg);
17181 			if (err < 0)
17182 				return err;
17183 		}
17184 	}
17185 	return 0;
17186 }
17187 
17188 /* find precise scalars in the previous equivalent state and
17189  * propagate them into the current state
17190  */
17191 static int propagate_precision(struct bpf_verifier_env *env,
17192 			       const struct bpf_verifier_state *old)
17193 {
17194 	struct bpf_reg_state *state_reg;
17195 	struct bpf_func_state *state;
17196 	int i, err = 0, fr;
17197 	bool first;
17198 
17199 	for (fr = old->curframe; fr >= 0; fr--) {
17200 		state = old->frame[fr];
17201 		state_reg = state->regs;
17202 		first = true;
17203 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
17204 			if (state_reg->type != SCALAR_VALUE ||
17205 			    !state_reg->precise ||
17206 			    !(state_reg->live & REG_LIVE_READ))
17207 				continue;
17208 			if (env->log.level & BPF_LOG_LEVEL2) {
17209 				if (first)
17210 					verbose(env, "frame %d: propagating r%d", fr, i);
17211 				else
17212 					verbose(env, ",r%d", i);
17213 			}
17214 			bt_set_frame_reg(&env->bt, fr, i);
17215 			first = false;
17216 		}
17217 
17218 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
17219 			if (!is_spilled_reg(&state->stack[i]))
17220 				continue;
17221 			state_reg = &state->stack[i].spilled_ptr;
17222 			if (state_reg->type != SCALAR_VALUE ||
17223 			    !state_reg->precise ||
17224 			    !(state_reg->live & REG_LIVE_READ))
17225 				continue;
17226 			if (env->log.level & BPF_LOG_LEVEL2) {
17227 				if (first)
17228 					verbose(env, "frame %d: propagating fp%d",
17229 						fr, (-i - 1) * BPF_REG_SIZE);
17230 				else
17231 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
17232 			}
17233 			bt_set_frame_slot(&env->bt, fr, i);
17234 			first = false;
17235 		}
17236 		if (!first)
17237 			verbose(env, "\n");
17238 	}
17239 
17240 	err = mark_chain_precision_batch(env);
17241 	if (err < 0)
17242 		return err;
17243 
17244 	return 0;
17245 }
17246 
17247 static bool states_maybe_looping(struct bpf_verifier_state *old,
17248 				 struct bpf_verifier_state *cur)
17249 {
17250 	struct bpf_func_state *fold, *fcur;
17251 	int i, fr = cur->curframe;
17252 
17253 	if (old->curframe != fr)
17254 		return false;
17255 
17256 	fold = old->frame[fr];
17257 	fcur = cur->frame[fr];
17258 	for (i = 0; i < MAX_BPF_REG; i++)
17259 		if (memcmp(&fold->regs[i], &fcur->regs[i],
17260 			   offsetof(struct bpf_reg_state, parent)))
17261 			return false;
17262 	return true;
17263 }
17264 
17265 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
17266 {
17267 	return env->insn_aux_data[insn_idx].is_iter_next;
17268 }
17269 
17270 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
17271  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
17272  * states to match, which otherwise would look like an infinite loop. So while
17273  * iter_next() calls are taken care of, we still need to be careful and
17274  * prevent erroneous and too eager declaration of "ininite loop", when
17275  * iterators are involved.
17276  *
17277  * Here's a situation in pseudo-BPF assembly form:
17278  *
17279  *   0: again:                          ; set up iter_next() call args
17280  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
17281  *   2:   call bpf_iter_num_next        ; this is iter_next() call
17282  *   3:   if r0 == 0 goto done
17283  *   4:   ... something useful here ...
17284  *   5:   goto again                    ; another iteration
17285  *   6: done:
17286  *   7:   r1 = &it
17287  *   8:   call bpf_iter_num_destroy     ; clean up iter state
17288  *   9:   exit
17289  *
17290  * This is a typical loop. Let's assume that we have a prune point at 1:,
17291  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
17292  * again`, assuming other heuristics don't get in a way).
17293  *
17294  * When we first time come to 1:, let's say we have some state X. We proceed
17295  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
17296  * Now we come back to validate that forked ACTIVE state. We proceed through
17297  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
17298  * are converging. But the problem is that we don't know that yet, as this
17299  * convergence has to happen at iter_next() call site only. So if nothing is
17300  * done, at 1: verifier will use bounded loop logic and declare infinite
17301  * looping (and would be *technically* correct, if not for iterator's
17302  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
17303  * don't want that. So what we do in process_iter_next_call() when we go on
17304  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
17305  * a different iteration. So when we suspect an infinite loop, we additionally
17306  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
17307  * pretend we are not looping and wait for next iter_next() call.
17308  *
17309  * This only applies to ACTIVE state. In DRAINED state we don't expect to
17310  * loop, because that would actually mean infinite loop, as DRAINED state is
17311  * "sticky", and so we'll keep returning into the same instruction with the
17312  * same state (at least in one of possible code paths).
17313  *
17314  * This approach allows to keep infinite loop heuristic even in the face of
17315  * active iterator. E.g., C snippet below is and will be detected as
17316  * inifintely looping:
17317  *
17318  *   struct bpf_iter_num it;
17319  *   int *p, x;
17320  *
17321  *   bpf_iter_num_new(&it, 0, 10);
17322  *   while ((p = bpf_iter_num_next(&t))) {
17323  *       x = p;
17324  *       while (x--) {} // <<-- infinite loop here
17325  *   }
17326  *
17327  */
17328 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
17329 {
17330 	struct bpf_reg_state *slot, *cur_slot;
17331 	struct bpf_func_state *state;
17332 	int i, fr;
17333 
17334 	for (fr = old->curframe; fr >= 0; fr--) {
17335 		state = old->frame[fr];
17336 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
17337 			if (state->stack[i].slot_type[0] != STACK_ITER)
17338 				continue;
17339 
17340 			slot = &state->stack[i].spilled_ptr;
17341 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
17342 				continue;
17343 
17344 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
17345 			if (cur_slot->iter.depth != slot->iter.depth)
17346 				return true;
17347 		}
17348 	}
17349 	return false;
17350 }
17351 
17352 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
17353 {
17354 	struct bpf_verifier_state_list *new_sl;
17355 	struct bpf_verifier_state_list *sl, **pprev;
17356 	struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry;
17357 	int i, j, n, err, states_cnt = 0;
17358 	bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
17359 	bool add_new_state = force_new_state;
17360 	bool force_exact;
17361 
17362 	/* bpf progs typically have pruning point every 4 instructions
17363 	 * http://vger.kernel.org/bpfconf2019.html#session-1
17364 	 * Do not add new state for future pruning if the verifier hasn't seen
17365 	 * at least 2 jumps and at least 8 instructions.
17366 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
17367 	 * In tests that amounts to up to 50% reduction into total verifier
17368 	 * memory consumption and 20% verifier time speedup.
17369 	 */
17370 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
17371 	    env->insn_processed - env->prev_insn_processed >= 8)
17372 		add_new_state = true;
17373 
17374 	pprev = explored_state(env, insn_idx);
17375 	sl = *pprev;
17376 
17377 	clean_live_states(env, insn_idx, cur);
17378 
17379 	while (sl) {
17380 		states_cnt++;
17381 		if (sl->state.insn_idx != insn_idx)
17382 			goto next;
17383 
17384 		if (sl->state.branches) {
17385 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
17386 
17387 			if (frame->in_async_callback_fn &&
17388 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
17389 				/* Different async_entry_cnt means that the verifier is
17390 				 * processing another entry into async callback.
17391 				 * Seeing the same state is not an indication of infinite
17392 				 * loop or infinite recursion.
17393 				 * But finding the same state doesn't mean that it's safe
17394 				 * to stop processing the current state. The previous state
17395 				 * hasn't yet reached bpf_exit, since state.branches > 0.
17396 				 * Checking in_async_callback_fn alone is not enough either.
17397 				 * Since the verifier still needs to catch infinite loops
17398 				 * inside async callbacks.
17399 				 */
17400 				goto skip_inf_loop_check;
17401 			}
17402 			/* BPF open-coded iterators loop detection is special.
17403 			 * states_maybe_looping() logic is too simplistic in detecting
17404 			 * states that *might* be equivalent, because it doesn't know
17405 			 * about ID remapping, so don't even perform it.
17406 			 * See process_iter_next_call() and iter_active_depths_differ()
17407 			 * for overview of the logic. When current and one of parent
17408 			 * states are detected as equivalent, it's a good thing: we prove
17409 			 * convergence and can stop simulating further iterations.
17410 			 * It's safe to assume that iterator loop will finish, taking into
17411 			 * account iter_next() contract of eventually returning
17412 			 * sticky NULL result.
17413 			 *
17414 			 * Note, that states have to be compared exactly in this case because
17415 			 * read and precision marks might not be finalized inside the loop.
17416 			 * E.g. as in the program below:
17417 			 *
17418 			 *     1. r7 = -16
17419 			 *     2. r6 = bpf_get_prandom_u32()
17420 			 *     3. while (bpf_iter_num_next(&fp[-8])) {
17421 			 *     4.   if (r6 != 42) {
17422 			 *     5.     r7 = -32
17423 			 *     6.     r6 = bpf_get_prandom_u32()
17424 			 *     7.     continue
17425 			 *     8.   }
17426 			 *     9.   r0 = r10
17427 			 *    10.   r0 += r7
17428 			 *    11.   r8 = *(u64 *)(r0 + 0)
17429 			 *    12.   r6 = bpf_get_prandom_u32()
17430 			 *    13. }
17431 			 *
17432 			 * Here verifier would first visit path 1-3, create a checkpoint at 3
17433 			 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
17434 			 * not have read or precision mark for r7 yet, thus inexact states
17435 			 * comparison would discard current state with r7=-32
17436 			 * => unsafe memory access at 11 would not be caught.
17437 			 */
17438 			if (is_iter_next_insn(env, insn_idx)) {
17439 				if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
17440 					struct bpf_func_state *cur_frame;
17441 					struct bpf_reg_state *iter_state, *iter_reg;
17442 					int spi;
17443 
17444 					cur_frame = cur->frame[cur->curframe];
17445 					/* btf_check_iter_kfuncs() enforces that
17446 					 * iter state pointer is always the first arg
17447 					 */
17448 					iter_reg = &cur_frame->regs[BPF_REG_1];
17449 					/* current state is valid due to states_equal(),
17450 					 * so we can assume valid iter and reg state,
17451 					 * no need for extra (re-)validations
17452 					 */
17453 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
17454 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
17455 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
17456 						update_loop_entry(cur, &sl->state);
17457 						goto hit;
17458 					}
17459 				}
17460 				goto skip_inf_loop_check;
17461 			}
17462 			if (is_may_goto_insn_at(env, insn_idx)) {
17463 				if (sl->state.may_goto_depth != cur->may_goto_depth &&
17464 				    states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
17465 					update_loop_entry(cur, &sl->state);
17466 					goto hit;
17467 				}
17468 			}
17469 			if (calls_callback(env, insn_idx)) {
17470 				if (states_equal(env, &sl->state, cur, RANGE_WITHIN))
17471 					goto hit;
17472 				goto skip_inf_loop_check;
17473 			}
17474 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
17475 			if (states_maybe_looping(&sl->state, cur) &&
17476 			    states_equal(env, &sl->state, cur, EXACT) &&
17477 			    !iter_active_depths_differ(&sl->state, cur) &&
17478 			    sl->state.may_goto_depth == cur->may_goto_depth &&
17479 			    sl->state.callback_unroll_depth == cur->callback_unroll_depth) {
17480 				verbose_linfo(env, insn_idx, "; ");
17481 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
17482 				verbose(env, "cur state:");
17483 				print_verifier_state(env, cur->frame[cur->curframe], true);
17484 				verbose(env, "old state:");
17485 				print_verifier_state(env, sl->state.frame[cur->curframe], true);
17486 				return -EINVAL;
17487 			}
17488 			/* if the verifier is processing a loop, avoid adding new state
17489 			 * too often, since different loop iterations have distinct
17490 			 * states and may not help future pruning.
17491 			 * This threshold shouldn't be too low to make sure that
17492 			 * a loop with large bound will be rejected quickly.
17493 			 * The most abusive loop will be:
17494 			 * r1 += 1
17495 			 * if r1 < 1000000 goto pc-2
17496 			 * 1M insn_procssed limit / 100 == 10k peak states.
17497 			 * This threshold shouldn't be too high either, since states
17498 			 * at the end of the loop are likely to be useful in pruning.
17499 			 */
17500 skip_inf_loop_check:
17501 			if (!force_new_state &&
17502 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
17503 			    env->insn_processed - env->prev_insn_processed < 100)
17504 				add_new_state = false;
17505 			goto miss;
17506 		}
17507 		/* If sl->state is a part of a loop and this loop's entry is a part of
17508 		 * current verification path then states have to be compared exactly.
17509 		 * 'force_exact' is needed to catch the following case:
17510 		 *
17511 		 *                initial     Here state 'succ' was processed first,
17512 		 *                  |         it was eventually tracked to produce a
17513 		 *                  V         state identical to 'hdr'.
17514 		 *     .---------> hdr        All branches from 'succ' had been explored
17515 		 *     |            |         and thus 'succ' has its .branches == 0.
17516 		 *     |            V
17517 		 *     |    .------...        Suppose states 'cur' and 'succ' correspond
17518 		 *     |    |       |         to the same instruction + callsites.
17519 		 *     |    V       V         In such case it is necessary to check
17520 		 *     |   ...     ...        if 'succ' and 'cur' are states_equal().
17521 		 *     |    |       |         If 'succ' and 'cur' are a part of the
17522 		 *     |    V       V         same loop exact flag has to be set.
17523 		 *     |   succ <- cur        To check if that is the case, verify
17524 		 *     |    |                 if loop entry of 'succ' is in current
17525 		 *     |    V                 DFS path.
17526 		 *     |   ...
17527 		 *     |    |
17528 		 *     '----'
17529 		 *
17530 		 * Additional details are in the comment before get_loop_entry().
17531 		 */
17532 		loop_entry = get_loop_entry(&sl->state);
17533 		force_exact = loop_entry && loop_entry->branches > 0;
17534 		if (states_equal(env, &sl->state, cur, force_exact ? RANGE_WITHIN : NOT_EXACT)) {
17535 			if (force_exact)
17536 				update_loop_entry(cur, loop_entry);
17537 hit:
17538 			sl->hit_cnt++;
17539 			/* reached equivalent register/stack state,
17540 			 * prune the search.
17541 			 * Registers read by the continuation are read by us.
17542 			 * If we have any write marks in env->cur_state, they
17543 			 * will prevent corresponding reads in the continuation
17544 			 * from reaching our parent (an explored_state).  Our
17545 			 * own state will get the read marks recorded, but
17546 			 * they'll be immediately forgotten as we're pruning
17547 			 * this state and will pop a new one.
17548 			 */
17549 			err = propagate_liveness(env, &sl->state, cur);
17550 
17551 			/* if previous state reached the exit with precision and
17552 			 * current state is equivalent to it (except precision marks)
17553 			 * the precision needs to be propagated back in
17554 			 * the current state.
17555 			 */
17556 			if (is_jmp_point(env, env->insn_idx))
17557 				err = err ? : push_jmp_history(env, cur, 0);
17558 			err = err ? : propagate_precision(env, &sl->state);
17559 			if (err)
17560 				return err;
17561 			return 1;
17562 		}
17563 miss:
17564 		/* when new state is not going to be added do not increase miss count.
17565 		 * Otherwise several loop iterations will remove the state
17566 		 * recorded earlier. The goal of these heuristics is to have
17567 		 * states from some iterations of the loop (some in the beginning
17568 		 * and some at the end) to help pruning.
17569 		 */
17570 		if (add_new_state)
17571 			sl->miss_cnt++;
17572 		/* heuristic to determine whether this state is beneficial
17573 		 * to keep checking from state equivalence point of view.
17574 		 * Higher numbers increase max_states_per_insn and verification time,
17575 		 * but do not meaningfully decrease insn_processed.
17576 		 * 'n' controls how many times state could miss before eviction.
17577 		 * Use bigger 'n' for checkpoints because evicting checkpoint states
17578 		 * too early would hinder iterator convergence.
17579 		 */
17580 		n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
17581 		if (sl->miss_cnt > sl->hit_cnt * n + n) {
17582 			/* the state is unlikely to be useful. Remove it to
17583 			 * speed up verification
17584 			 */
17585 			*pprev = sl->next;
17586 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE &&
17587 			    !sl->state.used_as_loop_entry) {
17588 				u32 br = sl->state.branches;
17589 
17590 				WARN_ONCE(br,
17591 					  "BUG live_done but branches_to_explore %d\n",
17592 					  br);
17593 				free_verifier_state(&sl->state, false);
17594 				kfree(sl);
17595 				env->peak_states--;
17596 			} else {
17597 				/* cannot free this state, since parentage chain may
17598 				 * walk it later. Add it for free_list instead to
17599 				 * be freed at the end of verification
17600 				 */
17601 				sl->next = env->free_list;
17602 				env->free_list = sl;
17603 			}
17604 			sl = *pprev;
17605 			continue;
17606 		}
17607 next:
17608 		pprev = &sl->next;
17609 		sl = *pprev;
17610 	}
17611 
17612 	if (env->max_states_per_insn < states_cnt)
17613 		env->max_states_per_insn = states_cnt;
17614 
17615 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
17616 		return 0;
17617 
17618 	if (!add_new_state)
17619 		return 0;
17620 
17621 	/* There were no equivalent states, remember the current one.
17622 	 * Technically the current state is not proven to be safe yet,
17623 	 * but it will either reach outer most bpf_exit (which means it's safe)
17624 	 * or it will be rejected. When there are no loops the verifier won't be
17625 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
17626 	 * again on the way to bpf_exit.
17627 	 * When looping the sl->state.branches will be > 0 and this state
17628 	 * will not be considered for equivalence until branches == 0.
17629 	 */
17630 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
17631 	if (!new_sl)
17632 		return -ENOMEM;
17633 	env->total_states++;
17634 	env->peak_states++;
17635 	env->prev_jmps_processed = env->jmps_processed;
17636 	env->prev_insn_processed = env->insn_processed;
17637 
17638 	/* forget precise markings we inherited, see __mark_chain_precision */
17639 	if (env->bpf_capable)
17640 		mark_all_scalars_imprecise(env, cur);
17641 
17642 	/* add new state to the head of linked list */
17643 	new = &new_sl->state;
17644 	err = copy_verifier_state(new, cur);
17645 	if (err) {
17646 		free_verifier_state(new, false);
17647 		kfree(new_sl);
17648 		return err;
17649 	}
17650 	new->insn_idx = insn_idx;
17651 	WARN_ONCE(new->branches != 1,
17652 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
17653 
17654 	cur->parent = new;
17655 	cur->first_insn_idx = insn_idx;
17656 	cur->dfs_depth = new->dfs_depth + 1;
17657 	clear_jmp_history(cur);
17658 	new_sl->next = *explored_state(env, insn_idx);
17659 	*explored_state(env, insn_idx) = new_sl;
17660 	/* connect new state to parentage chain. Current frame needs all
17661 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
17662 	 * to the stack implicitly by JITs) so in callers' frames connect just
17663 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
17664 	 * the state of the call instruction (with WRITTEN set), and r0 comes
17665 	 * from callee with its full parentage chain, anyway.
17666 	 */
17667 	/* clear write marks in current state: the writes we did are not writes
17668 	 * our child did, so they don't screen off its reads from us.
17669 	 * (There are no read marks in current state, because reads always mark
17670 	 * their parent and current state never has children yet.  Only
17671 	 * explored_states can get read marks.)
17672 	 */
17673 	for (j = 0; j <= cur->curframe; j++) {
17674 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
17675 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
17676 		for (i = 0; i < BPF_REG_FP; i++)
17677 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
17678 	}
17679 
17680 	/* all stack frames are accessible from callee, clear them all */
17681 	for (j = 0; j <= cur->curframe; j++) {
17682 		struct bpf_func_state *frame = cur->frame[j];
17683 		struct bpf_func_state *newframe = new->frame[j];
17684 
17685 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
17686 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
17687 			frame->stack[i].spilled_ptr.parent =
17688 						&newframe->stack[i].spilled_ptr;
17689 		}
17690 	}
17691 	return 0;
17692 }
17693 
17694 /* Return true if it's OK to have the same insn return a different type. */
17695 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
17696 {
17697 	switch (base_type(type)) {
17698 	case PTR_TO_CTX:
17699 	case PTR_TO_SOCKET:
17700 	case PTR_TO_SOCK_COMMON:
17701 	case PTR_TO_TCP_SOCK:
17702 	case PTR_TO_XDP_SOCK:
17703 	case PTR_TO_BTF_ID:
17704 	case PTR_TO_ARENA:
17705 		return false;
17706 	default:
17707 		return true;
17708 	}
17709 }
17710 
17711 /* If an instruction was previously used with particular pointer types, then we
17712  * need to be careful to avoid cases such as the below, where it may be ok
17713  * for one branch accessing the pointer, but not ok for the other branch:
17714  *
17715  * R1 = sock_ptr
17716  * goto X;
17717  * ...
17718  * R1 = some_other_valid_ptr;
17719  * goto X;
17720  * ...
17721  * R2 = *(u32 *)(R1 + 0);
17722  */
17723 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
17724 {
17725 	return src != prev && (!reg_type_mismatch_ok(src) ||
17726 			       !reg_type_mismatch_ok(prev));
17727 }
17728 
17729 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
17730 			     bool allow_trust_mismatch)
17731 {
17732 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
17733 
17734 	if (*prev_type == NOT_INIT) {
17735 		/* Saw a valid insn
17736 		 * dst_reg = *(u32 *)(src_reg + off)
17737 		 * save type to validate intersecting paths
17738 		 */
17739 		*prev_type = type;
17740 	} else if (reg_type_mismatch(type, *prev_type)) {
17741 		/* Abuser program is trying to use the same insn
17742 		 * dst_reg = *(u32*) (src_reg + off)
17743 		 * with different pointer types:
17744 		 * src_reg == ctx in one branch and
17745 		 * src_reg == stack|map in some other branch.
17746 		 * Reject it.
17747 		 */
17748 		if (allow_trust_mismatch &&
17749 		    base_type(type) == PTR_TO_BTF_ID &&
17750 		    base_type(*prev_type) == PTR_TO_BTF_ID) {
17751 			/*
17752 			 * Have to support a use case when one path through
17753 			 * the program yields TRUSTED pointer while another
17754 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
17755 			 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
17756 			 */
17757 			*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
17758 		} else {
17759 			verbose(env, "same insn cannot be used with different pointers\n");
17760 			return -EINVAL;
17761 		}
17762 	}
17763 
17764 	return 0;
17765 }
17766 
17767 static int do_check(struct bpf_verifier_env *env)
17768 {
17769 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
17770 	struct bpf_verifier_state *state = env->cur_state;
17771 	struct bpf_insn *insns = env->prog->insnsi;
17772 	struct bpf_reg_state *regs;
17773 	int insn_cnt = env->prog->len;
17774 	bool do_print_state = false;
17775 	int prev_insn_idx = -1;
17776 
17777 	for (;;) {
17778 		bool exception_exit = false;
17779 		struct bpf_insn *insn;
17780 		u8 class;
17781 		int err;
17782 
17783 		/* reset current history entry on each new instruction */
17784 		env->cur_hist_ent = NULL;
17785 
17786 		env->prev_insn_idx = prev_insn_idx;
17787 		if (env->insn_idx >= insn_cnt) {
17788 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
17789 				env->insn_idx, insn_cnt);
17790 			return -EFAULT;
17791 		}
17792 
17793 		insn = &insns[env->insn_idx];
17794 		class = BPF_CLASS(insn->code);
17795 
17796 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
17797 			verbose(env,
17798 				"BPF program is too large. Processed %d insn\n",
17799 				env->insn_processed);
17800 			return -E2BIG;
17801 		}
17802 
17803 		state->last_insn_idx = env->prev_insn_idx;
17804 
17805 		if (is_prune_point(env, env->insn_idx)) {
17806 			err = is_state_visited(env, env->insn_idx);
17807 			if (err < 0)
17808 				return err;
17809 			if (err == 1) {
17810 				/* found equivalent state, can prune the search */
17811 				if (env->log.level & BPF_LOG_LEVEL) {
17812 					if (do_print_state)
17813 						verbose(env, "\nfrom %d to %d%s: safe\n",
17814 							env->prev_insn_idx, env->insn_idx,
17815 							env->cur_state->speculative ?
17816 							" (speculative execution)" : "");
17817 					else
17818 						verbose(env, "%d: safe\n", env->insn_idx);
17819 				}
17820 				goto process_bpf_exit;
17821 			}
17822 		}
17823 
17824 		if (is_jmp_point(env, env->insn_idx)) {
17825 			err = push_jmp_history(env, state, 0);
17826 			if (err)
17827 				return err;
17828 		}
17829 
17830 		if (signal_pending(current))
17831 			return -EAGAIN;
17832 
17833 		if (need_resched())
17834 			cond_resched();
17835 
17836 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
17837 			verbose(env, "\nfrom %d to %d%s:",
17838 				env->prev_insn_idx, env->insn_idx,
17839 				env->cur_state->speculative ?
17840 				" (speculative execution)" : "");
17841 			print_verifier_state(env, state->frame[state->curframe], true);
17842 			do_print_state = false;
17843 		}
17844 
17845 		if (env->log.level & BPF_LOG_LEVEL) {
17846 			const struct bpf_insn_cbs cbs = {
17847 				.cb_call	= disasm_kfunc_name,
17848 				.cb_print	= verbose,
17849 				.private_data	= env,
17850 			};
17851 
17852 			if (verifier_state_scratched(env))
17853 				print_insn_state(env, state->frame[state->curframe]);
17854 
17855 			verbose_linfo(env, env->insn_idx, "; ");
17856 			env->prev_log_pos = env->log.end_pos;
17857 			verbose(env, "%d: ", env->insn_idx);
17858 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17859 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
17860 			env->prev_log_pos = env->log.end_pos;
17861 		}
17862 
17863 		if (bpf_prog_is_offloaded(env->prog->aux)) {
17864 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
17865 							   env->prev_insn_idx);
17866 			if (err)
17867 				return err;
17868 		}
17869 
17870 		regs = cur_regs(env);
17871 		sanitize_mark_insn_seen(env);
17872 		prev_insn_idx = env->insn_idx;
17873 
17874 		if (class == BPF_ALU || class == BPF_ALU64) {
17875 			err = check_alu_op(env, insn);
17876 			if (err)
17877 				return err;
17878 
17879 		} else if (class == BPF_LDX) {
17880 			enum bpf_reg_type src_reg_type;
17881 
17882 			/* check for reserved fields is already done */
17883 
17884 			/* check src operand */
17885 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
17886 			if (err)
17887 				return err;
17888 
17889 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17890 			if (err)
17891 				return err;
17892 
17893 			src_reg_type = regs[insn->src_reg].type;
17894 
17895 			/* check that memory (src_reg + off) is readable,
17896 			 * the state of dst_reg will be updated by this func
17897 			 */
17898 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
17899 					       insn->off, BPF_SIZE(insn->code),
17900 					       BPF_READ, insn->dst_reg, false,
17901 					       BPF_MODE(insn->code) == BPF_MEMSX);
17902 			err = err ?: save_aux_ptr_type(env, src_reg_type, true);
17903 			err = err ?: reg_bounds_sanity_check(env, &regs[insn->dst_reg], "ldx");
17904 			if (err)
17905 				return err;
17906 		} else if (class == BPF_STX) {
17907 			enum bpf_reg_type dst_reg_type;
17908 
17909 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
17910 				err = check_atomic(env, env->insn_idx, insn);
17911 				if (err)
17912 					return err;
17913 				env->insn_idx++;
17914 				continue;
17915 			}
17916 
17917 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
17918 				verbose(env, "BPF_STX uses reserved fields\n");
17919 				return -EINVAL;
17920 			}
17921 
17922 			/* check src1 operand */
17923 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
17924 			if (err)
17925 				return err;
17926 			/* check src2 operand */
17927 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17928 			if (err)
17929 				return err;
17930 
17931 			dst_reg_type = regs[insn->dst_reg].type;
17932 
17933 			/* check that memory (dst_reg + off) is writeable */
17934 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17935 					       insn->off, BPF_SIZE(insn->code),
17936 					       BPF_WRITE, insn->src_reg, false, false);
17937 			if (err)
17938 				return err;
17939 
17940 			err = save_aux_ptr_type(env, dst_reg_type, false);
17941 			if (err)
17942 				return err;
17943 		} else if (class == BPF_ST) {
17944 			enum bpf_reg_type dst_reg_type;
17945 
17946 			if (BPF_MODE(insn->code) != BPF_MEM ||
17947 			    insn->src_reg != BPF_REG_0) {
17948 				verbose(env, "BPF_ST uses reserved fields\n");
17949 				return -EINVAL;
17950 			}
17951 			/* check src operand */
17952 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17953 			if (err)
17954 				return err;
17955 
17956 			dst_reg_type = regs[insn->dst_reg].type;
17957 
17958 			/* check that memory (dst_reg + off) is writeable */
17959 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17960 					       insn->off, BPF_SIZE(insn->code),
17961 					       BPF_WRITE, -1, false, false);
17962 			if (err)
17963 				return err;
17964 
17965 			err = save_aux_ptr_type(env, dst_reg_type, false);
17966 			if (err)
17967 				return err;
17968 		} else if (class == BPF_JMP || class == BPF_JMP32) {
17969 			u8 opcode = BPF_OP(insn->code);
17970 
17971 			env->jmps_processed++;
17972 			if (opcode == BPF_CALL) {
17973 				if (BPF_SRC(insn->code) != BPF_K ||
17974 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
17975 				     && insn->off != 0) ||
17976 				    (insn->src_reg != BPF_REG_0 &&
17977 				     insn->src_reg != BPF_PSEUDO_CALL &&
17978 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
17979 				    insn->dst_reg != BPF_REG_0 ||
17980 				    class == BPF_JMP32) {
17981 					verbose(env, "BPF_CALL uses reserved fields\n");
17982 					return -EINVAL;
17983 				}
17984 
17985 				if (env->cur_state->active_lock.ptr) {
17986 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
17987 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
17988 					     (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
17989 						verbose(env, "function calls are not allowed while holding a lock\n");
17990 						return -EINVAL;
17991 					}
17992 				}
17993 				if (insn->src_reg == BPF_PSEUDO_CALL) {
17994 					err = check_func_call(env, insn, &env->insn_idx);
17995 				} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
17996 					err = check_kfunc_call(env, insn, &env->insn_idx);
17997 					if (!err && is_bpf_throw_kfunc(insn)) {
17998 						exception_exit = true;
17999 						goto process_bpf_exit_full;
18000 					}
18001 				} else {
18002 					err = check_helper_call(env, insn, &env->insn_idx);
18003 				}
18004 				if (err)
18005 					return err;
18006 
18007 				mark_reg_scratched(env, BPF_REG_0);
18008 			} else if (opcode == BPF_JA) {
18009 				if (BPF_SRC(insn->code) != BPF_K ||
18010 				    insn->src_reg != BPF_REG_0 ||
18011 				    insn->dst_reg != BPF_REG_0 ||
18012 				    (class == BPF_JMP && insn->imm != 0) ||
18013 				    (class == BPF_JMP32 && insn->off != 0)) {
18014 					verbose(env, "BPF_JA uses reserved fields\n");
18015 					return -EINVAL;
18016 				}
18017 
18018 				if (class == BPF_JMP)
18019 					env->insn_idx += insn->off + 1;
18020 				else
18021 					env->insn_idx += insn->imm + 1;
18022 				continue;
18023 
18024 			} else if (opcode == BPF_EXIT) {
18025 				if (BPF_SRC(insn->code) != BPF_K ||
18026 				    insn->imm != 0 ||
18027 				    insn->src_reg != BPF_REG_0 ||
18028 				    insn->dst_reg != BPF_REG_0 ||
18029 				    class == BPF_JMP32) {
18030 					verbose(env, "BPF_EXIT uses reserved fields\n");
18031 					return -EINVAL;
18032 				}
18033 process_bpf_exit_full:
18034 				if (env->cur_state->active_lock.ptr && !env->cur_state->curframe) {
18035 					verbose(env, "bpf_spin_unlock is missing\n");
18036 					return -EINVAL;
18037 				}
18038 
18039 				if (env->cur_state->active_rcu_lock && !env->cur_state->curframe) {
18040 					verbose(env, "bpf_rcu_read_unlock is missing\n");
18041 					return -EINVAL;
18042 				}
18043 
18044 				if (env->cur_state->active_preempt_lock && !env->cur_state->curframe) {
18045 					verbose(env, "%d bpf_preempt_enable%s missing\n",
18046 						env->cur_state->active_preempt_lock,
18047 						env->cur_state->active_preempt_lock == 1 ? " is" : "(s) are");
18048 					return -EINVAL;
18049 				}
18050 
18051 				/* We must do check_reference_leak here before
18052 				 * prepare_func_exit to handle the case when
18053 				 * state->curframe > 0, it may be a callback
18054 				 * function, for which reference_state must
18055 				 * match caller reference state when it exits.
18056 				 */
18057 				err = check_reference_leak(env, exception_exit);
18058 				if (err)
18059 					return err;
18060 
18061 				/* The side effect of the prepare_func_exit
18062 				 * which is being skipped is that it frees
18063 				 * bpf_func_state. Typically, process_bpf_exit
18064 				 * will only be hit with outermost exit.
18065 				 * copy_verifier_state in pop_stack will handle
18066 				 * freeing of any extra bpf_func_state left over
18067 				 * from not processing all nested function
18068 				 * exits. We also skip return code checks as
18069 				 * they are not needed for exceptional exits.
18070 				 */
18071 				if (exception_exit)
18072 					goto process_bpf_exit;
18073 
18074 				if (state->curframe) {
18075 					/* exit from nested function */
18076 					err = prepare_func_exit(env, &env->insn_idx);
18077 					if (err)
18078 						return err;
18079 					do_print_state = true;
18080 					continue;
18081 				}
18082 
18083 				err = check_return_code(env, BPF_REG_0, "R0");
18084 				if (err)
18085 					return err;
18086 process_bpf_exit:
18087 				mark_verifier_state_scratched(env);
18088 				update_branch_counts(env, env->cur_state);
18089 				err = pop_stack(env, &prev_insn_idx,
18090 						&env->insn_idx, pop_log);
18091 				if (err < 0) {
18092 					if (err != -ENOENT)
18093 						return err;
18094 					break;
18095 				} else {
18096 					do_print_state = true;
18097 					continue;
18098 				}
18099 			} else {
18100 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
18101 				if (err)
18102 					return err;
18103 			}
18104 		} else if (class == BPF_LD) {
18105 			u8 mode = BPF_MODE(insn->code);
18106 
18107 			if (mode == BPF_ABS || mode == BPF_IND) {
18108 				err = check_ld_abs(env, insn);
18109 				if (err)
18110 					return err;
18111 
18112 			} else if (mode == BPF_IMM) {
18113 				err = check_ld_imm(env, insn);
18114 				if (err)
18115 					return err;
18116 
18117 				env->insn_idx++;
18118 				sanitize_mark_insn_seen(env);
18119 			} else {
18120 				verbose(env, "invalid BPF_LD mode\n");
18121 				return -EINVAL;
18122 			}
18123 		} else {
18124 			verbose(env, "unknown insn class %d\n", class);
18125 			return -EINVAL;
18126 		}
18127 
18128 		env->insn_idx++;
18129 	}
18130 
18131 	return 0;
18132 }
18133 
18134 static int find_btf_percpu_datasec(struct btf *btf)
18135 {
18136 	const struct btf_type *t;
18137 	const char *tname;
18138 	int i, n;
18139 
18140 	/*
18141 	 * Both vmlinux and module each have their own ".data..percpu"
18142 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
18143 	 * types to look at only module's own BTF types.
18144 	 */
18145 	n = btf_nr_types(btf);
18146 	if (btf_is_module(btf))
18147 		i = btf_nr_types(btf_vmlinux);
18148 	else
18149 		i = 1;
18150 
18151 	for(; i < n; i++) {
18152 		t = btf_type_by_id(btf, i);
18153 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
18154 			continue;
18155 
18156 		tname = btf_name_by_offset(btf, t->name_off);
18157 		if (!strcmp(tname, ".data..percpu"))
18158 			return i;
18159 	}
18160 
18161 	return -ENOENT;
18162 }
18163 
18164 /* replace pseudo btf_id with kernel symbol address */
18165 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
18166 			       struct bpf_insn *insn,
18167 			       struct bpf_insn_aux_data *aux)
18168 {
18169 	const struct btf_var_secinfo *vsi;
18170 	const struct btf_type *datasec;
18171 	struct btf_mod_pair *btf_mod;
18172 	const struct btf_type *t;
18173 	const char *sym_name;
18174 	bool percpu = false;
18175 	u32 type, id = insn->imm;
18176 	struct btf *btf;
18177 	s32 datasec_id;
18178 	u64 addr;
18179 	int i, btf_fd, err;
18180 
18181 	btf_fd = insn[1].imm;
18182 	if (btf_fd) {
18183 		btf = btf_get_by_fd(btf_fd);
18184 		if (IS_ERR(btf)) {
18185 			verbose(env, "invalid module BTF object FD specified.\n");
18186 			return -EINVAL;
18187 		}
18188 	} else {
18189 		if (!btf_vmlinux) {
18190 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
18191 			return -EINVAL;
18192 		}
18193 		btf = btf_vmlinux;
18194 		btf_get(btf);
18195 	}
18196 
18197 	t = btf_type_by_id(btf, id);
18198 	if (!t) {
18199 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
18200 		err = -ENOENT;
18201 		goto err_put;
18202 	}
18203 
18204 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
18205 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
18206 		err = -EINVAL;
18207 		goto err_put;
18208 	}
18209 
18210 	sym_name = btf_name_by_offset(btf, t->name_off);
18211 	addr = kallsyms_lookup_name(sym_name);
18212 	if (!addr) {
18213 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
18214 			sym_name);
18215 		err = -ENOENT;
18216 		goto err_put;
18217 	}
18218 	insn[0].imm = (u32)addr;
18219 	insn[1].imm = addr >> 32;
18220 
18221 	if (btf_type_is_func(t)) {
18222 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
18223 		aux->btf_var.mem_size = 0;
18224 		goto check_btf;
18225 	}
18226 
18227 	datasec_id = find_btf_percpu_datasec(btf);
18228 	if (datasec_id > 0) {
18229 		datasec = btf_type_by_id(btf, datasec_id);
18230 		for_each_vsi(i, datasec, vsi) {
18231 			if (vsi->type == id) {
18232 				percpu = true;
18233 				break;
18234 			}
18235 		}
18236 	}
18237 
18238 	type = t->type;
18239 	t = btf_type_skip_modifiers(btf, type, NULL);
18240 	if (percpu) {
18241 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
18242 		aux->btf_var.btf = btf;
18243 		aux->btf_var.btf_id = type;
18244 	} else if (!btf_type_is_struct(t)) {
18245 		const struct btf_type *ret;
18246 		const char *tname;
18247 		u32 tsize;
18248 
18249 		/* resolve the type size of ksym. */
18250 		ret = btf_resolve_size(btf, t, &tsize);
18251 		if (IS_ERR(ret)) {
18252 			tname = btf_name_by_offset(btf, t->name_off);
18253 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
18254 				tname, PTR_ERR(ret));
18255 			err = -EINVAL;
18256 			goto err_put;
18257 		}
18258 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
18259 		aux->btf_var.mem_size = tsize;
18260 	} else {
18261 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
18262 		aux->btf_var.btf = btf;
18263 		aux->btf_var.btf_id = type;
18264 	}
18265 check_btf:
18266 	/* check whether we recorded this BTF (and maybe module) already */
18267 	for (i = 0; i < env->used_btf_cnt; i++) {
18268 		if (env->used_btfs[i].btf == btf) {
18269 			btf_put(btf);
18270 			return 0;
18271 		}
18272 	}
18273 
18274 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
18275 		err = -E2BIG;
18276 		goto err_put;
18277 	}
18278 
18279 	btf_mod = &env->used_btfs[env->used_btf_cnt];
18280 	btf_mod->btf = btf;
18281 	btf_mod->module = NULL;
18282 
18283 	/* if we reference variables from kernel module, bump its refcount */
18284 	if (btf_is_module(btf)) {
18285 		btf_mod->module = btf_try_get_module(btf);
18286 		if (!btf_mod->module) {
18287 			err = -ENXIO;
18288 			goto err_put;
18289 		}
18290 	}
18291 
18292 	env->used_btf_cnt++;
18293 
18294 	return 0;
18295 err_put:
18296 	btf_put(btf);
18297 	return err;
18298 }
18299 
18300 static bool is_tracing_prog_type(enum bpf_prog_type type)
18301 {
18302 	switch (type) {
18303 	case BPF_PROG_TYPE_KPROBE:
18304 	case BPF_PROG_TYPE_TRACEPOINT:
18305 	case BPF_PROG_TYPE_PERF_EVENT:
18306 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
18307 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
18308 		return true;
18309 	default:
18310 		return false;
18311 	}
18312 }
18313 
18314 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
18315 					struct bpf_map *map,
18316 					struct bpf_prog *prog)
18317 
18318 {
18319 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
18320 
18321 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
18322 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
18323 		if (is_tracing_prog_type(prog_type)) {
18324 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
18325 			return -EINVAL;
18326 		}
18327 	}
18328 
18329 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
18330 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
18331 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
18332 			return -EINVAL;
18333 		}
18334 
18335 		if (is_tracing_prog_type(prog_type)) {
18336 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
18337 			return -EINVAL;
18338 		}
18339 	}
18340 
18341 	if (btf_record_has_field(map->record, BPF_TIMER)) {
18342 		if (is_tracing_prog_type(prog_type)) {
18343 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
18344 			return -EINVAL;
18345 		}
18346 	}
18347 
18348 	if (btf_record_has_field(map->record, BPF_WORKQUEUE)) {
18349 		if (is_tracing_prog_type(prog_type)) {
18350 			verbose(env, "tracing progs cannot use bpf_wq yet\n");
18351 			return -EINVAL;
18352 		}
18353 	}
18354 
18355 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
18356 	    !bpf_offload_prog_map_match(prog, map)) {
18357 		verbose(env, "offload device mismatch between prog and map\n");
18358 		return -EINVAL;
18359 	}
18360 
18361 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
18362 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
18363 		return -EINVAL;
18364 	}
18365 
18366 	if (prog->sleepable)
18367 		switch (map->map_type) {
18368 		case BPF_MAP_TYPE_HASH:
18369 		case BPF_MAP_TYPE_LRU_HASH:
18370 		case BPF_MAP_TYPE_ARRAY:
18371 		case BPF_MAP_TYPE_PERCPU_HASH:
18372 		case BPF_MAP_TYPE_PERCPU_ARRAY:
18373 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
18374 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
18375 		case BPF_MAP_TYPE_HASH_OF_MAPS:
18376 		case BPF_MAP_TYPE_RINGBUF:
18377 		case BPF_MAP_TYPE_USER_RINGBUF:
18378 		case BPF_MAP_TYPE_INODE_STORAGE:
18379 		case BPF_MAP_TYPE_SK_STORAGE:
18380 		case BPF_MAP_TYPE_TASK_STORAGE:
18381 		case BPF_MAP_TYPE_CGRP_STORAGE:
18382 		case BPF_MAP_TYPE_QUEUE:
18383 		case BPF_MAP_TYPE_STACK:
18384 		case BPF_MAP_TYPE_ARENA:
18385 			break;
18386 		default:
18387 			verbose(env,
18388 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
18389 			return -EINVAL;
18390 		}
18391 
18392 	return 0;
18393 }
18394 
18395 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
18396 {
18397 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
18398 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
18399 }
18400 
18401 /* find and rewrite pseudo imm in ld_imm64 instructions:
18402  *
18403  * 1. if it accesses map FD, replace it with actual map pointer.
18404  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
18405  *
18406  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
18407  */
18408 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
18409 {
18410 	struct bpf_insn *insn = env->prog->insnsi;
18411 	int insn_cnt = env->prog->len;
18412 	int i, j, err;
18413 
18414 	err = bpf_prog_calc_tag(env->prog);
18415 	if (err)
18416 		return err;
18417 
18418 	for (i = 0; i < insn_cnt; i++, insn++) {
18419 		if (BPF_CLASS(insn->code) == BPF_LDX &&
18420 		    ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
18421 		    insn->imm != 0)) {
18422 			verbose(env, "BPF_LDX uses reserved fields\n");
18423 			return -EINVAL;
18424 		}
18425 
18426 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
18427 			struct bpf_insn_aux_data *aux;
18428 			struct bpf_map *map;
18429 			struct fd f;
18430 			u64 addr;
18431 			u32 fd;
18432 
18433 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
18434 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
18435 			    insn[1].off != 0) {
18436 				verbose(env, "invalid bpf_ld_imm64 insn\n");
18437 				return -EINVAL;
18438 			}
18439 
18440 			if (insn[0].src_reg == 0)
18441 				/* valid generic load 64-bit imm */
18442 				goto next_insn;
18443 
18444 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
18445 				aux = &env->insn_aux_data[i];
18446 				err = check_pseudo_btf_id(env, insn, aux);
18447 				if (err)
18448 					return err;
18449 				goto next_insn;
18450 			}
18451 
18452 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
18453 				aux = &env->insn_aux_data[i];
18454 				aux->ptr_type = PTR_TO_FUNC;
18455 				goto next_insn;
18456 			}
18457 
18458 			/* In final convert_pseudo_ld_imm64() step, this is
18459 			 * converted into regular 64-bit imm load insn.
18460 			 */
18461 			switch (insn[0].src_reg) {
18462 			case BPF_PSEUDO_MAP_VALUE:
18463 			case BPF_PSEUDO_MAP_IDX_VALUE:
18464 				break;
18465 			case BPF_PSEUDO_MAP_FD:
18466 			case BPF_PSEUDO_MAP_IDX:
18467 				if (insn[1].imm == 0)
18468 					break;
18469 				fallthrough;
18470 			default:
18471 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
18472 				return -EINVAL;
18473 			}
18474 
18475 			switch (insn[0].src_reg) {
18476 			case BPF_PSEUDO_MAP_IDX_VALUE:
18477 			case BPF_PSEUDO_MAP_IDX:
18478 				if (bpfptr_is_null(env->fd_array)) {
18479 					verbose(env, "fd_idx without fd_array is invalid\n");
18480 					return -EPROTO;
18481 				}
18482 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
18483 							    insn[0].imm * sizeof(fd),
18484 							    sizeof(fd)))
18485 					return -EFAULT;
18486 				break;
18487 			default:
18488 				fd = insn[0].imm;
18489 				break;
18490 			}
18491 
18492 			f = fdget(fd);
18493 			map = __bpf_map_get(f);
18494 			if (IS_ERR(map)) {
18495 				verbose(env, "fd %d is not pointing to valid bpf_map\n", fd);
18496 				return PTR_ERR(map);
18497 			}
18498 
18499 			err = check_map_prog_compatibility(env, map, env->prog);
18500 			if (err) {
18501 				fdput(f);
18502 				return err;
18503 			}
18504 
18505 			aux = &env->insn_aux_data[i];
18506 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
18507 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
18508 				addr = (unsigned long)map;
18509 			} else {
18510 				u32 off = insn[1].imm;
18511 
18512 				if (off >= BPF_MAX_VAR_OFF) {
18513 					verbose(env, "direct value offset of %u is not allowed\n", off);
18514 					fdput(f);
18515 					return -EINVAL;
18516 				}
18517 
18518 				if (!map->ops->map_direct_value_addr) {
18519 					verbose(env, "no direct value access support for this map type\n");
18520 					fdput(f);
18521 					return -EINVAL;
18522 				}
18523 
18524 				err = map->ops->map_direct_value_addr(map, &addr, off);
18525 				if (err) {
18526 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
18527 						map->value_size, off);
18528 					fdput(f);
18529 					return err;
18530 				}
18531 
18532 				aux->map_off = off;
18533 				addr += off;
18534 			}
18535 
18536 			insn[0].imm = (u32)addr;
18537 			insn[1].imm = addr >> 32;
18538 
18539 			/* check whether we recorded this map already */
18540 			for (j = 0; j < env->used_map_cnt; j++) {
18541 				if (env->used_maps[j] == map) {
18542 					aux->map_index = j;
18543 					fdput(f);
18544 					goto next_insn;
18545 				}
18546 			}
18547 
18548 			if (env->used_map_cnt >= MAX_USED_MAPS) {
18549 				verbose(env, "The total number of maps per program has reached the limit of %u\n",
18550 					MAX_USED_MAPS);
18551 				fdput(f);
18552 				return -E2BIG;
18553 			}
18554 
18555 			if (env->prog->sleepable)
18556 				atomic64_inc(&map->sleepable_refcnt);
18557 			/* hold the map. If the program is rejected by verifier,
18558 			 * the map will be released by release_maps() or it
18559 			 * will be used by the valid program until it's unloaded
18560 			 * and all maps are released in bpf_free_used_maps()
18561 			 */
18562 			bpf_map_inc(map);
18563 
18564 			aux->map_index = env->used_map_cnt;
18565 			env->used_maps[env->used_map_cnt++] = map;
18566 
18567 			if (bpf_map_is_cgroup_storage(map) &&
18568 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
18569 				verbose(env, "only one cgroup storage of each type is allowed\n");
18570 				fdput(f);
18571 				return -EBUSY;
18572 			}
18573 			if (map->map_type == BPF_MAP_TYPE_ARENA) {
18574 				if (env->prog->aux->arena) {
18575 					verbose(env, "Only one arena per program\n");
18576 					fdput(f);
18577 					return -EBUSY;
18578 				}
18579 				if (!env->allow_ptr_leaks || !env->bpf_capable) {
18580 					verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n");
18581 					fdput(f);
18582 					return -EPERM;
18583 				}
18584 				if (!env->prog->jit_requested) {
18585 					verbose(env, "JIT is required to use arena\n");
18586 					fdput(f);
18587 					return -EOPNOTSUPP;
18588 				}
18589 				if (!bpf_jit_supports_arena()) {
18590 					verbose(env, "JIT doesn't support arena\n");
18591 					fdput(f);
18592 					return -EOPNOTSUPP;
18593 				}
18594 				env->prog->aux->arena = (void *)map;
18595 				if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) {
18596 					verbose(env, "arena's user address must be set via map_extra or mmap()\n");
18597 					fdput(f);
18598 					return -EINVAL;
18599 				}
18600 			}
18601 
18602 			fdput(f);
18603 next_insn:
18604 			insn++;
18605 			i++;
18606 			continue;
18607 		}
18608 
18609 		/* Basic sanity check before we invest more work here. */
18610 		if (!bpf_opcode_in_insntable(insn->code)) {
18611 			verbose(env, "unknown opcode %02x\n", insn->code);
18612 			return -EINVAL;
18613 		}
18614 	}
18615 
18616 	/* now all pseudo BPF_LD_IMM64 instructions load valid
18617 	 * 'struct bpf_map *' into a register instead of user map_fd.
18618 	 * These pointers will be used later by verifier to validate map access.
18619 	 */
18620 	return 0;
18621 }
18622 
18623 /* drop refcnt of maps used by the rejected program */
18624 static void release_maps(struct bpf_verifier_env *env)
18625 {
18626 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
18627 			     env->used_map_cnt);
18628 }
18629 
18630 /* drop refcnt of maps used by the rejected program */
18631 static void release_btfs(struct bpf_verifier_env *env)
18632 {
18633 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
18634 			     env->used_btf_cnt);
18635 }
18636 
18637 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
18638 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
18639 {
18640 	struct bpf_insn *insn = env->prog->insnsi;
18641 	int insn_cnt = env->prog->len;
18642 	int i;
18643 
18644 	for (i = 0; i < insn_cnt; i++, insn++) {
18645 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
18646 			continue;
18647 		if (insn->src_reg == BPF_PSEUDO_FUNC)
18648 			continue;
18649 		insn->src_reg = 0;
18650 	}
18651 }
18652 
18653 /* single env->prog->insni[off] instruction was replaced with the range
18654  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
18655  * [0, off) and [off, end) to new locations, so the patched range stays zero
18656  */
18657 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
18658 				 struct bpf_insn_aux_data *new_data,
18659 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
18660 {
18661 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
18662 	struct bpf_insn *insn = new_prog->insnsi;
18663 	u32 old_seen = old_data[off].seen;
18664 	u32 prog_len;
18665 	int i;
18666 
18667 	/* aux info at OFF always needs adjustment, no matter fast path
18668 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
18669 	 * original insn at old prog.
18670 	 */
18671 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
18672 
18673 	if (cnt == 1)
18674 		return;
18675 	prog_len = new_prog->len;
18676 
18677 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
18678 	memcpy(new_data + off + cnt - 1, old_data + off,
18679 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
18680 	for (i = off; i < off + cnt - 1; i++) {
18681 		/* Expand insni[off]'s seen count to the patched range. */
18682 		new_data[i].seen = old_seen;
18683 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
18684 	}
18685 	env->insn_aux_data = new_data;
18686 	vfree(old_data);
18687 }
18688 
18689 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
18690 {
18691 	int i;
18692 
18693 	if (len == 1)
18694 		return;
18695 	/* NOTE: fake 'exit' subprog should be updated as well. */
18696 	for (i = 0; i <= env->subprog_cnt; i++) {
18697 		if (env->subprog_info[i].start <= off)
18698 			continue;
18699 		env->subprog_info[i].start += len - 1;
18700 	}
18701 }
18702 
18703 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
18704 {
18705 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
18706 	int i, sz = prog->aux->size_poke_tab;
18707 	struct bpf_jit_poke_descriptor *desc;
18708 
18709 	for (i = 0; i < sz; i++) {
18710 		desc = &tab[i];
18711 		if (desc->insn_idx <= off)
18712 			continue;
18713 		desc->insn_idx += len - 1;
18714 	}
18715 }
18716 
18717 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
18718 					    const struct bpf_insn *patch, u32 len)
18719 {
18720 	struct bpf_prog *new_prog;
18721 	struct bpf_insn_aux_data *new_data = NULL;
18722 
18723 	if (len > 1) {
18724 		new_data = vzalloc(array_size(env->prog->len + len - 1,
18725 					      sizeof(struct bpf_insn_aux_data)));
18726 		if (!new_data)
18727 			return NULL;
18728 	}
18729 
18730 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
18731 	if (IS_ERR(new_prog)) {
18732 		if (PTR_ERR(new_prog) == -ERANGE)
18733 			verbose(env,
18734 				"insn %d cannot be patched due to 16-bit range\n",
18735 				env->insn_aux_data[off].orig_idx);
18736 		vfree(new_data);
18737 		return NULL;
18738 	}
18739 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
18740 	adjust_subprog_starts(env, off, len);
18741 	adjust_poke_descs(new_prog, off, len);
18742 	return new_prog;
18743 }
18744 
18745 /*
18746  * For all jmp insns in a given 'prog' that point to 'tgt_idx' insn adjust the
18747  * jump offset by 'delta'.
18748  */
18749 static int adjust_jmp_off(struct bpf_prog *prog, u32 tgt_idx, u32 delta)
18750 {
18751 	struct bpf_insn *insn = prog->insnsi;
18752 	u32 insn_cnt = prog->len, i;
18753 
18754 	for (i = 0; i < insn_cnt; i++, insn++) {
18755 		u8 code = insn->code;
18756 
18757 		if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) ||
18758 		    BPF_OP(code) == BPF_CALL || BPF_OP(code) == BPF_EXIT)
18759 			continue;
18760 
18761 		if (insn->code == (BPF_JMP32 | BPF_JA)) {
18762 			if (i + 1 + insn->imm != tgt_idx)
18763 				continue;
18764 			if (signed_add32_overflows(insn->imm, delta))
18765 				return -ERANGE;
18766 			insn->imm += delta;
18767 		} else {
18768 			if (i + 1 + insn->off != tgt_idx)
18769 				continue;
18770 			if (signed_add16_overflows(insn->imm, delta))
18771 				return -ERANGE;
18772 			insn->off += delta;
18773 		}
18774 	}
18775 	return 0;
18776 }
18777 
18778 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
18779 					      u32 off, u32 cnt)
18780 {
18781 	int i, j;
18782 
18783 	/* find first prog starting at or after off (first to remove) */
18784 	for (i = 0; i < env->subprog_cnt; i++)
18785 		if (env->subprog_info[i].start >= off)
18786 			break;
18787 	/* find first prog starting at or after off + cnt (first to stay) */
18788 	for (j = i; j < env->subprog_cnt; j++)
18789 		if (env->subprog_info[j].start >= off + cnt)
18790 			break;
18791 	/* if j doesn't start exactly at off + cnt, we are just removing
18792 	 * the front of previous prog
18793 	 */
18794 	if (env->subprog_info[j].start != off + cnt)
18795 		j--;
18796 
18797 	if (j > i) {
18798 		struct bpf_prog_aux *aux = env->prog->aux;
18799 		int move;
18800 
18801 		/* move fake 'exit' subprog as well */
18802 		move = env->subprog_cnt + 1 - j;
18803 
18804 		memmove(env->subprog_info + i,
18805 			env->subprog_info + j,
18806 			sizeof(*env->subprog_info) * move);
18807 		env->subprog_cnt -= j - i;
18808 
18809 		/* remove func_info */
18810 		if (aux->func_info) {
18811 			move = aux->func_info_cnt - j;
18812 
18813 			memmove(aux->func_info + i,
18814 				aux->func_info + j,
18815 				sizeof(*aux->func_info) * move);
18816 			aux->func_info_cnt -= j - i;
18817 			/* func_info->insn_off is set after all code rewrites,
18818 			 * in adjust_btf_func() - no need to adjust
18819 			 */
18820 		}
18821 	} else {
18822 		/* convert i from "first prog to remove" to "first to adjust" */
18823 		if (env->subprog_info[i].start == off)
18824 			i++;
18825 	}
18826 
18827 	/* update fake 'exit' subprog as well */
18828 	for (; i <= env->subprog_cnt; i++)
18829 		env->subprog_info[i].start -= cnt;
18830 
18831 	return 0;
18832 }
18833 
18834 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
18835 				      u32 cnt)
18836 {
18837 	struct bpf_prog *prog = env->prog;
18838 	u32 i, l_off, l_cnt, nr_linfo;
18839 	struct bpf_line_info *linfo;
18840 
18841 	nr_linfo = prog->aux->nr_linfo;
18842 	if (!nr_linfo)
18843 		return 0;
18844 
18845 	linfo = prog->aux->linfo;
18846 
18847 	/* find first line info to remove, count lines to be removed */
18848 	for (i = 0; i < nr_linfo; i++)
18849 		if (linfo[i].insn_off >= off)
18850 			break;
18851 
18852 	l_off = i;
18853 	l_cnt = 0;
18854 	for (; i < nr_linfo; i++)
18855 		if (linfo[i].insn_off < off + cnt)
18856 			l_cnt++;
18857 		else
18858 			break;
18859 
18860 	/* First live insn doesn't match first live linfo, it needs to "inherit"
18861 	 * last removed linfo.  prog is already modified, so prog->len == off
18862 	 * means no live instructions after (tail of the program was removed).
18863 	 */
18864 	if (prog->len != off && l_cnt &&
18865 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
18866 		l_cnt--;
18867 		linfo[--i].insn_off = off + cnt;
18868 	}
18869 
18870 	/* remove the line info which refer to the removed instructions */
18871 	if (l_cnt) {
18872 		memmove(linfo + l_off, linfo + i,
18873 			sizeof(*linfo) * (nr_linfo - i));
18874 
18875 		prog->aux->nr_linfo -= l_cnt;
18876 		nr_linfo = prog->aux->nr_linfo;
18877 	}
18878 
18879 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
18880 	for (i = l_off; i < nr_linfo; i++)
18881 		linfo[i].insn_off -= cnt;
18882 
18883 	/* fix up all subprogs (incl. 'exit') which start >= off */
18884 	for (i = 0; i <= env->subprog_cnt; i++)
18885 		if (env->subprog_info[i].linfo_idx > l_off) {
18886 			/* program may have started in the removed region but
18887 			 * may not be fully removed
18888 			 */
18889 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
18890 				env->subprog_info[i].linfo_idx -= l_cnt;
18891 			else
18892 				env->subprog_info[i].linfo_idx = l_off;
18893 		}
18894 
18895 	return 0;
18896 }
18897 
18898 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
18899 {
18900 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18901 	unsigned int orig_prog_len = env->prog->len;
18902 	int err;
18903 
18904 	if (bpf_prog_is_offloaded(env->prog->aux))
18905 		bpf_prog_offload_remove_insns(env, off, cnt);
18906 
18907 	err = bpf_remove_insns(env->prog, off, cnt);
18908 	if (err)
18909 		return err;
18910 
18911 	err = adjust_subprog_starts_after_remove(env, off, cnt);
18912 	if (err)
18913 		return err;
18914 
18915 	err = bpf_adj_linfo_after_remove(env, off, cnt);
18916 	if (err)
18917 		return err;
18918 
18919 	memmove(aux_data + off,	aux_data + off + cnt,
18920 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
18921 
18922 	return 0;
18923 }
18924 
18925 /* The verifier does more data flow analysis than llvm and will not
18926  * explore branches that are dead at run time. Malicious programs can
18927  * have dead code too. Therefore replace all dead at-run-time code
18928  * with 'ja -1'.
18929  *
18930  * Just nops are not optimal, e.g. if they would sit at the end of the
18931  * program and through another bug we would manage to jump there, then
18932  * we'd execute beyond program memory otherwise. Returning exception
18933  * code also wouldn't work since we can have subprogs where the dead
18934  * code could be located.
18935  */
18936 static void sanitize_dead_code(struct bpf_verifier_env *env)
18937 {
18938 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18939 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
18940 	struct bpf_insn *insn = env->prog->insnsi;
18941 	const int insn_cnt = env->prog->len;
18942 	int i;
18943 
18944 	for (i = 0; i < insn_cnt; i++) {
18945 		if (aux_data[i].seen)
18946 			continue;
18947 		memcpy(insn + i, &trap, sizeof(trap));
18948 		aux_data[i].zext_dst = false;
18949 	}
18950 }
18951 
18952 static bool insn_is_cond_jump(u8 code)
18953 {
18954 	u8 op;
18955 
18956 	op = BPF_OP(code);
18957 	if (BPF_CLASS(code) == BPF_JMP32)
18958 		return op != BPF_JA;
18959 
18960 	if (BPF_CLASS(code) != BPF_JMP)
18961 		return false;
18962 
18963 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
18964 }
18965 
18966 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
18967 {
18968 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18969 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18970 	struct bpf_insn *insn = env->prog->insnsi;
18971 	const int insn_cnt = env->prog->len;
18972 	int i;
18973 
18974 	for (i = 0; i < insn_cnt; i++, insn++) {
18975 		if (!insn_is_cond_jump(insn->code))
18976 			continue;
18977 
18978 		if (!aux_data[i + 1].seen)
18979 			ja.off = insn->off;
18980 		else if (!aux_data[i + 1 + insn->off].seen)
18981 			ja.off = 0;
18982 		else
18983 			continue;
18984 
18985 		if (bpf_prog_is_offloaded(env->prog->aux))
18986 			bpf_prog_offload_replace_insn(env, i, &ja);
18987 
18988 		memcpy(insn, &ja, sizeof(ja));
18989 	}
18990 }
18991 
18992 static int opt_remove_dead_code(struct bpf_verifier_env *env)
18993 {
18994 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18995 	int insn_cnt = env->prog->len;
18996 	int i, err;
18997 
18998 	for (i = 0; i < insn_cnt; i++) {
18999 		int j;
19000 
19001 		j = 0;
19002 		while (i + j < insn_cnt && !aux_data[i + j].seen)
19003 			j++;
19004 		if (!j)
19005 			continue;
19006 
19007 		err = verifier_remove_insns(env, i, j);
19008 		if (err)
19009 			return err;
19010 		insn_cnt = env->prog->len;
19011 	}
19012 
19013 	return 0;
19014 }
19015 
19016 static int opt_remove_nops(struct bpf_verifier_env *env)
19017 {
19018 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
19019 	struct bpf_insn *insn = env->prog->insnsi;
19020 	int insn_cnt = env->prog->len;
19021 	int i, err;
19022 
19023 	for (i = 0; i < insn_cnt; i++) {
19024 		if (memcmp(&insn[i], &ja, sizeof(ja)))
19025 			continue;
19026 
19027 		err = verifier_remove_insns(env, i, 1);
19028 		if (err)
19029 			return err;
19030 		insn_cnt--;
19031 		i--;
19032 	}
19033 
19034 	return 0;
19035 }
19036 
19037 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
19038 					 const union bpf_attr *attr)
19039 {
19040 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
19041 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
19042 	int i, patch_len, delta = 0, len = env->prog->len;
19043 	struct bpf_insn *insns = env->prog->insnsi;
19044 	struct bpf_prog *new_prog;
19045 	bool rnd_hi32;
19046 
19047 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
19048 	zext_patch[1] = BPF_ZEXT_REG(0);
19049 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
19050 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
19051 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
19052 	for (i = 0; i < len; i++) {
19053 		int adj_idx = i + delta;
19054 		struct bpf_insn insn;
19055 		int load_reg;
19056 
19057 		insn = insns[adj_idx];
19058 		load_reg = insn_def_regno(&insn);
19059 		if (!aux[adj_idx].zext_dst) {
19060 			u8 code, class;
19061 			u32 imm_rnd;
19062 
19063 			if (!rnd_hi32)
19064 				continue;
19065 
19066 			code = insn.code;
19067 			class = BPF_CLASS(code);
19068 			if (load_reg == -1)
19069 				continue;
19070 
19071 			/* NOTE: arg "reg" (the fourth one) is only used for
19072 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
19073 			 *       here.
19074 			 */
19075 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
19076 				if (class == BPF_LD &&
19077 				    BPF_MODE(code) == BPF_IMM)
19078 					i++;
19079 				continue;
19080 			}
19081 
19082 			/* ctx load could be transformed into wider load. */
19083 			if (class == BPF_LDX &&
19084 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
19085 				continue;
19086 
19087 			imm_rnd = get_random_u32();
19088 			rnd_hi32_patch[0] = insn;
19089 			rnd_hi32_patch[1].imm = imm_rnd;
19090 			rnd_hi32_patch[3].dst_reg = load_reg;
19091 			patch = rnd_hi32_patch;
19092 			patch_len = 4;
19093 			goto apply_patch_buffer;
19094 		}
19095 
19096 		/* Add in an zero-extend instruction if a) the JIT has requested
19097 		 * it or b) it's a CMPXCHG.
19098 		 *
19099 		 * The latter is because: BPF_CMPXCHG always loads a value into
19100 		 * R0, therefore always zero-extends. However some archs'
19101 		 * equivalent instruction only does this load when the
19102 		 * comparison is successful. This detail of CMPXCHG is
19103 		 * orthogonal to the general zero-extension behaviour of the
19104 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
19105 		 */
19106 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
19107 			continue;
19108 
19109 		/* Zero-extension is done by the caller. */
19110 		if (bpf_pseudo_kfunc_call(&insn))
19111 			continue;
19112 
19113 		if (WARN_ON(load_reg == -1)) {
19114 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
19115 			return -EFAULT;
19116 		}
19117 
19118 		zext_patch[0] = insn;
19119 		zext_patch[1].dst_reg = load_reg;
19120 		zext_patch[1].src_reg = load_reg;
19121 		patch = zext_patch;
19122 		patch_len = 2;
19123 apply_patch_buffer:
19124 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
19125 		if (!new_prog)
19126 			return -ENOMEM;
19127 		env->prog = new_prog;
19128 		insns = new_prog->insnsi;
19129 		aux = env->insn_aux_data;
19130 		delta += patch_len - 1;
19131 	}
19132 
19133 	return 0;
19134 }
19135 
19136 /* convert load instructions that access fields of a context type into a
19137  * sequence of instructions that access fields of the underlying structure:
19138  *     struct __sk_buff    -> struct sk_buff
19139  *     struct bpf_sock_ops -> struct sock
19140  */
19141 static int convert_ctx_accesses(struct bpf_verifier_env *env)
19142 {
19143 	const struct bpf_verifier_ops *ops = env->ops;
19144 	int i, cnt, size, ctx_field_size, delta = 0;
19145 	const int insn_cnt = env->prog->len;
19146 	struct bpf_insn insn_buf[16], *insn;
19147 	u32 target_size, size_default, off;
19148 	struct bpf_prog *new_prog;
19149 	enum bpf_access_type type;
19150 	bool is_narrower_load;
19151 
19152 	if (ops->gen_prologue || env->seen_direct_write) {
19153 		if (!ops->gen_prologue) {
19154 			verbose(env, "bpf verifier is misconfigured\n");
19155 			return -EINVAL;
19156 		}
19157 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
19158 					env->prog);
19159 		if (cnt >= ARRAY_SIZE(insn_buf)) {
19160 			verbose(env, "bpf verifier is misconfigured\n");
19161 			return -EINVAL;
19162 		} else if (cnt) {
19163 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
19164 			if (!new_prog)
19165 				return -ENOMEM;
19166 
19167 			env->prog = new_prog;
19168 			delta += cnt - 1;
19169 		}
19170 	}
19171 
19172 	if (bpf_prog_is_offloaded(env->prog->aux))
19173 		return 0;
19174 
19175 	insn = env->prog->insnsi + delta;
19176 
19177 	for (i = 0; i < insn_cnt; i++, insn++) {
19178 		bpf_convert_ctx_access_t convert_ctx_access;
19179 		u8 mode;
19180 
19181 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
19182 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
19183 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
19184 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
19185 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
19186 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
19187 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
19188 			type = BPF_READ;
19189 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
19190 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
19191 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
19192 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
19193 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
19194 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
19195 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
19196 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
19197 			type = BPF_WRITE;
19198 		} else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) ||
19199 			    insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) &&
19200 			   env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) {
19201 			insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code);
19202 			env->prog->aux->num_exentries++;
19203 			continue;
19204 		} else {
19205 			continue;
19206 		}
19207 
19208 		if (type == BPF_WRITE &&
19209 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
19210 			struct bpf_insn patch[] = {
19211 				*insn,
19212 				BPF_ST_NOSPEC(),
19213 			};
19214 
19215 			cnt = ARRAY_SIZE(patch);
19216 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
19217 			if (!new_prog)
19218 				return -ENOMEM;
19219 
19220 			delta    += cnt - 1;
19221 			env->prog = new_prog;
19222 			insn      = new_prog->insnsi + i + delta;
19223 			continue;
19224 		}
19225 
19226 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
19227 		case PTR_TO_CTX:
19228 			if (!ops->convert_ctx_access)
19229 				continue;
19230 			convert_ctx_access = ops->convert_ctx_access;
19231 			break;
19232 		case PTR_TO_SOCKET:
19233 		case PTR_TO_SOCK_COMMON:
19234 			convert_ctx_access = bpf_sock_convert_ctx_access;
19235 			break;
19236 		case PTR_TO_TCP_SOCK:
19237 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
19238 			break;
19239 		case PTR_TO_XDP_SOCK:
19240 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
19241 			break;
19242 		case PTR_TO_BTF_ID:
19243 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
19244 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
19245 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
19246 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
19247 		 * any faults for loads into such types. BPF_WRITE is disallowed
19248 		 * for this case.
19249 		 */
19250 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
19251 			if (type == BPF_READ) {
19252 				if (BPF_MODE(insn->code) == BPF_MEM)
19253 					insn->code = BPF_LDX | BPF_PROBE_MEM |
19254 						     BPF_SIZE((insn)->code);
19255 				else
19256 					insn->code = BPF_LDX | BPF_PROBE_MEMSX |
19257 						     BPF_SIZE((insn)->code);
19258 				env->prog->aux->num_exentries++;
19259 			}
19260 			continue;
19261 		case PTR_TO_ARENA:
19262 			if (BPF_MODE(insn->code) == BPF_MEMSX) {
19263 				verbose(env, "sign extending loads from arena are not supported yet\n");
19264 				return -EOPNOTSUPP;
19265 			}
19266 			insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code);
19267 			env->prog->aux->num_exentries++;
19268 			continue;
19269 		default:
19270 			continue;
19271 		}
19272 
19273 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
19274 		size = BPF_LDST_BYTES(insn);
19275 		mode = BPF_MODE(insn->code);
19276 
19277 		/* If the read access is a narrower load of the field,
19278 		 * convert to a 4/8-byte load, to minimum program type specific
19279 		 * convert_ctx_access changes. If conversion is successful,
19280 		 * we will apply proper mask to the result.
19281 		 */
19282 		is_narrower_load = size < ctx_field_size;
19283 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
19284 		off = insn->off;
19285 		if (is_narrower_load) {
19286 			u8 size_code;
19287 
19288 			if (type == BPF_WRITE) {
19289 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
19290 				return -EINVAL;
19291 			}
19292 
19293 			size_code = BPF_H;
19294 			if (ctx_field_size == 4)
19295 				size_code = BPF_W;
19296 			else if (ctx_field_size == 8)
19297 				size_code = BPF_DW;
19298 
19299 			insn->off = off & ~(size_default - 1);
19300 			insn->code = BPF_LDX | BPF_MEM | size_code;
19301 		}
19302 
19303 		target_size = 0;
19304 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
19305 					 &target_size);
19306 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
19307 		    (ctx_field_size && !target_size)) {
19308 			verbose(env, "bpf verifier is misconfigured\n");
19309 			return -EINVAL;
19310 		}
19311 
19312 		if (is_narrower_load && size < target_size) {
19313 			u8 shift = bpf_ctx_narrow_access_offset(
19314 				off, size, size_default) * 8;
19315 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
19316 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
19317 				return -EINVAL;
19318 			}
19319 			if (ctx_field_size <= 4) {
19320 				if (shift)
19321 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
19322 									insn->dst_reg,
19323 									shift);
19324 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
19325 								(1 << size * 8) - 1);
19326 			} else {
19327 				if (shift)
19328 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
19329 									insn->dst_reg,
19330 									shift);
19331 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
19332 								(1ULL << size * 8) - 1);
19333 			}
19334 		}
19335 		if (mode == BPF_MEMSX)
19336 			insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
19337 						       insn->dst_reg, insn->dst_reg,
19338 						       size * 8, 0);
19339 
19340 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19341 		if (!new_prog)
19342 			return -ENOMEM;
19343 
19344 		delta += cnt - 1;
19345 
19346 		/* keep walking new program and skip insns we just inserted */
19347 		env->prog = new_prog;
19348 		insn      = new_prog->insnsi + i + delta;
19349 	}
19350 
19351 	return 0;
19352 }
19353 
19354 static int jit_subprogs(struct bpf_verifier_env *env)
19355 {
19356 	struct bpf_prog *prog = env->prog, **func, *tmp;
19357 	int i, j, subprog_start, subprog_end = 0, len, subprog;
19358 	struct bpf_map *map_ptr;
19359 	struct bpf_insn *insn;
19360 	void *old_bpf_func;
19361 	int err, num_exentries;
19362 
19363 	if (env->subprog_cnt <= 1)
19364 		return 0;
19365 
19366 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
19367 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
19368 			continue;
19369 
19370 		/* Upon error here we cannot fall back to interpreter but
19371 		 * need a hard reject of the program. Thus -EFAULT is
19372 		 * propagated in any case.
19373 		 */
19374 		subprog = find_subprog(env, i + insn->imm + 1);
19375 		if (subprog < 0) {
19376 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
19377 				  i + insn->imm + 1);
19378 			return -EFAULT;
19379 		}
19380 		/* temporarily remember subprog id inside insn instead of
19381 		 * aux_data, since next loop will split up all insns into funcs
19382 		 */
19383 		insn->off = subprog;
19384 		/* remember original imm in case JIT fails and fallback
19385 		 * to interpreter will be needed
19386 		 */
19387 		env->insn_aux_data[i].call_imm = insn->imm;
19388 		/* point imm to __bpf_call_base+1 from JITs point of view */
19389 		insn->imm = 1;
19390 		if (bpf_pseudo_func(insn)) {
19391 #if defined(MODULES_VADDR)
19392 			u64 addr = MODULES_VADDR;
19393 #else
19394 			u64 addr = VMALLOC_START;
19395 #endif
19396 			/* jit (e.g. x86_64) may emit fewer instructions
19397 			 * if it learns a u32 imm is the same as a u64 imm.
19398 			 * Set close enough to possible prog address.
19399 			 */
19400 			insn[0].imm = (u32)addr;
19401 			insn[1].imm = addr >> 32;
19402 		}
19403 	}
19404 
19405 	err = bpf_prog_alloc_jited_linfo(prog);
19406 	if (err)
19407 		goto out_undo_insn;
19408 
19409 	err = -ENOMEM;
19410 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
19411 	if (!func)
19412 		goto out_undo_insn;
19413 
19414 	for (i = 0; i < env->subprog_cnt; i++) {
19415 		subprog_start = subprog_end;
19416 		subprog_end = env->subprog_info[i + 1].start;
19417 
19418 		len = subprog_end - subprog_start;
19419 		/* bpf_prog_run() doesn't call subprogs directly,
19420 		 * hence main prog stats include the runtime of subprogs.
19421 		 * subprogs don't have IDs and not reachable via prog_get_next_id
19422 		 * func[i]->stats will never be accessed and stays NULL
19423 		 */
19424 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
19425 		if (!func[i])
19426 			goto out_free;
19427 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
19428 		       len * sizeof(struct bpf_insn));
19429 		func[i]->type = prog->type;
19430 		func[i]->len = len;
19431 		if (bpf_prog_calc_tag(func[i]))
19432 			goto out_free;
19433 		func[i]->is_func = 1;
19434 		func[i]->sleepable = prog->sleepable;
19435 		func[i]->aux->func_idx = i;
19436 		/* Below members will be freed only at prog->aux */
19437 		func[i]->aux->btf = prog->aux->btf;
19438 		func[i]->aux->func_info = prog->aux->func_info;
19439 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
19440 		func[i]->aux->poke_tab = prog->aux->poke_tab;
19441 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
19442 
19443 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
19444 			struct bpf_jit_poke_descriptor *poke;
19445 
19446 			poke = &prog->aux->poke_tab[j];
19447 			if (poke->insn_idx < subprog_end &&
19448 			    poke->insn_idx >= subprog_start)
19449 				poke->aux = func[i]->aux;
19450 		}
19451 
19452 		func[i]->aux->name[0] = 'F';
19453 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
19454 		func[i]->jit_requested = 1;
19455 		func[i]->blinding_requested = prog->blinding_requested;
19456 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
19457 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
19458 		func[i]->aux->linfo = prog->aux->linfo;
19459 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
19460 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
19461 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
19462 		func[i]->aux->arena = prog->aux->arena;
19463 		num_exentries = 0;
19464 		insn = func[i]->insnsi;
19465 		for (j = 0; j < func[i]->len; j++, insn++) {
19466 			if (BPF_CLASS(insn->code) == BPF_LDX &&
19467 			    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
19468 			     BPF_MODE(insn->code) == BPF_PROBE_MEM32 ||
19469 			     BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
19470 				num_exentries++;
19471 			if ((BPF_CLASS(insn->code) == BPF_STX ||
19472 			     BPF_CLASS(insn->code) == BPF_ST) &&
19473 			     BPF_MODE(insn->code) == BPF_PROBE_MEM32)
19474 				num_exentries++;
19475 			if (BPF_CLASS(insn->code) == BPF_STX &&
19476 			     BPF_MODE(insn->code) == BPF_PROBE_ATOMIC)
19477 				num_exentries++;
19478 		}
19479 		func[i]->aux->num_exentries = num_exentries;
19480 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
19481 		func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb;
19482 		if (!i)
19483 			func[i]->aux->exception_boundary = env->seen_exception;
19484 		func[i] = bpf_int_jit_compile(func[i]);
19485 		if (!func[i]->jited) {
19486 			err = -ENOTSUPP;
19487 			goto out_free;
19488 		}
19489 		cond_resched();
19490 	}
19491 
19492 	/* at this point all bpf functions were successfully JITed
19493 	 * now populate all bpf_calls with correct addresses and
19494 	 * run last pass of JIT
19495 	 */
19496 	for (i = 0; i < env->subprog_cnt; i++) {
19497 		insn = func[i]->insnsi;
19498 		for (j = 0; j < func[i]->len; j++, insn++) {
19499 			if (bpf_pseudo_func(insn)) {
19500 				subprog = insn->off;
19501 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
19502 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
19503 				continue;
19504 			}
19505 			if (!bpf_pseudo_call(insn))
19506 				continue;
19507 			subprog = insn->off;
19508 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
19509 		}
19510 
19511 		/* we use the aux data to keep a list of the start addresses
19512 		 * of the JITed images for each function in the program
19513 		 *
19514 		 * for some architectures, such as powerpc64, the imm field
19515 		 * might not be large enough to hold the offset of the start
19516 		 * address of the callee's JITed image from __bpf_call_base
19517 		 *
19518 		 * in such cases, we can lookup the start address of a callee
19519 		 * by using its subprog id, available from the off field of
19520 		 * the call instruction, as an index for this list
19521 		 */
19522 		func[i]->aux->func = func;
19523 		func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
19524 		func[i]->aux->real_func_cnt = env->subprog_cnt;
19525 	}
19526 	for (i = 0; i < env->subprog_cnt; i++) {
19527 		old_bpf_func = func[i]->bpf_func;
19528 		tmp = bpf_int_jit_compile(func[i]);
19529 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
19530 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
19531 			err = -ENOTSUPP;
19532 			goto out_free;
19533 		}
19534 		cond_resched();
19535 	}
19536 
19537 	/* finally lock prog and jit images for all functions and
19538 	 * populate kallsysm. Begin at the first subprogram, since
19539 	 * bpf_prog_load will add the kallsyms for the main program.
19540 	 */
19541 	for (i = 1; i < env->subprog_cnt; i++) {
19542 		err = bpf_prog_lock_ro(func[i]);
19543 		if (err)
19544 			goto out_free;
19545 	}
19546 
19547 	for (i = 1; i < env->subprog_cnt; i++)
19548 		bpf_prog_kallsyms_add(func[i]);
19549 
19550 	/* Last step: make now unused interpreter insns from main
19551 	 * prog consistent for later dump requests, so they can
19552 	 * later look the same as if they were interpreted only.
19553 	 */
19554 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
19555 		if (bpf_pseudo_func(insn)) {
19556 			insn[0].imm = env->insn_aux_data[i].call_imm;
19557 			insn[1].imm = insn->off;
19558 			insn->off = 0;
19559 			continue;
19560 		}
19561 		if (!bpf_pseudo_call(insn))
19562 			continue;
19563 		insn->off = env->insn_aux_data[i].call_imm;
19564 		subprog = find_subprog(env, i + insn->off + 1);
19565 		insn->imm = subprog;
19566 	}
19567 
19568 	prog->jited = 1;
19569 	prog->bpf_func = func[0]->bpf_func;
19570 	prog->jited_len = func[0]->jited_len;
19571 	prog->aux->extable = func[0]->aux->extable;
19572 	prog->aux->num_exentries = func[0]->aux->num_exentries;
19573 	prog->aux->func = func;
19574 	prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
19575 	prog->aux->real_func_cnt = env->subprog_cnt;
19576 	prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func;
19577 	prog->aux->exception_boundary = func[0]->aux->exception_boundary;
19578 	bpf_prog_jit_attempt_done(prog);
19579 	return 0;
19580 out_free:
19581 	/* We failed JIT'ing, so at this point we need to unregister poke
19582 	 * descriptors from subprogs, so that kernel is not attempting to
19583 	 * patch it anymore as we're freeing the subprog JIT memory.
19584 	 */
19585 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
19586 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
19587 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
19588 	}
19589 	/* At this point we're guaranteed that poke descriptors are not
19590 	 * live anymore. We can just unlink its descriptor table as it's
19591 	 * released with the main prog.
19592 	 */
19593 	for (i = 0; i < env->subprog_cnt; i++) {
19594 		if (!func[i])
19595 			continue;
19596 		func[i]->aux->poke_tab = NULL;
19597 		bpf_jit_free(func[i]);
19598 	}
19599 	kfree(func);
19600 out_undo_insn:
19601 	/* cleanup main prog to be interpreted */
19602 	prog->jit_requested = 0;
19603 	prog->blinding_requested = 0;
19604 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
19605 		if (!bpf_pseudo_call(insn))
19606 			continue;
19607 		insn->off = 0;
19608 		insn->imm = env->insn_aux_data[i].call_imm;
19609 	}
19610 	bpf_prog_jit_attempt_done(prog);
19611 	return err;
19612 }
19613 
19614 static int fixup_call_args(struct bpf_verifier_env *env)
19615 {
19616 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
19617 	struct bpf_prog *prog = env->prog;
19618 	struct bpf_insn *insn = prog->insnsi;
19619 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
19620 	int i, depth;
19621 #endif
19622 	int err = 0;
19623 
19624 	if (env->prog->jit_requested &&
19625 	    !bpf_prog_is_offloaded(env->prog->aux)) {
19626 		err = jit_subprogs(env);
19627 		if (err == 0)
19628 			return 0;
19629 		if (err == -EFAULT)
19630 			return err;
19631 	}
19632 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
19633 	if (has_kfunc_call) {
19634 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
19635 		return -EINVAL;
19636 	}
19637 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
19638 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
19639 		 * have to be rejected, since interpreter doesn't support them yet.
19640 		 */
19641 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
19642 		return -EINVAL;
19643 	}
19644 	for (i = 0; i < prog->len; i++, insn++) {
19645 		if (bpf_pseudo_func(insn)) {
19646 			/* When JIT fails the progs with callback calls
19647 			 * have to be rejected, since interpreter doesn't support them yet.
19648 			 */
19649 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
19650 			return -EINVAL;
19651 		}
19652 
19653 		if (!bpf_pseudo_call(insn))
19654 			continue;
19655 		depth = get_callee_stack_depth(env, insn, i);
19656 		if (depth < 0)
19657 			return depth;
19658 		bpf_patch_call_args(insn, depth);
19659 	}
19660 	err = 0;
19661 #endif
19662 	return err;
19663 }
19664 
19665 /* replace a generic kfunc with a specialized version if necessary */
19666 static void specialize_kfunc(struct bpf_verifier_env *env,
19667 			     u32 func_id, u16 offset, unsigned long *addr)
19668 {
19669 	struct bpf_prog *prog = env->prog;
19670 	bool seen_direct_write;
19671 	void *xdp_kfunc;
19672 	bool is_rdonly;
19673 
19674 	if (bpf_dev_bound_kfunc_id(func_id)) {
19675 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
19676 		if (xdp_kfunc) {
19677 			*addr = (unsigned long)xdp_kfunc;
19678 			return;
19679 		}
19680 		/* fallback to default kfunc when not supported by netdev */
19681 	}
19682 
19683 	if (offset)
19684 		return;
19685 
19686 	if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
19687 		seen_direct_write = env->seen_direct_write;
19688 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
19689 
19690 		if (is_rdonly)
19691 			*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
19692 
19693 		/* restore env->seen_direct_write to its original value, since
19694 		 * may_access_direct_pkt_data mutates it
19695 		 */
19696 		env->seen_direct_write = seen_direct_write;
19697 	}
19698 }
19699 
19700 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
19701 					    u16 struct_meta_reg,
19702 					    u16 node_offset_reg,
19703 					    struct bpf_insn *insn,
19704 					    struct bpf_insn *insn_buf,
19705 					    int *cnt)
19706 {
19707 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
19708 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
19709 
19710 	insn_buf[0] = addr[0];
19711 	insn_buf[1] = addr[1];
19712 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
19713 	insn_buf[3] = *insn;
19714 	*cnt = 4;
19715 }
19716 
19717 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
19718 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
19719 {
19720 	const struct bpf_kfunc_desc *desc;
19721 
19722 	if (!insn->imm) {
19723 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
19724 		return -EINVAL;
19725 	}
19726 
19727 	*cnt = 0;
19728 
19729 	/* insn->imm has the btf func_id. Replace it with an offset relative to
19730 	 * __bpf_call_base, unless the JIT needs to call functions that are
19731 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
19732 	 */
19733 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
19734 	if (!desc) {
19735 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
19736 			insn->imm);
19737 		return -EFAULT;
19738 	}
19739 
19740 	if (!bpf_jit_supports_far_kfunc_call())
19741 		insn->imm = BPF_CALL_IMM(desc->addr);
19742 	if (insn->off)
19743 		return 0;
19744 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
19745 	    desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
19746 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19747 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
19748 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
19749 
19750 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) {
19751 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
19752 				insn_idx);
19753 			return -EFAULT;
19754 		}
19755 
19756 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
19757 		insn_buf[1] = addr[0];
19758 		insn_buf[2] = addr[1];
19759 		insn_buf[3] = *insn;
19760 		*cnt = 4;
19761 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
19762 		   desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] ||
19763 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
19764 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19765 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
19766 
19767 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) {
19768 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
19769 				insn_idx);
19770 			return -EFAULT;
19771 		}
19772 
19773 		if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
19774 		    !kptr_struct_meta) {
19775 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
19776 				insn_idx);
19777 			return -EFAULT;
19778 		}
19779 
19780 		insn_buf[0] = addr[0];
19781 		insn_buf[1] = addr[1];
19782 		insn_buf[2] = *insn;
19783 		*cnt = 3;
19784 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
19785 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
19786 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
19787 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19788 		int struct_meta_reg = BPF_REG_3;
19789 		int node_offset_reg = BPF_REG_4;
19790 
19791 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
19792 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
19793 			struct_meta_reg = BPF_REG_4;
19794 			node_offset_reg = BPF_REG_5;
19795 		}
19796 
19797 		if (!kptr_struct_meta) {
19798 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
19799 				insn_idx);
19800 			return -EFAULT;
19801 		}
19802 
19803 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
19804 						node_offset_reg, insn, insn_buf, cnt);
19805 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
19806 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
19807 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
19808 		*cnt = 1;
19809 	} else if (is_bpf_wq_set_callback_impl_kfunc(desc->func_id)) {
19810 		struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(BPF_REG_4, (long)env->prog->aux) };
19811 
19812 		insn_buf[0] = ld_addrs[0];
19813 		insn_buf[1] = ld_addrs[1];
19814 		insn_buf[2] = *insn;
19815 		*cnt = 3;
19816 	}
19817 	return 0;
19818 }
19819 
19820 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */
19821 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len)
19822 {
19823 	struct bpf_subprog_info *info = env->subprog_info;
19824 	int cnt = env->subprog_cnt;
19825 	struct bpf_prog *prog;
19826 
19827 	/* We only reserve one slot for hidden subprogs in subprog_info. */
19828 	if (env->hidden_subprog_cnt) {
19829 		verbose(env, "verifier internal error: only one hidden subprog supported\n");
19830 		return -EFAULT;
19831 	}
19832 	/* We're not patching any existing instruction, just appending the new
19833 	 * ones for the hidden subprog. Hence all of the adjustment operations
19834 	 * in bpf_patch_insn_data are no-ops.
19835 	 */
19836 	prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len);
19837 	if (!prog)
19838 		return -ENOMEM;
19839 	env->prog = prog;
19840 	info[cnt + 1].start = info[cnt].start;
19841 	info[cnt].start = prog->len - len + 1;
19842 	env->subprog_cnt++;
19843 	env->hidden_subprog_cnt++;
19844 	return 0;
19845 }
19846 
19847 /* Do various post-verification rewrites in a single program pass.
19848  * These rewrites simplify JIT and interpreter implementations.
19849  */
19850 static int do_misc_fixups(struct bpf_verifier_env *env)
19851 {
19852 	struct bpf_prog *prog = env->prog;
19853 	enum bpf_attach_type eatype = prog->expected_attach_type;
19854 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
19855 	struct bpf_insn *insn = prog->insnsi;
19856 	const struct bpf_func_proto *fn;
19857 	const int insn_cnt = prog->len;
19858 	const struct bpf_map_ops *ops;
19859 	struct bpf_insn_aux_data *aux;
19860 	struct bpf_insn insn_buf[16];
19861 	struct bpf_prog *new_prog;
19862 	struct bpf_map *map_ptr;
19863 	int i, ret, cnt, delta = 0, cur_subprog = 0;
19864 	struct bpf_subprog_info *subprogs = env->subprog_info;
19865 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
19866 	u16 stack_depth_extra = 0;
19867 
19868 	if (env->seen_exception && !env->exception_callback_subprog) {
19869 		struct bpf_insn patch[] = {
19870 			env->prog->insnsi[insn_cnt - 1],
19871 			BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
19872 			BPF_EXIT_INSN(),
19873 		};
19874 
19875 		ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch));
19876 		if (ret < 0)
19877 			return ret;
19878 		prog = env->prog;
19879 		insn = prog->insnsi;
19880 
19881 		env->exception_callback_subprog = env->subprog_cnt - 1;
19882 		/* Don't update insn_cnt, as add_hidden_subprog always appends insns */
19883 		mark_subprog_exc_cb(env, env->exception_callback_subprog);
19884 	}
19885 
19886 	for (i = 0; i < insn_cnt;) {
19887 		if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) {
19888 			if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) ||
19889 			    (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) {
19890 				/* convert to 32-bit mov that clears upper 32-bit */
19891 				insn->code = BPF_ALU | BPF_MOV | BPF_X;
19892 				/* clear off and imm, so it's a normal 'wX = wY' from JIT pov */
19893 				insn->off = 0;
19894 				insn->imm = 0;
19895 			} /* cast from as(0) to as(1) should be handled by JIT */
19896 			goto next_insn;
19897 		}
19898 
19899 		if (env->insn_aux_data[i + delta].needs_zext)
19900 			/* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */
19901 			insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code);
19902 
19903 		/* Make divide-by-zero exceptions impossible. */
19904 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
19905 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
19906 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
19907 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
19908 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
19909 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
19910 			struct bpf_insn *patchlet;
19911 			struct bpf_insn chk_and_div[] = {
19912 				/* [R,W]x div 0 -> 0 */
19913 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
19914 					     BPF_JNE | BPF_K, insn->src_reg,
19915 					     0, 2, 0),
19916 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
19917 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
19918 				*insn,
19919 			};
19920 			struct bpf_insn chk_and_mod[] = {
19921 				/* [R,W]x mod 0 -> [R,W]x */
19922 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
19923 					     BPF_JEQ | BPF_K, insn->src_reg,
19924 					     0, 1 + (is64 ? 0 : 1), 0),
19925 				*insn,
19926 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
19927 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
19928 			};
19929 
19930 			patchlet = isdiv ? chk_and_div : chk_and_mod;
19931 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
19932 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
19933 
19934 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
19935 			if (!new_prog)
19936 				return -ENOMEM;
19937 
19938 			delta    += cnt - 1;
19939 			env->prog = prog = new_prog;
19940 			insn      = new_prog->insnsi + i + delta;
19941 			goto next_insn;
19942 		}
19943 
19944 		/* Make it impossible to de-reference a userspace address */
19945 		if (BPF_CLASS(insn->code) == BPF_LDX &&
19946 		    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
19947 		     BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) {
19948 			struct bpf_insn *patch = &insn_buf[0];
19949 			u64 uaddress_limit = bpf_arch_uaddress_limit();
19950 
19951 			if (!uaddress_limit)
19952 				goto next_insn;
19953 
19954 			*patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg);
19955 			if (insn->off)
19956 				*patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off);
19957 			*patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32);
19958 			*patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2);
19959 			*patch++ = *insn;
19960 			*patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
19961 			*patch++ = BPF_MOV64_IMM(insn->dst_reg, 0);
19962 
19963 			cnt = patch - insn_buf;
19964 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19965 			if (!new_prog)
19966 				return -ENOMEM;
19967 
19968 			delta    += cnt - 1;
19969 			env->prog = prog = new_prog;
19970 			insn      = new_prog->insnsi + i + delta;
19971 			goto next_insn;
19972 		}
19973 
19974 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
19975 		if (BPF_CLASS(insn->code) == BPF_LD &&
19976 		    (BPF_MODE(insn->code) == BPF_ABS ||
19977 		     BPF_MODE(insn->code) == BPF_IND)) {
19978 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
19979 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19980 				verbose(env, "bpf verifier is misconfigured\n");
19981 				return -EINVAL;
19982 			}
19983 
19984 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19985 			if (!new_prog)
19986 				return -ENOMEM;
19987 
19988 			delta    += cnt - 1;
19989 			env->prog = prog = new_prog;
19990 			insn      = new_prog->insnsi + i + delta;
19991 			goto next_insn;
19992 		}
19993 
19994 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
19995 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
19996 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
19997 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
19998 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
19999 			struct bpf_insn *patch = &insn_buf[0];
20000 			bool issrc, isneg, isimm;
20001 			u32 off_reg;
20002 
20003 			aux = &env->insn_aux_data[i + delta];
20004 			if (!aux->alu_state ||
20005 			    aux->alu_state == BPF_ALU_NON_POINTER)
20006 				goto next_insn;
20007 
20008 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
20009 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
20010 				BPF_ALU_SANITIZE_SRC;
20011 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
20012 
20013 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
20014 			if (isimm) {
20015 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
20016 			} else {
20017 				if (isneg)
20018 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
20019 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
20020 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
20021 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
20022 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
20023 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
20024 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
20025 			}
20026 			if (!issrc)
20027 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
20028 			insn->src_reg = BPF_REG_AX;
20029 			if (isneg)
20030 				insn->code = insn->code == code_add ?
20031 					     code_sub : code_add;
20032 			*patch++ = *insn;
20033 			if (issrc && isneg && !isimm)
20034 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
20035 			cnt = patch - insn_buf;
20036 
20037 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20038 			if (!new_prog)
20039 				return -ENOMEM;
20040 
20041 			delta    += cnt - 1;
20042 			env->prog = prog = new_prog;
20043 			insn      = new_prog->insnsi + i + delta;
20044 			goto next_insn;
20045 		}
20046 
20047 		if (is_may_goto_insn(insn)) {
20048 			int stack_off = -stack_depth - 8;
20049 
20050 			stack_depth_extra = 8;
20051 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off);
20052 			if (insn->off >= 0)
20053 				insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2);
20054 			else
20055 				insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1);
20056 			insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1);
20057 			insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off);
20058 			cnt = 4;
20059 
20060 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20061 			if (!new_prog)
20062 				return -ENOMEM;
20063 
20064 			delta += cnt - 1;
20065 			env->prog = prog = new_prog;
20066 			insn = new_prog->insnsi + i + delta;
20067 			goto next_insn;
20068 		}
20069 
20070 		if (insn->code != (BPF_JMP | BPF_CALL))
20071 			goto next_insn;
20072 		if (insn->src_reg == BPF_PSEUDO_CALL)
20073 			goto next_insn;
20074 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
20075 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
20076 			if (ret)
20077 				return ret;
20078 			if (cnt == 0)
20079 				goto next_insn;
20080 
20081 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20082 			if (!new_prog)
20083 				return -ENOMEM;
20084 
20085 			delta	 += cnt - 1;
20086 			env->prog = prog = new_prog;
20087 			insn	  = new_prog->insnsi + i + delta;
20088 			goto next_insn;
20089 		}
20090 
20091 		/* Skip inlining the helper call if the JIT does it. */
20092 		if (bpf_jit_inlines_helper_call(insn->imm))
20093 			goto next_insn;
20094 
20095 		if (insn->imm == BPF_FUNC_get_route_realm)
20096 			prog->dst_needed = 1;
20097 		if (insn->imm == BPF_FUNC_get_prandom_u32)
20098 			bpf_user_rnd_init_once();
20099 		if (insn->imm == BPF_FUNC_override_return)
20100 			prog->kprobe_override = 1;
20101 		if (insn->imm == BPF_FUNC_tail_call) {
20102 			/* If we tail call into other programs, we
20103 			 * cannot make any assumptions since they can
20104 			 * be replaced dynamically during runtime in
20105 			 * the program array.
20106 			 */
20107 			prog->cb_access = 1;
20108 			if (!allow_tail_call_in_subprogs(env))
20109 				prog->aux->stack_depth = MAX_BPF_STACK;
20110 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
20111 
20112 			/* mark bpf_tail_call as different opcode to avoid
20113 			 * conditional branch in the interpreter for every normal
20114 			 * call and to prevent accidental JITing by JIT compiler
20115 			 * that doesn't support bpf_tail_call yet
20116 			 */
20117 			insn->imm = 0;
20118 			insn->code = BPF_JMP | BPF_TAIL_CALL;
20119 
20120 			aux = &env->insn_aux_data[i + delta];
20121 			if (env->bpf_capable && !prog->blinding_requested &&
20122 			    prog->jit_requested &&
20123 			    !bpf_map_key_poisoned(aux) &&
20124 			    !bpf_map_ptr_poisoned(aux) &&
20125 			    !bpf_map_ptr_unpriv(aux)) {
20126 				struct bpf_jit_poke_descriptor desc = {
20127 					.reason = BPF_POKE_REASON_TAIL_CALL,
20128 					.tail_call.map = aux->map_ptr_state.map_ptr,
20129 					.tail_call.key = bpf_map_key_immediate(aux),
20130 					.insn_idx = i + delta,
20131 				};
20132 
20133 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
20134 				if (ret < 0) {
20135 					verbose(env, "adding tail call poke descriptor failed\n");
20136 					return ret;
20137 				}
20138 
20139 				insn->imm = ret + 1;
20140 				goto next_insn;
20141 			}
20142 
20143 			if (!bpf_map_ptr_unpriv(aux))
20144 				goto next_insn;
20145 
20146 			/* instead of changing every JIT dealing with tail_call
20147 			 * emit two extra insns:
20148 			 * if (index >= max_entries) goto out;
20149 			 * index &= array->index_mask;
20150 			 * to avoid out-of-bounds cpu speculation
20151 			 */
20152 			if (bpf_map_ptr_poisoned(aux)) {
20153 				verbose(env, "tail_call abusing map_ptr\n");
20154 				return -EINVAL;
20155 			}
20156 
20157 			map_ptr = aux->map_ptr_state.map_ptr;
20158 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
20159 						  map_ptr->max_entries, 2);
20160 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
20161 						    container_of(map_ptr,
20162 								 struct bpf_array,
20163 								 map)->index_mask);
20164 			insn_buf[2] = *insn;
20165 			cnt = 3;
20166 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20167 			if (!new_prog)
20168 				return -ENOMEM;
20169 
20170 			delta    += cnt - 1;
20171 			env->prog = prog = new_prog;
20172 			insn      = new_prog->insnsi + i + delta;
20173 			goto next_insn;
20174 		}
20175 
20176 		if (insn->imm == BPF_FUNC_timer_set_callback) {
20177 			/* The verifier will process callback_fn as many times as necessary
20178 			 * with different maps and the register states prepared by
20179 			 * set_timer_callback_state will be accurate.
20180 			 *
20181 			 * The following use case is valid:
20182 			 *   map1 is shared by prog1, prog2, prog3.
20183 			 *   prog1 calls bpf_timer_init for some map1 elements
20184 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
20185 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
20186 			 *   prog3 calls bpf_timer_start for some map1 elements.
20187 			 *     Those that were not both bpf_timer_init-ed and
20188 			 *     bpf_timer_set_callback-ed will return -EINVAL.
20189 			 */
20190 			struct bpf_insn ld_addrs[2] = {
20191 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
20192 			};
20193 
20194 			insn_buf[0] = ld_addrs[0];
20195 			insn_buf[1] = ld_addrs[1];
20196 			insn_buf[2] = *insn;
20197 			cnt = 3;
20198 
20199 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20200 			if (!new_prog)
20201 				return -ENOMEM;
20202 
20203 			delta    += cnt - 1;
20204 			env->prog = prog = new_prog;
20205 			insn      = new_prog->insnsi + i + delta;
20206 			goto patch_call_imm;
20207 		}
20208 
20209 		if (is_storage_get_function(insn->imm)) {
20210 			if (!in_sleepable(env) ||
20211 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
20212 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
20213 			else
20214 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
20215 			insn_buf[1] = *insn;
20216 			cnt = 2;
20217 
20218 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20219 			if (!new_prog)
20220 				return -ENOMEM;
20221 
20222 			delta += cnt - 1;
20223 			env->prog = prog = new_prog;
20224 			insn = new_prog->insnsi + i + delta;
20225 			goto patch_call_imm;
20226 		}
20227 
20228 		/* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */
20229 		if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) {
20230 			/* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data,
20231 			 * bpf_mem_alloc() returns a ptr to the percpu data ptr.
20232 			 */
20233 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0);
20234 			insn_buf[1] = *insn;
20235 			cnt = 2;
20236 
20237 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20238 			if (!new_prog)
20239 				return -ENOMEM;
20240 
20241 			delta += cnt - 1;
20242 			env->prog = prog = new_prog;
20243 			insn = new_prog->insnsi + i + delta;
20244 			goto patch_call_imm;
20245 		}
20246 
20247 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
20248 		 * and other inlining handlers are currently limited to 64 bit
20249 		 * only.
20250 		 */
20251 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
20252 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
20253 		     insn->imm == BPF_FUNC_map_update_elem ||
20254 		     insn->imm == BPF_FUNC_map_delete_elem ||
20255 		     insn->imm == BPF_FUNC_map_push_elem   ||
20256 		     insn->imm == BPF_FUNC_map_pop_elem    ||
20257 		     insn->imm == BPF_FUNC_map_peek_elem   ||
20258 		     insn->imm == BPF_FUNC_redirect_map    ||
20259 		     insn->imm == BPF_FUNC_for_each_map_elem ||
20260 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
20261 			aux = &env->insn_aux_data[i + delta];
20262 			if (bpf_map_ptr_poisoned(aux))
20263 				goto patch_call_imm;
20264 
20265 			map_ptr = aux->map_ptr_state.map_ptr;
20266 			ops = map_ptr->ops;
20267 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
20268 			    ops->map_gen_lookup) {
20269 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
20270 				if (cnt == -EOPNOTSUPP)
20271 					goto patch_map_ops_generic;
20272 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
20273 					verbose(env, "bpf verifier is misconfigured\n");
20274 					return -EINVAL;
20275 				}
20276 
20277 				new_prog = bpf_patch_insn_data(env, i + delta,
20278 							       insn_buf, cnt);
20279 				if (!new_prog)
20280 					return -ENOMEM;
20281 
20282 				delta    += cnt - 1;
20283 				env->prog = prog = new_prog;
20284 				insn      = new_prog->insnsi + i + delta;
20285 				goto next_insn;
20286 			}
20287 
20288 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
20289 				     (void *(*)(struct bpf_map *map, void *key))NULL));
20290 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
20291 				     (long (*)(struct bpf_map *map, void *key))NULL));
20292 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
20293 				     (long (*)(struct bpf_map *map, void *key, void *value,
20294 					      u64 flags))NULL));
20295 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
20296 				     (long (*)(struct bpf_map *map, void *value,
20297 					      u64 flags))NULL));
20298 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
20299 				     (long (*)(struct bpf_map *map, void *value))NULL));
20300 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
20301 				     (long (*)(struct bpf_map *map, void *value))NULL));
20302 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
20303 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
20304 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
20305 				     (long (*)(struct bpf_map *map,
20306 					      bpf_callback_t callback_fn,
20307 					      void *callback_ctx,
20308 					      u64 flags))NULL));
20309 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
20310 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
20311 
20312 patch_map_ops_generic:
20313 			switch (insn->imm) {
20314 			case BPF_FUNC_map_lookup_elem:
20315 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
20316 				goto next_insn;
20317 			case BPF_FUNC_map_update_elem:
20318 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
20319 				goto next_insn;
20320 			case BPF_FUNC_map_delete_elem:
20321 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
20322 				goto next_insn;
20323 			case BPF_FUNC_map_push_elem:
20324 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
20325 				goto next_insn;
20326 			case BPF_FUNC_map_pop_elem:
20327 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
20328 				goto next_insn;
20329 			case BPF_FUNC_map_peek_elem:
20330 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
20331 				goto next_insn;
20332 			case BPF_FUNC_redirect_map:
20333 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
20334 				goto next_insn;
20335 			case BPF_FUNC_for_each_map_elem:
20336 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
20337 				goto next_insn;
20338 			case BPF_FUNC_map_lookup_percpu_elem:
20339 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
20340 				goto next_insn;
20341 			}
20342 
20343 			goto patch_call_imm;
20344 		}
20345 
20346 		/* Implement bpf_jiffies64 inline. */
20347 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
20348 		    insn->imm == BPF_FUNC_jiffies64) {
20349 			struct bpf_insn ld_jiffies_addr[2] = {
20350 				BPF_LD_IMM64(BPF_REG_0,
20351 					     (unsigned long)&jiffies),
20352 			};
20353 
20354 			insn_buf[0] = ld_jiffies_addr[0];
20355 			insn_buf[1] = ld_jiffies_addr[1];
20356 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
20357 						  BPF_REG_0, 0);
20358 			cnt = 3;
20359 
20360 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
20361 						       cnt);
20362 			if (!new_prog)
20363 				return -ENOMEM;
20364 
20365 			delta    += cnt - 1;
20366 			env->prog = prog = new_prog;
20367 			insn      = new_prog->insnsi + i + delta;
20368 			goto next_insn;
20369 		}
20370 
20371 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML)
20372 		/* Implement bpf_get_smp_processor_id() inline. */
20373 		if (insn->imm == BPF_FUNC_get_smp_processor_id &&
20374 		    prog->jit_requested && bpf_jit_supports_percpu_insn()) {
20375 			/* BPF_FUNC_get_smp_processor_id inlining is an
20376 			 * optimization, so if pcpu_hot.cpu_number is ever
20377 			 * changed in some incompatible and hard to support
20378 			 * way, it's fine to back out this inlining logic
20379 			 */
20380 			insn_buf[0] = BPF_MOV32_IMM(BPF_REG_0, (u32)(unsigned long)&pcpu_hot.cpu_number);
20381 			insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0);
20382 			insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0);
20383 			cnt = 3;
20384 
20385 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20386 			if (!new_prog)
20387 				return -ENOMEM;
20388 
20389 			delta    += cnt - 1;
20390 			env->prog = prog = new_prog;
20391 			insn      = new_prog->insnsi + i + delta;
20392 			goto next_insn;
20393 		}
20394 #endif
20395 		/* Implement bpf_get_func_arg inline. */
20396 		if (prog_type == BPF_PROG_TYPE_TRACING &&
20397 		    insn->imm == BPF_FUNC_get_func_arg) {
20398 			/* Load nr_args from ctx - 8 */
20399 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
20400 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
20401 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
20402 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
20403 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
20404 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
20405 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
20406 			insn_buf[7] = BPF_JMP_A(1);
20407 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
20408 			cnt = 9;
20409 
20410 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20411 			if (!new_prog)
20412 				return -ENOMEM;
20413 
20414 			delta    += cnt - 1;
20415 			env->prog = prog = new_prog;
20416 			insn      = new_prog->insnsi + i + delta;
20417 			goto next_insn;
20418 		}
20419 
20420 		/* Implement bpf_get_func_ret inline. */
20421 		if (prog_type == BPF_PROG_TYPE_TRACING &&
20422 		    insn->imm == BPF_FUNC_get_func_ret) {
20423 			if (eatype == BPF_TRACE_FEXIT ||
20424 			    eatype == BPF_MODIFY_RETURN) {
20425 				/* Load nr_args from ctx - 8 */
20426 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
20427 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
20428 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
20429 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
20430 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
20431 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
20432 				cnt = 6;
20433 			} else {
20434 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
20435 				cnt = 1;
20436 			}
20437 
20438 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20439 			if (!new_prog)
20440 				return -ENOMEM;
20441 
20442 			delta    += cnt - 1;
20443 			env->prog = prog = new_prog;
20444 			insn      = new_prog->insnsi + i + delta;
20445 			goto next_insn;
20446 		}
20447 
20448 		/* Implement get_func_arg_cnt inline. */
20449 		if (prog_type == BPF_PROG_TYPE_TRACING &&
20450 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
20451 			/* Load nr_args from ctx - 8 */
20452 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
20453 
20454 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
20455 			if (!new_prog)
20456 				return -ENOMEM;
20457 
20458 			env->prog = prog = new_prog;
20459 			insn      = new_prog->insnsi + i + delta;
20460 			goto next_insn;
20461 		}
20462 
20463 		/* Implement bpf_get_func_ip inline. */
20464 		if (prog_type == BPF_PROG_TYPE_TRACING &&
20465 		    insn->imm == BPF_FUNC_get_func_ip) {
20466 			/* Load IP address from ctx - 16 */
20467 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
20468 
20469 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
20470 			if (!new_prog)
20471 				return -ENOMEM;
20472 
20473 			env->prog = prog = new_prog;
20474 			insn      = new_prog->insnsi + i + delta;
20475 			goto next_insn;
20476 		}
20477 
20478 		/* Implement bpf_get_branch_snapshot inline. */
20479 		if (IS_ENABLED(CONFIG_PERF_EVENTS) &&
20480 		    prog->jit_requested && BITS_PER_LONG == 64 &&
20481 		    insn->imm == BPF_FUNC_get_branch_snapshot) {
20482 			/* We are dealing with the following func protos:
20483 			 * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags);
20484 			 * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt);
20485 			 */
20486 			const u32 br_entry_size = sizeof(struct perf_branch_entry);
20487 
20488 			/* struct perf_branch_entry is part of UAPI and is
20489 			 * used as an array element, so extremely unlikely to
20490 			 * ever grow or shrink
20491 			 */
20492 			BUILD_BUG_ON(br_entry_size != 24);
20493 
20494 			/* if (unlikely(flags)) return -EINVAL */
20495 			insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7);
20496 
20497 			/* Transform size (bytes) into number of entries (cnt = size / 24).
20498 			 * But to avoid expensive division instruction, we implement
20499 			 * divide-by-3 through multiplication, followed by further
20500 			 * division by 8 through 3-bit right shift.
20501 			 * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr.,
20502 			 * p. 227, chapter "Unsigned Division by 3" for details and proofs.
20503 			 *
20504 			 * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab.
20505 			 */
20506 			insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab);
20507 			insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0);
20508 			insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36);
20509 
20510 			/* call perf_snapshot_branch_stack implementation */
20511 			insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack));
20512 			/* if (entry_cnt == 0) return -ENOENT */
20513 			insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4);
20514 			/* return entry_cnt * sizeof(struct perf_branch_entry) */
20515 			insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size);
20516 			insn_buf[7] = BPF_JMP_A(3);
20517 			/* return -EINVAL; */
20518 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
20519 			insn_buf[9] = BPF_JMP_A(1);
20520 			/* return -ENOENT; */
20521 			insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT);
20522 			cnt = 11;
20523 
20524 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20525 			if (!new_prog)
20526 				return -ENOMEM;
20527 
20528 			delta    += cnt - 1;
20529 			env->prog = prog = new_prog;
20530 			insn      = new_prog->insnsi + i + delta;
20531 			continue;
20532 		}
20533 
20534 		/* Implement bpf_kptr_xchg inline */
20535 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
20536 		    insn->imm == BPF_FUNC_kptr_xchg &&
20537 		    bpf_jit_supports_ptr_xchg()) {
20538 			insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2);
20539 			insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0);
20540 			cnt = 2;
20541 
20542 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20543 			if (!new_prog)
20544 				return -ENOMEM;
20545 
20546 			delta    += cnt - 1;
20547 			env->prog = prog = new_prog;
20548 			insn      = new_prog->insnsi + i + delta;
20549 			goto next_insn;
20550 		}
20551 patch_call_imm:
20552 		fn = env->ops->get_func_proto(insn->imm, env->prog);
20553 		/* all functions that have prototype and verifier allowed
20554 		 * programs to call them, must be real in-kernel functions
20555 		 */
20556 		if (!fn->func) {
20557 			verbose(env,
20558 				"kernel subsystem misconfigured func %s#%d\n",
20559 				func_id_name(insn->imm), insn->imm);
20560 			return -EFAULT;
20561 		}
20562 		insn->imm = fn->func - __bpf_call_base;
20563 next_insn:
20564 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
20565 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
20566 			subprogs[cur_subprog].stack_extra = stack_depth_extra;
20567 			cur_subprog++;
20568 			stack_depth = subprogs[cur_subprog].stack_depth;
20569 			stack_depth_extra = 0;
20570 		}
20571 		i++;
20572 		insn++;
20573 	}
20574 
20575 	env->prog->aux->stack_depth = subprogs[0].stack_depth;
20576 	for (i = 0; i < env->subprog_cnt; i++) {
20577 		int subprog_start = subprogs[i].start;
20578 		int stack_slots = subprogs[i].stack_extra / 8;
20579 
20580 		if (!stack_slots)
20581 			continue;
20582 		if (stack_slots > 1) {
20583 			verbose(env, "verifier bug: stack_slots supports may_goto only\n");
20584 			return -EFAULT;
20585 		}
20586 
20587 		/* Add ST insn to subprog prologue to init extra stack */
20588 		insn_buf[0] = BPF_ST_MEM(BPF_DW, BPF_REG_FP,
20589 					 -subprogs[i].stack_depth, BPF_MAX_LOOPS);
20590 		/* Copy first actual insn to preserve it */
20591 		insn_buf[1] = env->prog->insnsi[subprog_start];
20592 
20593 		new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, 2);
20594 		if (!new_prog)
20595 			return -ENOMEM;
20596 		env->prog = prog = new_prog;
20597 		/*
20598 		 * If may_goto is a first insn of a prog there could be a jmp
20599 		 * insn that points to it, hence adjust all such jmps to point
20600 		 * to insn after BPF_ST that inits may_goto count.
20601 		 * Adjustment will succeed because bpf_patch_insn_data() didn't fail.
20602 		 */
20603 		WARN_ON(adjust_jmp_off(env->prog, subprog_start, 1));
20604 	}
20605 
20606 	/* Since poke tab is now finalized, publish aux to tracker. */
20607 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
20608 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
20609 		if (!map_ptr->ops->map_poke_track ||
20610 		    !map_ptr->ops->map_poke_untrack ||
20611 		    !map_ptr->ops->map_poke_run) {
20612 			verbose(env, "bpf verifier is misconfigured\n");
20613 			return -EINVAL;
20614 		}
20615 
20616 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
20617 		if (ret < 0) {
20618 			verbose(env, "tracking tail call prog failed\n");
20619 			return ret;
20620 		}
20621 	}
20622 
20623 	sort_kfunc_descs_by_imm_off(env->prog);
20624 
20625 	return 0;
20626 }
20627 
20628 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
20629 					int position,
20630 					s32 stack_base,
20631 					u32 callback_subprogno,
20632 					u32 *cnt)
20633 {
20634 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
20635 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
20636 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
20637 	int reg_loop_max = BPF_REG_6;
20638 	int reg_loop_cnt = BPF_REG_7;
20639 	int reg_loop_ctx = BPF_REG_8;
20640 
20641 	struct bpf_prog *new_prog;
20642 	u32 callback_start;
20643 	u32 call_insn_offset;
20644 	s32 callback_offset;
20645 
20646 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
20647 	 * be careful to modify this code in sync.
20648 	 */
20649 	struct bpf_insn insn_buf[] = {
20650 		/* Return error and jump to the end of the patch if
20651 		 * expected number of iterations is too big.
20652 		 */
20653 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
20654 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
20655 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
20656 		/* spill R6, R7, R8 to use these as loop vars */
20657 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
20658 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
20659 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
20660 		/* initialize loop vars */
20661 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
20662 		BPF_MOV32_IMM(reg_loop_cnt, 0),
20663 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
20664 		/* loop header,
20665 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
20666 		 */
20667 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
20668 		/* callback call,
20669 		 * correct callback offset would be set after patching
20670 		 */
20671 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
20672 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
20673 		BPF_CALL_REL(0),
20674 		/* increment loop counter */
20675 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
20676 		/* jump to loop header if callback returned 0 */
20677 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
20678 		/* return value of bpf_loop,
20679 		 * set R0 to the number of iterations
20680 		 */
20681 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
20682 		/* restore original values of R6, R7, R8 */
20683 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
20684 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
20685 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
20686 	};
20687 
20688 	*cnt = ARRAY_SIZE(insn_buf);
20689 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
20690 	if (!new_prog)
20691 		return new_prog;
20692 
20693 	/* callback start is known only after patching */
20694 	callback_start = env->subprog_info[callback_subprogno].start;
20695 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
20696 	call_insn_offset = position + 12;
20697 	callback_offset = callback_start - call_insn_offset - 1;
20698 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
20699 
20700 	return new_prog;
20701 }
20702 
20703 static bool is_bpf_loop_call(struct bpf_insn *insn)
20704 {
20705 	return insn->code == (BPF_JMP | BPF_CALL) &&
20706 		insn->src_reg == 0 &&
20707 		insn->imm == BPF_FUNC_loop;
20708 }
20709 
20710 /* For all sub-programs in the program (including main) check
20711  * insn_aux_data to see if there are bpf_loop calls that require
20712  * inlining. If such calls are found the calls are replaced with a
20713  * sequence of instructions produced by `inline_bpf_loop` function and
20714  * subprog stack_depth is increased by the size of 3 registers.
20715  * This stack space is used to spill values of the R6, R7, R8.  These
20716  * registers are used to store the loop bound, counter and context
20717  * variables.
20718  */
20719 static int optimize_bpf_loop(struct bpf_verifier_env *env)
20720 {
20721 	struct bpf_subprog_info *subprogs = env->subprog_info;
20722 	int i, cur_subprog = 0, cnt, delta = 0;
20723 	struct bpf_insn *insn = env->prog->insnsi;
20724 	int insn_cnt = env->prog->len;
20725 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
20726 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
20727 	u16 stack_depth_extra = 0;
20728 
20729 	for (i = 0; i < insn_cnt; i++, insn++) {
20730 		struct bpf_loop_inline_state *inline_state =
20731 			&env->insn_aux_data[i + delta].loop_inline_state;
20732 
20733 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
20734 			struct bpf_prog *new_prog;
20735 
20736 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
20737 			new_prog = inline_bpf_loop(env,
20738 						   i + delta,
20739 						   -(stack_depth + stack_depth_extra),
20740 						   inline_state->callback_subprogno,
20741 						   &cnt);
20742 			if (!new_prog)
20743 				return -ENOMEM;
20744 
20745 			delta     += cnt - 1;
20746 			env->prog  = new_prog;
20747 			insn       = new_prog->insnsi + i + delta;
20748 		}
20749 
20750 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
20751 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
20752 			cur_subprog++;
20753 			stack_depth = subprogs[cur_subprog].stack_depth;
20754 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
20755 			stack_depth_extra = 0;
20756 		}
20757 	}
20758 
20759 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
20760 
20761 	return 0;
20762 }
20763 
20764 static void free_states(struct bpf_verifier_env *env)
20765 {
20766 	struct bpf_verifier_state_list *sl, *sln;
20767 	int i;
20768 
20769 	sl = env->free_list;
20770 	while (sl) {
20771 		sln = sl->next;
20772 		free_verifier_state(&sl->state, false);
20773 		kfree(sl);
20774 		sl = sln;
20775 	}
20776 	env->free_list = NULL;
20777 
20778 	if (!env->explored_states)
20779 		return;
20780 
20781 	for (i = 0; i < state_htab_size(env); i++) {
20782 		sl = env->explored_states[i];
20783 
20784 		while (sl) {
20785 			sln = sl->next;
20786 			free_verifier_state(&sl->state, false);
20787 			kfree(sl);
20788 			sl = sln;
20789 		}
20790 		env->explored_states[i] = NULL;
20791 	}
20792 }
20793 
20794 static int do_check_common(struct bpf_verifier_env *env, int subprog)
20795 {
20796 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
20797 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
20798 	struct bpf_verifier_state *state;
20799 	struct bpf_reg_state *regs;
20800 	int ret, i;
20801 
20802 	env->prev_linfo = NULL;
20803 	env->pass_cnt++;
20804 
20805 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
20806 	if (!state)
20807 		return -ENOMEM;
20808 	state->curframe = 0;
20809 	state->speculative = false;
20810 	state->branches = 1;
20811 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
20812 	if (!state->frame[0]) {
20813 		kfree(state);
20814 		return -ENOMEM;
20815 	}
20816 	env->cur_state = state;
20817 	init_func_state(env, state->frame[0],
20818 			BPF_MAIN_FUNC /* callsite */,
20819 			0 /* frameno */,
20820 			subprog);
20821 	state->first_insn_idx = env->subprog_info[subprog].start;
20822 	state->last_insn_idx = -1;
20823 
20824 	regs = state->frame[state->curframe]->regs;
20825 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
20826 		const char *sub_name = subprog_name(env, subprog);
20827 		struct bpf_subprog_arg_info *arg;
20828 		struct bpf_reg_state *reg;
20829 
20830 		verbose(env, "Validating %s() func#%d...\n", sub_name, subprog);
20831 		ret = btf_prepare_func_args(env, subprog);
20832 		if (ret)
20833 			goto out;
20834 
20835 		if (subprog_is_exc_cb(env, subprog)) {
20836 			state->frame[0]->in_exception_callback_fn = true;
20837 			/* We have already ensured that the callback returns an integer, just
20838 			 * like all global subprogs. We need to determine it only has a single
20839 			 * scalar argument.
20840 			 */
20841 			if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) {
20842 				verbose(env, "exception cb only supports single integer argument\n");
20843 				ret = -EINVAL;
20844 				goto out;
20845 			}
20846 		}
20847 		for (i = BPF_REG_1; i <= sub->arg_cnt; i++) {
20848 			arg = &sub->args[i - BPF_REG_1];
20849 			reg = &regs[i];
20850 
20851 			if (arg->arg_type == ARG_PTR_TO_CTX) {
20852 				reg->type = PTR_TO_CTX;
20853 				mark_reg_known_zero(env, regs, i);
20854 			} else if (arg->arg_type == ARG_ANYTHING) {
20855 				reg->type = SCALAR_VALUE;
20856 				mark_reg_unknown(env, regs, i);
20857 			} else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
20858 				/* assume unspecial LOCAL dynptr type */
20859 				__mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen);
20860 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
20861 				reg->type = PTR_TO_MEM;
20862 				if (arg->arg_type & PTR_MAYBE_NULL)
20863 					reg->type |= PTR_MAYBE_NULL;
20864 				mark_reg_known_zero(env, regs, i);
20865 				reg->mem_size = arg->mem_size;
20866 				reg->id = ++env->id_gen;
20867 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
20868 				reg->type = PTR_TO_BTF_ID;
20869 				if (arg->arg_type & PTR_MAYBE_NULL)
20870 					reg->type |= PTR_MAYBE_NULL;
20871 				if (arg->arg_type & PTR_UNTRUSTED)
20872 					reg->type |= PTR_UNTRUSTED;
20873 				if (arg->arg_type & PTR_TRUSTED)
20874 					reg->type |= PTR_TRUSTED;
20875 				mark_reg_known_zero(env, regs, i);
20876 				reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */
20877 				reg->btf_id = arg->btf_id;
20878 				reg->id = ++env->id_gen;
20879 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) {
20880 				/* caller can pass either PTR_TO_ARENA or SCALAR */
20881 				mark_reg_unknown(env, regs, i);
20882 			} else {
20883 				WARN_ONCE(1, "BUG: unhandled arg#%d type %d\n",
20884 					  i - BPF_REG_1, arg->arg_type);
20885 				ret = -EFAULT;
20886 				goto out;
20887 			}
20888 		}
20889 	} else {
20890 		/* if main BPF program has associated BTF info, validate that
20891 		 * it's matching expected signature, and otherwise mark BTF
20892 		 * info for main program as unreliable
20893 		 */
20894 		if (env->prog->aux->func_info_aux) {
20895 			ret = btf_prepare_func_args(env, 0);
20896 			if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX)
20897 				env->prog->aux->func_info_aux[0].unreliable = true;
20898 		}
20899 
20900 		/* 1st arg to a function */
20901 		regs[BPF_REG_1].type = PTR_TO_CTX;
20902 		mark_reg_known_zero(env, regs, BPF_REG_1);
20903 	}
20904 
20905 	ret = do_check(env);
20906 out:
20907 	/* check for NULL is necessary, since cur_state can be freed inside
20908 	 * do_check() under memory pressure.
20909 	 */
20910 	if (env->cur_state) {
20911 		free_verifier_state(env->cur_state, true);
20912 		env->cur_state = NULL;
20913 	}
20914 	while (!pop_stack(env, NULL, NULL, false));
20915 	if (!ret && pop_log)
20916 		bpf_vlog_reset(&env->log, 0);
20917 	free_states(env);
20918 	return ret;
20919 }
20920 
20921 /* Lazily verify all global functions based on their BTF, if they are called
20922  * from main BPF program or any of subprograms transitively.
20923  * BPF global subprogs called from dead code are not validated.
20924  * All callable global functions must pass verification.
20925  * Otherwise the whole program is rejected.
20926  * Consider:
20927  * int bar(int);
20928  * int foo(int f)
20929  * {
20930  *    return bar(f);
20931  * }
20932  * int bar(int b)
20933  * {
20934  *    ...
20935  * }
20936  * foo() will be verified first for R1=any_scalar_value. During verification it
20937  * will be assumed that bar() already verified successfully and call to bar()
20938  * from foo() will be checked for type match only. Later bar() will be verified
20939  * independently to check that it's safe for R1=any_scalar_value.
20940  */
20941 static int do_check_subprogs(struct bpf_verifier_env *env)
20942 {
20943 	struct bpf_prog_aux *aux = env->prog->aux;
20944 	struct bpf_func_info_aux *sub_aux;
20945 	int i, ret, new_cnt;
20946 
20947 	if (!aux->func_info)
20948 		return 0;
20949 
20950 	/* exception callback is presumed to be always called */
20951 	if (env->exception_callback_subprog)
20952 		subprog_aux(env, env->exception_callback_subprog)->called = true;
20953 
20954 again:
20955 	new_cnt = 0;
20956 	for (i = 1; i < env->subprog_cnt; i++) {
20957 		if (!subprog_is_global(env, i))
20958 			continue;
20959 
20960 		sub_aux = subprog_aux(env, i);
20961 		if (!sub_aux->called || sub_aux->verified)
20962 			continue;
20963 
20964 		env->insn_idx = env->subprog_info[i].start;
20965 		WARN_ON_ONCE(env->insn_idx == 0);
20966 		ret = do_check_common(env, i);
20967 		if (ret) {
20968 			return ret;
20969 		} else if (env->log.level & BPF_LOG_LEVEL) {
20970 			verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n",
20971 				i, subprog_name(env, i));
20972 		}
20973 
20974 		/* We verified new global subprog, it might have called some
20975 		 * more global subprogs that we haven't verified yet, so we
20976 		 * need to do another pass over subprogs to verify those.
20977 		 */
20978 		sub_aux->verified = true;
20979 		new_cnt++;
20980 	}
20981 
20982 	/* We can't loop forever as we verify at least one global subprog on
20983 	 * each pass.
20984 	 */
20985 	if (new_cnt)
20986 		goto again;
20987 
20988 	return 0;
20989 }
20990 
20991 static int do_check_main(struct bpf_verifier_env *env)
20992 {
20993 	int ret;
20994 
20995 	env->insn_idx = 0;
20996 	ret = do_check_common(env, 0);
20997 	if (!ret)
20998 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
20999 	return ret;
21000 }
21001 
21002 
21003 static void print_verification_stats(struct bpf_verifier_env *env)
21004 {
21005 	int i;
21006 
21007 	if (env->log.level & BPF_LOG_STATS) {
21008 		verbose(env, "verification time %lld usec\n",
21009 			div_u64(env->verification_time, 1000));
21010 		verbose(env, "stack depth ");
21011 		for (i = 0; i < env->subprog_cnt; i++) {
21012 			u32 depth = env->subprog_info[i].stack_depth;
21013 
21014 			verbose(env, "%d", depth);
21015 			if (i + 1 < env->subprog_cnt)
21016 				verbose(env, "+");
21017 		}
21018 		verbose(env, "\n");
21019 	}
21020 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
21021 		"total_states %d peak_states %d mark_read %d\n",
21022 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
21023 		env->max_states_per_insn, env->total_states,
21024 		env->peak_states, env->longest_mark_read_walk);
21025 }
21026 
21027 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
21028 {
21029 	const struct btf_type *t, *func_proto;
21030 	const struct bpf_struct_ops_desc *st_ops_desc;
21031 	const struct bpf_struct_ops *st_ops;
21032 	const struct btf_member *member;
21033 	struct bpf_prog *prog = env->prog;
21034 	u32 btf_id, member_idx;
21035 	struct btf *btf;
21036 	const char *mname;
21037 
21038 	if (!prog->gpl_compatible) {
21039 		verbose(env, "struct ops programs must have a GPL compatible license\n");
21040 		return -EINVAL;
21041 	}
21042 
21043 	if (!prog->aux->attach_btf_id)
21044 		return -ENOTSUPP;
21045 
21046 	btf = prog->aux->attach_btf;
21047 	if (btf_is_module(btf)) {
21048 		/* Make sure st_ops is valid through the lifetime of env */
21049 		env->attach_btf_mod = btf_try_get_module(btf);
21050 		if (!env->attach_btf_mod) {
21051 			verbose(env, "struct_ops module %s is not found\n",
21052 				btf_get_name(btf));
21053 			return -ENOTSUPP;
21054 		}
21055 	}
21056 
21057 	btf_id = prog->aux->attach_btf_id;
21058 	st_ops_desc = bpf_struct_ops_find(btf, btf_id);
21059 	if (!st_ops_desc) {
21060 		verbose(env, "attach_btf_id %u is not a supported struct\n",
21061 			btf_id);
21062 		return -ENOTSUPP;
21063 	}
21064 	st_ops = st_ops_desc->st_ops;
21065 
21066 	t = st_ops_desc->type;
21067 	member_idx = prog->expected_attach_type;
21068 	if (member_idx >= btf_type_vlen(t)) {
21069 		verbose(env, "attach to invalid member idx %u of struct %s\n",
21070 			member_idx, st_ops->name);
21071 		return -EINVAL;
21072 	}
21073 
21074 	member = &btf_type_member(t)[member_idx];
21075 	mname = btf_name_by_offset(btf, member->name_off);
21076 	func_proto = btf_type_resolve_func_ptr(btf, member->type,
21077 					       NULL);
21078 	if (!func_proto) {
21079 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
21080 			mname, member_idx, st_ops->name);
21081 		return -EINVAL;
21082 	}
21083 
21084 	if (st_ops->check_member) {
21085 		int err = st_ops->check_member(t, member, prog);
21086 
21087 		if (err) {
21088 			verbose(env, "attach to unsupported member %s of struct %s\n",
21089 				mname, st_ops->name);
21090 			return err;
21091 		}
21092 	}
21093 
21094 	/* btf_ctx_access() used this to provide argument type info */
21095 	prog->aux->ctx_arg_info =
21096 		st_ops_desc->arg_info[member_idx].info;
21097 	prog->aux->ctx_arg_info_size =
21098 		st_ops_desc->arg_info[member_idx].cnt;
21099 
21100 	prog->aux->attach_func_proto = func_proto;
21101 	prog->aux->attach_func_name = mname;
21102 	env->ops = st_ops->verifier_ops;
21103 
21104 	return 0;
21105 }
21106 #define SECURITY_PREFIX "security_"
21107 
21108 static int check_attach_modify_return(unsigned long addr, const char *func_name)
21109 {
21110 	if (within_error_injection_list(addr) ||
21111 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
21112 		return 0;
21113 
21114 	return -EINVAL;
21115 }
21116 
21117 /* list of non-sleepable functions that are otherwise on
21118  * ALLOW_ERROR_INJECTION list
21119  */
21120 BTF_SET_START(btf_non_sleepable_error_inject)
21121 /* Three functions below can be called from sleepable and non-sleepable context.
21122  * Assume non-sleepable from bpf safety point of view.
21123  */
21124 BTF_ID(func, __filemap_add_folio)
21125 BTF_ID(func, should_fail_alloc_page)
21126 BTF_ID(func, should_failslab)
21127 BTF_SET_END(btf_non_sleepable_error_inject)
21128 
21129 static int check_non_sleepable_error_inject(u32 btf_id)
21130 {
21131 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
21132 }
21133 
21134 int bpf_check_attach_target(struct bpf_verifier_log *log,
21135 			    const struct bpf_prog *prog,
21136 			    const struct bpf_prog *tgt_prog,
21137 			    u32 btf_id,
21138 			    struct bpf_attach_target_info *tgt_info)
21139 {
21140 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
21141 	bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING;
21142 	const char prefix[] = "btf_trace_";
21143 	int ret = 0, subprog = -1, i;
21144 	const struct btf_type *t;
21145 	bool conservative = true;
21146 	const char *tname;
21147 	struct btf *btf;
21148 	long addr = 0;
21149 	struct module *mod = NULL;
21150 
21151 	if (!btf_id) {
21152 		bpf_log(log, "Tracing programs must provide btf_id\n");
21153 		return -EINVAL;
21154 	}
21155 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
21156 	if (!btf) {
21157 		bpf_log(log,
21158 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
21159 		return -EINVAL;
21160 	}
21161 	t = btf_type_by_id(btf, btf_id);
21162 	if (!t) {
21163 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
21164 		return -EINVAL;
21165 	}
21166 	tname = btf_name_by_offset(btf, t->name_off);
21167 	if (!tname) {
21168 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
21169 		return -EINVAL;
21170 	}
21171 	if (tgt_prog) {
21172 		struct bpf_prog_aux *aux = tgt_prog->aux;
21173 
21174 		if (bpf_prog_is_dev_bound(prog->aux) &&
21175 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
21176 			bpf_log(log, "Target program bound device mismatch");
21177 			return -EINVAL;
21178 		}
21179 
21180 		for (i = 0; i < aux->func_info_cnt; i++)
21181 			if (aux->func_info[i].type_id == btf_id) {
21182 				subprog = i;
21183 				break;
21184 			}
21185 		if (subprog == -1) {
21186 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
21187 			return -EINVAL;
21188 		}
21189 		if (aux->func && aux->func[subprog]->aux->exception_cb) {
21190 			bpf_log(log,
21191 				"%s programs cannot attach to exception callback\n",
21192 				prog_extension ? "Extension" : "FENTRY/FEXIT");
21193 			return -EINVAL;
21194 		}
21195 		conservative = aux->func_info_aux[subprog].unreliable;
21196 		if (prog_extension) {
21197 			if (conservative) {
21198 				bpf_log(log,
21199 					"Cannot replace static functions\n");
21200 				return -EINVAL;
21201 			}
21202 			if (!prog->jit_requested) {
21203 				bpf_log(log,
21204 					"Extension programs should be JITed\n");
21205 				return -EINVAL;
21206 			}
21207 		}
21208 		if (!tgt_prog->jited) {
21209 			bpf_log(log, "Can attach to only JITed progs\n");
21210 			return -EINVAL;
21211 		}
21212 		if (prog_tracing) {
21213 			if (aux->attach_tracing_prog) {
21214 				/*
21215 				 * Target program is an fentry/fexit which is already attached
21216 				 * to another tracing program. More levels of nesting
21217 				 * attachment are not allowed.
21218 				 */
21219 				bpf_log(log, "Cannot nest tracing program attach more than once\n");
21220 				return -EINVAL;
21221 			}
21222 		} else if (tgt_prog->type == prog->type) {
21223 			/*
21224 			 * To avoid potential call chain cycles, prevent attaching of a
21225 			 * program extension to another extension. It's ok to attach
21226 			 * fentry/fexit to extension program.
21227 			 */
21228 			bpf_log(log, "Cannot recursively attach\n");
21229 			return -EINVAL;
21230 		}
21231 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
21232 		    prog_extension &&
21233 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
21234 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
21235 			/* Program extensions can extend all program types
21236 			 * except fentry/fexit. The reason is the following.
21237 			 * The fentry/fexit programs are used for performance
21238 			 * analysis, stats and can be attached to any program
21239 			 * type. When extension program is replacing XDP function
21240 			 * it is necessary to allow performance analysis of all
21241 			 * functions. Both original XDP program and its program
21242 			 * extension. Hence attaching fentry/fexit to
21243 			 * BPF_PROG_TYPE_EXT is allowed. If extending of
21244 			 * fentry/fexit was allowed it would be possible to create
21245 			 * long call chain fentry->extension->fentry->extension
21246 			 * beyond reasonable stack size. Hence extending fentry
21247 			 * is not allowed.
21248 			 */
21249 			bpf_log(log, "Cannot extend fentry/fexit\n");
21250 			return -EINVAL;
21251 		}
21252 	} else {
21253 		if (prog_extension) {
21254 			bpf_log(log, "Cannot replace kernel functions\n");
21255 			return -EINVAL;
21256 		}
21257 	}
21258 
21259 	switch (prog->expected_attach_type) {
21260 	case BPF_TRACE_RAW_TP:
21261 		if (tgt_prog) {
21262 			bpf_log(log,
21263 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
21264 			return -EINVAL;
21265 		}
21266 		if (!btf_type_is_typedef(t)) {
21267 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
21268 				btf_id);
21269 			return -EINVAL;
21270 		}
21271 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
21272 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
21273 				btf_id, tname);
21274 			return -EINVAL;
21275 		}
21276 		tname += sizeof(prefix) - 1;
21277 		t = btf_type_by_id(btf, t->type);
21278 		if (!btf_type_is_ptr(t))
21279 			/* should never happen in valid vmlinux build */
21280 			return -EINVAL;
21281 		t = btf_type_by_id(btf, t->type);
21282 		if (!btf_type_is_func_proto(t))
21283 			/* should never happen in valid vmlinux build */
21284 			return -EINVAL;
21285 
21286 		break;
21287 	case BPF_TRACE_ITER:
21288 		if (!btf_type_is_func(t)) {
21289 			bpf_log(log, "attach_btf_id %u is not a function\n",
21290 				btf_id);
21291 			return -EINVAL;
21292 		}
21293 		t = btf_type_by_id(btf, t->type);
21294 		if (!btf_type_is_func_proto(t))
21295 			return -EINVAL;
21296 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
21297 		if (ret)
21298 			return ret;
21299 		break;
21300 	default:
21301 		if (!prog_extension)
21302 			return -EINVAL;
21303 		fallthrough;
21304 	case BPF_MODIFY_RETURN:
21305 	case BPF_LSM_MAC:
21306 	case BPF_LSM_CGROUP:
21307 	case BPF_TRACE_FENTRY:
21308 	case BPF_TRACE_FEXIT:
21309 		if (!btf_type_is_func(t)) {
21310 			bpf_log(log, "attach_btf_id %u is not a function\n",
21311 				btf_id);
21312 			return -EINVAL;
21313 		}
21314 		if (prog_extension &&
21315 		    btf_check_type_match(log, prog, btf, t))
21316 			return -EINVAL;
21317 		t = btf_type_by_id(btf, t->type);
21318 		if (!btf_type_is_func_proto(t))
21319 			return -EINVAL;
21320 
21321 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
21322 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
21323 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
21324 			return -EINVAL;
21325 
21326 		if (tgt_prog && conservative)
21327 			t = NULL;
21328 
21329 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
21330 		if (ret < 0)
21331 			return ret;
21332 
21333 		if (tgt_prog) {
21334 			if (subprog == 0)
21335 				addr = (long) tgt_prog->bpf_func;
21336 			else
21337 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
21338 		} else {
21339 			if (btf_is_module(btf)) {
21340 				mod = btf_try_get_module(btf);
21341 				if (mod)
21342 					addr = find_kallsyms_symbol_value(mod, tname);
21343 				else
21344 					addr = 0;
21345 			} else {
21346 				addr = kallsyms_lookup_name(tname);
21347 			}
21348 			if (!addr) {
21349 				module_put(mod);
21350 				bpf_log(log,
21351 					"The address of function %s cannot be found\n",
21352 					tname);
21353 				return -ENOENT;
21354 			}
21355 		}
21356 
21357 		if (prog->sleepable) {
21358 			ret = -EINVAL;
21359 			switch (prog->type) {
21360 			case BPF_PROG_TYPE_TRACING:
21361 
21362 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
21363 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
21364 				 */
21365 				if (!check_non_sleepable_error_inject(btf_id) &&
21366 				    within_error_injection_list(addr))
21367 					ret = 0;
21368 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
21369 				 * in the fmodret id set with the KF_SLEEPABLE flag.
21370 				 */
21371 				else {
21372 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
21373 										prog);
21374 
21375 					if (flags && (*flags & KF_SLEEPABLE))
21376 						ret = 0;
21377 				}
21378 				break;
21379 			case BPF_PROG_TYPE_LSM:
21380 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
21381 				 * Only some of them are sleepable.
21382 				 */
21383 				if (bpf_lsm_is_sleepable_hook(btf_id))
21384 					ret = 0;
21385 				break;
21386 			default:
21387 				break;
21388 			}
21389 			if (ret) {
21390 				module_put(mod);
21391 				bpf_log(log, "%s is not sleepable\n", tname);
21392 				return ret;
21393 			}
21394 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
21395 			if (tgt_prog) {
21396 				module_put(mod);
21397 				bpf_log(log, "can't modify return codes of BPF programs\n");
21398 				return -EINVAL;
21399 			}
21400 			ret = -EINVAL;
21401 			if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
21402 			    !check_attach_modify_return(addr, tname))
21403 				ret = 0;
21404 			if (ret) {
21405 				module_put(mod);
21406 				bpf_log(log, "%s() is not modifiable\n", tname);
21407 				return ret;
21408 			}
21409 		}
21410 
21411 		break;
21412 	}
21413 	tgt_info->tgt_addr = addr;
21414 	tgt_info->tgt_name = tname;
21415 	tgt_info->tgt_type = t;
21416 	tgt_info->tgt_mod = mod;
21417 	return 0;
21418 }
21419 
21420 BTF_SET_START(btf_id_deny)
21421 BTF_ID_UNUSED
21422 #ifdef CONFIG_SMP
21423 BTF_ID(func, migrate_disable)
21424 BTF_ID(func, migrate_enable)
21425 #endif
21426 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
21427 BTF_ID(func, rcu_read_unlock_strict)
21428 #endif
21429 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
21430 BTF_ID(func, preempt_count_add)
21431 BTF_ID(func, preempt_count_sub)
21432 #endif
21433 #ifdef CONFIG_PREEMPT_RCU
21434 BTF_ID(func, __rcu_read_lock)
21435 BTF_ID(func, __rcu_read_unlock)
21436 #endif
21437 BTF_SET_END(btf_id_deny)
21438 
21439 static bool can_be_sleepable(struct bpf_prog *prog)
21440 {
21441 	if (prog->type == BPF_PROG_TYPE_TRACING) {
21442 		switch (prog->expected_attach_type) {
21443 		case BPF_TRACE_FENTRY:
21444 		case BPF_TRACE_FEXIT:
21445 		case BPF_MODIFY_RETURN:
21446 		case BPF_TRACE_ITER:
21447 			return true;
21448 		default:
21449 			return false;
21450 		}
21451 	}
21452 	return prog->type == BPF_PROG_TYPE_LSM ||
21453 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
21454 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
21455 }
21456 
21457 static int check_attach_btf_id(struct bpf_verifier_env *env)
21458 {
21459 	struct bpf_prog *prog = env->prog;
21460 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
21461 	struct bpf_attach_target_info tgt_info = {};
21462 	u32 btf_id = prog->aux->attach_btf_id;
21463 	struct bpf_trampoline *tr;
21464 	int ret;
21465 	u64 key;
21466 
21467 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
21468 		if (prog->sleepable)
21469 			/* attach_btf_id checked to be zero already */
21470 			return 0;
21471 		verbose(env, "Syscall programs can only be sleepable\n");
21472 		return -EINVAL;
21473 	}
21474 
21475 	if (prog->sleepable && !can_be_sleepable(prog)) {
21476 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
21477 		return -EINVAL;
21478 	}
21479 
21480 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
21481 		return check_struct_ops_btf_id(env);
21482 
21483 	if (prog->type != BPF_PROG_TYPE_TRACING &&
21484 	    prog->type != BPF_PROG_TYPE_LSM &&
21485 	    prog->type != BPF_PROG_TYPE_EXT)
21486 		return 0;
21487 
21488 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
21489 	if (ret)
21490 		return ret;
21491 
21492 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
21493 		/* to make freplace equivalent to their targets, they need to
21494 		 * inherit env->ops and expected_attach_type for the rest of the
21495 		 * verification
21496 		 */
21497 		env->ops = bpf_verifier_ops[tgt_prog->type];
21498 		prog->expected_attach_type = tgt_prog->expected_attach_type;
21499 	}
21500 
21501 	/* store info about the attachment target that will be used later */
21502 	prog->aux->attach_func_proto = tgt_info.tgt_type;
21503 	prog->aux->attach_func_name = tgt_info.tgt_name;
21504 	prog->aux->mod = tgt_info.tgt_mod;
21505 
21506 	if (tgt_prog) {
21507 		prog->aux->saved_dst_prog_type = tgt_prog->type;
21508 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
21509 	}
21510 
21511 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
21512 		prog->aux->attach_btf_trace = true;
21513 		return 0;
21514 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
21515 		if (!bpf_iter_prog_supported(prog))
21516 			return -EINVAL;
21517 		return 0;
21518 	}
21519 
21520 	if (prog->type == BPF_PROG_TYPE_LSM) {
21521 		ret = bpf_lsm_verify_prog(&env->log, prog);
21522 		if (ret < 0)
21523 			return ret;
21524 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
21525 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
21526 		return -EINVAL;
21527 	}
21528 
21529 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
21530 	tr = bpf_trampoline_get(key, &tgt_info);
21531 	if (!tr)
21532 		return -ENOMEM;
21533 
21534 	if (tgt_prog && tgt_prog->aux->tail_call_reachable)
21535 		tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
21536 
21537 	prog->aux->dst_trampoline = tr;
21538 	return 0;
21539 }
21540 
21541 struct btf *bpf_get_btf_vmlinux(void)
21542 {
21543 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
21544 		mutex_lock(&bpf_verifier_lock);
21545 		if (!btf_vmlinux)
21546 			btf_vmlinux = btf_parse_vmlinux();
21547 		mutex_unlock(&bpf_verifier_lock);
21548 	}
21549 	return btf_vmlinux;
21550 }
21551 
21552 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
21553 {
21554 	u64 start_time = ktime_get_ns();
21555 	struct bpf_verifier_env *env;
21556 	int i, len, ret = -EINVAL, err;
21557 	u32 log_true_size;
21558 	bool is_priv;
21559 
21560 	/* no program is valid */
21561 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
21562 		return -EINVAL;
21563 
21564 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
21565 	 * allocate/free it every time bpf_check() is called
21566 	 */
21567 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
21568 	if (!env)
21569 		return -ENOMEM;
21570 
21571 	env->bt.env = env;
21572 
21573 	len = (*prog)->len;
21574 	env->insn_aux_data =
21575 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
21576 	ret = -ENOMEM;
21577 	if (!env->insn_aux_data)
21578 		goto err_free_env;
21579 	for (i = 0; i < len; i++)
21580 		env->insn_aux_data[i].orig_idx = i;
21581 	env->prog = *prog;
21582 	env->ops = bpf_verifier_ops[env->prog->type];
21583 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
21584 
21585 	env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token);
21586 	env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token);
21587 	env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token);
21588 	env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token);
21589 	env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF);
21590 
21591 	bpf_get_btf_vmlinux();
21592 
21593 	/* grab the mutex to protect few globals used by verifier */
21594 	if (!is_priv)
21595 		mutex_lock(&bpf_verifier_lock);
21596 
21597 	/* user could have requested verbose verifier output
21598 	 * and supplied buffer to store the verification trace
21599 	 */
21600 	ret = bpf_vlog_init(&env->log, attr->log_level,
21601 			    (char __user *) (unsigned long) attr->log_buf,
21602 			    attr->log_size);
21603 	if (ret)
21604 		goto err_unlock;
21605 
21606 	mark_verifier_state_clean(env);
21607 
21608 	if (IS_ERR(btf_vmlinux)) {
21609 		/* Either gcc or pahole or kernel are broken. */
21610 		verbose(env, "in-kernel BTF is malformed\n");
21611 		ret = PTR_ERR(btf_vmlinux);
21612 		goto skip_full_check;
21613 	}
21614 
21615 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
21616 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
21617 		env->strict_alignment = true;
21618 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
21619 		env->strict_alignment = false;
21620 
21621 	if (is_priv)
21622 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
21623 	env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS;
21624 
21625 	env->explored_states = kvcalloc(state_htab_size(env),
21626 				       sizeof(struct bpf_verifier_state_list *),
21627 				       GFP_USER);
21628 	ret = -ENOMEM;
21629 	if (!env->explored_states)
21630 		goto skip_full_check;
21631 
21632 	ret = check_btf_info_early(env, attr, uattr);
21633 	if (ret < 0)
21634 		goto skip_full_check;
21635 
21636 	ret = add_subprog_and_kfunc(env);
21637 	if (ret < 0)
21638 		goto skip_full_check;
21639 
21640 	ret = check_subprogs(env);
21641 	if (ret < 0)
21642 		goto skip_full_check;
21643 
21644 	ret = check_btf_info(env, attr, uattr);
21645 	if (ret < 0)
21646 		goto skip_full_check;
21647 
21648 	ret = check_attach_btf_id(env);
21649 	if (ret)
21650 		goto skip_full_check;
21651 
21652 	ret = resolve_pseudo_ldimm64(env);
21653 	if (ret < 0)
21654 		goto skip_full_check;
21655 
21656 	if (bpf_prog_is_offloaded(env->prog->aux)) {
21657 		ret = bpf_prog_offload_verifier_prep(env->prog);
21658 		if (ret)
21659 			goto skip_full_check;
21660 	}
21661 
21662 	ret = check_cfg(env);
21663 	if (ret < 0)
21664 		goto skip_full_check;
21665 
21666 	ret = do_check_main(env);
21667 	ret = ret ?: do_check_subprogs(env);
21668 
21669 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
21670 		ret = bpf_prog_offload_finalize(env);
21671 
21672 skip_full_check:
21673 	kvfree(env->explored_states);
21674 
21675 	if (ret == 0)
21676 		ret = check_max_stack_depth(env);
21677 
21678 	/* instruction rewrites happen after this point */
21679 	if (ret == 0)
21680 		ret = optimize_bpf_loop(env);
21681 
21682 	if (is_priv) {
21683 		if (ret == 0)
21684 			opt_hard_wire_dead_code_branches(env);
21685 		if (ret == 0)
21686 			ret = opt_remove_dead_code(env);
21687 		if (ret == 0)
21688 			ret = opt_remove_nops(env);
21689 	} else {
21690 		if (ret == 0)
21691 			sanitize_dead_code(env);
21692 	}
21693 
21694 	if (ret == 0)
21695 		/* program is valid, convert *(u32*)(ctx + off) accesses */
21696 		ret = convert_ctx_accesses(env);
21697 
21698 	if (ret == 0)
21699 		ret = do_misc_fixups(env);
21700 
21701 	/* do 32-bit optimization after insn patching has done so those patched
21702 	 * insns could be handled correctly.
21703 	 */
21704 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
21705 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
21706 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
21707 								     : false;
21708 	}
21709 
21710 	if (ret == 0)
21711 		ret = fixup_call_args(env);
21712 
21713 	env->verification_time = ktime_get_ns() - start_time;
21714 	print_verification_stats(env);
21715 	env->prog->aux->verified_insns = env->insn_processed;
21716 
21717 	/* preserve original error even if log finalization is successful */
21718 	err = bpf_vlog_finalize(&env->log, &log_true_size);
21719 	if (err)
21720 		ret = err;
21721 
21722 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
21723 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
21724 				  &log_true_size, sizeof(log_true_size))) {
21725 		ret = -EFAULT;
21726 		goto err_release_maps;
21727 	}
21728 
21729 	if (ret)
21730 		goto err_release_maps;
21731 
21732 	if (env->used_map_cnt) {
21733 		/* if program passed verifier, update used_maps in bpf_prog_info */
21734 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
21735 							  sizeof(env->used_maps[0]),
21736 							  GFP_KERNEL);
21737 
21738 		if (!env->prog->aux->used_maps) {
21739 			ret = -ENOMEM;
21740 			goto err_release_maps;
21741 		}
21742 
21743 		memcpy(env->prog->aux->used_maps, env->used_maps,
21744 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
21745 		env->prog->aux->used_map_cnt = env->used_map_cnt;
21746 	}
21747 	if (env->used_btf_cnt) {
21748 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
21749 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
21750 							  sizeof(env->used_btfs[0]),
21751 							  GFP_KERNEL);
21752 		if (!env->prog->aux->used_btfs) {
21753 			ret = -ENOMEM;
21754 			goto err_release_maps;
21755 		}
21756 
21757 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
21758 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
21759 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
21760 	}
21761 	if (env->used_map_cnt || env->used_btf_cnt) {
21762 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
21763 		 * bpf_ld_imm64 instructions
21764 		 */
21765 		convert_pseudo_ld_imm64(env);
21766 	}
21767 
21768 	adjust_btf_func(env);
21769 
21770 err_release_maps:
21771 	if (!env->prog->aux->used_maps)
21772 		/* if we didn't copy map pointers into bpf_prog_info, release
21773 		 * them now. Otherwise free_used_maps() will release them.
21774 		 */
21775 		release_maps(env);
21776 	if (!env->prog->aux->used_btfs)
21777 		release_btfs(env);
21778 
21779 	/* extension progs temporarily inherit the attach_type of their targets
21780 	   for verification purposes, so set it back to zero before returning
21781 	 */
21782 	if (env->prog->type == BPF_PROG_TYPE_EXT)
21783 		env->prog->expected_attach_type = 0;
21784 
21785 	*prog = env->prog;
21786 
21787 	module_put(env->attach_btf_mod);
21788 err_unlock:
21789 	if (!is_priv)
21790 		mutex_unlock(&bpf_verifier_lock);
21791 	vfree(env->insn_aux_data);
21792 err_free_env:
21793 	kfree(env);
21794 	return ret;
21795 }
21796