xref: /linux/kernel/bpf/verifier.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <linux/bpf_mem_alloc.h>
30 #include <net/xdp.h>
31 #include <linux/trace_events.h>
32 #include <linux/kallsyms.h>
33 
34 #include "disasm.h"
35 
36 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
37 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
38 	[_id] = & _name ## _verifier_ops,
39 #define BPF_MAP_TYPE(_id, _ops)
40 #define BPF_LINK_TYPE(_id, _name)
41 #include <linux/bpf_types.h>
42 #undef BPF_PROG_TYPE
43 #undef BPF_MAP_TYPE
44 #undef BPF_LINK_TYPE
45 };
46 
47 struct bpf_mem_alloc bpf_global_percpu_ma;
48 static bool bpf_global_percpu_ma_set;
49 
50 /* bpf_check() is a static code analyzer that walks eBPF program
51  * instruction by instruction and updates register/stack state.
52  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
53  *
54  * The first pass is depth-first-search to check that the program is a DAG.
55  * It rejects the following programs:
56  * - larger than BPF_MAXINSNS insns
57  * - if loop is present (detected via back-edge)
58  * - unreachable insns exist (shouldn't be a forest. program = one function)
59  * - out of bounds or malformed jumps
60  * The second pass is all possible path descent from the 1st insn.
61  * Since it's analyzing all paths through the program, the length of the
62  * analysis is limited to 64k insn, which may be hit even if total number of
63  * insn is less then 4K, but there are too many branches that change stack/regs.
64  * Number of 'branches to be analyzed' is limited to 1k
65  *
66  * On entry to each instruction, each register has a type, and the instruction
67  * changes the types of the registers depending on instruction semantics.
68  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
69  * copied to R1.
70  *
71  * All registers are 64-bit.
72  * R0 - return register
73  * R1-R5 argument passing registers
74  * R6-R9 callee saved registers
75  * R10 - frame pointer read-only
76  *
77  * At the start of BPF program the register R1 contains a pointer to bpf_context
78  * and has type PTR_TO_CTX.
79  *
80  * Verifier tracks arithmetic operations on pointers in case:
81  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
82  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
83  * 1st insn copies R10 (which has FRAME_PTR) type into R1
84  * and 2nd arithmetic instruction is pattern matched to recognize
85  * that it wants to construct a pointer to some element within stack.
86  * So after 2nd insn, the register R1 has type PTR_TO_STACK
87  * (and -20 constant is saved for further stack bounds checking).
88  * Meaning that this reg is a pointer to stack plus known immediate constant.
89  *
90  * Most of the time the registers have SCALAR_VALUE type, which
91  * means the register has some value, but it's not a valid pointer.
92  * (like pointer plus pointer becomes SCALAR_VALUE type)
93  *
94  * When verifier sees load or store instructions the type of base register
95  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
96  * four pointer types recognized by check_mem_access() function.
97  *
98  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
99  * and the range of [ptr, ptr + map's value_size) is accessible.
100  *
101  * registers used to pass values to function calls are checked against
102  * function argument constraints.
103  *
104  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
105  * It means that the register type passed to this function must be
106  * PTR_TO_STACK and it will be used inside the function as
107  * 'pointer to map element key'
108  *
109  * For example the argument constraints for bpf_map_lookup_elem():
110  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
111  *   .arg1_type = ARG_CONST_MAP_PTR,
112  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
113  *
114  * ret_type says that this function returns 'pointer to map elem value or null'
115  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
116  * 2nd argument should be a pointer to stack, which will be used inside
117  * the helper function as a pointer to map element key.
118  *
119  * On the kernel side the helper function looks like:
120  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
121  * {
122  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
123  *    void *key = (void *) (unsigned long) r2;
124  *    void *value;
125  *
126  *    here kernel can access 'key' and 'map' pointers safely, knowing that
127  *    [key, key + map->key_size) bytes are valid and were initialized on
128  *    the stack of eBPF program.
129  * }
130  *
131  * Corresponding eBPF program may look like:
132  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
133  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
134  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
135  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
136  * here verifier looks at prototype of map_lookup_elem() and sees:
137  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
138  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
139  *
140  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
141  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
142  * and were initialized prior to this call.
143  * If it's ok, then verifier allows this BPF_CALL insn and looks at
144  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
145  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
146  * returns either pointer to map value or NULL.
147  *
148  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
149  * insn, the register holding that pointer in the true branch changes state to
150  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
151  * branch. See check_cond_jmp_op().
152  *
153  * After the call R0 is set to return type of the function and registers R1-R5
154  * are set to NOT_INIT to indicate that they are no longer readable.
155  *
156  * The following reference types represent a potential reference to a kernel
157  * resource which, after first being allocated, must be checked and freed by
158  * the BPF program:
159  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
160  *
161  * When the verifier sees a helper call return a reference type, it allocates a
162  * pointer id for the reference and stores it in the current function state.
163  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
164  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
165  * passes through a NULL-check conditional. For the branch wherein the state is
166  * changed to CONST_IMM, the verifier releases the reference.
167  *
168  * For each helper function that allocates a reference, such as
169  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
170  * bpf_sk_release(). When a reference type passes into the release function,
171  * the verifier also releases the reference. If any unchecked or unreleased
172  * reference remains at the end of the program, the verifier rejects it.
173  */
174 
175 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
176 struct bpf_verifier_stack_elem {
177 	/* verifier state is 'st'
178 	 * before processing instruction 'insn_idx'
179 	 * and after processing instruction 'prev_insn_idx'
180 	 */
181 	struct bpf_verifier_state st;
182 	int insn_idx;
183 	int prev_insn_idx;
184 	struct bpf_verifier_stack_elem *next;
185 	/* length of verifier log at the time this state was pushed on stack */
186 	u32 log_pos;
187 };
188 
189 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
190 #define BPF_COMPLEXITY_LIMIT_STATES	64
191 
192 #define BPF_MAP_KEY_POISON	(1ULL << 63)
193 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
194 
195 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE  512
196 
197 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
198 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
199 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
200 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
201 static int ref_set_non_owning(struct bpf_verifier_env *env,
202 			      struct bpf_reg_state *reg);
203 static void specialize_kfunc(struct bpf_verifier_env *env,
204 			     u32 func_id, u16 offset, unsigned long *addr);
205 static bool is_trusted_reg(const struct bpf_reg_state *reg);
206 
207 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
208 {
209 	return aux->map_ptr_state.poison;
210 }
211 
212 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
213 {
214 	return aux->map_ptr_state.unpriv;
215 }
216 
217 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
218 			      struct bpf_map *map,
219 			      bool unpriv, bool poison)
220 {
221 	unpriv |= bpf_map_ptr_unpriv(aux);
222 	aux->map_ptr_state.unpriv = unpriv;
223 	aux->map_ptr_state.poison = poison;
224 	aux->map_ptr_state.map_ptr = map;
225 }
226 
227 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
228 {
229 	return aux->map_key_state & BPF_MAP_KEY_POISON;
230 }
231 
232 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
233 {
234 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
235 }
236 
237 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
238 {
239 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
240 }
241 
242 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
243 {
244 	bool poisoned = bpf_map_key_poisoned(aux);
245 
246 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
247 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
248 }
249 
250 static bool bpf_helper_call(const struct bpf_insn *insn)
251 {
252 	return insn->code == (BPF_JMP | BPF_CALL) &&
253 	       insn->src_reg == 0;
254 }
255 
256 static bool bpf_pseudo_call(const struct bpf_insn *insn)
257 {
258 	return insn->code == (BPF_JMP | BPF_CALL) &&
259 	       insn->src_reg == BPF_PSEUDO_CALL;
260 }
261 
262 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
263 {
264 	return insn->code == (BPF_JMP | BPF_CALL) &&
265 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
266 }
267 
268 struct bpf_call_arg_meta {
269 	struct bpf_map *map_ptr;
270 	bool raw_mode;
271 	bool pkt_access;
272 	u8 release_regno;
273 	int regno;
274 	int access_size;
275 	int mem_size;
276 	u64 msize_max_value;
277 	int ref_obj_id;
278 	int dynptr_id;
279 	int map_uid;
280 	int func_id;
281 	struct btf *btf;
282 	u32 btf_id;
283 	struct btf *ret_btf;
284 	u32 ret_btf_id;
285 	u32 subprogno;
286 	struct btf_field *kptr_field;
287 };
288 
289 struct bpf_kfunc_call_arg_meta {
290 	/* In parameters */
291 	struct btf *btf;
292 	u32 func_id;
293 	u32 kfunc_flags;
294 	const struct btf_type *func_proto;
295 	const char *func_name;
296 	/* Out parameters */
297 	u32 ref_obj_id;
298 	u8 release_regno;
299 	bool r0_rdonly;
300 	u32 ret_btf_id;
301 	u64 r0_size;
302 	u32 subprogno;
303 	struct {
304 		u64 value;
305 		bool found;
306 	} arg_constant;
307 
308 	/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
309 	 * generally to pass info about user-defined local kptr types to later
310 	 * verification logic
311 	 *   bpf_obj_drop/bpf_percpu_obj_drop
312 	 *     Record the local kptr type to be drop'd
313 	 *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
314 	 *     Record the local kptr type to be refcount_incr'd and use
315 	 *     arg_owning_ref to determine whether refcount_acquire should be
316 	 *     fallible
317 	 */
318 	struct btf *arg_btf;
319 	u32 arg_btf_id;
320 	bool arg_owning_ref;
321 
322 	struct {
323 		struct btf_field *field;
324 	} arg_list_head;
325 	struct {
326 		struct btf_field *field;
327 	} arg_rbtree_root;
328 	struct {
329 		enum bpf_dynptr_type type;
330 		u32 id;
331 		u32 ref_obj_id;
332 	} initialized_dynptr;
333 	struct {
334 		u8 spi;
335 		u8 frameno;
336 	} iter;
337 	struct {
338 		struct bpf_map *ptr;
339 		int uid;
340 	} map;
341 	u64 mem_size;
342 };
343 
344 struct btf *btf_vmlinux;
345 
346 static const char *btf_type_name(const struct btf *btf, u32 id)
347 {
348 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
349 }
350 
351 static DEFINE_MUTEX(bpf_verifier_lock);
352 static DEFINE_MUTEX(bpf_percpu_ma_lock);
353 
354 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
355 {
356 	struct bpf_verifier_env *env = private_data;
357 	va_list args;
358 
359 	if (!bpf_verifier_log_needed(&env->log))
360 		return;
361 
362 	va_start(args, fmt);
363 	bpf_verifier_vlog(&env->log, fmt, args);
364 	va_end(args);
365 }
366 
367 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
368 				   struct bpf_reg_state *reg,
369 				   struct bpf_retval_range range, const char *ctx,
370 				   const char *reg_name)
371 {
372 	bool unknown = true;
373 
374 	verbose(env, "%s the register %s has", ctx, reg_name);
375 	if (reg->smin_value > S64_MIN) {
376 		verbose(env, " smin=%lld", reg->smin_value);
377 		unknown = false;
378 	}
379 	if (reg->smax_value < S64_MAX) {
380 		verbose(env, " smax=%lld", reg->smax_value);
381 		unknown = false;
382 	}
383 	if (unknown)
384 		verbose(env, " unknown scalar value");
385 	verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval);
386 }
387 
388 static bool reg_not_null(const struct bpf_reg_state *reg)
389 {
390 	enum bpf_reg_type type;
391 
392 	type = reg->type;
393 	if (type_may_be_null(type))
394 		return false;
395 
396 	type = base_type(type);
397 	return type == PTR_TO_SOCKET ||
398 		type == PTR_TO_TCP_SOCK ||
399 		type == PTR_TO_MAP_VALUE ||
400 		type == PTR_TO_MAP_KEY ||
401 		type == PTR_TO_SOCK_COMMON ||
402 		(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
403 		type == PTR_TO_MEM;
404 }
405 
406 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
407 {
408 	struct btf_record *rec = NULL;
409 	struct btf_struct_meta *meta;
410 
411 	if (reg->type == PTR_TO_MAP_VALUE) {
412 		rec = reg->map_ptr->record;
413 	} else if (type_is_ptr_alloc_obj(reg->type)) {
414 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
415 		if (meta)
416 			rec = meta->record;
417 	}
418 	return rec;
419 }
420 
421 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
422 {
423 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
424 
425 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
426 }
427 
428 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog)
429 {
430 	struct bpf_func_info *info;
431 
432 	if (!env->prog->aux->func_info)
433 		return "";
434 
435 	info = &env->prog->aux->func_info[subprog];
436 	return btf_type_name(env->prog->aux->btf, info->type_id);
437 }
438 
439 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog)
440 {
441 	struct bpf_subprog_info *info = subprog_info(env, subprog);
442 
443 	info->is_cb = true;
444 	info->is_async_cb = true;
445 	info->is_exception_cb = true;
446 }
447 
448 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog)
449 {
450 	return subprog_info(env, subprog)->is_exception_cb;
451 }
452 
453 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
454 {
455 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
456 }
457 
458 static bool type_is_rdonly_mem(u32 type)
459 {
460 	return type & MEM_RDONLY;
461 }
462 
463 static bool is_acquire_function(enum bpf_func_id func_id,
464 				const struct bpf_map *map)
465 {
466 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
467 
468 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
469 	    func_id == BPF_FUNC_sk_lookup_udp ||
470 	    func_id == BPF_FUNC_skc_lookup_tcp ||
471 	    func_id == BPF_FUNC_ringbuf_reserve ||
472 	    func_id == BPF_FUNC_kptr_xchg)
473 		return true;
474 
475 	if (func_id == BPF_FUNC_map_lookup_elem &&
476 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
477 	     map_type == BPF_MAP_TYPE_SOCKHASH))
478 		return true;
479 
480 	return false;
481 }
482 
483 static bool is_ptr_cast_function(enum bpf_func_id func_id)
484 {
485 	return func_id == BPF_FUNC_tcp_sock ||
486 		func_id == BPF_FUNC_sk_fullsock ||
487 		func_id == BPF_FUNC_skc_to_tcp_sock ||
488 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
489 		func_id == BPF_FUNC_skc_to_udp6_sock ||
490 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
491 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
492 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
493 }
494 
495 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
496 {
497 	return func_id == BPF_FUNC_dynptr_data;
498 }
499 
500 static bool is_sync_callback_calling_kfunc(u32 btf_id);
501 static bool is_async_callback_calling_kfunc(u32 btf_id);
502 static bool is_callback_calling_kfunc(u32 btf_id);
503 static bool is_bpf_throw_kfunc(struct bpf_insn *insn);
504 
505 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id);
506 
507 static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
508 {
509 	return func_id == BPF_FUNC_for_each_map_elem ||
510 	       func_id == BPF_FUNC_find_vma ||
511 	       func_id == BPF_FUNC_loop ||
512 	       func_id == BPF_FUNC_user_ringbuf_drain;
513 }
514 
515 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
516 {
517 	return func_id == BPF_FUNC_timer_set_callback;
518 }
519 
520 static bool is_callback_calling_function(enum bpf_func_id func_id)
521 {
522 	return is_sync_callback_calling_function(func_id) ||
523 	       is_async_callback_calling_function(func_id);
524 }
525 
526 static bool is_sync_callback_calling_insn(struct bpf_insn *insn)
527 {
528 	return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) ||
529 	       (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm));
530 }
531 
532 static bool is_async_callback_calling_insn(struct bpf_insn *insn)
533 {
534 	return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) ||
535 	       (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm));
536 }
537 
538 static bool is_may_goto_insn(struct bpf_insn *insn)
539 {
540 	return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO;
541 }
542 
543 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx)
544 {
545 	return is_may_goto_insn(&env->prog->insnsi[insn_idx]);
546 }
547 
548 static bool is_storage_get_function(enum bpf_func_id func_id)
549 {
550 	return func_id == BPF_FUNC_sk_storage_get ||
551 	       func_id == BPF_FUNC_inode_storage_get ||
552 	       func_id == BPF_FUNC_task_storage_get ||
553 	       func_id == BPF_FUNC_cgrp_storage_get;
554 }
555 
556 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
557 					const struct bpf_map *map)
558 {
559 	int ref_obj_uses = 0;
560 
561 	if (is_ptr_cast_function(func_id))
562 		ref_obj_uses++;
563 	if (is_acquire_function(func_id, map))
564 		ref_obj_uses++;
565 	if (is_dynptr_ref_function(func_id))
566 		ref_obj_uses++;
567 
568 	return ref_obj_uses > 1;
569 }
570 
571 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
572 {
573 	return BPF_CLASS(insn->code) == BPF_STX &&
574 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
575 	       insn->imm == BPF_CMPXCHG;
576 }
577 
578 static int __get_spi(s32 off)
579 {
580 	return (-off - 1) / BPF_REG_SIZE;
581 }
582 
583 static struct bpf_func_state *func(struct bpf_verifier_env *env,
584 				   const struct bpf_reg_state *reg)
585 {
586 	struct bpf_verifier_state *cur = env->cur_state;
587 
588 	return cur->frame[reg->frameno];
589 }
590 
591 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
592 {
593        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
594 
595        /* We need to check that slots between [spi - nr_slots + 1, spi] are
596 	* within [0, allocated_stack).
597 	*
598 	* Please note that the spi grows downwards. For example, a dynptr
599 	* takes the size of two stack slots; the first slot will be at
600 	* spi and the second slot will be at spi - 1.
601 	*/
602        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
603 }
604 
605 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
606 			          const char *obj_kind, int nr_slots)
607 {
608 	int off, spi;
609 
610 	if (!tnum_is_const(reg->var_off)) {
611 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
612 		return -EINVAL;
613 	}
614 
615 	off = reg->off + reg->var_off.value;
616 	if (off % BPF_REG_SIZE) {
617 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
618 		return -EINVAL;
619 	}
620 
621 	spi = __get_spi(off);
622 	if (spi + 1 < nr_slots) {
623 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
624 		return -EINVAL;
625 	}
626 
627 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
628 		return -ERANGE;
629 	return spi;
630 }
631 
632 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
633 {
634 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
635 }
636 
637 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
638 {
639 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
640 }
641 
642 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
643 {
644 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
645 	case DYNPTR_TYPE_LOCAL:
646 		return BPF_DYNPTR_TYPE_LOCAL;
647 	case DYNPTR_TYPE_RINGBUF:
648 		return BPF_DYNPTR_TYPE_RINGBUF;
649 	case DYNPTR_TYPE_SKB:
650 		return BPF_DYNPTR_TYPE_SKB;
651 	case DYNPTR_TYPE_XDP:
652 		return BPF_DYNPTR_TYPE_XDP;
653 	default:
654 		return BPF_DYNPTR_TYPE_INVALID;
655 	}
656 }
657 
658 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
659 {
660 	switch (type) {
661 	case BPF_DYNPTR_TYPE_LOCAL:
662 		return DYNPTR_TYPE_LOCAL;
663 	case BPF_DYNPTR_TYPE_RINGBUF:
664 		return DYNPTR_TYPE_RINGBUF;
665 	case BPF_DYNPTR_TYPE_SKB:
666 		return DYNPTR_TYPE_SKB;
667 	case BPF_DYNPTR_TYPE_XDP:
668 		return DYNPTR_TYPE_XDP;
669 	default:
670 		return 0;
671 	}
672 }
673 
674 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
675 {
676 	return type == BPF_DYNPTR_TYPE_RINGBUF;
677 }
678 
679 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
680 			      enum bpf_dynptr_type type,
681 			      bool first_slot, int dynptr_id);
682 
683 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
684 				struct bpf_reg_state *reg);
685 
686 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
687 				   struct bpf_reg_state *sreg1,
688 				   struct bpf_reg_state *sreg2,
689 				   enum bpf_dynptr_type type)
690 {
691 	int id = ++env->id_gen;
692 
693 	__mark_dynptr_reg(sreg1, type, true, id);
694 	__mark_dynptr_reg(sreg2, type, false, id);
695 }
696 
697 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
698 			       struct bpf_reg_state *reg,
699 			       enum bpf_dynptr_type type)
700 {
701 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
702 }
703 
704 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
705 				        struct bpf_func_state *state, int spi);
706 
707 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
708 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
709 {
710 	struct bpf_func_state *state = func(env, reg);
711 	enum bpf_dynptr_type type;
712 	int spi, i, err;
713 
714 	spi = dynptr_get_spi(env, reg);
715 	if (spi < 0)
716 		return spi;
717 
718 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
719 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
720 	 * to ensure that for the following example:
721 	 *	[d1][d1][d2][d2]
722 	 * spi    3   2   1   0
723 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
724 	 * case they do belong to same dynptr, second call won't see slot_type
725 	 * as STACK_DYNPTR and will simply skip destruction.
726 	 */
727 	err = destroy_if_dynptr_stack_slot(env, state, spi);
728 	if (err)
729 		return err;
730 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
731 	if (err)
732 		return err;
733 
734 	for (i = 0; i < BPF_REG_SIZE; i++) {
735 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
736 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
737 	}
738 
739 	type = arg_to_dynptr_type(arg_type);
740 	if (type == BPF_DYNPTR_TYPE_INVALID)
741 		return -EINVAL;
742 
743 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
744 			       &state->stack[spi - 1].spilled_ptr, type);
745 
746 	if (dynptr_type_refcounted(type)) {
747 		/* The id is used to track proper releasing */
748 		int id;
749 
750 		if (clone_ref_obj_id)
751 			id = clone_ref_obj_id;
752 		else
753 			id = acquire_reference_state(env, insn_idx);
754 
755 		if (id < 0)
756 			return id;
757 
758 		state->stack[spi].spilled_ptr.ref_obj_id = id;
759 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
760 	}
761 
762 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
763 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
764 
765 	return 0;
766 }
767 
768 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
769 {
770 	int i;
771 
772 	for (i = 0; i < BPF_REG_SIZE; i++) {
773 		state->stack[spi].slot_type[i] = STACK_INVALID;
774 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
775 	}
776 
777 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
778 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
779 
780 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
781 	 *
782 	 * While we don't allow reading STACK_INVALID, it is still possible to
783 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
784 	 * helpers or insns can do partial read of that part without failing,
785 	 * but check_stack_range_initialized, check_stack_read_var_off, and
786 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
787 	 * the slot conservatively. Hence we need to prevent those liveness
788 	 * marking walks.
789 	 *
790 	 * This was not a problem before because STACK_INVALID is only set by
791 	 * default (where the default reg state has its reg->parent as NULL), or
792 	 * in clean_live_states after REG_LIVE_DONE (at which point
793 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
794 	 * verifier state exploration (like we did above). Hence, for our case
795 	 * parentage chain will still be live (i.e. reg->parent may be
796 	 * non-NULL), while earlier reg->parent was NULL, so we need
797 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
798 	 * done later on reads or by mark_dynptr_read as well to unnecessary
799 	 * mark registers in verifier state.
800 	 */
801 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
802 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
803 }
804 
805 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
806 {
807 	struct bpf_func_state *state = func(env, reg);
808 	int spi, ref_obj_id, i;
809 
810 	spi = dynptr_get_spi(env, reg);
811 	if (spi < 0)
812 		return spi;
813 
814 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
815 		invalidate_dynptr(env, state, spi);
816 		return 0;
817 	}
818 
819 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
820 
821 	/* If the dynptr has a ref_obj_id, then we need to invalidate
822 	 * two things:
823 	 *
824 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
825 	 * 2) Any slices derived from this dynptr.
826 	 */
827 
828 	/* Invalidate any slices associated with this dynptr */
829 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
830 
831 	/* Invalidate any dynptr clones */
832 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
833 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
834 			continue;
835 
836 		/* it should always be the case that if the ref obj id
837 		 * matches then the stack slot also belongs to a
838 		 * dynptr
839 		 */
840 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
841 			verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
842 			return -EFAULT;
843 		}
844 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
845 			invalidate_dynptr(env, state, i);
846 	}
847 
848 	return 0;
849 }
850 
851 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
852 			       struct bpf_reg_state *reg);
853 
854 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
855 {
856 	if (!env->allow_ptr_leaks)
857 		__mark_reg_not_init(env, reg);
858 	else
859 		__mark_reg_unknown(env, reg);
860 }
861 
862 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
863 				        struct bpf_func_state *state, int spi)
864 {
865 	struct bpf_func_state *fstate;
866 	struct bpf_reg_state *dreg;
867 	int i, dynptr_id;
868 
869 	/* We always ensure that STACK_DYNPTR is never set partially,
870 	 * hence just checking for slot_type[0] is enough. This is
871 	 * different for STACK_SPILL, where it may be only set for
872 	 * 1 byte, so code has to use is_spilled_reg.
873 	 */
874 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
875 		return 0;
876 
877 	/* Reposition spi to first slot */
878 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
879 		spi = spi + 1;
880 
881 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
882 		verbose(env, "cannot overwrite referenced dynptr\n");
883 		return -EINVAL;
884 	}
885 
886 	mark_stack_slot_scratched(env, spi);
887 	mark_stack_slot_scratched(env, spi - 1);
888 
889 	/* Writing partially to one dynptr stack slot destroys both. */
890 	for (i = 0; i < BPF_REG_SIZE; i++) {
891 		state->stack[spi].slot_type[i] = STACK_INVALID;
892 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
893 	}
894 
895 	dynptr_id = state->stack[spi].spilled_ptr.id;
896 	/* Invalidate any slices associated with this dynptr */
897 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
898 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
899 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
900 			continue;
901 		if (dreg->dynptr_id == dynptr_id)
902 			mark_reg_invalid(env, dreg);
903 	}));
904 
905 	/* Do not release reference state, we are destroying dynptr on stack,
906 	 * not using some helper to release it. Just reset register.
907 	 */
908 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
909 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
910 
911 	/* Same reason as unmark_stack_slots_dynptr above */
912 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
913 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
914 
915 	return 0;
916 }
917 
918 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
919 {
920 	int spi;
921 
922 	if (reg->type == CONST_PTR_TO_DYNPTR)
923 		return false;
924 
925 	spi = dynptr_get_spi(env, reg);
926 
927 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
928 	 * error because this just means the stack state hasn't been updated yet.
929 	 * We will do check_mem_access to check and update stack bounds later.
930 	 */
931 	if (spi < 0 && spi != -ERANGE)
932 		return false;
933 
934 	/* We don't need to check if the stack slots are marked by previous
935 	 * dynptr initializations because we allow overwriting existing unreferenced
936 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
937 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
938 	 * touching are completely destructed before we reinitialize them for a new
939 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
940 	 * instead of delaying it until the end where the user will get "Unreleased
941 	 * reference" error.
942 	 */
943 	return true;
944 }
945 
946 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
947 {
948 	struct bpf_func_state *state = func(env, reg);
949 	int i, spi;
950 
951 	/* This already represents first slot of initialized bpf_dynptr.
952 	 *
953 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
954 	 * check_func_arg_reg_off's logic, so we don't need to check its
955 	 * offset and alignment.
956 	 */
957 	if (reg->type == CONST_PTR_TO_DYNPTR)
958 		return true;
959 
960 	spi = dynptr_get_spi(env, reg);
961 	if (spi < 0)
962 		return false;
963 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
964 		return false;
965 
966 	for (i = 0; i < BPF_REG_SIZE; i++) {
967 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
968 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
969 			return false;
970 	}
971 
972 	return true;
973 }
974 
975 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
976 				    enum bpf_arg_type arg_type)
977 {
978 	struct bpf_func_state *state = func(env, reg);
979 	enum bpf_dynptr_type dynptr_type;
980 	int spi;
981 
982 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
983 	if (arg_type == ARG_PTR_TO_DYNPTR)
984 		return true;
985 
986 	dynptr_type = arg_to_dynptr_type(arg_type);
987 	if (reg->type == CONST_PTR_TO_DYNPTR) {
988 		return reg->dynptr.type == dynptr_type;
989 	} else {
990 		spi = dynptr_get_spi(env, reg);
991 		if (spi < 0)
992 			return false;
993 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
994 	}
995 }
996 
997 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
998 
999 static bool in_rcu_cs(struct bpf_verifier_env *env);
1000 
1001 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta);
1002 
1003 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1004 				 struct bpf_kfunc_call_arg_meta *meta,
1005 				 struct bpf_reg_state *reg, int insn_idx,
1006 				 struct btf *btf, u32 btf_id, int nr_slots)
1007 {
1008 	struct bpf_func_state *state = func(env, reg);
1009 	int spi, i, j, id;
1010 
1011 	spi = iter_get_spi(env, reg, nr_slots);
1012 	if (spi < 0)
1013 		return spi;
1014 
1015 	id = acquire_reference_state(env, insn_idx);
1016 	if (id < 0)
1017 		return id;
1018 
1019 	for (i = 0; i < nr_slots; i++) {
1020 		struct bpf_stack_state *slot = &state->stack[spi - i];
1021 		struct bpf_reg_state *st = &slot->spilled_ptr;
1022 
1023 		__mark_reg_known_zero(st);
1024 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1025 		if (is_kfunc_rcu_protected(meta)) {
1026 			if (in_rcu_cs(env))
1027 				st->type |= MEM_RCU;
1028 			else
1029 				st->type |= PTR_UNTRUSTED;
1030 		}
1031 		st->live |= REG_LIVE_WRITTEN;
1032 		st->ref_obj_id = i == 0 ? id : 0;
1033 		st->iter.btf = btf;
1034 		st->iter.btf_id = btf_id;
1035 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1036 		st->iter.depth = 0;
1037 
1038 		for (j = 0; j < BPF_REG_SIZE; j++)
1039 			slot->slot_type[j] = STACK_ITER;
1040 
1041 		mark_stack_slot_scratched(env, spi - i);
1042 	}
1043 
1044 	return 0;
1045 }
1046 
1047 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1048 				   struct bpf_reg_state *reg, int nr_slots)
1049 {
1050 	struct bpf_func_state *state = func(env, reg);
1051 	int spi, i, j;
1052 
1053 	spi = iter_get_spi(env, reg, nr_slots);
1054 	if (spi < 0)
1055 		return spi;
1056 
1057 	for (i = 0; i < nr_slots; i++) {
1058 		struct bpf_stack_state *slot = &state->stack[spi - i];
1059 		struct bpf_reg_state *st = &slot->spilled_ptr;
1060 
1061 		if (i == 0)
1062 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1063 
1064 		__mark_reg_not_init(env, st);
1065 
1066 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1067 		st->live |= REG_LIVE_WRITTEN;
1068 
1069 		for (j = 0; j < BPF_REG_SIZE; j++)
1070 			slot->slot_type[j] = STACK_INVALID;
1071 
1072 		mark_stack_slot_scratched(env, spi - i);
1073 	}
1074 
1075 	return 0;
1076 }
1077 
1078 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1079 				     struct bpf_reg_state *reg, int nr_slots)
1080 {
1081 	struct bpf_func_state *state = func(env, reg);
1082 	int spi, i, j;
1083 
1084 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1085 	 * will do check_mem_access to check and update stack bounds later, so
1086 	 * return true for that case.
1087 	 */
1088 	spi = iter_get_spi(env, reg, nr_slots);
1089 	if (spi == -ERANGE)
1090 		return true;
1091 	if (spi < 0)
1092 		return false;
1093 
1094 	for (i = 0; i < nr_slots; i++) {
1095 		struct bpf_stack_state *slot = &state->stack[spi - i];
1096 
1097 		for (j = 0; j < BPF_REG_SIZE; j++)
1098 			if (slot->slot_type[j] == STACK_ITER)
1099 				return false;
1100 	}
1101 
1102 	return true;
1103 }
1104 
1105 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1106 				   struct btf *btf, u32 btf_id, int nr_slots)
1107 {
1108 	struct bpf_func_state *state = func(env, reg);
1109 	int spi, i, j;
1110 
1111 	spi = iter_get_spi(env, reg, nr_slots);
1112 	if (spi < 0)
1113 		return -EINVAL;
1114 
1115 	for (i = 0; i < nr_slots; i++) {
1116 		struct bpf_stack_state *slot = &state->stack[spi - i];
1117 		struct bpf_reg_state *st = &slot->spilled_ptr;
1118 
1119 		if (st->type & PTR_UNTRUSTED)
1120 			return -EPROTO;
1121 		/* only main (first) slot has ref_obj_id set */
1122 		if (i == 0 && !st->ref_obj_id)
1123 			return -EINVAL;
1124 		if (i != 0 && st->ref_obj_id)
1125 			return -EINVAL;
1126 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1127 			return -EINVAL;
1128 
1129 		for (j = 0; j < BPF_REG_SIZE; j++)
1130 			if (slot->slot_type[j] != STACK_ITER)
1131 				return -EINVAL;
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 /* Check if given stack slot is "special":
1138  *   - spilled register state (STACK_SPILL);
1139  *   - dynptr state (STACK_DYNPTR);
1140  *   - iter state (STACK_ITER).
1141  */
1142 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1143 {
1144 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1145 
1146 	switch (type) {
1147 	case STACK_SPILL:
1148 	case STACK_DYNPTR:
1149 	case STACK_ITER:
1150 		return true;
1151 	case STACK_INVALID:
1152 	case STACK_MISC:
1153 	case STACK_ZERO:
1154 		return false;
1155 	default:
1156 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1157 		return true;
1158 	}
1159 }
1160 
1161 /* The reg state of a pointer or a bounded scalar was saved when
1162  * it was spilled to the stack.
1163  */
1164 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1165 {
1166 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1167 }
1168 
1169 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1170 {
1171 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1172 	       stack->spilled_ptr.type == SCALAR_VALUE;
1173 }
1174 
1175 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack)
1176 {
1177 	return stack->slot_type[0] == STACK_SPILL &&
1178 	       stack->spilled_ptr.type == SCALAR_VALUE;
1179 }
1180 
1181 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which
1182  * case they are equivalent, or it's STACK_ZERO, in which case we preserve
1183  * more precise STACK_ZERO.
1184  * Note, in uprivileged mode leaving STACK_INVALID is wrong, so we take
1185  * env->allow_ptr_leaks into account and force STACK_MISC, if necessary.
1186  */
1187 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype)
1188 {
1189 	if (*stype == STACK_ZERO)
1190 		return;
1191 	if (env->allow_ptr_leaks && *stype == STACK_INVALID)
1192 		return;
1193 	*stype = STACK_MISC;
1194 }
1195 
1196 static void scrub_spilled_slot(u8 *stype)
1197 {
1198 	if (*stype != STACK_INVALID)
1199 		*stype = STACK_MISC;
1200 }
1201 
1202 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1203  * small to hold src. This is different from krealloc since we don't want to preserve
1204  * the contents of dst.
1205  *
1206  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1207  * not be allocated.
1208  */
1209 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1210 {
1211 	size_t alloc_bytes;
1212 	void *orig = dst;
1213 	size_t bytes;
1214 
1215 	if (ZERO_OR_NULL_PTR(src))
1216 		goto out;
1217 
1218 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1219 		return NULL;
1220 
1221 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1222 	dst = krealloc(orig, alloc_bytes, flags);
1223 	if (!dst) {
1224 		kfree(orig);
1225 		return NULL;
1226 	}
1227 
1228 	memcpy(dst, src, bytes);
1229 out:
1230 	return dst ? dst : ZERO_SIZE_PTR;
1231 }
1232 
1233 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1234  * small to hold new_n items. new items are zeroed out if the array grows.
1235  *
1236  * Contrary to krealloc_array, does not free arr if new_n is zero.
1237  */
1238 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1239 {
1240 	size_t alloc_size;
1241 	void *new_arr;
1242 
1243 	if (!new_n || old_n == new_n)
1244 		goto out;
1245 
1246 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1247 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1248 	if (!new_arr) {
1249 		kfree(arr);
1250 		return NULL;
1251 	}
1252 	arr = new_arr;
1253 
1254 	if (new_n > old_n)
1255 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1256 
1257 out:
1258 	return arr ? arr : ZERO_SIZE_PTR;
1259 }
1260 
1261 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1262 {
1263 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1264 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1265 	if (!dst->refs)
1266 		return -ENOMEM;
1267 
1268 	dst->acquired_refs = src->acquired_refs;
1269 	return 0;
1270 }
1271 
1272 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1273 {
1274 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1275 
1276 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1277 				GFP_KERNEL);
1278 	if (!dst->stack)
1279 		return -ENOMEM;
1280 
1281 	dst->allocated_stack = src->allocated_stack;
1282 	return 0;
1283 }
1284 
1285 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1286 {
1287 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1288 				    sizeof(struct bpf_reference_state));
1289 	if (!state->refs)
1290 		return -ENOMEM;
1291 
1292 	state->acquired_refs = n;
1293 	return 0;
1294 }
1295 
1296 /* Possibly update state->allocated_stack to be at least size bytes. Also
1297  * possibly update the function's high-water mark in its bpf_subprog_info.
1298  */
1299 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size)
1300 {
1301 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n;
1302 
1303 	/* The stack size is always a multiple of BPF_REG_SIZE. */
1304 	size = round_up(size, BPF_REG_SIZE);
1305 	n = size / BPF_REG_SIZE;
1306 
1307 	if (old_n >= n)
1308 		return 0;
1309 
1310 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1311 	if (!state->stack)
1312 		return -ENOMEM;
1313 
1314 	state->allocated_stack = size;
1315 
1316 	/* update known max for given subprogram */
1317 	if (env->subprog_info[state->subprogno].stack_depth < size)
1318 		env->subprog_info[state->subprogno].stack_depth = size;
1319 
1320 	return 0;
1321 }
1322 
1323 /* Acquire a pointer id from the env and update the state->refs to include
1324  * this new pointer reference.
1325  * On success, returns a valid pointer id to associate with the register
1326  * On failure, returns a negative errno.
1327  */
1328 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1329 {
1330 	struct bpf_func_state *state = cur_func(env);
1331 	int new_ofs = state->acquired_refs;
1332 	int id, err;
1333 
1334 	err = resize_reference_state(state, state->acquired_refs + 1);
1335 	if (err)
1336 		return err;
1337 	id = ++env->id_gen;
1338 	state->refs[new_ofs].id = id;
1339 	state->refs[new_ofs].insn_idx = insn_idx;
1340 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1341 
1342 	return id;
1343 }
1344 
1345 /* release function corresponding to acquire_reference_state(). Idempotent. */
1346 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1347 {
1348 	int i, last_idx;
1349 
1350 	last_idx = state->acquired_refs - 1;
1351 	for (i = 0; i < state->acquired_refs; i++) {
1352 		if (state->refs[i].id == ptr_id) {
1353 			/* Cannot release caller references in callbacks */
1354 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1355 				return -EINVAL;
1356 			if (last_idx && i != last_idx)
1357 				memcpy(&state->refs[i], &state->refs[last_idx],
1358 				       sizeof(*state->refs));
1359 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1360 			state->acquired_refs--;
1361 			return 0;
1362 		}
1363 	}
1364 	return -EINVAL;
1365 }
1366 
1367 static void free_func_state(struct bpf_func_state *state)
1368 {
1369 	if (!state)
1370 		return;
1371 	kfree(state->refs);
1372 	kfree(state->stack);
1373 	kfree(state);
1374 }
1375 
1376 static void clear_jmp_history(struct bpf_verifier_state *state)
1377 {
1378 	kfree(state->jmp_history);
1379 	state->jmp_history = NULL;
1380 	state->jmp_history_cnt = 0;
1381 }
1382 
1383 static void free_verifier_state(struct bpf_verifier_state *state,
1384 				bool free_self)
1385 {
1386 	int i;
1387 
1388 	for (i = 0; i <= state->curframe; i++) {
1389 		free_func_state(state->frame[i]);
1390 		state->frame[i] = NULL;
1391 	}
1392 	clear_jmp_history(state);
1393 	if (free_self)
1394 		kfree(state);
1395 }
1396 
1397 /* copy verifier state from src to dst growing dst stack space
1398  * when necessary to accommodate larger src stack
1399  */
1400 static int copy_func_state(struct bpf_func_state *dst,
1401 			   const struct bpf_func_state *src)
1402 {
1403 	int err;
1404 
1405 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1406 	err = copy_reference_state(dst, src);
1407 	if (err)
1408 		return err;
1409 	return copy_stack_state(dst, src);
1410 }
1411 
1412 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1413 			       const struct bpf_verifier_state *src)
1414 {
1415 	struct bpf_func_state *dst;
1416 	int i, err;
1417 
1418 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1419 					  src->jmp_history_cnt, sizeof(*dst_state->jmp_history),
1420 					  GFP_USER);
1421 	if (!dst_state->jmp_history)
1422 		return -ENOMEM;
1423 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1424 
1425 	/* if dst has more stack frames then src frame, free them, this is also
1426 	 * necessary in case of exceptional exits using bpf_throw.
1427 	 */
1428 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1429 		free_func_state(dst_state->frame[i]);
1430 		dst_state->frame[i] = NULL;
1431 	}
1432 	dst_state->speculative = src->speculative;
1433 	dst_state->active_rcu_lock = src->active_rcu_lock;
1434 	dst_state->active_preempt_lock = src->active_preempt_lock;
1435 	dst_state->in_sleepable = src->in_sleepable;
1436 	dst_state->curframe = src->curframe;
1437 	dst_state->active_lock.ptr = src->active_lock.ptr;
1438 	dst_state->active_lock.id = src->active_lock.id;
1439 	dst_state->branches = src->branches;
1440 	dst_state->parent = src->parent;
1441 	dst_state->first_insn_idx = src->first_insn_idx;
1442 	dst_state->last_insn_idx = src->last_insn_idx;
1443 	dst_state->dfs_depth = src->dfs_depth;
1444 	dst_state->callback_unroll_depth = src->callback_unroll_depth;
1445 	dst_state->used_as_loop_entry = src->used_as_loop_entry;
1446 	dst_state->may_goto_depth = src->may_goto_depth;
1447 	for (i = 0; i <= src->curframe; i++) {
1448 		dst = dst_state->frame[i];
1449 		if (!dst) {
1450 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1451 			if (!dst)
1452 				return -ENOMEM;
1453 			dst_state->frame[i] = dst;
1454 		}
1455 		err = copy_func_state(dst, src->frame[i]);
1456 		if (err)
1457 			return err;
1458 	}
1459 	return 0;
1460 }
1461 
1462 static u32 state_htab_size(struct bpf_verifier_env *env)
1463 {
1464 	return env->prog->len;
1465 }
1466 
1467 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx)
1468 {
1469 	struct bpf_verifier_state *cur = env->cur_state;
1470 	struct bpf_func_state *state = cur->frame[cur->curframe];
1471 
1472 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1473 }
1474 
1475 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1476 {
1477 	int fr;
1478 
1479 	if (a->curframe != b->curframe)
1480 		return false;
1481 
1482 	for (fr = a->curframe; fr >= 0; fr--)
1483 		if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1484 			return false;
1485 
1486 	return true;
1487 }
1488 
1489 /* Open coded iterators allow back-edges in the state graph in order to
1490  * check unbounded loops that iterators.
1491  *
1492  * In is_state_visited() it is necessary to know if explored states are
1493  * part of some loops in order to decide whether non-exact states
1494  * comparison could be used:
1495  * - non-exact states comparison establishes sub-state relation and uses
1496  *   read and precision marks to do so, these marks are propagated from
1497  *   children states and thus are not guaranteed to be final in a loop;
1498  * - exact states comparison just checks if current and explored states
1499  *   are identical (and thus form a back-edge).
1500  *
1501  * Paper "A New Algorithm for Identifying Loops in Decompilation"
1502  * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient
1503  * algorithm for loop structure detection and gives an overview of
1504  * relevant terminology. It also has helpful illustrations.
1505  *
1506  * [1] https://api.semanticscholar.org/CorpusID:15784067
1507  *
1508  * We use a similar algorithm but because loop nested structure is
1509  * irrelevant for verifier ours is significantly simpler and resembles
1510  * strongly connected components algorithm from Sedgewick's textbook.
1511  *
1512  * Define topmost loop entry as a first node of the loop traversed in a
1513  * depth first search starting from initial state. The goal of the loop
1514  * tracking algorithm is to associate topmost loop entries with states
1515  * derived from these entries.
1516  *
1517  * For each step in the DFS states traversal algorithm needs to identify
1518  * the following situations:
1519  *
1520  *          initial                     initial                   initial
1521  *            |                           |                         |
1522  *            V                           V                         V
1523  *           ...                         ...           .---------> hdr
1524  *            |                           |            |            |
1525  *            V                           V            |            V
1526  *           cur                     .-> succ          |    .------...
1527  *            |                      |    |            |    |       |
1528  *            V                      |    V            |    V       V
1529  *           succ                    '-- cur           |   ...     ...
1530  *                                                     |    |       |
1531  *                                                     |    V       V
1532  *                                                     |   succ <- cur
1533  *                                                     |    |
1534  *                                                     |    V
1535  *                                                     |   ...
1536  *                                                     |    |
1537  *                                                     '----'
1538  *
1539  *  (A) successor state of cur   (B) successor state of cur or it's entry
1540  *      not yet traversed            are in current DFS path, thus cur and succ
1541  *                                   are members of the same outermost loop
1542  *
1543  *                      initial                  initial
1544  *                        |                        |
1545  *                        V                        V
1546  *                       ...                      ...
1547  *                        |                        |
1548  *                        V                        V
1549  *                .------...               .------...
1550  *                |       |                |       |
1551  *                V       V                V       V
1552  *           .-> hdr     ...              ...     ...
1553  *           |    |       |                |       |
1554  *           |    V       V                V       V
1555  *           |   succ <- cur              succ <- cur
1556  *           |    |                        |
1557  *           |    V                        V
1558  *           |   ...                      ...
1559  *           |    |                        |
1560  *           '----'                       exit
1561  *
1562  * (C) successor state of cur is a part of some loop but this loop
1563  *     does not include cur or successor state is not in a loop at all.
1564  *
1565  * Algorithm could be described as the following python code:
1566  *
1567  *     traversed = set()   # Set of traversed nodes
1568  *     entries = {}        # Mapping from node to loop entry
1569  *     depths = {}         # Depth level assigned to graph node
1570  *     path = set()        # Current DFS path
1571  *
1572  *     # Find outermost loop entry known for n
1573  *     def get_loop_entry(n):
1574  *         h = entries.get(n, None)
1575  *         while h in entries and entries[h] != h:
1576  *             h = entries[h]
1577  *         return h
1578  *
1579  *     # Update n's loop entry if h's outermost entry comes
1580  *     # before n's outermost entry in current DFS path.
1581  *     def update_loop_entry(n, h):
1582  *         n1 = get_loop_entry(n) or n
1583  *         h1 = get_loop_entry(h) or h
1584  *         if h1 in path and depths[h1] <= depths[n1]:
1585  *             entries[n] = h1
1586  *
1587  *     def dfs(n, depth):
1588  *         traversed.add(n)
1589  *         path.add(n)
1590  *         depths[n] = depth
1591  *         for succ in G.successors(n):
1592  *             if succ not in traversed:
1593  *                 # Case A: explore succ and update cur's loop entry
1594  *                 #         only if succ's entry is in current DFS path.
1595  *                 dfs(succ, depth + 1)
1596  *                 h = get_loop_entry(succ)
1597  *                 update_loop_entry(n, h)
1598  *             else:
1599  *                 # Case B or C depending on `h1 in path` check in update_loop_entry().
1600  *                 update_loop_entry(n, succ)
1601  *         path.remove(n)
1602  *
1603  * To adapt this algorithm for use with verifier:
1604  * - use st->branch == 0 as a signal that DFS of succ had been finished
1605  *   and cur's loop entry has to be updated (case A), handle this in
1606  *   update_branch_counts();
1607  * - use st->branch > 0 as a signal that st is in the current DFS path;
1608  * - handle cases B and C in is_state_visited();
1609  * - update topmost loop entry for intermediate states in get_loop_entry().
1610  */
1611 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st)
1612 {
1613 	struct bpf_verifier_state *topmost = st->loop_entry, *old;
1614 
1615 	while (topmost && topmost->loop_entry && topmost != topmost->loop_entry)
1616 		topmost = topmost->loop_entry;
1617 	/* Update loop entries for intermediate states to avoid this
1618 	 * traversal in future get_loop_entry() calls.
1619 	 */
1620 	while (st && st->loop_entry != topmost) {
1621 		old = st->loop_entry;
1622 		st->loop_entry = topmost;
1623 		st = old;
1624 	}
1625 	return topmost;
1626 }
1627 
1628 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr)
1629 {
1630 	struct bpf_verifier_state *cur1, *hdr1;
1631 
1632 	cur1 = get_loop_entry(cur) ?: cur;
1633 	hdr1 = get_loop_entry(hdr) ?: hdr;
1634 	/* The head1->branches check decides between cases B and C in
1635 	 * comment for get_loop_entry(). If hdr1->branches == 0 then
1636 	 * head's topmost loop entry is not in current DFS path,
1637 	 * hence 'cur' and 'hdr' are not in the same loop and there is
1638 	 * no need to update cur->loop_entry.
1639 	 */
1640 	if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) {
1641 		cur->loop_entry = hdr;
1642 		hdr->used_as_loop_entry = true;
1643 	}
1644 }
1645 
1646 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1647 {
1648 	while (st) {
1649 		u32 br = --st->branches;
1650 
1651 		/* br == 0 signals that DFS exploration for 'st' is finished,
1652 		 * thus it is necessary to update parent's loop entry if it
1653 		 * turned out that st is a part of some loop.
1654 		 * This is a part of 'case A' in get_loop_entry() comment.
1655 		 */
1656 		if (br == 0 && st->parent && st->loop_entry)
1657 			update_loop_entry(st->parent, st->loop_entry);
1658 
1659 		/* WARN_ON(br > 1) technically makes sense here,
1660 		 * but see comment in push_stack(), hence:
1661 		 */
1662 		WARN_ONCE((int)br < 0,
1663 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1664 			  br);
1665 		if (br)
1666 			break;
1667 		st = st->parent;
1668 	}
1669 }
1670 
1671 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1672 		     int *insn_idx, bool pop_log)
1673 {
1674 	struct bpf_verifier_state *cur = env->cur_state;
1675 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1676 	int err;
1677 
1678 	if (env->head == NULL)
1679 		return -ENOENT;
1680 
1681 	if (cur) {
1682 		err = copy_verifier_state(cur, &head->st);
1683 		if (err)
1684 			return err;
1685 	}
1686 	if (pop_log)
1687 		bpf_vlog_reset(&env->log, head->log_pos);
1688 	if (insn_idx)
1689 		*insn_idx = head->insn_idx;
1690 	if (prev_insn_idx)
1691 		*prev_insn_idx = head->prev_insn_idx;
1692 	elem = head->next;
1693 	free_verifier_state(&head->st, false);
1694 	kfree(head);
1695 	env->head = elem;
1696 	env->stack_size--;
1697 	return 0;
1698 }
1699 
1700 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1701 					     int insn_idx, int prev_insn_idx,
1702 					     bool speculative)
1703 {
1704 	struct bpf_verifier_state *cur = env->cur_state;
1705 	struct bpf_verifier_stack_elem *elem;
1706 	int err;
1707 
1708 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1709 	if (!elem)
1710 		goto err;
1711 
1712 	elem->insn_idx = insn_idx;
1713 	elem->prev_insn_idx = prev_insn_idx;
1714 	elem->next = env->head;
1715 	elem->log_pos = env->log.end_pos;
1716 	env->head = elem;
1717 	env->stack_size++;
1718 	err = copy_verifier_state(&elem->st, cur);
1719 	if (err)
1720 		goto err;
1721 	elem->st.speculative |= speculative;
1722 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1723 		verbose(env, "The sequence of %d jumps is too complex.\n",
1724 			env->stack_size);
1725 		goto err;
1726 	}
1727 	if (elem->st.parent) {
1728 		++elem->st.parent->branches;
1729 		/* WARN_ON(branches > 2) technically makes sense here,
1730 		 * but
1731 		 * 1. speculative states will bump 'branches' for non-branch
1732 		 * instructions
1733 		 * 2. is_state_visited() heuristics may decide not to create
1734 		 * a new state for a sequence of branches and all such current
1735 		 * and cloned states will be pointing to a single parent state
1736 		 * which might have large 'branches' count.
1737 		 */
1738 	}
1739 	return &elem->st;
1740 err:
1741 	free_verifier_state(env->cur_state, true);
1742 	env->cur_state = NULL;
1743 	/* pop all elements and return */
1744 	while (!pop_stack(env, NULL, NULL, false));
1745 	return NULL;
1746 }
1747 
1748 #define CALLER_SAVED_REGS 6
1749 static const int caller_saved[CALLER_SAVED_REGS] = {
1750 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1751 };
1752 
1753 /* This helper doesn't clear reg->id */
1754 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1755 {
1756 	reg->var_off = tnum_const(imm);
1757 	reg->smin_value = (s64)imm;
1758 	reg->smax_value = (s64)imm;
1759 	reg->umin_value = imm;
1760 	reg->umax_value = imm;
1761 
1762 	reg->s32_min_value = (s32)imm;
1763 	reg->s32_max_value = (s32)imm;
1764 	reg->u32_min_value = (u32)imm;
1765 	reg->u32_max_value = (u32)imm;
1766 }
1767 
1768 /* Mark the unknown part of a register (variable offset or scalar value) as
1769  * known to have the value @imm.
1770  */
1771 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1772 {
1773 	/* Clear off and union(map_ptr, range) */
1774 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1775 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1776 	reg->id = 0;
1777 	reg->ref_obj_id = 0;
1778 	___mark_reg_known(reg, imm);
1779 }
1780 
1781 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1782 {
1783 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1784 	reg->s32_min_value = (s32)imm;
1785 	reg->s32_max_value = (s32)imm;
1786 	reg->u32_min_value = (u32)imm;
1787 	reg->u32_max_value = (u32)imm;
1788 }
1789 
1790 /* Mark the 'variable offset' part of a register as zero.  This should be
1791  * used only on registers holding a pointer type.
1792  */
1793 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1794 {
1795 	__mark_reg_known(reg, 0);
1796 }
1797 
1798 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1799 {
1800 	__mark_reg_known(reg, 0);
1801 	reg->type = SCALAR_VALUE;
1802 	/* all scalars are assumed imprecise initially (unless unprivileged,
1803 	 * in which case everything is forced to be precise)
1804 	 */
1805 	reg->precise = !env->bpf_capable;
1806 }
1807 
1808 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1809 				struct bpf_reg_state *regs, u32 regno)
1810 {
1811 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1812 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1813 		/* Something bad happened, let's kill all regs */
1814 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1815 			__mark_reg_not_init(env, regs + regno);
1816 		return;
1817 	}
1818 	__mark_reg_known_zero(regs + regno);
1819 }
1820 
1821 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
1822 			      bool first_slot, int dynptr_id)
1823 {
1824 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1825 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1826 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1827 	 */
1828 	__mark_reg_known_zero(reg);
1829 	reg->type = CONST_PTR_TO_DYNPTR;
1830 	/* Give each dynptr a unique id to uniquely associate slices to it. */
1831 	reg->id = dynptr_id;
1832 	reg->dynptr.type = type;
1833 	reg->dynptr.first_slot = first_slot;
1834 }
1835 
1836 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1837 {
1838 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1839 		const struct bpf_map *map = reg->map_ptr;
1840 
1841 		if (map->inner_map_meta) {
1842 			reg->type = CONST_PTR_TO_MAP;
1843 			reg->map_ptr = map->inner_map_meta;
1844 			/* transfer reg's id which is unique for every map_lookup_elem
1845 			 * as UID of the inner map.
1846 			 */
1847 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1848 				reg->map_uid = reg->id;
1849 			if (btf_record_has_field(map->inner_map_meta->record, BPF_WORKQUEUE))
1850 				reg->map_uid = reg->id;
1851 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1852 			reg->type = PTR_TO_XDP_SOCK;
1853 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1854 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1855 			reg->type = PTR_TO_SOCKET;
1856 		} else {
1857 			reg->type = PTR_TO_MAP_VALUE;
1858 		}
1859 		return;
1860 	}
1861 
1862 	reg->type &= ~PTR_MAYBE_NULL;
1863 }
1864 
1865 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
1866 				struct btf_field_graph_root *ds_head)
1867 {
1868 	__mark_reg_known_zero(&regs[regno]);
1869 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
1870 	regs[regno].btf = ds_head->btf;
1871 	regs[regno].btf_id = ds_head->value_btf_id;
1872 	regs[regno].off = ds_head->node_offset;
1873 }
1874 
1875 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1876 {
1877 	return type_is_pkt_pointer(reg->type);
1878 }
1879 
1880 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1881 {
1882 	return reg_is_pkt_pointer(reg) ||
1883 	       reg->type == PTR_TO_PACKET_END;
1884 }
1885 
1886 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
1887 {
1888 	return base_type(reg->type) == PTR_TO_MEM &&
1889 		(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
1890 }
1891 
1892 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1893 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1894 				    enum bpf_reg_type which)
1895 {
1896 	/* The register can already have a range from prior markings.
1897 	 * This is fine as long as it hasn't been advanced from its
1898 	 * origin.
1899 	 */
1900 	return reg->type == which &&
1901 	       reg->id == 0 &&
1902 	       reg->off == 0 &&
1903 	       tnum_equals_const(reg->var_off, 0);
1904 }
1905 
1906 /* Reset the min/max bounds of a register */
1907 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1908 {
1909 	reg->smin_value = S64_MIN;
1910 	reg->smax_value = S64_MAX;
1911 	reg->umin_value = 0;
1912 	reg->umax_value = U64_MAX;
1913 
1914 	reg->s32_min_value = S32_MIN;
1915 	reg->s32_max_value = S32_MAX;
1916 	reg->u32_min_value = 0;
1917 	reg->u32_max_value = U32_MAX;
1918 }
1919 
1920 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1921 {
1922 	reg->smin_value = S64_MIN;
1923 	reg->smax_value = S64_MAX;
1924 	reg->umin_value = 0;
1925 	reg->umax_value = U64_MAX;
1926 }
1927 
1928 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1929 {
1930 	reg->s32_min_value = S32_MIN;
1931 	reg->s32_max_value = S32_MAX;
1932 	reg->u32_min_value = 0;
1933 	reg->u32_max_value = U32_MAX;
1934 }
1935 
1936 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1937 {
1938 	struct tnum var32_off = tnum_subreg(reg->var_off);
1939 
1940 	/* min signed is max(sign bit) | min(other bits) */
1941 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1942 			var32_off.value | (var32_off.mask & S32_MIN));
1943 	/* max signed is min(sign bit) | max(other bits) */
1944 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1945 			var32_off.value | (var32_off.mask & S32_MAX));
1946 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1947 	reg->u32_max_value = min(reg->u32_max_value,
1948 				 (u32)(var32_off.value | var32_off.mask));
1949 }
1950 
1951 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1952 {
1953 	/* min signed is max(sign bit) | min(other bits) */
1954 	reg->smin_value = max_t(s64, reg->smin_value,
1955 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1956 	/* max signed is min(sign bit) | max(other bits) */
1957 	reg->smax_value = min_t(s64, reg->smax_value,
1958 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1959 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1960 	reg->umax_value = min(reg->umax_value,
1961 			      reg->var_off.value | reg->var_off.mask);
1962 }
1963 
1964 static void __update_reg_bounds(struct bpf_reg_state *reg)
1965 {
1966 	__update_reg32_bounds(reg);
1967 	__update_reg64_bounds(reg);
1968 }
1969 
1970 /* Uses signed min/max values to inform unsigned, and vice-versa */
1971 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1972 {
1973 	/* If upper 32 bits of u64/s64 range don't change, we can use lower 32
1974 	 * bits to improve our u32/s32 boundaries.
1975 	 *
1976 	 * E.g., the case where we have upper 32 bits as zero ([10, 20] in
1977 	 * u64) is pretty trivial, it's obvious that in u32 we'll also have
1978 	 * [10, 20] range. But this property holds for any 64-bit range as
1979 	 * long as upper 32 bits in that entire range of values stay the same.
1980 	 *
1981 	 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311]
1982 	 * in decimal) has the same upper 32 bits throughout all the values in
1983 	 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15])
1984 	 * range.
1985 	 *
1986 	 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32,
1987 	 * following the rules outlined below about u64/s64 correspondence
1988 	 * (which equally applies to u32 vs s32 correspondence). In general it
1989 	 * depends on actual hexadecimal values of 32-bit range. They can form
1990 	 * only valid u32, or only valid s32 ranges in some cases.
1991 	 *
1992 	 * So we use all these insights to derive bounds for subregisters here.
1993 	 */
1994 	if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) {
1995 		/* u64 to u32 casting preserves validity of low 32 bits as
1996 		 * a range, if upper 32 bits are the same
1997 		 */
1998 		reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value);
1999 		reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value);
2000 
2001 		if ((s32)reg->umin_value <= (s32)reg->umax_value) {
2002 			reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2003 			reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2004 		}
2005 	}
2006 	if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) {
2007 		/* low 32 bits should form a proper u32 range */
2008 		if ((u32)reg->smin_value <= (u32)reg->smax_value) {
2009 			reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value);
2010 			reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value);
2011 		}
2012 		/* low 32 bits should form a proper s32 range */
2013 		if ((s32)reg->smin_value <= (s32)reg->smax_value) {
2014 			reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2015 			reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2016 		}
2017 	}
2018 	/* Special case where upper bits form a small sequence of two
2019 	 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to
2020 	 * 0x00000000 is also valid), while lower bits form a proper s32 range
2021 	 * going from negative numbers to positive numbers. E.g., let's say we
2022 	 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]).
2023 	 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff,
2024 	 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits,
2025 	 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]).
2026 	 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in
2027 	 * upper 32 bits. As a random example, s64 range
2028 	 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range
2029 	 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister.
2030 	 */
2031 	if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) &&
2032 	    (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) {
2033 		reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2034 		reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2035 	}
2036 	if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) &&
2037 	    (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) {
2038 		reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2039 		reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2040 	}
2041 	/* if u32 range forms a valid s32 range (due to matching sign bit),
2042 	 * try to learn from that
2043 	 */
2044 	if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) {
2045 		reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value);
2046 		reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value);
2047 	}
2048 	/* If we cannot cross the sign boundary, then signed and unsigned bounds
2049 	 * are the same, so combine.  This works even in the negative case, e.g.
2050 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2051 	 */
2052 	if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2053 		reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value);
2054 		reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value);
2055 	}
2056 }
2057 
2058 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2059 {
2060 	/* If u64 range forms a valid s64 range (due to matching sign bit),
2061 	 * try to learn from that. Let's do a bit of ASCII art to see when
2062 	 * this is happening. Let's take u64 range first:
2063 	 *
2064 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2065 	 * |-------------------------------|--------------------------------|
2066 	 *
2067 	 * Valid u64 range is formed when umin and umax are anywhere in the
2068 	 * range [0, U64_MAX], and umin <= umax. u64 case is simple and
2069 	 * straightforward. Let's see how s64 range maps onto the same range
2070 	 * of values, annotated below the line for comparison:
2071 	 *
2072 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2073 	 * |-------------------------------|--------------------------------|
2074 	 * 0                        S64_MAX S64_MIN                        -1
2075 	 *
2076 	 * So s64 values basically start in the middle and they are logically
2077 	 * contiguous to the right of it, wrapping around from -1 to 0, and
2078 	 * then finishing as S64_MAX (0x7fffffffffffffff) right before
2079 	 * S64_MIN. We can try drawing the continuity of u64 vs s64 values
2080 	 * more visually as mapped to sign-agnostic range of hex values.
2081 	 *
2082 	 *  u64 start                                               u64 end
2083 	 *  _______________________________________________________________
2084 	 * /                                                               \
2085 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2086 	 * |-------------------------------|--------------------------------|
2087 	 * 0                        S64_MAX S64_MIN                        -1
2088 	 *                                / \
2089 	 * >------------------------------   ------------------------------->
2090 	 * s64 continues...        s64 end   s64 start          s64 "midpoint"
2091 	 *
2092 	 * What this means is that, in general, we can't always derive
2093 	 * something new about u64 from any random s64 range, and vice versa.
2094 	 *
2095 	 * But we can do that in two particular cases. One is when entire
2096 	 * u64/s64 range is *entirely* contained within left half of the above
2097 	 * diagram or when it is *entirely* contained in the right half. I.e.:
2098 	 *
2099 	 * |-------------------------------|--------------------------------|
2100 	 *     ^                   ^            ^                 ^
2101 	 *     A                   B            C                 D
2102 	 *
2103 	 * [A, B] and [C, D] are contained entirely in their respective halves
2104 	 * and form valid contiguous ranges as both u64 and s64 values. [A, B]
2105 	 * will be non-negative both as u64 and s64 (and in fact it will be
2106 	 * identical ranges no matter the signedness). [C, D] treated as s64
2107 	 * will be a range of negative values, while in u64 it will be
2108 	 * non-negative range of values larger than 0x8000000000000000.
2109 	 *
2110 	 * Now, any other range here can't be represented in both u64 and s64
2111 	 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid
2112 	 * contiguous u64 ranges, but they are discontinuous in s64. [B, C]
2113 	 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX],
2114 	 * for example. Similarly, valid s64 range [D, A] (going from negative
2115 	 * to positive values), would be two separate [D, U64_MAX] and [0, A]
2116 	 * ranges as u64. Currently reg_state can't represent two segments per
2117 	 * numeric domain, so in such situations we can only derive maximal
2118 	 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64).
2119 	 *
2120 	 * So we use these facts to derive umin/umax from smin/smax and vice
2121 	 * versa only if they stay within the same "half". This is equivalent
2122 	 * to checking sign bit: lower half will have sign bit as zero, upper
2123 	 * half have sign bit 1. Below in code we simplify this by just
2124 	 * casting umin/umax as smin/smax and checking if they form valid
2125 	 * range, and vice versa. Those are equivalent checks.
2126 	 */
2127 	if ((s64)reg->umin_value <= (s64)reg->umax_value) {
2128 		reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value);
2129 		reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value);
2130 	}
2131 	/* If we cannot cross the sign boundary, then signed and unsigned bounds
2132 	 * are the same, so combine.  This works even in the negative case, e.g.
2133 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2134 	 */
2135 	if ((u64)reg->smin_value <= (u64)reg->smax_value) {
2136 		reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value);
2137 		reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value);
2138 	}
2139 }
2140 
2141 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg)
2142 {
2143 	/* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit
2144 	 * values on both sides of 64-bit range in hope to have tighter range.
2145 	 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from
2146 	 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff].
2147 	 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound
2148 	 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of
2149 	 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a
2150 	 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff].
2151 	 * We just need to make sure that derived bounds we are intersecting
2152 	 * with are well-formed ranges in respective s64 or u64 domain, just
2153 	 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments.
2154 	 */
2155 	__u64 new_umin, new_umax;
2156 	__s64 new_smin, new_smax;
2157 
2158 	/* u32 -> u64 tightening, it's always well-formed */
2159 	new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value;
2160 	new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value;
2161 	reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2162 	reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2163 	/* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */
2164 	new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value;
2165 	new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value;
2166 	reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2167 	reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2168 
2169 	/* if s32 can be treated as valid u32 range, we can use it as well */
2170 	if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2171 		/* s32 -> u64 tightening */
2172 		new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
2173 		new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
2174 		reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2175 		reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2176 		/* s32 -> s64 tightening */
2177 		new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
2178 		new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
2179 		reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2180 		reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2181 	}
2182 
2183 	/* Here we would like to handle a special case after sign extending load,
2184 	 * when upper bits for a 64-bit range are all 1s or all 0s.
2185 	 *
2186 	 * Upper bits are all 1s when register is in a range:
2187 	 *   [0xffff_ffff_0000_0000, 0xffff_ffff_ffff_ffff]
2188 	 * Upper bits are all 0s when register is in a range:
2189 	 *   [0x0000_0000_0000_0000, 0x0000_0000_ffff_ffff]
2190 	 * Together this forms are continuous range:
2191 	 *   [0xffff_ffff_0000_0000, 0x0000_0000_ffff_ffff]
2192 	 *
2193 	 * Now, suppose that register range is in fact tighter:
2194 	 *   [0xffff_ffff_8000_0000, 0x0000_0000_ffff_ffff] (R)
2195 	 * Also suppose that it's 32-bit range is positive,
2196 	 * meaning that lower 32-bits of the full 64-bit register
2197 	 * are in the range:
2198 	 *   [0x0000_0000, 0x7fff_ffff] (W)
2199 	 *
2200 	 * If this happens, then any value in a range:
2201 	 *   [0xffff_ffff_0000_0000, 0xffff_ffff_7fff_ffff]
2202 	 * is smaller than a lowest bound of the range (R):
2203 	 *   0xffff_ffff_8000_0000
2204 	 * which means that upper bits of the full 64-bit register
2205 	 * can't be all 1s, when lower bits are in range (W).
2206 	 *
2207 	 * Note that:
2208 	 *  - 0xffff_ffff_8000_0000 == (s64)S32_MIN
2209 	 *  - 0x0000_0000_7fff_ffff == (s64)S32_MAX
2210 	 * These relations are used in the conditions below.
2211 	 */
2212 	if (reg->s32_min_value >= 0 && reg->smin_value >= S32_MIN && reg->smax_value <= S32_MAX) {
2213 		reg->smin_value = reg->s32_min_value;
2214 		reg->smax_value = reg->s32_max_value;
2215 		reg->umin_value = reg->s32_min_value;
2216 		reg->umax_value = reg->s32_max_value;
2217 		reg->var_off = tnum_intersect(reg->var_off,
2218 					      tnum_range(reg->smin_value, reg->smax_value));
2219 	}
2220 }
2221 
2222 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2223 {
2224 	__reg32_deduce_bounds(reg);
2225 	__reg64_deduce_bounds(reg);
2226 	__reg_deduce_mixed_bounds(reg);
2227 }
2228 
2229 /* Attempts to improve var_off based on unsigned min/max information */
2230 static void __reg_bound_offset(struct bpf_reg_state *reg)
2231 {
2232 	struct tnum var64_off = tnum_intersect(reg->var_off,
2233 					       tnum_range(reg->umin_value,
2234 							  reg->umax_value));
2235 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2236 					       tnum_range(reg->u32_min_value,
2237 							  reg->u32_max_value));
2238 
2239 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2240 }
2241 
2242 static void reg_bounds_sync(struct bpf_reg_state *reg)
2243 {
2244 	/* We might have learned new bounds from the var_off. */
2245 	__update_reg_bounds(reg);
2246 	/* We might have learned something about the sign bit. */
2247 	__reg_deduce_bounds(reg);
2248 	__reg_deduce_bounds(reg);
2249 	/* We might have learned some bits from the bounds. */
2250 	__reg_bound_offset(reg);
2251 	/* Intersecting with the old var_off might have improved our bounds
2252 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2253 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2254 	 */
2255 	__update_reg_bounds(reg);
2256 }
2257 
2258 static int reg_bounds_sanity_check(struct bpf_verifier_env *env,
2259 				   struct bpf_reg_state *reg, const char *ctx)
2260 {
2261 	const char *msg;
2262 
2263 	if (reg->umin_value > reg->umax_value ||
2264 	    reg->smin_value > reg->smax_value ||
2265 	    reg->u32_min_value > reg->u32_max_value ||
2266 	    reg->s32_min_value > reg->s32_max_value) {
2267 		    msg = "range bounds violation";
2268 		    goto out;
2269 	}
2270 
2271 	if (tnum_is_const(reg->var_off)) {
2272 		u64 uval = reg->var_off.value;
2273 		s64 sval = (s64)uval;
2274 
2275 		if (reg->umin_value != uval || reg->umax_value != uval ||
2276 		    reg->smin_value != sval || reg->smax_value != sval) {
2277 			msg = "const tnum out of sync with range bounds";
2278 			goto out;
2279 		}
2280 	}
2281 
2282 	if (tnum_subreg_is_const(reg->var_off)) {
2283 		u32 uval32 = tnum_subreg(reg->var_off).value;
2284 		s32 sval32 = (s32)uval32;
2285 
2286 		if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 ||
2287 		    reg->s32_min_value != sval32 || reg->s32_max_value != sval32) {
2288 			msg = "const subreg tnum out of sync with range bounds";
2289 			goto out;
2290 		}
2291 	}
2292 
2293 	return 0;
2294 out:
2295 	verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] "
2296 		"s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n",
2297 		ctx, msg, reg->umin_value, reg->umax_value,
2298 		reg->smin_value, reg->smax_value,
2299 		reg->u32_min_value, reg->u32_max_value,
2300 		reg->s32_min_value, reg->s32_max_value,
2301 		reg->var_off.value, reg->var_off.mask);
2302 	if (env->test_reg_invariants)
2303 		return -EFAULT;
2304 	__mark_reg_unbounded(reg);
2305 	return 0;
2306 }
2307 
2308 static bool __reg32_bound_s64(s32 a)
2309 {
2310 	return a >= 0 && a <= S32_MAX;
2311 }
2312 
2313 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2314 {
2315 	reg->umin_value = reg->u32_min_value;
2316 	reg->umax_value = reg->u32_max_value;
2317 
2318 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2319 	 * be positive otherwise set to worse case bounds and refine later
2320 	 * from tnum.
2321 	 */
2322 	if (__reg32_bound_s64(reg->s32_min_value) &&
2323 	    __reg32_bound_s64(reg->s32_max_value)) {
2324 		reg->smin_value = reg->s32_min_value;
2325 		reg->smax_value = reg->s32_max_value;
2326 	} else {
2327 		reg->smin_value = 0;
2328 		reg->smax_value = U32_MAX;
2329 	}
2330 }
2331 
2332 /* Mark a register as having a completely unknown (scalar) value. */
2333 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg)
2334 {
2335 	/*
2336 	 * Clear type, off, and union(map_ptr, range) and
2337 	 * padding between 'type' and union
2338 	 */
2339 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2340 	reg->type = SCALAR_VALUE;
2341 	reg->id = 0;
2342 	reg->ref_obj_id = 0;
2343 	reg->var_off = tnum_unknown;
2344 	reg->frameno = 0;
2345 	reg->precise = false;
2346 	__mark_reg_unbounded(reg);
2347 }
2348 
2349 /* Mark a register as having a completely unknown (scalar) value,
2350  * initialize .precise as true when not bpf capable.
2351  */
2352 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2353 			       struct bpf_reg_state *reg)
2354 {
2355 	__mark_reg_unknown_imprecise(reg);
2356 	reg->precise = !env->bpf_capable;
2357 }
2358 
2359 static void mark_reg_unknown(struct bpf_verifier_env *env,
2360 			     struct bpf_reg_state *regs, u32 regno)
2361 {
2362 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2363 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2364 		/* Something bad happened, let's kill all regs except FP */
2365 		for (regno = 0; regno < BPF_REG_FP; regno++)
2366 			__mark_reg_not_init(env, regs + regno);
2367 		return;
2368 	}
2369 	__mark_reg_unknown(env, regs + regno);
2370 }
2371 
2372 static int __mark_reg_s32_range(struct bpf_verifier_env *env,
2373 				struct bpf_reg_state *regs,
2374 				u32 regno,
2375 				s32 s32_min,
2376 				s32 s32_max)
2377 {
2378 	struct bpf_reg_state *reg = regs + regno;
2379 
2380 	reg->s32_min_value = max_t(s32, reg->s32_min_value, s32_min);
2381 	reg->s32_max_value = min_t(s32, reg->s32_max_value, s32_max);
2382 
2383 	reg->smin_value = max_t(s64, reg->smin_value, s32_min);
2384 	reg->smax_value = min_t(s64, reg->smax_value, s32_max);
2385 
2386 	reg_bounds_sync(reg);
2387 
2388 	return reg_bounds_sanity_check(env, reg, "s32_range");
2389 }
2390 
2391 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2392 				struct bpf_reg_state *reg)
2393 {
2394 	__mark_reg_unknown(env, reg);
2395 	reg->type = NOT_INIT;
2396 }
2397 
2398 static void mark_reg_not_init(struct bpf_verifier_env *env,
2399 			      struct bpf_reg_state *regs, u32 regno)
2400 {
2401 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2402 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2403 		/* Something bad happened, let's kill all regs except FP */
2404 		for (regno = 0; regno < BPF_REG_FP; regno++)
2405 			__mark_reg_not_init(env, regs + regno);
2406 		return;
2407 	}
2408 	__mark_reg_not_init(env, regs + regno);
2409 }
2410 
2411 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2412 			    struct bpf_reg_state *regs, u32 regno,
2413 			    enum bpf_reg_type reg_type,
2414 			    struct btf *btf, u32 btf_id,
2415 			    enum bpf_type_flag flag)
2416 {
2417 	if (reg_type == SCALAR_VALUE) {
2418 		mark_reg_unknown(env, regs, regno);
2419 		return;
2420 	}
2421 	mark_reg_known_zero(env, regs, regno);
2422 	regs[regno].type = PTR_TO_BTF_ID | flag;
2423 	regs[regno].btf = btf;
2424 	regs[regno].btf_id = btf_id;
2425 	if (type_may_be_null(flag))
2426 		regs[regno].id = ++env->id_gen;
2427 }
2428 
2429 #define DEF_NOT_SUBREG	(0)
2430 static void init_reg_state(struct bpf_verifier_env *env,
2431 			   struct bpf_func_state *state)
2432 {
2433 	struct bpf_reg_state *regs = state->regs;
2434 	int i;
2435 
2436 	for (i = 0; i < MAX_BPF_REG; i++) {
2437 		mark_reg_not_init(env, regs, i);
2438 		regs[i].live = REG_LIVE_NONE;
2439 		regs[i].parent = NULL;
2440 		regs[i].subreg_def = DEF_NOT_SUBREG;
2441 	}
2442 
2443 	/* frame pointer */
2444 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2445 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2446 	regs[BPF_REG_FP].frameno = state->frameno;
2447 }
2448 
2449 static struct bpf_retval_range retval_range(s32 minval, s32 maxval)
2450 {
2451 	return (struct bpf_retval_range){ minval, maxval };
2452 }
2453 
2454 #define BPF_MAIN_FUNC (-1)
2455 static void init_func_state(struct bpf_verifier_env *env,
2456 			    struct bpf_func_state *state,
2457 			    int callsite, int frameno, int subprogno)
2458 {
2459 	state->callsite = callsite;
2460 	state->frameno = frameno;
2461 	state->subprogno = subprogno;
2462 	state->callback_ret_range = retval_range(0, 0);
2463 	init_reg_state(env, state);
2464 	mark_verifier_state_scratched(env);
2465 }
2466 
2467 /* Similar to push_stack(), but for async callbacks */
2468 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2469 						int insn_idx, int prev_insn_idx,
2470 						int subprog, bool is_sleepable)
2471 {
2472 	struct bpf_verifier_stack_elem *elem;
2473 	struct bpf_func_state *frame;
2474 
2475 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2476 	if (!elem)
2477 		goto err;
2478 
2479 	elem->insn_idx = insn_idx;
2480 	elem->prev_insn_idx = prev_insn_idx;
2481 	elem->next = env->head;
2482 	elem->log_pos = env->log.end_pos;
2483 	env->head = elem;
2484 	env->stack_size++;
2485 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2486 		verbose(env,
2487 			"The sequence of %d jumps is too complex for async cb.\n",
2488 			env->stack_size);
2489 		goto err;
2490 	}
2491 	/* Unlike push_stack() do not copy_verifier_state().
2492 	 * The caller state doesn't matter.
2493 	 * This is async callback. It starts in a fresh stack.
2494 	 * Initialize it similar to do_check_common().
2495 	 */
2496 	elem->st.branches = 1;
2497 	elem->st.in_sleepable = is_sleepable;
2498 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2499 	if (!frame)
2500 		goto err;
2501 	init_func_state(env, frame,
2502 			BPF_MAIN_FUNC /* callsite */,
2503 			0 /* frameno within this callchain */,
2504 			subprog /* subprog number within this prog */);
2505 	elem->st.frame[0] = frame;
2506 	return &elem->st;
2507 err:
2508 	free_verifier_state(env->cur_state, true);
2509 	env->cur_state = NULL;
2510 	/* pop all elements and return */
2511 	while (!pop_stack(env, NULL, NULL, false));
2512 	return NULL;
2513 }
2514 
2515 
2516 enum reg_arg_type {
2517 	SRC_OP,		/* register is used as source operand */
2518 	DST_OP,		/* register is used as destination operand */
2519 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2520 };
2521 
2522 static int cmp_subprogs(const void *a, const void *b)
2523 {
2524 	return ((struct bpf_subprog_info *)a)->start -
2525 	       ((struct bpf_subprog_info *)b)->start;
2526 }
2527 
2528 static int find_subprog(struct bpf_verifier_env *env, int off)
2529 {
2530 	struct bpf_subprog_info *p;
2531 
2532 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2533 		    sizeof(env->subprog_info[0]), cmp_subprogs);
2534 	if (!p)
2535 		return -ENOENT;
2536 	return p - env->subprog_info;
2537 
2538 }
2539 
2540 static int add_subprog(struct bpf_verifier_env *env, int off)
2541 {
2542 	int insn_cnt = env->prog->len;
2543 	int ret;
2544 
2545 	if (off >= insn_cnt || off < 0) {
2546 		verbose(env, "call to invalid destination\n");
2547 		return -EINVAL;
2548 	}
2549 	ret = find_subprog(env, off);
2550 	if (ret >= 0)
2551 		return ret;
2552 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2553 		verbose(env, "too many subprograms\n");
2554 		return -E2BIG;
2555 	}
2556 	/* determine subprog starts. The end is one before the next starts */
2557 	env->subprog_info[env->subprog_cnt++].start = off;
2558 	sort(env->subprog_info, env->subprog_cnt,
2559 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2560 	return env->subprog_cnt - 1;
2561 }
2562 
2563 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env)
2564 {
2565 	struct bpf_prog_aux *aux = env->prog->aux;
2566 	struct btf *btf = aux->btf;
2567 	const struct btf_type *t;
2568 	u32 main_btf_id, id;
2569 	const char *name;
2570 	int ret, i;
2571 
2572 	/* Non-zero func_info_cnt implies valid btf */
2573 	if (!aux->func_info_cnt)
2574 		return 0;
2575 	main_btf_id = aux->func_info[0].type_id;
2576 
2577 	t = btf_type_by_id(btf, main_btf_id);
2578 	if (!t) {
2579 		verbose(env, "invalid btf id for main subprog in func_info\n");
2580 		return -EINVAL;
2581 	}
2582 
2583 	name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:");
2584 	if (IS_ERR(name)) {
2585 		ret = PTR_ERR(name);
2586 		/* If there is no tag present, there is no exception callback */
2587 		if (ret == -ENOENT)
2588 			ret = 0;
2589 		else if (ret == -EEXIST)
2590 			verbose(env, "multiple exception callback tags for main subprog\n");
2591 		return ret;
2592 	}
2593 
2594 	ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC);
2595 	if (ret < 0) {
2596 		verbose(env, "exception callback '%s' could not be found in BTF\n", name);
2597 		return ret;
2598 	}
2599 	id = ret;
2600 	t = btf_type_by_id(btf, id);
2601 	if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
2602 		verbose(env, "exception callback '%s' must have global linkage\n", name);
2603 		return -EINVAL;
2604 	}
2605 	ret = 0;
2606 	for (i = 0; i < aux->func_info_cnt; i++) {
2607 		if (aux->func_info[i].type_id != id)
2608 			continue;
2609 		ret = aux->func_info[i].insn_off;
2610 		/* Further func_info and subprog checks will also happen
2611 		 * later, so assume this is the right insn_off for now.
2612 		 */
2613 		if (!ret) {
2614 			verbose(env, "invalid exception callback insn_off in func_info: 0\n");
2615 			ret = -EINVAL;
2616 		}
2617 	}
2618 	if (!ret) {
2619 		verbose(env, "exception callback type id not found in func_info\n");
2620 		ret = -EINVAL;
2621 	}
2622 	return ret;
2623 }
2624 
2625 #define MAX_KFUNC_DESCS 256
2626 #define MAX_KFUNC_BTFS	256
2627 
2628 struct bpf_kfunc_desc {
2629 	struct btf_func_model func_model;
2630 	u32 func_id;
2631 	s32 imm;
2632 	u16 offset;
2633 	unsigned long addr;
2634 };
2635 
2636 struct bpf_kfunc_btf {
2637 	struct btf *btf;
2638 	struct module *module;
2639 	u16 offset;
2640 };
2641 
2642 struct bpf_kfunc_desc_tab {
2643 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2644 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
2645 	 * available, therefore at the end of verification do_misc_fixups()
2646 	 * sorts this by imm and offset.
2647 	 */
2648 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2649 	u32 nr_descs;
2650 };
2651 
2652 struct bpf_kfunc_btf_tab {
2653 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2654 	u32 nr_descs;
2655 };
2656 
2657 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2658 {
2659 	const struct bpf_kfunc_desc *d0 = a;
2660 	const struct bpf_kfunc_desc *d1 = b;
2661 
2662 	/* func_id is not greater than BTF_MAX_TYPE */
2663 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2664 }
2665 
2666 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2667 {
2668 	const struct bpf_kfunc_btf *d0 = a;
2669 	const struct bpf_kfunc_btf *d1 = b;
2670 
2671 	return d0->offset - d1->offset;
2672 }
2673 
2674 static const struct bpf_kfunc_desc *
2675 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2676 {
2677 	struct bpf_kfunc_desc desc = {
2678 		.func_id = func_id,
2679 		.offset = offset,
2680 	};
2681 	struct bpf_kfunc_desc_tab *tab;
2682 
2683 	tab = prog->aux->kfunc_tab;
2684 	return bsearch(&desc, tab->descs, tab->nr_descs,
2685 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2686 }
2687 
2688 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2689 		       u16 btf_fd_idx, u8 **func_addr)
2690 {
2691 	const struct bpf_kfunc_desc *desc;
2692 
2693 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2694 	if (!desc)
2695 		return -EFAULT;
2696 
2697 	*func_addr = (u8 *)desc->addr;
2698 	return 0;
2699 }
2700 
2701 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2702 					 s16 offset)
2703 {
2704 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2705 	struct bpf_kfunc_btf_tab *tab;
2706 	struct bpf_kfunc_btf *b;
2707 	struct module *mod;
2708 	struct btf *btf;
2709 	int btf_fd;
2710 
2711 	tab = env->prog->aux->kfunc_btf_tab;
2712 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2713 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2714 	if (!b) {
2715 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2716 			verbose(env, "too many different module BTFs\n");
2717 			return ERR_PTR(-E2BIG);
2718 		}
2719 
2720 		if (bpfptr_is_null(env->fd_array)) {
2721 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2722 			return ERR_PTR(-EPROTO);
2723 		}
2724 
2725 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2726 					    offset * sizeof(btf_fd),
2727 					    sizeof(btf_fd)))
2728 			return ERR_PTR(-EFAULT);
2729 
2730 		btf = btf_get_by_fd(btf_fd);
2731 		if (IS_ERR(btf)) {
2732 			verbose(env, "invalid module BTF fd specified\n");
2733 			return btf;
2734 		}
2735 
2736 		if (!btf_is_module(btf)) {
2737 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2738 			btf_put(btf);
2739 			return ERR_PTR(-EINVAL);
2740 		}
2741 
2742 		mod = btf_try_get_module(btf);
2743 		if (!mod) {
2744 			btf_put(btf);
2745 			return ERR_PTR(-ENXIO);
2746 		}
2747 
2748 		b = &tab->descs[tab->nr_descs++];
2749 		b->btf = btf;
2750 		b->module = mod;
2751 		b->offset = offset;
2752 
2753 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2754 		     kfunc_btf_cmp_by_off, NULL);
2755 	}
2756 	return b->btf;
2757 }
2758 
2759 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2760 {
2761 	if (!tab)
2762 		return;
2763 
2764 	while (tab->nr_descs--) {
2765 		module_put(tab->descs[tab->nr_descs].module);
2766 		btf_put(tab->descs[tab->nr_descs].btf);
2767 	}
2768 	kfree(tab);
2769 }
2770 
2771 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2772 {
2773 	if (offset) {
2774 		if (offset < 0) {
2775 			/* In the future, this can be allowed to increase limit
2776 			 * of fd index into fd_array, interpreted as u16.
2777 			 */
2778 			verbose(env, "negative offset disallowed for kernel module function call\n");
2779 			return ERR_PTR(-EINVAL);
2780 		}
2781 
2782 		return __find_kfunc_desc_btf(env, offset);
2783 	}
2784 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2785 }
2786 
2787 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2788 {
2789 	const struct btf_type *func, *func_proto;
2790 	struct bpf_kfunc_btf_tab *btf_tab;
2791 	struct bpf_kfunc_desc_tab *tab;
2792 	struct bpf_prog_aux *prog_aux;
2793 	struct bpf_kfunc_desc *desc;
2794 	const char *func_name;
2795 	struct btf *desc_btf;
2796 	unsigned long call_imm;
2797 	unsigned long addr;
2798 	int err;
2799 
2800 	prog_aux = env->prog->aux;
2801 	tab = prog_aux->kfunc_tab;
2802 	btf_tab = prog_aux->kfunc_btf_tab;
2803 	if (!tab) {
2804 		if (!btf_vmlinux) {
2805 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2806 			return -ENOTSUPP;
2807 		}
2808 
2809 		if (!env->prog->jit_requested) {
2810 			verbose(env, "JIT is required for calling kernel function\n");
2811 			return -ENOTSUPP;
2812 		}
2813 
2814 		if (!bpf_jit_supports_kfunc_call()) {
2815 			verbose(env, "JIT does not support calling kernel function\n");
2816 			return -ENOTSUPP;
2817 		}
2818 
2819 		if (!env->prog->gpl_compatible) {
2820 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2821 			return -EINVAL;
2822 		}
2823 
2824 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2825 		if (!tab)
2826 			return -ENOMEM;
2827 		prog_aux->kfunc_tab = tab;
2828 	}
2829 
2830 	/* func_id == 0 is always invalid, but instead of returning an error, be
2831 	 * conservative and wait until the code elimination pass before returning
2832 	 * error, so that invalid calls that get pruned out can be in BPF programs
2833 	 * loaded from userspace.  It is also required that offset be untouched
2834 	 * for such calls.
2835 	 */
2836 	if (!func_id && !offset)
2837 		return 0;
2838 
2839 	if (!btf_tab && offset) {
2840 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2841 		if (!btf_tab)
2842 			return -ENOMEM;
2843 		prog_aux->kfunc_btf_tab = btf_tab;
2844 	}
2845 
2846 	desc_btf = find_kfunc_desc_btf(env, offset);
2847 	if (IS_ERR(desc_btf)) {
2848 		verbose(env, "failed to find BTF for kernel function\n");
2849 		return PTR_ERR(desc_btf);
2850 	}
2851 
2852 	if (find_kfunc_desc(env->prog, func_id, offset))
2853 		return 0;
2854 
2855 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2856 		verbose(env, "too many different kernel function calls\n");
2857 		return -E2BIG;
2858 	}
2859 
2860 	func = btf_type_by_id(desc_btf, func_id);
2861 	if (!func || !btf_type_is_func(func)) {
2862 		verbose(env, "kernel btf_id %u is not a function\n",
2863 			func_id);
2864 		return -EINVAL;
2865 	}
2866 	func_proto = btf_type_by_id(desc_btf, func->type);
2867 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2868 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2869 			func_id);
2870 		return -EINVAL;
2871 	}
2872 
2873 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2874 	addr = kallsyms_lookup_name(func_name);
2875 	if (!addr) {
2876 		verbose(env, "cannot find address for kernel function %s\n",
2877 			func_name);
2878 		return -EINVAL;
2879 	}
2880 	specialize_kfunc(env, func_id, offset, &addr);
2881 
2882 	if (bpf_jit_supports_far_kfunc_call()) {
2883 		call_imm = func_id;
2884 	} else {
2885 		call_imm = BPF_CALL_IMM(addr);
2886 		/* Check whether the relative offset overflows desc->imm */
2887 		if ((unsigned long)(s32)call_imm != call_imm) {
2888 			verbose(env, "address of kernel function %s is out of range\n",
2889 				func_name);
2890 			return -EINVAL;
2891 		}
2892 	}
2893 
2894 	if (bpf_dev_bound_kfunc_id(func_id)) {
2895 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2896 		if (err)
2897 			return err;
2898 	}
2899 
2900 	desc = &tab->descs[tab->nr_descs++];
2901 	desc->func_id = func_id;
2902 	desc->imm = call_imm;
2903 	desc->offset = offset;
2904 	desc->addr = addr;
2905 	err = btf_distill_func_proto(&env->log, desc_btf,
2906 				     func_proto, func_name,
2907 				     &desc->func_model);
2908 	if (!err)
2909 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2910 		     kfunc_desc_cmp_by_id_off, NULL);
2911 	return err;
2912 }
2913 
2914 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2915 {
2916 	const struct bpf_kfunc_desc *d0 = a;
2917 	const struct bpf_kfunc_desc *d1 = b;
2918 
2919 	if (d0->imm != d1->imm)
2920 		return d0->imm < d1->imm ? -1 : 1;
2921 	if (d0->offset != d1->offset)
2922 		return d0->offset < d1->offset ? -1 : 1;
2923 	return 0;
2924 }
2925 
2926 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
2927 {
2928 	struct bpf_kfunc_desc_tab *tab;
2929 
2930 	tab = prog->aux->kfunc_tab;
2931 	if (!tab)
2932 		return;
2933 
2934 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2935 	     kfunc_desc_cmp_by_imm_off, NULL);
2936 }
2937 
2938 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2939 {
2940 	return !!prog->aux->kfunc_tab;
2941 }
2942 
2943 const struct btf_func_model *
2944 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2945 			 const struct bpf_insn *insn)
2946 {
2947 	const struct bpf_kfunc_desc desc = {
2948 		.imm = insn->imm,
2949 		.offset = insn->off,
2950 	};
2951 	const struct bpf_kfunc_desc *res;
2952 	struct bpf_kfunc_desc_tab *tab;
2953 
2954 	tab = prog->aux->kfunc_tab;
2955 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2956 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
2957 
2958 	return res ? &res->func_model : NULL;
2959 }
2960 
2961 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2962 {
2963 	struct bpf_subprog_info *subprog = env->subprog_info;
2964 	int i, ret, insn_cnt = env->prog->len, ex_cb_insn;
2965 	struct bpf_insn *insn = env->prog->insnsi;
2966 
2967 	/* Add entry function. */
2968 	ret = add_subprog(env, 0);
2969 	if (ret)
2970 		return ret;
2971 
2972 	for (i = 0; i < insn_cnt; i++, insn++) {
2973 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2974 		    !bpf_pseudo_kfunc_call(insn))
2975 			continue;
2976 
2977 		if (!env->bpf_capable) {
2978 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2979 			return -EPERM;
2980 		}
2981 
2982 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2983 			ret = add_subprog(env, i + insn->imm + 1);
2984 		else
2985 			ret = add_kfunc_call(env, insn->imm, insn->off);
2986 
2987 		if (ret < 0)
2988 			return ret;
2989 	}
2990 
2991 	ret = bpf_find_exception_callback_insn_off(env);
2992 	if (ret < 0)
2993 		return ret;
2994 	ex_cb_insn = ret;
2995 
2996 	/* If ex_cb_insn > 0, this means that the main program has a subprog
2997 	 * marked using BTF decl tag to serve as the exception callback.
2998 	 */
2999 	if (ex_cb_insn) {
3000 		ret = add_subprog(env, ex_cb_insn);
3001 		if (ret < 0)
3002 			return ret;
3003 		for (i = 1; i < env->subprog_cnt; i++) {
3004 			if (env->subprog_info[i].start != ex_cb_insn)
3005 				continue;
3006 			env->exception_callback_subprog = i;
3007 			mark_subprog_exc_cb(env, i);
3008 			break;
3009 		}
3010 	}
3011 
3012 	/* Add a fake 'exit' subprog which could simplify subprog iteration
3013 	 * logic. 'subprog_cnt' should not be increased.
3014 	 */
3015 	subprog[env->subprog_cnt].start = insn_cnt;
3016 
3017 	if (env->log.level & BPF_LOG_LEVEL2)
3018 		for (i = 0; i < env->subprog_cnt; i++)
3019 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
3020 
3021 	return 0;
3022 }
3023 
3024 static int check_subprogs(struct bpf_verifier_env *env)
3025 {
3026 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
3027 	struct bpf_subprog_info *subprog = env->subprog_info;
3028 	struct bpf_insn *insn = env->prog->insnsi;
3029 	int insn_cnt = env->prog->len;
3030 
3031 	/* now check that all jumps are within the same subprog */
3032 	subprog_start = subprog[cur_subprog].start;
3033 	subprog_end = subprog[cur_subprog + 1].start;
3034 	for (i = 0; i < insn_cnt; i++) {
3035 		u8 code = insn[i].code;
3036 
3037 		if (code == (BPF_JMP | BPF_CALL) &&
3038 		    insn[i].src_reg == 0 &&
3039 		    insn[i].imm == BPF_FUNC_tail_call) {
3040 			subprog[cur_subprog].has_tail_call = true;
3041 			subprog[cur_subprog].tail_call_reachable = true;
3042 		}
3043 		if (BPF_CLASS(code) == BPF_LD &&
3044 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
3045 			subprog[cur_subprog].has_ld_abs = true;
3046 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
3047 			goto next;
3048 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
3049 			goto next;
3050 		if (code == (BPF_JMP32 | BPF_JA))
3051 			off = i + insn[i].imm + 1;
3052 		else
3053 			off = i + insn[i].off + 1;
3054 		if (off < subprog_start || off >= subprog_end) {
3055 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
3056 			return -EINVAL;
3057 		}
3058 next:
3059 		if (i == subprog_end - 1) {
3060 			/* to avoid fall-through from one subprog into another
3061 			 * the last insn of the subprog should be either exit
3062 			 * or unconditional jump back or bpf_throw call
3063 			 */
3064 			if (code != (BPF_JMP | BPF_EXIT) &&
3065 			    code != (BPF_JMP32 | BPF_JA) &&
3066 			    code != (BPF_JMP | BPF_JA)) {
3067 				verbose(env, "last insn is not an exit or jmp\n");
3068 				return -EINVAL;
3069 			}
3070 			subprog_start = subprog_end;
3071 			cur_subprog++;
3072 			if (cur_subprog < env->subprog_cnt)
3073 				subprog_end = subprog[cur_subprog + 1].start;
3074 		}
3075 	}
3076 	return 0;
3077 }
3078 
3079 /* Parentage chain of this register (or stack slot) should take care of all
3080  * issues like callee-saved registers, stack slot allocation time, etc.
3081  */
3082 static int mark_reg_read(struct bpf_verifier_env *env,
3083 			 const struct bpf_reg_state *state,
3084 			 struct bpf_reg_state *parent, u8 flag)
3085 {
3086 	bool writes = parent == state->parent; /* Observe write marks */
3087 	int cnt = 0;
3088 
3089 	while (parent) {
3090 		/* if read wasn't screened by an earlier write ... */
3091 		if (writes && state->live & REG_LIVE_WRITTEN)
3092 			break;
3093 		if (parent->live & REG_LIVE_DONE) {
3094 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
3095 				reg_type_str(env, parent->type),
3096 				parent->var_off.value, parent->off);
3097 			return -EFAULT;
3098 		}
3099 		/* The first condition is more likely to be true than the
3100 		 * second, checked it first.
3101 		 */
3102 		if ((parent->live & REG_LIVE_READ) == flag ||
3103 		    parent->live & REG_LIVE_READ64)
3104 			/* The parentage chain never changes and
3105 			 * this parent was already marked as LIVE_READ.
3106 			 * There is no need to keep walking the chain again and
3107 			 * keep re-marking all parents as LIVE_READ.
3108 			 * This case happens when the same register is read
3109 			 * multiple times without writes into it in-between.
3110 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
3111 			 * then no need to set the weak REG_LIVE_READ32.
3112 			 */
3113 			break;
3114 		/* ... then we depend on parent's value */
3115 		parent->live |= flag;
3116 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
3117 		if (flag == REG_LIVE_READ64)
3118 			parent->live &= ~REG_LIVE_READ32;
3119 		state = parent;
3120 		parent = state->parent;
3121 		writes = true;
3122 		cnt++;
3123 	}
3124 
3125 	if (env->longest_mark_read_walk < cnt)
3126 		env->longest_mark_read_walk = cnt;
3127 	return 0;
3128 }
3129 
3130 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3131 {
3132 	struct bpf_func_state *state = func(env, reg);
3133 	int spi, ret;
3134 
3135 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
3136 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3137 	 * check_kfunc_call.
3138 	 */
3139 	if (reg->type == CONST_PTR_TO_DYNPTR)
3140 		return 0;
3141 	spi = dynptr_get_spi(env, reg);
3142 	if (spi < 0)
3143 		return spi;
3144 	/* Caller ensures dynptr is valid and initialized, which means spi is in
3145 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3146 	 * read.
3147 	 */
3148 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
3149 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
3150 	if (ret)
3151 		return ret;
3152 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
3153 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
3154 }
3155 
3156 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3157 			  int spi, int nr_slots)
3158 {
3159 	struct bpf_func_state *state = func(env, reg);
3160 	int err, i;
3161 
3162 	for (i = 0; i < nr_slots; i++) {
3163 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
3164 
3165 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
3166 		if (err)
3167 			return err;
3168 
3169 		mark_stack_slot_scratched(env, spi - i);
3170 	}
3171 
3172 	return 0;
3173 }
3174 
3175 /* This function is supposed to be used by the following 32-bit optimization
3176  * code only. It returns TRUE if the source or destination register operates
3177  * on 64-bit, otherwise return FALSE.
3178  */
3179 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
3180 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3181 {
3182 	u8 code, class, op;
3183 
3184 	code = insn->code;
3185 	class = BPF_CLASS(code);
3186 	op = BPF_OP(code);
3187 	if (class == BPF_JMP) {
3188 		/* BPF_EXIT for "main" will reach here. Return TRUE
3189 		 * conservatively.
3190 		 */
3191 		if (op == BPF_EXIT)
3192 			return true;
3193 		if (op == BPF_CALL) {
3194 			/* BPF to BPF call will reach here because of marking
3195 			 * caller saved clobber with DST_OP_NO_MARK for which we
3196 			 * don't care the register def because they are anyway
3197 			 * marked as NOT_INIT already.
3198 			 */
3199 			if (insn->src_reg == BPF_PSEUDO_CALL)
3200 				return false;
3201 			/* Helper call will reach here because of arg type
3202 			 * check, conservatively return TRUE.
3203 			 */
3204 			if (t == SRC_OP)
3205 				return true;
3206 
3207 			return false;
3208 		}
3209 	}
3210 
3211 	if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3212 		return false;
3213 
3214 	if (class == BPF_ALU64 || class == BPF_JMP ||
3215 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3216 		return true;
3217 
3218 	if (class == BPF_ALU || class == BPF_JMP32)
3219 		return false;
3220 
3221 	if (class == BPF_LDX) {
3222 		if (t != SRC_OP)
3223 			return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX;
3224 		/* LDX source must be ptr. */
3225 		return true;
3226 	}
3227 
3228 	if (class == BPF_STX) {
3229 		/* BPF_STX (including atomic variants) has multiple source
3230 		 * operands, one of which is a ptr. Check whether the caller is
3231 		 * asking about it.
3232 		 */
3233 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3234 			return true;
3235 		return BPF_SIZE(code) == BPF_DW;
3236 	}
3237 
3238 	if (class == BPF_LD) {
3239 		u8 mode = BPF_MODE(code);
3240 
3241 		/* LD_IMM64 */
3242 		if (mode == BPF_IMM)
3243 			return true;
3244 
3245 		/* Both LD_IND and LD_ABS return 32-bit data. */
3246 		if (t != SRC_OP)
3247 			return  false;
3248 
3249 		/* Implicit ctx ptr. */
3250 		if (regno == BPF_REG_6)
3251 			return true;
3252 
3253 		/* Explicit source could be any width. */
3254 		return true;
3255 	}
3256 
3257 	if (class == BPF_ST)
3258 		/* The only source register for BPF_ST is a ptr. */
3259 		return true;
3260 
3261 	/* Conservatively return true at default. */
3262 	return true;
3263 }
3264 
3265 /* Return the regno defined by the insn, or -1. */
3266 static int insn_def_regno(const struct bpf_insn *insn)
3267 {
3268 	switch (BPF_CLASS(insn->code)) {
3269 	case BPF_JMP:
3270 	case BPF_JMP32:
3271 	case BPF_ST:
3272 		return -1;
3273 	case BPF_STX:
3274 		if ((BPF_MODE(insn->code) == BPF_ATOMIC ||
3275 		     BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) &&
3276 		    (insn->imm & BPF_FETCH)) {
3277 			if (insn->imm == BPF_CMPXCHG)
3278 				return BPF_REG_0;
3279 			else
3280 				return insn->src_reg;
3281 		} else {
3282 			return -1;
3283 		}
3284 	default:
3285 		return insn->dst_reg;
3286 	}
3287 }
3288 
3289 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3290 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3291 {
3292 	int dst_reg = insn_def_regno(insn);
3293 
3294 	if (dst_reg == -1)
3295 		return false;
3296 
3297 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3298 }
3299 
3300 static void mark_insn_zext(struct bpf_verifier_env *env,
3301 			   struct bpf_reg_state *reg)
3302 {
3303 	s32 def_idx = reg->subreg_def;
3304 
3305 	if (def_idx == DEF_NOT_SUBREG)
3306 		return;
3307 
3308 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3309 	/* The dst will be zero extended, so won't be sub-register anymore. */
3310 	reg->subreg_def = DEF_NOT_SUBREG;
3311 }
3312 
3313 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno,
3314 			   enum reg_arg_type t)
3315 {
3316 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3317 	struct bpf_reg_state *reg;
3318 	bool rw64;
3319 
3320 	if (regno >= MAX_BPF_REG) {
3321 		verbose(env, "R%d is invalid\n", regno);
3322 		return -EINVAL;
3323 	}
3324 
3325 	mark_reg_scratched(env, regno);
3326 
3327 	reg = &regs[regno];
3328 	rw64 = is_reg64(env, insn, regno, reg, t);
3329 	if (t == SRC_OP) {
3330 		/* check whether register used as source operand can be read */
3331 		if (reg->type == NOT_INIT) {
3332 			verbose(env, "R%d !read_ok\n", regno);
3333 			return -EACCES;
3334 		}
3335 		/* We don't need to worry about FP liveness because it's read-only */
3336 		if (regno == BPF_REG_FP)
3337 			return 0;
3338 
3339 		if (rw64)
3340 			mark_insn_zext(env, reg);
3341 
3342 		return mark_reg_read(env, reg, reg->parent,
3343 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3344 	} else {
3345 		/* check whether register used as dest operand can be written to */
3346 		if (regno == BPF_REG_FP) {
3347 			verbose(env, "frame pointer is read only\n");
3348 			return -EACCES;
3349 		}
3350 		reg->live |= REG_LIVE_WRITTEN;
3351 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3352 		if (t == DST_OP)
3353 			mark_reg_unknown(env, regs, regno);
3354 	}
3355 	return 0;
3356 }
3357 
3358 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3359 			 enum reg_arg_type t)
3360 {
3361 	struct bpf_verifier_state *vstate = env->cur_state;
3362 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3363 
3364 	return __check_reg_arg(env, state->regs, regno, t);
3365 }
3366 
3367 static int insn_stack_access_flags(int frameno, int spi)
3368 {
3369 	return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno;
3370 }
3371 
3372 static int insn_stack_access_spi(int insn_flags)
3373 {
3374 	return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK;
3375 }
3376 
3377 static int insn_stack_access_frameno(int insn_flags)
3378 {
3379 	return insn_flags & INSN_F_FRAMENO_MASK;
3380 }
3381 
3382 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3383 {
3384 	env->insn_aux_data[idx].jmp_point = true;
3385 }
3386 
3387 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3388 {
3389 	return env->insn_aux_data[insn_idx].jmp_point;
3390 }
3391 
3392 #define LR_FRAMENO_BITS	3
3393 #define LR_SPI_BITS	6
3394 #define LR_ENTRY_BITS	(LR_SPI_BITS + LR_FRAMENO_BITS + 1)
3395 #define LR_SIZE_BITS	4
3396 #define LR_FRAMENO_MASK	((1ull << LR_FRAMENO_BITS) - 1)
3397 #define LR_SPI_MASK	((1ull << LR_SPI_BITS)     - 1)
3398 #define LR_SIZE_MASK	((1ull << LR_SIZE_BITS)    - 1)
3399 #define LR_SPI_OFF	LR_FRAMENO_BITS
3400 #define LR_IS_REG_OFF	(LR_SPI_BITS + LR_FRAMENO_BITS)
3401 #define LINKED_REGS_MAX	6
3402 
3403 struct linked_reg {
3404 	u8 frameno;
3405 	union {
3406 		u8 spi;
3407 		u8 regno;
3408 	};
3409 	bool is_reg;
3410 };
3411 
3412 struct linked_regs {
3413 	int cnt;
3414 	struct linked_reg entries[LINKED_REGS_MAX];
3415 };
3416 
3417 static struct linked_reg *linked_regs_push(struct linked_regs *s)
3418 {
3419 	if (s->cnt < LINKED_REGS_MAX)
3420 		return &s->entries[s->cnt++];
3421 
3422 	return NULL;
3423 }
3424 
3425 /* Use u64 as a vector of 6 10-bit values, use first 4-bits to track
3426  * number of elements currently in stack.
3427  * Pack one history entry for linked registers as 10 bits in the following format:
3428  * - 3-bits frameno
3429  * - 6-bits spi_or_reg
3430  * - 1-bit  is_reg
3431  */
3432 static u64 linked_regs_pack(struct linked_regs *s)
3433 {
3434 	u64 val = 0;
3435 	int i;
3436 
3437 	for (i = 0; i < s->cnt; ++i) {
3438 		struct linked_reg *e = &s->entries[i];
3439 		u64 tmp = 0;
3440 
3441 		tmp |= e->frameno;
3442 		tmp |= e->spi << LR_SPI_OFF;
3443 		tmp |= (e->is_reg ? 1 : 0) << LR_IS_REG_OFF;
3444 
3445 		val <<= LR_ENTRY_BITS;
3446 		val |= tmp;
3447 	}
3448 	val <<= LR_SIZE_BITS;
3449 	val |= s->cnt;
3450 	return val;
3451 }
3452 
3453 static void linked_regs_unpack(u64 val, struct linked_regs *s)
3454 {
3455 	int i;
3456 
3457 	s->cnt = val & LR_SIZE_MASK;
3458 	val >>= LR_SIZE_BITS;
3459 
3460 	for (i = 0; i < s->cnt; ++i) {
3461 		struct linked_reg *e = &s->entries[i];
3462 
3463 		e->frameno =  val & LR_FRAMENO_MASK;
3464 		e->spi     = (val >> LR_SPI_OFF) & LR_SPI_MASK;
3465 		e->is_reg  = (val >> LR_IS_REG_OFF) & 0x1;
3466 		val >>= LR_ENTRY_BITS;
3467 	}
3468 }
3469 
3470 /* for any branch, call, exit record the history of jmps in the given state */
3471 static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur,
3472 			    int insn_flags, u64 linked_regs)
3473 {
3474 	u32 cnt = cur->jmp_history_cnt;
3475 	struct bpf_jmp_history_entry *p;
3476 	size_t alloc_size;
3477 
3478 	/* combine instruction flags if we already recorded this instruction */
3479 	if (env->cur_hist_ent) {
3480 		/* atomic instructions push insn_flags twice, for READ and
3481 		 * WRITE sides, but they should agree on stack slot
3482 		 */
3483 		WARN_ONCE((env->cur_hist_ent->flags & insn_flags) &&
3484 			  (env->cur_hist_ent->flags & insn_flags) != insn_flags,
3485 			  "verifier insn history bug: insn_idx %d cur flags %x new flags %x\n",
3486 			  env->insn_idx, env->cur_hist_ent->flags, insn_flags);
3487 		env->cur_hist_ent->flags |= insn_flags;
3488 		WARN_ONCE(env->cur_hist_ent->linked_regs != 0,
3489 			  "verifier insn history bug: insn_idx %d linked_regs != 0: %#llx\n",
3490 			  env->insn_idx, env->cur_hist_ent->linked_regs);
3491 		env->cur_hist_ent->linked_regs = linked_regs;
3492 		return 0;
3493 	}
3494 
3495 	cnt++;
3496 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3497 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3498 	if (!p)
3499 		return -ENOMEM;
3500 	cur->jmp_history = p;
3501 
3502 	p = &cur->jmp_history[cnt - 1];
3503 	p->idx = env->insn_idx;
3504 	p->prev_idx = env->prev_insn_idx;
3505 	p->flags = insn_flags;
3506 	p->linked_regs = linked_regs;
3507 	cur->jmp_history_cnt = cnt;
3508 	env->cur_hist_ent = p;
3509 
3510 	return 0;
3511 }
3512 
3513 static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st,
3514 						        u32 hist_end, int insn_idx)
3515 {
3516 	if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx)
3517 		return &st->jmp_history[hist_end - 1];
3518 	return NULL;
3519 }
3520 
3521 /* Backtrack one insn at a time. If idx is not at the top of recorded
3522  * history then previous instruction came from straight line execution.
3523  * Return -ENOENT if we exhausted all instructions within given state.
3524  *
3525  * It's legal to have a bit of a looping with the same starting and ending
3526  * insn index within the same state, e.g.: 3->4->5->3, so just because current
3527  * instruction index is the same as state's first_idx doesn't mean we are
3528  * done. If there is still some jump history left, we should keep going. We
3529  * need to take into account that we might have a jump history between given
3530  * state's parent and itself, due to checkpointing. In this case, we'll have
3531  * history entry recording a jump from last instruction of parent state and
3532  * first instruction of given state.
3533  */
3534 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3535 			     u32 *history)
3536 {
3537 	u32 cnt = *history;
3538 
3539 	if (i == st->first_insn_idx) {
3540 		if (cnt == 0)
3541 			return -ENOENT;
3542 		if (cnt == 1 && st->jmp_history[0].idx == i)
3543 			return -ENOENT;
3544 	}
3545 
3546 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
3547 		i = st->jmp_history[cnt - 1].prev_idx;
3548 		(*history)--;
3549 	} else {
3550 		i--;
3551 	}
3552 	return i;
3553 }
3554 
3555 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3556 {
3557 	const struct btf_type *func;
3558 	struct btf *desc_btf;
3559 
3560 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3561 		return NULL;
3562 
3563 	desc_btf = find_kfunc_desc_btf(data, insn->off);
3564 	if (IS_ERR(desc_btf))
3565 		return "<error>";
3566 
3567 	func = btf_type_by_id(desc_btf, insn->imm);
3568 	return btf_name_by_offset(desc_btf, func->name_off);
3569 }
3570 
3571 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3572 {
3573 	bt->frame = frame;
3574 }
3575 
3576 static inline void bt_reset(struct backtrack_state *bt)
3577 {
3578 	struct bpf_verifier_env *env = bt->env;
3579 
3580 	memset(bt, 0, sizeof(*bt));
3581 	bt->env = env;
3582 }
3583 
3584 static inline u32 bt_empty(struct backtrack_state *bt)
3585 {
3586 	u64 mask = 0;
3587 	int i;
3588 
3589 	for (i = 0; i <= bt->frame; i++)
3590 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
3591 
3592 	return mask == 0;
3593 }
3594 
3595 static inline int bt_subprog_enter(struct backtrack_state *bt)
3596 {
3597 	if (bt->frame == MAX_CALL_FRAMES - 1) {
3598 		verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3599 		WARN_ONCE(1, "verifier backtracking bug");
3600 		return -EFAULT;
3601 	}
3602 	bt->frame++;
3603 	return 0;
3604 }
3605 
3606 static inline int bt_subprog_exit(struct backtrack_state *bt)
3607 {
3608 	if (bt->frame == 0) {
3609 		verbose(bt->env, "BUG subprog exit from frame 0\n");
3610 		WARN_ONCE(1, "verifier backtracking bug");
3611 		return -EFAULT;
3612 	}
3613 	bt->frame--;
3614 	return 0;
3615 }
3616 
3617 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3618 {
3619 	bt->reg_masks[frame] |= 1 << reg;
3620 }
3621 
3622 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3623 {
3624 	bt->reg_masks[frame] &= ~(1 << reg);
3625 }
3626 
3627 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3628 {
3629 	bt_set_frame_reg(bt, bt->frame, reg);
3630 }
3631 
3632 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3633 {
3634 	bt_clear_frame_reg(bt, bt->frame, reg);
3635 }
3636 
3637 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3638 {
3639 	bt->stack_masks[frame] |= 1ull << slot;
3640 }
3641 
3642 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3643 {
3644 	bt->stack_masks[frame] &= ~(1ull << slot);
3645 }
3646 
3647 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3648 {
3649 	return bt->reg_masks[frame];
3650 }
3651 
3652 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3653 {
3654 	return bt->reg_masks[bt->frame];
3655 }
3656 
3657 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3658 {
3659 	return bt->stack_masks[frame];
3660 }
3661 
3662 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3663 {
3664 	return bt->stack_masks[bt->frame];
3665 }
3666 
3667 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3668 {
3669 	return bt->reg_masks[bt->frame] & (1 << reg);
3670 }
3671 
3672 static inline bool bt_is_frame_reg_set(struct backtrack_state *bt, u32 frame, u32 reg)
3673 {
3674 	return bt->reg_masks[frame] & (1 << reg);
3675 }
3676 
3677 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot)
3678 {
3679 	return bt->stack_masks[frame] & (1ull << slot);
3680 }
3681 
3682 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
3683 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3684 {
3685 	DECLARE_BITMAP(mask, 64);
3686 	bool first = true;
3687 	int i, n;
3688 
3689 	buf[0] = '\0';
3690 
3691 	bitmap_from_u64(mask, reg_mask);
3692 	for_each_set_bit(i, mask, 32) {
3693 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3694 		first = false;
3695 		buf += n;
3696 		buf_sz -= n;
3697 		if (buf_sz < 0)
3698 			break;
3699 	}
3700 }
3701 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
3702 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3703 {
3704 	DECLARE_BITMAP(mask, 64);
3705 	bool first = true;
3706 	int i, n;
3707 
3708 	buf[0] = '\0';
3709 
3710 	bitmap_from_u64(mask, stack_mask);
3711 	for_each_set_bit(i, mask, 64) {
3712 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3713 		first = false;
3714 		buf += n;
3715 		buf_sz -= n;
3716 		if (buf_sz < 0)
3717 			break;
3718 	}
3719 }
3720 
3721 /* If any register R in hist->linked_regs is marked as precise in bt,
3722  * do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs.
3723  */
3724 static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_jmp_history_entry *hist)
3725 {
3726 	struct linked_regs linked_regs;
3727 	bool some_precise = false;
3728 	int i;
3729 
3730 	if (!hist || hist->linked_regs == 0)
3731 		return;
3732 
3733 	linked_regs_unpack(hist->linked_regs, &linked_regs);
3734 	for (i = 0; i < linked_regs.cnt; ++i) {
3735 		struct linked_reg *e = &linked_regs.entries[i];
3736 
3737 		if ((e->is_reg && bt_is_frame_reg_set(bt, e->frameno, e->regno)) ||
3738 		    (!e->is_reg && bt_is_frame_slot_set(bt, e->frameno, e->spi))) {
3739 			some_precise = true;
3740 			break;
3741 		}
3742 	}
3743 
3744 	if (!some_precise)
3745 		return;
3746 
3747 	for (i = 0; i < linked_regs.cnt; ++i) {
3748 		struct linked_reg *e = &linked_regs.entries[i];
3749 
3750 		if (e->is_reg)
3751 			bt_set_frame_reg(bt, e->frameno, e->regno);
3752 		else
3753 			bt_set_frame_slot(bt, e->frameno, e->spi);
3754 	}
3755 }
3756 
3757 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx);
3758 
3759 /* For given verifier state backtrack_insn() is called from the last insn to
3760  * the first insn. Its purpose is to compute a bitmask of registers and
3761  * stack slots that needs precision in the parent verifier state.
3762  *
3763  * @idx is an index of the instruction we are currently processing;
3764  * @subseq_idx is an index of the subsequent instruction that:
3765  *   - *would be* executed next, if jump history is viewed in forward order;
3766  *   - *was* processed previously during backtracking.
3767  */
3768 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3769 			  struct bpf_jmp_history_entry *hist, struct backtrack_state *bt)
3770 {
3771 	const struct bpf_insn_cbs cbs = {
3772 		.cb_call	= disasm_kfunc_name,
3773 		.cb_print	= verbose,
3774 		.private_data	= env,
3775 	};
3776 	struct bpf_insn *insn = env->prog->insnsi + idx;
3777 	u8 class = BPF_CLASS(insn->code);
3778 	u8 opcode = BPF_OP(insn->code);
3779 	u8 mode = BPF_MODE(insn->code);
3780 	u32 dreg = insn->dst_reg;
3781 	u32 sreg = insn->src_reg;
3782 	u32 spi, i, fr;
3783 
3784 	if (insn->code == 0)
3785 		return 0;
3786 	if (env->log.level & BPF_LOG_LEVEL2) {
3787 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3788 		verbose(env, "mark_precise: frame%d: regs=%s ",
3789 			bt->frame, env->tmp_str_buf);
3790 		fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3791 		verbose(env, "stack=%s before ", env->tmp_str_buf);
3792 		verbose(env, "%d: ", idx);
3793 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3794 	}
3795 
3796 	/* If there is a history record that some registers gained range at this insn,
3797 	 * propagate precision marks to those registers, so that bt_is_reg_set()
3798 	 * accounts for these registers.
3799 	 */
3800 	bt_sync_linked_regs(bt, hist);
3801 
3802 	if (class == BPF_ALU || class == BPF_ALU64) {
3803 		if (!bt_is_reg_set(bt, dreg))
3804 			return 0;
3805 		if (opcode == BPF_END || opcode == BPF_NEG) {
3806 			/* sreg is reserved and unused
3807 			 * dreg still need precision before this insn
3808 			 */
3809 			return 0;
3810 		} else if (opcode == BPF_MOV) {
3811 			if (BPF_SRC(insn->code) == BPF_X) {
3812 				/* dreg = sreg or dreg = (s8, s16, s32)sreg
3813 				 * dreg needs precision after this insn
3814 				 * sreg needs precision before this insn
3815 				 */
3816 				bt_clear_reg(bt, dreg);
3817 				if (sreg != BPF_REG_FP)
3818 					bt_set_reg(bt, sreg);
3819 			} else {
3820 				/* dreg = K
3821 				 * dreg needs precision after this insn.
3822 				 * Corresponding register is already marked
3823 				 * as precise=true in this verifier state.
3824 				 * No further markings in parent are necessary
3825 				 */
3826 				bt_clear_reg(bt, dreg);
3827 			}
3828 		} else {
3829 			if (BPF_SRC(insn->code) == BPF_X) {
3830 				/* dreg += sreg
3831 				 * both dreg and sreg need precision
3832 				 * before this insn
3833 				 */
3834 				if (sreg != BPF_REG_FP)
3835 					bt_set_reg(bt, sreg);
3836 			} /* else dreg += K
3837 			   * dreg still needs precision before this insn
3838 			   */
3839 		}
3840 	} else if (class == BPF_LDX) {
3841 		if (!bt_is_reg_set(bt, dreg))
3842 			return 0;
3843 		bt_clear_reg(bt, dreg);
3844 
3845 		/* scalars can only be spilled into stack w/o losing precision.
3846 		 * Load from any other memory can be zero extended.
3847 		 * The desire to keep that precision is already indicated
3848 		 * by 'precise' mark in corresponding register of this state.
3849 		 * No further tracking necessary.
3850 		 */
3851 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
3852 			return 0;
3853 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
3854 		 * that [fp - off] slot contains scalar that needs to be
3855 		 * tracked with precision
3856 		 */
3857 		spi = insn_stack_access_spi(hist->flags);
3858 		fr = insn_stack_access_frameno(hist->flags);
3859 		bt_set_frame_slot(bt, fr, spi);
3860 	} else if (class == BPF_STX || class == BPF_ST) {
3861 		if (bt_is_reg_set(bt, dreg))
3862 			/* stx & st shouldn't be using _scalar_ dst_reg
3863 			 * to access memory. It means backtracking
3864 			 * encountered a case of pointer subtraction.
3865 			 */
3866 			return -ENOTSUPP;
3867 		/* scalars can only be spilled into stack */
3868 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
3869 			return 0;
3870 		spi = insn_stack_access_spi(hist->flags);
3871 		fr = insn_stack_access_frameno(hist->flags);
3872 		if (!bt_is_frame_slot_set(bt, fr, spi))
3873 			return 0;
3874 		bt_clear_frame_slot(bt, fr, spi);
3875 		if (class == BPF_STX)
3876 			bt_set_reg(bt, sreg);
3877 	} else if (class == BPF_JMP || class == BPF_JMP32) {
3878 		if (bpf_pseudo_call(insn)) {
3879 			int subprog_insn_idx, subprog;
3880 
3881 			subprog_insn_idx = idx + insn->imm + 1;
3882 			subprog = find_subprog(env, subprog_insn_idx);
3883 			if (subprog < 0)
3884 				return -EFAULT;
3885 
3886 			if (subprog_is_global(env, subprog)) {
3887 				/* check that jump history doesn't have any
3888 				 * extra instructions from subprog; the next
3889 				 * instruction after call to global subprog
3890 				 * should be literally next instruction in
3891 				 * caller program
3892 				 */
3893 				WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3894 				/* r1-r5 are invalidated after subprog call,
3895 				 * so for global func call it shouldn't be set
3896 				 * anymore
3897 				 */
3898 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3899 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3900 					WARN_ONCE(1, "verifier backtracking bug");
3901 					return -EFAULT;
3902 				}
3903 				/* global subprog always sets R0 */
3904 				bt_clear_reg(bt, BPF_REG_0);
3905 				return 0;
3906 			} else {
3907 				/* static subprog call instruction, which
3908 				 * means that we are exiting current subprog,
3909 				 * so only r1-r5 could be still requested as
3910 				 * precise, r0 and r6-r10 or any stack slot in
3911 				 * the current frame should be zero by now
3912 				 */
3913 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3914 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3915 					WARN_ONCE(1, "verifier backtracking bug");
3916 					return -EFAULT;
3917 				}
3918 				/* we are now tracking register spills correctly,
3919 				 * so any instance of leftover slots is a bug
3920 				 */
3921 				if (bt_stack_mask(bt) != 0) {
3922 					verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
3923 					WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)");
3924 					return -EFAULT;
3925 				}
3926 				/* propagate r1-r5 to the caller */
3927 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3928 					if (bt_is_reg_set(bt, i)) {
3929 						bt_clear_reg(bt, i);
3930 						bt_set_frame_reg(bt, bt->frame - 1, i);
3931 					}
3932 				}
3933 				if (bt_subprog_exit(bt))
3934 					return -EFAULT;
3935 				return 0;
3936 			}
3937 		} else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) {
3938 			/* exit from callback subprog to callback-calling helper or
3939 			 * kfunc call. Use idx/subseq_idx check to discern it from
3940 			 * straight line code backtracking.
3941 			 * Unlike the subprog call handling above, we shouldn't
3942 			 * propagate precision of r1-r5 (if any requested), as they are
3943 			 * not actually arguments passed directly to callback subprogs
3944 			 */
3945 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3946 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3947 				WARN_ONCE(1, "verifier backtracking bug");
3948 				return -EFAULT;
3949 			}
3950 			if (bt_stack_mask(bt) != 0) {
3951 				verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
3952 				WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)");
3953 				return -EFAULT;
3954 			}
3955 			/* clear r1-r5 in callback subprog's mask */
3956 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3957 				bt_clear_reg(bt, i);
3958 			if (bt_subprog_exit(bt))
3959 				return -EFAULT;
3960 			return 0;
3961 		} else if (opcode == BPF_CALL) {
3962 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
3963 			 * catch this error later. Make backtracking conservative
3964 			 * with ENOTSUPP.
3965 			 */
3966 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3967 				return -ENOTSUPP;
3968 			/* regular helper call sets R0 */
3969 			bt_clear_reg(bt, BPF_REG_0);
3970 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3971 				/* if backtracing was looking for registers R1-R5
3972 				 * they should have been found already.
3973 				 */
3974 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3975 				WARN_ONCE(1, "verifier backtracking bug");
3976 				return -EFAULT;
3977 			}
3978 		} else if (opcode == BPF_EXIT) {
3979 			bool r0_precise;
3980 
3981 			/* Backtracking to a nested function call, 'idx' is a part of
3982 			 * the inner frame 'subseq_idx' is a part of the outer frame.
3983 			 * In case of a regular function call, instructions giving
3984 			 * precision to registers R1-R5 should have been found already.
3985 			 * In case of a callback, it is ok to have R1-R5 marked for
3986 			 * backtracking, as these registers are set by the function
3987 			 * invoking callback.
3988 			 */
3989 			if (subseq_idx >= 0 && calls_callback(env, subseq_idx))
3990 				for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3991 					bt_clear_reg(bt, i);
3992 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3993 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3994 				WARN_ONCE(1, "verifier backtracking bug");
3995 				return -EFAULT;
3996 			}
3997 
3998 			/* BPF_EXIT in subprog or callback always returns
3999 			 * right after the call instruction, so by checking
4000 			 * whether the instruction at subseq_idx-1 is subprog
4001 			 * call or not we can distinguish actual exit from
4002 			 * *subprog* from exit from *callback*. In the former
4003 			 * case, we need to propagate r0 precision, if
4004 			 * necessary. In the former we never do that.
4005 			 */
4006 			r0_precise = subseq_idx - 1 >= 0 &&
4007 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
4008 				     bt_is_reg_set(bt, BPF_REG_0);
4009 
4010 			bt_clear_reg(bt, BPF_REG_0);
4011 			if (bt_subprog_enter(bt))
4012 				return -EFAULT;
4013 
4014 			if (r0_precise)
4015 				bt_set_reg(bt, BPF_REG_0);
4016 			/* r6-r9 and stack slots will stay set in caller frame
4017 			 * bitmasks until we return back from callee(s)
4018 			 */
4019 			return 0;
4020 		} else if (BPF_SRC(insn->code) == BPF_X) {
4021 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
4022 				return 0;
4023 			/* dreg <cond> sreg
4024 			 * Both dreg and sreg need precision before
4025 			 * this insn. If only sreg was marked precise
4026 			 * before it would be equally necessary to
4027 			 * propagate it to dreg.
4028 			 */
4029 			bt_set_reg(bt, dreg);
4030 			bt_set_reg(bt, sreg);
4031 		} else if (BPF_SRC(insn->code) == BPF_K) {
4032 			 /* dreg <cond> K
4033 			  * Only dreg still needs precision before
4034 			  * this insn, so for the K-based conditional
4035 			  * there is nothing new to be marked.
4036 			  */
4037 		}
4038 	} else if (class == BPF_LD) {
4039 		if (!bt_is_reg_set(bt, dreg))
4040 			return 0;
4041 		bt_clear_reg(bt, dreg);
4042 		/* It's ld_imm64 or ld_abs or ld_ind.
4043 		 * For ld_imm64 no further tracking of precision
4044 		 * into parent is necessary
4045 		 */
4046 		if (mode == BPF_IND || mode == BPF_ABS)
4047 			/* to be analyzed */
4048 			return -ENOTSUPP;
4049 	}
4050 	/* Propagate precision marks to linked registers, to account for
4051 	 * registers marked as precise in this function.
4052 	 */
4053 	bt_sync_linked_regs(bt, hist);
4054 	return 0;
4055 }
4056 
4057 /* the scalar precision tracking algorithm:
4058  * . at the start all registers have precise=false.
4059  * . scalar ranges are tracked as normal through alu and jmp insns.
4060  * . once precise value of the scalar register is used in:
4061  *   .  ptr + scalar alu
4062  *   . if (scalar cond K|scalar)
4063  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
4064  *   backtrack through the verifier states and mark all registers and
4065  *   stack slots with spilled constants that these scalar regisers
4066  *   should be precise.
4067  * . during state pruning two registers (or spilled stack slots)
4068  *   are equivalent if both are not precise.
4069  *
4070  * Note the verifier cannot simply walk register parentage chain,
4071  * since many different registers and stack slots could have been
4072  * used to compute single precise scalar.
4073  *
4074  * The approach of starting with precise=true for all registers and then
4075  * backtrack to mark a register as not precise when the verifier detects
4076  * that program doesn't care about specific value (e.g., when helper
4077  * takes register as ARG_ANYTHING parameter) is not safe.
4078  *
4079  * It's ok to walk single parentage chain of the verifier states.
4080  * It's possible that this backtracking will go all the way till 1st insn.
4081  * All other branches will be explored for needing precision later.
4082  *
4083  * The backtracking needs to deal with cases like:
4084  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
4085  * r9 -= r8
4086  * r5 = r9
4087  * if r5 > 0x79f goto pc+7
4088  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
4089  * r5 += 1
4090  * ...
4091  * call bpf_perf_event_output#25
4092  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
4093  *
4094  * and this case:
4095  * r6 = 1
4096  * call foo // uses callee's r6 inside to compute r0
4097  * r0 += r6
4098  * if r0 == 0 goto
4099  *
4100  * to track above reg_mask/stack_mask needs to be independent for each frame.
4101  *
4102  * Also if parent's curframe > frame where backtracking started,
4103  * the verifier need to mark registers in both frames, otherwise callees
4104  * may incorrectly prune callers. This is similar to
4105  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
4106  *
4107  * For now backtracking falls back into conservative marking.
4108  */
4109 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
4110 				     struct bpf_verifier_state *st)
4111 {
4112 	struct bpf_func_state *func;
4113 	struct bpf_reg_state *reg;
4114 	int i, j;
4115 
4116 	if (env->log.level & BPF_LOG_LEVEL2) {
4117 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
4118 			st->curframe);
4119 	}
4120 
4121 	/* big hammer: mark all scalars precise in this path.
4122 	 * pop_stack may still get !precise scalars.
4123 	 * We also skip current state and go straight to first parent state,
4124 	 * because precision markings in current non-checkpointed state are
4125 	 * not needed. See why in the comment in __mark_chain_precision below.
4126 	 */
4127 	for (st = st->parent; st; st = st->parent) {
4128 		for (i = 0; i <= st->curframe; i++) {
4129 			func = st->frame[i];
4130 			for (j = 0; j < BPF_REG_FP; j++) {
4131 				reg = &func->regs[j];
4132 				if (reg->type != SCALAR_VALUE || reg->precise)
4133 					continue;
4134 				reg->precise = true;
4135 				if (env->log.level & BPF_LOG_LEVEL2) {
4136 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
4137 						i, j);
4138 				}
4139 			}
4140 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4141 				if (!is_spilled_reg(&func->stack[j]))
4142 					continue;
4143 				reg = &func->stack[j].spilled_ptr;
4144 				if (reg->type != SCALAR_VALUE || reg->precise)
4145 					continue;
4146 				reg->precise = true;
4147 				if (env->log.level & BPF_LOG_LEVEL2) {
4148 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
4149 						i, -(j + 1) * 8);
4150 				}
4151 			}
4152 		}
4153 	}
4154 }
4155 
4156 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4157 {
4158 	struct bpf_func_state *func;
4159 	struct bpf_reg_state *reg;
4160 	int i, j;
4161 
4162 	for (i = 0; i <= st->curframe; i++) {
4163 		func = st->frame[i];
4164 		for (j = 0; j < BPF_REG_FP; j++) {
4165 			reg = &func->regs[j];
4166 			if (reg->type != SCALAR_VALUE)
4167 				continue;
4168 			reg->precise = false;
4169 		}
4170 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4171 			if (!is_spilled_reg(&func->stack[j]))
4172 				continue;
4173 			reg = &func->stack[j].spilled_ptr;
4174 			if (reg->type != SCALAR_VALUE)
4175 				continue;
4176 			reg->precise = false;
4177 		}
4178 	}
4179 }
4180 
4181 /*
4182  * __mark_chain_precision() backtracks BPF program instruction sequence and
4183  * chain of verifier states making sure that register *regno* (if regno >= 0)
4184  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
4185  * SCALARS, as well as any other registers and slots that contribute to
4186  * a tracked state of given registers/stack slots, depending on specific BPF
4187  * assembly instructions (see backtrack_insns() for exact instruction handling
4188  * logic). This backtracking relies on recorded jmp_history and is able to
4189  * traverse entire chain of parent states. This process ends only when all the
4190  * necessary registers/slots and their transitive dependencies are marked as
4191  * precise.
4192  *
4193  * One important and subtle aspect is that precise marks *do not matter* in
4194  * the currently verified state (current state). It is important to understand
4195  * why this is the case.
4196  *
4197  * First, note that current state is the state that is not yet "checkpointed",
4198  * i.e., it is not yet put into env->explored_states, and it has no children
4199  * states as well. It's ephemeral, and can end up either a) being discarded if
4200  * compatible explored state is found at some point or BPF_EXIT instruction is
4201  * reached or b) checkpointed and put into env->explored_states, branching out
4202  * into one or more children states.
4203  *
4204  * In the former case, precise markings in current state are completely
4205  * ignored by state comparison code (see regsafe() for details). Only
4206  * checkpointed ("old") state precise markings are important, and if old
4207  * state's register/slot is precise, regsafe() assumes current state's
4208  * register/slot as precise and checks value ranges exactly and precisely. If
4209  * states turn out to be compatible, current state's necessary precise
4210  * markings and any required parent states' precise markings are enforced
4211  * after the fact with propagate_precision() logic, after the fact. But it's
4212  * important to realize that in this case, even after marking current state
4213  * registers/slots as precise, we immediately discard current state. So what
4214  * actually matters is any of the precise markings propagated into current
4215  * state's parent states, which are always checkpointed (due to b) case above).
4216  * As such, for scenario a) it doesn't matter if current state has precise
4217  * markings set or not.
4218  *
4219  * Now, for the scenario b), checkpointing and forking into child(ren)
4220  * state(s). Note that before current state gets to checkpointing step, any
4221  * processed instruction always assumes precise SCALAR register/slot
4222  * knowledge: if precise value or range is useful to prune jump branch, BPF
4223  * verifier takes this opportunity enthusiastically. Similarly, when
4224  * register's value is used to calculate offset or memory address, exact
4225  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4226  * what we mentioned above about state comparison ignoring precise markings
4227  * during state comparison, BPF verifier ignores and also assumes precise
4228  * markings *at will* during instruction verification process. But as verifier
4229  * assumes precision, it also propagates any precision dependencies across
4230  * parent states, which are not yet finalized, so can be further restricted
4231  * based on new knowledge gained from restrictions enforced by their children
4232  * states. This is so that once those parent states are finalized, i.e., when
4233  * they have no more active children state, state comparison logic in
4234  * is_state_visited() would enforce strict and precise SCALAR ranges, if
4235  * required for correctness.
4236  *
4237  * To build a bit more intuition, note also that once a state is checkpointed,
4238  * the path we took to get to that state is not important. This is crucial
4239  * property for state pruning. When state is checkpointed and finalized at
4240  * some instruction index, it can be correctly and safely used to "short
4241  * circuit" any *compatible* state that reaches exactly the same instruction
4242  * index. I.e., if we jumped to that instruction from a completely different
4243  * code path than original finalized state was derived from, it doesn't
4244  * matter, current state can be discarded because from that instruction
4245  * forward having a compatible state will ensure we will safely reach the
4246  * exit. States describe preconditions for further exploration, but completely
4247  * forget the history of how we got here.
4248  *
4249  * This also means that even if we needed precise SCALAR range to get to
4250  * finalized state, but from that point forward *that same* SCALAR register is
4251  * never used in a precise context (i.e., it's precise value is not needed for
4252  * correctness), it's correct and safe to mark such register as "imprecise"
4253  * (i.e., precise marking set to false). This is what we rely on when we do
4254  * not set precise marking in current state. If no child state requires
4255  * precision for any given SCALAR register, it's safe to dictate that it can
4256  * be imprecise. If any child state does require this register to be precise,
4257  * we'll mark it precise later retroactively during precise markings
4258  * propagation from child state to parent states.
4259  *
4260  * Skipping precise marking setting in current state is a mild version of
4261  * relying on the above observation. But we can utilize this property even
4262  * more aggressively by proactively forgetting any precise marking in the
4263  * current state (which we inherited from the parent state), right before we
4264  * checkpoint it and branch off into new child state. This is done by
4265  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4266  * finalized states which help in short circuiting more future states.
4267  */
4268 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
4269 {
4270 	struct backtrack_state *bt = &env->bt;
4271 	struct bpf_verifier_state *st = env->cur_state;
4272 	int first_idx = st->first_insn_idx;
4273 	int last_idx = env->insn_idx;
4274 	int subseq_idx = -1;
4275 	struct bpf_func_state *func;
4276 	struct bpf_reg_state *reg;
4277 	bool skip_first = true;
4278 	int i, fr, err;
4279 
4280 	if (!env->bpf_capable)
4281 		return 0;
4282 
4283 	/* set frame number from which we are starting to backtrack */
4284 	bt_init(bt, env->cur_state->curframe);
4285 
4286 	/* Do sanity checks against current state of register and/or stack
4287 	 * slot, but don't set precise flag in current state, as precision
4288 	 * tracking in the current state is unnecessary.
4289 	 */
4290 	func = st->frame[bt->frame];
4291 	if (regno >= 0) {
4292 		reg = &func->regs[regno];
4293 		if (reg->type != SCALAR_VALUE) {
4294 			WARN_ONCE(1, "backtracing misuse");
4295 			return -EFAULT;
4296 		}
4297 		bt_set_reg(bt, regno);
4298 	}
4299 
4300 	if (bt_empty(bt))
4301 		return 0;
4302 
4303 	for (;;) {
4304 		DECLARE_BITMAP(mask, 64);
4305 		u32 history = st->jmp_history_cnt;
4306 		struct bpf_jmp_history_entry *hist;
4307 
4308 		if (env->log.level & BPF_LOG_LEVEL2) {
4309 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4310 				bt->frame, last_idx, first_idx, subseq_idx);
4311 		}
4312 
4313 		if (last_idx < 0) {
4314 			/* we are at the entry into subprog, which
4315 			 * is expected for global funcs, but only if
4316 			 * requested precise registers are R1-R5
4317 			 * (which are global func's input arguments)
4318 			 */
4319 			if (st->curframe == 0 &&
4320 			    st->frame[0]->subprogno > 0 &&
4321 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
4322 			    bt_stack_mask(bt) == 0 &&
4323 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4324 				bitmap_from_u64(mask, bt_reg_mask(bt));
4325 				for_each_set_bit(i, mask, 32) {
4326 					reg = &st->frame[0]->regs[i];
4327 					bt_clear_reg(bt, i);
4328 					if (reg->type == SCALAR_VALUE)
4329 						reg->precise = true;
4330 				}
4331 				return 0;
4332 			}
4333 
4334 			verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4335 				st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4336 			WARN_ONCE(1, "verifier backtracking bug");
4337 			return -EFAULT;
4338 		}
4339 
4340 		for (i = last_idx;;) {
4341 			if (skip_first) {
4342 				err = 0;
4343 				skip_first = false;
4344 			} else {
4345 				hist = get_jmp_hist_entry(st, history, i);
4346 				err = backtrack_insn(env, i, subseq_idx, hist, bt);
4347 			}
4348 			if (err == -ENOTSUPP) {
4349 				mark_all_scalars_precise(env, env->cur_state);
4350 				bt_reset(bt);
4351 				return 0;
4352 			} else if (err) {
4353 				return err;
4354 			}
4355 			if (bt_empty(bt))
4356 				/* Found assignment(s) into tracked register in this state.
4357 				 * Since this state is already marked, just return.
4358 				 * Nothing to be tracked further in the parent state.
4359 				 */
4360 				return 0;
4361 			subseq_idx = i;
4362 			i = get_prev_insn_idx(st, i, &history);
4363 			if (i == -ENOENT)
4364 				break;
4365 			if (i >= env->prog->len) {
4366 				/* This can happen if backtracking reached insn 0
4367 				 * and there are still reg_mask or stack_mask
4368 				 * to backtrack.
4369 				 * It means the backtracking missed the spot where
4370 				 * particular register was initialized with a constant.
4371 				 */
4372 				verbose(env, "BUG backtracking idx %d\n", i);
4373 				WARN_ONCE(1, "verifier backtracking bug");
4374 				return -EFAULT;
4375 			}
4376 		}
4377 		st = st->parent;
4378 		if (!st)
4379 			break;
4380 
4381 		for (fr = bt->frame; fr >= 0; fr--) {
4382 			func = st->frame[fr];
4383 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4384 			for_each_set_bit(i, mask, 32) {
4385 				reg = &func->regs[i];
4386 				if (reg->type != SCALAR_VALUE) {
4387 					bt_clear_frame_reg(bt, fr, i);
4388 					continue;
4389 				}
4390 				if (reg->precise)
4391 					bt_clear_frame_reg(bt, fr, i);
4392 				else
4393 					reg->precise = true;
4394 			}
4395 
4396 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4397 			for_each_set_bit(i, mask, 64) {
4398 				if (i >= func->allocated_stack / BPF_REG_SIZE) {
4399 					verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n",
4400 						i, func->allocated_stack / BPF_REG_SIZE);
4401 					WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)");
4402 					return -EFAULT;
4403 				}
4404 
4405 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4406 					bt_clear_frame_slot(bt, fr, i);
4407 					continue;
4408 				}
4409 				reg = &func->stack[i].spilled_ptr;
4410 				if (reg->precise)
4411 					bt_clear_frame_slot(bt, fr, i);
4412 				else
4413 					reg->precise = true;
4414 			}
4415 			if (env->log.level & BPF_LOG_LEVEL2) {
4416 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4417 					     bt_frame_reg_mask(bt, fr));
4418 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4419 					fr, env->tmp_str_buf);
4420 				fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4421 					       bt_frame_stack_mask(bt, fr));
4422 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4423 				print_verifier_state(env, func, true);
4424 			}
4425 		}
4426 
4427 		if (bt_empty(bt))
4428 			return 0;
4429 
4430 		subseq_idx = first_idx;
4431 		last_idx = st->last_insn_idx;
4432 		first_idx = st->first_insn_idx;
4433 	}
4434 
4435 	/* if we still have requested precise regs or slots, we missed
4436 	 * something (e.g., stack access through non-r10 register), so
4437 	 * fallback to marking all precise
4438 	 */
4439 	if (!bt_empty(bt)) {
4440 		mark_all_scalars_precise(env, env->cur_state);
4441 		bt_reset(bt);
4442 	}
4443 
4444 	return 0;
4445 }
4446 
4447 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4448 {
4449 	return __mark_chain_precision(env, regno);
4450 }
4451 
4452 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4453  * desired reg and stack masks across all relevant frames
4454  */
4455 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4456 {
4457 	return __mark_chain_precision(env, -1);
4458 }
4459 
4460 static bool is_spillable_regtype(enum bpf_reg_type type)
4461 {
4462 	switch (base_type(type)) {
4463 	case PTR_TO_MAP_VALUE:
4464 	case PTR_TO_STACK:
4465 	case PTR_TO_CTX:
4466 	case PTR_TO_PACKET:
4467 	case PTR_TO_PACKET_META:
4468 	case PTR_TO_PACKET_END:
4469 	case PTR_TO_FLOW_KEYS:
4470 	case CONST_PTR_TO_MAP:
4471 	case PTR_TO_SOCKET:
4472 	case PTR_TO_SOCK_COMMON:
4473 	case PTR_TO_TCP_SOCK:
4474 	case PTR_TO_XDP_SOCK:
4475 	case PTR_TO_BTF_ID:
4476 	case PTR_TO_BUF:
4477 	case PTR_TO_MEM:
4478 	case PTR_TO_FUNC:
4479 	case PTR_TO_MAP_KEY:
4480 	case PTR_TO_ARENA:
4481 		return true;
4482 	default:
4483 		return false;
4484 	}
4485 }
4486 
4487 /* Does this register contain a constant zero? */
4488 static bool register_is_null(struct bpf_reg_state *reg)
4489 {
4490 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4491 }
4492 
4493 /* check if register is a constant scalar value */
4494 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32)
4495 {
4496 	return reg->type == SCALAR_VALUE &&
4497 	       tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off);
4498 }
4499 
4500 /* assuming is_reg_const() is true, return constant value of a register */
4501 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32)
4502 {
4503 	return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value;
4504 }
4505 
4506 static bool __is_pointer_value(bool allow_ptr_leaks,
4507 			       const struct bpf_reg_state *reg)
4508 {
4509 	if (allow_ptr_leaks)
4510 		return false;
4511 
4512 	return reg->type != SCALAR_VALUE;
4513 }
4514 
4515 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env,
4516 					struct bpf_reg_state *src_reg)
4517 {
4518 	if (src_reg->type != SCALAR_VALUE)
4519 		return;
4520 
4521 	if (src_reg->id & BPF_ADD_CONST) {
4522 		/*
4523 		 * The verifier is processing rX = rY insn and
4524 		 * rY->id has special linked register already.
4525 		 * Cleared it, since multiple rX += const are not supported.
4526 		 */
4527 		src_reg->id = 0;
4528 		src_reg->off = 0;
4529 	}
4530 
4531 	if (!src_reg->id && !tnum_is_const(src_reg->var_off))
4532 		/* Ensure that src_reg has a valid ID that will be copied to
4533 		 * dst_reg and then will be used by sync_linked_regs() to
4534 		 * propagate min/max range.
4535 		 */
4536 		src_reg->id = ++env->id_gen;
4537 }
4538 
4539 /* Copy src state preserving dst->parent and dst->live fields */
4540 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4541 {
4542 	struct bpf_reg_state *parent = dst->parent;
4543 	enum bpf_reg_liveness live = dst->live;
4544 
4545 	*dst = *src;
4546 	dst->parent = parent;
4547 	dst->live = live;
4548 }
4549 
4550 static void save_register_state(struct bpf_verifier_env *env,
4551 				struct bpf_func_state *state,
4552 				int spi, struct bpf_reg_state *reg,
4553 				int size)
4554 {
4555 	int i;
4556 
4557 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
4558 	if (size == BPF_REG_SIZE)
4559 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4560 
4561 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4562 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4563 
4564 	/* size < 8 bytes spill */
4565 	for (; i; i--)
4566 		mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]);
4567 }
4568 
4569 static bool is_bpf_st_mem(struct bpf_insn *insn)
4570 {
4571 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4572 }
4573 
4574 static int get_reg_width(struct bpf_reg_state *reg)
4575 {
4576 	return fls64(reg->umax_value);
4577 }
4578 
4579 /* See comment for mark_fastcall_pattern_for_call() */
4580 static void check_fastcall_stack_contract(struct bpf_verifier_env *env,
4581 					  struct bpf_func_state *state, int insn_idx, int off)
4582 {
4583 	struct bpf_subprog_info *subprog = &env->subprog_info[state->subprogno];
4584 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
4585 	int i;
4586 
4587 	if (subprog->fastcall_stack_off <= off || aux[insn_idx].fastcall_pattern)
4588 		return;
4589 	/* access to the region [max_stack_depth .. fastcall_stack_off)
4590 	 * from something that is not a part of the fastcall pattern,
4591 	 * disable fastcall rewrites for current subprogram by setting
4592 	 * fastcall_stack_off to a value smaller than any possible offset.
4593 	 */
4594 	subprog->fastcall_stack_off = S16_MIN;
4595 	/* reset fastcall aux flags within subprogram,
4596 	 * happens at most once per subprogram
4597 	 */
4598 	for (i = subprog->start; i < (subprog + 1)->start; ++i) {
4599 		aux[i].fastcall_spills_num = 0;
4600 		aux[i].fastcall_pattern = 0;
4601 	}
4602 }
4603 
4604 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4605  * stack boundary and alignment are checked in check_mem_access()
4606  */
4607 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4608 				       /* stack frame we're writing to */
4609 				       struct bpf_func_state *state,
4610 				       int off, int size, int value_regno,
4611 				       int insn_idx)
4612 {
4613 	struct bpf_func_state *cur; /* state of the current function */
4614 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4615 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4616 	struct bpf_reg_state *reg = NULL;
4617 	int insn_flags = insn_stack_access_flags(state->frameno, spi);
4618 
4619 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4620 	 * so it's aligned access and [off, off + size) are within stack limits
4621 	 */
4622 	if (!env->allow_ptr_leaks &&
4623 	    is_spilled_reg(&state->stack[spi]) &&
4624 	    size != BPF_REG_SIZE) {
4625 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
4626 		return -EACCES;
4627 	}
4628 
4629 	cur = env->cur_state->frame[env->cur_state->curframe];
4630 	if (value_regno >= 0)
4631 		reg = &cur->regs[value_regno];
4632 	if (!env->bypass_spec_v4) {
4633 		bool sanitize = reg && is_spillable_regtype(reg->type);
4634 
4635 		for (i = 0; i < size; i++) {
4636 			u8 type = state->stack[spi].slot_type[i];
4637 
4638 			if (type != STACK_MISC && type != STACK_ZERO) {
4639 				sanitize = true;
4640 				break;
4641 			}
4642 		}
4643 
4644 		if (sanitize)
4645 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4646 	}
4647 
4648 	err = destroy_if_dynptr_stack_slot(env, state, spi);
4649 	if (err)
4650 		return err;
4651 
4652 	check_fastcall_stack_contract(env, state, insn_idx, off);
4653 	mark_stack_slot_scratched(env, spi);
4654 	if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) {
4655 		bool reg_value_fits;
4656 
4657 		reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size;
4658 		/* Make sure that reg had an ID to build a relation on spill. */
4659 		if (reg_value_fits)
4660 			assign_scalar_id_before_mov(env, reg);
4661 		save_register_state(env, state, spi, reg, size);
4662 		/* Break the relation on a narrowing spill. */
4663 		if (!reg_value_fits)
4664 			state->stack[spi].spilled_ptr.id = 0;
4665 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4666 		   env->bpf_capable) {
4667 		struct bpf_reg_state *tmp_reg = &env->fake_reg[0];
4668 
4669 		memset(tmp_reg, 0, sizeof(*tmp_reg));
4670 		__mark_reg_known(tmp_reg, insn->imm);
4671 		tmp_reg->type = SCALAR_VALUE;
4672 		save_register_state(env, state, spi, tmp_reg, size);
4673 	} else if (reg && is_spillable_regtype(reg->type)) {
4674 		/* register containing pointer is being spilled into stack */
4675 		if (size != BPF_REG_SIZE) {
4676 			verbose_linfo(env, insn_idx, "; ");
4677 			verbose(env, "invalid size of register spill\n");
4678 			return -EACCES;
4679 		}
4680 		if (state != cur && reg->type == PTR_TO_STACK) {
4681 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4682 			return -EINVAL;
4683 		}
4684 		save_register_state(env, state, spi, reg, size);
4685 	} else {
4686 		u8 type = STACK_MISC;
4687 
4688 		/* regular write of data into stack destroys any spilled ptr */
4689 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4690 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4691 		if (is_stack_slot_special(&state->stack[spi]))
4692 			for (i = 0; i < BPF_REG_SIZE; i++)
4693 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4694 
4695 		/* only mark the slot as written if all 8 bytes were written
4696 		 * otherwise read propagation may incorrectly stop too soon
4697 		 * when stack slots are partially written.
4698 		 * This heuristic means that read propagation will be
4699 		 * conservative, since it will add reg_live_read marks
4700 		 * to stack slots all the way to first state when programs
4701 		 * writes+reads less than 8 bytes
4702 		 */
4703 		if (size == BPF_REG_SIZE)
4704 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4705 
4706 		/* when we zero initialize stack slots mark them as such */
4707 		if ((reg && register_is_null(reg)) ||
4708 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4709 			/* STACK_ZERO case happened because register spill
4710 			 * wasn't properly aligned at the stack slot boundary,
4711 			 * so it's not a register spill anymore; force
4712 			 * originating register to be precise to make
4713 			 * STACK_ZERO correct for subsequent states
4714 			 */
4715 			err = mark_chain_precision(env, value_regno);
4716 			if (err)
4717 				return err;
4718 			type = STACK_ZERO;
4719 		}
4720 
4721 		/* Mark slots affected by this stack write. */
4722 		for (i = 0; i < size; i++)
4723 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type;
4724 		insn_flags = 0; /* not a register spill */
4725 	}
4726 
4727 	if (insn_flags)
4728 		return push_jmp_history(env, env->cur_state, insn_flags, 0);
4729 	return 0;
4730 }
4731 
4732 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4733  * known to contain a variable offset.
4734  * This function checks whether the write is permitted and conservatively
4735  * tracks the effects of the write, considering that each stack slot in the
4736  * dynamic range is potentially written to.
4737  *
4738  * 'off' includes 'regno->off'.
4739  * 'value_regno' can be -1, meaning that an unknown value is being written to
4740  * the stack.
4741  *
4742  * Spilled pointers in range are not marked as written because we don't know
4743  * what's going to be actually written. This means that read propagation for
4744  * future reads cannot be terminated by this write.
4745  *
4746  * For privileged programs, uninitialized stack slots are considered
4747  * initialized by this write (even though we don't know exactly what offsets
4748  * are going to be written to). The idea is that we don't want the verifier to
4749  * reject future reads that access slots written to through variable offsets.
4750  */
4751 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4752 				     /* func where register points to */
4753 				     struct bpf_func_state *state,
4754 				     int ptr_regno, int off, int size,
4755 				     int value_regno, int insn_idx)
4756 {
4757 	struct bpf_func_state *cur; /* state of the current function */
4758 	int min_off, max_off;
4759 	int i, err;
4760 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4761 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4762 	bool writing_zero = false;
4763 	/* set if the fact that we're writing a zero is used to let any
4764 	 * stack slots remain STACK_ZERO
4765 	 */
4766 	bool zero_used = false;
4767 
4768 	cur = env->cur_state->frame[env->cur_state->curframe];
4769 	ptr_reg = &cur->regs[ptr_regno];
4770 	min_off = ptr_reg->smin_value + off;
4771 	max_off = ptr_reg->smax_value + off + size;
4772 	if (value_regno >= 0)
4773 		value_reg = &cur->regs[value_regno];
4774 	if ((value_reg && register_is_null(value_reg)) ||
4775 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4776 		writing_zero = true;
4777 
4778 	for (i = min_off; i < max_off; i++) {
4779 		int spi;
4780 
4781 		spi = __get_spi(i);
4782 		err = destroy_if_dynptr_stack_slot(env, state, spi);
4783 		if (err)
4784 			return err;
4785 	}
4786 
4787 	check_fastcall_stack_contract(env, state, insn_idx, min_off);
4788 	/* Variable offset writes destroy any spilled pointers in range. */
4789 	for (i = min_off; i < max_off; i++) {
4790 		u8 new_type, *stype;
4791 		int slot, spi;
4792 
4793 		slot = -i - 1;
4794 		spi = slot / BPF_REG_SIZE;
4795 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4796 		mark_stack_slot_scratched(env, spi);
4797 
4798 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4799 			/* Reject the write if range we may write to has not
4800 			 * been initialized beforehand. If we didn't reject
4801 			 * here, the ptr status would be erased below (even
4802 			 * though not all slots are actually overwritten),
4803 			 * possibly opening the door to leaks.
4804 			 *
4805 			 * We do however catch STACK_INVALID case below, and
4806 			 * only allow reading possibly uninitialized memory
4807 			 * later for CAP_PERFMON, as the write may not happen to
4808 			 * that slot.
4809 			 */
4810 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4811 				insn_idx, i);
4812 			return -EINVAL;
4813 		}
4814 
4815 		/* If writing_zero and the spi slot contains a spill of value 0,
4816 		 * maintain the spill type.
4817 		 */
4818 		if (writing_zero && *stype == STACK_SPILL &&
4819 		    is_spilled_scalar_reg(&state->stack[spi])) {
4820 			struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr;
4821 
4822 			if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) {
4823 				zero_used = true;
4824 				continue;
4825 			}
4826 		}
4827 
4828 		/* Erase all other spilled pointers. */
4829 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4830 
4831 		/* Update the slot type. */
4832 		new_type = STACK_MISC;
4833 		if (writing_zero && *stype == STACK_ZERO) {
4834 			new_type = STACK_ZERO;
4835 			zero_used = true;
4836 		}
4837 		/* If the slot is STACK_INVALID, we check whether it's OK to
4838 		 * pretend that it will be initialized by this write. The slot
4839 		 * might not actually be written to, and so if we mark it as
4840 		 * initialized future reads might leak uninitialized memory.
4841 		 * For privileged programs, we will accept such reads to slots
4842 		 * that may or may not be written because, if we're reject
4843 		 * them, the error would be too confusing.
4844 		 */
4845 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4846 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4847 					insn_idx, i);
4848 			return -EINVAL;
4849 		}
4850 		*stype = new_type;
4851 	}
4852 	if (zero_used) {
4853 		/* backtracking doesn't work for STACK_ZERO yet. */
4854 		err = mark_chain_precision(env, value_regno);
4855 		if (err)
4856 			return err;
4857 	}
4858 	return 0;
4859 }
4860 
4861 /* When register 'dst_regno' is assigned some values from stack[min_off,
4862  * max_off), we set the register's type according to the types of the
4863  * respective stack slots. If all the stack values are known to be zeros, then
4864  * so is the destination reg. Otherwise, the register is considered to be
4865  * SCALAR. This function does not deal with register filling; the caller must
4866  * ensure that all spilled registers in the stack range have been marked as
4867  * read.
4868  */
4869 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4870 				/* func where src register points to */
4871 				struct bpf_func_state *ptr_state,
4872 				int min_off, int max_off, int dst_regno)
4873 {
4874 	struct bpf_verifier_state *vstate = env->cur_state;
4875 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4876 	int i, slot, spi;
4877 	u8 *stype;
4878 	int zeros = 0;
4879 
4880 	for (i = min_off; i < max_off; i++) {
4881 		slot = -i - 1;
4882 		spi = slot / BPF_REG_SIZE;
4883 		mark_stack_slot_scratched(env, spi);
4884 		stype = ptr_state->stack[spi].slot_type;
4885 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4886 			break;
4887 		zeros++;
4888 	}
4889 	if (zeros == max_off - min_off) {
4890 		/* Any access_size read into register is zero extended,
4891 		 * so the whole register == const_zero.
4892 		 */
4893 		__mark_reg_const_zero(env, &state->regs[dst_regno]);
4894 	} else {
4895 		/* have read misc data from the stack */
4896 		mark_reg_unknown(env, state->regs, dst_regno);
4897 	}
4898 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4899 }
4900 
4901 /* Read the stack at 'off' and put the results into the register indicated by
4902  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4903  * spilled reg.
4904  *
4905  * 'dst_regno' can be -1, meaning that the read value is not going to a
4906  * register.
4907  *
4908  * The access is assumed to be within the current stack bounds.
4909  */
4910 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4911 				      /* func where src register points to */
4912 				      struct bpf_func_state *reg_state,
4913 				      int off, int size, int dst_regno)
4914 {
4915 	struct bpf_verifier_state *vstate = env->cur_state;
4916 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4917 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4918 	struct bpf_reg_state *reg;
4919 	u8 *stype, type;
4920 	int insn_flags = insn_stack_access_flags(reg_state->frameno, spi);
4921 
4922 	stype = reg_state->stack[spi].slot_type;
4923 	reg = &reg_state->stack[spi].spilled_ptr;
4924 
4925 	mark_stack_slot_scratched(env, spi);
4926 	check_fastcall_stack_contract(env, state, env->insn_idx, off);
4927 
4928 	if (is_spilled_reg(&reg_state->stack[spi])) {
4929 		u8 spill_size = 1;
4930 
4931 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4932 			spill_size++;
4933 
4934 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4935 			if (reg->type != SCALAR_VALUE) {
4936 				verbose_linfo(env, env->insn_idx, "; ");
4937 				verbose(env, "invalid size of register fill\n");
4938 				return -EACCES;
4939 			}
4940 
4941 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4942 			if (dst_regno < 0)
4943 				return 0;
4944 
4945 			if (size <= spill_size &&
4946 			    bpf_stack_narrow_access_ok(off, size, spill_size)) {
4947 				/* The earlier check_reg_arg() has decided the
4948 				 * subreg_def for this insn.  Save it first.
4949 				 */
4950 				s32 subreg_def = state->regs[dst_regno].subreg_def;
4951 
4952 				copy_register_state(&state->regs[dst_regno], reg);
4953 				state->regs[dst_regno].subreg_def = subreg_def;
4954 
4955 				/* Break the relation on a narrowing fill.
4956 				 * coerce_reg_to_size will adjust the boundaries.
4957 				 */
4958 				if (get_reg_width(reg) > size * BITS_PER_BYTE)
4959 					state->regs[dst_regno].id = 0;
4960 			} else {
4961 				int spill_cnt = 0, zero_cnt = 0;
4962 
4963 				for (i = 0; i < size; i++) {
4964 					type = stype[(slot - i) % BPF_REG_SIZE];
4965 					if (type == STACK_SPILL) {
4966 						spill_cnt++;
4967 						continue;
4968 					}
4969 					if (type == STACK_MISC)
4970 						continue;
4971 					if (type == STACK_ZERO) {
4972 						zero_cnt++;
4973 						continue;
4974 					}
4975 					if (type == STACK_INVALID && env->allow_uninit_stack)
4976 						continue;
4977 					verbose(env, "invalid read from stack off %d+%d size %d\n",
4978 						off, i, size);
4979 					return -EACCES;
4980 				}
4981 
4982 				if (spill_cnt == size &&
4983 				    tnum_is_const(reg->var_off) && reg->var_off.value == 0) {
4984 					__mark_reg_const_zero(env, &state->regs[dst_regno]);
4985 					/* this IS register fill, so keep insn_flags */
4986 				} else if (zero_cnt == size) {
4987 					/* similarly to mark_reg_stack_read(), preserve zeroes */
4988 					__mark_reg_const_zero(env, &state->regs[dst_regno]);
4989 					insn_flags = 0; /* not restoring original register state */
4990 				} else {
4991 					mark_reg_unknown(env, state->regs, dst_regno);
4992 					insn_flags = 0; /* not restoring original register state */
4993 				}
4994 			}
4995 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4996 		} else if (dst_regno >= 0) {
4997 			/* restore register state from stack */
4998 			copy_register_state(&state->regs[dst_regno], reg);
4999 			/* mark reg as written since spilled pointer state likely
5000 			 * has its liveness marks cleared by is_state_visited()
5001 			 * which resets stack/reg liveness for state transitions
5002 			 */
5003 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
5004 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
5005 			/* If dst_regno==-1, the caller is asking us whether
5006 			 * it is acceptable to use this value as a SCALAR_VALUE
5007 			 * (e.g. for XADD).
5008 			 * We must not allow unprivileged callers to do that
5009 			 * with spilled pointers.
5010 			 */
5011 			verbose(env, "leaking pointer from stack off %d\n",
5012 				off);
5013 			return -EACCES;
5014 		}
5015 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5016 	} else {
5017 		for (i = 0; i < size; i++) {
5018 			type = stype[(slot - i) % BPF_REG_SIZE];
5019 			if (type == STACK_MISC)
5020 				continue;
5021 			if (type == STACK_ZERO)
5022 				continue;
5023 			if (type == STACK_INVALID && env->allow_uninit_stack)
5024 				continue;
5025 			verbose(env, "invalid read from stack off %d+%d size %d\n",
5026 				off, i, size);
5027 			return -EACCES;
5028 		}
5029 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
5030 		if (dst_regno >= 0)
5031 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
5032 		insn_flags = 0; /* we are not restoring spilled register */
5033 	}
5034 	if (insn_flags)
5035 		return push_jmp_history(env, env->cur_state, insn_flags, 0);
5036 	return 0;
5037 }
5038 
5039 enum bpf_access_src {
5040 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
5041 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
5042 };
5043 
5044 static int check_stack_range_initialized(struct bpf_verifier_env *env,
5045 					 int regno, int off, int access_size,
5046 					 bool zero_size_allowed,
5047 					 enum bpf_access_src type,
5048 					 struct bpf_call_arg_meta *meta);
5049 
5050 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
5051 {
5052 	return cur_regs(env) + regno;
5053 }
5054 
5055 /* Read the stack at 'ptr_regno + off' and put the result into the register
5056  * 'dst_regno'.
5057  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
5058  * but not its variable offset.
5059  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
5060  *
5061  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
5062  * filling registers (i.e. reads of spilled register cannot be detected when
5063  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
5064  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
5065  * offset; for a fixed offset check_stack_read_fixed_off should be used
5066  * instead.
5067  */
5068 static int check_stack_read_var_off(struct bpf_verifier_env *env,
5069 				    int ptr_regno, int off, int size, int dst_regno)
5070 {
5071 	/* The state of the source register. */
5072 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5073 	struct bpf_func_state *ptr_state = func(env, reg);
5074 	int err;
5075 	int min_off, max_off;
5076 
5077 	/* Note that we pass a NULL meta, so raw access will not be permitted.
5078 	 */
5079 	err = check_stack_range_initialized(env, ptr_regno, off, size,
5080 					    false, ACCESS_DIRECT, NULL);
5081 	if (err)
5082 		return err;
5083 
5084 	min_off = reg->smin_value + off;
5085 	max_off = reg->smax_value + off;
5086 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
5087 	check_fastcall_stack_contract(env, ptr_state, env->insn_idx, min_off);
5088 	return 0;
5089 }
5090 
5091 /* check_stack_read dispatches to check_stack_read_fixed_off or
5092  * check_stack_read_var_off.
5093  *
5094  * The caller must ensure that the offset falls within the allocated stack
5095  * bounds.
5096  *
5097  * 'dst_regno' is a register which will receive the value from the stack. It
5098  * can be -1, meaning that the read value is not going to a register.
5099  */
5100 static int check_stack_read(struct bpf_verifier_env *env,
5101 			    int ptr_regno, int off, int size,
5102 			    int dst_regno)
5103 {
5104 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5105 	struct bpf_func_state *state = func(env, reg);
5106 	int err;
5107 	/* Some accesses are only permitted with a static offset. */
5108 	bool var_off = !tnum_is_const(reg->var_off);
5109 
5110 	/* The offset is required to be static when reads don't go to a
5111 	 * register, in order to not leak pointers (see
5112 	 * check_stack_read_fixed_off).
5113 	 */
5114 	if (dst_regno < 0 && var_off) {
5115 		char tn_buf[48];
5116 
5117 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5118 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
5119 			tn_buf, off, size);
5120 		return -EACCES;
5121 	}
5122 	/* Variable offset is prohibited for unprivileged mode for simplicity
5123 	 * since it requires corresponding support in Spectre masking for stack
5124 	 * ALU. See also retrieve_ptr_limit(). The check in
5125 	 * check_stack_access_for_ptr_arithmetic() called by
5126 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
5127 	 * with variable offsets, therefore no check is required here. Further,
5128 	 * just checking it here would be insufficient as speculative stack
5129 	 * writes could still lead to unsafe speculative behaviour.
5130 	 */
5131 	if (!var_off) {
5132 		off += reg->var_off.value;
5133 		err = check_stack_read_fixed_off(env, state, off, size,
5134 						 dst_regno);
5135 	} else {
5136 		/* Variable offset stack reads need more conservative handling
5137 		 * than fixed offset ones. Note that dst_regno >= 0 on this
5138 		 * branch.
5139 		 */
5140 		err = check_stack_read_var_off(env, ptr_regno, off, size,
5141 					       dst_regno);
5142 	}
5143 	return err;
5144 }
5145 
5146 
5147 /* check_stack_write dispatches to check_stack_write_fixed_off or
5148  * check_stack_write_var_off.
5149  *
5150  * 'ptr_regno' is the register used as a pointer into the stack.
5151  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
5152  * 'value_regno' is the register whose value we're writing to the stack. It can
5153  * be -1, meaning that we're not writing from a register.
5154  *
5155  * The caller must ensure that the offset falls within the maximum stack size.
5156  */
5157 static int check_stack_write(struct bpf_verifier_env *env,
5158 			     int ptr_regno, int off, int size,
5159 			     int value_regno, int insn_idx)
5160 {
5161 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5162 	struct bpf_func_state *state = func(env, reg);
5163 	int err;
5164 
5165 	if (tnum_is_const(reg->var_off)) {
5166 		off += reg->var_off.value;
5167 		err = check_stack_write_fixed_off(env, state, off, size,
5168 						  value_regno, insn_idx);
5169 	} else {
5170 		/* Variable offset stack reads need more conservative handling
5171 		 * than fixed offset ones.
5172 		 */
5173 		err = check_stack_write_var_off(env, state,
5174 						ptr_regno, off, size,
5175 						value_regno, insn_idx);
5176 	}
5177 	return err;
5178 }
5179 
5180 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
5181 				 int off, int size, enum bpf_access_type type)
5182 {
5183 	struct bpf_reg_state *regs = cur_regs(env);
5184 	struct bpf_map *map = regs[regno].map_ptr;
5185 	u32 cap = bpf_map_flags_to_cap(map);
5186 
5187 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
5188 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
5189 			map->value_size, off, size);
5190 		return -EACCES;
5191 	}
5192 
5193 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
5194 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
5195 			map->value_size, off, size);
5196 		return -EACCES;
5197 	}
5198 
5199 	return 0;
5200 }
5201 
5202 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
5203 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
5204 			      int off, int size, u32 mem_size,
5205 			      bool zero_size_allowed)
5206 {
5207 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
5208 	struct bpf_reg_state *reg;
5209 
5210 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
5211 		return 0;
5212 
5213 	reg = &cur_regs(env)[regno];
5214 	switch (reg->type) {
5215 	case PTR_TO_MAP_KEY:
5216 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
5217 			mem_size, off, size);
5218 		break;
5219 	case PTR_TO_MAP_VALUE:
5220 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
5221 			mem_size, off, size);
5222 		break;
5223 	case PTR_TO_PACKET:
5224 	case PTR_TO_PACKET_META:
5225 	case PTR_TO_PACKET_END:
5226 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
5227 			off, size, regno, reg->id, off, mem_size);
5228 		break;
5229 	case PTR_TO_MEM:
5230 	default:
5231 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
5232 			mem_size, off, size);
5233 	}
5234 
5235 	return -EACCES;
5236 }
5237 
5238 /* check read/write into a memory region with possible variable offset */
5239 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5240 				   int off, int size, u32 mem_size,
5241 				   bool zero_size_allowed)
5242 {
5243 	struct bpf_verifier_state *vstate = env->cur_state;
5244 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5245 	struct bpf_reg_state *reg = &state->regs[regno];
5246 	int err;
5247 
5248 	/* We may have adjusted the register pointing to memory region, so we
5249 	 * need to try adding each of min_value and max_value to off
5250 	 * to make sure our theoretical access will be safe.
5251 	 *
5252 	 * The minimum value is only important with signed
5253 	 * comparisons where we can't assume the floor of a
5254 	 * value is 0.  If we are using signed variables for our
5255 	 * index'es we need to make sure that whatever we use
5256 	 * will have a set floor within our range.
5257 	 */
5258 	if (reg->smin_value < 0 &&
5259 	    (reg->smin_value == S64_MIN ||
5260 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5261 	      reg->smin_value + off < 0)) {
5262 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5263 			regno);
5264 		return -EACCES;
5265 	}
5266 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
5267 				 mem_size, zero_size_allowed);
5268 	if (err) {
5269 		verbose(env, "R%d min value is outside of the allowed memory range\n",
5270 			regno);
5271 		return err;
5272 	}
5273 
5274 	/* If we haven't set a max value then we need to bail since we can't be
5275 	 * sure we won't do bad things.
5276 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
5277 	 */
5278 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5279 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5280 			regno);
5281 		return -EACCES;
5282 	}
5283 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
5284 				 mem_size, zero_size_allowed);
5285 	if (err) {
5286 		verbose(env, "R%d max value is outside of the allowed memory range\n",
5287 			regno);
5288 		return err;
5289 	}
5290 
5291 	return 0;
5292 }
5293 
5294 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5295 			       const struct bpf_reg_state *reg, int regno,
5296 			       bool fixed_off_ok)
5297 {
5298 	/* Access to this pointer-typed register or passing it to a helper
5299 	 * is only allowed in its original, unmodified form.
5300 	 */
5301 
5302 	if (reg->off < 0) {
5303 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5304 			reg_type_str(env, reg->type), regno, reg->off);
5305 		return -EACCES;
5306 	}
5307 
5308 	if (!fixed_off_ok && reg->off) {
5309 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5310 			reg_type_str(env, reg->type), regno, reg->off);
5311 		return -EACCES;
5312 	}
5313 
5314 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5315 		char tn_buf[48];
5316 
5317 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5318 		verbose(env, "variable %s access var_off=%s disallowed\n",
5319 			reg_type_str(env, reg->type), tn_buf);
5320 		return -EACCES;
5321 	}
5322 
5323 	return 0;
5324 }
5325 
5326 static int check_ptr_off_reg(struct bpf_verifier_env *env,
5327 		             const struct bpf_reg_state *reg, int regno)
5328 {
5329 	return __check_ptr_off_reg(env, reg, regno, false);
5330 }
5331 
5332 static int map_kptr_match_type(struct bpf_verifier_env *env,
5333 			       struct btf_field *kptr_field,
5334 			       struct bpf_reg_state *reg, u32 regno)
5335 {
5336 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5337 	int perm_flags;
5338 	const char *reg_name = "";
5339 
5340 	if (btf_is_kernel(reg->btf)) {
5341 		perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5342 
5343 		/* Only unreferenced case accepts untrusted pointers */
5344 		if (kptr_field->type == BPF_KPTR_UNREF)
5345 			perm_flags |= PTR_UNTRUSTED;
5346 	} else {
5347 		perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5348 		if (kptr_field->type == BPF_KPTR_PERCPU)
5349 			perm_flags |= MEM_PERCPU;
5350 	}
5351 
5352 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5353 		goto bad_type;
5354 
5355 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
5356 	reg_name = btf_type_name(reg->btf, reg->btf_id);
5357 
5358 	/* For ref_ptr case, release function check should ensure we get one
5359 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5360 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
5361 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5362 	 * reg->off and reg->ref_obj_id are not needed here.
5363 	 */
5364 	if (__check_ptr_off_reg(env, reg, regno, true))
5365 		return -EACCES;
5366 
5367 	/* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5368 	 * we also need to take into account the reg->off.
5369 	 *
5370 	 * We want to support cases like:
5371 	 *
5372 	 * struct foo {
5373 	 *         struct bar br;
5374 	 *         struct baz bz;
5375 	 * };
5376 	 *
5377 	 * struct foo *v;
5378 	 * v = func();	      // PTR_TO_BTF_ID
5379 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
5380 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5381 	 *                    // first member type of struct after comparison fails
5382 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5383 	 *                    // to match type
5384 	 *
5385 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5386 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
5387 	 * the struct to match type against first member of struct, i.e. reject
5388 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5389 	 * strict mode to true for type match.
5390 	 */
5391 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5392 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5393 				  kptr_field->type != BPF_KPTR_UNREF))
5394 		goto bad_type;
5395 	return 0;
5396 bad_type:
5397 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5398 		reg_type_str(env, reg->type), reg_name);
5399 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5400 	if (kptr_field->type == BPF_KPTR_UNREF)
5401 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5402 			targ_name);
5403 	else
5404 		verbose(env, "\n");
5405 	return -EINVAL;
5406 }
5407 
5408 static bool in_sleepable(struct bpf_verifier_env *env)
5409 {
5410 	return env->prog->sleepable ||
5411 	       (env->cur_state && env->cur_state->in_sleepable);
5412 }
5413 
5414 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5415  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5416  */
5417 static bool in_rcu_cs(struct bpf_verifier_env *env)
5418 {
5419 	return env->cur_state->active_rcu_lock ||
5420 	       env->cur_state->active_lock.ptr ||
5421 	       !in_sleepable(env);
5422 }
5423 
5424 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5425 BTF_SET_START(rcu_protected_types)
5426 BTF_ID(struct, prog_test_ref_kfunc)
5427 #ifdef CONFIG_CGROUPS
5428 BTF_ID(struct, cgroup)
5429 #endif
5430 #ifdef CONFIG_BPF_JIT
5431 BTF_ID(struct, bpf_cpumask)
5432 #endif
5433 BTF_ID(struct, task_struct)
5434 BTF_ID(struct, bpf_crypto_ctx)
5435 BTF_SET_END(rcu_protected_types)
5436 
5437 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5438 {
5439 	if (!btf_is_kernel(btf))
5440 		return true;
5441 	return btf_id_set_contains(&rcu_protected_types, btf_id);
5442 }
5443 
5444 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field)
5445 {
5446 	struct btf_struct_meta *meta;
5447 
5448 	if (btf_is_kernel(kptr_field->kptr.btf))
5449 		return NULL;
5450 
5451 	meta = btf_find_struct_meta(kptr_field->kptr.btf,
5452 				    kptr_field->kptr.btf_id);
5453 
5454 	return meta ? meta->record : NULL;
5455 }
5456 
5457 static bool rcu_safe_kptr(const struct btf_field *field)
5458 {
5459 	const struct btf_field_kptr *kptr = &field->kptr;
5460 
5461 	return field->type == BPF_KPTR_PERCPU ||
5462 	       (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id));
5463 }
5464 
5465 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field)
5466 {
5467 	struct btf_record *rec;
5468 	u32 ret;
5469 
5470 	ret = PTR_MAYBE_NULL;
5471 	if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) {
5472 		ret |= MEM_RCU;
5473 		if (kptr_field->type == BPF_KPTR_PERCPU)
5474 			ret |= MEM_PERCPU;
5475 		else if (!btf_is_kernel(kptr_field->kptr.btf))
5476 			ret |= MEM_ALLOC;
5477 
5478 		rec = kptr_pointee_btf_record(kptr_field);
5479 		if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE))
5480 			ret |= NON_OWN_REF;
5481 	} else {
5482 		ret |= PTR_UNTRUSTED;
5483 	}
5484 
5485 	return ret;
5486 }
5487 
5488 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5489 				 int value_regno, int insn_idx,
5490 				 struct btf_field *kptr_field)
5491 {
5492 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5493 	int class = BPF_CLASS(insn->code);
5494 	struct bpf_reg_state *val_reg;
5495 
5496 	/* Things we already checked for in check_map_access and caller:
5497 	 *  - Reject cases where variable offset may touch kptr
5498 	 *  - size of access (must be BPF_DW)
5499 	 *  - tnum_is_const(reg->var_off)
5500 	 *  - kptr_field->offset == off + reg->var_off.value
5501 	 */
5502 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5503 	if (BPF_MODE(insn->code) != BPF_MEM) {
5504 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5505 		return -EACCES;
5506 	}
5507 
5508 	/* We only allow loading referenced kptr, since it will be marked as
5509 	 * untrusted, similar to unreferenced kptr.
5510 	 */
5511 	if (class != BPF_LDX &&
5512 	    (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) {
5513 		verbose(env, "store to referenced kptr disallowed\n");
5514 		return -EACCES;
5515 	}
5516 
5517 	if (class == BPF_LDX) {
5518 		val_reg = reg_state(env, value_regno);
5519 		/* We can simply mark the value_regno receiving the pointer
5520 		 * value from map as PTR_TO_BTF_ID, with the correct type.
5521 		 */
5522 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5523 				kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field));
5524 	} else if (class == BPF_STX) {
5525 		val_reg = reg_state(env, value_regno);
5526 		if (!register_is_null(val_reg) &&
5527 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5528 			return -EACCES;
5529 	} else if (class == BPF_ST) {
5530 		if (insn->imm) {
5531 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5532 				kptr_field->offset);
5533 			return -EACCES;
5534 		}
5535 	} else {
5536 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5537 		return -EACCES;
5538 	}
5539 	return 0;
5540 }
5541 
5542 /* check read/write into a map element with possible variable offset */
5543 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5544 			    int off, int size, bool zero_size_allowed,
5545 			    enum bpf_access_src src)
5546 {
5547 	struct bpf_verifier_state *vstate = env->cur_state;
5548 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5549 	struct bpf_reg_state *reg = &state->regs[regno];
5550 	struct bpf_map *map = reg->map_ptr;
5551 	struct btf_record *rec;
5552 	int err, i;
5553 
5554 	err = check_mem_region_access(env, regno, off, size, map->value_size,
5555 				      zero_size_allowed);
5556 	if (err)
5557 		return err;
5558 
5559 	if (IS_ERR_OR_NULL(map->record))
5560 		return 0;
5561 	rec = map->record;
5562 	for (i = 0; i < rec->cnt; i++) {
5563 		struct btf_field *field = &rec->fields[i];
5564 		u32 p = field->offset;
5565 
5566 		/* If any part of a field  can be touched by load/store, reject
5567 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
5568 		 * it is sufficient to check x1 < y2 && y1 < x2.
5569 		 */
5570 		if (reg->smin_value + off < p + field->size &&
5571 		    p < reg->umax_value + off + size) {
5572 			switch (field->type) {
5573 			case BPF_KPTR_UNREF:
5574 			case BPF_KPTR_REF:
5575 			case BPF_KPTR_PERCPU:
5576 				if (src != ACCESS_DIRECT) {
5577 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
5578 					return -EACCES;
5579 				}
5580 				if (!tnum_is_const(reg->var_off)) {
5581 					verbose(env, "kptr access cannot have variable offset\n");
5582 					return -EACCES;
5583 				}
5584 				if (p != off + reg->var_off.value) {
5585 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5586 						p, off + reg->var_off.value);
5587 					return -EACCES;
5588 				}
5589 				if (size != bpf_size_to_bytes(BPF_DW)) {
5590 					verbose(env, "kptr access size must be BPF_DW\n");
5591 					return -EACCES;
5592 				}
5593 				break;
5594 			default:
5595 				verbose(env, "%s cannot be accessed directly by load/store\n",
5596 					btf_field_type_name(field->type));
5597 				return -EACCES;
5598 			}
5599 		}
5600 	}
5601 	return 0;
5602 }
5603 
5604 #define MAX_PACKET_OFF 0xffff
5605 
5606 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5607 				       const struct bpf_call_arg_meta *meta,
5608 				       enum bpf_access_type t)
5609 {
5610 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5611 
5612 	switch (prog_type) {
5613 	/* Program types only with direct read access go here! */
5614 	case BPF_PROG_TYPE_LWT_IN:
5615 	case BPF_PROG_TYPE_LWT_OUT:
5616 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5617 	case BPF_PROG_TYPE_SK_REUSEPORT:
5618 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5619 	case BPF_PROG_TYPE_CGROUP_SKB:
5620 		if (t == BPF_WRITE)
5621 			return false;
5622 		fallthrough;
5623 
5624 	/* Program types with direct read + write access go here! */
5625 	case BPF_PROG_TYPE_SCHED_CLS:
5626 	case BPF_PROG_TYPE_SCHED_ACT:
5627 	case BPF_PROG_TYPE_XDP:
5628 	case BPF_PROG_TYPE_LWT_XMIT:
5629 	case BPF_PROG_TYPE_SK_SKB:
5630 	case BPF_PROG_TYPE_SK_MSG:
5631 		if (meta)
5632 			return meta->pkt_access;
5633 
5634 		env->seen_direct_write = true;
5635 		return true;
5636 
5637 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5638 		if (t == BPF_WRITE)
5639 			env->seen_direct_write = true;
5640 
5641 		return true;
5642 
5643 	default:
5644 		return false;
5645 	}
5646 }
5647 
5648 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5649 			       int size, bool zero_size_allowed)
5650 {
5651 	struct bpf_reg_state *regs = cur_regs(env);
5652 	struct bpf_reg_state *reg = &regs[regno];
5653 	int err;
5654 
5655 	/* We may have added a variable offset to the packet pointer; but any
5656 	 * reg->range we have comes after that.  We are only checking the fixed
5657 	 * offset.
5658 	 */
5659 
5660 	/* We don't allow negative numbers, because we aren't tracking enough
5661 	 * detail to prove they're safe.
5662 	 */
5663 	if (reg->smin_value < 0) {
5664 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5665 			regno);
5666 		return -EACCES;
5667 	}
5668 
5669 	err = reg->range < 0 ? -EINVAL :
5670 	      __check_mem_access(env, regno, off, size, reg->range,
5671 				 zero_size_allowed);
5672 	if (err) {
5673 		verbose(env, "R%d offset is outside of the packet\n", regno);
5674 		return err;
5675 	}
5676 
5677 	/* __check_mem_access has made sure "off + size - 1" is within u16.
5678 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5679 	 * otherwise find_good_pkt_pointers would have refused to set range info
5680 	 * that __check_mem_access would have rejected this pkt access.
5681 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5682 	 */
5683 	env->prog->aux->max_pkt_offset =
5684 		max_t(u32, env->prog->aux->max_pkt_offset,
5685 		      off + reg->umax_value + size - 1);
5686 
5687 	return err;
5688 }
5689 
5690 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
5691 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5692 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
5693 			    struct btf **btf, u32 *btf_id, bool *is_retval, bool is_ldsx)
5694 {
5695 	struct bpf_insn_access_aux info = {
5696 		.reg_type = *reg_type,
5697 		.log = &env->log,
5698 		.is_retval = false,
5699 		.is_ldsx = is_ldsx,
5700 	};
5701 
5702 	if (env->ops->is_valid_access &&
5703 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5704 		/* A non zero info.ctx_field_size indicates that this field is a
5705 		 * candidate for later verifier transformation to load the whole
5706 		 * field and then apply a mask when accessed with a narrower
5707 		 * access than actual ctx access size. A zero info.ctx_field_size
5708 		 * will only allow for whole field access and rejects any other
5709 		 * type of narrower access.
5710 		 */
5711 		*reg_type = info.reg_type;
5712 		*is_retval = info.is_retval;
5713 
5714 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5715 			*btf = info.btf;
5716 			*btf_id = info.btf_id;
5717 		} else {
5718 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5719 		}
5720 		/* remember the offset of last byte accessed in ctx */
5721 		if (env->prog->aux->max_ctx_offset < off + size)
5722 			env->prog->aux->max_ctx_offset = off + size;
5723 		return 0;
5724 	}
5725 
5726 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5727 	return -EACCES;
5728 }
5729 
5730 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5731 				  int size)
5732 {
5733 	if (size < 0 || off < 0 ||
5734 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
5735 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
5736 			off, size);
5737 		return -EACCES;
5738 	}
5739 	return 0;
5740 }
5741 
5742 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5743 			     u32 regno, int off, int size,
5744 			     enum bpf_access_type t)
5745 {
5746 	struct bpf_reg_state *regs = cur_regs(env);
5747 	struct bpf_reg_state *reg = &regs[regno];
5748 	struct bpf_insn_access_aux info = {};
5749 	bool valid;
5750 
5751 	if (reg->smin_value < 0) {
5752 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5753 			regno);
5754 		return -EACCES;
5755 	}
5756 
5757 	switch (reg->type) {
5758 	case PTR_TO_SOCK_COMMON:
5759 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5760 		break;
5761 	case PTR_TO_SOCKET:
5762 		valid = bpf_sock_is_valid_access(off, size, t, &info);
5763 		break;
5764 	case PTR_TO_TCP_SOCK:
5765 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5766 		break;
5767 	case PTR_TO_XDP_SOCK:
5768 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5769 		break;
5770 	default:
5771 		valid = false;
5772 	}
5773 
5774 
5775 	if (valid) {
5776 		env->insn_aux_data[insn_idx].ctx_field_size =
5777 			info.ctx_field_size;
5778 		return 0;
5779 	}
5780 
5781 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
5782 		regno, reg_type_str(env, reg->type), off, size);
5783 
5784 	return -EACCES;
5785 }
5786 
5787 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5788 {
5789 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5790 }
5791 
5792 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5793 {
5794 	const struct bpf_reg_state *reg = reg_state(env, regno);
5795 
5796 	return reg->type == PTR_TO_CTX;
5797 }
5798 
5799 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5800 {
5801 	const struct bpf_reg_state *reg = reg_state(env, regno);
5802 
5803 	return type_is_sk_pointer(reg->type);
5804 }
5805 
5806 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5807 {
5808 	const struct bpf_reg_state *reg = reg_state(env, regno);
5809 
5810 	return type_is_pkt_pointer(reg->type);
5811 }
5812 
5813 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5814 {
5815 	const struct bpf_reg_state *reg = reg_state(env, regno);
5816 
5817 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5818 	return reg->type == PTR_TO_FLOW_KEYS;
5819 }
5820 
5821 static bool is_arena_reg(struct bpf_verifier_env *env, int regno)
5822 {
5823 	const struct bpf_reg_state *reg = reg_state(env, regno);
5824 
5825 	return reg->type == PTR_TO_ARENA;
5826 }
5827 
5828 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5829 #ifdef CONFIG_NET
5830 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5831 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5832 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5833 #endif
5834 	[CONST_PTR_TO_MAP] = btf_bpf_map_id,
5835 };
5836 
5837 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5838 {
5839 	/* A referenced register is always trusted. */
5840 	if (reg->ref_obj_id)
5841 		return true;
5842 
5843 	/* Types listed in the reg2btf_ids are always trusted */
5844 	if (reg2btf_ids[base_type(reg->type)] &&
5845 	    !bpf_type_has_unsafe_modifiers(reg->type))
5846 		return true;
5847 
5848 	/* If a register is not referenced, it is trusted if it has the
5849 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5850 	 * other type modifiers may be safe, but we elect to take an opt-in
5851 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5852 	 * not.
5853 	 *
5854 	 * Eventually, we should make PTR_TRUSTED the single source of truth
5855 	 * for whether a register is trusted.
5856 	 */
5857 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5858 	       !bpf_type_has_unsafe_modifiers(reg->type);
5859 }
5860 
5861 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5862 {
5863 	return reg->type & MEM_RCU;
5864 }
5865 
5866 static void clear_trusted_flags(enum bpf_type_flag *flag)
5867 {
5868 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5869 }
5870 
5871 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5872 				   const struct bpf_reg_state *reg,
5873 				   int off, int size, bool strict)
5874 {
5875 	struct tnum reg_off;
5876 	int ip_align;
5877 
5878 	/* Byte size accesses are always allowed. */
5879 	if (!strict || size == 1)
5880 		return 0;
5881 
5882 	/* For platforms that do not have a Kconfig enabling
5883 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5884 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
5885 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5886 	 * to this code only in strict mode where we want to emulate
5887 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
5888 	 * unconditional IP align value of '2'.
5889 	 */
5890 	ip_align = 2;
5891 
5892 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5893 	if (!tnum_is_aligned(reg_off, size)) {
5894 		char tn_buf[48];
5895 
5896 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5897 		verbose(env,
5898 			"misaligned packet access off %d+%s+%d+%d size %d\n",
5899 			ip_align, tn_buf, reg->off, off, size);
5900 		return -EACCES;
5901 	}
5902 
5903 	return 0;
5904 }
5905 
5906 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5907 				       const struct bpf_reg_state *reg,
5908 				       const char *pointer_desc,
5909 				       int off, int size, bool strict)
5910 {
5911 	struct tnum reg_off;
5912 
5913 	/* Byte size accesses are always allowed. */
5914 	if (!strict || size == 1)
5915 		return 0;
5916 
5917 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5918 	if (!tnum_is_aligned(reg_off, size)) {
5919 		char tn_buf[48];
5920 
5921 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5922 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5923 			pointer_desc, tn_buf, reg->off, off, size);
5924 		return -EACCES;
5925 	}
5926 
5927 	return 0;
5928 }
5929 
5930 static int check_ptr_alignment(struct bpf_verifier_env *env,
5931 			       const struct bpf_reg_state *reg, int off,
5932 			       int size, bool strict_alignment_once)
5933 {
5934 	bool strict = env->strict_alignment || strict_alignment_once;
5935 	const char *pointer_desc = "";
5936 
5937 	switch (reg->type) {
5938 	case PTR_TO_PACKET:
5939 	case PTR_TO_PACKET_META:
5940 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
5941 		 * right in front, treat it the very same way.
5942 		 */
5943 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
5944 	case PTR_TO_FLOW_KEYS:
5945 		pointer_desc = "flow keys ";
5946 		break;
5947 	case PTR_TO_MAP_KEY:
5948 		pointer_desc = "key ";
5949 		break;
5950 	case PTR_TO_MAP_VALUE:
5951 		pointer_desc = "value ";
5952 		break;
5953 	case PTR_TO_CTX:
5954 		pointer_desc = "context ";
5955 		break;
5956 	case PTR_TO_STACK:
5957 		pointer_desc = "stack ";
5958 		/* The stack spill tracking logic in check_stack_write_fixed_off()
5959 		 * and check_stack_read_fixed_off() relies on stack accesses being
5960 		 * aligned.
5961 		 */
5962 		strict = true;
5963 		break;
5964 	case PTR_TO_SOCKET:
5965 		pointer_desc = "sock ";
5966 		break;
5967 	case PTR_TO_SOCK_COMMON:
5968 		pointer_desc = "sock_common ";
5969 		break;
5970 	case PTR_TO_TCP_SOCK:
5971 		pointer_desc = "tcp_sock ";
5972 		break;
5973 	case PTR_TO_XDP_SOCK:
5974 		pointer_desc = "xdp_sock ";
5975 		break;
5976 	case PTR_TO_ARENA:
5977 		return 0;
5978 	default:
5979 		break;
5980 	}
5981 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5982 					   strict);
5983 }
5984 
5985 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth)
5986 {
5987 	if (env->prog->jit_requested)
5988 		return round_up(stack_depth, 16);
5989 
5990 	/* round up to 32-bytes, since this is granularity
5991 	 * of interpreter stack size
5992 	 */
5993 	return round_up(max_t(u32, stack_depth, 1), 32);
5994 }
5995 
5996 /* starting from main bpf function walk all instructions of the function
5997  * and recursively walk all callees that given function can call.
5998  * Ignore jump and exit insns.
5999  * Since recursion is prevented by check_cfg() this algorithm
6000  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
6001  */
6002 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
6003 {
6004 	struct bpf_subprog_info *subprog = env->subprog_info;
6005 	struct bpf_insn *insn = env->prog->insnsi;
6006 	int depth = 0, frame = 0, i, subprog_end;
6007 	bool tail_call_reachable = false;
6008 	int ret_insn[MAX_CALL_FRAMES];
6009 	int ret_prog[MAX_CALL_FRAMES];
6010 	int j;
6011 
6012 	i = subprog[idx].start;
6013 process_func:
6014 	/* protect against potential stack overflow that might happen when
6015 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
6016 	 * depth for such case down to 256 so that the worst case scenario
6017 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
6018 	 * 8k).
6019 	 *
6020 	 * To get the idea what might happen, see an example:
6021 	 * func1 -> sub rsp, 128
6022 	 *  subfunc1 -> sub rsp, 256
6023 	 *  tailcall1 -> add rsp, 256
6024 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
6025 	 *   subfunc2 -> sub rsp, 64
6026 	 *   subfunc22 -> sub rsp, 128
6027 	 *   tailcall2 -> add rsp, 128
6028 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
6029 	 *
6030 	 * tailcall will unwind the current stack frame but it will not get rid
6031 	 * of caller's stack as shown on the example above.
6032 	 */
6033 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
6034 		verbose(env,
6035 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
6036 			depth);
6037 		return -EACCES;
6038 	}
6039 	depth += round_up_stack_depth(env, subprog[idx].stack_depth);
6040 	if (depth > MAX_BPF_STACK) {
6041 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
6042 			frame + 1, depth);
6043 		return -EACCES;
6044 	}
6045 continue_func:
6046 	subprog_end = subprog[idx + 1].start;
6047 	for (; i < subprog_end; i++) {
6048 		int next_insn, sidx;
6049 
6050 		if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) {
6051 			bool err = false;
6052 
6053 			if (!is_bpf_throw_kfunc(insn + i))
6054 				continue;
6055 			if (subprog[idx].is_cb)
6056 				err = true;
6057 			for (int c = 0; c < frame && !err; c++) {
6058 				if (subprog[ret_prog[c]].is_cb) {
6059 					err = true;
6060 					break;
6061 				}
6062 			}
6063 			if (!err)
6064 				continue;
6065 			verbose(env,
6066 				"bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n",
6067 				i, idx);
6068 			return -EINVAL;
6069 		}
6070 
6071 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
6072 			continue;
6073 		/* remember insn and function to return to */
6074 		ret_insn[frame] = i + 1;
6075 		ret_prog[frame] = idx;
6076 
6077 		/* find the callee */
6078 		next_insn = i + insn[i].imm + 1;
6079 		sidx = find_subprog(env, next_insn);
6080 		if (sidx < 0) {
6081 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6082 				  next_insn);
6083 			return -EFAULT;
6084 		}
6085 		if (subprog[sidx].is_async_cb) {
6086 			if (subprog[sidx].has_tail_call) {
6087 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
6088 				return -EFAULT;
6089 			}
6090 			/* async callbacks don't increase bpf prog stack size unless called directly */
6091 			if (!bpf_pseudo_call(insn + i))
6092 				continue;
6093 			if (subprog[sidx].is_exception_cb) {
6094 				verbose(env, "insn %d cannot call exception cb directly\n", i);
6095 				return -EINVAL;
6096 			}
6097 		}
6098 		i = next_insn;
6099 		idx = sidx;
6100 
6101 		if (subprog[idx].has_tail_call)
6102 			tail_call_reachable = true;
6103 
6104 		frame++;
6105 		if (frame >= MAX_CALL_FRAMES) {
6106 			verbose(env, "the call stack of %d frames is too deep !\n",
6107 				frame);
6108 			return -E2BIG;
6109 		}
6110 		goto process_func;
6111 	}
6112 	/* if tail call got detected across bpf2bpf calls then mark each of the
6113 	 * currently present subprog frames as tail call reachable subprogs;
6114 	 * this info will be utilized by JIT so that we will be preserving the
6115 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
6116 	 */
6117 	if (tail_call_reachable)
6118 		for (j = 0; j < frame; j++) {
6119 			if (subprog[ret_prog[j]].is_exception_cb) {
6120 				verbose(env, "cannot tail call within exception cb\n");
6121 				return -EINVAL;
6122 			}
6123 			subprog[ret_prog[j]].tail_call_reachable = true;
6124 		}
6125 	if (subprog[0].tail_call_reachable)
6126 		env->prog->aux->tail_call_reachable = true;
6127 
6128 	/* end of for() loop means the last insn of the 'subprog'
6129 	 * was reached. Doesn't matter whether it was JA or EXIT
6130 	 */
6131 	if (frame == 0)
6132 		return 0;
6133 	depth -= round_up_stack_depth(env, subprog[idx].stack_depth);
6134 	frame--;
6135 	i = ret_insn[frame];
6136 	idx = ret_prog[frame];
6137 	goto continue_func;
6138 }
6139 
6140 static int check_max_stack_depth(struct bpf_verifier_env *env)
6141 {
6142 	struct bpf_subprog_info *si = env->subprog_info;
6143 	int ret;
6144 
6145 	for (int i = 0; i < env->subprog_cnt; i++) {
6146 		if (!i || si[i].is_async_cb) {
6147 			ret = check_max_stack_depth_subprog(env, i);
6148 			if (ret < 0)
6149 				return ret;
6150 		}
6151 		continue;
6152 	}
6153 	return 0;
6154 }
6155 
6156 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
6157 static int get_callee_stack_depth(struct bpf_verifier_env *env,
6158 				  const struct bpf_insn *insn, int idx)
6159 {
6160 	int start = idx + insn->imm + 1, subprog;
6161 
6162 	subprog = find_subprog(env, start);
6163 	if (subprog < 0) {
6164 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6165 			  start);
6166 		return -EFAULT;
6167 	}
6168 	return env->subprog_info[subprog].stack_depth;
6169 }
6170 #endif
6171 
6172 static int __check_buffer_access(struct bpf_verifier_env *env,
6173 				 const char *buf_info,
6174 				 const struct bpf_reg_state *reg,
6175 				 int regno, int off, int size)
6176 {
6177 	if (off < 0) {
6178 		verbose(env,
6179 			"R%d invalid %s buffer access: off=%d, size=%d\n",
6180 			regno, buf_info, off, size);
6181 		return -EACCES;
6182 	}
6183 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6184 		char tn_buf[48];
6185 
6186 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6187 		verbose(env,
6188 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
6189 			regno, off, tn_buf);
6190 		return -EACCES;
6191 	}
6192 
6193 	return 0;
6194 }
6195 
6196 static int check_tp_buffer_access(struct bpf_verifier_env *env,
6197 				  const struct bpf_reg_state *reg,
6198 				  int regno, int off, int size)
6199 {
6200 	int err;
6201 
6202 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
6203 	if (err)
6204 		return err;
6205 
6206 	if (off + size > env->prog->aux->max_tp_access)
6207 		env->prog->aux->max_tp_access = off + size;
6208 
6209 	return 0;
6210 }
6211 
6212 static int check_buffer_access(struct bpf_verifier_env *env,
6213 			       const struct bpf_reg_state *reg,
6214 			       int regno, int off, int size,
6215 			       bool zero_size_allowed,
6216 			       u32 *max_access)
6217 {
6218 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
6219 	int err;
6220 
6221 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
6222 	if (err)
6223 		return err;
6224 
6225 	if (off + size > *max_access)
6226 		*max_access = off + size;
6227 
6228 	return 0;
6229 }
6230 
6231 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
6232 static void zext_32_to_64(struct bpf_reg_state *reg)
6233 {
6234 	reg->var_off = tnum_subreg(reg->var_off);
6235 	__reg_assign_32_into_64(reg);
6236 }
6237 
6238 /* truncate register to smaller size (in bytes)
6239  * must be called with size < BPF_REG_SIZE
6240  */
6241 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
6242 {
6243 	u64 mask;
6244 
6245 	/* clear high bits in bit representation */
6246 	reg->var_off = tnum_cast(reg->var_off, size);
6247 
6248 	/* fix arithmetic bounds */
6249 	mask = ((u64)1 << (size * 8)) - 1;
6250 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
6251 		reg->umin_value &= mask;
6252 		reg->umax_value &= mask;
6253 	} else {
6254 		reg->umin_value = 0;
6255 		reg->umax_value = mask;
6256 	}
6257 	reg->smin_value = reg->umin_value;
6258 	reg->smax_value = reg->umax_value;
6259 
6260 	/* If size is smaller than 32bit register the 32bit register
6261 	 * values are also truncated so we push 64-bit bounds into
6262 	 * 32-bit bounds. Above were truncated < 32-bits already.
6263 	 */
6264 	if (size < 4)
6265 		__mark_reg32_unbounded(reg);
6266 
6267 	reg_bounds_sync(reg);
6268 }
6269 
6270 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
6271 {
6272 	if (size == 1) {
6273 		reg->smin_value = reg->s32_min_value = S8_MIN;
6274 		reg->smax_value = reg->s32_max_value = S8_MAX;
6275 	} else if (size == 2) {
6276 		reg->smin_value = reg->s32_min_value = S16_MIN;
6277 		reg->smax_value = reg->s32_max_value = S16_MAX;
6278 	} else {
6279 		/* size == 4 */
6280 		reg->smin_value = reg->s32_min_value = S32_MIN;
6281 		reg->smax_value = reg->s32_max_value = S32_MAX;
6282 	}
6283 	reg->umin_value = reg->u32_min_value = 0;
6284 	reg->umax_value = U64_MAX;
6285 	reg->u32_max_value = U32_MAX;
6286 	reg->var_off = tnum_unknown;
6287 }
6288 
6289 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
6290 {
6291 	s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6292 	u64 top_smax_value, top_smin_value;
6293 	u64 num_bits = size * 8;
6294 
6295 	if (tnum_is_const(reg->var_off)) {
6296 		u64_cval = reg->var_off.value;
6297 		if (size == 1)
6298 			reg->var_off = tnum_const((s8)u64_cval);
6299 		else if (size == 2)
6300 			reg->var_off = tnum_const((s16)u64_cval);
6301 		else
6302 			/* size == 4 */
6303 			reg->var_off = tnum_const((s32)u64_cval);
6304 
6305 		u64_cval = reg->var_off.value;
6306 		reg->smax_value = reg->smin_value = u64_cval;
6307 		reg->umax_value = reg->umin_value = u64_cval;
6308 		reg->s32_max_value = reg->s32_min_value = u64_cval;
6309 		reg->u32_max_value = reg->u32_min_value = u64_cval;
6310 		return;
6311 	}
6312 
6313 	top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6314 	top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6315 
6316 	if (top_smax_value != top_smin_value)
6317 		goto out;
6318 
6319 	/* find the s64_min and s64_min after sign extension */
6320 	if (size == 1) {
6321 		init_s64_max = (s8)reg->smax_value;
6322 		init_s64_min = (s8)reg->smin_value;
6323 	} else if (size == 2) {
6324 		init_s64_max = (s16)reg->smax_value;
6325 		init_s64_min = (s16)reg->smin_value;
6326 	} else {
6327 		init_s64_max = (s32)reg->smax_value;
6328 		init_s64_min = (s32)reg->smin_value;
6329 	}
6330 
6331 	s64_max = max(init_s64_max, init_s64_min);
6332 	s64_min = min(init_s64_max, init_s64_min);
6333 
6334 	/* both of s64_max/s64_min positive or negative */
6335 	if ((s64_max >= 0) == (s64_min >= 0)) {
6336 		reg->smin_value = reg->s32_min_value = s64_min;
6337 		reg->smax_value = reg->s32_max_value = s64_max;
6338 		reg->umin_value = reg->u32_min_value = s64_min;
6339 		reg->umax_value = reg->u32_max_value = s64_max;
6340 		reg->var_off = tnum_range(s64_min, s64_max);
6341 		return;
6342 	}
6343 
6344 out:
6345 	set_sext64_default_val(reg, size);
6346 }
6347 
6348 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6349 {
6350 	if (size == 1) {
6351 		reg->s32_min_value = S8_MIN;
6352 		reg->s32_max_value = S8_MAX;
6353 	} else {
6354 		/* size == 2 */
6355 		reg->s32_min_value = S16_MIN;
6356 		reg->s32_max_value = S16_MAX;
6357 	}
6358 	reg->u32_min_value = 0;
6359 	reg->u32_max_value = U32_MAX;
6360 	reg->var_off = tnum_subreg(tnum_unknown);
6361 }
6362 
6363 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6364 {
6365 	s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6366 	u32 top_smax_value, top_smin_value;
6367 	u32 num_bits = size * 8;
6368 
6369 	if (tnum_is_const(reg->var_off)) {
6370 		u32_val = reg->var_off.value;
6371 		if (size == 1)
6372 			reg->var_off = tnum_const((s8)u32_val);
6373 		else
6374 			reg->var_off = tnum_const((s16)u32_val);
6375 
6376 		u32_val = reg->var_off.value;
6377 		reg->s32_min_value = reg->s32_max_value = u32_val;
6378 		reg->u32_min_value = reg->u32_max_value = u32_val;
6379 		return;
6380 	}
6381 
6382 	top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
6383 	top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
6384 
6385 	if (top_smax_value != top_smin_value)
6386 		goto out;
6387 
6388 	/* find the s32_min and s32_min after sign extension */
6389 	if (size == 1) {
6390 		init_s32_max = (s8)reg->s32_max_value;
6391 		init_s32_min = (s8)reg->s32_min_value;
6392 	} else {
6393 		/* size == 2 */
6394 		init_s32_max = (s16)reg->s32_max_value;
6395 		init_s32_min = (s16)reg->s32_min_value;
6396 	}
6397 	s32_max = max(init_s32_max, init_s32_min);
6398 	s32_min = min(init_s32_max, init_s32_min);
6399 
6400 	if ((s32_min >= 0) == (s32_max >= 0)) {
6401 		reg->s32_min_value = s32_min;
6402 		reg->s32_max_value = s32_max;
6403 		reg->u32_min_value = (u32)s32_min;
6404 		reg->u32_max_value = (u32)s32_max;
6405 		reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max));
6406 		return;
6407 	}
6408 
6409 out:
6410 	set_sext32_default_val(reg, size);
6411 }
6412 
6413 static bool bpf_map_is_rdonly(const struct bpf_map *map)
6414 {
6415 	/* A map is considered read-only if the following condition are true:
6416 	 *
6417 	 * 1) BPF program side cannot change any of the map content. The
6418 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6419 	 *    and was set at map creation time.
6420 	 * 2) The map value(s) have been initialized from user space by a
6421 	 *    loader and then "frozen", such that no new map update/delete
6422 	 *    operations from syscall side are possible for the rest of
6423 	 *    the map's lifetime from that point onwards.
6424 	 * 3) Any parallel/pending map update/delete operations from syscall
6425 	 *    side have been completed. Only after that point, it's safe to
6426 	 *    assume that map value(s) are immutable.
6427 	 */
6428 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
6429 	       READ_ONCE(map->frozen) &&
6430 	       !bpf_map_write_active(map);
6431 }
6432 
6433 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6434 			       bool is_ldsx)
6435 {
6436 	void *ptr;
6437 	u64 addr;
6438 	int err;
6439 
6440 	err = map->ops->map_direct_value_addr(map, &addr, off);
6441 	if (err)
6442 		return err;
6443 	ptr = (void *)(long)addr + off;
6444 
6445 	switch (size) {
6446 	case sizeof(u8):
6447 		*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6448 		break;
6449 	case sizeof(u16):
6450 		*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6451 		break;
6452 	case sizeof(u32):
6453 		*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6454 		break;
6455 	case sizeof(u64):
6456 		*val = *(u64 *)ptr;
6457 		break;
6458 	default:
6459 		return -EINVAL;
6460 	}
6461 	return 0;
6462 }
6463 
6464 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
6465 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
6466 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
6467 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type)  __PASTE(__type, __safe_trusted_or_null)
6468 
6469 /*
6470  * Allow list few fields as RCU trusted or full trusted.
6471  * This logic doesn't allow mix tagging and will be removed once GCC supports
6472  * btf_type_tag.
6473  */
6474 
6475 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
6476 BTF_TYPE_SAFE_RCU(struct task_struct) {
6477 	const cpumask_t *cpus_ptr;
6478 	struct css_set __rcu *cgroups;
6479 	struct task_struct __rcu *real_parent;
6480 	struct task_struct *group_leader;
6481 };
6482 
6483 BTF_TYPE_SAFE_RCU(struct cgroup) {
6484 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6485 	struct kernfs_node *kn;
6486 };
6487 
6488 BTF_TYPE_SAFE_RCU(struct css_set) {
6489 	struct cgroup *dfl_cgrp;
6490 };
6491 
6492 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
6493 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6494 	struct file __rcu *exe_file;
6495 };
6496 
6497 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6498  * because bpf prog accessible sockets are SOCK_RCU_FREE.
6499  */
6500 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6501 	struct sock *sk;
6502 };
6503 
6504 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6505 	struct sock *sk;
6506 };
6507 
6508 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
6509 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6510 	struct seq_file *seq;
6511 };
6512 
6513 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6514 	struct bpf_iter_meta *meta;
6515 	struct task_struct *task;
6516 };
6517 
6518 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6519 	struct file *file;
6520 };
6521 
6522 BTF_TYPE_SAFE_TRUSTED(struct file) {
6523 	struct inode *f_inode;
6524 };
6525 
6526 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6527 	/* no negative dentry-s in places where bpf can see it */
6528 	struct inode *d_inode;
6529 };
6530 
6531 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) {
6532 	struct sock *sk;
6533 };
6534 
6535 static bool type_is_rcu(struct bpf_verifier_env *env,
6536 			struct bpf_reg_state *reg,
6537 			const char *field_name, u32 btf_id)
6538 {
6539 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6540 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6541 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6542 
6543 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6544 }
6545 
6546 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6547 				struct bpf_reg_state *reg,
6548 				const char *field_name, u32 btf_id)
6549 {
6550 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6551 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6552 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6553 
6554 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6555 }
6556 
6557 static bool type_is_trusted(struct bpf_verifier_env *env,
6558 			    struct bpf_reg_state *reg,
6559 			    const char *field_name, u32 btf_id)
6560 {
6561 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6562 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6563 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6564 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6565 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6566 
6567 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6568 }
6569 
6570 static bool type_is_trusted_or_null(struct bpf_verifier_env *env,
6571 				    struct bpf_reg_state *reg,
6572 				    const char *field_name, u32 btf_id)
6573 {
6574 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket));
6575 
6576 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id,
6577 					  "__safe_trusted_or_null");
6578 }
6579 
6580 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6581 				   struct bpf_reg_state *regs,
6582 				   int regno, int off, int size,
6583 				   enum bpf_access_type atype,
6584 				   int value_regno)
6585 {
6586 	struct bpf_reg_state *reg = regs + regno;
6587 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6588 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6589 	const char *field_name = NULL;
6590 	enum bpf_type_flag flag = 0;
6591 	u32 btf_id = 0;
6592 	int ret;
6593 
6594 	if (!env->allow_ptr_leaks) {
6595 		verbose(env,
6596 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6597 			tname);
6598 		return -EPERM;
6599 	}
6600 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6601 		verbose(env,
6602 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6603 			tname);
6604 		return -EINVAL;
6605 	}
6606 	if (off < 0) {
6607 		verbose(env,
6608 			"R%d is ptr_%s invalid negative access: off=%d\n",
6609 			regno, tname, off);
6610 		return -EACCES;
6611 	}
6612 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6613 		char tn_buf[48];
6614 
6615 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6616 		verbose(env,
6617 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6618 			regno, tname, off, tn_buf);
6619 		return -EACCES;
6620 	}
6621 
6622 	if (reg->type & MEM_USER) {
6623 		verbose(env,
6624 			"R%d is ptr_%s access user memory: off=%d\n",
6625 			regno, tname, off);
6626 		return -EACCES;
6627 	}
6628 
6629 	if (reg->type & MEM_PERCPU) {
6630 		verbose(env,
6631 			"R%d is ptr_%s access percpu memory: off=%d\n",
6632 			regno, tname, off);
6633 		return -EACCES;
6634 	}
6635 
6636 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6637 		if (!btf_is_kernel(reg->btf)) {
6638 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6639 			return -EFAULT;
6640 		}
6641 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6642 	} else {
6643 		/* Writes are permitted with default btf_struct_access for
6644 		 * program allocated objects (which always have ref_obj_id > 0),
6645 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6646 		 */
6647 		if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6648 			verbose(env, "only read is supported\n");
6649 			return -EACCES;
6650 		}
6651 
6652 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6653 		    !(reg->type & MEM_RCU) && !reg->ref_obj_id) {
6654 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6655 			return -EFAULT;
6656 		}
6657 
6658 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6659 	}
6660 
6661 	if (ret < 0)
6662 		return ret;
6663 
6664 	if (ret != PTR_TO_BTF_ID) {
6665 		/* just mark; */
6666 
6667 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6668 		/* If this is an untrusted pointer, all pointers formed by walking it
6669 		 * also inherit the untrusted flag.
6670 		 */
6671 		flag = PTR_UNTRUSTED;
6672 
6673 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6674 		/* By default any pointer obtained from walking a trusted pointer is no
6675 		 * longer trusted, unless the field being accessed has explicitly been
6676 		 * marked as inheriting its parent's state of trust (either full or RCU).
6677 		 * For example:
6678 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
6679 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
6680 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6681 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6682 		 *
6683 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
6684 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
6685 		 */
6686 		if (type_is_trusted(env, reg, field_name, btf_id)) {
6687 			flag |= PTR_TRUSTED;
6688 		} else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) {
6689 			flag |= PTR_TRUSTED | PTR_MAYBE_NULL;
6690 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6691 			if (type_is_rcu(env, reg, field_name, btf_id)) {
6692 				/* ignore __rcu tag and mark it MEM_RCU */
6693 				flag |= MEM_RCU;
6694 			} else if (flag & MEM_RCU ||
6695 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6696 				/* __rcu tagged pointers can be NULL */
6697 				flag |= MEM_RCU | PTR_MAYBE_NULL;
6698 
6699 				/* We always trust them */
6700 				if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6701 				    flag & PTR_UNTRUSTED)
6702 					flag &= ~PTR_UNTRUSTED;
6703 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
6704 				/* keep as-is */
6705 			} else {
6706 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6707 				clear_trusted_flags(&flag);
6708 			}
6709 		} else {
6710 			/*
6711 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
6712 			 * aggressively mark as untrusted otherwise such
6713 			 * pointers will be plain PTR_TO_BTF_ID without flags
6714 			 * and will be allowed to be passed into helpers for
6715 			 * compat reasons.
6716 			 */
6717 			flag = PTR_UNTRUSTED;
6718 		}
6719 	} else {
6720 		/* Old compat. Deprecated */
6721 		clear_trusted_flags(&flag);
6722 	}
6723 
6724 	if (atype == BPF_READ && value_regno >= 0)
6725 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6726 
6727 	return 0;
6728 }
6729 
6730 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6731 				   struct bpf_reg_state *regs,
6732 				   int regno, int off, int size,
6733 				   enum bpf_access_type atype,
6734 				   int value_regno)
6735 {
6736 	struct bpf_reg_state *reg = regs + regno;
6737 	struct bpf_map *map = reg->map_ptr;
6738 	struct bpf_reg_state map_reg;
6739 	enum bpf_type_flag flag = 0;
6740 	const struct btf_type *t;
6741 	const char *tname;
6742 	u32 btf_id;
6743 	int ret;
6744 
6745 	if (!btf_vmlinux) {
6746 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6747 		return -ENOTSUPP;
6748 	}
6749 
6750 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6751 		verbose(env, "map_ptr access not supported for map type %d\n",
6752 			map->map_type);
6753 		return -ENOTSUPP;
6754 	}
6755 
6756 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6757 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6758 
6759 	if (!env->allow_ptr_leaks) {
6760 		verbose(env,
6761 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6762 			tname);
6763 		return -EPERM;
6764 	}
6765 
6766 	if (off < 0) {
6767 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
6768 			regno, tname, off);
6769 		return -EACCES;
6770 	}
6771 
6772 	if (atype != BPF_READ) {
6773 		verbose(env, "only read from %s is supported\n", tname);
6774 		return -EACCES;
6775 	}
6776 
6777 	/* Simulate access to a PTR_TO_BTF_ID */
6778 	memset(&map_reg, 0, sizeof(map_reg));
6779 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6780 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6781 	if (ret < 0)
6782 		return ret;
6783 
6784 	if (value_regno >= 0)
6785 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6786 
6787 	return 0;
6788 }
6789 
6790 /* Check that the stack access at the given offset is within bounds. The
6791  * maximum valid offset is -1.
6792  *
6793  * The minimum valid offset is -MAX_BPF_STACK for writes, and
6794  * -state->allocated_stack for reads.
6795  */
6796 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env,
6797                                           s64 off,
6798                                           struct bpf_func_state *state,
6799                                           enum bpf_access_type t)
6800 {
6801 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[env->insn_idx];
6802 	int min_valid_off, max_bpf_stack;
6803 
6804 	/* If accessing instruction is a spill/fill from bpf_fastcall pattern,
6805 	 * add room for all caller saved registers below MAX_BPF_STACK.
6806 	 * In case if bpf_fastcall rewrite won't happen maximal stack depth
6807 	 * would be checked by check_max_stack_depth_subprog().
6808 	 */
6809 	max_bpf_stack = MAX_BPF_STACK;
6810 	if (aux->fastcall_pattern)
6811 		max_bpf_stack += CALLER_SAVED_REGS * BPF_REG_SIZE;
6812 
6813 	if (t == BPF_WRITE || env->allow_uninit_stack)
6814 		min_valid_off = -max_bpf_stack;
6815 	else
6816 		min_valid_off = -state->allocated_stack;
6817 
6818 	if (off < min_valid_off || off > -1)
6819 		return -EACCES;
6820 	return 0;
6821 }
6822 
6823 /* Check that the stack access at 'regno + off' falls within the maximum stack
6824  * bounds.
6825  *
6826  * 'off' includes `regno->offset`, but not its dynamic part (if any).
6827  */
6828 static int check_stack_access_within_bounds(
6829 		struct bpf_verifier_env *env,
6830 		int regno, int off, int access_size,
6831 		enum bpf_access_src src, enum bpf_access_type type)
6832 {
6833 	struct bpf_reg_state *regs = cur_regs(env);
6834 	struct bpf_reg_state *reg = regs + regno;
6835 	struct bpf_func_state *state = func(env, reg);
6836 	s64 min_off, max_off;
6837 	int err;
6838 	char *err_extra;
6839 
6840 	if (src == ACCESS_HELPER)
6841 		/* We don't know if helpers are reading or writing (or both). */
6842 		err_extra = " indirect access to";
6843 	else if (type == BPF_READ)
6844 		err_extra = " read from";
6845 	else
6846 		err_extra = " write to";
6847 
6848 	if (tnum_is_const(reg->var_off)) {
6849 		min_off = (s64)reg->var_off.value + off;
6850 		max_off = min_off + access_size;
6851 	} else {
6852 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6853 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
6854 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6855 				err_extra, regno);
6856 			return -EACCES;
6857 		}
6858 		min_off = reg->smin_value + off;
6859 		max_off = reg->smax_value + off + access_size;
6860 	}
6861 
6862 	err = check_stack_slot_within_bounds(env, min_off, state, type);
6863 	if (!err && max_off > 0)
6864 		err = -EINVAL; /* out of stack access into non-negative offsets */
6865 	if (!err && access_size < 0)
6866 		/* access_size should not be negative (or overflow an int); others checks
6867 		 * along the way should have prevented such an access.
6868 		 */
6869 		err = -EFAULT; /* invalid negative access size; integer overflow? */
6870 
6871 	if (err) {
6872 		if (tnum_is_const(reg->var_off)) {
6873 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6874 				err_extra, regno, off, access_size);
6875 		} else {
6876 			char tn_buf[48];
6877 
6878 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6879 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n",
6880 				err_extra, regno, tn_buf, off, access_size);
6881 		}
6882 		return err;
6883 	}
6884 
6885 	/* Note that there is no stack access with offset zero, so the needed stack
6886 	 * size is -min_off, not -min_off+1.
6887 	 */
6888 	return grow_stack_state(env, state, -min_off /* size */);
6889 }
6890 
6891 static bool get_func_retval_range(struct bpf_prog *prog,
6892 				  struct bpf_retval_range *range)
6893 {
6894 	if (prog->type == BPF_PROG_TYPE_LSM &&
6895 		prog->expected_attach_type == BPF_LSM_MAC &&
6896 		!bpf_lsm_get_retval_range(prog, range)) {
6897 		return true;
6898 	}
6899 	return false;
6900 }
6901 
6902 /* check whether memory at (regno + off) is accessible for t = (read | write)
6903  * if t==write, value_regno is a register which value is stored into memory
6904  * if t==read, value_regno is a register which will receive the value from memory
6905  * if t==write && value_regno==-1, some unknown value is stored into memory
6906  * if t==read && value_regno==-1, don't care what we read from memory
6907  */
6908 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6909 			    int off, int bpf_size, enum bpf_access_type t,
6910 			    int value_regno, bool strict_alignment_once, bool is_ldsx)
6911 {
6912 	struct bpf_reg_state *regs = cur_regs(env);
6913 	struct bpf_reg_state *reg = regs + regno;
6914 	int size, err = 0;
6915 
6916 	size = bpf_size_to_bytes(bpf_size);
6917 	if (size < 0)
6918 		return size;
6919 
6920 	/* alignment checks will add in reg->off themselves */
6921 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6922 	if (err)
6923 		return err;
6924 
6925 	/* for access checks, reg->off is just part of off */
6926 	off += reg->off;
6927 
6928 	if (reg->type == PTR_TO_MAP_KEY) {
6929 		if (t == BPF_WRITE) {
6930 			verbose(env, "write to change key R%d not allowed\n", regno);
6931 			return -EACCES;
6932 		}
6933 
6934 		err = check_mem_region_access(env, regno, off, size,
6935 					      reg->map_ptr->key_size, false);
6936 		if (err)
6937 			return err;
6938 		if (value_regno >= 0)
6939 			mark_reg_unknown(env, regs, value_regno);
6940 	} else if (reg->type == PTR_TO_MAP_VALUE) {
6941 		struct btf_field *kptr_field = NULL;
6942 
6943 		if (t == BPF_WRITE && value_regno >= 0 &&
6944 		    is_pointer_value(env, value_regno)) {
6945 			verbose(env, "R%d leaks addr into map\n", value_regno);
6946 			return -EACCES;
6947 		}
6948 		err = check_map_access_type(env, regno, off, size, t);
6949 		if (err)
6950 			return err;
6951 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6952 		if (err)
6953 			return err;
6954 		if (tnum_is_const(reg->var_off))
6955 			kptr_field = btf_record_find(reg->map_ptr->record,
6956 						     off + reg->var_off.value, BPF_KPTR);
6957 		if (kptr_field) {
6958 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6959 		} else if (t == BPF_READ && value_regno >= 0) {
6960 			struct bpf_map *map = reg->map_ptr;
6961 
6962 			/* if map is read-only, track its contents as scalars */
6963 			if (tnum_is_const(reg->var_off) &&
6964 			    bpf_map_is_rdonly(map) &&
6965 			    map->ops->map_direct_value_addr) {
6966 				int map_off = off + reg->var_off.value;
6967 				u64 val = 0;
6968 
6969 				err = bpf_map_direct_read(map, map_off, size,
6970 							  &val, is_ldsx);
6971 				if (err)
6972 					return err;
6973 
6974 				regs[value_regno].type = SCALAR_VALUE;
6975 				__mark_reg_known(&regs[value_regno], val);
6976 			} else {
6977 				mark_reg_unknown(env, regs, value_regno);
6978 			}
6979 		}
6980 	} else if (base_type(reg->type) == PTR_TO_MEM) {
6981 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6982 
6983 		if (type_may_be_null(reg->type)) {
6984 			verbose(env, "R%d invalid mem access '%s'\n", regno,
6985 				reg_type_str(env, reg->type));
6986 			return -EACCES;
6987 		}
6988 
6989 		if (t == BPF_WRITE && rdonly_mem) {
6990 			verbose(env, "R%d cannot write into %s\n",
6991 				regno, reg_type_str(env, reg->type));
6992 			return -EACCES;
6993 		}
6994 
6995 		if (t == BPF_WRITE && value_regno >= 0 &&
6996 		    is_pointer_value(env, value_regno)) {
6997 			verbose(env, "R%d leaks addr into mem\n", value_regno);
6998 			return -EACCES;
6999 		}
7000 
7001 		err = check_mem_region_access(env, regno, off, size,
7002 					      reg->mem_size, false);
7003 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
7004 			mark_reg_unknown(env, regs, value_regno);
7005 	} else if (reg->type == PTR_TO_CTX) {
7006 		bool is_retval = false;
7007 		struct bpf_retval_range range;
7008 		enum bpf_reg_type reg_type = SCALAR_VALUE;
7009 		struct btf *btf = NULL;
7010 		u32 btf_id = 0;
7011 
7012 		if (t == BPF_WRITE && value_regno >= 0 &&
7013 		    is_pointer_value(env, value_regno)) {
7014 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
7015 			return -EACCES;
7016 		}
7017 
7018 		err = check_ptr_off_reg(env, reg, regno);
7019 		if (err < 0)
7020 			return err;
7021 
7022 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
7023 				       &btf_id, &is_retval, is_ldsx);
7024 		if (err)
7025 			verbose_linfo(env, insn_idx, "; ");
7026 		if (!err && t == BPF_READ && value_regno >= 0) {
7027 			/* ctx access returns either a scalar, or a
7028 			 * PTR_TO_PACKET[_META,_END]. In the latter
7029 			 * case, we know the offset is zero.
7030 			 */
7031 			if (reg_type == SCALAR_VALUE) {
7032 				if (is_retval && get_func_retval_range(env->prog, &range)) {
7033 					err = __mark_reg_s32_range(env, regs, value_regno,
7034 								   range.minval, range.maxval);
7035 					if (err)
7036 						return err;
7037 				} else {
7038 					mark_reg_unknown(env, regs, value_regno);
7039 				}
7040 			} else {
7041 				mark_reg_known_zero(env, regs,
7042 						    value_regno);
7043 				if (type_may_be_null(reg_type))
7044 					regs[value_regno].id = ++env->id_gen;
7045 				/* A load of ctx field could have different
7046 				 * actual load size with the one encoded in the
7047 				 * insn. When the dst is PTR, it is for sure not
7048 				 * a sub-register.
7049 				 */
7050 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
7051 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
7052 					regs[value_regno].btf = btf;
7053 					regs[value_regno].btf_id = btf_id;
7054 				}
7055 			}
7056 			regs[value_regno].type = reg_type;
7057 		}
7058 
7059 	} else if (reg->type == PTR_TO_STACK) {
7060 		/* Basic bounds checks. */
7061 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
7062 		if (err)
7063 			return err;
7064 
7065 		if (t == BPF_READ)
7066 			err = check_stack_read(env, regno, off, size,
7067 					       value_regno);
7068 		else
7069 			err = check_stack_write(env, regno, off, size,
7070 						value_regno, insn_idx);
7071 	} else if (reg_is_pkt_pointer(reg)) {
7072 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
7073 			verbose(env, "cannot write into packet\n");
7074 			return -EACCES;
7075 		}
7076 		if (t == BPF_WRITE && value_regno >= 0 &&
7077 		    is_pointer_value(env, value_regno)) {
7078 			verbose(env, "R%d leaks addr into packet\n",
7079 				value_regno);
7080 			return -EACCES;
7081 		}
7082 		err = check_packet_access(env, regno, off, size, false);
7083 		if (!err && t == BPF_READ && value_regno >= 0)
7084 			mark_reg_unknown(env, regs, value_regno);
7085 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
7086 		if (t == BPF_WRITE && value_regno >= 0 &&
7087 		    is_pointer_value(env, value_regno)) {
7088 			verbose(env, "R%d leaks addr into flow keys\n",
7089 				value_regno);
7090 			return -EACCES;
7091 		}
7092 
7093 		err = check_flow_keys_access(env, off, size);
7094 		if (!err && t == BPF_READ && value_regno >= 0)
7095 			mark_reg_unknown(env, regs, value_regno);
7096 	} else if (type_is_sk_pointer(reg->type)) {
7097 		if (t == BPF_WRITE) {
7098 			verbose(env, "R%d cannot write into %s\n",
7099 				regno, reg_type_str(env, reg->type));
7100 			return -EACCES;
7101 		}
7102 		err = check_sock_access(env, insn_idx, regno, off, size, t);
7103 		if (!err && value_regno >= 0)
7104 			mark_reg_unknown(env, regs, value_regno);
7105 	} else if (reg->type == PTR_TO_TP_BUFFER) {
7106 		err = check_tp_buffer_access(env, reg, regno, off, size);
7107 		if (!err && t == BPF_READ && value_regno >= 0)
7108 			mark_reg_unknown(env, regs, value_regno);
7109 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
7110 		   !type_may_be_null(reg->type)) {
7111 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
7112 					      value_regno);
7113 	} else if (reg->type == CONST_PTR_TO_MAP) {
7114 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
7115 					      value_regno);
7116 	} else if (base_type(reg->type) == PTR_TO_BUF) {
7117 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
7118 		u32 *max_access;
7119 
7120 		if (rdonly_mem) {
7121 			if (t == BPF_WRITE) {
7122 				verbose(env, "R%d cannot write into %s\n",
7123 					regno, reg_type_str(env, reg->type));
7124 				return -EACCES;
7125 			}
7126 			max_access = &env->prog->aux->max_rdonly_access;
7127 		} else {
7128 			max_access = &env->prog->aux->max_rdwr_access;
7129 		}
7130 
7131 		err = check_buffer_access(env, reg, regno, off, size, false,
7132 					  max_access);
7133 
7134 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
7135 			mark_reg_unknown(env, regs, value_regno);
7136 	} else if (reg->type == PTR_TO_ARENA) {
7137 		if (t == BPF_READ && value_regno >= 0)
7138 			mark_reg_unknown(env, regs, value_regno);
7139 	} else {
7140 		verbose(env, "R%d invalid mem access '%s'\n", regno,
7141 			reg_type_str(env, reg->type));
7142 		return -EACCES;
7143 	}
7144 
7145 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
7146 	    regs[value_regno].type == SCALAR_VALUE) {
7147 		if (!is_ldsx)
7148 			/* b/h/w load zero-extends, mark upper bits as known 0 */
7149 			coerce_reg_to_size(&regs[value_regno], size);
7150 		else
7151 			coerce_reg_to_size_sx(&regs[value_regno], size);
7152 	}
7153 	return err;
7154 }
7155 
7156 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
7157 			     bool allow_trust_mismatch);
7158 
7159 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
7160 {
7161 	int load_reg;
7162 	int err;
7163 
7164 	switch (insn->imm) {
7165 	case BPF_ADD:
7166 	case BPF_ADD | BPF_FETCH:
7167 	case BPF_AND:
7168 	case BPF_AND | BPF_FETCH:
7169 	case BPF_OR:
7170 	case BPF_OR | BPF_FETCH:
7171 	case BPF_XOR:
7172 	case BPF_XOR | BPF_FETCH:
7173 	case BPF_XCHG:
7174 	case BPF_CMPXCHG:
7175 		break;
7176 	default:
7177 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
7178 		return -EINVAL;
7179 	}
7180 
7181 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
7182 		verbose(env, "invalid atomic operand size\n");
7183 		return -EINVAL;
7184 	}
7185 
7186 	/* check src1 operand */
7187 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
7188 	if (err)
7189 		return err;
7190 
7191 	/* check src2 operand */
7192 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7193 	if (err)
7194 		return err;
7195 
7196 	if (insn->imm == BPF_CMPXCHG) {
7197 		/* Check comparison of R0 with memory location */
7198 		const u32 aux_reg = BPF_REG_0;
7199 
7200 		err = check_reg_arg(env, aux_reg, SRC_OP);
7201 		if (err)
7202 			return err;
7203 
7204 		if (is_pointer_value(env, aux_reg)) {
7205 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
7206 			return -EACCES;
7207 		}
7208 	}
7209 
7210 	if (is_pointer_value(env, insn->src_reg)) {
7211 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
7212 		return -EACCES;
7213 	}
7214 
7215 	if (is_ctx_reg(env, insn->dst_reg) ||
7216 	    is_pkt_reg(env, insn->dst_reg) ||
7217 	    is_flow_key_reg(env, insn->dst_reg) ||
7218 	    is_sk_reg(env, insn->dst_reg) ||
7219 	    (is_arena_reg(env, insn->dst_reg) && !bpf_jit_supports_insn(insn, true))) {
7220 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
7221 			insn->dst_reg,
7222 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
7223 		return -EACCES;
7224 	}
7225 
7226 	if (insn->imm & BPF_FETCH) {
7227 		if (insn->imm == BPF_CMPXCHG)
7228 			load_reg = BPF_REG_0;
7229 		else
7230 			load_reg = insn->src_reg;
7231 
7232 		/* check and record load of old value */
7233 		err = check_reg_arg(env, load_reg, DST_OP);
7234 		if (err)
7235 			return err;
7236 	} else {
7237 		/* This instruction accesses a memory location but doesn't
7238 		 * actually load it into a register.
7239 		 */
7240 		load_reg = -1;
7241 	}
7242 
7243 	/* Check whether we can read the memory, with second call for fetch
7244 	 * case to simulate the register fill.
7245 	 */
7246 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7247 			       BPF_SIZE(insn->code), BPF_READ, -1, true, false);
7248 	if (!err && load_reg >= 0)
7249 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7250 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
7251 				       true, false);
7252 	if (err)
7253 		return err;
7254 
7255 	if (is_arena_reg(env, insn->dst_reg)) {
7256 		err = save_aux_ptr_type(env, PTR_TO_ARENA, false);
7257 		if (err)
7258 			return err;
7259 	}
7260 	/* Check whether we can write into the same memory. */
7261 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7262 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
7263 	if (err)
7264 		return err;
7265 	return 0;
7266 }
7267 
7268 /* When register 'regno' is used to read the stack (either directly or through
7269  * a helper function) make sure that it's within stack boundary and, depending
7270  * on the access type and privileges, that all elements of the stack are
7271  * initialized.
7272  *
7273  * 'off' includes 'regno->off', but not its dynamic part (if any).
7274  *
7275  * All registers that have been spilled on the stack in the slots within the
7276  * read offsets are marked as read.
7277  */
7278 static int check_stack_range_initialized(
7279 		struct bpf_verifier_env *env, int regno, int off,
7280 		int access_size, bool zero_size_allowed,
7281 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
7282 {
7283 	struct bpf_reg_state *reg = reg_state(env, regno);
7284 	struct bpf_func_state *state = func(env, reg);
7285 	int err, min_off, max_off, i, j, slot, spi;
7286 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
7287 	enum bpf_access_type bounds_check_type;
7288 	/* Some accesses can write anything into the stack, others are
7289 	 * read-only.
7290 	 */
7291 	bool clobber = false;
7292 
7293 	if (access_size == 0 && !zero_size_allowed) {
7294 		verbose(env, "invalid zero-sized read\n");
7295 		return -EACCES;
7296 	}
7297 
7298 	if (type == ACCESS_HELPER) {
7299 		/* The bounds checks for writes are more permissive than for
7300 		 * reads. However, if raw_mode is not set, we'll do extra
7301 		 * checks below.
7302 		 */
7303 		bounds_check_type = BPF_WRITE;
7304 		clobber = true;
7305 	} else {
7306 		bounds_check_type = BPF_READ;
7307 	}
7308 	err = check_stack_access_within_bounds(env, regno, off, access_size,
7309 					       type, bounds_check_type);
7310 	if (err)
7311 		return err;
7312 
7313 
7314 	if (tnum_is_const(reg->var_off)) {
7315 		min_off = max_off = reg->var_off.value + off;
7316 	} else {
7317 		/* Variable offset is prohibited for unprivileged mode for
7318 		 * simplicity since it requires corresponding support in
7319 		 * Spectre masking for stack ALU.
7320 		 * See also retrieve_ptr_limit().
7321 		 */
7322 		if (!env->bypass_spec_v1) {
7323 			char tn_buf[48];
7324 
7325 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7326 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
7327 				regno, err_extra, tn_buf);
7328 			return -EACCES;
7329 		}
7330 		/* Only initialized buffer on stack is allowed to be accessed
7331 		 * with variable offset. With uninitialized buffer it's hard to
7332 		 * guarantee that whole memory is marked as initialized on
7333 		 * helper return since specific bounds are unknown what may
7334 		 * cause uninitialized stack leaking.
7335 		 */
7336 		if (meta && meta->raw_mode)
7337 			meta = NULL;
7338 
7339 		min_off = reg->smin_value + off;
7340 		max_off = reg->smax_value + off;
7341 	}
7342 
7343 	if (meta && meta->raw_mode) {
7344 		/* Ensure we won't be overwriting dynptrs when simulating byte
7345 		 * by byte access in check_helper_call using meta.access_size.
7346 		 * This would be a problem if we have a helper in the future
7347 		 * which takes:
7348 		 *
7349 		 *	helper(uninit_mem, len, dynptr)
7350 		 *
7351 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
7352 		 * may end up writing to dynptr itself when touching memory from
7353 		 * arg 1. This can be relaxed on a case by case basis for known
7354 		 * safe cases, but reject due to the possibilitiy of aliasing by
7355 		 * default.
7356 		 */
7357 		for (i = min_off; i < max_off + access_size; i++) {
7358 			int stack_off = -i - 1;
7359 
7360 			spi = __get_spi(i);
7361 			/* raw_mode may write past allocated_stack */
7362 			if (state->allocated_stack <= stack_off)
7363 				continue;
7364 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
7365 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
7366 				return -EACCES;
7367 			}
7368 		}
7369 		meta->access_size = access_size;
7370 		meta->regno = regno;
7371 		return 0;
7372 	}
7373 
7374 	for (i = min_off; i < max_off + access_size; i++) {
7375 		u8 *stype;
7376 
7377 		slot = -i - 1;
7378 		spi = slot / BPF_REG_SIZE;
7379 		if (state->allocated_stack <= slot) {
7380 			verbose(env, "verifier bug: allocated_stack too small");
7381 			return -EFAULT;
7382 		}
7383 
7384 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
7385 		if (*stype == STACK_MISC)
7386 			goto mark;
7387 		if ((*stype == STACK_ZERO) ||
7388 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
7389 			if (clobber) {
7390 				/* helper can write anything into the stack */
7391 				*stype = STACK_MISC;
7392 			}
7393 			goto mark;
7394 		}
7395 
7396 		if (is_spilled_reg(&state->stack[spi]) &&
7397 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
7398 		     env->allow_ptr_leaks)) {
7399 			if (clobber) {
7400 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
7401 				for (j = 0; j < BPF_REG_SIZE; j++)
7402 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
7403 			}
7404 			goto mark;
7405 		}
7406 
7407 		if (tnum_is_const(reg->var_off)) {
7408 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
7409 				err_extra, regno, min_off, i - min_off, access_size);
7410 		} else {
7411 			char tn_buf[48];
7412 
7413 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7414 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
7415 				err_extra, regno, tn_buf, i - min_off, access_size);
7416 		}
7417 		return -EACCES;
7418 mark:
7419 		/* reading any byte out of 8-byte 'spill_slot' will cause
7420 		 * the whole slot to be marked as 'read'
7421 		 */
7422 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
7423 			      state->stack[spi].spilled_ptr.parent,
7424 			      REG_LIVE_READ64);
7425 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
7426 		 * be sure that whether stack slot is written to or not. Hence,
7427 		 * we must still conservatively propagate reads upwards even if
7428 		 * helper may write to the entire memory range.
7429 		 */
7430 	}
7431 	return 0;
7432 }
7433 
7434 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
7435 				   int access_size, bool zero_size_allowed,
7436 				   struct bpf_call_arg_meta *meta)
7437 {
7438 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7439 	u32 *max_access;
7440 
7441 	switch (base_type(reg->type)) {
7442 	case PTR_TO_PACKET:
7443 	case PTR_TO_PACKET_META:
7444 		return check_packet_access(env, regno, reg->off, access_size,
7445 					   zero_size_allowed);
7446 	case PTR_TO_MAP_KEY:
7447 		if (meta && meta->raw_mode) {
7448 			verbose(env, "R%d cannot write into %s\n", regno,
7449 				reg_type_str(env, reg->type));
7450 			return -EACCES;
7451 		}
7452 		return check_mem_region_access(env, regno, reg->off, access_size,
7453 					       reg->map_ptr->key_size, false);
7454 	case PTR_TO_MAP_VALUE:
7455 		if (check_map_access_type(env, regno, reg->off, access_size,
7456 					  meta && meta->raw_mode ? BPF_WRITE :
7457 					  BPF_READ))
7458 			return -EACCES;
7459 		return check_map_access(env, regno, reg->off, access_size,
7460 					zero_size_allowed, ACCESS_HELPER);
7461 	case PTR_TO_MEM:
7462 		if (type_is_rdonly_mem(reg->type)) {
7463 			if (meta && meta->raw_mode) {
7464 				verbose(env, "R%d cannot write into %s\n", regno,
7465 					reg_type_str(env, reg->type));
7466 				return -EACCES;
7467 			}
7468 		}
7469 		return check_mem_region_access(env, regno, reg->off,
7470 					       access_size, reg->mem_size,
7471 					       zero_size_allowed);
7472 	case PTR_TO_BUF:
7473 		if (type_is_rdonly_mem(reg->type)) {
7474 			if (meta && meta->raw_mode) {
7475 				verbose(env, "R%d cannot write into %s\n", regno,
7476 					reg_type_str(env, reg->type));
7477 				return -EACCES;
7478 			}
7479 
7480 			max_access = &env->prog->aux->max_rdonly_access;
7481 		} else {
7482 			max_access = &env->prog->aux->max_rdwr_access;
7483 		}
7484 		return check_buffer_access(env, reg, regno, reg->off,
7485 					   access_size, zero_size_allowed,
7486 					   max_access);
7487 	case PTR_TO_STACK:
7488 		return check_stack_range_initialized(
7489 				env,
7490 				regno, reg->off, access_size,
7491 				zero_size_allowed, ACCESS_HELPER, meta);
7492 	case PTR_TO_BTF_ID:
7493 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
7494 					       access_size, BPF_READ, -1);
7495 	case PTR_TO_CTX:
7496 		/* in case the function doesn't know how to access the context,
7497 		 * (because we are in a program of type SYSCALL for example), we
7498 		 * can not statically check its size.
7499 		 * Dynamically check it now.
7500 		 */
7501 		if (!env->ops->convert_ctx_access) {
7502 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
7503 			int offset = access_size - 1;
7504 
7505 			/* Allow zero-byte read from PTR_TO_CTX */
7506 			if (access_size == 0)
7507 				return zero_size_allowed ? 0 : -EACCES;
7508 
7509 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7510 						atype, -1, false, false);
7511 		}
7512 
7513 		fallthrough;
7514 	default: /* scalar_value or invalid ptr */
7515 		/* Allow zero-byte read from NULL, regardless of pointer type */
7516 		if (zero_size_allowed && access_size == 0 &&
7517 		    register_is_null(reg))
7518 			return 0;
7519 
7520 		verbose(env, "R%d type=%s ", regno,
7521 			reg_type_str(env, reg->type));
7522 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7523 		return -EACCES;
7524 	}
7525 }
7526 
7527 /* verify arguments to helpers or kfuncs consisting of a pointer and an access
7528  * size.
7529  *
7530  * @regno is the register containing the access size. regno-1 is the register
7531  * containing the pointer.
7532  */
7533 static int check_mem_size_reg(struct bpf_verifier_env *env,
7534 			      struct bpf_reg_state *reg, u32 regno,
7535 			      bool zero_size_allowed,
7536 			      struct bpf_call_arg_meta *meta)
7537 {
7538 	int err;
7539 
7540 	/* This is used to refine r0 return value bounds for helpers
7541 	 * that enforce this value as an upper bound on return values.
7542 	 * See do_refine_retval_range() for helpers that can refine
7543 	 * the return value. C type of helper is u32 so we pull register
7544 	 * bound from umax_value however, if negative verifier errors
7545 	 * out. Only upper bounds can be learned because retval is an
7546 	 * int type and negative retvals are allowed.
7547 	 */
7548 	meta->msize_max_value = reg->umax_value;
7549 
7550 	/* The register is SCALAR_VALUE; the access check
7551 	 * happens using its boundaries.
7552 	 */
7553 	if (!tnum_is_const(reg->var_off))
7554 		/* For unprivileged variable accesses, disable raw
7555 		 * mode so that the program is required to
7556 		 * initialize all the memory that the helper could
7557 		 * just partially fill up.
7558 		 */
7559 		meta = NULL;
7560 
7561 	if (reg->smin_value < 0) {
7562 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7563 			regno);
7564 		return -EACCES;
7565 	}
7566 
7567 	if (reg->umin_value == 0 && !zero_size_allowed) {
7568 		verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n",
7569 			regno, reg->umin_value, reg->umax_value);
7570 		return -EACCES;
7571 	}
7572 
7573 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7574 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7575 			regno);
7576 		return -EACCES;
7577 	}
7578 	err = check_helper_mem_access(env, regno - 1,
7579 				      reg->umax_value,
7580 				      zero_size_allowed, meta);
7581 	if (!err)
7582 		err = mark_chain_precision(env, regno);
7583 	return err;
7584 }
7585 
7586 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7587 			 u32 regno, u32 mem_size)
7588 {
7589 	bool may_be_null = type_may_be_null(reg->type);
7590 	struct bpf_reg_state saved_reg;
7591 	struct bpf_call_arg_meta meta;
7592 	int err;
7593 
7594 	if (register_is_null(reg))
7595 		return 0;
7596 
7597 	memset(&meta, 0, sizeof(meta));
7598 	/* Assuming that the register contains a value check if the memory
7599 	 * access is safe. Temporarily save and restore the register's state as
7600 	 * the conversion shouldn't be visible to a caller.
7601 	 */
7602 	if (may_be_null) {
7603 		saved_reg = *reg;
7604 		mark_ptr_not_null_reg(reg);
7605 	}
7606 
7607 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
7608 	/* Check access for BPF_WRITE */
7609 	meta.raw_mode = true;
7610 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
7611 
7612 	if (may_be_null)
7613 		*reg = saved_reg;
7614 
7615 	return err;
7616 }
7617 
7618 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7619 				    u32 regno)
7620 {
7621 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7622 	bool may_be_null = type_may_be_null(mem_reg->type);
7623 	struct bpf_reg_state saved_reg;
7624 	struct bpf_call_arg_meta meta;
7625 	int err;
7626 
7627 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7628 
7629 	memset(&meta, 0, sizeof(meta));
7630 
7631 	if (may_be_null) {
7632 		saved_reg = *mem_reg;
7633 		mark_ptr_not_null_reg(mem_reg);
7634 	}
7635 
7636 	err = check_mem_size_reg(env, reg, regno, true, &meta);
7637 	/* Check access for BPF_WRITE */
7638 	meta.raw_mode = true;
7639 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
7640 
7641 	if (may_be_null)
7642 		*mem_reg = saved_reg;
7643 	return err;
7644 }
7645 
7646 /* Implementation details:
7647  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7648  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7649  * Two bpf_map_lookups (even with the same key) will have different reg->id.
7650  * Two separate bpf_obj_new will also have different reg->id.
7651  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7652  * clears reg->id after value_or_null->value transition, since the verifier only
7653  * cares about the range of access to valid map value pointer and doesn't care
7654  * about actual address of the map element.
7655  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7656  * reg->id > 0 after value_or_null->value transition. By doing so
7657  * two bpf_map_lookups will be considered two different pointers that
7658  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7659  * returned from bpf_obj_new.
7660  * The verifier allows taking only one bpf_spin_lock at a time to avoid
7661  * dead-locks.
7662  * Since only one bpf_spin_lock is allowed the checks are simpler than
7663  * reg_is_refcounted() logic. The verifier needs to remember only
7664  * one spin_lock instead of array of acquired_refs.
7665  * cur_state->active_lock remembers which map value element or allocated
7666  * object got locked and clears it after bpf_spin_unlock.
7667  */
7668 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7669 			     bool is_lock)
7670 {
7671 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7672 	struct bpf_verifier_state *cur = env->cur_state;
7673 	bool is_const = tnum_is_const(reg->var_off);
7674 	u64 val = reg->var_off.value;
7675 	struct bpf_map *map = NULL;
7676 	struct btf *btf = NULL;
7677 	struct btf_record *rec;
7678 
7679 	if (!is_const) {
7680 		verbose(env,
7681 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7682 			regno);
7683 		return -EINVAL;
7684 	}
7685 	if (reg->type == PTR_TO_MAP_VALUE) {
7686 		map = reg->map_ptr;
7687 		if (!map->btf) {
7688 			verbose(env,
7689 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
7690 				map->name);
7691 			return -EINVAL;
7692 		}
7693 	} else {
7694 		btf = reg->btf;
7695 	}
7696 
7697 	rec = reg_btf_record(reg);
7698 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7699 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7700 			map ? map->name : "kptr");
7701 		return -EINVAL;
7702 	}
7703 	if (rec->spin_lock_off != val + reg->off) {
7704 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7705 			val + reg->off, rec->spin_lock_off);
7706 		return -EINVAL;
7707 	}
7708 	if (is_lock) {
7709 		if (cur->active_lock.ptr) {
7710 			verbose(env,
7711 				"Locking two bpf_spin_locks are not allowed\n");
7712 			return -EINVAL;
7713 		}
7714 		if (map)
7715 			cur->active_lock.ptr = map;
7716 		else
7717 			cur->active_lock.ptr = btf;
7718 		cur->active_lock.id = reg->id;
7719 	} else {
7720 		void *ptr;
7721 
7722 		if (map)
7723 			ptr = map;
7724 		else
7725 			ptr = btf;
7726 
7727 		if (!cur->active_lock.ptr) {
7728 			verbose(env, "bpf_spin_unlock without taking a lock\n");
7729 			return -EINVAL;
7730 		}
7731 		if (cur->active_lock.ptr != ptr ||
7732 		    cur->active_lock.id != reg->id) {
7733 			verbose(env, "bpf_spin_unlock of different lock\n");
7734 			return -EINVAL;
7735 		}
7736 
7737 		invalidate_non_owning_refs(env);
7738 
7739 		cur->active_lock.ptr = NULL;
7740 		cur->active_lock.id = 0;
7741 	}
7742 	return 0;
7743 }
7744 
7745 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7746 			      struct bpf_call_arg_meta *meta)
7747 {
7748 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7749 	bool is_const = tnum_is_const(reg->var_off);
7750 	struct bpf_map *map = reg->map_ptr;
7751 	u64 val = reg->var_off.value;
7752 
7753 	if (!is_const) {
7754 		verbose(env,
7755 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7756 			regno);
7757 		return -EINVAL;
7758 	}
7759 	if (!map->btf) {
7760 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7761 			map->name);
7762 		return -EINVAL;
7763 	}
7764 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
7765 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7766 		return -EINVAL;
7767 	}
7768 	if (map->record->timer_off != val + reg->off) {
7769 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7770 			val + reg->off, map->record->timer_off);
7771 		return -EINVAL;
7772 	}
7773 	if (meta->map_ptr) {
7774 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7775 		return -EFAULT;
7776 	}
7777 	meta->map_uid = reg->map_uid;
7778 	meta->map_ptr = map;
7779 	return 0;
7780 }
7781 
7782 static int process_wq_func(struct bpf_verifier_env *env, int regno,
7783 			   struct bpf_kfunc_call_arg_meta *meta)
7784 {
7785 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7786 	struct bpf_map *map = reg->map_ptr;
7787 	u64 val = reg->var_off.value;
7788 
7789 	if (map->record->wq_off != val + reg->off) {
7790 		verbose(env, "off %lld doesn't point to 'struct bpf_wq' that is at %d\n",
7791 			val + reg->off, map->record->wq_off);
7792 		return -EINVAL;
7793 	}
7794 	meta->map.uid = reg->map_uid;
7795 	meta->map.ptr = map;
7796 	return 0;
7797 }
7798 
7799 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7800 			     struct bpf_call_arg_meta *meta)
7801 {
7802 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7803 	struct btf_field *kptr_field;
7804 	struct bpf_map *map_ptr;
7805 	struct btf_record *rec;
7806 	u32 kptr_off;
7807 
7808 	if (type_is_ptr_alloc_obj(reg->type)) {
7809 		rec = reg_btf_record(reg);
7810 	} else { /* PTR_TO_MAP_VALUE */
7811 		map_ptr = reg->map_ptr;
7812 		if (!map_ptr->btf) {
7813 			verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7814 				map_ptr->name);
7815 			return -EINVAL;
7816 		}
7817 		rec = map_ptr->record;
7818 		meta->map_ptr = map_ptr;
7819 	}
7820 
7821 	if (!tnum_is_const(reg->var_off)) {
7822 		verbose(env,
7823 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7824 			regno);
7825 		return -EINVAL;
7826 	}
7827 
7828 	if (!btf_record_has_field(rec, BPF_KPTR)) {
7829 		verbose(env, "R%d has no valid kptr\n", regno);
7830 		return -EINVAL;
7831 	}
7832 
7833 	kptr_off = reg->off + reg->var_off.value;
7834 	kptr_field = btf_record_find(rec, kptr_off, BPF_KPTR);
7835 	if (!kptr_field) {
7836 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7837 		return -EACCES;
7838 	}
7839 	if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) {
7840 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7841 		return -EACCES;
7842 	}
7843 	meta->kptr_field = kptr_field;
7844 	return 0;
7845 }
7846 
7847 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7848  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7849  *
7850  * In both cases we deal with the first 8 bytes, but need to mark the next 8
7851  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7852  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7853  *
7854  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7855  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7856  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7857  * mutate the view of the dynptr and also possibly destroy it. In the latter
7858  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7859  * memory that dynptr points to.
7860  *
7861  * The verifier will keep track both levels of mutation (bpf_dynptr's in
7862  * reg->type and the memory's in reg->dynptr.type), but there is no support for
7863  * readonly dynptr view yet, hence only the first case is tracked and checked.
7864  *
7865  * This is consistent with how C applies the const modifier to a struct object,
7866  * where the pointer itself inside bpf_dynptr becomes const but not what it
7867  * points to.
7868  *
7869  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7870  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7871  */
7872 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7873 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
7874 {
7875 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7876 	int err;
7877 
7878 	if (reg->type != PTR_TO_STACK && reg->type != CONST_PTR_TO_DYNPTR) {
7879 		verbose(env,
7880 			"arg#%d expected pointer to stack or const struct bpf_dynptr\n",
7881 			regno);
7882 		return -EINVAL;
7883 	}
7884 
7885 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7886 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7887 	 */
7888 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7889 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7890 		return -EFAULT;
7891 	}
7892 
7893 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
7894 	 *		 constructing a mutable bpf_dynptr object.
7895 	 *
7896 	 *		 Currently, this is only possible with PTR_TO_STACK
7897 	 *		 pointing to a region of at least 16 bytes which doesn't
7898 	 *		 contain an existing bpf_dynptr.
7899 	 *
7900 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7901 	 *		 mutated or destroyed. However, the memory it points to
7902 	 *		 may be mutated.
7903 	 *
7904 	 *  None       - Points to a initialized dynptr that can be mutated and
7905 	 *		 destroyed, including mutation of the memory it points
7906 	 *		 to.
7907 	 */
7908 	if (arg_type & MEM_UNINIT) {
7909 		int i;
7910 
7911 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
7912 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7913 			return -EINVAL;
7914 		}
7915 
7916 		/* we write BPF_DW bits (8 bytes) at a time */
7917 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7918 			err = check_mem_access(env, insn_idx, regno,
7919 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7920 			if (err)
7921 				return err;
7922 		}
7923 
7924 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7925 	} else /* MEM_RDONLY and None case from above */ {
7926 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7927 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7928 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7929 			return -EINVAL;
7930 		}
7931 
7932 		if (!is_dynptr_reg_valid_init(env, reg)) {
7933 			verbose(env,
7934 				"Expected an initialized dynptr as arg #%d\n",
7935 				regno);
7936 			return -EINVAL;
7937 		}
7938 
7939 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7940 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7941 			verbose(env,
7942 				"Expected a dynptr of type %s as arg #%d\n",
7943 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7944 			return -EINVAL;
7945 		}
7946 
7947 		err = mark_dynptr_read(env, reg);
7948 	}
7949 	return err;
7950 }
7951 
7952 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7953 {
7954 	struct bpf_func_state *state = func(env, reg);
7955 
7956 	return state->stack[spi].spilled_ptr.ref_obj_id;
7957 }
7958 
7959 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7960 {
7961 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7962 }
7963 
7964 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7965 {
7966 	return meta->kfunc_flags & KF_ITER_NEW;
7967 }
7968 
7969 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7970 {
7971 	return meta->kfunc_flags & KF_ITER_NEXT;
7972 }
7973 
7974 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7975 {
7976 	return meta->kfunc_flags & KF_ITER_DESTROY;
7977 }
7978 
7979 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg_idx,
7980 			      const struct btf_param *arg)
7981 {
7982 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
7983 	 * kfunc is iter state pointer
7984 	 */
7985 	if (is_iter_kfunc(meta))
7986 		return arg_idx == 0;
7987 
7988 	/* iter passed as an argument to a generic kfunc */
7989 	return btf_param_match_suffix(meta->btf, arg, "__iter");
7990 }
7991 
7992 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7993 			    struct bpf_kfunc_call_arg_meta *meta)
7994 {
7995 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7996 	const struct btf_type *t;
7997 	int spi, err, i, nr_slots, btf_id;
7998 
7999 	/* For iter_{new,next,destroy} functions, btf_check_iter_kfuncs()
8000 	 * ensures struct convention, so we wouldn't need to do any BTF
8001 	 * validation here. But given iter state can be passed as a parameter
8002 	 * to any kfunc, if arg has "__iter" suffix, we need to be a bit more
8003 	 * conservative here.
8004 	 */
8005 	btf_id = btf_check_iter_arg(meta->btf, meta->func_proto, regno - 1);
8006 	if (btf_id < 0) {
8007 		verbose(env, "expected valid iter pointer as arg #%d\n", regno);
8008 		return -EINVAL;
8009 	}
8010 	t = btf_type_by_id(meta->btf, btf_id);
8011 	nr_slots = t->size / BPF_REG_SIZE;
8012 
8013 	if (is_iter_new_kfunc(meta)) {
8014 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
8015 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
8016 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
8017 				iter_type_str(meta->btf, btf_id), regno);
8018 			return -EINVAL;
8019 		}
8020 
8021 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
8022 			err = check_mem_access(env, insn_idx, regno,
8023 					       i, BPF_DW, BPF_WRITE, -1, false, false);
8024 			if (err)
8025 				return err;
8026 		}
8027 
8028 		err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots);
8029 		if (err)
8030 			return err;
8031 	} else {
8032 		/* iter_next() or iter_destroy(), as well as any kfunc
8033 		 * accepting iter argument, expect initialized iter state
8034 		 */
8035 		err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots);
8036 		switch (err) {
8037 		case 0:
8038 			break;
8039 		case -EINVAL:
8040 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
8041 				iter_type_str(meta->btf, btf_id), regno);
8042 			return err;
8043 		case -EPROTO:
8044 			verbose(env, "expected an RCU CS when using %s\n", meta->func_name);
8045 			return err;
8046 		default:
8047 			return err;
8048 		}
8049 
8050 		spi = iter_get_spi(env, reg, nr_slots);
8051 		if (spi < 0)
8052 			return spi;
8053 
8054 		err = mark_iter_read(env, reg, spi, nr_slots);
8055 		if (err)
8056 			return err;
8057 
8058 		/* remember meta->iter info for process_iter_next_call() */
8059 		meta->iter.spi = spi;
8060 		meta->iter.frameno = reg->frameno;
8061 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
8062 
8063 		if (is_iter_destroy_kfunc(meta)) {
8064 			err = unmark_stack_slots_iter(env, reg, nr_slots);
8065 			if (err)
8066 				return err;
8067 		}
8068 	}
8069 
8070 	return 0;
8071 }
8072 
8073 /* Look for a previous loop entry at insn_idx: nearest parent state
8074  * stopped at insn_idx with callsites matching those in cur->frame.
8075  */
8076 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
8077 						  struct bpf_verifier_state *cur,
8078 						  int insn_idx)
8079 {
8080 	struct bpf_verifier_state_list *sl;
8081 	struct bpf_verifier_state *st;
8082 
8083 	/* Explored states are pushed in stack order, most recent states come first */
8084 	sl = *explored_state(env, insn_idx);
8085 	for (; sl; sl = sl->next) {
8086 		/* If st->branches != 0 state is a part of current DFS verification path,
8087 		 * hence cur & st for a loop.
8088 		 */
8089 		st = &sl->state;
8090 		if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
8091 		    st->dfs_depth < cur->dfs_depth)
8092 			return st;
8093 	}
8094 
8095 	return NULL;
8096 }
8097 
8098 static void reset_idmap_scratch(struct bpf_verifier_env *env);
8099 static bool regs_exact(const struct bpf_reg_state *rold,
8100 		       const struct bpf_reg_state *rcur,
8101 		       struct bpf_idmap *idmap);
8102 
8103 static void maybe_widen_reg(struct bpf_verifier_env *env,
8104 			    struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
8105 			    struct bpf_idmap *idmap)
8106 {
8107 	if (rold->type != SCALAR_VALUE)
8108 		return;
8109 	if (rold->type != rcur->type)
8110 		return;
8111 	if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
8112 		return;
8113 	__mark_reg_unknown(env, rcur);
8114 }
8115 
8116 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
8117 				   struct bpf_verifier_state *old,
8118 				   struct bpf_verifier_state *cur)
8119 {
8120 	struct bpf_func_state *fold, *fcur;
8121 	int i, fr;
8122 
8123 	reset_idmap_scratch(env);
8124 	for (fr = old->curframe; fr >= 0; fr--) {
8125 		fold = old->frame[fr];
8126 		fcur = cur->frame[fr];
8127 
8128 		for (i = 0; i < MAX_BPF_REG; i++)
8129 			maybe_widen_reg(env,
8130 					&fold->regs[i],
8131 					&fcur->regs[i],
8132 					&env->idmap_scratch);
8133 
8134 		for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
8135 			if (!is_spilled_reg(&fold->stack[i]) ||
8136 			    !is_spilled_reg(&fcur->stack[i]))
8137 				continue;
8138 
8139 			maybe_widen_reg(env,
8140 					&fold->stack[i].spilled_ptr,
8141 					&fcur->stack[i].spilled_ptr,
8142 					&env->idmap_scratch);
8143 		}
8144 	}
8145 	return 0;
8146 }
8147 
8148 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st,
8149 						 struct bpf_kfunc_call_arg_meta *meta)
8150 {
8151 	int iter_frameno = meta->iter.frameno;
8152 	int iter_spi = meta->iter.spi;
8153 
8154 	return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
8155 }
8156 
8157 /* process_iter_next_call() is called when verifier gets to iterator's next
8158  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
8159  * to it as just "iter_next()" in comments below.
8160  *
8161  * BPF verifier relies on a crucial contract for any iter_next()
8162  * implementation: it should *eventually* return NULL, and once that happens
8163  * it should keep returning NULL. That is, once iterator exhausts elements to
8164  * iterate, it should never reset or spuriously return new elements.
8165  *
8166  * With the assumption of such contract, process_iter_next_call() simulates
8167  * a fork in the verifier state to validate loop logic correctness and safety
8168  * without having to simulate infinite amount of iterations.
8169  *
8170  * In current state, we first assume that iter_next() returned NULL and
8171  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
8172  * conditions we should not form an infinite loop and should eventually reach
8173  * exit.
8174  *
8175  * Besides that, we also fork current state and enqueue it for later
8176  * verification. In a forked state we keep iterator state as ACTIVE
8177  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
8178  * also bump iteration depth to prevent erroneous infinite loop detection
8179  * later on (see iter_active_depths_differ() comment for details). In this
8180  * state we assume that we'll eventually loop back to another iter_next()
8181  * calls (it could be in exactly same location or in some other instruction,
8182  * it doesn't matter, we don't make any unnecessary assumptions about this,
8183  * everything revolves around iterator state in a stack slot, not which
8184  * instruction is calling iter_next()). When that happens, we either will come
8185  * to iter_next() with equivalent state and can conclude that next iteration
8186  * will proceed in exactly the same way as we just verified, so it's safe to
8187  * assume that loop converges. If not, we'll go on another iteration
8188  * simulation with a different input state, until all possible starting states
8189  * are validated or we reach maximum number of instructions limit.
8190  *
8191  * This way, we will either exhaustively discover all possible input states
8192  * that iterator loop can start with and eventually will converge, or we'll
8193  * effectively regress into bounded loop simulation logic and either reach
8194  * maximum number of instructions if loop is not provably convergent, or there
8195  * is some statically known limit on number of iterations (e.g., if there is
8196  * an explicit `if n > 100 then break;` statement somewhere in the loop).
8197  *
8198  * Iteration convergence logic in is_state_visited() relies on exact
8199  * states comparison, which ignores read and precision marks.
8200  * This is necessary because read and precision marks are not finalized
8201  * while in the loop. Exact comparison might preclude convergence for
8202  * simple programs like below:
8203  *
8204  *     i = 0;
8205  *     while(iter_next(&it))
8206  *       i++;
8207  *
8208  * At each iteration step i++ would produce a new distinct state and
8209  * eventually instruction processing limit would be reached.
8210  *
8211  * To avoid such behavior speculatively forget (widen) range for
8212  * imprecise scalar registers, if those registers were not precise at the
8213  * end of the previous iteration and do not match exactly.
8214  *
8215  * This is a conservative heuristic that allows to verify wide range of programs,
8216  * however it precludes verification of programs that conjure an
8217  * imprecise value on the first loop iteration and use it as precise on a second.
8218  * For example, the following safe program would fail to verify:
8219  *
8220  *     struct bpf_num_iter it;
8221  *     int arr[10];
8222  *     int i = 0, a = 0;
8223  *     bpf_iter_num_new(&it, 0, 10);
8224  *     while (bpf_iter_num_next(&it)) {
8225  *       if (a == 0) {
8226  *         a = 1;
8227  *         i = 7; // Because i changed verifier would forget
8228  *                // it's range on second loop entry.
8229  *       } else {
8230  *         arr[i] = 42; // This would fail to verify.
8231  *       }
8232  *     }
8233  *     bpf_iter_num_destroy(&it);
8234  */
8235 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
8236 				  struct bpf_kfunc_call_arg_meta *meta)
8237 {
8238 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
8239 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
8240 	struct bpf_reg_state *cur_iter, *queued_iter;
8241 
8242 	BTF_TYPE_EMIT(struct bpf_iter);
8243 
8244 	cur_iter = get_iter_from_state(cur_st, meta);
8245 
8246 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
8247 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
8248 		verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
8249 			cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
8250 		return -EFAULT;
8251 	}
8252 
8253 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
8254 		/* Because iter_next() call is a checkpoint is_state_visitied()
8255 		 * should guarantee parent state with same call sites and insn_idx.
8256 		 */
8257 		if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
8258 		    !same_callsites(cur_st->parent, cur_st)) {
8259 			verbose(env, "bug: bad parent state for iter next call");
8260 			return -EFAULT;
8261 		}
8262 		/* Note cur_st->parent in the call below, it is necessary to skip
8263 		 * checkpoint created for cur_st by is_state_visited()
8264 		 * right at this instruction.
8265 		 */
8266 		prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
8267 		/* branch out active iter state */
8268 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
8269 		if (!queued_st)
8270 			return -ENOMEM;
8271 
8272 		queued_iter = get_iter_from_state(queued_st, meta);
8273 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
8274 		queued_iter->iter.depth++;
8275 		if (prev_st)
8276 			widen_imprecise_scalars(env, prev_st, queued_st);
8277 
8278 		queued_fr = queued_st->frame[queued_st->curframe];
8279 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
8280 	}
8281 
8282 	/* switch to DRAINED state, but keep the depth unchanged */
8283 	/* mark current iter state as drained and assume returned NULL */
8284 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
8285 	__mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]);
8286 
8287 	return 0;
8288 }
8289 
8290 static bool arg_type_is_mem_size(enum bpf_arg_type type)
8291 {
8292 	return type == ARG_CONST_SIZE ||
8293 	       type == ARG_CONST_SIZE_OR_ZERO;
8294 }
8295 
8296 static bool arg_type_is_raw_mem(enum bpf_arg_type type)
8297 {
8298 	return base_type(type) == ARG_PTR_TO_MEM &&
8299 	       type & MEM_UNINIT;
8300 }
8301 
8302 static bool arg_type_is_release(enum bpf_arg_type type)
8303 {
8304 	return type & OBJ_RELEASE;
8305 }
8306 
8307 static bool arg_type_is_dynptr(enum bpf_arg_type type)
8308 {
8309 	return base_type(type) == ARG_PTR_TO_DYNPTR;
8310 }
8311 
8312 static int resolve_map_arg_type(struct bpf_verifier_env *env,
8313 				 const struct bpf_call_arg_meta *meta,
8314 				 enum bpf_arg_type *arg_type)
8315 {
8316 	if (!meta->map_ptr) {
8317 		/* kernel subsystem misconfigured verifier */
8318 		verbose(env, "invalid map_ptr to access map->type\n");
8319 		return -EACCES;
8320 	}
8321 
8322 	switch (meta->map_ptr->map_type) {
8323 	case BPF_MAP_TYPE_SOCKMAP:
8324 	case BPF_MAP_TYPE_SOCKHASH:
8325 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
8326 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
8327 		} else {
8328 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
8329 			return -EINVAL;
8330 		}
8331 		break;
8332 	case BPF_MAP_TYPE_BLOOM_FILTER:
8333 		if (meta->func_id == BPF_FUNC_map_peek_elem)
8334 			*arg_type = ARG_PTR_TO_MAP_VALUE;
8335 		break;
8336 	default:
8337 		break;
8338 	}
8339 	return 0;
8340 }
8341 
8342 struct bpf_reg_types {
8343 	const enum bpf_reg_type types[10];
8344 	u32 *btf_id;
8345 };
8346 
8347 static const struct bpf_reg_types sock_types = {
8348 	.types = {
8349 		PTR_TO_SOCK_COMMON,
8350 		PTR_TO_SOCKET,
8351 		PTR_TO_TCP_SOCK,
8352 		PTR_TO_XDP_SOCK,
8353 	},
8354 };
8355 
8356 #ifdef CONFIG_NET
8357 static const struct bpf_reg_types btf_id_sock_common_types = {
8358 	.types = {
8359 		PTR_TO_SOCK_COMMON,
8360 		PTR_TO_SOCKET,
8361 		PTR_TO_TCP_SOCK,
8362 		PTR_TO_XDP_SOCK,
8363 		PTR_TO_BTF_ID,
8364 		PTR_TO_BTF_ID | PTR_TRUSTED,
8365 	},
8366 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8367 };
8368 #endif
8369 
8370 static const struct bpf_reg_types mem_types = {
8371 	.types = {
8372 		PTR_TO_STACK,
8373 		PTR_TO_PACKET,
8374 		PTR_TO_PACKET_META,
8375 		PTR_TO_MAP_KEY,
8376 		PTR_TO_MAP_VALUE,
8377 		PTR_TO_MEM,
8378 		PTR_TO_MEM | MEM_RINGBUF,
8379 		PTR_TO_BUF,
8380 		PTR_TO_BTF_ID | PTR_TRUSTED,
8381 	},
8382 };
8383 
8384 static const struct bpf_reg_types spin_lock_types = {
8385 	.types = {
8386 		PTR_TO_MAP_VALUE,
8387 		PTR_TO_BTF_ID | MEM_ALLOC,
8388 	}
8389 };
8390 
8391 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
8392 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
8393 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
8394 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
8395 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
8396 static const struct bpf_reg_types btf_ptr_types = {
8397 	.types = {
8398 		PTR_TO_BTF_ID,
8399 		PTR_TO_BTF_ID | PTR_TRUSTED,
8400 		PTR_TO_BTF_ID | MEM_RCU,
8401 	},
8402 };
8403 static const struct bpf_reg_types percpu_btf_ptr_types = {
8404 	.types = {
8405 		PTR_TO_BTF_ID | MEM_PERCPU,
8406 		PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU,
8407 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
8408 	}
8409 };
8410 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
8411 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
8412 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
8413 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
8414 static const struct bpf_reg_types kptr_xchg_dest_types = {
8415 	.types = {
8416 		PTR_TO_MAP_VALUE,
8417 		PTR_TO_BTF_ID | MEM_ALLOC
8418 	}
8419 };
8420 static const struct bpf_reg_types dynptr_types = {
8421 	.types = {
8422 		PTR_TO_STACK,
8423 		CONST_PTR_TO_DYNPTR,
8424 	}
8425 };
8426 
8427 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
8428 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
8429 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
8430 	[ARG_CONST_SIZE]		= &scalar_types,
8431 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
8432 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
8433 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
8434 	[ARG_PTR_TO_CTX]		= &context_types,
8435 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
8436 #ifdef CONFIG_NET
8437 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
8438 #endif
8439 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
8440 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
8441 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
8442 	[ARG_PTR_TO_MEM]		= &mem_types,
8443 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
8444 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
8445 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
8446 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
8447 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
8448 	[ARG_PTR_TO_TIMER]		= &timer_types,
8449 	[ARG_KPTR_XCHG_DEST]		= &kptr_xchg_dest_types,
8450 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
8451 };
8452 
8453 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
8454 			  enum bpf_arg_type arg_type,
8455 			  const u32 *arg_btf_id,
8456 			  struct bpf_call_arg_meta *meta)
8457 {
8458 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8459 	enum bpf_reg_type expected, type = reg->type;
8460 	const struct bpf_reg_types *compatible;
8461 	int i, j;
8462 
8463 	compatible = compatible_reg_types[base_type(arg_type)];
8464 	if (!compatible) {
8465 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
8466 		return -EFAULT;
8467 	}
8468 
8469 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
8470 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
8471 	 *
8472 	 * Same for MAYBE_NULL:
8473 	 *
8474 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
8475 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
8476 	 *
8477 	 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
8478 	 *
8479 	 * Therefore we fold these flags depending on the arg_type before comparison.
8480 	 */
8481 	if (arg_type & MEM_RDONLY)
8482 		type &= ~MEM_RDONLY;
8483 	if (arg_type & PTR_MAYBE_NULL)
8484 		type &= ~PTR_MAYBE_NULL;
8485 	if (base_type(arg_type) == ARG_PTR_TO_MEM)
8486 		type &= ~DYNPTR_TYPE_FLAG_MASK;
8487 
8488 	/* Local kptr types are allowed as the source argument of bpf_kptr_xchg */
8489 	if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type) && regno == BPF_REG_2) {
8490 		type &= ~MEM_ALLOC;
8491 		type &= ~MEM_PERCPU;
8492 	}
8493 
8494 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
8495 		expected = compatible->types[i];
8496 		if (expected == NOT_INIT)
8497 			break;
8498 
8499 		if (type == expected)
8500 			goto found;
8501 	}
8502 
8503 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
8504 	for (j = 0; j + 1 < i; j++)
8505 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
8506 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
8507 	return -EACCES;
8508 
8509 found:
8510 	if (base_type(reg->type) != PTR_TO_BTF_ID)
8511 		return 0;
8512 
8513 	if (compatible == &mem_types) {
8514 		if (!(arg_type & MEM_RDONLY)) {
8515 			verbose(env,
8516 				"%s() may write into memory pointed by R%d type=%s\n",
8517 				func_id_name(meta->func_id),
8518 				regno, reg_type_str(env, reg->type));
8519 			return -EACCES;
8520 		}
8521 		return 0;
8522 	}
8523 
8524 	switch ((int)reg->type) {
8525 	case PTR_TO_BTF_ID:
8526 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8527 	case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL:
8528 	case PTR_TO_BTF_ID | MEM_RCU:
8529 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
8530 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
8531 	{
8532 		/* For bpf_sk_release, it needs to match against first member
8533 		 * 'struct sock_common', hence make an exception for it. This
8534 		 * allows bpf_sk_release to work for multiple socket types.
8535 		 */
8536 		bool strict_type_match = arg_type_is_release(arg_type) &&
8537 					 meta->func_id != BPF_FUNC_sk_release;
8538 
8539 		if (type_may_be_null(reg->type) &&
8540 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
8541 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
8542 			return -EACCES;
8543 		}
8544 
8545 		if (!arg_btf_id) {
8546 			if (!compatible->btf_id) {
8547 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
8548 				return -EFAULT;
8549 			}
8550 			arg_btf_id = compatible->btf_id;
8551 		}
8552 
8553 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8554 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8555 				return -EACCES;
8556 		} else {
8557 			if (arg_btf_id == BPF_PTR_POISON) {
8558 				verbose(env, "verifier internal error:");
8559 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
8560 					regno);
8561 				return -EACCES;
8562 			}
8563 
8564 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
8565 						  btf_vmlinux, *arg_btf_id,
8566 						  strict_type_match)) {
8567 				verbose(env, "R%d is of type %s but %s is expected\n",
8568 					regno, btf_type_name(reg->btf, reg->btf_id),
8569 					btf_type_name(btf_vmlinux, *arg_btf_id));
8570 				return -EACCES;
8571 			}
8572 		}
8573 		break;
8574 	}
8575 	case PTR_TO_BTF_ID | MEM_ALLOC:
8576 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC:
8577 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
8578 		    meta->func_id != BPF_FUNC_kptr_xchg) {
8579 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
8580 			return -EFAULT;
8581 		}
8582 		/* Check if local kptr in src arg matches kptr in dst arg */
8583 		if (meta->func_id == BPF_FUNC_kptr_xchg && regno == BPF_REG_2) {
8584 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8585 				return -EACCES;
8586 		}
8587 		break;
8588 	case PTR_TO_BTF_ID | MEM_PERCPU:
8589 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU:
8590 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
8591 		/* Handled by helper specific checks */
8592 		break;
8593 	default:
8594 		verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
8595 		return -EFAULT;
8596 	}
8597 	return 0;
8598 }
8599 
8600 static struct btf_field *
8601 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
8602 {
8603 	struct btf_field *field;
8604 	struct btf_record *rec;
8605 
8606 	rec = reg_btf_record(reg);
8607 	if (!rec)
8608 		return NULL;
8609 
8610 	field = btf_record_find(rec, off, fields);
8611 	if (!field)
8612 		return NULL;
8613 
8614 	return field;
8615 }
8616 
8617 static int check_func_arg_reg_off(struct bpf_verifier_env *env,
8618 				  const struct bpf_reg_state *reg, int regno,
8619 				  enum bpf_arg_type arg_type)
8620 {
8621 	u32 type = reg->type;
8622 
8623 	/* When referenced register is passed to release function, its fixed
8624 	 * offset must be 0.
8625 	 *
8626 	 * We will check arg_type_is_release reg has ref_obj_id when storing
8627 	 * meta->release_regno.
8628 	 */
8629 	if (arg_type_is_release(arg_type)) {
8630 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
8631 		 * may not directly point to the object being released, but to
8632 		 * dynptr pointing to such object, which might be at some offset
8633 		 * on the stack. In that case, we simply to fallback to the
8634 		 * default handling.
8635 		 */
8636 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
8637 			return 0;
8638 
8639 		/* Doing check_ptr_off_reg check for the offset will catch this
8640 		 * because fixed_off_ok is false, but checking here allows us
8641 		 * to give the user a better error message.
8642 		 */
8643 		if (reg->off) {
8644 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
8645 				regno);
8646 			return -EINVAL;
8647 		}
8648 		return __check_ptr_off_reg(env, reg, regno, false);
8649 	}
8650 
8651 	switch (type) {
8652 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
8653 	case PTR_TO_STACK:
8654 	case PTR_TO_PACKET:
8655 	case PTR_TO_PACKET_META:
8656 	case PTR_TO_MAP_KEY:
8657 	case PTR_TO_MAP_VALUE:
8658 	case PTR_TO_MEM:
8659 	case PTR_TO_MEM | MEM_RDONLY:
8660 	case PTR_TO_MEM | MEM_RINGBUF:
8661 	case PTR_TO_BUF:
8662 	case PTR_TO_BUF | MEM_RDONLY:
8663 	case PTR_TO_ARENA:
8664 	case SCALAR_VALUE:
8665 		return 0;
8666 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8667 	 * fixed offset.
8668 	 */
8669 	case PTR_TO_BTF_ID:
8670 	case PTR_TO_BTF_ID | MEM_ALLOC:
8671 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8672 	case PTR_TO_BTF_ID | MEM_RCU:
8673 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8674 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8675 		/* When referenced PTR_TO_BTF_ID is passed to release function,
8676 		 * its fixed offset must be 0. In the other cases, fixed offset
8677 		 * can be non-zero. This was already checked above. So pass
8678 		 * fixed_off_ok as true to allow fixed offset for all other
8679 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8680 		 * still need to do checks instead of returning.
8681 		 */
8682 		return __check_ptr_off_reg(env, reg, regno, true);
8683 	default:
8684 		return __check_ptr_off_reg(env, reg, regno, false);
8685 	}
8686 }
8687 
8688 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8689 						const struct bpf_func_proto *fn,
8690 						struct bpf_reg_state *regs)
8691 {
8692 	struct bpf_reg_state *state = NULL;
8693 	int i;
8694 
8695 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8696 		if (arg_type_is_dynptr(fn->arg_type[i])) {
8697 			if (state) {
8698 				verbose(env, "verifier internal error: multiple dynptr args\n");
8699 				return NULL;
8700 			}
8701 			state = &regs[BPF_REG_1 + i];
8702 		}
8703 
8704 	if (!state)
8705 		verbose(env, "verifier internal error: no dynptr arg found\n");
8706 
8707 	return state;
8708 }
8709 
8710 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8711 {
8712 	struct bpf_func_state *state = func(env, reg);
8713 	int spi;
8714 
8715 	if (reg->type == CONST_PTR_TO_DYNPTR)
8716 		return reg->id;
8717 	spi = dynptr_get_spi(env, reg);
8718 	if (spi < 0)
8719 		return spi;
8720 	return state->stack[spi].spilled_ptr.id;
8721 }
8722 
8723 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8724 {
8725 	struct bpf_func_state *state = func(env, reg);
8726 	int spi;
8727 
8728 	if (reg->type == CONST_PTR_TO_DYNPTR)
8729 		return reg->ref_obj_id;
8730 	spi = dynptr_get_spi(env, reg);
8731 	if (spi < 0)
8732 		return spi;
8733 	return state->stack[spi].spilled_ptr.ref_obj_id;
8734 }
8735 
8736 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8737 					    struct bpf_reg_state *reg)
8738 {
8739 	struct bpf_func_state *state = func(env, reg);
8740 	int spi;
8741 
8742 	if (reg->type == CONST_PTR_TO_DYNPTR)
8743 		return reg->dynptr.type;
8744 
8745 	spi = __get_spi(reg->off);
8746 	if (spi < 0) {
8747 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8748 		return BPF_DYNPTR_TYPE_INVALID;
8749 	}
8750 
8751 	return state->stack[spi].spilled_ptr.dynptr.type;
8752 }
8753 
8754 static int check_reg_const_str(struct bpf_verifier_env *env,
8755 			       struct bpf_reg_state *reg, u32 regno)
8756 {
8757 	struct bpf_map *map = reg->map_ptr;
8758 	int err;
8759 	int map_off;
8760 	u64 map_addr;
8761 	char *str_ptr;
8762 
8763 	if (reg->type != PTR_TO_MAP_VALUE)
8764 		return -EINVAL;
8765 
8766 	if (!bpf_map_is_rdonly(map)) {
8767 		verbose(env, "R%d does not point to a readonly map'\n", regno);
8768 		return -EACCES;
8769 	}
8770 
8771 	if (!tnum_is_const(reg->var_off)) {
8772 		verbose(env, "R%d is not a constant address'\n", regno);
8773 		return -EACCES;
8774 	}
8775 
8776 	if (!map->ops->map_direct_value_addr) {
8777 		verbose(env, "no direct value access support for this map type\n");
8778 		return -EACCES;
8779 	}
8780 
8781 	err = check_map_access(env, regno, reg->off,
8782 			       map->value_size - reg->off, false,
8783 			       ACCESS_HELPER);
8784 	if (err)
8785 		return err;
8786 
8787 	map_off = reg->off + reg->var_off.value;
8788 	err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8789 	if (err) {
8790 		verbose(env, "direct value access on string failed\n");
8791 		return err;
8792 	}
8793 
8794 	str_ptr = (char *)(long)(map_addr);
8795 	if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8796 		verbose(env, "string is not zero-terminated\n");
8797 		return -EINVAL;
8798 	}
8799 	return 0;
8800 }
8801 
8802 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8803 			  struct bpf_call_arg_meta *meta,
8804 			  const struct bpf_func_proto *fn,
8805 			  int insn_idx)
8806 {
8807 	u32 regno = BPF_REG_1 + arg;
8808 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8809 	enum bpf_arg_type arg_type = fn->arg_type[arg];
8810 	enum bpf_reg_type type = reg->type;
8811 	u32 *arg_btf_id = NULL;
8812 	int err = 0;
8813 
8814 	if (arg_type == ARG_DONTCARE)
8815 		return 0;
8816 
8817 	err = check_reg_arg(env, regno, SRC_OP);
8818 	if (err)
8819 		return err;
8820 
8821 	if (arg_type == ARG_ANYTHING) {
8822 		if (is_pointer_value(env, regno)) {
8823 			verbose(env, "R%d leaks addr into helper function\n",
8824 				regno);
8825 			return -EACCES;
8826 		}
8827 		return 0;
8828 	}
8829 
8830 	if (type_is_pkt_pointer(type) &&
8831 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8832 		verbose(env, "helper access to the packet is not allowed\n");
8833 		return -EACCES;
8834 	}
8835 
8836 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8837 		err = resolve_map_arg_type(env, meta, &arg_type);
8838 		if (err)
8839 			return err;
8840 	}
8841 
8842 	if (register_is_null(reg) && type_may_be_null(arg_type))
8843 		/* A NULL register has a SCALAR_VALUE type, so skip
8844 		 * type checking.
8845 		 */
8846 		goto skip_type_check;
8847 
8848 	/* arg_btf_id and arg_size are in a union. */
8849 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8850 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8851 		arg_btf_id = fn->arg_btf_id[arg];
8852 
8853 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8854 	if (err)
8855 		return err;
8856 
8857 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
8858 	if (err)
8859 		return err;
8860 
8861 skip_type_check:
8862 	if (arg_type_is_release(arg_type)) {
8863 		if (arg_type_is_dynptr(arg_type)) {
8864 			struct bpf_func_state *state = func(env, reg);
8865 			int spi;
8866 
8867 			/* Only dynptr created on stack can be released, thus
8868 			 * the get_spi and stack state checks for spilled_ptr
8869 			 * should only be done before process_dynptr_func for
8870 			 * PTR_TO_STACK.
8871 			 */
8872 			if (reg->type == PTR_TO_STACK) {
8873 				spi = dynptr_get_spi(env, reg);
8874 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8875 					verbose(env, "arg %d is an unacquired reference\n", regno);
8876 					return -EINVAL;
8877 				}
8878 			} else {
8879 				verbose(env, "cannot release unowned const bpf_dynptr\n");
8880 				return -EINVAL;
8881 			}
8882 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
8883 			verbose(env, "R%d must be referenced when passed to release function\n",
8884 				regno);
8885 			return -EINVAL;
8886 		}
8887 		if (meta->release_regno) {
8888 			verbose(env, "verifier internal error: more than one release argument\n");
8889 			return -EFAULT;
8890 		}
8891 		meta->release_regno = regno;
8892 	}
8893 
8894 	if (reg->ref_obj_id && base_type(arg_type) != ARG_KPTR_XCHG_DEST) {
8895 		if (meta->ref_obj_id) {
8896 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8897 				regno, reg->ref_obj_id,
8898 				meta->ref_obj_id);
8899 			return -EFAULT;
8900 		}
8901 		meta->ref_obj_id = reg->ref_obj_id;
8902 	}
8903 
8904 	switch (base_type(arg_type)) {
8905 	case ARG_CONST_MAP_PTR:
8906 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8907 		if (meta->map_ptr) {
8908 			/* Use map_uid (which is unique id of inner map) to reject:
8909 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8910 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8911 			 * if (inner_map1 && inner_map2) {
8912 			 *     timer = bpf_map_lookup_elem(inner_map1);
8913 			 *     if (timer)
8914 			 *         // mismatch would have been allowed
8915 			 *         bpf_timer_init(timer, inner_map2);
8916 			 * }
8917 			 *
8918 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
8919 			 */
8920 			if (meta->map_ptr != reg->map_ptr ||
8921 			    meta->map_uid != reg->map_uid) {
8922 				verbose(env,
8923 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8924 					meta->map_uid, reg->map_uid);
8925 				return -EINVAL;
8926 			}
8927 		}
8928 		meta->map_ptr = reg->map_ptr;
8929 		meta->map_uid = reg->map_uid;
8930 		break;
8931 	case ARG_PTR_TO_MAP_KEY:
8932 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
8933 		 * check that [key, key + map->key_size) are within
8934 		 * stack limits and initialized
8935 		 */
8936 		if (!meta->map_ptr) {
8937 			/* in function declaration map_ptr must come before
8938 			 * map_key, so that it's verified and known before
8939 			 * we have to check map_key here. Otherwise it means
8940 			 * that kernel subsystem misconfigured verifier
8941 			 */
8942 			verbose(env, "invalid map_ptr to access map->key\n");
8943 			return -EACCES;
8944 		}
8945 		err = check_helper_mem_access(env, regno,
8946 					      meta->map_ptr->key_size, false,
8947 					      NULL);
8948 		break;
8949 	case ARG_PTR_TO_MAP_VALUE:
8950 		if (type_may_be_null(arg_type) && register_is_null(reg))
8951 			return 0;
8952 
8953 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
8954 		 * check [value, value + map->value_size) validity
8955 		 */
8956 		if (!meta->map_ptr) {
8957 			/* kernel subsystem misconfigured verifier */
8958 			verbose(env, "invalid map_ptr to access map->value\n");
8959 			return -EACCES;
8960 		}
8961 		meta->raw_mode = arg_type & MEM_UNINIT;
8962 		err = check_helper_mem_access(env, regno,
8963 					      meta->map_ptr->value_size, false,
8964 					      meta);
8965 		break;
8966 	case ARG_PTR_TO_PERCPU_BTF_ID:
8967 		if (!reg->btf_id) {
8968 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8969 			return -EACCES;
8970 		}
8971 		meta->ret_btf = reg->btf;
8972 		meta->ret_btf_id = reg->btf_id;
8973 		break;
8974 	case ARG_PTR_TO_SPIN_LOCK:
8975 		if (in_rbtree_lock_required_cb(env)) {
8976 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8977 			return -EACCES;
8978 		}
8979 		if (meta->func_id == BPF_FUNC_spin_lock) {
8980 			err = process_spin_lock(env, regno, true);
8981 			if (err)
8982 				return err;
8983 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
8984 			err = process_spin_lock(env, regno, false);
8985 			if (err)
8986 				return err;
8987 		} else {
8988 			verbose(env, "verifier internal error\n");
8989 			return -EFAULT;
8990 		}
8991 		break;
8992 	case ARG_PTR_TO_TIMER:
8993 		err = process_timer_func(env, regno, meta);
8994 		if (err)
8995 			return err;
8996 		break;
8997 	case ARG_PTR_TO_FUNC:
8998 		meta->subprogno = reg->subprogno;
8999 		break;
9000 	case ARG_PTR_TO_MEM:
9001 		/* The access to this pointer is only checked when we hit the
9002 		 * next is_mem_size argument below.
9003 		 */
9004 		meta->raw_mode = arg_type & MEM_UNINIT;
9005 		if (arg_type & MEM_FIXED_SIZE) {
9006 			err = check_helper_mem_access(env, regno, fn->arg_size[arg], false, meta);
9007 			if (err)
9008 				return err;
9009 			if (arg_type & MEM_ALIGNED)
9010 				err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true);
9011 		}
9012 		break;
9013 	case ARG_CONST_SIZE:
9014 		err = check_mem_size_reg(env, reg, regno, false, meta);
9015 		break;
9016 	case ARG_CONST_SIZE_OR_ZERO:
9017 		err = check_mem_size_reg(env, reg, regno, true, meta);
9018 		break;
9019 	case ARG_PTR_TO_DYNPTR:
9020 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
9021 		if (err)
9022 			return err;
9023 		break;
9024 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
9025 		if (!tnum_is_const(reg->var_off)) {
9026 			verbose(env, "R%d is not a known constant'\n",
9027 				regno);
9028 			return -EACCES;
9029 		}
9030 		meta->mem_size = reg->var_off.value;
9031 		err = mark_chain_precision(env, regno);
9032 		if (err)
9033 			return err;
9034 		break;
9035 	case ARG_PTR_TO_CONST_STR:
9036 	{
9037 		err = check_reg_const_str(env, reg, regno);
9038 		if (err)
9039 			return err;
9040 		break;
9041 	}
9042 	case ARG_KPTR_XCHG_DEST:
9043 		err = process_kptr_func(env, regno, meta);
9044 		if (err)
9045 			return err;
9046 		break;
9047 	}
9048 
9049 	return err;
9050 }
9051 
9052 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
9053 {
9054 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
9055 	enum bpf_prog_type type = resolve_prog_type(env->prog);
9056 
9057 	if (func_id != BPF_FUNC_map_update_elem &&
9058 	    func_id != BPF_FUNC_map_delete_elem)
9059 		return false;
9060 
9061 	/* It's not possible to get access to a locked struct sock in these
9062 	 * contexts, so updating is safe.
9063 	 */
9064 	switch (type) {
9065 	case BPF_PROG_TYPE_TRACING:
9066 		if (eatype == BPF_TRACE_ITER)
9067 			return true;
9068 		break;
9069 	case BPF_PROG_TYPE_SOCK_OPS:
9070 		/* map_update allowed only via dedicated helpers with event type checks */
9071 		if (func_id == BPF_FUNC_map_delete_elem)
9072 			return true;
9073 		break;
9074 	case BPF_PROG_TYPE_SOCKET_FILTER:
9075 	case BPF_PROG_TYPE_SCHED_CLS:
9076 	case BPF_PROG_TYPE_SCHED_ACT:
9077 	case BPF_PROG_TYPE_XDP:
9078 	case BPF_PROG_TYPE_SK_REUSEPORT:
9079 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
9080 	case BPF_PROG_TYPE_SK_LOOKUP:
9081 		return true;
9082 	default:
9083 		break;
9084 	}
9085 
9086 	verbose(env, "cannot update sockmap in this context\n");
9087 	return false;
9088 }
9089 
9090 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
9091 {
9092 	return env->prog->jit_requested &&
9093 	       bpf_jit_supports_subprog_tailcalls();
9094 }
9095 
9096 static int check_map_func_compatibility(struct bpf_verifier_env *env,
9097 					struct bpf_map *map, int func_id)
9098 {
9099 	if (!map)
9100 		return 0;
9101 
9102 	/* We need a two way check, first is from map perspective ... */
9103 	switch (map->map_type) {
9104 	case BPF_MAP_TYPE_PROG_ARRAY:
9105 		if (func_id != BPF_FUNC_tail_call)
9106 			goto error;
9107 		break;
9108 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
9109 		if (func_id != BPF_FUNC_perf_event_read &&
9110 		    func_id != BPF_FUNC_perf_event_output &&
9111 		    func_id != BPF_FUNC_skb_output &&
9112 		    func_id != BPF_FUNC_perf_event_read_value &&
9113 		    func_id != BPF_FUNC_xdp_output)
9114 			goto error;
9115 		break;
9116 	case BPF_MAP_TYPE_RINGBUF:
9117 		if (func_id != BPF_FUNC_ringbuf_output &&
9118 		    func_id != BPF_FUNC_ringbuf_reserve &&
9119 		    func_id != BPF_FUNC_ringbuf_query &&
9120 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
9121 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
9122 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
9123 			goto error;
9124 		break;
9125 	case BPF_MAP_TYPE_USER_RINGBUF:
9126 		if (func_id != BPF_FUNC_user_ringbuf_drain)
9127 			goto error;
9128 		break;
9129 	case BPF_MAP_TYPE_STACK_TRACE:
9130 		if (func_id != BPF_FUNC_get_stackid)
9131 			goto error;
9132 		break;
9133 	case BPF_MAP_TYPE_CGROUP_ARRAY:
9134 		if (func_id != BPF_FUNC_skb_under_cgroup &&
9135 		    func_id != BPF_FUNC_current_task_under_cgroup)
9136 			goto error;
9137 		break;
9138 	case BPF_MAP_TYPE_CGROUP_STORAGE:
9139 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
9140 		if (func_id != BPF_FUNC_get_local_storage)
9141 			goto error;
9142 		break;
9143 	case BPF_MAP_TYPE_DEVMAP:
9144 	case BPF_MAP_TYPE_DEVMAP_HASH:
9145 		if (func_id != BPF_FUNC_redirect_map &&
9146 		    func_id != BPF_FUNC_map_lookup_elem)
9147 			goto error;
9148 		break;
9149 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
9150 	 * appear.
9151 	 */
9152 	case BPF_MAP_TYPE_CPUMAP:
9153 		if (func_id != BPF_FUNC_redirect_map)
9154 			goto error;
9155 		break;
9156 	case BPF_MAP_TYPE_XSKMAP:
9157 		if (func_id != BPF_FUNC_redirect_map &&
9158 		    func_id != BPF_FUNC_map_lookup_elem)
9159 			goto error;
9160 		break;
9161 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
9162 	case BPF_MAP_TYPE_HASH_OF_MAPS:
9163 		if (func_id != BPF_FUNC_map_lookup_elem)
9164 			goto error;
9165 		break;
9166 	case BPF_MAP_TYPE_SOCKMAP:
9167 		if (func_id != BPF_FUNC_sk_redirect_map &&
9168 		    func_id != BPF_FUNC_sock_map_update &&
9169 		    func_id != BPF_FUNC_msg_redirect_map &&
9170 		    func_id != BPF_FUNC_sk_select_reuseport &&
9171 		    func_id != BPF_FUNC_map_lookup_elem &&
9172 		    !may_update_sockmap(env, func_id))
9173 			goto error;
9174 		break;
9175 	case BPF_MAP_TYPE_SOCKHASH:
9176 		if (func_id != BPF_FUNC_sk_redirect_hash &&
9177 		    func_id != BPF_FUNC_sock_hash_update &&
9178 		    func_id != BPF_FUNC_msg_redirect_hash &&
9179 		    func_id != BPF_FUNC_sk_select_reuseport &&
9180 		    func_id != BPF_FUNC_map_lookup_elem &&
9181 		    !may_update_sockmap(env, func_id))
9182 			goto error;
9183 		break;
9184 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
9185 		if (func_id != BPF_FUNC_sk_select_reuseport)
9186 			goto error;
9187 		break;
9188 	case BPF_MAP_TYPE_QUEUE:
9189 	case BPF_MAP_TYPE_STACK:
9190 		if (func_id != BPF_FUNC_map_peek_elem &&
9191 		    func_id != BPF_FUNC_map_pop_elem &&
9192 		    func_id != BPF_FUNC_map_push_elem)
9193 			goto error;
9194 		break;
9195 	case BPF_MAP_TYPE_SK_STORAGE:
9196 		if (func_id != BPF_FUNC_sk_storage_get &&
9197 		    func_id != BPF_FUNC_sk_storage_delete &&
9198 		    func_id != BPF_FUNC_kptr_xchg)
9199 			goto error;
9200 		break;
9201 	case BPF_MAP_TYPE_INODE_STORAGE:
9202 		if (func_id != BPF_FUNC_inode_storage_get &&
9203 		    func_id != BPF_FUNC_inode_storage_delete &&
9204 		    func_id != BPF_FUNC_kptr_xchg)
9205 			goto error;
9206 		break;
9207 	case BPF_MAP_TYPE_TASK_STORAGE:
9208 		if (func_id != BPF_FUNC_task_storage_get &&
9209 		    func_id != BPF_FUNC_task_storage_delete &&
9210 		    func_id != BPF_FUNC_kptr_xchg)
9211 			goto error;
9212 		break;
9213 	case BPF_MAP_TYPE_CGRP_STORAGE:
9214 		if (func_id != BPF_FUNC_cgrp_storage_get &&
9215 		    func_id != BPF_FUNC_cgrp_storage_delete &&
9216 		    func_id != BPF_FUNC_kptr_xchg)
9217 			goto error;
9218 		break;
9219 	case BPF_MAP_TYPE_BLOOM_FILTER:
9220 		if (func_id != BPF_FUNC_map_peek_elem &&
9221 		    func_id != BPF_FUNC_map_push_elem)
9222 			goto error;
9223 		break;
9224 	default:
9225 		break;
9226 	}
9227 
9228 	/* ... and second from the function itself. */
9229 	switch (func_id) {
9230 	case BPF_FUNC_tail_call:
9231 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
9232 			goto error;
9233 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
9234 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
9235 			return -EINVAL;
9236 		}
9237 		break;
9238 	case BPF_FUNC_perf_event_read:
9239 	case BPF_FUNC_perf_event_output:
9240 	case BPF_FUNC_perf_event_read_value:
9241 	case BPF_FUNC_skb_output:
9242 	case BPF_FUNC_xdp_output:
9243 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
9244 			goto error;
9245 		break;
9246 	case BPF_FUNC_ringbuf_output:
9247 	case BPF_FUNC_ringbuf_reserve:
9248 	case BPF_FUNC_ringbuf_query:
9249 	case BPF_FUNC_ringbuf_reserve_dynptr:
9250 	case BPF_FUNC_ringbuf_submit_dynptr:
9251 	case BPF_FUNC_ringbuf_discard_dynptr:
9252 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
9253 			goto error;
9254 		break;
9255 	case BPF_FUNC_user_ringbuf_drain:
9256 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
9257 			goto error;
9258 		break;
9259 	case BPF_FUNC_get_stackid:
9260 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
9261 			goto error;
9262 		break;
9263 	case BPF_FUNC_current_task_under_cgroup:
9264 	case BPF_FUNC_skb_under_cgroup:
9265 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
9266 			goto error;
9267 		break;
9268 	case BPF_FUNC_redirect_map:
9269 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
9270 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
9271 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
9272 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
9273 			goto error;
9274 		break;
9275 	case BPF_FUNC_sk_redirect_map:
9276 	case BPF_FUNC_msg_redirect_map:
9277 	case BPF_FUNC_sock_map_update:
9278 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
9279 			goto error;
9280 		break;
9281 	case BPF_FUNC_sk_redirect_hash:
9282 	case BPF_FUNC_msg_redirect_hash:
9283 	case BPF_FUNC_sock_hash_update:
9284 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
9285 			goto error;
9286 		break;
9287 	case BPF_FUNC_get_local_storage:
9288 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
9289 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
9290 			goto error;
9291 		break;
9292 	case BPF_FUNC_sk_select_reuseport:
9293 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
9294 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
9295 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
9296 			goto error;
9297 		break;
9298 	case BPF_FUNC_map_pop_elem:
9299 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9300 		    map->map_type != BPF_MAP_TYPE_STACK)
9301 			goto error;
9302 		break;
9303 	case BPF_FUNC_map_peek_elem:
9304 	case BPF_FUNC_map_push_elem:
9305 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9306 		    map->map_type != BPF_MAP_TYPE_STACK &&
9307 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
9308 			goto error;
9309 		break;
9310 	case BPF_FUNC_map_lookup_percpu_elem:
9311 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
9312 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9313 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
9314 			goto error;
9315 		break;
9316 	case BPF_FUNC_sk_storage_get:
9317 	case BPF_FUNC_sk_storage_delete:
9318 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
9319 			goto error;
9320 		break;
9321 	case BPF_FUNC_inode_storage_get:
9322 	case BPF_FUNC_inode_storage_delete:
9323 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
9324 			goto error;
9325 		break;
9326 	case BPF_FUNC_task_storage_get:
9327 	case BPF_FUNC_task_storage_delete:
9328 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
9329 			goto error;
9330 		break;
9331 	case BPF_FUNC_cgrp_storage_get:
9332 	case BPF_FUNC_cgrp_storage_delete:
9333 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
9334 			goto error;
9335 		break;
9336 	default:
9337 		break;
9338 	}
9339 
9340 	return 0;
9341 error:
9342 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
9343 		map->map_type, func_id_name(func_id), func_id);
9344 	return -EINVAL;
9345 }
9346 
9347 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
9348 {
9349 	int count = 0;
9350 
9351 	if (arg_type_is_raw_mem(fn->arg1_type))
9352 		count++;
9353 	if (arg_type_is_raw_mem(fn->arg2_type))
9354 		count++;
9355 	if (arg_type_is_raw_mem(fn->arg3_type))
9356 		count++;
9357 	if (arg_type_is_raw_mem(fn->arg4_type))
9358 		count++;
9359 	if (arg_type_is_raw_mem(fn->arg5_type))
9360 		count++;
9361 
9362 	/* We only support one arg being in raw mode at the moment,
9363 	 * which is sufficient for the helper functions we have
9364 	 * right now.
9365 	 */
9366 	return count <= 1;
9367 }
9368 
9369 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
9370 {
9371 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
9372 	bool has_size = fn->arg_size[arg] != 0;
9373 	bool is_next_size = false;
9374 
9375 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
9376 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
9377 
9378 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
9379 		return is_next_size;
9380 
9381 	return has_size == is_next_size || is_next_size == is_fixed;
9382 }
9383 
9384 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
9385 {
9386 	/* bpf_xxx(..., buf, len) call will access 'len'
9387 	 * bytes from memory 'buf'. Both arg types need
9388 	 * to be paired, so make sure there's no buggy
9389 	 * helper function specification.
9390 	 */
9391 	if (arg_type_is_mem_size(fn->arg1_type) ||
9392 	    check_args_pair_invalid(fn, 0) ||
9393 	    check_args_pair_invalid(fn, 1) ||
9394 	    check_args_pair_invalid(fn, 2) ||
9395 	    check_args_pair_invalid(fn, 3) ||
9396 	    check_args_pair_invalid(fn, 4))
9397 		return false;
9398 
9399 	return true;
9400 }
9401 
9402 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
9403 {
9404 	int i;
9405 
9406 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9407 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
9408 			return !!fn->arg_btf_id[i];
9409 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
9410 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
9411 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
9412 		    /* arg_btf_id and arg_size are in a union. */
9413 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
9414 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
9415 			return false;
9416 	}
9417 
9418 	return true;
9419 }
9420 
9421 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
9422 {
9423 	return check_raw_mode_ok(fn) &&
9424 	       check_arg_pair_ok(fn) &&
9425 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
9426 }
9427 
9428 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
9429  * are now invalid, so turn them into unknown SCALAR_VALUE.
9430  *
9431  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
9432  * since these slices point to packet data.
9433  */
9434 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
9435 {
9436 	struct bpf_func_state *state;
9437 	struct bpf_reg_state *reg;
9438 
9439 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9440 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
9441 			mark_reg_invalid(env, reg);
9442 	}));
9443 }
9444 
9445 enum {
9446 	AT_PKT_END = -1,
9447 	BEYOND_PKT_END = -2,
9448 };
9449 
9450 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
9451 {
9452 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9453 	struct bpf_reg_state *reg = &state->regs[regn];
9454 
9455 	if (reg->type != PTR_TO_PACKET)
9456 		/* PTR_TO_PACKET_META is not supported yet */
9457 		return;
9458 
9459 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
9460 	 * How far beyond pkt_end it goes is unknown.
9461 	 * if (!range_open) it's the case of pkt >= pkt_end
9462 	 * if (range_open) it's the case of pkt > pkt_end
9463 	 * hence this pointer is at least 1 byte bigger than pkt_end
9464 	 */
9465 	if (range_open)
9466 		reg->range = BEYOND_PKT_END;
9467 	else
9468 		reg->range = AT_PKT_END;
9469 }
9470 
9471 /* The pointer with the specified id has released its reference to kernel
9472  * resources. Identify all copies of the same pointer and clear the reference.
9473  */
9474 static int release_reference(struct bpf_verifier_env *env,
9475 			     int ref_obj_id)
9476 {
9477 	struct bpf_func_state *state;
9478 	struct bpf_reg_state *reg;
9479 	int err;
9480 
9481 	err = release_reference_state(cur_func(env), ref_obj_id);
9482 	if (err)
9483 		return err;
9484 
9485 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9486 		if (reg->ref_obj_id == ref_obj_id)
9487 			mark_reg_invalid(env, reg);
9488 	}));
9489 
9490 	return 0;
9491 }
9492 
9493 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
9494 {
9495 	struct bpf_func_state *unused;
9496 	struct bpf_reg_state *reg;
9497 
9498 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
9499 		if (type_is_non_owning_ref(reg->type))
9500 			mark_reg_invalid(env, reg);
9501 	}));
9502 }
9503 
9504 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
9505 				    struct bpf_reg_state *regs)
9506 {
9507 	int i;
9508 
9509 	/* after the call registers r0 - r5 were scratched */
9510 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9511 		mark_reg_not_init(env, regs, caller_saved[i]);
9512 		__check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK);
9513 	}
9514 }
9515 
9516 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
9517 				   struct bpf_func_state *caller,
9518 				   struct bpf_func_state *callee,
9519 				   int insn_idx);
9520 
9521 static int set_callee_state(struct bpf_verifier_env *env,
9522 			    struct bpf_func_state *caller,
9523 			    struct bpf_func_state *callee, int insn_idx);
9524 
9525 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite,
9526 			    set_callee_state_fn set_callee_state_cb,
9527 			    struct bpf_verifier_state *state)
9528 {
9529 	struct bpf_func_state *caller, *callee;
9530 	int err;
9531 
9532 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
9533 		verbose(env, "the call stack of %d frames is too deep\n",
9534 			state->curframe + 2);
9535 		return -E2BIG;
9536 	}
9537 
9538 	if (state->frame[state->curframe + 1]) {
9539 		verbose(env, "verifier bug. Frame %d already allocated\n",
9540 			state->curframe + 1);
9541 		return -EFAULT;
9542 	}
9543 
9544 	caller = state->frame[state->curframe];
9545 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
9546 	if (!callee)
9547 		return -ENOMEM;
9548 	state->frame[state->curframe + 1] = callee;
9549 
9550 	/* callee cannot access r0, r6 - r9 for reading and has to write
9551 	 * into its own stack before reading from it.
9552 	 * callee can read/write into caller's stack
9553 	 */
9554 	init_func_state(env, callee,
9555 			/* remember the callsite, it will be used by bpf_exit */
9556 			callsite,
9557 			state->curframe + 1 /* frameno within this callchain */,
9558 			subprog /* subprog number within this prog */);
9559 	/* Transfer references to the callee */
9560 	err = copy_reference_state(callee, caller);
9561 	err = err ?: set_callee_state_cb(env, caller, callee, callsite);
9562 	if (err)
9563 		goto err_out;
9564 
9565 	/* only increment it after check_reg_arg() finished */
9566 	state->curframe++;
9567 
9568 	return 0;
9569 
9570 err_out:
9571 	free_func_state(callee);
9572 	state->frame[state->curframe + 1] = NULL;
9573 	return err;
9574 }
9575 
9576 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
9577 				    const struct btf *btf,
9578 				    struct bpf_reg_state *regs)
9579 {
9580 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
9581 	struct bpf_verifier_log *log = &env->log;
9582 	u32 i;
9583 	int ret;
9584 
9585 	ret = btf_prepare_func_args(env, subprog);
9586 	if (ret)
9587 		return ret;
9588 
9589 	/* check that BTF function arguments match actual types that the
9590 	 * verifier sees.
9591 	 */
9592 	for (i = 0; i < sub->arg_cnt; i++) {
9593 		u32 regno = i + 1;
9594 		struct bpf_reg_state *reg = &regs[regno];
9595 		struct bpf_subprog_arg_info *arg = &sub->args[i];
9596 
9597 		if (arg->arg_type == ARG_ANYTHING) {
9598 			if (reg->type != SCALAR_VALUE) {
9599 				bpf_log(log, "R%d is not a scalar\n", regno);
9600 				return -EINVAL;
9601 			}
9602 		} else if (arg->arg_type == ARG_PTR_TO_CTX) {
9603 			ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
9604 			if (ret < 0)
9605 				return ret;
9606 			/* If function expects ctx type in BTF check that caller
9607 			 * is passing PTR_TO_CTX.
9608 			 */
9609 			if (reg->type != PTR_TO_CTX) {
9610 				bpf_log(log, "arg#%d expects pointer to ctx\n", i);
9611 				return -EINVAL;
9612 			}
9613 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
9614 			ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
9615 			if (ret < 0)
9616 				return ret;
9617 			if (check_mem_reg(env, reg, regno, arg->mem_size))
9618 				return -EINVAL;
9619 			if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) {
9620 				bpf_log(log, "arg#%d is expected to be non-NULL\n", i);
9621 				return -EINVAL;
9622 			}
9623 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) {
9624 			/*
9625 			 * Can pass any value and the kernel won't crash, but
9626 			 * only PTR_TO_ARENA or SCALAR make sense. Everything
9627 			 * else is a bug in the bpf program. Point it out to
9628 			 * the user at the verification time instead of
9629 			 * run-time debug nightmare.
9630 			 */
9631 			if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) {
9632 				bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno);
9633 				return -EINVAL;
9634 			}
9635 		} else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
9636 			ret = check_func_arg_reg_off(env, reg, regno, ARG_PTR_TO_DYNPTR);
9637 			if (ret)
9638 				return ret;
9639 
9640 			ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0);
9641 			if (ret)
9642 				return ret;
9643 		} else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
9644 			struct bpf_call_arg_meta meta;
9645 			int err;
9646 
9647 			if (register_is_null(reg) && type_may_be_null(arg->arg_type))
9648 				continue;
9649 
9650 			memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */
9651 			err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta);
9652 			err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type);
9653 			if (err)
9654 				return err;
9655 		} else {
9656 			bpf_log(log, "verifier bug: unrecognized arg#%d type %d\n",
9657 				i, arg->arg_type);
9658 			return -EFAULT;
9659 		}
9660 	}
9661 
9662 	return 0;
9663 }
9664 
9665 /* Compare BTF of a function call with given bpf_reg_state.
9666  * Returns:
9667  * EFAULT - there is a verifier bug. Abort verification.
9668  * EINVAL - there is a type mismatch or BTF is not available.
9669  * 0 - BTF matches with what bpf_reg_state expects.
9670  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
9671  */
9672 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
9673 				  struct bpf_reg_state *regs)
9674 {
9675 	struct bpf_prog *prog = env->prog;
9676 	struct btf *btf = prog->aux->btf;
9677 	u32 btf_id;
9678 	int err;
9679 
9680 	if (!prog->aux->func_info)
9681 		return -EINVAL;
9682 
9683 	btf_id = prog->aux->func_info[subprog].type_id;
9684 	if (!btf_id)
9685 		return -EFAULT;
9686 
9687 	if (prog->aux->func_info_aux[subprog].unreliable)
9688 		return -EINVAL;
9689 
9690 	err = btf_check_func_arg_match(env, subprog, btf, regs);
9691 	/* Compiler optimizations can remove arguments from static functions
9692 	 * or mismatched type can be passed into a global function.
9693 	 * In such cases mark the function as unreliable from BTF point of view.
9694 	 */
9695 	if (err)
9696 		prog->aux->func_info_aux[subprog].unreliable = true;
9697 	return err;
9698 }
9699 
9700 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9701 			      int insn_idx, int subprog,
9702 			      set_callee_state_fn set_callee_state_cb)
9703 {
9704 	struct bpf_verifier_state *state = env->cur_state, *callback_state;
9705 	struct bpf_func_state *caller, *callee;
9706 	int err;
9707 
9708 	caller = state->frame[state->curframe];
9709 	err = btf_check_subprog_call(env, subprog, caller->regs);
9710 	if (err == -EFAULT)
9711 		return err;
9712 
9713 	/* set_callee_state is used for direct subprog calls, but we are
9714 	 * interested in validating only BPF helpers that can call subprogs as
9715 	 * callbacks
9716 	 */
9717 	env->subprog_info[subprog].is_cb = true;
9718 	if (bpf_pseudo_kfunc_call(insn) &&
9719 	    !is_callback_calling_kfunc(insn->imm)) {
9720 		verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
9721 			func_id_name(insn->imm), insn->imm);
9722 		return -EFAULT;
9723 	} else if (!bpf_pseudo_kfunc_call(insn) &&
9724 		   !is_callback_calling_function(insn->imm)) { /* helper */
9725 		verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
9726 			func_id_name(insn->imm), insn->imm);
9727 		return -EFAULT;
9728 	}
9729 
9730 	if (is_async_callback_calling_insn(insn)) {
9731 		struct bpf_verifier_state *async_cb;
9732 
9733 		/* there is no real recursion here. timer and workqueue callbacks are async */
9734 		env->subprog_info[subprog].is_async_cb = true;
9735 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
9736 					 insn_idx, subprog,
9737 					 is_bpf_wq_set_callback_impl_kfunc(insn->imm));
9738 		if (!async_cb)
9739 			return -EFAULT;
9740 		callee = async_cb->frame[0];
9741 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
9742 
9743 		/* Convert bpf_timer_set_callback() args into timer callback args */
9744 		err = set_callee_state_cb(env, caller, callee, insn_idx);
9745 		if (err)
9746 			return err;
9747 
9748 		return 0;
9749 	}
9750 
9751 	/* for callback functions enqueue entry to callback and
9752 	 * proceed with next instruction within current frame.
9753 	 */
9754 	callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false);
9755 	if (!callback_state)
9756 		return -ENOMEM;
9757 
9758 	err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb,
9759 			       callback_state);
9760 	if (err)
9761 		return err;
9762 
9763 	callback_state->callback_unroll_depth++;
9764 	callback_state->frame[callback_state->curframe - 1]->callback_depth++;
9765 	caller->callback_depth = 0;
9766 	return 0;
9767 }
9768 
9769 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9770 			   int *insn_idx)
9771 {
9772 	struct bpf_verifier_state *state = env->cur_state;
9773 	struct bpf_func_state *caller;
9774 	int err, subprog, target_insn;
9775 
9776 	target_insn = *insn_idx + insn->imm + 1;
9777 	subprog = find_subprog(env, target_insn);
9778 	if (subprog < 0) {
9779 		verbose(env, "verifier bug. No program starts at insn %d\n", target_insn);
9780 		return -EFAULT;
9781 	}
9782 
9783 	caller = state->frame[state->curframe];
9784 	err = btf_check_subprog_call(env, subprog, caller->regs);
9785 	if (err == -EFAULT)
9786 		return err;
9787 	if (subprog_is_global(env, subprog)) {
9788 		const char *sub_name = subprog_name(env, subprog);
9789 
9790 		/* Only global subprogs cannot be called with a lock held. */
9791 		if (env->cur_state->active_lock.ptr) {
9792 			verbose(env, "global function calls are not allowed while holding a lock,\n"
9793 				     "use static function instead\n");
9794 			return -EINVAL;
9795 		}
9796 
9797 		/* Only global subprogs cannot be called with preemption disabled. */
9798 		if (env->cur_state->active_preempt_lock) {
9799 			verbose(env, "global function calls are not allowed with preemption disabled,\n"
9800 				     "use static function instead\n");
9801 			return -EINVAL;
9802 		}
9803 
9804 		if (err) {
9805 			verbose(env, "Caller passes invalid args into func#%d ('%s')\n",
9806 				subprog, sub_name);
9807 			return err;
9808 		}
9809 
9810 		verbose(env, "Func#%d ('%s') is global and assumed valid.\n",
9811 			subprog, sub_name);
9812 		/* mark global subprog for verifying after main prog */
9813 		subprog_aux(env, subprog)->called = true;
9814 		clear_caller_saved_regs(env, caller->regs);
9815 
9816 		/* All global functions return a 64-bit SCALAR_VALUE */
9817 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
9818 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9819 
9820 		/* continue with next insn after call */
9821 		return 0;
9822 	}
9823 
9824 	/* for regular function entry setup new frame and continue
9825 	 * from that frame.
9826 	 */
9827 	err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state);
9828 	if (err)
9829 		return err;
9830 
9831 	clear_caller_saved_regs(env, caller->regs);
9832 
9833 	/* and go analyze first insn of the callee */
9834 	*insn_idx = env->subprog_info[subprog].start - 1;
9835 
9836 	if (env->log.level & BPF_LOG_LEVEL) {
9837 		verbose(env, "caller:\n");
9838 		print_verifier_state(env, caller, true);
9839 		verbose(env, "callee:\n");
9840 		print_verifier_state(env, state->frame[state->curframe], true);
9841 	}
9842 
9843 	return 0;
9844 }
9845 
9846 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
9847 				   struct bpf_func_state *caller,
9848 				   struct bpf_func_state *callee)
9849 {
9850 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
9851 	 *      void *callback_ctx, u64 flags);
9852 	 * callback_fn(struct bpf_map *map, void *key, void *value,
9853 	 *      void *callback_ctx);
9854 	 */
9855 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9856 
9857 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9858 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9859 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9860 
9861 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9862 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9863 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9864 
9865 	/* pointer to stack or null */
9866 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9867 
9868 	/* unused */
9869 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9870 	return 0;
9871 }
9872 
9873 static int set_callee_state(struct bpf_verifier_env *env,
9874 			    struct bpf_func_state *caller,
9875 			    struct bpf_func_state *callee, int insn_idx)
9876 {
9877 	int i;
9878 
9879 	/* copy r1 - r5 args that callee can access.  The copy includes parent
9880 	 * pointers, which connects us up to the liveness chain
9881 	 */
9882 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9883 		callee->regs[i] = caller->regs[i];
9884 	return 0;
9885 }
9886 
9887 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9888 				       struct bpf_func_state *caller,
9889 				       struct bpf_func_state *callee,
9890 				       int insn_idx)
9891 {
9892 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9893 	struct bpf_map *map;
9894 	int err;
9895 
9896 	/* valid map_ptr and poison value does not matter */
9897 	map = insn_aux->map_ptr_state.map_ptr;
9898 	if (!map->ops->map_set_for_each_callback_args ||
9899 	    !map->ops->map_for_each_callback) {
9900 		verbose(env, "callback function not allowed for map\n");
9901 		return -ENOTSUPP;
9902 	}
9903 
9904 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9905 	if (err)
9906 		return err;
9907 
9908 	callee->in_callback_fn = true;
9909 	callee->callback_ret_range = retval_range(0, 1);
9910 	return 0;
9911 }
9912 
9913 static int set_loop_callback_state(struct bpf_verifier_env *env,
9914 				   struct bpf_func_state *caller,
9915 				   struct bpf_func_state *callee,
9916 				   int insn_idx)
9917 {
9918 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9919 	 *	    u64 flags);
9920 	 * callback_fn(u32 index, void *callback_ctx);
9921 	 */
9922 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9923 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9924 
9925 	/* unused */
9926 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9927 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9928 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9929 
9930 	callee->in_callback_fn = true;
9931 	callee->callback_ret_range = retval_range(0, 1);
9932 	return 0;
9933 }
9934 
9935 static int set_timer_callback_state(struct bpf_verifier_env *env,
9936 				    struct bpf_func_state *caller,
9937 				    struct bpf_func_state *callee,
9938 				    int insn_idx)
9939 {
9940 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9941 
9942 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9943 	 * callback_fn(struct bpf_map *map, void *key, void *value);
9944 	 */
9945 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9946 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9947 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
9948 
9949 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9950 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9951 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
9952 
9953 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9954 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9955 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
9956 
9957 	/* unused */
9958 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9959 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9960 	callee->in_async_callback_fn = true;
9961 	callee->callback_ret_range = retval_range(0, 1);
9962 	return 0;
9963 }
9964 
9965 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9966 				       struct bpf_func_state *caller,
9967 				       struct bpf_func_state *callee,
9968 				       int insn_idx)
9969 {
9970 	/* bpf_find_vma(struct task_struct *task, u64 addr,
9971 	 *               void *callback_fn, void *callback_ctx, u64 flags)
9972 	 * (callback_fn)(struct task_struct *task,
9973 	 *               struct vm_area_struct *vma, void *callback_ctx);
9974 	 */
9975 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9976 
9977 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9978 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9979 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
9980 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA];
9981 
9982 	/* pointer to stack or null */
9983 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9984 
9985 	/* unused */
9986 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9987 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9988 	callee->in_callback_fn = true;
9989 	callee->callback_ret_range = retval_range(0, 1);
9990 	return 0;
9991 }
9992 
9993 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9994 					   struct bpf_func_state *caller,
9995 					   struct bpf_func_state *callee,
9996 					   int insn_idx)
9997 {
9998 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9999 	 *			  callback_ctx, u64 flags);
10000 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
10001 	 */
10002 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
10003 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
10004 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
10005 
10006 	/* unused */
10007 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
10008 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10009 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10010 
10011 	callee->in_callback_fn = true;
10012 	callee->callback_ret_range = retval_range(0, 1);
10013 	return 0;
10014 }
10015 
10016 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
10017 					 struct bpf_func_state *caller,
10018 					 struct bpf_func_state *callee,
10019 					 int insn_idx)
10020 {
10021 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
10022 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
10023 	 *
10024 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
10025 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
10026 	 * by this point, so look at 'root'
10027 	 */
10028 	struct btf_field *field;
10029 
10030 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
10031 				      BPF_RB_ROOT);
10032 	if (!field || !field->graph_root.value_btf_id)
10033 		return -EFAULT;
10034 
10035 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
10036 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
10037 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
10038 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
10039 
10040 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
10041 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
10042 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
10043 	callee->in_callback_fn = true;
10044 	callee->callback_ret_range = retval_range(0, 1);
10045 	return 0;
10046 }
10047 
10048 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
10049 
10050 /* Are we currently verifying the callback for a rbtree helper that must
10051  * be called with lock held? If so, no need to complain about unreleased
10052  * lock
10053  */
10054 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
10055 {
10056 	struct bpf_verifier_state *state = env->cur_state;
10057 	struct bpf_insn *insn = env->prog->insnsi;
10058 	struct bpf_func_state *callee;
10059 	int kfunc_btf_id;
10060 
10061 	if (!state->curframe)
10062 		return false;
10063 
10064 	callee = state->frame[state->curframe];
10065 
10066 	if (!callee->in_callback_fn)
10067 		return false;
10068 
10069 	kfunc_btf_id = insn[callee->callsite].imm;
10070 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
10071 }
10072 
10073 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg,
10074 				bool return_32bit)
10075 {
10076 	if (return_32bit)
10077 		return range.minval <= reg->s32_min_value && reg->s32_max_value <= range.maxval;
10078 	else
10079 		return range.minval <= reg->smin_value && reg->smax_value <= range.maxval;
10080 }
10081 
10082 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
10083 {
10084 	struct bpf_verifier_state *state = env->cur_state, *prev_st;
10085 	struct bpf_func_state *caller, *callee;
10086 	struct bpf_reg_state *r0;
10087 	bool in_callback_fn;
10088 	int err;
10089 
10090 	callee = state->frame[state->curframe];
10091 	r0 = &callee->regs[BPF_REG_0];
10092 	if (r0->type == PTR_TO_STACK) {
10093 		/* technically it's ok to return caller's stack pointer
10094 		 * (or caller's caller's pointer) back to the caller,
10095 		 * since these pointers are valid. Only current stack
10096 		 * pointer will be invalid as soon as function exits,
10097 		 * but let's be conservative
10098 		 */
10099 		verbose(env, "cannot return stack pointer to the caller\n");
10100 		return -EINVAL;
10101 	}
10102 
10103 	caller = state->frame[state->curframe - 1];
10104 	if (callee->in_callback_fn) {
10105 		if (r0->type != SCALAR_VALUE) {
10106 			verbose(env, "R0 not a scalar value\n");
10107 			return -EACCES;
10108 		}
10109 
10110 		/* we are going to rely on register's precise value */
10111 		err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
10112 		err = err ?: mark_chain_precision(env, BPF_REG_0);
10113 		if (err)
10114 			return err;
10115 
10116 		/* enforce R0 return value range, and bpf_callback_t returns 64bit */
10117 		if (!retval_range_within(callee->callback_ret_range, r0, false)) {
10118 			verbose_invalid_scalar(env, r0, callee->callback_ret_range,
10119 					       "At callback return", "R0");
10120 			return -EINVAL;
10121 		}
10122 		if (!calls_callback(env, callee->callsite)) {
10123 			verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n",
10124 				*insn_idx, callee->callsite);
10125 			return -EFAULT;
10126 		}
10127 	} else {
10128 		/* return to the caller whatever r0 had in the callee */
10129 		caller->regs[BPF_REG_0] = *r0;
10130 	}
10131 
10132 	/* callback_fn frame should have released its own additions to parent's
10133 	 * reference state at this point, or check_reference_leak would
10134 	 * complain, hence it must be the same as the caller. There is no need
10135 	 * to copy it back.
10136 	 */
10137 	if (!callee->in_callback_fn) {
10138 		/* Transfer references to the caller */
10139 		err = copy_reference_state(caller, callee);
10140 		if (err)
10141 			return err;
10142 	}
10143 
10144 	/* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite,
10145 	 * there function call logic would reschedule callback visit. If iteration
10146 	 * converges is_state_visited() would prune that visit eventually.
10147 	 */
10148 	in_callback_fn = callee->in_callback_fn;
10149 	if (in_callback_fn)
10150 		*insn_idx = callee->callsite;
10151 	else
10152 		*insn_idx = callee->callsite + 1;
10153 
10154 	if (env->log.level & BPF_LOG_LEVEL) {
10155 		verbose(env, "returning from callee:\n");
10156 		print_verifier_state(env, callee, true);
10157 		verbose(env, "to caller at %d:\n", *insn_idx);
10158 		print_verifier_state(env, caller, true);
10159 	}
10160 	/* clear everything in the callee. In case of exceptional exits using
10161 	 * bpf_throw, this will be done by copy_verifier_state for extra frames. */
10162 	free_func_state(callee);
10163 	state->frame[state->curframe--] = NULL;
10164 
10165 	/* for callbacks widen imprecise scalars to make programs like below verify:
10166 	 *
10167 	 *   struct ctx { int i; }
10168 	 *   void cb(int idx, struct ctx *ctx) { ctx->i++; ... }
10169 	 *   ...
10170 	 *   struct ctx = { .i = 0; }
10171 	 *   bpf_loop(100, cb, &ctx, 0);
10172 	 *
10173 	 * This is similar to what is done in process_iter_next_call() for open
10174 	 * coded iterators.
10175 	 */
10176 	prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL;
10177 	if (prev_st) {
10178 		err = widen_imprecise_scalars(env, prev_st, state);
10179 		if (err)
10180 			return err;
10181 	}
10182 	return 0;
10183 }
10184 
10185 static int do_refine_retval_range(struct bpf_verifier_env *env,
10186 				  struct bpf_reg_state *regs, int ret_type,
10187 				  int func_id,
10188 				  struct bpf_call_arg_meta *meta)
10189 {
10190 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
10191 
10192 	if (ret_type != RET_INTEGER)
10193 		return 0;
10194 
10195 	switch (func_id) {
10196 	case BPF_FUNC_get_stack:
10197 	case BPF_FUNC_get_task_stack:
10198 	case BPF_FUNC_probe_read_str:
10199 	case BPF_FUNC_probe_read_kernel_str:
10200 	case BPF_FUNC_probe_read_user_str:
10201 		ret_reg->smax_value = meta->msize_max_value;
10202 		ret_reg->s32_max_value = meta->msize_max_value;
10203 		ret_reg->smin_value = -MAX_ERRNO;
10204 		ret_reg->s32_min_value = -MAX_ERRNO;
10205 		reg_bounds_sync(ret_reg);
10206 		break;
10207 	case BPF_FUNC_get_smp_processor_id:
10208 		ret_reg->umax_value = nr_cpu_ids - 1;
10209 		ret_reg->u32_max_value = nr_cpu_ids - 1;
10210 		ret_reg->smax_value = nr_cpu_ids - 1;
10211 		ret_reg->s32_max_value = nr_cpu_ids - 1;
10212 		ret_reg->umin_value = 0;
10213 		ret_reg->u32_min_value = 0;
10214 		ret_reg->smin_value = 0;
10215 		ret_reg->s32_min_value = 0;
10216 		reg_bounds_sync(ret_reg);
10217 		break;
10218 	}
10219 
10220 	return reg_bounds_sanity_check(env, ret_reg, "retval");
10221 }
10222 
10223 static int
10224 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
10225 		int func_id, int insn_idx)
10226 {
10227 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
10228 	struct bpf_map *map = meta->map_ptr;
10229 
10230 	if (func_id != BPF_FUNC_tail_call &&
10231 	    func_id != BPF_FUNC_map_lookup_elem &&
10232 	    func_id != BPF_FUNC_map_update_elem &&
10233 	    func_id != BPF_FUNC_map_delete_elem &&
10234 	    func_id != BPF_FUNC_map_push_elem &&
10235 	    func_id != BPF_FUNC_map_pop_elem &&
10236 	    func_id != BPF_FUNC_map_peek_elem &&
10237 	    func_id != BPF_FUNC_for_each_map_elem &&
10238 	    func_id != BPF_FUNC_redirect_map &&
10239 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
10240 		return 0;
10241 
10242 	if (map == NULL) {
10243 		verbose(env, "kernel subsystem misconfigured verifier\n");
10244 		return -EINVAL;
10245 	}
10246 
10247 	/* In case of read-only, some additional restrictions
10248 	 * need to be applied in order to prevent altering the
10249 	 * state of the map from program side.
10250 	 */
10251 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
10252 	    (func_id == BPF_FUNC_map_delete_elem ||
10253 	     func_id == BPF_FUNC_map_update_elem ||
10254 	     func_id == BPF_FUNC_map_push_elem ||
10255 	     func_id == BPF_FUNC_map_pop_elem)) {
10256 		verbose(env, "write into map forbidden\n");
10257 		return -EACCES;
10258 	}
10259 
10260 	if (!aux->map_ptr_state.map_ptr)
10261 		bpf_map_ptr_store(aux, meta->map_ptr,
10262 				  !meta->map_ptr->bypass_spec_v1, false);
10263 	else if (aux->map_ptr_state.map_ptr != meta->map_ptr)
10264 		bpf_map_ptr_store(aux, meta->map_ptr,
10265 				  !meta->map_ptr->bypass_spec_v1, true);
10266 	return 0;
10267 }
10268 
10269 static int
10270 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
10271 		int func_id, int insn_idx)
10272 {
10273 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
10274 	struct bpf_reg_state *regs = cur_regs(env), *reg;
10275 	struct bpf_map *map = meta->map_ptr;
10276 	u64 val, max;
10277 	int err;
10278 
10279 	if (func_id != BPF_FUNC_tail_call)
10280 		return 0;
10281 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
10282 		verbose(env, "kernel subsystem misconfigured verifier\n");
10283 		return -EINVAL;
10284 	}
10285 
10286 	reg = &regs[BPF_REG_3];
10287 	val = reg->var_off.value;
10288 	max = map->max_entries;
10289 
10290 	if (!(is_reg_const(reg, false) && val < max)) {
10291 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
10292 		return 0;
10293 	}
10294 
10295 	err = mark_chain_precision(env, BPF_REG_3);
10296 	if (err)
10297 		return err;
10298 	if (bpf_map_key_unseen(aux))
10299 		bpf_map_key_store(aux, val);
10300 	else if (!bpf_map_key_poisoned(aux) &&
10301 		  bpf_map_key_immediate(aux) != val)
10302 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
10303 	return 0;
10304 }
10305 
10306 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit)
10307 {
10308 	struct bpf_func_state *state = cur_func(env);
10309 	bool refs_lingering = false;
10310 	int i;
10311 
10312 	if (!exception_exit && state->frameno && !state->in_callback_fn)
10313 		return 0;
10314 
10315 	for (i = 0; i < state->acquired_refs; i++) {
10316 		if (!exception_exit && state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
10317 			continue;
10318 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
10319 			state->refs[i].id, state->refs[i].insn_idx);
10320 		refs_lingering = true;
10321 	}
10322 	return refs_lingering ? -EINVAL : 0;
10323 }
10324 
10325 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
10326 				   struct bpf_reg_state *regs)
10327 {
10328 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
10329 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
10330 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
10331 	struct bpf_bprintf_data data = {};
10332 	int err, fmt_map_off, num_args;
10333 	u64 fmt_addr;
10334 	char *fmt;
10335 
10336 	/* data must be an array of u64 */
10337 	if (data_len_reg->var_off.value % 8)
10338 		return -EINVAL;
10339 	num_args = data_len_reg->var_off.value / 8;
10340 
10341 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
10342 	 * and map_direct_value_addr is set.
10343 	 */
10344 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
10345 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
10346 						  fmt_map_off);
10347 	if (err) {
10348 		verbose(env, "verifier bug\n");
10349 		return -EFAULT;
10350 	}
10351 	fmt = (char *)(long)fmt_addr + fmt_map_off;
10352 
10353 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
10354 	 * can focus on validating the format specifiers.
10355 	 */
10356 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
10357 	if (err < 0)
10358 		verbose(env, "Invalid format string\n");
10359 
10360 	return err;
10361 }
10362 
10363 static int check_get_func_ip(struct bpf_verifier_env *env)
10364 {
10365 	enum bpf_prog_type type = resolve_prog_type(env->prog);
10366 	int func_id = BPF_FUNC_get_func_ip;
10367 
10368 	if (type == BPF_PROG_TYPE_TRACING) {
10369 		if (!bpf_prog_has_trampoline(env->prog)) {
10370 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
10371 				func_id_name(func_id), func_id);
10372 			return -ENOTSUPP;
10373 		}
10374 		return 0;
10375 	} else if (type == BPF_PROG_TYPE_KPROBE) {
10376 		return 0;
10377 	}
10378 
10379 	verbose(env, "func %s#%d not supported for program type %d\n",
10380 		func_id_name(func_id), func_id, type);
10381 	return -ENOTSUPP;
10382 }
10383 
10384 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
10385 {
10386 	return &env->insn_aux_data[env->insn_idx];
10387 }
10388 
10389 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
10390 {
10391 	struct bpf_reg_state *regs = cur_regs(env);
10392 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
10393 	bool reg_is_null = register_is_null(reg);
10394 
10395 	if (reg_is_null)
10396 		mark_chain_precision(env, BPF_REG_4);
10397 
10398 	return reg_is_null;
10399 }
10400 
10401 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
10402 {
10403 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
10404 
10405 	if (!state->initialized) {
10406 		state->initialized = 1;
10407 		state->fit_for_inline = loop_flag_is_zero(env);
10408 		state->callback_subprogno = subprogno;
10409 		return;
10410 	}
10411 
10412 	if (!state->fit_for_inline)
10413 		return;
10414 
10415 	state->fit_for_inline = (loop_flag_is_zero(env) &&
10416 				 state->callback_subprogno == subprogno);
10417 }
10418 
10419 static int get_helper_proto(struct bpf_verifier_env *env, int func_id,
10420 			    const struct bpf_func_proto **ptr)
10421 {
10422 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID)
10423 		return -ERANGE;
10424 
10425 	if (!env->ops->get_func_proto)
10426 		return -EINVAL;
10427 
10428 	*ptr = env->ops->get_func_proto(func_id, env->prog);
10429 	return *ptr ? 0 : -EINVAL;
10430 }
10431 
10432 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
10433 			     int *insn_idx_p)
10434 {
10435 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
10436 	bool returns_cpu_specific_alloc_ptr = false;
10437 	const struct bpf_func_proto *fn = NULL;
10438 	enum bpf_return_type ret_type;
10439 	enum bpf_type_flag ret_flag;
10440 	struct bpf_reg_state *regs;
10441 	struct bpf_call_arg_meta meta;
10442 	int insn_idx = *insn_idx_p;
10443 	bool changes_data;
10444 	int i, err, func_id;
10445 
10446 	/* find function prototype */
10447 	func_id = insn->imm;
10448 	err = get_helper_proto(env, insn->imm, &fn);
10449 	if (err == -ERANGE) {
10450 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id), func_id);
10451 		return -EINVAL;
10452 	}
10453 
10454 	if (err) {
10455 		verbose(env, "program of this type cannot use helper %s#%d\n",
10456 			func_id_name(func_id), func_id);
10457 		return err;
10458 	}
10459 
10460 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
10461 	if (!env->prog->gpl_compatible && fn->gpl_only) {
10462 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
10463 		return -EINVAL;
10464 	}
10465 
10466 	if (fn->allowed && !fn->allowed(env->prog)) {
10467 		verbose(env, "helper call is not allowed in probe\n");
10468 		return -EINVAL;
10469 	}
10470 
10471 	if (!in_sleepable(env) && fn->might_sleep) {
10472 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
10473 		return -EINVAL;
10474 	}
10475 
10476 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
10477 	changes_data = bpf_helper_changes_pkt_data(fn->func);
10478 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
10479 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
10480 			func_id_name(func_id), func_id);
10481 		return -EINVAL;
10482 	}
10483 
10484 	memset(&meta, 0, sizeof(meta));
10485 	meta.pkt_access = fn->pkt_access;
10486 
10487 	err = check_func_proto(fn, func_id);
10488 	if (err) {
10489 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
10490 			func_id_name(func_id), func_id);
10491 		return err;
10492 	}
10493 
10494 	if (env->cur_state->active_rcu_lock) {
10495 		if (fn->might_sleep) {
10496 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
10497 				func_id_name(func_id), func_id);
10498 			return -EINVAL;
10499 		}
10500 
10501 		if (in_sleepable(env) && is_storage_get_function(func_id))
10502 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10503 	}
10504 
10505 	if (env->cur_state->active_preempt_lock) {
10506 		if (fn->might_sleep) {
10507 			verbose(env, "sleepable helper %s#%d in non-preemptible region\n",
10508 				func_id_name(func_id), func_id);
10509 			return -EINVAL;
10510 		}
10511 
10512 		if (in_sleepable(env) && is_storage_get_function(func_id))
10513 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10514 	}
10515 
10516 	meta.func_id = func_id;
10517 	/* check args */
10518 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
10519 		err = check_func_arg(env, i, &meta, fn, insn_idx);
10520 		if (err)
10521 			return err;
10522 	}
10523 
10524 	err = record_func_map(env, &meta, func_id, insn_idx);
10525 	if (err)
10526 		return err;
10527 
10528 	err = record_func_key(env, &meta, func_id, insn_idx);
10529 	if (err)
10530 		return err;
10531 
10532 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
10533 	 * is inferred from register state.
10534 	 */
10535 	for (i = 0; i < meta.access_size; i++) {
10536 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
10537 				       BPF_WRITE, -1, false, false);
10538 		if (err)
10539 			return err;
10540 	}
10541 
10542 	regs = cur_regs(env);
10543 
10544 	if (meta.release_regno) {
10545 		err = -EINVAL;
10546 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
10547 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
10548 		 * is safe to do directly.
10549 		 */
10550 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
10551 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
10552 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
10553 				return -EFAULT;
10554 			}
10555 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
10556 		} else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) {
10557 			u32 ref_obj_id = meta.ref_obj_id;
10558 			bool in_rcu = in_rcu_cs(env);
10559 			struct bpf_func_state *state;
10560 			struct bpf_reg_state *reg;
10561 
10562 			err = release_reference_state(cur_func(env), ref_obj_id);
10563 			if (!err) {
10564 				bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
10565 					if (reg->ref_obj_id == ref_obj_id) {
10566 						if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) {
10567 							reg->ref_obj_id = 0;
10568 							reg->type &= ~MEM_ALLOC;
10569 							reg->type |= MEM_RCU;
10570 						} else {
10571 							mark_reg_invalid(env, reg);
10572 						}
10573 					}
10574 				}));
10575 			}
10576 		} else if (meta.ref_obj_id) {
10577 			err = release_reference(env, meta.ref_obj_id);
10578 		} else if (register_is_null(&regs[meta.release_regno])) {
10579 			/* meta.ref_obj_id can only be 0 if register that is meant to be
10580 			 * released is NULL, which must be > R0.
10581 			 */
10582 			err = 0;
10583 		}
10584 		if (err) {
10585 			verbose(env, "func %s#%d reference has not been acquired before\n",
10586 				func_id_name(func_id), func_id);
10587 			return err;
10588 		}
10589 	}
10590 
10591 	switch (func_id) {
10592 	case BPF_FUNC_tail_call:
10593 		err = check_reference_leak(env, false);
10594 		if (err) {
10595 			verbose(env, "tail_call would lead to reference leak\n");
10596 			return err;
10597 		}
10598 		break;
10599 	case BPF_FUNC_get_local_storage:
10600 		/* check that flags argument in get_local_storage(map, flags) is 0,
10601 		 * this is required because get_local_storage() can't return an error.
10602 		 */
10603 		if (!register_is_null(&regs[BPF_REG_2])) {
10604 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
10605 			return -EINVAL;
10606 		}
10607 		break;
10608 	case BPF_FUNC_for_each_map_elem:
10609 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10610 					 set_map_elem_callback_state);
10611 		break;
10612 	case BPF_FUNC_timer_set_callback:
10613 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10614 					 set_timer_callback_state);
10615 		break;
10616 	case BPF_FUNC_find_vma:
10617 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10618 					 set_find_vma_callback_state);
10619 		break;
10620 	case BPF_FUNC_snprintf:
10621 		err = check_bpf_snprintf_call(env, regs);
10622 		break;
10623 	case BPF_FUNC_loop:
10624 		update_loop_inline_state(env, meta.subprogno);
10625 		/* Verifier relies on R1 value to determine if bpf_loop() iteration
10626 		 * is finished, thus mark it precise.
10627 		 */
10628 		err = mark_chain_precision(env, BPF_REG_1);
10629 		if (err)
10630 			return err;
10631 		if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) {
10632 			err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10633 						 set_loop_callback_state);
10634 		} else {
10635 			cur_func(env)->callback_depth = 0;
10636 			if (env->log.level & BPF_LOG_LEVEL2)
10637 				verbose(env, "frame%d bpf_loop iteration limit reached\n",
10638 					env->cur_state->curframe);
10639 		}
10640 		break;
10641 	case BPF_FUNC_dynptr_from_mem:
10642 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
10643 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
10644 				reg_type_str(env, regs[BPF_REG_1].type));
10645 			return -EACCES;
10646 		}
10647 		break;
10648 	case BPF_FUNC_set_retval:
10649 		if (prog_type == BPF_PROG_TYPE_LSM &&
10650 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
10651 			if (!env->prog->aux->attach_func_proto->type) {
10652 				/* Make sure programs that attach to void
10653 				 * hooks don't try to modify return value.
10654 				 */
10655 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10656 				return -EINVAL;
10657 			}
10658 		}
10659 		break;
10660 	case BPF_FUNC_dynptr_data:
10661 	{
10662 		struct bpf_reg_state *reg;
10663 		int id, ref_obj_id;
10664 
10665 		reg = get_dynptr_arg_reg(env, fn, regs);
10666 		if (!reg)
10667 			return -EFAULT;
10668 
10669 
10670 		if (meta.dynptr_id) {
10671 			verbose(env, "verifier internal error: meta.dynptr_id already set\n");
10672 			return -EFAULT;
10673 		}
10674 		if (meta.ref_obj_id) {
10675 			verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
10676 			return -EFAULT;
10677 		}
10678 
10679 		id = dynptr_id(env, reg);
10680 		if (id < 0) {
10681 			verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10682 			return id;
10683 		}
10684 
10685 		ref_obj_id = dynptr_ref_obj_id(env, reg);
10686 		if (ref_obj_id < 0) {
10687 			verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
10688 			return ref_obj_id;
10689 		}
10690 
10691 		meta.dynptr_id = id;
10692 		meta.ref_obj_id = ref_obj_id;
10693 
10694 		break;
10695 	}
10696 	case BPF_FUNC_dynptr_write:
10697 	{
10698 		enum bpf_dynptr_type dynptr_type;
10699 		struct bpf_reg_state *reg;
10700 
10701 		reg = get_dynptr_arg_reg(env, fn, regs);
10702 		if (!reg)
10703 			return -EFAULT;
10704 
10705 		dynptr_type = dynptr_get_type(env, reg);
10706 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
10707 			return -EFAULT;
10708 
10709 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
10710 			/* this will trigger clear_all_pkt_pointers(), which will
10711 			 * invalidate all dynptr slices associated with the skb
10712 			 */
10713 			changes_data = true;
10714 
10715 		break;
10716 	}
10717 	case BPF_FUNC_per_cpu_ptr:
10718 	case BPF_FUNC_this_cpu_ptr:
10719 	{
10720 		struct bpf_reg_state *reg = &regs[BPF_REG_1];
10721 		const struct btf_type *type;
10722 
10723 		if (reg->type & MEM_RCU) {
10724 			type = btf_type_by_id(reg->btf, reg->btf_id);
10725 			if (!type || !btf_type_is_struct(type)) {
10726 				verbose(env, "Helper has invalid btf/btf_id in R1\n");
10727 				return -EFAULT;
10728 			}
10729 			returns_cpu_specific_alloc_ptr = true;
10730 			env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true;
10731 		}
10732 		break;
10733 	}
10734 	case BPF_FUNC_user_ringbuf_drain:
10735 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10736 					 set_user_ringbuf_callback_state);
10737 		break;
10738 	}
10739 
10740 	if (err)
10741 		return err;
10742 
10743 	/* reset caller saved regs */
10744 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
10745 		mark_reg_not_init(env, regs, caller_saved[i]);
10746 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10747 	}
10748 
10749 	/* helper call returns 64-bit value. */
10750 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10751 
10752 	/* update return register (already marked as written above) */
10753 	ret_type = fn->ret_type;
10754 	ret_flag = type_flag(ret_type);
10755 
10756 	switch (base_type(ret_type)) {
10757 	case RET_INTEGER:
10758 		/* sets type to SCALAR_VALUE */
10759 		mark_reg_unknown(env, regs, BPF_REG_0);
10760 		break;
10761 	case RET_VOID:
10762 		regs[BPF_REG_0].type = NOT_INIT;
10763 		break;
10764 	case RET_PTR_TO_MAP_VALUE:
10765 		/* There is no offset yet applied, variable or fixed */
10766 		mark_reg_known_zero(env, regs, BPF_REG_0);
10767 		/* remember map_ptr, so that check_map_access()
10768 		 * can check 'value_size' boundary of memory access
10769 		 * to map element returned from bpf_map_lookup_elem()
10770 		 */
10771 		if (meta.map_ptr == NULL) {
10772 			verbose(env,
10773 				"kernel subsystem misconfigured verifier\n");
10774 			return -EINVAL;
10775 		}
10776 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
10777 		regs[BPF_REG_0].map_uid = meta.map_uid;
10778 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
10779 		if (!type_may_be_null(ret_type) &&
10780 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
10781 			regs[BPF_REG_0].id = ++env->id_gen;
10782 		}
10783 		break;
10784 	case RET_PTR_TO_SOCKET:
10785 		mark_reg_known_zero(env, regs, BPF_REG_0);
10786 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
10787 		break;
10788 	case RET_PTR_TO_SOCK_COMMON:
10789 		mark_reg_known_zero(env, regs, BPF_REG_0);
10790 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
10791 		break;
10792 	case RET_PTR_TO_TCP_SOCK:
10793 		mark_reg_known_zero(env, regs, BPF_REG_0);
10794 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
10795 		break;
10796 	case RET_PTR_TO_MEM:
10797 		mark_reg_known_zero(env, regs, BPF_REG_0);
10798 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10799 		regs[BPF_REG_0].mem_size = meta.mem_size;
10800 		break;
10801 	case RET_PTR_TO_MEM_OR_BTF_ID:
10802 	{
10803 		const struct btf_type *t;
10804 
10805 		mark_reg_known_zero(env, regs, BPF_REG_0);
10806 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
10807 		if (!btf_type_is_struct(t)) {
10808 			u32 tsize;
10809 			const struct btf_type *ret;
10810 			const char *tname;
10811 
10812 			/* resolve the type size of ksym. */
10813 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
10814 			if (IS_ERR(ret)) {
10815 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
10816 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
10817 					tname, PTR_ERR(ret));
10818 				return -EINVAL;
10819 			}
10820 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10821 			regs[BPF_REG_0].mem_size = tsize;
10822 		} else {
10823 			if (returns_cpu_specific_alloc_ptr) {
10824 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU;
10825 			} else {
10826 				/* MEM_RDONLY may be carried from ret_flag, but it
10827 				 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
10828 				 * it will confuse the check of PTR_TO_BTF_ID in
10829 				 * check_mem_access().
10830 				 */
10831 				ret_flag &= ~MEM_RDONLY;
10832 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10833 			}
10834 
10835 			regs[BPF_REG_0].btf = meta.ret_btf;
10836 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
10837 		}
10838 		break;
10839 	}
10840 	case RET_PTR_TO_BTF_ID:
10841 	{
10842 		struct btf *ret_btf;
10843 		int ret_btf_id;
10844 
10845 		mark_reg_known_zero(env, regs, BPF_REG_0);
10846 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10847 		if (func_id == BPF_FUNC_kptr_xchg) {
10848 			ret_btf = meta.kptr_field->kptr.btf;
10849 			ret_btf_id = meta.kptr_field->kptr.btf_id;
10850 			if (!btf_is_kernel(ret_btf)) {
10851 				regs[BPF_REG_0].type |= MEM_ALLOC;
10852 				if (meta.kptr_field->type == BPF_KPTR_PERCPU)
10853 					regs[BPF_REG_0].type |= MEM_PERCPU;
10854 			}
10855 		} else {
10856 			if (fn->ret_btf_id == BPF_PTR_POISON) {
10857 				verbose(env, "verifier internal error:");
10858 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
10859 					func_id_name(func_id));
10860 				return -EINVAL;
10861 			}
10862 			ret_btf = btf_vmlinux;
10863 			ret_btf_id = *fn->ret_btf_id;
10864 		}
10865 		if (ret_btf_id == 0) {
10866 			verbose(env, "invalid return type %u of func %s#%d\n",
10867 				base_type(ret_type), func_id_name(func_id),
10868 				func_id);
10869 			return -EINVAL;
10870 		}
10871 		regs[BPF_REG_0].btf = ret_btf;
10872 		regs[BPF_REG_0].btf_id = ret_btf_id;
10873 		break;
10874 	}
10875 	default:
10876 		verbose(env, "unknown return type %u of func %s#%d\n",
10877 			base_type(ret_type), func_id_name(func_id), func_id);
10878 		return -EINVAL;
10879 	}
10880 
10881 	if (type_may_be_null(regs[BPF_REG_0].type))
10882 		regs[BPF_REG_0].id = ++env->id_gen;
10883 
10884 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
10885 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
10886 			func_id_name(func_id), func_id);
10887 		return -EFAULT;
10888 	}
10889 
10890 	if (is_dynptr_ref_function(func_id))
10891 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
10892 
10893 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
10894 		/* For release_reference() */
10895 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
10896 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
10897 		int id = acquire_reference_state(env, insn_idx);
10898 
10899 		if (id < 0)
10900 			return id;
10901 		/* For mark_ptr_or_null_reg() */
10902 		regs[BPF_REG_0].id = id;
10903 		/* For release_reference() */
10904 		regs[BPF_REG_0].ref_obj_id = id;
10905 	}
10906 
10907 	err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta);
10908 	if (err)
10909 		return err;
10910 
10911 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
10912 	if (err)
10913 		return err;
10914 
10915 	if ((func_id == BPF_FUNC_get_stack ||
10916 	     func_id == BPF_FUNC_get_task_stack) &&
10917 	    !env->prog->has_callchain_buf) {
10918 		const char *err_str;
10919 
10920 #ifdef CONFIG_PERF_EVENTS
10921 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
10922 		err_str = "cannot get callchain buffer for func %s#%d\n";
10923 #else
10924 		err = -ENOTSUPP;
10925 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
10926 #endif
10927 		if (err) {
10928 			verbose(env, err_str, func_id_name(func_id), func_id);
10929 			return err;
10930 		}
10931 
10932 		env->prog->has_callchain_buf = true;
10933 	}
10934 
10935 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
10936 		env->prog->call_get_stack = true;
10937 
10938 	if (func_id == BPF_FUNC_get_func_ip) {
10939 		if (check_get_func_ip(env))
10940 			return -ENOTSUPP;
10941 		env->prog->call_get_func_ip = true;
10942 	}
10943 
10944 	if (changes_data)
10945 		clear_all_pkt_pointers(env);
10946 	return 0;
10947 }
10948 
10949 /* mark_btf_func_reg_size() is used when the reg size is determined by
10950  * the BTF func_proto's return value size and argument.
10951  */
10952 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
10953 				   size_t reg_size)
10954 {
10955 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
10956 
10957 	if (regno == BPF_REG_0) {
10958 		/* Function return value */
10959 		reg->live |= REG_LIVE_WRITTEN;
10960 		reg->subreg_def = reg_size == sizeof(u64) ?
10961 			DEF_NOT_SUBREG : env->insn_idx + 1;
10962 	} else {
10963 		/* Function argument */
10964 		if (reg_size == sizeof(u64)) {
10965 			mark_insn_zext(env, reg);
10966 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
10967 		} else {
10968 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
10969 		}
10970 	}
10971 }
10972 
10973 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10974 {
10975 	return meta->kfunc_flags & KF_ACQUIRE;
10976 }
10977 
10978 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10979 {
10980 	return meta->kfunc_flags & KF_RELEASE;
10981 }
10982 
10983 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10984 {
10985 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10986 }
10987 
10988 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10989 {
10990 	return meta->kfunc_flags & KF_SLEEPABLE;
10991 }
10992 
10993 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10994 {
10995 	return meta->kfunc_flags & KF_DESTRUCTIVE;
10996 }
10997 
10998 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10999 {
11000 	return meta->kfunc_flags & KF_RCU;
11001 }
11002 
11003 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta)
11004 {
11005 	return meta->kfunc_flags & KF_RCU_PROTECTED;
11006 }
11007 
11008 static bool is_kfunc_arg_mem_size(const struct btf *btf,
11009 				  const struct btf_param *arg,
11010 				  const struct bpf_reg_state *reg)
11011 {
11012 	const struct btf_type *t;
11013 
11014 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
11015 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
11016 		return false;
11017 
11018 	return btf_param_match_suffix(btf, arg, "__sz");
11019 }
11020 
11021 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
11022 					const struct btf_param *arg,
11023 					const struct bpf_reg_state *reg)
11024 {
11025 	const struct btf_type *t;
11026 
11027 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
11028 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
11029 		return false;
11030 
11031 	return btf_param_match_suffix(btf, arg, "__szk");
11032 }
11033 
11034 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
11035 {
11036 	return btf_param_match_suffix(btf, arg, "__opt");
11037 }
11038 
11039 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
11040 {
11041 	return btf_param_match_suffix(btf, arg, "__k");
11042 }
11043 
11044 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
11045 {
11046 	return btf_param_match_suffix(btf, arg, "__ign");
11047 }
11048 
11049 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg)
11050 {
11051 	return btf_param_match_suffix(btf, arg, "__map");
11052 }
11053 
11054 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
11055 {
11056 	return btf_param_match_suffix(btf, arg, "__alloc");
11057 }
11058 
11059 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
11060 {
11061 	return btf_param_match_suffix(btf, arg, "__uninit");
11062 }
11063 
11064 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
11065 {
11066 	return btf_param_match_suffix(btf, arg, "__refcounted_kptr");
11067 }
11068 
11069 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg)
11070 {
11071 	return btf_param_match_suffix(btf, arg, "__nullable");
11072 }
11073 
11074 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg)
11075 {
11076 	return btf_param_match_suffix(btf, arg, "__str");
11077 }
11078 
11079 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
11080 					  const struct btf_param *arg,
11081 					  const char *name)
11082 {
11083 	int len, target_len = strlen(name);
11084 	const char *param_name;
11085 
11086 	param_name = btf_name_by_offset(btf, arg->name_off);
11087 	if (str_is_empty(param_name))
11088 		return false;
11089 	len = strlen(param_name);
11090 	if (len != target_len)
11091 		return false;
11092 	if (strcmp(param_name, name))
11093 		return false;
11094 
11095 	return true;
11096 }
11097 
11098 enum {
11099 	KF_ARG_DYNPTR_ID,
11100 	KF_ARG_LIST_HEAD_ID,
11101 	KF_ARG_LIST_NODE_ID,
11102 	KF_ARG_RB_ROOT_ID,
11103 	KF_ARG_RB_NODE_ID,
11104 	KF_ARG_WORKQUEUE_ID,
11105 };
11106 
11107 BTF_ID_LIST(kf_arg_btf_ids)
11108 BTF_ID(struct, bpf_dynptr)
11109 BTF_ID(struct, bpf_list_head)
11110 BTF_ID(struct, bpf_list_node)
11111 BTF_ID(struct, bpf_rb_root)
11112 BTF_ID(struct, bpf_rb_node)
11113 BTF_ID(struct, bpf_wq)
11114 
11115 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
11116 				    const struct btf_param *arg, int type)
11117 {
11118 	const struct btf_type *t;
11119 	u32 res_id;
11120 
11121 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
11122 	if (!t)
11123 		return false;
11124 	if (!btf_type_is_ptr(t))
11125 		return false;
11126 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
11127 	if (!t)
11128 		return false;
11129 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
11130 }
11131 
11132 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
11133 {
11134 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
11135 }
11136 
11137 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
11138 {
11139 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
11140 }
11141 
11142 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
11143 {
11144 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
11145 }
11146 
11147 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
11148 {
11149 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
11150 }
11151 
11152 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
11153 {
11154 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
11155 }
11156 
11157 static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg)
11158 {
11159 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID);
11160 }
11161 
11162 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
11163 				  const struct btf_param *arg)
11164 {
11165 	const struct btf_type *t;
11166 
11167 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
11168 	if (!t)
11169 		return false;
11170 
11171 	return true;
11172 }
11173 
11174 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
11175 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
11176 					const struct btf *btf,
11177 					const struct btf_type *t, int rec)
11178 {
11179 	const struct btf_type *member_type;
11180 	const struct btf_member *member;
11181 	u32 i;
11182 
11183 	if (!btf_type_is_struct(t))
11184 		return false;
11185 
11186 	for_each_member(i, t, member) {
11187 		const struct btf_array *array;
11188 
11189 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
11190 		if (btf_type_is_struct(member_type)) {
11191 			if (rec >= 3) {
11192 				verbose(env, "max struct nesting depth exceeded\n");
11193 				return false;
11194 			}
11195 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
11196 				return false;
11197 			continue;
11198 		}
11199 		if (btf_type_is_array(member_type)) {
11200 			array = btf_array(member_type);
11201 			if (!array->nelems)
11202 				return false;
11203 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
11204 			if (!btf_type_is_scalar(member_type))
11205 				return false;
11206 			continue;
11207 		}
11208 		if (!btf_type_is_scalar(member_type))
11209 			return false;
11210 	}
11211 	return true;
11212 }
11213 
11214 enum kfunc_ptr_arg_type {
11215 	KF_ARG_PTR_TO_CTX,
11216 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
11217 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
11218 	KF_ARG_PTR_TO_DYNPTR,
11219 	KF_ARG_PTR_TO_ITER,
11220 	KF_ARG_PTR_TO_LIST_HEAD,
11221 	KF_ARG_PTR_TO_LIST_NODE,
11222 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
11223 	KF_ARG_PTR_TO_MEM,
11224 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
11225 	KF_ARG_PTR_TO_CALLBACK,
11226 	KF_ARG_PTR_TO_RB_ROOT,
11227 	KF_ARG_PTR_TO_RB_NODE,
11228 	KF_ARG_PTR_TO_NULL,
11229 	KF_ARG_PTR_TO_CONST_STR,
11230 	KF_ARG_PTR_TO_MAP,
11231 	KF_ARG_PTR_TO_WORKQUEUE,
11232 };
11233 
11234 enum special_kfunc_type {
11235 	KF_bpf_obj_new_impl,
11236 	KF_bpf_obj_drop_impl,
11237 	KF_bpf_refcount_acquire_impl,
11238 	KF_bpf_list_push_front_impl,
11239 	KF_bpf_list_push_back_impl,
11240 	KF_bpf_list_pop_front,
11241 	KF_bpf_list_pop_back,
11242 	KF_bpf_cast_to_kern_ctx,
11243 	KF_bpf_rdonly_cast,
11244 	KF_bpf_rcu_read_lock,
11245 	KF_bpf_rcu_read_unlock,
11246 	KF_bpf_rbtree_remove,
11247 	KF_bpf_rbtree_add_impl,
11248 	KF_bpf_rbtree_first,
11249 	KF_bpf_dynptr_from_skb,
11250 	KF_bpf_dynptr_from_xdp,
11251 	KF_bpf_dynptr_slice,
11252 	KF_bpf_dynptr_slice_rdwr,
11253 	KF_bpf_dynptr_clone,
11254 	KF_bpf_percpu_obj_new_impl,
11255 	KF_bpf_percpu_obj_drop_impl,
11256 	KF_bpf_throw,
11257 	KF_bpf_wq_set_callback_impl,
11258 	KF_bpf_preempt_disable,
11259 	KF_bpf_preempt_enable,
11260 	KF_bpf_iter_css_task_new,
11261 	KF_bpf_session_cookie,
11262 };
11263 
11264 BTF_SET_START(special_kfunc_set)
11265 BTF_ID(func, bpf_obj_new_impl)
11266 BTF_ID(func, bpf_obj_drop_impl)
11267 BTF_ID(func, bpf_refcount_acquire_impl)
11268 BTF_ID(func, bpf_list_push_front_impl)
11269 BTF_ID(func, bpf_list_push_back_impl)
11270 BTF_ID(func, bpf_list_pop_front)
11271 BTF_ID(func, bpf_list_pop_back)
11272 BTF_ID(func, bpf_cast_to_kern_ctx)
11273 BTF_ID(func, bpf_rdonly_cast)
11274 BTF_ID(func, bpf_rbtree_remove)
11275 BTF_ID(func, bpf_rbtree_add_impl)
11276 BTF_ID(func, bpf_rbtree_first)
11277 BTF_ID(func, bpf_dynptr_from_skb)
11278 BTF_ID(func, bpf_dynptr_from_xdp)
11279 BTF_ID(func, bpf_dynptr_slice)
11280 BTF_ID(func, bpf_dynptr_slice_rdwr)
11281 BTF_ID(func, bpf_dynptr_clone)
11282 BTF_ID(func, bpf_percpu_obj_new_impl)
11283 BTF_ID(func, bpf_percpu_obj_drop_impl)
11284 BTF_ID(func, bpf_throw)
11285 BTF_ID(func, bpf_wq_set_callback_impl)
11286 #ifdef CONFIG_CGROUPS
11287 BTF_ID(func, bpf_iter_css_task_new)
11288 #endif
11289 BTF_SET_END(special_kfunc_set)
11290 
11291 BTF_ID_LIST(special_kfunc_list)
11292 BTF_ID(func, bpf_obj_new_impl)
11293 BTF_ID(func, bpf_obj_drop_impl)
11294 BTF_ID(func, bpf_refcount_acquire_impl)
11295 BTF_ID(func, bpf_list_push_front_impl)
11296 BTF_ID(func, bpf_list_push_back_impl)
11297 BTF_ID(func, bpf_list_pop_front)
11298 BTF_ID(func, bpf_list_pop_back)
11299 BTF_ID(func, bpf_cast_to_kern_ctx)
11300 BTF_ID(func, bpf_rdonly_cast)
11301 BTF_ID(func, bpf_rcu_read_lock)
11302 BTF_ID(func, bpf_rcu_read_unlock)
11303 BTF_ID(func, bpf_rbtree_remove)
11304 BTF_ID(func, bpf_rbtree_add_impl)
11305 BTF_ID(func, bpf_rbtree_first)
11306 BTF_ID(func, bpf_dynptr_from_skb)
11307 BTF_ID(func, bpf_dynptr_from_xdp)
11308 BTF_ID(func, bpf_dynptr_slice)
11309 BTF_ID(func, bpf_dynptr_slice_rdwr)
11310 BTF_ID(func, bpf_dynptr_clone)
11311 BTF_ID(func, bpf_percpu_obj_new_impl)
11312 BTF_ID(func, bpf_percpu_obj_drop_impl)
11313 BTF_ID(func, bpf_throw)
11314 BTF_ID(func, bpf_wq_set_callback_impl)
11315 BTF_ID(func, bpf_preempt_disable)
11316 BTF_ID(func, bpf_preempt_enable)
11317 #ifdef CONFIG_CGROUPS
11318 BTF_ID(func, bpf_iter_css_task_new)
11319 #else
11320 BTF_ID_UNUSED
11321 #endif
11322 #ifdef CONFIG_BPF_EVENTS
11323 BTF_ID(func, bpf_session_cookie)
11324 #else
11325 BTF_ID_UNUSED
11326 #endif
11327 
11328 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
11329 {
11330 	if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
11331 	    meta->arg_owning_ref) {
11332 		return false;
11333 	}
11334 
11335 	return meta->kfunc_flags & KF_RET_NULL;
11336 }
11337 
11338 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
11339 {
11340 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
11341 }
11342 
11343 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
11344 {
11345 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
11346 }
11347 
11348 static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta)
11349 {
11350 	return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable];
11351 }
11352 
11353 static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta)
11354 {
11355 	return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable];
11356 }
11357 
11358 static enum kfunc_ptr_arg_type
11359 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
11360 		       struct bpf_kfunc_call_arg_meta *meta,
11361 		       const struct btf_type *t, const struct btf_type *ref_t,
11362 		       const char *ref_tname, const struct btf_param *args,
11363 		       int argno, int nargs)
11364 {
11365 	u32 regno = argno + 1;
11366 	struct bpf_reg_state *regs = cur_regs(env);
11367 	struct bpf_reg_state *reg = &regs[regno];
11368 	bool arg_mem_size = false;
11369 
11370 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
11371 		return KF_ARG_PTR_TO_CTX;
11372 
11373 	/* In this function, we verify the kfunc's BTF as per the argument type,
11374 	 * leaving the rest of the verification with respect to the register
11375 	 * type to our caller. When a set of conditions hold in the BTF type of
11376 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
11377 	 */
11378 	if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
11379 		return KF_ARG_PTR_TO_CTX;
11380 
11381 	if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg))
11382 		return KF_ARG_PTR_TO_NULL;
11383 
11384 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
11385 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
11386 
11387 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
11388 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
11389 
11390 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
11391 		return KF_ARG_PTR_TO_DYNPTR;
11392 
11393 	if (is_kfunc_arg_iter(meta, argno, &args[argno]))
11394 		return KF_ARG_PTR_TO_ITER;
11395 
11396 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
11397 		return KF_ARG_PTR_TO_LIST_HEAD;
11398 
11399 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
11400 		return KF_ARG_PTR_TO_LIST_NODE;
11401 
11402 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
11403 		return KF_ARG_PTR_TO_RB_ROOT;
11404 
11405 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
11406 		return KF_ARG_PTR_TO_RB_NODE;
11407 
11408 	if (is_kfunc_arg_const_str(meta->btf, &args[argno]))
11409 		return KF_ARG_PTR_TO_CONST_STR;
11410 
11411 	if (is_kfunc_arg_map(meta->btf, &args[argno]))
11412 		return KF_ARG_PTR_TO_MAP;
11413 
11414 	if (is_kfunc_arg_wq(meta->btf, &args[argno]))
11415 		return KF_ARG_PTR_TO_WORKQUEUE;
11416 
11417 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
11418 		if (!btf_type_is_struct(ref_t)) {
11419 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
11420 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
11421 			return -EINVAL;
11422 		}
11423 		return KF_ARG_PTR_TO_BTF_ID;
11424 	}
11425 
11426 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
11427 		return KF_ARG_PTR_TO_CALLBACK;
11428 
11429 	if (argno + 1 < nargs &&
11430 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
11431 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
11432 		arg_mem_size = true;
11433 
11434 	/* This is the catch all argument type of register types supported by
11435 	 * check_helper_mem_access. However, we only allow when argument type is
11436 	 * pointer to scalar, or struct composed (recursively) of scalars. When
11437 	 * arg_mem_size is true, the pointer can be void *.
11438 	 */
11439 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
11440 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
11441 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
11442 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
11443 		return -EINVAL;
11444 	}
11445 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
11446 }
11447 
11448 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
11449 					struct bpf_reg_state *reg,
11450 					const struct btf_type *ref_t,
11451 					const char *ref_tname, u32 ref_id,
11452 					struct bpf_kfunc_call_arg_meta *meta,
11453 					int argno)
11454 {
11455 	const struct btf_type *reg_ref_t;
11456 	bool strict_type_match = false;
11457 	const struct btf *reg_btf;
11458 	const char *reg_ref_tname;
11459 	bool taking_projection;
11460 	bool struct_same;
11461 	u32 reg_ref_id;
11462 
11463 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
11464 		reg_btf = reg->btf;
11465 		reg_ref_id = reg->btf_id;
11466 	} else {
11467 		reg_btf = btf_vmlinux;
11468 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
11469 	}
11470 
11471 	/* Enforce strict type matching for calls to kfuncs that are acquiring
11472 	 * or releasing a reference, or are no-cast aliases. We do _not_
11473 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
11474 	 * as we want to enable BPF programs to pass types that are bitwise
11475 	 * equivalent without forcing them to explicitly cast with something
11476 	 * like bpf_cast_to_kern_ctx().
11477 	 *
11478 	 * For example, say we had a type like the following:
11479 	 *
11480 	 * struct bpf_cpumask {
11481 	 *	cpumask_t cpumask;
11482 	 *	refcount_t usage;
11483 	 * };
11484 	 *
11485 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
11486 	 * to a struct cpumask, so it would be safe to pass a struct
11487 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
11488 	 *
11489 	 * The philosophy here is similar to how we allow scalars of different
11490 	 * types to be passed to kfuncs as long as the size is the same. The
11491 	 * only difference here is that we're simply allowing
11492 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
11493 	 * resolve types.
11494 	 */
11495 	if ((is_kfunc_release(meta) && reg->ref_obj_id) ||
11496 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
11497 		strict_type_match = true;
11498 
11499 	WARN_ON_ONCE(is_kfunc_release(meta) &&
11500 		     (reg->off || !tnum_is_const(reg->var_off) ||
11501 		      reg->var_off.value));
11502 
11503 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
11504 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
11505 	struct_same = btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match);
11506 	/* If kfunc is accepting a projection type (ie. __sk_buff), it cannot
11507 	 * actually use it -- it must cast to the underlying type. So we allow
11508 	 * caller to pass in the underlying type.
11509 	 */
11510 	taking_projection = btf_is_projection_of(ref_tname, reg_ref_tname);
11511 	if (!taking_projection && !struct_same) {
11512 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
11513 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
11514 			btf_type_str(reg_ref_t), reg_ref_tname);
11515 		return -EINVAL;
11516 	}
11517 	return 0;
11518 }
11519 
11520 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11521 {
11522 	struct bpf_verifier_state *state = env->cur_state;
11523 	struct btf_record *rec = reg_btf_record(reg);
11524 
11525 	if (!state->active_lock.ptr) {
11526 		verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
11527 		return -EFAULT;
11528 	}
11529 
11530 	if (type_flag(reg->type) & NON_OWN_REF) {
11531 		verbose(env, "verifier internal error: NON_OWN_REF already set\n");
11532 		return -EFAULT;
11533 	}
11534 
11535 	reg->type |= NON_OWN_REF;
11536 	if (rec->refcount_off >= 0)
11537 		reg->type |= MEM_RCU;
11538 
11539 	return 0;
11540 }
11541 
11542 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
11543 {
11544 	struct bpf_func_state *state, *unused;
11545 	struct bpf_reg_state *reg;
11546 	int i;
11547 
11548 	state = cur_func(env);
11549 
11550 	if (!ref_obj_id) {
11551 		verbose(env, "verifier internal error: ref_obj_id is zero for "
11552 			     "owning -> non-owning conversion\n");
11553 		return -EFAULT;
11554 	}
11555 
11556 	for (i = 0; i < state->acquired_refs; i++) {
11557 		if (state->refs[i].id != ref_obj_id)
11558 			continue;
11559 
11560 		/* Clear ref_obj_id here so release_reference doesn't clobber
11561 		 * the whole reg
11562 		 */
11563 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
11564 			if (reg->ref_obj_id == ref_obj_id) {
11565 				reg->ref_obj_id = 0;
11566 				ref_set_non_owning(env, reg);
11567 			}
11568 		}));
11569 		return 0;
11570 	}
11571 
11572 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
11573 	return -EFAULT;
11574 }
11575 
11576 /* Implementation details:
11577  *
11578  * Each register points to some region of memory, which we define as an
11579  * allocation. Each allocation may embed a bpf_spin_lock which protects any
11580  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
11581  * allocation. The lock and the data it protects are colocated in the same
11582  * memory region.
11583  *
11584  * Hence, everytime a register holds a pointer value pointing to such
11585  * allocation, the verifier preserves a unique reg->id for it.
11586  *
11587  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
11588  * bpf_spin_lock is called.
11589  *
11590  * To enable this, lock state in the verifier captures two values:
11591  *	active_lock.ptr = Register's type specific pointer
11592  *	active_lock.id  = A unique ID for each register pointer value
11593  *
11594  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
11595  * supported register types.
11596  *
11597  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
11598  * allocated objects is the reg->btf pointer.
11599  *
11600  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
11601  * can establish the provenance of the map value statically for each distinct
11602  * lookup into such maps. They always contain a single map value hence unique
11603  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
11604  *
11605  * So, in case of global variables, they use array maps with max_entries = 1,
11606  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
11607  * into the same map value as max_entries is 1, as described above).
11608  *
11609  * In case of inner map lookups, the inner map pointer has same map_ptr as the
11610  * outer map pointer (in verifier context), but each lookup into an inner map
11611  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
11612  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
11613  * will get different reg->id assigned to each lookup, hence different
11614  * active_lock.id.
11615  *
11616  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
11617  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
11618  * returned from bpf_obj_new. Each allocation receives a new reg->id.
11619  */
11620 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11621 {
11622 	void *ptr;
11623 	u32 id;
11624 
11625 	switch ((int)reg->type) {
11626 	case PTR_TO_MAP_VALUE:
11627 		ptr = reg->map_ptr;
11628 		break;
11629 	case PTR_TO_BTF_ID | MEM_ALLOC:
11630 		ptr = reg->btf;
11631 		break;
11632 	default:
11633 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
11634 		return -EFAULT;
11635 	}
11636 	id = reg->id;
11637 
11638 	if (!env->cur_state->active_lock.ptr)
11639 		return -EINVAL;
11640 	if (env->cur_state->active_lock.ptr != ptr ||
11641 	    env->cur_state->active_lock.id != id) {
11642 		verbose(env, "held lock and object are not in the same allocation\n");
11643 		return -EINVAL;
11644 	}
11645 	return 0;
11646 }
11647 
11648 static bool is_bpf_list_api_kfunc(u32 btf_id)
11649 {
11650 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11651 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11652 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11653 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
11654 }
11655 
11656 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
11657 {
11658 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
11659 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11660 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first];
11661 }
11662 
11663 static bool is_bpf_graph_api_kfunc(u32 btf_id)
11664 {
11665 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
11666 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
11667 }
11668 
11669 static bool is_sync_callback_calling_kfunc(u32 btf_id)
11670 {
11671 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
11672 }
11673 
11674 static bool is_async_callback_calling_kfunc(u32 btf_id)
11675 {
11676 	return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl];
11677 }
11678 
11679 static bool is_bpf_throw_kfunc(struct bpf_insn *insn)
11680 {
11681 	return bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
11682 	       insn->imm == special_kfunc_list[KF_bpf_throw];
11683 }
11684 
11685 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id)
11686 {
11687 	return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl];
11688 }
11689 
11690 static bool is_callback_calling_kfunc(u32 btf_id)
11691 {
11692 	return is_sync_callback_calling_kfunc(btf_id) ||
11693 	       is_async_callback_calling_kfunc(btf_id);
11694 }
11695 
11696 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
11697 {
11698 	return is_bpf_rbtree_api_kfunc(btf_id);
11699 }
11700 
11701 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
11702 					  enum btf_field_type head_field_type,
11703 					  u32 kfunc_btf_id)
11704 {
11705 	bool ret;
11706 
11707 	switch (head_field_type) {
11708 	case BPF_LIST_HEAD:
11709 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
11710 		break;
11711 	case BPF_RB_ROOT:
11712 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
11713 		break;
11714 	default:
11715 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
11716 			btf_field_type_name(head_field_type));
11717 		return false;
11718 	}
11719 
11720 	if (!ret)
11721 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
11722 			btf_field_type_name(head_field_type));
11723 	return ret;
11724 }
11725 
11726 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
11727 					  enum btf_field_type node_field_type,
11728 					  u32 kfunc_btf_id)
11729 {
11730 	bool ret;
11731 
11732 	switch (node_field_type) {
11733 	case BPF_LIST_NODE:
11734 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11735 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
11736 		break;
11737 	case BPF_RB_NODE:
11738 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11739 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
11740 		break;
11741 	default:
11742 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
11743 			btf_field_type_name(node_field_type));
11744 		return false;
11745 	}
11746 
11747 	if (!ret)
11748 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
11749 			btf_field_type_name(node_field_type));
11750 	return ret;
11751 }
11752 
11753 static int
11754 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
11755 				   struct bpf_reg_state *reg, u32 regno,
11756 				   struct bpf_kfunc_call_arg_meta *meta,
11757 				   enum btf_field_type head_field_type,
11758 				   struct btf_field **head_field)
11759 {
11760 	const char *head_type_name;
11761 	struct btf_field *field;
11762 	struct btf_record *rec;
11763 	u32 head_off;
11764 
11765 	if (meta->btf != btf_vmlinux) {
11766 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11767 		return -EFAULT;
11768 	}
11769 
11770 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
11771 		return -EFAULT;
11772 
11773 	head_type_name = btf_field_type_name(head_field_type);
11774 	if (!tnum_is_const(reg->var_off)) {
11775 		verbose(env,
11776 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11777 			regno, head_type_name);
11778 		return -EINVAL;
11779 	}
11780 
11781 	rec = reg_btf_record(reg);
11782 	head_off = reg->off + reg->var_off.value;
11783 	field = btf_record_find(rec, head_off, head_field_type);
11784 	if (!field) {
11785 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
11786 		return -EINVAL;
11787 	}
11788 
11789 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
11790 	if (check_reg_allocation_locked(env, reg)) {
11791 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
11792 			rec->spin_lock_off, head_type_name);
11793 		return -EINVAL;
11794 	}
11795 
11796 	if (*head_field) {
11797 		verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
11798 		return -EFAULT;
11799 	}
11800 	*head_field = field;
11801 	return 0;
11802 }
11803 
11804 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
11805 					   struct bpf_reg_state *reg, u32 regno,
11806 					   struct bpf_kfunc_call_arg_meta *meta)
11807 {
11808 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
11809 							  &meta->arg_list_head.field);
11810 }
11811 
11812 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
11813 					     struct bpf_reg_state *reg, u32 regno,
11814 					     struct bpf_kfunc_call_arg_meta *meta)
11815 {
11816 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
11817 							  &meta->arg_rbtree_root.field);
11818 }
11819 
11820 static int
11821 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
11822 				   struct bpf_reg_state *reg, u32 regno,
11823 				   struct bpf_kfunc_call_arg_meta *meta,
11824 				   enum btf_field_type head_field_type,
11825 				   enum btf_field_type node_field_type,
11826 				   struct btf_field **node_field)
11827 {
11828 	const char *node_type_name;
11829 	const struct btf_type *et, *t;
11830 	struct btf_field *field;
11831 	u32 node_off;
11832 
11833 	if (meta->btf != btf_vmlinux) {
11834 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11835 		return -EFAULT;
11836 	}
11837 
11838 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
11839 		return -EFAULT;
11840 
11841 	node_type_name = btf_field_type_name(node_field_type);
11842 	if (!tnum_is_const(reg->var_off)) {
11843 		verbose(env,
11844 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11845 			regno, node_type_name);
11846 		return -EINVAL;
11847 	}
11848 
11849 	node_off = reg->off + reg->var_off.value;
11850 	field = reg_find_field_offset(reg, node_off, node_field_type);
11851 	if (!field) {
11852 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
11853 		return -EINVAL;
11854 	}
11855 
11856 	field = *node_field;
11857 
11858 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
11859 	t = btf_type_by_id(reg->btf, reg->btf_id);
11860 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
11861 				  field->graph_root.value_btf_id, true)) {
11862 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
11863 			"in struct %s, but arg is at offset=%d in struct %s\n",
11864 			btf_field_type_name(head_field_type),
11865 			btf_field_type_name(node_field_type),
11866 			field->graph_root.node_offset,
11867 			btf_name_by_offset(field->graph_root.btf, et->name_off),
11868 			node_off, btf_name_by_offset(reg->btf, t->name_off));
11869 		return -EINVAL;
11870 	}
11871 	meta->arg_btf = reg->btf;
11872 	meta->arg_btf_id = reg->btf_id;
11873 
11874 	if (node_off != field->graph_root.node_offset) {
11875 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
11876 			node_off, btf_field_type_name(node_field_type),
11877 			field->graph_root.node_offset,
11878 			btf_name_by_offset(field->graph_root.btf, et->name_off));
11879 		return -EINVAL;
11880 	}
11881 
11882 	return 0;
11883 }
11884 
11885 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
11886 					   struct bpf_reg_state *reg, u32 regno,
11887 					   struct bpf_kfunc_call_arg_meta *meta)
11888 {
11889 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11890 						  BPF_LIST_HEAD, BPF_LIST_NODE,
11891 						  &meta->arg_list_head.field);
11892 }
11893 
11894 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
11895 					     struct bpf_reg_state *reg, u32 regno,
11896 					     struct bpf_kfunc_call_arg_meta *meta)
11897 {
11898 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11899 						  BPF_RB_ROOT, BPF_RB_NODE,
11900 						  &meta->arg_rbtree_root.field);
11901 }
11902 
11903 /*
11904  * css_task iter allowlist is needed to avoid dead locking on css_set_lock.
11905  * LSM hooks and iters (both sleepable and non-sleepable) are safe.
11906  * Any sleepable progs are also safe since bpf_check_attach_target() enforce
11907  * them can only be attached to some specific hook points.
11908  */
11909 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env)
11910 {
11911 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
11912 
11913 	switch (prog_type) {
11914 	case BPF_PROG_TYPE_LSM:
11915 		return true;
11916 	case BPF_PROG_TYPE_TRACING:
11917 		if (env->prog->expected_attach_type == BPF_TRACE_ITER)
11918 			return true;
11919 		fallthrough;
11920 	default:
11921 		return in_sleepable(env);
11922 	}
11923 }
11924 
11925 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
11926 			    int insn_idx)
11927 {
11928 	const char *func_name = meta->func_name, *ref_tname;
11929 	const struct btf *btf = meta->btf;
11930 	const struct btf_param *args;
11931 	struct btf_record *rec;
11932 	u32 i, nargs;
11933 	int ret;
11934 
11935 	args = (const struct btf_param *)(meta->func_proto + 1);
11936 	nargs = btf_type_vlen(meta->func_proto);
11937 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
11938 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
11939 			MAX_BPF_FUNC_REG_ARGS);
11940 		return -EINVAL;
11941 	}
11942 
11943 	/* Check that BTF function arguments match actual types that the
11944 	 * verifier sees.
11945 	 */
11946 	for (i = 0; i < nargs; i++) {
11947 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
11948 		const struct btf_type *t, *ref_t, *resolve_ret;
11949 		enum bpf_arg_type arg_type = ARG_DONTCARE;
11950 		u32 regno = i + 1, ref_id, type_size;
11951 		bool is_ret_buf_sz = false;
11952 		int kf_arg_type;
11953 
11954 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
11955 
11956 		if (is_kfunc_arg_ignore(btf, &args[i]))
11957 			continue;
11958 
11959 		if (btf_type_is_scalar(t)) {
11960 			if (reg->type != SCALAR_VALUE) {
11961 				verbose(env, "R%d is not a scalar\n", regno);
11962 				return -EINVAL;
11963 			}
11964 
11965 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
11966 				if (meta->arg_constant.found) {
11967 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11968 					return -EFAULT;
11969 				}
11970 				if (!tnum_is_const(reg->var_off)) {
11971 					verbose(env, "R%d must be a known constant\n", regno);
11972 					return -EINVAL;
11973 				}
11974 				ret = mark_chain_precision(env, regno);
11975 				if (ret < 0)
11976 					return ret;
11977 				meta->arg_constant.found = true;
11978 				meta->arg_constant.value = reg->var_off.value;
11979 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
11980 				meta->r0_rdonly = true;
11981 				is_ret_buf_sz = true;
11982 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
11983 				is_ret_buf_sz = true;
11984 			}
11985 
11986 			if (is_ret_buf_sz) {
11987 				if (meta->r0_size) {
11988 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
11989 					return -EINVAL;
11990 				}
11991 
11992 				if (!tnum_is_const(reg->var_off)) {
11993 					verbose(env, "R%d is not a const\n", regno);
11994 					return -EINVAL;
11995 				}
11996 
11997 				meta->r0_size = reg->var_off.value;
11998 				ret = mark_chain_precision(env, regno);
11999 				if (ret)
12000 					return ret;
12001 			}
12002 			continue;
12003 		}
12004 
12005 		if (!btf_type_is_ptr(t)) {
12006 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
12007 			return -EINVAL;
12008 		}
12009 
12010 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
12011 		    (register_is_null(reg) || type_may_be_null(reg->type)) &&
12012 			!is_kfunc_arg_nullable(meta->btf, &args[i])) {
12013 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
12014 			return -EACCES;
12015 		}
12016 
12017 		if (reg->ref_obj_id) {
12018 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
12019 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
12020 					regno, reg->ref_obj_id,
12021 					meta->ref_obj_id);
12022 				return -EFAULT;
12023 			}
12024 			meta->ref_obj_id = reg->ref_obj_id;
12025 			if (is_kfunc_release(meta))
12026 				meta->release_regno = regno;
12027 		}
12028 
12029 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
12030 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
12031 
12032 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
12033 		if (kf_arg_type < 0)
12034 			return kf_arg_type;
12035 
12036 		switch (kf_arg_type) {
12037 		case KF_ARG_PTR_TO_NULL:
12038 			continue;
12039 		case KF_ARG_PTR_TO_MAP:
12040 			if (!reg->map_ptr) {
12041 				verbose(env, "pointer in R%d isn't map pointer\n", regno);
12042 				return -EINVAL;
12043 			}
12044 			if (meta->map.ptr && reg->map_ptr->record->wq_off >= 0) {
12045 				/* Use map_uid (which is unique id of inner map) to reject:
12046 				 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
12047 				 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
12048 				 * if (inner_map1 && inner_map2) {
12049 				 *     wq = bpf_map_lookup_elem(inner_map1);
12050 				 *     if (wq)
12051 				 *         // mismatch would have been allowed
12052 				 *         bpf_wq_init(wq, inner_map2);
12053 				 * }
12054 				 *
12055 				 * Comparing map_ptr is enough to distinguish normal and outer maps.
12056 				 */
12057 				if (meta->map.ptr != reg->map_ptr ||
12058 				    meta->map.uid != reg->map_uid) {
12059 					verbose(env,
12060 						"workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
12061 						meta->map.uid, reg->map_uid);
12062 					return -EINVAL;
12063 				}
12064 			}
12065 			meta->map.ptr = reg->map_ptr;
12066 			meta->map.uid = reg->map_uid;
12067 			fallthrough;
12068 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
12069 		case KF_ARG_PTR_TO_BTF_ID:
12070 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
12071 				break;
12072 
12073 			if (!is_trusted_reg(reg)) {
12074 				if (!is_kfunc_rcu(meta)) {
12075 					verbose(env, "R%d must be referenced or trusted\n", regno);
12076 					return -EINVAL;
12077 				}
12078 				if (!is_rcu_reg(reg)) {
12079 					verbose(env, "R%d must be a rcu pointer\n", regno);
12080 					return -EINVAL;
12081 				}
12082 			}
12083 			fallthrough;
12084 		case KF_ARG_PTR_TO_CTX:
12085 		case KF_ARG_PTR_TO_DYNPTR:
12086 		case KF_ARG_PTR_TO_ITER:
12087 		case KF_ARG_PTR_TO_LIST_HEAD:
12088 		case KF_ARG_PTR_TO_LIST_NODE:
12089 		case KF_ARG_PTR_TO_RB_ROOT:
12090 		case KF_ARG_PTR_TO_RB_NODE:
12091 		case KF_ARG_PTR_TO_MEM:
12092 		case KF_ARG_PTR_TO_MEM_SIZE:
12093 		case KF_ARG_PTR_TO_CALLBACK:
12094 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
12095 		case KF_ARG_PTR_TO_CONST_STR:
12096 		case KF_ARG_PTR_TO_WORKQUEUE:
12097 			break;
12098 		default:
12099 			WARN_ON_ONCE(1);
12100 			return -EFAULT;
12101 		}
12102 
12103 		if (is_kfunc_release(meta) && reg->ref_obj_id)
12104 			arg_type |= OBJ_RELEASE;
12105 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
12106 		if (ret < 0)
12107 			return ret;
12108 
12109 		switch (kf_arg_type) {
12110 		case KF_ARG_PTR_TO_CTX:
12111 			if (reg->type != PTR_TO_CTX) {
12112 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n",
12113 					i, reg_type_str(env, reg->type));
12114 				return -EINVAL;
12115 			}
12116 
12117 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
12118 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
12119 				if (ret < 0)
12120 					return -EINVAL;
12121 				meta->ret_btf_id  = ret;
12122 			}
12123 			break;
12124 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
12125 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
12126 				if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) {
12127 					verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i);
12128 					return -EINVAL;
12129 				}
12130 			} else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) {
12131 				if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
12132 					verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i);
12133 					return -EINVAL;
12134 				}
12135 			} else {
12136 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
12137 				return -EINVAL;
12138 			}
12139 			if (!reg->ref_obj_id) {
12140 				verbose(env, "allocated object must be referenced\n");
12141 				return -EINVAL;
12142 			}
12143 			if (meta->btf == btf_vmlinux) {
12144 				meta->arg_btf = reg->btf;
12145 				meta->arg_btf_id = reg->btf_id;
12146 			}
12147 			break;
12148 		case KF_ARG_PTR_TO_DYNPTR:
12149 		{
12150 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
12151 			int clone_ref_obj_id = 0;
12152 
12153 			if (reg->type == CONST_PTR_TO_DYNPTR)
12154 				dynptr_arg_type |= MEM_RDONLY;
12155 
12156 			if (is_kfunc_arg_uninit(btf, &args[i]))
12157 				dynptr_arg_type |= MEM_UNINIT;
12158 
12159 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
12160 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
12161 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
12162 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
12163 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
12164 				   (dynptr_arg_type & MEM_UNINIT)) {
12165 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
12166 
12167 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
12168 					verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
12169 					return -EFAULT;
12170 				}
12171 
12172 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
12173 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
12174 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
12175 					verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
12176 					return -EFAULT;
12177 				}
12178 			}
12179 
12180 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
12181 			if (ret < 0)
12182 				return ret;
12183 
12184 			if (!(dynptr_arg_type & MEM_UNINIT)) {
12185 				int id = dynptr_id(env, reg);
12186 
12187 				if (id < 0) {
12188 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
12189 					return id;
12190 				}
12191 				meta->initialized_dynptr.id = id;
12192 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
12193 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
12194 			}
12195 
12196 			break;
12197 		}
12198 		case KF_ARG_PTR_TO_ITER:
12199 			if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) {
12200 				if (!check_css_task_iter_allowlist(env)) {
12201 					verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n");
12202 					return -EINVAL;
12203 				}
12204 			}
12205 			ret = process_iter_arg(env, regno, insn_idx, meta);
12206 			if (ret < 0)
12207 				return ret;
12208 			break;
12209 		case KF_ARG_PTR_TO_LIST_HEAD:
12210 			if (reg->type != PTR_TO_MAP_VALUE &&
12211 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12212 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
12213 				return -EINVAL;
12214 			}
12215 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
12216 				verbose(env, "allocated object must be referenced\n");
12217 				return -EINVAL;
12218 			}
12219 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
12220 			if (ret < 0)
12221 				return ret;
12222 			break;
12223 		case KF_ARG_PTR_TO_RB_ROOT:
12224 			if (reg->type != PTR_TO_MAP_VALUE &&
12225 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12226 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
12227 				return -EINVAL;
12228 			}
12229 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
12230 				verbose(env, "allocated object must be referenced\n");
12231 				return -EINVAL;
12232 			}
12233 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
12234 			if (ret < 0)
12235 				return ret;
12236 			break;
12237 		case KF_ARG_PTR_TO_LIST_NODE:
12238 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12239 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
12240 				return -EINVAL;
12241 			}
12242 			if (!reg->ref_obj_id) {
12243 				verbose(env, "allocated object must be referenced\n");
12244 				return -EINVAL;
12245 			}
12246 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
12247 			if (ret < 0)
12248 				return ret;
12249 			break;
12250 		case KF_ARG_PTR_TO_RB_NODE:
12251 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
12252 				if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
12253 					verbose(env, "rbtree_remove node input must be non-owning ref\n");
12254 					return -EINVAL;
12255 				}
12256 				if (in_rbtree_lock_required_cb(env)) {
12257 					verbose(env, "rbtree_remove not allowed in rbtree cb\n");
12258 					return -EINVAL;
12259 				}
12260 			} else {
12261 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
12262 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
12263 					return -EINVAL;
12264 				}
12265 				if (!reg->ref_obj_id) {
12266 					verbose(env, "allocated object must be referenced\n");
12267 					return -EINVAL;
12268 				}
12269 			}
12270 
12271 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
12272 			if (ret < 0)
12273 				return ret;
12274 			break;
12275 		case KF_ARG_PTR_TO_MAP:
12276 			/* If argument has '__map' suffix expect 'struct bpf_map *' */
12277 			ref_id = *reg2btf_ids[CONST_PTR_TO_MAP];
12278 			ref_t = btf_type_by_id(btf_vmlinux, ref_id);
12279 			ref_tname = btf_name_by_offset(btf, ref_t->name_off);
12280 			fallthrough;
12281 		case KF_ARG_PTR_TO_BTF_ID:
12282 			/* Only base_type is checked, further checks are done here */
12283 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
12284 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
12285 			    !reg2btf_ids[base_type(reg->type)]) {
12286 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
12287 				verbose(env, "expected %s or socket\n",
12288 					reg_type_str(env, base_type(reg->type) |
12289 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
12290 				return -EINVAL;
12291 			}
12292 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
12293 			if (ret < 0)
12294 				return ret;
12295 			break;
12296 		case KF_ARG_PTR_TO_MEM:
12297 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
12298 			if (IS_ERR(resolve_ret)) {
12299 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
12300 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
12301 				return -EINVAL;
12302 			}
12303 			ret = check_mem_reg(env, reg, regno, type_size);
12304 			if (ret < 0)
12305 				return ret;
12306 			break;
12307 		case KF_ARG_PTR_TO_MEM_SIZE:
12308 		{
12309 			struct bpf_reg_state *buff_reg = &regs[regno];
12310 			const struct btf_param *buff_arg = &args[i];
12311 			struct bpf_reg_state *size_reg = &regs[regno + 1];
12312 			const struct btf_param *size_arg = &args[i + 1];
12313 
12314 			if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
12315 				ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
12316 				if (ret < 0) {
12317 					verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
12318 					return ret;
12319 				}
12320 			}
12321 
12322 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
12323 				if (meta->arg_constant.found) {
12324 					verbose(env, "verifier internal error: only one constant argument permitted\n");
12325 					return -EFAULT;
12326 				}
12327 				if (!tnum_is_const(size_reg->var_off)) {
12328 					verbose(env, "R%d must be a known constant\n", regno + 1);
12329 					return -EINVAL;
12330 				}
12331 				meta->arg_constant.found = true;
12332 				meta->arg_constant.value = size_reg->var_off.value;
12333 			}
12334 
12335 			/* Skip next '__sz' or '__szk' argument */
12336 			i++;
12337 			break;
12338 		}
12339 		case KF_ARG_PTR_TO_CALLBACK:
12340 			if (reg->type != PTR_TO_FUNC) {
12341 				verbose(env, "arg%d expected pointer to func\n", i);
12342 				return -EINVAL;
12343 			}
12344 			meta->subprogno = reg->subprogno;
12345 			break;
12346 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
12347 			if (!type_is_ptr_alloc_obj(reg->type)) {
12348 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
12349 				return -EINVAL;
12350 			}
12351 			if (!type_is_non_owning_ref(reg->type))
12352 				meta->arg_owning_ref = true;
12353 
12354 			rec = reg_btf_record(reg);
12355 			if (!rec) {
12356 				verbose(env, "verifier internal error: Couldn't find btf_record\n");
12357 				return -EFAULT;
12358 			}
12359 
12360 			if (rec->refcount_off < 0) {
12361 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
12362 				return -EINVAL;
12363 			}
12364 
12365 			meta->arg_btf = reg->btf;
12366 			meta->arg_btf_id = reg->btf_id;
12367 			break;
12368 		case KF_ARG_PTR_TO_CONST_STR:
12369 			if (reg->type != PTR_TO_MAP_VALUE) {
12370 				verbose(env, "arg#%d doesn't point to a const string\n", i);
12371 				return -EINVAL;
12372 			}
12373 			ret = check_reg_const_str(env, reg, regno);
12374 			if (ret)
12375 				return ret;
12376 			break;
12377 		case KF_ARG_PTR_TO_WORKQUEUE:
12378 			if (reg->type != PTR_TO_MAP_VALUE) {
12379 				verbose(env, "arg#%d doesn't point to a map value\n", i);
12380 				return -EINVAL;
12381 			}
12382 			ret = process_wq_func(env, regno, meta);
12383 			if (ret < 0)
12384 				return ret;
12385 			break;
12386 		}
12387 	}
12388 
12389 	if (is_kfunc_release(meta) && !meta->release_regno) {
12390 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
12391 			func_name);
12392 		return -EINVAL;
12393 	}
12394 
12395 	return 0;
12396 }
12397 
12398 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
12399 			    struct bpf_insn *insn,
12400 			    struct bpf_kfunc_call_arg_meta *meta,
12401 			    const char **kfunc_name)
12402 {
12403 	const struct btf_type *func, *func_proto;
12404 	u32 func_id, *kfunc_flags;
12405 	const char *func_name;
12406 	struct btf *desc_btf;
12407 
12408 	if (kfunc_name)
12409 		*kfunc_name = NULL;
12410 
12411 	if (!insn->imm)
12412 		return -EINVAL;
12413 
12414 	desc_btf = find_kfunc_desc_btf(env, insn->off);
12415 	if (IS_ERR(desc_btf))
12416 		return PTR_ERR(desc_btf);
12417 
12418 	func_id = insn->imm;
12419 	func = btf_type_by_id(desc_btf, func_id);
12420 	func_name = btf_name_by_offset(desc_btf, func->name_off);
12421 	if (kfunc_name)
12422 		*kfunc_name = func_name;
12423 	func_proto = btf_type_by_id(desc_btf, func->type);
12424 
12425 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
12426 	if (!kfunc_flags) {
12427 		return -EACCES;
12428 	}
12429 
12430 	memset(meta, 0, sizeof(*meta));
12431 	meta->btf = desc_btf;
12432 	meta->func_id = func_id;
12433 	meta->kfunc_flags = *kfunc_flags;
12434 	meta->func_proto = func_proto;
12435 	meta->func_name = func_name;
12436 
12437 	return 0;
12438 }
12439 
12440 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name);
12441 
12442 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
12443 			    int *insn_idx_p)
12444 {
12445 	bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable;
12446 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
12447 	struct bpf_reg_state *regs = cur_regs(env);
12448 	const char *func_name, *ptr_type_name;
12449 	const struct btf_type *t, *ptr_type;
12450 	struct bpf_kfunc_call_arg_meta meta;
12451 	struct bpf_insn_aux_data *insn_aux;
12452 	int err, insn_idx = *insn_idx_p;
12453 	const struct btf_param *args;
12454 	const struct btf_type *ret_t;
12455 	struct btf *desc_btf;
12456 
12457 	/* skip for now, but return error when we find this in fixup_kfunc_call */
12458 	if (!insn->imm)
12459 		return 0;
12460 
12461 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
12462 	if (err == -EACCES && func_name)
12463 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
12464 	if (err)
12465 		return err;
12466 	desc_btf = meta.btf;
12467 	insn_aux = &env->insn_aux_data[insn_idx];
12468 
12469 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
12470 
12471 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
12472 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
12473 		return -EACCES;
12474 	}
12475 
12476 	sleepable = is_kfunc_sleepable(&meta);
12477 	if (sleepable && !in_sleepable(env)) {
12478 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
12479 		return -EACCES;
12480 	}
12481 
12482 	/* Check the arguments */
12483 	err = check_kfunc_args(env, &meta, insn_idx);
12484 	if (err < 0)
12485 		return err;
12486 
12487 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
12488 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
12489 					 set_rbtree_add_callback_state);
12490 		if (err) {
12491 			verbose(env, "kfunc %s#%d failed callback verification\n",
12492 				func_name, meta.func_id);
12493 			return err;
12494 		}
12495 	}
12496 
12497 	if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) {
12498 		meta.r0_size = sizeof(u64);
12499 		meta.r0_rdonly = false;
12500 	}
12501 
12502 	if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) {
12503 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
12504 					 set_timer_callback_state);
12505 		if (err) {
12506 			verbose(env, "kfunc %s#%d failed callback verification\n",
12507 				func_name, meta.func_id);
12508 			return err;
12509 		}
12510 	}
12511 
12512 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
12513 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
12514 
12515 	preempt_disable = is_kfunc_bpf_preempt_disable(&meta);
12516 	preempt_enable = is_kfunc_bpf_preempt_enable(&meta);
12517 
12518 	if (env->cur_state->active_rcu_lock) {
12519 		struct bpf_func_state *state;
12520 		struct bpf_reg_state *reg;
12521 		u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER);
12522 
12523 		if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
12524 			verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
12525 			return -EACCES;
12526 		}
12527 
12528 		if (rcu_lock) {
12529 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
12530 			return -EINVAL;
12531 		} else if (rcu_unlock) {
12532 			bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({
12533 				if (reg->type & MEM_RCU) {
12534 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
12535 					reg->type |= PTR_UNTRUSTED;
12536 				}
12537 			}));
12538 			env->cur_state->active_rcu_lock = false;
12539 		} else if (sleepable) {
12540 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
12541 			return -EACCES;
12542 		}
12543 	} else if (rcu_lock) {
12544 		env->cur_state->active_rcu_lock = true;
12545 	} else if (rcu_unlock) {
12546 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
12547 		return -EINVAL;
12548 	}
12549 
12550 	if (env->cur_state->active_preempt_lock) {
12551 		if (preempt_disable) {
12552 			env->cur_state->active_preempt_lock++;
12553 		} else if (preempt_enable) {
12554 			env->cur_state->active_preempt_lock--;
12555 		} else if (sleepable) {
12556 			verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name);
12557 			return -EACCES;
12558 		}
12559 	} else if (preempt_disable) {
12560 		env->cur_state->active_preempt_lock++;
12561 	} else if (preempt_enable) {
12562 		verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name);
12563 		return -EINVAL;
12564 	}
12565 
12566 	/* In case of release function, we get register number of refcounted
12567 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
12568 	 */
12569 	if (meta.release_regno) {
12570 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
12571 		if (err) {
12572 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
12573 				func_name, meta.func_id);
12574 			return err;
12575 		}
12576 	}
12577 
12578 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
12579 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
12580 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
12581 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
12582 		insn_aux->insert_off = regs[BPF_REG_2].off;
12583 		insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
12584 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
12585 		if (err) {
12586 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
12587 				func_name, meta.func_id);
12588 			return err;
12589 		}
12590 
12591 		err = release_reference(env, release_ref_obj_id);
12592 		if (err) {
12593 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
12594 				func_name, meta.func_id);
12595 			return err;
12596 		}
12597 	}
12598 
12599 	if (meta.func_id == special_kfunc_list[KF_bpf_throw]) {
12600 		if (!bpf_jit_supports_exceptions()) {
12601 			verbose(env, "JIT does not support calling kfunc %s#%d\n",
12602 				func_name, meta.func_id);
12603 			return -ENOTSUPP;
12604 		}
12605 		env->seen_exception = true;
12606 
12607 		/* In the case of the default callback, the cookie value passed
12608 		 * to bpf_throw becomes the return value of the program.
12609 		 */
12610 		if (!env->exception_callback_subprog) {
12611 			err = check_return_code(env, BPF_REG_1, "R1");
12612 			if (err < 0)
12613 				return err;
12614 		}
12615 	}
12616 
12617 	for (i = 0; i < CALLER_SAVED_REGS; i++)
12618 		mark_reg_not_init(env, regs, caller_saved[i]);
12619 
12620 	/* Check return type */
12621 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
12622 
12623 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
12624 		/* Only exception is bpf_obj_new_impl */
12625 		if (meta.btf != btf_vmlinux ||
12626 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
12627 		     meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] &&
12628 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
12629 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
12630 			return -EINVAL;
12631 		}
12632 	}
12633 
12634 	if (btf_type_is_scalar(t)) {
12635 		mark_reg_unknown(env, regs, BPF_REG_0);
12636 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
12637 	} else if (btf_type_is_ptr(t)) {
12638 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
12639 
12640 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12641 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
12642 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12643 				struct btf_struct_meta *struct_meta;
12644 				struct btf *ret_btf;
12645 				u32 ret_btf_id;
12646 
12647 				if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set)
12648 					return -ENOMEM;
12649 
12650 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
12651 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
12652 					return -EINVAL;
12653 				}
12654 
12655 				ret_btf = env->prog->aux->btf;
12656 				ret_btf_id = meta.arg_constant.value;
12657 
12658 				/* This may be NULL due to user not supplying a BTF */
12659 				if (!ret_btf) {
12660 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n");
12661 					return -EINVAL;
12662 				}
12663 
12664 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
12665 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
12666 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n");
12667 					return -EINVAL;
12668 				}
12669 
12670 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12671 					if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) {
12672 						verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n",
12673 							ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE);
12674 						return -EINVAL;
12675 					}
12676 
12677 					if (!bpf_global_percpu_ma_set) {
12678 						mutex_lock(&bpf_percpu_ma_lock);
12679 						if (!bpf_global_percpu_ma_set) {
12680 							/* Charge memory allocated with bpf_global_percpu_ma to
12681 							 * root memcg. The obj_cgroup for root memcg is NULL.
12682 							 */
12683 							err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL);
12684 							if (!err)
12685 								bpf_global_percpu_ma_set = true;
12686 						}
12687 						mutex_unlock(&bpf_percpu_ma_lock);
12688 						if (err)
12689 							return err;
12690 					}
12691 
12692 					mutex_lock(&bpf_percpu_ma_lock);
12693 					err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size);
12694 					mutex_unlock(&bpf_percpu_ma_lock);
12695 					if (err)
12696 						return err;
12697 				}
12698 
12699 				struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id);
12700 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12701 					if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) {
12702 						verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n");
12703 						return -EINVAL;
12704 					}
12705 
12706 					if (struct_meta) {
12707 						verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n");
12708 						return -EINVAL;
12709 					}
12710 				}
12711 
12712 				mark_reg_known_zero(env, regs, BPF_REG_0);
12713 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12714 				regs[BPF_REG_0].btf = ret_btf;
12715 				regs[BPF_REG_0].btf_id = ret_btf_id;
12716 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl])
12717 					regs[BPF_REG_0].type |= MEM_PERCPU;
12718 
12719 				insn_aux->obj_new_size = ret_t->size;
12720 				insn_aux->kptr_struct_meta = struct_meta;
12721 			} else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
12722 				mark_reg_known_zero(env, regs, BPF_REG_0);
12723 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12724 				regs[BPF_REG_0].btf = meta.arg_btf;
12725 				regs[BPF_REG_0].btf_id = meta.arg_btf_id;
12726 
12727 				insn_aux->kptr_struct_meta =
12728 					btf_find_struct_meta(meta.arg_btf,
12729 							     meta.arg_btf_id);
12730 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
12731 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
12732 				struct btf_field *field = meta.arg_list_head.field;
12733 
12734 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12735 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
12736 				   meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12737 				struct btf_field *field = meta.arg_rbtree_root.field;
12738 
12739 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12740 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
12741 				mark_reg_known_zero(env, regs, BPF_REG_0);
12742 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
12743 				regs[BPF_REG_0].btf = desc_btf;
12744 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
12745 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
12746 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
12747 				if (!ret_t || !btf_type_is_struct(ret_t)) {
12748 					verbose(env,
12749 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
12750 					return -EINVAL;
12751 				}
12752 
12753 				mark_reg_known_zero(env, regs, BPF_REG_0);
12754 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
12755 				regs[BPF_REG_0].btf = desc_btf;
12756 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
12757 			} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
12758 				   meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
12759 				enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
12760 
12761 				mark_reg_known_zero(env, regs, BPF_REG_0);
12762 
12763 				if (!meta.arg_constant.found) {
12764 					verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
12765 					return -EFAULT;
12766 				}
12767 
12768 				regs[BPF_REG_0].mem_size = meta.arg_constant.value;
12769 
12770 				/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
12771 				regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
12772 
12773 				if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
12774 					regs[BPF_REG_0].type |= MEM_RDONLY;
12775 				} else {
12776 					/* this will set env->seen_direct_write to true */
12777 					if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
12778 						verbose(env, "the prog does not allow writes to packet data\n");
12779 						return -EINVAL;
12780 					}
12781 				}
12782 
12783 				if (!meta.initialized_dynptr.id) {
12784 					verbose(env, "verifier internal error: no dynptr id\n");
12785 					return -EFAULT;
12786 				}
12787 				regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
12788 
12789 				/* we don't need to set BPF_REG_0's ref obj id
12790 				 * because packet slices are not refcounted (see
12791 				 * dynptr_type_refcounted)
12792 				 */
12793 			} else {
12794 				verbose(env, "kernel function %s unhandled dynamic return type\n",
12795 					meta.func_name);
12796 				return -EFAULT;
12797 			}
12798 		} else if (btf_type_is_void(ptr_type)) {
12799 			/* kfunc returning 'void *' is equivalent to returning scalar */
12800 			mark_reg_unknown(env, regs, BPF_REG_0);
12801 		} else if (!__btf_type_is_struct(ptr_type)) {
12802 			if (!meta.r0_size) {
12803 				__u32 sz;
12804 
12805 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
12806 					meta.r0_size = sz;
12807 					meta.r0_rdonly = true;
12808 				}
12809 			}
12810 			if (!meta.r0_size) {
12811 				ptr_type_name = btf_name_by_offset(desc_btf,
12812 								   ptr_type->name_off);
12813 				verbose(env,
12814 					"kernel function %s returns pointer type %s %s is not supported\n",
12815 					func_name,
12816 					btf_type_str(ptr_type),
12817 					ptr_type_name);
12818 				return -EINVAL;
12819 			}
12820 
12821 			mark_reg_known_zero(env, regs, BPF_REG_0);
12822 			regs[BPF_REG_0].type = PTR_TO_MEM;
12823 			regs[BPF_REG_0].mem_size = meta.r0_size;
12824 
12825 			if (meta.r0_rdonly)
12826 				regs[BPF_REG_0].type |= MEM_RDONLY;
12827 
12828 			/* Ensures we don't access the memory after a release_reference() */
12829 			if (meta.ref_obj_id)
12830 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
12831 		} else {
12832 			mark_reg_known_zero(env, regs, BPF_REG_0);
12833 			regs[BPF_REG_0].btf = desc_btf;
12834 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
12835 			regs[BPF_REG_0].btf_id = ptr_type_id;
12836 
12837 			if (is_iter_next_kfunc(&meta)) {
12838 				struct bpf_reg_state *cur_iter;
12839 
12840 				cur_iter = get_iter_from_state(env->cur_state, &meta);
12841 
12842 				if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */
12843 					regs[BPF_REG_0].type |= MEM_RCU;
12844 				else
12845 					regs[BPF_REG_0].type |= PTR_TRUSTED;
12846 			}
12847 		}
12848 
12849 		if (is_kfunc_ret_null(&meta)) {
12850 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
12851 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
12852 			regs[BPF_REG_0].id = ++env->id_gen;
12853 		}
12854 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
12855 		if (is_kfunc_acquire(&meta)) {
12856 			int id = acquire_reference_state(env, insn_idx);
12857 
12858 			if (id < 0)
12859 				return id;
12860 			if (is_kfunc_ret_null(&meta))
12861 				regs[BPF_REG_0].id = id;
12862 			regs[BPF_REG_0].ref_obj_id = id;
12863 		} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12864 			ref_set_non_owning(env, &regs[BPF_REG_0]);
12865 		}
12866 
12867 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
12868 			regs[BPF_REG_0].id = ++env->id_gen;
12869 	} else if (btf_type_is_void(t)) {
12870 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12871 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
12872 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
12873 				insn_aux->kptr_struct_meta =
12874 					btf_find_struct_meta(meta.arg_btf,
12875 							     meta.arg_btf_id);
12876 			}
12877 		}
12878 	}
12879 
12880 	nargs = btf_type_vlen(meta.func_proto);
12881 	args = (const struct btf_param *)(meta.func_proto + 1);
12882 	for (i = 0; i < nargs; i++) {
12883 		u32 regno = i + 1;
12884 
12885 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
12886 		if (btf_type_is_ptr(t))
12887 			mark_btf_func_reg_size(env, regno, sizeof(void *));
12888 		else
12889 			/* scalar. ensured by btf_check_kfunc_arg_match() */
12890 			mark_btf_func_reg_size(env, regno, t->size);
12891 	}
12892 
12893 	if (is_iter_next_kfunc(&meta)) {
12894 		err = process_iter_next_call(env, insn_idx, &meta);
12895 		if (err)
12896 			return err;
12897 	}
12898 
12899 	return 0;
12900 }
12901 
12902 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
12903 				  const struct bpf_reg_state *reg,
12904 				  enum bpf_reg_type type)
12905 {
12906 	bool known = tnum_is_const(reg->var_off);
12907 	s64 val = reg->var_off.value;
12908 	s64 smin = reg->smin_value;
12909 
12910 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
12911 		verbose(env, "math between %s pointer and %lld is not allowed\n",
12912 			reg_type_str(env, type), val);
12913 		return false;
12914 	}
12915 
12916 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
12917 		verbose(env, "%s pointer offset %d is not allowed\n",
12918 			reg_type_str(env, type), reg->off);
12919 		return false;
12920 	}
12921 
12922 	if (smin == S64_MIN) {
12923 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
12924 			reg_type_str(env, type));
12925 		return false;
12926 	}
12927 
12928 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
12929 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
12930 			smin, reg_type_str(env, type));
12931 		return false;
12932 	}
12933 
12934 	return true;
12935 }
12936 
12937 enum {
12938 	REASON_BOUNDS	= -1,
12939 	REASON_TYPE	= -2,
12940 	REASON_PATHS	= -3,
12941 	REASON_LIMIT	= -4,
12942 	REASON_STACK	= -5,
12943 };
12944 
12945 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
12946 			      u32 *alu_limit, bool mask_to_left)
12947 {
12948 	u32 max = 0, ptr_limit = 0;
12949 
12950 	switch (ptr_reg->type) {
12951 	case PTR_TO_STACK:
12952 		/* Offset 0 is out-of-bounds, but acceptable start for the
12953 		 * left direction, see BPF_REG_FP. Also, unknown scalar
12954 		 * offset where we would need to deal with min/max bounds is
12955 		 * currently prohibited for unprivileged.
12956 		 */
12957 		max = MAX_BPF_STACK + mask_to_left;
12958 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
12959 		break;
12960 	case PTR_TO_MAP_VALUE:
12961 		max = ptr_reg->map_ptr->value_size;
12962 		ptr_limit = (mask_to_left ?
12963 			     ptr_reg->smin_value :
12964 			     ptr_reg->umax_value) + ptr_reg->off;
12965 		break;
12966 	default:
12967 		return REASON_TYPE;
12968 	}
12969 
12970 	if (ptr_limit >= max)
12971 		return REASON_LIMIT;
12972 	*alu_limit = ptr_limit;
12973 	return 0;
12974 }
12975 
12976 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
12977 				    const struct bpf_insn *insn)
12978 {
12979 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
12980 }
12981 
12982 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
12983 				       u32 alu_state, u32 alu_limit)
12984 {
12985 	/* If we arrived here from different branches with different
12986 	 * state or limits to sanitize, then this won't work.
12987 	 */
12988 	if (aux->alu_state &&
12989 	    (aux->alu_state != alu_state ||
12990 	     aux->alu_limit != alu_limit))
12991 		return REASON_PATHS;
12992 
12993 	/* Corresponding fixup done in do_misc_fixups(). */
12994 	aux->alu_state = alu_state;
12995 	aux->alu_limit = alu_limit;
12996 	return 0;
12997 }
12998 
12999 static int sanitize_val_alu(struct bpf_verifier_env *env,
13000 			    struct bpf_insn *insn)
13001 {
13002 	struct bpf_insn_aux_data *aux = cur_aux(env);
13003 
13004 	if (can_skip_alu_sanitation(env, insn))
13005 		return 0;
13006 
13007 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
13008 }
13009 
13010 static bool sanitize_needed(u8 opcode)
13011 {
13012 	return opcode == BPF_ADD || opcode == BPF_SUB;
13013 }
13014 
13015 struct bpf_sanitize_info {
13016 	struct bpf_insn_aux_data aux;
13017 	bool mask_to_left;
13018 };
13019 
13020 static struct bpf_verifier_state *
13021 sanitize_speculative_path(struct bpf_verifier_env *env,
13022 			  const struct bpf_insn *insn,
13023 			  u32 next_idx, u32 curr_idx)
13024 {
13025 	struct bpf_verifier_state *branch;
13026 	struct bpf_reg_state *regs;
13027 
13028 	branch = push_stack(env, next_idx, curr_idx, true);
13029 	if (branch && insn) {
13030 		regs = branch->frame[branch->curframe]->regs;
13031 		if (BPF_SRC(insn->code) == BPF_K) {
13032 			mark_reg_unknown(env, regs, insn->dst_reg);
13033 		} else if (BPF_SRC(insn->code) == BPF_X) {
13034 			mark_reg_unknown(env, regs, insn->dst_reg);
13035 			mark_reg_unknown(env, regs, insn->src_reg);
13036 		}
13037 	}
13038 	return branch;
13039 }
13040 
13041 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
13042 			    struct bpf_insn *insn,
13043 			    const struct bpf_reg_state *ptr_reg,
13044 			    const struct bpf_reg_state *off_reg,
13045 			    struct bpf_reg_state *dst_reg,
13046 			    struct bpf_sanitize_info *info,
13047 			    const bool commit_window)
13048 {
13049 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
13050 	struct bpf_verifier_state *vstate = env->cur_state;
13051 	bool off_is_imm = tnum_is_const(off_reg->var_off);
13052 	bool off_is_neg = off_reg->smin_value < 0;
13053 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
13054 	u8 opcode = BPF_OP(insn->code);
13055 	u32 alu_state, alu_limit;
13056 	struct bpf_reg_state tmp;
13057 	bool ret;
13058 	int err;
13059 
13060 	if (can_skip_alu_sanitation(env, insn))
13061 		return 0;
13062 
13063 	/* We already marked aux for masking from non-speculative
13064 	 * paths, thus we got here in the first place. We only care
13065 	 * to explore bad access from here.
13066 	 */
13067 	if (vstate->speculative)
13068 		goto do_sim;
13069 
13070 	if (!commit_window) {
13071 		if (!tnum_is_const(off_reg->var_off) &&
13072 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
13073 			return REASON_BOUNDS;
13074 
13075 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
13076 				     (opcode == BPF_SUB && !off_is_neg);
13077 	}
13078 
13079 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
13080 	if (err < 0)
13081 		return err;
13082 
13083 	if (commit_window) {
13084 		/* In commit phase we narrow the masking window based on
13085 		 * the observed pointer move after the simulated operation.
13086 		 */
13087 		alu_state = info->aux.alu_state;
13088 		alu_limit = abs(info->aux.alu_limit - alu_limit);
13089 	} else {
13090 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
13091 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
13092 		alu_state |= ptr_is_dst_reg ?
13093 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
13094 
13095 		/* Limit pruning on unknown scalars to enable deep search for
13096 		 * potential masking differences from other program paths.
13097 		 */
13098 		if (!off_is_imm)
13099 			env->explore_alu_limits = true;
13100 	}
13101 
13102 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
13103 	if (err < 0)
13104 		return err;
13105 do_sim:
13106 	/* If we're in commit phase, we're done here given we already
13107 	 * pushed the truncated dst_reg into the speculative verification
13108 	 * stack.
13109 	 *
13110 	 * Also, when register is a known constant, we rewrite register-based
13111 	 * operation to immediate-based, and thus do not need masking (and as
13112 	 * a consequence, do not need to simulate the zero-truncation either).
13113 	 */
13114 	if (commit_window || off_is_imm)
13115 		return 0;
13116 
13117 	/* Simulate and find potential out-of-bounds access under
13118 	 * speculative execution from truncation as a result of
13119 	 * masking when off was not within expected range. If off
13120 	 * sits in dst, then we temporarily need to move ptr there
13121 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
13122 	 * for cases where we use K-based arithmetic in one direction
13123 	 * and truncated reg-based in the other in order to explore
13124 	 * bad access.
13125 	 */
13126 	if (!ptr_is_dst_reg) {
13127 		tmp = *dst_reg;
13128 		copy_register_state(dst_reg, ptr_reg);
13129 	}
13130 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
13131 					env->insn_idx);
13132 	if (!ptr_is_dst_reg && ret)
13133 		*dst_reg = tmp;
13134 	return !ret ? REASON_STACK : 0;
13135 }
13136 
13137 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
13138 {
13139 	struct bpf_verifier_state *vstate = env->cur_state;
13140 
13141 	/* If we simulate paths under speculation, we don't update the
13142 	 * insn as 'seen' such that when we verify unreachable paths in
13143 	 * the non-speculative domain, sanitize_dead_code() can still
13144 	 * rewrite/sanitize them.
13145 	 */
13146 	if (!vstate->speculative)
13147 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
13148 }
13149 
13150 static int sanitize_err(struct bpf_verifier_env *env,
13151 			const struct bpf_insn *insn, int reason,
13152 			const struct bpf_reg_state *off_reg,
13153 			const struct bpf_reg_state *dst_reg)
13154 {
13155 	static const char *err = "pointer arithmetic with it prohibited for !root";
13156 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
13157 	u32 dst = insn->dst_reg, src = insn->src_reg;
13158 
13159 	switch (reason) {
13160 	case REASON_BOUNDS:
13161 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
13162 			off_reg == dst_reg ? dst : src, err);
13163 		break;
13164 	case REASON_TYPE:
13165 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
13166 			off_reg == dst_reg ? src : dst, err);
13167 		break;
13168 	case REASON_PATHS:
13169 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
13170 			dst, op, err);
13171 		break;
13172 	case REASON_LIMIT:
13173 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
13174 			dst, op, err);
13175 		break;
13176 	case REASON_STACK:
13177 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
13178 			dst, err);
13179 		break;
13180 	default:
13181 		verbose(env, "verifier internal error: unknown reason (%d)\n",
13182 			reason);
13183 		break;
13184 	}
13185 
13186 	return -EACCES;
13187 }
13188 
13189 /* check that stack access falls within stack limits and that 'reg' doesn't
13190  * have a variable offset.
13191  *
13192  * Variable offset is prohibited for unprivileged mode for simplicity since it
13193  * requires corresponding support in Spectre masking for stack ALU.  See also
13194  * retrieve_ptr_limit().
13195  *
13196  *
13197  * 'off' includes 'reg->off'.
13198  */
13199 static int check_stack_access_for_ptr_arithmetic(
13200 				struct bpf_verifier_env *env,
13201 				int regno,
13202 				const struct bpf_reg_state *reg,
13203 				int off)
13204 {
13205 	if (!tnum_is_const(reg->var_off)) {
13206 		char tn_buf[48];
13207 
13208 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
13209 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
13210 			regno, tn_buf, off);
13211 		return -EACCES;
13212 	}
13213 
13214 	if (off >= 0 || off < -MAX_BPF_STACK) {
13215 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
13216 			"prohibited for !root; off=%d\n", regno, off);
13217 		return -EACCES;
13218 	}
13219 
13220 	return 0;
13221 }
13222 
13223 static int sanitize_check_bounds(struct bpf_verifier_env *env,
13224 				 const struct bpf_insn *insn,
13225 				 const struct bpf_reg_state *dst_reg)
13226 {
13227 	u32 dst = insn->dst_reg;
13228 
13229 	/* For unprivileged we require that resulting offset must be in bounds
13230 	 * in order to be able to sanitize access later on.
13231 	 */
13232 	if (env->bypass_spec_v1)
13233 		return 0;
13234 
13235 	switch (dst_reg->type) {
13236 	case PTR_TO_STACK:
13237 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
13238 					dst_reg->off + dst_reg->var_off.value))
13239 			return -EACCES;
13240 		break;
13241 	case PTR_TO_MAP_VALUE:
13242 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
13243 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
13244 				"prohibited for !root\n", dst);
13245 			return -EACCES;
13246 		}
13247 		break;
13248 	default:
13249 		break;
13250 	}
13251 
13252 	return 0;
13253 }
13254 
13255 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
13256  * Caller should also handle BPF_MOV case separately.
13257  * If we return -EACCES, caller may want to try again treating pointer as a
13258  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
13259  */
13260 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
13261 				   struct bpf_insn *insn,
13262 				   const struct bpf_reg_state *ptr_reg,
13263 				   const struct bpf_reg_state *off_reg)
13264 {
13265 	struct bpf_verifier_state *vstate = env->cur_state;
13266 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13267 	struct bpf_reg_state *regs = state->regs, *dst_reg;
13268 	bool known = tnum_is_const(off_reg->var_off);
13269 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
13270 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
13271 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
13272 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
13273 	struct bpf_sanitize_info info = {};
13274 	u8 opcode = BPF_OP(insn->code);
13275 	u32 dst = insn->dst_reg;
13276 	int ret;
13277 
13278 	dst_reg = &regs[dst];
13279 
13280 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
13281 	    smin_val > smax_val || umin_val > umax_val) {
13282 		/* Taint dst register if offset had invalid bounds derived from
13283 		 * e.g. dead branches.
13284 		 */
13285 		__mark_reg_unknown(env, dst_reg);
13286 		return 0;
13287 	}
13288 
13289 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
13290 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
13291 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13292 			__mark_reg_unknown(env, dst_reg);
13293 			return 0;
13294 		}
13295 
13296 		verbose(env,
13297 			"R%d 32-bit pointer arithmetic prohibited\n",
13298 			dst);
13299 		return -EACCES;
13300 	}
13301 
13302 	if (ptr_reg->type & PTR_MAYBE_NULL) {
13303 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
13304 			dst, reg_type_str(env, ptr_reg->type));
13305 		return -EACCES;
13306 	}
13307 
13308 	switch (base_type(ptr_reg->type)) {
13309 	case PTR_TO_CTX:
13310 	case PTR_TO_MAP_VALUE:
13311 	case PTR_TO_MAP_KEY:
13312 	case PTR_TO_STACK:
13313 	case PTR_TO_PACKET_META:
13314 	case PTR_TO_PACKET:
13315 	case PTR_TO_TP_BUFFER:
13316 	case PTR_TO_BTF_ID:
13317 	case PTR_TO_MEM:
13318 	case PTR_TO_BUF:
13319 	case PTR_TO_FUNC:
13320 	case CONST_PTR_TO_DYNPTR:
13321 		break;
13322 	case PTR_TO_FLOW_KEYS:
13323 		if (known)
13324 			break;
13325 		fallthrough;
13326 	case CONST_PTR_TO_MAP:
13327 		/* smin_val represents the known value */
13328 		if (known && smin_val == 0 && opcode == BPF_ADD)
13329 			break;
13330 		fallthrough;
13331 	default:
13332 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
13333 			dst, reg_type_str(env, ptr_reg->type));
13334 		return -EACCES;
13335 	}
13336 
13337 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
13338 	 * The id may be overwritten later if we create a new variable offset.
13339 	 */
13340 	dst_reg->type = ptr_reg->type;
13341 	dst_reg->id = ptr_reg->id;
13342 
13343 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
13344 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
13345 		return -EINVAL;
13346 
13347 	/* pointer types do not carry 32-bit bounds at the moment. */
13348 	__mark_reg32_unbounded(dst_reg);
13349 
13350 	if (sanitize_needed(opcode)) {
13351 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
13352 				       &info, false);
13353 		if (ret < 0)
13354 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
13355 	}
13356 
13357 	switch (opcode) {
13358 	case BPF_ADD:
13359 		/* We can take a fixed offset as long as it doesn't overflow
13360 		 * the s32 'off' field
13361 		 */
13362 		if (known && (ptr_reg->off + smin_val ==
13363 			      (s64)(s32)(ptr_reg->off + smin_val))) {
13364 			/* pointer += K.  Accumulate it into fixed offset */
13365 			dst_reg->smin_value = smin_ptr;
13366 			dst_reg->smax_value = smax_ptr;
13367 			dst_reg->umin_value = umin_ptr;
13368 			dst_reg->umax_value = umax_ptr;
13369 			dst_reg->var_off = ptr_reg->var_off;
13370 			dst_reg->off = ptr_reg->off + smin_val;
13371 			dst_reg->raw = ptr_reg->raw;
13372 			break;
13373 		}
13374 		/* A new variable offset is created.  Note that off_reg->off
13375 		 * == 0, since it's a scalar.
13376 		 * dst_reg gets the pointer type and since some positive
13377 		 * integer value was added to the pointer, give it a new 'id'
13378 		 * if it's a PTR_TO_PACKET.
13379 		 * this creates a new 'base' pointer, off_reg (variable) gets
13380 		 * added into the variable offset, and we copy the fixed offset
13381 		 * from ptr_reg.
13382 		 */
13383 		if (check_add_overflow(smin_ptr, smin_val, &dst_reg->smin_value) ||
13384 		    check_add_overflow(smax_ptr, smax_val, &dst_reg->smax_value)) {
13385 			dst_reg->smin_value = S64_MIN;
13386 			dst_reg->smax_value = S64_MAX;
13387 		}
13388 		if (check_add_overflow(umin_ptr, umin_val, &dst_reg->umin_value) ||
13389 		    check_add_overflow(umax_ptr, umax_val, &dst_reg->umax_value)) {
13390 			dst_reg->umin_value = 0;
13391 			dst_reg->umax_value = U64_MAX;
13392 		}
13393 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
13394 		dst_reg->off = ptr_reg->off;
13395 		dst_reg->raw = ptr_reg->raw;
13396 		if (reg_is_pkt_pointer(ptr_reg)) {
13397 			dst_reg->id = ++env->id_gen;
13398 			/* something was added to pkt_ptr, set range to zero */
13399 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
13400 		}
13401 		break;
13402 	case BPF_SUB:
13403 		if (dst_reg == off_reg) {
13404 			/* scalar -= pointer.  Creates an unknown scalar */
13405 			verbose(env, "R%d tried to subtract pointer from scalar\n",
13406 				dst);
13407 			return -EACCES;
13408 		}
13409 		/* We don't allow subtraction from FP, because (according to
13410 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
13411 		 * be able to deal with it.
13412 		 */
13413 		if (ptr_reg->type == PTR_TO_STACK) {
13414 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
13415 				dst);
13416 			return -EACCES;
13417 		}
13418 		if (known && (ptr_reg->off - smin_val ==
13419 			      (s64)(s32)(ptr_reg->off - smin_val))) {
13420 			/* pointer -= K.  Subtract it from fixed offset */
13421 			dst_reg->smin_value = smin_ptr;
13422 			dst_reg->smax_value = smax_ptr;
13423 			dst_reg->umin_value = umin_ptr;
13424 			dst_reg->umax_value = umax_ptr;
13425 			dst_reg->var_off = ptr_reg->var_off;
13426 			dst_reg->id = ptr_reg->id;
13427 			dst_reg->off = ptr_reg->off - smin_val;
13428 			dst_reg->raw = ptr_reg->raw;
13429 			break;
13430 		}
13431 		/* A new variable offset is created.  If the subtrahend is known
13432 		 * nonnegative, then any reg->range we had before is still good.
13433 		 */
13434 		if (check_sub_overflow(smin_ptr, smax_val, &dst_reg->smin_value) ||
13435 		    check_sub_overflow(smax_ptr, smin_val, &dst_reg->smax_value)) {
13436 			/* Overflow possible, we know nothing */
13437 			dst_reg->smin_value = S64_MIN;
13438 			dst_reg->smax_value = S64_MAX;
13439 		}
13440 		if (umin_ptr < umax_val) {
13441 			/* Overflow possible, we know nothing */
13442 			dst_reg->umin_value = 0;
13443 			dst_reg->umax_value = U64_MAX;
13444 		} else {
13445 			/* Cannot overflow (as long as bounds are consistent) */
13446 			dst_reg->umin_value = umin_ptr - umax_val;
13447 			dst_reg->umax_value = umax_ptr - umin_val;
13448 		}
13449 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
13450 		dst_reg->off = ptr_reg->off;
13451 		dst_reg->raw = ptr_reg->raw;
13452 		if (reg_is_pkt_pointer(ptr_reg)) {
13453 			dst_reg->id = ++env->id_gen;
13454 			/* something was added to pkt_ptr, set range to zero */
13455 			if (smin_val < 0)
13456 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
13457 		}
13458 		break;
13459 	case BPF_AND:
13460 	case BPF_OR:
13461 	case BPF_XOR:
13462 		/* bitwise ops on pointers are troublesome, prohibit. */
13463 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
13464 			dst, bpf_alu_string[opcode >> 4]);
13465 		return -EACCES;
13466 	default:
13467 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
13468 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
13469 			dst, bpf_alu_string[opcode >> 4]);
13470 		return -EACCES;
13471 	}
13472 
13473 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
13474 		return -EINVAL;
13475 	reg_bounds_sync(dst_reg);
13476 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
13477 		return -EACCES;
13478 	if (sanitize_needed(opcode)) {
13479 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
13480 				       &info, true);
13481 		if (ret < 0)
13482 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
13483 	}
13484 
13485 	return 0;
13486 }
13487 
13488 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
13489 				 struct bpf_reg_state *src_reg)
13490 {
13491 	s32 *dst_smin = &dst_reg->s32_min_value;
13492 	s32 *dst_smax = &dst_reg->s32_max_value;
13493 	u32 *dst_umin = &dst_reg->u32_min_value;
13494 	u32 *dst_umax = &dst_reg->u32_max_value;
13495 
13496 	if (check_add_overflow(*dst_smin, src_reg->s32_min_value, dst_smin) ||
13497 	    check_add_overflow(*dst_smax, src_reg->s32_max_value, dst_smax)) {
13498 		*dst_smin = S32_MIN;
13499 		*dst_smax = S32_MAX;
13500 	}
13501 	if (check_add_overflow(*dst_umin, src_reg->u32_min_value, dst_umin) ||
13502 	    check_add_overflow(*dst_umax, src_reg->u32_max_value, dst_umax)) {
13503 		*dst_umin = 0;
13504 		*dst_umax = U32_MAX;
13505 	}
13506 }
13507 
13508 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
13509 			       struct bpf_reg_state *src_reg)
13510 {
13511 	s64 *dst_smin = &dst_reg->smin_value;
13512 	s64 *dst_smax = &dst_reg->smax_value;
13513 	u64 *dst_umin = &dst_reg->umin_value;
13514 	u64 *dst_umax = &dst_reg->umax_value;
13515 
13516 	if (check_add_overflow(*dst_smin, src_reg->smin_value, dst_smin) ||
13517 	    check_add_overflow(*dst_smax, src_reg->smax_value, dst_smax)) {
13518 		*dst_smin = S64_MIN;
13519 		*dst_smax = S64_MAX;
13520 	}
13521 	if (check_add_overflow(*dst_umin, src_reg->umin_value, dst_umin) ||
13522 	    check_add_overflow(*dst_umax, src_reg->umax_value, dst_umax)) {
13523 		*dst_umin = 0;
13524 		*dst_umax = U64_MAX;
13525 	}
13526 }
13527 
13528 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
13529 				 struct bpf_reg_state *src_reg)
13530 {
13531 	s32 *dst_smin = &dst_reg->s32_min_value;
13532 	s32 *dst_smax = &dst_reg->s32_max_value;
13533 	u32 umin_val = src_reg->u32_min_value;
13534 	u32 umax_val = src_reg->u32_max_value;
13535 
13536 	if (check_sub_overflow(*dst_smin, src_reg->s32_max_value, dst_smin) ||
13537 	    check_sub_overflow(*dst_smax, src_reg->s32_min_value, dst_smax)) {
13538 		/* Overflow possible, we know nothing */
13539 		*dst_smin = S32_MIN;
13540 		*dst_smax = S32_MAX;
13541 	}
13542 	if (dst_reg->u32_min_value < umax_val) {
13543 		/* Overflow possible, we know nothing */
13544 		dst_reg->u32_min_value = 0;
13545 		dst_reg->u32_max_value = U32_MAX;
13546 	} else {
13547 		/* Cannot overflow (as long as bounds are consistent) */
13548 		dst_reg->u32_min_value -= umax_val;
13549 		dst_reg->u32_max_value -= umin_val;
13550 	}
13551 }
13552 
13553 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
13554 			       struct bpf_reg_state *src_reg)
13555 {
13556 	s64 *dst_smin = &dst_reg->smin_value;
13557 	s64 *dst_smax = &dst_reg->smax_value;
13558 	u64 umin_val = src_reg->umin_value;
13559 	u64 umax_val = src_reg->umax_value;
13560 
13561 	if (check_sub_overflow(*dst_smin, src_reg->smax_value, dst_smin) ||
13562 	    check_sub_overflow(*dst_smax, src_reg->smin_value, dst_smax)) {
13563 		/* Overflow possible, we know nothing */
13564 		*dst_smin = S64_MIN;
13565 		*dst_smax = S64_MAX;
13566 	}
13567 	if (dst_reg->umin_value < umax_val) {
13568 		/* Overflow possible, we know nothing */
13569 		dst_reg->umin_value = 0;
13570 		dst_reg->umax_value = U64_MAX;
13571 	} else {
13572 		/* Cannot overflow (as long as bounds are consistent) */
13573 		dst_reg->umin_value -= umax_val;
13574 		dst_reg->umax_value -= umin_val;
13575 	}
13576 }
13577 
13578 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
13579 				 struct bpf_reg_state *src_reg)
13580 {
13581 	s32 smin_val = src_reg->s32_min_value;
13582 	u32 umin_val = src_reg->u32_min_value;
13583 	u32 umax_val = src_reg->u32_max_value;
13584 
13585 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
13586 		/* Ain't nobody got time to multiply that sign */
13587 		__mark_reg32_unbounded(dst_reg);
13588 		return;
13589 	}
13590 	/* Both values are positive, so we can work with unsigned and
13591 	 * copy the result to signed (unless it exceeds S32_MAX).
13592 	 */
13593 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
13594 		/* Potential overflow, we know nothing */
13595 		__mark_reg32_unbounded(dst_reg);
13596 		return;
13597 	}
13598 	dst_reg->u32_min_value *= umin_val;
13599 	dst_reg->u32_max_value *= umax_val;
13600 	if (dst_reg->u32_max_value > S32_MAX) {
13601 		/* Overflow possible, we know nothing */
13602 		dst_reg->s32_min_value = S32_MIN;
13603 		dst_reg->s32_max_value = S32_MAX;
13604 	} else {
13605 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13606 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13607 	}
13608 }
13609 
13610 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
13611 			       struct bpf_reg_state *src_reg)
13612 {
13613 	s64 smin_val = src_reg->smin_value;
13614 	u64 umin_val = src_reg->umin_value;
13615 	u64 umax_val = src_reg->umax_value;
13616 
13617 	if (smin_val < 0 || dst_reg->smin_value < 0) {
13618 		/* Ain't nobody got time to multiply that sign */
13619 		__mark_reg64_unbounded(dst_reg);
13620 		return;
13621 	}
13622 	/* Both values are positive, so we can work with unsigned and
13623 	 * copy the result to signed (unless it exceeds S64_MAX).
13624 	 */
13625 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
13626 		/* Potential overflow, we know nothing */
13627 		__mark_reg64_unbounded(dst_reg);
13628 		return;
13629 	}
13630 	dst_reg->umin_value *= umin_val;
13631 	dst_reg->umax_value *= umax_val;
13632 	if (dst_reg->umax_value > S64_MAX) {
13633 		/* Overflow possible, we know nothing */
13634 		dst_reg->smin_value = S64_MIN;
13635 		dst_reg->smax_value = S64_MAX;
13636 	} else {
13637 		dst_reg->smin_value = dst_reg->umin_value;
13638 		dst_reg->smax_value = dst_reg->umax_value;
13639 	}
13640 }
13641 
13642 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
13643 				 struct bpf_reg_state *src_reg)
13644 {
13645 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13646 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13647 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13648 	u32 umax_val = src_reg->u32_max_value;
13649 
13650 	if (src_known && dst_known) {
13651 		__mark_reg32_known(dst_reg, var32_off.value);
13652 		return;
13653 	}
13654 
13655 	/* We get our minimum from the var_off, since that's inherently
13656 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
13657 	 */
13658 	dst_reg->u32_min_value = var32_off.value;
13659 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
13660 
13661 	/* Safe to set s32 bounds by casting u32 result into s32 when u32
13662 	 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
13663 	 */
13664 	if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
13665 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13666 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13667 	} else {
13668 		dst_reg->s32_min_value = S32_MIN;
13669 		dst_reg->s32_max_value = S32_MAX;
13670 	}
13671 }
13672 
13673 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
13674 			       struct bpf_reg_state *src_reg)
13675 {
13676 	bool src_known = tnum_is_const(src_reg->var_off);
13677 	bool dst_known = tnum_is_const(dst_reg->var_off);
13678 	u64 umax_val = src_reg->umax_value;
13679 
13680 	if (src_known && dst_known) {
13681 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13682 		return;
13683 	}
13684 
13685 	/* We get our minimum from the var_off, since that's inherently
13686 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
13687 	 */
13688 	dst_reg->umin_value = dst_reg->var_off.value;
13689 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
13690 
13691 	/* Safe to set s64 bounds by casting u64 result into s64 when u64
13692 	 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
13693 	 */
13694 	if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
13695 		dst_reg->smin_value = dst_reg->umin_value;
13696 		dst_reg->smax_value = dst_reg->umax_value;
13697 	} else {
13698 		dst_reg->smin_value = S64_MIN;
13699 		dst_reg->smax_value = S64_MAX;
13700 	}
13701 	/* We may learn something more from the var_off */
13702 	__update_reg_bounds(dst_reg);
13703 }
13704 
13705 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
13706 				struct bpf_reg_state *src_reg)
13707 {
13708 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13709 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13710 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13711 	u32 umin_val = src_reg->u32_min_value;
13712 
13713 	if (src_known && dst_known) {
13714 		__mark_reg32_known(dst_reg, var32_off.value);
13715 		return;
13716 	}
13717 
13718 	/* We get our maximum from the var_off, and our minimum is the
13719 	 * maximum of the operands' minima
13720 	 */
13721 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
13722 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13723 
13724 	/* Safe to set s32 bounds by casting u32 result into s32 when u32
13725 	 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
13726 	 */
13727 	if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
13728 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13729 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13730 	} else {
13731 		dst_reg->s32_min_value = S32_MIN;
13732 		dst_reg->s32_max_value = S32_MAX;
13733 	}
13734 }
13735 
13736 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
13737 			      struct bpf_reg_state *src_reg)
13738 {
13739 	bool src_known = tnum_is_const(src_reg->var_off);
13740 	bool dst_known = tnum_is_const(dst_reg->var_off);
13741 	u64 umin_val = src_reg->umin_value;
13742 
13743 	if (src_known && dst_known) {
13744 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13745 		return;
13746 	}
13747 
13748 	/* We get our maximum from the var_off, and our minimum is the
13749 	 * maximum of the operands' minima
13750 	 */
13751 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
13752 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13753 
13754 	/* Safe to set s64 bounds by casting u64 result into s64 when u64
13755 	 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
13756 	 */
13757 	if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
13758 		dst_reg->smin_value = dst_reg->umin_value;
13759 		dst_reg->smax_value = dst_reg->umax_value;
13760 	} else {
13761 		dst_reg->smin_value = S64_MIN;
13762 		dst_reg->smax_value = S64_MAX;
13763 	}
13764 	/* We may learn something more from the var_off */
13765 	__update_reg_bounds(dst_reg);
13766 }
13767 
13768 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
13769 				 struct bpf_reg_state *src_reg)
13770 {
13771 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13772 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13773 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13774 
13775 	if (src_known && dst_known) {
13776 		__mark_reg32_known(dst_reg, var32_off.value);
13777 		return;
13778 	}
13779 
13780 	/* We get both minimum and maximum from the var32_off. */
13781 	dst_reg->u32_min_value = var32_off.value;
13782 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13783 
13784 	/* Safe to set s32 bounds by casting u32 result into s32 when u32
13785 	 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded.
13786 	 */
13787 	if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) {
13788 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13789 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13790 	} else {
13791 		dst_reg->s32_min_value = S32_MIN;
13792 		dst_reg->s32_max_value = S32_MAX;
13793 	}
13794 }
13795 
13796 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
13797 			       struct bpf_reg_state *src_reg)
13798 {
13799 	bool src_known = tnum_is_const(src_reg->var_off);
13800 	bool dst_known = tnum_is_const(dst_reg->var_off);
13801 
13802 	if (src_known && dst_known) {
13803 		/* dst_reg->var_off.value has been updated earlier */
13804 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13805 		return;
13806 	}
13807 
13808 	/* We get both minimum and maximum from the var_off. */
13809 	dst_reg->umin_value = dst_reg->var_off.value;
13810 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13811 
13812 	/* Safe to set s64 bounds by casting u64 result into s64 when u64
13813 	 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded.
13814 	 */
13815 	if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) {
13816 		dst_reg->smin_value = dst_reg->umin_value;
13817 		dst_reg->smax_value = dst_reg->umax_value;
13818 	} else {
13819 		dst_reg->smin_value = S64_MIN;
13820 		dst_reg->smax_value = S64_MAX;
13821 	}
13822 
13823 	__update_reg_bounds(dst_reg);
13824 }
13825 
13826 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13827 				   u64 umin_val, u64 umax_val)
13828 {
13829 	/* We lose all sign bit information (except what we can pick
13830 	 * up from var_off)
13831 	 */
13832 	dst_reg->s32_min_value = S32_MIN;
13833 	dst_reg->s32_max_value = S32_MAX;
13834 	/* If we might shift our top bit out, then we know nothing */
13835 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
13836 		dst_reg->u32_min_value = 0;
13837 		dst_reg->u32_max_value = U32_MAX;
13838 	} else {
13839 		dst_reg->u32_min_value <<= umin_val;
13840 		dst_reg->u32_max_value <<= umax_val;
13841 	}
13842 }
13843 
13844 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13845 				 struct bpf_reg_state *src_reg)
13846 {
13847 	u32 umax_val = src_reg->u32_max_value;
13848 	u32 umin_val = src_reg->u32_min_value;
13849 	/* u32 alu operation will zext upper bits */
13850 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13851 
13852 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13853 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
13854 	/* Not required but being careful mark reg64 bounds as unknown so
13855 	 * that we are forced to pick them up from tnum and zext later and
13856 	 * if some path skips this step we are still safe.
13857 	 */
13858 	__mark_reg64_unbounded(dst_reg);
13859 	__update_reg32_bounds(dst_reg);
13860 }
13861 
13862 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
13863 				   u64 umin_val, u64 umax_val)
13864 {
13865 	/* Special case <<32 because it is a common compiler pattern to sign
13866 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
13867 	 * positive we know this shift will also be positive so we can track
13868 	 * bounds correctly. Otherwise we lose all sign bit information except
13869 	 * what we can pick up from var_off. Perhaps we can generalize this
13870 	 * later to shifts of any length.
13871 	 */
13872 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
13873 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
13874 	else
13875 		dst_reg->smax_value = S64_MAX;
13876 
13877 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
13878 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
13879 	else
13880 		dst_reg->smin_value = S64_MIN;
13881 
13882 	/* If we might shift our top bit out, then we know nothing */
13883 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
13884 		dst_reg->umin_value = 0;
13885 		dst_reg->umax_value = U64_MAX;
13886 	} else {
13887 		dst_reg->umin_value <<= umin_val;
13888 		dst_reg->umax_value <<= umax_val;
13889 	}
13890 }
13891 
13892 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
13893 			       struct bpf_reg_state *src_reg)
13894 {
13895 	u64 umax_val = src_reg->umax_value;
13896 	u64 umin_val = src_reg->umin_value;
13897 
13898 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
13899 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
13900 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13901 
13902 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
13903 	/* We may learn something more from the var_off */
13904 	__update_reg_bounds(dst_reg);
13905 }
13906 
13907 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
13908 				 struct bpf_reg_state *src_reg)
13909 {
13910 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13911 	u32 umax_val = src_reg->u32_max_value;
13912 	u32 umin_val = src_reg->u32_min_value;
13913 
13914 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13915 	 * be negative, then either:
13916 	 * 1) src_reg might be zero, so the sign bit of the result is
13917 	 *    unknown, so we lose our signed bounds
13918 	 * 2) it's known negative, thus the unsigned bounds capture the
13919 	 *    signed bounds
13920 	 * 3) the signed bounds cross zero, so they tell us nothing
13921 	 *    about the result
13922 	 * If the value in dst_reg is known nonnegative, then again the
13923 	 * unsigned bounds capture the signed bounds.
13924 	 * Thus, in all cases it suffices to blow away our signed bounds
13925 	 * and rely on inferring new ones from the unsigned bounds and
13926 	 * var_off of the result.
13927 	 */
13928 	dst_reg->s32_min_value = S32_MIN;
13929 	dst_reg->s32_max_value = S32_MAX;
13930 
13931 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
13932 	dst_reg->u32_min_value >>= umax_val;
13933 	dst_reg->u32_max_value >>= umin_val;
13934 
13935 	__mark_reg64_unbounded(dst_reg);
13936 	__update_reg32_bounds(dst_reg);
13937 }
13938 
13939 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
13940 			       struct bpf_reg_state *src_reg)
13941 {
13942 	u64 umax_val = src_reg->umax_value;
13943 	u64 umin_val = src_reg->umin_value;
13944 
13945 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13946 	 * be negative, then either:
13947 	 * 1) src_reg might be zero, so the sign bit of the result is
13948 	 *    unknown, so we lose our signed bounds
13949 	 * 2) it's known negative, thus the unsigned bounds capture the
13950 	 *    signed bounds
13951 	 * 3) the signed bounds cross zero, so they tell us nothing
13952 	 *    about the result
13953 	 * If the value in dst_reg is known nonnegative, then again the
13954 	 * unsigned bounds capture the signed bounds.
13955 	 * Thus, in all cases it suffices to blow away our signed bounds
13956 	 * and rely on inferring new ones from the unsigned bounds and
13957 	 * var_off of the result.
13958 	 */
13959 	dst_reg->smin_value = S64_MIN;
13960 	dst_reg->smax_value = S64_MAX;
13961 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
13962 	dst_reg->umin_value >>= umax_val;
13963 	dst_reg->umax_value >>= umin_val;
13964 
13965 	/* Its not easy to operate on alu32 bounds here because it depends
13966 	 * on bits being shifted in. Take easy way out and mark unbounded
13967 	 * so we can recalculate later from tnum.
13968 	 */
13969 	__mark_reg32_unbounded(dst_reg);
13970 	__update_reg_bounds(dst_reg);
13971 }
13972 
13973 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
13974 				  struct bpf_reg_state *src_reg)
13975 {
13976 	u64 umin_val = src_reg->u32_min_value;
13977 
13978 	/* Upon reaching here, src_known is true and
13979 	 * umax_val is equal to umin_val.
13980 	 */
13981 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
13982 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
13983 
13984 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
13985 
13986 	/* blow away the dst_reg umin_value/umax_value and rely on
13987 	 * dst_reg var_off to refine the result.
13988 	 */
13989 	dst_reg->u32_min_value = 0;
13990 	dst_reg->u32_max_value = U32_MAX;
13991 
13992 	__mark_reg64_unbounded(dst_reg);
13993 	__update_reg32_bounds(dst_reg);
13994 }
13995 
13996 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
13997 				struct bpf_reg_state *src_reg)
13998 {
13999 	u64 umin_val = src_reg->umin_value;
14000 
14001 	/* Upon reaching here, src_known is true and umax_val is equal
14002 	 * to umin_val.
14003 	 */
14004 	dst_reg->smin_value >>= umin_val;
14005 	dst_reg->smax_value >>= umin_val;
14006 
14007 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
14008 
14009 	/* blow away the dst_reg umin_value/umax_value and rely on
14010 	 * dst_reg var_off to refine the result.
14011 	 */
14012 	dst_reg->umin_value = 0;
14013 	dst_reg->umax_value = U64_MAX;
14014 
14015 	/* Its not easy to operate on alu32 bounds here because it depends
14016 	 * on bits being shifted in from upper 32-bits. Take easy way out
14017 	 * and mark unbounded so we can recalculate later from tnum.
14018 	 */
14019 	__mark_reg32_unbounded(dst_reg);
14020 	__update_reg_bounds(dst_reg);
14021 }
14022 
14023 static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn,
14024 					     const struct bpf_reg_state *src_reg)
14025 {
14026 	bool src_is_const = false;
14027 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
14028 
14029 	if (insn_bitness == 32) {
14030 		if (tnum_subreg_is_const(src_reg->var_off)
14031 		    && src_reg->s32_min_value == src_reg->s32_max_value
14032 		    && src_reg->u32_min_value == src_reg->u32_max_value)
14033 			src_is_const = true;
14034 	} else {
14035 		if (tnum_is_const(src_reg->var_off)
14036 		    && src_reg->smin_value == src_reg->smax_value
14037 		    && src_reg->umin_value == src_reg->umax_value)
14038 			src_is_const = true;
14039 	}
14040 
14041 	switch (BPF_OP(insn->code)) {
14042 	case BPF_ADD:
14043 	case BPF_SUB:
14044 	case BPF_AND:
14045 	case BPF_XOR:
14046 	case BPF_OR:
14047 	case BPF_MUL:
14048 		return true;
14049 
14050 	/* Shift operators range is only computable if shift dimension operand
14051 	 * is a constant. Shifts greater than 31 or 63 are undefined. This
14052 	 * includes shifts by a negative number.
14053 	 */
14054 	case BPF_LSH:
14055 	case BPF_RSH:
14056 	case BPF_ARSH:
14057 		return (src_is_const && src_reg->umax_value < insn_bitness);
14058 	default:
14059 		return false;
14060 	}
14061 }
14062 
14063 /* WARNING: This function does calculations on 64-bit values, but the actual
14064  * execution may occur on 32-bit values. Therefore, things like bitshifts
14065  * need extra checks in the 32-bit case.
14066  */
14067 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
14068 				      struct bpf_insn *insn,
14069 				      struct bpf_reg_state *dst_reg,
14070 				      struct bpf_reg_state src_reg)
14071 {
14072 	u8 opcode = BPF_OP(insn->code);
14073 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
14074 	int ret;
14075 
14076 	if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) {
14077 		__mark_reg_unknown(env, dst_reg);
14078 		return 0;
14079 	}
14080 
14081 	if (sanitize_needed(opcode)) {
14082 		ret = sanitize_val_alu(env, insn);
14083 		if (ret < 0)
14084 			return sanitize_err(env, insn, ret, NULL, NULL);
14085 	}
14086 
14087 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
14088 	 * There are two classes of instructions: The first class we track both
14089 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
14090 	 * greatest amount of precision when alu operations are mixed with jmp32
14091 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
14092 	 * and BPF_OR. This is possible because these ops have fairly easy to
14093 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
14094 	 * See alu32 verifier tests for examples. The second class of
14095 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
14096 	 * with regards to tracking sign/unsigned bounds because the bits may
14097 	 * cross subreg boundaries in the alu64 case. When this happens we mark
14098 	 * the reg unbounded in the subreg bound space and use the resulting
14099 	 * tnum to calculate an approximation of the sign/unsigned bounds.
14100 	 */
14101 	switch (opcode) {
14102 	case BPF_ADD:
14103 		scalar32_min_max_add(dst_reg, &src_reg);
14104 		scalar_min_max_add(dst_reg, &src_reg);
14105 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
14106 		break;
14107 	case BPF_SUB:
14108 		scalar32_min_max_sub(dst_reg, &src_reg);
14109 		scalar_min_max_sub(dst_reg, &src_reg);
14110 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
14111 		break;
14112 	case BPF_MUL:
14113 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
14114 		scalar32_min_max_mul(dst_reg, &src_reg);
14115 		scalar_min_max_mul(dst_reg, &src_reg);
14116 		break;
14117 	case BPF_AND:
14118 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
14119 		scalar32_min_max_and(dst_reg, &src_reg);
14120 		scalar_min_max_and(dst_reg, &src_reg);
14121 		break;
14122 	case BPF_OR:
14123 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
14124 		scalar32_min_max_or(dst_reg, &src_reg);
14125 		scalar_min_max_or(dst_reg, &src_reg);
14126 		break;
14127 	case BPF_XOR:
14128 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
14129 		scalar32_min_max_xor(dst_reg, &src_reg);
14130 		scalar_min_max_xor(dst_reg, &src_reg);
14131 		break;
14132 	case BPF_LSH:
14133 		if (alu32)
14134 			scalar32_min_max_lsh(dst_reg, &src_reg);
14135 		else
14136 			scalar_min_max_lsh(dst_reg, &src_reg);
14137 		break;
14138 	case BPF_RSH:
14139 		if (alu32)
14140 			scalar32_min_max_rsh(dst_reg, &src_reg);
14141 		else
14142 			scalar_min_max_rsh(dst_reg, &src_reg);
14143 		break;
14144 	case BPF_ARSH:
14145 		if (alu32)
14146 			scalar32_min_max_arsh(dst_reg, &src_reg);
14147 		else
14148 			scalar_min_max_arsh(dst_reg, &src_reg);
14149 		break;
14150 	default:
14151 		break;
14152 	}
14153 
14154 	/* ALU32 ops are zero extended into 64bit register */
14155 	if (alu32)
14156 		zext_32_to_64(dst_reg);
14157 	reg_bounds_sync(dst_reg);
14158 	return 0;
14159 }
14160 
14161 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
14162  * and var_off.
14163  */
14164 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
14165 				   struct bpf_insn *insn)
14166 {
14167 	struct bpf_verifier_state *vstate = env->cur_state;
14168 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
14169 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
14170 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
14171 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
14172 	u8 opcode = BPF_OP(insn->code);
14173 	int err;
14174 
14175 	dst_reg = &regs[insn->dst_reg];
14176 	src_reg = NULL;
14177 
14178 	if (dst_reg->type == PTR_TO_ARENA) {
14179 		struct bpf_insn_aux_data *aux = cur_aux(env);
14180 
14181 		if (BPF_CLASS(insn->code) == BPF_ALU64)
14182 			/*
14183 			 * 32-bit operations zero upper bits automatically.
14184 			 * 64-bit operations need to be converted to 32.
14185 			 */
14186 			aux->needs_zext = true;
14187 
14188 		/* Any arithmetic operations are allowed on arena pointers */
14189 		return 0;
14190 	}
14191 
14192 	if (dst_reg->type != SCALAR_VALUE)
14193 		ptr_reg = dst_reg;
14194 
14195 	if (BPF_SRC(insn->code) == BPF_X) {
14196 		src_reg = &regs[insn->src_reg];
14197 		if (src_reg->type != SCALAR_VALUE) {
14198 			if (dst_reg->type != SCALAR_VALUE) {
14199 				/* Combining two pointers by any ALU op yields
14200 				 * an arbitrary scalar. Disallow all math except
14201 				 * pointer subtraction
14202 				 */
14203 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
14204 					mark_reg_unknown(env, regs, insn->dst_reg);
14205 					return 0;
14206 				}
14207 				verbose(env, "R%d pointer %s pointer prohibited\n",
14208 					insn->dst_reg,
14209 					bpf_alu_string[opcode >> 4]);
14210 				return -EACCES;
14211 			} else {
14212 				/* scalar += pointer
14213 				 * This is legal, but we have to reverse our
14214 				 * src/dest handling in computing the range
14215 				 */
14216 				err = mark_chain_precision(env, insn->dst_reg);
14217 				if (err)
14218 					return err;
14219 				return adjust_ptr_min_max_vals(env, insn,
14220 							       src_reg, dst_reg);
14221 			}
14222 		} else if (ptr_reg) {
14223 			/* pointer += scalar */
14224 			err = mark_chain_precision(env, insn->src_reg);
14225 			if (err)
14226 				return err;
14227 			return adjust_ptr_min_max_vals(env, insn,
14228 						       dst_reg, src_reg);
14229 		} else if (dst_reg->precise) {
14230 			/* if dst_reg is precise, src_reg should be precise as well */
14231 			err = mark_chain_precision(env, insn->src_reg);
14232 			if (err)
14233 				return err;
14234 		}
14235 	} else {
14236 		/* Pretend the src is a reg with a known value, since we only
14237 		 * need to be able to read from this state.
14238 		 */
14239 		off_reg.type = SCALAR_VALUE;
14240 		__mark_reg_known(&off_reg, insn->imm);
14241 		src_reg = &off_reg;
14242 		if (ptr_reg) /* pointer += K */
14243 			return adjust_ptr_min_max_vals(env, insn,
14244 						       ptr_reg, src_reg);
14245 	}
14246 
14247 	/* Got here implies adding two SCALAR_VALUEs */
14248 	if (WARN_ON_ONCE(ptr_reg)) {
14249 		print_verifier_state(env, state, true);
14250 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
14251 		return -EINVAL;
14252 	}
14253 	if (WARN_ON(!src_reg)) {
14254 		print_verifier_state(env, state, true);
14255 		verbose(env, "verifier internal error: no src_reg\n");
14256 		return -EINVAL;
14257 	}
14258 	err = adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
14259 	if (err)
14260 		return err;
14261 	/*
14262 	 * Compilers can generate the code
14263 	 * r1 = r2
14264 	 * r1 += 0x1
14265 	 * if r2 < 1000 goto ...
14266 	 * use r1 in memory access
14267 	 * So remember constant delta between r2 and r1 and update r1 after
14268 	 * 'if' condition.
14269 	 */
14270 	if (env->bpf_capable && BPF_OP(insn->code) == BPF_ADD &&
14271 	    dst_reg->id && is_reg_const(src_reg, alu32)) {
14272 		u64 val = reg_const_value(src_reg, alu32);
14273 
14274 		if ((dst_reg->id & BPF_ADD_CONST) ||
14275 		    /* prevent overflow in sync_linked_regs() later */
14276 		    val > (u32)S32_MAX) {
14277 			/*
14278 			 * If the register already went through rX += val
14279 			 * we cannot accumulate another val into rx->off.
14280 			 */
14281 			dst_reg->off = 0;
14282 			dst_reg->id = 0;
14283 		} else {
14284 			dst_reg->id |= BPF_ADD_CONST;
14285 			dst_reg->off = val;
14286 		}
14287 	} else {
14288 		/*
14289 		 * Make sure ID is cleared otherwise dst_reg min/max could be
14290 		 * incorrectly propagated into other registers by sync_linked_regs()
14291 		 */
14292 		dst_reg->id = 0;
14293 	}
14294 	return 0;
14295 }
14296 
14297 /* check validity of 32-bit and 64-bit arithmetic operations */
14298 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
14299 {
14300 	struct bpf_reg_state *regs = cur_regs(env);
14301 	u8 opcode = BPF_OP(insn->code);
14302 	int err;
14303 
14304 	if (opcode == BPF_END || opcode == BPF_NEG) {
14305 		if (opcode == BPF_NEG) {
14306 			if (BPF_SRC(insn->code) != BPF_K ||
14307 			    insn->src_reg != BPF_REG_0 ||
14308 			    insn->off != 0 || insn->imm != 0) {
14309 				verbose(env, "BPF_NEG uses reserved fields\n");
14310 				return -EINVAL;
14311 			}
14312 		} else {
14313 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
14314 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
14315 			    (BPF_CLASS(insn->code) == BPF_ALU64 &&
14316 			     BPF_SRC(insn->code) != BPF_TO_LE)) {
14317 				verbose(env, "BPF_END uses reserved fields\n");
14318 				return -EINVAL;
14319 			}
14320 		}
14321 
14322 		/* check src operand */
14323 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14324 		if (err)
14325 			return err;
14326 
14327 		if (is_pointer_value(env, insn->dst_reg)) {
14328 			verbose(env, "R%d pointer arithmetic prohibited\n",
14329 				insn->dst_reg);
14330 			return -EACCES;
14331 		}
14332 
14333 		/* check dest operand */
14334 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
14335 		if (err)
14336 			return err;
14337 
14338 	} else if (opcode == BPF_MOV) {
14339 
14340 		if (BPF_SRC(insn->code) == BPF_X) {
14341 			if (BPF_CLASS(insn->code) == BPF_ALU) {
14342 				if ((insn->off != 0 && insn->off != 8 && insn->off != 16) ||
14343 				    insn->imm) {
14344 					verbose(env, "BPF_MOV uses reserved fields\n");
14345 					return -EINVAL;
14346 				}
14347 			} else if (insn->off == BPF_ADDR_SPACE_CAST) {
14348 				if (insn->imm != 1 && insn->imm != 1u << 16) {
14349 					verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n");
14350 					return -EINVAL;
14351 				}
14352 				if (!env->prog->aux->arena) {
14353 					verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n");
14354 					return -EINVAL;
14355 				}
14356 			} else {
14357 				if ((insn->off != 0 && insn->off != 8 && insn->off != 16 &&
14358 				     insn->off != 32) || insn->imm) {
14359 					verbose(env, "BPF_MOV uses reserved fields\n");
14360 					return -EINVAL;
14361 				}
14362 			}
14363 
14364 			/* check src operand */
14365 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
14366 			if (err)
14367 				return err;
14368 		} else {
14369 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
14370 				verbose(env, "BPF_MOV uses reserved fields\n");
14371 				return -EINVAL;
14372 			}
14373 		}
14374 
14375 		/* check dest operand, mark as required later */
14376 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
14377 		if (err)
14378 			return err;
14379 
14380 		if (BPF_SRC(insn->code) == BPF_X) {
14381 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
14382 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
14383 
14384 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
14385 				if (insn->imm) {
14386 					/* off == BPF_ADDR_SPACE_CAST */
14387 					mark_reg_unknown(env, regs, insn->dst_reg);
14388 					if (insn->imm == 1) { /* cast from as(1) to as(0) */
14389 						dst_reg->type = PTR_TO_ARENA;
14390 						/* PTR_TO_ARENA is 32-bit */
14391 						dst_reg->subreg_def = env->insn_idx + 1;
14392 					}
14393 				} else if (insn->off == 0) {
14394 					/* case: R1 = R2
14395 					 * copy register state to dest reg
14396 					 */
14397 					assign_scalar_id_before_mov(env, src_reg);
14398 					copy_register_state(dst_reg, src_reg);
14399 					dst_reg->live |= REG_LIVE_WRITTEN;
14400 					dst_reg->subreg_def = DEF_NOT_SUBREG;
14401 				} else {
14402 					/* case: R1 = (s8, s16 s32)R2 */
14403 					if (is_pointer_value(env, insn->src_reg)) {
14404 						verbose(env,
14405 							"R%d sign-extension part of pointer\n",
14406 							insn->src_reg);
14407 						return -EACCES;
14408 					} else if (src_reg->type == SCALAR_VALUE) {
14409 						bool no_sext;
14410 
14411 						no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
14412 						if (no_sext)
14413 							assign_scalar_id_before_mov(env, src_reg);
14414 						copy_register_state(dst_reg, src_reg);
14415 						if (!no_sext)
14416 							dst_reg->id = 0;
14417 						coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
14418 						dst_reg->live |= REG_LIVE_WRITTEN;
14419 						dst_reg->subreg_def = DEF_NOT_SUBREG;
14420 					} else {
14421 						mark_reg_unknown(env, regs, insn->dst_reg);
14422 					}
14423 				}
14424 			} else {
14425 				/* R1 = (u32) R2 */
14426 				if (is_pointer_value(env, insn->src_reg)) {
14427 					verbose(env,
14428 						"R%d partial copy of pointer\n",
14429 						insn->src_reg);
14430 					return -EACCES;
14431 				} else if (src_reg->type == SCALAR_VALUE) {
14432 					if (insn->off == 0) {
14433 						bool is_src_reg_u32 = get_reg_width(src_reg) <= 32;
14434 
14435 						if (is_src_reg_u32)
14436 							assign_scalar_id_before_mov(env, src_reg);
14437 						copy_register_state(dst_reg, src_reg);
14438 						/* Make sure ID is cleared if src_reg is not in u32
14439 						 * range otherwise dst_reg min/max could be incorrectly
14440 						 * propagated into src_reg by sync_linked_regs()
14441 						 */
14442 						if (!is_src_reg_u32)
14443 							dst_reg->id = 0;
14444 						dst_reg->live |= REG_LIVE_WRITTEN;
14445 						dst_reg->subreg_def = env->insn_idx + 1;
14446 					} else {
14447 						/* case: W1 = (s8, s16)W2 */
14448 						bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
14449 
14450 						if (no_sext)
14451 							assign_scalar_id_before_mov(env, src_reg);
14452 						copy_register_state(dst_reg, src_reg);
14453 						if (!no_sext)
14454 							dst_reg->id = 0;
14455 						dst_reg->live |= REG_LIVE_WRITTEN;
14456 						dst_reg->subreg_def = env->insn_idx + 1;
14457 						coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
14458 					}
14459 				} else {
14460 					mark_reg_unknown(env, regs,
14461 							 insn->dst_reg);
14462 				}
14463 				zext_32_to_64(dst_reg);
14464 				reg_bounds_sync(dst_reg);
14465 			}
14466 		} else {
14467 			/* case: R = imm
14468 			 * remember the value we stored into this reg
14469 			 */
14470 			/* clear any state __mark_reg_known doesn't set */
14471 			mark_reg_unknown(env, regs, insn->dst_reg);
14472 			regs[insn->dst_reg].type = SCALAR_VALUE;
14473 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
14474 				__mark_reg_known(regs + insn->dst_reg,
14475 						 insn->imm);
14476 			} else {
14477 				__mark_reg_known(regs + insn->dst_reg,
14478 						 (u32)insn->imm);
14479 			}
14480 		}
14481 
14482 	} else if (opcode > BPF_END) {
14483 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
14484 		return -EINVAL;
14485 
14486 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
14487 
14488 		if (BPF_SRC(insn->code) == BPF_X) {
14489 			if (insn->imm != 0 || insn->off > 1 ||
14490 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
14491 				verbose(env, "BPF_ALU uses reserved fields\n");
14492 				return -EINVAL;
14493 			}
14494 			/* check src1 operand */
14495 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
14496 			if (err)
14497 				return err;
14498 		} else {
14499 			if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
14500 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
14501 				verbose(env, "BPF_ALU uses reserved fields\n");
14502 				return -EINVAL;
14503 			}
14504 		}
14505 
14506 		/* check src2 operand */
14507 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14508 		if (err)
14509 			return err;
14510 
14511 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
14512 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
14513 			verbose(env, "div by zero\n");
14514 			return -EINVAL;
14515 		}
14516 
14517 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
14518 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
14519 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
14520 
14521 			if (insn->imm < 0 || insn->imm >= size) {
14522 				verbose(env, "invalid shift %d\n", insn->imm);
14523 				return -EINVAL;
14524 			}
14525 		}
14526 
14527 		/* check dest operand */
14528 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
14529 		err = err ?: adjust_reg_min_max_vals(env, insn);
14530 		if (err)
14531 			return err;
14532 	}
14533 
14534 	return reg_bounds_sanity_check(env, &regs[insn->dst_reg], "alu");
14535 }
14536 
14537 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
14538 				   struct bpf_reg_state *dst_reg,
14539 				   enum bpf_reg_type type,
14540 				   bool range_right_open)
14541 {
14542 	struct bpf_func_state *state;
14543 	struct bpf_reg_state *reg;
14544 	int new_range;
14545 
14546 	if (dst_reg->off < 0 ||
14547 	    (dst_reg->off == 0 && range_right_open))
14548 		/* This doesn't give us any range */
14549 		return;
14550 
14551 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
14552 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
14553 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
14554 		 * than pkt_end, but that's because it's also less than pkt.
14555 		 */
14556 		return;
14557 
14558 	new_range = dst_reg->off;
14559 	if (range_right_open)
14560 		new_range++;
14561 
14562 	/* Examples for register markings:
14563 	 *
14564 	 * pkt_data in dst register:
14565 	 *
14566 	 *   r2 = r3;
14567 	 *   r2 += 8;
14568 	 *   if (r2 > pkt_end) goto <handle exception>
14569 	 *   <access okay>
14570 	 *
14571 	 *   r2 = r3;
14572 	 *   r2 += 8;
14573 	 *   if (r2 < pkt_end) goto <access okay>
14574 	 *   <handle exception>
14575 	 *
14576 	 *   Where:
14577 	 *     r2 == dst_reg, pkt_end == src_reg
14578 	 *     r2=pkt(id=n,off=8,r=0)
14579 	 *     r3=pkt(id=n,off=0,r=0)
14580 	 *
14581 	 * pkt_data in src register:
14582 	 *
14583 	 *   r2 = r3;
14584 	 *   r2 += 8;
14585 	 *   if (pkt_end >= r2) goto <access okay>
14586 	 *   <handle exception>
14587 	 *
14588 	 *   r2 = r3;
14589 	 *   r2 += 8;
14590 	 *   if (pkt_end <= r2) goto <handle exception>
14591 	 *   <access okay>
14592 	 *
14593 	 *   Where:
14594 	 *     pkt_end == dst_reg, r2 == src_reg
14595 	 *     r2=pkt(id=n,off=8,r=0)
14596 	 *     r3=pkt(id=n,off=0,r=0)
14597 	 *
14598 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
14599 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
14600 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
14601 	 * the check.
14602 	 */
14603 
14604 	/* If our ids match, then we must have the same max_value.  And we
14605 	 * don't care about the other reg's fixed offset, since if it's too big
14606 	 * the range won't allow anything.
14607 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
14608 	 */
14609 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14610 		if (reg->type == type && reg->id == dst_reg->id)
14611 			/* keep the maximum range already checked */
14612 			reg->range = max(reg->range, new_range);
14613 	}));
14614 }
14615 
14616 /*
14617  * <reg1> <op> <reg2>, currently assuming reg2 is a constant
14618  */
14619 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14620 				  u8 opcode, bool is_jmp32)
14621 {
14622 	struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off;
14623 	struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off;
14624 	u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value;
14625 	u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value;
14626 	s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value;
14627 	s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value;
14628 	u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value;
14629 	u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value;
14630 	s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value;
14631 	s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value;
14632 
14633 	switch (opcode) {
14634 	case BPF_JEQ:
14635 		/* constants, umin/umax and smin/smax checks would be
14636 		 * redundant in this case because they all should match
14637 		 */
14638 		if (tnum_is_const(t1) && tnum_is_const(t2))
14639 			return t1.value == t2.value;
14640 		/* non-overlapping ranges */
14641 		if (umin1 > umax2 || umax1 < umin2)
14642 			return 0;
14643 		if (smin1 > smax2 || smax1 < smin2)
14644 			return 0;
14645 		if (!is_jmp32) {
14646 			/* if 64-bit ranges are inconclusive, see if we can
14647 			 * utilize 32-bit subrange knowledge to eliminate
14648 			 * branches that can't be taken a priori
14649 			 */
14650 			if (reg1->u32_min_value > reg2->u32_max_value ||
14651 			    reg1->u32_max_value < reg2->u32_min_value)
14652 				return 0;
14653 			if (reg1->s32_min_value > reg2->s32_max_value ||
14654 			    reg1->s32_max_value < reg2->s32_min_value)
14655 				return 0;
14656 		}
14657 		break;
14658 	case BPF_JNE:
14659 		/* constants, umin/umax and smin/smax checks would be
14660 		 * redundant in this case because they all should match
14661 		 */
14662 		if (tnum_is_const(t1) && tnum_is_const(t2))
14663 			return t1.value != t2.value;
14664 		/* non-overlapping ranges */
14665 		if (umin1 > umax2 || umax1 < umin2)
14666 			return 1;
14667 		if (smin1 > smax2 || smax1 < smin2)
14668 			return 1;
14669 		if (!is_jmp32) {
14670 			/* if 64-bit ranges are inconclusive, see if we can
14671 			 * utilize 32-bit subrange knowledge to eliminate
14672 			 * branches that can't be taken a priori
14673 			 */
14674 			if (reg1->u32_min_value > reg2->u32_max_value ||
14675 			    reg1->u32_max_value < reg2->u32_min_value)
14676 				return 1;
14677 			if (reg1->s32_min_value > reg2->s32_max_value ||
14678 			    reg1->s32_max_value < reg2->s32_min_value)
14679 				return 1;
14680 		}
14681 		break;
14682 	case BPF_JSET:
14683 		if (!is_reg_const(reg2, is_jmp32)) {
14684 			swap(reg1, reg2);
14685 			swap(t1, t2);
14686 		}
14687 		if (!is_reg_const(reg2, is_jmp32))
14688 			return -1;
14689 		if ((~t1.mask & t1.value) & t2.value)
14690 			return 1;
14691 		if (!((t1.mask | t1.value) & t2.value))
14692 			return 0;
14693 		break;
14694 	case BPF_JGT:
14695 		if (umin1 > umax2)
14696 			return 1;
14697 		else if (umax1 <= umin2)
14698 			return 0;
14699 		break;
14700 	case BPF_JSGT:
14701 		if (smin1 > smax2)
14702 			return 1;
14703 		else if (smax1 <= smin2)
14704 			return 0;
14705 		break;
14706 	case BPF_JLT:
14707 		if (umax1 < umin2)
14708 			return 1;
14709 		else if (umin1 >= umax2)
14710 			return 0;
14711 		break;
14712 	case BPF_JSLT:
14713 		if (smax1 < smin2)
14714 			return 1;
14715 		else if (smin1 >= smax2)
14716 			return 0;
14717 		break;
14718 	case BPF_JGE:
14719 		if (umin1 >= umax2)
14720 			return 1;
14721 		else if (umax1 < umin2)
14722 			return 0;
14723 		break;
14724 	case BPF_JSGE:
14725 		if (smin1 >= smax2)
14726 			return 1;
14727 		else if (smax1 < smin2)
14728 			return 0;
14729 		break;
14730 	case BPF_JLE:
14731 		if (umax1 <= umin2)
14732 			return 1;
14733 		else if (umin1 > umax2)
14734 			return 0;
14735 		break;
14736 	case BPF_JSLE:
14737 		if (smax1 <= smin2)
14738 			return 1;
14739 		else if (smin1 > smax2)
14740 			return 0;
14741 		break;
14742 	}
14743 
14744 	return -1;
14745 }
14746 
14747 static int flip_opcode(u32 opcode)
14748 {
14749 	/* How can we transform "a <op> b" into "b <op> a"? */
14750 	static const u8 opcode_flip[16] = {
14751 		/* these stay the same */
14752 		[BPF_JEQ  >> 4] = BPF_JEQ,
14753 		[BPF_JNE  >> 4] = BPF_JNE,
14754 		[BPF_JSET >> 4] = BPF_JSET,
14755 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
14756 		[BPF_JGE  >> 4] = BPF_JLE,
14757 		[BPF_JGT  >> 4] = BPF_JLT,
14758 		[BPF_JLE  >> 4] = BPF_JGE,
14759 		[BPF_JLT  >> 4] = BPF_JGT,
14760 		[BPF_JSGE >> 4] = BPF_JSLE,
14761 		[BPF_JSGT >> 4] = BPF_JSLT,
14762 		[BPF_JSLE >> 4] = BPF_JSGE,
14763 		[BPF_JSLT >> 4] = BPF_JSGT
14764 	};
14765 	return opcode_flip[opcode >> 4];
14766 }
14767 
14768 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
14769 				   struct bpf_reg_state *src_reg,
14770 				   u8 opcode)
14771 {
14772 	struct bpf_reg_state *pkt;
14773 
14774 	if (src_reg->type == PTR_TO_PACKET_END) {
14775 		pkt = dst_reg;
14776 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
14777 		pkt = src_reg;
14778 		opcode = flip_opcode(opcode);
14779 	} else {
14780 		return -1;
14781 	}
14782 
14783 	if (pkt->range >= 0)
14784 		return -1;
14785 
14786 	switch (opcode) {
14787 	case BPF_JLE:
14788 		/* pkt <= pkt_end */
14789 		fallthrough;
14790 	case BPF_JGT:
14791 		/* pkt > pkt_end */
14792 		if (pkt->range == BEYOND_PKT_END)
14793 			/* pkt has at last one extra byte beyond pkt_end */
14794 			return opcode == BPF_JGT;
14795 		break;
14796 	case BPF_JLT:
14797 		/* pkt < pkt_end */
14798 		fallthrough;
14799 	case BPF_JGE:
14800 		/* pkt >= pkt_end */
14801 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
14802 			return opcode == BPF_JGE;
14803 		break;
14804 	}
14805 	return -1;
14806 }
14807 
14808 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;"
14809  * and return:
14810  *  1 - branch will be taken and "goto target" will be executed
14811  *  0 - branch will not be taken and fall-through to next insn
14812  * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value
14813  *      range [0,10]
14814  */
14815 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14816 			   u8 opcode, bool is_jmp32)
14817 {
14818 	if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32)
14819 		return is_pkt_ptr_branch_taken(reg1, reg2, opcode);
14820 
14821 	if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) {
14822 		u64 val;
14823 
14824 		/* arrange that reg2 is a scalar, and reg1 is a pointer */
14825 		if (!is_reg_const(reg2, is_jmp32)) {
14826 			opcode = flip_opcode(opcode);
14827 			swap(reg1, reg2);
14828 		}
14829 		/* and ensure that reg2 is a constant */
14830 		if (!is_reg_const(reg2, is_jmp32))
14831 			return -1;
14832 
14833 		if (!reg_not_null(reg1))
14834 			return -1;
14835 
14836 		/* If pointer is valid tests against zero will fail so we can
14837 		 * use this to direct branch taken.
14838 		 */
14839 		val = reg_const_value(reg2, is_jmp32);
14840 		if (val != 0)
14841 			return -1;
14842 
14843 		switch (opcode) {
14844 		case BPF_JEQ:
14845 			return 0;
14846 		case BPF_JNE:
14847 			return 1;
14848 		default:
14849 			return -1;
14850 		}
14851 	}
14852 
14853 	/* now deal with two scalars, but not necessarily constants */
14854 	return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32);
14855 }
14856 
14857 /* Opcode that corresponds to a *false* branch condition.
14858  * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2
14859  */
14860 static u8 rev_opcode(u8 opcode)
14861 {
14862 	switch (opcode) {
14863 	case BPF_JEQ:		return BPF_JNE;
14864 	case BPF_JNE:		return BPF_JEQ;
14865 	/* JSET doesn't have it's reverse opcode in BPF, so add
14866 	 * BPF_X flag to denote the reverse of that operation
14867 	 */
14868 	case BPF_JSET:		return BPF_JSET | BPF_X;
14869 	case BPF_JSET | BPF_X:	return BPF_JSET;
14870 	case BPF_JGE:		return BPF_JLT;
14871 	case BPF_JGT:		return BPF_JLE;
14872 	case BPF_JLE:		return BPF_JGT;
14873 	case BPF_JLT:		return BPF_JGE;
14874 	case BPF_JSGE:		return BPF_JSLT;
14875 	case BPF_JSGT:		return BPF_JSLE;
14876 	case BPF_JSLE:		return BPF_JSGT;
14877 	case BPF_JSLT:		return BPF_JSGE;
14878 	default:		return 0;
14879 	}
14880 }
14881 
14882 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */
14883 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14884 				u8 opcode, bool is_jmp32)
14885 {
14886 	struct tnum t;
14887 	u64 val;
14888 
14889 	/* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */
14890 	switch (opcode) {
14891 	case BPF_JGE:
14892 	case BPF_JGT:
14893 	case BPF_JSGE:
14894 	case BPF_JSGT:
14895 		opcode = flip_opcode(opcode);
14896 		swap(reg1, reg2);
14897 		break;
14898 	default:
14899 		break;
14900 	}
14901 
14902 	switch (opcode) {
14903 	case BPF_JEQ:
14904 		if (is_jmp32) {
14905 			reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
14906 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
14907 			reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
14908 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
14909 			reg2->u32_min_value = reg1->u32_min_value;
14910 			reg2->u32_max_value = reg1->u32_max_value;
14911 			reg2->s32_min_value = reg1->s32_min_value;
14912 			reg2->s32_max_value = reg1->s32_max_value;
14913 
14914 			t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off));
14915 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
14916 			reg2->var_off = tnum_with_subreg(reg2->var_off, t);
14917 		} else {
14918 			reg1->umin_value = max(reg1->umin_value, reg2->umin_value);
14919 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
14920 			reg1->smin_value = max(reg1->smin_value, reg2->smin_value);
14921 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
14922 			reg2->umin_value = reg1->umin_value;
14923 			reg2->umax_value = reg1->umax_value;
14924 			reg2->smin_value = reg1->smin_value;
14925 			reg2->smax_value = reg1->smax_value;
14926 
14927 			reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off);
14928 			reg2->var_off = reg1->var_off;
14929 		}
14930 		break;
14931 	case BPF_JNE:
14932 		if (!is_reg_const(reg2, is_jmp32))
14933 			swap(reg1, reg2);
14934 		if (!is_reg_const(reg2, is_jmp32))
14935 			break;
14936 
14937 		/* try to recompute the bound of reg1 if reg2 is a const and
14938 		 * is exactly the edge of reg1.
14939 		 */
14940 		val = reg_const_value(reg2, is_jmp32);
14941 		if (is_jmp32) {
14942 			/* u32_min_value is not equal to 0xffffffff at this point,
14943 			 * because otherwise u32_max_value is 0xffffffff as well,
14944 			 * in such a case both reg1 and reg2 would be constants,
14945 			 * jump would be predicted and reg_set_min_max() won't
14946 			 * be called.
14947 			 *
14948 			 * Same reasoning works for all {u,s}{min,max}{32,64} cases
14949 			 * below.
14950 			 */
14951 			if (reg1->u32_min_value == (u32)val)
14952 				reg1->u32_min_value++;
14953 			if (reg1->u32_max_value == (u32)val)
14954 				reg1->u32_max_value--;
14955 			if (reg1->s32_min_value == (s32)val)
14956 				reg1->s32_min_value++;
14957 			if (reg1->s32_max_value == (s32)val)
14958 				reg1->s32_max_value--;
14959 		} else {
14960 			if (reg1->umin_value == (u64)val)
14961 				reg1->umin_value++;
14962 			if (reg1->umax_value == (u64)val)
14963 				reg1->umax_value--;
14964 			if (reg1->smin_value == (s64)val)
14965 				reg1->smin_value++;
14966 			if (reg1->smax_value == (s64)val)
14967 				reg1->smax_value--;
14968 		}
14969 		break;
14970 	case BPF_JSET:
14971 		if (!is_reg_const(reg2, is_jmp32))
14972 			swap(reg1, reg2);
14973 		if (!is_reg_const(reg2, is_jmp32))
14974 			break;
14975 		val = reg_const_value(reg2, is_jmp32);
14976 		/* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X)
14977 		 * requires single bit to learn something useful. E.g., if we
14978 		 * know that `r1 & 0x3` is true, then which bits (0, 1, or both)
14979 		 * are actually set? We can learn something definite only if
14980 		 * it's a single-bit value to begin with.
14981 		 *
14982 		 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have
14983 		 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor
14984 		 * bit 1 is set, which we can readily use in adjustments.
14985 		 */
14986 		if (!is_power_of_2(val))
14987 			break;
14988 		if (is_jmp32) {
14989 			t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val));
14990 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
14991 		} else {
14992 			reg1->var_off = tnum_or(reg1->var_off, tnum_const(val));
14993 		}
14994 		break;
14995 	case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */
14996 		if (!is_reg_const(reg2, is_jmp32))
14997 			swap(reg1, reg2);
14998 		if (!is_reg_const(reg2, is_jmp32))
14999 			break;
15000 		val = reg_const_value(reg2, is_jmp32);
15001 		if (is_jmp32) {
15002 			t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val));
15003 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
15004 		} else {
15005 			reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val));
15006 		}
15007 		break;
15008 	case BPF_JLE:
15009 		if (is_jmp32) {
15010 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
15011 			reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
15012 		} else {
15013 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
15014 			reg2->umin_value = max(reg1->umin_value, reg2->umin_value);
15015 		}
15016 		break;
15017 	case BPF_JLT:
15018 		if (is_jmp32) {
15019 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1);
15020 			reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value);
15021 		} else {
15022 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1);
15023 			reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value);
15024 		}
15025 		break;
15026 	case BPF_JSLE:
15027 		if (is_jmp32) {
15028 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
15029 			reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
15030 		} else {
15031 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
15032 			reg2->smin_value = max(reg1->smin_value, reg2->smin_value);
15033 		}
15034 		break;
15035 	case BPF_JSLT:
15036 		if (is_jmp32) {
15037 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1);
15038 			reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value);
15039 		} else {
15040 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1);
15041 			reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value);
15042 		}
15043 		break;
15044 	default:
15045 		return;
15046 	}
15047 }
15048 
15049 /* Adjusts the register min/max values in the case that the dst_reg and
15050  * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K
15051  * check, in which case we have a fake SCALAR_VALUE representing insn->imm).
15052  * Technically we can do similar adjustments for pointers to the same object,
15053  * but we don't support that right now.
15054  */
15055 static int reg_set_min_max(struct bpf_verifier_env *env,
15056 			   struct bpf_reg_state *true_reg1,
15057 			   struct bpf_reg_state *true_reg2,
15058 			   struct bpf_reg_state *false_reg1,
15059 			   struct bpf_reg_state *false_reg2,
15060 			   u8 opcode, bool is_jmp32)
15061 {
15062 	int err;
15063 
15064 	/* If either register is a pointer, we can't learn anything about its
15065 	 * variable offset from the compare (unless they were a pointer into
15066 	 * the same object, but we don't bother with that).
15067 	 */
15068 	if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE)
15069 		return 0;
15070 
15071 	/* fallthrough (FALSE) branch */
15072 	regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32);
15073 	reg_bounds_sync(false_reg1);
15074 	reg_bounds_sync(false_reg2);
15075 
15076 	/* jump (TRUE) branch */
15077 	regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32);
15078 	reg_bounds_sync(true_reg1);
15079 	reg_bounds_sync(true_reg2);
15080 
15081 	err = reg_bounds_sanity_check(env, true_reg1, "true_reg1");
15082 	err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2");
15083 	err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1");
15084 	err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2");
15085 	return err;
15086 }
15087 
15088 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
15089 				 struct bpf_reg_state *reg, u32 id,
15090 				 bool is_null)
15091 {
15092 	if (type_may_be_null(reg->type) && reg->id == id &&
15093 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
15094 		/* Old offset (both fixed and variable parts) should have been
15095 		 * known-zero, because we don't allow pointer arithmetic on
15096 		 * pointers that might be NULL. If we see this happening, don't
15097 		 * convert the register.
15098 		 *
15099 		 * But in some cases, some helpers that return local kptrs
15100 		 * advance offset for the returned pointer. In those cases, it
15101 		 * is fine to expect to see reg->off.
15102 		 */
15103 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
15104 			return;
15105 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
15106 		    WARN_ON_ONCE(reg->off))
15107 			return;
15108 
15109 		if (is_null) {
15110 			reg->type = SCALAR_VALUE;
15111 			/* We don't need id and ref_obj_id from this point
15112 			 * onwards anymore, thus we should better reset it,
15113 			 * so that state pruning has chances to take effect.
15114 			 */
15115 			reg->id = 0;
15116 			reg->ref_obj_id = 0;
15117 
15118 			return;
15119 		}
15120 
15121 		mark_ptr_not_null_reg(reg);
15122 
15123 		if (!reg_may_point_to_spin_lock(reg)) {
15124 			/* For not-NULL ptr, reg->ref_obj_id will be reset
15125 			 * in release_reference().
15126 			 *
15127 			 * reg->id is still used by spin_lock ptr. Other
15128 			 * than spin_lock ptr type, reg->id can be reset.
15129 			 */
15130 			reg->id = 0;
15131 		}
15132 	}
15133 }
15134 
15135 /* The logic is similar to find_good_pkt_pointers(), both could eventually
15136  * be folded together at some point.
15137  */
15138 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
15139 				  bool is_null)
15140 {
15141 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
15142 	struct bpf_reg_state *regs = state->regs, *reg;
15143 	u32 ref_obj_id = regs[regno].ref_obj_id;
15144 	u32 id = regs[regno].id;
15145 
15146 	if (ref_obj_id && ref_obj_id == id && is_null)
15147 		/* regs[regno] is in the " == NULL" branch.
15148 		 * No one could have freed the reference state before
15149 		 * doing the NULL check.
15150 		 */
15151 		WARN_ON_ONCE(release_reference_state(state, id));
15152 
15153 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
15154 		mark_ptr_or_null_reg(state, reg, id, is_null);
15155 	}));
15156 }
15157 
15158 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
15159 				   struct bpf_reg_state *dst_reg,
15160 				   struct bpf_reg_state *src_reg,
15161 				   struct bpf_verifier_state *this_branch,
15162 				   struct bpf_verifier_state *other_branch)
15163 {
15164 	if (BPF_SRC(insn->code) != BPF_X)
15165 		return false;
15166 
15167 	/* Pointers are always 64-bit. */
15168 	if (BPF_CLASS(insn->code) == BPF_JMP32)
15169 		return false;
15170 
15171 	switch (BPF_OP(insn->code)) {
15172 	case BPF_JGT:
15173 		if ((dst_reg->type == PTR_TO_PACKET &&
15174 		     src_reg->type == PTR_TO_PACKET_END) ||
15175 		    (dst_reg->type == PTR_TO_PACKET_META &&
15176 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15177 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
15178 			find_good_pkt_pointers(this_branch, dst_reg,
15179 					       dst_reg->type, false);
15180 			mark_pkt_end(other_branch, insn->dst_reg, true);
15181 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
15182 			    src_reg->type == PTR_TO_PACKET) ||
15183 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15184 			    src_reg->type == PTR_TO_PACKET_META)) {
15185 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
15186 			find_good_pkt_pointers(other_branch, src_reg,
15187 					       src_reg->type, true);
15188 			mark_pkt_end(this_branch, insn->src_reg, false);
15189 		} else {
15190 			return false;
15191 		}
15192 		break;
15193 	case BPF_JLT:
15194 		if ((dst_reg->type == PTR_TO_PACKET &&
15195 		     src_reg->type == PTR_TO_PACKET_END) ||
15196 		    (dst_reg->type == PTR_TO_PACKET_META &&
15197 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15198 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
15199 			find_good_pkt_pointers(other_branch, dst_reg,
15200 					       dst_reg->type, true);
15201 			mark_pkt_end(this_branch, insn->dst_reg, false);
15202 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
15203 			    src_reg->type == PTR_TO_PACKET) ||
15204 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15205 			    src_reg->type == PTR_TO_PACKET_META)) {
15206 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
15207 			find_good_pkt_pointers(this_branch, src_reg,
15208 					       src_reg->type, false);
15209 			mark_pkt_end(other_branch, insn->src_reg, true);
15210 		} else {
15211 			return false;
15212 		}
15213 		break;
15214 	case BPF_JGE:
15215 		if ((dst_reg->type == PTR_TO_PACKET &&
15216 		     src_reg->type == PTR_TO_PACKET_END) ||
15217 		    (dst_reg->type == PTR_TO_PACKET_META &&
15218 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15219 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
15220 			find_good_pkt_pointers(this_branch, dst_reg,
15221 					       dst_reg->type, true);
15222 			mark_pkt_end(other_branch, insn->dst_reg, false);
15223 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
15224 			    src_reg->type == PTR_TO_PACKET) ||
15225 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15226 			    src_reg->type == PTR_TO_PACKET_META)) {
15227 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
15228 			find_good_pkt_pointers(other_branch, src_reg,
15229 					       src_reg->type, false);
15230 			mark_pkt_end(this_branch, insn->src_reg, true);
15231 		} else {
15232 			return false;
15233 		}
15234 		break;
15235 	case BPF_JLE:
15236 		if ((dst_reg->type == PTR_TO_PACKET &&
15237 		     src_reg->type == PTR_TO_PACKET_END) ||
15238 		    (dst_reg->type == PTR_TO_PACKET_META &&
15239 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
15240 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
15241 			find_good_pkt_pointers(other_branch, dst_reg,
15242 					       dst_reg->type, false);
15243 			mark_pkt_end(this_branch, insn->dst_reg, true);
15244 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
15245 			    src_reg->type == PTR_TO_PACKET) ||
15246 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
15247 			    src_reg->type == PTR_TO_PACKET_META)) {
15248 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
15249 			find_good_pkt_pointers(this_branch, src_reg,
15250 					       src_reg->type, true);
15251 			mark_pkt_end(other_branch, insn->src_reg, false);
15252 		} else {
15253 			return false;
15254 		}
15255 		break;
15256 	default:
15257 		return false;
15258 	}
15259 
15260 	return true;
15261 }
15262 
15263 static void __collect_linked_regs(struct linked_regs *reg_set, struct bpf_reg_state *reg,
15264 				  u32 id, u32 frameno, u32 spi_or_reg, bool is_reg)
15265 {
15266 	struct linked_reg *e;
15267 
15268 	if (reg->type != SCALAR_VALUE || (reg->id & ~BPF_ADD_CONST) != id)
15269 		return;
15270 
15271 	e = linked_regs_push(reg_set);
15272 	if (e) {
15273 		e->frameno = frameno;
15274 		e->is_reg = is_reg;
15275 		e->regno = spi_or_reg;
15276 	} else {
15277 		reg->id = 0;
15278 	}
15279 }
15280 
15281 /* For all R being scalar registers or spilled scalar registers
15282  * in verifier state, save R in linked_regs if R->id == id.
15283  * If there are too many Rs sharing same id, reset id for leftover Rs.
15284  */
15285 static void collect_linked_regs(struct bpf_verifier_state *vstate, u32 id,
15286 				struct linked_regs *linked_regs)
15287 {
15288 	struct bpf_func_state *func;
15289 	struct bpf_reg_state *reg;
15290 	int i, j;
15291 
15292 	id = id & ~BPF_ADD_CONST;
15293 	for (i = vstate->curframe; i >= 0; i--) {
15294 		func = vstate->frame[i];
15295 		for (j = 0; j < BPF_REG_FP; j++) {
15296 			reg = &func->regs[j];
15297 			__collect_linked_regs(linked_regs, reg, id, i, j, true);
15298 		}
15299 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
15300 			if (!is_spilled_reg(&func->stack[j]))
15301 				continue;
15302 			reg = &func->stack[j].spilled_ptr;
15303 			__collect_linked_regs(linked_regs, reg, id, i, j, false);
15304 		}
15305 	}
15306 }
15307 
15308 /* For all R in linked_regs, copy known_reg range into R
15309  * if R->id == known_reg->id.
15310  */
15311 static void sync_linked_regs(struct bpf_verifier_state *vstate, struct bpf_reg_state *known_reg,
15312 			     struct linked_regs *linked_regs)
15313 {
15314 	struct bpf_reg_state fake_reg;
15315 	struct bpf_reg_state *reg;
15316 	struct linked_reg *e;
15317 	int i;
15318 
15319 	for (i = 0; i < linked_regs->cnt; ++i) {
15320 		e = &linked_regs->entries[i];
15321 		reg = e->is_reg ? &vstate->frame[e->frameno]->regs[e->regno]
15322 				: &vstate->frame[e->frameno]->stack[e->spi].spilled_ptr;
15323 		if (reg->type != SCALAR_VALUE || reg == known_reg)
15324 			continue;
15325 		if ((reg->id & ~BPF_ADD_CONST) != (known_reg->id & ~BPF_ADD_CONST))
15326 			continue;
15327 		if ((!(reg->id & BPF_ADD_CONST) && !(known_reg->id & BPF_ADD_CONST)) ||
15328 		    reg->off == known_reg->off) {
15329 			copy_register_state(reg, known_reg);
15330 		} else {
15331 			s32 saved_off = reg->off;
15332 
15333 			fake_reg.type = SCALAR_VALUE;
15334 			__mark_reg_known(&fake_reg, (s32)reg->off - (s32)known_reg->off);
15335 
15336 			/* reg = known_reg; reg += delta */
15337 			copy_register_state(reg, known_reg);
15338 			/*
15339 			 * Must preserve off, id and add_const flag,
15340 			 * otherwise another sync_linked_regs() will be incorrect.
15341 			 */
15342 			reg->off = saved_off;
15343 
15344 			scalar32_min_max_add(reg, &fake_reg);
15345 			scalar_min_max_add(reg, &fake_reg);
15346 			reg->var_off = tnum_add(reg->var_off, fake_reg.var_off);
15347 		}
15348 	}
15349 }
15350 
15351 static int check_cond_jmp_op(struct bpf_verifier_env *env,
15352 			     struct bpf_insn *insn, int *insn_idx)
15353 {
15354 	struct bpf_verifier_state *this_branch = env->cur_state;
15355 	struct bpf_verifier_state *other_branch;
15356 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
15357 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
15358 	struct bpf_reg_state *eq_branch_regs;
15359 	struct linked_regs linked_regs = {};
15360 	u8 opcode = BPF_OP(insn->code);
15361 	bool is_jmp32;
15362 	int pred = -1;
15363 	int err;
15364 
15365 	/* Only conditional jumps are expected to reach here. */
15366 	if (opcode == BPF_JA || opcode > BPF_JCOND) {
15367 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
15368 		return -EINVAL;
15369 	}
15370 
15371 	if (opcode == BPF_JCOND) {
15372 		struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
15373 		int idx = *insn_idx;
15374 
15375 		if (insn->code != (BPF_JMP | BPF_JCOND) ||
15376 		    insn->src_reg != BPF_MAY_GOTO ||
15377 		    insn->dst_reg || insn->imm || insn->off == 0) {
15378 			verbose(env, "invalid may_goto off %d imm %d\n",
15379 				insn->off, insn->imm);
15380 			return -EINVAL;
15381 		}
15382 		prev_st = find_prev_entry(env, cur_st->parent, idx);
15383 
15384 		/* branch out 'fallthrough' insn as a new state to explore */
15385 		queued_st = push_stack(env, idx + 1, idx, false);
15386 		if (!queued_st)
15387 			return -ENOMEM;
15388 
15389 		queued_st->may_goto_depth++;
15390 		if (prev_st)
15391 			widen_imprecise_scalars(env, prev_st, queued_st);
15392 		*insn_idx += insn->off;
15393 		return 0;
15394 	}
15395 
15396 	/* check src2 operand */
15397 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
15398 	if (err)
15399 		return err;
15400 
15401 	dst_reg = &regs[insn->dst_reg];
15402 	if (BPF_SRC(insn->code) == BPF_X) {
15403 		if (insn->imm != 0) {
15404 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
15405 			return -EINVAL;
15406 		}
15407 
15408 		/* check src1 operand */
15409 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
15410 		if (err)
15411 			return err;
15412 
15413 		src_reg = &regs[insn->src_reg];
15414 		if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
15415 		    is_pointer_value(env, insn->src_reg)) {
15416 			verbose(env, "R%d pointer comparison prohibited\n",
15417 				insn->src_reg);
15418 			return -EACCES;
15419 		}
15420 	} else {
15421 		if (insn->src_reg != BPF_REG_0) {
15422 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
15423 			return -EINVAL;
15424 		}
15425 		src_reg = &env->fake_reg[0];
15426 		memset(src_reg, 0, sizeof(*src_reg));
15427 		src_reg->type = SCALAR_VALUE;
15428 		__mark_reg_known(src_reg, insn->imm);
15429 	}
15430 
15431 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
15432 	pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32);
15433 	if (pred >= 0) {
15434 		/* If we get here with a dst_reg pointer type it is because
15435 		 * above is_branch_taken() special cased the 0 comparison.
15436 		 */
15437 		if (!__is_pointer_value(false, dst_reg))
15438 			err = mark_chain_precision(env, insn->dst_reg);
15439 		if (BPF_SRC(insn->code) == BPF_X && !err &&
15440 		    !__is_pointer_value(false, src_reg))
15441 			err = mark_chain_precision(env, insn->src_reg);
15442 		if (err)
15443 			return err;
15444 	}
15445 
15446 	if (pred == 1) {
15447 		/* Only follow the goto, ignore fall-through. If needed, push
15448 		 * the fall-through branch for simulation under speculative
15449 		 * execution.
15450 		 */
15451 		if (!env->bypass_spec_v1 &&
15452 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
15453 					       *insn_idx))
15454 			return -EFAULT;
15455 		if (env->log.level & BPF_LOG_LEVEL)
15456 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
15457 		*insn_idx += insn->off;
15458 		return 0;
15459 	} else if (pred == 0) {
15460 		/* Only follow the fall-through branch, since that's where the
15461 		 * program will go. If needed, push the goto branch for
15462 		 * simulation under speculative execution.
15463 		 */
15464 		if (!env->bypass_spec_v1 &&
15465 		    !sanitize_speculative_path(env, insn,
15466 					       *insn_idx + insn->off + 1,
15467 					       *insn_idx))
15468 			return -EFAULT;
15469 		if (env->log.level & BPF_LOG_LEVEL)
15470 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
15471 		return 0;
15472 	}
15473 
15474 	/* Push scalar registers sharing same ID to jump history,
15475 	 * do this before creating 'other_branch', so that both
15476 	 * 'this_branch' and 'other_branch' share this history
15477 	 * if parent state is created.
15478 	 */
15479 	if (BPF_SRC(insn->code) == BPF_X && src_reg->type == SCALAR_VALUE && src_reg->id)
15480 		collect_linked_regs(this_branch, src_reg->id, &linked_regs);
15481 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id)
15482 		collect_linked_regs(this_branch, dst_reg->id, &linked_regs);
15483 	if (linked_regs.cnt > 1) {
15484 		err = push_jmp_history(env, this_branch, 0, linked_regs_pack(&linked_regs));
15485 		if (err)
15486 			return err;
15487 	}
15488 
15489 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
15490 				  false);
15491 	if (!other_branch)
15492 		return -EFAULT;
15493 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
15494 
15495 	if (BPF_SRC(insn->code) == BPF_X) {
15496 		err = reg_set_min_max(env,
15497 				      &other_branch_regs[insn->dst_reg],
15498 				      &other_branch_regs[insn->src_reg],
15499 				      dst_reg, src_reg, opcode, is_jmp32);
15500 	} else /* BPF_SRC(insn->code) == BPF_K */ {
15501 		/* reg_set_min_max() can mangle the fake_reg. Make a copy
15502 		 * so that these are two different memory locations. The
15503 		 * src_reg is not used beyond here in context of K.
15504 		 */
15505 		memcpy(&env->fake_reg[1], &env->fake_reg[0],
15506 		       sizeof(env->fake_reg[0]));
15507 		err = reg_set_min_max(env,
15508 				      &other_branch_regs[insn->dst_reg],
15509 				      &env->fake_reg[0],
15510 				      dst_reg, &env->fake_reg[1],
15511 				      opcode, is_jmp32);
15512 	}
15513 	if (err)
15514 		return err;
15515 
15516 	if (BPF_SRC(insn->code) == BPF_X &&
15517 	    src_reg->type == SCALAR_VALUE && src_reg->id &&
15518 	    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
15519 		sync_linked_regs(this_branch, src_reg, &linked_regs);
15520 		sync_linked_regs(other_branch, &other_branch_regs[insn->src_reg], &linked_regs);
15521 	}
15522 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
15523 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
15524 		sync_linked_regs(this_branch, dst_reg, &linked_regs);
15525 		sync_linked_regs(other_branch, &other_branch_regs[insn->dst_reg], &linked_regs);
15526 	}
15527 
15528 	/* if one pointer register is compared to another pointer
15529 	 * register check if PTR_MAYBE_NULL could be lifted.
15530 	 * E.g. register A - maybe null
15531 	 *      register B - not null
15532 	 * for JNE A, B, ... - A is not null in the false branch;
15533 	 * for JEQ A, B, ... - A is not null in the true branch.
15534 	 *
15535 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
15536 	 * not need to be null checked by the BPF program, i.e.,
15537 	 * could be null even without PTR_MAYBE_NULL marking, so
15538 	 * only propagate nullness when neither reg is that type.
15539 	 */
15540 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
15541 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
15542 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
15543 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
15544 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
15545 		eq_branch_regs = NULL;
15546 		switch (opcode) {
15547 		case BPF_JEQ:
15548 			eq_branch_regs = other_branch_regs;
15549 			break;
15550 		case BPF_JNE:
15551 			eq_branch_regs = regs;
15552 			break;
15553 		default:
15554 			/* do nothing */
15555 			break;
15556 		}
15557 		if (eq_branch_regs) {
15558 			if (type_may_be_null(src_reg->type))
15559 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
15560 			else
15561 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
15562 		}
15563 	}
15564 
15565 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
15566 	 * NOTE: these optimizations below are related with pointer comparison
15567 	 *       which will never be JMP32.
15568 	 */
15569 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
15570 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
15571 	    type_may_be_null(dst_reg->type)) {
15572 		/* Mark all identical registers in each branch as either
15573 		 * safe or unknown depending R == 0 or R != 0 conditional.
15574 		 */
15575 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
15576 				      opcode == BPF_JNE);
15577 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
15578 				      opcode == BPF_JEQ);
15579 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
15580 					   this_branch, other_branch) &&
15581 		   is_pointer_value(env, insn->dst_reg)) {
15582 		verbose(env, "R%d pointer comparison prohibited\n",
15583 			insn->dst_reg);
15584 		return -EACCES;
15585 	}
15586 	if (env->log.level & BPF_LOG_LEVEL)
15587 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
15588 	return 0;
15589 }
15590 
15591 /* verify BPF_LD_IMM64 instruction */
15592 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
15593 {
15594 	struct bpf_insn_aux_data *aux = cur_aux(env);
15595 	struct bpf_reg_state *regs = cur_regs(env);
15596 	struct bpf_reg_state *dst_reg;
15597 	struct bpf_map *map;
15598 	int err;
15599 
15600 	if (BPF_SIZE(insn->code) != BPF_DW) {
15601 		verbose(env, "invalid BPF_LD_IMM insn\n");
15602 		return -EINVAL;
15603 	}
15604 	if (insn->off != 0) {
15605 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
15606 		return -EINVAL;
15607 	}
15608 
15609 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
15610 	if (err)
15611 		return err;
15612 
15613 	dst_reg = &regs[insn->dst_reg];
15614 	if (insn->src_reg == 0) {
15615 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
15616 
15617 		dst_reg->type = SCALAR_VALUE;
15618 		__mark_reg_known(&regs[insn->dst_reg], imm);
15619 		return 0;
15620 	}
15621 
15622 	/* All special src_reg cases are listed below. From this point onwards
15623 	 * we either succeed and assign a corresponding dst_reg->type after
15624 	 * zeroing the offset, or fail and reject the program.
15625 	 */
15626 	mark_reg_known_zero(env, regs, insn->dst_reg);
15627 
15628 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
15629 		dst_reg->type = aux->btf_var.reg_type;
15630 		switch (base_type(dst_reg->type)) {
15631 		case PTR_TO_MEM:
15632 			dst_reg->mem_size = aux->btf_var.mem_size;
15633 			break;
15634 		case PTR_TO_BTF_ID:
15635 			dst_reg->btf = aux->btf_var.btf;
15636 			dst_reg->btf_id = aux->btf_var.btf_id;
15637 			break;
15638 		default:
15639 			verbose(env, "bpf verifier is misconfigured\n");
15640 			return -EFAULT;
15641 		}
15642 		return 0;
15643 	}
15644 
15645 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
15646 		struct bpf_prog_aux *aux = env->prog->aux;
15647 		u32 subprogno = find_subprog(env,
15648 					     env->insn_idx + insn->imm + 1);
15649 
15650 		if (!aux->func_info) {
15651 			verbose(env, "missing btf func_info\n");
15652 			return -EINVAL;
15653 		}
15654 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
15655 			verbose(env, "callback function not static\n");
15656 			return -EINVAL;
15657 		}
15658 
15659 		dst_reg->type = PTR_TO_FUNC;
15660 		dst_reg->subprogno = subprogno;
15661 		return 0;
15662 	}
15663 
15664 	map = env->used_maps[aux->map_index];
15665 	dst_reg->map_ptr = map;
15666 
15667 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
15668 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
15669 		if (map->map_type == BPF_MAP_TYPE_ARENA) {
15670 			__mark_reg_unknown(env, dst_reg);
15671 			return 0;
15672 		}
15673 		dst_reg->type = PTR_TO_MAP_VALUE;
15674 		dst_reg->off = aux->map_off;
15675 		WARN_ON_ONCE(map->max_entries != 1);
15676 		/* We want reg->id to be same (0) as map_value is not distinct */
15677 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
15678 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
15679 		dst_reg->type = CONST_PTR_TO_MAP;
15680 	} else {
15681 		verbose(env, "bpf verifier is misconfigured\n");
15682 		return -EINVAL;
15683 	}
15684 
15685 	return 0;
15686 }
15687 
15688 static bool may_access_skb(enum bpf_prog_type type)
15689 {
15690 	switch (type) {
15691 	case BPF_PROG_TYPE_SOCKET_FILTER:
15692 	case BPF_PROG_TYPE_SCHED_CLS:
15693 	case BPF_PROG_TYPE_SCHED_ACT:
15694 		return true;
15695 	default:
15696 		return false;
15697 	}
15698 }
15699 
15700 /* verify safety of LD_ABS|LD_IND instructions:
15701  * - they can only appear in the programs where ctx == skb
15702  * - since they are wrappers of function calls, they scratch R1-R5 registers,
15703  *   preserve R6-R9, and store return value into R0
15704  *
15705  * Implicit input:
15706  *   ctx == skb == R6 == CTX
15707  *
15708  * Explicit input:
15709  *   SRC == any register
15710  *   IMM == 32-bit immediate
15711  *
15712  * Output:
15713  *   R0 - 8/16/32-bit skb data converted to cpu endianness
15714  */
15715 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
15716 {
15717 	struct bpf_reg_state *regs = cur_regs(env);
15718 	static const int ctx_reg = BPF_REG_6;
15719 	u8 mode = BPF_MODE(insn->code);
15720 	int i, err;
15721 
15722 	if (!may_access_skb(resolve_prog_type(env->prog))) {
15723 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
15724 		return -EINVAL;
15725 	}
15726 
15727 	if (!env->ops->gen_ld_abs) {
15728 		verbose(env, "bpf verifier is misconfigured\n");
15729 		return -EINVAL;
15730 	}
15731 
15732 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
15733 	    BPF_SIZE(insn->code) == BPF_DW ||
15734 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
15735 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
15736 		return -EINVAL;
15737 	}
15738 
15739 	/* check whether implicit source operand (register R6) is readable */
15740 	err = check_reg_arg(env, ctx_reg, SRC_OP);
15741 	if (err)
15742 		return err;
15743 
15744 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
15745 	 * gen_ld_abs() may terminate the program at runtime, leading to
15746 	 * reference leak.
15747 	 */
15748 	err = check_reference_leak(env, false);
15749 	if (err) {
15750 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
15751 		return err;
15752 	}
15753 
15754 	if (env->cur_state->active_lock.ptr) {
15755 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
15756 		return -EINVAL;
15757 	}
15758 
15759 	if (env->cur_state->active_rcu_lock) {
15760 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
15761 		return -EINVAL;
15762 	}
15763 
15764 	if (env->cur_state->active_preempt_lock) {
15765 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_preempt_disable-ed region\n");
15766 		return -EINVAL;
15767 	}
15768 
15769 	if (regs[ctx_reg].type != PTR_TO_CTX) {
15770 		verbose(env,
15771 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
15772 		return -EINVAL;
15773 	}
15774 
15775 	if (mode == BPF_IND) {
15776 		/* check explicit source operand */
15777 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
15778 		if (err)
15779 			return err;
15780 	}
15781 
15782 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
15783 	if (err < 0)
15784 		return err;
15785 
15786 	/* reset caller saved regs to unreadable */
15787 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
15788 		mark_reg_not_init(env, regs, caller_saved[i]);
15789 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
15790 	}
15791 
15792 	/* mark destination R0 register as readable, since it contains
15793 	 * the value fetched from the packet.
15794 	 * Already marked as written above.
15795 	 */
15796 	mark_reg_unknown(env, regs, BPF_REG_0);
15797 	/* ld_abs load up to 32-bit skb data. */
15798 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
15799 	return 0;
15800 }
15801 
15802 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name)
15803 {
15804 	const char *exit_ctx = "At program exit";
15805 	struct tnum enforce_attach_type_range = tnum_unknown;
15806 	const struct bpf_prog *prog = env->prog;
15807 	struct bpf_reg_state *reg;
15808 	struct bpf_retval_range range = retval_range(0, 1);
15809 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
15810 	int err;
15811 	struct bpf_func_state *frame = env->cur_state->frame[0];
15812 	const bool is_subprog = frame->subprogno;
15813 	bool return_32bit = false;
15814 
15815 	/* LSM and struct_ops func-ptr's return type could be "void" */
15816 	if (!is_subprog || frame->in_exception_callback_fn) {
15817 		switch (prog_type) {
15818 		case BPF_PROG_TYPE_LSM:
15819 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
15820 				/* See below, can be 0 or 0-1 depending on hook. */
15821 				break;
15822 			fallthrough;
15823 		case BPF_PROG_TYPE_STRUCT_OPS:
15824 			if (!prog->aux->attach_func_proto->type)
15825 				return 0;
15826 			break;
15827 		default:
15828 			break;
15829 		}
15830 	}
15831 
15832 	/* eBPF calling convention is such that R0 is used
15833 	 * to return the value from eBPF program.
15834 	 * Make sure that it's readable at this time
15835 	 * of bpf_exit, which means that program wrote
15836 	 * something into it earlier
15837 	 */
15838 	err = check_reg_arg(env, regno, SRC_OP);
15839 	if (err)
15840 		return err;
15841 
15842 	if (is_pointer_value(env, regno)) {
15843 		verbose(env, "R%d leaks addr as return value\n", regno);
15844 		return -EACCES;
15845 	}
15846 
15847 	reg = cur_regs(env) + regno;
15848 
15849 	if (frame->in_async_callback_fn) {
15850 		/* enforce return zero from async callbacks like timer */
15851 		exit_ctx = "At async callback return";
15852 		range = retval_range(0, 0);
15853 		goto enforce_retval;
15854 	}
15855 
15856 	if (is_subprog && !frame->in_exception_callback_fn) {
15857 		if (reg->type != SCALAR_VALUE) {
15858 			verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n",
15859 				regno, reg_type_str(env, reg->type));
15860 			return -EINVAL;
15861 		}
15862 		return 0;
15863 	}
15864 
15865 	switch (prog_type) {
15866 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
15867 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
15868 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
15869 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG ||
15870 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
15871 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
15872 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME ||
15873 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
15874 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME ||
15875 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME)
15876 			range = retval_range(1, 1);
15877 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
15878 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
15879 			range = retval_range(0, 3);
15880 		break;
15881 	case BPF_PROG_TYPE_CGROUP_SKB:
15882 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
15883 			range = retval_range(0, 3);
15884 			enforce_attach_type_range = tnum_range(2, 3);
15885 		}
15886 		break;
15887 	case BPF_PROG_TYPE_CGROUP_SOCK:
15888 	case BPF_PROG_TYPE_SOCK_OPS:
15889 	case BPF_PROG_TYPE_CGROUP_DEVICE:
15890 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
15891 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
15892 		break;
15893 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
15894 		if (!env->prog->aux->attach_btf_id)
15895 			return 0;
15896 		range = retval_range(0, 0);
15897 		break;
15898 	case BPF_PROG_TYPE_TRACING:
15899 		switch (env->prog->expected_attach_type) {
15900 		case BPF_TRACE_FENTRY:
15901 		case BPF_TRACE_FEXIT:
15902 			range = retval_range(0, 0);
15903 			break;
15904 		case BPF_TRACE_RAW_TP:
15905 		case BPF_MODIFY_RETURN:
15906 			return 0;
15907 		case BPF_TRACE_ITER:
15908 			break;
15909 		default:
15910 			return -ENOTSUPP;
15911 		}
15912 		break;
15913 	case BPF_PROG_TYPE_SK_LOOKUP:
15914 		range = retval_range(SK_DROP, SK_PASS);
15915 		break;
15916 
15917 	case BPF_PROG_TYPE_LSM:
15918 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
15919 			/* no range found, any return value is allowed */
15920 			if (!get_func_retval_range(env->prog, &range))
15921 				return 0;
15922 			/* no restricted range, any return value is allowed */
15923 			if (range.minval == S32_MIN && range.maxval == S32_MAX)
15924 				return 0;
15925 			return_32bit = true;
15926 		} else if (!env->prog->aux->attach_func_proto->type) {
15927 			/* Make sure programs that attach to void
15928 			 * hooks don't try to modify return value.
15929 			 */
15930 			range = retval_range(1, 1);
15931 		}
15932 		break;
15933 
15934 	case BPF_PROG_TYPE_NETFILTER:
15935 		range = retval_range(NF_DROP, NF_ACCEPT);
15936 		break;
15937 	case BPF_PROG_TYPE_EXT:
15938 		/* freplace program can return anything as its return value
15939 		 * depends on the to-be-replaced kernel func or bpf program.
15940 		 */
15941 	default:
15942 		return 0;
15943 	}
15944 
15945 enforce_retval:
15946 	if (reg->type != SCALAR_VALUE) {
15947 		verbose(env, "%s the register R%d is not a known value (%s)\n",
15948 			exit_ctx, regno, reg_type_str(env, reg->type));
15949 		return -EINVAL;
15950 	}
15951 
15952 	err = mark_chain_precision(env, regno);
15953 	if (err)
15954 		return err;
15955 
15956 	if (!retval_range_within(range, reg, return_32bit)) {
15957 		verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name);
15958 		if (!is_subprog &&
15959 		    prog->expected_attach_type == BPF_LSM_CGROUP &&
15960 		    prog_type == BPF_PROG_TYPE_LSM &&
15961 		    !prog->aux->attach_func_proto->type)
15962 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
15963 		return -EINVAL;
15964 	}
15965 
15966 	if (!tnum_is_unknown(enforce_attach_type_range) &&
15967 	    tnum_in(enforce_attach_type_range, reg->var_off))
15968 		env->prog->enforce_expected_attach_type = 1;
15969 	return 0;
15970 }
15971 
15972 /* non-recursive DFS pseudo code
15973  * 1  procedure DFS-iterative(G,v):
15974  * 2      label v as discovered
15975  * 3      let S be a stack
15976  * 4      S.push(v)
15977  * 5      while S is not empty
15978  * 6            t <- S.peek()
15979  * 7            if t is what we're looking for:
15980  * 8                return t
15981  * 9            for all edges e in G.adjacentEdges(t) do
15982  * 10               if edge e is already labelled
15983  * 11                   continue with the next edge
15984  * 12               w <- G.adjacentVertex(t,e)
15985  * 13               if vertex w is not discovered and not explored
15986  * 14                   label e as tree-edge
15987  * 15                   label w as discovered
15988  * 16                   S.push(w)
15989  * 17                   continue at 5
15990  * 18               else if vertex w is discovered
15991  * 19                   label e as back-edge
15992  * 20               else
15993  * 21                   // vertex w is explored
15994  * 22                   label e as forward- or cross-edge
15995  * 23           label t as explored
15996  * 24           S.pop()
15997  *
15998  * convention:
15999  * 0x10 - discovered
16000  * 0x11 - discovered and fall-through edge labelled
16001  * 0x12 - discovered and fall-through and branch edges labelled
16002  * 0x20 - explored
16003  */
16004 
16005 enum {
16006 	DISCOVERED = 0x10,
16007 	EXPLORED = 0x20,
16008 	FALLTHROUGH = 1,
16009 	BRANCH = 2,
16010 };
16011 
16012 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
16013 {
16014 	env->insn_aux_data[idx].prune_point = true;
16015 }
16016 
16017 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
16018 {
16019 	return env->insn_aux_data[insn_idx].prune_point;
16020 }
16021 
16022 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
16023 {
16024 	env->insn_aux_data[idx].force_checkpoint = true;
16025 }
16026 
16027 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
16028 {
16029 	return env->insn_aux_data[insn_idx].force_checkpoint;
16030 }
16031 
16032 static void mark_calls_callback(struct bpf_verifier_env *env, int idx)
16033 {
16034 	env->insn_aux_data[idx].calls_callback = true;
16035 }
16036 
16037 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx)
16038 {
16039 	return env->insn_aux_data[insn_idx].calls_callback;
16040 }
16041 
16042 enum {
16043 	DONE_EXPLORING = 0,
16044 	KEEP_EXPLORING = 1,
16045 };
16046 
16047 /* t, w, e - match pseudo-code above:
16048  * t - index of current instruction
16049  * w - next instruction
16050  * e - edge
16051  */
16052 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
16053 {
16054 	int *insn_stack = env->cfg.insn_stack;
16055 	int *insn_state = env->cfg.insn_state;
16056 
16057 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
16058 		return DONE_EXPLORING;
16059 
16060 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
16061 		return DONE_EXPLORING;
16062 
16063 	if (w < 0 || w >= env->prog->len) {
16064 		verbose_linfo(env, t, "%d: ", t);
16065 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
16066 		return -EINVAL;
16067 	}
16068 
16069 	if (e == BRANCH) {
16070 		/* mark branch target for state pruning */
16071 		mark_prune_point(env, w);
16072 		mark_jmp_point(env, w);
16073 	}
16074 
16075 	if (insn_state[w] == 0) {
16076 		/* tree-edge */
16077 		insn_state[t] = DISCOVERED | e;
16078 		insn_state[w] = DISCOVERED;
16079 		if (env->cfg.cur_stack >= env->prog->len)
16080 			return -E2BIG;
16081 		insn_stack[env->cfg.cur_stack++] = w;
16082 		return KEEP_EXPLORING;
16083 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
16084 		if (env->bpf_capable)
16085 			return DONE_EXPLORING;
16086 		verbose_linfo(env, t, "%d: ", t);
16087 		verbose_linfo(env, w, "%d: ", w);
16088 		verbose(env, "back-edge from insn %d to %d\n", t, w);
16089 		return -EINVAL;
16090 	} else if (insn_state[w] == EXPLORED) {
16091 		/* forward- or cross-edge */
16092 		insn_state[t] = DISCOVERED | e;
16093 	} else {
16094 		verbose(env, "insn state internal bug\n");
16095 		return -EFAULT;
16096 	}
16097 	return DONE_EXPLORING;
16098 }
16099 
16100 static int visit_func_call_insn(int t, struct bpf_insn *insns,
16101 				struct bpf_verifier_env *env,
16102 				bool visit_callee)
16103 {
16104 	int ret, insn_sz;
16105 
16106 	insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
16107 	ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
16108 	if (ret)
16109 		return ret;
16110 
16111 	mark_prune_point(env, t + insn_sz);
16112 	/* when we exit from subprog, we need to record non-linear history */
16113 	mark_jmp_point(env, t + insn_sz);
16114 
16115 	if (visit_callee) {
16116 		mark_prune_point(env, t);
16117 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
16118 	}
16119 	return ret;
16120 }
16121 
16122 /* Bitmask with 1s for all caller saved registers */
16123 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1)
16124 
16125 /* Return a bitmask specifying which caller saved registers are
16126  * clobbered by a call to a helper *as if* this helper follows
16127  * bpf_fastcall contract:
16128  * - includes R0 if function is non-void;
16129  * - includes R1-R5 if corresponding parameter has is described
16130  *   in the function prototype.
16131  */
16132 static u32 helper_fastcall_clobber_mask(const struct bpf_func_proto *fn)
16133 {
16134 	u32 mask;
16135 	int i;
16136 
16137 	mask = 0;
16138 	if (fn->ret_type != RET_VOID)
16139 		mask |= BIT(BPF_REG_0);
16140 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); ++i)
16141 		if (fn->arg_type[i] != ARG_DONTCARE)
16142 			mask |= BIT(BPF_REG_1 + i);
16143 	return mask;
16144 }
16145 
16146 /* True if do_misc_fixups() replaces calls to helper number 'imm',
16147  * replacement patch is presumed to follow bpf_fastcall contract
16148  * (see mark_fastcall_pattern_for_call() below).
16149  */
16150 static bool verifier_inlines_helper_call(struct bpf_verifier_env *env, s32 imm)
16151 {
16152 	switch (imm) {
16153 #ifdef CONFIG_X86_64
16154 	case BPF_FUNC_get_smp_processor_id:
16155 		return env->prog->jit_requested && bpf_jit_supports_percpu_insn();
16156 #endif
16157 	default:
16158 		return false;
16159 	}
16160 }
16161 
16162 /* Same as helper_fastcall_clobber_mask() but for kfuncs, see comment above */
16163 static u32 kfunc_fastcall_clobber_mask(struct bpf_kfunc_call_arg_meta *meta)
16164 {
16165 	u32 vlen, i, mask;
16166 
16167 	vlen = btf_type_vlen(meta->func_proto);
16168 	mask = 0;
16169 	if (!btf_type_is_void(btf_type_by_id(meta->btf, meta->func_proto->type)))
16170 		mask |= BIT(BPF_REG_0);
16171 	for (i = 0; i < vlen; ++i)
16172 		mask |= BIT(BPF_REG_1 + i);
16173 	return mask;
16174 }
16175 
16176 /* Same as verifier_inlines_helper_call() but for kfuncs, see comment above */
16177 static bool is_fastcall_kfunc_call(struct bpf_kfunc_call_arg_meta *meta)
16178 {
16179 	if (meta->btf == btf_vmlinux)
16180 		return meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
16181 		       meta->func_id == special_kfunc_list[KF_bpf_rdonly_cast];
16182 	return false;
16183 }
16184 
16185 /* LLVM define a bpf_fastcall function attribute.
16186  * This attribute means that function scratches only some of
16187  * the caller saved registers defined by ABI.
16188  * For BPF the set of such registers could be defined as follows:
16189  * - R0 is scratched only if function is non-void;
16190  * - R1-R5 are scratched only if corresponding parameter type is defined
16191  *   in the function prototype.
16192  *
16193  * The contract between kernel and clang allows to simultaneously use
16194  * such functions and maintain backwards compatibility with old
16195  * kernels that don't understand bpf_fastcall calls:
16196  *
16197  * - for bpf_fastcall calls clang allocates registers as-if relevant r0-r5
16198  *   registers are not scratched by the call;
16199  *
16200  * - as a post-processing step, clang visits each bpf_fastcall call and adds
16201  *   spill/fill for every live r0-r5;
16202  *
16203  * - stack offsets used for the spill/fill are allocated as lowest
16204  *   stack offsets in whole function and are not used for any other
16205  *   purposes;
16206  *
16207  * - when kernel loads a program, it looks for such patterns
16208  *   (bpf_fastcall function surrounded by spills/fills) and checks if
16209  *   spill/fill stack offsets are used exclusively in fastcall patterns;
16210  *
16211  * - if so, and if verifier or current JIT inlines the call to the
16212  *   bpf_fastcall function (e.g. a helper call), kernel removes unnecessary
16213  *   spill/fill pairs;
16214  *
16215  * - when old kernel loads a program, presence of spill/fill pairs
16216  *   keeps BPF program valid, albeit slightly less efficient.
16217  *
16218  * For example:
16219  *
16220  *   r1 = 1;
16221  *   r2 = 2;
16222  *   *(u64 *)(r10 - 8)  = r1;            r1 = 1;
16223  *   *(u64 *)(r10 - 16) = r2;            r2 = 2;
16224  *   call %[to_be_inlined]         -->   call %[to_be_inlined]
16225  *   r2 = *(u64 *)(r10 - 16);            r0 = r1;
16226  *   r1 = *(u64 *)(r10 - 8);             r0 += r2;
16227  *   r0 = r1;                            exit;
16228  *   r0 += r2;
16229  *   exit;
16230  *
16231  * The purpose of mark_fastcall_pattern_for_call is to:
16232  * - look for such patterns;
16233  * - mark spill and fill instructions in env->insn_aux_data[*].fastcall_pattern;
16234  * - mark set env->insn_aux_data[*].fastcall_spills_num for call instruction;
16235  * - update env->subprog_info[*]->fastcall_stack_off to find an offset
16236  *   at which bpf_fastcall spill/fill stack slots start;
16237  * - update env->subprog_info[*]->keep_fastcall_stack.
16238  *
16239  * The .fastcall_pattern and .fastcall_stack_off are used by
16240  * check_fastcall_stack_contract() to check if every stack access to
16241  * fastcall spill/fill stack slot originates from spill/fill
16242  * instructions, members of fastcall patterns.
16243  *
16244  * If such condition holds true for a subprogram, fastcall patterns could
16245  * be rewritten by remove_fastcall_spills_fills().
16246  * Otherwise bpf_fastcall patterns are not changed in the subprogram
16247  * (code, presumably, generated by an older clang version).
16248  *
16249  * For example, it is *not* safe to remove spill/fill below:
16250  *
16251  *   r1 = 1;
16252  *   *(u64 *)(r10 - 8)  = r1;            r1 = 1;
16253  *   call %[to_be_inlined]         -->   call %[to_be_inlined]
16254  *   r1 = *(u64 *)(r10 - 8);             r0 = *(u64 *)(r10 - 8);  <---- wrong !!!
16255  *   r0 = *(u64 *)(r10 - 8);             r0 += r1;
16256  *   r0 += r1;                           exit;
16257  *   exit;
16258  */
16259 static void mark_fastcall_pattern_for_call(struct bpf_verifier_env *env,
16260 					   struct bpf_subprog_info *subprog,
16261 					   int insn_idx, s16 lowest_off)
16262 {
16263 	struct bpf_insn *insns = env->prog->insnsi, *stx, *ldx;
16264 	struct bpf_insn *call = &env->prog->insnsi[insn_idx];
16265 	const struct bpf_func_proto *fn;
16266 	u32 clobbered_regs_mask = ALL_CALLER_SAVED_REGS;
16267 	u32 expected_regs_mask;
16268 	bool can_be_inlined = false;
16269 	s16 off;
16270 	int i;
16271 
16272 	if (bpf_helper_call(call)) {
16273 		if (get_helper_proto(env, call->imm, &fn) < 0)
16274 			/* error would be reported later */
16275 			return;
16276 		clobbered_regs_mask = helper_fastcall_clobber_mask(fn);
16277 		can_be_inlined = fn->allow_fastcall &&
16278 				 (verifier_inlines_helper_call(env, call->imm) ||
16279 				  bpf_jit_inlines_helper_call(call->imm));
16280 	}
16281 
16282 	if (bpf_pseudo_kfunc_call(call)) {
16283 		struct bpf_kfunc_call_arg_meta meta;
16284 		int err;
16285 
16286 		err = fetch_kfunc_meta(env, call, &meta, NULL);
16287 		if (err < 0)
16288 			/* error would be reported later */
16289 			return;
16290 
16291 		clobbered_regs_mask = kfunc_fastcall_clobber_mask(&meta);
16292 		can_be_inlined = is_fastcall_kfunc_call(&meta);
16293 	}
16294 
16295 	if (clobbered_regs_mask == ALL_CALLER_SAVED_REGS)
16296 		return;
16297 
16298 	/* e.g. if helper call clobbers r{0,1}, expect r{2,3,4,5} in the pattern */
16299 	expected_regs_mask = ~clobbered_regs_mask & ALL_CALLER_SAVED_REGS;
16300 
16301 	/* match pairs of form:
16302 	 *
16303 	 * *(u64 *)(r10 - Y) = rX   (where Y % 8 == 0)
16304 	 * ...
16305 	 * call %[to_be_inlined]
16306 	 * ...
16307 	 * rX = *(u64 *)(r10 - Y)
16308 	 */
16309 	for (i = 1, off = lowest_off; i <= ARRAY_SIZE(caller_saved); ++i, off += BPF_REG_SIZE) {
16310 		if (insn_idx - i < 0 || insn_idx + i >= env->prog->len)
16311 			break;
16312 		stx = &insns[insn_idx - i];
16313 		ldx = &insns[insn_idx + i];
16314 		/* must be a stack spill/fill pair */
16315 		if (stx->code != (BPF_STX | BPF_MEM | BPF_DW) ||
16316 		    ldx->code != (BPF_LDX | BPF_MEM | BPF_DW) ||
16317 		    stx->dst_reg != BPF_REG_10 ||
16318 		    ldx->src_reg != BPF_REG_10)
16319 			break;
16320 		/* must be a spill/fill for the same reg */
16321 		if (stx->src_reg != ldx->dst_reg)
16322 			break;
16323 		/* must be one of the previously unseen registers */
16324 		if ((BIT(stx->src_reg) & expected_regs_mask) == 0)
16325 			break;
16326 		/* must be a spill/fill for the same expected offset,
16327 		 * no need to check offset alignment, BPF_DW stack access
16328 		 * is always 8-byte aligned.
16329 		 */
16330 		if (stx->off != off || ldx->off != off)
16331 			break;
16332 		expected_regs_mask &= ~BIT(stx->src_reg);
16333 		env->insn_aux_data[insn_idx - i].fastcall_pattern = 1;
16334 		env->insn_aux_data[insn_idx + i].fastcall_pattern = 1;
16335 	}
16336 	if (i == 1)
16337 		return;
16338 
16339 	/* Conditionally set 'fastcall_spills_num' to allow forward
16340 	 * compatibility when more helper functions are marked as
16341 	 * bpf_fastcall at compile time than current kernel supports, e.g:
16342 	 *
16343 	 *   1: *(u64 *)(r10 - 8) = r1
16344 	 *   2: call A                  ;; assume A is bpf_fastcall for current kernel
16345 	 *   3: r1 = *(u64 *)(r10 - 8)
16346 	 *   4: *(u64 *)(r10 - 8) = r1
16347 	 *   5: call B                  ;; assume B is not bpf_fastcall for current kernel
16348 	 *   6: r1 = *(u64 *)(r10 - 8)
16349 	 *
16350 	 * There is no need to block bpf_fastcall rewrite for such program.
16351 	 * Set 'fastcall_pattern' for both calls to keep check_fastcall_stack_contract() happy,
16352 	 * don't set 'fastcall_spills_num' for call B so that remove_fastcall_spills_fills()
16353 	 * does not remove spill/fill pair {4,6}.
16354 	 */
16355 	if (can_be_inlined)
16356 		env->insn_aux_data[insn_idx].fastcall_spills_num = i - 1;
16357 	else
16358 		subprog->keep_fastcall_stack = 1;
16359 	subprog->fastcall_stack_off = min(subprog->fastcall_stack_off, off);
16360 }
16361 
16362 static int mark_fastcall_patterns(struct bpf_verifier_env *env)
16363 {
16364 	struct bpf_subprog_info *subprog = env->subprog_info;
16365 	struct bpf_insn *insn;
16366 	s16 lowest_off;
16367 	int s, i;
16368 
16369 	for (s = 0; s < env->subprog_cnt; ++s, ++subprog) {
16370 		/* find lowest stack spill offset used in this subprog */
16371 		lowest_off = 0;
16372 		for (i = subprog->start; i < (subprog + 1)->start; ++i) {
16373 			insn = env->prog->insnsi + i;
16374 			if (insn->code != (BPF_STX | BPF_MEM | BPF_DW) ||
16375 			    insn->dst_reg != BPF_REG_10)
16376 				continue;
16377 			lowest_off = min(lowest_off, insn->off);
16378 		}
16379 		/* use this offset to find fastcall patterns */
16380 		for (i = subprog->start; i < (subprog + 1)->start; ++i) {
16381 			insn = env->prog->insnsi + i;
16382 			if (insn->code != (BPF_JMP | BPF_CALL))
16383 				continue;
16384 			mark_fastcall_pattern_for_call(env, subprog, i, lowest_off);
16385 		}
16386 	}
16387 	return 0;
16388 }
16389 
16390 /* Visits the instruction at index t and returns one of the following:
16391  *  < 0 - an error occurred
16392  *  DONE_EXPLORING - the instruction was fully explored
16393  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
16394  */
16395 static int visit_insn(int t, struct bpf_verifier_env *env)
16396 {
16397 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
16398 	int ret, off, insn_sz;
16399 
16400 	if (bpf_pseudo_func(insn))
16401 		return visit_func_call_insn(t, insns, env, true);
16402 
16403 	/* All non-branch instructions have a single fall-through edge. */
16404 	if (BPF_CLASS(insn->code) != BPF_JMP &&
16405 	    BPF_CLASS(insn->code) != BPF_JMP32) {
16406 		insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
16407 		return push_insn(t, t + insn_sz, FALLTHROUGH, env);
16408 	}
16409 
16410 	switch (BPF_OP(insn->code)) {
16411 	case BPF_EXIT:
16412 		return DONE_EXPLORING;
16413 
16414 	case BPF_CALL:
16415 		if (is_async_callback_calling_insn(insn))
16416 			/* Mark this call insn as a prune point to trigger
16417 			 * is_state_visited() check before call itself is
16418 			 * processed by __check_func_call(). Otherwise new
16419 			 * async state will be pushed for further exploration.
16420 			 */
16421 			mark_prune_point(env, t);
16422 		/* For functions that invoke callbacks it is not known how many times
16423 		 * callback would be called. Verifier models callback calling functions
16424 		 * by repeatedly visiting callback bodies and returning to origin call
16425 		 * instruction.
16426 		 * In order to stop such iteration verifier needs to identify when a
16427 		 * state identical some state from a previous iteration is reached.
16428 		 * Check below forces creation of checkpoint before callback calling
16429 		 * instruction to allow search for such identical states.
16430 		 */
16431 		if (is_sync_callback_calling_insn(insn)) {
16432 			mark_calls_callback(env, t);
16433 			mark_force_checkpoint(env, t);
16434 			mark_prune_point(env, t);
16435 			mark_jmp_point(env, t);
16436 		}
16437 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
16438 			struct bpf_kfunc_call_arg_meta meta;
16439 
16440 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
16441 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
16442 				mark_prune_point(env, t);
16443 				/* Checking and saving state checkpoints at iter_next() call
16444 				 * is crucial for fast convergence of open-coded iterator loop
16445 				 * logic, so we need to force it. If we don't do that,
16446 				 * is_state_visited() might skip saving a checkpoint, causing
16447 				 * unnecessarily long sequence of not checkpointed
16448 				 * instructions and jumps, leading to exhaustion of jump
16449 				 * history buffer, and potentially other undesired outcomes.
16450 				 * It is expected that with correct open-coded iterators
16451 				 * convergence will happen quickly, so we don't run a risk of
16452 				 * exhausting memory.
16453 				 */
16454 				mark_force_checkpoint(env, t);
16455 			}
16456 		}
16457 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
16458 
16459 	case BPF_JA:
16460 		if (BPF_SRC(insn->code) != BPF_K)
16461 			return -EINVAL;
16462 
16463 		if (BPF_CLASS(insn->code) == BPF_JMP)
16464 			off = insn->off;
16465 		else
16466 			off = insn->imm;
16467 
16468 		/* unconditional jump with single edge */
16469 		ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
16470 		if (ret)
16471 			return ret;
16472 
16473 		mark_prune_point(env, t + off + 1);
16474 		mark_jmp_point(env, t + off + 1);
16475 
16476 		return ret;
16477 
16478 	default:
16479 		/* conditional jump with two edges */
16480 		mark_prune_point(env, t);
16481 		if (is_may_goto_insn(insn))
16482 			mark_force_checkpoint(env, t);
16483 
16484 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
16485 		if (ret)
16486 			return ret;
16487 
16488 		return push_insn(t, t + insn->off + 1, BRANCH, env);
16489 	}
16490 }
16491 
16492 /* non-recursive depth-first-search to detect loops in BPF program
16493  * loop == back-edge in directed graph
16494  */
16495 static int check_cfg(struct bpf_verifier_env *env)
16496 {
16497 	int insn_cnt = env->prog->len;
16498 	int *insn_stack, *insn_state;
16499 	int ex_insn_beg, i, ret = 0;
16500 	bool ex_done = false;
16501 
16502 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
16503 	if (!insn_state)
16504 		return -ENOMEM;
16505 
16506 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
16507 	if (!insn_stack) {
16508 		kvfree(insn_state);
16509 		return -ENOMEM;
16510 	}
16511 
16512 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
16513 	insn_stack[0] = 0; /* 0 is the first instruction */
16514 	env->cfg.cur_stack = 1;
16515 
16516 walk_cfg:
16517 	while (env->cfg.cur_stack > 0) {
16518 		int t = insn_stack[env->cfg.cur_stack - 1];
16519 
16520 		ret = visit_insn(t, env);
16521 		switch (ret) {
16522 		case DONE_EXPLORING:
16523 			insn_state[t] = EXPLORED;
16524 			env->cfg.cur_stack--;
16525 			break;
16526 		case KEEP_EXPLORING:
16527 			break;
16528 		default:
16529 			if (ret > 0) {
16530 				verbose(env, "visit_insn internal bug\n");
16531 				ret = -EFAULT;
16532 			}
16533 			goto err_free;
16534 		}
16535 	}
16536 
16537 	if (env->cfg.cur_stack < 0) {
16538 		verbose(env, "pop stack internal bug\n");
16539 		ret = -EFAULT;
16540 		goto err_free;
16541 	}
16542 
16543 	if (env->exception_callback_subprog && !ex_done) {
16544 		ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start;
16545 
16546 		insn_state[ex_insn_beg] = DISCOVERED;
16547 		insn_stack[0] = ex_insn_beg;
16548 		env->cfg.cur_stack = 1;
16549 		ex_done = true;
16550 		goto walk_cfg;
16551 	}
16552 
16553 	for (i = 0; i < insn_cnt; i++) {
16554 		struct bpf_insn *insn = &env->prog->insnsi[i];
16555 
16556 		if (insn_state[i] != EXPLORED) {
16557 			verbose(env, "unreachable insn %d\n", i);
16558 			ret = -EINVAL;
16559 			goto err_free;
16560 		}
16561 		if (bpf_is_ldimm64(insn)) {
16562 			if (insn_state[i + 1] != 0) {
16563 				verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
16564 				ret = -EINVAL;
16565 				goto err_free;
16566 			}
16567 			i++; /* skip second half of ldimm64 */
16568 		}
16569 	}
16570 	ret = 0; /* cfg looks good */
16571 
16572 err_free:
16573 	kvfree(insn_state);
16574 	kvfree(insn_stack);
16575 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
16576 	return ret;
16577 }
16578 
16579 static int check_abnormal_return(struct bpf_verifier_env *env)
16580 {
16581 	int i;
16582 
16583 	for (i = 1; i < env->subprog_cnt; i++) {
16584 		if (env->subprog_info[i].has_ld_abs) {
16585 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
16586 			return -EINVAL;
16587 		}
16588 		if (env->subprog_info[i].has_tail_call) {
16589 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
16590 			return -EINVAL;
16591 		}
16592 	}
16593 	return 0;
16594 }
16595 
16596 /* The minimum supported BTF func info size */
16597 #define MIN_BPF_FUNCINFO_SIZE	8
16598 #define MAX_FUNCINFO_REC_SIZE	252
16599 
16600 static int check_btf_func_early(struct bpf_verifier_env *env,
16601 				const union bpf_attr *attr,
16602 				bpfptr_t uattr)
16603 {
16604 	u32 krec_size = sizeof(struct bpf_func_info);
16605 	const struct btf_type *type, *func_proto;
16606 	u32 i, nfuncs, urec_size, min_size;
16607 	struct bpf_func_info *krecord;
16608 	struct bpf_prog *prog;
16609 	const struct btf *btf;
16610 	u32 prev_offset = 0;
16611 	bpfptr_t urecord;
16612 	int ret = -ENOMEM;
16613 
16614 	nfuncs = attr->func_info_cnt;
16615 	if (!nfuncs) {
16616 		if (check_abnormal_return(env))
16617 			return -EINVAL;
16618 		return 0;
16619 	}
16620 
16621 	urec_size = attr->func_info_rec_size;
16622 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
16623 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
16624 	    urec_size % sizeof(u32)) {
16625 		verbose(env, "invalid func info rec size %u\n", urec_size);
16626 		return -EINVAL;
16627 	}
16628 
16629 	prog = env->prog;
16630 	btf = prog->aux->btf;
16631 
16632 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
16633 	min_size = min_t(u32, krec_size, urec_size);
16634 
16635 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
16636 	if (!krecord)
16637 		return -ENOMEM;
16638 
16639 	for (i = 0; i < nfuncs; i++) {
16640 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
16641 		if (ret) {
16642 			if (ret == -E2BIG) {
16643 				verbose(env, "nonzero tailing record in func info");
16644 				/* set the size kernel expects so loader can zero
16645 				 * out the rest of the record.
16646 				 */
16647 				if (copy_to_bpfptr_offset(uattr,
16648 							  offsetof(union bpf_attr, func_info_rec_size),
16649 							  &min_size, sizeof(min_size)))
16650 					ret = -EFAULT;
16651 			}
16652 			goto err_free;
16653 		}
16654 
16655 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
16656 			ret = -EFAULT;
16657 			goto err_free;
16658 		}
16659 
16660 		/* check insn_off */
16661 		ret = -EINVAL;
16662 		if (i == 0) {
16663 			if (krecord[i].insn_off) {
16664 				verbose(env,
16665 					"nonzero insn_off %u for the first func info record",
16666 					krecord[i].insn_off);
16667 				goto err_free;
16668 			}
16669 		} else if (krecord[i].insn_off <= prev_offset) {
16670 			verbose(env,
16671 				"same or smaller insn offset (%u) than previous func info record (%u)",
16672 				krecord[i].insn_off, prev_offset);
16673 			goto err_free;
16674 		}
16675 
16676 		/* check type_id */
16677 		type = btf_type_by_id(btf, krecord[i].type_id);
16678 		if (!type || !btf_type_is_func(type)) {
16679 			verbose(env, "invalid type id %d in func info",
16680 				krecord[i].type_id);
16681 			goto err_free;
16682 		}
16683 
16684 		func_proto = btf_type_by_id(btf, type->type);
16685 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
16686 			/* btf_func_check() already verified it during BTF load */
16687 			goto err_free;
16688 
16689 		prev_offset = krecord[i].insn_off;
16690 		bpfptr_add(&urecord, urec_size);
16691 	}
16692 
16693 	prog->aux->func_info = krecord;
16694 	prog->aux->func_info_cnt = nfuncs;
16695 	return 0;
16696 
16697 err_free:
16698 	kvfree(krecord);
16699 	return ret;
16700 }
16701 
16702 static int check_btf_func(struct bpf_verifier_env *env,
16703 			  const union bpf_attr *attr,
16704 			  bpfptr_t uattr)
16705 {
16706 	const struct btf_type *type, *func_proto, *ret_type;
16707 	u32 i, nfuncs, urec_size;
16708 	struct bpf_func_info *krecord;
16709 	struct bpf_func_info_aux *info_aux = NULL;
16710 	struct bpf_prog *prog;
16711 	const struct btf *btf;
16712 	bpfptr_t urecord;
16713 	bool scalar_return;
16714 	int ret = -ENOMEM;
16715 
16716 	nfuncs = attr->func_info_cnt;
16717 	if (!nfuncs) {
16718 		if (check_abnormal_return(env))
16719 			return -EINVAL;
16720 		return 0;
16721 	}
16722 	if (nfuncs != env->subprog_cnt) {
16723 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
16724 		return -EINVAL;
16725 	}
16726 
16727 	urec_size = attr->func_info_rec_size;
16728 
16729 	prog = env->prog;
16730 	btf = prog->aux->btf;
16731 
16732 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
16733 
16734 	krecord = prog->aux->func_info;
16735 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
16736 	if (!info_aux)
16737 		return -ENOMEM;
16738 
16739 	for (i = 0; i < nfuncs; i++) {
16740 		/* check insn_off */
16741 		ret = -EINVAL;
16742 
16743 		if (env->subprog_info[i].start != krecord[i].insn_off) {
16744 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
16745 			goto err_free;
16746 		}
16747 
16748 		/* Already checked type_id */
16749 		type = btf_type_by_id(btf, krecord[i].type_id);
16750 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
16751 		/* Already checked func_proto */
16752 		func_proto = btf_type_by_id(btf, type->type);
16753 
16754 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
16755 		scalar_return =
16756 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
16757 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
16758 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
16759 			goto err_free;
16760 		}
16761 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
16762 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
16763 			goto err_free;
16764 		}
16765 
16766 		bpfptr_add(&urecord, urec_size);
16767 	}
16768 
16769 	prog->aux->func_info_aux = info_aux;
16770 	return 0;
16771 
16772 err_free:
16773 	kfree(info_aux);
16774 	return ret;
16775 }
16776 
16777 static void adjust_btf_func(struct bpf_verifier_env *env)
16778 {
16779 	struct bpf_prog_aux *aux = env->prog->aux;
16780 	int i;
16781 
16782 	if (!aux->func_info)
16783 		return;
16784 
16785 	/* func_info is not available for hidden subprogs */
16786 	for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++)
16787 		aux->func_info[i].insn_off = env->subprog_info[i].start;
16788 }
16789 
16790 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
16791 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
16792 
16793 static int check_btf_line(struct bpf_verifier_env *env,
16794 			  const union bpf_attr *attr,
16795 			  bpfptr_t uattr)
16796 {
16797 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
16798 	struct bpf_subprog_info *sub;
16799 	struct bpf_line_info *linfo;
16800 	struct bpf_prog *prog;
16801 	const struct btf *btf;
16802 	bpfptr_t ulinfo;
16803 	int err;
16804 
16805 	nr_linfo = attr->line_info_cnt;
16806 	if (!nr_linfo)
16807 		return 0;
16808 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
16809 		return -EINVAL;
16810 
16811 	rec_size = attr->line_info_rec_size;
16812 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
16813 	    rec_size > MAX_LINEINFO_REC_SIZE ||
16814 	    rec_size & (sizeof(u32) - 1))
16815 		return -EINVAL;
16816 
16817 	/* Need to zero it in case the userspace may
16818 	 * pass in a smaller bpf_line_info object.
16819 	 */
16820 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
16821 			 GFP_KERNEL | __GFP_NOWARN);
16822 	if (!linfo)
16823 		return -ENOMEM;
16824 
16825 	prog = env->prog;
16826 	btf = prog->aux->btf;
16827 
16828 	s = 0;
16829 	sub = env->subprog_info;
16830 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
16831 	expected_size = sizeof(struct bpf_line_info);
16832 	ncopy = min_t(u32, expected_size, rec_size);
16833 	for (i = 0; i < nr_linfo; i++) {
16834 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
16835 		if (err) {
16836 			if (err == -E2BIG) {
16837 				verbose(env, "nonzero tailing record in line_info");
16838 				if (copy_to_bpfptr_offset(uattr,
16839 							  offsetof(union bpf_attr, line_info_rec_size),
16840 							  &expected_size, sizeof(expected_size)))
16841 					err = -EFAULT;
16842 			}
16843 			goto err_free;
16844 		}
16845 
16846 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
16847 			err = -EFAULT;
16848 			goto err_free;
16849 		}
16850 
16851 		/*
16852 		 * Check insn_off to ensure
16853 		 * 1) strictly increasing AND
16854 		 * 2) bounded by prog->len
16855 		 *
16856 		 * The linfo[0].insn_off == 0 check logically falls into
16857 		 * the later "missing bpf_line_info for func..." case
16858 		 * because the first linfo[0].insn_off must be the
16859 		 * first sub also and the first sub must have
16860 		 * subprog_info[0].start == 0.
16861 		 */
16862 		if ((i && linfo[i].insn_off <= prev_offset) ||
16863 		    linfo[i].insn_off >= prog->len) {
16864 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
16865 				i, linfo[i].insn_off, prev_offset,
16866 				prog->len);
16867 			err = -EINVAL;
16868 			goto err_free;
16869 		}
16870 
16871 		if (!prog->insnsi[linfo[i].insn_off].code) {
16872 			verbose(env,
16873 				"Invalid insn code at line_info[%u].insn_off\n",
16874 				i);
16875 			err = -EINVAL;
16876 			goto err_free;
16877 		}
16878 
16879 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
16880 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
16881 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
16882 			err = -EINVAL;
16883 			goto err_free;
16884 		}
16885 
16886 		if (s != env->subprog_cnt) {
16887 			if (linfo[i].insn_off == sub[s].start) {
16888 				sub[s].linfo_idx = i;
16889 				s++;
16890 			} else if (sub[s].start < linfo[i].insn_off) {
16891 				verbose(env, "missing bpf_line_info for func#%u\n", s);
16892 				err = -EINVAL;
16893 				goto err_free;
16894 			}
16895 		}
16896 
16897 		prev_offset = linfo[i].insn_off;
16898 		bpfptr_add(&ulinfo, rec_size);
16899 	}
16900 
16901 	if (s != env->subprog_cnt) {
16902 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
16903 			env->subprog_cnt - s, s);
16904 		err = -EINVAL;
16905 		goto err_free;
16906 	}
16907 
16908 	prog->aux->linfo = linfo;
16909 	prog->aux->nr_linfo = nr_linfo;
16910 
16911 	return 0;
16912 
16913 err_free:
16914 	kvfree(linfo);
16915 	return err;
16916 }
16917 
16918 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
16919 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
16920 
16921 static int check_core_relo(struct bpf_verifier_env *env,
16922 			   const union bpf_attr *attr,
16923 			   bpfptr_t uattr)
16924 {
16925 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
16926 	struct bpf_core_relo core_relo = {};
16927 	struct bpf_prog *prog = env->prog;
16928 	const struct btf *btf = prog->aux->btf;
16929 	struct bpf_core_ctx ctx = {
16930 		.log = &env->log,
16931 		.btf = btf,
16932 	};
16933 	bpfptr_t u_core_relo;
16934 	int err;
16935 
16936 	nr_core_relo = attr->core_relo_cnt;
16937 	if (!nr_core_relo)
16938 		return 0;
16939 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
16940 		return -EINVAL;
16941 
16942 	rec_size = attr->core_relo_rec_size;
16943 	if (rec_size < MIN_CORE_RELO_SIZE ||
16944 	    rec_size > MAX_CORE_RELO_SIZE ||
16945 	    rec_size % sizeof(u32))
16946 		return -EINVAL;
16947 
16948 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
16949 	expected_size = sizeof(struct bpf_core_relo);
16950 	ncopy = min_t(u32, expected_size, rec_size);
16951 
16952 	/* Unlike func_info and line_info, copy and apply each CO-RE
16953 	 * relocation record one at a time.
16954 	 */
16955 	for (i = 0; i < nr_core_relo; i++) {
16956 		/* future proofing when sizeof(bpf_core_relo) changes */
16957 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
16958 		if (err) {
16959 			if (err == -E2BIG) {
16960 				verbose(env, "nonzero tailing record in core_relo");
16961 				if (copy_to_bpfptr_offset(uattr,
16962 							  offsetof(union bpf_attr, core_relo_rec_size),
16963 							  &expected_size, sizeof(expected_size)))
16964 					err = -EFAULT;
16965 			}
16966 			break;
16967 		}
16968 
16969 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
16970 			err = -EFAULT;
16971 			break;
16972 		}
16973 
16974 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
16975 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
16976 				i, core_relo.insn_off, prog->len);
16977 			err = -EINVAL;
16978 			break;
16979 		}
16980 
16981 		err = bpf_core_apply(&ctx, &core_relo, i,
16982 				     &prog->insnsi[core_relo.insn_off / 8]);
16983 		if (err)
16984 			break;
16985 		bpfptr_add(&u_core_relo, rec_size);
16986 	}
16987 	return err;
16988 }
16989 
16990 static int check_btf_info_early(struct bpf_verifier_env *env,
16991 				const union bpf_attr *attr,
16992 				bpfptr_t uattr)
16993 {
16994 	struct btf *btf;
16995 	int err;
16996 
16997 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
16998 		if (check_abnormal_return(env))
16999 			return -EINVAL;
17000 		return 0;
17001 	}
17002 
17003 	btf = btf_get_by_fd(attr->prog_btf_fd);
17004 	if (IS_ERR(btf))
17005 		return PTR_ERR(btf);
17006 	if (btf_is_kernel(btf)) {
17007 		btf_put(btf);
17008 		return -EACCES;
17009 	}
17010 	env->prog->aux->btf = btf;
17011 
17012 	err = check_btf_func_early(env, attr, uattr);
17013 	if (err)
17014 		return err;
17015 	return 0;
17016 }
17017 
17018 static int check_btf_info(struct bpf_verifier_env *env,
17019 			  const union bpf_attr *attr,
17020 			  bpfptr_t uattr)
17021 {
17022 	int err;
17023 
17024 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
17025 		if (check_abnormal_return(env))
17026 			return -EINVAL;
17027 		return 0;
17028 	}
17029 
17030 	err = check_btf_func(env, attr, uattr);
17031 	if (err)
17032 		return err;
17033 
17034 	err = check_btf_line(env, attr, uattr);
17035 	if (err)
17036 		return err;
17037 
17038 	err = check_core_relo(env, attr, uattr);
17039 	if (err)
17040 		return err;
17041 
17042 	return 0;
17043 }
17044 
17045 /* check %cur's range satisfies %old's */
17046 static bool range_within(const struct bpf_reg_state *old,
17047 			 const struct bpf_reg_state *cur)
17048 {
17049 	return old->umin_value <= cur->umin_value &&
17050 	       old->umax_value >= cur->umax_value &&
17051 	       old->smin_value <= cur->smin_value &&
17052 	       old->smax_value >= cur->smax_value &&
17053 	       old->u32_min_value <= cur->u32_min_value &&
17054 	       old->u32_max_value >= cur->u32_max_value &&
17055 	       old->s32_min_value <= cur->s32_min_value &&
17056 	       old->s32_max_value >= cur->s32_max_value;
17057 }
17058 
17059 /* If in the old state two registers had the same id, then they need to have
17060  * the same id in the new state as well.  But that id could be different from
17061  * the old state, so we need to track the mapping from old to new ids.
17062  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
17063  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
17064  * regs with a different old id could still have new id 9, we don't care about
17065  * that.
17066  * So we look through our idmap to see if this old id has been seen before.  If
17067  * so, we require the new id to match; otherwise, we add the id pair to the map.
17068  */
17069 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
17070 {
17071 	struct bpf_id_pair *map = idmap->map;
17072 	unsigned int i;
17073 
17074 	/* either both IDs should be set or both should be zero */
17075 	if (!!old_id != !!cur_id)
17076 		return false;
17077 
17078 	if (old_id == 0) /* cur_id == 0 as well */
17079 		return true;
17080 
17081 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
17082 		if (!map[i].old) {
17083 			/* Reached an empty slot; haven't seen this id before */
17084 			map[i].old = old_id;
17085 			map[i].cur = cur_id;
17086 			return true;
17087 		}
17088 		if (map[i].old == old_id)
17089 			return map[i].cur == cur_id;
17090 		if (map[i].cur == cur_id)
17091 			return false;
17092 	}
17093 	/* We ran out of idmap slots, which should be impossible */
17094 	WARN_ON_ONCE(1);
17095 	return false;
17096 }
17097 
17098 /* Similar to check_ids(), but allocate a unique temporary ID
17099  * for 'old_id' or 'cur_id' of zero.
17100  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
17101  */
17102 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
17103 {
17104 	old_id = old_id ? old_id : ++idmap->tmp_id_gen;
17105 	cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
17106 
17107 	return check_ids(old_id, cur_id, idmap);
17108 }
17109 
17110 static void clean_func_state(struct bpf_verifier_env *env,
17111 			     struct bpf_func_state *st)
17112 {
17113 	enum bpf_reg_liveness live;
17114 	int i, j;
17115 
17116 	for (i = 0; i < BPF_REG_FP; i++) {
17117 		live = st->regs[i].live;
17118 		/* liveness must not touch this register anymore */
17119 		st->regs[i].live |= REG_LIVE_DONE;
17120 		if (!(live & REG_LIVE_READ))
17121 			/* since the register is unused, clear its state
17122 			 * to make further comparison simpler
17123 			 */
17124 			__mark_reg_not_init(env, &st->regs[i]);
17125 	}
17126 
17127 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
17128 		live = st->stack[i].spilled_ptr.live;
17129 		/* liveness must not touch this stack slot anymore */
17130 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
17131 		if (!(live & REG_LIVE_READ)) {
17132 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
17133 			for (j = 0; j < BPF_REG_SIZE; j++)
17134 				st->stack[i].slot_type[j] = STACK_INVALID;
17135 		}
17136 	}
17137 }
17138 
17139 static void clean_verifier_state(struct bpf_verifier_env *env,
17140 				 struct bpf_verifier_state *st)
17141 {
17142 	int i;
17143 
17144 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
17145 		/* all regs in this state in all frames were already marked */
17146 		return;
17147 
17148 	for (i = 0; i <= st->curframe; i++)
17149 		clean_func_state(env, st->frame[i]);
17150 }
17151 
17152 /* the parentage chains form a tree.
17153  * the verifier states are added to state lists at given insn and
17154  * pushed into state stack for future exploration.
17155  * when the verifier reaches bpf_exit insn some of the verifer states
17156  * stored in the state lists have their final liveness state already,
17157  * but a lot of states will get revised from liveness point of view when
17158  * the verifier explores other branches.
17159  * Example:
17160  * 1: r0 = 1
17161  * 2: if r1 == 100 goto pc+1
17162  * 3: r0 = 2
17163  * 4: exit
17164  * when the verifier reaches exit insn the register r0 in the state list of
17165  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
17166  * of insn 2 and goes exploring further. At the insn 4 it will walk the
17167  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
17168  *
17169  * Since the verifier pushes the branch states as it sees them while exploring
17170  * the program the condition of walking the branch instruction for the second
17171  * time means that all states below this branch were already explored and
17172  * their final liveness marks are already propagated.
17173  * Hence when the verifier completes the search of state list in is_state_visited()
17174  * we can call this clean_live_states() function to mark all liveness states
17175  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
17176  * will not be used.
17177  * This function also clears the registers and stack for states that !READ
17178  * to simplify state merging.
17179  *
17180  * Important note here that walking the same branch instruction in the callee
17181  * doesn't meant that the states are DONE. The verifier has to compare
17182  * the callsites
17183  */
17184 static void clean_live_states(struct bpf_verifier_env *env, int insn,
17185 			      struct bpf_verifier_state *cur)
17186 {
17187 	struct bpf_verifier_state_list *sl;
17188 
17189 	sl = *explored_state(env, insn);
17190 	while (sl) {
17191 		if (sl->state.branches)
17192 			goto next;
17193 		if (sl->state.insn_idx != insn ||
17194 		    !same_callsites(&sl->state, cur))
17195 			goto next;
17196 		clean_verifier_state(env, &sl->state);
17197 next:
17198 		sl = sl->next;
17199 	}
17200 }
17201 
17202 static bool regs_exact(const struct bpf_reg_state *rold,
17203 		       const struct bpf_reg_state *rcur,
17204 		       struct bpf_idmap *idmap)
17205 {
17206 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
17207 	       check_ids(rold->id, rcur->id, idmap) &&
17208 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
17209 }
17210 
17211 enum exact_level {
17212 	NOT_EXACT,
17213 	EXACT,
17214 	RANGE_WITHIN
17215 };
17216 
17217 /* Returns true if (rold safe implies rcur safe) */
17218 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
17219 		    struct bpf_reg_state *rcur, struct bpf_idmap *idmap,
17220 		    enum exact_level exact)
17221 {
17222 	if (exact == EXACT)
17223 		return regs_exact(rold, rcur, idmap);
17224 
17225 	if (!(rold->live & REG_LIVE_READ) && exact == NOT_EXACT)
17226 		/* explored state didn't use this */
17227 		return true;
17228 	if (rold->type == NOT_INIT) {
17229 		if (exact == NOT_EXACT || rcur->type == NOT_INIT)
17230 			/* explored state can't have used this */
17231 			return true;
17232 	}
17233 
17234 	/* Enforce that register types have to match exactly, including their
17235 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
17236 	 * rule.
17237 	 *
17238 	 * One can make a point that using a pointer register as unbounded
17239 	 * SCALAR would be technically acceptable, but this could lead to
17240 	 * pointer leaks because scalars are allowed to leak while pointers
17241 	 * are not. We could make this safe in special cases if root is
17242 	 * calling us, but it's probably not worth the hassle.
17243 	 *
17244 	 * Also, register types that are *not* MAYBE_NULL could technically be
17245 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
17246 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
17247 	 * to the same map).
17248 	 * However, if the old MAYBE_NULL register then got NULL checked,
17249 	 * doing so could have affected others with the same id, and we can't
17250 	 * check for that because we lost the id when we converted to
17251 	 * a non-MAYBE_NULL variant.
17252 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
17253 	 * non-MAYBE_NULL registers as well.
17254 	 */
17255 	if (rold->type != rcur->type)
17256 		return false;
17257 
17258 	switch (base_type(rold->type)) {
17259 	case SCALAR_VALUE:
17260 		if (env->explore_alu_limits) {
17261 			/* explore_alu_limits disables tnum_in() and range_within()
17262 			 * logic and requires everything to be strict
17263 			 */
17264 			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
17265 			       check_scalar_ids(rold->id, rcur->id, idmap);
17266 		}
17267 		if (!rold->precise && exact == NOT_EXACT)
17268 			return true;
17269 		if ((rold->id & BPF_ADD_CONST) != (rcur->id & BPF_ADD_CONST))
17270 			return false;
17271 		if ((rold->id & BPF_ADD_CONST) && (rold->off != rcur->off))
17272 			return false;
17273 		/* Why check_ids() for scalar registers?
17274 		 *
17275 		 * Consider the following BPF code:
17276 		 *   1: r6 = ... unbound scalar, ID=a ...
17277 		 *   2: r7 = ... unbound scalar, ID=b ...
17278 		 *   3: if (r6 > r7) goto +1
17279 		 *   4: r6 = r7
17280 		 *   5: if (r6 > X) goto ...
17281 		 *   6: ... memory operation using r7 ...
17282 		 *
17283 		 * First verification path is [1-6]:
17284 		 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
17285 		 * - at (5) r6 would be marked <= X, sync_linked_regs() would also mark
17286 		 *   r7 <= X, because r6 and r7 share same id.
17287 		 * Next verification path is [1-4, 6].
17288 		 *
17289 		 * Instruction (6) would be reached in two states:
17290 		 *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
17291 		 *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
17292 		 *
17293 		 * Use check_ids() to distinguish these states.
17294 		 * ---
17295 		 * Also verify that new value satisfies old value range knowledge.
17296 		 */
17297 		return range_within(rold, rcur) &&
17298 		       tnum_in(rold->var_off, rcur->var_off) &&
17299 		       check_scalar_ids(rold->id, rcur->id, idmap);
17300 	case PTR_TO_MAP_KEY:
17301 	case PTR_TO_MAP_VALUE:
17302 	case PTR_TO_MEM:
17303 	case PTR_TO_BUF:
17304 	case PTR_TO_TP_BUFFER:
17305 		/* If the new min/max/var_off satisfy the old ones and
17306 		 * everything else matches, we are OK.
17307 		 */
17308 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
17309 		       range_within(rold, rcur) &&
17310 		       tnum_in(rold->var_off, rcur->var_off) &&
17311 		       check_ids(rold->id, rcur->id, idmap) &&
17312 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
17313 	case PTR_TO_PACKET_META:
17314 	case PTR_TO_PACKET:
17315 		/* We must have at least as much range as the old ptr
17316 		 * did, so that any accesses which were safe before are
17317 		 * still safe.  This is true even if old range < old off,
17318 		 * since someone could have accessed through (ptr - k), or
17319 		 * even done ptr -= k in a register, to get a safe access.
17320 		 */
17321 		if (rold->range > rcur->range)
17322 			return false;
17323 		/* If the offsets don't match, we can't trust our alignment;
17324 		 * nor can we be sure that we won't fall out of range.
17325 		 */
17326 		if (rold->off != rcur->off)
17327 			return false;
17328 		/* id relations must be preserved */
17329 		if (!check_ids(rold->id, rcur->id, idmap))
17330 			return false;
17331 		/* new val must satisfy old val knowledge */
17332 		return range_within(rold, rcur) &&
17333 		       tnum_in(rold->var_off, rcur->var_off);
17334 	case PTR_TO_STACK:
17335 		/* two stack pointers are equal only if they're pointing to
17336 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
17337 		 */
17338 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
17339 	case PTR_TO_ARENA:
17340 		return true;
17341 	default:
17342 		return regs_exact(rold, rcur, idmap);
17343 	}
17344 }
17345 
17346 static struct bpf_reg_state unbound_reg;
17347 
17348 static __init int unbound_reg_init(void)
17349 {
17350 	__mark_reg_unknown_imprecise(&unbound_reg);
17351 	unbound_reg.live |= REG_LIVE_READ;
17352 	return 0;
17353 }
17354 late_initcall(unbound_reg_init);
17355 
17356 static bool is_stack_all_misc(struct bpf_verifier_env *env,
17357 			      struct bpf_stack_state *stack)
17358 {
17359 	u32 i;
17360 
17361 	for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) {
17362 		if ((stack->slot_type[i] == STACK_MISC) ||
17363 		    (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack))
17364 			continue;
17365 		return false;
17366 	}
17367 
17368 	return true;
17369 }
17370 
17371 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env,
17372 						  struct bpf_stack_state *stack)
17373 {
17374 	if (is_spilled_scalar_reg64(stack))
17375 		return &stack->spilled_ptr;
17376 
17377 	if (is_stack_all_misc(env, stack))
17378 		return &unbound_reg;
17379 
17380 	return NULL;
17381 }
17382 
17383 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
17384 		      struct bpf_func_state *cur, struct bpf_idmap *idmap,
17385 		      enum exact_level exact)
17386 {
17387 	int i, spi;
17388 
17389 	/* walk slots of the explored stack and ignore any additional
17390 	 * slots in the current stack, since explored(safe) state
17391 	 * didn't use them
17392 	 */
17393 	for (i = 0; i < old->allocated_stack; i++) {
17394 		struct bpf_reg_state *old_reg, *cur_reg;
17395 
17396 		spi = i / BPF_REG_SIZE;
17397 
17398 		if (exact != NOT_EXACT &&
17399 		    (i >= cur->allocated_stack ||
17400 		     old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
17401 		     cur->stack[spi].slot_type[i % BPF_REG_SIZE]))
17402 			return false;
17403 
17404 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)
17405 		    && exact == NOT_EXACT) {
17406 			i += BPF_REG_SIZE - 1;
17407 			/* explored state didn't use this */
17408 			continue;
17409 		}
17410 
17411 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
17412 			continue;
17413 
17414 		if (env->allow_uninit_stack &&
17415 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
17416 			continue;
17417 
17418 		/* explored stack has more populated slots than current stack
17419 		 * and these slots were used
17420 		 */
17421 		if (i >= cur->allocated_stack)
17422 			return false;
17423 
17424 		/* 64-bit scalar spill vs all slots MISC and vice versa.
17425 		 * Load from all slots MISC produces unbound scalar.
17426 		 * Construct a fake register for such stack and call
17427 		 * regsafe() to ensure scalar ids are compared.
17428 		 */
17429 		old_reg = scalar_reg_for_stack(env, &old->stack[spi]);
17430 		cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]);
17431 		if (old_reg && cur_reg) {
17432 			if (!regsafe(env, old_reg, cur_reg, idmap, exact))
17433 				return false;
17434 			i += BPF_REG_SIZE - 1;
17435 			continue;
17436 		}
17437 
17438 		/* if old state was safe with misc data in the stack
17439 		 * it will be safe with zero-initialized stack.
17440 		 * The opposite is not true
17441 		 */
17442 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
17443 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
17444 			continue;
17445 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
17446 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
17447 			/* Ex: old explored (safe) state has STACK_SPILL in
17448 			 * this stack slot, but current has STACK_MISC ->
17449 			 * this verifier states are not equivalent,
17450 			 * return false to continue verification of this path
17451 			 */
17452 			return false;
17453 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
17454 			continue;
17455 		/* Both old and cur are having same slot_type */
17456 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
17457 		case STACK_SPILL:
17458 			/* when explored and current stack slot are both storing
17459 			 * spilled registers, check that stored pointers types
17460 			 * are the same as well.
17461 			 * Ex: explored safe path could have stored
17462 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
17463 			 * but current path has stored:
17464 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
17465 			 * such verifier states are not equivalent.
17466 			 * return false to continue verification of this path
17467 			 */
17468 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
17469 				     &cur->stack[spi].spilled_ptr, idmap, exact))
17470 				return false;
17471 			break;
17472 		case STACK_DYNPTR:
17473 			old_reg = &old->stack[spi].spilled_ptr;
17474 			cur_reg = &cur->stack[spi].spilled_ptr;
17475 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
17476 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
17477 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
17478 				return false;
17479 			break;
17480 		case STACK_ITER:
17481 			old_reg = &old->stack[spi].spilled_ptr;
17482 			cur_reg = &cur->stack[spi].spilled_ptr;
17483 			/* iter.depth is not compared between states as it
17484 			 * doesn't matter for correctness and would otherwise
17485 			 * prevent convergence; we maintain it only to prevent
17486 			 * infinite loop check triggering, see
17487 			 * iter_active_depths_differ()
17488 			 */
17489 			if (old_reg->iter.btf != cur_reg->iter.btf ||
17490 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
17491 			    old_reg->iter.state != cur_reg->iter.state ||
17492 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
17493 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
17494 				return false;
17495 			break;
17496 		case STACK_MISC:
17497 		case STACK_ZERO:
17498 		case STACK_INVALID:
17499 			continue;
17500 		/* Ensure that new unhandled slot types return false by default */
17501 		default:
17502 			return false;
17503 		}
17504 	}
17505 	return true;
17506 }
17507 
17508 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
17509 		    struct bpf_idmap *idmap)
17510 {
17511 	int i;
17512 
17513 	if (old->acquired_refs != cur->acquired_refs)
17514 		return false;
17515 
17516 	for (i = 0; i < old->acquired_refs; i++) {
17517 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
17518 			return false;
17519 	}
17520 
17521 	return true;
17522 }
17523 
17524 /* compare two verifier states
17525  *
17526  * all states stored in state_list are known to be valid, since
17527  * verifier reached 'bpf_exit' instruction through them
17528  *
17529  * this function is called when verifier exploring different branches of
17530  * execution popped from the state stack. If it sees an old state that has
17531  * more strict register state and more strict stack state then this execution
17532  * branch doesn't need to be explored further, since verifier already
17533  * concluded that more strict state leads to valid finish.
17534  *
17535  * Therefore two states are equivalent if register state is more conservative
17536  * and explored stack state is more conservative than the current one.
17537  * Example:
17538  *       explored                   current
17539  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
17540  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
17541  *
17542  * In other words if current stack state (one being explored) has more
17543  * valid slots than old one that already passed validation, it means
17544  * the verifier can stop exploring and conclude that current state is valid too
17545  *
17546  * Similarly with registers. If explored state has register type as invalid
17547  * whereas register type in current state is meaningful, it means that
17548  * the current state will reach 'bpf_exit' instruction safely
17549  */
17550 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
17551 			      struct bpf_func_state *cur, enum exact_level exact)
17552 {
17553 	int i;
17554 
17555 	if (old->callback_depth > cur->callback_depth)
17556 		return false;
17557 
17558 	for (i = 0; i < MAX_BPF_REG; i++)
17559 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
17560 			     &env->idmap_scratch, exact))
17561 			return false;
17562 
17563 	if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
17564 		return false;
17565 
17566 	if (!refsafe(old, cur, &env->idmap_scratch))
17567 		return false;
17568 
17569 	return true;
17570 }
17571 
17572 static void reset_idmap_scratch(struct bpf_verifier_env *env)
17573 {
17574 	env->idmap_scratch.tmp_id_gen = env->id_gen;
17575 	memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
17576 }
17577 
17578 static bool states_equal(struct bpf_verifier_env *env,
17579 			 struct bpf_verifier_state *old,
17580 			 struct bpf_verifier_state *cur,
17581 			 enum exact_level exact)
17582 {
17583 	int i;
17584 
17585 	if (old->curframe != cur->curframe)
17586 		return false;
17587 
17588 	reset_idmap_scratch(env);
17589 
17590 	/* Verification state from speculative execution simulation
17591 	 * must never prune a non-speculative execution one.
17592 	 */
17593 	if (old->speculative && !cur->speculative)
17594 		return false;
17595 
17596 	if (old->active_lock.ptr != cur->active_lock.ptr)
17597 		return false;
17598 
17599 	/* Old and cur active_lock's have to be either both present
17600 	 * or both absent.
17601 	 */
17602 	if (!!old->active_lock.id != !!cur->active_lock.id)
17603 		return false;
17604 
17605 	if (old->active_lock.id &&
17606 	    !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
17607 		return false;
17608 
17609 	if (old->active_rcu_lock != cur->active_rcu_lock)
17610 		return false;
17611 
17612 	if (old->active_preempt_lock != cur->active_preempt_lock)
17613 		return false;
17614 
17615 	if (old->in_sleepable != cur->in_sleepable)
17616 		return false;
17617 
17618 	/* for states to be equal callsites have to be the same
17619 	 * and all frame states need to be equivalent
17620 	 */
17621 	for (i = 0; i <= old->curframe; i++) {
17622 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
17623 			return false;
17624 		if (!func_states_equal(env, old->frame[i], cur->frame[i], exact))
17625 			return false;
17626 	}
17627 	return true;
17628 }
17629 
17630 /* Return 0 if no propagation happened. Return negative error code if error
17631  * happened. Otherwise, return the propagated bit.
17632  */
17633 static int propagate_liveness_reg(struct bpf_verifier_env *env,
17634 				  struct bpf_reg_state *reg,
17635 				  struct bpf_reg_state *parent_reg)
17636 {
17637 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
17638 	u8 flag = reg->live & REG_LIVE_READ;
17639 	int err;
17640 
17641 	/* When comes here, read flags of PARENT_REG or REG could be any of
17642 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
17643 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
17644 	 */
17645 	if (parent_flag == REG_LIVE_READ64 ||
17646 	    /* Or if there is no read flag from REG. */
17647 	    !flag ||
17648 	    /* Or if the read flag from REG is the same as PARENT_REG. */
17649 	    parent_flag == flag)
17650 		return 0;
17651 
17652 	err = mark_reg_read(env, reg, parent_reg, flag);
17653 	if (err)
17654 		return err;
17655 
17656 	return flag;
17657 }
17658 
17659 /* A write screens off any subsequent reads; but write marks come from the
17660  * straight-line code between a state and its parent.  When we arrive at an
17661  * equivalent state (jump target or such) we didn't arrive by the straight-line
17662  * code, so read marks in the state must propagate to the parent regardless
17663  * of the state's write marks. That's what 'parent == state->parent' comparison
17664  * in mark_reg_read() is for.
17665  */
17666 static int propagate_liveness(struct bpf_verifier_env *env,
17667 			      const struct bpf_verifier_state *vstate,
17668 			      struct bpf_verifier_state *vparent)
17669 {
17670 	struct bpf_reg_state *state_reg, *parent_reg;
17671 	struct bpf_func_state *state, *parent;
17672 	int i, frame, err = 0;
17673 
17674 	if (vparent->curframe != vstate->curframe) {
17675 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
17676 		     vparent->curframe, vstate->curframe);
17677 		return -EFAULT;
17678 	}
17679 	/* Propagate read liveness of registers... */
17680 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
17681 	for (frame = 0; frame <= vstate->curframe; frame++) {
17682 		parent = vparent->frame[frame];
17683 		state = vstate->frame[frame];
17684 		parent_reg = parent->regs;
17685 		state_reg = state->regs;
17686 		/* We don't need to worry about FP liveness, it's read-only */
17687 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
17688 			err = propagate_liveness_reg(env, &state_reg[i],
17689 						     &parent_reg[i]);
17690 			if (err < 0)
17691 				return err;
17692 			if (err == REG_LIVE_READ64)
17693 				mark_insn_zext(env, &parent_reg[i]);
17694 		}
17695 
17696 		/* Propagate stack slots. */
17697 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
17698 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
17699 			parent_reg = &parent->stack[i].spilled_ptr;
17700 			state_reg = &state->stack[i].spilled_ptr;
17701 			err = propagate_liveness_reg(env, state_reg,
17702 						     parent_reg);
17703 			if (err < 0)
17704 				return err;
17705 		}
17706 	}
17707 	return 0;
17708 }
17709 
17710 /* find precise scalars in the previous equivalent state and
17711  * propagate them into the current state
17712  */
17713 static int propagate_precision(struct bpf_verifier_env *env,
17714 			       const struct bpf_verifier_state *old)
17715 {
17716 	struct bpf_reg_state *state_reg;
17717 	struct bpf_func_state *state;
17718 	int i, err = 0, fr;
17719 	bool first;
17720 
17721 	for (fr = old->curframe; fr >= 0; fr--) {
17722 		state = old->frame[fr];
17723 		state_reg = state->regs;
17724 		first = true;
17725 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
17726 			if (state_reg->type != SCALAR_VALUE ||
17727 			    !state_reg->precise ||
17728 			    !(state_reg->live & REG_LIVE_READ))
17729 				continue;
17730 			if (env->log.level & BPF_LOG_LEVEL2) {
17731 				if (first)
17732 					verbose(env, "frame %d: propagating r%d", fr, i);
17733 				else
17734 					verbose(env, ",r%d", i);
17735 			}
17736 			bt_set_frame_reg(&env->bt, fr, i);
17737 			first = false;
17738 		}
17739 
17740 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
17741 			if (!is_spilled_reg(&state->stack[i]))
17742 				continue;
17743 			state_reg = &state->stack[i].spilled_ptr;
17744 			if (state_reg->type != SCALAR_VALUE ||
17745 			    !state_reg->precise ||
17746 			    !(state_reg->live & REG_LIVE_READ))
17747 				continue;
17748 			if (env->log.level & BPF_LOG_LEVEL2) {
17749 				if (first)
17750 					verbose(env, "frame %d: propagating fp%d",
17751 						fr, (-i - 1) * BPF_REG_SIZE);
17752 				else
17753 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
17754 			}
17755 			bt_set_frame_slot(&env->bt, fr, i);
17756 			first = false;
17757 		}
17758 		if (!first)
17759 			verbose(env, "\n");
17760 	}
17761 
17762 	err = mark_chain_precision_batch(env);
17763 	if (err < 0)
17764 		return err;
17765 
17766 	return 0;
17767 }
17768 
17769 static bool states_maybe_looping(struct bpf_verifier_state *old,
17770 				 struct bpf_verifier_state *cur)
17771 {
17772 	struct bpf_func_state *fold, *fcur;
17773 	int i, fr = cur->curframe;
17774 
17775 	if (old->curframe != fr)
17776 		return false;
17777 
17778 	fold = old->frame[fr];
17779 	fcur = cur->frame[fr];
17780 	for (i = 0; i < MAX_BPF_REG; i++)
17781 		if (memcmp(&fold->regs[i], &fcur->regs[i],
17782 			   offsetof(struct bpf_reg_state, parent)))
17783 			return false;
17784 	return true;
17785 }
17786 
17787 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
17788 {
17789 	return env->insn_aux_data[insn_idx].is_iter_next;
17790 }
17791 
17792 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
17793  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
17794  * states to match, which otherwise would look like an infinite loop. So while
17795  * iter_next() calls are taken care of, we still need to be careful and
17796  * prevent erroneous and too eager declaration of "ininite loop", when
17797  * iterators are involved.
17798  *
17799  * Here's a situation in pseudo-BPF assembly form:
17800  *
17801  *   0: again:                          ; set up iter_next() call args
17802  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
17803  *   2:   call bpf_iter_num_next        ; this is iter_next() call
17804  *   3:   if r0 == 0 goto done
17805  *   4:   ... something useful here ...
17806  *   5:   goto again                    ; another iteration
17807  *   6: done:
17808  *   7:   r1 = &it
17809  *   8:   call bpf_iter_num_destroy     ; clean up iter state
17810  *   9:   exit
17811  *
17812  * This is a typical loop. Let's assume that we have a prune point at 1:,
17813  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
17814  * again`, assuming other heuristics don't get in a way).
17815  *
17816  * When we first time come to 1:, let's say we have some state X. We proceed
17817  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
17818  * Now we come back to validate that forked ACTIVE state. We proceed through
17819  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
17820  * are converging. But the problem is that we don't know that yet, as this
17821  * convergence has to happen at iter_next() call site only. So if nothing is
17822  * done, at 1: verifier will use bounded loop logic and declare infinite
17823  * looping (and would be *technically* correct, if not for iterator's
17824  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
17825  * don't want that. So what we do in process_iter_next_call() when we go on
17826  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
17827  * a different iteration. So when we suspect an infinite loop, we additionally
17828  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
17829  * pretend we are not looping and wait for next iter_next() call.
17830  *
17831  * This only applies to ACTIVE state. In DRAINED state we don't expect to
17832  * loop, because that would actually mean infinite loop, as DRAINED state is
17833  * "sticky", and so we'll keep returning into the same instruction with the
17834  * same state (at least in one of possible code paths).
17835  *
17836  * This approach allows to keep infinite loop heuristic even in the face of
17837  * active iterator. E.g., C snippet below is and will be detected as
17838  * inifintely looping:
17839  *
17840  *   struct bpf_iter_num it;
17841  *   int *p, x;
17842  *
17843  *   bpf_iter_num_new(&it, 0, 10);
17844  *   while ((p = bpf_iter_num_next(&t))) {
17845  *       x = p;
17846  *       while (x--) {} // <<-- infinite loop here
17847  *   }
17848  *
17849  */
17850 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
17851 {
17852 	struct bpf_reg_state *slot, *cur_slot;
17853 	struct bpf_func_state *state;
17854 	int i, fr;
17855 
17856 	for (fr = old->curframe; fr >= 0; fr--) {
17857 		state = old->frame[fr];
17858 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
17859 			if (state->stack[i].slot_type[0] != STACK_ITER)
17860 				continue;
17861 
17862 			slot = &state->stack[i].spilled_ptr;
17863 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
17864 				continue;
17865 
17866 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
17867 			if (cur_slot->iter.depth != slot->iter.depth)
17868 				return true;
17869 		}
17870 	}
17871 	return false;
17872 }
17873 
17874 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
17875 {
17876 	struct bpf_verifier_state_list *new_sl;
17877 	struct bpf_verifier_state_list *sl, **pprev;
17878 	struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry;
17879 	int i, j, n, err, states_cnt = 0;
17880 	bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
17881 	bool add_new_state = force_new_state;
17882 	bool force_exact;
17883 
17884 	/* bpf progs typically have pruning point every 4 instructions
17885 	 * http://vger.kernel.org/bpfconf2019.html#session-1
17886 	 * Do not add new state for future pruning if the verifier hasn't seen
17887 	 * at least 2 jumps and at least 8 instructions.
17888 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
17889 	 * In tests that amounts to up to 50% reduction into total verifier
17890 	 * memory consumption and 20% verifier time speedup.
17891 	 */
17892 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
17893 	    env->insn_processed - env->prev_insn_processed >= 8)
17894 		add_new_state = true;
17895 
17896 	pprev = explored_state(env, insn_idx);
17897 	sl = *pprev;
17898 
17899 	clean_live_states(env, insn_idx, cur);
17900 
17901 	while (sl) {
17902 		states_cnt++;
17903 		if (sl->state.insn_idx != insn_idx)
17904 			goto next;
17905 
17906 		if (sl->state.branches) {
17907 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
17908 
17909 			if (frame->in_async_callback_fn &&
17910 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
17911 				/* Different async_entry_cnt means that the verifier is
17912 				 * processing another entry into async callback.
17913 				 * Seeing the same state is not an indication of infinite
17914 				 * loop or infinite recursion.
17915 				 * But finding the same state doesn't mean that it's safe
17916 				 * to stop processing the current state. The previous state
17917 				 * hasn't yet reached bpf_exit, since state.branches > 0.
17918 				 * Checking in_async_callback_fn alone is not enough either.
17919 				 * Since the verifier still needs to catch infinite loops
17920 				 * inside async callbacks.
17921 				 */
17922 				goto skip_inf_loop_check;
17923 			}
17924 			/* BPF open-coded iterators loop detection is special.
17925 			 * states_maybe_looping() logic is too simplistic in detecting
17926 			 * states that *might* be equivalent, because it doesn't know
17927 			 * about ID remapping, so don't even perform it.
17928 			 * See process_iter_next_call() and iter_active_depths_differ()
17929 			 * for overview of the logic. When current and one of parent
17930 			 * states are detected as equivalent, it's a good thing: we prove
17931 			 * convergence and can stop simulating further iterations.
17932 			 * It's safe to assume that iterator loop will finish, taking into
17933 			 * account iter_next() contract of eventually returning
17934 			 * sticky NULL result.
17935 			 *
17936 			 * Note, that states have to be compared exactly in this case because
17937 			 * read and precision marks might not be finalized inside the loop.
17938 			 * E.g. as in the program below:
17939 			 *
17940 			 *     1. r7 = -16
17941 			 *     2. r6 = bpf_get_prandom_u32()
17942 			 *     3. while (bpf_iter_num_next(&fp[-8])) {
17943 			 *     4.   if (r6 != 42) {
17944 			 *     5.     r7 = -32
17945 			 *     6.     r6 = bpf_get_prandom_u32()
17946 			 *     7.     continue
17947 			 *     8.   }
17948 			 *     9.   r0 = r10
17949 			 *    10.   r0 += r7
17950 			 *    11.   r8 = *(u64 *)(r0 + 0)
17951 			 *    12.   r6 = bpf_get_prandom_u32()
17952 			 *    13. }
17953 			 *
17954 			 * Here verifier would first visit path 1-3, create a checkpoint at 3
17955 			 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
17956 			 * not have read or precision mark for r7 yet, thus inexact states
17957 			 * comparison would discard current state with r7=-32
17958 			 * => unsafe memory access at 11 would not be caught.
17959 			 */
17960 			if (is_iter_next_insn(env, insn_idx)) {
17961 				if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
17962 					struct bpf_func_state *cur_frame;
17963 					struct bpf_reg_state *iter_state, *iter_reg;
17964 					int spi;
17965 
17966 					cur_frame = cur->frame[cur->curframe];
17967 					/* btf_check_iter_kfuncs() enforces that
17968 					 * iter state pointer is always the first arg
17969 					 */
17970 					iter_reg = &cur_frame->regs[BPF_REG_1];
17971 					/* current state is valid due to states_equal(),
17972 					 * so we can assume valid iter and reg state,
17973 					 * no need for extra (re-)validations
17974 					 */
17975 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
17976 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
17977 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
17978 						update_loop_entry(cur, &sl->state);
17979 						goto hit;
17980 					}
17981 				}
17982 				goto skip_inf_loop_check;
17983 			}
17984 			if (is_may_goto_insn_at(env, insn_idx)) {
17985 				if (sl->state.may_goto_depth != cur->may_goto_depth &&
17986 				    states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
17987 					update_loop_entry(cur, &sl->state);
17988 					goto hit;
17989 				}
17990 			}
17991 			if (calls_callback(env, insn_idx)) {
17992 				if (states_equal(env, &sl->state, cur, RANGE_WITHIN))
17993 					goto hit;
17994 				goto skip_inf_loop_check;
17995 			}
17996 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
17997 			if (states_maybe_looping(&sl->state, cur) &&
17998 			    states_equal(env, &sl->state, cur, EXACT) &&
17999 			    !iter_active_depths_differ(&sl->state, cur) &&
18000 			    sl->state.may_goto_depth == cur->may_goto_depth &&
18001 			    sl->state.callback_unroll_depth == cur->callback_unroll_depth) {
18002 				verbose_linfo(env, insn_idx, "; ");
18003 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
18004 				verbose(env, "cur state:");
18005 				print_verifier_state(env, cur->frame[cur->curframe], true);
18006 				verbose(env, "old state:");
18007 				print_verifier_state(env, sl->state.frame[cur->curframe], true);
18008 				return -EINVAL;
18009 			}
18010 			/* if the verifier is processing a loop, avoid adding new state
18011 			 * too often, since different loop iterations have distinct
18012 			 * states and may not help future pruning.
18013 			 * This threshold shouldn't be too low to make sure that
18014 			 * a loop with large bound will be rejected quickly.
18015 			 * The most abusive loop will be:
18016 			 * r1 += 1
18017 			 * if r1 < 1000000 goto pc-2
18018 			 * 1M insn_procssed limit / 100 == 10k peak states.
18019 			 * This threshold shouldn't be too high either, since states
18020 			 * at the end of the loop are likely to be useful in pruning.
18021 			 */
18022 skip_inf_loop_check:
18023 			if (!force_new_state &&
18024 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
18025 			    env->insn_processed - env->prev_insn_processed < 100)
18026 				add_new_state = false;
18027 			goto miss;
18028 		}
18029 		/* If sl->state is a part of a loop and this loop's entry is a part of
18030 		 * current verification path then states have to be compared exactly.
18031 		 * 'force_exact' is needed to catch the following case:
18032 		 *
18033 		 *                initial     Here state 'succ' was processed first,
18034 		 *                  |         it was eventually tracked to produce a
18035 		 *                  V         state identical to 'hdr'.
18036 		 *     .---------> hdr        All branches from 'succ' had been explored
18037 		 *     |            |         and thus 'succ' has its .branches == 0.
18038 		 *     |            V
18039 		 *     |    .------...        Suppose states 'cur' and 'succ' correspond
18040 		 *     |    |       |         to the same instruction + callsites.
18041 		 *     |    V       V         In such case it is necessary to check
18042 		 *     |   ...     ...        if 'succ' and 'cur' are states_equal().
18043 		 *     |    |       |         If 'succ' and 'cur' are a part of the
18044 		 *     |    V       V         same loop exact flag has to be set.
18045 		 *     |   succ <- cur        To check if that is the case, verify
18046 		 *     |    |                 if loop entry of 'succ' is in current
18047 		 *     |    V                 DFS path.
18048 		 *     |   ...
18049 		 *     |    |
18050 		 *     '----'
18051 		 *
18052 		 * Additional details are in the comment before get_loop_entry().
18053 		 */
18054 		loop_entry = get_loop_entry(&sl->state);
18055 		force_exact = loop_entry && loop_entry->branches > 0;
18056 		if (states_equal(env, &sl->state, cur, force_exact ? RANGE_WITHIN : NOT_EXACT)) {
18057 			if (force_exact)
18058 				update_loop_entry(cur, loop_entry);
18059 hit:
18060 			sl->hit_cnt++;
18061 			/* reached equivalent register/stack state,
18062 			 * prune the search.
18063 			 * Registers read by the continuation are read by us.
18064 			 * If we have any write marks in env->cur_state, they
18065 			 * will prevent corresponding reads in the continuation
18066 			 * from reaching our parent (an explored_state).  Our
18067 			 * own state will get the read marks recorded, but
18068 			 * they'll be immediately forgotten as we're pruning
18069 			 * this state and will pop a new one.
18070 			 */
18071 			err = propagate_liveness(env, &sl->state, cur);
18072 
18073 			/* if previous state reached the exit with precision and
18074 			 * current state is equivalent to it (except precision marks)
18075 			 * the precision needs to be propagated back in
18076 			 * the current state.
18077 			 */
18078 			if (is_jmp_point(env, env->insn_idx))
18079 				err = err ? : push_jmp_history(env, cur, 0, 0);
18080 			err = err ? : propagate_precision(env, &sl->state);
18081 			if (err)
18082 				return err;
18083 			return 1;
18084 		}
18085 miss:
18086 		/* when new state is not going to be added do not increase miss count.
18087 		 * Otherwise several loop iterations will remove the state
18088 		 * recorded earlier. The goal of these heuristics is to have
18089 		 * states from some iterations of the loop (some in the beginning
18090 		 * and some at the end) to help pruning.
18091 		 */
18092 		if (add_new_state)
18093 			sl->miss_cnt++;
18094 		/* heuristic to determine whether this state is beneficial
18095 		 * to keep checking from state equivalence point of view.
18096 		 * Higher numbers increase max_states_per_insn and verification time,
18097 		 * but do not meaningfully decrease insn_processed.
18098 		 * 'n' controls how many times state could miss before eviction.
18099 		 * Use bigger 'n' for checkpoints because evicting checkpoint states
18100 		 * too early would hinder iterator convergence.
18101 		 */
18102 		n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
18103 		if (sl->miss_cnt > sl->hit_cnt * n + n) {
18104 			/* the state is unlikely to be useful. Remove it to
18105 			 * speed up verification
18106 			 */
18107 			*pprev = sl->next;
18108 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE &&
18109 			    !sl->state.used_as_loop_entry) {
18110 				u32 br = sl->state.branches;
18111 
18112 				WARN_ONCE(br,
18113 					  "BUG live_done but branches_to_explore %d\n",
18114 					  br);
18115 				free_verifier_state(&sl->state, false);
18116 				kfree(sl);
18117 				env->peak_states--;
18118 			} else {
18119 				/* cannot free this state, since parentage chain may
18120 				 * walk it later. Add it for free_list instead to
18121 				 * be freed at the end of verification
18122 				 */
18123 				sl->next = env->free_list;
18124 				env->free_list = sl;
18125 			}
18126 			sl = *pprev;
18127 			continue;
18128 		}
18129 next:
18130 		pprev = &sl->next;
18131 		sl = *pprev;
18132 	}
18133 
18134 	if (env->max_states_per_insn < states_cnt)
18135 		env->max_states_per_insn = states_cnt;
18136 
18137 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
18138 		return 0;
18139 
18140 	if (!add_new_state)
18141 		return 0;
18142 
18143 	/* There were no equivalent states, remember the current one.
18144 	 * Technically the current state is not proven to be safe yet,
18145 	 * but it will either reach outer most bpf_exit (which means it's safe)
18146 	 * or it will be rejected. When there are no loops the verifier won't be
18147 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
18148 	 * again on the way to bpf_exit.
18149 	 * When looping the sl->state.branches will be > 0 and this state
18150 	 * will not be considered for equivalence until branches == 0.
18151 	 */
18152 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
18153 	if (!new_sl)
18154 		return -ENOMEM;
18155 	env->total_states++;
18156 	env->peak_states++;
18157 	env->prev_jmps_processed = env->jmps_processed;
18158 	env->prev_insn_processed = env->insn_processed;
18159 
18160 	/* forget precise markings we inherited, see __mark_chain_precision */
18161 	if (env->bpf_capable)
18162 		mark_all_scalars_imprecise(env, cur);
18163 
18164 	/* add new state to the head of linked list */
18165 	new = &new_sl->state;
18166 	err = copy_verifier_state(new, cur);
18167 	if (err) {
18168 		free_verifier_state(new, false);
18169 		kfree(new_sl);
18170 		return err;
18171 	}
18172 	new->insn_idx = insn_idx;
18173 	WARN_ONCE(new->branches != 1,
18174 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
18175 
18176 	cur->parent = new;
18177 	cur->first_insn_idx = insn_idx;
18178 	cur->dfs_depth = new->dfs_depth + 1;
18179 	clear_jmp_history(cur);
18180 	new_sl->next = *explored_state(env, insn_idx);
18181 	*explored_state(env, insn_idx) = new_sl;
18182 	/* connect new state to parentage chain. Current frame needs all
18183 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
18184 	 * to the stack implicitly by JITs) so in callers' frames connect just
18185 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
18186 	 * the state of the call instruction (with WRITTEN set), and r0 comes
18187 	 * from callee with its full parentage chain, anyway.
18188 	 */
18189 	/* clear write marks in current state: the writes we did are not writes
18190 	 * our child did, so they don't screen off its reads from us.
18191 	 * (There are no read marks in current state, because reads always mark
18192 	 * their parent and current state never has children yet.  Only
18193 	 * explored_states can get read marks.)
18194 	 */
18195 	for (j = 0; j <= cur->curframe; j++) {
18196 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
18197 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
18198 		for (i = 0; i < BPF_REG_FP; i++)
18199 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
18200 	}
18201 
18202 	/* all stack frames are accessible from callee, clear them all */
18203 	for (j = 0; j <= cur->curframe; j++) {
18204 		struct bpf_func_state *frame = cur->frame[j];
18205 		struct bpf_func_state *newframe = new->frame[j];
18206 
18207 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
18208 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
18209 			frame->stack[i].spilled_ptr.parent =
18210 						&newframe->stack[i].spilled_ptr;
18211 		}
18212 	}
18213 	return 0;
18214 }
18215 
18216 /* Return true if it's OK to have the same insn return a different type. */
18217 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
18218 {
18219 	switch (base_type(type)) {
18220 	case PTR_TO_CTX:
18221 	case PTR_TO_SOCKET:
18222 	case PTR_TO_SOCK_COMMON:
18223 	case PTR_TO_TCP_SOCK:
18224 	case PTR_TO_XDP_SOCK:
18225 	case PTR_TO_BTF_ID:
18226 	case PTR_TO_ARENA:
18227 		return false;
18228 	default:
18229 		return true;
18230 	}
18231 }
18232 
18233 /* If an instruction was previously used with particular pointer types, then we
18234  * need to be careful to avoid cases such as the below, where it may be ok
18235  * for one branch accessing the pointer, but not ok for the other branch:
18236  *
18237  * R1 = sock_ptr
18238  * goto X;
18239  * ...
18240  * R1 = some_other_valid_ptr;
18241  * goto X;
18242  * ...
18243  * R2 = *(u32 *)(R1 + 0);
18244  */
18245 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
18246 {
18247 	return src != prev && (!reg_type_mismatch_ok(src) ||
18248 			       !reg_type_mismatch_ok(prev));
18249 }
18250 
18251 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
18252 			     bool allow_trust_mismatch)
18253 {
18254 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
18255 
18256 	if (*prev_type == NOT_INIT) {
18257 		/* Saw a valid insn
18258 		 * dst_reg = *(u32 *)(src_reg + off)
18259 		 * save type to validate intersecting paths
18260 		 */
18261 		*prev_type = type;
18262 	} else if (reg_type_mismatch(type, *prev_type)) {
18263 		/* Abuser program is trying to use the same insn
18264 		 * dst_reg = *(u32*) (src_reg + off)
18265 		 * with different pointer types:
18266 		 * src_reg == ctx in one branch and
18267 		 * src_reg == stack|map in some other branch.
18268 		 * Reject it.
18269 		 */
18270 		if (allow_trust_mismatch &&
18271 		    base_type(type) == PTR_TO_BTF_ID &&
18272 		    base_type(*prev_type) == PTR_TO_BTF_ID) {
18273 			/*
18274 			 * Have to support a use case when one path through
18275 			 * the program yields TRUSTED pointer while another
18276 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
18277 			 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
18278 			 */
18279 			*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
18280 		} else {
18281 			verbose(env, "same insn cannot be used with different pointers\n");
18282 			return -EINVAL;
18283 		}
18284 	}
18285 
18286 	return 0;
18287 }
18288 
18289 static int do_check(struct bpf_verifier_env *env)
18290 {
18291 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
18292 	struct bpf_verifier_state *state = env->cur_state;
18293 	struct bpf_insn *insns = env->prog->insnsi;
18294 	struct bpf_reg_state *regs;
18295 	int insn_cnt = env->prog->len;
18296 	bool do_print_state = false;
18297 	int prev_insn_idx = -1;
18298 
18299 	for (;;) {
18300 		bool exception_exit = false;
18301 		struct bpf_insn *insn;
18302 		u8 class;
18303 		int err;
18304 
18305 		/* reset current history entry on each new instruction */
18306 		env->cur_hist_ent = NULL;
18307 
18308 		env->prev_insn_idx = prev_insn_idx;
18309 		if (env->insn_idx >= insn_cnt) {
18310 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
18311 				env->insn_idx, insn_cnt);
18312 			return -EFAULT;
18313 		}
18314 
18315 		insn = &insns[env->insn_idx];
18316 		class = BPF_CLASS(insn->code);
18317 
18318 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
18319 			verbose(env,
18320 				"BPF program is too large. Processed %d insn\n",
18321 				env->insn_processed);
18322 			return -E2BIG;
18323 		}
18324 
18325 		state->last_insn_idx = env->prev_insn_idx;
18326 
18327 		if (is_prune_point(env, env->insn_idx)) {
18328 			err = is_state_visited(env, env->insn_idx);
18329 			if (err < 0)
18330 				return err;
18331 			if (err == 1) {
18332 				/* found equivalent state, can prune the search */
18333 				if (env->log.level & BPF_LOG_LEVEL) {
18334 					if (do_print_state)
18335 						verbose(env, "\nfrom %d to %d%s: safe\n",
18336 							env->prev_insn_idx, env->insn_idx,
18337 							env->cur_state->speculative ?
18338 							" (speculative execution)" : "");
18339 					else
18340 						verbose(env, "%d: safe\n", env->insn_idx);
18341 				}
18342 				goto process_bpf_exit;
18343 			}
18344 		}
18345 
18346 		if (is_jmp_point(env, env->insn_idx)) {
18347 			err = push_jmp_history(env, state, 0, 0);
18348 			if (err)
18349 				return err;
18350 		}
18351 
18352 		if (signal_pending(current))
18353 			return -EAGAIN;
18354 
18355 		if (need_resched())
18356 			cond_resched();
18357 
18358 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
18359 			verbose(env, "\nfrom %d to %d%s:",
18360 				env->prev_insn_idx, env->insn_idx,
18361 				env->cur_state->speculative ?
18362 				" (speculative execution)" : "");
18363 			print_verifier_state(env, state->frame[state->curframe], true);
18364 			do_print_state = false;
18365 		}
18366 
18367 		if (env->log.level & BPF_LOG_LEVEL) {
18368 			const struct bpf_insn_cbs cbs = {
18369 				.cb_call	= disasm_kfunc_name,
18370 				.cb_print	= verbose,
18371 				.private_data	= env,
18372 			};
18373 
18374 			if (verifier_state_scratched(env))
18375 				print_insn_state(env, state->frame[state->curframe]);
18376 
18377 			verbose_linfo(env, env->insn_idx, "; ");
18378 			env->prev_log_pos = env->log.end_pos;
18379 			verbose(env, "%d: ", env->insn_idx);
18380 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
18381 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
18382 			env->prev_log_pos = env->log.end_pos;
18383 		}
18384 
18385 		if (bpf_prog_is_offloaded(env->prog->aux)) {
18386 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
18387 							   env->prev_insn_idx);
18388 			if (err)
18389 				return err;
18390 		}
18391 
18392 		regs = cur_regs(env);
18393 		sanitize_mark_insn_seen(env);
18394 		prev_insn_idx = env->insn_idx;
18395 
18396 		if (class == BPF_ALU || class == BPF_ALU64) {
18397 			err = check_alu_op(env, insn);
18398 			if (err)
18399 				return err;
18400 
18401 		} else if (class == BPF_LDX) {
18402 			enum bpf_reg_type src_reg_type;
18403 
18404 			/* check for reserved fields is already done */
18405 
18406 			/* check src operand */
18407 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
18408 			if (err)
18409 				return err;
18410 
18411 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
18412 			if (err)
18413 				return err;
18414 
18415 			src_reg_type = regs[insn->src_reg].type;
18416 
18417 			/* check that memory (src_reg + off) is readable,
18418 			 * the state of dst_reg will be updated by this func
18419 			 */
18420 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
18421 					       insn->off, BPF_SIZE(insn->code),
18422 					       BPF_READ, insn->dst_reg, false,
18423 					       BPF_MODE(insn->code) == BPF_MEMSX);
18424 			err = err ?: save_aux_ptr_type(env, src_reg_type, true);
18425 			err = err ?: reg_bounds_sanity_check(env, &regs[insn->dst_reg], "ldx");
18426 			if (err)
18427 				return err;
18428 		} else if (class == BPF_STX) {
18429 			enum bpf_reg_type dst_reg_type;
18430 
18431 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
18432 				err = check_atomic(env, env->insn_idx, insn);
18433 				if (err)
18434 					return err;
18435 				env->insn_idx++;
18436 				continue;
18437 			}
18438 
18439 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
18440 				verbose(env, "BPF_STX uses reserved fields\n");
18441 				return -EINVAL;
18442 			}
18443 
18444 			/* check src1 operand */
18445 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
18446 			if (err)
18447 				return err;
18448 			/* check src2 operand */
18449 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
18450 			if (err)
18451 				return err;
18452 
18453 			dst_reg_type = regs[insn->dst_reg].type;
18454 
18455 			/* check that memory (dst_reg + off) is writeable */
18456 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
18457 					       insn->off, BPF_SIZE(insn->code),
18458 					       BPF_WRITE, insn->src_reg, false, false);
18459 			if (err)
18460 				return err;
18461 
18462 			err = save_aux_ptr_type(env, dst_reg_type, false);
18463 			if (err)
18464 				return err;
18465 		} else if (class == BPF_ST) {
18466 			enum bpf_reg_type dst_reg_type;
18467 
18468 			if (BPF_MODE(insn->code) != BPF_MEM ||
18469 			    insn->src_reg != BPF_REG_0) {
18470 				verbose(env, "BPF_ST uses reserved fields\n");
18471 				return -EINVAL;
18472 			}
18473 			/* check src operand */
18474 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
18475 			if (err)
18476 				return err;
18477 
18478 			dst_reg_type = regs[insn->dst_reg].type;
18479 
18480 			/* check that memory (dst_reg + off) is writeable */
18481 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
18482 					       insn->off, BPF_SIZE(insn->code),
18483 					       BPF_WRITE, -1, false, false);
18484 			if (err)
18485 				return err;
18486 
18487 			err = save_aux_ptr_type(env, dst_reg_type, false);
18488 			if (err)
18489 				return err;
18490 		} else if (class == BPF_JMP || class == BPF_JMP32) {
18491 			u8 opcode = BPF_OP(insn->code);
18492 
18493 			env->jmps_processed++;
18494 			if (opcode == BPF_CALL) {
18495 				if (BPF_SRC(insn->code) != BPF_K ||
18496 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
18497 				     && insn->off != 0) ||
18498 				    (insn->src_reg != BPF_REG_0 &&
18499 				     insn->src_reg != BPF_PSEUDO_CALL &&
18500 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
18501 				    insn->dst_reg != BPF_REG_0 ||
18502 				    class == BPF_JMP32) {
18503 					verbose(env, "BPF_CALL uses reserved fields\n");
18504 					return -EINVAL;
18505 				}
18506 
18507 				if (env->cur_state->active_lock.ptr) {
18508 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
18509 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
18510 					     (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
18511 						verbose(env, "function calls are not allowed while holding a lock\n");
18512 						return -EINVAL;
18513 					}
18514 				}
18515 				if (insn->src_reg == BPF_PSEUDO_CALL) {
18516 					err = check_func_call(env, insn, &env->insn_idx);
18517 				} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
18518 					err = check_kfunc_call(env, insn, &env->insn_idx);
18519 					if (!err && is_bpf_throw_kfunc(insn)) {
18520 						exception_exit = true;
18521 						goto process_bpf_exit_full;
18522 					}
18523 				} else {
18524 					err = check_helper_call(env, insn, &env->insn_idx);
18525 				}
18526 				if (err)
18527 					return err;
18528 
18529 				mark_reg_scratched(env, BPF_REG_0);
18530 			} else if (opcode == BPF_JA) {
18531 				if (BPF_SRC(insn->code) != BPF_K ||
18532 				    insn->src_reg != BPF_REG_0 ||
18533 				    insn->dst_reg != BPF_REG_0 ||
18534 				    (class == BPF_JMP && insn->imm != 0) ||
18535 				    (class == BPF_JMP32 && insn->off != 0)) {
18536 					verbose(env, "BPF_JA uses reserved fields\n");
18537 					return -EINVAL;
18538 				}
18539 
18540 				if (class == BPF_JMP)
18541 					env->insn_idx += insn->off + 1;
18542 				else
18543 					env->insn_idx += insn->imm + 1;
18544 				continue;
18545 
18546 			} else if (opcode == BPF_EXIT) {
18547 				if (BPF_SRC(insn->code) != BPF_K ||
18548 				    insn->imm != 0 ||
18549 				    insn->src_reg != BPF_REG_0 ||
18550 				    insn->dst_reg != BPF_REG_0 ||
18551 				    class == BPF_JMP32) {
18552 					verbose(env, "BPF_EXIT uses reserved fields\n");
18553 					return -EINVAL;
18554 				}
18555 process_bpf_exit_full:
18556 				if (env->cur_state->active_lock.ptr && !env->cur_state->curframe) {
18557 					verbose(env, "bpf_spin_unlock is missing\n");
18558 					return -EINVAL;
18559 				}
18560 
18561 				if (env->cur_state->active_rcu_lock && !env->cur_state->curframe) {
18562 					verbose(env, "bpf_rcu_read_unlock is missing\n");
18563 					return -EINVAL;
18564 				}
18565 
18566 				if (env->cur_state->active_preempt_lock && !env->cur_state->curframe) {
18567 					verbose(env, "%d bpf_preempt_enable%s missing\n",
18568 						env->cur_state->active_preempt_lock,
18569 						env->cur_state->active_preempt_lock == 1 ? " is" : "(s) are");
18570 					return -EINVAL;
18571 				}
18572 
18573 				/* We must do check_reference_leak here before
18574 				 * prepare_func_exit to handle the case when
18575 				 * state->curframe > 0, it may be a callback
18576 				 * function, for which reference_state must
18577 				 * match caller reference state when it exits.
18578 				 */
18579 				err = check_reference_leak(env, exception_exit);
18580 				if (err)
18581 					return err;
18582 
18583 				/* The side effect of the prepare_func_exit
18584 				 * which is being skipped is that it frees
18585 				 * bpf_func_state. Typically, process_bpf_exit
18586 				 * will only be hit with outermost exit.
18587 				 * copy_verifier_state in pop_stack will handle
18588 				 * freeing of any extra bpf_func_state left over
18589 				 * from not processing all nested function
18590 				 * exits. We also skip return code checks as
18591 				 * they are not needed for exceptional exits.
18592 				 */
18593 				if (exception_exit)
18594 					goto process_bpf_exit;
18595 
18596 				if (state->curframe) {
18597 					/* exit from nested function */
18598 					err = prepare_func_exit(env, &env->insn_idx);
18599 					if (err)
18600 						return err;
18601 					do_print_state = true;
18602 					continue;
18603 				}
18604 
18605 				err = check_return_code(env, BPF_REG_0, "R0");
18606 				if (err)
18607 					return err;
18608 process_bpf_exit:
18609 				mark_verifier_state_scratched(env);
18610 				update_branch_counts(env, env->cur_state);
18611 				err = pop_stack(env, &prev_insn_idx,
18612 						&env->insn_idx, pop_log);
18613 				if (err < 0) {
18614 					if (err != -ENOENT)
18615 						return err;
18616 					break;
18617 				} else {
18618 					do_print_state = true;
18619 					continue;
18620 				}
18621 			} else {
18622 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
18623 				if (err)
18624 					return err;
18625 			}
18626 		} else if (class == BPF_LD) {
18627 			u8 mode = BPF_MODE(insn->code);
18628 
18629 			if (mode == BPF_ABS || mode == BPF_IND) {
18630 				err = check_ld_abs(env, insn);
18631 				if (err)
18632 					return err;
18633 
18634 			} else if (mode == BPF_IMM) {
18635 				err = check_ld_imm(env, insn);
18636 				if (err)
18637 					return err;
18638 
18639 				env->insn_idx++;
18640 				sanitize_mark_insn_seen(env);
18641 			} else {
18642 				verbose(env, "invalid BPF_LD mode\n");
18643 				return -EINVAL;
18644 			}
18645 		} else {
18646 			verbose(env, "unknown insn class %d\n", class);
18647 			return -EINVAL;
18648 		}
18649 
18650 		env->insn_idx++;
18651 	}
18652 
18653 	return 0;
18654 }
18655 
18656 static int find_btf_percpu_datasec(struct btf *btf)
18657 {
18658 	const struct btf_type *t;
18659 	const char *tname;
18660 	int i, n;
18661 
18662 	/*
18663 	 * Both vmlinux and module each have their own ".data..percpu"
18664 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
18665 	 * types to look at only module's own BTF types.
18666 	 */
18667 	n = btf_nr_types(btf);
18668 	if (btf_is_module(btf))
18669 		i = btf_nr_types(btf_vmlinux);
18670 	else
18671 		i = 1;
18672 
18673 	for(; i < n; i++) {
18674 		t = btf_type_by_id(btf, i);
18675 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
18676 			continue;
18677 
18678 		tname = btf_name_by_offset(btf, t->name_off);
18679 		if (!strcmp(tname, ".data..percpu"))
18680 			return i;
18681 	}
18682 
18683 	return -ENOENT;
18684 }
18685 
18686 /* replace pseudo btf_id with kernel symbol address */
18687 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
18688 			       struct bpf_insn *insn,
18689 			       struct bpf_insn_aux_data *aux)
18690 {
18691 	const struct btf_var_secinfo *vsi;
18692 	const struct btf_type *datasec;
18693 	struct btf_mod_pair *btf_mod;
18694 	const struct btf_type *t;
18695 	const char *sym_name;
18696 	bool percpu = false;
18697 	u32 type, id = insn->imm;
18698 	struct btf *btf;
18699 	s32 datasec_id;
18700 	u64 addr;
18701 	int i, btf_fd, err;
18702 
18703 	btf_fd = insn[1].imm;
18704 	if (btf_fd) {
18705 		btf = btf_get_by_fd(btf_fd);
18706 		if (IS_ERR(btf)) {
18707 			verbose(env, "invalid module BTF object FD specified.\n");
18708 			return -EINVAL;
18709 		}
18710 	} else {
18711 		if (!btf_vmlinux) {
18712 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
18713 			return -EINVAL;
18714 		}
18715 		btf = btf_vmlinux;
18716 		btf_get(btf);
18717 	}
18718 
18719 	t = btf_type_by_id(btf, id);
18720 	if (!t) {
18721 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
18722 		err = -ENOENT;
18723 		goto err_put;
18724 	}
18725 
18726 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
18727 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
18728 		err = -EINVAL;
18729 		goto err_put;
18730 	}
18731 
18732 	sym_name = btf_name_by_offset(btf, t->name_off);
18733 	addr = kallsyms_lookup_name(sym_name);
18734 	if (!addr) {
18735 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
18736 			sym_name);
18737 		err = -ENOENT;
18738 		goto err_put;
18739 	}
18740 	insn[0].imm = (u32)addr;
18741 	insn[1].imm = addr >> 32;
18742 
18743 	if (btf_type_is_func(t)) {
18744 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
18745 		aux->btf_var.mem_size = 0;
18746 		goto check_btf;
18747 	}
18748 
18749 	datasec_id = find_btf_percpu_datasec(btf);
18750 	if (datasec_id > 0) {
18751 		datasec = btf_type_by_id(btf, datasec_id);
18752 		for_each_vsi(i, datasec, vsi) {
18753 			if (vsi->type == id) {
18754 				percpu = true;
18755 				break;
18756 			}
18757 		}
18758 	}
18759 
18760 	type = t->type;
18761 	t = btf_type_skip_modifiers(btf, type, NULL);
18762 	if (percpu) {
18763 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
18764 		aux->btf_var.btf = btf;
18765 		aux->btf_var.btf_id = type;
18766 	} else if (!btf_type_is_struct(t)) {
18767 		const struct btf_type *ret;
18768 		const char *tname;
18769 		u32 tsize;
18770 
18771 		/* resolve the type size of ksym. */
18772 		ret = btf_resolve_size(btf, t, &tsize);
18773 		if (IS_ERR(ret)) {
18774 			tname = btf_name_by_offset(btf, t->name_off);
18775 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
18776 				tname, PTR_ERR(ret));
18777 			err = -EINVAL;
18778 			goto err_put;
18779 		}
18780 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
18781 		aux->btf_var.mem_size = tsize;
18782 	} else {
18783 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
18784 		aux->btf_var.btf = btf;
18785 		aux->btf_var.btf_id = type;
18786 	}
18787 check_btf:
18788 	/* check whether we recorded this BTF (and maybe module) already */
18789 	for (i = 0; i < env->used_btf_cnt; i++) {
18790 		if (env->used_btfs[i].btf == btf) {
18791 			btf_put(btf);
18792 			return 0;
18793 		}
18794 	}
18795 
18796 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
18797 		err = -E2BIG;
18798 		goto err_put;
18799 	}
18800 
18801 	btf_mod = &env->used_btfs[env->used_btf_cnt];
18802 	btf_mod->btf = btf;
18803 	btf_mod->module = NULL;
18804 
18805 	/* if we reference variables from kernel module, bump its refcount */
18806 	if (btf_is_module(btf)) {
18807 		btf_mod->module = btf_try_get_module(btf);
18808 		if (!btf_mod->module) {
18809 			err = -ENXIO;
18810 			goto err_put;
18811 		}
18812 	}
18813 
18814 	env->used_btf_cnt++;
18815 
18816 	return 0;
18817 err_put:
18818 	btf_put(btf);
18819 	return err;
18820 }
18821 
18822 static bool is_tracing_prog_type(enum bpf_prog_type type)
18823 {
18824 	switch (type) {
18825 	case BPF_PROG_TYPE_KPROBE:
18826 	case BPF_PROG_TYPE_TRACEPOINT:
18827 	case BPF_PROG_TYPE_PERF_EVENT:
18828 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
18829 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
18830 		return true;
18831 	default:
18832 		return false;
18833 	}
18834 }
18835 
18836 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
18837 					struct bpf_map *map,
18838 					struct bpf_prog *prog)
18839 
18840 {
18841 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
18842 
18843 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
18844 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
18845 		if (is_tracing_prog_type(prog_type)) {
18846 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
18847 			return -EINVAL;
18848 		}
18849 	}
18850 
18851 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
18852 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
18853 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
18854 			return -EINVAL;
18855 		}
18856 
18857 		if (is_tracing_prog_type(prog_type)) {
18858 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
18859 			return -EINVAL;
18860 		}
18861 	}
18862 
18863 	if (btf_record_has_field(map->record, BPF_TIMER)) {
18864 		if (is_tracing_prog_type(prog_type)) {
18865 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
18866 			return -EINVAL;
18867 		}
18868 	}
18869 
18870 	if (btf_record_has_field(map->record, BPF_WORKQUEUE)) {
18871 		if (is_tracing_prog_type(prog_type)) {
18872 			verbose(env, "tracing progs cannot use bpf_wq yet\n");
18873 			return -EINVAL;
18874 		}
18875 	}
18876 
18877 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
18878 	    !bpf_offload_prog_map_match(prog, map)) {
18879 		verbose(env, "offload device mismatch between prog and map\n");
18880 		return -EINVAL;
18881 	}
18882 
18883 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
18884 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
18885 		return -EINVAL;
18886 	}
18887 
18888 	if (prog->sleepable)
18889 		switch (map->map_type) {
18890 		case BPF_MAP_TYPE_HASH:
18891 		case BPF_MAP_TYPE_LRU_HASH:
18892 		case BPF_MAP_TYPE_ARRAY:
18893 		case BPF_MAP_TYPE_PERCPU_HASH:
18894 		case BPF_MAP_TYPE_PERCPU_ARRAY:
18895 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
18896 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
18897 		case BPF_MAP_TYPE_HASH_OF_MAPS:
18898 		case BPF_MAP_TYPE_RINGBUF:
18899 		case BPF_MAP_TYPE_USER_RINGBUF:
18900 		case BPF_MAP_TYPE_INODE_STORAGE:
18901 		case BPF_MAP_TYPE_SK_STORAGE:
18902 		case BPF_MAP_TYPE_TASK_STORAGE:
18903 		case BPF_MAP_TYPE_CGRP_STORAGE:
18904 		case BPF_MAP_TYPE_QUEUE:
18905 		case BPF_MAP_TYPE_STACK:
18906 		case BPF_MAP_TYPE_ARENA:
18907 			break;
18908 		default:
18909 			verbose(env,
18910 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
18911 			return -EINVAL;
18912 		}
18913 
18914 	return 0;
18915 }
18916 
18917 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
18918 {
18919 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
18920 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
18921 }
18922 
18923 /* Add map behind fd to used maps list, if it's not already there, and return
18924  * its index. Also set *reused to true if this map was already in the list of
18925  * used maps.
18926  * Returns <0 on error, or >= 0 index, on success.
18927  */
18928 static int add_used_map_from_fd(struct bpf_verifier_env *env, int fd, bool *reused)
18929 {
18930 	CLASS(fd, f)(fd);
18931 	struct bpf_map *map;
18932 	int i;
18933 
18934 	map = __bpf_map_get(f);
18935 	if (IS_ERR(map)) {
18936 		verbose(env, "fd %d is not pointing to valid bpf_map\n", fd);
18937 		return PTR_ERR(map);
18938 	}
18939 
18940 	/* check whether we recorded this map already */
18941 	for (i = 0; i < env->used_map_cnt; i++) {
18942 		if (env->used_maps[i] == map) {
18943 			*reused = true;
18944 			return i;
18945 		}
18946 	}
18947 
18948 	if (env->used_map_cnt >= MAX_USED_MAPS) {
18949 		verbose(env, "The total number of maps per program has reached the limit of %u\n",
18950 			MAX_USED_MAPS);
18951 		return -E2BIG;
18952 	}
18953 
18954 	if (env->prog->sleepable)
18955 		atomic64_inc(&map->sleepable_refcnt);
18956 
18957 	/* hold the map. If the program is rejected by verifier,
18958 	 * the map will be released by release_maps() or it
18959 	 * will be used by the valid program until it's unloaded
18960 	 * and all maps are released in bpf_free_used_maps()
18961 	 */
18962 	bpf_map_inc(map);
18963 
18964 	*reused = false;
18965 	env->used_maps[env->used_map_cnt++] = map;
18966 
18967 	return env->used_map_cnt - 1;
18968 }
18969 
18970 /* find and rewrite pseudo imm in ld_imm64 instructions:
18971  *
18972  * 1. if it accesses map FD, replace it with actual map pointer.
18973  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
18974  *
18975  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
18976  */
18977 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
18978 {
18979 	struct bpf_insn *insn = env->prog->insnsi;
18980 	int insn_cnt = env->prog->len;
18981 	int i, err;
18982 
18983 	err = bpf_prog_calc_tag(env->prog);
18984 	if (err)
18985 		return err;
18986 
18987 	for (i = 0; i < insn_cnt; i++, insn++) {
18988 		if (BPF_CLASS(insn->code) == BPF_LDX &&
18989 		    ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
18990 		    insn->imm != 0)) {
18991 			verbose(env, "BPF_LDX uses reserved fields\n");
18992 			return -EINVAL;
18993 		}
18994 
18995 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
18996 			struct bpf_insn_aux_data *aux;
18997 			struct bpf_map *map;
18998 			int map_idx;
18999 			u64 addr;
19000 			u32 fd;
19001 			bool reused;
19002 
19003 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
19004 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
19005 			    insn[1].off != 0) {
19006 				verbose(env, "invalid bpf_ld_imm64 insn\n");
19007 				return -EINVAL;
19008 			}
19009 
19010 			if (insn[0].src_reg == 0)
19011 				/* valid generic load 64-bit imm */
19012 				goto next_insn;
19013 
19014 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
19015 				aux = &env->insn_aux_data[i];
19016 				err = check_pseudo_btf_id(env, insn, aux);
19017 				if (err)
19018 					return err;
19019 				goto next_insn;
19020 			}
19021 
19022 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
19023 				aux = &env->insn_aux_data[i];
19024 				aux->ptr_type = PTR_TO_FUNC;
19025 				goto next_insn;
19026 			}
19027 
19028 			/* In final convert_pseudo_ld_imm64() step, this is
19029 			 * converted into regular 64-bit imm load insn.
19030 			 */
19031 			switch (insn[0].src_reg) {
19032 			case BPF_PSEUDO_MAP_VALUE:
19033 			case BPF_PSEUDO_MAP_IDX_VALUE:
19034 				break;
19035 			case BPF_PSEUDO_MAP_FD:
19036 			case BPF_PSEUDO_MAP_IDX:
19037 				if (insn[1].imm == 0)
19038 					break;
19039 				fallthrough;
19040 			default:
19041 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
19042 				return -EINVAL;
19043 			}
19044 
19045 			switch (insn[0].src_reg) {
19046 			case BPF_PSEUDO_MAP_IDX_VALUE:
19047 			case BPF_PSEUDO_MAP_IDX:
19048 				if (bpfptr_is_null(env->fd_array)) {
19049 					verbose(env, "fd_idx without fd_array is invalid\n");
19050 					return -EPROTO;
19051 				}
19052 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
19053 							    insn[0].imm * sizeof(fd),
19054 							    sizeof(fd)))
19055 					return -EFAULT;
19056 				break;
19057 			default:
19058 				fd = insn[0].imm;
19059 				break;
19060 			}
19061 
19062 			map_idx = add_used_map_from_fd(env, fd, &reused);
19063 			if (map_idx < 0)
19064 				return map_idx;
19065 			map = env->used_maps[map_idx];
19066 
19067 			aux = &env->insn_aux_data[i];
19068 			aux->map_index = map_idx;
19069 
19070 			err = check_map_prog_compatibility(env, map, env->prog);
19071 			if (err)
19072 				return err;
19073 
19074 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
19075 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
19076 				addr = (unsigned long)map;
19077 			} else {
19078 				u32 off = insn[1].imm;
19079 
19080 				if (off >= BPF_MAX_VAR_OFF) {
19081 					verbose(env, "direct value offset of %u is not allowed\n", off);
19082 					return -EINVAL;
19083 				}
19084 
19085 				if (!map->ops->map_direct_value_addr) {
19086 					verbose(env, "no direct value access support for this map type\n");
19087 					return -EINVAL;
19088 				}
19089 
19090 				err = map->ops->map_direct_value_addr(map, &addr, off);
19091 				if (err) {
19092 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
19093 						map->value_size, off);
19094 					return err;
19095 				}
19096 
19097 				aux->map_off = off;
19098 				addr += off;
19099 			}
19100 
19101 			insn[0].imm = (u32)addr;
19102 			insn[1].imm = addr >> 32;
19103 
19104 			/* proceed with extra checks only if its newly added used map */
19105 			if (reused)
19106 				goto next_insn;
19107 
19108 			if (bpf_map_is_cgroup_storage(map) &&
19109 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
19110 				verbose(env, "only one cgroup storage of each type is allowed\n");
19111 				return -EBUSY;
19112 			}
19113 			if (map->map_type == BPF_MAP_TYPE_ARENA) {
19114 				if (env->prog->aux->arena) {
19115 					verbose(env, "Only one arena per program\n");
19116 					return -EBUSY;
19117 				}
19118 				if (!env->allow_ptr_leaks || !env->bpf_capable) {
19119 					verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n");
19120 					return -EPERM;
19121 				}
19122 				if (!env->prog->jit_requested) {
19123 					verbose(env, "JIT is required to use arena\n");
19124 					return -EOPNOTSUPP;
19125 				}
19126 				if (!bpf_jit_supports_arena()) {
19127 					verbose(env, "JIT doesn't support arena\n");
19128 					return -EOPNOTSUPP;
19129 				}
19130 				env->prog->aux->arena = (void *)map;
19131 				if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) {
19132 					verbose(env, "arena's user address must be set via map_extra or mmap()\n");
19133 					return -EINVAL;
19134 				}
19135 			}
19136 
19137 next_insn:
19138 			insn++;
19139 			i++;
19140 			continue;
19141 		}
19142 
19143 		/* Basic sanity check before we invest more work here. */
19144 		if (!bpf_opcode_in_insntable(insn->code)) {
19145 			verbose(env, "unknown opcode %02x\n", insn->code);
19146 			return -EINVAL;
19147 		}
19148 	}
19149 
19150 	/* now all pseudo BPF_LD_IMM64 instructions load valid
19151 	 * 'struct bpf_map *' into a register instead of user map_fd.
19152 	 * These pointers will be used later by verifier to validate map access.
19153 	 */
19154 	return 0;
19155 }
19156 
19157 /* drop refcnt of maps used by the rejected program */
19158 static void release_maps(struct bpf_verifier_env *env)
19159 {
19160 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
19161 			     env->used_map_cnt);
19162 }
19163 
19164 /* drop refcnt of maps used by the rejected program */
19165 static void release_btfs(struct bpf_verifier_env *env)
19166 {
19167 	__bpf_free_used_btfs(env->used_btfs, env->used_btf_cnt);
19168 }
19169 
19170 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
19171 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
19172 {
19173 	struct bpf_insn *insn = env->prog->insnsi;
19174 	int insn_cnt = env->prog->len;
19175 	int i;
19176 
19177 	for (i = 0; i < insn_cnt; i++, insn++) {
19178 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
19179 			continue;
19180 		if (insn->src_reg == BPF_PSEUDO_FUNC)
19181 			continue;
19182 		insn->src_reg = 0;
19183 	}
19184 }
19185 
19186 /* single env->prog->insni[off] instruction was replaced with the range
19187  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
19188  * [0, off) and [off, end) to new locations, so the patched range stays zero
19189  */
19190 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
19191 				 struct bpf_insn_aux_data *new_data,
19192 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
19193 {
19194 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
19195 	struct bpf_insn *insn = new_prog->insnsi;
19196 	u32 old_seen = old_data[off].seen;
19197 	u32 prog_len;
19198 	int i;
19199 
19200 	/* aux info at OFF always needs adjustment, no matter fast path
19201 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
19202 	 * original insn at old prog.
19203 	 */
19204 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
19205 
19206 	if (cnt == 1)
19207 		return;
19208 	prog_len = new_prog->len;
19209 
19210 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
19211 	memcpy(new_data + off + cnt - 1, old_data + off,
19212 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
19213 	for (i = off; i < off + cnt - 1; i++) {
19214 		/* Expand insni[off]'s seen count to the patched range. */
19215 		new_data[i].seen = old_seen;
19216 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
19217 	}
19218 	env->insn_aux_data = new_data;
19219 	vfree(old_data);
19220 }
19221 
19222 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
19223 {
19224 	int i;
19225 
19226 	if (len == 1)
19227 		return;
19228 	/* NOTE: fake 'exit' subprog should be updated as well. */
19229 	for (i = 0; i <= env->subprog_cnt; i++) {
19230 		if (env->subprog_info[i].start <= off)
19231 			continue;
19232 		env->subprog_info[i].start += len - 1;
19233 	}
19234 }
19235 
19236 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
19237 {
19238 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
19239 	int i, sz = prog->aux->size_poke_tab;
19240 	struct bpf_jit_poke_descriptor *desc;
19241 
19242 	for (i = 0; i < sz; i++) {
19243 		desc = &tab[i];
19244 		if (desc->insn_idx <= off)
19245 			continue;
19246 		desc->insn_idx += len - 1;
19247 	}
19248 }
19249 
19250 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
19251 					    const struct bpf_insn *patch, u32 len)
19252 {
19253 	struct bpf_prog *new_prog;
19254 	struct bpf_insn_aux_data *new_data = NULL;
19255 
19256 	if (len > 1) {
19257 		new_data = vzalloc(array_size(env->prog->len + len - 1,
19258 					      sizeof(struct bpf_insn_aux_data)));
19259 		if (!new_data)
19260 			return NULL;
19261 	}
19262 
19263 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
19264 	if (IS_ERR(new_prog)) {
19265 		if (PTR_ERR(new_prog) == -ERANGE)
19266 			verbose(env,
19267 				"insn %d cannot be patched due to 16-bit range\n",
19268 				env->insn_aux_data[off].orig_idx);
19269 		vfree(new_data);
19270 		return NULL;
19271 	}
19272 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
19273 	adjust_subprog_starts(env, off, len);
19274 	adjust_poke_descs(new_prog, off, len);
19275 	return new_prog;
19276 }
19277 
19278 /*
19279  * For all jmp insns in a given 'prog' that point to 'tgt_idx' insn adjust the
19280  * jump offset by 'delta'.
19281  */
19282 static int adjust_jmp_off(struct bpf_prog *prog, u32 tgt_idx, u32 delta)
19283 {
19284 	struct bpf_insn *insn = prog->insnsi;
19285 	u32 insn_cnt = prog->len, i;
19286 	s32 imm;
19287 	s16 off;
19288 
19289 	for (i = 0; i < insn_cnt; i++, insn++) {
19290 		u8 code = insn->code;
19291 
19292 		if (tgt_idx <= i && i < tgt_idx + delta)
19293 			continue;
19294 
19295 		if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) ||
19296 		    BPF_OP(code) == BPF_CALL || BPF_OP(code) == BPF_EXIT)
19297 			continue;
19298 
19299 		if (insn->code == (BPF_JMP32 | BPF_JA)) {
19300 			if (i + 1 + insn->imm != tgt_idx)
19301 				continue;
19302 			if (check_add_overflow(insn->imm, delta, &imm))
19303 				return -ERANGE;
19304 			insn->imm = imm;
19305 		} else {
19306 			if (i + 1 + insn->off != tgt_idx)
19307 				continue;
19308 			if (check_add_overflow(insn->off, delta, &off))
19309 				return -ERANGE;
19310 			insn->off = off;
19311 		}
19312 	}
19313 	return 0;
19314 }
19315 
19316 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
19317 					      u32 off, u32 cnt)
19318 {
19319 	int i, j;
19320 
19321 	/* find first prog starting at or after off (first to remove) */
19322 	for (i = 0; i < env->subprog_cnt; i++)
19323 		if (env->subprog_info[i].start >= off)
19324 			break;
19325 	/* find first prog starting at or after off + cnt (first to stay) */
19326 	for (j = i; j < env->subprog_cnt; j++)
19327 		if (env->subprog_info[j].start >= off + cnt)
19328 			break;
19329 	/* if j doesn't start exactly at off + cnt, we are just removing
19330 	 * the front of previous prog
19331 	 */
19332 	if (env->subprog_info[j].start != off + cnt)
19333 		j--;
19334 
19335 	if (j > i) {
19336 		struct bpf_prog_aux *aux = env->prog->aux;
19337 		int move;
19338 
19339 		/* move fake 'exit' subprog as well */
19340 		move = env->subprog_cnt + 1 - j;
19341 
19342 		memmove(env->subprog_info + i,
19343 			env->subprog_info + j,
19344 			sizeof(*env->subprog_info) * move);
19345 		env->subprog_cnt -= j - i;
19346 
19347 		/* remove func_info */
19348 		if (aux->func_info) {
19349 			move = aux->func_info_cnt - j;
19350 
19351 			memmove(aux->func_info + i,
19352 				aux->func_info + j,
19353 				sizeof(*aux->func_info) * move);
19354 			aux->func_info_cnt -= j - i;
19355 			/* func_info->insn_off is set after all code rewrites,
19356 			 * in adjust_btf_func() - no need to adjust
19357 			 */
19358 		}
19359 	} else {
19360 		/* convert i from "first prog to remove" to "first to adjust" */
19361 		if (env->subprog_info[i].start == off)
19362 			i++;
19363 	}
19364 
19365 	/* update fake 'exit' subprog as well */
19366 	for (; i <= env->subprog_cnt; i++)
19367 		env->subprog_info[i].start -= cnt;
19368 
19369 	return 0;
19370 }
19371 
19372 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
19373 				      u32 cnt)
19374 {
19375 	struct bpf_prog *prog = env->prog;
19376 	u32 i, l_off, l_cnt, nr_linfo;
19377 	struct bpf_line_info *linfo;
19378 
19379 	nr_linfo = prog->aux->nr_linfo;
19380 	if (!nr_linfo)
19381 		return 0;
19382 
19383 	linfo = prog->aux->linfo;
19384 
19385 	/* find first line info to remove, count lines to be removed */
19386 	for (i = 0; i < nr_linfo; i++)
19387 		if (linfo[i].insn_off >= off)
19388 			break;
19389 
19390 	l_off = i;
19391 	l_cnt = 0;
19392 	for (; i < nr_linfo; i++)
19393 		if (linfo[i].insn_off < off + cnt)
19394 			l_cnt++;
19395 		else
19396 			break;
19397 
19398 	/* First live insn doesn't match first live linfo, it needs to "inherit"
19399 	 * last removed linfo.  prog is already modified, so prog->len == off
19400 	 * means no live instructions after (tail of the program was removed).
19401 	 */
19402 	if (prog->len != off && l_cnt &&
19403 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
19404 		l_cnt--;
19405 		linfo[--i].insn_off = off + cnt;
19406 	}
19407 
19408 	/* remove the line info which refer to the removed instructions */
19409 	if (l_cnt) {
19410 		memmove(linfo + l_off, linfo + i,
19411 			sizeof(*linfo) * (nr_linfo - i));
19412 
19413 		prog->aux->nr_linfo -= l_cnt;
19414 		nr_linfo = prog->aux->nr_linfo;
19415 	}
19416 
19417 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
19418 	for (i = l_off; i < nr_linfo; i++)
19419 		linfo[i].insn_off -= cnt;
19420 
19421 	/* fix up all subprogs (incl. 'exit') which start >= off */
19422 	for (i = 0; i <= env->subprog_cnt; i++)
19423 		if (env->subprog_info[i].linfo_idx > l_off) {
19424 			/* program may have started in the removed region but
19425 			 * may not be fully removed
19426 			 */
19427 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
19428 				env->subprog_info[i].linfo_idx -= l_cnt;
19429 			else
19430 				env->subprog_info[i].linfo_idx = l_off;
19431 		}
19432 
19433 	return 0;
19434 }
19435 
19436 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
19437 {
19438 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
19439 	unsigned int orig_prog_len = env->prog->len;
19440 	int err;
19441 
19442 	if (bpf_prog_is_offloaded(env->prog->aux))
19443 		bpf_prog_offload_remove_insns(env, off, cnt);
19444 
19445 	err = bpf_remove_insns(env->prog, off, cnt);
19446 	if (err)
19447 		return err;
19448 
19449 	err = adjust_subprog_starts_after_remove(env, off, cnt);
19450 	if (err)
19451 		return err;
19452 
19453 	err = bpf_adj_linfo_after_remove(env, off, cnt);
19454 	if (err)
19455 		return err;
19456 
19457 	memmove(aux_data + off,	aux_data + off + cnt,
19458 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
19459 
19460 	return 0;
19461 }
19462 
19463 /* The verifier does more data flow analysis than llvm and will not
19464  * explore branches that are dead at run time. Malicious programs can
19465  * have dead code too. Therefore replace all dead at-run-time code
19466  * with 'ja -1'.
19467  *
19468  * Just nops are not optimal, e.g. if they would sit at the end of the
19469  * program and through another bug we would manage to jump there, then
19470  * we'd execute beyond program memory otherwise. Returning exception
19471  * code also wouldn't work since we can have subprogs where the dead
19472  * code could be located.
19473  */
19474 static void sanitize_dead_code(struct bpf_verifier_env *env)
19475 {
19476 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
19477 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
19478 	struct bpf_insn *insn = env->prog->insnsi;
19479 	const int insn_cnt = env->prog->len;
19480 	int i;
19481 
19482 	for (i = 0; i < insn_cnt; i++) {
19483 		if (aux_data[i].seen)
19484 			continue;
19485 		memcpy(insn + i, &trap, sizeof(trap));
19486 		aux_data[i].zext_dst = false;
19487 	}
19488 }
19489 
19490 static bool insn_is_cond_jump(u8 code)
19491 {
19492 	u8 op;
19493 
19494 	op = BPF_OP(code);
19495 	if (BPF_CLASS(code) == BPF_JMP32)
19496 		return op != BPF_JA;
19497 
19498 	if (BPF_CLASS(code) != BPF_JMP)
19499 		return false;
19500 
19501 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
19502 }
19503 
19504 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
19505 {
19506 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
19507 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
19508 	struct bpf_insn *insn = env->prog->insnsi;
19509 	const int insn_cnt = env->prog->len;
19510 	int i;
19511 
19512 	for (i = 0; i < insn_cnt; i++, insn++) {
19513 		if (!insn_is_cond_jump(insn->code))
19514 			continue;
19515 
19516 		if (!aux_data[i + 1].seen)
19517 			ja.off = insn->off;
19518 		else if (!aux_data[i + 1 + insn->off].seen)
19519 			ja.off = 0;
19520 		else
19521 			continue;
19522 
19523 		if (bpf_prog_is_offloaded(env->prog->aux))
19524 			bpf_prog_offload_replace_insn(env, i, &ja);
19525 
19526 		memcpy(insn, &ja, sizeof(ja));
19527 	}
19528 }
19529 
19530 static int opt_remove_dead_code(struct bpf_verifier_env *env)
19531 {
19532 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
19533 	int insn_cnt = env->prog->len;
19534 	int i, err;
19535 
19536 	for (i = 0; i < insn_cnt; i++) {
19537 		int j;
19538 
19539 		j = 0;
19540 		while (i + j < insn_cnt && !aux_data[i + j].seen)
19541 			j++;
19542 		if (!j)
19543 			continue;
19544 
19545 		err = verifier_remove_insns(env, i, j);
19546 		if (err)
19547 			return err;
19548 		insn_cnt = env->prog->len;
19549 	}
19550 
19551 	return 0;
19552 }
19553 
19554 static const struct bpf_insn NOP = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
19555 
19556 static int opt_remove_nops(struct bpf_verifier_env *env)
19557 {
19558 	const struct bpf_insn ja = NOP;
19559 	struct bpf_insn *insn = env->prog->insnsi;
19560 	int insn_cnt = env->prog->len;
19561 	int i, err;
19562 
19563 	for (i = 0; i < insn_cnt; i++) {
19564 		if (memcmp(&insn[i], &ja, sizeof(ja)))
19565 			continue;
19566 
19567 		err = verifier_remove_insns(env, i, 1);
19568 		if (err)
19569 			return err;
19570 		insn_cnt--;
19571 		i--;
19572 	}
19573 
19574 	return 0;
19575 }
19576 
19577 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
19578 					 const union bpf_attr *attr)
19579 {
19580 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
19581 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
19582 	int i, patch_len, delta = 0, len = env->prog->len;
19583 	struct bpf_insn *insns = env->prog->insnsi;
19584 	struct bpf_prog *new_prog;
19585 	bool rnd_hi32;
19586 
19587 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
19588 	zext_patch[1] = BPF_ZEXT_REG(0);
19589 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
19590 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
19591 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
19592 	for (i = 0; i < len; i++) {
19593 		int adj_idx = i + delta;
19594 		struct bpf_insn insn;
19595 		int load_reg;
19596 
19597 		insn = insns[adj_idx];
19598 		load_reg = insn_def_regno(&insn);
19599 		if (!aux[adj_idx].zext_dst) {
19600 			u8 code, class;
19601 			u32 imm_rnd;
19602 
19603 			if (!rnd_hi32)
19604 				continue;
19605 
19606 			code = insn.code;
19607 			class = BPF_CLASS(code);
19608 			if (load_reg == -1)
19609 				continue;
19610 
19611 			/* NOTE: arg "reg" (the fourth one) is only used for
19612 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
19613 			 *       here.
19614 			 */
19615 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
19616 				if (class == BPF_LD &&
19617 				    BPF_MODE(code) == BPF_IMM)
19618 					i++;
19619 				continue;
19620 			}
19621 
19622 			/* ctx load could be transformed into wider load. */
19623 			if (class == BPF_LDX &&
19624 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
19625 				continue;
19626 
19627 			imm_rnd = get_random_u32();
19628 			rnd_hi32_patch[0] = insn;
19629 			rnd_hi32_patch[1].imm = imm_rnd;
19630 			rnd_hi32_patch[3].dst_reg = load_reg;
19631 			patch = rnd_hi32_patch;
19632 			patch_len = 4;
19633 			goto apply_patch_buffer;
19634 		}
19635 
19636 		/* Add in an zero-extend instruction if a) the JIT has requested
19637 		 * it or b) it's a CMPXCHG.
19638 		 *
19639 		 * The latter is because: BPF_CMPXCHG always loads a value into
19640 		 * R0, therefore always zero-extends. However some archs'
19641 		 * equivalent instruction only does this load when the
19642 		 * comparison is successful. This detail of CMPXCHG is
19643 		 * orthogonal to the general zero-extension behaviour of the
19644 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
19645 		 */
19646 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
19647 			continue;
19648 
19649 		/* Zero-extension is done by the caller. */
19650 		if (bpf_pseudo_kfunc_call(&insn))
19651 			continue;
19652 
19653 		if (WARN_ON(load_reg == -1)) {
19654 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
19655 			return -EFAULT;
19656 		}
19657 
19658 		zext_patch[0] = insn;
19659 		zext_patch[1].dst_reg = load_reg;
19660 		zext_patch[1].src_reg = load_reg;
19661 		patch = zext_patch;
19662 		patch_len = 2;
19663 apply_patch_buffer:
19664 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
19665 		if (!new_prog)
19666 			return -ENOMEM;
19667 		env->prog = new_prog;
19668 		insns = new_prog->insnsi;
19669 		aux = env->insn_aux_data;
19670 		delta += patch_len - 1;
19671 	}
19672 
19673 	return 0;
19674 }
19675 
19676 /* convert load instructions that access fields of a context type into a
19677  * sequence of instructions that access fields of the underlying structure:
19678  *     struct __sk_buff    -> struct sk_buff
19679  *     struct bpf_sock_ops -> struct sock
19680  */
19681 static int convert_ctx_accesses(struct bpf_verifier_env *env)
19682 {
19683 	struct bpf_subprog_info *subprogs = env->subprog_info;
19684 	const struct bpf_verifier_ops *ops = env->ops;
19685 	int i, cnt, size, ctx_field_size, delta = 0, epilogue_cnt = 0;
19686 	const int insn_cnt = env->prog->len;
19687 	struct bpf_insn *epilogue_buf = env->epilogue_buf;
19688 	struct bpf_insn *insn_buf = env->insn_buf;
19689 	struct bpf_insn *insn;
19690 	u32 target_size, size_default, off;
19691 	struct bpf_prog *new_prog;
19692 	enum bpf_access_type type;
19693 	bool is_narrower_load;
19694 	int epilogue_idx = 0;
19695 
19696 	if (ops->gen_epilogue) {
19697 		epilogue_cnt = ops->gen_epilogue(epilogue_buf, env->prog,
19698 						 -(subprogs[0].stack_depth + 8));
19699 		if (epilogue_cnt >= INSN_BUF_SIZE) {
19700 			verbose(env, "bpf verifier is misconfigured\n");
19701 			return -EINVAL;
19702 		} else if (epilogue_cnt) {
19703 			/* Save the ARG_PTR_TO_CTX for the epilogue to use */
19704 			cnt = 0;
19705 			subprogs[0].stack_depth += 8;
19706 			insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_1,
19707 						      -subprogs[0].stack_depth);
19708 			insn_buf[cnt++] = env->prog->insnsi[0];
19709 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
19710 			if (!new_prog)
19711 				return -ENOMEM;
19712 			env->prog = new_prog;
19713 			delta += cnt - 1;
19714 		}
19715 	}
19716 
19717 	if (ops->gen_prologue || env->seen_direct_write) {
19718 		if (!ops->gen_prologue) {
19719 			verbose(env, "bpf verifier is misconfigured\n");
19720 			return -EINVAL;
19721 		}
19722 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
19723 					env->prog);
19724 		if (cnt >= INSN_BUF_SIZE) {
19725 			verbose(env, "bpf verifier is misconfigured\n");
19726 			return -EINVAL;
19727 		} else if (cnt) {
19728 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
19729 			if (!new_prog)
19730 				return -ENOMEM;
19731 
19732 			env->prog = new_prog;
19733 			delta += cnt - 1;
19734 		}
19735 	}
19736 
19737 	if (delta)
19738 		WARN_ON(adjust_jmp_off(env->prog, 0, delta));
19739 
19740 	if (bpf_prog_is_offloaded(env->prog->aux))
19741 		return 0;
19742 
19743 	insn = env->prog->insnsi + delta;
19744 
19745 	for (i = 0; i < insn_cnt; i++, insn++) {
19746 		bpf_convert_ctx_access_t convert_ctx_access;
19747 		u8 mode;
19748 
19749 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
19750 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
19751 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
19752 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
19753 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
19754 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
19755 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
19756 			type = BPF_READ;
19757 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
19758 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
19759 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
19760 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
19761 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
19762 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
19763 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
19764 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
19765 			type = BPF_WRITE;
19766 		} else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) ||
19767 			    insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) &&
19768 			   env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) {
19769 			insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code);
19770 			env->prog->aux->num_exentries++;
19771 			continue;
19772 		} else if (insn->code == (BPF_JMP | BPF_EXIT) &&
19773 			   epilogue_cnt &&
19774 			   i + delta < subprogs[1].start) {
19775 			/* Generate epilogue for the main prog */
19776 			if (epilogue_idx) {
19777 				/* jump back to the earlier generated epilogue */
19778 				insn_buf[0] = BPF_JMP32_A(epilogue_idx - i - delta - 1);
19779 				cnt = 1;
19780 			} else {
19781 				memcpy(insn_buf, epilogue_buf,
19782 				       epilogue_cnt * sizeof(*epilogue_buf));
19783 				cnt = epilogue_cnt;
19784 				/* epilogue_idx cannot be 0. It must have at
19785 				 * least one ctx ptr saving insn before the
19786 				 * epilogue.
19787 				 */
19788 				epilogue_idx = i + delta;
19789 			}
19790 			goto patch_insn_buf;
19791 		} else {
19792 			continue;
19793 		}
19794 
19795 		if (type == BPF_WRITE &&
19796 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
19797 			struct bpf_insn patch[] = {
19798 				*insn,
19799 				BPF_ST_NOSPEC(),
19800 			};
19801 
19802 			cnt = ARRAY_SIZE(patch);
19803 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
19804 			if (!new_prog)
19805 				return -ENOMEM;
19806 
19807 			delta    += cnt - 1;
19808 			env->prog = new_prog;
19809 			insn      = new_prog->insnsi + i + delta;
19810 			continue;
19811 		}
19812 
19813 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
19814 		case PTR_TO_CTX:
19815 			if (!ops->convert_ctx_access)
19816 				continue;
19817 			convert_ctx_access = ops->convert_ctx_access;
19818 			break;
19819 		case PTR_TO_SOCKET:
19820 		case PTR_TO_SOCK_COMMON:
19821 			convert_ctx_access = bpf_sock_convert_ctx_access;
19822 			break;
19823 		case PTR_TO_TCP_SOCK:
19824 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
19825 			break;
19826 		case PTR_TO_XDP_SOCK:
19827 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
19828 			break;
19829 		case PTR_TO_BTF_ID:
19830 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
19831 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
19832 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
19833 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
19834 		 * any faults for loads into such types. BPF_WRITE is disallowed
19835 		 * for this case.
19836 		 */
19837 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
19838 			if (type == BPF_READ) {
19839 				if (BPF_MODE(insn->code) == BPF_MEM)
19840 					insn->code = BPF_LDX | BPF_PROBE_MEM |
19841 						     BPF_SIZE((insn)->code);
19842 				else
19843 					insn->code = BPF_LDX | BPF_PROBE_MEMSX |
19844 						     BPF_SIZE((insn)->code);
19845 				env->prog->aux->num_exentries++;
19846 			}
19847 			continue;
19848 		case PTR_TO_ARENA:
19849 			if (BPF_MODE(insn->code) == BPF_MEMSX) {
19850 				verbose(env, "sign extending loads from arena are not supported yet\n");
19851 				return -EOPNOTSUPP;
19852 			}
19853 			insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code);
19854 			env->prog->aux->num_exentries++;
19855 			continue;
19856 		default:
19857 			continue;
19858 		}
19859 
19860 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
19861 		size = BPF_LDST_BYTES(insn);
19862 		mode = BPF_MODE(insn->code);
19863 
19864 		/* If the read access is a narrower load of the field,
19865 		 * convert to a 4/8-byte load, to minimum program type specific
19866 		 * convert_ctx_access changes. If conversion is successful,
19867 		 * we will apply proper mask to the result.
19868 		 */
19869 		is_narrower_load = size < ctx_field_size;
19870 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
19871 		off = insn->off;
19872 		if (is_narrower_load) {
19873 			u8 size_code;
19874 
19875 			if (type == BPF_WRITE) {
19876 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
19877 				return -EINVAL;
19878 			}
19879 
19880 			size_code = BPF_H;
19881 			if (ctx_field_size == 4)
19882 				size_code = BPF_W;
19883 			else if (ctx_field_size == 8)
19884 				size_code = BPF_DW;
19885 
19886 			insn->off = off & ~(size_default - 1);
19887 			insn->code = BPF_LDX | BPF_MEM | size_code;
19888 		}
19889 
19890 		target_size = 0;
19891 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
19892 					 &target_size);
19893 		if (cnt == 0 || cnt >= INSN_BUF_SIZE ||
19894 		    (ctx_field_size && !target_size)) {
19895 			verbose(env, "bpf verifier is misconfigured\n");
19896 			return -EINVAL;
19897 		}
19898 
19899 		if (is_narrower_load && size < target_size) {
19900 			u8 shift = bpf_ctx_narrow_access_offset(
19901 				off, size, size_default) * 8;
19902 			if (shift && cnt + 1 >= INSN_BUF_SIZE) {
19903 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
19904 				return -EINVAL;
19905 			}
19906 			if (ctx_field_size <= 4) {
19907 				if (shift)
19908 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
19909 									insn->dst_reg,
19910 									shift);
19911 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
19912 								(1 << size * 8) - 1);
19913 			} else {
19914 				if (shift)
19915 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
19916 									insn->dst_reg,
19917 									shift);
19918 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
19919 								(1ULL << size * 8) - 1);
19920 			}
19921 		}
19922 		if (mode == BPF_MEMSX)
19923 			insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
19924 						       insn->dst_reg, insn->dst_reg,
19925 						       size * 8, 0);
19926 
19927 patch_insn_buf:
19928 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19929 		if (!new_prog)
19930 			return -ENOMEM;
19931 
19932 		delta += cnt - 1;
19933 
19934 		/* keep walking new program and skip insns we just inserted */
19935 		env->prog = new_prog;
19936 		insn      = new_prog->insnsi + i + delta;
19937 	}
19938 
19939 	return 0;
19940 }
19941 
19942 static int jit_subprogs(struct bpf_verifier_env *env)
19943 {
19944 	struct bpf_prog *prog = env->prog, **func, *tmp;
19945 	int i, j, subprog_start, subprog_end = 0, len, subprog;
19946 	struct bpf_map *map_ptr;
19947 	struct bpf_insn *insn;
19948 	void *old_bpf_func;
19949 	int err, num_exentries;
19950 
19951 	if (env->subprog_cnt <= 1)
19952 		return 0;
19953 
19954 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
19955 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
19956 			continue;
19957 
19958 		/* Upon error here we cannot fall back to interpreter but
19959 		 * need a hard reject of the program. Thus -EFAULT is
19960 		 * propagated in any case.
19961 		 */
19962 		subprog = find_subprog(env, i + insn->imm + 1);
19963 		if (subprog < 0) {
19964 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
19965 				  i + insn->imm + 1);
19966 			return -EFAULT;
19967 		}
19968 		/* temporarily remember subprog id inside insn instead of
19969 		 * aux_data, since next loop will split up all insns into funcs
19970 		 */
19971 		insn->off = subprog;
19972 		/* remember original imm in case JIT fails and fallback
19973 		 * to interpreter will be needed
19974 		 */
19975 		env->insn_aux_data[i].call_imm = insn->imm;
19976 		/* point imm to __bpf_call_base+1 from JITs point of view */
19977 		insn->imm = 1;
19978 		if (bpf_pseudo_func(insn)) {
19979 #if defined(MODULES_VADDR)
19980 			u64 addr = MODULES_VADDR;
19981 #else
19982 			u64 addr = VMALLOC_START;
19983 #endif
19984 			/* jit (e.g. x86_64) may emit fewer instructions
19985 			 * if it learns a u32 imm is the same as a u64 imm.
19986 			 * Set close enough to possible prog address.
19987 			 */
19988 			insn[0].imm = (u32)addr;
19989 			insn[1].imm = addr >> 32;
19990 		}
19991 	}
19992 
19993 	err = bpf_prog_alloc_jited_linfo(prog);
19994 	if (err)
19995 		goto out_undo_insn;
19996 
19997 	err = -ENOMEM;
19998 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
19999 	if (!func)
20000 		goto out_undo_insn;
20001 
20002 	for (i = 0; i < env->subprog_cnt; i++) {
20003 		subprog_start = subprog_end;
20004 		subprog_end = env->subprog_info[i + 1].start;
20005 
20006 		len = subprog_end - subprog_start;
20007 		/* bpf_prog_run() doesn't call subprogs directly,
20008 		 * hence main prog stats include the runtime of subprogs.
20009 		 * subprogs don't have IDs and not reachable via prog_get_next_id
20010 		 * func[i]->stats will never be accessed and stays NULL
20011 		 */
20012 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
20013 		if (!func[i])
20014 			goto out_free;
20015 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
20016 		       len * sizeof(struct bpf_insn));
20017 		func[i]->type = prog->type;
20018 		func[i]->len = len;
20019 		if (bpf_prog_calc_tag(func[i]))
20020 			goto out_free;
20021 		func[i]->is_func = 1;
20022 		func[i]->sleepable = prog->sleepable;
20023 		func[i]->aux->func_idx = i;
20024 		/* Below members will be freed only at prog->aux */
20025 		func[i]->aux->btf = prog->aux->btf;
20026 		func[i]->aux->func_info = prog->aux->func_info;
20027 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
20028 		func[i]->aux->poke_tab = prog->aux->poke_tab;
20029 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
20030 
20031 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
20032 			struct bpf_jit_poke_descriptor *poke;
20033 
20034 			poke = &prog->aux->poke_tab[j];
20035 			if (poke->insn_idx < subprog_end &&
20036 			    poke->insn_idx >= subprog_start)
20037 				poke->aux = func[i]->aux;
20038 		}
20039 
20040 		func[i]->aux->name[0] = 'F';
20041 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
20042 		func[i]->jit_requested = 1;
20043 		func[i]->blinding_requested = prog->blinding_requested;
20044 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
20045 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
20046 		func[i]->aux->linfo = prog->aux->linfo;
20047 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
20048 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
20049 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
20050 		func[i]->aux->arena = prog->aux->arena;
20051 		num_exentries = 0;
20052 		insn = func[i]->insnsi;
20053 		for (j = 0; j < func[i]->len; j++, insn++) {
20054 			if (BPF_CLASS(insn->code) == BPF_LDX &&
20055 			    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
20056 			     BPF_MODE(insn->code) == BPF_PROBE_MEM32 ||
20057 			     BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
20058 				num_exentries++;
20059 			if ((BPF_CLASS(insn->code) == BPF_STX ||
20060 			     BPF_CLASS(insn->code) == BPF_ST) &&
20061 			     BPF_MODE(insn->code) == BPF_PROBE_MEM32)
20062 				num_exentries++;
20063 			if (BPF_CLASS(insn->code) == BPF_STX &&
20064 			     BPF_MODE(insn->code) == BPF_PROBE_ATOMIC)
20065 				num_exentries++;
20066 		}
20067 		func[i]->aux->num_exentries = num_exentries;
20068 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
20069 		func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb;
20070 		if (!i)
20071 			func[i]->aux->exception_boundary = env->seen_exception;
20072 		func[i] = bpf_int_jit_compile(func[i]);
20073 		if (!func[i]->jited) {
20074 			err = -ENOTSUPP;
20075 			goto out_free;
20076 		}
20077 		cond_resched();
20078 	}
20079 
20080 	/* at this point all bpf functions were successfully JITed
20081 	 * now populate all bpf_calls with correct addresses and
20082 	 * run last pass of JIT
20083 	 */
20084 	for (i = 0; i < env->subprog_cnt; i++) {
20085 		insn = func[i]->insnsi;
20086 		for (j = 0; j < func[i]->len; j++, insn++) {
20087 			if (bpf_pseudo_func(insn)) {
20088 				subprog = insn->off;
20089 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
20090 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
20091 				continue;
20092 			}
20093 			if (!bpf_pseudo_call(insn))
20094 				continue;
20095 			subprog = insn->off;
20096 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
20097 		}
20098 
20099 		/* we use the aux data to keep a list of the start addresses
20100 		 * of the JITed images for each function in the program
20101 		 *
20102 		 * for some architectures, such as powerpc64, the imm field
20103 		 * might not be large enough to hold the offset of the start
20104 		 * address of the callee's JITed image from __bpf_call_base
20105 		 *
20106 		 * in such cases, we can lookup the start address of a callee
20107 		 * by using its subprog id, available from the off field of
20108 		 * the call instruction, as an index for this list
20109 		 */
20110 		func[i]->aux->func = func;
20111 		func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
20112 		func[i]->aux->real_func_cnt = env->subprog_cnt;
20113 	}
20114 	for (i = 0; i < env->subprog_cnt; i++) {
20115 		old_bpf_func = func[i]->bpf_func;
20116 		tmp = bpf_int_jit_compile(func[i]);
20117 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
20118 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
20119 			err = -ENOTSUPP;
20120 			goto out_free;
20121 		}
20122 		cond_resched();
20123 	}
20124 
20125 	/* finally lock prog and jit images for all functions and
20126 	 * populate kallsysm. Begin at the first subprogram, since
20127 	 * bpf_prog_load will add the kallsyms for the main program.
20128 	 */
20129 	for (i = 1; i < env->subprog_cnt; i++) {
20130 		err = bpf_prog_lock_ro(func[i]);
20131 		if (err)
20132 			goto out_free;
20133 	}
20134 
20135 	for (i = 1; i < env->subprog_cnt; i++)
20136 		bpf_prog_kallsyms_add(func[i]);
20137 
20138 	/* Last step: make now unused interpreter insns from main
20139 	 * prog consistent for later dump requests, so they can
20140 	 * later look the same as if they were interpreted only.
20141 	 */
20142 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
20143 		if (bpf_pseudo_func(insn)) {
20144 			insn[0].imm = env->insn_aux_data[i].call_imm;
20145 			insn[1].imm = insn->off;
20146 			insn->off = 0;
20147 			continue;
20148 		}
20149 		if (!bpf_pseudo_call(insn))
20150 			continue;
20151 		insn->off = env->insn_aux_data[i].call_imm;
20152 		subprog = find_subprog(env, i + insn->off + 1);
20153 		insn->imm = subprog;
20154 	}
20155 
20156 	prog->jited = 1;
20157 	prog->bpf_func = func[0]->bpf_func;
20158 	prog->jited_len = func[0]->jited_len;
20159 	prog->aux->extable = func[0]->aux->extable;
20160 	prog->aux->num_exentries = func[0]->aux->num_exentries;
20161 	prog->aux->func = func;
20162 	prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
20163 	prog->aux->real_func_cnt = env->subprog_cnt;
20164 	prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func;
20165 	prog->aux->exception_boundary = func[0]->aux->exception_boundary;
20166 	bpf_prog_jit_attempt_done(prog);
20167 	return 0;
20168 out_free:
20169 	/* We failed JIT'ing, so at this point we need to unregister poke
20170 	 * descriptors from subprogs, so that kernel is not attempting to
20171 	 * patch it anymore as we're freeing the subprog JIT memory.
20172 	 */
20173 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
20174 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
20175 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
20176 	}
20177 	/* At this point we're guaranteed that poke descriptors are not
20178 	 * live anymore. We can just unlink its descriptor table as it's
20179 	 * released with the main prog.
20180 	 */
20181 	for (i = 0; i < env->subprog_cnt; i++) {
20182 		if (!func[i])
20183 			continue;
20184 		func[i]->aux->poke_tab = NULL;
20185 		bpf_jit_free(func[i]);
20186 	}
20187 	kfree(func);
20188 out_undo_insn:
20189 	/* cleanup main prog to be interpreted */
20190 	prog->jit_requested = 0;
20191 	prog->blinding_requested = 0;
20192 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
20193 		if (!bpf_pseudo_call(insn))
20194 			continue;
20195 		insn->off = 0;
20196 		insn->imm = env->insn_aux_data[i].call_imm;
20197 	}
20198 	bpf_prog_jit_attempt_done(prog);
20199 	return err;
20200 }
20201 
20202 static int fixup_call_args(struct bpf_verifier_env *env)
20203 {
20204 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
20205 	struct bpf_prog *prog = env->prog;
20206 	struct bpf_insn *insn = prog->insnsi;
20207 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
20208 	int i, depth;
20209 #endif
20210 	int err = 0;
20211 
20212 	if (env->prog->jit_requested &&
20213 	    !bpf_prog_is_offloaded(env->prog->aux)) {
20214 		err = jit_subprogs(env);
20215 		if (err == 0)
20216 			return 0;
20217 		if (err == -EFAULT)
20218 			return err;
20219 	}
20220 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
20221 	if (has_kfunc_call) {
20222 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
20223 		return -EINVAL;
20224 	}
20225 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
20226 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
20227 		 * have to be rejected, since interpreter doesn't support them yet.
20228 		 */
20229 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
20230 		return -EINVAL;
20231 	}
20232 	for (i = 0; i < prog->len; i++, insn++) {
20233 		if (bpf_pseudo_func(insn)) {
20234 			/* When JIT fails the progs with callback calls
20235 			 * have to be rejected, since interpreter doesn't support them yet.
20236 			 */
20237 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
20238 			return -EINVAL;
20239 		}
20240 
20241 		if (!bpf_pseudo_call(insn))
20242 			continue;
20243 		depth = get_callee_stack_depth(env, insn, i);
20244 		if (depth < 0)
20245 			return depth;
20246 		bpf_patch_call_args(insn, depth);
20247 	}
20248 	err = 0;
20249 #endif
20250 	return err;
20251 }
20252 
20253 /* replace a generic kfunc with a specialized version if necessary */
20254 static void specialize_kfunc(struct bpf_verifier_env *env,
20255 			     u32 func_id, u16 offset, unsigned long *addr)
20256 {
20257 	struct bpf_prog *prog = env->prog;
20258 	bool seen_direct_write;
20259 	void *xdp_kfunc;
20260 	bool is_rdonly;
20261 
20262 	if (bpf_dev_bound_kfunc_id(func_id)) {
20263 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
20264 		if (xdp_kfunc) {
20265 			*addr = (unsigned long)xdp_kfunc;
20266 			return;
20267 		}
20268 		/* fallback to default kfunc when not supported by netdev */
20269 	}
20270 
20271 	if (offset)
20272 		return;
20273 
20274 	if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
20275 		seen_direct_write = env->seen_direct_write;
20276 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
20277 
20278 		if (is_rdonly)
20279 			*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
20280 
20281 		/* restore env->seen_direct_write to its original value, since
20282 		 * may_access_direct_pkt_data mutates it
20283 		 */
20284 		env->seen_direct_write = seen_direct_write;
20285 	}
20286 }
20287 
20288 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
20289 					    u16 struct_meta_reg,
20290 					    u16 node_offset_reg,
20291 					    struct bpf_insn *insn,
20292 					    struct bpf_insn *insn_buf,
20293 					    int *cnt)
20294 {
20295 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
20296 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
20297 
20298 	insn_buf[0] = addr[0];
20299 	insn_buf[1] = addr[1];
20300 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
20301 	insn_buf[3] = *insn;
20302 	*cnt = 4;
20303 }
20304 
20305 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
20306 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
20307 {
20308 	const struct bpf_kfunc_desc *desc;
20309 
20310 	if (!insn->imm) {
20311 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
20312 		return -EINVAL;
20313 	}
20314 
20315 	*cnt = 0;
20316 
20317 	/* insn->imm has the btf func_id. Replace it with an offset relative to
20318 	 * __bpf_call_base, unless the JIT needs to call functions that are
20319 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
20320 	 */
20321 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
20322 	if (!desc) {
20323 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
20324 			insn->imm);
20325 		return -EFAULT;
20326 	}
20327 
20328 	if (!bpf_jit_supports_far_kfunc_call())
20329 		insn->imm = BPF_CALL_IMM(desc->addr);
20330 	if (insn->off)
20331 		return 0;
20332 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
20333 	    desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
20334 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
20335 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
20336 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
20337 
20338 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) {
20339 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
20340 				insn_idx);
20341 			return -EFAULT;
20342 		}
20343 
20344 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
20345 		insn_buf[1] = addr[0];
20346 		insn_buf[2] = addr[1];
20347 		insn_buf[3] = *insn;
20348 		*cnt = 4;
20349 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
20350 		   desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] ||
20351 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
20352 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
20353 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
20354 
20355 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) {
20356 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
20357 				insn_idx);
20358 			return -EFAULT;
20359 		}
20360 
20361 		if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
20362 		    !kptr_struct_meta) {
20363 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
20364 				insn_idx);
20365 			return -EFAULT;
20366 		}
20367 
20368 		insn_buf[0] = addr[0];
20369 		insn_buf[1] = addr[1];
20370 		insn_buf[2] = *insn;
20371 		*cnt = 3;
20372 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
20373 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
20374 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
20375 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
20376 		int struct_meta_reg = BPF_REG_3;
20377 		int node_offset_reg = BPF_REG_4;
20378 
20379 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
20380 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
20381 			struct_meta_reg = BPF_REG_4;
20382 			node_offset_reg = BPF_REG_5;
20383 		}
20384 
20385 		if (!kptr_struct_meta) {
20386 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
20387 				insn_idx);
20388 			return -EFAULT;
20389 		}
20390 
20391 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
20392 						node_offset_reg, insn, insn_buf, cnt);
20393 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
20394 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
20395 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
20396 		*cnt = 1;
20397 	} else if (is_bpf_wq_set_callback_impl_kfunc(desc->func_id)) {
20398 		struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(BPF_REG_4, (long)env->prog->aux) };
20399 
20400 		insn_buf[0] = ld_addrs[0];
20401 		insn_buf[1] = ld_addrs[1];
20402 		insn_buf[2] = *insn;
20403 		*cnt = 3;
20404 	}
20405 	return 0;
20406 }
20407 
20408 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */
20409 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len)
20410 {
20411 	struct bpf_subprog_info *info = env->subprog_info;
20412 	int cnt = env->subprog_cnt;
20413 	struct bpf_prog *prog;
20414 
20415 	/* We only reserve one slot for hidden subprogs in subprog_info. */
20416 	if (env->hidden_subprog_cnt) {
20417 		verbose(env, "verifier internal error: only one hidden subprog supported\n");
20418 		return -EFAULT;
20419 	}
20420 	/* We're not patching any existing instruction, just appending the new
20421 	 * ones for the hidden subprog. Hence all of the adjustment operations
20422 	 * in bpf_patch_insn_data are no-ops.
20423 	 */
20424 	prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len);
20425 	if (!prog)
20426 		return -ENOMEM;
20427 	env->prog = prog;
20428 	info[cnt + 1].start = info[cnt].start;
20429 	info[cnt].start = prog->len - len + 1;
20430 	env->subprog_cnt++;
20431 	env->hidden_subprog_cnt++;
20432 	return 0;
20433 }
20434 
20435 /* Do various post-verification rewrites in a single program pass.
20436  * These rewrites simplify JIT and interpreter implementations.
20437  */
20438 static int do_misc_fixups(struct bpf_verifier_env *env)
20439 {
20440 	struct bpf_prog *prog = env->prog;
20441 	enum bpf_attach_type eatype = prog->expected_attach_type;
20442 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
20443 	struct bpf_insn *insn = prog->insnsi;
20444 	const struct bpf_func_proto *fn;
20445 	const int insn_cnt = prog->len;
20446 	const struct bpf_map_ops *ops;
20447 	struct bpf_insn_aux_data *aux;
20448 	struct bpf_insn *insn_buf = env->insn_buf;
20449 	struct bpf_prog *new_prog;
20450 	struct bpf_map *map_ptr;
20451 	int i, ret, cnt, delta = 0, cur_subprog = 0;
20452 	struct bpf_subprog_info *subprogs = env->subprog_info;
20453 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
20454 	u16 stack_depth_extra = 0;
20455 
20456 	if (env->seen_exception && !env->exception_callback_subprog) {
20457 		struct bpf_insn patch[] = {
20458 			env->prog->insnsi[insn_cnt - 1],
20459 			BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
20460 			BPF_EXIT_INSN(),
20461 		};
20462 
20463 		ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch));
20464 		if (ret < 0)
20465 			return ret;
20466 		prog = env->prog;
20467 		insn = prog->insnsi;
20468 
20469 		env->exception_callback_subprog = env->subprog_cnt - 1;
20470 		/* Don't update insn_cnt, as add_hidden_subprog always appends insns */
20471 		mark_subprog_exc_cb(env, env->exception_callback_subprog);
20472 	}
20473 
20474 	for (i = 0; i < insn_cnt;) {
20475 		if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) {
20476 			if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) ||
20477 			    (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) {
20478 				/* convert to 32-bit mov that clears upper 32-bit */
20479 				insn->code = BPF_ALU | BPF_MOV | BPF_X;
20480 				/* clear off and imm, so it's a normal 'wX = wY' from JIT pov */
20481 				insn->off = 0;
20482 				insn->imm = 0;
20483 			} /* cast from as(0) to as(1) should be handled by JIT */
20484 			goto next_insn;
20485 		}
20486 
20487 		if (env->insn_aux_data[i + delta].needs_zext)
20488 			/* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */
20489 			insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code);
20490 
20491 		/* Make sdiv/smod divide-by-minus-one exceptions impossible. */
20492 		if ((insn->code == (BPF_ALU64 | BPF_MOD | BPF_K) ||
20493 		     insn->code == (BPF_ALU64 | BPF_DIV | BPF_K) ||
20494 		     insn->code == (BPF_ALU | BPF_MOD | BPF_K) ||
20495 		     insn->code == (BPF_ALU | BPF_DIV | BPF_K)) &&
20496 		    insn->off == 1 && insn->imm == -1) {
20497 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
20498 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
20499 			struct bpf_insn *patchlet;
20500 			struct bpf_insn chk_and_sdiv[] = {
20501 				BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
20502 					     BPF_NEG | BPF_K, insn->dst_reg,
20503 					     0, 0, 0),
20504 			};
20505 			struct bpf_insn chk_and_smod[] = {
20506 				BPF_MOV32_IMM(insn->dst_reg, 0),
20507 			};
20508 
20509 			patchlet = isdiv ? chk_and_sdiv : chk_and_smod;
20510 			cnt = isdiv ? ARRAY_SIZE(chk_and_sdiv) : ARRAY_SIZE(chk_and_smod);
20511 
20512 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
20513 			if (!new_prog)
20514 				return -ENOMEM;
20515 
20516 			delta    += cnt - 1;
20517 			env->prog = prog = new_prog;
20518 			insn      = new_prog->insnsi + i + delta;
20519 			goto next_insn;
20520 		}
20521 
20522 		/* Make divide-by-zero and divide-by-minus-one exceptions impossible. */
20523 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
20524 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
20525 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
20526 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
20527 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
20528 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
20529 			bool is_sdiv = isdiv && insn->off == 1;
20530 			bool is_smod = !isdiv && insn->off == 1;
20531 			struct bpf_insn *patchlet;
20532 			struct bpf_insn chk_and_div[] = {
20533 				/* [R,W]x div 0 -> 0 */
20534 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20535 					     BPF_JNE | BPF_K, insn->src_reg,
20536 					     0, 2, 0),
20537 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
20538 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
20539 				*insn,
20540 			};
20541 			struct bpf_insn chk_and_mod[] = {
20542 				/* [R,W]x mod 0 -> [R,W]x */
20543 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20544 					     BPF_JEQ | BPF_K, insn->src_reg,
20545 					     0, 1 + (is64 ? 0 : 1), 0),
20546 				*insn,
20547 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
20548 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
20549 			};
20550 			struct bpf_insn chk_and_sdiv[] = {
20551 				/* [R,W]x sdiv 0 -> 0
20552 				 * LLONG_MIN sdiv -1 -> LLONG_MIN
20553 				 * INT_MIN sdiv -1 -> INT_MIN
20554 				 */
20555 				BPF_MOV64_REG(BPF_REG_AX, insn->src_reg),
20556 				BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
20557 					     BPF_ADD | BPF_K, BPF_REG_AX,
20558 					     0, 0, 1),
20559 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20560 					     BPF_JGT | BPF_K, BPF_REG_AX,
20561 					     0, 4, 1),
20562 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20563 					     BPF_JEQ | BPF_K, BPF_REG_AX,
20564 					     0, 1, 0),
20565 				BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
20566 					     BPF_MOV | BPF_K, insn->dst_reg,
20567 					     0, 0, 0),
20568 				/* BPF_NEG(LLONG_MIN) == -LLONG_MIN == LLONG_MIN */
20569 				BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
20570 					     BPF_NEG | BPF_K, insn->dst_reg,
20571 					     0, 0, 0),
20572 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
20573 				*insn,
20574 			};
20575 			struct bpf_insn chk_and_smod[] = {
20576 				/* [R,W]x mod 0 -> [R,W]x */
20577 				/* [R,W]x mod -1 -> 0 */
20578 				BPF_MOV64_REG(BPF_REG_AX, insn->src_reg),
20579 				BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
20580 					     BPF_ADD | BPF_K, BPF_REG_AX,
20581 					     0, 0, 1),
20582 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20583 					     BPF_JGT | BPF_K, BPF_REG_AX,
20584 					     0, 3, 1),
20585 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
20586 					     BPF_JEQ | BPF_K, BPF_REG_AX,
20587 					     0, 3 + (is64 ? 0 : 1), 1),
20588 				BPF_MOV32_IMM(insn->dst_reg, 0),
20589 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
20590 				*insn,
20591 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
20592 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
20593 			};
20594 
20595 			if (is_sdiv) {
20596 				patchlet = chk_and_sdiv;
20597 				cnt = ARRAY_SIZE(chk_and_sdiv);
20598 			} else if (is_smod) {
20599 				patchlet = chk_and_smod;
20600 				cnt = ARRAY_SIZE(chk_and_smod) - (is64 ? 2 : 0);
20601 			} else {
20602 				patchlet = isdiv ? chk_and_div : chk_and_mod;
20603 				cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
20604 					      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
20605 			}
20606 
20607 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
20608 			if (!new_prog)
20609 				return -ENOMEM;
20610 
20611 			delta    += cnt - 1;
20612 			env->prog = prog = new_prog;
20613 			insn      = new_prog->insnsi + i + delta;
20614 			goto next_insn;
20615 		}
20616 
20617 		/* Make it impossible to de-reference a userspace address */
20618 		if (BPF_CLASS(insn->code) == BPF_LDX &&
20619 		    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
20620 		     BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) {
20621 			struct bpf_insn *patch = &insn_buf[0];
20622 			u64 uaddress_limit = bpf_arch_uaddress_limit();
20623 
20624 			if (!uaddress_limit)
20625 				goto next_insn;
20626 
20627 			*patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg);
20628 			if (insn->off)
20629 				*patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off);
20630 			*patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32);
20631 			*patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2);
20632 			*patch++ = *insn;
20633 			*patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
20634 			*patch++ = BPF_MOV64_IMM(insn->dst_reg, 0);
20635 
20636 			cnt = patch - insn_buf;
20637 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20638 			if (!new_prog)
20639 				return -ENOMEM;
20640 
20641 			delta    += cnt - 1;
20642 			env->prog = prog = new_prog;
20643 			insn      = new_prog->insnsi + i + delta;
20644 			goto next_insn;
20645 		}
20646 
20647 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
20648 		if (BPF_CLASS(insn->code) == BPF_LD &&
20649 		    (BPF_MODE(insn->code) == BPF_ABS ||
20650 		     BPF_MODE(insn->code) == BPF_IND)) {
20651 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
20652 			if (cnt == 0 || cnt >= INSN_BUF_SIZE) {
20653 				verbose(env, "bpf verifier is misconfigured\n");
20654 				return -EINVAL;
20655 			}
20656 
20657 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20658 			if (!new_prog)
20659 				return -ENOMEM;
20660 
20661 			delta    += cnt - 1;
20662 			env->prog = prog = new_prog;
20663 			insn      = new_prog->insnsi + i + delta;
20664 			goto next_insn;
20665 		}
20666 
20667 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
20668 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
20669 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
20670 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
20671 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
20672 			struct bpf_insn *patch = &insn_buf[0];
20673 			bool issrc, isneg, isimm;
20674 			u32 off_reg;
20675 
20676 			aux = &env->insn_aux_data[i + delta];
20677 			if (!aux->alu_state ||
20678 			    aux->alu_state == BPF_ALU_NON_POINTER)
20679 				goto next_insn;
20680 
20681 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
20682 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
20683 				BPF_ALU_SANITIZE_SRC;
20684 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
20685 
20686 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
20687 			if (isimm) {
20688 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
20689 			} else {
20690 				if (isneg)
20691 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
20692 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
20693 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
20694 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
20695 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
20696 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
20697 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
20698 			}
20699 			if (!issrc)
20700 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
20701 			insn->src_reg = BPF_REG_AX;
20702 			if (isneg)
20703 				insn->code = insn->code == code_add ?
20704 					     code_sub : code_add;
20705 			*patch++ = *insn;
20706 			if (issrc && isneg && !isimm)
20707 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
20708 			cnt = patch - insn_buf;
20709 
20710 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20711 			if (!new_prog)
20712 				return -ENOMEM;
20713 
20714 			delta    += cnt - 1;
20715 			env->prog = prog = new_prog;
20716 			insn      = new_prog->insnsi + i + delta;
20717 			goto next_insn;
20718 		}
20719 
20720 		if (is_may_goto_insn(insn)) {
20721 			int stack_off = -stack_depth - 8;
20722 
20723 			stack_depth_extra = 8;
20724 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off);
20725 			if (insn->off >= 0)
20726 				insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2);
20727 			else
20728 				insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1);
20729 			insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1);
20730 			insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off);
20731 			cnt = 4;
20732 
20733 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20734 			if (!new_prog)
20735 				return -ENOMEM;
20736 
20737 			delta += cnt - 1;
20738 			env->prog = prog = new_prog;
20739 			insn = new_prog->insnsi + i + delta;
20740 			goto next_insn;
20741 		}
20742 
20743 		if (insn->code != (BPF_JMP | BPF_CALL))
20744 			goto next_insn;
20745 		if (insn->src_reg == BPF_PSEUDO_CALL)
20746 			goto next_insn;
20747 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
20748 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
20749 			if (ret)
20750 				return ret;
20751 			if (cnt == 0)
20752 				goto next_insn;
20753 
20754 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20755 			if (!new_prog)
20756 				return -ENOMEM;
20757 
20758 			delta	 += cnt - 1;
20759 			env->prog = prog = new_prog;
20760 			insn	  = new_prog->insnsi + i + delta;
20761 			goto next_insn;
20762 		}
20763 
20764 		/* Skip inlining the helper call if the JIT does it. */
20765 		if (bpf_jit_inlines_helper_call(insn->imm))
20766 			goto next_insn;
20767 
20768 		if (insn->imm == BPF_FUNC_get_route_realm)
20769 			prog->dst_needed = 1;
20770 		if (insn->imm == BPF_FUNC_get_prandom_u32)
20771 			bpf_user_rnd_init_once();
20772 		if (insn->imm == BPF_FUNC_override_return)
20773 			prog->kprobe_override = 1;
20774 		if (insn->imm == BPF_FUNC_tail_call) {
20775 			/* If we tail call into other programs, we
20776 			 * cannot make any assumptions since they can
20777 			 * be replaced dynamically during runtime in
20778 			 * the program array.
20779 			 */
20780 			prog->cb_access = 1;
20781 			if (!allow_tail_call_in_subprogs(env))
20782 				prog->aux->stack_depth = MAX_BPF_STACK;
20783 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
20784 
20785 			/* mark bpf_tail_call as different opcode to avoid
20786 			 * conditional branch in the interpreter for every normal
20787 			 * call and to prevent accidental JITing by JIT compiler
20788 			 * that doesn't support bpf_tail_call yet
20789 			 */
20790 			insn->imm = 0;
20791 			insn->code = BPF_JMP | BPF_TAIL_CALL;
20792 
20793 			aux = &env->insn_aux_data[i + delta];
20794 			if (env->bpf_capable && !prog->blinding_requested &&
20795 			    prog->jit_requested &&
20796 			    !bpf_map_key_poisoned(aux) &&
20797 			    !bpf_map_ptr_poisoned(aux) &&
20798 			    !bpf_map_ptr_unpriv(aux)) {
20799 				struct bpf_jit_poke_descriptor desc = {
20800 					.reason = BPF_POKE_REASON_TAIL_CALL,
20801 					.tail_call.map = aux->map_ptr_state.map_ptr,
20802 					.tail_call.key = bpf_map_key_immediate(aux),
20803 					.insn_idx = i + delta,
20804 				};
20805 
20806 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
20807 				if (ret < 0) {
20808 					verbose(env, "adding tail call poke descriptor failed\n");
20809 					return ret;
20810 				}
20811 
20812 				insn->imm = ret + 1;
20813 				goto next_insn;
20814 			}
20815 
20816 			if (!bpf_map_ptr_unpriv(aux))
20817 				goto next_insn;
20818 
20819 			/* instead of changing every JIT dealing with tail_call
20820 			 * emit two extra insns:
20821 			 * if (index >= max_entries) goto out;
20822 			 * index &= array->index_mask;
20823 			 * to avoid out-of-bounds cpu speculation
20824 			 */
20825 			if (bpf_map_ptr_poisoned(aux)) {
20826 				verbose(env, "tail_call abusing map_ptr\n");
20827 				return -EINVAL;
20828 			}
20829 
20830 			map_ptr = aux->map_ptr_state.map_ptr;
20831 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
20832 						  map_ptr->max_entries, 2);
20833 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
20834 						    container_of(map_ptr,
20835 								 struct bpf_array,
20836 								 map)->index_mask);
20837 			insn_buf[2] = *insn;
20838 			cnt = 3;
20839 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20840 			if (!new_prog)
20841 				return -ENOMEM;
20842 
20843 			delta    += cnt - 1;
20844 			env->prog = prog = new_prog;
20845 			insn      = new_prog->insnsi + i + delta;
20846 			goto next_insn;
20847 		}
20848 
20849 		if (insn->imm == BPF_FUNC_timer_set_callback) {
20850 			/* The verifier will process callback_fn as many times as necessary
20851 			 * with different maps and the register states prepared by
20852 			 * set_timer_callback_state will be accurate.
20853 			 *
20854 			 * The following use case is valid:
20855 			 *   map1 is shared by prog1, prog2, prog3.
20856 			 *   prog1 calls bpf_timer_init for some map1 elements
20857 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
20858 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
20859 			 *   prog3 calls bpf_timer_start for some map1 elements.
20860 			 *     Those that were not both bpf_timer_init-ed and
20861 			 *     bpf_timer_set_callback-ed will return -EINVAL.
20862 			 */
20863 			struct bpf_insn ld_addrs[2] = {
20864 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
20865 			};
20866 
20867 			insn_buf[0] = ld_addrs[0];
20868 			insn_buf[1] = ld_addrs[1];
20869 			insn_buf[2] = *insn;
20870 			cnt = 3;
20871 
20872 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20873 			if (!new_prog)
20874 				return -ENOMEM;
20875 
20876 			delta    += cnt - 1;
20877 			env->prog = prog = new_prog;
20878 			insn      = new_prog->insnsi + i + delta;
20879 			goto patch_call_imm;
20880 		}
20881 
20882 		if (is_storage_get_function(insn->imm)) {
20883 			if (!in_sleepable(env) ||
20884 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
20885 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
20886 			else
20887 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
20888 			insn_buf[1] = *insn;
20889 			cnt = 2;
20890 
20891 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20892 			if (!new_prog)
20893 				return -ENOMEM;
20894 
20895 			delta += cnt - 1;
20896 			env->prog = prog = new_prog;
20897 			insn = new_prog->insnsi + i + delta;
20898 			goto patch_call_imm;
20899 		}
20900 
20901 		/* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */
20902 		if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) {
20903 			/* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data,
20904 			 * bpf_mem_alloc() returns a ptr to the percpu data ptr.
20905 			 */
20906 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0);
20907 			insn_buf[1] = *insn;
20908 			cnt = 2;
20909 
20910 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
20911 			if (!new_prog)
20912 				return -ENOMEM;
20913 
20914 			delta += cnt - 1;
20915 			env->prog = prog = new_prog;
20916 			insn = new_prog->insnsi + i + delta;
20917 			goto patch_call_imm;
20918 		}
20919 
20920 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
20921 		 * and other inlining handlers are currently limited to 64 bit
20922 		 * only.
20923 		 */
20924 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
20925 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
20926 		     insn->imm == BPF_FUNC_map_update_elem ||
20927 		     insn->imm == BPF_FUNC_map_delete_elem ||
20928 		     insn->imm == BPF_FUNC_map_push_elem   ||
20929 		     insn->imm == BPF_FUNC_map_pop_elem    ||
20930 		     insn->imm == BPF_FUNC_map_peek_elem   ||
20931 		     insn->imm == BPF_FUNC_redirect_map    ||
20932 		     insn->imm == BPF_FUNC_for_each_map_elem ||
20933 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
20934 			aux = &env->insn_aux_data[i + delta];
20935 			if (bpf_map_ptr_poisoned(aux))
20936 				goto patch_call_imm;
20937 
20938 			map_ptr = aux->map_ptr_state.map_ptr;
20939 			ops = map_ptr->ops;
20940 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
20941 			    ops->map_gen_lookup) {
20942 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
20943 				if (cnt == -EOPNOTSUPP)
20944 					goto patch_map_ops_generic;
20945 				if (cnt <= 0 || cnt >= INSN_BUF_SIZE) {
20946 					verbose(env, "bpf verifier is misconfigured\n");
20947 					return -EINVAL;
20948 				}
20949 
20950 				new_prog = bpf_patch_insn_data(env, i + delta,
20951 							       insn_buf, cnt);
20952 				if (!new_prog)
20953 					return -ENOMEM;
20954 
20955 				delta    += cnt - 1;
20956 				env->prog = prog = new_prog;
20957 				insn      = new_prog->insnsi + i + delta;
20958 				goto next_insn;
20959 			}
20960 
20961 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
20962 				     (void *(*)(struct bpf_map *map, void *key))NULL));
20963 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
20964 				     (long (*)(struct bpf_map *map, void *key))NULL));
20965 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
20966 				     (long (*)(struct bpf_map *map, void *key, void *value,
20967 					      u64 flags))NULL));
20968 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
20969 				     (long (*)(struct bpf_map *map, void *value,
20970 					      u64 flags))NULL));
20971 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
20972 				     (long (*)(struct bpf_map *map, void *value))NULL));
20973 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
20974 				     (long (*)(struct bpf_map *map, void *value))NULL));
20975 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
20976 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
20977 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
20978 				     (long (*)(struct bpf_map *map,
20979 					      bpf_callback_t callback_fn,
20980 					      void *callback_ctx,
20981 					      u64 flags))NULL));
20982 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
20983 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
20984 
20985 patch_map_ops_generic:
20986 			switch (insn->imm) {
20987 			case BPF_FUNC_map_lookup_elem:
20988 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
20989 				goto next_insn;
20990 			case BPF_FUNC_map_update_elem:
20991 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
20992 				goto next_insn;
20993 			case BPF_FUNC_map_delete_elem:
20994 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
20995 				goto next_insn;
20996 			case BPF_FUNC_map_push_elem:
20997 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
20998 				goto next_insn;
20999 			case BPF_FUNC_map_pop_elem:
21000 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
21001 				goto next_insn;
21002 			case BPF_FUNC_map_peek_elem:
21003 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
21004 				goto next_insn;
21005 			case BPF_FUNC_redirect_map:
21006 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
21007 				goto next_insn;
21008 			case BPF_FUNC_for_each_map_elem:
21009 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
21010 				goto next_insn;
21011 			case BPF_FUNC_map_lookup_percpu_elem:
21012 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
21013 				goto next_insn;
21014 			}
21015 
21016 			goto patch_call_imm;
21017 		}
21018 
21019 		/* Implement bpf_jiffies64 inline. */
21020 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
21021 		    insn->imm == BPF_FUNC_jiffies64) {
21022 			struct bpf_insn ld_jiffies_addr[2] = {
21023 				BPF_LD_IMM64(BPF_REG_0,
21024 					     (unsigned long)&jiffies),
21025 			};
21026 
21027 			insn_buf[0] = ld_jiffies_addr[0];
21028 			insn_buf[1] = ld_jiffies_addr[1];
21029 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
21030 						  BPF_REG_0, 0);
21031 			cnt = 3;
21032 
21033 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
21034 						       cnt);
21035 			if (!new_prog)
21036 				return -ENOMEM;
21037 
21038 			delta    += cnt - 1;
21039 			env->prog = prog = new_prog;
21040 			insn      = new_prog->insnsi + i + delta;
21041 			goto next_insn;
21042 		}
21043 
21044 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML)
21045 		/* Implement bpf_get_smp_processor_id() inline. */
21046 		if (insn->imm == BPF_FUNC_get_smp_processor_id &&
21047 		    verifier_inlines_helper_call(env, insn->imm)) {
21048 			/* BPF_FUNC_get_smp_processor_id inlining is an
21049 			 * optimization, so if pcpu_hot.cpu_number is ever
21050 			 * changed in some incompatible and hard to support
21051 			 * way, it's fine to back out this inlining logic
21052 			 */
21053 			insn_buf[0] = BPF_MOV32_IMM(BPF_REG_0, (u32)(unsigned long)&pcpu_hot.cpu_number);
21054 			insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0);
21055 			insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0);
21056 			cnt = 3;
21057 
21058 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21059 			if (!new_prog)
21060 				return -ENOMEM;
21061 
21062 			delta    += cnt - 1;
21063 			env->prog = prog = new_prog;
21064 			insn      = new_prog->insnsi + i + delta;
21065 			goto next_insn;
21066 		}
21067 #endif
21068 		/* Implement bpf_get_func_arg inline. */
21069 		if (prog_type == BPF_PROG_TYPE_TRACING &&
21070 		    insn->imm == BPF_FUNC_get_func_arg) {
21071 			/* Load nr_args from ctx - 8 */
21072 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
21073 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
21074 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
21075 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
21076 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
21077 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
21078 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
21079 			insn_buf[7] = BPF_JMP_A(1);
21080 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
21081 			cnt = 9;
21082 
21083 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21084 			if (!new_prog)
21085 				return -ENOMEM;
21086 
21087 			delta    += cnt - 1;
21088 			env->prog = prog = new_prog;
21089 			insn      = new_prog->insnsi + i + delta;
21090 			goto next_insn;
21091 		}
21092 
21093 		/* Implement bpf_get_func_ret inline. */
21094 		if (prog_type == BPF_PROG_TYPE_TRACING &&
21095 		    insn->imm == BPF_FUNC_get_func_ret) {
21096 			if (eatype == BPF_TRACE_FEXIT ||
21097 			    eatype == BPF_MODIFY_RETURN) {
21098 				/* Load nr_args from ctx - 8 */
21099 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
21100 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
21101 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
21102 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
21103 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
21104 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
21105 				cnt = 6;
21106 			} else {
21107 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
21108 				cnt = 1;
21109 			}
21110 
21111 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21112 			if (!new_prog)
21113 				return -ENOMEM;
21114 
21115 			delta    += cnt - 1;
21116 			env->prog = prog = new_prog;
21117 			insn      = new_prog->insnsi + i + delta;
21118 			goto next_insn;
21119 		}
21120 
21121 		/* Implement get_func_arg_cnt inline. */
21122 		if (prog_type == BPF_PROG_TYPE_TRACING &&
21123 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
21124 			/* Load nr_args from ctx - 8 */
21125 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
21126 
21127 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
21128 			if (!new_prog)
21129 				return -ENOMEM;
21130 
21131 			env->prog = prog = new_prog;
21132 			insn      = new_prog->insnsi + i + delta;
21133 			goto next_insn;
21134 		}
21135 
21136 		/* Implement bpf_get_func_ip inline. */
21137 		if (prog_type == BPF_PROG_TYPE_TRACING &&
21138 		    insn->imm == BPF_FUNC_get_func_ip) {
21139 			/* Load IP address from ctx - 16 */
21140 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
21141 
21142 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
21143 			if (!new_prog)
21144 				return -ENOMEM;
21145 
21146 			env->prog = prog = new_prog;
21147 			insn      = new_prog->insnsi + i + delta;
21148 			goto next_insn;
21149 		}
21150 
21151 		/* Implement bpf_get_branch_snapshot inline. */
21152 		if (IS_ENABLED(CONFIG_PERF_EVENTS) &&
21153 		    prog->jit_requested && BITS_PER_LONG == 64 &&
21154 		    insn->imm == BPF_FUNC_get_branch_snapshot) {
21155 			/* We are dealing with the following func protos:
21156 			 * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags);
21157 			 * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt);
21158 			 */
21159 			const u32 br_entry_size = sizeof(struct perf_branch_entry);
21160 
21161 			/* struct perf_branch_entry is part of UAPI and is
21162 			 * used as an array element, so extremely unlikely to
21163 			 * ever grow or shrink
21164 			 */
21165 			BUILD_BUG_ON(br_entry_size != 24);
21166 
21167 			/* if (unlikely(flags)) return -EINVAL */
21168 			insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7);
21169 
21170 			/* Transform size (bytes) into number of entries (cnt = size / 24).
21171 			 * But to avoid expensive division instruction, we implement
21172 			 * divide-by-3 through multiplication, followed by further
21173 			 * division by 8 through 3-bit right shift.
21174 			 * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr.,
21175 			 * p. 227, chapter "Unsigned Division by 3" for details and proofs.
21176 			 *
21177 			 * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab.
21178 			 */
21179 			insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab);
21180 			insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0);
21181 			insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36);
21182 
21183 			/* call perf_snapshot_branch_stack implementation */
21184 			insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack));
21185 			/* if (entry_cnt == 0) return -ENOENT */
21186 			insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4);
21187 			/* return entry_cnt * sizeof(struct perf_branch_entry) */
21188 			insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size);
21189 			insn_buf[7] = BPF_JMP_A(3);
21190 			/* return -EINVAL; */
21191 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
21192 			insn_buf[9] = BPF_JMP_A(1);
21193 			/* return -ENOENT; */
21194 			insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT);
21195 			cnt = 11;
21196 
21197 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21198 			if (!new_prog)
21199 				return -ENOMEM;
21200 
21201 			delta    += cnt - 1;
21202 			env->prog = prog = new_prog;
21203 			insn      = new_prog->insnsi + i + delta;
21204 			continue;
21205 		}
21206 
21207 		/* Implement bpf_kptr_xchg inline */
21208 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
21209 		    insn->imm == BPF_FUNC_kptr_xchg &&
21210 		    bpf_jit_supports_ptr_xchg()) {
21211 			insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2);
21212 			insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0);
21213 			cnt = 2;
21214 
21215 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
21216 			if (!new_prog)
21217 				return -ENOMEM;
21218 
21219 			delta    += cnt - 1;
21220 			env->prog = prog = new_prog;
21221 			insn      = new_prog->insnsi + i + delta;
21222 			goto next_insn;
21223 		}
21224 patch_call_imm:
21225 		fn = env->ops->get_func_proto(insn->imm, env->prog);
21226 		/* all functions that have prototype and verifier allowed
21227 		 * programs to call them, must be real in-kernel functions
21228 		 */
21229 		if (!fn->func) {
21230 			verbose(env,
21231 				"kernel subsystem misconfigured func %s#%d\n",
21232 				func_id_name(insn->imm), insn->imm);
21233 			return -EFAULT;
21234 		}
21235 		insn->imm = fn->func - __bpf_call_base;
21236 next_insn:
21237 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
21238 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
21239 			subprogs[cur_subprog].stack_extra = stack_depth_extra;
21240 			cur_subprog++;
21241 			stack_depth = subprogs[cur_subprog].stack_depth;
21242 			stack_depth_extra = 0;
21243 		}
21244 		i++;
21245 		insn++;
21246 	}
21247 
21248 	env->prog->aux->stack_depth = subprogs[0].stack_depth;
21249 	for (i = 0; i < env->subprog_cnt; i++) {
21250 		int subprog_start = subprogs[i].start;
21251 		int stack_slots = subprogs[i].stack_extra / 8;
21252 
21253 		if (!stack_slots)
21254 			continue;
21255 		if (stack_slots > 1) {
21256 			verbose(env, "verifier bug: stack_slots supports may_goto only\n");
21257 			return -EFAULT;
21258 		}
21259 
21260 		/* Add ST insn to subprog prologue to init extra stack */
21261 		insn_buf[0] = BPF_ST_MEM(BPF_DW, BPF_REG_FP,
21262 					 -subprogs[i].stack_depth, BPF_MAX_LOOPS);
21263 		/* Copy first actual insn to preserve it */
21264 		insn_buf[1] = env->prog->insnsi[subprog_start];
21265 
21266 		new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, 2);
21267 		if (!new_prog)
21268 			return -ENOMEM;
21269 		env->prog = prog = new_prog;
21270 		/*
21271 		 * If may_goto is a first insn of a prog there could be a jmp
21272 		 * insn that points to it, hence adjust all such jmps to point
21273 		 * to insn after BPF_ST that inits may_goto count.
21274 		 * Adjustment will succeed because bpf_patch_insn_data() didn't fail.
21275 		 */
21276 		WARN_ON(adjust_jmp_off(env->prog, subprog_start, 1));
21277 	}
21278 
21279 	/* Since poke tab is now finalized, publish aux to tracker. */
21280 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
21281 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
21282 		if (!map_ptr->ops->map_poke_track ||
21283 		    !map_ptr->ops->map_poke_untrack ||
21284 		    !map_ptr->ops->map_poke_run) {
21285 			verbose(env, "bpf verifier is misconfigured\n");
21286 			return -EINVAL;
21287 		}
21288 
21289 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
21290 		if (ret < 0) {
21291 			verbose(env, "tracking tail call prog failed\n");
21292 			return ret;
21293 		}
21294 	}
21295 
21296 	sort_kfunc_descs_by_imm_off(env->prog);
21297 
21298 	return 0;
21299 }
21300 
21301 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
21302 					int position,
21303 					s32 stack_base,
21304 					u32 callback_subprogno,
21305 					u32 *total_cnt)
21306 {
21307 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
21308 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
21309 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
21310 	int reg_loop_max = BPF_REG_6;
21311 	int reg_loop_cnt = BPF_REG_7;
21312 	int reg_loop_ctx = BPF_REG_8;
21313 
21314 	struct bpf_insn *insn_buf = env->insn_buf;
21315 	struct bpf_prog *new_prog;
21316 	u32 callback_start;
21317 	u32 call_insn_offset;
21318 	s32 callback_offset;
21319 	u32 cnt = 0;
21320 
21321 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
21322 	 * be careful to modify this code in sync.
21323 	 */
21324 
21325 	/* Return error and jump to the end of the patch if
21326 	 * expected number of iterations is too big.
21327 	 */
21328 	insn_buf[cnt++] = BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2);
21329 	insn_buf[cnt++] = BPF_MOV32_IMM(BPF_REG_0, -E2BIG);
21330 	insn_buf[cnt++] = BPF_JMP_IMM(BPF_JA, 0, 0, 16);
21331 	/* spill R6, R7, R8 to use these as loop vars */
21332 	insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset);
21333 	insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset);
21334 	insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset);
21335 	/* initialize loop vars */
21336 	insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_max, BPF_REG_1);
21337 	insn_buf[cnt++] = BPF_MOV32_IMM(reg_loop_cnt, 0);
21338 	insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3);
21339 	/* loop header,
21340 	 * if reg_loop_cnt >= reg_loop_max skip the loop body
21341 	 */
21342 	insn_buf[cnt++] = BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5);
21343 	/* callback call,
21344 	 * correct callback offset would be set after patching
21345 	 */
21346 	insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt);
21347 	insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx);
21348 	insn_buf[cnt++] = BPF_CALL_REL(0);
21349 	/* increment loop counter */
21350 	insn_buf[cnt++] = BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1);
21351 	/* jump to loop header if callback returned 0 */
21352 	insn_buf[cnt++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6);
21353 	/* return value of bpf_loop,
21354 	 * set R0 to the number of iterations
21355 	 */
21356 	insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt);
21357 	/* restore original values of R6, R7, R8 */
21358 	insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset);
21359 	insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset);
21360 	insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset);
21361 
21362 	*total_cnt = cnt;
21363 	new_prog = bpf_patch_insn_data(env, position, insn_buf, cnt);
21364 	if (!new_prog)
21365 		return new_prog;
21366 
21367 	/* callback start is known only after patching */
21368 	callback_start = env->subprog_info[callback_subprogno].start;
21369 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
21370 	call_insn_offset = position + 12;
21371 	callback_offset = callback_start - call_insn_offset - 1;
21372 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
21373 
21374 	return new_prog;
21375 }
21376 
21377 static bool is_bpf_loop_call(struct bpf_insn *insn)
21378 {
21379 	return insn->code == (BPF_JMP | BPF_CALL) &&
21380 		insn->src_reg == 0 &&
21381 		insn->imm == BPF_FUNC_loop;
21382 }
21383 
21384 /* For all sub-programs in the program (including main) check
21385  * insn_aux_data to see if there are bpf_loop calls that require
21386  * inlining. If such calls are found the calls are replaced with a
21387  * sequence of instructions produced by `inline_bpf_loop` function and
21388  * subprog stack_depth is increased by the size of 3 registers.
21389  * This stack space is used to spill values of the R6, R7, R8.  These
21390  * registers are used to store the loop bound, counter and context
21391  * variables.
21392  */
21393 static int optimize_bpf_loop(struct bpf_verifier_env *env)
21394 {
21395 	struct bpf_subprog_info *subprogs = env->subprog_info;
21396 	int i, cur_subprog = 0, cnt, delta = 0;
21397 	struct bpf_insn *insn = env->prog->insnsi;
21398 	int insn_cnt = env->prog->len;
21399 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
21400 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
21401 	u16 stack_depth_extra = 0;
21402 
21403 	for (i = 0; i < insn_cnt; i++, insn++) {
21404 		struct bpf_loop_inline_state *inline_state =
21405 			&env->insn_aux_data[i + delta].loop_inline_state;
21406 
21407 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
21408 			struct bpf_prog *new_prog;
21409 
21410 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
21411 			new_prog = inline_bpf_loop(env,
21412 						   i + delta,
21413 						   -(stack_depth + stack_depth_extra),
21414 						   inline_state->callback_subprogno,
21415 						   &cnt);
21416 			if (!new_prog)
21417 				return -ENOMEM;
21418 
21419 			delta     += cnt - 1;
21420 			env->prog  = new_prog;
21421 			insn       = new_prog->insnsi + i + delta;
21422 		}
21423 
21424 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
21425 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
21426 			cur_subprog++;
21427 			stack_depth = subprogs[cur_subprog].stack_depth;
21428 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
21429 			stack_depth_extra = 0;
21430 		}
21431 	}
21432 
21433 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
21434 
21435 	return 0;
21436 }
21437 
21438 /* Remove unnecessary spill/fill pairs, members of fastcall pattern,
21439  * adjust subprograms stack depth when possible.
21440  */
21441 static int remove_fastcall_spills_fills(struct bpf_verifier_env *env)
21442 {
21443 	struct bpf_subprog_info *subprog = env->subprog_info;
21444 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
21445 	struct bpf_insn *insn = env->prog->insnsi;
21446 	int insn_cnt = env->prog->len;
21447 	u32 spills_num;
21448 	bool modified = false;
21449 	int i, j;
21450 
21451 	for (i = 0; i < insn_cnt; i++, insn++) {
21452 		if (aux[i].fastcall_spills_num > 0) {
21453 			spills_num = aux[i].fastcall_spills_num;
21454 			/* NOPs would be removed by opt_remove_nops() */
21455 			for (j = 1; j <= spills_num; ++j) {
21456 				*(insn - j) = NOP;
21457 				*(insn + j) = NOP;
21458 			}
21459 			modified = true;
21460 		}
21461 		if ((subprog + 1)->start == i + 1) {
21462 			if (modified && !subprog->keep_fastcall_stack)
21463 				subprog->stack_depth = -subprog->fastcall_stack_off;
21464 			subprog++;
21465 			modified = false;
21466 		}
21467 	}
21468 
21469 	return 0;
21470 }
21471 
21472 static void free_states(struct bpf_verifier_env *env)
21473 {
21474 	struct bpf_verifier_state_list *sl, *sln;
21475 	int i;
21476 
21477 	sl = env->free_list;
21478 	while (sl) {
21479 		sln = sl->next;
21480 		free_verifier_state(&sl->state, false);
21481 		kfree(sl);
21482 		sl = sln;
21483 	}
21484 	env->free_list = NULL;
21485 
21486 	if (!env->explored_states)
21487 		return;
21488 
21489 	for (i = 0; i < state_htab_size(env); i++) {
21490 		sl = env->explored_states[i];
21491 
21492 		while (sl) {
21493 			sln = sl->next;
21494 			free_verifier_state(&sl->state, false);
21495 			kfree(sl);
21496 			sl = sln;
21497 		}
21498 		env->explored_states[i] = NULL;
21499 	}
21500 }
21501 
21502 static int do_check_common(struct bpf_verifier_env *env, int subprog)
21503 {
21504 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
21505 	struct bpf_subprog_info *sub = subprog_info(env, subprog);
21506 	struct bpf_verifier_state *state;
21507 	struct bpf_reg_state *regs;
21508 	int ret, i;
21509 
21510 	env->prev_linfo = NULL;
21511 	env->pass_cnt++;
21512 
21513 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
21514 	if (!state)
21515 		return -ENOMEM;
21516 	state->curframe = 0;
21517 	state->speculative = false;
21518 	state->branches = 1;
21519 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
21520 	if (!state->frame[0]) {
21521 		kfree(state);
21522 		return -ENOMEM;
21523 	}
21524 	env->cur_state = state;
21525 	init_func_state(env, state->frame[0],
21526 			BPF_MAIN_FUNC /* callsite */,
21527 			0 /* frameno */,
21528 			subprog);
21529 	state->first_insn_idx = env->subprog_info[subprog].start;
21530 	state->last_insn_idx = -1;
21531 
21532 	regs = state->frame[state->curframe]->regs;
21533 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
21534 		const char *sub_name = subprog_name(env, subprog);
21535 		struct bpf_subprog_arg_info *arg;
21536 		struct bpf_reg_state *reg;
21537 
21538 		verbose(env, "Validating %s() func#%d...\n", sub_name, subprog);
21539 		ret = btf_prepare_func_args(env, subprog);
21540 		if (ret)
21541 			goto out;
21542 
21543 		if (subprog_is_exc_cb(env, subprog)) {
21544 			state->frame[0]->in_exception_callback_fn = true;
21545 			/* We have already ensured that the callback returns an integer, just
21546 			 * like all global subprogs. We need to determine it only has a single
21547 			 * scalar argument.
21548 			 */
21549 			if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) {
21550 				verbose(env, "exception cb only supports single integer argument\n");
21551 				ret = -EINVAL;
21552 				goto out;
21553 			}
21554 		}
21555 		for (i = BPF_REG_1; i <= sub->arg_cnt; i++) {
21556 			arg = &sub->args[i - BPF_REG_1];
21557 			reg = &regs[i];
21558 
21559 			if (arg->arg_type == ARG_PTR_TO_CTX) {
21560 				reg->type = PTR_TO_CTX;
21561 				mark_reg_known_zero(env, regs, i);
21562 			} else if (arg->arg_type == ARG_ANYTHING) {
21563 				reg->type = SCALAR_VALUE;
21564 				mark_reg_unknown(env, regs, i);
21565 			} else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) {
21566 				/* assume unspecial LOCAL dynptr type */
21567 				__mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen);
21568 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
21569 				reg->type = PTR_TO_MEM;
21570 				if (arg->arg_type & PTR_MAYBE_NULL)
21571 					reg->type |= PTR_MAYBE_NULL;
21572 				mark_reg_known_zero(env, regs, i);
21573 				reg->mem_size = arg->mem_size;
21574 				reg->id = ++env->id_gen;
21575 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
21576 				reg->type = PTR_TO_BTF_ID;
21577 				if (arg->arg_type & PTR_MAYBE_NULL)
21578 					reg->type |= PTR_MAYBE_NULL;
21579 				if (arg->arg_type & PTR_UNTRUSTED)
21580 					reg->type |= PTR_UNTRUSTED;
21581 				if (arg->arg_type & PTR_TRUSTED)
21582 					reg->type |= PTR_TRUSTED;
21583 				mark_reg_known_zero(env, regs, i);
21584 				reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */
21585 				reg->btf_id = arg->btf_id;
21586 				reg->id = ++env->id_gen;
21587 			} else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) {
21588 				/* caller can pass either PTR_TO_ARENA or SCALAR */
21589 				mark_reg_unknown(env, regs, i);
21590 			} else {
21591 				WARN_ONCE(1, "BUG: unhandled arg#%d type %d\n",
21592 					  i - BPF_REG_1, arg->arg_type);
21593 				ret = -EFAULT;
21594 				goto out;
21595 			}
21596 		}
21597 	} else {
21598 		/* if main BPF program has associated BTF info, validate that
21599 		 * it's matching expected signature, and otherwise mark BTF
21600 		 * info for main program as unreliable
21601 		 */
21602 		if (env->prog->aux->func_info_aux) {
21603 			ret = btf_prepare_func_args(env, 0);
21604 			if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX)
21605 				env->prog->aux->func_info_aux[0].unreliable = true;
21606 		}
21607 
21608 		/* 1st arg to a function */
21609 		regs[BPF_REG_1].type = PTR_TO_CTX;
21610 		mark_reg_known_zero(env, regs, BPF_REG_1);
21611 	}
21612 
21613 	ret = do_check(env);
21614 out:
21615 	/* check for NULL is necessary, since cur_state can be freed inside
21616 	 * do_check() under memory pressure.
21617 	 */
21618 	if (env->cur_state) {
21619 		free_verifier_state(env->cur_state, true);
21620 		env->cur_state = NULL;
21621 	}
21622 	while (!pop_stack(env, NULL, NULL, false));
21623 	if (!ret && pop_log)
21624 		bpf_vlog_reset(&env->log, 0);
21625 	free_states(env);
21626 	return ret;
21627 }
21628 
21629 /* Lazily verify all global functions based on their BTF, if they are called
21630  * from main BPF program or any of subprograms transitively.
21631  * BPF global subprogs called from dead code are not validated.
21632  * All callable global functions must pass verification.
21633  * Otherwise the whole program is rejected.
21634  * Consider:
21635  * int bar(int);
21636  * int foo(int f)
21637  * {
21638  *    return bar(f);
21639  * }
21640  * int bar(int b)
21641  * {
21642  *    ...
21643  * }
21644  * foo() will be verified first for R1=any_scalar_value. During verification it
21645  * will be assumed that bar() already verified successfully and call to bar()
21646  * from foo() will be checked for type match only. Later bar() will be verified
21647  * independently to check that it's safe for R1=any_scalar_value.
21648  */
21649 static int do_check_subprogs(struct bpf_verifier_env *env)
21650 {
21651 	struct bpf_prog_aux *aux = env->prog->aux;
21652 	struct bpf_func_info_aux *sub_aux;
21653 	int i, ret, new_cnt;
21654 
21655 	if (!aux->func_info)
21656 		return 0;
21657 
21658 	/* exception callback is presumed to be always called */
21659 	if (env->exception_callback_subprog)
21660 		subprog_aux(env, env->exception_callback_subprog)->called = true;
21661 
21662 again:
21663 	new_cnt = 0;
21664 	for (i = 1; i < env->subprog_cnt; i++) {
21665 		if (!subprog_is_global(env, i))
21666 			continue;
21667 
21668 		sub_aux = subprog_aux(env, i);
21669 		if (!sub_aux->called || sub_aux->verified)
21670 			continue;
21671 
21672 		env->insn_idx = env->subprog_info[i].start;
21673 		WARN_ON_ONCE(env->insn_idx == 0);
21674 		ret = do_check_common(env, i);
21675 		if (ret) {
21676 			return ret;
21677 		} else if (env->log.level & BPF_LOG_LEVEL) {
21678 			verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n",
21679 				i, subprog_name(env, i));
21680 		}
21681 
21682 		/* We verified new global subprog, it might have called some
21683 		 * more global subprogs that we haven't verified yet, so we
21684 		 * need to do another pass over subprogs to verify those.
21685 		 */
21686 		sub_aux->verified = true;
21687 		new_cnt++;
21688 	}
21689 
21690 	/* We can't loop forever as we verify at least one global subprog on
21691 	 * each pass.
21692 	 */
21693 	if (new_cnt)
21694 		goto again;
21695 
21696 	return 0;
21697 }
21698 
21699 static int do_check_main(struct bpf_verifier_env *env)
21700 {
21701 	int ret;
21702 
21703 	env->insn_idx = 0;
21704 	ret = do_check_common(env, 0);
21705 	if (!ret)
21706 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
21707 	return ret;
21708 }
21709 
21710 
21711 static void print_verification_stats(struct bpf_verifier_env *env)
21712 {
21713 	int i;
21714 
21715 	if (env->log.level & BPF_LOG_STATS) {
21716 		verbose(env, "verification time %lld usec\n",
21717 			div_u64(env->verification_time, 1000));
21718 		verbose(env, "stack depth ");
21719 		for (i = 0; i < env->subprog_cnt; i++) {
21720 			u32 depth = env->subprog_info[i].stack_depth;
21721 
21722 			verbose(env, "%d", depth);
21723 			if (i + 1 < env->subprog_cnt)
21724 				verbose(env, "+");
21725 		}
21726 		verbose(env, "\n");
21727 	}
21728 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
21729 		"total_states %d peak_states %d mark_read %d\n",
21730 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
21731 		env->max_states_per_insn, env->total_states,
21732 		env->peak_states, env->longest_mark_read_walk);
21733 }
21734 
21735 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
21736 {
21737 	const struct btf_type *t, *func_proto;
21738 	const struct bpf_struct_ops_desc *st_ops_desc;
21739 	const struct bpf_struct_ops *st_ops;
21740 	const struct btf_member *member;
21741 	struct bpf_prog *prog = env->prog;
21742 	u32 btf_id, member_idx;
21743 	struct btf *btf;
21744 	const char *mname;
21745 	int err;
21746 
21747 	if (!prog->gpl_compatible) {
21748 		verbose(env, "struct ops programs must have a GPL compatible license\n");
21749 		return -EINVAL;
21750 	}
21751 
21752 	if (!prog->aux->attach_btf_id)
21753 		return -ENOTSUPP;
21754 
21755 	btf = prog->aux->attach_btf;
21756 	if (btf_is_module(btf)) {
21757 		/* Make sure st_ops is valid through the lifetime of env */
21758 		env->attach_btf_mod = btf_try_get_module(btf);
21759 		if (!env->attach_btf_mod) {
21760 			verbose(env, "struct_ops module %s is not found\n",
21761 				btf_get_name(btf));
21762 			return -ENOTSUPP;
21763 		}
21764 	}
21765 
21766 	btf_id = prog->aux->attach_btf_id;
21767 	st_ops_desc = bpf_struct_ops_find(btf, btf_id);
21768 	if (!st_ops_desc) {
21769 		verbose(env, "attach_btf_id %u is not a supported struct\n",
21770 			btf_id);
21771 		return -ENOTSUPP;
21772 	}
21773 	st_ops = st_ops_desc->st_ops;
21774 
21775 	t = st_ops_desc->type;
21776 	member_idx = prog->expected_attach_type;
21777 	if (member_idx >= btf_type_vlen(t)) {
21778 		verbose(env, "attach to invalid member idx %u of struct %s\n",
21779 			member_idx, st_ops->name);
21780 		return -EINVAL;
21781 	}
21782 
21783 	member = &btf_type_member(t)[member_idx];
21784 	mname = btf_name_by_offset(btf, member->name_off);
21785 	func_proto = btf_type_resolve_func_ptr(btf, member->type,
21786 					       NULL);
21787 	if (!func_proto) {
21788 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
21789 			mname, member_idx, st_ops->name);
21790 		return -EINVAL;
21791 	}
21792 
21793 	err = bpf_struct_ops_supported(st_ops, __btf_member_bit_offset(t, member) / 8);
21794 	if (err) {
21795 		verbose(env, "attach to unsupported member %s of struct %s\n",
21796 			mname, st_ops->name);
21797 		return err;
21798 	}
21799 
21800 	if (st_ops->check_member) {
21801 		err = st_ops->check_member(t, member, prog);
21802 
21803 		if (err) {
21804 			verbose(env, "attach to unsupported member %s of struct %s\n",
21805 				mname, st_ops->name);
21806 			return err;
21807 		}
21808 	}
21809 
21810 	/* btf_ctx_access() used this to provide argument type info */
21811 	prog->aux->ctx_arg_info =
21812 		st_ops_desc->arg_info[member_idx].info;
21813 	prog->aux->ctx_arg_info_size =
21814 		st_ops_desc->arg_info[member_idx].cnt;
21815 
21816 	prog->aux->attach_func_proto = func_proto;
21817 	prog->aux->attach_func_name = mname;
21818 	env->ops = st_ops->verifier_ops;
21819 
21820 	return 0;
21821 }
21822 #define SECURITY_PREFIX "security_"
21823 
21824 static int check_attach_modify_return(unsigned long addr, const char *func_name)
21825 {
21826 	if (within_error_injection_list(addr) ||
21827 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
21828 		return 0;
21829 
21830 	return -EINVAL;
21831 }
21832 
21833 /* list of non-sleepable functions that are otherwise on
21834  * ALLOW_ERROR_INJECTION list
21835  */
21836 BTF_SET_START(btf_non_sleepable_error_inject)
21837 /* Three functions below can be called from sleepable and non-sleepable context.
21838  * Assume non-sleepable from bpf safety point of view.
21839  */
21840 BTF_ID(func, __filemap_add_folio)
21841 #ifdef CONFIG_FAIL_PAGE_ALLOC
21842 BTF_ID(func, should_fail_alloc_page)
21843 #endif
21844 #ifdef CONFIG_FAILSLAB
21845 BTF_ID(func, should_failslab)
21846 #endif
21847 BTF_SET_END(btf_non_sleepable_error_inject)
21848 
21849 static int check_non_sleepable_error_inject(u32 btf_id)
21850 {
21851 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
21852 }
21853 
21854 int bpf_check_attach_target(struct bpf_verifier_log *log,
21855 			    const struct bpf_prog *prog,
21856 			    const struct bpf_prog *tgt_prog,
21857 			    u32 btf_id,
21858 			    struct bpf_attach_target_info *tgt_info)
21859 {
21860 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
21861 	bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING;
21862 	char trace_symbol[KSYM_SYMBOL_LEN];
21863 	const char prefix[] = "btf_trace_";
21864 	struct bpf_raw_event_map *btp;
21865 	int ret = 0, subprog = -1, i;
21866 	const struct btf_type *t;
21867 	bool conservative = true;
21868 	const char *tname, *fname;
21869 	struct btf *btf;
21870 	long addr = 0;
21871 	struct module *mod = NULL;
21872 
21873 	if (!btf_id) {
21874 		bpf_log(log, "Tracing programs must provide btf_id\n");
21875 		return -EINVAL;
21876 	}
21877 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
21878 	if (!btf) {
21879 		bpf_log(log,
21880 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
21881 		return -EINVAL;
21882 	}
21883 	t = btf_type_by_id(btf, btf_id);
21884 	if (!t) {
21885 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
21886 		return -EINVAL;
21887 	}
21888 	tname = btf_name_by_offset(btf, t->name_off);
21889 	if (!tname) {
21890 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
21891 		return -EINVAL;
21892 	}
21893 	if (tgt_prog) {
21894 		struct bpf_prog_aux *aux = tgt_prog->aux;
21895 
21896 		if (bpf_prog_is_dev_bound(prog->aux) &&
21897 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
21898 			bpf_log(log, "Target program bound device mismatch");
21899 			return -EINVAL;
21900 		}
21901 
21902 		for (i = 0; i < aux->func_info_cnt; i++)
21903 			if (aux->func_info[i].type_id == btf_id) {
21904 				subprog = i;
21905 				break;
21906 			}
21907 		if (subprog == -1) {
21908 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
21909 			return -EINVAL;
21910 		}
21911 		if (aux->func && aux->func[subprog]->aux->exception_cb) {
21912 			bpf_log(log,
21913 				"%s programs cannot attach to exception callback\n",
21914 				prog_extension ? "Extension" : "FENTRY/FEXIT");
21915 			return -EINVAL;
21916 		}
21917 		conservative = aux->func_info_aux[subprog].unreliable;
21918 		if (prog_extension) {
21919 			if (conservative) {
21920 				bpf_log(log,
21921 					"Cannot replace static functions\n");
21922 				return -EINVAL;
21923 			}
21924 			if (!prog->jit_requested) {
21925 				bpf_log(log,
21926 					"Extension programs should be JITed\n");
21927 				return -EINVAL;
21928 			}
21929 		}
21930 		if (!tgt_prog->jited) {
21931 			bpf_log(log, "Can attach to only JITed progs\n");
21932 			return -EINVAL;
21933 		}
21934 		if (prog_tracing) {
21935 			if (aux->attach_tracing_prog) {
21936 				/*
21937 				 * Target program is an fentry/fexit which is already attached
21938 				 * to another tracing program. More levels of nesting
21939 				 * attachment are not allowed.
21940 				 */
21941 				bpf_log(log, "Cannot nest tracing program attach more than once\n");
21942 				return -EINVAL;
21943 			}
21944 		} else if (tgt_prog->type == prog->type) {
21945 			/*
21946 			 * To avoid potential call chain cycles, prevent attaching of a
21947 			 * program extension to another extension. It's ok to attach
21948 			 * fentry/fexit to extension program.
21949 			 */
21950 			bpf_log(log, "Cannot recursively attach\n");
21951 			return -EINVAL;
21952 		}
21953 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
21954 		    prog_extension &&
21955 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
21956 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
21957 			/* Program extensions can extend all program types
21958 			 * except fentry/fexit. The reason is the following.
21959 			 * The fentry/fexit programs are used for performance
21960 			 * analysis, stats and can be attached to any program
21961 			 * type. When extension program is replacing XDP function
21962 			 * it is necessary to allow performance analysis of all
21963 			 * functions. Both original XDP program and its program
21964 			 * extension. Hence attaching fentry/fexit to
21965 			 * BPF_PROG_TYPE_EXT is allowed. If extending of
21966 			 * fentry/fexit was allowed it would be possible to create
21967 			 * long call chain fentry->extension->fentry->extension
21968 			 * beyond reasonable stack size. Hence extending fentry
21969 			 * is not allowed.
21970 			 */
21971 			bpf_log(log, "Cannot extend fentry/fexit\n");
21972 			return -EINVAL;
21973 		}
21974 	} else {
21975 		if (prog_extension) {
21976 			bpf_log(log, "Cannot replace kernel functions\n");
21977 			return -EINVAL;
21978 		}
21979 	}
21980 
21981 	switch (prog->expected_attach_type) {
21982 	case BPF_TRACE_RAW_TP:
21983 		if (tgt_prog) {
21984 			bpf_log(log,
21985 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
21986 			return -EINVAL;
21987 		}
21988 		if (!btf_type_is_typedef(t)) {
21989 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
21990 				btf_id);
21991 			return -EINVAL;
21992 		}
21993 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
21994 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
21995 				btf_id, tname);
21996 			return -EINVAL;
21997 		}
21998 		tname += sizeof(prefix) - 1;
21999 
22000 		/* The func_proto of "btf_trace_##tname" is generated from typedef without argument
22001 		 * names. Thus using bpf_raw_event_map to get argument names.
22002 		 */
22003 		btp = bpf_get_raw_tracepoint(tname);
22004 		if (!btp)
22005 			return -EINVAL;
22006 		fname = kallsyms_lookup((unsigned long)btp->bpf_func, NULL, NULL, NULL,
22007 					trace_symbol);
22008 		bpf_put_raw_tracepoint(btp);
22009 
22010 		if (fname)
22011 			ret = btf_find_by_name_kind(btf, fname, BTF_KIND_FUNC);
22012 
22013 		if (!fname || ret < 0) {
22014 			bpf_log(log, "Cannot find btf of tracepoint template, fall back to %s%s.\n",
22015 				prefix, tname);
22016 			t = btf_type_by_id(btf, t->type);
22017 			if (!btf_type_is_ptr(t))
22018 				/* should never happen in valid vmlinux build */
22019 				return -EINVAL;
22020 		} else {
22021 			t = btf_type_by_id(btf, ret);
22022 			if (!btf_type_is_func(t))
22023 				/* should never happen in valid vmlinux build */
22024 				return -EINVAL;
22025 		}
22026 
22027 		t = btf_type_by_id(btf, t->type);
22028 		if (!btf_type_is_func_proto(t))
22029 			/* should never happen in valid vmlinux build */
22030 			return -EINVAL;
22031 
22032 		break;
22033 	case BPF_TRACE_ITER:
22034 		if (!btf_type_is_func(t)) {
22035 			bpf_log(log, "attach_btf_id %u is not a function\n",
22036 				btf_id);
22037 			return -EINVAL;
22038 		}
22039 		t = btf_type_by_id(btf, t->type);
22040 		if (!btf_type_is_func_proto(t))
22041 			return -EINVAL;
22042 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
22043 		if (ret)
22044 			return ret;
22045 		break;
22046 	default:
22047 		if (!prog_extension)
22048 			return -EINVAL;
22049 		fallthrough;
22050 	case BPF_MODIFY_RETURN:
22051 	case BPF_LSM_MAC:
22052 	case BPF_LSM_CGROUP:
22053 	case BPF_TRACE_FENTRY:
22054 	case BPF_TRACE_FEXIT:
22055 		if (!btf_type_is_func(t)) {
22056 			bpf_log(log, "attach_btf_id %u is not a function\n",
22057 				btf_id);
22058 			return -EINVAL;
22059 		}
22060 		if (prog_extension &&
22061 		    btf_check_type_match(log, prog, btf, t))
22062 			return -EINVAL;
22063 		t = btf_type_by_id(btf, t->type);
22064 		if (!btf_type_is_func_proto(t))
22065 			return -EINVAL;
22066 
22067 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
22068 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
22069 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
22070 			return -EINVAL;
22071 
22072 		if (tgt_prog && conservative)
22073 			t = NULL;
22074 
22075 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
22076 		if (ret < 0)
22077 			return ret;
22078 
22079 		if (tgt_prog) {
22080 			if (subprog == 0)
22081 				addr = (long) tgt_prog->bpf_func;
22082 			else
22083 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
22084 		} else {
22085 			if (btf_is_module(btf)) {
22086 				mod = btf_try_get_module(btf);
22087 				if (mod)
22088 					addr = find_kallsyms_symbol_value(mod, tname);
22089 				else
22090 					addr = 0;
22091 			} else {
22092 				addr = kallsyms_lookup_name(tname);
22093 			}
22094 			if (!addr) {
22095 				module_put(mod);
22096 				bpf_log(log,
22097 					"The address of function %s cannot be found\n",
22098 					tname);
22099 				return -ENOENT;
22100 			}
22101 		}
22102 
22103 		if (prog->sleepable) {
22104 			ret = -EINVAL;
22105 			switch (prog->type) {
22106 			case BPF_PROG_TYPE_TRACING:
22107 
22108 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
22109 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
22110 				 */
22111 				if (!check_non_sleepable_error_inject(btf_id) &&
22112 				    within_error_injection_list(addr))
22113 					ret = 0;
22114 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
22115 				 * in the fmodret id set with the KF_SLEEPABLE flag.
22116 				 */
22117 				else {
22118 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
22119 										prog);
22120 
22121 					if (flags && (*flags & KF_SLEEPABLE))
22122 						ret = 0;
22123 				}
22124 				break;
22125 			case BPF_PROG_TYPE_LSM:
22126 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
22127 				 * Only some of them are sleepable.
22128 				 */
22129 				if (bpf_lsm_is_sleepable_hook(btf_id))
22130 					ret = 0;
22131 				break;
22132 			default:
22133 				break;
22134 			}
22135 			if (ret) {
22136 				module_put(mod);
22137 				bpf_log(log, "%s is not sleepable\n", tname);
22138 				return ret;
22139 			}
22140 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
22141 			if (tgt_prog) {
22142 				module_put(mod);
22143 				bpf_log(log, "can't modify return codes of BPF programs\n");
22144 				return -EINVAL;
22145 			}
22146 			ret = -EINVAL;
22147 			if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
22148 			    !check_attach_modify_return(addr, tname))
22149 				ret = 0;
22150 			if (ret) {
22151 				module_put(mod);
22152 				bpf_log(log, "%s() is not modifiable\n", tname);
22153 				return ret;
22154 			}
22155 		}
22156 
22157 		break;
22158 	}
22159 	tgt_info->tgt_addr = addr;
22160 	tgt_info->tgt_name = tname;
22161 	tgt_info->tgt_type = t;
22162 	tgt_info->tgt_mod = mod;
22163 	return 0;
22164 }
22165 
22166 BTF_SET_START(btf_id_deny)
22167 BTF_ID_UNUSED
22168 #ifdef CONFIG_SMP
22169 BTF_ID(func, migrate_disable)
22170 BTF_ID(func, migrate_enable)
22171 #endif
22172 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
22173 BTF_ID(func, rcu_read_unlock_strict)
22174 #endif
22175 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
22176 BTF_ID(func, preempt_count_add)
22177 BTF_ID(func, preempt_count_sub)
22178 #endif
22179 #ifdef CONFIG_PREEMPT_RCU
22180 BTF_ID(func, __rcu_read_lock)
22181 BTF_ID(func, __rcu_read_unlock)
22182 #endif
22183 BTF_SET_END(btf_id_deny)
22184 
22185 static bool can_be_sleepable(struct bpf_prog *prog)
22186 {
22187 	if (prog->type == BPF_PROG_TYPE_TRACING) {
22188 		switch (prog->expected_attach_type) {
22189 		case BPF_TRACE_FENTRY:
22190 		case BPF_TRACE_FEXIT:
22191 		case BPF_MODIFY_RETURN:
22192 		case BPF_TRACE_ITER:
22193 			return true;
22194 		default:
22195 			return false;
22196 		}
22197 	}
22198 	return prog->type == BPF_PROG_TYPE_LSM ||
22199 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
22200 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
22201 }
22202 
22203 static int check_attach_btf_id(struct bpf_verifier_env *env)
22204 {
22205 	struct bpf_prog *prog = env->prog;
22206 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
22207 	struct bpf_attach_target_info tgt_info = {};
22208 	u32 btf_id = prog->aux->attach_btf_id;
22209 	struct bpf_trampoline *tr;
22210 	int ret;
22211 	u64 key;
22212 
22213 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
22214 		if (prog->sleepable)
22215 			/* attach_btf_id checked to be zero already */
22216 			return 0;
22217 		verbose(env, "Syscall programs can only be sleepable\n");
22218 		return -EINVAL;
22219 	}
22220 
22221 	if (prog->sleepable && !can_be_sleepable(prog)) {
22222 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
22223 		return -EINVAL;
22224 	}
22225 
22226 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
22227 		return check_struct_ops_btf_id(env);
22228 
22229 	if (prog->type != BPF_PROG_TYPE_TRACING &&
22230 	    prog->type != BPF_PROG_TYPE_LSM &&
22231 	    prog->type != BPF_PROG_TYPE_EXT)
22232 		return 0;
22233 
22234 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
22235 	if (ret)
22236 		return ret;
22237 
22238 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
22239 		/* to make freplace equivalent to their targets, they need to
22240 		 * inherit env->ops and expected_attach_type for the rest of the
22241 		 * verification
22242 		 */
22243 		env->ops = bpf_verifier_ops[tgt_prog->type];
22244 		prog->expected_attach_type = tgt_prog->expected_attach_type;
22245 	}
22246 
22247 	/* store info about the attachment target that will be used later */
22248 	prog->aux->attach_func_proto = tgt_info.tgt_type;
22249 	prog->aux->attach_func_name = tgt_info.tgt_name;
22250 	prog->aux->mod = tgt_info.tgt_mod;
22251 
22252 	if (tgt_prog) {
22253 		prog->aux->saved_dst_prog_type = tgt_prog->type;
22254 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
22255 	}
22256 
22257 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
22258 		prog->aux->attach_btf_trace = true;
22259 		return 0;
22260 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
22261 		if (!bpf_iter_prog_supported(prog))
22262 			return -EINVAL;
22263 		return 0;
22264 	}
22265 
22266 	if (prog->type == BPF_PROG_TYPE_LSM) {
22267 		ret = bpf_lsm_verify_prog(&env->log, prog);
22268 		if (ret < 0)
22269 			return ret;
22270 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
22271 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
22272 		return -EINVAL;
22273 	}
22274 
22275 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
22276 	tr = bpf_trampoline_get(key, &tgt_info);
22277 	if (!tr)
22278 		return -ENOMEM;
22279 
22280 	if (tgt_prog && tgt_prog->aux->tail_call_reachable)
22281 		tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
22282 
22283 	prog->aux->dst_trampoline = tr;
22284 	return 0;
22285 }
22286 
22287 struct btf *bpf_get_btf_vmlinux(void)
22288 {
22289 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
22290 		mutex_lock(&bpf_verifier_lock);
22291 		if (!btf_vmlinux)
22292 			btf_vmlinux = btf_parse_vmlinux();
22293 		mutex_unlock(&bpf_verifier_lock);
22294 	}
22295 	return btf_vmlinux;
22296 }
22297 
22298 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
22299 {
22300 	u64 start_time = ktime_get_ns();
22301 	struct bpf_verifier_env *env;
22302 	int i, len, ret = -EINVAL, err;
22303 	u32 log_true_size;
22304 	bool is_priv;
22305 
22306 	/* no program is valid */
22307 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
22308 		return -EINVAL;
22309 
22310 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
22311 	 * allocate/free it every time bpf_check() is called
22312 	 */
22313 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
22314 	if (!env)
22315 		return -ENOMEM;
22316 
22317 	env->bt.env = env;
22318 
22319 	len = (*prog)->len;
22320 	env->insn_aux_data =
22321 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
22322 	ret = -ENOMEM;
22323 	if (!env->insn_aux_data)
22324 		goto err_free_env;
22325 	for (i = 0; i < len; i++)
22326 		env->insn_aux_data[i].orig_idx = i;
22327 	env->prog = *prog;
22328 	env->ops = bpf_verifier_ops[env->prog->type];
22329 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
22330 
22331 	env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token);
22332 	env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token);
22333 	env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token);
22334 	env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token);
22335 	env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF);
22336 
22337 	bpf_get_btf_vmlinux();
22338 
22339 	/* grab the mutex to protect few globals used by verifier */
22340 	if (!is_priv)
22341 		mutex_lock(&bpf_verifier_lock);
22342 
22343 	/* user could have requested verbose verifier output
22344 	 * and supplied buffer to store the verification trace
22345 	 */
22346 	ret = bpf_vlog_init(&env->log, attr->log_level,
22347 			    (char __user *) (unsigned long) attr->log_buf,
22348 			    attr->log_size);
22349 	if (ret)
22350 		goto err_unlock;
22351 
22352 	mark_verifier_state_clean(env);
22353 
22354 	if (IS_ERR(btf_vmlinux)) {
22355 		/* Either gcc or pahole or kernel are broken. */
22356 		verbose(env, "in-kernel BTF is malformed\n");
22357 		ret = PTR_ERR(btf_vmlinux);
22358 		goto skip_full_check;
22359 	}
22360 
22361 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
22362 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
22363 		env->strict_alignment = true;
22364 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
22365 		env->strict_alignment = false;
22366 
22367 	if (is_priv)
22368 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
22369 	env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS;
22370 
22371 	env->explored_states = kvcalloc(state_htab_size(env),
22372 				       sizeof(struct bpf_verifier_state_list *),
22373 				       GFP_USER);
22374 	ret = -ENOMEM;
22375 	if (!env->explored_states)
22376 		goto skip_full_check;
22377 
22378 	ret = check_btf_info_early(env, attr, uattr);
22379 	if (ret < 0)
22380 		goto skip_full_check;
22381 
22382 	ret = add_subprog_and_kfunc(env);
22383 	if (ret < 0)
22384 		goto skip_full_check;
22385 
22386 	ret = check_subprogs(env);
22387 	if (ret < 0)
22388 		goto skip_full_check;
22389 
22390 	ret = check_btf_info(env, attr, uattr);
22391 	if (ret < 0)
22392 		goto skip_full_check;
22393 
22394 	ret = check_attach_btf_id(env);
22395 	if (ret)
22396 		goto skip_full_check;
22397 
22398 	ret = resolve_pseudo_ldimm64(env);
22399 	if (ret < 0)
22400 		goto skip_full_check;
22401 
22402 	if (bpf_prog_is_offloaded(env->prog->aux)) {
22403 		ret = bpf_prog_offload_verifier_prep(env->prog);
22404 		if (ret)
22405 			goto skip_full_check;
22406 	}
22407 
22408 	ret = check_cfg(env);
22409 	if (ret < 0)
22410 		goto skip_full_check;
22411 
22412 	ret = mark_fastcall_patterns(env);
22413 	if (ret < 0)
22414 		goto skip_full_check;
22415 
22416 	ret = do_check_main(env);
22417 	ret = ret ?: do_check_subprogs(env);
22418 
22419 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
22420 		ret = bpf_prog_offload_finalize(env);
22421 
22422 skip_full_check:
22423 	kvfree(env->explored_states);
22424 
22425 	/* might decrease stack depth, keep it before passes that
22426 	 * allocate additional slots.
22427 	 */
22428 	if (ret == 0)
22429 		ret = remove_fastcall_spills_fills(env);
22430 
22431 	if (ret == 0)
22432 		ret = check_max_stack_depth(env);
22433 
22434 	/* instruction rewrites happen after this point */
22435 	if (ret == 0)
22436 		ret = optimize_bpf_loop(env);
22437 
22438 	if (is_priv) {
22439 		if (ret == 0)
22440 			opt_hard_wire_dead_code_branches(env);
22441 		if (ret == 0)
22442 			ret = opt_remove_dead_code(env);
22443 		if (ret == 0)
22444 			ret = opt_remove_nops(env);
22445 	} else {
22446 		if (ret == 0)
22447 			sanitize_dead_code(env);
22448 	}
22449 
22450 	if (ret == 0)
22451 		/* program is valid, convert *(u32*)(ctx + off) accesses */
22452 		ret = convert_ctx_accesses(env);
22453 
22454 	if (ret == 0)
22455 		ret = do_misc_fixups(env);
22456 
22457 	/* do 32-bit optimization after insn patching has done so those patched
22458 	 * insns could be handled correctly.
22459 	 */
22460 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
22461 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
22462 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
22463 								     : false;
22464 	}
22465 
22466 	if (ret == 0)
22467 		ret = fixup_call_args(env);
22468 
22469 	env->verification_time = ktime_get_ns() - start_time;
22470 	print_verification_stats(env);
22471 	env->prog->aux->verified_insns = env->insn_processed;
22472 
22473 	/* preserve original error even if log finalization is successful */
22474 	err = bpf_vlog_finalize(&env->log, &log_true_size);
22475 	if (err)
22476 		ret = err;
22477 
22478 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
22479 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
22480 				  &log_true_size, sizeof(log_true_size))) {
22481 		ret = -EFAULT;
22482 		goto err_release_maps;
22483 	}
22484 
22485 	if (ret)
22486 		goto err_release_maps;
22487 
22488 	if (env->used_map_cnt) {
22489 		/* if program passed verifier, update used_maps in bpf_prog_info */
22490 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
22491 							  sizeof(env->used_maps[0]),
22492 							  GFP_KERNEL);
22493 
22494 		if (!env->prog->aux->used_maps) {
22495 			ret = -ENOMEM;
22496 			goto err_release_maps;
22497 		}
22498 
22499 		memcpy(env->prog->aux->used_maps, env->used_maps,
22500 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
22501 		env->prog->aux->used_map_cnt = env->used_map_cnt;
22502 	}
22503 	if (env->used_btf_cnt) {
22504 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
22505 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
22506 							  sizeof(env->used_btfs[0]),
22507 							  GFP_KERNEL);
22508 		if (!env->prog->aux->used_btfs) {
22509 			ret = -ENOMEM;
22510 			goto err_release_maps;
22511 		}
22512 
22513 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
22514 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
22515 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
22516 	}
22517 	if (env->used_map_cnt || env->used_btf_cnt) {
22518 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
22519 		 * bpf_ld_imm64 instructions
22520 		 */
22521 		convert_pseudo_ld_imm64(env);
22522 	}
22523 
22524 	adjust_btf_func(env);
22525 
22526 err_release_maps:
22527 	if (!env->prog->aux->used_maps)
22528 		/* if we didn't copy map pointers into bpf_prog_info, release
22529 		 * them now. Otherwise free_used_maps() will release them.
22530 		 */
22531 		release_maps(env);
22532 	if (!env->prog->aux->used_btfs)
22533 		release_btfs(env);
22534 
22535 	/* extension progs temporarily inherit the attach_type of their targets
22536 	   for verification purposes, so set it back to zero before returning
22537 	 */
22538 	if (env->prog->type == BPF_PROG_TYPE_EXT)
22539 		env->prog->expected_attach_type = 0;
22540 
22541 	*prog = env->prog;
22542 
22543 	module_put(env->attach_btf_mod);
22544 err_unlock:
22545 	if (!is_priv)
22546 		mutex_unlock(&bpf_verifier_lock);
22547 	vfree(env->insn_aux_data);
22548 err_free_env:
22549 	kfree(env);
22550 	return ret;
22551 }
22552