1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 27 #include "disasm.h" 28 29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 30 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 31 [_id] = & _name ## _verifier_ops, 32 #define BPF_MAP_TYPE(_id, _ops) 33 #define BPF_LINK_TYPE(_id, _name) 34 #include <linux/bpf_types.h> 35 #undef BPF_PROG_TYPE 36 #undef BPF_MAP_TYPE 37 #undef BPF_LINK_TYPE 38 }; 39 40 /* bpf_check() is a static code analyzer that walks eBPF program 41 * instruction by instruction and updates register/stack state. 42 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 43 * 44 * The first pass is depth-first-search to check that the program is a DAG. 45 * It rejects the following programs: 46 * - larger than BPF_MAXINSNS insns 47 * - if loop is present (detected via back-edge) 48 * - unreachable insns exist (shouldn't be a forest. program = one function) 49 * - out of bounds or malformed jumps 50 * The second pass is all possible path descent from the 1st insn. 51 * Since it's analyzing all paths through the program, the length of the 52 * analysis is limited to 64k insn, which may be hit even if total number of 53 * insn is less then 4K, but there are too many branches that change stack/regs. 54 * Number of 'branches to be analyzed' is limited to 1k 55 * 56 * On entry to each instruction, each register has a type, and the instruction 57 * changes the types of the registers depending on instruction semantics. 58 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 59 * copied to R1. 60 * 61 * All registers are 64-bit. 62 * R0 - return register 63 * R1-R5 argument passing registers 64 * R6-R9 callee saved registers 65 * R10 - frame pointer read-only 66 * 67 * At the start of BPF program the register R1 contains a pointer to bpf_context 68 * and has type PTR_TO_CTX. 69 * 70 * Verifier tracks arithmetic operations on pointers in case: 71 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 72 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 73 * 1st insn copies R10 (which has FRAME_PTR) type into R1 74 * and 2nd arithmetic instruction is pattern matched to recognize 75 * that it wants to construct a pointer to some element within stack. 76 * So after 2nd insn, the register R1 has type PTR_TO_STACK 77 * (and -20 constant is saved for further stack bounds checking). 78 * Meaning that this reg is a pointer to stack plus known immediate constant. 79 * 80 * Most of the time the registers have SCALAR_VALUE type, which 81 * means the register has some value, but it's not a valid pointer. 82 * (like pointer plus pointer becomes SCALAR_VALUE type) 83 * 84 * When verifier sees load or store instructions the type of base register 85 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 86 * four pointer types recognized by check_mem_access() function. 87 * 88 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 89 * and the range of [ptr, ptr + map's value_size) is accessible. 90 * 91 * registers used to pass values to function calls are checked against 92 * function argument constraints. 93 * 94 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 95 * It means that the register type passed to this function must be 96 * PTR_TO_STACK and it will be used inside the function as 97 * 'pointer to map element key' 98 * 99 * For example the argument constraints for bpf_map_lookup_elem(): 100 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 101 * .arg1_type = ARG_CONST_MAP_PTR, 102 * .arg2_type = ARG_PTR_TO_MAP_KEY, 103 * 104 * ret_type says that this function returns 'pointer to map elem value or null' 105 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 106 * 2nd argument should be a pointer to stack, which will be used inside 107 * the helper function as a pointer to map element key. 108 * 109 * On the kernel side the helper function looks like: 110 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 111 * { 112 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 113 * void *key = (void *) (unsigned long) r2; 114 * void *value; 115 * 116 * here kernel can access 'key' and 'map' pointers safely, knowing that 117 * [key, key + map->key_size) bytes are valid and were initialized on 118 * the stack of eBPF program. 119 * } 120 * 121 * Corresponding eBPF program may look like: 122 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 123 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 124 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 125 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 126 * here verifier looks at prototype of map_lookup_elem() and sees: 127 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 128 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 129 * 130 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 131 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 132 * and were initialized prior to this call. 133 * If it's ok, then verifier allows this BPF_CALL insn and looks at 134 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 135 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 136 * returns either pointer to map value or NULL. 137 * 138 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 139 * insn, the register holding that pointer in the true branch changes state to 140 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 141 * branch. See check_cond_jmp_op(). 142 * 143 * After the call R0 is set to return type of the function and registers R1-R5 144 * are set to NOT_INIT to indicate that they are no longer readable. 145 * 146 * The following reference types represent a potential reference to a kernel 147 * resource which, after first being allocated, must be checked and freed by 148 * the BPF program: 149 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 150 * 151 * When the verifier sees a helper call return a reference type, it allocates a 152 * pointer id for the reference and stores it in the current function state. 153 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 154 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 155 * passes through a NULL-check conditional. For the branch wherein the state is 156 * changed to CONST_IMM, the verifier releases the reference. 157 * 158 * For each helper function that allocates a reference, such as 159 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 160 * bpf_sk_release(). When a reference type passes into the release function, 161 * the verifier also releases the reference. If any unchecked or unreleased 162 * reference remains at the end of the program, the verifier rejects it. 163 */ 164 165 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 166 struct bpf_verifier_stack_elem { 167 /* verifer state is 'st' 168 * before processing instruction 'insn_idx' 169 * and after processing instruction 'prev_insn_idx' 170 */ 171 struct bpf_verifier_state st; 172 int insn_idx; 173 int prev_insn_idx; 174 struct bpf_verifier_stack_elem *next; 175 /* length of verifier log at the time this state was pushed on stack */ 176 u32 log_pos; 177 }; 178 179 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 180 #define BPF_COMPLEXITY_LIMIT_STATES 64 181 182 #define BPF_MAP_KEY_POISON (1ULL << 63) 183 #define BPF_MAP_KEY_SEEN (1ULL << 62) 184 185 #define BPF_MAP_PTR_UNPRIV 1UL 186 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 187 POISON_POINTER_DELTA)) 188 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 189 190 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 191 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 192 193 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 194 { 195 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 196 } 197 198 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 199 { 200 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 201 } 202 203 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 204 const struct bpf_map *map, bool unpriv) 205 { 206 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 207 unpriv |= bpf_map_ptr_unpriv(aux); 208 aux->map_ptr_state = (unsigned long)map | 209 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 210 } 211 212 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 213 { 214 return aux->map_key_state & BPF_MAP_KEY_POISON; 215 } 216 217 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 218 { 219 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 220 } 221 222 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 223 { 224 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 225 } 226 227 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 228 { 229 bool poisoned = bpf_map_key_poisoned(aux); 230 231 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 232 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 233 } 234 235 static bool bpf_pseudo_call(const struct bpf_insn *insn) 236 { 237 return insn->code == (BPF_JMP | BPF_CALL) && 238 insn->src_reg == BPF_PSEUDO_CALL; 239 } 240 241 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 242 { 243 return insn->code == (BPF_JMP | BPF_CALL) && 244 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 245 } 246 247 struct bpf_call_arg_meta { 248 struct bpf_map *map_ptr; 249 bool raw_mode; 250 bool pkt_access; 251 u8 release_regno; 252 int regno; 253 int access_size; 254 int mem_size; 255 u64 msize_max_value; 256 int ref_obj_id; 257 int map_uid; 258 int func_id; 259 struct btf *btf; 260 u32 btf_id; 261 struct btf *ret_btf; 262 u32 ret_btf_id; 263 u32 subprogno; 264 struct bpf_map_value_off_desc *kptr_off_desc; 265 u8 uninit_dynptr_regno; 266 }; 267 268 struct btf *btf_vmlinux; 269 270 static DEFINE_MUTEX(bpf_verifier_lock); 271 272 static const struct bpf_line_info * 273 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 274 { 275 const struct bpf_line_info *linfo; 276 const struct bpf_prog *prog; 277 u32 i, nr_linfo; 278 279 prog = env->prog; 280 nr_linfo = prog->aux->nr_linfo; 281 282 if (!nr_linfo || insn_off >= prog->len) 283 return NULL; 284 285 linfo = prog->aux->linfo; 286 for (i = 1; i < nr_linfo; i++) 287 if (insn_off < linfo[i].insn_off) 288 break; 289 290 return &linfo[i - 1]; 291 } 292 293 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 294 va_list args) 295 { 296 unsigned int n; 297 298 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 299 300 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 301 "verifier log line truncated - local buffer too short\n"); 302 303 if (log->level == BPF_LOG_KERNEL) { 304 bool newline = n > 0 && log->kbuf[n - 1] == '\n'; 305 306 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n"); 307 return; 308 } 309 310 n = min(log->len_total - log->len_used - 1, n); 311 log->kbuf[n] = '\0'; 312 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 313 log->len_used += n; 314 else 315 log->ubuf = NULL; 316 } 317 318 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 319 { 320 char zero = 0; 321 322 if (!bpf_verifier_log_needed(log)) 323 return; 324 325 log->len_used = new_pos; 326 if (put_user(zero, log->ubuf + new_pos)) 327 log->ubuf = NULL; 328 } 329 330 /* log_level controls verbosity level of eBPF verifier. 331 * bpf_verifier_log_write() is used to dump the verification trace to the log, 332 * so the user can figure out what's wrong with the program 333 */ 334 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 335 const char *fmt, ...) 336 { 337 va_list args; 338 339 if (!bpf_verifier_log_needed(&env->log)) 340 return; 341 342 va_start(args, fmt); 343 bpf_verifier_vlog(&env->log, fmt, args); 344 va_end(args); 345 } 346 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 347 348 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 349 { 350 struct bpf_verifier_env *env = private_data; 351 va_list args; 352 353 if (!bpf_verifier_log_needed(&env->log)) 354 return; 355 356 va_start(args, fmt); 357 bpf_verifier_vlog(&env->log, fmt, args); 358 va_end(args); 359 } 360 361 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 362 const char *fmt, ...) 363 { 364 va_list args; 365 366 if (!bpf_verifier_log_needed(log)) 367 return; 368 369 va_start(args, fmt); 370 bpf_verifier_vlog(log, fmt, args); 371 va_end(args); 372 } 373 374 static const char *ltrim(const char *s) 375 { 376 while (isspace(*s)) 377 s++; 378 379 return s; 380 } 381 382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 383 u32 insn_off, 384 const char *prefix_fmt, ...) 385 { 386 const struct bpf_line_info *linfo; 387 388 if (!bpf_verifier_log_needed(&env->log)) 389 return; 390 391 linfo = find_linfo(env, insn_off); 392 if (!linfo || linfo == env->prev_linfo) 393 return; 394 395 if (prefix_fmt) { 396 va_list args; 397 398 va_start(args, prefix_fmt); 399 bpf_verifier_vlog(&env->log, prefix_fmt, args); 400 va_end(args); 401 } 402 403 verbose(env, "%s\n", 404 ltrim(btf_name_by_offset(env->prog->aux->btf, 405 linfo->line_off))); 406 407 env->prev_linfo = linfo; 408 } 409 410 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 411 struct bpf_reg_state *reg, 412 struct tnum *range, const char *ctx, 413 const char *reg_name) 414 { 415 char tn_buf[48]; 416 417 verbose(env, "At %s the register %s ", ctx, reg_name); 418 if (!tnum_is_unknown(reg->var_off)) { 419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 420 verbose(env, "has value %s", tn_buf); 421 } else { 422 verbose(env, "has unknown scalar value"); 423 } 424 tnum_strn(tn_buf, sizeof(tn_buf), *range); 425 verbose(env, " should have been in %s\n", tn_buf); 426 } 427 428 static bool type_is_pkt_pointer(enum bpf_reg_type type) 429 { 430 return type == PTR_TO_PACKET || 431 type == PTR_TO_PACKET_META; 432 } 433 434 static bool type_is_sk_pointer(enum bpf_reg_type type) 435 { 436 return type == PTR_TO_SOCKET || 437 type == PTR_TO_SOCK_COMMON || 438 type == PTR_TO_TCP_SOCK || 439 type == PTR_TO_XDP_SOCK; 440 } 441 442 static bool reg_type_not_null(enum bpf_reg_type type) 443 { 444 return type == PTR_TO_SOCKET || 445 type == PTR_TO_TCP_SOCK || 446 type == PTR_TO_MAP_VALUE || 447 type == PTR_TO_MAP_KEY || 448 type == PTR_TO_SOCK_COMMON; 449 } 450 451 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 452 { 453 return reg->type == PTR_TO_MAP_VALUE && 454 map_value_has_spin_lock(reg->map_ptr); 455 } 456 457 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 458 { 459 return base_type(type) == PTR_TO_SOCKET || 460 base_type(type) == PTR_TO_TCP_SOCK || 461 base_type(type) == PTR_TO_MEM || 462 base_type(type) == PTR_TO_BTF_ID; 463 } 464 465 static bool type_is_rdonly_mem(u32 type) 466 { 467 return type & MEM_RDONLY; 468 } 469 470 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 471 { 472 return type == ARG_PTR_TO_SOCK_COMMON; 473 } 474 475 static bool type_may_be_null(u32 type) 476 { 477 return type & PTR_MAYBE_NULL; 478 } 479 480 static bool may_be_acquire_function(enum bpf_func_id func_id) 481 { 482 return func_id == BPF_FUNC_sk_lookup_tcp || 483 func_id == BPF_FUNC_sk_lookup_udp || 484 func_id == BPF_FUNC_skc_lookup_tcp || 485 func_id == BPF_FUNC_map_lookup_elem || 486 func_id == BPF_FUNC_ringbuf_reserve; 487 } 488 489 static bool is_acquire_function(enum bpf_func_id func_id, 490 const struct bpf_map *map) 491 { 492 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 493 494 if (func_id == BPF_FUNC_sk_lookup_tcp || 495 func_id == BPF_FUNC_sk_lookup_udp || 496 func_id == BPF_FUNC_skc_lookup_tcp || 497 func_id == BPF_FUNC_ringbuf_reserve || 498 func_id == BPF_FUNC_kptr_xchg) 499 return true; 500 501 if (func_id == BPF_FUNC_map_lookup_elem && 502 (map_type == BPF_MAP_TYPE_SOCKMAP || 503 map_type == BPF_MAP_TYPE_SOCKHASH)) 504 return true; 505 506 return false; 507 } 508 509 static bool is_ptr_cast_function(enum bpf_func_id func_id) 510 { 511 return func_id == BPF_FUNC_tcp_sock || 512 func_id == BPF_FUNC_sk_fullsock || 513 func_id == BPF_FUNC_skc_to_tcp_sock || 514 func_id == BPF_FUNC_skc_to_tcp6_sock || 515 func_id == BPF_FUNC_skc_to_udp6_sock || 516 func_id == BPF_FUNC_skc_to_mptcp_sock || 517 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 518 func_id == BPF_FUNC_skc_to_tcp_request_sock; 519 } 520 521 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 522 { 523 return BPF_CLASS(insn->code) == BPF_STX && 524 BPF_MODE(insn->code) == BPF_ATOMIC && 525 insn->imm == BPF_CMPXCHG; 526 } 527 528 /* string representation of 'enum bpf_reg_type' 529 * 530 * Note that reg_type_str() can not appear more than once in a single verbose() 531 * statement. 532 */ 533 static const char *reg_type_str(struct bpf_verifier_env *env, 534 enum bpf_reg_type type) 535 { 536 char postfix[16] = {0}, prefix[32] = {0}; 537 static const char * const str[] = { 538 [NOT_INIT] = "?", 539 [SCALAR_VALUE] = "scalar", 540 [PTR_TO_CTX] = "ctx", 541 [CONST_PTR_TO_MAP] = "map_ptr", 542 [PTR_TO_MAP_VALUE] = "map_value", 543 [PTR_TO_STACK] = "fp", 544 [PTR_TO_PACKET] = "pkt", 545 [PTR_TO_PACKET_META] = "pkt_meta", 546 [PTR_TO_PACKET_END] = "pkt_end", 547 [PTR_TO_FLOW_KEYS] = "flow_keys", 548 [PTR_TO_SOCKET] = "sock", 549 [PTR_TO_SOCK_COMMON] = "sock_common", 550 [PTR_TO_TCP_SOCK] = "tcp_sock", 551 [PTR_TO_TP_BUFFER] = "tp_buffer", 552 [PTR_TO_XDP_SOCK] = "xdp_sock", 553 [PTR_TO_BTF_ID] = "ptr_", 554 [PTR_TO_MEM] = "mem", 555 [PTR_TO_BUF] = "buf", 556 [PTR_TO_FUNC] = "func", 557 [PTR_TO_MAP_KEY] = "map_key", 558 }; 559 560 if (type & PTR_MAYBE_NULL) { 561 if (base_type(type) == PTR_TO_BTF_ID) 562 strncpy(postfix, "or_null_", 16); 563 else 564 strncpy(postfix, "_or_null", 16); 565 } 566 567 if (type & MEM_RDONLY) 568 strncpy(prefix, "rdonly_", 32); 569 if (type & MEM_ALLOC) 570 strncpy(prefix, "alloc_", 32); 571 if (type & MEM_USER) 572 strncpy(prefix, "user_", 32); 573 if (type & MEM_PERCPU) 574 strncpy(prefix, "percpu_", 32); 575 if (type & PTR_UNTRUSTED) 576 strncpy(prefix, "untrusted_", 32); 577 578 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s", 579 prefix, str[base_type(type)], postfix); 580 return env->type_str_buf; 581 } 582 583 static char slot_type_char[] = { 584 [STACK_INVALID] = '?', 585 [STACK_SPILL] = 'r', 586 [STACK_MISC] = 'm', 587 [STACK_ZERO] = '0', 588 [STACK_DYNPTR] = 'd', 589 }; 590 591 static void print_liveness(struct bpf_verifier_env *env, 592 enum bpf_reg_liveness live) 593 { 594 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 595 verbose(env, "_"); 596 if (live & REG_LIVE_READ) 597 verbose(env, "r"); 598 if (live & REG_LIVE_WRITTEN) 599 verbose(env, "w"); 600 if (live & REG_LIVE_DONE) 601 verbose(env, "D"); 602 } 603 604 static int get_spi(s32 off) 605 { 606 return (-off - 1) / BPF_REG_SIZE; 607 } 608 609 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 610 { 611 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 612 613 /* We need to check that slots between [spi - nr_slots + 1, spi] are 614 * within [0, allocated_stack). 615 * 616 * Please note that the spi grows downwards. For example, a dynptr 617 * takes the size of two stack slots; the first slot will be at 618 * spi and the second slot will be at spi - 1. 619 */ 620 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 621 } 622 623 static struct bpf_func_state *func(struct bpf_verifier_env *env, 624 const struct bpf_reg_state *reg) 625 { 626 struct bpf_verifier_state *cur = env->cur_state; 627 628 return cur->frame[reg->frameno]; 629 } 630 631 static const char *kernel_type_name(const struct btf* btf, u32 id) 632 { 633 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 634 } 635 636 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 637 { 638 env->scratched_regs |= 1U << regno; 639 } 640 641 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 642 { 643 env->scratched_stack_slots |= 1ULL << spi; 644 } 645 646 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 647 { 648 return (env->scratched_regs >> regno) & 1; 649 } 650 651 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 652 { 653 return (env->scratched_stack_slots >> regno) & 1; 654 } 655 656 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 657 { 658 return env->scratched_regs || env->scratched_stack_slots; 659 } 660 661 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 662 { 663 env->scratched_regs = 0U; 664 env->scratched_stack_slots = 0ULL; 665 } 666 667 /* Used for printing the entire verifier state. */ 668 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 669 { 670 env->scratched_regs = ~0U; 671 env->scratched_stack_slots = ~0ULL; 672 } 673 674 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 675 { 676 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 677 case DYNPTR_TYPE_LOCAL: 678 return BPF_DYNPTR_TYPE_LOCAL; 679 case DYNPTR_TYPE_RINGBUF: 680 return BPF_DYNPTR_TYPE_RINGBUF; 681 default: 682 return BPF_DYNPTR_TYPE_INVALID; 683 } 684 } 685 686 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 687 { 688 return type == BPF_DYNPTR_TYPE_RINGBUF; 689 } 690 691 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 692 enum bpf_arg_type arg_type, int insn_idx) 693 { 694 struct bpf_func_state *state = func(env, reg); 695 enum bpf_dynptr_type type; 696 int spi, i, id; 697 698 spi = get_spi(reg->off); 699 700 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 701 return -EINVAL; 702 703 for (i = 0; i < BPF_REG_SIZE; i++) { 704 state->stack[spi].slot_type[i] = STACK_DYNPTR; 705 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 706 } 707 708 type = arg_to_dynptr_type(arg_type); 709 if (type == BPF_DYNPTR_TYPE_INVALID) 710 return -EINVAL; 711 712 state->stack[spi].spilled_ptr.dynptr.first_slot = true; 713 state->stack[spi].spilled_ptr.dynptr.type = type; 714 state->stack[spi - 1].spilled_ptr.dynptr.type = type; 715 716 if (dynptr_type_refcounted(type)) { 717 /* The id is used to track proper releasing */ 718 id = acquire_reference_state(env, insn_idx); 719 if (id < 0) 720 return id; 721 722 state->stack[spi].spilled_ptr.id = id; 723 state->stack[spi - 1].spilled_ptr.id = id; 724 } 725 726 return 0; 727 } 728 729 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 730 { 731 struct bpf_func_state *state = func(env, reg); 732 int spi, i; 733 734 spi = get_spi(reg->off); 735 736 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 737 return -EINVAL; 738 739 for (i = 0; i < BPF_REG_SIZE; i++) { 740 state->stack[spi].slot_type[i] = STACK_INVALID; 741 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 742 } 743 744 /* Invalidate any slices associated with this dynptr */ 745 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 746 release_reference(env, state->stack[spi].spilled_ptr.id); 747 state->stack[spi].spilled_ptr.id = 0; 748 state->stack[spi - 1].spilled_ptr.id = 0; 749 } 750 751 state->stack[spi].spilled_ptr.dynptr.first_slot = false; 752 state->stack[spi].spilled_ptr.dynptr.type = 0; 753 state->stack[spi - 1].spilled_ptr.dynptr.type = 0; 754 755 return 0; 756 } 757 758 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 759 { 760 struct bpf_func_state *state = func(env, reg); 761 int spi = get_spi(reg->off); 762 int i; 763 764 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 765 return true; 766 767 for (i = 0; i < BPF_REG_SIZE; i++) { 768 if (state->stack[spi].slot_type[i] == STACK_DYNPTR || 769 state->stack[spi - 1].slot_type[i] == STACK_DYNPTR) 770 return false; 771 } 772 773 return true; 774 } 775 776 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 777 enum bpf_arg_type arg_type) 778 { 779 struct bpf_func_state *state = func(env, reg); 780 int spi = get_spi(reg->off); 781 int i; 782 783 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) || 784 !state->stack[spi].spilled_ptr.dynptr.first_slot) 785 return false; 786 787 for (i = 0; i < BPF_REG_SIZE; i++) { 788 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 789 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 790 return false; 791 } 792 793 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 794 if (arg_type == ARG_PTR_TO_DYNPTR) 795 return true; 796 797 return state->stack[spi].spilled_ptr.dynptr.type == arg_to_dynptr_type(arg_type); 798 } 799 800 /* The reg state of a pointer or a bounded scalar was saved when 801 * it was spilled to the stack. 802 */ 803 static bool is_spilled_reg(const struct bpf_stack_state *stack) 804 { 805 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 806 } 807 808 static void scrub_spilled_slot(u8 *stype) 809 { 810 if (*stype != STACK_INVALID) 811 *stype = STACK_MISC; 812 } 813 814 static void print_verifier_state(struct bpf_verifier_env *env, 815 const struct bpf_func_state *state, 816 bool print_all) 817 { 818 const struct bpf_reg_state *reg; 819 enum bpf_reg_type t; 820 int i; 821 822 if (state->frameno) 823 verbose(env, " frame%d:", state->frameno); 824 for (i = 0; i < MAX_BPF_REG; i++) { 825 reg = &state->regs[i]; 826 t = reg->type; 827 if (t == NOT_INIT) 828 continue; 829 if (!print_all && !reg_scratched(env, i)) 830 continue; 831 verbose(env, " R%d", i); 832 print_liveness(env, reg->live); 833 verbose(env, "="); 834 if (t == SCALAR_VALUE && reg->precise) 835 verbose(env, "P"); 836 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 837 tnum_is_const(reg->var_off)) { 838 /* reg->off should be 0 for SCALAR_VALUE */ 839 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 840 verbose(env, "%lld", reg->var_off.value + reg->off); 841 } else { 842 const char *sep = ""; 843 844 verbose(env, "%s", reg_type_str(env, t)); 845 if (base_type(t) == PTR_TO_BTF_ID) 846 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 847 verbose(env, "("); 848 /* 849 * _a stands for append, was shortened to avoid multiline statements below. 850 * This macro is used to output a comma separated list of attributes. 851 */ 852 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 853 854 if (reg->id) 855 verbose_a("id=%d", reg->id); 856 if (reg_type_may_be_refcounted_or_null(t) && reg->ref_obj_id) 857 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 858 if (t != SCALAR_VALUE) 859 verbose_a("off=%d", reg->off); 860 if (type_is_pkt_pointer(t)) 861 verbose_a("r=%d", reg->range); 862 else if (base_type(t) == CONST_PTR_TO_MAP || 863 base_type(t) == PTR_TO_MAP_KEY || 864 base_type(t) == PTR_TO_MAP_VALUE) 865 verbose_a("ks=%d,vs=%d", 866 reg->map_ptr->key_size, 867 reg->map_ptr->value_size); 868 if (tnum_is_const(reg->var_off)) { 869 /* Typically an immediate SCALAR_VALUE, but 870 * could be a pointer whose offset is too big 871 * for reg->off 872 */ 873 verbose_a("imm=%llx", reg->var_off.value); 874 } else { 875 if (reg->smin_value != reg->umin_value && 876 reg->smin_value != S64_MIN) 877 verbose_a("smin=%lld", (long long)reg->smin_value); 878 if (reg->smax_value != reg->umax_value && 879 reg->smax_value != S64_MAX) 880 verbose_a("smax=%lld", (long long)reg->smax_value); 881 if (reg->umin_value != 0) 882 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 883 if (reg->umax_value != U64_MAX) 884 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 885 if (!tnum_is_unknown(reg->var_off)) { 886 char tn_buf[48]; 887 888 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 889 verbose_a("var_off=%s", tn_buf); 890 } 891 if (reg->s32_min_value != reg->smin_value && 892 reg->s32_min_value != S32_MIN) 893 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 894 if (reg->s32_max_value != reg->smax_value && 895 reg->s32_max_value != S32_MAX) 896 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 897 if (reg->u32_min_value != reg->umin_value && 898 reg->u32_min_value != U32_MIN) 899 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 900 if (reg->u32_max_value != reg->umax_value && 901 reg->u32_max_value != U32_MAX) 902 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 903 } 904 #undef verbose_a 905 906 verbose(env, ")"); 907 } 908 } 909 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 910 char types_buf[BPF_REG_SIZE + 1]; 911 bool valid = false; 912 int j; 913 914 for (j = 0; j < BPF_REG_SIZE; j++) { 915 if (state->stack[i].slot_type[j] != STACK_INVALID) 916 valid = true; 917 types_buf[j] = slot_type_char[ 918 state->stack[i].slot_type[j]]; 919 } 920 types_buf[BPF_REG_SIZE] = 0; 921 if (!valid) 922 continue; 923 if (!print_all && !stack_slot_scratched(env, i)) 924 continue; 925 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 926 print_liveness(env, state->stack[i].spilled_ptr.live); 927 if (is_spilled_reg(&state->stack[i])) { 928 reg = &state->stack[i].spilled_ptr; 929 t = reg->type; 930 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 931 if (t == SCALAR_VALUE && reg->precise) 932 verbose(env, "P"); 933 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 934 verbose(env, "%lld", reg->var_off.value + reg->off); 935 } else { 936 verbose(env, "=%s", types_buf); 937 } 938 } 939 if (state->acquired_refs && state->refs[0].id) { 940 verbose(env, " refs=%d", state->refs[0].id); 941 for (i = 1; i < state->acquired_refs; i++) 942 if (state->refs[i].id) 943 verbose(env, ",%d", state->refs[i].id); 944 } 945 if (state->in_callback_fn) 946 verbose(env, " cb"); 947 if (state->in_async_callback_fn) 948 verbose(env, " async_cb"); 949 verbose(env, "\n"); 950 mark_verifier_state_clean(env); 951 } 952 953 static inline u32 vlog_alignment(u32 pos) 954 { 955 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 956 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 957 } 958 959 static void print_insn_state(struct bpf_verifier_env *env, 960 const struct bpf_func_state *state) 961 { 962 if (env->prev_log_len && env->prev_log_len == env->log.len_used) { 963 /* remove new line character */ 964 bpf_vlog_reset(&env->log, env->prev_log_len - 1); 965 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' '); 966 } else { 967 verbose(env, "%d:", env->insn_idx); 968 } 969 print_verifier_state(env, state, false); 970 } 971 972 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 973 * small to hold src. This is different from krealloc since we don't want to preserve 974 * the contents of dst. 975 * 976 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 977 * not be allocated. 978 */ 979 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 980 { 981 size_t bytes; 982 983 if (ZERO_OR_NULL_PTR(src)) 984 goto out; 985 986 if (unlikely(check_mul_overflow(n, size, &bytes))) 987 return NULL; 988 989 if (ksize(dst) < bytes) { 990 kfree(dst); 991 dst = kmalloc_track_caller(bytes, flags); 992 if (!dst) 993 return NULL; 994 } 995 996 memcpy(dst, src, bytes); 997 out: 998 return dst ? dst : ZERO_SIZE_PTR; 999 } 1000 1001 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1002 * small to hold new_n items. new items are zeroed out if the array grows. 1003 * 1004 * Contrary to krealloc_array, does not free arr if new_n is zero. 1005 */ 1006 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1007 { 1008 if (!new_n || old_n == new_n) 1009 goto out; 1010 1011 arr = krealloc_array(arr, new_n, size, GFP_KERNEL); 1012 if (!arr) 1013 return NULL; 1014 1015 if (new_n > old_n) 1016 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1017 1018 out: 1019 return arr ? arr : ZERO_SIZE_PTR; 1020 } 1021 1022 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1023 { 1024 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1025 sizeof(struct bpf_reference_state), GFP_KERNEL); 1026 if (!dst->refs) 1027 return -ENOMEM; 1028 1029 dst->acquired_refs = src->acquired_refs; 1030 return 0; 1031 } 1032 1033 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1034 { 1035 size_t n = src->allocated_stack / BPF_REG_SIZE; 1036 1037 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1038 GFP_KERNEL); 1039 if (!dst->stack) 1040 return -ENOMEM; 1041 1042 dst->allocated_stack = src->allocated_stack; 1043 return 0; 1044 } 1045 1046 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1047 { 1048 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1049 sizeof(struct bpf_reference_state)); 1050 if (!state->refs) 1051 return -ENOMEM; 1052 1053 state->acquired_refs = n; 1054 return 0; 1055 } 1056 1057 static int grow_stack_state(struct bpf_func_state *state, int size) 1058 { 1059 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1060 1061 if (old_n >= n) 1062 return 0; 1063 1064 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1065 if (!state->stack) 1066 return -ENOMEM; 1067 1068 state->allocated_stack = size; 1069 return 0; 1070 } 1071 1072 /* Acquire a pointer id from the env and update the state->refs to include 1073 * this new pointer reference. 1074 * On success, returns a valid pointer id to associate with the register 1075 * On failure, returns a negative errno. 1076 */ 1077 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1078 { 1079 struct bpf_func_state *state = cur_func(env); 1080 int new_ofs = state->acquired_refs; 1081 int id, err; 1082 1083 err = resize_reference_state(state, state->acquired_refs + 1); 1084 if (err) 1085 return err; 1086 id = ++env->id_gen; 1087 state->refs[new_ofs].id = id; 1088 state->refs[new_ofs].insn_idx = insn_idx; 1089 1090 return id; 1091 } 1092 1093 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1094 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1095 { 1096 int i, last_idx; 1097 1098 last_idx = state->acquired_refs - 1; 1099 for (i = 0; i < state->acquired_refs; i++) { 1100 if (state->refs[i].id == ptr_id) { 1101 if (last_idx && i != last_idx) 1102 memcpy(&state->refs[i], &state->refs[last_idx], 1103 sizeof(*state->refs)); 1104 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1105 state->acquired_refs--; 1106 return 0; 1107 } 1108 } 1109 return -EINVAL; 1110 } 1111 1112 static void free_func_state(struct bpf_func_state *state) 1113 { 1114 if (!state) 1115 return; 1116 kfree(state->refs); 1117 kfree(state->stack); 1118 kfree(state); 1119 } 1120 1121 static void clear_jmp_history(struct bpf_verifier_state *state) 1122 { 1123 kfree(state->jmp_history); 1124 state->jmp_history = NULL; 1125 state->jmp_history_cnt = 0; 1126 } 1127 1128 static void free_verifier_state(struct bpf_verifier_state *state, 1129 bool free_self) 1130 { 1131 int i; 1132 1133 for (i = 0; i <= state->curframe; i++) { 1134 free_func_state(state->frame[i]); 1135 state->frame[i] = NULL; 1136 } 1137 clear_jmp_history(state); 1138 if (free_self) 1139 kfree(state); 1140 } 1141 1142 /* copy verifier state from src to dst growing dst stack space 1143 * when necessary to accommodate larger src stack 1144 */ 1145 static int copy_func_state(struct bpf_func_state *dst, 1146 const struct bpf_func_state *src) 1147 { 1148 int err; 1149 1150 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1151 err = copy_reference_state(dst, src); 1152 if (err) 1153 return err; 1154 return copy_stack_state(dst, src); 1155 } 1156 1157 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1158 const struct bpf_verifier_state *src) 1159 { 1160 struct bpf_func_state *dst; 1161 int i, err; 1162 1163 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1164 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1165 GFP_USER); 1166 if (!dst_state->jmp_history) 1167 return -ENOMEM; 1168 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1169 1170 /* if dst has more stack frames then src frame, free them */ 1171 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1172 free_func_state(dst_state->frame[i]); 1173 dst_state->frame[i] = NULL; 1174 } 1175 dst_state->speculative = src->speculative; 1176 dst_state->curframe = src->curframe; 1177 dst_state->active_spin_lock = src->active_spin_lock; 1178 dst_state->branches = src->branches; 1179 dst_state->parent = src->parent; 1180 dst_state->first_insn_idx = src->first_insn_idx; 1181 dst_state->last_insn_idx = src->last_insn_idx; 1182 for (i = 0; i <= src->curframe; i++) { 1183 dst = dst_state->frame[i]; 1184 if (!dst) { 1185 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1186 if (!dst) 1187 return -ENOMEM; 1188 dst_state->frame[i] = dst; 1189 } 1190 err = copy_func_state(dst, src->frame[i]); 1191 if (err) 1192 return err; 1193 } 1194 return 0; 1195 } 1196 1197 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1198 { 1199 while (st) { 1200 u32 br = --st->branches; 1201 1202 /* WARN_ON(br > 1) technically makes sense here, 1203 * but see comment in push_stack(), hence: 1204 */ 1205 WARN_ONCE((int)br < 0, 1206 "BUG update_branch_counts:branches_to_explore=%d\n", 1207 br); 1208 if (br) 1209 break; 1210 st = st->parent; 1211 } 1212 } 1213 1214 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1215 int *insn_idx, bool pop_log) 1216 { 1217 struct bpf_verifier_state *cur = env->cur_state; 1218 struct bpf_verifier_stack_elem *elem, *head = env->head; 1219 int err; 1220 1221 if (env->head == NULL) 1222 return -ENOENT; 1223 1224 if (cur) { 1225 err = copy_verifier_state(cur, &head->st); 1226 if (err) 1227 return err; 1228 } 1229 if (pop_log) 1230 bpf_vlog_reset(&env->log, head->log_pos); 1231 if (insn_idx) 1232 *insn_idx = head->insn_idx; 1233 if (prev_insn_idx) 1234 *prev_insn_idx = head->prev_insn_idx; 1235 elem = head->next; 1236 free_verifier_state(&head->st, false); 1237 kfree(head); 1238 env->head = elem; 1239 env->stack_size--; 1240 return 0; 1241 } 1242 1243 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1244 int insn_idx, int prev_insn_idx, 1245 bool speculative) 1246 { 1247 struct bpf_verifier_state *cur = env->cur_state; 1248 struct bpf_verifier_stack_elem *elem; 1249 int err; 1250 1251 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1252 if (!elem) 1253 goto err; 1254 1255 elem->insn_idx = insn_idx; 1256 elem->prev_insn_idx = prev_insn_idx; 1257 elem->next = env->head; 1258 elem->log_pos = env->log.len_used; 1259 env->head = elem; 1260 env->stack_size++; 1261 err = copy_verifier_state(&elem->st, cur); 1262 if (err) 1263 goto err; 1264 elem->st.speculative |= speculative; 1265 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1266 verbose(env, "The sequence of %d jumps is too complex.\n", 1267 env->stack_size); 1268 goto err; 1269 } 1270 if (elem->st.parent) { 1271 ++elem->st.parent->branches; 1272 /* WARN_ON(branches > 2) technically makes sense here, 1273 * but 1274 * 1. speculative states will bump 'branches' for non-branch 1275 * instructions 1276 * 2. is_state_visited() heuristics may decide not to create 1277 * a new state for a sequence of branches and all such current 1278 * and cloned states will be pointing to a single parent state 1279 * which might have large 'branches' count. 1280 */ 1281 } 1282 return &elem->st; 1283 err: 1284 free_verifier_state(env->cur_state, true); 1285 env->cur_state = NULL; 1286 /* pop all elements and return */ 1287 while (!pop_stack(env, NULL, NULL, false)); 1288 return NULL; 1289 } 1290 1291 #define CALLER_SAVED_REGS 6 1292 static const int caller_saved[CALLER_SAVED_REGS] = { 1293 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1294 }; 1295 1296 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1297 struct bpf_reg_state *reg); 1298 1299 /* This helper doesn't clear reg->id */ 1300 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1301 { 1302 reg->var_off = tnum_const(imm); 1303 reg->smin_value = (s64)imm; 1304 reg->smax_value = (s64)imm; 1305 reg->umin_value = imm; 1306 reg->umax_value = imm; 1307 1308 reg->s32_min_value = (s32)imm; 1309 reg->s32_max_value = (s32)imm; 1310 reg->u32_min_value = (u32)imm; 1311 reg->u32_max_value = (u32)imm; 1312 } 1313 1314 /* Mark the unknown part of a register (variable offset or scalar value) as 1315 * known to have the value @imm. 1316 */ 1317 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1318 { 1319 /* Clear id, off, and union(map_ptr, range) */ 1320 memset(((u8 *)reg) + sizeof(reg->type), 0, 1321 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1322 ___mark_reg_known(reg, imm); 1323 } 1324 1325 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1326 { 1327 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1328 reg->s32_min_value = (s32)imm; 1329 reg->s32_max_value = (s32)imm; 1330 reg->u32_min_value = (u32)imm; 1331 reg->u32_max_value = (u32)imm; 1332 } 1333 1334 /* Mark the 'variable offset' part of a register as zero. This should be 1335 * used only on registers holding a pointer type. 1336 */ 1337 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1338 { 1339 __mark_reg_known(reg, 0); 1340 } 1341 1342 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1343 { 1344 __mark_reg_known(reg, 0); 1345 reg->type = SCALAR_VALUE; 1346 } 1347 1348 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1349 struct bpf_reg_state *regs, u32 regno) 1350 { 1351 if (WARN_ON(regno >= MAX_BPF_REG)) { 1352 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1353 /* Something bad happened, let's kill all regs */ 1354 for (regno = 0; regno < MAX_BPF_REG; regno++) 1355 __mark_reg_not_init(env, regs + regno); 1356 return; 1357 } 1358 __mark_reg_known_zero(regs + regno); 1359 } 1360 1361 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1362 { 1363 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1364 const struct bpf_map *map = reg->map_ptr; 1365 1366 if (map->inner_map_meta) { 1367 reg->type = CONST_PTR_TO_MAP; 1368 reg->map_ptr = map->inner_map_meta; 1369 /* transfer reg's id which is unique for every map_lookup_elem 1370 * as UID of the inner map. 1371 */ 1372 if (map_value_has_timer(map->inner_map_meta)) 1373 reg->map_uid = reg->id; 1374 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1375 reg->type = PTR_TO_XDP_SOCK; 1376 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1377 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1378 reg->type = PTR_TO_SOCKET; 1379 } else { 1380 reg->type = PTR_TO_MAP_VALUE; 1381 } 1382 return; 1383 } 1384 1385 reg->type &= ~PTR_MAYBE_NULL; 1386 } 1387 1388 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1389 { 1390 return type_is_pkt_pointer(reg->type); 1391 } 1392 1393 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1394 { 1395 return reg_is_pkt_pointer(reg) || 1396 reg->type == PTR_TO_PACKET_END; 1397 } 1398 1399 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1400 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1401 enum bpf_reg_type which) 1402 { 1403 /* The register can already have a range from prior markings. 1404 * This is fine as long as it hasn't been advanced from its 1405 * origin. 1406 */ 1407 return reg->type == which && 1408 reg->id == 0 && 1409 reg->off == 0 && 1410 tnum_equals_const(reg->var_off, 0); 1411 } 1412 1413 /* Reset the min/max bounds of a register */ 1414 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1415 { 1416 reg->smin_value = S64_MIN; 1417 reg->smax_value = S64_MAX; 1418 reg->umin_value = 0; 1419 reg->umax_value = U64_MAX; 1420 1421 reg->s32_min_value = S32_MIN; 1422 reg->s32_max_value = S32_MAX; 1423 reg->u32_min_value = 0; 1424 reg->u32_max_value = U32_MAX; 1425 } 1426 1427 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1428 { 1429 reg->smin_value = S64_MIN; 1430 reg->smax_value = S64_MAX; 1431 reg->umin_value = 0; 1432 reg->umax_value = U64_MAX; 1433 } 1434 1435 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1436 { 1437 reg->s32_min_value = S32_MIN; 1438 reg->s32_max_value = S32_MAX; 1439 reg->u32_min_value = 0; 1440 reg->u32_max_value = U32_MAX; 1441 } 1442 1443 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1444 { 1445 struct tnum var32_off = tnum_subreg(reg->var_off); 1446 1447 /* min signed is max(sign bit) | min(other bits) */ 1448 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1449 var32_off.value | (var32_off.mask & S32_MIN)); 1450 /* max signed is min(sign bit) | max(other bits) */ 1451 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1452 var32_off.value | (var32_off.mask & S32_MAX)); 1453 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1454 reg->u32_max_value = min(reg->u32_max_value, 1455 (u32)(var32_off.value | var32_off.mask)); 1456 } 1457 1458 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1459 { 1460 /* min signed is max(sign bit) | min(other bits) */ 1461 reg->smin_value = max_t(s64, reg->smin_value, 1462 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1463 /* max signed is min(sign bit) | max(other bits) */ 1464 reg->smax_value = min_t(s64, reg->smax_value, 1465 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1466 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1467 reg->umax_value = min(reg->umax_value, 1468 reg->var_off.value | reg->var_off.mask); 1469 } 1470 1471 static void __update_reg_bounds(struct bpf_reg_state *reg) 1472 { 1473 __update_reg32_bounds(reg); 1474 __update_reg64_bounds(reg); 1475 } 1476 1477 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1478 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1479 { 1480 /* Learn sign from signed bounds. 1481 * If we cannot cross the sign boundary, then signed and unsigned bounds 1482 * are the same, so combine. This works even in the negative case, e.g. 1483 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1484 */ 1485 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1486 reg->s32_min_value = reg->u32_min_value = 1487 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1488 reg->s32_max_value = reg->u32_max_value = 1489 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1490 return; 1491 } 1492 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1493 * boundary, so we must be careful. 1494 */ 1495 if ((s32)reg->u32_max_value >= 0) { 1496 /* Positive. We can't learn anything from the smin, but smax 1497 * is positive, hence safe. 1498 */ 1499 reg->s32_min_value = reg->u32_min_value; 1500 reg->s32_max_value = reg->u32_max_value = 1501 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1502 } else if ((s32)reg->u32_min_value < 0) { 1503 /* Negative. We can't learn anything from the smax, but smin 1504 * is negative, hence safe. 1505 */ 1506 reg->s32_min_value = reg->u32_min_value = 1507 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1508 reg->s32_max_value = reg->u32_max_value; 1509 } 1510 } 1511 1512 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1513 { 1514 /* Learn sign from signed bounds. 1515 * If we cannot cross the sign boundary, then signed and unsigned bounds 1516 * are the same, so combine. This works even in the negative case, e.g. 1517 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1518 */ 1519 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1520 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1521 reg->umin_value); 1522 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1523 reg->umax_value); 1524 return; 1525 } 1526 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1527 * boundary, so we must be careful. 1528 */ 1529 if ((s64)reg->umax_value >= 0) { 1530 /* Positive. We can't learn anything from the smin, but smax 1531 * is positive, hence safe. 1532 */ 1533 reg->smin_value = reg->umin_value; 1534 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1535 reg->umax_value); 1536 } else if ((s64)reg->umin_value < 0) { 1537 /* Negative. We can't learn anything from the smax, but smin 1538 * is negative, hence safe. 1539 */ 1540 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1541 reg->umin_value); 1542 reg->smax_value = reg->umax_value; 1543 } 1544 } 1545 1546 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1547 { 1548 __reg32_deduce_bounds(reg); 1549 __reg64_deduce_bounds(reg); 1550 } 1551 1552 /* Attempts to improve var_off based on unsigned min/max information */ 1553 static void __reg_bound_offset(struct bpf_reg_state *reg) 1554 { 1555 struct tnum var64_off = tnum_intersect(reg->var_off, 1556 tnum_range(reg->umin_value, 1557 reg->umax_value)); 1558 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1559 tnum_range(reg->u32_min_value, 1560 reg->u32_max_value)); 1561 1562 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1563 } 1564 1565 static bool __reg32_bound_s64(s32 a) 1566 { 1567 return a >= 0 && a <= S32_MAX; 1568 } 1569 1570 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1571 { 1572 reg->umin_value = reg->u32_min_value; 1573 reg->umax_value = reg->u32_max_value; 1574 1575 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 1576 * be positive otherwise set to worse case bounds and refine later 1577 * from tnum. 1578 */ 1579 if (__reg32_bound_s64(reg->s32_min_value) && 1580 __reg32_bound_s64(reg->s32_max_value)) { 1581 reg->smin_value = reg->s32_min_value; 1582 reg->smax_value = reg->s32_max_value; 1583 } else { 1584 reg->smin_value = 0; 1585 reg->smax_value = U32_MAX; 1586 } 1587 } 1588 1589 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1590 { 1591 /* special case when 64-bit register has upper 32-bit register 1592 * zeroed. Typically happens after zext or <<32, >>32 sequence 1593 * allowing us to use 32-bit bounds directly, 1594 */ 1595 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1596 __reg_assign_32_into_64(reg); 1597 } else { 1598 /* Otherwise the best we can do is push lower 32bit known and 1599 * unknown bits into register (var_off set from jmp logic) 1600 * then learn as much as possible from the 64-bit tnum 1601 * known and unknown bits. The previous smin/smax bounds are 1602 * invalid here because of jmp32 compare so mark them unknown 1603 * so they do not impact tnum bounds calculation. 1604 */ 1605 __mark_reg64_unbounded(reg); 1606 __update_reg_bounds(reg); 1607 } 1608 1609 /* Intersecting with the old var_off might have improved our bounds 1610 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1611 * then new var_off is (0; 0x7f...fc) which improves our umax. 1612 */ 1613 __reg_deduce_bounds(reg); 1614 __reg_bound_offset(reg); 1615 __update_reg_bounds(reg); 1616 } 1617 1618 static bool __reg64_bound_s32(s64 a) 1619 { 1620 return a >= S32_MIN && a <= S32_MAX; 1621 } 1622 1623 static bool __reg64_bound_u32(u64 a) 1624 { 1625 return a >= U32_MIN && a <= U32_MAX; 1626 } 1627 1628 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1629 { 1630 __mark_reg32_unbounded(reg); 1631 1632 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1633 reg->s32_min_value = (s32)reg->smin_value; 1634 reg->s32_max_value = (s32)reg->smax_value; 1635 } 1636 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1637 reg->u32_min_value = (u32)reg->umin_value; 1638 reg->u32_max_value = (u32)reg->umax_value; 1639 } 1640 1641 /* Intersecting with the old var_off might have improved our bounds 1642 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1643 * then new var_off is (0; 0x7f...fc) which improves our umax. 1644 */ 1645 __reg_deduce_bounds(reg); 1646 __reg_bound_offset(reg); 1647 __update_reg_bounds(reg); 1648 } 1649 1650 /* Mark a register as having a completely unknown (scalar) value. */ 1651 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1652 struct bpf_reg_state *reg) 1653 { 1654 /* 1655 * Clear type, id, off, and union(map_ptr, range) and 1656 * padding between 'type' and union 1657 */ 1658 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1659 reg->type = SCALAR_VALUE; 1660 reg->var_off = tnum_unknown; 1661 reg->frameno = 0; 1662 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1663 __mark_reg_unbounded(reg); 1664 } 1665 1666 static void mark_reg_unknown(struct bpf_verifier_env *env, 1667 struct bpf_reg_state *regs, u32 regno) 1668 { 1669 if (WARN_ON(regno >= MAX_BPF_REG)) { 1670 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1671 /* Something bad happened, let's kill all regs except FP */ 1672 for (regno = 0; regno < BPF_REG_FP; regno++) 1673 __mark_reg_not_init(env, regs + regno); 1674 return; 1675 } 1676 __mark_reg_unknown(env, regs + regno); 1677 } 1678 1679 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1680 struct bpf_reg_state *reg) 1681 { 1682 __mark_reg_unknown(env, reg); 1683 reg->type = NOT_INIT; 1684 } 1685 1686 static void mark_reg_not_init(struct bpf_verifier_env *env, 1687 struct bpf_reg_state *regs, u32 regno) 1688 { 1689 if (WARN_ON(regno >= MAX_BPF_REG)) { 1690 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1691 /* Something bad happened, let's kill all regs except FP */ 1692 for (regno = 0; regno < BPF_REG_FP; regno++) 1693 __mark_reg_not_init(env, regs + regno); 1694 return; 1695 } 1696 __mark_reg_not_init(env, regs + regno); 1697 } 1698 1699 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1700 struct bpf_reg_state *regs, u32 regno, 1701 enum bpf_reg_type reg_type, 1702 struct btf *btf, u32 btf_id, 1703 enum bpf_type_flag flag) 1704 { 1705 if (reg_type == SCALAR_VALUE) { 1706 mark_reg_unknown(env, regs, regno); 1707 return; 1708 } 1709 mark_reg_known_zero(env, regs, regno); 1710 regs[regno].type = PTR_TO_BTF_ID | flag; 1711 regs[regno].btf = btf; 1712 regs[regno].btf_id = btf_id; 1713 } 1714 1715 #define DEF_NOT_SUBREG (0) 1716 static void init_reg_state(struct bpf_verifier_env *env, 1717 struct bpf_func_state *state) 1718 { 1719 struct bpf_reg_state *regs = state->regs; 1720 int i; 1721 1722 for (i = 0; i < MAX_BPF_REG; i++) { 1723 mark_reg_not_init(env, regs, i); 1724 regs[i].live = REG_LIVE_NONE; 1725 regs[i].parent = NULL; 1726 regs[i].subreg_def = DEF_NOT_SUBREG; 1727 } 1728 1729 /* frame pointer */ 1730 regs[BPF_REG_FP].type = PTR_TO_STACK; 1731 mark_reg_known_zero(env, regs, BPF_REG_FP); 1732 regs[BPF_REG_FP].frameno = state->frameno; 1733 } 1734 1735 #define BPF_MAIN_FUNC (-1) 1736 static void init_func_state(struct bpf_verifier_env *env, 1737 struct bpf_func_state *state, 1738 int callsite, int frameno, int subprogno) 1739 { 1740 state->callsite = callsite; 1741 state->frameno = frameno; 1742 state->subprogno = subprogno; 1743 init_reg_state(env, state); 1744 mark_verifier_state_scratched(env); 1745 } 1746 1747 /* Similar to push_stack(), but for async callbacks */ 1748 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 1749 int insn_idx, int prev_insn_idx, 1750 int subprog) 1751 { 1752 struct bpf_verifier_stack_elem *elem; 1753 struct bpf_func_state *frame; 1754 1755 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1756 if (!elem) 1757 goto err; 1758 1759 elem->insn_idx = insn_idx; 1760 elem->prev_insn_idx = prev_insn_idx; 1761 elem->next = env->head; 1762 elem->log_pos = env->log.len_used; 1763 env->head = elem; 1764 env->stack_size++; 1765 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1766 verbose(env, 1767 "The sequence of %d jumps is too complex for async cb.\n", 1768 env->stack_size); 1769 goto err; 1770 } 1771 /* Unlike push_stack() do not copy_verifier_state(). 1772 * The caller state doesn't matter. 1773 * This is async callback. It starts in a fresh stack. 1774 * Initialize it similar to do_check_common(). 1775 */ 1776 elem->st.branches = 1; 1777 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1778 if (!frame) 1779 goto err; 1780 init_func_state(env, frame, 1781 BPF_MAIN_FUNC /* callsite */, 1782 0 /* frameno within this callchain */, 1783 subprog /* subprog number within this prog */); 1784 elem->st.frame[0] = frame; 1785 return &elem->st; 1786 err: 1787 free_verifier_state(env->cur_state, true); 1788 env->cur_state = NULL; 1789 /* pop all elements and return */ 1790 while (!pop_stack(env, NULL, NULL, false)); 1791 return NULL; 1792 } 1793 1794 1795 enum reg_arg_type { 1796 SRC_OP, /* register is used as source operand */ 1797 DST_OP, /* register is used as destination operand */ 1798 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1799 }; 1800 1801 static int cmp_subprogs(const void *a, const void *b) 1802 { 1803 return ((struct bpf_subprog_info *)a)->start - 1804 ((struct bpf_subprog_info *)b)->start; 1805 } 1806 1807 static int find_subprog(struct bpf_verifier_env *env, int off) 1808 { 1809 struct bpf_subprog_info *p; 1810 1811 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1812 sizeof(env->subprog_info[0]), cmp_subprogs); 1813 if (!p) 1814 return -ENOENT; 1815 return p - env->subprog_info; 1816 1817 } 1818 1819 static int add_subprog(struct bpf_verifier_env *env, int off) 1820 { 1821 int insn_cnt = env->prog->len; 1822 int ret; 1823 1824 if (off >= insn_cnt || off < 0) { 1825 verbose(env, "call to invalid destination\n"); 1826 return -EINVAL; 1827 } 1828 ret = find_subprog(env, off); 1829 if (ret >= 0) 1830 return ret; 1831 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1832 verbose(env, "too many subprograms\n"); 1833 return -E2BIG; 1834 } 1835 /* determine subprog starts. The end is one before the next starts */ 1836 env->subprog_info[env->subprog_cnt++].start = off; 1837 sort(env->subprog_info, env->subprog_cnt, 1838 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1839 return env->subprog_cnt - 1; 1840 } 1841 1842 #define MAX_KFUNC_DESCS 256 1843 #define MAX_KFUNC_BTFS 256 1844 1845 struct bpf_kfunc_desc { 1846 struct btf_func_model func_model; 1847 u32 func_id; 1848 s32 imm; 1849 u16 offset; 1850 }; 1851 1852 struct bpf_kfunc_btf { 1853 struct btf *btf; 1854 struct module *module; 1855 u16 offset; 1856 }; 1857 1858 struct bpf_kfunc_desc_tab { 1859 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 1860 u32 nr_descs; 1861 }; 1862 1863 struct bpf_kfunc_btf_tab { 1864 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 1865 u32 nr_descs; 1866 }; 1867 1868 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 1869 { 1870 const struct bpf_kfunc_desc *d0 = a; 1871 const struct bpf_kfunc_desc *d1 = b; 1872 1873 /* func_id is not greater than BTF_MAX_TYPE */ 1874 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 1875 } 1876 1877 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 1878 { 1879 const struct bpf_kfunc_btf *d0 = a; 1880 const struct bpf_kfunc_btf *d1 = b; 1881 1882 return d0->offset - d1->offset; 1883 } 1884 1885 static const struct bpf_kfunc_desc * 1886 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 1887 { 1888 struct bpf_kfunc_desc desc = { 1889 .func_id = func_id, 1890 .offset = offset, 1891 }; 1892 struct bpf_kfunc_desc_tab *tab; 1893 1894 tab = prog->aux->kfunc_tab; 1895 return bsearch(&desc, tab->descs, tab->nr_descs, 1896 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 1897 } 1898 1899 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 1900 s16 offset) 1901 { 1902 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 1903 struct bpf_kfunc_btf_tab *tab; 1904 struct bpf_kfunc_btf *b; 1905 struct module *mod; 1906 struct btf *btf; 1907 int btf_fd; 1908 1909 tab = env->prog->aux->kfunc_btf_tab; 1910 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 1911 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 1912 if (!b) { 1913 if (tab->nr_descs == MAX_KFUNC_BTFS) { 1914 verbose(env, "too many different module BTFs\n"); 1915 return ERR_PTR(-E2BIG); 1916 } 1917 1918 if (bpfptr_is_null(env->fd_array)) { 1919 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 1920 return ERR_PTR(-EPROTO); 1921 } 1922 1923 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 1924 offset * sizeof(btf_fd), 1925 sizeof(btf_fd))) 1926 return ERR_PTR(-EFAULT); 1927 1928 btf = btf_get_by_fd(btf_fd); 1929 if (IS_ERR(btf)) { 1930 verbose(env, "invalid module BTF fd specified\n"); 1931 return btf; 1932 } 1933 1934 if (!btf_is_module(btf)) { 1935 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 1936 btf_put(btf); 1937 return ERR_PTR(-EINVAL); 1938 } 1939 1940 mod = btf_try_get_module(btf); 1941 if (!mod) { 1942 btf_put(btf); 1943 return ERR_PTR(-ENXIO); 1944 } 1945 1946 b = &tab->descs[tab->nr_descs++]; 1947 b->btf = btf; 1948 b->module = mod; 1949 b->offset = offset; 1950 1951 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1952 kfunc_btf_cmp_by_off, NULL); 1953 } 1954 return b->btf; 1955 } 1956 1957 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 1958 { 1959 if (!tab) 1960 return; 1961 1962 while (tab->nr_descs--) { 1963 module_put(tab->descs[tab->nr_descs].module); 1964 btf_put(tab->descs[tab->nr_descs].btf); 1965 } 1966 kfree(tab); 1967 } 1968 1969 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 1970 { 1971 if (offset) { 1972 if (offset < 0) { 1973 /* In the future, this can be allowed to increase limit 1974 * of fd index into fd_array, interpreted as u16. 1975 */ 1976 verbose(env, "negative offset disallowed for kernel module function call\n"); 1977 return ERR_PTR(-EINVAL); 1978 } 1979 1980 return __find_kfunc_desc_btf(env, offset); 1981 } 1982 return btf_vmlinux ?: ERR_PTR(-ENOENT); 1983 } 1984 1985 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 1986 { 1987 const struct btf_type *func, *func_proto; 1988 struct bpf_kfunc_btf_tab *btf_tab; 1989 struct bpf_kfunc_desc_tab *tab; 1990 struct bpf_prog_aux *prog_aux; 1991 struct bpf_kfunc_desc *desc; 1992 const char *func_name; 1993 struct btf *desc_btf; 1994 unsigned long call_imm; 1995 unsigned long addr; 1996 int err; 1997 1998 prog_aux = env->prog->aux; 1999 tab = prog_aux->kfunc_tab; 2000 btf_tab = prog_aux->kfunc_btf_tab; 2001 if (!tab) { 2002 if (!btf_vmlinux) { 2003 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2004 return -ENOTSUPP; 2005 } 2006 2007 if (!env->prog->jit_requested) { 2008 verbose(env, "JIT is required for calling kernel function\n"); 2009 return -ENOTSUPP; 2010 } 2011 2012 if (!bpf_jit_supports_kfunc_call()) { 2013 verbose(env, "JIT does not support calling kernel function\n"); 2014 return -ENOTSUPP; 2015 } 2016 2017 if (!env->prog->gpl_compatible) { 2018 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2019 return -EINVAL; 2020 } 2021 2022 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2023 if (!tab) 2024 return -ENOMEM; 2025 prog_aux->kfunc_tab = tab; 2026 } 2027 2028 /* func_id == 0 is always invalid, but instead of returning an error, be 2029 * conservative and wait until the code elimination pass before returning 2030 * error, so that invalid calls that get pruned out can be in BPF programs 2031 * loaded from userspace. It is also required that offset be untouched 2032 * for such calls. 2033 */ 2034 if (!func_id && !offset) 2035 return 0; 2036 2037 if (!btf_tab && offset) { 2038 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2039 if (!btf_tab) 2040 return -ENOMEM; 2041 prog_aux->kfunc_btf_tab = btf_tab; 2042 } 2043 2044 desc_btf = find_kfunc_desc_btf(env, offset); 2045 if (IS_ERR(desc_btf)) { 2046 verbose(env, "failed to find BTF for kernel function\n"); 2047 return PTR_ERR(desc_btf); 2048 } 2049 2050 if (find_kfunc_desc(env->prog, func_id, offset)) 2051 return 0; 2052 2053 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2054 verbose(env, "too many different kernel function calls\n"); 2055 return -E2BIG; 2056 } 2057 2058 func = btf_type_by_id(desc_btf, func_id); 2059 if (!func || !btf_type_is_func(func)) { 2060 verbose(env, "kernel btf_id %u is not a function\n", 2061 func_id); 2062 return -EINVAL; 2063 } 2064 func_proto = btf_type_by_id(desc_btf, func->type); 2065 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2066 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2067 func_id); 2068 return -EINVAL; 2069 } 2070 2071 func_name = btf_name_by_offset(desc_btf, func->name_off); 2072 addr = kallsyms_lookup_name(func_name); 2073 if (!addr) { 2074 verbose(env, "cannot find address for kernel function %s\n", 2075 func_name); 2076 return -EINVAL; 2077 } 2078 2079 call_imm = BPF_CALL_IMM(addr); 2080 /* Check whether or not the relative offset overflows desc->imm */ 2081 if ((unsigned long)(s32)call_imm != call_imm) { 2082 verbose(env, "address of kernel function %s is out of range\n", 2083 func_name); 2084 return -EINVAL; 2085 } 2086 2087 desc = &tab->descs[tab->nr_descs++]; 2088 desc->func_id = func_id; 2089 desc->imm = call_imm; 2090 desc->offset = offset; 2091 err = btf_distill_func_proto(&env->log, desc_btf, 2092 func_proto, func_name, 2093 &desc->func_model); 2094 if (!err) 2095 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2096 kfunc_desc_cmp_by_id_off, NULL); 2097 return err; 2098 } 2099 2100 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 2101 { 2102 const struct bpf_kfunc_desc *d0 = a; 2103 const struct bpf_kfunc_desc *d1 = b; 2104 2105 if (d0->imm > d1->imm) 2106 return 1; 2107 else if (d0->imm < d1->imm) 2108 return -1; 2109 return 0; 2110 } 2111 2112 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 2113 { 2114 struct bpf_kfunc_desc_tab *tab; 2115 2116 tab = prog->aux->kfunc_tab; 2117 if (!tab) 2118 return; 2119 2120 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2121 kfunc_desc_cmp_by_imm, NULL); 2122 } 2123 2124 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2125 { 2126 return !!prog->aux->kfunc_tab; 2127 } 2128 2129 const struct btf_func_model * 2130 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2131 const struct bpf_insn *insn) 2132 { 2133 const struct bpf_kfunc_desc desc = { 2134 .imm = insn->imm, 2135 }; 2136 const struct bpf_kfunc_desc *res; 2137 struct bpf_kfunc_desc_tab *tab; 2138 2139 tab = prog->aux->kfunc_tab; 2140 res = bsearch(&desc, tab->descs, tab->nr_descs, 2141 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 2142 2143 return res ? &res->func_model : NULL; 2144 } 2145 2146 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2147 { 2148 struct bpf_subprog_info *subprog = env->subprog_info; 2149 struct bpf_insn *insn = env->prog->insnsi; 2150 int i, ret, insn_cnt = env->prog->len; 2151 2152 /* Add entry function. */ 2153 ret = add_subprog(env, 0); 2154 if (ret) 2155 return ret; 2156 2157 for (i = 0; i < insn_cnt; i++, insn++) { 2158 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2159 !bpf_pseudo_kfunc_call(insn)) 2160 continue; 2161 2162 if (!env->bpf_capable) { 2163 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2164 return -EPERM; 2165 } 2166 2167 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2168 ret = add_subprog(env, i + insn->imm + 1); 2169 else 2170 ret = add_kfunc_call(env, insn->imm, insn->off); 2171 2172 if (ret < 0) 2173 return ret; 2174 } 2175 2176 /* Add a fake 'exit' subprog which could simplify subprog iteration 2177 * logic. 'subprog_cnt' should not be increased. 2178 */ 2179 subprog[env->subprog_cnt].start = insn_cnt; 2180 2181 if (env->log.level & BPF_LOG_LEVEL2) 2182 for (i = 0; i < env->subprog_cnt; i++) 2183 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2184 2185 return 0; 2186 } 2187 2188 static int check_subprogs(struct bpf_verifier_env *env) 2189 { 2190 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2191 struct bpf_subprog_info *subprog = env->subprog_info; 2192 struct bpf_insn *insn = env->prog->insnsi; 2193 int insn_cnt = env->prog->len; 2194 2195 /* now check that all jumps are within the same subprog */ 2196 subprog_start = subprog[cur_subprog].start; 2197 subprog_end = subprog[cur_subprog + 1].start; 2198 for (i = 0; i < insn_cnt; i++) { 2199 u8 code = insn[i].code; 2200 2201 if (code == (BPF_JMP | BPF_CALL) && 2202 insn[i].imm == BPF_FUNC_tail_call && 2203 insn[i].src_reg != BPF_PSEUDO_CALL) 2204 subprog[cur_subprog].has_tail_call = true; 2205 if (BPF_CLASS(code) == BPF_LD && 2206 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2207 subprog[cur_subprog].has_ld_abs = true; 2208 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2209 goto next; 2210 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2211 goto next; 2212 off = i + insn[i].off + 1; 2213 if (off < subprog_start || off >= subprog_end) { 2214 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2215 return -EINVAL; 2216 } 2217 next: 2218 if (i == subprog_end - 1) { 2219 /* to avoid fall-through from one subprog into another 2220 * the last insn of the subprog should be either exit 2221 * or unconditional jump back 2222 */ 2223 if (code != (BPF_JMP | BPF_EXIT) && 2224 code != (BPF_JMP | BPF_JA)) { 2225 verbose(env, "last insn is not an exit or jmp\n"); 2226 return -EINVAL; 2227 } 2228 subprog_start = subprog_end; 2229 cur_subprog++; 2230 if (cur_subprog < env->subprog_cnt) 2231 subprog_end = subprog[cur_subprog + 1].start; 2232 } 2233 } 2234 return 0; 2235 } 2236 2237 /* Parentage chain of this register (or stack slot) should take care of all 2238 * issues like callee-saved registers, stack slot allocation time, etc. 2239 */ 2240 static int mark_reg_read(struct bpf_verifier_env *env, 2241 const struct bpf_reg_state *state, 2242 struct bpf_reg_state *parent, u8 flag) 2243 { 2244 bool writes = parent == state->parent; /* Observe write marks */ 2245 int cnt = 0; 2246 2247 while (parent) { 2248 /* if read wasn't screened by an earlier write ... */ 2249 if (writes && state->live & REG_LIVE_WRITTEN) 2250 break; 2251 if (parent->live & REG_LIVE_DONE) { 2252 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2253 reg_type_str(env, parent->type), 2254 parent->var_off.value, parent->off); 2255 return -EFAULT; 2256 } 2257 /* The first condition is more likely to be true than the 2258 * second, checked it first. 2259 */ 2260 if ((parent->live & REG_LIVE_READ) == flag || 2261 parent->live & REG_LIVE_READ64) 2262 /* The parentage chain never changes and 2263 * this parent was already marked as LIVE_READ. 2264 * There is no need to keep walking the chain again and 2265 * keep re-marking all parents as LIVE_READ. 2266 * This case happens when the same register is read 2267 * multiple times without writes into it in-between. 2268 * Also, if parent has the stronger REG_LIVE_READ64 set, 2269 * then no need to set the weak REG_LIVE_READ32. 2270 */ 2271 break; 2272 /* ... then we depend on parent's value */ 2273 parent->live |= flag; 2274 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2275 if (flag == REG_LIVE_READ64) 2276 parent->live &= ~REG_LIVE_READ32; 2277 state = parent; 2278 parent = state->parent; 2279 writes = true; 2280 cnt++; 2281 } 2282 2283 if (env->longest_mark_read_walk < cnt) 2284 env->longest_mark_read_walk = cnt; 2285 return 0; 2286 } 2287 2288 /* This function is supposed to be used by the following 32-bit optimization 2289 * code only. It returns TRUE if the source or destination register operates 2290 * on 64-bit, otherwise return FALSE. 2291 */ 2292 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2293 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2294 { 2295 u8 code, class, op; 2296 2297 code = insn->code; 2298 class = BPF_CLASS(code); 2299 op = BPF_OP(code); 2300 if (class == BPF_JMP) { 2301 /* BPF_EXIT for "main" will reach here. Return TRUE 2302 * conservatively. 2303 */ 2304 if (op == BPF_EXIT) 2305 return true; 2306 if (op == BPF_CALL) { 2307 /* BPF to BPF call will reach here because of marking 2308 * caller saved clobber with DST_OP_NO_MARK for which we 2309 * don't care the register def because they are anyway 2310 * marked as NOT_INIT already. 2311 */ 2312 if (insn->src_reg == BPF_PSEUDO_CALL) 2313 return false; 2314 /* Helper call will reach here because of arg type 2315 * check, conservatively return TRUE. 2316 */ 2317 if (t == SRC_OP) 2318 return true; 2319 2320 return false; 2321 } 2322 } 2323 2324 if (class == BPF_ALU64 || class == BPF_JMP || 2325 /* BPF_END always use BPF_ALU class. */ 2326 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 2327 return true; 2328 2329 if (class == BPF_ALU || class == BPF_JMP32) 2330 return false; 2331 2332 if (class == BPF_LDX) { 2333 if (t != SRC_OP) 2334 return BPF_SIZE(code) == BPF_DW; 2335 /* LDX source must be ptr. */ 2336 return true; 2337 } 2338 2339 if (class == BPF_STX) { 2340 /* BPF_STX (including atomic variants) has multiple source 2341 * operands, one of which is a ptr. Check whether the caller is 2342 * asking about it. 2343 */ 2344 if (t == SRC_OP && reg->type != SCALAR_VALUE) 2345 return true; 2346 return BPF_SIZE(code) == BPF_DW; 2347 } 2348 2349 if (class == BPF_LD) { 2350 u8 mode = BPF_MODE(code); 2351 2352 /* LD_IMM64 */ 2353 if (mode == BPF_IMM) 2354 return true; 2355 2356 /* Both LD_IND and LD_ABS return 32-bit data. */ 2357 if (t != SRC_OP) 2358 return false; 2359 2360 /* Implicit ctx ptr. */ 2361 if (regno == BPF_REG_6) 2362 return true; 2363 2364 /* Explicit source could be any width. */ 2365 return true; 2366 } 2367 2368 if (class == BPF_ST) 2369 /* The only source register for BPF_ST is a ptr. */ 2370 return true; 2371 2372 /* Conservatively return true at default. */ 2373 return true; 2374 } 2375 2376 /* Return the regno defined by the insn, or -1. */ 2377 static int insn_def_regno(const struct bpf_insn *insn) 2378 { 2379 switch (BPF_CLASS(insn->code)) { 2380 case BPF_JMP: 2381 case BPF_JMP32: 2382 case BPF_ST: 2383 return -1; 2384 case BPF_STX: 2385 if (BPF_MODE(insn->code) == BPF_ATOMIC && 2386 (insn->imm & BPF_FETCH)) { 2387 if (insn->imm == BPF_CMPXCHG) 2388 return BPF_REG_0; 2389 else 2390 return insn->src_reg; 2391 } else { 2392 return -1; 2393 } 2394 default: 2395 return insn->dst_reg; 2396 } 2397 } 2398 2399 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 2400 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 2401 { 2402 int dst_reg = insn_def_regno(insn); 2403 2404 if (dst_reg == -1) 2405 return false; 2406 2407 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2408 } 2409 2410 static void mark_insn_zext(struct bpf_verifier_env *env, 2411 struct bpf_reg_state *reg) 2412 { 2413 s32 def_idx = reg->subreg_def; 2414 2415 if (def_idx == DEF_NOT_SUBREG) 2416 return; 2417 2418 env->insn_aux_data[def_idx - 1].zext_dst = true; 2419 /* The dst will be zero extended, so won't be sub-register anymore. */ 2420 reg->subreg_def = DEF_NOT_SUBREG; 2421 } 2422 2423 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2424 enum reg_arg_type t) 2425 { 2426 struct bpf_verifier_state *vstate = env->cur_state; 2427 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2428 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2429 struct bpf_reg_state *reg, *regs = state->regs; 2430 bool rw64; 2431 2432 if (regno >= MAX_BPF_REG) { 2433 verbose(env, "R%d is invalid\n", regno); 2434 return -EINVAL; 2435 } 2436 2437 mark_reg_scratched(env, regno); 2438 2439 reg = ®s[regno]; 2440 rw64 = is_reg64(env, insn, regno, reg, t); 2441 if (t == SRC_OP) { 2442 /* check whether register used as source operand can be read */ 2443 if (reg->type == NOT_INIT) { 2444 verbose(env, "R%d !read_ok\n", regno); 2445 return -EACCES; 2446 } 2447 /* We don't need to worry about FP liveness because it's read-only */ 2448 if (regno == BPF_REG_FP) 2449 return 0; 2450 2451 if (rw64) 2452 mark_insn_zext(env, reg); 2453 2454 return mark_reg_read(env, reg, reg->parent, 2455 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2456 } else { 2457 /* check whether register used as dest operand can be written to */ 2458 if (regno == BPF_REG_FP) { 2459 verbose(env, "frame pointer is read only\n"); 2460 return -EACCES; 2461 } 2462 reg->live |= REG_LIVE_WRITTEN; 2463 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2464 if (t == DST_OP) 2465 mark_reg_unknown(env, regs, regno); 2466 } 2467 return 0; 2468 } 2469 2470 /* for any branch, call, exit record the history of jmps in the given state */ 2471 static int push_jmp_history(struct bpf_verifier_env *env, 2472 struct bpf_verifier_state *cur) 2473 { 2474 u32 cnt = cur->jmp_history_cnt; 2475 struct bpf_idx_pair *p; 2476 2477 cnt++; 2478 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 2479 if (!p) 2480 return -ENOMEM; 2481 p[cnt - 1].idx = env->insn_idx; 2482 p[cnt - 1].prev_idx = env->prev_insn_idx; 2483 cur->jmp_history = p; 2484 cur->jmp_history_cnt = cnt; 2485 return 0; 2486 } 2487 2488 /* Backtrack one insn at a time. If idx is not at the top of recorded 2489 * history then previous instruction came from straight line execution. 2490 */ 2491 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2492 u32 *history) 2493 { 2494 u32 cnt = *history; 2495 2496 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2497 i = st->jmp_history[cnt - 1].prev_idx; 2498 (*history)--; 2499 } else { 2500 i--; 2501 } 2502 return i; 2503 } 2504 2505 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2506 { 2507 const struct btf_type *func; 2508 struct btf *desc_btf; 2509 2510 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2511 return NULL; 2512 2513 desc_btf = find_kfunc_desc_btf(data, insn->off); 2514 if (IS_ERR(desc_btf)) 2515 return "<error>"; 2516 2517 func = btf_type_by_id(desc_btf, insn->imm); 2518 return btf_name_by_offset(desc_btf, func->name_off); 2519 } 2520 2521 /* For given verifier state backtrack_insn() is called from the last insn to 2522 * the first insn. Its purpose is to compute a bitmask of registers and 2523 * stack slots that needs precision in the parent verifier state. 2524 */ 2525 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2526 u32 *reg_mask, u64 *stack_mask) 2527 { 2528 const struct bpf_insn_cbs cbs = { 2529 .cb_call = disasm_kfunc_name, 2530 .cb_print = verbose, 2531 .private_data = env, 2532 }; 2533 struct bpf_insn *insn = env->prog->insnsi + idx; 2534 u8 class = BPF_CLASS(insn->code); 2535 u8 opcode = BPF_OP(insn->code); 2536 u8 mode = BPF_MODE(insn->code); 2537 u32 dreg = 1u << insn->dst_reg; 2538 u32 sreg = 1u << insn->src_reg; 2539 u32 spi; 2540 2541 if (insn->code == 0) 2542 return 0; 2543 if (env->log.level & BPF_LOG_LEVEL2) { 2544 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2545 verbose(env, "%d: ", idx); 2546 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2547 } 2548 2549 if (class == BPF_ALU || class == BPF_ALU64) { 2550 if (!(*reg_mask & dreg)) 2551 return 0; 2552 if (opcode == BPF_MOV) { 2553 if (BPF_SRC(insn->code) == BPF_X) { 2554 /* dreg = sreg 2555 * dreg needs precision after this insn 2556 * sreg needs precision before this insn 2557 */ 2558 *reg_mask &= ~dreg; 2559 *reg_mask |= sreg; 2560 } else { 2561 /* dreg = K 2562 * dreg needs precision after this insn. 2563 * Corresponding register is already marked 2564 * as precise=true in this verifier state. 2565 * No further markings in parent are necessary 2566 */ 2567 *reg_mask &= ~dreg; 2568 } 2569 } else { 2570 if (BPF_SRC(insn->code) == BPF_X) { 2571 /* dreg += sreg 2572 * both dreg and sreg need precision 2573 * before this insn 2574 */ 2575 *reg_mask |= sreg; 2576 } /* else dreg += K 2577 * dreg still needs precision before this insn 2578 */ 2579 } 2580 } else if (class == BPF_LDX) { 2581 if (!(*reg_mask & dreg)) 2582 return 0; 2583 *reg_mask &= ~dreg; 2584 2585 /* scalars can only be spilled into stack w/o losing precision. 2586 * Load from any other memory can be zero extended. 2587 * The desire to keep that precision is already indicated 2588 * by 'precise' mark in corresponding register of this state. 2589 * No further tracking necessary. 2590 */ 2591 if (insn->src_reg != BPF_REG_FP) 2592 return 0; 2593 2594 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2595 * that [fp - off] slot contains scalar that needs to be 2596 * tracked with precision 2597 */ 2598 spi = (-insn->off - 1) / BPF_REG_SIZE; 2599 if (spi >= 64) { 2600 verbose(env, "BUG spi %d\n", spi); 2601 WARN_ONCE(1, "verifier backtracking bug"); 2602 return -EFAULT; 2603 } 2604 *stack_mask |= 1ull << spi; 2605 } else if (class == BPF_STX || class == BPF_ST) { 2606 if (*reg_mask & dreg) 2607 /* stx & st shouldn't be using _scalar_ dst_reg 2608 * to access memory. It means backtracking 2609 * encountered a case of pointer subtraction. 2610 */ 2611 return -ENOTSUPP; 2612 /* scalars can only be spilled into stack */ 2613 if (insn->dst_reg != BPF_REG_FP) 2614 return 0; 2615 spi = (-insn->off - 1) / BPF_REG_SIZE; 2616 if (spi >= 64) { 2617 verbose(env, "BUG spi %d\n", spi); 2618 WARN_ONCE(1, "verifier backtracking bug"); 2619 return -EFAULT; 2620 } 2621 if (!(*stack_mask & (1ull << spi))) 2622 return 0; 2623 *stack_mask &= ~(1ull << spi); 2624 if (class == BPF_STX) 2625 *reg_mask |= sreg; 2626 } else if (class == BPF_JMP || class == BPF_JMP32) { 2627 if (opcode == BPF_CALL) { 2628 if (insn->src_reg == BPF_PSEUDO_CALL) 2629 return -ENOTSUPP; 2630 /* regular helper call sets R0 */ 2631 *reg_mask &= ~1; 2632 if (*reg_mask & 0x3f) { 2633 /* if backtracing was looking for registers R1-R5 2634 * they should have been found already. 2635 */ 2636 verbose(env, "BUG regs %x\n", *reg_mask); 2637 WARN_ONCE(1, "verifier backtracking bug"); 2638 return -EFAULT; 2639 } 2640 } else if (opcode == BPF_EXIT) { 2641 return -ENOTSUPP; 2642 } 2643 } else if (class == BPF_LD) { 2644 if (!(*reg_mask & dreg)) 2645 return 0; 2646 *reg_mask &= ~dreg; 2647 /* It's ld_imm64 or ld_abs or ld_ind. 2648 * For ld_imm64 no further tracking of precision 2649 * into parent is necessary 2650 */ 2651 if (mode == BPF_IND || mode == BPF_ABS) 2652 /* to be analyzed */ 2653 return -ENOTSUPP; 2654 } 2655 return 0; 2656 } 2657 2658 /* the scalar precision tracking algorithm: 2659 * . at the start all registers have precise=false. 2660 * . scalar ranges are tracked as normal through alu and jmp insns. 2661 * . once precise value of the scalar register is used in: 2662 * . ptr + scalar alu 2663 * . if (scalar cond K|scalar) 2664 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2665 * backtrack through the verifier states and mark all registers and 2666 * stack slots with spilled constants that these scalar regisers 2667 * should be precise. 2668 * . during state pruning two registers (or spilled stack slots) 2669 * are equivalent if both are not precise. 2670 * 2671 * Note the verifier cannot simply walk register parentage chain, 2672 * since many different registers and stack slots could have been 2673 * used to compute single precise scalar. 2674 * 2675 * The approach of starting with precise=true for all registers and then 2676 * backtrack to mark a register as not precise when the verifier detects 2677 * that program doesn't care about specific value (e.g., when helper 2678 * takes register as ARG_ANYTHING parameter) is not safe. 2679 * 2680 * It's ok to walk single parentage chain of the verifier states. 2681 * It's possible that this backtracking will go all the way till 1st insn. 2682 * All other branches will be explored for needing precision later. 2683 * 2684 * The backtracking needs to deal with cases like: 2685 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2686 * r9 -= r8 2687 * r5 = r9 2688 * if r5 > 0x79f goto pc+7 2689 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2690 * r5 += 1 2691 * ... 2692 * call bpf_perf_event_output#25 2693 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2694 * 2695 * and this case: 2696 * r6 = 1 2697 * call foo // uses callee's r6 inside to compute r0 2698 * r0 += r6 2699 * if r0 == 0 goto 2700 * 2701 * to track above reg_mask/stack_mask needs to be independent for each frame. 2702 * 2703 * Also if parent's curframe > frame where backtracking started, 2704 * the verifier need to mark registers in both frames, otherwise callees 2705 * may incorrectly prune callers. This is similar to 2706 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2707 * 2708 * For now backtracking falls back into conservative marking. 2709 */ 2710 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2711 struct bpf_verifier_state *st) 2712 { 2713 struct bpf_func_state *func; 2714 struct bpf_reg_state *reg; 2715 int i, j; 2716 2717 /* big hammer: mark all scalars precise in this path. 2718 * pop_stack may still get !precise scalars. 2719 */ 2720 for (; st; st = st->parent) 2721 for (i = 0; i <= st->curframe; i++) { 2722 func = st->frame[i]; 2723 for (j = 0; j < BPF_REG_FP; j++) { 2724 reg = &func->regs[j]; 2725 if (reg->type != SCALAR_VALUE) 2726 continue; 2727 reg->precise = true; 2728 } 2729 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2730 if (!is_spilled_reg(&func->stack[j])) 2731 continue; 2732 reg = &func->stack[j].spilled_ptr; 2733 if (reg->type != SCALAR_VALUE) 2734 continue; 2735 reg->precise = true; 2736 } 2737 } 2738 } 2739 2740 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2741 int spi) 2742 { 2743 struct bpf_verifier_state *st = env->cur_state; 2744 int first_idx = st->first_insn_idx; 2745 int last_idx = env->insn_idx; 2746 struct bpf_func_state *func; 2747 struct bpf_reg_state *reg; 2748 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2749 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2750 bool skip_first = true; 2751 bool new_marks = false; 2752 int i, err; 2753 2754 if (!env->bpf_capable) 2755 return 0; 2756 2757 func = st->frame[st->curframe]; 2758 if (regno >= 0) { 2759 reg = &func->regs[regno]; 2760 if (reg->type != SCALAR_VALUE) { 2761 WARN_ONCE(1, "backtracing misuse"); 2762 return -EFAULT; 2763 } 2764 if (!reg->precise) 2765 new_marks = true; 2766 else 2767 reg_mask = 0; 2768 reg->precise = true; 2769 } 2770 2771 while (spi >= 0) { 2772 if (!is_spilled_reg(&func->stack[spi])) { 2773 stack_mask = 0; 2774 break; 2775 } 2776 reg = &func->stack[spi].spilled_ptr; 2777 if (reg->type != SCALAR_VALUE) { 2778 stack_mask = 0; 2779 break; 2780 } 2781 if (!reg->precise) 2782 new_marks = true; 2783 else 2784 stack_mask = 0; 2785 reg->precise = true; 2786 break; 2787 } 2788 2789 if (!new_marks) 2790 return 0; 2791 if (!reg_mask && !stack_mask) 2792 return 0; 2793 for (;;) { 2794 DECLARE_BITMAP(mask, 64); 2795 u32 history = st->jmp_history_cnt; 2796 2797 if (env->log.level & BPF_LOG_LEVEL2) 2798 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2799 for (i = last_idx;;) { 2800 if (skip_first) { 2801 err = 0; 2802 skip_first = false; 2803 } else { 2804 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2805 } 2806 if (err == -ENOTSUPP) { 2807 mark_all_scalars_precise(env, st); 2808 return 0; 2809 } else if (err) { 2810 return err; 2811 } 2812 if (!reg_mask && !stack_mask) 2813 /* Found assignment(s) into tracked register in this state. 2814 * Since this state is already marked, just return. 2815 * Nothing to be tracked further in the parent state. 2816 */ 2817 return 0; 2818 if (i == first_idx) 2819 break; 2820 i = get_prev_insn_idx(st, i, &history); 2821 if (i >= env->prog->len) { 2822 /* This can happen if backtracking reached insn 0 2823 * and there are still reg_mask or stack_mask 2824 * to backtrack. 2825 * It means the backtracking missed the spot where 2826 * particular register was initialized with a constant. 2827 */ 2828 verbose(env, "BUG backtracking idx %d\n", i); 2829 WARN_ONCE(1, "verifier backtracking bug"); 2830 return -EFAULT; 2831 } 2832 } 2833 st = st->parent; 2834 if (!st) 2835 break; 2836 2837 new_marks = false; 2838 func = st->frame[st->curframe]; 2839 bitmap_from_u64(mask, reg_mask); 2840 for_each_set_bit(i, mask, 32) { 2841 reg = &func->regs[i]; 2842 if (reg->type != SCALAR_VALUE) { 2843 reg_mask &= ~(1u << i); 2844 continue; 2845 } 2846 if (!reg->precise) 2847 new_marks = true; 2848 reg->precise = true; 2849 } 2850 2851 bitmap_from_u64(mask, stack_mask); 2852 for_each_set_bit(i, mask, 64) { 2853 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2854 /* the sequence of instructions: 2855 * 2: (bf) r3 = r10 2856 * 3: (7b) *(u64 *)(r3 -8) = r0 2857 * 4: (79) r4 = *(u64 *)(r10 -8) 2858 * doesn't contain jmps. It's backtracked 2859 * as a single block. 2860 * During backtracking insn 3 is not recognized as 2861 * stack access, so at the end of backtracking 2862 * stack slot fp-8 is still marked in stack_mask. 2863 * However the parent state may not have accessed 2864 * fp-8 and it's "unallocated" stack space. 2865 * In such case fallback to conservative. 2866 */ 2867 mark_all_scalars_precise(env, st); 2868 return 0; 2869 } 2870 2871 if (!is_spilled_reg(&func->stack[i])) { 2872 stack_mask &= ~(1ull << i); 2873 continue; 2874 } 2875 reg = &func->stack[i].spilled_ptr; 2876 if (reg->type != SCALAR_VALUE) { 2877 stack_mask &= ~(1ull << i); 2878 continue; 2879 } 2880 if (!reg->precise) 2881 new_marks = true; 2882 reg->precise = true; 2883 } 2884 if (env->log.level & BPF_LOG_LEVEL2) { 2885 verbose(env, "parent %s regs=%x stack=%llx marks:", 2886 new_marks ? "didn't have" : "already had", 2887 reg_mask, stack_mask); 2888 print_verifier_state(env, func, true); 2889 } 2890 2891 if (!reg_mask && !stack_mask) 2892 break; 2893 if (!new_marks) 2894 break; 2895 2896 last_idx = st->last_insn_idx; 2897 first_idx = st->first_insn_idx; 2898 } 2899 return 0; 2900 } 2901 2902 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2903 { 2904 return __mark_chain_precision(env, regno, -1); 2905 } 2906 2907 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2908 { 2909 return __mark_chain_precision(env, -1, spi); 2910 } 2911 2912 static bool is_spillable_regtype(enum bpf_reg_type type) 2913 { 2914 switch (base_type(type)) { 2915 case PTR_TO_MAP_VALUE: 2916 case PTR_TO_STACK: 2917 case PTR_TO_CTX: 2918 case PTR_TO_PACKET: 2919 case PTR_TO_PACKET_META: 2920 case PTR_TO_PACKET_END: 2921 case PTR_TO_FLOW_KEYS: 2922 case CONST_PTR_TO_MAP: 2923 case PTR_TO_SOCKET: 2924 case PTR_TO_SOCK_COMMON: 2925 case PTR_TO_TCP_SOCK: 2926 case PTR_TO_XDP_SOCK: 2927 case PTR_TO_BTF_ID: 2928 case PTR_TO_BUF: 2929 case PTR_TO_MEM: 2930 case PTR_TO_FUNC: 2931 case PTR_TO_MAP_KEY: 2932 return true; 2933 default: 2934 return false; 2935 } 2936 } 2937 2938 /* Does this register contain a constant zero? */ 2939 static bool register_is_null(struct bpf_reg_state *reg) 2940 { 2941 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2942 } 2943 2944 static bool register_is_const(struct bpf_reg_state *reg) 2945 { 2946 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2947 } 2948 2949 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2950 { 2951 return tnum_is_unknown(reg->var_off) && 2952 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2953 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2954 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2955 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2956 } 2957 2958 static bool register_is_bounded(struct bpf_reg_state *reg) 2959 { 2960 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2961 } 2962 2963 static bool __is_pointer_value(bool allow_ptr_leaks, 2964 const struct bpf_reg_state *reg) 2965 { 2966 if (allow_ptr_leaks) 2967 return false; 2968 2969 return reg->type != SCALAR_VALUE; 2970 } 2971 2972 static void save_register_state(struct bpf_func_state *state, 2973 int spi, struct bpf_reg_state *reg, 2974 int size) 2975 { 2976 int i; 2977 2978 state->stack[spi].spilled_ptr = *reg; 2979 if (size == BPF_REG_SIZE) 2980 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2981 2982 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 2983 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 2984 2985 /* size < 8 bytes spill */ 2986 for (; i; i--) 2987 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 2988 } 2989 2990 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 2991 * stack boundary and alignment are checked in check_mem_access() 2992 */ 2993 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 2994 /* stack frame we're writing to */ 2995 struct bpf_func_state *state, 2996 int off, int size, int value_regno, 2997 int insn_idx) 2998 { 2999 struct bpf_func_state *cur; /* state of the current function */ 3000 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 3001 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 3002 struct bpf_reg_state *reg = NULL; 3003 3004 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 3005 if (err) 3006 return err; 3007 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 3008 * so it's aligned access and [off, off + size) are within stack limits 3009 */ 3010 if (!env->allow_ptr_leaks && 3011 state->stack[spi].slot_type[0] == STACK_SPILL && 3012 size != BPF_REG_SIZE) { 3013 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 3014 return -EACCES; 3015 } 3016 3017 cur = env->cur_state->frame[env->cur_state->curframe]; 3018 if (value_regno >= 0) 3019 reg = &cur->regs[value_regno]; 3020 if (!env->bypass_spec_v4) { 3021 bool sanitize = reg && is_spillable_regtype(reg->type); 3022 3023 for (i = 0; i < size; i++) { 3024 if (state->stack[spi].slot_type[i] == STACK_INVALID) { 3025 sanitize = true; 3026 break; 3027 } 3028 } 3029 3030 if (sanitize) 3031 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 3032 } 3033 3034 mark_stack_slot_scratched(env, spi); 3035 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 3036 !register_is_null(reg) && env->bpf_capable) { 3037 if (dst_reg != BPF_REG_FP) { 3038 /* The backtracking logic can only recognize explicit 3039 * stack slot address like [fp - 8]. Other spill of 3040 * scalar via different register has to be conservative. 3041 * Backtrack from here and mark all registers as precise 3042 * that contributed into 'reg' being a constant. 3043 */ 3044 err = mark_chain_precision(env, value_regno); 3045 if (err) 3046 return err; 3047 } 3048 save_register_state(state, spi, reg, size); 3049 } else if (reg && is_spillable_regtype(reg->type)) { 3050 /* register containing pointer is being spilled into stack */ 3051 if (size != BPF_REG_SIZE) { 3052 verbose_linfo(env, insn_idx, "; "); 3053 verbose(env, "invalid size of register spill\n"); 3054 return -EACCES; 3055 } 3056 if (state != cur && reg->type == PTR_TO_STACK) { 3057 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 3058 return -EINVAL; 3059 } 3060 save_register_state(state, spi, reg, size); 3061 } else { 3062 u8 type = STACK_MISC; 3063 3064 /* regular write of data into stack destroys any spilled ptr */ 3065 state->stack[spi].spilled_ptr.type = NOT_INIT; 3066 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 3067 if (is_spilled_reg(&state->stack[spi])) 3068 for (i = 0; i < BPF_REG_SIZE; i++) 3069 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 3070 3071 /* only mark the slot as written if all 8 bytes were written 3072 * otherwise read propagation may incorrectly stop too soon 3073 * when stack slots are partially written. 3074 * This heuristic means that read propagation will be 3075 * conservative, since it will add reg_live_read marks 3076 * to stack slots all the way to first state when programs 3077 * writes+reads less than 8 bytes 3078 */ 3079 if (size == BPF_REG_SIZE) 3080 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3081 3082 /* when we zero initialize stack slots mark them as such */ 3083 if (reg && register_is_null(reg)) { 3084 /* backtracking doesn't work for STACK_ZERO yet. */ 3085 err = mark_chain_precision(env, value_regno); 3086 if (err) 3087 return err; 3088 type = STACK_ZERO; 3089 } 3090 3091 /* Mark slots affected by this stack write. */ 3092 for (i = 0; i < size; i++) 3093 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 3094 type; 3095 } 3096 return 0; 3097 } 3098 3099 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 3100 * known to contain a variable offset. 3101 * This function checks whether the write is permitted and conservatively 3102 * tracks the effects of the write, considering that each stack slot in the 3103 * dynamic range is potentially written to. 3104 * 3105 * 'off' includes 'regno->off'. 3106 * 'value_regno' can be -1, meaning that an unknown value is being written to 3107 * the stack. 3108 * 3109 * Spilled pointers in range are not marked as written because we don't know 3110 * what's going to be actually written. This means that read propagation for 3111 * future reads cannot be terminated by this write. 3112 * 3113 * For privileged programs, uninitialized stack slots are considered 3114 * initialized by this write (even though we don't know exactly what offsets 3115 * are going to be written to). The idea is that we don't want the verifier to 3116 * reject future reads that access slots written to through variable offsets. 3117 */ 3118 static int check_stack_write_var_off(struct bpf_verifier_env *env, 3119 /* func where register points to */ 3120 struct bpf_func_state *state, 3121 int ptr_regno, int off, int size, 3122 int value_regno, int insn_idx) 3123 { 3124 struct bpf_func_state *cur; /* state of the current function */ 3125 int min_off, max_off; 3126 int i, err; 3127 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 3128 bool writing_zero = false; 3129 /* set if the fact that we're writing a zero is used to let any 3130 * stack slots remain STACK_ZERO 3131 */ 3132 bool zero_used = false; 3133 3134 cur = env->cur_state->frame[env->cur_state->curframe]; 3135 ptr_reg = &cur->regs[ptr_regno]; 3136 min_off = ptr_reg->smin_value + off; 3137 max_off = ptr_reg->smax_value + off + size; 3138 if (value_regno >= 0) 3139 value_reg = &cur->regs[value_regno]; 3140 if (value_reg && register_is_null(value_reg)) 3141 writing_zero = true; 3142 3143 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 3144 if (err) 3145 return err; 3146 3147 3148 /* Variable offset writes destroy any spilled pointers in range. */ 3149 for (i = min_off; i < max_off; i++) { 3150 u8 new_type, *stype; 3151 int slot, spi; 3152 3153 slot = -i - 1; 3154 spi = slot / BPF_REG_SIZE; 3155 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3156 mark_stack_slot_scratched(env, spi); 3157 3158 if (!env->allow_ptr_leaks 3159 && *stype != NOT_INIT 3160 && *stype != SCALAR_VALUE) { 3161 /* Reject the write if there's are spilled pointers in 3162 * range. If we didn't reject here, the ptr status 3163 * would be erased below (even though not all slots are 3164 * actually overwritten), possibly opening the door to 3165 * leaks. 3166 */ 3167 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 3168 insn_idx, i); 3169 return -EINVAL; 3170 } 3171 3172 /* Erase all spilled pointers. */ 3173 state->stack[spi].spilled_ptr.type = NOT_INIT; 3174 3175 /* Update the slot type. */ 3176 new_type = STACK_MISC; 3177 if (writing_zero && *stype == STACK_ZERO) { 3178 new_type = STACK_ZERO; 3179 zero_used = true; 3180 } 3181 /* If the slot is STACK_INVALID, we check whether it's OK to 3182 * pretend that it will be initialized by this write. The slot 3183 * might not actually be written to, and so if we mark it as 3184 * initialized future reads might leak uninitialized memory. 3185 * For privileged programs, we will accept such reads to slots 3186 * that may or may not be written because, if we're reject 3187 * them, the error would be too confusing. 3188 */ 3189 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 3190 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 3191 insn_idx, i); 3192 return -EINVAL; 3193 } 3194 *stype = new_type; 3195 } 3196 if (zero_used) { 3197 /* backtracking doesn't work for STACK_ZERO yet. */ 3198 err = mark_chain_precision(env, value_regno); 3199 if (err) 3200 return err; 3201 } 3202 return 0; 3203 } 3204 3205 /* When register 'dst_regno' is assigned some values from stack[min_off, 3206 * max_off), we set the register's type according to the types of the 3207 * respective stack slots. If all the stack values are known to be zeros, then 3208 * so is the destination reg. Otherwise, the register is considered to be 3209 * SCALAR. This function does not deal with register filling; the caller must 3210 * ensure that all spilled registers in the stack range have been marked as 3211 * read. 3212 */ 3213 static void mark_reg_stack_read(struct bpf_verifier_env *env, 3214 /* func where src register points to */ 3215 struct bpf_func_state *ptr_state, 3216 int min_off, int max_off, int dst_regno) 3217 { 3218 struct bpf_verifier_state *vstate = env->cur_state; 3219 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3220 int i, slot, spi; 3221 u8 *stype; 3222 int zeros = 0; 3223 3224 for (i = min_off; i < max_off; i++) { 3225 slot = -i - 1; 3226 spi = slot / BPF_REG_SIZE; 3227 stype = ptr_state->stack[spi].slot_type; 3228 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 3229 break; 3230 zeros++; 3231 } 3232 if (zeros == max_off - min_off) { 3233 /* any access_size read into register is zero extended, 3234 * so the whole register == const_zero 3235 */ 3236 __mark_reg_const_zero(&state->regs[dst_regno]); 3237 /* backtracking doesn't support STACK_ZERO yet, 3238 * so mark it precise here, so that later 3239 * backtracking can stop here. 3240 * Backtracking may not need this if this register 3241 * doesn't participate in pointer adjustment. 3242 * Forward propagation of precise flag is not 3243 * necessary either. This mark is only to stop 3244 * backtracking. Any register that contributed 3245 * to const 0 was marked precise before spill. 3246 */ 3247 state->regs[dst_regno].precise = true; 3248 } else { 3249 /* have read misc data from the stack */ 3250 mark_reg_unknown(env, state->regs, dst_regno); 3251 } 3252 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3253 } 3254 3255 /* Read the stack at 'off' and put the results into the register indicated by 3256 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 3257 * spilled reg. 3258 * 3259 * 'dst_regno' can be -1, meaning that the read value is not going to a 3260 * register. 3261 * 3262 * The access is assumed to be within the current stack bounds. 3263 */ 3264 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 3265 /* func where src register points to */ 3266 struct bpf_func_state *reg_state, 3267 int off, int size, int dst_regno) 3268 { 3269 struct bpf_verifier_state *vstate = env->cur_state; 3270 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3271 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 3272 struct bpf_reg_state *reg; 3273 u8 *stype, type; 3274 3275 stype = reg_state->stack[spi].slot_type; 3276 reg = ®_state->stack[spi].spilled_ptr; 3277 3278 if (is_spilled_reg(®_state->stack[spi])) { 3279 u8 spill_size = 1; 3280 3281 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 3282 spill_size++; 3283 3284 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 3285 if (reg->type != SCALAR_VALUE) { 3286 verbose_linfo(env, env->insn_idx, "; "); 3287 verbose(env, "invalid size of register fill\n"); 3288 return -EACCES; 3289 } 3290 3291 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3292 if (dst_regno < 0) 3293 return 0; 3294 3295 if (!(off % BPF_REG_SIZE) && size == spill_size) { 3296 /* The earlier check_reg_arg() has decided the 3297 * subreg_def for this insn. Save it first. 3298 */ 3299 s32 subreg_def = state->regs[dst_regno].subreg_def; 3300 3301 state->regs[dst_regno] = *reg; 3302 state->regs[dst_regno].subreg_def = subreg_def; 3303 } else { 3304 for (i = 0; i < size; i++) { 3305 type = stype[(slot - i) % BPF_REG_SIZE]; 3306 if (type == STACK_SPILL) 3307 continue; 3308 if (type == STACK_MISC) 3309 continue; 3310 verbose(env, "invalid read from stack off %d+%d size %d\n", 3311 off, i, size); 3312 return -EACCES; 3313 } 3314 mark_reg_unknown(env, state->regs, dst_regno); 3315 } 3316 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3317 return 0; 3318 } 3319 3320 if (dst_regno >= 0) { 3321 /* restore register state from stack */ 3322 state->regs[dst_regno] = *reg; 3323 /* mark reg as written since spilled pointer state likely 3324 * has its liveness marks cleared by is_state_visited() 3325 * which resets stack/reg liveness for state transitions 3326 */ 3327 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3328 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 3329 /* If dst_regno==-1, the caller is asking us whether 3330 * it is acceptable to use this value as a SCALAR_VALUE 3331 * (e.g. for XADD). 3332 * We must not allow unprivileged callers to do that 3333 * with spilled pointers. 3334 */ 3335 verbose(env, "leaking pointer from stack off %d\n", 3336 off); 3337 return -EACCES; 3338 } 3339 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3340 } else { 3341 for (i = 0; i < size; i++) { 3342 type = stype[(slot - i) % BPF_REG_SIZE]; 3343 if (type == STACK_MISC) 3344 continue; 3345 if (type == STACK_ZERO) 3346 continue; 3347 verbose(env, "invalid read from stack off %d+%d size %d\n", 3348 off, i, size); 3349 return -EACCES; 3350 } 3351 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3352 if (dst_regno >= 0) 3353 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 3354 } 3355 return 0; 3356 } 3357 3358 enum bpf_access_src { 3359 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 3360 ACCESS_HELPER = 2, /* the access is performed by a helper */ 3361 }; 3362 3363 static int check_stack_range_initialized(struct bpf_verifier_env *env, 3364 int regno, int off, int access_size, 3365 bool zero_size_allowed, 3366 enum bpf_access_src type, 3367 struct bpf_call_arg_meta *meta); 3368 3369 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 3370 { 3371 return cur_regs(env) + regno; 3372 } 3373 3374 /* Read the stack at 'ptr_regno + off' and put the result into the register 3375 * 'dst_regno'. 3376 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 3377 * but not its variable offset. 3378 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 3379 * 3380 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 3381 * filling registers (i.e. reads of spilled register cannot be detected when 3382 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 3383 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 3384 * offset; for a fixed offset check_stack_read_fixed_off should be used 3385 * instead. 3386 */ 3387 static int check_stack_read_var_off(struct bpf_verifier_env *env, 3388 int ptr_regno, int off, int size, int dst_regno) 3389 { 3390 /* The state of the source register. */ 3391 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3392 struct bpf_func_state *ptr_state = func(env, reg); 3393 int err; 3394 int min_off, max_off; 3395 3396 /* Note that we pass a NULL meta, so raw access will not be permitted. 3397 */ 3398 err = check_stack_range_initialized(env, ptr_regno, off, size, 3399 false, ACCESS_DIRECT, NULL); 3400 if (err) 3401 return err; 3402 3403 min_off = reg->smin_value + off; 3404 max_off = reg->smax_value + off; 3405 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3406 return 0; 3407 } 3408 3409 /* check_stack_read dispatches to check_stack_read_fixed_off or 3410 * check_stack_read_var_off. 3411 * 3412 * The caller must ensure that the offset falls within the allocated stack 3413 * bounds. 3414 * 3415 * 'dst_regno' is a register which will receive the value from the stack. It 3416 * can be -1, meaning that the read value is not going to a register. 3417 */ 3418 static int check_stack_read(struct bpf_verifier_env *env, 3419 int ptr_regno, int off, int size, 3420 int dst_regno) 3421 { 3422 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3423 struct bpf_func_state *state = func(env, reg); 3424 int err; 3425 /* Some accesses are only permitted with a static offset. */ 3426 bool var_off = !tnum_is_const(reg->var_off); 3427 3428 /* The offset is required to be static when reads don't go to a 3429 * register, in order to not leak pointers (see 3430 * check_stack_read_fixed_off). 3431 */ 3432 if (dst_regno < 0 && var_off) { 3433 char tn_buf[48]; 3434 3435 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3436 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3437 tn_buf, off, size); 3438 return -EACCES; 3439 } 3440 /* Variable offset is prohibited for unprivileged mode for simplicity 3441 * since it requires corresponding support in Spectre masking for stack 3442 * ALU. See also retrieve_ptr_limit(). 3443 */ 3444 if (!env->bypass_spec_v1 && var_off) { 3445 char tn_buf[48]; 3446 3447 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3448 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3449 ptr_regno, tn_buf); 3450 return -EACCES; 3451 } 3452 3453 if (!var_off) { 3454 off += reg->var_off.value; 3455 err = check_stack_read_fixed_off(env, state, off, size, 3456 dst_regno); 3457 } else { 3458 /* Variable offset stack reads need more conservative handling 3459 * than fixed offset ones. Note that dst_regno >= 0 on this 3460 * branch. 3461 */ 3462 err = check_stack_read_var_off(env, ptr_regno, off, size, 3463 dst_regno); 3464 } 3465 return err; 3466 } 3467 3468 3469 /* check_stack_write dispatches to check_stack_write_fixed_off or 3470 * check_stack_write_var_off. 3471 * 3472 * 'ptr_regno' is the register used as a pointer into the stack. 3473 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3474 * 'value_regno' is the register whose value we're writing to the stack. It can 3475 * be -1, meaning that we're not writing from a register. 3476 * 3477 * The caller must ensure that the offset falls within the maximum stack size. 3478 */ 3479 static int check_stack_write(struct bpf_verifier_env *env, 3480 int ptr_regno, int off, int size, 3481 int value_regno, int insn_idx) 3482 { 3483 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3484 struct bpf_func_state *state = func(env, reg); 3485 int err; 3486 3487 if (tnum_is_const(reg->var_off)) { 3488 off += reg->var_off.value; 3489 err = check_stack_write_fixed_off(env, state, off, size, 3490 value_regno, insn_idx); 3491 } else { 3492 /* Variable offset stack reads need more conservative handling 3493 * than fixed offset ones. 3494 */ 3495 err = check_stack_write_var_off(env, state, 3496 ptr_regno, off, size, 3497 value_regno, insn_idx); 3498 } 3499 return err; 3500 } 3501 3502 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 3503 int off, int size, enum bpf_access_type type) 3504 { 3505 struct bpf_reg_state *regs = cur_regs(env); 3506 struct bpf_map *map = regs[regno].map_ptr; 3507 u32 cap = bpf_map_flags_to_cap(map); 3508 3509 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 3510 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 3511 map->value_size, off, size); 3512 return -EACCES; 3513 } 3514 3515 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 3516 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 3517 map->value_size, off, size); 3518 return -EACCES; 3519 } 3520 3521 return 0; 3522 } 3523 3524 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 3525 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 3526 int off, int size, u32 mem_size, 3527 bool zero_size_allowed) 3528 { 3529 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 3530 struct bpf_reg_state *reg; 3531 3532 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 3533 return 0; 3534 3535 reg = &cur_regs(env)[regno]; 3536 switch (reg->type) { 3537 case PTR_TO_MAP_KEY: 3538 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 3539 mem_size, off, size); 3540 break; 3541 case PTR_TO_MAP_VALUE: 3542 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 3543 mem_size, off, size); 3544 break; 3545 case PTR_TO_PACKET: 3546 case PTR_TO_PACKET_META: 3547 case PTR_TO_PACKET_END: 3548 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 3549 off, size, regno, reg->id, off, mem_size); 3550 break; 3551 case PTR_TO_MEM: 3552 default: 3553 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 3554 mem_size, off, size); 3555 } 3556 3557 return -EACCES; 3558 } 3559 3560 /* check read/write into a memory region with possible variable offset */ 3561 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 3562 int off, int size, u32 mem_size, 3563 bool zero_size_allowed) 3564 { 3565 struct bpf_verifier_state *vstate = env->cur_state; 3566 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3567 struct bpf_reg_state *reg = &state->regs[regno]; 3568 int err; 3569 3570 /* We may have adjusted the register pointing to memory region, so we 3571 * need to try adding each of min_value and max_value to off 3572 * to make sure our theoretical access will be safe. 3573 * 3574 * The minimum value is only important with signed 3575 * comparisons where we can't assume the floor of a 3576 * value is 0. If we are using signed variables for our 3577 * index'es we need to make sure that whatever we use 3578 * will have a set floor within our range. 3579 */ 3580 if (reg->smin_value < 0 && 3581 (reg->smin_value == S64_MIN || 3582 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 3583 reg->smin_value + off < 0)) { 3584 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3585 regno); 3586 return -EACCES; 3587 } 3588 err = __check_mem_access(env, regno, reg->smin_value + off, size, 3589 mem_size, zero_size_allowed); 3590 if (err) { 3591 verbose(env, "R%d min value is outside of the allowed memory range\n", 3592 regno); 3593 return err; 3594 } 3595 3596 /* If we haven't set a max value then we need to bail since we can't be 3597 * sure we won't do bad things. 3598 * If reg->umax_value + off could overflow, treat that as unbounded too. 3599 */ 3600 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 3601 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 3602 regno); 3603 return -EACCES; 3604 } 3605 err = __check_mem_access(env, regno, reg->umax_value + off, size, 3606 mem_size, zero_size_allowed); 3607 if (err) { 3608 verbose(env, "R%d max value is outside of the allowed memory range\n", 3609 regno); 3610 return err; 3611 } 3612 3613 return 0; 3614 } 3615 3616 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 3617 const struct bpf_reg_state *reg, int regno, 3618 bool fixed_off_ok) 3619 { 3620 /* Access to this pointer-typed register or passing it to a helper 3621 * is only allowed in its original, unmodified form. 3622 */ 3623 3624 if (reg->off < 0) { 3625 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 3626 reg_type_str(env, reg->type), regno, reg->off); 3627 return -EACCES; 3628 } 3629 3630 if (!fixed_off_ok && reg->off) { 3631 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 3632 reg_type_str(env, reg->type), regno, reg->off); 3633 return -EACCES; 3634 } 3635 3636 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3637 char tn_buf[48]; 3638 3639 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3640 verbose(env, "variable %s access var_off=%s disallowed\n", 3641 reg_type_str(env, reg->type), tn_buf); 3642 return -EACCES; 3643 } 3644 3645 return 0; 3646 } 3647 3648 int check_ptr_off_reg(struct bpf_verifier_env *env, 3649 const struct bpf_reg_state *reg, int regno) 3650 { 3651 return __check_ptr_off_reg(env, reg, regno, false); 3652 } 3653 3654 static int map_kptr_match_type(struct bpf_verifier_env *env, 3655 struct bpf_map_value_off_desc *off_desc, 3656 struct bpf_reg_state *reg, u32 regno) 3657 { 3658 const char *targ_name = kernel_type_name(off_desc->kptr.btf, off_desc->kptr.btf_id); 3659 int perm_flags = PTR_MAYBE_NULL; 3660 const char *reg_name = ""; 3661 3662 /* Only unreferenced case accepts untrusted pointers */ 3663 if (off_desc->type == BPF_KPTR_UNREF) 3664 perm_flags |= PTR_UNTRUSTED; 3665 3666 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 3667 goto bad_type; 3668 3669 if (!btf_is_kernel(reg->btf)) { 3670 verbose(env, "R%d must point to kernel BTF\n", regno); 3671 return -EINVAL; 3672 } 3673 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 3674 reg_name = kernel_type_name(reg->btf, reg->btf_id); 3675 3676 /* For ref_ptr case, release function check should ensure we get one 3677 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 3678 * normal store of unreferenced kptr, we must ensure var_off is zero. 3679 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 3680 * reg->off and reg->ref_obj_id are not needed here. 3681 */ 3682 if (__check_ptr_off_reg(env, reg, regno, true)) 3683 return -EACCES; 3684 3685 /* A full type match is needed, as BTF can be vmlinux or module BTF, and 3686 * we also need to take into account the reg->off. 3687 * 3688 * We want to support cases like: 3689 * 3690 * struct foo { 3691 * struct bar br; 3692 * struct baz bz; 3693 * }; 3694 * 3695 * struct foo *v; 3696 * v = func(); // PTR_TO_BTF_ID 3697 * val->foo = v; // reg->off is zero, btf and btf_id match type 3698 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 3699 * // first member type of struct after comparison fails 3700 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 3701 * // to match type 3702 * 3703 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 3704 * is zero. We must also ensure that btf_struct_ids_match does not walk 3705 * the struct to match type against first member of struct, i.e. reject 3706 * second case from above. Hence, when type is BPF_KPTR_REF, we set 3707 * strict mode to true for type match. 3708 */ 3709 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 3710 off_desc->kptr.btf, off_desc->kptr.btf_id, 3711 off_desc->type == BPF_KPTR_REF)) 3712 goto bad_type; 3713 return 0; 3714 bad_type: 3715 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 3716 reg_type_str(env, reg->type), reg_name); 3717 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 3718 if (off_desc->type == BPF_KPTR_UNREF) 3719 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 3720 targ_name); 3721 else 3722 verbose(env, "\n"); 3723 return -EINVAL; 3724 } 3725 3726 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 3727 int value_regno, int insn_idx, 3728 struct bpf_map_value_off_desc *off_desc) 3729 { 3730 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 3731 int class = BPF_CLASS(insn->code); 3732 struct bpf_reg_state *val_reg; 3733 3734 /* Things we already checked for in check_map_access and caller: 3735 * - Reject cases where variable offset may touch kptr 3736 * - size of access (must be BPF_DW) 3737 * - tnum_is_const(reg->var_off) 3738 * - off_desc->offset == off + reg->var_off.value 3739 */ 3740 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 3741 if (BPF_MODE(insn->code) != BPF_MEM) { 3742 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 3743 return -EACCES; 3744 } 3745 3746 /* We only allow loading referenced kptr, since it will be marked as 3747 * untrusted, similar to unreferenced kptr. 3748 */ 3749 if (class != BPF_LDX && off_desc->type == BPF_KPTR_REF) { 3750 verbose(env, "store to referenced kptr disallowed\n"); 3751 return -EACCES; 3752 } 3753 3754 if (class == BPF_LDX) { 3755 val_reg = reg_state(env, value_regno); 3756 /* We can simply mark the value_regno receiving the pointer 3757 * value from map as PTR_TO_BTF_ID, with the correct type. 3758 */ 3759 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, off_desc->kptr.btf, 3760 off_desc->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED); 3761 /* For mark_ptr_or_null_reg */ 3762 val_reg->id = ++env->id_gen; 3763 } else if (class == BPF_STX) { 3764 val_reg = reg_state(env, value_regno); 3765 if (!register_is_null(val_reg) && 3766 map_kptr_match_type(env, off_desc, val_reg, value_regno)) 3767 return -EACCES; 3768 } else if (class == BPF_ST) { 3769 if (insn->imm) { 3770 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 3771 off_desc->offset); 3772 return -EACCES; 3773 } 3774 } else { 3775 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 3776 return -EACCES; 3777 } 3778 return 0; 3779 } 3780 3781 /* check read/write into a map element with possible variable offset */ 3782 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 3783 int off, int size, bool zero_size_allowed, 3784 enum bpf_access_src src) 3785 { 3786 struct bpf_verifier_state *vstate = env->cur_state; 3787 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3788 struct bpf_reg_state *reg = &state->regs[regno]; 3789 struct bpf_map *map = reg->map_ptr; 3790 int err; 3791 3792 err = check_mem_region_access(env, regno, off, size, map->value_size, 3793 zero_size_allowed); 3794 if (err) 3795 return err; 3796 3797 if (map_value_has_spin_lock(map)) { 3798 u32 lock = map->spin_lock_off; 3799 3800 /* if any part of struct bpf_spin_lock can be touched by 3801 * load/store reject this program. 3802 * To check that [x1, x2) overlaps with [y1, y2) 3803 * it is sufficient to check x1 < y2 && y1 < x2. 3804 */ 3805 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 3806 lock < reg->umax_value + off + size) { 3807 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 3808 return -EACCES; 3809 } 3810 } 3811 if (map_value_has_timer(map)) { 3812 u32 t = map->timer_off; 3813 3814 if (reg->smin_value + off < t + sizeof(struct bpf_timer) && 3815 t < reg->umax_value + off + size) { 3816 verbose(env, "bpf_timer cannot be accessed directly by load/store\n"); 3817 return -EACCES; 3818 } 3819 } 3820 if (map_value_has_kptrs(map)) { 3821 struct bpf_map_value_off *tab = map->kptr_off_tab; 3822 int i; 3823 3824 for (i = 0; i < tab->nr_off; i++) { 3825 u32 p = tab->off[i].offset; 3826 3827 if (reg->smin_value + off < p + sizeof(u64) && 3828 p < reg->umax_value + off + size) { 3829 if (src != ACCESS_DIRECT) { 3830 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 3831 return -EACCES; 3832 } 3833 if (!tnum_is_const(reg->var_off)) { 3834 verbose(env, "kptr access cannot have variable offset\n"); 3835 return -EACCES; 3836 } 3837 if (p != off + reg->var_off.value) { 3838 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 3839 p, off + reg->var_off.value); 3840 return -EACCES; 3841 } 3842 if (size != bpf_size_to_bytes(BPF_DW)) { 3843 verbose(env, "kptr access size must be BPF_DW\n"); 3844 return -EACCES; 3845 } 3846 break; 3847 } 3848 } 3849 } 3850 return err; 3851 } 3852 3853 #define MAX_PACKET_OFF 0xffff 3854 3855 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 3856 const struct bpf_call_arg_meta *meta, 3857 enum bpf_access_type t) 3858 { 3859 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 3860 3861 switch (prog_type) { 3862 /* Program types only with direct read access go here! */ 3863 case BPF_PROG_TYPE_LWT_IN: 3864 case BPF_PROG_TYPE_LWT_OUT: 3865 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 3866 case BPF_PROG_TYPE_SK_REUSEPORT: 3867 case BPF_PROG_TYPE_FLOW_DISSECTOR: 3868 case BPF_PROG_TYPE_CGROUP_SKB: 3869 if (t == BPF_WRITE) 3870 return false; 3871 fallthrough; 3872 3873 /* Program types with direct read + write access go here! */ 3874 case BPF_PROG_TYPE_SCHED_CLS: 3875 case BPF_PROG_TYPE_SCHED_ACT: 3876 case BPF_PROG_TYPE_XDP: 3877 case BPF_PROG_TYPE_LWT_XMIT: 3878 case BPF_PROG_TYPE_SK_SKB: 3879 case BPF_PROG_TYPE_SK_MSG: 3880 if (meta) 3881 return meta->pkt_access; 3882 3883 env->seen_direct_write = true; 3884 return true; 3885 3886 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 3887 if (t == BPF_WRITE) 3888 env->seen_direct_write = true; 3889 3890 return true; 3891 3892 default: 3893 return false; 3894 } 3895 } 3896 3897 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 3898 int size, bool zero_size_allowed) 3899 { 3900 struct bpf_reg_state *regs = cur_regs(env); 3901 struct bpf_reg_state *reg = ®s[regno]; 3902 int err; 3903 3904 /* We may have added a variable offset to the packet pointer; but any 3905 * reg->range we have comes after that. We are only checking the fixed 3906 * offset. 3907 */ 3908 3909 /* We don't allow negative numbers, because we aren't tracking enough 3910 * detail to prove they're safe. 3911 */ 3912 if (reg->smin_value < 0) { 3913 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3914 regno); 3915 return -EACCES; 3916 } 3917 3918 err = reg->range < 0 ? -EINVAL : 3919 __check_mem_access(env, regno, off, size, reg->range, 3920 zero_size_allowed); 3921 if (err) { 3922 verbose(env, "R%d offset is outside of the packet\n", regno); 3923 return err; 3924 } 3925 3926 /* __check_mem_access has made sure "off + size - 1" is within u16. 3927 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 3928 * otherwise find_good_pkt_pointers would have refused to set range info 3929 * that __check_mem_access would have rejected this pkt access. 3930 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 3931 */ 3932 env->prog->aux->max_pkt_offset = 3933 max_t(u32, env->prog->aux->max_pkt_offset, 3934 off + reg->umax_value + size - 1); 3935 3936 return err; 3937 } 3938 3939 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 3940 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 3941 enum bpf_access_type t, enum bpf_reg_type *reg_type, 3942 struct btf **btf, u32 *btf_id) 3943 { 3944 struct bpf_insn_access_aux info = { 3945 .reg_type = *reg_type, 3946 .log = &env->log, 3947 }; 3948 3949 if (env->ops->is_valid_access && 3950 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 3951 /* A non zero info.ctx_field_size indicates that this field is a 3952 * candidate for later verifier transformation to load the whole 3953 * field and then apply a mask when accessed with a narrower 3954 * access than actual ctx access size. A zero info.ctx_field_size 3955 * will only allow for whole field access and rejects any other 3956 * type of narrower access. 3957 */ 3958 *reg_type = info.reg_type; 3959 3960 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 3961 *btf = info.btf; 3962 *btf_id = info.btf_id; 3963 } else { 3964 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 3965 } 3966 /* remember the offset of last byte accessed in ctx */ 3967 if (env->prog->aux->max_ctx_offset < off + size) 3968 env->prog->aux->max_ctx_offset = off + size; 3969 return 0; 3970 } 3971 3972 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 3973 return -EACCES; 3974 } 3975 3976 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 3977 int size) 3978 { 3979 if (size < 0 || off < 0 || 3980 (u64)off + size > sizeof(struct bpf_flow_keys)) { 3981 verbose(env, "invalid access to flow keys off=%d size=%d\n", 3982 off, size); 3983 return -EACCES; 3984 } 3985 return 0; 3986 } 3987 3988 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 3989 u32 regno, int off, int size, 3990 enum bpf_access_type t) 3991 { 3992 struct bpf_reg_state *regs = cur_regs(env); 3993 struct bpf_reg_state *reg = ®s[regno]; 3994 struct bpf_insn_access_aux info = {}; 3995 bool valid; 3996 3997 if (reg->smin_value < 0) { 3998 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3999 regno); 4000 return -EACCES; 4001 } 4002 4003 switch (reg->type) { 4004 case PTR_TO_SOCK_COMMON: 4005 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 4006 break; 4007 case PTR_TO_SOCKET: 4008 valid = bpf_sock_is_valid_access(off, size, t, &info); 4009 break; 4010 case PTR_TO_TCP_SOCK: 4011 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 4012 break; 4013 case PTR_TO_XDP_SOCK: 4014 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 4015 break; 4016 default: 4017 valid = false; 4018 } 4019 4020 4021 if (valid) { 4022 env->insn_aux_data[insn_idx].ctx_field_size = 4023 info.ctx_field_size; 4024 return 0; 4025 } 4026 4027 verbose(env, "R%d invalid %s access off=%d size=%d\n", 4028 regno, reg_type_str(env, reg->type), off, size); 4029 4030 return -EACCES; 4031 } 4032 4033 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 4034 { 4035 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 4036 } 4037 4038 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 4039 { 4040 const struct bpf_reg_state *reg = reg_state(env, regno); 4041 4042 return reg->type == PTR_TO_CTX; 4043 } 4044 4045 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 4046 { 4047 const struct bpf_reg_state *reg = reg_state(env, regno); 4048 4049 return type_is_sk_pointer(reg->type); 4050 } 4051 4052 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 4053 { 4054 const struct bpf_reg_state *reg = reg_state(env, regno); 4055 4056 return type_is_pkt_pointer(reg->type); 4057 } 4058 4059 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 4060 { 4061 const struct bpf_reg_state *reg = reg_state(env, regno); 4062 4063 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 4064 return reg->type == PTR_TO_FLOW_KEYS; 4065 } 4066 4067 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 4068 const struct bpf_reg_state *reg, 4069 int off, int size, bool strict) 4070 { 4071 struct tnum reg_off; 4072 int ip_align; 4073 4074 /* Byte size accesses are always allowed. */ 4075 if (!strict || size == 1) 4076 return 0; 4077 4078 /* For platforms that do not have a Kconfig enabling 4079 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 4080 * NET_IP_ALIGN is universally set to '2'. And on platforms 4081 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 4082 * to this code only in strict mode where we want to emulate 4083 * the NET_IP_ALIGN==2 checking. Therefore use an 4084 * unconditional IP align value of '2'. 4085 */ 4086 ip_align = 2; 4087 4088 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 4089 if (!tnum_is_aligned(reg_off, size)) { 4090 char tn_buf[48]; 4091 4092 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4093 verbose(env, 4094 "misaligned packet access off %d+%s+%d+%d size %d\n", 4095 ip_align, tn_buf, reg->off, off, size); 4096 return -EACCES; 4097 } 4098 4099 return 0; 4100 } 4101 4102 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 4103 const struct bpf_reg_state *reg, 4104 const char *pointer_desc, 4105 int off, int size, bool strict) 4106 { 4107 struct tnum reg_off; 4108 4109 /* Byte size accesses are always allowed. */ 4110 if (!strict || size == 1) 4111 return 0; 4112 4113 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 4114 if (!tnum_is_aligned(reg_off, size)) { 4115 char tn_buf[48]; 4116 4117 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4118 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 4119 pointer_desc, tn_buf, reg->off, off, size); 4120 return -EACCES; 4121 } 4122 4123 return 0; 4124 } 4125 4126 static int check_ptr_alignment(struct bpf_verifier_env *env, 4127 const struct bpf_reg_state *reg, int off, 4128 int size, bool strict_alignment_once) 4129 { 4130 bool strict = env->strict_alignment || strict_alignment_once; 4131 const char *pointer_desc = ""; 4132 4133 switch (reg->type) { 4134 case PTR_TO_PACKET: 4135 case PTR_TO_PACKET_META: 4136 /* Special case, because of NET_IP_ALIGN. Given metadata sits 4137 * right in front, treat it the very same way. 4138 */ 4139 return check_pkt_ptr_alignment(env, reg, off, size, strict); 4140 case PTR_TO_FLOW_KEYS: 4141 pointer_desc = "flow keys "; 4142 break; 4143 case PTR_TO_MAP_KEY: 4144 pointer_desc = "key "; 4145 break; 4146 case PTR_TO_MAP_VALUE: 4147 pointer_desc = "value "; 4148 break; 4149 case PTR_TO_CTX: 4150 pointer_desc = "context "; 4151 break; 4152 case PTR_TO_STACK: 4153 pointer_desc = "stack "; 4154 /* The stack spill tracking logic in check_stack_write_fixed_off() 4155 * and check_stack_read_fixed_off() relies on stack accesses being 4156 * aligned. 4157 */ 4158 strict = true; 4159 break; 4160 case PTR_TO_SOCKET: 4161 pointer_desc = "sock "; 4162 break; 4163 case PTR_TO_SOCK_COMMON: 4164 pointer_desc = "sock_common "; 4165 break; 4166 case PTR_TO_TCP_SOCK: 4167 pointer_desc = "tcp_sock "; 4168 break; 4169 case PTR_TO_XDP_SOCK: 4170 pointer_desc = "xdp_sock "; 4171 break; 4172 default: 4173 break; 4174 } 4175 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 4176 strict); 4177 } 4178 4179 static int update_stack_depth(struct bpf_verifier_env *env, 4180 const struct bpf_func_state *func, 4181 int off) 4182 { 4183 u16 stack = env->subprog_info[func->subprogno].stack_depth; 4184 4185 if (stack >= -off) 4186 return 0; 4187 4188 /* update known max for given subprogram */ 4189 env->subprog_info[func->subprogno].stack_depth = -off; 4190 return 0; 4191 } 4192 4193 /* starting from main bpf function walk all instructions of the function 4194 * and recursively walk all callees that given function can call. 4195 * Ignore jump and exit insns. 4196 * Since recursion is prevented by check_cfg() this algorithm 4197 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 4198 */ 4199 static int check_max_stack_depth(struct bpf_verifier_env *env) 4200 { 4201 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 4202 struct bpf_subprog_info *subprog = env->subprog_info; 4203 struct bpf_insn *insn = env->prog->insnsi; 4204 bool tail_call_reachable = false; 4205 int ret_insn[MAX_CALL_FRAMES]; 4206 int ret_prog[MAX_CALL_FRAMES]; 4207 int j; 4208 4209 process_func: 4210 /* protect against potential stack overflow that might happen when 4211 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 4212 * depth for such case down to 256 so that the worst case scenario 4213 * would result in 8k stack size (32 which is tailcall limit * 256 = 4214 * 8k). 4215 * 4216 * To get the idea what might happen, see an example: 4217 * func1 -> sub rsp, 128 4218 * subfunc1 -> sub rsp, 256 4219 * tailcall1 -> add rsp, 256 4220 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 4221 * subfunc2 -> sub rsp, 64 4222 * subfunc22 -> sub rsp, 128 4223 * tailcall2 -> add rsp, 128 4224 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 4225 * 4226 * tailcall will unwind the current stack frame but it will not get rid 4227 * of caller's stack as shown on the example above. 4228 */ 4229 if (idx && subprog[idx].has_tail_call && depth >= 256) { 4230 verbose(env, 4231 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 4232 depth); 4233 return -EACCES; 4234 } 4235 /* round up to 32-bytes, since this is granularity 4236 * of interpreter stack size 4237 */ 4238 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4239 if (depth > MAX_BPF_STACK) { 4240 verbose(env, "combined stack size of %d calls is %d. Too large\n", 4241 frame + 1, depth); 4242 return -EACCES; 4243 } 4244 continue_func: 4245 subprog_end = subprog[idx + 1].start; 4246 for (; i < subprog_end; i++) { 4247 int next_insn; 4248 4249 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 4250 continue; 4251 /* remember insn and function to return to */ 4252 ret_insn[frame] = i + 1; 4253 ret_prog[frame] = idx; 4254 4255 /* find the callee */ 4256 next_insn = i + insn[i].imm + 1; 4257 idx = find_subprog(env, next_insn); 4258 if (idx < 0) { 4259 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4260 next_insn); 4261 return -EFAULT; 4262 } 4263 if (subprog[idx].is_async_cb) { 4264 if (subprog[idx].has_tail_call) { 4265 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 4266 return -EFAULT; 4267 } 4268 /* async callbacks don't increase bpf prog stack size */ 4269 continue; 4270 } 4271 i = next_insn; 4272 4273 if (subprog[idx].has_tail_call) 4274 tail_call_reachable = true; 4275 4276 frame++; 4277 if (frame >= MAX_CALL_FRAMES) { 4278 verbose(env, "the call stack of %d frames is too deep !\n", 4279 frame); 4280 return -E2BIG; 4281 } 4282 goto process_func; 4283 } 4284 /* if tail call got detected across bpf2bpf calls then mark each of the 4285 * currently present subprog frames as tail call reachable subprogs; 4286 * this info will be utilized by JIT so that we will be preserving the 4287 * tail call counter throughout bpf2bpf calls combined with tailcalls 4288 */ 4289 if (tail_call_reachable) 4290 for (j = 0; j < frame; j++) 4291 subprog[ret_prog[j]].tail_call_reachable = true; 4292 if (subprog[0].tail_call_reachable) 4293 env->prog->aux->tail_call_reachable = true; 4294 4295 /* end of for() loop means the last insn of the 'subprog' 4296 * was reached. Doesn't matter whether it was JA or EXIT 4297 */ 4298 if (frame == 0) 4299 return 0; 4300 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4301 frame--; 4302 i = ret_insn[frame]; 4303 idx = ret_prog[frame]; 4304 goto continue_func; 4305 } 4306 4307 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 4308 static int get_callee_stack_depth(struct bpf_verifier_env *env, 4309 const struct bpf_insn *insn, int idx) 4310 { 4311 int start = idx + insn->imm + 1, subprog; 4312 4313 subprog = find_subprog(env, start); 4314 if (subprog < 0) { 4315 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4316 start); 4317 return -EFAULT; 4318 } 4319 return env->subprog_info[subprog].stack_depth; 4320 } 4321 #endif 4322 4323 static int __check_buffer_access(struct bpf_verifier_env *env, 4324 const char *buf_info, 4325 const struct bpf_reg_state *reg, 4326 int regno, int off, int size) 4327 { 4328 if (off < 0) { 4329 verbose(env, 4330 "R%d invalid %s buffer access: off=%d, size=%d\n", 4331 regno, buf_info, off, size); 4332 return -EACCES; 4333 } 4334 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4335 char tn_buf[48]; 4336 4337 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4338 verbose(env, 4339 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 4340 regno, off, tn_buf); 4341 return -EACCES; 4342 } 4343 4344 return 0; 4345 } 4346 4347 static int check_tp_buffer_access(struct bpf_verifier_env *env, 4348 const struct bpf_reg_state *reg, 4349 int regno, int off, int size) 4350 { 4351 int err; 4352 4353 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 4354 if (err) 4355 return err; 4356 4357 if (off + size > env->prog->aux->max_tp_access) 4358 env->prog->aux->max_tp_access = off + size; 4359 4360 return 0; 4361 } 4362 4363 static int check_buffer_access(struct bpf_verifier_env *env, 4364 const struct bpf_reg_state *reg, 4365 int regno, int off, int size, 4366 bool zero_size_allowed, 4367 u32 *max_access) 4368 { 4369 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 4370 int err; 4371 4372 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 4373 if (err) 4374 return err; 4375 4376 if (off + size > *max_access) 4377 *max_access = off + size; 4378 4379 return 0; 4380 } 4381 4382 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 4383 static void zext_32_to_64(struct bpf_reg_state *reg) 4384 { 4385 reg->var_off = tnum_subreg(reg->var_off); 4386 __reg_assign_32_into_64(reg); 4387 } 4388 4389 /* truncate register to smaller size (in bytes) 4390 * must be called with size < BPF_REG_SIZE 4391 */ 4392 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 4393 { 4394 u64 mask; 4395 4396 /* clear high bits in bit representation */ 4397 reg->var_off = tnum_cast(reg->var_off, size); 4398 4399 /* fix arithmetic bounds */ 4400 mask = ((u64)1 << (size * 8)) - 1; 4401 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 4402 reg->umin_value &= mask; 4403 reg->umax_value &= mask; 4404 } else { 4405 reg->umin_value = 0; 4406 reg->umax_value = mask; 4407 } 4408 reg->smin_value = reg->umin_value; 4409 reg->smax_value = reg->umax_value; 4410 4411 /* If size is smaller than 32bit register the 32bit register 4412 * values are also truncated so we push 64-bit bounds into 4413 * 32-bit bounds. Above were truncated < 32-bits already. 4414 */ 4415 if (size >= 4) 4416 return; 4417 __reg_combine_64_into_32(reg); 4418 } 4419 4420 static bool bpf_map_is_rdonly(const struct bpf_map *map) 4421 { 4422 /* A map is considered read-only if the following condition are true: 4423 * 4424 * 1) BPF program side cannot change any of the map content. The 4425 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 4426 * and was set at map creation time. 4427 * 2) The map value(s) have been initialized from user space by a 4428 * loader and then "frozen", such that no new map update/delete 4429 * operations from syscall side are possible for the rest of 4430 * the map's lifetime from that point onwards. 4431 * 3) Any parallel/pending map update/delete operations from syscall 4432 * side have been completed. Only after that point, it's safe to 4433 * assume that map value(s) are immutable. 4434 */ 4435 return (map->map_flags & BPF_F_RDONLY_PROG) && 4436 READ_ONCE(map->frozen) && 4437 !bpf_map_write_active(map); 4438 } 4439 4440 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 4441 { 4442 void *ptr; 4443 u64 addr; 4444 int err; 4445 4446 err = map->ops->map_direct_value_addr(map, &addr, off); 4447 if (err) 4448 return err; 4449 ptr = (void *)(long)addr + off; 4450 4451 switch (size) { 4452 case sizeof(u8): 4453 *val = (u64)*(u8 *)ptr; 4454 break; 4455 case sizeof(u16): 4456 *val = (u64)*(u16 *)ptr; 4457 break; 4458 case sizeof(u32): 4459 *val = (u64)*(u32 *)ptr; 4460 break; 4461 case sizeof(u64): 4462 *val = *(u64 *)ptr; 4463 break; 4464 default: 4465 return -EINVAL; 4466 } 4467 return 0; 4468 } 4469 4470 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 4471 struct bpf_reg_state *regs, 4472 int regno, int off, int size, 4473 enum bpf_access_type atype, 4474 int value_regno) 4475 { 4476 struct bpf_reg_state *reg = regs + regno; 4477 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 4478 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 4479 enum bpf_type_flag flag = 0; 4480 u32 btf_id; 4481 int ret; 4482 4483 if (off < 0) { 4484 verbose(env, 4485 "R%d is ptr_%s invalid negative access: off=%d\n", 4486 regno, tname, off); 4487 return -EACCES; 4488 } 4489 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4490 char tn_buf[48]; 4491 4492 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4493 verbose(env, 4494 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 4495 regno, tname, off, tn_buf); 4496 return -EACCES; 4497 } 4498 4499 if (reg->type & MEM_USER) { 4500 verbose(env, 4501 "R%d is ptr_%s access user memory: off=%d\n", 4502 regno, tname, off); 4503 return -EACCES; 4504 } 4505 4506 if (reg->type & MEM_PERCPU) { 4507 verbose(env, 4508 "R%d is ptr_%s access percpu memory: off=%d\n", 4509 regno, tname, off); 4510 return -EACCES; 4511 } 4512 4513 if (env->ops->btf_struct_access) { 4514 ret = env->ops->btf_struct_access(&env->log, reg->btf, t, 4515 off, size, atype, &btf_id, &flag); 4516 } else { 4517 if (atype != BPF_READ) { 4518 verbose(env, "only read is supported\n"); 4519 return -EACCES; 4520 } 4521 4522 ret = btf_struct_access(&env->log, reg->btf, t, off, size, 4523 atype, &btf_id, &flag); 4524 } 4525 4526 if (ret < 0) 4527 return ret; 4528 4529 /* If this is an untrusted pointer, all pointers formed by walking it 4530 * also inherit the untrusted flag. 4531 */ 4532 if (type_flag(reg->type) & PTR_UNTRUSTED) 4533 flag |= PTR_UNTRUSTED; 4534 4535 if (atype == BPF_READ && value_regno >= 0) 4536 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 4537 4538 return 0; 4539 } 4540 4541 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 4542 struct bpf_reg_state *regs, 4543 int regno, int off, int size, 4544 enum bpf_access_type atype, 4545 int value_regno) 4546 { 4547 struct bpf_reg_state *reg = regs + regno; 4548 struct bpf_map *map = reg->map_ptr; 4549 enum bpf_type_flag flag = 0; 4550 const struct btf_type *t; 4551 const char *tname; 4552 u32 btf_id; 4553 int ret; 4554 4555 if (!btf_vmlinux) { 4556 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 4557 return -ENOTSUPP; 4558 } 4559 4560 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 4561 verbose(env, "map_ptr access not supported for map type %d\n", 4562 map->map_type); 4563 return -ENOTSUPP; 4564 } 4565 4566 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 4567 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 4568 4569 if (!env->allow_ptr_to_map_access) { 4570 verbose(env, 4571 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 4572 tname); 4573 return -EPERM; 4574 } 4575 4576 if (off < 0) { 4577 verbose(env, "R%d is %s invalid negative access: off=%d\n", 4578 regno, tname, off); 4579 return -EACCES; 4580 } 4581 4582 if (atype != BPF_READ) { 4583 verbose(env, "only read from %s is supported\n", tname); 4584 return -EACCES; 4585 } 4586 4587 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id, &flag); 4588 if (ret < 0) 4589 return ret; 4590 4591 if (value_regno >= 0) 4592 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 4593 4594 return 0; 4595 } 4596 4597 /* Check that the stack access at the given offset is within bounds. The 4598 * maximum valid offset is -1. 4599 * 4600 * The minimum valid offset is -MAX_BPF_STACK for writes, and 4601 * -state->allocated_stack for reads. 4602 */ 4603 static int check_stack_slot_within_bounds(int off, 4604 struct bpf_func_state *state, 4605 enum bpf_access_type t) 4606 { 4607 int min_valid_off; 4608 4609 if (t == BPF_WRITE) 4610 min_valid_off = -MAX_BPF_STACK; 4611 else 4612 min_valid_off = -state->allocated_stack; 4613 4614 if (off < min_valid_off || off > -1) 4615 return -EACCES; 4616 return 0; 4617 } 4618 4619 /* Check that the stack access at 'regno + off' falls within the maximum stack 4620 * bounds. 4621 * 4622 * 'off' includes `regno->offset`, but not its dynamic part (if any). 4623 */ 4624 static int check_stack_access_within_bounds( 4625 struct bpf_verifier_env *env, 4626 int regno, int off, int access_size, 4627 enum bpf_access_src src, enum bpf_access_type type) 4628 { 4629 struct bpf_reg_state *regs = cur_regs(env); 4630 struct bpf_reg_state *reg = regs + regno; 4631 struct bpf_func_state *state = func(env, reg); 4632 int min_off, max_off; 4633 int err; 4634 char *err_extra; 4635 4636 if (src == ACCESS_HELPER) 4637 /* We don't know if helpers are reading or writing (or both). */ 4638 err_extra = " indirect access to"; 4639 else if (type == BPF_READ) 4640 err_extra = " read from"; 4641 else 4642 err_extra = " write to"; 4643 4644 if (tnum_is_const(reg->var_off)) { 4645 min_off = reg->var_off.value + off; 4646 if (access_size > 0) 4647 max_off = min_off + access_size - 1; 4648 else 4649 max_off = min_off; 4650 } else { 4651 if (reg->smax_value >= BPF_MAX_VAR_OFF || 4652 reg->smin_value <= -BPF_MAX_VAR_OFF) { 4653 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 4654 err_extra, regno); 4655 return -EACCES; 4656 } 4657 min_off = reg->smin_value + off; 4658 if (access_size > 0) 4659 max_off = reg->smax_value + off + access_size - 1; 4660 else 4661 max_off = min_off; 4662 } 4663 4664 err = check_stack_slot_within_bounds(min_off, state, type); 4665 if (!err) 4666 err = check_stack_slot_within_bounds(max_off, state, type); 4667 4668 if (err) { 4669 if (tnum_is_const(reg->var_off)) { 4670 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 4671 err_extra, regno, off, access_size); 4672 } else { 4673 char tn_buf[48]; 4674 4675 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4676 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 4677 err_extra, regno, tn_buf, access_size); 4678 } 4679 } 4680 return err; 4681 } 4682 4683 /* check whether memory at (regno + off) is accessible for t = (read | write) 4684 * if t==write, value_regno is a register which value is stored into memory 4685 * if t==read, value_regno is a register which will receive the value from memory 4686 * if t==write && value_regno==-1, some unknown value is stored into memory 4687 * if t==read && value_regno==-1, don't care what we read from memory 4688 */ 4689 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 4690 int off, int bpf_size, enum bpf_access_type t, 4691 int value_regno, bool strict_alignment_once) 4692 { 4693 struct bpf_reg_state *regs = cur_regs(env); 4694 struct bpf_reg_state *reg = regs + regno; 4695 struct bpf_func_state *state; 4696 int size, err = 0; 4697 4698 size = bpf_size_to_bytes(bpf_size); 4699 if (size < 0) 4700 return size; 4701 4702 /* alignment checks will add in reg->off themselves */ 4703 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 4704 if (err) 4705 return err; 4706 4707 /* for access checks, reg->off is just part of off */ 4708 off += reg->off; 4709 4710 if (reg->type == PTR_TO_MAP_KEY) { 4711 if (t == BPF_WRITE) { 4712 verbose(env, "write to change key R%d not allowed\n", regno); 4713 return -EACCES; 4714 } 4715 4716 err = check_mem_region_access(env, regno, off, size, 4717 reg->map_ptr->key_size, false); 4718 if (err) 4719 return err; 4720 if (value_regno >= 0) 4721 mark_reg_unknown(env, regs, value_regno); 4722 } else if (reg->type == PTR_TO_MAP_VALUE) { 4723 struct bpf_map_value_off_desc *kptr_off_desc = NULL; 4724 4725 if (t == BPF_WRITE && value_regno >= 0 && 4726 is_pointer_value(env, value_regno)) { 4727 verbose(env, "R%d leaks addr into map\n", value_regno); 4728 return -EACCES; 4729 } 4730 err = check_map_access_type(env, regno, off, size, t); 4731 if (err) 4732 return err; 4733 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 4734 if (err) 4735 return err; 4736 if (tnum_is_const(reg->var_off)) 4737 kptr_off_desc = bpf_map_kptr_off_contains(reg->map_ptr, 4738 off + reg->var_off.value); 4739 if (kptr_off_desc) { 4740 err = check_map_kptr_access(env, regno, value_regno, insn_idx, 4741 kptr_off_desc); 4742 } else if (t == BPF_READ && value_regno >= 0) { 4743 struct bpf_map *map = reg->map_ptr; 4744 4745 /* if map is read-only, track its contents as scalars */ 4746 if (tnum_is_const(reg->var_off) && 4747 bpf_map_is_rdonly(map) && 4748 map->ops->map_direct_value_addr) { 4749 int map_off = off + reg->var_off.value; 4750 u64 val = 0; 4751 4752 err = bpf_map_direct_read(map, map_off, size, 4753 &val); 4754 if (err) 4755 return err; 4756 4757 regs[value_regno].type = SCALAR_VALUE; 4758 __mark_reg_known(®s[value_regno], val); 4759 } else { 4760 mark_reg_unknown(env, regs, value_regno); 4761 } 4762 } 4763 } else if (base_type(reg->type) == PTR_TO_MEM) { 4764 bool rdonly_mem = type_is_rdonly_mem(reg->type); 4765 4766 if (type_may_be_null(reg->type)) { 4767 verbose(env, "R%d invalid mem access '%s'\n", regno, 4768 reg_type_str(env, reg->type)); 4769 return -EACCES; 4770 } 4771 4772 if (t == BPF_WRITE && rdonly_mem) { 4773 verbose(env, "R%d cannot write into %s\n", 4774 regno, reg_type_str(env, reg->type)); 4775 return -EACCES; 4776 } 4777 4778 if (t == BPF_WRITE && value_regno >= 0 && 4779 is_pointer_value(env, value_regno)) { 4780 verbose(env, "R%d leaks addr into mem\n", value_regno); 4781 return -EACCES; 4782 } 4783 4784 err = check_mem_region_access(env, regno, off, size, 4785 reg->mem_size, false); 4786 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 4787 mark_reg_unknown(env, regs, value_regno); 4788 } else if (reg->type == PTR_TO_CTX) { 4789 enum bpf_reg_type reg_type = SCALAR_VALUE; 4790 struct btf *btf = NULL; 4791 u32 btf_id = 0; 4792 4793 if (t == BPF_WRITE && value_regno >= 0 && 4794 is_pointer_value(env, value_regno)) { 4795 verbose(env, "R%d leaks addr into ctx\n", value_regno); 4796 return -EACCES; 4797 } 4798 4799 err = check_ptr_off_reg(env, reg, regno); 4800 if (err < 0) 4801 return err; 4802 4803 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 4804 &btf_id); 4805 if (err) 4806 verbose_linfo(env, insn_idx, "; "); 4807 if (!err && t == BPF_READ && value_regno >= 0) { 4808 /* ctx access returns either a scalar, or a 4809 * PTR_TO_PACKET[_META,_END]. In the latter 4810 * case, we know the offset is zero. 4811 */ 4812 if (reg_type == SCALAR_VALUE) { 4813 mark_reg_unknown(env, regs, value_regno); 4814 } else { 4815 mark_reg_known_zero(env, regs, 4816 value_regno); 4817 if (type_may_be_null(reg_type)) 4818 regs[value_regno].id = ++env->id_gen; 4819 /* A load of ctx field could have different 4820 * actual load size with the one encoded in the 4821 * insn. When the dst is PTR, it is for sure not 4822 * a sub-register. 4823 */ 4824 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 4825 if (base_type(reg_type) == PTR_TO_BTF_ID) { 4826 regs[value_regno].btf = btf; 4827 regs[value_regno].btf_id = btf_id; 4828 } 4829 } 4830 regs[value_regno].type = reg_type; 4831 } 4832 4833 } else if (reg->type == PTR_TO_STACK) { 4834 /* Basic bounds checks. */ 4835 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 4836 if (err) 4837 return err; 4838 4839 state = func(env, reg); 4840 err = update_stack_depth(env, state, off); 4841 if (err) 4842 return err; 4843 4844 if (t == BPF_READ) 4845 err = check_stack_read(env, regno, off, size, 4846 value_regno); 4847 else 4848 err = check_stack_write(env, regno, off, size, 4849 value_regno, insn_idx); 4850 } else if (reg_is_pkt_pointer(reg)) { 4851 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 4852 verbose(env, "cannot write into packet\n"); 4853 return -EACCES; 4854 } 4855 if (t == BPF_WRITE && value_regno >= 0 && 4856 is_pointer_value(env, value_regno)) { 4857 verbose(env, "R%d leaks addr into packet\n", 4858 value_regno); 4859 return -EACCES; 4860 } 4861 err = check_packet_access(env, regno, off, size, false); 4862 if (!err && t == BPF_READ && value_regno >= 0) 4863 mark_reg_unknown(env, regs, value_regno); 4864 } else if (reg->type == PTR_TO_FLOW_KEYS) { 4865 if (t == BPF_WRITE && value_regno >= 0 && 4866 is_pointer_value(env, value_regno)) { 4867 verbose(env, "R%d leaks addr into flow keys\n", 4868 value_regno); 4869 return -EACCES; 4870 } 4871 4872 err = check_flow_keys_access(env, off, size); 4873 if (!err && t == BPF_READ && value_regno >= 0) 4874 mark_reg_unknown(env, regs, value_regno); 4875 } else if (type_is_sk_pointer(reg->type)) { 4876 if (t == BPF_WRITE) { 4877 verbose(env, "R%d cannot write into %s\n", 4878 regno, reg_type_str(env, reg->type)); 4879 return -EACCES; 4880 } 4881 err = check_sock_access(env, insn_idx, regno, off, size, t); 4882 if (!err && value_regno >= 0) 4883 mark_reg_unknown(env, regs, value_regno); 4884 } else if (reg->type == PTR_TO_TP_BUFFER) { 4885 err = check_tp_buffer_access(env, reg, regno, off, size); 4886 if (!err && t == BPF_READ && value_regno >= 0) 4887 mark_reg_unknown(env, regs, value_regno); 4888 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 4889 !type_may_be_null(reg->type)) { 4890 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 4891 value_regno); 4892 } else if (reg->type == CONST_PTR_TO_MAP) { 4893 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 4894 value_regno); 4895 } else if (base_type(reg->type) == PTR_TO_BUF) { 4896 bool rdonly_mem = type_is_rdonly_mem(reg->type); 4897 u32 *max_access; 4898 4899 if (rdonly_mem) { 4900 if (t == BPF_WRITE) { 4901 verbose(env, "R%d cannot write into %s\n", 4902 regno, reg_type_str(env, reg->type)); 4903 return -EACCES; 4904 } 4905 max_access = &env->prog->aux->max_rdonly_access; 4906 } else { 4907 max_access = &env->prog->aux->max_rdwr_access; 4908 } 4909 4910 err = check_buffer_access(env, reg, regno, off, size, false, 4911 max_access); 4912 4913 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 4914 mark_reg_unknown(env, regs, value_regno); 4915 } else { 4916 verbose(env, "R%d invalid mem access '%s'\n", regno, 4917 reg_type_str(env, reg->type)); 4918 return -EACCES; 4919 } 4920 4921 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 4922 regs[value_regno].type == SCALAR_VALUE) { 4923 /* b/h/w load zero-extends, mark upper bits as known 0 */ 4924 coerce_reg_to_size(®s[value_regno], size); 4925 } 4926 return err; 4927 } 4928 4929 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 4930 { 4931 int load_reg; 4932 int err; 4933 4934 switch (insn->imm) { 4935 case BPF_ADD: 4936 case BPF_ADD | BPF_FETCH: 4937 case BPF_AND: 4938 case BPF_AND | BPF_FETCH: 4939 case BPF_OR: 4940 case BPF_OR | BPF_FETCH: 4941 case BPF_XOR: 4942 case BPF_XOR | BPF_FETCH: 4943 case BPF_XCHG: 4944 case BPF_CMPXCHG: 4945 break; 4946 default: 4947 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 4948 return -EINVAL; 4949 } 4950 4951 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 4952 verbose(env, "invalid atomic operand size\n"); 4953 return -EINVAL; 4954 } 4955 4956 /* check src1 operand */ 4957 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4958 if (err) 4959 return err; 4960 4961 /* check src2 operand */ 4962 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4963 if (err) 4964 return err; 4965 4966 if (insn->imm == BPF_CMPXCHG) { 4967 /* Check comparison of R0 with memory location */ 4968 const u32 aux_reg = BPF_REG_0; 4969 4970 err = check_reg_arg(env, aux_reg, SRC_OP); 4971 if (err) 4972 return err; 4973 4974 if (is_pointer_value(env, aux_reg)) { 4975 verbose(env, "R%d leaks addr into mem\n", aux_reg); 4976 return -EACCES; 4977 } 4978 } 4979 4980 if (is_pointer_value(env, insn->src_reg)) { 4981 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 4982 return -EACCES; 4983 } 4984 4985 if (is_ctx_reg(env, insn->dst_reg) || 4986 is_pkt_reg(env, insn->dst_reg) || 4987 is_flow_key_reg(env, insn->dst_reg) || 4988 is_sk_reg(env, insn->dst_reg)) { 4989 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 4990 insn->dst_reg, 4991 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 4992 return -EACCES; 4993 } 4994 4995 if (insn->imm & BPF_FETCH) { 4996 if (insn->imm == BPF_CMPXCHG) 4997 load_reg = BPF_REG_0; 4998 else 4999 load_reg = insn->src_reg; 5000 5001 /* check and record load of old value */ 5002 err = check_reg_arg(env, load_reg, DST_OP); 5003 if (err) 5004 return err; 5005 } else { 5006 /* This instruction accesses a memory location but doesn't 5007 * actually load it into a register. 5008 */ 5009 load_reg = -1; 5010 } 5011 5012 /* Check whether we can read the memory, with second call for fetch 5013 * case to simulate the register fill. 5014 */ 5015 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5016 BPF_SIZE(insn->code), BPF_READ, -1, true); 5017 if (!err && load_reg >= 0) 5018 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5019 BPF_SIZE(insn->code), BPF_READ, load_reg, 5020 true); 5021 if (err) 5022 return err; 5023 5024 /* Check whether we can write into the same memory. */ 5025 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5026 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 5027 if (err) 5028 return err; 5029 5030 return 0; 5031 } 5032 5033 /* When register 'regno' is used to read the stack (either directly or through 5034 * a helper function) make sure that it's within stack boundary and, depending 5035 * on the access type, that all elements of the stack are initialized. 5036 * 5037 * 'off' includes 'regno->off', but not its dynamic part (if any). 5038 * 5039 * All registers that have been spilled on the stack in the slots within the 5040 * read offsets are marked as read. 5041 */ 5042 static int check_stack_range_initialized( 5043 struct bpf_verifier_env *env, int regno, int off, 5044 int access_size, bool zero_size_allowed, 5045 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 5046 { 5047 struct bpf_reg_state *reg = reg_state(env, regno); 5048 struct bpf_func_state *state = func(env, reg); 5049 int err, min_off, max_off, i, j, slot, spi; 5050 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 5051 enum bpf_access_type bounds_check_type; 5052 /* Some accesses can write anything into the stack, others are 5053 * read-only. 5054 */ 5055 bool clobber = false; 5056 5057 if (access_size == 0 && !zero_size_allowed) { 5058 verbose(env, "invalid zero-sized read\n"); 5059 return -EACCES; 5060 } 5061 5062 if (type == ACCESS_HELPER) { 5063 /* The bounds checks for writes are more permissive than for 5064 * reads. However, if raw_mode is not set, we'll do extra 5065 * checks below. 5066 */ 5067 bounds_check_type = BPF_WRITE; 5068 clobber = true; 5069 } else { 5070 bounds_check_type = BPF_READ; 5071 } 5072 err = check_stack_access_within_bounds(env, regno, off, access_size, 5073 type, bounds_check_type); 5074 if (err) 5075 return err; 5076 5077 5078 if (tnum_is_const(reg->var_off)) { 5079 min_off = max_off = reg->var_off.value + off; 5080 } else { 5081 /* Variable offset is prohibited for unprivileged mode for 5082 * simplicity since it requires corresponding support in 5083 * Spectre masking for stack ALU. 5084 * See also retrieve_ptr_limit(). 5085 */ 5086 if (!env->bypass_spec_v1) { 5087 char tn_buf[48]; 5088 5089 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5090 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 5091 regno, err_extra, tn_buf); 5092 return -EACCES; 5093 } 5094 /* Only initialized buffer on stack is allowed to be accessed 5095 * with variable offset. With uninitialized buffer it's hard to 5096 * guarantee that whole memory is marked as initialized on 5097 * helper return since specific bounds are unknown what may 5098 * cause uninitialized stack leaking. 5099 */ 5100 if (meta && meta->raw_mode) 5101 meta = NULL; 5102 5103 min_off = reg->smin_value + off; 5104 max_off = reg->smax_value + off; 5105 } 5106 5107 if (meta && meta->raw_mode) { 5108 meta->access_size = access_size; 5109 meta->regno = regno; 5110 return 0; 5111 } 5112 5113 for (i = min_off; i < max_off + access_size; i++) { 5114 u8 *stype; 5115 5116 slot = -i - 1; 5117 spi = slot / BPF_REG_SIZE; 5118 if (state->allocated_stack <= slot) 5119 goto err; 5120 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 5121 if (*stype == STACK_MISC) 5122 goto mark; 5123 if (*stype == STACK_ZERO) { 5124 if (clobber) { 5125 /* helper can write anything into the stack */ 5126 *stype = STACK_MISC; 5127 } 5128 goto mark; 5129 } 5130 5131 if (is_spilled_reg(&state->stack[spi]) && 5132 base_type(state->stack[spi].spilled_ptr.type) == PTR_TO_BTF_ID) 5133 goto mark; 5134 5135 if (is_spilled_reg(&state->stack[spi]) && 5136 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 5137 env->allow_ptr_leaks)) { 5138 if (clobber) { 5139 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 5140 for (j = 0; j < BPF_REG_SIZE; j++) 5141 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 5142 } 5143 goto mark; 5144 } 5145 5146 err: 5147 if (tnum_is_const(reg->var_off)) { 5148 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 5149 err_extra, regno, min_off, i - min_off, access_size); 5150 } else { 5151 char tn_buf[48]; 5152 5153 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5154 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 5155 err_extra, regno, tn_buf, i - min_off, access_size); 5156 } 5157 return -EACCES; 5158 mark: 5159 /* reading any byte out of 8-byte 'spill_slot' will cause 5160 * the whole slot to be marked as 'read' 5161 */ 5162 mark_reg_read(env, &state->stack[spi].spilled_ptr, 5163 state->stack[spi].spilled_ptr.parent, 5164 REG_LIVE_READ64); 5165 } 5166 return update_stack_depth(env, state, min_off); 5167 } 5168 5169 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 5170 int access_size, bool zero_size_allowed, 5171 struct bpf_call_arg_meta *meta) 5172 { 5173 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5174 u32 *max_access; 5175 5176 switch (base_type(reg->type)) { 5177 case PTR_TO_PACKET: 5178 case PTR_TO_PACKET_META: 5179 return check_packet_access(env, regno, reg->off, access_size, 5180 zero_size_allowed); 5181 case PTR_TO_MAP_KEY: 5182 if (meta && meta->raw_mode) { 5183 verbose(env, "R%d cannot write into %s\n", regno, 5184 reg_type_str(env, reg->type)); 5185 return -EACCES; 5186 } 5187 return check_mem_region_access(env, regno, reg->off, access_size, 5188 reg->map_ptr->key_size, false); 5189 case PTR_TO_MAP_VALUE: 5190 if (check_map_access_type(env, regno, reg->off, access_size, 5191 meta && meta->raw_mode ? BPF_WRITE : 5192 BPF_READ)) 5193 return -EACCES; 5194 return check_map_access(env, regno, reg->off, access_size, 5195 zero_size_allowed, ACCESS_HELPER); 5196 case PTR_TO_MEM: 5197 if (type_is_rdonly_mem(reg->type)) { 5198 if (meta && meta->raw_mode) { 5199 verbose(env, "R%d cannot write into %s\n", regno, 5200 reg_type_str(env, reg->type)); 5201 return -EACCES; 5202 } 5203 } 5204 return check_mem_region_access(env, regno, reg->off, 5205 access_size, reg->mem_size, 5206 zero_size_allowed); 5207 case PTR_TO_BUF: 5208 if (type_is_rdonly_mem(reg->type)) { 5209 if (meta && meta->raw_mode) { 5210 verbose(env, "R%d cannot write into %s\n", regno, 5211 reg_type_str(env, reg->type)); 5212 return -EACCES; 5213 } 5214 5215 max_access = &env->prog->aux->max_rdonly_access; 5216 } else { 5217 max_access = &env->prog->aux->max_rdwr_access; 5218 } 5219 return check_buffer_access(env, reg, regno, reg->off, 5220 access_size, zero_size_allowed, 5221 max_access); 5222 case PTR_TO_STACK: 5223 return check_stack_range_initialized( 5224 env, 5225 regno, reg->off, access_size, 5226 zero_size_allowed, ACCESS_HELPER, meta); 5227 default: /* scalar_value or invalid ptr */ 5228 /* Allow zero-byte read from NULL, regardless of pointer type */ 5229 if (zero_size_allowed && access_size == 0 && 5230 register_is_null(reg)) 5231 return 0; 5232 5233 verbose(env, "R%d type=%s ", regno, 5234 reg_type_str(env, reg->type)); 5235 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 5236 return -EACCES; 5237 } 5238 } 5239 5240 static int check_mem_size_reg(struct bpf_verifier_env *env, 5241 struct bpf_reg_state *reg, u32 regno, 5242 bool zero_size_allowed, 5243 struct bpf_call_arg_meta *meta) 5244 { 5245 int err; 5246 5247 /* This is used to refine r0 return value bounds for helpers 5248 * that enforce this value as an upper bound on return values. 5249 * See do_refine_retval_range() for helpers that can refine 5250 * the return value. C type of helper is u32 so we pull register 5251 * bound from umax_value however, if negative verifier errors 5252 * out. Only upper bounds can be learned because retval is an 5253 * int type and negative retvals are allowed. 5254 */ 5255 meta->msize_max_value = reg->umax_value; 5256 5257 /* The register is SCALAR_VALUE; the access check 5258 * happens using its boundaries. 5259 */ 5260 if (!tnum_is_const(reg->var_off)) 5261 /* For unprivileged variable accesses, disable raw 5262 * mode so that the program is required to 5263 * initialize all the memory that the helper could 5264 * just partially fill up. 5265 */ 5266 meta = NULL; 5267 5268 if (reg->smin_value < 0) { 5269 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5270 regno); 5271 return -EACCES; 5272 } 5273 5274 if (reg->umin_value == 0) { 5275 err = check_helper_mem_access(env, regno - 1, 0, 5276 zero_size_allowed, 5277 meta); 5278 if (err) 5279 return err; 5280 } 5281 5282 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5283 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5284 regno); 5285 return -EACCES; 5286 } 5287 err = check_helper_mem_access(env, regno - 1, 5288 reg->umax_value, 5289 zero_size_allowed, meta); 5290 if (!err) 5291 err = mark_chain_precision(env, regno); 5292 return err; 5293 } 5294 5295 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5296 u32 regno, u32 mem_size) 5297 { 5298 bool may_be_null = type_may_be_null(reg->type); 5299 struct bpf_reg_state saved_reg; 5300 struct bpf_call_arg_meta meta; 5301 int err; 5302 5303 if (register_is_null(reg)) 5304 return 0; 5305 5306 memset(&meta, 0, sizeof(meta)); 5307 /* Assuming that the register contains a value check if the memory 5308 * access is safe. Temporarily save and restore the register's state as 5309 * the conversion shouldn't be visible to a caller. 5310 */ 5311 if (may_be_null) { 5312 saved_reg = *reg; 5313 mark_ptr_not_null_reg(reg); 5314 } 5315 5316 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 5317 /* Check access for BPF_WRITE */ 5318 meta.raw_mode = true; 5319 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 5320 5321 if (may_be_null) 5322 *reg = saved_reg; 5323 5324 return err; 5325 } 5326 5327 int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5328 u32 regno) 5329 { 5330 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 5331 bool may_be_null = type_may_be_null(mem_reg->type); 5332 struct bpf_reg_state saved_reg; 5333 struct bpf_call_arg_meta meta; 5334 int err; 5335 5336 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 5337 5338 memset(&meta, 0, sizeof(meta)); 5339 5340 if (may_be_null) { 5341 saved_reg = *mem_reg; 5342 mark_ptr_not_null_reg(mem_reg); 5343 } 5344 5345 err = check_mem_size_reg(env, reg, regno, true, &meta); 5346 /* Check access for BPF_WRITE */ 5347 meta.raw_mode = true; 5348 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 5349 5350 if (may_be_null) 5351 *mem_reg = saved_reg; 5352 return err; 5353 } 5354 5355 /* Implementation details: 5356 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 5357 * Two bpf_map_lookups (even with the same key) will have different reg->id. 5358 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 5359 * value_or_null->value transition, since the verifier only cares about 5360 * the range of access to valid map value pointer and doesn't care about actual 5361 * address of the map element. 5362 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 5363 * reg->id > 0 after value_or_null->value transition. By doing so 5364 * two bpf_map_lookups will be considered two different pointers that 5365 * point to different bpf_spin_locks. 5366 * The verifier allows taking only one bpf_spin_lock at a time to avoid 5367 * dead-locks. 5368 * Since only one bpf_spin_lock is allowed the checks are simpler than 5369 * reg_is_refcounted() logic. The verifier needs to remember only 5370 * one spin_lock instead of array of acquired_refs. 5371 * cur_state->active_spin_lock remembers which map value element got locked 5372 * and clears it after bpf_spin_unlock. 5373 */ 5374 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 5375 bool is_lock) 5376 { 5377 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5378 struct bpf_verifier_state *cur = env->cur_state; 5379 bool is_const = tnum_is_const(reg->var_off); 5380 struct bpf_map *map = reg->map_ptr; 5381 u64 val = reg->var_off.value; 5382 5383 if (!is_const) { 5384 verbose(env, 5385 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 5386 regno); 5387 return -EINVAL; 5388 } 5389 if (!map->btf) { 5390 verbose(env, 5391 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 5392 map->name); 5393 return -EINVAL; 5394 } 5395 if (!map_value_has_spin_lock(map)) { 5396 if (map->spin_lock_off == -E2BIG) 5397 verbose(env, 5398 "map '%s' has more than one 'struct bpf_spin_lock'\n", 5399 map->name); 5400 else if (map->spin_lock_off == -ENOENT) 5401 verbose(env, 5402 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 5403 map->name); 5404 else 5405 verbose(env, 5406 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 5407 map->name); 5408 return -EINVAL; 5409 } 5410 if (map->spin_lock_off != val + reg->off) { 5411 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 5412 val + reg->off); 5413 return -EINVAL; 5414 } 5415 if (is_lock) { 5416 if (cur->active_spin_lock) { 5417 verbose(env, 5418 "Locking two bpf_spin_locks are not allowed\n"); 5419 return -EINVAL; 5420 } 5421 cur->active_spin_lock = reg->id; 5422 } else { 5423 if (!cur->active_spin_lock) { 5424 verbose(env, "bpf_spin_unlock without taking a lock\n"); 5425 return -EINVAL; 5426 } 5427 if (cur->active_spin_lock != reg->id) { 5428 verbose(env, "bpf_spin_unlock of different lock\n"); 5429 return -EINVAL; 5430 } 5431 cur->active_spin_lock = 0; 5432 } 5433 return 0; 5434 } 5435 5436 static int process_timer_func(struct bpf_verifier_env *env, int regno, 5437 struct bpf_call_arg_meta *meta) 5438 { 5439 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5440 bool is_const = tnum_is_const(reg->var_off); 5441 struct bpf_map *map = reg->map_ptr; 5442 u64 val = reg->var_off.value; 5443 5444 if (!is_const) { 5445 verbose(env, 5446 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 5447 regno); 5448 return -EINVAL; 5449 } 5450 if (!map->btf) { 5451 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 5452 map->name); 5453 return -EINVAL; 5454 } 5455 if (!map_value_has_timer(map)) { 5456 if (map->timer_off == -E2BIG) 5457 verbose(env, 5458 "map '%s' has more than one 'struct bpf_timer'\n", 5459 map->name); 5460 else if (map->timer_off == -ENOENT) 5461 verbose(env, 5462 "map '%s' doesn't have 'struct bpf_timer'\n", 5463 map->name); 5464 else 5465 verbose(env, 5466 "map '%s' is not a struct type or bpf_timer is mangled\n", 5467 map->name); 5468 return -EINVAL; 5469 } 5470 if (map->timer_off != val + reg->off) { 5471 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 5472 val + reg->off, map->timer_off); 5473 return -EINVAL; 5474 } 5475 if (meta->map_ptr) { 5476 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 5477 return -EFAULT; 5478 } 5479 meta->map_uid = reg->map_uid; 5480 meta->map_ptr = map; 5481 return 0; 5482 } 5483 5484 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 5485 struct bpf_call_arg_meta *meta) 5486 { 5487 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5488 struct bpf_map_value_off_desc *off_desc; 5489 struct bpf_map *map_ptr = reg->map_ptr; 5490 u32 kptr_off; 5491 int ret; 5492 5493 if (!tnum_is_const(reg->var_off)) { 5494 verbose(env, 5495 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 5496 regno); 5497 return -EINVAL; 5498 } 5499 if (!map_ptr->btf) { 5500 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 5501 map_ptr->name); 5502 return -EINVAL; 5503 } 5504 if (!map_value_has_kptrs(map_ptr)) { 5505 ret = PTR_ERR_OR_ZERO(map_ptr->kptr_off_tab); 5506 if (ret == -E2BIG) 5507 verbose(env, "map '%s' has more than %d kptr\n", map_ptr->name, 5508 BPF_MAP_VALUE_OFF_MAX); 5509 else if (ret == -EEXIST) 5510 verbose(env, "map '%s' has repeating kptr BTF tags\n", map_ptr->name); 5511 else 5512 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 5513 return -EINVAL; 5514 } 5515 5516 meta->map_ptr = map_ptr; 5517 kptr_off = reg->off + reg->var_off.value; 5518 off_desc = bpf_map_kptr_off_contains(map_ptr, kptr_off); 5519 if (!off_desc) { 5520 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 5521 return -EACCES; 5522 } 5523 if (off_desc->type != BPF_KPTR_REF) { 5524 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 5525 return -EACCES; 5526 } 5527 meta->kptr_off_desc = off_desc; 5528 return 0; 5529 } 5530 5531 static bool arg_type_is_mem_size(enum bpf_arg_type type) 5532 { 5533 return type == ARG_CONST_SIZE || 5534 type == ARG_CONST_SIZE_OR_ZERO; 5535 } 5536 5537 static bool arg_type_is_alloc_size(enum bpf_arg_type type) 5538 { 5539 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; 5540 } 5541 5542 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 5543 { 5544 return type == ARG_PTR_TO_INT || 5545 type == ARG_PTR_TO_LONG; 5546 } 5547 5548 static bool arg_type_is_release(enum bpf_arg_type type) 5549 { 5550 return type & OBJ_RELEASE; 5551 } 5552 5553 static bool arg_type_is_dynptr(enum bpf_arg_type type) 5554 { 5555 return base_type(type) == ARG_PTR_TO_DYNPTR; 5556 } 5557 5558 static int int_ptr_type_to_size(enum bpf_arg_type type) 5559 { 5560 if (type == ARG_PTR_TO_INT) 5561 return sizeof(u32); 5562 else if (type == ARG_PTR_TO_LONG) 5563 return sizeof(u64); 5564 5565 return -EINVAL; 5566 } 5567 5568 static int resolve_map_arg_type(struct bpf_verifier_env *env, 5569 const struct bpf_call_arg_meta *meta, 5570 enum bpf_arg_type *arg_type) 5571 { 5572 if (!meta->map_ptr) { 5573 /* kernel subsystem misconfigured verifier */ 5574 verbose(env, "invalid map_ptr to access map->type\n"); 5575 return -EACCES; 5576 } 5577 5578 switch (meta->map_ptr->map_type) { 5579 case BPF_MAP_TYPE_SOCKMAP: 5580 case BPF_MAP_TYPE_SOCKHASH: 5581 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 5582 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 5583 } else { 5584 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 5585 return -EINVAL; 5586 } 5587 break; 5588 case BPF_MAP_TYPE_BLOOM_FILTER: 5589 if (meta->func_id == BPF_FUNC_map_peek_elem) 5590 *arg_type = ARG_PTR_TO_MAP_VALUE; 5591 break; 5592 default: 5593 break; 5594 } 5595 return 0; 5596 } 5597 5598 struct bpf_reg_types { 5599 const enum bpf_reg_type types[10]; 5600 u32 *btf_id; 5601 }; 5602 5603 static const struct bpf_reg_types map_key_value_types = { 5604 .types = { 5605 PTR_TO_STACK, 5606 PTR_TO_PACKET, 5607 PTR_TO_PACKET_META, 5608 PTR_TO_MAP_KEY, 5609 PTR_TO_MAP_VALUE, 5610 }, 5611 }; 5612 5613 static const struct bpf_reg_types sock_types = { 5614 .types = { 5615 PTR_TO_SOCK_COMMON, 5616 PTR_TO_SOCKET, 5617 PTR_TO_TCP_SOCK, 5618 PTR_TO_XDP_SOCK, 5619 }, 5620 }; 5621 5622 #ifdef CONFIG_NET 5623 static const struct bpf_reg_types btf_id_sock_common_types = { 5624 .types = { 5625 PTR_TO_SOCK_COMMON, 5626 PTR_TO_SOCKET, 5627 PTR_TO_TCP_SOCK, 5628 PTR_TO_XDP_SOCK, 5629 PTR_TO_BTF_ID, 5630 }, 5631 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5632 }; 5633 #endif 5634 5635 static const struct bpf_reg_types mem_types = { 5636 .types = { 5637 PTR_TO_STACK, 5638 PTR_TO_PACKET, 5639 PTR_TO_PACKET_META, 5640 PTR_TO_MAP_KEY, 5641 PTR_TO_MAP_VALUE, 5642 PTR_TO_MEM, 5643 PTR_TO_MEM | MEM_ALLOC, 5644 PTR_TO_BUF, 5645 }, 5646 }; 5647 5648 static const struct bpf_reg_types int_ptr_types = { 5649 .types = { 5650 PTR_TO_STACK, 5651 PTR_TO_PACKET, 5652 PTR_TO_PACKET_META, 5653 PTR_TO_MAP_KEY, 5654 PTR_TO_MAP_VALUE, 5655 }, 5656 }; 5657 5658 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 5659 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 5660 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 5661 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM | MEM_ALLOC } }; 5662 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 5663 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 5664 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 5665 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_BTF_ID | MEM_PERCPU } }; 5666 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 5667 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 5668 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5669 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 5670 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5671 5672 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 5673 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 5674 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 5675 [ARG_CONST_SIZE] = &scalar_types, 5676 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 5677 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 5678 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 5679 [ARG_PTR_TO_CTX] = &context_types, 5680 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 5681 #ifdef CONFIG_NET 5682 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 5683 #endif 5684 [ARG_PTR_TO_SOCKET] = &fullsock_types, 5685 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 5686 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 5687 [ARG_PTR_TO_MEM] = &mem_types, 5688 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 5689 [ARG_PTR_TO_INT] = &int_ptr_types, 5690 [ARG_PTR_TO_LONG] = &int_ptr_types, 5691 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 5692 [ARG_PTR_TO_FUNC] = &func_ptr_types, 5693 [ARG_PTR_TO_STACK] = &stack_ptr_types, 5694 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 5695 [ARG_PTR_TO_TIMER] = &timer_types, 5696 [ARG_PTR_TO_KPTR] = &kptr_types, 5697 [ARG_PTR_TO_DYNPTR] = &stack_ptr_types, 5698 }; 5699 5700 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 5701 enum bpf_arg_type arg_type, 5702 const u32 *arg_btf_id, 5703 struct bpf_call_arg_meta *meta) 5704 { 5705 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5706 enum bpf_reg_type expected, type = reg->type; 5707 const struct bpf_reg_types *compatible; 5708 int i, j; 5709 5710 compatible = compatible_reg_types[base_type(arg_type)]; 5711 if (!compatible) { 5712 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 5713 return -EFAULT; 5714 } 5715 5716 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 5717 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 5718 * 5719 * Same for MAYBE_NULL: 5720 * 5721 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 5722 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 5723 * 5724 * Therefore we fold these flags depending on the arg_type before comparison. 5725 */ 5726 if (arg_type & MEM_RDONLY) 5727 type &= ~MEM_RDONLY; 5728 if (arg_type & PTR_MAYBE_NULL) 5729 type &= ~PTR_MAYBE_NULL; 5730 5731 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 5732 expected = compatible->types[i]; 5733 if (expected == NOT_INIT) 5734 break; 5735 5736 if (type == expected) 5737 goto found; 5738 } 5739 5740 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 5741 for (j = 0; j + 1 < i; j++) 5742 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 5743 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 5744 return -EACCES; 5745 5746 found: 5747 if (reg->type == PTR_TO_BTF_ID) { 5748 /* For bpf_sk_release, it needs to match against first member 5749 * 'struct sock_common', hence make an exception for it. This 5750 * allows bpf_sk_release to work for multiple socket types. 5751 */ 5752 bool strict_type_match = arg_type_is_release(arg_type) && 5753 meta->func_id != BPF_FUNC_sk_release; 5754 5755 if (!arg_btf_id) { 5756 if (!compatible->btf_id) { 5757 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 5758 return -EFAULT; 5759 } 5760 arg_btf_id = compatible->btf_id; 5761 } 5762 5763 if (meta->func_id == BPF_FUNC_kptr_xchg) { 5764 if (map_kptr_match_type(env, meta->kptr_off_desc, reg, regno)) 5765 return -EACCES; 5766 } else if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5767 btf_vmlinux, *arg_btf_id, 5768 strict_type_match)) { 5769 verbose(env, "R%d is of type %s but %s is expected\n", 5770 regno, kernel_type_name(reg->btf, reg->btf_id), 5771 kernel_type_name(btf_vmlinux, *arg_btf_id)); 5772 return -EACCES; 5773 } 5774 } 5775 5776 return 0; 5777 } 5778 5779 int check_func_arg_reg_off(struct bpf_verifier_env *env, 5780 const struct bpf_reg_state *reg, int regno, 5781 enum bpf_arg_type arg_type) 5782 { 5783 enum bpf_reg_type type = reg->type; 5784 bool fixed_off_ok = false; 5785 5786 switch ((u32)type) { 5787 /* Pointer types where reg offset is explicitly allowed: */ 5788 case PTR_TO_STACK: 5789 if (arg_type_is_dynptr(arg_type) && reg->off % BPF_REG_SIZE) { 5790 verbose(env, "cannot pass in dynptr at an offset\n"); 5791 return -EINVAL; 5792 } 5793 fallthrough; 5794 case PTR_TO_PACKET: 5795 case PTR_TO_PACKET_META: 5796 case PTR_TO_MAP_KEY: 5797 case PTR_TO_MAP_VALUE: 5798 case PTR_TO_MEM: 5799 case PTR_TO_MEM | MEM_RDONLY: 5800 case PTR_TO_MEM | MEM_ALLOC: 5801 case PTR_TO_BUF: 5802 case PTR_TO_BUF | MEM_RDONLY: 5803 case SCALAR_VALUE: 5804 /* Some of the argument types nevertheless require a 5805 * zero register offset. 5806 */ 5807 if (base_type(arg_type) != ARG_PTR_TO_ALLOC_MEM) 5808 return 0; 5809 break; 5810 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 5811 * fixed offset. 5812 */ 5813 case PTR_TO_BTF_ID: 5814 /* When referenced PTR_TO_BTF_ID is passed to release function, 5815 * it's fixed offset must be 0. In the other cases, fixed offset 5816 * can be non-zero. 5817 */ 5818 if (arg_type_is_release(arg_type) && reg->off) { 5819 verbose(env, "R%d must have zero offset when passed to release func\n", 5820 regno); 5821 return -EINVAL; 5822 } 5823 /* For arg is release pointer, fixed_off_ok must be false, but 5824 * we already checked and rejected reg->off != 0 above, so set 5825 * to true to allow fixed offset for all other cases. 5826 */ 5827 fixed_off_ok = true; 5828 break; 5829 default: 5830 break; 5831 } 5832 return __check_ptr_off_reg(env, reg, regno, fixed_off_ok); 5833 } 5834 5835 static u32 stack_slot_get_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 5836 { 5837 struct bpf_func_state *state = func(env, reg); 5838 int spi = get_spi(reg->off); 5839 5840 return state->stack[spi].spilled_ptr.id; 5841 } 5842 5843 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 5844 struct bpf_call_arg_meta *meta, 5845 const struct bpf_func_proto *fn) 5846 { 5847 u32 regno = BPF_REG_1 + arg; 5848 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5849 enum bpf_arg_type arg_type = fn->arg_type[arg]; 5850 enum bpf_reg_type type = reg->type; 5851 int err = 0; 5852 5853 if (arg_type == ARG_DONTCARE) 5854 return 0; 5855 5856 err = check_reg_arg(env, regno, SRC_OP); 5857 if (err) 5858 return err; 5859 5860 if (arg_type == ARG_ANYTHING) { 5861 if (is_pointer_value(env, regno)) { 5862 verbose(env, "R%d leaks addr into helper function\n", 5863 regno); 5864 return -EACCES; 5865 } 5866 return 0; 5867 } 5868 5869 if (type_is_pkt_pointer(type) && 5870 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 5871 verbose(env, "helper access to the packet is not allowed\n"); 5872 return -EACCES; 5873 } 5874 5875 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 5876 err = resolve_map_arg_type(env, meta, &arg_type); 5877 if (err) 5878 return err; 5879 } 5880 5881 if (register_is_null(reg) && type_may_be_null(arg_type)) 5882 /* A NULL register has a SCALAR_VALUE type, so skip 5883 * type checking. 5884 */ 5885 goto skip_type_check; 5886 5887 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg], meta); 5888 if (err) 5889 return err; 5890 5891 err = check_func_arg_reg_off(env, reg, regno, arg_type); 5892 if (err) 5893 return err; 5894 5895 skip_type_check: 5896 if (arg_type_is_release(arg_type)) { 5897 if (arg_type_is_dynptr(arg_type)) { 5898 struct bpf_func_state *state = func(env, reg); 5899 int spi = get_spi(reg->off); 5900 5901 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) || 5902 !state->stack[spi].spilled_ptr.id) { 5903 verbose(env, "arg %d is an unacquired reference\n", regno); 5904 return -EINVAL; 5905 } 5906 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 5907 verbose(env, "R%d must be referenced when passed to release function\n", 5908 regno); 5909 return -EINVAL; 5910 } 5911 if (meta->release_regno) { 5912 verbose(env, "verifier internal error: more than one release argument\n"); 5913 return -EFAULT; 5914 } 5915 meta->release_regno = regno; 5916 } 5917 5918 if (reg->ref_obj_id) { 5919 if (meta->ref_obj_id) { 5920 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 5921 regno, reg->ref_obj_id, 5922 meta->ref_obj_id); 5923 return -EFAULT; 5924 } 5925 meta->ref_obj_id = reg->ref_obj_id; 5926 } 5927 5928 if (arg_type == ARG_CONST_MAP_PTR) { 5929 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 5930 if (meta->map_ptr) { 5931 /* Use map_uid (which is unique id of inner map) to reject: 5932 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 5933 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 5934 * if (inner_map1 && inner_map2) { 5935 * timer = bpf_map_lookup_elem(inner_map1); 5936 * if (timer) 5937 * // mismatch would have been allowed 5938 * bpf_timer_init(timer, inner_map2); 5939 * } 5940 * 5941 * Comparing map_ptr is enough to distinguish normal and outer maps. 5942 */ 5943 if (meta->map_ptr != reg->map_ptr || 5944 meta->map_uid != reg->map_uid) { 5945 verbose(env, 5946 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 5947 meta->map_uid, reg->map_uid); 5948 return -EINVAL; 5949 } 5950 } 5951 meta->map_ptr = reg->map_ptr; 5952 meta->map_uid = reg->map_uid; 5953 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 5954 /* bpf_map_xxx(..., map_ptr, ..., key) call: 5955 * check that [key, key + map->key_size) are within 5956 * stack limits and initialized 5957 */ 5958 if (!meta->map_ptr) { 5959 /* in function declaration map_ptr must come before 5960 * map_key, so that it's verified and known before 5961 * we have to check map_key here. Otherwise it means 5962 * that kernel subsystem misconfigured verifier 5963 */ 5964 verbose(env, "invalid map_ptr to access map->key\n"); 5965 return -EACCES; 5966 } 5967 err = check_helper_mem_access(env, regno, 5968 meta->map_ptr->key_size, false, 5969 NULL); 5970 } else if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 5971 if (type_may_be_null(arg_type) && register_is_null(reg)) 5972 return 0; 5973 5974 /* bpf_map_xxx(..., map_ptr, ..., value) call: 5975 * check [value, value + map->value_size) validity 5976 */ 5977 if (!meta->map_ptr) { 5978 /* kernel subsystem misconfigured verifier */ 5979 verbose(env, "invalid map_ptr to access map->value\n"); 5980 return -EACCES; 5981 } 5982 meta->raw_mode = arg_type & MEM_UNINIT; 5983 err = check_helper_mem_access(env, regno, 5984 meta->map_ptr->value_size, false, 5985 meta); 5986 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) { 5987 if (!reg->btf_id) { 5988 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 5989 return -EACCES; 5990 } 5991 meta->ret_btf = reg->btf; 5992 meta->ret_btf_id = reg->btf_id; 5993 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 5994 if (meta->func_id == BPF_FUNC_spin_lock) { 5995 if (process_spin_lock(env, regno, true)) 5996 return -EACCES; 5997 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 5998 if (process_spin_lock(env, regno, false)) 5999 return -EACCES; 6000 } else { 6001 verbose(env, "verifier internal error\n"); 6002 return -EFAULT; 6003 } 6004 } else if (arg_type == ARG_PTR_TO_TIMER) { 6005 if (process_timer_func(env, regno, meta)) 6006 return -EACCES; 6007 } else if (arg_type == ARG_PTR_TO_FUNC) { 6008 meta->subprogno = reg->subprogno; 6009 } else if (base_type(arg_type) == ARG_PTR_TO_MEM) { 6010 /* The access to this pointer is only checked when we hit the 6011 * next is_mem_size argument below. 6012 */ 6013 meta->raw_mode = arg_type & MEM_UNINIT; 6014 } else if (arg_type_is_mem_size(arg_type)) { 6015 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 6016 6017 err = check_mem_size_reg(env, reg, regno, zero_size_allowed, meta); 6018 } else if (arg_type_is_dynptr(arg_type)) { 6019 if (arg_type & MEM_UNINIT) { 6020 if (!is_dynptr_reg_valid_uninit(env, reg)) { 6021 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 6022 return -EINVAL; 6023 } 6024 6025 /* We only support one dynptr being uninitialized at the moment, 6026 * which is sufficient for the helper functions we have right now. 6027 */ 6028 if (meta->uninit_dynptr_regno) { 6029 verbose(env, "verifier internal error: multiple uninitialized dynptr args\n"); 6030 return -EFAULT; 6031 } 6032 6033 meta->uninit_dynptr_regno = regno; 6034 } else if (!is_dynptr_reg_valid_init(env, reg, arg_type)) { 6035 const char *err_extra = ""; 6036 6037 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 6038 case DYNPTR_TYPE_LOCAL: 6039 err_extra = "local "; 6040 break; 6041 case DYNPTR_TYPE_RINGBUF: 6042 err_extra = "ringbuf "; 6043 break; 6044 default: 6045 break; 6046 } 6047 6048 verbose(env, "Expected an initialized %sdynptr as arg #%d\n", 6049 err_extra, arg + 1); 6050 return -EINVAL; 6051 } 6052 } else if (arg_type_is_alloc_size(arg_type)) { 6053 if (!tnum_is_const(reg->var_off)) { 6054 verbose(env, "R%d is not a known constant'\n", 6055 regno); 6056 return -EACCES; 6057 } 6058 meta->mem_size = reg->var_off.value; 6059 } else if (arg_type_is_int_ptr(arg_type)) { 6060 int size = int_ptr_type_to_size(arg_type); 6061 6062 err = check_helper_mem_access(env, regno, size, false, meta); 6063 if (err) 6064 return err; 6065 err = check_ptr_alignment(env, reg, 0, size, true); 6066 } else if (arg_type == ARG_PTR_TO_CONST_STR) { 6067 struct bpf_map *map = reg->map_ptr; 6068 int map_off; 6069 u64 map_addr; 6070 char *str_ptr; 6071 6072 if (!bpf_map_is_rdonly(map)) { 6073 verbose(env, "R%d does not point to a readonly map'\n", regno); 6074 return -EACCES; 6075 } 6076 6077 if (!tnum_is_const(reg->var_off)) { 6078 verbose(env, "R%d is not a constant address'\n", regno); 6079 return -EACCES; 6080 } 6081 6082 if (!map->ops->map_direct_value_addr) { 6083 verbose(env, "no direct value access support for this map type\n"); 6084 return -EACCES; 6085 } 6086 6087 err = check_map_access(env, regno, reg->off, 6088 map->value_size - reg->off, false, 6089 ACCESS_HELPER); 6090 if (err) 6091 return err; 6092 6093 map_off = reg->off + reg->var_off.value; 6094 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 6095 if (err) { 6096 verbose(env, "direct value access on string failed\n"); 6097 return err; 6098 } 6099 6100 str_ptr = (char *)(long)(map_addr); 6101 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 6102 verbose(env, "string is not zero-terminated\n"); 6103 return -EINVAL; 6104 } 6105 } else if (arg_type == ARG_PTR_TO_KPTR) { 6106 if (process_kptr_func(env, regno, meta)) 6107 return -EACCES; 6108 } 6109 6110 return err; 6111 } 6112 6113 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 6114 { 6115 enum bpf_attach_type eatype = env->prog->expected_attach_type; 6116 enum bpf_prog_type type = resolve_prog_type(env->prog); 6117 6118 if (func_id != BPF_FUNC_map_update_elem) 6119 return false; 6120 6121 /* It's not possible to get access to a locked struct sock in these 6122 * contexts, so updating is safe. 6123 */ 6124 switch (type) { 6125 case BPF_PROG_TYPE_TRACING: 6126 if (eatype == BPF_TRACE_ITER) 6127 return true; 6128 break; 6129 case BPF_PROG_TYPE_SOCKET_FILTER: 6130 case BPF_PROG_TYPE_SCHED_CLS: 6131 case BPF_PROG_TYPE_SCHED_ACT: 6132 case BPF_PROG_TYPE_XDP: 6133 case BPF_PROG_TYPE_SK_REUSEPORT: 6134 case BPF_PROG_TYPE_FLOW_DISSECTOR: 6135 case BPF_PROG_TYPE_SK_LOOKUP: 6136 return true; 6137 default: 6138 break; 6139 } 6140 6141 verbose(env, "cannot update sockmap in this context\n"); 6142 return false; 6143 } 6144 6145 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 6146 { 6147 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64); 6148 } 6149 6150 static int check_map_func_compatibility(struct bpf_verifier_env *env, 6151 struct bpf_map *map, int func_id) 6152 { 6153 if (!map) 6154 return 0; 6155 6156 /* We need a two way check, first is from map perspective ... */ 6157 switch (map->map_type) { 6158 case BPF_MAP_TYPE_PROG_ARRAY: 6159 if (func_id != BPF_FUNC_tail_call) 6160 goto error; 6161 break; 6162 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 6163 if (func_id != BPF_FUNC_perf_event_read && 6164 func_id != BPF_FUNC_perf_event_output && 6165 func_id != BPF_FUNC_skb_output && 6166 func_id != BPF_FUNC_perf_event_read_value && 6167 func_id != BPF_FUNC_xdp_output) 6168 goto error; 6169 break; 6170 case BPF_MAP_TYPE_RINGBUF: 6171 if (func_id != BPF_FUNC_ringbuf_output && 6172 func_id != BPF_FUNC_ringbuf_reserve && 6173 func_id != BPF_FUNC_ringbuf_query && 6174 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 6175 func_id != BPF_FUNC_ringbuf_submit_dynptr && 6176 func_id != BPF_FUNC_ringbuf_discard_dynptr) 6177 goto error; 6178 break; 6179 case BPF_MAP_TYPE_STACK_TRACE: 6180 if (func_id != BPF_FUNC_get_stackid) 6181 goto error; 6182 break; 6183 case BPF_MAP_TYPE_CGROUP_ARRAY: 6184 if (func_id != BPF_FUNC_skb_under_cgroup && 6185 func_id != BPF_FUNC_current_task_under_cgroup) 6186 goto error; 6187 break; 6188 case BPF_MAP_TYPE_CGROUP_STORAGE: 6189 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 6190 if (func_id != BPF_FUNC_get_local_storage) 6191 goto error; 6192 break; 6193 case BPF_MAP_TYPE_DEVMAP: 6194 case BPF_MAP_TYPE_DEVMAP_HASH: 6195 if (func_id != BPF_FUNC_redirect_map && 6196 func_id != BPF_FUNC_map_lookup_elem) 6197 goto error; 6198 break; 6199 /* Restrict bpf side of cpumap and xskmap, open when use-cases 6200 * appear. 6201 */ 6202 case BPF_MAP_TYPE_CPUMAP: 6203 if (func_id != BPF_FUNC_redirect_map) 6204 goto error; 6205 break; 6206 case BPF_MAP_TYPE_XSKMAP: 6207 if (func_id != BPF_FUNC_redirect_map && 6208 func_id != BPF_FUNC_map_lookup_elem) 6209 goto error; 6210 break; 6211 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 6212 case BPF_MAP_TYPE_HASH_OF_MAPS: 6213 if (func_id != BPF_FUNC_map_lookup_elem) 6214 goto error; 6215 break; 6216 case BPF_MAP_TYPE_SOCKMAP: 6217 if (func_id != BPF_FUNC_sk_redirect_map && 6218 func_id != BPF_FUNC_sock_map_update && 6219 func_id != BPF_FUNC_map_delete_elem && 6220 func_id != BPF_FUNC_msg_redirect_map && 6221 func_id != BPF_FUNC_sk_select_reuseport && 6222 func_id != BPF_FUNC_map_lookup_elem && 6223 !may_update_sockmap(env, func_id)) 6224 goto error; 6225 break; 6226 case BPF_MAP_TYPE_SOCKHASH: 6227 if (func_id != BPF_FUNC_sk_redirect_hash && 6228 func_id != BPF_FUNC_sock_hash_update && 6229 func_id != BPF_FUNC_map_delete_elem && 6230 func_id != BPF_FUNC_msg_redirect_hash && 6231 func_id != BPF_FUNC_sk_select_reuseport && 6232 func_id != BPF_FUNC_map_lookup_elem && 6233 !may_update_sockmap(env, func_id)) 6234 goto error; 6235 break; 6236 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 6237 if (func_id != BPF_FUNC_sk_select_reuseport) 6238 goto error; 6239 break; 6240 case BPF_MAP_TYPE_QUEUE: 6241 case BPF_MAP_TYPE_STACK: 6242 if (func_id != BPF_FUNC_map_peek_elem && 6243 func_id != BPF_FUNC_map_pop_elem && 6244 func_id != BPF_FUNC_map_push_elem) 6245 goto error; 6246 break; 6247 case BPF_MAP_TYPE_SK_STORAGE: 6248 if (func_id != BPF_FUNC_sk_storage_get && 6249 func_id != BPF_FUNC_sk_storage_delete) 6250 goto error; 6251 break; 6252 case BPF_MAP_TYPE_INODE_STORAGE: 6253 if (func_id != BPF_FUNC_inode_storage_get && 6254 func_id != BPF_FUNC_inode_storage_delete) 6255 goto error; 6256 break; 6257 case BPF_MAP_TYPE_TASK_STORAGE: 6258 if (func_id != BPF_FUNC_task_storage_get && 6259 func_id != BPF_FUNC_task_storage_delete) 6260 goto error; 6261 break; 6262 case BPF_MAP_TYPE_BLOOM_FILTER: 6263 if (func_id != BPF_FUNC_map_peek_elem && 6264 func_id != BPF_FUNC_map_push_elem) 6265 goto error; 6266 break; 6267 default: 6268 break; 6269 } 6270 6271 /* ... and second from the function itself. */ 6272 switch (func_id) { 6273 case BPF_FUNC_tail_call: 6274 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 6275 goto error; 6276 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 6277 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 6278 return -EINVAL; 6279 } 6280 break; 6281 case BPF_FUNC_perf_event_read: 6282 case BPF_FUNC_perf_event_output: 6283 case BPF_FUNC_perf_event_read_value: 6284 case BPF_FUNC_skb_output: 6285 case BPF_FUNC_xdp_output: 6286 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 6287 goto error; 6288 break; 6289 case BPF_FUNC_ringbuf_output: 6290 case BPF_FUNC_ringbuf_reserve: 6291 case BPF_FUNC_ringbuf_query: 6292 case BPF_FUNC_ringbuf_reserve_dynptr: 6293 case BPF_FUNC_ringbuf_submit_dynptr: 6294 case BPF_FUNC_ringbuf_discard_dynptr: 6295 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 6296 goto error; 6297 break; 6298 case BPF_FUNC_get_stackid: 6299 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 6300 goto error; 6301 break; 6302 case BPF_FUNC_current_task_under_cgroup: 6303 case BPF_FUNC_skb_under_cgroup: 6304 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 6305 goto error; 6306 break; 6307 case BPF_FUNC_redirect_map: 6308 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 6309 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 6310 map->map_type != BPF_MAP_TYPE_CPUMAP && 6311 map->map_type != BPF_MAP_TYPE_XSKMAP) 6312 goto error; 6313 break; 6314 case BPF_FUNC_sk_redirect_map: 6315 case BPF_FUNC_msg_redirect_map: 6316 case BPF_FUNC_sock_map_update: 6317 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 6318 goto error; 6319 break; 6320 case BPF_FUNC_sk_redirect_hash: 6321 case BPF_FUNC_msg_redirect_hash: 6322 case BPF_FUNC_sock_hash_update: 6323 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 6324 goto error; 6325 break; 6326 case BPF_FUNC_get_local_storage: 6327 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 6328 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 6329 goto error; 6330 break; 6331 case BPF_FUNC_sk_select_reuseport: 6332 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 6333 map->map_type != BPF_MAP_TYPE_SOCKMAP && 6334 map->map_type != BPF_MAP_TYPE_SOCKHASH) 6335 goto error; 6336 break; 6337 case BPF_FUNC_map_pop_elem: 6338 if (map->map_type != BPF_MAP_TYPE_QUEUE && 6339 map->map_type != BPF_MAP_TYPE_STACK) 6340 goto error; 6341 break; 6342 case BPF_FUNC_map_peek_elem: 6343 case BPF_FUNC_map_push_elem: 6344 if (map->map_type != BPF_MAP_TYPE_QUEUE && 6345 map->map_type != BPF_MAP_TYPE_STACK && 6346 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 6347 goto error; 6348 break; 6349 case BPF_FUNC_map_lookup_percpu_elem: 6350 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 6351 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 6352 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 6353 goto error; 6354 break; 6355 case BPF_FUNC_sk_storage_get: 6356 case BPF_FUNC_sk_storage_delete: 6357 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 6358 goto error; 6359 break; 6360 case BPF_FUNC_inode_storage_get: 6361 case BPF_FUNC_inode_storage_delete: 6362 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 6363 goto error; 6364 break; 6365 case BPF_FUNC_task_storage_get: 6366 case BPF_FUNC_task_storage_delete: 6367 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 6368 goto error; 6369 break; 6370 default: 6371 break; 6372 } 6373 6374 return 0; 6375 error: 6376 verbose(env, "cannot pass map_type %d into func %s#%d\n", 6377 map->map_type, func_id_name(func_id), func_id); 6378 return -EINVAL; 6379 } 6380 6381 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 6382 { 6383 int count = 0; 6384 6385 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 6386 count++; 6387 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 6388 count++; 6389 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 6390 count++; 6391 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 6392 count++; 6393 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 6394 count++; 6395 6396 /* We only support one arg being in raw mode at the moment, 6397 * which is sufficient for the helper functions we have 6398 * right now. 6399 */ 6400 return count <= 1; 6401 } 6402 6403 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 6404 enum bpf_arg_type arg_next) 6405 { 6406 return (base_type(arg_curr) == ARG_PTR_TO_MEM) != 6407 arg_type_is_mem_size(arg_next); 6408 } 6409 6410 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 6411 { 6412 /* bpf_xxx(..., buf, len) call will access 'len' 6413 * bytes from memory 'buf'. Both arg types need 6414 * to be paired, so make sure there's no buggy 6415 * helper function specification. 6416 */ 6417 if (arg_type_is_mem_size(fn->arg1_type) || 6418 base_type(fn->arg5_type) == ARG_PTR_TO_MEM || 6419 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 6420 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 6421 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 6422 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 6423 return false; 6424 6425 return true; 6426 } 6427 6428 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 6429 { 6430 int count = 0; 6431 6432 if (arg_type_may_be_refcounted(fn->arg1_type)) 6433 count++; 6434 if (arg_type_may_be_refcounted(fn->arg2_type)) 6435 count++; 6436 if (arg_type_may_be_refcounted(fn->arg3_type)) 6437 count++; 6438 if (arg_type_may_be_refcounted(fn->arg4_type)) 6439 count++; 6440 if (arg_type_may_be_refcounted(fn->arg5_type)) 6441 count++; 6442 6443 /* A reference acquiring function cannot acquire 6444 * another refcounted ptr. 6445 */ 6446 if (may_be_acquire_function(func_id) && count) 6447 return false; 6448 6449 /* We only support one arg being unreferenced at the moment, 6450 * which is sufficient for the helper functions we have right now. 6451 */ 6452 return count <= 1; 6453 } 6454 6455 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 6456 { 6457 int i; 6458 6459 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 6460 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 6461 return false; 6462 6463 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i]) 6464 return false; 6465 } 6466 6467 return true; 6468 } 6469 6470 static int check_func_proto(const struct bpf_func_proto *fn, int func_id, 6471 struct bpf_call_arg_meta *meta) 6472 { 6473 return check_raw_mode_ok(fn) && 6474 check_arg_pair_ok(fn) && 6475 check_btf_id_ok(fn) && 6476 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 6477 } 6478 6479 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 6480 * are now invalid, so turn them into unknown SCALAR_VALUE. 6481 */ 6482 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 6483 struct bpf_func_state *state) 6484 { 6485 struct bpf_reg_state *regs = state->regs, *reg; 6486 int i; 6487 6488 for (i = 0; i < MAX_BPF_REG; i++) 6489 if (reg_is_pkt_pointer_any(®s[i])) 6490 mark_reg_unknown(env, regs, i); 6491 6492 bpf_for_each_spilled_reg(i, state, reg) { 6493 if (!reg) 6494 continue; 6495 if (reg_is_pkt_pointer_any(reg)) 6496 __mark_reg_unknown(env, reg); 6497 } 6498 } 6499 6500 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 6501 { 6502 struct bpf_verifier_state *vstate = env->cur_state; 6503 int i; 6504 6505 for (i = 0; i <= vstate->curframe; i++) 6506 __clear_all_pkt_pointers(env, vstate->frame[i]); 6507 } 6508 6509 enum { 6510 AT_PKT_END = -1, 6511 BEYOND_PKT_END = -2, 6512 }; 6513 6514 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 6515 { 6516 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6517 struct bpf_reg_state *reg = &state->regs[regn]; 6518 6519 if (reg->type != PTR_TO_PACKET) 6520 /* PTR_TO_PACKET_META is not supported yet */ 6521 return; 6522 6523 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 6524 * How far beyond pkt_end it goes is unknown. 6525 * if (!range_open) it's the case of pkt >= pkt_end 6526 * if (range_open) it's the case of pkt > pkt_end 6527 * hence this pointer is at least 1 byte bigger than pkt_end 6528 */ 6529 if (range_open) 6530 reg->range = BEYOND_PKT_END; 6531 else 6532 reg->range = AT_PKT_END; 6533 } 6534 6535 static void release_reg_references(struct bpf_verifier_env *env, 6536 struct bpf_func_state *state, 6537 int ref_obj_id) 6538 { 6539 struct bpf_reg_state *regs = state->regs, *reg; 6540 int i; 6541 6542 for (i = 0; i < MAX_BPF_REG; i++) 6543 if (regs[i].ref_obj_id == ref_obj_id) 6544 mark_reg_unknown(env, regs, i); 6545 6546 bpf_for_each_spilled_reg(i, state, reg) { 6547 if (!reg) 6548 continue; 6549 if (reg->ref_obj_id == ref_obj_id) 6550 __mark_reg_unknown(env, reg); 6551 } 6552 } 6553 6554 /* The pointer with the specified id has released its reference to kernel 6555 * resources. Identify all copies of the same pointer and clear the reference. 6556 */ 6557 static int release_reference(struct bpf_verifier_env *env, 6558 int ref_obj_id) 6559 { 6560 struct bpf_verifier_state *vstate = env->cur_state; 6561 int err; 6562 int i; 6563 6564 err = release_reference_state(cur_func(env), ref_obj_id); 6565 if (err) 6566 return err; 6567 6568 for (i = 0; i <= vstate->curframe; i++) 6569 release_reg_references(env, vstate->frame[i], ref_obj_id); 6570 6571 return 0; 6572 } 6573 6574 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 6575 struct bpf_reg_state *regs) 6576 { 6577 int i; 6578 6579 /* after the call registers r0 - r5 were scratched */ 6580 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6581 mark_reg_not_init(env, regs, caller_saved[i]); 6582 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6583 } 6584 } 6585 6586 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 6587 struct bpf_func_state *caller, 6588 struct bpf_func_state *callee, 6589 int insn_idx); 6590 6591 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6592 int *insn_idx, int subprog, 6593 set_callee_state_fn set_callee_state_cb) 6594 { 6595 struct bpf_verifier_state *state = env->cur_state; 6596 struct bpf_func_info_aux *func_info_aux; 6597 struct bpf_func_state *caller, *callee; 6598 int err; 6599 bool is_global = false; 6600 6601 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 6602 verbose(env, "the call stack of %d frames is too deep\n", 6603 state->curframe + 2); 6604 return -E2BIG; 6605 } 6606 6607 caller = state->frame[state->curframe]; 6608 if (state->frame[state->curframe + 1]) { 6609 verbose(env, "verifier bug. Frame %d already allocated\n", 6610 state->curframe + 1); 6611 return -EFAULT; 6612 } 6613 6614 func_info_aux = env->prog->aux->func_info_aux; 6615 if (func_info_aux) 6616 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6617 err = btf_check_subprog_arg_match(env, subprog, caller->regs); 6618 if (err == -EFAULT) 6619 return err; 6620 if (is_global) { 6621 if (err) { 6622 verbose(env, "Caller passes invalid args into func#%d\n", 6623 subprog); 6624 return err; 6625 } else { 6626 if (env->log.level & BPF_LOG_LEVEL) 6627 verbose(env, 6628 "Func#%d is global and valid. Skipping.\n", 6629 subprog); 6630 clear_caller_saved_regs(env, caller->regs); 6631 6632 /* All global functions return a 64-bit SCALAR_VALUE */ 6633 mark_reg_unknown(env, caller->regs, BPF_REG_0); 6634 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6635 6636 /* continue with next insn after call */ 6637 return 0; 6638 } 6639 } 6640 6641 if (insn->code == (BPF_JMP | BPF_CALL) && 6642 insn->src_reg == 0 && 6643 insn->imm == BPF_FUNC_timer_set_callback) { 6644 struct bpf_verifier_state *async_cb; 6645 6646 /* there is no real recursion here. timer callbacks are async */ 6647 env->subprog_info[subprog].is_async_cb = true; 6648 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 6649 *insn_idx, subprog); 6650 if (!async_cb) 6651 return -EFAULT; 6652 callee = async_cb->frame[0]; 6653 callee->async_entry_cnt = caller->async_entry_cnt + 1; 6654 6655 /* Convert bpf_timer_set_callback() args into timer callback args */ 6656 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6657 if (err) 6658 return err; 6659 6660 clear_caller_saved_regs(env, caller->regs); 6661 mark_reg_unknown(env, caller->regs, BPF_REG_0); 6662 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6663 /* continue with next insn after call */ 6664 return 0; 6665 } 6666 6667 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 6668 if (!callee) 6669 return -ENOMEM; 6670 state->frame[state->curframe + 1] = callee; 6671 6672 /* callee cannot access r0, r6 - r9 for reading and has to write 6673 * into its own stack before reading from it. 6674 * callee can read/write into caller's stack 6675 */ 6676 init_func_state(env, callee, 6677 /* remember the callsite, it will be used by bpf_exit */ 6678 *insn_idx /* callsite */, 6679 state->curframe + 1 /* frameno within this callchain */, 6680 subprog /* subprog number within this prog */); 6681 6682 /* Transfer references to the callee */ 6683 err = copy_reference_state(callee, caller); 6684 if (err) 6685 return err; 6686 6687 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6688 if (err) 6689 return err; 6690 6691 clear_caller_saved_regs(env, caller->regs); 6692 6693 /* only increment it after check_reg_arg() finished */ 6694 state->curframe++; 6695 6696 /* and go analyze first insn of the callee */ 6697 *insn_idx = env->subprog_info[subprog].start - 1; 6698 6699 if (env->log.level & BPF_LOG_LEVEL) { 6700 verbose(env, "caller:\n"); 6701 print_verifier_state(env, caller, true); 6702 verbose(env, "callee:\n"); 6703 print_verifier_state(env, callee, true); 6704 } 6705 return 0; 6706 } 6707 6708 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 6709 struct bpf_func_state *caller, 6710 struct bpf_func_state *callee) 6711 { 6712 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 6713 * void *callback_ctx, u64 flags); 6714 * callback_fn(struct bpf_map *map, void *key, void *value, 6715 * void *callback_ctx); 6716 */ 6717 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6718 6719 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6720 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6721 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6722 6723 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6724 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6725 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6726 6727 /* pointer to stack or null */ 6728 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 6729 6730 /* unused */ 6731 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6732 return 0; 6733 } 6734 6735 static int set_callee_state(struct bpf_verifier_env *env, 6736 struct bpf_func_state *caller, 6737 struct bpf_func_state *callee, int insn_idx) 6738 { 6739 int i; 6740 6741 /* copy r1 - r5 args that callee can access. The copy includes parent 6742 * pointers, which connects us up to the liveness chain 6743 */ 6744 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 6745 callee->regs[i] = caller->regs[i]; 6746 return 0; 6747 } 6748 6749 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6750 int *insn_idx) 6751 { 6752 int subprog, target_insn; 6753 6754 target_insn = *insn_idx + insn->imm + 1; 6755 subprog = find_subprog(env, target_insn); 6756 if (subprog < 0) { 6757 verbose(env, "verifier bug. No program starts at insn %d\n", 6758 target_insn); 6759 return -EFAULT; 6760 } 6761 6762 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 6763 } 6764 6765 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 6766 struct bpf_func_state *caller, 6767 struct bpf_func_state *callee, 6768 int insn_idx) 6769 { 6770 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 6771 struct bpf_map *map; 6772 int err; 6773 6774 if (bpf_map_ptr_poisoned(insn_aux)) { 6775 verbose(env, "tail_call abusing map_ptr\n"); 6776 return -EINVAL; 6777 } 6778 6779 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 6780 if (!map->ops->map_set_for_each_callback_args || 6781 !map->ops->map_for_each_callback) { 6782 verbose(env, "callback function not allowed for map\n"); 6783 return -ENOTSUPP; 6784 } 6785 6786 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 6787 if (err) 6788 return err; 6789 6790 callee->in_callback_fn = true; 6791 return 0; 6792 } 6793 6794 static int set_loop_callback_state(struct bpf_verifier_env *env, 6795 struct bpf_func_state *caller, 6796 struct bpf_func_state *callee, 6797 int insn_idx) 6798 { 6799 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 6800 * u64 flags); 6801 * callback_fn(u32 index, void *callback_ctx); 6802 */ 6803 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 6804 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 6805 6806 /* unused */ 6807 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 6808 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6809 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6810 6811 callee->in_callback_fn = true; 6812 return 0; 6813 } 6814 6815 static int set_timer_callback_state(struct bpf_verifier_env *env, 6816 struct bpf_func_state *caller, 6817 struct bpf_func_state *callee, 6818 int insn_idx) 6819 { 6820 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 6821 6822 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 6823 * callback_fn(struct bpf_map *map, void *key, void *value); 6824 */ 6825 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 6826 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 6827 callee->regs[BPF_REG_1].map_ptr = map_ptr; 6828 6829 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6830 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6831 callee->regs[BPF_REG_2].map_ptr = map_ptr; 6832 6833 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6834 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6835 callee->regs[BPF_REG_3].map_ptr = map_ptr; 6836 6837 /* unused */ 6838 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6839 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6840 callee->in_async_callback_fn = true; 6841 return 0; 6842 } 6843 6844 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 6845 struct bpf_func_state *caller, 6846 struct bpf_func_state *callee, 6847 int insn_idx) 6848 { 6849 /* bpf_find_vma(struct task_struct *task, u64 addr, 6850 * void *callback_fn, void *callback_ctx, u64 flags) 6851 * (callback_fn)(struct task_struct *task, 6852 * struct vm_area_struct *vma, void *callback_ctx); 6853 */ 6854 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6855 6856 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 6857 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6858 callee->regs[BPF_REG_2].btf = btf_vmlinux; 6859 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 6860 6861 /* pointer to stack or null */ 6862 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 6863 6864 /* unused */ 6865 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6866 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6867 callee->in_callback_fn = true; 6868 return 0; 6869 } 6870 6871 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 6872 { 6873 struct bpf_verifier_state *state = env->cur_state; 6874 struct bpf_func_state *caller, *callee; 6875 struct bpf_reg_state *r0; 6876 int err; 6877 6878 callee = state->frame[state->curframe]; 6879 r0 = &callee->regs[BPF_REG_0]; 6880 if (r0->type == PTR_TO_STACK) { 6881 /* technically it's ok to return caller's stack pointer 6882 * (or caller's caller's pointer) back to the caller, 6883 * since these pointers are valid. Only current stack 6884 * pointer will be invalid as soon as function exits, 6885 * but let's be conservative 6886 */ 6887 verbose(env, "cannot return stack pointer to the caller\n"); 6888 return -EINVAL; 6889 } 6890 6891 state->curframe--; 6892 caller = state->frame[state->curframe]; 6893 if (callee->in_callback_fn) { 6894 /* enforce R0 return value range [0, 1]. */ 6895 struct tnum range = tnum_range(0, 1); 6896 6897 if (r0->type != SCALAR_VALUE) { 6898 verbose(env, "R0 not a scalar value\n"); 6899 return -EACCES; 6900 } 6901 if (!tnum_in(range, r0->var_off)) { 6902 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 6903 return -EINVAL; 6904 } 6905 } else { 6906 /* return to the caller whatever r0 had in the callee */ 6907 caller->regs[BPF_REG_0] = *r0; 6908 } 6909 6910 /* Transfer references to the caller */ 6911 err = copy_reference_state(caller, callee); 6912 if (err) 6913 return err; 6914 6915 *insn_idx = callee->callsite + 1; 6916 if (env->log.level & BPF_LOG_LEVEL) { 6917 verbose(env, "returning from callee:\n"); 6918 print_verifier_state(env, callee, true); 6919 verbose(env, "to caller at %d:\n", *insn_idx); 6920 print_verifier_state(env, caller, true); 6921 } 6922 /* clear everything in the callee */ 6923 free_func_state(callee); 6924 state->frame[state->curframe + 1] = NULL; 6925 return 0; 6926 } 6927 6928 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 6929 int func_id, 6930 struct bpf_call_arg_meta *meta) 6931 { 6932 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 6933 6934 if (ret_type != RET_INTEGER || 6935 (func_id != BPF_FUNC_get_stack && 6936 func_id != BPF_FUNC_get_task_stack && 6937 func_id != BPF_FUNC_probe_read_str && 6938 func_id != BPF_FUNC_probe_read_kernel_str && 6939 func_id != BPF_FUNC_probe_read_user_str)) 6940 return; 6941 6942 ret_reg->smax_value = meta->msize_max_value; 6943 ret_reg->s32_max_value = meta->msize_max_value; 6944 ret_reg->smin_value = -MAX_ERRNO; 6945 ret_reg->s32_min_value = -MAX_ERRNO; 6946 __reg_deduce_bounds(ret_reg); 6947 __reg_bound_offset(ret_reg); 6948 __update_reg_bounds(ret_reg); 6949 } 6950 6951 static int 6952 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 6953 int func_id, int insn_idx) 6954 { 6955 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 6956 struct bpf_map *map = meta->map_ptr; 6957 6958 if (func_id != BPF_FUNC_tail_call && 6959 func_id != BPF_FUNC_map_lookup_elem && 6960 func_id != BPF_FUNC_map_update_elem && 6961 func_id != BPF_FUNC_map_delete_elem && 6962 func_id != BPF_FUNC_map_push_elem && 6963 func_id != BPF_FUNC_map_pop_elem && 6964 func_id != BPF_FUNC_map_peek_elem && 6965 func_id != BPF_FUNC_for_each_map_elem && 6966 func_id != BPF_FUNC_redirect_map && 6967 func_id != BPF_FUNC_map_lookup_percpu_elem) 6968 return 0; 6969 6970 if (map == NULL) { 6971 verbose(env, "kernel subsystem misconfigured verifier\n"); 6972 return -EINVAL; 6973 } 6974 6975 /* In case of read-only, some additional restrictions 6976 * need to be applied in order to prevent altering the 6977 * state of the map from program side. 6978 */ 6979 if ((map->map_flags & BPF_F_RDONLY_PROG) && 6980 (func_id == BPF_FUNC_map_delete_elem || 6981 func_id == BPF_FUNC_map_update_elem || 6982 func_id == BPF_FUNC_map_push_elem || 6983 func_id == BPF_FUNC_map_pop_elem)) { 6984 verbose(env, "write into map forbidden\n"); 6985 return -EACCES; 6986 } 6987 6988 if (!BPF_MAP_PTR(aux->map_ptr_state)) 6989 bpf_map_ptr_store(aux, meta->map_ptr, 6990 !meta->map_ptr->bypass_spec_v1); 6991 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 6992 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 6993 !meta->map_ptr->bypass_spec_v1); 6994 return 0; 6995 } 6996 6997 static int 6998 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 6999 int func_id, int insn_idx) 7000 { 7001 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 7002 struct bpf_reg_state *regs = cur_regs(env), *reg; 7003 struct bpf_map *map = meta->map_ptr; 7004 struct tnum range; 7005 u64 val; 7006 int err; 7007 7008 if (func_id != BPF_FUNC_tail_call) 7009 return 0; 7010 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 7011 verbose(env, "kernel subsystem misconfigured verifier\n"); 7012 return -EINVAL; 7013 } 7014 7015 range = tnum_range(0, map->max_entries - 1); 7016 reg = ®s[BPF_REG_3]; 7017 7018 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 7019 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7020 return 0; 7021 } 7022 7023 err = mark_chain_precision(env, BPF_REG_3); 7024 if (err) 7025 return err; 7026 7027 val = reg->var_off.value; 7028 if (bpf_map_key_unseen(aux)) 7029 bpf_map_key_store(aux, val); 7030 else if (!bpf_map_key_poisoned(aux) && 7031 bpf_map_key_immediate(aux) != val) 7032 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7033 return 0; 7034 } 7035 7036 static int check_reference_leak(struct bpf_verifier_env *env) 7037 { 7038 struct bpf_func_state *state = cur_func(env); 7039 int i; 7040 7041 for (i = 0; i < state->acquired_refs; i++) { 7042 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 7043 state->refs[i].id, state->refs[i].insn_idx); 7044 } 7045 return state->acquired_refs ? -EINVAL : 0; 7046 } 7047 7048 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 7049 struct bpf_reg_state *regs) 7050 { 7051 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 7052 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 7053 struct bpf_map *fmt_map = fmt_reg->map_ptr; 7054 int err, fmt_map_off, num_args; 7055 u64 fmt_addr; 7056 char *fmt; 7057 7058 /* data must be an array of u64 */ 7059 if (data_len_reg->var_off.value % 8) 7060 return -EINVAL; 7061 num_args = data_len_reg->var_off.value / 8; 7062 7063 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 7064 * and map_direct_value_addr is set. 7065 */ 7066 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 7067 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 7068 fmt_map_off); 7069 if (err) { 7070 verbose(env, "verifier bug\n"); 7071 return -EFAULT; 7072 } 7073 fmt = (char *)(long)fmt_addr + fmt_map_off; 7074 7075 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 7076 * can focus on validating the format specifiers. 7077 */ 7078 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args); 7079 if (err < 0) 7080 verbose(env, "Invalid format string\n"); 7081 7082 return err; 7083 } 7084 7085 static int check_get_func_ip(struct bpf_verifier_env *env) 7086 { 7087 enum bpf_prog_type type = resolve_prog_type(env->prog); 7088 int func_id = BPF_FUNC_get_func_ip; 7089 7090 if (type == BPF_PROG_TYPE_TRACING) { 7091 if (!bpf_prog_has_trampoline(env->prog)) { 7092 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 7093 func_id_name(func_id), func_id); 7094 return -ENOTSUPP; 7095 } 7096 return 0; 7097 } else if (type == BPF_PROG_TYPE_KPROBE) { 7098 return 0; 7099 } 7100 7101 verbose(env, "func %s#%d not supported for program type %d\n", 7102 func_id_name(func_id), func_id, type); 7103 return -ENOTSUPP; 7104 } 7105 7106 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7107 int *insn_idx_p) 7108 { 7109 const struct bpf_func_proto *fn = NULL; 7110 enum bpf_return_type ret_type; 7111 enum bpf_type_flag ret_flag; 7112 struct bpf_reg_state *regs; 7113 struct bpf_call_arg_meta meta; 7114 int insn_idx = *insn_idx_p; 7115 bool changes_data; 7116 int i, err, func_id; 7117 7118 /* find function prototype */ 7119 func_id = insn->imm; 7120 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 7121 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 7122 func_id); 7123 return -EINVAL; 7124 } 7125 7126 if (env->ops->get_func_proto) 7127 fn = env->ops->get_func_proto(func_id, env->prog); 7128 if (!fn) { 7129 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 7130 func_id); 7131 return -EINVAL; 7132 } 7133 7134 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 7135 if (!env->prog->gpl_compatible && fn->gpl_only) { 7136 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 7137 return -EINVAL; 7138 } 7139 7140 if (fn->allowed && !fn->allowed(env->prog)) { 7141 verbose(env, "helper call is not allowed in probe\n"); 7142 return -EINVAL; 7143 } 7144 7145 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 7146 changes_data = bpf_helper_changes_pkt_data(fn->func); 7147 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 7148 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 7149 func_id_name(func_id), func_id); 7150 return -EINVAL; 7151 } 7152 7153 memset(&meta, 0, sizeof(meta)); 7154 meta.pkt_access = fn->pkt_access; 7155 7156 err = check_func_proto(fn, func_id, &meta); 7157 if (err) { 7158 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 7159 func_id_name(func_id), func_id); 7160 return err; 7161 } 7162 7163 meta.func_id = func_id; 7164 /* check args */ 7165 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7166 err = check_func_arg(env, i, &meta, fn); 7167 if (err) 7168 return err; 7169 } 7170 7171 err = record_func_map(env, &meta, func_id, insn_idx); 7172 if (err) 7173 return err; 7174 7175 err = record_func_key(env, &meta, func_id, insn_idx); 7176 if (err) 7177 return err; 7178 7179 /* Mark slots with STACK_MISC in case of raw mode, stack offset 7180 * is inferred from register state. 7181 */ 7182 for (i = 0; i < meta.access_size; i++) { 7183 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 7184 BPF_WRITE, -1, false); 7185 if (err) 7186 return err; 7187 } 7188 7189 regs = cur_regs(env); 7190 7191 if (meta.uninit_dynptr_regno) { 7192 /* we write BPF_DW bits (8 bytes) at a time */ 7193 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7194 err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno, 7195 i, BPF_DW, BPF_WRITE, -1, false); 7196 if (err) 7197 return err; 7198 } 7199 7200 err = mark_stack_slots_dynptr(env, ®s[meta.uninit_dynptr_regno], 7201 fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1], 7202 insn_idx); 7203 if (err) 7204 return err; 7205 } 7206 7207 if (meta.release_regno) { 7208 err = -EINVAL; 7209 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) 7210 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 7211 else if (meta.ref_obj_id) 7212 err = release_reference(env, meta.ref_obj_id); 7213 /* meta.ref_obj_id can only be 0 if register that is meant to be 7214 * released is NULL, which must be > R0. 7215 */ 7216 else if (register_is_null(®s[meta.release_regno])) 7217 err = 0; 7218 if (err) { 7219 verbose(env, "func %s#%d reference has not been acquired before\n", 7220 func_id_name(func_id), func_id); 7221 return err; 7222 } 7223 } 7224 7225 switch (func_id) { 7226 case BPF_FUNC_tail_call: 7227 err = check_reference_leak(env); 7228 if (err) { 7229 verbose(env, "tail_call would lead to reference leak\n"); 7230 return err; 7231 } 7232 break; 7233 case BPF_FUNC_get_local_storage: 7234 /* check that flags argument in get_local_storage(map, flags) is 0, 7235 * this is required because get_local_storage() can't return an error. 7236 */ 7237 if (!register_is_null(®s[BPF_REG_2])) { 7238 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 7239 return -EINVAL; 7240 } 7241 break; 7242 case BPF_FUNC_for_each_map_elem: 7243 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7244 set_map_elem_callback_state); 7245 break; 7246 case BPF_FUNC_timer_set_callback: 7247 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7248 set_timer_callback_state); 7249 break; 7250 case BPF_FUNC_find_vma: 7251 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7252 set_find_vma_callback_state); 7253 break; 7254 case BPF_FUNC_snprintf: 7255 err = check_bpf_snprintf_call(env, regs); 7256 break; 7257 case BPF_FUNC_loop: 7258 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7259 set_loop_callback_state); 7260 break; 7261 case BPF_FUNC_dynptr_from_mem: 7262 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 7263 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 7264 reg_type_str(env, regs[BPF_REG_1].type)); 7265 return -EACCES; 7266 } 7267 } 7268 7269 if (err) 7270 return err; 7271 7272 /* reset caller saved regs */ 7273 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7274 mark_reg_not_init(env, regs, caller_saved[i]); 7275 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7276 } 7277 7278 /* helper call returns 64-bit value. */ 7279 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7280 7281 /* update return register (already marked as written above) */ 7282 ret_type = fn->ret_type; 7283 ret_flag = type_flag(fn->ret_type); 7284 if (ret_type == RET_INTEGER) { 7285 /* sets type to SCALAR_VALUE */ 7286 mark_reg_unknown(env, regs, BPF_REG_0); 7287 } else if (ret_type == RET_VOID) { 7288 regs[BPF_REG_0].type = NOT_INIT; 7289 } else if (base_type(ret_type) == RET_PTR_TO_MAP_VALUE) { 7290 /* There is no offset yet applied, variable or fixed */ 7291 mark_reg_known_zero(env, regs, BPF_REG_0); 7292 /* remember map_ptr, so that check_map_access() 7293 * can check 'value_size' boundary of memory access 7294 * to map element returned from bpf_map_lookup_elem() 7295 */ 7296 if (meta.map_ptr == NULL) { 7297 verbose(env, 7298 "kernel subsystem misconfigured verifier\n"); 7299 return -EINVAL; 7300 } 7301 regs[BPF_REG_0].map_ptr = meta.map_ptr; 7302 regs[BPF_REG_0].map_uid = meta.map_uid; 7303 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 7304 if (!type_may_be_null(ret_type) && 7305 map_value_has_spin_lock(meta.map_ptr)) { 7306 regs[BPF_REG_0].id = ++env->id_gen; 7307 } 7308 } else if (base_type(ret_type) == RET_PTR_TO_SOCKET) { 7309 mark_reg_known_zero(env, regs, BPF_REG_0); 7310 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 7311 } else if (base_type(ret_type) == RET_PTR_TO_SOCK_COMMON) { 7312 mark_reg_known_zero(env, regs, BPF_REG_0); 7313 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 7314 } else if (base_type(ret_type) == RET_PTR_TO_TCP_SOCK) { 7315 mark_reg_known_zero(env, regs, BPF_REG_0); 7316 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 7317 } else if (base_type(ret_type) == RET_PTR_TO_ALLOC_MEM) { 7318 mark_reg_known_zero(env, regs, BPF_REG_0); 7319 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 7320 regs[BPF_REG_0].mem_size = meta.mem_size; 7321 } else if (base_type(ret_type) == RET_PTR_TO_MEM_OR_BTF_ID) { 7322 const struct btf_type *t; 7323 7324 mark_reg_known_zero(env, regs, BPF_REG_0); 7325 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 7326 if (!btf_type_is_struct(t)) { 7327 u32 tsize; 7328 const struct btf_type *ret; 7329 const char *tname; 7330 7331 /* resolve the type size of ksym. */ 7332 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 7333 if (IS_ERR(ret)) { 7334 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 7335 verbose(env, "unable to resolve the size of type '%s': %ld\n", 7336 tname, PTR_ERR(ret)); 7337 return -EINVAL; 7338 } 7339 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 7340 regs[BPF_REG_0].mem_size = tsize; 7341 } else { 7342 /* MEM_RDONLY may be carried from ret_flag, but it 7343 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 7344 * it will confuse the check of PTR_TO_BTF_ID in 7345 * check_mem_access(). 7346 */ 7347 ret_flag &= ~MEM_RDONLY; 7348 7349 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 7350 regs[BPF_REG_0].btf = meta.ret_btf; 7351 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 7352 } 7353 } else if (base_type(ret_type) == RET_PTR_TO_BTF_ID) { 7354 struct btf *ret_btf; 7355 int ret_btf_id; 7356 7357 mark_reg_known_zero(env, regs, BPF_REG_0); 7358 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 7359 if (func_id == BPF_FUNC_kptr_xchg) { 7360 ret_btf = meta.kptr_off_desc->kptr.btf; 7361 ret_btf_id = meta.kptr_off_desc->kptr.btf_id; 7362 } else { 7363 ret_btf = btf_vmlinux; 7364 ret_btf_id = *fn->ret_btf_id; 7365 } 7366 if (ret_btf_id == 0) { 7367 verbose(env, "invalid return type %u of func %s#%d\n", 7368 base_type(ret_type), func_id_name(func_id), 7369 func_id); 7370 return -EINVAL; 7371 } 7372 regs[BPF_REG_0].btf = ret_btf; 7373 regs[BPF_REG_0].btf_id = ret_btf_id; 7374 } else { 7375 verbose(env, "unknown return type %u of func %s#%d\n", 7376 base_type(ret_type), func_id_name(func_id), func_id); 7377 return -EINVAL; 7378 } 7379 7380 if (type_may_be_null(regs[BPF_REG_0].type)) 7381 regs[BPF_REG_0].id = ++env->id_gen; 7382 7383 if (is_ptr_cast_function(func_id)) { 7384 /* For release_reference() */ 7385 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 7386 } else if (is_acquire_function(func_id, meta.map_ptr)) { 7387 int id = acquire_reference_state(env, insn_idx); 7388 7389 if (id < 0) 7390 return id; 7391 /* For mark_ptr_or_null_reg() */ 7392 regs[BPF_REG_0].id = id; 7393 /* For release_reference() */ 7394 regs[BPF_REG_0].ref_obj_id = id; 7395 } else if (func_id == BPF_FUNC_dynptr_data) { 7396 int dynptr_id = 0, i; 7397 7398 /* Find the id of the dynptr we're acquiring a reference to */ 7399 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7400 if (arg_type_is_dynptr(fn->arg_type[i])) { 7401 if (dynptr_id) { 7402 verbose(env, "verifier internal error: multiple dynptr args in func\n"); 7403 return -EFAULT; 7404 } 7405 dynptr_id = stack_slot_get_id(env, ®s[BPF_REG_1 + i]); 7406 } 7407 } 7408 /* For release_reference() */ 7409 regs[BPF_REG_0].ref_obj_id = dynptr_id; 7410 } 7411 7412 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 7413 7414 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 7415 if (err) 7416 return err; 7417 7418 if ((func_id == BPF_FUNC_get_stack || 7419 func_id == BPF_FUNC_get_task_stack) && 7420 !env->prog->has_callchain_buf) { 7421 const char *err_str; 7422 7423 #ifdef CONFIG_PERF_EVENTS 7424 err = get_callchain_buffers(sysctl_perf_event_max_stack); 7425 err_str = "cannot get callchain buffer for func %s#%d\n"; 7426 #else 7427 err = -ENOTSUPP; 7428 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 7429 #endif 7430 if (err) { 7431 verbose(env, err_str, func_id_name(func_id), func_id); 7432 return err; 7433 } 7434 7435 env->prog->has_callchain_buf = true; 7436 } 7437 7438 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 7439 env->prog->call_get_stack = true; 7440 7441 if (func_id == BPF_FUNC_get_func_ip) { 7442 if (check_get_func_ip(env)) 7443 return -ENOTSUPP; 7444 env->prog->call_get_func_ip = true; 7445 } 7446 7447 if (changes_data) 7448 clear_all_pkt_pointers(env); 7449 return 0; 7450 } 7451 7452 /* mark_btf_func_reg_size() is used when the reg size is determined by 7453 * the BTF func_proto's return value size and argument. 7454 */ 7455 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 7456 size_t reg_size) 7457 { 7458 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 7459 7460 if (regno == BPF_REG_0) { 7461 /* Function return value */ 7462 reg->live |= REG_LIVE_WRITTEN; 7463 reg->subreg_def = reg_size == sizeof(u64) ? 7464 DEF_NOT_SUBREG : env->insn_idx + 1; 7465 } else { 7466 /* Function argument */ 7467 if (reg_size == sizeof(u64)) { 7468 mark_insn_zext(env, reg); 7469 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 7470 } else { 7471 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 7472 } 7473 } 7474 } 7475 7476 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7477 int *insn_idx_p) 7478 { 7479 const struct btf_type *t, *func, *func_proto, *ptr_type; 7480 struct bpf_reg_state *regs = cur_regs(env); 7481 const char *func_name, *ptr_type_name; 7482 u32 i, nargs, func_id, ptr_type_id; 7483 int err, insn_idx = *insn_idx_p; 7484 const struct btf_param *args; 7485 struct btf *desc_btf; 7486 bool acq; 7487 7488 /* skip for now, but return error when we find this in fixup_kfunc_call */ 7489 if (!insn->imm) 7490 return 0; 7491 7492 desc_btf = find_kfunc_desc_btf(env, insn->off); 7493 if (IS_ERR(desc_btf)) 7494 return PTR_ERR(desc_btf); 7495 7496 func_id = insn->imm; 7497 func = btf_type_by_id(desc_btf, func_id); 7498 func_name = btf_name_by_offset(desc_btf, func->name_off); 7499 func_proto = btf_type_by_id(desc_btf, func->type); 7500 7501 if (!btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), 7502 BTF_KFUNC_TYPE_CHECK, func_id)) { 7503 verbose(env, "calling kernel function %s is not allowed\n", 7504 func_name); 7505 return -EACCES; 7506 } 7507 7508 acq = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), 7509 BTF_KFUNC_TYPE_ACQUIRE, func_id); 7510 7511 /* Check the arguments */ 7512 err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs); 7513 if (err < 0) 7514 return err; 7515 /* In case of release function, we get register number of refcounted 7516 * PTR_TO_BTF_ID back from btf_check_kfunc_arg_match, do the release now 7517 */ 7518 if (err) { 7519 err = release_reference(env, regs[err].ref_obj_id); 7520 if (err) { 7521 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 7522 func_name, func_id); 7523 return err; 7524 } 7525 } 7526 7527 for (i = 0; i < CALLER_SAVED_REGS; i++) 7528 mark_reg_not_init(env, regs, caller_saved[i]); 7529 7530 /* Check return type */ 7531 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL); 7532 7533 if (acq && !btf_type_is_ptr(t)) { 7534 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 7535 return -EINVAL; 7536 } 7537 7538 if (btf_type_is_scalar(t)) { 7539 mark_reg_unknown(env, regs, BPF_REG_0); 7540 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 7541 } else if (btf_type_is_ptr(t)) { 7542 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, 7543 &ptr_type_id); 7544 if (!btf_type_is_struct(ptr_type)) { 7545 ptr_type_name = btf_name_by_offset(desc_btf, 7546 ptr_type->name_off); 7547 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n", 7548 func_name, btf_type_str(ptr_type), 7549 ptr_type_name); 7550 return -EINVAL; 7551 } 7552 mark_reg_known_zero(env, regs, BPF_REG_0); 7553 regs[BPF_REG_0].btf = desc_btf; 7554 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 7555 regs[BPF_REG_0].btf_id = ptr_type_id; 7556 if (btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), 7557 BTF_KFUNC_TYPE_RET_NULL, func_id)) { 7558 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 7559 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 7560 regs[BPF_REG_0].id = ++env->id_gen; 7561 } 7562 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 7563 if (acq) { 7564 int id = acquire_reference_state(env, insn_idx); 7565 7566 if (id < 0) 7567 return id; 7568 regs[BPF_REG_0].id = id; 7569 regs[BPF_REG_0].ref_obj_id = id; 7570 } 7571 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 7572 7573 nargs = btf_type_vlen(func_proto); 7574 args = (const struct btf_param *)(func_proto + 1); 7575 for (i = 0; i < nargs; i++) { 7576 u32 regno = i + 1; 7577 7578 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 7579 if (btf_type_is_ptr(t)) 7580 mark_btf_func_reg_size(env, regno, sizeof(void *)); 7581 else 7582 /* scalar. ensured by btf_check_kfunc_arg_match() */ 7583 mark_btf_func_reg_size(env, regno, t->size); 7584 } 7585 7586 return 0; 7587 } 7588 7589 static bool signed_add_overflows(s64 a, s64 b) 7590 { 7591 /* Do the add in u64, where overflow is well-defined */ 7592 s64 res = (s64)((u64)a + (u64)b); 7593 7594 if (b < 0) 7595 return res > a; 7596 return res < a; 7597 } 7598 7599 static bool signed_add32_overflows(s32 a, s32 b) 7600 { 7601 /* Do the add in u32, where overflow is well-defined */ 7602 s32 res = (s32)((u32)a + (u32)b); 7603 7604 if (b < 0) 7605 return res > a; 7606 return res < a; 7607 } 7608 7609 static bool signed_sub_overflows(s64 a, s64 b) 7610 { 7611 /* Do the sub in u64, where overflow is well-defined */ 7612 s64 res = (s64)((u64)a - (u64)b); 7613 7614 if (b < 0) 7615 return res < a; 7616 return res > a; 7617 } 7618 7619 static bool signed_sub32_overflows(s32 a, s32 b) 7620 { 7621 /* Do the sub in u32, where overflow is well-defined */ 7622 s32 res = (s32)((u32)a - (u32)b); 7623 7624 if (b < 0) 7625 return res < a; 7626 return res > a; 7627 } 7628 7629 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 7630 const struct bpf_reg_state *reg, 7631 enum bpf_reg_type type) 7632 { 7633 bool known = tnum_is_const(reg->var_off); 7634 s64 val = reg->var_off.value; 7635 s64 smin = reg->smin_value; 7636 7637 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 7638 verbose(env, "math between %s pointer and %lld is not allowed\n", 7639 reg_type_str(env, type), val); 7640 return false; 7641 } 7642 7643 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 7644 verbose(env, "%s pointer offset %d is not allowed\n", 7645 reg_type_str(env, type), reg->off); 7646 return false; 7647 } 7648 7649 if (smin == S64_MIN) { 7650 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 7651 reg_type_str(env, type)); 7652 return false; 7653 } 7654 7655 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 7656 verbose(env, "value %lld makes %s pointer be out of bounds\n", 7657 smin, reg_type_str(env, type)); 7658 return false; 7659 } 7660 7661 return true; 7662 } 7663 7664 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 7665 { 7666 return &env->insn_aux_data[env->insn_idx]; 7667 } 7668 7669 enum { 7670 REASON_BOUNDS = -1, 7671 REASON_TYPE = -2, 7672 REASON_PATHS = -3, 7673 REASON_LIMIT = -4, 7674 REASON_STACK = -5, 7675 }; 7676 7677 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 7678 u32 *alu_limit, bool mask_to_left) 7679 { 7680 u32 max = 0, ptr_limit = 0; 7681 7682 switch (ptr_reg->type) { 7683 case PTR_TO_STACK: 7684 /* Offset 0 is out-of-bounds, but acceptable start for the 7685 * left direction, see BPF_REG_FP. Also, unknown scalar 7686 * offset where we would need to deal with min/max bounds is 7687 * currently prohibited for unprivileged. 7688 */ 7689 max = MAX_BPF_STACK + mask_to_left; 7690 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 7691 break; 7692 case PTR_TO_MAP_VALUE: 7693 max = ptr_reg->map_ptr->value_size; 7694 ptr_limit = (mask_to_left ? 7695 ptr_reg->smin_value : 7696 ptr_reg->umax_value) + ptr_reg->off; 7697 break; 7698 default: 7699 return REASON_TYPE; 7700 } 7701 7702 if (ptr_limit >= max) 7703 return REASON_LIMIT; 7704 *alu_limit = ptr_limit; 7705 return 0; 7706 } 7707 7708 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 7709 const struct bpf_insn *insn) 7710 { 7711 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 7712 } 7713 7714 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 7715 u32 alu_state, u32 alu_limit) 7716 { 7717 /* If we arrived here from different branches with different 7718 * state or limits to sanitize, then this won't work. 7719 */ 7720 if (aux->alu_state && 7721 (aux->alu_state != alu_state || 7722 aux->alu_limit != alu_limit)) 7723 return REASON_PATHS; 7724 7725 /* Corresponding fixup done in do_misc_fixups(). */ 7726 aux->alu_state = alu_state; 7727 aux->alu_limit = alu_limit; 7728 return 0; 7729 } 7730 7731 static int sanitize_val_alu(struct bpf_verifier_env *env, 7732 struct bpf_insn *insn) 7733 { 7734 struct bpf_insn_aux_data *aux = cur_aux(env); 7735 7736 if (can_skip_alu_sanitation(env, insn)) 7737 return 0; 7738 7739 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 7740 } 7741 7742 static bool sanitize_needed(u8 opcode) 7743 { 7744 return opcode == BPF_ADD || opcode == BPF_SUB; 7745 } 7746 7747 struct bpf_sanitize_info { 7748 struct bpf_insn_aux_data aux; 7749 bool mask_to_left; 7750 }; 7751 7752 static struct bpf_verifier_state * 7753 sanitize_speculative_path(struct bpf_verifier_env *env, 7754 const struct bpf_insn *insn, 7755 u32 next_idx, u32 curr_idx) 7756 { 7757 struct bpf_verifier_state *branch; 7758 struct bpf_reg_state *regs; 7759 7760 branch = push_stack(env, next_idx, curr_idx, true); 7761 if (branch && insn) { 7762 regs = branch->frame[branch->curframe]->regs; 7763 if (BPF_SRC(insn->code) == BPF_K) { 7764 mark_reg_unknown(env, regs, insn->dst_reg); 7765 } else if (BPF_SRC(insn->code) == BPF_X) { 7766 mark_reg_unknown(env, regs, insn->dst_reg); 7767 mark_reg_unknown(env, regs, insn->src_reg); 7768 } 7769 } 7770 return branch; 7771 } 7772 7773 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 7774 struct bpf_insn *insn, 7775 const struct bpf_reg_state *ptr_reg, 7776 const struct bpf_reg_state *off_reg, 7777 struct bpf_reg_state *dst_reg, 7778 struct bpf_sanitize_info *info, 7779 const bool commit_window) 7780 { 7781 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 7782 struct bpf_verifier_state *vstate = env->cur_state; 7783 bool off_is_imm = tnum_is_const(off_reg->var_off); 7784 bool off_is_neg = off_reg->smin_value < 0; 7785 bool ptr_is_dst_reg = ptr_reg == dst_reg; 7786 u8 opcode = BPF_OP(insn->code); 7787 u32 alu_state, alu_limit; 7788 struct bpf_reg_state tmp; 7789 bool ret; 7790 int err; 7791 7792 if (can_skip_alu_sanitation(env, insn)) 7793 return 0; 7794 7795 /* We already marked aux for masking from non-speculative 7796 * paths, thus we got here in the first place. We only care 7797 * to explore bad access from here. 7798 */ 7799 if (vstate->speculative) 7800 goto do_sim; 7801 7802 if (!commit_window) { 7803 if (!tnum_is_const(off_reg->var_off) && 7804 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 7805 return REASON_BOUNDS; 7806 7807 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 7808 (opcode == BPF_SUB && !off_is_neg); 7809 } 7810 7811 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 7812 if (err < 0) 7813 return err; 7814 7815 if (commit_window) { 7816 /* In commit phase we narrow the masking window based on 7817 * the observed pointer move after the simulated operation. 7818 */ 7819 alu_state = info->aux.alu_state; 7820 alu_limit = abs(info->aux.alu_limit - alu_limit); 7821 } else { 7822 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 7823 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 7824 alu_state |= ptr_is_dst_reg ? 7825 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 7826 7827 /* Limit pruning on unknown scalars to enable deep search for 7828 * potential masking differences from other program paths. 7829 */ 7830 if (!off_is_imm) 7831 env->explore_alu_limits = true; 7832 } 7833 7834 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 7835 if (err < 0) 7836 return err; 7837 do_sim: 7838 /* If we're in commit phase, we're done here given we already 7839 * pushed the truncated dst_reg into the speculative verification 7840 * stack. 7841 * 7842 * Also, when register is a known constant, we rewrite register-based 7843 * operation to immediate-based, and thus do not need masking (and as 7844 * a consequence, do not need to simulate the zero-truncation either). 7845 */ 7846 if (commit_window || off_is_imm) 7847 return 0; 7848 7849 /* Simulate and find potential out-of-bounds access under 7850 * speculative execution from truncation as a result of 7851 * masking when off was not within expected range. If off 7852 * sits in dst, then we temporarily need to move ptr there 7853 * to simulate dst (== 0) +/-= ptr. Needed, for example, 7854 * for cases where we use K-based arithmetic in one direction 7855 * and truncated reg-based in the other in order to explore 7856 * bad access. 7857 */ 7858 if (!ptr_is_dst_reg) { 7859 tmp = *dst_reg; 7860 *dst_reg = *ptr_reg; 7861 } 7862 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 7863 env->insn_idx); 7864 if (!ptr_is_dst_reg && ret) 7865 *dst_reg = tmp; 7866 return !ret ? REASON_STACK : 0; 7867 } 7868 7869 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 7870 { 7871 struct bpf_verifier_state *vstate = env->cur_state; 7872 7873 /* If we simulate paths under speculation, we don't update the 7874 * insn as 'seen' such that when we verify unreachable paths in 7875 * the non-speculative domain, sanitize_dead_code() can still 7876 * rewrite/sanitize them. 7877 */ 7878 if (!vstate->speculative) 7879 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 7880 } 7881 7882 static int sanitize_err(struct bpf_verifier_env *env, 7883 const struct bpf_insn *insn, int reason, 7884 const struct bpf_reg_state *off_reg, 7885 const struct bpf_reg_state *dst_reg) 7886 { 7887 static const char *err = "pointer arithmetic with it prohibited for !root"; 7888 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 7889 u32 dst = insn->dst_reg, src = insn->src_reg; 7890 7891 switch (reason) { 7892 case REASON_BOUNDS: 7893 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 7894 off_reg == dst_reg ? dst : src, err); 7895 break; 7896 case REASON_TYPE: 7897 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 7898 off_reg == dst_reg ? src : dst, err); 7899 break; 7900 case REASON_PATHS: 7901 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 7902 dst, op, err); 7903 break; 7904 case REASON_LIMIT: 7905 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 7906 dst, op, err); 7907 break; 7908 case REASON_STACK: 7909 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 7910 dst, err); 7911 break; 7912 default: 7913 verbose(env, "verifier internal error: unknown reason (%d)\n", 7914 reason); 7915 break; 7916 } 7917 7918 return -EACCES; 7919 } 7920 7921 /* check that stack access falls within stack limits and that 'reg' doesn't 7922 * have a variable offset. 7923 * 7924 * Variable offset is prohibited for unprivileged mode for simplicity since it 7925 * requires corresponding support in Spectre masking for stack ALU. See also 7926 * retrieve_ptr_limit(). 7927 * 7928 * 7929 * 'off' includes 'reg->off'. 7930 */ 7931 static int check_stack_access_for_ptr_arithmetic( 7932 struct bpf_verifier_env *env, 7933 int regno, 7934 const struct bpf_reg_state *reg, 7935 int off) 7936 { 7937 if (!tnum_is_const(reg->var_off)) { 7938 char tn_buf[48]; 7939 7940 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7941 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 7942 regno, tn_buf, off); 7943 return -EACCES; 7944 } 7945 7946 if (off >= 0 || off < -MAX_BPF_STACK) { 7947 verbose(env, "R%d stack pointer arithmetic goes out of range, " 7948 "prohibited for !root; off=%d\n", regno, off); 7949 return -EACCES; 7950 } 7951 7952 return 0; 7953 } 7954 7955 static int sanitize_check_bounds(struct bpf_verifier_env *env, 7956 const struct bpf_insn *insn, 7957 const struct bpf_reg_state *dst_reg) 7958 { 7959 u32 dst = insn->dst_reg; 7960 7961 /* For unprivileged we require that resulting offset must be in bounds 7962 * in order to be able to sanitize access later on. 7963 */ 7964 if (env->bypass_spec_v1) 7965 return 0; 7966 7967 switch (dst_reg->type) { 7968 case PTR_TO_STACK: 7969 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 7970 dst_reg->off + dst_reg->var_off.value)) 7971 return -EACCES; 7972 break; 7973 case PTR_TO_MAP_VALUE: 7974 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 7975 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 7976 "prohibited for !root\n", dst); 7977 return -EACCES; 7978 } 7979 break; 7980 default: 7981 break; 7982 } 7983 7984 return 0; 7985 } 7986 7987 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 7988 * Caller should also handle BPF_MOV case separately. 7989 * If we return -EACCES, caller may want to try again treating pointer as a 7990 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 7991 */ 7992 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 7993 struct bpf_insn *insn, 7994 const struct bpf_reg_state *ptr_reg, 7995 const struct bpf_reg_state *off_reg) 7996 { 7997 struct bpf_verifier_state *vstate = env->cur_state; 7998 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7999 struct bpf_reg_state *regs = state->regs, *dst_reg; 8000 bool known = tnum_is_const(off_reg->var_off); 8001 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 8002 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 8003 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 8004 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 8005 struct bpf_sanitize_info info = {}; 8006 u8 opcode = BPF_OP(insn->code); 8007 u32 dst = insn->dst_reg; 8008 int ret; 8009 8010 dst_reg = ®s[dst]; 8011 8012 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 8013 smin_val > smax_val || umin_val > umax_val) { 8014 /* Taint dst register if offset had invalid bounds derived from 8015 * e.g. dead branches. 8016 */ 8017 __mark_reg_unknown(env, dst_reg); 8018 return 0; 8019 } 8020 8021 if (BPF_CLASS(insn->code) != BPF_ALU64) { 8022 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 8023 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 8024 __mark_reg_unknown(env, dst_reg); 8025 return 0; 8026 } 8027 8028 verbose(env, 8029 "R%d 32-bit pointer arithmetic prohibited\n", 8030 dst); 8031 return -EACCES; 8032 } 8033 8034 if (ptr_reg->type & PTR_MAYBE_NULL) { 8035 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 8036 dst, reg_type_str(env, ptr_reg->type)); 8037 return -EACCES; 8038 } 8039 8040 switch (base_type(ptr_reg->type)) { 8041 case CONST_PTR_TO_MAP: 8042 /* smin_val represents the known value */ 8043 if (known && smin_val == 0 && opcode == BPF_ADD) 8044 break; 8045 fallthrough; 8046 case PTR_TO_PACKET_END: 8047 case PTR_TO_SOCKET: 8048 case PTR_TO_SOCK_COMMON: 8049 case PTR_TO_TCP_SOCK: 8050 case PTR_TO_XDP_SOCK: 8051 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 8052 dst, reg_type_str(env, ptr_reg->type)); 8053 return -EACCES; 8054 default: 8055 break; 8056 } 8057 8058 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 8059 * The id may be overwritten later if we create a new variable offset. 8060 */ 8061 dst_reg->type = ptr_reg->type; 8062 dst_reg->id = ptr_reg->id; 8063 8064 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 8065 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 8066 return -EINVAL; 8067 8068 /* pointer types do not carry 32-bit bounds at the moment. */ 8069 __mark_reg32_unbounded(dst_reg); 8070 8071 if (sanitize_needed(opcode)) { 8072 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 8073 &info, false); 8074 if (ret < 0) 8075 return sanitize_err(env, insn, ret, off_reg, dst_reg); 8076 } 8077 8078 switch (opcode) { 8079 case BPF_ADD: 8080 /* We can take a fixed offset as long as it doesn't overflow 8081 * the s32 'off' field 8082 */ 8083 if (known && (ptr_reg->off + smin_val == 8084 (s64)(s32)(ptr_reg->off + smin_val))) { 8085 /* pointer += K. Accumulate it into fixed offset */ 8086 dst_reg->smin_value = smin_ptr; 8087 dst_reg->smax_value = smax_ptr; 8088 dst_reg->umin_value = umin_ptr; 8089 dst_reg->umax_value = umax_ptr; 8090 dst_reg->var_off = ptr_reg->var_off; 8091 dst_reg->off = ptr_reg->off + smin_val; 8092 dst_reg->raw = ptr_reg->raw; 8093 break; 8094 } 8095 /* A new variable offset is created. Note that off_reg->off 8096 * == 0, since it's a scalar. 8097 * dst_reg gets the pointer type and since some positive 8098 * integer value was added to the pointer, give it a new 'id' 8099 * if it's a PTR_TO_PACKET. 8100 * this creates a new 'base' pointer, off_reg (variable) gets 8101 * added into the variable offset, and we copy the fixed offset 8102 * from ptr_reg. 8103 */ 8104 if (signed_add_overflows(smin_ptr, smin_val) || 8105 signed_add_overflows(smax_ptr, smax_val)) { 8106 dst_reg->smin_value = S64_MIN; 8107 dst_reg->smax_value = S64_MAX; 8108 } else { 8109 dst_reg->smin_value = smin_ptr + smin_val; 8110 dst_reg->smax_value = smax_ptr + smax_val; 8111 } 8112 if (umin_ptr + umin_val < umin_ptr || 8113 umax_ptr + umax_val < umax_ptr) { 8114 dst_reg->umin_value = 0; 8115 dst_reg->umax_value = U64_MAX; 8116 } else { 8117 dst_reg->umin_value = umin_ptr + umin_val; 8118 dst_reg->umax_value = umax_ptr + umax_val; 8119 } 8120 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 8121 dst_reg->off = ptr_reg->off; 8122 dst_reg->raw = ptr_reg->raw; 8123 if (reg_is_pkt_pointer(ptr_reg)) { 8124 dst_reg->id = ++env->id_gen; 8125 /* something was added to pkt_ptr, set range to zero */ 8126 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 8127 } 8128 break; 8129 case BPF_SUB: 8130 if (dst_reg == off_reg) { 8131 /* scalar -= pointer. Creates an unknown scalar */ 8132 verbose(env, "R%d tried to subtract pointer from scalar\n", 8133 dst); 8134 return -EACCES; 8135 } 8136 /* We don't allow subtraction from FP, because (according to 8137 * test_verifier.c test "invalid fp arithmetic", JITs might not 8138 * be able to deal with it. 8139 */ 8140 if (ptr_reg->type == PTR_TO_STACK) { 8141 verbose(env, "R%d subtraction from stack pointer prohibited\n", 8142 dst); 8143 return -EACCES; 8144 } 8145 if (known && (ptr_reg->off - smin_val == 8146 (s64)(s32)(ptr_reg->off - smin_val))) { 8147 /* pointer -= K. Subtract it from fixed offset */ 8148 dst_reg->smin_value = smin_ptr; 8149 dst_reg->smax_value = smax_ptr; 8150 dst_reg->umin_value = umin_ptr; 8151 dst_reg->umax_value = umax_ptr; 8152 dst_reg->var_off = ptr_reg->var_off; 8153 dst_reg->id = ptr_reg->id; 8154 dst_reg->off = ptr_reg->off - smin_val; 8155 dst_reg->raw = ptr_reg->raw; 8156 break; 8157 } 8158 /* A new variable offset is created. If the subtrahend is known 8159 * nonnegative, then any reg->range we had before is still good. 8160 */ 8161 if (signed_sub_overflows(smin_ptr, smax_val) || 8162 signed_sub_overflows(smax_ptr, smin_val)) { 8163 /* Overflow possible, we know nothing */ 8164 dst_reg->smin_value = S64_MIN; 8165 dst_reg->smax_value = S64_MAX; 8166 } else { 8167 dst_reg->smin_value = smin_ptr - smax_val; 8168 dst_reg->smax_value = smax_ptr - smin_val; 8169 } 8170 if (umin_ptr < umax_val) { 8171 /* Overflow possible, we know nothing */ 8172 dst_reg->umin_value = 0; 8173 dst_reg->umax_value = U64_MAX; 8174 } else { 8175 /* Cannot overflow (as long as bounds are consistent) */ 8176 dst_reg->umin_value = umin_ptr - umax_val; 8177 dst_reg->umax_value = umax_ptr - umin_val; 8178 } 8179 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 8180 dst_reg->off = ptr_reg->off; 8181 dst_reg->raw = ptr_reg->raw; 8182 if (reg_is_pkt_pointer(ptr_reg)) { 8183 dst_reg->id = ++env->id_gen; 8184 /* something was added to pkt_ptr, set range to zero */ 8185 if (smin_val < 0) 8186 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 8187 } 8188 break; 8189 case BPF_AND: 8190 case BPF_OR: 8191 case BPF_XOR: 8192 /* bitwise ops on pointers are troublesome, prohibit. */ 8193 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 8194 dst, bpf_alu_string[opcode >> 4]); 8195 return -EACCES; 8196 default: 8197 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 8198 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 8199 dst, bpf_alu_string[opcode >> 4]); 8200 return -EACCES; 8201 } 8202 8203 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 8204 return -EINVAL; 8205 8206 __update_reg_bounds(dst_reg); 8207 __reg_deduce_bounds(dst_reg); 8208 __reg_bound_offset(dst_reg); 8209 8210 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 8211 return -EACCES; 8212 if (sanitize_needed(opcode)) { 8213 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 8214 &info, true); 8215 if (ret < 0) 8216 return sanitize_err(env, insn, ret, off_reg, dst_reg); 8217 } 8218 8219 return 0; 8220 } 8221 8222 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 8223 struct bpf_reg_state *src_reg) 8224 { 8225 s32 smin_val = src_reg->s32_min_value; 8226 s32 smax_val = src_reg->s32_max_value; 8227 u32 umin_val = src_reg->u32_min_value; 8228 u32 umax_val = src_reg->u32_max_value; 8229 8230 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 8231 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 8232 dst_reg->s32_min_value = S32_MIN; 8233 dst_reg->s32_max_value = S32_MAX; 8234 } else { 8235 dst_reg->s32_min_value += smin_val; 8236 dst_reg->s32_max_value += smax_val; 8237 } 8238 if (dst_reg->u32_min_value + umin_val < umin_val || 8239 dst_reg->u32_max_value + umax_val < umax_val) { 8240 dst_reg->u32_min_value = 0; 8241 dst_reg->u32_max_value = U32_MAX; 8242 } else { 8243 dst_reg->u32_min_value += umin_val; 8244 dst_reg->u32_max_value += umax_val; 8245 } 8246 } 8247 8248 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 8249 struct bpf_reg_state *src_reg) 8250 { 8251 s64 smin_val = src_reg->smin_value; 8252 s64 smax_val = src_reg->smax_value; 8253 u64 umin_val = src_reg->umin_value; 8254 u64 umax_val = src_reg->umax_value; 8255 8256 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 8257 signed_add_overflows(dst_reg->smax_value, smax_val)) { 8258 dst_reg->smin_value = S64_MIN; 8259 dst_reg->smax_value = S64_MAX; 8260 } else { 8261 dst_reg->smin_value += smin_val; 8262 dst_reg->smax_value += smax_val; 8263 } 8264 if (dst_reg->umin_value + umin_val < umin_val || 8265 dst_reg->umax_value + umax_val < umax_val) { 8266 dst_reg->umin_value = 0; 8267 dst_reg->umax_value = U64_MAX; 8268 } else { 8269 dst_reg->umin_value += umin_val; 8270 dst_reg->umax_value += umax_val; 8271 } 8272 } 8273 8274 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 8275 struct bpf_reg_state *src_reg) 8276 { 8277 s32 smin_val = src_reg->s32_min_value; 8278 s32 smax_val = src_reg->s32_max_value; 8279 u32 umin_val = src_reg->u32_min_value; 8280 u32 umax_val = src_reg->u32_max_value; 8281 8282 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 8283 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 8284 /* Overflow possible, we know nothing */ 8285 dst_reg->s32_min_value = S32_MIN; 8286 dst_reg->s32_max_value = S32_MAX; 8287 } else { 8288 dst_reg->s32_min_value -= smax_val; 8289 dst_reg->s32_max_value -= smin_val; 8290 } 8291 if (dst_reg->u32_min_value < umax_val) { 8292 /* Overflow possible, we know nothing */ 8293 dst_reg->u32_min_value = 0; 8294 dst_reg->u32_max_value = U32_MAX; 8295 } else { 8296 /* Cannot overflow (as long as bounds are consistent) */ 8297 dst_reg->u32_min_value -= umax_val; 8298 dst_reg->u32_max_value -= umin_val; 8299 } 8300 } 8301 8302 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 8303 struct bpf_reg_state *src_reg) 8304 { 8305 s64 smin_val = src_reg->smin_value; 8306 s64 smax_val = src_reg->smax_value; 8307 u64 umin_val = src_reg->umin_value; 8308 u64 umax_val = src_reg->umax_value; 8309 8310 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 8311 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 8312 /* Overflow possible, we know nothing */ 8313 dst_reg->smin_value = S64_MIN; 8314 dst_reg->smax_value = S64_MAX; 8315 } else { 8316 dst_reg->smin_value -= smax_val; 8317 dst_reg->smax_value -= smin_val; 8318 } 8319 if (dst_reg->umin_value < umax_val) { 8320 /* Overflow possible, we know nothing */ 8321 dst_reg->umin_value = 0; 8322 dst_reg->umax_value = U64_MAX; 8323 } else { 8324 /* Cannot overflow (as long as bounds are consistent) */ 8325 dst_reg->umin_value -= umax_val; 8326 dst_reg->umax_value -= umin_val; 8327 } 8328 } 8329 8330 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 8331 struct bpf_reg_state *src_reg) 8332 { 8333 s32 smin_val = src_reg->s32_min_value; 8334 u32 umin_val = src_reg->u32_min_value; 8335 u32 umax_val = src_reg->u32_max_value; 8336 8337 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 8338 /* Ain't nobody got time to multiply that sign */ 8339 __mark_reg32_unbounded(dst_reg); 8340 return; 8341 } 8342 /* Both values are positive, so we can work with unsigned and 8343 * copy the result to signed (unless it exceeds S32_MAX). 8344 */ 8345 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 8346 /* Potential overflow, we know nothing */ 8347 __mark_reg32_unbounded(dst_reg); 8348 return; 8349 } 8350 dst_reg->u32_min_value *= umin_val; 8351 dst_reg->u32_max_value *= umax_val; 8352 if (dst_reg->u32_max_value > S32_MAX) { 8353 /* Overflow possible, we know nothing */ 8354 dst_reg->s32_min_value = S32_MIN; 8355 dst_reg->s32_max_value = S32_MAX; 8356 } else { 8357 dst_reg->s32_min_value = dst_reg->u32_min_value; 8358 dst_reg->s32_max_value = dst_reg->u32_max_value; 8359 } 8360 } 8361 8362 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 8363 struct bpf_reg_state *src_reg) 8364 { 8365 s64 smin_val = src_reg->smin_value; 8366 u64 umin_val = src_reg->umin_value; 8367 u64 umax_val = src_reg->umax_value; 8368 8369 if (smin_val < 0 || dst_reg->smin_value < 0) { 8370 /* Ain't nobody got time to multiply that sign */ 8371 __mark_reg64_unbounded(dst_reg); 8372 return; 8373 } 8374 /* Both values are positive, so we can work with unsigned and 8375 * copy the result to signed (unless it exceeds S64_MAX). 8376 */ 8377 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 8378 /* Potential overflow, we know nothing */ 8379 __mark_reg64_unbounded(dst_reg); 8380 return; 8381 } 8382 dst_reg->umin_value *= umin_val; 8383 dst_reg->umax_value *= umax_val; 8384 if (dst_reg->umax_value > S64_MAX) { 8385 /* Overflow possible, we know nothing */ 8386 dst_reg->smin_value = S64_MIN; 8387 dst_reg->smax_value = S64_MAX; 8388 } else { 8389 dst_reg->smin_value = dst_reg->umin_value; 8390 dst_reg->smax_value = dst_reg->umax_value; 8391 } 8392 } 8393 8394 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 8395 struct bpf_reg_state *src_reg) 8396 { 8397 bool src_known = tnum_subreg_is_const(src_reg->var_off); 8398 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 8399 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8400 s32 smin_val = src_reg->s32_min_value; 8401 u32 umax_val = src_reg->u32_max_value; 8402 8403 if (src_known && dst_known) { 8404 __mark_reg32_known(dst_reg, var32_off.value); 8405 return; 8406 } 8407 8408 /* We get our minimum from the var_off, since that's inherently 8409 * bitwise. Our maximum is the minimum of the operands' maxima. 8410 */ 8411 dst_reg->u32_min_value = var32_off.value; 8412 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 8413 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 8414 /* Lose signed bounds when ANDing negative numbers, 8415 * ain't nobody got time for that. 8416 */ 8417 dst_reg->s32_min_value = S32_MIN; 8418 dst_reg->s32_max_value = S32_MAX; 8419 } else { 8420 /* ANDing two positives gives a positive, so safe to 8421 * cast result into s64. 8422 */ 8423 dst_reg->s32_min_value = dst_reg->u32_min_value; 8424 dst_reg->s32_max_value = dst_reg->u32_max_value; 8425 } 8426 } 8427 8428 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 8429 struct bpf_reg_state *src_reg) 8430 { 8431 bool src_known = tnum_is_const(src_reg->var_off); 8432 bool dst_known = tnum_is_const(dst_reg->var_off); 8433 s64 smin_val = src_reg->smin_value; 8434 u64 umax_val = src_reg->umax_value; 8435 8436 if (src_known && dst_known) { 8437 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8438 return; 8439 } 8440 8441 /* We get our minimum from the var_off, since that's inherently 8442 * bitwise. Our maximum is the minimum of the operands' maxima. 8443 */ 8444 dst_reg->umin_value = dst_reg->var_off.value; 8445 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 8446 if (dst_reg->smin_value < 0 || smin_val < 0) { 8447 /* Lose signed bounds when ANDing negative numbers, 8448 * ain't nobody got time for that. 8449 */ 8450 dst_reg->smin_value = S64_MIN; 8451 dst_reg->smax_value = S64_MAX; 8452 } else { 8453 /* ANDing two positives gives a positive, so safe to 8454 * cast result into s64. 8455 */ 8456 dst_reg->smin_value = dst_reg->umin_value; 8457 dst_reg->smax_value = dst_reg->umax_value; 8458 } 8459 /* We may learn something more from the var_off */ 8460 __update_reg_bounds(dst_reg); 8461 } 8462 8463 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 8464 struct bpf_reg_state *src_reg) 8465 { 8466 bool src_known = tnum_subreg_is_const(src_reg->var_off); 8467 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 8468 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8469 s32 smin_val = src_reg->s32_min_value; 8470 u32 umin_val = src_reg->u32_min_value; 8471 8472 if (src_known && dst_known) { 8473 __mark_reg32_known(dst_reg, var32_off.value); 8474 return; 8475 } 8476 8477 /* We get our maximum from the var_off, and our minimum is the 8478 * maximum of the operands' minima 8479 */ 8480 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 8481 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 8482 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 8483 /* Lose signed bounds when ORing negative numbers, 8484 * ain't nobody got time for that. 8485 */ 8486 dst_reg->s32_min_value = S32_MIN; 8487 dst_reg->s32_max_value = S32_MAX; 8488 } else { 8489 /* ORing two positives gives a positive, so safe to 8490 * cast result into s64. 8491 */ 8492 dst_reg->s32_min_value = dst_reg->u32_min_value; 8493 dst_reg->s32_max_value = dst_reg->u32_max_value; 8494 } 8495 } 8496 8497 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 8498 struct bpf_reg_state *src_reg) 8499 { 8500 bool src_known = tnum_is_const(src_reg->var_off); 8501 bool dst_known = tnum_is_const(dst_reg->var_off); 8502 s64 smin_val = src_reg->smin_value; 8503 u64 umin_val = src_reg->umin_value; 8504 8505 if (src_known && dst_known) { 8506 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8507 return; 8508 } 8509 8510 /* We get our maximum from the var_off, and our minimum is the 8511 * maximum of the operands' minima 8512 */ 8513 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 8514 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 8515 if (dst_reg->smin_value < 0 || smin_val < 0) { 8516 /* Lose signed bounds when ORing negative numbers, 8517 * ain't nobody got time for that. 8518 */ 8519 dst_reg->smin_value = S64_MIN; 8520 dst_reg->smax_value = S64_MAX; 8521 } else { 8522 /* ORing two positives gives a positive, so safe to 8523 * cast result into s64. 8524 */ 8525 dst_reg->smin_value = dst_reg->umin_value; 8526 dst_reg->smax_value = dst_reg->umax_value; 8527 } 8528 /* We may learn something more from the var_off */ 8529 __update_reg_bounds(dst_reg); 8530 } 8531 8532 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 8533 struct bpf_reg_state *src_reg) 8534 { 8535 bool src_known = tnum_subreg_is_const(src_reg->var_off); 8536 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 8537 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8538 s32 smin_val = src_reg->s32_min_value; 8539 8540 if (src_known && dst_known) { 8541 __mark_reg32_known(dst_reg, var32_off.value); 8542 return; 8543 } 8544 8545 /* We get both minimum and maximum from the var32_off. */ 8546 dst_reg->u32_min_value = var32_off.value; 8547 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 8548 8549 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 8550 /* XORing two positive sign numbers gives a positive, 8551 * so safe to cast u32 result into s32. 8552 */ 8553 dst_reg->s32_min_value = dst_reg->u32_min_value; 8554 dst_reg->s32_max_value = dst_reg->u32_max_value; 8555 } else { 8556 dst_reg->s32_min_value = S32_MIN; 8557 dst_reg->s32_max_value = S32_MAX; 8558 } 8559 } 8560 8561 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 8562 struct bpf_reg_state *src_reg) 8563 { 8564 bool src_known = tnum_is_const(src_reg->var_off); 8565 bool dst_known = tnum_is_const(dst_reg->var_off); 8566 s64 smin_val = src_reg->smin_value; 8567 8568 if (src_known && dst_known) { 8569 /* dst_reg->var_off.value has been updated earlier */ 8570 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8571 return; 8572 } 8573 8574 /* We get both minimum and maximum from the var_off. */ 8575 dst_reg->umin_value = dst_reg->var_off.value; 8576 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 8577 8578 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 8579 /* XORing two positive sign numbers gives a positive, 8580 * so safe to cast u64 result into s64. 8581 */ 8582 dst_reg->smin_value = dst_reg->umin_value; 8583 dst_reg->smax_value = dst_reg->umax_value; 8584 } else { 8585 dst_reg->smin_value = S64_MIN; 8586 dst_reg->smax_value = S64_MAX; 8587 } 8588 8589 __update_reg_bounds(dst_reg); 8590 } 8591 8592 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 8593 u64 umin_val, u64 umax_val) 8594 { 8595 /* We lose all sign bit information (except what we can pick 8596 * up from var_off) 8597 */ 8598 dst_reg->s32_min_value = S32_MIN; 8599 dst_reg->s32_max_value = S32_MAX; 8600 /* If we might shift our top bit out, then we know nothing */ 8601 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 8602 dst_reg->u32_min_value = 0; 8603 dst_reg->u32_max_value = U32_MAX; 8604 } else { 8605 dst_reg->u32_min_value <<= umin_val; 8606 dst_reg->u32_max_value <<= umax_val; 8607 } 8608 } 8609 8610 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 8611 struct bpf_reg_state *src_reg) 8612 { 8613 u32 umax_val = src_reg->u32_max_value; 8614 u32 umin_val = src_reg->u32_min_value; 8615 /* u32 alu operation will zext upper bits */ 8616 struct tnum subreg = tnum_subreg(dst_reg->var_off); 8617 8618 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 8619 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 8620 /* Not required but being careful mark reg64 bounds as unknown so 8621 * that we are forced to pick them up from tnum and zext later and 8622 * if some path skips this step we are still safe. 8623 */ 8624 __mark_reg64_unbounded(dst_reg); 8625 __update_reg32_bounds(dst_reg); 8626 } 8627 8628 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 8629 u64 umin_val, u64 umax_val) 8630 { 8631 /* Special case <<32 because it is a common compiler pattern to sign 8632 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 8633 * positive we know this shift will also be positive so we can track 8634 * bounds correctly. Otherwise we lose all sign bit information except 8635 * what we can pick up from var_off. Perhaps we can generalize this 8636 * later to shifts of any length. 8637 */ 8638 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 8639 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 8640 else 8641 dst_reg->smax_value = S64_MAX; 8642 8643 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 8644 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 8645 else 8646 dst_reg->smin_value = S64_MIN; 8647 8648 /* If we might shift our top bit out, then we know nothing */ 8649 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 8650 dst_reg->umin_value = 0; 8651 dst_reg->umax_value = U64_MAX; 8652 } else { 8653 dst_reg->umin_value <<= umin_val; 8654 dst_reg->umax_value <<= umax_val; 8655 } 8656 } 8657 8658 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 8659 struct bpf_reg_state *src_reg) 8660 { 8661 u64 umax_val = src_reg->umax_value; 8662 u64 umin_val = src_reg->umin_value; 8663 8664 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 8665 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 8666 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 8667 8668 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 8669 /* We may learn something more from the var_off */ 8670 __update_reg_bounds(dst_reg); 8671 } 8672 8673 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 8674 struct bpf_reg_state *src_reg) 8675 { 8676 struct tnum subreg = tnum_subreg(dst_reg->var_off); 8677 u32 umax_val = src_reg->u32_max_value; 8678 u32 umin_val = src_reg->u32_min_value; 8679 8680 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 8681 * be negative, then either: 8682 * 1) src_reg might be zero, so the sign bit of the result is 8683 * unknown, so we lose our signed bounds 8684 * 2) it's known negative, thus the unsigned bounds capture the 8685 * signed bounds 8686 * 3) the signed bounds cross zero, so they tell us nothing 8687 * about the result 8688 * If the value in dst_reg is known nonnegative, then again the 8689 * unsigned bounds capture the signed bounds. 8690 * Thus, in all cases it suffices to blow away our signed bounds 8691 * and rely on inferring new ones from the unsigned bounds and 8692 * var_off of the result. 8693 */ 8694 dst_reg->s32_min_value = S32_MIN; 8695 dst_reg->s32_max_value = S32_MAX; 8696 8697 dst_reg->var_off = tnum_rshift(subreg, umin_val); 8698 dst_reg->u32_min_value >>= umax_val; 8699 dst_reg->u32_max_value >>= umin_val; 8700 8701 __mark_reg64_unbounded(dst_reg); 8702 __update_reg32_bounds(dst_reg); 8703 } 8704 8705 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 8706 struct bpf_reg_state *src_reg) 8707 { 8708 u64 umax_val = src_reg->umax_value; 8709 u64 umin_val = src_reg->umin_value; 8710 8711 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 8712 * be negative, then either: 8713 * 1) src_reg might be zero, so the sign bit of the result is 8714 * unknown, so we lose our signed bounds 8715 * 2) it's known negative, thus the unsigned bounds capture the 8716 * signed bounds 8717 * 3) the signed bounds cross zero, so they tell us nothing 8718 * about the result 8719 * If the value in dst_reg is known nonnegative, then again the 8720 * unsigned bounds capture the signed bounds. 8721 * Thus, in all cases it suffices to blow away our signed bounds 8722 * and rely on inferring new ones from the unsigned bounds and 8723 * var_off of the result. 8724 */ 8725 dst_reg->smin_value = S64_MIN; 8726 dst_reg->smax_value = S64_MAX; 8727 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 8728 dst_reg->umin_value >>= umax_val; 8729 dst_reg->umax_value >>= umin_val; 8730 8731 /* Its not easy to operate on alu32 bounds here because it depends 8732 * on bits being shifted in. Take easy way out and mark unbounded 8733 * so we can recalculate later from tnum. 8734 */ 8735 __mark_reg32_unbounded(dst_reg); 8736 __update_reg_bounds(dst_reg); 8737 } 8738 8739 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 8740 struct bpf_reg_state *src_reg) 8741 { 8742 u64 umin_val = src_reg->u32_min_value; 8743 8744 /* Upon reaching here, src_known is true and 8745 * umax_val is equal to umin_val. 8746 */ 8747 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 8748 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 8749 8750 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 8751 8752 /* blow away the dst_reg umin_value/umax_value and rely on 8753 * dst_reg var_off to refine the result. 8754 */ 8755 dst_reg->u32_min_value = 0; 8756 dst_reg->u32_max_value = U32_MAX; 8757 8758 __mark_reg64_unbounded(dst_reg); 8759 __update_reg32_bounds(dst_reg); 8760 } 8761 8762 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 8763 struct bpf_reg_state *src_reg) 8764 { 8765 u64 umin_val = src_reg->umin_value; 8766 8767 /* Upon reaching here, src_known is true and umax_val is equal 8768 * to umin_val. 8769 */ 8770 dst_reg->smin_value >>= umin_val; 8771 dst_reg->smax_value >>= umin_val; 8772 8773 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 8774 8775 /* blow away the dst_reg umin_value/umax_value and rely on 8776 * dst_reg var_off to refine the result. 8777 */ 8778 dst_reg->umin_value = 0; 8779 dst_reg->umax_value = U64_MAX; 8780 8781 /* Its not easy to operate on alu32 bounds here because it depends 8782 * on bits being shifted in from upper 32-bits. Take easy way out 8783 * and mark unbounded so we can recalculate later from tnum. 8784 */ 8785 __mark_reg32_unbounded(dst_reg); 8786 __update_reg_bounds(dst_reg); 8787 } 8788 8789 /* WARNING: This function does calculations on 64-bit values, but the actual 8790 * execution may occur on 32-bit values. Therefore, things like bitshifts 8791 * need extra checks in the 32-bit case. 8792 */ 8793 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 8794 struct bpf_insn *insn, 8795 struct bpf_reg_state *dst_reg, 8796 struct bpf_reg_state src_reg) 8797 { 8798 struct bpf_reg_state *regs = cur_regs(env); 8799 u8 opcode = BPF_OP(insn->code); 8800 bool src_known; 8801 s64 smin_val, smax_val; 8802 u64 umin_val, umax_val; 8803 s32 s32_min_val, s32_max_val; 8804 u32 u32_min_val, u32_max_val; 8805 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 8806 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 8807 int ret; 8808 8809 smin_val = src_reg.smin_value; 8810 smax_val = src_reg.smax_value; 8811 umin_val = src_reg.umin_value; 8812 umax_val = src_reg.umax_value; 8813 8814 s32_min_val = src_reg.s32_min_value; 8815 s32_max_val = src_reg.s32_max_value; 8816 u32_min_val = src_reg.u32_min_value; 8817 u32_max_val = src_reg.u32_max_value; 8818 8819 if (alu32) { 8820 src_known = tnum_subreg_is_const(src_reg.var_off); 8821 if ((src_known && 8822 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 8823 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 8824 /* Taint dst register if offset had invalid bounds 8825 * derived from e.g. dead branches. 8826 */ 8827 __mark_reg_unknown(env, dst_reg); 8828 return 0; 8829 } 8830 } else { 8831 src_known = tnum_is_const(src_reg.var_off); 8832 if ((src_known && 8833 (smin_val != smax_val || umin_val != umax_val)) || 8834 smin_val > smax_val || umin_val > umax_val) { 8835 /* Taint dst register if offset had invalid bounds 8836 * derived from e.g. dead branches. 8837 */ 8838 __mark_reg_unknown(env, dst_reg); 8839 return 0; 8840 } 8841 } 8842 8843 if (!src_known && 8844 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 8845 __mark_reg_unknown(env, dst_reg); 8846 return 0; 8847 } 8848 8849 if (sanitize_needed(opcode)) { 8850 ret = sanitize_val_alu(env, insn); 8851 if (ret < 0) 8852 return sanitize_err(env, insn, ret, NULL, NULL); 8853 } 8854 8855 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 8856 * There are two classes of instructions: The first class we track both 8857 * alu32 and alu64 sign/unsigned bounds independently this provides the 8858 * greatest amount of precision when alu operations are mixed with jmp32 8859 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 8860 * and BPF_OR. This is possible because these ops have fairly easy to 8861 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 8862 * See alu32 verifier tests for examples. The second class of 8863 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 8864 * with regards to tracking sign/unsigned bounds because the bits may 8865 * cross subreg boundaries in the alu64 case. When this happens we mark 8866 * the reg unbounded in the subreg bound space and use the resulting 8867 * tnum to calculate an approximation of the sign/unsigned bounds. 8868 */ 8869 switch (opcode) { 8870 case BPF_ADD: 8871 scalar32_min_max_add(dst_reg, &src_reg); 8872 scalar_min_max_add(dst_reg, &src_reg); 8873 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 8874 break; 8875 case BPF_SUB: 8876 scalar32_min_max_sub(dst_reg, &src_reg); 8877 scalar_min_max_sub(dst_reg, &src_reg); 8878 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 8879 break; 8880 case BPF_MUL: 8881 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 8882 scalar32_min_max_mul(dst_reg, &src_reg); 8883 scalar_min_max_mul(dst_reg, &src_reg); 8884 break; 8885 case BPF_AND: 8886 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 8887 scalar32_min_max_and(dst_reg, &src_reg); 8888 scalar_min_max_and(dst_reg, &src_reg); 8889 break; 8890 case BPF_OR: 8891 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 8892 scalar32_min_max_or(dst_reg, &src_reg); 8893 scalar_min_max_or(dst_reg, &src_reg); 8894 break; 8895 case BPF_XOR: 8896 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 8897 scalar32_min_max_xor(dst_reg, &src_reg); 8898 scalar_min_max_xor(dst_reg, &src_reg); 8899 break; 8900 case BPF_LSH: 8901 if (umax_val >= insn_bitness) { 8902 /* Shifts greater than 31 or 63 are undefined. 8903 * This includes shifts by a negative number. 8904 */ 8905 mark_reg_unknown(env, regs, insn->dst_reg); 8906 break; 8907 } 8908 if (alu32) 8909 scalar32_min_max_lsh(dst_reg, &src_reg); 8910 else 8911 scalar_min_max_lsh(dst_reg, &src_reg); 8912 break; 8913 case BPF_RSH: 8914 if (umax_val >= insn_bitness) { 8915 /* Shifts greater than 31 or 63 are undefined. 8916 * This includes shifts by a negative number. 8917 */ 8918 mark_reg_unknown(env, regs, insn->dst_reg); 8919 break; 8920 } 8921 if (alu32) 8922 scalar32_min_max_rsh(dst_reg, &src_reg); 8923 else 8924 scalar_min_max_rsh(dst_reg, &src_reg); 8925 break; 8926 case BPF_ARSH: 8927 if (umax_val >= insn_bitness) { 8928 /* Shifts greater than 31 or 63 are undefined. 8929 * This includes shifts by a negative number. 8930 */ 8931 mark_reg_unknown(env, regs, insn->dst_reg); 8932 break; 8933 } 8934 if (alu32) 8935 scalar32_min_max_arsh(dst_reg, &src_reg); 8936 else 8937 scalar_min_max_arsh(dst_reg, &src_reg); 8938 break; 8939 default: 8940 mark_reg_unknown(env, regs, insn->dst_reg); 8941 break; 8942 } 8943 8944 /* ALU32 ops are zero extended into 64bit register */ 8945 if (alu32) 8946 zext_32_to_64(dst_reg); 8947 8948 __update_reg_bounds(dst_reg); 8949 __reg_deduce_bounds(dst_reg); 8950 __reg_bound_offset(dst_reg); 8951 return 0; 8952 } 8953 8954 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 8955 * and var_off. 8956 */ 8957 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 8958 struct bpf_insn *insn) 8959 { 8960 struct bpf_verifier_state *vstate = env->cur_state; 8961 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8962 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 8963 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 8964 u8 opcode = BPF_OP(insn->code); 8965 int err; 8966 8967 dst_reg = ®s[insn->dst_reg]; 8968 src_reg = NULL; 8969 if (dst_reg->type != SCALAR_VALUE) 8970 ptr_reg = dst_reg; 8971 else 8972 /* Make sure ID is cleared otherwise dst_reg min/max could be 8973 * incorrectly propagated into other registers by find_equal_scalars() 8974 */ 8975 dst_reg->id = 0; 8976 if (BPF_SRC(insn->code) == BPF_X) { 8977 src_reg = ®s[insn->src_reg]; 8978 if (src_reg->type != SCALAR_VALUE) { 8979 if (dst_reg->type != SCALAR_VALUE) { 8980 /* Combining two pointers by any ALU op yields 8981 * an arbitrary scalar. Disallow all math except 8982 * pointer subtraction 8983 */ 8984 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 8985 mark_reg_unknown(env, regs, insn->dst_reg); 8986 return 0; 8987 } 8988 verbose(env, "R%d pointer %s pointer prohibited\n", 8989 insn->dst_reg, 8990 bpf_alu_string[opcode >> 4]); 8991 return -EACCES; 8992 } else { 8993 /* scalar += pointer 8994 * This is legal, but we have to reverse our 8995 * src/dest handling in computing the range 8996 */ 8997 err = mark_chain_precision(env, insn->dst_reg); 8998 if (err) 8999 return err; 9000 return adjust_ptr_min_max_vals(env, insn, 9001 src_reg, dst_reg); 9002 } 9003 } else if (ptr_reg) { 9004 /* pointer += scalar */ 9005 err = mark_chain_precision(env, insn->src_reg); 9006 if (err) 9007 return err; 9008 return adjust_ptr_min_max_vals(env, insn, 9009 dst_reg, src_reg); 9010 } 9011 } else { 9012 /* Pretend the src is a reg with a known value, since we only 9013 * need to be able to read from this state. 9014 */ 9015 off_reg.type = SCALAR_VALUE; 9016 __mark_reg_known(&off_reg, insn->imm); 9017 src_reg = &off_reg; 9018 if (ptr_reg) /* pointer += K */ 9019 return adjust_ptr_min_max_vals(env, insn, 9020 ptr_reg, src_reg); 9021 } 9022 9023 /* Got here implies adding two SCALAR_VALUEs */ 9024 if (WARN_ON_ONCE(ptr_reg)) { 9025 print_verifier_state(env, state, true); 9026 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 9027 return -EINVAL; 9028 } 9029 if (WARN_ON(!src_reg)) { 9030 print_verifier_state(env, state, true); 9031 verbose(env, "verifier internal error: no src_reg\n"); 9032 return -EINVAL; 9033 } 9034 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 9035 } 9036 9037 /* check validity of 32-bit and 64-bit arithmetic operations */ 9038 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 9039 { 9040 struct bpf_reg_state *regs = cur_regs(env); 9041 u8 opcode = BPF_OP(insn->code); 9042 int err; 9043 9044 if (opcode == BPF_END || opcode == BPF_NEG) { 9045 if (opcode == BPF_NEG) { 9046 if (BPF_SRC(insn->code) != 0 || 9047 insn->src_reg != BPF_REG_0 || 9048 insn->off != 0 || insn->imm != 0) { 9049 verbose(env, "BPF_NEG uses reserved fields\n"); 9050 return -EINVAL; 9051 } 9052 } else { 9053 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 9054 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 9055 BPF_CLASS(insn->code) == BPF_ALU64) { 9056 verbose(env, "BPF_END uses reserved fields\n"); 9057 return -EINVAL; 9058 } 9059 } 9060 9061 /* check src operand */ 9062 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9063 if (err) 9064 return err; 9065 9066 if (is_pointer_value(env, insn->dst_reg)) { 9067 verbose(env, "R%d pointer arithmetic prohibited\n", 9068 insn->dst_reg); 9069 return -EACCES; 9070 } 9071 9072 /* check dest operand */ 9073 err = check_reg_arg(env, insn->dst_reg, DST_OP); 9074 if (err) 9075 return err; 9076 9077 } else if (opcode == BPF_MOV) { 9078 9079 if (BPF_SRC(insn->code) == BPF_X) { 9080 if (insn->imm != 0 || insn->off != 0) { 9081 verbose(env, "BPF_MOV uses reserved fields\n"); 9082 return -EINVAL; 9083 } 9084 9085 /* check src operand */ 9086 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9087 if (err) 9088 return err; 9089 } else { 9090 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 9091 verbose(env, "BPF_MOV uses reserved fields\n"); 9092 return -EINVAL; 9093 } 9094 } 9095 9096 /* check dest operand, mark as required later */ 9097 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 9098 if (err) 9099 return err; 9100 9101 if (BPF_SRC(insn->code) == BPF_X) { 9102 struct bpf_reg_state *src_reg = regs + insn->src_reg; 9103 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 9104 9105 if (BPF_CLASS(insn->code) == BPF_ALU64) { 9106 /* case: R1 = R2 9107 * copy register state to dest reg 9108 */ 9109 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 9110 /* Assign src and dst registers the same ID 9111 * that will be used by find_equal_scalars() 9112 * to propagate min/max range. 9113 */ 9114 src_reg->id = ++env->id_gen; 9115 *dst_reg = *src_reg; 9116 dst_reg->live |= REG_LIVE_WRITTEN; 9117 dst_reg->subreg_def = DEF_NOT_SUBREG; 9118 } else { 9119 /* R1 = (u32) R2 */ 9120 if (is_pointer_value(env, insn->src_reg)) { 9121 verbose(env, 9122 "R%d partial copy of pointer\n", 9123 insn->src_reg); 9124 return -EACCES; 9125 } else if (src_reg->type == SCALAR_VALUE) { 9126 *dst_reg = *src_reg; 9127 /* Make sure ID is cleared otherwise 9128 * dst_reg min/max could be incorrectly 9129 * propagated into src_reg by find_equal_scalars() 9130 */ 9131 dst_reg->id = 0; 9132 dst_reg->live |= REG_LIVE_WRITTEN; 9133 dst_reg->subreg_def = env->insn_idx + 1; 9134 } else { 9135 mark_reg_unknown(env, regs, 9136 insn->dst_reg); 9137 } 9138 zext_32_to_64(dst_reg); 9139 9140 __update_reg_bounds(dst_reg); 9141 __reg_deduce_bounds(dst_reg); 9142 __reg_bound_offset(dst_reg); 9143 } 9144 } else { 9145 /* case: R = imm 9146 * remember the value we stored into this reg 9147 */ 9148 /* clear any state __mark_reg_known doesn't set */ 9149 mark_reg_unknown(env, regs, insn->dst_reg); 9150 regs[insn->dst_reg].type = SCALAR_VALUE; 9151 if (BPF_CLASS(insn->code) == BPF_ALU64) { 9152 __mark_reg_known(regs + insn->dst_reg, 9153 insn->imm); 9154 } else { 9155 __mark_reg_known(regs + insn->dst_reg, 9156 (u32)insn->imm); 9157 } 9158 } 9159 9160 } else if (opcode > BPF_END) { 9161 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 9162 return -EINVAL; 9163 9164 } else { /* all other ALU ops: and, sub, xor, add, ... */ 9165 9166 if (BPF_SRC(insn->code) == BPF_X) { 9167 if (insn->imm != 0 || insn->off != 0) { 9168 verbose(env, "BPF_ALU uses reserved fields\n"); 9169 return -EINVAL; 9170 } 9171 /* check src1 operand */ 9172 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9173 if (err) 9174 return err; 9175 } else { 9176 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 9177 verbose(env, "BPF_ALU uses reserved fields\n"); 9178 return -EINVAL; 9179 } 9180 } 9181 9182 /* check src2 operand */ 9183 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9184 if (err) 9185 return err; 9186 9187 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 9188 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 9189 verbose(env, "div by zero\n"); 9190 return -EINVAL; 9191 } 9192 9193 if ((opcode == BPF_LSH || opcode == BPF_RSH || 9194 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 9195 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 9196 9197 if (insn->imm < 0 || insn->imm >= size) { 9198 verbose(env, "invalid shift %d\n", insn->imm); 9199 return -EINVAL; 9200 } 9201 } 9202 9203 /* check dest operand */ 9204 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 9205 if (err) 9206 return err; 9207 9208 return adjust_reg_min_max_vals(env, insn); 9209 } 9210 9211 return 0; 9212 } 9213 9214 static void __find_good_pkt_pointers(struct bpf_func_state *state, 9215 struct bpf_reg_state *dst_reg, 9216 enum bpf_reg_type type, int new_range) 9217 { 9218 struct bpf_reg_state *reg; 9219 int i; 9220 9221 for (i = 0; i < MAX_BPF_REG; i++) { 9222 reg = &state->regs[i]; 9223 if (reg->type == type && reg->id == dst_reg->id) 9224 /* keep the maximum range already checked */ 9225 reg->range = max(reg->range, new_range); 9226 } 9227 9228 bpf_for_each_spilled_reg(i, state, reg) { 9229 if (!reg) 9230 continue; 9231 if (reg->type == type && reg->id == dst_reg->id) 9232 reg->range = max(reg->range, new_range); 9233 } 9234 } 9235 9236 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 9237 struct bpf_reg_state *dst_reg, 9238 enum bpf_reg_type type, 9239 bool range_right_open) 9240 { 9241 int new_range, i; 9242 9243 if (dst_reg->off < 0 || 9244 (dst_reg->off == 0 && range_right_open)) 9245 /* This doesn't give us any range */ 9246 return; 9247 9248 if (dst_reg->umax_value > MAX_PACKET_OFF || 9249 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 9250 /* Risk of overflow. For instance, ptr + (1<<63) may be less 9251 * than pkt_end, but that's because it's also less than pkt. 9252 */ 9253 return; 9254 9255 new_range = dst_reg->off; 9256 if (range_right_open) 9257 new_range++; 9258 9259 /* Examples for register markings: 9260 * 9261 * pkt_data in dst register: 9262 * 9263 * r2 = r3; 9264 * r2 += 8; 9265 * if (r2 > pkt_end) goto <handle exception> 9266 * <access okay> 9267 * 9268 * r2 = r3; 9269 * r2 += 8; 9270 * if (r2 < pkt_end) goto <access okay> 9271 * <handle exception> 9272 * 9273 * Where: 9274 * r2 == dst_reg, pkt_end == src_reg 9275 * r2=pkt(id=n,off=8,r=0) 9276 * r3=pkt(id=n,off=0,r=0) 9277 * 9278 * pkt_data in src register: 9279 * 9280 * r2 = r3; 9281 * r2 += 8; 9282 * if (pkt_end >= r2) goto <access okay> 9283 * <handle exception> 9284 * 9285 * r2 = r3; 9286 * r2 += 8; 9287 * if (pkt_end <= r2) goto <handle exception> 9288 * <access okay> 9289 * 9290 * Where: 9291 * pkt_end == dst_reg, r2 == src_reg 9292 * r2=pkt(id=n,off=8,r=0) 9293 * r3=pkt(id=n,off=0,r=0) 9294 * 9295 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 9296 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 9297 * and [r3, r3 + 8-1) respectively is safe to access depending on 9298 * the check. 9299 */ 9300 9301 /* If our ids match, then we must have the same max_value. And we 9302 * don't care about the other reg's fixed offset, since if it's too big 9303 * the range won't allow anything. 9304 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 9305 */ 9306 for (i = 0; i <= vstate->curframe; i++) 9307 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 9308 new_range); 9309 } 9310 9311 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 9312 { 9313 struct tnum subreg = tnum_subreg(reg->var_off); 9314 s32 sval = (s32)val; 9315 9316 switch (opcode) { 9317 case BPF_JEQ: 9318 if (tnum_is_const(subreg)) 9319 return !!tnum_equals_const(subreg, val); 9320 break; 9321 case BPF_JNE: 9322 if (tnum_is_const(subreg)) 9323 return !tnum_equals_const(subreg, val); 9324 break; 9325 case BPF_JSET: 9326 if ((~subreg.mask & subreg.value) & val) 9327 return 1; 9328 if (!((subreg.mask | subreg.value) & val)) 9329 return 0; 9330 break; 9331 case BPF_JGT: 9332 if (reg->u32_min_value > val) 9333 return 1; 9334 else if (reg->u32_max_value <= val) 9335 return 0; 9336 break; 9337 case BPF_JSGT: 9338 if (reg->s32_min_value > sval) 9339 return 1; 9340 else if (reg->s32_max_value <= sval) 9341 return 0; 9342 break; 9343 case BPF_JLT: 9344 if (reg->u32_max_value < val) 9345 return 1; 9346 else if (reg->u32_min_value >= val) 9347 return 0; 9348 break; 9349 case BPF_JSLT: 9350 if (reg->s32_max_value < sval) 9351 return 1; 9352 else if (reg->s32_min_value >= sval) 9353 return 0; 9354 break; 9355 case BPF_JGE: 9356 if (reg->u32_min_value >= val) 9357 return 1; 9358 else if (reg->u32_max_value < val) 9359 return 0; 9360 break; 9361 case BPF_JSGE: 9362 if (reg->s32_min_value >= sval) 9363 return 1; 9364 else if (reg->s32_max_value < sval) 9365 return 0; 9366 break; 9367 case BPF_JLE: 9368 if (reg->u32_max_value <= val) 9369 return 1; 9370 else if (reg->u32_min_value > val) 9371 return 0; 9372 break; 9373 case BPF_JSLE: 9374 if (reg->s32_max_value <= sval) 9375 return 1; 9376 else if (reg->s32_min_value > sval) 9377 return 0; 9378 break; 9379 } 9380 9381 return -1; 9382 } 9383 9384 9385 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 9386 { 9387 s64 sval = (s64)val; 9388 9389 switch (opcode) { 9390 case BPF_JEQ: 9391 if (tnum_is_const(reg->var_off)) 9392 return !!tnum_equals_const(reg->var_off, val); 9393 break; 9394 case BPF_JNE: 9395 if (tnum_is_const(reg->var_off)) 9396 return !tnum_equals_const(reg->var_off, val); 9397 break; 9398 case BPF_JSET: 9399 if ((~reg->var_off.mask & reg->var_off.value) & val) 9400 return 1; 9401 if (!((reg->var_off.mask | reg->var_off.value) & val)) 9402 return 0; 9403 break; 9404 case BPF_JGT: 9405 if (reg->umin_value > val) 9406 return 1; 9407 else if (reg->umax_value <= val) 9408 return 0; 9409 break; 9410 case BPF_JSGT: 9411 if (reg->smin_value > sval) 9412 return 1; 9413 else if (reg->smax_value <= sval) 9414 return 0; 9415 break; 9416 case BPF_JLT: 9417 if (reg->umax_value < val) 9418 return 1; 9419 else if (reg->umin_value >= val) 9420 return 0; 9421 break; 9422 case BPF_JSLT: 9423 if (reg->smax_value < sval) 9424 return 1; 9425 else if (reg->smin_value >= sval) 9426 return 0; 9427 break; 9428 case BPF_JGE: 9429 if (reg->umin_value >= val) 9430 return 1; 9431 else if (reg->umax_value < val) 9432 return 0; 9433 break; 9434 case BPF_JSGE: 9435 if (reg->smin_value >= sval) 9436 return 1; 9437 else if (reg->smax_value < sval) 9438 return 0; 9439 break; 9440 case BPF_JLE: 9441 if (reg->umax_value <= val) 9442 return 1; 9443 else if (reg->umin_value > val) 9444 return 0; 9445 break; 9446 case BPF_JSLE: 9447 if (reg->smax_value <= sval) 9448 return 1; 9449 else if (reg->smin_value > sval) 9450 return 0; 9451 break; 9452 } 9453 9454 return -1; 9455 } 9456 9457 /* compute branch direction of the expression "if (reg opcode val) goto target;" 9458 * and return: 9459 * 1 - branch will be taken and "goto target" will be executed 9460 * 0 - branch will not be taken and fall-through to next insn 9461 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 9462 * range [0,10] 9463 */ 9464 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 9465 bool is_jmp32) 9466 { 9467 if (__is_pointer_value(false, reg)) { 9468 if (!reg_type_not_null(reg->type)) 9469 return -1; 9470 9471 /* If pointer is valid tests against zero will fail so we can 9472 * use this to direct branch taken. 9473 */ 9474 if (val != 0) 9475 return -1; 9476 9477 switch (opcode) { 9478 case BPF_JEQ: 9479 return 0; 9480 case BPF_JNE: 9481 return 1; 9482 default: 9483 return -1; 9484 } 9485 } 9486 9487 if (is_jmp32) 9488 return is_branch32_taken(reg, val, opcode); 9489 return is_branch64_taken(reg, val, opcode); 9490 } 9491 9492 static int flip_opcode(u32 opcode) 9493 { 9494 /* How can we transform "a <op> b" into "b <op> a"? */ 9495 static const u8 opcode_flip[16] = { 9496 /* these stay the same */ 9497 [BPF_JEQ >> 4] = BPF_JEQ, 9498 [BPF_JNE >> 4] = BPF_JNE, 9499 [BPF_JSET >> 4] = BPF_JSET, 9500 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 9501 [BPF_JGE >> 4] = BPF_JLE, 9502 [BPF_JGT >> 4] = BPF_JLT, 9503 [BPF_JLE >> 4] = BPF_JGE, 9504 [BPF_JLT >> 4] = BPF_JGT, 9505 [BPF_JSGE >> 4] = BPF_JSLE, 9506 [BPF_JSGT >> 4] = BPF_JSLT, 9507 [BPF_JSLE >> 4] = BPF_JSGE, 9508 [BPF_JSLT >> 4] = BPF_JSGT 9509 }; 9510 return opcode_flip[opcode >> 4]; 9511 } 9512 9513 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 9514 struct bpf_reg_state *src_reg, 9515 u8 opcode) 9516 { 9517 struct bpf_reg_state *pkt; 9518 9519 if (src_reg->type == PTR_TO_PACKET_END) { 9520 pkt = dst_reg; 9521 } else if (dst_reg->type == PTR_TO_PACKET_END) { 9522 pkt = src_reg; 9523 opcode = flip_opcode(opcode); 9524 } else { 9525 return -1; 9526 } 9527 9528 if (pkt->range >= 0) 9529 return -1; 9530 9531 switch (opcode) { 9532 case BPF_JLE: 9533 /* pkt <= pkt_end */ 9534 fallthrough; 9535 case BPF_JGT: 9536 /* pkt > pkt_end */ 9537 if (pkt->range == BEYOND_PKT_END) 9538 /* pkt has at last one extra byte beyond pkt_end */ 9539 return opcode == BPF_JGT; 9540 break; 9541 case BPF_JLT: 9542 /* pkt < pkt_end */ 9543 fallthrough; 9544 case BPF_JGE: 9545 /* pkt >= pkt_end */ 9546 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 9547 return opcode == BPF_JGE; 9548 break; 9549 } 9550 return -1; 9551 } 9552 9553 /* Adjusts the register min/max values in the case that the dst_reg is the 9554 * variable register that we are working on, and src_reg is a constant or we're 9555 * simply doing a BPF_K check. 9556 * In JEQ/JNE cases we also adjust the var_off values. 9557 */ 9558 static void reg_set_min_max(struct bpf_reg_state *true_reg, 9559 struct bpf_reg_state *false_reg, 9560 u64 val, u32 val32, 9561 u8 opcode, bool is_jmp32) 9562 { 9563 struct tnum false_32off = tnum_subreg(false_reg->var_off); 9564 struct tnum false_64off = false_reg->var_off; 9565 struct tnum true_32off = tnum_subreg(true_reg->var_off); 9566 struct tnum true_64off = true_reg->var_off; 9567 s64 sval = (s64)val; 9568 s32 sval32 = (s32)val32; 9569 9570 /* If the dst_reg is a pointer, we can't learn anything about its 9571 * variable offset from the compare (unless src_reg were a pointer into 9572 * the same object, but we don't bother with that. 9573 * Since false_reg and true_reg have the same type by construction, we 9574 * only need to check one of them for pointerness. 9575 */ 9576 if (__is_pointer_value(false, false_reg)) 9577 return; 9578 9579 switch (opcode) { 9580 case BPF_JEQ: 9581 case BPF_JNE: 9582 { 9583 struct bpf_reg_state *reg = 9584 opcode == BPF_JEQ ? true_reg : false_reg; 9585 9586 /* JEQ/JNE comparison doesn't change the register equivalence. 9587 * r1 = r2; 9588 * if (r1 == 42) goto label; 9589 * ... 9590 * label: // here both r1 and r2 are known to be 42. 9591 * 9592 * Hence when marking register as known preserve it's ID. 9593 */ 9594 if (is_jmp32) 9595 __mark_reg32_known(reg, val32); 9596 else 9597 ___mark_reg_known(reg, val); 9598 break; 9599 } 9600 case BPF_JSET: 9601 if (is_jmp32) { 9602 false_32off = tnum_and(false_32off, tnum_const(~val32)); 9603 if (is_power_of_2(val32)) 9604 true_32off = tnum_or(true_32off, 9605 tnum_const(val32)); 9606 } else { 9607 false_64off = tnum_and(false_64off, tnum_const(~val)); 9608 if (is_power_of_2(val)) 9609 true_64off = tnum_or(true_64off, 9610 tnum_const(val)); 9611 } 9612 break; 9613 case BPF_JGE: 9614 case BPF_JGT: 9615 { 9616 if (is_jmp32) { 9617 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 9618 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 9619 9620 false_reg->u32_max_value = min(false_reg->u32_max_value, 9621 false_umax); 9622 true_reg->u32_min_value = max(true_reg->u32_min_value, 9623 true_umin); 9624 } else { 9625 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 9626 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 9627 9628 false_reg->umax_value = min(false_reg->umax_value, false_umax); 9629 true_reg->umin_value = max(true_reg->umin_value, true_umin); 9630 } 9631 break; 9632 } 9633 case BPF_JSGE: 9634 case BPF_JSGT: 9635 { 9636 if (is_jmp32) { 9637 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 9638 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 9639 9640 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 9641 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 9642 } else { 9643 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 9644 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 9645 9646 false_reg->smax_value = min(false_reg->smax_value, false_smax); 9647 true_reg->smin_value = max(true_reg->smin_value, true_smin); 9648 } 9649 break; 9650 } 9651 case BPF_JLE: 9652 case BPF_JLT: 9653 { 9654 if (is_jmp32) { 9655 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 9656 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 9657 9658 false_reg->u32_min_value = max(false_reg->u32_min_value, 9659 false_umin); 9660 true_reg->u32_max_value = min(true_reg->u32_max_value, 9661 true_umax); 9662 } else { 9663 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 9664 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 9665 9666 false_reg->umin_value = max(false_reg->umin_value, false_umin); 9667 true_reg->umax_value = min(true_reg->umax_value, true_umax); 9668 } 9669 break; 9670 } 9671 case BPF_JSLE: 9672 case BPF_JSLT: 9673 { 9674 if (is_jmp32) { 9675 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 9676 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 9677 9678 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 9679 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 9680 } else { 9681 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 9682 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 9683 9684 false_reg->smin_value = max(false_reg->smin_value, false_smin); 9685 true_reg->smax_value = min(true_reg->smax_value, true_smax); 9686 } 9687 break; 9688 } 9689 default: 9690 return; 9691 } 9692 9693 if (is_jmp32) { 9694 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 9695 tnum_subreg(false_32off)); 9696 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 9697 tnum_subreg(true_32off)); 9698 __reg_combine_32_into_64(false_reg); 9699 __reg_combine_32_into_64(true_reg); 9700 } else { 9701 false_reg->var_off = false_64off; 9702 true_reg->var_off = true_64off; 9703 __reg_combine_64_into_32(false_reg); 9704 __reg_combine_64_into_32(true_reg); 9705 } 9706 } 9707 9708 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 9709 * the variable reg. 9710 */ 9711 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 9712 struct bpf_reg_state *false_reg, 9713 u64 val, u32 val32, 9714 u8 opcode, bool is_jmp32) 9715 { 9716 opcode = flip_opcode(opcode); 9717 /* This uses zero as "not present in table"; luckily the zero opcode, 9718 * BPF_JA, can't get here. 9719 */ 9720 if (opcode) 9721 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 9722 } 9723 9724 /* Regs are known to be equal, so intersect their min/max/var_off */ 9725 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 9726 struct bpf_reg_state *dst_reg) 9727 { 9728 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 9729 dst_reg->umin_value); 9730 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 9731 dst_reg->umax_value); 9732 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 9733 dst_reg->smin_value); 9734 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 9735 dst_reg->smax_value); 9736 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 9737 dst_reg->var_off); 9738 /* We might have learned new bounds from the var_off. */ 9739 __update_reg_bounds(src_reg); 9740 __update_reg_bounds(dst_reg); 9741 /* We might have learned something about the sign bit. */ 9742 __reg_deduce_bounds(src_reg); 9743 __reg_deduce_bounds(dst_reg); 9744 /* We might have learned some bits from the bounds. */ 9745 __reg_bound_offset(src_reg); 9746 __reg_bound_offset(dst_reg); 9747 /* Intersecting with the old var_off might have improved our bounds 9748 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 9749 * then new var_off is (0; 0x7f...fc) which improves our umax. 9750 */ 9751 __update_reg_bounds(src_reg); 9752 __update_reg_bounds(dst_reg); 9753 } 9754 9755 static void reg_combine_min_max(struct bpf_reg_state *true_src, 9756 struct bpf_reg_state *true_dst, 9757 struct bpf_reg_state *false_src, 9758 struct bpf_reg_state *false_dst, 9759 u8 opcode) 9760 { 9761 switch (opcode) { 9762 case BPF_JEQ: 9763 __reg_combine_min_max(true_src, true_dst); 9764 break; 9765 case BPF_JNE: 9766 __reg_combine_min_max(false_src, false_dst); 9767 break; 9768 } 9769 } 9770 9771 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 9772 struct bpf_reg_state *reg, u32 id, 9773 bool is_null) 9774 { 9775 if (type_may_be_null(reg->type) && reg->id == id && 9776 !WARN_ON_ONCE(!reg->id)) { 9777 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 9778 !tnum_equals_const(reg->var_off, 0) || 9779 reg->off)) { 9780 /* Old offset (both fixed and variable parts) should 9781 * have been known-zero, because we don't allow pointer 9782 * arithmetic on pointers that might be NULL. If we 9783 * see this happening, don't convert the register. 9784 */ 9785 return; 9786 } 9787 if (is_null) { 9788 reg->type = SCALAR_VALUE; 9789 /* We don't need id and ref_obj_id from this point 9790 * onwards anymore, thus we should better reset it, 9791 * so that state pruning has chances to take effect. 9792 */ 9793 reg->id = 0; 9794 reg->ref_obj_id = 0; 9795 9796 return; 9797 } 9798 9799 mark_ptr_not_null_reg(reg); 9800 9801 if (!reg_may_point_to_spin_lock(reg)) { 9802 /* For not-NULL ptr, reg->ref_obj_id will be reset 9803 * in release_reg_references(). 9804 * 9805 * reg->id is still used by spin_lock ptr. Other 9806 * than spin_lock ptr type, reg->id can be reset. 9807 */ 9808 reg->id = 0; 9809 } 9810 } 9811 } 9812 9813 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 9814 bool is_null) 9815 { 9816 struct bpf_reg_state *reg; 9817 int i; 9818 9819 for (i = 0; i < MAX_BPF_REG; i++) 9820 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 9821 9822 bpf_for_each_spilled_reg(i, state, reg) { 9823 if (!reg) 9824 continue; 9825 mark_ptr_or_null_reg(state, reg, id, is_null); 9826 } 9827 } 9828 9829 /* The logic is similar to find_good_pkt_pointers(), both could eventually 9830 * be folded together at some point. 9831 */ 9832 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 9833 bool is_null) 9834 { 9835 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9836 struct bpf_reg_state *regs = state->regs; 9837 u32 ref_obj_id = regs[regno].ref_obj_id; 9838 u32 id = regs[regno].id; 9839 int i; 9840 9841 if (ref_obj_id && ref_obj_id == id && is_null) 9842 /* regs[regno] is in the " == NULL" branch. 9843 * No one could have freed the reference state before 9844 * doing the NULL check. 9845 */ 9846 WARN_ON_ONCE(release_reference_state(state, id)); 9847 9848 for (i = 0; i <= vstate->curframe; i++) 9849 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 9850 } 9851 9852 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 9853 struct bpf_reg_state *dst_reg, 9854 struct bpf_reg_state *src_reg, 9855 struct bpf_verifier_state *this_branch, 9856 struct bpf_verifier_state *other_branch) 9857 { 9858 if (BPF_SRC(insn->code) != BPF_X) 9859 return false; 9860 9861 /* Pointers are always 64-bit. */ 9862 if (BPF_CLASS(insn->code) == BPF_JMP32) 9863 return false; 9864 9865 switch (BPF_OP(insn->code)) { 9866 case BPF_JGT: 9867 if ((dst_reg->type == PTR_TO_PACKET && 9868 src_reg->type == PTR_TO_PACKET_END) || 9869 (dst_reg->type == PTR_TO_PACKET_META && 9870 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9871 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 9872 find_good_pkt_pointers(this_branch, dst_reg, 9873 dst_reg->type, false); 9874 mark_pkt_end(other_branch, insn->dst_reg, true); 9875 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9876 src_reg->type == PTR_TO_PACKET) || 9877 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9878 src_reg->type == PTR_TO_PACKET_META)) { 9879 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 9880 find_good_pkt_pointers(other_branch, src_reg, 9881 src_reg->type, true); 9882 mark_pkt_end(this_branch, insn->src_reg, false); 9883 } else { 9884 return false; 9885 } 9886 break; 9887 case BPF_JLT: 9888 if ((dst_reg->type == PTR_TO_PACKET && 9889 src_reg->type == PTR_TO_PACKET_END) || 9890 (dst_reg->type == PTR_TO_PACKET_META && 9891 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9892 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 9893 find_good_pkt_pointers(other_branch, dst_reg, 9894 dst_reg->type, true); 9895 mark_pkt_end(this_branch, insn->dst_reg, false); 9896 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9897 src_reg->type == PTR_TO_PACKET) || 9898 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9899 src_reg->type == PTR_TO_PACKET_META)) { 9900 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 9901 find_good_pkt_pointers(this_branch, src_reg, 9902 src_reg->type, false); 9903 mark_pkt_end(other_branch, insn->src_reg, true); 9904 } else { 9905 return false; 9906 } 9907 break; 9908 case BPF_JGE: 9909 if ((dst_reg->type == PTR_TO_PACKET && 9910 src_reg->type == PTR_TO_PACKET_END) || 9911 (dst_reg->type == PTR_TO_PACKET_META && 9912 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9913 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 9914 find_good_pkt_pointers(this_branch, dst_reg, 9915 dst_reg->type, true); 9916 mark_pkt_end(other_branch, insn->dst_reg, false); 9917 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9918 src_reg->type == PTR_TO_PACKET) || 9919 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9920 src_reg->type == PTR_TO_PACKET_META)) { 9921 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 9922 find_good_pkt_pointers(other_branch, src_reg, 9923 src_reg->type, false); 9924 mark_pkt_end(this_branch, insn->src_reg, true); 9925 } else { 9926 return false; 9927 } 9928 break; 9929 case BPF_JLE: 9930 if ((dst_reg->type == PTR_TO_PACKET && 9931 src_reg->type == PTR_TO_PACKET_END) || 9932 (dst_reg->type == PTR_TO_PACKET_META && 9933 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9934 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 9935 find_good_pkt_pointers(other_branch, dst_reg, 9936 dst_reg->type, false); 9937 mark_pkt_end(this_branch, insn->dst_reg, true); 9938 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9939 src_reg->type == PTR_TO_PACKET) || 9940 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9941 src_reg->type == PTR_TO_PACKET_META)) { 9942 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 9943 find_good_pkt_pointers(this_branch, src_reg, 9944 src_reg->type, true); 9945 mark_pkt_end(other_branch, insn->src_reg, false); 9946 } else { 9947 return false; 9948 } 9949 break; 9950 default: 9951 return false; 9952 } 9953 9954 return true; 9955 } 9956 9957 static void find_equal_scalars(struct bpf_verifier_state *vstate, 9958 struct bpf_reg_state *known_reg) 9959 { 9960 struct bpf_func_state *state; 9961 struct bpf_reg_state *reg; 9962 int i, j; 9963 9964 for (i = 0; i <= vstate->curframe; i++) { 9965 state = vstate->frame[i]; 9966 for (j = 0; j < MAX_BPF_REG; j++) { 9967 reg = &state->regs[j]; 9968 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 9969 *reg = *known_reg; 9970 } 9971 9972 bpf_for_each_spilled_reg(j, state, reg) { 9973 if (!reg) 9974 continue; 9975 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 9976 *reg = *known_reg; 9977 } 9978 } 9979 } 9980 9981 static int check_cond_jmp_op(struct bpf_verifier_env *env, 9982 struct bpf_insn *insn, int *insn_idx) 9983 { 9984 struct bpf_verifier_state *this_branch = env->cur_state; 9985 struct bpf_verifier_state *other_branch; 9986 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 9987 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 9988 u8 opcode = BPF_OP(insn->code); 9989 bool is_jmp32; 9990 int pred = -1; 9991 int err; 9992 9993 /* Only conditional jumps are expected to reach here. */ 9994 if (opcode == BPF_JA || opcode > BPF_JSLE) { 9995 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 9996 return -EINVAL; 9997 } 9998 9999 if (BPF_SRC(insn->code) == BPF_X) { 10000 if (insn->imm != 0) { 10001 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 10002 return -EINVAL; 10003 } 10004 10005 /* check src1 operand */ 10006 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10007 if (err) 10008 return err; 10009 10010 if (is_pointer_value(env, insn->src_reg)) { 10011 verbose(env, "R%d pointer comparison prohibited\n", 10012 insn->src_reg); 10013 return -EACCES; 10014 } 10015 src_reg = ®s[insn->src_reg]; 10016 } else { 10017 if (insn->src_reg != BPF_REG_0) { 10018 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 10019 return -EINVAL; 10020 } 10021 } 10022 10023 /* check src2 operand */ 10024 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10025 if (err) 10026 return err; 10027 10028 dst_reg = ®s[insn->dst_reg]; 10029 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 10030 10031 if (BPF_SRC(insn->code) == BPF_K) { 10032 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 10033 } else if (src_reg->type == SCALAR_VALUE && 10034 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 10035 pred = is_branch_taken(dst_reg, 10036 tnum_subreg(src_reg->var_off).value, 10037 opcode, 10038 is_jmp32); 10039 } else if (src_reg->type == SCALAR_VALUE && 10040 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 10041 pred = is_branch_taken(dst_reg, 10042 src_reg->var_off.value, 10043 opcode, 10044 is_jmp32); 10045 } else if (reg_is_pkt_pointer_any(dst_reg) && 10046 reg_is_pkt_pointer_any(src_reg) && 10047 !is_jmp32) { 10048 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 10049 } 10050 10051 if (pred >= 0) { 10052 /* If we get here with a dst_reg pointer type it is because 10053 * above is_branch_taken() special cased the 0 comparison. 10054 */ 10055 if (!__is_pointer_value(false, dst_reg)) 10056 err = mark_chain_precision(env, insn->dst_reg); 10057 if (BPF_SRC(insn->code) == BPF_X && !err && 10058 !__is_pointer_value(false, src_reg)) 10059 err = mark_chain_precision(env, insn->src_reg); 10060 if (err) 10061 return err; 10062 } 10063 10064 if (pred == 1) { 10065 /* Only follow the goto, ignore fall-through. If needed, push 10066 * the fall-through branch for simulation under speculative 10067 * execution. 10068 */ 10069 if (!env->bypass_spec_v1 && 10070 !sanitize_speculative_path(env, insn, *insn_idx + 1, 10071 *insn_idx)) 10072 return -EFAULT; 10073 *insn_idx += insn->off; 10074 return 0; 10075 } else if (pred == 0) { 10076 /* Only follow the fall-through branch, since that's where the 10077 * program will go. If needed, push the goto branch for 10078 * simulation under speculative execution. 10079 */ 10080 if (!env->bypass_spec_v1 && 10081 !sanitize_speculative_path(env, insn, 10082 *insn_idx + insn->off + 1, 10083 *insn_idx)) 10084 return -EFAULT; 10085 return 0; 10086 } 10087 10088 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 10089 false); 10090 if (!other_branch) 10091 return -EFAULT; 10092 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 10093 10094 /* detect if we are comparing against a constant value so we can adjust 10095 * our min/max values for our dst register. 10096 * this is only legit if both are scalars (or pointers to the same 10097 * object, I suppose, but we don't support that right now), because 10098 * otherwise the different base pointers mean the offsets aren't 10099 * comparable. 10100 */ 10101 if (BPF_SRC(insn->code) == BPF_X) { 10102 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 10103 10104 if (dst_reg->type == SCALAR_VALUE && 10105 src_reg->type == SCALAR_VALUE) { 10106 if (tnum_is_const(src_reg->var_off) || 10107 (is_jmp32 && 10108 tnum_is_const(tnum_subreg(src_reg->var_off)))) 10109 reg_set_min_max(&other_branch_regs[insn->dst_reg], 10110 dst_reg, 10111 src_reg->var_off.value, 10112 tnum_subreg(src_reg->var_off).value, 10113 opcode, is_jmp32); 10114 else if (tnum_is_const(dst_reg->var_off) || 10115 (is_jmp32 && 10116 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 10117 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 10118 src_reg, 10119 dst_reg->var_off.value, 10120 tnum_subreg(dst_reg->var_off).value, 10121 opcode, is_jmp32); 10122 else if (!is_jmp32 && 10123 (opcode == BPF_JEQ || opcode == BPF_JNE)) 10124 /* Comparing for equality, we can combine knowledge */ 10125 reg_combine_min_max(&other_branch_regs[insn->src_reg], 10126 &other_branch_regs[insn->dst_reg], 10127 src_reg, dst_reg, opcode); 10128 if (src_reg->id && 10129 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 10130 find_equal_scalars(this_branch, src_reg); 10131 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 10132 } 10133 10134 } 10135 } else if (dst_reg->type == SCALAR_VALUE) { 10136 reg_set_min_max(&other_branch_regs[insn->dst_reg], 10137 dst_reg, insn->imm, (u32)insn->imm, 10138 opcode, is_jmp32); 10139 } 10140 10141 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 10142 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 10143 find_equal_scalars(this_branch, dst_reg); 10144 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 10145 } 10146 10147 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 10148 * NOTE: these optimizations below are related with pointer comparison 10149 * which will never be JMP32. 10150 */ 10151 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 10152 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 10153 type_may_be_null(dst_reg->type)) { 10154 /* Mark all identical registers in each branch as either 10155 * safe or unknown depending R == 0 or R != 0 conditional. 10156 */ 10157 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 10158 opcode == BPF_JNE); 10159 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 10160 opcode == BPF_JEQ); 10161 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 10162 this_branch, other_branch) && 10163 is_pointer_value(env, insn->dst_reg)) { 10164 verbose(env, "R%d pointer comparison prohibited\n", 10165 insn->dst_reg); 10166 return -EACCES; 10167 } 10168 if (env->log.level & BPF_LOG_LEVEL) 10169 print_insn_state(env, this_branch->frame[this_branch->curframe]); 10170 return 0; 10171 } 10172 10173 /* verify BPF_LD_IMM64 instruction */ 10174 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 10175 { 10176 struct bpf_insn_aux_data *aux = cur_aux(env); 10177 struct bpf_reg_state *regs = cur_regs(env); 10178 struct bpf_reg_state *dst_reg; 10179 struct bpf_map *map; 10180 int err; 10181 10182 if (BPF_SIZE(insn->code) != BPF_DW) { 10183 verbose(env, "invalid BPF_LD_IMM insn\n"); 10184 return -EINVAL; 10185 } 10186 if (insn->off != 0) { 10187 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 10188 return -EINVAL; 10189 } 10190 10191 err = check_reg_arg(env, insn->dst_reg, DST_OP); 10192 if (err) 10193 return err; 10194 10195 dst_reg = ®s[insn->dst_reg]; 10196 if (insn->src_reg == 0) { 10197 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 10198 10199 dst_reg->type = SCALAR_VALUE; 10200 __mark_reg_known(®s[insn->dst_reg], imm); 10201 return 0; 10202 } 10203 10204 /* All special src_reg cases are listed below. From this point onwards 10205 * we either succeed and assign a corresponding dst_reg->type after 10206 * zeroing the offset, or fail and reject the program. 10207 */ 10208 mark_reg_known_zero(env, regs, insn->dst_reg); 10209 10210 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 10211 dst_reg->type = aux->btf_var.reg_type; 10212 switch (base_type(dst_reg->type)) { 10213 case PTR_TO_MEM: 10214 dst_reg->mem_size = aux->btf_var.mem_size; 10215 break; 10216 case PTR_TO_BTF_ID: 10217 dst_reg->btf = aux->btf_var.btf; 10218 dst_reg->btf_id = aux->btf_var.btf_id; 10219 break; 10220 default: 10221 verbose(env, "bpf verifier is misconfigured\n"); 10222 return -EFAULT; 10223 } 10224 return 0; 10225 } 10226 10227 if (insn->src_reg == BPF_PSEUDO_FUNC) { 10228 struct bpf_prog_aux *aux = env->prog->aux; 10229 u32 subprogno = find_subprog(env, 10230 env->insn_idx + insn->imm + 1); 10231 10232 if (!aux->func_info) { 10233 verbose(env, "missing btf func_info\n"); 10234 return -EINVAL; 10235 } 10236 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 10237 verbose(env, "callback function not static\n"); 10238 return -EINVAL; 10239 } 10240 10241 dst_reg->type = PTR_TO_FUNC; 10242 dst_reg->subprogno = subprogno; 10243 return 0; 10244 } 10245 10246 map = env->used_maps[aux->map_index]; 10247 dst_reg->map_ptr = map; 10248 10249 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 10250 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 10251 dst_reg->type = PTR_TO_MAP_VALUE; 10252 dst_reg->off = aux->map_off; 10253 if (map_value_has_spin_lock(map)) 10254 dst_reg->id = ++env->id_gen; 10255 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 10256 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 10257 dst_reg->type = CONST_PTR_TO_MAP; 10258 } else { 10259 verbose(env, "bpf verifier is misconfigured\n"); 10260 return -EINVAL; 10261 } 10262 10263 return 0; 10264 } 10265 10266 static bool may_access_skb(enum bpf_prog_type type) 10267 { 10268 switch (type) { 10269 case BPF_PROG_TYPE_SOCKET_FILTER: 10270 case BPF_PROG_TYPE_SCHED_CLS: 10271 case BPF_PROG_TYPE_SCHED_ACT: 10272 return true; 10273 default: 10274 return false; 10275 } 10276 } 10277 10278 /* verify safety of LD_ABS|LD_IND instructions: 10279 * - they can only appear in the programs where ctx == skb 10280 * - since they are wrappers of function calls, they scratch R1-R5 registers, 10281 * preserve R6-R9, and store return value into R0 10282 * 10283 * Implicit input: 10284 * ctx == skb == R6 == CTX 10285 * 10286 * Explicit input: 10287 * SRC == any register 10288 * IMM == 32-bit immediate 10289 * 10290 * Output: 10291 * R0 - 8/16/32-bit skb data converted to cpu endianness 10292 */ 10293 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 10294 { 10295 struct bpf_reg_state *regs = cur_regs(env); 10296 static const int ctx_reg = BPF_REG_6; 10297 u8 mode = BPF_MODE(insn->code); 10298 int i, err; 10299 10300 if (!may_access_skb(resolve_prog_type(env->prog))) { 10301 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 10302 return -EINVAL; 10303 } 10304 10305 if (!env->ops->gen_ld_abs) { 10306 verbose(env, "bpf verifier is misconfigured\n"); 10307 return -EINVAL; 10308 } 10309 10310 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 10311 BPF_SIZE(insn->code) == BPF_DW || 10312 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 10313 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 10314 return -EINVAL; 10315 } 10316 10317 /* check whether implicit source operand (register R6) is readable */ 10318 err = check_reg_arg(env, ctx_reg, SRC_OP); 10319 if (err) 10320 return err; 10321 10322 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 10323 * gen_ld_abs() may terminate the program at runtime, leading to 10324 * reference leak. 10325 */ 10326 err = check_reference_leak(env); 10327 if (err) { 10328 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 10329 return err; 10330 } 10331 10332 if (env->cur_state->active_spin_lock) { 10333 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 10334 return -EINVAL; 10335 } 10336 10337 if (regs[ctx_reg].type != PTR_TO_CTX) { 10338 verbose(env, 10339 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 10340 return -EINVAL; 10341 } 10342 10343 if (mode == BPF_IND) { 10344 /* check explicit source operand */ 10345 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10346 if (err) 10347 return err; 10348 } 10349 10350 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 10351 if (err < 0) 10352 return err; 10353 10354 /* reset caller saved regs to unreadable */ 10355 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10356 mark_reg_not_init(env, regs, caller_saved[i]); 10357 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 10358 } 10359 10360 /* mark destination R0 register as readable, since it contains 10361 * the value fetched from the packet. 10362 * Already marked as written above. 10363 */ 10364 mark_reg_unknown(env, regs, BPF_REG_0); 10365 /* ld_abs load up to 32-bit skb data. */ 10366 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 10367 return 0; 10368 } 10369 10370 static int check_return_code(struct bpf_verifier_env *env) 10371 { 10372 struct tnum enforce_attach_type_range = tnum_unknown; 10373 const struct bpf_prog *prog = env->prog; 10374 struct bpf_reg_state *reg; 10375 struct tnum range = tnum_range(0, 1); 10376 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 10377 int err; 10378 struct bpf_func_state *frame = env->cur_state->frame[0]; 10379 const bool is_subprog = frame->subprogno; 10380 10381 /* LSM and struct_ops func-ptr's return type could be "void" */ 10382 if (!is_subprog && 10383 (prog_type == BPF_PROG_TYPE_STRUCT_OPS || 10384 prog_type == BPF_PROG_TYPE_LSM) && 10385 !prog->aux->attach_func_proto->type) 10386 return 0; 10387 10388 /* eBPF calling convention is such that R0 is used 10389 * to return the value from eBPF program. 10390 * Make sure that it's readable at this time 10391 * of bpf_exit, which means that program wrote 10392 * something into it earlier 10393 */ 10394 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 10395 if (err) 10396 return err; 10397 10398 if (is_pointer_value(env, BPF_REG_0)) { 10399 verbose(env, "R0 leaks addr as return value\n"); 10400 return -EACCES; 10401 } 10402 10403 reg = cur_regs(env) + BPF_REG_0; 10404 10405 if (frame->in_async_callback_fn) { 10406 /* enforce return zero from async callbacks like timer */ 10407 if (reg->type != SCALAR_VALUE) { 10408 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 10409 reg_type_str(env, reg->type)); 10410 return -EINVAL; 10411 } 10412 10413 if (!tnum_in(tnum_const(0), reg->var_off)) { 10414 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 10415 return -EINVAL; 10416 } 10417 return 0; 10418 } 10419 10420 if (is_subprog) { 10421 if (reg->type != SCALAR_VALUE) { 10422 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 10423 reg_type_str(env, reg->type)); 10424 return -EINVAL; 10425 } 10426 return 0; 10427 } 10428 10429 switch (prog_type) { 10430 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 10431 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 10432 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 10433 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 10434 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 10435 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 10436 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 10437 range = tnum_range(1, 1); 10438 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 10439 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 10440 range = tnum_range(0, 3); 10441 break; 10442 case BPF_PROG_TYPE_CGROUP_SKB: 10443 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 10444 range = tnum_range(0, 3); 10445 enforce_attach_type_range = tnum_range(2, 3); 10446 } 10447 break; 10448 case BPF_PROG_TYPE_CGROUP_SOCK: 10449 case BPF_PROG_TYPE_SOCK_OPS: 10450 case BPF_PROG_TYPE_CGROUP_DEVICE: 10451 case BPF_PROG_TYPE_CGROUP_SYSCTL: 10452 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 10453 break; 10454 case BPF_PROG_TYPE_RAW_TRACEPOINT: 10455 if (!env->prog->aux->attach_btf_id) 10456 return 0; 10457 range = tnum_const(0); 10458 break; 10459 case BPF_PROG_TYPE_TRACING: 10460 switch (env->prog->expected_attach_type) { 10461 case BPF_TRACE_FENTRY: 10462 case BPF_TRACE_FEXIT: 10463 range = tnum_const(0); 10464 break; 10465 case BPF_TRACE_RAW_TP: 10466 case BPF_MODIFY_RETURN: 10467 return 0; 10468 case BPF_TRACE_ITER: 10469 break; 10470 default: 10471 return -ENOTSUPP; 10472 } 10473 break; 10474 case BPF_PROG_TYPE_SK_LOOKUP: 10475 range = tnum_range(SK_DROP, SK_PASS); 10476 break; 10477 case BPF_PROG_TYPE_EXT: 10478 /* freplace program can return anything as its return value 10479 * depends on the to-be-replaced kernel func or bpf program. 10480 */ 10481 default: 10482 return 0; 10483 } 10484 10485 if (reg->type != SCALAR_VALUE) { 10486 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 10487 reg_type_str(env, reg->type)); 10488 return -EINVAL; 10489 } 10490 10491 if (!tnum_in(range, reg->var_off)) { 10492 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 10493 return -EINVAL; 10494 } 10495 10496 if (!tnum_is_unknown(enforce_attach_type_range) && 10497 tnum_in(enforce_attach_type_range, reg->var_off)) 10498 env->prog->enforce_expected_attach_type = 1; 10499 return 0; 10500 } 10501 10502 /* non-recursive DFS pseudo code 10503 * 1 procedure DFS-iterative(G,v): 10504 * 2 label v as discovered 10505 * 3 let S be a stack 10506 * 4 S.push(v) 10507 * 5 while S is not empty 10508 * 6 t <- S.pop() 10509 * 7 if t is what we're looking for: 10510 * 8 return t 10511 * 9 for all edges e in G.adjacentEdges(t) do 10512 * 10 if edge e is already labelled 10513 * 11 continue with the next edge 10514 * 12 w <- G.adjacentVertex(t,e) 10515 * 13 if vertex w is not discovered and not explored 10516 * 14 label e as tree-edge 10517 * 15 label w as discovered 10518 * 16 S.push(w) 10519 * 17 continue at 5 10520 * 18 else if vertex w is discovered 10521 * 19 label e as back-edge 10522 * 20 else 10523 * 21 // vertex w is explored 10524 * 22 label e as forward- or cross-edge 10525 * 23 label t as explored 10526 * 24 S.pop() 10527 * 10528 * convention: 10529 * 0x10 - discovered 10530 * 0x11 - discovered and fall-through edge labelled 10531 * 0x12 - discovered and fall-through and branch edges labelled 10532 * 0x20 - explored 10533 */ 10534 10535 enum { 10536 DISCOVERED = 0x10, 10537 EXPLORED = 0x20, 10538 FALLTHROUGH = 1, 10539 BRANCH = 2, 10540 }; 10541 10542 static u32 state_htab_size(struct bpf_verifier_env *env) 10543 { 10544 return env->prog->len; 10545 } 10546 10547 static struct bpf_verifier_state_list **explored_state( 10548 struct bpf_verifier_env *env, 10549 int idx) 10550 { 10551 struct bpf_verifier_state *cur = env->cur_state; 10552 struct bpf_func_state *state = cur->frame[cur->curframe]; 10553 10554 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 10555 } 10556 10557 static void init_explored_state(struct bpf_verifier_env *env, int idx) 10558 { 10559 env->insn_aux_data[idx].prune_point = true; 10560 } 10561 10562 enum { 10563 DONE_EXPLORING = 0, 10564 KEEP_EXPLORING = 1, 10565 }; 10566 10567 /* t, w, e - match pseudo-code above: 10568 * t - index of current instruction 10569 * w - next instruction 10570 * e - edge 10571 */ 10572 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 10573 bool loop_ok) 10574 { 10575 int *insn_stack = env->cfg.insn_stack; 10576 int *insn_state = env->cfg.insn_state; 10577 10578 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 10579 return DONE_EXPLORING; 10580 10581 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 10582 return DONE_EXPLORING; 10583 10584 if (w < 0 || w >= env->prog->len) { 10585 verbose_linfo(env, t, "%d: ", t); 10586 verbose(env, "jump out of range from insn %d to %d\n", t, w); 10587 return -EINVAL; 10588 } 10589 10590 if (e == BRANCH) 10591 /* mark branch target for state pruning */ 10592 init_explored_state(env, w); 10593 10594 if (insn_state[w] == 0) { 10595 /* tree-edge */ 10596 insn_state[t] = DISCOVERED | e; 10597 insn_state[w] = DISCOVERED; 10598 if (env->cfg.cur_stack >= env->prog->len) 10599 return -E2BIG; 10600 insn_stack[env->cfg.cur_stack++] = w; 10601 return KEEP_EXPLORING; 10602 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 10603 if (loop_ok && env->bpf_capable) 10604 return DONE_EXPLORING; 10605 verbose_linfo(env, t, "%d: ", t); 10606 verbose_linfo(env, w, "%d: ", w); 10607 verbose(env, "back-edge from insn %d to %d\n", t, w); 10608 return -EINVAL; 10609 } else if (insn_state[w] == EXPLORED) { 10610 /* forward- or cross-edge */ 10611 insn_state[t] = DISCOVERED | e; 10612 } else { 10613 verbose(env, "insn state internal bug\n"); 10614 return -EFAULT; 10615 } 10616 return DONE_EXPLORING; 10617 } 10618 10619 static int visit_func_call_insn(int t, int insn_cnt, 10620 struct bpf_insn *insns, 10621 struct bpf_verifier_env *env, 10622 bool visit_callee) 10623 { 10624 int ret; 10625 10626 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 10627 if (ret) 10628 return ret; 10629 10630 if (t + 1 < insn_cnt) 10631 init_explored_state(env, t + 1); 10632 if (visit_callee) { 10633 init_explored_state(env, t); 10634 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 10635 /* It's ok to allow recursion from CFG point of 10636 * view. __check_func_call() will do the actual 10637 * check. 10638 */ 10639 bpf_pseudo_func(insns + t)); 10640 } 10641 return ret; 10642 } 10643 10644 /* Visits the instruction at index t and returns one of the following: 10645 * < 0 - an error occurred 10646 * DONE_EXPLORING - the instruction was fully explored 10647 * KEEP_EXPLORING - there is still work to be done before it is fully explored 10648 */ 10649 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) 10650 { 10651 struct bpf_insn *insns = env->prog->insnsi; 10652 int ret; 10653 10654 if (bpf_pseudo_func(insns + t)) 10655 return visit_func_call_insn(t, insn_cnt, insns, env, true); 10656 10657 /* All non-branch instructions have a single fall-through edge. */ 10658 if (BPF_CLASS(insns[t].code) != BPF_JMP && 10659 BPF_CLASS(insns[t].code) != BPF_JMP32) 10660 return push_insn(t, t + 1, FALLTHROUGH, env, false); 10661 10662 switch (BPF_OP(insns[t].code)) { 10663 case BPF_EXIT: 10664 return DONE_EXPLORING; 10665 10666 case BPF_CALL: 10667 if (insns[t].imm == BPF_FUNC_timer_set_callback) 10668 /* Mark this call insn to trigger is_state_visited() check 10669 * before call itself is processed by __check_func_call(). 10670 * Otherwise new async state will be pushed for further 10671 * exploration. 10672 */ 10673 init_explored_state(env, t); 10674 return visit_func_call_insn(t, insn_cnt, insns, env, 10675 insns[t].src_reg == BPF_PSEUDO_CALL); 10676 10677 case BPF_JA: 10678 if (BPF_SRC(insns[t].code) != BPF_K) 10679 return -EINVAL; 10680 10681 /* unconditional jump with single edge */ 10682 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 10683 true); 10684 if (ret) 10685 return ret; 10686 10687 /* unconditional jmp is not a good pruning point, 10688 * but it's marked, since backtracking needs 10689 * to record jmp history in is_state_visited(). 10690 */ 10691 init_explored_state(env, t + insns[t].off + 1); 10692 /* tell verifier to check for equivalent states 10693 * after every call and jump 10694 */ 10695 if (t + 1 < insn_cnt) 10696 init_explored_state(env, t + 1); 10697 10698 return ret; 10699 10700 default: 10701 /* conditional jump with two edges */ 10702 init_explored_state(env, t); 10703 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 10704 if (ret) 10705 return ret; 10706 10707 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 10708 } 10709 } 10710 10711 /* non-recursive depth-first-search to detect loops in BPF program 10712 * loop == back-edge in directed graph 10713 */ 10714 static int check_cfg(struct bpf_verifier_env *env) 10715 { 10716 int insn_cnt = env->prog->len; 10717 int *insn_stack, *insn_state; 10718 int ret = 0; 10719 int i; 10720 10721 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 10722 if (!insn_state) 10723 return -ENOMEM; 10724 10725 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 10726 if (!insn_stack) { 10727 kvfree(insn_state); 10728 return -ENOMEM; 10729 } 10730 10731 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 10732 insn_stack[0] = 0; /* 0 is the first instruction */ 10733 env->cfg.cur_stack = 1; 10734 10735 while (env->cfg.cur_stack > 0) { 10736 int t = insn_stack[env->cfg.cur_stack - 1]; 10737 10738 ret = visit_insn(t, insn_cnt, env); 10739 switch (ret) { 10740 case DONE_EXPLORING: 10741 insn_state[t] = EXPLORED; 10742 env->cfg.cur_stack--; 10743 break; 10744 case KEEP_EXPLORING: 10745 break; 10746 default: 10747 if (ret > 0) { 10748 verbose(env, "visit_insn internal bug\n"); 10749 ret = -EFAULT; 10750 } 10751 goto err_free; 10752 } 10753 } 10754 10755 if (env->cfg.cur_stack < 0) { 10756 verbose(env, "pop stack internal bug\n"); 10757 ret = -EFAULT; 10758 goto err_free; 10759 } 10760 10761 for (i = 0; i < insn_cnt; i++) { 10762 if (insn_state[i] != EXPLORED) { 10763 verbose(env, "unreachable insn %d\n", i); 10764 ret = -EINVAL; 10765 goto err_free; 10766 } 10767 } 10768 ret = 0; /* cfg looks good */ 10769 10770 err_free: 10771 kvfree(insn_state); 10772 kvfree(insn_stack); 10773 env->cfg.insn_state = env->cfg.insn_stack = NULL; 10774 return ret; 10775 } 10776 10777 static int check_abnormal_return(struct bpf_verifier_env *env) 10778 { 10779 int i; 10780 10781 for (i = 1; i < env->subprog_cnt; i++) { 10782 if (env->subprog_info[i].has_ld_abs) { 10783 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 10784 return -EINVAL; 10785 } 10786 if (env->subprog_info[i].has_tail_call) { 10787 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 10788 return -EINVAL; 10789 } 10790 } 10791 return 0; 10792 } 10793 10794 /* The minimum supported BTF func info size */ 10795 #define MIN_BPF_FUNCINFO_SIZE 8 10796 #define MAX_FUNCINFO_REC_SIZE 252 10797 10798 static int check_btf_func(struct bpf_verifier_env *env, 10799 const union bpf_attr *attr, 10800 bpfptr_t uattr) 10801 { 10802 const struct btf_type *type, *func_proto, *ret_type; 10803 u32 i, nfuncs, urec_size, min_size; 10804 u32 krec_size = sizeof(struct bpf_func_info); 10805 struct bpf_func_info *krecord; 10806 struct bpf_func_info_aux *info_aux = NULL; 10807 struct bpf_prog *prog; 10808 const struct btf *btf; 10809 bpfptr_t urecord; 10810 u32 prev_offset = 0; 10811 bool scalar_return; 10812 int ret = -ENOMEM; 10813 10814 nfuncs = attr->func_info_cnt; 10815 if (!nfuncs) { 10816 if (check_abnormal_return(env)) 10817 return -EINVAL; 10818 return 0; 10819 } 10820 10821 if (nfuncs != env->subprog_cnt) { 10822 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 10823 return -EINVAL; 10824 } 10825 10826 urec_size = attr->func_info_rec_size; 10827 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 10828 urec_size > MAX_FUNCINFO_REC_SIZE || 10829 urec_size % sizeof(u32)) { 10830 verbose(env, "invalid func info rec size %u\n", urec_size); 10831 return -EINVAL; 10832 } 10833 10834 prog = env->prog; 10835 btf = prog->aux->btf; 10836 10837 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 10838 min_size = min_t(u32, krec_size, urec_size); 10839 10840 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 10841 if (!krecord) 10842 return -ENOMEM; 10843 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 10844 if (!info_aux) 10845 goto err_free; 10846 10847 for (i = 0; i < nfuncs; i++) { 10848 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 10849 if (ret) { 10850 if (ret == -E2BIG) { 10851 verbose(env, "nonzero tailing record in func info"); 10852 /* set the size kernel expects so loader can zero 10853 * out the rest of the record. 10854 */ 10855 if (copy_to_bpfptr_offset(uattr, 10856 offsetof(union bpf_attr, func_info_rec_size), 10857 &min_size, sizeof(min_size))) 10858 ret = -EFAULT; 10859 } 10860 goto err_free; 10861 } 10862 10863 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 10864 ret = -EFAULT; 10865 goto err_free; 10866 } 10867 10868 /* check insn_off */ 10869 ret = -EINVAL; 10870 if (i == 0) { 10871 if (krecord[i].insn_off) { 10872 verbose(env, 10873 "nonzero insn_off %u for the first func info record", 10874 krecord[i].insn_off); 10875 goto err_free; 10876 } 10877 } else if (krecord[i].insn_off <= prev_offset) { 10878 verbose(env, 10879 "same or smaller insn offset (%u) than previous func info record (%u)", 10880 krecord[i].insn_off, prev_offset); 10881 goto err_free; 10882 } 10883 10884 if (env->subprog_info[i].start != krecord[i].insn_off) { 10885 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 10886 goto err_free; 10887 } 10888 10889 /* check type_id */ 10890 type = btf_type_by_id(btf, krecord[i].type_id); 10891 if (!type || !btf_type_is_func(type)) { 10892 verbose(env, "invalid type id %d in func info", 10893 krecord[i].type_id); 10894 goto err_free; 10895 } 10896 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 10897 10898 func_proto = btf_type_by_id(btf, type->type); 10899 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 10900 /* btf_func_check() already verified it during BTF load */ 10901 goto err_free; 10902 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 10903 scalar_return = 10904 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type); 10905 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 10906 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 10907 goto err_free; 10908 } 10909 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 10910 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 10911 goto err_free; 10912 } 10913 10914 prev_offset = krecord[i].insn_off; 10915 bpfptr_add(&urecord, urec_size); 10916 } 10917 10918 prog->aux->func_info = krecord; 10919 prog->aux->func_info_cnt = nfuncs; 10920 prog->aux->func_info_aux = info_aux; 10921 return 0; 10922 10923 err_free: 10924 kvfree(krecord); 10925 kfree(info_aux); 10926 return ret; 10927 } 10928 10929 static void adjust_btf_func(struct bpf_verifier_env *env) 10930 { 10931 struct bpf_prog_aux *aux = env->prog->aux; 10932 int i; 10933 10934 if (!aux->func_info) 10935 return; 10936 10937 for (i = 0; i < env->subprog_cnt; i++) 10938 aux->func_info[i].insn_off = env->subprog_info[i].start; 10939 } 10940 10941 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 10942 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 10943 10944 static int check_btf_line(struct bpf_verifier_env *env, 10945 const union bpf_attr *attr, 10946 bpfptr_t uattr) 10947 { 10948 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 10949 struct bpf_subprog_info *sub; 10950 struct bpf_line_info *linfo; 10951 struct bpf_prog *prog; 10952 const struct btf *btf; 10953 bpfptr_t ulinfo; 10954 int err; 10955 10956 nr_linfo = attr->line_info_cnt; 10957 if (!nr_linfo) 10958 return 0; 10959 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 10960 return -EINVAL; 10961 10962 rec_size = attr->line_info_rec_size; 10963 if (rec_size < MIN_BPF_LINEINFO_SIZE || 10964 rec_size > MAX_LINEINFO_REC_SIZE || 10965 rec_size & (sizeof(u32) - 1)) 10966 return -EINVAL; 10967 10968 /* Need to zero it in case the userspace may 10969 * pass in a smaller bpf_line_info object. 10970 */ 10971 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 10972 GFP_KERNEL | __GFP_NOWARN); 10973 if (!linfo) 10974 return -ENOMEM; 10975 10976 prog = env->prog; 10977 btf = prog->aux->btf; 10978 10979 s = 0; 10980 sub = env->subprog_info; 10981 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 10982 expected_size = sizeof(struct bpf_line_info); 10983 ncopy = min_t(u32, expected_size, rec_size); 10984 for (i = 0; i < nr_linfo; i++) { 10985 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 10986 if (err) { 10987 if (err == -E2BIG) { 10988 verbose(env, "nonzero tailing record in line_info"); 10989 if (copy_to_bpfptr_offset(uattr, 10990 offsetof(union bpf_attr, line_info_rec_size), 10991 &expected_size, sizeof(expected_size))) 10992 err = -EFAULT; 10993 } 10994 goto err_free; 10995 } 10996 10997 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 10998 err = -EFAULT; 10999 goto err_free; 11000 } 11001 11002 /* 11003 * Check insn_off to ensure 11004 * 1) strictly increasing AND 11005 * 2) bounded by prog->len 11006 * 11007 * The linfo[0].insn_off == 0 check logically falls into 11008 * the later "missing bpf_line_info for func..." case 11009 * because the first linfo[0].insn_off must be the 11010 * first sub also and the first sub must have 11011 * subprog_info[0].start == 0. 11012 */ 11013 if ((i && linfo[i].insn_off <= prev_offset) || 11014 linfo[i].insn_off >= prog->len) { 11015 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 11016 i, linfo[i].insn_off, prev_offset, 11017 prog->len); 11018 err = -EINVAL; 11019 goto err_free; 11020 } 11021 11022 if (!prog->insnsi[linfo[i].insn_off].code) { 11023 verbose(env, 11024 "Invalid insn code at line_info[%u].insn_off\n", 11025 i); 11026 err = -EINVAL; 11027 goto err_free; 11028 } 11029 11030 if (!btf_name_by_offset(btf, linfo[i].line_off) || 11031 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 11032 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 11033 err = -EINVAL; 11034 goto err_free; 11035 } 11036 11037 if (s != env->subprog_cnt) { 11038 if (linfo[i].insn_off == sub[s].start) { 11039 sub[s].linfo_idx = i; 11040 s++; 11041 } else if (sub[s].start < linfo[i].insn_off) { 11042 verbose(env, "missing bpf_line_info for func#%u\n", s); 11043 err = -EINVAL; 11044 goto err_free; 11045 } 11046 } 11047 11048 prev_offset = linfo[i].insn_off; 11049 bpfptr_add(&ulinfo, rec_size); 11050 } 11051 11052 if (s != env->subprog_cnt) { 11053 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 11054 env->subprog_cnt - s, s); 11055 err = -EINVAL; 11056 goto err_free; 11057 } 11058 11059 prog->aux->linfo = linfo; 11060 prog->aux->nr_linfo = nr_linfo; 11061 11062 return 0; 11063 11064 err_free: 11065 kvfree(linfo); 11066 return err; 11067 } 11068 11069 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 11070 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 11071 11072 static int check_core_relo(struct bpf_verifier_env *env, 11073 const union bpf_attr *attr, 11074 bpfptr_t uattr) 11075 { 11076 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 11077 struct bpf_core_relo core_relo = {}; 11078 struct bpf_prog *prog = env->prog; 11079 const struct btf *btf = prog->aux->btf; 11080 struct bpf_core_ctx ctx = { 11081 .log = &env->log, 11082 .btf = btf, 11083 }; 11084 bpfptr_t u_core_relo; 11085 int err; 11086 11087 nr_core_relo = attr->core_relo_cnt; 11088 if (!nr_core_relo) 11089 return 0; 11090 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 11091 return -EINVAL; 11092 11093 rec_size = attr->core_relo_rec_size; 11094 if (rec_size < MIN_CORE_RELO_SIZE || 11095 rec_size > MAX_CORE_RELO_SIZE || 11096 rec_size % sizeof(u32)) 11097 return -EINVAL; 11098 11099 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 11100 expected_size = sizeof(struct bpf_core_relo); 11101 ncopy = min_t(u32, expected_size, rec_size); 11102 11103 /* Unlike func_info and line_info, copy and apply each CO-RE 11104 * relocation record one at a time. 11105 */ 11106 for (i = 0; i < nr_core_relo; i++) { 11107 /* future proofing when sizeof(bpf_core_relo) changes */ 11108 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 11109 if (err) { 11110 if (err == -E2BIG) { 11111 verbose(env, "nonzero tailing record in core_relo"); 11112 if (copy_to_bpfptr_offset(uattr, 11113 offsetof(union bpf_attr, core_relo_rec_size), 11114 &expected_size, sizeof(expected_size))) 11115 err = -EFAULT; 11116 } 11117 break; 11118 } 11119 11120 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 11121 err = -EFAULT; 11122 break; 11123 } 11124 11125 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 11126 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 11127 i, core_relo.insn_off, prog->len); 11128 err = -EINVAL; 11129 break; 11130 } 11131 11132 err = bpf_core_apply(&ctx, &core_relo, i, 11133 &prog->insnsi[core_relo.insn_off / 8]); 11134 if (err) 11135 break; 11136 bpfptr_add(&u_core_relo, rec_size); 11137 } 11138 return err; 11139 } 11140 11141 static int check_btf_info(struct bpf_verifier_env *env, 11142 const union bpf_attr *attr, 11143 bpfptr_t uattr) 11144 { 11145 struct btf *btf; 11146 int err; 11147 11148 if (!attr->func_info_cnt && !attr->line_info_cnt) { 11149 if (check_abnormal_return(env)) 11150 return -EINVAL; 11151 return 0; 11152 } 11153 11154 btf = btf_get_by_fd(attr->prog_btf_fd); 11155 if (IS_ERR(btf)) 11156 return PTR_ERR(btf); 11157 if (btf_is_kernel(btf)) { 11158 btf_put(btf); 11159 return -EACCES; 11160 } 11161 env->prog->aux->btf = btf; 11162 11163 err = check_btf_func(env, attr, uattr); 11164 if (err) 11165 return err; 11166 11167 err = check_btf_line(env, attr, uattr); 11168 if (err) 11169 return err; 11170 11171 err = check_core_relo(env, attr, uattr); 11172 if (err) 11173 return err; 11174 11175 return 0; 11176 } 11177 11178 /* check %cur's range satisfies %old's */ 11179 static bool range_within(struct bpf_reg_state *old, 11180 struct bpf_reg_state *cur) 11181 { 11182 return old->umin_value <= cur->umin_value && 11183 old->umax_value >= cur->umax_value && 11184 old->smin_value <= cur->smin_value && 11185 old->smax_value >= cur->smax_value && 11186 old->u32_min_value <= cur->u32_min_value && 11187 old->u32_max_value >= cur->u32_max_value && 11188 old->s32_min_value <= cur->s32_min_value && 11189 old->s32_max_value >= cur->s32_max_value; 11190 } 11191 11192 /* If in the old state two registers had the same id, then they need to have 11193 * the same id in the new state as well. But that id could be different from 11194 * the old state, so we need to track the mapping from old to new ids. 11195 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 11196 * regs with old id 5 must also have new id 9 for the new state to be safe. But 11197 * regs with a different old id could still have new id 9, we don't care about 11198 * that. 11199 * So we look through our idmap to see if this old id has been seen before. If 11200 * so, we require the new id to match; otherwise, we add the id pair to the map. 11201 */ 11202 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 11203 { 11204 unsigned int i; 11205 11206 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 11207 if (!idmap[i].old) { 11208 /* Reached an empty slot; haven't seen this id before */ 11209 idmap[i].old = old_id; 11210 idmap[i].cur = cur_id; 11211 return true; 11212 } 11213 if (idmap[i].old == old_id) 11214 return idmap[i].cur == cur_id; 11215 } 11216 /* We ran out of idmap slots, which should be impossible */ 11217 WARN_ON_ONCE(1); 11218 return false; 11219 } 11220 11221 static void clean_func_state(struct bpf_verifier_env *env, 11222 struct bpf_func_state *st) 11223 { 11224 enum bpf_reg_liveness live; 11225 int i, j; 11226 11227 for (i = 0; i < BPF_REG_FP; i++) { 11228 live = st->regs[i].live; 11229 /* liveness must not touch this register anymore */ 11230 st->regs[i].live |= REG_LIVE_DONE; 11231 if (!(live & REG_LIVE_READ)) 11232 /* since the register is unused, clear its state 11233 * to make further comparison simpler 11234 */ 11235 __mark_reg_not_init(env, &st->regs[i]); 11236 } 11237 11238 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 11239 live = st->stack[i].spilled_ptr.live; 11240 /* liveness must not touch this stack slot anymore */ 11241 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 11242 if (!(live & REG_LIVE_READ)) { 11243 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 11244 for (j = 0; j < BPF_REG_SIZE; j++) 11245 st->stack[i].slot_type[j] = STACK_INVALID; 11246 } 11247 } 11248 } 11249 11250 static void clean_verifier_state(struct bpf_verifier_env *env, 11251 struct bpf_verifier_state *st) 11252 { 11253 int i; 11254 11255 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 11256 /* all regs in this state in all frames were already marked */ 11257 return; 11258 11259 for (i = 0; i <= st->curframe; i++) 11260 clean_func_state(env, st->frame[i]); 11261 } 11262 11263 /* the parentage chains form a tree. 11264 * the verifier states are added to state lists at given insn and 11265 * pushed into state stack for future exploration. 11266 * when the verifier reaches bpf_exit insn some of the verifer states 11267 * stored in the state lists have their final liveness state already, 11268 * but a lot of states will get revised from liveness point of view when 11269 * the verifier explores other branches. 11270 * Example: 11271 * 1: r0 = 1 11272 * 2: if r1 == 100 goto pc+1 11273 * 3: r0 = 2 11274 * 4: exit 11275 * when the verifier reaches exit insn the register r0 in the state list of 11276 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 11277 * of insn 2 and goes exploring further. At the insn 4 it will walk the 11278 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 11279 * 11280 * Since the verifier pushes the branch states as it sees them while exploring 11281 * the program the condition of walking the branch instruction for the second 11282 * time means that all states below this branch were already explored and 11283 * their final liveness marks are already propagated. 11284 * Hence when the verifier completes the search of state list in is_state_visited() 11285 * we can call this clean_live_states() function to mark all liveness states 11286 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 11287 * will not be used. 11288 * This function also clears the registers and stack for states that !READ 11289 * to simplify state merging. 11290 * 11291 * Important note here that walking the same branch instruction in the callee 11292 * doesn't meant that the states are DONE. The verifier has to compare 11293 * the callsites 11294 */ 11295 static void clean_live_states(struct bpf_verifier_env *env, int insn, 11296 struct bpf_verifier_state *cur) 11297 { 11298 struct bpf_verifier_state_list *sl; 11299 int i; 11300 11301 sl = *explored_state(env, insn); 11302 while (sl) { 11303 if (sl->state.branches) 11304 goto next; 11305 if (sl->state.insn_idx != insn || 11306 sl->state.curframe != cur->curframe) 11307 goto next; 11308 for (i = 0; i <= cur->curframe; i++) 11309 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 11310 goto next; 11311 clean_verifier_state(env, &sl->state); 11312 next: 11313 sl = sl->next; 11314 } 11315 } 11316 11317 /* Returns true if (rold safe implies rcur safe) */ 11318 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 11319 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 11320 { 11321 bool equal; 11322 11323 if (!(rold->live & REG_LIVE_READ)) 11324 /* explored state didn't use this */ 11325 return true; 11326 11327 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 11328 11329 if (rold->type == PTR_TO_STACK) 11330 /* two stack pointers are equal only if they're pointing to 11331 * the same stack frame, since fp-8 in foo != fp-8 in bar 11332 */ 11333 return equal && rold->frameno == rcur->frameno; 11334 11335 if (equal) 11336 return true; 11337 11338 if (rold->type == NOT_INIT) 11339 /* explored state can't have used this */ 11340 return true; 11341 if (rcur->type == NOT_INIT) 11342 return false; 11343 switch (base_type(rold->type)) { 11344 case SCALAR_VALUE: 11345 if (env->explore_alu_limits) 11346 return false; 11347 if (rcur->type == SCALAR_VALUE) { 11348 if (!rold->precise && !rcur->precise) 11349 return true; 11350 /* new val must satisfy old val knowledge */ 11351 return range_within(rold, rcur) && 11352 tnum_in(rold->var_off, rcur->var_off); 11353 } else { 11354 /* We're trying to use a pointer in place of a scalar. 11355 * Even if the scalar was unbounded, this could lead to 11356 * pointer leaks because scalars are allowed to leak 11357 * while pointers are not. We could make this safe in 11358 * special cases if root is calling us, but it's 11359 * probably not worth the hassle. 11360 */ 11361 return false; 11362 } 11363 case PTR_TO_MAP_KEY: 11364 case PTR_TO_MAP_VALUE: 11365 /* a PTR_TO_MAP_VALUE could be safe to use as a 11366 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 11367 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 11368 * checked, doing so could have affected others with the same 11369 * id, and we can't check for that because we lost the id when 11370 * we converted to a PTR_TO_MAP_VALUE. 11371 */ 11372 if (type_may_be_null(rold->type)) { 11373 if (!type_may_be_null(rcur->type)) 11374 return false; 11375 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 11376 return false; 11377 /* Check our ids match any regs they're supposed to */ 11378 return check_ids(rold->id, rcur->id, idmap); 11379 } 11380 11381 /* If the new min/max/var_off satisfy the old ones and 11382 * everything else matches, we are OK. 11383 * 'id' is not compared, since it's only used for maps with 11384 * bpf_spin_lock inside map element and in such cases if 11385 * the rest of the prog is valid for one map element then 11386 * it's valid for all map elements regardless of the key 11387 * used in bpf_map_lookup() 11388 */ 11389 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 11390 range_within(rold, rcur) && 11391 tnum_in(rold->var_off, rcur->var_off); 11392 case PTR_TO_PACKET_META: 11393 case PTR_TO_PACKET: 11394 if (rcur->type != rold->type) 11395 return false; 11396 /* We must have at least as much range as the old ptr 11397 * did, so that any accesses which were safe before are 11398 * still safe. This is true even if old range < old off, 11399 * since someone could have accessed through (ptr - k), or 11400 * even done ptr -= k in a register, to get a safe access. 11401 */ 11402 if (rold->range > rcur->range) 11403 return false; 11404 /* If the offsets don't match, we can't trust our alignment; 11405 * nor can we be sure that we won't fall out of range. 11406 */ 11407 if (rold->off != rcur->off) 11408 return false; 11409 /* id relations must be preserved */ 11410 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 11411 return false; 11412 /* new val must satisfy old val knowledge */ 11413 return range_within(rold, rcur) && 11414 tnum_in(rold->var_off, rcur->var_off); 11415 case PTR_TO_CTX: 11416 case CONST_PTR_TO_MAP: 11417 case PTR_TO_PACKET_END: 11418 case PTR_TO_FLOW_KEYS: 11419 case PTR_TO_SOCKET: 11420 case PTR_TO_SOCK_COMMON: 11421 case PTR_TO_TCP_SOCK: 11422 case PTR_TO_XDP_SOCK: 11423 /* Only valid matches are exact, which memcmp() above 11424 * would have accepted 11425 */ 11426 default: 11427 /* Don't know what's going on, just say it's not safe */ 11428 return false; 11429 } 11430 11431 /* Shouldn't get here; if we do, say it's not safe */ 11432 WARN_ON_ONCE(1); 11433 return false; 11434 } 11435 11436 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 11437 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 11438 { 11439 int i, spi; 11440 11441 /* walk slots of the explored stack and ignore any additional 11442 * slots in the current stack, since explored(safe) state 11443 * didn't use them 11444 */ 11445 for (i = 0; i < old->allocated_stack; i++) { 11446 spi = i / BPF_REG_SIZE; 11447 11448 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 11449 i += BPF_REG_SIZE - 1; 11450 /* explored state didn't use this */ 11451 continue; 11452 } 11453 11454 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 11455 continue; 11456 11457 /* explored stack has more populated slots than current stack 11458 * and these slots were used 11459 */ 11460 if (i >= cur->allocated_stack) 11461 return false; 11462 11463 /* if old state was safe with misc data in the stack 11464 * it will be safe with zero-initialized stack. 11465 * The opposite is not true 11466 */ 11467 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 11468 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 11469 continue; 11470 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 11471 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 11472 /* Ex: old explored (safe) state has STACK_SPILL in 11473 * this stack slot, but current has STACK_MISC -> 11474 * this verifier states are not equivalent, 11475 * return false to continue verification of this path 11476 */ 11477 return false; 11478 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 11479 continue; 11480 if (!is_spilled_reg(&old->stack[spi])) 11481 continue; 11482 if (!regsafe(env, &old->stack[spi].spilled_ptr, 11483 &cur->stack[spi].spilled_ptr, idmap)) 11484 /* when explored and current stack slot are both storing 11485 * spilled registers, check that stored pointers types 11486 * are the same as well. 11487 * Ex: explored safe path could have stored 11488 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 11489 * but current path has stored: 11490 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 11491 * such verifier states are not equivalent. 11492 * return false to continue verification of this path 11493 */ 11494 return false; 11495 } 11496 return true; 11497 } 11498 11499 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 11500 { 11501 if (old->acquired_refs != cur->acquired_refs) 11502 return false; 11503 return !memcmp(old->refs, cur->refs, 11504 sizeof(*old->refs) * old->acquired_refs); 11505 } 11506 11507 /* compare two verifier states 11508 * 11509 * all states stored in state_list are known to be valid, since 11510 * verifier reached 'bpf_exit' instruction through them 11511 * 11512 * this function is called when verifier exploring different branches of 11513 * execution popped from the state stack. If it sees an old state that has 11514 * more strict register state and more strict stack state then this execution 11515 * branch doesn't need to be explored further, since verifier already 11516 * concluded that more strict state leads to valid finish. 11517 * 11518 * Therefore two states are equivalent if register state is more conservative 11519 * and explored stack state is more conservative than the current one. 11520 * Example: 11521 * explored current 11522 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 11523 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 11524 * 11525 * In other words if current stack state (one being explored) has more 11526 * valid slots than old one that already passed validation, it means 11527 * the verifier can stop exploring and conclude that current state is valid too 11528 * 11529 * Similarly with registers. If explored state has register type as invalid 11530 * whereas register type in current state is meaningful, it means that 11531 * the current state will reach 'bpf_exit' instruction safely 11532 */ 11533 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 11534 struct bpf_func_state *cur) 11535 { 11536 int i; 11537 11538 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 11539 for (i = 0; i < MAX_BPF_REG; i++) 11540 if (!regsafe(env, &old->regs[i], &cur->regs[i], 11541 env->idmap_scratch)) 11542 return false; 11543 11544 if (!stacksafe(env, old, cur, env->idmap_scratch)) 11545 return false; 11546 11547 if (!refsafe(old, cur)) 11548 return false; 11549 11550 return true; 11551 } 11552 11553 static bool states_equal(struct bpf_verifier_env *env, 11554 struct bpf_verifier_state *old, 11555 struct bpf_verifier_state *cur) 11556 { 11557 int i; 11558 11559 if (old->curframe != cur->curframe) 11560 return false; 11561 11562 /* Verification state from speculative execution simulation 11563 * must never prune a non-speculative execution one. 11564 */ 11565 if (old->speculative && !cur->speculative) 11566 return false; 11567 11568 if (old->active_spin_lock != cur->active_spin_lock) 11569 return false; 11570 11571 /* for states to be equal callsites have to be the same 11572 * and all frame states need to be equivalent 11573 */ 11574 for (i = 0; i <= old->curframe; i++) { 11575 if (old->frame[i]->callsite != cur->frame[i]->callsite) 11576 return false; 11577 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 11578 return false; 11579 } 11580 return true; 11581 } 11582 11583 /* Return 0 if no propagation happened. Return negative error code if error 11584 * happened. Otherwise, return the propagated bit. 11585 */ 11586 static int propagate_liveness_reg(struct bpf_verifier_env *env, 11587 struct bpf_reg_state *reg, 11588 struct bpf_reg_state *parent_reg) 11589 { 11590 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 11591 u8 flag = reg->live & REG_LIVE_READ; 11592 int err; 11593 11594 /* When comes here, read flags of PARENT_REG or REG could be any of 11595 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 11596 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 11597 */ 11598 if (parent_flag == REG_LIVE_READ64 || 11599 /* Or if there is no read flag from REG. */ 11600 !flag || 11601 /* Or if the read flag from REG is the same as PARENT_REG. */ 11602 parent_flag == flag) 11603 return 0; 11604 11605 err = mark_reg_read(env, reg, parent_reg, flag); 11606 if (err) 11607 return err; 11608 11609 return flag; 11610 } 11611 11612 /* A write screens off any subsequent reads; but write marks come from the 11613 * straight-line code between a state and its parent. When we arrive at an 11614 * equivalent state (jump target or such) we didn't arrive by the straight-line 11615 * code, so read marks in the state must propagate to the parent regardless 11616 * of the state's write marks. That's what 'parent == state->parent' comparison 11617 * in mark_reg_read() is for. 11618 */ 11619 static int propagate_liveness(struct bpf_verifier_env *env, 11620 const struct bpf_verifier_state *vstate, 11621 struct bpf_verifier_state *vparent) 11622 { 11623 struct bpf_reg_state *state_reg, *parent_reg; 11624 struct bpf_func_state *state, *parent; 11625 int i, frame, err = 0; 11626 11627 if (vparent->curframe != vstate->curframe) { 11628 WARN(1, "propagate_live: parent frame %d current frame %d\n", 11629 vparent->curframe, vstate->curframe); 11630 return -EFAULT; 11631 } 11632 /* Propagate read liveness of registers... */ 11633 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 11634 for (frame = 0; frame <= vstate->curframe; frame++) { 11635 parent = vparent->frame[frame]; 11636 state = vstate->frame[frame]; 11637 parent_reg = parent->regs; 11638 state_reg = state->regs; 11639 /* We don't need to worry about FP liveness, it's read-only */ 11640 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 11641 err = propagate_liveness_reg(env, &state_reg[i], 11642 &parent_reg[i]); 11643 if (err < 0) 11644 return err; 11645 if (err == REG_LIVE_READ64) 11646 mark_insn_zext(env, &parent_reg[i]); 11647 } 11648 11649 /* Propagate stack slots. */ 11650 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 11651 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 11652 parent_reg = &parent->stack[i].spilled_ptr; 11653 state_reg = &state->stack[i].spilled_ptr; 11654 err = propagate_liveness_reg(env, state_reg, 11655 parent_reg); 11656 if (err < 0) 11657 return err; 11658 } 11659 } 11660 return 0; 11661 } 11662 11663 /* find precise scalars in the previous equivalent state and 11664 * propagate them into the current state 11665 */ 11666 static int propagate_precision(struct bpf_verifier_env *env, 11667 const struct bpf_verifier_state *old) 11668 { 11669 struct bpf_reg_state *state_reg; 11670 struct bpf_func_state *state; 11671 int i, err = 0; 11672 11673 state = old->frame[old->curframe]; 11674 state_reg = state->regs; 11675 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 11676 if (state_reg->type != SCALAR_VALUE || 11677 !state_reg->precise) 11678 continue; 11679 if (env->log.level & BPF_LOG_LEVEL2) 11680 verbose(env, "propagating r%d\n", i); 11681 err = mark_chain_precision(env, i); 11682 if (err < 0) 11683 return err; 11684 } 11685 11686 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 11687 if (!is_spilled_reg(&state->stack[i])) 11688 continue; 11689 state_reg = &state->stack[i].spilled_ptr; 11690 if (state_reg->type != SCALAR_VALUE || 11691 !state_reg->precise) 11692 continue; 11693 if (env->log.level & BPF_LOG_LEVEL2) 11694 verbose(env, "propagating fp%d\n", 11695 (-i - 1) * BPF_REG_SIZE); 11696 err = mark_chain_precision_stack(env, i); 11697 if (err < 0) 11698 return err; 11699 } 11700 return 0; 11701 } 11702 11703 static bool states_maybe_looping(struct bpf_verifier_state *old, 11704 struct bpf_verifier_state *cur) 11705 { 11706 struct bpf_func_state *fold, *fcur; 11707 int i, fr = cur->curframe; 11708 11709 if (old->curframe != fr) 11710 return false; 11711 11712 fold = old->frame[fr]; 11713 fcur = cur->frame[fr]; 11714 for (i = 0; i < MAX_BPF_REG; i++) 11715 if (memcmp(&fold->regs[i], &fcur->regs[i], 11716 offsetof(struct bpf_reg_state, parent))) 11717 return false; 11718 return true; 11719 } 11720 11721 11722 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 11723 { 11724 struct bpf_verifier_state_list *new_sl; 11725 struct bpf_verifier_state_list *sl, **pprev; 11726 struct bpf_verifier_state *cur = env->cur_state, *new; 11727 int i, j, err, states_cnt = 0; 11728 bool add_new_state = env->test_state_freq ? true : false; 11729 11730 cur->last_insn_idx = env->prev_insn_idx; 11731 if (!env->insn_aux_data[insn_idx].prune_point) 11732 /* this 'insn_idx' instruction wasn't marked, so we will not 11733 * be doing state search here 11734 */ 11735 return 0; 11736 11737 /* bpf progs typically have pruning point every 4 instructions 11738 * http://vger.kernel.org/bpfconf2019.html#session-1 11739 * Do not add new state for future pruning if the verifier hasn't seen 11740 * at least 2 jumps and at least 8 instructions. 11741 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 11742 * In tests that amounts to up to 50% reduction into total verifier 11743 * memory consumption and 20% verifier time speedup. 11744 */ 11745 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 11746 env->insn_processed - env->prev_insn_processed >= 8) 11747 add_new_state = true; 11748 11749 pprev = explored_state(env, insn_idx); 11750 sl = *pprev; 11751 11752 clean_live_states(env, insn_idx, cur); 11753 11754 while (sl) { 11755 states_cnt++; 11756 if (sl->state.insn_idx != insn_idx) 11757 goto next; 11758 11759 if (sl->state.branches) { 11760 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 11761 11762 if (frame->in_async_callback_fn && 11763 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 11764 /* Different async_entry_cnt means that the verifier is 11765 * processing another entry into async callback. 11766 * Seeing the same state is not an indication of infinite 11767 * loop or infinite recursion. 11768 * But finding the same state doesn't mean that it's safe 11769 * to stop processing the current state. The previous state 11770 * hasn't yet reached bpf_exit, since state.branches > 0. 11771 * Checking in_async_callback_fn alone is not enough either. 11772 * Since the verifier still needs to catch infinite loops 11773 * inside async callbacks. 11774 */ 11775 } else if (states_maybe_looping(&sl->state, cur) && 11776 states_equal(env, &sl->state, cur)) { 11777 verbose_linfo(env, insn_idx, "; "); 11778 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 11779 return -EINVAL; 11780 } 11781 /* if the verifier is processing a loop, avoid adding new state 11782 * too often, since different loop iterations have distinct 11783 * states and may not help future pruning. 11784 * This threshold shouldn't be too low to make sure that 11785 * a loop with large bound will be rejected quickly. 11786 * The most abusive loop will be: 11787 * r1 += 1 11788 * if r1 < 1000000 goto pc-2 11789 * 1M insn_procssed limit / 100 == 10k peak states. 11790 * This threshold shouldn't be too high either, since states 11791 * at the end of the loop are likely to be useful in pruning. 11792 */ 11793 if (env->jmps_processed - env->prev_jmps_processed < 20 && 11794 env->insn_processed - env->prev_insn_processed < 100) 11795 add_new_state = false; 11796 goto miss; 11797 } 11798 if (states_equal(env, &sl->state, cur)) { 11799 sl->hit_cnt++; 11800 /* reached equivalent register/stack state, 11801 * prune the search. 11802 * Registers read by the continuation are read by us. 11803 * If we have any write marks in env->cur_state, they 11804 * will prevent corresponding reads in the continuation 11805 * from reaching our parent (an explored_state). Our 11806 * own state will get the read marks recorded, but 11807 * they'll be immediately forgotten as we're pruning 11808 * this state and will pop a new one. 11809 */ 11810 err = propagate_liveness(env, &sl->state, cur); 11811 11812 /* if previous state reached the exit with precision and 11813 * current state is equivalent to it (except precsion marks) 11814 * the precision needs to be propagated back in 11815 * the current state. 11816 */ 11817 err = err ? : push_jmp_history(env, cur); 11818 err = err ? : propagate_precision(env, &sl->state); 11819 if (err) 11820 return err; 11821 return 1; 11822 } 11823 miss: 11824 /* when new state is not going to be added do not increase miss count. 11825 * Otherwise several loop iterations will remove the state 11826 * recorded earlier. The goal of these heuristics is to have 11827 * states from some iterations of the loop (some in the beginning 11828 * and some at the end) to help pruning. 11829 */ 11830 if (add_new_state) 11831 sl->miss_cnt++; 11832 /* heuristic to determine whether this state is beneficial 11833 * to keep checking from state equivalence point of view. 11834 * Higher numbers increase max_states_per_insn and verification time, 11835 * but do not meaningfully decrease insn_processed. 11836 */ 11837 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 11838 /* the state is unlikely to be useful. Remove it to 11839 * speed up verification 11840 */ 11841 *pprev = sl->next; 11842 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 11843 u32 br = sl->state.branches; 11844 11845 WARN_ONCE(br, 11846 "BUG live_done but branches_to_explore %d\n", 11847 br); 11848 free_verifier_state(&sl->state, false); 11849 kfree(sl); 11850 env->peak_states--; 11851 } else { 11852 /* cannot free this state, since parentage chain may 11853 * walk it later. Add it for free_list instead to 11854 * be freed at the end of verification 11855 */ 11856 sl->next = env->free_list; 11857 env->free_list = sl; 11858 } 11859 sl = *pprev; 11860 continue; 11861 } 11862 next: 11863 pprev = &sl->next; 11864 sl = *pprev; 11865 } 11866 11867 if (env->max_states_per_insn < states_cnt) 11868 env->max_states_per_insn = states_cnt; 11869 11870 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 11871 return push_jmp_history(env, cur); 11872 11873 if (!add_new_state) 11874 return push_jmp_history(env, cur); 11875 11876 /* There were no equivalent states, remember the current one. 11877 * Technically the current state is not proven to be safe yet, 11878 * but it will either reach outer most bpf_exit (which means it's safe) 11879 * or it will be rejected. When there are no loops the verifier won't be 11880 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 11881 * again on the way to bpf_exit. 11882 * When looping the sl->state.branches will be > 0 and this state 11883 * will not be considered for equivalence until branches == 0. 11884 */ 11885 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 11886 if (!new_sl) 11887 return -ENOMEM; 11888 env->total_states++; 11889 env->peak_states++; 11890 env->prev_jmps_processed = env->jmps_processed; 11891 env->prev_insn_processed = env->insn_processed; 11892 11893 /* add new state to the head of linked list */ 11894 new = &new_sl->state; 11895 err = copy_verifier_state(new, cur); 11896 if (err) { 11897 free_verifier_state(new, false); 11898 kfree(new_sl); 11899 return err; 11900 } 11901 new->insn_idx = insn_idx; 11902 WARN_ONCE(new->branches != 1, 11903 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 11904 11905 cur->parent = new; 11906 cur->first_insn_idx = insn_idx; 11907 clear_jmp_history(cur); 11908 new_sl->next = *explored_state(env, insn_idx); 11909 *explored_state(env, insn_idx) = new_sl; 11910 /* connect new state to parentage chain. Current frame needs all 11911 * registers connected. Only r6 - r9 of the callers are alive (pushed 11912 * to the stack implicitly by JITs) so in callers' frames connect just 11913 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 11914 * the state of the call instruction (with WRITTEN set), and r0 comes 11915 * from callee with its full parentage chain, anyway. 11916 */ 11917 /* clear write marks in current state: the writes we did are not writes 11918 * our child did, so they don't screen off its reads from us. 11919 * (There are no read marks in current state, because reads always mark 11920 * their parent and current state never has children yet. Only 11921 * explored_states can get read marks.) 11922 */ 11923 for (j = 0; j <= cur->curframe; j++) { 11924 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 11925 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 11926 for (i = 0; i < BPF_REG_FP; i++) 11927 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 11928 } 11929 11930 /* all stack frames are accessible from callee, clear them all */ 11931 for (j = 0; j <= cur->curframe; j++) { 11932 struct bpf_func_state *frame = cur->frame[j]; 11933 struct bpf_func_state *newframe = new->frame[j]; 11934 11935 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 11936 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 11937 frame->stack[i].spilled_ptr.parent = 11938 &newframe->stack[i].spilled_ptr; 11939 } 11940 } 11941 return 0; 11942 } 11943 11944 /* Return true if it's OK to have the same insn return a different type. */ 11945 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 11946 { 11947 switch (base_type(type)) { 11948 case PTR_TO_CTX: 11949 case PTR_TO_SOCKET: 11950 case PTR_TO_SOCK_COMMON: 11951 case PTR_TO_TCP_SOCK: 11952 case PTR_TO_XDP_SOCK: 11953 case PTR_TO_BTF_ID: 11954 return false; 11955 default: 11956 return true; 11957 } 11958 } 11959 11960 /* If an instruction was previously used with particular pointer types, then we 11961 * need to be careful to avoid cases such as the below, where it may be ok 11962 * for one branch accessing the pointer, but not ok for the other branch: 11963 * 11964 * R1 = sock_ptr 11965 * goto X; 11966 * ... 11967 * R1 = some_other_valid_ptr; 11968 * goto X; 11969 * ... 11970 * R2 = *(u32 *)(R1 + 0); 11971 */ 11972 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 11973 { 11974 return src != prev && (!reg_type_mismatch_ok(src) || 11975 !reg_type_mismatch_ok(prev)); 11976 } 11977 11978 static int do_check(struct bpf_verifier_env *env) 11979 { 11980 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 11981 struct bpf_verifier_state *state = env->cur_state; 11982 struct bpf_insn *insns = env->prog->insnsi; 11983 struct bpf_reg_state *regs; 11984 int insn_cnt = env->prog->len; 11985 bool do_print_state = false; 11986 int prev_insn_idx = -1; 11987 11988 for (;;) { 11989 struct bpf_insn *insn; 11990 u8 class; 11991 int err; 11992 11993 env->prev_insn_idx = prev_insn_idx; 11994 if (env->insn_idx >= insn_cnt) { 11995 verbose(env, "invalid insn idx %d insn_cnt %d\n", 11996 env->insn_idx, insn_cnt); 11997 return -EFAULT; 11998 } 11999 12000 insn = &insns[env->insn_idx]; 12001 class = BPF_CLASS(insn->code); 12002 12003 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 12004 verbose(env, 12005 "BPF program is too large. Processed %d insn\n", 12006 env->insn_processed); 12007 return -E2BIG; 12008 } 12009 12010 err = is_state_visited(env, env->insn_idx); 12011 if (err < 0) 12012 return err; 12013 if (err == 1) { 12014 /* found equivalent state, can prune the search */ 12015 if (env->log.level & BPF_LOG_LEVEL) { 12016 if (do_print_state) 12017 verbose(env, "\nfrom %d to %d%s: safe\n", 12018 env->prev_insn_idx, env->insn_idx, 12019 env->cur_state->speculative ? 12020 " (speculative execution)" : ""); 12021 else 12022 verbose(env, "%d: safe\n", env->insn_idx); 12023 } 12024 goto process_bpf_exit; 12025 } 12026 12027 if (signal_pending(current)) 12028 return -EAGAIN; 12029 12030 if (need_resched()) 12031 cond_resched(); 12032 12033 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 12034 verbose(env, "\nfrom %d to %d%s:", 12035 env->prev_insn_idx, env->insn_idx, 12036 env->cur_state->speculative ? 12037 " (speculative execution)" : ""); 12038 print_verifier_state(env, state->frame[state->curframe], true); 12039 do_print_state = false; 12040 } 12041 12042 if (env->log.level & BPF_LOG_LEVEL) { 12043 const struct bpf_insn_cbs cbs = { 12044 .cb_call = disasm_kfunc_name, 12045 .cb_print = verbose, 12046 .private_data = env, 12047 }; 12048 12049 if (verifier_state_scratched(env)) 12050 print_insn_state(env, state->frame[state->curframe]); 12051 12052 verbose_linfo(env, env->insn_idx, "; "); 12053 env->prev_log_len = env->log.len_used; 12054 verbose(env, "%d: ", env->insn_idx); 12055 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 12056 env->prev_insn_print_len = env->log.len_used - env->prev_log_len; 12057 env->prev_log_len = env->log.len_used; 12058 } 12059 12060 if (bpf_prog_is_dev_bound(env->prog->aux)) { 12061 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 12062 env->prev_insn_idx); 12063 if (err) 12064 return err; 12065 } 12066 12067 regs = cur_regs(env); 12068 sanitize_mark_insn_seen(env); 12069 prev_insn_idx = env->insn_idx; 12070 12071 if (class == BPF_ALU || class == BPF_ALU64) { 12072 err = check_alu_op(env, insn); 12073 if (err) 12074 return err; 12075 12076 } else if (class == BPF_LDX) { 12077 enum bpf_reg_type *prev_src_type, src_reg_type; 12078 12079 /* check for reserved fields is already done */ 12080 12081 /* check src operand */ 12082 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12083 if (err) 12084 return err; 12085 12086 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 12087 if (err) 12088 return err; 12089 12090 src_reg_type = regs[insn->src_reg].type; 12091 12092 /* check that memory (src_reg + off) is readable, 12093 * the state of dst_reg will be updated by this func 12094 */ 12095 err = check_mem_access(env, env->insn_idx, insn->src_reg, 12096 insn->off, BPF_SIZE(insn->code), 12097 BPF_READ, insn->dst_reg, false); 12098 if (err) 12099 return err; 12100 12101 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 12102 12103 if (*prev_src_type == NOT_INIT) { 12104 /* saw a valid insn 12105 * dst_reg = *(u32 *)(src_reg + off) 12106 * save type to validate intersecting paths 12107 */ 12108 *prev_src_type = src_reg_type; 12109 12110 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 12111 /* ABuser program is trying to use the same insn 12112 * dst_reg = *(u32*) (src_reg + off) 12113 * with different pointer types: 12114 * src_reg == ctx in one branch and 12115 * src_reg == stack|map in some other branch. 12116 * Reject it. 12117 */ 12118 verbose(env, "same insn cannot be used with different pointers\n"); 12119 return -EINVAL; 12120 } 12121 12122 } else if (class == BPF_STX) { 12123 enum bpf_reg_type *prev_dst_type, dst_reg_type; 12124 12125 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 12126 err = check_atomic(env, env->insn_idx, insn); 12127 if (err) 12128 return err; 12129 env->insn_idx++; 12130 continue; 12131 } 12132 12133 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 12134 verbose(env, "BPF_STX uses reserved fields\n"); 12135 return -EINVAL; 12136 } 12137 12138 /* check src1 operand */ 12139 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12140 if (err) 12141 return err; 12142 /* check src2 operand */ 12143 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12144 if (err) 12145 return err; 12146 12147 dst_reg_type = regs[insn->dst_reg].type; 12148 12149 /* check that memory (dst_reg + off) is writeable */ 12150 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 12151 insn->off, BPF_SIZE(insn->code), 12152 BPF_WRITE, insn->src_reg, false); 12153 if (err) 12154 return err; 12155 12156 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 12157 12158 if (*prev_dst_type == NOT_INIT) { 12159 *prev_dst_type = dst_reg_type; 12160 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 12161 verbose(env, "same insn cannot be used with different pointers\n"); 12162 return -EINVAL; 12163 } 12164 12165 } else if (class == BPF_ST) { 12166 if (BPF_MODE(insn->code) != BPF_MEM || 12167 insn->src_reg != BPF_REG_0) { 12168 verbose(env, "BPF_ST uses reserved fields\n"); 12169 return -EINVAL; 12170 } 12171 /* check src operand */ 12172 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12173 if (err) 12174 return err; 12175 12176 if (is_ctx_reg(env, insn->dst_reg)) { 12177 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 12178 insn->dst_reg, 12179 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 12180 return -EACCES; 12181 } 12182 12183 /* check that memory (dst_reg + off) is writeable */ 12184 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 12185 insn->off, BPF_SIZE(insn->code), 12186 BPF_WRITE, -1, false); 12187 if (err) 12188 return err; 12189 12190 } else if (class == BPF_JMP || class == BPF_JMP32) { 12191 u8 opcode = BPF_OP(insn->code); 12192 12193 env->jmps_processed++; 12194 if (opcode == BPF_CALL) { 12195 if (BPF_SRC(insn->code) != BPF_K || 12196 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 12197 && insn->off != 0) || 12198 (insn->src_reg != BPF_REG_0 && 12199 insn->src_reg != BPF_PSEUDO_CALL && 12200 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 12201 insn->dst_reg != BPF_REG_0 || 12202 class == BPF_JMP32) { 12203 verbose(env, "BPF_CALL uses reserved fields\n"); 12204 return -EINVAL; 12205 } 12206 12207 if (env->cur_state->active_spin_lock && 12208 (insn->src_reg == BPF_PSEUDO_CALL || 12209 insn->imm != BPF_FUNC_spin_unlock)) { 12210 verbose(env, "function calls are not allowed while holding a lock\n"); 12211 return -EINVAL; 12212 } 12213 if (insn->src_reg == BPF_PSEUDO_CALL) 12214 err = check_func_call(env, insn, &env->insn_idx); 12215 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 12216 err = check_kfunc_call(env, insn, &env->insn_idx); 12217 else 12218 err = check_helper_call(env, insn, &env->insn_idx); 12219 if (err) 12220 return err; 12221 } else if (opcode == BPF_JA) { 12222 if (BPF_SRC(insn->code) != BPF_K || 12223 insn->imm != 0 || 12224 insn->src_reg != BPF_REG_0 || 12225 insn->dst_reg != BPF_REG_0 || 12226 class == BPF_JMP32) { 12227 verbose(env, "BPF_JA uses reserved fields\n"); 12228 return -EINVAL; 12229 } 12230 12231 env->insn_idx += insn->off + 1; 12232 continue; 12233 12234 } else if (opcode == BPF_EXIT) { 12235 if (BPF_SRC(insn->code) != BPF_K || 12236 insn->imm != 0 || 12237 insn->src_reg != BPF_REG_0 || 12238 insn->dst_reg != BPF_REG_0 || 12239 class == BPF_JMP32) { 12240 verbose(env, "BPF_EXIT uses reserved fields\n"); 12241 return -EINVAL; 12242 } 12243 12244 if (env->cur_state->active_spin_lock) { 12245 verbose(env, "bpf_spin_unlock is missing\n"); 12246 return -EINVAL; 12247 } 12248 12249 if (state->curframe) { 12250 /* exit from nested function */ 12251 err = prepare_func_exit(env, &env->insn_idx); 12252 if (err) 12253 return err; 12254 do_print_state = true; 12255 continue; 12256 } 12257 12258 err = check_reference_leak(env); 12259 if (err) 12260 return err; 12261 12262 err = check_return_code(env); 12263 if (err) 12264 return err; 12265 process_bpf_exit: 12266 mark_verifier_state_scratched(env); 12267 update_branch_counts(env, env->cur_state); 12268 err = pop_stack(env, &prev_insn_idx, 12269 &env->insn_idx, pop_log); 12270 if (err < 0) { 12271 if (err != -ENOENT) 12272 return err; 12273 break; 12274 } else { 12275 do_print_state = true; 12276 continue; 12277 } 12278 } else { 12279 err = check_cond_jmp_op(env, insn, &env->insn_idx); 12280 if (err) 12281 return err; 12282 } 12283 } else if (class == BPF_LD) { 12284 u8 mode = BPF_MODE(insn->code); 12285 12286 if (mode == BPF_ABS || mode == BPF_IND) { 12287 err = check_ld_abs(env, insn); 12288 if (err) 12289 return err; 12290 12291 } else if (mode == BPF_IMM) { 12292 err = check_ld_imm(env, insn); 12293 if (err) 12294 return err; 12295 12296 env->insn_idx++; 12297 sanitize_mark_insn_seen(env); 12298 } else { 12299 verbose(env, "invalid BPF_LD mode\n"); 12300 return -EINVAL; 12301 } 12302 } else { 12303 verbose(env, "unknown insn class %d\n", class); 12304 return -EINVAL; 12305 } 12306 12307 env->insn_idx++; 12308 } 12309 12310 return 0; 12311 } 12312 12313 static int find_btf_percpu_datasec(struct btf *btf) 12314 { 12315 const struct btf_type *t; 12316 const char *tname; 12317 int i, n; 12318 12319 /* 12320 * Both vmlinux and module each have their own ".data..percpu" 12321 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 12322 * types to look at only module's own BTF types. 12323 */ 12324 n = btf_nr_types(btf); 12325 if (btf_is_module(btf)) 12326 i = btf_nr_types(btf_vmlinux); 12327 else 12328 i = 1; 12329 12330 for(; i < n; i++) { 12331 t = btf_type_by_id(btf, i); 12332 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 12333 continue; 12334 12335 tname = btf_name_by_offset(btf, t->name_off); 12336 if (!strcmp(tname, ".data..percpu")) 12337 return i; 12338 } 12339 12340 return -ENOENT; 12341 } 12342 12343 /* replace pseudo btf_id with kernel symbol address */ 12344 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 12345 struct bpf_insn *insn, 12346 struct bpf_insn_aux_data *aux) 12347 { 12348 const struct btf_var_secinfo *vsi; 12349 const struct btf_type *datasec; 12350 struct btf_mod_pair *btf_mod; 12351 const struct btf_type *t; 12352 const char *sym_name; 12353 bool percpu = false; 12354 u32 type, id = insn->imm; 12355 struct btf *btf; 12356 s32 datasec_id; 12357 u64 addr; 12358 int i, btf_fd, err; 12359 12360 btf_fd = insn[1].imm; 12361 if (btf_fd) { 12362 btf = btf_get_by_fd(btf_fd); 12363 if (IS_ERR(btf)) { 12364 verbose(env, "invalid module BTF object FD specified.\n"); 12365 return -EINVAL; 12366 } 12367 } else { 12368 if (!btf_vmlinux) { 12369 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 12370 return -EINVAL; 12371 } 12372 btf = btf_vmlinux; 12373 btf_get(btf); 12374 } 12375 12376 t = btf_type_by_id(btf, id); 12377 if (!t) { 12378 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 12379 err = -ENOENT; 12380 goto err_put; 12381 } 12382 12383 if (!btf_type_is_var(t)) { 12384 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 12385 err = -EINVAL; 12386 goto err_put; 12387 } 12388 12389 sym_name = btf_name_by_offset(btf, t->name_off); 12390 addr = kallsyms_lookup_name(sym_name); 12391 if (!addr) { 12392 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 12393 sym_name); 12394 err = -ENOENT; 12395 goto err_put; 12396 } 12397 12398 datasec_id = find_btf_percpu_datasec(btf); 12399 if (datasec_id > 0) { 12400 datasec = btf_type_by_id(btf, datasec_id); 12401 for_each_vsi(i, datasec, vsi) { 12402 if (vsi->type == id) { 12403 percpu = true; 12404 break; 12405 } 12406 } 12407 } 12408 12409 insn[0].imm = (u32)addr; 12410 insn[1].imm = addr >> 32; 12411 12412 type = t->type; 12413 t = btf_type_skip_modifiers(btf, type, NULL); 12414 if (percpu) { 12415 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 12416 aux->btf_var.btf = btf; 12417 aux->btf_var.btf_id = type; 12418 } else if (!btf_type_is_struct(t)) { 12419 const struct btf_type *ret; 12420 const char *tname; 12421 u32 tsize; 12422 12423 /* resolve the type size of ksym. */ 12424 ret = btf_resolve_size(btf, t, &tsize); 12425 if (IS_ERR(ret)) { 12426 tname = btf_name_by_offset(btf, t->name_off); 12427 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 12428 tname, PTR_ERR(ret)); 12429 err = -EINVAL; 12430 goto err_put; 12431 } 12432 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 12433 aux->btf_var.mem_size = tsize; 12434 } else { 12435 aux->btf_var.reg_type = PTR_TO_BTF_ID; 12436 aux->btf_var.btf = btf; 12437 aux->btf_var.btf_id = type; 12438 } 12439 12440 /* check whether we recorded this BTF (and maybe module) already */ 12441 for (i = 0; i < env->used_btf_cnt; i++) { 12442 if (env->used_btfs[i].btf == btf) { 12443 btf_put(btf); 12444 return 0; 12445 } 12446 } 12447 12448 if (env->used_btf_cnt >= MAX_USED_BTFS) { 12449 err = -E2BIG; 12450 goto err_put; 12451 } 12452 12453 btf_mod = &env->used_btfs[env->used_btf_cnt]; 12454 btf_mod->btf = btf; 12455 btf_mod->module = NULL; 12456 12457 /* if we reference variables from kernel module, bump its refcount */ 12458 if (btf_is_module(btf)) { 12459 btf_mod->module = btf_try_get_module(btf); 12460 if (!btf_mod->module) { 12461 err = -ENXIO; 12462 goto err_put; 12463 } 12464 } 12465 12466 env->used_btf_cnt++; 12467 12468 return 0; 12469 err_put: 12470 btf_put(btf); 12471 return err; 12472 } 12473 12474 static int check_map_prealloc(struct bpf_map *map) 12475 { 12476 return (map->map_type != BPF_MAP_TYPE_HASH && 12477 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 12478 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 12479 !(map->map_flags & BPF_F_NO_PREALLOC); 12480 } 12481 12482 static bool is_tracing_prog_type(enum bpf_prog_type type) 12483 { 12484 switch (type) { 12485 case BPF_PROG_TYPE_KPROBE: 12486 case BPF_PROG_TYPE_TRACEPOINT: 12487 case BPF_PROG_TYPE_PERF_EVENT: 12488 case BPF_PROG_TYPE_RAW_TRACEPOINT: 12489 return true; 12490 default: 12491 return false; 12492 } 12493 } 12494 12495 static bool is_preallocated_map(struct bpf_map *map) 12496 { 12497 if (!check_map_prealloc(map)) 12498 return false; 12499 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 12500 return false; 12501 return true; 12502 } 12503 12504 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 12505 struct bpf_map *map, 12506 struct bpf_prog *prog) 12507 12508 { 12509 enum bpf_prog_type prog_type = resolve_prog_type(prog); 12510 /* 12511 * Validate that trace type programs use preallocated hash maps. 12512 * 12513 * For programs attached to PERF events this is mandatory as the 12514 * perf NMI can hit any arbitrary code sequence. 12515 * 12516 * All other trace types using preallocated hash maps are unsafe as 12517 * well because tracepoint or kprobes can be inside locked regions 12518 * of the memory allocator or at a place where a recursion into the 12519 * memory allocator would see inconsistent state. 12520 * 12521 * On RT enabled kernels run-time allocation of all trace type 12522 * programs is strictly prohibited due to lock type constraints. On 12523 * !RT kernels it is allowed for backwards compatibility reasons for 12524 * now, but warnings are emitted so developers are made aware of 12525 * the unsafety and can fix their programs before this is enforced. 12526 */ 12527 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) { 12528 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) { 12529 verbose(env, "perf_event programs can only use preallocated hash map\n"); 12530 return -EINVAL; 12531 } 12532 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 12533 verbose(env, "trace type programs can only use preallocated hash map\n"); 12534 return -EINVAL; 12535 } 12536 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 12537 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 12538 } 12539 12540 if (map_value_has_spin_lock(map)) { 12541 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 12542 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 12543 return -EINVAL; 12544 } 12545 12546 if (is_tracing_prog_type(prog_type)) { 12547 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 12548 return -EINVAL; 12549 } 12550 12551 if (prog->aux->sleepable) { 12552 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 12553 return -EINVAL; 12554 } 12555 } 12556 12557 if (map_value_has_timer(map)) { 12558 if (is_tracing_prog_type(prog_type)) { 12559 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 12560 return -EINVAL; 12561 } 12562 } 12563 12564 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 12565 !bpf_offload_prog_map_match(prog, map)) { 12566 verbose(env, "offload device mismatch between prog and map\n"); 12567 return -EINVAL; 12568 } 12569 12570 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 12571 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 12572 return -EINVAL; 12573 } 12574 12575 if (prog->aux->sleepable) 12576 switch (map->map_type) { 12577 case BPF_MAP_TYPE_HASH: 12578 case BPF_MAP_TYPE_LRU_HASH: 12579 case BPF_MAP_TYPE_ARRAY: 12580 case BPF_MAP_TYPE_PERCPU_HASH: 12581 case BPF_MAP_TYPE_PERCPU_ARRAY: 12582 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 12583 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 12584 case BPF_MAP_TYPE_HASH_OF_MAPS: 12585 if (!is_preallocated_map(map)) { 12586 verbose(env, 12587 "Sleepable programs can only use preallocated maps\n"); 12588 return -EINVAL; 12589 } 12590 break; 12591 case BPF_MAP_TYPE_RINGBUF: 12592 case BPF_MAP_TYPE_INODE_STORAGE: 12593 case BPF_MAP_TYPE_SK_STORAGE: 12594 case BPF_MAP_TYPE_TASK_STORAGE: 12595 break; 12596 default: 12597 verbose(env, 12598 "Sleepable programs can only use array, hash, and ringbuf maps\n"); 12599 return -EINVAL; 12600 } 12601 12602 return 0; 12603 } 12604 12605 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 12606 { 12607 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 12608 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 12609 } 12610 12611 /* find and rewrite pseudo imm in ld_imm64 instructions: 12612 * 12613 * 1. if it accesses map FD, replace it with actual map pointer. 12614 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 12615 * 12616 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 12617 */ 12618 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 12619 { 12620 struct bpf_insn *insn = env->prog->insnsi; 12621 int insn_cnt = env->prog->len; 12622 int i, j, err; 12623 12624 err = bpf_prog_calc_tag(env->prog); 12625 if (err) 12626 return err; 12627 12628 for (i = 0; i < insn_cnt; i++, insn++) { 12629 if (BPF_CLASS(insn->code) == BPF_LDX && 12630 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 12631 verbose(env, "BPF_LDX uses reserved fields\n"); 12632 return -EINVAL; 12633 } 12634 12635 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 12636 struct bpf_insn_aux_data *aux; 12637 struct bpf_map *map; 12638 struct fd f; 12639 u64 addr; 12640 u32 fd; 12641 12642 if (i == insn_cnt - 1 || insn[1].code != 0 || 12643 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 12644 insn[1].off != 0) { 12645 verbose(env, "invalid bpf_ld_imm64 insn\n"); 12646 return -EINVAL; 12647 } 12648 12649 if (insn[0].src_reg == 0) 12650 /* valid generic load 64-bit imm */ 12651 goto next_insn; 12652 12653 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 12654 aux = &env->insn_aux_data[i]; 12655 err = check_pseudo_btf_id(env, insn, aux); 12656 if (err) 12657 return err; 12658 goto next_insn; 12659 } 12660 12661 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 12662 aux = &env->insn_aux_data[i]; 12663 aux->ptr_type = PTR_TO_FUNC; 12664 goto next_insn; 12665 } 12666 12667 /* In final convert_pseudo_ld_imm64() step, this is 12668 * converted into regular 64-bit imm load insn. 12669 */ 12670 switch (insn[0].src_reg) { 12671 case BPF_PSEUDO_MAP_VALUE: 12672 case BPF_PSEUDO_MAP_IDX_VALUE: 12673 break; 12674 case BPF_PSEUDO_MAP_FD: 12675 case BPF_PSEUDO_MAP_IDX: 12676 if (insn[1].imm == 0) 12677 break; 12678 fallthrough; 12679 default: 12680 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 12681 return -EINVAL; 12682 } 12683 12684 switch (insn[0].src_reg) { 12685 case BPF_PSEUDO_MAP_IDX_VALUE: 12686 case BPF_PSEUDO_MAP_IDX: 12687 if (bpfptr_is_null(env->fd_array)) { 12688 verbose(env, "fd_idx without fd_array is invalid\n"); 12689 return -EPROTO; 12690 } 12691 if (copy_from_bpfptr_offset(&fd, env->fd_array, 12692 insn[0].imm * sizeof(fd), 12693 sizeof(fd))) 12694 return -EFAULT; 12695 break; 12696 default: 12697 fd = insn[0].imm; 12698 break; 12699 } 12700 12701 f = fdget(fd); 12702 map = __bpf_map_get(f); 12703 if (IS_ERR(map)) { 12704 verbose(env, "fd %d is not pointing to valid bpf_map\n", 12705 insn[0].imm); 12706 return PTR_ERR(map); 12707 } 12708 12709 err = check_map_prog_compatibility(env, map, env->prog); 12710 if (err) { 12711 fdput(f); 12712 return err; 12713 } 12714 12715 aux = &env->insn_aux_data[i]; 12716 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 12717 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 12718 addr = (unsigned long)map; 12719 } else { 12720 u32 off = insn[1].imm; 12721 12722 if (off >= BPF_MAX_VAR_OFF) { 12723 verbose(env, "direct value offset of %u is not allowed\n", off); 12724 fdput(f); 12725 return -EINVAL; 12726 } 12727 12728 if (!map->ops->map_direct_value_addr) { 12729 verbose(env, "no direct value access support for this map type\n"); 12730 fdput(f); 12731 return -EINVAL; 12732 } 12733 12734 err = map->ops->map_direct_value_addr(map, &addr, off); 12735 if (err) { 12736 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 12737 map->value_size, off); 12738 fdput(f); 12739 return err; 12740 } 12741 12742 aux->map_off = off; 12743 addr += off; 12744 } 12745 12746 insn[0].imm = (u32)addr; 12747 insn[1].imm = addr >> 32; 12748 12749 /* check whether we recorded this map already */ 12750 for (j = 0; j < env->used_map_cnt; j++) { 12751 if (env->used_maps[j] == map) { 12752 aux->map_index = j; 12753 fdput(f); 12754 goto next_insn; 12755 } 12756 } 12757 12758 if (env->used_map_cnt >= MAX_USED_MAPS) { 12759 fdput(f); 12760 return -E2BIG; 12761 } 12762 12763 /* hold the map. If the program is rejected by verifier, 12764 * the map will be released by release_maps() or it 12765 * will be used by the valid program until it's unloaded 12766 * and all maps are released in free_used_maps() 12767 */ 12768 bpf_map_inc(map); 12769 12770 aux->map_index = env->used_map_cnt; 12771 env->used_maps[env->used_map_cnt++] = map; 12772 12773 if (bpf_map_is_cgroup_storage(map) && 12774 bpf_cgroup_storage_assign(env->prog->aux, map)) { 12775 verbose(env, "only one cgroup storage of each type is allowed\n"); 12776 fdput(f); 12777 return -EBUSY; 12778 } 12779 12780 fdput(f); 12781 next_insn: 12782 insn++; 12783 i++; 12784 continue; 12785 } 12786 12787 /* Basic sanity check before we invest more work here. */ 12788 if (!bpf_opcode_in_insntable(insn->code)) { 12789 verbose(env, "unknown opcode %02x\n", insn->code); 12790 return -EINVAL; 12791 } 12792 } 12793 12794 /* now all pseudo BPF_LD_IMM64 instructions load valid 12795 * 'struct bpf_map *' into a register instead of user map_fd. 12796 * These pointers will be used later by verifier to validate map access. 12797 */ 12798 return 0; 12799 } 12800 12801 /* drop refcnt of maps used by the rejected program */ 12802 static void release_maps(struct bpf_verifier_env *env) 12803 { 12804 __bpf_free_used_maps(env->prog->aux, env->used_maps, 12805 env->used_map_cnt); 12806 } 12807 12808 /* drop refcnt of maps used by the rejected program */ 12809 static void release_btfs(struct bpf_verifier_env *env) 12810 { 12811 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 12812 env->used_btf_cnt); 12813 } 12814 12815 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 12816 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 12817 { 12818 struct bpf_insn *insn = env->prog->insnsi; 12819 int insn_cnt = env->prog->len; 12820 int i; 12821 12822 for (i = 0; i < insn_cnt; i++, insn++) { 12823 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 12824 continue; 12825 if (insn->src_reg == BPF_PSEUDO_FUNC) 12826 continue; 12827 insn->src_reg = 0; 12828 } 12829 } 12830 12831 /* single env->prog->insni[off] instruction was replaced with the range 12832 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 12833 * [0, off) and [off, end) to new locations, so the patched range stays zero 12834 */ 12835 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 12836 struct bpf_insn_aux_data *new_data, 12837 struct bpf_prog *new_prog, u32 off, u32 cnt) 12838 { 12839 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 12840 struct bpf_insn *insn = new_prog->insnsi; 12841 u32 old_seen = old_data[off].seen; 12842 u32 prog_len; 12843 int i; 12844 12845 /* aux info at OFF always needs adjustment, no matter fast path 12846 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 12847 * original insn at old prog. 12848 */ 12849 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 12850 12851 if (cnt == 1) 12852 return; 12853 prog_len = new_prog->len; 12854 12855 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 12856 memcpy(new_data + off + cnt - 1, old_data + off, 12857 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 12858 for (i = off; i < off + cnt - 1; i++) { 12859 /* Expand insni[off]'s seen count to the patched range. */ 12860 new_data[i].seen = old_seen; 12861 new_data[i].zext_dst = insn_has_def32(env, insn + i); 12862 } 12863 env->insn_aux_data = new_data; 12864 vfree(old_data); 12865 } 12866 12867 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 12868 { 12869 int i; 12870 12871 if (len == 1) 12872 return; 12873 /* NOTE: fake 'exit' subprog should be updated as well. */ 12874 for (i = 0; i <= env->subprog_cnt; i++) { 12875 if (env->subprog_info[i].start <= off) 12876 continue; 12877 env->subprog_info[i].start += len - 1; 12878 } 12879 } 12880 12881 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 12882 { 12883 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 12884 int i, sz = prog->aux->size_poke_tab; 12885 struct bpf_jit_poke_descriptor *desc; 12886 12887 for (i = 0; i < sz; i++) { 12888 desc = &tab[i]; 12889 if (desc->insn_idx <= off) 12890 continue; 12891 desc->insn_idx += len - 1; 12892 } 12893 } 12894 12895 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 12896 const struct bpf_insn *patch, u32 len) 12897 { 12898 struct bpf_prog *new_prog; 12899 struct bpf_insn_aux_data *new_data = NULL; 12900 12901 if (len > 1) { 12902 new_data = vzalloc(array_size(env->prog->len + len - 1, 12903 sizeof(struct bpf_insn_aux_data))); 12904 if (!new_data) 12905 return NULL; 12906 } 12907 12908 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 12909 if (IS_ERR(new_prog)) { 12910 if (PTR_ERR(new_prog) == -ERANGE) 12911 verbose(env, 12912 "insn %d cannot be patched due to 16-bit range\n", 12913 env->insn_aux_data[off].orig_idx); 12914 vfree(new_data); 12915 return NULL; 12916 } 12917 adjust_insn_aux_data(env, new_data, new_prog, off, len); 12918 adjust_subprog_starts(env, off, len); 12919 adjust_poke_descs(new_prog, off, len); 12920 return new_prog; 12921 } 12922 12923 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 12924 u32 off, u32 cnt) 12925 { 12926 int i, j; 12927 12928 /* find first prog starting at or after off (first to remove) */ 12929 for (i = 0; i < env->subprog_cnt; i++) 12930 if (env->subprog_info[i].start >= off) 12931 break; 12932 /* find first prog starting at or after off + cnt (first to stay) */ 12933 for (j = i; j < env->subprog_cnt; j++) 12934 if (env->subprog_info[j].start >= off + cnt) 12935 break; 12936 /* if j doesn't start exactly at off + cnt, we are just removing 12937 * the front of previous prog 12938 */ 12939 if (env->subprog_info[j].start != off + cnt) 12940 j--; 12941 12942 if (j > i) { 12943 struct bpf_prog_aux *aux = env->prog->aux; 12944 int move; 12945 12946 /* move fake 'exit' subprog as well */ 12947 move = env->subprog_cnt + 1 - j; 12948 12949 memmove(env->subprog_info + i, 12950 env->subprog_info + j, 12951 sizeof(*env->subprog_info) * move); 12952 env->subprog_cnt -= j - i; 12953 12954 /* remove func_info */ 12955 if (aux->func_info) { 12956 move = aux->func_info_cnt - j; 12957 12958 memmove(aux->func_info + i, 12959 aux->func_info + j, 12960 sizeof(*aux->func_info) * move); 12961 aux->func_info_cnt -= j - i; 12962 /* func_info->insn_off is set after all code rewrites, 12963 * in adjust_btf_func() - no need to adjust 12964 */ 12965 } 12966 } else { 12967 /* convert i from "first prog to remove" to "first to adjust" */ 12968 if (env->subprog_info[i].start == off) 12969 i++; 12970 } 12971 12972 /* update fake 'exit' subprog as well */ 12973 for (; i <= env->subprog_cnt; i++) 12974 env->subprog_info[i].start -= cnt; 12975 12976 return 0; 12977 } 12978 12979 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 12980 u32 cnt) 12981 { 12982 struct bpf_prog *prog = env->prog; 12983 u32 i, l_off, l_cnt, nr_linfo; 12984 struct bpf_line_info *linfo; 12985 12986 nr_linfo = prog->aux->nr_linfo; 12987 if (!nr_linfo) 12988 return 0; 12989 12990 linfo = prog->aux->linfo; 12991 12992 /* find first line info to remove, count lines to be removed */ 12993 for (i = 0; i < nr_linfo; i++) 12994 if (linfo[i].insn_off >= off) 12995 break; 12996 12997 l_off = i; 12998 l_cnt = 0; 12999 for (; i < nr_linfo; i++) 13000 if (linfo[i].insn_off < off + cnt) 13001 l_cnt++; 13002 else 13003 break; 13004 13005 /* First live insn doesn't match first live linfo, it needs to "inherit" 13006 * last removed linfo. prog is already modified, so prog->len == off 13007 * means no live instructions after (tail of the program was removed). 13008 */ 13009 if (prog->len != off && l_cnt && 13010 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 13011 l_cnt--; 13012 linfo[--i].insn_off = off + cnt; 13013 } 13014 13015 /* remove the line info which refer to the removed instructions */ 13016 if (l_cnt) { 13017 memmove(linfo + l_off, linfo + i, 13018 sizeof(*linfo) * (nr_linfo - i)); 13019 13020 prog->aux->nr_linfo -= l_cnt; 13021 nr_linfo = prog->aux->nr_linfo; 13022 } 13023 13024 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 13025 for (i = l_off; i < nr_linfo; i++) 13026 linfo[i].insn_off -= cnt; 13027 13028 /* fix up all subprogs (incl. 'exit') which start >= off */ 13029 for (i = 0; i <= env->subprog_cnt; i++) 13030 if (env->subprog_info[i].linfo_idx > l_off) { 13031 /* program may have started in the removed region but 13032 * may not be fully removed 13033 */ 13034 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 13035 env->subprog_info[i].linfo_idx -= l_cnt; 13036 else 13037 env->subprog_info[i].linfo_idx = l_off; 13038 } 13039 13040 return 0; 13041 } 13042 13043 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 13044 { 13045 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13046 unsigned int orig_prog_len = env->prog->len; 13047 int err; 13048 13049 if (bpf_prog_is_dev_bound(env->prog->aux)) 13050 bpf_prog_offload_remove_insns(env, off, cnt); 13051 13052 err = bpf_remove_insns(env->prog, off, cnt); 13053 if (err) 13054 return err; 13055 13056 err = adjust_subprog_starts_after_remove(env, off, cnt); 13057 if (err) 13058 return err; 13059 13060 err = bpf_adj_linfo_after_remove(env, off, cnt); 13061 if (err) 13062 return err; 13063 13064 memmove(aux_data + off, aux_data + off + cnt, 13065 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 13066 13067 return 0; 13068 } 13069 13070 /* The verifier does more data flow analysis than llvm and will not 13071 * explore branches that are dead at run time. Malicious programs can 13072 * have dead code too. Therefore replace all dead at-run-time code 13073 * with 'ja -1'. 13074 * 13075 * Just nops are not optimal, e.g. if they would sit at the end of the 13076 * program and through another bug we would manage to jump there, then 13077 * we'd execute beyond program memory otherwise. Returning exception 13078 * code also wouldn't work since we can have subprogs where the dead 13079 * code could be located. 13080 */ 13081 static void sanitize_dead_code(struct bpf_verifier_env *env) 13082 { 13083 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13084 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 13085 struct bpf_insn *insn = env->prog->insnsi; 13086 const int insn_cnt = env->prog->len; 13087 int i; 13088 13089 for (i = 0; i < insn_cnt; i++) { 13090 if (aux_data[i].seen) 13091 continue; 13092 memcpy(insn + i, &trap, sizeof(trap)); 13093 aux_data[i].zext_dst = false; 13094 } 13095 } 13096 13097 static bool insn_is_cond_jump(u8 code) 13098 { 13099 u8 op; 13100 13101 if (BPF_CLASS(code) == BPF_JMP32) 13102 return true; 13103 13104 if (BPF_CLASS(code) != BPF_JMP) 13105 return false; 13106 13107 op = BPF_OP(code); 13108 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 13109 } 13110 13111 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 13112 { 13113 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13114 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 13115 struct bpf_insn *insn = env->prog->insnsi; 13116 const int insn_cnt = env->prog->len; 13117 int i; 13118 13119 for (i = 0; i < insn_cnt; i++, insn++) { 13120 if (!insn_is_cond_jump(insn->code)) 13121 continue; 13122 13123 if (!aux_data[i + 1].seen) 13124 ja.off = insn->off; 13125 else if (!aux_data[i + 1 + insn->off].seen) 13126 ja.off = 0; 13127 else 13128 continue; 13129 13130 if (bpf_prog_is_dev_bound(env->prog->aux)) 13131 bpf_prog_offload_replace_insn(env, i, &ja); 13132 13133 memcpy(insn, &ja, sizeof(ja)); 13134 } 13135 } 13136 13137 static int opt_remove_dead_code(struct bpf_verifier_env *env) 13138 { 13139 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13140 int insn_cnt = env->prog->len; 13141 int i, err; 13142 13143 for (i = 0; i < insn_cnt; i++) { 13144 int j; 13145 13146 j = 0; 13147 while (i + j < insn_cnt && !aux_data[i + j].seen) 13148 j++; 13149 if (!j) 13150 continue; 13151 13152 err = verifier_remove_insns(env, i, j); 13153 if (err) 13154 return err; 13155 insn_cnt = env->prog->len; 13156 } 13157 13158 return 0; 13159 } 13160 13161 static int opt_remove_nops(struct bpf_verifier_env *env) 13162 { 13163 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 13164 struct bpf_insn *insn = env->prog->insnsi; 13165 int insn_cnt = env->prog->len; 13166 int i, err; 13167 13168 for (i = 0; i < insn_cnt; i++) { 13169 if (memcmp(&insn[i], &ja, sizeof(ja))) 13170 continue; 13171 13172 err = verifier_remove_insns(env, i, 1); 13173 if (err) 13174 return err; 13175 insn_cnt--; 13176 i--; 13177 } 13178 13179 return 0; 13180 } 13181 13182 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 13183 const union bpf_attr *attr) 13184 { 13185 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 13186 struct bpf_insn_aux_data *aux = env->insn_aux_data; 13187 int i, patch_len, delta = 0, len = env->prog->len; 13188 struct bpf_insn *insns = env->prog->insnsi; 13189 struct bpf_prog *new_prog; 13190 bool rnd_hi32; 13191 13192 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 13193 zext_patch[1] = BPF_ZEXT_REG(0); 13194 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 13195 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 13196 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 13197 for (i = 0; i < len; i++) { 13198 int adj_idx = i + delta; 13199 struct bpf_insn insn; 13200 int load_reg; 13201 13202 insn = insns[adj_idx]; 13203 load_reg = insn_def_regno(&insn); 13204 if (!aux[adj_idx].zext_dst) { 13205 u8 code, class; 13206 u32 imm_rnd; 13207 13208 if (!rnd_hi32) 13209 continue; 13210 13211 code = insn.code; 13212 class = BPF_CLASS(code); 13213 if (load_reg == -1) 13214 continue; 13215 13216 /* NOTE: arg "reg" (the fourth one) is only used for 13217 * BPF_STX + SRC_OP, so it is safe to pass NULL 13218 * here. 13219 */ 13220 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 13221 if (class == BPF_LD && 13222 BPF_MODE(code) == BPF_IMM) 13223 i++; 13224 continue; 13225 } 13226 13227 /* ctx load could be transformed into wider load. */ 13228 if (class == BPF_LDX && 13229 aux[adj_idx].ptr_type == PTR_TO_CTX) 13230 continue; 13231 13232 imm_rnd = get_random_int(); 13233 rnd_hi32_patch[0] = insn; 13234 rnd_hi32_patch[1].imm = imm_rnd; 13235 rnd_hi32_patch[3].dst_reg = load_reg; 13236 patch = rnd_hi32_patch; 13237 patch_len = 4; 13238 goto apply_patch_buffer; 13239 } 13240 13241 /* Add in an zero-extend instruction if a) the JIT has requested 13242 * it or b) it's a CMPXCHG. 13243 * 13244 * The latter is because: BPF_CMPXCHG always loads a value into 13245 * R0, therefore always zero-extends. However some archs' 13246 * equivalent instruction only does this load when the 13247 * comparison is successful. This detail of CMPXCHG is 13248 * orthogonal to the general zero-extension behaviour of the 13249 * CPU, so it's treated independently of bpf_jit_needs_zext. 13250 */ 13251 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 13252 continue; 13253 13254 if (WARN_ON(load_reg == -1)) { 13255 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 13256 return -EFAULT; 13257 } 13258 13259 zext_patch[0] = insn; 13260 zext_patch[1].dst_reg = load_reg; 13261 zext_patch[1].src_reg = load_reg; 13262 patch = zext_patch; 13263 patch_len = 2; 13264 apply_patch_buffer: 13265 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 13266 if (!new_prog) 13267 return -ENOMEM; 13268 env->prog = new_prog; 13269 insns = new_prog->insnsi; 13270 aux = env->insn_aux_data; 13271 delta += patch_len - 1; 13272 } 13273 13274 return 0; 13275 } 13276 13277 /* convert load instructions that access fields of a context type into a 13278 * sequence of instructions that access fields of the underlying structure: 13279 * struct __sk_buff -> struct sk_buff 13280 * struct bpf_sock_ops -> struct sock 13281 */ 13282 static int convert_ctx_accesses(struct bpf_verifier_env *env) 13283 { 13284 const struct bpf_verifier_ops *ops = env->ops; 13285 int i, cnt, size, ctx_field_size, delta = 0; 13286 const int insn_cnt = env->prog->len; 13287 struct bpf_insn insn_buf[16], *insn; 13288 u32 target_size, size_default, off; 13289 struct bpf_prog *new_prog; 13290 enum bpf_access_type type; 13291 bool is_narrower_load; 13292 13293 if (ops->gen_prologue || env->seen_direct_write) { 13294 if (!ops->gen_prologue) { 13295 verbose(env, "bpf verifier is misconfigured\n"); 13296 return -EINVAL; 13297 } 13298 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 13299 env->prog); 13300 if (cnt >= ARRAY_SIZE(insn_buf)) { 13301 verbose(env, "bpf verifier is misconfigured\n"); 13302 return -EINVAL; 13303 } else if (cnt) { 13304 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 13305 if (!new_prog) 13306 return -ENOMEM; 13307 13308 env->prog = new_prog; 13309 delta += cnt - 1; 13310 } 13311 } 13312 13313 if (bpf_prog_is_dev_bound(env->prog->aux)) 13314 return 0; 13315 13316 insn = env->prog->insnsi + delta; 13317 13318 for (i = 0; i < insn_cnt; i++, insn++) { 13319 bpf_convert_ctx_access_t convert_ctx_access; 13320 bool ctx_access; 13321 13322 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 13323 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 13324 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 13325 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 13326 type = BPF_READ; 13327 ctx_access = true; 13328 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 13329 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 13330 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 13331 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 13332 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 13333 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 13334 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 13335 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 13336 type = BPF_WRITE; 13337 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 13338 } else { 13339 continue; 13340 } 13341 13342 if (type == BPF_WRITE && 13343 env->insn_aux_data[i + delta].sanitize_stack_spill) { 13344 struct bpf_insn patch[] = { 13345 *insn, 13346 BPF_ST_NOSPEC(), 13347 }; 13348 13349 cnt = ARRAY_SIZE(patch); 13350 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 13351 if (!new_prog) 13352 return -ENOMEM; 13353 13354 delta += cnt - 1; 13355 env->prog = new_prog; 13356 insn = new_prog->insnsi + i + delta; 13357 continue; 13358 } 13359 13360 if (!ctx_access) 13361 continue; 13362 13363 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 13364 case PTR_TO_CTX: 13365 if (!ops->convert_ctx_access) 13366 continue; 13367 convert_ctx_access = ops->convert_ctx_access; 13368 break; 13369 case PTR_TO_SOCKET: 13370 case PTR_TO_SOCK_COMMON: 13371 convert_ctx_access = bpf_sock_convert_ctx_access; 13372 break; 13373 case PTR_TO_TCP_SOCK: 13374 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 13375 break; 13376 case PTR_TO_XDP_SOCK: 13377 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 13378 break; 13379 case PTR_TO_BTF_ID: 13380 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 13381 if (type == BPF_READ) { 13382 insn->code = BPF_LDX | BPF_PROBE_MEM | 13383 BPF_SIZE((insn)->code); 13384 env->prog->aux->num_exentries++; 13385 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { 13386 verbose(env, "Writes through BTF pointers are not allowed\n"); 13387 return -EINVAL; 13388 } 13389 continue; 13390 default: 13391 continue; 13392 } 13393 13394 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 13395 size = BPF_LDST_BYTES(insn); 13396 13397 /* If the read access is a narrower load of the field, 13398 * convert to a 4/8-byte load, to minimum program type specific 13399 * convert_ctx_access changes. If conversion is successful, 13400 * we will apply proper mask to the result. 13401 */ 13402 is_narrower_load = size < ctx_field_size; 13403 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 13404 off = insn->off; 13405 if (is_narrower_load) { 13406 u8 size_code; 13407 13408 if (type == BPF_WRITE) { 13409 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 13410 return -EINVAL; 13411 } 13412 13413 size_code = BPF_H; 13414 if (ctx_field_size == 4) 13415 size_code = BPF_W; 13416 else if (ctx_field_size == 8) 13417 size_code = BPF_DW; 13418 13419 insn->off = off & ~(size_default - 1); 13420 insn->code = BPF_LDX | BPF_MEM | size_code; 13421 } 13422 13423 target_size = 0; 13424 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 13425 &target_size); 13426 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 13427 (ctx_field_size && !target_size)) { 13428 verbose(env, "bpf verifier is misconfigured\n"); 13429 return -EINVAL; 13430 } 13431 13432 if (is_narrower_load && size < target_size) { 13433 u8 shift = bpf_ctx_narrow_access_offset( 13434 off, size, size_default) * 8; 13435 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 13436 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 13437 return -EINVAL; 13438 } 13439 if (ctx_field_size <= 4) { 13440 if (shift) 13441 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 13442 insn->dst_reg, 13443 shift); 13444 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 13445 (1 << size * 8) - 1); 13446 } else { 13447 if (shift) 13448 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 13449 insn->dst_reg, 13450 shift); 13451 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 13452 (1ULL << size * 8) - 1); 13453 } 13454 } 13455 13456 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13457 if (!new_prog) 13458 return -ENOMEM; 13459 13460 delta += cnt - 1; 13461 13462 /* keep walking new program and skip insns we just inserted */ 13463 env->prog = new_prog; 13464 insn = new_prog->insnsi + i + delta; 13465 } 13466 13467 return 0; 13468 } 13469 13470 static int jit_subprogs(struct bpf_verifier_env *env) 13471 { 13472 struct bpf_prog *prog = env->prog, **func, *tmp; 13473 int i, j, subprog_start, subprog_end = 0, len, subprog; 13474 struct bpf_map *map_ptr; 13475 struct bpf_insn *insn; 13476 void *old_bpf_func; 13477 int err, num_exentries; 13478 13479 if (env->subprog_cnt <= 1) 13480 return 0; 13481 13482 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13483 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 13484 continue; 13485 13486 /* Upon error here we cannot fall back to interpreter but 13487 * need a hard reject of the program. Thus -EFAULT is 13488 * propagated in any case. 13489 */ 13490 subprog = find_subprog(env, i + insn->imm + 1); 13491 if (subprog < 0) { 13492 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 13493 i + insn->imm + 1); 13494 return -EFAULT; 13495 } 13496 /* temporarily remember subprog id inside insn instead of 13497 * aux_data, since next loop will split up all insns into funcs 13498 */ 13499 insn->off = subprog; 13500 /* remember original imm in case JIT fails and fallback 13501 * to interpreter will be needed 13502 */ 13503 env->insn_aux_data[i].call_imm = insn->imm; 13504 /* point imm to __bpf_call_base+1 from JITs point of view */ 13505 insn->imm = 1; 13506 if (bpf_pseudo_func(insn)) 13507 /* jit (e.g. x86_64) may emit fewer instructions 13508 * if it learns a u32 imm is the same as a u64 imm. 13509 * Force a non zero here. 13510 */ 13511 insn[1].imm = 1; 13512 } 13513 13514 err = bpf_prog_alloc_jited_linfo(prog); 13515 if (err) 13516 goto out_undo_insn; 13517 13518 err = -ENOMEM; 13519 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 13520 if (!func) 13521 goto out_undo_insn; 13522 13523 for (i = 0; i < env->subprog_cnt; i++) { 13524 subprog_start = subprog_end; 13525 subprog_end = env->subprog_info[i + 1].start; 13526 13527 len = subprog_end - subprog_start; 13528 /* bpf_prog_run() doesn't call subprogs directly, 13529 * hence main prog stats include the runtime of subprogs. 13530 * subprogs don't have IDs and not reachable via prog_get_next_id 13531 * func[i]->stats will never be accessed and stays NULL 13532 */ 13533 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 13534 if (!func[i]) 13535 goto out_free; 13536 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 13537 len * sizeof(struct bpf_insn)); 13538 func[i]->type = prog->type; 13539 func[i]->len = len; 13540 if (bpf_prog_calc_tag(func[i])) 13541 goto out_free; 13542 func[i]->is_func = 1; 13543 func[i]->aux->func_idx = i; 13544 /* Below members will be freed only at prog->aux */ 13545 func[i]->aux->btf = prog->aux->btf; 13546 func[i]->aux->func_info = prog->aux->func_info; 13547 func[i]->aux->poke_tab = prog->aux->poke_tab; 13548 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 13549 13550 for (j = 0; j < prog->aux->size_poke_tab; j++) { 13551 struct bpf_jit_poke_descriptor *poke; 13552 13553 poke = &prog->aux->poke_tab[j]; 13554 if (poke->insn_idx < subprog_end && 13555 poke->insn_idx >= subprog_start) 13556 poke->aux = func[i]->aux; 13557 } 13558 13559 /* Use bpf_prog_F_tag to indicate functions in stack traces. 13560 * Long term would need debug info to populate names 13561 */ 13562 func[i]->aux->name[0] = 'F'; 13563 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 13564 func[i]->jit_requested = 1; 13565 func[i]->blinding_requested = prog->blinding_requested; 13566 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 13567 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 13568 func[i]->aux->linfo = prog->aux->linfo; 13569 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 13570 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 13571 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 13572 num_exentries = 0; 13573 insn = func[i]->insnsi; 13574 for (j = 0; j < func[i]->len; j++, insn++) { 13575 if (BPF_CLASS(insn->code) == BPF_LDX && 13576 BPF_MODE(insn->code) == BPF_PROBE_MEM) 13577 num_exentries++; 13578 } 13579 func[i]->aux->num_exentries = num_exentries; 13580 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 13581 func[i] = bpf_int_jit_compile(func[i]); 13582 if (!func[i]->jited) { 13583 err = -ENOTSUPP; 13584 goto out_free; 13585 } 13586 cond_resched(); 13587 } 13588 13589 /* at this point all bpf functions were successfully JITed 13590 * now populate all bpf_calls with correct addresses and 13591 * run last pass of JIT 13592 */ 13593 for (i = 0; i < env->subprog_cnt; i++) { 13594 insn = func[i]->insnsi; 13595 for (j = 0; j < func[i]->len; j++, insn++) { 13596 if (bpf_pseudo_func(insn)) { 13597 subprog = insn->off; 13598 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 13599 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 13600 continue; 13601 } 13602 if (!bpf_pseudo_call(insn)) 13603 continue; 13604 subprog = insn->off; 13605 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 13606 } 13607 13608 /* we use the aux data to keep a list of the start addresses 13609 * of the JITed images for each function in the program 13610 * 13611 * for some architectures, such as powerpc64, the imm field 13612 * might not be large enough to hold the offset of the start 13613 * address of the callee's JITed image from __bpf_call_base 13614 * 13615 * in such cases, we can lookup the start address of a callee 13616 * by using its subprog id, available from the off field of 13617 * the call instruction, as an index for this list 13618 */ 13619 func[i]->aux->func = func; 13620 func[i]->aux->func_cnt = env->subprog_cnt; 13621 } 13622 for (i = 0; i < env->subprog_cnt; i++) { 13623 old_bpf_func = func[i]->bpf_func; 13624 tmp = bpf_int_jit_compile(func[i]); 13625 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 13626 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 13627 err = -ENOTSUPP; 13628 goto out_free; 13629 } 13630 cond_resched(); 13631 } 13632 13633 /* finally lock prog and jit images for all functions and 13634 * populate kallsysm 13635 */ 13636 for (i = 0; i < env->subprog_cnt; i++) { 13637 bpf_prog_lock_ro(func[i]); 13638 bpf_prog_kallsyms_add(func[i]); 13639 } 13640 13641 /* Last step: make now unused interpreter insns from main 13642 * prog consistent for later dump requests, so they can 13643 * later look the same as if they were interpreted only. 13644 */ 13645 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13646 if (bpf_pseudo_func(insn)) { 13647 insn[0].imm = env->insn_aux_data[i].call_imm; 13648 insn[1].imm = insn->off; 13649 insn->off = 0; 13650 continue; 13651 } 13652 if (!bpf_pseudo_call(insn)) 13653 continue; 13654 insn->off = env->insn_aux_data[i].call_imm; 13655 subprog = find_subprog(env, i + insn->off + 1); 13656 insn->imm = subprog; 13657 } 13658 13659 prog->jited = 1; 13660 prog->bpf_func = func[0]->bpf_func; 13661 prog->jited_len = func[0]->jited_len; 13662 prog->aux->func = func; 13663 prog->aux->func_cnt = env->subprog_cnt; 13664 bpf_prog_jit_attempt_done(prog); 13665 return 0; 13666 out_free: 13667 /* We failed JIT'ing, so at this point we need to unregister poke 13668 * descriptors from subprogs, so that kernel is not attempting to 13669 * patch it anymore as we're freeing the subprog JIT memory. 13670 */ 13671 for (i = 0; i < prog->aux->size_poke_tab; i++) { 13672 map_ptr = prog->aux->poke_tab[i].tail_call.map; 13673 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 13674 } 13675 /* At this point we're guaranteed that poke descriptors are not 13676 * live anymore. We can just unlink its descriptor table as it's 13677 * released with the main prog. 13678 */ 13679 for (i = 0; i < env->subprog_cnt; i++) { 13680 if (!func[i]) 13681 continue; 13682 func[i]->aux->poke_tab = NULL; 13683 bpf_jit_free(func[i]); 13684 } 13685 kfree(func); 13686 out_undo_insn: 13687 /* cleanup main prog to be interpreted */ 13688 prog->jit_requested = 0; 13689 prog->blinding_requested = 0; 13690 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13691 if (!bpf_pseudo_call(insn)) 13692 continue; 13693 insn->off = 0; 13694 insn->imm = env->insn_aux_data[i].call_imm; 13695 } 13696 bpf_prog_jit_attempt_done(prog); 13697 return err; 13698 } 13699 13700 static int fixup_call_args(struct bpf_verifier_env *env) 13701 { 13702 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 13703 struct bpf_prog *prog = env->prog; 13704 struct bpf_insn *insn = prog->insnsi; 13705 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 13706 int i, depth; 13707 #endif 13708 int err = 0; 13709 13710 if (env->prog->jit_requested && 13711 !bpf_prog_is_dev_bound(env->prog->aux)) { 13712 err = jit_subprogs(env); 13713 if (err == 0) 13714 return 0; 13715 if (err == -EFAULT) 13716 return err; 13717 } 13718 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 13719 if (has_kfunc_call) { 13720 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 13721 return -EINVAL; 13722 } 13723 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 13724 /* When JIT fails the progs with bpf2bpf calls and tail_calls 13725 * have to be rejected, since interpreter doesn't support them yet. 13726 */ 13727 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 13728 return -EINVAL; 13729 } 13730 for (i = 0; i < prog->len; i++, insn++) { 13731 if (bpf_pseudo_func(insn)) { 13732 /* When JIT fails the progs with callback calls 13733 * have to be rejected, since interpreter doesn't support them yet. 13734 */ 13735 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 13736 return -EINVAL; 13737 } 13738 13739 if (!bpf_pseudo_call(insn)) 13740 continue; 13741 depth = get_callee_stack_depth(env, insn, i); 13742 if (depth < 0) 13743 return depth; 13744 bpf_patch_call_args(insn, depth); 13745 } 13746 err = 0; 13747 #endif 13748 return err; 13749 } 13750 13751 static int fixup_kfunc_call(struct bpf_verifier_env *env, 13752 struct bpf_insn *insn) 13753 { 13754 const struct bpf_kfunc_desc *desc; 13755 13756 if (!insn->imm) { 13757 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 13758 return -EINVAL; 13759 } 13760 13761 /* insn->imm has the btf func_id. Replace it with 13762 * an address (relative to __bpf_base_call). 13763 */ 13764 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 13765 if (!desc) { 13766 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 13767 insn->imm); 13768 return -EFAULT; 13769 } 13770 13771 insn->imm = desc->imm; 13772 13773 return 0; 13774 } 13775 13776 /* Do various post-verification rewrites in a single program pass. 13777 * These rewrites simplify JIT and interpreter implementations. 13778 */ 13779 static int do_misc_fixups(struct bpf_verifier_env *env) 13780 { 13781 struct bpf_prog *prog = env->prog; 13782 enum bpf_attach_type eatype = prog->expected_attach_type; 13783 enum bpf_prog_type prog_type = resolve_prog_type(prog); 13784 struct bpf_insn *insn = prog->insnsi; 13785 const struct bpf_func_proto *fn; 13786 const int insn_cnt = prog->len; 13787 const struct bpf_map_ops *ops; 13788 struct bpf_insn_aux_data *aux; 13789 struct bpf_insn insn_buf[16]; 13790 struct bpf_prog *new_prog; 13791 struct bpf_map *map_ptr; 13792 int i, ret, cnt, delta = 0; 13793 13794 for (i = 0; i < insn_cnt; i++, insn++) { 13795 /* Make divide-by-zero exceptions impossible. */ 13796 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 13797 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 13798 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 13799 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 13800 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 13801 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 13802 struct bpf_insn *patchlet; 13803 struct bpf_insn chk_and_div[] = { 13804 /* [R,W]x div 0 -> 0 */ 13805 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 13806 BPF_JNE | BPF_K, insn->src_reg, 13807 0, 2, 0), 13808 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 13809 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 13810 *insn, 13811 }; 13812 struct bpf_insn chk_and_mod[] = { 13813 /* [R,W]x mod 0 -> [R,W]x */ 13814 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 13815 BPF_JEQ | BPF_K, insn->src_reg, 13816 0, 1 + (is64 ? 0 : 1), 0), 13817 *insn, 13818 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 13819 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 13820 }; 13821 13822 patchlet = isdiv ? chk_and_div : chk_and_mod; 13823 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 13824 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 13825 13826 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 13827 if (!new_prog) 13828 return -ENOMEM; 13829 13830 delta += cnt - 1; 13831 env->prog = prog = new_prog; 13832 insn = new_prog->insnsi + i + delta; 13833 continue; 13834 } 13835 13836 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 13837 if (BPF_CLASS(insn->code) == BPF_LD && 13838 (BPF_MODE(insn->code) == BPF_ABS || 13839 BPF_MODE(insn->code) == BPF_IND)) { 13840 cnt = env->ops->gen_ld_abs(insn, insn_buf); 13841 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 13842 verbose(env, "bpf verifier is misconfigured\n"); 13843 return -EINVAL; 13844 } 13845 13846 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13847 if (!new_prog) 13848 return -ENOMEM; 13849 13850 delta += cnt - 1; 13851 env->prog = prog = new_prog; 13852 insn = new_prog->insnsi + i + delta; 13853 continue; 13854 } 13855 13856 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 13857 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 13858 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 13859 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 13860 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 13861 struct bpf_insn *patch = &insn_buf[0]; 13862 bool issrc, isneg, isimm; 13863 u32 off_reg; 13864 13865 aux = &env->insn_aux_data[i + delta]; 13866 if (!aux->alu_state || 13867 aux->alu_state == BPF_ALU_NON_POINTER) 13868 continue; 13869 13870 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 13871 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 13872 BPF_ALU_SANITIZE_SRC; 13873 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 13874 13875 off_reg = issrc ? insn->src_reg : insn->dst_reg; 13876 if (isimm) { 13877 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 13878 } else { 13879 if (isneg) 13880 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 13881 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 13882 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 13883 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 13884 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 13885 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 13886 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 13887 } 13888 if (!issrc) 13889 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 13890 insn->src_reg = BPF_REG_AX; 13891 if (isneg) 13892 insn->code = insn->code == code_add ? 13893 code_sub : code_add; 13894 *patch++ = *insn; 13895 if (issrc && isneg && !isimm) 13896 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 13897 cnt = patch - insn_buf; 13898 13899 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13900 if (!new_prog) 13901 return -ENOMEM; 13902 13903 delta += cnt - 1; 13904 env->prog = prog = new_prog; 13905 insn = new_prog->insnsi + i + delta; 13906 continue; 13907 } 13908 13909 if (insn->code != (BPF_JMP | BPF_CALL)) 13910 continue; 13911 if (insn->src_reg == BPF_PSEUDO_CALL) 13912 continue; 13913 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 13914 ret = fixup_kfunc_call(env, insn); 13915 if (ret) 13916 return ret; 13917 continue; 13918 } 13919 13920 if (insn->imm == BPF_FUNC_get_route_realm) 13921 prog->dst_needed = 1; 13922 if (insn->imm == BPF_FUNC_get_prandom_u32) 13923 bpf_user_rnd_init_once(); 13924 if (insn->imm == BPF_FUNC_override_return) 13925 prog->kprobe_override = 1; 13926 if (insn->imm == BPF_FUNC_tail_call) { 13927 /* If we tail call into other programs, we 13928 * cannot make any assumptions since they can 13929 * be replaced dynamically during runtime in 13930 * the program array. 13931 */ 13932 prog->cb_access = 1; 13933 if (!allow_tail_call_in_subprogs(env)) 13934 prog->aux->stack_depth = MAX_BPF_STACK; 13935 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 13936 13937 /* mark bpf_tail_call as different opcode to avoid 13938 * conditional branch in the interpreter for every normal 13939 * call and to prevent accidental JITing by JIT compiler 13940 * that doesn't support bpf_tail_call yet 13941 */ 13942 insn->imm = 0; 13943 insn->code = BPF_JMP | BPF_TAIL_CALL; 13944 13945 aux = &env->insn_aux_data[i + delta]; 13946 if (env->bpf_capable && !prog->blinding_requested && 13947 prog->jit_requested && 13948 !bpf_map_key_poisoned(aux) && 13949 !bpf_map_ptr_poisoned(aux) && 13950 !bpf_map_ptr_unpriv(aux)) { 13951 struct bpf_jit_poke_descriptor desc = { 13952 .reason = BPF_POKE_REASON_TAIL_CALL, 13953 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 13954 .tail_call.key = bpf_map_key_immediate(aux), 13955 .insn_idx = i + delta, 13956 }; 13957 13958 ret = bpf_jit_add_poke_descriptor(prog, &desc); 13959 if (ret < 0) { 13960 verbose(env, "adding tail call poke descriptor failed\n"); 13961 return ret; 13962 } 13963 13964 insn->imm = ret + 1; 13965 continue; 13966 } 13967 13968 if (!bpf_map_ptr_unpriv(aux)) 13969 continue; 13970 13971 /* instead of changing every JIT dealing with tail_call 13972 * emit two extra insns: 13973 * if (index >= max_entries) goto out; 13974 * index &= array->index_mask; 13975 * to avoid out-of-bounds cpu speculation 13976 */ 13977 if (bpf_map_ptr_poisoned(aux)) { 13978 verbose(env, "tail_call abusing map_ptr\n"); 13979 return -EINVAL; 13980 } 13981 13982 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 13983 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 13984 map_ptr->max_entries, 2); 13985 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 13986 container_of(map_ptr, 13987 struct bpf_array, 13988 map)->index_mask); 13989 insn_buf[2] = *insn; 13990 cnt = 3; 13991 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13992 if (!new_prog) 13993 return -ENOMEM; 13994 13995 delta += cnt - 1; 13996 env->prog = prog = new_prog; 13997 insn = new_prog->insnsi + i + delta; 13998 continue; 13999 } 14000 14001 if (insn->imm == BPF_FUNC_timer_set_callback) { 14002 /* The verifier will process callback_fn as many times as necessary 14003 * with different maps and the register states prepared by 14004 * set_timer_callback_state will be accurate. 14005 * 14006 * The following use case is valid: 14007 * map1 is shared by prog1, prog2, prog3. 14008 * prog1 calls bpf_timer_init for some map1 elements 14009 * prog2 calls bpf_timer_set_callback for some map1 elements. 14010 * Those that were not bpf_timer_init-ed will return -EINVAL. 14011 * prog3 calls bpf_timer_start for some map1 elements. 14012 * Those that were not both bpf_timer_init-ed and 14013 * bpf_timer_set_callback-ed will return -EINVAL. 14014 */ 14015 struct bpf_insn ld_addrs[2] = { 14016 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 14017 }; 14018 14019 insn_buf[0] = ld_addrs[0]; 14020 insn_buf[1] = ld_addrs[1]; 14021 insn_buf[2] = *insn; 14022 cnt = 3; 14023 14024 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14025 if (!new_prog) 14026 return -ENOMEM; 14027 14028 delta += cnt - 1; 14029 env->prog = prog = new_prog; 14030 insn = new_prog->insnsi + i + delta; 14031 goto patch_call_imm; 14032 } 14033 14034 if (insn->imm == BPF_FUNC_task_storage_get || 14035 insn->imm == BPF_FUNC_sk_storage_get || 14036 insn->imm == BPF_FUNC_inode_storage_get) { 14037 if (env->prog->aux->sleepable) 14038 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 14039 else 14040 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 14041 insn_buf[1] = *insn; 14042 cnt = 2; 14043 14044 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14045 if (!new_prog) 14046 return -ENOMEM; 14047 14048 delta += cnt - 1; 14049 env->prog = prog = new_prog; 14050 insn = new_prog->insnsi + i + delta; 14051 goto patch_call_imm; 14052 } 14053 14054 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 14055 * and other inlining handlers are currently limited to 64 bit 14056 * only. 14057 */ 14058 if (prog->jit_requested && BITS_PER_LONG == 64 && 14059 (insn->imm == BPF_FUNC_map_lookup_elem || 14060 insn->imm == BPF_FUNC_map_update_elem || 14061 insn->imm == BPF_FUNC_map_delete_elem || 14062 insn->imm == BPF_FUNC_map_push_elem || 14063 insn->imm == BPF_FUNC_map_pop_elem || 14064 insn->imm == BPF_FUNC_map_peek_elem || 14065 insn->imm == BPF_FUNC_redirect_map || 14066 insn->imm == BPF_FUNC_for_each_map_elem || 14067 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 14068 aux = &env->insn_aux_data[i + delta]; 14069 if (bpf_map_ptr_poisoned(aux)) 14070 goto patch_call_imm; 14071 14072 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 14073 ops = map_ptr->ops; 14074 if (insn->imm == BPF_FUNC_map_lookup_elem && 14075 ops->map_gen_lookup) { 14076 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 14077 if (cnt == -EOPNOTSUPP) 14078 goto patch_map_ops_generic; 14079 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 14080 verbose(env, "bpf verifier is misconfigured\n"); 14081 return -EINVAL; 14082 } 14083 14084 new_prog = bpf_patch_insn_data(env, i + delta, 14085 insn_buf, cnt); 14086 if (!new_prog) 14087 return -ENOMEM; 14088 14089 delta += cnt - 1; 14090 env->prog = prog = new_prog; 14091 insn = new_prog->insnsi + i + delta; 14092 continue; 14093 } 14094 14095 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 14096 (void *(*)(struct bpf_map *map, void *key))NULL)); 14097 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 14098 (int (*)(struct bpf_map *map, void *key))NULL)); 14099 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 14100 (int (*)(struct bpf_map *map, void *key, void *value, 14101 u64 flags))NULL)); 14102 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 14103 (int (*)(struct bpf_map *map, void *value, 14104 u64 flags))NULL)); 14105 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 14106 (int (*)(struct bpf_map *map, void *value))NULL)); 14107 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 14108 (int (*)(struct bpf_map *map, void *value))NULL)); 14109 BUILD_BUG_ON(!__same_type(ops->map_redirect, 14110 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL)); 14111 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 14112 (int (*)(struct bpf_map *map, 14113 bpf_callback_t callback_fn, 14114 void *callback_ctx, 14115 u64 flags))NULL)); 14116 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 14117 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 14118 14119 patch_map_ops_generic: 14120 switch (insn->imm) { 14121 case BPF_FUNC_map_lookup_elem: 14122 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 14123 continue; 14124 case BPF_FUNC_map_update_elem: 14125 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 14126 continue; 14127 case BPF_FUNC_map_delete_elem: 14128 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 14129 continue; 14130 case BPF_FUNC_map_push_elem: 14131 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 14132 continue; 14133 case BPF_FUNC_map_pop_elem: 14134 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 14135 continue; 14136 case BPF_FUNC_map_peek_elem: 14137 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 14138 continue; 14139 case BPF_FUNC_redirect_map: 14140 insn->imm = BPF_CALL_IMM(ops->map_redirect); 14141 continue; 14142 case BPF_FUNC_for_each_map_elem: 14143 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 14144 continue; 14145 case BPF_FUNC_map_lookup_percpu_elem: 14146 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 14147 continue; 14148 } 14149 14150 goto patch_call_imm; 14151 } 14152 14153 /* Implement bpf_jiffies64 inline. */ 14154 if (prog->jit_requested && BITS_PER_LONG == 64 && 14155 insn->imm == BPF_FUNC_jiffies64) { 14156 struct bpf_insn ld_jiffies_addr[2] = { 14157 BPF_LD_IMM64(BPF_REG_0, 14158 (unsigned long)&jiffies), 14159 }; 14160 14161 insn_buf[0] = ld_jiffies_addr[0]; 14162 insn_buf[1] = ld_jiffies_addr[1]; 14163 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 14164 BPF_REG_0, 0); 14165 cnt = 3; 14166 14167 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 14168 cnt); 14169 if (!new_prog) 14170 return -ENOMEM; 14171 14172 delta += cnt - 1; 14173 env->prog = prog = new_prog; 14174 insn = new_prog->insnsi + i + delta; 14175 continue; 14176 } 14177 14178 /* Implement bpf_get_func_arg inline. */ 14179 if (prog_type == BPF_PROG_TYPE_TRACING && 14180 insn->imm == BPF_FUNC_get_func_arg) { 14181 /* Load nr_args from ctx - 8 */ 14182 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 14183 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 14184 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 14185 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 14186 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 14187 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 14188 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 14189 insn_buf[7] = BPF_JMP_A(1); 14190 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 14191 cnt = 9; 14192 14193 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14194 if (!new_prog) 14195 return -ENOMEM; 14196 14197 delta += cnt - 1; 14198 env->prog = prog = new_prog; 14199 insn = new_prog->insnsi + i + delta; 14200 continue; 14201 } 14202 14203 /* Implement bpf_get_func_ret inline. */ 14204 if (prog_type == BPF_PROG_TYPE_TRACING && 14205 insn->imm == BPF_FUNC_get_func_ret) { 14206 if (eatype == BPF_TRACE_FEXIT || 14207 eatype == BPF_MODIFY_RETURN) { 14208 /* Load nr_args from ctx - 8 */ 14209 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 14210 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 14211 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 14212 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 14213 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 14214 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 14215 cnt = 6; 14216 } else { 14217 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 14218 cnt = 1; 14219 } 14220 14221 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14222 if (!new_prog) 14223 return -ENOMEM; 14224 14225 delta += cnt - 1; 14226 env->prog = prog = new_prog; 14227 insn = new_prog->insnsi + i + delta; 14228 continue; 14229 } 14230 14231 /* Implement get_func_arg_cnt inline. */ 14232 if (prog_type == BPF_PROG_TYPE_TRACING && 14233 insn->imm == BPF_FUNC_get_func_arg_cnt) { 14234 /* Load nr_args from ctx - 8 */ 14235 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 14236 14237 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 14238 if (!new_prog) 14239 return -ENOMEM; 14240 14241 env->prog = prog = new_prog; 14242 insn = new_prog->insnsi + i + delta; 14243 continue; 14244 } 14245 14246 /* Implement bpf_get_func_ip inline. */ 14247 if (prog_type == BPF_PROG_TYPE_TRACING && 14248 insn->imm == BPF_FUNC_get_func_ip) { 14249 /* Load IP address from ctx - 16 */ 14250 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 14251 14252 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 14253 if (!new_prog) 14254 return -ENOMEM; 14255 14256 env->prog = prog = new_prog; 14257 insn = new_prog->insnsi + i + delta; 14258 continue; 14259 } 14260 14261 patch_call_imm: 14262 fn = env->ops->get_func_proto(insn->imm, env->prog); 14263 /* all functions that have prototype and verifier allowed 14264 * programs to call them, must be real in-kernel functions 14265 */ 14266 if (!fn->func) { 14267 verbose(env, 14268 "kernel subsystem misconfigured func %s#%d\n", 14269 func_id_name(insn->imm), insn->imm); 14270 return -EFAULT; 14271 } 14272 insn->imm = fn->func - __bpf_call_base; 14273 } 14274 14275 /* Since poke tab is now finalized, publish aux to tracker. */ 14276 for (i = 0; i < prog->aux->size_poke_tab; i++) { 14277 map_ptr = prog->aux->poke_tab[i].tail_call.map; 14278 if (!map_ptr->ops->map_poke_track || 14279 !map_ptr->ops->map_poke_untrack || 14280 !map_ptr->ops->map_poke_run) { 14281 verbose(env, "bpf verifier is misconfigured\n"); 14282 return -EINVAL; 14283 } 14284 14285 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 14286 if (ret < 0) { 14287 verbose(env, "tracking tail call prog failed\n"); 14288 return ret; 14289 } 14290 } 14291 14292 sort_kfunc_descs_by_imm(env->prog); 14293 14294 return 0; 14295 } 14296 14297 static void free_states(struct bpf_verifier_env *env) 14298 { 14299 struct bpf_verifier_state_list *sl, *sln; 14300 int i; 14301 14302 sl = env->free_list; 14303 while (sl) { 14304 sln = sl->next; 14305 free_verifier_state(&sl->state, false); 14306 kfree(sl); 14307 sl = sln; 14308 } 14309 env->free_list = NULL; 14310 14311 if (!env->explored_states) 14312 return; 14313 14314 for (i = 0; i < state_htab_size(env); i++) { 14315 sl = env->explored_states[i]; 14316 14317 while (sl) { 14318 sln = sl->next; 14319 free_verifier_state(&sl->state, false); 14320 kfree(sl); 14321 sl = sln; 14322 } 14323 env->explored_states[i] = NULL; 14324 } 14325 } 14326 14327 static int do_check_common(struct bpf_verifier_env *env, int subprog) 14328 { 14329 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 14330 struct bpf_verifier_state *state; 14331 struct bpf_reg_state *regs; 14332 int ret, i; 14333 14334 env->prev_linfo = NULL; 14335 env->pass_cnt++; 14336 14337 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 14338 if (!state) 14339 return -ENOMEM; 14340 state->curframe = 0; 14341 state->speculative = false; 14342 state->branches = 1; 14343 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 14344 if (!state->frame[0]) { 14345 kfree(state); 14346 return -ENOMEM; 14347 } 14348 env->cur_state = state; 14349 init_func_state(env, state->frame[0], 14350 BPF_MAIN_FUNC /* callsite */, 14351 0 /* frameno */, 14352 subprog); 14353 14354 regs = state->frame[state->curframe]->regs; 14355 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 14356 ret = btf_prepare_func_args(env, subprog, regs); 14357 if (ret) 14358 goto out; 14359 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 14360 if (regs[i].type == PTR_TO_CTX) 14361 mark_reg_known_zero(env, regs, i); 14362 else if (regs[i].type == SCALAR_VALUE) 14363 mark_reg_unknown(env, regs, i); 14364 else if (base_type(regs[i].type) == PTR_TO_MEM) { 14365 const u32 mem_size = regs[i].mem_size; 14366 14367 mark_reg_known_zero(env, regs, i); 14368 regs[i].mem_size = mem_size; 14369 regs[i].id = ++env->id_gen; 14370 } 14371 } 14372 } else { 14373 /* 1st arg to a function */ 14374 regs[BPF_REG_1].type = PTR_TO_CTX; 14375 mark_reg_known_zero(env, regs, BPF_REG_1); 14376 ret = btf_check_subprog_arg_match(env, subprog, regs); 14377 if (ret == -EFAULT) 14378 /* unlikely verifier bug. abort. 14379 * ret == 0 and ret < 0 are sadly acceptable for 14380 * main() function due to backward compatibility. 14381 * Like socket filter program may be written as: 14382 * int bpf_prog(struct pt_regs *ctx) 14383 * and never dereference that ctx in the program. 14384 * 'struct pt_regs' is a type mismatch for socket 14385 * filter that should be using 'struct __sk_buff'. 14386 */ 14387 goto out; 14388 } 14389 14390 ret = do_check(env); 14391 out: 14392 /* check for NULL is necessary, since cur_state can be freed inside 14393 * do_check() under memory pressure. 14394 */ 14395 if (env->cur_state) { 14396 free_verifier_state(env->cur_state, true); 14397 env->cur_state = NULL; 14398 } 14399 while (!pop_stack(env, NULL, NULL, false)); 14400 if (!ret && pop_log) 14401 bpf_vlog_reset(&env->log, 0); 14402 free_states(env); 14403 return ret; 14404 } 14405 14406 /* Verify all global functions in a BPF program one by one based on their BTF. 14407 * All global functions must pass verification. Otherwise the whole program is rejected. 14408 * Consider: 14409 * int bar(int); 14410 * int foo(int f) 14411 * { 14412 * return bar(f); 14413 * } 14414 * int bar(int b) 14415 * { 14416 * ... 14417 * } 14418 * foo() will be verified first for R1=any_scalar_value. During verification it 14419 * will be assumed that bar() already verified successfully and call to bar() 14420 * from foo() will be checked for type match only. Later bar() will be verified 14421 * independently to check that it's safe for R1=any_scalar_value. 14422 */ 14423 static int do_check_subprogs(struct bpf_verifier_env *env) 14424 { 14425 struct bpf_prog_aux *aux = env->prog->aux; 14426 int i, ret; 14427 14428 if (!aux->func_info) 14429 return 0; 14430 14431 for (i = 1; i < env->subprog_cnt; i++) { 14432 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 14433 continue; 14434 env->insn_idx = env->subprog_info[i].start; 14435 WARN_ON_ONCE(env->insn_idx == 0); 14436 ret = do_check_common(env, i); 14437 if (ret) { 14438 return ret; 14439 } else if (env->log.level & BPF_LOG_LEVEL) { 14440 verbose(env, 14441 "Func#%d is safe for any args that match its prototype\n", 14442 i); 14443 } 14444 } 14445 return 0; 14446 } 14447 14448 static int do_check_main(struct bpf_verifier_env *env) 14449 { 14450 int ret; 14451 14452 env->insn_idx = 0; 14453 ret = do_check_common(env, 0); 14454 if (!ret) 14455 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 14456 return ret; 14457 } 14458 14459 14460 static void print_verification_stats(struct bpf_verifier_env *env) 14461 { 14462 int i; 14463 14464 if (env->log.level & BPF_LOG_STATS) { 14465 verbose(env, "verification time %lld usec\n", 14466 div_u64(env->verification_time, 1000)); 14467 verbose(env, "stack depth "); 14468 for (i = 0; i < env->subprog_cnt; i++) { 14469 u32 depth = env->subprog_info[i].stack_depth; 14470 14471 verbose(env, "%d", depth); 14472 if (i + 1 < env->subprog_cnt) 14473 verbose(env, "+"); 14474 } 14475 verbose(env, "\n"); 14476 } 14477 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 14478 "total_states %d peak_states %d mark_read %d\n", 14479 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 14480 env->max_states_per_insn, env->total_states, 14481 env->peak_states, env->longest_mark_read_walk); 14482 } 14483 14484 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 14485 { 14486 const struct btf_type *t, *func_proto; 14487 const struct bpf_struct_ops *st_ops; 14488 const struct btf_member *member; 14489 struct bpf_prog *prog = env->prog; 14490 u32 btf_id, member_idx; 14491 const char *mname; 14492 14493 if (!prog->gpl_compatible) { 14494 verbose(env, "struct ops programs must have a GPL compatible license\n"); 14495 return -EINVAL; 14496 } 14497 14498 btf_id = prog->aux->attach_btf_id; 14499 st_ops = bpf_struct_ops_find(btf_id); 14500 if (!st_ops) { 14501 verbose(env, "attach_btf_id %u is not a supported struct\n", 14502 btf_id); 14503 return -ENOTSUPP; 14504 } 14505 14506 t = st_ops->type; 14507 member_idx = prog->expected_attach_type; 14508 if (member_idx >= btf_type_vlen(t)) { 14509 verbose(env, "attach to invalid member idx %u of struct %s\n", 14510 member_idx, st_ops->name); 14511 return -EINVAL; 14512 } 14513 14514 member = &btf_type_member(t)[member_idx]; 14515 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 14516 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 14517 NULL); 14518 if (!func_proto) { 14519 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 14520 mname, member_idx, st_ops->name); 14521 return -EINVAL; 14522 } 14523 14524 if (st_ops->check_member) { 14525 int err = st_ops->check_member(t, member); 14526 14527 if (err) { 14528 verbose(env, "attach to unsupported member %s of struct %s\n", 14529 mname, st_ops->name); 14530 return err; 14531 } 14532 } 14533 14534 prog->aux->attach_func_proto = func_proto; 14535 prog->aux->attach_func_name = mname; 14536 env->ops = st_ops->verifier_ops; 14537 14538 return 0; 14539 } 14540 #define SECURITY_PREFIX "security_" 14541 14542 static int check_attach_modify_return(unsigned long addr, const char *func_name) 14543 { 14544 if (within_error_injection_list(addr) || 14545 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 14546 return 0; 14547 14548 return -EINVAL; 14549 } 14550 14551 /* list of non-sleepable functions that are otherwise on 14552 * ALLOW_ERROR_INJECTION list 14553 */ 14554 BTF_SET_START(btf_non_sleepable_error_inject) 14555 /* Three functions below can be called from sleepable and non-sleepable context. 14556 * Assume non-sleepable from bpf safety point of view. 14557 */ 14558 BTF_ID(func, __filemap_add_folio) 14559 BTF_ID(func, should_fail_alloc_page) 14560 BTF_ID(func, should_failslab) 14561 BTF_SET_END(btf_non_sleepable_error_inject) 14562 14563 static int check_non_sleepable_error_inject(u32 btf_id) 14564 { 14565 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 14566 } 14567 14568 int bpf_check_attach_target(struct bpf_verifier_log *log, 14569 const struct bpf_prog *prog, 14570 const struct bpf_prog *tgt_prog, 14571 u32 btf_id, 14572 struct bpf_attach_target_info *tgt_info) 14573 { 14574 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 14575 const char prefix[] = "btf_trace_"; 14576 int ret = 0, subprog = -1, i; 14577 const struct btf_type *t; 14578 bool conservative = true; 14579 const char *tname; 14580 struct btf *btf; 14581 long addr = 0; 14582 14583 if (!btf_id) { 14584 bpf_log(log, "Tracing programs must provide btf_id\n"); 14585 return -EINVAL; 14586 } 14587 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 14588 if (!btf) { 14589 bpf_log(log, 14590 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 14591 return -EINVAL; 14592 } 14593 t = btf_type_by_id(btf, btf_id); 14594 if (!t) { 14595 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 14596 return -EINVAL; 14597 } 14598 tname = btf_name_by_offset(btf, t->name_off); 14599 if (!tname) { 14600 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 14601 return -EINVAL; 14602 } 14603 if (tgt_prog) { 14604 struct bpf_prog_aux *aux = tgt_prog->aux; 14605 14606 for (i = 0; i < aux->func_info_cnt; i++) 14607 if (aux->func_info[i].type_id == btf_id) { 14608 subprog = i; 14609 break; 14610 } 14611 if (subprog == -1) { 14612 bpf_log(log, "Subprog %s doesn't exist\n", tname); 14613 return -EINVAL; 14614 } 14615 conservative = aux->func_info_aux[subprog].unreliable; 14616 if (prog_extension) { 14617 if (conservative) { 14618 bpf_log(log, 14619 "Cannot replace static functions\n"); 14620 return -EINVAL; 14621 } 14622 if (!prog->jit_requested) { 14623 bpf_log(log, 14624 "Extension programs should be JITed\n"); 14625 return -EINVAL; 14626 } 14627 } 14628 if (!tgt_prog->jited) { 14629 bpf_log(log, "Can attach to only JITed progs\n"); 14630 return -EINVAL; 14631 } 14632 if (tgt_prog->type == prog->type) { 14633 /* Cannot fentry/fexit another fentry/fexit program. 14634 * Cannot attach program extension to another extension. 14635 * It's ok to attach fentry/fexit to extension program. 14636 */ 14637 bpf_log(log, "Cannot recursively attach\n"); 14638 return -EINVAL; 14639 } 14640 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 14641 prog_extension && 14642 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 14643 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 14644 /* Program extensions can extend all program types 14645 * except fentry/fexit. The reason is the following. 14646 * The fentry/fexit programs are used for performance 14647 * analysis, stats and can be attached to any program 14648 * type except themselves. When extension program is 14649 * replacing XDP function it is necessary to allow 14650 * performance analysis of all functions. Both original 14651 * XDP program and its program extension. Hence 14652 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 14653 * allowed. If extending of fentry/fexit was allowed it 14654 * would be possible to create long call chain 14655 * fentry->extension->fentry->extension beyond 14656 * reasonable stack size. Hence extending fentry is not 14657 * allowed. 14658 */ 14659 bpf_log(log, "Cannot extend fentry/fexit\n"); 14660 return -EINVAL; 14661 } 14662 } else { 14663 if (prog_extension) { 14664 bpf_log(log, "Cannot replace kernel functions\n"); 14665 return -EINVAL; 14666 } 14667 } 14668 14669 switch (prog->expected_attach_type) { 14670 case BPF_TRACE_RAW_TP: 14671 if (tgt_prog) { 14672 bpf_log(log, 14673 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 14674 return -EINVAL; 14675 } 14676 if (!btf_type_is_typedef(t)) { 14677 bpf_log(log, "attach_btf_id %u is not a typedef\n", 14678 btf_id); 14679 return -EINVAL; 14680 } 14681 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 14682 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 14683 btf_id, tname); 14684 return -EINVAL; 14685 } 14686 tname += sizeof(prefix) - 1; 14687 t = btf_type_by_id(btf, t->type); 14688 if (!btf_type_is_ptr(t)) 14689 /* should never happen in valid vmlinux build */ 14690 return -EINVAL; 14691 t = btf_type_by_id(btf, t->type); 14692 if (!btf_type_is_func_proto(t)) 14693 /* should never happen in valid vmlinux build */ 14694 return -EINVAL; 14695 14696 break; 14697 case BPF_TRACE_ITER: 14698 if (!btf_type_is_func(t)) { 14699 bpf_log(log, "attach_btf_id %u is not a function\n", 14700 btf_id); 14701 return -EINVAL; 14702 } 14703 t = btf_type_by_id(btf, t->type); 14704 if (!btf_type_is_func_proto(t)) 14705 return -EINVAL; 14706 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 14707 if (ret) 14708 return ret; 14709 break; 14710 default: 14711 if (!prog_extension) 14712 return -EINVAL; 14713 fallthrough; 14714 case BPF_MODIFY_RETURN: 14715 case BPF_LSM_MAC: 14716 case BPF_TRACE_FENTRY: 14717 case BPF_TRACE_FEXIT: 14718 if (!btf_type_is_func(t)) { 14719 bpf_log(log, "attach_btf_id %u is not a function\n", 14720 btf_id); 14721 return -EINVAL; 14722 } 14723 if (prog_extension && 14724 btf_check_type_match(log, prog, btf, t)) 14725 return -EINVAL; 14726 t = btf_type_by_id(btf, t->type); 14727 if (!btf_type_is_func_proto(t)) 14728 return -EINVAL; 14729 14730 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 14731 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 14732 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 14733 return -EINVAL; 14734 14735 if (tgt_prog && conservative) 14736 t = NULL; 14737 14738 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 14739 if (ret < 0) 14740 return ret; 14741 14742 if (tgt_prog) { 14743 if (subprog == 0) 14744 addr = (long) tgt_prog->bpf_func; 14745 else 14746 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 14747 } else { 14748 addr = kallsyms_lookup_name(tname); 14749 if (!addr) { 14750 bpf_log(log, 14751 "The address of function %s cannot be found\n", 14752 tname); 14753 return -ENOENT; 14754 } 14755 } 14756 14757 if (prog->aux->sleepable) { 14758 ret = -EINVAL; 14759 switch (prog->type) { 14760 case BPF_PROG_TYPE_TRACING: 14761 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 14762 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 14763 */ 14764 if (!check_non_sleepable_error_inject(btf_id) && 14765 within_error_injection_list(addr)) 14766 ret = 0; 14767 break; 14768 case BPF_PROG_TYPE_LSM: 14769 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 14770 * Only some of them are sleepable. 14771 */ 14772 if (bpf_lsm_is_sleepable_hook(btf_id)) 14773 ret = 0; 14774 break; 14775 default: 14776 break; 14777 } 14778 if (ret) { 14779 bpf_log(log, "%s is not sleepable\n", tname); 14780 return ret; 14781 } 14782 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 14783 if (tgt_prog) { 14784 bpf_log(log, "can't modify return codes of BPF programs\n"); 14785 return -EINVAL; 14786 } 14787 ret = check_attach_modify_return(addr, tname); 14788 if (ret) { 14789 bpf_log(log, "%s() is not modifiable\n", tname); 14790 return ret; 14791 } 14792 } 14793 14794 break; 14795 } 14796 tgt_info->tgt_addr = addr; 14797 tgt_info->tgt_name = tname; 14798 tgt_info->tgt_type = t; 14799 return 0; 14800 } 14801 14802 BTF_SET_START(btf_id_deny) 14803 BTF_ID_UNUSED 14804 #ifdef CONFIG_SMP 14805 BTF_ID(func, migrate_disable) 14806 BTF_ID(func, migrate_enable) 14807 #endif 14808 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 14809 BTF_ID(func, rcu_read_unlock_strict) 14810 #endif 14811 BTF_SET_END(btf_id_deny) 14812 14813 static int check_attach_btf_id(struct bpf_verifier_env *env) 14814 { 14815 struct bpf_prog *prog = env->prog; 14816 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 14817 struct bpf_attach_target_info tgt_info = {}; 14818 u32 btf_id = prog->aux->attach_btf_id; 14819 struct bpf_trampoline *tr; 14820 int ret; 14821 u64 key; 14822 14823 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 14824 if (prog->aux->sleepable) 14825 /* attach_btf_id checked to be zero already */ 14826 return 0; 14827 verbose(env, "Syscall programs can only be sleepable\n"); 14828 return -EINVAL; 14829 } 14830 14831 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 14832 prog->type != BPF_PROG_TYPE_LSM) { 14833 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n"); 14834 return -EINVAL; 14835 } 14836 14837 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 14838 return check_struct_ops_btf_id(env); 14839 14840 if (prog->type != BPF_PROG_TYPE_TRACING && 14841 prog->type != BPF_PROG_TYPE_LSM && 14842 prog->type != BPF_PROG_TYPE_EXT) 14843 return 0; 14844 14845 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 14846 if (ret) 14847 return ret; 14848 14849 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 14850 /* to make freplace equivalent to their targets, they need to 14851 * inherit env->ops and expected_attach_type for the rest of the 14852 * verification 14853 */ 14854 env->ops = bpf_verifier_ops[tgt_prog->type]; 14855 prog->expected_attach_type = tgt_prog->expected_attach_type; 14856 } 14857 14858 /* store info about the attachment target that will be used later */ 14859 prog->aux->attach_func_proto = tgt_info.tgt_type; 14860 prog->aux->attach_func_name = tgt_info.tgt_name; 14861 14862 if (tgt_prog) { 14863 prog->aux->saved_dst_prog_type = tgt_prog->type; 14864 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 14865 } 14866 14867 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 14868 prog->aux->attach_btf_trace = true; 14869 return 0; 14870 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 14871 if (!bpf_iter_prog_supported(prog)) 14872 return -EINVAL; 14873 return 0; 14874 } 14875 14876 if (prog->type == BPF_PROG_TYPE_LSM) { 14877 ret = bpf_lsm_verify_prog(&env->log, prog); 14878 if (ret < 0) 14879 return ret; 14880 } else if (prog->type == BPF_PROG_TYPE_TRACING && 14881 btf_id_set_contains(&btf_id_deny, btf_id)) { 14882 return -EINVAL; 14883 } 14884 14885 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 14886 tr = bpf_trampoline_get(key, &tgt_info); 14887 if (!tr) 14888 return -ENOMEM; 14889 14890 prog->aux->dst_trampoline = tr; 14891 return 0; 14892 } 14893 14894 struct btf *bpf_get_btf_vmlinux(void) 14895 { 14896 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 14897 mutex_lock(&bpf_verifier_lock); 14898 if (!btf_vmlinux) 14899 btf_vmlinux = btf_parse_vmlinux(); 14900 mutex_unlock(&bpf_verifier_lock); 14901 } 14902 return btf_vmlinux; 14903 } 14904 14905 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 14906 { 14907 u64 start_time = ktime_get_ns(); 14908 struct bpf_verifier_env *env; 14909 struct bpf_verifier_log *log; 14910 int i, len, ret = -EINVAL; 14911 bool is_priv; 14912 14913 /* no program is valid */ 14914 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 14915 return -EINVAL; 14916 14917 /* 'struct bpf_verifier_env' can be global, but since it's not small, 14918 * allocate/free it every time bpf_check() is called 14919 */ 14920 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 14921 if (!env) 14922 return -ENOMEM; 14923 log = &env->log; 14924 14925 len = (*prog)->len; 14926 env->insn_aux_data = 14927 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 14928 ret = -ENOMEM; 14929 if (!env->insn_aux_data) 14930 goto err_free_env; 14931 for (i = 0; i < len; i++) 14932 env->insn_aux_data[i].orig_idx = i; 14933 env->prog = *prog; 14934 env->ops = bpf_verifier_ops[env->prog->type]; 14935 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 14936 is_priv = bpf_capable(); 14937 14938 bpf_get_btf_vmlinux(); 14939 14940 /* grab the mutex to protect few globals used by verifier */ 14941 if (!is_priv) 14942 mutex_lock(&bpf_verifier_lock); 14943 14944 if (attr->log_level || attr->log_buf || attr->log_size) { 14945 /* user requested verbose verifier output 14946 * and supplied buffer to store the verification trace 14947 */ 14948 log->level = attr->log_level; 14949 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 14950 log->len_total = attr->log_size; 14951 14952 /* log attributes have to be sane */ 14953 if (!bpf_verifier_log_attr_valid(log)) { 14954 ret = -EINVAL; 14955 goto err_unlock; 14956 } 14957 } 14958 14959 mark_verifier_state_clean(env); 14960 14961 if (IS_ERR(btf_vmlinux)) { 14962 /* Either gcc or pahole or kernel are broken. */ 14963 verbose(env, "in-kernel BTF is malformed\n"); 14964 ret = PTR_ERR(btf_vmlinux); 14965 goto skip_full_check; 14966 } 14967 14968 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 14969 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 14970 env->strict_alignment = true; 14971 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 14972 env->strict_alignment = false; 14973 14974 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 14975 env->allow_uninit_stack = bpf_allow_uninit_stack(); 14976 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 14977 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 14978 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 14979 env->bpf_capable = bpf_capable(); 14980 14981 if (is_priv) 14982 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 14983 14984 env->explored_states = kvcalloc(state_htab_size(env), 14985 sizeof(struct bpf_verifier_state_list *), 14986 GFP_USER); 14987 ret = -ENOMEM; 14988 if (!env->explored_states) 14989 goto skip_full_check; 14990 14991 ret = add_subprog_and_kfunc(env); 14992 if (ret < 0) 14993 goto skip_full_check; 14994 14995 ret = check_subprogs(env); 14996 if (ret < 0) 14997 goto skip_full_check; 14998 14999 ret = check_btf_info(env, attr, uattr); 15000 if (ret < 0) 15001 goto skip_full_check; 15002 15003 ret = check_attach_btf_id(env); 15004 if (ret) 15005 goto skip_full_check; 15006 15007 ret = resolve_pseudo_ldimm64(env); 15008 if (ret < 0) 15009 goto skip_full_check; 15010 15011 if (bpf_prog_is_dev_bound(env->prog->aux)) { 15012 ret = bpf_prog_offload_verifier_prep(env->prog); 15013 if (ret) 15014 goto skip_full_check; 15015 } 15016 15017 ret = check_cfg(env); 15018 if (ret < 0) 15019 goto skip_full_check; 15020 15021 ret = do_check_subprogs(env); 15022 ret = ret ?: do_check_main(env); 15023 15024 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 15025 ret = bpf_prog_offload_finalize(env); 15026 15027 skip_full_check: 15028 kvfree(env->explored_states); 15029 15030 if (ret == 0) 15031 ret = check_max_stack_depth(env); 15032 15033 /* instruction rewrites happen after this point */ 15034 if (is_priv) { 15035 if (ret == 0) 15036 opt_hard_wire_dead_code_branches(env); 15037 if (ret == 0) 15038 ret = opt_remove_dead_code(env); 15039 if (ret == 0) 15040 ret = opt_remove_nops(env); 15041 } else { 15042 if (ret == 0) 15043 sanitize_dead_code(env); 15044 } 15045 15046 if (ret == 0) 15047 /* program is valid, convert *(u32*)(ctx + off) accesses */ 15048 ret = convert_ctx_accesses(env); 15049 15050 if (ret == 0) 15051 ret = do_misc_fixups(env); 15052 15053 /* do 32-bit optimization after insn patching has done so those patched 15054 * insns could be handled correctly. 15055 */ 15056 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 15057 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 15058 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 15059 : false; 15060 } 15061 15062 if (ret == 0) 15063 ret = fixup_call_args(env); 15064 15065 env->verification_time = ktime_get_ns() - start_time; 15066 print_verification_stats(env); 15067 env->prog->aux->verified_insns = env->insn_processed; 15068 15069 if (log->level && bpf_verifier_log_full(log)) 15070 ret = -ENOSPC; 15071 if (log->level && !log->ubuf) { 15072 ret = -EFAULT; 15073 goto err_release_maps; 15074 } 15075 15076 if (ret) 15077 goto err_release_maps; 15078 15079 if (env->used_map_cnt) { 15080 /* if program passed verifier, update used_maps in bpf_prog_info */ 15081 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 15082 sizeof(env->used_maps[0]), 15083 GFP_KERNEL); 15084 15085 if (!env->prog->aux->used_maps) { 15086 ret = -ENOMEM; 15087 goto err_release_maps; 15088 } 15089 15090 memcpy(env->prog->aux->used_maps, env->used_maps, 15091 sizeof(env->used_maps[0]) * env->used_map_cnt); 15092 env->prog->aux->used_map_cnt = env->used_map_cnt; 15093 } 15094 if (env->used_btf_cnt) { 15095 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 15096 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 15097 sizeof(env->used_btfs[0]), 15098 GFP_KERNEL); 15099 if (!env->prog->aux->used_btfs) { 15100 ret = -ENOMEM; 15101 goto err_release_maps; 15102 } 15103 15104 memcpy(env->prog->aux->used_btfs, env->used_btfs, 15105 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 15106 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 15107 } 15108 if (env->used_map_cnt || env->used_btf_cnt) { 15109 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 15110 * bpf_ld_imm64 instructions 15111 */ 15112 convert_pseudo_ld_imm64(env); 15113 } 15114 15115 adjust_btf_func(env); 15116 15117 err_release_maps: 15118 if (!env->prog->aux->used_maps) 15119 /* if we didn't copy map pointers into bpf_prog_info, release 15120 * them now. Otherwise free_used_maps() will release them. 15121 */ 15122 release_maps(env); 15123 if (!env->prog->aux->used_btfs) 15124 release_btfs(env); 15125 15126 /* extension progs temporarily inherit the attach_type of their targets 15127 for verification purposes, so set it back to zero before returning 15128 */ 15129 if (env->prog->type == BPF_PROG_TYPE_EXT) 15130 env->prog->expected_attach_type = 0; 15131 15132 *prog = env->prog; 15133 err_unlock: 15134 if (!is_priv) 15135 mutex_unlock(&bpf_verifier_lock); 15136 vfree(env->insn_aux_data); 15137 err_free_env: 15138 kfree(env); 15139 return ret; 15140 } 15141