1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 #include <linux/error-injection.h> 23 #include <linux/bpf_lsm.h> 24 25 #include "disasm.h" 26 27 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 28 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 29 [_id] = & _name ## _verifier_ops, 30 #define BPF_MAP_TYPE(_id, _ops) 31 #define BPF_LINK_TYPE(_id, _name) 32 #include <linux/bpf_types.h> 33 #undef BPF_PROG_TYPE 34 #undef BPF_MAP_TYPE 35 #undef BPF_LINK_TYPE 36 }; 37 38 /* bpf_check() is a static code analyzer that walks eBPF program 39 * instruction by instruction and updates register/stack state. 40 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 41 * 42 * The first pass is depth-first-search to check that the program is a DAG. 43 * It rejects the following programs: 44 * - larger than BPF_MAXINSNS insns 45 * - if loop is present (detected via back-edge) 46 * - unreachable insns exist (shouldn't be a forest. program = one function) 47 * - out of bounds or malformed jumps 48 * The second pass is all possible path descent from the 1st insn. 49 * Since it's analyzing all pathes through the program, the length of the 50 * analysis is limited to 64k insn, which may be hit even if total number of 51 * insn is less then 4K, but there are too many branches that change stack/regs. 52 * Number of 'branches to be analyzed' is limited to 1k 53 * 54 * On entry to each instruction, each register has a type, and the instruction 55 * changes the types of the registers depending on instruction semantics. 56 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 57 * copied to R1. 58 * 59 * All registers are 64-bit. 60 * R0 - return register 61 * R1-R5 argument passing registers 62 * R6-R9 callee saved registers 63 * R10 - frame pointer read-only 64 * 65 * At the start of BPF program the register R1 contains a pointer to bpf_context 66 * and has type PTR_TO_CTX. 67 * 68 * Verifier tracks arithmetic operations on pointers in case: 69 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 70 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 71 * 1st insn copies R10 (which has FRAME_PTR) type into R1 72 * and 2nd arithmetic instruction is pattern matched to recognize 73 * that it wants to construct a pointer to some element within stack. 74 * So after 2nd insn, the register R1 has type PTR_TO_STACK 75 * (and -20 constant is saved for further stack bounds checking). 76 * Meaning that this reg is a pointer to stack plus known immediate constant. 77 * 78 * Most of the time the registers have SCALAR_VALUE type, which 79 * means the register has some value, but it's not a valid pointer. 80 * (like pointer plus pointer becomes SCALAR_VALUE type) 81 * 82 * When verifier sees load or store instructions the type of base register 83 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 84 * four pointer types recognized by check_mem_access() function. 85 * 86 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 87 * and the range of [ptr, ptr + map's value_size) is accessible. 88 * 89 * registers used to pass values to function calls are checked against 90 * function argument constraints. 91 * 92 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 93 * It means that the register type passed to this function must be 94 * PTR_TO_STACK and it will be used inside the function as 95 * 'pointer to map element key' 96 * 97 * For example the argument constraints for bpf_map_lookup_elem(): 98 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 99 * .arg1_type = ARG_CONST_MAP_PTR, 100 * .arg2_type = ARG_PTR_TO_MAP_KEY, 101 * 102 * ret_type says that this function returns 'pointer to map elem value or null' 103 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 104 * 2nd argument should be a pointer to stack, which will be used inside 105 * the helper function as a pointer to map element key. 106 * 107 * On the kernel side the helper function looks like: 108 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 109 * { 110 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 111 * void *key = (void *) (unsigned long) r2; 112 * void *value; 113 * 114 * here kernel can access 'key' and 'map' pointers safely, knowing that 115 * [key, key + map->key_size) bytes are valid and were initialized on 116 * the stack of eBPF program. 117 * } 118 * 119 * Corresponding eBPF program may look like: 120 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 121 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 122 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 123 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 124 * here verifier looks at prototype of map_lookup_elem() and sees: 125 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 126 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 127 * 128 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 129 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 130 * and were initialized prior to this call. 131 * If it's ok, then verifier allows this BPF_CALL insn and looks at 132 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 133 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 134 * returns ether pointer to map value or NULL. 135 * 136 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 137 * insn, the register holding that pointer in the true branch changes state to 138 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 139 * branch. See check_cond_jmp_op(). 140 * 141 * After the call R0 is set to return type of the function and registers R1-R5 142 * are set to NOT_INIT to indicate that they are no longer readable. 143 * 144 * The following reference types represent a potential reference to a kernel 145 * resource which, after first being allocated, must be checked and freed by 146 * the BPF program: 147 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 148 * 149 * When the verifier sees a helper call return a reference type, it allocates a 150 * pointer id for the reference and stores it in the current function state. 151 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 152 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 153 * passes through a NULL-check conditional. For the branch wherein the state is 154 * changed to CONST_IMM, the verifier releases the reference. 155 * 156 * For each helper function that allocates a reference, such as 157 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 158 * bpf_sk_release(). When a reference type passes into the release function, 159 * the verifier also releases the reference. If any unchecked or unreleased 160 * reference remains at the end of the program, the verifier rejects it. 161 */ 162 163 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 164 struct bpf_verifier_stack_elem { 165 /* verifer state is 'st' 166 * before processing instruction 'insn_idx' 167 * and after processing instruction 'prev_insn_idx' 168 */ 169 struct bpf_verifier_state st; 170 int insn_idx; 171 int prev_insn_idx; 172 struct bpf_verifier_stack_elem *next; 173 /* length of verifier log at the time this state was pushed on stack */ 174 u32 log_pos; 175 }; 176 177 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 178 #define BPF_COMPLEXITY_LIMIT_STATES 64 179 180 #define BPF_MAP_KEY_POISON (1ULL << 63) 181 #define BPF_MAP_KEY_SEEN (1ULL << 62) 182 183 #define BPF_MAP_PTR_UNPRIV 1UL 184 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 185 POISON_POINTER_DELTA)) 186 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 187 188 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 189 { 190 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 191 } 192 193 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 194 { 195 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 196 } 197 198 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 199 const struct bpf_map *map, bool unpriv) 200 { 201 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 202 unpriv |= bpf_map_ptr_unpriv(aux); 203 aux->map_ptr_state = (unsigned long)map | 204 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 205 } 206 207 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 208 { 209 return aux->map_key_state & BPF_MAP_KEY_POISON; 210 } 211 212 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 213 { 214 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 215 } 216 217 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 218 { 219 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 220 } 221 222 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 223 { 224 bool poisoned = bpf_map_key_poisoned(aux); 225 226 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 227 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 228 } 229 230 struct bpf_call_arg_meta { 231 struct bpf_map *map_ptr; 232 bool raw_mode; 233 bool pkt_access; 234 int regno; 235 int access_size; 236 u64 msize_max_value; 237 int ref_obj_id; 238 int func_id; 239 u32 btf_id; 240 }; 241 242 struct btf *btf_vmlinux; 243 244 static DEFINE_MUTEX(bpf_verifier_lock); 245 246 static const struct bpf_line_info * 247 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 248 { 249 const struct bpf_line_info *linfo; 250 const struct bpf_prog *prog; 251 u32 i, nr_linfo; 252 253 prog = env->prog; 254 nr_linfo = prog->aux->nr_linfo; 255 256 if (!nr_linfo || insn_off >= prog->len) 257 return NULL; 258 259 linfo = prog->aux->linfo; 260 for (i = 1; i < nr_linfo; i++) 261 if (insn_off < linfo[i].insn_off) 262 break; 263 264 return &linfo[i - 1]; 265 } 266 267 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 268 va_list args) 269 { 270 unsigned int n; 271 272 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 273 274 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 275 "verifier log line truncated - local buffer too short\n"); 276 277 n = min(log->len_total - log->len_used - 1, n); 278 log->kbuf[n] = '\0'; 279 280 if (log->level == BPF_LOG_KERNEL) { 281 pr_err("BPF:%s\n", log->kbuf); 282 return; 283 } 284 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 285 log->len_used += n; 286 else 287 log->ubuf = NULL; 288 } 289 290 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 291 { 292 char zero = 0; 293 294 if (!bpf_verifier_log_needed(log)) 295 return; 296 297 log->len_used = new_pos; 298 if (put_user(zero, log->ubuf + new_pos)) 299 log->ubuf = NULL; 300 } 301 302 /* log_level controls verbosity level of eBPF verifier. 303 * bpf_verifier_log_write() is used to dump the verification trace to the log, 304 * so the user can figure out what's wrong with the program 305 */ 306 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 307 const char *fmt, ...) 308 { 309 va_list args; 310 311 if (!bpf_verifier_log_needed(&env->log)) 312 return; 313 314 va_start(args, fmt); 315 bpf_verifier_vlog(&env->log, fmt, args); 316 va_end(args); 317 } 318 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 319 320 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 321 { 322 struct bpf_verifier_env *env = private_data; 323 va_list args; 324 325 if (!bpf_verifier_log_needed(&env->log)) 326 return; 327 328 va_start(args, fmt); 329 bpf_verifier_vlog(&env->log, fmt, args); 330 va_end(args); 331 } 332 333 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 334 const char *fmt, ...) 335 { 336 va_list args; 337 338 if (!bpf_verifier_log_needed(log)) 339 return; 340 341 va_start(args, fmt); 342 bpf_verifier_vlog(log, fmt, args); 343 va_end(args); 344 } 345 346 static const char *ltrim(const char *s) 347 { 348 while (isspace(*s)) 349 s++; 350 351 return s; 352 } 353 354 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 355 u32 insn_off, 356 const char *prefix_fmt, ...) 357 { 358 const struct bpf_line_info *linfo; 359 360 if (!bpf_verifier_log_needed(&env->log)) 361 return; 362 363 linfo = find_linfo(env, insn_off); 364 if (!linfo || linfo == env->prev_linfo) 365 return; 366 367 if (prefix_fmt) { 368 va_list args; 369 370 va_start(args, prefix_fmt); 371 bpf_verifier_vlog(&env->log, prefix_fmt, args); 372 va_end(args); 373 } 374 375 verbose(env, "%s\n", 376 ltrim(btf_name_by_offset(env->prog->aux->btf, 377 linfo->line_off))); 378 379 env->prev_linfo = linfo; 380 } 381 382 static bool type_is_pkt_pointer(enum bpf_reg_type type) 383 { 384 return type == PTR_TO_PACKET || 385 type == PTR_TO_PACKET_META; 386 } 387 388 static bool type_is_sk_pointer(enum bpf_reg_type type) 389 { 390 return type == PTR_TO_SOCKET || 391 type == PTR_TO_SOCK_COMMON || 392 type == PTR_TO_TCP_SOCK || 393 type == PTR_TO_XDP_SOCK; 394 } 395 396 static bool reg_type_may_be_null(enum bpf_reg_type type) 397 { 398 return type == PTR_TO_MAP_VALUE_OR_NULL || 399 type == PTR_TO_SOCKET_OR_NULL || 400 type == PTR_TO_SOCK_COMMON_OR_NULL || 401 type == PTR_TO_TCP_SOCK_OR_NULL; 402 } 403 404 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 405 { 406 return reg->type == PTR_TO_MAP_VALUE && 407 map_value_has_spin_lock(reg->map_ptr); 408 } 409 410 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 411 { 412 return type == PTR_TO_SOCKET || 413 type == PTR_TO_SOCKET_OR_NULL || 414 type == PTR_TO_TCP_SOCK || 415 type == PTR_TO_TCP_SOCK_OR_NULL; 416 } 417 418 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 419 { 420 return type == ARG_PTR_TO_SOCK_COMMON; 421 } 422 423 /* Determine whether the function releases some resources allocated by another 424 * function call. The first reference type argument will be assumed to be 425 * released by release_reference(). 426 */ 427 static bool is_release_function(enum bpf_func_id func_id) 428 { 429 return func_id == BPF_FUNC_sk_release; 430 } 431 432 static bool is_acquire_function(enum bpf_func_id func_id) 433 { 434 return func_id == BPF_FUNC_sk_lookup_tcp || 435 func_id == BPF_FUNC_sk_lookup_udp || 436 func_id == BPF_FUNC_skc_lookup_tcp; 437 } 438 439 static bool is_ptr_cast_function(enum bpf_func_id func_id) 440 { 441 return func_id == BPF_FUNC_tcp_sock || 442 func_id == BPF_FUNC_sk_fullsock; 443 } 444 445 /* string representation of 'enum bpf_reg_type' */ 446 static const char * const reg_type_str[] = { 447 [NOT_INIT] = "?", 448 [SCALAR_VALUE] = "inv", 449 [PTR_TO_CTX] = "ctx", 450 [CONST_PTR_TO_MAP] = "map_ptr", 451 [PTR_TO_MAP_VALUE] = "map_value", 452 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 453 [PTR_TO_STACK] = "fp", 454 [PTR_TO_PACKET] = "pkt", 455 [PTR_TO_PACKET_META] = "pkt_meta", 456 [PTR_TO_PACKET_END] = "pkt_end", 457 [PTR_TO_FLOW_KEYS] = "flow_keys", 458 [PTR_TO_SOCKET] = "sock", 459 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 460 [PTR_TO_SOCK_COMMON] = "sock_common", 461 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 462 [PTR_TO_TCP_SOCK] = "tcp_sock", 463 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 464 [PTR_TO_TP_BUFFER] = "tp_buffer", 465 [PTR_TO_XDP_SOCK] = "xdp_sock", 466 [PTR_TO_BTF_ID] = "ptr_", 467 }; 468 469 static char slot_type_char[] = { 470 [STACK_INVALID] = '?', 471 [STACK_SPILL] = 'r', 472 [STACK_MISC] = 'm', 473 [STACK_ZERO] = '0', 474 }; 475 476 static void print_liveness(struct bpf_verifier_env *env, 477 enum bpf_reg_liveness live) 478 { 479 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 480 verbose(env, "_"); 481 if (live & REG_LIVE_READ) 482 verbose(env, "r"); 483 if (live & REG_LIVE_WRITTEN) 484 verbose(env, "w"); 485 if (live & REG_LIVE_DONE) 486 verbose(env, "D"); 487 } 488 489 static struct bpf_func_state *func(struct bpf_verifier_env *env, 490 const struct bpf_reg_state *reg) 491 { 492 struct bpf_verifier_state *cur = env->cur_state; 493 494 return cur->frame[reg->frameno]; 495 } 496 497 const char *kernel_type_name(u32 id) 498 { 499 return btf_name_by_offset(btf_vmlinux, 500 btf_type_by_id(btf_vmlinux, id)->name_off); 501 } 502 503 static void print_verifier_state(struct bpf_verifier_env *env, 504 const struct bpf_func_state *state) 505 { 506 const struct bpf_reg_state *reg; 507 enum bpf_reg_type t; 508 int i; 509 510 if (state->frameno) 511 verbose(env, " frame%d:", state->frameno); 512 for (i = 0; i < MAX_BPF_REG; i++) { 513 reg = &state->regs[i]; 514 t = reg->type; 515 if (t == NOT_INIT) 516 continue; 517 verbose(env, " R%d", i); 518 print_liveness(env, reg->live); 519 verbose(env, "=%s", reg_type_str[t]); 520 if (t == SCALAR_VALUE && reg->precise) 521 verbose(env, "P"); 522 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 523 tnum_is_const(reg->var_off)) { 524 /* reg->off should be 0 for SCALAR_VALUE */ 525 verbose(env, "%lld", reg->var_off.value + reg->off); 526 } else { 527 if (t == PTR_TO_BTF_ID) 528 verbose(env, "%s", kernel_type_name(reg->btf_id)); 529 verbose(env, "(id=%d", reg->id); 530 if (reg_type_may_be_refcounted_or_null(t)) 531 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 532 if (t != SCALAR_VALUE) 533 verbose(env, ",off=%d", reg->off); 534 if (type_is_pkt_pointer(t)) 535 verbose(env, ",r=%d", reg->range); 536 else if (t == CONST_PTR_TO_MAP || 537 t == PTR_TO_MAP_VALUE || 538 t == PTR_TO_MAP_VALUE_OR_NULL) 539 verbose(env, ",ks=%d,vs=%d", 540 reg->map_ptr->key_size, 541 reg->map_ptr->value_size); 542 if (tnum_is_const(reg->var_off)) { 543 /* Typically an immediate SCALAR_VALUE, but 544 * could be a pointer whose offset is too big 545 * for reg->off 546 */ 547 verbose(env, ",imm=%llx", reg->var_off.value); 548 } else { 549 if (reg->smin_value != reg->umin_value && 550 reg->smin_value != S64_MIN) 551 verbose(env, ",smin_value=%lld", 552 (long long)reg->smin_value); 553 if (reg->smax_value != reg->umax_value && 554 reg->smax_value != S64_MAX) 555 verbose(env, ",smax_value=%lld", 556 (long long)reg->smax_value); 557 if (reg->umin_value != 0) 558 verbose(env, ",umin_value=%llu", 559 (unsigned long long)reg->umin_value); 560 if (reg->umax_value != U64_MAX) 561 verbose(env, ",umax_value=%llu", 562 (unsigned long long)reg->umax_value); 563 if (!tnum_is_unknown(reg->var_off)) { 564 char tn_buf[48]; 565 566 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 567 verbose(env, ",var_off=%s", tn_buf); 568 } 569 if (reg->s32_min_value != reg->smin_value && 570 reg->s32_min_value != S32_MIN) 571 verbose(env, ",s32_min_value=%d", 572 (int)(reg->s32_min_value)); 573 if (reg->s32_max_value != reg->smax_value && 574 reg->s32_max_value != S32_MAX) 575 verbose(env, ",s32_max_value=%d", 576 (int)(reg->s32_max_value)); 577 if (reg->u32_min_value != reg->umin_value && 578 reg->u32_min_value != U32_MIN) 579 verbose(env, ",u32_min_value=%d", 580 (int)(reg->u32_min_value)); 581 if (reg->u32_max_value != reg->umax_value && 582 reg->u32_max_value != U32_MAX) 583 verbose(env, ",u32_max_value=%d", 584 (int)(reg->u32_max_value)); 585 } 586 verbose(env, ")"); 587 } 588 } 589 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 590 char types_buf[BPF_REG_SIZE + 1]; 591 bool valid = false; 592 int j; 593 594 for (j = 0; j < BPF_REG_SIZE; j++) { 595 if (state->stack[i].slot_type[j] != STACK_INVALID) 596 valid = true; 597 types_buf[j] = slot_type_char[ 598 state->stack[i].slot_type[j]]; 599 } 600 types_buf[BPF_REG_SIZE] = 0; 601 if (!valid) 602 continue; 603 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 604 print_liveness(env, state->stack[i].spilled_ptr.live); 605 if (state->stack[i].slot_type[0] == STACK_SPILL) { 606 reg = &state->stack[i].spilled_ptr; 607 t = reg->type; 608 verbose(env, "=%s", reg_type_str[t]); 609 if (t == SCALAR_VALUE && reg->precise) 610 verbose(env, "P"); 611 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 612 verbose(env, "%lld", reg->var_off.value + reg->off); 613 } else { 614 verbose(env, "=%s", types_buf); 615 } 616 } 617 if (state->acquired_refs && state->refs[0].id) { 618 verbose(env, " refs=%d", state->refs[0].id); 619 for (i = 1; i < state->acquired_refs; i++) 620 if (state->refs[i].id) 621 verbose(env, ",%d", state->refs[i].id); 622 } 623 verbose(env, "\n"); 624 } 625 626 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 627 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 628 const struct bpf_func_state *src) \ 629 { \ 630 if (!src->FIELD) \ 631 return 0; \ 632 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 633 /* internal bug, make state invalid to reject the program */ \ 634 memset(dst, 0, sizeof(*dst)); \ 635 return -EFAULT; \ 636 } \ 637 memcpy(dst->FIELD, src->FIELD, \ 638 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 639 return 0; \ 640 } 641 /* copy_reference_state() */ 642 COPY_STATE_FN(reference, acquired_refs, refs, 1) 643 /* copy_stack_state() */ 644 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 645 #undef COPY_STATE_FN 646 647 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 648 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 649 bool copy_old) \ 650 { \ 651 u32 old_size = state->COUNT; \ 652 struct bpf_##NAME##_state *new_##FIELD; \ 653 int slot = size / SIZE; \ 654 \ 655 if (size <= old_size || !size) { \ 656 if (copy_old) \ 657 return 0; \ 658 state->COUNT = slot * SIZE; \ 659 if (!size && old_size) { \ 660 kfree(state->FIELD); \ 661 state->FIELD = NULL; \ 662 } \ 663 return 0; \ 664 } \ 665 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 666 GFP_KERNEL); \ 667 if (!new_##FIELD) \ 668 return -ENOMEM; \ 669 if (copy_old) { \ 670 if (state->FIELD) \ 671 memcpy(new_##FIELD, state->FIELD, \ 672 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 673 memset(new_##FIELD + old_size / SIZE, 0, \ 674 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 675 } \ 676 state->COUNT = slot * SIZE; \ 677 kfree(state->FIELD); \ 678 state->FIELD = new_##FIELD; \ 679 return 0; \ 680 } 681 /* realloc_reference_state() */ 682 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 683 /* realloc_stack_state() */ 684 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 685 #undef REALLOC_STATE_FN 686 687 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 688 * make it consume minimal amount of memory. check_stack_write() access from 689 * the program calls into realloc_func_state() to grow the stack size. 690 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 691 * which realloc_stack_state() copies over. It points to previous 692 * bpf_verifier_state which is never reallocated. 693 */ 694 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 695 int refs_size, bool copy_old) 696 { 697 int err = realloc_reference_state(state, refs_size, copy_old); 698 if (err) 699 return err; 700 return realloc_stack_state(state, stack_size, copy_old); 701 } 702 703 /* Acquire a pointer id from the env and update the state->refs to include 704 * this new pointer reference. 705 * On success, returns a valid pointer id to associate with the register 706 * On failure, returns a negative errno. 707 */ 708 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 709 { 710 struct bpf_func_state *state = cur_func(env); 711 int new_ofs = state->acquired_refs; 712 int id, err; 713 714 err = realloc_reference_state(state, state->acquired_refs + 1, true); 715 if (err) 716 return err; 717 id = ++env->id_gen; 718 state->refs[new_ofs].id = id; 719 state->refs[new_ofs].insn_idx = insn_idx; 720 721 return id; 722 } 723 724 /* release function corresponding to acquire_reference_state(). Idempotent. */ 725 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 726 { 727 int i, last_idx; 728 729 last_idx = state->acquired_refs - 1; 730 for (i = 0; i < state->acquired_refs; i++) { 731 if (state->refs[i].id == ptr_id) { 732 if (last_idx && i != last_idx) 733 memcpy(&state->refs[i], &state->refs[last_idx], 734 sizeof(*state->refs)); 735 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 736 state->acquired_refs--; 737 return 0; 738 } 739 } 740 return -EINVAL; 741 } 742 743 static int transfer_reference_state(struct bpf_func_state *dst, 744 struct bpf_func_state *src) 745 { 746 int err = realloc_reference_state(dst, src->acquired_refs, false); 747 if (err) 748 return err; 749 err = copy_reference_state(dst, src); 750 if (err) 751 return err; 752 return 0; 753 } 754 755 static void free_func_state(struct bpf_func_state *state) 756 { 757 if (!state) 758 return; 759 kfree(state->refs); 760 kfree(state->stack); 761 kfree(state); 762 } 763 764 static void clear_jmp_history(struct bpf_verifier_state *state) 765 { 766 kfree(state->jmp_history); 767 state->jmp_history = NULL; 768 state->jmp_history_cnt = 0; 769 } 770 771 static void free_verifier_state(struct bpf_verifier_state *state, 772 bool free_self) 773 { 774 int i; 775 776 for (i = 0; i <= state->curframe; i++) { 777 free_func_state(state->frame[i]); 778 state->frame[i] = NULL; 779 } 780 clear_jmp_history(state); 781 if (free_self) 782 kfree(state); 783 } 784 785 /* copy verifier state from src to dst growing dst stack space 786 * when necessary to accommodate larger src stack 787 */ 788 static int copy_func_state(struct bpf_func_state *dst, 789 const struct bpf_func_state *src) 790 { 791 int err; 792 793 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 794 false); 795 if (err) 796 return err; 797 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 798 err = copy_reference_state(dst, src); 799 if (err) 800 return err; 801 return copy_stack_state(dst, src); 802 } 803 804 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 805 const struct bpf_verifier_state *src) 806 { 807 struct bpf_func_state *dst; 808 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; 809 int i, err; 810 811 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { 812 kfree(dst_state->jmp_history); 813 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); 814 if (!dst_state->jmp_history) 815 return -ENOMEM; 816 } 817 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); 818 dst_state->jmp_history_cnt = src->jmp_history_cnt; 819 820 /* if dst has more stack frames then src frame, free them */ 821 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 822 free_func_state(dst_state->frame[i]); 823 dst_state->frame[i] = NULL; 824 } 825 dst_state->speculative = src->speculative; 826 dst_state->curframe = src->curframe; 827 dst_state->active_spin_lock = src->active_spin_lock; 828 dst_state->branches = src->branches; 829 dst_state->parent = src->parent; 830 dst_state->first_insn_idx = src->first_insn_idx; 831 dst_state->last_insn_idx = src->last_insn_idx; 832 for (i = 0; i <= src->curframe; i++) { 833 dst = dst_state->frame[i]; 834 if (!dst) { 835 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 836 if (!dst) 837 return -ENOMEM; 838 dst_state->frame[i] = dst; 839 } 840 err = copy_func_state(dst, src->frame[i]); 841 if (err) 842 return err; 843 } 844 return 0; 845 } 846 847 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 848 { 849 while (st) { 850 u32 br = --st->branches; 851 852 /* WARN_ON(br > 1) technically makes sense here, 853 * but see comment in push_stack(), hence: 854 */ 855 WARN_ONCE((int)br < 0, 856 "BUG update_branch_counts:branches_to_explore=%d\n", 857 br); 858 if (br) 859 break; 860 st = st->parent; 861 } 862 } 863 864 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 865 int *insn_idx, bool pop_log) 866 { 867 struct bpf_verifier_state *cur = env->cur_state; 868 struct bpf_verifier_stack_elem *elem, *head = env->head; 869 int err; 870 871 if (env->head == NULL) 872 return -ENOENT; 873 874 if (cur) { 875 err = copy_verifier_state(cur, &head->st); 876 if (err) 877 return err; 878 } 879 if (pop_log) 880 bpf_vlog_reset(&env->log, head->log_pos); 881 if (insn_idx) 882 *insn_idx = head->insn_idx; 883 if (prev_insn_idx) 884 *prev_insn_idx = head->prev_insn_idx; 885 elem = head->next; 886 free_verifier_state(&head->st, false); 887 kfree(head); 888 env->head = elem; 889 env->stack_size--; 890 return 0; 891 } 892 893 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 894 int insn_idx, int prev_insn_idx, 895 bool speculative) 896 { 897 struct bpf_verifier_state *cur = env->cur_state; 898 struct bpf_verifier_stack_elem *elem; 899 int err; 900 901 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 902 if (!elem) 903 goto err; 904 905 elem->insn_idx = insn_idx; 906 elem->prev_insn_idx = prev_insn_idx; 907 elem->next = env->head; 908 elem->log_pos = env->log.len_used; 909 env->head = elem; 910 env->stack_size++; 911 err = copy_verifier_state(&elem->st, cur); 912 if (err) 913 goto err; 914 elem->st.speculative |= speculative; 915 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 916 verbose(env, "The sequence of %d jumps is too complex.\n", 917 env->stack_size); 918 goto err; 919 } 920 if (elem->st.parent) { 921 ++elem->st.parent->branches; 922 /* WARN_ON(branches > 2) technically makes sense here, 923 * but 924 * 1. speculative states will bump 'branches' for non-branch 925 * instructions 926 * 2. is_state_visited() heuristics may decide not to create 927 * a new state for a sequence of branches and all such current 928 * and cloned states will be pointing to a single parent state 929 * which might have large 'branches' count. 930 */ 931 } 932 return &elem->st; 933 err: 934 free_verifier_state(env->cur_state, true); 935 env->cur_state = NULL; 936 /* pop all elements and return */ 937 while (!pop_stack(env, NULL, NULL, false)); 938 return NULL; 939 } 940 941 #define CALLER_SAVED_REGS 6 942 static const int caller_saved[CALLER_SAVED_REGS] = { 943 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 944 }; 945 946 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 947 struct bpf_reg_state *reg); 948 949 /* Mark the unknown part of a register (variable offset or scalar value) as 950 * known to have the value @imm. 951 */ 952 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 953 { 954 /* Clear id, off, and union(map_ptr, range) */ 955 memset(((u8 *)reg) + sizeof(reg->type), 0, 956 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 957 reg->var_off = tnum_const(imm); 958 reg->smin_value = (s64)imm; 959 reg->smax_value = (s64)imm; 960 reg->umin_value = imm; 961 reg->umax_value = imm; 962 963 reg->s32_min_value = (s32)imm; 964 reg->s32_max_value = (s32)imm; 965 reg->u32_min_value = (u32)imm; 966 reg->u32_max_value = (u32)imm; 967 } 968 969 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 970 { 971 reg->var_off = tnum_const_subreg(reg->var_off, imm); 972 reg->s32_min_value = (s32)imm; 973 reg->s32_max_value = (s32)imm; 974 reg->u32_min_value = (u32)imm; 975 reg->u32_max_value = (u32)imm; 976 } 977 978 /* Mark the 'variable offset' part of a register as zero. This should be 979 * used only on registers holding a pointer type. 980 */ 981 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 982 { 983 __mark_reg_known(reg, 0); 984 } 985 986 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 987 { 988 __mark_reg_known(reg, 0); 989 reg->type = SCALAR_VALUE; 990 } 991 992 static void mark_reg_known_zero(struct bpf_verifier_env *env, 993 struct bpf_reg_state *regs, u32 regno) 994 { 995 if (WARN_ON(regno >= MAX_BPF_REG)) { 996 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 997 /* Something bad happened, let's kill all regs */ 998 for (regno = 0; regno < MAX_BPF_REG; regno++) 999 __mark_reg_not_init(env, regs + regno); 1000 return; 1001 } 1002 __mark_reg_known_zero(regs + regno); 1003 } 1004 1005 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1006 { 1007 return type_is_pkt_pointer(reg->type); 1008 } 1009 1010 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1011 { 1012 return reg_is_pkt_pointer(reg) || 1013 reg->type == PTR_TO_PACKET_END; 1014 } 1015 1016 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1017 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1018 enum bpf_reg_type which) 1019 { 1020 /* The register can already have a range from prior markings. 1021 * This is fine as long as it hasn't been advanced from its 1022 * origin. 1023 */ 1024 return reg->type == which && 1025 reg->id == 0 && 1026 reg->off == 0 && 1027 tnum_equals_const(reg->var_off, 0); 1028 } 1029 1030 /* Reset the min/max bounds of a register */ 1031 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1032 { 1033 reg->smin_value = S64_MIN; 1034 reg->smax_value = S64_MAX; 1035 reg->umin_value = 0; 1036 reg->umax_value = U64_MAX; 1037 1038 reg->s32_min_value = S32_MIN; 1039 reg->s32_max_value = S32_MAX; 1040 reg->u32_min_value = 0; 1041 reg->u32_max_value = U32_MAX; 1042 } 1043 1044 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1045 { 1046 reg->smin_value = S64_MIN; 1047 reg->smax_value = S64_MAX; 1048 reg->umin_value = 0; 1049 reg->umax_value = U64_MAX; 1050 } 1051 1052 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1053 { 1054 reg->s32_min_value = S32_MIN; 1055 reg->s32_max_value = S32_MAX; 1056 reg->u32_min_value = 0; 1057 reg->u32_max_value = U32_MAX; 1058 } 1059 1060 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1061 { 1062 struct tnum var32_off = tnum_subreg(reg->var_off); 1063 1064 /* min signed is max(sign bit) | min(other bits) */ 1065 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1066 var32_off.value | (var32_off.mask & S32_MIN)); 1067 /* max signed is min(sign bit) | max(other bits) */ 1068 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1069 var32_off.value | (var32_off.mask & S32_MAX)); 1070 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1071 reg->u32_max_value = min(reg->u32_max_value, 1072 (u32)(var32_off.value | var32_off.mask)); 1073 } 1074 1075 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1076 { 1077 /* min signed is max(sign bit) | min(other bits) */ 1078 reg->smin_value = max_t(s64, reg->smin_value, 1079 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1080 /* max signed is min(sign bit) | max(other bits) */ 1081 reg->smax_value = min_t(s64, reg->smax_value, 1082 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1083 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1084 reg->umax_value = min(reg->umax_value, 1085 reg->var_off.value | reg->var_off.mask); 1086 } 1087 1088 static void __update_reg_bounds(struct bpf_reg_state *reg) 1089 { 1090 __update_reg32_bounds(reg); 1091 __update_reg64_bounds(reg); 1092 } 1093 1094 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1095 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1096 { 1097 /* Learn sign from signed bounds. 1098 * If we cannot cross the sign boundary, then signed and unsigned bounds 1099 * are the same, so combine. This works even in the negative case, e.g. 1100 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1101 */ 1102 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1103 reg->s32_min_value = reg->u32_min_value = 1104 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1105 reg->s32_max_value = reg->u32_max_value = 1106 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1107 return; 1108 } 1109 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1110 * boundary, so we must be careful. 1111 */ 1112 if ((s32)reg->u32_max_value >= 0) { 1113 /* Positive. We can't learn anything from the smin, but smax 1114 * is positive, hence safe. 1115 */ 1116 reg->s32_min_value = reg->u32_min_value; 1117 reg->s32_max_value = reg->u32_max_value = 1118 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1119 } else if ((s32)reg->u32_min_value < 0) { 1120 /* Negative. We can't learn anything from the smax, but smin 1121 * is negative, hence safe. 1122 */ 1123 reg->s32_min_value = reg->u32_min_value = 1124 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1125 reg->s32_max_value = reg->u32_max_value; 1126 } 1127 } 1128 1129 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1130 { 1131 /* Learn sign from signed bounds. 1132 * If we cannot cross the sign boundary, then signed and unsigned bounds 1133 * are the same, so combine. This works even in the negative case, e.g. 1134 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1135 */ 1136 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1137 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1138 reg->umin_value); 1139 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1140 reg->umax_value); 1141 return; 1142 } 1143 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1144 * boundary, so we must be careful. 1145 */ 1146 if ((s64)reg->umax_value >= 0) { 1147 /* Positive. We can't learn anything from the smin, but smax 1148 * is positive, hence safe. 1149 */ 1150 reg->smin_value = reg->umin_value; 1151 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1152 reg->umax_value); 1153 } else if ((s64)reg->umin_value < 0) { 1154 /* Negative. We can't learn anything from the smax, but smin 1155 * is negative, hence safe. 1156 */ 1157 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1158 reg->umin_value); 1159 reg->smax_value = reg->umax_value; 1160 } 1161 } 1162 1163 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1164 { 1165 __reg32_deduce_bounds(reg); 1166 __reg64_deduce_bounds(reg); 1167 } 1168 1169 /* Attempts to improve var_off based on unsigned min/max information */ 1170 static void __reg_bound_offset(struct bpf_reg_state *reg) 1171 { 1172 struct tnum var64_off = tnum_intersect(reg->var_off, 1173 tnum_range(reg->umin_value, 1174 reg->umax_value)); 1175 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1176 tnum_range(reg->u32_min_value, 1177 reg->u32_max_value)); 1178 1179 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1180 } 1181 1182 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1183 { 1184 reg->umin_value = reg->u32_min_value; 1185 reg->umax_value = reg->u32_max_value; 1186 /* Attempt to pull 32-bit signed bounds into 64-bit bounds 1187 * but must be positive otherwise set to worse case bounds 1188 * and refine later from tnum. 1189 */ 1190 if (reg->s32_min_value > 0) 1191 reg->smin_value = reg->s32_min_value; 1192 else 1193 reg->smin_value = 0; 1194 if (reg->s32_max_value > 0) 1195 reg->smax_value = reg->s32_max_value; 1196 else 1197 reg->smax_value = U32_MAX; 1198 } 1199 1200 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1201 { 1202 /* special case when 64-bit register has upper 32-bit register 1203 * zeroed. Typically happens after zext or <<32, >>32 sequence 1204 * allowing us to use 32-bit bounds directly, 1205 */ 1206 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1207 __reg_assign_32_into_64(reg); 1208 } else { 1209 /* Otherwise the best we can do is push lower 32bit known and 1210 * unknown bits into register (var_off set from jmp logic) 1211 * then learn as much as possible from the 64-bit tnum 1212 * known and unknown bits. The previous smin/smax bounds are 1213 * invalid here because of jmp32 compare so mark them unknown 1214 * so they do not impact tnum bounds calculation. 1215 */ 1216 __mark_reg64_unbounded(reg); 1217 __update_reg_bounds(reg); 1218 } 1219 1220 /* Intersecting with the old var_off might have improved our bounds 1221 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1222 * then new var_off is (0; 0x7f...fc) which improves our umax. 1223 */ 1224 __reg_deduce_bounds(reg); 1225 __reg_bound_offset(reg); 1226 __update_reg_bounds(reg); 1227 } 1228 1229 static bool __reg64_bound_s32(s64 a) 1230 { 1231 if (a > S32_MIN && a < S32_MAX) 1232 return true; 1233 return false; 1234 } 1235 1236 static bool __reg64_bound_u32(u64 a) 1237 { 1238 if (a > U32_MIN && a < U32_MAX) 1239 return true; 1240 return false; 1241 } 1242 1243 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1244 { 1245 __mark_reg32_unbounded(reg); 1246 1247 if (__reg64_bound_s32(reg->smin_value)) 1248 reg->s32_min_value = (s32)reg->smin_value; 1249 if (__reg64_bound_s32(reg->smax_value)) 1250 reg->s32_max_value = (s32)reg->smax_value; 1251 if (__reg64_bound_u32(reg->umin_value)) 1252 reg->u32_min_value = (u32)reg->umin_value; 1253 if (__reg64_bound_u32(reg->umax_value)) 1254 reg->u32_max_value = (u32)reg->umax_value; 1255 1256 /* Intersecting with the old var_off might have improved our bounds 1257 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1258 * then new var_off is (0; 0x7f...fc) which improves our umax. 1259 */ 1260 __reg_deduce_bounds(reg); 1261 __reg_bound_offset(reg); 1262 __update_reg_bounds(reg); 1263 } 1264 1265 /* Mark a register as having a completely unknown (scalar) value. */ 1266 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1267 struct bpf_reg_state *reg) 1268 { 1269 /* 1270 * Clear type, id, off, and union(map_ptr, range) and 1271 * padding between 'type' and union 1272 */ 1273 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1274 reg->type = SCALAR_VALUE; 1275 reg->var_off = tnum_unknown; 1276 reg->frameno = 0; 1277 reg->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks; 1278 __mark_reg_unbounded(reg); 1279 } 1280 1281 static void mark_reg_unknown(struct bpf_verifier_env *env, 1282 struct bpf_reg_state *regs, u32 regno) 1283 { 1284 if (WARN_ON(regno >= MAX_BPF_REG)) { 1285 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1286 /* Something bad happened, let's kill all regs except FP */ 1287 for (regno = 0; regno < BPF_REG_FP; regno++) 1288 __mark_reg_not_init(env, regs + regno); 1289 return; 1290 } 1291 __mark_reg_unknown(env, regs + regno); 1292 } 1293 1294 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1295 struct bpf_reg_state *reg) 1296 { 1297 __mark_reg_unknown(env, reg); 1298 reg->type = NOT_INIT; 1299 } 1300 1301 static void mark_reg_not_init(struct bpf_verifier_env *env, 1302 struct bpf_reg_state *regs, u32 regno) 1303 { 1304 if (WARN_ON(regno >= MAX_BPF_REG)) { 1305 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1306 /* Something bad happened, let's kill all regs except FP */ 1307 for (regno = 0; regno < BPF_REG_FP; regno++) 1308 __mark_reg_not_init(env, regs + regno); 1309 return; 1310 } 1311 __mark_reg_not_init(env, regs + regno); 1312 } 1313 1314 #define DEF_NOT_SUBREG (0) 1315 static void init_reg_state(struct bpf_verifier_env *env, 1316 struct bpf_func_state *state) 1317 { 1318 struct bpf_reg_state *regs = state->regs; 1319 int i; 1320 1321 for (i = 0; i < MAX_BPF_REG; i++) { 1322 mark_reg_not_init(env, regs, i); 1323 regs[i].live = REG_LIVE_NONE; 1324 regs[i].parent = NULL; 1325 regs[i].subreg_def = DEF_NOT_SUBREG; 1326 } 1327 1328 /* frame pointer */ 1329 regs[BPF_REG_FP].type = PTR_TO_STACK; 1330 mark_reg_known_zero(env, regs, BPF_REG_FP); 1331 regs[BPF_REG_FP].frameno = state->frameno; 1332 } 1333 1334 #define BPF_MAIN_FUNC (-1) 1335 static void init_func_state(struct bpf_verifier_env *env, 1336 struct bpf_func_state *state, 1337 int callsite, int frameno, int subprogno) 1338 { 1339 state->callsite = callsite; 1340 state->frameno = frameno; 1341 state->subprogno = subprogno; 1342 init_reg_state(env, state); 1343 } 1344 1345 enum reg_arg_type { 1346 SRC_OP, /* register is used as source operand */ 1347 DST_OP, /* register is used as destination operand */ 1348 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1349 }; 1350 1351 static int cmp_subprogs(const void *a, const void *b) 1352 { 1353 return ((struct bpf_subprog_info *)a)->start - 1354 ((struct bpf_subprog_info *)b)->start; 1355 } 1356 1357 static int find_subprog(struct bpf_verifier_env *env, int off) 1358 { 1359 struct bpf_subprog_info *p; 1360 1361 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1362 sizeof(env->subprog_info[0]), cmp_subprogs); 1363 if (!p) 1364 return -ENOENT; 1365 return p - env->subprog_info; 1366 1367 } 1368 1369 static int add_subprog(struct bpf_verifier_env *env, int off) 1370 { 1371 int insn_cnt = env->prog->len; 1372 int ret; 1373 1374 if (off >= insn_cnt || off < 0) { 1375 verbose(env, "call to invalid destination\n"); 1376 return -EINVAL; 1377 } 1378 ret = find_subprog(env, off); 1379 if (ret >= 0) 1380 return 0; 1381 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1382 verbose(env, "too many subprograms\n"); 1383 return -E2BIG; 1384 } 1385 env->subprog_info[env->subprog_cnt++].start = off; 1386 sort(env->subprog_info, env->subprog_cnt, 1387 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1388 return 0; 1389 } 1390 1391 static int check_subprogs(struct bpf_verifier_env *env) 1392 { 1393 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1394 struct bpf_subprog_info *subprog = env->subprog_info; 1395 struct bpf_insn *insn = env->prog->insnsi; 1396 int insn_cnt = env->prog->len; 1397 1398 /* Add entry function. */ 1399 ret = add_subprog(env, 0); 1400 if (ret < 0) 1401 return ret; 1402 1403 /* determine subprog starts. The end is one before the next starts */ 1404 for (i = 0; i < insn_cnt; i++) { 1405 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1406 continue; 1407 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1408 continue; 1409 if (!env->allow_ptr_leaks) { 1410 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1411 return -EPERM; 1412 } 1413 ret = add_subprog(env, i + insn[i].imm + 1); 1414 if (ret < 0) 1415 return ret; 1416 } 1417 1418 /* Add a fake 'exit' subprog which could simplify subprog iteration 1419 * logic. 'subprog_cnt' should not be increased. 1420 */ 1421 subprog[env->subprog_cnt].start = insn_cnt; 1422 1423 if (env->log.level & BPF_LOG_LEVEL2) 1424 for (i = 0; i < env->subprog_cnt; i++) 1425 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1426 1427 /* now check that all jumps are within the same subprog */ 1428 subprog_start = subprog[cur_subprog].start; 1429 subprog_end = subprog[cur_subprog + 1].start; 1430 for (i = 0; i < insn_cnt; i++) { 1431 u8 code = insn[i].code; 1432 1433 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1434 goto next; 1435 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1436 goto next; 1437 off = i + insn[i].off + 1; 1438 if (off < subprog_start || off >= subprog_end) { 1439 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1440 return -EINVAL; 1441 } 1442 next: 1443 if (i == subprog_end - 1) { 1444 /* to avoid fall-through from one subprog into another 1445 * the last insn of the subprog should be either exit 1446 * or unconditional jump back 1447 */ 1448 if (code != (BPF_JMP | BPF_EXIT) && 1449 code != (BPF_JMP | BPF_JA)) { 1450 verbose(env, "last insn is not an exit or jmp\n"); 1451 return -EINVAL; 1452 } 1453 subprog_start = subprog_end; 1454 cur_subprog++; 1455 if (cur_subprog < env->subprog_cnt) 1456 subprog_end = subprog[cur_subprog + 1].start; 1457 } 1458 } 1459 return 0; 1460 } 1461 1462 /* Parentage chain of this register (or stack slot) should take care of all 1463 * issues like callee-saved registers, stack slot allocation time, etc. 1464 */ 1465 static int mark_reg_read(struct bpf_verifier_env *env, 1466 const struct bpf_reg_state *state, 1467 struct bpf_reg_state *parent, u8 flag) 1468 { 1469 bool writes = parent == state->parent; /* Observe write marks */ 1470 int cnt = 0; 1471 1472 while (parent) { 1473 /* if read wasn't screened by an earlier write ... */ 1474 if (writes && state->live & REG_LIVE_WRITTEN) 1475 break; 1476 if (parent->live & REG_LIVE_DONE) { 1477 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1478 reg_type_str[parent->type], 1479 parent->var_off.value, parent->off); 1480 return -EFAULT; 1481 } 1482 /* The first condition is more likely to be true than the 1483 * second, checked it first. 1484 */ 1485 if ((parent->live & REG_LIVE_READ) == flag || 1486 parent->live & REG_LIVE_READ64) 1487 /* The parentage chain never changes and 1488 * this parent was already marked as LIVE_READ. 1489 * There is no need to keep walking the chain again and 1490 * keep re-marking all parents as LIVE_READ. 1491 * This case happens when the same register is read 1492 * multiple times without writes into it in-between. 1493 * Also, if parent has the stronger REG_LIVE_READ64 set, 1494 * then no need to set the weak REG_LIVE_READ32. 1495 */ 1496 break; 1497 /* ... then we depend on parent's value */ 1498 parent->live |= flag; 1499 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1500 if (flag == REG_LIVE_READ64) 1501 parent->live &= ~REG_LIVE_READ32; 1502 state = parent; 1503 parent = state->parent; 1504 writes = true; 1505 cnt++; 1506 } 1507 1508 if (env->longest_mark_read_walk < cnt) 1509 env->longest_mark_read_walk = cnt; 1510 return 0; 1511 } 1512 1513 /* This function is supposed to be used by the following 32-bit optimization 1514 * code only. It returns TRUE if the source or destination register operates 1515 * on 64-bit, otherwise return FALSE. 1516 */ 1517 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1518 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1519 { 1520 u8 code, class, op; 1521 1522 code = insn->code; 1523 class = BPF_CLASS(code); 1524 op = BPF_OP(code); 1525 if (class == BPF_JMP) { 1526 /* BPF_EXIT for "main" will reach here. Return TRUE 1527 * conservatively. 1528 */ 1529 if (op == BPF_EXIT) 1530 return true; 1531 if (op == BPF_CALL) { 1532 /* BPF to BPF call will reach here because of marking 1533 * caller saved clobber with DST_OP_NO_MARK for which we 1534 * don't care the register def because they are anyway 1535 * marked as NOT_INIT already. 1536 */ 1537 if (insn->src_reg == BPF_PSEUDO_CALL) 1538 return false; 1539 /* Helper call will reach here because of arg type 1540 * check, conservatively return TRUE. 1541 */ 1542 if (t == SRC_OP) 1543 return true; 1544 1545 return false; 1546 } 1547 } 1548 1549 if (class == BPF_ALU64 || class == BPF_JMP || 1550 /* BPF_END always use BPF_ALU class. */ 1551 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1552 return true; 1553 1554 if (class == BPF_ALU || class == BPF_JMP32) 1555 return false; 1556 1557 if (class == BPF_LDX) { 1558 if (t != SRC_OP) 1559 return BPF_SIZE(code) == BPF_DW; 1560 /* LDX source must be ptr. */ 1561 return true; 1562 } 1563 1564 if (class == BPF_STX) { 1565 if (reg->type != SCALAR_VALUE) 1566 return true; 1567 return BPF_SIZE(code) == BPF_DW; 1568 } 1569 1570 if (class == BPF_LD) { 1571 u8 mode = BPF_MODE(code); 1572 1573 /* LD_IMM64 */ 1574 if (mode == BPF_IMM) 1575 return true; 1576 1577 /* Both LD_IND and LD_ABS return 32-bit data. */ 1578 if (t != SRC_OP) 1579 return false; 1580 1581 /* Implicit ctx ptr. */ 1582 if (regno == BPF_REG_6) 1583 return true; 1584 1585 /* Explicit source could be any width. */ 1586 return true; 1587 } 1588 1589 if (class == BPF_ST) 1590 /* The only source register for BPF_ST is a ptr. */ 1591 return true; 1592 1593 /* Conservatively return true at default. */ 1594 return true; 1595 } 1596 1597 /* Return TRUE if INSN doesn't have explicit value define. */ 1598 static bool insn_no_def(struct bpf_insn *insn) 1599 { 1600 u8 class = BPF_CLASS(insn->code); 1601 1602 return (class == BPF_JMP || class == BPF_JMP32 || 1603 class == BPF_STX || class == BPF_ST); 1604 } 1605 1606 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1607 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1608 { 1609 if (insn_no_def(insn)) 1610 return false; 1611 1612 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); 1613 } 1614 1615 static void mark_insn_zext(struct bpf_verifier_env *env, 1616 struct bpf_reg_state *reg) 1617 { 1618 s32 def_idx = reg->subreg_def; 1619 1620 if (def_idx == DEF_NOT_SUBREG) 1621 return; 1622 1623 env->insn_aux_data[def_idx - 1].zext_dst = true; 1624 /* The dst will be zero extended, so won't be sub-register anymore. */ 1625 reg->subreg_def = DEF_NOT_SUBREG; 1626 } 1627 1628 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1629 enum reg_arg_type t) 1630 { 1631 struct bpf_verifier_state *vstate = env->cur_state; 1632 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1633 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 1634 struct bpf_reg_state *reg, *regs = state->regs; 1635 bool rw64; 1636 1637 if (regno >= MAX_BPF_REG) { 1638 verbose(env, "R%d is invalid\n", regno); 1639 return -EINVAL; 1640 } 1641 1642 reg = ®s[regno]; 1643 rw64 = is_reg64(env, insn, regno, reg, t); 1644 if (t == SRC_OP) { 1645 /* check whether register used as source operand can be read */ 1646 if (reg->type == NOT_INIT) { 1647 verbose(env, "R%d !read_ok\n", regno); 1648 return -EACCES; 1649 } 1650 /* We don't need to worry about FP liveness because it's read-only */ 1651 if (regno == BPF_REG_FP) 1652 return 0; 1653 1654 if (rw64) 1655 mark_insn_zext(env, reg); 1656 1657 return mark_reg_read(env, reg, reg->parent, 1658 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 1659 } else { 1660 /* check whether register used as dest operand can be written to */ 1661 if (regno == BPF_REG_FP) { 1662 verbose(env, "frame pointer is read only\n"); 1663 return -EACCES; 1664 } 1665 reg->live |= REG_LIVE_WRITTEN; 1666 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 1667 if (t == DST_OP) 1668 mark_reg_unknown(env, regs, regno); 1669 } 1670 return 0; 1671 } 1672 1673 /* for any branch, call, exit record the history of jmps in the given state */ 1674 static int push_jmp_history(struct bpf_verifier_env *env, 1675 struct bpf_verifier_state *cur) 1676 { 1677 u32 cnt = cur->jmp_history_cnt; 1678 struct bpf_idx_pair *p; 1679 1680 cnt++; 1681 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 1682 if (!p) 1683 return -ENOMEM; 1684 p[cnt - 1].idx = env->insn_idx; 1685 p[cnt - 1].prev_idx = env->prev_insn_idx; 1686 cur->jmp_history = p; 1687 cur->jmp_history_cnt = cnt; 1688 return 0; 1689 } 1690 1691 /* Backtrack one insn at a time. If idx is not at the top of recorded 1692 * history then previous instruction came from straight line execution. 1693 */ 1694 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 1695 u32 *history) 1696 { 1697 u32 cnt = *history; 1698 1699 if (cnt && st->jmp_history[cnt - 1].idx == i) { 1700 i = st->jmp_history[cnt - 1].prev_idx; 1701 (*history)--; 1702 } else { 1703 i--; 1704 } 1705 return i; 1706 } 1707 1708 /* For given verifier state backtrack_insn() is called from the last insn to 1709 * the first insn. Its purpose is to compute a bitmask of registers and 1710 * stack slots that needs precision in the parent verifier state. 1711 */ 1712 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 1713 u32 *reg_mask, u64 *stack_mask) 1714 { 1715 const struct bpf_insn_cbs cbs = { 1716 .cb_print = verbose, 1717 .private_data = env, 1718 }; 1719 struct bpf_insn *insn = env->prog->insnsi + idx; 1720 u8 class = BPF_CLASS(insn->code); 1721 u8 opcode = BPF_OP(insn->code); 1722 u8 mode = BPF_MODE(insn->code); 1723 u32 dreg = 1u << insn->dst_reg; 1724 u32 sreg = 1u << insn->src_reg; 1725 u32 spi; 1726 1727 if (insn->code == 0) 1728 return 0; 1729 if (env->log.level & BPF_LOG_LEVEL) { 1730 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 1731 verbose(env, "%d: ", idx); 1732 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 1733 } 1734 1735 if (class == BPF_ALU || class == BPF_ALU64) { 1736 if (!(*reg_mask & dreg)) 1737 return 0; 1738 if (opcode == BPF_MOV) { 1739 if (BPF_SRC(insn->code) == BPF_X) { 1740 /* dreg = sreg 1741 * dreg needs precision after this insn 1742 * sreg needs precision before this insn 1743 */ 1744 *reg_mask &= ~dreg; 1745 *reg_mask |= sreg; 1746 } else { 1747 /* dreg = K 1748 * dreg needs precision after this insn. 1749 * Corresponding register is already marked 1750 * as precise=true in this verifier state. 1751 * No further markings in parent are necessary 1752 */ 1753 *reg_mask &= ~dreg; 1754 } 1755 } else { 1756 if (BPF_SRC(insn->code) == BPF_X) { 1757 /* dreg += sreg 1758 * both dreg and sreg need precision 1759 * before this insn 1760 */ 1761 *reg_mask |= sreg; 1762 } /* else dreg += K 1763 * dreg still needs precision before this insn 1764 */ 1765 } 1766 } else if (class == BPF_LDX) { 1767 if (!(*reg_mask & dreg)) 1768 return 0; 1769 *reg_mask &= ~dreg; 1770 1771 /* scalars can only be spilled into stack w/o losing precision. 1772 * Load from any other memory can be zero extended. 1773 * The desire to keep that precision is already indicated 1774 * by 'precise' mark in corresponding register of this state. 1775 * No further tracking necessary. 1776 */ 1777 if (insn->src_reg != BPF_REG_FP) 1778 return 0; 1779 if (BPF_SIZE(insn->code) != BPF_DW) 1780 return 0; 1781 1782 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 1783 * that [fp - off] slot contains scalar that needs to be 1784 * tracked with precision 1785 */ 1786 spi = (-insn->off - 1) / BPF_REG_SIZE; 1787 if (spi >= 64) { 1788 verbose(env, "BUG spi %d\n", spi); 1789 WARN_ONCE(1, "verifier backtracking bug"); 1790 return -EFAULT; 1791 } 1792 *stack_mask |= 1ull << spi; 1793 } else if (class == BPF_STX || class == BPF_ST) { 1794 if (*reg_mask & dreg) 1795 /* stx & st shouldn't be using _scalar_ dst_reg 1796 * to access memory. It means backtracking 1797 * encountered a case of pointer subtraction. 1798 */ 1799 return -ENOTSUPP; 1800 /* scalars can only be spilled into stack */ 1801 if (insn->dst_reg != BPF_REG_FP) 1802 return 0; 1803 if (BPF_SIZE(insn->code) != BPF_DW) 1804 return 0; 1805 spi = (-insn->off - 1) / BPF_REG_SIZE; 1806 if (spi >= 64) { 1807 verbose(env, "BUG spi %d\n", spi); 1808 WARN_ONCE(1, "verifier backtracking bug"); 1809 return -EFAULT; 1810 } 1811 if (!(*stack_mask & (1ull << spi))) 1812 return 0; 1813 *stack_mask &= ~(1ull << spi); 1814 if (class == BPF_STX) 1815 *reg_mask |= sreg; 1816 } else if (class == BPF_JMP || class == BPF_JMP32) { 1817 if (opcode == BPF_CALL) { 1818 if (insn->src_reg == BPF_PSEUDO_CALL) 1819 return -ENOTSUPP; 1820 /* regular helper call sets R0 */ 1821 *reg_mask &= ~1; 1822 if (*reg_mask & 0x3f) { 1823 /* if backtracing was looking for registers R1-R5 1824 * they should have been found already. 1825 */ 1826 verbose(env, "BUG regs %x\n", *reg_mask); 1827 WARN_ONCE(1, "verifier backtracking bug"); 1828 return -EFAULT; 1829 } 1830 } else if (opcode == BPF_EXIT) { 1831 return -ENOTSUPP; 1832 } 1833 } else if (class == BPF_LD) { 1834 if (!(*reg_mask & dreg)) 1835 return 0; 1836 *reg_mask &= ~dreg; 1837 /* It's ld_imm64 or ld_abs or ld_ind. 1838 * For ld_imm64 no further tracking of precision 1839 * into parent is necessary 1840 */ 1841 if (mode == BPF_IND || mode == BPF_ABS) 1842 /* to be analyzed */ 1843 return -ENOTSUPP; 1844 } 1845 return 0; 1846 } 1847 1848 /* the scalar precision tracking algorithm: 1849 * . at the start all registers have precise=false. 1850 * . scalar ranges are tracked as normal through alu and jmp insns. 1851 * . once precise value of the scalar register is used in: 1852 * . ptr + scalar alu 1853 * . if (scalar cond K|scalar) 1854 * . helper_call(.., scalar, ...) where ARG_CONST is expected 1855 * backtrack through the verifier states and mark all registers and 1856 * stack slots with spilled constants that these scalar regisers 1857 * should be precise. 1858 * . during state pruning two registers (or spilled stack slots) 1859 * are equivalent if both are not precise. 1860 * 1861 * Note the verifier cannot simply walk register parentage chain, 1862 * since many different registers and stack slots could have been 1863 * used to compute single precise scalar. 1864 * 1865 * The approach of starting with precise=true for all registers and then 1866 * backtrack to mark a register as not precise when the verifier detects 1867 * that program doesn't care about specific value (e.g., when helper 1868 * takes register as ARG_ANYTHING parameter) is not safe. 1869 * 1870 * It's ok to walk single parentage chain of the verifier states. 1871 * It's possible that this backtracking will go all the way till 1st insn. 1872 * All other branches will be explored for needing precision later. 1873 * 1874 * The backtracking needs to deal with cases like: 1875 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 1876 * r9 -= r8 1877 * r5 = r9 1878 * if r5 > 0x79f goto pc+7 1879 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 1880 * r5 += 1 1881 * ... 1882 * call bpf_perf_event_output#25 1883 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 1884 * 1885 * and this case: 1886 * r6 = 1 1887 * call foo // uses callee's r6 inside to compute r0 1888 * r0 += r6 1889 * if r0 == 0 goto 1890 * 1891 * to track above reg_mask/stack_mask needs to be independent for each frame. 1892 * 1893 * Also if parent's curframe > frame where backtracking started, 1894 * the verifier need to mark registers in both frames, otherwise callees 1895 * may incorrectly prune callers. This is similar to 1896 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 1897 * 1898 * For now backtracking falls back into conservative marking. 1899 */ 1900 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 1901 struct bpf_verifier_state *st) 1902 { 1903 struct bpf_func_state *func; 1904 struct bpf_reg_state *reg; 1905 int i, j; 1906 1907 /* big hammer: mark all scalars precise in this path. 1908 * pop_stack may still get !precise scalars. 1909 */ 1910 for (; st; st = st->parent) 1911 for (i = 0; i <= st->curframe; i++) { 1912 func = st->frame[i]; 1913 for (j = 0; j < BPF_REG_FP; j++) { 1914 reg = &func->regs[j]; 1915 if (reg->type != SCALAR_VALUE) 1916 continue; 1917 reg->precise = true; 1918 } 1919 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 1920 if (func->stack[j].slot_type[0] != STACK_SPILL) 1921 continue; 1922 reg = &func->stack[j].spilled_ptr; 1923 if (reg->type != SCALAR_VALUE) 1924 continue; 1925 reg->precise = true; 1926 } 1927 } 1928 } 1929 1930 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 1931 int spi) 1932 { 1933 struct bpf_verifier_state *st = env->cur_state; 1934 int first_idx = st->first_insn_idx; 1935 int last_idx = env->insn_idx; 1936 struct bpf_func_state *func; 1937 struct bpf_reg_state *reg; 1938 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 1939 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 1940 bool skip_first = true; 1941 bool new_marks = false; 1942 int i, err; 1943 1944 if (!env->allow_ptr_leaks) 1945 /* backtracking is root only for now */ 1946 return 0; 1947 1948 func = st->frame[st->curframe]; 1949 if (regno >= 0) { 1950 reg = &func->regs[regno]; 1951 if (reg->type != SCALAR_VALUE) { 1952 WARN_ONCE(1, "backtracing misuse"); 1953 return -EFAULT; 1954 } 1955 if (!reg->precise) 1956 new_marks = true; 1957 else 1958 reg_mask = 0; 1959 reg->precise = true; 1960 } 1961 1962 while (spi >= 0) { 1963 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 1964 stack_mask = 0; 1965 break; 1966 } 1967 reg = &func->stack[spi].spilled_ptr; 1968 if (reg->type != SCALAR_VALUE) { 1969 stack_mask = 0; 1970 break; 1971 } 1972 if (!reg->precise) 1973 new_marks = true; 1974 else 1975 stack_mask = 0; 1976 reg->precise = true; 1977 break; 1978 } 1979 1980 if (!new_marks) 1981 return 0; 1982 if (!reg_mask && !stack_mask) 1983 return 0; 1984 for (;;) { 1985 DECLARE_BITMAP(mask, 64); 1986 u32 history = st->jmp_history_cnt; 1987 1988 if (env->log.level & BPF_LOG_LEVEL) 1989 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 1990 for (i = last_idx;;) { 1991 if (skip_first) { 1992 err = 0; 1993 skip_first = false; 1994 } else { 1995 err = backtrack_insn(env, i, ®_mask, &stack_mask); 1996 } 1997 if (err == -ENOTSUPP) { 1998 mark_all_scalars_precise(env, st); 1999 return 0; 2000 } else if (err) { 2001 return err; 2002 } 2003 if (!reg_mask && !stack_mask) 2004 /* Found assignment(s) into tracked register in this state. 2005 * Since this state is already marked, just return. 2006 * Nothing to be tracked further in the parent state. 2007 */ 2008 return 0; 2009 if (i == first_idx) 2010 break; 2011 i = get_prev_insn_idx(st, i, &history); 2012 if (i >= env->prog->len) { 2013 /* This can happen if backtracking reached insn 0 2014 * and there are still reg_mask or stack_mask 2015 * to backtrack. 2016 * It means the backtracking missed the spot where 2017 * particular register was initialized with a constant. 2018 */ 2019 verbose(env, "BUG backtracking idx %d\n", i); 2020 WARN_ONCE(1, "verifier backtracking bug"); 2021 return -EFAULT; 2022 } 2023 } 2024 st = st->parent; 2025 if (!st) 2026 break; 2027 2028 new_marks = false; 2029 func = st->frame[st->curframe]; 2030 bitmap_from_u64(mask, reg_mask); 2031 for_each_set_bit(i, mask, 32) { 2032 reg = &func->regs[i]; 2033 if (reg->type != SCALAR_VALUE) { 2034 reg_mask &= ~(1u << i); 2035 continue; 2036 } 2037 if (!reg->precise) 2038 new_marks = true; 2039 reg->precise = true; 2040 } 2041 2042 bitmap_from_u64(mask, stack_mask); 2043 for_each_set_bit(i, mask, 64) { 2044 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2045 /* the sequence of instructions: 2046 * 2: (bf) r3 = r10 2047 * 3: (7b) *(u64 *)(r3 -8) = r0 2048 * 4: (79) r4 = *(u64 *)(r10 -8) 2049 * doesn't contain jmps. It's backtracked 2050 * as a single block. 2051 * During backtracking insn 3 is not recognized as 2052 * stack access, so at the end of backtracking 2053 * stack slot fp-8 is still marked in stack_mask. 2054 * However the parent state may not have accessed 2055 * fp-8 and it's "unallocated" stack space. 2056 * In such case fallback to conservative. 2057 */ 2058 mark_all_scalars_precise(env, st); 2059 return 0; 2060 } 2061 2062 if (func->stack[i].slot_type[0] != STACK_SPILL) { 2063 stack_mask &= ~(1ull << i); 2064 continue; 2065 } 2066 reg = &func->stack[i].spilled_ptr; 2067 if (reg->type != SCALAR_VALUE) { 2068 stack_mask &= ~(1ull << i); 2069 continue; 2070 } 2071 if (!reg->precise) 2072 new_marks = true; 2073 reg->precise = true; 2074 } 2075 if (env->log.level & BPF_LOG_LEVEL) { 2076 print_verifier_state(env, func); 2077 verbose(env, "parent %s regs=%x stack=%llx marks\n", 2078 new_marks ? "didn't have" : "already had", 2079 reg_mask, stack_mask); 2080 } 2081 2082 if (!reg_mask && !stack_mask) 2083 break; 2084 if (!new_marks) 2085 break; 2086 2087 last_idx = st->last_insn_idx; 2088 first_idx = st->first_insn_idx; 2089 } 2090 return 0; 2091 } 2092 2093 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2094 { 2095 return __mark_chain_precision(env, regno, -1); 2096 } 2097 2098 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2099 { 2100 return __mark_chain_precision(env, -1, spi); 2101 } 2102 2103 static bool is_spillable_regtype(enum bpf_reg_type type) 2104 { 2105 switch (type) { 2106 case PTR_TO_MAP_VALUE: 2107 case PTR_TO_MAP_VALUE_OR_NULL: 2108 case PTR_TO_STACK: 2109 case PTR_TO_CTX: 2110 case PTR_TO_PACKET: 2111 case PTR_TO_PACKET_META: 2112 case PTR_TO_PACKET_END: 2113 case PTR_TO_FLOW_KEYS: 2114 case CONST_PTR_TO_MAP: 2115 case PTR_TO_SOCKET: 2116 case PTR_TO_SOCKET_OR_NULL: 2117 case PTR_TO_SOCK_COMMON: 2118 case PTR_TO_SOCK_COMMON_OR_NULL: 2119 case PTR_TO_TCP_SOCK: 2120 case PTR_TO_TCP_SOCK_OR_NULL: 2121 case PTR_TO_XDP_SOCK: 2122 case PTR_TO_BTF_ID: 2123 return true; 2124 default: 2125 return false; 2126 } 2127 } 2128 2129 /* Does this register contain a constant zero? */ 2130 static bool register_is_null(struct bpf_reg_state *reg) 2131 { 2132 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2133 } 2134 2135 static bool register_is_const(struct bpf_reg_state *reg) 2136 { 2137 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2138 } 2139 2140 static bool __is_pointer_value(bool allow_ptr_leaks, 2141 const struct bpf_reg_state *reg) 2142 { 2143 if (allow_ptr_leaks) 2144 return false; 2145 2146 return reg->type != SCALAR_VALUE; 2147 } 2148 2149 static void save_register_state(struct bpf_func_state *state, 2150 int spi, struct bpf_reg_state *reg) 2151 { 2152 int i; 2153 2154 state->stack[spi].spilled_ptr = *reg; 2155 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2156 2157 for (i = 0; i < BPF_REG_SIZE; i++) 2158 state->stack[spi].slot_type[i] = STACK_SPILL; 2159 } 2160 2161 /* check_stack_read/write functions track spill/fill of registers, 2162 * stack boundary and alignment are checked in check_mem_access() 2163 */ 2164 static int check_stack_write(struct bpf_verifier_env *env, 2165 struct bpf_func_state *state, /* func where register points to */ 2166 int off, int size, int value_regno, int insn_idx) 2167 { 2168 struct bpf_func_state *cur; /* state of the current function */ 2169 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2170 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2171 struct bpf_reg_state *reg = NULL; 2172 2173 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 2174 state->acquired_refs, true); 2175 if (err) 2176 return err; 2177 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2178 * so it's aligned access and [off, off + size) are within stack limits 2179 */ 2180 if (!env->allow_ptr_leaks && 2181 state->stack[spi].slot_type[0] == STACK_SPILL && 2182 size != BPF_REG_SIZE) { 2183 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2184 return -EACCES; 2185 } 2186 2187 cur = env->cur_state->frame[env->cur_state->curframe]; 2188 if (value_regno >= 0) 2189 reg = &cur->regs[value_regno]; 2190 2191 if (reg && size == BPF_REG_SIZE && register_is_const(reg) && 2192 !register_is_null(reg) && env->allow_ptr_leaks) { 2193 if (dst_reg != BPF_REG_FP) { 2194 /* The backtracking logic can only recognize explicit 2195 * stack slot address like [fp - 8]. Other spill of 2196 * scalar via different register has to be conervative. 2197 * Backtrack from here and mark all registers as precise 2198 * that contributed into 'reg' being a constant. 2199 */ 2200 err = mark_chain_precision(env, value_regno); 2201 if (err) 2202 return err; 2203 } 2204 save_register_state(state, spi, reg); 2205 } else if (reg && is_spillable_regtype(reg->type)) { 2206 /* register containing pointer is being spilled into stack */ 2207 if (size != BPF_REG_SIZE) { 2208 verbose_linfo(env, insn_idx, "; "); 2209 verbose(env, "invalid size of register spill\n"); 2210 return -EACCES; 2211 } 2212 2213 if (state != cur && reg->type == PTR_TO_STACK) { 2214 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2215 return -EINVAL; 2216 } 2217 2218 if (!env->allow_ptr_leaks) { 2219 bool sanitize = false; 2220 2221 if (state->stack[spi].slot_type[0] == STACK_SPILL && 2222 register_is_const(&state->stack[spi].spilled_ptr)) 2223 sanitize = true; 2224 for (i = 0; i < BPF_REG_SIZE; i++) 2225 if (state->stack[spi].slot_type[i] == STACK_MISC) { 2226 sanitize = true; 2227 break; 2228 } 2229 if (sanitize) { 2230 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 2231 int soff = (-spi - 1) * BPF_REG_SIZE; 2232 2233 /* detected reuse of integer stack slot with a pointer 2234 * which means either llvm is reusing stack slot or 2235 * an attacker is trying to exploit CVE-2018-3639 2236 * (speculative store bypass) 2237 * Have to sanitize that slot with preemptive 2238 * store of zero. 2239 */ 2240 if (*poff && *poff != soff) { 2241 /* disallow programs where single insn stores 2242 * into two different stack slots, since verifier 2243 * cannot sanitize them 2244 */ 2245 verbose(env, 2246 "insn %d cannot access two stack slots fp%d and fp%d", 2247 insn_idx, *poff, soff); 2248 return -EINVAL; 2249 } 2250 *poff = soff; 2251 } 2252 } 2253 save_register_state(state, spi, reg); 2254 } else { 2255 u8 type = STACK_MISC; 2256 2257 /* regular write of data into stack destroys any spilled ptr */ 2258 state->stack[spi].spilled_ptr.type = NOT_INIT; 2259 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2260 if (state->stack[spi].slot_type[0] == STACK_SPILL) 2261 for (i = 0; i < BPF_REG_SIZE; i++) 2262 state->stack[spi].slot_type[i] = STACK_MISC; 2263 2264 /* only mark the slot as written if all 8 bytes were written 2265 * otherwise read propagation may incorrectly stop too soon 2266 * when stack slots are partially written. 2267 * This heuristic means that read propagation will be 2268 * conservative, since it will add reg_live_read marks 2269 * to stack slots all the way to first state when programs 2270 * writes+reads less than 8 bytes 2271 */ 2272 if (size == BPF_REG_SIZE) 2273 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2274 2275 /* when we zero initialize stack slots mark them as such */ 2276 if (reg && register_is_null(reg)) { 2277 /* backtracking doesn't work for STACK_ZERO yet. */ 2278 err = mark_chain_precision(env, value_regno); 2279 if (err) 2280 return err; 2281 type = STACK_ZERO; 2282 } 2283 2284 /* Mark slots affected by this stack write. */ 2285 for (i = 0; i < size; i++) 2286 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2287 type; 2288 } 2289 return 0; 2290 } 2291 2292 static int check_stack_read(struct bpf_verifier_env *env, 2293 struct bpf_func_state *reg_state /* func where register points to */, 2294 int off, int size, int value_regno) 2295 { 2296 struct bpf_verifier_state *vstate = env->cur_state; 2297 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2298 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2299 struct bpf_reg_state *reg; 2300 u8 *stype; 2301 2302 if (reg_state->allocated_stack <= slot) { 2303 verbose(env, "invalid read from stack off %d+0 size %d\n", 2304 off, size); 2305 return -EACCES; 2306 } 2307 stype = reg_state->stack[spi].slot_type; 2308 reg = ®_state->stack[spi].spilled_ptr; 2309 2310 if (stype[0] == STACK_SPILL) { 2311 if (size != BPF_REG_SIZE) { 2312 if (reg->type != SCALAR_VALUE) { 2313 verbose_linfo(env, env->insn_idx, "; "); 2314 verbose(env, "invalid size of register fill\n"); 2315 return -EACCES; 2316 } 2317 if (value_regno >= 0) { 2318 mark_reg_unknown(env, state->regs, value_regno); 2319 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2320 } 2321 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2322 return 0; 2323 } 2324 for (i = 1; i < BPF_REG_SIZE; i++) { 2325 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2326 verbose(env, "corrupted spill memory\n"); 2327 return -EACCES; 2328 } 2329 } 2330 2331 if (value_regno >= 0) { 2332 /* restore register state from stack */ 2333 state->regs[value_regno] = *reg; 2334 /* mark reg as written since spilled pointer state likely 2335 * has its liveness marks cleared by is_state_visited() 2336 * which resets stack/reg liveness for state transitions 2337 */ 2338 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2339 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 2340 /* If value_regno==-1, the caller is asking us whether 2341 * it is acceptable to use this value as a SCALAR_VALUE 2342 * (e.g. for XADD). 2343 * We must not allow unprivileged callers to do that 2344 * with spilled pointers. 2345 */ 2346 verbose(env, "leaking pointer from stack off %d\n", 2347 off); 2348 return -EACCES; 2349 } 2350 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2351 } else { 2352 int zeros = 0; 2353 2354 for (i = 0; i < size; i++) { 2355 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 2356 continue; 2357 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 2358 zeros++; 2359 continue; 2360 } 2361 verbose(env, "invalid read from stack off %d+%d size %d\n", 2362 off, i, size); 2363 return -EACCES; 2364 } 2365 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2366 if (value_regno >= 0) { 2367 if (zeros == size) { 2368 /* any size read into register is zero extended, 2369 * so the whole register == const_zero 2370 */ 2371 __mark_reg_const_zero(&state->regs[value_regno]); 2372 /* backtracking doesn't support STACK_ZERO yet, 2373 * so mark it precise here, so that later 2374 * backtracking can stop here. 2375 * Backtracking may not need this if this register 2376 * doesn't participate in pointer adjustment. 2377 * Forward propagation of precise flag is not 2378 * necessary either. This mark is only to stop 2379 * backtracking. Any register that contributed 2380 * to const 0 was marked precise before spill. 2381 */ 2382 state->regs[value_regno].precise = true; 2383 } else { 2384 /* have read misc data from the stack */ 2385 mark_reg_unknown(env, state->regs, value_regno); 2386 } 2387 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2388 } 2389 } 2390 return 0; 2391 } 2392 2393 static int check_stack_access(struct bpf_verifier_env *env, 2394 const struct bpf_reg_state *reg, 2395 int off, int size) 2396 { 2397 /* Stack accesses must be at a fixed offset, so that we 2398 * can determine what type of data were returned. See 2399 * check_stack_read(). 2400 */ 2401 if (!tnum_is_const(reg->var_off)) { 2402 char tn_buf[48]; 2403 2404 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2405 verbose(env, "variable stack access var_off=%s off=%d size=%d\n", 2406 tn_buf, off, size); 2407 return -EACCES; 2408 } 2409 2410 if (off >= 0 || off < -MAX_BPF_STACK) { 2411 verbose(env, "invalid stack off=%d size=%d\n", off, size); 2412 return -EACCES; 2413 } 2414 2415 return 0; 2416 } 2417 2418 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 2419 int off, int size, enum bpf_access_type type) 2420 { 2421 struct bpf_reg_state *regs = cur_regs(env); 2422 struct bpf_map *map = regs[regno].map_ptr; 2423 u32 cap = bpf_map_flags_to_cap(map); 2424 2425 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 2426 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 2427 map->value_size, off, size); 2428 return -EACCES; 2429 } 2430 2431 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 2432 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 2433 map->value_size, off, size); 2434 return -EACCES; 2435 } 2436 2437 return 0; 2438 } 2439 2440 /* check read/write into map element returned by bpf_map_lookup_elem() */ 2441 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 2442 int size, bool zero_size_allowed) 2443 { 2444 struct bpf_reg_state *regs = cur_regs(env); 2445 struct bpf_map *map = regs[regno].map_ptr; 2446 2447 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2448 off + size > map->value_size) { 2449 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 2450 map->value_size, off, size); 2451 return -EACCES; 2452 } 2453 return 0; 2454 } 2455 2456 /* check read/write into a map element with possible variable offset */ 2457 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 2458 int off, int size, bool zero_size_allowed) 2459 { 2460 struct bpf_verifier_state *vstate = env->cur_state; 2461 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2462 struct bpf_reg_state *reg = &state->regs[regno]; 2463 int err; 2464 2465 /* We may have adjusted the register to this map value, so we 2466 * need to try adding each of min_value and max_value to off 2467 * to make sure our theoretical access will be safe. 2468 */ 2469 if (env->log.level & BPF_LOG_LEVEL) 2470 print_verifier_state(env, state); 2471 2472 /* The minimum value is only important with signed 2473 * comparisons where we can't assume the floor of a 2474 * value is 0. If we are using signed variables for our 2475 * index'es we need to make sure that whatever we use 2476 * will have a set floor within our range. 2477 */ 2478 if (reg->smin_value < 0 && 2479 (reg->smin_value == S64_MIN || 2480 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 2481 reg->smin_value + off < 0)) { 2482 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2483 regno); 2484 return -EACCES; 2485 } 2486 err = __check_map_access(env, regno, reg->smin_value + off, size, 2487 zero_size_allowed); 2488 if (err) { 2489 verbose(env, "R%d min value is outside of the array range\n", 2490 regno); 2491 return err; 2492 } 2493 2494 /* If we haven't set a max value then we need to bail since we can't be 2495 * sure we won't do bad things. 2496 * If reg->umax_value + off could overflow, treat that as unbounded too. 2497 */ 2498 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 2499 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 2500 regno); 2501 return -EACCES; 2502 } 2503 err = __check_map_access(env, regno, reg->umax_value + off, size, 2504 zero_size_allowed); 2505 if (err) 2506 verbose(env, "R%d max value is outside of the array range\n", 2507 regno); 2508 2509 if (map_value_has_spin_lock(reg->map_ptr)) { 2510 u32 lock = reg->map_ptr->spin_lock_off; 2511 2512 /* if any part of struct bpf_spin_lock can be touched by 2513 * load/store reject this program. 2514 * To check that [x1, x2) overlaps with [y1, y2) 2515 * it is sufficient to check x1 < y2 && y1 < x2. 2516 */ 2517 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 2518 lock < reg->umax_value + off + size) { 2519 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 2520 return -EACCES; 2521 } 2522 } 2523 return err; 2524 } 2525 2526 #define MAX_PACKET_OFF 0xffff 2527 2528 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 2529 const struct bpf_call_arg_meta *meta, 2530 enum bpf_access_type t) 2531 { 2532 switch (env->prog->type) { 2533 /* Program types only with direct read access go here! */ 2534 case BPF_PROG_TYPE_LWT_IN: 2535 case BPF_PROG_TYPE_LWT_OUT: 2536 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 2537 case BPF_PROG_TYPE_SK_REUSEPORT: 2538 case BPF_PROG_TYPE_FLOW_DISSECTOR: 2539 case BPF_PROG_TYPE_CGROUP_SKB: 2540 if (t == BPF_WRITE) 2541 return false; 2542 /* fallthrough */ 2543 2544 /* Program types with direct read + write access go here! */ 2545 case BPF_PROG_TYPE_SCHED_CLS: 2546 case BPF_PROG_TYPE_SCHED_ACT: 2547 case BPF_PROG_TYPE_XDP: 2548 case BPF_PROG_TYPE_LWT_XMIT: 2549 case BPF_PROG_TYPE_SK_SKB: 2550 case BPF_PROG_TYPE_SK_MSG: 2551 if (meta) 2552 return meta->pkt_access; 2553 2554 env->seen_direct_write = true; 2555 return true; 2556 2557 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 2558 if (t == BPF_WRITE) 2559 env->seen_direct_write = true; 2560 2561 return true; 2562 2563 default: 2564 return false; 2565 } 2566 } 2567 2568 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 2569 int off, int size, bool zero_size_allowed) 2570 { 2571 struct bpf_reg_state *regs = cur_regs(env); 2572 struct bpf_reg_state *reg = ®s[regno]; 2573 2574 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2575 (u64)off + size > reg->range) { 2576 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 2577 off, size, regno, reg->id, reg->off, reg->range); 2578 return -EACCES; 2579 } 2580 return 0; 2581 } 2582 2583 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 2584 int size, bool zero_size_allowed) 2585 { 2586 struct bpf_reg_state *regs = cur_regs(env); 2587 struct bpf_reg_state *reg = ®s[regno]; 2588 int err; 2589 2590 /* We may have added a variable offset to the packet pointer; but any 2591 * reg->range we have comes after that. We are only checking the fixed 2592 * offset. 2593 */ 2594 2595 /* We don't allow negative numbers, because we aren't tracking enough 2596 * detail to prove they're safe. 2597 */ 2598 if (reg->smin_value < 0) { 2599 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2600 regno); 2601 return -EACCES; 2602 } 2603 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 2604 if (err) { 2605 verbose(env, "R%d offset is outside of the packet\n", regno); 2606 return err; 2607 } 2608 2609 /* __check_packet_access has made sure "off + size - 1" is within u16. 2610 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 2611 * otherwise find_good_pkt_pointers would have refused to set range info 2612 * that __check_packet_access would have rejected this pkt access. 2613 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 2614 */ 2615 env->prog->aux->max_pkt_offset = 2616 max_t(u32, env->prog->aux->max_pkt_offset, 2617 off + reg->umax_value + size - 1); 2618 2619 return err; 2620 } 2621 2622 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 2623 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 2624 enum bpf_access_type t, enum bpf_reg_type *reg_type, 2625 u32 *btf_id) 2626 { 2627 struct bpf_insn_access_aux info = { 2628 .reg_type = *reg_type, 2629 .log = &env->log, 2630 }; 2631 2632 if (env->ops->is_valid_access && 2633 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 2634 /* A non zero info.ctx_field_size indicates that this field is a 2635 * candidate for later verifier transformation to load the whole 2636 * field and then apply a mask when accessed with a narrower 2637 * access than actual ctx access size. A zero info.ctx_field_size 2638 * will only allow for whole field access and rejects any other 2639 * type of narrower access. 2640 */ 2641 *reg_type = info.reg_type; 2642 2643 if (*reg_type == PTR_TO_BTF_ID) 2644 *btf_id = info.btf_id; 2645 else 2646 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 2647 /* remember the offset of last byte accessed in ctx */ 2648 if (env->prog->aux->max_ctx_offset < off + size) 2649 env->prog->aux->max_ctx_offset = off + size; 2650 return 0; 2651 } 2652 2653 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 2654 return -EACCES; 2655 } 2656 2657 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 2658 int size) 2659 { 2660 if (size < 0 || off < 0 || 2661 (u64)off + size > sizeof(struct bpf_flow_keys)) { 2662 verbose(env, "invalid access to flow keys off=%d size=%d\n", 2663 off, size); 2664 return -EACCES; 2665 } 2666 return 0; 2667 } 2668 2669 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 2670 u32 regno, int off, int size, 2671 enum bpf_access_type t) 2672 { 2673 struct bpf_reg_state *regs = cur_regs(env); 2674 struct bpf_reg_state *reg = ®s[regno]; 2675 struct bpf_insn_access_aux info = {}; 2676 bool valid; 2677 2678 if (reg->smin_value < 0) { 2679 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2680 regno); 2681 return -EACCES; 2682 } 2683 2684 switch (reg->type) { 2685 case PTR_TO_SOCK_COMMON: 2686 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 2687 break; 2688 case PTR_TO_SOCKET: 2689 valid = bpf_sock_is_valid_access(off, size, t, &info); 2690 break; 2691 case PTR_TO_TCP_SOCK: 2692 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 2693 break; 2694 case PTR_TO_XDP_SOCK: 2695 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 2696 break; 2697 default: 2698 valid = false; 2699 } 2700 2701 2702 if (valid) { 2703 env->insn_aux_data[insn_idx].ctx_field_size = 2704 info.ctx_field_size; 2705 return 0; 2706 } 2707 2708 verbose(env, "R%d invalid %s access off=%d size=%d\n", 2709 regno, reg_type_str[reg->type], off, size); 2710 2711 return -EACCES; 2712 } 2713 2714 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2715 { 2716 return cur_regs(env) + regno; 2717 } 2718 2719 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 2720 { 2721 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 2722 } 2723 2724 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 2725 { 2726 const struct bpf_reg_state *reg = reg_state(env, regno); 2727 2728 return reg->type == PTR_TO_CTX; 2729 } 2730 2731 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 2732 { 2733 const struct bpf_reg_state *reg = reg_state(env, regno); 2734 2735 return type_is_sk_pointer(reg->type); 2736 } 2737 2738 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 2739 { 2740 const struct bpf_reg_state *reg = reg_state(env, regno); 2741 2742 return type_is_pkt_pointer(reg->type); 2743 } 2744 2745 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 2746 { 2747 const struct bpf_reg_state *reg = reg_state(env, regno); 2748 2749 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 2750 return reg->type == PTR_TO_FLOW_KEYS; 2751 } 2752 2753 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 2754 const struct bpf_reg_state *reg, 2755 int off, int size, bool strict) 2756 { 2757 struct tnum reg_off; 2758 int ip_align; 2759 2760 /* Byte size accesses are always allowed. */ 2761 if (!strict || size == 1) 2762 return 0; 2763 2764 /* For platforms that do not have a Kconfig enabling 2765 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 2766 * NET_IP_ALIGN is universally set to '2'. And on platforms 2767 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 2768 * to this code only in strict mode where we want to emulate 2769 * the NET_IP_ALIGN==2 checking. Therefore use an 2770 * unconditional IP align value of '2'. 2771 */ 2772 ip_align = 2; 2773 2774 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 2775 if (!tnum_is_aligned(reg_off, size)) { 2776 char tn_buf[48]; 2777 2778 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2779 verbose(env, 2780 "misaligned packet access off %d+%s+%d+%d size %d\n", 2781 ip_align, tn_buf, reg->off, off, size); 2782 return -EACCES; 2783 } 2784 2785 return 0; 2786 } 2787 2788 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 2789 const struct bpf_reg_state *reg, 2790 const char *pointer_desc, 2791 int off, int size, bool strict) 2792 { 2793 struct tnum reg_off; 2794 2795 /* Byte size accesses are always allowed. */ 2796 if (!strict || size == 1) 2797 return 0; 2798 2799 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 2800 if (!tnum_is_aligned(reg_off, size)) { 2801 char tn_buf[48]; 2802 2803 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2804 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 2805 pointer_desc, tn_buf, reg->off, off, size); 2806 return -EACCES; 2807 } 2808 2809 return 0; 2810 } 2811 2812 static int check_ptr_alignment(struct bpf_verifier_env *env, 2813 const struct bpf_reg_state *reg, int off, 2814 int size, bool strict_alignment_once) 2815 { 2816 bool strict = env->strict_alignment || strict_alignment_once; 2817 const char *pointer_desc = ""; 2818 2819 switch (reg->type) { 2820 case PTR_TO_PACKET: 2821 case PTR_TO_PACKET_META: 2822 /* Special case, because of NET_IP_ALIGN. Given metadata sits 2823 * right in front, treat it the very same way. 2824 */ 2825 return check_pkt_ptr_alignment(env, reg, off, size, strict); 2826 case PTR_TO_FLOW_KEYS: 2827 pointer_desc = "flow keys "; 2828 break; 2829 case PTR_TO_MAP_VALUE: 2830 pointer_desc = "value "; 2831 break; 2832 case PTR_TO_CTX: 2833 pointer_desc = "context "; 2834 break; 2835 case PTR_TO_STACK: 2836 pointer_desc = "stack "; 2837 /* The stack spill tracking logic in check_stack_write() 2838 * and check_stack_read() relies on stack accesses being 2839 * aligned. 2840 */ 2841 strict = true; 2842 break; 2843 case PTR_TO_SOCKET: 2844 pointer_desc = "sock "; 2845 break; 2846 case PTR_TO_SOCK_COMMON: 2847 pointer_desc = "sock_common "; 2848 break; 2849 case PTR_TO_TCP_SOCK: 2850 pointer_desc = "tcp_sock "; 2851 break; 2852 case PTR_TO_XDP_SOCK: 2853 pointer_desc = "xdp_sock "; 2854 break; 2855 default: 2856 break; 2857 } 2858 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 2859 strict); 2860 } 2861 2862 static int update_stack_depth(struct bpf_verifier_env *env, 2863 const struct bpf_func_state *func, 2864 int off) 2865 { 2866 u16 stack = env->subprog_info[func->subprogno].stack_depth; 2867 2868 if (stack >= -off) 2869 return 0; 2870 2871 /* update known max for given subprogram */ 2872 env->subprog_info[func->subprogno].stack_depth = -off; 2873 return 0; 2874 } 2875 2876 /* starting from main bpf function walk all instructions of the function 2877 * and recursively walk all callees that given function can call. 2878 * Ignore jump and exit insns. 2879 * Since recursion is prevented by check_cfg() this algorithm 2880 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 2881 */ 2882 static int check_max_stack_depth(struct bpf_verifier_env *env) 2883 { 2884 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 2885 struct bpf_subprog_info *subprog = env->subprog_info; 2886 struct bpf_insn *insn = env->prog->insnsi; 2887 int ret_insn[MAX_CALL_FRAMES]; 2888 int ret_prog[MAX_CALL_FRAMES]; 2889 2890 process_func: 2891 /* round up to 32-bytes, since this is granularity 2892 * of interpreter stack size 2893 */ 2894 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2895 if (depth > MAX_BPF_STACK) { 2896 verbose(env, "combined stack size of %d calls is %d. Too large\n", 2897 frame + 1, depth); 2898 return -EACCES; 2899 } 2900 continue_func: 2901 subprog_end = subprog[idx + 1].start; 2902 for (; i < subprog_end; i++) { 2903 if (insn[i].code != (BPF_JMP | BPF_CALL)) 2904 continue; 2905 if (insn[i].src_reg != BPF_PSEUDO_CALL) 2906 continue; 2907 /* remember insn and function to return to */ 2908 ret_insn[frame] = i + 1; 2909 ret_prog[frame] = idx; 2910 2911 /* find the callee */ 2912 i = i + insn[i].imm + 1; 2913 idx = find_subprog(env, i); 2914 if (idx < 0) { 2915 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2916 i); 2917 return -EFAULT; 2918 } 2919 frame++; 2920 if (frame >= MAX_CALL_FRAMES) { 2921 verbose(env, "the call stack of %d frames is too deep !\n", 2922 frame); 2923 return -E2BIG; 2924 } 2925 goto process_func; 2926 } 2927 /* end of for() loop means the last insn of the 'subprog' 2928 * was reached. Doesn't matter whether it was JA or EXIT 2929 */ 2930 if (frame == 0) 2931 return 0; 2932 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2933 frame--; 2934 i = ret_insn[frame]; 2935 idx = ret_prog[frame]; 2936 goto continue_func; 2937 } 2938 2939 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2940 static int get_callee_stack_depth(struct bpf_verifier_env *env, 2941 const struct bpf_insn *insn, int idx) 2942 { 2943 int start = idx + insn->imm + 1, subprog; 2944 2945 subprog = find_subprog(env, start); 2946 if (subprog < 0) { 2947 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2948 start); 2949 return -EFAULT; 2950 } 2951 return env->subprog_info[subprog].stack_depth; 2952 } 2953 #endif 2954 2955 int check_ctx_reg(struct bpf_verifier_env *env, 2956 const struct bpf_reg_state *reg, int regno) 2957 { 2958 /* Access to ctx or passing it to a helper is only allowed in 2959 * its original, unmodified form. 2960 */ 2961 2962 if (reg->off) { 2963 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 2964 regno, reg->off); 2965 return -EACCES; 2966 } 2967 2968 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2969 char tn_buf[48]; 2970 2971 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2972 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 2973 return -EACCES; 2974 } 2975 2976 return 0; 2977 } 2978 2979 static int check_tp_buffer_access(struct bpf_verifier_env *env, 2980 const struct bpf_reg_state *reg, 2981 int regno, int off, int size) 2982 { 2983 if (off < 0) { 2984 verbose(env, 2985 "R%d invalid tracepoint buffer access: off=%d, size=%d", 2986 regno, off, size); 2987 return -EACCES; 2988 } 2989 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2990 char tn_buf[48]; 2991 2992 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2993 verbose(env, 2994 "R%d invalid variable buffer offset: off=%d, var_off=%s", 2995 regno, off, tn_buf); 2996 return -EACCES; 2997 } 2998 if (off + size > env->prog->aux->max_tp_access) 2999 env->prog->aux->max_tp_access = off + size; 3000 3001 return 0; 3002 } 3003 3004 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 3005 static void zext_32_to_64(struct bpf_reg_state *reg) 3006 { 3007 reg->var_off = tnum_subreg(reg->var_off); 3008 __reg_assign_32_into_64(reg); 3009 } 3010 3011 /* truncate register to smaller size (in bytes) 3012 * must be called with size < BPF_REG_SIZE 3013 */ 3014 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 3015 { 3016 u64 mask; 3017 3018 /* clear high bits in bit representation */ 3019 reg->var_off = tnum_cast(reg->var_off, size); 3020 3021 /* fix arithmetic bounds */ 3022 mask = ((u64)1 << (size * 8)) - 1; 3023 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 3024 reg->umin_value &= mask; 3025 reg->umax_value &= mask; 3026 } else { 3027 reg->umin_value = 0; 3028 reg->umax_value = mask; 3029 } 3030 reg->smin_value = reg->umin_value; 3031 reg->smax_value = reg->umax_value; 3032 3033 /* If size is smaller than 32bit register the 32bit register 3034 * values are also truncated so we push 64-bit bounds into 3035 * 32-bit bounds. Above were truncated < 32-bits already. 3036 */ 3037 if (size >= 4) 3038 return; 3039 __reg_combine_64_into_32(reg); 3040 } 3041 3042 static bool bpf_map_is_rdonly(const struct bpf_map *map) 3043 { 3044 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 3045 } 3046 3047 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 3048 { 3049 void *ptr; 3050 u64 addr; 3051 int err; 3052 3053 err = map->ops->map_direct_value_addr(map, &addr, off); 3054 if (err) 3055 return err; 3056 ptr = (void *)(long)addr + off; 3057 3058 switch (size) { 3059 case sizeof(u8): 3060 *val = (u64)*(u8 *)ptr; 3061 break; 3062 case sizeof(u16): 3063 *val = (u64)*(u16 *)ptr; 3064 break; 3065 case sizeof(u32): 3066 *val = (u64)*(u32 *)ptr; 3067 break; 3068 case sizeof(u64): 3069 *val = *(u64 *)ptr; 3070 break; 3071 default: 3072 return -EINVAL; 3073 } 3074 return 0; 3075 } 3076 3077 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 3078 struct bpf_reg_state *regs, 3079 int regno, int off, int size, 3080 enum bpf_access_type atype, 3081 int value_regno) 3082 { 3083 struct bpf_reg_state *reg = regs + regno; 3084 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id); 3085 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off); 3086 u32 btf_id; 3087 int ret; 3088 3089 if (off < 0) { 3090 verbose(env, 3091 "R%d is ptr_%s invalid negative access: off=%d\n", 3092 regno, tname, off); 3093 return -EACCES; 3094 } 3095 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3096 char tn_buf[48]; 3097 3098 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3099 verbose(env, 3100 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 3101 regno, tname, off, tn_buf); 3102 return -EACCES; 3103 } 3104 3105 if (env->ops->btf_struct_access) { 3106 ret = env->ops->btf_struct_access(&env->log, t, off, size, 3107 atype, &btf_id); 3108 } else { 3109 if (atype != BPF_READ) { 3110 verbose(env, "only read is supported\n"); 3111 return -EACCES; 3112 } 3113 3114 ret = btf_struct_access(&env->log, t, off, size, atype, 3115 &btf_id); 3116 } 3117 3118 if (ret < 0) 3119 return ret; 3120 3121 if (atype == BPF_READ && value_regno >= 0) { 3122 if (ret == SCALAR_VALUE) { 3123 mark_reg_unknown(env, regs, value_regno); 3124 return 0; 3125 } 3126 mark_reg_known_zero(env, regs, value_regno); 3127 regs[value_regno].type = PTR_TO_BTF_ID; 3128 regs[value_regno].btf_id = btf_id; 3129 } 3130 3131 return 0; 3132 } 3133 3134 /* check whether memory at (regno + off) is accessible for t = (read | write) 3135 * if t==write, value_regno is a register which value is stored into memory 3136 * if t==read, value_regno is a register which will receive the value from memory 3137 * if t==write && value_regno==-1, some unknown value is stored into memory 3138 * if t==read && value_regno==-1, don't care what we read from memory 3139 */ 3140 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 3141 int off, int bpf_size, enum bpf_access_type t, 3142 int value_regno, bool strict_alignment_once) 3143 { 3144 struct bpf_reg_state *regs = cur_regs(env); 3145 struct bpf_reg_state *reg = regs + regno; 3146 struct bpf_func_state *state; 3147 int size, err = 0; 3148 3149 size = bpf_size_to_bytes(bpf_size); 3150 if (size < 0) 3151 return size; 3152 3153 /* alignment checks will add in reg->off themselves */ 3154 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 3155 if (err) 3156 return err; 3157 3158 /* for access checks, reg->off is just part of off */ 3159 off += reg->off; 3160 3161 if (reg->type == PTR_TO_MAP_VALUE) { 3162 if (t == BPF_WRITE && value_regno >= 0 && 3163 is_pointer_value(env, value_regno)) { 3164 verbose(env, "R%d leaks addr into map\n", value_regno); 3165 return -EACCES; 3166 } 3167 err = check_map_access_type(env, regno, off, size, t); 3168 if (err) 3169 return err; 3170 err = check_map_access(env, regno, off, size, false); 3171 if (!err && t == BPF_READ && value_regno >= 0) { 3172 struct bpf_map *map = reg->map_ptr; 3173 3174 /* if map is read-only, track its contents as scalars */ 3175 if (tnum_is_const(reg->var_off) && 3176 bpf_map_is_rdonly(map) && 3177 map->ops->map_direct_value_addr) { 3178 int map_off = off + reg->var_off.value; 3179 u64 val = 0; 3180 3181 err = bpf_map_direct_read(map, map_off, size, 3182 &val); 3183 if (err) 3184 return err; 3185 3186 regs[value_regno].type = SCALAR_VALUE; 3187 __mark_reg_known(®s[value_regno], val); 3188 } else { 3189 mark_reg_unknown(env, regs, value_regno); 3190 } 3191 } 3192 } else if (reg->type == PTR_TO_CTX) { 3193 enum bpf_reg_type reg_type = SCALAR_VALUE; 3194 u32 btf_id = 0; 3195 3196 if (t == BPF_WRITE && value_regno >= 0 && 3197 is_pointer_value(env, value_regno)) { 3198 verbose(env, "R%d leaks addr into ctx\n", value_regno); 3199 return -EACCES; 3200 } 3201 3202 err = check_ctx_reg(env, reg, regno); 3203 if (err < 0) 3204 return err; 3205 3206 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf_id); 3207 if (err) 3208 verbose_linfo(env, insn_idx, "; "); 3209 if (!err && t == BPF_READ && value_regno >= 0) { 3210 /* ctx access returns either a scalar, or a 3211 * PTR_TO_PACKET[_META,_END]. In the latter 3212 * case, we know the offset is zero. 3213 */ 3214 if (reg_type == SCALAR_VALUE) { 3215 mark_reg_unknown(env, regs, value_regno); 3216 } else { 3217 mark_reg_known_zero(env, regs, 3218 value_regno); 3219 if (reg_type_may_be_null(reg_type)) 3220 regs[value_regno].id = ++env->id_gen; 3221 /* A load of ctx field could have different 3222 * actual load size with the one encoded in the 3223 * insn. When the dst is PTR, it is for sure not 3224 * a sub-register. 3225 */ 3226 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 3227 if (reg_type == PTR_TO_BTF_ID) 3228 regs[value_regno].btf_id = btf_id; 3229 } 3230 regs[value_regno].type = reg_type; 3231 } 3232 3233 } else if (reg->type == PTR_TO_STACK) { 3234 off += reg->var_off.value; 3235 err = check_stack_access(env, reg, off, size); 3236 if (err) 3237 return err; 3238 3239 state = func(env, reg); 3240 err = update_stack_depth(env, state, off); 3241 if (err) 3242 return err; 3243 3244 if (t == BPF_WRITE) 3245 err = check_stack_write(env, state, off, size, 3246 value_regno, insn_idx); 3247 else 3248 err = check_stack_read(env, state, off, size, 3249 value_regno); 3250 } else if (reg_is_pkt_pointer(reg)) { 3251 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 3252 verbose(env, "cannot write into packet\n"); 3253 return -EACCES; 3254 } 3255 if (t == BPF_WRITE && value_regno >= 0 && 3256 is_pointer_value(env, value_regno)) { 3257 verbose(env, "R%d leaks addr into packet\n", 3258 value_regno); 3259 return -EACCES; 3260 } 3261 err = check_packet_access(env, regno, off, size, false); 3262 if (!err && t == BPF_READ && value_regno >= 0) 3263 mark_reg_unknown(env, regs, value_regno); 3264 } else if (reg->type == PTR_TO_FLOW_KEYS) { 3265 if (t == BPF_WRITE && value_regno >= 0 && 3266 is_pointer_value(env, value_regno)) { 3267 verbose(env, "R%d leaks addr into flow keys\n", 3268 value_regno); 3269 return -EACCES; 3270 } 3271 3272 err = check_flow_keys_access(env, off, size); 3273 if (!err && t == BPF_READ && value_regno >= 0) 3274 mark_reg_unknown(env, regs, value_regno); 3275 } else if (type_is_sk_pointer(reg->type)) { 3276 if (t == BPF_WRITE) { 3277 verbose(env, "R%d cannot write into %s\n", 3278 regno, reg_type_str[reg->type]); 3279 return -EACCES; 3280 } 3281 err = check_sock_access(env, insn_idx, regno, off, size, t); 3282 if (!err && value_regno >= 0) 3283 mark_reg_unknown(env, regs, value_regno); 3284 } else if (reg->type == PTR_TO_TP_BUFFER) { 3285 err = check_tp_buffer_access(env, reg, regno, off, size); 3286 if (!err && t == BPF_READ && value_regno >= 0) 3287 mark_reg_unknown(env, regs, value_regno); 3288 } else if (reg->type == PTR_TO_BTF_ID) { 3289 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 3290 value_regno); 3291 } else { 3292 verbose(env, "R%d invalid mem access '%s'\n", regno, 3293 reg_type_str[reg->type]); 3294 return -EACCES; 3295 } 3296 3297 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 3298 regs[value_regno].type == SCALAR_VALUE) { 3299 /* b/h/w load zero-extends, mark upper bits as known 0 */ 3300 coerce_reg_to_size(®s[value_regno], size); 3301 } 3302 return err; 3303 } 3304 3305 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 3306 { 3307 int err; 3308 3309 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 3310 insn->imm != 0) { 3311 verbose(env, "BPF_XADD uses reserved fields\n"); 3312 return -EINVAL; 3313 } 3314 3315 /* check src1 operand */ 3316 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3317 if (err) 3318 return err; 3319 3320 /* check src2 operand */ 3321 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3322 if (err) 3323 return err; 3324 3325 if (is_pointer_value(env, insn->src_reg)) { 3326 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 3327 return -EACCES; 3328 } 3329 3330 if (is_ctx_reg(env, insn->dst_reg) || 3331 is_pkt_reg(env, insn->dst_reg) || 3332 is_flow_key_reg(env, insn->dst_reg) || 3333 is_sk_reg(env, insn->dst_reg)) { 3334 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 3335 insn->dst_reg, 3336 reg_type_str[reg_state(env, insn->dst_reg)->type]); 3337 return -EACCES; 3338 } 3339 3340 /* check whether atomic_add can read the memory */ 3341 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3342 BPF_SIZE(insn->code), BPF_READ, -1, true); 3343 if (err) 3344 return err; 3345 3346 /* check whether atomic_add can write into the same memory */ 3347 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3348 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 3349 } 3350 3351 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, 3352 int off, int access_size, 3353 bool zero_size_allowed) 3354 { 3355 struct bpf_reg_state *reg = reg_state(env, regno); 3356 3357 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 3358 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 3359 if (tnum_is_const(reg->var_off)) { 3360 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 3361 regno, off, access_size); 3362 } else { 3363 char tn_buf[48]; 3364 3365 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3366 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", 3367 regno, tn_buf, access_size); 3368 } 3369 return -EACCES; 3370 } 3371 return 0; 3372 } 3373 3374 /* when register 'regno' is passed into function that will read 'access_size' 3375 * bytes from that pointer, make sure that it's within stack boundary 3376 * and all elements of stack are initialized. 3377 * Unlike most pointer bounds-checking functions, this one doesn't take an 3378 * 'off' argument, so it has to add in reg->off itself. 3379 */ 3380 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 3381 int access_size, bool zero_size_allowed, 3382 struct bpf_call_arg_meta *meta) 3383 { 3384 struct bpf_reg_state *reg = reg_state(env, regno); 3385 struct bpf_func_state *state = func(env, reg); 3386 int err, min_off, max_off, i, j, slot, spi; 3387 3388 if (reg->type != PTR_TO_STACK) { 3389 /* Allow zero-byte read from NULL, regardless of pointer type */ 3390 if (zero_size_allowed && access_size == 0 && 3391 register_is_null(reg)) 3392 return 0; 3393 3394 verbose(env, "R%d type=%s expected=%s\n", regno, 3395 reg_type_str[reg->type], 3396 reg_type_str[PTR_TO_STACK]); 3397 return -EACCES; 3398 } 3399 3400 if (tnum_is_const(reg->var_off)) { 3401 min_off = max_off = reg->var_off.value + reg->off; 3402 err = __check_stack_boundary(env, regno, min_off, access_size, 3403 zero_size_allowed); 3404 if (err) 3405 return err; 3406 } else { 3407 /* Variable offset is prohibited for unprivileged mode for 3408 * simplicity since it requires corresponding support in 3409 * Spectre masking for stack ALU. 3410 * See also retrieve_ptr_limit(). 3411 */ 3412 if (!env->allow_ptr_leaks) { 3413 char tn_buf[48]; 3414 3415 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3416 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", 3417 regno, tn_buf); 3418 return -EACCES; 3419 } 3420 /* Only initialized buffer on stack is allowed to be accessed 3421 * with variable offset. With uninitialized buffer it's hard to 3422 * guarantee that whole memory is marked as initialized on 3423 * helper return since specific bounds are unknown what may 3424 * cause uninitialized stack leaking. 3425 */ 3426 if (meta && meta->raw_mode) 3427 meta = NULL; 3428 3429 if (reg->smax_value >= BPF_MAX_VAR_OFF || 3430 reg->smax_value <= -BPF_MAX_VAR_OFF) { 3431 verbose(env, "R%d unbounded indirect variable offset stack access\n", 3432 regno); 3433 return -EACCES; 3434 } 3435 min_off = reg->smin_value + reg->off; 3436 max_off = reg->smax_value + reg->off; 3437 err = __check_stack_boundary(env, regno, min_off, access_size, 3438 zero_size_allowed); 3439 if (err) { 3440 verbose(env, "R%d min value is outside of stack bound\n", 3441 regno); 3442 return err; 3443 } 3444 err = __check_stack_boundary(env, regno, max_off, access_size, 3445 zero_size_allowed); 3446 if (err) { 3447 verbose(env, "R%d max value is outside of stack bound\n", 3448 regno); 3449 return err; 3450 } 3451 } 3452 3453 if (meta && meta->raw_mode) { 3454 meta->access_size = access_size; 3455 meta->regno = regno; 3456 return 0; 3457 } 3458 3459 for (i = min_off; i < max_off + access_size; i++) { 3460 u8 *stype; 3461 3462 slot = -i - 1; 3463 spi = slot / BPF_REG_SIZE; 3464 if (state->allocated_stack <= slot) 3465 goto err; 3466 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3467 if (*stype == STACK_MISC) 3468 goto mark; 3469 if (*stype == STACK_ZERO) { 3470 /* helper can write anything into the stack */ 3471 *stype = STACK_MISC; 3472 goto mark; 3473 } 3474 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3475 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) { 3476 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 3477 for (j = 0; j < BPF_REG_SIZE; j++) 3478 state->stack[spi].slot_type[j] = STACK_MISC; 3479 goto mark; 3480 } 3481 3482 err: 3483 if (tnum_is_const(reg->var_off)) { 3484 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 3485 min_off, i - min_off, access_size); 3486 } else { 3487 char tn_buf[48]; 3488 3489 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3490 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", 3491 tn_buf, i - min_off, access_size); 3492 } 3493 return -EACCES; 3494 mark: 3495 /* reading any byte out of 8-byte 'spill_slot' will cause 3496 * the whole slot to be marked as 'read' 3497 */ 3498 mark_reg_read(env, &state->stack[spi].spilled_ptr, 3499 state->stack[spi].spilled_ptr.parent, 3500 REG_LIVE_READ64); 3501 } 3502 return update_stack_depth(env, state, min_off); 3503 } 3504 3505 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 3506 int access_size, bool zero_size_allowed, 3507 struct bpf_call_arg_meta *meta) 3508 { 3509 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3510 3511 switch (reg->type) { 3512 case PTR_TO_PACKET: 3513 case PTR_TO_PACKET_META: 3514 return check_packet_access(env, regno, reg->off, access_size, 3515 zero_size_allowed); 3516 case PTR_TO_MAP_VALUE: 3517 if (check_map_access_type(env, regno, reg->off, access_size, 3518 meta && meta->raw_mode ? BPF_WRITE : 3519 BPF_READ)) 3520 return -EACCES; 3521 return check_map_access(env, regno, reg->off, access_size, 3522 zero_size_allowed); 3523 default: /* scalar_value|ptr_to_stack or invalid ptr */ 3524 return check_stack_boundary(env, regno, access_size, 3525 zero_size_allowed, meta); 3526 } 3527 } 3528 3529 /* Implementation details: 3530 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 3531 * Two bpf_map_lookups (even with the same key) will have different reg->id. 3532 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 3533 * value_or_null->value transition, since the verifier only cares about 3534 * the range of access to valid map value pointer and doesn't care about actual 3535 * address of the map element. 3536 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 3537 * reg->id > 0 after value_or_null->value transition. By doing so 3538 * two bpf_map_lookups will be considered two different pointers that 3539 * point to different bpf_spin_locks. 3540 * The verifier allows taking only one bpf_spin_lock at a time to avoid 3541 * dead-locks. 3542 * Since only one bpf_spin_lock is allowed the checks are simpler than 3543 * reg_is_refcounted() logic. The verifier needs to remember only 3544 * one spin_lock instead of array of acquired_refs. 3545 * cur_state->active_spin_lock remembers which map value element got locked 3546 * and clears it after bpf_spin_unlock. 3547 */ 3548 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 3549 bool is_lock) 3550 { 3551 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3552 struct bpf_verifier_state *cur = env->cur_state; 3553 bool is_const = tnum_is_const(reg->var_off); 3554 struct bpf_map *map = reg->map_ptr; 3555 u64 val = reg->var_off.value; 3556 3557 if (reg->type != PTR_TO_MAP_VALUE) { 3558 verbose(env, "R%d is not a pointer to map_value\n", regno); 3559 return -EINVAL; 3560 } 3561 if (!is_const) { 3562 verbose(env, 3563 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 3564 regno); 3565 return -EINVAL; 3566 } 3567 if (!map->btf) { 3568 verbose(env, 3569 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 3570 map->name); 3571 return -EINVAL; 3572 } 3573 if (!map_value_has_spin_lock(map)) { 3574 if (map->spin_lock_off == -E2BIG) 3575 verbose(env, 3576 "map '%s' has more than one 'struct bpf_spin_lock'\n", 3577 map->name); 3578 else if (map->spin_lock_off == -ENOENT) 3579 verbose(env, 3580 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 3581 map->name); 3582 else 3583 verbose(env, 3584 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 3585 map->name); 3586 return -EINVAL; 3587 } 3588 if (map->spin_lock_off != val + reg->off) { 3589 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 3590 val + reg->off); 3591 return -EINVAL; 3592 } 3593 if (is_lock) { 3594 if (cur->active_spin_lock) { 3595 verbose(env, 3596 "Locking two bpf_spin_locks are not allowed\n"); 3597 return -EINVAL; 3598 } 3599 cur->active_spin_lock = reg->id; 3600 } else { 3601 if (!cur->active_spin_lock) { 3602 verbose(env, "bpf_spin_unlock without taking a lock\n"); 3603 return -EINVAL; 3604 } 3605 if (cur->active_spin_lock != reg->id) { 3606 verbose(env, "bpf_spin_unlock of different lock\n"); 3607 return -EINVAL; 3608 } 3609 cur->active_spin_lock = 0; 3610 } 3611 return 0; 3612 } 3613 3614 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 3615 { 3616 return type == ARG_PTR_TO_MEM || 3617 type == ARG_PTR_TO_MEM_OR_NULL || 3618 type == ARG_PTR_TO_UNINIT_MEM; 3619 } 3620 3621 static bool arg_type_is_mem_size(enum bpf_arg_type type) 3622 { 3623 return type == ARG_CONST_SIZE || 3624 type == ARG_CONST_SIZE_OR_ZERO; 3625 } 3626 3627 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 3628 { 3629 return type == ARG_PTR_TO_INT || 3630 type == ARG_PTR_TO_LONG; 3631 } 3632 3633 static int int_ptr_type_to_size(enum bpf_arg_type type) 3634 { 3635 if (type == ARG_PTR_TO_INT) 3636 return sizeof(u32); 3637 else if (type == ARG_PTR_TO_LONG) 3638 return sizeof(u64); 3639 3640 return -EINVAL; 3641 } 3642 3643 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 3644 enum bpf_arg_type arg_type, 3645 struct bpf_call_arg_meta *meta) 3646 { 3647 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3648 enum bpf_reg_type expected_type, type = reg->type; 3649 int err = 0; 3650 3651 if (arg_type == ARG_DONTCARE) 3652 return 0; 3653 3654 err = check_reg_arg(env, regno, SRC_OP); 3655 if (err) 3656 return err; 3657 3658 if (arg_type == ARG_ANYTHING) { 3659 if (is_pointer_value(env, regno)) { 3660 verbose(env, "R%d leaks addr into helper function\n", 3661 regno); 3662 return -EACCES; 3663 } 3664 return 0; 3665 } 3666 3667 if (type_is_pkt_pointer(type) && 3668 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 3669 verbose(env, "helper access to the packet is not allowed\n"); 3670 return -EACCES; 3671 } 3672 3673 if (arg_type == ARG_PTR_TO_MAP_KEY || 3674 arg_type == ARG_PTR_TO_MAP_VALUE || 3675 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 3676 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 3677 expected_type = PTR_TO_STACK; 3678 if (register_is_null(reg) && 3679 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) 3680 /* final test in check_stack_boundary() */; 3681 else if (!type_is_pkt_pointer(type) && 3682 type != PTR_TO_MAP_VALUE && 3683 type != expected_type) 3684 goto err_type; 3685 } else if (arg_type == ARG_CONST_SIZE || 3686 arg_type == ARG_CONST_SIZE_OR_ZERO) { 3687 expected_type = SCALAR_VALUE; 3688 if (type != expected_type) 3689 goto err_type; 3690 } else if (arg_type == ARG_CONST_MAP_PTR) { 3691 expected_type = CONST_PTR_TO_MAP; 3692 if (type != expected_type) 3693 goto err_type; 3694 } else if (arg_type == ARG_PTR_TO_CTX || 3695 arg_type == ARG_PTR_TO_CTX_OR_NULL) { 3696 expected_type = PTR_TO_CTX; 3697 if (!(register_is_null(reg) && 3698 arg_type == ARG_PTR_TO_CTX_OR_NULL)) { 3699 if (type != expected_type) 3700 goto err_type; 3701 err = check_ctx_reg(env, reg, regno); 3702 if (err < 0) 3703 return err; 3704 } 3705 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) { 3706 expected_type = PTR_TO_SOCK_COMMON; 3707 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */ 3708 if (!type_is_sk_pointer(type)) 3709 goto err_type; 3710 if (reg->ref_obj_id) { 3711 if (meta->ref_obj_id) { 3712 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 3713 regno, reg->ref_obj_id, 3714 meta->ref_obj_id); 3715 return -EFAULT; 3716 } 3717 meta->ref_obj_id = reg->ref_obj_id; 3718 } 3719 } else if (arg_type == ARG_PTR_TO_SOCKET) { 3720 expected_type = PTR_TO_SOCKET; 3721 if (type != expected_type) 3722 goto err_type; 3723 } else if (arg_type == ARG_PTR_TO_BTF_ID) { 3724 expected_type = PTR_TO_BTF_ID; 3725 if (type != expected_type) 3726 goto err_type; 3727 if (reg->btf_id != meta->btf_id) { 3728 verbose(env, "Helper has type %s got %s in R%d\n", 3729 kernel_type_name(meta->btf_id), 3730 kernel_type_name(reg->btf_id), regno); 3731 3732 return -EACCES; 3733 } 3734 if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) { 3735 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 3736 regno); 3737 return -EACCES; 3738 } 3739 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 3740 if (meta->func_id == BPF_FUNC_spin_lock) { 3741 if (process_spin_lock(env, regno, true)) 3742 return -EACCES; 3743 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 3744 if (process_spin_lock(env, regno, false)) 3745 return -EACCES; 3746 } else { 3747 verbose(env, "verifier internal error\n"); 3748 return -EFAULT; 3749 } 3750 } else if (arg_type_is_mem_ptr(arg_type)) { 3751 expected_type = PTR_TO_STACK; 3752 /* One exception here. In case function allows for NULL to be 3753 * passed in as argument, it's a SCALAR_VALUE type. Final test 3754 * happens during stack boundary checking. 3755 */ 3756 if (register_is_null(reg) && 3757 arg_type == ARG_PTR_TO_MEM_OR_NULL) 3758 /* final test in check_stack_boundary() */; 3759 else if (!type_is_pkt_pointer(type) && 3760 type != PTR_TO_MAP_VALUE && 3761 type != expected_type) 3762 goto err_type; 3763 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 3764 } else if (arg_type_is_int_ptr(arg_type)) { 3765 expected_type = PTR_TO_STACK; 3766 if (!type_is_pkt_pointer(type) && 3767 type != PTR_TO_MAP_VALUE && 3768 type != expected_type) 3769 goto err_type; 3770 } else { 3771 verbose(env, "unsupported arg_type %d\n", arg_type); 3772 return -EFAULT; 3773 } 3774 3775 if (arg_type == ARG_CONST_MAP_PTR) { 3776 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 3777 meta->map_ptr = reg->map_ptr; 3778 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 3779 /* bpf_map_xxx(..., map_ptr, ..., key) call: 3780 * check that [key, key + map->key_size) are within 3781 * stack limits and initialized 3782 */ 3783 if (!meta->map_ptr) { 3784 /* in function declaration map_ptr must come before 3785 * map_key, so that it's verified and known before 3786 * we have to check map_key here. Otherwise it means 3787 * that kernel subsystem misconfigured verifier 3788 */ 3789 verbose(env, "invalid map_ptr to access map->key\n"); 3790 return -EACCES; 3791 } 3792 err = check_helper_mem_access(env, regno, 3793 meta->map_ptr->key_size, false, 3794 NULL); 3795 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 3796 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 3797 !register_is_null(reg)) || 3798 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 3799 /* bpf_map_xxx(..., map_ptr, ..., value) call: 3800 * check [value, value + map->value_size) validity 3801 */ 3802 if (!meta->map_ptr) { 3803 /* kernel subsystem misconfigured verifier */ 3804 verbose(env, "invalid map_ptr to access map->value\n"); 3805 return -EACCES; 3806 } 3807 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 3808 err = check_helper_mem_access(env, regno, 3809 meta->map_ptr->value_size, false, 3810 meta); 3811 } else if (arg_type_is_mem_size(arg_type)) { 3812 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 3813 3814 /* This is used to refine r0 return value bounds for helpers 3815 * that enforce this value as an upper bound on return values. 3816 * See do_refine_retval_range() for helpers that can refine 3817 * the return value. C type of helper is u32 so we pull register 3818 * bound from umax_value however, if negative verifier errors 3819 * out. Only upper bounds can be learned because retval is an 3820 * int type and negative retvals are allowed. 3821 */ 3822 meta->msize_max_value = reg->umax_value; 3823 3824 /* The register is SCALAR_VALUE; the access check 3825 * happens using its boundaries. 3826 */ 3827 if (!tnum_is_const(reg->var_off)) 3828 /* For unprivileged variable accesses, disable raw 3829 * mode so that the program is required to 3830 * initialize all the memory that the helper could 3831 * just partially fill up. 3832 */ 3833 meta = NULL; 3834 3835 if (reg->smin_value < 0) { 3836 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 3837 regno); 3838 return -EACCES; 3839 } 3840 3841 if (reg->umin_value == 0) { 3842 err = check_helper_mem_access(env, regno - 1, 0, 3843 zero_size_allowed, 3844 meta); 3845 if (err) 3846 return err; 3847 } 3848 3849 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 3850 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 3851 regno); 3852 return -EACCES; 3853 } 3854 err = check_helper_mem_access(env, regno - 1, 3855 reg->umax_value, 3856 zero_size_allowed, meta); 3857 if (!err) 3858 err = mark_chain_precision(env, regno); 3859 } else if (arg_type_is_int_ptr(arg_type)) { 3860 int size = int_ptr_type_to_size(arg_type); 3861 3862 err = check_helper_mem_access(env, regno, size, false, meta); 3863 if (err) 3864 return err; 3865 err = check_ptr_alignment(env, reg, 0, size, true); 3866 } 3867 3868 return err; 3869 err_type: 3870 verbose(env, "R%d type=%s expected=%s\n", regno, 3871 reg_type_str[type], reg_type_str[expected_type]); 3872 return -EACCES; 3873 } 3874 3875 static int check_map_func_compatibility(struct bpf_verifier_env *env, 3876 struct bpf_map *map, int func_id) 3877 { 3878 if (!map) 3879 return 0; 3880 3881 /* We need a two way check, first is from map perspective ... */ 3882 switch (map->map_type) { 3883 case BPF_MAP_TYPE_PROG_ARRAY: 3884 if (func_id != BPF_FUNC_tail_call) 3885 goto error; 3886 break; 3887 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 3888 if (func_id != BPF_FUNC_perf_event_read && 3889 func_id != BPF_FUNC_perf_event_output && 3890 func_id != BPF_FUNC_skb_output && 3891 func_id != BPF_FUNC_perf_event_read_value && 3892 func_id != BPF_FUNC_xdp_output) 3893 goto error; 3894 break; 3895 case BPF_MAP_TYPE_STACK_TRACE: 3896 if (func_id != BPF_FUNC_get_stackid) 3897 goto error; 3898 break; 3899 case BPF_MAP_TYPE_CGROUP_ARRAY: 3900 if (func_id != BPF_FUNC_skb_under_cgroup && 3901 func_id != BPF_FUNC_current_task_under_cgroup) 3902 goto error; 3903 break; 3904 case BPF_MAP_TYPE_CGROUP_STORAGE: 3905 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 3906 if (func_id != BPF_FUNC_get_local_storage) 3907 goto error; 3908 break; 3909 case BPF_MAP_TYPE_DEVMAP: 3910 case BPF_MAP_TYPE_DEVMAP_HASH: 3911 if (func_id != BPF_FUNC_redirect_map && 3912 func_id != BPF_FUNC_map_lookup_elem) 3913 goto error; 3914 break; 3915 /* Restrict bpf side of cpumap and xskmap, open when use-cases 3916 * appear. 3917 */ 3918 case BPF_MAP_TYPE_CPUMAP: 3919 if (func_id != BPF_FUNC_redirect_map) 3920 goto error; 3921 break; 3922 case BPF_MAP_TYPE_XSKMAP: 3923 if (func_id != BPF_FUNC_redirect_map && 3924 func_id != BPF_FUNC_map_lookup_elem) 3925 goto error; 3926 break; 3927 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 3928 case BPF_MAP_TYPE_HASH_OF_MAPS: 3929 if (func_id != BPF_FUNC_map_lookup_elem) 3930 goto error; 3931 break; 3932 case BPF_MAP_TYPE_SOCKMAP: 3933 if (func_id != BPF_FUNC_sk_redirect_map && 3934 func_id != BPF_FUNC_sock_map_update && 3935 func_id != BPF_FUNC_map_delete_elem && 3936 func_id != BPF_FUNC_msg_redirect_map && 3937 func_id != BPF_FUNC_sk_select_reuseport) 3938 goto error; 3939 break; 3940 case BPF_MAP_TYPE_SOCKHASH: 3941 if (func_id != BPF_FUNC_sk_redirect_hash && 3942 func_id != BPF_FUNC_sock_hash_update && 3943 func_id != BPF_FUNC_map_delete_elem && 3944 func_id != BPF_FUNC_msg_redirect_hash && 3945 func_id != BPF_FUNC_sk_select_reuseport) 3946 goto error; 3947 break; 3948 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 3949 if (func_id != BPF_FUNC_sk_select_reuseport) 3950 goto error; 3951 break; 3952 case BPF_MAP_TYPE_QUEUE: 3953 case BPF_MAP_TYPE_STACK: 3954 if (func_id != BPF_FUNC_map_peek_elem && 3955 func_id != BPF_FUNC_map_pop_elem && 3956 func_id != BPF_FUNC_map_push_elem) 3957 goto error; 3958 break; 3959 case BPF_MAP_TYPE_SK_STORAGE: 3960 if (func_id != BPF_FUNC_sk_storage_get && 3961 func_id != BPF_FUNC_sk_storage_delete) 3962 goto error; 3963 break; 3964 default: 3965 break; 3966 } 3967 3968 /* ... and second from the function itself. */ 3969 switch (func_id) { 3970 case BPF_FUNC_tail_call: 3971 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 3972 goto error; 3973 if (env->subprog_cnt > 1) { 3974 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 3975 return -EINVAL; 3976 } 3977 break; 3978 case BPF_FUNC_perf_event_read: 3979 case BPF_FUNC_perf_event_output: 3980 case BPF_FUNC_perf_event_read_value: 3981 case BPF_FUNC_skb_output: 3982 case BPF_FUNC_xdp_output: 3983 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 3984 goto error; 3985 break; 3986 case BPF_FUNC_get_stackid: 3987 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 3988 goto error; 3989 break; 3990 case BPF_FUNC_current_task_under_cgroup: 3991 case BPF_FUNC_skb_under_cgroup: 3992 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 3993 goto error; 3994 break; 3995 case BPF_FUNC_redirect_map: 3996 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 3997 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 3998 map->map_type != BPF_MAP_TYPE_CPUMAP && 3999 map->map_type != BPF_MAP_TYPE_XSKMAP) 4000 goto error; 4001 break; 4002 case BPF_FUNC_sk_redirect_map: 4003 case BPF_FUNC_msg_redirect_map: 4004 case BPF_FUNC_sock_map_update: 4005 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 4006 goto error; 4007 break; 4008 case BPF_FUNC_sk_redirect_hash: 4009 case BPF_FUNC_msg_redirect_hash: 4010 case BPF_FUNC_sock_hash_update: 4011 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 4012 goto error; 4013 break; 4014 case BPF_FUNC_get_local_storage: 4015 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 4016 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 4017 goto error; 4018 break; 4019 case BPF_FUNC_sk_select_reuseport: 4020 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 4021 map->map_type != BPF_MAP_TYPE_SOCKMAP && 4022 map->map_type != BPF_MAP_TYPE_SOCKHASH) 4023 goto error; 4024 break; 4025 case BPF_FUNC_map_peek_elem: 4026 case BPF_FUNC_map_pop_elem: 4027 case BPF_FUNC_map_push_elem: 4028 if (map->map_type != BPF_MAP_TYPE_QUEUE && 4029 map->map_type != BPF_MAP_TYPE_STACK) 4030 goto error; 4031 break; 4032 case BPF_FUNC_sk_storage_get: 4033 case BPF_FUNC_sk_storage_delete: 4034 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 4035 goto error; 4036 break; 4037 default: 4038 break; 4039 } 4040 4041 return 0; 4042 error: 4043 verbose(env, "cannot pass map_type %d into func %s#%d\n", 4044 map->map_type, func_id_name(func_id), func_id); 4045 return -EINVAL; 4046 } 4047 4048 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 4049 { 4050 int count = 0; 4051 4052 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 4053 count++; 4054 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 4055 count++; 4056 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 4057 count++; 4058 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 4059 count++; 4060 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 4061 count++; 4062 4063 /* We only support one arg being in raw mode at the moment, 4064 * which is sufficient for the helper functions we have 4065 * right now. 4066 */ 4067 return count <= 1; 4068 } 4069 4070 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 4071 enum bpf_arg_type arg_next) 4072 { 4073 return (arg_type_is_mem_ptr(arg_curr) && 4074 !arg_type_is_mem_size(arg_next)) || 4075 (!arg_type_is_mem_ptr(arg_curr) && 4076 arg_type_is_mem_size(arg_next)); 4077 } 4078 4079 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 4080 { 4081 /* bpf_xxx(..., buf, len) call will access 'len' 4082 * bytes from memory 'buf'. Both arg types need 4083 * to be paired, so make sure there's no buggy 4084 * helper function specification. 4085 */ 4086 if (arg_type_is_mem_size(fn->arg1_type) || 4087 arg_type_is_mem_ptr(fn->arg5_type) || 4088 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 4089 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 4090 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 4091 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 4092 return false; 4093 4094 return true; 4095 } 4096 4097 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 4098 { 4099 int count = 0; 4100 4101 if (arg_type_may_be_refcounted(fn->arg1_type)) 4102 count++; 4103 if (arg_type_may_be_refcounted(fn->arg2_type)) 4104 count++; 4105 if (arg_type_may_be_refcounted(fn->arg3_type)) 4106 count++; 4107 if (arg_type_may_be_refcounted(fn->arg4_type)) 4108 count++; 4109 if (arg_type_may_be_refcounted(fn->arg5_type)) 4110 count++; 4111 4112 /* A reference acquiring function cannot acquire 4113 * another refcounted ptr. 4114 */ 4115 if (is_acquire_function(func_id) && count) 4116 return false; 4117 4118 /* We only support one arg being unreferenced at the moment, 4119 * which is sufficient for the helper functions we have right now. 4120 */ 4121 return count <= 1; 4122 } 4123 4124 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 4125 { 4126 return check_raw_mode_ok(fn) && 4127 check_arg_pair_ok(fn) && 4128 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 4129 } 4130 4131 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 4132 * are now invalid, so turn them into unknown SCALAR_VALUE. 4133 */ 4134 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 4135 struct bpf_func_state *state) 4136 { 4137 struct bpf_reg_state *regs = state->regs, *reg; 4138 int i; 4139 4140 for (i = 0; i < MAX_BPF_REG; i++) 4141 if (reg_is_pkt_pointer_any(®s[i])) 4142 mark_reg_unknown(env, regs, i); 4143 4144 bpf_for_each_spilled_reg(i, state, reg) { 4145 if (!reg) 4146 continue; 4147 if (reg_is_pkt_pointer_any(reg)) 4148 __mark_reg_unknown(env, reg); 4149 } 4150 } 4151 4152 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 4153 { 4154 struct bpf_verifier_state *vstate = env->cur_state; 4155 int i; 4156 4157 for (i = 0; i <= vstate->curframe; i++) 4158 __clear_all_pkt_pointers(env, vstate->frame[i]); 4159 } 4160 4161 static void release_reg_references(struct bpf_verifier_env *env, 4162 struct bpf_func_state *state, 4163 int ref_obj_id) 4164 { 4165 struct bpf_reg_state *regs = state->regs, *reg; 4166 int i; 4167 4168 for (i = 0; i < MAX_BPF_REG; i++) 4169 if (regs[i].ref_obj_id == ref_obj_id) 4170 mark_reg_unknown(env, regs, i); 4171 4172 bpf_for_each_spilled_reg(i, state, reg) { 4173 if (!reg) 4174 continue; 4175 if (reg->ref_obj_id == ref_obj_id) 4176 __mark_reg_unknown(env, reg); 4177 } 4178 } 4179 4180 /* The pointer with the specified id has released its reference to kernel 4181 * resources. Identify all copies of the same pointer and clear the reference. 4182 */ 4183 static int release_reference(struct bpf_verifier_env *env, 4184 int ref_obj_id) 4185 { 4186 struct bpf_verifier_state *vstate = env->cur_state; 4187 int err; 4188 int i; 4189 4190 err = release_reference_state(cur_func(env), ref_obj_id); 4191 if (err) 4192 return err; 4193 4194 for (i = 0; i <= vstate->curframe; i++) 4195 release_reg_references(env, vstate->frame[i], ref_obj_id); 4196 4197 return 0; 4198 } 4199 4200 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 4201 struct bpf_reg_state *regs) 4202 { 4203 int i; 4204 4205 /* after the call registers r0 - r5 were scratched */ 4206 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4207 mark_reg_not_init(env, regs, caller_saved[i]); 4208 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4209 } 4210 } 4211 4212 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 4213 int *insn_idx) 4214 { 4215 struct bpf_verifier_state *state = env->cur_state; 4216 struct bpf_func_info_aux *func_info_aux; 4217 struct bpf_func_state *caller, *callee; 4218 int i, err, subprog, target_insn; 4219 bool is_global = false; 4220 4221 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 4222 verbose(env, "the call stack of %d frames is too deep\n", 4223 state->curframe + 2); 4224 return -E2BIG; 4225 } 4226 4227 target_insn = *insn_idx + insn->imm; 4228 subprog = find_subprog(env, target_insn + 1); 4229 if (subprog < 0) { 4230 verbose(env, "verifier bug. No program starts at insn %d\n", 4231 target_insn + 1); 4232 return -EFAULT; 4233 } 4234 4235 caller = state->frame[state->curframe]; 4236 if (state->frame[state->curframe + 1]) { 4237 verbose(env, "verifier bug. Frame %d already allocated\n", 4238 state->curframe + 1); 4239 return -EFAULT; 4240 } 4241 4242 func_info_aux = env->prog->aux->func_info_aux; 4243 if (func_info_aux) 4244 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 4245 err = btf_check_func_arg_match(env, subprog, caller->regs); 4246 if (err == -EFAULT) 4247 return err; 4248 if (is_global) { 4249 if (err) { 4250 verbose(env, "Caller passes invalid args into func#%d\n", 4251 subprog); 4252 return err; 4253 } else { 4254 if (env->log.level & BPF_LOG_LEVEL) 4255 verbose(env, 4256 "Func#%d is global and valid. Skipping.\n", 4257 subprog); 4258 clear_caller_saved_regs(env, caller->regs); 4259 4260 /* All global functions return SCALAR_VALUE */ 4261 mark_reg_unknown(env, caller->regs, BPF_REG_0); 4262 4263 /* continue with next insn after call */ 4264 return 0; 4265 } 4266 } 4267 4268 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 4269 if (!callee) 4270 return -ENOMEM; 4271 state->frame[state->curframe + 1] = callee; 4272 4273 /* callee cannot access r0, r6 - r9 for reading and has to write 4274 * into its own stack before reading from it. 4275 * callee can read/write into caller's stack 4276 */ 4277 init_func_state(env, callee, 4278 /* remember the callsite, it will be used by bpf_exit */ 4279 *insn_idx /* callsite */, 4280 state->curframe + 1 /* frameno within this callchain */, 4281 subprog /* subprog number within this prog */); 4282 4283 /* Transfer references to the callee */ 4284 err = transfer_reference_state(callee, caller); 4285 if (err) 4286 return err; 4287 4288 /* copy r1 - r5 args that callee can access. The copy includes parent 4289 * pointers, which connects us up to the liveness chain 4290 */ 4291 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4292 callee->regs[i] = caller->regs[i]; 4293 4294 clear_caller_saved_regs(env, caller->regs); 4295 4296 /* only increment it after check_reg_arg() finished */ 4297 state->curframe++; 4298 4299 /* and go analyze first insn of the callee */ 4300 *insn_idx = target_insn; 4301 4302 if (env->log.level & BPF_LOG_LEVEL) { 4303 verbose(env, "caller:\n"); 4304 print_verifier_state(env, caller); 4305 verbose(env, "callee:\n"); 4306 print_verifier_state(env, callee); 4307 } 4308 return 0; 4309 } 4310 4311 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 4312 { 4313 struct bpf_verifier_state *state = env->cur_state; 4314 struct bpf_func_state *caller, *callee; 4315 struct bpf_reg_state *r0; 4316 int err; 4317 4318 callee = state->frame[state->curframe]; 4319 r0 = &callee->regs[BPF_REG_0]; 4320 if (r0->type == PTR_TO_STACK) { 4321 /* technically it's ok to return caller's stack pointer 4322 * (or caller's caller's pointer) back to the caller, 4323 * since these pointers are valid. Only current stack 4324 * pointer will be invalid as soon as function exits, 4325 * but let's be conservative 4326 */ 4327 verbose(env, "cannot return stack pointer to the caller\n"); 4328 return -EINVAL; 4329 } 4330 4331 state->curframe--; 4332 caller = state->frame[state->curframe]; 4333 /* return to the caller whatever r0 had in the callee */ 4334 caller->regs[BPF_REG_0] = *r0; 4335 4336 /* Transfer references to the caller */ 4337 err = transfer_reference_state(caller, callee); 4338 if (err) 4339 return err; 4340 4341 *insn_idx = callee->callsite + 1; 4342 if (env->log.level & BPF_LOG_LEVEL) { 4343 verbose(env, "returning from callee:\n"); 4344 print_verifier_state(env, callee); 4345 verbose(env, "to caller at %d:\n", *insn_idx); 4346 print_verifier_state(env, caller); 4347 } 4348 /* clear everything in the callee */ 4349 free_func_state(callee); 4350 state->frame[state->curframe + 1] = NULL; 4351 return 0; 4352 } 4353 4354 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 4355 int func_id, 4356 struct bpf_call_arg_meta *meta) 4357 { 4358 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 4359 4360 if (ret_type != RET_INTEGER || 4361 (func_id != BPF_FUNC_get_stack && 4362 func_id != BPF_FUNC_probe_read_str)) 4363 return; 4364 4365 ret_reg->smax_value = meta->msize_max_value; 4366 ret_reg->s32_max_value = meta->msize_max_value; 4367 __reg_deduce_bounds(ret_reg); 4368 __reg_bound_offset(ret_reg); 4369 __update_reg_bounds(ret_reg); 4370 } 4371 4372 static int 4373 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4374 int func_id, int insn_idx) 4375 { 4376 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4377 struct bpf_map *map = meta->map_ptr; 4378 4379 if (func_id != BPF_FUNC_tail_call && 4380 func_id != BPF_FUNC_map_lookup_elem && 4381 func_id != BPF_FUNC_map_update_elem && 4382 func_id != BPF_FUNC_map_delete_elem && 4383 func_id != BPF_FUNC_map_push_elem && 4384 func_id != BPF_FUNC_map_pop_elem && 4385 func_id != BPF_FUNC_map_peek_elem) 4386 return 0; 4387 4388 if (map == NULL) { 4389 verbose(env, "kernel subsystem misconfigured verifier\n"); 4390 return -EINVAL; 4391 } 4392 4393 /* In case of read-only, some additional restrictions 4394 * need to be applied in order to prevent altering the 4395 * state of the map from program side. 4396 */ 4397 if ((map->map_flags & BPF_F_RDONLY_PROG) && 4398 (func_id == BPF_FUNC_map_delete_elem || 4399 func_id == BPF_FUNC_map_update_elem || 4400 func_id == BPF_FUNC_map_push_elem || 4401 func_id == BPF_FUNC_map_pop_elem)) { 4402 verbose(env, "write into map forbidden\n"); 4403 return -EACCES; 4404 } 4405 4406 if (!BPF_MAP_PTR(aux->map_ptr_state)) 4407 bpf_map_ptr_store(aux, meta->map_ptr, 4408 meta->map_ptr->unpriv_array); 4409 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 4410 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 4411 meta->map_ptr->unpriv_array); 4412 return 0; 4413 } 4414 4415 static int 4416 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4417 int func_id, int insn_idx) 4418 { 4419 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4420 struct bpf_reg_state *regs = cur_regs(env), *reg; 4421 struct bpf_map *map = meta->map_ptr; 4422 struct tnum range; 4423 u64 val; 4424 int err; 4425 4426 if (func_id != BPF_FUNC_tail_call) 4427 return 0; 4428 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 4429 verbose(env, "kernel subsystem misconfigured verifier\n"); 4430 return -EINVAL; 4431 } 4432 4433 range = tnum_range(0, map->max_entries - 1); 4434 reg = ®s[BPF_REG_3]; 4435 4436 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 4437 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4438 return 0; 4439 } 4440 4441 err = mark_chain_precision(env, BPF_REG_3); 4442 if (err) 4443 return err; 4444 4445 val = reg->var_off.value; 4446 if (bpf_map_key_unseen(aux)) 4447 bpf_map_key_store(aux, val); 4448 else if (!bpf_map_key_poisoned(aux) && 4449 bpf_map_key_immediate(aux) != val) 4450 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4451 return 0; 4452 } 4453 4454 static int check_reference_leak(struct bpf_verifier_env *env) 4455 { 4456 struct bpf_func_state *state = cur_func(env); 4457 int i; 4458 4459 for (i = 0; i < state->acquired_refs; i++) { 4460 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 4461 state->refs[i].id, state->refs[i].insn_idx); 4462 } 4463 return state->acquired_refs ? -EINVAL : 0; 4464 } 4465 4466 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 4467 { 4468 const struct bpf_func_proto *fn = NULL; 4469 struct bpf_reg_state *regs; 4470 struct bpf_call_arg_meta meta; 4471 bool changes_data; 4472 int i, err; 4473 4474 /* find function prototype */ 4475 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 4476 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 4477 func_id); 4478 return -EINVAL; 4479 } 4480 4481 if (env->ops->get_func_proto) 4482 fn = env->ops->get_func_proto(func_id, env->prog); 4483 if (!fn) { 4484 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 4485 func_id); 4486 return -EINVAL; 4487 } 4488 4489 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 4490 if (!env->prog->gpl_compatible && fn->gpl_only) { 4491 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 4492 return -EINVAL; 4493 } 4494 4495 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 4496 changes_data = bpf_helper_changes_pkt_data(fn->func); 4497 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 4498 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 4499 func_id_name(func_id), func_id); 4500 return -EINVAL; 4501 } 4502 4503 memset(&meta, 0, sizeof(meta)); 4504 meta.pkt_access = fn->pkt_access; 4505 4506 err = check_func_proto(fn, func_id); 4507 if (err) { 4508 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 4509 func_id_name(func_id), func_id); 4510 return err; 4511 } 4512 4513 meta.func_id = func_id; 4514 /* check args */ 4515 for (i = 0; i < 5; i++) { 4516 err = btf_resolve_helper_id(&env->log, fn, i); 4517 if (err > 0) 4518 meta.btf_id = err; 4519 err = check_func_arg(env, BPF_REG_1 + i, fn->arg_type[i], &meta); 4520 if (err) 4521 return err; 4522 } 4523 4524 err = record_func_map(env, &meta, func_id, insn_idx); 4525 if (err) 4526 return err; 4527 4528 err = record_func_key(env, &meta, func_id, insn_idx); 4529 if (err) 4530 return err; 4531 4532 /* Mark slots with STACK_MISC in case of raw mode, stack offset 4533 * is inferred from register state. 4534 */ 4535 for (i = 0; i < meta.access_size; i++) { 4536 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 4537 BPF_WRITE, -1, false); 4538 if (err) 4539 return err; 4540 } 4541 4542 if (func_id == BPF_FUNC_tail_call) { 4543 err = check_reference_leak(env); 4544 if (err) { 4545 verbose(env, "tail_call would lead to reference leak\n"); 4546 return err; 4547 } 4548 } else if (is_release_function(func_id)) { 4549 err = release_reference(env, meta.ref_obj_id); 4550 if (err) { 4551 verbose(env, "func %s#%d reference has not been acquired before\n", 4552 func_id_name(func_id), func_id); 4553 return err; 4554 } 4555 } 4556 4557 regs = cur_regs(env); 4558 4559 /* check that flags argument in get_local_storage(map, flags) is 0, 4560 * this is required because get_local_storage() can't return an error. 4561 */ 4562 if (func_id == BPF_FUNC_get_local_storage && 4563 !register_is_null(®s[BPF_REG_2])) { 4564 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 4565 return -EINVAL; 4566 } 4567 4568 /* reset caller saved regs */ 4569 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4570 mark_reg_not_init(env, regs, caller_saved[i]); 4571 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4572 } 4573 4574 /* helper call returns 64-bit value. */ 4575 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 4576 4577 /* update return register (already marked as written above) */ 4578 if (fn->ret_type == RET_INTEGER) { 4579 /* sets type to SCALAR_VALUE */ 4580 mark_reg_unknown(env, regs, BPF_REG_0); 4581 } else if (fn->ret_type == RET_VOID) { 4582 regs[BPF_REG_0].type = NOT_INIT; 4583 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 4584 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4585 /* There is no offset yet applied, variable or fixed */ 4586 mark_reg_known_zero(env, regs, BPF_REG_0); 4587 /* remember map_ptr, so that check_map_access() 4588 * can check 'value_size' boundary of memory access 4589 * to map element returned from bpf_map_lookup_elem() 4590 */ 4591 if (meta.map_ptr == NULL) { 4592 verbose(env, 4593 "kernel subsystem misconfigured verifier\n"); 4594 return -EINVAL; 4595 } 4596 regs[BPF_REG_0].map_ptr = meta.map_ptr; 4597 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4598 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 4599 if (map_value_has_spin_lock(meta.map_ptr)) 4600 regs[BPF_REG_0].id = ++env->id_gen; 4601 } else { 4602 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 4603 regs[BPF_REG_0].id = ++env->id_gen; 4604 } 4605 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 4606 mark_reg_known_zero(env, regs, BPF_REG_0); 4607 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 4608 regs[BPF_REG_0].id = ++env->id_gen; 4609 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 4610 mark_reg_known_zero(env, regs, BPF_REG_0); 4611 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 4612 regs[BPF_REG_0].id = ++env->id_gen; 4613 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 4614 mark_reg_known_zero(env, regs, BPF_REG_0); 4615 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 4616 regs[BPF_REG_0].id = ++env->id_gen; 4617 } else { 4618 verbose(env, "unknown return type %d of func %s#%d\n", 4619 fn->ret_type, func_id_name(func_id), func_id); 4620 return -EINVAL; 4621 } 4622 4623 if (is_ptr_cast_function(func_id)) { 4624 /* For release_reference() */ 4625 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 4626 } else if (is_acquire_function(func_id)) { 4627 int id = acquire_reference_state(env, insn_idx); 4628 4629 if (id < 0) 4630 return id; 4631 /* For mark_ptr_or_null_reg() */ 4632 regs[BPF_REG_0].id = id; 4633 /* For release_reference() */ 4634 regs[BPF_REG_0].ref_obj_id = id; 4635 } 4636 4637 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 4638 4639 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 4640 if (err) 4641 return err; 4642 4643 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 4644 const char *err_str; 4645 4646 #ifdef CONFIG_PERF_EVENTS 4647 err = get_callchain_buffers(sysctl_perf_event_max_stack); 4648 err_str = "cannot get callchain buffer for func %s#%d\n"; 4649 #else 4650 err = -ENOTSUPP; 4651 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 4652 #endif 4653 if (err) { 4654 verbose(env, err_str, func_id_name(func_id), func_id); 4655 return err; 4656 } 4657 4658 env->prog->has_callchain_buf = true; 4659 } 4660 4661 if (changes_data) 4662 clear_all_pkt_pointers(env); 4663 return 0; 4664 } 4665 4666 static bool signed_add_overflows(s64 a, s64 b) 4667 { 4668 /* Do the add in u64, where overflow is well-defined */ 4669 s64 res = (s64)((u64)a + (u64)b); 4670 4671 if (b < 0) 4672 return res > a; 4673 return res < a; 4674 } 4675 4676 static bool signed_add32_overflows(s64 a, s64 b) 4677 { 4678 /* Do the add in u32, where overflow is well-defined */ 4679 s32 res = (s32)((u32)a + (u32)b); 4680 4681 if (b < 0) 4682 return res > a; 4683 return res < a; 4684 } 4685 4686 static bool signed_sub_overflows(s32 a, s32 b) 4687 { 4688 /* Do the sub in u64, where overflow is well-defined */ 4689 s64 res = (s64)((u64)a - (u64)b); 4690 4691 if (b < 0) 4692 return res < a; 4693 return res > a; 4694 } 4695 4696 static bool signed_sub32_overflows(s32 a, s32 b) 4697 { 4698 /* Do the sub in u64, where overflow is well-defined */ 4699 s32 res = (s32)((u32)a - (u32)b); 4700 4701 if (b < 0) 4702 return res < a; 4703 return res > a; 4704 } 4705 4706 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 4707 const struct bpf_reg_state *reg, 4708 enum bpf_reg_type type) 4709 { 4710 bool known = tnum_is_const(reg->var_off); 4711 s64 val = reg->var_off.value; 4712 s64 smin = reg->smin_value; 4713 4714 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 4715 verbose(env, "math between %s pointer and %lld is not allowed\n", 4716 reg_type_str[type], val); 4717 return false; 4718 } 4719 4720 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 4721 verbose(env, "%s pointer offset %d is not allowed\n", 4722 reg_type_str[type], reg->off); 4723 return false; 4724 } 4725 4726 if (smin == S64_MIN) { 4727 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 4728 reg_type_str[type]); 4729 return false; 4730 } 4731 4732 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 4733 verbose(env, "value %lld makes %s pointer be out of bounds\n", 4734 smin, reg_type_str[type]); 4735 return false; 4736 } 4737 4738 return true; 4739 } 4740 4741 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 4742 { 4743 return &env->insn_aux_data[env->insn_idx]; 4744 } 4745 4746 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 4747 u32 *ptr_limit, u8 opcode, bool off_is_neg) 4748 { 4749 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 4750 (opcode == BPF_SUB && !off_is_neg); 4751 u32 off; 4752 4753 switch (ptr_reg->type) { 4754 case PTR_TO_STACK: 4755 /* Indirect variable offset stack access is prohibited in 4756 * unprivileged mode so it's not handled here. 4757 */ 4758 off = ptr_reg->off + ptr_reg->var_off.value; 4759 if (mask_to_left) 4760 *ptr_limit = MAX_BPF_STACK + off; 4761 else 4762 *ptr_limit = -off; 4763 return 0; 4764 case PTR_TO_MAP_VALUE: 4765 if (mask_to_left) { 4766 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 4767 } else { 4768 off = ptr_reg->smin_value + ptr_reg->off; 4769 *ptr_limit = ptr_reg->map_ptr->value_size - off; 4770 } 4771 return 0; 4772 default: 4773 return -EINVAL; 4774 } 4775 } 4776 4777 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 4778 const struct bpf_insn *insn) 4779 { 4780 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K; 4781 } 4782 4783 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 4784 u32 alu_state, u32 alu_limit) 4785 { 4786 /* If we arrived here from different branches with different 4787 * state or limits to sanitize, then this won't work. 4788 */ 4789 if (aux->alu_state && 4790 (aux->alu_state != alu_state || 4791 aux->alu_limit != alu_limit)) 4792 return -EACCES; 4793 4794 /* Corresponding fixup done in fixup_bpf_calls(). */ 4795 aux->alu_state = alu_state; 4796 aux->alu_limit = alu_limit; 4797 return 0; 4798 } 4799 4800 static int sanitize_val_alu(struct bpf_verifier_env *env, 4801 struct bpf_insn *insn) 4802 { 4803 struct bpf_insn_aux_data *aux = cur_aux(env); 4804 4805 if (can_skip_alu_sanitation(env, insn)) 4806 return 0; 4807 4808 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 4809 } 4810 4811 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 4812 struct bpf_insn *insn, 4813 const struct bpf_reg_state *ptr_reg, 4814 struct bpf_reg_state *dst_reg, 4815 bool off_is_neg) 4816 { 4817 struct bpf_verifier_state *vstate = env->cur_state; 4818 struct bpf_insn_aux_data *aux = cur_aux(env); 4819 bool ptr_is_dst_reg = ptr_reg == dst_reg; 4820 u8 opcode = BPF_OP(insn->code); 4821 u32 alu_state, alu_limit; 4822 struct bpf_reg_state tmp; 4823 bool ret; 4824 4825 if (can_skip_alu_sanitation(env, insn)) 4826 return 0; 4827 4828 /* We already marked aux for masking from non-speculative 4829 * paths, thus we got here in the first place. We only care 4830 * to explore bad access from here. 4831 */ 4832 if (vstate->speculative) 4833 goto do_sim; 4834 4835 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 4836 alu_state |= ptr_is_dst_reg ? 4837 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 4838 4839 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 4840 return 0; 4841 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 4842 return -EACCES; 4843 do_sim: 4844 /* Simulate and find potential out-of-bounds access under 4845 * speculative execution from truncation as a result of 4846 * masking when off was not within expected range. If off 4847 * sits in dst, then we temporarily need to move ptr there 4848 * to simulate dst (== 0) +/-= ptr. Needed, for example, 4849 * for cases where we use K-based arithmetic in one direction 4850 * and truncated reg-based in the other in order to explore 4851 * bad access. 4852 */ 4853 if (!ptr_is_dst_reg) { 4854 tmp = *dst_reg; 4855 *dst_reg = *ptr_reg; 4856 } 4857 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 4858 if (!ptr_is_dst_reg && ret) 4859 *dst_reg = tmp; 4860 return !ret ? -EFAULT : 0; 4861 } 4862 4863 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 4864 * Caller should also handle BPF_MOV case separately. 4865 * If we return -EACCES, caller may want to try again treating pointer as a 4866 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 4867 */ 4868 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 4869 struct bpf_insn *insn, 4870 const struct bpf_reg_state *ptr_reg, 4871 const struct bpf_reg_state *off_reg) 4872 { 4873 struct bpf_verifier_state *vstate = env->cur_state; 4874 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4875 struct bpf_reg_state *regs = state->regs, *dst_reg; 4876 bool known = tnum_is_const(off_reg->var_off); 4877 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 4878 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 4879 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 4880 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 4881 u32 dst = insn->dst_reg, src = insn->src_reg; 4882 u8 opcode = BPF_OP(insn->code); 4883 int ret; 4884 4885 dst_reg = ®s[dst]; 4886 4887 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 4888 smin_val > smax_val || umin_val > umax_val) { 4889 /* Taint dst register if offset had invalid bounds derived from 4890 * e.g. dead branches. 4891 */ 4892 __mark_reg_unknown(env, dst_reg); 4893 return 0; 4894 } 4895 4896 if (BPF_CLASS(insn->code) != BPF_ALU64) { 4897 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 4898 verbose(env, 4899 "R%d 32-bit pointer arithmetic prohibited\n", 4900 dst); 4901 return -EACCES; 4902 } 4903 4904 switch (ptr_reg->type) { 4905 case PTR_TO_MAP_VALUE_OR_NULL: 4906 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 4907 dst, reg_type_str[ptr_reg->type]); 4908 return -EACCES; 4909 case CONST_PTR_TO_MAP: 4910 case PTR_TO_PACKET_END: 4911 case PTR_TO_SOCKET: 4912 case PTR_TO_SOCKET_OR_NULL: 4913 case PTR_TO_SOCK_COMMON: 4914 case PTR_TO_SOCK_COMMON_OR_NULL: 4915 case PTR_TO_TCP_SOCK: 4916 case PTR_TO_TCP_SOCK_OR_NULL: 4917 case PTR_TO_XDP_SOCK: 4918 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 4919 dst, reg_type_str[ptr_reg->type]); 4920 return -EACCES; 4921 case PTR_TO_MAP_VALUE: 4922 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 4923 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 4924 off_reg == dst_reg ? dst : src); 4925 return -EACCES; 4926 } 4927 /* fall-through */ 4928 default: 4929 break; 4930 } 4931 4932 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 4933 * The id may be overwritten later if we create a new variable offset. 4934 */ 4935 dst_reg->type = ptr_reg->type; 4936 dst_reg->id = ptr_reg->id; 4937 4938 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 4939 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 4940 return -EINVAL; 4941 4942 /* pointer types do not carry 32-bit bounds at the moment. */ 4943 __mark_reg32_unbounded(dst_reg); 4944 4945 switch (opcode) { 4946 case BPF_ADD: 4947 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 4948 if (ret < 0) { 4949 verbose(env, "R%d tried to add from different maps or paths\n", dst); 4950 return ret; 4951 } 4952 /* We can take a fixed offset as long as it doesn't overflow 4953 * the s32 'off' field 4954 */ 4955 if (known && (ptr_reg->off + smin_val == 4956 (s64)(s32)(ptr_reg->off + smin_val))) { 4957 /* pointer += K. Accumulate it into fixed offset */ 4958 dst_reg->smin_value = smin_ptr; 4959 dst_reg->smax_value = smax_ptr; 4960 dst_reg->umin_value = umin_ptr; 4961 dst_reg->umax_value = umax_ptr; 4962 dst_reg->var_off = ptr_reg->var_off; 4963 dst_reg->off = ptr_reg->off + smin_val; 4964 dst_reg->raw = ptr_reg->raw; 4965 break; 4966 } 4967 /* A new variable offset is created. Note that off_reg->off 4968 * == 0, since it's a scalar. 4969 * dst_reg gets the pointer type and since some positive 4970 * integer value was added to the pointer, give it a new 'id' 4971 * if it's a PTR_TO_PACKET. 4972 * this creates a new 'base' pointer, off_reg (variable) gets 4973 * added into the variable offset, and we copy the fixed offset 4974 * from ptr_reg. 4975 */ 4976 if (signed_add_overflows(smin_ptr, smin_val) || 4977 signed_add_overflows(smax_ptr, smax_val)) { 4978 dst_reg->smin_value = S64_MIN; 4979 dst_reg->smax_value = S64_MAX; 4980 } else { 4981 dst_reg->smin_value = smin_ptr + smin_val; 4982 dst_reg->smax_value = smax_ptr + smax_val; 4983 } 4984 if (umin_ptr + umin_val < umin_ptr || 4985 umax_ptr + umax_val < umax_ptr) { 4986 dst_reg->umin_value = 0; 4987 dst_reg->umax_value = U64_MAX; 4988 } else { 4989 dst_reg->umin_value = umin_ptr + umin_val; 4990 dst_reg->umax_value = umax_ptr + umax_val; 4991 } 4992 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 4993 dst_reg->off = ptr_reg->off; 4994 dst_reg->raw = ptr_reg->raw; 4995 if (reg_is_pkt_pointer(ptr_reg)) { 4996 dst_reg->id = ++env->id_gen; 4997 /* something was added to pkt_ptr, set range to zero */ 4998 dst_reg->raw = 0; 4999 } 5000 break; 5001 case BPF_SUB: 5002 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 5003 if (ret < 0) { 5004 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 5005 return ret; 5006 } 5007 if (dst_reg == off_reg) { 5008 /* scalar -= pointer. Creates an unknown scalar */ 5009 verbose(env, "R%d tried to subtract pointer from scalar\n", 5010 dst); 5011 return -EACCES; 5012 } 5013 /* We don't allow subtraction from FP, because (according to 5014 * test_verifier.c test "invalid fp arithmetic", JITs might not 5015 * be able to deal with it. 5016 */ 5017 if (ptr_reg->type == PTR_TO_STACK) { 5018 verbose(env, "R%d subtraction from stack pointer prohibited\n", 5019 dst); 5020 return -EACCES; 5021 } 5022 if (known && (ptr_reg->off - smin_val == 5023 (s64)(s32)(ptr_reg->off - smin_val))) { 5024 /* pointer -= K. Subtract it from fixed offset */ 5025 dst_reg->smin_value = smin_ptr; 5026 dst_reg->smax_value = smax_ptr; 5027 dst_reg->umin_value = umin_ptr; 5028 dst_reg->umax_value = umax_ptr; 5029 dst_reg->var_off = ptr_reg->var_off; 5030 dst_reg->id = ptr_reg->id; 5031 dst_reg->off = ptr_reg->off - smin_val; 5032 dst_reg->raw = ptr_reg->raw; 5033 break; 5034 } 5035 /* A new variable offset is created. If the subtrahend is known 5036 * nonnegative, then any reg->range we had before is still good. 5037 */ 5038 if (signed_sub_overflows(smin_ptr, smax_val) || 5039 signed_sub_overflows(smax_ptr, smin_val)) { 5040 /* Overflow possible, we know nothing */ 5041 dst_reg->smin_value = S64_MIN; 5042 dst_reg->smax_value = S64_MAX; 5043 } else { 5044 dst_reg->smin_value = smin_ptr - smax_val; 5045 dst_reg->smax_value = smax_ptr - smin_val; 5046 } 5047 if (umin_ptr < umax_val) { 5048 /* Overflow possible, we know nothing */ 5049 dst_reg->umin_value = 0; 5050 dst_reg->umax_value = U64_MAX; 5051 } else { 5052 /* Cannot overflow (as long as bounds are consistent) */ 5053 dst_reg->umin_value = umin_ptr - umax_val; 5054 dst_reg->umax_value = umax_ptr - umin_val; 5055 } 5056 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 5057 dst_reg->off = ptr_reg->off; 5058 dst_reg->raw = ptr_reg->raw; 5059 if (reg_is_pkt_pointer(ptr_reg)) { 5060 dst_reg->id = ++env->id_gen; 5061 /* something was added to pkt_ptr, set range to zero */ 5062 if (smin_val < 0) 5063 dst_reg->raw = 0; 5064 } 5065 break; 5066 case BPF_AND: 5067 case BPF_OR: 5068 case BPF_XOR: 5069 /* bitwise ops on pointers are troublesome, prohibit. */ 5070 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 5071 dst, bpf_alu_string[opcode >> 4]); 5072 return -EACCES; 5073 default: 5074 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 5075 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 5076 dst, bpf_alu_string[opcode >> 4]); 5077 return -EACCES; 5078 } 5079 5080 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 5081 return -EINVAL; 5082 5083 __update_reg_bounds(dst_reg); 5084 __reg_deduce_bounds(dst_reg); 5085 __reg_bound_offset(dst_reg); 5086 5087 /* For unprivileged we require that resulting offset must be in bounds 5088 * in order to be able to sanitize access later on. 5089 */ 5090 if (!env->allow_ptr_leaks) { 5091 if (dst_reg->type == PTR_TO_MAP_VALUE && 5092 check_map_access(env, dst, dst_reg->off, 1, false)) { 5093 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 5094 "prohibited for !root\n", dst); 5095 return -EACCES; 5096 } else if (dst_reg->type == PTR_TO_STACK && 5097 check_stack_access(env, dst_reg, dst_reg->off + 5098 dst_reg->var_off.value, 1)) { 5099 verbose(env, "R%d stack pointer arithmetic goes out of range, " 5100 "prohibited for !root\n", dst); 5101 return -EACCES; 5102 } 5103 } 5104 5105 return 0; 5106 } 5107 5108 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 5109 struct bpf_reg_state *src_reg) 5110 { 5111 s32 smin_val = src_reg->s32_min_value; 5112 s32 smax_val = src_reg->s32_max_value; 5113 u32 umin_val = src_reg->u32_min_value; 5114 u32 umax_val = src_reg->u32_max_value; 5115 5116 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 5117 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 5118 dst_reg->s32_min_value = S32_MIN; 5119 dst_reg->s32_max_value = S32_MAX; 5120 } else { 5121 dst_reg->s32_min_value += smin_val; 5122 dst_reg->s32_max_value += smax_val; 5123 } 5124 if (dst_reg->u32_min_value + umin_val < umin_val || 5125 dst_reg->u32_max_value + umax_val < umax_val) { 5126 dst_reg->u32_min_value = 0; 5127 dst_reg->u32_max_value = U32_MAX; 5128 } else { 5129 dst_reg->u32_min_value += umin_val; 5130 dst_reg->u32_max_value += umax_val; 5131 } 5132 } 5133 5134 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 5135 struct bpf_reg_state *src_reg) 5136 { 5137 s64 smin_val = src_reg->smin_value; 5138 s64 smax_val = src_reg->smax_value; 5139 u64 umin_val = src_reg->umin_value; 5140 u64 umax_val = src_reg->umax_value; 5141 5142 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 5143 signed_add_overflows(dst_reg->smax_value, smax_val)) { 5144 dst_reg->smin_value = S64_MIN; 5145 dst_reg->smax_value = S64_MAX; 5146 } else { 5147 dst_reg->smin_value += smin_val; 5148 dst_reg->smax_value += smax_val; 5149 } 5150 if (dst_reg->umin_value + umin_val < umin_val || 5151 dst_reg->umax_value + umax_val < umax_val) { 5152 dst_reg->umin_value = 0; 5153 dst_reg->umax_value = U64_MAX; 5154 } else { 5155 dst_reg->umin_value += umin_val; 5156 dst_reg->umax_value += umax_val; 5157 } 5158 } 5159 5160 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 5161 struct bpf_reg_state *src_reg) 5162 { 5163 s32 smin_val = src_reg->s32_min_value; 5164 s32 smax_val = src_reg->s32_max_value; 5165 u32 umin_val = src_reg->u32_min_value; 5166 u32 umax_val = src_reg->u32_max_value; 5167 5168 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 5169 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 5170 /* Overflow possible, we know nothing */ 5171 dst_reg->s32_min_value = S32_MIN; 5172 dst_reg->s32_max_value = S32_MAX; 5173 } else { 5174 dst_reg->s32_min_value -= smax_val; 5175 dst_reg->s32_max_value -= smin_val; 5176 } 5177 if (dst_reg->u32_min_value < umax_val) { 5178 /* Overflow possible, we know nothing */ 5179 dst_reg->u32_min_value = 0; 5180 dst_reg->u32_max_value = U32_MAX; 5181 } else { 5182 /* Cannot overflow (as long as bounds are consistent) */ 5183 dst_reg->u32_min_value -= umax_val; 5184 dst_reg->u32_max_value -= umin_val; 5185 } 5186 } 5187 5188 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 5189 struct bpf_reg_state *src_reg) 5190 { 5191 s64 smin_val = src_reg->smin_value; 5192 s64 smax_val = src_reg->smax_value; 5193 u64 umin_val = src_reg->umin_value; 5194 u64 umax_val = src_reg->umax_value; 5195 5196 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 5197 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 5198 /* Overflow possible, we know nothing */ 5199 dst_reg->smin_value = S64_MIN; 5200 dst_reg->smax_value = S64_MAX; 5201 } else { 5202 dst_reg->smin_value -= smax_val; 5203 dst_reg->smax_value -= smin_val; 5204 } 5205 if (dst_reg->umin_value < umax_val) { 5206 /* Overflow possible, we know nothing */ 5207 dst_reg->umin_value = 0; 5208 dst_reg->umax_value = U64_MAX; 5209 } else { 5210 /* Cannot overflow (as long as bounds are consistent) */ 5211 dst_reg->umin_value -= umax_val; 5212 dst_reg->umax_value -= umin_val; 5213 } 5214 } 5215 5216 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 5217 struct bpf_reg_state *src_reg) 5218 { 5219 s32 smin_val = src_reg->s32_min_value; 5220 u32 umin_val = src_reg->u32_min_value; 5221 u32 umax_val = src_reg->u32_max_value; 5222 5223 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 5224 /* Ain't nobody got time to multiply that sign */ 5225 __mark_reg32_unbounded(dst_reg); 5226 return; 5227 } 5228 /* Both values are positive, so we can work with unsigned and 5229 * copy the result to signed (unless it exceeds S32_MAX). 5230 */ 5231 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 5232 /* Potential overflow, we know nothing */ 5233 __mark_reg32_unbounded(dst_reg); 5234 return; 5235 } 5236 dst_reg->u32_min_value *= umin_val; 5237 dst_reg->u32_max_value *= umax_val; 5238 if (dst_reg->u32_max_value > S32_MAX) { 5239 /* Overflow possible, we know nothing */ 5240 dst_reg->s32_min_value = S32_MIN; 5241 dst_reg->s32_max_value = S32_MAX; 5242 } else { 5243 dst_reg->s32_min_value = dst_reg->u32_min_value; 5244 dst_reg->s32_max_value = dst_reg->u32_max_value; 5245 } 5246 } 5247 5248 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 5249 struct bpf_reg_state *src_reg) 5250 { 5251 s64 smin_val = src_reg->smin_value; 5252 u64 umin_val = src_reg->umin_value; 5253 u64 umax_val = src_reg->umax_value; 5254 5255 if (smin_val < 0 || dst_reg->smin_value < 0) { 5256 /* Ain't nobody got time to multiply that sign */ 5257 __mark_reg64_unbounded(dst_reg); 5258 return; 5259 } 5260 /* Both values are positive, so we can work with unsigned and 5261 * copy the result to signed (unless it exceeds S64_MAX). 5262 */ 5263 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 5264 /* Potential overflow, we know nothing */ 5265 __mark_reg64_unbounded(dst_reg); 5266 return; 5267 } 5268 dst_reg->umin_value *= umin_val; 5269 dst_reg->umax_value *= umax_val; 5270 if (dst_reg->umax_value > S64_MAX) { 5271 /* Overflow possible, we know nothing */ 5272 dst_reg->smin_value = S64_MIN; 5273 dst_reg->smax_value = S64_MAX; 5274 } else { 5275 dst_reg->smin_value = dst_reg->umin_value; 5276 dst_reg->smax_value = dst_reg->umax_value; 5277 } 5278 } 5279 5280 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 5281 struct bpf_reg_state *src_reg) 5282 { 5283 bool src_known = tnum_subreg_is_const(src_reg->var_off); 5284 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 5285 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 5286 s32 smin_val = src_reg->s32_min_value; 5287 u32 umax_val = src_reg->u32_max_value; 5288 5289 /* Assuming scalar64_min_max_and will be called so its safe 5290 * to skip updating register for known 32-bit case. 5291 */ 5292 if (src_known && dst_known) 5293 return; 5294 5295 /* We get our minimum from the var_off, since that's inherently 5296 * bitwise. Our maximum is the minimum of the operands' maxima. 5297 */ 5298 dst_reg->u32_min_value = var32_off.value; 5299 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 5300 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 5301 /* Lose signed bounds when ANDing negative numbers, 5302 * ain't nobody got time for that. 5303 */ 5304 dst_reg->s32_min_value = S32_MIN; 5305 dst_reg->s32_max_value = S32_MAX; 5306 } else { 5307 /* ANDing two positives gives a positive, so safe to 5308 * cast result into s64. 5309 */ 5310 dst_reg->s32_min_value = dst_reg->u32_min_value; 5311 dst_reg->s32_max_value = dst_reg->u32_max_value; 5312 } 5313 5314 } 5315 5316 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 5317 struct bpf_reg_state *src_reg) 5318 { 5319 bool src_known = tnum_is_const(src_reg->var_off); 5320 bool dst_known = tnum_is_const(dst_reg->var_off); 5321 s64 smin_val = src_reg->smin_value; 5322 u64 umax_val = src_reg->umax_value; 5323 5324 if (src_known && dst_known) { 5325 __mark_reg_known(dst_reg, dst_reg->var_off.value & 5326 src_reg->var_off.value); 5327 return; 5328 } 5329 5330 /* We get our minimum from the var_off, since that's inherently 5331 * bitwise. Our maximum is the minimum of the operands' maxima. 5332 */ 5333 dst_reg->umin_value = dst_reg->var_off.value; 5334 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 5335 if (dst_reg->smin_value < 0 || smin_val < 0) { 5336 /* Lose signed bounds when ANDing negative numbers, 5337 * ain't nobody got time for that. 5338 */ 5339 dst_reg->smin_value = S64_MIN; 5340 dst_reg->smax_value = S64_MAX; 5341 } else { 5342 /* ANDing two positives gives a positive, so safe to 5343 * cast result into s64. 5344 */ 5345 dst_reg->smin_value = dst_reg->umin_value; 5346 dst_reg->smax_value = dst_reg->umax_value; 5347 } 5348 /* We may learn something more from the var_off */ 5349 __update_reg_bounds(dst_reg); 5350 } 5351 5352 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 5353 struct bpf_reg_state *src_reg) 5354 { 5355 bool src_known = tnum_subreg_is_const(src_reg->var_off); 5356 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 5357 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 5358 s32 smin_val = src_reg->smin_value; 5359 u32 umin_val = src_reg->umin_value; 5360 5361 /* Assuming scalar64_min_max_or will be called so it is safe 5362 * to skip updating register for known case. 5363 */ 5364 if (src_known && dst_known) 5365 return; 5366 5367 /* We get our maximum from the var_off, and our minimum is the 5368 * maximum of the operands' minima 5369 */ 5370 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 5371 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 5372 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 5373 /* Lose signed bounds when ORing negative numbers, 5374 * ain't nobody got time for that. 5375 */ 5376 dst_reg->s32_min_value = S32_MIN; 5377 dst_reg->s32_max_value = S32_MAX; 5378 } else { 5379 /* ORing two positives gives a positive, so safe to 5380 * cast result into s64. 5381 */ 5382 dst_reg->s32_min_value = dst_reg->umin_value; 5383 dst_reg->s32_max_value = dst_reg->umax_value; 5384 } 5385 } 5386 5387 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 5388 struct bpf_reg_state *src_reg) 5389 { 5390 bool src_known = tnum_is_const(src_reg->var_off); 5391 bool dst_known = tnum_is_const(dst_reg->var_off); 5392 s64 smin_val = src_reg->smin_value; 5393 u64 umin_val = src_reg->umin_value; 5394 5395 if (src_known && dst_known) { 5396 __mark_reg_known(dst_reg, dst_reg->var_off.value | 5397 src_reg->var_off.value); 5398 return; 5399 } 5400 5401 /* We get our maximum from the var_off, and our minimum is the 5402 * maximum of the operands' minima 5403 */ 5404 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 5405 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 5406 if (dst_reg->smin_value < 0 || smin_val < 0) { 5407 /* Lose signed bounds when ORing negative numbers, 5408 * ain't nobody got time for that. 5409 */ 5410 dst_reg->smin_value = S64_MIN; 5411 dst_reg->smax_value = S64_MAX; 5412 } else { 5413 /* ORing two positives gives a positive, so safe to 5414 * cast result into s64. 5415 */ 5416 dst_reg->smin_value = dst_reg->umin_value; 5417 dst_reg->smax_value = dst_reg->umax_value; 5418 } 5419 /* We may learn something more from the var_off */ 5420 __update_reg_bounds(dst_reg); 5421 } 5422 5423 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 5424 u64 umin_val, u64 umax_val) 5425 { 5426 /* We lose all sign bit information (except what we can pick 5427 * up from var_off) 5428 */ 5429 dst_reg->s32_min_value = S32_MIN; 5430 dst_reg->s32_max_value = S32_MAX; 5431 /* If we might shift our top bit out, then we know nothing */ 5432 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 5433 dst_reg->u32_min_value = 0; 5434 dst_reg->u32_max_value = U32_MAX; 5435 } else { 5436 dst_reg->u32_min_value <<= umin_val; 5437 dst_reg->u32_max_value <<= umax_val; 5438 } 5439 } 5440 5441 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 5442 struct bpf_reg_state *src_reg) 5443 { 5444 u32 umax_val = src_reg->u32_max_value; 5445 u32 umin_val = src_reg->u32_min_value; 5446 /* u32 alu operation will zext upper bits */ 5447 struct tnum subreg = tnum_subreg(dst_reg->var_off); 5448 5449 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 5450 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 5451 /* Not required but being careful mark reg64 bounds as unknown so 5452 * that we are forced to pick them up from tnum and zext later and 5453 * if some path skips this step we are still safe. 5454 */ 5455 __mark_reg64_unbounded(dst_reg); 5456 __update_reg32_bounds(dst_reg); 5457 } 5458 5459 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 5460 u64 umin_val, u64 umax_val) 5461 { 5462 /* Special case <<32 because it is a common compiler pattern to sign 5463 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 5464 * positive we know this shift will also be positive so we can track 5465 * bounds correctly. Otherwise we lose all sign bit information except 5466 * what we can pick up from var_off. Perhaps we can generalize this 5467 * later to shifts of any length. 5468 */ 5469 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 5470 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 5471 else 5472 dst_reg->smax_value = S64_MAX; 5473 5474 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 5475 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 5476 else 5477 dst_reg->smin_value = S64_MIN; 5478 5479 /* If we might shift our top bit out, then we know nothing */ 5480 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 5481 dst_reg->umin_value = 0; 5482 dst_reg->umax_value = U64_MAX; 5483 } else { 5484 dst_reg->umin_value <<= umin_val; 5485 dst_reg->umax_value <<= umax_val; 5486 } 5487 } 5488 5489 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 5490 struct bpf_reg_state *src_reg) 5491 { 5492 u64 umax_val = src_reg->umax_value; 5493 u64 umin_val = src_reg->umin_value; 5494 5495 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 5496 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 5497 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 5498 5499 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 5500 /* We may learn something more from the var_off */ 5501 __update_reg_bounds(dst_reg); 5502 } 5503 5504 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 5505 struct bpf_reg_state *src_reg) 5506 { 5507 struct tnum subreg = tnum_subreg(dst_reg->var_off); 5508 u32 umax_val = src_reg->u32_max_value; 5509 u32 umin_val = src_reg->u32_min_value; 5510 5511 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 5512 * be negative, then either: 5513 * 1) src_reg might be zero, so the sign bit of the result is 5514 * unknown, so we lose our signed bounds 5515 * 2) it's known negative, thus the unsigned bounds capture the 5516 * signed bounds 5517 * 3) the signed bounds cross zero, so they tell us nothing 5518 * about the result 5519 * If the value in dst_reg is known nonnegative, then again the 5520 * unsigned bounts capture the signed bounds. 5521 * Thus, in all cases it suffices to blow away our signed bounds 5522 * and rely on inferring new ones from the unsigned bounds and 5523 * var_off of the result. 5524 */ 5525 dst_reg->s32_min_value = S32_MIN; 5526 dst_reg->s32_max_value = S32_MAX; 5527 5528 dst_reg->var_off = tnum_rshift(subreg, umin_val); 5529 dst_reg->u32_min_value >>= umax_val; 5530 dst_reg->u32_max_value >>= umin_val; 5531 5532 __mark_reg64_unbounded(dst_reg); 5533 __update_reg32_bounds(dst_reg); 5534 } 5535 5536 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 5537 struct bpf_reg_state *src_reg) 5538 { 5539 u64 umax_val = src_reg->umax_value; 5540 u64 umin_val = src_reg->umin_value; 5541 5542 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 5543 * be negative, then either: 5544 * 1) src_reg might be zero, so the sign bit of the result is 5545 * unknown, so we lose our signed bounds 5546 * 2) it's known negative, thus the unsigned bounds capture the 5547 * signed bounds 5548 * 3) the signed bounds cross zero, so they tell us nothing 5549 * about the result 5550 * If the value in dst_reg is known nonnegative, then again the 5551 * unsigned bounts capture the signed bounds. 5552 * Thus, in all cases it suffices to blow away our signed bounds 5553 * and rely on inferring new ones from the unsigned bounds and 5554 * var_off of the result. 5555 */ 5556 dst_reg->smin_value = S64_MIN; 5557 dst_reg->smax_value = S64_MAX; 5558 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 5559 dst_reg->umin_value >>= umax_val; 5560 dst_reg->umax_value >>= umin_val; 5561 5562 /* Its not easy to operate on alu32 bounds here because it depends 5563 * on bits being shifted in. Take easy way out and mark unbounded 5564 * so we can recalculate later from tnum. 5565 */ 5566 __mark_reg32_unbounded(dst_reg); 5567 __update_reg_bounds(dst_reg); 5568 } 5569 5570 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 5571 struct bpf_reg_state *src_reg) 5572 { 5573 u64 umin_val = src_reg->u32_min_value; 5574 5575 /* Upon reaching here, src_known is true and 5576 * umax_val is equal to umin_val. 5577 */ 5578 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 5579 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 5580 5581 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 5582 5583 /* blow away the dst_reg umin_value/umax_value and rely on 5584 * dst_reg var_off to refine the result. 5585 */ 5586 dst_reg->u32_min_value = 0; 5587 dst_reg->u32_max_value = U32_MAX; 5588 5589 __mark_reg64_unbounded(dst_reg); 5590 __update_reg32_bounds(dst_reg); 5591 } 5592 5593 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 5594 struct bpf_reg_state *src_reg) 5595 { 5596 u64 umin_val = src_reg->umin_value; 5597 5598 /* Upon reaching here, src_known is true and umax_val is equal 5599 * to umin_val. 5600 */ 5601 dst_reg->smin_value >>= umin_val; 5602 dst_reg->smax_value >>= umin_val; 5603 5604 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 5605 5606 /* blow away the dst_reg umin_value/umax_value and rely on 5607 * dst_reg var_off to refine the result. 5608 */ 5609 dst_reg->umin_value = 0; 5610 dst_reg->umax_value = U64_MAX; 5611 5612 /* Its not easy to operate on alu32 bounds here because it depends 5613 * on bits being shifted in from upper 32-bits. Take easy way out 5614 * and mark unbounded so we can recalculate later from tnum. 5615 */ 5616 __mark_reg32_unbounded(dst_reg); 5617 __update_reg_bounds(dst_reg); 5618 } 5619 5620 /* WARNING: This function does calculations on 64-bit values, but the actual 5621 * execution may occur on 32-bit values. Therefore, things like bitshifts 5622 * need extra checks in the 32-bit case. 5623 */ 5624 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 5625 struct bpf_insn *insn, 5626 struct bpf_reg_state *dst_reg, 5627 struct bpf_reg_state src_reg) 5628 { 5629 struct bpf_reg_state *regs = cur_regs(env); 5630 u8 opcode = BPF_OP(insn->code); 5631 bool src_known; 5632 s64 smin_val, smax_val; 5633 u64 umin_val, umax_val; 5634 s32 s32_min_val, s32_max_val; 5635 u32 u32_min_val, u32_max_val; 5636 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 5637 u32 dst = insn->dst_reg; 5638 int ret; 5639 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 5640 5641 smin_val = src_reg.smin_value; 5642 smax_val = src_reg.smax_value; 5643 umin_val = src_reg.umin_value; 5644 umax_val = src_reg.umax_value; 5645 5646 s32_min_val = src_reg.s32_min_value; 5647 s32_max_val = src_reg.s32_max_value; 5648 u32_min_val = src_reg.u32_min_value; 5649 u32_max_val = src_reg.u32_max_value; 5650 5651 if (alu32) { 5652 src_known = tnum_subreg_is_const(src_reg.var_off); 5653 if ((src_known && 5654 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 5655 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 5656 /* Taint dst register if offset had invalid bounds 5657 * derived from e.g. dead branches. 5658 */ 5659 __mark_reg_unknown(env, dst_reg); 5660 return 0; 5661 } 5662 } else { 5663 src_known = tnum_is_const(src_reg.var_off); 5664 if ((src_known && 5665 (smin_val != smax_val || umin_val != umax_val)) || 5666 smin_val > smax_val || umin_val > umax_val) { 5667 /* Taint dst register if offset had invalid bounds 5668 * derived from e.g. dead branches. 5669 */ 5670 __mark_reg_unknown(env, dst_reg); 5671 return 0; 5672 } 5673 } 5674 5675 if (!src_known && 5676 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 5677 __mark_reg_unknown(env, dst_reg); 5678 return 0; 5679 } 5680 5681 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 5682 * There are two classes of instructions: The first class we track both 5683 * alu32 and alu64 sign/unsigned bounds independently this provides the 5684 * greatest amount of precision when alu operations are mixed with jmp32 5685 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 5686 * and BPF_OR. This is possible because these ops have fairly easy to 5687 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 5688 * See alu32 verifier tests for examples. The second class of 5689 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 5690 * with regards to tracking sign/unsigned bounds because the bits may 5691 * cross subreg boundaries in the alu64 case. When this happens we mark 5692 * the reg unbounded in the subreg bound space and use the resulting 5693 * tnum to calculate an approximation of the sign/unsigned bounds. 5694 */ 5695 switch (opcode) { 5696 case BPF_ADD: 5697 ret = sanitize_val_alu(env, insn); 5698 if (ret < 0) { 5699 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 5700 return ret; 5701 } 5702 scalar32_min_max_add(dst_reg, &src_reg); 5703 scalar_min_max_add(dst_reg, &src_reg); 5704 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 5705 break; 5706 case BPF_SUB: 5707 ret = sanitize_val_alu(env, insn); 5708 if (ret < 0) { 5709 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 5710 return ret; 5711 } 5712 scalar32_min_max_sub(dst_reg, &src_reg); 5713 scalar_min_max_sub(dst_reg, &src_reg); 5714 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 5715 break; 5716 case BPF_MUL: 5717 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 5718 scalar32_min_max_mul(dst_reg, &src_reg); 5719 scalar_min_max_mul(dst_reg, &src_reg); 5720 break; 5721 case BPF_AND: 5722 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 5723 scalar32_min_max_and(dst_reg, &src_reg); 5724 scalar_min_max_and(dst_reg, &src_reg); 5725 break; 5726 case BPF_OR: 5727 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 5728 scalar32_min_max_or(dst_reg, &src_reg); 5729 scalar_min_max_or(dst_reg, &src_reg); 5730 break; 5731 case BPF_LSH: 5732 if (umax_val >= insn_bitness) { 5733 /* Shifts greater than 31 or 63 are undefined. 5734 * This includes shifts by a negative number. 5735 */ 5736 mark_reg_unknown(env, regs, insn->dst_reg); 5737 break; 5738 } 5739 if (alu32) 5740 scalar32_min_max_lsh(dst_reg, &src_reg); 5741 else 5742 scalar_min_max_lsh(dst_reg, &src_reg); 5743 break; 5744 case BPF_RSH: 5745 if (umax_val >= insn_bitness) { 5746 /* Shifts greater than 31 or 63 are undefined. 5747 * This includes shifts by a negative number. 5748 */ 5749 mark_reg_unknown(env, regs, insn->dst_reg); 5750 break; 5751 } 5752 if (alu32) 5753 scalar32_min_max_rsh(dst_reg, &src_reg); 5754 else 5755 scalar_min_max_rsh(dst_reg, &src_reg); 5756 break; 5757 case BPF_ARSH: 5758 if (umax_val >= insn_bitness) { 5759 /* Shifts greater than 31 or 63 are undefined. 5760 * This includes shifts by a negative number. 5761 */ 5762 mark_reg_unknown(env, regs, insn->dst_reg); 5763 break; 5764 } 5765 if (alu32) 5766 scalar32_min_max_arsh(dst_reg, &src_reg); 5767 else 5768 scalar_min_max_arsh(dst_reg, &src_reg); 5769 break; 5770 default: 5771 mark_reg_unknown(env, regs, insn->dst_reg); 5772 break; 5773 } 5774 5775 /* ALU32 ops are zero extended into 64bit register */ 5776 if (alu32) 5777 zext_32_to_64(dst_reg); 5778 5779 __update_reg_bounds(dst_reg); 5780 __reg_deduce_bounds(dst_reg); 5781 __reg_bound_offset(dst_reg); 5782 return 0; 5783 } 5784 5785 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 5786 * and var_off. 5787 */ 5788 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 5789 struct bpf_insn *insn) 5790 { 5791 struct bpf_verifier_state *vstate = env->cur_state; 5792 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5793 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 5794 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 5795 u8 opcode = BPF_OP(insn->code); 5796 int err; 5797 5798 dst_reg = ®s[insn->dst_reg]; 5799 src_reg = NULL; 5800 if (dst_reg->type != SCALAR_VALUE) 5801 ptr_reg = dst_reg; 5802 if (BPF_SRC(insn->code) == BPF_X) { 5803 src_reg = ®s[insn->src_reg]; 5804 if (src_reg->type != SCALAR_VALUE) { 5805 if (dst_reg->type != SCALAR_VALUE) { 5806 /* Combining two pointers by any ALU op yields 5807 * an arbitrary scalar. Disallow all math except 5808 * pointer subtraction 5809 */ 5810 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 5811 mark_reg_unknown(env, regs, insn->dst_reg); 5812 return 0; 5813 } 5814 verbose(env, "R%d pointer %s pointer prohibited\n", 5815 insn->dst_reg, 5816 bpf_alu_string[opcode >> 4]); 5817 return -EACCES; 5818 } else { 5819 /* scalar += pointer 5820 * This is legal, but we have to reverse our 5821 * src/dest handling in computing the range 5822 */ 5823 err = mark_chain_precision(env, insn->dst_reg); 5824 if (err) 5825 return err; 5826 return adjust_ptr_min_max_vals(env, insn, 5827 src_reg, dst_reg); 5828 } 5829 } else if (ptr_reg) { 5830 /* pointer += scalar */ 5831 err = mark_chain_precision(env, insn->src_reg); 5832 if (err) 5833 return err; 5834 return adjust_ptr_min_max_vals(env, insn, 5835 dst_reg, src_reg); 5836 } 5837 } else { 5838 /* Pretend the src is a reg with a known value, since we only 5839 * need to be able to read from this state. 5840 */ 5841 off_reg.type = SCALAR_VALUE; 5842 __mark_reg_known(&off_reg, insn->imm); 5843 src_reg = &off_reg; 5844 if (ptr_reg) /* pointer += K */ 5845 return adjust_ptr_min_max_vals(env, insn, 5846 ptr_reg, src_reg); 5847 } 5848 5849 /* Got here implies adding two SCALAR_VALUEs */ 5850 if (WARN_ON_ONCE(ptr_reg)) { 5851 print_verifier_state(env, state); 5852 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 5853 return -EINVAL; 5854 } 5855 if (WARN_ON(!src_reg)) { 5856 print_verifier_state(env, state); 5857 verbose(env, "verifier internal error: no src_reg\n"); 5858 return -EINVAL; 5859 } 5860 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 5861 } 5862 5863 /* check validity of 32-bit and 64-bit arithmetic operations */ 5864 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 5865 { 5866 struct bpf_reg_state *regs = cur_regs(env); 5867 u8 opcode = BPF_OP(insn->code); 5868 int err; 5869 5870 if (opcode == BPF_END || opcode == BPF_NEG) { 5871 if (opcode == BPF_NEG) { 5872 if (BPF_SRC(insn->code) != 0 || 5873 insn->src_reg != BPF_REG_0 || 5874 insn->off != 0 || insn->imm != 0) { 5875 verbose(env, "BPF_NEG uses reserved fields\n"); 5876 return -EINVAL; 5877 } 5878 } else { 5879 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 5880 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 5881 BPF_CLASS(insn->code) == BPF_ALU64) { 5882 verbose(env, "BPF_END uses reserved fields\n"); 5883 return -EINVAL; 5884 } 5885 } 5886 5887 /* check src operand */ 5888 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5889 if (err) 5890 return err; 5891 5892 if (is_pointer_value(env, insn->dst_reg)) { 5893 verbose(env, "R%d pointer arithmetic prohibited\n", 5894 insn->dst_reg); 5895 return -EACCES; 5896 } 5897 5898 /* check dest operand */ 5899 err = check_reg_arg(env, insn->dst_reg, DST_OP); 5900 if (err) 5901 return err; 5902 5903 } else if (opcode == BPF_MOV) { 5904 5905 if (BPF_SRC(insn->code) == BPF_X) { 5906 if (insn->imm != 0 || insn->off != 0) { 5907 verbose(env, "BPF_MOV uses reserved fields\n"); 5908 return -EINVAL; 5909 } 5910 5911 /* check src operand */ 5912 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5913 if (err) 5914 return err; 5915 } else { 5916 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 5917 verbose(env, "BPF_MOV uses reserved fields\n"); 5918 return -EINVAL; 5919 } 5920 } 5921 5922 /* check dest operand, mark as required later */ 5923 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5924 if (err) 5925 return err; 5926 5927 if (BPF_SRC(insn->code) == BPF_X) { 5928 struct bpf_reg_state *src_reg = regs + insn->src_reg; 5929 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 5930 5931 if (BPF_CLASS(insn->code) == BPF_ALU64) { 5932 /* case: R1 = R2 5933 * copy register state to dest reg 5934 */ 5935 *dst_reg = *src_reg; 5936 dst_reg->live |= REG_LIVE_WRITTEN; 5937 dst_reg->subreg_def = DEF_NOT_SUBREG; 5938 } else { 5939 /* R1 = (u32) R2 */ 5940 if (is_pointer_value(env, insn->src_reg)) { 5941 verbose(env, 5942 "R%d partial copy of pointer\n", 5943 insn->src_reg); 5944 return -EACCES; 5945 } else if (src_reg->type == SCALAR_VALUE) { 5946 *dst_reg = *src_reg; 5947 dst_reg->live |= REG_LIVE_WRITTEN; 5948 dst_reg->subreg_def = env->insn_idx + 1; 5949 } else { 5950 mark_reg_unknown(env, regs, 5951 insn->dst_reg); 5952 } 5953 zext_32_to_64(dst_reg); 5954 } 5955 } else { 5956 /* case: R = imm 5957 * remember the value we stored into this reg 5958 */ 5959 /* clear any state __mark_reg_known doesn't set */ 5960 mark_reg_unknown(env, regs, insn->dst_reg); 5961 regs[insn->dst_reg].type = SCALAR_VALUE; 5962 if (BPF_CLASS(insn->code) == BPF_ALU64) { 5963 __mark_reg_known(regs + insn->dst_reg, 5964 insn->imm); 5965 } else { 5966 __mark_reg_known(regs + insn->dst_reg, 5967 (u32)insn->imm); 5968 } 5969 } 5970 5971 } else if (opcode > BPF_END) { 5972 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 5973 return -EINVAL; 5974 5975 } else { /* all other ALU ops: and, sub, xor, add, ... */ 5976 5977 if (BPF_SRC(insn->code) == BPF_X) { 5978 if (insn->imm != 0 || insn->off != 0) { 5979 verbose(env, "BPF_ALU uses reserved fields\n"); 5980 return -EINVAL; 5981 } 5982 /* check src1 operand */ 5983 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5984 if (err) 5985 return err; 5986 } else { 5987 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 5988 verbose(env, "BPF_ALU uses reserved fields\n"); 5989 return -EINVAL; 5990 } 5991 } 5992 5993 /* check src2 operand */ 5994 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5995 if (err) 5996 return err; 5997 5998 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 5999 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 6000 verbose(env, "div by zero\n"); 6001 return -EINVAL; 6002 } 6003 6004 if ((opcode == BPF_LSH || opcode == BPF_RSH || 6005 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 6006 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 6007 6008 if (insn->imm < 0 || insn->imm >= size) { 6009 verbose(env, "invalid shift %d\n", insn->imm); 6010 return -EINVAL; 6011 } 6012 } 6013 6014 /* check dest operand */ 6015 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 6016 if (err) 6017 return err; 6018 6019 return adjust_reg_min_max_vals(env, insn); 6020 } 6021 6022 return 0; 6023 } 6024 6025 static void __find_good_pkt_pointers(struct bpf_func_state *state, 6026 struct bpf_reg_state *dst_reg, 6027 enum bpf_reg_type type, u16 new_range) 6028 { 6029 struct bpf_reg_state *reg; 6030 int i; 6031 6032 for (i = 0; i < MAX_BPF_REG; i++) { 6033 reg = &state->regs[i]; 6034 if (reg->type == type && reg->id == dst_reg->id) 6035 /* keep the maximum range already checked */ 6036 reg->range = max(reg->range, new_range); 6037 } 6038 6039 bpf_for_each_spilled_reg(i, state, reg) { 6040 if (!reg) 6041 continue; 6042 if (reg->type == type && reg->id == dst_reg->id) 6043 reg->range = max(reg->range, new_range); 6044 } 6045 } 6046 6047 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 6048 struct bpf_reg_state *dst_reg, 6049 enum bpf_reg_type type, 6050 bool range_right_open) 6051 { 6052 u16 new_range; 6053 int i; 6054 6055 if (dst_reg->off < 0 || 6056 (dst_reg->off == 0 && range_right_open)) 6057 /* This doesn't give us any range */ 6058 return; 6059 6060 if (dst_reg->umax_value > MAX_PACKET_OFF || 6061 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 6062 /* Risk of overflow. For instance, ptr + (1<<63) may be less 6063 * than pkt_end, but that's because it's also less than pkt. 6064 */ 6065 return; 6066 6067 new_range = dst_reg->off; 6068 if (range_right_open) 6069 new_range--; 6070 6071 /* Examples for register markings: 6072 * 6073 * pkt_data in dst register: 6074 * 6075 * r2 = r3; 6076 * r2 += 8; 6077 * if (r2 > pkt_end) goto <handle exception> 6078 * <access okay> 6079 * 6080 * r2 = r3; 6081 * r2 += 8; 6082 * if (r2 < pkt_end) goto <access okay> 6083 * <handle exception> 6084 * 6085 * Where: 6086 * r2 == dst_reg, pkt_end == src_reg 6087 * r2=pkt(id=n,off=8,r=0) 6088 * r3=pkt(id=n,off=0,r=0) 6089 * 6090 * pkt_data in src register: 6091 * 6092 * r2 = r3; 6093 * r2 += 8; 6094 * if (pkt_end >= r2) goto <access okay> 6095 * <handle exception> 6096 * 6097 * r2 = r3; 6098 * r2 += 8; 6099 * if (pkt_end <= r2) goto <handle exception> 6100 * <access okay> 6101 * 6102 * Where: 6103 * pkt_end == dst_reg, r2 == src_reg 6104 * r2=pkt(id=n,off=8,r=0) 6105 * r3=pkt(id=n,off=0,r=0) 6106 * 6107 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 6108 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 6109 * and [r3, r3 + 8-1) respectively is safe to access depending on 6110 * the check. 6111 */ 6112 6113 /* If our ids match, then we must have the same max_value. And we 6114 * don't care about the other reg's fixed offset, since if it's too big 6115 * the range won't allow anything. 6116 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 6117 */ 6118 for (i = 0; i <= vstate->curframe; i++) 6119 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 6120 new_range); 6121 } 6122 6123 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 6124 { 6125 struct tnum subreg = tnum_subreg(reg->var_off); 6126 s32 sval = (s32)val; 6127 6128 switch (opcode) { 6129 case BPF_JEQ: 6130 if (tnum_is_const(subreg)) 6131 return !!tnum_equals_const(subreg, val); 6132 break; 6133 case BPF_JNE: 6134 if (tnum_is_const(subreg)) 6135 return !tnum_equals_const(subreg, val); 6136 break; 6137 case BPF_JSET: 6138 if ((~subreg.mask & subreg.value) & val) 6139 return 1; 6140 if (!((subreg.mask | subreg.value) & val)) 6141 return 0; 6142 break; 6143 case BPF_JGT: 6144 if (reg->u32_min_value > val) 6145 return 1; 6146 else if (reg->u32_max_value <= val) 6147 return 0; 6148 break; 6149 case BPF_JSGT: 6150 if (reg->s32_min_value > sval) 6151 return 1; 6152 else if (reg->s32_max_value < sval) 6153 return 0; 6154 break; 6155 case BPF_JLT: 6156 if (reg->u32_max_value < val) 6157 return 1; 6158 else if (reg->u32_min_value >= val) 6159 return 0; 6160 break; 6161 case BPF_JSLT: 6162 if (reg->s32_max_value < sval) 6163 return 1; 6164 else if (reg->s32_min_value >= sval) 6165 return 0; 6166 break; 6167 case BPF_JGE: 6168 if (reg->u32_min_value >= val) 6169 return 1; 6170 else if (reg->u32_max_value < val) 6171 return 0; 6172 break; 6173 case BPF_JSGE: 6174 if (reg->s32_min_value >= sval) 6175 return 1; 6176 else if (reg->s32_max_value < sval) 6177 return 0; 6178 break; 6179 case BPF_JLE: 6180 if (reg->u32_max_value <= val) 6181 return 1; 6182 else if (reg->u32_min_value > val) 6183 return 0; 6184 break; 6185 case BPF_JSLE: 6186 if (reg->s32_max_value <= sval) 6187 return 1; 6188 else if (reg->s32_min_value > sval) 6189 return 0; 6190 break; 6191 } 6192 6193 return -1; 6194 } 6195 6196 6197 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 6198 { 6199 s64 sval = (s64)val; 6200 6201 switch (opcode) { 6202 case BPF_JEQ: 6203 if (tnum_is_const(reg->var_off)) 6204 return !!tnum_equals_const(reg->var_off, val); 6205 break; 6206 case BPF_JNE: 6207 if (tnum_is_const(reg->var_off)) 6208 return !tnum_equals_const(reg->var_off, val); 6209 break; 6210 case BPF_JSET: 6211 if ((~reg->var_off.mask & reg->var_off.value) & val) 6212 return 1; 6213 if (!((reg->var_off.mask | reg->var_off.value) & val)) 6214 return 0; 6215 break; 6216 case BPF_JGT: 6217 if (reg->umin_value > val) 6218 return 1; 6219 else if (reg->umax_value <= val) 6220 return 0; 6221 break; 6222 case BPF_JSGT: 6223 if (reg->smin_value > sval) 6224 return 1; 6225 else if (reg->smax_value < sval) 6226 return 0; 6227 break; 6228 case BPF_JLT: 6229 if (reg->umax_value < val) 6230 return 1; 6231 else if (reg->umin_value >= val) 6232 return 0; 6233 break; 6234 case BPF_JSLT: 6235 if (reg->smax_value < sval) 6236 return 1; 6237 else if (reg->smin_value >= sval) 6238 return 0; 6239 break; 6240 case BPF_JGE: 6241 if (reg->umin_value >= val) 6242 return 1; 6243 else if (reg->umax_value < val) 6244 return 0; 6245 break; 6246 case BPF_JSGE: 6247 if (reg->smin_value >= sval) 6248 return 1; 6249 else if (reg->smax_value < sval) 6250 return 0; 6251 break; 6252 case BPF_JLE: 6253 if (reg->umax_value <= val) 6254 return 1; 6255 else if (reg->umin_value > val) 6256 return 0; 6257 break; 6258 case BPF_JSLE: 6259 if (reg->smax_value <= sval) 6260 return 1; 6261 else if (reg->smin_value > sval) 6262 return 0; 6263 break; 6264 } 6265 6266 return -1; 6267 } 6268 6269 /* compute branch direction of the expression "if (reg opcode val) goto target;" 6270 * and return: 6271 * 1 - branch will be taken and "goto target" will be executed 6272 * 0 - branch will not be taken and fall-through to next insn 6273 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 6274 * range [0,10] 6275 */ 6276 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 6277 bool is_jmp32) 6278 { 6279 if (__is_pointer_value(false, reg)) 6280 return -1; 6281 6282 if (is_jmp32) 6283 return is_branch32_taken(reg, val, opcode); 6284 return is_branch64_taken(reg, val, opcode); 6285 } 6286 6287 /* Adjusts the register min/max values in the case that the dst_reg is the 6288 * variable register that we are working on, and src_reg is a constant or we're 6289 * simply doing a BPF_K check. 6290 * In JEQ/JNE cases we also adjust the var_off values. 6291 */ 6292 static void reg_set_min_max(struct bpf_reg_state *true_reg, 6293 struct bpf_reg_state *false_reg, 6294 u64 val, u32 val32, 6295 u8 opcode, bool is_jmp32) 6296 { 6297 struct tnum false_32off = tnum_subreg(false_reg->var_off); 6298 struct tnum false_64off = false_reg->var_off; 6299 struct tnum true_32off = tnum_subreg(true_reg->var_off); 6300 struct tnum true_64off = true_reg->var_off; 6301 s64 sval = (s64)val; 6302 s32 sval32 = (s32)val32; 6303 6304 /* If the dst_reg is a pointer, we can't learn anything about its 6305 * variable offset from the compare (unless src_reg were a pointer into 6306 * the same object, but we don't bother with that. 6307 * Since false_reg and true_reg have the same type by construction, we 6308 * only need to check one of them for pointerness. 6309 */ 6310 if (__is_pointer_value(false, false_reg)) 6311 return; 6312 6313 switch (opcode) { 6314 case BPF_JEQ: 6315 case BPF_JNE: 6316 { 6317 struct bpf_reg_state *reg = 6318 opcode == BPF_JEQ ? true_reg : false_reg; 6319 6320 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but 6321 * if it is true we know the value for sure. Likewise for 6322 * BPF_JNE. 6323 */ 6324 if (is_jmp32) 6325 __mark_reg32_known(reg, val32); 6326 else 6327 __mark_reg_known(reg, val); 6328 break; 6329 } 6330 case BPF_JSET: 6331 if (is_jmp32) { 6332 false_32off = tnum_and(false_32off, tnum_const(~val32)); 6333 if (is_power_of_2(val32)) 6334 true_32off = tnum_or(true_32off, 6335 tnum_const(val32)); 6336 } else { 6337 false_64off = tnum_and(false_64off, tnum_const(~val)); 6338 if (is_power_of_2(val)) 6339 true_64off = tnum_or(true_64off, 6340 tnum_const(val)); 6341 } 6342 break; 6343 case BPF_JGE: 6344 case BPF_JGT: 6345 { 6346 if (is_jmp32) { 6347 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 6348 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 6349 6350 false_reg->u32_max_value = min(false_reg->u32_max_value, 6351 false_umax); 6352 true_reg->u32_min_value = max(true_reg->u32_min_value, 6353 true_umin); 6354 } else { 6355 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 6356 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 6357 6358 false_reg->umax_value = min(false_reg->umax_value, false_umax); 6359 true_reg->umin_value = max(true_reg->umin_value, true_umin); 6360 } 6361 break; 6362 } 6363 case BPF_JSGE: 6364 case BPF_JSGT: 6365 { 6366 if (is_jmp32) { 6367 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 6368 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 6369 6370 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 6371 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 6372 } else { 6373 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 6374 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 6375 6376 false_reg->smax_value = min(false_reg->smax_value, false_smax); 6377 true_reg->smin_value = max(true_reg->smin_value, true_smin); 6378 } 6379 break; 6380 } 6381 case BPF_JLE: 6382 case BPF_JLT: 6383 { 6384 if (is_jmp32) { 6385 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 6386 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 6387 6388 false_reg->u32_min_value = max(false_reg->u32_min_value, 6389 false_umin); 6390 true_reg->u32_max_value = min(true_reg->u32_max_value, 6391 true_umax); 6392 } else { 6393 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 6394 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 6395 6396 false_reg->umin_value = max(false_reg->umin_value, false_umin); 6397 true_reg->umax_value = min(true_reg->umax_value, true_umax); 6398 } 6399 break; 6400 } 6401 case BPF_JSLE: 6402 case BPF_JSLT: 6403 { 6404 if (is_jmp32) { 6405 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 6406 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 6407 6408 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 6409 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 6410 } else { 6411 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 6412 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 6413 6414 false_reg->smin_value = max(false_reg->smin_value, false_smin); 6415 true_reg->smax_value = min(true_reg->smax_value, true_smax); 6416 } 6417 break; 6418 } 6419 default: 6420 return; 6421 } 6422 6423 if (is_jmp32) { 6424 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 6425 tnum_subreg(false_32off)); 6426 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 6427 tnum_subreg(true_32off)); 6428 __reg_combine_32_into_64(false_reg); 6429 __reg_combine_32_into_64(true_reg); 6430 } else { 6431 false_reg->var_off = false_64off; 6432 true_reg->var_off = true_64off; 6433 __reg_combine_64_into_32(false_reg); 6434 __reg_combine_64_into_32(true_reg); 6435 } 6436 } 6437 6438 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 6439 * the variable reg. 6440 */ 6441 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 6442 struct bpf_reg_state *false_reg, 6443 u64 val, u32 val32, 6444 u8 opcode, bool is_jmp32) 6445 { 6446 /* How can we transform "a <op> b" into "b <op> a"? */ 6447 static const u8 opcode_flip[16] = { 6448 /* these stay the same */ 6449 [BPF_JEQ >> 4] = BPF_JEQ, 6450 [BPF_JNE >> 4] = BPF_JNE, 6451 [BPF_JSET >> 4] = BPF_JSET, 6452 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 6453 [BPF_JGE >> 4] = BPF_JLE, 6454 [BPF_JGT >> 4] = BPF_JLT, 6455 [BPF_JLE >> 4] = BPF_JGE, 6456 [BPF_JLT >> 4] = BPF_JGT, 6457 [BPF_JSGE >> 4] = BPF_JSLE, 6458 [BPF_JSGT >> 4] = BPF_JSLT, 6459 [BPF_JSLE >> 4] = BPF_JSGE, 6460 [BPF_JSLT >> 4] = BPF_JSGT 6461 }; 6462 opcode = opcode_flip[opcode >> 4]; 6463 /* This uses zero as "not present in table"; luckily the zero opcode, 6464 * BPF_JA, can't get here. 6465 */ 6466 if (opcode) 6467 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 6468 } 6469 6470 /* Regs are known to be equal, so intersect their min/max/var_off */ 6471 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 6472 struct bpf_reg_state *dst_reg) 6473 { 6474 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 6475 dst_reg->umin_value); 6476 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 6477 dst_reg->umax_value); 6478 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 6479 dst_reg->smin_value); 6480 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 6481 dst_reg->smax_value); 6482 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 6483 dst_reg->var_off); 6484 /* We might have learned new bounds from the var_off. */ 6485 __update_reg_bounds(src_reg); 6486 __update_reg_bounds(dst_reg); 6487 /* We might have learned something about the sign bit. */ 6488 __reg_deduce_bounds(src_reg); 6489 __reg_deduce_bounds(dst_reg); 6490 /* We might have learned some bits from the bounds. */ 6491 __reg_bound_offset(src_reg); 6492 __reg_bound_offset(dst_reg); 6493 /* Intersecting with the old var_off might have improved our bounds 6494 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 6495 * then new var_off is (0; 0x7f...fc) which improves our umax. 6496 */ 6497 __update_reg_bounds(src_reg); 6498 __update_reg_bounds(dst_reg); 6499 } 6500 6501 static void reg_combine_min_max(struct bpf_reg_state *true_src, 6502 struct bpf_reg_state *true_dst, 6503 struct bpf_reg_state *false_src, 6504 struct bpf_reg_state *false_dst, 6505 u8 opcode) 6506 { 6507 switch (opcode) { 6508 case BPF_JEQ: 6509 __reg_combine_min_max(true_src, true_dst); 6510 break; 6511 case BPF_JNE: 6512 __reg_combine_min_max(false_src, false_dst); 6513 break; 6514 } 6515 } 6516 6517 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 6518 struct bpf_reg_state *reg, u32 id, 6519 bool is_null) 6520 { 6521 if (reg_type_may_be_null(reg->type) && reg->id == id) { 6522 /* Old offset (both fixed and variable parts) should 6523 * have been known-zero, because we don't allow pointer 6524 * arithmetic on pointers that might be NULL. 6525 */ 6526 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 6527 !tnum_equals_const(reg->var_off, 0) || 6528 reg->off)) { 6529 __mark_reg_known_zero(reg); 6530 reg->off = 0; 6531 } 6532 if (is_null) { 6533 reg->type = SCALAR_VALUE; 6534 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 6535 if (reg->map_ptr->inner_map_meta) { 6536 reg->type = CONST_PTR_TO_MAP; 6537 reg->map_ptr = reg->map_ptr->inner_map_meta; 6538 } else if (reg->map_ptr->map_type == 6539 BPF_MAP_TYPE_XSKMAP) { 6540 reg->type = PTR_TO_XDP_SOCK; 6541 } else { 6542 reg->type = PTR_TO_MAP_VALUE; 6543 } 6544 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 6545 reg->type = PTR_TO_SOCKET; 6546 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 6547 reg->type = PTR_TO_SOCK_COMMON; 6548 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 6549 reg->type = PTR_TO_TCP_SOCK; 6550 } 6551 if (is_null) { 6552 /* We don't need id and ref_obj_id from this point 6553 * onwards anymore, thus we should better reset it, 6554 * so that state pruning has chances to take effect. 6555 */ 6556 reg->id = 0; 6557 reg->ref_obj_id = 0; 6558 } else if (!reg_may_point_to_spin_lock(reg)) { 6559 /* For not-NULL ptr, reg->ref_obj_id will be reset 6560 * in release_reg_references(). 6561 * 6562 * reg->id is still used by spin_lock ptr. Other 6563 * than spin_lock ptr type, reg->id can be reset. 6564 */ 6565 reg->id = 0; 6566 } 6567 } 6568 } 6569 6570 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 6571 bool is_null) 6572 { 6573 struct bpf_reg_state *reg; 6574 int i; 6575 6576 for (i = 0; i < MAX_BPF_REG; i++) 6577 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 6578 6579 bpf_for_each_spilled_reg(i, state, reg) { 6580 if (!reg) 6581 continue; 6582 mark_ptr_or_null_reg(state, reg, id, is_null); 6583 } 6584 } 6585 6586 /* The logic is similar to find_good_pkt_pointers(), both could eventually 6587 * be folded together at some point. 6588 */ 6589 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 6590 bool is_null) 6591 { 6592 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6593 struct bpf_reg_state *regs = state->regs; 6594 u32 ref_obj_id = regs[regno].ref_obj_id; 6595 u32 id = regs[regno].id; 6596 int i; 6597 6598 if (ref_obj_id && ref_obj_id == id && is_null) 6599 /* regs[regno] is in the " == NULL" branch. 6600 * No one could have freed the reference state before 6601 * doing the NULL check. 6602 */ 6603 WARN_ON_ONCE(release_reference_state(state, id)); 6604 6605 for (i = 0; i <= vstate->curframe; i++) 6606 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 6607 } 6608 6609 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 6610 struct bpf_reg_state *dst_reg, 6611 struct bpf_reg_state *src_reg, 6612 struct bpf_verifier_state *this_branch, 6613 struct bpf_verifier_state *other_branch) 6614 { 6615 if (BPF_SRC(insn->code) != BPF_X) 6616 return false; 6617 6618 /* Pointers are always 64-bit. */ 6619 if (BPF_CLASS(insn->code) == BPF_JMP32) 6620 return false; 6621 6622 switch (BPF_OP(insn->code)) { 6623 case BPF_JGT: 6624 if ((dst_reg->type == PTR_TO_PACKET && 6625 src_reg->type == PTR_TO_PACKET_END) || 6626 (dst_reg->type == PTR_TO_PACKET_META && 6627 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6628 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 6629 find_good_pkt_pointers(this_branch, dst_reg, 6630 dst_reg->type, false); 6631 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6632 src_reg->type == PTR_TO_PACKET) || 6633 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6634 src_reg->type == PTR_TO_PACKET_META)) { 6635 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 6636 find_good_pkt_pointers(other_branch, src_reg, 6637 src_reg->type, true); 6638 } else { 6639 return false; 6640 } 6641 break; 6642 case BPF_JLT: 6643 if ((dst_reg->type == PTR_TO_PACKET && 6644 src_reg->type == PTR_TO_PACKET_END) || 6645 (dst_reg->type == PTR_TO_PACKET_META && 6646 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6647 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 6648 find_good_pkt_pointers(other_branch, dst_reg, 6649 dst_reg->type, true); 6650 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6651 src_reg->type == PTR_TO_PACKET) || 6652 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6653 src_reg->type == PTR_TO_PACKET_META)) { 6654 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 6655 find_good_pkt_pointers(this_branch, src_reg, 6656 src_reg->type, false); 6657 } else { 6658 return false; 6659 } 6660 break; 6661 case BPF_JGE: 6662 if ((dst_reg->type == PTR_TO_PACKET && 6663 src_reg->type == PTR_TO_PACKET_END) || 6664 (dst_reg->type == PTR_TO_PACKET_META && 6665 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6666 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 6667 find_good_pkt_pointers(this_branch, dst_reg, 6668 dst_reg->type, true); 6669 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6670 src_reg->type == PTR_TO_PACKET) || 6671 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6672 src_reg->type == PTR_TO_PACKET_META)) { 6673 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 6674 find_good_pkt_pointers(other_branch, src_reg, 6675 src_reg->type, false); 6676 } else { 6677 return false; 6678 } 6679 break; 6680 case BPF_JLE: 6681 if ((dst_reg->type == PTR_TO_PACKET && 6682 src_reg->type == PTR_TO_PACKET_END) || 6683 (dst_reg->type == PTR_TO_PACKET_META && 6684 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6685 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 6686 find_good_pkt_pointers(other_branch, dst_reg, 6687 dst_reg->type, false); 6688 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6689 src_reg->type == PTR_TO_PACKET) || 6690 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6691 src_reg->type == PTR_TO_PACKET_META)) { 6692 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 6693 find_good_pkt_pointers(this_branch, src_reg, 6694 src_reg->type, true); 6695 } else { 6696 return false; 6697 } 6698 break; 6699 default: 6700 return false; 6701 } 6702 6703 return true; 6704 } 6705 6706 static int check_cond_jmp_op(struct bpf_verifier_env *env, 6707 struct bpf_insn *insn, int *insn_idx) 6708 { 6709 struct bpf_verifier_state *this_branch = env->cur_state; 6710 struct bpf_verifier_state *other_branch; 6711 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 6712 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 6713 u8 opcode = BPF_OP(insn->code); 6714 bool is_jmp32; 6715 int pred = -1; 6716 int err; 6717 6718 /* Only conditional jumps are expected to reach here. */ 6719 if (opcode == BPF_JA || opcode > BPF_JSLE) { 6720 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 6721 return -EINVAL; 6722 } 6723 6724 if (BPF_SRC(insn->code) == BPF_X) { 6725 if (insn->imm != 0) { 6726 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 6727 return -EINVAL; 6728 } 6729 6730 /* check src1 operand */ 6731 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6732 if (err) 6733 return err; 6734 6735 if (is_pointer_value(env, insn->src_reg)) { 6736 verbose(env, "R%d pointer comparison prohibited\n", 6737 insn->src_reg); 6738 return -EACCES; 6739 } 6740 src_reg = ®s[insn->src_reg]; 6741 } else { 6742 if (insn->src_reg != BPF_REG_0) { 6743 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 6744 return -EINVAL; 6745 } 6746 } 6747 6748 /* check src2 operand */ 6749 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6750 if (err) 6751 return err; 6752 6753 dst_reg = ®s[insn->dst_reg]; 6754 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 6755 6756 if (BPF_SRC(insn->code) == BPF_K) { 6757 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 6758 } else if (src_reg->type == SCALAR_VALUE && 6759 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 6760 pred = is_branch_taken(dst_reg, 6761 tnum_subreg(src_reg->var_off).value, 6762 opcode, 6763 is_jmp32); 6764 } else if (src_reg->type == SCALAR_VALUE && 6765 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 6766 pred = is_branch_taken(dst_reg, 6767 src_reg->var_off.value, 6768 opcode, 6769 is_jmp32); 6770 } 6771 6772 if (pred >= 0) { 6773 err = mark_chain_precision(env, insn->dst_reg); 6774 if (BPF_SRC(insn->code) == BPF_X && !err) 6775 err = mark_chain_precision(env, insn->src_reg); 6776 if (err) 6777 return err; 6778 } 6779 if (pred == 1) { 6780 /* only follow the goto, ignore fall-through */ 6781 *insn_idx += insn->off; 6782 return 0; 6783 } else if (pred == 0) { 6784 /* only follow fall-through branch, since 6785 * that's where the program will go 6786 */ 6787 return 0; 6788 } 6789 6790 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 6791 false); 6792 if (!other_branch) 6793 return -EFAULT; 6794 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 6795 6796 /* detect if we are comparing against a constant value so we can adjust 6797 * our min/max values for our dst register. 6798 * this is only legit if both are scalars (or pointers to the same 6799 * object, I suppose, but we don't support that right now), because 6800 * otherwise the different base pointers mean the offsets aren't 6801 * comparable. 6802 */ 6803 if (BPF_SRC(insn->code) == BPF_X) { 6804 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 6805 6806 if (dst_reg->type == SCALAR_VALUE && 6807 src_reg->type == SCALAR_VALUE) { 6808 if (tnum_is_const(src_reg->var_off) || 6809 (is_jmp32 && 6810 tnum_is_const(tnum_subreg(src_reg->var_off)))) 6811 reg_set_min_max(&other_branch_regs[insn->dst_reg], 6812 dst_reg, 6813 src_reg->var_off.value, 6814 tnum_subreg(src_reg->var_off).value, 6815 opcode, is_jmp32); 6816 else if (tnum_is_const(dst_reg->var_off) || 6817 (is_jmp32 && 6818 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 6819 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 6820 src_reg, 6821 dst_reg->var_off.value, 6822 tnum_subreg(dst_reg->var_off).value, 6823 opcode, is_jmp32); 6824 else if (!is_jmp32 && 6825 (opcode == BPF_JEQ || opcode == BPF_JNE)) 6826 /* Comparing for equality, we can combine knowledge */ 6827 reg_combine_min_max(&other_branch_regs[insn->src_reg], 6828 &other_branch_regs[insn->dst_reg], 6829 src_reg, dst_reg, opcode); 6830 } 6831 } else if (dst_reg->type == SCALAR_VALUE) { 6832 reg_set_min_max(&other_branch_regs[insn->dst_reg], 6833 dst_reg, insn->imm, (u32)insn->imm, 6834 opcode, is_jmp32); 6835 } 6836 6837 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 6838 * NOTE: these optimizations below are related with pointer comparison 6839 * which will never be JMP32. 6840 */ 6841 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 6842 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 6843 reg_type_may_be_null(dst_reg->type)) { 6844 /* Mark all identical registers in each branch as either 6845 * safe or unknown depending R == 0 or R != 0 conditional. 6846 */ 6847 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 6848 opcode == BPF_JNE); 6849 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 6850 opcode == BPF_JEQ); 6851 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 6852 this_branch, other_branch) && 6853 is_pointer_value(env, insn->dst_reg)) { 6854 verbose(env, "R%d pointer comparison prohibited\n", 6855 insn->dst_reg); 6856 return -EACCES; 6857 } 6858 if (env->log.level & BPF_LOG_LEVEL) 6859 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 6860 return 0; 6861 } 6862 6863 /* verify BPF_LD_IMM64 instruction */ 6864 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 6865 { 6866 struct bpf_insn_aux_data *aux = cur_aux(env); 6867 struct bpf_reg_state *regs = cur_regs(env); 6868 struct bpf_map *map; 6869 int err; 6870 6871 if (BPF_SIZE(insn->code) != BPF_DW) { 6872 verbose(env, "invalid BPF_LD_IMM insn\n"); 6873 return -EINVAL; 6874 } 6875 if (insn->off != 0) { 6876 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 6877 return -EINVAL; 6878 } 6879 6880 err = check_reg_arg(env, insn->dst_reg, DST_OP); 6881 if (err) 6882 return err; 6883 6884 if (insn->src_reg == 0) { 6885 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 6886 6887 regs[insn->dst_reg].type = SCALAR_VALUE; 6888 __mark_reg_known(®s[insn->dst_reg], imm); 6889 return 0; 6890 } 6891 6892 map = env->used_maps[aux->map_index]; 6893 mark_reg_known_zero(env, regs, insn->dst_reg); 6894 regs[insn->dst_reg].map_ptr = map; 6895 6896 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 6897 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; 6898 regs[insn->dst_reg].off = aux->map_off; 6899 if (map_value_has_spin_lock(map)) 6900 regs[insn->dst_reg].id = ++env->id_gen; 6901 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 6902 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 6903 } else { 6904 verbose(env, "bpf verifier is misconfigured\n"); 6905 return -EINVAL; 6906 } 6907 6908 return 0; 6909 } 6910 6911 static bool may_access_skb(enum bpf_prog_type type) 6912 { 6913 switch (type) { 6914 case BPF_PROG_TYPE_SOCKET_FILTER: 6915 case BPF_PROG_TYPE_SCHED_CLS: 6916 case BPF_PROG_TYPE_SCHED_ACT: 6917 return true; 6918 default: 6919 return false; 6920 } 6921 } 6922 6923 /* verify safety of LD_ABS|LD_IND instructions: 6924 * - they can only appear in the programs where ctx == skb 6925 * - since they are wrappers of function calls, they scratch R1-R5 registers, 6926 * preserve R6-R9, and store return value into R0 6927 * 6928 * Implicit input: 6929 * ctx == skb == R6 == CTX 6930 * 6931 * Explicit input: 6932 * SRC == any register 6933 * IMM == 32-bit immediate 6934 * 6935 * Output: 6936 * R0 - 8/16/32-bit skb data converted to cpu endianness 6937 */ 6938 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 6939 { 6940 struct bpf_reg_state *regs = cur_regs(env); 6941 static const int ctx_reg = BPF_REG_6; 6942 u8 mode = BPF_MODE(insn->code); 6943 int i, err; 6944 6945 if (!may_access_skb(env->prog->type)) { 6946 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 6947 return -EINVAL; 6948 } 6949 6950 if (!env->ops->gen_ld_abs) { 6951 verbose(env, "bpf verifier is misconfigured\n"); 6952 return -EINVAL; 6953 } 6954 6955 if (env->subprog_cnt > 1) { 6956 /* when program has LD_ABS insn JITs and interpreter assume 6957 * that r1 == ctx == skb which is not the case for callees 6958 * that can have arbitrary arguments. It's problematic 6959 * for main prog as well since JITs would need to analyze 6960 * all functions in order to make proper register save/restore 6961 * decisions in the main prog. Hence disallow LD_ABS with calls 6962 */ 6963 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 6964 return -EINVAL; 6965 } 6966 6967 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 6968 BPF_SIZE(insn->code) == BPF_DW || 6969 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 6970 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 6971 return -EINVAL; 6972 } 6973 6974 /* check whether implicit source operand (register R6) is readable */ 6975 err = check_reg_arg(env, ctx_reg, SRC_OP); 6976 if (err) 6977 return err; 6978 6979 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 6980 * gen_ld_abs() may terminate the program at runtime, leading to 6981 * reference leak. 6982 */ 6983 err = check_reference_leak(env); 6984 if (err) { 6985 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 6986 return err; 6987 } 6988 6989 if (env->cur_state->active_spin_lock) { 6990 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 6991 return -EINVAL; 6992 } 6993 6994 if (regs[ctx_reg].type != PTR_TO_CTX) { 6995 verbose(env, 6996 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 6997 return -EINVAL; 6998 } 6999 7000 if (mode == BPF_IND) { 7001 /* check explicit source operand */ 7002 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7003 if (err) 7004 return err; 7005 } 7006 7007 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 7008 if (err < 0) 7009 return err; 7010 7011 /* reset caller saved regs to unreadable */ 7012 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7013 mark_reg_not_init(env, regs, caller_saved[i]); 7014 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7015 } 7016 7017 /* mark destination R0 register as readable, since it contains 7018 * the value fetched from the packet. 7019 * Already marked as written above. 7020 */ 7021 mark_reg_unknown(env, regs, BPF_REG_0); 7022 /* ld_abs load up to 32-bit skb data. */ 7023 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 7024 return 0; 7025 } 7026 7027 static int check_return_code(struct bpf_verifier_env *env) 7028 { 7029 struct tnum enforce_attach_type_range = tnum_unknown; 7030 const struct bpf_prog *prog = env->prog; 7031 struct bpf_reg_state *reg; 7032 struct tnum range = tnum_range(0, 1); 7033 int err; 7034 7035 /* LSM and struct_ops func-ptr's return type could be "void" */ 7036 if ((env->prog->type == BPF_PROG_TYPE_STRUCT_OPS || 7037 env->prog->type == BPF_PROG_TYPE_LSM) && 7038 !prog->aux->attach_func_proto->type) 7039 return 0; 7040 7041 /* eBPF calling convetion is such that R0 is used 7042 * to return the value from eBPF program. 7043 * Make sure that it's readable at this time 7044 * of bpf_exit, which means that program wrote 7045 * something into it earlier 7046 */ 7047 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 7048 if (err) 7049 return err; 7050 7051 if (is_pointer_value(env, BPF_REG_0)) { 7052 verbose(env, "R0 leaks addr as return value\n"); 7053 return -EACCES; 7054 } 7055 7056 switch (env->prog->type) { 7057 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 7058 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 7059 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG) 7060 range = tnum_range(1, 1); 7061 break; 7062 case BPF_PROG_TYPE_CGROUP_SKB: 7063 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 7064 range = tnum_range(0, 3); 7065 enforce_attach_type_range = tnum_range(2, 3); 7066 } 7067 break; 7068 case BPF_PROG_TYPE_CGROUP_SOCK: 7069 case BPF_PROG_TYPE_SOCK_OPS: 7070 case BPF_PROG_TYPE_CGROUP_DEVICE: 7071 case BPF_PROG_TYPE_CGROUP_SYSCTL: 7072 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 7073 break; 7074 case BPF_PROG_TYPE_RAW_TRACEPOINT: 7075 if (!env->prog->aux->attach_btf_id) 7076 return 0; 7077 range = tnum_const(0); 7078 break; 7079 default: 7080 return 0; 7081 } 7082 7083 reg = cur_regs(env) + BPF_REG_0; 7084 if (reg->type != SCALAR_VALUE) { 7085 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 7086 reg_type_str[reg->type]); 7087 return -EINVAL; 7088 } 7089 7090 if (!tnum_in(range, reg->var_off)) { 7091 char tn_buf[48]; 7092 7093 verbose(env, "At program exit the register R0 "); 7094 if (!tnum_is_unknown(reg->var_off)) { 7095 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7096 verbose(env, "has value %s", tn_buf); 7097 } else { 7098 verbose(env, "has unknown scalar value"); 7099 } 7100 tnum_strn(tn_buf, sizeof(tn_buf), range); 7101 verbose(env, " should have been in %s\n", tn_buf); 7102 return -EINVAL; 7103 } 7104 7105 if (!tnum_is_unknown(enforce_attach_type_range) && 7106 tnum_in(enforce_attach_type_range, reg->var_off)) 7107 env->prog->enforce_expected_attach_type = 1; 7108 return 0; 7109 } 7110 7111 /* non-recursive DFS pseudo code 7112 * 1 procedure DFS-iterative(G,v): 7113 * 2 label v as discovered 7114 * 3 let S be a stack 7115 * 4 S.push(v) 7116 * 5 while S is not empty 7117 * 6 t <- S.pop() 7118 * 7 if t is what we're looking for: 7119 * 8 return t 7120 * 9 for all edges e in G.adjacentEdges(t) do 7121 * 10 if edge e is already labelled 7122 * 11 continue with the next edge 7123 * 12 w <- G.adjacentVertex(t,e) 7124 * 13 if vertex w is not discovered and not explored 7125 * 14 label e as tree-edge 7126 * 15 label w as discovered 7127 * 16 S.push(w) 7128 * 17 continue at 5 7129 * 18 else if vertex w is discovered 7130 * 19 label e as back-edge 7131 * 20 else 7132 * 21 // vertex w is explored 7133 * 22 label e as forward- or cross-edge 7134 * 23 label t as explored 7135 * 24 S.pop() 7136 * 7137 * convention: 7138 * 0x10 - discovered 7139 * 0x11 - discovered and fall-through edge labelled 7140 * 0x12 - discovered and fall-through and branch edges labelled 7141 * 0x20 - explored 7142 */ 7143 7144 enum { 7145 DISCOVERED = 0x10, 7146 EXPLORED = 0x20, 7147 FALLTHROUGH = 1, 7148 BRANCH = 2, 7149 }; 7150 7151 static u32 state_htab_size(struct bpf_verifier_env *env) 7152 { 7153 return env->prog->len; 7154 } 7155 7156 static struct bpf_verifier_state_list **explored_state( 7157 struct bpf_verifier_env *env, 7158 int idx) 7159 { 7160 struct bpf_verifier_state *cur = env->cur_state; 7161 struct bpf_func_state *state = cur->frame[cur->curframe]; 7162 7163 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 7164 } 7165 7166 static void init_explored_state(struct bpf_verifier_env *env, int idx) 7167 { 7168 env->insn_aux_data[idx].prune_point = true; 7169 } 7170 7171 /* t, w, e - match pseudo-code above: 7172 * t - index of current instruction 7173 * w - next instruction 7174 * e - edge 7175 */ 7176 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 7177 bool loop_ok) 7178 { 7179 int *insn_stack = env->cfg.insn_stack; 7180 int *insn_state = env->cfg.insn_state; 7181 7182 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 7183 return 0; 7184 7185 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 7186 return 0; 7187 7188 if (w < 0 || w >= env->prog->len) { 7189 verbose_linfo(env, t, "%d: ", t); 7190 verbose(env, "jump out of range from insn %d to %d\n", t, w); 7191 return -EINVAL; 7192 } 7193 7194 if (e == BRANCH) 7195 /* mark branch target for state pruning */ 7196 init_explored_state(env, w); 7197 7198 if (insn_state[w] == 0) { 7199 /* tree-edge */ 7200 insn_state[t] = DISCOVERED | e; 7201 insn_state[w] = DISCOVERED; 7202 if (env->cfg.cur_stack >= env->prog->len) 7203 return -E2BIG; 7204 insn_stack[env->cfg.cur_stack++] = w; 7205 return 1; 7206 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 7207 if (loop_ok && env->allow_ptr_leaks) 7208 return 0; 7209 verbose_linfo(env, t, "%d: ", t); 7210 verbose_linfo(env, w, "%d: ", w); 7211 verbose(env, "back-edge from insn %d to %d\n", t, w); 7212 return -EINVAL; 7213 } else if (insn_state[w] == EXPLORED) { 7214 /* forward- or cross-edge */ 7215 insn_state[t] = DISCOVERED | e; 7216 } else { 7217 verbose(env, "insn state internal bug\n"); 7218 return -EFAULT; 7219 } 7220 return 0; 7221 } 7222 7223 /* non-recursive depth-first-search to detect loops in BPF program 7224 * loop == back-edge in directed graph 7225 */ 7226 static int check_cfg(struct bpf_verifier_env *env) 7227 { 7228 struct bpf_insn *insns = env->prog->insnsi; 7229 int insn_cnt = env->prog->len; 7230 int *insn_stack, *insn_state; 7231 int ret = 0; 7232 int i, t; 7233 7234 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 7235 if (!insn_state) 7236 return -ENOMEM; 7237 7238 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 7239 if (!insn_stack) { 7240 kvfree(insn_state); 7241 return -ENOMEM; 7242 } 7243 7244 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 7245 insn_stack[0] = 0; /* 0 is the first instruction */ 7246 env->cfg.cur_stack = 1; 7247 7248 peek_stack: 7249 if (env->cfg.cur_stack == 0) 7250 goto check_state; 7251 t = insn_stack[env->cfg.cur_stack - 1]; 7252 7253 if (BPF_CLASS(insns[t].code) == BPF_JMP || 7254 BPF_CLASS(insns[t].code) == BPF_JMP32) { 7255 u8 opcode = BPF_OP(insns[t].code); 7256 7257 if (opcode == BPF_EXIT) { 7258 goto mark_explored; 7259 } else if (opcode == BPF_CALL) { 7260 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 7261 if (ret == 1) 7262 goto peek_stack; 7263 else if (ret < 0) 7264 goto err_free; 7265 if (t + 1 < insn_cnt) 7266 init_explored_state(env, t + 1); 7267 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 7268 init_explored_state(env, t); 7269 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 7270 env, false); 7271 if (ret == 1) 7272 goto peek_stack; 7273 else if (ret < 0) 7274 goto err_free; 7275 } 7276 } else if (opcode == BPF_JA) { 7277 if (BPF_SRC(insns[t].code) != BPF_K) { 7278 ret = -EINVAL; 7279 goto err_free; 7280 } 7281 /* unconditional jump with single edge */ 7282 ret = push_insn(t, t + insns[t].off + 1, 7283 FALLTHROUGH, env, true); 7284 if (ret == 1) 7285 goto peek_stack; 7286 else if (ret < 0) 7287 goto err_free; 7288 /* unconditional jmp is not a good pruning point, 7289 * but it's marked, since backtracking needs 7290 * to record jmp history in is_state_visited(). 7291 */ 7292 init_explored_state(env, t + insns[t].off + 1); 7293 /* tell verifier to check for equivalent states 7294 * after every call and jump 7295 */ 7296 if (t + 1 < insn_cnt) 7297 init_explored_state(env, t + 1); 7298 } else { 7299 /* conditional jump with two edges */ 7300 init_explored_state(env, t); 7301 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 7302 if (ret == 1) 7303 goto peek_stack; 7304 else if (ret < 0) 7305 goto err_free; 7306 7307 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 7308 if (ret == 1) 7309 goto peek_stack; 7310 else if (ret < 0) 7311 goto err_free; 7312 } 7313 } else { 7314 /* all other non-branch instructions with single 7315 * fall-through edge 7316 */ 7317 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 7318 if (ret == 1) 7319 goto peek_stack; 7320 else if (ret < 0) 7321 goto err_free; 7322 } 7323 7324 mark_explored: 7325 insn_state[t] = EXPLORED; 7326 if (env->cfg.cur_stack-- <= 0) { 7327 verbose(env, "pop stack internal bug\n"); 7328 ret = -EFAULT; 7329 goto err_free; 7330 } 7331 goto peek_stack; 7332 7333 check_state: 7334 for (i = 0; i < insn_cnt; i++) { 7335 if (insn_state[i] != EXPLORED) { 7336 verbose(env, "unreachable insn %d\n", i); 7337 ret = -EINVAL; 7338 goto err_free; 7339 } 7340 } 7341 ret = 0; /* cfg looks good */ 7342 7343 err_free: 7344 kvfree(insn_state); 7345 kvfree(insn_stack); 7346 env->cfg.insn_state = env->cfg.insn_stack = NULL; 7347 return ret; 7348 } 7349 7350 /* The minimum supported BTF func info size */ 7351 #define MIN_BPF_FUNCINFO_SIZE 8 7352 #define MAX_FUNCINFO_REC_SIZE 252 7353 7354 static int check_btf_func(struct bpf_verifier_env *env, 7355 const union bpf_attr *attr, 7356 union bpf_attr __user *uattr) 7357 { 7358 u32 i, nfuncs, urec_size, min_size; 7359 u32 krec_size = sizeof(struct bpf_func_info); 7360 struct bpf_func_info *krecord; 7361 struct bpf_func_info_aux *info_aux = NULL; 7362 const struct btf_type *type; 7363 struct bpf_prog *prog; 7364 const struct btf *btf; 7365 void __user *urecord; 7366 u32 prev_offset = 0; 7367 int ret = 0; 7368 7369 nfuncs = attr->func_info_cnt; 7370 if (!nfuncs) 7371 return 0; 7372 7373 if (nfuncs != env->subprog_cnt) { 7374 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 7375 return -EINVAL; 7376 } 7377 7378 urec_size = attr->func_info_rec_size; 7379 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 7380 urec_size > MAX_FUNCINFO_REC_SIZE || 7381 urec_size % sizeof(u32)) { 7382 verbose(env, "invalid func info rec size %u\n", urec_size); 7383 return -EINVAL; 7384 } 7385 7386 prog = env->prog; 7387 btf = prog->aux->btf; 7388 7389 urecord = u64_to_user_ptr(attr->func_info); 7390 min_size = min_t(u32, krec_size, urec_size); 7391 7392 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 7393 if (!krecord) 7394 return -ENOMEM; 7395 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 7396 if (!info_aux) 7397 goto err_free; 7398 7399 for (i = 0; i < nfuncs; i++) { 7400 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 7401 if (ret) { 7402 if (ret == -E2BIG) { 7403 verbose(env, "nonzero tailing record in func info"); 7404 /* set the size kernel expects so loader can zero 7405 * out the rest of the record. 7406 */ 7407 if (put_user(min_size, &uattr->func_info_rec_size)) 7408 ret = -EFAULT; 7409 } 7410 goto err_free; 7411 } 7412 7413 if (copy_from_user(&krecord[i], urecord, min_size)) { 7414 ret = -EFAULT; 7415 goto err_free; 7416 } 7417 7418 /* check insn_off */ 7419 if (i == 0) { 7420 if (krecord[i].insn_off) { 7421 verbose(env, 7422 "nonzero insn_off %u for the first func info record", 7423 krecord[i].insn_off); 7424 ret = -EINVAL; 7425 goto err_free; 7426 } 7427 } else if (krecord[i].insn_off <= prev_offset) { 7428 verbose(env, 7429 "same or smaller insn offset (%u) than previous func info record (%u)", 7430 krecord[i].insn_off, prev_offset); 7431 ret = -EINVAL; 7432 goto err_free; 7433 } 7434 7435 if (env->subprog_info[i].start != krecord[i].insn_off) { 7436 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 7437 ret = -EINVAL; 7438 goto err_free; 7439 } 7440 7441 /* check type_id */ 7442 type = btf_type_by_id(btf, krecord[i].type_id); 7443 if (!type || !btf_type_is_func(type)) { 7444 verbose(env, "invalid type id %d in func info", 7445 krecord[i].type_id); 7446 ret = -EINVAL; 7447 goto err_free; 7448 } 7449 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 7450 prev_offset = krecord[i].insn_off; 7451 urecord += urec_size; 7452 } 7453 7454 prog->aux->func_info = krecord; 7455 prog->aux->func_info_cnt = nfuncs; 7456 prog->aux->func_info_aux = info_aux; 7457 return 0; 7458 7459 err_free: 7460 kvfree(krecord); 7461 kfree(info_aux); 7462 return ret; 7463 } 7464 7465 static void adjust_btf_func(struct bpf_verifier_env *env) 7466 { 7467 struct bpf_prog_aux *aux = env->prog->aux; 7468 int i; 7469 7470 if (!aux->func_info) 7471 return; 7472 7473 for (i = 0; i < env->subprog_cnt; i++) 7474 aux->func_info[i].insn_off = env->subprog_info[i].start; 7475 } 7476 7477 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 7478 sizeof(((struct bpf_line_info *)(0))->line_col)) 7479 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 7480 7481 static int check_btf_line(struct bpf_verifier_env *env, 7482 const union bpf_attr *attr, 7483 union bpf_attr __user *uattr) 7484 { 7485 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 7486 struct bpf_subprog_info *sub; 7487 struct bpf_line_info *linfo; 7488 struct bpf_prog *prog; 7489 const struct btf *btf; 7490 void __user *ulinfo; 7491 int err; 7492 7493 nr_linfo = attr->line_info_cnt; 7494 if (!nr_linfo) 7495 return 0; 7496 7497 rec_size = attr->line_info_rec_size; 7498 if (rec_size < MIN_BPF_LINEINFO_SIZE || 7499 rec_size > MAX_LINEINFO_REC_SIZE || 7500 rec_size & (sizeof(u32) - 1)) 7501 return -EINVAL; 7502 7503 /* Need to zero it in case the userspace may 7504 * pass in a smaller bpf_line_info object. 7505 */ 7506 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 7507 GFP_KERNEL | __GFP_NOWARN); 7508 if (!linfo) 7509 return -ENOMEM; 7510 7511 prog = env->prog; 7512 btf = prog->aux->btf; 7513 7514 s = 0; 7515 sub = env->subprog_info; 7516 ulinfo = u64_to_user_ptr(attr->line_info); 7517 expected_size = sizeof(struct bpf_line_info); 7518 ncopy = min_t(u32, expected_size, rec_size); 7519 for (i = 0; i < nr_linfo; i++) { 7520 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 7521 if (err) { 7522 if (err == -E2BIG) { 7523 verbose(env, "nonzero tailing record in line_info"); 7524 if (put_user(expected_size, 7525 &uattr->line_info_rec_size)) 7526 err = -EFAULT; 7527 } 7528 goto err_free; 7529 } 7530 7531 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 7532 err = -EFAULT; 7533 goto err_free; 7534 } 7535 7536 /* 7537 * Check insn_off to ensure 7538 * 1) strictly increasing AND 7539 * 2) bounded by prog->len 7540 * 7541 * The linfo[0].insn_off == 0 check logically falls into 7542 * the later "missing bpf_line_info for func..." case 7543 * because the first linfo[0].insn_off must be the 7544 * first sub also and the first sub must have 7545 * subprog_info[0].start == 0. 7546 */ 7547 if ((i && linfo[i].insn_off <= prev_offset) || 7548 linfo[i].insn_off >= prog->len) { 7549 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 7550 i, linfo[i].insn_off, prev_offset, 7551 prog->len); 7552 err = -EINVAL; 7553 goto err_free; 7554 } 7555 7556 if (!prog->insnsi[linfo[i].insn_off].code) { 7557 verbose(env, 7558 "Invalid insn code at line_info[%u].insn_off\n", 7559 i); 7560 err = -EINVAL; 7561 goto err_free; 7562 } 7563 7564 if (!btf_name_by_offset(btf, linfo[i].line_off) || 7565 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 7566 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 7567 err = -EINVAL; 7568 goto err_free; 7569 } 7570 7571 if (s != env->subprog_cnt) { 7572 if (linfo[i].insn_off == sub[s].start) { 7573 sub[s].linfo_idx = i; 7574 s++; 7575 } else if (sub[s].start < linfo[i].insn_off) { 7576 verbose(env, "missing bpf_line_info for func#%u\n", s); 7577 err = -EINVAL; 7578 goto err_free; 7579 } 7580 } 7581 7582 prev_offset = linfo[i].insn_off; 7583 ulinfo += rec_size; 7584 } 7585 7586 if (s != env->subprog_cnt) { 7587 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 7588 env->subprog_cnt - s, s); 7589 err = -EINVAL; 7590 goto err_free; 7591 } 7592 7593 prog->aux->linfo = linfo; 7594 prog->aux->nr_linfo = nr_linfo; 7595 7596 return 0; 7597 7598 err_free: 7599 kvfree(linfo); 7600 return err; 7601 } 7602 7603 static int check_btf_info(struct bpf_verifier_env *env, 7604 const union bpf_attr *attr, 7605 union bpf_attr __user *uattr) 7606 { 7607 struct btf *btf; 7608 int err; 7609 7610 if (!attr->func_info_cnt && !attr->line_info_cnt) 7611 return 0; 7612 7613 btf = btf_get_by_fd(attr->prog_btf_fd); 7614 if (IS_ERR(btf)) 7615 return PTR_ERR(btf); 7616 env->prog->aux->btf = btf; 7617 7618 err = check_btf_func(env, attr, uattr); 7619 if (err) 7620 return err; 7621 7622 err = check_btf_line(env, attr, uattr); 7623 if (err) 7624 return err; 7625 7626 return 0; 7627 } 7628 7629 /* check %cur's range satisfies %old's */ 7630 static bool range_within(struct bpf_reg_state *old, 7631 struct bpf_reg_state *cur) 7632 { 7633 return old->umin_value <= cur->umin_value && 7634 old->umax_value >= cur->umax_value && 7635 old->smin_value <= cur->smin_value && 7636 old->smax_value >= cur->smax_value; 7637 } 7638 7639 /* Maximum number of register states that can exist at once */ 7640 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 7641 struct idpair { 7642 u32 old; 7643 u32 cur; 7644 }; 7645 7646 /* If in the old state two registers had the same id, then they need to have 7647 * the same id in the new state as well. But that id could be different from 7648 * the old state, so we need to track the mapping from old to new ids. 7649 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 7650 * regs with old id 5 must also have new id 9 for the new state to be safe. But 7651 * regs with a different old id could still have new id 9, we don't care about 7652 * that. 7653 * So we look through our idmap to see if this old id has been seen before. If 7654 * so, we require the new id to match; otherwise, we add the id pair to the map. 7655 */ 7656 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 7657 { 7658 unsigned int i; 7659 7660 for (i = 0; i < ID_MAP_SIZE; i++) { 7661 if (!idmap[i].old) { 7662 /* Reached an empty slot; haven't seen this id before */ 7663 idmap[i].old = old_id; 7664 idmap[i].cur = cur_id; 7665 return true; 7666 } 7667 if (idmap[i].old == old_id) 7668 return idmap[i].cur == cur_id; 7669 } 7670 /* We ran out of idmap slots, which should be impossible */ 7671 WARN_ON_ONCE(1); 7672 return false; 7673 } 7674 7675 static void clean_func_state(struct bpf_verifier_env *env, 7676 struct bpf_func_state *st) 7677 { 7678 enum bpf_reg_liveness live; 7679 int i, j; 7680 7681 for (i = 0; i < BPF_REG_FP; i++) { 7682 live = st->regs[i].live; 7683 /* liveness must not touch this register anymore */ 7684 st->regs[i].live |= REG_LIVE_DONE; 7685 if (!(live & REG_LIVE_READ)) 7686 /* since the register is unused, clear its state 7687 * to make further comparison simpler 7688 */ 7689 __mark_reg_not_init(env, &st->regs[i]); 7690 } 7691 7692 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 7693 live = st->stack[i].spilled_ptr.live; 7694 /* liveness must not touch this stack slot anymore */ 7695 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 7696 if (!(live & REG_LIVE_READ)) { 7697 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 7698 for (j = 0; j < BPF_REG_SIZE; j++) 7699 st->stack[i].slot_type[j] = STACK_INVALID; 7700 } 7701 } 7702 } 7703 7704 static void clean_verifier_state(struct bpf_verifier_env *env, 7705 struct bpf_verifier_state *st) 7706 { 7707 int i; 7708 7709 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 7710 /* all regs in this state in all frames were already marked */ 7711 return; 7712 7713 for (i = 0; i <= st->curframe; i++) 7714 clean_func_state(env, st->frame[i]); 7715 } 7716 7717 /* the parentage chains form a tree. 7718 * the verifier states are added to state lists at given insn and 7719 * pushed into state stack for future exploration. 7720 * when the verifier reaches bpf_exit insn some of the verifer states 7721 * stored in the state lists have their final liveness state already, 7722 * but a lot of states will get revised from liveness point of view when 7723 * the verifier explores other branches. 7724 * Example: 7725 * 1: r0 = 1 7726 * 2: if r1 == 100 goto pc+1 7727 * 3: r0 = 2 7728 * 4: exit 7729 * when the verifier reaches exit insn the register r0 in the state list of 7730 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 7731 * of insn 2 and goes exploring further. At the insn 4 it will walk the 7732 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 7733 * 7734 * Since the verifier pushes the branch states as it sees them while exploring 7735 * the program the condition of walking the branch instruction for the second 7736 * time means that all states below this branch were already explored and 7737 * their final liveness markes are already propagated. 7738 * Hence when the verifier completes the search of state list in is_state_visited() 7739 * we can call this clean_live_states() function to mark all liveness states 7740 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 7741 * will not be used. 7742 * This function also clears the registers and stack for states that !READ 7743 * to simplify state merging. 7744 * 7745 * Important note here that walking the same branch instruction in the callee 7746 * doesn't meant that the states are DONE. The verifier has to compare 7747 * the callsites 7748 */ 7749 static void clean_live_states(struct bpf_verifier_env *env, int insn, 7750 struct bpf_verifier_state *cur) 7751 { 7752 struct bpf_verifier_state_list *sl; 7753 int i; 7754 7755 sl = *explored_state(env, insn); 7756 while (sl) { 7757 if (sl->state.branches) 7758 goto next; 7759 if (sl->state.insn_idx != insn || 7760 sl->state.curframe != cur->curframe) 7761 goto next; 7762 for (i = 0; i <= cur->curframe; i++) 7763 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 7764 goto next; 7765 clean_verifier_state(env, &sl->state); 7766 next: 7767 sl = sl->next; 7768 } 7769 } 7770 7771 /* Returns true if (rold safe implies rcur safe) */ 7772 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 7773 struct idpair *idmap) 7774 { 7775 bool equal; 7776 7777 if (!(rold->live & REG_LIVE_READ)) 7778 /* explored state didn't use this */ 7779 return true; 7780 7781 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 7782 7783 if (rold->type == PTR_TO_STACK) 7784 /* two stack pointers are equal only if they're pointing to 7785 * the same stack frame, since fp-8 in foo != fp-8 in bar 7786 */ 7787 return equal && rold->frameno == rcur->frameno; 7788 7789 if (equal) 7790 return true; 7791 7792 if (rold->type == NOT_INIT) 7793 /* explored state can't have used this */ 7794 return true; 7795 if (rcur->type == NOT_INIT) 7796 return false; 7797 switch (rold->type) { 7798 case SCALAR_VALUE: 7799 if (rcur->type == SCALAR_VALUE) { 7800 if (!rold->precise && !rcur->precise) 7801 return true; 7802 /* new val must satisfy old val knowledge */ 7803 return range_within(rold, rcur) && 7804 tnum_in(rold->var_off, rcur->var_off); 7805 } else { 7806 /* We're trying to use a pointer in place of a scalar. 7807 * Even if the scalar was unbounded, this could lead to 7808 * pointer leaks because scalars are allowed to leak 7809 * while pointers are not. We could make this safe in 7810 * special cases if root is calling us, but it's 7811 * probably not worth the hassle. 7812 */ 7813 return false; 7814 } 7815 case PTR_TO_MAP_VALUE: 7816 /* If the new min/max/var_off satisfy the old ones and 7817 * everything else matches, we are OK. 7818 * 'id' is not compared, since it's only used for maps with 7819 * bpf_spin_lock inside map element and in such cases if 7820 * the rest of the prog is valid for one map element then 7821 * it's valid for all map elements regardless of the key 7822 * used in bpf_map_lookup() 7823 */ 7824 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 7825 range_within(rold, rcur) && 7826 tnum_in(rold->var_off, rcur->var_off); 7827 case PTR_TO_MAP_VALUE_OR_NULL: 7828 /* a PTR_TO_MAP_VALUE could be safe to use as a 7829 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 7830 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 7831 * checked, doing so could have affected others with the same 7832 * id, and we can't check for that because we lost the id when 7833 * we converted to a PTR_TO_MAP_VALUE. 7834 */ 7835 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 7836 return false; 7837 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 7838 return false; 7839 /* Check our ids match any regs they're supposed to */ 7840 return check_ids(rold->id, rcur->id, idmap); 7841 case PTR_TO_PACKET_META: 7842 case PTR_TO_PACKET: 7843 if (rcur->type != rold->type) 7844 return false; 7845 /* We must have at least as much range as the old ptr 7846 * did, so that any accesses which were safe before are 7847 * still safe. This is true even if old range < old off, 7848 * since someone could have accessed through (ptr - k), or 7849 * even done ptr -= k in a register, to get a safe access. 7850 */ 7851 if (rold->range > rcur->range) 7852 return false; 7853 /* If the offsets don't match, we can't trust our alignment; 7854 * nor can we be sure that we won't fall out of range. 7855 */ 7856 if (rold->off != rcur->off) 7857 return false; 7858 /* id relations must be preserved */ 7859 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 7860 return false; 7861 /* new val must satisfy old val knowledge */ 7862 return range_within(rold, rcur) && 7863 tnum_in(rold->var_off, rcur->var_off); 7864 case PTR_TO_CTX: 7865 case CONST_PTR_TO_MAP: 7866 case PTR_TO_PACKET_END: 7867 case PTR_TO_FLOW_KEYS: 7868 case PTR_TO_SOCKET: 7869 case PTR_TO_SOCKET_OR_NULL: 7870 case PTR_TO_SOCK_COMMON: 7871 case PTR_TO_SOCK_COMMON_OR_NULL: 7872 case PTR_TO_TCP_SOCK: 7873 case PTR_TO_TCP_SOCK_OR_NULL: 7874 case PTR_TO_XDP_SOCK: 7875 /* Only valid matches are exact, which memcmp() above 7876 * would have accepted 7877 */ 7878 default: 7879 /* Don't know what's going on, just say it's not safe */ 7880 return false; 7881 } 7882 7883 /* Shouldn't get here; if we do, say it's not safe */ 7884 WARN_ON_ONCE(1); 7885 return false; 7886 } 7887 7888 static bool stacksafe(struct bpf_func_state *old, 7889 struct bpf_func_state *cur, 7890 struct idpair *idmap) 7891 { 7892 int i, spi; 7893 7894 /* walk slots of the explored stack and ignore any additional 7895 * slots in the current stack, since explored(safe) state 7896 * didn't use them 7897 */ 7898 for (i = 0; i < old->allocated_stack; i++) { 7899 spi = i / BPF_REG_SIZE; 7900 7901 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 7902 i += BPF_REG_SIZE - 1; 7903 /* explored state didn't use this */ 7904 continue; 7905 } 7906 7907 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 7908 continue; 7909 7910 /* explored stack has more populated slots than current stack 7911 * and these slots were used 7912 */ 7913 if (i >= cur->allocated_stack) 7914 return false; 7915 7916 /* if old state was safe with misc data in the stack 7917 * it will be safe with zero-initialized stack. 7918 * The opposite is not true 7919 */ 7920 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 7921 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 7922 continue; 7923 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 7924 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 7925 /* Ex: old explored (safe) state has STACK_SPILL in 7926 * this stack slot, but current has has STACK_MISC -> 7927 * this verifier states are not equivalent, 7928 * return false to continue verification of this path 7929 */ 7930 return false; 7931 if (i % BPF_REG_SIZE) 7932 continue; 7933 if (old->stack[spi].slot_type[0] != STACK_SPILL) 7934 continue; 7935 if (!regsafe(&old->stack[spi].spilled_ptr, 7936 &cur->stack[spi].spilled_ptr, 7937 idmap)) 7938 /* when explored and current stack slot are both storing 7939 * spilled registers, check that stored pointers types 7940 * are the same as well. 7941 * Ex: explored safe path could have stored 7942 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 7943 * but current path has stored: 7944 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 7945 * such verifier states are not equivalent. 7946 * return false to continue verification of this path 7947 */ 7948 return false; 7949 } 7950 return true; 7951 } 7952 7953 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 7954 { 7955 if (old->acquired_refs != cur->acquired_refs) 7956 return false; 7957 return !memcmp(old->refs, cur->refs, 7958 sizeof(*old->refs) * old->acquired_refs); 7959 } 7960 7961 /* compare two verifier states 7962 * 7963 * all states stored in state_list are known to be valid, since 7964 * verifier reached 'bpf_exit' instruction through them 7965 * 7966 * this function is called when verifier exploring different branches of 7967 * execution popped from the state stack. If it sees an old state that has 7968 * more strict register state and more strict stack state then this execution 7969 * branch doesn't need to be explored further, since verifier already 7970 * concluded that more strict state leads to valid finish. 7971 * 7972 * Therefore two states are equivalent if register state is more conservative 7973 * and explored stack state is more conservative than the current one. 7974 * Example: 7975 * explored current 7976 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 7977 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 7978 * 7979 * In other words if current stack state (one being explored) has more 7980 * valid slots than old one that already passed validation, it means 7981 * the verifier can stop exploring and conclude that current state is valid too 7982 * 7983 * Similarly with registers. If explored state has register type as invalid 7984 * whereas register type in current state is meaningful, it means that 7985 * the current state will reach 'bpf_exit' instruction safely 7986 */ 7987 static bool func_states_equal(struct bpf_func_state *old, 7988 struct bpf_func_state *cur) 7989 { 7990 struct idpair *idmap; 7991 bool ret = false; 7992 int i; 7993 7994 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 7995 /* If we failed to allocate the idmap, just say it's not safe */ 7996 if (!idmap) 7997 return false; 7998 7999 for (i = 0; i < MAX_BPF_REG; i++) { 8000 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 8001 goto out_free; 8002 } 8003 8004 if (!stacksafe(old, cur, idmap)) 8005 goto out_free; 8006 8007 if (!refsafe(old, cur)) 8008 goto out_free; 8009 ret = true; 8010 out_free: 8011 kfree(idmap); 8012 return ret; 8013 } 8014 8015 static bool states_equal(struct bpf_verifier_env *env, 8016 struct bpf_verifier_state *old, 8017 struct bpf_verifier_state *cur) 8018 { 8019 int i; 8020 8021 if (old->curframe != cur->curframe) 8022 return false; 8023 8024 /* Verification state from speculative execution simulation 8025 * must never prune a non-speculative execution one. 8026 */ 8027 if (old->speculative && !cur->speculative) 8028 return false; 8029 8030 if (old->active_spin_lock != cur->active_spin_lock) 8031 return false; 8032 8033 /* for states to be equal callsites have to be the same 8034 * and all frame states need to be equivalent 8035 */ 8036 for (i = 0; i <= old->curframe; i++) { 8037 if (old->frame[i]->callsite != cur->frame[i]->callsite) 8038 return false; 8039 if (!func_states_equal(old->frame[i], cur->frame[i])) 8040 return false; 8041 } 8042 return true; 8043 } 8044 8045 /* Return 0 if no propagation happened. Return negative error code if error 8046 * happened. Otherwise, return the propagated bit. 8047 */ 8048 static int propagate_liveness_reg(struct bpf_verifier_env *env, 8049 struct bpf_reg_state *reg, 8050 struct bpf_reg_state *parent_reg) 8051 { 8052 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 8053 u8 flag = reg->live & REG_LIVE_READ; 8054 int err; 8055 8056 /* When comes here, read flags of PARENT_REG or REG could be any of 8057 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 8058 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 8059 */ 8060 if (parent_flag == REG_LIVE_READ64 || 8061 /* Or if there is no read flag from REG. */ 8062 !flag || 8063 /* Or if the read flag from REG is the same as PARENT_REG. */ 8064 parent_flag == flag) 8065 return 0; 8066 8067 err = mark_reg_read(env, reg, parent_reg, flag); 8068 if (err) 8069 return err; 8070 8071 return flag; 8072 } 8073 8074 /* A write screens off any subsequent reads; but write marks come from the 8075 * straight-line code between a state and its parent. When we arrive at an 8076 * equivalent state (jump target or such) we didn't arrive by the straight-line 8077 * code, so read marks in the state must propagate to the parent regardless 8078 * of the state's write marks. That's what 'parent == state->parent' comparison 8079 * in mark_reg_read() is for. 8080 */ 8081 static int propagate_liveness(struct bpf_verifier_env *env, 8082 const struct bpf_verifier_state *vstate, 8083 struct bpf_verifier_state *vparent) 8084 { 8085 struct bpf_reg_state *state_reg, *parent_reg; 8086 struct bpf_func_state *state, *parent; 8087 int i, frame, err = 0; 8088 8089 if (vparent->curframe != vstate->curframe) { 8090 WARN(1, "propagate_live: parent frame %d current frame %d\n", 8091 vparent->curframe, vstate->curframe); 8092 return -EFAULT; 8093 } 8094 /* Propagate read liveness of registers... */ 8095 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 8096 for (frame = 0; frame <= vstate->curframe; frame++) { 8097 parent = vparent->frame[frame]; 8098 state = vstate->frame[frame]; 8099 parent_reg = parent->regs; 8100 state_reg = state->regs; 8101 /* We don't need to worry about FP liveness, it's read-only */ 8102 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 8103 err = propagate_liveness_reg(env, &state_reg[i], 8104 &parent_reg[i]); 8105 if (err < 0) 8106 return err; 8107 if (err == REG_LIVE_READ64) 8108 mark_insn_zext(env, &parent_reg[i]); 8109 } 8110 8111 /* Propagate stack slots. */ 8112 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 8113 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 8114 parent_reg = &parent->stack[i].spilled_ptr; 8115 state_reg = &state->stack[i].spilled_ptr; 8116 err = propagate_liveness_reg(env, state_reg, 8117 parent_reg); 8118 if (err < 0) 8119 return err; 8120 } 8121 } 8122 return 0; 8123 } 8124 8125 /* find precise scalars in the previous equivalent state and 8126 * propagate them into the current state 8127 */ 8128 static int propagate_precision(struct bpf_verifier_env *env, 8129 const struct bpf_verifier_state *old) 8130 { 8131 struct bpf_reg_state *state_reg; 8132 struct bpf_func_state *state; 8133 int i, err = 0; 8134 8135 state = old->frame[old->curframe]; 8136 state_reg = state->regs; 8137 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 8138 if (state_reg->type != SCALAR_VALUE || 8139 !state_reg->precise) 8140 continue; 8141 if (env->log.level & BPF_LOG_LEVEL2) 8142 verbose(env, "propagating r%d\n", i); 8143 err = mark_chain_precision(env, i); 8144 if (err < 0) 8145 return err; 8146 } 8147 8148 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 8149 if (state->stack[i].slot_type[0] != STACK_SPILL) 8150 continue; 8151 state_reg = &state->stack[i].spilled_ptr; 8152 if (state_reg->type != SCALAR_VALUE || 8153 !state_reg->precise) 8154 continue; 8155 if (env->log.level & BPF_LOG_LEVEL2) 8156 verbose(env, "propagating fp%d\n", 8157 (-i - 1) * BPF_REG_SIZE); 8158 err = mark_chain_precision_stack(env, i); 8159 if (err < 0) 8160 return err; 8161 } 8162 return 0; 8163 } 8164 8165 static bool states_maybe_looping(struct bpf_verifier_state *old, 8166 struct bpf_verifier_state *cur) 8167 { 8168 struct bpf_func_state *fold, *fcur; 8169 int i, fr = cur->curframe; 8170 8171 if (old->curframe != fr) 8172 return false; 8173 8174 fold = old->frame[fr]; 8175 fcur = cur->frame[fr]; 8176 for (i = 0; i < MAX_BPF_REG; i++) 8177 if (memcmp(&fold->regs[i], &fcur->regs[i], 8178 offsetof(struct bpf_reg_state, parent))) 8179 return false; 8180 return true; 8181 } 8182 8183 8184 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 8185 { 8186 struct bpf_verifier_state_list *new_sl; 8187 struct bpf_verifier_state_list *sl, **pprev; 8188 struct bpf_verifier_state *cur = env->cur_state, *new; 8189 int i, j, err, states_cnt = 0; 8190 bool add_new_state = env->test_state_freq ? true : false; 8191 8192 cur->last_insn_idx = env->prev_insn_idx; 8193 if (!env->insn_aux_data[insn_idx].prune_point) 8194 /* this 'insn_idx' instruction wasn't marked, so we will not 8195 * be doing state search here 8196 */ 8197 return 0; 8198 8199 /* bpf progs typically have pruning point every 4 instructions 8200 * http://vger.kernel.org/bpfconf2019.html#session-1 8201 * Do not add new state for future pruning if the verifier hasn't seen 8202 * at least 2 jumps and at least 8 instructions. 8203 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 8204 * In tests that amounts to up to 50% reduction into total verifier 8205 * memory consumption and 20% verifier time speedup. 8206 */ 8207 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 8208 env->insn_processed - env->prev_insn_processed >= 8) 8209 add_new_state = true; 8210 8211 pprev = explored_state(env, insn_idx); 8212 sl = *pprev; 8213 8214 clean_live_states(env, insn_idx, cur); 8215 8216 while (sl) { 8217 states_cnt++; 8218 if (sl->state.insn_idx != insn_idx) 8219 goto next; 8220 if (sl->state.branches) { 8221 if (states_maybe_looping(&sl->state, cur) && 8222 states_equal(env, &sl->state, cur)) { 8223 verbose_linfo(env, insn_idx, "; "); 8224 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 8225 return -EINVAL; 8226 } 8227 /* if the verifier is processing a loop, avoid adding new state 8228 * too often, since different loop iterations have distinct 8229 * states and may not help future pruning. 8230 * This threshold shouldn't be too low to make sure that 8231 * a loop with large bound will be rejected quickly. 8232 * The most abusive loop will be: 8233 * r1 += 1 8234 * if r1 < 1000000 goto pc-2 8235 * 1M insn_procssed limit / 100 == 10k peak states. 8236 * This threshold shouldn't be too high either, since states 8237 * at the end of the loop are likely to be useful in pruning. 8238 */ 8239 if (env->jmps_processed - env->prev_jmps_processed < 20 && 8240 env->insn_processed - env->prev_insn_processed < 100) 8241 add_new_state = false; 8242 goto miss; 8243 } 8244 if (states_equal(env, &sl->state, cur)) { 8245 sl->hit_cnt++; 8246 /* reached equivalent register/stack state, 8247 * prune the search. 8248 * Registers read by the continuation are read by us. 8249 * If we have any write marks in env->cur_state, they 8250 * will prevent corresponding reads in the continuation 8251 * from reaching our parent (an explored_state). Our 8252 * own state will get the read marks recorded, but 8253 * they'll be immediately forgotten as we're pruning 8254 * this state and will pop a new one. 8255 */ 8256 err = propagate_liveness(env, &sl->state, cur); 8257 8258 /* if previous state reached the exit with precision and 8259 * current state is equivalent to it (except precsion marks) 8260 * the precision needs to be propagated back in 8261 * the current state. 8262 */ 8263 err = err ? : push_jmp_history(env, cur); 8264 err = err ? : propagate_precision(env, &sl->state); 8265 if (err) 8266 return err; 8267 return 1; 8268 } 8269 miss: 8270 /* when new state is not going to be added do not increase miss count. 8271 * Otherwise several loop iterations will remove the state 8272 * recorded earlier. The goal of these heuristics is to have 8273 * states from some iterations of the loop (some in the beginning 8274 * and some at the end) to help pruning. 8275 */ 8276 if (add_new_state) 8277 sl->miss_cnt++; 8278 /* heuristic to determine whether this state is beneficial 8279 * to keep checking from state equivalence point of view. 8280 * Higher numbers increase max_states_per_insn and verification time, 8281 * but do not meaningfully decrease insn_processed. 8282 */ 8283 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 8284 /* the state is unlikely to be useful. Remove it to 8285 * speed up verification 8286 */ 8287 *pprev = sl->next; 8288 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 8289 u32 br = sl->state.branches; 8290 8291 WARN_ONCE(br, 8292 "BUG live_done but branches_to_explore %d\n", 8293 br); 8294 free_verifier_state(&sl->state, false); 8295 kfree(sl); 8296 env->peak_states--; 8297 } else { 8298 /* cannot free this state, since parentage chain may 8299 * walk it later. Add it for free_list instead to 8300 * be freed at the end of verification 8301 */ 8302 sl->next = env->free_list; 8303 env->free_list = sl; 8304 } 8305 sl = *pprev; 8306 continue; 8307 } 8308 next: 8309 pprev = &sl->next; 8310 sl = *pprev; 8311 } 8312 8313 if (env->max_states_per_insn < states_cnt) 8314 env->max_states_per_insn = states_cnt; 8315 8316 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 8317 return push_jmp_history(env, cur); 8318 8319 if (!add_new_state) 8320 return push_jmp_history(env, cur); 8321 8322 /* There were no equivalent states, remember the current one. 8323 * Technically the current state is not proven to be safe yet, 8324 * but it will either reach outer most bpf_exit (which means it's safe) 8325 * or it will be rejected. When there are no loops the verifier won't be 8326 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 8327 * again on the way to bpf_exit. 8328 * When looping the sl->state.branches will be > 0 and this state 8329 * will not be considered for equivalence until branches == 0. 8330 */ 8331 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 8332 if (!new_sl) 8333 return -ENOMEM; 8334 env->total_states++; 8335 env->peak_states++; 8336 env->prev_jmps_processed = env->jmps_processed; 8337 env->prev_insn_processed = env->insn_processed; 8338 8339 /* add new state to the head of linked list */ 8340 new = &new_sl->state; 8341 err = copy_verifier_state(new, cur); 8342 if (err) { 8343 free_verifier_state(new, false); 8344 kfree(new_sl); 8345 return err; 8346 } 8347 new->insn_idx = insn_idx; 8348 WARN_ONCE(new->branches != 1, 8349 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 8350 8351 cur->parent = new; 8352 cur->first_insn_idx = insn_idx; 8353 clear_jmp_history(cur); 8354 new_sl->next = *explored_state(env, insn_idx); 8355 *explored_state(env, insn_idx) = new_sl; 8356 /* connect new state to parentage chain. Current frame needs all 8357 * registers connected. Only r6 - r9 of the callers are alive (pushed 8358 * to the stack implicitly by JITs) so in callers' frames connect just 8359 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 8360 * the state of the call instruction (with WRITTEN set), and r0 comes 8361 * from callee with its full parentage chain, anyway. 8362 */ 8363 /* clear write marks in current state: the writes we did are not writes 8364 * our child did, so they don't screen off its reads from us. 8365 * (There are no read marks in current state, because reads always mark 8366 * their parent and current state never has children yet. Only 8367 * explored_states can get read marks.) 8368 */ 8369 for (j = 0; j <= cur->curframe; j++) { 8370 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 8371 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 8372 for (i = 0; i < BPF_REG_FP; i++) 8373 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 8374 } 8375 8376 /* all stack frames are accessible from callee, clear them all */ 8377 for (j = 0; j <= cur->curframe; j++) { 8378 struct bpf_func_state *frame = cur->frame[j]; 8379 struct bpf_func_state *newframe = new->frame[j]; 8380 8381 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 8382 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 8383 frame->stack[i].spilled_ptr.parent = 8384 &newframe->stack[i].spilled_ptr; 8385 } 8386 } 8387 return 0; 8388 } 8389 8390 /* Return true if it's OK to have the same insn return a different type. */ 8391 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 8392 { 8393 switch (type) { 8394 case PTR_TO_CTX: 8395 case PTR_TO_SOCKET: 8396 case PTR_TO_SOCKET_OR_NULL: 8397 case PTR_TO_SOCK_COMMON: 8398 case PTR_TO_SOCK_COMMON_OR_NULL: 8399 case PTR_TO_TCP_SOCK: 8400 case PTR_TO_TCP_SOCK_OR_NULL: 8401 case PTR_TO_XDP_SOCK: 8402 case PTR_TO_BTF_ID: 8403 return false; 8404 default: 8405 return true; 8406 } 8407 } 8408 8409 /* If an instruction was previously used with particular pointer types, then we 8410 * need to be careful to avoid cases such as the below, where it may be ok 8411 * for one branch accessing the pointer, but not ok for the other branch: 8412 * 8413 * R1 = sock_ptr 8414 * goto X; 8415 * ... 8416 * R1 = some_other_valid_ptr; 8417 * goto X; 8418 * ... 8419 * R2 = *(u32 *)(R1 + 0); 8420 */ 8421 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 8422 { 8423 return src != prev && (!reg_type_mismatch_ok(src) || 8424 !reg_type_mismatch_ok(prev)); 8425 } 8426 8427 static int do_check(struct bpf_verifier_env *env) 8428 { 8429 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 8430 struct bpf_verifier_state *state = env->cur_state; 8431 struct bpf_insn *insns = env->prog->insnsi; 8432 struct bpf_reg_state *regs; 8433 int insn_cnt = env->prog->len; 8434 bool do_print_state = false; 8435 int prev_insn_idx = -1; 8436 8437 for (;;) { 8438 struct bpf_insn *insn; 8439 u8 class; 8440 int err; 8441 8442 env->prev_insn_idx = prev_insn_idx; 8443 if (env->insn_idx >= insn_cnt) { 8444 verbose(env, "invalid insn idx %d insn_cnt %d\n", 8445 env->insn_idx, insn_cnt); 8446 return -EFAULT; 8447 } 8448 8449 insn = &insns[env->insn_idx]; 8450 class = BPF_CLASS(insn->code); 8451 8452 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 8453 verbose(env, 8454 "BPF program is too large. Processed %d insn\n", 8455 env->insn_processed); 8456 return -E2BIG; 8457 } 8458 8459 err = is_state_visited(env, env->insn_idx); 8460 if (err < 0) 8461 return err; 8462 if (err == 1) { 8463 /* found equivalent state, can prune the search */ 8464 if (env->log.level & BPF_LOG_LEVEL) { 8465 if (do_print_state) 8466 verbose(env, "\nfrom %d to %d%s: safe\n", 8467 env->prev_insn_idx, env->insn_idx, 8468 env->cur_state->speculative ? 8469 " (speculative execution)" : ""); 8470 else 8471 verbose(env, "%d: safe\n", env->insn_idx); 8472 } 8473 goto process_bpf_exit; 8474 } 8475 8476 if (signal_pending(current)) 8477 return -EAGAIN; 8478 8479 if (need_resched()) 8480 cond_resched(); 8481 8482 if (env->log.level & BPF_LOG_LEVEL2 || 8483 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 8484 if (env->log.level & BPF_LOG_LEVEL2) 8485 verbose(env, "%d:", env->insn_idx); 8486 else 8487 verbose(env, "\nfrom %d to %d%s:", 8488 env->prev_insn_idx, env->insn_idx, 8489 env->cur_state->speculative ? 8490 " (speculative execution)" : ""); 8491 print_verifier_state(env, state->frame[state->curframe]); 8492 do_print_state = false; 8493 } 8494 8495 if (env->log.level & BPF_LOG_LEVEL) { 8496 const struct bpf_insn_cbs cbs = { 8497 .cb_print = verbose, 8498 .private_data = env, 8499 }; 8500 8501 verbose_linfo(env, env->insn_idx, "; "); 8502 verbose(env, "%d: ", env->insn_idx); 8503 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 8504 } 8505 8506 if (bpf_prog_is_dev_bound(env->prog->aux)) { 8507 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 8508 env->prev_insn_idx); 8509 if (err) 8510 return err; 8511 } 8512 8513 regs = cur_regs(env); 8514 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 8515 prev_insn_idx = env->insn_idx; 8516 8517 if (class == BPF_ALU || class == BPF_ALU64) { 8518 err = check_alu_op(env, insn); 8519 if (err) 8520 return err; 8521 8522 } else if (class == BPF_LDX) { 8523 enum bpf_reg_type *prev_src_type, src_reg_type; 8524 8525 /* check for reserved fields is already done */ 8526 8527 /* check src operand */ 8528 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8529 if (err) 8530 return err; 8531 8532 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8533 if (err) 8534 return err; 8535 8536 src_reg_type = regs[insn->src_reg].type; 8537 8538 /* check that memory (src_reg + off) is readable, 8539 * the state of dst_reg will be updated by this func 8540 */ 8541 err = check_mem_access(env, env->insn_idx, insn->src_reg, 8542 insn->off, BPF_SIZE(insn->code), 8543 BPF_READ, insn->dst_reg, false); 8544 if (err) 8545 return err; 8546 8547 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 8548 8549 if (*prev_src_type == NOT_INIT) { 8550 /* saw a valid insn 8551 * dst_reg = *(u32 *)(src_reg + off) 8552 * save type to validate intersecting paths 8553 */ 8554 *prev_src_type = src_reg_type; 8555 8556 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 8557 /* ABuser program is trying to use the same insn 8558 * dst_reg = *(u32*) (src_reg + off) 8559 * with different pointer types: 8560 * src_reg == ctx in one branch and 8561 * src_reg == stack|map in some other branch. 8562 * Reject it. 8563 */ 8564 verbose(env, "same insn cannot be used with different pointers\n"); 8565 return -EINVAL; 8566 } 8567 8568 } else if (class == BPF_STX) { 8569 enum bpf_reg_type *prev_dst_type, dst_reg_type; 8570 8571 if (BPF_MODE(insn->code) == BPF_XADD) { 8572 err = check_xadd(env, env->insn_idx, insn); 8573 if (err) 8574 return err; 8575 env->insn_idx++; 8576 continue; 8577 } 8578 8579 /* check src1 operand */ 8580 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8581 if (err) 8582 return err; 8583 /* check src2 operand */ 8584 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8585 if (err) 8586 return err; 8587 8588 dst_reg_type = regs[insn->dst_reg].type; 8589 8590 /* check that memory (dst_reg + off) is writeable */ 8591 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 8592 insn->off, BPF_SIZE(insn->code), 8593 BPF_WRITE, insn->src_reg, false); 8594 if (err) 8595 return err; 8596 8597 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 8598 8599 if (*prev_dst_type == NOT_INIT) { 8600 *prev_dst_type = dst_reg_type; 8601 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 8602 verbose(env, "same insn cannot be used with different pointers\n"); 8603 return -EINVAL; 8604 } 8605 8606 } else if (class == BPF_ST) { 8607 if (BPF_MODE(insn->code) != BPF_MEM || 8608 insn->src_reg != BPF_REG_0) { 8609 verbose(env, "BPF_ST uses reserved fields\n"); 8610 return -EINVAL; 8611 } 8612 /* check src operand */ 8613 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8614 if (err) 8615 return err; 8616 8617 if (is_ctx_reg(env, insn->dst_reg)) { 8618 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 8619 insn->dst_reg, 8620 reg_type_str[reg_state(env, insn->dst_reg)->type]); 8621 return -EACCES; 8622 } 8623 8624 /* check that memory (dst_reg + off) is writeable */ 8625 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 8626 insn->off, BPF_SIZE(insn->code), 8627 BPF_WRITE, -1, false); 8628 if (err) 8629 return err; 8630 8631 } else if (class == BPF_JMP || class == BPF_JMP32) { 8632 u8 opcode = BPF_OP(insn->code); 8633 8634 env->jmps_processed++; 8635 if (opcode == BPF_CALL) { 8636 if (BPF_SRC(insn->code) != BPF_K || 8637 insn->off != 0 || 8638 (insn->src_reg != BPF_REG_0 && 8639 insn->src_reg != BPF_PSEUDO_CALL) || 8640 insn->dst_reg != BPF_REG_0 || 8641 class == BPF_JMP32) { 8642 verbose(env, "BPF_CALL uses reserved fields\n"); 8643 return -EINVAL; 8644 } 8645 8646 if (env->cur_state->active_spin_lock && 8647 (insn->src_reg == BPF_PSEUDO_CALL || 8648 insn->imm != BPF_FUNC_spin_unlock)) { 8649 verbose(env, "function calls are not allowed while holding a lock\n"); 8650 return -EINVAL; 8651 } 8652 if (insn->src_reg == BPF_PSEUDO_CALL) 8653 err = check_func_call(env, insn, &env->insn_idx); 8654 else 8655 err = check_helper_call(env, insn->imm, env->insn_idx); 8656 if (err) 8657 return err; 8658 8659 } else if (opcode == BPF_JA) { 8660 if (BPF_SRC(insn->code) != BPF_K || 8661 insn->imm != 0 || 8662 insn->src_reg != BPF_REG_0 || 8663 insn->dst_reg != BPF_REG_0 || 8664 class == BPF_JMP32) { 8665 verbose(env, "BPF_JA uses reserved fields\n"); 8666 return -EINVAL; 8667 } 8668 8669 env->insn_idx += insn->off + 1; 8670 continue; 8671 8672 } else if (opcode == BPF_EXIT) { 8673 if (BPF_SRC(insn->code) != BPF_K || 8674 insn->imm != 0 || 8675 insn->src_reg != BPF_REG_0 || 8676 insn->dst_reg != BPF_REG_0 || 8677 class == BPF_JMP32) { 8678 verbose(env, "BPF_EXIT uses reserved fields\n"); 8679 return -EINVAL; 8680 } 8681 8682 if (env->cur_state->active_spin_lock) { 8683 verbose(env, "bpf_spin_unlock is missing\n"); 8684 return -EINVAL; 8685 } 8686 8687 if (state->curframe) { 8688 /* exit from nested function */ 8689 err = prepare_func_exit(env, &env->insn_idx); 8690 if (err) 8691 return err; 8692 do_print_state = true; 8693 continue; 8694 } 8695 8696 err = check_reference_leak(env); 8697 if (err) 8698 return err; 8699 8700 err = check_return_code(env); 8701 if (err) 8702 return err; 8703 process_bpf_exit: 8704 update_branch_counts(env, env->cur_state); 8705 err = pop_stack(env, &prev_insn_idx, 8706 &env->insn_idx, pop_log); 8707 if (err < 0) { 8708 if (err != -ENOENT) 8709 return err; 8710 break; 8711 } else { 8712 do_print_state = true; 8713 continue; 8714 } 8715 } else { 8716 err = check_cond_jmp_op(env, insn, &env->insn_idx); 8717 if (err) 8718 return err; 8719 } 8720 } else if (class == BPF_LD) { 8721 u8 mode = BPF_MODE(insn->code); 8722 8723 if (mode == BPF_ABS || mode == BPF_IND) { 8724 err = check_ld_abs(env, insn); 8725 if (err) 8726 return err; 8727 8728 } else if (mode == BPF_IMM) { 8729 err = check_ld_imm(env, insn); 8730 if (err) 8731 return err; 8732 8733 env->insn_idx++; 8734 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 8735 } else { 8736 verbose(env, "invalid BPF_LD mode\n"); 8737 return -EINVAL; 8738 } 8739 } else { 8740 verbose(env, "unknown insn class %d\n", class); 8741 return -EINVAL; 8742 } 8743 8744 env->insn_idx++; 8745 } 8746 8747 return 0; 8748 } 8749 8750 static int check_map_prealloc(struct bpf_map *map) 8751 { 8752 return (map->map_type != BPF_MAP_TYPE_HASH && 8753 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 8754 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 8755 !(map->map_flags & BPF_F_NO_PREALLOC); 8756 } 8757 8758 static bool is_tracing_prog_type(enum bpf_prog_type type) 8759 { 8760 switch (type) { 8761 case BPF_PROG_TYPE_KPROBE: 8762 case BPF_PROG_TYPE_TRACEPOINT: 8763 case BPF_PROG_TYPE_PERF_EVENT: 8764 case BPF_PROG_TYPE_RAW_TRACEPOINT: 8765 return true; 8766 default: 8767 return false; 8768 } 8769 } 8770 8771 static bool is_preallocated_map(struct bpf_map *map) 8772 { 8773 if (!check_map_prealloc(map)) 8774 return false; 8775 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 8776 return false; 8777 return true; 8778 } 8779 8780 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 8781 struct bpf_map *map, 8782 struct bpf_prog *prog) 8783 8784 { 8785 /* 8786 * Validate that trace type programs use preallocated hash maps. 8787 * 8788 * For programs attached to PERF events this is mandatory as the 8789 * perf NMI can hit any arbitrary code sequence. 8790 * 8791 * All other trace types using preallocated hash maps are unsafe as 8792 * well because tracepoint or kprobes can be inside locked regions 8793 * of the memory allocator or at a place where a recursion into the 8794 * memory allocator would see inconsistent state. 8795 * 8796 * On RT enabled kernels run-time allocation of all trace type 8797 * programs is strictly prohibited due to lock type constraints. On 8798 * !RT kernels it is allowed for backwards compatibility reasons for 8799 * now, but warnings are emitted so developers are made aware of 8800 * the unsafety and can fix their programs before this is enforced. 8801 */ 8802 if (is_tracing_prog_type(prog->type) && !is_preallocated_map(map)) { 8803 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 8804 verbose(env, "perf_event programs can only use preallocated hash map\n"); 8805 return -EINVAL; 8806 } 8807 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 8808 verbose(env, "trace type programs can only use preallocated hash map\n"); 8809 return -EINVAL; 8810 } 8811 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 8812 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 8813 } 8814 8815 if ((is_tracing_prog_type(prog->type) || 8816 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) && 8817 map_value_has_spin_lock(map)) { 8818 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 8819 return -EINVAL; 8820 } 8821 8822 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 8823 !bpf_offload_prog_map_match(prog, map)) { 8824 verbose(env, "offload device mismatch between prog and map\n"); 8825 return -EINVAL; 8826 } 8827 8828 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 8829 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 8830 return -EINVAL; 8831 } 8832 8833 return 0; 8834 } 8835 8836 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 8837 { 8838 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 8839 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 8840 } 8841 8842 /* look for pseudo eBPF instructions that access map FDs and 8843 * replace them with actual map pointers 8844 */ 8845 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 8846 { 8847 struct bpf_insn *insn = env->prog->insnsi; 8848 int insn_cnt = env->prog->len; 8849 int i, j, err; 8850 8851 err = bpf_prog_calc_tag(env->prog); 8852 if (err) 8853 return err; 8854 8855 for (i = 0; i < insn_cnt; i++, insn++) { 8856 if (BPF_CLASS(insn->code) == BPF_LDX && 8857 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 8858 verbose(env, "BPF_LDX uses reserved fields\n"); 8859 return -EINVAL; 8860 } 8861 8862 if (BPF_CLASS(insn->code) == BPF_STX && 8863 ((BPF_MODE(insn->code) != BPF_MEM && 8864 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 8865 verbose(env, "BPF_STX uses reserved fields\n"); 8866 return -EINVAL; 8867 } 8868 8869 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 8870 struct bpf_insn_aux_data *aux; 8871 struct bpf_map *map; 8872 struct fd f; 8873 u64 addr; 8874 8875 if (i == insn_cnt - 1 || insn[1].code != 0 || 8876 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 8877 insn[1].off != 0) { 8878 verbose(env, "invalid bpf_ld_imm64 insn\n"); 8879 return -EINVAL; 8880 } 8881 8882 if (insn[0].src_reg == 0) 8883 /* valid generic load 64-bit imm */ 8884 goto next_insn; 8885 8886 /* In final convert_pseudo_ld_imm64() step, this is 8887 * converted into regular 64-bit imm load insn. 8888 */ 8889 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 8890 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 8891 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 8892 insn[1].imm != 0)) { 8893 verbose(env, 8894 "unrecognized bpf_ld_imm64 insn\n"); 8895 return -EINVAL; 8896 } 8897 8898 f = fdget(insn[0].imm); 8899 map = __bpf_map_get(f); 8900 if (IS_ERR(map)) { 8901 verbose(env, "fd %d is not pointing to valid bpf_map\n", 8902 insn[0].imm); 8903 return PTR_ERR(map); 8904 } 8905 8906 err = check_map_prog_compatibility(env, map, env->prog); 8907 if (err) { 8908 fdput(f); 8909 return err; 8910 } 8911 8912 aux = &env->insn_aux_data[i]; 8913 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 8914 addr = (unsigned long)map; 8915 } else { 8916 u32 off = insn[1].imm; 8917 8918 if (off >= BPF_MAX_VAR_OFF) { 8919 verbose(env, "direct value offset of %u is not allowed\n", off); 8920 fdput(f); 8921 return -EINVAL; 8922 } 8923 8924 if (!map->ops->map_direct_value_addr) { 8925 verbose(env, "no direct value access support for this map type\n"); 8926 fdput(f); 8927 return -EINVAL; 8928 } 8929 8930 err = map->ops->map_direct_value_addr(map, &addr, off); 8931 if (err) { 8932 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 8933 map->value_size, off); 8934 fdput(f); 8935 return err; 8936 } 8937 8938 aux->map_off = off; 8939 addr += off; 8940 } 8941 8942 insn[0].imm = (u32)addr; 8943 insn[1].imm = addr >> 32; 8944 8945 /* check whether we recorded this map already */ 8946 for (j = 0; j < env->used_map_cnt; j++) { 8947 if (env->used_maps[j] == map) { 8948 aux->map_index = j; 8949 fdput(f); 8950 goto next_insn; 8951 } 8952 } 8953 8954 if (env->used_map_cnt >= MAX_USED_MAPS) { 8955 fdput(f); 8956 return -E2BIG; 8957 } 8958 8959 /* hold the map. If the program is rejected by verifier, 8960 * the map will be released by release_maps() or it 8961 * will be used by the valid program until it's unloaded 8962 * and all maps are released in free_used_maps() 8963 */ 8964 bpf_map_inc(map); 8965 8966 aux->map_index = env->used_map_cnt; 8967 env->used_maps[env->used_map_cnt++] = map; 8968 8969 if (bpf_map_is_cgroup_storage(map) && 8970 bpf_cgroup_storage_assign(env->prog->aux, map)) { 8971 verbose(env, "only one cgroup storage of each type is allowed\n"); 8972 fdput(f); 8973 return -EBUSY; 8974 } 8975 8976 fdput(f); 8977 next_insn: 8978 insn++; 8979 i++; 8980 continue; 8981 } 8982 8983 /* Basic sanity check before we invest more work here. */ 8984 if (!bpf_opcode_in_insntable(insn->code)) { 8985 verbose(env, "unknown opcode %02x\n", insn->code); 8986 return -EINVAL; 8987 } 8988 } 8989 8990 /* now all pseudo BPF_LD_IMM64 instructions load valid 8991 * 'struct bpf_map *' into a register instead of user map_fd. 8992 * These pointers will be used later by verifier to validate map access. 8993 */ 8994 return 0; 8995 } 8996 8997 /* drop refcnt of maps used by the rejected program */ 8998 static void release_maps(struct bpf_verifier_env *env) 8999 { 9000 __bpf_free_used_maps(env->prog->aux, env->used_maps, 9001 env->used_map_cnt); 9002 } 9003 9004 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 9005 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 9006 { 9007 struct bpf_insn *insn = env->prog->insnsi; 9008 int insn_cnt = env->prog->len; 9009 int i; 9010 9011 for (i = 0; i < insn_cnt; i++, insn++) 9012 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 9013 insn->src_reg = 0; 9014 } 9015 9016 /* single env->prog->insni[off] instruction was replaced with the range 9017 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 9018 * [0, off) and [off, end) to new locations, so the patched range stays zero 9019 */ 9020 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 9021 struct bpf_prog *new_prog, u32 off, u32 cnt) 9022 { 9023 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 9024 struct bpf_insn *insn = new_prog->insnsi; 9025 u32 prog_len; 9026 int i; 9027 9028 /* aux info at OFF always needs adjustment, no matter fast path 9029 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 9030 * original insn at old prog. 9031 */ 9032 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 9033 9034 if (cnt == 1) 9035 return 0; 9036 prog_len = new_prog->len; 9037 new_data = vzalloc(array_size(prog_len, 9038 sizeof(struct bpf_insn_aux_data))); 9039 if (!new_data) 9040 return -ENOMEM; 9041 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 9042 memcpy(new_data + off + cnt - 1, old_data + off, 9043 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 9044 for (i = off; i < off + cnt - 1; i++) { 9045 new_data[i].seen = env->pass_cnt; 9046 new_data[i].zext_dst = insn_has_def32(env, insn + i); 9047 } 9048 env->insn_aux_data = new_data; 9049 vfree(old_data); 9050 return 0; 9051 } 9052 9053 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 9054 { 9055 int i; 9056 9057 if (len == 1) 9058 return; 9059 /* NOTE: fake 'exit' subprog should be updated as well. */ 9060 for (i = 0; i <= env->subprog_cnt; i++) { 9061 if (env->subprog_info[i].start <= off) 9062 continue; 9063 env->subprog_info[i].start += len - 1; 9064 } 9065 } 9066 9067 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 9068 const struct bpf_insn *patch, u32 len) 9069 { 9070 struct bpf_prog *new_prog; 9071 9072 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 9073 if (IS_ERR(new_prog)) { 9074 if (PTR_ERR(new_prog) == -ERANGE) 9075 verbose(env, 9076 "insn %d cannot be patched due to 16-bit range\n", 9077 env->insn_aux_data[off].orig_idx); 9078 return NULL; 9079 } 9080 if (adjust_insn_aux_data(env, new_prog, off, len)) 9081 return NULL; 9082 adjust_subprog_starts(env, off, len); 9083 return new_prog; 9084 } 9085 9086 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 9087 u32 off, u32 cnt) 9088 { 9089 int i, j; 9090 9091 /* find first prog starting at or after off (first to remove) */ 9092 for (i = 0; i < env->subprog_cnt; i++) 9093 if (env->subprog_info[i].start >= off) 9094 break; 9095 /* find first prog starting at or after off + cnt (first to stay) */ 9096 for (j = i; j < env->subprog_cnt; j++) 9097 if (env->subprog_info[j].start >= off + cnt) 9098 break; 9099 /* if j doesn't start exactly at off + cnt, we are just removing 9100 * the front of previous prog 9101 */ 9102 if (env->subprog_info[j].start != off + cnt) 9103 j--; 9104 9105 if (j > i) { 9106 struct bpf_prog_aux *aux = env->prog->aux; 9107 int move; 9108 9109 /* move fake 'exit' subprog as well */ 9110 move = env->subprog_cnt + 1 - j; 9111 9112 memmove(env->subprog_info + i, 9113 env->subprog_info + j, 9114 sizeof(*env->subprog_info) * move); 9115 env->subprog_cnt -= j - i; 9116 9117 /* remove func_info */ 9118 if (aux->func_info) { 9119 move = aux->func_info_cnt - j; 9120 9121 memmove(aux->func_info + i, 9122 aux->func_info + j, 9123 sizeof(*aux->func_info) * move); 9124 aux->func_info_cnt -= j - i; 9125 /* func_info->insn_off is set after all code rewrites, 9126 * in adjust_btf_func() - no need to adjust 9127 */ 9128 } 9129 } else { 9130 /* convert i from "first prog to remove" to "first to adjust" */ 9131 if (env->subprog_info[i].start == off) 9132 i++; 9133 } 9134 9135 /* update fake 'exit' subprog as well */ 9136 for (; i <= env->subprog_cnt; i++) 9137 env->subprog_info[i].start -= cnt; 9138 9139 return 0; 9140 } 9141 9142 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 9143 u32 cnt) 9144 { 9145 struct bpf_prog *prog = env->prog; 9146 u32 i, l_off, l_cnt, nr_linfo; 9147 struct bpf_line_info *linfo; 9148 9149 nr_linfo = prog->aux->nr_linfo; 9150 if (!nr_linfo) 9151 return 0; 9152 9153 linfo = prog->aux->linfo; 9154 9155 /* find first line info to remove, count lines to be removed */ 9156 for (i = 0; i < nr_linfo; i++) 9157 if (linfo[i].insn_off >= off) 9158 break; 9159 9160 l_off = i; 9161 l_cnt = 0; 9162 for (; i < nr_linfo; i++) 9163 if (linfo[i].insn_off < off + cnt) 9164 l_cnt++; 9165 else 9166 break; 9167 9168 /* First live insn doesn't match first live linfo, it needs to "inherit" 9169 * last removed linfo. prog is already modified, so prog->len == off 9170 * means no live instructions after (tail of the program was removed). 9171 */ 9172 if (prog->len != off && l_cnt && 9173 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 9174 l_cnt--; 9175 linfo[--i].insn_off = off + cnt; 9176 } 9177 9178 /* remove the line info which refer to the removed instructions */ 9179 if (l_cnt) { 9180 memmove(linfo + l_off, linfo + i, 9181 sizeof(*linfo) * (nr_linfo - i)); 9182 9183 prog->aux->nr_linfo -= l_cnt; 9184 nr_linfo = prog->aux->nr_linfo; 9185 } 9186 9187 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 9188 for (i = l_off; i < nr_linfo; i++) 9189 linfo[i].insn_off -= cnt; 9190 9191 /* fix up all subprogs (incl. 'exit') which start >= off */ 9192 for (i = 0; i <= env->subprog_cnt; i++) 9193 if (env->subprog_info[i].linfo_idx > l_off) { 9194 /* program may have started in the removed region but 9195 * may not be fully removed 9196 */ 9197 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 9198 env->subprog_info[i].linfo_idx -= l_cnt; 9199 else 9200 env->subprog_info[i].linfo_idx = l_off; 9201 } 9202 9203 return 0; 9204 } 9205 9206 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 9207 { 9208 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9209 unsigned int orig_prog_len = env->prog->len; 9210 int err; 9211 9212 if (bpf_prog_is_dev_bound(env->prog->aux)) 9213 bpf_prog_offload_remove_insns(env, off, cnt); 9214 9215 err = bpf_remove_insns(env->prog, off, cnt); 9216 if (err) 9217 return err; 9218 9219 err = adjust_subprog_starts_after_remove(env, off, cnt); 9220 if (err) 9221 return err; 9222 9223 err = bpf_adj_linfo_after_remove(env, off, cnt); 9224 if (err) 9225 return err; 9226 9227 memmove(aux_data + off, aux_data + off + cnt, 9228 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 9229 9230 return 0; 9231 } 9232 9233 /* The verifier does more data flow analysis than llvm and will not 9234 * explore branches that are dead at run time. Malicious programs can 9235 * have dead code too. Therefore replace all dead at-run-time code 9236 * with 'ja -1'. 9237 * 9238 * Just nops are not optimal, e.g. if they would sit at the end of the 9239 * program and through another bug we would manage to jump there, then 9240 * we'd execute beyond program memory otherwise. Returning exception 9241 * code also wouldn't work since we can have subprogs where the dead 9242 * code could be located. 9243 */ 9244 static void sanitize_dead_code(struct bpf_verifier_env *env) 9245 { 9246 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9247 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 9248 struct bpf_insn *insn = env->prog->insnsi; 9249 const int insn_cnt = env->prog->len; 9250 int i; 9251 9252 for (i = 0; i < insn_cnt; i++) { 9253 if (aux_data[i].seen) 9254 continue; 9255 memcpy(insn + i, &trap, sizeof(trap)); 9256 } 9257 } 9258 9259 static bool insn_is_cond_jump(u8 code) 9260 { 9261 u8 op; 9262 9263 if (BPF_CLASS(code) == BPF_JMP32) 9264 return true; 9265 9266 if (BPF_CLASS(code) != BPF_JMP) 9267 return false; 9268 9269 op = BPF_OP(code); 9270 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 9271 } 9272 9273 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 9274 { 9275 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9276 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 9277 struct bpf_insn *insn = env->prog->insnsi; 9278 const int insn_cnt = env->prog->len; 9279 int i; 9280 9281 for (i = 0; i < insn_cnt; i++, insn++) { 9282 if (!insn_is_cond_jump(insn->code)) 9283 continue; 9284 9285 if (!aux_data[i + 1].seen) 9286 ja.off = insn->off; 9287 else if (!aux_data[i + 1 + insn->off].seen) 9288 ja.off = 0; 9289 else 9290 continue; 9291 9292 if (bpf_prog_is_dev_bound(env->prog->aux)) 9293 bpf_prog_offload_replace_insn(env, i, &ja); 9294 9295 memcpy(insn, &ja, sizeof(ja)); 9296 } 9297 } 9298 9299 static int opt_remove_dead_code(struct bpf_verifier_env *env) 9300 { 9301 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9302 int insn_cnt = env->prog->len; 9303 int i, err; 9304 9305 for (i = 0; i < insn_cnt; i++) { 9306 int j; 9307 9308 j = 0; 9309 while (i + j < insn_cnt && !aux_data[i + j].seen) 9310 j++; 9311 if (!j) 9312 continue; 9313 9314 err = verifier_remove_insns(env, i, j); 9315 if (err) 9316 return err; 9317 insn_cnt = env->prog->len; 9318 } 9319 9320 return 0; 9321 } 9322 9323 static int opt_remove_nops(struct bpf_verifier_env *env) 9324 { 9325 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 9326 struct bpf_insn *insn = env->prog->insnsi; 9327 int insn_cnt = env->prog->len; 9328 int i, err; 9329 9330 for (i = 0; i < insn_cnt; i++) { 9331 if (memcmp(&insn[i], &ja, sizeof(ja))) 9332 continue; 9333 9334 err = verifier_remove_insns(env, i, 1); 9335 if (err) 9336 return err; 9337 insn_cnt--; 9338 i--; 9339 } 9340 9341 return 0; 9342 } 9343 9344 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 9345 const union bpf_attr *attr) 9346 { 9347 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 9348 struct bpf_insn_aux_data *aux = env->insn_aux_data; 9349 int i, patch_len, delta = 0, len = env->prog->len; 9350 struct bpf_insn *insns = env->prog->insnsi; 9351 struct bpf_prog *new_prog; 9352 bool rnd_hi32; 9353 9354 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 9355 zext_patch[1] = BPF_ZEXT_REG(0); 9356 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 9357 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 9358 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 9359 for (i = 0; i < len; i++) { 9360 int adj_idx = i + delta; 9361 struct bpf_insn insn; 9362 9363 insn = insns[adj_idx]; 9364 if (!aux[adj_idx].zext_dst) { 9365 u8 code, class; 9366 u32 imm_rnd; 9367 9368 if (!rnd_hi32) 9369 continue; 9370 9371 code = insn.code; 9372 class = BPF_CLASS(code); 9373 if (insn_no_def(&insn)) 9374 continue; 9375 9376 /* NOTE: arg "reg" (the fourth one) is only used for 9377 * BPF_STX which has been ruled out in above 9378 * check, it is safe to pass NULL here. 9379 */ 9380 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { 9381 if (class == BPF_LD && 9382 BPF_MODE(code) == BPF_IMM) 9383 i++; 9384 continue; 9385 } 9386 9387 /* ctx load could be transformed into wider load. */ 9388 if (class == BPF_LDX && 9389 aux[adj_idx].ptr_type == PTR_TO_CTX) 9390 continue; 9391 9392 imm_rnd = get_random_int(); 9393 rnd_hi32_patch[0] = insn; 9394 rnd_hi32_patch[1].imm = imm_rnd; 9395 rnd_hi32_patch[3].dst_reg = insn.dst_reg; 9396 patch = rnd_hi32_patch; 9397 patch_len = 4; 9398 goto apply_patch_buffer; 9399 } 9400 9401 if (!bpf_jit_needs_zext()) 9402 continue; 9403 9404 zext_patch[0] = insn; 9405 zext_patch[1].dst_reg = insn.dst_reg; 9406 zext_patch[1].src_reg = insn.dst_reg; 9407 patch = zext_patch; 9408 patch_len = 2; 9409 apply_patch_buffer: 9410 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 9411 if (!new_prog) 9412 return -ENOMEM; 9413 env->prog = new_prog; 9414 insns = new_prog->insnsi; 9415 aux = env->insn_aux_data; 9416 delta += patch_len - 1; 9417 } 9418 9419 return 0; 9420 } 9421 9422 /* convert load instructions that access fields of a context type into a 9423 * sequence of instructions that access fields of the underlying structure: 9424 * struct __sk_buff -> struct sk_buff 9425 * struct bpf_sock_ops -> struct sock 9426 */ 9427 static int convert_ctx_accesses(struct bpf_verifier_env *env) 9428 { 9429 const struct bpf_verifier_ops *ops = env->ops; 9430 int i, cnt, size, ctx_field_size, delta = 0; 9431 const int insn_cnt = env->prog->len; 9432 struct bpf_insn insn_buf[16], *insn; 9433 u32 target_size, size_default, off; 9434 struct bpf_prog *new_prog; 9435 enum bpf_access_type type; 9436 bool is_narrower_load; 9437 9438 if (ops->gen_prologue || env->seen_direct_write) { 9439 if (!ops->gen_prologue) { 9440 verbose(env, "bpf verifier is misconfigured\n"); 9441 return -EINVAL; 9442 } 9443 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 9444 env->prog); 9445 if (cnt >= ARRAY_SIZE(insn_buf)) { 9446 verbose(env, "bpf verifier is misconfigured\n"); 9447 return -EINVAL; 9448 } else if (cnt) { 9449 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 9450 if (!new_prog) 9451 return -ENOMEM; 9452 9453 env->prog = new_prog; 9454 delta += cnt - 1; 9455 } 9456 } 9457 9458 if (bpf_prog_is_dev_bound(env->prog->aux)) 9459 return 0; 9460 9461 insn = env->prog->insnsi + delta; 9462 9463 for (i = 0; i < insn_cnt; i++, insn++) { 9464 bpf_convert_ctx_access_t convert_ctx_access; 9465 9466 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 9467 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 9468 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 9469 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 9470 type = BPF_READ; 9471 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 9472 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 9473 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 9474 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 9475 type = BPF_WRITE; 9476 else 9477 continue; 9478 9479 if (type == BPF_WRITE && 9480 env->insn_aux_data[i + delta].sanitize_stack_off) { 9481 struct bpf_insn patch[] = { 9482 /* Sanitize suspicious stack slot with zero. 9483 * There are no memory dependencies for this store, 9484 * since it's only using frame pointer and immediate 9485 * constant of zero 9486 */ 9487 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 9488 env->insn_aux_data[i + delta].sanitize_stack_off, 9489 0), 9490 /* the original STX instruction will immediately 9491 * overwrite the same stack slot with appropriate value 9492 */ 9493 *insn, 9494 }; 9495 9496 cnt = ARRAY_SIZE(patch); 9497 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 9498 if (!new_prog) 9499 return -ENOMEM; 9500 9501 delta += cnt - 1; 9502 env->prog = new_prog; 9503 insn = new_prog->insnsi + i + delta; 9504 continue; 9505 } 9506 9507 switch (env->insn_aux_data[i + delta].ptr_type) { 9508 case PTR_TO_CTX: 9509 if (!ops->convert_ctx_access) 9510 continue; 9511 convert_ctx_access = ops->convert_ctx_access; 9512 break; 9513 case PTR_TO_SOCKET: 9514 case PTR_TO_SOCK_COMMON: 9515 convert_ctx_access = bpf_sock_convert_ctx_access; 9516 break; 9517 case PTR_TO_TCP_SOCK: 9518 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 9519 break; 9520 case PTR_TO_XDP_SOCK: 9521 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 9522 break; 9523 case PTR_TO_BTF_ID: 9524 if (type == BPF_READ) { 9525 insn->code = BPF_LDX | BPF_PROBE_MEM | 9526 BPF_SIZE((insn)->code); 9527 env->prog->aux->num_exentries++; 9528 } else if (env->prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9529 verbose(env, "Writes through BTF pointers are not allowed\n"); 9530 return -EINVAL; 9531 } 9532 continue; 9533 default: 9534 continue; 9535 } 9536 9537 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 9538 size = BPF_LDST_BYTES(insn); 9539 9540 /* If the read access is a narrower load of the field, 9541 * convert to a 4/8-byte load, to minimum program type specific 9542 * convert_ctx_access changes. If conversion is successful, 9543 * we will apply proper mask to the result. 9544 */ 9545 is_narrower_load = size < ctx_field_size; 9546 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 9547 off = insn->off; 9548 if (is_narrower_load) { 9549 u8 size_code; 9550 9551 if (type == BPF_WRITE) { 9552 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 9553 return -EINVAL; 9554 } 9555 9556 size_code = BPF_H; 9557 if (ctx_field_size == 4) 9558 size_code = BPF_W; 9559 else if (ctx_field_size == 8) 9560 size_code = BPF_DW; 9561 9562 insn->off = off & ~(size_default - 1); 9563 insn->code = BPF_LDX | BPF_MEM | size_code; 9564 } 9565 9566 target_size = 0; 9567 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 9568 &target_size); 9569 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 9570 (ctx_field_size && !target_size)) { 9571 verbose(env, "bpf verifier is misconfigured\n"); 9572 return -EINVAL; 9573 } 9574 9575 if (is_narrower_load && size < target_size) { 9576 u8 shift = bpf_ctx_narrow_access_offset( 9577 off, size, size_default) * 8; 9578 if (ctx_field_size <= 4) { 9579 if (shift) 9580 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 9581 insn->dst_reg, 9582 shift); 9583 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 9584 (1 << size * 8) - 1); 9585 } else { 9586 if (shift) 9587 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 9588 insn->dst_reg, 9589 shift); 9590 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 9591 (1ULL << size * 8) - 1); 9592 } 9593 } 9594 9595 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9596 if (!new_prog) 9597 return -ENOMEM; 9598 9599 delta += cnt - 1; 9600 9601 /* keep walking new program and skip insns we just inserted */ 9602 env->prog = new_prog; 9603 insn = new_prog->insnsi + i + delta; 9604 } 9605 9606 return 0; 9607 } 9608 9609 static int jit_subprogs(struct bpf_verifier_env *env) 9610 { 9611 struct bpf_prog *prog = env->prog, **func, *tmp; 9612 int i, j, subprog_start, subprog_end = 0, len, subprog; 9613 struct bpf_insn *insn; 9614 void *old_bpf_func; 9615 int err; 9616 9617 if (env->subprog_cnt <= 1) 9618 return 0; 9619 9620 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9621 if (insn->code != (BPF_JMP | BPF_CALL) || 9622 insn->src_reg != BPF_PSEUDO_CALL) 9623 continue; 9624 /* Upon error here we cannot fall back to interpreter but 9625 * need a hard reject of the program. Thus -EFAULT is 9626 * propagated in any case. 9627 */ 9628 subprog = find_subprog(env, i + insn->imm + 1); 9629 if (subprog < 0) { 9630 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 9631 i + insn->imm + 1); 9632 return -EFAULT; 9633 } 9634 /* temporarily remember subprog id inside insn instead of 9635 * aux_data, since next loop will split up all insns into funcs 9636 */ 9637 insn->off = subprog; 9638 /* remember original imm in case JIT fails and fallback 9639 * to interpreter will be needed 9640 */ 9641 env->insn_aux_data[i].call_imm = insn->imm; 9642 /* point imm to __bpf_call_base+1 from JITs point of view */ 9643 insn->imm = 1; 9644 } 9645 9646 err = bpf_prog_alloc_jited_linfo(prog); 9647 if (err) 9648 goto out_undo_insn; 9649 9650 err = -ENOMEM; 9651 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 9652 if (!func) 9653 goto out_undo_insn; 9654 9655 for (i = 0; i < env->subprog_cnt; i++) { 9656 subprog_start = subprog_end; 9657 subprog_end = env->subprog_info[i + 1].start; 9658 9659 len = subprog_end - subprog_start; 9660 /* BPF_PROG_RUN doesn't call subprogs directly, 9661 * hence main prog stats include the runtime of subprogs. 9662 * subprogs don't have IDs and not reachable via prog_get_next_id 9663 * func[i]->aux->stats will never be accessed and stays NULL 9664 */ 9665 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 9666 if (!func[i]) 9667 goto out_free; 9668 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 9669 len * sizeof(struct bpf_insn)); 9670 func[i]->type = prog->type; 9671 func[i]->len = len; 9672 if (bpf_prog_calc_tag(func[i])) 9673 goto out_free; 9674 func[i]->is_func = 1; 9675 func[i]->aux->func_idx = i; 9676 /* the btf and func_info will be freed only at prog->aux */ 9677 func[i]->aux->btf = prog->aux->btf; 9678 func[i]->aux->func_info = prog->aux->func_info; 9679 9680 /* Use bpf_prog_F_tag to indicate functions in stack traces. 9681 * Long term would need debug info to populate names 9682 */ 9683 func[i]->aux->name[0] = 'F'; 9684 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 9685 func[i]->jit_requested = 1; 9686 func[i]->aux->linfo = prog->aux->linfo; 9687 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 9688 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 9689 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 9690 func[i] = bpf_int_jit_compile(func[i]); 9691 if (!func[i]->jited) { 9692 err = -ENOTSUPP; 9693 goto out_free; 9694 } 9695 cond_resched(); 9696 } 9697 /* at this point all bpf functions were successfully JITed 9698 * now populate all bpf_calls with correct addresses and 9699 * run last pass of JIT 9700 */ 9701 for (i = 0; i < env->subprog_cnt; i++) { 9702 insn = func[i]->insnsi; 9703 for (j = 0; j < func[i]->len; j++, insn++) { 9704 if (insn->code != (BPF_JMP | BPF_CALL) || 9705 insn->src_reg != BPF_PSEUDO_CALL) 9706 continue; 9707 subprog = insn->off; 9708 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 9709 __bpf_call_base; 9710 } 9711 9712 /* we use the aux data to keep a list of the start addresses 9713 * of the JITed images for each function in the program 9714 * 9715 * for some architectures, such as powerpc64, the imm field 9716 * might not be large enough to hold the offset of the start 9717 * address of the callee's JITed image from __bpf_call_base 9718 * 9719 * in such cases, we can lookup the start address of a callee 9720 * by using its subprog id, available from the off field of 9721 * the call instruction, as an index for this list 9722 */ 9723 func[i]->aux->func = func; 9724 func[i]->aux->func_cnt = env->subprog_cnt; 9725 } 9726 for (i = 0; i < env->subprog_cnt; i++) { 9727 old_bpf_func = func[i]->bpf_func; 9728 tmp = bpf_int_jit_compile(func[i]); 9729 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 9730 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 9731 err = -ENOTSUPP; 9732 goto out_free; 9733 } 9734 cond_resched(); 9735 } 9736 9737 /* finally lock prog and jit images for all functions and 9738 * populate kallsysm 9739 */ 9740 for (i = 0; i < env->subprog_cnt; i++) { 9741 bpf_prog_lock_ro(func[i]); 9742 bpf_prog_kallsyms_add(func[i]); 9743 } 9744 9745 /* Last step: make now unused interpreter insns from main 9746 * prog consistent for later dump requests, so they can 9747 * later look the same as if they were interpreted only. 9748 */ 9749 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9750 if (insn->code != (BPF_JMP | BPF_CALL) || 9751 insn->src_reg != BPF_PSEUDO_CALL) 9752 continue; 9753 insn->off = env->insn_aux_data[i].call_imm; 9754 subprog = find_subprog(env, i + insn->off + 1); 9755 insn->imm = subprog; 9756 } 9757 9758 prog->jited = 1; 9759 prog->bpf_func = func[0]->bpf_func; 9760 prog->aux->func = func; 9761 prog->aux->func_cnt = env->subprog_cnt; 9762 bpf_prog_free_unused_jited_linfo(prog); 9763 return 0; 9764 out_free: 9765 for (i = 0; i < env->subprog_cnt; i++) 9766 if (func[i]) 9767 bpf_jit_free(func[i]); 9768 kfree(func); 9769 out_undo_insn: 9770 /* cleanup main prog to be interpreted */ 9771 prog->jit_requested = 0; 9772 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9773 if (insn->code != (BPF_JMP | BPF_CALL) || 9774 insn->src_reg != BPF_PSEUDO_CALL) 9775 continue; 9776 insn->off = 0; 9777 insn->imm = env->insn_aux_data[i].call_imm; 9778 } 9779 bpf_prog_free_jited_linfo(prog); 9780 return err; 9781 } 9782 9783 static int fixup_call_args(struct bpf_verifier_env *env) 9784 { 9785 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 9786 struct bpf_prog *prog = env->prog; 9787 struct bpf_insn *insn = prog->insnsi; 9788 int i, depth; 9789 #endif 9790 int err = 0; 9791 9792 if (env->prog->jit_requested && 9793 !bpf_prog_is_dev_bound(env->prog->aux)) { 9794 err = jit_subprogs(env); 9795 if (err == 0) 9796 return 0; 9797 if (err == -EFAULT) 9798 return err; 9799 } 9800 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 9801 for (i = 0; i < prog->len; i++, insn++) { 9802 if (insn->code != (BPF_JMP | BPF_CALL) || 9803 insn->src_reg != BPF_PSEUDO_CALL) 9804 continue; 9805 depth = get_callee_stack_depth(env, insn, i); 9806 if (depth < 0) 9807 return depth; 9808 bpf_patch_call_args(insn, depth); 9809 } 9810 err = 0; 9811 #endif 9812 return err; 9813 } 9814 9815 /* fixup insn->imm field of bpf_call instructions 9816 * and inline eligible helpers as explicit sequence of BPF instructions 9817 * 9818 * this function is called after eBPF program passed verification 9819 */ 9820 static int fixup_bpf_calls(struct bpf_verifier_env *env) 9821 { 9822 struct bpf_prog *prog = env->prog; 9823 bool expect_blinding = bpf_jit_blinding_enabled(prog); 9824 struct bpf_insn *insn = prog->insnsi; 9825 const struct bpf_func_proto *fn; 9826 const int insn_cnt = prog->len; 9827 const struct bpf_map_ops *ops; 9828 struct bpf_insn_aux_data *aux; 9829 struct bpf_insn insn_buf[16]; 9830 struct bpf_prog *new_prog; 9831 struct bpf_map *map_ptr; 9832 int i, ret, cnt, delta = 0; 9833 9834 for (i = 0; i < insn_cnt; i++, insn++) { 9835 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 9836 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 9837 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 9838 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 9839 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 9840 struct bpf_insn mask_and_div[] = { 9841 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 9842 /* Rx div 0 -> 0 */ 9843 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 9844 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 9845 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 9846 *insn, 9847 }; 9848 struct bpf_insn mask_and_mod[] = { 9849 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 9850 /* Rx mod 0 -> Rx */ 9851 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 9852 *insn, 9853 }; 9854 struct bpf_insn *patchlet; 9855 9856 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 9857 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 9858 patchlet = mask_and_div + (is64 ? 1 : 0); 9859 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 9860 } else { 9861 patchlet = mask_and_mod + (is64 ? 1 : 0); 9862 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 9863 } 9864 9865 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 9866 if (!new_prog) 9867 return -ENOMEM; 9868 9869 delta += cnt - 1; 9870 env->prog = prog = new_prog; 9871 insn = new_prog->insnsi + i + delta; 9872 continue; 9873 } 9874 9875 if (BPF_CLASS(insn->code) == BPF_LD && 9876 (BPF_MODE(insn->code) == BPF_ABS || 9877 BPF_MODE(insn->code) == BPF_IND)) { 9878 cnt = env->ops->gen_ld_abs(insn, insn_buf); 9879 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 9880 verbose(env, "bpf verifier is misconfigured\n"); 9881 return -EINVAL; 9882 } 9883 9884 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9885 if (!new_prog) 9886 return -ENOMEM; 9887 9888 delta += cnt - 1; 9889 env->prog = prog = new_prog; 9890 insn = new_prog->insnsi + i + delta; 9891 continue; 9892 } 9893 9894 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 9895 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 9896 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 9897 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 9898 struct bpf_insn insn_buf[16]; 9899 struct bpf_insn *patch = &insn_buf[0]; 9900 bool issrc, isneg; 9901 u32 off_reg; 9902 9903 aux = &env->insn_aux_data[i + delta]; 9904 if (!aux->alu_state || 9905 aux->alu_state == BPF_ALU_NON_POINTER) 9906 continue; 9907 9908 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 9909 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 9910 BPF_ALU_SANITIZE_SRC; 9911 9912 off_reg = issrc ? insn->src_reg : insn->dst_reg; 9913 if (isneg) 9914 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 9915 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 9916 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 9917 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 9918 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 9919 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 9920 if (issrc) { 9921 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 9922 off_reg); 9923 insn->src_reg = BPF_REG_AX; 9924 } else { 9925 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 9926 BPF_REG_AX); 9927 } 9928 if (isneg) 9929 insn->code = insn->code == code_add ? 9930 code_sub : code_add; 9931 *patch++ = *insn; 9932 if (issrc && isneg) 9933 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 9934 cnt = patch - insn_buf; 9935 9936 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9937 if (!new_prog) 9938 return -ENOMEM; 9939 9940 delta += cnt - 1; 9941 env->prog = prog = new_prog; 9942 insn = new_prog->insnsi + i + delta; 9943 continue; 9944 } 9945 9946 if (insn->code != (BPF_JMP | BPF_CALL)) 9947 continue; 9948 if (insn->src_reg == BPF_PSEUDO_CALL) 9949 continue; 9950 9951 if (insn->imm == BPF_FUNC_get_route_realm) 9952 prog->dst_needed = 1; 9953 if (insn->imm == BPF_FUNC_get_prandom_u32) 9954 bpf_user_rnd_init_once(); 9955 if (insn->imm == BPF_FUNC_override_return) 9956 prog->kprobe_override = 1; 9957 if (insn->imm == BPF_FUNC_tail_call) { 9958 /* If we tail call into other programs, we 9959 * cannot make any assumptions since they can 9960 * be replaced dynamically during runtime in 9961 * the program array. 9962 */ 9963 prog->cb_access = 1; 9964 env->prog->aux->stack_depth = MAX_BPF_STACK; 9965 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 9966 9967 /* mark bpf_tail_call as different opcode to avoid 9968 * conditional branch in the interpeter for every normal 9969 * call and to prevent accidental JITing by JIT compiler 9970 * that doesn't support bpf_tail_call yet 9971 */ 9972 insn->imm = 0; 9973 insn->code = BPF_JMP | BPF_TAIL_CALL; 9974 9975 aux = &env->insn_aux_data[i + delta]; 9976 if (env->allow_ptr_leaks && !expect_blinding && 9977 prog->jit_requested && 9978 !bpf_map_key_poisoned(aux) && 9979 !bpf_map_ptr_poisoned(aux) && 9980 !bpf_map_ptr_unpriv(aux)) { 9981 struct bpf_jit_poke_descriptor desc = { 9982 .reason = BPF_POKE_REASON_TAIL_CALL, 9983 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 9984 .tail_call.key = bpf_map_key_immediate(aux), 9985 }; 9986 9987 ret = bpf_jit_add_poke_descriptor(prog, &desc); 9988 if (ret < 0) { 9989 verbose(env, "adding tail call poke descriptor failed\n"); 9990 return ret; 9991 } 9992 9993 insn->imm = ret + 1; 9994 continue; 9995 } 9996 9997 if (!bpf_map_ptr_unpriv(aux)) 9998 continue; 9999 10000 /* instead of changing every JIT dealing with tail_call 10001 * emit two extra insns: 10002 * if (index >= max_entries) goto out; 10003 * index &= array->index_mask; 10004 * to avoid out-of-bounds cpu speculation 10005 */ 10006 if (bpf_map_ptr_poisoned(aux)) { 10007 verbose(env, "tail_call abusing map_ptr\n"); 10008 return -EINVAL; 10009 } 10010 10011 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 10012 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 10013 map_ptr->max_entries, 2); 10014 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 10015 container_of(map_ptr, 10016 struct bpf_array, 10017 map)->index_mask); 10018 insn_buf[2] = *insn; 10019 cnt = 3; 10020 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 10021 if (!new_prog) 10022 return -ENOMEM; 10023 10024 delta += cnt - 1; 10025 env->prog = prog = new_prog; 10026 insn = new_prog->insnsi + i + delta; 10027 continue; 10028 } 10029 10030 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 10031 * and other inlining handlers are currently limited to 64 bit 10032 * only. 10033 */ 10034 if (prog->jit_requested && BITS_PER_LONG == 64 && 10035 (insn->imm == BPF_FUNC_map_lookup_elem || 10036 insn->imm == BPF_FUNC_map_update_elem || 10037 insn->imm == BPF_FUNC_map_delete_elem || 10038 insn->imm == BPF_FUNC_map_push_elem || 10039 insn->imm == BPF_FUNC_map_pop_elem || 10040 insn->imm == BPF_FUNC_map_peek_elem)) { 10041 aux = &env->insn_aux_data[i + delta]; 10042 if (bpf_map_ptr_poisoned(aux)) 10043 goto patch_call_imm; 10044 10045 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 10046 ops = map_ptr->ops; 10047 if (insn->imm == BPF_FUNC_map_lookup_elem && 10048 ops->map_gen_lookup) { 10049 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 10050 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 10051 verbose(env, "bpf verifier is misconfigured\n"); 10052 return -EINVAL; 10053 } 10054 10055 new_prog = bpf_patch_insn_data(env, i + delta, 10056 insn_buf, cnt); 10057 if (!new_prog) 10058 return -ENOMEM; 10059 10060 delta += cnt - 1; 10061 env->prog = prog = new_prog; 10062 insn = new_prog->insnsi + i + delta; 10063 continue; 10064 } 10065 10066 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 10067 (void *(*)(struct bpf_map *map, void *key))NULL)); 10068 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 10069 (int (*)(struct bpf_map *map, void *key))NULL)); 10070 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 10071 (int (*)(struct bpf_map *map, void *key, void *value, 10072 u64 flags))NULL)); 10073 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 10074 (int (*)(struct bpf_map *map, void *value, 10075 u64 flags))NULL)); 10076 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 10077 (int (*)(struct bpf_map *map, void *value))NULL)); 10078 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 10079 (int (*)(struct bpf_map *map, void *value))NULL)); 10080 10081 switch (insn->imm) { 10082 case BPF_FUNC_map_lookup_elem: 10083 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 10084 __bpf_call_base; 10085 continue; 10086 case BPF_FUNC_map_update_elem: 10087 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 10088 __bpf_call_base; 10089 continue; 10090 case BPF_FUNC_map_delete_elem: 10091 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 10092 __bpf_call_base; 10093 continue; 10094 case BPF_FUNC_map_push_elem: 10095 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 10096 __bpf_call_base; 10097 continue; 10098 case BPF_FUNC_map_pop_elem: 10099 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 10100 __bpf_call_base; 10101 continue; 10102 case BPF_FUNC_map_peek_elem: 10103 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 10104 __bpf_call_base; 10105 continue; 10106 } 10107 10108 goto patch_call_imm; 10109 } 10110 10111 if (prog->jit_requested && BITS_PER_LONG == 64 && 10112 insn->imm == BPF_FUNC_jiffies64) { 10113 struct bpf_insn ld_jiffies_addr[2] = { 10114 BPF_LD_IMM64(BPF_REG_0, 10115 (unsigned long)&jiffies), 10116 }; 10117 10118 insn_buf[0] = ld_jiffies_addr[0]; 10119 insn_buf[1] = ld_jiffies_addr[1]; 10120 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 10121 BPF_REG_0, 0); 10122 cnt = 3; 10123 10124 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 10125 cnt); 10126 if (!new_prog) 10127 return -ENOMEM; 10128 10129 delta += cnt - 1; 10130 env->prog = prog = new_prog; 10131 insn = new_prog->insnsi + i + delta; 10132 continue; 10133 } 10134 10135 patch_call_imm: 10136 fn = env->ops->get_func_proto(insn->imm, env->prog); 10137 /* all functions that have prototype and verifier allowed 10138 * programs to call them, must be real in-kernel functions 10139 */ 10140 if (!fn->func) { 10141 verbose(env, 10142 "kernel subsystem misconfigured func %s#%d\n", 10143 func_id_name(insn->imm), insn->imm); 10144 return -EFAULT; 10145 } 10146 insn->imm = fn->func - __bpf_call_base; 10147 } 10148 10149 /* Since poke tab is now finalized, publish aux to tracker. */ 10150 for (i = 0; i < prog->aux->size_poke_tab; i++) { 10151 map_ptr = prog->aux->poke_tab[i].tail_call.map; 10152 if (!map_ptr->ops->map_poke_track || 10153 !map_ptr->ops->map_poke_untrack || 10154 !map_ptr->ops->map_poke_run) { 10155 verbose(env, "bpf verifier is misconfigured\n"); 10156 return -EINVAL; 10157 } 10158 10159 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 10160 if (ret < 0) { 10161 verbose(env, "tracking tail call prog failed\n"); 10162 return ret; 10163 } 10164 } 10165 10166 return 0; 10167 } 10168 10169 static void free_states(struct bpf_verifier_env *env) 10170 { 10171 struct bpf_verifier_state_list *sl, *sln; 10172 int i; 10173 10174 sl = env->free_list; 10175 while (sl) { 10176 sln = sl->next; 10177 free_verifier_state(&sl->state, false); 10178 kfree(sl); 10179 sl = sln; 10180 } 10181 env->free_list = NULL; 10182 10183 if (!env->explored_states) 10184 return; 10185 10186 for (i = 0; i < state_htab_size(env); i++) { 10187 sl = env->explored_states[i]; 10188 10189 while (sl) { 10190 sln = sl->next; 10191 free_verifier_state(&sl->state, false); 10192 kfree(sl); 10193 sl = sln; 10194 } 10195 env->explored_states[i] = NULL; 10196 } 10197 } 10198 10199 /* The verifier is using insn_aux_data[] to store temporary data during 10200 * verification and to store information for passes that run after the 10201 * verification like dead code sanitization. do_check_common() for subprogram N 10202 * may analyze many other subprograms. sanitize_insn_aux_data() clears all 10203 * temporary data after do_check_common() finds that subprogram N cannot be 10204 * verified independently. pass_cnt counts the number of times 10205 * do_check_common() was run and insn->aux->seen tells the pass number 10206 * insn_aux_data was touched. These variables are compared to clear temporary 10207 * data from failed pass. For testing and experiments do_check_common() can be 10208 * run multiple times even when prior attempt to verify is unsuccessful. 10209 */ 10210 static void sanitize_insn_aux_data(struct bpf_verifier_env *env) 10211 { 10212 struct bpf_insn *insn = env->prog->insnsi; 10213 struct bpf_insn_aux_data *aux; 10214 int i, class; 10215 10216 for (i = 0; i < env->prog->len; i++) { 10217 class = BPF_CLASS(insn[i].code); 10218 if (class != BPF_LDX && class != BPF_STX) 10219 continue; 10220 aux = &env->insn_aux_data[i]; 10221 if (aux->seen != env->pass_cnt) 10222 continue; 10223 memset(aux, 0, offsetof(typeof(*aux), orig_idx)); 10224 } 10225 } 10226 10227 static int do_check_common(struct bpf_verifier_env *env, int subprog) 10228 { 10229 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 10230 struct bpf_verifier_state *state; 10231 struct bpf_reg_state *regs; 10232 int ret, i; 10233 10234 env->prev_linfo = NULL; 10235 env->pass_cnt++; 10236 10237 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 10238 if (!state) 10239 return -ENOMEM; 10240 state->curframe = 0; 10241 state->speculative = false; 10242 state->branches = 1; 10243 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 10244 if (!state->frame[0]) { 10245 kfree(state); 10246 return -ENOMEM; 10247 } 10248 env->cur_state = state; 10249 init_func_state(env, state->frame[0], 10250 BPF_MAIN_FUNC /* callsite */, 10251 0 /* frameno */, 10252 subprog); 10253 10254 regs = state->frame[state->curframe]->regs; 10255 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 10256 ret = btf_prepare_func_args(env, subprog, regs); 10257 if (ret) 10258 goto out; 10259 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 10260 if (regs[i].type == PTR_TO_CTX) 10261 mark_reg_known_zero(env, regs, i); 10262 else if (regs[i].type == SCALAR_VALUE) 10263 mark_reg_unknown(env, regs, i); 10264 } 10265 } else { 10266 /* 1st arg to a function */ 10267 regs[BPF_REG_1].type = PTR_TO_CTX; 10268 mark_reg_known_zero(env, regs, BPF_REG_1); 10269 ret = btf_check_func_arg_match(env, subprog, regs); 10270 if (ret == -EFAULT) 10271 /* unlikely verifier bug. abort. 10272 * ret == 0 and ret < 0 are sadly acceptable for 10273 * main() function due to backward compatibility. 10274 * Like socket filter program may be written as: 10275 * int bpf_prog(struct pt_regs *ctx) 10276 * and never dereference that ctx in the program. 10277 * 'struct pt_regs' is a type mismatch for socket 10278 * filter that should be using 'struct __sk_buff'. 10279 */ 10280 goto out; 10281 } 10282 10283 ret = do_check(env); 10284 out: 10285 /* check for NULL is necessary, since cur_state can be freed inside 10286 * do_check() under memory pressure. 10287 */ 10288 if (env->cur_state) { 10289 free_verifier_state(env->cur_state, true); 10290 env->cur_state = NULL; 10291 } 10292 while (!pop_stack(env, NULL, NULL, false)); 10293 if (!ret && pop_log) 10294 bpf_vlog_reset(&env->log, 0); 10295 free_states(env); 10296 if (ret) 10297 /* clean aux data in case subprog was rejected */ 10298 sanitize_insn_aux_data(env); 10299 return ret; 10300 } 10301 10302 /* Verify all global functions in a BPF program one by one based on their BTF. 10303 * All global functions must pass verification. Otherwise the whole program is rejected. 10304 * Consider: 10305 * int bar(int); 10306 * int foo(int f) 10307 * { 10308 * return bar(f); 10309 * } 10310 * int bar(int b) 10311 * { 10312 * ... 10313 * } 10314 * foo() will be verified first for R1=any_scalar_value. During verification it 10315 * will be assumed that bar() already verified successfully and call to bar() 10316 * from foo() will be checked for type match only. Later bar() will be verified 10317 * independently to check that it's safe for R1=any_scalar_value. 10318 */ 10319 static int do_check_subprogs(struct bpf_verifier_env *env) 10320 { 10321 struct bpf_prog_aux *aux = env->prog->aux; 10322 int i, ret; 10323 10324 if (!aux->func_info) 10325 return 0; 10326 10327 for (i = 1; i < env->subprog_cnt; i++) { 10328 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 10329 continue; 10330 env->insn_idx = env->subprog_info[i].start; 10331 WARN_ON_ONCE(env->insn_idx == 0); 10332 ret = do_check_common(env, i); 10333 if (ret) { 10334 return ret; 10335 } else if (env->log.level & BPF_LOG_LEVEL) { 10336 verbose(env, 10337 "Func#%d is safe for any args that match its prototype\n", 10338 i); 10339 } 10340 } 10341 return 0; 10342 } 10343 10344 static int do_check_main(struct bpf_verifier_env *env) 10345 { 10346 int ret; 10347 10348 env->insn_idx = 0; 10349 ret = do_check_common(env, 0); 10350 if (!ret) 10351 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 10352 return ret; 10353 } 10354 10355 10356 static void print_verification_stats(struct bpf_verifier_env *env) 10357 { 10358 int i; 10359 10360 if (env->log.level & BPF_LOG_STATS) { 10361 verbose(env, "verification time %lld usec\n", 10362 div_u64(env->verification_time, 1000)); 10363 verbose(env, "stack depth "); 10364 for (i = 0; i < env->subprog_cnt; i++) { 10365 u32 depth = env->subprog_info[i].stack_depth; 10366 10367 verbose(env, "%d", depth); 10368 if (i + 1 < env->subprog_cnt) 10369 verbose(env, "+"); 10370 } 10371 verbose(env, "\n"); 10372 } 10373 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 10374 "total_states %d peak_states %d mark_read %d\n", 10375 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 10376 env->max_states_per_insn, env->total_states, 10377 env->peak_states, env->longest_mark_read_walk); 10378 } 10379 10380 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 10381 { 10382 const struct btf_type *t, *func_proto; 10383 const struct bpf_struct_ops *st_ops; 10384 const struct btf_member *member; 10385 struct bpf_prog *prog = env->prog; 10386 u32 btf_id, member_idx; 10387 const char *mname; 10388 10389 btf_id = prog->aux->attach_btf_id; 10390 st_ops = bpf_struct_ops_find(btf_id); 10391 if (!st_ops) { 10392 verbose(env, "attach_btf_id %u is not a supported struct\n", 10393 btf_id); 10394 return -ENOTSUPP; 10395 } 10396 10397 t = st_ops->type; 10398 member_idx = prog->expected_attach_type; 10399 if (member_idx >= btf_type_vlen(t)) { 10400 verbose(env, "attach to invalid member idx %u of struct %s\n", 10401 member_idx, st_ops->name); 10402 return -EINVAL; 10403 } 10404 10405 member = &btf_type_member(t)[member_idx]; 10406 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 10407 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 10408 NULL); 10409 if (!func_proto) { 10410 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 10411 mname, member_idx, st_ops->name); 10412 return -EINVAL; 10413 } 10414 10415 if (st_ops->check_member) { 10416 int err = st_ops->check_member(t, member); 10417 10418 if (err) { 10419 verbose(env, "attach to unsupported member %s of struct %s\n", 10420 mname, st_ops->name); 10421 return err; 10422 } 10423 } 10424 10425 prog->aux->attach_func_proto = func_proto; 10426 prog->aux->attach_func_name = mname; 10427 env->ops = st_ops->verifier_ops; 10428 10429 return 0; 10430 } 10431 #define SECURITY_PREFIX "security_" 10432 10433 static int check_attach_modify_return(struct bpf_verifier_env *env) 10434 { 10435 struct bpf_prog *prog = env->prog; 10436 unsigned long addr = (unsigned long) prog->aux->trampoline->func.addr; 10437 10438 /* This is expected to be cleaned up in the future with the KRSI effort 10439 * introducing the LSM_HOOK macro for cleaning up lsm_hooks.h. 10440 */ 10441 if (within_error_injection_list(addr) || 10442 !strncmp(SECURITY_PREFIX, prog->aux->attach_func_name, 10443 sizeof(SECURITY_PREFIX) - 1)) 10444 return 0; 10445 10446 verbose(env, "fmod_ret attach_btf_id %u (%s) is not modifiable\n", 10447 prog->aux->attach_btf_id, prog->aux->attach_func_name); 10448 10449 return -EINVAL; 10450 } 10451 10452 static int check_attach_btf_id(struct bpf_verifier_env *env) 10453 { 10454 struct bpf_prog *prog = env->prog; 10455 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 10456 struct bpf_prog *tgt_prog = prog->aux->linked_prog; 10457 u32 btf_id = prog->aux->attach_btf_id; 10458 const char prefix[] = "btf_trace_"; 10459 int ret = 0, subprog = -1, i; 10460 struct bpf_trampoline *tr; 10461 const struct btf_type *t; 10462 bool conservative = true; 10463 const char *tname; 10464 struct btf *btf; 10465 long addr; 10466 u64 key; 10467 10468 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 10469 return check_struct_ops_btf_id(env); 10470 10471 if (prog->type != BPF_PROG_TYPE_TRACING && 10472 prog->type != BPF_PROG_TYPE_LSM && 10473 !prog_extension) 10474 return 0; 10475 10476 if (!btf_id) { 10477 verbose(env, "Tracing programs must provide btf_id\n"); 10478 return -EINVAL; 10479 } 10480 btf = bpf_prog_get_target_btf(prog); 10481 if (!btf) { 10482 verbose(env, 10483 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 10484 return -EINVAL; 10485 } 10486 t = btf_type_by_id(btf, btf_id); 10487 if (!t) { 10488 verbose(env, "attach_btf_id %u is invalid\n", btf_id); 10489 return -EINVAL; 10490 } 10491 tname = btf_name_by_offset(btf, t->name_off); 10492 if (!tname) { 10493 verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id); 10494 return -EINVAL; 10495 } 10496 if (tgt_prog) { 10497 struct bpf_prog_aux *aux = tgt_prog->aux; 10498 10499 for (i = 0; i < aux->func_info_cnt; i++) 10500 if (aux->func_info[i].type_id == btf_id) { 10501 subprog = i; 10502 break; 10503 } 10504 if (subprog == -1) { 10505 verbose(env, "Subprog %s doesn't exist\n", tname); 10506 return -EINVAL; 10507 } 10508 conservative = aux->func_info_aux[subprog].unreliable; 10509 if (prog_extension) { 10510 if (conservative) { 10511 verbose(env, 10512 "Cannot replace static functions\n"); 10513 return -EINVAL; 10514 } 10515 if (!prog->jit_requested) { 10516 verbose(env, 10517 "Extension programs should be JITed\n"); 10518 return -EINVAL; 10519 } 10520 env->ops = bpf_verifier_ops[tgt_prog->type]; 10521 prog->expected_attach_type = tgt_prog->expected_attach_type; 10522 } 10523 if (!tgt_prog->jited) { 10524 verbose(env, "Can attach to only JITed progs\n"); 10525 return -EINVAL; 10526 } 10527 if (tgt_prog->type == prog->type) { 10528 /* Cannot fentry/fexit another fentry/fexit program. 10529 * Cannot attach program extension to another extension. 10530 * It's ok to attach fentry/fexit to extension program. 10531 */ 10532 verbose(env, "Cannot recursively attach\n"); 10533 return -EINVAL; 10534 } 10535 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 10536 prog_extension && 10537 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 10538 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 10539 /* Program extensions can extend all program types 10540 * except fentry/fexit. The reason is the following. 10541 * The fentry/fexit programs are used for performance 10542 * analysis, stats and can be attached to any program 10543 * type except themselves. When extension program is 10544 * replacing XDP function it is necessary to allow 10545 * performance analysis of all functions. Both original 10546 * XDP program and its program extension. Hence 10547 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 10548 * allowed. If extending of fentry/fexit was allowed it 10549 * would be possible to create long call chain 10550 * fentry->extension->fentry->extension beyond 10551 * reasonable stack size. Hence extending fentry is not 10552 * allowed. 10553 */ 10554 verbose(env, "Cannot extend fentry/fexit\n"); 10555 return -EINVAL; 10556 } 10557 key = ((u64)aux->id) << 32 | btf_id; 10558 } else { 10559 if (prog_extension) { 10560 verbose(env, "Cannot replace kernel functions\n"); 10561 return -EINVAL; 10562 } 10563 key = btf_id; 10564 } 10565 10566 switch (prog->expected_attach_type) { 10567 case BPF_TRACE_RAW_TP: 10568 if (tgt_prog) { 10569 verbose(env, 10570 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 10571 return -EINVAL; 10572 } 10573 if (!btf_type_is_typedef(t)) { 10574 verbose(env, "attach_btf_id %u is not a typedef\n", 10575 btf_id); 10576 return -EINVAL; 10577 } 10578 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 10579 verbose(env, "attach_btf_id %u points to wrong type name %s\n", 10580 btf_id, tname); 10581 return -EINVAL; 10582 } 10583 tname += sizeof(prefix) - 1; 10584 t = btf_type_by_id(btf, t->type); 10585 if (!btf_type_is_ptr(t)) 10586 /* should never happen in valid vmlinux build */ 10587 return -EINVAL; 10588 t = btf_type_by_id(btf, t->type); 10589 if (!btf_type_is_func_proto(t)) 10590 /* should never happen in valid vmlinux build */ 10591 return -EINVAL; 10592 10593 /* remember two read only pointers that are valid for 10594 * the life time of the kernel 10595 */ 10596 prog->aux->attach_func_name = tname; 10597 prog->aux->attach_func_proto = t; 10598 prog->aux->attach_btf_trace = true; 10599 return 0; 10600 default: 10601 if (!prog_extension) 10602 return -EINVAL; 10603 /* fallthrough */ 10604 case BPF_MODIFY_RETURN: 10605 case BPF_LSM_MAC: 10606 case BPF_TRACE_FENTRY: 10607 case BPF_TRACE_FEXIT: 10608 prog->aux->attach_func_name = tname; 10609 if (prog->type == BPF_PROG_TYPE_LSM) { 10610 ret = bpf_lsm_verify_prog(&env->log, prog); 10611 if (ret < 0) 10612 return ret; 10613 } 10614 10615 if (!btf_type_is_func(t)) { 10616 verbose(env, "attach_btf_id %u is not a function\n", 10617 btf_id); 10618 return -EINVAL; 10619 } 10620 if (prog_extension && 10621 btf_check_type_match(env, prog, btf, t)) 10622 return -EINVAL; 10623 t = btf_type_by_id(btf, t->type); 10624 if (!btf_type_is_func_proto(t)) 10625 return -EINVAL; 10626 tr = bpf_trampoline_lookup(key); 10627 if (!tr) 10628 return -ENOMEM; 10629 /* t is either vmlinux type or another program's type */ 10630 prog->aux->attach_func_proto = t; 10631 mutex_lock(&tr->mutex); 10632 if (tr->func.addr) { 10633 prog->aux->trampoline = tr; 10634 goto out; 10635 } 10636 if (tgt_prog && conservative) { 10637 prog->aux->attach_func_proto = NULL; 10638 t = NULL; 10639 } 10640 ret = btf_distill_func_proto(&env->log, btf, t, 10641 tname, &tr->func.model); 10642 if (ret < 0) 10643 goto out; 10644 if (tgt_prog) { 10645 if (subprog == 0) 10646 addr = (long) tgt_prog->bpf_func; 10647 else 10648 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 10649 } else { 10650 addr = kallsyms_lookup_name(tname); 10651 if (!addr) { 10652 verbose(env, 10653 "The address of function %s cannot be found\n", 10654 tname); 10655 ret = -ENOENT; 10656 goto out; 10657 } 10658 } 10659 tr->func.addr = (void *)addr; 10660 prog->aux->trampoline = tr; 10661 10662 if (prog->expected_attach_type == BPF_MODIFY_RETURN) 10663 ret = check_attach_modify_return(env); 10664 out: 10665 mutex_unlock(&tr->mutex); 10666 if (ret) 10667 bpf_trampoline_put(tr); 10668 return ret; 10669 } 10670 } 10671 10672 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 10673 union bpf_attr __user *uattr) 10674 { 10675 u64 start_time = ktime_get_ns(); 10676 struct bpf_verifier_env *env; 10677 struct bpf_verifier_log *log; 10678 int i, len, ret = -EINVAL; 10679 bool is_priv; 10680 10681 /* no program is valid */ 10682 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 10683 return -EINVAL; 10684 10685 /* 'struct bpf_verifier_env' can be global, but since it's not small, 10686 * allocate/free it every time bpf_check() is called 10687 */ 10688 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 10689 if (!env) 10690 return -ENOMEM; 10691 log = &env->log; 10692 10693 len = (*prog)->len; 10694 env->insn_aux_data = 10695 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 10696 ret = -ENOMEM; 10697 if (!env->insn_aux_data) 10698 goto err_free_env; 10699 for (i = 0; i < len; i++) 10700 env->insn_aux_data[i].orig_idx = i; 10701 env->prog = *prog; 10702 env->ops = bpf_verifier_ops[env->prog->type]; 10703 is_priv = capable(CAP_SYS_ADMIN); 10704 10705 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 10706 mutex_lock(&bpf_verifier_lock); 10707 if (!btf_vmlinux) 10708 btf_vmlinux = btf_parse_vmlinux(); 10709 mutex_unlock(&bpf_verifier_lock); 10710 } 10711 10712 /* grab the mutex to protect few globals used by verifier */ 10713 if (!is_priv) 10714 mutex_lock(&bpf_verifier_lock); 10715 10716 if (attr->log_level || attr->log_buf || attr->log_size) { 10717 /* user requested verbose verifier output 10718 * and supplied buffer to store the verification trace 10719 */ 10720 log->level = attr->log_level; 10721 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 10722 log->len_total = attr->log_size; 10723 10724 ret = -EINVAL; 10725 /* log attributes have to be sane */ 10726 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 10727 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 10728 goto err_unlock; 10729 } 10730 10731 if (IS_ERR(btf_vmlinux)) { 10732 /* Either gcc or pahole or kernel are broken. */ 10733 verbose(env, "in-kernel BTF is malformed\n"); 10734 ret = PTR_ERR(btf_vmlinux); 10735 goto skip_full_check; 10736 } 10737 10738 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 10739 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 10740 env->strict_alignment = true; 10741 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 10742 env->strict_alignment = false; 10743 10744 env->allow_ptr_leaks = is_priv; 10745 10746 if (is_priv) 10747 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 10748 10749 ret = replace_map_fd_with_map_ptr(env); 10750 if (ret < 0) 10751 goto skip_full_check; 10752 10753 if (bpf_prog_is_dev_bound(env->prog->aux)) { 10754 ret = bpf_prog_offload_verifier_prep(env->prog); 10755 if (ret) 10756 goto skip_full_check; 10757 } 10758 10759 env->explored_states = kvcalloc(state_htab_size(env), 10760 sizeof(struct bpf_verifier_state_list *), 10761 GFP_USER); 10762 ret = -ENOMEM; 10763 if (!env->explored_states) 10764 goto skip_full_check; 10765 10766 ret = check_subprogs(env); 10767 if (ret < 0) 10768 goto skip_full_check; 10769 10770 ret = check_btf_info(env, attr, uattr); 10771 if (ret < 0) 10772 goto skip_full_check; 10773 10774 ret = check_attach_btf_id(env); 10775 if (ret) 10776 goto skip_full_check; 10777 10778 ret = check_cfg(env); 10779 if (ret < 0) 10780 goto skip_full_check; 10781 10782 ret = do_check_subprogs(env); 10783 ret = ret ?: do_check_main(env); 10784 10785 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 10786 ret = bpf_prog_offload_finalize(env); 10787 10788 skip_full_check: 10789 kvfree(env->explored_states); 10790 10791 if (ret == 0) 10792 ret = check_max_stack_depth(env); 10793 10794 /* instruction rewrites happen after this point */ 10795 if (is_priv) { 10796 if (ret == 0) 10797 opt_hard_wire_dead_code_branches(env); 10798 if (ret == 0) 10799 ret = opt_remove_dead_code(env); 10800 if (ret == 0) 10801 ret = opt_remove_nops(env); 10802 } else { 10803 if (ret == 0) 10804 sanitize_dead_code(env); 10805 } 10806 10807 if (ret == 0) 10808 /* program is valid, convert *(u32*)(ctx + off) accesses */ 10809 ret = convert_ctx_accesses(env); 10810 10811 if (ret == 0) 10812 ret = fixup_bpf_calls(env); 10813 10814 /* do 32-bit optimization after insn patching has done so those patched 10815 * insns could be handled correctly. 10816 */ 10817 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 10818 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 10819 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 10820 : false; 10821 } 10822 10823 if (ret == 0) 10824 ret = fixup_call_args(env); 10825 10826 env->verification_time = ktime_get_ns() - start_time; 10827 print_verification_stats(env); 10828 10829 if (log->level && bpf_verifier_log_full(log)) 10830 ret = -ENOSPC; 10831 if (log->level && !log->ubuf) { 10832 ret = -EFAULT; 10833 goto err_release_maps; 10834 } 10835 10836 if (ret == 0 && env->used_map_cnt) { 10837 /* if program passed verifier, update used_maps in bpf_prog_info */ 10838 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 10839 sizeof(env->used_maps[0]), 10840 GFP_KERNEL); 10841 10842 if (!env->prog->aux->used_maps) { 10843 ret = -ENOMEM; 10844 goto err_release_maps; 10845 } 10846 10847 memcpy(env->prog->aux->used_maps, env->used_maps, 10848 sizeof(env->used_maps[0]) * env->used_map_cnt); 10849 env->prog->aux->used_map_cnt = env->used_map_cnt; 10850 10851 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 10852 * bpf_ld_imm64 instructions 10853 */ 10854 convert_pseudo_ld_imm64(env); 10855 } 10856 10857 if (ret == 0) 10858 adjust_btf_func(env); 10859 10860 err_release_maps: 10861 if (!env->prog->aux->used_maps) 10862 /* if we didn't copy map pointers into bpf_prog_info, release 10863 * them now. Otherwise free_used_maps() will release them. 10864 */ 10865 release_maps(env); 10866 10867 /* extension progs temporarily inherit the attach_type of their targets 10868 for verification purposes, so set it back to zero before returning 10869 */ 10870 if (env->prog->type == BPF_PROG_TYPE_EXT) 10871 env->prog->expected_attach_type = 0; 10872 10873 *prog = env->prog; 10874 err_unlock: 10875 if (!is_priv) 10876 mutex_unlock(&bpf_verifier_lock); 10877 vfree(env->insn_aux_data); 10878 err_free_env: 10879 kfree(env); 10880 return ret; 10881 } 10882