xref: /linux/kernel/bpf/verifier.c (revision 59fff63cc2b75dcfe08f9eeb4b2187d73e53843d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <net/xdp.h>
30 
31 #include "disasm.h"
32 
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
35 	[_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #define BPF_LINK_TYPE(_id, _name)
38 #include <linux/bpf_types.h>
39 #undef BPF_PROG_TYPE
40 #undef BPF_MAP_TYPE
41 #undef BPF_LINK_TYPE
42 };
43 
44 /* bpf_check() is a static code analyzer that walks eBPF program
45  * instruction by instruction and updates register/stack state.
46  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
47  *
48  * The first pass is depth-first-search to check that the program is a DAG.
49  * It rejects the following programs:
50  * - larger than BPF_MAXINSNS insns
51  * - if loop is present (detected via back-edge)
52  * - unreachable insns exist (shouldn't be a forest. program = one function)
53  * - out of bounds or malformed jumps
54  * The second pass is all possible path descent from the 1st insn.
55  * Since it's analyzing all paths through the program, the length of the
56  * analysis is limited to 64k insn, which may be hit even if total number of
57  * insn is less then 4K, but there are too many branches that change stack/regs.
58  * Number of 'branches to be analyzed' is limited to 1k
59  *
60  * On entry to each instruction, each register has a type, and the instruction
61  * changes the types of the registers depending on instruction semantics.
62  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
63  * copied to R1.
64  *
65  * All registers are 64-bit.
66  * R0 - return register
67  * R1-R5 argument passing registers
68  * R6-R9 callee saved registers
69  * R10 - frame pointer read-only
70  *
71  * At the start of BPF program the register R1 contains a pointer to bpf_context
72  * and has type PTR_TO_CTX.
73  *
74  * Verifier tracks arithmetic operations on pointers in case:
75  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
76  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
77  * 1st insn copies R10 (which has FRAME_PTR) type into R1
78  * and 2nd arithmetic instruction is pattern matched to recognize
79  * that it wants to construct a pointer to some element within stack.
80  * So after 2nd insn, the register R1 has type PTR_TO_STACK
81  * (and -20 constant is saved for further stack bounds checking).
82  * Meaning that this reg is a pointer to stack plus known immediate constant.
83  *
84  * Most of the time the registers have SCALAR_VALUE type, which
85  * means the register has some value, but it's not a valid pointer.
86  * (like pointer plus pointer becomes SCALAR_VALUE type)
87  *
88  * When verifier sees load or store instructions the type of base register
89  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
90  * four pointer types recognized by check_mem_access() function.
91  *
92  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
93  * and the range of [ptr, ptr + map's value_size) is accessible.
94  *
95  * registers used to pass values to function calls are checked against
96  * function argument constraints.
97  *
98  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
99  * It means that the register type passed to this function must be
100  * PTR_TO_STACK and it will be used inside the function as
101  * 'pointer to map element key'
102  *
103  * For example the argument constraints for bpf_map_lookup_elem():
104  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
105  *   .arg1_type = ARG_CONST_MAP_PTR,
106  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
107  *
108  * ret_type says that this function returns 'pointer to map elem value or null'
109  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
110  * 2nd argument should be a pointer to stack, which will be used inside
111  * the helper function as a pointer to map element key.
112  *
113  * On the kernel side the helper function looks like:
114  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
115  * {
116  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
117  *    void *key = (void *) (unsigned long) r2;
118  *    void *value;
119  *
120  *    here kernel can access 'key' and 'map' pointers safely, knowing that
121  *    [key, key + map->key_size) bytes are valid and were initialized on
122  *    the stack of eBPF program.
123  * }
124  *
125  * Corresponding eBPF program may look like:
126  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
127  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
128  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
129  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
130  * here verifier looks at prototype of map_lookup_elem() and sees:
131  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
132  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
133  *
134  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
135  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
136  * and were initialized prior to this call.
137  * If it's ok, then verifier allows this BPF_CALL insn and looks at
138  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
139  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
140  * returns either pointer to map value or NULL.
141  *
142  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
143  * insn, the register holding that pointer in the true branch changes state to
144  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
145  * branch. See check_cond_jmp_op().
146  *
147  * After the call R0 is set to return type of the function and registers R1-R5
148  * are set to NOT_INIT to indicate that they are no longer readable.
149  *
150  * The following reference types represent a potential reference to a kernel
151  * resource which, after first being allocated, must be checked and freed by
152  * the BPF program:
153  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
154  *
155  * When the verifier sees a helper call return a reference type, it allocates a
156  * pointer id for the reference and stores it in the current function state.
157  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
158  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
159  * passes through a NULL-check conditional. For the branch wherein the state is
160  * changed to CONST_IMM, the verifier releases the reference.
161  *
162  * For each helper function that allocates a reference, such as
163  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
164  * bpf_sk_release(). When a reference type passes into the release function,
165  * the verifier also releases the reference. If any unchecked or unreleased
166  * reference remains at the end of the program, the verifier rejects it.
167  */
168 
169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
170 struct bpf_verifier_stack_elem {
171 	/* verifer state is 'st'
172 	 * before processing instruction 'insn_idx'
173 	 * and after processing instruction 'prev_insn_idx'
174 	 */
175 	struct bpf_verifier_state st;
176 	int insn_idx;
177 	int prev_insn_idx;
178 	struct bpf_verifier_stack_elem *next;
179 	/* length of verifier log at the time this state was pushed on stack */
180 	u32 log_pos;
181 };
182 
183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
184 #define BPF_COMPLEXITY_LIMIT_STATES	64
185 
186 #define BPF_MAP_KEY_POISON	(1ULL << 63)
187 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
188 
189 #define BPF_MAP_PTR_UNPRIV	1UL
190 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
191 					  POISON_POINTER_DELTA))
192 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
193 
194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
198 static int ref_set_non_owning(struct bpf_verifier_env *env,
199 			      struct bpf_reg_state *reg);
200 static void specialize_kfunc(struct bpf_verifier_env *env,
201 			     u32 func_id, u16 offset, unsigned long *addr);
202 static bool is_trusted_reg(const struct bpf_reg_state *reg);
203 
204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
205 {
206 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
207 }
208 
209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
210 {
211 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
212 }
213 
214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
215 			      const struct bpf_map *map, bool unpriv)
216 {
217 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
218 	unpriv |= bpf_map_ptr_unpriv(aux);
219 	aux->map_ptr_state = (unsigned long)map |
220 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
221 }
222 
223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
224 {
225 	return aux->map_key_state & BPF_MAP_KEY_POISON;
226 }
227 
228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
229 {
230 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
231 }
232 
233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
234 {
235 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
236 }
237 
238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
239 {
240 	bool poisoned = bpf_map_key_poisoned(aux);
241 
242 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
243 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
244 }
245 
246 static bool bpf_helper_call(const struct bpf_insn *insn)
247 {
248 	return insn->code == (BPF_JMP | BPF_CALL) &&
249 	       insn->src_reg == 0;
250 }
251 
252 static bool bpf_pseudo_call(const struct bpf_insn *insn)
253 {
254 	return insn->code == (BPF_JMP | BPF_CALL) &&
255 	       insn->src_reg == BPF_PSEUDO_CALL;
256 }
257 
258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
259 {
260 	return insn->code == (BPF_JMP | BPF_CALL) &&
261 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
262 }
263 
264 struct bpf_call_arg_meta {
265 	struct bpf_map *map_ptr;
266 	bool raw_mode;
267 	bool pkt_access;
268 	u8 release_regno;
269 	int regno;
270 	int access_size;
271 	int mem_size;
272 	u64 msize_max_value;
273 	int ref_obj_id;
274 	int dynptr_id;
275 	int map_uid;
276 	int func_id;
277 	struct btf *btf;
278 	u32 btf_id;
279 	struct btf *ret_btf;
280 	u32 ret_btf_id;
281 	u32 subprogno;
282 	struct btf_field *kptr_field;
283 };
284 
285 struct bpf_kfunc_call_arg_meta {
286 	/* In parameters */
287 	struct btf *btf;
288 	u32 func_id;
289 	u32 kfunc_flags;
290 	const struct btf_type *func_proto;
291 	const char *func_name;
292 	/* Out parameters */
293 	u32 ref_obj_id;
294 	u8 release_regno;
295 	bool r0_rdonly;
296 	u32 ret_btf_id;
297 	u64 r0_size;
298 	u32 subprogno;
299 	struct {
300 		u64 value;
301 		bool found;
302 	} arg_constant;
303 
304 	/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
305 	 * generally to pass info about user-defined local kptr types to later
306 	 * verification logic
307 	 *   bpf_obj_drop/bpf_percpu_obj_drop
308 	 *     Record the local kptr type to be drop'd
309 	 *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
310 	 *     Record the local kptr type to be refcount_incr'd and use
311 	 *     arg_owning_ref to determine whether refcount_acquire should be
312 	 *     fallible
313 	 */
314 	struct btf *arg_btf;
315 	u32 arg_btf_id;
316 	bool arg_owning_ref;
317 
318 	struct {
319 		struct btf_field *field;
320 	} arg_list_head;
321 	struct {
322 		struct btf_field *field;
323 	} arg_rbtree_root;
324 	struct {
325 		enum bpf_dynptr_type type;
326 		u32 id;
327 		u32 ref_obj_id;
328 	} initialized_dynptr;
329 	struct {
330 		u8 spi;
331 		u8 frameno;
332 	} iter;
333 	u64 mem_size;
334 };
335 
336 struct btf *btf_vmlinux;
337 
338 static DEFINE_MUTEX(bpf_verifier_lock);
339 
340 static const struct bpf_line_info *
341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
342 {
343 	const struct bpf_line_info *linfo;
344 	const struct bpf_prog *prog;
345 	u32 i, nr_linfo;
346 
347 	prog = env->prog;
348 	nr_linfo = prog->aux->nr_linfo;
349 
350 	if (!nr_linfo || insn_off >= prog->len)
351 		return NULL;
352 
353 	linfo = prog->aux->linfo;
354 	for (i = 1; i < nr_linfo; i++)
355 		if (insn_off < linfo[i].insn_off)
356 			break;
357 
358 	return &linfo[i - 1];
359 }
360 
361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
362 {
363 	struct bpf_verifier_env *env = private_data;
364 	va_list args;
365 
366 	if (!bpf_verifier_log_needed(&env->log))
367 		return;
368 
369 	va_start(args, fmt);
370 	bpf_verifier_vlog(&env->log, fmt, args);
371 	va_end(args);
372 }
373 
374 static const char *ltrim(const char *s)
375 {
376 	while (isspace(*s))
377 		s++;
378 
379 	return s;
380 }
381 
382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
383 					 u32 insn_off,
384 					 const char *prefix_fmt, ...)
385 {
386 	const struct bpf_line_info *linfo;
387 
388 	if (!bpf_verifier_log_needed(&env->log))
389 		return;
390 
391 	linfo = find_linfo(env, insn_off);
392 	if (!linfo || linfo == env->prev_linfo)
393 		return;
394 
395 	if (prefix_fmt) {
396 		va_list args;
397 
398 		va_start(args, prefix_fmt);
399 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
400 		va_end(args);
401 	}
402 
403 	verbose(env, "%s\n",
404 		ltrim(btf_name_by_offset(env->prog->aux->btf,
405 					 linfo->line_off)));
406 
407 	env->prev_linfo = linfo;
408 }
409 
410 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
411 				   struct bpf_reg_state *reg,
412 				   struct tnum *range, const char *ctx,
413 				   const char *reg_name)
414 {
415 	char tn_buf[48];
416 
417 	verbose(env, "At %s the register %s ", ctx, reg_name);
418 	if (!tnum_is_unknown(reg->var_off)) {
419 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
420 		verbose(env, "has value %s", tn_buf);
421 	} else {
422 		verbose(env, "has unknown scalar value");
423 	}
424 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
425 	verbose(env, " should have been in %s\n", tn_buf);
426 }
427 
428 static bool type_is_pkt_pointer(enum bpf_reg_type type)
429 {
430 	type = base_type(type);
431 	return type == PTR_TO_PACKET ||
432 	       type == PTR_TO_PACKET_META;
433 }
434 
435 static bool type_is_sk_pointer(enum bpf_reg_type type)
436 {
437 	return type == PTR_TO_SOCKET ||
438 		type == PTR_TO_SOCK_COMMON ||
439 		type == PTR_TO_TCP_SOCK ||
440 		type == PTR_TO_XDP_SOCK;
441 }
442 
443 static bool type_may_be_null(u32 type)
444 {
445 	return type & PTR_MAYBE_NULL;
446 }
447 
448 static bool reg_not_null(const struct bpf_reg_state *reg)
449 {
450 	enum bpf_reg_type type;
451 
452 	type = reg->type;
453 	if (type_may_be_null(type))
454 		return false;
455 
456 	type = base_type(type);
457 	return type == PTR_TO_SOCKET ||
458 		type == PTR_TO_TCP_SOCK ||
459 		type == PTR_TO_MAP_VALUE ||
460 		type == PTR_TO_MAP_KEY ||
461 		type == PTR_TO_SOCK_COMMON ||
462 		(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
463 		type == PTR_TO_MEM;
464 }
465 
466 static bool type_is_ptr_alloc_obj(u32 type)
467 {
468 	return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
469 }
470 
471 static bool type_is_non_owning_ref(u32 type)
472 {
473 	return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
474 }
475 
476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
477 {
478 	struct btf_record *rec = NULL;
479 	struct btf_struct_meta *meta;
480 
481 	if (reg->type == PTR_TO_MAP_VALUE) {
482 		rec = reg->map_ptr->record;
483 	} else if (type_is_ptr_alloc_obj(reg->type)) {
484 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
485 		if (meta)
486 			rec = meta->record;
487 	}
488 	return rec;
489 }
490 
491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
492 {
493 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
494 
495 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
496 }
497 
498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
499 {
500 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
501 }
502 
503 static bool type_is_rdonly_mem(u32 type)
504 {
505 	return type & MEM_RDONLY;
506 }
507 
508 static bool is_acquire_function(enum bpf_func_id func_id,
509 				const struct bpf_map *map)
510 {
511 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
512 
513 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
514 	    func_id == BPF_FUNC_sk_lookup_udp ||
515 	    func_id == BPF_FUNC_skc_lookup_tcp ||
516 	    func_id == BPF_FUNC_ringbuf_reserve ||
517 	    func_id == BPF_FUNC_kptr_xchg)
518 		return true;
519 
520 	if (func_id == BPF_FUNC_map_lookup_elem &&
521 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
522 	     map_type == BPF_MAP_TYPE_SOCKHASH))
523 		return true;
524 
525 	return false;
526 }
527 
528 static bool is_ptr_cast_function(enum bpf_func_id func_id)
529 {
530 	return func_id == BPF_FUNC_tcp_sock ||
531 		func_id == BPF_FUNC_sk_fullsock ||
532 		func_id == BPF_FUNC_skc_to_tcp_sock ||
533 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
534 		func_id == BPF_FUNC_skc_to_udp6_sock ||
535 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
536 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
537 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
538 }
539 
540 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
541 {
542 	return func_id == BPF_FUNC_dynptr_data;
543 }
544 
545 static bool is_callback_calling_kfunc(u32 btf_id);
546 static bool is_bpf_throw_kfunc(struct bpf_insn *insn);
547 
548 static bool is_callback_calling_function(enum bpf_func_id func_id)
549 {
550 	return func_id == BPF_FUNC_for_each_map_elem ||
551 	       func_id == BPF_FUNC_timer_set_callback ||
552 	       func_id == BPF_FUNC_find_vma ||
553 	       func_id == BPF_FUNC_loop ||
554 	       func_id == BPF_FUNC_user_ringbuf_drain;
555 }
556 
557 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
558 {
559 	return func_id == BPF_FUNC_timer_set_callback;
560 }
561 
562 static bool is_storage_get_function(enum bpf_func_id func_id)
563 {
564 	return func_id == BPF_FUNC_sk_storage_get ||
565 	       func_id == BPF_FUNC_inode_storage_get ||
566 	       func_id == BPF_FUNC_task_storage_get ||
567 	       func_id == BPF_FUNC_cgrp_storage_get;
568 }
569 
570 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
571 					const struct bpf_map *map)
572 {
573 	int ref_obj_uses = 0;
574 
575 	if (is_ptr_cast_function(func_id))
576 		ref_obj_uses++;
577 	if (is_acquire_function(func_id, map))
578 		ref_obj_uses++;
579 	if (is_dynptr_ref_function(func_id))
580 		ref_obj_uses++;
581 
582 	return ref_obj_uses > 1;
583 }
584 
585 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
586 {
587 	return BPF_CLASS(insn->code) == BPF_STX &&
588 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
589 	       insn->imm == BPF_CMPXCHG;
590 }
591 
592 /* string representation of 'enum bpf_reg_type'
593  *
594  * Note that reg_type_str() can not appear more than once in a single verbose()
595  * statement.
596  */
597 static const char *reg_type_str(struct bpf_verifier_env *env,
598 				enum bpf_reg_type type)
599 {
600 	char postfix[16] = {0}, prefix[64] = {0};
601 	static const char * const str[] = {
602 		[NOT_INIT]		= "?",
603 		[SCALAR_VALUE]		= "scalar",
604 		[PTR_TO_CTX]		= "ctx",
605 		[CONST_PTR_TO_MAP]	= "map_ptr",
606 		[PTR_TO_MAP_VALUE]	= "map_value",
607 		[PTR_TO_STACK]		= "fp",
608 		[PTR_TO_PACKET]		= "pkt",
609 		[PTR_TO_PACKET_META]	= "pkt_meta",
610 		[PTR_TO_PACKET_END]	= "pkt_end",
611 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
612 		[PTR_TO_SOCKET]		= "sock",
613 		[PTR_TO_SOCK_COMMON]	= "sock_common",
614 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
615 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
616 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
617 		[PTR_TO_BTF_ID]		= "ptr_",
618 		[PTR_TO_MEM]		= "mem",
619 		[PTR_TO_BUF]		= "buf",
620 		[PTR_TO_FUNC]		= "func",
621 		[PTR_TO_MAP_KEY]	= "map_key",
622 		[CONST_PTR_TO_DYNPTR]	= "dynptr_ptr",
623 	};
624 
625 	if (type & PTR_MAYBE_NULL) {
626 		if (base_type(type) == PTR_TO_BTF_ID)
627 			strncpy(postfix, "or_null_", 16);
628 		else
629 			strncpy(postfix, "_or_null", 16);
630 	}
631 
632 	snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
633 		 type & MEM_RDONLY ? "rdonly_" : "",
634 		 type & MEM_RINGBUF ? "ringbuf_" : "",
635 		 type & MEM_USER ? "user_" : "",
636 		 type & MEM_PERCPU ? "percpu_" : "",
637 		 type & MEM_RCU ? "rcu_" : "",
638 		 type & PTR_UNTRUSTED ? "untrusted_" : "",
639 		 type & PTR_TRUSTED ? "trusted_" : ""
640 	);
641 
642 	snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s",
643 		 prefix, str[base_type(type)], postfix);
644 	return env->tmp_str_buf;
645 }
646 
647 static char slot_type_char[] = {
648 	[STACK_INVALID]	= '?',
649 	[STACK_SPILL]	= 'r',
650 	[STACK_MISC]	= 'm',
651 	[STACK_ZERO]	= '0',
652 	[STACK_DYNPTR]	= 'd',
653 	[STACK_ITER]	= 'i',
654 };
655 
656 static void print_liveness(struct bpf_verifier_env *env,
657 			   enum bpf_reg_liveness live)
658 {
659 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
660 	    verbose(env, "_");
661 	if (live & REG_LIVE_READ)
662 		verbose(env, "r");
663 	if (live & REG_LIVE_WRITTEN)
664 		verbose(env, "w");
665 	if (live & REG_LIVE_DONE)
666 		verbose(env, "D");
667 }
668 
669 static int __get_spi(s32 off)
670 {
671 	return (-off - 1) / BPF_REG_SIZE;
672 }
673 
674 static struct bpf_func_state *func(struct bpf_verifier_env *env,
675 				   const struct bpf_reg_state *reg)
676 {
677 	struct bpf_verifier_state *cur = env->cur_state;
678 
679 	return cur->frame[reg->frameno];
680 }
681 
682 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
683 {
684        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
685 
686        /* We need to check that slots between [spi - nr_slots + 1, spi] are
687 	* within [0, allocated_stack).
688 	*
689 	* Please note that the spi grows downwards. For example, a dynptr
690 	* takes the size of two stack slots; the first slot will be at
691 	* spi and the second slot will be at spi - 1.
692 	*/
693        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
694 }
695 
696 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
697 			          const char *obj_kind, int nr_slots)
698 {
699 	int off, spi;
700 
701 	if (!tnum_is_const(reg->var_off)) {
702 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
703 		return -EINVAL;
704 	}
705 
706 	off = reg->off + reg->var_off.value;
707 	if (off % BPF_REG_SIZE) {
708 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
709 		return -EINVAL;
710 	}
711 
712 	spi = __get_spi(off);
713 	if (spi + 1 < nr_slots) {
714 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
715 		return -EINVAL;
716 	}
717 
718 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
719 		return -ERANGE;
720 	return spi;
721 }
722 
723 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
724 {
725 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
726 }
727 
728 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
729 {
730 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
731 }
732 
733 static const char *btf_type_name(const struct btf *btf, u32 id)
734 {
735 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
736 }
737 
738 static const char *dynptr_type_str(enum bpf_dynptr_type type)
739 {
740 	switch (type) {
741 	case BPF_DYNPTR_TYPE_LOCAL:
742 		return "local";
743 	case BPF_DYNPTR_TYPE_RINGBUF:
744 		return "ringbuf";
745 	case BPF_DYNPTR_TYPE_SKB:
746 		return "skb";
747 	case BPF_DYNPTR_TYPE_XDP:
748 		return "xdp";
749 	case BPF_DYNPTR_TYPE_INVALID:
750 		return "<invalid>";
751 	default:
752 		WARN_ONCE(1, "unknown dynptr type %d\n", type);
753 		return "<unknown>";
754 	}
755 }
756 
757 static const char *iter_type_str(const struct btf *btf, u32 btf_id)
758 {
759 	if (!btf || btf_id == 0)
760 		return "<invalid>";
761 
762 	/* we already validated that type is valid and has conforming name */
763 	return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
764 }
765 
766 static const char *iter_state_str(enum bpf_iter_state state)
767 {
768 	switch (state) {
769 	case BPF_ITER_STATE_ACTIVE:
770 		return "active";
771 	case BPF_ITER_STATE_DRAINED:
772 		return "drained";
773 	case BPF_ITER_STATE_INVALID:
774 		return "<invalid>";
775 	default:
776 		WARN_ONCE(1, "unknown iter state %d\n", state);
777 		return "<unknown>";
778 	}
779 }
780 
781 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
782 {
783 	env->scratched_regs |= 1U << regno;
784 }
785 
786 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
787 {
788 	env->scratched_stack_slots |= 1ULL << spi;
789 }
790 
791 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
792 {
793 	return (env->scratched_regs >> regno) & 1;
794 }
795 
796 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
797 {
798 	return (env->scratched_stack_slots >> regno) & 1;
799 }
800 
801 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
802 {
803 	return env->scratched_regs || env->scratched_stack_slots;
804 }
805 
806 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
807 {
808 	env->scratched_regs = 0U;
809 	env->scratched_stack_slots = 0ULL;
810 }
811 
812 /* Used for printing the entire verifier state. */
813 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
814 {
815 	env->scratched_regs = ~0U;
816 	env->scratched_stack_slots = ~0ULL;
817 }
818 
819 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
820 {
821 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
822 	case DYNPTR_TYPE_LOCAL:
823 		return BPF_DYNPTR_TYPE_LOCAL;
824 	case DYNPTR_TYPE_RINGBUF:
825 		return BPF_DYNPTR_TYPE_RINGBUF;
826 	case DYNPTR_TYPE_SKB:
827 		return BPF_DYNPTR_TYPE_SKB;
828 	case DYNPTR_TYPE_XDP:
829 		return BPF_DYNPTR_TYPE_XDP;
830 	default:
831 		return BPF_DYNPTR_TYPE_INVALID;
832 	}
833 }
834 
835 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
836 {
837 	switch (type) {
838 	case BPF_DYNPTR_TYPE_LOCAL:
839 		return DYNPTR_TYPE_LOCAL;
840 	case BPF_DYNPTR_TYPE_RINGBUF:
841 		return DYNPTR_TYPE_RINGBUF;
842 	case BPF_DYNPTR_TYPE_SKB:
843 		return DYNPTR_TYPE_SKB;
844 	case BPF_DYNPTR_TYPE_XDP:
845 		return DYNPTR_TYPE_XDP;
846 	default:
847 		return 0;
848 	}
849 }
850 
851 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
852 {
853 	return type == BPF_DYNPTR_TYPE_RINGBUF;
854 }
855 
856 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
857 			      enum bpf_dynptr_type type,
858 			      bool first_slot, int dynptr_id);
859 
860 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
861 				struct bpf_reg_state *reg);
862 
863 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
864 				   struct bpf_reg_state *sreg1,
865 				   struct bpf_reg_state *sreg2,
866 				   enum bpf_dynptr_type type)
867 {
868 	int id = ++env->id_gen;
869 
870 	__mark_dynptr_reg(sreg1, type, true, id);
871 	__mark_dynptr_reg(sreg2, type, false, id);
872 }
873 
874 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
875 			       struct bpf_reg_state *reg,
876 			       enum bpf_dynptr_type type)
877 {
878 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
879 }
880 
881 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
882 				        struct bpf_func_state *state, int spi);
883 
884 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
885 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
886 {
887 	struct bpf_func_state *state = func(env, reg);
888 	enum bpf_dynptr_type type;
889 	int spi, i, err;
890 
891 	spi = dynptr_get_spi(env, reg);
892 	if (spi < 0)
893 		return spi;
894 
895 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
896 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
897 	 * to ensure that for the following example:
898 	 *	[d1][d1][d2][d2]
899 	 * spi    3   2   1   0
900 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
901 	 * case they do belong to same dynptr, second call won't see slot_type
902 	 * as STACK_DYNPTR and will simply skip destruction.
903 	 */
904 	err = destroy_if_dynptr_stack_slot(env, state, spi);
905 	if (err)
906 		return err;
907 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
908 	if (err)
909 		return err;
910 
911 	for (i = 0; i < BPF_REG_SIZE; i++) {
912 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
913 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
914 	}
915 
916 	type = arg_to_dynptr_type(arg_type);
917 	if (type == BPF_DYNPTR_TYPE_INVALID)
918 		return -EINVAL;
919 
920 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
921 			       &state->stack[spi - 1].spilled_ptr, type);
922 
923 	if (dynptr_type_refcounted(type)) {
924 		/* The id is used to track proper releasing */
925 		int id;
926 
927 		if (clone_ref_obj_id)
928 			id = clone_ref_obj_id;
929 		else
930 			id = acquire_reference_state(env, insn_idx);
931 
932 		if (id < 0)
933 			return id;
934 
935 		state->stack[spi].spilled_ptr.ref_obj_id = id;
936 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
937 	}
938 
939 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
940 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
941 
942 	return 0;
943 }
944 
945 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
946 {
947 	int i;
948 
949 	for (i = 0; i < BPF_REG_SIZE; i++) {
950 		state->stack[spi].slot_type[i] = STACK_INVALID;
951 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
952 	}
953 
954 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
955 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
956 
957 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
958 	 *
959 	 * While we don't allow reading STACK_INVALID, it is still possible to
960 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
961 	 * helpers or insns can do partial read of that part without failing,
962 	 * but check_stack_range_initialized, check_stack_read_var_off, and
963 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
964 	 * the slot conservatively. Hence we need to prevent those liveness
965 	 * marking walks.
966 	 *
967 	 * This was not a problem before because STACK_INVALID is only set by
968 	 * default (where the default reg state has its reg->parent as NULL), or
969 	 * in clean_live_states after REG_LIVE_DONE (at which point
970 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
971 	 * verifier state exploration (like we did above). Hence, for our case
972 	 * parentage chain will still be live (i.e. reg->parent may be
973 	 * non-NULL), while earlier reg->parent was NULL, so we need
974 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
975 	 * done later on reads or by mark_dynptr_read as well to unnecessary
976 	 * mark registers in verifier state.
977 	 */
978 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
979 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
980 }
981 
982 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
983 {
984 	struct bpf_func_state *state = func(env, reg);
985 	int spi, ref_obj_id, i;
986 
987 	spi = dynptr_get_spi(env, reg);
988 	if (spi < 0)
989 		return spi;
990 
991 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
992 		invalidate_dynptr(env, state, spi);
993 		return 0;
994 	}
995 
996 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
997 
998 	/* If the dynptr has a ref_obj_id, then we need to invalidate
999 	 * two things:
1000 	 *
1001 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
1002 	 * 2) Any slices derived from this dynptr.
1003 	 */
1004 
1005 	/* Invalidate any slices associated with this dynptr */
1006 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
1007 
1008 	/* Invalidate any dynptr clones */
1009 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1010 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
1011 			continue;
1012 
1013 		/* it should always be the case that if the ref obj id
1014 		 * matches then the stack slot also belongs to a
1015 		 * dynptr
1016 		 */
1017 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
1018 			verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
1019 			return -EFAULT;
1020 		}
1021 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
1022 			invalidate_dynptr(env, state, i);
1023 	}
1024 
1025 	return 0;
1026 }
1027 
1028 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1029 			       struct bpf_reg_state *reg);
1030 
1031 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1032 {
1033 	if (!env->allow_ptr_leaks)
1034 		__mark_reg_not_init(env, reg);
1035 	else
1036 		__mark_reg_unknown(env, reg);
1037 }
1038 
1039 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
1040 				        struct bpf_func_state *state, int spi)
1041 {
1042 	struct bpf_func_state *fstate;
1043 	struct bpf_reg_state *dreg;
1044 	int i, dynptr_id;
1045 
1046 	/* We always ensure that STACK_DYNPTR is never set partially,
1047 	 * hence just checking for slot_type[0] is enough. This is
1048 	 * different for STACK_SPILL, where it may be only set for
1049 	 * 1 byte, so code has to use is_spilled_reg.
1050 	 */
1051 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
1052 		return 0;
1053 
1054 	/* Reposition spi to first slot */
1055 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1056 		spi = spi + 1;
1057 
1058 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1059 		verbose(env, "cannot overwrite referenced dynptr\n");
1060 		return -EINVAL;
1061 	}
1062 
1063 	mark_stack_slot_scratched(env, spi);
1064 	mark_stack_slot_scratched(env, spi - 1);
1065 
1066 	/* Writing partially to one dynptr stack slot destroys both. */
1067 	for (i = 0; i < BPF_REG_SIZE; i++) {
1068 		state->stack[spi].slot_type[i] = STACK_INVALID;
1069 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
1070 	}
1071 
1072 	dynptr_id = state->stack[spi].spilled_ptr.id;
1073 	/* Invalidate any slices associated with this dynptr */
1074 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
1075 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
1076 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
1077 			continue;
1078 		if (dreg->dynptr_id == dynptr_id)
1079 			mark_reg_invalid(env, dreg);
1080 	}));
1081 
1082 	/* Do not release reference state, we are destroying dynptr on stack,
1083 	 * not using some helper to release it. Just reset register.
1084 	 */
1085 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
1086 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
1087 
1088 	/* Same reason as unmark_stack_slots_dynptr above */
1089 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1090 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1091 
1092 	return 0;
1093 }
1094 
1095 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1096 {
1097 	int spi;
1098 
1099 	if (reg->type == CONST_PTR_TO_DYNPTR)
1100 		return false;
1101 
1102 	spi = dynptr_get_spi(env, reg);
1103 
1104 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
1105 	 * error because this just means the stack state hasn't been updated yet.
1106 	 * We will do check_mem_access to check and update stack bounds later.
1107 	 */
1108 	if (spi < 0 && spi != -ERANGE)
1109 		return false;
1110 
1111 	/* We don't need to check if the stack slots are marked by previous
1112 	 * dynptr initializations because we allow overwriting existing unreferenced
1113 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
1114 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
1115 	 * touching are completely destructed before we reinitialize them for a new
1116 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
1117 	 * instead of delaying it until the end where the user will get "Unreleased
1118 	 * reference" error.
1119 	 */
1120 	return true;
1121 }
1122 
1123 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1124 {
1125 	struct bpf_func_state *state = func(env, reg);
1126 	int i, spi;
1127 
1128 	/* This already represents first slot of initialized bpf_dynptr.
1129 	 *
1130 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
1131 	 * check_func_arg_reg_off's logic, so we don't need to check its
1132 	 * offset and alignment.
1133 	 */
1134 	if (reg->type == CONST_PTR_TO_DYNPTR)
1135 		return true;
1136 
1137 	spi = dynptr_get_spi(env, reg);
1138 	if (spi < 0)
1139 		return false;
1140 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1141 		return false;
1142 
1143 	for (i = 0; i < BPF_REG_SIZE; i++) {
1144 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
1145 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
1146 			return false;
1147 	}
1148 
1149 	return true;
1150 }
1151 
1152 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1153 				    enum bpf_arg_type arg_type)
1154 {
1155 	struct bpf_func_state *state = func(env, reg);
1156 	enum bpf_dynptr_type dynptr_type;
1157 	int spi;
1158 
1159 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1160 	if (arg_type == ARG_PTR_TO_DYNPTR)
1161 		return true;
1162 
1163 	dynptr_type = arg_to_dynptr_type(arg_type);
1164 	if (reg->type == CONST_PTR_TO_DYNPTR) {
1165 		return reg->dynptr.type == dynptr_type;
1166 	} else {
1167 		spi = dynptr_get_spi(env, reg);
1168 		if (spi < 0)
1169 			return false;
1170 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1171 	}
1172 }
1173 
1174 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1175 
1176 static bool in_rcu_cs(struct bpf_verifier_env *env);
1177 
1178 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta);
1179 
1180 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1181 				 struct bpf_kfunc_call_arg_meta *meta,
1182 				 struct bpf_reg_state *reg, int insn_idx,
1183 				 struct btf *btf, u32 btf_id, int nr_slots)
1184 {
1185 	struct bpf_func_state *state = func(env, reg);
1186 	int spi, i, j, id;
1187 
1188 	spi = iter_get_spi(env, reg, nr_slots);
1189 	if (spi < 0)
1190 		return spi;
1191 
1192 	id = acquire_reference_state(env, insn_idx);
1193 	if (id < 0)
1194 		return id;
1195 
1196 	for (i = 0; i < nr_slots; i++) {
1197 		struct bpf_stack_state *slot = &state->stack[spi - i];
1198 		struct bpf_reg_state *st = &slot->spilled_ptr;
1199 
1200 		__mark_reg_known_zero(st);
1201 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1202 		if (is_kfunc_rcu_protected(meta)) {
1203 			if (in_rcu_cs(env))
1204 				st->type |= MEM_RCU;
1205 			else
1206 				st->type |= PTR_UNTRUSTED;
1207 		}
1208 		st->live |= REG_LIVE_WRITTEN;
1209 		st->ref_obj_id = i == 0 ? id : 0;
1210 		st->iter.btf = btf;
1211 		st->iter.btf_id = btf_id;
1212 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1213 		st->iter.depth = 0;
1214 
1215 		for (j = 0; j < BPF_REG_SIZE; j++)
1216 			slot->slot_type[j] = STACK_ITER;
1217 
1218 		mark_stack_slot_scratched(env, spi - i);
1219 	}
1220 
1221 	return 0;
1222 }
1223 
1224 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1225 				   struct bpf_reg_state *reg, int nr_slots)
1226 {
1227 	struct bpf_func_state *state = func(env, reg);
1228 	int spi, i, j;
1229 
1230 	spi = iter_get_spi(env, reg, nr_slots);
1231 	if (spi < 0)
1232 		return spi;
1233 
1234 	for (i = 0; i < nr_slots; i++) {
1235 		struct bpf_stack_state *slot = &state->stack[spi - i];
1236 		struct bpf_reg_state *st = &slot->spilled_ptr;
1237 
1238 		if (i == 0)
1239 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1240 
1241 		__mark_reg_not_init(env, st);
1242 
1243 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1244 		st->live |= REG_LIVE_WRITTEN;
1245 
1246 		for (j = 0; j < BPF_REG_SIZE; j++)
1247 			slot->slot_type[j] = STACK_INVALID;
1248 
1249 		mark_stack_slot_scratched(env, spi - i);
1250 	}
1251 
1252 	return 0;
1253 }
1254 
1255 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1256 				     struct bpf_reg_state *reg, int nr_slots)
1257 {
1258 	struct bpf_func_state *state = func(env, reg);
1259 	int spi, i, j;
1260 
1261 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1262 	 * will do check_mem_access to check and update stack bounds later, so
1263 	 * return true for that case.
1264 	 */
1265 	spi = iter_get_spi(env, reg, nr_slots);
1266 	if (spi == -ERANGE)
1267 		return true;
1268 	if (spi < 0)
1269 		return false;
1270 
1271 	for (i = 0; i < nr_slots; i++) {
1272 		struct bpf_stack_state *slot = &state->stack[spi - i];
1273 
1274 		for (j = 0; j < BPF_REG_SIZE; j++)
1275 			if (slot->slot_type[j] == STACK_ITER)
1276 				return false;
1277 	}
1278 
1279 	return true;
1280 }
1281 
1282 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1283 				   struct btf *btf, u32 btf_id, int nr_slots)
1284 {
1285 	struct bpf_func_state *state = func(env, reg);
1286 	int spi, i, j;
1287 
1288 	spi = iter_get_spi(env, reg, nr_slots);
1289 	if (spi < 0)
1290 		return -EINVAL;
1291 
1292 	for (i = 0; i < nr_slots; i++) {
1293 		struct bpf_stack_state *slot = &state->stack[spi - i];
1294 		struct bpf_reg_state *st = &slot->spilled_ptr;
1295 
1296 		if (st->type & PTR_UNTRUSTED)
1297 			return -EPROTO;
1298 		/* only main (first) slot has ref_obj_id set */
1299 		if (i == 0 && !st->ref_obj_id)
1300 			return -EINVAL;
1301 		if (i != 0 && st->ref_obj_id)
1302 			return -EINVAL;
1303 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1304 			return -EINVAL;
1305 
1306 		for (j = 0; j < BPF_REG_SIZE; j++)
1307 			if (slot->slot_type[j] != STACK_ITER)
1308 				return -EINVAL;
1309 	}
1310 
1311 	return 0;
1312 }
1313 
1314 /* Check if given stack slot is "special":
1315  *   - spilled register state (STACK_SPILL);
1316  *   - dynptr state (STACK_DYNPTR);
1317  *   - iter state (STACK_ITER).
1318  */
1319 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1320 {
1321 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1322 
1323 	switch (type) {
1324 	case STACK_SPILL:
1325 	case STACK_DYNPTR:
1326 	case STACK_ITER:
1327 		return true;
1328 	case STACK_INVALID:
1329 	case STACK_MISC:
1330 	case STACK_ZERO:
1331 		return false;
1332 	default:
1333 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1334 		return true;
1335 	}
1336 }
1337 
1338 /* The reg state of a pointer or a bounded scalar was saved when
1339  * it was spilled to the stack.
1340  */
1341 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1342 {
1343 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1344 }
1345 
1346 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1347 {
1348 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1349 	       stack->spilled_ptr.type == SCALAR_VALUE;
1350 }
1351 
1352 static void scrub_spilled_slot(u8 *stype)
1353 {
1354 	if (*stype != STACK_INVALID)
1355 		*stype = STACK_MISC;
1356 }
1357 
1358 static void print_scalar_ranges(struct bpf_verifier_env *env,
1359 				const struct bpf_reg_state *reg,
1360 				const char **sep)
1361 {
1362 	struct {
1363 		const char *name;
1364 		u64 val;
1365 		bool omit;
1366 	} minmaxs[] = {
1367 		{"smin",   reg->smin_value,         reg->smin_value == S64_MIN},
1368 		{"smax",   reg->smax_value,         reg->smax_value == S64_MAX},
1369 		{"umin",   reg->umin_value,         reg->umin_value == 0},
1370 		{"umax",   reg->umax_value,         reg->umax_value == U64_MAX},
1371 		{"smin32", (s64)reg->s32_min_value, reg->s32_min_value == S32_MIN},
1372 		{"smax32", (s64)reg->s32_max_value, reg->s32_max_value == S32_MAX},
1373 		{"umin32", reg->u32_min_value,      reg->u32_min_value == 0},
1374 		{"umax32", reg->u32_max_value,      reg->u32_max_value == U32_MAX},
1375 	}, *m1, *m2, *mend = &minmaxs[ARRAY_SIZE(minmaxs)];
1376 	bool neg1, neg2;
1377 
1378 	for (m1 = &minmaxs[0]; m1 < mend; m1++) {
1379 		if (m1->omit)
1380 			continue;
1381 
1382 		neg1 = m1->name[0] == 's' && (s64)m1->val < 0;
1383 
1384 		verbose(env, "%s%s=", *sep, m1->name);
1385 		*sep = ",";
1386 
1387 		for (m2 = m1 + 2; m2 < mend; m2 += 2) {
1388 			if (m2->omit || m2->val != m1->val)
1389 				continue;
1390 			/* don't mix negatives with positives */
1391 			neg2 = m2->name[0] == 's' && (s64)m2->val < 0;
1392 			if (neg2 != neg1)
1393 				continue;
1394 			m2->omit = true;
1395 			verbose(env, "%s=", m2->name);
1396 		}
1397 
1398 		verbose(env, m1->name[0] == 's' ? "%lld" : "%llu", m1->val);
1399 	}
1400 }
1401 
1402 static void print_verifier_state(struct bpf_verifier_env *env,
1403 				 const struct bpf_func_state *state,
1404 				 bool print_all)
1405 {
1406 	const struct bpf_reg_state *reg;
1407 	enum bpf_reg_type t;
1408 	int i;
1409 
1410 	if (state->frameno)
1411 		verbose(env, " frame%d:", state->frameno);
1412 	for (i = 0; i < MAX_BPF_REG; i++) {
1413 		reg = &state->regs[i];
1414 		t = reg->type;
1415 		if (t == NOT_INIT)
1416 			continue;
1417 		if (!print_all && !reg_scratched(env, i))
1418 			continue;
1419 		verbose(env, " R%d", i);
1420 		print_liveness(env, reg->live);
1421 		verbose(env, "=");
1422 		if (t == SCALAR_VALUE && reg->precise)
1423 			verbose(env, "P");
1424 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1425 		    tnum_is_const(reg->var_off)) {
1426 			/* reg->off should be 0 for SCALAR_VALUE */
1427 			verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1428 			verbose(env, "%lld", reg->var_off.value + reg->off);
1429 		} else {
1430 			const char *sep = "";
1431 
1432 			verbose(env, "%s", reg_type_str(env, t));
1433 			if (base_type(t) == PTR_TO_BTF_ID)
1434 				verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
1435 			verbose(env, "(");
1436 /*
1437  * _a stands for append, was shortened to avoid multiline statements below.
1438  * This macro is used to output a comma separated list of attributes.
1439  */
1440 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1441 
1442 			if (reg->id)
1443 				verbose_a("id=%d", reg->id);
1444 			if (reg->ref_obj_id)
1445 				verbose_a("ref_obj_id=%d", reg->ref_obj_id);
1446 			if (type_is_non_owning_ref(reg->type))
1447 				verbose_a("%s", "non_own_ref");
1448 			if (t != SCALAR_VALUE)
1449 				verbose_a("off=%d", reg->off);
1450 			if (type_is_pkt_pointer(t))
1451 				verbose_a("r=%d", reg->range);
1452 			else if (base_type(t) == CONST_PTR_TO_MAP ||
1453 				 base_type(t) == PTR_TO_MAP_KEY ||
1454 				 base_type(t) == PTR_TO_MAP_VALUE)
1455 				verbose_a("ks=%d,vs=%d",
1456 					  reg->map_ptr->key_size,
1457 					  reg->map_ptr->value_size);
1458 			if (tnum_is_const(reg->var_off)) {
1459 				/* Typically an immediate SCALAR_VALUE, but
1460 				 * could be a pointer whose offset is too big
1461 				 * for reg->off
1462 				 */
1463 				verbose_a("imm=%llx", reg->var_off.value);
1464 			} else {
1465 				print_scalar_ranges(env, reg, &sep);
1466 				if (!tnum_is_unknown(reg->var_off)) {
1467 					char tn_buf[48];
1468 
1469 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1470 					verbose_a("var_off=%s", tn_buf);
1471 				}
1472 			}
1473 #undef verbose_a
1474 
1475 			verbose(env, ")");
1476 		}
1477 	}
1478 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1479 		char types_buf[BPF_REG_SIZE + 1];
1480 		bool valid = false;
1481 		int j;
1482 
1483 		for (j = 0; j < BPF_REG_SIZE; j++) {
1484 			if (state->stack[i].slot_type[j] != STACK_INVALID)
1485 				valid = true;
1486 			types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1487 		}
1488 		types_buf[BPF_REG_SIZE] = 0;
1489 		if (!valid)
1490 			continue;
1491 		if (!print_all && !stack_slot_scratched(env, i))
1492 			continue;
1493 		switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
1494 		case STACK_SPILL:
1495 			reg = &state->stack[i].spilled_ptr;
1496 			t = reg->type;
1497 
1498 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1499 			print_liveness(env, reg->live);
1500 			verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1501 			if (t == SCALAR_VALUE && reg->precise)
1502 				verbose(env, "P");
1503 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1504 				verbose(env, "%lld", reg->var_off.value + reg->off);
1505 			break;
1506 		case STACK_DYNPTR:
1507 			i += BPF_DYNPTR_NR_SLOTS - 1;
1508 			reg = &state->stack[i].spilled_ptr;
1509 
1510 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1511 			print_liveness(env, reg->live);
1512 			verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type));
1513 			if (reg->ref_obj_id)
1514 				verbose(env, "(ref_id=%d)", reg->ref_obj_id);
1515 			break;
1516 		case STACK_ITER:
1517 			/* only main slot has ref_obj_id set; skip others */
1518 			reg = &state->stack[i].spilled_ptr;
1519 			if (!reg->ref_obj_id)
1520 				continue;
1521 
1522 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1523 			print_liveness(env, reg->live);
1524 			verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
1525 				iter_type_str(reg->iter.btf, reg->iter.btf_id),
1526 				reg->ref_obj_id, iter_state_str(reg->iter.state),
1527 				reg->iter.depth);
1528 			break;
1529 		case STACK_MISC:
1530 		case STACK_ZERO:
1531 		default:
1532 			reg = &state->stack[i].spilled_ptr;
1533 
1534 			for (j = 0; j < BPF_REG_SIZE; j++)
1535 				types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1536 			types_buf[BPF_REG_SIZE] = 0;
1537 
1538 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1539 			print_liveness(env, reg->live);
1540 			verbose(env, "=%s", types_buf);
1541 			break;
1542 		}
1543 	}
1544 	if (state->acquired_refs && state->refs[0].id) {
1545 		verbose(env, " refs=%d", state->refs[0].id);
1546 		for (i = 1; i < state->acquired_refs; i++)
1547 			if (state->refs[i].id)
1548 				verbose(env, ",%d", state->refs[i].id);
1549 	}
1550 	if (state->in_callback_fn)
1551 		verbose(env, " cb");
1552 	if (state->in_async_callback_fn)
1553 		verbose(env, " async_cb");
1554 	verbose(env, "\n");
1555 	if (!print_all)
1556 		mark_verifier_state_clean(env);
1557 }
1558 
1559 static inline u32 vlog_alignment(u32 pos)
1560 {
1561 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1562 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1563 }
1564 
1565 static void print_insn_state(struct bpf_verifier_env *env,
1566 			     const struct bpf_func_state *state)
1567 {
1568 	if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) {
1569 		/* remove new line character */
1570 		bpf_vlog_reset(&env->log, env->prev_log_pos - 1);
1571 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' ');
1572 	} else {
1573 		verbose(env, "%d:", env->insn_idx);
1574 	}
1575 	print_verifier_state(env, state, false);
1576 }
1577 
1578 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1579  * small to hold src. This is different from krealloc since we don't want to preserve
1580  * the contents of dst.
1581  *
1582  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1583  * not be allocated.
1584  */
1585 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1586 {
1587 	size_t alloc_bytes;
1588 	void *orig = dst;
1589 	size_t bytes;
1590 
1591 	if (ZERO_OR_NULL_PTR(src))
1592 		goto out;
1593 
1594 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1595 		return NULL;
1596 
1597 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1598 	dst = krealloc(orig, alloc_bytes, flags);
1599 	if (!dst) {
1600 		kfree(orig);
1601 		return NULL;
1602 	}
1603 
1604 	memcpy(dst, src, bytes);
1605 out:
1606 	return dst ? dst : ZERO_SIZE_PTR;
1607 }
1608 
1609 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1610  * small to hold new_n items. new items are zeroed out if the array grows.
1611  *
1612  * Contrary to krealloc_array, does not free arr if new_n is zero.
1613  */
1614 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1615 {
1616 	size_t alloc_size;
1617 	void *new_arr;
1618 
1619 	if (!new_n || old_n == new_n)
1620 		goto out;
1621 
1622 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1623 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1624 	if (!new_arr) {
1625 		kfree(arr);
1626 		return NULL;
1627 	}
1628 	arr = new_arr;
1629 
1630 	if (new_n > old_n)
1631 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1632 
1633 out:
1634 	return arr ? arr : ZERO_SIZE_PTR;
1635 }
1636 
1637 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1638 {
1639 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1640 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1641 	if (!dst->refs)
1642 		return -ENOMEM;
1643 
1644 	dst->acquired_refs = src->acquired_refs;
1645 	return 0;
1646 }
1647 
1648 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1649 {
1650 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1651 
1652 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1653 				GFP_KERNEL);
1654 	if (!dst->stack)
1655 		return -ENOMEM;
1656 
1657 	dst->allocated_stack = src->allocated_stack;
1658 	return 0;
1659 }
1660 
1661 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1662 {
1663 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1664 				    sizeof(struct bpf_reference_state));
1665 	if (!state->refs)
1666 		return -ENOMEM;
1667 
1668 	state->acquired_refs = n;
1669 	return 0;
1670 }
1671 
1672 static int grow_stack_state(struct bpf_func_state *state, int size)
1673 {
1674 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1675 
1676 	if (old_n >= n)
1677 		return 0;
1678 
1679 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1680 	if (!state->stack)
1681 		return -ENOMEM;
1682 
1683 	state->allocated_stack = size;
1684 	return 0;
1685 }
1686 
1687 /* Acquire a pointer id from the env and update the state->refs to include
1688  * this new pointer reference.
1689  * On success, returns a valid pointer id to associate with the register
1690  * On failure, returns a negative errno.
1691  */
1692 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1693 {
1694 	struct bpf_func_state *state = cur_func(env);
1695 	int new_ofs = state->acquired_refs;
1696 	int id, err;
1697 
1698 	err = resize_reference_state(state, state->acquired_refs + 1);
1699 	if (err)
1700 		return err;
1701 	id = ++env->id_gen;
1702 	state->refs[new_ofs].id = id;
1703 	state->refs[new_ofs].insn_idx = insn_idx;
1704 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1705 
1706 	return id;
1707 }
1708 
1709 /* release function corresponding to acquire_reference_state(). Idempotent. */
1710 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1711 {
1712 	int i, last_idx;
1713 
1714 	last_idx = state->acquired_refs - 1;
1715 	for (i = 0; i < state->acquired_refs; i++) {
1716 		if (state->refs[i].id == ptr_id) {
1717 			/* Cannot release caller references in callbacks */
1718 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1719 				return -EINVAL;
1720 			if (last_idx && i != last_idx)
1721 				memcpy(&state->refs[i], &state->refs[last_idx],
1722 				       sizeof(*state->refs));
1723 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1724 			state->acquired_refs--;
1725 			return 0;
1726 		}
1727 	}
1728 	return -EINVAL;
1729 }
1730 
1731 static void free_func_state(struct bpf_func_state *state)
1732 {
1733 	if (!state)
1734 		return;
1735 	kfree(state->refs);
1736 	kfree(state->stack);
1737 	kfree(state);
1738 }
1739 
1740 static void clear_jmp_history(struct bpf_verifier_state *state)
1741 {
1742 	kfree(state->jmp_history);
1743 	state->jmp_history = NULL;
1744 	state->jmp_history_cnt = 0;
1745 }
1746 
1747 static void free_verifier_state(struct bpf_verifier_state *state,
1748 				bool free_self)
1749 {
1750 	int i;
1751 
1752 	for (i = 0; i <= state->curframe; i++) {
1753 		free_func_state(state->frame[i]);
1754 		state->frame[i] = NULL;
1755 	}
1756 	clear_jmp_history(state);
1757 	if (free_self)
1758 		kfree(state);
1759 }
1760 
1761 /* copy verifier state from src to dst growing dst stack space
1762  * when necessary to accommodate larger src stack
1763  */
1764 static int copy_func_state(struct bpf_func_state *dst,
1765 			   const struct bpf_func_state *src)
1766 {
1767 	int err;
1768 
1769 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1770 	err = copy_reference_state(dst, src);
1771 	if (err)
1772 		return err;
1773 	return copy_stack_state(dst, src);
1774 }
1775 
1776 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1777 			       const struct bpf_verifier_state *src)
1778 {
1779 	struct bpf_func_state *dst;
1780 	int i, err;
1781 
1782 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1783 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1784 					    GFP_USER);
1785 	if (!dst_state->jmp_history)
1786 		return -ENOMEM;
1787 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1788 
1789 	/* if dst has more stack frames then src frame, free them, this is also
1790 	 * necessary in case of exceptional exits using bpf_throw.
1791 	 */
1792 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1793 		free_func_state(dst_state->frame[i]);
1794 		dst_state->frame[i] = NULL;
1795 	}
1796 	dst_state->speculative = src->speculative;
1797 	dst_state->active_rcu_lock = src->active_rcu_lock;
1798 	dst_state->curframe = src->curframe;
1799 	dst_state->active_lock.ptr = src->active_lock.ptr;
1800 	dst_state->active_lock.id = src->active_lock.id;
1801 	dst_state->branches = src->branches;
1802 	dst_state->parent = src->parent;
1803 	dst_state->first_insn_idx = src->first_insn_idx;
1804 	dst_state->last_insn_idx = src->last_insn_idx;
1805 	dst_state->dfs_depth = src->dfs_depth;
1806 	dst_state->used_as_loop_entry = src->used_as_loop_entry;
1807 	for (i = 0; i <= src->curframe; i++) {
1808 		dst = dst_state->frame[i];
1809 		if (!dst) {
1810 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1811 			if (!dst)
1812 				return -ENOMEM;
1813 			dst_state->frame[i] = dst;
1814 		}
1815 		err = copy_func_state(dst, src->frame[i]);
1816 		if (err)
1817 			return err;
1818 	}
1819 	return 0;
1820 }
1821 
1822 static u32 state_htab_size(struct bpf_verifier_env *env)
1823 {
1824 	return env->prog->len;
1825 }
1826 
1827 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx)
1828 {
1829 	struct bpf_verifier_state *cur = env->cur_state;
1830 	struct bpf_func_state *state = cur->frame[cur->curframe];
1831 
1832 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1833 }
1834 
1835 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1836 {
1837 	int fr;
1838 
1839 	if (a->curframe != b->curframe)
1840 		return false;
1841 
1842 	for (fr = a->curframe; fr >= 0; fr--)
1843 		if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1844 			return false;
1845 
1846 	return true;
1847 }
1848 
1849 /* Open coded iterators allow back-edges in the state graph in order to
1850  * check unbounded loops that iterators.
1851  *
1852  * In is_state_visited() it is necessary to know if explored states are
1853  * part of some loops in order to decide whether non-exact states
1854  * comparison could be used:
1855  * - non-exact states comparison establishes sub-state relation and uses
1856  *   read and precision marks to do so, these marks are propagated from
1857  *   children states and thus are not guaranteed to be final in a loop;
1858  * - exact states comparison just checks if current and explored states
1859  *   are identical (and thus form a back-edge).
1860  *
1861  * Paper "A New Algorithm for Identifying Loops in Decompilation"
1862  * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient
1863  * algorithm for loop structure detection and gives an overview of
1864  * relevant terminology. It also has helpful illustrations.
1865  *
1866  * [1] https://api.semanticscholar.org/CorpusID:15784067
1867  *
1868  * We use a similar algorithm but because loop nested structure is
1869  * irrelevant for verifier ours is significantly simpler and resembles
1870  * strongly connected components algorithm from Sedgewick's textbook.
1871  *
1872  * Define topmost loop entry as a first node of the loop traversed in a
1873  * depth first search starting from initial state. The goal of the loop
1874  * tracking algorithm is to associate topmost loop entries with states
1875  * derived from these entries.
1876  *
1877  * For each step in the DFS states traversal algorithm needs to identify
1878  * the following situations:
1879  *
1880  *          initial                     initial                   initial
1881  *            |                           |                         |
1882  *            V                           V                         V
1883  *           ...                         ...           .---------> hdr
1884  *            |                           |            |            |
1885  *            V                           V            |            V
1886  *           cur                     .-> succ          |    .------...
1887  *            |                      |    |            |    |       |
1888  *            V                      |    V            |    V       V
1889  *           succ                    '-- cur           |   ...     ...
1890  *                                                     |    |       |
1891  *                                                     |    V       V
1892  *                                                     |   succ <- cur
1893  *                                                     |    |
1894  *                                                     |    V
1895  *                                                     |   ...
1896  *                                                     |    |
1897  *                                                     '----'
1898  *
1899  *  (A) successor state of cur   (B) successor state of cur or it's entry
1900  *      not yet traversed            are in current DFS path, thus cur and succ
1901  *                                   are members of the same outermost loop
1902  *
1903  *                      initial                  initial
1904  *                        |                        |
1905  *                        V                        V
1906  *                       ...                      ...
1907  *                        |                        |
1908  *                        V                        V
1909  *                .------...               .------...
1910  *                |       |                |       |
1911  *                V       V                V       V
1912  *           .-> hdr     ...              ...     ...
1913  *           |    |       |                |       |
1914  *           |    V       V                V       V
1915  *           |   succ <- cur              succ <- cur
1916  *           |    |                        |
1917  *           |    V                        V
1918  *           |   ...                      ...
1919  *           |    |                        |
1920  *           '----'                       exit
1921  *
1922  * (C) successor state of cur is a part of some loop but this loop
1923  *     does not include cur or successor state is not in a loop at all.
1924  *
1925  * Algorithm could be described as the following python code:
1926  *
1927  *     traversed = set()   # Set of traversed nodes
1928  *     entries = {}        # Mapping from node to loop entry
1929  *     depths = {}         # Depth level assigned to graph node
1930  *     path = set()        # Current DFS path
1931  *
1932  *     # Find outermost loop entry known for n
1933  *     def get_loop_entry(n):
1934  *         h = entries.get(n, None)
1935  *         while h in entries and entries[h] != h:
1936  *             h = entries[h]
1937  *         return h
1938  *
1939  *     # Update n's loop entry if h's outermost entry comes
1940  *     # before n's outermost entry in current DFS path.
1941  *     def update_loop_entry(n, h):
1942  *         n1 = get_loop_entry(n) or n
1943  *         h1 = get_loop_entry(h) or h
1944  *         if h1 in path and depths[h1] <= depths[n1]:
1945  *             entries[n] = h1
1946  *
1947  *     def dfs(n, depth):
1948  *         traversed.add(n)
1949  *         path.add(n)
1950  *         depths[n] = depth
1951  *         for succ in G.successors(n):
1952  *             if succ not in traversed:
1953  *                 # Case A: explore succ and update cur's loop entry
1954  *                 #         only if succ's entry is in current DFS path.
1955  *                 dfs(succ, depth + 1)
1956  *                 h = get_loop_entry(succ)
1957  *                 update_loop_entry(n, h)
1958  *             else:
1959  *                 # Case B or C depending on `h1 in path` check in update_loop_entry().
1960  *                 update_loop_entry(n, succ)
1961  *         path.remove(n)
1962  *
1963  * To adapt this algorithm for use with verifier:
1964  * - use st->branch == 0 as a signal that DFS of succ had been finished
1965  *   and cur's loop entry has to be updated (case A), handle this in
1966  *   update_branch_counts();
1967  * - use st->branch > 0 as a signal that st is in the current DFS path;
1968  * - handle cases B and C in is_state_visited();
1969  * - update topmost loop entry for intermediate states in get_loop_entry().
1970  */
1971 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st)
1972 {
1973 	struct bpf_verifier_state *topmost = st->loop_entry, *old;
1974 
1975 	while (topmost && topmost->loop_entry && topmost != topmost->loop_entry)
1976 		topmost = topmost->loop_entry;
1977 	/* Update loop entries for intermediate states to avoid this
1978 	 * traversal in future get_loop_entry() calls.
1979 	 */
1980 	while (st && st->loop_entry != topmost) {
1981 		old = st->loop_entry;
1982 		st->loop_entry = topmost;
1983 		st = old;
1984 	}
1985 	return topmost;
1986 }
1987 
1988 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr)
1989 {
1990 	struct bpf_verifier_state *cur1, *hdr1;
1991 
1992 	cur1 = get_loop_entry(cur) ?: cur;
1993 	hdr1 = get_loop_entry(hdr) ?: hdr;
1994 	/* The head1->branches check decides between cases B and C in
1995 	 * comment for get_loop_entry(). If hdr1->branches == 0 then
1996 	 * head's topmost loop entry is not in current DFS path,
1997 	 * hence 'cur' and 'hdr' are not in the same loop and there is
1998 	 * no need to update cur->loop_entry.
1999 	 */
2000 	if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) {
2001 		cur->loop_entry = hdr;
2002 		hdr->used_as_loop_entry = true;
2003 	}
2004 }
2005 
2006 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
2007 {
2008 	while (st) {
2009 		u32 br = --st->branches;
2010 
2011 		/* br == 0 signals that DFS exploration for 'st' is finished,
2012 		 * thus it is necessary to update parent's loop entry if it
2013 		 * turned out that st is a part of some loop.
2014 		 * This is a part of 'case A' in get_loop_entry() comment.
2015 		 */
2016 		if (br == 0 && st->parent && st->loop_entry)
2017 			update_loop_entry(st->parent, st->loop_entry);
2018 
2019 		/* WARN_ON(br > 1) technically makes sense here,
2020 		 * but see comment in push_stack(), hence:
2021 		 */
2022 		WARN_ONCE((int)br < 0,
2023 			  "BUG update_branch_counts:branches_to_explore=%d\n",
2024 			  br);
2025 		if (br)
2026 			break;
2027 		st = st->parent;
2028 	}
2029 }
2030 
2031 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
2032 		     int *insn_idx, bool pop_log)
2033 {
2034 	struct bpf_verifier_state *cur = env->cur_state;
2035 	struct bpf_verifier_stack_elem *elem, *head = env->head;
2036 	int err;
2037 
2038 	if (env->head == NULL)
2039 		return -ENOENT;
2040 
2041 	if (cur) {
2042 		err = copy_verifier_state(cur, &head->st);
2043 		if (err)
2044 			return err;
2045 	}
2046 	if (pop_log)
2047 		bpf_vlog_reset(&env->log, head->log_pos);
2048 	if (insn_idx)
2049 		*insn_idx = head->insn_idx;
2050 	if (prev_insn_idx)
2051 		*prev_insn_idx = head->prev_insn_idx;
2052 	elem = head->next;
2053 	free_verifier_state(&head->st, false);
2054 	kfree(head);
2055 	env->head = elem;
2056 	env->stack_size--;
2057 	return 0;
2058 }
2059 
2060 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
2061 					     int insn_idx, int prev_insn_idx,
2062 					     bool speculative)
2063 {
2064 	struct bpf_verifier_state *cur = env->cur_state;
2065 	struct bpf_verifier_stack_elem *elem;
2066 	int err;
2067 
2068 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2069 	if (!elem)
2070 		goto err;
2071 
2072 	elem->insn_idx = insn_idx;
2073 	elem->prev_insn_idx = prev_insn_idx;
2074 	elem->next = env->head;
2075 	elem->log_pos = env->log.end_pos;
2076 	env->head = elem;
2077 	env->stack_size++;
2078 	err = copy_verifier_state(&elem->st, cur);
2079 	if (err)
2080 		goto err;
2081 	elem->st.speculative |= speculative;
2082 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2083 		verbose(env, "The sequence of %d jumps is too complex.\n",
2084 			env->stack_size);
2085 		goto err;
2086 	}
2087 	if (elem->st.parent) {
2088 		++elem->st.parent->branches;
2089 		/* WARN_ON(branches > 2) technically makes sense here,
2090 		 * but
2091 		 * 1. speculative states will bump 'branches' for non-branch
2092 		 * instructions
2093 		 * 2. is_state_visited() heuristics may decide not to create
2094 		 * a new state for a sequence of branches and all such current
2095 		 * and cloned states will be pointing to a single parent state
2096 		 * which might have large 'branches' count.
2097 		 */
2098 	}
2099 	return &elem->st;
2100 err:
2101 	free_verifier_state(env->cur_state, true);
2102 	env->cur_state = NULL;
2103 	/* pop all elements and return */
2104 	while (!pop_stack(env, NULL, NULL, false));
2105 	return NULL;
2106 }
2107 
2108 #define CALLER_SAVED_REGS 6
2109 static const int caller_saved[CALLER_SAVED_REGS] = {
2110 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
2111 };
2112 
2113 /* This helper doesn't clear reg->id */
2114 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2115 {
2116 	reg->var_off = tnum_const(imm);
2117 	reg->smin_value = (s64)imm;
2118 	reg->smax_value = (s64)imm;
2119 	reg->umin_value = imm;
2120 	reg->umax_value = imm;
2121 
2122 	reg->s32_min_value = (s32)imm;
2123 	reg->s32_max_value = (s32)imm;
2124 	reg->u32_min_value = (u32)imm;
2125 	reg->u32_max_value = (u32)imm;
2126 }
2127 
2128 /* Mark the unknown part of a register (variable offset or scalar value) as
2129  * known to have the value @imm.
2130  */
2131 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2132 {
2133 	/* Clear off and union(map_ptr, range) */
2134 	memset(((u8 *)reg) + sizeof(reg->type), 0,
2135 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
2136 	reg->id = 0;
2137 	reg->ref_obj_id = 0;
2138 	___mark_reg_known(reg, imm);
2139 }
2140 
2141 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
2142 {
2143 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
2144 	reg->s32_min_value = (s32)imm;
2145 	reg->s32_max_value = (s32)imm;
2146 	reg->u32_min_value = (u32)imm;
2147 	reg->u32_max_value = (u32)imm;
2148 }
2149 
2150 /* Mark the 'variable offset' part of a register as zero.  This should be
2151  * used only on registers holding a pointer type.
2152  */
2153 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
2154 {
2155 	__mark_reg_known(reg, 0);
2156 }
2157 
2158 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
2159 {
2160 	__mark_reg_known(reg, 0);
2161 	reg->type = SCALAR_VALUE;
2162 }
2163 
2164 static void mark_reg_known_zero(struct bpf_verifier_env *env,
2165 				struct bpf_reg_state *regs, u32 regno)
2166 {
2167 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2168 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
2169 		/* Something bad happened, let's kill all regs */
2170 		for (regno = 0; regno < MAX_BPF_REG; regno++)
2171 			__mark_reg_not_init(env, regs + regno);
2172 		return;
2173 	}
2174 	__mark_reg_known_zero(regs + regno);
2175 }
2176 
2177 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
2178 			      bool first_slot, int dynptr_id)
2179 {
2180 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
2181 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
2182 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
2183 	 */
2184 	__mark_reg_known_zero(reg);
2185 	reg->type = CONST_PTR_TO_DYNPTR;
2186 	/* Give each dynptr a unique id to uniquely associate slices to it. */
2187 	reg->id = dynptr_id;
2188 	reg->dynptr.type = type;
2189 	reg->dynptr.first_slot = first_slot;
2190 }
2191 
2192 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
2193 {
2194 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
2195 		const struct bpf_map *map = reg->map_ptr;
2196 
2197 		if (map->inner_map_meta) {
2198 			reg->type = CONST_PTR_TO_MAP;
2199 			reg->map_ptr = map->inner_map_meta;
2200 			/* transfer reg's id which is unique for every map_lookup_elem
2201 			 * as UID of the inner map.
2202 			 */
2203 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
2204 				reg->map_uid = reg->id;
2205 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
2206 			reg->type = PTR_TO_XDP_SOCK;
2207 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
2208 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
2209 			reg->type = PTR_TO_SOCKET;
2210 		} else {
2211 			reg->type = PTR_TO_MAP_VALUE;
2212 		}
2213 		return;
2214 	}
2215 
2216 	reg->type &= ~PTR_MAYBE_NULL;
2217 }
2218 
2219 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
2220 				struct btf_field_graph_root *ds_head)
2221 {
2222 	__mark_reg_known_zero(&regs[regno]);
2223 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
2224 	regs[regno].btf = ds_head->btf;
2225 	regs[regno].btf_id = ds_head->value_btf_id;
2226 	regs[regno].off = ds_head->node_offset;
2227 }
2228 
2229 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
2230 {
2231 	return type_is_pkt_pointer(reg->type);
2232 }
2233 
2234 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
2235 {
2236 	return reg_is_pkt_pointer(reg) ||
2237 	       reg->type == PTR_TO_PACKET_END;
2238 }
2239 
2240 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
2241 {
2242 	return base_type(reg->type) == PTR_TO_MEM &&
2243 		(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
2244 }
2245 
2246 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
2247 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
2248 				    enum bpf_reg_type which)
2249 {
2250 	/* The register can already have a range from prior markings.
2251 	 * This is fine as long as it hasn't been advanced from its
2252 	 * origin.
2253 	 */
2254 	return reg->type == which &&
2255 	       reg->id == 0 &&
2256 	       reg->off == 0 &&
2257 	       tnum_equals_const(reg->var_off, 0);
2258 }
2259 
2260 /* Reset the min/max bounds of a register */
2261 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2262 {
2263 	reg->smin_value = S64_MIN;
2264 	reg->smax_value = S64_MAX;
2265 	reg->umin_value = 0;
2266 	reg->umax_value = U64_MAX;
2267 
2268 	reg->s32_min_value = S32_MIN;
2269 	reg->s32_max_value = S32_MAX;
2270 	reg->u32_min_value = 0;
2271 	reg->u32_max_value = U32_MAX;
2272 }
2273 
2274 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2275 {
2276 	reg->smin_value = S64_MIN;
2277 	reg->smax_value = S64_MAX;
2278 	reg->umin_value = 0;
2279 	reg->umax_value = U64_MAX;
2280 }
2281 
2282 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2283 {
2284 	reg->s32_min_value = S32_MIN;
2285 	reg->s32_max_value = S32_MAX;
2286 	reg->u32_min_value = 0;
2287 	reg->u32_max_value = U32_MAX;
2288 }
2289 
2290 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2291 {
2292 	struct tnum var32_off = tnum_subreg(reg->var_off);
2293 
2294 	/* min signed is max(sign bit) | min(other bits) */
2295 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
2296 			var32_off.value | (var32_off.mask & S32_MIN));
2297 	/* max signed is min(sign bit) | max(other bits) */
2298 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
2299 			var32_off.value | (var32_off.mask & S32_MAX));
2300 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2301 	reg->u32_max_value = min(reg->u32_max_value,
2302 				 (u32)(var32_off.value | var32_off.mask));
2303 }
2304 
2305 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2306 {
2307 	/* min signed is max(sign bit) | min(other bits) */
2308 	reg->smin_value = max_t(s64, reg->smin_value,
2309 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
2310 	/* max signed is min(sign bit) | max(other bits) */
2311 	reg->smax_value = min_t(s64, reg->smax_value,
2312 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
2313 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
2314 	reg->umax_value = min(reg->umax_value,
2315 			      reg->var_off.value | reg->var_off.mask);
2316 }
2317 
2318 static void __update_reg_bounds(struct bpf_reg_state *reg)
2319 {
2320 	__update_reg32_bounds(reg);
2321 	__update_reg64_bounds(reg);
2322 }
2323 
2324 /* Uses signed min/max values to inform unsigned, and vice-versa */
2325 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2326 {
2327 	/* Learn sign from signed bounds.
2328 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2329 	 * are the same, so combine.  This works even in the negative case, e.g.
2330 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2331 	 */
2332 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
2333 		reg->s32_min_value = reg->u32_min_value =
2334 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2335 		reg->s32_max_value = reg->u32_max_value =
2336 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2337 		return;
2338 	}
2339 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2340 	 * boundary, so we must be careful.
2341 	 */
2342 	if ((s32)reg->u32_max_value >= 0) {
2343 		/* Positive.  We can't learn anything from the smin, but smax
2344 		 * is positive, hence safe.
2345 		 */
2346 		reg->s32_min_value = reg->u32_min_value;
2347 		reg->s32_max_value = reg->u32_max_value =
2348 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2349 	} else if ((s32)reg->u32_min_value < 0) {
2350 		/* Negative.  We can't learn anything from the smax, but smin
2351 		 * is negative, hence safe.
2352 		 */
2353 		reg->s32_min_value = reg->u32_min_value =
2354 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2355 		reg->s32_max_value = reg->u32_max_value;
2356 	}
2357 }
2358 
2359 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2360 {
2361 	/* Learn sign from signed bounds.
2362 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2363 	 * are the same, so combine.  This works even in the negative case, e.g.
2364 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2365 	 */
2366 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
2367 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2368 							  reg->umin_value);
2369 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2370 							  reg->umax_value);
2371 		return;
2372 	}
2373 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2374 	 * boundary, so we must be careful.
2375 	 */
2376 	if ((s64)reg->umax_value >= 0) {
2377 		/* Positive.  We can't learn anything from the smin, but smax
2378 		 * is positive, hence safe.
2379 		 */
2380 		reg->smin_value = reg->umin_value;
2381 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2382 							  reg->umax_value);
2383 	} else if ((s64)reg->umin_value < 0) {
2384 		/* Negative.  We can't learn anything from the smax, but smin
2385 		 * is negative, hence safe.
2386 		 */
2387 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2388 							  reg->umin_value);
2389 		reg->smax_value = reg->umax_value;
2390 	}
2391 }
2392 
2393 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2394 {
2395 	__reg32_deduce_bounds(reg);
2396 	__reg64_deduce_bounds(reg);
2397 }
2398 
2399 /* Attempts to improve var_off based on unsigned min/max information */
2400 static void __reg_bound_offset(struct bpf_reg_state *reg)
2401 {
2402 	struct tnum var64_off = tnum_intersect(reg->var_off,
2403 					       tnum_range(reg->umin_value,
2404 							  reg->umax_value));
2405 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2406 					       tnum_range(reg->u32_min_value,
2407 							  reg->u32_max_value));
2408 
2409 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2410 }
2411 
2412 static void reg_bounds_sync(struct bpf_reg_state *reg)
2413 {
2414 	/* We might have learned new bounds from the var_off. */
2415 	__update_reg_bounds(reg);
2416 	/* We might have learned something about the sign bit. */
2417 	__reg_deduce_bounds(reg);
2418 	/* We might have learned some bits from the bounds. */
2419 	__reg_bound_offset(reg);
2420 	/* Intersecting with the old var_off might have improved our bounds
2421 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2422 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2423 	 */
2424 	__update_reg_bounds(reg);
2425 }
2426 
2427 static bool __reg32_bound_s64(s32 a)
2428 {
2429 	return a >= 0 && a <= S32_MAX;
2430 }
2431 
2432 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2433 {
2434 	reg->umin_value = reg->u32_min_value;
2435 	reg->umax_value = reg->u32_max_value;
2436 
2437 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2438 	 * be positive otherwise set to worse case bounds and refine later
2439 	 * from tnum.
2440 	 */
2441 	if (__reg32_bound_s64(reg->s32_min_value) &&
2442 	    __reg32_bound_s64(reg->s32_max_value)) {
2443 		reg->smin_value = reg->s32_min_value;
2444 		reg->smax_value = reg->s32_max_value;
2445 	} else {
2446 		reg->smin_value = 0;
2447 		reg->smax_value = U32_MAX;
2448 	}
2449 }
2450 
2451 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
2452 {
2453 	/* special case when 64-bit register has upper 32-bit register
2454 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
2455 	 * allowing us to use 32-bit bounds directly,
2456 	 */
2457 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
2458 		__reg_assign_32_into_64(reg);
2459 	} else {
2460 		/* Otherwise the best we can do is push lower 32bit known and
2461 		 * unknown bits into register (var_off set from jmp logic)
2462 		 * then learn as much as possible from the 64-bit tnum
2463 		 * known and unknown bits. The previous smin/smax bounds are
2464 		 * invalid here because of jmp32 compare so mark them unknown
2465 		 * so they do not impact tnum bounds calculation.
2466 		 */
2467 		__mark_reg64_unbounded(reg);
2468 	}
2469 	reg_bounds_sync(reg);
2470 }
2471 
2472 static bool __reg64_bound_s32(s64 a)
2473 {
2474 	return a >= S32_MIN && a <= S32_MAX;
2475 }
2476 
2477 static bool __reg64_bound_u32(u64 a)
2478 {
2479 	return a >= U32_MIN && a <= U32_MAX;
2480 }
2481 
2482 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
2483 {
2484 	__mark_reg32_unbounded(reg);
2485 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
2486 		reg->s32_min_value = (s32)reg->smin_value;
2487 		reg->s32_max_value = (s32)reg->smax_value;
2488 	}
2489 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
2490 		reg->u32_min_value = (u32)reg->umin_value;
2491 		reg->u32_max_value = (u32)reg->umax_value;
2492 	}
2493 	reg_bounds_sync(reg);
2494 }
2495 
2496 /* Mark a register as having a completely unknown (scalar) value. */
2497 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2498 			       struct bpf_reg_state *reg)
2499 {
2500 	/*
2501 	 * Clear type, off, and union(map_ptr, range) and
2502 	 * padding between 'type' and union
2503 	 */
2504 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2505 	reg->type = SCALAR_VALUE;
2506 	reg->id = 0;
2507 	reg->ref_obj_id = 0;
2508 	reg->var_off = tnum_unknown;
2509 	reg->frameno = 0;
2510 	reg->precise = !env->bpf_capable;
2511 	__mark_reg_unbounded(reg);
2512 }
2513 
2514 static void mark_reg_unknown(struct bpf_verifier_env *env,
2515 			     struct bpf_reg_state *regs, u32 regno)
2516 {
2517 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2518 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2519 		/* Something bad happened, let's kill all regs except FP */
2520 		for (regno = 0; regno < BPF_REG_FP; regno++)
2521 			__mark_reg_not_init(env, regs + regno);
2522 		return;
2523 	}
2524 	__mark_reg_unknown(env, regs + regno);
2525 }
2526 
2527 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2528 				struct bpf_reg_state *reg)
2529 {
2530 	__mark_reg_unknown(env, reg);
2531 	reg->type = NOT_INIT;
2532 }
2533 
2534 static void mark_reg_not_init(struct bpf_verifier_env *env,
2535 			      struct bpf_reg_state *regs, u32 regno)
2536 {
2537 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2538 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2539 		/* Something bad happened, let's kill all regs except FP */
2540 		for (regno = 0; regno < BPF_REG_FP; regno++)
2541 			__mark_reg_not_init(env, regs + regno);
2542 		return;
2543 	}
2544 	__mark_reg_not_init(env, regs + regno);
2545 }
2546 
2547 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2548 			    struct bpf_reg_state *regs, u32 regno,
2549 			    enum bpf_reg_type reg_type,
2550 			    struct btf *btf, u32 btf_id,
2551 			    enum bpf_type_flag flag)
2552 {
2553 	if (reg_type == SCALAR_VALUE) {
2554 		mark_reg_unknown(env, regs, regno);
2555 		return;
2556 	}
2557 	mark_reg_known_zero(env, regs, regno);
2558 	regs[regno].type = PTR_TO_BTF_ID | flag;
2559 	regs[regno].btf = btf;
2560 	regs[regno].btf_id = btf_id;
2561 }
2562 
2563 #define DEF_NOT_SUBREG	(0)
2564 static void init_reg_state(struct bpf_verifier_env *env,
2565 			   struct bpf_func_state *state)
2566 {
2567 	struct bpf_reg_state *regs = state->regs;
2568 	int i;
2569 
2570 	for (i = 0; i < MAX_BPF_REG; i++) {
2571 		mark_reg_not_init(env, regs, i);
2572 		regs[i].live = REG_LIVE_NONE;
2573 		regs[i].parent = NULL;
2574 		regs[i].subreg_def = DEF_NOT_SUBREG;
2575 	}
2576 
2577 	/* frame pointer */
2578 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2579 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2580 	regs[BPF_REG_FP].frameno = state->frameno;
2581 }
2582 
2583 #define BPF_MAIN_FUNC (-1)
2584 static void init_func_state(struct bpf_verifier_env *env,
2585 			    struct bpf_func_state *state,
2586 			    int callsite, int frameno, int subprogno)
2587 {
2588 	state->callsite = callsite;
2589 	state->frameno = frameno;
2590 	state->subprogno = subprogno;
2591 	state->callback_ret_range = tnum_range(0, 0);
2592 	init_reg_state(env, state);
2593 	mark_verifier_state_scratched(env);
2594 }
2595 
2596 /* Similar to push_stack(), but for async callbacks */
2597 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2598 						int insn_idx, int prev_insn_idx,
2599 						int subprog)
2600 {
2601 	struct bpf_verifier_stack_elem *elem;
2602 	struct bpf_func_state *frame;
2603 
2604 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2605 	if (!elem)
2606 		goto err;
2607 
2608 	elem->insn_idx = insn_idx;
2609 	elem->prev_insn_idx = prev_insn_idx;
2610 	elem->next = env->head;
2611 	elem->log_pos = env->log.end_pos;
2612 	env->head = elem;
2613 	env->stack_size++;
2614 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2615 		verbose(env,
2616 			"The sequence of %d jumps is too complex for async cb.\n",
2617 			env->stack_size);
2618 		goto err;
2619 	}
2620 	/* Unlike push_stack() do not copy_verifier_state().
2621 	 * The caller state doesn't matter.
2622 	 * This is async callback. It starts in a fresh stack.
2623 	 * Initialize it similar to do_check_common().
2624 	 */
2625 	elem->st.branches = 1;
2626 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2627 	if (!frame)
2628 		goto err;
2629 	init_func_state(env, frame,
2630 			BPF_MAIN_FUNC /* callsite */,
2631 			0 /* frameno within this callchain */,
2632 			subprog /* subprog number within this prog */);
2633 	elem->st.frame[0] = frame;
2634 	return &elem->st;
2635 err:
2636 	free_verifier_state(env->cur_state, true);
2637 	env->cur_state = NULL;
2638 	/* pop all elements and return */
2639 	while (!pop_stack(env, NULL, NULL, false));
2640 	return NULL;
2641 }
2642 
2643 
2644 enum reg_arg_type {
2645 	SRC_OP,		/* register is used as source operand */
2646 	DST_OP,		/* register is used as destination operand */
2647 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2648 };
2649 
2650 static int cmp_subprogs(const void *a, const void *b)
2651 {
2652 	return ((struct bpf_subprog_info *)a)->start -
2653 	       ((struct bpf_subprog_info *)b)->start;
2654 }
2655 
2656 static int find_subprog(struct bpf_verifier_env *env, int off)
2657 {
2658 	struct bpf_subprog_info *p;
2659 
2660 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2661 		    sizeof(env->subprog_info[0]), cmp_subprogs);
2662 	if (!p)
2663 		return -ENOENT;
2664 	return p - env->subprog_info;
2665 
2666 }
2667 
2668 static int add_subprog(struct bpf_verifier_env *env, int off)
2669 {
2670 	int insn_cnt = env->prog->len;
2671 	int ret;
2672 
2673 	if (off >= insn_cnt || off < 0) {
2674 		verbose(env, "call to invalid destination\n");
2675 		return -EINVAL;
2676 	}
2677 	ret = find_subprog(env, off);
2678 	if (ret >= 0)
2679 		return ret;
2680 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2681 		verbose(env, "too many subprograms\n");
2682 		return -E2BIG;
2683 	}
2684 	/* determine subprog starts. The end is one before the next starts */
2685 	env->subprog_info[env->subprog_cnt++].start = off;
2686 	sort(env->subprog_info, env->subprog_cnt,
2687 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2688 	return env->subprog_cnt - 1;
2689 }
2690 
2691 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env)
2692 {
2693 	struct bpf_prog_aux *aux = env->prog->aux;
2694 	struct btf *btf = aux->btf;
2695 	const struct btf_type *t;
2696 	u32 main_btf_id, id;
2697 	const char *name;
2698 	int ret, i;
2699 
2700 	/* Non-zero func_info_cnt implies valid btf */
2701 	if (!aux->func_info_cnt)
2702 		return 0;
2703 	main_btf_id = aux->func_info[0].type_id;
2704 
2705 	t = btf_type_by_id(btf, main_btf_id);
2706 	if (!t) {
2707 		verbose(env, "invalid btf id for main subprog in func_info\n");
2708 		return -EINVAL;
2709 	}
2710 
2711 	name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:");
2712 	if (IS_ERR(name)) {
2713 		ret = PTR_ERR(name);
2714 		/* If there is no tag present, there is no exception callback */
2715 		if (ret == -ENOENT)
2716 			ret = 0;
2717 		else if (ret == -EEXIST)
2718 			verbose(env, "multiple exception callback tags for main subprog\n");
2719 		return ret;
2720 	}
2721 
2722 	ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC);
2723 	if (ret < 0) {
2724 		verbose(env, "exception callback '%s' could not be found in BTF\n", name);
2725 		return ret;
2726 	}
2727 	id = ret;
2728 	t = btf_type_by_id(btf, id);
2729 	if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
2730 		verbose(env, "exception callback '%s' must have global linkage\n", name);
2731 		return -EINVAL;
2732 	}
2733 	ret = 0;
2734 	for (i = 0; i < aux->func_info_cnt; i++) {
2735 		if (aux->func_info[i].type_id != id)
2736 			continue;
2737 		ret = aux->func_info[i].insn_off;
2738 		/* Further func_info and subprog checks will also happen
2739 		 * later, so assume this is the right insn_off for now.
2740 		 */
2741 		if (!ret) {
2742 			verbose(env, "invalid exception callback insn_off in func_info: 0\n");
2743 			ret = -EINVAL;
2744 		}
2745 	}
2746 	if (!ret) {
2747 		verbose(env, "exception callback type id not found in func_info\n");
2748 		ret = -EINVAL;
2749 	}
2750 	return ret;
2751 }
2752 
2753 #define MAX_KFUNC_DESCS 256
2754 #define MAX_KFUNC_BTFS	256
2755 
2756 struct bpf_kfunc_desc {
2757 	struct btf_func_model func_model;
2758 	u32 func_id;
2759 	s32 imm;
2760 	u16 offset;
2761 	unsigned long addr;
2762 };
2763 
2764 struct bpf_kfunc_btf {
2765 	struct btf *btf;
2766 	struct module *module;
2767 	u16 offset;
2768 };
2769 
2770 struct bpf_kfunc_desc_tab {
2771 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2772 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
2773 	 * available, therefore at the end of verification do_misc_fixups()
2774 	 * sorts this by imm and offset.
2775 	 */
2776 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2777 	u32 nr_descs;
2778 };
2779 
2780 struct bpf_kfunc_btf_tab {
2781 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2782 	u32 nr_descs;
2783 };
2784 
2785 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2786 {
2787 	const struct bpf_kfunc_desc *d0 = a;
2788 	const struct bpf_kfunc_desc *d1 = b;
2789 
2790 	/* func_id is not greater than BTF_MAX_TYPE */
2791 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2792 }
2793 
2794 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2795 {
2796 	const struct bpf_kfunc_btf *d0 = a;
2797 	const struct bpf_kfunc_btf *d1 = b;
2798 
2799 	return d0->offset - d1->offset;
2800 }
2801 
2802 static const struct bpf_kfunc_desc *
2803 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2804 {
2805 	struct bpf_kfunc_desc desc = {
2806 		.func_id = func_id,
2807 		.offset = offset,
2808 	};
2809 	struct bpf_kfunc_desc_tab *tab;
2810 
2811 	tab = prog->aux->kfunc_tab;
2812 	return bsearch(&desc, tab->descs, tab->nr_descs,
2813 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2814 }
2815 
2816 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2817 		       u16 btf_fd_idx, u8 **func_addr)
2818 {
2819 	const struct bpf_kfunc_desc *desc;
2820 
2821 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2822 	if (!desc)
2823 		return -EFAULT;
2824 
2825 	*func_addr = (u8 *)desc->addr;
2826 	return 0;
2827 }
2828 
2829 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2830 					 s16 offset)
2831 {
2832 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2833 	struct bpf_kfunc_btf_tab *tab;
2834 	struct bpf_kfunc_btf *b;
2835 	struct module *mod;
2836 	struct btf *btf;
2837 	int btf_fd;
2838 
2839 	tab = env->prog->aux->kfunc_btf_tab;
2840 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2841 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2842 	if (!b) {
2843 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2844 			verbose(env, "too many different module BTFs\n");
2845 			return ERR_PTR(-E2BIG);
2846 		}
2847 
2848 		if (bpfptr_is_null(env->fd_array)) {
2849 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2850 			return ERR_PTR(-EPROTO);
2851 		}
2852 
2853 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2854 					    offset * sizeof(btf_fd),
2855 					    sizeof(btf_fd)))
2856 			return ERR_PTR(-EFAULT);
2857 
2858 		btf = btf_get_by_fd(btf_fd);
2859 		if (IS_ERR(btf)) {
2860 			verbose(env, "invalid module BTF fd specified\n");
2861 			return btf;
2862 		}
2863 
2864 		if (!btf_is_module(btf)) {
2865 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2866 			btf_put(btf);
2867 			return ERR_PTR(-EINVAL);
2868 		}
2869 
2870 		mod = btf_try_get_module(btf);
2871 		if (!mod) {
2872 			btf_put(btf);
2873 			return ERR_PTR(-ENXIO);
2874 		}
2875 
2876 		b = &tab->descs[tab->nr_descs++];
2877 		b->btf = btf;
2878 		b->module = mod;
2879 		b->offset = offset;
2880 
2881 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2882 		     kfunc_btf_cmp_by_off, NULL);
2883 	}
2884 	return b->btf;
2885 }
2886 
2887 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2888 {
2889 	if (!tab)
2890 		return;
2891 
2892 	while (tab->nr_descs--) {
2893 		module_put(tab->descs[tab->nr_descs].module);
2894 		btf_put(tab->descs[tab->nr_descs].btf);
2895 	}
2896 	kfree(tab);
2897 }
2898 
2899 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2900 {
2901 	if (offset) {
2902 		if (offset < 0) {
2903 			/* In the future, this can be allowed to increase limit
2904 			 * of fd index into fd_array, interpreted as u16.
2905 			 */
2906 			verbose(env, "negative offset disallowed for kernel module function call\n");
2907 			return ERR_PTR(-EINVAL);
2908 		}
2909 
2910 		return __find_kfunc_desc_btf(env, offset);
2911 	}
2912 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2913 }
2914 
2915 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2916 {
2917 	const struct btf_type *func, *func_proto;
2918 	struct bpf_kfunc_btf_tab *btf_tab;
2919 	struct bpf_kfunc_desc_tab *tab;
2920 	struct bpf_prog_aux *prog_aux;
2921 	struct bpf_kfunc_desc *desc;
2922 	const char *func_name;
2923 	struct btf *desc_btf;
2924 	unsigned long call_imm;
2925 	unsigned long addr;
2926 	int err;
2927 
2928 	prog_aux = env->prog->aux;
2929 	tab = prog_aux->kfunc_tab;
2930 	btf_tab = prog_aux->kfunc_btf_tab;
2931 	if (!tab) {
2932 		if (!btf_vmlinux) {
2933 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2934 			return -ENOTSUPP;
2935 		}
2936 
2937 		if (!env->prog->jit_requested) {
2938 			verbose(env, "JIT is required for calling kernel function\n");
2939 			return -ENOTSUPP;
2940 		}
2941 
2942 		if (!bpf_jit_supports_kfunc_call()) {
2943 			verbose(env, "JIT does not support calling kernel function\n");
2944 			return -ENOTSUPP;
2945 		}
2946 
2947 		if (!env->prog->gpl_compatible) {
2948 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2949 			return -EINVAL;
2950 		}
2951 
2952 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2953 		if (!tab)
2954 			return -ENOMEM;
2955 		prog_aux->kfunc_tab = tab;
2956 	}
2957 
2958 	/* func_id == 0 is always invalid, but instead of returning an error, be
2959 	 * conservative and wait until the code elimination pass before returning
2960 	 * error, so that invalid calls that get pruned out can be in BPF programs
2961 	 * loaded from userspace.  It is also required that offset be untouched
2962 	 * for such calls.
2963 	 */
2964 	if (!func_id && !offset)
2965 		return 0;
2966 
2967 	if (!btf_tab && offset) {
2968 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2969 		if (!btf_tab)
2970 			return -ENOMEM;
2971 		prog_aux->kfunc_btf_tab = btf_tab;
2972 	}
2973 
2974 	desc_btf = find_kfunc_desc_btf(env, offset);
2975 	if (IS_ERR(desc_btf)) {
2976 		verbose(env, "failed to find BTF for kernel function\n");
2977 		return PTR_ERR(desc_btf);
2978 	}
2979 
2980 	if (find_kfunc_desc(env->prog, func_id, offset))
2981 		return 0;
2982 
2983 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2984 		verbose(env, "too many different kernel function calls\n");
2985 		return -E2BIG;
2986 	}
2987 
2988 	func = btf_type_by_id(desc_btf, func_id);
2989 	if (!func || !btf_type_is_func(func)) {
2990 		verbose(env, "kernel btf_id %u is not a function\n",
2991 			func_id);
2992 		return -EINVAL;
2993 	}
2994 	func_proto = btf_type_by_id(desc_btf, func->type);
2995 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2996 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2997 			func_id);
2998 		return -EINVAL;
2999 	}
3000 
3001 	func_name = btf_name_by_offset(desc_btf, func->name_off);
3002 	addr = kallsyms_lookup_name(func_name);
3003 	if (!addr) {
3004 		verbose(env, "cannot find address for kernel function %s\n",
3005 			func_name);
3006 		return -EINVAL;
3007 	}
3008 	specialize_kfunc(env, func_id, offset, &addr);
3009 
3010 	if (bpf_jit_supports_far_kfunc_call()) {
3011 		call_imm = func_id;
3012 	} else {
3013 		call_imm = BPF_CALL_IMM(addr);
3014 		/* Check whether the relative offset overflows desc->imm */
3015 		if ((unsigned long)(s32)call_imm != call_imm) {
3016 			verbose(env, "address of kernel function %s is out of range\n",
3017 				func_name);
3018 			return -EINVAL;
3019 		}
3020 	}
3021 
3022 	if (bpf_dev_bound_kfunc_id(func_id)) {
3023 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
3024 		if (err)
3025 			return err;
3026 	}
3027 
3028 	desc = &tab->descs[tab->nr_descs++];
3029 	desc->func_id = func_id;
3030 	desc->imm = call_imm;
3031 	desc->offset = offset;
3032 	desc->addr = addr;
3033 	err = btf_distill_func_proto(&env->log, desc_btf,
3034 				     func_proto, func_name,
3035 				     &desc->func_model);
3036 	if (!err)
3037 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3038 		     kfunc_desc_cmp_by_id_off, NULL);
3039 	return err;
3040 }
3041 
3042 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
3043 {
3044 	const struct bpf_kfunc_desc *d0 = a;
3045 	const struct bpf_kfunc_desc *d1 = b;
3046 
3047 	if (d0->imm != d1->imm)
3048 		return d0->imm < d1->imm ? -1 : 1;
3049 	if (d0->offset != d1->offset)
3050 		return d0->offset < d1->offset ? -1 : 1;
3051 	return 0;
3052 }
3053 
3054 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
3055 {
3056 	struct bpf_kfunc_desc_tab *tab;
3057 
3058 	tab = prog->aux->kfunc_tab;
3059 	if (!tab)
3060 		return;
3061 
3062 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3063 	     kfunc_desc_cmp_by_imm_off, NULL);
3064 }
3065 
3066 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
3067 {
3068 	return !!prog->aux->kfunc_tab;
3069 }
3070 
3071 const struct btf_func_model *
3072 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
3073 			 const struct bpf_insn *insn)
3074 {
3075 	const struct bpf_kfunc_desc desc = {
3076 		.imm = insn->imm,
3077 		.offset = insn->off,
3078 	};
3079 	const struct bpf_kfunc_desc *res;
3080 	struct bpf_kfunc_desc_tab *tab;
3081 
3082 	tab = prog->aux->kfunc_tab;
3083 	res = bsearch(&desc, tab->descs, tab->nr_descs,
3084 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
3085 
3086 	return res ? &res->func_model : NULL;
3087 }
3088 
3089 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
3090 {
3091 	struct bpf_subprog_info *subprog = env->subprog_info;
3092 	int i, ret, insn_cnt = env->prog->len, ex_cb_insn;
3093 	struct bpf_insn *insn = env->prog->insnsi;
3094 
3095 	/* Add entry function. */
3096 	ret = add_subprog(env, 0);
3097 	if (ret)
3098 		return ret;
3099 
3100 	for (i = 0; i < insn_cnt; i++, insn++) {
3101 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
3102 		    !bpf_pseudo_kfunc_call(insn))
3103 			continue;
3104 
3105 		if (!env->bpf_capable) {
3106 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
3107 			return -EPERM;
3108 		}
3109 
3110 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
3111 			ret = add_subprog(env, i + insn->imm + 1);
3112 		else
3113 			ret = add_kfunc_call(env, insn->imm, insn->off);
3114 
3115 		if (ret < 0)
3116 			return ret;
3117 	}
3118 
3119 	ret = bpf_find_exception_callback_insn_off(env);
3120 	if (ret < 0)
3121 		return ret;
3122 	ex_cb_insn = ret;
3123 
3124 	/* If ex_cb_insn > 0, this means that the main program has a subprog
3125 	 * marked using BTF decl tag to serve as the exception callback.
3126 	 */
3127 	if (ex_cb_insn) {
3128 		ret = add_subprog(env, ex_cb_insn);
3129 		if (ret < 0)
3130 			return ret;
3131 		for (i = 1; i < env->subprog_cnt; i++) {
3132 			if (env->subprog_info[i].start != ex_cb_insn)
3133 				continue;
3134 			env->exception_callback_subprog = i;
3135 			break;
3136 		}
3137 	}
3138 
3139 	/* Add a fake 'exit' subprog which could simplify subprog iteration
3140 	 * logic. 'subprog_cnt' should not be increased.
3141 	 */
3142 	subprog[env->subprog_cnt].start = insn_cnt;
3143 
3144 	if (env->log.level & BPF_LOG_LEVEL2)
3145 		for (i = 0; i < env->subprog_cnt; i++)
3146 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
3147 
3148 	return 0;
3149 }
3150 
3151 static int check_subprogs(struct bpf_verifier_env *env)
3152 {
3153 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
3154 	struct bpf_subprog_info *subprog = env->subprog_info;
3155 	struct bpf_insn *insn = env->prog->insnsi;
3156 	int insn_cnt = env->prog->len;
3157 
3158 	/* now check that all jumps are within the same subprog */
3159 	subprog_start = subprog[cur_subprog].start;
3160 	subprog_end = subprog[cur_subprog + 1].start;
3161 	for (i = 0; i < insn_cnt; i++) {
3162 		u8 code = insn[i].code;
3163 
3164 		if (code == (BPF_JMP | BPF_CALL) &&
3165 		    insn[i].src_reg == 0 &&
3166 		    insn[i].imm == BPF_FUNC_tail_call)
3167 			subprog[cur_subprog].has_tail_call = true;
3168 		if (BPF_CLASS(code) == BPF_LD &&
3169 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
3170 			subprog[cur_subprog].has_ld_abs = true;
3171 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
3172 			goto next;
3173 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
3174 			goto next;
3175 		if (code == (BPF_JMP32 | BPF_JA))
3176 			off = i + insn[i].imm + 1;
3177 		else
3178 			off = i + insn[i].off + 1;
3179 		if (off < subprog_start || off >= subprog_end) {
3180 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
3181 			return -EINVAL;
3182 		}
3183 next:
3184 		if (i == subprog_end - 1) {
3185 			/* to avoid fall-through from one subprog into another
3186 			 * the last insn of the subprog should be either exit
3187 			 * or unconditional jump back or bpf_throw call
3188 			 */
3189 			if (code != (BPF_JMP | BPF_EXIT) &&
3190 			    code != (BPF_JMP32 | BPF_JA) &&
3191 			    code != (BPF_JMP | BPF_JA)) {
3192 				verbose(env, "last insn is not an exit or jmp\n");
3193 				return -EINVAL;
3194 			}
3195 			subprog_start = subprog_end;
3196 			cur_subprog++;
3197 			if (cur_subprog < env->subprog_cnt)
3198 				subprog_end = subprog[cur_subprog + 1].start;
3199 		}
3200 	}
3201 	return 0;
3202 }
3203 
3204 /* Parentage chain of this register (or stack slot) should take care of all
3205  * issues like callee-saved registers, stack slot allocation time, etc.
3206  */
3207 static int mark_reg_read(struct bpf_verifier_env *env,
3208 			 const struct bpf_reg_state *state,
3209 			 struct bpf_reg_state *parent, u8 flag)
3210 {
3211 	bool writes = parent == state->parent; /* Observe write marks */
3212 	int cnt = 0;
3213 
3214 	while (parent) {
3215 		/* if read wasn't screened by an earlier write ... */
3216 		if (writes && state->live & REG_LIVE_WRITTEN)
3217 			break;
3218 		if (parent->live & REG_LIVE_DONE) {
3219 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
3220 				reg_type_str(env, parent->type),
3221 				parent->var_off.value, parent->off);
3222 			return -EFAULT;
3223 		}
3224 		/* The first condition is more likely to be true than the
3225 		 * second, checked it first.
3226 		 */
3227 		if ((parent->live & REG_LIVE_READ) == flag ||
3228 		    parent->live & REG_LIVE_READ64)
3229 			/* The parentage chain never changes and
3230 			 * this parent was already marked as LIVE_READ.
3231 			 * There is no need to keep walking the chain again and
3232 			 * keep re-marking all parents as LIVE_READ.
3233 			 * This case happens when the same register is read
3234 			 * multiple times without writes into it in-between.
3235 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
3236 			 * then no need to set the weak REG_LIVE_READ32.
3237 			 */
3238 			break;
3239 		/* ... then we depend on parent's value */
3240 		parent->live |= flag;
3241 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
3242 		if (flag == REG_LIVE_READ64)
3243 			parent->live &= ~REG_LIVE_READ32;
3244 		state = parent;
3245 		parent = state->parent;
3246 		writes = true;
3247 		cnt++;
3248 	}
3249 
3250 	if (env->longest_mark_read_walk < cnt)
3251 		env->longest_mark_read_walk = cnt;
3252 	return 0;
3253 }
3254 
3255 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3256 {
3257 	struct bpf_func_state *state = func(env, reg);
3258 	int spi, ret;
3259 
3260 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
3261 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3262 	 * check_kfunc_call.
3263 	 */
3264 	if (reg->type == CONST_PTR_TO_DYNPTR)
3265 		return 0;
3266 	spi = dynptr_get_spi(env, reg);
3267 	if (spi < 0)
3268 		return spi;
3269 	/* Caller ensures dynptr is valid and initialized, which means spi is in
3270 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3271 	 * read.
3272 	 */
3273 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
3274 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
3275 	if (ret)
3276 		return ret;
3277 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
3278 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
3279 }
3280 
3281 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3282 			  int spi, int nr_slots)
3283 {
3284 	struct bpf_func_state *state = func(env, reg);
3285 	int err, i;
3286 
3287 	for (i = 0; i < nr_slots; i++) {
3288 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
3289 
3290 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
3291 		if (err)
3292 			return err;
3293 
3294 		mark_stack_slot_scratched(env, spi - i);
3295 	}
3296 
3297 	return 0;
3298 }
3299 
3300 /* This function is supposed to be used by the following 32-bit optimization
3301  * code only. It returns TRUE if the source or destination register operates
3302  * on 64-bit, otherwise return FALSE.
3303  */
3304 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
3305 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3306 {
3307 	u8 code, class, op;
3308 
3309 	code = insn->code;
3310 	class = BPF_CLASS(code);
3311 	op = BPF_OP(code);
3312 	if (class == BPF_JMP) {
3313 		/* BPF_EXIT for "main" will reach here. Return TRUE
3314 		 * conservatively.
3315 		 */
3316 		if (op == BPF_EXIT)
3317 			return true;
3318 		if (op == BPF_CALL) {
3319 			/* BPF to BPF call will reach here because of marking
3320 			 * caller saved clobber with DST_OP_NO_MARK for which we
3321 			 * don't care the register def because they are anyway
3322 			 * marked as NOT_INIT already.
3323 			 */
3324 			if (insn->src_reg == BPF_PSEUDO_CALL)
3325 				return false;
3326 			/* Helper call will reach here because of arg type
3327 			 * check, conservatively return TRUE.
3328 			 */
3329 			if (t == SRC_OP)
3330 				return true;
3331 
3332 			return false;
3333 		}
3334 	}
3335 
3336 	if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3337 		return false;
3338 
3339 	if (class == BPF_ALU64 || class == BPF_JMP ||
3340 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3341 		return true;
3342 
3343 	if (class == BPF_ALU || class == BPF_JMP32)
3344 		return false;
3345 
3346 	if (class == BPF_LDX) {
3347 		if (t != SRC_OP)
3348 			return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX;
3349 		/* LDX source must be ptr. */
3350 		return true;
3351 	}
3352 
3353 	if (class == BPF_STX) {
3354 		/* BPF_STX (including atomic variants) has multiple source
3355 		 * operands, one of which is a ptr. Check whether the caller is
3356 		 * asking about it.
3357 		 */
3358 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3359 			return true;
3360 		return BPF_SIZE(code) == BPF_DW;
3361 	}
3362 
3363 	if (class == BPF_LD) {
3364 		u8 mode = BPF_MODE(code);
3365 
3366 		/* LD_IMM64 */
3367 		if (mode == BPF_IMM)
3368 			return true;
3369 
3370 		/* Both LD_IND and LD_ABS return 32-bit data. */
3371 		if (t != SRC_OP)
3372 			return  false;
3373 
3374 		/* Implicit ctx ptr. */
3375 		if (regno == BPF_REG_6)
3376 			return true;
3377 
3378 		/* Explicit source could be any width. */
3379 		return true;
3380 	}
3381 
3382 	if (class == BPF_ST)
3383 		/* The only source register for BPF_ST is a ptr. */
3384 		return true;
3385 
3386 	/* Conservatively return true at default. */
3387 	return true;
3388 }
3389 
3390 /* Return the regno defined by the insn, or -1. */
3391 static int insn_def_regno(const struct bpf_insn *insn)
3392 {
3393 	switch (BPF_CLASS(insn->code)) {
3394 	case BPF_JMP:
3395 	case BPF_JMP32:
3396 	case BPF_ST:
3397 		return -1;
3398 	case BPF_STX:
3399 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3400 		    (insn->imm & BPF_FETCH)) {
3401 			if (insn->imm == BPF_CMPXCHG)
3402 				return BPF_REG_0;
3403 			else
3404 				return insn->src_reg;
3405 		} else {
3406 			return -1;
3407 		}
3408 	default:
3409 		return insn->dst_reg;
3410 	}
3411 }
3412 
3413 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3414 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3415 {
3416 	int dst_reg = insn_def_regno(insn);
3417 
3418 	if (dst_reg == -1)
3419 		return false;
3420 
3421 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3422 }
3423 
3424 static void mark_insn_zext(struct bpf_verifier_env *env,
3425 			   struct bpf_reg_state *reg)
3426 {
3427 	s32 def_idx = reg->subreg_def;
3428 
3429 	if (def_idx == DEF_NOT_SUBREG)
3430 		return;
3431 
3432 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3433 	/* The dst will be zero extended, so won't be sub-register anymore. */
3434 	reg->subreg_def = DEF_NOT_SUBREG;
3435 }
3436 
3437 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3438 			 enum reg_arg_type t)
3439 {
3440 	struct bpf_verifier_state *vstate = env->cur_state;
3441 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3442 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3443 	struct bpf_reg_state *reg, *regs = state->regs;
3444 	bool rw64;
3445 
3446 	if (regno >= MAX_BPF_REG) {
3447 		verbose(env, "R%d is invalid\n", regno);
3448 		return -EINVAL;
3449 	}
3450 
3451 	mark_reg_scratched(env, regno);
3452 
3453 	reg = &regs[regno];
3454 	rw64 = is_reg64(env, insn, regno, reg, t);
3455 	if (t == SRC_OP) {
3456 		/* check whether register used as source operand can be read */
3457 		if (reg->type == NOT_INIT) {
3458 			verbose(env, "R%d !read_ok\n", regno);
3459 			return -EACCES;
3460 		}
3461 		/* We don't need to worry about FP liveness because it's read-only */
3462 		if (regno == BPF_REG_FP)
3463 			return 0;
3464 
3465 		if (rw64)
3466 			mark_insn_zext(env, reg);
3467 
3468 		return mark_reg_read(env, reg, reg->parent,
3469 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3470 	} else {
3471 		/* check whether register used as dest operand can be written to */
3472 		if (regno == BPF_REG_FP) {
3473 			verbose(env, "frame pointer is read only\n");
3474 			return -EACCES;
3475 		}
3476 		reg->live |= REG_LIVE_WRITTEN;
3477 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3478 		if (t == DST_OP)
3479 			mark_reg_unknown(env, regs, regno);
3480 	}
3481 	return 0;
3482 }
3483 
3484 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3485 {
3486 	env->insn_aux_data[idx].jmp_point = true;
3487 }
3488 
3489 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3490 {
3491 	return env->insn_aux_data[insn_idx].jmp_point;
3492 }
3493 
3494 /* for any branch, call, exit record the history of jmps in the given state */
3495 static int push_jmp_history(struct bpf_verifier_env *env,
3496 			    struct bpf_verifier_state *cur)
3497 {
3498 	u32 cnt = cur->jmp_history_cnt;
3499 	struct bpf_idx_pair *p;
3500 	size_t alloc_size;
3501 
3502 	if (!is_jmp_point(env, env->insn_idx))
3503 		return 0;
3504 
3505 	cnt++;
3506 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3507 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3508 	if (!p)
3509 		return -ENOMEM;
3510 	p[cnt - 1].idx = env->insn_idx;
3511 	p[cnt - 1].prev_idx = env->prev_insn_idx;
3512 	cur->jmp_history = p;
3513 	cur->jmp_history_cnt = cnt;
3514 	return 0;
3515 }
3516 
3517 /* Backtrack one insn at a time. If idx is not at the top of recorded
3518  * history then previous instruction came from straight line execution.
3519  */
3520 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3521 			     u32 *history)
3522 {
3523 	u32 cnt = *history;
3524 
3525 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
3526 		i = st->jmp_history[cnt - 1].prev_idx;
3527 		(*history)--;
3528 	} else {
3529 		i--;
3530 	}
3531 	return i;
3532 }
3533 
3534 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3535 {
3536 	const struct btf_type *func;
3537 	struct btf *desc_btf;
3538 
3539 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3540 		return NULL;
3541 
3542 	desc_btf = find_kfunc_desc_btf(data, insn->off);
3543 	if (IS_ERR(desc_btf))
3544 		return "<error>";
3545 
3546 	func = btf_type_by_id(desc_btf, insn->imm);
3547 	return btf_name_by_offset(desc_btf, func->name_off);
3548 }
3549 
3550 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3551 {
3552 	bt->frame = frame;
3553 }
3554 
3555 static inline void bt_reset(struct backtrack_state *bt)
3556 {
3557 	struct bpf_verifier_env *env = bt->env;
3558 
3559 	memset(bt, 0, sizeof(*bt));
3560 	bt->env = env;
3561 }
3562 
3563 static inline u32 bt_empty(struct backtrack_state *bt)
3564 {
3565 	u64 mask = 0;
3566 	int i;
3567 
3568 	for (i = 0; i <= bt->frame; i++)
3569 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
3570 
3571 	return mask == 0;
3572 }
3573 
3574 static inline int bt_subprog_enter(struct backtrack_state *bt)
3575 {
3576 	if (bt->frame == MAX_CALL_FRAMES - 1) {
3577 		verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3578 		WARN_ONCE(1, "verifier backtracking bug");
3579 		return -EFAULT;
3580 	}
3581 	bt->frame++;
3582 	return 0;
3583 }
3584 
3585 static inline int bt_subprog_exit(struct backtrack_state *bt)
3586 {
3587 	if (bt->frame == 0) {
3588 		verbose(bt->env, "BUG subprog exit from frame 0\n");
3589 		WARN_ONCE(1, "verifier backtracking bug");
3590 		return -EFAULT;
3591 	}
3592 	bt->frame--;
3593 	return 0;
3594 }
3595 
3596 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3597 {
3598 	bt->reg_masks[frame] |= 1 << reg;
3599 }
3600 
3601 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3602 {
3603 	bt->reg_masks[frame] &= ~(1 << reg);
3604 }
3605 
3606 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3607 {
3608 	bt_set_frame_reg(bt, bt->frame, reg);
3609 }
3610 
3611 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3612 {
3613 	bt_clear_frame_reg(bt, bt->frame, reg);
3614 }
3615 
3616 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3617 {
3618 	bt->stack_masks[frame] |= 1ull << slot;
3619 }
3620 
3621 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3622 {
3623 	bt->stack_masks[frame] &= ~(1ull << slot);
3624 }
3625 
3626 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot)
3627 {
3628 	bt_set_frame_slot(bt, bt->frame, slot);
3629 }
3630 
3631 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot)
3632 {
3633 	bt_clear_frame_slot(bt, bt->frame, slot);
3634 }
3635 
3636 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3637 {
3638 	return bt->reg_masks[frame];
3639 }
3640 
3641 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3642 {
3643 	return bt->reg_masks[bt->frame];
3644 }
3645 
3646 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3647 {
3648 	return bt->stack_masks[frame];
3649 }
3650 
3651 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3652 {
3653 	return bt->stack_masks[bt->frame];
3654 }
3655 
3656 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3657 {
3658 	return bt->reg_masks[bt->frame] & (1 << reg);
3659 }
3660 
3661 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot)
3662 {
3663 	return bt->stack_masks[bt->frame] & (1ull << slot);
3664 }
3665 
3666 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
3667 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3668 {
3669 	DECLARE_BITMAP(mask, 64);
3670 	bool first = true;
3671 	int i, n;
3672 
3673 	buf[0] = '\0';
3674 
3675 	bitmap_from_u64(mask, reg_mask);
3676 	for_each_set_bit(i, mask, 32) {
3677 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3678 		first = false;
3679 		buf += n;
3680 		buf_sz -= n;
3681 		if (buf_sz < 0)
3682 			break;
3683 	}
3684 }
3685 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
3686 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3687 {
3688 	DECLARE_BITMAP(mask, 64);
3689 	bool first = true;
3690 	int i, n;
3691 
3692 	buf[0] = '\0';
3693 
3694 	bitmap_from_u64(mask, stack_mask);
3695 	for_each_set_bit(i, mask, 64) {
3696 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3697 		first = false;
3698 		buf += n;
3699 		buf_sz -= n;
3700 		if (buf_sz < 0)
3701 			break;
3702 	}
3703 }
3704 
3705 /* For given verifier state backtrack_insn() is called from the last insn to
3706  * the first insn. Its purpose is to compute a bitmask of registers and
3707  * stack slots that needs precision in the parent verifier state.
3708  *
3709  * @idx is an index of the instruction we are currently processing;
3710  * @subseq_idx is an index of the subsequent instruction that:
3711  *   - *would be* executed next, if jump history is viewed in forward order;
3712  *   - *was* processed previously during backtracking.
3713  */
3714 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3715 			  struct backtrack_state *bt)
3716 {
3717 	const struct bpf_insn_cbs cbs = {
3718 		.cb_call	= disasm_kfunc_name,
3719 		.cb_print	= verbose,
3720 		.private_data	= env,
3721 	};
3722 	struct bpf_insn *insn = env->prog->insnsi + idx;
3723 	u8 class = BPF_CLASS(insn->code);
3724 	u8 opcode = BPF_OP(insn->code);
3725 	u8 mode = BPF_MODE(insn->code);
3726 	u32 dreg = insn->dst_reg;
3727 	u32 sreg = insn->src_reg;
3728 	u32 spi, i;
3729 
3730 	if (insn->code == 0)
3731 		return 0;
3732 	if (env->log.level & BPF_LOG_LEVEL2) {
3733 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3734 		verbose(env, "mark_precise: frame%d: regs=%s ",
3735 			bt->frame, env->tmp_str_buf);
3736 		fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3737 		verbose(env, "stack=%s before ", env->tmp_str_buf);
3738 		verbose(env, "%d: ", idx);
3739 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3740 	}
3741 
3742 	if (class == BPF_ALU || class == BPF_ALU64) {
3743 		if (!bt_is_reg_set(bt, dreg))
3744 			return 0;
3745 		if (opcode == BPF_MOV) {
3746 			if (BPF_SRC(insn->code) == BPF_X) {
3747 				/* dreg = sreg or dreg = (s8, s16, s32)sreg
3748 				 * dreg needs precision after this insn
3749 				 * sreg needs precision before this insn
3750 				 */
3751 				bt_clear_reg(bt, dreg);
3752 				bt_set_reg(bt, sreg);
3753 			} else {
3754 				/* dreg = K
3755 				 * dreg needs precision after this insn.
3756 				 * Corresponding register is already marked
3757 				 * as precise=true in this verifier state.
3758 				 * No further markings in parent are necessary
3759 				 */
3760 				bt_clear_reg(bt, dreg);
3761 			}
3762 		} else {
3763 			if (BPF_SRC(insn->code) == BPF_X) {
3764 				/* dreg += sreg
3765 				 * both dreg and sreg need precision
3766 				 * before this insn
3767 				 */
3768 				bt_set_reg(bt, sreg);
3769 			} /* else dreg += K
3770 			   * dreg still needs precision before this insn
3771 			   */
3772 		}
3773 	} else if (class == BPF_LDX) {
3774 		if (!bt_is_reg_set(bt, dreg))
3775 			return 0;
3776 		bt_clear_reg(bt, dreg);
3777 
3778 		/* scalars can only be spilled into stack w/o losing precision.
3779 		 * Load from any other memory can be zero extended.
3780 		 * The desire to keep that precision is already indicated
3781 		 * by 'precise' mark in corresponding register of this state.
3782 		 * No further tracking necessary.
3783 		 */
3784 		if (insn->src_reg != BPF_REG_FP)
3785 			return 0;
3786 
3787 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
3788 		 * that [fp - off] slot contains scalar that needs to be
3789 		 * tracked with precision
3790 		 */
3791 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3792 		if (spi >= 64) {
3793 			verbose(env, "BUG spi %d\n", spi);
3794 			WARN_ONCE(1, "verifier backtracking bug");
3795 			return -EFAULT;
3796 		}
3797 		bt_set_slot(bt, spi);
3798 	} else if (class == BPF_STX || class == BPF_ST) {
3799 		if (bt_is_reg_set(bt, dreg))
3800 			/* stx & st shouldn't be using _scalar_ dst_reg
3801 			 * to access memory. It means backtracking
3802 			 * encountered a case of pointer subtraction.
3803 			 */
3804 			return -ENOTSUPP;
3805 		/* scalars can only be spilled into stack */
3806 		if (insn->dst_reg != BPF_REG_FP)
3807 			return 0;
3808 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3809 		if (spi >= 64) {
3810 			verbose(env, "BUG spi %d\n", spi);
3811 			WARN_ONCE(1, "verifier backtracking bug");
3812 			return -EFAULT;
3813 		}
3814 		if (!bt_is_slot_set(bt, spi))
3815 			return 0;
3816 		bt_clear_slot(bt, spi);
3817 		if (class == BPF_STX)
3818 			bt_set_reg(bt, sreg);
3819 	} else if (class == BPF_JMP || class == BPF_JMP32) {
3820 		if (bpf_pseudo_call(insn)) {
3821 			int subprog_insn_idx, subprog;
3822 
3823 			subprog_insn_idx = idx + insn->imm + 1;
3824 			subprog = find_subprog(env, subprog_insn_idx);
3825 			if (subprog < 0)
3826 				return -EFAULT;
3827 
3828 			if (subprog_is_global(env, subprog)) {
3829 				/* check that jump history doesn't have any
3830 				 * extra instructions from subprog; the next
3831 				 * instruction after call to global subprog
3832 				 * should be literally next instruction in
3833 				 * caller program
3834 				 */
3835 				WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3836 				/* r1-r5 are invalidated after subprog call,
3837 				 * so for global func call it shouldn't be set
3838 				 * anymore
3839 				 */
3840 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3841 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3842 					WARN_ONCE(1, "verifier backtracking bug");
3843 					return -EFAULT;
3844 				}
3845 				/* global subprog always sets R0 */
3846 				bt_clear_reg(bt, BPF_REG_0);
3847 				return 0;
3848 			} else {
3849 				/* static subprog call instruction, which
3850 				 * means that we are exiting current subprog,
3851 				 * so only r1-r5 could be still requested as
3852 				 * precise, r0 and r6-r10 or any stack slot in
3853 				 * the current frame should be zero by now
3854 				 */
3855 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3856 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3857 					WARN_ONCE(1, "verifier backtracking bug");
3858 					return -EFAULT;
3859 				}
3860 				/* we don't track register spills perfectly,
3861 				 * so fallback to force-precise instead of failing */
3862 				if (bt_stack_mask(bt) != 0)
3863 					return -ENOTSUPP;
3864 				/* propagate r1-r5 to the caller */
3865 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3866 					if (bt_is_reg_set(bt, i)) {
3867 						bt_clear_reg(bt, i);
3868 						bt_set_frame_reg(bt, bt->frame - 1, i);
3869 					}
3870 				}
3871 				if (bt_subprog_exit(bt))
3872 					return -EFAULT;
3873 				return 0;
3874 			}
3875 		} else if ((bpf_helper_call(insn) &&
3876 			    is_callback_calling_function(insn->imm) &&
3877 			    !is_async_callback_calling_function(insn->imm)) ||
3878 			   (bpf_pseudo_kfunc_call(insn) && is_callback_calling_kfunc(insn->imm))) {
3879 			/* callback-calling helper or kfunc call, which means
3880 			 * we are exiting from subprog, but unlike the subprog
3881 			 * call handling above, we shouldn't propagate
3882 			 * precision of r1-r5 (if any requested), as they are
3883 			 * not actually arguments passed directly to callback
3884 			 * subprogs
3885 			 */
3886 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3887 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3888 				WARN_ONCE(1, "verifier backtracking bug");
3889 				return -EFAULT;
3890 			}
3891 			if (bt_stack_mask(bt) != 0)
3892 				return -ENOTSUPP;
3893 			/* clear r1-r5 in callback subprog's mask */
3894 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3895 				bt_clear_reg(bt, i);
3896 			if (bt_subprog_exit(bt))
3897 				return -EFAULT;
3898 			return 0;
3899 		} else if (opcode == BPF_CALL) {
3900 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
3901 			 * catch this error later. Make backtracking conservative
3902 			 * with ENOTSUPP.
3903 			 */
3904 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3905 				return -ENOTSUPP;
3906 			/* regular helper call sets R0 */
3907 			bt_clear_reg(bt, BPF_REG_0);
3908 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3909 				/* if backtracing was looking for registers R1-R5
3910 				 * they should have been found already.
3911 				 */
3912 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3913 				WARN_ONCE(1, "verifier backtracking bug");
3914 				return -EFAULT;
3915 			}
3916 		} else if (opcode == BPF_EXIT) {
3917 			bool r0_precise;
3918 
3919 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3920 				/* if backtracing was looking for registers R1-R5
3921 				 * they should have been found already.
3922 				 */
3923 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3924 				WARN_ONCE(1, "verifier backtracking bug");
3925 				return -EFAULT;
3926 			}
3927 
3928 			/* BPF_EXIT in subprog or callback always returns
3929 			 * right after the call instruction, so by checking
3930 			 * whether the instruction at subseq_idx-1 is subprog
3931 			 * call or not we can distinguish actual exit from
3932 			 * *subprog* from exit from *callback*. In the former
3933 			 * case, we need to propagate r0 precision, if
3934 			 * necessary. In the former we never do that.
3935 			 */
3936 			r0_precise = subseq_idx - 1 >= 0 &&
3937 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3938 				     bt_is_reg_set(bt, BPF_REG_0);
3939 
3940 			bt_clear_reg(bt, BPF_REG_0);
3941 			if (bt_subprog_enter(bt))
3942 				return -EFAULT;
3943 
3944 			if (r0_precise)
3945 				bt_set_reg(bt, BPF_REG_0);
3946 			/* r6-r9 and stack slots will stay set in caller frame
3947 			 * bitmasks until we return back from callee(s)
3948 			 */
3949 			return 0;
3950 		} else if (BPF_SRC(insn->code) == BPF_X) {
3951 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
3952 				return 0;
3953 			/* dreg <cond> sreg
3954 			 * Both dreg and sreg need precision before
3955 			 * this insn. If only sreg was marked precise
3956 			 * before it would be equally necessary to
3957 			 * propagate it to dreg.
3958 			 */
3959 			bt_set_reg(bt, dreg);
3960 			bt_set_reg(bt, sreg);
3961 			 /* else dreg <cond> K
3962 			  * Only dreg still needs precision before
3963 			  * this insn, so for the K-based conditional
3964 			  * there is nothing new to be marked.
3965 			  */
3966 		}
3967 	} else if (class == BPF_LD) {
3968 		if (!bt_is_reg_set(bt, dreg))
3969 			return 0;
3970 		bt_clear_reg(bt, dreg);
3971 		/* It's ld_imm64 or ld_abs or ld_ind.
3972 		 * For ld_imm64 no further tracking of precision
3973 		 * into parent is necessary
3974 		 */
3975 		if (mode == BPF_IND || mode == BPF_ABS)
3976 			/* to be analyzed */
3977 			return -ENOTSUPP;
3978 	}
3979 	return 0;
3980 }
3981 
3982 /* the scalar precision tracking algorithm:
3983  * . at the start all registers have precise=false.
3984  * . scalar ranges are tracked as normal through alu and jmp insns.
3985  * . once precise value of the scalar register is used in:
3986  *   .  ptr + scalar alu
3987  *   . if (scalar cond K|scalar)
3988  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
3989  *   backtrack through the verifier states and mark all registers and
3990  *   stack slots with spilled constants that these scalar regisers
3991  *   should be precise.
3992  * . during state pruning two registers (or spilled stack slots)
3993  *   are equivalent if both are not precise.
3994  *
3995  * Note the verifier cannot simply walk register parentage chain,
3996  * since many different registers and stack slots could have been
3997  * used to compute single precise scalar.
3998  *
3999  * The approach of starting with precise=true for all registers and then
4000  * backtrack to mark a register as not precise when the verifier detects
4001  * that program doesn't care about specific value (e.g., when helper
4002  * takes register as ARG_ANYTHING parameter) is not safe.
4003  *
4004  * It's ok to walk single parentage chain of the verifier states.
4005  * It's possible that this backtracking will go all the way till 1st insn.
4006  * All other branches will be explored for needing precision later.
4007  *
4008  * The backtracking needs to deal with cases like:
4009  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
4010  * r9 -= r8
4011  * r5 = r9
4012  * if r5 > 0x79f goto pc+7
4013  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
4014  * r5 += 1
4015  * ...
4016  * call bpf_perf_event_output#25
4017  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
4018  *
4019  * and this case:
4020  * r6 = 1
4021  * call foo // uses callee's r6 inside to compute r0
4022  * r0 += r6
4023  * if r0 == 0 goto
4024  *
4025  * to track above reg_mask/stack_mask needs to be independent for each frame.
4026  *
4027  * Also if parent's curframe > frame where backtracking started,
4028  * the verifier need to mark registers in both frames, otherwise callees
4029  * may incorrectly prune callers. This is similar to
4030  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
4031  *
4032  * For now backtracking falls back into conservative marking.
4033  */
4034 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
4035 				     struct bpf_verifier_state *st)
4036 {
4037 	struct bpf_func_state *func;
4038 	struct bpf_reg_state *reg;
4039 	int i, j;
4040 
4041 	if (env->log.level & BPF_LOG_LEVEL2) {
4042 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
4043 			st->curframe);
4044 	}
4045 
4046 	/* big hammer: mark all scalars precise in this path.
4047 	 * pop_stack may still get !precise scalars.
4048 	 * We also skip current state and go straight to first parent state,
4049 	 * because precision markings in current non-checkpointed state are
4050 	 * not needed. See why in the comment in __mark_chain_precision below.
4051 	 */
4052 	for (st = st->parent; st; st = st->parent) {
4053 		for (i = 0; i <= st->curframe; i++) {
4054 			func = st->frame[i];
4055 			for (j = 0; j < BPF_REG_FP; j++) {
4056 				reg = &func->regs[j];
4057 				if (reg->type != SCALAR_VALUE || reg->precise)
4058 					continue;
4059 				reg->precise = true;
4060 				if (env->log.level & BPF_LOG_LEVEL2) {
4061 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
4062 						i, j);
4063 				}
4064 			}
4065 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4066 				if (!is_spilled_reg(&func->stack[j]))
4067 					continue;
4068 				reg = &func->stack[j].spilled_ptr;
4069 				if (reg->type != SCALAR_VALUE || reg->precise)
4070 					continue;
4071 				reg->precise = true;
4072 				if (env->log.level & BPF_LOG_LEVEL2) {
4073 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
4074 						i, -(j + 1) * 8);
4075 				}
4076 			}
4077 		}
4078 	}
4079 }
4080 
4081 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4082 {
4083 	struct bpf_func_state *func;
4084 	struct bpf_reg_state *reg;
4085 	int i, j;
4086 
4087 	for (i = 0; i <= st->curframe; i++) {
4088 		func = st->frame[i];
4089 		for (j = 0; j < BPF_REG_FP; j++) {
4090 			reg = &func->regs[j];
4091 			if (reg->type != SCALAR_VALUE)
4092 				continue;
4093 			reg->precise = false;
4094 		}
4095 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4096 			if (!is_spilled_reg(&func->stack[j]))
4097 				continue;
4098 			reg = &func->stack[j].spilled_ptr;
4099 			if (reg->type != SCALAR_VALUE)
4100 				continue;
4101 			reg->precise = false;
4102 		}
4103 	}
4104 }
4105 
4106 static bool idset_contains(struct bpf_idset *s, u32 id)
4107 {
4108 	u32 i;
4109 
4110 	for (i = 0; i < s->count; ++i)
4111 		if (s->ids[i] == id)
4112 			return true;
4113 
4114 	return false;
4115 }
4116 
4117 static int idset_push(struct bpf_idset *s, u32 id)
4118 {
4119 	if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
4120 		return -EFAULT;
4121 	s->ids[s->count++] = id;
4122 	return 0;
4123 }
4124 
4125 static void idset_reset(struct bpf_idset *s)
4126 {
4127 	s->count = 0;
4128 }
4129 
4130 /* Collect a set of IDs for all registers currently marked as precise in env->bt.
4131  * Mark all registers with these IDs as precise.
4132  */
4133 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4134 {
4135 	struct bpf_idset *precise_ids = &env->idset_scratch;
4136 	struct backtrack_state *bt = &env->bt;
4137 	struct bpf_func_state *func;
4138 	struct bpf_reg_state *reg;
4139 	DECLARE_BITMAP(mask, 64);
4140 	int i, fr;
4141 
4142 	idset_reset(precise_ids);
4143 
4144 	for (fr = bt->frame; fr >= 0; fr--) {
4145 		func = st->frame[fr];
4146 
4147 		bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4148 		for_each_set_bit(i, mask, 32) {
4149 			reg = &func->regs[i];
4150 			if (!reg->id || reg->type != SCALAR_VALUE)
4151 				continue;
4152 			if (idset_push(precise_ids, reg->id))
4153 				return -EFAULT;
4154 		}
4155 
4156 		bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4157 		for_each_set_bit(i, mask, 64) {
4158 			if (i >= func->allocated_stack / BPF_REG_SIZE)
4159 				break;
4160 			if (!is_spilled_scalar_reg(&func->stack[i]))
4161 				continue;
4162 			reg = &func->stack[i].spilled_ptr;
4163 			if (!reg->id)
4164 				continue;
4165 			if (idset_push(precise_ids, reg->id))
4166 				return -EFAULT;
4167 		}
4168 	}
4169 
4170 	for (fr = 0; fr <= st->curframe; ++fr) {
4171 		func = st->frame[fr];
4172 
4173 		for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
4174 			reg = &func->regs[i];
4175 			if (!reg->id)
4176 				continue;
4177 			if (!idset_contains(precise_ids, reg->id))
4178 				continue;
4179 			bt_set_frame_reg(bt, fr, i);
4180 		}
4181 		for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
4182 			if (!is_spilled_scalar_reg(&func->stack[i]))
4183 				continue;
4184 			reg = &func->stack[i].spilled_ptr;
4185 			if (!reg->id)
4186 				continue;
4187 			if (!idset_contains(precise_ids, reg->id))
4188 				continue;
4189 			bt_set_frame_slot(bt, fr, i);
4190 		}
4191 	}
4192 
4193 	return 0;
4194 }
4195 
4196 /*
4197  * __mark_chain_precision() backtracks BPF program instruction sequence and
4198  * chain of verifier states making sure that register *regno* (if regno >= 0)
4199  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
4200  * SCALARS, as well as any other registers and slots that contribute to
4201  * a tracked state of given registers/stack slots, depending on specific BPF
4202  * assembly instructions (see backtrack_insns() for exact instruction handling
4203  * logic). This backtracking relies on recorded jmp_history and is able to
4204  * traverse entire chain of parent states. This process ends only when all the
4205  * necessary registers/slots and their transitive dependencies are marked as
4206  * precise.
4207  *
4208  * One important and subtle aspect is that precise marks *do not matter* in
4209  * the currently verified state (current state). It is important to understand
4210  * why this is the case.
4211  *
4212  * First, note that current state is the state that is not yet "checkpointed",
4213  * i.e., it is not yet put into env->explored_states, and it has no children
4214  * states as well. It's ephemeral, and can end up either a) being discarded if
4215  * compatible explored state is found at some point or BPF_EXIT instruction is
4216  * reached or b) checkpointed and put into env->explored_states, branching out
4217  * into one or more children states.
4218  *
4219  * In the former case, precise markings in current state are completely
4220  * ignored by state comparison code (see regsafe() for details). Only
4221  * checkpointed ("old") state precise markings are important, and if old
4222  * state's register/slot is precise, regsafe() assumes current state's
4223  * register/slot as precise and checks value ranges exactly and precisely. If
4224  * states turn out to be compatible, current state's necessary precise
4225  * markings and any required parent states' precise markings are enforced
4226  * after the fact with propagate_precision() logic, after the fact. But it's
4227  * important to realize that in this case, even after marking current state
4228  * registers/slots as precise, we immediately discard current state. So what
4229  * actually matters is any of the precise markings propagated into current
4230  * state's parent states, which are always checkpointed (due to b) case above).
4231  * As such, for scenario a) it doesn't matter if current state has precise
4232  * markings set or not.
4233  *
4234  * Now, for the scenario b), checkpointing and forking into child(ren)
4235  * state(s). Note that before current state gets to checkpointing step, any
4236  * processed instruction always assumes precise SCALAR register/slot
4237  * knowledge: if precise value or range is useful to prune jump branch, BPF
4238  * verifier takes this opportunity enthusiastically. Similarly, when
4239  * register's value is used to calculate offset or memory address, exact
4240  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4241  * what we mentioned above about state comparison ignoring precise markings
4242  * during state comparison, BPF verifier ignores and also assumes precise
4243  * markings *at will* during instruction verification process. But as verifier
4244  * assumes precision, it also propagates any precision dependencies across
4245  * parent states, which are not yet finalized, so can be further restricted
4246  * based on new knowledge gained from restrictions enforced by their children
4247  * states. This is so that once those parent states are finalized, i.e., when
4248  * they have no more active children state, state comparison logic in
4249  * is_state_visited() would enforce strict and precise SCALAR ranges, if
4250  * required for correctness.
4251  *
4252  * To build a bit more intuition, note also that once a state is checkpointed,
4253  * the path we took to get to that state is not important. This is crucial
4254  * property for state pruning. When state is checkpointed and finalized at
4255  * some instruction index, it can be correctly and safely used to "short
4256  * circuit" any *compatible* state that reaches exactly the same instruction
4257  * index. I.e., if we jumped to that instruction from a completely different
4258  * code path than original finalized state was derived from, it doesn't
4259  * matter, current state can be discarded because from that instruction
4260  * forward having a compatible state will ensure we will safely reach the
4261  * exit. States describe preconditions for further exploration, but completely
4262  * forget the history of how we got here.
4263  *
4264  * This also means that even if we needed precise SCALAR range to get to
4265  * finalized state, but from that point forward *that same* SCALAR register is
4266  * never used in a precise context (i.e., it's precise value is not needed for
4267  * correctness), it's correct and safe to mark such register as "imprecise"
4268  * (i.e., precise marking set to false). This is what we rely on when we do
4269  * not set precise marking in current state. If no child state requires
4270  * precision for any given SCALAR register, it's safe to dictate that it can
4271  * be imprecise. If any child state does require this register to be precise,
4272  * we'll mark it precise later retroactively during precise markings
4273  * propagation from child state to parent states.
4274  *
4275  * Skipping precise marking setting in current state is a mild version of
4276  * relying on the above observation. But we can utilize this property even
4277  * more aggressively by proactively forgetting any precise marking in the
4278  * current state (which we inherited from the parent state), right before we
4279  * checkpoint it and branch off into new child state. This is done by
4280  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4281  * finalized states which help in short circuiting more future states.
4282  */
4283 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
4284 {
4285 	struct backtrack_state *bt = &env->bt;
4286 	struct bpf_verifier_state *st = env->cur_state;
4287 	int first_idx = st->first_insn_idx;
4288 	int last_idx = env->insn_idx;
4289 	int subseq_idx = -1;
4290 	struct bpf_func_state *func;
4291 	struct bpf_reg_state *reg;
4292 	bool skip_first = true;
4293 	int i, fr, err;
4294 
4295 	if (!env->bpf_capable)
4296 		return 0;
4297 
4298 	/* set frame number from which we are starting to backtrack */
4299 	bt_init(bt, env->cur_state->curframe);
4300 
4301 	/* Do sanity checks against current state of register and/or stack
4302 	 * slot, but don't set precise flag in current state, as precision
4303 	 * tracking in the current state is unnecessary.
4304 	 */
4305 	func = st->frame[bt->frame];
4306 	if (regno >= 0) {
4307 		reg = &func->regs[regno];
4308 		if (reg->type != SCALAR_VALUE) {
4309 			WARN_ONCE(1, "backtracing misuse");
4310 			return -EFAULT;
4311 		}
4312 		bt_set_reg(bt, regno);
4313 	}
4314 
4315 	if (bt_empty(bt))
4316 		return 0;
4317 
4318 	for (;;) {
4319 		DECLARE_BITMAP(mask, 64);
4320 		u32 history = st->jmp_history_cnt;
4321 
4322 		if (env->log.level & BPF_LOG_LEVEL2) {
4323 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4324 				bt->frame, last_idx, first_idx, subseq_idx);
4325 		}
4326 
4327 		/* If some register with scalar ID is marked as precise,
4328 		 * make sure that all registers sharing this ID are also precise.
4329 		 * This is needed to estimate effect of find_equal_scalars().
4330 		 * Do this at the last instruction of each state,
4331 		 * bpf_reg_state::id fields are valid for these instructions.
4332 		 *
4333 		 * Allows to track precision in situation like below:
4334 		 *
4335 		 *     r2 = unknown value
4336 		 *     ...
4337 		 *   --- state #0 ---
4338 		 *     ...
4339 		 *     r1 = r2                 // r1 and r2 now share the same ID
4340 		 *     ...
4341 		 *   --- state #1 {r1.id = A, r2.id = A} ---
4342 		 *     ...
4343 		 *     if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
4344 		 *     ...
4345 		 *   --- state #2 {r1.id = A, r2.id = A} ---
4346 		 *     r3 = r10
4347 		 *     r3 += r1                // need to mark both r1 and r2
4348 		 */
4349 		if (mark_precise_scalar_ids(env, st))
4350 			return -EFAULT;
4351 
4352 		if (last_idx < 0) {
4353 			/* we are at the entry into subprog, which
4354 			 * is expected for global funcs, but only if
4355 			 * requested precise registers are R1-R5
4356 			 * (which are global func's input arguments)
4357 			 */
4358 			if (st->curframe == 0 &&
4359 			    st->frame[0]->subprogno > 0 &&
4360 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
4361 			    bt_stack_mask(bt) == 0 &&
4362 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4363 				bitmap_from_u64(mask, bt_reg_mask(bt));
4364 				for_each_set_bit(i, mask, 32) {
4365 					reg = &st->frame[0]->regs[i];
4366 					bt_clear_reg(bt, i);
4367 					if (reg->type == SCALAR_VALUE)
4368 						reg->precise = true;
4369 				}
4370 				return 0;
4371 			}
4372 
4373 			verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4374 				st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4375 			WARN_ONCE(1, "verifier backtracking bug");
4376 			return -EFAULT;
4377 		}
4378 
4379 		for (i = last_idx;;) {
4380 			if (skip_first) {
4381 				err = 0;
4382 				skip_first = false;
4383 			} else {
4384 				err = backtrack_insn(env, i, subseq_idx, bt);
4385 			}
4386 			if (err == -ENOTSUPP) {
4387 				mark_all_scalars_precise(env, env->cur_state);
4388 				bt_reset(bt);
4389 				return 0;
4390 			} else if (err) {
4391 				return err;
4392 			}
4393 			if (bt_empty(bt))
4394 				/* Found assignment(s) into tracked register in this state.
4395 				 * Since this state is already marked, just return.
4396 				 * Nothing to be tracked further in the parent state.
4397 				 */
4398 				return 0;
4399 			if (i == first_idx)
4400 				break;
4401 			subseq_idx = i;
4402 			i = get_prev_insn_idx(st, i, &history);
4403 			if (i >= env->prog->len) {
4404 				/* This can happen if backtracking reached insn 0
4405 				 * and there are still reg_mask or stack_mask
4406 				 * to backtrack.
4407 				 * It means the backtracking missed the spot where
4408 				 * particular register was initialized with a constant.
4409 				 */
4410 				verbose(env, "BUG backtracking idx %d\n", i);
4411 				WARN_ONCE(1, "verifier backtracking bug");
4412 				return -EFAULT;
4413 			}
4414 		}
4415 		st = st->parent;
4416 		if (!st)
4417 			break;
4418 
4419 		for (fr = bt->frame; fr >= 0; fr--) {
4420 			func = st->frame[fr];
4421 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4422 			for_each_set_bit(i, mask, 32) {
4423 				reg = &func->regs[i];
4424 				if (reg->type != SCALAR_VALUE) {
4425 					bt_clear_frame_reg(bt, fr, i);
4426 					continue;
4427 				}
4428 				if (reg->precise)
4429 					bt_clear_frame_reg(bt, fr, i);
4430 				else
4431 					reg->precise = true;
4432 			}
4433 
4434 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4435 			for_each_set_bit(i, mask, 64) {
4436 				if (i >= func->allocated_stack / BPF_REG_SIZE) {
4437 					/* the sequence of instructions:
4438 					 * 2: (bf) r3 = r10
4439 					 * 3: (7b) *(u64 *)(r3 -8) = r0
4440 					 * 4: (79) r4 = *(u64 *)(r10 -8)
4441 					 * doesn't contain jmps. It's backtracked
4442 					 * as a single block.
4443 					 * During backtracking insn 3 is not recognized as
4444 					 * stack access, so at the end of backtracking
4445 					 * stack slot fp-8 is still marked in stack_mask.
4446 					 * However the parent state may not have accessed
4447 					 * fp-8 and it's "unallocated" stack space.
4448 					 * In such case fallback to conservative.
4449 					 */
4450 					mark_all_scalars_precise(env, env->cur_state);
4451 					bt_reset(bt);
4452 					return 0;
4453 				}
4454 
4455 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4456 					bt_clear_frame_slot(bt, fr, i);
4457 					continue;
4458 				}
4459 				reg = &func->stack[i].spilled_ptr;
4460 				if (reg->precise)
4461 					bt_clear_frame_slot(bt, fr, i);
4462 				else
4463 					reg->precise = true;
4464 			}
4465 			if (env->log.level & BPF_LOG_LEVEL2) {
4466 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4467 					     bt_frame_reg_mask(bt, fr));
4468 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4469 					fr, env->tmp_str_buf);
4470 				fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4471 					       bt_frame_stack_mask(bt, fr));
4472 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4473 				print_verifier_state(env, func, true);
4474 			}
4475 		}
4476 
4477 		if (bt_empty(bt))
4478 			return 0;
4479 
4480 		subseq_idx = first_idx;
4481 		last_idx = st->last_insn_idx;
4482 		first_idx = st->first_insn_idx;
4483 	}
4484 
4485 	/* if we still have requested precise regs or slots, we missed
4486 	 * something (e.g., stack access through non-r10 register), so
4487 	 * fallback to marking all precise
4488 	 */
4489 	if (!bt_empty(bt)) {
4490 		mark_all_scalars_precise(env, env->cur_state);
4491 		bt_reset(bt);
4492 	}
4493 
4494 	return 0;
4495 }
4496 
4497 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4498 {
4499 	return __mark_chain_precision(env, regno);
4500 }
4501 
4502 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4503  * desired reg and stack masks across all relevant frames
4504  */
4505 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4506 {
4507 	return __mark_chain_precision(env, -1);
4508 }
4509 
4510 static bool is_spillable_regtype(enum bpf_reg_type type)
4511 {
4512 	switch (base_type(type)) {
4513 	case PTR_TO_MAP_VALUE:
4514 	case PTR_TO_STACK:
4515 	case PTR_TO_CTX:
4516 	case PTR_TO_PACKET:
4517 	case PTR_TO_PACKET_META:
4518 	case PTR_TO_PACKET_END:
4519 	case PTR_TO_FLOW_KEYS:
4520 	case CONST_PTR_TO_MAP:
4521 	case PTR_TO_SOCKET:
4522 	case PTR_TO_SOCK_COMMON:
4523 	case PTR_TO_TCP_SOCK:
4524 	case PTR_TO_XDP_SOCK:
4525 	case PTR_TO_BTF_ID:
4526 	case PTR_TO_BUF:
4527 	case PTR_TO_MEM:
4528 	case PTR_TO_FUNC:
4529 	case PTR_TO_MAP_KEY:
4530 		return true;
4531 	default:
4532 		return false;
4533 	}
4534 }
4535 
4536 /* Does this register contain a constant zero? */
4537 static bool register_is_null(struct bpf_reg_state *reg)
4538 {
4539 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4540 }
4541 
4542 static bool register_is_const(struct bpf_reg_state *reg)
4543 {
4544 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
4545 }
4546 
4547 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
4548 {
4549 	return tnum_is_unknown(reg->var_off) &&
4550 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
4551 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
4552 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
4553 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
4554 }
4555 
4556 static bool register_is_bounded(struct bpf_reg_state *reg)
4557 {
4558 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
4559 }
4560 
4561 static bool __is_pointer_value(bool allow_ptr_leaks,
4562 			       const struct bpf_reg_state *reg)
4563 {
4564 	if (allow_ptr_leaks)
4565 		return false;
4566 
4567 	return reg->type != SCALAR_VALUE;
4568 }
4569 
4570 /* Copy src state preserving dst->parent and dst->live fields */
4571 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4572 {
4573 	struct bpf_reg_state *parent = dst->parent;
4574 	enum bpf_reg_liveness live = dst->live;
4575 
4576 	*dst = *src;
4577 	dst->parent = parent;
4578 	dst->live = live;
4579 }
4580 
4581 static void save_register_state(struct bpf_func_state *state,
4582 				int spi, struct bpf_reg_state *reg,
4583 				int size)
4584 {
4585 	int i;
4586 
4587 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
4588 	if (size == BPF_REG_SIZE)
4589 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4590 
4591 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4592 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4593 
4594 	/* size < 8 bytes spill */
4595 	for (; i; i--)
4596 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
4597 }
4598 
4599 static bool is_bpf_st_mem(struct bpf_insn *insn)
4600 {
4601 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4602 }
4603 
4604 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4605  * stack boundary and alignment are checked in check_mem_access()
4606  */
4607 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4608 				       /* stack frame we're writing to */
4609 				       struct bpf_func_state *state,
4610 				       int off, int size, int value_regno,
4611 				       int insn_idx)
4612 {
4613 	struct bpf_func_state *cur; /* state of the current function */
4614 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4615 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4616 	struct bpf_reg_state *reg = NULL;
4617 	u32 dst_reg = insn->dst_reg;
4618 
4619 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
4620 	if (err)
4621 		return err;
4622 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4623 	 * so it's aligned access and [off, off + size) are within stack limits
4624 	 */
4625 	if (!env->allow_ptr_leaks &&
4626 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
4627 	    size != BPF_REG_SIZE) {
4628 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
4629 		return -EACCES;
4630 	}
4631 
4632 	cur = env->cur_state->frame[env->cur_state->curframe];
4633 	if (value_regno >= 0)
4634 		reg = &cur->regs[value_regno];
4635 	if (!env->bypass_spec_v4) {
4636 		bool sanitize = reg && is_spillable_regtype(reg->type);
4637 
4638 		for (i = 0; i < size; i++) {
4639 			u8 type = state->stack[spi].slot_type[i];
4640 
4641 			if (type != STACK_MISC && type != STACK_ZERO) {
4642 				sanitize = true;
4643 				break;
4644 			}
4645 		}
4646 
4647 		if (sanitize)
4648 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4649 	}
4650 
4651 	err = destroy_if_dynptr_stack_slot(env, state, spi);
4652 	if (err)
4653 		return err;
4654 
4655 	mark_stack_slot_scratched(env, spi);
4656 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
4657 	    !register_is_null(reg) && env->bpf_capable) {
4658 		if (dst_reg != BPF_REG_FP) {
4659 			/* The backtracking logic can only recognize explicit
4660 			 * stack slot address like [fp - 8]. Other spill of
4661 			 * scalar via different register has to be conservative.
4662 			 * Backtrack from here and mark all registers as precise
4663 			 * that contributed into 'reg' being a constant.
4664 			 */
4665 			err = mark_chain_precision(env, value_regno);
4666 			if (err)
4667 				return err;
4668 		}
4669 		save_register_state(state, spi, reg, size);
4670 		/* Break the relation on a narrowing spill. */
4671 		if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
4672 			state->stack[spi].spilled_ptr.id = 0;
4673 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4674 		   insn->imm != 0 && env->bpf_capable) {
4675 		struct bpf_reg_state fake_reg = {};
4676 
4677 		__mark_reg_known(&fake_reg, (u32)insn->imm);
4678 		fake_reg.type = SCALAR_VALUE;
4679 		save_register_state(state, spi, &fake_reg, size);
4680 	} else if (reg && is_spillable_regtype(reg->type)) {
4681 		/* register containing pointer is being spilled into stack */
4682 		if (size != BPF_REG_SIZE) {
4683 			verbose_linfo(env, insn_idx, "; ");
4684 			verbose(env, "invalid size of register spill\n");
4685 			return -EACCES;
4686 		}
4687 		if (state != cur && reg->type == PTR_TO_STACK) {
4688 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4689 			return -EINVAL;
4690 		}
4691 		save_register_state(state, spi, reg, size);
4692 	} else {
4693 		u8 type = STACK_MISC;
4694 
4695 		/* regular write of data into stack destroys any spilled ptr */
4696 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4697 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4698 		if (is_stack_slot_special(&state->stack[spi]))
4699 			for (i = 0; i < BPF_REG_SIZE; i++)
4700 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4701 
4702 		/* only mark the slot as written if all 8 bytes were written
4703 		 * otherwise read propagation may incorrectly stop too soon
4704 		 * when stack slots are partially written.
4705 		 * This heuristic means that read propagation will be
4706 		 * conservative, since it will add reg_live_read marks
4707 		 * to stack slots all the way to first state when programs
4708 		 * writes+reads less than 8 bytes
4709 		 */
4710 		if (size == BPF_REG_SIZE)
4711 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4712 
4713 		/* when we zero initialize stack slots mark them as such */
4714 		if ((reg && register_is_null(reg)) ||
4715 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4716 			/* backtracking doesn't work for STACK_ZERO yet. */
4717 			err = mark_chain_precision(env, value_regno);
4718 			if (err)
4719 				return err;
4720 			type = STACK_ZERO;
4721 		}
4722 
4723 		/* Mark slots affected by this stack write. */
4724 		for (i = 0; i < size; i++)
4725 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
4726 				type;
4727 	}
4728 	return 0;
4729 }
4730 
4731 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4732  * known to contain a variable offset.
4733  * This function checks whether the write is permitted and conservatively
4734  * tracks the effects of the write, considering that each stack slot in the
4735  * dynamic range is potentially written to.
4736  *
4737  * 'off' includes 'regno->off'.
4738  * 'value_regno' can be -1, meaning that an unknown value is being written to
4739  * the stack.
4740  *
4741  * Spilled pointers in range are not marked as written because we don't know
4742  * what's going to be actually written. This means that read propagation for
4743  * future reads cannot be terminated by this write.
4744  *
4745  * For privileged programs, uninitialized stack slots are considered
4746  * initialized by this write (even though we don't know exactly what offsets
4747  * are going to be written to). The idea is that we don't want the verifier to
4748  * reject future reads that access slots written to through variable offsets.
4749  */
4750 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4751 				     /* func where register points to */
4752 				     struct bpf_func_state *state,
4753 				     int ptr_regno, int off, int size,
4754 				     int value_regno, int insn_idx)
4755 {
4756 	struct bpf_func_state *cur; /* state of the current function */
4757 	int min_off, max_off;
4758 	int i, err;
4759 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4760 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4761 	bool writing_zero = false;
4762 	/* set if the fact that we're writing a zero is used to let any
4763 	 * stack slots remain STACK_ZERO
4764 	 */
4765 	bool zero_used = false;
4766 
4767 	cur = env->cur_state->frame[env->cur_state->curframe];
4768 	ptr_reg = &cur->regs[ptr_regno];
4769 	min_off = ptr_reg->smin_value + off;
4770 	max_off = ptr_reg->smax_value + off + size;
4771 	if (value_regno >= 0)
4772 		value_reg = &cur->regs[value_regno];
4773 	if ((value_reg && register_is_null(value_reg)) ||
4774 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4775 		writing_zero = true;
4776 
4777 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
4778 	if (err)
4779 		return err;
4780 
4781 	for (i = min_off; i < max_off; i++) {
4782 		int spi;
4783 
4784 		spi = __get_spi(i);
4785 		err = destroy_if_dynptr_stack_slot(env, state, spi);
4786 		if (err)
4787 			return err;
4788 	}
4789 
4790 	/* Variable offset writes destroy any spilled pointers in range. */
4791 	for (i = min_off; i < max_off; i++) {
4792 		u8 new_type, *stype;
4793 		int slot, spi;
4794 
4795 		slot = -i - 1;
4796 		spi = slot / BPF_REG_SIZE;
4797 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4798 		mark_stack_slot_scratched(env, spi);
4799 
4800 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4801 			/* Reject the write if range we may write to has not
4802 			 * been initialized beforehand. If we didn't reject
4803 			 * here, the ptr status would be erased below (even
4804 			 * though not all slots are actually overwritten),
4805 			 * possibly opening the door to leaks.
4806 			 *
4807 			 * We do however catch STACK_INVALID case below, and
4808 			 * only allow reading possibly uninitialized memory
4809 			 * later for CAP_PERFMON, as the write may not happen to
4810 			 * that slot.
4811 			 */
4812 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4813 				insn_idx, i);
4814 			return -EINVAL;
4815 		}
4816 
4817 		/* Erase all spilled pointers. */
4818 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4819 
4820 		/* Update the slot type. */
4821 		new_type = STACK_MISC;
4822 		if (writing_zero && *stype == STACK_ZERO) {
4823 			new_type = STACK_ZERO;
4824 			zero_used = true;
4825 		}
4826 		/* If the slot is STACK_INVALID, we check whether it's OK to
4827 		 * pretend that it will be initialized by this write. The slot
4828 		 * might not actually be written to, and so if we mark it as
4829 		 * initialized future reads might leak uninitialized memory.
4830 		 * For privileged programs, we will accept such reads to slots
4831 		 * that may or may not be written because, if we're reject
4832 		 * them, the error would be too confusing.
4833 		 */
4834 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4835 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4836 					insn_idx, i);
4837 			return -EINVAL;
4838 		}
4839 		*stype = new_type;
4840 	}
4841 	if (zero_used) {
4842 		/* backtracking doesn't work for STACK_ZERO yet. */
4843 		err = mark_chain_precision(env, value_regno);
4844 		if (err)
4845 			return err;
4846 	}
4847 	return 0;
4848 }
4849 
4850 /* When register 'dst_regno' is assigned some values from stack[min_off,
4851  * max_off), we set the register's type according to the types of the
4852  * respective stack slots. If all the stack values are known to be zeros, then
4853  * so is the destination reg. Otherwise, the register is considered to be
4854  * SCALAR. This function does not deal with register filling; the caller must
4855  * ensure that all spilled registers in the stack range have been marked as
4856  * read.
4857  */
4858 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4859 				/* func where src register points to */
4860 				struct bpf_func_state *ptr_state,
4861 				int min_off, int max_off, int dst_regno)
4862 {
4863 	struct bpf_verifier_state *vstate = env->cur_state;
4864 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4865 	int i, slot, spi;
4866 	u8 *stype;
4867 	int zeros = 0;
4868 
4869 	for (i = min_off; i < max_off; i++) {
4870 		slot = -i - 1;
4871 		spi = slot / BPF_REG_SIZE;
4872 		mark_stack_slot_scratched(env, spi);
4873 		stype = ptr_state->stack[spi].slot_type;
4874 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4875 			break;
4876 		zeros++;
4877 	}
4878 	if (zeros == max_off - min_off) {
4879 		/* any access_size read into register is zero extended,
4880 		 * so the whole register == const_zero
4881 		 */
4882 		__mark_reg_const_zero(&state->regs[dst_regno]);
4883 		/* backtracking doesn't support STACK_ZERO yet,
4884 		 * so mark it precise here, so that later
4885 		 * backtracking can stop here.
4886 		 * Backtracking may not need this if this register
4887 		 * doesn't participate in pointer adjustment.
4888 		 * Forward propagation of precise flag is not
4889 		 * necessary either. This mark is only to stop
4890 		 * backtracking. Any register that contributed
4891 		 * to const 0 was marked precise before spill.
4892 		 */
4893 		state->regs[dst_regno].precise = true;
4894 	} else {
4895 		/* have read misc data from the stack */
4896 		mark_reg_unknown(env, state->regs, dst_regno);
4897 	}
4898 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4899 }
4900 
4901 /* Read the stack at 'off' and put the results into the register indicated by
4902  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4903  * spilled reg.
4904  *
4905  * 'dst_regno' can be -1, meaning that the read value is not going to a
4906  * register.
4907  *
4908  * The access is assumed to be within the current stack bounds.
4909  */
4910 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4911 				      /* func where src register points to */
4912 				      struct bpf_func_state *reg_state,
4913 				      int off, int size, int dst_regno)
4914 {
4915 	struct bpf_verifier_state *vstate = env->cur_state;
4916 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4917 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4918 	struct bpf_reg_state *reg;
4919 	u8 *stype, type;
4920 
4921 	stype = reg_state->stack[spi].slot_type;
4922 	reg = &reg_state->stack[spi].spilled_ptr;
4923 
4924 	mark_stack_slot_scratched(env, spi);
4925 
4926 	if (is_spilled_reg(&reg_state->stack[spi])) {
4927 		u8 spill_size = 1;
4928 
4929 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4930 			spill_size++;
4931 
4932 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4933 			if (reg->type != SCALAR_VALUE) {
4934 				verbose_linfo(env, env->insn_idx, "; ");
4935 				verbose(env, "invalid size of register fill\n");
4936 				return -EACCES;
4937 			}
4938 
4939 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4940 			if (dst_regno < 0)
4941 				return 0;
4942 
4943 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
4944 				/* The earlier check_reg_arg() has decided the
4945 				 * subreg_def for this insn.  Save it first.
4946 				 */
4947 				s32 subreg_def = state->regs[dst_regno].subreg_def;
4948 
4949 				copy_register_state(&state->regs[dst_regno], reg);
4950 				state->regs[dst_regno].subreg_def = subreg_def;
4951 			} else {
4952 				for (i = 0; i < size; i++) {
4953 					type = stype[(slot - i) % BPF_REG_SIZE];
4954 					if (type == STACK_SPILL)
4955 						continue;
4956 					if (type == STACK_MISC)
4957 						continue;
4958 					if (type == STACK_INVALID && env->allow_uninit_stack)
4959 						continue;
4960 					verbose(env, "invalid read from stack off %d+%d size %d\n",
4961 						off, i, size);
4962 					return -EACCES;
4963 				}
4964 				mark_reg_unknown(env, state->regs, dst_regno);
4965 			}
4966 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4967 			return 0;
4968 		}
4969 
4970 		if (dst_regno >= 0) {
4971 			/* restore register state from stack */
4972 			copy_register_state(&state->regs[dst_regno], reg);
4973 			/* mark reg as written since spilled pointer state likely
4974 			 * has its liveness marks cleared by is_state_visited()
4975 			 * which resets stack/reg liveness for state transitions
4976 			 */
4977 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4978 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
4979 			/* If dst_regno==-1, the caller is asking us whether
4980 			 * it is acceptable to use this value as a SCALAR_VALUE
4981 			 * (e.g. for XADD).
4982 			 * We must not allow unprivileged callers to do that
4983 			 * with spilled pointers.
4984 			 */
4985 			verbose(env, "leaking pointer from stack off %d\n",
4986 				off);
4987 			return -EACCES;
4988 		}
4989 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4990 	} else {
4991 		for (i = 0; i < size; i++) {
4992 			type = stype[(slot - i) % BPF_REG_SIZE];
4993 			if (type == STACK_MISC)
4994 				continue;
4995 			if (type == STACK_ZERO)
4996 				continue;
4997 			if (type == STACK_INVALID && env->allow_uninit_stack)
4998 				continue;
4999 			verbose(env, "invalid read from stack off %d+%d size %d\n",
5000 				off, i, size);
5001 			return -EACCES;
5002 		}
5003 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5004 		if (dst_regno >= 0)
5005 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
5006 	}
5007 	return 0;
5008 }
5009 
5010 enum bpf_access_src {
5011 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
5012 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
5013 };
5014 
5015 static int check_stack_range_initialized(struct bpf_verifier_env *env,
5016 					 int regno, int off, int access_size,
5017 					 bool zero_size_allowed,
5018 					 enum bpf_access_src type,
5019 					 struct bpf_call_arg_meta *meta);
5020 
5021 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
5022 {
5023 	return cur_regs(env) + regno;
5024 }
5025 
5026 /* Read the stack at 'ptr_regno + off' and put the result into the register
5027  * 'dst_regno'.
5028  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
5029  * but not its variable offset.
5030  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
5031  *
5032  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
5033  * filling registers (i.e. reads of spilled register cannot be detected when
5034  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
5035  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
5036  * offset; for a fixed offset check_stack_read_fixed_off should be used
5037  * instead.
5038  */
5039 static int check_stack_read_var_off(struct bpf_verifier_env *env,
5040 				    int ptr_regno, int off, int size, int dst_regno)
5041 {
5042 	/* The state of the source register. */
5043 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5044 	struct bpf_func_state *ptr_state = func(env, reg);
5045 	int err;
5046 	int min_off, max_off;
5047 
5048 	/* Note that we pass a NULL meta, so raw access will not be permitted.
5049 	 */
5050 	err = check_stack_range_initialized(env, ptr_regno, off, size,
5051 					    false, ACCESS_DIRECT, NULL);
5052 	if (err)
5053 		return err;
5054 
5055 	min_off = reg->smin_value + off;
5056 	max_off = reg->smax_value + off;
5057 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
5058 	return 0;
5059 }
5060 
5061 /* check_stack_read dispatches to check_stack_read_fixed_off or
5062  * check_stack_read_var_off.
5063  *
5064  * The caller must ensure that the offset falls within the allocated stack
5065  * bounds.
5066  *
5067  * 'dst_regno' is a register which will receive the value from the stack. It
5068  * can be -1, meaning that the read value is not going to a register.
5069  */
5070 static int check_stack_read(struct bpf_verifier_env *env,
5071 			    int ptr_regno, int off, int size,
5072 			    int dst_regno)
5073 {
5074 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5075 	struct bpf_func_state *state = func(env, reg);
5076 	int err;
5077 	/* Some accesses are only permitted with a static offset. */
5078 	bool var_off = !tnum_is_const(reg->var_off);
5079 
5080 	/* The offset is required to be static when reads don't go to a
5081 	 * register, in order to not leak pointers (see
5082 	 * check_stack_read_fixed_off).
5083 	 */
5084 	if (dst_regno < 0 && var_off) {
5085 		char tn_buf[48];
5086 
5087 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5088 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
5089 			tn_buf, off, size);
5090 		return -EACCES;
5091 	}
5092 	/* Variable offset is prohibited for unprivileged mode for simplicity
5093 	 * since it requires corresponding support in Spectre masking for stack
5094 	 * ALU. See also retrieve_ptr_limit(). The check in
5095 	 * check_stack_access_for_ptr_arithmetic() called by
5096 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
5097 	 * with variable offsets, therefore no check is required here. Further,
5098 	 * just checking it here would be insufficient as speculative stack
5099 	 * writes could still lead to unsafe speculative behaviour.
5100 	 */
5101 	if (!var_off) {
5102 		off += reg->var_off.value;
5103 		err = check_stack_read_fixed_off(env, state, off, size,
5104 						 dst_regno);
5105 	} else {
5106 		/* Variable offset stack reads need more conservative handling
5107 		 * than fixed offset ones. Note that dst_regno >= 0 on this
5108 		 * branch.
5109 		 */
5110 		err = check_stack_read_var_off(env, ptr_regno, off, size,
5111 					       dst_regno);
5112 	}
5113 	return err;
5114 }
5115 
5116 
5117 /* check_stack_write dispatches to check_stack_write_fixed_off or
5118  * check_stack_write_var_off.
5119  *
5120  * 'ptr_regno' is the register used as a pointer into the stack.
5121  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
5122  * 'value_regno' is the register whose value we're writing to the stack. It can
5123  * be -1, meaning that we're not writing from a register.
5124  *
5125  * The caller must ensure that the offset falls within the maximum stack size.
5126  */
5127 static int check_stack_write(struct bpf_verifier_env *env,
5128 			     int ptr_regno, int off, int size,
5129 			     int value_regno, int insn_idx)
5130 {
5131 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5132 	struct bpf_func_state *state = func(env, reg);
5133 	int err;
5134 
5135 	if (tnum_is_const(reg->var_off)) {
5136 		off += reg->var_off.value;
5137 		err = check_stack_write_fixed_off(env, state, off, size,
5138 						  value_regno, insn_idx);
5139 	} else {
5140 		/* Variable offset stack reads need more conservative handling
5141 		 * than fixed offset ones.
5142 		 */
5143 		err = check_stack_write_var_off(env, state,
5144 						ptr_regno, off, size,
5145 						value_regno, insn_idx);
5146 	}
5147 	return err;
5148 }
5149 
5150 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
5151 				 int off, int size, enum bpf_access_type type)
5152 {
5153 	struct bpf_reg_state *regs = cur_regs(env);
5154 	struct bpf_map *map = regs[regno].map_ptr;
5155 	u32 cap = bpf_map_flags_to_cap(map);
5156 
5157 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
5158 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
5159 			map->value_size, off, size);
5160 		return -EACCES;
5161 	}
5162 
5163 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
5164 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
5165 			map->value_size, off, size);
5166 		return -EACCES;
5167 	}
5168 
5169 	return 0;
5170 }
5171 
5172 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
5173 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
5174 			      int off, int size, u32 mem_size,
5175 			      bool zero_size_allowed)
5176 {
5177 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
5178 	struct bpf_reg_state *reg;
5179 
5180 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
5181 		return 0;
5182 
5183 	reg = &cur_regs(env)[regno];
5184 	switch (reg->type) {
5185 	case PTR_TO_MAP_KEY:
5186 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
5187 			mem_size, off, size);
5188 		break;
5189 	case PTR_TO_MAP_VALUE:
5190 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
5191 			mem_size, off, size);
5192 		break;
5193 	case PTR_TO_PACKET:
5194 	case PTR_TO_PACKET_META:
5195 	case PTR_TO_PACKET_END:
5196 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
5197 			off, size, regno, reg->id, off, mem_size);
5198 		break;
5199 	case PTR_TO_MEM:
5200 	default:
5201 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
5202 			mem_size, off, size);
5203 	}
5204 
5205 	return -EACCES;
5206 }
5207 
5208 /* check read/write into a memory region with possible variable offset */
5209 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5210 				   int off, int size, u32 mem_size,
5211 				   bool zero_size_allowed)
5212 {
5213 	struct bpf_verifier_state *vstate = env->cur_state;
5214 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5215 	struct bpf_reg_state *reg = &state->regs[regno];
5216 	int err;
5217 
5218 	/* We may have adjusted the register pointing to memory region, so we
5219 	 * need to try adding each of min_value and max_value to off
5220 	 * to make sure our theoretical access will be safe.
5221 	 *
5222 	 * The minimum value is only important with signed
5223 	 * comparisons where we can't assume the floor of a
5224 	 * value is 0.  If we are using signed variables for our
5225 	 * index'es we need to make sure that whatever we use
5226 	 * will have a set floor within our range.
5227 	 */
5228 	if (reg->smin_value < 0 &&
5229 	    (reg->smin_value == S64_MIN ||
5230 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5231 	      reg->smin_value + off < 0)) {
5232 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5233 			regno);
5234 		return -EACCES;
5235 	}
5236 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
5237 				 mem_size, zero_size_allowed);
5238 	if (err) {
5239 		verbose(env, "R%d min value is outside of the allowed memory range\n",
5240 			regno);
5241 		return err;
5242 	}
5243 
5244 	/* If we haven't set a max value then we need to bail since we can't be
5245 	 * sure we won't do bad things.
5246 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
5247 	 */
5248 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5249 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5250 			regno);
5251 		return -EACCES;
5252 	}
5253 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
5254 				 mem_size, zero_size_allowed);
5255 	if (err) {
5256 		verbose(env, "R%d max value is outside of the allowed memory range\n",
5257 			regno);
5258 		return err;
5259 	}
5260 
5261 	return 0;
5262 }
5263 
5264 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5265 			       const struct bpf_reg_state *reg, int regno,
5266 			       bool fixed_off_ok)
5267 {
5268 	/* Access to this pointer-typed register or passing it to a helper
5269 	 * is only allowed in its original, unmodified form.
5270 	 */
5271 
5272 	if (reg->off < 0) {
5273 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5274 			reg_type_str(env, reg->type), regno, reg->off);
5275 		return -EACCES;
5276 	}
5277 
5278 	if (!fixed_off_ok && reg->off) {
5279 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5280 			reg_type_str(env, reg->type), regno, reg->off);
5281 		return -EACCES;
5282 	}
5283 
5284 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5285 		char tn_buf[48];
5286 
5287 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5288 		verbose(env, "variable %s access var_off=%s disallowed\n",
5289 			reg_type_str(env, reg->type), tn_buf);
5290 		return -EACCES;
5291 	}
5292 
5293 	return 0;
5294 }
5295 
5296 int check_ptr_off_reg(struct bpf_verifier_env *env,
5297 		      const struct bpf_reg_state *reg, int regno)
5298 {
5299 	return __check_ptr_off_reg(env, reg, regno, false);
5300 }
5301 
5302 static int map_kptr_match_type(struct bpf_verifier_env *env,
5303 			       struct btf_field *kptr_field,
5304 			       struct bpf_reg_state *reg, u32 regno)
5305 {
5306 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5307 	int perm_flags;
5308 	const char *reg_name = "";
5309 
5310 	if (btf_is_kernel(reg->btf)) {
5311 		perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5312 
5313 		/* Only unreferenced case accepts untrusted pointers */
5314 		if (kptr_field->type == BPF_KPTR_UNREF)
5315 			perm_flags |= PTR_UNTRUSTED;
5316 	} else {
5317 		perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5318 		if (kptr_field->type == BPF_KPTR_PERCPU)
5319 			perm_flags |= MEM_PERCPU;
5320 	}
5321 
5322 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5323 		goto bad_type;
5324 
5325 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
5326 	reg_name = btf_type_name(reg->btf, reg->btf_id);
5327 
5328 	/* For ref_ptr case, release function check should ensure we get one
5329 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5330 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
5331 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5332 	 * reg->off and reg->ref_obj_id are not needed here.
5333 	 */
5334 	if (__check_ptr_off_reg(env, reg, regno, true))
5335 		return -EACCES;
5336 
5337 	/* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5338 	 * we also need to take into account the reg->off.
5339 	 *
5340 	 * We want to support cases like:
5341 	 *
5342 	 * struct foo {
5343 	 *         struct bar br;
5344 	 *         struct baz bz;
5345 	 * };
5346 	 *
5347 	 * struct foo *v;
5348 	 * v = func();	      // PTR_TO_BTF_ID
5349 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
5350 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5351 	 *                    // first member type of struct after comparison fails
5352 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5353 	 *                    // to match type
5354 	 *
5355 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5356 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
5357 	 * the struct to match type against first member of struct, i.e. reject
5358 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5359 	 * strict mode to true for type match.
5360 	 */
5361 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5362 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5363 				  kptr_field->type != BPF_KPTR_UNREF))
5364 		goto bad_type;
5365 	return 0;
5366 bad_type:
5367 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5368 		reg_type_str(env, reg->type), reg_name);
5369 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5370 	if (kptr_field->type == BPF_KPTR_UNREF)
5371 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5372 			targ_name);
5373 	else
5374 		verbose(env, "\n");
5375 	return -EINVAL;
5376 }
5377 
5378 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5379  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5380  */
5381 static bool in_rcu_cs(struct bpf_verifier_env *env)
5382 {
5383 	return env->cur_state->active_rcu_lock ||
5384 	       env->cur_state->active_lock.ptr ||
5385 	       !env->prog->aux->sleepable;
5386 }
5387 
5388 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5389 BTF_SET_START(rcu_protected_types)
5390 BTF_ID(struct, prog_test_ref_kfunc)
5391 BTF_ID(struct, cgroup)
5392 BTF_ID(struct, bpf_cpumask)
5393 BTF_ID(struct, task_struct)
5394 BTF_SET_END(rcu_protected_types)
5395 
5396 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5397 {
5398 	if (!btf_is_kernel(btf))
5399 		return false;
5400 	return btf_id_set_contains(&rcu_protected_types, btf_id);
5401 }
5402 
5403 static bool rcu_safe_kptr(const struct btf_field *field)
5404 {
5405 	const struct btf_field_kptr *kptr = &field->kptr;
5406 
5407 	return field->type == BPF_KPTR_PERCPU ||
5408 	       (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id));
5409 }
5410 
5411 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field)
5412 {
5413 	if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) {
5414 		if (kptr_field->type != BPF_KPTR_PERCPU)
5415 			return PTR_MAYBE_NULL | MEM_RCU;
5416 		return PTR_MAYBE_NULL | MEM_RCU | MEM_PERCPU;
5417 	}
5418 	return PTR_MAYBE_NULL | PTR_UNTRUSTED;
5419 }
5420 
5421 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5422 				 int value_regno, int insn_idx,
5423 				 struct btf_field *kptr_field)
5424 {
5425 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5426 	int class = BPF_CLASS(insn->code);
5427 	struct bpf_reg_state *val_reg;
5428 
5429 	/* Things we already checked for in check_map_access and caller:
5430 	 *  - Reject cases where variable offset may touch kptr
5431 	 *  - size of access (must be BPF_DW)
5432 	 *  - tnum_is_const(reg->var_off)
5433 	 *  - kptr_field->offset == off + reg->var_off.value
5434 	 */
5435 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5436 	if (BPF_MODE(insn->code) != BPF_MEM) {
5437 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5438 		return -EACCES;
5439 	}
5440 
5441 	/* We only allow loading referenced kptr, since it will be marked as
5442 	 * untrusted, similar to unreferenced kptr.
5443 	 */
5444 	if (class != BPF_LDX &&
5445 	    (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) {
5446 		verbose(env, "store to referenced kptr disallowed\n");
5447 		return -EACCES;
5448 	}
5449 
5450 	if (class == BPF_LDX) {
5451 		val_reg = reg_state(env, value_regno);
5452 		/* We can simply mark the value_regno receiving the pointer
5453 		 * value from map as PTR_TO_BTF_ID, with the correct type.
5454 		 */
5455 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5456 				kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field));
5457 		/* For mark_ptr_or_null_reg */
5458 		val_reg->id = ++env->id_gen;
5459 	} else if (class == BPF_STX) {
5460 		val_reg = reg_state(env, value_regno);
5461 		if (!register_is_null(val_reg) &&
5462 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5463 			return -EACCES;
5464 	} else if (class == BPF_ST) {
5465 		if (insn->imm) {
5466 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5467 				kptr_field->offset);
5468 			return -EACCES;
5469 		}
5470 	} else {
5471 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5472 		return -EACCES;
5473 	}
5474 	return 0;
5475 }
5476 
5477 /* check read/write into a map element with possible variable offset */
5478 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5479 			    int off, int size, bool zero_size_allowed,
5480 			    enum bpf_access_src src)
5481 {
5482 	struct bpf_verifier_state *vstate = env->cur_state;
5483 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5484 	struct bpf_reg_state *reg = &state->regs[regno];
5485 	struct bpf_map *map = reg->map_ptr;
5486 	struct btf_record *rec;
5487 	int err, i;
5488 
5489 	err = check_mem_region_access(env, regno, off, size, map->value_size,
5490 				      zero_size_allowed);
5491 	if (err)
5492 		return err;
5493 
5494 	if (IS_ERR_OR_NULL(map->record))
5495 		return 0;
5496 	rec = map->record;
5497 	for (i = 0; i < rec->cnt; i++) {
5498 		struct btf_field *field = &rec->fields[i];
5499 		u32 p = field->offset;
5500 
5501 		/* If any part of a field  can be touched by load/store, reject
5502 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
5503 		 * it is sufficient to check x1 < y2 && y1 < x2.
5504 		 */
5505 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5506 		    p < reg->umax_value + off + size) {
5507 			switch (field->type) {
5508 			case BPF_KPTR_UNREF:
5509 			case BPF_KPTR_REF:
5510 			case BPF_KPTR_PERCPU:
5511 				if (src != ACCESS_DIRECT) {
5512 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
5513 					return -EACCES;
5514 				}
5515 				if (!tnum_is_const(reg->var_off)) {
5516 					verbose(env, "kptr access cannot have variable offset\n");
5517 					return -EACCES;
5518 				}
5519 				if (p != off + reg->var_off.value) {
5520 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5521 						p, off + reg->var_off.value);
5522 					return -EACCES;
5523 				}
5524 				if (size != bpf_size_to_bytes(BPF_DW)) {
5525 					verbose(env, "kptr access size must be BPF_DW\n");
5526 					return -EACCES;
5527 				}
5528 				break;
5529 			default:
5530 				verbose(env, "%s cannot be accessed directly by load/store\n",
5531 					btf_field_type_name(field->type));
5532 				return -EACCES;
5533 			}
5534 		}
5535 	}
5536 	return 0;
5537 }
5538 
5539 #define MAX_PACKET_OFF 0xffff
5540 
5541 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5542 				       const struct bpf_call_arg_meta *meta,
5543 				       enum bpf_access_type t)
5544 {
5545 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5546 
5547 	switch (prog_type) {
5548 	/* Program types only with direct read access go here! */
5549 	case BPF_PROG_TYPE_LWT_IN:
5550 	case BPF_PROG_TYPE_LWT_OUT:
5551 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5552 	case BPF_PROG_TYPE_SK_REUSEPORT:
5553 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5554 	case BPF_PROG_TYPE_CGROUP_SKB:
5555 		if (t == BPF_WRITE)
5556 			return false;
5557 		fallthrough;
5558 
5559 	/* Program types with direct read + write access go here! */
5560 	case BPF_PROG_TYPE_SCHED_CLS:
5561 	case BPF_PROG_TYPE_SCHED_ACT:
5562 	case BPF_PROG_TYPE_XDP:
5563 	case BPF_PROG_TYPE_LWT_XMIT:
5564 	case BPF_PROG_TYPE_SK_SKB:
5565 	case BPF_PROG_TYPE_SK_MSG:
5566 		if (meta)
5567 			return meta->pkt_access;
5568 
5569 		env->seen_direct_write = true;
5570 		return true;
5571 
5572 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5573 		if (t == BPF_WRITE)
5574 			env->seen_direct_write = true;
5575 
5576 		return true;
5577 
5578 	default:
5579 		return false;
5580 	}
5581 }
5582 
5583 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5584 			       int size, bool zero_size_allowed)
5585 {
5586 	struct bpf_reg_state *regs = cur_regs(env);
5587 	struct bpf_reg_state *reg = &regs[regno];
5588 	int err;
5589 
5590 	/* We may have added a variable offset to the packet pointer; but any
5591 	 * reg->range we have comes after that.  We are only checking the fixed
5592 	 * offset.
5593 	 */
5594 
5595 	/* We don't allow negative numbers, because we aren't tracking enough
5596 	 * detail to prove they're safe.
5597 	 */
5598 	if (reg->smin_value < 0) {
5599 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5600 			regno);
5601 		return -EACCES;
5602 	}
5603 
5604 	err = reg->range < 0 ? -EINVAL :
5605 	      __check_mem_access(env, regno, off, size, reg->range,
5606 				 zero_size_allowed);
5607 	if (err) {
5608 		verbose(env, "R%d offset is outside of the packet\n", regno);
5609 		return err;
5610 	}
5611 
5612 	/* __check_mem_access has made sure "off + size - 1" is within u16.
5613 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5614 	 * otherwise find_good_pkt_pointers would have refused to set range info
5615 	 * that __check_mem_access would have rejected this pkt access.
5616 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5617 	 */
5618 	env->prog->aux->max_pkt_offset =
5619 		max_t(u32, env->prog->aux->max_pkt_offset,
5620 		      off + reg->umax_value + size - 1);
5621 
5622 	return err;
5623 }
5624 
5625 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
5626 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5627 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
5628 			    struct btf **btf, u32 *btf_id)
5629 {
5630 	struct bpf_insn_access_aux info = {
5631 		.reg_type = *reg_type,
5632 		.log = &env->log,
5633 	};
5634 
5635 	if (env->ops->is_valid_access &&
5636 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5637 		/* A non zero info.ctx_field_size indicates that this field is a
5638 		 * candidate for later verifier transformation to load the whole
5639 		 * field and then apply a mask when accessed with a narrower
5640 		 * access than actual ctx access size. A zero info.ctx_field_size
5641 		 * will only allow for whole field access and rejects any other
5642 		 * type of narrower access.
5643 		 */
5644 		*reg_type = info.reg_type;
5645 
5646 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5647 			*btf = info.btf;
5648 			*btf_id = info.btf_id;
5649 		} else {
5650 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5651 		}
5652 		/* remember the offset of last byte accessed in ctx */
5653 		if (env->prog->aux->max_ctx_offset < off + size)
5654 			env->prog->aux->max_ctx_offset = off + size;
5655 		return 0;
5656 	}
5657 
5658 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5659 	return -EACCES;
5660 }
5661 
5662 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5663 				  int size)
5664 {
5665 	if (size < 0 || off < 0 ||
5666 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
5667 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
5668 			off, size);
5669 		return -EACCES;
5670 	}
5671 	return 0;
5672 }
5673 
5674 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5675 			     u32 regno, int off, int size,
5676 			     enum bpf_access_type t)
5677 {
5678 	struct bpf_reg_state *regs = cur_regs(env);
5679 	struct bpf_reg_state *reg = &regs[regno];
5680 	struct bpf_insn_access_aux info = {};
5681 	bool valid;
5682 
5683 	if (reg->smin_value < 0) {
5684 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5685 			regno);
5686 		return -EACCES;
5687 	}
5688 
5689 	switch (reg->type) {
5690 	case PTR_TO_SOCK_COMMON:
5691 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5692 		break;
5693 	case PTR_TO_SOCKET:
5694 		valid = bpf_sock_is_valid_access(off, size, t, &info);
5695 		break;
5696 	case PTR_TO_TCP_SOCK:
5697 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5698 		break;
5699 	case PTR_TO_XDP_SOCK:
5700 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5701 		break;
5702 	default:
5703 		valid = false;
5704 	}
5705 
5706 
5707 	if (valid) {
5708 		env->insn_aux_data[insn_idx].ctx_field_size =
5709 			info.ctx_field_size;
5710 		return 0;
5711 	}
5712 
5713 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
5714 		regno, reg_type_str(env, reg->type), off, size);
5715 
5716 	return -EACCES;
5717 }
5718 
5719 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5720 {
5721 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5722 }
5723 
5724 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5725 {
5726 	const struct bpf_reg_state *reg = reg_state(env, regno);
5727 
5728 	return reg->type == PTR_TO_CTX;
5729 }
5730 
5731 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5732 {
5733 	const struct bpf_reg_state *reg = reg_state(env, regno);
5734 
5735 	return type_is_sk_pointer(reg->type);
5736 }
5737 
5738 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5739 {
5740 	const struct bpf_reg_state *reg = reg_state(env, regno);
5741 
5742 	return type_is_pkt_pointer(reg->type);
5743 }
5744 
5745 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5746 {
5747 	const struct bpf_reg_state *reg = reg_state(env, regno);
5748 
5749 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5750 	return reg->type == PTR_TO_FLOW_KEYS;
5751 }
5752 
5753 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5754 #ifdef CONFIG_NET
5755 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5756 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5757 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5758 #endif
5759 	[CONST_PTR_TO_MAP] = btf_bpf_map_id,
5760 };
5761 
5762 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5763 {
5764 	/* A referenced register is always trusted. */
5765 	if (reg->ref_obj_id)
5766 		return true;
5767 
5768 	/* Types listed in the reg2btf_ids are always trusted */
5769 	if (reg2btf_ids[base_type(reg->type)])
5770 		return true;
5771 
5772 	/* If a register is not referenced, it is trusted if it has the
5773 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5774 	 * other type modifiers may be safe, but we elect to take an opt-in
5775 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5776 	 * not.
5777 	 *
5778 	 * Eventually, we should make PTR_TRUSTED the single source of truth
5779 	 * for whether a register is trusted.
5780 	 */
5781 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5782 	       !bpf_type_has_unsafe_modifiers(reg->type);
5783 }
5784 
5785 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5786 {
5787 	return reg->type & MEM_RCU;
5788 }
5789 
5790 static void clear_trusted_flags(enum bpf_type_flag *flag)
5791 {
5792 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5793 }
5794 
5795 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5796 				   const struct bpf_reg_state *reg,
5797 				   int off, int size, bool strict)
5798 {
5799 	struct tnum reg_off;
5800 	int ip_align;
5801 
5802 	/* Byte size accesses are always allowed. */
5803 	if (!strict || size == 1)
5804 		return 0;
5805 
5806 	/* For platforms that do not have a Kconfig enabling
5807 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5808 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
5809 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5810 	 * to this code only in strict mode where we want to emulate
5811 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
5812 	 * unconditional IP align value of '2'.
5813 	 */
5814 	ip_align = 2;
5815 
5816 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5817 	if (!tnum_is_aligned(reg_off, size)) {
5818 		char tn_buf[48];
5819 
5820 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5821 		verbose(env,
5822 			"misaligned packet access off %d+%s+%d+%d size %d\n",
5823 			ip_align, tn_buf, reg->off, off, size);
5824 		return -EACCES;
5825 	}
5826 
5827 	return 0;
5828 }
5829 
5830 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5831 				       const struct bpf_reg_state *reg,
5832 				       const char *pointer_desc,
5833 				       int off, int size, bool strict)
5834 {
5835 	struct tnum reg_off;
5836 
5837 	/* Byte size accesses are always allowed. */
5838 	if (!strict || size == 1)
5839 		return 0;
5840 
5841 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5842 	if (!tnum_is_aligned(reg_off, size)) {
5843 		char tn_buf[48];
5844 
5845 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5846 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5847 			pointer_desc, tn_buf, reg->off, off, size);
5848 		return -EACCES;
5849 	}
5850 
5851 	return 0;
5852 }
5853 
5854 static int check_ptr_alignment(struct bpf_verifier_env *env,
5855 			       const struct bpf_reg_state *reg, int off,
5856 			       int size, bool strict_alignment_once)
5857 {
5858 	bool strict = env->strict_alignment || strict_alignment_once;
5859 	const char *pointer_desc = "";
5860 
5861 	switch (reg->type) {
5862 	case PTR_TO_PACKET:
5863 	case PTR_TO_PACKET_META:
5864 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
5865 		 * right in front, treat it the very same way.
5866 		 */
5867 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
5868 	case PTR_TO_FLOW_KEYS:
5869 		pointer_desc = "flow keys ";
5870 		break;
5871 	case PTR_TO_MAP_KEY:
5872 		pointer_desc = "key ";
5873 		break;
5874 	case PTR_TO_MAP_VALUE:
5875 		pointer_desc = "value ";
5876 		break;
5877 	case PTR_TO_CTX:
5878 		pointer_desc = "context ";
5879 		break;
5880 	case PTR_TO_STACK:
5881 		pointer_desc = "stack ";
5882 		/* The stack spill tracking logic in check_stack_write_fixed_off()
5883 		 * and check_stack_read_fixed_off() relies on stack accesses being
5884 		 * aligned.
5885 		 */
5886 		strict = true;
5887 		break;
5888 	case PTR_TO_SOCKET:
5889 		pointer_desc = "sock ";
5890 		break;
5891 	case PTR_TO_SOCK_COMMON:
5892 		pointer_desc = "sock_common ";
5893 		break;
5894 	case PTR_TO_TCP_SOCK:
5895 		pointer_desc = "tcp_sock ";
5896 		break;
5897 	case PTR_TO_XDP_SOCK:
5898 		pointer_desc = "xdp_sock ";
5899 		break;
5900 	default:
5901 		break;
5902 	}
5903 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5904 					   strict);
5905 }
5906 
5907 static int update_stack_depth(struct bpf_verifier_env *env,
5908 			      const struct bpf_func_state *func,
5909 			      int off)
5910 {
5911 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
5912 
5913 	if (stack >= -off)
5914 		return 0;
5915 
5916 	/* update known max for given subprogram */
5917 	env->subprog_info[func->subprogno].stack_depth = -off;
5918 	return 0;
5919 }
5920 
5921 /* starting from main bpf function walk all instructions of the function
5922  * and recursively walk all callees that given function can call.
5923  * Ignore jump and exit insns.
5924  * Since recursion is prevented by check_cfg() this algorithm
5925  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5926  */
5927 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
5928 {
5929 	struct bpf_subprog_info *subprog = env->subprog_info;
5930 	struct bpf_insn *insn = env->prog->insnsi;
5931 	int depth = 0, frame = 0, i, subprog_end;
5932 	bool tail_call_reachable = false;
5933 	int ret_insn[MAX_CALL_FRAMES];
5934 	int ret_prog[MAX_CALL_FRAMES];
5935 	int j;
5936 
5937 	i = subprog[idx].start;
5938 process_func:
5939 	/* protect against potential stack overflow that might happen when
5940 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5941 	 * depth for such case down to 256 so that the worst case scenario
5942 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
5943 	 * 8k).
5944 	 *
5945 	 * To get the idea what might happen, see an example:
5946 	 * func1 -> sub rsp, 128
5947 	 *  subfunc1 -> sub rsp, 256
5948 	 *  tailcall1 -> add rsp, 256
5949 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5950 	 *   subfunc2 -> sub rsp, 64
5951 	 *   subfunc22 -> sub rsp, 128
5952 	 *   tailcall2 -> add rsp, 128
5953 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5954 	 *
5955 	 * tailcall will unwind the current stack frame but it will not get rid
5956 	 * of caller's stack as shown on the example above.
5957 	 */
5958 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
5959 		verbose(env,
5960 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5961 			depth);
5962 		return -EACCES;
5963 	}
5964 	/* round up to 32-bytes, since this is granularity
5965 	 * of interpreter stack size
5966 	 */
5967 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5968 	if (depth > MAX_BPF_STACK) {
5969 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
5970 			frame + 1, depth);
5971 		return -EACCES;
5972 	}
5973 continue_func:
5974 	subprog_end = subprog[idx + 1].start;
5975 	for (; i < subprog_end; i++) {
5976 		int next_insn, sidx;
5977 
5978 		if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) {
5979 			bool err = false;
5980 
5981 			if (!is_bpf_throw_kfunc(insn + i))
5982 				continue;
5983 			if (subprog[idx].is_cb)
5984 				err = true;
5985 			for (int c = 0; c < frame && !err; c++) {
5986 				if (subprog[ret_prog[c]].is_cb) {
5987 					err = true;
5988 					break;
5989 				}
5990 			}
5991 			if (!err)
5992 				continue;
5993 			verbose(env,
5994 				"bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n",
5995 				i, idx);
5996 			return -EINVAL;
5997 		}
5998 
5999 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
6000 			continue;
6001 		/* remember insn and function to return to */
6002 		ret_insn[frame] = i + 1;
6003 		ret_prog[frame] = idx;
6004 
6005 		/* find the callee */
6006 		next_insn = i + insn[i].imm + 1;
6007 		sidx = find_subprog(env, next_insn);
6008 		if (sidx < 0) {
6009 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6010 				  next_insn);
6011 			return -EFAULT;
6012 		}
6013 		if (subprog[sidx].is_async_cb) {
6014 			if (subprog[sidx].has_tail_call) {
6015 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
6016 				return -EFAULT;
6017 			}
6018 			/* async callbacks don't increase bpf prog stack size unless called directly */
6019 			if (!bpf_pseudo_call(insn + i))
6020 				continue;
6021 			if (subprog[sidx].is_exception_cb) {
6022 				verbose(env, "insn %d cannot call exception cb directly\n", i);
6023 				return -EINVAL;
6024 			}
6025 		}
6026 		i = next_insn;
6027 		idx = sidx;
6028 
6029 		if (subprog[idx].has_tail_call)
6030 			tail_call_reachable = true;
6031 
6032 		frame++;
6033 		if (frame >= MAX_CALL_FRAMES) {
6034 			verbose(env, "the call stack of %d frames is too deep !\n",
6035 				frame);
6036 			return -E2BIG;
6037 		}
6038 		goto process_func;
6039 	}
6040 	/* if tail call got detected across bpf2bpf calls then mark each of the
6041 	 * currently present subprog frames as tail call reachable subprogs;
6042 	 * this info will be utilized by JIT so that we will be preserving the
6043 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
6044 	 */
6045 	if (tail_call_reachable)
6046 		for (j = 0; j < frame; j++) {
6047 			if (subprog[ret_prog[j]].is_exception_cb) {
6048 				verbose(env, "cannot tail call within exception cb\n");
6049 				return -EINVAL;
6050 			}
6051 			subprog[ret_prog[j]].tail_call_reachable = true;
6052 		}
6053 	if (subprog[0].tail_call_reachable)
6054 		env->prog->aux->tail_call_reachable = true;
6055 
6056 	/* end of for() loop means the last insn of the 'subprog'
6057 	 * was reached. Doesn't matter whether it was JA or EXIT
6058 	 */
6059 	if (frame == 0)
6060 		return 0;
6061 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
6062 	frame--;
6063 	i = ret_insn[frame];
6064 	idx = ret_prog[frame];
6065 	goto continue_func;
6066 }
6067 
6068 static int check_max_stack_depth(struct bpf_verifier_env *env)
6069 {
6070 	struct bpf_subprog_info *si = env->subprog_info;
6071 	int ret;
6072 
6073 	for (int i = 0; i < env->subprog_cnt; i++) {
6074 		if (!i || si[i].is_async_cb) {
6075 			ret = check_max_stack_depth_subprog(env, i);
6076 			if (ret < 0)
6077 				return ret;
6078 		}
6079 		continue;
6080 	}
6081 	return 0;
6082 }
6083 
6084 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
6085 static int get_callee_stack_depth(struct bpf_verifier_env *env,
6086 				  const struct bpf_insn *insn, int idx)
6087 {
6088 	int start = idx + insn->imm + 1, subprog;
6089 
6090 	subprog = find_subprog(env, start);
6091 	if (subprog < 0) {
6092 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6093 			  start);
6094 		return -EFAULT;
6095 	}
6096 	return env->subprog_info[subprog].stack_depth;
6097 }
6098 #endif
6099 
6100 static int __check_buffer_access(struct bpf_verifier_env *env,
6101 				 const char *buf_info,
6102 				 const struct bpf_reg_state *reg,
6103 				 int regno, int off, int size)
6104 {
6105 	if (off < 0) {
6106 		verbose(env,
6107 			"R%d invalid %s buffer access: off=%d, size=%d\n",
6108 			regno, buf_info, off, size);
6109 		return -EACCES;
6110 	}
6111 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6112 		char tn_buf[48];
6113 
6114 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6115 		verbose(env,
6116 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
6117 			regno, off, tn_buf);
6118 		return -EACCES;
6119 	}
6120 
6121 	return 0;
6122 }
6123 
6124 static int check_tp_buffer_access(struct bpf_verifier_env *env,
6125 				  const struct bpf_reg_state *reg,
6126 				  int regno, int off, int size)
6127 {
6128 	int err;
6129 
6130 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
6131 	if (err)
6132 		return err;
6133 
6134 	if (off + size > env->prog->aux->max_tp_access)
6135 		env->prog->aux->max_tp_access = off + size;
6136 
6137 	return 0;
6138 }
6139 
6140 static int check_buffer_access(struct bpf_verifier_env *env,
6141 			       const struct bpf_reg_state *reg,
6142 			       int regno, int off, int size,
6143 			       bool zero_size_allowed,
6144 			       u32 *max_access)
6145 {
6146 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
6147 	int err;
6148 
6149 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
6150 	if (err)
6151 		return err;
6152 
6153 	if (off + size > *max_access)
6154 		*max_access = off + size;
6155 
6156 	return 0;
6157 }
6158 
6159 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
6160 static void zext_32_to_64(struct bpf_reg_state *reg)
6161 {
6162 	reg->var_off = tnum_subreg(reg->var_off);
6163 	__reg_assign_32_into_64(reg);
6164 }
6165 
6166 /* truncate register to smaller size (in bytes)
6167  * must be called with size < BPF_REG_SIZE
6168  */
6169 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
6170 {
6171 	u64 mask;
6172 
6173 	/* clear high bits in bit representation */
6174 	reg->var_off = tnum_cast(reg->var_off, size);
6175 
6176 	/* fix arithmetic bounds */
6177 	mask = ((u64)1 << (size * 8)) - 1;
6178 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
6179 		reg->umin_value &= mask;
6180 		reg->umax_value &= mask;
6181 	} else {
6182 		reg->umin_value = 0;
6183 		reg->umax_value = mask;
6184 	}
6185 	reg->smin_value = reg->umin_value;
6186 	reg->smax_value = reg->umax_value;
6187 
6188 	/* If size is smaller than 32bit register the 32bit register
6189 	 * values are also truncated so we push 64-bit bounds into
6190 	 * 32-bit bounds. Above were truncated < 32-bits already.
6191 	 */
6192 	if (size >= 4)
6193 		return;
6194 	__reg_combine_64_into_32(reg);
6195 }
6196 
6197 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
6198 {
6199 	if (size == 1) {
6200 		reg->smin_value = reg->s32_min_value = S8_MIN;
6201 		reg->smax_value = reg->s32_max_value = S8_MAX;
6202 	} else if (size == 2) {
6203 		reg->smin_value = reg->s32_min_value = S16_MIN;
6204 		reg->smax_value = reg->s32_max_value = S16_MAX;
6205 	} else {
6206 		/* size == 4 */
6207 		reg->smin_value = reg->s32_min_value = S32_MIN;
6208 		reg->smax_value = reg->s32_max_value = S32_MAX;
6209 	}
6210 	reg->umin_value = reg->u32_min_value = 0;
6211 	reg->umax_value = U64_MAX;
6212 	reg->u32_max_value = U32_MAX;
6213 	reg->var_off = tnum_unknown;
6214 }
6215 
6216 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
6217 {
6218 	s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6219 	u64 top_smax_value, top_smin_value;
6220 	u64 num_bits = size * 8;
6221 
6222 	if (tnum_is_const(reg->var_off)) {
6223 		u64_cval = reg->var_off.value;
6224 		if (size == 1)
6225 			reg->var_off = tnum_const((s8)u64_cval);
6226 		else if (size == 2)
6227 			reg->var_off = tnum_const((s16)u64_cval);
6228 		else
6229 			/* size == 4 */
6230 			reg->var_off = tnum_const((s32)u64_cval);
6231 
6232 		u64_cval = reg->var_off.value;
6233 		reg->smax_value = reg->smin_value = u64_cval;
6234 		reg->umax_value = reg->umin_value = u64_cval;
6235 		reg->s32_max_value = reg->s32_min_value = u64_cval;
6236 		reg->u32_max_value = reg->u32_min_value = u64_cval;
6237 		return;
6238 	}
6239 
6240 	top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6241 	top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6242 
6243 	if (top_smax_value != top_smin_value)
6244 		goto out;
6245 
6246 	/* find the s64_min and s64_min after sign extension */
6247 	if (size == 1) {
6248 		init_s64_max = (s8)reg->smax_value;
6249 		init_s64_min = (s8)reg->smin_value;
6250 	} else if (size == 2) {
6251 		init_s64_max = (s16)reg->smax_value;
6252 		init_s64_min = (s16)reg->smin_value;
6253 	} else {
6254 		init_s64_max = (s32)reg->smax_value;
6255 		init_s64_min = (s32)reg->smin_value;
6256 	}
6257 
6258 	s64_max = max(init_s64_max, init_s64_min);
6259 	s64_min = min(init_s64_max, init_s64_min);
6260 
6261 	/* both of s64_max/s64_min positive or negative */
6262 	if ((s64_max >= 0) == (s64_min >= 0)) {
6263 		reg->smin_value = reg->s32_min_value = s64_min;
6264 		reg->smax_value = reg->s32_max_value = s64_max;
6265 		reg->umin_value = reg->u32_min_value = s64_min;
6266 		reg->umax_value = reg->u32_max_value = s64_max;
6267 		reg->var_off = tnum_range(s64_min, s64_max);
6268 		return;
6269 	}
6270 
6271 out:
6272 	set_sext64_default_val(reg, size);
6273 }
6274 
6275 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6276 {
6277 	if (size == 1) {
6278 		reg->s32_min_value = S8_MIN;
6279 		reg->s32_max_value = S8_MAX;
6280 	} else {
6281 		/* size == 2 */
6282 		reg->s32_min_value = S16_MIN;
6283 		reg->s32_max_value = S16_MAX;
6284 	}
6285 	reg->u32_min_value = 0;
6286 	reg->u32_max_value = U32_MAX;
6287 }
6288 
6289 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6290 {
6291 	s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6292 	u32 top_smax_value, top_smin_value;
6293 	u32 num_bits = size * 8;
6294 
6295 	if (tnum_is_const(reg->var_off)) {
6296 		u32_val = reg->var_off.value;
6297 		if (size == 1)
6298 			reg->var_off = tnum_const((s8)u32_val);
6299 		else
6300 			reg->var_off = tnum_const((s16)u32_val);
6301 
6302 		u32_val = reg->var_off.value;
6303 		reg->s32_min_value = reg->s32_max_value = u32_val;
6304 		reg->u32_min_value = reg->u32_max_value = u32_val;
6305 		return;
6306 	}
6307 
6308 	top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
6309 	top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
6310 
6311 	if (top_smax_value != top_smin_value)
6312 		goto out;
6313 
6314 	/* find the s32_min and s32_min after sign extension */
6315 	if (size == 1) {
6316 		init_s32_max = (s8)reg->s32_max_value;
6317 		init_s32_min = (s8)reg->s32_min_value;
6318 	} else {
6319 		/* size == 2 */
6320 		init_s32_max = (s16)reg->s32_max_value;
6321 		init_s32_min = (s16)reg->s32_min_value;
6322 	}
6323 	s32_max = max(init_s32_max, init_s32_min);
6324 	s32_min = min(init_s32_max, init_s32_min);
6325 
6326 	if ((s32_min >= 0) == (s32_max >= 0)) {
6327 		reg->s32_min_value = s32_min;
6328 		reg->s32_max_value = s32_max;
6329 		reg->u32_min_value = (u32)s32_min;
6330 		reg->u32_max_value = (u32)s32_max;
6331 		return;
6332 	}
6333 
6334 out:
6335 	set_sext32_default_val(reg, size);
6336 }
6337 
6338 static bool bpf_map_is_rdonly(const struct bpf_map *map)
6339 {
6340 	/* A map is considered read-only if the following condition are true:
6341 	 *
6342 	 * 1) BPF program side cannot change any of the map content. The
6343 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6344 	 *    and was set at map creation time.
6345 	 * 2) The map value(s) have been initialized from user space by a
6346 	 *    loader and then "frozen", such that no new map update/delete
6347 	 *    operations from syscall side are possible for the rest of
6348 	 *    the map's lifetime from that point onwards.
6349 	 * 3) Any parallel/pending map update/delete operations from syscall
6350 	 *    side have been completed. Only after that point, it's safe to
6351 	 *    assume that map value(s) are immutable.
6352 	 */
6353 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
6354 	       READ_ONCE(map->frozen) &&
6355 	       !bpf_map_write_active(map);
6356 }
6357 
6358 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6359 			       bool is_ldsx)
6360 {
6361 	void *ptr;
6362 	u64 addr;
6363 	int err;
6364 
6365 	err = map->ops->map_direct_value_addr(map, &addr, off);
6366 	if (err)
6367 		return err;
6368 	ptr = (void *)(long)addr + off;
6369 
6370 	switch (size) {
6371 	case sizeof(u8):
6372 		*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6373 		break;
6374 	case sizeof(u16):
6375 		*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6376 		break;
6377 	case sizeof(u32):
6378 		*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6379 		break;
6380 	case sizeof(u64):
6381 		*val = *(u64 *)ptr;
6382 		break;
6383 	default:
6384 		return -EINVAL;
6385 	}
6386 	return 0;
6387 }
6388 
6389 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
6390 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
6391 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
6392 
6393 /*
6394  * Allow list few fields as RCU trusted or full trusted.
6395  * This logic doesn't allow mix tagging and will be removed once GCC supports
6396  * btf_type_tag.
6397  */
6398 
6399 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
6400 BTF_TYPE_SAFE_RCU(struct task_struct) {
6401 	const cpumask_t *cpus_ptr;
6402 	struct css_set __rcu *cgroups;
6403 	struct task_struct __rcu *real_parent;
6404 	struct task_struct *group_leader;
6405 };
6406 
6407 BTF_TYPE_SAFE_RCU(struct cgroup) {
6408 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6409 	struct kernfs_node *kn;
6410 };
6411 
6412 BTF_TYPE_SAFE_RCU(struct css_set) {
6413 	struct cgroup *dfl_cgrp;
6414 };
6415 
6416 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
6417 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6418 	struct file __rcu *exe_file;
6419 };
6420 
6421 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6422  * because bpf prog accessible sockets are SOCK_RCU_FREE.
6423  */
6424 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6425 	struct sock *sk;
6426 };
6427 
6428 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6429 	struct sock *sk;
6430 };
6431 
6432 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
6433 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6434 	struct seq_file *seq;
6435 };
6436 
6437 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6438 	struct bpf_iter_meta *meta;
6439 	struct task_struct *task;
6440 };
6441 
6442 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6443 	struct file *file;
6444 };
6445 
6446 BTF_TYPE_SAFE_TRUSTED(struct file) {
6447 	struct inode *f_inode;
6448 };
6449 
6450 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6451 	/* no negative dentry-s in places where bpf can see it */
6452 	struct inode *d_inode;
6453 };
6454 
6455 BTF_TYPE_SAFE_TRUSTED(struct socket) {
6456 	struct sock *sk;
6457 };
6458 
6459 static bool type_is_rcu(struct bpf_verifier_env *env,
6460 			struct bpf_reg_state *reg,
6461 			const char *field_name, u32 btf_id)
6462 {
6463 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6464 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6465 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6466 
6467 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6468 }
6469 
6470 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6471 				struct bpf_reg_state *reg,
6472 				const char *field_name, u32 btf_id)
6473 {
6474 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6475 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6476 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6477 
6478 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6479 }
6480 
6481 static bool type_is_trusted(struct bpf_verifier_env *env,
6482 			    struct bpf_reg_state *reg,
6483 			    const char *field_name, u32 btf_id)
6484 {
6485 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6486 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6487 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6488 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6489 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6490 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket));
6491 
6492 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6493 }
6494 
6495 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6496 				   struct bpf_reg_state *regs,
6497 				   int regno, int off, int size,
6498 				   enum bpf_access_type atype,
6499 				   int value_regno)
6500 {
6501 	struct bpf_reg_state *reg = regs + regno;
6502 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6503 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6504 	const char *field_name = NULL;
6505 	enum bpf_type_flag flag = 0;
6506 	u32 btf_id = 0;
6507 	int ret;
6508 
6509 	if (!env->allow_ptr_leaks) {
6510 		verbose(env,
6511 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6512 			tname);
6513 		return -EPERM;
6514 	}
6515 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6516 		verbose(env,
6517 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6518 			tname);
6519 		return -EINVAL;
6520 	}
6521 	if (off < 0) {
6522 		verbose(env,
6523 			"R%d is ptr_%s invalid negative access: off=%d\n",
6524 			regno, tname, off);
6525 		return -EACCES;
6526 	}
6527 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6528 		char tn_buf[48];
6529 
6530 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6531 		verbose(env,
6532 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6533 			regno, tname, off, tn_buf);
6534 		return -EACCES;
6535 	}
6536 
6537 	if (reg->type & MEM_USER) {
6538 		verbose(env,
6539 			"R%d is ptr_%s access user memory: off=%d\n",
6540 			regno, tname, off);
6541 		return -EACCES;
6542 	}
6543 
6544 	if (reg->type & MEM_PERCPU) {
6545 		verbose(env,
6546 			"R%d is ptr_%s access percpu memory: off=%d\n",
6547 			regno, tname, off);
6548 		return -EACCES;
6549 	}
6550 
6551 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6552 		if (!btf_is_kernel(reg->btf)) {
6553 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6554 			return -EFAULT;
6555 		}
6556 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6557 	} else {
6558 		/* Writes are permitted with default btf_struct_access for
6559 		 * program allocated objects (which always have ref_obj_id > 0),
6560 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6561 		 */
6562 		if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6563 			verbose(env, "only read is supported\n");
6564 			return -EACCES;
6565 		}
6566 
6567 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6568 		    !(reg->type & MEM_RCU) && !reg->ref_obj_id) {
6569 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6570 			return -EFAULT;
6571 		}
6572 
6573 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6574 	}
6575 
6576 	if (ret < 0)
6577 		return ret;
6578 
6579 	if (ret != PTR_TO_BTF_ID) {
6580 		/* just mark; */
6581 
6582 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6583 		/* If this is an untrusted pointer, all pointers formed by walking it
6584 		 * also inherit the untrusted flag.
6585 		 */
6586 		flag = PTR_UNTRUSTED;
6587 
6588 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6589 		/* By default any pointer obtained from walking a trusted pointer is no
6590 		 * longer trusted, unless the field being accessed has explicitly been
6591 		 * marked as inheriting its parent's state of trust (either full or RCU).
6592 		 * For example:
6593 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
6594 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
6595 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6596 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6597 		 *
6598 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
6599 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
6600 		 */
6601 		if (type_is_trusted(env, reg, field_name, btf_id)) {
6602 			flag |= PTR_TRUSTED;
6603 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6604 			if (type_is_rcu(env, reg, field_name, btf_id)) {
6605 				/* ignore __rcu tag and mark it MEM_RCU */
6606 				flag |= MEM_RCU;
6607 			} else if (flag & MEM_RCU ||
6608 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6609 				/* __rcu tagged pointers can be NULL */
6610 				flag |= MEM_RCU | PTR_MAYBE_NULL;
6611 
6612 				/* We always trust them */
6613 				if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6614 				    flag & PTR_UNTRUSTED)
6615 					flag &= ~PTR_UNTRUSTED;
6616 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
6617 				/* keep as-is */
6618 			} else {
6619 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6620 				clear_trusted_flags(&flag);
6621 			}
6622 		} else {
6623 			/*
6624 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
6625 			 * aggressively mark as untrusted otherwise such
6626 			 * pointers will be plain PTR_TO_BTF_ID without flags
6627 			 * and will be allowed to be passed into helpers for
6628 			 * compat reasons.
6629 			 */
6630 			flag = PTR_UNTRUSTED;
6631 		}
6632 	} else {
6633 		/* Old compat. Deprecated */
6634 		clear_trusted_flags(&flag);
6635 	}
6636 
6637 	if (atype == BPF_READ && value_regno >= 0)
6638 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6639 
6640 	return 0;
6641 }
6642 
6643 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6644 				   struct bpf_reg_state *regs,
6645 				   int regno, int off, int size,
6646 				   enum bpf_access_type atype,
6647 				   int value_regno)
6648 {
6649 	struct bpf_reg_state *reg = regs + regno;
6650 	struct bpf_map *map = reg->map_ptr;
6651 	struct bpf_reg_state map_reg;
6652 	enum bpf_type_flag flag = 0;
6653 	const struct btf_type *t;
6654 	const char *tname;
6655 	u32 btf_id;
6656 	int ret;
6657 
6658 	if (!btf_vmlinux) {
6659 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6660 		return -ENOTSUPP;
6661 	}
6662 
6663 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6664 		verbose(env, "map_ptr access not supported for map type %d\n",
6665 			map->map_type);
6666 		return -ENOTSUPP;
6667 	}
6668 
6669 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6670 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6671 
6672 	if (!env->allow_ptr_leaks) {
6673 		verbose(env,
6674 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6675 			tname);
6676 		return -EPERM;
6677 	}
6678 
6679 	if (off < 0) {
6680 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
6681 			regno, tname, off);
6682 		return -EACCES;
6683 	}
6684 
6685 	if (atype != BPF_READ) {
6686 		verbose(env, "only read from %s is supported\n", tname);
6687 		return -EACCES;
6688 	}
6689 
6690 	/* Simulate access to a PTR_TO_BTF_ID */
6691 	memset(&map_reg, 0, sizeof(map_reg));
6692 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6693 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6694 	if (ret < 0)
6695 		return ret;
6696 
6697 	if (value_regno >= 0)
6698 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6699 
6700 	return 0;
6701 }
6702 
6703 /* Check that the stack access at the given offset is within bounds. The
6704  * maximum valid offset is -1.
6705  *
6706  * The minimum valid offset is -MAX_BPF_STACK for writes, and
6707  * -state->allocated_stack for reads.
6708  */
6709 static int check_stack_slot_within_bounds(int off,
6710 					  struct bpf_func_state *state,
6711 					  enum bpf_access_type t)
6712 {
6713 	int min_valid_off;
6714 
6715 	if (t == BPF_WRITE)
6716 		min_valid_off = -MAX_BPF_STACK;
6717 	else
6718 		min_valid_off = -state->allocated_stack;
6719 
6720 	if (off < min_valid_off || off > -1)
6721 		return -EACCES;
6722 	return 0;
6723 }
6724 
6725 /* Check that the stack access at 'regno + off' falls within the maximum stack
6726  * bounds.
6727  *
6728  * 'off' includes `regno->offset`, but not its dynamic part (if any).
6729  */
6730 static int check_stack_access_within_bounds(
6731 		struct bpf_verifier_env *env,
6732 		int regno, int off, int access_size,
6733 		enum bpf_access_src src, enum bpf_access_type type)
6734 {
6735 	struct bpf_reg_state *regs = cur_regs(env);
6736 	struct bpf_reg_state *reg = regs + regno;
6737 	struct bpf_func_state *state = func(env, reg);
6738 	int min_off, max_off;
6739 	int err;
6740 	char *err_extra;
6741 
6742 	if (src == ACCESS_HELPER)
6743 		/* We don't know if helpers are reading or writing (or both). */
6744 		err_extra = " indirect access to";
6745 	else if (type == BPF_READ)
6746 		err_extra = " read from";
6747 	else
6748 		err_extra = " write to";
6749 
6750 	if (tnum_is_const(reg->var_off)) {
6751 		min_off = reg->var_off.value + off;
6752 		if (access_size > 0)
6753 			max_off = min_off + access_size - 1;
6754 		else
6755 			max_off = min_off;
6756 	} else {
6757 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6758 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
6759 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6760 				err_extra, regno);
6761 			return -EACCES;
6762 		}
6763 		min_off = reg->smin_value + off;
6764 		if (access_size > 0)
6765 			max_off = reg->smax_value + off + access_size - 1;
6766 		else
6767 			max_off = min_off;
6768 	}
6769 
6770 	err = check_stack_slot_within_bounds(min_off, state, type);
6771 	if (!err)
6772 		err = check_stack_slot_within_bounds(max_off, state, type);
6773 
6774 	if (err) {
6775 		if (tnum_is_const(reg->var_off)) {
6776 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6777 				err_extra, regno, off, access_size);
6778 		} else {
6779 			char tn_buf[48];
6780 
6781 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6782 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
6783 				err_extra, regno, tn_buf, access_size);
6784 		}
6785 	}
6786 	return err;
6787 }
6788 
6789 /* check whether memory at (regno + off) is accessible for t = (read | write)
6790  * if t==write, value_regno is a register which value is stored into memory
6791  * if t==read, value_regno is a register which will receive the value from memory
6792  * if t==write && value_regno==-1, some unknown value is stored into memory
6793  * if t==read && value_regno==-1, don't care what we read from memory
6794  */
6795 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6796 			    int off, int bpf_size, enum bpf_access_type t,
6797 			    int value_regno, bool strict_alignment_once, bool is_ldsx)
6798 {
6799 	struct bpf_reg_state *regs = cur_regs(env);
6800 	struct bpf_reg_state *reg = regs + regno;
6801 	struct bpf_func_state *state;
6802 	int size, err = 0;
6803 
6804 	size = bpf_size_to_bytes(bpf_size);
6805 	if (size < 0)
6806 		return size;
6807 
6808 	/* alignment checks will add in reg->off themselves */
6809 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6810 	if (err)
6811 		return err;
6812 
6813 	/* for access checks, reg->off is just part of off */
6814 	off += reg->off;
6815 
6816 	if (reg->type == PTR_TO_MAP_KEY) {
6817 		if (t == BPF_WRITE) {
6818 			verbose(env, "write to change key R%d not allowed\n", regno);
6819 			return -EACCES;
6820 		}
6821 
6822 		err = check_mem_region_access(env, regno, off, size,
6823 					      reg->map_ptr->key_size, false);
6824 		if (err)
6825 			return err;
6826 		if (value_regno >= 0)
6827 			mark_reg_unknown(env, regs, value_regno);
6828 	} else if (reg->type == PTR_TO_MAP_VALUE) {
6829 		struct btf_field *kptr_field = NULL;
6830 
6831 		if (t == BPF_WRITE && value_regno >= 0 &&
6832 		    is_pointer_value(env, value_regno)) {
6833 			verbose(env, "R%d leaks addr into map\n", value_regno);
6834 			return -EACCES;
6835 		}
6836 		err = check_map_access_type(env, regno, off, size, t);
6837 		if (err)
6838 			return err;
6839 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6840 		if (err)
6841 			return err;
6842 		if (tnum_is_const(reg->var_off))
6843 			kptr_field = btf_record_find(reg->map_ptr->record,
6844 						     off + reg->var_off.value, BPF_KPTR);
6845 		if (kptr_field) {
6846 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6847 		} else if (t == BPF_READ && value_regno >= 0) {
6848 			struct bpf_map *map = reg->map_ptr;
6849 
6850 			/* if map is read-only, track its contents as scalars */
6851 			if (tnum_is_const(reg->var_off) &&
6852 			    bpf_map_is_rdonly(map) &&
6853 			    map->ops->map_direct_value_addr) {
6854 				int map_off = off + reg->var_off.value;
6855 				u64 val = 0;
6856 
6857 				err = bpf_map_direct_read(map, map_off, size,
6858 							  &val, is_ldsx);
6859 				if (err)
6860 					return err;
6861 
6862 				regs[value_regno].type = SCALAR_VALUE;
6863 				__mark_reg_known(&regs[value_regno], val);
6864 			} else {
6865 				mark_reg_unknown(env, regs, value_regno);
6866 			}
6867 		}
6868 	} else if (base_type(reg->type) == PTR_TO_MEM) {
6869 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6870 
6871 		if (type_may_be_null(reg->type)) {
6872 			verbose(env, "R%d invalid mem access '%s'\n", regno,
6873 				reg_type_str(env, reg->type));
6874 			return -EACCES;
6875 		}
6876 
6877 		if (t == BPF_WRITE && rdonly_mem) {
6878 			verbose(env, "R%d cannot write into %s\n",
6879 				regno, reg_type_str(env, reg->type));
6880 			return -EACCES;
6881 		}
6882 
6883 		if (t == BPF_WRITE && value_regno >= 0 &&
6884 		    is_pointer_value(env, value_regno)) {
6885 			verbose(env, "R%d leaks addr into mem\n", value_regno);
6886 			return -EACCES;
6887 		}
6888 
6889 		err = check_mem_region_access(env, regno, off, size,
6890 					      reg->mem_size, false);
6891 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
6892 			mark_reg_unknown(env, regs, value_regno);
6893 	} else if (reg->type == PTR_TO_CTX) {
6894 		enum bpf_reg_type reg_type = SCALAR_VALUE;
6895 		struct btf *btf = NULL;
6896 		u32 btf_id = 0;
6897 
6898 		if (t == BPF_WRITE && value_regno >= 0 &&
6899 		    is_pointer_value(env, value_regno)) {
6900 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
6901 			return -EACCES;
6902 		}
6903 
6904 		err = check_ptr_off_reg(env, reg, regno);
6905 		if (err < 0)
6906 			return err;
6907 
6908 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
6909 				       &btf_id);
6910 		if (err)
6911 			verbose_linfo(env, insn_idx, "; ");
6912 		if (!err && t == BPF_READ && value_regno >= 0) {
6913 			/* ctx access returns either a scalar, or a
6914 			 * PTR_TO_PACKET[_META,_END]. In the latter
6915 			 * case, we know the offset is zero.
6916 			 */
6917 			if (reg_type == SCALAR_VALUE) {
6918 				mark_reg_unknown(env, regs, value_regno);
6919 			} else {
6920 				mark_reg_known_zero(env, regs,
6921 						    value_regno);
6922 				if (type_may_be_null(reg_type))
6923 					regs[value_regno].id = ++env->id_gen;
6924 				/* A load of ctx field could have different
6925 				 * actual load size with the one encoded in the
6926 				 * insn. When the dst is PTR, it is for sure not
6927 				 * a sub-register.
6928 				 */
6929 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
6930 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
6931 					regs[value_regno].btf = btf;
6932 					regs[value_regno].btf_id = btf_id;
6933 				}
6934 			}
6935 			regs[value_regno].type = reg_type;
6936 		}
6937 
6938 	} else if (reg->type == PTR_TO_STACK) {
6939 		/* Basic bounds checks. */
6940 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
6941 		if (err)
6942 			return err;
6943 
6944 		state = func(env, reg);
6945 		err = update_stack_depth(env, state, off);
6946 		if (err)
6947 			return err;
6948 
6949 		if (t == BPF_READ)
6950 			err = check_stack_read(env, regno, off, size,
6951 					       value_regno);
6952 		else
6953 			err = check_stack_write(env, regno, off, size,
6954 						value_regno, insn_idx);
6955 	} else if (reg_is_pkt_pointer(reg)) {
6956 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
6957 			verbose(env, "cannot write into packet\n");
6958 			return -EACCES;
6959 		}
6960 		if (t == BPF_WRITE && value_regno >= 0 &&
6961 		    is_pointer_value(env, value_regno)) {
6962 			verbose(env, "R%d leaks addr into packet\n",
6963 				value_regno);
6964 			return -EACCES;
6965 		}
6966 		err = check_packet_access(env, regno, off, size, false);
6967 		if (!err && t == BPF_READ && value_regno >= 0)
6968 			mark_reg_unknown(env, regs, value_regno);
6969 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
6970 		if (t == BPF_WRITE && value_regno >= 0 &&
6971 		    is_pointer_value(env, value_regno)) {
6972 			verbose(env, "R%d leaks addr into flow keys\n",
6973 				value_regno);
6974 			return -EACCES;
6975 		}
6976 
6977 		err = check_flow_keys_access(env, off, size);
6978 		if (!err && t == BPF_READ && value_regno >= 0)
6979 			mark_reg_unknown(env, regs, value_regno);
6980 	} else if (type_is_sk_pointer(reg->type)) {
6981 		if (t == BPF_WRITE) {
6982 			verbose(env, "R%d cannot write into %s\n",
6983 				regno, reg_type_str(env, reg->type));
6984 			return -EACCES;
6985 		}
6986 		err = check_sock_access(env, insn_idx, regno, off, size, t);
6987 		if (!err && value_regno >= 0)
6988 			mark_reg_unknown(env, regs, value_regno);
6989 	} else if (reg->type == PTR_TO_TP_BUFFER) {
6990 		err = check_tp_buffer_access(env, reg, regno, off, size);
6991 		if (!err && t == BPF_READ && value_regno >= 0)
6992 			mark_reg_unknown(env, regs, value_regno);
6993 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
6994 		   !type_may_be_null(reg->type)) {
6995 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
6996 					      value_regno);
6997 	} else if (reg->type == CONST_PTR_TO_MAP) {
6998 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
6999 					      value_regno);
7000 	} else if (base_type(reg->type) == PTR_TO_BUF) {
7001 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
7002 		u32 *max_access;
7003 
7004 		if (rdonly_mem) {
7005 			if (t == BPF_WRITE) {
7006 				verbose(env, "R%d cannot write into %s\n",
7007 					regno, reg_type_str(env, reg->type));
7008 				return -EACCES;
7009 			}
7010 			max_access = &env->prog->aux->max_rdonly_access;
7011 		} else {
7012 			max_access = &env->prog->aux->max_rdwr_access;
7013 		}
7014 
7015 		err = check_buffer_access(env, reg, regno, off, size, false,
7016 					  max_access);
7017 
7018 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
7019 			mark_reg_unknown(env, regs, value_regno);
7020 	} else {
7021 		verbose(env, "R%d invalid mem access '%s'\n", regno,
7022 			reg_type_str(env, reg->type));
7023 		return -EACCES;
7024 	}
7025 
7026 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
7027 	    regs[value_regno].type == SCALAR_VALUE) {
7028 		if (!is_ldsx)
7029 			/* b/h/w load zero-extends, mark upper bits as known 0 */
7030 			coerce_reg_to_size(&regs[value_regno], size);
7031 		else
7032 			coerce_reg_to_size_sx(&regs[value_regno], size);
7033 	}
7034 	return err;
7035 }
7036 
7037 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
7038 {
7039 	int load_reg;
7040 	int err;
7041 
7042 	switch (insn->imm) {
7043 	case BPF_ADD:
7044 	case BPF_ADD | BPF_FETCH:
7045 	case BPF_AND:
7046 	case BPF_AND | BPF_FETCH:
7047 	case BPF_OR:
7048 	case BPF_OR | BPF_FETCH:
7049 	case BPF_XOR:
7050 	case BPF_XOR | BPF_FETCH:
7051 	case BPF_XCHG:
7052 	case BPF_CMPXCHG:
7053 		break;
7054 	default:
7055 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
7056 		return -EINVAL;
7057 	}
7058 
7059 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
7060 		verbose(env, "invalid atomic operand size\n");
7061 		return -EINVAL;
7062 	}
7063 
7064 	/* check src1 operand */
7065 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
7066 	if (err)
7067 		return err;
7068 
7069 	/* check src2 operand */
7070 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7071 	if (err)
7072 		return err;
7073 
7074 	if (insn->imm == BPF_CMPXCHG) {
7075 		/* Check comparison of R0 with memory location */
7076 		const u32 aux_reg = BPF_REG_0;
7077 
7078 		err = check_reg_arg(env, aux_reg, SRC_OP);
7079 		if (err)
7080 			return err;
7081 
7082 		if (is_pointer_value(env, aux_reg)) {
7083 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
7084 			return -EACCES;
7085 		}
7086 	}
7087 
7088 	if (is_pointer_value(env, insn->src_reg)) {
7089 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
7090 		return -EACCES;
7091 	}
7092 
7093 	if (is_ctx_reg(env, insn->dst_reg) ||
7094 	    is_pkt_reg(env, insn->dst_reg) ||
7095 	    is_flow_key_reg(env, insn->dst_reg) ||
7096 	    is_sk_reg(env, insn->dst_reg)) {
7097 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
7098 			insn->dst_reg,
7099 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
7100 		return -EACCES;
7101 	}
7102 
7103 	if (insn->imm & BPF_FETCH) {
7104 		if (insn->imm == BPF_CMPXCHG)
7105 			load_reg = BPF_REG_0;
7106 		else
7107 			load_reg = insn->src_reg;
7108 
7109 		/* check and record load of old value */
7110 		err = check_reg_arg(env, load_reg, DST_OP);
7111 		if (err)
7112 			return err;
7113 	} else {
7114 		/* This instruction accesses a memory location but doesn't
7115 		 * actually load it into a register.
7116 		 */
7117 		load_reg = -1;
7118 	}
7119 
7120 	/* Check whether we can read the memory, with second call for fetch
7121 	 * case to simulate the register fill.
7122 	 */
7123 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7124 			       BPF_SIZE(insn->code), BPF_READ, -1, true, false);
7125 	if (!err && load_reg >= 0)
7126 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7127 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
7128 				       true, false);
7129 	if (err)
7130 		return err;
7131 
7132 	/* Check whether we can write into the same memory. */
7133 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7134 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
7135 	if (err)
7136 		return err;
7137 
7138 	return 0;
7139 }
7140 
7141 /* When register 'regno' is used to read the stack (either directly or through
7142  * a helper function) make sure that it's within stack boundary and, depending
7143  * on the access type, that all elements of the stack are initialized.
7144  *
7145  * 'off' includes 'regno->off', but not its dynamic part (if any).
7146  *
7147  * All registers that have been spilled on the stack in the slots within the
7148  * read offsets are marked as read.
7149  */
7150 static int check_stack_range_initialized(
7151 		struct bpf_verifier_env *env, int regno, int off,
7152 		int access_size, bool zero_size_allowed,
7153 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
7154 {
7155 	struct bpf_reg_state *reg = reg_state(env, regno);
7156 	struct bpf_func_state *state = func(env, reg);
7157 	int err, min_off, max_off, i, j, slot, spi;
7158 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
7159 	enum bpf_access_type bounds_check_type;
7160 	/* Some accesses can write anything into the stack, others are
7161 	 * read-only.
7162 	 */
7163 	bool clobber = false;
7164 
7165 	if (access_size == 0 && !zero_size_allowed) {
7166 		verbose(env, "invalid zero-sized read\n");
7167 		return -EACCES;
7168 	}
7169 
7170 	if (type == ACCESS_HELPER) {
7171 		/* The bounds checks for writes are more permissive than for
7172 		 * reads. However, if raw_mode is not set, we'll do extra
7173 		 * checks below.
7174 		 */
7175 		bounds_check_type = BPF_WRITE;
7176 		clobber = true;
7177 	} else {
7178 		bounds_check_type = BPF_READ;
7179 	}
7180 	err = check_stack_access_within_bounds(env, regno, off, access_size,
7181 					       type, bounds_check_type);
7182 	if (err)
7183 		return err;
7184 
7185 
7186 	if (tnum_is_const(reg->var_off)) {
7187 		min_off = max_off = reg->var_off.value + off;
7188 	} else {
7189 		/* Variable offset is prohibited for unprivileged mode for
7190 		 * simplicity since it requires corresponding support in
7191 		 * Spectre masking for stack ALU.
7192 		 * See also retrieve_ptr_limit().
7193 		 */
7194 		if (!env->bypass_spec_v1) {
7195 			char tn_buf[48];
7196 
7197 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7198 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
7199 				regno, err_extra, tn_buf);
7200 			return -EACCES;
7201 		}
7202 		/* Only initialized buffer on stack is allowed to be accessed
7203 		 * with variable offset. With uninitialized buffer it's hard to
7204 		 * guarantee that whole memory is marked as initialized on
7205 		 * helper return since specific bounds are unknown what may
7206 		 * cause uninitialized stack leaking.
7207 		 */
7208 		if (meta && meta->raw_mode)
7209 			meta = NULL;
7210 
7211 		min_off = reg->smin_value + off;
7212 		max_off = reg->smax_value + off;
7213 	}
7214 
7215 	if (meta && meta->raw_mode) {
7216 		/* Ensure we won't be overwriting dynptrs when simulating byte
7217 		 * by byte access in check_helper_call using meta.access_size.
7218 		 * This would be a problem if we have a helper in the future
7219 		 * which takes:
7220 		 *
7221 		 *	helper(uninit_mem, len, dynptr)
7222 		 *
7223 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
7224 		 * may end up writing to dynptr itself when touching memory from
7225 		 * arg 1. This can be relaxed on a case by case basis for known
7226 		 * safe cases, but reject due to the possibilitiy of aliasing by
7227 		 * default.
7228 		 */
7229 		for (i = min_off; i < max_off + access_size; i++) {
7230 			int stack_off = -i - 1;
7231 
7232 			spi = __get_spi(i);
7233 			/* raw_mode may write past allocated_stack */
7234 			if (state->allocated_stack <= stack_off)
7235 				continue;
7236 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
7237 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
7238 				return -EACCES;
7239 			}
7240 		}
7241 		meta->access_size = access_size;
7242 		meta->regno = regno;
7243 		return 0;
7244 	}
7245 
7246 	for (i = min_off; i < max_off + access_size; i++) {
7247 		u8 *stype;
7248 
7249 		slot = -i - 1;
7250 		spi = slot / BPF_REG_SIZE;
7251 		if (state->allocated_stack <= slot)
7252 			goto err;
7253 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
7254 		if (*stype == STACK_MISC)
7255 			goto mark;
7256 		if ((*stype == STACK_ZERO) ||
7257 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
7258 			if (clobber) {
7259 				/* helper can write anything into the stack */
7260 				*stype = STACK_MISC;
7261 			}
7262 			goto mark;
7263 		}
7264 
7265 		if (is_spilled_reg(&state->stack[spi]) &&
7266 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
7267 		     env->allow_ptr_leaks)) {
7268 			if (clobber) {
7269 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
7270 				for (j = 0; j < BPF_REG_SIZE; j++)
7271 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
7272 			}
7273 			goto mark;
7274 		}
7275 
7276 err:
7277 		if (tnum_is_const(reg->var_off)) {
7278 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
7279 				err_extra, regno, min_off, i - min_off, access_size);
7280 		} else {
7281 			char tn_buf[48];
7282 
7283 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7284 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
7285 				err_extra, regno, tn_buf, i - min_off, access_size);
7286 		}
7287 		return -EACCES;
7288 mark:
7289 		/* reading any byte out of 8-byte 'spill_slot' will cause
7290 		 * the whole slot to be marked as 'read'
7291 		 */
7292 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
7293 			      state->stack[spi].spilled_ptr.parent,
7294 			      REG_LIVE_READ64);
7295 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
7296 		 * be sure that whether stack slot is written to or not. Hence,
7297 		 * we must still conservatively propagate reads upwards even if
7298 		 * helper may write to the entire memory range.
7299 		 */
7300 	}
7301 	return update_stack_depth(env, state, min_off);
7302 }
7303 
7304 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
7305 				   int access_size, bool zero_size_allowed,
7306 				   struct bpf_call_arg_meta *meta)
7307 {
7308 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7309 	u32 *max_access;
7310 
7311 	switch (base_type(reg->type)) {
7312 	case PTR_TO_PACKET:
7313 	case PTR_TO_PACKET_META:
7314 		return check_packet_access(env, regno, reg->off, access_size,
7315 					   zero_size_allowed);
7316 	case PTR_TO_MAP_KEY:
7317 		if (meta && meta->raw_mode) {
7318 			verbose(env, "R%d cannot write into %s\n", regno,
7319 				reg_type_str(env, reg->type));
7320 			return -EACCES;
7321 		}
7322 		return check_mem_region_access(env, regno, reg->off, access_size,
7323 					       reg->map_ptr->key_size, false);
7324 	case PTR_TO_MAP_VALUE:
7325 		if (check_map_access_type(env, regno, reg->off, access_size,
7326 					  meta && meta->raw_mode ? BPF_WRITE :
7327 					  BPF_READ))
7328 			return -EACCES;
7329 		return check_map_access(env, regno, reg->off, access_size,
7330 					zero_size_allowed, ACCESS_HELPER);
7331 	case PTR_TO_MEM:
7332 		if (type_is_rdonly_mem(reg->type)) {
7333 			if (meta && meta->raw_mode) {
7334 				verbose(env, "R%d cannot write into %s\n", regno,
7335 					reg_type_str(env, reg->type));
7336 				return -EACCES;
7337 			}
7338 		}
7339 		return check_mem_region_access(env, regno, reg->off,
7340 					       access_size, reg->mem_size,
7341 					       zero_size_allowed);
7342 	case PTR_TO_BUF:
7343 		if (type_is_rdonly_mem(reg->type)) {
7344 			if (meta && meta->raw_mode) {
7345 				verbose(env, "R%d cannot write into %s\n", regno,
7346 					reg_type_str(env, reg->type));
7347 				return -EACCES;
7348 			}
7349 
7350 			max_access = &env->prog->aux->max_rdonly_access;
7351 		} else {
7352 			max_access = &env->prog->aux->max_rdwr_access;
7353 		}
7354 		return check_buffer_access(env, reg, regno, reg->off,
7355 					   access_size, zero_size_allowed,
7356 					   max_access);
7357 	case PTR_TO_STACK:
7358 		return check_stack_range_initialized(
7359 				env,
7360 				regno, reg->off, access_size,
7361 				zero_size_allowed, ACCESS_HELPER, meta);
7362 	case PTR_TO_BTF_ID:
7363 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
7364 					       access_size, BPF_READ, -1);
7365 	case PTR_TO_CTX:
7366 		/* in case the function doesn't know how to access the context,
7367 		 * (because we are in a program of type SYSCALL for example), we
7368 		 * can not statically check its size.
7369 		 * Dynamically check it now.
7370 		 */
7371 		if (!env->ops->convert_ctx_access) {
7372 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
7373 			int offset = access_size - 1;
7374 
7375 			/* Allow zero-byte read from PTR_TO_CTX */
7376 			if (access_size == 0)
7377 				return zero_size_allowed ? 0 : -EACCES;
7378 
7379 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7380 						atype, -1, false, false);
7381 		}
7382 
7383 		fallthrough;
7384 	default: /* scalar_value or invalid ptr */
7385 		/* Allow zero-byte read from NULL, regardless of pointer type */
7386 		if (zero_size_allowed && access_size == 0 &&
7387 		    register_is_null(reg))
7388 			return 0;
7389 
7390 		verbose(env, "R%d type=%s ", regno,
7391 			reg_type_str(env, reg->type));
7392 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7393 		return -EACCES;
7394 	}
7395 }
7396 
7397 static int check_mem_size_reg(struct bpf_verifier_env *env,
7398 			      struct bpf_reg_state *reg, u32 regno,
7399 			      bool zero_size_allowed,
7400 			      struct bpf_call_arg_meta *meta)
7401 {
7402 	int err;
7403 
7404 	/* This is used to refine r0 return value bounds for helpers
7405 	 * that enforce this value as an upper bound on return values.
7406 	 * See do_refine_retval_range() for helpers that can refine
7407 	 * the return value. C type of helper is u32 so we pull register
7408 	 * bound from umax_value however, if negative verifier errors
7409 	 * out. Only upper bounds can be learned because retval is an
7410 	 * int type and negative retvals are allowed.
7411 	 */
7412 	meta->msize_max_value = reg->umax_value;
7413 
7414 	/* The register is SCALAR_VALUE; the access check
7415 	 * happens using its boundaries.
7416 	 */
7417 	if (!tnum_is_const(reg->var_off))
7418 		/* For unprivileged variable accesses, disable raw
7419 		 * mode so that the program is required to
7420 		 * initialize all the memory that the helper could
7421 		 * just partially fill up.
7422 		 */
7423 		meta = NULL;
7424 
7425 	if (reg->smin_value < 0) {
7426 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7427 			regno);
7428 		return -EACCES;
7429 	}
7430 
7431 	if (reg->umin_value == 0) {
7432 		err = check_helper_mem_access(env, regno - 1, 0,
7433 					      zero_size_allowed,
7434 					      meta);
7435 		if (err)
7436 			return err;
7437 	}
7438 
7439 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7440 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7441 			regno);
7442 		return -EACCES;
7443 	}
7444 	err = check_helper_mem_access(env, regno - 1,
7445 				      reg->umax_value,
7446 				      zero_size_allowed, meta);
7447 	if (!err)
7448 		err = mark_chain_precision(env, regno);
7449 	return err;
7450 }
7451 
7452 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7453 		   u32 regno, u32 mem_size)
7454 {
7455 	bool may_be_null = type_may_be_null(reg->type);
7456 	struct bpf_reg_state saved_reg;
7457 	struct bpf_call_arg_meta meta;
7458 	int err;
7459 
7460 	if (register_is_null(reg))
7461 		return 0;
7462 
7463 	memset(&meta, 0, sizeof(meta));
7464 	/* Assuming that the register contains a value check if the memory
7465 	 * access is safe. Temporarily save and restore the register's state as
7466 	 * the conversion shouldn't be visible to a caller.
7467 	 */
7468 	if (may_be_null) {
7469 		saved_reg = *reg;
7470 		mark_ptr_not_null_reg(reg);
7471 	}
7472 
7473 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
7474 	/* Check access for BPF_WRITE */
7475 	meta.raw_mode = true;
7476 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
7477 
7478 	if (may_be_null)
7479 		*reg = saved_reg;
7480 
7481 	return err;
7482 }
7483 
7484 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7485 				    u32 regno)
7486 {
7487 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7488 	bool may_be_null = type_may_be_null(mem_reg->type);
7489 	struct bpf_reg_state saved_reg;
7490 	struct bpf_call_arg_meta meta;
7491 	int err;
7492 
7493 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7494 
7495 	memset(&meta, 0, sizeof(meta));
7496 
7497 	if (may_be_null) {
7498 		saved_reg = *mem_reg;
7499 		mark_ptr_not_null_reg(mem_reg);
7500 	}
7501 
7502 	err = check_mem_size_reg(env, reg, regno, true, &meta);
7503 	/* Check access for BPF_WRITE */
7504 	meta.raw_mode = true;
7505 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
7506 
7507 	if (may_be_null)
7508 		*mem_reg = saved_reg;
7509 	return err;
7510 }
7511 
7512 /* Implementation details:
7513  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7514  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7515  * Two bpf_map_lookups (even with the same key) will have different reg->id.
7516  * Two separate bpf_obj_new will also have different reg->id.
7517  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7518  * clears reg->id after value_or_null->value transition, since the verifier only
7519  * cares about the range of access to valid map value pointer and doesn't care
7520  * about actual address of the map element.
7521  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7522  * reg->id > 0 after value_or_null->value transition. By doing so
7523  * two bpf_map_lookups will be considered two different pointers that
7524  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7525  * returned from bpf_obj_new.
7526  * The verifier allows taking only one bpf_spin_lock at a time to avoid
7527  * dead-locks.
7528  * Since only one bpf_spin_lock is allowed the checks are simpler than
7529  * reg_is_refcounted() logic. The verifier needs to remember only
7530  * one spin_lock instead of array of acquired_refs.
7531  * cur_state->active_lock remembers which map value element or allocated
7532  * object got locked and clears it after bpf_spin_unlock.
7533  */
7534 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7535 			     bool is_lock)
7536 {
7537 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7538 	struct bpf_verifier_state *cur = env->cur_state;
7539 	bool is_const = tnum_is_const(reg->var_off);
7540 	u64 val = reg->var_off.value;
7541 	struct bpf_map *map = NULL;
7542 	struct btf *btf = NULL;
7543 	struct btf_record *rec;
7544 
7545 	if (!is_const) {
7546 		verbose(env,
7547 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7548 			regno);
7549 		return -EINVAL;
7550 	}
7551 	if (reg->type == PTR_TO_MAP_VALUE) {
7552 		map = reg->map_ptr;
7553 		if (!map->btf) {
7554 			verbose(env,
7555 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
7556 				map->name);
7557 			return -EINVAL;
7558 		}
7559 	} else {
7560 		btf = reg->btf;
7561 	}
7562 
7563 	rec = reg_btf_record(reg);
7564 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7565 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7566 			map ? map->name : "kptr");
7567 		return -EINVAL;
7568 	}
7569 	if (rec->spin_lock_off != val + reg->off) {
7570 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7571 			val + reg->off, rec->spin_lock_off);
7572 		return -EINVAL;
7573 	}
7574 	if (is_lock) {
7575 		if (cur->active_lock.ptr) {
7576 			verbose(env,
7577 				"Locking two bpf_spin_locks are not allowed\n");
7578 			return -EINVAL;
7579 		}
7580 		if (map)
7581 			cur->active_lock.ptr = map;
7582 		else
7583 			cur->active_lock.ptr = btf;
7584 		cur->active_lock.id = reg->id;
7585 	} else {
7586 		void *ptr;
7587 
7588 		if (map)
7589 			ptr = map;
7590 		else
7591 			ptr = btf;
7592 
7593 		if (!cur->active_lock.ptr) {
7594 			verbose(env, "bpf_spin_unlock without taking a lock\n");
7595 			return -EINVAL;
7596 		}
7597 		if (cur->active_lock.ptr != ptr ||
7598 		    cur->active_lock.id != reg->id) {
7599 			verbose(env, "bpf_spin_unlock of different lock\n");
7600 			return -EINVAL;
7601 		}
7602 
7603 		invalidate_non_owning_refs(env);
7604 
7605 		cur->active_lock.ptr = NULL;
7606 		cur->active_lock.id = 0;
7607 	}
7608 	return 0;
7609 }
7610 
7611 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7612 			      struct bpf_call_arg_meta *meta)
7613 {
7614 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7615 	bool is_const = tnum_is_const(reg->var_off);
7616 	struct bpf_map *map = reg->map_ptr;
7617 	u64 val = reg->var_off.value;
7618 
7619 	if (!is_const) {
7620 		verbose(env,
7621 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7622 			regno);
7623 		return -EINVAL;
7624 	}
7625 	if (!map->btf) {
7626 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7627 			map->name);
7628 		return -EINVAL;
7629 	}
7630 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
7631 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7632 		return -EINVAL;
7633 	}
7634 	if (map->record->timer_off != val + reg->off) {
7635 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7636 			val + reg->off, map->record->timer_off);
7637 		return -EINVAL;
7638 	}
7639 	if (meta->map_ptr) {
7640 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7641 		return -EFAULT;
7642 	}
7643 	meta->map_uid = reg->map_uid;
7644 	meta->map_ptr = map;
7645 	return 0;
7646 }
7647 
7648 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7649 			     struct bpf_call_arg_meta *meta)
7650 {
7651 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7652 	struct bpf_map *map_ptr = reg->map_ptr;
7653 	struct btf_field *kptr_field;
7654 	u32 kptr_off;
7655 
7656 	if (!tnum_is_const(reg->var_off)) {
7657 		verbose(env,
7658 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7659 			regno);
7660 		return -EINVAL;
7661 	}
7662 	if (!map_ptr->btf) {
7663 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7664 			map_ptr->name);
7665 		return -EINVAL;
7666 	}
7667 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
7668 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
7669 		return -EINVAL;
7670 	}
7671 
7672 	meta->map_ptr = map_ptr;
7673 	kptr_off = reg->off + reg->var_off.value;
7674 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
7675 	if (!kptr_field) {
7676 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7677 		return -EACCES;
7678 	}
7679 	if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) {
7680 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7681 		return -EACCES;
7682 	}
7683 	meta->kptr_field = kptr_field;
7684 	return 0;
7685 }
7686 
7687 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7688  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7689  *
7690  * In both cases we deal with the first 8 bytes, but need to mark the next 8
7691  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7692  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7693  *
7694  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7695  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7696  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7697  * mutate the view of the dynptr and also possibly destroy it. In the latter
7698  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7699  * memory that dynptr points to.
7700  *
7701  * The verifier will keep track both levels of mutation (bpf_dynptr's in
7702  * reg->type and the memory's in reg->dynptr.type), but there is no support for
7703  * readonly dynptr view yet, hence only the first case is tracked and checked.
7704  *
7705  * This is consistent with how C applies the const modifier to a struct object,
7706  * where the pointer itself inside bpf_dynptr becomes const but not what it
7707  * points to.
7708  *
7709  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7710  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7711  */
7712 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7713 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
7714 {
7715 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7716 	int err;
7717 
7718 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7719 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7720 	 */
7721 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7722 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7723 		return -EFAULT;
7724 	}
7725 
7726 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
7727 	 *		 constructing a mutable bpf_dynptr object.
7728 	 *
7729 	 *		 Currently, this is only possible with PTR_TO_STACK
7730 	 *		 pointing to a region of at least 16 bytes which doesn't
7731 	 *		 contain an existing bpf_dynptr.
7732 	 *
7733 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7734 	 *		 mutated or destroyed. However, the memory it points to
7735 	 *		 may be mutated.
7736 	 *
7737 	 *  None       - Points to a initialized dynptr that can be mutated and
7738 	 *		 destroyed, including mutation of the memory it points
7739 	 *		 to.
7740 	 */
7741 	if (arg_type & MEM_UNINIT) {
7742 		int i;
7743 
7744 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
7745 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7746 			return -EINVAL;
7747 		}
7748 
7749 		/* we write BPF_DW bits (8 bytes) at a time */
7750 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7751 			err = check_mem_access(env, insn_idx, regno,
7752 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7753 			if (err)
7754 				return err;
7755 		}
7756 
7757 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7758 	} else /* MEM_RDONLY and None case from above */ {
7759 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7760 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7761 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7762 			return -EINVAL;
7763 		}
7764 
7765 		if (!is_dynptr_reg_valid_init(env, reg)) {
7766 			verbose(env,
7767 				"Expected an initialized dynptr as arg #%d\n",
7768 				regno);
7769 			return -EINVAL;
7770 		}
7771 
7772 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7773 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7774 			verbose(env,
7775 				"Expected a dynptr of type %s as arg #%d\n",
7776 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7777 			return -EINVAL;
7778 		}
7779 
7780 		err = mark_dynptr_read(env, reg);
7781 	}
7782 	return err;
7783 }
7784 
7785 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7786 {
7787 	struct bpf_func_state *state = func(env, reg);
7788 
7789 	return state->stack[spi].spilled_ptr.ref_obj_id;
7790 }
7791 
7792 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7793 {
7794 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7795 }
7796 
7797 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7798 {
7799 	return meta->kfunc_flags & KF_ITER_NEW;
7800 }
7801 
7802 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7803 {
7804 	return meta->kfunc_flags & KF_ITER_NEXT;
7805 }
7806 
7807 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7808 {
7809 	return meta->kfunc_flags & KF_ITER_DESTROY;
7810 }
7811 
7812 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7813 {
7814 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
7815 	 * kfunc is iter state pointer
7816 	 */
7817 	return arg == 0 && is_iter_kfunc(meta);
7818 }
7819 
7820 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7821 			    struct bpf_kfunc_call_arg_meta *meta)
7822 {
7823 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7824 	const struct btf_type *t;
7825 	const struct btf_param *arg;
7826 	int spi, err, i, nr_slots;
7827 	u32 btf_id;
7828 
7829 	/* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7830 	arg = &btf_params(meta->func_proto)[0];
7831 	t = btf_type_skip_modifiers(meta->btf, arg->type, NULL);	/* PTR */
7832 	t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id);	/* STRUCT */
7833 	nr_slots = t->size / BPF_REG_SIZE;
7834 
7835 	if (is_iter_new_kfunc(meta)) {
7836 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
7837 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7838 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7839 				iter_type_str(meta->btf, btf_id), regno);
7840 			return -EINVAL;
7841 		}
7842 
7843 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7844 			err = check_mem_access(env, insn_idx, regno,
7845 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7846 			if (err)
7847 				return err;
7848 		}
7849 
7850 		err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots);
7851 		if (err)
7852 			return err;
7853 	} else {
7854 		/* iter_next() or iter_destroy() expect initialized iter state*/
7855 		err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots);
7856 		switch (err) {
7857 		case 0:
7858 			break;
7859 		case -EINVAL:
7860 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
7861 				iter_type_str(meta->btf, btf_id), regno);
7862 			return err;
7863 		case -EPROTO:
7864 			verbose(env, "expected an RCU CS when using %s\n", meta->func_name);
7865 			return err;
7866 		default:
7867 			return err;
7868 		}
7869 
7870 		spi = iter_get_spi(env, reg, nr_slots);
7871 		if (spi < 0)
7872 			return spi;
7873 
7874 		err = mark_iter_read(env, reg, spi, nr_slots);
7875 		if (err)
7876 			return err;
7877 
7878 		/* remember meta->iter info for process_iter_next_call() */
7879 		meta->iter.spi = spi;
7880 		meta->iter.frameno = reg->frameno;
7881 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7882 
7883 		if (is_iter_destroy_kfunc(meta)) {
7884 			err = unmark_stack_slots_iter(env, reg, nr_slots);
7885 			if (err)
7886 				return err;
7887 		}
7888 	}
7889 
7890 	return 0;
7891 }
7892 
7893 /* Look for a previous loop entry at insn_idx: nearest parent state
7894  * stopped at insn_idx with callsites matching those in cur->frame.
7895  */
7896 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
7897 						  struct bpf_verifier_state *cur,
7898 						  int insn_idx)
7899 {
7900 	struct bpf_verifier_state_list *sl;
7901 	struct bpf_verifier_state *st;
7902 
7903 	/* Explored states are pushed in stack order, most recent states come first */
7904 	sl = *explored_state(env, insn_idx);
7905 	for (; sl; sl = sl->next) {
7906 		/* If st->branches != 0 state is a part of current DFS verification path,
7907 		 * hence cur & st for a loop.
7908 		 */
7909 		st = &sl->state;
7910 		if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
7911 		    st->dfs_depth < cur->dfs_depth)
7912 			return st;
7913 	}
7914 
7915 	return NULL;
7916 }
7917 
7918 static void reset_idmap_scratch(struct bpf_verifier_env *env);
7919 static bool regs_exact(const struct bpf_reg_state *rold,
7920 		       const struct bpf_reg_state *rcur,
7921 		       struct bpf_idmap *idmap);
7922 
7923 static void maybe_widen_reg(struct bpf_verifier_env *env,
7924 			    struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7925 			    struct bpf_idmap *idmap)
7926 {
7927 	if (rold->type != SCALAR_VALUE)
7928 		return;
7929 	if (rold->type != rcur->type)
7930 		return;
7931 	if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
7932 		return;
7933 	__mark_reg_unknown(env, rcur);
7934 }
7935 
7936 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
7937 				   struct bpf_verifier_state *old,
7938 				   struct bpf_verifier_state *cur)
7939 {
7940 	struct bpf_func_state *fold, *fcur;
7941 	int i, fr;
7942 
7943 	reset_idmap_scratch(env);
7944 	for (fr = old->curframe; fr >= 0; fr--) {
7945 		fold = old->frame[fr];
7946 		fcur = cur->frame[fr];
7947 
7948 		for (i = 0; i < MAX_BPF_REG; i++)
7949 			maybe_widen_reg(env,
7950 					&fold->regs[i],
7951 					&fcur->regs[i],
7952 					&env->idmap_scratch);
7953 
7954 		for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
7955 			if (!is_spilled_reg(&fold->stack[i]) ||
7956 			    !is_spilled_reg(&fcur->stack[i]))
7957 				continue;
7958 
7959 			maybe_widen_reg(env,
7960 					&fold->stack[i].spilled_ptr,
7961 					&fcur->stack[i].spilled_ptr,
7962 					&env->idmap_scratch);
7963 		}
7964 	}
7965 	return 0;
7966 }
7967 
7968 /* process_iter_next_call() is called when verifier gets to iterator's next
7969  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
7970  * to it as just "iter_next()" in comments below.
7971  *
7972  * BPF verifier relies on a crucial contract for any iter_next()
7973  * implementation: it should *eventually* return NULL, and once that happens
7974  * it should keep returning NULL. That is, once iterator exhausts elements to
7975  * iterate, it should never reset or spuriously return new elements.
7976  *
7977  * With the assumption of such contract, process_iter_next_call() simulates
7978  * a fork in the verifier state to validate loop logic correctness and safety
7979  * without having to simulate infinite amount of iterations.
7980  *
7981  * In current state, we first assume that iter_next() returned NULL and
7982  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
7983  * conditions we should not form an infinite loop and should eventually reach
7984  * exit.
7985  *
7986  * Besides that, we also fork current state and enqueue it for later
7987  * verification. In a forked state we keep iterator state as ACTIVE
7988  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
7989  * also bump iteration depth to prevent erroneous infinite loop detection
7990  * later on (see iter_active_depths_differ() comment for details). In this
7991  * state we assume that we'll eventually loop back to another iter_next()
7992  * calls (it could be in exactly same location or in some other instruction,
7993  * it doesn't matter, we don't make any unnecessary assumptions about this,
7994  * everything revolves around iterator state in a stack slot, not which
7995  * instruction is calling iter_next()). When that happens, we either will come
7996  * to iter_next() with equivalent state and can conclude that next iteration
7997  * will proceed in exactly the same way as we just verified, so it's safe to
7998  * assume that loop converges. If not, we'll go on another iteration
7999  * simulation with a different input state, until all possible starting states
8000  * are validated or we reach maximum number of instructions limit.
8001  *
8002  * This way, we will either exhaustively discover all possible input states
8003  * that iterator loop can start with and eventually will converge, or we'll
8004  * effectively regress into bounded loop simulation logic and either reach
8005  * maximum number of instructions if loop is not provably convergent, or there
8006  * is some statically known limit on number of iterations (e.g., if there is
8007  * an explicit `if n > 100 then break;` statement somewhere in the loop).
8008  *
8009  * Iteration convergence logic in is_state_visited() relies on exact
8010  * states comparison, which ignores read and precision marks.
8011  * This is necessary because read and precision marks are not finalized
8012  * while in the loop. Exact comparison might preclude convergence for
8013  * simple programs like below:
8014  *
8015  *     i = 0;
8016  *     while(iter_next(&it))
8017  *       i++;
8018  *
8019  * At each iteration step i++ would produce a new distinct state and
8020  * eventually instruction processing limit would be reached.
8021  *
8022  * To avoid such behavior speculatively forget (widen) range for
8023  * imprecise scalar registers, if those registers were not precise at the
8024  * end of the previous iteration and do not match exactly.
8025  *
8026  * This is a conservative heuristic that allows to verify wide range of programs,
8027  * however it precludes verification of programs that conjure an
8028  * imprecise value on the first loop iteration and use it as precise on a second.
8029  * For example, the following safe program would fail to verify:
8030  *
8031  *     struct bpf_num_iter it;
8032  *     int arr[10];
8033  *     int i = 0, a = 0;
8034  *     bpf_iter_num_new(&it, 0, 10);
8035  *     while (bpf_iter_num_next(&it)) {
8036  *       if (a == 0) {
8037  *         a = 1;
8038  *         i = 7; // Because i changed verifier would forget
8039  *                // it's range on second loop entry.
8040  *       } else {
8041  *         arr[i] = 42; // This would fail to verify.
8042  *       }
8043  *     }
8044  *     bpf_iter_num_destroy(&it);
8045  */
8046 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
8047 				  struct bpf_kfunc_call_arg_meta *meta)
8048 {
8049 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
8050 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
8051 	struct bpf_reg_state *cur_iter, *queued_iter;
8052 	int iter_frameno = meta->iter.frameno;
8053 	int iter_spi = meta->iter.spi;
8054 
8055 	BTF_TYPE_EMIT(struct bpf_iter);
8056 
8057 	cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
8058 
8059 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
8060 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
8061 		verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
8062 			cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
8063 		return -EFAULT;
8064 	}
8065 
8066 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
8067 		/* Because iter_next() call is a checkpoint is_state_visitied()
8068 		 * should guarantee parent state with same call sites and insn_idx.
8069 		 */
8070 		if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
8071 		    !same_callsites(cur_st->parent, cur_st)) {
8072 			verbose(env, "bug: bad parent state for iter next call");
8073 			return -EFAULT;
8074 		}
8075 		/* Note cur_st->parent in the call below, it is necessary to skip
8076 		 * checkpoint created for cur_st by is_state_visited()
8077 		 * right at this instruction.
8078 		 */
8079 		prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
8080 		/* branch out active iter state */
8081 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
8082 		if (!queued_st)
8083 			return -ENOMEM;
8084 
8085 		queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
8086 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
8087 		queued_iter->iter.depth++;
8088 		if (prev_st)
8089 			widen_imprecise_scalars(env, prev_st, queued_st);
8090 
8091 		queued_fr = queued_st->frame[queued_st->curframe];
8092 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
8093 	}
8094 
8095 	/* switch to DRAINED state, but keep the depth unchanged */
8096 	/* mark current iter state as drained and assume returned NULL */
8097 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
8098 	__mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
8099 
8100 	return 0;
8101 }
8102 
8103 static bool arg_type_is_mem_size(enum bpf_arg_type type)
8104 {
8105 	return type == ARG_CONST_SIZE ||
8106 	       type == ARG_CONST_SIZE_OR_ZERO;
8107 }
8108 
8109 static bool arg_type_is_release(enum bpf_arg_type type)
8110 {
8111 	return type & OBJ_RELEASE;
8112 }
8113 
8114 static bool arg_type_is_dynptr(enum bpf_arg_type type)
8115 {
8116 	return base_type(type) == ARG_PTR_TO_DYNPTR;
8117 }
8118 
8119 static int int_ptr_type_to_size(enum bpf_arg_type type)
8120 {
8121 	if (type == ARG_PTR_TO_INT)
8122 		return sizeof(u32);
8123 	else if (type == ARG_PTR_TO_LONG)
8124 		return sizeof(u64);
8125 
8126 	return -EINVAL;
8127 }
8128 
8129 static int resolve_map_arg_type(struct bpf_verifier_env *env,
8130 				 const struct bpf_call_arg_meta *meta,
8131 				 enum bpf_arg_type *arg_type)
8132 {
8133 	if (!meta->map_ptr) {
8134 		/* kernel subsystem misconfigured verifier */
8135 		verbose(env, "invalid map_ptr to access map->type\n");
8136 		return -EACCES;
8137 	}
8138 
8139 	switch (meta->map_ptr->map_type) {
8140 	case BPF_MAP_TYPE_SOCKMAP:
8141 	case BPF_MAP_TYPE_SOCKHASH:
8142 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
8143 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
8144 		} else {
8145 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
8146 			return -EINVAL;
8147 		}
8148 		break;
8149 	case BPF_MAP_TYPE_BLOOM_FILTER:
8150 		if (meta->func_id == BPF_FUNC_map_peek_elem)
8151 			*arg_type = ARG_PTR_TO_MAP_VALUE;
8152 		break;
8153 	default:
8154 		break;
8155 	}
8156 	return 0;
8157 }
8158 
8159 struct bpf_reg_types {
8160 	const enum bpf_reg_type types[10];
8161 	u32 *btf_id;
8162 };
8163 
8164 static const struct bpf_reg_types sock_types = {
8165 	.types = {
8166 		PTR_TO_SOCK_COMMON,
8167 		PTR_TO_SOCKET,
8168 		PTR_TO_TCP_SOCK,
8169 		PTR_TO_XDP_SOCK,
8170 	},
8171 };
8172 
8173 #ifdef CONFIG_NET
8174 static const struct bpf_reg_types btf_id_sock_common_types = {
8175 	.types = {
8176 		PTR_TO_SOCK_COMMON,
8177 		PTR_TO_SOCKET,
8178 		PTR_TO_TCP_SOCK,
8179 		PTR_TO_XDP_SOCK,
8180 		PTR_TO_BTF_ID,
8181 		PTR_TO_BTF_ID | PTR_TRUSTED,
8182 	},
8183 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8184 };
8185 #endif
8186 
8187 static const struct bpf_reg_types mem_types = {
8188 	.types = {
8189 		PTR_TO_STACK,
8190 		PTR_TO_PACKET,
8191 		PTR_TO_PACKET_META,
8192 		PTR_TO_MAP_KEY,
8193 		PTR_TO_MAP_VALUE,
8194 		PTR_TO_MEM,
8195 		PTR_TO_MEM | MEM_RINGBUF,
8196 		PTR_TO_BUF,
8197 		PTR_TO_BTF_ID | PTR_TRUSTED,
8198 	},
8199 };
8200 
8201 static const struct bpf_reg_types int_ptr_types = {
8202 	.types = {
8203 		PTR_TO_STACK,
8204 		PTR_TO_PACKET,
8205 		PTR_TO_PACKET_META,
8206 		PTR_TO_MAP_KEY,
8207 		PTR_TO_MAP_VALUE,
8208 	},
8209 };
8210 
8211 static const struct bpf_reg_types spin_lock_types = {
8212 	.types = {
8213 		PTR_TO_MAP_VALUE,
8214 		PTR_TO_BTF_ID | MEM_ALLOC,
8215 	}
8216 };
8217 
8218 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
8219 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
8220 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
8221 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
8222 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
8223 static const struct bpf_reg_types btf_ptr_types = {
8224 	.types = {
8225 		PTR_TO_BTF_ID,
8226 		PTR_TO_BTF_ID | PTR_TRUSTED,
8227 		PTR_TO_BTF_ID | MEM_RCU,
8228 	},
8229 };
8230 static const struct bpf_reg_types percpu_btf_ptr_types = {
8231 	.types = {
8232 		PTR_TO_BTF_ID | MEM_PERCPU,
8233 		PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU,
8234 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
8235 	}
8236 };
8237 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
8238 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
8239 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
8240 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
8241 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
8242 static const struct bpf_reg_types dynptr_types = {
8243 	.types = {
8244 		PTR_TO_STACK,
8245 		CONST_PTR_TO_DYNPTR,
8246 	}
8247 };
8248 
8249 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
8250 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
8251 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
8252 	[ARG_CONST_SIZE]		= &scalar_types,
8253 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
8254 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
8255 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
8256 	[ARG_PTR_TO_CTX]		= &context_types,
8257 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
8258 #ifdef CONFIG_NET
8259 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
8260 #endif
8261 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
8262 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
8263 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
8264 	[ARG_PTR_TO_MEM]		= &mem_types,
8265 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
8266 	[ARG_PTR_TO_INT]		= &int_ptr_types,
8267 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
8268 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
8269 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
8270 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
8271 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
8272 	[ARG_PTR_TO_TIMER]		= &timer_types,
8273 	[ARG_PTR_TO_KPTR]		= &kptr_types,
8274 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
8275 };
8276 
8277 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
8278 			  enum bpf_arg_type arg_type,
8279 			  const u32 *arg_btf_id,
8280 			  struct bpf_call_arg_meta *meta)
8281 {
8282 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8283 	enum bpf_reg_type expected, type = reg->type;
8284 	const struct bpf_reg_types *compatible;
8285 	int i, j;
8286 
8287 	compatible = compatible_reg_types[base_type(arg_type)];
8288 	if (!compatible) {
8289 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
8290 		return -EFAULT;
8291 	}
8292 
8293 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
8294 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
8295 	 *
8296 	 * Same for MAYBE_NULL:
8297 	 *
8298 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
8299 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
8300 	 *
8301 	 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
8302 	 *
8303 	 * Therefore we fold these flags depending on the arg_type before comparison.
8304 	 */
8305 	if (arg_type & MEM_RDONLY)
8306 		type &= ~MEM_RDONLY;
8307 	if (arg_type & PTR_MAYBE_NULL)
8308 		type &= ~PTR_MAYBE_NULL;
8309 	if (base_type(arg_type) == ARG_PTR_TO_MEM)
8310 		type &= ~DYNPTR_TYPE_FLAG_MASK;
8311 
8312 	if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) {
8313 		type &= ~MEM_ALLOC;
8314 		type &= ~MEM_PERCPU;
8315 	}
8316 
8317 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
8318 		expected = compatible->types[i];
8319 		if (expected == NOT_INIT)
8320 			break;
8321 
8322 		if (type == expected)
8323 			goto found;
8324 	}
8325 
8326 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
8327 	for (j = 0; j + 1 < i; j++)
8328 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
8329 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
8330 	return -EACCES;
8331 
8332 found:
8333 	if (base_type(reg->type) != PTR_TO_BTF_ID)
8334 		return 0;
8335 
8336 	if (compatible == &mem_types) {
8337 		if (!(arg_type & MEM_RDONLY)) {
8338 			verbose(env,
8339 				"%s() may write into memory pointed by R%d type=%s\n",
8340 				func_id_name(meta->func_id),
8341 				regno, reg_type_str(env, reg->type));
8342 			return -EACCES;
8343 		}
8344 		return 0;
8345 	}
8346 
8347 	switch ((int)reg->type) {
8348 	case PTR_TO_BTF_ID:
8349 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8350 	case PTR_TO_BTF_ID | MEM_RCU:
8351 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
8352 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
8353 	{
8354 		/* For bpf_sk_release, it needs to match against first member
8355 		 * 'struct sock_common', hence make an exception for it. This
8356 		 * allows bpf_sk_release to work for multiple socket types.
8357 		 */
8358 		bool strict_type_match = arg_type_is_release(arg_type) &&
8359 					 meta->func_id != BPF_FUNC_sk_release;
8360 
8361 		if (type_may_be_null(reg->type) &&
8362 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
8363 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
8364 			return -EACCES;
8365 		}
8366 
8367 		if (!arg_btf_id) {
8368 			if (!compatible->btf_id) {
8369 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
8370 				return -EFAULT;
8371 			}
8372 			arg_btf_id = compatible->btf_id;
8373 		}
8374 
8375 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8376 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8377 				return -EACCES;
8378 		} else {
8379 			if (arg_btf_id == BPF_PTR_POISON) {
8380 				verbose(env, "verifier internal error:");
8381 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
8382 					regno);
8383 				return -EACCES;
8384 			}
8385 
8386 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
8387 						  btf_vmlinux, *arg_btf_id,
8388 						  strict_type_match)) {
8389 				verbose(env, "R%d is of type %s but %s is expected\n",
8390 					regno, btf_type_name(reg->btf, reg->btf_id),
8391 					btf_type_name(btf_vmlinux, *arg_btf_id));
8392 				return -EACCES;
8393 			}
8394 		}
8395 		break;
8396 	}
8397 	case PTR_TO_BTF_ID | MEM_ALLOC:
8398 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC:
8399 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
8400 		    meta->func_id != BPF_FUNC_kptr_xchg) {
8401 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
8402 			return -EFAULT;
8403 		}
8404 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8405 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8406 				return -EACCES;
8407 		}
8408 		break;
8409 	case PTR_TO_BTF_ID | MEM_PERCPU:
8410 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU:
8411 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
8412 		/* Handled by helper specific checks */
8413 		break;
8414 	default:
8415 		verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
8416 		return -EFAULT;
8417 	}
8418 	return 0;
8419 }
8420 
8421 static struct btf_field *
8422 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
8423 {
8424 	struct btf_field *field;
8425 	struct btf_record *rec;
8426 
8427 	rec = reg_btf_record(reg);
8428 	if (!rec)
8429 		return NULL;
8430 
8431 	field = btf_record_find(rec, off, fields);
8432 	if (!field)
8433 		return NULL;
8434 
8435 	return field;
8436 }
8437 
8438 int check_func_arg_reg_off(struct bpf_verifier_env *env,
8439 			   const struct bpf_reg_state *reg, int regno,
8440 			   enum bpf_arg_type arg_type)
8441 {
8442 	u32 type = reg->type;
8443 
8444 	/* When referenced register is passed to release function, its fixed
8445 	 * offset must be 0.
8446 	 *
8447 	 * We will check arg_type_is_release reg has ref_obj_id when storing
8448 	 * meta->release_regno.
8449 	 */
8450 	if (arg_type_is_release(arg_type)) {
8451 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
8452 		 * may not directly point to the object being released, but to
8453 		 * dynptr pointing to such object, which might be at some offset
8454 		 * on the stack. In that case, we simply to fallback to the
8455 		 * default handling.
8456 		 */
8457 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
8458 			return 0;
8459 
8460 		/* Doing check_ptr_off_reg check for the offset will catch this
8461 		 * because fixed_off_ok is false, but checking here allows us
8462 		 * to give the user a better error message.
8463 		 */
8464 		if (reg->off) {
8465 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
8466 				regno);
8467 			return -EINVAL;
8468 		}
8469 		return __check_ptr_off_reg(env, reg, regno, false);
8470 	}
8471 
8472 	switch (type) {
8473 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
8474 	case PTR_TO_STACK:
8475 	case PTR_TO_PACKET:
8476 	case PTR_TO_PACKET_META:
8477 	case PTR_TO_MAP_KEY:
8478 	case PTR_TO_MAP_VALUE:
8479 	case PTR_TO_MEM:
8480 	case PTR_TO_MEM | MEM_RDONLY:
8481 	case PTR_TO_MEM | MEM_RINGBUF:
8482 	case PTR_TO_BUF:
8483 	case PTR_TO_BUF | MEM_RDONLY:
8484 	case SCALAR_VALUE:
8485 		return 0;
8486 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8487 	 * fixed offset.
8488 	 */
8489 	case PTR_TO_BTF_ID:
8490 	case PTR_TO_BTF_ID | MEM_ALLOC:
8491 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8492 	case PTR_TO_BTF_ID | MEM_RCU:
8493 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8494 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8495 		/* When referenced PTR_TO_BTF_ID is passed to release function,
8496 		 * its fixed offset must be 0. In the other cases, fixed offset
8497 		 * can be non-zero. This was already checked above. So pass
8498 		 * fixed_off_ok as true to allow fixed offset for all other
8499 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8500 		 * still need to do checks instead of returning.
8501 		 */
8502 		return __check_ptr_off_reg(env, reg, regno, true);
8503 	default:
8504 		return __check_ptr_off_reg(env, reg, regno, false);
8505 	}
8506 }
8507 
8508 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8509 						const struct bpf_func_proto *fn,
8510 						struct bpf_reg_state *regs)
8511 {
8512 	struct bpf_reg_state *state = NULL;
8513 	int i;
8514 
8515 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8516 		if (arg_type_is_dynptr(fn->arg_type[i])) {
8517 			if (state) {
8518 				verbose(env, "verifier internal error: multiple dynptr args\n");
8519 				return NULL;
8520 			}
8521 			state = &regs[BPF_REG_1 + i];
8522 		}
8523 
8524 	if (!state)
8525 		verbose(env, "verifier internal error: no dynptr arg found\n");
8526 
8527 	return state;
8528 }
8529 
8530 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8531 {
8532 	struct bpf_func_state *state = func(env, reg);
8533 	int spi;
8534 
8535 	if (reg->type == CONST_PTR_TO_DYNPTR)
8536 		return reg->id;
8537 	spi = dynptr_get_spi(env, reg);
8538 	if (spi < 0)
8539 		return spi;
8540 	return state->stack[spi].spilled_ptr.id;
8541 }
8542 
8543 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8544 {
8545 	struct bpf_func_state *state = func(env, reg);
8546 	int spi;
8547 
8548 	if (reg->type == CONST_PTR_TO_DYNPTR)
8549 		return reg->ref_obj_id;
8550 	spi = dynptr_get_spi(env, reg);
8551 	if (spi < 0)
8552 		return spi;
8553 	return state->stack[spi].spilled_ptr.ref_obj_id;
8554 }
8555 
8556 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8557 					    struct bpf_reg_state *reg)
8558 {
8559 	struct bpf_func_state *state = func(env, reg);
8560 	int spi;
8561 
8562 	if (reg->type == CONST_PTR_TO_DYNPTR)
8563 		return reg->dynptr.type;
8564 
8565 	spi = __get_spi(reg->off);
8566 	if (spi < 0) {
8567 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8568 		return BPF_DYNPTR_TYPE_INVALID;
8569 	}
8570 
8571 	return state->stack[spi].spilled_ptr.dynptr.type;
8572 }
8573 
8574 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8575 			  struct bpf_call_arg_meta *meta,
8576 			  const struct bpf_func_proto *fn,
8577 			  int insn_idx)
8578 {
8579 	u32 regno = BPF_REG_1 + arg;
8580 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8581 	enum bpf_arg_type arg_type = fn->arg_type[arg];
8582 	enum bpf_reg_type type = reg->type;
8583 	u32 *arg_btf_id = NULL;
8584 	int err = 0;
8585 
8586 	if (arg_type == ARG_DONTCARE)
8587 		return 0;
8588 
8589 	err = check_reg_arg(env, regno, SRC_OP);
8590 	if (err)
8591 		return err;
8592 
8593 	if (arg_type == ARG_ANYTHING) {
8594 		if (is_pointer_value(env, regno)) {
8595 			verbose(env, "R%d leaks addr into helper function\n",
8596 				regno);
8597 			return -EACCES;
8598 		}
8599 		return 0;
8600 	}
8601 
8602 	if (type_is_pkt_pointer(type) &&
8603 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8604 		verbose(env, "helper access to the packet is not allowed\n");
8605 		return -EACCES;
8606 	}
8607 
8608 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8609 		err = resolve_map_arg_type(env, meta, &arg_type);
8610 		if (err)
8611 			return err;
8612 	}
8613 
8614 	if (register_is_null(reg) && type_may_be_null(arg_type))
8615 		/* A NULL register has a SCALAR_VALUE type, so skip
8616 		 * type checking.
8617 		 */
8618 		goto skip_type_check;
8619 
8620 	/* arg_btf_id and arg_size are in a union. */
8621 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8622 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8623 		arg_btf_id = fn->arg_btf_id[arg];
8624 
8625 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8626 	if (err)
8627 		return err;
8628 
8629 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
8630 	if (err)
8631 		return err;
8632 
8633 skip_type_check:
8634 	if (arg_type_is_release(arg_type)) {
8635 		if (arg_type_is_dynptr(arg_type)) {
8636 			struct bpf_func_state *state = func(env, reg);
8637 			int spi;
8638 
8639 			/* Only dynptr created on stack can be released, thus
8640 			 * the get_spi and stack state checks for spilled_ptr
8641 			 * should only be done before process_dynptr_func for
8642 			 * PTR_TO_STACK.
8643 			 */
8644 			if (reg->type == PTR_TO_STACK) {
8645 				spi = dynptr_get_spi(env, reg);
8646 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8647 					verbose(env, "arg %d is an unacquired reference\n", regno);
8648 					return -EINVAL;
8649 				}
8650 			} else {
8651 				verbose(env, "cannot release unowned const bpf_dynptr\n");
8652 				return -EINVAL;
8653 			}
8654 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
8655 			verbose(env, "R%d must be referenced when passed to release function\n",
8656 				regno);
8657 			return -EINVAL;
8658 		}
8659 		if (meta->release_regno) {
8660 			verbose(env, "verifier internal error: more than one release argument\n");
8661 			return -EFAULT;
8662 		}
8663 		meta->release_regno = regno;
8664 	}
8665 
8666 	if (reg->ref_obj_id) {
8667 		if (meta->ref_obj_id) {
8668 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8669 				regno, reg->ref_obj_id,
8670 				meta->ref_obj_id);
8671 			return -EFAULT;
8672 		}
8673 		meta->ref_obj_id = reg->ref_obj_id;
8674 	}
8675 
8676 	switch (base_type(arg_type)) {
8677 	case ARG_CONST_MAP_PTR:
8678 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8679 		if (meta->map_ptr) {
8680 			/* Use map_uid (which is unique id of inner map) to reject:
8681 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8682 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8683 			 * if (inner_map1 && inner_map2) {
8684 			 *     timer = bpf_map_lookup_elem(inner_map1);
8685 			 *     if (timer)
8686 			 *         // mismatch would have been allowed
8687 			 *         bpf_timer_init(timer, inner_map2);
8688 			 * }
8689 			 *
8690 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
8691 			 */
8692 			if (meta->map_ptr != reg->map_ptr ||
8693 			    meta->map_uid != reg->map_uid) {
8694 				verbose(env,
8695 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8696 					meta->map_uid, reg->map_uid);
8697 				return -EINVAL;
8698 			}
8699 		}
8700 		meta->map_ptr = reg->map_ptr;
8701 		meta->map_uid = reg->map_uid;
8702 		break;
8703 	case ARG_PTR_TO_MAP_KEY:
8704 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
8705 		 * check that [key, key + map->key_size) are within
8706 		 * stack limits and initialized
8707 		 */
8708 		if (!meta->map_ptr) {
8709 			/* in function declaration map_ptr must come before
8710 			 * map_key, so that it's verified and known before
8711 			 * we have to check map_key here. Otherwise it means
8712 			 * that kernel subsystem misconfigured verifier
8713 			 */
8714 			verbose(env, "invalid map_ptr to access map->key\n");
8715 			return -EACCES;
8716 		}
8717 		err = check_helper_mem_access(env, regno,
8718 					      meta->map_ptr->key_size, false,
8719 					      NULL);
8720 		break;
8721 	case ARG_PTR_TO_MAP_VALUE:
8722 		if (type_may_be_null(arg_type) && register_is_null(reg))
8723 			return 0;
8724 
8725 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
8726 		 * check [value, value + map->value_size) validity
8727 		 */
8728 		if (!meta->map_ptr) {
8729 			/* kernel subsystem misconfigured verifier */
8730 			verbose(env, "invalid map_ptr to access map->value\n");
8731 			return -EACCES;
8732 		}
8733 		meta->raw_mode = arg_type & MEM_UNINIT;
8734 		err = check_helper_mem_access(env, regno,
8735 					      meta->map_ptr->value_size, false,
8736 					      meta);
8737 		break;
8738 	case ARG_PTR_TO_PERCPU_BTF_ID:
8739 		if (!reg->btf_id) {
8740 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8741 			return -EACCES;
8742 		}
8743 		meta->ret_btf = reg->btf;
8744 		meta->ret_btf_id = reg->btf_id;
8745 		break;
8746 	case ARG_PTR_TO_SPIN_LOCK:
8747 		if (in_rbtree_lock_required_cb(env)) {
8748 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8749 			return -EACCES;
8750 		}
8751 		if (meta->func_id == BPF_FUNC_spin_lock) {
8752 			err = process_spin_lock(env, regno, true);
8753 			if (err)
8754 				return err;
8755 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
8756 			err = process_spin_lock(env, regno, false);
8757 			if (err)
8758 				return err;
8759 		} else {
8760 			verbose(env, "verifier internal error\n");
8761 			return -EFAULT;
8762 		}
8763 		break;
8764 	case ARG_PTR_TO_TIMER:
8765 		err = process_timer_func(env, regno, meta);
8766 		if (err)
8767 			return err;
8768 		break;
8769 	case ARG_PTR_TO_FUNC:
8770 		meta->subprogno = reg->subprogno;
8771 		break;
8772 	case ARG_PTR_TO_MEM:
8773 		/* The access to this pointer is only checked when we hit the
8774 		 * next is_mem_size argument below.
8775 		 */
8776 		meta->raw_mode = arg_type & MEM_UNINIT;
8777 		if (arg_type & MEM_FIXED_SIZE) {
8778 			err = check_helper_mem_access(env, regno,
8779 						      fn->arg_size[arg], false,
8780 						      meta);
8781 		}
8782 		break;
8783 	case ARG_CONST_SIZE:
8784 		err = check_mem_size_reg(env, reg, regno, false, meta);
8785 		break;
8786 	case ARG_CONST_SIZE_OR_ZERO:
8787 		err = check_mem_size_reg(env, reg, regno, true, meta);
8788 		break;
8789 	case ARG_PTR_TO_DYNPTR:
8790 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
8791 		if (err)
8792 			return err;
8793 		break;
8794 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
8795 		if (!tnum_is_const(reg->var_off)) {
8796 			verbose(env, "R%d is not a known constant'\n",
8797 				regno);
8798 			return -EACCES;
8799 		}
8800 		meta->mem_size = reg->var_off.value;
8801 		err = mark_chain_precision(env, regno);
8802 		if (err)
8803 			return err;
8804 		break;
8805 	case ARG_PTR_TO_INT:
8806 	case ARG_PTR_TO_LONG:
8807 	{
8808 		int size = int_ptr_type_to_size(arg_type);
8809 
8810 		err = check_helper_mem_access(env, regno, size, false, meta);
8811 		if (err)
8812 			return err;
8813 		err = check_ptr_alignment(env, reg, 0, size, true);
8814 		break;
8815 	}
8816 	case ARG_PTR_TO_CONST_STR:
8817 	{
8818 		struct bpf_map *map = reg->map_ptr;
8819 		int map_off;
8820 		u64 map_addr;
8821 		char *str_ptr;
8822 
8823 		if (!bpf_map_is_rdonly(map)) {
8824 			verbose(env, "R%d does not point to a readonly map'\n", regno);
8825 			return -EACCES;
8826 		}
8827 
8828 		if (!tnum_is_const(reg->var_off)) {
8829 			verbose(env, "R%d is not a constant address'\n", regno);
8830 			return -EACCES;
8831 		}
8832 
8833 		if (!map->ops->map_direct_value_addr) {
8834 			verbose(env, "no direct value access support for this map type\n");
8835 			return -EACCES;
8836 		}
8837 
8838 		err = check_map_access(env, regno, reg->off,
8839 				       map->value_size - reg->off, false,
8840 				       ACCESS_HELPER);
8841 		if (err)
8842 			return err;
8843 
8844 		map_off = reg->off + reg->var_off.value;
8845 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8846 		if (err) {
8847 			verbose(env, "direct value access on string failed\n");
8848 			return err;
8849 		}
8850 
8851 		str_ptr = (char *)(long)(map_addr);
8852 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8853 			verbose(env, "string is not zero-terminated\n");
8854 			return -EINVAL;
8855 		}
8856 		break;
8857 	}
8858 	case ARG_PTR_TO_KPTR:
8859 		err = process_kptr_func(env, regno, meta);
8860 		if (err)
8861 			return err;
8862 		break;
8863 	}
8864 
8865 	return err;
8866 }
8867 
8868 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8869 {
8870 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
8871 	enum bpf_prog_type type = resolve_prog_type(env->prog);
8872 
8873 	if (func_id != BPF_FUNC_map_update_elem)
8874 		return false;
8875 
8876 	/* It's not possible to get access to a locked struct sock in these
8877 	 * contexts, so updating is safe.
8878 	 */
8879 	switch (type) {
8880 	case BPF_PROG_TYPE_TRACING:
8881 		if (eatype == BPF_TRACE_ITER)
8882 			return true;
8883 		break;
8884 	case BPF_PROG_TYPE_SOCKET_FILTER:
8885 	case BPF_PROG_TYPE_SCHED_CLS:
8886 	case BPF_PROG_TYPE_SCHED_ACT:
8887 	case BPF_PROG_TYPE_XDP:
8888 	case BPF_PROG_TYPE_SK_REUSEPORT:
8889 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
8890 	case BPF_PROG_TYPE_SK_LOOKUP:
8891 		return true;
8892 	default:
8893 		break;
8894 	}
8895 
8896 	verbose(env, "cannot update sockmap in this context\n");
8897 	return false;
8898 }
8899 
8900 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8901 {
8902 	return env->prog->jit_requested &&
8903 	       bpf_jit_supports_subprog_tailcalls();
8904 }
8905 
8906 static int check_map_func_compatibility(struct bpf_verifier_env *env,
8907 					struct bpf_map *map, int func_id)
8908 {
8909 	if (!map)
8910 		return 0;
8911 
8912 	/* We need a two way check, first is from map perspective ... */
8913 	switch (map->map_type) {
8914 	case BPF_MAP_TYPE_PROG_ARRAY:
8915 		if (func_id != BPF_FUNC_tail_call)
8916 			goto error;
8917 		break;
8918 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8919 		if (func_id != BPF_FUNC_perf_event_read &&
8920 		    func_id != BPF_FUNC_perf_event_output &&
8921 		    func_id != BPF_FUNC_skb_output &&
8922 		    func_id != BPF_FUNC_perf_event_read_value &&
8923 		    func_id != BPF_FUNC_xdp_output)
8924 			goto error;
8925 		break;
8926 	case BPF_MAP_TYPE_RINGBUF:
8927 		if (func_id != BPF_FUNC_ringbuf_output &&
8928 		    func_id != BPF_FUNC_ringbuf_reserve &&
8929 		    func_id != BPF_FUNC_ringbuf_query &&
8930 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8931 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8932 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
8933 			goto error;
8934 		break;
8935 	case BPF_MAP_TYPE_USER_RINGBUF:
8936 		if (func_id != BPF_FUNC_user_ringbuf_drain)
8937 			goto error;
8938 		break;
8939 	case BPF_MAP_TYPE_STACK_TRACE:
8940 		if (func_id != BPF_FUNC_get_stackid)
8941 			goto error;
8942 		break;
8943 	case BPF_MAP_TYPE_CGROUP_ARRAY:
8944 		if (func_id != BPF_FUNC_skb_under_cgroup &&
8945 		    func_id != BPF_FUNC_current_task_under_cgroup)
8946 			goto error;
8947 		break;
8948 	case BPF_MAP_TYPE_CGROUP_STORAGE:
8949 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
8950 		if (func_id != BPF_FUNC_get_local_storage)
8951 			goto error;
8952 		break;
8953 	case BPF_MAP_TYPE_DEVMAP:
8954 	case BPF_MAP_TYPE_DEVMAP_HASH:
8955 		if (func_id != BPF_FUNC_redirect_map &&
8956 		    func_id != BPF_FUNC_map_lookup_elem)
8957 			goto error;
8958 		break;
8959 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
8960 	 * appear.
8961 	 */
8962 	case BPF_MAP_TYPE_CPUMAP:
8963 		if (func_id != BPF_FUNC_redirect_map)
8964 			goto error;
8965 		break;
8966 	case BPF_MAP_TYPE_XSKMAP:
8967 		if (func_id != BPF_FUNC_redirect_map &&
8968 		    func_id != BPF_FUNC_map_lookup_elem)
8969 			goto error;
8970 		break;
8971 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
8972 	case BPF_MAP_TYPE_HASH_OF_MAPS:
8973 		if (func_id != BPF_FUNC_map_lookup_elem)
8974 			goto error;
8975 		break;
8976 	case BPF_MAP_TYPE_SOCKMAP:
8977 		if (func_id != BPF_FUNC_sk_redirect_map &&
8978 		    func_id != BPF_FUNC_sock_map_update &&
8979 		    func_id != BPF_FUNC_map_delete_elem &&
8980 		    func_id != BPF_FUNC_msg_redirect_map &&
8981 		    func_id != BPF_FUNC_sk_select_reuseport &&
8982 		    func_id != BPF_FUNC_map_lookup_elem &&
8983 		    !may_update_sockmap(env, func_id))
8984 			goto error;
8985 		break;
8986 	case BPF_MAP_TYPE_SOCKHASH:
8987 		if (func_id != BPF_FUNC_sk_redirect_hash &&
8988 		    func_id != BPF_FUNC_sock_hash_update &&
8989 		    func_id != BPF_FUNC_map_delete_elem &&
8990 		    func_id != BPF_FUNC_msg_redirect_hash &&
8991 		    func_id != BPF_FUNC_sk_select_reuseport &&
8992 		    func_id != BPF_FUNC_map_lookup_elem &&
8993 		    !may_update_sockmap(env, func_id))
8994 			goto error;
8995 		break;
8996 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
8997 		if (func_id != BPF_FUNC_sk_select_reuseport)
8998 			goto error;
8999 		break;
9000 	case BPF_MAP_TYPE_QUEUE:
9001 	case BPF_MAP_TYPE_STACK:
9002 		if (func_id != BPF_FUNC_map_peek_elem &&
9003 		    func_id != BPF_FUNC_map_pop_elem &&
9004 		    func_id != BPF_FUNC_map_push_elem)
9005 			goto error;
9006 		break;
9007 	case BPF_MAP_TYPE_SK_STORAGE:
9008 		if (func_id != BPF_FUNC_sk_storage_get &&
9009 		    func_id != BPF_FUNC_sk_storage_delete &&
9010 		    func_id != BPF_FUNC_kptr_xchg)
9011 			goto error;
9012 		break;
9013 	case BPF_MAP_TYPE_INODE_STORAGE:
9014 		if (func_id != BPF_FUNC_inode_storage_get &&
9015 		    func_id != BPF_FUNC_inode_storage_delete &&
9016 		    func_id != BPF_FUNC_kptr_xchg)
9017 			goto error;
9018 		break;
9019 	case BPF_MAP_TYPE_TASK_STORAGE:
9020 		if (func_id != BPF_FUNC_task_storage_get &&
9021 		    func_id != BPF_FUNC_task_storage_delete &&
9022 		    func_id != BPF_FUNC_kptr_xchg)
9023 			goto error;
9024 		break;
9025 	case BPF_MAP_TYPE_CGRP_STORAGE:
9026 		if (func_id != BPF_FUNC_cgrp_storage_get &&
9027 		    func_id != BPF_FUNC_cgrp_storage_delete &&
9028 		    func_id != BPF_FUNC_kptr_xchg)
9029 			goto error;
9030 		break;
9031 	case BPF_MAP_TYPE_BLOOM_FILTER:
9032 		if (func_id != BPF_FUNC_map_peek_elem &&
9033 		    func_id != BPF_FUNC_map_push_elem)
9034 			goto error;
9035 		break;
9036 	default:
9037 		break;
9038 	}
9039 
9040 	/* ... and second from the function itself. */
9041 	switch (func_id) {
9042 	case BPF_FUNC_tail_call:
9043 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
9044 			goto error;
9045 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
9046 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
9047 			return -EINVAL;
9048 		}
9049 		break;
9050 	case BPF_FUNC_perf_event_read:
9051 	case BPF_FUNC_perf_event_output:
9052 	case BPF_FUNC_perf_event_read_value:
9053 	case BPF_FUNC_skb_output:
9054 	case BPF_FUNC_xdp_output:
9055 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
9056 			goto error;
9057 		break;
9058 	case BPF_FUNC_ringbuf_output:
9059 	case BPF_FUNC_ringbuf_reserve:
9060 	case BPF_FUNC_ringbuf_query:
9061 	case BPF_FUNC_ringbuf_reserve_dynptr:
9062 	case BPF_FUNC_ringbuf_submit_dynptr:
9063 	case BPF_FUNC_ringbuf_discard_dynptr:
9064 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
9065 			goto error;
9066 		break;
9067 	case BPF_FUNC_user_ringbuf_drain:
9068 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
9069 			goto error;
9070 		break;
9071 	case BPF_FUNC_get_stackid:
9072 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
9073 			goto error;
9074 		break;
9075 	case BPF_FUNC_current_task_under_cgroup:
9076 	case BPF_FUNC_skb_under_cgroup:
9077 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
9078 			goto error;
9079 		break;
9080 	case BPF_FUNC_redirect_map:
9081 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
9082 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
9083 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
9084 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
9085 			goto error;
9086 		break;
9087 	case BPF_FUNC_sk_redirect_map:
9088 	case BPF_FUNC_msg_redirect_map:
9089 	case BPF_FUNC_sock_map_update:
9090 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
9091 			goto error;
9092 		break;
9093 	case BPF_FUNC_sk_redirect_hash:
9094 	case BPF_FUNC_msg_redirect_hash:
9095 	case BPF_FUNC_sock_hash_update:
9096 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
9097 			goto error;
9098 		break;
9099 	case BPF_FUNC_get_local_storage:
9100 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
9101 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
9102 			goto error;
9103 		break;
9104 	case BPF_FUNC_sk_select_reuseport:
9105 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
9106 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
9107 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
9108 			goto error;
9109 		break;
9110 	case BPF_FUNC_map_pop_elem:
9111 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9112 		    map->map_type != BPF_MAP_TYPE_STACK)
9113 			goto error;
9114 		break;
9115 	case BPF_FUNC_map_peek_elem:
9116 	case BPF_FUNC_map_push_elem:
9117 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9118 		    map->map_type != BPF_MAP_TYPE_STACK &&
9119 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
9120 			goto error;
9121 		break;
9122 	case BPF_FUNC_map_lookup_percpu_elem:
9123 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
9124 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9125 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
9126 			goto error;
9127 		break;
9128 	case BPF_FUNC_sk_storage_get:
9129 	case BPF_FUNC_sk_storage_delete:
9130 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
9131 			goto error;
9132 		break;
9133 	case BPF_FUNC_inode_storage_get:
9134 	case BPF_FUNC_inode_storage_delete:
9135 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
9136 			goto error;
9137 		break;
9138 	case BPF_FUNC_task_storage_get:
9139 	case BPF_FUNC_task_storage_delete:
9140 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
9141 			goto error;
9142 		break;
9143 	case BPF_FUNC_cgrp_storage_get:
9144 	case BPF_FUNC_cgrp_storage_delete:
9145 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
9146 			goto error;
9147 		break;
9148 	default:
9149 		break;
9150 	}
9151 
9152 	return 0;
9153 error:
9154 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
9155 		map->map_type, func_id_name(func_id), func_id);
9156 	return -EINVAL;
9157 }
9158 
9159 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
9160 {
9161 	int count = 0;
9162 
9163 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
9164 		count++;
9165 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
9166 		count++;
9167 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
9168 		count++;
9169 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
9170 		count++;
9171 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
9172 		count++;
9173 
9174 	/* We only support one arg being in raw mode at the moment,
9175 	 * which is sufficient for the helper functions we have
9176 	 * right now.
9177 	 */
9178 	return count <= 1;
9179 }
9180 
9181 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
9182 {
9183 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
9184 	bool has_size = fn->arg_size[arg] != 0;
9185 	bool is_next_size = false;
9186 
9187 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
9188 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
9189 
9190 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
9191 		return is_next_size;
9192 
9193 	return has_size == is_next_size || is_next_size == is_fixed;
9194 }
9195 
9196 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
9197 {
9198 	/* bpf_xxx(..., buf, len) call will access 'len'
9199 	 * bytes from memory 'buf'. Both arg types need
9200 	 * to be paired, so make sure there's no buggy
9201 	 * helper function specification.
9202 	 */
9203 	if (arg_type_is_mem_size(fn->arg1_type) ||
9204 	    check_args_pair_invalid(fn, 0) ||
9205 	    check_args_pair_invalid(fn, 1) ||
9206 	    check_args_pair_invalid(fn, 2) ||
9207 	    check_args_pair_invalid(fn, 3) ||
9208 	    check_args_pair_invalid(fn, 4))
9209 		return false;
9210 
9211 	return true;
9212 }
9213 
9214 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
9215 {
9216 	int i;
9217 
9218 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9219 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
9220 			return !!fn->arg_btf_id[i];
9221 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
9222 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
9223 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
9224 		    /* arg_btf_id and arg_size are in a union. */
9225 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
9226 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
9227 			return false;
9228 	}
9229 
9230 	return true;
9231 }
9232 
9233 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
9234 {
9235 	return check_raw_mode_ok(fn) &&
9236 	       check_arg_pair_ok(fn) &&
9237 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
9238 }
9239 
9240 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
9241  * are now invalid, so turn them into unknown SCALAR_VALUE.
9242  *
9243  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
9244  * since these slices point to packet data.
9245  */
9246 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
9247 {
9248 	struct bpf_func_state *state;
9249 	struct bpf_reg_state *reg;
9250 
9251 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9252 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
9253 			mark_reg_invalid(env, reg);
9254 	}));
9255 }
9256 
9257 enum {
9258 	AT_PKT_END = -1,
9259 	BEYOND_PKT_END = -2,
9260 };
9261 
9262 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
9263 {
9264 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9265 	struct bpf_reg_state *reg = &state->regs[regn];
9266 
9267 	if (reg->type != PTR_TO_PACKET)
9268 		/* PTR_TO_PACKET_META is not supported yet */
9269 		return;
9270 
9271 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
9272 	 * How far beyond pkt_end it goes is unknown.
9273 	 * if (!range_open) it's the case of pkt >= pkt_end
9274 	 * if (range_open) it's the case of pkt > pkt_end
9275 	 * hence this pointer is at least 1 byte bigger than pkt_end
9276 	 */
9277 	if (range_open)
9278 		reg->range = BEYOND_PKT_END;
9279 	else
9280 		reg->range = AT_PKT_END;
9281 }
9282 
9283 /* The pointer with the specified id has released its reference to kernel
9284  * resources. Identify all copies of the same pointer and clear the reference.
9285  */
9286 static int release_reference(struct bpf_verifier_env *env,
9287 			     int ref_obj_id)
9288 {
9289 	struct bpf_func_state *state;
9290 	struct bpf_reg_state *reg;
9291 	int err;
9292 
9293 	err = release_reference_state(cur_func(env), ref_obj_id);
9294 	if (err)
9295 		return err;
9296 
9297 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9298 		if (reg->ref_obj_id == ref_obj_id)
9299 			mark_reg_invalid(env, reg);
9300 	}));
9301 
9302 	return 0;
9303 }
9304 
9305 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
9306 {
9307 	struct bpf_func_state *unused;
9308 	struct bpf_reg_state *reg;
9309 
9310 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
9311 		if (type_is_non_owning_ref(reg->type))
9312 			mark_reg_invalid(env, reg);
9313 	}));
9314 }
9315 
9316 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
9317 				    struct bpf_reg_state *regs)
9318 {
9319 	int i;
9320 
9321 	/* after the call registers r0 - r5 were scratched */
9322 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9323 		mark_reg_not_init(env, regs, caller_saved[i]);
9324 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9325 	}
9326 }
9327 
9328 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
9329 				   struct bpf_func_state *caller,
9330 				   struct bpf_func_state *callee,
9331 				   int insn_idx);
9332 
9333 static int set_callee_state(struct bpf_verifier_env *env,
9334 			    struct bpf_func_state *caller,
9335 			    struct bpf_func_state *callee, int insn_idx);
9336 
9337 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9338 			     int *insn_idx, int subprog,
9339 			     set_callee_state_fn set_callee_state_cb)
9340 {
9341 	struct bpf_verifier_state *state = env->cur_state;
9342 	struct bpf_func_state *caller, *callee;
9343 	int err;
9344 
9345 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
9346 		verbose(env, "the call stack of %d frames is too deep\n",
9347 			state->curframe + 2);
9348 		return -E2BIG;
9349 	}
9350 
9351 	caller = state->frame[state->curframe];
9352 	if (state->frame[state->curframe + 1]) {
9353 		verbose(env, "verifier bug. Frame %d already allocated\n",
9354 			state->curframe + 1);
9355 		return -EFAULT;
9356 	}
9357 
9358 	err = btf_check_subprog_call(env, subprog, caller->regs);
9359 	if (err == -EFAULT)
9360 		return err;
9361 	if (subprog_is_global(env, subprog)) {
9362 		if (err) {
9363 			verbose(env, "Caller passes invalid args into func#%d\n",
9364 				subprog);
9365 			return err;
9366 		} else {
9367 			if (env->log.level & BPF_LOG_LEVEL)
9368 				verbose(env,
9369 					"Func#%d is global and valid. Skipping.\n",
9370 					subprog);
9371 			clear_caller_saved_regs(env, caller->regs);
9372 
9373 			/* All global functions return a 64-bit SCALAR_VALUE */
9374 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
9375 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9376 
9377 			/* continue with next insn after call */
9378 			return 0;
9379 		}
9380 	}
9381 
9382 	/* set_callee_state is used for direct subprog calls, but we are
9383 	 * interested in validating only BPF helpers that can call subprogs as
9384 	 * callbacks
9385 	 */
9386 	if (set_callee_state_cb != set_callee_state) {
9387 		env->subprog_info[subprog].is_cb = true;
9388 		if (bpf_pseudo_kfunc_call(insn) &&
9389 		    !is_callback_calling_kfunc(insn->imm)) {
9390 			verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
9391 				func_id_name(insn->imm), insn->imm);
9392 			return -EFAULT;
9393 		} else if (!bpf_pseudo_kfunc_call(insn) &&
9394 			   !is_callback_calling_function(insn->imm)) { /* helper */
9395 			verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
9396 				func_id_name(insn->imm), insn->imm);
9397 			return -EFAULT;
9398 		}
9399 	}
9400 
9401 	if (insn->code == (BPF_JMP | BPF_CALL) &&
9402 	    insn->src_reg == 0 &&
9403 	    insn->imm == BPF_FUNC_timer_set_callback) {
9404 		struct bpf_verifier_state *async_cb;
9405 
9406 		/* there is no real recursion here. timer callbacks are async */
9407 		env->subprog_info[subprog].is_async_cb = true;
9408 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
9409 					 *insn_idx, subprog);
9410 		if (!async_cb)
9411 			return -EFAULT;
9412 		callee = async_cb->frame[0];
9413 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
9414 
9415 		/* Convert bpf_timer_set_callback() args into timer callback args */
9416 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
9417 		if (err)
9418 			return err;
9419 
9420 		clear_caller_saved_regs(env, caller->regs);
9421 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
9422 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9423 		/* continue with next insn after call */
9424 		return 0;
9425 	}
9426 
9427 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
9428 	if (!callee)
9429 		return -ENOMEM;
9430 	state->frame[state->curframe + 1] = callee;
9431 
9432 	/* callee cannot access r0, r6 - r9 for reading and has to write
9433 	 * into its own stack before reading from it.
9434 	 * callee can read/write into caller's stack
9435 	 */
9436 	init_func_state(env, callee,
9437 			/* remember the callsite, it will be used by bpf_exit */
9438 			*insn_idx /* callsite */,
9439 			state->curframe + 1 /* frameno within this callchain */,
9440 			subprog /* subprog number within this prog */);
9441 
9442 	/* Transfer references to the callee */
9443 	err = copy_reference_state(callee, caller);
9444 	if (err)
9445 		goto err_out;
9446 
9447 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
9448 	if (err)
9449 		goto err_out;
9450 
9451 	clear_caller_saved_regs(env, caller->regs);
9452 
9453 	/* only increment it after check_reg_arg() finished */
9454 	state->curframe++;
9455 
9456 	/* and go analyze first insn of the callee */
9457 	*insn_idx = env->subprog_info[subprog].start - 1;
9458 
9459 	if (env->log.level & BPF_LOG_LEVEL) {
9460 		verbose(env, "caller:\n");
9461 		print_verifier_state(env, caller, true);
9462 		verbose(env, "callee:\n");
9463 		print_verifier_state(env, callee, true);
9464 	}
9465 	return 0;
9466 
9467 err_out:
9468 	free_func_state(callee);
9469 	state->frame[state->curframe + 1] = NULL;
9470 	return err;
9471 }
9472 
9473 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
9474 				   struct bpf_func_state *caller,
9475 				   struct bpf_func_state *callee)
9476 {
9477 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
9478 	 *      void *callback_ctx, u64 flags);
9479 	 * callback_fn(struct bpf_map *map, void *key, void *value,
9480 	 *      void *callback_ctx);
9481 	 */
9482 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9483 
9484 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9485 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9486 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9487 
9488 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9489 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9490 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9491 
9492 	/* pointer to stack or null */
9493 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9494 
9495 	/* unused */
9496 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9497 	return 0;
9498 }
9499 
9500 static int set_callee_state(struct bpf_verifier_env *env,
9501 			    struct bpf_func_state *caller,
9502 			    struct bpf_func_state *callee, int insn_idx)
9503 {
9504 	int i;
9505 
9506 	/* copy r1 - r5 args that callee can access.  The copy includes parent
9507 	 * pointers, which connects us up to the liveness chain
9508 	 */
9509 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9510 		callee->regs[i] = caller->regs[i];
9511 	return 0;
9512 }
9513 
9514 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9515 			   int *insn_idx)
9516 {
9517 	int subprog, target_insn;
9518 
9519 	target_insn = *insn_idx + insn->imm + 1;
9520 	subprog = find_subprog(env, target_insn);
9521 	if (subprog < 0) {
9522 		verbose(env, "verifier bug. No program starts at insn %d\n",
9523 			target_insn);
9524 		return -EFAULT;
9525 	}
9526 
9527 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
9528 }
9529 
9530 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9531 				       struct bpf_func_state *caller,
9532 				       struct bpf_func_state *callee,
9533 				       int insn_idx)
9534 {
9535 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9536 	struct bpf_map *map;
9537 	int err;
9538 
9539 	if (bpf_map_ptr_poisoned(insn_aux)) {
9540 		verbose(env, "tail_call abusing map_ptr\n");
9541 		return -EINVAL;
9542 	}
9543 
9544 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
9545 	if (!map->ops->map_set_for_each_callback_args ||
9546 	    !map->ops->map_for_each_callback) {
9547 		verbose(env, "callback function not allowed for map\n");
9548 		return -ENOTSUPP;
9549 	}
9550 
9551 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9552 	if (err)
9553 		return err;
9554 
9555 	callee->in_callback_fn = true;
9556 	callee->callback_ret_range = tnum_range(0, 1);
9557 	return 0;
9558 }
9559 
9560 static int set_loop_callback_state(struct bpf_verifier_env *env,
9561 				   struct bpf_func_state *caller,
9562 				   struct bpf_func_state *callee,
9563 				   int insn_idx)
9564 {
9565 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9566 	 *	    u64 flags);
9567 	 * callback_fn(u32 index, void *callback_ctx);
9568 	 */
9569 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9570 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9571 
9572 	/* unused */
9573 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9574 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9575 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9576 
9577 	callee->in_callback_fn = true;
9578 	callee->callback_ret_range = tnum_range(0, 1);
9579 	return 0;
9580 }
9581 
9582 static int set_timer_callback_state(struct bpf_verifier_env *env,
9583 				    struct bpf_func_state *caller,
9584 				    struct bpf_func_state *callee,
9585 				    int insn_idx)
9586 {
9587 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9588 
9589 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9590 	 * callback_fn(struct bpf_map *map, void *key, void *value);
9591 	 */
9592 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9593 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9594 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
9595 
9596 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9597 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9598 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
9599 
9600 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9601 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9602 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
9603 
9604 	/* unused */
9605 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9606 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9607 	callee->in_async_callback_fn = true;
9608 	callee->callback_ret_range = tnum_range(0, 1);
9609 	return 0;
9610 }
9611 
9612 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9613 				       struct bpf_func_state *caller,
9614 				       struct bpf_func_state *callee,
9615 				       int insn_idx)
9616 {
9617 	/* bpf_find_vma(struct task_struct *task, u64 addr,
9618 	 *               void *callback_fn, void *callback_ctx, u64 flags)
9619 	 * (callback_fn)(struct task_struct *task,
9620 	 *               struct vm_area_struct *vma, void *callback_ctx);
9621 	 */
9622 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9623 
9624 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9625 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9626 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
9627 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
9628 
9629 	/* pointer to stack or null */
9630 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9631 
9632 	/* unused */
9633 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9634 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9635 	callee->in_callback_fn = true;
9636 	callee->callback_ret_range = tnum_range(0, 1);
9637 	return 0;
9638 }
9639 
9640 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9641 					   struct bpf_func_state *caller,
9642 					   struct bpf_func_state *callee,
9643 					   int insn_idx)
9644 {
9645 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9646 	 *			  callback_ctx, u64 flags);
9647 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
9648 	 */
9649 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
9650 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
9651 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9652 
9653 	/* unused */
9654 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9655 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9656 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9657 
9658 	callee->in_callback_fn = true;
9659 	callee->callback_ret_range = tnum_range(0, 1);
9660 	return 0;
9661 }
9662 
9663 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
9664 					 struct bpf_func_state *caller,
9665 					 struct bpf_func_state *callee,
9666 					 int insn_idx)
9667 {
9668 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
9669 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
9670 	 *
9671 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
9672 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
9673 	 * by this point, so look at 'root'
9674 	 */
9675 	struct btf_field *field;
9676 
9677 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
9678 				      BPF_RB_ROOT);
9679 	if (!field || !field->graph_root.value_btf_id)
9680 		return -EFAULT;
9681 
9682 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
9683 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
9684 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
9685 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
9686 
9687 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9688 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9689 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9690 	callee->in_callback_fn = true;
9691 	callee->callback_ret_range = tnum_range(0, 1);
9692 	return 0;
9693 }
9694 
9695 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
9696 
9697 /* Are we currently verifying the callback for a rbtree helper that must
9698  * be called with lock held? If so, no need to complain about unreleased
9699  * lock
9700  */
9701 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
9702 {
9703 	struct bpf_verifier_state *state = env->cur_state;
9704 	struct bpf_insn *insn = env->prog->insnsi;
9705 	struct bpf_func_state *callee;
9706 	int kfunc_btf_id;
9707 
9708 	if (!state->curframe)
9709 		return false;
9710 
9711 	callee = state->frame[state->curframe];
9712 
9713 	if (!callee->in_callback_fn)
9714 		return false;
9715 
9716 	kfunc_btf_id = insn[callee->callsite].imm;
9717 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
9718 }
9719 
9720 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
9721 {
9722 	struct bpf_verifier_state *state = env->cur_state;
9723 	struct bpf_func_state *caller, *callee;
9724 	struct bpf_reg_state *r0;
9725 	int err;
9726 
9727 	callee = state->frame[state->curframe];
9728 	r0 = &callee->regs[BPF_REG_0];
9729 	if (r0->type == PTR_TO_STACK) {
9730 		/* technically it's ok to return caller's stack pointer
9731 		 * (or caller's caller's pointer) back to the caller,
9732 		 * since these pointers are valid. Only current stack
9733 		 * pointer will be invalid as soon as function exits,
9734 		 * but let's be conservative
9735 		 */
9736 		verbose(env, "cannot return stack pointer to the caller\n");
9737 		return -EINVAL;
9738 	}
9739 
9740 	caller = state->frame[state->curframe - 1];
9741 	if (callee->in_callback_fn) {
9742 		/* enforce R0 return value range [0, 1]. */
9743 		struct tnum range = callee->callback_ret_range;
9744 
9745 		if (r0->type != SCALAR_VALUE) {
9746 			verbose(env, "R0 not a scalar value\n");
9747 			return -EACCES;
9748 		}
9749 		if (!tnum_in(range, r0->var_off)) {
9750 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
9751 			return -EINVAL;
9752 		}
9753 	} else {
9754 		/* return to the caller whatever r0 had in the callee */
9755 		caller->regs[BPF_REG_0] = *r0;
9756 	}
9757 
9758 	/* callback_fn frame should have released its own additions to parent's
9759 	 * reference state at this point, or check_reference_leak would
9760 	 * complain, hence it must be the same as the caller. There is no need
9761 	 * to copy it back.
9762 	 */
9763 	if (!callee->in_callback_fn) {
9764 		/* Transfer references to the caller */
9765 		err = copy_reference_state(caller, callee);
9766 		if (err)
9767 			return err;
9768 	}
9769 
9770 	*insn_idx = callee->callsite + 1;
9771 	if (env->log.level & BPF_LOG_LEVEL) {
9772 		verbose(env, "returning from callee:\n");
9773 		print_verifier_state(env, callee, true);
9774 		verbose(env, "to caller at %d:\n", *insn_idx);
9775 		print_verifier_state(env, caller, true);
9776 	}
9777 	/* clear everything in the callee. In case of exceptional exits using
9778 	 * bpf_throw, this will be done by copy_verifier_state for extra frames. */
9779 	free_func_state(callee);
9780 	state->frame[state->curframe--] = NULL;
9781 	return 0;
9782 }
9783 
9784 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
9785 				   int func_id,
9786 				   struct bpf_call_arg_meta *meta)
9787 {
9788 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
9789 
9790 	if (ret_type != RET_INTEGER)
9791 		return;
9792 
9793 	switch (func_id) {
9794 	case BPF_FUNC_get_stack:
9795 	case BPF_FUNC_get_task_stack:
9796 	case BPF_FUNC_probe_read_str:
9797 	case BPF_FUNC_probe_read_kernel_str:
9798 	case BPF_FUNC_probe_read_user_str:
9799 		ret_reg->smax_value = meta->msize_max_value;
9800 		ret_reg->s32_max_value = meta->msize_max_value;
9801 		ret_reg->smin_value = -MAX_ERRNO;
9802 		ret_reg->s32_min_value = -MAX_ERRNO;
9803 		reg_bounds_sync(ret_reg);
9804 		break;
9805 	case BPF_FUNC_get_smp_processor_id:
9806 		ret_reg->umax_value = nr_cpu_ids - 1;
9807 		ret_reg->u32_max_value = nr_cpu_ids - 1;
9808 		ret_reg->smax_value = nr_cpu_ids - 1;
9809 		ret_reg->s32_max_value = nr_cpu_ids - 1;
9810 		ret_reg->umin_value = 0;
9811 		ret_reg->u32_min_value = 0;
9812 		ret_reg->smin_value = 0;
9813 		ret_reg->s32_min_value = 0;
9814 		reg_bounds_sync(ret_reg);
9815 		break;
9816 	}
9817 }
9818 
9819 static int
9820 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9821 		int func_id, int insn_idx)
9822 {
9823 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9824 	struct bpf_map *map = meta->map_ptr;
9825 
9826 	if (func_id != BPF_FUNC_tail_call &&
9827 	    func_id != BPF_FUNC_map_lookup_elem &&
9828 	    func_id != BPF_FUNC_map_update_elem &&
9829 	    func_id != BPF_FUNC_map_delete_elem &&
9830 	    func_id != BPF_FUNC_map_push_elem &&
9831 	    func_id != BPF_FUNC_map_pop_elem &&
9832 	    func_id != BPF_FUNC_map_peek_elem &&
9833 	    func_id != BPF_FUNC_for_each_map_elem &&
9834 	    func_id != BPF_FUNC_redirect_map &&
9835 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
9836 		return 0;
9837 
9838 	if (map == NULL) {
9839 		verbose(env, "kernel subsystem misconfigured verifier\n");
9840 		return -EINVAL;
9841 	}
9842 
9843 	/* In case of read-only, some additional restrictions
9844 	 * need to be applied in order to prevent altering the
9845 	 * state of the map from program side.
9846 	 */
9847 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
9848 	    (func_id == BPF_FUNC_map_delete_elem ||
9849 	     func_id == BPF_FUNC_map_update_elem ||
9850 	     func_id == BPF_FUNC_map_push_elem ||
9851 	     func_id == BPF_FUNC_map_pop_elem)) {
9852 		verbose(env, "write into map forbidden\n");
9853 		return -EACCES;
9854 	}
9855 
9856 	if (!BPF_MAP_PTR(aux->map_ptr_state))
9857 		bpf_map_ptr_store(aux, meta->map_ptr,
9858 				  !meta->map_ptr->bypass_spec_v1);
9859 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
9860 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
9861 				  !meta->map_ptr->bypass_spec_v1);
9862 	return 0;
9863 }
9864 
9865 static int
9866 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9867 		int func_id, int insn_idx)
9868 {
9869 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9870 	struct bpf_reg_state *regs = cur_regs(env), *reg;
9871 	struct bpf_map *map = meta->map_ptr;
9872 	u64 val, max;
9873 	int err;
9874 
9875 	if (func_id != BPF_FUNC_tail_call)
9876 		return 0;
9877 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
9878 		verbose(env, "kernel subsystem misconfigured verifier\n");
9879 		return -EINVAL;
9880 	}
9881 
9882 	reg = &regs[BPF_REG_3];
9883 	val = reg->var_off.value;
9884 	max = map->max_entries;
9885 
9886 	if (!(register_is_const(reg) && val < max)) {
9887 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9888 		return 0;
9889 	}
9890 
9891 	err = mark_chain_precision(env, BPF_REG_3);
9892 	if (err)
9893 		return err;
9894 	if (bpf_map_key_unseen(aux))
9895 		bpf_map_key_store(aux, val);
9896 	else if (!bpf_map_key_poisoned(aux) &&
9897 		  bpf_map_key_immediate(aux) != val)
9898 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9899 	return 0;
9900 }
9901 
9902 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit)
9903 {
9904 	struct bpf_func_state *state = cur_func(env);
9905 	bool refs_lingering = false;
9906 	int i;
9907 
9908 	if (!exception_exit && state->frameno && !state->in_callback_fn)
9909 		return 0;
9910 
9911 	for (i = 0; i < state->acquired_refs; i++) {
9912 		if (!exception_exit && state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
9913 			continue;
9914 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
9915 			state->refs[i].id, state->refs[i].insn_idx);
9916 		refs_lingering = true;
9917 	}
9918 	return refs_lingering ? -EINVAL : 0;
9919 }
9920 
9921 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
9922 				   struct bpf_reg_state *regs)
9923 {
9924 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
9925 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
9926 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
9927 	struct bpf_bprintf_data data = {};
9928 	int err, fmt_map_off, num_args;
9929 	u64 fmt_addr;
9930 	char *fmt;
9931 
9932 	/* data must be an array of u64 */
9933 	if (data_len_reg->var_off.value % 8)
9934 		return -EINVAL;
9935 	num_args = data_len_reg->var_off.value / 8;
9936 
9937 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
9938 	 * and map_direct_value_addr is set.
9939 	 */
9940 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
9941 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
9942 						  fmt_map_off);
9943 	if (err) {
9944 		verbose(env, "verifier bug\n");
9945 		return -EFAULT;
9946 	}
9947 	fmt = (char *)(long)fmt_addr + fmt_map_off;
9948 
9949 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
9950 	 * can focus on validating the format specifiers.
9951 	 */
9952 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
9953 	if (err < 0)
9954 		verbose(env, "Invalid format string\n");
9955 
9956 	return err;
9957 }
9958 
9959 static int check_get_func_ip(struct bpf_verifier_env *env)
9960 {
9961 	enum bpf_prog_type type = resolve_prog_type(env->prog);
9962 	int func_id = BPF_FUNC_get_func_ip;
9963 
9964 	if (type == BPF_PROG_TYPE_TRACING) {
9965 		if (!bpf_prog_has_trampoline(env->prog)) {
9966 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
9967 				func_id_name(func_id), func_id);
9968 			return -ENOTSUPP;
9969 		}
9970 		return 0;
9971 	} else if (type == BPF_PROG_TYPE_KPROBE) {
9972 		return 0;
9973 	}
9974 
9975 	verbose(env, "func %s#%d not supported for program type %d\n",
9976 		func_id_name(func_id), func_id, type);
9977 	return -ENOTSUPP;
9978 }
9979 
9980 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
9981 {
9982 	return &env->insn_aux_data[env->insn_idx];
9983 }
9984 
9985 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
9986 {
9987 	struct bpf_reg_state *regs = cur_regs(env);
9988 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
9989 	bool reg_is_null = register_is_null(reg);
9990 
9991 	if (reg_is_null)
9992 		mark_chain_precision(env, BPF_REG_4);
9993 
9994 	return reg_is_null;
9995 }
9996 
9997 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
9998 {
9999 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
10000 
10001 	if (!state->initialized) {
10002 		state->initialized = 1;
10003 		state->fit_for_inline = loop_flag_is_zero(env);
10004 		state->callback_subprogno = subprogno;
10005 		return;
10006 	}
10007 
10008 	if (!state->fit_for_inline)
10009 		return;
10010 
10011 	state->fit_for_inline = (loop_flag_is_zero(env) &&
10012 				 state->callback_subprogno == subprogno);
10013 }
10014 
10015 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10016 			     int *insn_idx_p)
10017 {
10018 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
10019 	bool returns_cpu_specific_alloc_ptr = false;
10020 	const struct bpf_func_proto *fn = NULL;
10021 	enum bpf_return_type ret_type;
10022 	enum bpf_type_flag ret_flag;
10023 	struct bpf_reg_state *regs;
10024 	struct bpf_call_arg_meta meta;
10025 	int insn_idx = *insn_idx_p;
10026 	bool changes_data;
10027 	int i, err, func_id;
10028 
10029 	/* find function prototype */
10030 	func_id = insn->imm;
10031 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
10032 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
10033 			func_id);
10034 		return -EINVAL;
10035 	}
10036 
10037 	if (env->ops->get_func_proto)
10038 		fn = env->ops->get_func_proto(func_id, env->prog);
10039 	if (!fn) {
10040 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
10041 			func_id);
10042 		return -EINVAL;
10043 	}
10044 
10045 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
10046 	if (!env->prog->gpl_compatible && fn->gpl_only) {
10047 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
10048 		return -EINVAL;
10049 	}
10050 
10051 	if (fn->allowed && !fn->allowed(env->prog)) {
10052 		verbose(env, "helper call is not allowed in probe\n");
10053 		return -EINVAL;
10054 	}
10055 
10056 	if (!env->prog->aux->sleepable && fn->might_sleep) {
10057 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
10058 		return -EINVAL;
10059 	}
10060 
10061 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
10062 	changes_data = bpf_helper_changes_pkt_data(fn->func);
10063 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
10064 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
10065 			func_id_name(func_id), func_id);
10066 		return -EINVAL;
10067 	}
10068 
10069 	memset(&meta, 0, sizeof(meta));
10070 	meta.pkt_access = fn->pkt_access;
10071 
10072 	err = check_func_proto(fn, func_id);
10073 	if (err) {
10074 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
10075 			func_id_name(func_id), func_id);
10076 		return err;
10077 	}
10078 
10079 	if (env->cur_state->active_rcu_lock) {
10080 		if (fn->might_sleep) {
10081 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
10082 				func_id_name(func_id), func_id);
10083 			return -EINVAL;
10084 		}
10085 
10086 		if (env->prog->aux->sleepable && is_storage_get_function(func_id))
10087 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10088 	}
10089 
10090 	meta.func_id = func_id;
10091 	/* check args */
10092 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
10093 		err = check_func_arg(env, i, &meta, fn, insn_idx);
10094 		if (err)
10095 			return err;
10096 	}
10097 
10098 	err = record_func_map(env, &meta, func_id, insn_idx);
10099 	if (err)
10100 		return err;
10101 
10102 	err = record_func_key(env, &meta, func_id, insn_idx);
10103 	if (err)
10104 		return err;
10105 
10106 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
10107 	 * is inferred from register state.
10108 	 */
10109 	for (i = 0; i < meta.access_size; i++) {
10110 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
10111 				       BPF_WRITE, -1, false, false);
10112 		if (err)
10113 			return err;
10114 	}
10115 
10116 	regs = cur_regs(env);
10117 
10118 	if (meta.release_regno) {
10119 		err = -EINVAL;
10120 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
10121 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
10122 		 * is safe to do directly.
10123 		 */
10124 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
10125 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
10126 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
10127 				return -EFAULT;
10128 			}
10129 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
10130 		} else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) {
10131 			u32 ref_obj_id = meta.ref_obj_id;
10132 			bool in_rcu = in_rcu_cs(env);
10133 			struct bpf_func_state *state;
10134 			struct bpf_reg_state *reg;
10135 
10136 			err = release_reference_state(cur_func(env), ref_obj_id);
10137 			if (!err) {
10138 				bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
10139 					if (reg->ref_obj_id == ref_obj_id) {
10140 						if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) {
10141 							reg->ref_obj_id = 0;
10142 							reg->type &= ~MEM_ALLOC;
10143 							reg->type |= MEM_RCU;
10144 						} else {
10145 							mark_reg_invalid(env, reg);
10146 						}
10147 					}
10148 				}));
10149 			}
10150 		} else if (meta.ref_obj_id) {
10151 			err = release_reference(env, meta.ref_obj_id);
10152 		} else if (register_is_null(&regs[meta.release_regno])) {
10153 			/* meta.ref_obj_id can only be 0 if register that is meant to be
10154 			 * released is NULL, which must be > R0.
10155 			 */
10156 			err = 0;
10157 		}
10158 		if (err) {
10159 			verbose(env, "func %s#%d reference has not been acquired before\n",
10160 				func_id_name(func_id), func_id);
10161 			return err;
10162 		}
10163 	}
10164 
10165 	switch (func_id) {
10166 	case BPF_FUNC_tail_call:
10167 		err = check_reference_leak(env, false);
10168 		if (err) {
10169 			verbose(env, "tail_call would lead to reference leak\n");
10170 			return err;
10171 		}
10172 		break;
10173 	case BPF_FUNC_get_local_storage:
10174 		/* check that flags argument in get_local_storage(map, flags) is 0,
10175 		 * this is required because get_local_storage() can't return an error.
10176 		 */
10177 		if (!register_is_null(&regs[BPF_REG_2])) {
10178 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
10179 			return -EINVAL;
10180 		}
10181 		break;
10182 	case BPF_FUNC_for_each_map_elem:
10183 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
10184 					set_map_elem_callback_state);
10185 		break;
10186 	case BPF_FUNC_timer_set_callback:
10187 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
10188 					set_timer_callback_state);
10189 		break;
10190 	case BPF_FUNC_find_vma:
10191 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
10192 					set_find_vma_callback_state);
10193 		break;
10194 	case BPF_FUNC_snprintf:
10195 		err = check_bpf_snprintf_call(env, regs);
10196 		break;
10197 	case BPF_FUNC_loop:
10198 		update_loop_inline_state(env, meta.subprogno);
10199 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
10200 					set_loop_callback_state);
10201 		break;
10202 	case BPF_FUNC_dynptr_from_mem:
10203 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
10204 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
10205 				reg_type_str(env, regs[BPF_REG_1].type));
10206 			return -EACCES;
10207 		}
10208 		break;
10209 	case BPF_FUNC_set_retval:
10210 		if (prog_type == BPF_PROG_TYPE_LSM &&
10211 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
10212 			if (!env->prog->aux->attach_func_proto->type) {
10213 				/* Make sure programs that attach to void
10214 				 * hooks don't try to modify return value.
10215 				 */
10216 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10217 				return -EINVAL;
10218 			}
10219 		}
10220 		break;
10221 	case BPF_FUNC_dynptr_data:
10222 	{
10223 		struct bpf_reg_state *reg;
10224 		int id, ref_obj_id;
10225 
10226 		reg = get_dynptr_arg_reg(env, fn, regs);
10227 		if (!reg)
10228 			return -EFAULT;
10229 
10230 
10231 		if (meta.dynptr_id) {
10232 			verbose(env, "verifier internal error: meta.dynptr_id already set\n");
10233 			return -EFAULT;
10234 		}
10235 		if (meta.ref_obj_id) {
10236 			verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
10237 			return -EFAULT;
10238 		}
10239 
10240 		id = dynptr_id(env, reg);
10241 		if (id < 0) {
10242 			verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10243 			return id;
10244 		}
10245 
10246 		ref_obj_id = dynptr_ref_obj_id(env, reg);
10247 		if (ref_obj_id < 0) {
10248 			verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
10249 			return ref_obj_id;
10250 		}
10251 
10252 		meta.dynptr_id = id;
10253 		meta.ref_obj_id = ref_obj_id;
10254 
10255 		break;
10256 	}
10257 	case BPF_FUNC_dynptr_write:
10258 	{
10259 		enum bpf_dynptr_type dynptr_type;
10260 		struct bpf_reg_state *reg;
10261 
10262 		reg = get_dynptr_arg_reg(env, fn, regs);
10263 		if (!reg)
10264 			return -EFAULT;
10265 
10266 		dynptr_type = dynptr_get_type(env, reg);
10267 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
10268 			return -EFAULT;
10269 
10270 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
10271 			/* this will trigger clear_all_pkt_pointers(), which will
10272 			 * invalidate all dynptr slices associated with the skb
10273 			 */
10274 			changes_data = true;
10275 
10276 		break;
10277 	}
10278 	case BPF_FUNC_per_cpu_ptr:
10279 	case BPF_FUNC_this_cpu_ptr:
10280 	{
10281 		struct bpf_reg_state *reg = &regs[BPF_REG_1];
10282 		const struct btf_type *type;
10283 
10284 		if (reg->type & MEM_RCU) {
10285 			type = btf_type_by_id(reg->btf, reg->btf_id);
10286 			if (!type || !btf_type_is_struct(type)) {
10287 				verbose(env, "Helper has invalid btf/btf_id in R1\n");
10288 				return -EFAULT;
10289 			}
10290 			returns_cpu_specific_alloc_ptr = true;
10291 			env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true;
10292 		}
10293 		break;
10294 	}
10295 	case BPF_FUNC_user_ringbuf_drain:
10296 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
10297 					set_user_ringbuf_callback_state);
10298 		break;
10299 	}
10300 
10301 	if (err)
10302 		return err;
10303 
10304 	/* reset caller saved regs */
10305 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
10306 		mark_reg_not_init(env, regs, caller_saved[i]);
10307 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10308 	}
10309 
10310 	/* helper call returns 64-bit value. */
10311 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10312 
10313 	/* update return register (already marked as written above) */
10314 	ret_type = fn->ret_type;
10315 	ret_flag = type_flag(ret_type);
10316 
10317 	switch (base_type(ret_type)) {
10318 	case RET_INTEGER:
10319 		/* sets type to SCALAR_VALUE */
10320 		mark_reg_unknown(env, regs, BPF_REG_0);
10321 		break;
10322 	case RET_VOID:
10323 		regs[BPF_REG_0].type = NOT_INIT;
10324 		break;
10325 	case RET_PTR_TO_MAP_VALUE:
10326 		/* There is no offset yet applied, variable or fixed */
10327 		mark_reg_known_zero(env, regs, BPF_REG_0);
10328 		/* remember map_ptr, so that check_map_access()
10329 		 * can check 'value_size' boundary of memory access
10330 		 * to map element returned from bpf_map_lookup_elem()
10331 		 */
10332 		if (meta.map_ptr == NULL) {
10333 			verbose(env,
10334 				"kernel subsystem misconfigured verifier\n");
10335 			return -EINVAL;
10336 		}
10337 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
10338 		regs[BPF_REG_0].map_uid = meta.map_uid;
10339 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
10340 		if (!type_may_be_null(ret_type) &&
10341 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
10342 			regs[BPF_REG_0].id = ++env->id_gen;
10343 		}
10344 		break;
10345 	case RET_PTR_TO_SOCKET:
10346 		mark_reg_known_zero(env, regs, BPF_REG_0);
10347 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
10348 		break;
10349 	case RET_PTR_TO_SOCK_COMMON:
10350 		mark_reg_known_zero(env, regs, BPF_REG_0);
10351 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
10352 		break;
10353 	case RET_PTR_TO_TCP_SOCK:
10354 		mark_reg_known_zero(env, regs, BPF_REG_0);
10355 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
10356 		break;
10357 	case RET_PTR_TO_MEM:
10358 		mark_reg_known_zero(env, regs, BPF_REG_0);
10359 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10360 		regs[BPF_REG_0].mem_size = meta.mem_size;
10361 		break;
10362 	case RET_PTR_TO_MEM_OR_BTF_ID:
10363 	{
10364 		const struct btf_type *t;
10365 
10366 		mark_reg_known_zero(env, regs, BPF_REG_0);
10367 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
10368 		if (!btf_type_is_struct(t)) {
10369 			u32 tsize;
10370 			const struct btf_type *ret;
10371 			const char *tname;
10372 
10373 			/* resolve the type size of ksym. */
10374 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
10375 			if (IS_ERR(ret)) {
10376 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
10377 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
10378 					tname, PTR_ERR(ret));
10379 				return -EINVAL;
10380 			}
10381 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10382 			regs[BPF_REG_0].mem_size = tsize;
10383 		} else {
10384 			if (returns_cpu_specific_alloc_ptr) {
10385 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU;
10386 			} else {
10387 				/* MEM_RDONLY may be carried from ret_flag, but it
10388 				 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
10389 				 * it will confuse the check of PTR_TO_BTF_ID in
10390 				 * check_mem_access().
10391 				 */
10392 				ret_flag &= ~MEM_RDONLY;
10393 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10394 			}
10395 
10396 			regs[BPF_REG_0].btf = meta.ret_btf;
10397 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
10398 		}
10399 		break;
10400 	}
10401 	case RET_PTR_TO_BTF_ID:
10402 	{
10403 		struct btf *ret_btf;
10404 		int ret_btf_id;
10405 
10406 		mark_reg_known_zero(env, regs, BPF_REG_0);
10407 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10408 		if (func_id == BPF_FUNC_kptr_xchg) {
10409 			ret_btf = meta.kptr_field->kptr.btf;
10410 			ret_btf_id = meta.kptr_field->kptr.btf_id;
10411 			if (!btf_is_kernel(ret_btf)) {
10412 				regs[BPF_REG_0].type |= MEM_ALLOC;
10413 				if (meta.kptr_field->type == BPF_KPTR_PERCPU)
10414 					regs[BPF_REG_0].type |= MEM_PERCPU;
10415 			}
10416 		} else {
10417 			if (fn->ret_btf_id == BPF_PTR_POISON) {
10418 				verbose(env, "verifier internal error:");
10419 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
10420 					func_id_name(func_id));
10421 				return -EINVAL;
10422 			}
10423 			ret_btf = btf_vmlinux;
10424 			ret_btf_id = *fn->ret_btf_id;
10425 		}
10426 		if (ret_btf_id == 0) {
10427 			verbose(env, "invalid return type %u of func %s#%d\n",
10428 				base_type(ret_type), func_id_name(func_id),
10429 				func_id);
10430 			return -EINVAL;
10431 		}
10432 		regs[BPF_REG_0].btf = ret_btf;
10433 		regs[BPF_REG_0].btf_id = ret_btf_id;
10434 		break;
10435 	}
10436 	default:
10437 		verbose(env, "unknown return type %u of func %s#%d\n",
10438 			base_type(ret_type), func_id_name(func_id), func_id);
10439 		return -EINVAL;
10440 	}
10441 
10442 	if (type_may_be_null(regs[BPF_REG_0].type))
10443 		regs[BPF_REG_0].id = ++env->id_gen;
10444 
10445 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
10446 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
10447 			func_id_name(func_id), func_id);
10448 		return -EFAULT;
10449 	}
10450 
10451 	if (is_dynptr_ref_function(func_id))
10452 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
10453 
10454 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
10455 		/* For release_reference() */
10456 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
10457 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
10458 		int id = acquire_reference_state(env, insn_idx);
10459 
10460 		if (id < 0)
10461 			return id;
10462 		/* For mark_ptr_or_null_reg() */
10463 		regs[BPF_REG_0].id = id;
10464 		/* For release_reference() */
10465 		regs[BPF_REG_0].ref_obj_id = id;
10466 	}
10467 
10468 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
10469 
10470 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
10471 	if (err)
10472 		return err;
10473 
10474 	if ((func_id == BPF_FUNC_get_stack ||
10475 	     func_id == BPF_FUNC_get_task_stack) &&
10476 	    !env->prog->has_callchain_buf) {
10477 		const char *err_str;
10478 
10479 #ifdef CONFIG_PERF_EVENTS
10480 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
10481 		err_str = "cannot get callchain buffer for func %s#%d\n";
10482 #else
10483 		err = -ENOTSUPP;
10484 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
10485 #endif
10486 		if (err) {
10487 			verbose(env, err_str, func_id_name(func_id), func_id);
10488 			return err;
10489 		}
10490 
10491 		env->prog->has_callchain_buf = true;
10492 	}
10493 
10494 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
10495 		env->prog->call_get_stack = true;
10496 
10497 	if (func_id == BPF_FUNC_get_func_ip) {
10498 		if (check_get_func_ip(env))
10499 			return -ENOTSUPP;
10500 		env->prog->call_get_func_ip = true;
10501 	}
10502 
10503 	if (changes_data)
10504 		clear_all_pkt_pointers(env);
10505 	return 0;
10506 }
10507 
10508 /* mark_btf_func_reg_size() is used when the reg size is determined by
10509  * the BTF func_proto's return value size and argument.
10510  */
10511 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
10512 				   size_t reg_size)
10513 {
10514 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
10515 
10516 	if (regno == BPF_REG_0) {
10517 		/* Function return value */
10518 		reg->live |= REG_LIVE_WRITTEN;
10519 		reg->subreg_def = reg_size == sizeof(u64) ?
10520 			DEF_NOT_SUBREG : env->insn_idx + 1;
10521 	} else {
10522 		/* Function argument */
10523 		if (reg_size == sizeof(u64)) {
10524 			mark_insn_zext(env, reg);
10525 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
10526 		} else {
10527 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
10528 		}
10529 	}
10530 }
10531 
10532 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10533 {
10534 	return meta->kfunc_flags & KF_ACQUIRE;
10535 }
10536 
10537 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10538 {
10539 	return meta->kfunc_flags & KF_RELEASE;
10540 }
10541 
10542 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10543 {
10544 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10545 }
10546 
10547 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10548 {
10549 	return meta->kfunc_flags & KF_SLEEPABLE;
10550 }
10551 
10552 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10553 {
10554 	return meta->kfunc_flags & KF_DESTRUCTIVE;
10555 }
10556 
10557 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10558 {
10559 	return meta->kfunc_flags & KF_RCU;
10560 }
10561 
10562 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta)
10563 {
10564 	return meta->kfunc_flags & KF_RCU_PROTECTED;
10565 }
10566 
10567 static bool __kfunc_param_match_suffix(const struct btf *btf,
10568 				       const struct btf_param *arg,
10569 				       const char *suffix)
10570 {
10571 	int suffix_len = strlen(suffix), len;
10572 	const char *param_name;
10573 
10574 	/* In the future, this can be ported to use BTF tagging */
10575 	param_name = btf_name_by_offset(btf, arg->name_off);
10576 	if (str_is_empty(param_name))
10577 		return false;
10578 	len = strlen(param_name);
10579 	if (len < suffix_len)
10580 		return false;
10581 	param_name += len - suffix_len;
10582 	return !strncmp(param_name, suffix, suffix_len);
10583 }
10584 
10585 static bool is_kfunc_arg_mem_size(const struct btf *btf,
10586 				  const struct btf_param *arg,
10587 				  const struct bpf_reg_state *reg)
10588 {
10589 	const struct btf_type *t;
10590 
10591 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10592 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10593 		return false;
10594 
10595 	return __kfunc_param_match_suffix(btf, arg, "__sz");
10596 }
10597 
10598 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
10599 					const struct btf_param *arg,
10600 					const struct bpf_reg_state *reg)
10601 {
10602 	const struct btf_type *t;
10603 
10604 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10605 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10606 		return false;
10607 
10608 	return __kfunc_param_match_suffix(btf, arg, "__szk");
10609 }
10610 
10611 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
10612 {
10613 	return __kfunc_param_match_suffix(btf, arg, "__opt");
10614 }
10615 
10616 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
10617 {
10618 	return __kfunc_param_match_suffix(btf, arg, "__k");
10619 }
10620 
10621 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
10622 {
10623 	return __kfunc_param_match_suffix(btf, arg, "__ign");
10624 }
10625 
10626 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
10627 {
10628 	return __kfunc_param_match_suffix(btf, arg, "__alloc");
10629 }
10630 
10631 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
10632 {
10633 	return __kfunc_param_match_suffix(btf, arg, "__uninit");
10634 }
10635 
10636 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
10637 {
10638 	return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr");
10639 }
10640 
10641 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg)
10642 {
10643 	return __kfunc_param_match_suffix(btf, arg, "__nullable");
10644 }
10645 
10646 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
10647 					  const struct btf_param *arg,
10648 					  const char *name)
10649 {
10650 	int len, target_len = strlen(name);
10651 	const char *param_name;
10652 
10653 	param_name = btf_name_by_offset(btf, arg->name_off);
10654 	if (str_is_empty(param_name))
10655 		return false;
10656 	len = strlen(param_name);
10657 	if (len != target_len)
10658 		return false;
10659 	if (strcmp(param_name, name))
10660 		return false;
10661 
10662 	return true;
10663 }
10664 
10665 enum {
10666 	KF_ARG_DYNPTR_ID,
10667 	KF_ARG_LIST_HEAD_ID,
10668 	KF_ARG_LIST_NODE_ID,
10669 	KF_ARG_RB_ROOT_ID,
10670 	KF_ARG_RB_NODE_ID,
10671 };
10672 
10673 BTF_ID_LIST(kf_arg_btf_ids)
10674 BTF_ID(struct, bpf_dynptr_kern)
10675 BTF_ID(struct, bpf_list_head)
10676 BTF_ID(struct, bpf_list_node)
10677 BTF_ID(struct, bpf_rb_root)
10678 BTF_ID(struct, bpf_rb_node)
10679 
10680 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
10681 				    const struct btf_param *arg, int type)
10682 {
10683 	const struct btf_type *t;
10684 	u32 res_id;
10685 
10686 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10687 	if (!t)
10688 		return false;
10689 	if (!btf_type_is_ptr(t))
10690 		return false;
10691 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
10692 	if (!t)
10693 		return false;
10694 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
10695 }
10696 
10697 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
10698 {
10699 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
10700 }
10701 
10702 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
10703 {
10704 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
10705 }
10706 
10707 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
10708 {
10709 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
10710 }
10711 
10712 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
10713 {
10714 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
10715 }
10716 
10717 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
10718 {
10719 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
10720 }
10721 
10722 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
10723 				  const struct btf_param *arg)
10724 {
10725 	const struct btf_type *t;
10726 
10727 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
10728 	if (!t)
10729 		return false;
10730 
10731 	return true;
10732 }
10733 
10734 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
10735 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
10736 					const struct btf *btf,
10737 					const struct btf_type *t, int rec)
10738 {
10739 	const struct btf_type *member_type;
10740 	const struct btf_member *member;
10741 	u32 i;
10742 
10743 	if (!btf_type_is_struct(t))
10744 		return false;
10745 
10746 	for_each_member(i, t, member) {
10747 		const struct btf_array *array;
10748 
10749 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
10750 		if (btf_type_is_struct(member_type)) {
10751 			if (rec >= 3) {
10752 				verbose(env, "max struct nesting depth exceeded\n");
10753 				return false;
10754 			}
10755 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
10756 				return false;
10757 			continue;
10758 		}
10759 		if (btf_type_is_array(member_type)) {
10760 			array = btf_array(member_type);
10761 			if (!array->nelems)
10762 				return false;
10763 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
10764 			if (!btf_type_is_scalar(member_type))
10765 				return false;
10766 			continue;
10767 		}
10768 		if (!btf_type_is_scalar(member_type))
10769 			return false;
10770 	}
10771 	return true;
10772 }
10773 
10774 enum kfunc_ptr_arg_type {
10775 	KF_ARG_PTR_TO_CTX,
10776 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
10777 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
10778 	KF_ARG_PTR_TO_DYNPTR,
10779 	KF_ARG_PTR_TO_ITER,
10780 	KF_ARG_PTR_TO_LIST_HEAD,
10781 	KF_ARG_PTR_TO_LIST_NODE,
10782 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
10783 	KF_ARG_PTR_TO_MEM,
10784 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
10785 	KF_ARG_PTR_TO_CALLBACK,
10786 	KF_ARG_PTR_TO_RB_ROOT,
10787 	KF_ARG_PTR_TO_RB_NODE,
10788 	KF_ARG_PTR_TO_NULL,
10789 };
10790 
10791 enum special_kfunc_type {
10792 	KF_bpf_obj_new_impl,
10793 	KF_bpf_obj_drop_impl,
10794 	KF_bpf_refcount_acquire_impl,
10795 	KF_bpf_list_push_front_impl,
10796 	KF_bpf_list_push_back_impl,
10797 	KF_bpf_list_pop_front,
10798 	KF_bpf_list_pop_back,
10799 	KF_bpf_cast_to_kern_ctx,
10800 	KF_bpf_rdonly_cast,
10801 	KF_bpf_rcu_read_lock,
10802 	KF_bpf_rcu_read_unlock,
10803 	KF_bpf_rbtree_remove,
10804 	KF_bpf_rbtree_add_impl,
10805 	KF_bpf_rbtree_first,
10806 	KF_bpf_dynptr_from_skb,
10807 	KF_bpf_dynptr_from_xdp,
10808 	KF_bpf_dynptr_slice,
10809 	KF_bpf_dynptr_slice_rdwr,
10810 	KF_bpf_dynptr_clone,
10811 	KF_bpf_percpu_obj_new_impl,
10812 	KF_bpf_percpu_obj_drop_impl,
10813 	KF_bpf_throw,
10814 	KF_bpf_iter_css_task_new,
10815 };
10816 
10817 BTF_SET_START(special_kfunc_set)
10818 BTF_ID(func, bpf_obj_new_impl)
10819 BTF_ID(func, bpf_obj_drop_impl)
10820 BTF_ID(func, bpf_refcount_acquire_impl)
10821 BTF_ID(func, bpf_list_push_front_impl)
10822 BTF_ID(func, bpf_list_push_back_impl)
10823 BTF_ID(func, bpf_list_pop_front)
10824 BTF_ID(func, bpf_list_pop_back)
10825 BTF_ID(func, bpf_cast_to_kern_ctx)
10826 BTF_ID(func, bpf_rdonly_cast)
10827 BTF_ID(func, bpf_rbtree_remove)
10828 BTF_ID(func, bpf_rbtree_add_impl)
10829 BTF_ID(func, bpf_rbtree_first)
10830 BTF_ID(func, bpf_dynptr_from_skb)
10831 BTF_ID(func, bpf_dynptr_from_xdp)
10832 BTF_ID(func, bpf_dynptr_slice)
10833 BTF_ID(func, bpf_dynptr_slice_rdwr)
10834 BTF_ID(func, bpf_dynptr_clone)
10835 BTF_ID(func, bpf_percpu_obj_new_impl)
10836 BTF_ID(func, bpf_percpu_obj_drop_impl)
10837 BTF_ID(func, bpf_throw)
10838 BTF_ID(func, bpf_iter_css_task_new)
10839 BTF_SET_END(special_kfunc_set)
10840 
10841 BTF_ID_LIST(special_kfunc_list)
10842 BTF_ID(func, bpf_obj_new_impl)
10843 BTF_ID(func, bpf_obj_drop_impl)
10844 BTF_ID(func, bpf_refcount_acquire_impl)
10845 BTF_ID(func, bpf_list_push_front_impl)
10846 BTF_ID(func, bpf_list_push_back_impl)
10847 BTF_ID(func, bpf_list_pop_front)
10848 BTF_ID(func, bpf_list_pop_back)
10849 BTF_ID(func, bpf_cast_to_kern_ctx)
10850 BTF_ID(func, bpf_rdonly_cast)
10851 BTF_ID(func, bpf_rcu_read_lock)
10852 BTF_ID(func, bpf_rcu_read_unlock)
10853 BTF_ID(func, bpf_rbtree_remove)
10854 BTF_ID(func, bpf_rbtree_add_impl)
10855 BTF_ID(func, bpf_rbtree_first)
10856 BTF_ID(func, bpf_dynptr_from_skb)
10857 BTF_ID(func, bpf_dynptr_from_xdp)
10858 BTF_ID(func, bpf_dynptr_slice)
10859 BTF_ID(func, bpf_dynptr_slice_rdwr)
10860 BTF_ID(func, bpf_dynptr_clone)
10861 BTF_ID(func, bpf_percpu_obj_new_impl)
10862 BTF_ID(func, bpf_percpu_obj_drop_impl)
10863 BTF_ID(func, bpf_throw)
10864 BTF_ID(func, bpf_iter_css_task_new)
10865 
10866 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
10867 {
10868 	if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
10869 	    meta->arg_owning_ref) {
10870 		return false;
10871 	}
10872 
10873 	return meta->kfunc_flags & KF_RET_NULL;
10874 }
10875 
10876 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
10877 {
10878 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
10879 }
10880 
10881 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
10882 {
10883 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
10884 }
10885 
10886 static enum kfunc_ptr_arg_type
10887 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
10888 		       struct bpf_kfunc_call_arg_meta *meta,
10889 		       const struct btf_type *t, const struct btf_type *ref_t,
10890 		       const char *ref_tname, const struct btf_param *args,
10891 		       int argno, int nargs)
10892 {
10893 	u32 regno = argno + 1;
10894 	struct bpf_reg_state *regs = cur_regs(env);
10895 	struct bpf_reg_state *reg = &regs[regno];
10896 	bool arg_mem_size = false;
10897 
10898 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
10899 		return KF_ARG_PTR_TO_CTX;
10900 
10901 	/* In this function, we verify the kfunc's BTF as per the argument type,
10902 	 * leaving the rest of the verification with respect to the register
10903 	 * type to our caller. When a set of conditions hold in the BTF type of
10904 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
10905 	 */
10906 	if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
10907 		return KF_ARG_PTR_TO_CTX;
10908 
10909 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
10910 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
10911 
10912 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
10913 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
10914 
10915 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
10916 		return KF_ARG_PTR_TO_DYNPTR;
10917 
10918 	if (is_kfunc_arg_iter(meta, argno))
10919 		return KF_ARG_PTR_TO_ITER;
10920 
10921 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
10922 		return KF_ARG_PTR_TO_LIST_HEAD;
10923 
10924 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
10925 		return KF_ARG_PTR_TO_LIST_NODE;
10926 
10927 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
10928 		return KF_ARG_PTR_TO_RB_ROOT;
10929 
10930 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
10931 		return KF_ARG_PTR_TO_RB_NODE;
10932 
10933 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
10934 		if (!btf_type_is_struct(ref_t)) {
10935 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
10936 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
10937 			return -EINVAL;
10938 		}
10939 		return KF_ARG_PTR_TO_BTF_ID;
10940 	}
10941 
10942 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
10943 		return KF_ARG_PTR_TO_CALLBACK;
10944 
10945 	if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg))
10946 		return KF_ARG_PTR_TO_NULL;
10947 
10948 	if (argno + 1 < nargs &&
10949 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
10950 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
10951 		arg_mem_size = true;
10952 
10953 	/* This is the catch all argument type of register types supported by
10954 	 * check_helper_mem_access. However, we only allow when argument type is
10955 	 * pointer to scalar, or struct composed (recursively) of scalars. When
10956 	 * arg_mem_size is true, the pointer can be void *.
10957 	 */
10958 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
10959 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
10960 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
10961 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
10962 		return -EINVAL;
10963 	}
10964 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
10965 }
10966 
10967 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
10968 					struct bpf_reg_state *reg,
10969 					const struct btf_type *ref_t,
10970 					const char *ref_tname, u32 ref_id,
10971 					struct bpf_kfunc_call_arg_meta *meta,
10972 					int argno)
10973 {
10974 	const struct btf_type *reg_ref_t;
10975 	bool strict_type_match = false;
10976 	const struct btf *reg_btf;
10977 	const char *reg_ref_tname;
10978 	u32 reg_ref_id;
10979 
10980 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
10981 		reg_btf = reg->btf;
10982 		reg_ref_id = reg->btf_id;
10983 	} else {
10984 		reg_btf = btf_vmlinux;
10985 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
10986 	}
10987 
10988 	/* Enforce strict type matching for calls to kfuncs that are acquiring
10989 	 * or releasing a reference, or are no-cast aliases. We do _not_
10990 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
10991 	 * as we want to enable BPF programs to pass types that are bitwise
10992 	 * equivalent without forcing them to explicitly cast with something
10993 	 * like bpf_cast_to_kern_ctx().
10994 	 *
10995 	 * For example, say we had a type like the following:
10996 	 *
10997 	 * struct bpf_cpumask {
10998 	 *	cpumask_t cpumask;
10999 	 *	refcount_t usage;
11000 	 * };
11001 	 *
11002 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
11003 	 * to a struct cpumask, so it would be safe to pass a struct
11004 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
11005 	 *
11006 	 * The philosophy here is similar to how we allow scalars of different
11007 	 * types to be passed to kfuncs as long as the size is the same. The
11008 	 * only difference here is that we're simply allowing
11009 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
11010 	 * resolve types.
11011 	 */
11012 	if (is_kfunc_acquire(meta) ||
11013 	    (is_kfunc_release(meta) && reg->ref_obj_id) ||
11014 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
11015 		strict_type_match = true;
11016 
11017 	WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
11018 
11019 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
11020 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
11021 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
11022 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
11023 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
11024 			btf_type_str(reg_ref_t), reg_ref_tname);
11025 		return -EINVAL;
11026 	}
11027 	return 0;
11028 }
11029 
11030 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11031 {
11032 	struct bpf_verifier_state *state = env->cur_state;
11033 	struct btf_record *rec = reg_btf_record(reg);
11034 
11035 	if (!state->active_lock.ptr) {
11036 		verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
11037 		return -EFAULT;
11038 	}
11039 
11040 	if (type_flag(reg->type) & NON_OWN_REF) {
11041 		verbose(env, "verifier internal error: NON_OWN_REF already set\n");
11042 		return -EFAULT;
11043 	}
11044 
11045 	reg->type |= NON_OWN_REF;
11046 	if (rec->refcount_off >= 0)
11047 		reg->type |= MEM_RCU;
11048 
11049 	return 0;
11050 }
11051 
11052 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
11053 {
11054 	struct bpf_func_state *state, *unused;
11055 	struct bpf_reg_state *reg;
11056 	int i;
11057 
11058 	state = cur_func(env);
11059 
11060 	if (!ref_obj_id) {
11061 		verbose(env, "verifier internal error: ref_obj_id is zero for "
11062 			     "owning -> non-owning conversion\n");
11063 		return -EFAULT;
11064 	}
11065 
11066 	for (i = 0; i < state->acquired_refs; i++) {
11067 		if (state->refs[i].id != ref_obj_id)
11068 			continue;
11069 
11070 		/* Clear ref_obj_id here so release_reference doesn't clobber
11071 		 * the whole reg
11072 		 */
11073 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
11074 			if (reg->ref_obj_id == ref_obj_id) {
11075 				reg->ref_obj_id = 0;
11076 				ref_set_non_owning(env, reg);
11077 			}
11078 		}));
11079 		return 0;
11080 	}
11081 
11082 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
11083 	return -EFAULT;
11084 }
11085 
11086 /* Implementation details:
11087  *
11088  * Each register points to some region of memory, which we define as an
11089  * allocation. Each allocation may embed a bpf_spin_lock which protects any
11090  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
11091  * allocation. The lock and the data it protects are colocated in the same
11092  * memory region.
11093  *
11094  * Hence, everytime a register holds a pointer value pointing to such
11095  * allocation, the verifier preserves a unique reg->id for it.
11096  *
11097  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
11098  * bpf_spin_lock is called.
11099  *
11100  * To enable this, lock state in the verifier captures two values:
11101  *	active_lock.ptr = Register's type specific pointer
11102  *	active_lock.id  = A unique ID for each register pointer value
11103  *
11104  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
11105  * supported register types.
11106  *
11107  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
11108  * allocated objects is the reg->btf pointer.
11109  *
11110  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
11111  * can establish the provenance of the map value statically for each distinct
11112  * lookup into such maps. They always contain a single map value hence unique
11113  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
11114  *
11115  * So, in case of global variables, they use array maps with max_entries = 1,
11116  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
11117  * into the same map value as max_entries is 1, as described above).
11118  *
11119  * In case of inner map lookups, the inner map pointer has same map_ptr as the
11120  * outer map pointer (in verifier context), but each lookup into an inner map
11121  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
11122  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
11123  * will get different reg->id assigned to each lookup, hence different
11124  * active_lock.id.
11125  *
11126  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
11127  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
11128  * returned from bpf_obj_new. Each allocation receives a new reg->id.
11129  */
11130 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11131 {
11132 	void *ptr;
11133 	u32 id;
11134 
11135 	switch ((int)reg->type) {
11136 	case PTR_TO_MAP_VALUE:
11137 		ptr = reg->map_ptr;
11138 		break;
11139 	case PTR_TO_BTF_ID | MEM_ALLOC:
11140 		ptr = reg->btf;
11141 		break;
11142 	default:
11143 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
11144 		return -EFAULT;
11145 	}
11146 	id = reg->id;
11147 
11148 	if (!env->cur_state->active_lock.ptr)
11149 		return -EINVAL;
11150 	if (env->cur_state->active_lock.ptr != ptr ||
11151 	    env->cur_state->active_lock.id != id) {
11152 		verbose(env, "held lock and object are not in the same allocation\n");
11153 		return -EINVAL;
11154 	}
11155 	return 0;
11156 }
11157 
11158 static bool is_bpf_list_api_kfunc(u32 btf_id)
11159 {
11160 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11161 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11162 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11163 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
11164 }
11165 
11166 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
11167 {
11168 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
11169 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11170 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first];
11171 }
11172 
11173 static bool is_bpf_graph_api_kfunc(u32 btf_id)
11174 {
11175 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
11176 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
11177 }
11178 
11179 static bool is_callback_calling_kfunc(u32 btf_id)
11180 {
11181 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
11182 }
11183 
11184 static bool is_bpf_throw_kfunc(struct bpf_insn *insn)
11185 {
11186 	return bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
11187 	       insn->imm == special_kfunc_list[KF_bpf_throw];
11188 }
11189 
11190 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
11191 {
11192 	return is_bpf_rbtree_api_kfunc(btf_id);
11193 }
11194 
11195 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
11196 					  enum btf_field_type head_field_type,
11197 					  u32 kfunc_btf_id)
11198 {
11199 	bool ret;
11200 
11201 	switch (head_field_type) {
11202 	case BPF_LIST_HEAD:
11203 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
11204 		break;
11205 	case BPF_RB_ROOT:
11206 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
11207 		break;
11208 	default:
11209 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
11210 			btf_field_type_name(head_field_type));
11211 		return false;
11212 	}
11213 
11214 	if (!ret)
11215 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
11216 			btf_field_type_name(head_field_type));
11217 	return ret;
11218 }
11219 
11220 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
11221 					  enum btf_field_type node_field_type,
11222 					  u32 kfunc_btf_id)
11223 {
11224 	bool ret;
11225 
11226 	switch (node_field_type) {
11227 	case BPF_LIST_NODE:
11228 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11229 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
11230 		break;
11231 	case BPF_RB_NODE:
11232 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11233 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
11234 		break;
11235 	default:
11236 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
11237 			btf_field_type_name(node_field_type));
11238 		return false;
11239 	}
11240 
11241 	if (!ret)
11242 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
11243 			btf_field_type_name(node_field_type));
11244 	return ret;
11245 }
11246 
11247 static int
11248 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
11249 				   struct bpf_reg_state *reg, u32 regno,
11250 				   struct bpf_kfunc_call_arg_meta *meta,
11251 				   enum btf_field_type head_field_type,
11252 				   struct btf_field **head_field)
11253 {
11254 	const char *head_type_name;
11255 	struct btf_field *field;
11256 	struct btf_record *rec;
11257 	u32 head_off;
11258 
11259 	if (meta->btf != btf_vmlinux) {
11260 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11261 		return -EFAULT;
11262 	}
11263 
11264 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
11265 		return -EFAULT;
11266 
11267 	head_type_name = btf_field_type_name(head_field_type);
11268 	if (!tnum_is_const(reg->var_off)) {
11269 		verbose(env,
11270 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11271 			regno, head_type_name);
11272 		return -EINVAL;
11273 	}
11274 
11275 	rec = reg_btf_record(reg);
11276 	head_off = reg->off + reg->var_off.value;
11277 	field = btf_record_find(rec, head_off, head_field_type);
11278 	if (!field) {
11279 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
11280 		return -EINVAL;
11281 	}
11282 
11283 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
11284 	if (check_reg_allocation_locked(env, reg)) {
11285 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
11286 			rec->spin_lock_off, head_type_name);
11287 		return -EINVAL;
11288 	}
11289 
11290 	if (*head_field) {
11291 		verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
11292 		return -EFAULT;
11293 	}
11294 	*head_field = field;
11295 	return 0;
11296 }
11297 
11298 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
11299 					   struct bpf_reg_state *reg, u32 regno,
11300 					   struct bpf_kfunc_call_arg_meta *meta)
11301 {
11302 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
11303 							  &meta->arg_list_head.field);
11304 }
11305 
11306 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
11307 					     struct bpf_reg_state *reg, u32 regno,
11308 					     struct bpf_kfunc_call_arg_meta *meta)
11309 {
11310 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
11311 							  &meta->arg_rbtree_root.field);
11312 }
11313 
11314 static int
11315 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
11316 				   struct bpf_reg_state *reg, u32 regno,
11317 				   struct bpf_kfunc_call_arg_meta *meta,
11318 				   enum btf_field_type head_field_type,
11319 				   enum btf_field_type node_field_type,
11320 				   struct btf_field **node_field)
11321 {
11322 	const char *node_type_name;
11323 	const struct btf_type *et, *t;
11324 	struct btf_field *field;
11325 	u32 node_off;
11326 
11327 	if (meta->btf != btf_vmlinux) {
11328 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11329 		return -EFAULT;
11330 	}
11331 
11332 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
11333 		return -EFAULT;
11334 
11335 	node_type_name = btf_field_type_name(node_field_type);
11336 	if (!tnum_is_const(reg->var_off)) {
11337 		verbose(env,
11338 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11339 			regno, node_type_name);
11340 		return -EINVAL;
11341 	}
11342 
11343 	node_off = reg->off + reg->var_off.value;
11344 	field = reg_find_field_offset(reg, node_off, node_field_type);
11345 	if (!field || field->offset != node_off) {
11346 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
11347 		return -EINVAL;
11348 	}
11349 
11350 	field = *node_field;
11351 
11352 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
11353 	t = btf_type_by_id(reg->btf, reg->btf_id);
11354 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
11355 				  field->graph_root.value_btf_id, true)) {
11356 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
11357 			"in struct %s, but arg is at offset=%d in struct %s\n",
11358 			btf_field_type_name(head_field_type),
11359 			btf_field_type_name(node_field_type),
11360 			field->graph_root.node_offset,
11361 			btf_name_by_offset(field->graph_root.btf, et->name_off),
11362 			node_off, btf_name_by_offset(reg->btf, t->name_off));
11363 		return -EINVAL;
11364 	}
11365 	meta->arg_btf = reg->btf;
11366 	meta->arg_btf_id = reg->btf_id;
11367 
11368 	if (node_off != field->graph_root.node_offset) {
11369 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
11370 			node_off, btf_field_type_name(node_field_type),
11371 			field->graph_root.node_offset,
11372 			btf_name_by_offset(field->graph_root.btf, et->name_off));
11373 		return -EINVAL;
11374 	}
11375 
11376 	return 0;
11377 }
11378 
11379 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
11380 					   struct bpf_reg_state *reg, u32 regno,
11381 					   struct bpf_kfunc_call_arg_meta *meta)
11382 {
11383 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11384 						  BPF_LIST_HEAD, BPF_LIST_NODE,
11385 						  &meta->arg_list_head.field);
11386 }
11387 
11388 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
11389 					     struct bpf_reg_state *reg, u32 regno,
11390 					     struct bpf_kfunc_call_arg_meta *meta)
11391 {
11392 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11393 						  BPF_RB_ROOT, BPF_RB_NODE,
11394 						  &meta->arg_rbtree_root.field);
11395 }
11396 
11397 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env)
11398 {
11399 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
11400 
11401 	switch (prog_type) {
11402 	case BPF_PROG_TYPE_LSM:
11403 		return true;
11404 	case BPF_TRACE_ITER:
11405 		return env->prog->aux->sleepable;
11406 	default:
11407 		return false;
11408 	}
11409 }
11410 
11411 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
11412 			    int insn_idx)
11413 {
11414 	const char *func_name = meta->func_name, *ref_tname;
11415 	const struct btf *btf = meta->btf;
11416 	const struct btf_param *args;
11417 	struct btf_record *rec;
11418 	u32 i, nargs;
11419 	int ret;
11420 
11421 	args = (const struct btf_param *)(meta->func_proto + 1);
11422 	nargs = btf_type_vlen(meta->func_proto);
11423 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
11424 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
11425 			MAX_BPF_FUNC_REG_ARGS);
11426 		return -EINVAL;
11427 	}
11428 
11429 	/* Check that BTF function arguments match actual types that the
11430 	 * verifier sees.
11431 	 */
11432 	for (i = 0; i < nargs; i++) {
11433 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
11434 		const struct btf_type *t, *ref_t, *resolve_ret;
11435 		enum bpf_arg_type arg_type = ARG_DONTCARE;
11436 		u32 regno = i + 1, ref_id, type_size;
11437 		bool is_ret_buf_sz = false;
11438 		int kf_arg_type;
11439 
11440 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
11441 
11442 		if (is_kfunc_arg_ignore(btf, &args[i]))
11443 			continue;
11444 
11445 		if (btf_type_is_scalar(t)) {
11446 			if (reg->type != SCALAR_VALUE) {
11447 				verbose(env, "R%d is not a scalar\n", regno);
11448 				return -EINVAL;
11449 			}
11450 
11451 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
11452 				if (meta->arg_constant.found) {
11453 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11454 					return -EFAULT;
11455 				}
11456 				if (!tnum_is_const(reg->var_off)) {
11457 					verbose(env, "R%d must be a known constant\n", regno);
11458 					return -EINVAL;
11459 				}
11460 				ret = mark_chain_precision(env, regno);
11461 				if (ret < 0)
11462 					return ret;
11463 				meta->arg_constant.found = true;
11464 				meta->arg_constant.value = reg->var_off.value;
11465 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
11466 				meta->r0_rdonly = true;
11467 				is_ret_buf_sz = true;
11468 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
11469 				is_ret_buf_sz = true;
11470 			}
11471 
11472 			if (is_ret_buf_sz) {
11473 				if (meta->r0_size) {
11474 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
11475 					return -EINVAL;
11476 				}
11477 
11478 				if (!tnum_is_const(reg->var_off)) {
11479 					verbose(env, "R%d is not a const\n", regno);
11480 					return -EINVAL;
11481 				}
11482 
11483 				meta->r0_size = reg->var_off.value;
11484 				ret = mark_chain_precision(env, regno);
11485 				if (ret)
11486 					return ret;
11487 			}
11488 			continue;
11489 		}
11490 
11491 		if (!btf_type_is_ptr(t)) {
11492 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
11493 			return -EINVAL;
11494 		}
11495 
11496 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
11497 		    (register_is_null(reg) || type_may_be_null(reg->type)) &&
11498 			!is_kfunc_arg_nullable(meta->btf, &args[i])) {
11499 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
11500 			return -EACCES;
11501 		}
11502 
11503 		if (reg->ref_obj_id) {
11504 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
11505 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
11506 					regno, reg->ref_obj_id,
11507 					meta->ref_obj_id);
11508 				return -EFAULT;
11509 			}
11510 			meta->ref_obj_id = reg->ref_obj_id;
11511 			if (is_kfunc_release(meta))
11512 				meta->release_regno = regno;
11513 		}
11514 
11515 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
11516 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
11517 
11518 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
11519 		if (kf_arg_type < 0)
11520 			return kf_arg_type;
11521 
11522 		switch (kf_arg_type) {
11523 		case KF_ARG_PTR_TO_NULL:
11524 			continue;
11525 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11526 		case KF_ARG_PTR_TO_BTF_ID:
11527 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
11528 				break;
11529 
11530 			if (!is_trusted_reg(reg)) {
11531 				if (!is_kfunc_rcu(meta)) {
11532 					verbose(env, "R%d must be referenced or trusted\n", regno);
11533 					return -EINVAL;
11534 				}
11535 				if (!is_rcu_reg(reg)) {
11536 					verbose(env, "R%d must be a rcu pointer\n", regno);
11537 					return -EINVAL;
11538 				}
11539 			}
11540 
11541 			fallthrough;
11542 		case KF_ARG_PTR_TO_CTX:
11543 			/* Trusted arguments have the same offset checks as release arguments */
11544 			arg_type |= OBJ_RELEASE;
11545 			break;
11546 		case KF_ARG_PTR_TO_DYNPTR:
11547 		case KF_ARG_PTR_TO_ITER:
11548 		case KF_ARG_PTR_TO_LIST_HEAD:
11549 		case KF_ARG_PTR_TO_LIST_NODE:
11550 		case KF_ARG_PTR_TO_RB_ROOT:
11551 		case KF_ARG_PTR_TO_RB_NODE:
11552 		case KF_ARG_PTR_TO_MEM:
11553 		case KF_ARG_PTR_TO_MEM_SIZE:
11554 		case KF_ARG_PTR_TO_CALLBACK:
11555 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11556 			/* Trusted by default */
11557 			break;
11558 		default:
11559 			WARN_ON_ONCE(1);
11560 			return -EFAULT;
11561 		}
11562 
11563 		if (is_kfunc_release(meta) && reg->ref_obj_id)
11564 			arg_type |= OBJ_RELEASE;
11565 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
11566 		if (ret < 0)
11567 			return ret;
11568 
11569 		switch (kf_arg_type) {
11570 		case KF_ARG_PTR_TO_CTX:
11571 			if (reg->type != PTR_TO_CTX) {
11572 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
11573 				return -EINVAL;
11574 			}
11575 
11576 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11577 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
11578 				if (ret < 0)
11579 					return -EINVAL;
11580 				meta->ret_btf_id  = ret;
11581 			}
11582 			break;
11583 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11584 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
11585 				if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) {
11586 					verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i);
11587 					return -EINVAL;
11588 				}
11589 			} else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) {
11590 				if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
11591 					verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i);
11592 					return -EINVAL;
11593 				}
11594 			} else {
11595 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11596 				return -EINVAL;
11597 			}
11598 			if (!reg->ref_obj_id) {
11599 				verbose(env, "allocated object must be referenced\n");
11600 				return -EINVAL;
11601 			}
11602 			if (meta->btf == btf_vmlinux) {
11603 				meta->arg_btf = reg->btf;
11604 				meta->arg_btf_id = reg->btf_id;
11605 			}
11606 			break;
11607 		case KF_ARG_PTR_TO_DYNPTR:
11608 		{
11609 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
11610 			int clone_ref_obj_id = 0;
11611 
11612 			if (reg->type != PTR_TO_STACK &&
11613 			    reg->type != CONST_PTR_TO_DYNPTR) {
11614 				verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
11615 				return -EINVAL;
11616 			}
11617 
11618 			if (reg->type == CONST_PTR_TO_DYNPTR)
11619 				dynptr_arg_type |= MEM_RDONLY;
11620 
11621 			if (is_kfunc_arg_uninit(btf, &args[i]))
11622 				dynptr_arg_type |= MEM_UNINIT;
11623 
11624 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
11625 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
11626 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
11627 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
11628 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
11629 				   (dynptr_arg_type & MEM_UNINIT)) {
11630 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
11631 
11632 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
11633 					verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
11634 					return -EFAULT;
11635 				}
11636 
11637 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
11638 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
11639 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
11640 					verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
11641 					return -EFAULT;
11642 				}
11643 			}
11644 
11645 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
11646 			if (ret < 0)
11647 				return ret;
11648 
11649 			if (!(dynptr_arg_type & MEM_UNINIT)) {
11650 				int id = dynptr_id(env, reg);
11651 
11652 				if (id < 0) {
11653 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
11654 					return id;
11655 				}
11656 				meta->initialized_dynptr.id = id;
11657 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
11658 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
11659 			}
11660 
11661 			break;
11662 		}
11663 		case KF_ARG_PTR_TO_ITER:
11664 			if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) {
11665 				if (!check_css_task_iter_allowlist(env)) {
11666 					verbose(env, "css_task_iter is only allowed in bpf_lsm and bpf iter-s\n");
11667 					return -EINVAL;
11668 				}
11669 			}
11670 			ret = process_iter_arg(env, regno, insn_idx, meta);
11671 			if (ret < 0)
11672 				return ret;
11673 			break;
11674 		case KF_ARG_PTR_TO_LIST_HEAD:
11675 			if (reg->type != PTR_TO_MAP_VALUE &&
11676 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11677 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11678 				return -EINVAL;
11679 			}
11680 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11681 				verbose(env, "allocated object must be referenced\n");
11682 				return -EINVAL;
11683 			}
11684 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
11685 			if (ret < 0)
11686 				return ret;
11687 			break;
11688 		case KF_ARG_PTR_TO_RB_ROOT:
11689 			if (reg->type != PTR_TO_MAP_VALUE &&
11690 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11691 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11692 				return -EINVAL;
11693 			}
11694 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11695 				verbose(env, "allocated object must be referenced\n");
11696 				return -EINVAL;
11697 			}
11698 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
11699 			if (ret < 0)
11700 				return ret;
11701 			break;
11702 		case KF_ARG_PTR_TO_LIST_NODE:
11703 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11704 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11705 				return -EINVAL;
11706 			}
11707 			if (!reg->ref_obj_id) {
11708 				verbose(env, "allocated object must be referenced\n");
11709 				return -EINVAL;
11710 			}
11711 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
11712 			if (ret < 0)
11713 				return ret;
11714 			break;
11715 		case KF_ARG_PTR_TO_RB_NODE:
11716 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
11717 				if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
11718 					verbose(env, "rbtree_remove node input must be non-owning ref\n");
11719 					return -EINVAL;
11720 				}
11721 				if (in_rbtree_lock_required_cb(env)) {
11722 					verbose(env, "rbtree_remove not allowed in rbtree cb\n");
11723 					return -EINVAL;
11724 				}
11725 			} else {
11726 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11727 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
11728 					return -EINVAL;
11729 				}
11730 				if (!reg->ref_obj_id) {
11731 					verbose(env, "allocated object must be referenced\n");
11732 					return -EINVAL;
11733 				}
11734 			}
11735 
11736 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
11737 			if (ret < 0)
11738 				return ret;
11739 			break;
11740 		case KF_ARG_PTR_TO_BTF_ID:
11741 			/* Only base_type is checked, further checks are done here */
11742 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
11743 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
11744 			    !reg2btf_ids[base_type(reg->type)]) {
11745 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
11746 				verbose(env, "expected %s or socket\n",
11747 					reg_type_str(env, base_type(reg->type) |
11748 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
11749 				return -EINVAL;
11750 			}
11751 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
11752 			if (ret < 0)
11753 				return ret;
11754 			break;
11755 		case KF_ARG_PTR_TO_MEM:
11756 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
11757 			if (IS_ERR(resolve_ret)) {
11758 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
11759 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
11760 				return -EINVAL;
11761 			}
11762 			ret = check_mem_reg(env, reg, regno, type_size);
11763 			if (ret < 0)
11764 				return ret;
11765 			break;
11766 		case KF_ARG_PTR_TO_MEM_SIZE:
11767 		{
11768 			struct bpf_reg_state *buff_reg = &regs[regno];
11769 			const struct btf_param *buff_arg = &args[i];
11770 			struct bpf_reg_state *size_reg = &regs[regno + 1];
11771 			const struct btf_param *size_arg = &args[i + 1];
11772 
11773 			if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
11774 				ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
11775 				if (ret < 0) {
11776 					verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
11777 					return ret;
11778 				}
11779 			}
11780 
11781 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
11782 				if (meta->arg_constant.found) {
11783 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11784 					return -EFAULT;
11785 				}
11786 				if (!tnum_is_const(size_reg->var_off)) {
11787 					verbose(env, "R%d must be a known constant\n", regno + 1);
11788 					return -EINVAL;
11789 				}
11790 				meta->arg_constant.found = true;
11791 				meta->arg_constant.value = size_reg->var_off.value;
11792 			}
11793 
11794 			/* Skip next '__sz' or '__szk' argument */
11795 			i++;
11796 			break;
11797 		}
11798 		case KF_ARG_PTR_TO_CALLBACK:
11799 			if (reg->type != PTR_TO_FUNC) {
11800 				verbose(env, "arg%d expected pointer to func\n", i);
11801 				return -EINVAL;
11802 			}
11803 			meta->subprogno = reg->subprogno;
11804 			break;
11805 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11806 			if (!type_is_ptr_alloc_obj(reg->type)) {
11807 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
11808 				return -EINVAL;
11809 			}
11810 			if (!type_is_non_owning_ref(reg->type))
11811 				meta->arg_owning_ref = true;
11812 
11813 			rec = reg_btf_record(reg);
11814 			if (!rec) {
11815 				verbose(env, "verifier internal error: Couldn't find btf_record\n");
11816 				return -EFAULT;
11817 			}
11818 
11819 			if (rec->refcount_off < 0) {
11820 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
11821 				return -EINVAL;
11822 			}
11823 
11824 			meta->arg_btf = reg->btf;
11825 			meta->arg_btf_id = reg->btf_id;
11826 			break;
11827 		}
11828 	}
11829 
11830 	if (is_kfunc_release(meta) && !meta->release_regno) {
11831 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
11832 			func_name);
11833 		return -EINVAL;
11834 	}
11835 
11836 	return 0;
11837 }
11838 
11839 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
11840 			    struct bpf_insn *insn,
11841 			    struct bpf_kfunc_call_arg_meta *meta,
11842 			    const char **kfunc_name)
11843 {
11844 	const struct btf_type *func, *func_proto;
11845 	u32 func_id, *kfunc_flags;
11846 	const char *func_name;
11847 	struct btf *desc_btf;
11848 
11849 	if (kfunc_name)
11850 		*kfunc_name = NULL;
11851 
11852 	if (!insn->imm)
11853 		return -EINVAL;
11854 
11855 	desc_btf = find_kfunc_desc_btf(env, insn->off);
11856 	if (IS_ERR(desc_btf))
11857 		return PTR_ERR(desc_btf);
11858 
11859 	func_id = insn->imm;
11860 	func = btf_type_by_id(desc_btf, func_id);
11861 	func_name = btf_name_by_offset(desc_btf, func->name_off);
11862 	if (kfunc_name)
11863 		*kfunc_name = func_name;
11864 	func_proto = btf_type_by_id(desc_btf, func->type);
11865 
11866 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
11867 	if (!kfunc_flags) {
11868 		return -EACCES;
11869 	}
11870 
11871 	memset(meta, 0, sizeof(*meta));
11872 	meta->btf = desc_btf;
11873 	meta->func_id = func_id;
11874 	meta->kfunc_flags = *kfunc_flags;
11875 	meta->func_proto = func_proto;
11876 	meta->func_name = func_name;
11877 
11878 	return 0;
11879 }
11880 
11881 static int check_return_code(struct bpf_verifier_env *env, int regno);
11882 
11883 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11884 			    int *insn_idx_p)
11885 {
11886 	const struct btf_type *t, *ptr_type;
11887 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
11888 	struct bpf_reg_state *regs = cur_regs(env);
11889 	const char *func_name, *ptr_type_name;
11890 	bool sleepable, rcu_lock, rcu_unlock;
11891 	struct bpf_kfunc_call_arg_meta meta;
11892 	struct bpf_insn_aux_data *insn_aux;
11893 	int err, insn_idx = *insn_idx_p;
11894 	const struct btf_param *args;
11895 	const struct btf_type *ret_t;
11896 	struct btf *desc_btf;
11897 
11898 	/* skip for now, but return error when we find this in fixup_kfunc_call */
11899 	if (!insn->imm)
11900 		return 0;
11901 
11902 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
11903 	if (err == -EACCES && func_name)
11904 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
11905 	if (err)
11906 		return err;
11907 	desc_btf = meta.btf;
11908 	insn_aux = &env->insn_aux_data[insn_idx];
11909 
11910 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
11911 
11912 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
11913 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
11914 		return -EACCES;
11915 	}
11916 
11917 	sleepable = is_kfunc_sleepable(&meta);
11918 	if (sleepable && !env->prog->aux->sleepable) {
11919 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
11920 		return -EACCES;
11921 	}
11922 
11923 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
11924 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
11925 
11926 	if (env->cur_state->active_rcu_lock) {
11927 		struct bpf_func_state *state;
11928 		struct bpf_reg_state *reg;
11929 		u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER);
11930 
11931 		if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
11932 			verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
11933 			return -EACCES;
11934 		}
11935 
11936 		if (rcu_lock) {
11937 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
11938 			return -EINVAL;
11939 		} else if (rcu_unlock) {
11940 			bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({
11941 				if (reg->type & MEM_RCU) {
11942 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
11943 					reg->type |= PTR_UNTRUSTED;
11944 				}
11945 			}));
11946 			env->cur_state->active_rcu_lock = false;
11947 		} else if (sleepable) {
11948 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
11949 			return -EACCES;
11950 		}
11951 	} else if (rcu_lock) {
11952 		env->cur_state->active_rcu_lock = true;
11953 	} else if (rcu_unlock) {
11954 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
11955 		return -EINVAL;
11956 	}
11957 
11958 	/* Check the arguments */
11959 	err = check_kfunc_args(env, &meta, insn_idx);
11960 	if (err < 0)
11961 		return err;
11962 	/* In case of release function, we get register number of refcounted
11963 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
11964 	 */
11965 	if (meta.release_regno) {
11966 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
11967 		if (err) {
11968 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11969 				func_name, meta.func_id);
11970 			return err;
11971 		}
11972 	}
11973 
11974 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11975 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11976 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11977 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
11978 		insn_aux->insert_off = regs[BPF_REG_2].off;
11979 		insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
11980 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
11981 		if (err) {
11982 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
11983 				func_name, meta.func_id);
11984 			return err;
11985 		}
11986 
11987 		err = release_reference(env, release_ref_obj_id);
11988 		if (err) {
11989 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11990 				func_name, meta.func_id);
11991 			return err;
11992 		}
11993 	}
11994 
11995 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11996 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
11997 					set_rbtree_add_callback_state);
11998 		if (err) {
11999 			verbose(env, "kfunc %s#%d failed callback verification\n",
12000 				func_name, meta.func_id);
12001 			return err;
12002 		}
12003 	}
12004 
12005 	if (meta.func_id == special_kfunc_list[KF_bpf_throw]) {
12006 		if (!bpf_jit_supports_exceptions()) {
12007 			verbose(env, "JIT does not support calling kfunc %s#%d\n",
12008 				func_name, meta.func_id);
12009 			return -ENOTSUPP;
12010 		}
12011 		env->seen_exception = true;
12012 
12013 		/* In the case of the default callback, the cookie value passed
12014 		 * to bpf_throw becomes the return value of the program.
12015 		 */
12016 		if (!env->exception_callback_subprog) {
12017 			err = check_return_code(env, BPF_REG_1);
12018 			if (err < 0)
12019 				return err;
12020 		}
12021 	}
12022 
12023 	for (i = 0; i < CALLER_SAVED_REGS; i++)
12024 		mark_reg_not_init(env, regs, caller_saved[i]);
12025 
12026 	/* Check return type */
12027 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
12028 
12029 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
12030 		/* Only exception is bpf_obj_new_impl */
12031 		if (meta.btf != btf_vmlinux ||
12032 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
12033 		     meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] &&
12034 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
12035 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
12036 			return -EINVAL;
12037 		}
12038 	}
12039 
12040 	if (btf_type_is_scalar(t)) {
12041 		mark_reg_unknown(env, regs, BPF_REG_0);
12042 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
12043 	} else if (btf_type_is_ptr(t)) {
12044 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
12045 
12046 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12047 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
12048 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12049 				struct btf_struct_meta *struct_meta;
12050 				struct btf *ret_btf;
12051 				u32 ret_btf_id;
12052 
12053 				if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set)
12054 					return -ENOMEM;
12055 
12056 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && !bpf_global_percpu_ma_set)
12057 					return -ENOMEM;
12058 
12059 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
12060 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
12061 					return -EINVAL;
12062 				}
12063 
12064 				ret_btf = env->prog->aux->btf;
12065 				ret_btf_id = meta.arg_constant.value;
12066 
12067 				/* This may be NULL due to user not supplying a BTF */
12068 				if (!ret_btf) {
12069 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n");
12070 					return -EINVAL;
12071 				}
12072 
12073 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
12074 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
12075 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n");
12076 					return -EINVAL;
12077 				}
12078 
12079 				struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id);
12080 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12081 					if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) {
12082 						verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n");
12083 						return -EINVAL;
12084 					}
12085 
12086 					if (struct_meta) {
12087 						verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n");
12088 						return -EINVAL;
12089 					}
12090 				}
12091 
12092 				mark_reg_known_zero(env, regs, BPF_REG_0);
12093 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12094 				regs[BPF_REG_0].btf = ret_btf;
12095 				regs[BPF_REG_0].btf_id = ret_btf_id;
12096 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl])
12097 					regs[BPF_REG_0].type |= MEM_PERCPU;
12098 
12099 				insn_aux->obj_new_size = ret_t->size;
12100 				insn_aux->kptr_struct_meta = struct_meta;
12101 			} else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
12102 				mark_reg_known_zero(env, regs, BPF_REG_0);
12103 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12104 				regs[BPF_REG_0].btf = meta.arg_btf;
12105 				regs[BPF_REG_0].btf_id = meta.arg_btf_id;
12106 
12107 				insn_aux->kptr_struct_meta =
12108 					btf_find_struct_meta(meta.arg_btf,
12109 							     meta.arg_btf_id);
12110 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
12111 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
12112 				struct btf_field *field = meta.arg_list_head.field;
12113 
12114 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12115 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
12116 				   meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12117 				struct btf_field *field = meta.arg_rbtree_root.field;
12118 
12119 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12120 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
12121 				mark_reg_known_zero(env, regs, BPF_REG_0);
12122 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
12123 				regs[BPF_REG_0].btf = desc_btf;
12124 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
12125 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
12126 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
12127 				if (!ret_t || !btf_type_is_struct(ret_t)) {
12128 					verbose(env,
12129 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
12130 					return -EINVAL;
12131 				}
12132 
12133 				mark_reg_known_zero(env, regs, BPF_REG_0);
12134 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
12135 				regs[BPF_REG_0].btf = desc_btf;
12136 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
12137 			} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
12138 				   meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
12139 				enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
12140 
12141 				mark_reg_known_zero(env, regs, BPF_REG_0);
12142 
12143 				if (!meta.arg_constant.found) {
12144 					verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
12145 					return -EFAULT;
12146 				}
12147 
12148 				regs[BPF_REG_0].mem_size = meta.arg_constant.value;
12149 
12150 				/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
12151 				regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
12152 
12153 				if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
12154 					regs[BPF_REG_0].type |= MEM_RDONLY;
12155 				} else {
12156 					/* this will set env->seen_direct_write to true */
12157 					if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
12158 						verbose(env, "the prog does not allow writes to packet data\n");
12159 						return -EINVAL;
12160 					}
12161 				}
12162 
12163 				if (!meta.initialized_dynptr.id) {
12164 					verbose(env, "verifier internal error: no dynptr id\n");
12165 					return -EFAULT;
12166 				}
12167 				regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
12168 
12169 				/* we don't need to set BPF_REG_0's ref obj id
12170 				 * because packet slices are not refcounted (see
12171 				 * dynptr_type_refcounted)
12172 				 */
12173 			} else {
12174 				verbose(env, "kernel function %s unhandled dynamic return type\n",
12175 					meta.func_name);
12176 				return -EFAULT;
12177 			}
12178 		} else if (!__btf_type_is_struct(ptr_type)) {
12179 			if (!meta.r0_size) {
12180 				__u32 sz;
12181 
12182 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
12183 					meta.r0_size = sz;
12184 					meta.r0_rdonly = true;
12185 				}
12186 			}
12187 			if (!meta.r0_size) {
12188 				ptr_type_name = btf_name_by_offset(desc_btf,
12189 								   ptr_type->name_off);
12190 				verbose(env,
12191 					"kernel function %s returns pointer type %s %s is not supported\n",
12192 					func_name,
12193 					btf_type_str(ptr_type),
12194 					ptr_type_name);
12195 				return -EINVAL;
12196 			}
12197 
12198 			mark_reg_known_zero(env, regs, BPF_REG_0);
12199 			regs[BPF_REG_0].type = PTR_TO_MEM;
12200 			regs[BPF_REG_0].mem_size = meta.r0_size;
12201 
12202 			if (meta.r0_rdonly)
12203 				regs[BPF_REG_0].type |= MEM_RDONLY;
12204 
12205 			/* Ensures we don't access the memory after a release_reference() */
12206 			if (meta.ref_obj_id)
12207 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
12208 		} else {
12209 			mark_reg_known_zero(env, regs, BPF_REG_0);
12210 			regs[BPF_REG_0].btf = desc_btf;
12211 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
12212 			regs[BPF_REG_0].btf_id = ptr_type_id;
12213 		}
12214 
12215 		if (is_kfunc_ret_null(&meta)) {
12216 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
12217 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
12218 			regs[BPF_REG_0].id = ++env->id_gen;
12219 		}
12220 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
12221 		if (is_kfunc_acquire(&meta)) {
12222 			int id = acquire_reference_state(env, insn_idx);
12223 
12224 			if (id < 0)
12225 				return id;
12226 			if (is_kfunc_ret_null(&meta))
12227 				regs[BPF_REG_0].id = id;
12228 			regs[BPF_REG_0].ref_obj_id = id;
12229 		} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12230 			ref_set_non_owning(env, &regs[BPF_REG_0]);
12231 		}
12232 
12233 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
12234 			regs[BPF_REG_0].id = ++env->id_gen;
12235 	} else if (btf_type_is_void(t)) {
12236 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12237 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
12238 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
12239 				insn_aux->kptr_struct_meta =
12240 					btf_find_struct_meta(meta.arg_btf,
12241 							     meta.arg_btf_id);
12242 			}
12243 		}
12244 	}
12245 
12246 	nargs = btf_type_vlen(meta.func_proto);
12247 	args = (const struct btf_param *)(meta.func_proto + 1);
12248 	for (i = 0; i < nargs; i++) {
12249 		u32 regno = i + 1;
12250 
12251 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
12252 		if (btf_type_is_ptr(t))
12253 			mark_btf_func_reg_size(env, regno, sizeof(void *));
12254 		else
12255 			/* scalar. ensured by btf_check_kfunc_arg_match() */
12256 			mark_btf_func_reg_size(env, regno, t->size);
12257 	}
12258 
12259 	if (is_iter_next_kfunc(&meta)) {
12260 		err = process_iter_next_call(env, insn_idx, &meta);
12261 		if (err)
12262 			return err;
12263 	}
12264 
12265 	return 0;
12266 }
12267 
12268 static bool signed_add_overflows(s64 a, s64 b)
12269 {
12270 	/* Do the add in u64, where overflow is well-defined */
12271 	s64 res = (s64)((u64)a + (u64)b);
12272 
12273 	if (b < 0)
12274 		return res > a;
12275 	return res < a;
12276 }
12277 
12278 static bool signed_add32_overflows(s32 a, s32 b)
12279 {
12280 	/* Do the add in u32, where overflow is well-defined */
12281 	s32 res = (s32)((u32)a + (u32)b);
12282 
12283 	if (b < 0)
12284 		return res > a;
12285 	return res < a;
12286 }
12287 
12288 static bool signed_sub_overflows(s64 a, s64 b)
12289 {
12290 	/* Do the sub in u64, where overflow is well-defined */
12291 	s64 res = (s64)((u64)a - (u64)b);
12292 
12293 	if (b < 0)
12294 		return res < a;
12295 	return res > a;
12296 }
12297 
12298 static bool signed_sub32_overflows(s32 a, s32 b)
12299 {
12300 	/* Do the sub in u32, where overflow is well-defined */
12301 	s32 res = (s32)((u32)a - (u32)b);
12302 
12303 	if (b < 0)
12304 		return res < a;
12305 	return res > a;
12306 }
12307 
12308 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
12309 				  const struct bpf_reg_state *reg,
12310 				  enum bpf_reg_type type)
12311 {
12312 	bool known = tnum_is_const(reg->var_off);
12313 	s64 val = reg->var_off.value;
12314 	s64 smin = reg->smin_value;
12315 
12316 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
12317 		verbose(env, "math between %s pointer and %lld is not allowed\n",
12318 			reg_type_str(env, type), val);
12319 		return false;
12320 	}
12321 
12322 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
12323 		verbose(env, "%s pointer offset %d is not allowed\n",
12324 			reg_type_str(env, type), reg->off);
12325 		return false;
12326 	}
12327 
12328 	if (smin == S64_MIN) {
12329 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
12330 			reg_type_str(env, type));
12331 		return false;
12332 	}
12333 
12334 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
12335 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
12336 			smin, reg_type_str(env, type));
12337 		return false;
12338 	}
12339 
12340 	return true;
12341 }
12342 
12343 enum {
12344 	REASON_BOUNDS	= -1,
12345 	REASON_TYPE	= -2,
12346 	REASON_PATHS	= -3,
12347 	REASON_LIMIT	= -4,
12348 	REASON_STACK	= -5,
12349 };
12350 
12351 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
12352 			      u32 *alu_limit, bool mask_to_left)
12353 {
12354 	u32 max = 0, ptr_limit = 0;
12355 
12356 	switch (ptr_reg->type) {
12357 	case PTR_TO_STACK:
12358 		/* Offset 0 is out-of-bounds, but acceptable start for the
12359 		 * left direction, see BPF_REG_FP. Also, unknown scalar
12360 		 * offset where we would need to deal with min/max bounds is
12361 		 * currently prohibited for unprivileged.
12362 		 */
12363 		max = MAX_BPF_STACK + mask_to_left;
12364 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
12365 		break;
12366 	case PTR_TO_MAP_VALUE:
12367 		max = ptr_reg->map_ptr->value_size;
12368 		ptr_limit = (mask_to_left ?
12369 			     ptr_reg->smin_value :
12370 			     ptr_reg->umax_value) + ptr_reg->off;
12371 		break;
12372 	default:
12373 		return REASON_TYPE;
12374 	}
12375 
12376 	if (ptr_limit >= max)
12377 		return REASON_LIMIT;
12378 	*alu_limit = ptr_limit;
12379 	return 0;
12380 }
12381 
12382 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
12383 				    const struct bpf_insn *insn)
12384 {
12385 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
12386 }
12387 
12388 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
12389 				       u32 alu_state, u32 alu_limit)
12390 {
12391 	/* If we arrived here from different branches with different
12392 	 * state or limits to sanitize, then this won't work.
12393 	 */
12394 	if (aux->alu_state &&
12395 	    (aux->alu_state != alu_state ||
12396 	     aux->alu_limit != alu_limit))
12397 		return REASON_PATHS;
12398 
12399 	/* Corresponding fixup done in do_misc_fixups(). */
12400 	aux->alu_state = alu_state;
12401 	aux->alu_limit = alu_limit;
12402 	return 0;
12403 }
12404 
12405 static int sanitize_val_alu(struct bpf_verifier_env *env,
12406 			    struct bpf_insn *insn)
12407 {
12408 	struct bpf_insn_aux_data *aux = cur_aux(env);
12409 
12410 	if (can_skip_alu_sanitation(env, insn))
12411 		return 0;
12412 
12413 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
12414 }
12415 
12416 static bool sanitize_needed(u8 opcode)
12417 {
12418 	return opcode == BPF_ADD || opcode == BPF_SUB;
12419 }
12420 
12421 struct bpf_sanitize_info {
12422 	struct bpf_insn_aux_data aux;
12423 	bool mask_to_left;
12424 };
12425 
12426 static struct bpf_verifier_state *
12427 sanitize_speculative_path(struct bpf_verifier_env *env,
12428 			  const struct bpf_insn *insn,
12429 			  u32 next_idx, u32 curr_idx)
12430 {
12431 	struct bpf_verifier_state *branch;
12432 	struct bpf_reg_state *regs;
12433 
12434 	branch = push_stack(env, next_idx, curr_idx, true);
12435 	if (branch && insn) {
12436 		regs = branch->frame[branch->curframe]->regs;
12437 		if (BPF_SRC(insn->code) == BPF_K) {
12438 			mark_reg_unknown(env, regs, insn->dst_reg);
12439 		} else if (BPF_SRC(insn->code) == BPF_X) {
12440 			mark_reg_unknown(env, regs, insn->dst_reg);
12441 			mark_reg_unknown(env, regs, insn->src_reg);
12442 		}
12443 	}
12444 	return branch;
12445 }
12446 
12447 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
12448 			    struct bpf_insn *insn,
12449 			    const struct bpf_reg_state *ptr_reg,
12450 			    const struct bpf_reg_state *off_reg,
12451 			    struct bpf_reg_state *dst_reg,
12452 			    struct bpf_sanitize_info *info,
12453 			    const bool commit_window)
12454 {
12455 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
12456 	struct bpf_verifier_state *vstate = env->cur_state;
12457 	bool off_is_imm = tnum_is_const(off_reg->var_off);
12458 	bool off_is_neg = off_reg->smin_value < 0;
12459 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
12460 	u8 opcode = BPF_OP(insn->code);
12461 	u32 alu_state, alu_limit;
12462 	struct bpf_reg_state tmp;
12463 	bool ret;
12464 	int err;
12465 
12466 	if (can_skip_alu_sanitation(env, insn))
12467 		return 0;
12468 
12469 	/* We already marked aux for masking from non-speculative
12470 	 * paths, thus we got here in the first place. We only care
12471 	 * to explore bad access from here.
12472 	 */
12473 	if (vstate->speculative)
12474 		goto do_sim;
12475 
12476 	if (!commit_window) {
12477 		if (!tnum_is_const(off_reg->var_off) &&
12478 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
12479 			return REASON_BOUNDS;
12480 
12481 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
12482 				     (opcode == BPF_SUB && !off_is_neg);
12483 	}
12484 
12485 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
12486 	if (err < 0)
12487 		return err;
12488 
12489 	if (commit_window) {
12490 		/* In commit phase we narrow the masking window based on
12491 		 * the observed pointer move after the simulated operation.
12492 		 */
12493 		alu_state = info->aux.alu_state;
12494 		alu_limit = abs(info->aux.alu_limit - alu_limit);
12495 	} else {
12496 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
12497 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
12498 		alu_state |= ptr_is_dst_reg ?
12499 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
12500 
12501 		/* Limit pruning on unknown scalars to enable deep search for
12502 		 * potential masking differences from other program paths.
12503 		 */
12504 		if (!off_is_imm)
12505 			env->explore_alu_limits = true;
12506 	}
12507 
12508 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
12509 	if (err < 0)
12510 		return err;
12511 do_sim:
12512 	/* If we're in commit phase, we're done here given we already
12513 	 * pushed the truncated dst_reg into the speculative verification
12514 	 * stack.
12515 	 *
12516 	 * Also, when register is a known constant, we rewrite register-based
12517 	 * operation to immediate-based, and thus do not need masking (and as
12518 	 * a consequence, do not need to simulate the zero-truncation either).
12519 	 */
12520 	if (commit_window || off_is_imm)
12521 		return 0;
12522 
12523 	/* Simulate and find potential out-of-bounds access under
12524 	 * speculative execution from truncation as a result of
12525 	 * masking when off was not within expected range. If off
12526 	 * sits in dst, then we temporarily need to move ptr there
12527 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
12528 	 * for cases where we use K-based arithmetic in one direction
12529 	 * and truncated reg-based in the other in order to explore
12530 	 * bad access.
12531 	 */
12532 	if (!ptr_is_dst_reg) {
12533 		tmp = *dst_reg;
12534 		copy_register_state(dst_reg, ptr_reg);
12535 	}
12536 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
12537 					env->insn_idx);
12538 	if (!ptr_is_dst_reg && ret)
12539 		*dst_reg = tmp;
12540 	return !ret ? REASON_STACK : 0;
12541 }
12542 
12543 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
12544 {
12545 	struct bpf_verifier_state *vstate = env->cur_state;
12546 
12547 	/* If we simulate paths under speculation, we don't update the
12548 	 * insn as 'seen' such that when we verify unreachable paths in
12549 	 * the non-speculative domain, sanitize_dead_code() can still
12550 	 * rewrite/sanitize them.
12551 	 */
12552 	if (!vstate->speculative)
12553 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
12554 }
12555 
12556 static int sanitize_err(struct bpf_verifier_env *env,
12557 			const struct bpf_insn *insn, int reason,
12558 			const struct bpf_reg_state *off_reg,
12559 			const struct bpf_reg_state *dst_reg)
12560 {
12561 	static const char *err = "pointer arithmetic with it prohibited for !root";
12562 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
12563 	u32 dst = insn->dst_reg, src = insn->src_reg;
12564 
12565 	switch (reason) {
12566 	case REASON_BOUNDS:
12567 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
12568 			off_reg == dst_reg ? dst : src, err);
12569 		break;
12570 	case REASON_TYPE:
12571 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
12572 			off_reg == dst_reg ? src : dst, err);
12573 		break;
12574 	case REASON_PATHS:
12575 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
12576 			dst, op, err);
12577 		break;
12578 	case REASON_LIMIT:
12579 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
12580 			dst, op, err);
12581 		break;
12582 	case REASON_STACK:
12583 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
12584 			dst, err);
12585 		break;
12586 	default:
12587 		verbose(env, "verifier internal error: unknown reason (%d)\n",
12588 			reason);
12589 		break;
12590 	}
12591 
12592 	return -EACCES;
12593 }
12594 
12595 /* check that stack access falls within stack limits and that 'reg' doesn't
12596  * have a variable offset.
12597  *
12598  * Variable offset is prohibited for unprivileged mode for simplicity since it
12599  * requires corresponding support in Spectre masking for stack ALU.  See also
12600  * retrieve_ptr_limit().
12601  *
12602  *
12603  * 'off' includes 'reg->off'.
12604  */
12605 static int check_stack_access_for_ptr_arithmetic(
12606 				struct bpf_verifier_env *env,
12607 				int regno,
12608 				const struct bpf_reg_state *reg,
12609 				int off)
12610 {
12611 	if (!tnum_is_const(reg->var_off)) {
12612 		char tn_buf[48];
12613 
12614 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
12615 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
12616 			regno, tn_buf, off);
12617 		return -EACCES;
12618 	}
12619 
12620 	if (off >= 0 || off < -MAX_BPF_STACK) {
12621 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
12622 			"prohibited for !root; off=%d\n", regno, off);
12623 		return -EACCES;
12624 	}
12625 
12626 	return 0;
12627 }
12628 
12629 static int sanitize_check_bounds(struct bpf_verifier_env *env,
12630 				 const struct bpf_insn *insn,
12631 				 const struct bpf_reg_state *dst_reg)
12632 {
12633 	u32 dst = insn->dst_reg;
12634 
12635 	/* For unprivileged we require that resulting offset must be in bounds
12636 	 * in order to be able to sanitize access later on.
12637 	 */
12638 	if (env->bypass_spec_v1)
12639 		return 0;
12640 
12641 	switch (dst_reg->type) {
12642 	case PTR_TO_STACK:
12643 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
12644 					dst_reg->off + dst_reg->var_off.value))
12645 			return -EACCES;
12646 		break;
12647 	case PTR_TO_MAP_VALUE:
12648 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
12649 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
12650 				"prohibited for !root\n", dst);
12651 			return -EACCES;
12652 		}
12653 		break;
12654 	default:
12655 		break;
12656 	}
12657 
12658 	return 0;
12659 }
12660 
12661 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
12662  * Caller should also handle BPF_MOV case separately.
12663  * If we return -EACCES, caller may want to try again treating pointer as a
12664  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
12665  */
12666 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
12667 				   struct bpf_insn *insn,
12668 				   const struct bpf_reg_state *ptr_reg,
12669 				   const struct bpf_reg_state *off_reg)
12670 {
12671 	struct bpf_verifier_state *vstate = env->cur_state;
12672 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
12673 	struct bpf_reg_state *regs = state->regs, *dst_reg;
12674 	bool known = tnum_is_const(off_reg->var_off);
12675 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
12676 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
12677 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
12678 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
12679 	struct bpf_sanitize_info info = {};
12680 	u8 opcode = BPF_OP(insn->code);
12681 	u32 dst = insn->dst_reg;
12682 	int ret;
12683 
12684 	dst_reg = &regs[dst];
12685 
12686 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
12687 	    smin_val > smax_val || umin_val > umax_val) {
12688 		/* Taint dst register if offset had invalid bounds derived from
12689 		 * e.g. dead branches.
12690 		 */
12691 		__mark_reg_unknown(env, dst_reg);
12692 		return 0;
12693 	}
12694 
12695 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
12696 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
12697 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12698 			__mark_reg_unknown(env, dst_reg);
12699 			return 0;
12700 		}
12701 
12702 		verbose(env,
12703 			"R%d 32-bit pointer arithmetic prohibited\n",
12704 			dst);
12705 		return -EACCES;
12706 	}
12707 
12708 	if (ptr_reg->type & PTR_MAYBE_NULL) {
12709 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
12710 			dst, reg_type_str(env, ptr_reg->type));
12711 		return -EACCES;
12712 	}
12713 
12714 	switch (base_type(ptr_reg->type)) {
12715 	case CONST_PTR_TO_MAP:
12716 		/* smin_val represents the known value */
12717 		if (known && smin_val == 0 && opcode == BPF_ADD)
12718 			break;
12719 		fallthrough;
12720 	case PTR_TO_PACKET_END:
12721 	case PTR_TO_SOCKET:
12722 	case PTR_TO_SOCK_COMMON:
12723 	case PTR_TO_TCP_SOCK:
12724 	case PTR_TO_XDP_SOCK:
12725 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
12726 			dst, reg_type_str(env, ptr_reg->type));
12727 		return -EACCES;
12728 	default:
12729 		break;
12730 	}
12731 
12732 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
12733 	 * The id may be overwritten later if we create a new variable offset.
12734 	 */
12735 	dst_reg->type = ptr_reg->type;
12736 	dst_reg->id = ptr_reg->id;
12737 
12738 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
12739 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
12740 		return -EINVAL;
12741 
12742 	/* pointer types do not carry 32-bit bounds at the moment. */
12743 	__mark_reg32_unbounded(dst_reg);
12744 
12745 	if (sanitize_needed(opcode)) {
12746 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
12747 				       &info, false);
12748 		if (ret < 0)
12749 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12750 	}
12751 
12752 	switch (opcode) {
12753 	case BPF_ADD:
12754 		/* We can take a fixed offset as long as it doesn't overflow
12755 		 * the s32 'off' field
12756 		 */
12757 		if (known && (ptr_reg->off + smin_val ==
12758 			      (s64)(s32)(ptr_reg->off + smin_val))) {
12759 			/* pointer += K.  Accumulate it into fixed offset */
12760 			dst_reg->smin_value = smin_ptr;
12761 			dst_reg->smax_value = smax_ptr;
12762 			dst_reg->umin_value = umin_ptr;
12763 			dst_reg->umax_value = umax_ptr;
12764 			dst_reg->var_off = ptr_reg->var_off;
12765 			dst_reg->off = ptr_reg->off + smin_val;
12766 			dst_reg->raw = ptr_reg->raw;
12767 			break;
12768 		}
12769 		/* A new variable offset is created.  Note that off_reg->off
12770 		 * == 0, since it's a scalar.
12771 		 * dst_reg gets the pointer type and since some positive
12772 		 * integer value was added to the pointer, give it a new 'id'
12773 		 * if it's a PTR_TO_PACKET.
12774 		 * this creates a new 'base' pointer, off_reg (variable) gets
12775 		 * added into the variable offset, and we copy the fixed offset
12776 		 * from ptr_reg.
12777 		 */
12778 		if (signed_add_overflows(smin_ptr, smin_val) ||
12779 		    signed_add_overflows(smax_ptr, smax_val)) {
12780 			dst_reg->smin_value = S64_MIN;
12781 			dst_reg->smax_value = S64_MAX;
12782 		} else {
12783 			dst_reg->smin_value = smin_ptr + smin_val;
12784 			dst_reg->smax_value = smax_ptr + smax_val;
12785 		}
12786 		if (umin_ptr + umin_val < umin_ptr ||
12787 		    umax_ptr + umax_val < umax_ptr) {
12788 			dst_reg->umin_value = 0;
12789 			dst_reg->umax_value = U64_MAX;
12790 		} else {
12791 			dst_reg->umin_value = umin_ptr + umin_val;
12792 			dst_reg->umax_value = umax_ptr + umax_val;
12793 		}
12794 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
12795 		dst_reg->off = ptr_reg->off;
12796 		dst_reg->raw = ptr_reg->raw;
12797 		if (reg_is_pkt_pointer(ptr_reg)) {
12798 			dst_reg->id = ++env->id_gen;
12799 			/* something was added to pkt_ptr, set range to zero */
12800 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12801 		}
12802 		break;
12803 	case BPF_SUB:
12804 		if (dst_reg == off_reg) {
12805 			/* scalar -= pointer.  Creates an unknown scalar */
12806 			verbose(env, "R%d tried to subtract pointer from scalar\n",
12807 				dst);
12808 			return -EACCES;
12809 		}
12810 		/* We don't allow subtraction from FP, because (according to
12811 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
12812 		 * be able to deal with it.
12813 		 */
12814 		if (ptr_reg->type == PTR_TO_STACK) {
12815 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
12816 				dst);
12817 			return -EACCES;
12818 		}
12819 		if (known && (ptr_reg->off - smin_val ==
12820 			      (s64)(s32)(ptr_reg->off - smin_val))) {
12821 			/* pointer -= K.  Subtract it from fixed offset */
12822 			dst_reg->smin_value = smin_ptr;
12823 			dst_reg->smax_value = smax_ptr;
12824 			dst_reg->umin_value = umin_ptr;
12825 			dst_reg->umax_value = umax_ptr;
12826 			dst_reg->var_off = ptr_reg->var_off;
12827 			dst_reg->id = ptr_reg->id;
12828 			dst_reg->off = ptr_reg->off - smin_val;
12829 			dst_reg->raw = ptr_reg->raw;
12830 			break;
12831 		}
12832 		/* A new variable offset is created.  If the subtrahend is known
12833 		 * nonnegative, then any reg->range we had before is still good.
12834 		 */
12835 		if (signed_sub_overflows(smin_ptr, smax_val) ||
12836 		    signed_sub_overflows(smax_ptr, smin_val)) {
12837 			/* Overflow possible, we know nothing */
12838 			dst_reg->smin_value = S64_MIN;
12839 			dst_reg->smax_value = S64_MAX;
12840 		} else {
12841 			dst_reg->smin_value = smin_ptr - smax_val;
12842 			dst_reg->smax_value = smax_ptr - smin_val;
12843 		}
12844 		if (umin_ptr < umax_val) {
12845 			/* Overflow possible, we know nothing */
12846 			dst_reg->umin_value = 0;
12847 			dst_reg->umax_value = U64_MAX;
12848 		} else {
12849 			/* Cannot overflow (as long as bounds are consistent) */
12850 			dst_reg->umin_value = umin_ptr - umax_val;
12851 			dst_reg->umax_value = umax_ptr - umin_val;
12852 		}
12853 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
12854 		dst_reg->off = ptr_reg->off;
12855 		dst_reg->raw = ptr_reg->raw;
12856 		if (reg_is_pkt_pointer(ptr_reg)) {
12857 			dst_reg->id = ++env->id_gen;
12858 			/* something was added to pkt_ptr, set range to zero */
12859 			if (smin_val < 0)
12860 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12861 		}
12862 		break;
12863 	case BPF_AND:
12864 	case BPF_OR:
12865 	case BPF_XOR:
12866 		/* bitwise ops on pointers are troublesome, prohibit. */
12867 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
12868 			dst, bpf_alu_string[opcode >> 4]);
12869 		return -EACCES;
12870 	default:
12871 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
12872 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
12873 			dst, bpf_alu_string[opcode >> 4]);
12874 		return -EACCES;
12875 	}
12876 
12877 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
12878 		return -EINVAL;
12879 	reg_bounds_sync(dst_reg);
12880 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
12881 		return -EACCES;
12882 	if (sanitize_needed(opcode)) {
12883 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
12884 				       &info, true);
12885 		if (ret < 0)
12886 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12887 	}
12888 
12889 	return 0;
12890 }
12891 
12892 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
12893 				 struct bpf_reg_state *src_reg)
12894 {
12895 	s32 smin_val = src_reg->s32_min_value;
12896 	s32 smax_val = src_reg->s32_max_value;
12897 	u32 umin_val = src_reg->u32_min_value;
12898 	u32 umax_val = src_reg->u32_max_value;
12899 
12900 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
12901 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
12902 		dst_reg->s32_min_value = S32_MIN;
12903 		dst_reg->s32_max_value = S32_MAX;
12904 	} else {
12905 		dst_reg->s32_min_value += smin_val;
12906 		dst_reg->s32_max_value += smax_val;
12907 	}
12908 	if (dst_reg->u32_min_value + umin_val < umin_val ||
12909 	    dst_reg->u32_max_value + umax_val < umax_val) {
12910 		dst_reg->u32_min_value = 0;
12911 		dst_reg->u32_max_value = U32_MAX;
12912 	} else {
12913 		dst_reg->u32_min_value += umin_val;
12914 		dst_reg->u32_max_value += umax_val;
12915 	}
12916 }
12917 
12918 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
12919 			       struct bpf_reg_state *src_reg)
12920 {
12921 	s64 smin_val = src_reg->smin_value;
12922 	s64 smax_val = src_reg->smax_value;
12923 	u64 umin_val = src_reg->umin_value;
12924 	u64 umax_val = src_reg->umax_value;
12925 
12926 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
12927 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
12928 		dst_reg->smin_value = S64_MIN;
12929 		dst_reg->smax_value = S64_MAX;
12930 	} else {
12931 		dst_reg->smin_value += smin_val;
12932 		dst_reg->smax_value += smax_val;
12933 	}
12934 	if (dst_reg->umin_value + umin_val < umin_val ||
12935 	    dst_reg->umax_value + umax_val < umax_val) {
12936 		dst_reg->umin_value = 0;
12937 		dst_reg->umax_value = U64_MAX;
12938 	} else {
12939 		dst_reg->umin_value += umin_val;
12940 		dst_reg->umax_value += umax_val;
12941 	}
12942 }
12943 
12944 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
12945 				 struct bpf_reg_state *src_reg)
12946 {
12947 	s32 smin_val = src_reg->s32_min_value;
12948 	s32 smax_val = src_reg->s32_max_value;
12949 	u32 umin_val = src_reg->u32_min_value;
12950 	u32 umax_val = src_reg->u32_max_value;
12951 
12952 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
12953 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
12954 		/* Overflow possible, we know nothing */
12955 		dst_reg->s32_min_value = S32_MIN;
12956 		dst_reg->s32_max_value = S32_MAX;
12957 	} else {
12958 		dst_reg->s32_min_value -= smax_val;
12959 		dst_reg->s32_max_value -= smin_val;
12960 	}
12961 	if (dst_reg->u32_min_value < umax_val) {
12962 		/* Overflow possible, we know nothing */
12963 		dst_reg->u32_min_value = 0;
12964 		dst_reg->u32_max_value = U32_MAX;
12965 	} else {
12966 		/* Cannot overflow (as long as bounds are consistent) */
12967 		dst_reg->u32_min_value -= umax_val;
12968 		dst_reg->u32_max_value -= umin_val;
12969 	}
12970 }
12971 
12972 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
12973 			       struct bpf_reg_state *src_reg)
12974 {
12975 	s64 smin_val = src_reg->smin_value;
12976 	s64 smax_val = src_reg->smax_value;
12977 	u64 umin_val = src_reg->umin_value;
12978 	u64 umax_val = src_reg->umax_value;
12979 
12980 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
12981 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
12982 		/* Overflow possible, we know nothing */
12983 		dst_reg->smin_value = S64_MIN;
12984 		dst_reg->smax_value = S64_MAX;
12985 	} else {
12986 		dst_reg->smin_value -= smax_val;
12987 		dst_reg->smax_value -= smin_val;
12988 	}
12989 	if (dst_reg->umin_value < umax_val) {
12990 		/* Overflow possible, we know nothing */
12991 		dst_reg->umin_value = 0;
12992 		dst_reg->umax_value = U64_MAX;
12993 	} else {
12994 		/* Cannot overflow (as long as bounds are consistent) */
12995 		dst_reg->umin_value -= umax_val;
12996 		dst_reg->umax_value -= umin_val;
12997 	}
12998 }
12999 
13000 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
13001 				 struct bpf_reg_state *src_reg)
13002 {
13003 	s32 smin_val = src_reg->s32_min_value;
13004 	u32 umin_val = src_reg->u32_min_value;
13005 	u32 umax_val = src_reg->u32_max_value;
13006 
13007 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
13008 		/* Ain't nobody got time to multiply that sign */
13009 		__mark_reg32_unbounded(dst_reg);
13010 		return;
13011 	}
13012 	/* Both values are positive, so we can work with unsigned and
13013 	 * copy the result to signed (unless it exceeds S32_MAX).
13014 	 */
13015 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
13016 		/* Potential overflow, we know nothing */
13017 		__mark_reg32_unbounded(dst_reg);
13018 		return;
13019 	}
13020 	dst_reg->u32_min_value *= umin_val;
13021 	dst_reg->u32_max_value *= umax_val;
13022 	if (dst_reg->u32_max_value > S32_MAX) {
13023 		/* Overflow possible, we know nothing */
13024 		dst_reg->s32_min_value = S32_MIN;
13025 		dst_reg->s32_max_value = S32_MAX;
13026 	} else {
13027 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13028 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13029 	}
13030 }
13031 
13032 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
13033 			       struct bpf_reg_state *src_reg)
13034 {
13035 	s64 smin_val = src_reg->smin_value;
13036 	u64 umin_val = src_reg->umin_value;
13037 	u64 umax_val = src_reg->umax_value;
13038 
13039 	if (smin_val < 0 || dst_reg->smin_value < 0) {
13040 		/* Ain't nobody got time to multiply that sign */
13041 		__mark_reg64_unbounded(dst_reg);
13042 		return;
13043 	}
13044 	/* Both values are positive, so we can work with unsigned and
13045 	 * copy the result to signed (unless it exceeds S64_MAX).
13046 	 */
13047 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
13048 		/* Potential overflow, we know nothing */
13049 		__mark_reg64_unbounded(dst_reg);
13050 		return;
13051 	}
13052 	dst_reg->umin_value *= umin_val;
13053 	dst_reg->umax_value *= umax_val;
13054 	if (dst_reg->umax_value > S64_MAX) {
13055 		/* Overflow possible, we know nothing */
13056 		dst_reg->smin_value = S64_MIN;
13057 		dst_reg->smax_value = S64_MAX;
13058 	} else {
13059 		dst_reg->smin_value = dst_reg->umin_value;
13060 		dst_reg->smax_value = dst_reg->umax_value;
13061 	}
13062 }
13063 
13064 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
13065 				 struct bpf_reg_state *src_reg)
13066 {
13067 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13068 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13069 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13070 	s32 smin_val = src_reg->s32_min_value;
13071 	u32 umax_val = src_reg->u32_max_value;
13072 
13073 	if (src_known && dst_known) {
13074 		__mark_reg32_known(dst_reg, var32_off.value);
13075 		return;
13076 	}
13077 
13078 	/* We get our minimum from the var_off, since that's inherently
13079 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
13080 	 */
13081 	dst_reg->u32_min_value = var32_off.value;
13082 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
13083 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
13084 		/* Lose signed bounds when ANDing negative numbers,
13085 		 * ain't nobody got time for that.
13086 		 */
13087 		dst_reg->s32_min_value = S32_MIN;
13088 		dst_reg->s32_max_value = S32_MAX;
13089 	} else {
13090 		/* ANDing two positives gives a positive, so safe to
13091 		 * cast result into s64.
13092 		 */
13093 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13094 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13095 	}
13096 }
13097 
13098 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
13099 			       struct bpf_reg_state *src_reg)
13100 {
13101 	bool src_known = tnum_is_const(src_reg->var_off);
13102 	bool dst_known = tnum_is_const(dst_reg->var_off);
13103 	s64 smin_val = src_reg->smin_value;
13104 	u64 umax_val = src_reg->umax_value;
13105 
13106 	if (src_known && dst_known) {
13107 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13108 		return;
13109 	}
13110 
13111 	/* We get our minimum from the var_off, since that's inherently
13112 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
13113 	 */
13114 	dst_reg->umin_value = dst_reg->var_off.value;
13115 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
13116 	if (dst_reg->smin_value < 0 || smin_val < 0) {
13117 		/* Lose signed bounds when ANDing negative numbers,
13118 		 * ain't nobody got time for that.
13119 		 */
13120 		dst_reg->smin_value = S64_MIN;
13121 		dst_reg->smax_value = S64_MAX;
13122 	} else {
13123 		/* ANDing two positives gives a positive, so safe to
13124 		 * cast result into s64.
13125 		 */
13126 		dst_reg->smin_value = dst_reg->umin_value;
13127 		dst_reg->smax_value = dst_reg->umax_value;
13128 	}
13129 	/* We may learn something more from the var_off */
13130 	__update_reg_bounds(dst_reg);
13131 }
13132 
13133 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
13134 				struct bpf_reg_state *src_reg)
13135 {
13136 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13137 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13138 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13139 	s32 smin_val = src_reg->s32_min_value;
13140 	u32 umin_val = src_reg->u32_min_value;
13141 
13142 	if (src_known && dst_known) {
13143 		__mark_reg32_known(dst_reg, var32_off.value);
13144 		return;
13145 	}
13146 
13147 	/* We get our maximum from the var_off, and our minimum is the
13148 	 * maximum of the operands' minima
13149 	 */
13150 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
13151 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13152 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
13153 		/* Lose signed bounds when ORing negative numbers,
13154 		 * ain't nobody got time for that.
13155 		 */
13156 		dst_reg->s32_min_value = S32_MIN;
13157 		dst_reg->s32_max_value = S32_MAX;
13158 	} else {
13159 		/* ORing two positives gives a positive, so safe to
13160 		 * cast result into s64.
13161 		 */
13162 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13163 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13164 	}
13165 }
13166 
13167 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
13168 			      struct bpf_reg_state *src_reg)
13169 {
13170 	bool src_known = tnum_is_const(src_reg->var_off);
13171 	bool dst_known = tnum_is_const(dst_reg->var_off);
13172 	s64 smin_val = src_reg->smin_value;
13173 	u64 umin_val = src_reg->umin_value;
13174 
13175 	if (src_known && dst_known) {
13176 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13177 		return;
13178 	}
13179 
13180 	/* We get our maximum from the var_off, and our minimum is the
13181 	 * maximum of the operands' minima
13182 	 */
13183 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
13184 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13185 	if (dst_reg->smin_value < 0 || smin_val < 0) {
13186 		/* Lose signed bounds when ORing negative numbers,
13187 		 * ain't nobody got time for that.
13188 		 */
13189 		dst_reg->smin_value = S64_MIN;
13190 		dst_reg->smax_value = S64_MAX;
13191 	} else {
13192 		/* ORing two positives gives a positive, so safe to
13193 		 * cast result into s64.
13194 		 */
13195 		dst_reg->smin_value = dst_reg->umin_value;
13196 		dst_reg->smax_value = dst_reg->umax_value;
13197 	}
13198 	/* We may learn something more from the var_off */
13199 	__update_reg_bounds(dst_reg);
13200 }
13201 
13202 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
13203 				 struct bpf_reg_state *src_reg)
13204 {
13205 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13206 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13207 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13208 	s32 smin_val = src_reg->s32_min_value;
13209 
13210 	if (src_known && dst_known) {
13211 		__mark_reg32_known(dst_reg, var32_off.value);
13212 		return;
13213 	}
13214 
13215 	/* We get both minimum and maximum from the var32_off. */
13216 	dst_reg->u32_min_value = var32_off.value;
13217 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13218 
13219 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
13220 		/* XORing two positive sign numbers gives a positive,
13221 		 * so safe to cast u32 result into s32.
13222 		 */
13223 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13224 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13225 	} else {
13226 		dst_reg->s32_min_value = S32_MIN;
13227 		dst_reg->s32_max_value = S32_MAX;
13228 	}
13229 }
13230 
13231 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
13232 			       struct bpf_reg_state *src_reg)
13233 {
13234 	bool src_known = tnum_is_const(src_reg->var_off);
13235 	bool dst_known = tnum_is_const(dst_reg->var_off);
13236 	s64 smin_val = src_reg->smin_value;
13237 
13238 	if (src_known && dst_known) {
13239 		/* dst_reg->var_off.value has been updated earlier */
13240 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13241 		return;
13242 	}
13243 
13244 	/* We get both minimum and maximum from the var_off. */
13245 	dst_reg->umin_value = dst_reg->var_off.value;
13246 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13247 
13248 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
13249 		/* XORing two positive sign numbers gives a positive,
13250 		 * so safe to cast u64 result into s64.
13251 		 */
13252 		dst_reg->smin_value = dst_reg->umin_value;
13253 		dst_reg->smax_value = dst_reg->umax_value;
13254 	} else {
13255 		dst_reg->smin_value = S64_MIN;
13256 		dst_reg->smax_value = S64_MAX;
13257 	}
13258 
13259 	__update_reg_bounds(dst_reg);
13260 }
13261 
13262 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13263 				   u64 umin_val, u64 umax_val)
13264 {
13265 	/* We lose all sign bit information (except what we can pick
13266 	 * up from var_off)
13267 	 */
13268 	dst_reg->s32_min_value = S32_MIN;
13269 	dst_reg->s32_max_value = S32_MAX;
13270 	/* If we might shift our top bit out, then we know nothing */
13271 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
13272 		dst_reg->u32_min_value = 0;
13273 		dst_reg->u32_max_value = U32_MAX;
13274 	} else {
13275 		dst_reg->u32_min_value <<= umin_val;
13276 		dst_reg->u32_max_value <<= umax_val;
13277 	}
13278 }
13279 
13280 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13281 				 struct bpf_reg_state *src_reg)
13282 {
13283 	u32 umax_val = src_reg->u32_max_value;
13284 	u32 umin_val = src_reg->u32_min_value;
13285 	/* u32 alu operation will zext upper bits */
13286 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13287 
13288 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13289 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
13290 	/* Not required but being careful mark reg64 bounds as unknown so
13291 	 * that we are forced to pick them up from tnum and zext later and
13292 	 * if some path skips this step we are still safe.
13293 	 */
13294 	__mark_reg64_unbounded(dst_reg);
13295 	__update_reg32_bounds(dst_reg);
13296 }
13297 
13298 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
13299 				   u64 umin_val, u64 umax_val)
13300 {
13301 	/* Special case <<32 because it is a common compiler pattern to sign
13302 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
13303 	 * positive we know this shift will also be positive so we can track
13304 	 * bounds correctly. Otherwise we lose all sign bit information except
13305 	 * what we can pick up from var_off. Perhaps we can generalize this
13306 	 * later to shifts of any length.
13307 	 */
13308 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
13309 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
13310 	else
13311 		dst_reg->smax_value = S64_MAX;
13312 
13313 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
13314 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
13315 	else
13316 		dst_reg->smin_value = S64_MIN;
13317 
13318 	/* If we might shift our top bit out, then we know nothing */
13319 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
13320 		dst_reg->umin_value = 0;
13321 		dst_reg->umax_value = U64_MAX;
13322 	} else {
13323 		dst_reg->umin_value <<= umin_val;
13324 		dst_reg->umax_value <<= umax_val;
13325 	}
13326 }
13327 
13328 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
13329 			       struct bpf_reg_state *src_reg)
13330 {
13331 	u64 umax_val = src_reg->umax_value;
13332 	u64 umin_val = src_reg->umin_value;
13333 
13334 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
13335 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
13336 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13337 
13338 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
13339 	/* We may learn something more from the var_off */
13340 	__update_reg_bounds(dst_reg);
13341 }
13342 
13343 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
13344 				 struct bpf_reg_state *src_reg)
13345 {
13346 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13347 	u32 umax_val = src_reg->u32_max_value;
13348 	u32 umin_val = src_reg->u32_min_value;
13349 
13350 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13351 	 * be negative, then either:
13352 	 * 1) src_reg might be zero, so the sign bit of the result is
13353 	 *    unknown, so we lose our signed bounds
13354 	 * 2) it's known negative, thus the unsigned bounds capture the
13355 	 *    signed bounds
13356 	 * 3) the signed bounds cross zero, so they tell us nothing
13357 	 *    about the result
13358 	 * If the value in dst_reg is known nonnegative, then again the
13359 	 * unsigned bounds capture the signed bounds.
13360 	 * Thus, in all cases it suffices to blow away our signed bounds
13361 	 * and rely on inferring new ones from the unsigned bounds and
13362 	 * var_off of the result.
13363 	 */
13364 	dst_reg->s32_min_value = S32_MIN;
13365 	dst_reg->s32_max_value = S32_MAX;
13366 
13367 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
13368 	dst_reg->u32_min_value >>= umax_val;
13369 	dst_reg->u32_max_value >>= umin_val;
13370 
13371 	__mark_reg64_unbounded(dst_reg);
13372 	__update_reg32_bounds(dst_reg);
13373 }
13374 
13375 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
13376 			       struct bpf_reg_state *src_reg)
13377 {
13378 	u64 umax_val = src_reg->umax_value;
13379 	u64 umin_val = src_reg->umin_value;
13380 
13381 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13382 	 * be negative, then either:
13383 	 * 1) src_reg might be zero, so the sign bit of the result is
13384 	 *    unknown, so we lose our signed bounds
13385 	 * 2) it's known negative, thus the unsigned bounds capture the
13386 	 *    signed bounds
13387 	 * 3) the signed bounds cross zero, so they tell us nothing
13388 	 *    about the result
13389 	 * If the value in dst_reg is known nonnegative, then again the
13390 	 * unsigned bounds capture the signed bounds.
13391 	 * Thus, in all cases it suffices to blow away our signed bounds
13392 	 * and rely on inferring new ones from the unsigned bounds and
13393 	 * var_off of the result.
13394 	 */
13395 	dst_reg->smin_value = S64_MIN;
13396 	dst_reg->smax_value = S64_MAX;
13397 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
13398 	dst_reg->umin_value >>= umax_val;
13399 	dst_reg->umax_value >>= umin_val;
13400 
13401 	/* Its not easy to operate on alu32 bounds here because it depends
13402 	 * on bits being shifted in. Take easy way out and mark unbounded
13403 	 * so we can recalculate later from tnum.
13404 	 */
13405 	__mark_reg32_unbounded(dst_reg);
13406 	__update_reg_bounds(dst_reg);
13407 }
13408 
13409 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
13410 				  struct bpf_reg_state *src_reg)
13411 {
13412 	u64 umin_val = src_reg->u32_min_value;
13413 
13414 	/* Upon reaching here, src_known is true and
13415 	 * umax_val is equal to umin_val.
13416 	 */
13417 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
13418 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
13419 
13420 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
13421 
13422 	/* blow away the dst_reg umin_value/umax_value and rely on
13423 	 * dst_reg var_off to refine the result.
13424 	 */
13425 	dst_reg->u32_min_value = 0;
13426 	dst_reg->u32_max_value = U32_MAX;
13427 
13428 	__mark_reg64_unbounded(dst_reg);
13429 	__update_reg32_bounds(dst_reg);
13430 }
13431 
13432 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
13433 				struct bpf_reg_state *src_reg)
13434 {
13435 	u64 umin_val = src_reg->umin_value;
13436 
13437 	/* Upon reaching here, src_known is true and umax_val is equal
13438 	 * to umin_val.
13439 	 */
13440 	dst_reg->smin_value >>= umin_val;
13441 	dst_reg->smax_value >>= umin_val;
13442 
13443 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
13444 
13445 	/* blow away the dst_reg umin_value/umax_value and rely on
13446 	 * dst_reg var_off to refine the result.
13447 	 */
13448 	dst_reg->umin_value = 0;
13449 	dst_reg->umax_value = U64_MAX;
13450 
13451 	/* Its not easy to operate on alu32 bounds here because it depends
13452 	 * on bits being shifted in from upper 32-bits. Take easy way out
13453 	 * and mark unbounded so we can recalculate later from tnum.
13454 	 */
13455 	__mark_reg32_unbounded(dst_reg);
13456 	__update_reg_bounds(dst_reg);
13457 }
13458 
13459 /* WARNING: This function does calculations on 64-bit values, but the actual
13460  * execution may occur on 32-bit values. Therefore, things like bitshifts
13461  * need extra checks in the 32-bit case.
13462  */
13463 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
13464 				      struct bpf_insn *insn,
13465 				      struct bpf_reg_state *dst_reg,
13466 				      struct bpf_reg_state src_reg)
13467 {
13468 	struct bpf_reg_state *regs = cur_regs(env);
13469 	u8 opcode = BPF_OP(insn->code);
13470 	bool src_known;
13471 	s64 smin_val, smax_val;
13472 	u64 umin_val, umax_val;
13473 	s32 s32_min_val, s32_max_val;
13474 	u32 u32_min_val, u32_max_val;
13475 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
13476 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
13477 	int ret;
13478 
13479 	smin_val = src_reg.smin_value;
13480 	smax_val = src_reg.smax_value;
13481 	umin_val = src_reg.umin_value;
13482 	umax_val = src_reg.umax_value;
13483 
13484 	s32_min_val = src_reg.s32_min_value;
13485 	s32_max_val = src_reg.s32_max_value;
13486 	u32_min_val = src_reg.u32_min_value;
13487 	u32_max_val = src_reg.u32_max_value;
13488 
13489 	if (alu32) {
13490 		src_known = tnum_subreg_is_const(src_reg.var_off);
13491 		if ((src_known &&
13492 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
13493 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
13494 			/* Taint dst register if offset had invalid bounds
13495 			 * derived from e.g. dead branches.
13496 			 */
13497 			__mark_reg_unknown(env, dst_reg);
13498 			return 0;
13499 		}
13500 	} else {
13501 		src_known = tnum_is_const(src_reg.var_off);
13502 		if ((src_known &&
13503 		     (smin_val != smax_val || umin_val != umax_val)) ||
13504 		    smin_val > smax_val || umin_val > umax_val) {
13505 			/* Taint dst register if offset had invalid bounds
13506 			 * derived from e.g. dead branches.
13507 			 */
13508 			__mark_reg_unknown(env, dst_reg);
13509 			return 0;
13510 		}
13511 	}
13512 
13513 	if (!src_known &&
13514 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
13515 		__mark_reg_unknown(env, dst_reg);
13516 		return 0;
13517 	}
13518 
13519 	if (sanitize_needed(opcode)) {
13520 		ret = sanitize_val_alu(env, insn);
13521 		if (ret < 0)
13522 			return sanitize_err(env, insn, ret, NULL, NULL);
13523 	}
13524 
13525 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
13526 	 * There are two classes of instructions: The first class we track both
13527 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
13528 	 * greatest amount of precision when alu operations are mixed with jmp32
13529 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
13530 	 * and BPF_OR. This is possible because these ops have fairly easy to
13531 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
13532 	 * See alu32 verifier tests for examples. The second class of
13533 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
13534 	 * with regards to tracking sign/unsigned bounds because the bits may
13535 	 * cross subreg boundaries in the alu64 case. When this happens we mark
13536 	 * the reg unbounded in the subreg bound space and use the resulting
13537 	 * tnum to calculate an approximation of the sign/unsigned bounds.
13538 	 */
13539 	switch (opcode) {
13540 	case BPF_ADD:
13541 		scalar32_min_max_add(dst_reg, &src_reg);
13542 		scalar_min_max_add(dst_reg, &src_reg);
13543 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
13544 		break;
13545 	case BPF_SUB:
13546 		scalar32_min_max_sub(dst_reg, &src_reg);
13547 		scalar_min_max_sub(dst_reg, &src_reg);
13548 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
13549 		break;
13550 	case BPF_MUL:
13551 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
13552 		scalar32_min_max_mul(dst_reg, &src_reg);
13553 		scalar_min_max_mul(dst_reg, &src_reg);
13554 		break;
13555 	case BPF_AND:
13556 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
13557 		scalar32_min_max_and(dst_reg, &src_reg);
13558 		scalar_min_max_and(dst_reg, &src_reg);
13559 		break;
13560 	case BPF_OR:
13561 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
13562 		scalar32_min_max_or(dst_reg, &src_reg);
13563 		scalar_min_max_or(dst_reg, &src_reg);
13564 		break;
13565 	case BPF_XOR:
13566 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
13567 		scalar32_min_max_xor(dst_reg, &src_reg);
13568 		scalar_min_max_xor(dst_reg, &src_reg);
13569 		break;
13570 	case BPF_LSH:
13571 		if (umax_val >= insn_bitness) {
13572 			/* Shifts greater than 31 or 63 are undefined.
13573 			 * This includes shifts by a negative number.
13574 			 */
13575 			mark_reg_unknown(env, regs, insn->dst_reg);
13576 			break;
13577 		}
13578 		if (alu32)
13579 			scalar32_min_max_lsh(dst_reg, &src_reg);
13580 		else
13581 			scalar_min_max_lsh(dst_reg, &src_reg);
13582 		break;
13583 	case BPF_RSH:
13584 		if (umax_val >= insn_bitness) {
13585 			/* Shifts greater than 31 or 63 are undefined.
13586 			 * This includes shifts by a negative number.
13587 			 */
13588 			mark_reg_unknown(env, regs, insn->dst_reg);
13589 			break;
13590 		}
13591 		if (alu32)
13592 			scalar32_min_max_rsh(dst_reg, &src_reg);
13593 		else
13594 			scalar_min_max_rsh(dst_reg, &src_reg);
13595 		break;
13596 	case BPF_ARSH:
13597 		if (umax_val >= insn_bitness) {
13598 			/* Shifts greater than 31 or 63 are undefined.
13599 			 * This includes shifts by a negative number.
13600 			 */
13601 			mark_reg_unknown(env, regs, insn->dst_reg);
13602 			break;
13603 		}
13604 		if (alu32)
13605 			scalar32_min_max_arsh(dst_reg, &src_reg);
13606 		else
13607 			scalar_min_max_arsh(dst_reg, &src_reg);
13608 		break;
13609 	default:
13610 		mark_reg_unknown(env, regs, insn->dst_reg);
13611 		break;
13612 	}
13613 
13614 	/* ALU32 ops are zero extended into 64bit register */
13615 	if (alu32)
13616 		zext_32_to_64(dst_reg);
13617 	reg_bounds_sync(dst_reg);
13618 	return 0;
13619 }
13620 
13621 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
13622  * and var_off.
13623  */
13624 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
13625 				   struct bpf_insn *insn)
13626 {
13627 	struct bpf_verifier_state *vstate = env->cur_state;
13628 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13629 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
13630 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
13631 	u8 opcode = BPF_OP(insn->code);
13632 	int err;
13633 
13634 	dst_reg = &regs[insn->dst_reg];
13635 	src_reg = NULL;
13636 	if (dst_reg->type != SCALAR_VALUE)
13637 		ptr_reg = dst_reg;
13638 	else
13639 		/* Make sure ID is cleared otherwise dst_reg min/max could be
13640 		 * incorrectly propagated into other registers by find_equal_scalars()
13641 		 */
13642 		dst_reg->id = 0;
13643 	if (BPF_SRC(insn->code) == BPF_X) {
13644 		src_reg = &regs[insn->src_reg];
13645 		if (src_reg->type != SCALAR_VALUE) {
13646 			if (dst_reg->type != SCALAR_VALUE) {
13647 				/* Combining two pointers by any ALU op yields
13648 				 * an arbitrary scalar. Disallow all math except
13649 				 * pointer subtraction
13650 				 */
13651 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13652 					mark_reg_unknown(env, regs, insn->dst_reg);
13653 					return 0;
13654 				}
13655 				verbose(env, "R%d pointer %s pointer prohibited\n",
13656 					insn->dst_reg,
13657 					bpf_alu_string[opcode >> 4]);
13658 				return -EACCES;
13659 			} else {
13660 				/* scalar += pointer
13661 				 * This is legal, but we have to reverse our
13662 				 * src/dest handling in computing the range
13663 				 */
13664 				err = mark_chain_precision(env, insn->dst_reg);
13665 				if (err)
13666 					return err;
13667 				return adjust_ptr_min_max_vals(env, insn,
13668 							       src_reg, dst_reg);
13669 			}
13670 		} else if (ptr_reg) {
13671 			/* pointer += scalar */
13672 			err = mark_chain_precision(env, insn->src_reg);
13673 			if (err)
13674 				return err;
13675 			return adjust_ptr_min_max_vals(env, insn,
13676 						       dst_reg, src_reg);
13677 		} else if (dst_reg->precise) {
13678 			/* if dst_reg is precise, src_reg should be precise as well */
13679 			err = mark_chain_precision(env, insn->src_reg);
13680 			if (err)
13681 				return err;
13682 		}
13683 	} else {
13684 		/* Pretend the src is a reg with a known value, since we only
13685 		 * need to be able to read from this state.
13686 		 */
13687 		off_reg.type = SCALAR_VALUE;
13688 		__mark_reg_known(&off_reg, insn->imm);
13689 		src_reg = &off_reg;
13690 		if (ptr_reg) /* pointer += K */
13691 			return adjust_ptr_min_max_vals(env, insn,
13692 						       ptr_reg, src_reg);
13693 	}
13694 
13695 	/* Got here implies adding two SCALAR_VALUEs */
13696 	if (WARN_ON_ONCE(ptr_reg)) {
13697 		print_verifier_state(env, state, true);
13698 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
13699 		return -EINVAL;
13700 	}
13701 	if (WARN_ON(!src_reg)) {
13702 		print_verifier_state(env, state, true);
13703 		verbose(env, "verifier internal error: no src_reg\n");
13704 		return -EINVAL;
13705 	}
13706 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
13707 }
13708 
13709 /* check validity of 32-bit and 64-bit arithmetic operations */
13710 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
13711 {
13712 	struct bpf_reg_state *regs = cur_regs(env);
13713 	u8 opcode = BPF_OP(insn->code);
13714 	int err;
13715 
13716 	if (opcode == BPF_END || opcode == BPF_NEG) {
13717 		if (opcode == BPF_NEG) {
13718 			if (BPF_SRC(insn->code) != BPF_K ||
13719 			    insn->src_reg != BPF_REG_0 ||
13720 			    insn->off != 0 || insn->imm != 0) {
13721 				verbose(env, "BPF_NEG uses reserved fields\n");
13722 				return -EINVAL;
13723 			}
13724 		} else {
13725 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
13726 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
13727 			    (BPF_CLASS(insn->code) == BPF_ALU64 &&
13728 			     BPF_SRC(insn->code) != BPF_TO_LE)) {
13729 				verbose(env, "BPF_END uses reserved fields\n");
13730 				return -EINVAL;
13731 			}
13732 		}
13733 
13734 		/* check src operand */
13735 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13736 		if (err)
13737 			return err;
13738 
13739 		if (is_pointer_value(env, insn->dst_reg)) {
13740 			verbose(env, "R%d pointer arithmetic prohibited\n",
13741 				insn->dst_reg);
13742 			return -EACCES;
13743 		}
13744 
13745 		/* check dest operand */
13746 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
13747 		if (err)
13748 			return err;
13749 
13750 	} else if (opcode == BPF_MOV) {
13751 
13752 		if (BPF_SRC(insn->code) == BPF_X) {
13753 			if (insn->imm != 0) {
13754 				verbose(env, "BPF_MOV uses reserved fields\n");
13755 				return -EINVAL;
13756 			}
13757 
13758 			if (BPF_CLASS(insn->code) == BPF_ALU) {
13759 				if (insn->off != 0 && insn->off != 8 && insn->off != 16) {
13760 					verbose(env, "BPF_MOV uses reserved fields\n");
13761 					return -EINVAL;
13762 				}
13763 			} else {
13764 				if (insn->off != 0 && insn->off != 8 && insn->off != 16 &&
13765 				    insn->off != 32) {
13766 					verbose(env, "BPF_MOV uses reserved fields\n");
13767 					return -EINVAL;
13768 				}
13769 			}
13770 
13771 			/* check src operand */
13772 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13773 			if (err)
13774 				return err;
13775 		} else {
13776 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
13777 				verbose(env, "BPF_MOV uses reserved fields\n");
13778 				return -EINVAL;
13779 			}
13780 		}
13781 
13782 		/* check dest operand, mark as required later */
13783 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13784 		if (err)
13785 			return err;
13786 
13787 		if (BPF_SRC(insn->code) == BPF_X) {
13788 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
13789 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
13790 			bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id &&
13791 				       !tnum_is_const(src_reg->var_off);
13792 
13793 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13794 				if (insn->off == 0) {
13795 					/* case: R1 = R2
13796 					 * copy register state to dest reg
13797 					 */
13798 					if (need_id)
13799 						/* Assign src and dst registers the same ID
13800 						 * that will be used by find_equal_scalars()
13801 						 * to propagate min/max range.
13802 						 */
13803 						src_reg->id = ++env->id_gen;
13804 					copy_register_state(dst_reg, src_reg);
13805 					dst_reg->live |= REG_LIVE_WRITTEN;
13806 					dst_reg->subreg_def = DEF_NOT_SUBREG;
13807 				} else {
13808 					/* case: R1 = (s8, s16 s32)R2 */
13809 					if (is_pointer_value(env, insn->src_reg)) {
13810 						verbose(env,
13811 							"R%d sign-extension part of pointer\n",
13812 							insn->src_reg);
13813 						return -EACCES;
13814 					} else if (src_reg->type == SCALAR_VALUE) {
13815 						bool no_sext;
13816 
13817 						no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13818 						if (no_sext && need_id)
13819 							src_reg->id = ++env->id_gen;
13820 						copy_register_state(dst_reg, src_reg);
13821 						if (!no_sext)
13822 							dst_reg->id = 0;
13823 						coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
13824 						dst_reg->live |= REG_LIVE_WRITTEN;
13825 						dst_reg->subreg_def = DEF_NOT_SUBREG;
13826 					} else {
13827 						mark_reg_unknown(env, regs, insn->dst_reg);
13828 					}
13829 				}
13830 			} else {
13831 				/* R1 = (u32) R2 */
13832 				if (is_pointer_value(env, insn->src_reg)) {
13833 					verbose(env,
13834 						"R%d partial copy of pointer\n",
13835 						insn->src_reg);
13836 					return -EACCES;
13837 				} else if (src_reg->type == SCALAR_VALUE) {
13838 					if (insn->off == 0) {
13839 						bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
13840 
13841 						if (is_src_reg_u32 && need_id)
13842 							src_reg->id = ++env->id_gen;
13843 						copy_register_state(dst_reg, src_reg);
13844 						/* Make sure ID is cleared if src_reg is not in u32
13845 						 * range otherwise dst_reg min/max could be incorrectly
13846 						 * propagated into src_reg by find_equal_scalars()
13847 						 */
13848 						if (!is_src_reg_u32)
13849 							dst_reg->id = 0;
13850 						dst_reg->live |= REG_LIVE_WRITTEN;
13851 						dst_reg->subreg_def = env->insn_idx + 1;
13852 					} else {
13853 						/* case: W1 = (s8, s16)W2 */
13854 						bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13855 
13856 						if (no_sext && need_id)
13857 							src_reg->id = ++env->id_gen;
13858 						copy_register_state(dst_reg, src_reg);
13859 						if (!no_sext)
13860 							dst_reg->id = 0;
13861 						dst_reg->live |= REG_LIVE_WRITTEN;
13862 						dst_reg->subreg_def = env->insn_idx + 1;
13863 						coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
13864 					}
13865 				} else {
13866 					mark_reg_unknown(env, regs,
13867 							 insn->dst_reg);
13868 				}
13869 				zext_32_to_64(dst_reg);
13870 				reg_bounds_sync(dst_reg);
13871 			}
13872 		} else {
13873 			/* case: R = imm
13874 			 * remember the value we stored into this reg
13875 			 */
13876 			/* clear any state __mark_reg_known doesn't set */
13877 			mark_reg_unknown(env, regs, insn->dst_reg);
13878 			regs[insn->dst_reg].type = SCALAR_VALUE;
13879 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13880 				__mark_reg_known(regs + insn->dst_reg,
13881 						 insn->imm);
13882 			} else {
13883 				__mark_reg_known(regs + insn->dst_reg,
13884 						 (u32)insn->imm);
13885 			}
13886 		}
13887 
13888 	} else if (opcode > BPF_END) {
13889 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
13890 		return -EINVAL;
13891 
13892 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
13893 
13894 		if (BPF_SRC(insn->code) == BPF_X) {
13895 			if (insn->imm != 0 || insn->off > 1 ||
13896 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13897 				verbose(env, "BPF_ALU uses reserved fields\n");
13898 				return -EINVAL;
13899 			}
13900 			/* check src1 operand */
13901 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13902 			if (err)
13903 				return err;
13904 		} else {
13905 			if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
13906 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13907 				verbose(env, "BPF_ALU uses reserved fields\n");
13908 				return -EINVAL;
13909 			}
13910 		}
13911 
13912 		/* check src2 operand */
13913 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13914 		if (err)
13915 			return err;
13916 
13917 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
13918 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
13919 			verbose(env, "div by zero\n");
13920 			return -EINVAL;
13921 		}
13922 
13923 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
13924 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
13925 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
13926 
13927 			if (insn->imm < 0 || insn->imm >= size) {
13928 				verbose(env, "invalid shift %d\n", insn->imm);
13929 				return -EINVAL;
13930 			}
13931 		}
13932 
13933 		/* check dest operand */
13934 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13935 		if (err)
13936 			return err;
13937 
13938 		return adjust_reg_min_max_vals(env, insn);
13939 	}
13940 
13941 	return 0;
13942 }
13943 
13944 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
13945 				   struct bpf_reg_state *dst_reg,
13946 				   enum bpf_reg_type type,
13947 				   bool range_right_open)
13948 {
13949 	struct bpf_func_state *state;
13950 	struct bpf_reg_state *reg;
13951 	int new_range;
13952 
13953 	if (dst_reg->off < 0 ||
13954 	    (dst_reg->off == 0 && range_right_open))
13955 		/* This doesn't give us any range */
13956 		return;
13957 
13958 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
13959 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
13960 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
13961 		 * than pkt_end, but that's because it's also less than pkt.
13962 		 */
13963 		return;
13964 
13965 	new_range = dst_reg->off;
13966 	if (range_right_open)
13967 		new_range++;
13968 
13969 	/* Examples for register markings:
13970 	 *
13971 	 * pkt_data in dst register:
13972 	 *
13973 	 *   r2 = r3;
13974 	 *   r2 += 8;
13975 	 *   if (r2 > pkt_end) goto <handle exception>
13976 	 *   <access okay>
13977 	 *
13978 	 *   r2 = r3;
13979 	 *   r2 += 8;
13980 	 *   if (r2 < pkt_end) goto <access okay>
13981 	 *   <handle exception>
13982 	 *
13983 	 *   Where:
13984 	 *     r2 == dst_reg, pkt_end == src_reg
13985 	 *     r2=pkt(id=n,off=8,r=0)
13986 	 *     r3=pkt(id=n,off=0,r=0)
13987 	 *
13988 	 * pkt_data in src register:
13989 	 *
13990 	 *   r2 = r3;
13991 	 *   r2 += 8;
13992 	 *   if (pkt_end >= r2) goto <access okay>
13993 	 *   <handle exception>
13994 	 *
13995 	 *   r2 = r3;
13996 	 *   r2 += 8;
13997 	 *   if (pkt_end <= r2) goto <handle exception>
13998 	 *   <access okay>
13999 	 *
14000 	 *   Where:
14001 	 *     pkt_end == dst_reg, r2 == src_reg
14002 	 *     r2=pkt(id=n,off=8,r=0)
14003 	 *     r3=pkt(id=n,off=0,r=0)
14004 	 *
14005 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
14006 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
14007 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
14008 	 * the check.
14009 	 */
14010 
14011 	/* If our ids match, then we must have the same max_value.  And we
14012 	 * don't care about the other reg's fixed offset, since if it's too big
14013 	 * the range won't allow anything.
14014 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
14015 	 */
14016 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14017 		if (reg->type == type && reg->id == dst_reg->id)
14018 			/* keep the maximum range already checked */
14019 			reg->range = max(reg->range, new_range);
14020 	}));
14021 }
14022 
14023 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
14024 {
14025 	struct tnum subreg = tnum_subreg(reg->var_off);
14026 	s32 sval = (s32)val;
14027 
14028 	switch (opcode) {
14029 	case BPF_JEQ:
14030 		if (tnum_is_const(subreg))
14031 			return !!tnum_equals_const(subreg, val);
14032 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
14033 			return 0;
14034 		else if (sval < reg->s32_min_value || sval > reg->s32_max_value)
14035 			return 0;
14036 		break;
14037 	case BPF_JNE:
14038 		if (tnum_is_const(subreg))
14039 			return !tnum_equals_const(subreg, val);
14040 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
14041 			return 1;
14042 		else if (sval < reg->s32_min_value || sval > reg->s32_max_value)
14043 			return 1;
14044 		break;
14045 	case BPF_JSET:
14046 		if ((~subreg.mask & subreg.value) & val)
14047 			return 1;
14048 		if (!((subreg.mask | subreg.value) & val))
14049 			return 0;
14050 		break;
14051 	case BPF_JGT:
14052 		if (reg->u32_min_value > val)
14053 			return 1;
14054 		else if (reg->u32_max_value <= val)
14055 			return 0;
14056 		break;
14057 	case BPF_JSGT:
14058 		if (reg->s32_min_value > sval)
14059 			return 1;
14060 		else if (reg->s32_max_value <= sval)
14061 			return 0;
14062 		break;
14063 	case BPF_JLT:
14064 		if (reg->u32_max_value < val)
14065 			return 1;
14066 		else if (reg->u32_min_value >= val)
14067 			return 0;
14068 		break;
14069 	case BPF_JSLT:
14070 		if (reg->s32_max_value < sval)
14071 			return 1;
14072 		else if (reg->s32_min_value >= sval)
14073 			return 0;
14074 		break;
14075 	case BPF_JGE:
14076 		if (reg->u32_min_value >= val)
14077 			return 1;
14078 		else if (reg->u32_max_value < val)
14079 			return 0;
14080 		break;
14081 	case BPF_JSGE:
14082 		if (reg->s32_min_value >= sval)
14083 			return 1;
14084 		else if (reg->s32_max_value < sval)
14085 			return 0;
14086 		break;
14087 	case BPF_JLE:
14088 		if (reg->u32_max_value <= val)
14089 			return 1;
14090 		else if (reg->u32_min_value > val)
14091 			return 0;
14092 		break;
14093 	case BPF_JSLE:
14094 		if (reg->s32_max_value <= sval)
14095 			return 1;
14096 		else if (reg->s32_min_value > sval)
14097 			return 0;
14098 		break;
14099 	}
14100 
14101 	return -1;
14102 }
14103 
14104 
14105 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
14106 {
14107 	s64 sval = (s64)val;
14108 
14109 	switch (opcode) {
14110 	case BPF_JEQ:
14111 		if (tnum_is_const(reg->var_off))
14112 			return !!tnum_equals_const(reg->var_off, val);
14113 		else if (val < reg->umin_value || val > reg->umax_value)
14114 			return 0;
14115 		else if (sval < reg->smin_value || sval > reg->smax_value)
14116 			return 0;
14117 		break;
14118 	case BPF_JNE:
14119 		if (tnum_is_const(reg->var_off))
14120 			return !tnum_equals_const(reg->var_off, val);
14121 		else if (val < reg->umin_value || val > reg->umax_value)
14122 			return 1;
14123 		else if (sval < reg->smin_value || sval > reg->smax_value)
14124 			return 1;
14125 		break;
14126 	case BPF_JSET:
14127 		if ((~reg->var_off.mask & reg->var_off.value) & val)
14128 			return 1;
14129 		if (!((reg->var_off.mask | reg->var_off.value) & val))
14130 			return 0;
14131 		break;
14132 	case BPF_JGT:
14133 		if (reg->umin_value > val)
14134 			return 1;
14135 		else if (reg->umax_value <= val)
14136 			return 0;
14137 		break;
14138 	case BPF_JSGT:
14139 		if (reg->smin_value > sval)
14140 			return 1;
14141 		else if (reg->smax_value <= sval)
14142 			return 0;
14143 		break;
14144 	case BPF_JLT:
14145 		if (reg->umax_value < val)
14146 			return 1;
14147 		else if (reg->umin_value >= val)
14148 			return 0;
14149 		break;
14150 	case BPF_JSLT:
14151 		if (reg->smax_value < sval)
14152 			return 1;
14153 		else if (reg->smin_value >= sval)
14154 			return 0;
14155 		break;
14156 	case BPF_JGE:
14157 		if (reg->umin_value >= val)
14158 			return 1;
14159 		else if (reg->umax_value < val)
14160 			return 0;
14161 		break;
14162 	case BPF_JSGE:
14163 		if (reg->smin_value >= sval)
14164 			return 1;
14165 		else if (reg->smax_value < sval)
14166 			return 0;
14167 		break;
14168 	case BPF_JLE:
14169 		if (reg->umax_value <= val)
14170 			return 1;
14171 		else if (reg->umin_value > val)
14172 			return 0;
14173 		break;
14174 	case BPF_JSLE:
14175 		if (reg->smax_value <= sval)
14176 			return 1;
14177 		else if (reg->smin_value > sval)
14178 			return 0;
14179 		break;
14180 	}
14181 
14182 	return -1;
14183 }
14184 
14185 /* compute branch direction of the expression "if (reg opcode val) goto target;"
14186  * and return:
14187  *  1 - branch will be taken and "goto target" will be executed
14188  *  0 - branch will not be taken and fall-through to next insn
14189  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
14190  *      range [0,10]
14191  */
14192 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
14193 			   bool is_jmp32)
14194 {
14195 	if (__is_pointer_value(false, reg)) {
14196 		if (!reg_not_null(reg))
14197 			return -1;
14198 
14199 		/* If pointer is valid tests against zero will fail so we can
14200 		 * use this to direct branch taken.
14201 		 */
14202 		if (val != 0)
14203 			return -1;
14204 
14205 		switch (opcode) {
14206 		case BPF_JEQ:
14207 			return 0;
14208 		case BPF_JNE:
14209 			return 1;
14210 		default:
14211 			return -1;
14212 		}
14213 	}
14214 
14215 	if (is_jmp32)
14216 		return is_branch32_taken(reg, val, opcode);
14217 	return is_branch64_taken(reg, val, opcode);
14218 }
14219 
14220 static int flip_opcode(u32 opcode)
14221 {
14222 	/* How can we transform "a <op> b" into "b <op> a"? */
14223 	static const u8 opcode_flip[16] = {
14224 		/* these stay the same */
14225 		[BPF_JEQ  >> 4] = BPF_JEQ,
14226 		[BPF_JNE  >> 4] = BPF_JNE,
14227 		[BPF_JSET >> 4] = BPF_JSET,
14228 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
14229 		[BPF_JGE  >> 4] = BPF_JLE,
14230 		[BPF_JGT  >> 4] = BPF_JLT,
14231 		[BPF_JLE  >> 4] = BPF_JGE,
14232 		[BPF_JLT  >> 4] = BPF_JGT,
14233 		[BPF_JSGE >> 4] = BPF_JSLE,
14234 		[BPF_JSGT >> 4] = BPF_JSLT,
14235 		[BPF_JSLE >> 4] = BPF_JSGE,
14236 		[BPF_JSLT >> 4] = BPF_JSGT
14237 	};
14238 	return opcode_flip[opcode >> 4];
14239 }
14240 
14241 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
14242 				   struct bpf_reg_state *src_reg,
14243 				   u8 opcode)
14244 {
14245 	struct bpf_reg_state *pkt;
14246 
14247 	if (src_reg->type == PTR_TO_PACKET_END) {
14248 		pkt = dst_reg;
14249 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
14250 		pkt = src_reg;
14251 		opcode = flip_opcode(opcode);
14252 	} else {
14253 		return -1;
14254 	}
14255 
14256 	if (pkt->range >= 0)
14257 		return -1;
14258 
14259 	switch (opcode) {
14260 	case BPF_JLE:
14261 		/* pkt <= pkt_end */
14262 		fallthrough;
14263 	case BPF_JGT:
14264 		/* pkt > pkt_end */
14265 		if (pkt->range == BEYOND_PKT_END)
14266 			/* pkt has at last one extra byte beyond pkt_end */
14267 			return opcode == BPF_JGT;
14268 		break;
14269 	case BPF_JLT:
14270 		/* pkt < pkt_end */
14271 		fallthrough;
14272 	case BPF_JGE:
14273 		/* pkt >= pkt_end */
14274 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
14275 			return opcode == BPF_JGE;
14276 		break;
14277 	}
14278 	return -1;
14279 }
14280 
14281 /* Adjusts the register min/max values in the case that the dst_reg is the
14282  * variable register that we are working on, and src_reg is a constant or we're
14283  * simply doing a BPF_K check.
14284  * In JEQ/JNE cases we also adjust the var_off values.
14285  */
14286 static void reg_set_min_max(struct bpf_reg_state *true_reg,
14287 			    struct bpf_reg_state *false_reg,
14288 			    u64 val, u32 val32,
14289 			    u8 opcode, bool is_jmp32)
14290 {
14291 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
14292 	struct tnum false_64off = false_reg->var_off;
14293 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
14294 	struct tnum true_64off = true_reg->var_off;
14295 	s64 sval = (s64)val;
14296 	s32 sval32 = (s32)val32;
14297 
14298 	/* If the dst_reg is a pointer, we can't learn anything about its
14299 	 * variable offset from the compare (unless src_reg were a pointer into
14300 	 * the same object, but we don't bother with that.
14301 	 * Since false_reg and true_reg have the same type by construction, we
14302 	 * only need to check one of them for pointerness.
14303 	 */
14304 	if (__is_pointer_value(false, false_reg))
14305 		return;
14306 
14307 	switch (opcode) {
14308 	/* JEQ/JNE comparison doesn't change the register equivalence.
14309 	 *
14310 	 * r1 = r2;
14311 	 * if (r1 == 42) goto label;
14312 	 * ...
14313 	 * label: // here both r1 and r2 are known to be 42.
14314 	 *
14315 	 * Hence when marking register as known preserve it's ID.
14316 	 */
14317 	case BPF_JEQ:
14318 		if (is_jmp32) {
14319 			__mark_reg32_known(true_reg, val32);
14320 			true_32off = tnum_subreg(true_reg->var_off);
14321 		} else {
14322 			___mark_reg_known(true_reg, val);
14323 			true_64off = true_reg->var_off;
14324 		}
14325 		break;
14326 	case BPF_JNE:
14327 		if (is_jmp32) {
14328 			__mark_reg32_known(false_reg, val32);
14329 			false_32off = tnum_subreg(false_reg->var_off);
14330 		} else {
14331 			___mark_reg_known(false_reg, val);
14332 			false_64off = false_reg->var_off;
14333 		}
14334 		break;
14335 	case BPF_JSET:
14336 		if (is_jmp32) {
14337 			false_32off = tnum_and(false_32off, tnum_const(~val32));
14338 			if (is_power_of_2(val32))
14339 				true_32off = tnum_or(true_32off,
14340 						     tnum_const(val32));
14341 		} else {
14342 			false_64off = tnum_and(false_64off, tnum_const(~val));
14343 			if (is_power_of_2(val))
14344 				true_64off = tnum_or(true_64off,
14345 						     tnum_const(val));
14346 		}
14347 		break;
14348 	case BPF_JGE:
14349 	case BPF_JGT:
14350 	{
14351 		if (is_jmp32) {
14352 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
14353 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
14354 
14355 			false_reg->u32_max_value = min(false_reg->u32_max_value,
14356 						       false_umax);
14357 			true_reg->u32_min_value = max(true_reg->u32_min_value,
14358 						      true_umin);
14359 		} else {
14360 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
14361 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
14362 
14363 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
14364 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
14365 		}
14366 		break;
14367 	}
14368 	case BPF_JSGE:
14369 	case BPF_JSGT:
14370 	{
14371 		if (is_jmp32) {
14372 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
14373 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
14374 
14375 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
14376 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
14377 		} else {
14378 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
14379 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
14380 
14381 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
14382 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
14383 		}
14384 		break;
14385 	}
14386 	case BPF_JLE:
14387 	case BPF_JLT:
14388 	{
14389 		if (is_jmp32) {
14390 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
14391 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
14392 
14393 			false_reg->u32_min_value = max(false_reg->u32_min_value,
14394 						       false_umin);
14395 			true_reg->u32_max_value = min(true_reg->u32_max_value,
14396 						      true_umax);
14397 		} else {
14398 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
14399 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
14400 
14401 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
14402 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
14403 		}
14404 		break;
14405 	}
14406 	case BPF_JSLE:
14407 	case BPF_JSLT:
14408 	{
14409 		if (is_jmp32) {
14410 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
14411 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
14412 
14413 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
14414 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
14415 		} else {
14416 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
14417 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
14418 
14419 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
14420 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
14421 		}
14422 		break;
14423 	}
14424 	default:
14425 		return;
14426 	}
14427 
14428 	if (is_jmp32) {
14429 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
14430 					     tnum_subreg(false_32off));
14431 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
14432 					    tnum_subreg(true_32off));
14433 		__reg_combine_32_into_64(false_reg);
14434 		__reg_combine_32_into_64(true_reg);
14435 	} else {
14436 		false_reg->var_off = false_64off;
14437 		true_reg->var_off = true_64off;
14438 		__reg_combine_64_into_32(false_reg);
14439 		__reg_combine_64_into_32(true_reg);
14440 	}
14441 }
14442 
14443 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
14444  * the variable reg.
14445  */
14446 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
14447 				struct bpf_reg_state *false_reg,
14448 				u64 val, u32 val32,
14449 				u8 opcode, bool is_jmp32)
14450 {
14451 	opcode = flip_opcode(opcode);
14452 	/* This uses zero as "not present in table"; luckily the zero opcode,
14453 	 * BPF_JA, can't get here.
14454 	 */
14455 	if (opcode)
14456 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
14457 }
14458 
14459 /* Regs are known to be equal, so intersect their min/max/var_off */
14460 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
14461 				  struct bpf_reg_state *dst_reg)
14462 {
14463 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
14464 							dst_reg->umin_value);
14465 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
14466 							dst_reg->umax_value);
14467 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
14468 							dst_reg->smin_value);
14469 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
14470 							dst_reg->smax_value);
14471 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
14472 							     dst_reg->var_off);
14473 	reg_bounds_sync(src_reg);
14474 	reg_bounds_sync(dst_reg);
14475 }
14476 
14477 static void reg_combine_min_max(struct bpf_reg_state *true_src,
14478 				struct bpf_reg_state *true_dst,
14479 				struct bpf_reg_state *false_src,
14480 				struct bpf_reg_state *false_dst,
14481 				u8 opcode)
14482 {
14483 	switch (opcode) {
14484 	case BPF_JEQ:
14485 		__reg_combine_min_max(true_src, true_dst);
14486 		break;
14487 	case BPF_JNE:
14488 		__reg_combine_min_max(false_src, false_dst);
14489 		break;
14490 	}
14491 }
14492 
14493 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
14494 				 struct bpf_reg_state *reg, u32 id,
14495 				 bool is_null)
14496 {
14497 	if (type_may_be_null(reg->type) && reg->id == id &&
14498 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
14499 		/* Old offset (both fixed and variable parts) should have been
14500 		 * known-zero, because we don't allow pointer arithmetic on
14501 		 * pointers that might be NULL. If we see this happening, don't
14502 		 * convert the register.
14503 		 *
14504 		 * But in some cases, some helpers that return local kptrs
14505 		 * advance offset for the returned pointer. In those cases, it
14506 		 * is fine to expect to see reg->off.
14507 		 */
14508 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
14509 			return;
14510 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
14511 		    WARN_ON_ONCE(reg->off))
14512 			return;
14513 
14514 		if (is_null) {
14515 			reg->type = SCALAR_VALUE;
14516 			/* We don't need id and ref_obj_id from this point
14517 			 * onwards anymore, thus we should better reset it,
14518 			 * so that state pruning has chances to take effect.
14519 			 */
14520 			reg->id = 0;
14521 			reg->ref_obj_id = 0;
14522 
14523 			return;
14524 		}
14525 
14526 		mark_ptr_not_null_reg(reg);
14527 
14528 		if (!reg_may_point_to_spin_lock(reg)) {
14529 			/* For not-NULL ptr, reg->ref_obj_id will be reset
14530 			 * in release_reference().
14531 			 *
14532 			 * reg->id is still used by spin_lock ptr. Other
14533 			 * than spin_lock ptr type, reg->id can be reset.
14534 			 */
14535 			reg->id = 0;
14536 		}
14537 	}
14538 }
14539 
14540 /* The logic is similar to find_good_pkt_pointers(), both could eventually
14541  * be folded together at some point.
14542  */
14543 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
14544 				  bool is_null)
14545 {
14546 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
14547 	struct bpf_reg_state *regs = state->regs, *reg;
14548 	u32 ref_obj_id = regs[regno].ref_obj_id;
14549 	u32 id = regs[regno].id;
14550 
14551 	if (ref_obj_id && ref_obj_id == id && is_null)
14552 		/* regs[regno] is in the " == NULL" branch.
14553 		 * No one could have freed the reference state before
14554 		 * doing the NULL check.
14555 		 */
14556 		WARN_ON_ONCE(release_reference_state(state, id));
14557 
14558 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14559 		mark_ptr_or_null_reg(state, reg, id, is_null);
14560 	}));
14561 }
14562 
14563 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
14564 				   struct bpf_reg_state *dst_reg,
14565 				   struct bpf_reg_state *src_reg,
14566 				   struct bpf_verifier_state *this_branch,
14567 				   struct bpf_verifier_state *other_branch)
14568 {
14569 	if (BPF_SRC(insn->code) != BPF_X)
14570 		return false;
14571 
14572 	/* Pointers are always 64-bit. */
14573 	if (BPF_CLASS(insn->code) == BPF_JMP32)
14574 		return false;
14575 
14576 	switch (BPF_OP(insn->code)) {
14577 	case BPF_JGT:
14578 		if ((dst_reg->type == PTR_TO_PACKET &&
14579 		     src_reg->type == PTR_TO_PACKET_END) ||
14580 		    (dst_reg->type == PTR_TO_PACKET_META &&
14581 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14582 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
14583 			find_good_pkt_pointers(this_branch, dst_reg,
14584 					       dst_reg->type, false);
14585 			mark_pkt_end(other_branch, insn->dst_reg, true);
14586 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14587 			    src_reg->type == PTR_TO_PACKET) ||
14588 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14589 			    src_reg->type == PTR_TO_PACKET_META)) {
14590 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
14591 			find_good_pkt_pointers(other_branch, src_reg,
14592 					       src_reg->type, true);
14593 			mark_pkt_end(this_branch, insn->src_reg, false);
14594 		} else {
14595 			return false;
14596 		}
14597 		break;
14598 	case BPF_JLT:
14599 		if ((dst_reg->type == PTR_TO_PACKET &&
14600 		     src_reg->type == PTR_TO_PACKET_END) ||
14601 		    (dst_reg->type == PTR_TO_PACKET_META &&
14602 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14603 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
14604 			find_good_pkt_pointers(other_branch, dst_reg,
14605 					       dst_reg->type, true);
14606 			mark_pkt_end(this_branch, insn->dst_reg, false);
14607 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14608 			    src_reg->type == PTR_TO_PACKET) ||
14609 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14610 			    src_reg->type == PTR_TO_PACKET_META)) {
14611 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
14612 			find_good_pkt_pointers(this_branch, src_reg,
14613 					       src_reg->type, false);
14614 			mark_pkt_end(other_branch, insn->src_reg, true);
14615 		} else {
14616 			return false;
14617 		}
14618 		break;
14619 	case BPF_JGE:
14620 		if ((dst_reg->type == PTR_TO_PACKET &&
14621 		     src_reg->type == PTR_TO_PACKET_END) ||
14622 		    (dst_reg->type == PTR_TO_PACKET_META &&
14623 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14624 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
14625 			find_good_pkt_pointers(this_branch, dst_reg,
14626 					       dst_reg->type, true);
14627 			mark_pkt_end(other_branch, insn->dst_reg, false);
14628 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14629 			    src_reg->type == PTR_TO_PACKET) ||
14630 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14631 			    src_reg->type == PTR_TO_PACKET_META)) {
14632 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
14633 			find_good_pkt_pointers(other_branch, src_reg,
14634 					       src_reg->type, false);
14635 			mark_pkt_end(this_branch, insn->src_reg, true);
14636 		} else {
14637 			return false;
14638 		}
14639 		break;
14640 	case BPF_JLE:
14641 		if ((dst_reg->type == PTR_TO_PACKET &&
14642 		     src_reg->type == PTR_TO_PACKET_END) ||
14643 		    (dst_reg->type == PTR_TO_PACKET_META &&
14644 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14645 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
14646 			find_good_pkt_pointers(other_branch, dst_reg,
14647 					       dst_reg->type, false);
14648 			mark_pkt_end(this_branch, insn->dst_reg, true);
14649 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14650 			    src_reg->type == PTR_TO_PACKET) ||
14651 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14652 			    src_reg->type == PTR_TO_PACKET_META)) {
14653 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
14654 			find_good_pkt_pointers(this_branch, src_reg,
14655 					       src_reg->type, true);
14656 			mark_pkt_end(other_branch, insn->src_reg, false);
14657 		} else {
14658 			return false;
14659 		}
14660 		break;
14661 	default:
14662 		return false;
14663 	}
14664 
14665 	return true;
14666 }
14667 
14668 static void find_equal_scalars(struct bpf_verifier_state *vstate,
14669 			       struct bpf_reg_state *known_reg)
14670 {
14671 	struct bpf_func_state *state;
14672 	struct bpf_reg_state *reg;
14673 
14674 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14675 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
14676 			copy_register_state(reg, known_reg);
14677 	}));
14678 }
14679 
14680 static int check_cond_jmp_op(struct bpf_verifier_env *env,
14681 			     struct bpf_insn *insn, int *insn_idx)
14682 {
14683 	struct bpf_verifier_state *this_branch = env->cur_state;
14684 	struct bpf_verifier_state *other_branch;
14685 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
14686 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
14687 	struct bpf_reg_state *eq_branch_regs;
14688 	u8 opcode = BPF_OP(insn->code);
14689 	bool is_jmp32;
14690 	int pred = -1;
14691 	int err;
14692 
14693 	/* Only conditional jumps are expected to reach here. */
14694 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
14695 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
14696 		return -EINVAL;
14697 	}
14698 
14699 	/* check src2 operand */
14700 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14701 	if (err)
14702 		return err;
14703 
14704 	dst_reg = &regs[insn->dst_reg];
14705 	if (BPF_SRC(insn->code) == BPF_X) {
14706 		if (insn->imm != 0) {
14707 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14708 			return -EINVAL;
14709 		}
14710 
14711 		/* check src1 operand */
14712 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14713 		if (err)
14714 			return err;
14715 
14716 		src_reg = &regs[insn->src_reg];
14717 		if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
14718 		    is_pointer_value(env, insn->src_reg)) {
14719 			verbose(env, "R%d pointer comparison prohibited\n",
14720 				insn->src_reg);
14721 			return -EACCES;
14722 		}
14723 	} else {
14724 		if (insn->src_reg != BPF_REG_0) {
14725 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14726 			return -EINVAL;
14727 		}
14728 	}
14729 
14730 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
14731 
14732 	if (BPF_SRC(insn->code) == BPF_K) {
14733 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
14734 	} else if (src_reg->type == SCALAR_VALUE &&
14735 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
14736 		pred = is_branch_taken(dst_reg,
14737 				       tnum_subreg(src_reg->var_off).value,
14738 				       opcode,
14739 				       is_jmp32);
14740 	} else if (src_reg->type == SCALAR_VALUE &&
14741 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
14742 		pred = is_branch_taken(dst_reg,
14743 				       src_reg->var_off.value,
14744 				       opcode,
14745 				       is_jmp32);
14746 	} else if (dst_reg->type == SCALAR_VALUE &&
14747 		   is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) {
14748 		pred = is_branch_taken(src_reg,
14749 				       tnum_subreg(dst_reg->var_off).value,
14750 				       flip_opcode(opcode),
14751 				       is_jmp32);
14752 	} else if (dst_reg->type == SCALAR_VALUE &&
14753 		   !is_jmp32 && tnum_is_const(dst_reg->var_off)) {
14754 		pred = is_branch_taken(src_reg,
14755 				       dst_reg->var_off.value,
14756 				       flip_opcode(opcode),
14757 				       is_jmp32);
14758 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
14759 		   reg_is_pkt_pointer_any(src_reg) &&
14760 		   !is_jmp32) {
14761 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
14762 	}
14763 
14764 	if (pred >= 0) {
14765 		/* If we get here with a dst_reg pointer type it is because
14766 		 * above is_branch_taken() special cased the 0 comparison.
14767 		 */
14768 		if (!__is_pointer_value(false, dst_reg))
14769 			err = mark_chain_precision(env, insn->dst_reg);
14770 		if (BPF_SRC(insn->code) == BPF_X && !err &&
14771 		    !__is_pointer_value(false, src_reg))
14772 			err = mark_chain_precision(env, insn->src_reg);
14773 		if (err)
14774 			return err;
14775 	}
14776 
14777 	if (pred == 1) {
14778 		/* Only follow the goto, ignore fall-through. If needed, push
14779 		 * the fall-through branch for simulation under speculative
14780 		 * execution.
14781 		 */
14782 		if (!env->bypass_spec_v1 &&
14783 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
14784 					       *insn_idx))
14785 			return -EFAULT;
14786 		if (env->log.level & BPF_LOG_LEVEL)
14787 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
14788 		*insn_idx += insn->off;
14789 		return 0;
14790 	} else if (pred == 0) {
14791 		/* Only follow the fall-through branch, since that's where the
14792 		 * program will go. If needed, push the goto branch for
14793 		 * simulation under speculative execution.
14794 		 */
14795 		if (!env->bypass_spec_v1 &&
14796 		    !sanitize_speculative_path(env, insn,
14797 					       *insn_idx + insn->off + 1,
14798 					       *insn_idx))
14799 			return -EFAULT;
14800 		if (env->log.level & BPF_LOG_LEVEL)
14801 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
14802 		return 0;
14803 	}
14804 
14805 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
14806 				  false);
14807 	if (!other_branch)
14808 		return -EFAULT;
14809 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
14810 
14811 	/* detect if we are comparing against a constant value so we can adjust
14812 	 * our min/max values for our dst register.
14813 	 * this is only legit if both are scalars (or pointers to the same
14814 	 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
14815 	 * because otherwise the different base pointers mean the offsets aren't
14816 	 * comparable.
14817 	 */
14818 	if (BPF_SRC(insn->code) == BPF_X) {
14819 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
14820 
14821 		if (dst_reg->type == SCALAR_VALUE &&
14822 		    src_reg->type == SCALAR_VALUE) {
14823 			if (tnum_is_const(src_reg->var_off) ||
14824 			    (is_jmp32 &&
14825 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
14826 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
14827 						dst_reg,
14828 						src_reg->var_off.value,
14829 						tnum_subreg(src_reg->var_off).value,
14830 						opcode, is_jmp32);
14831 			else if (tnum_is_const(dst_reg->var_off) ||
14832 				 (is_jmp32 &&
14833 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
14834 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
14835 						    src_reg,
14836 						    dst_reg->var_off.value,
14837 						    tnum_subreg(dst_reg->var_off).value,
14838 						    opcode, is_jmp32);
14839 			else if (!is_jmp32 &&
14840 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
14841 				/* Comparing for equality, we can combine knowledge */
14842 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
14843 						    &other_branch_regs[insn->dst_reg],
14844 						    src_reg, dst_reg, opcode);
14845 			if (src_reg->id &&
14846 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
14847 				find_equal_scalars(this_branch, src_reg);
14848 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
14849 			}
14850 
14851 		}
14852 	} else if (dst_reg->type == SCALAR_VALUE) {
14853 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
14854 					dst_reg, insn->imm, (u32)insn->imm,
14855 					opcode, is_jmp32);
14856 	}
14857 
14858 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
14859 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
14860 		find_equal_scalars(this_branch, dst_reg);
14861 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
14862 	}
14863 
14864 	/* if one pointer register is compared to another pointer
14865 	 * register check if PTR_MAYBE_NULL could be lifted.
14866 	 * E.g. register A - maybe null
14867 	 *      register B - not null
14868 	 * for JNE A, B, ... - A is not null in the false branch;
14869 	 * for JEQ A, B, ... - A is not null in the true branch.
14870 	 *
14871 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
14872 	 * not need to be null checked by the BPF program, i.e.,
14873 	 * could be null even without PTR_MAYBE_NULL marking, so
14874 	 * only propagate nullness when neither reg is that type.
14875 	 */
14876 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
14877 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
14878 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
14879 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
14880 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
14881 		eq_branch_regs = NULL;
14882 		switch (opcode) {
14883 		case BPF_JEQ:
14884 			eq_branch_regs = other_branch_regs;
14885 			break;
14886 		case BPF_JNE:
14887 			eq_branch_regs = regs;
14888 			break;
14889 		default:
14890 			/* do nothing */
14891 			break;
14892 		}
14893 		if (eq_branch_regs) {
14894 			if (type_may_be_null(src_reg->type))
14895 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
14896 			else
14897 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
14898 		}
14899 	}
14900 
14901 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
14902 	 * NOTE: these optimizations below are related with pointer comparison
14903 	 *       which will never be JMP32.
14904 	 */
14905 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
14906 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
14907 	    type_may_be_null(dst_reg->type)) {
14908 		/* Mark all identical registers in each branch as either
14909 		 * safe or unknown depending R == 0 or R != 0 conditional.
14910 		 */
14911 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
14912 				      opcode == BPF_JNE);
14913 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
14914 				      opcode == BPF_JEQ);
14915 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
14916 					   this_branch, other_branch) &&
14917 		   is_pointer_value(env, insn->dst_reg)) {
14918 		verbose(env, "R%d pointer comparison prohibited\n",
14919 			insn->dst_reg);
14920 		return -EACCES;
14921 	}
14922 	if (env->log.level & BPF_LOG_LEVEL)
14923 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
14924 	return 0;
14925 }
14926 
14927 /* verify BPF_LD_IMM64 instruction */
14928 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
14929 {
14930 	struct bpf_insn_aux_data *aux = cur_aux(env);
14931 	struct bpf_reg_state *regs = cur_regs(env);
14932 	struct bpf_reg_state *dst_reg;
14933 	struct bpf_map *map;
14934 	int err;
14935 
14936 	if (BPF_SIZE(insn->code) != BPF_DW) {
14937 		verbose(env, "invalid BPF_LD_IMM insn\n");
14938 		return -EINVAL;
14939 	}
14940 	if (insn->off != 0) {
14941 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
14942 		return -EINVAL;
14943 	}
14944 
14945 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
14946 	if (err)
14947 		return err;
14948 
14949 	dst_reg = &regs[insn->dst_reg];
14950 	if (insn->src_reg == 0) {
14951 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
14952 
14953 		dst_reg->type = SCALAR_VALUE;
14954 		__mark_reg_known(&regs[insn->dst_reg], imm);
14955 		return 0;
14956 	}
14957 
14958 	/* All special src_reg cases are listed below. From this point onwards
14959 	 * we either succeed and assign a corresponding dst_reg->type after
14960 	 * zeroing the offset, or fail and reject the program.
14961 	 */
14962 	mark_reg_known_zero(env, regs, insn->dst_reg);
14963 
14964 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
14965 		dst_reg->type = aux->btf_var.reg_type;
14966 		switch (base_type(dst_reg->type)) {
14967 		case PTR_TO_MEM:
14968 			dst_reg->mem_size = aux->btf_var.mem_size;
14969 			break;
14970 		case PTR_TO_BTF_ID:
14971 			dst_reg->btf = aux->btf_var.btf;
14972 			dst_reg->btf_id = aux->btf_var.btf_id;
14973 			break;
14974 		default:
14975 			verbose(env, "bpf verifier is misconfigured\n");
14976 			return -EFAULT;
14977 		}
14978 		return 0;
14979 	}
14980 
14981 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
14982 		struct bpf_prog_aux *aux = env->prog->aux;
14983 		u32 subprogno = find_subprog(env,
14984 					     env->insn_idx + insn->imm + 1);
14985 
14986 		if (!aux->func_info) {
14987 			verbose(env, "missing btf func_info\n");
14988 			return -EINVAL;
14989 		}
14990 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
14991 			verbose(env, "callback function not static\n");
14992 			return -EINVAL;
14993 		}
14994 
14995 		dst_reg->type = PTR_TO_FUNC;
14996 		dst_reg->subprogno = subprogno;
14997 		return 0;
14998 	}
14999 
15000 	map = env->used_maps[aux->map_index];
15001 	dst_reg->map_ptr = map;
15002 
15003 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
15004 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
15005 		dst_reg->type = PTR_TO_MAP_VALUE;
15006 		dst_reg->off = aux->map_off;
15007 		WARN_ON_ONCE(map->max_entries != 1);
15008 		/* We want reg->id to be same (0) as map_value is not distinct */
15009 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
15010 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
15011 		dst_reg->type = CONST_PTR_TO_MAP;
15012 	} else {
15013 		verbose(env, "bpf verifier is misconfigured\n");
15014 		return -EINVAL;
15015 	}
15016 
15017 	return 0;
15018 }
15019 
15020 static bool may_access_skb(enum bpf_prog_type type)
15021 {
15022 	switch (type) {
15023 	case BPF_PROG_TYPE_SOCKET_FILTER:
15024 	case BPF_PROG_TYPE_SCHED_CLS:
15025 	case BPF_PROG_TYPE_SCHED_ACT:
15026 		return true;
15027 	default:
15028 		return false;
15029 	}
15030 }
15031 
15032 /* verify safety of LD_ABS|LD_IND instructions:
15033  * - they can only appear in the programs where ctx == skb
15034  * - since they are wrappers of function calls, they scratch R1-R5 registers,
15035  *   preserve R6-R9, and store return value into R0
15036  *
15037  * Implicit input:
15038  *   ctx == skb == R6 == CTX
15039  *
15040  * Explicit input:
15041  *   SRC == any register
15042  *   IMM == 32-bit immediate
15043  *
15044  * Output:
15045  *   R0 - 8/16/32-bit skb data converted to cpu endianness
15046  */
15047 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
15048 {
15049 	struct bpf_reg_state *regs = cur_regs(env);
15050 	static const int ctx_reg = BPF_REG_6;
15051 	u8 mode = BPF_MODE(insn->code);
15052 	int i, err;
15053 
15054 	if (!may_access_skb(resolve_prog_type(env->prog))) {
15055 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
15056 		return -EINVAL;
15057 	}
15058 
15059 	if (!env->ops->gen_ld_abs) {
15060 		verbose(env, "bpf verifier is misconfigured\n");
15061 		return -EINVAL;
15062 	}
15063 
15064 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
15065 	    BPF_SIZE(insn->code) == BPF_DW ||
15066 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
15067 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
15068 		return -EINVAL;
15069 	}
15070 
15071 	/* check whether implicit source operand (register R6) is readable */
15072 	err = check_reg_arg(env, ctx_reg, SRC_OP);
15073 	if (err)
15074 		return err;
15075 
15076 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
15077 	 * gen_ld_abs() may terminate the program at runtime, leading to
15078 	 * reference leak.
15079 	 */
15080 	err = check_reference_leak(env, false);
15081 	if (err) {
15082 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
15083 		return err;
15084 	}
15085 
15086 	if (env->cur_state->active_lock.ptr) {
15087 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
15088 		return -EINVAL;
15089 	}
15090 
15091 	if (env->cur_state->active_rcu_lock) {
15092 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
15093 		return -EINVAL;
15094 	}
15095 
15096 	if (regs[ctx_reg].type != PTR_TO_CTX) {
15097 		verbose(env,
15098 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
15099 		return -EINVAL;
15100 	}
15101 
15102 	if (mode == BPF_IND) {
15103 		/* check explicit source operand */
15104 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
15105 		if (err)
15106 			return err;
15107 	}
15108 
15109 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
15110 	if (err < 0)
15111 		return err;
15112 
15113 	/* reset caller saved regs to unreadable */
15114 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
15115 		mark_reg_not_init(env, regs, caller_saved[i]);
15116 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
15117 	}
15118 
15119 	/* mark destination R0 register as readable, since it contains
15120 	 * the value fetched from the packet.
15121 	 * Already marked as written above.
15122 	 */
15123 	mark_reg_unknown(env, regs, BPF_REG_0);
15124 	/* ld_abs load up to 32-bit skb data. */
15125 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
15126 	return 0;
15127 }
15128 
15129 static int check_return_code(struct bpf_verifier_env *env, int regno)
15130 {
15131 	struct tnum enforce_attach_type_range = tnum_unknown;
15132 	const struct bpf_prog *prog = env->prog;
15133 	struct bpf_reg_state *reg;
15134 	struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0);
15135 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
15136 	int err;
15137 	struct bpf_func_state *frame = env->cur_state->frame[0];
15138 	const bool is_subprog = frame->subprogno;
15139 
15140 	/* LSM and struct_ops func-ptr's return type could be "void" */
15141 	if (!is_subprog || frame->in_exception_callback_fn) {
15142 		switch (prog_type) {
15143 		case BPF_PROG_TYPE_LSM:
15144 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
15145 				/* See below, can be 0 or 0-1 depending on hook. */
15146 				break;
15147 			fallthrough;
15148 		case BPF_PROG_TYPE_STRUCT_OPS:
15149 			if (!prog->aux->attach_func_proto->type)
15150 				return 0;
15151 			break;
15152 		default:
15153 			break;
15154 		}
15155 	}
15156 
15157 	/* eBPF calling convention is such that R0 is used
15158 	 * to return the value from eBPF program.
15159 	 * Make sure that it's readable at this time
15160 	 * of bpf_exit, which means that program wrote
15161 	 * something into it earlier
15162 	 */
15163 	err = check_reg_arg(env, regno, SRC_OP);
15164 	if (err)
15165 		return err;
15166 
15167 	if (is_pointer_value(env, regno)) {
15168 		verbose(env, "R%d leaks addr as return value\n", regno);
15169 		return -EACCES;
15170 	}
15171 
15172 	reg = cur_regs(env) + regno;
15173 
15174 	if (frame->in_async_callback_fn) {
15175 		/* enforce return zero from async callbacks like timer */
15176 		if (reg->type != SCALAR_VALUE) {
15177 			verbose(env, "In async callback the register R%d is not a known value (%s)\n",
15178 				regno, reg_type_str(env, reg->type));
15179 			return -EINVAL;
15180 		}
15181 
15182 		if (!tnum_in(const_0, reg->var_off)) {
15183 			verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0");
15184 			return -EINVAL;
15185 		}
15186 		return 0;
15187 	}
15188 
15189 	if (is_subprog && !frame->in_exception_callback_fn) {
15190 		if (reg->type != SCALAR_VALUE) {
15191 			verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n",
15192 				regno, reg_type_str(env, reg->type));
15193 			return -EINVAL;
15194 		}
15195 		return 0;
15196 	}
15197 
15198 	switch (prog_type) {
15199 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
15200 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
15201 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
15202 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG ||
15203 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
15204 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
15205 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME ||
15206 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
15207 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME ||
15208 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME)
15209 			range = tnum_range(1, 1);
15210 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
15211 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
15212 			range = tnum_range(0, 3);
15213 		break;
15214 	case BPF_PROG_TYPE_CGROUP_SKB:
15215 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
15216 			range = tnum_range(0, 3);
15217 			enforce_attach_type_range = tnum_range(2, 3);
15218 		}
15219 		break;
15220 	case BPF_PROG_TYPE_CGROUP_SOCK:
15221 	case BPF_PROG_TYPE_SOCK_OPS:
15222 	case BPF_PROG_TYPE_CGROUP_DEVICE:
15223 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
15224 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
15225 		break;
15226 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
15227 		if (!env->prog->aux->attach_btf_id)
15228 			return 0;
15229 		range = tnum_const(0);
15230 		break;
15231 	case BPF_PROG_TYPE_TRACING:
15232 		switch (env->prog->expected_attach_type) {
15233 		case BPF_TRACE_FENTRY:
15234 		case BPF_TRACE_FEXIT:
15235 			range = tnum_const(0);
15236 			break;
15237 		case BPF_TRACE_RAW_TP:
15238 		case BPF_MODIFY_RETURN:
15239 			return 0;
15240 		case BPF_TRACE_ITER:
15241 			break;
15242 		default:
15243 			return -ENOTSUPP;
15244 		}
15245 		break;
15246 	case BPF_PROG_TYPE_SK_LOOKUP:
15247 		range = tnum_range(SK_DROP, SK_PASS);
15248 		break;
15249 
15250 	case BPF_PROG_TYPE_LSM:
15251 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
15252 			/* Regular BPF_PROG_TYPE_LSM programs can return
15253 			 * any value.
15254 			 */
15255 			return 0;
15256 		}
15257 		if (!env->prog->aux->attach_func_proto->type) {
15258 			/* Make sure programs that attach to void
15259 			 * hooks don't try to modify return value.
15260 			 */
15261 			range = tnum_range(1, 1);
15262 		}
15263 		break;
15264 
15265 	case BPF_PROG_TYPE_NETFILTER:
15266 		range = tnum_range(NF_DROP, NF_ACCEPT);
15267 		break;
15268 	case BPF_PROG_TYPE_EXT:
15269 		/* freplace program can return anything as its return value
15270 		 * depends on the to-be-replaced kernel func or bpf program.
15271 		 */
15272 	default:
15273 		return 0;
15274 	}
15275 
15276 	if (reg->type != SCALAR_VALUE) {
15277 		verbose(env, "At program exit the register R%d is not a known value (%s)\n",
15278 			regno, reg_type_str(env, reg->type));
15279 		return -EINVAL;
15280 	}
15281 
15282 	if (!tnum_in(range, reg->var_off)) {
15283 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
15284 		if (prog->expected_attach_type == BPF_LSM_CGROUP &&
15285 		    prog_type == BPF_PROG_TYPE_LSM &&
15286 		    !prog->aux->attach_func_proto->type)
15287 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
15288 		return -EINVAL;
15289 	}
15290 
15291 	if (!tnum_is_unknown(enforce_attach_type_range) &&
15292 	    tnum_in(enforce_attach_type_range, reg->var_off))
15293 		env->prog->enforce_expected_attach_type = 1;
15294 	return 0;
15295 }
15296 
15297 /* non-recursive DFS pseudo code
15298  * 1  procedure DFS-iterative(G,v):
15299  * 2      label v as discovered
15300  * 3      let S be a stack
15301  * 4      S.push(v)
15302  * 5      while S is not empty
15303  * 6            t <- S.peek()
15304  * 7            if t is what we're looking for:
15305  * 8                return t
15306  * 9            for all edges e in G.adjacentEdges(t) do
15307  * 10               if edge e is already labelled
15308  * 11                   continue with the next edge
15309  * 12               w <- G.adjacentVertex(t,e)
15310  * 13               if vertex w is not discovered and not explored
15311  * 14                   label e as tree-edge
15312  * 15                   label w as discovered
15313  * 16                   S.push(w)
15314  * 17                   continue at 5
15315  * 18               else if vertex w is discovered
15316  * 19                   label e as back-edge
15317  * 20               else
15318  * 21                   // vertex w is explored
15319  * 22                   label e as forward- or cross-edge
15320  * 23           label t as explored
15321  * 24           S.pop()
15322  *
15323  * convention:
15324  * 0x10 - discovered
15325  * 0x11 - discovered and fall-through edge labelled
15326  * 0x12 - discovered and fall-through and branch edges labelled
15327  * 0x20 - explored
15328  */
15329 
15330 enum {
15331 	DISCOVERED = 0x10,
15332 	EXPLORED = 0x20,
15333 	FALLTHROUGH = 1,
15334 	BRANCH = 2,
15335 };
15336 
15337 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
15338 {
15339 	env->insn_aux_data[idx].prune_point = true;
15340 }
15341 
15342 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
15343 {
15344 	return env->insn_aux_data[insn_idx].prune_point;
15345 }
15346 
15347 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
15348 {
15349 	env->insn_aux_data[idx].force_checkpoint = true;
15350 }
15351 
15352 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
15353 {
15354 	return env->insn_aux_data[insn_idx].force_checkpoint;
15355 }
15356 
15357 
15358 enum {
15359 	DONE_EXPLORING = 0,
15360 	KEEP_EXPLORING = 1,
15361 };
15362 
15363 /* t, w, e - match pseudo-code above:
15364  * t - index of current instruction
15365  * w - next instruction
15366  * e - edge
15367  */
15368 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
15369 		     bool loop_ok)
15370 {
15371 	int *insn_stack = env->cfg.insn_stack;
15372 	int *insn_state = env->cfg.insn_state;
15373 
15374 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
15375 		return DONE_EXPLORING;
15376 
15377 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
15378 		return DONE_EXPLORING;
15379 
15380 	if (w < 0 || w >= env->prog->len) {
15381 		verbose_linfo(env, t, "%d: ", t);
15382 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
15383 		return -EINVAL;
15384 	}
15385 
15386 	if (e == BRANCH) {
15387 		/* mark branch target for state pruning */
15388 		mark_prune_point(env, w);
15389 		mark_jmp_point(env, w);
15390 	}
15391 
15392 	if (insn_state[w] == 0) {
15393 		/* tree-edge */
15394 		insn_state[t] = DISCOVERED | e;
15395 		insn_state[w] = DISCOVERED;
15396 		if (env->cfg.cur_stack >= env->prog->len)
15397 			return -E2BIG;
15398 		insn_stack[env->cfg.cur_stack++] = w;
15399 		return KEEP_EXPLORING;
15400 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
15401 		if (loop_ok && env->bpf_capable)
15402 			return DONE_EXPLORING;
15403 		verbose_linfo(env, t, "%d: ", t);
15404 		verbose_linfo(env, w, "%d: ", w);
15405 		verbose(env, "back-edge from insn %d to %d\n", t, w);
15406 		return -EINVAL;
15407 	} else if (insn_state[w] == EXPLORED) {
15408 		/* forward- or cross-edge */
15409 		insn_state[t] = DISCOVERED | e;
15410 	} else {
15411 		verbose(env, "insn state internal bug\n");
15412 		return -EFAULT;
15413 	}
15414 	return DONE_EXPLORING;
15415 }
15416 
15417 static int visit_func_call_insn(int t, struct bpf_insn *insns,
15418 				struct bpf_verifier_env *env,
15419 				bool visit_callee)
15420 {
15421 	int ret;
15422 
15423 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
15424 	if (ret)
15425 		return ret;
15426 
15427 	mark_prune_point(env, t + 1);
15428 	/* when we exit from subprog, we need to record non-linear history */
15429 	mark_jmp_point(env, t + 1);
15430 
15431 	if (visit_callee) {
15432 		mark_prune_point(env, t);
15433 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
15434 				/* It's ok to allow recursion from CFG point of
15435 				 * view. __check_func_call() will do the actual
15436 				 * check.
15437 				 */
15438 				bpf_pseudo_func(insns + t));
15439 	}
15440 	return ret;
15441 }
15442 
15443 /* Visits the instruction at index t and returns one of the following:
15444  *  < 0 - an error occurred
15445  *  DONE_EXPLORING - the instruction was fully explored
15446  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
15447  */
15448 static int visit_insn(int t, struct bpf_verifier_env *env)
15449 {
15450 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
15451 	int ret, off;
15452 
15453 	if (bpf_pseudo_func(insn))
15454 		return visit_func_call_insn(t, insns, env, true);
15455 
15456 	/* All non-branch instructions have a single fall-through edge. */
15457 	if (BPF_CLASS(insn->code) != BPF_JMP &&
15458 	    BPF_CLASS(insn->code) != BPF_JMP32)
15459 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
15460 
15461 	switch (BPF_OP(insn->code)) {
15462 	case BPF_EXIT:
15463 		return DONE_EXPLORING;
15464 
15465 	case BPF_CALL:
15466 		if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
15467 			/* Mark this call insn as a prune point to trigger
15468 			 * is_state_visited() check before call itself is
15469 			 * processed by __check_func_call(). Otherwise new
15470 			 * async state will be pushed for further exploration.
15471 			 */
15472 			mark_prune_point(env, t);
15473 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
15474 			struct bpf_kfunc_call_arg_meta meta;
15475 
15476 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
15477 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
15478 				mark_prune_point(env, t);
15479 				/* Checking and saving state checkpoints at iter_next() call
15480 				 * is crucial for fast convergence of open-coded iterator loop
15481 				 * logic, so we need to force it. If we don't do that,
15482 				 * is_state_visited() might skip saving a checkpoint, causing
15483 				 * unnecessarily long sequence of not checkpointed
15484 				 * instructions and jumps, leading to exhaustion of jump
15485 				 * history buffer, and potentially other undesired outcomes.
15486 				 * It is expected that with correct open-coded iterators
15487 				 * convergence will happen quickly, so we don't run a risk of
15488 				 * exhausting memory.
15489 				 */
15490 				mark_force_checkpoint(env, t);
15491 			}
15492 		}
15493 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
15494 
15495 	case BPF_JA:
15496 		if (BPF_SRC(insn->code) != BPF_K)
15497 			return -EINVAL;
15498 
15499 		if (BPF_CLASS(insn->code) == BPF_JMP)
15500 			off = insn->off;
15501 		else
15502 			off = insn->imm;
15503 
15504 		/* unconditional jump with single edge */
15505 		ret = push_insn(t, t + off + 1, FALLTHROUGH, env,
15506 				true);
15507 		if (ret)
15508 			return ret;
15509 
15510 		mark_prune_point(env, t + off + 1);
15511 		mark_jmp_point(env, t + off + 1);
15512 
15513 		return ret;
15514 
15515 	default:
15516 		/* conditional jump with two edges */
15517 		mark_prune_point(env, t);
15518 
15519 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
15520 		if (ret)
15521 			return ret;
15522 
15523 		return push_insn(t, t + insn->off + 1, BRANCH, env, true);
15524 	}
15525 }
15526 
15527 /* non-recursive depth-first-search to detect loops in BPF program
15528  * loop == back-edge in directed graph
15529  */
15530 static int check_cfg(struct bpf_verifier_env *env)
15531 {
15532 	int insn_cnt = env->prog->len;
15533 	int *insn_stack, *insn_state;
15534 	int ex_insn_beg, i, ret = 0;
15535 	bool ex_done = false;
15536 
15537 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15538 	if (!insn_state)
15539 		return -ENOMEM;
15540 
15541 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15542 	if (!insn_stack) {
15543 		kvfree(insn_state);
15544 		return -ENOMEM;
15545 	}
15546 
15547 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
15548 	insn_stack[0] = 0; /* 0 is the first instruction */
15549 	env->cfg.cur_stack = 1;
15550 
15551 walk_cfg:
15552 	while (env->cfg.cur_stack > 0) {
15553 		int t = insn_stack[env->cfg.cur_stack - 1];
15554 
15555 		ret = visit_insn(t, env);
15556 		switch (ret) {
15557 		case DONE_EXPLORING:
15558 			insn_state[t] = EXPLORED;
15559 			env->cfg.cur_stack--;
15560 			break;
15561 		case KEEP_EXPLORING:
15562 			break;
15563 		default:
15564 			if (ret > 0) {
15565 				verbose(env, "visit_insn internal bug\n");
15566 				ret = -EFAULT;
15567 			}
15568 			goto err_free;
15569 		}
15570 	}
15571 
15572 	if (env->cfg.cur_stack < 0) {
15573 		verbose(env, "pop stack internal bug\n");
15574 		ret = -EFAULT;
15575 		goto err_free;
15576 	}
15577 
15578 	if (env->exception_callback_subprog && !ex_done) {
15579 		ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start;
15580 
15581 		insn_state[ex_insn_beg] = DISCOVERED;
15582 		insn_stack[0] = ex_insn_beg;
15583 		env->cfg.cur_stack = 1;
15584 		ex_done = true;
15585 		goto walk_cfg;
15586 	}
15587 
15588 	for (i = 0; i < insn_cnt; i++) {
15589 		if (insn_state[i] != EXPLORED) {
15590 			verbose(env, "unreachable insn %d\n", i);
15591 			ret = -EINVAL;
15592 			goto err_free;
15593 		}
15594 	}
15595 	ret = 0; /* cfg looks good */
15596 
15597 err_free:
15598 	kvfree(insn_state);
15599 	kvfree(insn_stack);
15600 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
15601 	return ret;
15602 }
15603 
15604 static int check_abnormal_return(struct bpf_verifier_env *env)
15605 {
15606 	int i;
15607 
15608 	for (i = 1; i < env->subprog_cnt; i++) {
15609 		if (env->subprog_info[i].has_ld_abs) {
15610 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
15611 			return -EINVAL;
15612 		}
15613 		if (env->subprog_info[i].has_tail_call) {
15614 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
15615 			return -EINVAL;
15616 		}
15617 	}
15618 	return 0;
15619 }
15620 
15621 /* The minimum supported BTF func info size */
15622 #define MIN_BPF_FUNCINFO_SIZE	8
15623 #define MAX_FUNCINFO_REC_SIZE	252
15624 
15625 static int check_btf_func_early(struct bpf_verifier_env *env,
15626 				const union bpf_attr *attr,
15627 				bpfptr_t uattr)
15628 {
15629 	u32 krec_size = sizeof(struct bpf_func_info);
15630 	const struct btf_type *type, *func_proto;
15631 	u32 i, nfuncs, urec_size, min_size;
15632 	struct bpf_func_info *krecord;
15633 	struct bpf_prog *prog;
15634 	const struct btf *btf;
15635 	u32 prev_offset = 0;
15636 	bpfptr_t urecord;
15637 	int ret = -ENOMEM;
15638 
15639 	nfuncs = attr->func_info_cnt;
15640 	if (!nfuncs) {
15641 		if (check_abnormal_return(env))
15642 			return -EINVAL;
15643 		return 0;
15644 	}
15645 
15646 	urec_size = attr->func_info_rec_size;
15647 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
15648 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
15649 	    urec_size % sizeof(u32)) {
15650 		verbose(env, "invalid func info rec size %u\n", urec_size);
15651 		return -EINVAL;
15652 	}
15653 
15654 	prog = env->prog;
15655 	btf = prog->aux->btf;
15656 
15657 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15658 	min_size = min_t(u32, krec_size, urec_size);
15659 
15660 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
15661 	if (!krecord)
15662 		return -ENOMEM;
15663 
15664 	for (i = 0; i < nfuncs; i++) {
15665 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
15666 		if (ret) {
15667 			if (ret == -E2BIG) {
15668 				verbose(env, "nonzero tailing record in func info");
15669 				/* set the size kernel expects so loader can zero
15670 				 * out the rest of the record.
15671 				 */
15672 				if (copy_to_bpfptr_offset(uattr,
15673 							  offsetof(union bpf_attr, func_info_rec_size),
15674 							  &min_size, sizeof(min_size)))
15675 					ret = -EFAULT;
15676 			}
15677 			goto err_free;
15678 		}
15679 
15680 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
15681 			ret = -EFAULT;
15682 			goto err_free;
15683 		}
15684 
15685 		/* check insn_off */
15686 		ret = -EINVAL;
15687 		if (i == 0) {
15688 			if (krecord[i].insn_off) {
15689 				verbose(env,
15690 					"nonzero insn_off %u for the first func info record",
15691 					krecord[i].insn_off);
15692 				goto err_free;
15693 			}
15694 		} else if (krecord[i].insn_off <= prev_offset) {
15695 			verbose(env,
15696 				"same or smaller insn offset (%u) than previous func info record (%u)",
15697 				krecord[i].insn_off, prev_offset);
15698 			goto err_free;
15699 		}
15700 
15701 		/* check type_id */
15702 		type = btf_type_by_id(btf, krecord[i].type_id);
15703 		if (!type || !btf_type_is_func(type)) {
15704 			verbose(env, "invalid type id %d in func info",
15705 				krecord[i].type_id);
15706 			goto err_free;
15707 		}
15708 
15709 		func_proto = btf_type_by_id(btf, type->type);
15710 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
15711 			/* btf_func_check() already verified it during BTF load */
15712 			goto err_free;
15713 
15714 		prev_offset = krecord[i].insn_off;
15715 		bpfptr_add(&urecord, urec_size);
15716 	}
15717 
15718 	prog->aux->func_info = krecord;
15719 	prog->aux->func_info_cnt = nfuncs;
15720 	return 0;
15721 
15722 err_free:
15723 	kvfree(krecord);
15724 	return ret;
15725 }
15726 
15727 static int check_btf_func(struct bpf_verifier_env *env,
15728 			  const union bpf_attr *attr,
15729 			  bpfptr_t uattr)
15730 {
15731 	const struct btf_type *type, *func_proto, *ret_type;
15732 	u32 i, nfuncs, urec_size;
15733 	struct bpf_func_info *krecord;
15734 	struct bpf_func_info_aux *info_aux = NULL;
15735 	struct bpf_prog *prog;
15736 	const struct btf *btf;
15737 	bpfptr_t urecord;
15738 	bool scalar_return;
15739 	int ret = -ENOMEM;
15740 
15741 	nfuncs = attr->func_info_cnt;
15742 	if (!nfuncs) {
15743 		if (check_abnormal_return(env))
15744 			return -EINVAL;
15745 		return 0;
15746 	}
15747 	if (nfuncs != env->subprog_cnt) {
15748 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
15749 		return -EINVAL;
15750 	}
15751 
15752 	urec_size = attr->func_info_rec_size;
15753 
15754 	prog = env->prog;
15755 	btf = prog->aux->btf;
15756 
15757 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15758 
15759 	krecord = prog->aux->func_info;
15760 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
15761 	if (!info_aux)
15762 		return -ENOMEM;
15763 
15764 	for (i = 0; i < nfuncs; i++) {
15765 		/* check insn_off */
15766 		ret = -EINVAL;
15767 
15768 		if (env->subprog_info[i].start != krecord[i].insn_off) {
15769 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
15770 			goto err_free;
15771 		}
15772 
15773 		/* Already checked type_id */
15774 		type = btf_type_by_id(btf, krecord[i].type_id);
15775 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
15776 		/* Already checked func_proto */
15777 		func_proto = btf_type_by_id(btf, type->type);
15778 
15779 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
15780 		scalar_return =
15781 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
15782 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
15783 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
15784 			goto err_free;
15785 		}
15786 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
15787 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
15788 			goto err_free;
15789 		}
15790 
15791 		bpfptr_add(&urecord, urec_size);
15792 	}
15793 
15794 	prog->aux->func_info_aux = info_aux;
15795 	return 0;
15796 
15797 err_free:
15798 	kfree(info_aux);
15799 	return ret;
15800 }
15801 
15802 static void adjust_btf_func(struct bpf_verifier_env *env)
15803 {
15804 	struct bpf_prog_aux *aux = env->prog->aux;
15805 	int i;
15806 
15807 	if (!aux->func_info)
15808 		return;
15809 
15810 	/* func_info is not available for hidden subprogs */
15811 	for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++)
15812 		aux->func_info[i].insn_off = env->subprog_info[i].start;
15813 }
15814 
15815 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
15816 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
15817 
15818 static int check_btf_line(struct bpf_verifier_env *env,
15819 			  const union bpf_attr *attr,
15820 			  bpfptr_t uattr)
15821 {
15822 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
15823 	struct bpf_subprog_info *sub;
15824 	struct bpf_line_info *linfo;
15825 	struct bpf_prog *prog;
15826 	const struct btf *btf;
15827 	bpfptr_t ulinfo;
15828 	int err;
15829 
15830 	nr_linfo = attr->line_info_cnt;
15831 	if (!nr_linfo)
15832 		return 0;
15833 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
15834 		return -EINVAL;
15835 
15836 	rec_size = attr->line_info_rec_size;
15837 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
15838 	    rec_size > MAX_LINEINFO_REC_SIZE ||
15839 	    rec_size & (sizeof(u32) - 1))
15840 		return -EINVAL;
15841 
15842 	/* Need to zero it in case the userspace may
15843 	 * pass in a smaller bpf_line_info object.
15844 	 */
15845 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
15846 			 GFP_KERNEL | __GFP_NOWARN);
15847 	if (!linfo)
15848 		return -ENOMEM;
15849 
15850 	prog = env->prog;
15851 	btf = prog->aux->btf;
15852 
15853 	s = 0;
15854 	sub = env->subprog_info;
15855 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
15856 	expected_size = sizeof(struct bpf_line_info);
15857 	ncopy = min_t(u32, expected_size, rec_size);
15858 	for (i = 0; i < nr_linfo; i++) {
15859 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
15860 		if (err) {
15861 			if (err == -E2BIG) {
15862 				verbose(env, "nonzero tailing record in line_info");
15863 				if (copy_to_bpfptr_offset(uattr,
15864 							  offsetof(union bpf_attr, line_info_rec_size),
15865 							  &expected_size, sizeof(expected_size)))
15866 					err = -EFAULT;
15867 			}
15868 			goto err_free;
15869 		}
15870 
15871 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
15872 			err = -EFAULT;
15873 			goto err_free;
15874 		}
15875 
15876 		/*
15877 		 * Check insn_off to ensure
15878 		 * 1) strictly increasing AND
15879 		 * 2) bounded by prog->len
15880 		 *
15881 		 * The linfo[0].insn_off == 0 check logically falls into
15882 		 * the later "missing bpf_line_info for func..." case
15883 		 * because the first linfo[0].insn_off must be the
15884 		 * first sub also and the first sub must have
15885 		 * subprog_info[0].start == 0.
15886 		 */
15887 		if ((i && linfo[i].insn_off <= prev_offset) ||
15888 		    linfo[i].insn_off >= prog->len) {
15889 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
15890 				i, linfo[i].insn_off, prev_offset,
15891 				prog->len);
15892 			err = -EINVAL;
15893 			goto err_free;
15894 		}
15895 
15896 		if (!prog->insnsi[linfo[i].insn_off].code) {
15897 			verbose(env,
15898 				"Invalid insn code at line_info[%u].insn_off\n",
15899 				i);
15900 			err = -EINVAL;
15901 			goto err_free;
15902 		}
15903 
15904 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
15905 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
15906 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
15907 			err = -EINVAL;
15908 			goto err_free;
15909 		}
15910 
15911 		if (s != env->subprog_cnt) {
15912 			if (linfo[i].insn_off == sub[s].start) {
15913 				sub[s].linfo_idx = i;
15914 				s++;
15915 			} else if (sub[s].start < linfo[i].insn_off) {
15916 				verbose(env, "missing bpf_line_info for func#%u\n", s);
15917 				err = -EINVAL;
15918 				goto err_free;
15919 			}
15920 		}
15921 
15922 		prev_offset = linfo[i].insn_off;
15923 		bpfptr_add(&ulinfo, rec_size);
15924 	}
15925 
15926 	if (s != env->subprog_cnt) {
15927 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
15928 			env->subprog_cnt - s, s);
15929 		err = -EINVAL;
15930 		goto err_free;
15931 	}
15932 
15933 	prog->aux->linfo = linfo;
15934 	prog->aux->nr_linfo = nr_linfo;
15935 
15936 	return 0;
15937 
15938 err_free:
15939 	kvfree(linfo);
15940 	return err;
15941 }
15942 
15943 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
15944 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
15945 
15946 static int check_core_relo(struct bpf_verifier_env *env,
15947 			   const union bpf_attr *attr,
15948 			   bpfptr_t uattr)
15949 {
15950 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
15951 	struct bpf_core_relo core_relo = {};
15952 	struct bpf_prog *prog = env->prog;
15953 	const struct btf *btf = prog->aux->btf;
15954 	struct bpf_core_ctx ctx = {
15955 		.log = &env->log,
15956 		.btf = btf,
15957 	};
15958 	bpfptr_t u_core_relo;
15959 	int err;
15960 
15961 	nr_core_relo = attr->core_relo_cnt;
15962 	if (!nr_core_relo)
15963 		return 0;
15964 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
15965 		return -EINVAL;
15966 
15967 	rec_size = attr->core_relo_rec_size;
15968 	if (rec_size < MIN_CORE_RELO_SIZE ||
15969 	    rec_size > MAX_CORE_RELO_SIZE ||
15970 	    rec_size % sizeof(u32))
15971 		return -EINVAL;
15972 
15973 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
15974 	expected_size = sizeof(struct bpf_core_relo);
15975 	ncopy = min_t(u32, expected_size, rec_size);
15976 
15977 	/* Unlike func_info and line_info, copy and apply each CO-RE
15978 	 * relocation record one at a time.
15979 	 */
15980 	for (i = 0; i < nr_core_relo; i++) {
15981 		/* future proofing when sizeof(bpf_core_relo) changes */
15982 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
15983 		if (err) {
15984 			if (err == -E2BIG) {
15985 				verbose(env, "nonzero tailing record in core_relo");
15986 				if (copy_to_bpfptr_offset(uattr,
15987 							  offsetof(union bpf_attr, core_relo_rec_size),
15988 							  &expected_size, sizeof(expected_size)))
15989 					err = -EFAULT;
15990 			}
15991 			break;
15992 		}
15993 
15994 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
15995 			err = -EFAULT;
15996 			break;
15997 		}
15998 
15999 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
16000 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
16001 				i, core_relo.insn_off, prog->len);
16002 			err = -EINVAL;
16003 			break;
16004 		}
16005 
16006 		err = bpf_core_apply(&ctx, &core_relo, i,
16007 				     &prog->insnsi[core_relo.insn_off / 8]);
16008 		if (err)
16009 			break;
16010 		bpfptr_add(&u_core_relo, rec_size);
16011 	}
16012 	return err;
16013 }
16014 
16015 static int check_btf_info_early(struct bpf_verifier_env *env,
16016 				const union bpf_attr *attr,
16017 				bpfptr_t uattr)
16018 {
16019 	struct btf *btf;
16020 	int err;
16021 
16022 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
16023 		if (check_abnormal_return(env))
16024 			return -EINVAL;
16025 		return 0;
16026 	}
16027 
16028 	btf = btf_get_by_fd(attr->prog_btf_fd);
16029 	if (IS_ERR(btf))
16030 		return PTR_ERR(btf);
16031 	if (btf_is_kernel(btf)) {
16032 		btf_put(btf);
16033 		return -EACCES;
16034 	}
16035 	env->prog->aux->btf = btf;
16036 
16037 	err = check_btf_func_early(env, attr, uattr);
16038 	if (err)
16039 		return err;
16040 	return 0;
16041 }
16042 
16043 static int check_btf_info(struct bpf_verifier_env *env,
16044 			  const union bpf_attr *attr,
16045 			  bpfptr_t uattr)
16046 {
16047 	int err;
16048 
16049 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
16050 		if (check_abnormal_return(env))
16051 			return -EINVAL;
16052 		return 0;
16053 	}
16054 
16055 	err = check_btf_func(env, attr, uattr);
16056 	if (err)
16057 		return err;
16058 
16059 	err = check_btf_line(env, attr, uattr);
16060 	if (err)
16061 		return err;
16062 
16063 	err = check_core_relo(env, attr, uattr);
16064 	if (err)
16065 		return err;
16066 
16067 	return 0;
16068 }
16069 
16070 /* check %cur's range satisfies %old's */
16071 static bool range_within(struct bpf_reg_state *old,
16072 			 struct bpf_reg_state *cur)
16073 {
16074 	return old->umin_value <= cur->umin_value &&
16075 	       old->umax_value >= cur->umax_value &&
16076 	       old->smin_value <= cur->smin_value &&
16077 	       old->smax_value >= cur->smax_value &&
16078 	       old->u32_min_value <= cur->u32_min_value &&
16079 	       old->u32_max_value >= cur->u32_max_value &&
16080 	       old->s32_min_value <= cur->s32_min_value &&
16081 	       old->s32_max_value >= cur->s32_max_value;
16082 }
16083 
16084 /* If in the old state two registers had the same id, then they need to have
16085  * the same id in the new state as well.  But that id could be different from
16086  * the old state, so we need to track the mapping from old to new ids.
16087  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
16088  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
16089  * regs with a different old id could still have new id 9, we don't care about
16090  * that.
16091  * So we look through our idmap to see if this old id has been seen before.  If
16092  * so, we require the new id to match; otherwise, we add the id pair to the map.
16093  */
16094 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
16095 {
16096 	struct bpf_id_pair *map = idmap->map;
16097 	unsigned int i;
16098 
16099 	/* either both IDs should be set or both should be zero */
16100 	if (!!old_id != !!cur_id)
16101 		return false;
16102 
16103 	if (old_id == 0) /* cur_id == 0 as well */
16104 		return true;
16105 
16106 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
16107 		if (!map[i].old) {
16108 			/* Reached an empty slot; haven't seen this id before */
16109 			map[i].old = old_id;
16110 			map[i].cur = cur_id;
16111 			return true;
16112 		}
16113 		if (map[i].old == old_id)
16114 			return map[i].cur == cur_id;
16115 		if (map[i].cur == cur_id)
16116 			return false;
16117 	}
16118 	/* We ran out of idmap slots, which should be impossible */
16119 	WARN_ON_ONCE(1);
16120 	return false;
16121 }
16122 
16123 /* Similar to check_ids(), but allocate a unique temporary ID
16124  * for 'old_id' or 'cur_id' of zero.
16125  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
16126  */
16127 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
16128 {
16129 	old_id = old_id ? old_id : ++idmap->tmp_id_gen;
16130 	cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
16131 
16132 	return check_ids(old_id, cur_id, idmap);
16133 }
16134 
16135 static void clean_func_state(struct bpf_verifier_env *env,
16136 			     struct bpf_func_state *st)
16137 {
16138 	enum bpf_reg_liveness live;
16139 	int i, j;
16140 
16141 	for (i = 0; i < BPF_REG_FP; i++) {
16142 		live = st->regs[i].live;
16143 		/* liveness must not touch this register anymore */
16144 		st->regs[i].live |= REG_LIVE_DONE;
16145 		if (!(live & REG_LIVE_READ))
16146 			/* since the register is unused, clear its state
16147 			 * to make further comparison simpler
16148 			 */
16149 			__mark_reg_not_init(env, &st->regs[i]);
16150 	}
16151 
16152 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
16153 		live = st->stack[i].spilled_ptr.live;
16154 		/* liveness must not touch this stack slot anymore */
16155 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
16156 		if (!(live & REG_LIVE_READ)) {
16157 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
16158 			for (j = 0; j < BPF_REG_SIZE; j++)
16159 				st->stack[i].slot_type[j] = STACK_INVALID;
16160 		}
16161 	}
16162 }
16163 
16164 static void clean_verifier_state(struct bpf_verifier_env *env,
16165 				 struct bpf_verifier_state *st)
16166 {
16167 	int i;
16168 
16169 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
16170 		/* all regs in this state in all frames were already marked */
16171 		return;
16172 
16173 	for (i = 0; i <= st->curframe; i++)
16174 		clean_func_state(env, st->frame[i]);
16175 }
16176 
16177 /* the parentage chains form a tree.
16178  * the verifier states are added to state lists at given insn and
16179  * pushed into state stack for future exploration.
16180  * when the verifier reaches bpf_exit insn some of the verifer states
16181  * stored in the state lists have their final liveness state already,
16182  * but a lot of states will get revised from liveness point of view when
16183  * the verifier explores other branches.
16184  * Example:
16185  * 1: r0 = 1
16186  * 2: if r1 == 100 goto pc+1
16187  * 3: r0 = 2
16188  * 4: exit
16189  * when the verifier reaches exit insn the register r0 in the state list of
16190  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
16191  * of insn 2 and goes exploring further. At the insn 4 it will walk the
16192  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
16193  *
16194  * Since the verifier pushes the branch states as it sees them while exploring
16195  * the program the condition of walking the branch instruction for the second
16196  * time means that all states below this branch were already explored and
16197  * their final liveness marks are already propagated.
16198  * Hence when the verifier completes the search of state list in is_state_visited()
16199  * we can call this clean_live_states() function to mark all liveness states
16200  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
16201  * will not be used.
16202  * This function also clears the registers and stack for states that !READ
16203  * to simplify state merging.
16204  *
16205  * Important note here that walking the same branch instruction in the callee
16206  * doesn't meant that the states are DONE. The verifier has to compare
16207  * the callsites
16208  */
16209 static void clean_live_states(struct bpf_verifier_env *env, int insn,
16210 			      struct bpf_verifier_state *cur)
16211 {
16212 	struct bpf_verifier_state_list *sl;
16213 
16214 	sl = *explored_state(env, insn);
16215 	while (sl) {
16216 		if (sl->state.branches)
16217 			goto next;
16218 		if (sl->state.insn_idx != insn ||
16219 		    !same_callsites(&sl->state, cur))
16220 			goto next;
16221 		clean_verifier_state(env, &sl->state);
16222 next:
16223 		sl = sl->next;
16224 	}
16225 }
16226 
16227 static bool regs_exact(const struct bpf_reg_state *rold,
16228 		       const struct bpf_reg_state *rcur,
16229 		       struct bpf_idmap *idmap)
16230 {
16231 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16232 	       check_ids(rold->id, rcur->id, idmap) &&
16233 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16234 }
16235 
16236 /* Returns true if (rold safe implies rcur safe) */
16237 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
16238 		    struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact)
16239 {
16240 	if (exact)
16241 		return regs_exact(rold, rcur, idmap);
16242 
16243 	if (!(rold->live & REG_LIVE_READ))
16244 		/* explored state didn't use this */
16245 		return true;
16246 	if (rold->type == NOT_INIT)
16247 		/* explored state can't have used this */
16248 		return true;
16249 	if (rcur->type == NOT_INIT)
16250 		return false;
16251 
16252 	/* Enforce that register types have to match exactly, including their
16253 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
16254 	 * rule.
16255 	 *
16256 	 * One can make a point that using a pointer register as unbounded
16257 	 * SCALAR would be technically acceptable, but this could lead to
16258 	 * pointer leaks because scalars are allowed to leak while pointers
16259 	 * are not. We could make this safe in special cases if root is
16260 	 * calling us, but it's probably not worth the hassle.
16261 	 *
16262 	 * Also, register types that are *not* MAYBE_NULL could technically be
16263 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
16264 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
16265 	 * to the same map).
16266 	 * However, if the old MAYBE_NULL register then got NULL checked,
16267 	 * doing so could have affected others with the same id, and we can't
16268 	 * check for that because we lost the id when we converted to
16269 	 * a non-MAYBE_NULL variant.
16270 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
16271 	 * non-MAYBE_NULL registers as well.
16272 	 */
16273 	if (rold->type != rcur->type)
16274 		return false;
16275 
16276 	switch (base_type(rold->type)) {
16277 	case SCALAR_VALUE:
16278 		if (env->explore_alu_limits) {
16279 			/* explore_alu_limits disables tnum_in() and range_within()
16280 			 * logic and requires everything to be strict
16281 			 */
16282 			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16283 			       check_scalar_ids(rold->id, rcur->id, idmap);
16284 		}
16285 		if (!rold->precise)
16286 			return true;
16287 		/* Why check_ids() for scalar registers?
16288 		 *
16289 		 * Consider the following BPF code:
16290 		 *   1: r6 = ... unbound scalar, ID=a ...
16291 		 *   2: r7 = ... unbound scalar, ID=b ...
16292 		 *   3: if (r6 > r7) goto +1
16293 		 *   4: r6 = r7
16294 		 *   5: if (r6 > X) goto ...
16295 		 *   6: ... memory operation using r7 ...
16296 		 *
16297 		 * First verification path is [1-6]:
16298 		 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
16299 		 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
16300 		 *   r7 <= X, because r6 and r7 share same id.
16301 		 * Next verification path is [1-4, 6].
16302 		 *
16303 		 * Instruction (6) would be reached in two states:
16304 		 *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
16305 		 *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
16306 		 *
16307 		 * Use check_ids() to distinguish these states.
16308 		 * ---
16309 		 * Also verify that new value satisfies old value range knowledge.
16310 		 */
16311 		return range_within(rold, rcur) &&
16312 		       tnum_in(rold->var_off, rcur->var_off) &&
16313 		       check_scalar_ids(rold->id, rcur->id, idmap);
16314 	case PTR_TO_MAP_KEY:
16315 	case PTR_TO_MAP_VALUE:
16316 	case PTR_TO_MEM:
16317 	case PTR_TO_BUF:
16318 	case PTR_TO_TP_BUFFER:
16319 		/* If the new min/max/var_off satisfy the old ones and
16320 		 * everything else matches, we are OK.
16321 		 */
16322 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
16323 		       range_within(rold, rcur) &&
16324 		       tnum_in(rold->var_off, rcur->var_off) &&
16325 		       check_ids(rold->id, rcur->id, idmap) &&
16326 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16327 	case PTR_TO_PACKET_META:
16328 	case PTR_TO_PACKET:
16329 		/* We must have at least as much range as the old ptr
16330 		 * did, so that any accesses which were safe before are
16331 		 * still safe.  This is true even if old range < old off,
16332 		 * since someone could have accessed through (ptr - k), or
16333 		 * even done ptr -= k in a register, to get a safe access.
16334 		 */
16335 		if (rold->range > rcur->range)
16336 			return false;
16337 		/* If the offsets don't match, we can't trust our alignment;
16338 		 * nor can we be sure that we won't fall out of range.
16339 		 */
16340 		if (rold->off != rcur->off)
16341 			return false;
16342 		/* id relations must be preserved */
16343 		if (!check_ids(rold->id, rcur->id, idmap))
16344 			return false;
16345 		/* new val must satisfy old val knowledge */
16346 		return range_within(rold, rcur) &&
16347 		       tnum_in(rold->var_off, rcur->var_off);
16348 	case PTR_TO_STACK:
16349 		/* two stack pointers are equal only if they're pointing to
16350 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
16351 		 */
16352 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
16353 	default:
16354 		return regs_exact(rold, rcur, idmap);
16355 	}
16356 }
16357 
16358 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
16359 		      struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact)
16360 {
16361 	int i, spi;
16362 
16363 	/* walk slots of the explored stack and ignore any additional
16364 	 * slots in the current stack, since explored(safe) state
16365 	 * didn't use them
16366 	 */
16367 	for (i = 0; i < old->allocated_stack; i++) {
16368 		struct bpf_reg_state *old_reg, *cur_reg;
16369 
16370 		spi = i / BPF_REG_SIZE;
16371 
16372 		if (exact &&
16373 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16374 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16375 			return false;
16376 
16377 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) {
16378 			i += BPF_REG_SIZE - 1;
16379 			/* explored state didn't use this */
16380 			continue;
16381 		}
16382 
16383 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
16384 			continue;
16385 
16386 		if (env->allow_uninit_stack &&
16387 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
16388 			continue;
16389 
16390 		/* explored stack has more populated slots than current stack
16391 		 * and these slots were used
16392 		 */
16393 		if (i >= cur->allocated_stack)
16394 			return false;
16395 
16396 		/* if old state was safe with misc data in the stack
16397 		 * it will be safe with zero-initialized stack.
16398 		 * The opposite is not true
16399 		 */
16400 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
16401 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
16402 			continue;
16403 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16404 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16405 			/* Ex: old explored (safe) state has STACK_SPILL in
16406 			 * this stack slot, but current has STACK_MISC ->
16407 			 * this verifier states are not equivalent,
16408 			 * return false to continue verification of this path
16409 			 */
16410 			return false;
16411 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
16412 			continue;
16413 		/* Both old and cur are having same slot_type */
16414 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
16415 		case STACK_SPILL:
16416 			/* when explored and current stack slot are both storing
16417 			 * spilled registers, check that stored pointers types
16418 			 * are the same as well.
16419 			 * Ex: explored safe path could have stored
16420 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
16421 			 * but current path has stored:
16422 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
16423 			 * such verifier states are not equivalent.
16424 			 * return false to continue verification of this path
16425 			 */
16426 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
16427 				     &cur->stack[spi].spilled_ptr, idmap, exact))
16428 				return false;
16429 			break;
16430 		case STACK_DYNPTR:
16431 			old_reg = &old->stack[spi].spilled_ptr;
16432 			cur_reg = &cur->stack[spi].spilled_ptr;
16433 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
16434 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
16435 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16436 				return false;
16437 			break;
16438 		case STACK_ITER:
16439 			old_reg = &old->stack[spi].spilled_ptr;
16440 			cur_reg = &cur->stack[spi].spilled_ptr;
16441 			/* iter.depth is not compared between states as it
16442 			 * doesn't matter for correctness and would otherwise
16443 			 * prevent convergence; we maintain it only to prevent
16444 			 * infinite loop check triggering, see
16445 			 * iter_active_depths_differ()
16446 			 */
16447 			if (old_reg->iter.btf != cur_reg->iter.btf ||
16448 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
16449 			    old_reg->iter.state != cur_reg->iter.state ||
16450 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
16451 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16452 				return false;
16453 			break;
16454 		case STACK_MISC:
16455 		case STACK_ZERO:
16456 		case STACK_INVALID:
16457 			continue;
16458 		/* Ensure that new unhandled slot types return false by default */
16459 		default:
16460 			return false;
16461 		}
16462 	}
16463 	return true;
16464 }
16465 
16466 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
16467 		    struct bpf_idmap *idmap)
16468 {
16469 	int i;
16470 
16471 	if (old->acquired_refs != cur->acquired_refs)
16472 		return false;
16473 
16474 	for (i = 0; i < old->acquired_refs; i++) {
16475 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
16476 			return false;
16477 	}
16478 
16479 	return true;
16480 }
16481 
16482 /* compare two verifier states
16483  *
16484  * all states stored in state_list are known to be valid, since
16485  * verifier reached 'bpf_exit' instruction through them
16486  *
16487  * this function is called when verifier exploring different branches of
16488  * execution popped from the state stack. If it sees an old state that has
16489  * more strict register state and more strict stack state then this execution
16490  * branch doesn't need to be explored further, since verifier already
16491  * concluded that more strict state leads to valid finish.
16492  *
16493  * Therefore two states are equivalent if register state is more conservative
16494  * and explored stack state is more conservative than the current one.
16495  * Example:
16496  *       explored                   current
16497  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
16498  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
16499  *
16500  * In other words if current stack state (one being explored) has more
16501  * valid slots than old one that already passed validation, it means
16502  * the verifier can stop exploring and conclude that current state is valid too
16503  *
16504  * Similarly with registers. If explored state has register type as invalid
16505  * whereas register type in current state is meaningful, it means that
16506  * the current state will reach 'bpf_exit' instruction safely
16507  */
16508 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
16509 			      struct bpf_func_state *cur, bool exact)
16510 {
16511 	int i;
16512 
16513 	for (i = 0; i < MAX_BPF_REG; i++)
16514 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
16515 			     &env->idmap_scratch, exact))
16516 			return false;
16517 
16518 	if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
16519 		return false;
16520 
16521 	if (!refsafe(old, cur, &env->idmap_scratch))
16522 		return false;
16523 
16524 	return true;
16525 }
16526 
16527 static void reset_idmap_scratch(struct bpf_verifier_env *env)
16528 {
16529 	env->idmap_scratch.tmp_id_gen = env->id_gen;
16530 	memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
16531 }
16532 
16533 static bool states_equal(struct bpf_verifier_env *env,
16534 			 struct bpf_verifier_state *old,
16535 			 struct bpf_verifier_state *cur,
16536 			 bool exact)
16537 {
16538 	int i;
16539 
16540 	if (old->curframe != cur->curframe)
16541 		return false;
16542 
16543 	reset_idmap_scratch(env);
16544 
16545 	/* Verification state from speculative execution simulation
16546 	 * must never prune a non-speculative execution one.
16547 	 */
16548 	if (old->speculative && !cur->speculative)
16549 		return false;
16550 
16551 	if (old->active_lock.ptr != cur->active_lock.ptr)
16552 		return false;
16553 
16554 	/* Old and cur active_lock's have to be either both present
16555 	 * or both absent.
16556 	 */
16557 	if (!!old->active_lock.id != !!cur->active_lock.id)
16558 		return false;
16559 
16560 	if (old->active_lock.id &&
16561 	    !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
16562 		return false;
16563 
16564 	if (old->active_rcu_lock != cur->active_rcu_lock)
16565 		return false;
16566 
16567 	/* for states to be equal callsites have to be the same
16568 	 * and all frame states need to be equivalent
16569 	 */
16570 	for (i = 0; i <= old->curframe; i++) {
16571 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
16572 			return false;
16573 		if (!func_states_equal(env, old->frame[i], cur->frame[i], exact))
16574 			return false;
16575 	}
16576 	return true;
16577 }
16578 
16579 /* Return 0 if no propagation happened. Return negative error code if error
16580  * happened. Otherwise, return the propagated bit.
16581  */
16582 static int propagate_liveness_reg(struct bpf_verifier_env *env,
16583 				  struct bpf_reg_state *reg,
16584 				  struct bpf_reg_state *parent_reg)
16585 {
16586 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
16587 	u8 flag = reg->live & REG_LIVE_READ;
16588 	int err;
16589 
16590 	/* When comes here, read flags of PARENT_REG or REG could be any of
16591 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
16592 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
16593 	 */
16594 	if (parent_flag == REG_LIVE_READ64 ||
16595 	    /* Or if there is no read flag from REG. */
16596 	    !flag ||
16597 	    /* Or if the read flag from REG is the same as PARENT_REG. */
16598 	    parent_flag == flag)
16599 		return 0;
16600 
16601 	err = mark_reg_read(env, reg, parent_reg, flag);
16602 	if (err)
16603 		return err;
16604 
16605 	return flag;
16606 }
16607 
16608 /* A write screens off any subsequent reads; but write marks come from the
16609  * straight-line code between a state and its parent.  When we arrive at an
16610  * equivalent state (jump target or such) we didn't arrive by the straight-line
16611  * code, so read marks in the state must propagate to the parent regardless
16612  * of the state's write marks. That's what 'parent == state->parent' comparison
16613  * in mark_reg_read() is for.
16614  */
16615 static int propagate_liveness(struct bpf_verifier_env *env,
16616 			      const struct bpf_verifier_state *vstate,
16617 			      struct bpf_verifier_state *vparent)
16618 {
16619 	struct bpf_reg_state *state_reg, *parent_reg;
16620 	struct bpf_func_state *state, *parent;
16621 	int i, frame, err = 0;
16622 
16623 	if (vparent->curframe != vstate->curframe) {
16624 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
16625 		     vparent->curframe, vstate->curframe);
16626 		return -EFAULT;
16627 	}
16628 	/* Propagate read liveness of registers... */
16629 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
16630 	for (frame = 0; frame <= vstate->curframe; frame++) {
16631 		parent = vparent->frame[frame];
16632 		state = vstate->frame[frame];
16633 		parent_reg = parent->regs;
16634 		state_reg = state->regs;
16635 		/* We don't need to worry about FP liveness, it's read-only */
16636 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
16637 			err = propagate_liveness_reg(env, &state_reg[i],
16638 						     &parent_reg[i]);
16639 			if (err < 0)
16640 				return err;
16641 			if (err == REG_LIVE_READ64)
16642 				mark_insn_zext(env, &parent_reg[i]);
16643 		}
16644 
16645 		/* Propagate stack slots. */
16646 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
16647 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
16648 			parent_reg = &parent->stack[i].spilled_ptr;
16649 			state_reg = &state->stack[i].spilled_ptr;
16650 			err = propagate_liveness_reg(env, state_reg,
16651 						     parent_reg);
16652 			if (err < 0)
16653 				return err;
16654 		}
16655 	}
16656 	return 0;
16657 }
16658 
16659 /* find precise scalars in the previous equivalent state and
16660  * propagate them into the current state
16661  */
16662 static int propagate_precision(struct bpf_verifier_env *env,
16663 			       const struct bpf_verifier_state *old)
16664 {
16665 	struct bpf_reg_state *state_reg;
16666 	struct bpf_func_state *state;
16667 	int i, err = 0, fr;
16668 	bool first;
16669 
16670 	for (fr = old->curframe; fr >= 0; fr--) {
16671 		state = old->frame[fr];
16672 		state_reg = state->regs;
16673 		first = true;
16674 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
16675 			if (state_reg->type != SCALAR_VALUE ||
16676 			    !state_reg->precise ||
16677 			    !(state_reg->live & REG_LIVE_READ))
16678 				continue;
16679 			if (env->log.level & BPF_LOG_LEVEL2) {
16680 				if (first)
16681 					verbose(env, "frame %d: propagating r%d", fr, i);
16682 				else
16683 					verbose(env, ",r%d", i);
16684 			}
16685 			bt_set_frame_reg(&env->bt, fr, i);
16686 			first = false;
16687 		}
16688 
16689 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16690 			if (!is_spilled_reg(&state->stack[i]))
16691 				continue;
16692 			state_reg = &state->stack[i].spilled_ptr;
16693 			if (state_reg->type != SCALAR_VALUE ||
16694 			    !state_reg->precise ||
16695 			    !(state_reg->live & REG_LIVE_READ))
16696 				continue;
16697 			if (env->log.level & BPF_LOG_LEVEL2) {
16698 				if (first)
16699 					verbose(env, "frame %d: propagating fp%d",
16700 						fr, (-i - 1) * BPF_REG_SIZE);
16701 				else
16702 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
16703 			}
16704 			bt_set_frame_slot(&env->bt, fr, i);
16705 			first = false;
16706 		}
16707 		if (!first)
16708 			verbose(env, "\n");
16709 	}
16710 
16711 	err = mark_chain_precision_batch(env);
16712 	if (err < 0)
16713 		return err;
16714 
16715 	return 0;
16716 }
16717 
16718 static bool states_maybe_looping(struct bpf_verifier_state *old,
16719 				 struct bpf_verifier_state *cur)
16720 {
16721 	struct bpf_func_state *fold, *fcur;
16722 	int i, fr = cur->curframe;
16723 
16724 	if (old->curframe != fr)
16725 		return false;
16726 
16727 	fold = old->frame[fr];
16728 	fcur = cur->frame[fr];
16729 	for (i = 0; i < MAX_BPF_REG; i++)
16730 		if (memcmp(&fold->regs[i], &fcur->regs[i],
16731 			   offsetof(struct bpf_reg_state, parent)))
16732 			return false;
16733 	return true;
16734 }
16735 
16736 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
16737 {
16738 	return env->insn_aux_data[insn_idx].is_iter_next;
16739 }
16740 
16741 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
16742  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
16743  * states to match, which otherwise would look like an infinite loop. So while
16744  * iter_next() calls are taken care of, we still need to be careful and
16745  * prevent erroneous and too eager declaration of "ininite loop", when
16746  * iterators are involved.
16747  *
16748  * Here's a situation in pseudo-BPF assembly form:
16749  *
16750  *   0: again:                          ; set up iter_next() call args
16751  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
16752  *   2:   call bpf_iter_num_next        ; this is iter_next() call
16753  *   3:   if r0 == 0 goto done
16754  *   4:   ... something useful here ...
16755  *   5:   goto again                    ; another iteration
16756  *   6: done:
16757  *   7:   r1 = &it
16758  *   8:   call bpf_iter_num_destroy     ; clean up iter state
16759  *   9:   exit
16760  *
16761  * This is a typical loop. Let's assume that we have a prune point at 1:,
16762  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
16763  * again`, assuming other heuristics don't get in a way).
16764  *
16765  * When we first time come to 1:, let's say we have some state X. We proceed
16766  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
16767  * Now we come back to validate that forked ACTIVE state. We proceed through
16768  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
16769  * are converging. But the problem is that we don't know that yet, as this
16770  * convergence has to happen at iter_next() call site only. So if nothing is
16771  * done, at 1: verifier will use bounded loop logic and declare infinite
16772  * looping (and would be *technically* correct, if not for iterator's
16773  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
16774  * don't want that. So what we do in process_iter_next_call() when we go on
16775  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
16776  * a different iteration. So when we suspect an infinite loop, we additionally
16777  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
16778  * pretend we are not looping and wait for next iter_next() call.
16779  *
16780  * This only applies to ACTIVE state. In DRAINED state we don't expect to
16781  * loop, because that would actually mean infinite loop, as DRAINED state is
16782  * "sticky", and so we'll keep returning into the same instruction with the
16783  * same state (at least in one of possible code paths).
16784  *
16785  * This approach allows to keep infinite loop heuristic even in the face of
16786  * active iterator. E.g., C snippet below is and will be detected as
16787  * inifintely looping:
16788  *
16789  *   struct bpf_iter_num it;
16790  *   int *p, x;
16791  *
16792  *   bpf_iter_num_new(&it, 0, 10);
16793  *   while ((p = bpf_iter_num_next(&t))) {
16794  *       x = p;
16795  *       while (x--) {} // <<-- infinite loop here
16796  *   }
16797  *
16798  */
16799 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
16800 {
16801 	struct bpf_reg_state *slot, *cur_slot;
16802 	struct bpf_func_state *state;
16803 	int i, fr;
16804 
16805 	for (fr = old->curframe; fr >= 0; fr--) {
16806 		state = old->frame[fr];
16807 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16808 			if (state->stack[i].slot_type[0] != STACK_ITER)
16809 				continue;
16810 
16811 			slot = &state->stack[i].spilled_ptr;
16812 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
16813 				continue;
16814 
16815 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
16816 			if (cur_slot->iter.depth != slot->iter.depth)
16817 				return true;
16818 		}
16819 	}
16820 	return false;
16821 }
16822 
16823 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
16824 {
16825 	struct bpf_verifier_state_list *new_sl;
16826 	struct bpf_verifier_state_list *sl, **pprev;
16827 	struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry;
16828 	int i, j, n, err, states_cnt = 0;
16829 	bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
16830 	bool add_new_state = force_new_state;
16831 	bool force_exact;
16832 
16833 	/* bpf progs typically have pruning point every 4 instructions
16834 	 * http://vger.kernel.org/bpfconf2019.html#session-1
16835 	 * Do not add new state for future pruning if the verifier hasn't seen
16836 	 * at least 2 jumps and at least 8 instructions.
16837 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
16838 	 * In tests that amounts to up to 50% reduction into total verifier
16839 	 * memory consumption and 20% verifier time speedup.
16840 	 */
16841 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
16842 	    env->insn_processed - env->prev_insn_processed >= 8)
16843 		add_new_state = true;
16844 
16845 	pprev = explored_state(env, insn_idx);
16846 	sl = *pprev;
16847 
16848 	clean_live_states(env, insn_idx, cur);
16849 
16850 	while (sl) {
16851 		states_cnt++;
16852 		if (sl->state.insn_idx != insn_idx)
16853 			goto next;
16854 
16855 		if (sl->state.branches) {
16856 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
16857 
16858 			if (frame->in_async_callback_fn &&
16859 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
16860 				/* Different async_entry_cnt means that the verifier is
16861 				 * processing another entry into async callback.
16862 				 * Seeing the same state is not an indication of infinite
16863 				 * loop or infinite recursion.
16864 				 * But finding the same state doesn't mean that it's safe
16865 				 * to stop processing the current state. The previous state
16866 				 * hasn't yet reached bpf_exit, since state.branches > 0.
16867 				 * Checking in_async_callback_fn alone is not enough either.
16868 				 * Since the verifier still needs to catch infinite loops
16869 				 * inside async callbacks.
16870 				 */
16871 				goto skip_inf_loop_check;
16872 			}
16873 			/* BPF open-coded iterators loop detection is special.
16874 			 * states_maybe_looping() logic is too simplistic in detecting
16875 			 * states that *might* be equivalent, because it doesn't know
16876 			 * about ID remapping, so don't even perform it.
16877 			 * See process_iter_next_call() and iter_active_depths_differ()
16878 			 * for overview of the logic. When current and one of parent
16879 			 * states are detected as equivalent, it's a good thing: we prove
16880 			 * convergence and can stop simulating further iterations.
16881 			 * It's safe to assume that iterator loop will finish, taking into
16882 			 * account iter_next() contract of eventually returning
16883 			 * sticky NULL result.
16884 			 *
16885 			 * Note, that states have to be compared exactly in this case because
16886 			 * read and precision marks might not be finalized inside the loop.
16887 			 * E.g. as in the program below:
16888 			 *
16889 			 *     1. r7 = -16
16890 			 *     2. r6 = bpf_get_prandom_u32()
16891 			 *     3. while (bpf_iter_num_next(&fp[-8])) {
16892 			 *     4.   if (r6 != 42) {
16893 			 *     5.     r7 = -32
16894 			 *     6.     r6 = bpf_get_prandom_u32()
16895 			 *     7.     continue
16896 			 *     8.   }
16897 			 *     9.   r0 = r10
16898 			 *    10.   r0 += r7
16899 			 *    11.   r8 = *(u64 *)(r0 + 0)
16900 			 *    12.   r6 = bpf_get_prandom_u32()
16901 			 *    13. }
16902 			 *
16903 			 * Here verifier would first visit path 1-3, create a checkpoint at 3
16904 			 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
16905 			 * not have read or precision mark for r7 yet, thus inexact states
16906 			 * comparison would discard current state with r7=-32
16907 			 * => unsafe memory access at 11 would not be caught.
16908 			 */
16909 			if (is_iter_next_insn(env, insn_idx)) {
16910 				if (states_equal(env, &sl->state, cur, true)) {
16911 					struct bpf_func_state *cur_frame;
16912 					struct bpf_reg_state *iter_state, *iter_reg;
16913 					int spi;
16914 
16915 					cur_frame = cur->frame[cur->curframe];
16916 					/* btf_check_iter_kfuncs() enforces that
16917 					 * iter state pointer is always the first arg
16918 					 */
16919 					iter_reg = &cur_frame->regs[BPF_REG_1];
16920 					/* current state is valid due to states_equal(),
16921 					 * so we can assume valid iter and reg state,
16922 					 * no need for extra (re-)validations
16923 					 */
16924 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
16925 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
16926 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
16927 						update_loop_entry(cur, &sl->state);
16928 						goto hit;
16929 					}
16930 				}
16931 				goto skip_inf_loop_check;
16932 			}
16933 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
16934 			if (states_maybe_looping(&sl->state, cur) &&
16935 			    states_equal(env, &sl->state, cur, false) &&
16936 			    !iter_active_depths_differ(&sl->state, cur)) {
16937 				verbose_linfo(env, insn_idx, "; ");
16938 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
16939 				verbose(env, "cur state:");
16940 				print_verifier_state(env, cur->frame[cur->curframe], true);
16941 				verbose(env, "old state:");
16942 				print_verifier_state(env, sl->state.frame[cur->curframe], true);
16943 				return -EINVAL;
16944 			}
16945 			/* if the verifier is processing a loop, avoid adding new state
16946 			 * too often, since different loop iterations have distinct
16947 			 * states and may not help future pruning.
16948 			 * This threshold shouldn't be too low to make sure that
16949 			 * a loop with large bound will be rejected quickly.
16950 			 * The most abusive loop will be:
16951 			 * r1 += 1
16952 			 * if r1 < 1000000 goto pc-2
16953 			 * 1M insn_procssed limit / 100 == 10k peak states.
16954 			 * This threshold shouldn't be too high either, since states
16955 			 * at the end of the loop are likely to be useful in pruning.
16956 			 */
16957 skip_inf_loop_check:
16958 			if (!force_new_state &&
16959 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
16960 			    env->insn_processed - env->prev_insn_processed < 100)
16961 				add_new_state = false;
16962 			goto miss;
16963 		}
16964 		/* If sl->state is a part of a loop and this loop's entry is a part of
16965 		 * current verification path then states have to be compared exactly.
16966 		 * 'force_exact' is needed to catch the following case:
16967 		 *
16968 		 *                initial     Here state 'succ' was processed first,
16969 		 *                  |         it was eventually tracked to produce a
16970 		 *                  V         state identical to 'hdr'.
16971 		 *     .---------> hdr        All branches from 'succ' had been explored
16972 		 *     |            |         and thus 'succ' has its .branches == 0.
16973 		 *     |            V
16974 		 *     |    .------...        Suppose states 'cur' and 'succ' correspond
16975 		 *     |    |       |         to the same instruction + callsites.
16976 		 *     |    V       V         In such case it is necessary to check
16977 		 *     |   ...     ...        if 'succ' and 'cur' are states_equal().
16978 		 *     |    |       |         If 'succ' and 'cur' are a part of the
16979 		 *     |    V       V         same loop exact flag has to be set.
16980 		 *     |   succ <- cur        To check if that is the case, verify
16981 		 *     |    |                 if loop entry of 'succ' is in current
16982 		 *     |    V                 DFS path.
16983 		 *     |   ...
16984 		 *     |    |
16985 		 *     '----'
16986 		 *
16987 		 * Additional details are in the comment before get_loop_entry().
16988 		 */
16989 		loop_entry = get_loop_entry(&sl->state);
16990 		force_exact = loop_entry && loop_entry->branches > 0;
16991 		if (states_equal(env, &sl->state, cur, force_exact)) {
16992 			if (force_exact)
16993 				update_loop_entry(cur, loop_entry);
16994 hit:
16995 			sl->hit_cnt++;
16996 			/* reached equivalent register/stack state,
16997 			 * prune the search.
16998 			 * Registers read by the continuation are read by us.
16999 			 * If we have any write marks in env->cur_state, they
17000 			 * will prevent corresponding reads in the continuation
17001 			 * from reaching our parent (an explored_state).  Our
17002 			 * own state will get the read marks recorded, but
17003 			 * they'll be immediately forgotten as we're pruning
17004 			 * this state and will pop a new one.
17005 			 */
17006 			err = propagate_liveness(env, &sl->state, cur);
17007 
17008 			/* if previous state reached the exit with precision and
17009 			 * current state is equivalent to it (except precsion marks)
17010 			 * the precision needs to be propagated back in
17011 			 * the current state.
17012 			 */
17013 			err = err ? : push_jmp_history(env, cur);
17014 			err = err ? : propagate_precision(env, &sl->state);
17015 			if (err)
17016 				return err;
17017 			return 1;
17018 		}
17019 miss:
17020 		/* when new state is not going to be added do not increase miss count.
17021 		 * Otherwise several loop iterations will remove the state
17022 		 * recorded earlier. The goal of these heuristics is to have
17023 		 * states from some iterations of the loop (some in the beginning
17024 		 * and some at the end) to help pruning.
17025 		 */
17026 		if (add_new_state)
17027 			sl->miss_cnt++;
17028 		/* heuristic to determine whether this state is beneficial
17029 		 * to keep checking from state equivalence point of view.
17030 		 * Higher numbers increase max_states_per_insn and verification time,
17031 		 * but do not meaningfully decrease insn_processed.
17032 		 * 'n' controls how many times state could miss before eviction.
17033 		 * Use bigger 'n' for checkpoints because evicting checkpoint states
17034 		 * too early would hinder iterator convergence.
17035 		 */
17036 		n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
17037 		if (sl->miss_cnt > sl->hit_cnt * n + n) {
17038 			/* the state is unlikely to be useful. Remove it to
17039 			 * speed up verification
17040 			 */
17041 			*pprev = sl->next;
17042 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE &&
17043 			    !sl->state.used_as_loop_entry) {
17044 				u32 br = sl->state.branches;
17045 
17046 				WARN_ONCE(br,
17047 					  "BUG live_done but branches_to_explore %d\n",
17048 					  br);
17049 				free_verifier_state(&sl->state, false);
17050 				kfree(sl);
17051 				env->peak_states--;
17052 			} else {
17053 				/* cannot free this state, since parentage chain may
17054 				 * walk it later. Add it for free_list instead to
17055 				 * be freed at the end of verification
17056 				 */
17057 				sl->next = env->free_list;
17058 				env->free_list = sl;
17059 			}
17060 			sl = *pprev;
17061 			continue;
17062 		}
17063 next:
17064 		pprev = &sl->next;
17065 		sl = *pprev;
17066 	}
17067 
17068 	if (env->max_states_per_insn < states_cnt)
17069 		env->max_states_per_insn = states_cnt;
17070 
17071 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
17072 		return 0;
17073 
17074 	if (!add_new_state)
17075 		return 0;
17076 
17077 	/* There were no equivalent states, remember the current one.
17078 	 * Technically the current state is not proven to be safe yet,
17079 	 * but it will either reach outer most bpf_exit (which means it's safe)
17080 	 * or it will be rejected. When there are no loops the verifier won't be
17081 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
17082 	 * again on the way to bpf_exit.
17083 	 * When looping the sl->state.branches will be > 0 and this state
17084 	 * will not be considered for equivalence until branches == 0.
17085 	 */
17086 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
17087 	if (!new_sl)
17088 		return -ENOMEM;
17089 	env->total_states++;
17090 	env->peak_states++;
17091 	env->prev_jmps_processed = env->jmps_processed;
17092 	env->prev_insn_processed = env->insn_processed;
17093 
17094 	/* forget precise markings we inherited, see __mark_chain_precision */
17095 	if (env->bpf_capable)
17096 		mark_all_scalars_imprecise(env, cur);
17097 
17098 	/* add new state to the head of linked list */
17099 	new = &new_sl->state;
17100 	err = copy_verifier_state(new, cur);
17101 	if (err) {
17102 		free_verifier_state(new, false);
17103 		kfree(new_sl);
17104 		return err;
17105 	}
17106 	new->insn_idx = insn_idx;
17107 	WARN_ONCE(new->branches != 1,
17108 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
17109 
17110 	cur->parent = new;
17111 	cur->first_insn_idx = insn_idx;
17112 	cur->dfs_depth = new->dfs_depth + 1;
17113 	clear_jmp_history(cur);
17114 	new_sl->next = *explored_state(env, insn_idx);
17115 	*explored_state(env, insn_idx) = new_sl;
17116 	/* connect new state to parentage chain. Current frame needs all
17117 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
17118 	 * to the stack implicitly by JITs) so in callers' frames connect just
17119 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
17120 	 * the state of the call instruction (with WRITTEN set), and r0 comes
17121 	 * from callee with its full parentage chain, anyway.
17122 	 */
17123 	/* clear write marks in current state: the writes we did are not writes
17124 	 * our child did, so they don't screen off its reads from us.
17125 	 * (There are no read marks in current state, because reads always mark
17126 	 * their parent and current state never has children yet.  Only
17127 	 * explored_states can get read marks.)
17128 	 */
17129 	for (j = 0; j <= cur->curframe; j++) {
17130 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
17131 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
17132 		for (i = 0; i < BPF_REG_FP; i++)
17133 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
17134 	}
17135 
17136 	/* all stack frames are accessible from callee, clear them all */
17137 	for (j = 0; j <= cur->curframe; j++) {
17138 		struct bpf_func_state *frame = cur->frame[j];
17139 		struct bpf_func_state *newframe = new->frame[j];
17140 
17141 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
17142 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
17143 			frame->stack[i].spilled_ptr.parent =
17144 						&newframe->stack[i].spilled_ptr;
17145 		}
17146 	}
17147 	return 0;
17148 }
17149 
17150 /* Return true if it's OK to have the same insn return a different type. */
17151 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
17152 {
17153 	switch (base_type(type)) {
17154 	case PTR_TO_CTX:
17155 	case PTR_TO_SOCKET:
17156 	case PTR_TO_SOCK_COMMON:
17157 	case PTR_TO_TCP_SOCK:
17158 	case PTR_TO_XDP_SOCK:
17159 	case PTR_TO_BTF_ID:
17160 		return false;
17161 	default:
17162 		return true;
17163 	}
17164 }
17165 
17166 /* If an instruction was previously used with particular pointer types, then we
17167  * need to be careful to avoid cases such as the below, where it may be ok
17168  * for one branch accessing the pointer, but not ok for the other branch:
17169  *
17170  * R1 = sock_ptr
17171  * goto X;
17172  * ...
17173  * R1 = some_other_valid_ptr;
17174  * goto X;
17175  * ...
17176  * R2 = *(u32 *)(R1 + 0);
17177  */
17178 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
17179 {
17180 	return src != prev && (!reg_type_mismatch_ok(src) ||
17181 			       !reg_type_mismatch_ok(prev));
17182 }
17183 
17184 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
17185 			     bool allow_trust_missmatch)
17186 {
17187 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
17188 
17189 	if (*prev_type == NOT_INIT) {
17190 		/* Saw a valid insn
17191 		 * dst_reg = *(u32 *)(src_reg + off)
17192 		 * save type to validate intersecting paths
17193 		 */
17194 		*prev_type = type;
17195 	} else if (reg_type_mismatch(type, *prev_type)) {
17196 		/* Abuser program is trying to use the same insn
17197 		 * dst_reg = *(u32*) (src_reg + off)
17198 		 * with different pointer types:
17199 		 * src_reg == ctx in one branch and
17200 		 * src_reg == stack|map in some other branch.
17201 		 * Reject it.
17202 		 */
17203 		if (allow_trust_missmatch &&
17204 		    base_type(type) == PTR_TO_BTF_ID &&
17205 		    base_type(*prev_type) == PTR_TO_BTF_ID) {
17206 			/*
17207 			 * Have to support a use case when one path through
17208 			 * the program yields TRUSTED pointer while another
17209 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
17210 			 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
17211 			 */
17212 			*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
17213 		} else {
17214 			verbose(env, "same insn cannot be used with different pointers\n");
17215 			return -EINVAL;
17216 		}
17217 	}
17218 
17219 	return 0;
17220 }
17221 
17222 static int do_check(struct bpf_verifier_env *env)
17223 {
17224 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
17225 	struct bpf_verifier_state *state = env->cur_state;
17226 	struct bpf_insn *insns = env->prog->insnsi;
17227 	struct bpf_reg_state *regs;
17228 	int insn_cnt = env->prog->len;
17229 	bool do_print_state = false;
17230 	int prev_insn_idx = -1;
17231 
17232 	for (;;) {
17233 		bool exception_exit = false;
17234 		struct bpf_insn *insn;
17235 		u8 class;
17236 		int err;
17237 
17238 		env->prev_insn_idx = prev_insn_idx;
17239 		if (env->insn_idx >= insn_cnt) {
17240 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
17241 				env->insn_idx, insn_cnt);
17242 			return -EFAULT;
17243 		}
17244 
17245 		insn = &insns[env->insn_idx];
17246 		class = BPF_CLASS(insn->code);
17247 
17248 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
17249 			verbose(env,
17250 				"BPF program is too large. Processed %d insn\n",
17251 				env->insn_processed);
17252 			return -E2BIG;
17253 		}
17254 
17255 		state->last_insn_idx = env->prev_insn_idx;
17256 
17257 		if (is_prune_point(env, env->insn_idx)) {
17258 			err = is_state_visited(env, env->insn_idx);
17259 			if (err < 0)
17260 				return err;
17261 			if (err == 1) {
17262 				/* found equivalent state, can prune the search */
17263 				if (env->log.level & BPF_LOG_LEVEL) {
17264 					if (do_print_state)
17265 						verbose(env, "\nfrom %d to %d%s: safe\n",
17266 							env->prev_insn_idx, env->insn_idx,
17267 							env->cur_state->speculative ?
17268 							" (speculative execution)" : "");
17269 					else
17270 						verbose(env, "%d: safe\n", env->insn_idx);
17271 				}
17272 				goto process_bpf_exit;
17273 			}
17274 		}
17275 
17276 		if (is_jmp_point(env, env->insn_idx)) {
17277 			err = push_jmp_history(env, state);
17278 			if (err)
17279 				return err;
17280 		}
17281 
17282 		if (signal_pending(current))
17283 			return -EAGAIN;
17284 
17285 		if (need_resched())
17286 			cond_resched();
17287 
17288 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
17289 			verbose(env, "\nfrom %d to %d%s:",
17290 				env->prev_insn_idx, env->insn_idx,
17291 				env->cur_state->speculative ?
17292 				" (speculative execution)" : "");
17293 			print_verifier_state(env, state->frame[state->curframe], true);
17294 			do_print_state = false;
17295 		}
17296 
17297 		if (env->log.level & BPF_LOG_LEVEL) {
17298 			const struct bpf_insn_cbs cbs = {
17299 				.cb_call	= disasm_kfunc_name,
17300 				.cb_print	= verbose,
17301 				.private_data	= env,
17302 			};
17303 
17304 			if (verifier_state_scratched(env))
17305 				print_insn_state(env, state->frame[state->curframe]);
17306 
17307 			verbose_linfo(env, env->insn_idx, "; ");
17308 			env->prev_log_pos = env->log.end_pos;
17309 			verbose(env, "%d: ", env->insn_idx);
17310 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17311 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
17312 			env->prev_log_pos = env->log.end_pos;
17313 		}
17314 
17315 		if (bpf_prog_is_offloaded(env->prog->aux)) {
17316 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
17317 							   env->prev_insn_idx);
17318 			if (err)
17319 				return err;
17320 		}
17321 
17322 		regs = cur_regs(env);
17323 		sanitize_mark_insn_seen(env);
17324 		prev_insn_idx = env->insn_idx;
17325 
17326 		if (class == BPF_ALU || class == BPF_ALU64) {
17327 			err = check_alu_op(env, insn);
17328 			if (err)
17329 				return err;
17330 
17331 		} else if (class == BPF_LDX) {
17332 			enum bpf_reg_type src_reg_type;
17333 
17334 			/* check for reserved fields is already done */
17335 
17336 			/* check src operand */
17337 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
17338 			if (err)
17339 				return err;
17340 
17341 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17342 			if (err)
17343 				return err;
17344 
17345 			src_reg_type = regs[insn->src_reg].type;
17346 
17347 			/* check that memory (src_reg + off) is readable,
17348 			 * the state of dst_reg will be updated by this func
17349 			 */
17350 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
17351 					       insn->off, BPF_SIZE(insn->code),
17352 					       BPF_READ, insn->dst_reg, false,
17353 					       BPF_MODE(insn->code) == BPF_MEMSX);
17354 			if (err)
17355 				return err;
17356 
17357 			err = save_aux_ptr_type(env, src_reg_type, true);
17358 			if (err)
17359 				return err;
17360 		} else if (class == BPF_STX) {
17361 			enum bpf_reg_type dst_reg_type;
17362 
17363 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
17364 				err = check_atomic(env, env->insn_idx, insn);
17365 				if (err)
17366 					return err;
17367 				env->insn_idx++;
17368 				continue;
17369 			}
17370 
17371 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
17372 				verbose(env, "BPF_STX uses reserved fields\n");
17373 				return -EINVAL;
17374 			}
17375 
17376 			/* check src1 operand */
17377 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
17378 			if (err)
17379 				return err;
17380 			/* check src2 operand */
17381 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17382 			if (err)
17383 				return err;
17384 
17385 			dst_reg_type = regs[insn->dst_reg].type;
17386 
17387 			/* check that memory (dst_reg + off) is writeable */
17388 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17389 					       insn->off, BPF_SIZE(insn->code),
17390 					       BPF_WRITE, insn->src_reg, false, false);
17391 			if (err)
17392 				return err;
17393 
17394 			err = save_aux_ptr_type(env, dst_reg_type, false);
17395 			if (err)
17396 				return err;
17397 		} else if (class == BPF_ST) {
17398 			enum bpf_reg_type dst_reg_type;
17399 
17400 			if (BPF_MODE(insn->code) != BPF_MEM ||
17401 			    insn->src_reg != BPF_REG_0) {
17402 				verbose(env, "BPF_ST uses reserved fields\n");
17403 				return -EINVAL;
17404 			}
17405 			/* check src operand */
17406 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17407 			if (err)
17408 				return err;
17409 
17410 			dst_reg_type = regs[insn->dst_reg].type;
17411 
17412 			/* check that memory (dst_reg + off) is writeable */
17413 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17414 					       insn->off, BPF_SIZE(insn->code),
17415 					       BPF_WRITE, -1, false, false);
17416 			if (err)
17417 				return err;
17418 
17419 			err = save_aux_ptr_type(env, dst_reg_type, false);
17420 			if (err)
17421 				return err;
17422 		} else if (class == BPF_JMP || class == BPF_JMP32) {
17423 			u8 opcode = BPF_OP(insn->code);
17424 
17425 			env->jmps_processed++;
17426 			if (opcode == BPF_CALL) {
17427 				if (BPF_SRC(insn->code) != BPF_K ||
17428 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
17429 				     && insn->off != 0) ||
17430 				    (insn->src_reg != BPF_REG_0 &&
17431 				     insn->src_reg != BPF_PSEUDO_CALL &&
17432 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
17433 				    insn->dst_reg != BPF_REG_0 ||
17434 				    class == BPF_JMP32) {
17435 					verbose(env, "BPF_CALL uses reserved fields\n");
17436 					return -EINVAL;
17437 				}
17438 
17439 				if (env->cur_state->active_lock.ptr) {
17440 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
17441 					    (insn->src_reg == BPF_PSEUDO_CALL) ||
17442 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
17443 					     (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
17444 						verbose(env, "function calls are not allowed while holding a lock\n");
17445 						return -EINVAL;
17446 					}
17447 				}
17448 				if (insn->src_reg == BPF_PSEUDO_CALL) {
17449 					err = check_func_call(env, insn, &env->insn_idx);
17450 				} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
17451 					err = check_kfunc_call(env, insn, &env->insn_idx);
17452 					if (!err && is_bpf_throw_kfunc(insn)) {
17453 						exception_exit = true;
17454 						goto process_bpf_exit_full;
17455 					}
17456 				} else {
17457 					err = check_helper_call(env, insn, &env->insn_idx);
17458 				}
17459 				if (err)
17460 					return err;
17461 
17462 				mark_reg_scratched(env, BPF_REG_0);
17463 			} else if (opcode == BPF_JA) {
17464 				if (BPF_SRC(insn->code) != BPF_K ||
17465 				    insn->src_reg != BPF_REG_0 ||
17466 				    insn->dst_reg != BPF_REG_0 ||
17467 				    (class == BPF_JMP && insn->imm != 0) ||
17468 				    (class == BPF_JMP32 && insn->off != 0)) {
17469 					verbose(env, "BPF_JA uses reserved fields\n");
17470 					return -EINVAL;
17471 				}
17472 
17473 				if (class == BPF_JMP)
17474 					env->insn_idx += insn->off + 1;
17475 				else
17476 					env->insn_idx += insn->imm + 1;
17477 				continue;
17478 
17479 			} else if (opcode == BPF_EXIT) {
17480 				if (BPF_SRC(insn->code) != BPF_K ||
17481 				    insn->imm != 0 ||
17482 				    insn->src_reg != BPF_REG_0 ||
17483 				    insn->dst_reg != BPF_REG_0 ||
17484 				    class == BPF_JMP32) {
17485 					verbose(env, "BPF_EXIT uses reserved fields\n");
17486 					return -EINVAL;
17487 				}
17488 process_bpf_exit_full:
17489 				if (env->cur_state->active_lock.ptr &&
17490 				    !in_rbtree_lock_required_cb(env)) {
17491 					verbose(env, "bpf_spin_unlock is missing\n");
17492 					return -EINVAL;
17493 				}
17494 
17495 				if (env->cur_state->active_rcu_lock &&
17496 				    !in_rbtree_lock_required_cb(env)) {
17497 					verbose(env, "bpf_rcu_read_unlock is missing\n");
17498 					return -EINVAL;
17499 				}
17500 
17501 				/* We must do check_reference_leak here before
17502 				 * prepare_func_exit to handle the case when
17503 				 * state->curframe > 0, it may be a callback
17504 				 * function, for which reference_state must
17505 				 * match caller reference state when it exits.
17506 				 */
17507 				err = check_reference_leak(env, exception_exit);
17508 				if (err)
17509 					return err;
17510 
17511 				/* The side effect of the prepare_func_exit
17512 				 * which is being skipped is that it frees
17513 				 * bpf_func_state. Typically, process_bpf_exit
17514 				 * will only be hit with outermost exit.
17515 				 * copy_verifier_state in pop_stack will handle
17516 				 * freeing of any extra bpf_func_state left over
17517 				 * from not processing all nested function
17518 				 * exits. We also skip return code checks as
17519 				 * they are not needed for exceptional exits.
17520 				 */
17521 				if (exception_exit)
17522 					goto process_bpf_exit;
17523 
17524 				if (state->curframe) {
17525 					/* exit from nested function */
17526 					err = prepare_func_exit(env, &env->insn_idx);
17527 					if (err)
17528 						return err;
17529 					do_print_state = true;
17530 					continue;
17531 				}
17532 
17533 				err = check_return_code(env, BPF_REG_0);
17534 				if (err)
17535 					return err;
17536 process_bpf_exit:
17537 				mark_verifier_state_scratched(env);
17538 				update_branch_counts(env, env->cur_state);
17539 				err = pop_stack(env, &prev_insn_idx,
17540 						&env->insn_idx, pop_log);
17541 				if (err < 0) {
17542 					if (err != -ENOENT)
17543 						return err;
17544 					break;
17545 				} else {
17546 					do_print_state = true;
17547 					continue;
17548 				}
17549 			} else {
17550 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
17551 				if (err)
17552 					return err;
17553 			}
17554 		} else if (class == BPF_LD) {
17555 			u8 mode = BPF_MODE(insn->code);
17556 
17557 			if (mode == BPF_ABS || mode == BPF_IND) {
17558 				err = check_ld_abs(env, insn);
17559 				if (err)
17560 					return err;
17561 
17562 			} else if (mode == BPF_IMM) {
17563 				err = check_ld_imm(env, insn);
17564 				if (err)
17565 					return err;
17566 
17567 				env->insn_idx++;
17568 				sanitize_mark_insn_seen(env);
17569 			} else {
17570 				verbose(env, "invalid BPF_LD mode\n");
17571 				return -EINVAL;
17572 			}
17573 		} else {
17574 			verbose(env, "unknown insn class %d\n", class);
17575 			return -EINVAL;
17576 		}
17577 
17578 		env->insn_idx++;
17579 	}
17580 
17581 	return 0;
17582 }
17583 
17584 static int find_btf_percpu_datasec(struct btf *btf)
17585 {
17586 	const struct btf_type *t;
17587 	const char *tname;
17588 	int i, n;
17589 
17590 	/*
17591 	 * Both vmlinux and module each have their own ".data..percpu"
17592 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
17593 	 * types to look at only module's own BTF types.
17594 	 */
17595 	n = btf_nr_types(btf);
17596 	if (btf_is_module(btf))
17597 		i = btf_nr_types(btf_vmlinux);
17598 	else
17599 		i = 1;
17600 
17601 	for(; i < n; i++) {
17602 		t = btf_type_by_id(btf, i);
17603 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
17604 			continue;
17605 
17606 		tname = btf_name_by_offset(btf, t->name_off);
17607 		if (!strcmp(tname, ".data..percpu"))
17608 			return i;
17609 	}
17610 
17611 	return -ENOENT;
17612 }
17613 
17614 /* replace pseudo btf_id with kernel symbol address */
17615 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
17616 			       struct bpf_insn *insn,
17617 			       struct bpf_insn_aux_data *aux)
17618 {
17619 	const struct btf_var_secinfo *vsi;
17620 	const struct btf_type *datasec;
17621 	struct btf_mod_pair *btf_mod;
17622 	const struct btf_type *t;
17623 	const char *sym_name;
17624 	bool percpu = false;
17625 	u32 type, id = insn->imm;
17626 	struct btf *btf;
17627 	s32 datasec_id;
17628 	u64 addr;
17629 	int i, btf_fd, err;
17630 
17631 	btf_fd = insn[1].imm;
17632 	if (btf_fd) {
17633 		btf = btf_get_by_fd(btf_fd);
17634 		if (IS_ERR(btf)) {
17635 			verbose(env, "invalid module BTF object FD specified.\n");
17636 			return -EINVAL;
17637 		}
17638 	} else {
17639 		if (!btf_vmlinux) {
17640 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
17641 			return -EINVAL;
17642 		}
17643 		btf = btf_vmlinux;
17644 		btf_get(btf);
17645 	}
17646 
17647 	t = btf_type_by_id(btf, id);
17648 	if (!t) {
17649 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
17650 		err = -ENOENT;
17651 		goto err_put;
17652 	}
17653 
17654 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
17655 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
17656 		err = -EINVAL;
17657 		goto err_put;
17658 	}
17659 
17660 	sym_name = btf_name_by_offset(btf, t->name_off);
17661 	addr = kallsyms_lookup_name(sym_name);
17662 	if (!addr) {
17663 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
17664 			sym_name);
17665 		err = -ENOENT;
17666 		goto err_put;
17667 	}
17668 	insn[0].imm = (u32)addr;
17669 	insn[1].imm = addr >> 32;
17670 
17671 	if (btf_type_is_func(t)) {
17672 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17673 		aux->btf_var.mem_size = 0;
17674 		goto check_btf;
17675 	}
17676 
17677 	datasec_id = find_btf_percpu_datasec(btf);
17678 	if (datasec_id > 0) {
17679 		datasec = btf_type_by_id(btf, datasec_id);
17680 		for_each_vsi(i, datasec, vsi) {
17681 			if (vsi->type == id) {
17682 				percpu = true;
17683 				break;
17684 			}
17685 		}
17686 	}
17687 
17688 	type = t->type;
17689 	t = btf_type_skip_modifiers(btf, type, NULL);
17690 	if (percpu) {
17691 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
17692 		aux->btf_var.btf = btf;
17693 		aux->btf_var.btf_id = type;
17694 	} else if (!btf_type_is_struct(t)) {
17695 		const struct btf_type *ret;
17696 		const char *tname;
17697 		u32 tsize;
17698 
17699 		/* resolve the type size of ksym. */
17700 		ret = btf_resolve_size(btf, t, &tsize);
17701 		if (IS_ERR(ret)) {
17702 			tname = btf_name_by_offset(btf, t->name_off);
17703 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
17704 				tname, PTR_ERR(ret));
17705 			err = -EINVAL;
17706 			goto err_put;
17707 		}
17708 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17709 		aux->btf_var.mem_size = tsize;
17710 	} else {
17711 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
17712 		aux->btf_var.btf = btf;
17713 		aux->btf_var.btf_id = type;
17714 	}
17715 check_btf:
17716 	/* check whether we recorded this BTF (and maybe module) already */
17717 	for (i = 0; i < env->used_btf_cnt; i++) {
17718 		if (env->used_btfs[i].btf == btf) {
17719 			btf_put(btf);
17720 			return 0;
17721 		}
17722 	}
17723 
17724 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
17725 		err = -E2BIG;
17726 		goto err_put;
17727 	}
17728 
17729 	btf_mod = &env->used_btfs[env->used_btf_cnt];
17730 	btf_mod->btf = btf;
17731 	btf_mod->module = NULL;
17732 
17733 	/* if we reference variables from kernel module, bump its refcount */
17734 	if (btf_is_module(btf)) {
17735 		btf_mod->module = btf_try_get_module(btf);
17736 		if (!btf_mod->module) {
17737 			err = -ENXIO;
17738 			goto err_put;
17739 		}
17740 	}
17741 
17742 	env->used_btf_cnt++;
17743 
17744 	return 0;
17745 err_put:
17746 	btf_put(btf);
17747 	return err;
17748 }
17749 
17750 static bool is_tracing_prog_type(enum bpf_prog_type type)
17751 {
17752 	switch (type) {
17753 	case BPF_PROG_TYPE_KPROBE:
17754 	case BPF_PROG_TYPE_TRACEPOINT:
17755 	case BPF_PROG_TYPE_PERF_EVENT:
17756 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
17757 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
17758 		return true;
17759 	default:
17760 		return false;
17761 	}
17762 }
17763 
17764 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
17765 					struct bpf_map *map,
17766 					struct bpf_prog *prog)
17767 
17768 {
17769 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
17770 
17771 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
17772 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
17773 		if (is_tracing_prog_type(prog_type)) {
17774 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
17775 			return -EINVAL;
17776 		}
17777 	}
17778 
17779 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
17780 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
17781 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
17782 			return -EINVAL;
17783 		}
17784 
17785 		if (is_tracing_prog_type(prog_type)) {
17786 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
17787 			return -EINVAL;
17788 		}
17789 	}
17790 
17791 	if (btf_record_has_field(map->record, BPF_TIMER)) {
17792 		if (is_tracing_prog_type(prog_type)) {
17793 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
17794 			return -EINVAL;
17795 		}
17796 	}
17797 
17798 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
17799 	    !bpf_offload_prog_map_match(prog, map)) {
17800 		verbose(env, "offload device mismatch between prog and map\n");
17801 		return -EINVAL;
17802 	}
17803 
17804 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
17805 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
17806 		return -EINVAL;
17807 	}
17808 
17809 	if (prog->aux->sleepable)
17810 		switch (map->map_type) {
17811 		case BPF_MAP_TYPE_HASH:
17812 		case BPF_MAP_TYPE_LRU_HASH:
17813 		case BPF_MAP_TYPE_ARRAY:
17814 		case BPF_MAP_TYPE_PERCPU_HASH:
17815 		case BPF_MAP_TYPE_PERCPU_ARRAY:
17816 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
17817 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
17818 		case BPF_MAP_TYPE_HASH_OF_MAPS:
17819 		case BPF_MAP_TYPE_RINGBUF:
17820 		case BPF_MAP_TYPE_USER_RINGBUF:
17821 		case BPF_MAP_TYPE_INODE_STORAGE:
17822 		case BPF_MAP_TYPE_SK_STORAGE:
17823 		case BPF_MAP_TYPE_TASK_STORAGE:
17824 		case BPF_MAP_TYPE_CGRP_STORAGE:
17825 			break;
17826 		default:
17827 			verbose(env,
17828 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
17829 			return -EINVAL;
17830 		}
17831 
17832 	return 0;
17833 }
17834 
17835 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
17836 {
17837 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
17838 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
17839 }
17840 
17841 /* find and rewrite pseudo imm in ld_imm64 instructions:
17842  *
17843  * 1. if it accesses map FD, replace it with actual map pointer.
17844  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
17845  *
17846  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
17847  */
17848 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
17849 {
17850 	struct bpf_insn *insn = env->prog->insnsi;
17851 	int insn_cnt = env->prog->len;
17852 	int i, j, err;
17853 
17854 	err = bpf_prog_calc_tag(env->prog);
17855 	if (err)
17856 		return err;
17857 
17858 	for (i = 0; i < insn_cnt; i++, insn++) {
17859 		if (BPF_CLASS(insn->code) == BPF_LDX &&
17860 		    ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
17861 		    insn->imm != 0)) {
17862 			verbose(env, "BPF_LDX uses reserved fields\n");
17863 			return -EINVAL;
17864 		}
17865 
17866 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
17867 			struct bpf_insn_aux_data *aux;
17868 			struct bpf_map *map;
17869 			struct fd f;
17870 			u64 addr;
17871 			u32 fd;
17872 
17873 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
17874 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
17875 			    insn[1].off != 0) {
17876 				verbose(env, "invalid bpf_ld_imm64 insn\n");
17877 				return -EINVAL;
17878 			}
17879 
17880 			if (insn[0].src_reg == 0)
17881 				/* valid generic load 64-bit imm */
17882 				goto next_insn;
17883 
17884 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
17885 				aux = &env->insn_aux_data[i];
17886 				err = check_pseudo_btf_id(env, insn, aux);
17887 				if (err)
17888 					return err;
17889 				goto next_insn;
17890 			}
17891 
17892 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
17893 				aux = &env->insn_aux_data[i];
17894 				aux->ptr_type = PTR_TO_FUNC;
17895 				goto next_insn;
17896 			}
17897 
17898 			/* In final convert_pseudo_ld_imm64() step, this is
17899 			 * converted into regular 64-bit imm load insn.
17900 			 */
17901 			switch (insn[0].src_reg) {
17902 			case BPF_PSEUDO_MAP_VALUE:
17903 			case BPF_PSEUDO_MAP_IDX_VALUE:
17904 				break;
17905 			case BPF_PSEUDO_MAP_FD:
17906 			case BPF_PSEUDO_MAP_IDX:
17907 				if (insn[1].imm == 0)
17908 					break;
17909 				fallthrough;
17910 			default:
17911 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
17912 				return -EINVAL;
17913 			}
17914 
17915 			switch (insn[0].src_reg) {
17916 			case BPF_PSEUDO_MAP_IDX_VALUE:
17917 			case BPF_PSEUDO_MAP_IDX:
17918 				if (bpfptr_is_null(env->fd_array)) {
17919 					verbose(env, "fd_idx without fd_array is invalid\n");
17920 					return -EPROTO;
17921 				}
17922 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
17923 							    insn[0].imm * sizeof(fd),
17924 							    sizeof(fd)))
17925 					return -EFAULT;
17926 				break;
17927 			default:
17928 				fd = insn[0].imm;
17929 				break;
17930 			}
17931 
17932 			f = fdget(fd);
17933 			map = __bpf_map_get(f);
17934 			if (IS_ERR(map)) {
17935 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
17936 					insn[0].imm);
17937 				return PTR_ERR(map);
17938 			}
17939 
17940 			err = check_map_prog_compatibility(env, map, env->prog);
17941 			if (err) {
17942 				fdput(f);
17943 				return err;
17944 			}
17945 
17946 			aux = &env->insn_aux_data[i];
17947 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
17948 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
17949 				addr = (unsigned long)map;
17950 			} else {
17951 				u32 off = insn[1].imm;
17952 
17953 				if (off >= BPF_MAX_VAR_OFF) {
17954 					verbose(env, "direct value offset of %u is not allowed\n", off);
17955 					fdput(f);
17956 					return -EINVAL;
17957 				}
17958 
17959 				if (!map->ops->map_direct_value_addr) {
17960 					verbose(env, "no direct value access support for this map type\n");
17961 					fdput(f);
17962 					return -EINVAL;
17963 				}
17964 
17965 				err = map->ops->map_direct_value_addr(map, &addr, off);
17966 				if (err) {
17967 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
17968 						map->value_size, off);
17969 					fdput(f);
17970 					return err;
17971 				}
17972 
17973 				aux->map_off = off;
17974 				addr += off;
17975 			}
17976 
17977 			insn[0].imm = (u32)addr;
17978 			insn[1].imm = addr >> 32;
17979 
17980 			/* check whether we recorded this map already */
17981 			for (j = 0; j < env->used_map_cnt; j++) {
17982 				if (env->used_maps[j] == map) {
17983 					aux->map_index = j;
17984 					fdput(f);
17985 					goto next_insn;
17986 				}
17987 			}
17988 
17989 			if (env->used_map_cnt >= MAX_USED_MAPS) {
17990 				fdput(f);
17991 				return -E2BIG;
17992 			}
17993 
17994 			/* hold the map. If the program is rejected by verifier,
17995 			 * the map will be released by release_maps() or it
17996 			 * will be used by the valid program until it's unloaded
17997 			 * and all maps are released in free_used_maps()
17998 			 */
17999 			bpf_map_inc(map);
18000 
18001 			aux->map_index = env->used_map_cnt;
18002 			env->used_maps[env->used_map_cnt++] = map;
18003 
18004 			if (bpf_map_is_cgroup_storage(map) &&
18005 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
18006 				verbose(env, "only one cgroup storage of each type is allowed\n");
18007 				fdput(f);
18008 				return -EBUSY;
18009 			}
18010 
18011 			fdput(f);
18012 next_insn:
18013 			insn++;
18014 			i++;
18015 			continue;
18016 		}
18017 
18018 		/* Basic sanity check before we invest more work here. */
18019 		if (!bpf_opcode_in_insntable(insn->code)) {
18020 			verbose(env, "unknown opcode %02x\n", insn->code);
18021 			return -EINVAL;
18022 		}
18023 	}
18024 
18025 	/* now all pseudo BPF_LD_IMM64 instructions load valid
18026 	 * 'struct bpf_map *' into a register instead of user map_fd.
18027 	 * These pointers will be used later by verifier to validate map access.
18028 	 */
18029 	return 0;
18030 }
18031 
18032 /* drop refcnt of maps used by the rejected program */
18033 static void release_maps(struct bpf_verifier_env *env)
18034 {
18035 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
18036 			     env->used_map_cnt);
18037 }
18038 
18039 /* drop refcnt of maps used by the rejected program */
18040 static void release_btfs(struct bpf_verifier_env *env)
18041 {
18042 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
18043 			     env->used_btf_cnt);
18044 }
18045 
18046 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
18047 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
18048 {
18049 	struct bpf_insn *insn = env->prog->insnsi;
18050 	int insn_cnt = env->prog->len;
18051 	int i;
18052 
18053 	for (i = 0; i < insn_cnt; i++, insn++) {
18054 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
18055 			continue;
18056 		if (insn->src_reg == BPF_PSEUDO_FUNC)
18057 			continue;
18058 		insn->src_reg = 0;
18059 	}
18060 }
18061 
18062 /* single env->prog->insni[off] instruction was replaced with the range
18063  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
18064  * [0, off) and [off, end) to new locations, so the patched range stays zero
18065  */
18066 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
18067 				 struct bpf_insn_aux_data *new_data,
18068 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
18069 {
18070 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
18071 	struct bpf_insn *insn = new_prog->insnsi;
18072 	u32 old_seen = old_data[off].seen;
18073 	u32 prog_len;
18074 	int i;
18075 
18076 	/* aux info at OFF always needs adjustment, no matter fast path
18077 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
18078 	 * original insn at old prog.
18079 	 */
18080 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
18081 
18082 	if (cnt == 1)
18083 		return;
18084 	prog_len = new_prog->len;
18085 
18086 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
18087 	memcpy(new_data + off + cnt - 1, old_data + off,
18088 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
18089 	for (i = off; i < off + cnt - 1; i++) {
18090 		/* Expand insni[off]'s seen count to the patched range. */
18091 		new_data[i].seen = old_seen;
18092 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
18093 	}
18094 	env->insn_aux_data = new_data;
18095 	vfree(old_data);
18096 }
18097 
18098 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
18099 {
18100 	int i;
18101 
18102 	if (len == 1)
18103 		return;
18104 	/* NOTE: fake 'exit' subprog should be updated as well. */
18105 	for (i = 0; i <= env->subprog_cnt; i++) {
18106 		if (env->subprog_info[i].start <= off)
18107 			continue;
18108 		env->subprog_info[i].start += len - 1;
18109 	}
18110 }
18111 
18112 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
18113 {
18114 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
18115 	int i, sz = prog->aux->size_poke_tab;
18116 	struct bpf_jit_poke_descriptor *desc;
18117 
18118 	for (i = 0; i < sz; i++) {
18119 		desc = &tab[i];
18120 		if (desc->insn_idx <= off)
18121 			continue;
18122 		desc->insn_idx += len - 1;
18123 	}
18124 }
18125 
18126 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
18127 					    const struct bpf_insn *patch, u32 len)
18128 {
18129 	struct bpf_prog *new_prog;
18130 	struct bpf_insn_aux_data *new_data = NULL;
18131 
18132 	if (len > 1) {
18133 		new_data = vzalloc(array_size(env->prog->len + len - 1,
18134 					      sizeof(struct bpf_insn_aux_data)));
18135 		if (!new_data)
18136 			return NULL;
18137 	}
18138 
18139 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
18140 	if (IS_ERR(new_prog)) {
18141 		if (PTR_ERR(new_prog) == -ERANGE)
18142 			verbose(env,
18143 				"insn %d cannot be patched due to 16-bit range\n",
18144 				env->insn_aux_data[off].orig_idx);
18145 		vfree(new_data);
18146 		return NULL;
18147 	}
18148 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
18149 	adjust_subprog_starts(env, off, len);
18150 	adjust_poke_descs(new_prog, off, len);
18151 	return new_prog;
18152 }
18153 
18154 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
18155 					      u32 off, u32 cnt)
18156 {
18157 	int i, j;
18158 
18159 	/* find first prog starting at or after off (first to remove) */
18160 	for (i = 0; i < env->subprog_cnt; i++)
18161 		if (env->subprog_info[i].start >= off)
18162 			break;
18163 	/* find first prog starting at or after off + cnt (first to stay) */
18164 	for (j = i; j < env->subprog_cnt; j++)
18165 		if (env->subprog_info[j].start >= off + cnt)
18166 			break;
18167 	/* if j doesn't start exactly at off + cnt, we are just removing
18168 	 * the front of previous prog
18169 	 */
18170 	if (env->subprog_info[j].start != off + cnt)
18171 		j--;
18172 
18173 	if (j > i) {
18174 		struct bpf_prog_aux *aux = env->prog->aux;
18175 		int move;
18176 
18177 		/* move fake 'exit' subprog as well */
18178 		move = env->subprog_cnt + 1 - j;
18179 
18180 		memmove(env->subprog_info + i,
18181 			env->subprog_info + j,
18182 			sizeof(*env->subprog_info) * move);
18183 		env->subprog_cnt -= j - i;
18184 
18185 		/* remove func_info */
18186 		if (aux->func_info) {
18187 			move = aux->func_info_cnt - j;
18188 
18189 			memmove(aux->func_info + i,
18190 				aux->func_info + j,
18191 				sizeof(*aux->func_info) * move);
18192 			aux->func_info_cnt -= j - i;
18193 			/* func_info->insn_off is set after all code rewrites,
18194 			 * in adjust_btf_func() - no need to adjust
18195 			 */
18196 		}
18197 	} else {
18198 		/* convert i from "first prog to remove" to "first to adjust" */
18199 		if (env->subprog_info[i].start == off)
18200 			i++;
18201 	}
18202 
18203 	/* update fake 'exit' subprog as well */
18204 	for (; i <= env->subprog_cnt; i++)
18205 		env->subprog_info[i].start -= cnt;
18206 
18207 	return 0;
18208 }
18209 
18210 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
18211 				      u32 cnt)
18212 {
18213 	struct bpf_prog *prog = env->prog;
18214 	u32 i, l_off, l_cnt, nr_linfo;
18215 	struct bpf_line_info *linfo;
18216 
18217 	nr_linfo = prog->aux->nr_linfo;
18218 	if (!nr_linfo)
18219 		return 0;
18220 
18221 	linfo = prog->aux->linfo;
18222 
18223 	/* find first line info to remove, count lines to be removed */
18224 	for (i = 0; i < nr_linfo; i++)
18225 		if (linfo[i].insn_off >= off)
18226 			break;
18227 
18228 	l_off = i;
18229 	l_cnt = 0;
18230 	for (; i < nr_linfo; i++)
18231 		if (linfo[i].insn_off < off + cnt)
18232 			l_cnt++;
18233 		else
18234 			break;
18235 
18236 	/* First live insn doesn't match first live linfo, it needs to "inherit"
18237 	 * last removed linfo.  prog is already modified, so prog->len == off
18238 	 * means no live instructions after (tail of the program was removed).
18239 	 */
18240 	if (prog->len != off && l_cnt &&
18241 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
18242 		l_cnt--;
18243 		linfo[--i].insn_off = off + cnt;
18244 	}
18245 
18246 	/* remove the line info which refer to the removed instructions */
18247 	if (l_cnt) {
18248 		memmove(linfo + l_off, linfo + i,
18249 			sizeof(*linfo) * (nr_linfo - i));
18250 
18251 		prog->aux->nr_linfo -= l_cnt;
18252 		nr_linfo = prog->aux->nr_linfo;
18253 	}
18254 
18255 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
18256 	for (i = l_off; i < nr_linfo; i++)
18257 		linfo[i].insn_off -= cnt;
18258 
18259 	/* fix up all subprogs (incl. 'exit') which start >= off */
18260 	for (i = 0; i <= env->subprog_cnt; i++)
18261 		if (env->subprog_info[i].linfo_idx > l_off) {
18262 			/* program may have started in the removed region but
18263 			 * may not be fully removed
18264 			 */
18265 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
18266 				env->subprog_info[i].linfo_idx -= l_cnt;
18267 			else
18268 				env->subprog_info[i].linfo_idx = l_off;
18269 		}
18270 
18271 	return 0;
18272 }
18273 
18274 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
18275 {
18276 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18277 	unsigned int orig_prog_len = env->prog->len;
18278 	int err;
18279 
18280 	if (bpf_prog_is_offloaded(env->prog->aux))
18281 		bpf_prog_offload_remove_insns(env, off, cnt);
18282 
18283 	err = bpf_remove_insns(env->prog, off, cnt);
18284 	if (err)
18285 		return err;
18286 
18287 	err = adjust_subprog_starts_after_remove(env, off, cnt);
18288 	if (err)
18289 		return err;
18290 
18291 	err = bpf_adj_linfo_after_remove(env, off, cnt);
18292 	if (err)
18293 		return err;
18294 
18295 	memmove(aux_data + off,	aux_data + off + cnt,
18296 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
18297 
18298 	return 0;
18299 }
18300 
18301 /* The verifier does more data flow analysis than llvm and will not
18302  * explore branches that are dead at run time. Malicious programs can
18303  * have dead code too. Therefore replace all dead at-run-time code
18304  * with 'ja -1'.
18305  *
18306  * Just nops are not optimal, e.g. if they would sit at the end of the
18307  * program and through another bug we would manage to jump there, then
18308  * we'd execute beyond program memory otherwise. Returning exception
18309  * code also wouldn't work since we can have subprogs where the dead
18310  * code could be located.
18311  */
18312 static void sanitize_dead_code(struct bpf_verifier_env *env)
18313 {
18314 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18315 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
18316 	struct bpf_insn *insn = env->prog->insnsi;
18317 	const int insn_cnt = env->prog->len;
18318 	int i;
18319 
18320 	for (i = 0; i < insn_cnt; i++) {
18321 		if (aux_data[i].seen)
18322 			continue;
18323 		memcpy(insn + i, &trap, sizeof(trap));
18324 		aux_data[i].zext_dst = false;
18325 	}
18326 }
18327 
18328 static bool insn_is_cond_jump(u8 code)
18329 {
18330 	u8 op;
18331 
18332 	op = BPF_OP(code);
18333 	if (BPF_CLASS(code) == BPF_JMP32)
18334 		return op != BPF_JA;
18335 
18336 	if (BPF_CLASS(code) != BPF_JMP)
18337 		return false;
18338 
18339 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
18340 }
18341 
18342 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
18343 {
18344 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18345 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18346 	struct bpf_insn *insn = env->prog->insnsi;
18347 	const int insn_cnt = env->prog->len;
18348 	int i;
18349 
18350 	for (i = 0; i < insn_cnt; i++, insn++) {
18351 		if (!insn_is_cond_jump(insn->code))
18352 			continue;
18353 
18354 		if (!aux_data[i + 1].seen)
18355 			ja.off = insn->off;
18356 		else if (!aux_data[i + 1 + insn->off].seen)
18357 			ja.off = 0;
18358 		else
18359 			continue;
18360 
18361 		if (bpf_prog_is_offloaded(env->prog->aux))
18362 			bpf_prog_offload_replace_insn(env, i, &ja);
18363 
18364 		memcpy(insn, &ja, sizeof(ja));
18365 	}
18366 }
18367 
18368 static int opt_remove_dead_code(struct bpf_verifier_env *env)
18369 {
18370 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18371 	int insn_cnt = env->prog->len;
18372 	int i, err;
18373 
18374 	for (i = 0; i < insn_cnt; i++) {
18375 		int j;
18376 
18377 		j = 0;
18378 		while (i + j < insn_cnt && !aux_data[i + j].seen)
18379 			j++;
18380 		if (!j)
18381 			continue;
18382 
18383 		err = verifier_remove_insns(env, i, j);
18384 		if (err)
18385 			return err;
18386 		insn_cnt = env->prog->len;
18387 	}
18388 
18389 	return 0;
18390 }
18391 
18392 static int opt_remove_nops(struct bpf_verifier_env *env)
18393 {
18394 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18395 	struct bpf_insn *insn = env->prog->insnsi;
18396 	int insn_cnt = env->prog->len;
18397 	int i, err;
18398 
18399 	for (i = 0; i < insn_cnt; i++) {
18400 		if (memcmp(&insn[i], &ja, sizeof(ja)))
18401 			continue;
18402 
18403 		err = verifier_remove_insns(env, i, 1);
18404 		if (err)
18405 			return err;
18406 		insn_cnt--;
18407 		i--;
18408 	}
18409 
18410 	return 0;
18411 }
18412 
18413 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
18414 					 const union bpf_attr *attr)
18415 {
18416 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
18417 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
18418 	int i, patch_len, delta = 0, len = env->prog->len;
18419 	struct bpf_insn *insns = env->prog->insnsi;
18420 	struct bpf_prog *new_prog;
18421 	bool rnd_hi32;
18422 
18423 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
18424 	zext_patch[1] = BPF_ZEXT_REG(0);
18425 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
18426 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
18427 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
18428 	for (i = 0; i < len; i++) {
18429 		int adj_idx = i + delta;
18430 		struct bpf_insn insn;
18431 		int load_reg;
18432 
18433 		insn = insns[adj_idx];
18434 		load_reg = insn_def_regno(&insn);
18435 		if (!aux[adj_idx].zext_dst) {
18436 			u8 code, class;
18437 			u32 imm_rnd;
18438 
18439 			if (!rnd_hi32)
18440 				continue;
18441 
18442 			code = insn.code;
18443 			class = BPF_CLASS(code);
18444 			if (load_reg == -1)
18445 				continue;
18446 
18447 			/* NOTE: arg "reg" (the fourth one) is only used for
18448 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
18449 			 *       here.
18450 			 */
18451 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
18452 				if (class == BPF_LD &&
18453 				    BPF_MODE(code) == BPF_IMM)
18454 					i++;
18455 				continue;
18456 			}
18457 
18458 			/* ctx load could be transformed into wider load. */
18459 			if (class == BPF_LDX &&
18460 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
18461 				continue;
18462 
18463 			imm_rnd = get_random_u32();
18464 			rnd_hi32_patch[0] = insn;
18465 			rnd_hi32_patch[1].imm = imm_rnd;
18466 			rnd_hi32_patch[3].dst_reg = load_reg;
18467 			patch = rnd_hi32_patch;
18468 			patch_len = 4;
18469 			goto apply_patch_buffer;
18470 		}
18471 
18472 		/* Add in an zero-extend instruction if a) the JIT has requested
18473 		 * it or b) it's a CMPXCHG.
18474 		 *
18475 		 * The latter is because: BPF_CMPXCHG always loads a value into
18476 		 * R0, therefore always zero-extends. However some archs'
18477 		 * equivalent instruction only does this load when the
18478 		 * comparison is successful. This detail of CMPXCHG is
18479 		 * orthogonal to the general zero-extension behaviour of the
18480 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
18481 		 */
18482 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
18483 			continue;
18484 
18485 		/* Zero-extension is done by the caller. */
18486 		if (bpf_pseudo_kfunc_call(&insn))
18487 			continue;
18488 
18489 		if (WARN_ON(load_reg == -1)) {
18490 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
18491 			return -EFAULT;
18492 		}
18493 
18494 		zext_patch[0] = insn;
18495 		zext_patch[1].dst_reg = load_reg;
18496 		zext_patch[1].src_reg = load_reg;
18497 		patch = zext_patch;
18498 		patch_len = 2;
18499 apply_patch_buffer:
18500 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
18501 		if (!new_prog)
18502 			return -ENOMEM;
18503 		env->prog = new_prog;
18504 		insns = new_prog->insnsi;
18505 		aux = env->insn_aux_data;
18506 		delta += patch_len - 1;
18507 	}
18508 
18509 	return 0;
18510 }
18511 
18512 /* convert load instructions that access fields of a context type into a
18513  * sequence of instructions that access fields of the underlying structure:
18514  *     struct __sk_buff    -> struct sk_buff
18515  *     struct bpf_sock_ops -> struct sock
18516  */
18517 static int convert_ctx_accesses(struct bpf_verifier_env *env)
18518 {
18519 	const struct bpf_verifier_ops *ops = env->ops;
18520 	int i, cnt, size, ctx_field_size, delta = 0;
18521 	const int insn_cnt = env->prog->len;
18522 	struct bpf_insn insn_buf[16], *insn;
18523 	u32 target_size, size_default, off;
18524 	struct bpf_prog *new_prog;
18525 	enum bpf_access_type type;
18526 	bool is_narrower_load;
18527 
18528 	if (ops->gen_prologue || env->seen_direct_write) {
18529 		if (!ops->gen_prologue) {
18530 			verbose(env, "bpf verifier is misconfigured\n");
18531 			return -EINVAL;
18532 		}
18533 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
18534 					env->prog);
18535 		if (cnt >= ARRAY_SIZE(insn_buf)) {
18536 			verbose(env, "bpf verifier is misconfigured\n");
18537 			return -EINVAL;
18538 		} else if (cnt) {
18539 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
18540 			if (!new_prog)
18541 				return -ENOMEM;
18542 
18543 			env->prog = new_prog;
18544 			delta += cnt - 1;
18545 		}
18546 	}
18547 
18548 	if (bpf_prog_is_offloaded(env->prog->aux))
18549 		return 0;
18550 
18551 	insn = env->prog->insnsi + delta;
18552 
18553 	for (i = 0; i < insn_cnt; i++, insn++) {
18554 		bpf_convert_ctx_access_t convert_ctx_access;
18555 		u8 mode;
18556 
18557 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
18558 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
18559 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
18560 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
18561 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
18562 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
18563 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
18564 			type = BPF_READ;
18565 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
18566 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
18567 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
18568 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
18569 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
18570 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
18571 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
18572 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
18573 			type = BPF_WRITE;
18574 		} else {
18575 			continue;
18576 		}
18577 
18578 		if (type == BPF_WRITE &&
18579 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
18580 			struct bpf_insn patch[] = {
18581 				*insn,
18582 				BPF_ST_NOSPEC(),
18583 			};
18584 
18585 			cnt = ARRAY_SIZE(patch);
18586 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
18587 			if (!new_prog)
18588 				return -ENOMEM;
18589 
18590 			delta    += cnt - 1;
18591 			env->prog = new_prog;
18592 			insn      = new_prog->insnsi + i + delta;
18593 			continue;
18594 		}
18595 
18596 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
18597 		case PTR_TO_CTX:
18598 			if (!ops->convert_ctx_access)
18599 				continue;
18600 			convert_ctx_access = ops->convert_ctx_access;
18601 			break;
18602 		case PTR_TO_SOCKET:
18603 		case PTR_TO_SOCK_COMMON:
18604 			convert_ctx_access = bpf_sock_convert_ctx_access;
18605 			break;
18606 		case PTR_TO_TCP_SOCK:
18607 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
18608 			break;
18609 		case PTR_TO_XDP_SOCK:
18610 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
18611 			break;
18612 		case PTR_TO_BTF_ID:
18613 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
18614 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
18615 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
18616 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
18617 		 * any faults for loads into such types. BPF_WRITE is disallowed
18618 		 * for this case.
18619 		 */
18620 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
18621 			if (type == BPF_READ) {
18622 				if (BPF_MODE(insn->code) == BPF_MEM)
18623 					insn->code = BPF_LDX | BPF_PROBE_MEM |
18624 						     BPF_SIZE((insn)->code);
18625 				else
18626 					insn->code = BPF_LDX | BPF_PROBE_MEMSX |
18627 						     BPF_SIZE((insn)->code);
18628 				env->prog->aux->num_exentries++;
18629 			}
18630 			continue;
18631 		default:
18632 			continue;
18633 		}
18634 
18635 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
18636 		size = BPF_LDST_BYTES(insn);
18637 		mode = BPF_MODE(insn->code);
18638 
18639 		/* If the read access is a narrower load of the field,
18640 		 * convert to a 4/8-byte load, to minimum program type specific
18641 		 * convert_ctx_access changes. If conversion is successful,
18642 		 * we will apply proper mask to the result.
18643 		 */
18644 		is_narrower_load = size < ctx_field_size;
18645 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
18646 		off = insn->off;
18647 		if (is_narrower_load) {
18648 			u8 size_code;
18649 
18650 			if (type == BPF_WRITE) {
18651 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
18652 				return -EINVAL;
18653 			}
18654 
18655 			size_code = BPF_H;
18656 			if (ctx_field_size == 4)
18657 				size_code = BPF_W;
18658 			else if (ctx_field_size == 8)
18659 				size_code = BPF_DW;
18660 
18661 			insn->off = off & ~(size_default - 1);
18662 			insn->code = BPF_LDX | BPF_MEM | size_code;
18663 		}
18664 
18665 		target_size = 0;
18666 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
18667 					 &target_size);
18668 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
18669 		    (ctx_field_size && !target_size)) {
18670 			verbose(env, "bpf verifier is misconfigured\n");
18671 			return -EINVAL;
18672 		}
18673 
18674 		if (is_narrower_load && size < target_size) {
18675 			u8 shift = bpf_ctx_narrow_access_offset(
18676 				off, size, size_default) * 8;
18677 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
18678 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
18679 				return -EINVAL;
18680 			}
18681 			if (ctx_field_size <= 4) {
18682 				if (shift)
18683 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
18684 									insn->dst_reg,
18685 									shift);
18686 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18687 								(1 << size * 8) - 1);
18688 			} else {
18689 				if (shift)
18690 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
18691 									insn->dst_reg,
18692 									shift);
18693 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18694 								(1ULL << size * 8) - 1);
18695 			}
18696 		}
18697 		if (mode == BPF_MEMSX)
18698 			insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
18699 						       insn->dst_reg, insn->dst_reg,
18700 						       size * 8, 0);
18701 
18702 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18703 		if (!new_prog)
18704 			return -ENOMEM;
18705 
18706 		delta += cnt - 1;
18707 
18708 		/* keep walking new program and skip insns we just inserted */
18709 		env->prog = new_prog;
18710 		insn      = new_prog->insnsi + i + delta;
18711 	}
18712 
18713 	return 0;
18714 }
18715 
18716 static int jit_subprogs(struct bpf_verifier_env *env)
18717 {
18718 	struct bpf_prog *prog = env->prog, **func, *tmp;
18719 	int i, j, subprog_start, subprog_end = 0, len, subprog;
18720 	struct bpf_map *map_ptr;
18721 	struct bpf_insn *insn;
18722 	void *old_bpf_func;
18723 	int err, num_exentries;
18724 
18725 	if (env->subprog_cnt <= 1)
18726 		return 0;
18727 
18728 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18729 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
18730 			continue;
18731 
18732 		/* Upon error here we cannot fall back to interpreter but
18733 		 * need a hard reject of the program. Thus -EFAULT is
18734 		 * propagated in any case.
18735 		 */
18736 		subprog = find_subprog(env, i + insn->imm + 1);
18737 		if (subprog < 0) {
18738 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
18739 				  i + insn->imm + 1);
18740 			return -EFAULT;
18741 		}
18742 		/* temporarily remember subprog id inside insn instead of
18743 		 * aux_data, since next loop will split up all insns into funcs
18744 		 */
18745 		insn->off = subprog;
18746 		/* remember original imm in case JIT fails and fallback
18747 		 * to interpreter will be needed
18748 		 */
18749 		env->insn_aux_data[i].call_imm = insn->imm;
18750 		/* point imm to __bpf_call_base+1 from JITs point of view */
18751 		insn->imm = 1;
18752 		if (bpf_pseudo_func(insn))
18753 			/* jit (e.g. x86_64) may emit fewer instructions
18754 			 * if it learns a u32 imm is the same as a u64 imm.
18755 			 * Force a non zero here.
18756 			 */
18757 			insn[1].imm = 1;
18758 	}
18759 
18760 	err = bpf_prog_alloc_jited_linfo(prog);
18761 	if (err)
18762 		goto out_undo_insn;
18763 
18764 	err = -ENOMEM;
18765 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
18766 	if (!func)
18767 		goto out_undo_insn;
18768 
18769 	for (i = 0; i < env->subprog_cnt; i++) {
18770 		subprog_start = subprog_end;
18771 		subprog_end = env->subprog_info[i + 1].start;
18772 
18773 		len = subprog_end - subprog_start;
18774 		/* bpf_prog_run() doesn't call subprogs directly,
18775 		 * hence main prog stats include the runtime of subprogs.
18776 		 * subprogs don't have IDs and not reachable via prog_get_next_id
18777 		 * func[i]->stats will never be accessed and stays NULL
18778 		 */
18779 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
18780 		if (!func[i])
18781 			goto out_free;
18782 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
18783 		       len * sizeof(struct bpf_insn));
18784 		func[i]->type = prog->type;
18785 		func[i]->len = len;
18786 		if (bpf_prog_calc_tag(func[i]))
18787 			goto out_free;
18788 		func[i]->is_func = 1;
18789 		func[i]->aux->func_idx = i;
18790 		/* Below members will be freed only at prog->aux */
18791 		func[i]->aux->btf = prog->aux->btf;
18792 		func[i]->aux->func_info = prog->aux->func_info;
18793 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
18794 		func[i]->aux->poke_tab = prog->aux->poke_tab;
18795 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
18796 
18797 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
18798 			struct bpf_jit_poke_descriptor *poke;
18799 
18800 			poke = &prog->aux->poke_tab[j];
18801 			if (poke->insn_idx < subprog_end &&
18802 			    poke->insn_idx >= subprog_start)
18803 				poke->aux = func[i]->aux;
18804 		}
18805 
18806 		func[i]->aux->name[0] = 'F';
18807 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
18808 		func[i]->jit_requested = 1;
18809 		func[i]->blinding_requested = prog->blinding_requested;
18810 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
18811 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
18812 		func[i]->aux->linfo = prog->aux->linfo;
18813 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
18814 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
18815 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
18816 		num_exentries = 0;
18817 		insn = func[i]->insnsi;
18818 		for (j = 0; j < func[i]->len; j++, insn++) {
18819 			if (BPF_CLASS(insn->code) == BPF_LDX &&
18820 			    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
18821 			     BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
18822 				num_exentries++;
18823 		}
18824 		func[i]->aux->num_exentries = num_exentries;
18825 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
18826 		func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb;
18827 		if (!i)
18828 			func[i]->aux->exception_boundary = env->seen_exception;
18829 		func[i] = bpf_int_jit_compile(func[i]);
18830 		if (!func[i]->jited) {
18831 			err = -ENOTSUPP;
18832 			goto out_free;
18833 		}
18834 		cond_resched();
18835 	}
18836 
18837 	/* at this point all bpf functions were successfully JITed
18838 	 * now populate all bpf_calls with correct addresses and
18839 	 * run last pass of JIT
18840 	 */
18841 	for (i = 0; i < env->subprog_cnt; i++) {
18842 		insn = func[i]->insnsi;
18843 		for (j = 0; j < func[i]->len; j++, insn++) {
18844 			if (bpf_pseudo_func(insn)) {
18845 				subprog = insn->off;
18846 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
18847 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
18848 				continue;
18849 			}
18850 			if (!bpf_pseudo_call(insn))
18851 				continue;
18852 			subprog = insn->off;
18853 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
18854 		}
18855 
18856 		/* we use the aux data to keep a list of the start addresses
18857 		 * of the JITed images for each function in the program
18858 		 *
18859 		 * for some architectures, such as powerpc64, the imm field
18860 		 * might not be large enough to hold the offset of the start
18861 		 * address of the callee's JITed image from __bpf_call_base
18862 		 *
18863 		 * in such cases, we can lookup the start address of a callee
18864 		 * by using its subprog id, available from the off field of
18865 		 * the call instruction, as an index for this list
18866 		 */
18867 		func[i]->aux->func = func;
18868 		func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
18869 		func[i]->aux->real_func_cnt = env->subprog_cnt;
18870 	}
18871 	for (i = 0; i < env->subprog_cnt; i++) {
18872 		old_bpf_func = func[i]->bpf_func;
18873 		tmp = bpf_int_jit_compile(func[i]);
18874 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
18875 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
18876 			err = -ENOTSUPP;
18877 			goto out_free;
18878 		}
18879 		cond_resched();
18880 	}
18881 
18882 	/* finally lock prog and jit images for all functions and
18883 	 * populate kallsysm. Begin at the first subprogram, since
18884 	 * bpf_prog_load will add the kallsyms for the main program.
18885 	 */
18886 	for (i = 1; i < env->subprog_cnt; i++) {
18887 		bpf_prog_lock_ro(func[i]);
18888 		bpf_prog_kallsyms_add(func[i]);
18889 	}
18890 
18891 	/* Last step: make now unused interpreter insns from main
18892 	 * prog consistent for later dump requests, so they can
18893 	 * later look the same as if they were interpreted only.
18894 	 */
18895 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18896 		if (bpf_pseudo_func(insn)) {
18897 			insn[0].imm = env->insn_aux_data[i].call_imm;
18898 			insn[1].imm = insn->off;
18899 			insn->off = 0;
18900 			continue;
18901 		}
18902 		if (!bpf_pseudo_call(insn))
18903 			continue;
18904 		insn->off = env->insn_aux_data[i].call_imm;
18905 		subprog = find_subprog(env, i + insn->off + 1);
18906 		insn->imm = subprog;
18907 	}
18908 
18909 	prog->jited = 1;
18910 	prog->bpf_func = func[0]->bpf_func;
18911 	prog->jited_len = func[0]->jited_len;
18912 	prog->aux->extable = func[0]->aux->extable;
18913 	prog->aux->num_exentries = func[0]->aux->num_exentries;
18914 	prog->aux->func = func;
18915 	prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
18916 	prog->aux->real_func_cnt = env->subprog_cnt;
18917 	prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func;
18918 	prog->aux->exception_boundary = func[0]->aux->exception_boundary;
18919 	bpf_prog_jit_attempt_done(prog);
18920 	return 0;
18921 out_free:
18922 	/* We failed JIT'ing, so at this point we need to unregister poke
18923 	 * descriptors from subprogs, so that kernel is not attempting to
18924 	 * patch it anymore as we're freeing the subprog JIT memory.
18925 	 */
18926 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
18927 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
18928 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
18929 	}
18930 	/* At this point we're guaranteed that poke descriptors are not
18931 	 * live anymore. We can just unlink its descriptor table as it's
18932 	 * released with the main prog.
18933 	 */
18934 	for (i = 0; i < env->subprog_cnt; i++) {
18935 		if (!func[i])
18936 			continue;
18937 		func[i]->aux->poke_tab = NULL;
18938 		bpf_jit_free(func[i]);
18939 	}
18940 	kfree(func);
18941 out_undo_insn:
18942 	/* cleanup main prog to be interpreted */
18943 	prog->jit_requested = 0;
18944 	prog->blinding_requested = 0;
18945 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18946 		if (!bpf_pseudo_call(insn))
18947 			continue;
18948 		insn->off = 0;
18949 		insn->imm = env->insn_aux_data[i].call_imm;
18950 	}
18951 	bpf_prog_jit_attempt_done(prog);
18952 	return err;
18953 }
18954 
18955 static int fixup_call_args(struct bpf_verifier_env *env)
18956 {
18957 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18958 	struct bpf_prog *prog = env->prog;
18959 	struct bpf_insn *insn = prog->insnsi;
18960 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
18961 	int i, depth;
18962 #endif
18963 	int err = 0;
18964 
18965 	if (env->prog->jit_requested &&
18966 	    !bpf_prog_is_offloaded(env->prog->aux)) {
18967 		err = jit_subprogs(env);
18968 		if (err == 0)
18969 			return 0;
18970 		if (err == -EFAULT)
18971 			return err;
18972 	}
18973 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18974 	if (has_kfunc_call) {
18975 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
18976 		return -EINVAL;
18977 	}
18978 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
18979 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
18980 		 * have to be rejected, since interpreter doesn't support them yet.
18981 		 */
18982 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
18983 		return -EINVAL;
18984 	}
18985 	for (i = 0; i < prog->len; i++, insn++) {
18986 		if (bpf_pseudo_func(insn)) {
18987 			/* When JIT fails the progs with callback calls
18988 			 * have to be rejected, since interpreter doesn't support them yet.
18989 			 */
18990 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
18991 			return -EINVAL;
18992 		}
18993 
18994 		if (!bpf_pseudo_call(insn))
18995 			continue;
18996 		depth = get_callee_stack_depth(env, insn, i);
18997 		if (depth < 0)
18998 			return depth;
18999 		bpf_patch_call_args(insn, depth);
19000 	}
19001 	err = 0;
19002 #endif
19003 	return err;
19004 }
19005 
19006 /* replace a generic kfunc with a specialized version if necessary */
19007 static void specialize_kfunc(struct bpf_verifier_env *env,
19008 			     u32 func_id, u16 offset, unsigned long *addr)
19009 {
19010 	struct bpf_prog *prog = env->prog;
19011 	bool seen_direct_write;
19012 	void *xdp_kfunc;
19013 	bool is_rdonly;
19014 
19015 	if (bpf_dev_bound_kfunc_id(func_id)) {
19016 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
19017 		if (xdp_kfunc) {
19018 			*addr = (unsigned long)xdp_kfunc;
19019 			return;
19020 		}
19021 		/* fallback to default kfunc when not supported by netdev */
19022 	}
19023 
19024 	if (offset)
19025 		return;
19026 
19027 	if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
19028 		seen_direct_write = env->seen_direct_write;
19029 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
19030 
19031 		if (is_rdonly)
19032 			*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
19033 
19034 		/* restore env->seen_direct_write to its original value, since
19035 		 * may_access_direct_pkt_data mutates it
19036 		 */
19037 		env->seen_direct_write = seen_direct_write;
19038 	}
19039 }
19040 
19041 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
19042 					    u16 struct_meta_reg,
19043 					    u16 node_offset_reg,
19044 					    struct bpf_insn *insn,
19045 					    struct bpf_insn *insn_buf,
19046 					    int *cnt)
19047 {
19048 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
19049 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
19050 
19051 	insn_buf[0] = addr[0];
19052 	insn_buf[1] = addr[1];
19053 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
19054 	insn_buf[3] = *insn;
19055 	*cnt = 4;
19056 }
19057 
19058 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
19059 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
19060 {
19061 	const struct bpf_kfunc_desc *desc;
19062 
19063 	if (!insn->imm) {
19064 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
19065 		return -EINVAL;
19066 	}
19067 
19068 	*cnt = 0;
19069 
19070 	/* insn->imm has the btf func_id. Replace it with an offset relative to
19071 	 * __bpf_call_base, unless the JIT needs to call functions that are
19072 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
19073 	 */
19074 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
19075 	if (!desc) {
19076 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
19077 			insn->imm);
19078 		return -EFAULT;
19079 	}
19080 
19081 	if (!bpf_jit_supports_far_kfunc_call())
19082 		insn->imm = BPF_CALL_IMM(desc->addr);
19083 	if (insn->off)
19084 		return 0;
19085 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
19086 	    desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
19087 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19088 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
19089 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
19090 
19091 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) {
19092 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
19093 				insn_idx);
19094 			return -EFAULT;
19095 		}
19096 
19097 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
19098 		insn_buf[1] = addr[0];
19099 		insn_buf[2] = addr[1];
19100 		insn_buf[3] = *insn;
19101 		*cnt = 4;
19102 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
19103 		   desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] ||
19104 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
19105 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19106 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
19107 
19108 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) {
19109 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
19110 				insn_idx);
19111 			return -EFAULT;
19112 		}
19113 
19114 		if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
19115 		    !kptr_struct_meta) {
19116 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
19117 				insn_idx);
19118 			return -EFAULT;
19119 		}
19120 
19121 		insn_buf[0] = addr[0];
19122 		insn_buf[1] = addr[1];
19123 		insn_buf[2] = *insn;
19124 		*cnt = 3;
19125 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
19126 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
19127 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
19128 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19129 		int struct_meta_reg = BPF_REG_3;
19130 		int node_offset_reg = BPF_REG_4;
19131 
19132 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
19133 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
19134 			struct_meta_reg = BPF_REG_4;
19135 			node_offset_reg = BPF_REG_5;
19136 		}
19137 
19138 		if (!kptr_struct_meta) {
19139 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
19140 				insn_idx);
19141 			return -EFAULT;
19142 		}
19143 
19144 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
19145 						node_offset_reg, insn, insn_buf, cnt);
19146 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
19147 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
19148 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
19149 		*cnt = 1;
19150 	}
19151 	return 0;
19152 }
19153 
19154 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */
19155 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len)
19156 {
19157 	struct bpf_subprog_info *info = env->subprog_info;
19158 	int cnt = env->subprog_cnt;
19159 	struct bpf_prog *prog;
19160 
19161 	/* We only reserve one slot for hidden subprogs in subprog_info. */
19162 	if (env->hidden_subprog_cnt) {
19163 		verbose(env, "verifier internal error: only one hidden subprog supported\n");
19164 		return -EFAULT;
19165 	}
19166 	/* We're not patching any existing instruction, just appending the new
19167 	 * ones for the hidden subprog. Hence all of the adjustment operations
19168 	 * in bpf_patch_insn_data are no-ops.
19169 	 */
19170 	prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len);
19171 	if (!prog)
19172 		return -ENOMEM;
19173 	env->prog = prog;
19174 	info[cnt + 1].start = info[cnt].start;
19175 	info[cnt].start = prog->len - len + 1;
19176 	env->subprog_cnt++;
19177 	env->hidden_subprog_cnt++;
19178 	return 0;
19179 }
19180 
19181 /* Do various post-verification rewrites in a single program pass.
19182  * These rewrites simplify JIT and interpreter implementations.
19183  */
19184 static int do_misc_fixups(struct bpf_verifier_env *env)
19185 {
19186 	struct bpf_prog *prog = env->prog;
19187 	enum bpf_attach_type eatype = prog->expected_attach_type;
19188 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
19189 	struct bpf_insn *insn = prog->insnsi;
19190 	const struct bpf_func_proto *fn;
19191 	const int insn_cnt = prog->len;
19192 	const struct bpf_map_ops *ops;
19193 	struct bpf_insn_aux_data *aux;
19194 	struct bpf_insn insn_buf[16];
19195 	struct bpf_prog *new_prog;
19196 	struct bpf_map *map_ptr;
19197 	int i, ret, cnt, delta = 0;
19198 
19199 	if (env->seen_exception && !env->exception_callback_subprog) {
19200 		struct bpf_insn patch[] = {
19201 			env->prog->insnsi[insn_cnt - 1],
19202 			BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
19203 			BPF_EXIT_INSN(),
19204 		};
19205 
19206 		ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch));
19207 		if (ret < 0)
19208 			return ret;
19209 		prog = env->prog;
19210 		insn = prog->insnsi;
19211 
19212 		env->exception_callback_subprog = env->subprog_cnt - 1;
19213 		/* Don't update insn_cnt, as add_hidden_subprog always appends insns */
19214 		env->subprog_info[env->exception_callback_subprog].is_cb = true;
19215 		env->subprog_info[env->exception_callback_subprog].is_async_cb = true;
19216 		env->subprog_info[env->exception_callback_subprog].is_exception_cb = true;
19217 	}
19218 
19219 	for (i = 0; i < insn_cnt; i++, insn++) {
19220 		/* Make divide-by-zero exceptions impossible. */
19221 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
19222 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
19223 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
19224 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
19225 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
19226 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
19227 			struct bpf_insn *patchlet;
19228 			struct bpf_insn chk_and_div[] = {
19229 				/* [R,W]x div 0 -> 0 */
19230 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
19231 					     BPF_JNE | BPF_K, insn->src_reg,
19232 					     0, 2, 0),
19233 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
19234 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
19235 				*insn,
19236 			};
19237 			struct bpf_insn chk_and_mod[] = {
19238 				/* [R,W]x mod 0 -> [R,W]x */
19239 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
19240 					     BPF_JEQ | BPF_K, insn->src_reg,
19241 					     0, 1 + (is64 ? 0 : 1), 0),
19242 				*insn,
19243 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
19244 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
19245 			};
19246 
19247 			patchlet = isdiv ? chk_and_div : chk_and_mod;
19248 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
19249 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
19250 
19251 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
19252 			if (!new_prog)
19253 				return -ENOMEM;
19254 
19255 			delta    += cnt - 1;
19256 			env->prog = prog = new_prog;
19257 			insn      = new_prog->insnsi + i + delta;
19258 			continue;
19259 		}
19260 
19261 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
19262 		if (BPF_CLASS(insn->code) == BPF_LD &&
19263 		    (BPF_MODE(insn->code) == BPF_ABS ||
19264 		     BPF_MODE(insn->code) == BPF_IND)) {
19265 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
19266 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19267 				verbose(env, "bpf verifier is misconfigured\n");
19268 				return -EINVAL;
19269 			}
19270 
19271 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19272 			if (!new_prog)
19273 				return -ENOMEM;
19274 
19275 			delta    += cnt - 1;
19276 			env->prog = prog = new_prog;
19277 			insn      = new_prog->insnsi + i + delta;
19278 			continue;
19279 		}
19280 
19281 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
19282 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
19283 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
19284 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
19285 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
19286 			struct bpf_insn *patch = &insn_buf[0];
19287 			bool issrc, isneg, isimm;
19288 			u32 off_reg;
19289 
19290 			aux = &env->insn_aux_data[i + delta];
19291 			if (!aux->alu_state ||
19292 			    aux->alu_state == BPF_ALU_NON_POINTER)
19293 				continue;
19294 
19295 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
19296 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
19297 				BPF_ALU_SANITIZE_SRC;
19298 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
19299 
19300 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
19301 			if (isimm) {
19302 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
19303 			} else {
19304 				if (isneg)
19305 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19306 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
19307 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
19308 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
19309 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
19310 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
19311 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
19312 			}
19313 			if (!issrc)
19314 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
19315 			insn->src_reg = BPF_REG_AX;
19316 			if (isneg)
19317 				insn->code = insn->code == code_add ?
19318 					     code_sub : code_add;
19319 			*patch++ = *insn;
19320 			if (issrc && isneg && !isimm)
19321 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19322 			cnt = patch - insn_buf;
19323 
19324 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19325 			if (!new_prog)
19326 				return -ENOMEM;
19327 
19328 			delta    += cnt - 1;
19329 			env->prog = prog = new_prog;
19330 			insn      = new_prog->insnsi + i + delta;
19331 			continue;
19332 		}
19333 
19334 		if (insn->code != (BPF_JMP | BPF_CALL))
19335 			continue;
19336 		if (insn->src_reg == BPF_PSEUDO_CALL)
19337 			continue;
19338 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
19339 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
19340 			if (ret)
19341 				return ret;
19342 			if (cnt == 0)
19343 				continue;
19344 
19345 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19346 			if (!new_prog)
19347 				return -ENOMEM;
19348 
19349 			delta	 += cnt - 1;
19350 			env->prog = prog = new_prog;
19351 			insn	  = new_prog->insnsi + i + delta;
19352 			continue;
19353 		}
19354 
19355 		if (insn->imm == BPF_FUNC_get_route_realm)
19356 			prog->dst_needed = 1;
19357 		if (insn->imm == BPF_FUNC_get_prandom_u32)
19358 			bpf_user_rnd_init_once();
19359 		if (insn->imm == BPF_FUNC_override_return)
19360 			prog->kprobe_override = 1;
19361 		if (insn->imm == BPF_FUNC_tail_call) {
19362 			/* If we tail call into other programs, we
19363 			 * cannot make any assumptions since they can
19364 			 * be replaced dynamically during runtime in
19365 			 * the program array.
19366 			 */
19367 			prog->cb_access = 1;
19368 			if (!allow_tail_call_in_subprogs(env))
19369 				prog->aux->stack_depth = MAX_BPF_STACK;
19370 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
19371 
19372 			/* mark bpf_tail_call as different opcode to avoid
19373 			 * conditional branch in the interpreter for every normal
19374 			 * call and to prevent accidental JITing by JIT compiler
19375 			 * that doesn't support bpf_tail_call yet
19376 			 */
19377 			insn->imm = 0;
19378 			insn->code = BPF_JMP | BPF_TAIL_CALL;
19379 
19380 			aux = &env->insn_aux_data[i + delta];
19381 			if (env->bpf_capable && !prog->blinding_requested &&
19382 			    prog->jit_requested &&
19383 			    !bpf_map_key_poisoned(aux) &&
19384 			    !bpf_map_ptr_poisoned(aux) &&
19385 			    !bpf_map_ptr_unpriv(aux)) {
19386 				struct bpf_jit_poke_descriptor desc = {
19387 					.reason = BPF_POKE_REASON_TAIL_CALL,
19388 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
19389 					.tail_call.key = bpf_map_key_immediate(aux),
19390 					.insn_idx = i + delta,
19391 				};
19392 
19393 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
19394 				if (ret < 0) {
19395 					verbose(env, "adding tail call poke descriptor failed\n");
19396 					return ret;
19397 				}
19398 
19399 				insn->imm = ret + 1;
19400 				continue;
19401 			}
19402 
19403 			if (!bpf_map_ptr_unpriv(aux))
19404 				continue;
19405 
19406 			/* instead of changing every JIT dealing with tail_call
19407 			 * emit two extra insns:
19408 			 * if (index >= max_entries) goto out;
19409 			 * index &= array->index_mask;
19410 			 * to avoid out-of-bounds cpu speculation
19411 			 */
19412 			if (bpf_map_ptr_poisoned(aux)) {
19413 				verbose(env, "tail_call abusing map_ptr\n");
19414 				return -EINVAL;
19415 			}
19416 
19417 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19418 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
19419 						  map_ptr->max_entries, 2);
19420 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
19421 						    container_of(map_ptr,
19422 								 struct bpf_array,
19423 								 map)->index_mask);
19424 			insn_buf[2] = *insn;
19425 			cnt = 3;
19426 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19427 			if (!new_prog)
19428 				return -ENOMEM;
19429 
19430 			delta    += cnt - 1;
19431 			env->prog = prog = new_prog;
19432 			insn      = new_prog->insnsi + i + delta;
19433 			continue;
19434 		}
19435 
19436 		if (insn->imm == BPF_FUNC_timer_set_callback) {
19437 			/* The verifier will process callback_fn as many times as necessary
19438 			 * with different maps and the register states prepared by
19439 			 * set_timer_callback_state will be accurate.
19440 			 *
19441 			 * The following use case is valid:
19442 			 *   map1 is shared by prog1, prog2, prog3.
19443 			 *   prog1 calls bpf_timer_init for some map1 elements
19444 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
19445 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
19446 			 *   prog3 calls bpf_timer_start for some map1 elements.
19447 			 *     Those that were not both bpf_timer_init-ed and
19448 			 *     bpf_timer_set_callback-ed will return -EINVAL.
19449 			 */
19450 			struct bpf_insn ld_addrs[2] = {
19451 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
19452 			};
19453 
19454 			insn_buf[0] = ld_addrs[0];
19455 			insn_buf[1] = ld_addrs[1];
19456 			insn_buf[2] = *insn;
19457 			cnt = 3;
19458 
19459 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19460 			if (!new_prog)
19461 				return -ENOMEM;
19462 
19463 			delta    += cnt - 1;
19464 			env->prog = prog = new_prog;
19465 			insn      = new_prog->insnsi + i + delta;
19466 			goto patch_call_imm;
19467 		}
19468 
19469 		if (is_storage_get_function(insn->imm)) {
19470 			if (!env->prog->aux->sleepable ||
19471 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
19472 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
19473 			else
19474 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
19475 			insn_buf[1] = *insn;
19476 			cnt = 2;
19477 
19478 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19479 			if (!new_prog)
19480 				return -ENOMEM;
19481 
19482 			delta += cnt - 1;
19483 			env->prog = prog = new_prog;
19484 			insn = new_prog->insnsi + i + delta;
19485 			goto patch_call_imm;
19486 		}
19487 
19488 		/* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */
19489 		if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) {
19490 			/* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data,
19491 			 * bpf_mem_alloc() returns a ptr to the percpu data ptr.
19492 			 */
19493 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0);
19494 			insn_buf[1] = *insn;
19495 			cnt = 2;
19496 
19497 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19498 			if (!new_prog)
19499 				return -ENOMEM;
19500 
19501 			delta += cnt - 1;
19502 			env->prog = prog = new_prog;
19503 			insn = new_prog->insnsi + i + delta;
19504 			goto patch_call_imm;
19505 		}
19506 
19507 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
19508 		 * and other inlining handlers are currently limited to 64 bit
19509 		 * only.
19510 		 */
19511 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
19512 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
19513 		     insn->imm == BPF_FUNC_map_update_elem ||
19514 		     insn->imm == BPF_FUNC_map_delete_elem ||
19515 		     insn->imm == BPF_FUNC_map_push_elem   ||
19516 		     insn->imm == BPF_FUNC_map_pop_elem    ||
19517 		     insn->imm == BPF_FUNC_map_peek_elem   ||
19518 		     insn->imm == BPF_FUNC_redirect_map    ||
19519 		     insn->imm == BPF_FUNC_for_each_map_elem ||
19520 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
19521 			aux = &env->insn_aux_data[i + delta];
19522 			if (bpf_map_ptr_poisoned(aux))
19523 				goto patch_call_imm;
19524 
19525 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19526 			ops = map_ptr->ops;
19527 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
19528 			    ops->map_gen_lookup) {
19529 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
19530 				if (cnt == -EOPNOTSUPP)
19531 					goto patch_map_ops_generic;
19532 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19533 					verbose(env, "bpf verifier is misconfigured\n");
19534 					return -EINVAL;
19535 				}
19536 
19537 				new_prog = bpf_patch_insn_data(env, i + delta,
19538 							       insn_buf, cnt);
19539 				if (!new_prog)
19540 					return -ENOMEM;
19541 
19542 				delta    += cnt - 1;
19543 				env->prog = prog = new_prog;
19544 				insn      = new_prog->insnsi + i + delta;
19545 				continue;
19546 			}
19547 
19548 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
19549 				     (void *(*)(struct bpf_map *map, void *key))NULL));
19550 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
19551 				     (long (*)(struct bpf_map *map, void *key))NULL));
19552 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
19553 				     (long (*)(struct bpf_map *map, void *key, void *value,
19554 					      u64 flags))NULL));
19555 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
19556 				     (long (*)(struct bpf_map *map, void *value,
19557 					      u64 flags))NULL));
19558 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
19559 				     (long (*)(struct bpf_map *map, void *value))NULL));
19560 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
19561 				     (long (*)(struct bpf_map *map, void *value))NULL));
19562 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
19563 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
19564 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
19565 				     (long (*)(struct bpf_map *map,
19566 					      bpf_callback_t callback_fn,
19567 					      void *callback_ctx,
19568 					      u64 flags))NULL));
19569 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
19570 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
19571 
19572 patch_map_ops_generic:
19573 			switch (insn->imm) {
19574 			case BPF_FUNC_map_lookup_elem:
19575 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
19576 				continue;
19577 			case BPF_FUNC_map_update_elem:
19578 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
19579 				continue;
19580 			case BPF_FUNC_map_delete_elem:
19581 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
19582 				continue;
19583 			case BPF_FUNC_map_push_elem:
19584 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
19585 				continue;
19586 			case BPF_FUNC_map_pop_elem:
19587 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
19588 				continue;
19589 			case BPF_FUNC_map_peek_elem:
19590 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
19591 				continue;
19592 			case BPF_FUNC_redirect_map:
19593 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
19594 				continue;
19595 			case BPF_FUNC_for_each_map_elem:
19596 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
19597 				continue;
19598 			case BPF_FUNC_map_lookup_percpu_elem:
19599 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
19600 				continue;
19601 			}
19602 
19603 			goto patch_call_imm;
19604 		}
19605 
19606 		/* Implement bpf_jiffies64 inline. */
19607 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
19608 		    insn->imm == BPF_FUNC_jiffies64) {
19609 			struct bpf_insn ld_jiffies_addr[2] = {
19610 				BPF_LD_IMM64(BPF_REG_0,
19611 					     (unsigned long)&jiffies),
19612 			};
19613 
19614 			insn_buf[0] = ld_jiffies_addr[0];
19615 			insn_buf[1] = ld_jiffies_addr[1];
19616 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
19617 						  BPF_REG_0, 0);
19618 			cnt = 3;
19619 
19620 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
19621 						       cnt);
19622 			if (!new_prog)
19623 				return -ENOMEM;
19624 
19625 			delta    += cnt - 1;
19626 			env->prog = prog = new_prog;
19627 			insn      = new_prog->insnsi + i + delta;
19628 			continue;
19629 		}
19630 
19631 		/* Implement bpf_get_func_arg inline. */
19632 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19633 		    insn->imm == BPF_FUNC_get_func_arg) {
19634 			/* Load nr_args from ctx - 8 */
19635 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19636 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
19637 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
19638 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
19639 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
19640 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19641 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
19642 			insn_buf[7] = BPF_JMP_A(1);
19643 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
19644 			cnt = 9;
19645 
19646 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19647 			if (!new_prog)
19648 				return -ENOMEM;
19649 
19650 			delta    += cnt - 1;
19651 			env->prog = prog = new_prog;
19652 			insn      = new_prog->insnsi + i + delta;
19653 			continue;
19654 		}
19655 
19656 		/* Implement bpf_get_func_ret inline. */
19657 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19658 		    insn->imm == BPF_FUNC_get_func_ret) {
19659 			if (eatype == BPF_TRACE_FEXIT ||
19660 			    eatype == BPF_MODIFY_RETURN) {
19661 				/* Load nr_args from ctx - 8 */
19662 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19663 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
19664 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
19665 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19666 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
19667 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
19668 				cnt = 6;
19669 			} else {
19670 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
19671 				cnt = 1;
19672 			}
19673 
19674 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19675 			if (!new_prog)
19676 				return -ENOMEM;
19677 
19678 			delta    += cnt - 1;
19679 			env->prog = prog = new_prog;
19680 			insn      = new_prog->insnsi + i + delta;
19681 			continue;
19682 		}
19683 
19684 		/* Implement get_func_arg_cnt inline. */
19685 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19686 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
19687 			/* Load nr_args from ctx - 8 */
19688 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19689 
19690 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19691 			if (!new_prog)
19692 				return -ENOMEM;
19693 
19694 			env->prog = prog = new_prog;
19695 			insn      = new_prog->insnsi + i + delta;
19696 			continue;
19697 		}
19698 
19699 		/* Implement bpf_get_func_ip inline. */
19700 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19701 		    insn->imm == BPF_FUNC_get_func_ip) {
19702 			/* Load IP address from ctx - 16 */
19703 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
19704 
19705 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19706 			if (!new_prog)
19707 				return -ENOMEM;
19708 
19709 			env->prog = prog = new_prog;
19710 			insn      = new_prog->insnsi + i + delta;
19711 			continue;
19712 		}
19713 
19714 patch_call_imm:
19715 		fn = env->ops->get_func_proto(insn->imm, env->prog);
19716 		/* all functions that have prototype and verifier allowed
19717 		 * programs to call them, must be real in-kernel functions
19718 		 */
19719 		if (!fn->func) {
19720 			verbose(env,
19721 				"kernel subsystem misconfigured func %s#%d\n",
19722 				func_id_name(insn->imm), insn->imm);
19723 			return -EFAULT;
19724 		}
19725 		insn->imm = fn->func - __bpf_call_base;
19726 	}
19727 
19728 	/* Since poke tab is now finalized, publish aux to tracker. */
19729 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
19730 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
19731 		if (!map_ptr->ops->map_poke_track ||
19732 		    !map_ptr->ops->map_poke_untrack ||
19733 		    !map_ptr->ops->map_poke_run) {
19734 			verbose(env, "bpf verifier is misconfigured\n");
19735 			return -EINVAL;
19736 		}
19737 
19738 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
19739 		if (ret < 0) {
19740 			verbose(env, "tracking tail call prog failed\n");
19741 			return ret;
19742 		}
19743 	}
19744 
19745 	sort_kfunc_descs_by_imm_off(env->prog);
19746 
19747 	return 0;
19748 }
19749 
19750 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
19751 					int position,
19752 					s32 stack_base,
19753 					u32 callback_subprogno,
19754 					u32 *cnt)
19755 {
19756 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
19757 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
19758 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
19759 	int reg_loop_max = BPF_REG_6;
19760 	int reg_loop_cnt = BPF_REG_7;
19761 	int reg_loop_ctx = BPF_REG_8;
19762 
19763 	struct bpf_prog *new_prog;
19764 	u32 callback_start;
19765 	u32 call_insn_offset;
19766 	s32 callback_offset;
19767 
19768 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
19769 	 * be careful to modify this code in sync.
19770 	 */
19771 	struct bpf_insn insn_buf[] = {
19772 		/* Return error and jump to the end of the patch if
19773 		 * expected number of iterations is too big.
19774 		 */
19775 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
19776 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
19777 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
19778 		/* spill R6, R7, R8 to use these as loop vars */
19779 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
19780 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
19781 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
19782 		/* initialize loop vars */
19783 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
19784 		BPF_MOV32_IMM(reg_loop_cnt, 0),
19785 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
19786 		/* loop header,
19787 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
19788 		 */
19789 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
19790 		/* callback call,
19791 		 * correct callback offset would be set after patching
19792 		 */
19793 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
19794 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
19795 		BPF_CALL_REL(0),
19796 		/* increment loop counter */
19797 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
19798 		/* jump to loop header if callback returned 0 */
19799 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
19800 		/* return value of bpf_loop,
19801 		 * set R0 to the number of iterations
19802 		 */
19803 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
19804 		/* restore original values of R6, R7, R8 */
19805 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
19806 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
19807 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
19808 	};
19809 
19810 	*cnt = ARRAY_SIZE(insn_buf);
19811 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
19812 	if (!new_prog)
19813 		return new_prog;
19814 
19815 	/* callback start is known only after patching */
19816 	callback_start = env->subprog_info[callback_subprogno].start;
19817 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
19818 	call_insn_offset = position + 12;
19819 	callback_offset = callback_start - call_insn_offset - 1;
19820 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
19821 
19822 	return new_prog;
19823 }
19824 
19825 static bool is_bpf_loop_call(struct bpf_insn *insn)
19826 {
19827 	return insn->code == (BPF_JMP | BPF_CALL) &&
19828 		insn->src_reg == 0 &&
19829 		insn->imm == BPF_FUNC_loop;
19830 }
19831 
19832 /* For all sub-programs in the program (including main) check
19833  * insn_aux_data to see if there are bpf_loop calls that require
19834  * inlining. If such calls are found the calls are replaced with a
19835  * sequence of instructions produced by `inline_bpf_loop` function and
19836  * subprog stack_depth is increased by the size of 3 registers.
19837  * This stack space is used to spill values of the R6, R7, R8.  These
19838  * registers are used to store the loop bound, counter and context
19839  * variables.
19840  */
19841 static int optimize_bpf_loop(struct bpf_verifier_env *env)
19842 {
19843 	struct bpf_subprog_info *subprogs = env->subprog_info;
19844 	int i, cur_subprog = 0, cnt, delta = 0;
19845 	struct bpf_insn *insn = env->prog->insnsi;
19846 	int insn_cnt = env->prog->len;
19847 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
19848 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19849 	u16 stack_depth_extra = 0;
19850 
19851 	for (i = 0; i < insn_cnt; i++, insn++) {
19852 		struct bpf_loop_inline_state *inline_state =
19853 			&env->insn_aux_data[i + delta].loop_inline_state;
19854 
19855 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
19856 			struct bpf_prog *new_prog;
19857 
19858 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
19859 			new_prog = inline_bpf_loop(env,
19860 						   i + delta,
19861 						   -(stack_depth + stack_depth_extra),
19862 						   inline_state->callback_subprogno,
19863 						   &cnt);
19864 			if (!new_prog)
19865 				return -ENOMEM;
19866 
19867 			delta     += cnt - 1;
19868 			env->prog  = new_prog;
19869 			insn       = new_prog->insnsi + i + delta;
19870 		}
19871 
19872 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
19873 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
19874 			cur_subprog++;
19875 			stack_depth = subprogs[cur_subprog].stack_depth;
19876 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19877 			stack_depth_extra = 0;
19878 		}
19879 	}
19880 
19881 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19882 
19883 	return 0;
19884 }
19885 
19886 static void free_states(struct bpf_verifier_env *env)
19887 {
19888 	struct bpf_verifier_state_list *sl, *sln;
19889 	int i;
19890 
19891 	sl = env->free_list;
19892 	while (sl) {
19893 		sln = sl->next;
19894 		free_verifier_state(&sl->state, false);
19895 		kfree(sl);
19896 		sl = sln;
19897 	}
19898 	env->free_list = NULL;
19899 
19900 	if (!env->explored_states)
19901 		return;
19902 
19903 	for (i = 0; i < state_htab_size(env); i++) {
19904 		sl = env->explored_states[i];
19905 
19906 		while (sl) {
19907 			sln = sl->next;
19908 			free_verifier_state(&sl->state, false);
19909 			kfree(sl);
19910 			sl = sln;
19911 		}
19912 		env->explored_states[i] = NULL;
19913 	}
19914 }
19915 
19916 static int do_check_common(struct bpf_verifier_env *env, int subprog, bool is_ex_cb)
19917 {
19918 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
19919 	struct bpf_verifier_state *state;
19920 	struct bpf_reg_state *regs;
19921 	int ret, i;
19922 
19923 	env->prev_linfo = NULL;
19924 	env->pass_cnt++;
19925 
19926 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
19927 	if (!state)
19928 		return -ENOMEM;
19929 	state->curframe = 0;
19930 	state->speculative = false;
19931 	state->branches = 1;
19932 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
19933 	if (!state->frame[0]) {
19934 		kfree(state);
19935 		return -ENOMEM;
19936 	}
19937 	env->cur_state = state;
19938 	init_func_state(env, state->frame[0],
19939 			BPF_MAIN_FUNC /* callsite */,
19940 			0 /* frameno */,
19941 			subprog);
19942 	state->first_insn_idx = env->subprog_info[subprog].start;
19943 	state->last_insn_idx = -1;
19944 
19945 	regs = state->frame[state->curframe]->regs;
19946 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
19947 		ret = btf_prepare_func_args(env, subprog, regs, is_ex_cb);
19948 		if (ret)
19949 			goto out;
19950 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
19951 			if (regs[i].type == PTR_TO_CTX)
19952 				mark_reg_known_zero(env, regs, i);
19953 			else if (regs[i].type == SCALAR_VALUE)
19954 				mark_reg_unknown(env, regs, i);
19955 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
19956 				const u32 mem_size = regs[i].mem_size;
19957 
19958 				mark_reg_known_zero(env, regs, i);
19959 				regs[i].mem_size = mem_size;
19960 				regs[i].id = ++env->id_gen;
19961 			}
19962 		}
19963 		if (is_ex_cb) {
19964 			state->frame[0]->in_exception_callback_fn = true;
19965 			env->subprog_info[subprog].is_cb = true;
19966 			env->subprog_info[subprog].is_async_cb = true;
19967 			env->subprog_info[subprog].is_exception_cb = true;
19968 		}
19969 	} else {
19970 		/* 1st arg to a function */
19971 		regs[BPF_REG_1].type = PTR_TO_CTX;
19972 		mark_reg_known_zero(env, regs, BPF_REG_1);
19973 		ret = btf_check_subprog_arg_match(env, subprog, regs);
19974 		if (ret == -EFAULT)
19975 			/* unlikely verifier bug. abort.
19976 			 * ret == 0 and ret < 0 are sadly acceptable for
19977 			 * main() function due to backward compatibility.
19978 			 * Like socket filter program may be written as:
19979 			 * int bpf_prog(struct pt_regs *ctx)
19980 			 * and never dereference that ctx in the program.
19981 			 * 'struct pt_regs' is a type mismatch for socket
19982 			 * filter that should be using 'struct __sk_buff'.
19983 			 */
19984 			goto out;
19985 	}
19986 
19987 	ret = do_check(env);
19988 out:
19989 	/* check for NULL is necessary, since cur_state can be freed inside
19990 	 * do_check() under memory pressure.
19991 	 */
19992 	if (env->cur_state) {
19993 		free_verifier_state(env->cur_state, true);
19994 		env->cur_state = NULL;
19995 	}
19996 	while (!pop_stack(env, NULL, NULL, false));
19997 	if (!ret && pop_log)
19998 		bpf_vlog_reset(&env->log, 0);
19999 	free_states(env);
20000 	return ret;
20001 }
20002 
20003 /* Verify all global functions in a BPF program one by one based on their BTF.
20004  * All global functions must pass verification. Otherwise the whole program is rejected.
20005  * Consider:
20006  * int bar(int);
20007  * int foo(int f)
20008  * {
20009  *    return bar(f);
20010  * }
20011  * int bar(int b)
20012  * {
20013  *    ...
20014  * }
20015  * foo() will be verified first for R1=any_scalar_value. During verification it
20016  * will be assumed that bar() already verified successfully and call to bar()
20017  * from foo() will be checked for type match only. Later bar() will be verified
20018  * independently to check that it's safe for R1=any_scalar_value.
20019  */
20020 static int do_check_subprogs(struct bpf_verifier_env *env)
20021 {
20022 	struct bpf_prog_aux *aux = env->prog->aux;
20023 	int i, ret;
20024 
20025 	if (!aux->func_info)
20026 		return 0;
20027 
20028 	for (i = 1; i < env->subprog_cnt; i++) {
20029 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
20030 			continue;
20031 		env->insn_idx = env->subprog_info[i].start;
20032 		WARN_ON_ONCE(env->insn_idx == 0);
20033 		ret = do_check_common(env, i, env->exception_callback_subprog == i);
20034 		if (ret) {
20035 			return ret;
20036 		} else if (env->log.level & BPF_LOG_LEVEL) {
20037 			verbose(env,
20038 				"Func#%d is safe for any args that match its prototype\n",
20039 				i);
20040 		}
20041 	}
20042 	return 0;
20043 }
20044 
20045 static int do_check_main(struct bpf_verifier_env *env)
20046 {
20047 	int ret;
20048 
20049 	env->insn_idx = 0;
20050 	ret = do_check_common(env, 0, false);
20051 	if (!ret)
20052 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
20053 	return ret;
20054 }
20055 
20056 
20057 static void print_verification_stats(struct bpf_verifier_env *env)
20058 {
20059 	int i;
20060 
20061 	if (env->log.level & BPF_LOG_STATS) {
20062 		verbose(env, "verification time %lld usec\n",
20063 			div_u64(env->verification_time, 1000));
20064 		verbose(env, "stack depth ");
20065 		for (i = 0; i < env->subprog_cnt; i++) {
20066 			u32 depth = env->subprog_info[i].stack_depth;
20067 
20068 			verbose(env, "%d", depth);
20069 			if (i + 1 < env->subprog_cnt)
20070 				verbose(env, "+");
20071 		}
20072 		verbose(env, "\n");
20073 	}
20074 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
20075 		"total_states %d peak_states %d mark_read %d\n",
20076 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
20077 		env->max_states_per_insn, env->total_states,
20078 		env->peak_states, env->longest_mark_read_walk);
20079 }
20080 
20081 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
20082 {
20083 	const struct btf_type *t, *func_proto;
20084 	const struct bpf_struct_ops *st_ops;
20085 	const struct btf_member *member;
20086 	struct bpf_prog *prog = env->prog;
20087 	u32 btf_id, member_idx;
20088 	const char *mname;
20089 
20090 	if (!prog->gpl_compatible) {
20091 		verbose(env, "struct ops programs must have a GPL compatible license\n");
20092 		return -EINVAL;
20093 	}
20094 
20095 	btf_id = prog->aux->attach_btf_id;
20096 	st_ops = bpf_struct_ops_find(btf_id);
20097 	if (!st_ops) {
20098 		verbose(env, "attach_btf_id %u is not a supported struct\n",
20099 			btf_id);
20100 		return -ENOTSUPP;
20101 	}
20102 
20103 	t = st_ops->type;
20104 	member_idx = prog->expected_attach_type;
20105 	if (member_idx >= btf_type_vlen(t)) {
20106 		verbose(env, "attach to invalid member idx %u of struct %s\n",
20107 			member_idx, st_ops->name);
20108 		return -EINVAL;
20109 	}
20110 
20111 	member = &btf_type_member(t)[member_idx];
20112 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
20113 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
20114 					       NULL);
20115 	if (!func_proto) {
20116 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
20117 			mname, member_idx, st_ops->name);
20118 		return -EINVAL;
20119 	}
20120 
20121 	if (st_ops->check_member) {
20122 		int err = st_ops->check_member(t, member, prog);
20123 
20124 		if (err) {
20125 			verbose(env, "attach to unsupported member %s of struct %s\n",
20126 				mname, st_ops->name);
20127 			return err;
20128 		}
20129 	}
20130 
20131 	prog->aux->attach_func_proto = func_proto;
20132 	prog->aux->attach_func_name = mname;
20133 	env->ops = st_ops->verifier_ops;
20134 
20135 	return 0;
20136 }
20137 #define SECURITY_PREFIX "security_"
20138 
20139 static int check_attach_modify_return(unsigned long addr, const char *func_name)
20140 {
20141 	if (within_error_injection_list(addr) ||
20142 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
20143 		return 0;
20144 
20145 	return -EINVAL;
20146 }
20147 
20148 /* list of non-sleepable functions that are otherwise on
20149  * ALLOW_ERROR_INJECTION list
20150  */
20151 BTF_SET_START(btf_non_sleepable_error_inject)
20152 /* Three functions below can be called from sleepable and non-sleepable context.
20153  * Assume non-sleepable from bpf safety point of view.
20154  */
20155 BTF_ID(func, __filemap_add_folio)
20156 BTF_ID(func, should_fail_alloc_page)
20157 BTF_ID(func, should_failslab)
20158 BTF_SET_END(btf_non_sleepable_error_inject)
20159 
20160 static int check_non_sleepable_error_inject(u32 btf_id)
20161 {
20162 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
20163 }
20164 
20165 int bpf_check_attach_target(struct bpf_verifier_log *log,
20166 			    const struct bpf_prog *prog,
20167 			    const struct bpf_prog *tgt_prog,
20168 			    u32 btf_id,
20169 			    struct bpf_attach_target_info *tgt_info)
20170 {
20171 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
20172 	const char prefix[] = "btf_trace_";
20173 	int ret = 0, subprog = -1, i;
20174 	const struct btf_type *t;
20175 	bool conservative = true;
20176 	const char *tname;
20177 	struct btf *btf;
20178 	long addr = 0;
20179 	struct module *mod = NULL;
20180 
20181 	if (!btf_id) {
20182 		bpf_log(log, "Tracing programs must provide btf_id\n");
20183 		return -EINVAL;
20184 	}
20185 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
20186 	if (!btf) {
20187 		bpf_log(log,
20188 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
20189 		return -EINVAL;
20190 	}
20191 	t = btf_type_by_id(btf, btf_id);
20192 	if (!t) {
20193 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
20194 		return -EINVAL;
20195 	}
20196 	tname = btf_name_by_offset(btf, t->name_off);
20197 	if (!tname) {
20198 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
20199 		return -EINVAL;
20200 	}
20201 	if (tgt_prog) {
20202 		struct bpf_prog_aux *aux = tgt_prog->aux;
20203 
20204 		if (bpf_prog_is_dev_bound(prog->aux) &&
20205 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
20206 			bpf_log(log, "Target program bound device mismatch");
20207 			return -EINVAL;
20208 		}
20209 
20210 		for (i = 0; i < aux->func_info_cnt; i++)
20211 			if (aux->func_info[i].type_id == btf_id) {
20212 				subprog = i;
20213 				break;
20214 			}
20215 		if (subprog == -1) {
20216 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
20217 			return -EINVAL;
20218 		}
20219 		if (aux->func && aux->func[subprog]->aux->exception_cb) {
20220 			bpf_log(log,
20221 				"%s programs cannot attach to exception callback\n",
20222 				prog_extension ? "Extension" : "FENTRY/FEXIT");
20223 			return -EINVAL;
20224 		}
20225 		conservative = aux->func_info_aux[subprog].unreliable;
20226 		if (prog_extension) {
20227 			if (conservative) {
20228 				bpf_log(log,
20229 					"Cannot replace static functions\n");
20230 				return -EINVAL;
20231 			}
20232 			if (!prog->jit_requested) {
20233 				bpf_log(log,
20234 					"Extension programs should be JITed\n");
20235 				return -EINVAL;
20236 			}
20237 		}
20238 		if (!tgt_prog->jited) {
20239 			bpf_log(log, "Can attach to only JITed progs\n");
20240 			return -EINVAL;
20241 		}
20242 		if (tgt_prog->type == prog->type) {
20243 			/* Cannot fentry/fexit another fentry/fexit program.
20244 			 * Cannot attach program extension to another extension.
20245 			 * It's ok to attach fentry/fexit to extension program.
20246 			 */
20247 			bpf_log(log, "Cannot recursively attach\n");
20248 			return -EINVAL;
20249 		}
20250 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
20251 		    prog_extension &&
20252 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
20253 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
20254 			/* Program extensions can extend all program types
20255 			 * except fentry/fexit. The reason is the following.
20256 			 * The fentry/fexit programs are used for performance
20257 			 * analysis, stats and can be attached to any program
20258 			 * type except themselves. When extension program is
20259 			 * replacing XDP function it is necessary to allow
20260 			 * performance analysis of all functions. Both original
20261 			 * XDP program and its program extension. Hence
20262 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
20263 			 * allowed. If extending of fentry/fexit was allowed it
20264 			 * would be possible to create long call chain
20265 			 * fentry->extension->fentry->extension beyond
20266 			 * reasonable stack size. Hence extending fentry is not
20267 			 * allowed.
20268 			 */
20269 			bpf_log(log, "Cannot extend fentry/fexit\n");
20270 			return -EINVAL;
20271 		}
20272 	} else {
20273 		if (prog_extension) {
20274 			bpf_log(log, "Cannot replace kernel functions\n");
20275 			return -EINVAL;
20276 		}
20277 	}
20278 
20279 	switch (prog->expected_attach_type) {
20280 	case BPF_TRACE_RAW_TP:
20281 		if (tgt_prog) {
20282 			bpf_log(log,
20283 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
20284 			return -EINVAL;
20285 		}
20286 		if (!btf_type_is_typedef(t)) {
20287 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
20288 				btf_id);
20289 			return -EINVAL;
20290 		}
20291 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
20292 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
20293 				btf_id, tname);
20294 			return -EINVAL;
20295 		}
20296 		tname += sizeof(prefix) - 1;
20297 		t = btf_type_by_id(btf, t->type);
20298 		if (!btf_type_is_ptr(t))
20299 			/* should never happen in valid vmlinux build */
20300 			return -EINVAL;
20301 		t = btf_type_by_id(btf, t->type);
20302 		if (!btf_type_is_func_proto(t))
20303 			/* should never happen in valid vmlinux build */
20304 			return -EINVAL;
20305 
20306 		break;
20307 	case BPF_TRACE_ITER:
20308 		if (!btf_type_is_func(t)) {
20309 			bpf_log(log, "attach_btf_id %u is not a function\n",
20310 				btf_id);
20311 			return -EINVAL;
20312 		}
20313 		t = btf_type_by_id(btf, t->type);
20314 		if (!btf_type_is_func_proto(t))
20315 			return -EINVAL;
20316 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
20317 		if (ret)
20318 			return ret;
20319 		break;
20320 	default:
20321 		if (!prog_extension)
20322 			return -EINVAL;
20323 		fallthrough;
20324 	case BPF_MODIFY_RETURN:
20325 	case BPF_LSM_MAC:
20326 	case BPF_LSM_CGROUP:
20327 	case BPF_TRACE_FENTRY:
20328 	case BPF_TRACE_FEXIT:
20329 		if (!btf_type_is_func(t)) {
20330 			bpf_log(log, "attach_btf_id %u is not a function\n",
20331 				btf_id);
20332 			return -EINVAL;
20333 		}
20334 		if (prog_extension &&
20335 		    btf_check_type_match(log, prog, btf, t))
20336 			return -EINVAL;
20337 		t = btf_type_by_id(btf, t->type);
20338 		if (!btf_type_is_func_proto(t))
20339 			return -EINVAL;
20340 
20341 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
20342 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
20343 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
20344 			return -EINVAL;
20345 
20346 		if (tgt_prog && conservative)
20347 			t = NULL;
20348 
20349 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
20350 		if (ret < 0)
20351 			return ret;
20352 
20353 		if (tgt_prog) {
20354 			if (subprog == 0)
20355 				addr = (long) tgt_prog->bpf_func;
20356 			else
20357 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
20358 		} else {
20359 			if (btf_is_module(btf)) {
20360 				mod = btf_try_get_module(btf);
20361 				if (mod)
20362 					addr = find_kallsyms_symbol_value(mod, tname);
20363 				else
20364 					addr = 0;
20365 			} else {
20366 				addr = kallsyms_lookup_name(tname);
20367 			}
20368 			if (!addr) {
20369 				module_put(mod);
20370 				bpf_log(log,
20371 					"The address of function %s cannot be found\n",
20372 					tname);
20373 				return -ENOENT;
20374 			}
20375 		}
20376 
20377 		if (prog->aux->sleepable) {
20378 			ret = -EINVAL;
20379 			switch (prog->type) {
20380 			case BPF_PROG_TYPE_TRACING:
20381 
20382 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
20383 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
20384 				 */
20385 				if (!check_non_sleepable_error_inject(btf_id) &&
20386 				    within_error_injection_list(addr))
20387 					ret = 0;
20388 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
20389 				 * in the fmodret id set with the KF_SLEEPABLE flag.
20390 				 */
20391 				else {
20392 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
20393 										prog);
20394 
20395 					if (flags && (*flags & KF_SLEEPABLE))
20396 						ret = 0;
20397 				}
20398 				break;
20399 			case BPF_PROG_TYPE_LSM:
20400 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
20401 				 * Only some of them are sleepable.
20402 				 */
20403 				if (bpf_lsm_is_sleepable_hook(btf_id))
20404 					ret = 0;
20405 				break;
20406 			default:
20407 				break;
20408 			}
20409 			if (ret) {
20410 				module_put(mod);
20411 				bpf_log(log, "%s is not sleepable\n", tname);
20412 				return ret;
20413 			}
20414 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
20415 			if (tgt_prog) {
20416 				module_put(mod);
20417 				bpf_log(log, "can't modify return codes of BPF programs\n");
20418 				return -EINVAL;
20419 			}
20420 			ret = -EINVAL;
20421 			if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
20422 			    !check_attach_modify_return(addr, tname))
20423 				ret = 0;
20424 			if (ret) {
20425 				module_put(mod);
20426 				bpf_log(log, "%s() is not modifiable\n", tname);
20427 				return ret;
20428 			}
20429 		}
20430 
20431 		break;
20432 	}
20433 	tgt_info->tgt_addr = addr;
20434 	tgt_info->tgt_name = tname;
20435 	tgt_info->tgt_type = t;
20436 	tgt_info->tgt_mod = mod;
20437 	return 0;
20438 }
20439 
20440 BTF_SET_START(btf_id_deny)
20441 BTF_ID_UNUSED
20442 #ifdef CONFIG_SMP
20443 BTF_ID(func, migrate_disable)
20444 BTF_ID(func, migrate_enable)
20445 #endif
20446 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
20447 BTF_ID(func, rcu_read_unlock_strict)
20448 #endif
20449 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
20450 BTF_ID(func, preempt_count_add)
20451 BTF_ID(func, preempt_count_sub)
20452 #endif
20453 #ifdef CONFIG_PREEMPT_RCU
20454 BTF_ID(func, __rcu_read_lock)
20455 BTF_ID(func, __rcu_read_unlock)
20456 #endif
20457 BTF_SET_END(btf_id_deny)
20458 
20459 static bool can_be_sleepable(struct bpf_prog *prog)
20460 {
20461 	if (prog->type == BPF_PROG_TYPE_TRACING) {
20462 		switch (prog->expected_attach_type) {
20463 		case BPF_TRACE_FENTRY:
20464 		case BPF_TRACE_FEXIT:
20465 		case BPF_MODIFY_RETURN:
20466 		case BPF_TRACE_ITER:
20467 			return true;
20468 		default:
20469 			return false;
20470 		}
20471 	}
20472 	return prog->type == BPF_PROG_TYPE_LSM ||
20473 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
20474 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
20475 }
20476 
20477 static int check_attach_btf_id(struct bpf_verifier_env *env)
20478 {
20479 	struct bpf_prog *prog = env->prog;
20480 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
20481 	struct bpf_attach_target_info tgt_info = {};
20482 	u32 btf_id = prog->aux->attach_btf_id;
20483 	struct bpf_trampoline *tr;
20484 	int ret;
20485 	u64 key;
20486 
20487 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
20488 		if (prog->aux->sleepable)
20489 			/* attach_btf_id checked to be zero already */
20490 			return 0;
20491 		verbose(env, "Syscall programs can only be sleepable\n");
20492 		return -EINVAL;
20493 	}
20494 
20495 	if (prog->aux->sleepable && !can_be_sleepable(prog)) {
20496 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
20497 		return -EINVAL;
20498 	}
20499 
20500 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
20501 		return check_struct_ops_btf_id(env);
20502 
20503 	if (prog->type != BPF_PROG_TYPE_TRACING &&
20504 	    prog->type != BPF_PROG_TYPE_LSM &&
20505 	    prog->type != BPF_PROG_TYPE_EXT)
20506 		return 0;
20507 
20508 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
20509 	if (ret)
20510 		return ret;
20511 
20512 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
20513 		/* to make freplace equivalent to their targets, they need to
20514 		 * inherit env->ops and expected_attach_type for the rest of the
20515 		 * verification
20516 		 */
20517 		env->ops = bpf_verifier_ops[tgt_prog->type];
20518 		prog->expected_attach_type = tgt_prog->expected_attach_type;
20519 	}
20520 
20521 	/* store info about the attachment target that will be used later */
20522 	prog->aux->attach_func_proto = tgt_info.tgt_type;
20523 	prog->aux->attach_func_name = tgt_info.tgt_name;
20524 	prog->aux->mod = tgt_info.tgt_mod;
20525 
20526 	if (tgt_prog) {
20527 		prog->aux->saved_dst_prog_type = tgt_prog->type;
20528 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
20529 	}
20530 
20531 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
20532 		prog->aux->attach_btf_trace = true;
20533 		return 0;
20534 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
20535 		if (!bpf_iter_prog_supported(prog))
20536 			return -EINVAL;
20537 		return 0;
20538 	}
20539 
20540 	if (prog->type == BPF_PROG_TYPE_LSM) {
20541 		ret = bpf_lsm_verify_prog(&env->log, prog);
20542 		if (ret < 0)
20543 			return ret;
20544 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
20545 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
20546 		return -EINVAL;
20547 	}
20548 
20549 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
20550 	tr = bpf_trampoline_get(key, &tgt_info);
20551 	if (!tr)
20552 		return -ENOMEM;
20553 
20554 	if (tgt_prog && tgt_prog->aux->tail_call_reachable)
20555 		tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
20556 
20557 	prog->aux->dst_trampoline = tr;
20558 	return 0;
20559 }
20560 
20561 struct btf *bpf_get_btf_vmlinux(void)
20562 {
20563 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
20564 		mutex_lock(&bpf_verifier_lock);
20565 		if (!btf_vmlinux)
20566 			btf_vmlinux = btf_parse_vmlinux();
20567 		mutex_unlock(&bpf_verifier_lock);
20568 	}
20569 	return btf_vmlinux;
20570 }
20571 
20572 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
20573 {
20574 	u64 start_time = ktime_get_ns();
20575 	struct bpf_verifier_env *env;
20576 	int i, len, ret = -EINVAL, err;
20577 	u32 log_true_size;
20578 	bool is_priv;
20579 
20580 	/* no program is valid */
20581 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
20582 		return -EINVAL;
20583 
20584 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
20585 	 * allocate/free it every time bpf_check() is called
20586 	 */
20587 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
20588 	if (!env)
20589 		return -ENOMEM;
20590 
20591 	env->bt.env = env;
20592 
20593 	len = (*prog)->len;
20594 	env->insn_aux_data =
20595 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
20596 	ret = -ENOMEM;
20597 	if (!env->insn_aux_data)
20598 		goto err_free_env;
20599 	for (i = 0; i < len; i++)
20600 		env->insn_aux_data[i].orig_idx = i;
20601 	env->prog = *prog;
20602 	env->ops = bpf_verifier_ops[env->prog->type];
20603 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
20604 	is_priv = bpf_capable();
20605 
20606 	bpf_get_btf_vmlinux();
20607 
20608 	/* grab the mutex to protect few globals used by verifier */
20609 	if (!is_priv)
20610 		mutex_lock(&bpf_verifier_lock);
20611 
20612 	/* user could have requested verbose verifier output
20613 	 * and supplied buffer to store the verification trace
20614 	 */
20615 	ret = bpf_vlog_init(&env->log, attr->log_level,
20616 			    (char __user *) (unsigned long) attr->log_buf,
20617 			    attr->log_size);
20618 	if (ret)
20619 		goto err_unlock;
20620 
20621 	mark_verifier_state_clean(env);
20622 
20623 	if (IS_ERR(btf_vmlinux)) {
20624 		/* Either gcc or pahole or kernel are broken. */
20625 		verbose(env, "in-kernel BTF is malformed\n");
20626 		ret = PTR_ERR(btf_vmlinux);
20627 		goto skip_full_check;
20628 	}
20629 
20630 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
20631 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
20632 		env->strict_alignment = true;
20633 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
20634 		env->strict_alignment = false;
20635 
20636 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
20637 	env->allow_uninit_stack = bpf_allow_uninit_stack();
20638 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
20639 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
20640 	env->bpf_capable = bpf_capable();
20641 
20642 	if (is_priv)
20643 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
20644 
20645 	env->explored_states = kvcalloc(state_htab_size(env),
20646 				       sizeof(struct bpf_verifier_state_list *),
20647 				       GFP_USER);
20648 	ret = -ENOMEM;
20649 	if (!env->explored_states)
20650 		goto skip_full_check;
20651 
20652 	ret = check_btf_info_early(env, attr, uattr);
20653 	if (ret < 0)
20654 		goto skip_full_check;
20655 
20656 	ret = add_subprog_and_kfunc(env);
20657 	if (ret < 0)
20658 		goto skip_full_check;
20659 
20660 	ret = check_subprogs(env);
20661 	if (ret < 0)
20662 		goto skip_full_check;
20663 
20664 	ret = check_btf_info(env, attr, uattr);
20665 	if (ret < 0)
20666 		goto skip_full_check;
20667 
20668 	ret = check_attach_btf_id(env);
20669 	if (ret)
20670 		goto skip_full_check;
20671 
20672 	ret = resolve_pseudo_ldimm64(env);
20673 	if (ret < 0)
20674 		goto skip_full_check;
20675 
20676 	if (bpf_prog_is_offloaded(env->prog->aux)) {
20677 		ret = bpf_prog_offload_verifier_prep(env->prog);
20678 		if (ret)
20679 			goto skip_full_check;
20680 	}
20681 
20682 	ret = check_cfg(env);
20683 	if (ret < 0)
20684 		goto skip_full_check;
20685 
20686 	ret = do_check_subprogs(env);
20687 	ret = ret ?: do_check_main(env);
20688 
20689 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
20690 		ret = bpf_prog_offload_finalize(env);
20691 
20692 skip_full_check:
20693 	kvfree(env->explored_states);
20694 
20695 	if (ret == 0)
20696 		ret = check_max_stack_depth(env);
20697 
20698 	/* instruction rewrites happen after this point */
20699 	if (ret == 0)
20700 		ret = optimize_bpf_loop(env);
20701 
20702 	if (is_priv) {
20703 		if (ret == 0)
20704 			opt_hard_wire_dead_code_branches(env);
20705 		if (ret == 0)
20706 			ret = opt_remove_dead_code(env);
20707 		if (ret == 0)
20708 			ret = opt_remove_nops(env);
20709 	} else {
20710 		if (ret == 0)
20711 			sanitize_dead_code(env);
20712 	}
20713 
20714 	if (ret == 0)
20715 		/* program is valid, convert *(u32*)(ctx + off) accesses */
20716 		ret = convert_ctx_accesses(env);
20717 
20718 	if (ret == 0)
20719 		ret = do_misc_fixups(env);
20720 
20721 	/* do 32-bit optimization after insn patching has done so those patched
20722 	 * insns could be handled correctly.
20723 	 */
20724 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
20725 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
20726 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
20727 								     : false;
20728 	}
20729 
20730 	if (ret == 0)
20731 		ret = fixup_call_args(env);
20732 
20733 	env->verification_time = ktime_get_ns() - start_time;
20734 	print_verification_stats(env);
20735 	env->prog->aux->verified_insns = env->insn_processed;
20736 
20737 	/* preserve original error even if log finalization is successful */
20738 	err = bpf_vlog_finalize(&env->log, &log_true_size);
20739 	if (err)
20740 		ret = err;
20741 
20742 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
20743 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
20744 				  &log_true_size, sizeof(log_true_size))) {
20745 		ret = -EFAULT;
20746 		goto err_release_maps;
20747 	}
20748 
20749 	if (ret)
20750 		goto err_release_maps;
20751 
20752 	if (env->used_map_cnt) {
20753 		/* if program passed verifier, update used_maps in bpf_prog_info */
20754 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
20755 							  sizeof(env->used_maps[0]),
20756 							  GFP_KERNEL);
20757 
20758 		if (!env->prog->aux->used_maps) {
20759 			ret = -ENOMEM;
20760 			goto err_release_maps;
20761 		}
20762 
20763 		memcpy(env->prog->aux->used_maps, env->used_maps,
20764 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
20765 		env->prog->aux->used_map_cnt = env->used_map_cnt;
20766 	}
20767 	if (env->used_btf_cnt) {
20768 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
20769 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
20770 							  sizeof(env->used_btfs[0]),
20771 							  GFP_KERNEL);
20772 		if (!env->prog->aux->used_btfs) {
20773 			ret = -ENOMEM;
20774 			goto err_release_maps;
20775 		}
20776 
20777 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
20778 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
20779 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
20780 	}
20781 	if (env->used_map_cnt || env->used_btf_cnt) {
20782 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
20783 		 * bpf_ld_imm64 instructions
20784 		 */
20785 		convert_pseudo_ld_imm64(env);
20786 	}
20787 
20788 	adjust_btf_func(env);
20789 
20790 err_release_maps:
20791 	if (!env->prog->aux->used_maps)
20792 		/* if we didn't copy map pointers into bpf_prog_info, release
20793 		 * them now. Otherwise free_used_maps() will release them.
20794 		 */
20795 		release_maps(env);
20796 	if (!env->prog->aux->used_btfs)
20797 		release_btfs(env);
20798 
20799 	/* extension progs temporarily inherit the attach_type of their targets
20800 	   for verification purposes, so set it back to zero before returning
20801 	 */
20802 	if (env->prog->type == BPF_PROG_TYPE_EXT)
20803 		env->prog->expected_attach_type = 0;
20804 
20805 	*prog = env->prog;
20806 err_unlock:
20807 	if (!is_priv)
20808 		mutex_unlock(&bpf_verifier_lock);
20809 	vfree(env->insn_aux_data);
20810 err_free_env:
20811 	kfree(env);
20812 	return ret;
20813 }
20814