1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 28 #include "disasm.h" 29 30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 31 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 32 [_id] = & _name ## _verifier_ops, 33 #define BPF_MAP_TYPE(_id, _ops) 34 #define BPF_LINK_TYPE(_id, _name) 35 #include <linux/bpf_types.h> 36 #undef BPF_PROG_TYPE 37 #undef BPF_MAP_TYPE 38 #undef BPF_LINK_TYPE 39 }; 40 41 /* bpf_check() is a static code analyzer that walks eBPF program 42 * instruction by instruction and updates register/stack state. 43 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 44 * 45 * The first pass is depth-first-search to check that the program is a DAG. 46 * It rejects the following programs: 47 * - larger than BPF_MAXINSNS insns 48 * - if loop is present (detected via back-edge) 49 * - unreachable insns exist (shouldn't be a forest. program = one function) 50 * - out of bounds or malformed jumps 51 * The second pass is all possible path descent from the 1st insn. 52 * Since it's analyzing all paths through the program, the length of the 53 * analysis is limited to 64k insn, which may be hit even if total number of 54 * insn is less then 4K, but there are too many branches that change stack/regs. 55 * Number of 'branches to be analyzed' is limited to 1k 56 * 57 * On entry to each instruction, each register has a type, and the instruction 58 * changes the types of the registers depending on instruction semantics. 59 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 60 * copied to R1. 61 * 62 * All registers are 64-bit. 63 * R0 - return register 64 * R1-R5 argument passing registers 65 * R6-R9 callee saved registers 66 * R10 - frame pointer read-only 67 * 68 * At the start of BPF program the register R1 contains a pointer to bpf_context 69 * and has type PTR_TO_CTX. 70 * 71 * Verifier tracks arithmetic operations on pointers in case: 72 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 73 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 74 * 1st insn copies R10 (which has FRAME_PTR) type into R1 75 * and 2nd arithmetic instruction is pattern matched to recognize 76 * that it wants to construct a pointer to some element within stack. 77 * So after 2nd insn, the register R1 has type PTR_TO_STACK 78 * (and -20 constant is saved for further stack bounds checking). 79 * Meaning that this reg is a pointer to stack plus known immediate constant. 80 * 81 * Most of the time the registers have SCALAR_VALUE type, which 82 * means the register has some value, but it's not a valid pointer. 83 * (like pointer plus pointer becomes SCALAR_VALUE type) 84 * 85 * When verifier sees load or store instructions the type of base register 86 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 87 * four pointer types recognized by check_mem_access() function. 88 * 89 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 90 * and the range of [ptr, ptr + map's value_size) is accessible. 91 * 92 * registers used to pass values to function calls are checked against 93 * function argument constraints. 94 * 95 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 96 * It means that the register type passed to this function must be 97 * PTR_TO_STACK and it will be used inside the function as 98 * 'pointer to map element key' 99 * 100 * For example the argument constraints for bpf_map_lookup_elem(): 101 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 102 * .arg1_type = ARG_CONST_MAP_PTR, 103 * .arg2_type = ARG_PTR_TO_MAP_KEY, 104 * 105 * ret_type says that this function returns 'pointer to map elem value or null' 106 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 107 * 2nd argument should be a pointer to stack, which will be used inside 108 * the helper function as a pointer to map element key. 109 * 110 * On the kernel side the helper function looks like: 111 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 112 * { 113 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 114 * void *key = (void *) (unsigned long) r2; 115 * void *value; 116 * 117 * here kernel can access 'key' and 'map' pointers safely, knowing that 118 * [key, key + map->key_size) bytes are valid and were initialized on 119 * the stack of eBPF program. 120 * } 121 * 122 * Corresponding eBPF program may look like: 123 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 124 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 125 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 126 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 127 * here verifier looks at prototype of map_lookup_elem() and sees: 128 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 129 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 130 * 131 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 132 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 133 * and were initialized prior to this call. 134 * If it's ok, then verifier allows this BPF_CALL insn and looks at 135 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 136 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 137 * returns either pointer to map value or NULL. 138 * 139 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 140 * insn, the register holding that pointer in the true branch changes state to 141 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 142 * branch. See check_cond_jmp_op(). 143 * 144 * After the call R0 is set to return type of the function and registers R1-R5 145 * are set to NOT_INIT to indicate that they are no longer readable. 146 * 147 * The following reference types represent a potential reference to a kernel 148 * resource which, after first being allocated, must be checked and freed by 149 * the BPF program: 150 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 151 * 152 * When the verifier sees a helper call return a reference type, it allocates a 153 * pointer id for the reference and stores it in the current function state. 154 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 155 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 156 * passes through a NULL-check conditional. For the branch wherein the state is 157 * changed to CONST_IMM, the verifier releases the reference. 158 * 159 * For each helper function that allocates a reference, such as 160 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 161 * bpf_sk_release(). When a reference type passes into the release function, 162 * the verifier also releases the reference. If any unchecked or unreleased 163 * reference remains at the end of the program, the verifier rejects it. 164 */ 165 166 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 167 struct bpf_verifier_stack_elem { 168 /* verifer state is 'st' 169 * before processing instruction 'insn_idx' 170 * and after processing instruction 'prev_insn_idx' 171 */ 172 struct bpf_verifier_state st; 173 int insn_idx; 174 int prev_insn_idx; 175 struct bpf_verifier_stack_elem *next; 176 /* length of verifier log at the time this state was pushed on stack */ 177 u32 log_pos; 178 }; 179 180 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 181 #define BPF_COMPLEXITY_LIMIT_STATES 64 182 183 #define BPF_MAP_KEY_POISON (1ULL << 63) 184 #define BPF_MAP_KEY_SEEN (1ULL << 62) 185 186 #define BPF_MAP_PTR_UNPRIV 1UL 187 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 188 POISON_POINTER_DELTA)) 189 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 190 191 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 192 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 193 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 194 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 195 static int ref_set_non_owning(struct bpf_verifier_env *env, 196 struct bpf_reg_state *reg); 197 198 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 199 { 200 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 201 } 202 203 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 204 { 205 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 206 } 207 208 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 209 const struct bpf_map *map, bool unpriv) 210 { 211 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 212 unpriv |= bpf_map_ptr_unpriv(aux); 213 aux->map_ptr_state = (unsigned long)map | 214 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 215 } 216 217 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 218 { 219 return aux->map_key_state & BPF_MAP_KEY_POISON; 220 } 221 222 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 223 { 224 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 225 } 226 227 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 228 { 229 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 230 } 231 232 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 233 { 234 bool poisoned = bpf_map_key_poisoned(aux); 235 236 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 237 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 238 } 239 240 static bool bpf_pseudo_call(const struct bpf_insn *insn) 241 { 242 return insn->code == (BPF_JMP | BPF_CALL) && 243 insn->src_reg == BPF_PSEUDO_CALL; 244 } 245 246 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 247 { 248 return insn->code == (BPF_JMP | BPF_CALL) && 249 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 250 } 251 252 struct bpf_call_arg_meta { 253 struct bpf_map *map_ptr; 254 bool raw_mode; 255 bool pkt_access; 256 u8 release_regno; 257 int regno; 258 int access_size; 259 int mem_size; 260 u64 msize_max_value; 261 int ref_obj_id; 262 int dynptr_id; 263 int map_uid; 264 int func_id; 265 struct btf *btf; 266 u32 btf_id; 267 struct btf *ret_btf; 268 u32 ret_btf_id; 269 u32 subprogno; 270 struct btf_field *kptr_field; 271 u8 uninit_dynptr_regno; 272 }; 273 274 struct btf *btf_vmlinux; 275 276 static DEFINE_MUTEX(bpf_verifier_lock); 277 278 static const struct bpf_line_info * 279 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 280 { 281 const struct bpf_line_info *linfo; 282 const struct bpf_prog *prog; 283 u32 i, nr_linfo; 284 285 prog = env->prog; 286 nr_linfo = prog->aux->nr_linfo; 287 288 if (!nr_linfo || insn_off >= prog->len) 289 return NULL; 290 291 linfo = prog->aux->linfo; 292 for (i = 1; i < nr_linfo; i++) 293 if (insn_off < linfo[i].insn_off) 294 break; 295 296 return &linfo[i - 1]; 297 } 298 299 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 300 va_list args) 301 { 302 unsigned int n; 303 304 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 305 306 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 307 "verifier log line truncated - local buffer too short\n"); 308 309 if (log->level == BPF_LOG_KERNEL) { 310 bool newline = n > 0 && log->kbuf[n - 1] == '\n'; 311 312 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n"); 313 return; 314 } 315 316 n = min(log->len_total - log->len_used - 1, n); 317 log->kbuf[n] = '\0'; 318 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 319 log->len_used += n; 320 else 321 log->ubuf = NULL; 322 } 323 324 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 325 { 326 char zero = 0; 327 328 if (!bpf_verifier_log_needed(log)) 329 return; 330 331 log->len_used = new_pos; 332 if (put_user(zero, log->ubuf + new_pos)) 333 log->ubuf = NULL; 334 } 335 336 /* log_level controls verbosity level of eBPF verifier. 337 * bpf_verifier_log_write() is used to dump the verification trace to the log, 338 * so the user can figure out what's wrong with the program 339 */ 340 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 341 const char *fmt, ...) 342 { 343 va_list args; 344 345 if (!bpf_verifier_log_needed(&env->log)) 346 return; 347 348 va_start(args, fmt); 349 bpf_verifier_vlog(&env->log, fmt, args); 350 va_end(args); 351 } 352 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 353 354 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 355 { 356 struct bpf_verifier_env *env = private_data; 357 va_list args; 358 359 if (!bpf_verifier_log_needed(&env->log)) 360 return; 361 362 va_start(args, fmt); 363 bpf_verifier_vlog(&env->log, fmt, args); 364 va_end(args); 365 } 366 367 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 368 const char *fmt, ...) 369 { 370 va_list args; 371 372 if (!bpf_verifier_log_needed(log)) 373 return; 374 375 va_start(args, fmt); 376 bpf_verifier_vlog(log, fmt, args); 377 va_end(args); 378 } 379 EXPORT_SYMBOL_GPL(bpf_log); 380 381 static const char *ltrim(const char *s) 382 { 383 while (isspace(*s)) 384 s++; 385 386 return s; 387 } 388 389 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 390 u32 insn_off, 391 const char *prefix_fmt, ...) 392 { 393 const struct bpf_line_info *linfo; 394 395 if (!bpf_verifier_log_needed(&env->log)) 396 return; 397 398 linfo = find_linfo(env, insn_off); 399 if (!linfo || linfo == env->prev_linfo) 400 return; 401 402 if (prefix_fmt) { 403 va_list args; 404 405 va_start(args, prefix_fmt); 406 bpf_verifier_vlog(&env->log, prefix_fmt, args); 407 va_end(args); 408 } 409 410 verbose(env, "%s\n", 411 ltrim(btf_name_by_offset(env->prog->aux->btf, 412 linfo->line_off))); 413 414 env->prev_linfo = linfo; 415 } 416 417 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 418 struct bpf_reg_state *reg, 419 struct tnum *range, const char *ctx, 420 const char *reg_name) 421 { 422 char tn_buf[48]; 423 424 verbose(env, "At %s the register %s ", ctx, reg_name); 425 if (!tnum_is_unknown(reg->var_off)) { 426 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 427 verbose(env, "has value %s", tn_buf); 428 } else { 429 verbose(env, "has unknown scalar value"); 430 } 431 tnum_strn(tn_buf, sizeof(tn_buf), *range); 432 verbose(env, " should have been in %s\n", tn_buf); 433 } 434 435 static bool type_is_pkt_pointer(enum bpf_reg_type type) 436 { 437 type = base_type(type); 438 return type == PTR_TO_PACKET || 439 type == PTR_TO_PACKET_META; 440 } 441 442 static bool type_is_sk_pointer(enum bpf_reg_type type) 443 { 444 return type == PTR_TO_SOCKET || 445 type == PTR_TO_SOCK_COMMON || 446 type == PTR_TO_TCP_SOCK || 447 type == PTR_TO_XDP_SOCK; 448 } 449 450 static bool reg_type_not_null(enum bpf_reg_type type) 451 { 452 return type == PTR_TO_SOCKET || 453 type == PTR_TO_TCP_SOCK || 454 type == PTR_TO_MAP_VALUE || 455 type == PTR_TO_MAP_KEY || 456 type == PTR_TO_SOCK_COMMON; 457 } 458 459 static bool type_is_ptr_alloc_obj(u32 type) 460 { 461 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 462 } 463 464 static bool type_is_non_owning_ref(u32 type) 465 { 466 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 467 } 468 469 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 470 { 471 struct btf_record *rec = NULL; 472 struct btf_struct_meta *meta; 473 474 if (reg->type == PTR_TO_MAP_VALUE) { 475 rec = reg->map_ptr->record; 476 } else if (type_is_ptr_alloc_obj(reg->type)) { 477 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 478 if (meta) 479 rec = meta->record; 480 } 481 return rec; 482 } 483 484 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 485 { 486 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 487 } 488 489 static bool type_is_rdonly_mem(u32 type) 490 { 491 return type & MEM_RDONLY; 492 } 493 494 static bool type_may_be_null(u32 type) 495 { 496 return type & PTR_MAYBE_NULL; 497 } 498 499 static bool is_acquire_function(enum bpf_func_id func_id, 500 const struct bpf_map *map) 501 { 502 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 503 504 if (func_id == BPF_FUNC_sk_lookup_tcp || 505 func_id == BPF_FUNC_sk_lookup_udp || 506 func_id == BPF_FUNC_skc_lookup_tcp || 507 func_id == BPF_FUNC_ringbuf_reserve || 508 func_id == BPF_FUNC_kptr_xchg) 509 return true; 510 511 if (func_id == BPF_FUNC_map_lookup_elem && 512 (map_type == BPF_MAP_TYPE_SOCKMAP || 513 map_type == BPF_MAP_TYPE_SOCKHASH)) 514 return true; 515 516 return false; 517 } 518 519 static bool is_ptr_cast_function(enum bpf_func_id func_id) 520 { 521 return func_id == BPF_FUNC_tcp_sock || 522 func_id == BPF_FUNC_sk_fullsock || 523 func_id == BPF_FUNC_skc_to_tcp_sock || 524 func_id == BPF_FUNC_skc_to_tcp6_sock || 525 func_id == BPF_FUNC_skc_to_udp6_sock || 526 func_id == BPF_FUNC_skc_to_mptcp_sock || 527 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 528 func_id == BPF_FUNC_skc_to_tcp_request_sock; 529 } 530 531 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 532 { 533 return func_id == BPF_FUNC_dynptr_data; 534 } 535 536 static bool is_callback_calling_function(enum bpf_func_id func_id) 537 { 538 return func_id == BPF_FUNC_for_each_map_elem || 539 func_id == BPF_FUNC_timer_set_callback || 540 func_id == BPF_FUNC_find_vma || 541 func_id == BPF_FUNC_loop || 542 func_id == BPF_FUNC_user_ringbuf_drain; 543 } 544 545 static bool is_storage_get_function(enum bpf_func_id func_id) 546 { 547 return func_id == BPF_FUNC_sk_storage_get || 548 func_id == BPF_FUNC_inode_storage_get || 549 func_id == BPF_FUNC_task_storage_get || 550 func_id == BPF_FUNC_cgrp_storage_get; 551 } 552 553 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 554 const struct bpf_map *map) 555 { 556 int ref_obj_uses = 0; 557 558 if (is_ptr_cast_function(func_id)) 559 ref_obj_uses++; 560 if (is_acquire_function(func_id, map)) 561 ref_obj_uses++; 562 if (is_dynptr_ref_function(func_id)) 563 ref_obj_uses++; 564 565 return ref_obj_uses > 1; 566 } 567 568 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 569 { 570 return BPF_CLASS(insn->code) == BPF_STX && 571 BPF_MODE(insn->code) == BPF_ATOMIC && 572 insn->imm == BPF_CMPXCHG; 573 } 574 575 /* string representation of 'enum bpf_reg_type' 576 * 577 * Note that reg_type_str() can not appear more than once in a single verbose() 578 * statement. 579 */ 580 static const char *reg_type_str(struct bpf_verifier_env *env, 581 enum bpf_reg_type type) 582 { 583 char postfix[16] = {0}, prefix[64] = {0}; 584 static const char * const str[] = { 585 [NOT_INIT] = "?", 586 [SCALAR_VALUE] = "scalar", 587 [PTR_TO_CTX] = "ctx", 588 [CONST_PTR_TO_MAP] = "map_ptr", 589 [PTR_TO_MAP_VALUE] = "map_value", 590 [PTR_TO_STACK] = "fp", 591 [PTR_TO_PACKET] = "pkt", 592 [PTR_TO_PACKET_META] = "pkt_meta", 593 [PTR_TO_PACKET_END] = "pkt_end", 594 [PTR_TO_FLOW_KEYS] = "flow_keys", 595 [PTR_TO_SOCKET] = "sock", 596 [PTR_TO_SOCK_COMMON] = "sock_common", 597 [PTR_TO_TCP_SOCK] = "tcp_sock", 598 [PTR_TO_TP_BUFFER] = "tp_buffer", 599 [PTR_TO_XDP_SOCK] = "xdp_sock", 600 [PTR_TO_BTF_ID] = "ptr_", 601 [PTR_TO_MEM] = "mem", 602 [PTR_TO_BUF] = "buf", 603 [PTR_TO_FUNC] = "func", 604 [PTR_TO_MAP_KEY] = "map_key", 605 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr", 606 }; 607 608 if (type & PTR_MAYBE_NULL) { 609 if (base_type(type) == PTR_TO_BTF_ID) 610 strncpy(postfix, "or_null_", 16); 611 else 612 strncpy(postfix, "_or_null", 16); 613 } 614 615 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s", 616 type & MEM_RDONLY ? "rdonly_" : "", 617 type & MEM_RINGBUF ? "ringbuf_" : "", 618 type & MEM_USER ? "user_" : "", 619 type & MEM_PERCPU ? "percpu_" : "", 620 type & MEM_RCU ? "rcu_" : "", 621 type & PTR_UNTRUSTED ? "untrusted_" : "", 622 type & PTR_TRUSTED ? "trusted_" : "" 623 ); 624 625 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s", 626 prefix, str[base_type(type)], postfix); 627 return env->type_str_buf; 628 } 629 630 static char slot_type_char[] = { 631 [STACK_INVALID] = '?', 632 [STACK_SPILL] = 'r', 633 [STACK_MISC] = 'm', 634 [STACK_ZERO] = '0', 635 [STACK_DYNPTR] = 'd', 636 }; 637 638 static void print_liveness(struct bpf_verifier_env *env, 639 enum bpf_reg_liveness live) 640 { 641 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 642 verbose(env, "_"); 643 if (live & REG_LIVE_READ) 644 verbose(env, "r"); 645 if (live & REG_LIVE_WRITTEN) 646 verbose(env, "w"); 647 if (live & REG_LIVE_DONE) 648 verbose(env, "D"); 649 } 650 651 static int __get_spi(s32 off) 652 { 653 return (-off - 1) / BPF_REG_SIZE; 654 } 655 656 static struct bpf_func_state *func(struct bpf_verifier_env *env, 657 const struct bpf_reg_state *reg) 658 { 659 struct bpf_verifier_state *cur = env->cur_state; 660 661 return cur->frame[reg->frameno]; 662 } 663 664 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 665 { 666 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 667 668 /* We need to check that slots between [spi - nr_slots + 1, spi] are 669 * within [0, allocated_stack). 670 * 671 * Please note that the spi grows downwards. For example, a dynptr 672 * takes the size of two stack slots; the first slot will be at 673 * spi and the second slot will be at spi - 1. 674 */ 675 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 676 } 677 678 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 679 { 680 int off, spi; 681 682 if (!tnum_is_const(reg->var_off)) { 683 verbose(env, "dynptr has to be at a constant offset\n"); 684 return -EINVAL; 685 } 686 687 off = reg->off + reg->var_off.value; 688 if (off % BPF_REG_SIZE) { 689 verbose(env, "cannot pass in dynptr at an offset=%d\n", off); 690 return -EINVAL; 691 } 692 693 spi = __get_spi(off); 694 if (spi < 1) { 695 verbose(env, "cannot pass in dynptr at an offset=%d\n", off); 696 return -EINVAL; 697 } 698 699 if (!is_spi_bounds_valid(func(env, reg), spi, BPF_DYNPTR_NR_SLOTS)) 700 return -ERANGE; 701 return spi; 702 } 703 704 static const char *kernel_type_name(const struct btf* btf, u32 id) 705 { 706 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 707 } 708 709 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 710 { 711 env->scratched_regs |= 1U << regno; 712 } 713 714 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 715 { 716 env->scratched_stack_slots |= 1ULL << spi; 717 } 718 719 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 720 { 721 return (env->scratched_regs >> regno) & 1; 722 } 723 724 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 725 { 726 return (env->scratched_stack_slots >> regno) & 1; 727 } 728 729 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 730 { 731 return env->scratched_regs || env->scratched_stack_slots; 732 } 733 734 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 735 { 736 env->scratched_regs = 0U; 737 env->scratched_stack_slots = 0ULL; 738 } 739 740 /* Used for printing the entire verifier state. */ 741 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 742 { 743 env->scratched_regs = ~0U; 744 env->scratched_stack_slots = ~0ULL; 745 } 746 747 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 748 { 749 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 750 case DYNPTR_TYPE_LOCAL: 751 return BPF_DYNPTR_TYPE_LOCAL; 752 case DYNPTR_TYPE_RINGBUF: 753 return BPF_DYNPTR_TYPE_RINGBUF; 754 default: 755 return BPF_DYNPTR_TYPE_INVALID; 756 } 757 } 758 759 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 760 { 761 return type == BPF_DYNPTR_TYPE_RINGBUF; 762 } 763 764 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 765 enum bpf_dynptr_type type, 766 bool first_slot, int dynptr_id); 767 768 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 769 struct bpf_reg_state *reg); 770 771 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 772 struct bpf_reg_state *sreg1, 773 struct bpf_reg_state *sreg2, 774 enum bpf_dynptr_type type) 775 { 776 int id = ++env->id_gen; 777 778 __mark_dynptr_reg(sreg1, type, true, id); 779 __mark_dynptr_reg(sreg2, type, false, id); 780 } 781 782 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 783 struct bpf_reg_state *reg, 784 enum bpf_dynptr_type type) 785 { 786 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 787 } 788 789 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 790 struct bpf_func_state *state, int spi); 791 792 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 793 enum bpf_arg_type arg_type, int insn_idx) 794 { 795 struct bpf_func_state *state = func(env, reg); 796 enum bpf_dynptr_type type; 797 int spi, i, id, err; 798 799 spi = dynptr_get_spi(env, reg); 800 if (spi < 0) 801 return spi; 802 803 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 804 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 805 * to ensure that for the following example: 806 * [d1][d1][d2][d2] 807 * spi 3 2 1 0 808 * So marking spi = 2 should lead to destruction of both d1 and d2. In 809 * case they do belong to same dynptr, second call won't see slot_type 810 * as STACK_DYNPTR and will simply skip destruction. 811 */ 812 err = destroy_if_dynptr_stack_slot(env, state, spi); 813 if (err) 814 return err; 815 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 816 if (err) 817 return err; 818 819 for (i = 0; i < BPF_REG_SIZE; i++) { 820 state->stack[spi].slot_type[i] = STACK_DYNPTR; 821 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 822 } 823 824 type = arg_to_dynptr_type(arg_type); 825 if (type == BPF_DYNPTR_TYPE_INVALID) 826 return -EINVAL; 827 828 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 829 &state->stack[spi - 1].spilled_ptr, type); 830 831 if (dynptr_type_refcounted(type)) { 832 /* The id is used to track proper releasing */ 833 id = acquire_reference_state(env, insn_idx); 834 if (id < 0) 835 return id; 836 837 state->stack[spi].spilled_ptr.ref_obj_id = id; 838 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 839 } 840 841 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 842 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 843 844 return 0; 845 } 846 847 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 848 { 849 struct bpf_func_state *state = func(env, reg); 850 int spi, i; 851 852 spi = dynptr_get_spi(env, reg); 853 if (spi < 0) 854 return spi; 855 856 for (i = 0; i < BPF_REG_SIZE; i++) { 857 state->stack[spi].slot_type[i] = STACK_INVALID; 858 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 859 } 860 861 /* Invalidate any slices associated with this dynptr */ 862 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) 863 WARN_ON_ONCE(release_reference(env, state->stack[spi].spilled_ptr.ref_obj_id)); 864 865 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 866 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 867 868 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 869 * 870 * While we don't allow reading STACK_INVALID, it is still possible to 871 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 872 * helpers or insns can do partial read of that part without failing, 873 * but check_stack_range_initialized, check_stack_read_var_off, and 874 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 875 * the slot conservatively. Hence we need to prevent those liveness 876 * marking walks. 877 * 878 * This was not a problem before because STACK_INVALID is only set by 879 * default (where the default reg state has its reg->parent as NULL), or 880 * in clean_live_states after REG_LIVE_DONE (at which point 881 * mark_reg_read won't walk reg->parent chain), but not randomly during 882 * verifier state exploration (like we did above). Hence, for our case 883 * parentage chain will still be live (i.e. reg->parent may be 884 * non-NULL), while earlier reg->parent was NULL, so we need 885 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 886 * done later on reads or by mark_dynptr_read as well to unnecessary 887 * mark registers in verifier state. 888 */ 889 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 890 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 891 892 return 0; 893 } 894 895 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 896 struct bpf_reg_state *reg); 897 898 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 899 struct bpf_func_state *state, int spi) 900 { 901 struct bpf_func_state *fstate; 902 struct bpf_reg_state *dreg; 903 int i, dynptr_id; 904 905 /* We always ensure that STACK_DYNPTR is never set partially, 906 * hence just checking for slot_type[0] is enough. This is 907 * different for STACK_SPILL, where it may be only set for 908 * 1 byte, so code has to use is_spilled_reg. 909 */ 910 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 911 return 0; 912 913 /* Reposition spi to first slot */ 914 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 915 spi = spi + 1; 916 917 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 918 verbose(env, "cannot overwrite referenced dynptr\n"); 919 return -EINVAL; 920 } 921 922 mark_stack_slot_scratched(env, spi); 923 mark_stack_slot_scratched(env, spi - 1); 924 925 /* Writing partially to one dynptr stack slot destroys both. */ 926 for (i = 0; i < BPF_REG_SIZE; i++) { 927 state->stack[spi].slot_type[i] = STACK_INVALID; 928 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 929 } 930 931 dynptr_id = state->stack[spi].spilled_ptr.id; 932 /* Invalidate any slices associated with this dynptr */ 933 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 934 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 935 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 936 continue; 937 if (dreg->dynptr_id == dynptr_id) { 938 if (!env->allow_ptr_leaks) 939 __mark_reg_not_init(env, dreg); 940 else 941 __mark_reg_unknown(env, dreg); 942 } 943 })); 944 945 /* Do not release reference state, we are destroying dynptr on stack, 946 * not using some helper to release it. Just reset register. 947 */ 948 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 949 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 950 951 /* Same reason as unmark_stack_slots_dynptr above */ 952 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 953 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 954 955 return 0; 956 } 957 958 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 959 int spi) 960 { 961 if (reg->type == CONST_PTR_TO_DYNPTR) 962 return false; 963 964 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 965 * will do check_mem_access to check and update stack bounds later, so 966 * return true for that case. 967 */ 968 if (spi < 0) 969 return spi == -ERANGE; 970 /* We allow overwriting existing unreferenced STACK_DYNPTR slots, see 971 * mark_stack_slots_dynptr which calls destroy_if_dynptr_stack_slot to 972 * ensure dynptr objects at the slots we are touching are completely 973 * destructed before we reinitialize them for a new one. For referenced 974 * ones, destroy_if_dynptr_stack_slot returns an error early instead of 975 * delaying it until the end where the user will get "Unreleased 976 * reference" error. 977 */ 978 return true; 979 } 980 981 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 982 int spi) 983 { 984 struct bpf_func_state *state = func(env, reg); 985 int i; 986 987 /* This already represents first slot of initialized bpf_dynptr */ 988 if (reg->type == CONST_PTR_TO_DYNPTR) 989 return true; 990 991 if (spi < 0) 992 return false; 993 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 994 return false; 995 996 for (i = 0; i < BPF_REG_SIZE; i++) { 997 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 998 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 999 return false; 1000 } 1001 1002 return true; 1003 } 1004 1005 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1006 enum bpf_arg_type arg_type) 1007 { 1008 struct bpf_func_state *state = func(env, reg); 1009 enum bpf_dynptr_type dynptr_type; 1010 int spi; 1011 1012 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1013 if (arg_type == ARG_PTR_TO_DYNPTR) 1014 return true; 1015 1016 dynptr_type = arg_to_dynptr_type(arg_type); 1017 if (reg->type == CONST_PTR_TO_DYNPTR) { 1018 return reg->dynptr.type == dynptr_type; 1019 } else { 1020 spi = dynptr_get_spi(env, reg); 1021 if (spi < 0) 1022 return false; 1023 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1024 } 1025 } 1026 1027 /* The reg state of a pointer or a bounded scalar was saved when 1028 * it was spilled to the stack. 1029 */ 1030 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1031 { 1032 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1033 } 1034 1035 static void scrub_spilled_slot(u8 *stype) 1036 { 1037 if (*stype != STACK_INVALID) 1038 *stype = STACK_MISC; 1039 } 1040 1041 static void print_verifier_state(struct bpf_verifier_env *env, 1042 const struct bpf_func_state *state, 1043 bool print_all) 1044 { 1045 const struct bpf_reg_state *reg; 1046 enum bpf_reg_type t; 1047 int i; 1048 1049 if (state->frameno) 1050 verbose(env, " frame%d:", state->frameno); 1051 for (i = 0; i < MAX_BPF_REG; i++) { 1052 reg = &state->regs[i]; 1053 t = reg->type; 1054 if (t == NOT_INIT) 1055 continue; 1056 if (!print_all && !reg_scratched(env, i)) 1057 continue; 1058 verbose(env, " R%d", i); 1059 print_liveness(env, reg->live); 1060 verbose(env, "="); 1061 if (t == SCALAR_VALUE && reg->precise) 1062 verbose(env, "P"); 1063 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 1064 tnum_is_const(reg->var_off)) { 1065 /* reg->off should be 0 for SCALAR_VALUE */ 1066 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1067 verbose(env, "%lld", reg->var_off.value + reg->off); 1068 } else { 1069 const char *sep = ""; 1070 1071 verbose(env, "%s", reg_type_str(env, t)); 1072 if (base_type(t) == PTR_TO_BTF_ID) 1073 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 1074 verbose(env, "("); 1075 /* 1076 * _a stands for append, was shortened to avoid multiline statements below. 1077 * This macro is used to output a comma separated list of attributes. 1078 */ 1079 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 1080 1081 if (reg->id) 1082 verbose_a("id=%d", reg->id); 1083 if (reg->ref_obj_id) 1084 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 1085 if (type_is_non_owning_ref(reg->type)) 1086 verbose_a("%s", "non_own_ref"); 1087 if (t != SCALAR_VALUE) 1088 verbose_a("off=%d", reg->off); 1089 if (type_is_pkt_pointer(t)) 1090 verbose_a("r=%d", reg->range); 1091 else if (base_type(t) == CONST_PTR_TO_MAP || 1092 base_type(t) == PTR_TO_MAP_KEY || 1093 base_type(t) == PTR_TO_MAP_VALUE) 1094 verbose_a("ks=%d,vs=%d", 1095 reg->map_ptr->key_size, 1096 reg->map_ptr->value_size); 1097 if (tnum_is_const(reg->var_off)) { 1098 /* Typically an immediate SCALAR_VALUE, but 1099 * could be a pointer whose offset is too big 1100 * for reg->off 1101 */ 1102 verbose_a("imm=%llx", reg->var_off.value); 1103 } else { 1104 if (reg->smin_value != reg->umin_value && 1105 reg->smin_value != S64_MIN) 1106 verbose_a("smin=%lld", (long long)reg->smin_value); 1107 if (reg->smax_value != reg->umax_value && 1108 reg->smax_value != S64_MAX) 1109 verbose_a("smax=%lld", (long long)reg->smax_value); 1110 if (reg->umin_value != 0) 1111 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 1112 if (reg->umax_value != U64_MAX) 1113 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 1114 if (!tnum_is_unknown(reg->var_off)) { 1115 char tn_buf[48]; 1116 1117 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1118 verbose_a("var_off=%s", tn_buf); 1119 } 1120 if (reg->s32_min_value != reg->smin_value && 1121 reg->s32_min_value != S32_MIN) 1122 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 1123 if (reg->s32_max_value != reg->smax_value && 1124 reg->s32_max_value != S32_MAX) 1125 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 1126 if (reg->u32_min_value != reg->umin_value && 1127 reg->u32_min_value != U32_MIN) 1128 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 1129 if (reg->u32_max_value != reg->umax_value && 1130 reg->u32_max_value != U32_MAX) 1131 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 1132 } 1133 #undef verbose_a 1134 1135 verbose(env, ")"); 1136 } 1137 } 1138 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1139 char types_buf[BPF_REG_SIZE + 1]; 1140 bool valid = false; 1141 int j; 1142 1143 for (j = 0; j < BPF_REG_SIZE; j++) { 1144 if (state->stack[i].slot_type[j] != STACK_INVALID) 1145 valid = true; 1146 types_buf[j] = slot_type_char[ 1147 state->stack[i].slot_type[j]]; 1148 } 1149 types_buf[BPF_REG_SIZE] = 0; 1150 if (!valid) 1151 continue; 1152 if (!print_all && !stack_slot_scratched(env, i)) 1153 continue; 1154 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1155 print_liveness(env, state->stack[i].spilled_ptr.live); 1156 if (is_spilled_reg(&state->stack[i])) { 1157 reg = &state->stack[i].spilled_ptr; 1158 t = reg->type; 1159 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1160 if (t == SCALAR_VALUE && reg->precise) 1161 verbose(env, "P"); 1162 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 1163 verbose(env, "%lld", reg->var_off.value + reg->off); 1164 } else { 1165 verbose(env, "=%s", types_buf); 1166 } 1167 } 1168 if (state->acquired_refs && state->refs[0].id) { 1169 verbose(env, " refs=%d", state->refs[0].id); 1170 for (i = 1; i < state->acquired_refs; i++) 1171 if (state->refs[i].id) 1172 verbose(env, ",%d", state->refs[i].id); 1173 } 1174 if (state->in_callback_fn) 1175 verbose(env, " cb"); 1176 if (state->in_async_callback_fn) 1177 verbose(env, " async_cb"); 1178 verbose(env, "\n"); 1179 mark_verifier_state_clean(env); 1180 } 1181 1182 static inline u32 vlog_alignment(u32 pos) 1183 { 1184 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 1185 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 1186 } 1187 1188 static void print_insn_state(struct bpf_verifier_env *env, 1189 const struct bpf_func_state *state) 1190 { 1191 if (env->prev_log_len && env->prev_log_len == env->log.len_used) { 1192 /* remove new line character */ 1193 bpf_vlog_reset(&env->log, env->prev_log_len - 1); 1194 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' '); 1195 } else { 1196 verbose(env, "%d:", env->insn_idx); 1197 } 1198 print_verifier_state(env, state, false); 1199 } 1200 1201 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1202 * small to hold src. This is different from krealloc since we don't want to preserve 1203 * the contents of dst. 1204 * 1205 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1206 * not be allocated. 1207 */ 1208 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1209 { 1210 size_t alloc_bytes; 1211 void *orig = dst; 1212 size_t bytes; 1213 1214 if (ZERO_OR_NULL_PTR(src)) 1215 goto out; 1216 1217 if (unlikely(check_mul_overflow(n, size, &bytes))) 1218 return NULL; 1219 1220 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1221 dst = krealloc(orig, alloc_bytes, flags); 1222 if (!dst) { 1223 kfree(orig); 1224 return NULL; 1225 } 1226 1227 memcpy(dst, src, bytes); 1228 out: 1229 return dst ? dst : ZERO_SIZE_PTR; 1230 } 1231 1232 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1233 * small to hold new_n items. new items are zeroed out if the array grows. 1234 * 1235 * Contrary to krealloc_array, does not free arr if new_n is zero. 1236 */ 1237 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1238 { 1239 size_t alloc_size; 1240 void *new_arr; 1241 1242 if (!new_n || old_n == new_n) 1243 goto out; 1244 1245 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1246 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1247 if (!new_arr) { 1248 kfree(arr); 1249 return NULL; 1250 } 1251 arr = new_arr; 1252 1253 if (new_n > old_n) 1254 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1255 1256 out: 1257 return arr ? arr : ZERO_SIZE_PTR; 1258 } 1259 1260 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1261 { 1262 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1263 sizeof(struct bpf_reference_state), GFP_KERNEL); 1264 if (!dst->refs) 1265 return -ENOMEM; 1266 1267 dst->acquired_refs = src->acquired_refs; 1268 return 0; 1269 } 1270 1271 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1272 { 1273 size_t n = src->allocated_stack / BPF_REG_SIZE; 1274 1275 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1276 GFP_KERNEL); 1277 if (!dst->stack) 1278 return -ENOMEM; 1279 1280 dst->allocated_stack = src->allocated_stack; 1281 return 0; 1282 } 1283 1284 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1285 { 1286 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1287 sizeof(struct bpf_reference_state)); 1288 if (!state->refs) 1289 return -ENOMEM; 1290 1291 state->acquired_refs = n; 1292 return 0; 1293 } 1294 1295 static int grow_stack_state(struct bpf_func_state *state, int size) 1296 { 1297 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1298 1299 if (old_n >= n) 1300 return 0; 1301 1302 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1303 if (!state->stack) 1304 return -ENOMEM; 1305 1306 state->allocated_stack = size; 1307 return 0; 1308 } 1309 1310 /* Acquire a pointer id from the env and update the state->refs to include 1311 * this new pointer reference. 1312 * On success, returns a valid pointer id to associate with the register 1313 * On failure, returns a negative errno. 1314 */ 1315 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1316 { 1317 struct bpf_func_state *state = cur_func(env); 1318 int new_ofs = state->acquired_refs; 1319 int id, err; 1320 1321 err = resize_reference_state(state, state->acquired_refs + 1); 1322 if (err) 1323 return err; 1324 id = ++env->id_gen; 1325 state->refs[new_ofs].id = id; 1326 state->refs[new_ofs].insn_idx = insn_idx; 1327 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1328 1329 return id; 1330 } 1331 1332 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1333 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1334 { 1335 int i, last_idx; 1336 1337 last_idx = state->acquired_refs - 1; 1338 for (i = 0; i < state->acquired_refs; i++) { 1339 if (state->refs[i].id == ptr_id) { 1340 /* Cannot release caller references in callbacks */ 1341 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1342 return -EINVAL; 1343 if (last_idx && i != last_idx) 1344 memcpy(&state->refs[i], &state->refs[last_idx], 1345 sizeof(*state->refs)); 1346 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1347 state->acquired_refs--; 1348 return 0; 1349 } 1350 } 1351 return -EINVAL; 1352 } 1353 1354 static void free_func_state(struct bpf_func_state *state) 1355 { 1356 if (!state) 1357 return; 1358 kfree(state->refs); 1359 kfree(state->stack); 1360 kfree(state); 1361 } 1362 1363 static void clear_jmp_history(struct bpf_verifier_state *state) 1364 { 1365 kfree(state->jmp_history); 1366 state->jmp_history = NULL; 1367 state->jmp_history_cnt = 0; 1368 } 1369 1370 static void free_verifier_state(struct bpf_verifier_state *state, 1371 bool free_self) 1372 { 1373 int i; 1374 1375 for (i = 0; i <= state->curframe; i++) { 1376 free_func_state(state->frame[i]); 1377 state->frame[i] = NULL; 1378 } 1379 clear_jmp_history(state); 1380 if (free_self) 1381 kfree(state); 1382 } 1383 1384 /* copy verifier state from src to dst growing dst stack space 1385 * when necessary to accommodate larger src stack 1386 */ 1387 static int copy_func_state(struct bpf_func_state *dst, 1388 const struct bpf_func_state *src) 1389 { 1390 int err; 1391 1392 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1393 err = copy_reference_state(dst, src); 1394 if (err) 1395 return err; 1396 return copy_stack_state(dst, src); 1397 } 1398 1399 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1400 const struct bpf_verifier_state *src) 1401 { 1402 struct bpf_func_state *dst; 1403 int i, err; 1404 1405 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1406 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1407 GFP_USER); 1408 if (!dst_state->jmp_history) 1409 return -ENOMEM; 1410 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1411 1412 /* if dst has more stack frames then src frame, free them */ 1413 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1414 free_func_state(dst_state->frame[i]); 1415 dst_state->frame[i] = NULL; 1416 } 1417 dst_state->speculative = src->speculative; 1418 dst_state->active_rcu_lock = src->active_rcu_lock; 1419 dst_state->curframe = src->curframe; 1420 dst_state->active_lock.ptr = src->active_lock.ptr; 1421 dst_state->active_lock.id = src->active_lock.id; 1422 dst_state->branches = src->branches; 1423 dst_state->parent = src->parent; 1424 dst_state->first_insn_idx = src->first_insn_idx; 1425 dst_state->last_insn_idx = src->last_insn_idx; 1426 for (i = 0; i <= src->curframe; i++) { 1427 dst = dst_state->frame[i]; 1428 if (!dst) { 1429 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1430 if (!dst) 1431 return -ENOMEM; 1432 dst_state->frame[i] = dst; 1433 } 1434 err = copy_func_state(dst, src->frame[i]); 1435 if (err) 1436 return err; 1437 } 1438 return 0; 1439 } 1440 1441 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1442 { 1443 while (st) { 1444 u32 br = --st->branches; 1445 1446 /* WARN_ON(br > 1) technically makes sense here, 1447 * but see comment in push_stack(), hence: 1448 */ 1449 WARN_ONCE((int)br < 0, 1450 "BUG update_branch_counts:branches_to_explore=%d\n", 1451 br); 1452 if (br) 1453 break; 1454 st = st->parent; 1455 } 1456 } 1457 1458 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1459 int *insn_idx, bool pop_log) 1460 { 1461 struct bpf_verifier_state *cur = env->cur_state; 1462 struct bpf_verifier_stack_elem *elem, *head = env->head; 1463 int err; 1464 1465 if (env->head == NULL) 1466 return -ENOENT; 1467 1468 if (cur) { 1469 err = copy_verifier_state(cur, &head->st); 1470 if (err) 1471 return err; 1472 } 1473 if (pop_log) 1474 bpf_vlog_reset(&env->log, head->log_pos); 1475 if (insn_idx) 1476 *insn_idx = head->insn_idx; 1477 if (prev_insn_idx) 1478 *prev_insn_idx = head->prev_insn_idx; 1479 elem = head->next; 1480 free_verifier_state(&head->st, false); 1481 kfree(head); 1482 env->head = elem; 1483 env->stack_size--; 1484 return 0; 1485 } 1486 1487 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1488 int insn_idx, int prev_insn_idx, 1489 bool speculative) 1490 { 1491 struct bpf_verifier_state *cur = env->cur_state; 1492 struct bpf_verifier_stack_elem *elem; 1493 int err; 1494 1495 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1496 if (!elem) 1497 goto err; 1498 1499 elem->insn_idx = insn_idx; 1500 elem->prev_insn_idx = prev_insn_idx; 1501 elem->next = env->head; 1502 elem->log_pos = env->log.len_used; 1503 env->head = elem; 1504 env->stack_size++; 1505 err = copy_verifier_state(&elem->st, cur); 1506 if (err) 1507 goto err; 1508 elem->st.speculative |= speculative; 1509 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1510 verbose(env, "The sequence of %d jumps is too complex.\n", 1511 env->stack_size); 1512 goto err; 1513 } 1514 if (elem->st.parent) { 1515 ++elem->st.parent->branches; 1516 /* WARN_ON(branches > 2) technically makes sense here, 1517 * but 1518 * 1. speculative states will bump 'branches' for non-branch 1519 * instructions 1520 * 2. is_state_visited() heuristics may decide not to create 1521 * a new state for a sequence of branches and all such current 1522 * and cloned states will be pointing to a single parent state 1523 * which might have large 'branches' count. 1524 */ 1525 } 1526 return &elem->st; 1527 err: 1528 free_verifier_state(env->cur_state, true); 1529 env->cur_state = NULL; 1530 /* pop all elements and return */ 1531 while (!pop_stack(env, NULL, NULL, false)); 1532 return NULL; 1533 } 1534 1535 #define CALLER_SAVED_REGS 6 1536 static const int caller_saved[CALLER_SAVED_REGS] = { 1537 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1538 }; 1539 1540 /* This helper doesn't clear reg->id */ 1541 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1542 { 1543 reg->var_off = tnum_const(imm); 1544 reg->smin_value = (s64)imm; 1545 reg->smax_value = (s64)imm; 1546 reg->umin_value = imm; 1547 reg->umax_value = imm; 1548 1549 reg->s32_min_value = (s32)imm; 1550 reg->s32_max_value = (s32)imm; 1551 reg->u32_min_value = (u32)imm; 1552 reg->u32_max_value = (u32)imm; 1553 } 1554 1555 /* Mark the unknown part of a register (variable offset or scalar value) as 1556 * known to have the value @imm. 1557 */ 1558 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1559 { 1560 /* Clear off and union(map_ptr, range) */ 1561 memset(((u8 *)reg) + sizeof(reg->type), 0, 1562 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1563 reg->id = 0; 1564 reg->ref_obj_id = 0; 1565 ___mark_reg_known(reg, imm); 1566 } 1567 1568 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1569 { 1570 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1571 reg->s32_min_value = (s32)imm; 1572 reg->s32_max_value = (s32)imm; 1573 reg->u32_min_value = (u32)imm; 1574 reg->u32_max_value = (u32)imm; 1575 } 1576 1577 /* Mark the 'variable offset' part of a register as zero. This should be 1578 * used only on registers holding a pointer type. 1579 */ 1580 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1581 { 1582 __mark_reg_known(reg, 0); 1583 } 1584 1585 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1586 { 1587 __mark_reg_known(reg, 0); 1588 reg->type = SCALAR_VALUE; 1589 } 1590 1591 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1592 struct bpf_reg_state *regs, u32 regno) 1593 { 1594 if (WARN_ON(regno >= MAX_BPF_REG)) { 1595 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1596 /* Something bad happened, let's kill all regs */ 1597 for (regno = 0; regno < MAX_BPF_REG; regno++) 1598 __mark_reg_not_init(env, regs + regno); 1599 return; 1600 } 1601 __mark_reg_known_zero(regs + regno); 1602 } 1603 1604 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 1605 bool first_slot, int dynptr_id) 1606 { 1607 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 1608 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 1609 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 1610 */ 1611 __mark_reg_known_zero(reg); 1612 reg->type = CONST_PTR_TO_DYNPTR; 1613 /* Give each dynptr a unique id to uniquely associate slices to it. */ 1614 reg->id = dynptr_id; 1615 reg->dynptr.type = type; 1616 reg->dynptr.first_slot = first_slot; 1617 } 1618 1619 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1620 { 1621 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1622 const struct bpf_map *map = reg->map_ptr; 1623 1624 if (map->inner_map_meta) { 1625 reg->type = CONST_PTR_TO_MAP; 1626 reg->map_ptr = map->inner_map_meta; 1627 /* transfer reg's id which is unique for every map_lookup_elem 1628 * as UID of the inner map. 1629 */ 1630 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1631 reg->map_uid = reg->id; 1632 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1633 reg->type = PTR_TO_XDP_SOCK; 1634 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1635 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1636 reg->type = PTR_TO_SOCKET; 1637 } else { 1638 reg->type = PTR_TO_MAP_VALUE; 1639 } 1640 return; 1641 } 1642 1643 reg->type &= ~PTR_MAYBE_NULL; 1644 } 1645 1646 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 1647 struct btf_field_graph_root *ds_head) 1648 { 1649 __mark_reg_known_zero(®s[regno]); 1650 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 1651 regs[regno].btf = ds_head->btf; 1652 regs[regno].btf_id = ds_head->value_btf_id; 1653 regs[regno].off = ds_head->node_offset; 1654 } 1655 1656 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1657 { 1658 return type_is_pkt_pointer(reg->type); 1659 } 1660 1661 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1662 { 1663 return reg_is_pkt_pointer(reg) || 1664 reg->type == PTR_TO_PACKET_END; 1665 } 1666 1667 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1668 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1669 enum bpf_reg_type which) 1670 { 1671 /* The register can already have a range from prior markings. 1672 * This is fine as long as it hasn't been advanced from its 1673 * origin. 1674 */ 1675 return reg->type == which && 1676 reg->id == 0 && 1677 reg->off == 0 && 1678 tnum_equals_const(reg->var_off, 0); 1679 } 1680 1681 /* Reset the min/max bounds of a register */ 1682 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1683 { 1684 reg->smin_value = S64_MIN; 1685 reg->smax_value = S64_MAX; 1686 reg->umin_value = 0; 1687 reg->umax_value = U64_MAX; 1688 1689 reg->s32_min_value = S32_MIN; 1690 reg->s32_max_value = S32_MAX; 1691 reg->u32_min_value = 0; 1692 reg->u32_max_value = U32_MAX; 1693 } 1694 1695 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1696 { 1697 reg->smin_value = S64_MIN; 1698 reg->smax_value = S64_MAX; 1699 reg->umin_value = 0; 1700 reg->umax_value = U64_MAX; 1701 } 1702 1703 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1704 { 1705 reg->s32_min_value = S32_MIN; 1706 reg->s32_max_value = S32_MAX; 1707 reg->u32_min_value = 0; 1708 reg->u32_max_value = U32_MAX; 1709 } 1710 1711 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1712 { 1713 struct tnum var32_off = tnum_subreg(reg->var_off); 1714 1715 /* min signed is max(sign bit) | min(other bits) */ 1716 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1717 var32_off.value | (var32_off.mask & S32_MIN)); 1718 /* max signed is min(sign bit) | max(other bits) */ 1719 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1720 var32_off.value | (var32_off.mask & S32_MAX)); 1721 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1722 reg->u32_max_value = min(reg->u32_max_value, 1723 (u32)(var32_off.value | var32_off.mask)); 1724 } 1725 1726 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1727 { 1728 /* min signed is max(sign bit) | min(other bits) */ 1729 reg->smin_value = max_t(s64, reg->smin_value, 1730 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1731 /* max signed is min(sign bit) | max(other bits) */ 1732 reg->smax_value = min_t(s64, reg->smax_value, 1733 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1734 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1735 reg->umax_value = min(reg->umax_value, 1736 reg->var_off.value | reg->var_off.mask); 1737 } 1738 1739 static void __update_reg_bounds(struct bpf_reg_state *reg) 1740 { 1741 __update_reg32_bounds(reg); 1742 __update_reg64_bounds(reg); 1743 } 1744 1745 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1746 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1747 { 1748 /* Learn sign from signed bounds. 1749 * If we cannot cross the sign boundary, then signed and unsigned bounds 1750 * are the same, so combine. This works even in the negative case, e.g. 1751 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1752 */ 1753 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1754 reg->s32_min_value = reg->u32_min_value = 1755 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1756 reg->s32_max_value = reg->u32_max_value = 1757 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1758 return; 1759 } 1760 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1761 * boundary, so we must be careful. 1762 */ 1763 if ((s32)reg->u32_max_value >= 0) { 1764 /* Positive. We can't learn anything from the smin, but smax 1765 * is positive, hence safe. 1766 */ 1767 reg->s32_min_value = reg->u32_min_value; 1768 reg->s32_max_value = reg->u32_max_value = 1769 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1770 } else if ((s32)reg->u32_min_value < 0) { 1771 /* Negative. We can't learn anything from the smax, but smin 1772 * is negative, hence safe. 1773 */ 1774 reg->s32_min_value = reg->u32_min_value = 1775 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1776 reg->s32_max_value = reg->u32_max_value; 1777 } 1778 } 1779 1780 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1781 { 1782 /* Learn sign from signed bounds. 1783 * If we cannot cross the sign boundary, then signed and unsigned bounds 1784 * are the same, so combine. This works even in the negative case, e.g. 1785 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1786 */ 1787 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1788 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1789 reg->umin_value); 1790 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1791 reg->umax_value); 1792 return; 1793 } 1794 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1795 * boundary, so we must be careful. 1796 */ 1797 if ((s64)reg->umax_value >= 0) { 1798 /* Positive. We can't learn anything from the smin, but smax 1799 * is positive, hence safe. 1800 */ 1801 reg->smin_value = reg->umin_value; 1802 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1803 reg->umax_value); 1804 } else if ((s64)reg->umin_value < 0) { 1805 /* Negative. We can't learn anything from the smax, but smin 1806 * is negative, hence safe. 1807 */ 1808 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1809 reg->umin_value); 1810 reg->smax_value = reg->umax_value; 1811 } 1812 } 1813 1814 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1815 { 1816 __reg32_deduce_bounds(reg); 1817 __reg64_deduce_bounds(reg); 1818 } 1819 1820 /* Attempts to improve var_off based on unsigned min/max information */ 1821 static void __reg_bound_offset(struct bpf_reg_state *reg) 1822 { 1823 struct tnum var64_off = tnum_intersect(reg->var_off, 1824 tnum_range(reg->umin_value, 1825 reg->umax_value)); 1826 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1827 tnum_range(reg->u32_min_value, 1828 reg->u32_max_value)); 1829 1830 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1831 } 1832 1833 static void reg_bounds_sync(struct bpf_reg_state *reg) 1834 { 1835 /* We might have learned new bounds from the var_off. */ 1836 __update_reg_bounds(reg); 1837 /* We might have learned something about the sign bit. */ 1838 __reg_deduce_bounds(reg); 1839 /* We might have learned some bits from the bounds. */ 1840 __reg_bound_offset(reg); 1841 /* Intersecting with the old var_off might have improved our bounds 1842 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1843 * then new var_off is (0; 0x7f...fc) which improves our umax. 1844 */ 1845 __update_reg_bounds(reg); 1846 } 1847 1848 static bool __reg32_bound_s64(s32 a) 1849 { 1850 return a >= 0 && a <= S32_MAX; 1851 } 1852 1853 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1854 { 1855 reg->umin_value = reg->u32_min_value; 1856 reg->umax_value = reg->u32_max_value; 1857 1858 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 1859 * be positive otherwise set to worse case bounds and refine later 1860 * from tnum. 1861 */ 1862 if (__reg32_bound_s64(reg->s32_min_value) && 1863 __reg32_bound_s64(reg->s32_max_value)) { 1864 reg->smin_value = reg->s32_min_value; 1865 reg->smax_value = reg->s32_max_value; 1866 } else { 1867 reg->smin_value = 0; 1868 reg->smax_value = U32_MAX; 1869 } 1870 } 1871 1872 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1873 { 1874 /* special case when 64-bit register has upper 32-bit register 1875 * zeroed. Typically happens after zext or <<32, >>32 sequence 1876 * allowing us to use 32-bit bounds directly, 1877 */ 1878 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1879 __reg_assign_32_into_64(reg); 1880 } else { 1881 /* Otherwise the best we can do is push lower 32bit known and 1882 * unknown bits into register (var_off set from jmp logic) 1883 * then learn as much as possible from the 64-bit tnum 1884 * known and unknown bits. The previous smin/smax bounds are 1885 * invalid here because of jmp32 compare so mark them unknown 1886 * so they do not impact tnum bounds calculation. 1887 */ 1888 __mark_reg64_unbounded(reg); 1889 } 1890 reg_bounds_sync(reg); 1891 } 1892 1893 static bool __reg64_bound_s32(s64 a) 1894 { 1895 return a >= S32_MIN && a <= S32_MAX; 1896 } 1897 1898 static bool __reg64_bound_u32(u64 a) 1899 { 1900 return a >= U32_MIN && a <= U32_MAX; 1901 } 1902 1903 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1904 { 1905 __mark_reg32_unbounded(reg); 1906 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1907 reg->s32_min_value = (s32)reg->smin_value; 1908 reg->s32_max_value = (s32)reg->smax_value; 1909 } 1910 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1911 reg->u32_min_value = (u32)reg->umin_value; 1912 reg->u32_max_value = (u32)reg->umax_value; 1913 } 1914 reg_bounds_sync(reg); 1915 } 1916 1917 /* Mark a register as having a completely unknown (scalar) value. */ 1918 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1919 struct bpf_reg_state *reg) 1920 { 1921 /* 1922 * Clear type, off, and union(map_ptr, range) and 1923 * padding between 'type' and union 1924 */ 1925 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1926 reg->type = SCALAR_VALUE; 1927 reg->id = 0; 1928 reg->ref_obj_id = 0; 1929 reg->var_off = tnum_unknown; 1930 reg->frameno = 0; 1931 reg->precise = !env->bpf_capable; 1932 __mark_reg_unbounded(reg); 1933 } 1934 1935 static void mark_reg_unknown(struct bpf_verifier_env *env, 1936 struct bpf_reg_state *regs, u32 regno) 1937 { 1938 if (WARN_ON(regno >= MAX_BPF_REG)) { 1939 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1940 /* Something bad happened, let's kill all regs except FP */ 1941 for (regno = 0; regno < BPF_REG_FP; regno++) 1942 __mark_reg_not_init(env, regs + regno); 1943 return; 1944 } 1945 __mark_reg_unknown(env, regs + regno); 1946 } 1947 1948 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1949 struct bpf_reg_state *reg) 1950 { 1951 __mark_reg_unknown(env, reg); 1952 reg->type = NOT_INIT; 1953 } 1954 1955 static void mark_reg_not_init(struct bpf_verifier_env *env, 1956 struct bpf_reg_state *regs, u32 regno) 1957 { 1958 if (WARN_ON(regno >= MAX_BPF_REG)) { 1959 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1960 /* Something bad happened, let's kill all regs except FP */ 1961 for (regno = 0; regno < BPF_REG_FP; regno++) 1962 __mark_reg_not_init(env, regs + regno); 1963 return; 1964 } 1965 __mark_reg_not_init(env, regs + regno); 1966 } 1967 1968 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1969 struct bpf_reg_state *regs, u32 regno, 1970 enum bpf_reg_type reg_type, 1971 struct btf *btf, u32 btf_id, 1972 enum bpf_type_flag flag) 1973 { 1974 if (reg_type == SCALAR_VALUE) { 1975 mark_reg_unknown(env, regs, regno); 1976 return; 1977 } 1978 mark_reg_known_zero(env, regs, regno); 1979 regs[regno].type = PTR_TO_BTF_ID | flag; 1980 regs[regno].btf = btf; 1981 regs[regno].btf_id = btf_id; 1982 } 1983 1984 #define DEF_NOT_SUBREG (0) 1985 static void init_reg_state(struct bpf_verifier_env *env, 1986 struct bpf_func_state *state) 1987 { 1988 struct bpf_reg_state *regs = state->regs; 1989 int i; 1990 1991 for (i = 0; i < MAX_BPF_REG; i++) { 1992 mark_reg_not_init(env, regs, i); 1993 regs[i].live = REG_LIVE_NONE; 1994 regs[i].parent = NULL; 1995 regs[i].subreg_def = DEF_NOT_SUBREG; 1996 } 1997 1998 /* frame pointer */ 1999 regs[BPF_REG_FP].type = PTR_TO_STACK; 2000 mark_reg_known_zero(env, regs, BPF_REG_FP); 2001 regs[BPF_REG_FP].frameno = state->frameno; 2002 } 2003 2004 #define BPF_MAIN_FUNC (-1) 2005 static void init_func_state(struct bpf_verifier_env *env, 2006 struct bpf_func_state *state, 2007 int callsite, int frameno, int subprogno) 2008 { 2009 state->callsite = callsite; 2010 state->frameno = frameno; 2011 state->subprogno = subprogno; 2012 state->callback_ret_range = tnum_range(0, 0); 2013 init_reg_state(env, state); 2014 mark_verifier_state_scratched(env); 2015 } 2016 2017 /* Similar to push_stack(), but for async callbacks */ 2018 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2019 int insn_idx, int prev_insn_idx, 2020 int subprog) 2021 { 2022 struct bpf_verifier_stack_elem *elem; 2023 struct bpf_func_state *frame; 2024 2025 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2026 if (!elem) 2027 goto err; 2028 2029 elem->insn_idx = insn_idx; 2030 elem->prev_insn_idx = prev_insn_idx; 2031 elem->next = env->head; 2032 elem->log_pos = env->log.len_used; 2033 env->head = elem; 2034 env->stack_size++; 2035 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2036 verbose(env, 2037 "The sequence of %d jumps is too complex for async cb.\n", 2038 env->stack_size); 2039 goto err; 2040 } 2041 /* Unlike push_stack() do not copy_verifier_state(). 2042 * The caller state doesn't matter. 2043 * This is async callback. It starts in a fresh stack. 2044 * Initialize it similar to do_check_common(). 2045 */ 2046 elem->st.branches = 1; 2047 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2048 if (!frame) 2049 goto err; 2050 init_func_state(env, frame, 2051 BPF_MAIN_FUNC /* callsite */, 2052 0 /* frameno within this callchain */, 2053 subprog /* subprog number within this prog */); 2054 elem->st.frame[0] = frame; 2055 return &elem->st; 2056 err: 2057 free_verifier_state(env->cur_state, true); 2058 env->cur_state = NULL; 2059 /* pop all elements and return */ 2060 while (!pop_stack(env, NULL, NULL, false)); 2061 return NULL; 2062 } 2063 2064 2065 enum reg_arg_type { 2066 SRC_OP, /* register is used as source operand */ 2067 DST_OP, /* register is used as destination operand */ 2068 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2069 }; 2070 2071 static int cmp_subprogs(const void *a, const void *b) 2072 { 2073 return ((struct bpf_subprog_info *)a)->start - 2074 ((struct bpf_subprog_info *)b)->start; 2075 } 2076 2077 static int find_subprog(struct bpf_verifier_env *env, int off) 2078 { 2079 struct bpf_subprog_info *p; 2080 2081 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2082 sizeof(env->subprog_info[0]), cmp_subprogs); 2083 if (!p) 2084 return -ENOENT; 2085 return p - env->subprog_info; 2086 2087 } 2088 2089 static int add_subprog(struct bpf_verifier_env *env, int off) 2090 { 2091 int insn_cnt = env->prog->len; 2092 int ret; 2093 2094 if (off >= insn_cnt || off < 0) { 2095 verbose(env, "call to invalid destination\n"); 2096 return -EINVAL; 2097 } 2098 ret = find_subprog(env, off); 2099 if (ret >= 0) 2100 return ret; 2101 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2102 verbose(env, "too many subprograms\n"); 2103 return -E2BIG; 2104 } 2105 /* determine subprog starts. The end is one before the next starts */ 2106 env->subprog_info[env->subprog_cnt++].start = off; 2107 sort(env->subprog_info, env->subprog_cnt, 2108 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2109 return env->subprog_cnt - 1; 2110 } 2111 2112 #define MAX_KFUNC_DESCS 256 2113 #define MAX_KFUNC_BTFS 256 2114 2115 struct bpf_kfunc_desc { 2116 struct btf_func_model func_model; 2117 u32 func_id; 2118 s32 imm; 2119 u16 offset; 2120 }; 2121 2122 struct bpf_kfunc_btf { 2123 struct btf *btf; 2124 struct module *module; 2125 u16 offset; 2126 }; 2127 2128 struct bpf_kfunc_desc_tab { 2129 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2130 u32 nr_descs; 2131 }; 2132 2133 struct bpf_kfunc_btf_tab { 2134 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2135 u32 nr_descs; 2136 }; 2137 2138 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2139 { 2140 const struct bpf_kfunc_desc *d0 = a; 2141 const struct bpf_kfunc_desc *d1 = b; 2142 2143 /* func_id is not greater than BTF_MAX_TYPE */ 2144 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2145 } 2146 2147 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2148 { 2149 const struct bpf_kfunc_btf *d0 = a; 2150 const struct bpf_kfunc_btf *d1 = b; 2151 2152 return d0->offset - d1->offset; 2153 } 2154 2155 static const struct bpf_kfunc_desc * 2156 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2157 { 2158 struct bpf_kfunc_desc desc = { 2159 .func_id = func_id, 2160 .offset = offset, 2161 }; 2162 struct bpf_kfunc_desc_tab *tab; 2163 2164 tab = prog->aux->kfunc_tab; 2165 return bsearch(&desc, tab->descs, tab->nr_descs, 2166 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2167 } 2168 2169 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2170 s16 offset) 2171 { 2172 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2173 struct bpf_kfunc_btf_tab *tab; 2174 struct bpf_kfunc_btf *b; 2175 struct module *mod; 2176 struct btf *btf; 2177 int btf_fd; 2178 2179 tab = env->prog->aux->kfunc_btf_tab; 2180 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2181 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2182 if (!b) { 2183 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2184 verbose(env, "too many different module BTFs\n"); 2185 return ERR_PTR(-E2BIG); 2186 } 2187 2188 if (bpfptr_is_null(env->fd_array)) { 2189 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2190 return ERR_PTR(-EPROTO); 2191 } 2192 2193 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2194 offset * sizeof(btf_fd), 2195 sizeof(btf_fd))) 2196 return ERR_PTR(-EFAULT); 2197 2198 btf = btf_get_by_fd(btf_fd); 2199 if (IS_ERR(btf)) { 2200 verbose(env, "invalid module BTF fd specified\n"); 2201 return btf; 2202 } 2203 2204 if (!btf_is_module(btf)) { 2205 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2206 btf_put(btf); 2207 return ERR_PTR(-EINVAL); 2208 } 2209 2210 mod = btf_try_get_module(btf); 2211 if (!mod) { 2212 btf_put(btf); 2213 return ERR_PTR(-ENXIO); 2214 } 2215 2216 b = &tab->descs[tab->nr_descs++]; 2217 b->btf = btf; 2218 b->module = mod; 2219 b->offset = offset; 2220 2221 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2222 kfunc_btf_cmp_by_off, NULL); 2223 } 2224 return b->btf; 2225 } 2226 2227 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2228 { 2229 if (!tab) 2230 return; 2231 2232 while (tab->nr_descs--) { 2233 module_put(tab->descs[tab->nr_descs].module); 2234 btf_put(tab->descs[tab->nr_descs].btf); 2235 } 2236 kfree(tab); 2237 } 2238 2239 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2240 { 2241 if (offset) { 2242 if (offset < 0) { 2243 /* In the future, this can be allowed to increase limit 2244 * of fd index into fd_array, interpreted as u16. 2245 */ 2246 verbose(env, "negative offset disallowed for kernel module function call\n"); 2247 return ERR_PTR(-EINVAL); 2248 } 2249 2250 return __find_kfunc_desc_btf(env, offset); 2251 } 2252 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2253 } 2254 2255 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2256 { 2257 const struct btf_type *func, *func_proto; 2258 struct bpf_kfunc_btf_tab *btf_tab; 2259 struct bpf_kfunc_desc_tab *tab; 2260 struct bpf_prog_aux *prog_aux; 2261 struct bpf_kfunc_desc *desc; 2262 const char *func_name; 2263 struct btf *desc_btf; 2264 unsigned long call_imm; 2265 unsigned long addr; 2266 int err; 2267 2268 prog_aux = env->prog->aux; 2269 tab = prog_aux->kfunc_tab; 2270 btf_tab = prog_aux->kfunc_btf_tab; 2271 if (!tab) { 2272 if (!btf_vmlinux) { 2273 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2274 return -ENOTSUPP; 2275 } 2276 2277 if (!env->prog->jit_requested) { 2278 verbose(env, "JIT is required for calling kernel function\n"); 2279 return -ENOTSUPP; 2280 } 2281 2282 if (!bpf_jit_supports_kfunc_call()) { 2283 verbose(env, "JIT does not support calling kernel function\n"); 2284 return -ENOTSUPP; 2285 } 2286 2287 if (!env->prog->gpl_compatible) { 2288 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2289 return -EINVAL; 2290 } 2291 2292 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2293 if (!tab) 2294 return -ENOMEM; 2295 prog_aux->kfunc_tab = tab; 2296 } 2297 2298 /* func_id == 0 is always invalid, but instead of returning an error, be 2299 * conservative and wait until the code elimination pass before returning 2300 * error, so that invalid calls that get pruned out can be in BPF programs 2301 * loaded from userspace. It is also required that offset be untouched 2302 * for such calls. 2303 */ 2304 if (!func_id && !offset) 2305 return 0; 2306 2307 if (!btf_tab && offset) { 2308 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2309 if (!btf_tab) 2310 return -ENOMEM; 2311 prog_aux->kfunc_btf_tab = btf_tab; 2312 } 2313 2314 desc_btf = find_kfunc_desc_btf(env, offset); 2315 if (IS_ERR(desc_btf)) { 2316 verbose(env, "failed to find BTF for kernel function\n"); 2317 return PTR_ERR(desc_btf); 2318 } 2319 2320 if (find_kfunc_desc(env->prog, func_id, offset)) 2321 return 0; 2322 2323 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2324 verbose(env, "too many different kernel function calls\n"); 2325 return -E2BIG; 2326 } 2327 2328 func = btf_type_by_id(desc_btf, func_id); 2329 if (!func || !btf_type_is_func(func)) { 2330 verbose(env, "kernel btf_id %u is not a function\n", 2331 func_id); 2332 return -EINVAL; 2333 } 2334 func_proto = btf_type_by_id(desc_btf, func->type); 2335 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2336 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2337 func_id); 2338 return -EINVAL; 2339 } 2340 2341 func_name = btf_name_by_offset(desc_btf, func->name_off); 2342 addr = kallsyms_lookup_name(func_name); 2343 if (!addr) { 2344 verbose(env, "cannot find address for kernel function %s\n", 2345 func_name); 2346 return -EINVAL; 2347 } 2348 2349 call_imm = BPF_CALL_IMM(addr); 2350 /* Check whether or not the relative offset overflows desc->imm */ 2351 if ((unsigned long)(s32)call_imm != call_imm) { 2352 verbose(env, "address of kernel function %s is out of range\n", 2353 func_name); 2354 return -EINVAL; 2355 } 2356 2357 if (bpf_dev_bound_kfunc_id(func_id)) { 2358 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2359 if (err) 2360 return err; 2361 } 2362 2363 desc = &tab->descs[tab->nr_descs++]; 2364 desc->func_id = func_id; 2365 desc->imm = call_imm; 2366 desc->offset = offset; 2367 err = btf_distill_func_proto(&env->log, desc_btf, 2368 func_proto, func_name, 2369 &desc->func_model); 2370 if (!err) 2371 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2372 kfunc_desc_cmp_by_id_off, NULL); 2373 return err; 2374 } 2375 2376 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 2377 { 2378 const struct bpf_kfunc_desc *d0 = a; 2379 const struct bpf_kfunc_desc *d1 = b; 2380 2381 if (d0->imm > d1->imm) 2382 return 1; 2383 else if (d0->imm < d1->imm) 2384 return -1; 2385 return 0; 2386 } 2387 2388 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 2389 { 2390 struct bpf_kfunc_desc_tab *tab; 2391 2392 tab = prog->aux->kfunc_tab; 2393 if (!tab) 2394 return; 2395 2396 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2397 kfunc_desc_cmp_by_imm, NULL); 2398 } 2399 2400 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2401 { 2402 return !!prog->aux->kfunc_tab; 2403 } 2404 2405 const struct btf_func_model * 2406 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2407 const struct bpf_insn *insn) 2408 { 2409 const struct bpf_kfunc_desc desc = { 2410 .imm = insn->imm, 2411 }; 2412 const struct bpf_kfunc_desc *res; 2413 struct bpf_kfunc_desc_tab *tab; 2414 2415 tab = prog->aux->kfunc_tab; 2416 res = bsearch(&desc, tab->descs, tab->nr_descs, 2417 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 2418 2419 return res ? &res->func_model : NULL; 2420 } 2421 2422 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2423 { 2424 struct bpf_subprog_info *subprog = env->subprog_info; 2425 struct bpf_insn *insn = env->prog->insnsi; 2426 int i, ret, insn_cnt = env->prog->len; 2427 2428 /* Add entry function. */ 2429 ret = add_subprog(env, 0); 2430 if (ret) 2431 return ret; 2432 2433 for (i = 0; i < insn_cnt; i++, insn++) { 2434 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2435 !bpf_pseudo_kfunc_call(insn)) 2436 continue; 2437 2438 if (!env->bpf_capable) { 2439 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2440 return -EPERM; 2441 } 2442 2443 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2444 ret = add_subprog(env, i + insn->imm + 1); 2445 else 2446 ret = add_kfunc_call(env, insn->imm, insn->off); 2447 2448 if (ret < 0) 2449 return ret; 2450 } 2451 2452 /* Add a fake 'exit' subprog which could simplify subprog iteration 2453 * logic. 'subprog_cnt' should not be increased. 2454 */ 2455 subprog[env->subprog_cnt].start = insn_cnt; 2456 2457 if (env->log.level & BPF_LOG_LEVEL2) 2458 for (i = 0; i < env->subprog_cnt; i++) 2459 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2460 2461 return 0; 2462 } 2463 2464 static int check_subprogs(struct bpf_verifier_env *env) 2465 { 2466 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2467 struct bpf_subprog_info *subprog = env->subprog_info; 2468 struct bpf_insn *insn = env->prog->insnsi; 2469 int insn_cnt = env->prog->len; 2470 2471 /* now check that all jumps are within the same subprog */ 2472 subprog_start = subprog[cur_subprog].start; 2473 subprog_end = subprog[cur_subprog + 1].start; 2474 for (i = 0; i < insn_cnt; i++) { 2475 u8 code = insn[i].code; 2476 2477 if (code == (BPF_JMP | BPF_CALL) && 2478 insn[i].imm == BPF_FUNC_tail_call && 2479 insn[i].src_reg != BPF_PSEUDO_CALL) 2480 subprog[cur_subprog].has_tail_call = true; 2481 if (BPF_CLASS(code) == BPF_LD && 2482 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2483 subprog[cur_subprog].has_ld_abs = true; 2484 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2485 goto next; 2486 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2487 goto next; 2488 off = i + insn[i].off + 1; 2489 if (off < subprog_start || off >= subprog_end) { 2490 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2491 return -EINVAL; 2492 } 2493 next: 2494 if (i == subprog_end - 1) { 2495 /* to avoid fall-through from one subprog into another 2496 * the last insn of the subprog should be either exit 2497 * or unconditional jump back 2498 */ 2499 if (code != (BPF_JMP | BPF_EXIT) && 2500 code != (BPF_JMP | BPF_JA)) { 2501 verbose(env, "last insn is not an exit or jmp\n"); 2502 return -EINVAL; 2503 } 2504 subprog_start = subprog_end; 2505 cur_subprog++; 2506 if (cur_subprog < env->subprog_cnt) 2507 subprog_end = subprog[cur_subprog + 1].start; 2508 } 2509 } 2510 return 0; 2511 } 2512 2513 /* Parentage chain of this register (or stack slot) should take care of all 2514 * issues like callee-saved registers, stack slot allocation time, etc. 2515 */ 2516 static int mark_reg_read(struct bpf_verifier_env *env, 2517 const struct bpf_reg_state *state, 2518 struct bpf_reg_state *parent, u8 flag) 2519 { 2520 bool writes = parent == state->parent; /* Observe write marks */ 2521 int cnt = 0; 2522 2523 while (parent) { 2524 /* if read wasn't screened by an earlier write ... */ 2525 if (writes && state->live & REG_LIVE_WRITTEN) 2526 break; 2527 if (parent->live & REG_LIVE_DONE) { 2528 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2529 reg_type_str(env, parent->type), 2530 parent->var_off.value, parent->off); 2531 return -EFAULT; 2532 } 2533 /* The first condition is more likely to be true than the 2534 * second, checked it first. 2535 */ 2536 if ((parent->live & REG_LIVE_READ) == flag || 2537 parent->live & REG_LIVE_READ64) 2538 /* The parentage chain never changes and 2539 * this parent was already marked as LIVE_READ. 2540 * There is no need to keep walking the chain again and 2541 * keep re-marking all parents as LIVE_READ. 2542 * This case happens when the same register is read 2543 * multiple times without writes into it in-between. 2544 * Also, if parent has the stronger REG_LIVE_READ64 set, 2545 * then no need to set the weak REG_LIVE_READ32. 2546 */ 2547 break; 2548 /* ... then we depend on parent's value */ 2549 parent->live |= flag; 2550 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2551 if (flag == REG_LIVE_READ64) 2552 parent->live &= ~REG_LIVE_READ32; 2553 state = parent; 2554 parent = state->parent; 2555 writes = true; 2556 cnt++; 2557 } 2558 2559 if (env->longest_mark_read_walk < cnt) 2560 env->longest_mark_read_walk = cnt; 2561 return 0; 2562 } 2563 2564 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 2565 { 2566 struct bpf_func_state *state = func(env, reg); 2567 int spi, ret; 2568 2569 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 2570 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 2571 * check_kfunc_call. 2572 */ 2573 if (reg->type == CONST_PTR_TO_DYNPTR) 2574 return 0; 2575 spi = dynptr_get_spi(env, reg); 2576 if (spi < 0) 2577 return spi; 2578 /* Caller ensures dynptr is valid and initialized, which means spi is in 2579 * bounds and spi is the first dynptr slot. Simply mark stack slot as 2580 * read. 2581 */ 2582 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 2583 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 2584 if (ret) 2585 return ret; 2586 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 2587 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 2588 } 2589 2590 /* This function is supposed to be used by the following 32-bit optimization 2591 * code only. It returns TRUE if the source or destination register operates 2592 * on 64-bit, otherwise return FALSE. 2593 */ 2594 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2595 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2596 { 2597 u8 code, class, op; 2598 2599 code = insn->code; 2600 class = BPF_CLASS(code); 2601 op = BPF_OP(code); 2602 if (class == BPF_JMP) { 2603 /* BPF_EXIT for "main" will reach here. Return TRUE 2604 * conservatively. 2605 */ 2606 if (op == BPF_EXIT) 2607 return true; 2608 if (op == BPF_CALL) { 2609 /* BPF to BPF call will reach here because of marking 2610 * caller saved clobber with DST_OP_NO_MARK for which we 2611 * don't care the register def because they are anyway 2612 * marked as NOT_INIT already. 2613 */ 2614 if (insn->src_reg == BPF_PSEUDO_CALL) 2615 return false; 2616 /* Helper call will reach here because of arg type 2617 * check, conservatively return TRUE. 2618 */ 2619 if (t == SRC_OP) 2620 return true; 2621 2622 return false; 2623 } 2624 } 2625 2626 if (class == BPF_ALU64 || class == BPF_JMP || 2627 /* BPF_END always use BPF_ALU class. */ 2628 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 2629 return true; 2630 2631 if (class == BPF_ALU || class == BPF_JMP32) 2632 return false; 2633 2634 if (class == BPF_LDX) { 2635 if (t != SRC_OP) 2636 return BPF_SIZE(code) == BPF_DW; 2637 /* LDX source must be ptr. */ 2638 return true; 2639 } 2640 2641 if (class == BPF_STX) { 2642 /* BPF_STX (including atomic variants) has multiple source 2643 * operands, one of which is a ptr. Check whether the caller is 2644 * asking about it. 2645 */ 2646 if (t == SRC_OP && reg->type != SCALAR_VALUE) 2647 return true; 2648 return BPF_SIZE(code) == BPF_DW; 2649 } 2650 2651 if (class == BPF_LD) { 2652 u8 mode = BPF_MODE(code); 2653 2654 /* LD_IMM64 */ 2655 if (mode == BPF_IMM) 2656 return true; 2657 2658 /* Both LD_IND and LD_ABS return 32-bit data. */ 2659 if (t != SRC_OP) 2660 return false; 2661 2662 /* Implicit ctx ptr. */ 2663 if (regno == BPF_REG_6) 2664 return true; 2665 2666 /* Explicit source could be any width. */ 2667 return true; 2668 } 2669 2670 if (class == BPF_ST) 2671 /* The only source register for BPF_ST is a ptr. */ 2672 return true; 2673 2674 /* Conservatively return true at default. */ 2675 return true; 2676 } 2677 2678 /* Return the regno defined by the insn, or -1. */ 2679 static int insn_def_regno(const struct bpf_insn *insn) 2680 { 2681 switch (BPF_CLASS(insn->code)) { 2682 case BPF_JMP: 2683 case BPF_JMP32: 2684 case BPF_ST: 2685 return -1; 2686 case BPF_STX: 2687 if (BPF_MODE(insn->code) == BPF_ATOMIC && 2688 (insn->imm & BPF_FETCH)) { 2689 if (insn->imm == BPF_CMPXCHG) 2690 return BPF_REG_0; 2691 else 2692 return insn->src_reg; 2693 } else { 2694 return -1; 2695 } 2696 default: 2697 return insn->dst_reg; 2698 } 2699 } 2700 2701 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 2702 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 2703 { 2704 int dst_reg = insn_def_regno(insn); 2705 2706 if (dst_reg == -1) 2707 return false; 2708 2709 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2710 } 2711 2712 static void mark_insn_zext(struct bpf_verifier_env *env, 2713 struct bpf_reg_state *reg) 2714 { 2715 s32 def_idx = reg->subreg_def; 2716 2717 if (def_idx == DEF_NOT_SUBREG) 2718 return; 2719 2720 env->insn_aux_data[def_idx - 1].zext_dst = true; 2721 /* The dst will be zero extended, so won't be sub-register anymore. */ 2722 reg->subreg_def = DEF_NOT_SUBREG; 2723 } 2724 2725 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2726 enum reg_arg_type t) 2727 { 2728 struct bpf_verifier_state *vstate = env->cur_state; 2729 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2730 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2731 struct bpf_reg_state *reg, *regs = state->regs; 2732 bool rw64; 2733 2734 if (regno >= MAX_BPF_REG) { 2735 verbose(env, "R%d is invalid\n", regno); 2736 return -EINVAL; 2737 } 2738 2739 mark_reg_scratched(env, regno); 2740 2741 reg = ®s[regno]; 2742 rw64 = is_reg64(env, insn, regno, reg, t); 2743 if (t == SRC_OP) { 2744 /* check whether register used as source operand can be read */ 2745 if (reg->type == NOT_INIT) { 2746 verbose(env, "R%d !read_ok\n", regno); 2747 return -EACCES; 2748 } 2749 /* We don't need to worry about FP liveness because it's read-only */ 2750 if (regno == BPF_REG_FP) 2751 return 0; 2752 2753 if (rw64) 2754 mark_insn_zext(env, reg); 2755 2756 return mark_reg_read(env, reg, reg->parent, 2757 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2758 } else { 2759 /* check whether register used as dest operand can be written to */ 2760 if (regno == BPF_REG_FP) { 2761 verbose(env, "frame pointer is read only\n"); 2762 return -EACCES; 2763 } 2764 reg->live |= REG_LIVE_WRITTEN; 2765 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2766 if (t == DST_OP) 2767 mark_reg_unknown(env, regs, regno); 2768 } 2769 return 0; 2770 } 2771 2772 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 2773 { 2774 env->insn_aux_data[idx].jmp_point = true; 2775 } 2776 2777 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 2778 { 2779 return env->insn_aux_data[insn_idx].jmp_point; 2780 } 2781 2782 /* for any branch, call, exit record the history of jmps in the given state */ 2783 static int push_jmp_history(struct bpf_verifier_env *env, 2784 struct bpf_verifier_state *cur) 2785 { 2786 u32 cnt = cur->jmp_history_cnt; 2787 struct bpf_idx_pair *p; 2788 size_t alloc_size; 2789 2790 if (!is_jmp_point(env, env->insn_idx)) 2791 return 0; 2792 2793 cnt++; 2794 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 2795 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 2796 if (!p) 2797 return -ENOMEM; 2798 p[cnt - 1].idx = env->insn_idx; 2799 p[cnt - 1].prev_idx = env->prev_insn_idx; 2800 cur->jmp_history = p; 2801 cur->jmp_history_cnt = cnt; 2802 return 0; 2803 } 2804 2805 /* Backtrack one insn at a time. If idx is not at the top of recorded 2806 * history then previous instruction came from straight line execution. 2807 */ 2808 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2809 u32 *history) 2810 { 2811 u32 cnt = *history; 2812 2813 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2814 i = st->jmp_history[cnt - 1].prev_idx; 2815 (*history)--; 2816 } else { 2817 i--; 2818 } 2819 return i; 2820 } 2821 2822 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2823 { 2824 const struct btf_type *func; 2825 struct btf *desc_btf; 2826 2827 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2828 return NULL; 2829 2830 desc_btf = find_kfunc_desc_btf(data, insn->off); 2831 if (IS_ERR(desc_btf)) 2832 return "<error>"; 2833 2834 func = btf_type_by_id(desc_btf, insn->imm); 2835 return btf_name_by_offset(desc_btf, func->name_off); 2836 } 2837 2838 /* For given verifier state backtrack_insn() is called from the last insn to 2839 * the first insn. Its purpose is to compute a bitmask of registers and 2840 * stack slots that needs precision in the parent verifier state. 2841 */ 2842 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2843 u32 *reg_mask, u64 *stack_mask) 2844 { 2845 const struct bpf_insn_cbs cbs = { 2846 .cb_call = disasm_kfunc_name, 2847 .cb_print = verbose, 2848 .private_data = env, 2849 }; 2850 struct bpf_insn *insn = env->prog->insnsi + idx; 2851 u8 class = BPF_CLASS(insn->code); 2852 u8 opcode = BPF_OP(insn->code); 2853 u8 mode = BPF_MODE(insn->code); 2854 u32 dreg = 1u << insn->dst_reg; 2855 u32 sreg = 1u << insn->src_reg; 2856 u32 spi; 2857 2858 if (insn->code == 0) 2859 return 0; 2860 if (env->log.level & BPF_LOG_LEVEL2) { 2861 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2862 verbose(env, "%d: ", idx); 2863 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2864 } 2865 2866 if (class == BPF_ALU || class == BPF_ALU64) { 2867 if (!(*reg_mask & dreg)) 2868 return 0; 2869 if (opcode == BPF_MOV) { 2870 if (BPF_SRC(insn->code) == BPF_X) { 2871 /* dreg = sreg 2872 * dreg needs precision after this insn 2873 * sreg needs precision before this insn 2874 */ 2875 *reg_mask &= ~dreg; 2876 *reg_mask |= sreg; 2877 } else { 2878 /* dreg = K 2879 * dreg needs precision after this insn. 2880 * Corresponding register is already marked 2881 * as precise=true in this verifier state. 2882 * No further markings in parent are necessary 2883 */ 2884 *reg_mask &= ~dreg; 2885 } 2886 } else { 2887 if (BPF_SRC(insn->code) == BPF_X) { 2888 /* dreg += sreg 2889 * both dreg and sreg need precision 2890 * before this insn 2891 */ 2892 *reg_mask |= sreg; 2893 } /* else dreg += K 2894 * dreg still needs precision before this insn 2895 */ 2896 } 2897 } else if (class == BPF_LDX) { 2898 if (!(*reg_mask & dreg)) 2899 return 0; 2900 *reg_mask &= ~dreg; 2901 2902 /* scalars can only be spilled into stack w/o losing precision. 2903 * Load from any other memory can be zero extended. 2904 * The desire to keep that precision is already indicated 2905 * by 'precise' mark in corresponding register of this state. 2906 * No further tracking necessary. 2907 */ 2908 if (insn->src_reg != BPF_REG_FP) 2909 return 0; 2910 2911 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2912 * that [fp - off] slot contains scalar that needs to be 2913 * tracked with precision 2914 */ 2915 spi = (-insn->off - 1) / BPF_REG_SIZE; 2916 if (spi >= 64) { 2917 verbose(env, "BUG spi %d\n", spi); 2918 WARN_ONCE(1, "verifier backtracking bug"); 2919 return -EFAULT; 2920 } 2921 *stack_mask |= 1ull << spi; 2922 } else if (class == BPF_STX || class == BPF_ST) { 2923 if (*reg_mask & dreg) 2924 /* stx & st shouldn't be using _scalar_ dst_reg 2925 * to access memory. It means backtracking 2926 * encountered a case of pointer subtraction. 2927 */ 2928 return -ENOTSUPP; 2929 /* scalars can only be spilled into stack */ 2930 if (insn->dst_reg != BPF_REG_FP) 2931 return 0; 2932 spi = (-insn->off - 1) / BPF_REG_SIZE; 2933 if (spi >= 64) { 2934 verbose(env, "BUG spi %d\n", spi); 2935 WARN_ONCE(1, "verifier backtracking bug"); 2936 return -EFAULT; 2937 } 2938 if (!(*stack_mask & (1ull << spi))) 2939 return 0; 2940 *stack_mask &= ~(1ull << spi); 2941 if (class == BPF_STX) 2942 *reg_mask |= sreg; 2943 } else if (class == BPF_JMP || class == BPF_JMP32) { 2944 if (opcode == BPF_CALL) { 2945 if (insn->src_reg == BPF_PSEUDO_CALL) 2946 return -ENOTSUPP; 2947 /* BPF helpers that invoke callback subprogs are 2948 * equivalent to BPF_PSEUDO_CALL above 2949 */ 2950 if (insn->src_reg == 0 && is_callback_calling_function(insn->imm)) 2951 return -ENOTSUPP; 2952 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 2953 * catch this error later. Make backtracking conservative 2954 * with ENOTSUPP. 2955 */ 2956 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 2957 return -ENOTSUPP; 2958 /* regular helper call sets R0 */ 2959 *reg_mask &= ~1; 2960 if (*reg_mask & 0x3f) { 2961 /* if backtracing was looking for registers R1-R5 2962 * they should have been found already. 2963 */ 2964 verbose(env, "BUG regs %x\n", *reg_mask); 2965 WARN_ONCE(1, "verifier backtracking bug"); 2966 return -EFAULT; 2967 } 2968 } else if (opcode == BPF_EXIT) { 2969 return -ENOTSUPP; 2970 } 2971 } else if (class == BPF_LD) { 2972 if (!(*reg_mask & dreg)) 2973 return 0; 2974 *reg_mask &= ~dreg; 2975 /* It's ld_imm64 or ld_abs or ld_ind. 2976 * For ld_imm64 no further tracking of precision 2977 * into parent is necessary 2978 */ 2979 if (mode == BPF_IND || mode == BPF_ABS) 2980 /* to be analyzed */ 2981 return -ENOTSUPP; 2982 } 2983 return 0; 2984 } 2985 2986 /* the scalar precision tracking algorithm: 2987 * . at the start all registers have precise=false. 2988 * . scalar ranges are tracked as normal through alu and jmp insns. 2989 * . once precise value of the scalar register is used in: 2990 * . ptr + scalar alu 2991 * . if (scalar cond K|scalar) 2992 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2993 * backtrack through the verifier states and mark all registers and 2994 * stack slots with spilled constants that these scalar regisers 2995 * should be precise. 2996 * . during state pruning two registers (or spilled stack slots) 2997 * are equivalent if both are not precise. 2998 * 2999 * Note the verifier cannot simply walk register parentage chain, 3000 * since many different registers and stack slots could have been 3001 * used to compute single precise scalar. 3002 * 3003 * The approach of starting with precise=true for all registers and then 3004 * backtrack to mark a register as not precise when the verifier detects 3005 * that program doesn't care about specific value (e.g., when helper 3006 * takes register as ARG_ANYTHING parameter) is not safe. 3007 * 3008 * It's ok to walk single parentage chain of the verifier states. 3009 * It's possible that this backtracking will go all the way till 1st insn. 3010 * All other branches will be explored for needing precision later. 3011 * 3012 * The backtracking needs to deal with cases like: 3013 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 3014 * r9 -= r8 3015 * r5 = r9 3016 * if r5 > 0x79f goto pc+7 3017 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 3018 * r5 += 1 3019 * ... 3020 * call bpf_perf_event_output#25 3021 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 3022 * 3023 * and this case: 3024 * r6 = 1 3025 * call foo // uses callee's r6 inside to compute r0 3026 * r0 += r6 3027 * if r0 == 0 goto 3028 * 3029 * to track above reg_mask/stack_mask needs to be independent for each frame. 3030 * 3031 * Also if parent's curframe > frame where backtracking started, 3032 * the verifier need to mark registers in both frames, otherwise callees 3033 * may incorrectly prune callers. This is similar to 3034 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 3035 * 3036 * For now backtracking falls back into conservative marking. 3037 */ 3038 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 3039 struct bpf_verifier_state *st) 3040 { 3041 struct bpf_func_state *func; 3042 struct bpf_reg_state *reg; 3043 int i, j; 3044 3045 /* big hammer: mark all scalars precise in this path. 3046 * pop_stack may still get !precise scalars. 3047 * We also skip current state and go straight to first parent state, 3048 * because precision markings in current non-checkpointed state are 3049 * not needed. See why in the comment in __mark_chain_precision below. 3050 */ 3051 for (st = st->parent; st; st = st->parent) { 3052 for (i = 0; i <= st->curframe; i++) { 3053 func = st->frame[i]; 3054 for (j = 0; j < BPF_REG_FP; j++) { 3055 reg = &func->regs[j]; 3056 if (reg->type != SCALAR_VALUE) 3057 continue; 3058 reg->precise = true; 3059 } 3060 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3061 if (!is_spilled_reg(&func->stack[j])) 3062 continue; 3063 reg = &func->stack[j].spilled_ptr; 3064 if (reg->type != SCALAR_VALUE) 3065 continue; 3066 reg->precise = true; 3067 } 3068 } 3069 } 3070 } 3071 3072 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3073 { 3074 struct bpf_func_state *func; 3075 struct bpf_reg_state *reg; 3076 int i, j; 3077 3078 for (i = 0; i <= st->curframe; i++) { 3079 func = st->frame[i]; 3080 for (j = 0; j < BPF_REG_FP; j++) { 3081 reg = &func->regs[j]; 3082 if (reg->type != SCALAR_VALUE) 3083 continue; 3084 reg->precise = false; 3085 } 3086 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3087 if (!is_spilled_reg(&func->stack[j])) 3088 continue; 3089 reg = &func->stack[j].spilled_ptr; 3090 if (reg->type != SCALAR_VALUE) 3091 continue; 3092 reg->precise = false; 3093 } 3094 } 3095 } 3096 3097 /* 3098 * __mark_chain_precision() backtracks BPF program instruction sequence and 3099 * chain of verifier states making sure that register *regno* (if regno >= 0) 3100 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 3101 * SCALARS, as well as any other registers and slots that contribute to 3102 * a tracked state of given registers/stack slots, depending on specific BPF 3103 * assembly instructions (see backtrack_insns() for exact instruction handling 3104 * logic). This backtracking relies on recorded jmp_history and is able to 3105 * traverse entire chain of parent states. This process ends only when all the 3106 * necessary registers/slots and their transitive dependencies are marked as 3107 * precise. 3108 * 3109 * One important and subtle aspect is that precise marks *do not matter* in 3110 * the currently verified state (current state). It is important to understand 3111 * why this is the case. 3112 * 3113 * First, note that current state is the state that is not yet "checkpointed", 3114 * i.e., it is not yet put into env->explored_states, and it has no children 3115 * states as well. It's ephemeral, and can end up either a) being discarded if 3116 * compatible explored state is found at some point or BPF_EXIT instruction is 3117 * reached or b) checkpointed and put into env->explored_states, branching out 3118 * into one or more children states. 3119 * 3120 * In the former case, precise markings in current state are completely 3121 * ignored by state comparison code (see regsafe() for details). Only 3122 * checkpointed ("old") state precise markings are important, and if old 3123 * state's register/slot is precise, regsafe() assumes current state's 3124 * register/slot as precise and checks value ranges exactly and precisely. If 3125 * states turn out to be compatible, current state's necessary precise 3126 * markings and any required parent states' precise markings are enforced 3127 * after the fact with propagate_precision() logic, after the fact. But it's 3128 * important to realize that in this case, even after marking current state 3129 * registers/slots as precise, we immediately discard current state. So what 3130 * actually matters is any of the precise markings propagated into current 3131 * state's parent states, which are always checkpointed (due to b) case above). 3132 * As such, for scenario a) it doesn't matter if current state has precise 3133 * markings set or not. 3134 * 3135 * Now, for the scenario b), checkpointing and forking into child(ren) 3136 * state(s). Note that before current state gets to checkpointing step, any 3137 * processed instruction always assumes precise SCALAR register/slot 3138 * knowledge: if precise value or range is useful to prune jump branch, BPF 3139 * verifier takes this opportunity enthusiastically. Similarly, when 3140 * register's value is used to calculate offset or memory address, exact 3141 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 3142 * what we mentioned above about state comparison ignoring precise markings 3143 * during state comparison, BPF verifier ignores and also assumes precise 3144 * markings *at will* during instruction verification process. But as verifier 3145 * assumes precision, it also propagates any precision dependencies across 3146 * parent states, which are not yet finalized, so can be further restricted 3147 * based on new knowledge gained from restrictions enforced by their children 3148 * states. This is so that once those parent states are finalized, i.e., when 3149 * they have no more active children state, state comparison logic in 3150 * is_state_visited() would enforce strict and precise SCALAR ranges, if 3151 * required for correctness. 3152 * 3153 * To build a bit more intuition, note also that once a state is checkpointed, 3154 * the path we took to get to that state is not important. This is crucial 3155 * property for state pruning. When state is checkpointed and finalized at 3156 * some instruction index, it can be correctly and safely used to "short 3157 * circuit" any *compatible* state that reaches exactly the same instruction 3158 * index. I.e., if we jumped to that instruction from a completely different 3159 * code path than original finalized state was derived from, it doesn't 3160 * matter, current state can be discarded because from that instruction 3161 * forward having a compatible state will ensure we will safely reach the 3162 * exit. States describe preconditions for further exploration, but completely 3163 * forget the history of how we got here. 3164 * 3165 * This also means that even if we needed precise SCALAR range to get to 3166 * finalized state, but from that point forward *that same* SCALAR register is 3167 * never used in a precise context (i.e., it's precise value is not needed for 3168 * correctness), it's correct and safe to mark such register as "imprecise" 3169 * (i.e., precise marking set to false). This is what we rely on when we do 3170 * not set precise marking in current state. If no child state requires 3171 * precision for any given SCALAR register, it's safe to dictate that it can 3172 * be imprecise. If any child state does require this register to be precise, 3173 * we'll mark it precise later retroactively during precise markings 3174 * propagation from child state to parent states. 3175 * 3176 * Skipping precise marking setting in current state is a mild version of 3177 * relying on the above observation. But we can utilize this property even 3178 * more aggressively by proactively forgetting any precise marking in the 3179 * current state (which we inherited from the parent state), right before we 3180 * checkpoint it and branch off into new child state. This is done by 3181 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 3182 * finalized states which help in short circuiting more future states. 3183 */ 3184 static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno, 3185 int spi) 3186 { 3187 struct bpf_verifier_state *st = env->cur_state; 3188 int first_idx = st->first_insn_idx; 3189 int last_idx = env->insn_idx; 3190 struct bpf_func_state *func; 3191 struct bpf_reg_state *reg; 3192 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 3193 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 3194 bool skip_first = true; 3195 bool new_marks = false; 3196 int i, err; 3197 3198 if (!env->bpf_capable) 3199 return 0; 3200 3201 /* Do sanity checks against current state of register and/or stack 3202 * slot, but don't set precise flag in current state, as precision 3203 * tracking in the current state is unnecessary. 3204 */ 3205 func = st->frame[frame]; 3206 if (regno >= 0) { 3207 reg = &func->regs[regno]; 3208 if (reg->type != SCALAR_VALUE) { 3209 WARN_ONCE(1, "backtracing misuse"); 3210 return -EFAULT; 3211 } 3212 new_marks = true; 3213 } 3214 3215 while (spi >= 0) { 3216 if (!is_spilled_reg(&func->stack[spi])) { 3217 stack_mask = 0; 3218 break; 3219 } 3220 reg = &func->stack[spi].spilled_ptr; 3221 if (reg->type != SCALAR_VALUE) { 3222 stack_mask = 0; 3223 break; 3224 } 3225 new_marks = true; 3226 break; 3227 } 3228 3229 if (!new_marks) 3230 return 0; 3231 if (!reg_mask && !stack_mask) 3232 return 0; 3233 3234 for (;;) { 3235 DECLARE_BITMAP(mask, 64); 3236 u32 history = st->jmp_history_cnt; 3237 3238 if (env->log.level & BPF_LOG_LEVEL2) 3239 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 3240 3241 if (last_idx < 0) { 3242 /* we are at the entry into subprog, which 3243 * is expected for global funcs, but only if 3244 * requested precise registers are R1-R5 3245 * (which are global func's input arguments) 3246 */ 3247 if (st->curframe == 0 && 3248 st->frame[0]->subprogno > 0 && 3249 st->frame[0]->callsite == BPF_MAIN_FUNC && 3250 stack_mask == 0 && (reg_mask & ~0x3e) == 0) { 3251 bitmap_from_u64(mask, reg_mask); 3252 for_each_set_bit(i, mask, 32) { 3253 reg = &st->frame[0]->regs[i]; 3254 if (reg->type != SCALAR_VALUE) { 3255 reg_mask &= ~(1u << i); 3256 continue; 3257 } 3258 reg->precise = true; 3259 } 3260 return 0; 3261 } 3262 3263 verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n", 3264 st->frame[0]->subprogno, reg_mask, stack_mask); 3265 WARN_ONCE(1, "verifier backtracking bug"); 3266 return -EFAULT; 3267 } 3268 3269 for (i = last_idx;;) { 3270 if (skip_first) { 3271 err = 0; 3272 skip_first = false; 3273 } else { 3274 err = backtrack_insn(env, i, ®_mask, &stack_mask); 3275 } 3276 if (err == -ENOTSUPP) { 3277 mark_all_scalars_precise(env, st); 3278 return 0; 3279 } else if (err) { 3280 return err; 3281 } 3282 if (!reg_mask && !stack_mask) 3283 /* Found assignment(s) into tracked register in this state. 3284 * Since this state is already marked, just return. 3285 * Nothing to be tracked further in the parent state. 3286 */ 3287 return 0; 3288 if (i == first_idx) 3289 break; 3290 i = get_prev_insn_idx(st, i, &history); 3291 if (i >= env->prog->len) { 3292 /* This can happen if backtracking reached insn 0 3293 * and there are still reg_mask or stack_mask 3294 * to backtrack. 3295 * It means the backtracking missed the spot where 3296 * particular register was initialized with a constant. 3297 */ 3298 verbose(env, "BUG backtracking idx %d\n", i); 3299 WARN_ONCE(1, "verifier backtracking bug"); 3300 return -EFAULT; 3301 } 3302 } 3303 st = st->parent; 3304 if (!st) 3305 break; 3306 3307 new_marks = false; 3308 func = st->frame[frame]; 3309 bitmap_from_u64(mask, reg_mask); 3310 for_each_set_bit(i, mask, 32) { 3311 reg = &func->regs[i]; 3312 if (reg->type != SCALAR_VALUE) { 3313 reg_mask &= ~(1u << i); 3314 continue; 3315 } 3316 if (!reg->precise) 3317 new_marks = true; 3318 reg->precise = true; 3319 } 3320 3321 bitmap_from_u64(mask, stack_mask); 3322 for_each_set_bit(i, mask, 64) { 3323 if (i >= func->allocated_stack / BPF_REG_SIZE) { 3324 /* the sequence of instructions: 3325 * 2: (bf) r3 = r10 3326 * 3: (7b) *(u64 *)(r3 -8) = r0 3327 * 4: (79) r4 = *(u64 *)(r10 -8) 3328 * doesn't contain jmps. It's backtracked 3329 * as a single block. 3330 * During backtracking insn 3 is not recognized as 3331 * stack access, so at the end of backtracking 3332 * stack slot fp-8 is still marked in stack_mask. 3333 * However the parent state may not have accessed 3334 * fp-8 and it's "unallocated" stack space. 3335 * In such case fallback to conservative. 3336 */ 3337 mark_all_scalars_precise(env, st); 3338 return 0; 3339 } 3340 3341 if (!is_spilled_reg(&func->stack[i])) { 3342 stack_mask &= ~(1ull << i); 3343 continue; 3344 } 3345 reg = &func->stack[i].spilled_ptr; 3346 if (reg->type != SCALAR_VALUE) { 3347 stack_mask &= ~(1ull << i); 3348 continue; 3349 } 3350 if (!reg->precise) 3351 new_marks = true; 3352 reg->precise = true; 3353 } 3354 if (env->log.level & BPF_LOG_LEVEL2) { 3355 verbose(env, "parent %s regs=%x stack=%llx marks:", 3356 new_marks ? "didn't have" : "already had", 3357 reg_mask, stack_mask); 3358 print_verifier_state(env, func, true); 3359 } 3360 3361 if (!reg_mask && !stack_mask) 3362 break; 3363 if (!new_marks) 3364 break; 3365 3366 last_idx = st->last_insn_idx; 3367 first_idx = st->first_insn_idx; 3368 } 3369 return 0; 3370 } 3371 3372 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 3373 { 3374 return __mark_chain_precision(env, env->cur_state->curframe, regno, -1); 3375 } 3376 3377 static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno) 3378 { 3379 return __mark_chain_precision(env, frame, regno, -1); 3380 } 3381 3382 static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi) 3383 { 3384 return __mark_chain_precision(env, frame, -1, spi); 3385 } 3386 3387 static bool is_spillable_regtype(enum bpf_reg_type type) 3388 { 3389 switch (base_type(type)) { 3390 case PTR_TO_MAP_VALUE: 3391 case PTR_TO_STACK: 3392 case PTR_TO_CTX: 3393 case PTR_TO_PACKET: 3394 case PTR_TO_PACKET_META: 3395 case PTR_TO_PACKET_END: 3396 case PTR_TO_FLOW_KEYS: 3397 case CONST_PTR_TO_MAP: 3398 case PTR_TO_SOCKET: 3399 case PTR_TO_SOCK_COMMON: 3400 case PTR_TO_TCP_SOCK: 3401 case PTR_TO_XDP_SOCK: 3402 case PTR_TO_BTF_ID: 3403 case PTR_TO_BUF: 3404 case PTR_TO_MEM: 3405 case PTR_TO_FUNC: 3406 case PTR_TO_MAP_KEY: 3407 return true; 3408 default: 3409 return false; 3410 } 3411 } 3412 3413 /* Does this register contain a constant zero? */ 3414 static bool register_is_null(struct bpf_reg_state *reg) 3415 { 3416 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 3417 } 3418 3419 static bool register_is_const(struct bpf_reg_state *reg) 3420 { 3421 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 3422 } 3423 3424 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 3425 { 3426 return tnum_is_unknown(reg->var_off) && 3427 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 3428 reg->umin_value == 0 && reg->umax_value == U64_MAX && 3429 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 3430 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 3431 } 3432 3433 static bool register_is_bounded(struct bpf_reg_state *reg) 3434 { 3435 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 3436 } 3437 3438 static bool __is_pointer_value(bool allow_ptr_leaks, 3439 const struct bpf_reg_state *reg) 3440 { 3441 if (allow_ptr_leaks) 3442 return false; 3443 3444 return reg->type != SCALAR_VALUE; 3445 } 3446 3447 /* Copy src state preserving dst->parent and dst->live fields */ 3448 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 3449 { 3450 struct bpf_reg_state *parent = dst->parent; 3451 enum bpf_reg_liveness live = dst->live; 3452 3453 *dst = *src; 3454 dst->parent = parent; 3455 dst->live = live; 3456 } 3457 3458 static void save_register_state(struct bpf_func_state *state, 3459 int spi, struct bpf_reg_state *reg, 3460 int size) 3461 { 3462 int i; 3463 3464 copy_register_state(&state->stack[spi].spilled_ptr, reg); 3465 if (size == BPF_REG_SIZE) 3466 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3467 3468 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 3469 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 3470 3471 /* size < 8 bytes spill */ 3472 for (; i; i--) 3473 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 3474 } 3475 3476 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 3477 * stack boundary and alignment are checked in check_mem_access() 3478 */ 3479 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 3480 /* stack frame we're writing to */ 3481 struct bpf_func_state *state, 3482 int off, int size, int value_regno, 3483 int insn_idx) 3484 { 3485 struct bpf_func_state *cur; /* state of the current function */ 3486 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 3487 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 3488 struct bpf_reg_state *reg = NULL; 3489 3490 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 3491 if (err) 3492 return err; 3493 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 3494 * so it's aligned access and [off, off + size) are within stack limits 3495 */ 3496 if (!env->allow_ptr_leaks && 3497 state->stack[spi].slot_type[0] == STACK_SPILL && 3498 size != BPF_REG_SIZE) { 3499 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 3500 return -EACCES; 3501 } 3502 3503 cur = env->cur_state->frame[env->cur_state->curframe]; 3504 if (value_regno >= 0) 3505 reg = &cur->regs[value_regno]; 3506 if (!env->bypass_spec_v4) { 3507 bool sanitize = reg && is_spillable_regtype(reg->type); 3508 3509 for (i = 0; i < size; i++) { 3510 u8 type = state->stack[spi].slot_type[i]; 3511 3512 if (type != STACK_MISC && type != STACK_ZERO) { 3513 sanitize = true; 3514 break; 3515 } 3516 } 3517 3518 if (sanitize) 3519 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 3520 } 3521 3522 err = destroy_if_dynptr_stack_slot(env, state, spi); 3523 if (err) 3524 return err; 3525 3526 mark_stack_slot_scratched(env, spi); 3527 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 3528 !register_is_null(reg) && env->bpf_capable) { 3529 if (dst_reg != BPF_REG_FP) { 3530 /* The backtracking logic can only recognize explicit 3531 * stack slot address like [fp - 8]. Other spill of 3532 * scalar via different register has to be conservative. 3533 * Backtrack from here and mark all registers as precise 3534 * that contributed into 'reg' being a constant. 3535 */ 3536 err = mark_chain_precision(env, value_regno); 3537 if (err) 3538 return err; 3539 } 3540 save_register_state(state, spi, reg, size); 3541 } else if (reg && is_spillable_regtype(reg->type)) { 3542 /* register containing pointer is being spilled into stack */ 3543 if (size != BPF_REG_SIZE) { 3544 verbose_linfo(env, insn_idx, "; "); 3545 verbose(env, "invalid size of register spill\n"); 3546 return -EACCES; 3547 } 3548 if (state != cur && reg->type == PTR_TO_STACK) { 3549 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 3550 return -EINVAL; 3551 } 3552 save_register_state(state, spi, reg, size); 3553 } else { 3554 u8 type = STACK_MISC; 3555 3556 /* regular write of data into stack destroys any spilled ptr */ 3557 state->stack[spi].spilled_ptr.type = NOT_INIT; 3558 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 3559 if (is_spilled_reg(&state->stack[spi])) 3560 for (i = 0; i < BPF_REG_SIZE; i++) 3561 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 3562 3563 /* only mark the slot as written if all 8 bytes were written 3564 * otherwise read propagation may incorrectly stop too soon 3565 * when stack slots are partially written. 3566 * This heuristic means that read propagation will be 3567 * conservative, since it will add reg_live_read marks 3568 * to stack slots all the way to first state when programs 3569 * writes+reads less than 8 bytes 3570 */ 3571 if (size == BPF_REG_SIZE) 3572 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3573 3574 /* when we zero initialize stack slots mark them as such */ 3575 if (reg && register_is_null(reg)) { 3576 /* backtracking doesn't work for STACK_ZERO yet. */ 3577 err = mark_chain_precision(env, value_regno); 3578 if (err) 3579 return err; 3580 type = STACK_ZERO; 3581 } 3582 3583 /* Mark slots affected by this stack write. */ 3584 for (i = 0; i < size; i++) 3585 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 3586 type; 3587 } 3588 return 0; 3589 } 3590 3591 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 3592 * known to contain a variable offset. 3593 * This function checks whether the write is permitted and conservatively 3594 * tracks the effects of the write, considering that each stack slot in the 3595 * dynamic range is potentially written to. 3596 * 3597 * 'off' includes 'regno->off'. 3598 * 'value_regno' can be -1, meaning that an unknown value is being written to 3599 * the stack. 3600 * 3601 * Spilled pointers in range are not marked as written because we don't know 3602 * what's going to be actually written. This means that read propagation for 3603 * future reads cannot be terminated by this write. 3604 * 3605 * For privileged programs, uninitialized stack slots are considered 3606 * initialized by this write (even though we don't know exactly what offsets 3607 * are going to be written to). The idea is that we don't want the verifier to 3608 * reject future reads that access slots written to through variable offsets. 3609 */ 3610 static int check_stack_write_var_off(struct bpf_verifier_env *env, 3611 /* func where register points to */ 3612 struct bpf_func_state *state, 3613 int ptr_regno, int off, int size, 3614 int value_regno, int insn_idx) 3615 { 3616 struct bpf_func_state *cur; /* state of the current function */ 3617 int min_off, max_off; 3618 int i, err; 3619 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 3620 bool writing_zero = false; 3621 /* set if the fact that we're writing a zero is used to let any 3622 * stack slots remain STACK_ZERO 3623 */ 3624 bool zero_used = false; 3625 3626 cur = env->cur_state->frame[env->cur_state->curframe]; 3627 ptr_reg = &cur->regs[ptr_regno]; 3628 min_off = ptr_reg->smin_value + off; 3629 max_off = ptr_reg->smax_value + off + size; 3630 if (value_regno >= 0) 3631 value_reg = &cur->regs[value_regno]; 3632 if (value_reg && register_is_null(value_reg)) 3633 writing_zero = true; 3634 3635 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 3636 if (err) 3637 return err; 3638 3639 for (i = min_off; i < max_off; i++) { 3640 int spi; 3641 3642 spi = __get_spi(i); 3643 err = destroy_if_dynptr_stack_slot(env, state, spi); 3644 if (err) 3645 return err; 3646 } 3647 3648 /* Variable offset writes destroy any spilled pointers in range. */ 3649 for (i = min_off; i < max_off; i++) { 3650 u8 new_type, *stype; 3651 int slot, spi; 3652 3653 slot = -i - 1; 3654 spi = slot / BPF_REG_SIZE; 3655 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3656 mark_stack_slot_scratched(env, spi); 3657 3658 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 3659 /* Reject the write if range we may write to has not 3660 * been initialized beforehand. If we didn't reject 3661 * here, the ptr status would be erased below (even 3662 * though not all slots are actually overwritten), 3663 * possibly opening the door to leaks. 3664 * 3665 * We do however catch STACK_INVALID case below, and 3666 * only allow reading possibly uninitialized memory 3667 * later for CAP_PERFMON, as the write may not happen to 3668 * that slot. 3669 */ 3670 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 3671 insn_idx, i); 3672 return -EINVAL; 3673 } 3674 3675 /* Erase all spilled pointers. */ 3676 state->stack[spi].spilled_ptr.type = NOT_INIT; 3677 3678 /* Update the slot type. */ 3679 new_type = STACK_MISC; 3680 if (writing_zero && *stype == STACK_ZERO) { 3681 new_type = STACK_ZERO; 3682 zero_used = true; 3683 } 3684 /* If the slot is STACK_INVALID, we check whether it's OK to 3685 * pretend that it will be initialized by this write. The slot 3686 * might not actually be written to, and so if we mark it as 3687 * initialized future reads might leak uninitialized memory. 3688 * For privileged programs, we will accept such reads to slots 3689 * that may or may not be written because, if we're reject 3690 * them, the error would be too confusing. 3691 */ 3692 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 3693 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 3694 insn_idx, i); 3695 return -EINVAL; 3696 } 3697 *stype = new_type; 3698 } 3699 if (zero_used) { 3700 /* backtracking doesn't work for STACK_ZERO yet. */ 3701 err = mark_chain_precision(env, value_regno); 3702 if (err) 3703 return err; 3704 } 3705 return 0; 3706 } 3707 3708 /* When register 'dst_regno' is assigned some values from stack[min_off, 3709 * max_off), we set the register's type according to the types of the 3710 * respective stack slots. If all the stack values are known to be zeros, then 3711 * so is the destination reg. Otherwise, the register is considered to be 3712 * SCALAR. This function does not deal with register filling; the caller must 3713 * ensure that all spilled registers in the stack range have been marked as 3714 * read. 3715 */ 3716 static void mark_reg_stack_read(struct bpf_verifier_env *env, 3717 /* func where src register points to */ 3718 struct bpf_func_state *ptr_state, 3719 int min_off, int max_off, int dst_regno) 3720 { 3721 struct bpf_verifier_state *vstate = env->cur_state; 3722 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3723 int i, slot, spi; 3724 u8 *stype; 3725 int zeros = 0; 3726 3727 for (i = min_off; i < max_off; i++) { 3728 slot = -i - 1; 3729 spi = slot / BPF_REG_SIZE; 3730 stype = ptr_state->stack[spi].slot_type; 3731 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 3732 break; 3733 zeros++; 3734 } 3735 if (zeros == max_off - min_off) { 3736 /* any access_size read into register is zero extended, 3737 * so the whole register == const_zero 3738 */ 3739 __mark_reg_const_zero(&state->regs[dst_regno]); 3740 /* backtracking doesn't support STACK_ZERO yet, 3741 * so mark it precise here, so that later 3742 * backtracking can stop here. 3743 * Backtracking may not need this if this register 3744 * doesn't participate in pointer adjustment. 3745 * Forward propagation of precise flag is not 3746 * necessary either. This mark is only to stop 3747 * backtracking. Any register that contributed 3748 * to const 0 was marked precise before spill. 3749 */ 3750 state->regs[dst_regno].precise = true; 3751 } else { 3752 /* have read misc data from the stack */ 3753 mark_reg_unknown(env, state->regs, dst_regno); 3754 } 3755 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3756 } 3757 3758 /* Read the stack at 'off' and put the results into the register indicated by 3759 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 3760 * spilled reg. 3761 * 3762 * 'dst_regno' can be -1, meaning that the read value is not going to a 3763 * register. 3764 * 3765 * The access is assumed to be within the current stack bounds. 3766 */ 3767 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 3768 /* func where src register points to */ 3769 struct bpf_func_state *reg_state, 3770 int off, int size, int dst_regno) 3771 { 3772 struct bpf_verifier_state *vstate = env->cur_state; 3773 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3774 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 3775 struct bpf_reg_state *reg; 3776 u8 *stype, type; 3777 3778 stype = reg_state->stack[spi].slot_type; 3779 reg = ®_state->stack[spi].spilled_ptr; 3780 3781 if (is_spilled_reg(®_state->stack[spi])) { 3782 u8 spill_size = 1; 3783 3784 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 3785 spill_size++; 3786 3787 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 3788 if (reg->type != SCALAR_VALUE) { 3789 verbose_linfo(env, env->insn_idx, "; "); 3790 verbose(env, "invalid size of register fill\n"); 3791 return -EACCES; 3792 } 3793 3794 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3795 if (dst_regno < 0) 3796 return 0; 3797 3798 if (!(off % BPF_REG_SIZE) && size == spill_size) { 3799 /* The earlier check_reg_arg() has decided the 3800 * subreg_def for this insn. Save it first. 3801 */ 3802 s32 subreg_def = state->regs[dst_regno].subreg_def; 3803 3804 copy_register_state(&state->regs[dst_regno], reg); 3805 state->regs[dst_regno].subreg_def = subreg_def; 3806 } else { 3807 for (i = 0; i < size; i++) { 3808 type = stype[(slot - i) % BPF_REG_SIZE]; 3809 if (type == STACK_SPILL) 3810 continue; 3811 if (type == STACK_MISC) 3812 continue; 3813 verbose(env, "invalid read from stack off %d+%d size %d\n", 3814 off, i, size); 3815 return -EACCES; 3816 } 3817 mark_reg_unknown(env, state->regs, dst_regno); 3818 } 3819 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3820 return 0; 3821 } 3822 3823 if (dst_regno >= 0) { 3824 /* restore register state from stack */ 3825 copy_register_state(&state->regs[dst_regno], reg); 3826 /* mark reg as written since spilled pointer state likely 3827 * has its liveness marks cleared by is_state_visited() 3828 * which resets stack/reg liveness for state transitions 3829 */ 3830 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3831 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 3832 /* If dst_regno==-1, the caller is asking us whether 3833 * it is acceptable to use this value as a SCALAR_VALUE 3834 * (e.g. for XADD). 3835 * We must not allow unprivileged callers to do that 3836 * with spilled pointers. 3837 */ 3838 verbose(env, "leaking pointer from stack off %d\n", 3839 off); 3840 return -EACCES; 3841 } 3842 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3843 } else { 3844 for (i = 0; i < size; i++) { 3845 type = stype[(slot - i) % BPF_REG_SIZE]; 3846 if (type == STACK_MISC) 3847 continue; 3848 if (type == STACK_ZERO) 3849 continue; 3850 verbose(env, "invalid read from stack off %d+%d size %d\n", 3851 off, i, size); 3852 return -EACCES; 3853 } 3854 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3855 if (dst_regno >= 0) 3856 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 3857 } 3858 return 0; 3859 } 3860 3861 enum bpf_access_src { 3862 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 3863 ACCESS_HELPER = 2, /* the access is performed by a helper */ 3864 }; 3865 3866 static int check_stack_range_initialized(struct bpf_verifier_env *env, 3867 int regno, int off, int access_size, 3868 bool zero_size_allowed, 3869 enum bpf_access_src type, 3870 struct bpf_call_arg_meta *meta); 3871 3872 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 3873 { 3874 return cur_regs(env) + regno; 3875 } 3876 3877 /* Read the stack at 'ptr_regno + off' and put the result into the register 3878 * 'dst_regno'. 3879 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 3880 * but not its variable offset. 3881 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 3882 * 3883 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 3884 * filling registers (i.e. reads of spilled register cannot be detected when 3885 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 3886 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 3887 * offset; for a fixed offset check_stack_read_fixed_off should be used 3888 * instead. 3889 */ 3890 static int check_stack_read_var_off(struct bpf_verifier_env *env, 3891 int ptr_regno, int off, int size, int dst_regno) 3892 { 3893 /* The state of the source register. */ 3894 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3895 struct bpf_func_state *ptr_state = func(env, reg); 3896 int err; 3897 int min_off, max_off; 3898 3899 /* Note that we pass a NULL meta, so raw access will not be permitted. 3900 */ 3901 err = check_stack_range_initialized(env, ptr_regno, off, size, 3902 false, ACCESS_DIRECT, NULL); 3903 if (err) 3904 return err; 3905 3906 min_off = reg->smin_value + off; 3907 max_off = reg->smax_value + off; 3908 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3909 return 0; 3910 } 3911 3912 /* check_stack_read dispatches to check_stack_read_fixed_off or 3913 * check_stack_read_var_off. 3914 * 3915 * The caller must ensure that the offset falls within the allocated stack 3916 * bounds. 3917 * 3918 * 'dst_regno' is a register which will receive the value from the stack. It 3919 * can be -1, meaning that the read value is not going to a register. 3920 */ 3921 static int check_stack_read(struct bpf_verifier_env *env, 3922 int ptr_regno, int off, int size, 3923 int dst_regno) 3924 { 3925 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3926 struct bpf_func_state *state = func(env, reg); 3927 int err; 3928 /* Some accesses are only permitted with a static offset. */ 3929 bool var_off = !tnum_is_const(reg->var_off); 3930 3931 /* The offset is required to be static when reads don't go to a 3932 * register, in order to not leak pointers (see 3933 * check_stack_read_fixed_off). 3934 */ 3935 if (dst_regno < 0 && var_off) { 3936 char tn_buf[48]; 3937 3938 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3939 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3940 tn_buf, off, size); 3941 return -EACCES; 3942 } 3943 /* Variable offset is prohibited for unprivileged mode for simplicity 3944 * since it requires corresponding support in Spectre masking for stack 3945 * ALU. See also retrieve_ptr_limit(). 3946 */ 3947 if (!env->bypass_spec_v1 && var_off) { 3948 char tn_buf[48]; 3949 3950 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3951 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3952 ptr_regno, tn_buf); 3953 return -EACCES; 3954 } 3955 3956 if (!var_off) { 3957 off += reg->var_off.value; 3958 err = check_stack_read_fixed_off(env, state, off, size, 3959 dst_regno); 3960 } else { 3961 /* Variable offset stack reads need more conservative handling 3962 * than fixed offset ones. Note that dst_regno >= 0 on this 3963 * branch. 3964 */ 3965 err = check_stack_read_var_off(env, ptr_regno, off, size, 3966 dst_regno); 3967 } 3968 return err; 3969 } 3970 3971 3972 /* check_stack_write dispatches to check_stack_write_fixed_off or 3973 * check_stack_write_var_off. 3974 * 3975 * 'ptr_regno' is the register used as a pointer into the stack. 3976 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3977 * 'value_regno' is the register whose value we're writing to the stack. It can 3978 * be -1, meaning that we're not writing from a register. 3979 * 3980 * The caller must ensure that the offset falls within the maximum stack size. 3981 */ 3982 static int check_stack_write(struct bpf_verifier_env *env, 3983 int ptr_regno, int off, int size, 3984 int value_regno, int insn_idx) 3985 { 3986 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3987 struct bpf_func_state *state = func(env, reg); 3988 int err; 3989 3990 if (tnum_is_const(reg->var_off)) { 3991 off += reg->var_off.value; 3992 err = check_stack_write_fixed_off(env, state, off, size, 3993 value_regno, insn_idx); 3994 } else { 3995 /* Variable offset stack reads need more conservative handling 3996 * than fixed offset ones. 3997 */ 3998 err = check_stack_write_var_off(env, state, 3999 ptr_regno, off, size, 4000 value_regno, insn_idx); 4001 } 4002 return err; 4003 } 4004 4005 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 4006 int off, int size, enum bpf_access_type type) 4007 { 4008 struct bpf_reg_state *regs = cur_regs(env); 4009 struct bpf_map *map = regs[regno].map_ptr; 4010 u32 cap = bpf_map_flags_to_cap(map); 4011 4012 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 4013 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 4014 map->value_size, off, size); 4015 return -EACCES; 4016 } 4017 4018 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 4019 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 4020 map->value_size, off, size); 4021 return -EACCES; 4022 } 4023 4024 return 0; 4025 } 4026 4027 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 4028 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 4029 int off, int size, u32 mem_size, 4030 bool zero_size_allowed) 4031 { 4032 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 4033 struct bpf_reg_state *reg; 4034 4035 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 4036 return 0; 4037 4038 reg = &cur_regs(env)[regno]; 4039 switch (reg->type) { 4040 case PTR_TO_MAP_KEY: 4041 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 4042 mem_size, off, size); 4043 break; 4044 case PTR_TO_MAP_VALUE: 4045 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 4046 mem_size, off, size); 4047 break; 4048 case PTR_TO_PACKET: 4049 case PTR_TO_PACKET_META: 4050 case PTR_TO_PACKET_END: 4051 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 4052 off, size, regno, reg->id, off, mem_size); 4053 break; 4054 case PTR_TO_MEM: 4055 default: 4056 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 4057 mem_size, off, size); 4058 } 4059 4060 return -EACCES; 4061 } 4062 4063 /* check read/write into a memory region with possible variable offset */ 4064 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 4065 int off, int size, u32 mem_size, 4066 bool zero_size_allowed) 4067 { 4068 struct bpf_verifier_state *vstate = env->cur_state; 4069 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4070 struct bpf_reg_state *reg = &state->regs[regno]; 4071 int err; 4072 4073 /* We may have adjusted the register pointing to memory region, so we 4074 * need to try adding each of min_value and max_value to off 4075 * to make sure our theoretical access will be safe. 4076 * 4077 * The minimum value is only important with signed 4078 * comparisons where we can't assume the floor of a 4079 * value is 0. If we are using signed variables for our 4080 * index'es we need to make sure that whatever we use 4081 * will have a set floor within our range. 4082 */ 4083 if (reg->smin_value < 0 && 4084 (reg->smin_value == S64_MIN || 4085 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 4086 reg->smin_value + off < 0)) { 4087 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4088 regno); 4089 return -EACCES; 4090 } 4091 err = __check_mem_access(env, regno, reg->smin_value + off, size, 4092 mem_size, zero_size_allowed); 4093 if (err) { 4094 verbose(env, "R%d min value is outside of the allowed memory range\n", 4095 regno); 4096 return err; 4097 } 4098 4099 /* If we haven't set a max value then we need to bail since we can't be 4100 * sure we won't do bad things. 4101 * If reg->umax_value + off could overflow, treat that as unbounded too. 4102 */ 4103 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 4104 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 4105 regno); 4106 return -EACCES; 4107 } 4108 err = __check_mem_access(env, regno, reg->umax_value + off, size, 4109 mem_size, zero_size_allowed); 4110 if (err) { 4111 verbose(env, "R%d max value is outside of the allowed memory range\n", 4112 regno); 4113 return err; 4114 } 4115 4116 return 0; 4117 } 4118 4119 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 4120 const struct bpf_reg_state *reg, int regno, 4121 bool fixed_off_ok) 4122 { 4123 /* Access to this pointer-typed register or passing it to a helper 4124 * is only allowed in its original, unmodified form. 4125 */ 4126 4127 if (reg->off < 0) { 4128 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 4129 reg_type_str(env, reg->type), regno, reg->off); 4130 return -EACCES; 4131 } 4132 4133 if (!fixed_off_ok && reg->off) { 4134 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 4135 reg_type_str(env, reg->type), regno, reg->off); 4136 return -EACCES; 4137 } 4138 4139 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4140 char tn_buf[48]; 4141 4142 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4143 verbose(env, "variable %s access var_off=%s disallowed\n", 4144 reg_type_str(env, reg->type), tn_buf); 4145 return -EACCES; 4146 } 4147 4148 return 0; 4149 } 4150 4151 int check_ptr_off_reg(struct bpf_verifier_env *env, 4152 const struct bpf_reg_state *reg, int regno) 4153 { 4154 return __check_ptr_off_reg(env, reg, regno, false); 4155 } 4156 4157 static int map_kptr_match_type(struct bpf_verifier_env *env, 4158 struct btf_field *kptr_field, 4159 struct bpf_reg_state *reg, u32 regno) 4160 { 4161 const char *targ_name = kernel_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 4162 int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED; 4163 const char *reg_name = ""; 4164 4165 /* Only unreferenced case accepts untrusted pointers */ 4166 if (kptr_field->type == BPF_KPTR_UNREF) 4167 perm_flags |= PTR_UNTRUSTED; 4168 4169 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 4170 goto bad_type; 4171 4172 if (!btf_is_kernel(reg->btf)) { 4173 verbose(env, "R%d must point to kernel BTF\n", regno); 4174 return -EINVAL; 4175 } 4176 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 4177 reg_name = kernel_type_name(reg->btf, reg->btf_id); 4178 4179 /* For ref_ptr case, release function check should ensure we get one 4180 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 4181 * normal store of unreferenced kptr, we must ensure var_off is zero. 4182 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 4183 * reg->off and reg->ref_obj_id are not needed here. 4184 */ 4185 if (__check_ptr_off_reg(env, reg, regno, true)) 4186 return -EACCES; 4187 4188 /* A full type match is needed, as BTF can be vmlinux or module BTF, and 4189 * we also need to take into account the reg->off. 4190 * 4191 * We want to support cases like: 4192 * 4193 * struct foo { 4194 * struct bar br; 4195 * struct baz bz; 4196 * }; 4197 * 4198 * struct foo *v; 4199 * v = func(); // PTR_TO_BTF_ID 4200 * val->foo = v; // reg->off is zero, btf and btf_id match type 4201 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 4202 * // first member type of struct after comparison fails 4203 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 4204 * // to match type 4205 * 4206 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 4207 * is zero. We must also ensure that btf_struct_ids_match does not walk 4208 * the struct to match type against first member of struct, i.e. reject 4209 * second case from above. Hence, when type is BPF_KPTR_REF, we set 4210 * strict mode to true for type match. 4211 */ 4212 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 4213 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 4214 kptr_field->type == BPF_KPTR_REF)) 4215 goto bad_type; 4216 return 0; 4217 bad_type: 4218 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 4219 reg_type_str(env, reg->type), reg_name); 4220 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 4221 if (kptr_field->type == BPF_KPTR_UNREF) 4222 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 4223 targ_name); 4224 else 4225 verbose(env, "\n"); 4226 return -EINVAL; 4227 } 4228 4229 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 4230 int value_regno, int insn_idx, 4231 struct btf_field *kptr_field) 4232 { 4233 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4234 int class = BPF_CLASS(insn->code); 4235 struct bpf_reg_state *val_reg; 4236 4237 /* Things we already checked for in check_map_access and caller: 4238 * - Reject cases where variable offset may touch kptr 4239 * - size of access (must be BPF_DW) 4240 * - tnum_is_const(reg->var_off) 4241 * - kptr_field->offset == off + reg->var_off.value 4242 */ 4243 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 4244 if (BPF_MODE(insn->code) != BPF_MEM) { 4245 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 4246 return -EACCES; 4247 } 4248 4249 /* We only allow loading referenced kptr, since it will be marked as 4250 * untrusted, similar to unreferenced kptr. 4251 */ 4252 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) { 4253 verbose(env, "store to referenced kptr disallowed\n"); 4254 return -EACCES; 4255 } 4256 4257 if (class == BPF_LDX) { 4258 val_reg = reg_state(env, value_regno); 4259 /* We can simply mark the value_regno receiving the pointer 4260 * value from map as PTR_TO_BTF_ID, with the correct type. 4261 */ 4262 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 4263 kptr_field->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED); 4264 /* For mark_ptr_or_null_reg */ 4265 val_reg->id = ++env->id_gen; 4266 } else if (class == BPF_STX) { 4267 val_reg = reg_state(env, value_regno); 4268 if (!register_is_null(val_reg) && 4269 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 4270 return -EACCES; 4271 } else if (class == BPF_ST) { 4272 if (insn->imm) { 4273 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 4274 kptr_field->offset); 4275 return -EACCES; 4276 } 4277 } else { 4278 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 4279 return -EACCES; 4280 } 4281 return 0; 4282 } 4283 4284 /* check read/write into a map element with possible variable offset */ 4285 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 4286 int off, int size, bool zero_size_allowed, 4287 enum bpf_access_src src) 4288 { 4289 struct bpf_verifier_state *vstate = env->cur_state; 4290 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4291 struct bpf_reg_state *reg = &state->regs[regno]; 4292 struct bpf_map *map = reg->map_ptr; 4293 struct btf_record *rec; 4294 int err, i; 4295 4296 err = check_mem_region_access(env, regno, off, size, map->value_size, 4297 zero_size_allowed); 4298 if (err) 4299 return err; 4300 4301 if (IS_ERR_OR_NULL(map->record)) 4302 return 0; 4303 rec = map->record; 4304 for (i = 0; i < rec->cnt; i++) { 4305 struct btf_field *field = &rec->fields[i]; 4306 u32 p = field->offset; 4307 4308 /* If any part of a field can be touched by load/store, reject 4309 * this program. To check that [x1, x2) overlaps with [y1, y2), 4310 * it is sufficient to check x1 < y2 && y1 < x2. 4311 */ 4312 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 4313 p < reg->umax_value + off + size) { 4314 switch (field->type) { 4315 case BPF_KPTR_UNREF: 4316 case BPF_KPTR_REF: 4317 if (src != ACCESS_DIRECT) { 4318 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 4319 return -EACCES; 4320 } 4321 if (!tnum_is_const(reg->var_off)) { 4322 verbose(env, "kptr access cannot have variable offset\n"); 4323 return -EACCES; 4324 } 4325 if (p != off + reg->var_off.value) { 4326 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 4327 p, off + reg->var_off.value); 4328 return -EACCES; 4329 } 4330 if (size != bpf_size_to_bytes(BPF_DW)) { 4331 verbose(env, "kptr access size must be BPF_DW\n"); 4332 return -EACCES; 4333 } 4334 break; 4335 default: 4336 verbose(env, "%s cannot be accessed directly by load/store\n", 4337 btf_field_type_name(field->type)); 4338 return -EACCES; 4339 } 4340 } 4341 } 4342 return 0; 4343 } 4344 4345 #define MAX_PACKET_OFF 0xffff 4346 4347 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 4348 const struct bpf_call_arg_meta *meta, 4349 enum bpf_access_type t) 4350 { 4351 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 4352 4353 switch (prog_type) { 4354 /* Program types only with direct read access go here! */ 4355 case BPF_PROG_TYPE_LWT_IN: 4356 case BPF_PROG_TYPE_LWT_OUT: 4357 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 4358 case BPF_PROG_TYPE_SK_REUSEPORT: 4359 case BPF_PROG_TYPE_FLOW_DISSECTOR: 4360 case BPF_PROG_TYPE_CGROUP_SKB: 4361 if (t == BPF_WRITE) 4362 return false; 4363 fallthrough; 4364 4365 /* Program types with direct read + write access go here! */ 4366 case BPF_PROG_TYPE_SCHED_CLS: 4367 case BPF_PROG_TYPE_SCHED_ACT: 4368 case BPF_PROG_TYPE_XDP: 4369 case BPF_PROG_TYPE_LWT_XMIT: 4370 case BPF_PROG_TYPE_SK_SKB: 4371 case BPF_PROG_TYPE_SK_MSG: 4372 if (meta) 4373 return meta->pkt_access; 4374 4375 env->seen_direct_write = true; 4376 return true; 4377 4378 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 4379 if (t == BPF_WRITE) 4380 env->seen_direct_write = true; 4381 4382 return true; 4383 4384 default: 4385 return false; 4386 } 4387 } 4388 4389 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 4390 int size, bool zero_size_allowed) 4391 { 4392 struct bpf_reg_state *regs = cur_regs(env); 4393 struct bpf_reg_state *reg = ®s[regno]; 4394 int err; 4395 4396 /* We may have added a variable offset to the packet pointer; but any 4397 * reg->range we have comes after that. We are only checking the fixed 4398 * offset. 4399 */ 4400 4401 /* We don't allow negative numbers, because we aren't tracking enough 4402 * detail to prove they're safe. 4403 */ 4404 if (reg->smin_value < 0) { 4405 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4406 regno); 4407 return -EACCES; 4408 } 4409 4410 err = reg->range < 0 ? -EINVAL : 4411 __check_mem_access(env, regno, off, size, reg->range, 4412 zero_size_allowed); 4413 if (err) { 4414 verbose(env, "R%d offset is outside of the packet\n", regno); 4415 return err; 4416 } 4417 4418 /* __check_mem_access has made sure "off + size - 1" is within u16. 4419 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 4420 * otherwise find_good_pkt_pointers would have refused to set range info 4421 * that __check_mem_access would have rejected this pkt access. 4422 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 4423 */ 4424 env->prog->aux->max_pkt_offset = 4425 max_t(u32, env->prog->aux->max_pkt_offset, 4426 off + reg->umax_value + size - 1); 4427 4428 return err; 4429 } 4430 4431 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 4432 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 4433 enum bpf_access_type t, enum bpf_reg_type *reg_type, 4434 struct btf **btf, u32 *btf_id) 4435 { 4436 struct bpf_insn_access_aux info = { 4437 .reg_type = *reg_type, 4438 .log = &env->log, 4439 }; 4440 4441 if (env->ops->is_valid_access && 4442 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 4443 /* A non zero info.ctx_field_size indicates that this field is a 4444 * candidate for later verifier transformation to load the whole 4445 * field and then apply a mask when accessed with a narrower 4446 * access than actual ctx access size. A zero info.ctx_field_size 4447 * will only allow for whole field access and rejects any other 4448 * type of narrower access. 4449 */ 4450 *reg_type = info.reg_type; 4451 4452 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 4453 *btf = info.btf; 4454 *btf_id = info.btf_id; 4455 } else { 4456 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 4457 } 4458 /* remember the offset of last byte accessed in ctx */ 4459 if (env->prog->aux->max_ctx_offset < off + size) 4460 env->prog->aux->max_ctx_offset = off + size; 4461 return 0; 4462 } 4463 4464 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 4465 return -EACCES; 4466 } 4467 4468 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 4469 int size) 4470 { 4471 if (size < 0 || off < 0 || 4472 (u64)off + size > sizeof(struct bpf_flow_keys)) { 4473 verbose(env, "invalid access to flow keys off=%d size=%d\n", 4474 off, size); 4475 return -EACCES; 4476 } 4477 return 0; 4478 } 4479 4480 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 4481 u32 regno, int off, int size, 4482 enum bpf_access_type t) 4483 { 4484 struct bpf_reg_state *regs = cur_regs(env); 4485 struct bpf_reg_state *reg = ®s[regno]; 4486 struct bpf_insn_access_aux info = {}; 4487 bool valid; 4488 4489 if (reg->smin_value < 0) { 4490 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4491 regno); 4492 return -EACCES; 4493 } 4494 4495 switch (reg->type) { 4496 case PTR_TO_SOCK_COMMON: 4497 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 4498 break; 4499 case PTR_TO_SOCKET: 4500 valid = bpf_sock_is_valid_access(off, size, t, &info); 4501 break; 4502 case PTR_TO_TCP_SOCK: 4503 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 4504 break; 4505 case PTR_TO_XDP_SOCK: 4506 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 4507 break; 4508 default: 4509 valid = false; 4510 } 4511 4512 4513 if (valid) { 4514 env->insn_aux_data[insn_idx].ctx_field_size = 4515 info.ctx_field_size; 4516 return 0; 4517 } 4518 4519 verbose(env, "R%d invalid %s access off=%d size=%d\n", 4520 regno, reg_type_str(env, reg->type), off, size); 4521 4522 return -EACCES; 4523 } 4524 4525 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 4526 { 4527 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 4528 } 4529 4530 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 4531 { 4532 const struct bpf_reg_state *reg = reg_state(env, regno); 4533 4534 return reg->type == PTR_TO_CTX; 4535 } 4536 4537 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 4538 { 4539 const struct bpf_reg_state *reg = reg_state(env, regno); 4540 4541 return type_is_sk_pointer(reg->type); 4542 } 4543 4544 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 4545 { 4546 const struct bpf_reg_state *reg = reg_state(env, regno); 4547 4548 return type_is_pkt_pointer(reg->type); 4549 } 4550 4551 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 4552 { 4553 const struct bpf_reg_state *reg = reg_state(env, regno); 4554 4555 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 4556 return reg->type == PTR_TO_FLOW_KEYS; 4557 } 4558 4559 static bool is_trusted_reg(const struct bpf_reg_state *reg) 4560 { 4561 /* A referenced register is always trusted. */ 4562 if (reg->ref_obj_id) 4563 return true; 4564 4565 /* If a register is not referenced, it is trusted if it has the 4566 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 4567 * other type modifiers may be safe, but we elect to take an opt-in 4568 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 4569 * not. 4570 * 4571 * Eventually, we should make PTR_TRUSTED the single source of truth 4572 * for whether a register is trusted. 4573 */ 4574 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 4575 !bpf_type_has_unsafe_modifiers(reg->type); 4576 } 4577 4578 static bool is_rcu_reg(const struct bpf_reg_state *reg) 4579 { 4580 return reg->type & MEM_RCU; 4581 } 4582 4583 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 4584 const struct bpf_reg_state *reg, 4585 int off, int size, bool strict) 4586 { 4587 struct tnum reg_off; 4588 int ip_align; 4589 4590 /* Byte size accesses are always allowed. */ 4591 if (!strict || size == 1) 4592 return 0; 4593 4594 /* For platforms that do not have a Kconfig enabling 4595 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 4596 * NET_IP_ALIGN is universally set to '2'. And on platforms 4597 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 4598 * to this code only in strict mode where we want to emulate 4599 * the NET_IP_ALIGN==2 checking. Therefore use an 4600 * unconditional IP align value of '2'. 4601 */ 4602 ip_align = 2; 4603 4604 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 4605 if (!tnum_is_aligned(reg_off, size)) { 4606 char tn_buf[48]; 4607 4608 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4609 verbose(env, 4610 "misaligned packet access off %d+%s+%d+%d size %d\n", 4611 ip_align, tn_buf, reg->off, off, size); 4612 return -EACCES; 4613 } 4614 4615 return 0; 4616 } 4617 4618 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 4619 const struct bpf_reg_state *reg, 4620 const char *pointer_desc, 4621 int off, int size, bool strict) 4622 { 4623 struct tnum reg_off; 4624 4625 /* Byte size accesses are always allowed. */ 4626 if (!strict || size == 1) 4627 return 0; 4628 4629 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 4630 if (!tnum_is_aligned(reg_off, size)) { 4631 char tn_buf[48]; 4632 4633 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4634 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 4635 pointer_desc, tn_buf, reg->off, off, size); 4636 return -EACCES; 4637 } 4638 4639 return 0; 4640 } 4641 4642 static int check_ptr_alignment(struct bpf_verifier_env *env, 4643 const struct bpf_reg_state *reg, int off, 4644 int size, bool strict_alignment_once) 4645 { 4646 bool strict = env->strict_alignment || strict_alignment_once; 4647 const char *pointer_desc = ""; 4648 4649 switch (reg->type) { 4650 case PTR_TO_PACKET: 4651 case PTR_TO_PACKET_META: 4652 /* Special case, because of NET_IP_ALIGN. Given metadata sits 4653 * right in front, treat it the very same way. 4654 */ 4655 return check_pkt_ptr_alignment(env, reg, off, size, strict); 4656 case PTR_TO_FLOW_KEYS: 4657 pointer_desc = "flow keys "; 4658 break; 4659 case PTR_TO_MAP_KEY: 4660 pointer_desc = "key "; 4661 break; 4662 case PTR_TO_MAP_VALUE: 4663 pointer_desc = "value "; 4664 break; 4665 case PTR_TO_CTX: 4666 pointer_desc = "context "; 4667 break; 4668 case PTR_TO_STACK: 4669 pointer_desc = "stack "; 4670 /* The stack spill tracking logic in check_stack_write_fixed_off() 4671 * and check_stack_read_fixed_off() relies on stack accesses being 4672 * aligned. 4673 */ 4674 strict = true; 4675 break; 4676 case PTR_TO_SOCKET: 4677 pointer_desc = "sock "; 4678 break; 4679 case PTR_TO_SOCK_COMMON: 4680 pointer_desc = "sock_common "; 4681 break; 4682 case PTR_TO_TCP_SOCK: 4683 pointer_desc = "tcp_sock "; 4684 break; 4685 case PTR_TO_XDP_SOCK: 4686 pointer_desc = "xdp_sock "; 4687 break; 4688 default: 4689 break; 4690 } 4691 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 4692 strict); 4693 } 4694 4695 static int update_stack_depth(struct bpf_verifier_env *env, 4696 const struct bpf_func_state *func, 4697 int off) 4698 { 4699 u16 stack = env->subprog_info[func->subprogno].stack_depth; 4700 4701 if (stack >= -off) 4702 return 0; 4703 4704 /* update known max for given subprogram */ 4705 env->subprog_info[func->subprogno].stack_depth = -off; 4706 return 0; 4707 } 4708 4709 /* starting from main bpf function walk all instructions of the function 4710 * and recursively walk all callees that given function can call. 4711 * Ignore jump and exit insns. 4712 * Since recursion is prevented by check_cfg() this algorithm 4713 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 4714 */ 4715 static int check_max_stack_depth(struct bpf_verifier_env *env) 4716 { 4717 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 4718 struct bpf_subprog_info *subprog = env->subprog_info; 4719 struct bpf_insn *insn = env->prog->insnsi; 4720 bool tail_call_reachable = false; 4721 int ret_insn[MAX_CALL_FRAMES]; 4722 int ret_prog[MAX_CALL_FRAMES]; 4723 int j; 4724 4725 process_func: 4726 /* protect against potential stack overflow that might happen when 4727 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 4728 * depth for such case down to 256 so that the worst case scenario 4729 * would result in 8k stack size (32 which is tailcall limit * 256 = 4730 * 8k). 4731 * 4732 * To get the idea what might happen, see an example: 4733 * func1 -> sub rsp, 128 4734 * subfunc1 -> sub rsp, 256 4735 * tailcall1 -> add rsp, 256 4736 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 4737 * subfunc2 -> sub rsp, 64 4738 * subfunc22 -> sub rsp, 128 4739 * tailcall2 -> add rsp, 128 4740 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 4741 * 4742 * tailcall will unwind the current stack frame but it will not get rid 4743 * of caller's stack as shown on the example above. 4744 */ 4745 if (idx && subprog[idx].has_tail_call && depth >= 256) { 4746 verbose(env, 4747 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 4748 depth); 4749 return -EACCES; 4750 } 4751 /* round up to 32-bytes, since this is granularity 4752 * of interpreter stack size 4753 */ 4754 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4755 if (depth > MAX_BPF_STACK) { 4756 verbose(env, "combined stack size of %d calls is %d. Too large\n", 4757 frame + 1, depth); 4758 return -EACCES; 4759 } 4760 continue_func: 4761 subprog_end = subprog[idx + 1].start; 4762 for (; i < subprog_end; i++) { 4763 int next_insn; 4764 4765 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 4766 continue; 4767 /* remember insn and function to return to */ 4768 ret_insn[frame] = i + 1; 4769 ret_prog[frame] = idx; 4770 4771 /* find the callee */ 4772 next_insn = i + insn[i].imm + 1; 4773 idx = find_subprog(env, next_insn); 4774 if (idx < 0) { 4775 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4776 next_insn); 4777 return -EFAULT; 4778 } 4779 if (subprog[idx].is_async_cb) { 4780 if (subprog[idx].has_tail_call) { 4781 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 4782 return -EFAULT; 4783 } 4784 /* async callbacks don't increase bpf prog stack size */ 4785 continue; 4786 } 4787 i = next_insn; 4788 4789 if (subprog[idx].has_tail_call) 4790 tail_call_reachable = true; 4791 4792 frame++; 4793 if (frame >= MAX_CALL_FRAMES) { 4794 verbose(env, "the call stack of %d frames is too deep !\n", 4795 frame); 4796 return -E2BIG; 4797 } 4798 goto process_func; 4799 } 4800 /* if tail call got detected across bpf2bpf calls then mark each of the 4801 * currently present subprog frames as tail call reachable subprogs; 4802 * this info will be utilized by JIT so that we will be preserving the 4803 * tail call counter throughout bpf2bpf calls combined with tailcalls 4804 */ 4805 if (tail_call_reachable) 4806 for (j = 0; j < frame; j++) 4807 subprog[ret_prog[j]].tail_call_reachable = true; 4808 if (subprog[0].tail_call_reachable) 4809 env->prog->aux->tail_call_reachable = true; 4810 4811 /* end of for() loop means the last insn of the 'subprog' 4812 * was reached. Doesn't matter whether it was JA or EXIT 4813 */ 4814 if (frame == 0) 4815 return 0; 4816 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4817 frame--; 4818 i = ret_insn[frame]; 4819 idx = ret_prog[frame]; 4820 goto continue_func; 4821 } 4822 4823 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 4824 static int get_callee_stack_depth(struct bpf_verifier_env *env, 4825 const struct bpf_insn *insn, int idx) 4826 { 4827 int start = idx + insn->imm + 1, subprog; 4828 4829 subprog = find_subprog(env, start); 4830 if (subprog < 0) { 4831 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4832 start); 4833 return -EFAULT; 4834 } 4835 return env->subprog_info[subprog].stack_depth; 4836 } 4837 #endif 4838 4839 static int __check_buffer_access(struct bpf_verifier_env *env, 4840 const char *buf_info, 4841 const struct bpf_reg_state *reg, 4842 int regno, int off, int size) 4843 { 4844 if (off < 0) { 4845 verbose(env, 4846 "R%d invalid %s buffer access: off=%d, size=%d\n", 4847 regno, buf_info, off, size); 4848 return -EACCES; 4849 } 4850 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4851 char tn_buf[48]; 4852 4853 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4854 verbose(env, 4855 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 4856 regno, off, tn_buf); 4857 return -EACCES; 4858 } 4859 4860 return 0; 4861 } 4862 4863 static int check_tp_buffer_access(struct bpf_verifier_env *env, 4864 const struct bpf_reg_state *reg, 4865 int regno, int off, int size) 4866 { 4867 int err; 4868 4869 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 4870 if (err) 4871 return err; 4872 4873 if (off + size > env->prog->aux->max_tp_access) 4874 env->prog->aux->max_tp_access = off + size; 4875 4876 return 0; 4877 } 4878 4879 static int check_buffer_access(struct bpf_verifier_env *env, 4880 const struct bpf_reg_state *reg, 4881 int regno, int off, int size, 4882 bool zero_size_allowed, 4883 u32 *max_access) 4884 { 4885 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 4886 int err; 4887 4888 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 4889 if (err) 4890 return err; 4891 4892 if (off + size > *max_access) 4893 *max_access = off + size; 4894 4895 return 0; 4896 } 4897 4898 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 4899 static void zext_32_to_64(struct bpf_reg_state *reg) 4900 { 4901 reg->var_off = tnum_subreg(reg->var_off); 4902 __reg_assign_32_into_64(reg); 4903 } 4904 4905 /* truncate register to smaller size (in bytes) 4906 * must be called with size < BPF_REG_SIZE 4907 */ 4908 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 4909 { 4910 u64 mask; 4911 4912 /* clear high bits in bit representation */ 4913 reg->var_off = tnum_cast(reg->var_off, size); 4914 4915 /* fix arithmetic bounds */ 4916 mask = ((u64)1 << (size * 8)) - 1; 4917 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 4918 reg->umin_value &= mask; 4919 reg->umax_value &= mask; 4920 } else { 4921 reg->umin_value = 0; 4922 reg->umax_value = mask; 4923 } 4924 reg->smin_value = reg->umin_value; 4925 reg->smax_value = reg->umax_value; 4926 4927 /* If size is smaller than 32bit register the 32bit register 4928 * values are also truncated so we push 64-bit bounds into 4929 * 32-bit bounds. Above were truncated < 32-bits already. 4930 */ 4931 if (size >= 4) 4932 return; 4933 __reg_combine_64_into_32(reg); 4934 } 4935 4936 static bool bpf_map_is_rdonly(const struct bpf_map *map) 4937 { 4938 /* A map is considered read-only if the following condition are true: 4939 * 4940 * 1) BPF program side cannot change any of the map content. The 4941 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 4942 * and was set at map creation time. 4943 * 2) The map value(s) have been initialized from user space by a 4944 * loader and then "frozen", such that no new map update/delete 4945 * operations from syscall side are possible for the rest of 4946 * the map's lifetime from that point onwards. 4947 * 3) Any parallel/pending map update/delete operations from syscall 4948 * side have been completed. Only after that point, it's safe to 4949 * assume that map value(s) are immutable. 4950 */ 4951 return (map->map_flags & BPF_F_RDONLY_PROG) && 4952 READ_ONCE(map->frozen) && 4953 !bpf_map_write_active(map); 4954 } 4955 4956 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 4957 { 4958 void *ptr; 4959 u64 addr; 4960 int err; 4961 4962 err = map->ops->map_direct_value_addr(map, &addr, off); 4963 if (err) 4964 return err; 4965 ptr = (void *)(long)addr + off; 4966 4967 switch (size) { 4968 case sizeof(u8): 4969 *val = (u64)*(u8 *)ptr; 4970 break; 4971 case sizeof(u16): 4972 *val = (u64)*(u16 *)ptr; 4973 break; 4974 case sizeof(u32): 4975 *val = (u64)*(u32 *)ptr; 4976 break; 4977 case sizeof(u64): 4978 *val = *(u64 *)ptr; 4979 break; 4980 default: 4981 return -EINVAL; 4982 } 4983 return 0; 4984 } 4985 4986 #define BTF_TYPE_SAFE_NESTED(__type) __PASTE(__type, __safe_fields) 4987 4988 BTF_TYPE_SAFE_NESTED(struct task_struct) { 4989 const cpumask_t *cpus_ptr; 4990 }; 4991 4992 static bool nested_ptr_is_trusted(struct bpf_verifier_env *env, 4993 struct bpf_reg_state *reg, 4994 int off) 4995 { 4996 /* If its parent is not trusted, it can't regain its trusted status. */ 4997 if (!is_trusted_reg(reg)) 4998 return false; 4999 5000 BTF_TYPE_EMIT(BTF_TYPE_SAFE_NESTED(struct task_struct)); 5001 5002 return btf_nested_type_is_trusted(&env->log, reg, off); 5003 } 5004 5005 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 5006 struct bpf_reg_state *regs, 5007 int regno, int off, int size, 5008 enum bpf_access_type atype, 5009 int value_regno) 5010 { 5011 struct bpf_reg_state *reg = regs + regno; 5012 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 5013 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 5014 enum bpf_type_flag flag = 0; 5015 u32 btf_id; 5016 int ret; 5017 5018 if (!env->allow_ptr_leaks) { 5019 verbose(env, 5020 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 5021 tname); 5022 return -EPERM; 5023 } 5024 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 5025 verbose(env, 5026 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 5027 tname); 5028 return -EINVAL; 5029 } 5030 if (off < 0) { 5031 verbose(env, 5032 "R%d is ptr_%s invalid negative access: off=%d\n", 5033 regno, tname, off); 5034 return -EACCES; 5035 } 5036 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5037 char tn_buf[48]; 5038 5039 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5040 verbose(env, 5041 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 5042 regno, tname, off, tn_buf); 5043 return -EACCES; 5044 } 5045 5046 if (reg->type & MEM_USER) { 5047 verbose(env, 5048 "R%d is ptr_%s access user memory: off=%d\n", 5049 regno, tname, off); 5050 return -EACCES; 5051 } 5052 5053 if (reg->type & MEM_PERCPU) { 5054 verbose(env, 5055 "R%d is ptr_%s access percpu memory: off=%d\n", 5056 regno, tname, off); 5057 return -EACCES; 5058 } 5059 5060 if (env->ops->btf_struct_access && !type_is_alloc(reg->type)) { 5061 if (!btf_is_kernel(reg->btf)) { 5062 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 5063 return -EFAULT; 5064 } 5065 ret = env->ops->btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag); 5066 } else { 5067 /* Writes are permitted with default btf_struct_access for 5068 * program allocated objects (which always have ref_obj_id > 0), 5069 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 5070 */ 5071 if (atype != BPF_READ && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 5072 verbose(env, "only read is supported\n"); 5073 return -EACCES; 5074 } 5075 5076 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 5077 !reg->ref_obj_id) { 5078 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 5079 return -EFAULT; 5080 } 5081 5082 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag); 5083 } 5084 5085 if (ret < 0) 5086 return ret; 5087 5088 /* If this is an untrusted pointer, all pointers formed by walking it 5089 * also inherit the untrusted flag. 5090 */ 5091 if (type_flag(reg->type) & PTR_UNTRUSTED) 5092 flag |= PTR_UNTRUSTED; 5093 5094 /* By default any pointer obtained from walking a trusted pointer is no 5095 * longer trusted, unless the field being accessed has explicitly been 5096 * marked as inheriting its parent's state of trust. 5097 * 5098 * An RCU-protected pointer can also be deemed trusted if we are in an 5099 * RCU read region. This case is handled below. 5100 */ 5101 if (nested_ptr_is_trusted(env, reg, off)) 5102 flag |= PTR_TRUSTED; 5103 else 5104 flag &= ~PTR_TRUSTED; 5105 5106 if (flag & MEM_RCU) { 5107 /* Mark value register as MEM_RCU only if it is protected by 5108 * bpf_rcu_read_lock() and the ptr reg is rcu or trusted. MEM_RCU 5109 * itself can already indicate trustedness inside the rcu 5110 * read lock region. Also mark rcu pointer as PTR_MAYBE_NULL since 5111 * it could be null in some cases. 5112 */ 5113 if (!env->cur_state->active_rcu_lock || 5114 !(is_trusted_reg(reg) || is_rcu_reg(reg))) 5115 flag &= ~MEM_RCU; 5116 else 5117 flag |= PTR_MAYBE_NULL; 5118 } else if (reg->type & MEM_RCU) { 5119 /* ptr (reg) is marked as MEM_RCU, but the struct field is not tagged 5120 * with __rcu. Mark the flag as PTR_UNTRUSTED conservatively. 5121 */ 5122 flag |= PTR_UNTRUSTED; 5123 } 5124 5125 if (atype == BPF_READ && value_regno >= 0) 5126 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 5127 5128 return 0; 5129 } 5130 5131 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 5132 struct bpf_reg_state *regs, 5133 int regno, int off, int size, 5134 enum bpf_access_type atype, 5135 int value_regno) 5136 { 5137 struct bpf_reg_state *reg = regs + regno; 5138 struct bpf_map *map = reg->map_ptr; 5139 struct bpf_reg_state map_reg; 5140 enum bpf_type_flag flag = 0; 5141 const struct btf_type *t; 5142 const char *tname; 5143 u32 btf_id; 5144 int ret; 5145 5146 if (!btf_vmlinux) { 5147 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 5148 return -ENOTSUPP; 5149 } 5150 5151 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 5152 verbose(env, "map_ptr access not supported for map type %d\n", 5153 map->map_type); 5154 return -ENOTSUPP; 5155 } 5156 5157 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 5158 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 5159 5160 if (!env->allow_ptr_leaks) { 5161 verbose(env, 5162 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 5163 tname); 5164 return -EPERM; 5165 } 5166 5167 if (off < 0) { 5168 verbose(env, "R%d is %s invalid negative access: off=%d\n", 5169 regno, tname, off); 5170 return -EACCES; 5171 } 5172 5173 if (atype != BPF_READ) { 5174 verbose(env, "only read from %s is supported\n", tname); 5175 return -EACCES; 5176 } 5177 5178 /* Simulate access to a PTR_TO_BTF_ID */ 5179 memset(&map_reg, 0, sizeof(map_reg)); 5180 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 5181 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag); 5182 if (ret < 0) 5183 return ret; 5184 5185 if (value_regno >= 0) 5186 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 5187 5188 return 0; 5189 } 5190 5191 /* Check that the stack access at the given offset is within bounds. The 5192 * maximum valid offset is -1. 5193 * 5194 * The minimum valid offset is -MAX_BPF_STACK for writes, and 5195 * -state->allocated_stack for reads. 5196 */ 5197 static int check_stack_slot_within_bounds(int off, 5198 struct bpf_func_state *state, 5199 enum bpf_access_type t) 5200 { 5201 int min_valid_off; 5202 5203 if (t == BPF_WRITE) 5204 min_valid_off = -MAX_BPF_STACK; 5205 else 5206 min_valid_off = -state->allocated_stack; 5207 5208 if (off < min_valid_off || off > -1) 5209 return -EACCES; 5210 return 0; 5211 } 5212 5213 /* Check that the stack access at 'regno + off' falls within the maximum stack 5214 * bounds. 5215 * 5216 * 'off' includes `regno->offset`, but not its dynamic part (if any). 5217 */ 5218 static int check_stack_access_within_bounds( 5219 struct bpf_verifier_env *env, 5220 int regno, int off, int access_size, 5221 enum bpf_access_src src, enum bpf_access_type type) 5222 { 5223 struct bpf_reg_state *regs = cur_regs(env); 5224 struct bpf_reg_state *reg = regs + regno; 5225 struct bpf_func_state *state = func(env, reg); 5226 int min_off, max_off; 5227 int err; 5228 char *err_extra; 5229 5230 if (src == ACCESS_HELPER) 5231 /* We don't know if helpers are reading or writing (or both). */ 5232 err_extra = " indirect access to"; 5233 else if (type == BPF_READ) 5234 err_extra = " read from"; 5235 else 5236 err_extra = " write to"; 5237 5238 if (tnum_is_const(reg->var_off)) { 5239 min_off = reg->var_off.value + off; 5240 if (access_size > 0) 5241 max_off = min_off + access_size - 1; 5242 else 5243 max_off = min_off; 5244 } else { 5245 if (reg->smax_value >= BPF_MAX_VAR_OFF || 5246 reg->smin_value <= -BPF_MAX_VAR_OFF) { 5247 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 5248 err_extra, regno); 5249 return -EACCES; 5250 } 5251 min_off = reg->smin_value + off; 5252 if (access_size > 0) 5253 max_off = reg->smax_value + off + access_size - 1; 5254 else 5255 max_off = min_off; 5256 } 5257 5258 err = check_stack_slot_within_bounds(min_off, state, type); 5259 if (!err) 5260 err = check_stack_slot_within_bounds(max_off, state, type); 5261 5262 if (err) { 5263 if (tnum_is_const(reg->var_off)) { 5264 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 5265 err_extra, regno, off, access_size); 5266 } else { 5267 char tn_buf[48]; 5268 5269 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5270 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 5271 err_extra, regno, tn_buf, access_size); 5272 } 5273 } 5274 return err; 5275 } 5276 5277 /* check whether memory at (regno + off) is accessible for t = (read | write) 5278 * if t==write, value_regno is a register which value is stored into memory 5279 * if t==read, value_regno is a register which will receive the value from memory 5280 * if t==write && value_regno==-1, some unknown value is stored into memory 5281 * if t==read && value_regno==-1, don't care what we read from memory 5282 */ 5283 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 5284 int off, int bpf_size, enum bpf_access_type t, 5285 int value_regno, bool strict_alignment_once) 5286 { 5287 struct bpf_reg_state *regs = cur_regs(env); 5288 struct bpf_reg_state *reg = regs + regno; 5289 struct bpf_func_state *state; 5290 int size, err = 0; 5291 5292 size = bpf_size_to_bytes(bpf_size); 5293 if (size < 0) 5294 return size; 5295 5296 /* alignment checks will add in reg->off themselves */ 5297 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 5298 if (err) 5299 return err; 5300 5301 /* for access checks, reg->off is just part of off */ 5302 off += reg->off; 5303 5304 if (reg->type == PTR_TO_MAP_KEY) { 5305 if (t == BPF_WRITE) { 5306 verbose(env, "write to change key R%d not allowed\n", regno); 5307 return -EACCES; 5308 } 5309 5310 err = check_mem_region_access(env, regno, off, size, 5311 reg->map_ptr->key_size, false); 5312 if (err) 5313 return err; 5314 if (value_regno >= 0) 5315 mark_reg_unknown(env, regs, value_regno); 5316 } else if (reg->type == PTR_TO_MAP_VALUE) { 5317 struct btf_field *kptr_field = NULL; 5318 5319 if (t == BPF_WRITE && value_regno >= 0 && 5320 is_pointer_value(env, value_regno)) { 5321 verbose(env, "R%d leaks addr into map\n", value_regno); 5322 return -EACCES; 5323 } 5324 err = check_map_access_type(env, regno, off, size, t); 5325 if (err) 5326 return err; 5327 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 5328 if (err) 5329 return err; 5330 if (tnum_is_const(reg->var_off)) 5331 kptr_field = btf_record_find(reg->map_ptr->record, 5332 off + reg->var_off.value, BPF_KPTR); 5333 if (kptr_field) { 5334 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 5335 } else if (t == BPF_READ && value_regno >= 0) { 5336 struct bpf_map *map = reg->map_ptr; 5337 5338 /* if map is read-only, track its contents as scalars */ 5339 if (tnum_is_const(reg->var_off) && 5340 bpf_map_is_rdonly(map) && 5341 map->ops->map_direct_value_addr) { 5342 int map_off = off + reg->var_off.value; 5343 u64 val = 0; 5344 5345 err = bpf_map_direct_read(map, map_off, size, 5346 &val); 5347 if (err) 5348 return err; 5349 5350 regs[value_regno].type = SCALAR_VALUE; 5351 __mark_reg_known(®s[value_regno], val); 5352 } else { 5353 mark_reg_unknown(env, regs, value_regno); 5354 } 5355 } 5356 } else if (base_type(reg->type) == PTR_TO_MEM) { 5357 bool rdonly_mem = type_is_rdonly_mem(reg->type); 5358 5359 if (type_may_be_null(reg->type)) { 5360 verbose(env, "R%d invalid mem access '%s'\n", regno, 5361 reg_type_str(env, reg->type)); 5362 return -EACCES; 5363 } 5364 5365 if (t == BPF_WRITE && rdonly_mem) { 5366 verbose(env, "R%d cannot write into %s\n", 5367 regno, reg_type_str(env, reg->type)); 5368 return -EACCES; 5369 } 5370 5371 if (t == BPF_WRITE && value_regno >= 0 && 5372 is_pointer_value(env, value_regno)) { 5373 verbose(env, "R%d leaks addr into mem\n", value_regno); 5374 return -EACCES; 5375 } 5376 5377 err = check_mem_region_access(env, regno, off, size, 5378 reg->mem_size, false); 5379 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 5380 mark_reg_unknown(env, regs, value_regno); 5381 } else if (reg->type == PTR_TO_CTX) { 5382 enum bpf_reg_type reg_type = SCALAR_VALUE; 5383 struct btf *btf = NULL; 5384 u32 btf_id = 0; 5385 5386 if (t == BPF_WRITE && value_regno >= 0 && 5387 is_pointer_value(env, value_regno)) { 5388 verbose(env, "R%d leaks addr into ctx\n", value_regno); 5389 return -EACCES; 5390 } 5391 5392 err = check_ptr_off_reg(env, reg, regno); 5393 if (err < 0) 5394 return err; 5395 5396 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 5397 &btf_id); 5398 if (err) 5399 verbose_linfo(env, insn_idx, "; "); 5400 if (!err && t == BPF_READ && value_regno >= 0) { 5401 /* ctx access returns either a scalar, or a 5402 * PTR_TO_PACKET[_META,_END]. In the latter 5403 * case, we know the offset is zero. 5404 */ 5405 if (reg_type == SCALAR_VALUE) { 5406 mark_reg_unknown(env, regs, value_regno); 5407 } else { 5408 mark_reg_known_zero(env, regs, 5409 value_regno); 5410 if (type_may_be_null(reg_type)) 5411 regs[value_regno].id = ++env->id_gen; 5412 /* A load of ctx field could have different 5413 * actual load size with the one encoded in the 5414 * insn. When the dst is PTR, it is for sure not 5415 * a sub-register. 5416 */ 5417 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 5418 if (base_type(reg_type) == PTR_TO_BTF_ID) { 5419 regs[value_regno].btf = btf; 5420 regs[value_regno].btf_id = btf_id; 5421 } 5422 } 5423 regs[value_regno].type = reg_type; 5424 } 5425 5426 } else if (reg->type == PTR_TO_STACK) { 5427 /* Basic bounds checks. */ 5428 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 5429 if (err) 5430 return err; 5431 5432 state = func(env, reg); 5433 err = update_stack_depth(env, state, off); 5434 if (err) 5435 return err; 5436 5437 if (t == BPF_READ) 5438 err = check_stack_read(env, regno, off, size, 5439 value_regno); 5440 else 5441 err = check_stack_write(env, regno, off, size, 5442 value_regno, insn_idx); 5443 } else if (reg_is_pkt_pointer(reg)) { 5444 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 5445 verbose(env, "cannot write into packet\n"); 5446 return -EACCES; 5447 } 5448 if (t == BPF_WRITE && value_regno >= 0 && 5449 is_pointer_value(env, value_regno)) { 5450 verbose(env, "R%d leaks addr into packet\n", 5451 value_regno); 5452 return -EACCES; 5453 } 5454 err = check_packet_access(env, regno, off, size, false); 5455 if (!err && t == BPF_READ && value_regno >= 0) 5456 mark_reg_unknown(env, regs, value_regno); 5457 } else if (reg->type == PTR_TO_FLOW_KEYS) { 5458 if (t == BPF_WRITE && value_regno >= 0 && 5459 is_pointer_value(env, value_regno)) { 5460 verbose(env, "R%d leaks addr into flow keys\n", 5461 value_regno); 5462 return -EACCES; 5463 } 5464 5465 err = check_flow_keys_access(env, off, size); 5466 if (!err && t == BPF_READ && value_regno >= 0) 5467 mark_reg_unknown(env, regs, value_regno); 5468 } else if (type_is_sk_pointer(reg->type)) { 5469 if (t == BPF_WRITE) { 5470 verbose(env, "R%d cannot write into %s\n", 5471 regno, reg_type_str(env, reg->type)); 5472 return -EACCES; 5473 } 5474 err = check_sock_access(env, insn_idx, regno, off, size, t); 5475 if (!err && value_regno >= 0) 5476 mark_reg_unknown(env, regs, value_regno); 5477 } else if (reg->type == PTR_TO_TP_BUFFER) { 5478 err = check_tp_buffer_access(env, reg, regno, off, size); 5479 if (!err && t == BPF_READ && value_regno >= 0) 5480 mark_reg_unknown(env, regs, value_regno); 5481 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 5482 !type_may_be_null(reg->type)) { 5483 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 5484 value_regno); 5485 } else if (reg->type == CONST_PTR_TO_MAP) { 5486 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 5487 value_regno); 5488 } else if (base_type(reg->type) == PTR_TO_BUF) { 5489 bool rdonly_mem = type_is_rdonly_mem(reg->type); 5490 u32 *max_access; 5491 5492 if (rdonly_mem) { 5493 if (t == BPF_WRITE) { 5494 verbose(env, "R%d cannot write into %s\n", 5495 regno, reg_type_str(env, reg->type)); 5496 return -EACCES; 5497 } 5498 max_access = &env->prog->aux->max_rdonly_access; 5499 } else { 5500 max_access = &env->prog->aux->max_rdwr_access; 5501 } 5502 5503 err = check_buffer_access(env, reg, regno, off, size, false, 5504 max_access); 5505 5506 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 5507 mark_reg_unknown(env, regs, value_regno); 5508 } else { 5509 verbose(env, "R%d invalid mem access '%s'\n", regno, 5510 reg_type_str(env, reg->type)); 5511 return -EACCES; 5512 } 5513 5514 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 5515 regs[value_regno].type == SCALAR_VALUE) { 5516 /* b/h/w load zero-extends, mark upper bits as known 0 */ 5517 coerce_reg_to_size(®s[value_regno], size); 5518 } 5519 return err; 5520 } 5521 5522 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 5523 { 5524 int load_reg; 5525 int err; 5526 5527 switch (insn->imm) { 5528 case BPF_ADD: 5529 case BPF_ADD | BPF_FETCH: 5530 case BPF_AND: 5531 case BPF_AND | BPF_FETCH: 5532 case BPF_OR: 5533 case BPF_OR | BPF_FETCH: 5534 case BPF_XOR: 5535 case BPF_XOR | BPF_FETCH: 5536 case BPF_XCHG: 5537 case BPF_CMPXCHG: 5538 break; 5539 default: 5540 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 5541 return -EINVAL; 5542 } 5543 5544 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 5545 verbose(env, "invalid atomic operand size\n"); 5546 return -EINVAL; 5547 } 5548 5549 /* check src1 operand */ 5550 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5551 if (err) 5552 return err; 5553 5554 /* check src2 operand */ 5555 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5556 if (err) 5557 return err; 5558 5559 if (insn->imm == BPF_CMPXCHG) { 5560 /* Check comparison of R0 with memory location */ 5561 const u32 aux_reg = BPF_REG_0; 5562 5563 err = check_reg_arg(env, aux_reg, SRC_OP); 5564 if (err) 5565 return err; 5566 5567 if (is_pointer_value(env, aux_reg)) { 5568 verbose(env, "R%d leaks addr into mem\n", aux_reg); 5569 return -EACCES; 5570 } 5571 } 5572 5573 if (is_pointer_value(env, insn->src_reg)) { 5574 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 5575 return -EACCES; 5576 } 5577 5578 if (is_ctx_reg(env, insn->dst_reg) || 5579 is_pkt_reg(env, insn->dst_reg) || 5580 is_flow_key_reg(env, insn->dst_reg) || 5581 is_sk_reg(env, insn->dst_reg)) { 5582 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 5583 insn->dst_reg, 5584 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 5585 return -EACCES; 5586 } 5587 5588 if (insn->imm & BPF_FETCH) { 5589 if (insn->imm == BPF_CMPXCHG) 5590 load_reg = BPF_REG_0; 5591 else 5592 load_reg = insn->src_reg; 5593 5594 /* check and record load of old value */ 5595 err = check_reg_arg(env, load_reg, DST_OP); 5596 if (err) 5597 return err; 5598 } else { 5599 /* This instruction accesses a memory location but doesn't 5600 * actually load it into a register. 5601 */ 5602 load_reg = -1; 5603 } 5604 5605 /* Check whether we can read the memory, with second call for fetch 5606 * case to simulate the register fill. 5607 */ 5608 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5609 BPF_SIZE(insn->code), BPF_READ, -1, true); 5610 if (!err && load_reg >= 0) 5611 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5612 BPF_SIZE(insn->code), BPF_READ, load_reg, 5613 true); 5614 if (err) 5615 return err; 5616 5617 /* Check whether we can write into the same memory. */ 5618 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5619 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 5620 if (err) 5621 return err; 5622 5623 return 0; 5624 } 5625 5626 /* When register 'regno' is used to read the stack (either directly or through 5627 * a helper function) make sure that it's within stack boundary and, depending 5628 * on the access type, that all elements of the stack are initialized. 5629 * 5630 * 'off' includes 'regno->off', but not its dynamic part (if any). 5631 * 5632 * All registers that have been spilled on the stack in the slots within the 5633 * read offsets are marked as read. 5634 */ 5635 static int check_stack_range_initialized( 5636 struct bpf_verifier_env *env, int regno, int off, 5637 int access_size, bool zero_size_allowed, 5638 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 5639 { 5640 struct bpf_reg_state *reg = reg_state(env, regno); 5641 struct bpf_func_state *state = func(env, reg); 5642 int err, min_off, max_off, i, j, slot, spi; 5643 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 5644 enum bpf_access_type bounds_check_type; 5645 /* Some accesses can write anything into the stack, others are 5646 * read-only. 5647 */ 5648 bool clobber = false; 5649 5650 if (access_size == 0 && !zero_size_allowed) { 5651 verbose(env, "invalid zero-sized read\n"); 5652 return -EACCES; 5653 } 5654 5655 if (type == ACCESS_HELPER) { 5656 /* The bounds checks for writes are more permissive than for 5657 * reads. However, if raw_mode is not set, we'll do extra 5658 * checks below. 5659 */ 5660 bounds_check_type = BPF_WRITE; 5661 clobber = true; 5662 } else { 5663 bounds_check_type = BPF_READ; 5664 } 5665 err = check_stack_access_within_bounds(env, regno, off, access_size, 5666 type, bounds_check_type); 5667 if (err) 5668 return err; 5669 5670 5671 if (tnum_is_const(reg->var_off)) { 5672 min_off = max_off = reg->var_off.value + off; 5673 } else { 5674 /* Variable offset is prohibited for unprivileged mode for 5675 * simplicity since it requires corresponding support in 5676 * Spectre masking for stack ALU. 5677 * See also retrieve_ptr_limit(). 5678 */ 5679 if (!env->bypass_spec_v1) { 5680 char tn_buf[48]; 5681 5682 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5683 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 5684 regno, err_extra, tn_buf); 5685 return -EACCES; 5686 } 5687 /* Only initialized buffer on stack is allowed to be accessed 5688 * with variable offset. With uninitialized buffer it's hard to 5689 * guarantee that whole memory is marked as initialized on 5690 * helper return since specific bounds are unknown what may 5691 * cause uninitialized stack leaking. 5692 */ 5693 if (meta && meta->raw_mode) 5694 meta = NULL; 5695 5696 min_off = reg->smin_value + off; 5697 max_off = reg->smax_value + off; 5698 } 5699 5700 if (meta && meta->raw_mode) { 5701 /* Ensure we won't be overwriting dynptrs when simulating byte 5702 * by byte access in check_helper_call using meta.access_size. 5703 * This would be a problem if we have a helper in the future 5704 * which takes: 5705 * 5706 * helper(uninit_mem, len, dynptr) 5707 * 5708 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 5709 * may end up writing to dynptr itself when touching memory from 5710 * arg 1. This can be relaxed on a case by case basis for known 5711 * safe cases, but reject due to the possibilitiy of aliasing by 5712 * default. 5713 */ 5714 for (i = min_off; i < max_off + access_size; i++) { 5715 int stack_off = -i - 1; 5716 5717 spi = __get_spi(i); 5718 /* raw_mode may write past allocated_stack */ 5719 if (state->allocated_stack <= stack_off) 5720 continue; 5721 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 5722 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 5723 return -EACCES; 5724 } 5725 } 5726 meta->access_size = access_size; 5727 meta->regno = regno; 5728 return 0; 5729 } 5730 5731 for (i = min_off; i < max_off + access_size; i++) { 5732 u8 *stype; 5733 5734 slot = -i - 1; 5735 spi = slot / BPF_REG_SIZE; 5736 if (state->allocated_stack <= slot) 5737 goto err; 5738 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 5739 if (*stype == STACK_MISC) 5740 goto mark; 5741 if (*stype == STACK_ZERO) { 5742 if (clobber) { 5743 /* helper can write anything into the stack */ 5744 *stype = STACK_MISC; 5745 } 5746 goto mark; 5747 } 5748 5749 if (is_spilled_reg(&state->stack[spi]) && 5750 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 5751 env->allow_ptr_leaks)) { 5752 if (clobber) { 5753 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 5754 for (j = 0; j < BPF_REG_SIZE; j++) 5755 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 5756 } 5757 goto mark; 5758 } 5759 5760 err: 5761 if (tnum_is_const(reg->var_off)) { 5762 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 5763 err_extra, regno, min_off, i - min_off, access_size); 5764 } else { 5765 char tn_buf[48]; 5766 5767 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5768 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 5769 err_extra, regno, tn_buf, i - min_off, access_size); 5770 } 5771 return -EACCES; 5772 mark: 5773 /* reading any byte out of 8-byte 'spill_slot' will cause 5774 * the whole slot to be marked as 'read' 5775 */ 5776 mark_reg_read(env, &state->stack[spi].spilled_ptr, 5777 state->stack[spi].spilled_ptr.parent, 5778 REG_LIVE_READ64); 5779 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 5780 * be sure that whether stack slot is written to or not. Hence, 5781 * we must still conservatively propagate reads upwards even if 5782 * helper may write to the entire memory range. 5783 */ 5784 } 5785 return update_stack_depth(env, state, min_off); 5786 } 5787 5788 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 5789 int access_size, bool zero_size_allowed, 5790 struct bpf_call_arg_meta *meta) 5791 { 5792 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5793 u32 *max_access; 5794 5795 switch (base_type(reg->type)) { 5796 case PTR_TO_PACKET: 5797 case PTR_TO_PACKET_META: 5798 return check_packet_access(env, regno, reg->off, access_size, 5799 zero_size_allowed); 5800 case PTR_TO_MAP_KEY: 5801 if (meta && meta->raw_mode) { 5802 verbose(env, "R%d cannot write into %s\n", regno, 5803 reg_type_str(env, reg->type)); 5804 return -EACCES; 5805 } 5806 return check_mem_region_access(env, regno, reg->off, access_size, 5807 reg->map_ptr->key_size, false); 5808 case PTR_TO_MAP_VALUE: 5809 if (check_map_access_type(env, regno, reg->off, access_size, 5810 meta && meta->raw_mode ? BPF_WRITE : 5811 BPF_READ)) 5812 return -EACCES; 5813 return check_map_access(env, regno, reg->off, access_size, 5814 zero_size_allowed, ACCESS_HELPER); 5815 case PTR_TO_MEM: 5816 if (type_is_rdonly_mem(reg->type)) { 5817 if (meta && meta->raw_mode) { 5818 verbose(env, "R%d cannot write into %s\n", regno, 5819 reg_type_str(env, reg->type)); 5820 return -EACCES; 5821 } 5822 } 5823 return check_mem_region_access(env, regno, reg->off, 5824 access_size, reg->mem_size, 5825 zero_size_allowed); 5826 case PTR_TO_BUF: 5827 if (type_is_rdonly_mem(reg->type)) { 5828 if (meta && meta->raw_mode) { 5829 verbose(env, "R%d cannot write into %s\n", regno, 5830 reg_type_str(env, reg->type)); 5831 return -EACCES; 5832 } 5833 5834 max_access = &env->prog->aux->max_rdonly_access; 5835 } else { 5836 max_access = &env->prog->aux->max_rdwr_access; 5837 } 5838 return check_buffer_access(env, reg, regno, reg->off, 5839 access_size, zero_size_allowed, 5840 max_access); 5841 case PTR_TO_STACK: 5842 return check_stack_range_initialized( 5843 env, 5844 regno, reg->off, access_size, 5845 zero_size_allowed, ACCESS_HELPER, meta); 5846 case PTR_TO_CTX: 5847 /* in case the function doesn't know how to access the context, 5848 * (because we are in a program of type SYSCALL for example), we 5849 * can not statically check its size. 5850 * Dynamically check it now. 5851 */ 5852 if (!env->ops->convert_ctx_access) { 5853 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 5854 int offset = access_size - 1; 5855 5856 /* Allow zero-byte read from PTR_TO_CTX */ 5857 if (access_size == 0) 5858 return zero_size_allowed ? 0 : -EACCES; 5859 5860 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 5861 atype, -1, false); 5862 } 5863 5864 fallthrough; 5865 default: /* scalar_value or invalid ptr */ 5866 /* Allow zero-byte read from NULL, regardless of pointer type */ 5867 if (zero_size_allowed && access_size == 0 && 5868 register_is_null(reg)) 5869 return 0; 5870 5871 verbose(env, "R%d type=%s ", regno, 5872 reg_type_str(env, reg->type)); 5873 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 5874 return -EACCES; 5875 } 5876 } 5877 5878 static int check_mem_size_reg(struct bpf_verifier_env *env, 5879 struct bpf_reg_state *reg, u32 regno, 5880 bool zero_size_allowed, 5881 struct bpf_call_arg_meta *meta) 5882 { 5883 int err; 5884 5885 /* This is used to refine r0 return value bounds for helpers 5886 * that enforce this value as an upper bound on return values. 5887 * See do_refine_retval_range() for helpers that can refine 5888 * the return value. C type of helper is u32 so we pull register 5889 * bound from umax_value however, if negative verifier errors 5890 * out. Only upper bounds can be learned because retval is an 5891 * int type and negative retvals are allowed. 5892 */ 5893 meta->msize_max_value = reg->umax_value; 5894 5895 /* The register is SCALAR_VALUE; the access check 5896 * happens using its boundaries. 5897 */ 5898 if (!tnum_is_const(reg->var_off)) 5899 /* For unprivileged variable accesses, disable raw 5900 * mode so that the program is required to 5901 * initialize all the memory that the helper could 5902 * just partially fill up. 5903 */ 5904 meta = NULL; 5905 5906 if (reg->smin_value < 0) { 5907 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5908 regno); 5909 return -EACCES; 5910 } 5911 5912 if (reg->umin_value == 0) { 5913 err = check_helper_mem_access(env, regno - 1, 0, 5914 zero_size_allowed, 5915 meta); 5916 if (err) 5917 return err; 5918 } 5919 5920 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5921 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5922 regno); 5923 return -EACCES; 5924 } 5925 err = check_helper_mem_access(env, regno - 1, 5926 reg->umax_value, 5927 zero_size_allowed, meta); 5928 if (!err) 5929 err = mark_chain_precision(env, regno); 5930 return err; 5931 } 5932 5933 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5934 u32 regno, u32 mem_size) 5935 { 5936 bool may_be_null = type_may_be_null(reg->type); 5937 struct bpf_reg_state saved_reg; 5938 struct bpf_call_arg_meta meta; 5939 int err; 5940 5941 if (register_is_null(reg)) 5942 return 0; 5943 5944 memset(&meta, 0, sizeof(meta)); 5945 /* Assuming that the register contains a value check if the memory 5946 * access is safe. Temporarily save and restore the register's state as 5947 * the conversion shouldn't be visible to a caller. 5948 */ 5949 if (may_be_null) { 5950 saved_reg = *reg; 5951 mark_ptr_not_null_reg(reg); 5952 } 5953 5954 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 5955 /* Check access for BPF_WRITE */ 5956 meta.raw_mode = true; 5957 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 5958 5959 if (may_be_null) 5960 *reg = saved_reg; 5961 5962 return err; 5963 } 5964 5965 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5966 u32 regno) 5967 { 5968 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 5969 bool may_be_null = type_may_be_null(mem_reg->type); 5970 struct bpf_reg_state saved_reg; 5971 struct bpf_call_arg_meta meta; 5972 int err; 5973 5974 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 5975 5976 memset(&meta, 0, sizeof(meta)); 5977 5978 if (may_be_null) { 5979 saved_reg = *mem_reg; 5980 mark_ptr_not_null_reg(mem_reg); 5981 } 5982 5983 err = check_mem_size_reg(env, reg, regno, true, &meta); 5984 /* Check access for BPF_WRITE */ 5985 meta.raw_mode = true; 5986 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 5987 5988 if (may_be_null) 5989 *mem_reg = saved_reg; 5990 return err; 5991 } 5992 5993 /* Implementation details: 5994 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 5995 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 5996 * Two bpf_map_lookups (even with the same key) will have different reg->id. 5997 * Two separate bpf_obj_new will also have different reg->id. 5998 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 5999 * clears reg->id after value_or_null->value transition, since the verifier only 6000 * cares about the range of access to valid map value pointer and doesn't care 6001 * about actual address of the map element. 6002 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 6003 * reg->id > 0 after value_or_null->value transition. By doing so 6004 * two bpf_map_lookups will be considered two different pointers that 6005 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 6006 * returned from bpf_obj_new. 6007 * The verifier allows taking only one bpf_spin_lock at a time to avoid 6008 * dead-locks. 6009 * Since only one bpf_spin_lock is allowed the checks are simpler than 6010 * reg_is_refcounted() logic. The verifier needs to remember only 6011 * one spin_lock instead of array of acquired_refs. 6012 * cur_state->active_lock remembers which map value element or allocated 6013 * object got locked and clears it after bpf_spin_unlock. 6014 */ 6015 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 6016 bool is_lock) 6017 { 6018 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6019 struct bpf_verifier_state *cur = env->cur_state; 6020 bool is_const = tnum_is_const(reg->var_off); 6021 u64 val = reg->var_off.value; 6022 struct bpf_map *map = NULL; 6023 struct btf *btf = NULL; 6024 struct btf_record *rec; 6025 6026 if (!is_const) { 6027 verbose(env, 6028 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 6029 regno); 6030 return -EINVAL; 6031 } 6032 if (reg->type == PTR_TO_MAP_VALUE) { 6033 map = reg->map_ptr; 6034 if (!map->btf) { 6035 verbose(env, 6036 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 6037 map->name); 6038 return -EINVAL; 6039 } 6040 } else { 6041 btf = reg->btf; 6042 } 6043 6044 rec = reg_btf_record(reg); 6045 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 6046 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 6047 map ? map->name : "kptr"); 6048 return -EINVAL; 6049 } 6050 if (rec->spin_lock_off != val + reg->off) { 6051 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 6052 val + reg->off, rec->spin_lock_off); 6053 return -EINVAL; 6054 } 6055 if (is_lock) { 6056 if (cur->active_lock.ptr) { 6057 verbose(env, 6058 "Locking two bpf_spin_locks are not allowed\n"); 6059 return -EINVAL; 6060 } 6061 if (map) 6062 cur->active_lock.ptr = map; 6063 else 6064 cur->active_lock.ptr = btf; 6065 cur->active_lock.id = reg->id; 6066 } else { 6067 void *ptr; 6068 6069 if (map) 6070 ptr = map; 6071 else 6072 ptr = btf; 6073 6074 if (!cur->active_lock.ptr) { 6075 verbose(env, "bpf_spin_unlock without taking a lock\n"); 6076 return -EINVAL; 6077 } 6078 if (cur->active_lock.ptr != ptr || 6079 cur->active_lock.id != reg->id) { 6080 verbose(env, "bpf_spin_unlock of different lock\n"); 6081 return -EINVAL; 6082 } 6083 6084 invalidate_non_owning_refs(env); 6085 6086 cur->active_lock.ptr = NULL; 6087 cur->active_lock.id = 0; 6088 } 6089 return 0; 6090 } 6091 6092 static int process_timer_func(struct bpf_verifier_env *env, int regno, 6093 struct bpf_call_arg_meta *meta) 6094 { 6095 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6096 bool is_const = tnum_is_const(reg->var_off); 6097 struct bpf_map *map = reg->map_ptr; 6098 u64 val = reg->var_off.value; 6099 6100 if (!is_const) { 6101 verbose(env, 6102 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 6103 regno); 6104 return -EINVAL; 6105 } 6106 if (!map->btf) { 6107 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 6108 map->name); 6109 return -EINVAL; 6110 } 6111 if (!btf_record_has_field(map->record, BPF_TIMER)) { 6112 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 6113 return -EINVAL; 6114 } 6115 if (map->record->timer_off != val + reg->off) { 6116 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 6117 val + reg->off, map->record->timer_off); 6118 return -EINVAL; 6119 } 6120 if (meta->map_ptr) { 6121 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 6122 return -EFAULT; 6123 } 6124 meta->map_uid = reg->map_uid; 6125 meta->map_ptr = map; 6126 return 0; 6127 } 6128 6129 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 6130 struct bpf_call_arg_meta *meta) 6131 { 6132 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6133 struct bpf_map *map_ptr = reg->map_ptr; 6134 struct btf_field *kptr_field; 6135 u32 kptr_off; 6136 6137 if (!tnum_is_const(reg->var_off)) { 6138 verbose(env, 6139 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 6140 regno); 6141 return -EINVAL; 6142 } 6143 if (!map_ptr->btf) { 6144 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 6145 map_ptr->name); 6146 return -EINVAL; 6147 } 6148 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 6149 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 6150 return -EINVAL; 6151 } 6152 6153 meta->map_ptr = map_ptr; 6154 kptr_off = reg->off + reg->var_off.value; 6155 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 6156 if (!kptr_field) { 6157 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 6158 return -EACCES; 6159 } 6160 if (kptr_field->type != BPF_KPTR_REF) { 6161 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 6162 return -EACCES; 6163 } 6164 meta->kptr_field = kptr_field; 6165 return 0; 6166 } 6167 6168 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 6169 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 6170 * 6171 * In both cases we deal with the first 8 bytes, but need to mark the next 8 6172 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 6173 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 6174 * 6175 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 6176 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 6177 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 6178 * mutate the view of the dynptr and also possibly destroy it. In the latter 6179 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 6180 * memory that dynptr points to. 6181 * 6182 * The verifier will keep track both levels of mutation (bpf_dynptr's in 6183 * reg->type and the memory's in reg->dynptr.type), but there is no support for 6184 * readonly dynptr view yet, hence only the first case is tracked and checked. 6185 * 6186 * This is consistent with how C applies the const modifier to a struct object, 6187 * where the pointer itself inside bpf_dynptr becomes const but not what it 6188 * points to. 6189 * 6190 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 6191 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 6192 */ 6193 int process_dynptr_func(struct bpf_verifier_env *env, int regno, 6194 enum bpf_arg_type arg_type, struct bpf_call_arg_meta *meta) 6195 { 6196 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6197 int spi = 0; 6198 6199 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 6200 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 6201 */ 6202 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 6203 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 6204 return -EFAULT; 6205 } 6206 /* CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 6207 * check_func_arg_reg_off's logic. We only need to check offset 6208 * and its alignment for PTR_TO_STACK. 6209 */ 6210 if (reg->type == PTR_TO_STACK) { 6211 spi = dynptr_get_spi(env, reg); 6212 if (spi < 0 && spi != -ERANGE) 6213 return spi; 6214 } 6215 6216 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 6217 * constructing a mutable bpf_dynptr object. 6218 * 6219 * Currently, this is only possible with PTR_TO_STACK 6220 * pointing to a region of at least 16 bytes which doesn't 6221 * contain an existing bpf_dynptr. 6222 * 6223 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 6224 * mutated or destroyed. However, the memory it points to 6225 * may be mutated. 6226 * 6227 * None - Points to a initialized dynptr that can be mutated and 6228 * destroyed, including mutation of the memory it points 6229 * to. 6230 */ 6231 if (arg_type & MEM_UNINIT) { 6232 if (!is_dynptr_reg_valid_uninit(env, reg, spi)) { 6233 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 6234 return -EINVAL; 6235 } 6236 6237 /* We only support one dynptr being uninitialized at the moment, 6238 * which is sufficient for the helper functions we have right now. 6239 */ 6240 if (meta->uninit_dynptr_regno) { 6241 verbose(env, "verifier internal error: multiple uninitialized dynptr args\n"); 6242 return -EFAULT; 6243 } 6244 6245 meta->uninit_dynptr_regno = regno; 6246 } else /* MEM_RDONLY and None case from above */ { 6247 int err; 6248 6249 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 6250 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 6251 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 6252 return -EINVAL; 6253 } 6254 6255 if (!is_dynptr_reg_valid_init(env, reg, spi)) { 6256 verbose(env, 6257 "Expected an initialized dynptr as arg #%d\n", 6258 regno); 6259 return -EINVAL; 6260 } 6261 6262 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 6263 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 6264 const char *err_extra = ""; 6265 6266 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 6267 case DYNPTR_TYPE_LOCAL: 6268 err_extra = "local"; 6269 break; 6270 case DYNPTR_TYPE_RINGBUF: 6271 err_extra = "ringbuf"; 6272 break; 6273 default: 6274 err_extra = "<unknown>"; 6275 break; 6276 } 6277 verbose(env, 6278 "Expected a dynptr of type %s as arg #%d\n", 6279 err_extra, regno); 6280 return -EINVAL; 6281 } 6282 6283 err = mark_dynptr_read(env, reg); 6284 if (err) 6285 return err; 6286 } 6287 return 0; 6288 } 6289 6290 static bool arg_type_is_mem_size(enum bpf_arg_type type) 6291 { 6292 return type == ARG_CONST_SIZE || 6293 type == ARG_CONST_SIZE_OR_ZERO; 6294 } 6295 6296 static bool arg_type_is_release(enum bpf_arg_type type) 6297 { 6298 return type & OBJ_RELEASE; 6299 } 6300 6301 static bool arg_type_is_dynptr(enum bpf_arg_type type) 6302 { 6303 return base_type(type) == ARG_PTR_TO_DYNPTR; 6304 } 6305 6306 static int int_ptr_type_to_size(enum bpf_arg_type type) 6307 { 6308 if (type == ARG_PTR_TO_INT) 6309 return sizeof(u32); 6310 else if (type == ARG_PTR_TO_LONG) 6311 return sizeof(u64); 6312 6313 return -EINVAL; 6314 } 6315 6316 static int resolve_map_arg_type(struct bpf_verifier_env *env, 6317 const struct bpf_call_arg_meta *meta, 6318 enum bpf_arg_type *arg_type) 6319 { 6320 if (!meta->map_ptr) { 6321 /* kernel subsystem misconfigured verifier */ 6322 verbose(env, "invalid map_ptr to access map->type\n"); 6323 return -EACCES; 6324 } 6325 6326 switch (meta->map_ptr->map_type) { 6327 case BPF_MAP_TYPE_SOCKMAP: 6328 case BPF_MAP_TYPE_SOCKHASH: 6329 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 6330 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 6331 } else { 6332 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 6333 return -EINVAL; 6334 } 6335 break; 6336 case BPF_MAP_TYPE_BLOOM_FILTER: 6337 if (meta->func_id == BPF_FUNC_map_peek_elem) 6338 *arg_type = ARG_PTR_TO_MAP_VALUE; 6339 break; 6340 default: 6341 break; 6342 } 6343 return 0; 6344 } 6345 6346 struct bpf_reg_types { 6347 const enum bpf_reg_type types[10]; 6348 u32 *btf_id; 6349 }; 6350 6351 static const struct bpf_reg_types sock_types = { 6352 .types = { 6353 PTR_TO_SOCK_COMMON, 6354 PTR_TO_SOCKET, 6355 PTR_TO_TCP_SOCK, 6356 PTR_TO_XDP_SOCK, 6357 }, 6358 }; 6359 6360 #ifdef CONFIG_NET 6361 static const struct bpf_reg_types btf_id_sock_common_types = { 6362 .types = { 6363 PTR_TO_SOCK_COMMON, 6364 PTR_TO_SOCKET, 6365 PTR_TO_TCP_SOCK, 6366 PTR_TO_XDP_SOCK, 6367 PTR_TO_BTF_ID, 6368 PTR_TO_BTF_ID | PTR_TRUSTED, 6369 }, 6370 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 6371 }; 6372 #endif 6373 6374 static const struct bpf_reg_types mem_types = { 6375 .types = { 6376 PTR_TO_STACK, 6377 PTR_TO_PACKET, 6378 PTR_TO_PACKET_META, 6379 PTR_TO_MAP_KEY, 6380 PTR_TO_MAP_VALUE, 6381 PTR_TO_MEM, 6382 PTR_TO_MEM | MEM_RINGBUF, 6383 PTR_TO_BUF, 6384 }, 6385 }; 6386 6387 static const struct bpf_reg_types int_ptr_types = { 6388 .types = { 6389 PTR_TO_STACK, 6390 PTR_TO_PACKET, 6391 PTR_TO_PACKET_META, 6392 PTR_TO_MAP_KEY, 6393 PTR_TO_MAP_VALUE, 6394 }, 6395 }; 6396 6397 static const struct bpf_reg_types spin_lock_types = { 6398 .types = { 6399 PTR_TO_MAP_VALUE, 6400 PTR_TO_BTF_ID | MEM_ALLOC, 6401 } 6402 }; 6403 6404 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 6405 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 6406 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 6407 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 6408 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 6409 static const struct bpf_reg_types btf_ptr_types = { 6410 .types = { 6411 PTR_TO_BTF_ID, 6412 PTR_TO_BTF_ID | PTR_TRUSTED, 6413 PTR_TO_BTF_ID | MEM_RCU, 6414 }, 6415 }; 6416 static const struct bpf_reg_types percpu_btf_ptr_types = { 6417 .types = { 6418 PTR_TO_BTF_ID | MEM_PERCPU, 6419 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 6420 } 6421 }; 6422 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 6423 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 6424 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 6425 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 6426 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 6427 static const struct bpf_reg_types dynptr_types = { 6428 .types = { 6429 PTR_TO_STACK, 6430 CONST_PTR_TO_DYNPTR, 6431 } 6432 }; 6433 6434 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 6435 [ARG_PTR_TO_MAP_KEY] = &mem_types, 6436 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 6437 [ARG_CONST_SIZE] = &scalar_types, 6438 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 6439 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 6440 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 6441 [ARG_PTR_TO_CTX] = &context_types, 6442 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 6443 #ifdef CONFIG_NET 6444 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 6445 #endif 6446 [ARG_PTR_TO_SOCKET] = &fullsock_types, 6447 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 6448 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 6449 [ARG_PTR_TO_MEM] = &mem_types, 6450 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 6451 [ARG_PTR_TO_INT] = &int_ptr_types, 6452 [ARG_PTR_TO_LONG] = &int_ptr_types, 6453 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 6454 [ARG_PTR_TO_FUNC] = &func_ptr_types, 6455 [ARG_PTR_TO_STACK] = &stack_ptr_types, 6456 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 6457 [ARG_PTR_TO_TIMER] = &timer_types, 6458 [ARG_PTR_TO_KPTR] = &kptr_types, 6459 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 6460 }; 6461 6462 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 6463 enum bpf_arg_type arg_type, 6464 const u32 *arg_btf_id, 6465 struct bpf_call_arg_meta *meta) 6466 { 6467 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6468 enum bpf_reg_type expected, type = reg->type; 6469 const struct bpf_reg_types *compatible; 6470 int i, j; 6471 6472 compatible = compatible_reg_types[base_type(arg_type)]; 6473 if (!compatible) { 6474 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 6475 return -EFAULT; 6476 } 6477 6478 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 6479 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 6480 * 6481 * Same for MAYBE_NULL: 6482 * 6483 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 6484 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 6485 * 6486 * Therefore we fold these flags depending on the arg_type before comparison. 6487 */ 6488 if (arg_type & MEM_RDONLY) 6489 type &= ~MEM_RDONLY; 6490 if (arg_type & PTR_MAYBE_NULL) 6491 type &= ~PTR_MAYBE_NULL; 6492 6493 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 6494 expected = compatible->types[i]; 6495 if (expected == NOT_INIT) 6496 break; 6497 6498 if (type == expected) 6499 goto found; 6500 } 6501 6502 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 6503 for (j = 0; j + 1 < i; j++) 6504 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 6505 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 6506 return -EACCES; 6507 6508 found: 6509 if (reg->type == PTR_TO_BTF_ID || reg->type & PTR_TRUSTED) { 6510 /* For bpf_sk_release, it needs to match against first member 6511 * 'struct sock_common', hence make an exception for it. This 6512 * allows bpf_sk_release to work for multiple socket types. 6513 */ 6514 bool strict_type_match = arg_type_is_release(arg_type) && 6515 meta->func_id != BPF_FUNC_sk_release; 6516 6517 if (!arg_btf_id) { 6518 if (!compatible->btf_id) { 6519 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 6520 return -EFAULT; 6521 } 6522 arg_btf_id = compatible->btf_id; 6523 } 6524 6525 if (meta->func_id == BPF_FUNC_kptr_xchg) { 6526 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 6527 return -EACCES; 6528 } else { 6529 if (arg_btf_id == BPF_PTR_POISON) { 6530 verbose(env, "verifier internal error:"); 6531 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 6532 regno); 6533 return -EACCES; 6534 } 6535 6536 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 6537 btf_vmlinux, *arg_btf_id, 6538 strict_type_match)) { 6539 verbose(env, "R%d is of type %s but %s is expected\n", 6540 regno, kernel_type_name(reg->btf, reg->btf_id), 6541 kernel_type_name(btf_vmlinux, *arg_btf_id)); 6542 return -EACCES; 6543 } 6544 } 6545 } else if (type_is_alloc(reg->type)) { 6546 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock) { 6547 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 6548 return -EFAULT; 6549 } 6550 } 6551 6552 return 0; 6553 } 6554 6555 static struct btf_field * 6556 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 6557 { 6558 struct btf_field *field; 6559 struct btf_record *rec; 6560 6561 rec = reg_btf_record(reg); 6562 if (!rec) 6563 return NULL; 6564 6565 field = btf_record_find(rec, off, fields); 6566 if (!field) 6567 return NULL; 6568 6569 return field; 6570 } 6571 6572 int check_func_arg_reg_off(struct bpf_verifier_env *env, 6573 const struct bpf_reg_state *reg, int regno, 6574 enum bpf_arg_type arg_type) 6575 { 6576 u32 type = reg->type; 6577 6578 /* When referenced register is passed to release function, its fixed 6579 * offset must be 0. 6580 * 6581 * We will check arg_type_is_release reg has ref_obj_id when storing 6582 * meta->release_regno. 6583 */ 6584 if (arg_type_is_release(arg_type)) { 6585 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 6586 * may not directly point to the object being released, but to 6587 * dynptr pointing to such object, which might be at some offset 6588 * on the stack. In that case, we simply to fallback to the 6589 * default handling. 6590 */ 6591 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 6592 return 0; 6593 6594 if ((type_is_ptr_alloc_obj(type) || type_is_non_owning_ref(type)) && reg->off) { 6595 if (reg_find_field_offset(reg, reg->off, BPF_GRAPH_NODE_OR_ROOT)) 6596 return __check_ptr_off_reg(env, reg, regno, true); 6597 6598 verbose(env, "R%d must have zero offset when passed to release func\n", 6599 regno); 6600 verbose(env, "No graph node or root found at R%d type:%s off:%d\n", regno, 6601 kernel_type_name(reg->btf, reg->btf_id), reg->off); 6602 return -EINVAL; 6603 } 6604 6605 /* Doing check_ptr_off_reg check for the offset will catch this 6606 * because fixed_off_ok is false, but checking here allows us 6607 * to give the user a better error message. 6608 */ 6609 if (reg->off) { 6610 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 6611 regno); 6612 return -EINVAL; 6613 } 6614 return __check_ptr_off_reg(env, reg, regno, false); 6615 } 6616 6617 switch (type) { 6618 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 6619 case PTR_TO_STACK: 6620 case PTR_TO_PACKET: 6621 case PTR_TO_PACKET_META: 6622 case PTR_TO_MAP_KEY: 6623 case PTR_TO_MAP_VALUE: 6624 case PTR_TO_MEM: 6625 case PTR_TO_MEM | MEM_RDONLY: 6626 case PTR_TO_MEM | MEM_RINGBUF: 6627 case PTR_TO_BUF: 6628 case PTR_TO_BUF | MEM_RDONLY: 6629 case SCALAR_VALUE: 6630 return 0; 6631 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 6632 * fixed offset. 6633 */ 6634 case PTR_TO_BTF_ID: 6635 case PTR_TO_BTF_ID | MEM_ALLOC: 6636 case PTR_TO_BTF_ID | PTR_TRUSTED: 6637 case PTR_TO_BTF_ID | MEM_RCU: 6638 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED: 6639 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 6640 /* When referenced PTR_TO_BTF_ID is passed to release function, 6641 * its fixed offset must be 0. In the other cases, fixed offset 6642 * can be non-zero. This was already checked above. So pass 6643 * fixed_off_ok as true to allow fixed offset for all other 6644 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 6645 * still need to do checks instead of returning. 6646 */ 6647 return __check_ptr_off_reg(env, reg, regno, true); 6648 default: 6649 return __check_ptr_off_reg(env, reg, regno, false); 6650 } 6651 } 6652 6653 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 6654 { 6655 struct bpf_func_state *state = func(env, reg); 6656 int spi; 6657 6658 if (reg->type == CONST_PTR_TO_DYNPTR) 6659 return reg->id; 6660 spi = dynptr_get_spi(env, reg); 6661 if (spi < 0) 6662 return spi; 6663 return state->stack[spi].spilled_ptr.id; 6664 } 6665 6666 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 6667 { 6668 struct bpf_func_state *state = func(env, reg); 6669 int spi; 6670 6671 if (reg->type == CONST_PTR_TO_DYNPTR) 6672 return reg->ref_obj_id; 6673 spi = dynptr_get_spi(env, reg); 6674 if (spi < 0) 6675 return spi; 6676 return state->stack[spi].spilled_ptr.ref_obj_id; 6677 } 6678 6679 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 6680 struct bpf_call_arg_meta *meta, 6681 const struct bpf_func_proto *fn) 6682 { 6683 u32 regno = BPF_REG_1 + arg; 6684 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6685 enum bpf_arg_type arg_type = fn->arg_type[arg]; 6686 enum bpf_reg_type type = reg->type; 6687 u32 *arg_btf_id = NULL; 6688 int err = 0; 6689 6690 if (arg_type == ARG_DONTCARE) 6691 return 0; 6692 6693 err = check_reg_arg(env, regno, SRC_OP); 6694 if (err) 6695 return err; 6696 6697 if (arg_type == ARG_ANYTHING) { 6698 if (is_pointer_value(env, regno)) { 6699 verbose(env, "R%d leaks addr into helper function\n", 6700 regno); 6701 return -EACCES; 6702 } 6703 return 0; 6704 } 6705 6706 if (type_is_pkt_pointer(type) && 6707 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 6708 verbose(env, "helper access to the packet is not allowed\n"); 6709 return -EACCES; 6710 } 6711 6712 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 6713 err = resolve_map_arg_type(env, meta, &arg_type); 6714 if (err) 6715 return err; 6716 } 6717 6718 if (register_is_null(reg) && type_may_be_null(arg_type)) 6719 /* A NULL register has a SCALAR_VALUE type, so skip 6720 * type checking. 6721 */ 6722 goto skip_type_check; 6723 6724 /* arg_btf_id and arg_size are in a union. */ 6725 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 6726 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 6727 arg_btf_id = fn->arg_btf_id[arg]; 6728 6729 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 6730 if (err) 6731 return err; 6732 6733 err = check_func_arg_reg_off(env, reg, regno, arg_type); 6734 if (err) 6735 return err; 6736 6737 skip_type_check: 6738 if (arg_type_is_release(arg_type)) { 6739 if (arg_type_is_dynptr(arg_type)) { 6740 struct bpf_func_state *state = func(env, reg); 6741 int spi; 6742 6743 /* Only dynptr created on stack can be released, thus 6744 * the get_spi and stack state checks for spilled_ptr 6745 * should only be done before process_dynptr_func for 6746 * PTR_TO_STACK. 6747 */ 6748 if (reg->type == PTR_TO_STACK) { 6749 spi = dynptr_get_spi(env, reg); 6750 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 6751 verbose(env, "arg %d is an unacquired reference\n", regno); 6752 return -EINVAL; 6753 } 6754 } else { 6755 verbose(env, "cannot release unowned const bpf_dynptr\n"); 6756 return -EINVAL; 6757 } 6758 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 6759 verbose(env, "R%d must be referenced when passed to release function\n", 6760 regno); 6761 return -EINVAL; 6762 } 6763 if (meta->release_regno) { 6764 verbose(env, "verifier internal error: more than one release argument\n"); 6765 return -EFAULT; 6766 } 6767 meta->release_regno = regno; 6768 } 6769 6770 if (reg->ref_obj_id) { 6771 if (meta->ref_obj_id) { 6772 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 6773 regno, reg->ref_obj_id, 6774 meta->ref_obj_id); 6775 return -EFAULT; 6776 } 6777 meta->ref_obj_id = reg->ref_obj_id; 6778 } 6779 6780 switch (base_type(arg_type)) { 6781 case ARG_CONST_MAP_PTR: 6782 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 6783 if (meta->map_ptr) { 6784 /* Use map_uid (which is unique id of inner map) to reject: 6785 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 6786 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 6787 * if (inner_map1 && inner_map2) { 6788 * timer = bpf_map_lookup_elem(inner_map1); 6789 * if (timer) 6790 * // mismatch would have been allowed 6791 * bpf_timer_init(timer, inner_map2); 6792 * } 6793 * 6794 * Comparing map_ptr is enough to distinguish normal and outer maps. 6795 */ 6796 if (meta->map_ptr != reg->map_ptr || 6797 meta->map_uid != reg->map_uid) { 6798 verbose(env, 6799 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 6800 meta->map_uid, reg->map_uid); 6801 return -EINVAL; 6802 } 6803 } 6804 meta->map_ptr = reg->map_ptr; 6805 meta->map_uid = reg->map_uid; 6806 break; 6807 case ARG_PTR_TO_MAP_KEY: 6808 /* bpf_map_xxx(..., map_ptr, ..., key) call: 6809 * check that [key, key + map->key_size) are within 6810 * stack limits and initialized 6811 */ 6812 if (!meta->map_ptr) { 6813 /* in function declaration map_ptr must come before 6814 * map_key, so that it's verified and known before 6815 * we have to check map_key here. Otherwise it means 6816 * that kernel subsystem misconfigured verifier 6817 */ 6818 verbose(env, "invalid map_ptr to access map->key\n"); 6819 return -EACCES; 6820 } 6821 err = check_helper_mem_access(env, regno, 6822 meta->map_ptr->key_size, false, 6823 NULL); 6824 break; 6825 case ARG_PTR_TO_MAP_VALUE: 6826 if (type_may_be_null(arg_type) && register_is_null(reg)) 6827 return 0; 6828 6829 /* bpf_map_xxx(..., map_ptr, ..., value) call: 6830 * check [value, value + map->value_size) validity 6831 */ 6832 if (!meta->map_ptr) { 6833 /* kernel subsystem misconfigured verifier */ 6834 verbose(env, "invalid map_ptr to access map->value\n"); 6835 return -EACCES; 6836 } 6837 meta->raw_mode = arg_type & MEM_UNINIT; 6838 err = check_helper_mem_access(env, regno, 6839 meta->map_ptr->value_size, false, 6840 meta); 6841 break; 6842 case ARG_PTR_TO_PERCPU_BTF_ID: 6843 if (!reg->btf_id) { 6844 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 6845 return -EACCES; 6846 } 6847 meta->ret_btf = reg->btf; 6848 meta->ret_btf_id = reg->btf_id; 6849 break; 6850 case ARG_PTR_TO_SPIN_LOCK: 6851 if (in_rbtree_lock_required_cb(env)) { 6852 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 6853 return -EACCES; 6854 } 6855 if (meta->func_id == BPF_FUNC_spin_lock) { 6856 err = process_spin_lock(env, regno, true); 6857 if (err) 6858 return err; 6859 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 6860 err = process_spin_lock(env, regno, false); 6861 if (err) 6862 return err; 6863 } else { 6864 verbose(env, "verifier internal error\n"); 6865 return -EFAULT; 6866 } 6867 break; 6868 case ARG_PTR_TO_TIMER: 6869 err = process_timer_func(env, regno, meta); 6870 if (err) 6871 return err; 6872 break; 6873 case ARG_PTR_TO_FUNC: 6874 meta->subprogno = reg->subprogno; 6875 break; 6876 case ARG_PTR_TO_MEM: 6877 /* The access to this pointer is only checked when we hit the 6878 * next is_mem_size argument below. 6879 */ 6880 meta->raw_mode = arg_type & MEM_UNINIT; 6881 if (arg_type & MEM_FIXED_SIZE) { 6882 err = check_helper_mem_access(env, regno, 6883 fn->arg_size[arg], false, 6884 meta); 6885 } 6886 break; 6887 case ARG_CONST_SIZE: 6888 err = check_mem_size_reg(env, reg, regno, false, meta); 6889 break; 6890 case ARG_CONST_SIZE_OR_ZERO: 6891 err = check_mem_size_reg(env, reg, regno, true, meta); 6892 break; 6893 case ARG_PTR_TO_DYNPTR: 6894 err = process_dynptr_func(env, regno, arg_type, meta); 6895 if (err) 6896 return err; 6897 break; 6898 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 6899 if (!tnum_is_const(reg->var_off)) { 6900 verbose(env, "R%d is not a known constant'\n", 6901 regno); 6902 return -EACCES; 6903 } 6904 meta->mem_size = reg->var_off.value; 6905 err = mark_chain_precision(env, regno); 6906 if (err) 6907 return err; 6908 break; 6909 case ARG_PTR_TO_INT: 6910 case ARG_PTR_TO_LONG: 6911 { 6912 int size = int_ptr_type_to_size(arg_type); 6913 6914 err = check_helper_mem_access(env, regno, size, false, meta); 6915 if (err) 6916 return err; 6917 err = check_ptr_alignment(env, reg, 0, size, true); 6918 break; 6919 } 6920 case ARG_PTR_TO_CONST_STR: 6921 { 6922 struct bpf_map *map = reg->map_ptr; 6923 int map_off; 6924 u64 map_addr; 6925 char *str_ptr; 6926 6927 if (!bpf_map_is_rdonly(map)) { 6928 verbose(env, "R%d does not point to a readonly map'\n", regno); 6929 return -EACCES; 6930 } 6931 6932 if (!tnum_is_const(reg->var_off)) { 6933 verbose(env, "R%d is not a constant address'\n", regno); 6934 return -EACCES; 6935 } 6936 6937 if (!map->ops->map_direct_value_addr) { 6938 verbose(env, "no direct value access support for this map type\n"); 6939 return -EACCES; 6940 } 6941 6942 err = check_map_access(env, regno, reg->off, 6943 map->value_size - reg->off, false, 6944 ACCESS_HELPER); 6945 if (err) 6946 return err; 6947 6948 map_off = reg->off + reg->var_off.value; 6949 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 6950 if (err) { 6951 verbose(env, "direct value access on string failed\n"); 6952 return err; 6953 } 6954 6955 str_ptr = (char *)(long)(map_addr); 6956 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 6957 verbose(env, "string is not zero-terminated\n"); 6958 return -EINVAL; 6959 } 6960 break; 6961 } 6962 case ARG_PTR_TO_KPTR: 6963 err = process_kptr_func(env, regno, meta); 6964 if (err) 6965 return err; 6966 break; 6967 } 6968 6969 return err; 6970 } 6971 6972 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 6973 { 6974 enum bpf_attach_type eatype = env->prog->expected_attach_type; 6975 enum bpf_prog_type type = resolve_prog_type(env->prog); 6976 6977 if (func_id != BPF_FUNC_map_update_elem) 6978 return false; 6979 6980 /* It's not possible to get access to a locked struct sock in these 6981 * contexts, so updating is safe. 6982 */ 6983 switch (type) { 6984 case BPF_PROG_TYPE_TRACING: 6985 if (eatype == BPF_TRACE_ITER) 6986 return true; 6987 break; 6988 case BPF_PROG_TYPE_SOCKET_FILTER: 6989 case BPF_PROG_TYPE_SCHED_CLS: 6990 case BPF_PROG_TYPE_SCHED_ACT: 6991 case BPF_PROG_TYPE_XDP: 6992 case BPF_PROG_TYPE_SK_REUSEPORT: 6993 case BPF_PROG_TYPE_FLOW_DISSECTOR: 6994 case BPF_PROG_TYPE_SK_LOOKUP: 6995 return true; 6996 default: 6997 break; 6998 } 6999 7000 verbose(env, "cannot update sockmap in this context\n"); 7001 return false; 7002 } 7003 7004 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 7005 { 7006 return env->prog->jit_requested && 7007 bpf_jit_supports_subprog_tailcalls(); 7008 } 7009 7010 static int check_map_func_compatibility(struct bpf_verifier_env *env, 7011 struct bpf_map *map, int func_id) 7012 { 7013 if (!map) 7014 return 0; 7015 7016 /* We need a two way check, first is from map perspective ... */ 7017 switch (map->map_type) { 7018 case BPF_MAP_TYPE_PROG_ARRAY: 7019 if (func_id != BPF_FUNC_tail_call) 7020 goto error; 7021 break; 7022 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 7023 if (func_id != BPF_FUNC_perf_event_read && 7024 func_id != BPF_FUNC_perf_event_output && 7025 func_id != BPF_FUNC_skb_output && 7026 func_id != BPF_FUNC_perf_event_read_value && 7027 func_id != BPF_FUNC_xdp_output) 7028 goto error; 7029 break; 7030 case BPF_MAP_TYPE_RINGBUF: 7031 if (func_id != BPF_FUNC_ringbuf_output && 7032 func_id != BPF_FUNC_ringbuf_reserve && 7033 func_id != BPF_FUNC_ringbuf_query && 7034 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 7035 func_id != BPF_FUNC_ringbuf_submit_dynptr && 7036 func_id != BPF_FUNC_ringbuf_discard_dynptr) 7037 goto error; 7038 break; 7039 case BPF_MAP_TYPE_USER_RINGBUF: 7040 if (func_id != BPF_FUNC_user_ringbuf_drain) 7041 goto error; 7042 break; 7043 case BPF_MAP_TYPE_STACK_TRACE: 7044 if (func_id != BPF_FUNC_get_stackid) 7045 goto error; 7046 break; 7047 case BPF_MAP_TYPE_CGROUP_ARRAY: 7048 if (func_id != BPF_FUNC_skb_under_cgroup && 7049 func_id != BPF_FUNC_current_task_under_cgroup) 7050 goto error; 7051 break; 7052 case BPF_MAP_TYPE_CGROUP_STORAGE: 7053 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 7054 if (func_id != BPF_FUNC_get_local_storage) 7055 goto error; 7056 break; 7057 case BPF_MAP_TYPE_DEVMAP: 7058 case BPF_MAP_TYPE_DEVMAP_HASH: 7059 if (func_id != BPF_FUNC_redirect_map && 7060 func_id != BPF_FUNC_map_lookup_elem) 7061 goto error; 7062 break; 7063 /* Restrict bpf side of cpumap and xskmap, open when use-cases 7064 * appear. 7065 */ 7066 case BPF_MAP_TYPE_CPUMAP: 7067 if (func_id != BPF_FUNC_redirect_map) 7068 goto error; 7069 break; 7070 case BPF_MAP_TYPE_XSKMAP: 7071 if (func_id != BPF_FUNC_redirect_map && 7072 func_id != BPF_FUNC_map_lookup_elem) 7073 goto error; 7074 break; 7075 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 7076 case BPF_MAP_TYPE_HASH_OF_MAPS: 7077 if (func_id != BPF_FUNC_map_lookup_elem) 7078 goto error; 7079 break; 7080 case BPF_MAP_TYPE_SOCKMAP: 7081 if (func_id != BPF_FUNC_sk_redirect_map && 7082 func_id != BPF_FUNC_sock_map_update && 7083 func_id != BPF_FUNC_map_delete_elem && 7084 func_id != BPF_FUNC_msg_redirect_map && 7085 func_id != BPF_FUNC_sk_select_reuseport && 7086 func_id != BPF_FUNC_map_lookup_elem && 7087 !may_update_sockmap(env, func_id)) 7088 goto error; 7089 break; 7090 case BPF_MAP_TYPE_SOCKHASH: 7091 if (func_id != BPF_FUNC_sk_redirect_hash && 7092 func_id != BPF_FUNC_sock_hash_update && 7093 func_id != BPF_FUNC_map_delete_elem && 7094 func_id != BPF_FUNC_msg_redirect_hash && 7095 func_id != BPF_FUNC_sk_select_reuseport && 7096 func_id != BPF_FUNC_map_lookup_elem && 7097 !may_update_sockmap(env, func_id)) 7098 goto error; 7099 break; 7100 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 7101 if (func_id != BPF_FUNC_sk_select_reuseport) 7102 goto error; 7103 break; 7104 case BPF_MAP_TYPE_QUEUE: 7105 case BPF_MAP_TYPE_STACK: 7106 if (func_id != BPF_FUNC_map_peek_elem && 7107 func_id != BPF_FUNC_map_pop_elem && 7108 func_id != BPF_FUNC_map_push_elem) 7109 goto error; 7110 break; 7111 case BPF_MAP_TYPE_SK_STORAGE: 7112 if (func_id != BPF_FUNC_sk_storage_get && 7113 func_id != BPF_FUNC_sk_storage_delete) 7114 goto error; 7115 break; 7116 case BPF_MAP_TYPE_INODE_STORAGE: 7117 if (func_id != BPF_FUNC_inode_storage_get && 7118 func_id != BPF_FUNC_inode_storage_delete) 7119 goto error; 7120 break; 7121 case BPF_MAP_TYPE_TASK_STORAGE: 7122 if (func_id != BPF_FUNC_task_storage_get && 7123 func_id != BPF_FUNC_task_storage_delete) 7124 goto error; 7125 break; 7126 case BPF_MAP_TYPE_CGRP_STORAGE: 7127 if (func_id != BPF_FUNC_cgrp_storage_get && 7128 func_id != BPF_FUNC_cgrp_storage_delete) 7129 goto error; 7130 break; 7131 case BPF_MAP_TYPE_BLOOM_FILTER: 7132 if (func_id != BPF_FUNC_map_peek_elem && 7133 func_id != BPF_FUNC_map_push_elem) 7134 goto error; 7135 break; 7136 default: 7137 break; 7138 } 7139 7140 /* ... and second from the function itself. */ 7141 switch (func_id) { 7142 case BPF_FUNC_tail_call: 7143 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 7144 goto error; 7145 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 7146 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 7147 return -EINVAL; 7148 } 7149 break; 7150 case BPF_FUNC_perf_event_read: 7151 case BPF_FUNC_perf_event_output: 7152 case BPF_FUNC_perf_event_read_value: 7153 case BPF_FUNC_skb_output: 7154 case BPF_FUNC_xdp_output: 7155 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 7156 goto error; 7157 break; 7158 case BPF_FUNC_ringbuf_output: 7159 case BPF_FUNC_ringbuf_reserve: 7160 case BPF_FUNC_ringbuf_query: 7161 case BPF_FUNC_ringbuf_reserve_dynptr: 7162 case BPF_FUNC_ringbuf_submit_dynptr: 7163 case BPF_FUNC_ringbuf_discard_dynptr: 7164 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 7165 goto error; 7166 break; 7167 case BPF_FUNC_user_ringbuf_drain: 7168 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 7169 goto error; 7170 break; 7171 case BPF_FUNC_get_stackid: 7172 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 7173 goto error; 7174 break; 7175 case BPF_FUNC_current_task_under_cgroup: 7176 case BPF_FUNC_skb_under_cgroup: 7177 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 7178 goto error; 7179 break; 7180 case BPF_FUNC_redirect_map: 7181 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 7182 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 7183 map->map_type != BPF_MAP_TYPE_CPUMAP && 7184 map->map_type != BPF_MAP_TYPE_XSKMAP) 7185 goto error; 7186 break; 7187 case BPF_FUNC_sk_redirect_map: 7188 case BPF_FUNC_msg_redirect_map: 7189 case BPF_FUNC_sock_map_update: 7190 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 7191 goto error; 7192 break; 7193 case BPF_FUNC_sk_redirect_hash: 7194 case BPF_FUNC_msg_redirect_hash: 7195 case BPF_FUNC_sock_hash_update: 7196 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 7197 goto error; 7198 break; 7199 case BPF_FUNC_get_local_storage: 7200 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 7201 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 7202 goto error; 7203 break; 7204 case BPF_FUNC_sk_select_reuseport: 7205 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 7206 map->map_type != BPF_MAP_TYPE_SOCKMAP && 7207 map->map_type != BPF_MAP_TYPE_SOCKHASH) 7208 goto error; 7209 break; 7210 case BPF_FUNC_map_pop_elem: 7211 if (map->map_type != BPF_MAP_TYPE_QUEUE && 7212 map->map_type != BPF_MAP_TYPE_STACK) 7213 goto error; 7214 break; 7215 case BPF_FUNC_map_peek_elem: 7216 case BPF_FUNC_map_push_elem: 7217 if (map->map_type != BPF_MAP_TYPE_QUEUE && 7218 map->map_type != BPF_MAP_TYPE_STACK && 7219 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 7220 goto error; 7221 break; 7222 case BPF_FUNC_map_lookup_percpu_elem: 7223 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 7224 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 7225 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 7226 goto error; 7227 break; 7228 case BPF_FUNC_sk_storage_get: 7229 case BPF_FUNC_sk_storage_delete: 7230 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 7231 goto error; 7232 break; 7233 case BPF_FUNC_inode_storage_get: 7234 case BPF_FUNC_inode_storage_delete: 7235 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 7236 goto error; 7237 break; 7238 case BPF_FUNC_task_storage_get: 7239 case BPF_FUNC_task_storage_delete: 7240 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 7241 goto error; 7242 break; 7243 case BPF_FUNC_cgrp_storage_get: 7244 case BPF_FUNC_cgrp_storage_delete: 7245 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 7246 goto error; 7247 break; 7248 default: 7249 break; 7250 } 7251 7252 return 0; 7253 error: 7254 verbose(env, "cannot pass map_type %d into func %s#%d\n", 7255 map->map_type, func_id_name(func_id), func_id); 7256 return -EINVAL; 7257 } 7258 7259 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 7260 { 7261 int count = 0; 7262 7263 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 7264 count++; 7265 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 7266 count++; 7267 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 7268 count++; 7269 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 7270 count++; 7271 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 7272 count++; 7273 7274 /* We only support one arg being in raw mode at the moment, 7275 * which is sufficient for the helper functions we have 7276 * right now. 7277 */ 7278 return count <= 1; 7279 } 7280 7281 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 7282 { 7283 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 7284 bool has_size = fn->arg_size[arg] != 0; 7285 bool is_next_size = false; 7286 7287 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 7288 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 7289 7290 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 7291 return is_next_size; 7292 7293 return has_size == is_next_size || is_next_size == is_fixed; 7294 } 7295 7296 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 7297 { 7298 /* bpf_xxx(..., buf, len) call will access 'len' 7299 * bytes from memory 'buf'. Both arg types need 7300 * to be paired, so make sure there's no buggy 7301 * helper function specification. 7302 */ 7303 if (arg_type_is_mem_size(fn->arg1_type) || 7304 check_args_pair_invalid(fn, 0) || 7305 check_args_pair_invalid(fn, 1) || 7306 check_args_pair_invalid(fn, 2) || 7307 check_args_pair_invalid(fn, 3) || 7308 check_args_pair_invalid(fn, 4)) 7309 return false; 7310 7311 return true; 7312 } 7313 7314 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 7315 { 7316 int i; 7317 7318 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 7319 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 7320 return !!fn->arg_btf_id[i]; 7321 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 7322 return fn->arg_btf_id[i] == BPF_PTR_POISON; 7323 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 7324 /* arg_btf_id and arg_size are in a union. */ 7325 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 7326 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 7327 return false; 7328 } 7329 7330 return true; 7331 } 7332 7333 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 7334 { 7335 return check_raw_mode_ok(fn) && 7336 check_arg_pair_ok(fn) && 7337 check_btf_id_ok(fn) ? 0 : -EINVAL; 7338 } 7339 7340 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 7341 * are now invalid, so turn them into unknown SCALAR_VALUE. 7342 */ 7343 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 7344 { 7345 struct bpf_func_state *state; 7346 struct bpf_reg_state *reg; 7347 7348 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 7349 if (reg_is_pkt_pointer_any(reg)) 7350 __mark_reg_unknown(env, reg); 7351 })); 7352 } 7353 7354 enum { 7355 AT_PKT_END = -1, 7356 BEYOND_PKT_END = -2, 7357 }; 7358 7359 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 7360 { 7361 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7362 struct bpf_reg_state *reg = &state->regs[regn]; 7363 7364 if (reg->type != PTR_TO_PACKET) 7365 /* PTR_TO_PACKET_META is not supported yet */ 7366 return; 7367 7368 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 7369 * How far beyond pkt_end it goes is unknown. 7370 * if (!range_open) it's the case of pkt >= pkt_end 7371 * if (range_open) it's the case of pkt > pkt_end 7372 * hence this pointer is at least 1 byte bigger than pkt_end 7373 */ 7374 if (range_open) 7375 reg->range = BEYOND_PKT_END; 7376 else 7377 reg->range = AT_PKT_END; 7378 } 7379 7380 /* The pointer with the specified id has released its reference to kernel 7381 * resources. Identify all copies of the same pointer and clear the reference. 7382 */ 7383 static int release_reference(struct bpf_verifier_env *env, 7384 int ref_obj_id) 7385 { 7386 struct bpf_func_state *state; 7387 struct bpf_reg_state *reg; 7388 int err; 7389 7390 err = release_reference_state(cur_func(env), ref_obj_id); 7391 if (err) 7392 return err; 7393 7394 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 7395 if (reg->ref_obj_id == ref_obj_id) { 7396 if (!env->allow_ptr_leaks) 7397 __mark_reg_not_init(env, reg); 7398 else 7399 __mark_reg_unknown(env, reg); 7400 } 7401 })); 7402 7403 return 0; 7404 } 7405 7406 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 7407 { 7408 struct bpf_func_state *unused; 7409 struct bpf_reg_state *reg; 7410 7411 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 7412 if (type_is_non_owning_ref(reg->type)) 7413 __mark_reg_unknown(env, reg); 7414 })); 7415 } 7416 7417 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 7418 struct bpf_reg_state *regs) 7419 { 7420 int i; 7421 7422 /* after the call registers r0 - r5 were scratched */ 7423 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7424 mark_reg_not_init(env, regs, caller_saved[i]); 7425 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7426 } 7427 } 7428 7429 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 7430 struct bpf_func_state *caller, 7431 struct bpf_func_state *callee, 7432 int insn_idx); 7433 7434 static int set_callee_state(struct bpf_verifier_env *env, 7435 struct bpf_func_state *caller, 7436 struct bpf_func_state *callee, int insn_idx); 7437 7438 static bool is_callback_calling_kfunc(u32 btf_id); 7439 7440 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7441 int *insn_idx, int subprog, 7442 set_callee_state_fn set_callee_state_cb) 7443 { 7444 struct bpf_verifier_state *state = env->cur_state; 7445 struct bpf_func_info_aux *func_info_aux; 7446 struct bpf_func_state *caller, *callee; 7447 int err; 7448 bool is_global = false; 7449 7450 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 7451 verbose(env, "the call stack of %d frames is too deep\n", 7452 state->curframe + 2); 7453 return -E2BIG; 7454 } 7455 7456 caller = state->frame[state->curframe]; 7457 if (state->frame[state->curframe + 1]) { 7458 verbose(env, "verifier bug. Frame %d already allocated\n", 7459 state->curframe + 1); 7460 return -EFAULT; 7461 } 7462 7463 func_info_aux = env->prog->aux->func_info_aux; 7464 if (func_info_aux) 7465 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 7466 err = btf_check_subprog_call(env, subprog, caller->regs); 7467 if (err == -EFAULT) 7468 return err; 7469 if (is_global) { 7470 if (err) { 7471 verbose(env, "Caller passes invalid args into func#%d\n", 7472 subprog); 7473 return err; 7474 } else { 7475 if (env->log.level & BPF_LOG_LEVEL) 7476 verbose(env, 7477 "Func#%d is global and valid. Skipping.\n", 7478 subprog); 7479 clear_caller_saved_regs(env, caller->regs); 7480 7481 /* All global functions return a 64-bit SCALAR_VALUE */ 7482 mark_reg_unknown(env, caller->regs, BPF_REG_0); 7483 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7484 7485 /* continue with next insn after call */ 7486 return 0; 7487 } 7488 } 7489 7490 /* set_callee_state is used for direct subprog calls, but we are 7491 * interested in validating only BPF helpers that can call subprogs as 7492 * callbacks 7493 */ 7494 if (set_callee_state_cb != set_callee_state) { 7495 if (bpf_pseudo_kfunc_call(insn) && 7496 !is_callback_calling_kfunc(insn->imm)) { 7497 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 7498 func_id_name(insn->imm), insn->imm); 7499 return -EFAULT; 7500 } else if (!bpf_pseudo_kfunc_call(insn) && 7501 !is_callback_calling_function(insn->imm)) { /* helper */ 7502 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 7503 func_id_name(insn->imm), insn->imm); 7504 return -EFAULT; 7505 } 7506 } 7507 7508 if (insn->code == (BPF_JMP | BPF_CALL) && 7509 insn->src_reg == 0 && 7510 insn->imm == BPF_FUNC_timer_set_callback) { 7511 struct bpf_verifier_state *async_cb; 7512 7513 /* there is no real recursion here. timer callbacks are async */ 7514 env->subprog_info[subprog].is_async_cb = true; 7515 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 7516 *insn_idx, subprog); 7517 if (!async_cb) 7518 return -EFAULT; 7519 callee = async_cb->frame[0]; 7520 callee->async_entry_cnt = caller->async_entry_cnt + 1; 7521 7522 /* Convert bpf_timer_set_callback() args into timer callback args */ 7523 err = set_callee_state_cb(env, caller, callee, *insn_idx); 7524 if (err) 7525 return err; 7526 7527 clear_caller_saved_regs(env, caller->regs); 7528 mark_reg_unknown(env, caller->regs, BPF_REG_0); 7529 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7530 /* continue with next insn after call */ 7531 return 0; 7532 } 7533 7534 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 7535 if (!callee) 7536 return -ENOMEM; 7537 state->frame[state->curframe + 1] = callee; 7538 7539 /* callee cannot access r0, r6 - r9 for reading and has to write 7540 * into its own stack before reading from it. 7541 * callee can read/write into caller's stack 7542 */ 7543 init_func_state(env, callee, 7544 /* remember the callsite, it will be used by bpf_exit */ 7545 *insn_idx /* callsite */, 7546 state->curframe + 1 /* frameno within this callchain */, 7547 subprog /* subprog number within this prog */); 7548 7549 /* Transfer references to the callee */ 7550 err = copy_reference_state(callee, caller); 7551 if (err) 7552 goto err_out; 7553 7554 err = set_callee_state_cb(env, caller, callee, *insn_idx); 7555 if (err) 7556 goto err_out; 7557 7558 clear_caller_saved_regs(env, caller->regs); 7559 7560 /* only increment it after check_reg_arg() finished */ 7561 state->curframe++; 7562 7563 /* and go analyze first insn of the callee */ 7564 *insn_idx = env->subprog_info[subprog].start - 1; 7565 7566 if (env->log.level & BPF_LOG_LEVEL) { 7567 verbose(env, "caller:\n"); 7568 print_verifier_state(env, caller, true); 7569 verbose(env, "callee:\n"); 7570 print_verifier_state(env, callee, true); 7571 } 7572 return 0; 7573 7574 err_out: 7575 free_func_state(callee); 7576 state->frame[state->curframe + 1] = NULL; 7577 return err; 7578 } 7579 7580 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 7581 struct bpf_func_state *caller, 7582 struct bpf_func_state *callee) 7583 { 7584 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 7585 * void *callback_ctx, u64 flags); 7586 * callback_fn(struct bpf_map *map, void *key, void *value, 7587 * void *callback_ctx); 7588 */ 7589 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 7590 7591 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 7592 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 7593 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 7594 7595 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 7596 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 7597 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 7598 7599 /* pointer to stack or null */ 7600 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 7601 7602 /* unused */ 7603 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7604 return 0; 7605 } 7606 7607 static int set_callee_state(struct bpf_verifier_env *env, 7608 struct bpf_func_state *caller, 7609 struct bpf_func_state *callee, int insn_idx) 7610 { 7611 int i; 7612 7613 /* copy r1 - r5 args that callee can access. The copy includes parent 7614 * pointers, which connects us up to the liveness chain 7615 */ 7616 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 7617 callee->regs[i] = caller->regs[i]; 7618 return 0; 7619 } 7620 7621 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7622 int *insn_idx) 7623 { 7624 int subprog, target_insn; 7625 7626 target_insn = *insn_idx + insn->imm + 1; 7627 subprog = find_subprog(env, target_insn); 7628 if (subprog < 0) { 7629 verbose(env, "verifier bug. No program starts at insn %d\n", 7630 target_insn); 7631 return -EFAULT; 7632 } 7633 7634 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 7635 } 7636 7637 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 7638 struct bpf_func_state *caller, 7639 struct bpf_func_state *callee, 7640 int insn_idx) 7641 { 7642 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 7643 struct bpf_map *map; 7644 int err; 7645 7646 if (bpf_map_ptr_poisoned(insn_aux)) { 7647 verbose(env, "tail_call abusing map_ptr\n"); 7648 return -EINVAL; 7649 } 7650 7651 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 7652 if (!map->ops->map_set_for_each_callback_args || 7653 !map->ops->map_for_each_callback) { 7654 verbose(env, "callback function not allowed for map\n"); 7655 return -ENOTSUPP; 7656 } 7657 7658 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 7659 if (err) 7660 return err; 7661 7662 callee->in_callback_fn = true; 7663 callee->callback_ret_range = tnum_range(0, 1); 7664 return 0; 7665 } 7666 7667 static int set_loop_callback_state(struct bpf_verifier_env *env, 7668 struct bpf_func_state *caller, 7669 struct bpf_func_state *callee, 7670 int insn_idx) 7671 { 7672 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 7673 * u64 flags); 7674 * callback_fn(u32 index, void *callback_ctx); 7675 */ 7676 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 7677 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 7678 7679 /* unused */ 7680 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 7681 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7682 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7683 7684 callee->in_callback_fn = true; 7685 callee->callback_ret_range = tnum_range(0, 1); 7686 return 0; 7687 } 7688 7689 static int set_timer_callback_state(struct bpf_verifier_env *env, 7690 struct bpf_func_state *caller, 7691 struct bpf_func_state *callee, 7692 int insn_idx) 7693 { 7694 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 7695 7696 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 7697 * callback_fn(struct bpf_map *map, void *key, void *value); 7698 */ 7699 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 7700 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 7701 callee->regs[BPF_REG_1].map_ptr = map_ptr; 7702 7703 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 7704 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 7705 callee->regs[BPF_REG_2].map_ptr = map_ptr; 7706 7707 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 7708 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 7709 callee->regs[BPF_REG_3].map_ptr = map_ptr; 7710 7711 /* unused */ 7712 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7713 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7714 callee->in_async_callback_fn = true; 7715 callee->callback_ret_range = tnum_range(0, 1); 7716 return 0; 7717 } 7718 7719 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 7720 struct bpf_func_state *caller, 7721 struct bpf_func_state *callee, 7722 int insn_idx) 7723 { 7724 /* bpf_find_vma(struct task_struct *task, u64 addr, 7725 * void *callback_fn, void *callback_ctx, u64 flags) 7726 * (callback_fn)(struct task_struct *task, 7727 * struct vm_area_struct *vma, void *callback_ctx); 7728 */ 7729 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 7730 7731 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 7732 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 7733 callee->regs[BPF_REG_2].btf = btf_vmlinux; 7734 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 7735 7736 /* pointer to stack or null */ 7737 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 7738 7739 /* unused */ 7740 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7741 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7742 callee->in_callback_fn = true; 7743 callee->callback_ret_range = tnum_range(0, 1); 7744 return 0; 7745 } 7746 7747 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 7748 struct bpf_func_state *caller, 7749 struct bpf_func_state *callee, 7750 int insn_idx) 7751 { 7752 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 7753 * callback_ctx, u64 flags); 7754 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 7755 */ 7756 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 7757 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 7758 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 7759 7760 /* unused */ 7761 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 7762 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7763 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7764 7765 callee->in_callback_fn = true; 7766 callee->callback_ret_range = tnum_range(0, 1); 7767 return 0; 7768 } 7769 7770 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 7771 struct bpf_func_state *caller, 7772 struct bpf_func_state *callee, 7773 int insn_idx) 7774 { 7775 /* void bpf_rbtree_add(struct bpf_rb_root *root, struct bpf_rb_node *node, 7776 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 7777 * 7778 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add is the same PTR_TO_BTF_ID w/ offset 7779 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 7780 * by this point, so look at 'root' 7781 */ 7782 struct btf_field *field; 7783 7784 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 7785 BPF_RB_ROOT); 7786 if (!field || !field->graph_root.value_btf_id) 7787 return -EFAULT; 7788 7789 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 7790 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 7791 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 7792 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 7793 7794 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 7795 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7796 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7797 callee->in_callback_fn = true; 7798 callee->callback_ret_range = tnum_range(0, 1); 7799 return 0; 7800 } 7801 7802 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 7803 7804 /* Are we currently verifying the callback for a rbtree helper that must 7805 * be called with lock held? If so, no need to complain about unreleased 7806 * lock 7807 */ 7808 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 7809 { 7810 struct bpf_verifier_state *state = env->cur_state; 7811 struct bpf_insn *insn = env->prog->insnsi; 7812 struct bpf_func_state *callee; 7813 int kfunc_btf_id; 7814 7815 if (!state->curframe) 7816 return false; 7817 7818 callee = state->frame[state->curframe]; 7819 7820 if (!callee->in_callback_fn) 7821 return false; 7822 7823 kfunc_btf_id = insn[callee->callsite].imm; 7824 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 7825 } 7826 7827 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 7828 { 7829 struct bpf_verifier_state *state = env->cur_state; 7830 struct bpf_func_state *caller, *callee; 7831 struct bpf_reg_state *r0; 7832 int err; 7833 7834 callee = state->frame[state->curframe]; 7835 r0 = &callee->regs[BPF_REG_0]; 7836 if (r0->type == PTR_TO_STACK) { 7837 /* technically it's ok to return caller's stack pointer 7838 * (or caller's caller's pointer) back to the caller, 7839 * since these pointers are valid. Only current stack 7840 * pointer will be invalid as soon as function exits, 7841 * but let's be conservative 7842 */ 7843 verbose(env, "cannot return stack pointer to the caller\n"); 7844 return -EINVAL; 7845 } 7846 7847 caller = state->frame[state->curframe - 1]; 7848 if (callee->in_callback_fn) { 7849 /* enforce R0 return value range [0, 1]. */ 7850 struct tnum range = callee->callback_ret_range; 7851 7852 if (r0->type != SCALAR_VALUE) { 7853 verbose(env, "R0 not a scalar value\n"); 7854 return -EACCES; 7855 } 7856 if (!tnum_in(range, r0->var_off)) { 7857 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 7858 return -EINVAL; 7859 } 7860 } else { 7861 /* return to the caller whatever r0 had in the callee */ 7862 caller->regs[BPF_REG_0] = *r0; 7863 } 7864 7865 /* callback_fn frame should have released its own additions to parent's 7866 * reference state at this point, or check_reference_leak would 7867 * complain, hence it must be the same as the caller. There is no need 7868 * to copy it back. 7869 */ 7870 if (!callee->in_callback_fn) { 7871 /* Transfer references to the caller */ 7872 err = copy_reference_state(caller, callee); 7873 if (err) 7874 return err; 7875 } 7876 7877 *insn_idx = callee->callsite + 1; 7878 if (env->log.level & BPF_LOG_LEVEL) { 7879 verbose(env, "returning from callee:\n"); 7880 print_verifier_state(env, callee, true); 7881 verbose(env, "to caller at %d:\n", *insn_idx); 7882 print_verifier_state(env, caller, true); 7883 } 7884 /* clear everything in the callee */ 7885 free_func_state(callee); 7886 state->frame[state->curframe--] = NULL; 7887 return 0; 7888 } 7889 7890 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 7891 int func_id, 7892 struct bpf_call_arg_meta *meta) 7893 { 7894 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 7895 7896 if (ret_type != RET_INTEGER || 7897 (func_id != BPF_FUNC_get_stack && 7898 func_id != BPF_FUNC_get_task_stack && 7899 func_id != BPF_FUNC_probe_read_str && 7900 func_id != BPF_FUNC_probe_read_kernel_str && 7901 func_id != BPF_FUNC_probe_read_user_str)) 7902 return; 7903 7904 ret_reg->smax_value = meta->msize_max_value; 7905 ret_reg->s32_max_value = meta->msize_max_value; 7906 ret_reg->smin_value = -MAX_ERRNO; 7907 ret_reg->s32_min_value = -MAX_ERRNO; 7908 reg_bounds_sync(ret_reg); 7909 } 7910 7911 static int 7912 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 7913 int func_id, int insn_idx) 7914 { 7915 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 7916 struct bpf_map *map = meta->map_ptr; 7917 7918 if (func_id != BPF_FUNC_tail_call && 7919 func_id != BPF_FUNC_map_lookup_elem && 7920 func_id != BPF_FUNC_map_update_elem && 7921 func_id != BPF_FUNC_map_delete_elem && 7922 func_id != BPF_FUNC_map_push_elem && 7923 func_id != BPF_FUNC_map_pop_elem && 7924 func_id != BPF_FUNC_map_peek_elem && 7925 func_id != BPF_FUNC_for_each_map_elem && 7926 func_id != BPF_FUNC_redirect_map && 7927 func_id != BPF_FUNC_map_lookup_percpu_elem) 7928 return 0; 7929 7930 if (map == NULL) { 7931 verbose(env, "kernel subsystem misconfigured verifier\n"); 7932 return -EINVAL; 7933 } 7934 7935 /* In case of read-only, some additional restrictions 7936 * need to be applied in order to prevent altering the 7937 * state of the map from program side. 7938 */ 7939 if ((map->map_flags & BPF_F_RDONLY_PROG) && 7940 (func_id == BPF_FUNC_map_delete_elem || 7941 func_id == BPF_FUNC_map_update_elem || 7942 func_id == BPF_FUNC_map_push_elem || 7943 func_id == BPF_FUNC_map_pop_elem)) { 7944 verbose(env, "write into map forbidden\n"); 7945 return -EACCES; 7946 } 7947 7948 if (!BPF_MAP_PTR(aux->map_ptr_state)) 7949 bpf_map_ptr_store(aux, meta->map_ptr, 7950 !meta->map_ptr->bypass_spec_v1); 7951 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 7952 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 7953 !meta->map_ptr->bypass_spec_v1); 7954 return 0; 7955 } 7956 7957 static int 7958 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 7959 int func_id, int insn_idx) 7960 { 7961 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 7962 struct bpf_reg_state *regs = cur_regs(env), *reg; 7963 struct bpf_map *map = meta->map_ptr; 7964 u64 val, max; 7965 int err; 7966 7967 if (func_id != BPF_FUNC_tail_call) 7968 return 0; 7969 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 7970 verbose(env, "kernel subsystem misconfigured verifier\n"); 7971 return -EINVAL; 7972 } 7973 7974 reg = ®s[BPF_REG_3]; 7975 val = reg->var_off.value; 7976 max = map->max_entries; 7977 7978 if (!(register_is_const(reg) && val < max)) { 7979 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7980 return 0; 7981 } 7982 7983 err = mark_chain_precision(env, BPF_REG_3); 7984 if (err) 7985 return err; 7986 if (bpf_map_key_unseen(aux)) 7987 bpf_map_key_store(aux, val); 7988 else if (!bpf_map_key_poisoned(aux) && 7989 bpf_map_key_immediate(aux) != val) 7990 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7991 return 0; 7992 } 7993 7994 static int check_reference_leak(struct bpf_verifier_env *env) 7995 { 7996 struct bpf_func_state *state = cur_func(env); 7997 bool refs_lingering = false; 7998 int i; 7999 8000 if (state->frameno && !state->in_callback_fn) 8001 return 0; 8002 8003 for (i = 0; i < state->acquired_refs; i++) { 8004 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 8005 continue; 8006 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 8007 state->refs[i].id, state->refs[i].insn_idx); 8008 refs_lingering = true; 8009 } 8010 return refs_lingering ? -EINVAL : 0; 8011 } 8012 8013 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 8014 struct bpf_reg_state *regs) 8015 { 8016 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 8017 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 8018 struct bpf_map *fmt_map = fmt_reg->map_ptr; 8019 struct bpf_bprintf_data data = {}; 8020 int err, fmt_map_off, num_args; 8021 u64 fmt_addr; 8022 char *fmt; 8023 8024 /* data must be an array of u64 */ 8025 if (data_len_reg->var_off.value % 8) 8026 return -EINVAL; 8027 num_args = data_len_reg->var_off.value / 8; 8028 8029 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 8030 * and map_direct_value_addr is set. 8031 */ 8032 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 8033 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 8034 fmt_map_off); 8035 if (err) { 8036 verbose(env, "verifier bug\n"); 8037 return -EFAULT; 8038 } 8039 fmt = (char *)(long)fmt_addr + fmt_map_off; 8040 8041 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 8042 * can focus on validating the format specifiers. 8043 */ 8044 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 8045 if (err < 0) 8046 verbose(env, "Invalid format string\n"); 8047 8048 return err; 8049 } 8050 8051 static int check_get_func_ip(struct bpf_verifier_env *env) 8052 { 8053 enum bpf_prog_type type = resolve_prog_type(env->prog); 8054 int func_id = BPF_FUNC_get_func_ip; 8055 8056 if (type == BPF_PROG_TYPE_TRACING) { 8057 if (!bpf_prog_has_trampoline(env->prog)) { 8058 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 8059 func_id_name(func_id), func_id); 8060 return -ENOTSUPP; 8061 } 8062 return 0; 8063 } else if (type == BPF_PROG_TYPE_KPROBE) { 8064 return 0; 8065 } 8066 8067 verbose(env, "func %s#%d not supported for program type %d\n", 8068 func_id_name(func_id), func_id, type); 8069 return -ENOTSUPP; 8070 } 8071 8072 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 8073 { 8074 return &env->insn_aux_data[env->insn_idx]; 8075 } 8076 8077 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 8078 { 8079 struct bpf_reg_state *regs = cur_regs(env); 8080 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 8081 bool reg_is_null = register_is_null(reg); 8082 8083 if (reg_is_null) 8084 mark_chain_precision(env, BPF_REG_4); 8085 8086 return reg_is_null; 8087 } 8088 8089 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 8090 { 8091 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 8092 8093 if (!state->initialized) { 8094 state->initialized = 1; 8095 state->fit_for_inline = loop_flag_is_zero(env); 8096 state->callback_subprogno = subprogno; 8097 return; 8098 } 8099 8100 if (!state->fit_for_inline) 8101 return; 8102 8103 state->fit_for_inline = (loop_flag_is_zero(env) && 8104 state->callback_subprogno == subprogno); 8105 } 8106 8107 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 8108 int *insn_idx_p) 8109 { 8110 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 8111 const struct bpf_func_proto *fn = NULL; 8112 enum bpf_return_type ret_type; 8113 enum bpf_type_flag ret_flag; 8114 struct bpf_reg_state *regs; 8115 struct bpf_call_arg_meta meta; 8116 int insn_idx = *insn_idx_p; 8117 bool changes_data; 8118 int i, err, func_id; 8119 8120 /* find function prototype */ 8121 func_id = insn->imm; 8122 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 8123 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 8124 func_id); 8125 return -EINVAL; 8126 } 8127 8128 if (env->ops->get_func_proto) 8129 fn = env->ops->get_func_proto(func_id, env->prog); 8130 if (!fn) { 8131 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 8132 func_id); 8133 return -EINVAL; 8134 } 8135 8136 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 8137 if (!env->prog->gpl_compatible && fn->gpl_only) { 8138 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 8139 return -EINVAL; 8140 } 8141 8142 if (fn->allowed && !fn->allowed(env->prog)) { 8143 verbose(env, "helper call is not allowed in probe\n"); 8144 return -EINVAL; 8145 } 8146 8147 if (!env->prog->aux->sleepable && fn->might_sleep) { 8148 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 8149 return -EINVAL; 8150 } 8151 8152 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 8153 changes_data = bpf_helper_changes_pkt_data(fn->func); 8154 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 8155 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 8156 func_id_name(func_id), func_id); 8157 return -EINVAL; 8158 } 8159 8160 memset(&meta, 0, sizeof(meta)); 8161 meta.pkt_access = fn->pkt_access; 8162 8163 err = check_func_proto(fn, func_id); 8164 if (err) { 8165 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 8166 func_id_name(func_id), func_id); 8167 return err; 8168 } 8169 8170 if (env->cur_state->active_rcu_lock) { 8171 if (fn->might_sleep) { 8172 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 8173 func_id_name(func_id), func_id); 8174 return -EINVAL; 8175 } 8176 8177 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 8178 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 8179 } 8180 8181 meta.func_id = func_id; 8182 /* check args */ 8183 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 8184 err = check_func_arg(env, i, &meta, fn); 8185 if (err) 8186 return err; 8187 } 8188 8189 err = record_func_map(env, &meta, func_id, insn_idx); 8190 if (err) 8191 return err; 8192 8193 err = record_func_key(env, &meta, func_id, insn_idx); 8194 if (err) 8195 return err; 8196 8197 /* Mark slots with STACK_MISC in case of raw mode, stack offset 8198 * is inferred from register state. 8199 */ 8200 for (i = 0; i < meta.access_size; i++) { 8201 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 8202 BPF_WRITE, -1, false); 8203 if (err) 8204 return err; 8205 } 8206 8207 regs = cur_regs(env); 8208 8209 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 8210 * be reinitialized by any dynptr helper. Hence, mark_stack_slots_dynptr 8211 * is safe to do directly. 8212 */ 8213 if (meta.uninit_dynptr_regno) { 8214 if (regs[meta.uninit_dynptr_regno].type == CONST_PTR_TO_DYNPTR) { 8215 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be initialized\n"); 8216 return -EFAULT; 8217 } 8218 /* we write BPF_DW bits (8 bytes) at a time */ 8219 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 8220 err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno, 8221 i, BPF_DW, BPF_WRITE, -1, false); 8222 if (err) 8223 return err; 8224 } 8225 8226 err = mark_stack_slots_dynptr(env, ®s[meta.uninit_dynptr_regno], 8227 fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1], 8228 insn_idx); 8229 if (err) 8230 return err; 8231 } 8232 8233 if (meta.release_regno) { 8234 err = -EINVAL; 8235 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 8236 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 8237 * is safe to do directly. 8238 */ 8239 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 8240 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 8241 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 8242 return -EFAULT; 8243 } 8244 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 8245 } else if (meta.ref_obj_id) { 8246 err = release_reference(env, meta.ref_obj_id); 8247 } else if (register_is_null(®s[meta.release_regno])) { 8248 /* meta.ref_obj_id can only be 0 if register that is meant to be 8249 * released is NULL, which must be > R0. 8250 */ 8251 err = 0; 8252 } 8253 if (err) { 8254 verbose(env, "func %s#%d reference has not been acquired before\n", 8255 func_id_name(func_id), func_id); 8256 return err; 8257 } 8258 } 8259 8260 switch (func_id) { 8261 case BPF_FUNC_tail_call: 8262 err = check_reference_leak(env); 8263 if (err) { 8264 verbose(env, "tail_call would lead to reference leak\n"); 8265 return err; 8266 } 8267 break; 8268 case BPF_FUNC_get_local_storage: 8269 /* check that flags argument in get_local_storage(map, flags) is 0, 8270 * this is required because get_local_storage() can't return an error. 8271 */ 8272 if (!register_is_null(®s[BPF_REG_2])) { 8273 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 8274 return -EINVAL; 8275 } 8276 break; 8277 case BPF_FUNC_for_each_map_elem: 8278 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 8279 set_map_elem_callback_state); 8280 break; 8281 case BPF_FUNC_timer_set_callback: 8282 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 8283 set_timer_callback_state); 8284 break; 8285 case BPF_FUNC_find_vma: 8286 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 8287 set_find_vma_callback_state); 8288 break; 8289 case BPF_FUNC_snprintf: 8290 err = check_bpf_snprintf_call(env, regs); 8291 break; 8292 case BPF_FUNC_loop: 8293 update_loop_inline_state(env, meta.subprogno); 8294 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 8295 set_loop_callback_state); 8296 break; 8297 case BPF_FUNC_dynptr_from_mem: 8298 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 8299 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 8300 reg_type_str(env, regs[BPF_REG_1].type)); 8301 return -EACCES; 8302 } 8303 break; 8304 case BPF_FUNC_set_retval: 8305 if (prog_type == BPF_PROG_TYPE_LSM && 8306 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 8307 if (!env->prog->aux->attach_func_proto->type) { 8308 /* Make sure programs that attach to void 8309 * hooks don't try to modify return value. 8310 */ 8311 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 8312 return -EINVAL; 8313 } 8314 } 8315 break; 8316 case BPF_FUNC_dynptr_data: 8317 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 8318 if (arg_type_is_dynptr(fn->arg_type[i])) { 8319 struct bpf_reg_state *reg = ®s[BPF_REG_1 + i]; 8320 int id, ref_obj_id; 8321 8322 if (meta.dynptr_id) { 8323 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 8324 return -EFAULT; 8325 } 8326 8327 if (meta.ref_obj_id) { 8328 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 8329 return -EFAULT; 8330 } 8331 8332 id = dynptr_id(env, reg); 8333 if (id < 0) { 8334 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 8335 return id; 8336 } 8337 8338 ref_obj_id = dynptr_ref_obj_id(env, reg); 8339 if (ref_obj_id < 0) { 8340 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 8341 return ref_obj_id; 8342 } 8343 8344 meta.dynptr_id = id; 8345 meta.ref_obj_id = ref_obj_id; 8346 break; 8347 } 8348 } 8349 if (i == MAX_BPF_FUNC_REG_ARGS) { 8350 verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n"); 8351 return -EFAULT; 8352 } 8353 break; 8354 case BPF_FUNC_user_ringbuf_drain: 8355 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 8356 set_user_ringbuf_callback_state); 8357 break; 8358 } 8359 8360 if (err) 8361 return err; 8362 8363 /* reset caller saved regs */ 8364 for (i = 0; i < CALLER_SAVED_REGS; i++) { 8365 mark_reg_not_init(env, regs, caller_saved[i]); 8366 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 8367 } 8368 8369 /* helper call returns 64-bit value. */ 8370 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 8371 8372 /* update return register (already marked as written above) */ 8373 ret_type = fn->ret_type; 8374 ret_flag = type_flag(ret_type); 8375 8376 switch (base_type(ret_type)) { 8377 case RET_INTEGER: 8378 /* sets type to SCALAR_VALUE */ 8379 mark_reg_unknown(env, regs, BPF_REG_0); 8380 break; 8381 case RET_VOID: 8382 regs[BPF_REG_0].type = NOT_INIT; 8383 break; 8384 case RET_PTR_TO_MAP_VALUE: 8385 /* There is no offset yet applied, variable or fixed */ 8386 mark_reg_known_zero(env, regs, BPF_REG_0); 8387 /* remember map_ptr, so that check_map_access() 8388 * can check 'value_size' boundary of memory access 8389 * to map element returned from bpf_map_lookup_elem() 8390 */ 8391 if (meta.map_ptr == NULL) { 8392 verbose(env, 8393 "kernel subsystem misconfigured verifier\n"); 8394 return -EINVAL; 8395 } 8396 regs[BPF_REG_0].map_ptr = meta.map_ptr; 8397 regs[BPF_REG_0].map_uid = meta.map_uid; 8398 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 8399 if (!type_may_be_null(ret_type) && 8400 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 8401 regs[BPF_REG_0].id = ++env->id_gen; 8402 } 8403 break; 8404 case RET_PTR_TO_SOCKET: 8405 mark_reg_known_zero(env, regs, BPF_REG_0); 8406 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 8407 break; 8408 case RET_PTR_TO_SOCK_COMMON: 8409 mark_reg_known_zero(env, regs, BPF_REG_0); 8410 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 8411 break; 8412 case RET_PTR_TO_TCP_SOCK: 8413 mark_reg_known_zero(env, regs, BPF_REG_0); 8414 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 8415 break; 8416 case RET_PTR_TO_MEM: 8417 mark_reg_known_zero(env, regs, BPF_REG_0); 8418 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 8419 regs[BPF_REG_0].mem_size = meta.mem_size; 8420 break; 8421 case RET_PTR_TO_MEM_OR_BTF_ID: 8422 { 8423 const struct btf_type *t; 8424 8425 mark_reg_known_zero(env, regs, BPF_REG_0); 8426 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 8427 if (!btf_type_is_struct(t)) { 8428 u32 tsize; 8429 const struct btf_type *ret; 8430 const char *tname; 8431 8432 /* resolve the type size of ksym. */ 8433 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 8434 if (IS_ERR(ret)) { 8435 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 8436 verbose(env, "unable to resolve the size of type '%s': %ld\n", 8437 tname, PTR_ERR(ret)); 8438 return -EINVAL; 8439 } 8440 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 8441 regs[BPF_REG_0].mem_size = tsize; 8442 } else { 8443 /* MEM_RDONLY may be carried from ret_flag, but it 8444 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 8445 * it will confuse the check of PTR_TO_BTF_ID in 8446 * check_mem_access(). 8447 */ 8448 ret_flag &= ~MEM_RDONLY; 8449 8450 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 8451 regs[BPF_REG_0].btf = meta.ret_btf; 8452 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 8453 } 8454 break; 8455 } 8456 case RET_PTR_TO_BTF_ID: 8457 { 8458 struct btf *ret_btf; 8459 int ret_btf_id; 8460 8461 mark_reg_known_zero(env, regs, BPF_REG_0); 8462 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 8463 if (func_id == BPF_FUNC_kptr_xchg) { 8464 ret_btf = meta.kptr_field->kptr.btf; 8465 ret_btf_id = meta.kptr_field->kptr.btf_id; 8466 } else { 8467 if (fn->ret_btf_id == BPF_PTR_POISON) { 8468 verbose(env, "verifier internal error:"); 8469 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 8470 func_id_name(func_id)); 8471 return -EINVAL; 8472 } 8473 ret_btf = btf_vmlinux; 8474 ret_btf_id = *fn->ret_btf_id; 8475 } 8476 if (ret_btf_id == 0) { 8477 verbose(env, "invalid return type %u of func %s#%d\n", 8478 base_type(ret_type), func_id_name(func_id), 8479 func_id); 8480 return -EINVAL; 8481 } 8482 regs[BPF_REG_0].btf = ret_btf; 8483 regs[BPF_REG_0].btf_id = ret_btf_id; 8484 break; 8485 } 8486 default: 8487 verbose(env, "unknown return type %u of func %s#%d\n", 8488 base_type(ret_type), func_id_name(func_id), func_id); 8489 return -EINVAL; 8490 } 8491 8492 if (type_may_be_null(regs[BPF_REG_0].type)) 8493 regs[BPF_REG_0].id = ++env->id_gen; 8494 8495 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 8496 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 8497 func_id_name(func_id), func_id); 8498 return -EFAULT; 8499 } 8500 8501 if (is_dynptr_ref_function(func_id)) 8502 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 8503 8504 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 8505 /* For release_reference() */ 8506 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 8507 } else if (is_acquire_function(func_id, meta.map_ptr)) { 8508 int id = acquire_reference_state(env, insn_idx); 8509 8510 if (id < 0) 8511 return id; 8512 /* For mark_ptr_or_null_reg() */ 8513 regs[BPF_REG_0].id = id; 8514 /* For release_reference() */ 8515 regs[BPF_REG_0].ref_obj_id = id; 8516 } 8517 8518 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 8519 8520 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 8521 if (err) 8522 return err; 8523 8524 if ((func_id == BPF_FUNC_get_stack || 8525 func_id == BPF_FUNC_get_task_stack) && 8526 !env->prog->has_callchain_buf) { 8527 const char *err_str; 8528 8529 #ifdef CONFIG_PERF_EVENTS 8530 err = get_callchain_buffers(sysctl_perf_event_max_stack); 8531 err_str = "cannot get callchain buffer for func %s#%d\n"; 8532 #else 8533 err = -ENOTSUPP; 8534 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 8535 #endif 8536 if (err) { 8537 verbose(env, err_str, func_id_name(func_id), func_id); 8538 return err; 8539 } 8540 8541 env->prog->has_callchain_buf = true; 8542 } 8543 8544 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 8545 env->prog->call_get_stack = true; 8546 8547 if (func_id == BPF_FUNC_get_func_ip) { 8548 if (check_get_func_ip(env)) 8549 return -ENOTSUPP; 8550 env->prog->call_get_func_ip = true; 8551 } 8552 8553 if (changes_data) 8554 clear_all_pkt_pointers(env); 8555 return 0; 8556 } 8557 8558 /* mark_btf_func_reg_size() is used when the reg size is determined by 8559 * the BTF func_proto's return value size and argument. 8560 */ 8561 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 8562 size_t reg_size) 8563 { 8564 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 8565 8566 if (regno == BPF_REG_0) { 8567 /* Function return value */ 8568 reg->live |= REG_LIVE_WRITTEN; 8569 reg->subreg_def = reg_size == sizeof(u64) ? 8570 DEF_NOT_SUBREG : env->insn_idx + 1; 8571 } else { 8572 /* Function argument */ 8573 if (reg_size == sizeof(u64)) { 8574 mark_insn_zext(env, reg); 8575 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 8576 } else { 8577 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 8578 } 8579 } 8580 } 8581 8582 struct bpf_kfunc_call_arg_meta { 8583 /* In parameters */ 8584 struct btf *btf; 8585 u32 func_id; 8586 u32 kfunc_flags; 8587 const struct btf_type *func_proto; 8588 const char *func_name; 8589 /* Out parameters */ 8590 u32 ref_obj_id; 8591 u8 release_regno; 8592 bool r0_rdonly; 8593 u32 ret_btf_id; 8594 u64 r0_size; 8595 u32 subprogno; 8596 struct { 8597 u64 value; 8598 bool found; 8599 } arg_constant; 8600 struct { 8601 struct btf *btf; 8602 u32 btf_id; 8603 } arg_obj_drop; 8604 struct { 8605 struct btf_field *field; 8606 } arg_list_head; 8607 struct { 8608 struct btf_field *field; 8609 } arg_rbtree_root; 8610 }; 8611 8612 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 8613 { 8614 return meta->kfunc_flags & KF_ACQUIRE; 8615 } 8616 8617 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 8618 { 8619 return meta->kfunc_flags & KF_RET_NULL; 8620 } 8621 8622 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 8623 { 8624 return meta->kfunc_flags & KF_RELEASE; 8625 } 8626 8627 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 8628 { 8629 return meta->kfunc_flags & KF_TRUSTED_ARGS; 8630 } 8631 8632 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 8633 { 8634 return meta->kfunc_flags & KF_SLEEPABLE; 8635 } 8636 8637 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 8638 { 8639 return meta->kfunc_flags & KF_DESTRUCTIVE; 8640 } 8641 8642 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 8643 { 8644 return meta->kfunc_flags & KF_RCU; 8645 } 8646 8647 static bool is_kfunc_arg_kptr_get(struct bpf_kfunc_call_arg_meta *meta, int arg) 8648 { 8649 return arg == 0 && (meta->kfunc_flags & KF_KPTR_GET); 8650 } 8651 8652 static bool __kfunc_param_match_suffix(const struct btf *btf, 8653 const struct btf_param *arg, 8654 const char *suffix) 8655 { 8656 int suffix_len = strlen(suffix), len; 8657 const char *param_name; 8658 8659 /* In the future, this can be ported to use BTF tagging */ 8660 param_name = btf_name_by_offset(btf, arg->name_off); 8661 if (str_is_empty(param_name)) 8662 return false; 8663 len = strlen(param_name); 8664 if (len < suffix_len) 8665 return false; 8666 param_name += len - suffix_len; 8667 return !strncmp(param_name, suffix, suffix_len); 8668 } 8669 8670 static bool is_kfunc_arg_mem_size(const struct btf *btf, 8671 const struct btf_param *arg, 8672 const struct bpf_reg_state *reg) 8673 { 8674 const struct btf_type *t; 8675 8676 t = btf_type_skip_modifiers(btf, arg->type, NULL); 8677 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 8678 return false; 8679 8680 return __kfunc_param_match_suffix(btf, arg, "__sz"); 8681 } 8682 8683 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 8684 { 8685 return __kfunc_param_match_suffix(btf, arg, "__k"); 8686 } 8687 8688 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 8689 { 8690 return __kfunc_param_match_suffix(btf, arg, "__ign"); 8691 } 8692 8693 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 8694 { 8695 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 8696 } 8697 8698 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 8699 const struct btf_param *arg, 8700 const char *name) 8701 { 8702 int len, target_len = strlen(name); 8703 const char *param_name; 8704 8705 param_name = btf_name_by_offset(btf, arg->name_off); 8706 if (str_is_empty(param_name)) 8707 return false; 8708 len = strlen(param_name); 8709 if (len != target_len) 8710 return false; 8711 if (strcmp(param_name, name)) 8712 return false; 8713 8714 return true; 8715 } 8716 8717 enum { 8718 KF_ARG_DYNPTR_ID, 8719 KF_ARG_LIST_HEAD_ID, 8720 KF_ARG_LIST_NODE_ID, 8721 KF_ARG_RB_ROOT_ID, 8722 KF_ARG_RB_NODE_ID, 8723 }; 8724 8725 BTF_ID_LIST(kf_arg_btf_ids) 8726 BTF_ID(struct, bpf_dynptr_kern) 8727 BTF_ID(struct, bpf_list_head) 8728 BTF_ID(struct, bpf_list_node) 8729 BTF_ID(struct, bpf_rb_root) 8730 BTF_ID(struct, bpf_rb_node) 8731 8732 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 8733 const struct btf_param *arg, int type) 8734 { 8735 const struct btf_type *t; 8736 u32 res_id; 8737 8738 t = btf_type_skip_modifiers(btf, arg->type, NULL); 8739 if (!t) 8740 return false; 8741 if (!btf_type_is_ptr(t)) 8742 return false; 8743 t = btf_type_skip_modifiers(btf, t->type, &res_id); 8744 if (!t) 8745 return false; 8746 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 8747 } 8748 8749 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 8750 { 8751 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 8752 } 8753 8754 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 8755 { 8756 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 8757 } 8758 8759 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 8760 { 8761 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 8762 } 8763 8764 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 8765 { 8766 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 8767 } 8768 8769 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 8770 { 8771 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 8772 } 8773 8774 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 8775 const struct btf_param *arg) 8776 { 8777 const struct btf_type *t; 8778 8779 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 8780 if (!t) 8781 return false; 8782 8783 return true; 8784 } 8785 8786 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 8787 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 8788 const struct btf *btf, 8789 const struct btf_type *t, int rec) 8790 { 8791 const struct btf_type *member_type; 8792 const struct btf_member *member; 8793 u32 i; 8794 8795 if (!btf_type_is_struct(t)) 8796 return false; 8797 8798 for_each_member(i, t, member) { 8799 const struct btf_array *array; 8800 8801 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 8802 if (btf_type_is_struct(member_type)) { 8803 if (rec >= 3) { 8804 verbose(env, "max struct nesting depth exceeded\n"); 8805 return false; 8806 } 8807 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 8808 return false; 8809 continue; 8810 } 8811 if (btf_type_is_array(member_type)) { 8812 array = btf_array(member_type); 8813 if (!array->nelems) 8814 return false; 8815 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 8816 if (!btf_type_is_scalar(member_type)) 8817 return false; 8818 continue; 8819 } 8820 if (!btf_type_is_scalar(member_type)) 8821 return false; 8822 } 8823 return true; 8824 } 8825 8826 8827 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 8828 #ifdef CONFIG_NET 8829 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 8830 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 8831 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 8832 #endif 8833 }; 8834 8835 enum kfunc_ptr_arg_type { 8836 KF_ARG_PTR_TO_CTX, 8837 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 8838 KF_ARG_PTR_TO_KPTR, /* PTR_TO_KPTR but type specific */ 8839 KF_ARG_PTR_TO_DYNPTR, 8840 KF_ARG_PTR_TO_LIST_HEAD, 8841 KF_ARG_PTR_TO_LIST_NODE, 8842 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 8843 KF_ARG_PTR_TO_MEM, 8844 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 8845 KF_ARG_PTR_TO_CALLBACK, 8846 KF_ARG_PTR_TO_RB_ROOT, 8847 KF_ARG_PTR_TO_RB_NODE, 8848 }; 8849 8850 enum special_kfunc_type { 8851 KF_bpf_obj_new_impl, 8852 KF_bpf_obj_drop_impl, 8853 KF_bpf_list_push_front, 8854 KF_bpf_list_push_back, 8855 KF_bpf_list_pop_front, 8856 KF_bpf_list_pop_back, 8857 KF_bpf_cast_to_kern_ctx, 8858 KF_bpf_rdonly_cast, 8859 KF_bpf_rcu_read_lock, 8860 KF_bpf_rcu_read_unlock, 8861 KF_bpf_rbtree_remove, 8862 KF_bpf_rbtree_add, 8863 KF_bpf_rbtree_first, 8864 }; 8865 8866 BTF_SET_START(special_kfunc_set) 8867 BTF_ID(func, bpf_obj_new_impl) 8868 BTF_ID(func, bpf_obj_drop_impl) 8869 BTF_ID(func, bpf_list_push_front) 8870 BTF_ID(func, bpf_list_push_back) 8871 BTF_ID(func, bpf_list_pop_front) 8872 BTF_ID(func, bpf_list_pop_back) 8873 BTF_ID(func, bpf_cast_to_kern_ctx) 8874 BTF_ID(func, bpf_rdonly_cast) 8875 BTF_ID(func, bpf_rbtree_remove) 8876 BTF_ID(func, bpf_rbtree_add) 8877 BTF_ID(func, bpf_rbtree_first) 8878 BTF_SET_END(special_kfunc_set) 8879 8880 BTF_ID_LIST(special_kfunc_list) 8881 BTF_ID(func, bpf_obj_new_impl) 8882 BTF_ID(func, bpf_obj_drop_impl) 8883 BTF_ID(func, bpf_list_push_front) 8884 BTF_ID(func, bpf_list_push_back) 8885 BTF_ID(func, bpf_list_pop_front) 8886 BTF_ID(func, bpf_list_pop_back) 8887 BTF_ID(func, bpf_cast_to_kern_ctx) 8888 BTF_ID(func, bpf_rdonly_cast) 8889 BTF_ID(func, bpf_rcu_read_lock) 8890 BTF_ID(func, bpf_rcu_read_unlock) 8891 BTF_ID(func, bpf_rbtree_remove) 8892 BTF_ID(func, bpf_rbtree_add) 8893 BTF_ID(func, bpf_rbtree_first) 8894 8895 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 8896 { 8897 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 8898 } 8899 8900 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 8901 { 8902 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 8903 } 8904 8905 static enum kfunc_ptr_arg_type 8906 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 8907 struct bpf_kfunc_call_arg_meta *meta, 8908 const struct btf_type *t, const struct btf_type *ref_t, 8909 const char *ref_tname, const struct btf_param *args, 8910 int argno, int nargs) 8911 { 8912 u32 regno = argno + 1; 8913 struct bpf_reg_state *regs = cur_regs(env); 8914 struct bpf_reg_state *reg = ®s[regno]; 8915 bool arg_mem_size = false; 8916 8917 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 8918 return KF_ARG_PTR_TO_CTX; 8919 8920 /* In this function, we verify the kfunc's BTF as per the argument type, 8921 * leaving the rest of the verification with respect to the register 8922 * type to our caller. When a set of conditions hold in the BTF type of 8923 * arguments, we resolve it to a known kfunc_ptr_arg_type. 8924 */ 8925 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 8926 return KF_ARG_PTR_TO_CTX; 8927 8928 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 8929 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 8930 8931 if (is_kfunc_arg_kptr_get(meta, argno)) { 8932 if (!btf_type_is_ptr(ref_t)) { 8933 verbose(env, "arg#0 BTF type must be a double pointer for kptr_get kfunc\n"); 8934 return -EINVAL; 8935 } 8936 ref_t = btf_type_by_id(meta->btf, ref_t->type); 8937 ref_tname = btf_name_by_offset(meta->btf, ref_t->name_off); 8938 if (!btf_type_is_struct(ref_t)) { 8939 verbose(env, "kernel function %s args#0 pointer type %s %s is not supported\n", 8940 meta->func_name, btf_type_str(ref_t), ref_tname); 8941 return -EINVAL; 8942 } 8943 return KF_ARG_PTR_TO_KPTR; 8944 } 8945 8946 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 8947 return KF_ARG_PTR_TO_DYNPTR; 8948 8949 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 8950 return KF_ARG_PTR_TO_LIST_HEAD; 8951 8952 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 8953 return KF_ARG_PTR_TO_LIST_NODE; 8954 8955 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 8956 return KF_ARG_PTR_TO_RB_ROOT; 8957 8958 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 8959 return KF_ARG_PTR_TO_RB_NODE; 8960 8961 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 8962 if (!btf_type_is_struct(ref_t)) { 8963 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 8964 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 8965 return -EINVAL; 8966 } 8967 return KF_ARG_PTR_TO_BTF_ID; 8968 } 8969 8970 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 8971 return KF_ARG_PTR_TO_CALLBACK; 8972 8973 if (argno + 1 < nargs && is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1])) 8974 arg_mem_size = true; 8975 8976 /* This is the catch all argument type of register types supported by 8977 * check_helper_mem_access. However, we only allow when argument type is 8978 * pointer to scalar, or struct composed (recursively) of scalars. When 8979 * arg_mem_size is true, the pointer can be void *. 8980 */ 8981 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 8982 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 8983 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 8984 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 8985 return -EINVAL; 8986 } 8987 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 8988 } 8989 8990 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 8991 struct bpf_reg_state *reg, 8992 const struct btf_type *ref_t, 8993 const char *ref_tname, u32 ref_id, 8994 struct bpf_kfunc_call_arg_meta *meta, 8995 int argno) 8996 { 8997 const struct btf_type *reg_ref_t; 8998 bool strict_type_match = false; 8999 const struct btf *reg_btf; 9000 const char *reg_ref_tname; 9001 u32 reg_ref_id; 9002 9003 if (base_type(reg->type) == PTR_TO_BTF_ID) { 9004 reg_btf = reg->btf; 9005 reg_ref_id = reg->btf_id; 9006 } else { 9007 reg_btf = btf_vmlinux; 9008 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 9009 } 9010 9011 /* Enforce strict type matching for calls to kfuncs that are acquiring 9012 * or releasing a reference, or are no-cast aliases. We do _not_ 9013 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 9014 * as we want to enable BPF programs to pass types that are bitwise 9015 * equivalent without forcing them to explicitly cast with something 9016 * like bpf_cast_to_kern_ctx(). 9017 * 9018 * For example, say we had a type like the following: 9019 * 9020 * struct bpf_cpumask { 9021 * cpumask_t cpumask; 9022 * refcount_t usage; 9023 * }; 9024 * 9025 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 9026 * to a struct cpumask, so it would be safe to pass a struct 9027 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 9028 * 9029 * The philosophy here is similar to how we allow scalars of different 9030 * types to be passed to kfuncs as long as the size is the same. The 9031 * only difference here is that we're simply allowing 9032 * btf_struct_ids_match() to walk the struct at the 0th offset, and 9033 * resolve types. 9034 */ 9035 if (is_kfunc_acquire(meta) || 9036 (is_kfunc_release(meta) && reg->ref_obj_id) || 9037 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 9038 strict_type_match = true; 9039 9040 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); 9041 9042 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 9043 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 9044 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 9045 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 9046 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 9047 btf_type_str(reg_ref_t), reg_ref_tname); 9048 return -EINVAL; 9049 } 9050 return 0; 9051 } 9052 9053 static int process_kf_arg_ptr_to_kptr(struct bpf_verifier_env *env, 9054 struct bpf_reg_state *reg, 9055 const struct btf_type *ref_t, 9056 const char *ref_tname, 9057 struct bpf_kfunc_call_arg_meta *meta, 9058 int argno) 9059 { 9060 struct btf_field *kptr_field; 9061 9062 /* check_func_arg_reg_off allows var_off for 9063 * PTR_TO_MAP_VALUE, but we need fixed offset to find 9064 * off_desc. 9065 */ 9066 if (!tnum_is_const(reg->var_off)) { 9067 verbose(env, "arg#0 must have constant offset\n"); 9068 return -EINVAL; 9069 } 9070 9071 kptr_field = btf_record_find(reg->map_ptr->record, reg->off + reg->var_off.value, BPF_KPTR); 9072 if (!kptr_field || kptr_field->type != BPF_KPTR_REF) { 9073 verbose(env, "arg#0 no referenced kptr at map value offset=%llu\n", 9074 reg->off + reg->var_off.value); 9075 return -EINVAL; 9076 } 9077 9078 if (!btf_struct_ids_match(&env->log, meta->btf, ref_t->type, 0, kptr_field->kptr.btf, 9079 kptr_field->kptr.btf_id, true)) { 9080 verbose(env, "kernel function %s args#%d expected pointer to %s %s\n", 9081 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 9082 return -EINVAL; 9083 } 9084 return 0; 9085 } 9086 9087 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 9088 { 9089 struct bpf_verifier_state *state = env->cur_state; 9090 9091 if (!state->active_lock.ptr) { 9092 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 9093 return -EFAULT; 9094 } 9095 9096 if (type_flag(reg->type) & NON_OWN_REF) { 9097 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 9098 return -EFAULT; 9099 } 9100 9101 reg->type |= NON_OWN_REF; 9102 return 0; 9103 } 9104 9105 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 9106 { 9107 struct bpf_func_state *state, *unused; 9108 struct bpf_reg_state *reg; 9109 int i; 9110 9111 state = cur_func(env); 9112 9113 if (!ref_obj_id) { 9114 verbose(env, "verifier internal error: ref_obj_id is zero for " 9115 "owning -> non-owning conversion\n"); 9116 return -EFAULT; 9117 } 9118 9119 for (i = 0; i < state->acquired_refs; i++) { 9120 if (state->refs[i].id != ref_obj_id) 9121 continue; 9122 9123 /* Clear ref_obj_id here so release_reference doesn't clobber 9124 * the whole reg 9125 */ 9126 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 9127 if (reg->ref_obj_id == ref_obj_id) { 9128 reg->ref_obj_id = 0; 9129 ref_set_non_owning(env, reg); 9130 } 9131 })); 9132 return 0; 9133 } 9134 9135 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 9136 return -EFAULT; 9137 } 9138 9139 /* Implementation details: 9140 * 9141 * Each register points to some region of memory, which we define as an 9142 * allocation. Each allocation may embed a bpf_spin_lock which protects any 9143 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 9144 * allocation. The lock and the data it protects are colocated in the same 9145 * memory region. 9146 * 9147 * Hence, everytime a register holds a pointer value pointing to such 9148 * allocation, the verifier preserves a unique reg->id for it. 9149 * 9150 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 9151 * bpf_spin_lock is called. 9152 * 9153 * To enable this, lock state in the verifier captures two values: 9154 * active_lock.ptr = Register's type specific pointer 9155 * active_lock.id = A unique ID for each register pointer value 9156 * 9157 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 9158 * supported register types. 9159 * 9160 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 9161 * allocated objects is the reg->btf pointer. 9162 * 9163 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 9164 * can establish the provenance of the map value statically for each distinct 9165 * lookup into such maps. They always contain a single map value hence unique 9166 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 9167 * 9168 * So, in case of global variables, they use array maps with max_entries = 1, 9169 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 9170 * into the same map value as max_entries is 1, as described above). 9171 * 9172 * In case of inner map lookups, the inner map pointer has same map_ptr as the 9173 * outer map pointer (in verifier context), but each lookup into an inner map 9174 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 9175 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 9176 * will get different reg->id assigned to each lookup, hence different 9177 * active_lock.id. 9178 * 9179 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 9180 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 9181 * returned from bpf_obj_new. Each allocation receives a new reg->id. 9182 */ 9183 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 9184 { 9185 void *ptr; 9186 u32 id; 9187 9188 switch ((int)reg->type) { 9189 case PTR_TO_MAP_VALUE: 9190 ptr = reg->map_ptr; 9191 break; 9192 case PTR_TO_BTF_ID | MEM_ALLOC: 9193 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED: 9194 ptr = reg->btf; 9195 break; 9196 default: 9197 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 9198 return -EFAULT; 9199 } 9200 id = reg->id; 9201 9202 if (!env->cur_state->active_lock.ptr) 9203 return -EINVAL; 9204 if (env->cur_state->active_lock.ptr != ptr || 9205 env->cur_state->active_lock.id != id) { 9206 verbose(env, "held lock and object are not in the same allocation\n"); 9207 return -EINVAL; 9208 } 9209 return 0; 9210 } 9211 9212 static bool is_bpf_list_api_kfunc(u32 btf_id) 9213 { 9214 return btf_id == special_kfunc_list[KF_bpf_list_push_front] || 9215 btf_id == special_kfunc_list[KF_bpf_list_push_back] || 9216 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 9217 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 9218 } 9219 9220 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 9221 { 9222 return btf_id == special_kfunc_list[KF_bpf_rbtree_add] || 9223 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 9224 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 9225 } 9226 9227 static bool is_bpf_graph_api_kfunc(u32 btf_id) 9228 { 9229 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id); 9230 } 9231 9232 static bool is_callback_calling_kfunc(u32 btf_id) 9233 { 9234 return btf_id == special_kfunc_list[KF_bpf_rbtree_add]; 9235 } 9236 9237 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 9238 { 9239 return is_bpf_rbtree_api_kfunc(btf_id); 9240 } 9241 9242 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 9243 enum btf_field_type head_field_type, 9244 u32 kfunc_btf_id) 9245 { 9246 bool ret; 9247 9248 switch (head_field_type) { 9249 case BPF_LIST_HEAD: 9250 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 9251 break; 9252 case BPF_RB_ROOT: 9253 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 9254 break; 9255 default: 9256 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 9257 btf_field_type_name(head_field_type)); 9258 return false; 9259 } 9260 9261 if (!ret) 9262 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 9263 btf_field_type_name(head_field_type)); 9264 return ret; 9265 } 9266 9267 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 9268 enum btf_field_type node_field_type, 9269 u32 kfunc_btf_id) 9270 { 9271 bool ret; 9272 9273 switch (node_field_type) { 9274 case BPF_LIST_NODE: 9275 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front] || 9276 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back]); 9277 break; 9278 case BPF_RB_NODE: 9279 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 9280 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add]); 9281 break; 9282 default: 9283 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 9284 btf_field_type_name(node_field_type)); 9285 return false; 9286 } 9287 9288 if (!ret) 9289 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 9290 btf_field_type_name(node_field_type)); 9291 return ret; 9292 } 9293 9294 static int 9295 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 9296 struct bpf_reg_state *reg, u32 regno, 9297 struct bpf_kfunc_call_arg_meta *meta, 9298 enum btf_field_type head_field_type, 9299 struct btf_field **head_field) 9300 { 9301 const char *head_type_name; 9302 struct btf_field *field; 9303 struct btf_record *rec; 9304 u32 head_off; 9305 9306 if (meta->btf != btf_vmlinux) { 9307 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 9308 return -EFAULT; 9309 } 9310 9311 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 9312 return -EFAULT; 9313 9314 head_type_name = btf_field_type_name(head_field_type); 9315 if (!tnum_is_const(reg->var_off)) { 9316 verbose(env, 9317 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 9318 regno, head_type_name); 9319 return -EINVAL; 9320 } 9321 9322 rec = reg_btf_record(reg); 9323 head_off = reg->off + reg->var_off.value; 9324 field = btf_record_find(rec, head_off, head_field_type); 9325 if (!field) { 9326 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 9327 return -EINVAL; 9328 } 9329 9330 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 9331 if (check_reg_allocation_locked(env, reg)) { 9332 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 9333 rec->spin_lock_off, head_type_name); 9334 return -EINVAL; 9335 } 9336 9337 if (*head_field) { 9338 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 9339 return -EFAULT; 9340 } 9341 *head_field = field; 9342 return 0; 9343 } 9344 9345 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 9346 struct bpf_reg_state *reg, u32 regno, 9347 struct bpf_kfunc_call_arg_meta *meta) 9348 { 9349 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 9350 &meta->arg_list_head.field); 9351 } 9352 9353 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 9354 struct bpf_reg_state *reg, u32 regno, 9355 struct bpf_kfunc_call_arg_meta *meta) 9356 { 9357 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 9358 &meta->arg_rbtree_root.field); 9359 } 9360 9361 static int 9362 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 9363 struct bpf_reg_state *reg, u32 regno, 9364 struct bpf_kfunc_call_arg_meta *meta, 9365 enum btf_field_type head_field_type, 9366 enum btf_field_type node_field_type, 9367 struct btf_field **node_field) 9368 { 9369 const char *node_type_name; 9370 const struct btf_type *et, *t; 9371 struct btf_field *field; 9372 u32 node_off; 9373 9374 if (meta->btf != btf_vmlinux) { 9375 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 9376 return -EFAULT; 9377 } 9378 9379 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 9380 return -EFAULT; 9381 9382 node_type_name = btf_field_type_name(node_field_type); 9383 if (!tnum_is_const(reg->var_off)) { 9384 verbose(env, 9385 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 9386 regno, node_type_name); 9387 return -EINVAL; 9388 } 9389 9390 node_off = reg->off + reg->var_off.value; 9391 field = reg_find_field_offset(reg, node_off, node_field_type); 9392 if (!field || field->offset != node_off) { 9393 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 9394 return -EINVAL; 9395 } 9396 9397 field = *node_field; 9398 9399 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 9400 t = btf_type_by_id(reg->btf, reg->btf_id); 9401 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 9402 field->graph_root.value_btf_id, true)) { 9403 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 9404 "in struct %s, but arg is at offset=%d in struct %s\n", 9405 btf_field_type_name(head_field_type), 9406 btf_field_type_name(node_field_type), 9407 field->graph_root.node_offset, 9408 btf_name_by_offset(field->graph_root.btf, et->name_off), 9409 node_off, btf_name_by_offset(reg->btf, t->name_off)); 9410 return -EINVAL; 9411 } 9412 9413 if (node_off != field->graph_root.node_offset) { 9414 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 9415 node_off, btf_field_type_name(node_field_type), 9416 field->graph_root.node_offset, 9417 btf_name_by_offset(field->graph_root.btf, et->name_off)); 9418 return -EINVAL; 9419 } 9420 9421 return 0; 9422 } 9423 9424 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 9425 struct bpf_reg_state *reg, u32 regno, 9426 struct bpf_kfunc_call_arg_meta *meta) 9427 { 9428 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 9429 BPF_LIST_HEAD, BPF_LIST_NODE, 9430 &meta->arg_list_head.field); 9431 } 9432 9433 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 9434 struct bpf_reg_state *reg, u32 regno, 9435 struct bpf_kfunc_call_arg_meta *meta) 9436 { 9437 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 9438 BPF_RB_ROOT, BPF_RB_NODE, 9439 &meta->arg_rbtree_root.field); 9440 } 9441 9442 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta) 9443 { 9444 const char *func_name = meta->func_name, *ref_tname; 9445 const struct btf *btf = meta->btf; 9446 const struct btf_param *args; 9447 u32 i, nargs; 9448 int ret; 9449 9450 args = (const struct btf_param *)(meta->func_proto + 1); 9451 nargs = btf_type_vlen(meta->func_proto); 9452 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 9453 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 9454 MAX_BPF_FUNC_REG_ARGS); 9455 return -EINVAL; 9456 } 9457 9458 /* Check that BTF function arguments match actual types that the 9459 * verifier sees. 9460 */ 9461 for (i = 0; i < nargs; i++) { 9462 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 9463 const struct btf_type *t, *ref_t, *resolve_ret; 9464 enum bpf_arg_type arg_type = ARG_DONTCARE; 9465 u32 regno = i + 1, ref_id, type_size; 9466 bool is_ret_buf_sz = false; 9467 int kf_arg_type; 9468 9469 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 9470 9471 if (is_kfunc_arg_ignore(btf, &args[i])) 9472 continue; 9473 9474 if (btf_type_is_scalar(t)) { 9475 if (reg->type != SCALAR_VALUE) { 9476 verbose(env, "R%d is not a scalar\n", regno); 9477 return -EINVAL; 9478 } 9479 9480 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 9481 if (meta->arg_constant.found) { 9482 verbose(env, "verifier internal error: only one constant argument permitted\n"); 9483 return -EFAULT; 9484 } 9485 if (!tnum_is_const(reg->var_off)) { 9486 verbose(env, "R%d must be a known constant\n", regno); 9487 return -EINVAL; 9488 } 9489 ret = mark_chain_precision(env, regno); 9490 if (ret < 0) 9491 return ret; 9492 meta->arg_constant.found = true; 9493 meta->arg_constant.value = reg->var_off.value; 9494 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 9495 meta->r0_rdonly = true; 9496 is_ret_buf_sz = true; 9497 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 9498 is_ret_buf_sz = true; 9499 } 9500 9501 if (is_ret_buf_sz) { 9502 if (meta->r0_size) { 9503 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 9504 return -EINVAL; 9505 } 9506 9507 if (!tnum_is_const(reg->var_off)) { 9508 verbose(env, "R%d is not a const\n", regno); 9509 return -EINVAL; 9510 } 9511 9512 meta->r0_size = reg->var_off.value; 9513 ret = mark_chain_precision(env, regno); 9514 if (ret) 9515 return ret; 9516 } 9517 continue; 9518 } 9519 9520 if (!btf_type_is_ptr(t)) { 9521 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 9522 return -EINVAL; 9523 } 9524 9525 if (is_kfunc_trusted_args(meta) && 9526 (register_is_null(reg) || type_may_be_null(reg->type))) { 9527 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 9528 return -EACCES; 9529 } 9530 9531 if (reg->ref_obj_id) { 9532 if (is_kfunc_release(meta) && meta->ref_obj_id) { 9533 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 9534 regno, reg->ref_obj_id, 9535 meta->ref_obj_id); 9536 return -EFAULT; 9537 } 9538 meta->ref_obj_id = reg->ref_obj_id; 9539 if (is_kfunc_release(meta)) 9540 meta->release_regno = regno; 9541 } 9542 9543 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 9544 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 9545 9546 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 9547 if (kf_arg_type < 0) 9548 return kf_arg_type; 9549 9550 switch (kf_arg_type) { 9551 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 9552 case KF_ARG_PTR_TO_BTF_ID: 9553 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 9554 break; 9555 9556 if (!is_trusted_reg(reg)) { 9557 if (!is_kfunc_rcu(meta)) { 9558 verbose(env, "R%d must be referenced or trusted\n", regno); 9559 return -EINVAL; 9560 } 9561 if (!is_rcu_reg(reg)) { 9562 verbose(env, "R%d must be a rcu pointer\n", regno); 9563 return -EINVAL; 9564 } 9565 } 9566 9567 fallthrough; 9568 case KF_ARG_PTR_TO_CTX: 9569 /* Trusted arguments have the same offset checks as release arguments */ 9570 arg_type |= OBJ_RELEASE; 9571 break; 9572 case KF_ARG_PTR_TO_KPTR: 9573 case KF_ARG_PTR_TO_DYNPTR: 9574 case KF_ARG_PTR_TO_LIST_HEAD: 9575 case KF_ARG_PTR_TO_LIST_NODE: 9576 case KF_ARG_PTR_TO_RB_ROOT: 9577 case KF_ARG_PTR_TO_RB_NODE: 9578 case KF_ARG_PTR_TO_MEM: 9579 case KF_ARG_PTR_TO_MEM_SIZE: 9580 case KF_ARG_PTR_TO_CALLBACK: 9581 /* Trusted by default */ 9582 break; 9583 default: 9584 WARN_ON_ONCE(1); 9585 return -EFAULT; 9586 } 9587 9588 if (is_kfunc_release(meta) && reg->ref_obj_id) 9589 arg_type |= OBJ_RELEASE; 9590 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 9591 if (ret < 0) 9592 return ret; 9593 9594 switch (kf_arg_type) { 9595 case KF_ARG_PTR_TO_CTX: 9596 if (reg->type != PTR_TO_CTX) { 9597 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 9598 return -EINVAL; 9599 } 9600 9601 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 9602 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 9603 if (ret < 0) 9604 return -EINVAL; 9605 meta->ret_btf_id = ret; 9606 } 9607 break; 9608 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 9609 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 9610 verbose(env, "arg#%d expected pointer to allocated object\n", i); 9611 return -EINVAL; 9612 } 9613 if (!reg->ref_obj_id) { 9614 verbose(env, "allocated object must be referenced\n"); 9615 return -EINVAL; 9616 } 9617 if (meta->btf == btf_vmlinux && 9618 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 9619 meta->arg_obj_drop.btf = reg->btf; 9620 meta->arg_obj_drop.btf_id = reg->btf_id; 9621 } 9622 break; 9623 case KF_ARG_PTR_TO_KPTR: 9624 if (reg->type != PTR_TO_MAP_VALUE) { 9625 verbose(env, "arg#0 expected pointer to map value\n"); 9626 return -EINVAL; 9627 } 9628 ret = process_kf_arg_ptr_to_kptr(env, reg, ref_t, ref_tname, meta, i); 9629 if (ret < 0) 9630 return ret; 9631 break; 9632 case KF_ARG_PTR_TO_DYNPTR: 9633 if (reg->type != PTR_TO_STACK && 9634 reg->type != CONST_PTR_TO_DYNPTR) { 9635 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 9636 return -EINVAL; 9637 } 9638 9639 ret = process_dynptr_func(env, regno, ARG_PTR_TO_DYNPTR | MEM_RDONLY, NULL); 9640 if (ret < 0) 9641 return ret; 9642 break; 9643 case KF_ARG_PTR_TO_LIST_HEAD: 9644 if (reg->type != PTR_TO_MAP_VALUE && 9645 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 9646 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 9647 return -EINVAL; 9648 } 9649 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 9650 verbose(env, "allocated object must be referenced\n"); 9651 return -EINVAL; 9652 } 9653 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 9654 if (ret < 0) 9655 return ret; 9656 break; 9657 case KF_ARG_PTR_TO_RB_ROOT: 9658 if (reg->type != PTR_TO_MAP_VALUE && 9659 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 9660 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 9661 return -EINVAL; 9662 } 9663 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 9664 verbose(env, "allocated object must be referenced\n"); 9665 return -EINVAL; 9666 } 9667 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 9668 if (ret < 0) 9669 return ret; 9670 break; 9671 case KF_ARG_PTR_TO_LIST_NODE: 9672 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 9673 verbose(env, "arg#%d expected pointer to allocated object\n", i); 9674 return -EINVAL; 9675 } 9676 if (!reg->ref_obj_id) { 9677 verbose(env, "allocated object must be referenced\n"); 9678 return -EINVAL; 9679 } 9680 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 9681 if (ret < 0) 9682 return ret; 9683 break; 9684 case KF_ARG_PTR_TO_RB_NODE: 9685 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 9686 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 9687 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 9688 return -EINVAL; 9689 } 9690 if (in_rbtree_lock_required_cb(env)) { 9691 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 9692 return -EINVAL; 9693 } 9694 } else { 9695 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 9696 verbose(env, "arg#%d expected pointer to allocated object\n", i); 9697 return -EINVAL; 9698 } 9699 if (!reg->ref_obj_id) { 9700 verbose(env, "allocated object must be referenced\n"); 9701 return -EINVAL; 9702 } 9703 } 9704 9705 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 9706 if (ret < 0) 9707 return ret; 9708 break; 9709 case KF_ARG_PTR_TO_BTF_ID: 9710 /* Only base_type is checked, further checks are done here */ 9711 if ((base_type(reg->type) != PTR_TO_BTF_ID || 9712 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 9713 !reg2btf_ids[base_type(reg->type)]) { 9714 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 9715 verbose(env, "expected %s or socket\n", 9716 reg_type_str(env, base_type(reg->type) | 9717 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 9718 return -EINVAL; 9719 } 9720 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 9721 if (ret < 0) 9722 return ret; 9723 break; 9724 case KF_ARG_PTR_TO_MEM: 9725 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 9726 if (IS_ERR(resolve_ret)) { 9727 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 9728 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 9729 return -EINVAL; 9730 } 9731 ret = check_mem_reg(env, reg, regno, type_size); 9732 if (ret < 0) 9733 return ret; 9734 break; 9735 case KF_ARG_PTR_TO_MEM_SIZE: 9736 ret = check_kfunc_mem_size_reg(env, ®s[regno + 1], regno + 1); 9737 if (ret < 0) { 9738 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 9739 return ret; 9740 } 9741 /* Skip next '__sz' argument */ 9742 i++; 9743 break; 9744 case KF_ARG_PTR_TO_CALLBACK: 9745 meta->subprogno = reg->subprogno; 9746 break; 9747 } 9748 } 9749 9750 if (is_kfunc_release(meta) && !meta->release_regno) { 9751 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 9752 func_name); 9753 return -EINVAL; 9754 } 9755 9756 return 0; 9757 } 9758 9759 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9760 int *insn_idx_p) 9761 { 9762 const struct btf_type *t, *func, *func_proto, *ptr_type; 9763 u32 i, nargs, func_id, ptr_type_id, release_ref_obj_id; 9764 struct bpf_reg_state *regs = cur_regs(env); 9765 const char *func_name, *ptr_type_name; 9766 bool sleepable, rcu_lock, rcu_unlock; 9767 struct bpf_kfunc_call_arg_meta meta; 9768 int err, insn_idx = *insn_idx_p; 9769 const struct btf_param *args; 9770 const struct btf_type *ret_t; 9771 struct btf *desc_btf; 9772 u32 *kfunc_flags; 9773 9774 /* skip for now, but return error when we find this in fixup_kfunc_call */ 9775 if (!insn->imm) 9776 return 0; 9777 9778 desc_btf = find_kfunc_desc_btf(env, insn->off); 9779 if (IS_ERR(desc_btf)) 9780 return PTR_ERR(desc_btf); 9781 9782 func_id = insn->imm; 9783 func = btf_type_by_id(desc_btf, func_id); 9784 func_name = btf_name_by_offset(desc_btf, func->name_off); 9785 func_proto = btf_type_by_id(desc_btf, func->type); 9786 9787 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id); 9788 if (!kfunc_flags) { 9789 verbose(env, "calling kernel function %s is not allowed\n", 9790 func_name); 9791 return -EACCES; 9792 } 9793 9794 /* Prepare kfunc call metadata */ 9795 memset(&meta, 0, sizeof(meta)); 9796 meta.btf = desc_btf; 9797 meta.func_id = func_id; 9798 meta.kfunc_flags = *kfunc_flags; 9799 meta.func_proto = func_proto; 9800 meta.func_name = func_name; 9801 9802 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 9803 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 9804 return -EACCES; 9805 } 9806 9807 sleepable = is_kfunc_sleepable(&meta); 9808 if (sleepable && !env->prog->aux->sleepable) { 9809 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 9810 return -EACCES; 9811 } 9812 9813 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 9814 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 9815 if ((rcu_lock || rcu_unlock) && !env->rcu_tag_supported) { 9816 verbose(env, "no vmlinux btf rcu tag support for kfunc %s\n", func_name); 9817 return -EACCES; 9818 } 9819 9820 if (env->cur_state->active_rcu_lock) { 9821 struct bpf_func_state *state; 9822 struct bpf_reg_state *reg; 9823 9824 if (rcu_lock) { 9825 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 9826 return -EINVAL; 9827 } else if (rcu_unlock) { 9828 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9829 if (reg->type & MEM_RCU) { 9830 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 9831 reg->type |= PTR_UNTRUSTED; 9832 } 9833 })); 9834 env->cur_state->active_rcu_lock = false; 9835 } else if (sleepable) { 9836 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 9837 return -EACCES; 9838 } 9839 } else if (rcu_lock) { 9840 env->cur_state->active_rcu_lock = true; 9841 } else if (rcu_unlock) { 9842 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 9843 return -EINVAL; 9844 } 9845 9846 /* Check the arguments */ 9847 err = check_kfunc_args(env, &meta); 9848 if (err < 0) 9849 return err; 9850 /* In case of release function, we get register number of refcounted 9851 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 9852 */ 9853 if (meta.release_regno) { 9854 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 9855 if (err) { 9856 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 9857 func_name, func_id); 9858 return err; 9859 } 9860 } 9861 9862 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front] || 9863 meta.func_id == special_kfunc_list[KF_bpf_list_push_back] || 9864 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add]) { 9865 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 9866 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 9867 if (err) { 9868 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 9869 func_name, func_id); 9870 return err; 9871 } 9872 9873 err = release_reference(env, release_ref_obj_id); 9874 if (err) { 9875 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 9876 func_name, func_id); 9877 return err; 9878 } 9879 } 9880 9881 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add]) { 9882 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9883 set_rbtree_add_callback_state); 9884 if (err) { 9885 verbose(env, "kfunc %s#%d failed callback verification\n", 9886 func_name, func_id); 9887 return err; 9888 } 9889 } 9890 9891 for (i = 0; i < CALLER_SAVED_REGS; i++) 9892 mark_reg_not_init(env, regs, caller_saved[i]); 9893 9894 /* Check return type */ 9895 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL); 9896 9897 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 9898 /* Only exception is bpf_obj_new_impl */ 9899 if (meta.btf != btf_vmlinux || meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl]) { 9900 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 9901 return -EINVAL; 9902 } 9903 } 9904 9905 if (btf_type_is_scalar(t)) { 9906 mark_reg_unknown(env, regs, BPF_REG_0); 9907 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 9908 } else if (btf_type_is_ptr(t)) { 9909 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 9910 9911 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 9912 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 9913 struct btf *ret_btf; 9914 u32 ret_btf_id; 9915 9916 if (unlikely(!bpf_global_ma_set)) 9917 return -ENOMEM; 9918 9919 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 9920 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 9921 return -EINVAL; 9922 } 9923 9924 ret_btf = env->prog->aux->btf; 9925 ret_btf_id = meta.arg_constant.value; 9926 9927 /* This may be NULL due to user not supplying a BTF */ 9928 if (!ret_btf) { 9929 verbose(env, "bpf_obj_new requires prog BTF\n"); 9930 return -EINVAL; 9931 } 9932 9933 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 9934 if (!ret_t || !__btf_type_is_struct(ret_t)) { 9935 verbose(env, "bpf_obj_new type ID argument must be of a struct\n"); 9936 return -EINVAL; 9937 } 9938 9939 mark_reg_known_zero(env, regs, BPF_REG_0); 9940 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 9941 regs[BPF_REG_0].btf = ret_btf; 9942 regs[BPF_REG_0].btf_id = ret_btf_id; 9943 9944 env->insn_aux_data[insn_idx].obj_new_size = ret_t->size; 9945 env->insn_aux_data[insn_idx].kptr_struct_meta = 9946 btf_find_struct_meta(ret_btf, ret_btf_id); 9947 } else if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 9948 env->insn_aux_data[insn_idx].kptr_struct_meta = 9949 btf_find_struct_meta(meta.arg_obj_drop.btf, 9950 meta.arg_obj_drop.btf_id); 9951 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 9952 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 9953 struct btf_field *field = meta.arg_list_head.field; 9954 9955 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 9956 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 9957 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 9958 struct btf_field *field = meta.arg_rbtree_root.field; 9959 9960 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 9961 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 9962 mark_reg_known_zero(env, regs, BPF_REG_0); 9963 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 9964 regs[BPF_REG_0].btf = desc_btf; 9965 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 9966 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 9967 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 9968 if (!ret_t || !btf_type_is_struct(ret_t)) { 9969 verbose(env, 9970 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 9971 return -EINVAL; 9972 } 9973 9974 mark_reg_known_zero(env, regs, BPF_REG_0); 9975 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 9976 regs[BPF_REG_0].btf = desc_btf; 9977 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 9978 } else { 9979 verbose(env, "kernel function %s unhandled dynamic return type\n", 9980 meta.func_name); 9981 return -EFAULT; 9982 } 9983 } else if (!__btf_type_is_struct(ptr_type)) { 9984 if (!meta.r0_size) { 9985 ptr_type_name = btf_name_by_offset(desc_btf, 9986 ptr_type->name_off); 9987 verbose(env, 9988 "kernel function %s returns pointer type %s %s is not supported\n", 9989 func_name, 9990 btf_type_str(ptr_type), 9991 ptr_type_name); 9992 return -EINVAL; 9993 } 9994 9995 mark_reg_known_zero(env, regs, BPF_REG_0); 9996 regs[BPF_REG_0].type = PTR_TO_MEM; 9997 regs[BPF_REG_0].mem_size = meta.r0_size; 9998 9999 if (meta.r0_rdonly) 10000 regs[BPF_REG_0].type |= MEM_RDONLY; 10001 10002 /* Ensures we don't access the memory after a release_reference() */ 10003 if (meta.ref_obj_id) 10004 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 10005 } else { 10006 mark_reg_known_zero(env, regs, BPF_REG_0); 10007 regs[BPF_REG_0].btf = desc_btf; 10008 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 10009 regs[BPF_REG_0].btf_id = ptr_type_id; 10010 } 10011 10012 if (is_kfunc_ret_null(&meta)) { 10013 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 10014 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 10015 regs[BPF_REG_0].id = ++env->id_gen; 10016 } 10017 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 10018 if (is_kfunc_acquire(&meta)) { 10019 int id = acquire_reference_state(env, insn_idx); 10020 10021 if (id < 0) 10022 return id; 10023 if (is_kfunc_ret_null(&meta)) 10024 regs[BPF_REG_0].id = id; 10025 regs[BPF_REG_0].ref_obj_id = id; 10026 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 10027 ref_set_non_owning(env, ®s[BPF_REG_0]); 10028 } 10029 10030 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove]) 10031 invalidate_non_owning_refs(env); 10032 10033 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 10034 regs[BPF_REG_0].id = ++env->id_gen; 10035 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 10036 10037 nargs = btf_type_vlen(func_proto); 10038 args = (const struct btf_param *)(func_proto + 1); 10039 for (i = 0; i < nargs; i++) { 10040 u32 regno = i + 1; 10041 10042 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 10043 if (btf_type_is_ptr(t)) 10044 mark_btf_func_reg_size(env, regno, sizeof(void *)); 10045 else 10046 /* scalar. ensured by btf_check_kfunc_arg_match() */ 10047 mark_btf_func_reg_size(env, regno, t->size); 10048 } 10049 10050 return 0; 10051 } 10052 10053 static bool signed_add_overflows(s64 a, s64 b) 10054 { 10055 /* Do the add in u64, where overflow is well-defined */ 10056 s64 res = (s64)((u64)a + (u64)b); 10057 10058 if (b < 0) 10059 return res > a; 10060 return res < a; 10061 } 10062 10063 static bool signed_add32_overflows(s32 a, s32 b) 10064 { 10065 /* Do the add in u32, where overflow is well-defined */ 10066 s32 res = (s32)((u32)a + (u32)b); 10067 10068 if (b < 0) 10069 return res > a; 10070 return res < a; 10071 } 10072 10073 static bool signed_sub_overflows(s64 a, s64 b) 10074 { 10075 /* Do the sub in u64, where overflow is well-defined */ 10076 s64 res = (s64)((u64)a - (u64)b); 10077 10078 if (b < 0) 10079 return res < a; 10080 return res > a; 10081 } 10082 10083 static bool signed_sub32_overflows(s32 a, s32 b) 10084 { 10085 /* Do the sub in u32, where overflow is well-defined */ 10086 s32 res = (s32)((u32)a - (u32)b); 10087 10088 if (b < 0) 10089 return res < a; 10090 return res > a; 10091 } 10092 10093 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 10094 const struct bpf_reg_state *reg, 10095 enum bpf_reg_type type) 10096 { 10097 bool known = tnum_is_const(reg->var_off); 10098 s64 val = reg->var_off.value; 10099 s64 smin = reg->smin_value; 10100 10101 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 10102 verbose(env, "math between %s pointer and %lld is not allowed\n", 10103 reg_type_str(env, type), val); 10104 return false; 10105 } 10106 10107 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 10108 verbose(env, "%s pointer offset %d is not allowed\n", 10109 reg_type_str(env, type), reg->off); 10110 return false; 10111 } 10112 10113 if (smin == S64_MIN) { 10114 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 10115 reg_type_str(env, type)); 10116 return false; 10117 } 10118 10119 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 10120 verbose(env, "value %lld makes %s pointer be out of bounds\n", 10121 smin, reg_type_str(env, type)); 10122 return false; 10123 } 10124 10125 return true; 10126 } 10127 10128 enum { 10129 REASON_BOUNDS = -1, 10130 REASON_TYPE = -2, 10131 REASON_PATHS = -3, 10132 REASON_LIMIT = -4, 10133 REASON_STACK = -5, 10134 }; 10135 10136 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 10137 u32 *alu_limit, bool mask_to_left) 10138 { 10139 u32 max = 0, ptr_limit = 0; 10140 10141 switch (ptr_reg->type) { 10142 case PTR_TO_STACK: 10143 /* Offset 0 is out-of-bounds, but acceptable start for the 10144 * left direction, see BPF_REG_FP. Also, unknown scalar 10145 * offset where we would need to deal with min/max bounds is 10146 * currently prohibited for unprivileged. 10147 */ 10148 max = MAX_BPF_STACK + mask_to_left; 10149 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 10150 break; 10151 case PTR_TO_MAP_VALUE: 10152 max = ptr_reg->map_ptr->value_size; 10153 ptr_limit = (mask_to_left ? 10154 ptr_reg->smin_value : 10155 ptr_reg->umax_value) + ptr_reg->off; 10156 break; 10157 default: 10158 return REASON_TYPE; 10159 } 10160 10161 if (ptr_limit >= max) 10162 return REASON_LIMIT; 10163 *alu_limit = ptr_limit; 10164 return 0; 10165 } 10166 10167 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 10168 const struct bpf_insn *insn) 10169 { 10170 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 10171 } 10172 10173 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 10174 u32 alu_state, u32 alu_limit) 10175 { 10176 /* If we arrived here from different branches with different 10177 * state or limits to sanitize, then this won't work. 10178 */ 10179 if (aux->alu_state && 10180 (aux->alu_state != alu_state || 10181 aux->alu_limit != alu_limit)) 10182 return REASON_PATHS; 10183 10184 /* Corresponding fixup done in do_misc_fixups(). */ 10185 aux->alu_state = alu_state; 10186 aux->alu_limit = alu_limit; 10187 return 0; 10188 } 10189 10190 static int sanitize_val_alu(struct bpf_verifier_env *env, 10191 struct bpf_insn *insn) 10192 { 10193 struct bpf_insn_aux_data *aux = cur_aux(env); 10194 10195 if (can_skip_alu_sanitation(env, insn)) 10196 return 0; 10197 10198 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 10199 } 10200 10201 static bool sanitize_needed(u8 opcode) 10202 { 10203 return opcode == BPF_ADD || opcode == BPF_SUB; 10204 } 10205 10206 struct bpf_sanitize_info { 10207 struct bpf_insn_aux_data aux; 10208 bool mask_to_left; 10209 }; 10210 10211 static struct bpf_verifier_state * 10212 sanitize_speculative_path(struct bpf_verifier_env *env, 10213 const struct bpf_insn *insn, 10214 u32 next_idx, u32 curr_idx) 10215 { 10216 struct bpf_verifier_state *branch; 10217 struct bpf_reg_state *regs; 10218 10219 branch = push_stack(env, next_idx, curr_idx, true); 10220 if (branch && insn) { 10221 regs = branch->frame[branch->curframe]->regs; 10222 if (BPF_SRC(insn->code) == BPF_K) { 10223 mark_reg_unknown(env, regs, insn->dst_reg); 10224 } else if (BPF_SRC(insn->code) == BPF_X) { 10225 mark_reg_unknown(env, regs, insn->dst_reg); 10226 mark_reg_unknown(env, regs, insn->src_reg); 10227 } 10228 } 10229 return branch; 10230 } 10231 10232 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 10233 struct bpf_insn *insn, 10234 const struct bpf_reg_state *ptr_reg, 10235 const struct bpf_reg_state *off_reg, 10236 struct bpf_reg_state *dst_reg, 10237 struct bpf_sanitize_info *info, 10238 const bool commit_window) 10239 { 10240 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 10241 struct bpf_verifier_state *vstate = env->cur_state; 10242 bool off_is_imm = tnum_is_const(off_reg->var_off); 10243 bool off_is_neg = off_reg->smin_value < 0; 10244 bool ptr_is_dst_reg = ptr_reg == dst_reg; 10245 u8 opcode = BPF_OP(insn->code); 10246 u32 alu_state, alu_limit; 10247 struct bpf_reg_state tmp; 10248 bool ret; 10249 int err; 10250 10251 if (can_skip_alu_sanitation(env, insn)) 10252 return 0; 10253 10254 /* We already marked aux for masking from non-speculative 10255 * paths, thus we got here in the first place. We only care 10256 * to explore bad access from here. 10257 */ 10258 if (vstate->speculative) 10259 goto do_sim; 10260 10261 if (!commit_window) { 10262 if (!tnum_is_const(off_reg->var_off) && 10263 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 10264 return REASON_BOUNDS; 10265 10266 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 10267 (opcode == BPF_SUB && !off_is_neg); 10268 } 10269 10270 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 10271 if (err < 0) 10272 return err; 10273 10274 if (commit_window) { 10275 /* In commit phase we narrow the masking window based on 10276 * the observed pointer move after the simulated operation. 10277 */ 10278 alu_state = info->aux.alu_state; 10279 alu_limit = abs(info->aux.alu_limit - alu_limit); 10280 } else { 10281 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 10282 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 10283 alu_state |= ptr_is_dst_reg ? 10284 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 10285 10286 /* Limit pruning on unknown scalars to enable deep search for 10287 * potential masking differences from other program paths. 10288 */ 10289 if (!off_is_imm) 10290 env->explore_alu_limits = true; 10291 } 10292 10293 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 10294 if (err < 0) 10295 return err; 10296 do_sim: 10297 /* If we're in commit phase, we're done here given we already 10298 * pushed the truncated dst_reg into the speculative verification 10299 * stack. 10300 * 10301 * Also, when register is a known constant, we rewrite register-based 10302 * operation to immediate-based, and thus do not need masking (and as 10303 * a consequence, do not need to simulate the zero-truncation either). 10304 */ 10305 if (commit_window || off_is_imm) 10306 return 0; 10307 10308 /* Simulate and find potential out-of-bounds access under 10309 * speculative execution from truncation as a result of 10310 * masking when off was not within expected range. If off 10311 * sits in dst, then we temporarily need to move ptr there 10312 * to simulate dst (== 0) +/-= ptr. Needed, for example, 10313 * for cases where we use K-based arithmetic in one direction 10314 * and truncated reg-based in the other in order to explore 10315 * bad access. 10316 */ 10317 if (!ptr_is_dst_reg) { 10318 tmp = *dst_reg; 10319 copy_register_state(dst_reg, ptr_reg); 10320 } 10321 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 10322 env->insn_idx); 10323 if (!ptr_is_dst_reg && ret) 10324 *dst_reg = tmp; 10325 return !ret ? REASON_STACK : 0; 10326 } 10327 10328 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 10329 { 10330 struct bpf_verifier_state *vstate = env->cur_state; 10331 10332 /* If we simulate paths under speculation, we don't update the 10333 * insn as 'seen' such that when we verify unreachable paths in 10334 * the non-speculative domain, sanitize_dead_code() can still 10335 * rewrite/sanitize them. 10336 */ 10337 if (!vstate->speculative) 10338 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 10339 } 10340 10341 static int sanitize_err(struct bpf_verifier_env *env, 10342 const struct bpf_insn *insn, int reason, 10343 const struct bpf_reg_state *off_reg, 10344 const struct bpf_reg_state *dst_reg) 10345 { 10346 static const char *err = "pointer arithmetic with it prohibited for !root"; 10347 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 10348 u32 dst = insn->dst_reg, src = insn->src_reg; 10349 10350 switch (reason) { 10351 case REASON_BOUNDS: 10352 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 10353 off_reg == dst_reg ? dst : src, err); 10354 break; 10355 case REASON_TYPE: 10356 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 10357 off_reg == dst_reg ? src : dst, err); 10358 break; 10359 case REASON_PATHS: 10360 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 10361 dst, op, err); 10362 break; 10363 case REASON_LIMIT: 10364 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 10365 dst, op, err); 10366 break; 10367 case REASON_STACK: 10368 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 10369 dst, err); 10370 break; 10371 default: 10372 verbose(env, "verifier internal error: unknown reason (%d)\n", 10373 reason); 10374 break; 10375 } 10376 10377 return -EACCES; 10378 } 10379 10380 /* check that stack access falls within stack limits and that 'reg' doesn't 10381 * have a variable offset. 10382 * 10383 * Variable offset is prohibited for unprivileged mode for simplicity since it 10384 * requires corresponding support in Spectre masking for stack ALU. See also 10385 * retrieve_ptr_limit(). 10386 * 10387 * 10388 * 'off' includes 'reg->off'. 10389 */ 10390 static int check_stack_access_for_ptr_arithmetic( 10391 struct bpf_verifier_env *env, 10392 int regno, 10393 const struct bpf_reg_state *reg, 10394 int off) 10395 { 10396 if (!tnum_is_const(reg->var_off)) { 10397 char tn_buf[48]; 10398 10399 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 10400 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 10401 regno, tn_buf, off); 10402 return -EACCES; 10403 } 10404 10405 if (off >= 0 || off < -MAX_BPF_STACK) { 10406 verbose(env, "R%d stack pointer arithmetic goes out of range, " 10407 "prohibited for !root; off=%d\n", regno, off); 10408 return -EACCES; 10409 } 10410 10411 return 0; 10412 } 10413 10414 static int sanitize_check_bounds(struct bpf_verifier_env *env, 10415 const struct bpf_insn *insn, 10416 const struct bpf_reg_state *dst_reg) 10417 { 10418 u32 dst = insn->dst_reg; 10419 10420 /* For unprivileged we require that resulting offset must be in bounds 10421 * in order to be able to sanitize access later on. 10422 */ 10423 if (env->bypass_spec_v1) 10424 return 0; 10425 10426 switch (dst_reg->type) { 10427 case PTR_TO_STACK: 10428 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 10429 dst_reg->off + dst_reg->var_off.value)) 10430 return -EACCES; 10431 break; 10432 case PTR_TO_MAP_VALUE: 10433 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 10434 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 10435 "prohibited for !root\n", dst); 10436 return -EACCES; 10437 } 10438 break; 10439 default: 10440 break; 10441 } 10442 10443 return 0; 10444 } 10445 10446 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 10447 * Caller should also handle BPF_MOV case separately. 10448 * If we return -EACCES, caller may want to try again treating pointer as a 10449 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 10450 */ 10451 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 10452 struct bpf_insn *insn, 10453 const struct bpf_reg_state *ptr_reg, 10454 const struct bpf_reg_state *off_reg) 10455 { 10456 struct bpf_verifier_state *vstate = env->cur_state; 10457 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 10458 struct bpf_reg_state *regs = state->regs, *dst_reg; 10459 bool known = tnum_is_const(off_reg->var_off); 10460 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 10461 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 10462 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 10463 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 10464 struct bpf_sanitize_info info = {}; 10465 u8 opcode = BPF_OP(insn->code); 10466 u32 dst = insn->dst_reg; 10467 int ret; 10468 10469 dst_reg = ®s[dst]; 10470 10471 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 10472 smin_val > smax_val || umin_val > umax_val) { 10473 /* Taint dst register if offset had invalid bounds derived from 10474 * e.g. dead branches. 10475 */ 10476 __mark_reg_unknown(env, dst_reg); 10477 return 0; 10478 } 10479 10480 if (BPF_CLASS(insn->code) != BPF_ALU64) { 10481 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 10482 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 10483 __mark_reg_unknown(env, dst_reg); 10484 return 0; 10485 } 10486 10487 verbose(env, 10488 "R%d 32-bit pointer arithmetic prohibited\n", 10489 dst); 10490 return -EACCES; 10491 } 10492 10493 if (ptr_reg->type & PTR_MAYBE_NULL) { 10494 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 10495 dst, reg_type_str(env, ptr_reg->type)); 10496 return -EACCES; 10497 } 10498 10499 switch (base_type(ptr_reg->type)) { 10500 case CONST_PTR_TO_MAP: 10501 /* smin_val represents the known value */ 10502 if (known && smin_val == 0 && opcode == BPF_ADD) 10503 break; 10504 fallthrough; 10505 case PTR_TO_PACKET_END: 10506 case PTR_TO_SOCKET: 10507 case PTR_TO_SOCK_COMMON: 10508 case PTR_TO_TCP_SOCK: 10509 case PTR_TO_XDP_SOCK: 10510 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 10511 dst, reg_type_str(env, ptr_reg->type)); 10512 return -EACCES; 10513 default: 10514 break; 10515 } 10516 10517 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 10518 * The id may be overwritten later if we create a new variable offset. 10519 */ 10520 dst_reg->type = ptr_reg->type; 10521 dst_reg->id = ptr_reg->id; 10522 10523 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 10524 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 10525 return -EINVAL; 10526 10527 /* pointer types do not carry 32-bit bounds at the moment. */ 10528 __mark_reg32_unbounded(dst_reg); 10529 10530 if (sanitize_needed(opcode)) { 10531 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 10532 &info, false); 10533 if (ret < 0) 10534 return sanitize_err(env, insn, ret, off_reg, dst_reg); 10535 } 10536 10537 switch (opcode) { 10538 case BPF_ADD: 10539 /* We can take a fixed offset as long as it doesn't overflow 10540 * the s32 'off' field 10541 */ 10542 if (known && (ptr_reg->off + smin_val == 10543 (s64)(s32)(ptr_reg->off + smin_val))) { 10544 /* pointer += K. Accumulate it into fixed offset */ 10545 dst_reg->smin_value = smin_ptr; 10546 dst_reg->smax_value = smax_ptr; 10547 dst_reg->umin_value = umin_ptr; 10548 dst_reg->umax_value = umax_ptr; 10549 dst_reg->var_off = ptr_reg->var_off; 10550 dst_reg->off = ptr_reg->off + smin_val; 10551 dst_reg->raw = ptr_reg->raw; 10552 break; 10553 } 10554 /* A new variable offset is created. Note that off_reg->off 10555 * == 0, since it's a scalar. 10556 * dst_reg gets the pointer type and since some positive 10557 * integer value was added to the pointer, give it a new 'id' 10558 * if it's a PTR_TO_PACKET. 10559 * this creates a new 'base' pointer, off_reg (variable) gets 10560 * added into the variable offset, and we copy the fixed offset 10561 * from ptr_reg. 10562 */ 10563 if (signed_add_overflows(smin_ptr, smin_val) || 10564 signed_add_overflows(smax_ptr, smax_val)) { 10565 dst_reg->smin_value = S64_MIN; 10566 dst_reg->smax_value = S64_MAX; 10567 } else { 10568 dst_reg->smin_value = smin_ptr + smin_val; 10569 dst_reg->smax_value = smax_ptr + smax_val; 10570 } 10571 if (umin_ptr + umin_val < umin_ptr || 10572 umax_ptr + umax_val < umax_ptr) { 10573 dst_reg->umin_value = 0; 10574 dst_reg->umax_value = U64_MAX; 10575 } else { 10576 dst_reg->umin_value = umin_ptr + umin_val; 10577 dst_reg->umax_value = umax_ptr + umax_val; 10578 } 10579 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 10580 dst_reg->off = ptr_reg->off; 10581 dst_reg->raw = ptr_reg->raw; 10582 if (reg_is_pkt_pointer(ptr_reg)) { 10583 dst_reg->id = ++env->id_gen; 10584 /* something was added to pkt_ptr, set range to zero */ 10585 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 10586 } 10587 break; 10588 case BPF_SUB: 10589 if (dst_reg == off_reg) { 10590 /* scalar -= pointer. Creates an unknown scalar */ 10591 verbose(env, "R%d tried to subtract pointer from scalar\n", 10592 dst); 10593 return -EACCES; 10594 } 10595 /* We don't allow subtraction from FP, because (according to 10596 * test_verifier.c test "invalid fp arithmetic", JITs might not 10597 * be able to deal with it. 10598 */ 10599 if (ptr_reg->type == PTR_TO_STACK) { 10600 verbose(env, "R%d subtraction from stack pointer prohibited\n", 10601 dst); 10602 return -EACCES; 10603 } 10604 if (known && (ptr_reg->off - smin_val == 10605 (s64)(s32)(ptr_reg->off - smin_val))) { 10606 /* pointer -= K. Subtract it from fixed offset */ 10607 dst_reg->smin_value = smin_ptr; 10608 dst_reg->smax_value = smax_ptr; 10609 dst_reg->umin_value = umin_ptr; 10610 dst_reg->umax_value = umax_ptr; 10611 dst_reg->var_off = ptr_reg->var_off; 10612 dst_reg->id = ptr_reg->id; 10613 dst_reg->off = ptr_reg->off - smin_val; 10614 dst_reg->raw = ptr_reg->raw; 10615 break; 10616 } 10617 /* A new variable offset is created. If the subtrahend is known 10618 * nonnegative, then any reg->range we had before is still good. 10619 */ 10620 if (signed_sub_overflows(smin_ptr, smax_val) || 10621 signed_sub_overflows(smax_ptr, smin_val)) { 10622 /* Overflow possible, we know nothing */ 10623 dst_reg->smin_value = S64_MIN; 10624 dst_reg->smax_value = S64_MAX; 10625 } else { 10626 dst_reg->smin_value = smin_ptr - smax_val; 10627 dst_reg->smax_value = smax_ptr - smin_val; 10628 } 10629 if (umin_ptr < umax_val) { 10630 /* Overflow possible, we know nothing */ 10631 dst_reg->umin_value = 0; 10632 dst_reg->umax_value = U64_MAX; 10633 } else { 10634 /* Cannot overflow (as long as bounds are consistent) */ 10635 dst_reg->umin_value = umin_ptr - umax_val; 10636 dst_reg->umax_value = umax_ptr - umin_val; 10637 } 10638 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 10639 dst_reg->off = ptr_reg->off; 10640 dst_reg->raw = ptr_reg->raw; 10641 if (reg_is_pkt_pointer(ptr_reg)) { 10642 dst_reg->id = ++env->id_gen; 10643 /* something was added to pkt_ptr, set range to zero */ 10644 if (smin_val < 0) 10645 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 10646 } 10647 break; 10648 case BPF_AND: 10649 case BPF_OR: 10650 case BPF_XOR: 10651 /* bitwise ops on pointers are troublesome, prohibit. */ 10652 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 10653 dst, bpf_alu_string[opcode >> 4]); 10654 return -EACCES; 10655 default: 10656 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 10657 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 10658 dst, bpf_alu_string[opcode >> 4]); 10659 return -EACCES; 10660 } 10661 10662 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 10663 return -EINVAL; 10664 reg_bounds_sync(dst_reg); 10665 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 10666 return -EACCES; 10667 if (sanitize_needed(opcode)) { 10668 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 10669 &info, true); 10670 if (ret < 0) 10671 return sanitize_err(env, insn, ret, off_reg, dst_reg); 10672 } 10673 10674 return 0; 10675 } 10676 10677 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 10678 struct bpf_reg_state *src_reg) 10679 { 10680 s32 smin_val = src_reg->s32_min_value; 10681 s32 smax_val = src_reg->s32_max_value; 10682 u32 umin_val = src_reg->u32_min_value; 10683 u32 umax_val = src_reg->u32_max_value; 10684 10685 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 10686 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 10687 dst_reg->s32_min_value = S32_MIN; 10688 dst_reg->s32_max_value = S32_MAX; 10689 } else { 10690 dst_reg->s32_min_value += smin_val; 10691 dst_reg->s32_max_value += smax_val; 10692 } 10693 if (dst_reg->u32_min_value + umin_val < umin_val || 10694 dst_reg->u32_max_value + umax_val < umax_val) { 10695 dst_reg->u32_min_value = 0; 10696 dst_reg->u32_max_value = U32_MAX; 10697 } else { 10698 dst_reg->u32_min_value += umin_val; 10699 dst_reg->u32_max_value += umax_val; 10700 } 10701 } 10702 10703 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 10704 struct bpf_reg_state *src_reg) 10705 { 10706 s64 smin_val = src_reg->smin_value; 10707 s64 smax_val = src_reg->smax_value; 10708 u64 umin_val = src_reg->umin_value; 10709 u64 umax_val = src_reg->umax_value; 10710 10711 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 10712 signed_add_overflows(dst_reg->smax_value, smax_val)) { 10713 dst_reg->smin_value = S64_MIN; 10714 dst_reg->smax_value = S64_MAX; 10715 } else { 10716 dst_reg->smin_value += smin_val; 10717 dst_reg->smax_value += smax_val; 10718 } 10719 if (dst_reg->umin_value + umin_val < umin_val || 10720 dst_reg->umax_value + umax_val < umax_val) { 10721 dst_reg->umin_value = 0; 10722 dst_reg->umax_value = U64_MAX; 10723 } else { 10724 dst_reg->umin_value += umin_val; 10725 dst_reg->umax_value += umax_val; 10726 } 10727 } 10728 10729 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 10730 struct bpf_reg_state *src_reg) 10731 { 10732 s32 smin_val = src_reg->s32_min_value; 10733 s32 smax_val = src_reg->s32_max_value; 10734 u32 umin_val = src_reg->u32_min_value; 10735 u32 umax_val = src_reg->u32_max_value; 10736 10737 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 10738 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 10739 /* Overflow possible, we know nothing */ 10740 dst_reg->s32_min_value = S32_MIN; 10741 dst_reg->s32_max_value = S32_MAX; 10742 } else { 10743 dst_reg->s32_min_value -= smax_val; 10744 dst_reg->s32_max_value -= smin_val; 10745 } 10746 if (dst_reg->u32_min_value < umax_val) { 10747 /* Overflow possible, we know nothing */ 10748 dst_reg->u32_min_value = 0; 10749 dst_reg->u32_max_value = U32_MAX; 10750 } else { 10751 /* Cannot overflow (as long as bounds are consistent) */ 10752 dst_reg->u32_min_value -= umax_val; 10753 dst_reg->u32_max_value -= umin_val; 10754 } 10755 } 10756 10757 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 10758 struct bpf_reg_state *src_reg) 10759 { 10760 s64 smin_val = src_reg->smin_value; 10761 s64 smax_val = src_reg->smax_value; 10762 u64 umin_val = src_reg->umin_value; 10763 u64 umax_val = src_reg->umax_value; 10764 10765 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 10766 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 10767 /* Overflow possible, we know nothing */ 10768 dst_reg->smin_value = S64_MIN; 10769 dst_reg->smax_value = S64_MAX; 10770 } else { 10771 dst_reg->smin_value -= smax_val; 10772 dst_reg->smax_value -= smin_val; 10773 } 10774 if (dst_reg->umin_value < umax_val) { 10775 /* Overflow possible, we know nothing */ 10776 dst_reg->umin_value = 0; 10777 dst_reg->umax_value = U64_MAX; 10778 } else { 10779 /* Cannot overflow (as long as bounds are consistent) */ 10780 dst_reg->umin_value -= umax_val; 10781 dst_reg->umax_value -= umin_val; 10782 } 10783 } 10784 10785 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 10786 struct bpf_reg_state *src_reg) 10787 { 10788 s32 smin_val = src_reg->s32_min_value; 10789 u32 umin_val = src_reg->u32_min_value; 10790 u32 umax_val = src_reg->u32_max_value; 10791 10792 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 10793 /* Ain't nobody got time to multiply that sign */ 10794 __mark_reg32_unbounded(dst_reg); 10795 return; 10796 } 10797 /* Both values are positive, so we can work with unsigned and 10798 * copy the result to signed (unless it exceeds S32_MAX). 10799 */ 10800 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 10801 /* Potential overflow, we know nothing */ 10802 __mark_reg32_unbounded(dst_reg); 10803 return; 10804 } 10805 dst_reg->u32_min_value *= umin_val; 10806 dst_reg->u32_max_value *= umax_val; 10807 if (dst_reg->u32_max_value > S32_MAX) { 10808 /* Overflow possible, we know nothing */ 10809 dst_reg->s32_min_value = S32_MIN; 10810 dst_reg->s32_max_value = S32_MAX; 10811 } else { 10812 dst_reg->s32_min_value = dst_reg->u32_min_value; 10813 dst_reg->s32_max_value = dst_reg->u32_max_value; 10814 } 10815 } 10816 10817 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 10818 struct bpf_reg_state *src_reg) 10819 { 10820 s64 smin_val = src_reg->smin_value; 10821 u64 umin_val = src_reg->umin_value; 10822 u64 umax_val = src_reg->umax_value; 10823 10824 if (smin_val < 0 || dst_reg->smin_value < 0) { 10825 /* Ain't nobody got time to multiply that sign */ 10826 __mark_reg64_unbounded(dst_reg); 10827 return; 10828 } 10829 /* Both values are positive, so we can work with unsigned and 10830 * copy the result to signed (unless it exceeds S64_MAX). 10831 */ 10832 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 10833 /* Potential overflow, we know nothing */ 10834 __mark_reg64_unbounded(dst_reg); 10835 return; 10836 } 10837 dst_reg->umin_value *= umin_val; 10838 dst_reg->umax_value *= umax_val; 10839 if (dst_reg->umax_value > S64_MAX) { 10840 /* Overflow possible, we know nothing */ 10841 dst_reg->smin_value = S64_MIN; 10842 dst_reg->smax_value = S64_MAX; 10843 } else { 10844 dst_reg->smin_value = dst_reg->umin_value; 10845 dst_reg->smax_value = dst_reg->umax_value; 10846 } 10847 } 10848 10849 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 10850 struct bpf_reg_state *src_reg) 10851 { 10852 bool src_known = tnum_subreg_is_const(src_reg->var_off); 10853 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 10854 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 10855 s32 smin_val = src_reg->s32_min_value; 10856 u32 umax_val = src_reg->u32_max_value; 10857 10858 if (src_known && dst_known) { 10859 __mark_reg32_known(dst_reg, var32_off.value); 10860 return; 10861 } 10862 10863 /* We get our minimum from the var_off, since that's inherently 10864 * bitwise. Our maximum is the minimum of the operands' maxima. 10865 */ 10866 dst_reg->u32_min_value = var32_off.value; 10867 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 10868 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 10869 /* Lose signed bounds when ANDing negative numbers, 10870 * ain't nobody got time for that. 10871 */ 10872 dst_reg->s32_min_value = S32_MIN; 10873 dst_reg->s32_max_value = S32_MAX; 10874 } else { 10875 /* ANDing two positives gives a positive, so safe to 10876 * cast result into s64. 10877 */ 10878 dst_reg->s32_min_value = dst_reg->u32_min_value; 10879 dst_reg->s32_max_value = dst_reg->u32_max_value; 10880 } 10881 } 10882 10883 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 10884 struct bpf_reg_state *src_reg) 10885 { 10886 bool src_known = tnum_is_const(src_reg->var_off); 10887 bool dst_known = tnum_is_const(dst_reg->var_off); 10888 s64 smin_val = src_reg->smin_value; 10889 u64 umax_val = src_reg->umax_value; 10890 10891 if (src_known && dst_known) { 10892 __mark_reg_known(dst_reg, dst_reg->var_off.value); 10893 return; 10894 } 10895 10896 /* We get our minimum from the var_off, since that's inherently 10897 * bitwise. Our maximum is the minimum of the operands' maxima. 10898 */ 10899 dst_reg->umin_value = dst_reg->var_off.value; 10900 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 10901 if (dst_reg->smin_value < 0 || smin_val < 0) { 10902 /* Lose signed bounds when ANDing negative numbers, 10903 * ain't nobody got time for that. 10904 */ 10905 dst_reg->smin_value = S64_MIN; 10906 dst_reg->smax_value = S64_MAX; 10907 } else { 10908 /* ANDing two positives gives a positive, so safe to 10909 * cast result into s64. 10910 */ 10911 dst_reg->smin_value = dst_reg->umin_value; 10912 dst_reg->smax_value = dst_reg->umax_value; 10913 } 10914 /* We may learn something more from the var_off */ 10915 __update_reg_bounds(dst_reg); 10916 } 10917 10918 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 10919 struct bpf_reg_state *src_reg) 10920 { 10921 bool src_known = tnum_subreg_is_const(src_reg->var_off); 10922 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 10923 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 10924 s32 smin_val = src_reg->s32_min_value; 10925 u32 umin_val = src_reg->u32_min_value; 10926 10927 if (src_known && dst_known) { 10928 __mark_reg32_known(dst_reg, var32_off.value); 10929 return; 10930 } 10931 10932 /* We get our maximum from the var_off, and our minimum is the 10933 * maximum of the operands' minima 10934 */ 10935 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 10936 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 10937 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 10938 /* Lose signed bounds when ORing negative numbers, 10939 * ain't nobody got time for that. 10940 */ 10941 dst_reg->s32_min_value = S32_MIN; 10942 dst_reg->s32_max_value = S32_MAX; 10943 } else { 10944 /* ORing two positives gives a positive, so safe to 10945 * cast result into s64. 10946 */ 10947 dst_reg->s32_min_value = dst_reg->u32_min_value; 10948 dst_reg->s32_max_value = dst_reg->u32_max_value; 10949 } 10950 } 10951 10952 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 10953 struct bpf_reg_state *src_reg) 10954 { 10955 bool src_known = tnum_is_const(src_reg->var_off); 10956 bool dst_known = tnum_is_const(dst_reg->var_off); 10957 s64 smin_val = src_reg->smin_value; 10958 u64 umin_val = src_reg->umin_value; 10959 10960 if (src_known && dst_known) { 10961 __mark_reg_known(dst_reg, dst_reg->var_off.value); 10962 return; 10963 } 10964 10965 /* We get our maximum from the var_off, and our minimum is the 10966 * maximum of the operands' minima 10967 */ 10968 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 10969 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 10970 if (dst_reg->smin_value < 0 || smin_val < 0) { 10971 /* Lose signed bounds when ORing negative numbers, 10972 * ain't nobody got time for that. 10973 */ 10974 dst_reg->smin_value = S64_MIN; 10975 dst_reg->smax_value = S64_MAX; 10976 } else { 10977 /* ORing two positives gives a positive, so safe to 10978 * cast result into s64. 10979 */ 10980 dst_reg->smin_value = dst_reg->umin_value; 10981 dst_reg->smax_value = dst_reg->umax_value; 10982 } 10983 /* We may learn something more from the var_off */ 10984 __update_reg_bounds(dst_reg); 10985 } 10986 10987 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 10988 struct bpf_reg_state *src_reg) 10989 { 10990 bool src_known = tnum_subreg_is_const(src_reg->var_off); 10991 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 10992 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 10993 s32 smin_val = src_reg->s32_min_value; 10994 10995 if (src_known && dst_known) { 10996 __mark_reg32_known(dst_reg, var32_off.value); 10997 return; 10998 } 10999 11000 /* We get both minimum and maximum from the var32_off. */ 11001 dst_reg->u32_min_value = var32_off.value; 11002 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 11003 11004 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 11005 /* XORing two positive sign numbers gives a positive, 11006 * so safe to cast u32 result into s32. 11007 */ 11008 dst_reg->s32_min_value = dst_reg->u32_min_value; 11009 dst_reg->s32_max_value = dst_reg->u32_max_value; 11010 } else { 11011 dst_reg->s32_min_value = S32_MIN; 11012 dst_reg->s32_max_value = S32_MAX; 11013 } 11014 } 11015 11016 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 11017 struct bpf_reg_state *src_reg) 11018 { 11019 bool src_known = tnum_is_const(src_reg->var_off); 11020 bool dst_known = tnum_is_const(dst_reg->var_off); 11021 s64 smin_val = src_reg->smin_value; 11022 11023 if (src_known && dst_known) { 11024 /* dst_reg->var_off.value has been updated earlier */ 11025 __mark_reg_known(dst_reg, dst_reg->var_off.value); 11026 return; 11027 } 11028 11029 /* We get both minimum and maximum from the var_off. */ 11030 dst_reg->umin_value = dst_reg->var_off.value; 11031 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 11032 11033 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 11034 /* XORing two positive sign numbers gives a positive, 11035 * so safe to cast u64 result into s64. 11036 */ 11037 dst_reg->smin_value = dst_reg->umin_value; 11038 dst_reg->smax_value = dst_reg->umax_value; 11039 } else { 11040 dst_reg->smin_value = S64_MIN; 11041 dst_reg->smax_value = S64_MAX; 11042 } 11043 11044 __update_reg_bounds(dst_reg); 11045 } 11046 11047 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 11048 u64 umin_val, u64 umax_val) 11049 { 11050 /* We lose all sign bit information (except what we can pick 11051 * up from var_off) 11052 */ 11053 dst_reg->s32_min_value = S32_MIN; 11054 dst_reg->s32_max_value = S32_MAX; 11055 /* If we might shift our top bit out, then we know nothing */ 11056 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 11057 dst_reg->u32_min_value = 0; 11058 dst_reg->u32_max_value = U32_MAX; 11059 } else { 11060 dst_reg->u32_min_value <<= umin_val; 11061 dst_reg->u32_max_value <<= umax_val; 11062 } 11063 } 11064 11065 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 11066 struct bpf_reg_state *src_reg) 11067 { 11068 u32 umax_val = src_reg->u32_max_value; 11069 u32 umin_val = src_reg->u32_min_value; 11070 /* u32 alu operation will zext upper bits */ 11071 struct tnum subreg = tnum_subreg(dst_reg->var_off); 11072 11073 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 11074 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 11075 /* Not required but being careful mark reg64 bounds as unknown so 11076 * that we are forced to pick them up from tnum and zext later and 11077 * if some path skips this step we are still safe. 11078 */ 11079 __mark_reg64_unbounded(dst_reg); 11080 __update_reg32_bounds(dst_reg); 11081 } 11082 11083 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 11084 u64 umin_val, u64 umax_val) 11085 { 11086 /* Special case <<32 because it is a common compiler pattern to sign 11087 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 11088 * positive we know this shift will also be positive so we can track 11089 * bounds correctly. Otherwise we lose all sign bit information except 11090 * what we can pick up from var_off. Perhaps we can generalize this 11091 * later to shifts of any length. 11092 */ 11093 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 11094 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 11095 else 11096 dst_reg->smax_value = S64_MAX; 11097 11098 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 11099 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 11100 else 11101 dst_reg->smin_value = S64_MIN; 11102 11103 /* If we might shift our top bit out, then we know nothing */ 11104 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 11105 dst_reg->umin_value = 0; 11106 dst_reg->umax_value = U64_MAX; 11107 } else { 11108 dst_reg->umin_value <<= umin_val; 11109 dst_reg->umax_value <<= umax_val; 11110 } 11111 } 11112 11113 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 11114 struct bpf_reg_state *src_reg) 11115 { 11116 u64 umax_val = src_reg->umax_value; 11117 u64 umin_val = src_reg->umin_value; 11118 11119 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 11120 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 11121 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 11122 11123 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 11124 /* We may learn something more from the var_off */ 11125 __update_reg_bounds(dst_reg); 11126 } 11127 11128 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 11129 struct bpf_reg_state *src_reg) 11130 { 11131 struct tnum subreg = tnum_subreg(dst_reg->var_off); 11132 u32 umax_val = src_reg->u32_max_value; 11133 u32 umin_val = src_reg->u32_min_value; 11134 11135 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 11136 * be negative, then either: 11137 * 1) src_reg might be zero, so the sign bit of the result is 11138 * unknown, so we lose our signed bounds 11139 * 2) it's known negative, thus the unsigned bounds capture the 11140 * signed bounds 11141 * 3) the signed bounds cross zero, so they tell us nothing 11142 * about the result 11143 * If the value in dst_reg is known nonnegative, then again the 11144 * unsigned bounds capture the signed bounds. 11145 * Thus, in all cases it suffices to blow away our signed bounds 11146 * and rely on inferring new ones from the unsigned bounds and 11147 * var_off of the result. 11148 */ 11149 dst_reg->s32_min_value = S32_MIN; 11150 dst_reg->s32_max_value = S32_MAX; 11151 11152 dst_reg->var_off = tnum_rshift(subreg, umin_val); 11153 dst_reg->u32_min_value >>= umax_val; 11154 dst_reg->u32_max_value >>= umin_val; 11155 11156 __mark_reg64_unbounded(dst_reg); 11157 __update_reg32_bounds(dst_reg); 11158 } 11159 11160 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 11161 struct bpf_reg_state *src_reg) 11162 { 11163 u64 umax_val = src_reg->umax_value; 11164 u64 umin_val = src_reg->umin_value; 11165 11166 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 11167 * be negative, then either: 11168 * 1) src_reg might be zero, so the sign bit of the result is 11169 * unknown, so we lose our signed bounds 11170 * 2) it's known negative, thus the unsigned bounds capture the 11171 * signed bounds 11172 * 3) the signed bounds cross zero, so they tell us nothing 11173 * about the result 11174 * If the value in dst_reg is known nonnegative, then again the 11175 * unsigned bounds capture the signed bounds. 11176 * Thus, in all cases it suffices to blow away our signed bounds 11177 * and rely on inferring new ones from the unsigned bounds and 11178 * var_off of the result. 11179 */ 11180 dst_reg->smin_value = S64_MIN; 11181 dst_reg->smax_value = S64_MAX; 11182 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 11183 dst_reg->umin_value >>= umax_val; 11184 dst_reg->umax_value >>= umin_val; 11185 11186 /* Its not easy to operate on alu32 bounds here because it depends 11187 * on bits being shifted in. Take easy way out and mark unbounded 11188 * so we can recalculate later from tnum. 11189 */ 11190 __mark_reg32_unbounded(dst_reg); 11191 __update_reg_bounds(dst_reg); 11192 } 11193 11194 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 11195 struct bpf_reg_state *src_reg) 11196 { 11197 u64 umin_val = src_reg->u32_min_value; 11198 11199 /* Upon reaching here, src_known is true and 11200 * umax_val is equal to umin_val. 11201 */ 11202 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 11203 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 11204 11205 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 11206 11207 /* blow away the dst_reg umin_value/umax_value and rely on 11208 * dst_reg var_off to refine the result. 11209 */ 11210 dst_reg->u32_min_value = 0; 11211 dst_reg->u32_max_value = U32_MAX; 11212 11213 __mark_reg64_unbounded(dst_reg); 11214 __update_reg32_bounds(dst_reg); 11215 } 11216 11217 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 11218 struct bpf_reg_state *src_reg) 11219 { 11220 u64 umin_val = src_reg->umin_value; 11221 11222 /* Upon reaching here, src_known is true and umax_val is equal 11223 * to umin_val. 11224 */ 11225 dst_reg->smin_value >>= umin_val; 11226 dst_reg->smax_value >>= umin_val; 11227 11228 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 11229 11230 /* blow away the dst_reg umin_value/umax_value and rely on 11231 * dst_reg var_off to refine the result. 11232 */ 11233 dst_reg->umin_value = 0; 11234 dst_reg->umax_value = U64_MAX; 11235 11236 /* Its not easy to operate on alu32 bounds here because it depends 11237 * on bits being shifted in from upper 32-bits. Take easy way out 11238 * and mark unbounded so we can recalculate later from tnum. 11239 */ 11240 __mark_reg32_unbounded(dst_reg); 11241 __update_reg_bounds(dst_reg); 11242 } 11243 11244 /* WARNING: This function does calculations on 64-bit values, but the actual 11245 * execution may occur on 32-bit values. Therefore, things like bitshifts 11246 * need extra checks in the 32-bit case. 11247 */ 11248 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 11249 struct bpf_insn *insn, 11250 struct bpf_reg_state *dst_reg, 11251 struct bpf_reg_state src_reg) 11252 { 11253 struct bpf_reg_state *regs = cur_regs(env); 11254 u8 opcode = BPF_OP(insn->code); 11255 bool src_known; 11256 s64 smin_val, smax_val; 11257 u64 umin_val, umax_val; 11258 s32 s32_min_val, s32_max_val; 11259 u32 u32_min_val, u32_max_val; 11260 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 11261 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 11262 int ret; 11263 11264 smin_val = src_reg.smin_value; 11265 smax_val = src_reg.smax_value; 11266 umin_val = src_reg.umin_value; 11267 umax_val = src_reg.umax_value; 11268 11269 s32_min_val = src_reg.s32_min_value; 11270 s32_max_val = src_reg.s32_max_value; 11271 u32_min_val = src_reg.u32_min_value; 11272 u32_max_val = src_reg.u32_max_value; 11273 11274 if (alu32) { 11275 src_known = tnum_subreg_is_const(src_reg.var_off); 11276 if ((src_known && 11277 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 11278 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 11279 /* Taint dst register if offset had invalid bounds 11280 * derived from e.g. dead branches. 11281 */ 11282 __mark_reg_unknown(env, dst_reg); 11283 return 0; 11284 } 11285 } else { 11286 src_known = tnum_is_const(src_reg.var_off); 11287 if ((src_known && 11288 (smin_val != smax_val || umin_val != umax_val)) || 11289 smin_val > smax_val || umin_val > umax_val) { 11290 /* Taint dst register if offset had invalid bounds 11291 * derived from e.g. dead branches. 11292 */ 11293 __mark_reg_unknown(env, dst_reg); 11294 return 0; 11295 } 11296 } 11297 11298 if (!src_known && 11299 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 11300 __mark_reg_unknown(env, dst_reg); 11301 return 0; 11302 } 11303 11304 if (sanitize_needed(opcode)) { 11305 ret = sanitize_val_alu(env, insn); 11306 if (ret < 0) 11307 return sanitize_err(env, insn, ret, NULL, NULL); 11308 } 11309 11310 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 11311 * There are two classes of instructions: The first class we track both 11312 * alu32 and alu64 sign/unsigned bounds independently this provides the 11313 * greatest amount of precision when alu operations are mixed with jmp32 11314 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 11315 * and BPF_OR. This is possible because these ops have fairly easy to 11316 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 11317 * See alu32 verifier tests for examples. The second class of 11318 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 11319 * with regards to tracking sign/unsigned bounds because the bits may 11320 * cross subreg boundaries in the alu64 case. When this happens we mark 11321 * the reg unbounded in the subreg bound space and use the resulting 11322 * tnum to calculate an approximation of the sign/unsigned bounds. 11323 */ 11324 switch (opcode) { 11325 case BPF_ADD: 11326 scalar32_min_max_add(dst_reg, &src_reg); 11327 scalar_min_max_add(dst_reg, &src_reg); 11328 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 11329 break; 11330 case BPF_SUB: 11331 scalar32_min_max_sub(dst_reg, &src_reg); 11332 scalar_min_max_sub(dst_reg, &src_reg); 11333 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 11334 break; 11335 case BPF_MUL: 11336 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 11337 scalar32_min_max_mul(dst_reg, &src_reg); 11338 scalar_min_max_mul(dst_reg, &src_reg); 11339 break; 11340 case BPF_AND: 11341 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 11342 scalar32_min_max_and(dst_reg, &src_reg); 11343 scalar_min_max_and(dst_reg, &src_reg); 11344 break; 11345 case BPF_OR: 11346 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 11347 scalar32_min_max_or(dst_reg, &src_reg); 11348 scalar_min_max_or(dst_reg, &src_reg); 11349 break; 11350 case BPF_XOR: 11351 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 11352 scalar32_min_max_xor(dst_reg, &src_reg); 11353 scalar_min_max_xor(dst_reg, &src_reg); 11354 break; 11355 case BPF_LSH: 11356 if (umax_val >= insn_bitness) { 11357 /* Shifts greater than 31 or 63 are undefined. 11358 * This includes shifts by a negative number. 11359 */ 11360 mark_reg_unknown(env, regs, insn->dst_reg); 11361 break; 11362 } 11363 if (alu32) 11364 scalar32_min_max_lsh(dst_reg, &src_reg); 11365 else 11366 scalar_min_max_lsh(dst_reg, &src_reg); 11367 break; 11368 case BPF_RSH: 11369 if (umax_val >= insn_bitness) { 11370 /* Shifts greater than 31 or 63 are undefined. 11371 * This includes shifts by a negative number. 11372 */ 11373 mark_reg_unknown(env, regs, insn->dst_reg); 11374 break; 11375 } 11376 if (alu32) 11377 scalar32_min_max_rsh(dst_reg, &src_reg); 11378 else 11379 scalar_min_max_rsh(dst_reg, &src_reg); 11380 break; 11381 case BPF_ARSH: 11382 if (umax_val >= insn_bitness) { 11383 /* Shifts greater than 31 or 63 are undefined. 11384 * This includes shifts by a negative number. 11385 */ 11386 mark_reg_unknown(env, regs, insn->dst_reg); 11387 break; 11388 } 11389 if (alu32) 11390 scalar32_min_max_arsh(dst_reg, &src_reg); 11391 else 11392 scalar_min_max_arsh(dst_reg, &src_reg); 11393 break; 11394 default: 11395 mark_reg_unknown(env, regs, insn->dst_reg); 11396 break; 11397 } 11398 11399 /* ALU32 ops are zero extended into 64bit register */ 11400 if (alu32) 11401 zext_32_to_64(dst_reg); 11402 reg_bounds_sync(dst_reg); 11403 return 0; 11404 } 11405 11406 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 11407 * and var_off. 11408 */ 11409 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 11410 struct bpf_insn *insn) 11411 { 11412 struct bpf_verifier_state *vstate = env->cur_state; 11413 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 11414 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 11415 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 11416 u8 opcode = BPF_OP(insn->code); 11417 int err; 11418 11419 dst_reg = ®s[insn->dst_reg]; 11420 src_reg = NULL; 11421 if (dst_reg->type != SCALAR_VALUE) 11422 ptr_reg = dst_reg; 11423 else 11424 /* Make sure ID is cleared otherwise dst_reg min/max could be 11425 * incorrectly propagated into other registers by find_equal_scalars() 11426 */ 11427 dst_reg->id = 0; 11428 if (BPF_SRC(insn->code) == BPF_X) { 11429 src_reg = ®s[insn->src_reg]; 11430 if (src_reg->type != SCALAR_VALUE) { 11431 if (dst_reg->type != SCALAR_VALUE) { 11432 /* Combining two pointers by any ALU op yields 11433 * an arbitrary scalar. Disallow all math except 11434 * pointer subtraction 11435 */ 11436 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 11437 mark_reg_unknown(env, regs, insn->dst_reg); 11438 return 0; 11439 } 11440 verbose(env, "R%d pointer %s pointer prohibited\n", 11441 insn->dst_reg, 11442 bpf_alu_string[opcode >> 4]); 11443 return -EACCES; 11444 } else { 11445 /* scalar += pointer 11446 * This is legal, but we have to reverse our 11447 * src/dest handling in computing the range 11448 */ 11449 err = mark_chain_precision(env, insn->dst_reg); 11450 if (err) 11451 return err; 11452 return adjust_ptr_min_max_vals(env, insn, 11453 src_reg, dst_reg); 11454 } 11455 } else if (ptr_reg) { 11456 /* pointer += scalar */ 11457 err = mark_chain_precision(env, insn->src_reg); 11458 if (err) 11459 return err; 11460 return adjust_ptr_min_max_vals(env, insn, 11461 dst_reg, src_reg); 11462 } else if (dst_reg->precise) { 11463 /* if dst_reg is precise, src_reg should be precise as well */ 11464 err = mark_chain_precision(env, insn->src_reg); 11465 if (err) 11466 return err; 11467 } 11468 } else { 11469 /* Pretend the src is a reg with a known value, since we only 11470 * need to be able to read from this state. 11471 */ 11472 off_reg.type = SCALAR_VALUE; 11473 __mark_reg_known(&off_reg, insn->imm); 11474 src_reg = &off_reg; 11475 if (ptr_reg) /* pointer += K */ 11476 return adjust_ptr_min_max_vals(env, insn, 11477 ptr_reg, src_reg); 11478 } 11479 11480 /* Got here implies adding two SCALAR_VALUEs */ 11481 if (WARN_ON_ONCE(ptr_reg)) { 11482 print_verifier_state(env, state, true); 11483 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 11484 return -EINVAL; 11485 } 11486 if (WARN_ON(!src_reg)) { 11487 print_verifier_state(env, state, true); 11488 verbose(env, "verifier internal error: no src_reg\n"); 11489 return -EINVAL; 11490 } 11491 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 11492 } 11493 11494 /* check validity of 32-bit and 64-bit arithmetic operations */ 11495 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 11496 { 11497 struct bpf_reg_state *regs = cur_regs(env); 11498 u8 opcode = BPF_OP(insn->code); 11499 int err; 11500 11501 if (opcode == BPF_END || opcode == BPF_NEG) { 11502 if (opcode == BPF_NEG) { 11503 if (BPF_SRC(insn->code) != BPF_K || 11504 insn->src_reg != BPF_REG_0 || 11505 insn->off != 0 || insn->imm != 0) { 11506 verbose(env, "BPF_NEG uses reserved fields\n"); 11507 return -EINVAL; 11508 } 11509 } else { 11510 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 11511 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 11512 BPF_CLASS(insn->code) == BPF_ALU64) { 11513 verbose(env, "BPF_END uses reserved fields\n"); 11514 return -EINVAL; 11515 } 11516 } 11517 11518 /* check src operand */ 11519 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11520 if (err) 11521 return err; 11522 11523 if (is_pointer_value(env, insn->dst_reg)) { 11524 verbose(env, "R%d pointer arithmetic prohibited\n", 11525 insn->dst_reg); 11526 return -EACCES; 11527 } 11528 11529 /* check dest operand */ 11530 err = check_reg_arg(env, insn->dst_reg, DST_OP); 11531 if (err) 11532 return err; 11533 11534 } else if (opcode == BPF_MOV) { 11535 11536 if (BPF_SRC(insn->code) == BPF_X) { 11537 if (insn->imm != 0 || insn->off != 0) { 11538 verbose(env, "BPF_MOV uses reserved fields\n"); 11539 return -EINVAL; 11540 } 11541 11542 /* check src operand */ 11543 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11544 if (err) 11545 return err; 11546 } else { 11547 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 11548 verbose(env, "BPF_MOV uses reserved fields\n"); 11549 return -EINVAL; 11550 } 11551 } 11552 11553 /* check dest operand, mark as required later */ 11554 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 11555 if (err) 11556 return err; 11557 11558 if (BPF_SRC(insn->code) == BPF_X) { 11559 struct bpf_reg_state *src_reg = regs + insn->src_reg; 11560 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 11561 11562 if (BPF_CLASS(insn->code) == BPF_ALU64) { 11563 /* case: R1 = R2 11564 * copy register state to dest reg 11565 */ 11566 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 11567 /* Assign src and dst registers the same ID 11568 * that will be used by find_equal_scalars() 11569 * to propagate min/max range. 11570 */ 11571 src_reg->id = ++env->id_gen; 11572 copy_register_state(dst_reg, src_reg); 11573 dst_reg->live |= REG_LIVE_WRITTEN; 11574 dst_reg->subreg_def = DEF_NOT_SUBREG; 11575 } else { 11576 /* R1 = (u32) R2 */ 11577 if (is_pointer_value(env, insn->src_reg)) { 11578 verbose(env, 11579 "R%d partial copy of pointer\n", 11580 insn->src_reg); 11581 return -EACCES; 11582 } else if (src_reg->type == SCALAR_VALUE) { 11583 copy_register_state(dst_reg, src_reg); 11584 /* Make sure ID is cleared otherwise 11585 * dst_reg min/max could be incorrectly 11586 * propagated into src_reg by find_equal_scalars() 11587 */ 11588 dst_reg->id = 0; 11589 dst_reg->live |= REG_LIVE_WRITTEN; 11590 dst_reg->subreg_def = env->insn_idx + 1; 11591 } else { 11592 mark_reg_unknown(env, regs, 11593 insn->dst_reg); 11594 } 11595 zext_32_to_64(dst_reg); 11596 reg_bounds_sync(dst_reg); 11597 } 11598 } else { 11599 /* case: R = imm 11600 * remember the value we stored into this reg 11601 */ 11602 /* clear any state __mark_reg_known doesn't set */ 11603 mark_reg_unknown(env, regs, insn->dst_reg); 11604 regs[insn->dst_reg].type = SCALAR_VALUE; 11605 if (BPF_CLASS(insn->code) == BPF_ALU64) { 11606 __mark_reg_known(regs + insn->dst_reg, 11607 insn->imm); 11608 } else { 11609 __mark_reg_known(regs + insn->dst_reg, 11610 (u32)insn->imm); 11611 } 11612 } 11613 11614 } else if (opcode > BPF_END) { 11615 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 11616 return -EINVAL; 11617 11618 } else { /* all other ALU ops: and, sub, xor, add, ... */ 11619 11620 if (BPF_SRC(insn->code) == BPF_X) { 11621 if (insn->imm != 0 || insn->off != 0) { 11622 verbose(env, "BPF_ALU uses reserved fields\n"); 11623 return -EINVAL; 11624 } 11625 /* check src1 operand */ 11626 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11627 if (err) 11628 return err; 11629 } else { 11630 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 11631 verbose(env, "BPF_ALU uses reserved fields\n"); 11632 return -EINVAL; 11633 } 11634 } 11635 11636 /* check src2 operand */ 11637 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11638 if (err) 11639 return err; 11640 11641 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 11642 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 11643 verbose(env, "div by zero\n"); 11644 return -EINVAL; 11645 } 11646 11647 if ((opcode == BPF_LSH || opcode == BPF_RSH || 11648 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 11649 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 11650 11651 if (insn->imm < 0 || insn->imm >= size) { 11652 verbose(env, "invalid shift %d\n", insn->imm); 11653 return -EINVAL; 11654 } 11655 } 11656 11657 /* check dest operand */ 11658 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 11659 if (err) 11660 return err; 11661 11662 return adjust_reg_min_max_vals(env, insn); 11663 } 11664 11665 return 0; 11666 } 11667 11668 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 11669 struct bpf_reg_state *dst_reg, 11670 enum bpf_reg_type type, 11671 bool range_right_open) 11672 { 11673 struct bpf_func_state *state; 11674 struct bpf_reg_state *reg; 11675 int new_range; 11676 11677 if (dst_reg->off < 0 || 11678 (dst_reg->off == 0 && range_right_open)) 11679 /* This doesn't give us any range */ 11680 return; 11681 11682 if (dst_reg->umax_value > MAX_PACKET_OFF || 11683 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 11684 /* Risk of overflow. For instance, ptr + (1<<63) may be less 11685 * than pkt_end, but that's because it's also less than pkt. 11686 */ 11687 return; 11688 11689 new_range = dst_reg->off; 11690 if (range_right_open) 11691 new_range++; 11692 11693 /* Examples for register markings: 11694 * 11695 * pkt_data in dst register: 11696 * 11697 * r2 = r3; 11698 * r2 += 8; 11699 * if (r2 > pkt_end) goto <handle exception> 11700 * <access okay> 11701 * 11702 * r2 = r3; 11703 * r2 += 8; 11704 * if (r2 < pkt_end) goto <access okay> 11705 * <handle exception> 11706 * 11707 * Where: 11708 * r2 == dst_reg, pkt_end == src_reg 11709 * r2=pkt(id=n,off=8,r=0) 11710 * r3=pkt(id=n,off=0,r=0) 11711 * 11712 * pkt_data in src register: 11713 * 11714 * r2 = r3; 11715 * r2 += 8; 11716 * if (pkt_end >= r2) goto <access okay> 11717 * <handle exception> 11718 * 11719 * r2 = r3; 11720 * r2 += 8; 11721 * if (pkt_end <= r2) goto <handle exception> 11722 * <access okay> 11723 * 11724 * Where: 11725 * pkt_end == dst_reg, r2 == src_reg 11726 * r2=pkt(id=n,off=8,r=0) 11727 * r3=pkt(id=n,off=0,r=0) 11728 * 11729 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 11730 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 11731 * and [r3, r3 + 8-1) respectively is safe to access depending on 11732 * the check. 11733 */ 11734 11735 /* If our ids match, then we must have the same max_value. And we 11736 * don't care about the other reg's fixed offset, since if it's too big 11737 * the range won't allow anything. 11738 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 11739 */ 11740 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 11741 if (reg->type == type && reg->id == dst_reg->id) 11742 /* keep the maximum range already checked */ 11743 reg->range = max(reg->range, new_range); 11744 })); 11745 } 11746 11747 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 11748 { 11749 struct tnum subreg = tnum_subreg(reg->var_off); 11750 s32 sval = (s32)val; 11751 11752 switch (opcode) { 11753 case BPF_JEQ: 11754 if (tnum_is_const(subreg)) 11755 return !!tnum_equals_const(subreg, val); 11756 break; 11757 case BPF_JNE: 11758 if (tnum_is_const(subreg)) 11759 return !tnum_equals_const(subreg, val); 11760 break; 11761 case BPF_JSET: 11762 if ((~subreg.mask & subreg.value) & val) 11763 return 1; 11764 if (!((subreg.mask | subreg.value) & val)) 11765 return 0; 11766 break; 11767 case BPF_JGT: 11768 if (reg->u32_min_value > val) 11769 return 1; 11770 else if (reg->u32_max_value <= val) 11771 return 0; 11772 break; 11773 case BPF_JSGT: 11774 if (reg->s32_min_value > sval) 11775 return 1; 11776 else if (reg->s32_max_value <= sval) 11777 return 0; 11778 break; 11779 case BPF_JLT: 11780 if (reg->u32_max_value < val) 11781 return 1; 11782 else if (reg->u32_min_value >= val) 11783 return 0; 11784 break; 11785 case BPF_JSLT: 11786 if (reg->s32_max_value < sval) 11787 return 1; 11788 else if (reg->s32_min_value >= sval) 11789 return 0; 11790 break; 11791 case BPF_JGE: 11792 if (reg->u32_min_value >= val) 11793 return 1; 11794 else if (reg->u32_max_value < val) 11795 return 0; 11796 break; 11797 case BPF_JSGE: 11798 if (reg->s32_min_value >= sval) 11799 return 1; 11800 else if (reg->s32_max_value < sval) 11801 return 0; 11802 break; 11803 case BPF_JLE: 11804 if (reg->u32_max_value <= val) 11805 return 1; 11806 else if (reg->u32_min_value > val) 11807 return 0; 11808 break; 11809 case BPF_JSLE: 11810 if (reg->s32_max_value <= sval) 11811 return 1; 11812 else if (reg->s32_min_value > sval) 11813 return 0; 11814 break; 11815 } 11816 11817 return -1; 11818 } 11819 11820 11821 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 11822 { 11823 s64 sval = (s64)val; 11824 11825 switch (opcode) { 11826 case BPF_JEQ: 11827 if (tnum_is_const(reg->var_off)) 11828 return !!tnum_equals_const(reg->var_off, val); 11829 break; 11830 case BPF_JNE: 11831 if (tnum_is_const(reg->var_off)) 11832 return !tnum_equals_const(reg->var_off, val); 11833 break; 11834 case BPF_JSET: 11835 if ((~reg->var_off.mask & reg->var_off.value) & val) 11836 return 1; 11837 if (!((reg->var_off.mask | reg->var_off.value) & val)) 11838 return 0; 11839 break; 11840 case BPF_JGT: 11841 if (reg->umin_value > val) 11842 return 1; 11843 else if (reg->umax_value <= val) 11844 return 0; 11845 break; 11846 case BPF_JSGT: 11847 if (reg->smin_value > sval) 11848 return 1; 11849 else if (reg->smax_value <= sval) 11850 return 0; 11851 break; 11852 case BPF_JLT: 11853 if (reg->umax_value < val) 11854 return 1; 11855 else if (reg->umin_value >= val) 11856 return 0; 11857 break; 11858 case BPF_JSLT: 11859 if (reg->smax_value < sval) 11860 return 1; 11861 else if (reg->smin_value >= sval) 11862 return 0; 11863 break; 11864 case BPF_JGE: 11865 if (reg->umin_value >= val) 11866 return 1; 11867 else if (reg->umax_value < val) 11868 return 0; 11869 break; 11870 case BPF_JSGE: 11871 if (reg->smin_value >= sval) 11872 return 1; 11873 else if (reg->smax_value < sval) 11874 return 0; 11875 break; 11876 case BPF_JLE: 11877 if (reg->umax_value <= val) 11878 return 1; 11879 else if (reg->umin_value > val) 11880 return 0; 11881 break; 11882 case BPF_JSLE: 11883 if (reg->smax_value <= sval) 11884 return 1; 11885 else if (reg->smin_value > sval) 11886 return 0; 11887 break; 11888 } 11889 11890 return -1; 11891 } 11892 11893 /* compute branch direction of the expression "if (reg opcode val) goto target;" 11894 * and return: 11895 * 1 - branch will be taken and "goto target" will be executed 11896 * 0 - branch will not be taken and fall-through to next insn 11897 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 11898 * range [0,10] 11899 */ 11900 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 11901 bool is_jmp32) 11902 { 11903 if (__is_pointer_value(false, reg)) { 11904 if (!reg_type_not_null(reg->type)) 11905 return -1; 11906 11907 /* If pointer is valid tests against zero will fail so we can 11908 * use this to direct branch taken. 11909 */ 11910 if (val != 0) 11911 return -1; 11912 11913 switch (opcode) { 11914 case BPF_JEQ: 11915 return 0; 11916 case BPF_JNE: 11917 return 1; 11918 default: 11919 return -1; 11920 } 11921 } 11922 11923 if (is_jmp32) 11924 return is_branch32_taken(reg, val, opcode); 11925 return is_branch64_taken(reg, val, opcode); 11926 } 11927 11928 static int flip_opcode(u32 opcode) 11929 { 11930 /* How can we transform "a <op> b" into "b <op> a"? */ 11931 static const u8 opcode_flip[16] = { 11932 /* these stay the same */ 11933 [BPF_JEQ >> 4] = BPF_JEQ, 11934 [BPF_JNE >> 4] = BPF_JNE, 11935 [BPF_JSET >> 4] = BPF_JSET, 11936 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 11937 [BPF_JGE >> 4] = BPF_JLE, 11938 [BPF_JGT >> 4] = BPF_JLT, 11939 [BPF_JLE >> 4] = BPF_JGE, 11940 [BPF_JLT >> 4] = BPF_JGT, 11941 [BPF_JSGE >> 4] = BPF_JSLE, 11942 [BPF_JSGT >> 4] = BPF_JSLT, 11943 [BPF_JSLE >> 4] = BPF_JSGE, 11944 [BPF_JSLT >> 4] = BPF_JSGT 11945 }; 11946 return opcode_flip[opcode >> 4]; 11947 } 11948 11949 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 11950 struct bpf_reg_state *src_reg, 11951 u8 opcode) 11952 { 11953 struct bpf_reg_state *pkt; 11954 11955 if (src_reg->type == PTR_TO_PACKET_END) { 11956 pkt = dst_reg; 11957 } else if (dst_reg->type == PTR_TO_PACKET_END) { 11958 pkt = src_reg; 11959 opcode = flip_opcode(opcode); 11960 } else { 11961 return -1; 11962 } 11963 11964 if (pkt->range >= 0) 11965 return -1; 11966 11967 switch (opcode) { 11968 case BPF_JLE: 11969 /* pkt <= pkt_end */ 11970 fallthrough; 11971 case BPF_JGT: 11972 /* pkt > pkt_end */ 11973 if (pkt->range == BEYOND_PKT_END) 11974 /* pkt has at last one extra byte beyond pkt_end */ 11975 return opcode == BPF_JGT; 11976 break; 11977 case BPF_JLT: 11978 /* pkt < pkt_end */ 11979 fallthrough; 11980 case BPF_JGE: 11981 /* pkt >= pkt_end */ 11982 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 11983 return opcode == BPF_JGE; 11984 break; 11985 } 11986 return -1; 11987 } 11988 11989 /* Adjusts the register min/max values in the case that the dst_reg is the 11990 * variable register that we are working on, and src_reg is a constant or we're 11991 * simply doing a BPF_K check. 11992 * In JEQ/JNE cases we also adjust the var_off values. 11993 */ 11994 static void reg_set_min_max(struct bpf_reg_state *true_reg, 11995 struct bpf_reg_state *false_reg, 11996 u64 val, u32 val32, 11997 u8 opcode, bool is_jmp32) 11998 { 11999 struct tnum false_32off = tnum_subreg(false_reg->var_off); 12000 struct tnum false_64off = false_reg->var_off; 12001 struct tnum true_32off = tnum_subreg(true_reg->var_off); 12002 struct tnum true_64off = true_reg->var_off; 12003 s64 sval = (s64)val; 12004 s32 sval32 = (s32)val32; 12005 12006 /* If the dst_reg is a pointer, we can't learn anything about its 12007 * variable offset from the compare (unless src_reg were a pointer into 12008 * the same object, but we don't bother with that. 12009 * Since false_reg and true_reg have the same type by construction, we 12010 * only need to check one of them for pointerness. 12011 */ 12012 if (__is_pointer_value(false, false_reg)) 12013 return; 12014 12015 switch (opcode) { 12016 /* JEQ/JNE comparison doesn't change the register equivalence. 12017 * 12018 * r1 = r2; 12019 * if (r1 == 42) goto label; 12020 * ... 12021 * label: // here both r1 and r2 are known to be 42. 12022 * 12023 * Hence when marking register as known preserve it's ID. 12024 */ 12025 case BPF_JEQ: 12026 if (is_jmp32) { 12027 __mark_reg32_known(true_reg, val32); 12028 true_32off = tnum_subreg(true_reg->var_off); 12029 } else { 12030 ___mark_reg_known(true_reg, val); 12031 true_64off = true_reg->var_off; 12032 } 12033 break; 12034 case BPF_JNE: 12035 if (is_jmp32) { 12036 __mark_reg32_known(false_reg, val32); 12037 false_32off = tnum_subreg(false_reg->var_off); 12038 } else { 12039 ___mark_reg_known(false_reg, val); 12040 false_64off = false_reg->var_off; 12041 } 12042 break; 12043 case BPF_JSET: 12044 if (is_jmp32) { 12045 false_32off = tnum_and(false_32off, tnum_const(~val32)); 12046 if (is_power_of_2(val32)) 12047 true_32off = tnum_or(true_32off, 12048 tnum_const(val32)); 12049 } else { 12050 false_64off = tnum_and(false_64off, tnum_const(~val)); 12051 if (is_power_of_2(val)) 12052 true_64off = tnum_or(true_64off, 12053 tnum_const(val)); 12054 } 12055 break; 12056 case BPF_JGE: 12057 case BPF_JGT: 12058 { 12059 if (is_jmp32) { 12060 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 12061 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 12062 12063 false_reg->u32_max_value = min(false_reg->u32_max_value, 12064 false_umax); 12065 true_reg->u32_min_value = max(true_reg->u32_min_value, 12066 true_umin); 12067 } else { 12068 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 12069 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 12070 12071 false_reg->umax_value = min(false_reg->umax_value, false_umax); 12072 true_reg->umin_value = max(true_reg->umin_value, true_umin); 12073 } 12074 break; 12075 } 12076 case BPF_JSGE: 12077 case BPF_JSGT: 12078 { 12079 if (is_jmp32) { 12080 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 12081 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 12082 12083 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 12084 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 12085 } else { 12086 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 12087 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 12088 12089 false_reg->smax_value = min(false_reg->smax_value, false_smax); 12090 true_reg->smin_value = max(true_reg->smin_value, true_smin); 12091 } 12092 break; 12093 } 12094 case BPF_JLE: 12095 case BPF_JLT: 12096 { 12097 if (is_jmp32) { 12098 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 12099 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 12100 12101 false_reg->u32_min_value = max(false_reg->u32_min_value, 12102 false_umin); 12103 true_reg->u32_max_value = min(true_reg->u32_max_value, 12104 true_umax); 12105 } else { 12106 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 12107 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 12108 12109 false_reg->umin_value = max(false_reg->umin_value, false_umin); 12110 true_reg->umax_value = min(true_reg->umax_value, true_umax); 12111 } 12112 break; 12113 } 12114 case BPF_JSLE: 12115 case BPF_JSLT: 12116 { 12117 if (is_jmp32) { 12118 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 12119 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 12120 12121 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 12122 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 12123 } else { 12124 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 12125 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 12126 12127 false_reg->smin_value = max(false_reg->smin_value, false_smin); 12128 true_reg->smax_value = min(true_reg->smax_value, true_smax); 12129 } 12130 break; 12131 } 12132 default: 12133 return; 12134 } 12135 12136 if (is_jmp32) { 12137 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 12138 tnum_subreg(false_32off)); 12139 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 12140 tnum_subreg(true_32off)); 12141 __reg_combine_32_into_64(false_reg); 12142 __reg_combine_32_into_64(true_reg); 12143 } else { 12144 false_reg->var_off = false_64off; 12145 true_reg->var_off = true_64off; 12146 __reg_combine_64_into_32(false_reg); 12147 __reg_combine_64_into_32(true_reg); 12148 } 12149 } 12150 12151 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 12152 * the variable reg. 12153 */ 12154 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 12155 struct bpf_reg_state *false_reg, 12156 u64 val, u32 val32, 12157 u8 opcode, bool is_jmp32) 12158 { 12159 opcode = flip_opcode(opcode); 12160 /* This uses zero as "not present in table"; luckily the zero opcode, 12161 * BPF_JA, can't get here. 12162 */ 12163 if (opcode) 12164 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 12165 } 12166 12167 /* Regs are known to be equal, so intersect their min/max/var_off */ 12168 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 12169 struct bpf_reg_state *dst_reg) 12170 { 12171 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 12172 dst_reg->umin_value); 12173 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 12174 dst_reg->umax_value); 12175 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 12176 dst_reg->smin_value); 12177 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 12178 dst_reg->smax_value); 12179 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 12180 dst_reg->var_off); 12181 reg_bounds_sync(src_reg); 12182 reg_bounds_sync(dst_reg); 12183 } 12184 12185 static void reg_combine_min_max(struct bpf_reg_state *true_src, 12186 struct bpf_reg_state *true_dst, 12187 struct bpf_reg_state *false_src, 12188 struct bpf_reg_state *false_dst, 12189 u8 opcode) 12190 { 12191 switch (opcode) { 12192 case BPF_JEQ: 12193 __reg_combine_min_max(true_src, true_dst); 12194 break; 12195 case BPF_JNE: 12196 __reg_combine_min_max(false_src, false_dst); 12197 break; 12198 } 12199 } 12200 12201 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 12202 struct bpf_reg_state *reg, u32 id, 12203 bool is_null) 12204 { 12205 if (type_may_be_null(reg->type) && reg->id == id && 12206 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 12207 /* Old offset (both fixed and variable parts) should have been 12208 * known-zero, because we don't allow pointer arithmetic on 12209 * pointers that might be NULL. If we see this happening, don't 12210 * convert the register. 12211 * 12212 * But in some cases, some helpers that return local kptrs 12213 * advance offset for the returned pointer. In those cases, it 12214 * is fine to expect to see reg->off. 12215 */ 12216 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 12217 return; 12218 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 12219 WARN_ON_ONCE(reg->off)) 12220 return; 12221 12222 if (is_null) { 12223 reg->type = SCALAR_VALUE; 12224 /* We don't need id and ref_obj_id from this point 12225 * onwards anymore, thus we should better reset it, 12226 * so that state pruning has chances to take effect. 12227 */ 12228 reg->id = 0; 12229 reg->ref_obj_id = 0; 12230 12231 return; 12232 } 12233 12234 mark_ptr_not_null_reg(reg); 12235 12236 if (!reg_may_point_to_spin_lock(reg)) { 12237 /* For not-NULL ptr, reg->ref_obj_id will be reset 12238 * in release_reference(). 12239 * 12240 * reg->id is still used by spin_lock ptr. Other 12241 * than spin_lock ptr type, reg->id can be reset. 12242 */ 12243 reg->id = 0; 12244 } 12245 } 12246 } 12247 12248 /* The logic is similar to find_good_pkt_pointers(), both could eventually 12249 * be folded together at some point. 12250 */ 12251 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 12252 bool is_null) 12253 { 12254 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12255 struct bpf_reg_state *regs = state->regs, *reg; 12256 u32 ref_obj_id = regs[regno].ref_obj_id; 12257 u32 id = regs[regno].id; 12258 12259 if (ref_obj_id && ref_obj_id == id && is_null) 12260 /* regs[regno] is in the " == NULL" branch. 12261 * No one could have freed the reference state before 12262 * doing the NULL check. 12263 */ 12264 WARN_ON_ONCE(release_reference_state(state, id)); 12265 12266 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 12267 mark_ptr_or_null_reg(state, reg, id, is_null); 12268 })); 12269 } 12270 12271 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 12272 struct bpf_reg_state *dst_reg, 12273 struct bpf_reg_state *src_reg, 12274 struct bpf_verifier_state *this_branch, 12275 struct bpf_verifier_state *other_branch) 12276 { 12277 if (BPF_SRC(insn->code) != BPF_X) 12278 return false; 12279 12280 /* Pointers are always 64-bit. */ 12281 if (BPF_CLASS(insn->code) == BPF_JMP32) 12282 return false; 12283 12284 switch (BPF_OP(insn->code)) { 12285 case BPF_JGT: 12286 if ((dst_reg->type == PTR_TO_PACKET && 12287 src_reg->type == PTR_TO_PACKET_END) || 12288 (dst_reg->type == PTR_TO_PACKET_META && 12289 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 12290 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 12291 find_good_pkt_pointers(this_branch, dst_reg, 12292 dst_reg->type, false); 12293 mark_pkt_end(other_branch, insn->dst_reg, true); 12294 } else if ((dst_reg->type == PTR_TO_PACKET_END && 12295 src_reg->type == PTR_TO_PACKET) || 12296 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 12297 src_reg->type == PTR_TO_PACKET_META)) { 12298 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 12299 find_good_pkt_pointers(other_branch, src_reg, 12300 src_reg->type, true); 12301 mark_pkt_end(this_branch, insn->src_reg, false); 12302 } else { 12303 return false; 12304 } 12305 break; 12306 case BPF_JLT: 12307 if ((dst_reg->type == PTR_TO_PACKET && 12308 src_reg->type == PTR_TO_PACKET_END) || 12309 (dst_reg->type == PTR_TO_PACKET_META && 12310 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 12311 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 12312 find_good_pkt_pointers(other_branch, dst_reg, 12313 dst_reg->type, true); 12314 mark_pkt_end(this_branch, insn->dst_reg, false); 12315 } else if ((dst_reg->type == PTR_TO_PACKET_END && 12316 src_reg->type == PTR_TO_PACKET) || 12317 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 12318 src_reg->type == PTR_TO_PACKET_META)) { 12319 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 12320 find_good_pkt_pointers(this_branch, src_reg, 12321 src_reg->type, false); 12322 mark_pkt_end(other_branch, insn->src_reg, true); 12323 } else { 12324 return false; 12325 } 12326 break; 12327 case BPF_JGE: 12328 if ((dst_reg->type == PTR_TO_PACKET && 12329 src_reg->type == PTR_TO_PACKET_END) || 12330 (dst_reg->type == PTR_TO_PACKET_META && 12331 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 12332 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 12333 find_good_pkt_pointers(this_branch, dst_reg, 12334 dst_reg->type, true); 12335 mark_pkt_end(other_branch, insn->dst_reg, false); 12336 } else if ((dst_reg->type == PTR_TO_PACKET_END && 12337 src_reg->type == PTR_TO_PACKET) || 12338 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 12339 src_reg->type == PTR_TO_PACKET_META)) { 12340 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 12341 find_good_pkt_pointers(other_branch, src_reg, 12342 src_reg->type, false); 12343 mark_pkt_end(this_branch, insn->src_reg, true); 12344 } else { 12345 return false; 12346 } 12347 break; 12348 case BPF_JLE: 12349 if ((dst_reg->type == PTR_TO_PACKET && 12350 src_reg->type == PTR_TO_PACKET_END) || 12351 (dst_reg->type == PTR_TO_PACKET_META && 12352 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 12353 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 12354 find_good_pkt_pointers(other_branch, dst_reg, 12355 dst_reg->type, false); 12356 mark_pkt_end(this_branch, insn->dst_reg, true); 12357 } else if ((dst_reg->type == PTR_TO_PACKET_END && 12358 src_reg->type == PTR_TO_PACKET) || 12359 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 12360 src_reg->type == PTR_TO_PACKET_META)) { 12361 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 12362 find_good_pkt_pointers(this_branch, src_reg, 12363 src_reg->type, true); 12364 mark_pkt_end(other_branch, insn->src_reg, false); 12365 } else { 12366 return false; 12367 } 12368 break; 12369 default: 12370 return false; 12371 } 12372 12373 return true; 12374 } 12375 12376 static void find_equal_scalars(struct bpf_verifier_state *vstate, 12377 struct bpf_reg_state *known_reg) 12378 { 12379 struct bpf_func_state *state; 12380 struct bpf_reg_state *reg; 12381 12382 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 12383 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 12384 copy_register_state(reg, known_reg); 12385 })); 12386 } 12387 12388 static int check_cond_jmp_op(struct bpf_verifier_env *env, 12389 struct bpf_insn *insn, int *insn_idx) 12390 { 12391 struct bpf_verifier_state *this_branch = env->cur_state; 12392 struct bpf_verifier_state *other_branch; 12393 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 12394 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 12395 struct bpf_reg_state *eq_branch_regs; 12396 u8 opcode = BPF_OP(insn->code); 12397 bool is_jmp32; 12398 int pred = -1; 12399 int err; 12400 12401 /* Only conditional jumps are expected to reach here. */ 12402 if (opcode == BPF_JA || opcode > BPF_JSLE) { 12403 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 12404 return -EINVAL; 12405 } 12406 12407 if (BPF_SRC(insn->code) == BPF_X) { 12408 if (insn->imm != 0) { 12409 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 12410 return -EINVAL; 12411 } 12412 12413 /* check src1 operand */ 12414 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12415 if (err) 12416 return err; 12417 12418 if (is_pointer_value(env, insn->src_reg)) { 12419 verbose(env, "R%d pointer comparison prohibited\n", 12420 insn->src_reg); 12421 return -EACCES; 12422 } 12423 src_reg = ®s[insn->src_reg]; 12424 } else { 12425 if (insn->src_reg != BPF_REG_0) { 12426 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 12427 return -EINVAL; 12428 } 12429 } 12430 12431 /* check src2 operand */ 12432 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12433 if (err) 12434 return err; 12435 12436 dst_reg = ®s[insn->dst_reg]; 12437 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 12438 12439 if (BPF_SRC(insn->code) == BPF_K) { 12440 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 12441 } else if (src_reg->type == SCALAR_VALUE && 12442 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 12443 pred = is_branch_taken(dst_reg, 12444 tnum_subreg(src_reg->var_off).value, 12445 opcode, 12446 is_jmp32); 12447 } else if (src_reg->type == SCALAR_VALUE && 12448 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 12449 pred = is_branch_taken(dst_reg, 12450 src_reg->var_off.value, 12451 opcode, 12452 is_jmp32); 12453 } else if (reg_is_pkt_pointer_any(dst_reg) && 12454 reg_is_pkt_pointer_any(src_reg) && 12455 !is_jmp32) { 12456 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 12457 } 12458 12459 if (pred >= 0) { 12460 /* If we get here with a dst_reg pointer type it is because 12461 * above is_branch_taken() special cased the 0 comparison. 12462 */ 12463 if (!__is_pointer_value(false, dst_reg)) 12464 err = mark_chain_precision(env, insn->dst_reg); 12465 if (BPF_SRC(insn->code) == BPF_X && !err && 12466 !__is_pointer_value(false, src_reg)) 12467 err = mark_chain_precision(env, insn->src_reg); 12468 if (err) 12469 return err; 12470 } 12471 12472 if (pred == 1) { 12473 /* Only follow the goto, ignore fall-through. If needed, push 12474 * the fall-through branch for simulation under speculative 12475 * execution. 12476 */ 12477 if (!env->bypass_spec_v1 && 12478 !sanitize_speculative_path(env, insn, *insn_idx + 1, 12479 *insn_idx)) 12480 return -EFAULT; 12481 *insn_idx += insn->off; 12482 return 0; 12483 } else if (pred == 0) { 12484 /* Only follow the fall-through branch, since that's where the 12485 * program will go. If needed, push the goto branch for 12486 * simulation under speculative execution. 12487 */ 12488 if (!env->bypass_spec_v1 && 12489 !sanitize_speculative_path(env, insn, 12490 *insn_idx + insn->off + 1, 12491 *insn_idx)) 12492 return -EFAULT; 12493 return 0; 12494 } 12495 12496 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 12497 false); 12498 if (!other_branch) 12499 return -EFAULT; 12500 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 12501 12502 /* detect if we are comparing against a constant value so we can adjust 12503 * our min/max values for our dst register. 12504 * this is only legit if both are scalars (or pointers to the same 12505 * object, I suppose, see the PTR_MAYBE_NULL related if block below), 12506 * because otherwise the different base pointers mean the offsets aren't 12507 * comparable. 12508 */ 12509 if (BPF_SRC(insn->code) == BPF_X) { 12510 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 12511 12512 if (dst_reg->type == SCALAR_VALUE && 12513 src_reg->type == SCALAR_VALUE) { 12514 if (tnum_is_const(src_reg->var_off) || 12515 (is_jmp32 && 12516 tnum_is_const(tnum_subreg(src_reg->var_off)))) 12517 reg_set_min_max(&other_branch_regs[insn->dst_reg], 12518 dst_reg, 12519 src_reg->var_off.value, 12520 tnum_subreg(src_reg->var_off).value, 12521 opcode, is_jmp32); 12522 else if (tnum_is_const(dst_reg->var_off) || 12523 (is_jmp32 && 12524 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 12525 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 12526 src_reg, 12527 dst_reg->var_off.value, 12528 tnum_subreg(dst_reg->var_off).value, 12529 opcode, is_jmp32); 12530 else if (!is_jmp32 && 12531 (opcode == BPF_JEQ || opcode == BPF_JNE)) 12532 /* Comparing for equality, we can combine knowledge */ 12533 reg_combine_min_max(&other_branch_regs[insn->src_reg], 12534 &other_branch_regs[insn->dst_reg], 12535 src_reg, dst_reg, opcode); 12536 if (src_reg->id && 12537 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 12538 find_equal_scalars(this_branch, src_reg); 12539 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 12540 } 12541 12542 } 12543 } else if (dst_reg->type == SCALAR_VALUE) { 12544 reg_set_min_max(&other_branch_regs[insn->dst_reg], 12545 dst_reg, insn->imm, (u32)insn->imm, 12546 opcode, is_jmp32); 12547 } 12548 12549 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 12550 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 12551 find_equal_scalars(this_branch, dst_reg); 12552 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 12553 } 12554 12555 /* if one pointer register is compared to another pointer 12556 * register check if PTR_MAYBE_NULL could be lifted. 12557 * E.g. register A - maybe null 12558 * register B - not null 12559 * for JNE A, B, ... - A is not null in the false branch; 12560 * for JEQ A, B, ... - A is not null in the true branch. 12561 * 12562 * Since PTR_TO_BTF_ID points to a kernel struct that does 12563 * not need to be null checked by the BPF program, i.e., 12564 * could be null even without PTR_MAYBE_NULL marking, so 12565 * only propagate nullness when neither reg is that type. 12566 */ 12567 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 12568 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 12569 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 12570 base_type(src_reg->type) != PTR_TO_BTF_ID && 12571 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 12572 eq_branch_regs = NULL; 12573 switch (opcode) { 12574 case BPF_JEQ: 12575 eq_branch_regs = other_branch_regs; 12576 break; 12577 case BPF_JNE: 12578 eq_branch_regs = regs; 12579 break; 12580 default: 12581 /* do nothing */ 12582 break; 12583 } 12584 if (eq_branch_regs) { 12585 if (type_may_be_null(src_reg->type)) 12586 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 12587 else 12588 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 12589 } 12590 } 12591 12592 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 12593 * NOTE: these optimizations below are related with pointer comparison 12594 * which will never be JMP32. 12595 */ 12596 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 12597 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 12598 type_may_be_null(dst_reg->type)) { 12599 /* Mark all identical registers in each branch as either 12600 * safe or unknown depending R == 0 or R != 0 conditional. 12601 */ 12602 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 12603 opcode == BPF_JNE); 12604 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 12605 opcode == BPF_JEQ); 12606 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 12607 this_branch, other_branch) && 12608 is_pointer_value(env, insn->dst_reg)) { 12609 verbose(env, "R%d pointer comparison prohibited\n", 12610 insn->dst_reg); 12611 return -EACCES; 12612 } 12613 if (env->log.level & BPF_LOG_LEVEL) 12614 print_insn_state(env, this_branch->frame[this_branch->curframe]); 12615 return 0; 12616 } 12617 12618 /* verify BPF_LD_IMM64 instruction */ 12619 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 12620 { 12621 struct bpf_insn_aux_data *aux = cur_aux(env); 12622 struct bpf_reg_state *regs = cur_regs(env); 12623 struct bpf_reg_state *dst_reg; 12624 struct bpf_map *map; 12625 int err; 12626 12627 if (BPF_SIZE(insn->code) != BPF_DW) { 12628 verbose(env, "invalid BPF_LD_IMM insn\n"); 12629 return -EINVAL; 12630 } 12631 if (insn->off != 0) { 12632 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 12633 return -EINVAL; 12634 } 12635 12636 err = check_reg_arg(env, insn->dst_reg, DST_OP); 12637 if (err) 12638 return err; 12639 12640 dst_reg = ®s[insn->dst_reg]; 12641 if (insn->src_reg == 0) { 12642 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 12643 12644 dst_reg->type = SCALAR_VALUE; 12645 __mark_reg_known(®s[insn->dst_reg], imm); 12646 return 0; 12647 } 12648 12649 /* All special src_reg cases are listed below. From this point onwards 12650 * we either succeed and assign a corresponding dst_reg->type after 12651 * zeroing the offset, or fail and reject the program. 12652 */ 12653 mark_reg_known_zero(env, regs, insn->dst_reg); 12654 12655 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 12656 dst_reg->type = aux->btf_var.reg_type; 12657 switch (base_type(dst_reg->type)) { 12658 case PTR_TO_MEM: 12659 dst_reg->mem_size = aux->btf_var.mem_size; 12660 break; 12661 case PTR_TO_BTF_ID: 12662 dst_reg->btf = aux->btf_var.btf; 12663 dst_reg->btf_id = aux->btf_var.btf_id; 12664 break; 12665 default: 12666 verbose(env, "bpf verifier is misconfigured\n"); 12667 return -EFAULT; 12668 } 12669 return 0; 12670 } 12671 12672 if (insn->src_reg == BPF_PSEUDO_FUNC) { 12673 struct bpf_prog_aux *aux = env->prog->aux; 12674 u32 subprogno = find_subprog(env, 12675 env->insn_idx + insn->imm + 1); 12676 12677 if (!aux->func_info) { 12678 verbose(env, "missing btf func_info\n"); 12679 return -EINVAL; 12680 } 12681 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 12682 verbose(env, "callback function not static\n"); 12683 return -EINVAL; 12684 } 12685 12686 dst_reg->type = PTR_TO_FUNC; 12687 dst_reg->subprogno = subprogno; 12688 return 0; 12689 } 12690 12691 map = env->used_maps[aux->map_index]; 12692 dst_reg->map_ptr = map; 12693 12694 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 12695 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 12696 dst_reg->type = PTR_TO_MAP_VALUE; 12697 dst_reg->off = aux->map_off; 12698 WARN_ON_ONCE(map->max_entries != 1); 12699 /* We want reg->id to be same (0) as map_value is not distinct */ 12700 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 12701 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 12702 dst_reg->type = CONST_PTR_TO_MAP; 12703 } else { 12704 verbose(env, "bpf verifier is misconfigured\n"); 12705 return -EINVAL; 12706 } 12707 12708 return 0; 12709 } 12710 12711 static bool may_access_skb(enum bpf_prog_type type) 12712 { 12713 switch (type) { 12714 case BPF_PROG_TYPE_SOCKET_FILTER: 12715 case BPF_PROG_TYPE_SCHED_CLS: 12716 case BPF_PROG_TYPE_SCHED_ACT: 12717 return true; 12718 default: 12719 return false; 12720 } 12721 } 12722 12723 /* verify safety of LD_ABS|LD_IND instructions: 12724 * - they can only appear in the programs where ctx == skb 12725 * - since they are wrappers of function calls, they scratch R1-R5 registers, 12726 * preserve R6-R9, and store return value into R0 12727 * 12728 * Implicit input: 12729 * ctx == skb == R6 == CTX 12730 * 12731 * Explicit input: 12732 * SRC == any register 12733 * IMM == 32-bit immediate 12734 * 12735 * Output: 12736 * R0 - 8/16/32-bit skb data converted to cpu endianness 12737 */ 12738 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 12739 { 12740 struct bpf_reg_state *regs = cur_regs(env); 12741 static const int ctx_reg = BPF_REG_6; 12742 u8 mode = BPF_MODE(insn->code); 12743 int i, err; 12744 12745 if (!may_access_skb(resolve_prog_type(env->prog))) { 12746 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 12747 return -EINVAL; 12748 } 12749 12750 if (!env->ops->gen_ld_abs) { 12751 verbose(env, "bpf verifier is misconfigured\n"); 12752 return -EINVAL; 12753 } 12754 12755 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 12756 BPF_SIZE(insn->code) == BPF_DW || 12757 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 12758 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 12759 return -EINVAL; 12760 } 12761 12762 /* check whether implicit source operand (register R6) is readable */ 12763 err = check_reg_arg(env, ctx_reg, SRC_OP); 12764 if (err) 12765 return err; 12766 12767 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 12768 * gen_ld_abs() may terminate the program at runtime, leading to 12769 * reference leak. 12770 */ 12771 err = check_reference_leak(env); 12772 if (err) { 12773 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 12774 return err; 12775 } 12776 12777 if (env->cur_state->active_lock.ptr) { 12778 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 12779 return -EINVAL; 12780 } 12781 12782 if (env->cur_state->active_rcu_lock) { 12783 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 12784 return -EINVAL; 12785 } 12786 12787 if (regs[ctx_reg].type != PTR_TO_CTX) { 12788 verbose(env, 12789 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 12790 return -EINVAL; 12791 } 12792 12793 if (mode == BPF_IND) { 12794 /* check explicit source operand */ 12795 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12796 if (err) 12797 return err; 12798 } 12799 12800 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 12801 if (err < 0) 12802 return err; 12803 12804 /* reset caller saved regs to unreadable */ 12805 for (i = 0; i < CALLER_SAVED_REGS; i++) { 12806 mark_reg_not_init(env, regs, caller_saved[i]); 12807 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 12808 } 12809 12810 /* mark destination R0 register as readable, since it contains 12811 * the value fetched from the packet. 12812 * Already marked as written above. 12813 */ 12814 mark_reg_unknown(env, regs, BPF_REG_0); 12815 /* ld_abs load up to 32-bit skb data. */ 12816 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 12817 return 0; 12818 } 12819 12820 static int check_return_code(struct bpf_verifier_env *env) 12821 { 12822 struct tnum enforce_attach_type_range = tnum_unknown; 12823 const struct bpf_prog *prog = env->prog; 12824 struct bpf_reg_state *reg; 12825 struct tnum range = tnum_range(0, 1); 12826 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 12827 int err; 12828 struct bpf_func_state *frame = env->cur_state->frame[0]; 12829 const bool is_subprog = frame->subprogno; 12830 12831 /* LSM and struct_ops func-ptr's return type could be "void" */ 12832 if (!is_subprog) { 12833 switch (prog_type) { 12834 case BPF_PROG_TYPE_LSM: 12835 if (prog->expected_attach_type == BPF_LSM_CGROUP) 12836 /* See below, can be 0 or 0-1 depending on hook. */ 12837 break; 12838 fallthrough; 12839 case BPF_PROG_TYPE_STRUCT_OPS: 12840 if (!prog->aux->attach_func_proto->type) 12841 return 0; 12842 break; 12843 default: 12844 break; 12845 } 12846 } 12847 12848 /* eBPF calling convention is such that R0 is used 12849 * to return the value from eBPF program. 12850 * Make sure that it's readable at this time 12851 * of bpf_exit, which means that program wrote 12852 * something into it earlier 12853 */ 12854 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 12855 if (err) 12856 return err; 12857 12858 if (is_pointer_value(env, BPF_REG_0)) { 12859 verbose(env, "R0 leaks addr as return value\n"); 12860 return -EACCES; 12861 } 12862 12863 reg = cur_regs(env) + BPF_REG_0; 12864 12865 if (frame->in_async_callback_fn) { 12866 /* enforce return zero from async callbacks like timer */ 12867 if (reg->type != SCALAR_VALUE) { 12868 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 12869 reg_type_str(env, reg->type)); 12870 return -EINVAL; 12871 } 12872 12873 if (!tnum_in(tnum_const(0), reg->var_off)) { 12874 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 12875 return -EINVAL; 12876 } 12877 return 0; 12878 } 12879 12880 if (is_subprog) { 12881 if (reg->type != SCALAR_VALUE) { 12882 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 12883 reg_type_str(env, reg->type)); 12884 return -EINVAL; 12885 } 12886 return 0; 12887 } 12888 12889 switch (prog_type) { 12890 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 12891 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 12892 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 12893 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 12894 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 12895 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 12896 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 12897 range = tnum_range(1, 1); 12898 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 12899 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 12900 range = tnum_range(0, 3); 12901 break; 12902 case BPF_PROG_TYPE_CGROUP_SKB: 12903 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 12904 range = tnum_range(0, 3); 12905 enforce_attach_type_range = tnum_range(2, 3); 12906 } 12907 break; 12908 case BPF_PROG_TYPE_CGROUP_SOCK: 12909 case BPF_PROG_TYPE_SOCK_OPS: 12910 case BPF_PROG_TYPE_CGROUP_DEVICE: 12911 case BPF_PROG_TYPE_CGROUP_SYSCTL: 12912 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 12913 break; 12914 case BPF_PROG_TYPE_RAW_TRACEPOINT: 12915 if (!env->prog->aux->attach_btf_id) 12916 return 0; 12917 range = tnum_const(0); 12918 break; 12919 case BPF_PROG_TYPE_TRACING: 12920 switch (env->prog->expected_attach_type) { 12921 case BPF_TRACE_FENTRY: 12922 case BPF_TRACE_FEXIT: 12923 range = tnum_const(0); 12924 break; 12925 case BPF_TRACE_RAW_TP: 12926 case BPF_MODIFY_RETURN: 12927 return 0; 12928 case BPF_TRACE_ITER: 12929 break; 12930 default: 12931 return -ENOTSUPP; 12932 } 12933 break; 12934 case BPF_PROG_TYPE_SK_LOOKUP: 12935 range = tnum_range(SK_DROP, SK_PASS); 12936 break; 12937 12938 case BPF_PROG_TYPE_LSM: 12939 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 12940 /* Regular BPF_PROG_TYPE_LSM programs can return 12941 * any value. 12942 */ 12943 return 0; 12944 } 12945 if (!env->prog->aux->attach_func_proto->type) { 12946 /* Make sure programs that attach to void 12947 * hooks don't try to modify return value. 12948 */ 12949 range = tnum_range(1, 1); 12950 } 12951 break; 12952 12953 case BPF_PROG_TYPE_EXT: 12954 /* freplace program can return anything as its return value 12955 * depends on the to-be-replaced kernel func or bpf program. 12956 */ 12957 default: 12958 return 0; 12959 } 12960 12961 if (reg->type != SCALAR_VALUE) { 12962 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 12963 reg_type_str(env, reg->type)); 12964 return -EINVAL; 12965 } 12966 12967 if (!tnum_in(range, reg->var_off)) { 12968 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 12969 if (prog->expected_attach_type == BPF_LSM_CGROUP && 12970 prog_type == BPF_PROG_TYPE_LSM && 12971 !prog->aux->attach_func_proto->type) 12972 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 12973 return -EINVAL; 12974 } 12975 12976 if (!tnum_is_unknown(enforce_attach_type_range) && 12977 tnum_in(enforce_attach_type_range, reg->var_off)) 12978 env->prog->enforce_expected_attach_type = 1; 12979 return 0; 12980 } 12981 12982 /* non-recursive DFS pseudo code 12983 * 1 procedure DFS-iterative(G,v): 12984 * 2 label v as discovered 12985 * 3 let S be a stack 12986 * 4 S.push(v) 12987 * 5 while S is not empty 12988 * 6 t <- S.peek() 12989 * 7 if t is what we're looking for: 12990 * 8 return t 12991 * 9 for all edges e in G.adjacentEdges(t) do 12992 * 10 if edge e is already labelled 12993 * 11 continue with the next edge 12994 * 12 w <- G.adjacentVertex(t,e) 12995 * 13 if vertex w is not discovered and not explored 12996 * 14 label e as tree-edge 12997 * 15 label w as discovered 12998 * 16 S.push(w) 12999 * 17 continue at 5 13000 * 18 else if vertex w is discovered 13001 * 19 label e as back-edge 13002 * 20 else 13003 * 21 // vertex w is explored 13004 * 22 label e as forward- or cross-edge 13005 * 23 label t as explored 13006 * 24 S.pop() 13007 * 13008 * convention: 13009 * 0x10 - discovered 13010 * 0x11 - discovered and fall-through edge labelled 13011 * 0x12 - discovered and fall-through and branch edges labelled 13012 * 0x20 - explored 13013 */ 13014 13015 enum { 13016 DISCOVERED = 0x10, 13017 EXPLORED = 0x20, 13018 FALLTHROUGH = 1, 13019 BRANCH = 2, 13020 }; 13021 13022 static u32 state_htab_size(struct bpf_verifier_env *env) 13023 { 13024 return env->prog->len; 13025 } 13026 13027 static struct bpf_verifier_state_list **explored_state( 13028 struct bpf_verifier_env *env, 13029 int idx) 13030 { 13031 struct bpf_verifier_state *cur = env->cur_state; 13032 struct bpf_func_state *state = cur->frame[cur->curframe]; 13033 13034 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 13035 } 13036 13037 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 13038 { 13039 env->insn_aux_data[idx].prune_point = true; 13040 } 13041 13042 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 13043 { 13044 return env->insn_aux_data[insn_idx].prune_point; 13045 } 13046 13047 enum { 13048 DONE_EXPLORING = 0, 13049 KEEP_EXPLORING = 1, 13050 }; 13051 13052 /* t, w, e - match pseudo-code above: 13053 * t - index of current instruction 13054 * w - next instruction 13055 * e - edge 13056 */ 13057 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 13058 bool loop_ok) 13059 { 13060 int *insn_stack = env->cfg.insn_stack; 13061 int *insn_state = env->cfg.insn_state; 13062 13063 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 13064 return DONE_EXPLORING; 13065 13066 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 13067 return DONE_EXPLORING; 13068 13069 if (w < 0 || w >= env->prog->len) { 13070 verbose_linfo(env, t, "%d: ", t); 13071 verbose(env, "jump out of range from insn %d to %d\n", t, w); 13072 return -EINVAL; 13073 } 13074 13075 if (e == BRANCH) { 13076 /* mark branch target for state pruning */ 13077 mark_prune_point(env, w); 13078 mark_jmp_point(env, w); 13079 } 13080 13081 if (insn_state[w] == 0) { 13082 /* tree-edge */ 13083 insn_state[t] = DISCOVERED | e; 13084 insn_state[w] = DISCOVERED; 13085 if (env->cfg.cur_stack >= env->prog->len) 13086 return -E2BIG; 13087 insn_stack[env->cfg.cur_stack++] = w; 13088 return KEEP_EXPLORING; 13089 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 13090 if (loop_ok && env->bpf_capable) 13091 return DONE_EXPLORING; 13092 verbose_linfo(env, t, "%d: ", t); 13093 verbose_linfo(env, w, "%d: ", w); 13094 verbose(env, "back-edge from insn %d to %d\n", t, w); 13095 return -EINVAL; 13096 } else if (insn_state[w] == EXPLORED) { 13097 /* forward- or cross-edge */ 13098 insn_state[t] = DISCOVERED | e; 13099 } else { 13100 verbose(env, "insn state internal bug\n"); 13101 return -EFAULT; 13102 } 13103 return DONE_EXPLORING; 13104 } 13105 13106 static int visit_func_call_insn(int t, struct bpf_insn *insns, 13107 struct bpf_verifier_env *env, 13108 bool visit_callee) 13109 { 13110 int ret; 13111 13112 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 13113 if (ret) 13114 return ret; 13115 13116 mark_prune_point(env, t + 1); 13117 /* when we exit from subprog, we need to record non-linear history */ 13118 mark_jmp_point(env, t + 1); 13119 13120 if (visit_callee) { 13121 mark_prune_point(env, t); 13122 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 13123 /* It's ok to allow recursion from CFG point of 13124 * view. __check_func_call() will do the actual 13125 * check. 13126 */ 13127 bpf_pseudo_func(insns + t)); 13128 } 13129 return ret; 13130 } 13131 13132 /* Visits the instruction at index t and returns one of the following: 13133 * < 0 - an error occurred 13134 * DONE_EXPLORING - the instruction was fully explored 13135 * KEEP_EXPLORING - there is still work to be done before it is fully explored 13136 */ 13137 static int visit_insn(int t, struct bpf_verifier_env *env) 13138 { 13139 struct bpf_insn *insns = env->prog->insnsi; 13140 int ret; 13141 13142 if (bpf_pseudo_func(insns + t)) 13143 return visit_func_call_insn(t, insns, env, true); 13144 13145 /* All non-branch instructions have a single fall-through edge. */ 13146 if (BPF_CLASS(insns[t].code) != BPF_JMP && 13147 BPF_CLASS(insns[t].code) != BPF_JMP32) 13148 return push_insn(t, t + 1, FALLTHROUGH, env, false); 13149 13150 switch (BPF_OP(insns[t].code)) { 13151 case BPF_EXIT: 13152 return DONE_EXPLORING; 13153 13154 case BPF_CALL: 13155 if (insns[t].imm == BPF_FUNC_timer_set_callback) 13156 /* Mark this call insn as a prune point to trigger 13157 * is_state_visited() check before call itself is 13158 * processed by __check_func_call(). Otherwise new 13159 * async state will be pushed for further exploration. 13160 */ 13161 mark_prune_point(env, t); 13162 return visit_func_call_insn(t, insns, env, 13163 insns[t].src_reg == BPF_PSEUDO_CALL); 13164 13165 case BPF_JA: 13166 if (BPF_SRC(insns[t].code) != BPF_K) 13167 return -EINVAL; 13168 13169 /* unconditional jump with single edge */ 13170 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 13171 true); 13172 if (ret) 13173 return ret; 13174 13175 mark_prune_point(env, t + insns[t].off + 1); 13176 mark_jmp_point(env, t + insns[t].off + 1); 13177 13178 return ret; 13179 13180 default: 13181 /* conditional jump with two edges */ 13182 mark_prune_point(env, t); 13183 13184 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 13185 if (ret) 13186 return ret; 13187 13188 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 13189 } 13190 } 13191 13192 /* non-recursive depth-first-search to detect loops in BPF program 13193 * loop == back-edge in directed graph 13194 */ 13195 static int check_cfg(struct bpf_verifier_env *env) 13196 { 13197 int insn_cnt = env->prog->len; 13198 int *insn_stack, *insn_state; 13199 int ret = 0; 13200 int i; 13201 13202 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 13203 if (!insn_state) 13204 return -ENOMEM; 13205 13206 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 13207 if (!insn_stack) { 13208 kvfree(insn_state); 13209 return -ENOMEM; 13210 } 13211 13212 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 13213 insn_stack[0] = 0; /* 0 is the first instruction */ 13214 env->cfg.cur_stack = 1; 13215 13216 while (env->cfg.cur_stack > 0) { 13217 int t = insn_stack[env->cfg.cur_stack - 1]; 13218 13219 ret = visit_insn(t, env); 13220 switch (ret) { 13221 case DONE_EXPLORING: 13222 insn_state[t] = EXPLORED; 13223 env->cfg.cur_stack--; 13224 break; 13225 case KEEP_EXPLORING: 13226 break; 13227 default: 13228 if (ret > 0) { 13229 verbose(env, "visit_insn internal bug\n"); 13230 ret = -EFAULT; 13231 } 13232 goto err_free; 13233 } 13234 } 13235 13236 if (env->cfg.cur_stack < 0) { 13237 verbose(env, "pop stack internal bug\n"); 13238 ret = -EFAULT; 13239 goto err_free; 13240 } 13241 13242 for (i = 0; i < insn_cnt; i++) { 13243 if (insn_state[i] != EXPLORED) { 13244 verbose(env, "unreachable insn %d\n", i); 13245 ret = -EINVAL; 13246 goto err_free; 13247 } 13248 } 13249 ret = 0; /* cfg looks good */ 13250 13251 err_free: 13252 kvfree(insn_state); 13253 kvfree(insn_stack); 13254 env->cfg.insn_state = env->cfg.insn_stack = NULL; 13255 return ret; 13256 } 13257 13258 static int check_abnormal_return(struct bpf_verifier_env *env) 13259 { 13260 int i; 13261 13262 for (i = 1; i < env->subprog_cnt; i++) { 13263 if (env->subprog_info[i].has_ld_abs) { 13264 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 13265 return -EINVAL; 13266 } 13267 if (env->subprog_info[i].has_tail_call) { 13268 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 13269 return -EINVAL; 13270 } 13271 } 13272 return 0; 13273 } 13274 13275 /* The minimum supported BTF func info size */ 13276 #define MIN_BPF_FUNCINFO_SIZE 8 13277 #define MAX_FUNCINFO_REC_SIZE 252 13278 13279 static int check_btf_func(struct bpf_verifier_env *env, 13280 const union bpf_attr *attr, 13281 bpfptr_t uattr) 13282 { 13283 const struct btf_type *type, *func_proto, *ret_type; 13284 u32 i, nfuncs, urec_size, min_size; 13285 u32 krec_size = sizeof(struct bpf_func_info); 13286 struct bpf_func_info *krecord; 13287 struct bpf_func_info_aux *info_aux = NULL; 13288 struct bpf_prog *prog; 13289 const struct btf *btf; 13290 bpfptr_t urecord; 13291 u32 prev_offset = 0; 13292 bool scalar_return; 13293 int ret = -ENOMEM; 13294 13295 nfuncs = attr->func_info_cnt; 13296 if (!nfuncs) { 13297 if (check_abnormal_return(env)) 13298 return -EINVAL; 13299 return 0; 13300 } 13301 13302 if (nfuncs != env->subprog_cnt) { 13303 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 13304 return -EINVAL; 13305 } 13306 13307 urec_size = attr->func_info_rec_size; 13308 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 13309 urec_size > MAX_FUNCINFO_REC_SIZE || 13310 urec_size % sizeof(u32)) { 13311 verbose(env, "invalid func info rec size %u\n", urec_size); 13312 return -EINVAL; 13313 } 13314 13315 prog = env->prog; 13316 btf = prog->aux->btf; 13317 13318 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 13319 min_size = min_t(u32, krec_size, urec_size); 13320 13321 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 13322 if (!krecord) 13323 return -ENOMEM; 13324 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 13325 if (!info_aux) 13326 goto err_free; 13327 13328 for (i = 0; i < nfuncs; i++) { 13329 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 13330 if (ret) { 13331 if (ret == -E2BIG) { 13332 verbose(env, "nonzero tailing record in func info"); 13333 /* set the size kernel expects so loader can zero 13334 * out the rest of the record. 13335 */ 13336 if (copy_to_bpfptr_offset(uattr, 13337 offsetof(union bpf_attr, func_info_rec_size), 13338 &min_size, sizeof(min_size))) 13339 ret = -EFAULT; 13340 } 13341 goto err_free; 13342 } 13343 13344 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 13345 ret = -EFAULT; 13346 goto err_free; 13347 } 13348 13349 /* check insn_off */ 13350 ret = -EINVAL; 13351 if (i == 0) { 13352 if (krecord[i].insn_off) { 13353 verbose(env, 13354 "nonzero insn_off %u for the first func info record", 13355 krecord[i].insn_off); 13356 goto err_free; 13357 } 13358 } else if (krecord[i].insn_off <= prev_offset) { 13359 verbose(env, 13360 "same or smaller insn offset (%u) than previous func info record (%u)", 13361 krecord[i].insn_off, prev_offset); 13362 goto err_free; 13363 } 13364 13365 if (env->subprog_info[i].start != krecord[i].insn_off) { 13366 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 13367 goto err_free; 13368 } 13369 13370 /* check type_id */ 13371 type = btf_type_by_id(btf, krecord[i].type_id); 13372 if (!type || !btf_type_is_func(type)) { 13373 verbose(env, "invalid type id %d in func info", 13374 krecord[i].type_id); 13375 goto err_free; 13376 } 13377 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 13378 13379 func_proto = btf_type_by_id(btf, type->type); 13380 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 13381 /* btf_func_check() already verified it during BTF load */ 13382 goto err_free; 13383 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 13384 scalar_return = 13385 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 13386 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 13387 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 13388 goto err_free; 13389 } 13390 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 13391 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 13392 goto err_free; 13393 } 13394 13395 prev_offset = krecord[i].insn_off; 13396 bpfptr_add(&urecord, urec_size); 13397 } 13398 13399 prog->aux->func_info = krecord; 13400 prog->aux->func_info_cnt = nfuncs; 13401 prog->aux->func_info_aux = info_aux; 13402 return 0; 13403 13404 err_free: 13405 kvfree(krecord); 13406 kfree(info_aux); 13407 return ret; 13408 } 13409 13410 static void adjust_btf_func(struct bpf_verifier_env *env) 13411 { 13412 struct bpf_prog_aux *aux = env->prog->aux; 13413 int i; 13414 13415 if (!aux->func_info) 13416 return; 13417 13418 for (i = 0; i < env->subprog_cnt; i++) 13419 aux->func_info[i].insn_off = env->subprog_info[i].start; 13420 } 13421 13422 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 13423 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 13424 13425 static int check_btf_line(struct bpf_verifier_env *env, 13426 const union bpf_attr *attr, 13427 bpfptr_t uattr) 13428 { 13429 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 13430 struct bpf_subprog_info *sub; 13431 struct bpf_line_info *linfo; 13432 struct bpf_prog *prog; 13433 const struct btf *btf; 13434 bpfptr_t ulinfo; 13435 int err; 13436 13437 nr_linfo = attr->line_info_cnt; 13438 if (!nr_linfo) 13439 return 0; 13440 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 13441 return -EINVAL; 13442 13443 rec_size = attr->line_info_rec_size; 13444 if (rec_size < MIN_BPF_LINEINFO_SIZE || 13445 rec_size > MAX_LINEINFO_REC_SIZE || 13446 rec_size & (sizeof(u32) - 1)) 13447 return -EINVAL; 13448 13449 /* Need to zero it in case the userspace may 13450 * pass in a smaller bpf_line_info object. 13451 */ 13452 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 13453 GFP_KERNEL | __GFP_NOWARN); 13454 if (!linfo) 13455 return -ENOMEM; 13456 13457 prog = env->prog; 13458 btf = prog->aux->btf; 13459 13460 s = 0; 13461 sub = env->subprog_info; 13462 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 13463 expected_size = sizeof(struct bpf_line_info); 13464 ncopy = min_t(u32, expected_size, rec_size); 13465 for (i = 0; i < nr_linfo; i++) { 13466 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 13467 if (err) { 13468 if (err == -E2BIG) { 13469 verbose(env, "nonzero tailing record in line_info"); 13470 if (copy_to_bpfptr_offset(uattr, 13471 offsetof(union bpf_attr, line_info_rec_size), 13472 &expected_size, sizeof(expected_size))) 13473 err = -EFAULT; 13474 } 13475 goto err_free; 13476 } 13477 13478 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 13479 err = -EFAULT; 13480 goto err_free; 13481 } 13482 13483 /* 13484 * Check insn_off to ensure 13485 * 1) strictly increasing AND 13486 * 2) bounded by prog->len 13487 * 13488 * The linfo[0].insn_off == 0 check logically falls into 13489 * the later "missing bpf_line_info for func..." case 13490 * because the first linfo[0].insn_off must be the 13491 * first sub also and the first sub must have 13492 * subprog_info[0].start == 0. 13493 */ 13494 if ((i && linfo[i].insn_off <= prev_offset) || 13495 linfo[i].insn_off >= prog->len) { 13496 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 13497 i, linfo[i].insn_off, prev_offset, 13498 prog->len); 13499 err = -EINVAL; 13500 goto err_free; 13501 } 13502 13503 if (!prog->insnsi[linfo[i].insn_off].code) { 13504 verbose(env, 13505 "Invalid insn code at line_info[%u].insn_off\n", 13506 i); 13507 err = -EINVAL; 13508 goto err_free; 13509 } 13510 13511 if (!btf_name_by_offset(btf, linfo[i].line_off) || 13512 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 13513 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 13514 err = -EINVAL; 13515 goto err_free; 13516 } 13517 13518 if (s != env->subprog_cnt) { 13519 if (linfo[i].insn_off == sub[s].start) { 13520 sub[s].linfo_idx = i; 13521 s++; 13522 } else if (sub[s].start < linfo[i].insn_off) { 13523 verbose(env, "missing bpf_line_info for func#%u\n", s); 13524 err = -EINVAL; 13525 goto err_free; 13526 } 13527 } 13528 13529 prev_offset = linfo[i].insn_off; 13530 bpfptr_add(&ulinfo, rec_size); 13531 } 13532 13533 if (s != env->subprog_cnt) { 13534 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 13535 env->subprog_cnt - s, s); 13536 err = -EINVAL; 13537 goto err_free; 13538 } 13539 13540 prog->aux->linfo = linfo; 13541 prog->aux->nr_linfo = nr_linfo; 13542 13543 return 0; 13544 13545 err_free: 13546 kvfree(linfo); 13547 return err; 13548 } 13549 13550 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 13551 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 13552 13553 static int check_core_relo(struct bpf_verifier_env *env, 13554 const union bpf_attr *attr, 13555 bpfptr_t uattr) 13556 { 13557 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 13558 struct bpf_core_relo core_relo = {}; 13559 struct bpf_prog *prog = env->prog; 13560 const struct btf *btf = prog->aux->btf; 13561 struct bpf_core_ctx ctx = { 13562 .log = &env->log, 13563 .btf = btf, 13564 }; 13565 bpfptr_t u_core_relo; 13566 int err; 13567 13568 nr_core_relo = attr->core_relo_cnt; 13569 if (!nr_core_relo) 13570 return 0; 13571 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 13572 return -EINVAL; 13573 13574 rec_size = attr->core_relo_rec_size; 13575 if (rec_size < MIN_CORE_RELO_SIZE || 13576 rec_size > MAX_CORE_RELO_SIZE || 13577 rec_size % sizeof(u32)) 13578 return -EINVAL; 13579 13580 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 13581 expected_size = sizeof(struct bpf_core_relo); 13582 ncopy = min_t(u32, expected_size, rec_size); 13583 13584 /* Unlike func_info and line_info, copy and apply each CO-RE 13585 * relocation record one at a time. 13586 */ 13587 for (i = 0; i < nr_core_relo; i++) { 13588 /* future proofing when sizeof(bpf_core_relo) changes */ 13589 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 13590 if (err) { 13591 if (err == -E2BIG) { 13592 verbose(env, "nonzero tailing record in core_relo"); 13593 if (copy_to_bpfptr_offset(uattr, 13594 offsetof(union bpf_attr, core_relo_rec_size), 13595 &expected_size, sizeof(expected_size))) 13596 err = -EFAULT; 13597 } 13598 break; 13599 } 13600 13601 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 13602 err = -EFAULT; 13603 break; 13604 } 13605 13606 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 13607 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 13608 i, core_relo.insn_off, prog->len); 13609 err = -EINVAL; 13610 break; 13611 } 13612 13613 err = bpf_core_apply(&ctx, &core_relo, i, 13614 &prog->insnsi[core_relo.insn_off / 8]); 13615 if (err) 13616 break; 13617 bpfptr_add(&u_core_relo, rec_size); 13618 } 13619 return err; 13620 } 13621 13622 static int check_btf_info(struct bpf_verifier_env *env, 13623 const union bpf_attr *attr, 13624 bpfptr_t uattr) 13625 { 13626 struct btf *btf; 13627 int err; 13628 13629 if (!attr->func_info_cnt && !attr->line_info_cnt) { 13630 if (check_abnormal_return(env)) 13631 return -EINVAL; 13632 return 0; 13633 } 13634 13635 btf = btf_get_by_fd(attr->prog_btf_fd); 13636 if (IS_ERR(btf)) 13637 return PTR_ERR(btf); 13638 if (btf_is_kernel(btf)) { 13639 btf_put(btf); 13640 return -EACCES; 13641 } 13642 env->prog->aux->btf = btf; 13643 13644 err = check_btf_func(env, attr, uattr); 13645 if (err) 13646 return err; 13647 13648 err = check_btf_line(env, attr, uattr); 13649 if (err) 13650 return err; 13651 13652 err = check_core_relo(env, attr, uattr); 13653 if (err) 13654 return err; 13655 13656 return 0; 13657 } 13658 13659 /* check %cur's range satisfies %old's */ 13660 static bool range_within(struct bpf_reg_state *old, 13661 struct bpf_reg_state *cur) 13662 { 13663 return old->umin_value <= cur->umin_value && 13664 old->umax_value >= cur->umax_value && 13665 old->smin_value <= cur->smin_value && 13666 old->smax_value >= cur->smax_value && 13667 old->u32_min_value <= cur->u32_min_value && 13668 old->u32_max_value >= cur->u32_max_value && 13669 old->s32_min_value <= cur->s32_min_value && 13670 old->s32_max_value >= cur->s32_max_value; 13671 } 13672 13673 /* If in the old state two registers had the same id, then they need to have 13674 * the same id in the new state as well. But that id could be different from 13675 * the old state, so we need to track the mapping from old to new ids. 13676 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 13677 * regs with old id 5 must also have new id 9 for the new state to be safe. But 13678 * regs with a different old id could still have new id 9, we don't care about 13679 * that. 13680 * So we look through our idmap to see if this old id has been seen before. If 13681 * so, we require the new id to match; otherwise, we add the id pair to the map. 13682 */ 13683 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 13684 { 13685 unsigned int i; 13686 13687 /* either both IDs should be set or both should be zero */ 13688 if (!!old_id != !!cur_id) 13689 return false; 13690 13691 if (old_id == 0) /* cur_id == 0 as well */ 13692 return true; 13693 13694 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 13695 if (!idmap[i].old) { 13696 /* Reached an empty slot; haven't seen this id before */ 13697 idmap[i].old = old_id; 13698 idmap[i].cur = cur_id; 13699 return true; 13700 } 13701 if (idmap[i].old == old_id) 13702 return idmap[i].cur == cur_id; 13703 } 13704 /* We ran out of idmap slots, which should be impossible */ 13705 WARN_ON_ONCE(1); 13706 return false; 13707 } 13708 13709 static void clean_func_state(struct bpf_verifier_env *env, 13710 struct bpf_func_state *st) 13711 { 13712 enum bpf_reg_liveness live; 13713 int i, j; 13714 13715 for (i = 0; i < BPF_REG_FP; i++) { 13716 live = st->regs[i].live; 13717 /* liveness must not touch this register anymore */ 13718 st->regs[i].live |= REG_LIVE_DONE; 13719 if (!(live & REG_LIVE_READ)) 13720 /* since the register is unused, clear its state 13721 * to make further comparison simpler 13722 */ 13723 __mark_reg_not_init(env, &st->regs[i]); 13724 } 13725 13726 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 13727 live = st->stack[i].spilled_ptr.live; 13728 /* liveness must not touch this stack slot anymore */ 13729 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 13730 if (!(live & REG_LIVE_READ)) { 13731 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 13732 for (j = 0; j < BPF_REG_SIZE; j++) 13733 st->stack[i].slot_type[j] = STACK_INVALID; 13734 } 13735 } 13736 } 13737 13738 static void clean_verifier_state(struct bpf_verifier_env *env, 13739 struct bpf_verifier_state *st) 13740 { 13741 int i; 13742 13743 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 13744 /* all regs in this state in all frames were already marked */ 13745 return; 13746 13747 for (i = 0; i <= st->curframe; i++) 13748 clean_func_state(env, st->frame[i]); 13749 } 13750 13751 /* the parentage chains form a tree. 13752 * the verifier states are added to state lists at given insn and 13753 * pushed into state stack for future exploration. 13754 * when the verifier reaches bpf_exit insn some of the verifer states 13755 * stored in the state lists have their final liveness state already, 13756 * but a lot of states will get revised from liveness point of view when 13757 * the verifier explores other branches. 13758 * Example: 13759 * 1: r0 = 1 13760 * 2: if r1 == 100 goto pc+1 13761 * 3: r0 = 2 13762 * 4: exit 13763 * when the verifier reaches exit insn the register r0 in the state list of 13764 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 13765 * of insn 2 and goes exploring further. At the insn 4 it will walk the 13766 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 13767 * 13768 * Since the verifier pushes the branch states as it sees them while exploring 13769 * the program the condition of walking the branch instruction for the second 13770 * time means that all states below this branch were already explored and 13771 * their final liveness marks are already propagated. 13772 * Hence when the verifier completes the search of state list in is_state_visited() 13773 * we can call this clean_live_states() function to mark all liveness states 13774 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 13775 * will not be used. 13776 * This function also clears the registers and stack for states that !READ 13777 * to simplify state merging. 13778 * 13779 * Important note here that walking the same branch instruction in the callee 13780 * doesn't meant that the states are DONE. The verifier has to compare 13781 * the callsites 13782 */ 13783 static void clean_live_states(struct bpf_verifier_env *env, int insn, 13784 struct bpf_verifier_state *cur) 13785 { 13786 struct bpf_verifier_state_list *sl; 13787 int i; 13788 13789 sl = *explored_state(env, insn); 13790 while (sl) { 13791 if (sl->state.branches) 13792 goto next; 13793 if (sl->state.insn_idx != insn || 13794 sl->state.curframe != cur->curframe) 13795 goto next; 13796 for (i = 0; i <= cur->curframe; i++) 13797 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 13798 goto next; 13799 clean_verifier_state(env, &sl->state); 13800 next: 13801 sl = sl->next; 13802 } 13803 } 13804 13805 static bool regs_exact(const struct bpf_reg_state *rold, 13806 const struct bpf_reg_state *rcur, 13807 struct bpf_id_pair *idmap) 13808 { 13809 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 13810 check_ids(rold->id, rcur->id, idmap) && 13811 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 13812 } 13813 13814 /* Returns true if (rold safe implies rcur safe) */ 13815 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 13816 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 13817 { 13818 if (!(rold->live & REG_LIVE_READ)) 13819 /* explored state didn't use this */ 13820 return true; 13821 if (rold->type == NOT_INIT) 13822 /* explored state can't have used this */ 13823 return true; 13824 if (rcur->type == NOT_INIT) 13825 return false; 13826 13827 /* Enforce that register types have to match exactly, including their 13828 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 13829 * rule. 13830 * 13831 * One can make a point that using a pointer register as unbounded 13832 * SCALAR would be technically acceptable, but this could lead to 13833 * pointer leaks because scalars are allowed to leak while pointers 13834 * are not. We could make this safe in special cases if root is 13835 * calling us, but it's probably not worth the hassle. 13836 * 13837 * Also, register types that are *not* MAYBE_NULL could technically be 13838 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 13839 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 13840 * to the same map). 13841 * However, if the old MAYBE_NULL register then got NULL checked, 13842 * doing so could have affected others with the same id, and we can't 13843 * check for that because we lost the id when we converted to 13844 * a non-MAYBE_NULL variant. 13845 * So, as a general rule we don't allow mixing MAYBE_NULL and 13846 * non-MAYBE_NULL registers as well. 13847 */ 13848 if (rold->type != rcur->type) 13849 return false; 13850 13851 switch (base_type(rold->type)) { 13852 case SCALAR_VALUE: 13853 if (regs_exact(rold, rcur, idmap)) 13854 return true; 13855 if (env->explore_alu_limits) 13856 return false; 13857 if (!rold->precise) 13858 return true; 13859 /* new val must satisfy old val knowledge */ 13860 return range_within(rold, rcur) && 13861 tnum_in(rold->var_off, rcur->var_off); 13862 case PTR_TO_MAP_KEY: 13863 case PTR_TO_MAP_VALUE: 13864 /* If the new min/max/var_off satisfy the old ones and 13865 * everything else matches, we are OK. 13866 */ 13867 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 13868 range_within(rold, rcur) && 13869 tnum_in(rold->var_off, rcur->var_off) && 13870 check_ids(rold->id, rcur->id, idmap); 13871 case PTR_TO_PACKET_META: 13872 case PTR_TO_PACKET: 13873 /* We must have at least as much range as the old ptr 13874 * did, so that any accesses which were safe before are 13875 * still safe. This is true even if old range < old off, 13876 * since someone could have accessed through (ptr - k), or 13877 * even done ptr -= k in a register, to get a safe access. 13878 */ 13879 if (rold->range > rcur->range) 13880 return false; 13881 /* If the offsets don't match, we can't trust our alignment; 13882 * nor can we be sure that we won't fall out of range. 13883 */ 13884 if (rold->off != rcur->off) 13885 return false; 13886 /* id relations must be preserved */ 13887 if (!check_ids(rold->id, rcur->id, idmap)) 13888 return false; 13889 /* new val must satisfy old val knowledge */ 13890 return range_within(rold, rcur) && 13891 tnum_in(rold->var_off, rcur->var_off); 13892 case PTR_TO_STACK: 13893 /* two stack pointers are equal only if they're pointing to 13894 * the same stack frame, since fp-8 in foo != fp-8 in bar 13895 */ 13896 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 13897 default: 13898 return regs_exact(rold, rcur, idmap); 13899 } 13900 } 13901 13902 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 13903 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 13904 { 13905 int i, spi; 13906 13907 /* walk slots of the explored stack and ignore any additional 13908 * slots in the current stack, since explored(safe) state 13909 * didn't use them 13910 */ 13911 for (i = 0; i < old->allocated_stack; i++) { 13912 spi = i / BPF_REG_SIZE; 13913 13914 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 13915 i += BPF_REG_SIZE - 1; 13916 /* explored state didn't use this */ 13917 continue; 13918 } 13919 13920 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 13921 continue; 13922 13923 /* explored stack has more populated slots than current stack 13924 * and these slots were used 13925 */ 13926 if (i >= cur->allocated_stack) 13927 return false; 13928 13929 /* if old state was safe with misc data in the stack 13930 * it will be safe with zero-initialized stack. 13931 * The opposite is not true 13932 */ 13933 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 13934 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 13935 continue; 13936 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 13937 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 13938 /* Ex: old explored (safe) state has STACK_SPILL in 13939 * this stack slot, but current has STACK_MISC -> 13940 * this verifier states are not equivalent, 13941 * return false to continue verification of this path 13942 */ 13943 return false; 13944 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 13945 continue; 13946 /* Both old and cur are having same slot_type */ 13947 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 13948 case STACK_SPILL: 13949 /* when explored and current stack slot are both storing 13950 * spilled registers, check that stored pointers types 13951 * are the same as well. 13952 * Ex: explored safe path could have stored 13953 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 13954 * but current path has stored: 13955 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 13956 * such verifier states are not equivalent. 13957 * return false to continue verification of this path 13958 */ 13959 if (!regsafe(env, &old->stack[spi].spilled_ptr, 13960 &cur->stack[spi].spilled_ptr, idmap)) 13961 return false; 13962 break; 13963 case STACK_DYNPTR: 13964 { 13965 const struct bpf_reg_state *old_reg, *cur_reg; 13966 13967 old_reg = &old->stack[spi].spilled_ptr; 13968 cur_reg = &cur->stack[spi].spilled_ptr; 13969 if (old_reg->dynptr.type != cur_reg->dynptr.type || 13970 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 13971 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 13972 return false; 13973 break; 13974 } 13975 case STACK_MISC: 13976 case STACK_ZERO: 13977 case STACK_INVALID: 13978 continue; 13979 /* Ensure that new unhandled slot types return false by default */ 13980 default: 13981 return false; 13982 } 13983 } 13984 return true; 13985 } 13986 13987 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 13988 struct bpf_id_pair *idmap) 13989 { 13990 int i; 13991 13992 if (old->acquired_refs != cur->acquired_refs) 13993 return false; 13994 13995 for (i = 0; i < old->acquired_refs; i++) { 13996 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 13997 return false; 13998 } 13999 14000 return true; 14001 } 14002 14003 /* compare two verifier states 14004 * 14005 * all states stored in state_list are known to be valid, since 14006 * verifier reached 'bpf_exit' instruction through them 14007 * 14008 * this function is called when verifier exploring different branches of 14009 * execution popped from the state stack. If it sees an old state that has 14010 * more strict register state and more strict stack state then this execution 14011 * branch doesn't need to be explored further, since verifier already 14012 * concluded that more strict state leads to valid finish. 14013 * 14014 * Therefore two states are equivalent if register state is more conservative 14015 * and explored stack state is more conservative than the current one. 14016 * Example: 14017 * explored current 14018 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 14019 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 14020 * 14021 * In other words if current stack state (one being explored) has more 14022 * valid slots than old one that already passed validation, it means 14023 * the verifier can stop exploring and conclude that current state is valid too 14024 * 14025 * Similarly with registers. If explored state has register type as invalid 14026 * whereas register type in current state is meaningful, it means that 14027 * the current state will reach 'bpf_exit' instruction safely 14028 */ 14029 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 14030 struct bpf_func_state *cur) 14031 { 14032 int i; 14033 14034 for (i = 0; i < MAX_BPF_REG; i++) 14035 if (!regsafe(env, &old->regs[i], &cur->regs[i], 14036 env->idmap_scratch)) 14037 return false; 14038 14039 if (!stacksafe(env, old, cur, env->idmap_scratch)) 14040 return false; 14041 14042 if (!refsafe(old, cur, env->idmap_scratch)) 14043 return false; 14044 14045 return true; 14046 } 14047 14048 static bool states_equal(struct bpf_verifier_env *env, 14049 struct bpf_verifier_state *old, 14050 struct bpf_verifier_state *cur) 14051 { 14052 int i; 14053 14054 if (old->curframe != cur->curframe) 14055 return false; 14056 14057 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 14058 14059 /* Verification state from speculative execution simulation 14060 * must never prune a non-speculative execution one. 14061 */ 14062 if (old->speculative && !cur->speculative) 14063 return false; 14064 14065 if (old->active_lock.ptr != cur->active_lock.ptr) 14066 return false; 14067 14068 /* Old and cur active_lock's have to be either both present 14069 * or both absent. 14070 */ 14071 if (!!old->active_lock.id != !!cur->active_lock.id) 14072 return false; 14073 14074 if (old->active_lock.id && 14075 !check_ids(old->active_lock.id, cur->active_lock.id, env->idmap_scratch)) 14076 return false; 14077 14078 if (old->active_rcu_lock != cur->active_rcu_lock) 14079 return false; 14080 14081 /* for states to be equal callsites have to be the same 14082 * and all frame states need to be equivalent 14083 */ 14084 for (i = 0; i <= old->curframe; i++) { 14085 if (old->frame[i]->callsite != cur->frame[i]->callsite) 14086 return false; 14087 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 14088 return false; 14089 } 14090 return true; 14091 } 14092 14093 /* Return 0 if no propagation happened. Return negative error code if error 14094 * happened. Otherwise, return the propagated bit. 14095 */ 14096 static int propagate_liveness_reg(struct bpf_verifier_env *env, 14097 struct bpf_reg_state *reg, 14098 struct bpf_reg_state *parent_reg) 14099 { 14100 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 14101 u8 flag = reg->live & REG_LIVE_READ; 14102 int err; 14103 14104 /* When comes here, read flags of PARENT_REG or REG could be any of 14105 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 14106 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 14107 */ 14108 if (parent_flag == REG_LIVE_READ64 || 14109 /* Or if there is no read flag from REG. */ 14110 !flag || 14111 /* Or if the read flag from REG is the same as PARENT_REG. */ 14112 parent_flag == flag) 14113 return 0; 14114 14115 err = mark_reg_read(env, reg, parent_reg, flag); 14116 if (err) 14117 return err; 14118 14119 return flag; 14120 } 14121 14122 /* A write screens off any subsequent reads; but write marks come from the 14123 * straight-line code between a state and its parent. When we arrive at an 14124 * equivalent state (jump target or such) we didn't arrive by the straight-line 14125 * code, so read marks in the state must propagate to the parent regardless 14126 * of the state's write marks. That's what 'parent == state->parent' comparison 14127 * in mark_reg_read() is for. 14128 */ 14129 static int propagate_liveness(struct bpf_verifier_env *env, 14130 const struct bpf_verifier_state *vstate, 14131 struct bpf_verifier_state *vparent) 14132 { 14133 struct bpf_reg_state *state_reg, *parent_reg; 14134 struct bpf_func_state *state, *parent; 14135 int i, frame, err = 0; 14136 14137 if (vparent->curframe != vstate->curframe) { 14138 WARN(1, "propagate_live: parent frame %d current frame %d\n", 14139 vparent->curframe, vstate->curframe); 14140 return -EFAULT; 14141 } 14142 /* Propagate read liveness of registers... */ 14143 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 14144 for (frame = 0; frame <= vstate->curframe; frame++) { 14145 parent = vparent->frame[frame]; 14146 state = vstate->frame[frame]; 14147 parent_reg = parent->regs; 14148 state_reg = state->regs; 14149 /* We don't need to worry about FP liveness, it's read-only */ 14150 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 14151 err = propagate_liveness_reg(env, &state_reg[i], 14152 &parent_reg[i]); 14153 if (err < 0) 14154 return err; 14155 if (err == REG_LIVE_READ64) 14156 mark_insn_zext(env, &parent_reg[i]); 14157 } 14158 14159 /* Propagate stack slots. */ 14160 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 14161 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 14162 parent_reg = &parent->stack[i].spilled_ptr; 14163 state_reg = &state->stack[i].spilled_ptr; 14164 err = propagate_liveness_reg(env, state_reg, 14165 parent_reg); 14166 if (err < 0) 14167 return err; 14168 } 14169 } 14170 return 0; 14171 } 14172 14173 /* find precise scalars in the previous equivalent state and 14174 * propagate them into the current state 14175 */ 14176 static int propagate_precision(struct bpf_verifier_env *env, 14177 const struct bpf_verifier_state *old) 14178 { 14179 struct bpf_reg_state *state_reg; 14180 struct bpf_func_state *state; 14181 int i, err = 0, fr; 14182 14183 for (fr = old->curframe; fr >= 0; fr--) { 14184 state = old->frame[fr]; 14185 state_reg = state->regs; 14186 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 14187 if (state_reg->type != SCALAR_VALUE || 14188 !state_reg->precise) 14189 continue; 14190 if (env->log.level & BPF_LOG_LEVEL2) 14191 verbose(env, "frame %d: propagating r%d\n", i, fr); 14192 err = mark_chain_precision_frame(env, fr, i); 14193 if (err < 0) 14194 return err; 14195 } 14196 14197 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 14198 if (!is_spilled_reg(&state->stack[i])) 14199 continue; 14200 state_reg = &state->stack[i].spilled_ptr; 14201 if (state_reg->type != SCALAR_VALUE || 14202 !state_reg->precise) 14203 continue; 14204 if (env->log.level & BPF_LOG_LEVEL2) 14205 verbose(env, "frame %d: propagating fp%d\n", 14206 (-i - 1) * BPF_REG_SIZE, fr); 14207 err = mark_chain_precision_stack_frame(env, fr, i); 14208 if (err < 0) 14209 return err; 14210 } 14211 } 14212 return 0; 14213 } 14214 14215 static bool states_maybe_looping(struct bpf_verifier_state *old, 14216 struct bpf_verifier_state *cur) 14217 { 14218 struct bpf_func_state *fold, *fcur; 14219 int i, fr = cur->curframe; 14220 14221 if (old->curframe != fr) 14222 return false; 14223 14224 fold = old->frame[fr]; 14225 fcur = cur->frame[fr]; 14226 for (i = 0; i < MAX_BPF_REG; i++) 14227 if (memcmp(&fold->regs[i], &fcur->regs[i], 14228 offsetof(struct bpf_reg_state, parent))) 14229 return false; 14230 return true; 14231 } 14232 14233 14234 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 14235 { 14236 struct bpf_verifier_state_list *new_sl; 14237 struct bpf_verifier_state_list *sl, **pprev; 14238 struct bpf_verifier_state *cur = env->cur_state, *new; 14239 int i, j, err, states_cnt = 0; 14240 bool add_new_state = env->test_state_freq ? true : false; 14241 14242 /* bpf progs typically have pruning point every 4 instructions 14243 * http://vger.kernel.org/bpfconf2019.html#session-1 14244 * Do not add new state for future pruning if the verifier hasn't seen 14245 * at least 2 jumps and at least 8 instructions. 14246 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 14247 * In tests that amounts to up to 50% reduction into total verifier 14248 * memory consumption and 20% verifier time speedup. 14249 */ 14250 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 14251 env->insn_processed - env->prev_insn_processed >= 8) 14252 add_new_state = true; 14253 14254 pprev = explored_state(env, insn_idx); 14255 sl = *pprev; 14256 14257 clean_live_states(env, insn_idx, cur); 14258 14259 while (sl) { 14260 states_cnt++; 14261 if (sl->state.insn_idx != insn_idx) 14262 goto next; 14263 14264 if (sl->state.branches) { 14265 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 14266 14267 if (frame->in_async_callback_fn && 14268 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 14269 /* Different async_entry_cnt means that the verifier is 14270 * processing another entry into async callback. 14271 * Seeing the same state is not an indication of infinite 14272 * loop or infinite recursion. 14273 * But finding the same state doesn't mean that it's safe 14274 * to stop processing the current state. The previous state 14275 * hasn't yet reached bpf_exit, since state.branches > 0. 14276 * Checking in_async_callback_fn alone is not enough either. 14277 * Since the verifier still needs to catch infinite loops 14278 * inside async callbacks. 14279 */ 14280 } else if (states_maybe_looping(&sl->state, cur) && 14281 states_equal(env, &sl->state, cur)) { 14282 verbose_linfo(env, insn_idx, "; "); 14283 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 14284 return -EINVAL; 14285 } 14286 /* if the verifier is processing a loop, avoid adding new state 14287 * too often, since different loop iterations have distinct 14288 * states and may not help future pruning. 14289 * This threshold shouldn't be too low to make sure that 14290 * a loop with large bound will be rejected quickly. 14291 * The most abusive loop will be: 14292 * r1 += 1 14293 * if r1 < 1000000 goto pc-2 14294 * 1M insn_procssed limit / 100 == 10k peak states. 14295 * This threshold shouldn't be too high either, since states 14296 * at the end of the loop are likely to be useful in pruning. 14297 */ 14298 if (env->jmps_processed - env->prev_jmps_processed < 20 && 14299 env->insn_processed - env->prev_insn_processed < 100) 14300 add_new_state = false; 14301 goto miss; 14302 } 14303 if (states_equal(env, &sl->state, cur)) { 14304 sl->hit_cnt++; 14305 /* reached equivalent register/stack state, 14306 * prune the search. 14307 * Registers read by the continuation are read by us. 14308 * If we have any write marks in env->cur_state, they 14309 * will prevent corresponding reads in the continuation 14310 * from reaching our parent (an explored_state). Our 14311 * own state will get the read marks recorded, but 14312 * they'll be immediately forgotten as we're pruning 14313 * this state and will pop a new one. 14314 */ 14315 err = propagate_liveness(env, &sl->state, cur); 14316 14317 /* if previous state reached the exit with precision and 14318 * current state is equivalent to it (except precsion marks) 14319 * the precision needs to be propagated back in 14320 * the current state. 14321 */ 14322 err = err ? : push_jmp_history(env, cur); 14323 err = err ? : propagate_precision(env, &sl->state); 14324 if (err) 14325 return err; 14326 return 1; 14327 } 14328 miss: 14329 /* when new state is not going to be added do not increase miss count. 14330 * Otherwise several loop iterations will remove the state 14331 * recorded earlier. The goal of these heuristics is to have 14332 * states from some iterations of the loop (some in the beginning 14333 * and some at the end) to help pruning. 14334 */ 14335 if (add_new_state) 14336 sl->miss_cnt++; 14337 /* heuristic to determine whether this state is beneficial 14338 * to keep checking from state equivalence point of view. 14339 * Higher numbers increase max_states_per_insn and verification time, 14340 * but do not meaningfully decrease insn_processed. 14341 */ 14342 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 14343 /* the state is unlikely to be useful. Remove it to 14344 * speed up verification 14345 */ 14346 *pprev = sl->next; 14347 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 14348 u32 br = sl->state.branches; 14349 14350 WARN_ONCE(br, 14351 "BUG live_done but branches_to_explore %d\n", 14352 br); 14353 free_verifier_state(&sl->state, false); 14354 kfree(sl); 14355 env->peak_states--; 14356 } else { 14357 /* cannot free this state, since parentage chain may 14358 * walk it later. Add it for free_list instead to 14359 * be freed at the end of verification 14360 */ 14361 sl->next = env->free_list; 14362 env->free_list = sl; 14363 } 14364 sl = *pprev; 14365 continue; 14366 } 14367 next: 14368 pprev = &sl->next; 14369 sl = *pprev; 14370 } 14371 14372 if (env->max_states_per_insn < states_cnt) 14373 env->max_states_per_insn = states_cnt; 14374 14375 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 14376 return 0; 14377 14378 if (!add_new_state) 14379 return 0; 14380 14381 /* There were no equivalent states, remember the current one. 14382 * Technically the current state is not proven to be safe yet, 14383 * but it will either reach outer most bpf_exit (which means it's safe) 14384 * or it will be rejected. When there are no loops the verifier won't be 14385 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 14386 * again on the way to bpf_exit. 14387 * When looping the sl->state.branches will be > 0 and this state 14388 * will not be considered for equivalence until branches == 0. 14389 */ 14390 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 14391 if (!new_sl) 14392 return -ENOMEM; 14393 env->total_states++; 14394 env->peak_states++; 14395 env->prev_jmps_processed = env->jmps_processed; 14396 env->prev_insn_processed = env->insn_processed; 14397 14398 /* forget precise markings we inherited, see __mark_chain_precision */ 14399 if (env->bpf_capable) 14400 mark_all_scalars_imprecise(env, cur); 14401 14402 /* add new state to the head of linked list */ 14403 new = &new_sl->state; 14404 err = copy_verifier_state(new, cur); 14405 if (err) { 14406 free_verifier_state(new, false); 14407 kfree(new_sl); 14408 return err; 14409 } 14410 new->insn_idx = insn_idx; 14411 WARN_ONCE(new->branches != 1, 14412 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 14413 14414 cur->parent = new; 14415 cur->first_insn_idx = insn_idx; 14416 clear_jmp_history(cur); 14417 new_sl->next = *explored_state(env, insn_idx); 14418 *explored_state(env, insn_idx) = new_sl; 14419 /* connect new state to parentage chain. Current frame needs all 14420 * registers connected. Only r6 - r9 of the callers are alive (pushed 14421 * to the stack implicitly by JITs) so in callers' frames connect just 14422 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 14423 * the state of the call instruction (with WRITTEN set), and r0 comes 14424 * from callee with its full parentage chain, anyway. 14425 */ 14426 /* clear write marks in current state: the writes we did are not writes 14427 * our child did, so they don't screen off its reads from us. 14428 * (There are no read marks in current state, because reads always mark 14429 * their parent and current state never has children yet. Only 14430 * explored_states can get read marks.) 14431 */ 14432 for (j = 0; j <= cur->curframe; j++) { 14433 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 14434 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 14435 for (i = 0; i < BPF_REG_FP; i++) 14436 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 14437 } 14438 14439 /* all stack frames are accessible from callee, clear them all */ 14440 for (j = 0; j <= cur->curframe; j++) { 14441 struct bpf_func_state *frame = cur->frame[j]; 14442 struct bpf_func_state *newframe = new->frame[j]; 14443 14444 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 14445 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 14446 frame->stack[i].spilled_ptr.parent = 14447 &newframe->stack[i].spilled_ptr; 14448 } 14449 } 14450 return 0; 14451 } 14452 14453 /* Return true if it's OK to have the same insn return a different type. */ 14454 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 14455 { 14456 switch (base_type(type)) { 14457 case PTR_TO_CTX: 14458 case PTR_TO_SOCKET: 14459 case PTR_TO_SOCK_COMMON: 14460 case PTR_TO_TCP_SOCK: 14461 case PTR_TO_XDP_SOCK: 14462 case PTR_TO_BTF_ID: 14463 return false; 14464 default: 14465 return true; 14466 } 14467 } 14468 14469 /* If an instruction was previously used with particular pointer types, then we 14470 * need to be careful to avoid cases such as the below, where it may be ok 14471 * for one branch accessing the pointer, but not ok for the other branch: 14472 * 14473 * R1 = sock_ptr 14474 * goto X; 14475 * ... 14476 * R1 = some_other_valid_ptr; 14477 * goto X; 14478 * ... 14479 * R2 = *(u32 *)(R1 + 0); 14480 */ 14481 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 14482 { 14483 return src != prev && (!reg_type_mismatch_ok(src) || 14484 !reg_type_mismatch_ok(prev)); 14485 } 14486 14487 static int do_check(struct bpf_verifier_env *env) 14488 { 14489 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 14490 struct bpf_verifier_state *state = env->cur_state; 14491 struct bpf_insn *insns = env->prog->insnsi; 14492 struct bpf_reg_state *regs; 14493 int insn_cnt = env->prog->len; 14494 bool do_print_state = false; 14495 int prev_insn_idx = -1; 14496 14497 for (;;) { 14498 struct bpf_insn *insn; 14499 u8 class; 14500 int err; 14501 14502 env->prev_insn_idx = prev_insn_idx; 14503 if (env->insn_idx >= insn_cnt) { 14504 verbose(env, "invalid insn idx %d insn_cnt %d\n", 14505 env->insn_idx, insn_cnt); 14506 return -EFAULT; 14507 } 14508 14509 insn = &insns[env->insn_idx]; 14510 class = BPF_CLASS(insn->code); 14511 14512 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 14513 verbose(env, 14514 "BPF program is too large. Processed %d insn\n", 14515 env->insn_processed); 14516 return -E2BIG; 14517 } 14518 14519 state->last_insn_idx = env->prev_insn_idx; 14520 14521 if (is_prune_point(env, env->insn_idx)) { 14522 err = is_state_visited(env, env->insn_idx); 14523 if (err < 0) 14524 return err; 14525 if (err == 1) { 14526 /* found equivalent state, can prune the search */ 14527 if (env->log.level & BPF_LOG_LEVEL) { 14528 if (do_print_state) 14529 verbose(env, "\nfrom %d to %d%s: safe\n", 14530 env->prev_insn_idx, env->insn_idx, 14531 env->cur_state->speculative ? 14532 " (speculative execution)" : ""); 14533 else 14534 verbose(env, "%d: safe\n", env->insn_idx); 14535 } 14536 goto process_bpf_exit; 14537 } 14538 } 14539 14540 if (is_jmp_point(env, env->insn_idx)) { 14541 err = push_jmp_history(env, state); 14542 if (err) 14543 return err; 14544 } 14545 14546 if (signal_pending(current)) 14547 return -EAGAIN; 14548 14549 if (need_resched()) 14550 cond_resched(); 14551 14552 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 14553 verbose(env, "\nfrom %d to %d%s:", 14554 env->prev_insn_idx, env->insn_idx, 14555 env->cur_state->speculative ? 14556 " (speculative execution)" : ""); 14557 print_verifier_state(env, state->frame[state->curframe], true); 14558 do_print_state = false; 14559 } 14560 14561 if (env->log.level & BPF_LOG_LEVEL) { 14562 const struct bpf_insn_cbs cbs = { 14563 .cb_call = disasm_kfunc_name, 14564 .cb_print = verbose, 14565 .private_data = env, 14566 }; 14567 14568 if (verifier_state_scratched(env)) 14569 print_insn_state(env, state->frame[state->curframe]); 14570 14571 verbose_linfo(env, env->insn_idx, "; "); 14572 env->prev_log_len = env->log.len_used; 14573 verbose(env, "%d: ", env->insn_idx); 14574 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 14575 env->prev_insn_print_len = env->log.len_used - env->prev_log_len; 14576 env->prev_log_len = env->log.len_used; 14577 } 14578 14579 if (bpf_prog_is_offloaded(env->prog->aux)) { 14580 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 14581 env->prev_insn_idx); 14582 if (err) 14583 return err; 14584 } 14585 14586 regs = cur_regs(env); 14587 sanitize_mark_insn_seen(env); 14588 prev_insn_idx = env->insn_idx; 14589 14590 if (class == BPF_ALU || class == BPF_ALU64) { 14591 err = check_alu_op(env, insn); 14592 if (err) 14593 return err; 14594 14595 } else if (class == BPF_LDX) { 14596 enum bpf_reg_type *prev_src_type, src_reg_type; 14597 14598 /* check for reserved fields is already done */ 14599 14600 /* check src operand */ 14601 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14602 if (err) 14603 return err; 14604 14605 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 14606 if (err) 14607 return err; 14608 14609 src_reg_type = regs[insn->src_reg].type; 14610 14611 /* check that memory (src_reg + off) is readable, 14612 * the state of dst_reg will be updated by this func 14613 */ 14614 err = check_mem_access(env, env->insn_idx, insn->src_reg, 14615 insn->off, BPF_SIZE(insn->code), 14616 BPF_READ, insn->dst_reg, false); 14617 if (err) 14618 return err; 14619 14620 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 14621 14622 if (*prev_src_type == NOT_INIT) { 14623 /* saw a valid insn 14624 * dst_reg = *(u32 *)(src_reg + off) 14625 * save type to validate intersecting paths 14626 */ 14627 *prev_src_type = src_reg_type; 14628 14629 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 14630 /* ABuser program is trying to use the same insn 14631 * dst_reg = *(u32*) (src_reg + off) 14632 * with different pointer types: 14633 * src_reg == ctx in one branch and 14634 * src_reg == stack|map in some other branch. 14635 * Reject it. 14636 */ 14637 verbose(env, "same insn cannot be used with different pointers\n"); 14638 return -EINVAL; 14639 } 14640 14641 } else if (class == BPF_STX) { 14642 enum bpf_reg_type *prev_dst_type, dst_reg_type; 14643 14644 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 14645 err = check_atomic(env, env->insn_idx, insn); 14646 if (err) 14647 return err; 14648 env->insn_idx++; 14649 continue; 14650 } 14651 14652 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 14653 verbose(env, "BPF_STX uses reserved fields\n"); 14654 return -EINVAL; 14655 } 14656 14657 /* check src1 operand */ 14658 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14659 if (err) 14660 return err; 14661 /* check src2 operand */ 14662 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14663 if (err) 14664 return err; 14665 14666 dst_reg_type = regs[insn->dst_reg].type; 14667 14668 /* check that memory (dst_reg + off) is writeable */ 14669 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 14670 insn->off, BPF_SIZE(insn->code), 14671 BPF_WRITE, insn->src_reg, false); 14672 if (err) 14673 return err; 14674 14675 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 14676 14677 if (*prev_dst_type == NOT_INIT) { 14678 *prev_dst_type = dst_reg_type; 14679 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 14680 verbose(env, "same insn cannot be used with different pointers\n"); 14681 return -EINVAL; 14682 } 14683 14684 } else if (class == BPF_ST) { 14685 if (BPF_MODE(insn->code) != BPF_MEM || 14686 insn->src_reg != BPF_REG_0) { 14687 verbose(env, "BPF_ST uses reserved fields\n"); 14688 return -EINVAL; 14689 } 14690 /* check src operand */ 14691 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14692 if (err) 14693 return err; 14694 14695 if (is_ctx_reg(env, insn->dst_reg)) { 14696 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 14697 insn->dst_reg, 14698 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 14699 return -EACCES; 14700 } 14701 14702 /* check that memory (dst_reg + off) is writeable */ 14703 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 14704 insn->off, BPF_SIZE(insn->code), 14705 BPF_WRITE, -1, false); 14706 if (err) 14707 return err; 14708 14709 } else if (class == BPF_JMP || class == BPF_JMP32) { 14710 u8 opcode = BPF_OP(insn->code); 14711 14712 env->jmps_processed++; 14713 if (opcode == BPF_CALL) { 14714 if (BPF_SRC(insn->code) != BPF_K || 14715 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 14716 && insn->off != 0) || 14717 (insn->src_reg != BPF_REG_0 && 14718 insn->src_reg != BPF_PSEUDO_CALL && 14719 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 14720 insn->dst_reg != BPF_REG_0 || 14721 class == BPF_JMP32) { 14722 verbose(env, "BPF_CALL uses reserved fields\n"); 14723 return -EINVAL; 14724 } 14725 14726 if (env->cur_state->active_lock.ptr) { 14727 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 14728 (insn->src_reg == BPF_PSEUDO_CALL) || 14729 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 14730 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 14731 verbose(env, "function calls are not allowed while holding a lock\n"); 14732 return -EINVAL; 14733 } 14734 } 14735 if (insn->src_reg == BPF_PSEUDO_CALL) 14736 err = check_func_call(env, insn, &env->insn_idx); 14737 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 14738 err = check_kfunc_call(env, insn, &env->insn_idx); 14739 else 14740 err = check_helper_call(env, insn, &env->insn_idx); 14741 if (err) 14742 return err; 14743 } else if (opcode == BPF_JA) { 14744 if (BPF_SRC(insn->code) != BPF_K || 14745 insn->imm != 0 || 14746 insn->src_reg != BPF_REG_0 || 14747 insn->dst_reg != BPF_REG_0 || 14748 class == BPF_JMP32) { 14749 verbose(env, "BPF_JA uses reserved fields\n"); 14750 return -EINVAL; 14751 } 14752 14753 env->insn_idx += insn->off + 1; 14754 continue; 14755 14756 } else if (opcode == BPF_EXIT) { 14757 if (BPF_SRC(insn->code) != BPF_K || 14758 insn->imm != 0 || 14759 insn->src_reg != BPF_REG_0 || 14760 insn->dst_reg != BPF_REG_0 || 14761 class == BPF_JMP32) { 14762 verbose(env, "BPF_EXIT uses reserved fields\n"); 14763 return -EINVAL; 14764 } 14765 14766 if (env->cur_state->active_lock.ptr && 14767 !in_rbtree_lock_required_cb(env)) { 14768 verbose(env, "bpf_spin_unlock is missing\n"); 14769 return -EINVAL; 14770 } 14771 14772 if (env->cur_state->active_rcu_lock) { 14773 verbose(env, "bpf_rcu_read_unlock is missing\n"); 14774 return -EINVAL; 14775 } 14776 14777 /* We must do check_reference_leak here before 14778 * prepare_func_exit to handle the case when 14779 * state->curframe > 0, it may be a callback 14780 * function, for which reference_state must 14781 * match caller reference state when it exits. 14782 */ 14783 err = check_reference_leak(env); 14784 if (err) 14785 return err; 14786 14787 if (state->curframe) { 14788 /* exit from nested function */ 14789 err = prepare_func_exit(env, &env->insn_idx); 14790 if (err) 14791 return err; 14792 do_print_state = true; 14793 continue; 14794 } 14795 14796 err = check_return_code(env); 14797 if (err) 14798 return err; 14799 process_bpf_exit: 14800 mark_verifier_state_scratched(env); 14801 update_branch_counts(env, env->cur_state); 14802 err = pop_stack(env, &prev_insn_idx, 14803 &env->insn_idx, pop_log); 14804 if (err < 0) { 14805 if (err != -ENOENT) 14806 return err; 14807 break; 14808 } else { 14809 do_print_state = true; 14810 continue; 14811 } 14812 } else { 14813 err = check_cond_jmp_op(env, insn, &env->insn_idx); 14814 if (err) 14815 return err; 14816 } 14817 } else if (class == BPF_LD) { 14818 u8 mode = BPF_MODE(insn->code); 14819 14820 if (mode == BPF_ABS || mode == BPF_IND) { 14821 err = check_ld_abs(env, insn); 14822 if (err) 14823 return err; 14824 14825 } else if (mode == BPF_IMM) { 14826 err = check_ld_imm(env, insn); 14827 if (err) 14828 return err; 14829 14830 env->insn_idx++; 14831 sanitize_mark_insn_seen(env); 14832 } else { 14833 verbose(env, "invalid BPF_LD mode\n"); 14834 return -EINVAL; 14835 } 14836 } else { 14837 verbose(env, "unknown insn class %d\n", class); 14838 return -EINVAL; 14839 } 14840 14841 env->insn_idx++; 14842 } 14843 14844 return 0; 14845 } 14846 14847 static int find_btf_percpu_datasec(struct btf *btf) 14848 { 14849 const struct btf_type *t; 14850 const char *tname; 14851 int i, n; 14852 14853 /* 14854 * Both vmlinux and module each have their own ".data..percpu" 14855 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 14856 * types to look at only module's own BTF types. 14857 */ 14858 n = btf_nr_types(btf); 14859 if (btf_is_module(btf)) 14860 i = btf_nr_types(btf_vmlinux); 14861 else 14862 i = 1; 14863 14864 for(; i < n; i++) { 14865 t = btf_type_by_id(btf, i); 14866 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 14867 continue; 14868 14869 tname = btf_name_by_offset(btf, t->name_off); 14870 if (!strcmp(tname, ".data..percpu")) 14871 return i; 14872 } 14873 14874 return -ENOENT; 14875 } 14876 14877 /* replace pseudo btf_id with kernel symbol address */ 14878 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 14879 struct bpf_insn *insn, 14880 struct bpf_insn_aux_data *aux) 14881 { 14882 const struct btf_var_secinfo *vsi; 14883 const struct btf_type *datasec; 14884 struct btf_mod_pair *btf_mod; 14885 const struct btf_type *t; 14886 const char *sym_name; 14887 bool percpu = false; 14888 u32 type, id = insn->imm; 14889 struct btf *btf; 14890 s32 datasec_id; 14891 u64 addr; 14892 int i, btf_fd, err; 14893 14894 btf_fd = insn[1].imm; 14895 if (btf_fd) { 14896 btf = btf_get_by_fd(btf_fd); 14897 if (IS_ERR(btf)) { 14898 verbose(env, "invalid module BTF object FD specified.\n"); 14899 return -EINVAL; 14900 } 14901 } else { 14902 if (!btf_vmlinux) { 14903 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 14904 return -EINVAL; 14905 } 14906 btf = btf_vmlinux; 14907 btf_get(btf); 14908 } 14909 14910 t = btf_type_by_id(btf, id); 14911 if (!t) { 14912 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 14913 err = -ENOENT; 14914 goto err_put; 14915 } 14916 14917 if (!btf_type_is_var(t)) { 14918 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 14919 err = -EINVAL; 14920 goto err_put; 14921 } 14922 14923 sym_name = btf_name_by_offset(btf, t->name_off); 14924 addr = kallsyms_lookup_name(sym_name); 14925 if (!addr) { 14926 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 14927 sym_name); 14928 err = -ENOENT; 14929 goto err_put; 14930 } 14931 14932 datasec_id = find_btf_percpu_datasec(btf); 14933 if (datasec_id > 0) { 14934 datasec = btf_type_by_id(btf, datasec_id); 14935 for_each_vsi(i, datasec, vsi) { 14936 if (vsi->type == id) { 14937 percpu = true; 14938 break; 14939 } 14940 } 14941 } 14942 14943 insn[0].imm = (u32)addr; 14944 insn[1].imm = addr >> 32; 14945 14946 type = t->type; 14947 t = btf_type_skip_modifiers(btf, type, NULL); 14948 if (percpu) { 14949 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 14950 aux->btf_var.btf = btf; 14951 aux->btf_var.btf_id = type; 14952 } else if (!btf_type_is_struct(t)) { 14953 const struct btf_type *ret; 14954 const char *tname; 14955 u32 tsize; 14956 14957 /* resolve the type size of ksym. */ 14958 ret = btf_resolve_size(btf, t, &tsize); 14959 if (IS_ERR(ret)) { 14960 tname = btf_name_by_offset(btf, t->name_off); 14961 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 14962 tname, PTR_ERR(ret)); 14963 err = -EINVAL; 14964 goto err_put; 14965 } 14966 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 14967 aux->btf_var.mem_size = tsize; 14968 } else { 14969 aux->btf_var.reg_type = PTR_TO_BTF_ID; 14970 aux->btf_var.btf = btf; 14971 aux->btf_var.btf_id = type; 14972 } 14973 14974 /* check whether we recorded this BTF (and maybe module) already */ 14975 for (i = 0; i < env->used_btf_cnt; i++) { 14976 if (env->used_btfs[i].btf == btf) { 14977 btf_put(btf); 14978 return 0; 14979 } 14980 } 14981 14982 if (env->used_btf_cnt >= MAX_USED_BTFS) { 14983 err = -E2BIG; 14984 goto err_put; 14985 } 14986 14987 btf_mod = &env->used_btfs[env->used_btf_cnt]; 14988 btf_mod->btf = btf; 14989 btf_mod->module = NULL; 14990 14991 /* if we reference variables from kernel module, bump its refcount */ 14992 if (btf_is_module(btf)) { 14993 btf_mod->module = btf_try_get_module(btf); 14994 if (!btf_mod->module) { 14995 err = -ENXIO; 14996 goto err_put; 14997 } 14998 } 14999 15000 env->used_btf_cnt++; 15001 15002 return 0; 15003 err_put: 15004 btf_put(btf); 15005 return err; 15006 } 15007 15008 static bool is_tracing_prog_type(enum bpf_prog_type type) 15009 { 15010 switch (type) { 15011 case BPF_PROG_TYPE_KPROBE: 15012 case BPF_PROG_TYPE_TRACEPOINT: 15013 case BPF_PROG_TYPE_PERF_EVENT: 15014 case BPF_PROG_TYPE_RAW_TRACEPOINT: 15015 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 15016 return true; 15017 default: 15018 return false; 15019 } 15020 } 15021 15022 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 15023 struct bpf_map *map, 15024 struct bpf_prog *prog) 15025 15026 { 15027 enum bpf_prog_type prog_type = resolve_prog_type(prog); 15028 15029 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 15030 btf_record_has_field(map->record, BPF_RB_ROOT)) { 15031 if (is_tracing_prog_type(prog_type)) { 15032 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 15033 return -EINVAL; 15034 } 15035 } 15036 15037 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 15038 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 15039 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 15040 return -EINVAL; 15041 } 15042 15043 if (is_tracing_prog_type(prog_type)) { 15044 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 15045 return -EINVAL; 15046 } 15047 15048 if (prog->aux->sleepable) { 15049 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 15050 return -EINVAL; 15051 } 15052 } 15053 15054 if (btf_record_has_field(map->record, BPF_TIMER)) { 15055 if (is_tracing_prog_type(prog_type)) { 15056 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 15057 return -EINVAL; 15058 } 15059 } 15060 15061 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 15062 !bpf_offload_prog_map_match(prog, map)) { 15063 verbose(env, "offload device mismatch between prog and map\n"); 15064 return -EINVAL; 15065 } 15066 15067 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 15068 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 15069 return -EINVAL; 15070 } 15071 15072 if (prog->aux->sleepable) 15073 switch (map->map_type) { 15074 case BPF_MAP_TYPE_HASH: 15075 case BPF_MAP_TYPE_LRU_HASH: 15076 case BPF_MAP_TYPE_ARRAY: 15077 case BPF_MAP_TYPE_PERCPU_HASH: 15078 case BPF_MAP_TYPE_PERCPU_ARRAY: 15079 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 15080 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 15081 case BPF_MAP_TYPE_HASH_OF_MAPS: 15082 case BPF_MAP_TYPE_RINGBUF: 15083 case BPF_MAP_TYPE_USER_RINGBUF: 15084 case BPF_MAP_TYPE_INODE_STORAGE: 15085 case BPF_MAP_TYPE_SK_STORAGE: 15086 case BPF_MAP_TYPE_TASK_STORAGE: 15087 case BPF_MAP_TYPE_CGRP_STORAGE: 15088 break; 15089 default: 15090 verbose(env, 15091 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 15092 return -EINVAL; 15093 } 15094 15095 return 0; 15096 } 15097 15098 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 15099 { 15100 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 15101 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 15102 } 15103 15104 /* find and rewrite pseudo imm in ld_imm64 instructions: 15105 * 15106 * 1. if it accesses map FD, replace it with actual map pointer. 15107 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 15108 * 15109 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 15110 */ 15111 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 15112 { 15113 struct bpf_insn *insn = env->prog->insnsi; 15114 int insn_cnt = env->prog->len; 15115 int i, j, err; 15116 15117 err = bpf_prog_calc_tag(env->prog); 15118 if (err) 15119 return err; 15120 15121 for (i = 0; i < insn_cnt; i++, insn++) { 15122 if (BPF_CLASS(insn->code) == BPF_LDX && 15123 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 15124 verbose(env, "BPF_LDX uses reserved fields\n"); 15125 return -EINVAL; 15126 } 15127 15128 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 15129 struct bpf_insn_aux_data *aux; 15130 struct bpf_map *map; 15131 struct fd f; 15132 u64 addr; 15133 u32 fd; 15134 15135 if (i == insn_cnt - 1 || insn[1].code != 0 || 15136 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 15137 insn[1].off != 0) { 15138 verbose(env, "invalid bpf_ld_imm64 insn\n"); 15139 return -EINVAL; 15140 } 15141 15142 if (insn[0].src_reg == 0) 15143 /* valid generic load 64-bit imm */ 15144 goto next_insn; 15145 15146 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 15147 aux = &env->insn_aux_data[i]; 15148 err = check_pseudo_btf_id(env, insn, aux); 15149 if (err) 15150 return err; 15151 goto next_insn; 15152 } 15153 15154 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 15155 aux = &env->insn_aux_data[i]; 15156 aux->ptr_type = PTR_TO_FUNC; 15157 goto next_insn; 15158 } 15159 15160 /* In final convert_pseudo_ld_imm64() step, this is 15161 * converted into regular 64-bit imm load insn. 15162 */ 15163 switch (insn[0].src_reg) { 15164 case BPF_PSEUDO_MAP_VALUE: 15165 case BPF_PSEUDO_MAP_IDX_VALUE: 15166 break; 15167 case BPF_PSEUDO_MAP_FD: 15168 case BPF_PSEUDO_MAP_IDX: 15169 if (insn[1].imm == 0) 15170 break; 15171 fallthrough; 15172 default: 15173 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 15174 return -EINVAL; 15175 } 15176 15177 switch (insn[0].src_reg) { 15178 case BPF_PSEUDO_MAP_IDX_VALUE: 15179 case BPF_PSEUDO_MAP_IDX: 15180 if (bpfptr_is_null(env->fd_array)) { 15181 verbose(env, "fd_idx without fd_array is invalid\n"); 15182 return -EPROTO; 15183 } 15184 if (copy_from_bpfptr_offset(&fd, env->fd_array, 15185 insn[0].imm * sizeof(fd), 15186 sizeof(fd))) 15187 return -EFAULT; 15188 break; 15189 default: 15190 fd = insn[0].imm; 15191 break; 15192 } 15193 15194 f = fdget(fd); 15195 map = __bpf_map_get(f); 15196 if (IS_ERR(map)) { 15197 verbose(env, "fd %d is not pointing to valid bpf_map\n", 15198 insn[0].imm); 15199 return PTR_ERR(map); 15200 } 15201 15202 err = check_map_prog_compatibility(env, map, env->prog); 15203 if (err) { 15204 fdput(f); 15205 return err; 15206 } 15207 15208 aux = &env->insn_aux_data[i]; 15209 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 15210 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 15211 addr = (unsigned long)map; 15212 } else { 15213 u32 off = insn[1].imm; 15214 15215 if (off >= BPF_MAX_VAR_OFF) { 15216 verbose(env, "direct value offset of %u is not allowed\n", off); 15217 fdput(f); 15218 return -EINVAL; 15219 } 15220 15221 if (!map->ops->map_direct_value_addr) { 15222 verbose(env, "no direct value access support for this map type\n"); 15223 fdput(f); 15224 return -EINVAL; 15225 } 15226 15227 err = map->ops->map_direct_value_addr(map, &addr, off); 15228 if (err) { 15229 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 15230 map->value_size, off); 15231 fdput(f); 15232 return err; 15233 } 15234 15235 aux->map_off = off; 15236 addr += off; 15237 } 15238 15239 insn[0].imm = (u32)addr; 15240 insn[1].imm = addr >> 32; 15241 15242 /* check whether we recorded this map already */ 15243 for (j = 0; j < env->used_map_cnt; j++) { 15244 if (env->used_maps[j] == map) { 15245 aux->map_index = j; 15246 fdput(f); 15247 goto next_insn; 15248 } 15249 } 15250 15251 if (env->used_map_cnt >= MAX_USED_MAPS) { 15252 fdput(f); 15253 return -E2BIG; 15254 } 15255 15256 /* hold the map. If the program is rejected by verifier, 15257 * the map will be released by release_maps() or it 15258 * will be used by the valid program until it's unloaded 15259 * and all maps are released in free_used_maps() 15260 */ 15261 bpf_map_inc(map); 15262 15263 aux->map_index = env->used_map_cnt; 15264 env->used_maps[env->used_map_cnt++] = map; 15265 15266 if (bpf_map_is_cgroup_storage(map) && 15267 bpf_cgroup_storage_assign(env->prog->aux, map)) { 15268 verbose(env, "only one cgroup storage of each type is allowed\n"); 15269 fdput(f); 15270 return -EBUSY; 15271 } 15272 15273 fdput(f); 15274 next_insn: 15275 insn++; 15276 i++; 15277 continue; 15278 } 15279 15280 /* Basic sanity check before we invest more work here. */ 15281 if (!bpf_opcode_in_insntable(insn->code)) { 15282 verbose(env, "unknown opcode %02x\n", insn->code); 15283 return -EINVAL; 15284 } 15285 } 15286 15287 /* now all pseudo BPF_LD_IMM64 instructions load valid 15288 * 'struct bpf_map *' into a register instead of user map_fd. 15289 * These pointers will be used later by verifier to validate map access. 15290 */ 15291 return 0; 15292 } 15293 15294 /* drop refcnt of maps used by the rejected program */ 15295 static void release_maps(struct bpf_verifier_env *env) 15296 { 15297 __bpf_free_used_maps(env->prog->aux, env->used_maps, 15298 env->used_map_cnt); 15299 } 15300 15301 /* drop refcnt of maps used by the rejected program */ 15302 static void release_btfs(struct bpf_verifier_env *env) 15303 { 15304 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 15305 env->used_btf_cnt); 15306 } 15307 15308 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 15309 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 15310 { 15311 struct bpf_insn *insn = env->prog->insnsi; 15312 int insn_cnt = env->prog->len; 15313 int i; 15314 15315 for (i = 0; i < insn_cnt; i++, insn++) { 15316 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 15317 continue; 15318 if (insn->src_reg == BPF_PSEUDO_FUNC) 15319 continue; 15320 insn->src_reg = 0; 15321 } 15322 } 15323 15324 /* single env->prog->insni[off] instruction was replaced with the range 15325 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 15326 * [0, off) and [off, end) to new locations, so the patched range stays zero 15327 */ 15328 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 15329 struct bpf_insn_aux_data *new_data, 15330 struct bpf_prog *new_prog, u32 off, u32 cnt) 15331 { 15332 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 15333 struct bpf_insn *insn = new_prog->insnsi; 15334 u32 old_seen = old_data[off].seen; 15335 u32 prog_len; 15336 int i; 15337 15338 /* aux info at OFF always needs adjustment, no matter fast path 15339 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 15340 * original insn at old prog. 15341 */ 15342 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 15343 15344 if (cnt == 1) 15345 return; 15346 prog_len = new_prog->len; 15347 15348 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 15349 memcpy(new_data + off + cnt - 1, old_data + off, 15350 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 15351 for (i = off; i < off + cnt - 1; i++) { 15352 /* Expand insni[off]'s seen count to the patched range. */ 15353 new_data[i].seen = old_seen; 15354 new_data[i].zext_dst = insn_has_def32(env, insn + i); 15355 } 15356 env->insn_aux_data = new_data; 15357 vfree(old_data); 15358 } 15359 15360 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 15361 { 15362 int i; 15363 15364 if (len == 1) 15365 return; 15366 /* NOTE: fake 'exit' subprog should be updated as well. */ 15367 for (i = 0; i <= env->subprog_cnt; i++) { 15368 if (env->subprog_info[i].start <= off) 15369 continue; 15370 env->subprog_info[i].start += len - 1; 15371 } 15372 } 15373 15374 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 15375 { 15376 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 15377 int i, sz = prog->aux->size_poke_tab; 15378 struct bpf_jit_poke_descriptor *desc; 15379 15380 for (i = 0; i < sz; i++) { 15381 desc = &tab[i]; 15382 if (desc->insn_idx <= off) 15383 continue; 15384 desc->insn_idx += len - 1; 15385 } 15386 } 15387 15388 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 15389 const struct bpf_insn *patch, u32 len) 15390 { 15391 struct bpf_prog *new_prog; 15392 struct bpf_insn_aux_data *new_data = NULL; 15393 15394 if (len > 1) { 15395 new_data = vzalloc(array_size(env->prog->len + len - 1, 15396 sizeof(struct bpf_insn_aux_data))); 15397 if (!new_data) 15398 return NULL; 15399 } 15400 15401 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 15402 if (IS_ERR(new_prog)) { 15403 if (PTR_ERR(new_prog) == -ERANGE) 15404 verbose(env, 15405 "insn %d cannot be patched due to 16-bit range\n", 15406 env->insn_aux_data[off].orig_idx); 15407 vfree(new_data); 15408 return NULL; 15409 } 15410 adjust_insn_aux_data(env, new_data, new_prog, off, len); 15411 adjust_subprog_starts(env, off, len); 15412 adjust_poke_descs(new_prog, off, len); 15413 return new_prog; 15414 } 15415 15416 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 15417 u32 off, u32 cnt) 15418 { 15419 int i, j; 15420 15421 /* find first prog starting at or after off (first to remove) */ 15422 for (i = 0; i < env->subprog_cnt; i++) 15423 if (env->subprog_info[i].start >= off) 15424 break; 15425 /* find first prog starting at or after off + cnt (first to stay) */ 15426 for (j = i; j < env->subprog_cnt; j++) 15427 if (env->subprog_info[j].start >= off + cnt) 15428 break; 15429 /* if j doesn't start exactly at off + cnt, we are just removing 15430 * the front of previous prog 15431 */ 15432 if (env->subprog_info[j].start != off + cnt) 15433 j--; 15434 15435 if (j > i) { 15436 struct bpf_prog_aux *aux = env->prog->aux; 15437 int move; 15438 15439 /* move fake 'exit' subprog as well */ 15440 move = env->subprog_cnt + 1 - j; 15441 15442 memmove(env->subprog_info + i, 15443 env->subprog_info + j, 15444 sizeof(*env->subprog_info) * move); 15445 env->subprog_cnt -= j - i; 15446 15447 /* remove func_info */ 15448 if (aux->func_info) { 15449 move = aux->func_info_cnt - j; 15450 15451 memmove(aux->func_info + i, 15452 aux->func_info + j, 15453 sizeof(*aux->func_info) * move); 15454 aux->func_info_cnt -= j - i; 15455 /* func_info->insn_off is set after all code rewrites, 15456 * in adjust_btf_func() - no need to adjust 15457 */ 15458 } 15459 } else { 15460 /* convert i from "first prog to remove" to "first to adjust" */ 15461 if (env->subprog_info[i].start == off) 15462 i++; 15463 } 15464 15465 /* update fake 'exit' subprog as well */ 15466 for (; i <= env->subprog_cnt; i++) 15467 env->subprog_info[i].start -= cnt; 15468 15469 return 0; 15470 } 15471 15472 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 15473 u32 cnt) 15474 { 15475 struct bpf_prog *prog = env->prog; 15476 u32 i, l_off, l_cnt, nr_linfo; 15477 struct bpf_line_info *linfo; 15478 15479 nr_linfo = prog->aux->nr_linfo; 15480 if (!nr_linfo) 15481 return 0; 15482 15483 linfo = prog->aux->linfo; 15484 15485 /* find first line info to remove, count lines to be removed */ 15486 for (i = 0; i < nr_linfo; i++) 15487 if (linfo[i].insn_off >= off) 15488 break; 15489 15490 l_off = i; 15491 l_cnt = 0; 15492 for (; i < nr_linfo; i++) 15493 if (linfo[i].insn_off < off + cnt) 15494 l_cnt++; 15495 else 15496 break; 15497 15498 /* First live insn doesn't match first live linfo, it needs to "inherit" 15499 * last removed linfo. prog is already modified, so prog->len == off 15500 * means no live instructions after (tail of the program was removed). 15501 */ 15502 if (prog->len != off && l_cnt && 15503 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 15504 l_cnt--; 15505 linfo[--i].insn_off = off + cnt; 15506 } 15507 15508 /* remove the line info which refer to the removed instructions */ 15509 if (l_cnt) { 15510 memmove(linfo + l_off, linfo + i, 15511 sizeof(*linfo) * (nr_linfo - i)); 15512 15513 prog->aux->nr_linfo -= l_cnt; 15514 nr_linfo = prog->aux->nr_linfo; 15515 } 15516 15517 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 15518 for (i = l_off; i < nr_linfo; i++) 15519 linfo[i].insn_off -= cnt; 15520 15521 /* fix up all subprogs (incl. 'exit') which start >= off */ 15522 for (i = 0; i <= env->subprog_cnt; i++) 15523 if (env->subprog_info[i].linfo_idx > l_off) { 15524 /* program may have started in the removed region but 15525 * may not be fully removed 15526 */ 15527 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 15528 env->subprog_info[i].linfo_idx -= l_cnt; 15529 else 15530 env->subprog_info[i].linfo_idx = l_off; 15531 } 15532 15533 return 0; 15534 } 15535 15536 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 15537 { 15538 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 15539 unsigned int orig_prog_len = env->prog->len; 15540 int err; 15541 15542 if (bpf_prog_is_offloaded(env->prog->aux)) 15543 bpf_prog_offload_remove_insns(env, off, cnt); 15544 15545 err = bpf_remove_insns(env->prog, off, cnt); 15546 if (err) 15547 return err; 15548 15549 err = adjust_subprog_starts_after_remove(env, off, cnt); 15550 if (err) 15551 return err; 15552 15553 err = bpf_adj_linfo_after_remove(env, off, cnt); 15554 if (err) 15555 return err; 15556 15557 memmove(aux_data + off, aux_data + off + cnt, 15558 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 15559 15560 return 0; 15561 } 15562 15563 /* The verifier does more data flow analysis than llvm and will not 15564 * explore branches that are dead at run time. Malicious programs can 15565 * have dead code too. Therefore replace all dead at-run-time code 15566 * with 'ja -1'. 15567 * 15568 * Just nops are not optimal, e.g. if they would sit at the end of the 15569 * program and through another bug we would manage to jump there, then 15570 * we'd execute beyond program memory otherwise. Returning exception 15571 * code also wouldn't work since we can have subprogs where the dead 15572 * code could be located. 15573 */ 15574 static void sanitize_dead_code(struct bpf_verifier_env *env) 15575 { 15576 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 15577 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 15578 struct bpf_insn *insn = env->prog->insnsi; 15579 const int insn_cnt = env->prog->len; 15580 int i; 15581 15582 for (i = 0; i < insn_cnt; i++) { 15583 if (aux_data[i].seen) 15584 continue; 15585 memcpy(insn + i, &trap, sizeof(trap)); 15586 aux_data[i].zext_dst = false; 15587 } 15588 } 15589 15590 static bool insn_is_cond_jump(u8 code) 15591 { 15592 u8 op; 15593 15594 if (BPF_CLASS(code) == BPF_JMP32) 15595 return true; 15596 15597 if (BPF_CLASS(code) != BPF_JMP) 15598 return false; 15599 15600 op = BPF_OP(code); 15601 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 15602 } 15603 15604 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 15605 { 15606 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 15607 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 15608 struct bpf_insn *insn = env->prog->insnsi; 15609 const int insn_cnt = env->prog->len; 15610 int i; 15611 15612 for (i = 0; i < insn_cnt; i++, insn++) { 15613 if (!insn_is_cond_jump(insn->code)) 15614 continue; 15615 15616 if (!aux_data[i + 1].seen) 15617 ja.off = insn->off; 15618 else if (!aux_data[i + 1 + insn->off].seen) 15619 ja.off = 0; 15620 else 15621 continue; 15622 15623 if (bpf_prog_is_offloaded(env->prog->aux)) 15624 bpf_prog_offload_replace_insn(env, i, &ja); 15625 15626 memcpy(insn, &ja, sizeof(ja)); 15627 } 15628 } 15629 15630 static int opt_remove_dead_code(struct bpf_verifier_env *env) 15631 { 15632 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 15633 int insn_cnt = env->prog->len; 15634 int i, err; 15635 15636 for (i = 0; i < insn_cnt; i++) { 15637 int j; 15638 15639 j = 0; 15640 while (i + j < insn_cnt && !aux_data[i + j].seen) 15641 j++; 15642 if (!j) 15643 continue; 15644 15645 err = verifier_remove_insns(env, i, j); 15646 if (err) 15647 return err; 15648 insn_cnt = env->prog->len; 15649 } 15650 15651 return 0; 15652 } 15653 15654 static int opt_remove_nops(struct bpf_verifier_env *env) 15655 { 15656 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 15657 struct bpf_insn *insn = env->prog->insnsi; 15658 int insn_cnt = env->prog->len; 15659 int i, err; 15660 15661 for (i = 0; i < insn_cnt; i++) { 15662 if (memcmp(&insn[i], &ja, sizeof(ja))) 15663 continue; 15664 15665 err = verifier_remove_insns(env, i, 1); 15666 if (err) 15667 return err; 15668 insn_cnt--; 15669 i--; 15670 } 15671 15672 return 0; 15673 } 15674 15675 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 15676 const union bpf_attr *attr) 15677 { 15678 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 15679 struct bpf_insn_aux_data *aux = env->insn_aux_data; 15680 int i, patch_len, delta = 0, len = env->prog->len; 15681 struct bpf_insn *insns = env->prog->insnsi; 15682 struct bpf_prog *new_prog; 15683 bool rnd_hi32; 15684 15685 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 15686 zext_patch[1] = BPF_ZEXT_REG(0); 15687 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 15688 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 15689 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 15690 for (i = 0; i < len; i++) { 15691 int adj_idx = i + delta; 15692 struct bpf_insn insn; 15693 int load_reg; 15694 15695 insn = insns[adj_idx]; 15696 load_reg = insn_def_regno(&insn); 15697 if (!aux[adj_idx].zext_dst) { 15698 u8 code, class; 15699 u32 imm_rnd; 15700 15701 if (!rnd_hi32) 15702 continue; 15703 15704 code = insn.code; 15705 class = BPF_CLASS(code); 15706 if (load_reg == -1) 15707 continue; 15708 15709 /* NOTE: arg "reg" (the fourth one) is only used for 15710 * BPF_STX + SRC_OP, so it is safe to pass NULL 15711 * here. 15712 */ 15713 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 15714 if (class == BPF_LD && 15715 BPF_MODE(code) == BPF_IMM) 15716 i++; 15717 continue; 15718 } 15719 15720 /* ctx load could be transformed into wider load. */ 15721 if (class == BPF_LDX && 15722 aux[adj_idx].ptr_type == PTR_TO_CTX) 15723 continue; 15724 15725 imm_rnd = get_random_u32(); 15726 rnd_hi32_patch[0] = insn; 15727 rnd_hi32_patch[1].imm = imm_rnd; 15728 rnd_hi32_patch[3].dst_reg = load_reg; 15729 patch = rnd_hi32_patch; 15730 patch_len = 4; 15731 goto apply_patch_buffer; 15732 } 15733 15734 /* Add in an zero-extend instruction if a) the JIT has requested 15735 * it or b) it's a CMPXCHG. 15736 * 15737 * The latter is because: BPF_CMPXCHG always loads a value into 15738 * R0, therefore always zero-extends. However some archs' 15739 * equivalent instruction only does this load when the 15740 * comparison is successful. This detail of CMPXCHG is 15741 * orthogonal to the general zero-extension behaviour of the 15742 * CPU, so it's treated independently of bpf_jit_needs_zext. 15743 */ 15744 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 15745 continue; 15746 15747 /* Zero-extension is done by the caller. */ 15748 if (bpf_pseudo_kfunc_call(&insn)) 15749 continue; 15750 15751 if (WARN_ON(load_reg == -1)) { 15752 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 15753 return -EFAULT; 15754 } 15755 15756 zext_patch[0] = insn; 15757 zext_patch[1].dst_reg = load_reg; 15758 zext_patch[1].src_reg = load_reg; 15759 patch = zext_patch; 15760 patch_len = 2; 15761 apply_patch_buffer: 15762 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 15763 if (!new_prog) 15764 return -ENOMEM; 15765 env->prog = new_prog; 15766 insns = new_prog->insnsi; 15767 aux = env->insn_aux_data; 15768 delta += patch_len - 1; 15769 } 15770 15771 return 0; 15772 } 15773 15774 /* convert load instructions that access fields of a context type into a 15775 * sequence of instructions that access fields of the underlying structure: 15776 * struct __sk_buff -> struct sk_buff 15777 * struct bpf_sock_ops -> struct sock 15778 */ 15779 static int convert_ctx_accesses(struct bpf_verifier_env *env) 15780 { 15781 const struct bpf_verifier_ops *ops = env->ops; 15782 int i, cnt, size, ctx_field_size, delta = 0; 15783 const int insn_cnt = env->prog->len; 15784 struct bpf_insn insn_buf[16], *insn; 15785 u32 target_size, size_default, off; 15786 struct bpf_prog *new_prog; 15787 enum bpf_access_type type; 15788 bool is_narrower_load; 15789 15790 if (ops->gen_prologue || env->seen_direct_write) { 15791 if (!ops->gen_prologue) { 15792 verbose(env, "bpf verifier is misconfigured\n"); 15793 return -EINVAL; 15794 } 15795 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 15796 env->prog); 15797 if (cnt >= ARRAY_SIZE(insn_buf)) { 15798 verbose(env, "bpf verifier is misconfigured\n"); 15799 return -EINVAL; 15800 } else if (cnt) { 15801 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 15802 if (!new_prog) 15803 return -ENOMEM; 15804 15805 env->prog = new_prog; 15806 delta += cnt - 1; 15807 } 15808 } 15809 15810 if (bpf_prog_is_offloaded(env->prog->aux)) 15811 return 0; 15812 15813 insn = env->prog->insnsi + delta; 15814 15815 for (i = 0; i < insn_cnt; i++, insn++) { 15816 bpf_convert_ctx_access_t convert_ctx_access; 15817 bool ctx_access; 15818 15819 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 15820 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 15821 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 15822 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 15823 type = BPF_READ; 15824 ctx_access = true; 15825 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 15826 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 15827 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 15828 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 15829 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 15830 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 15831 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 15832 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 15833 type = BPF_WRITE; 15834 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 15835 } else { 15836 continue; 15837 } 15838 15839 if (type == BPF_WRITE && 15840 env->insn_aux_data[i + delta].sanitize_stack_spill) { 15841 struct bpf_insn patch[] = { 15842 *insn, 15843 BPF_ST_NOSPEC(), 15844 }; 15845 15846 cnt = ARRAY_SIZE(patch); 15847 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 15848 if (!new_prog) 15849 return -ENOMEM; 15850 15851 delta += cnt - 1; 15852 env->prog = new_prog; 15853 insn = new_prog->insnsi + i + delta; 15854 continue; 15855 } 15856 15857 if (!ctx_access) 15858 continue; 15859 15860 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 15861 case PTR_TO_CTX: 15862 if (!ops->convert_ctx_access) 15863 continue; 15864 convert_ctx_access = ops->convert_ctx_access; 15865 break; 15866 case PTR_TO_SOCKET: 15867 case PTR_TO_SOCK_COMMON: 15868 convert_ctx_access = bpf_sock_convert_ctx_access; 15869 break; 15870 case PTR_TO_TCP_SOCK: 15871 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 15872 break; 15873 case PTR_TO_XDP_SOCK: 15874 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 15875 break; 15876 case PTR_TO_BTF_ID: 15877 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 15878 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 15879 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 15880 * be said once it is marked PTR_UNTRUSTED, hence we must handle 15881 * any faults for loads into such types. BPF_WRITE is disallowed 15882 * for this case. 15883 */ 15884 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 15885 if (type == BPF_READ) { 15886 insn->code = BPF_LDX | BPF_PROBE_MEM | 15887 BPF_SIZE((insn)->code); 15888 env->prog->aux->num_exentries++; 15889 } 15890 continue; 15891 default: 15892 continue; 15893 } 15894 15895 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 15896 size = BPF_LDST_BYTES(insn); 15897 15898 /* If the read access is a narrower load of the field, 15899 * convert to a 4/8-byte load, to minimum program type specific 15900 * convert_ctx_access changes. If conversion is successful, 15901 * we will apply proper mask to the result. 15902 */ 15903 is_narrower_load = size < ctx_field_size; 15904 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 15905 off = insn->off; 15906 if (is_narrower_load) { 15907 u8 size_code; 15908 15909 if (type == BPF_WRITE) { 15910 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 15911 return -EINVAL; 15912 } 15913 15914 size_code = BPF_H; 15915 if (ctx_field_size == 4) 15916 size_code = BPF_W; 15917 else if (ctx_field_size == 8) 15918 size_code = BPF_DW; 15919 15920 insn->off = off & ~(size_default - 1); 15921 insn->code = BPF_LDX | BPF_MEM | size_code; 15922 } 15923 15924 target_size = 0; 15925 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 15926 &target_size); 15927 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 15928 (ctx_field_size && !target_size)) { 15929 verbose(env, "bpf verifier is misconfigured\n"); 15930 return -EINVAL; 15931 } 15932 15933 if (is_narrower_load && size < target_size) { 15934 u8 shift = bpf_ctx_narrow_access_offset( 15935 off, size, size_default) * 8; 15936 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 15937 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 15938 return -EINVAL; 15939 } 15940 if (ctx_field_size <= 4) { 15941 if (shift) 15942 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 15943 insn->dst_reg, 15944 shift); 15945 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 15946 (1 << size * 8) - 1); 15947 } else { 15948 if (shift) 15949 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 15950 insn->dst_reg, 15951 shift); 15952 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 15953 (1ULL << size * 8) - 1); 15954 } 15955 } 15956 15957 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15958 if (!new_prog) 15959 return -ENOMEM; 15960 15961 delta += cnt - 1; 15962 15963 /* keep walking new program and skip insns we just inserted */ 15964 env->prog = new_prog; 15965 insn = new_prog->insnsi + i + delta; 15966 } 15967 15968 return 0; 15969 } 15970 15971 static int jit_subprogs(struct bpf_verifier_env *env) 15972 { 15973 struct bpf_prog *prog = env->prog, **func, *tmp; 15974 int i, j, subprog_start, subprog_end = 0, len, subprog; 15975 struct bpf_map *map_ptr; 15976 struct bpf_insn *insn; 15977 void *old_bpf_func; 15978 int err, num_exentries; 15979 15980 if (env->subprog_cnt <= 1) 15981 return 0; 15982 15983 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 15984 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 15985 continue; 15986 15987 /* Upon error here we cannot fall back to interpreter but 15988 * need a hard reject of the program. Thus -EFAULT is 15989 * propagated in any case. 15990 */ 15991 subprog = find_subprog(env, i + insn->imm + 1); 15992 if (subprog < 0) { 15993 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 15994 i + insn->imm + 1); 15995 return -EFAULT; 15996 } 15997 /* temporarily remember subprog id inside insn instead of 15998 * aux_data, since next loop will split up all insns into funcs 15999 */ 16000 insn->off = subprog; 16001 /* remember original imm in case JIT fails and fallback 16002 * to interpreter will be needed 16003 */ 16004 env->insn_aux_data[i].call_imm = insn->imm; 16005 /* point imm to __bpf_call_base+1 from JITs point of view */ 16006 insn->imm = 1; 16007 if (bpf_pseudo_func(insn)) 16008 /* jit (e.g. x86_64) may emit fewer instructions 16009 * if it learns a u32 imm is the same as a u64 imm. 16010 * Force a non zero here. 16011 */ 16012 insn[1].imm = 1; 16013 } 16014 16015 err = bpf_prog_alloc_jited_linfo(prog); 16016 if (err) 16017 goto out_undo_insn; 16018 16019 err = -ENOMEM; 16020 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 16021 if (!func) 16022 goto out_undo_insn; 16023 16024 for (i = 0; i < env->subprog_cnt; i++) { 16025 subprog_start = subprog_end; 16026 subprog_end = env->subprog_info[i + 1].start; 16027 16028 len = subprog_end - subprog_start; 16029 /* bpf_prog_run() doesn't call subprogs directly, 16030 * hence main prog stats include the runtime of subprogs. 16031 * subprogs don't have IDs and not reachable via prog_get_next_id 16032 * func[i]->stats will never be accessed and stays NULL 16033 */ 16034 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 16035 if (!func[i]) 16036 goto out_free; 16037 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 16038 len * sizeof(struct bpf_insn)); 16039 func[i]->type = prog->type; 16040 func[i]->len = len; 16041 if (bpf_prog_calc_tag(func[i])) 16042 goto out_free; 16043 func[i]->is_func = 1; 16044 func[i]->aux->func_idx = i; 16045 /* Below members will be freed only at prog->aux */ 16046 func[i]->aux->btf = prog->aux->btf; 16047 func[i]->aux->func_info = prog->aux->func_info; 16048 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 16049 func[i]->aux->poke_tab = prog->aux->poke_tab; 16050 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 16051 16052 for (j = 0; j < prog->aux->size_poke_tab; j++) { 16053 struct bpf_jit_poke_descriptor *poke; 16054 16055 poke = &prog->aux->poke_tab[j]; 16056 if (poke->insn_idx < subprog_end && 16057 poke->insn_idx >= subprog_start) 16058 poke->aux = func[i]->aux; 16059 } 16060 16061 func[i]->aux->name[0] = 'F'; 16062 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 16063 func[i]->jit_requested = 1; 16064 func[i]->blinding_requested = prog->blinding_requested; 16065 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 16066 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 16067 func[i]->aux->linfo = prog->aux->linfo; 16068 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 16069 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 16070 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 16071 num_exentries = 0; 16072 insn = func[i]->insnsi; 16073 for (j = 0; j < func[i]->len; j++, insn++) { 16074 if (BPF_CLASS(insn->code) == BPF_LDX && 16075 BPF_MODE(insn->code) == BPF_PROBE_MEM) 16076 num_exentries++; 16077 } 16078 func[i]->aux->num_exentries = num_exentries; 16079 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 16080 func[i] = bpf_int_jit_compile(func[i]); 16081 if (!func[i]->jited) { 16082 err = -ENOTSUPP; 16083 goto out_free; 16084 } 16085 cond_resched(); 16086 } 16087 16088 /* at this point all bpf functions were successfully JITed 16089 * now populate all bpf_calls with correct addresses and 16090 * run last pass of JIT 16091 */ 16092 for (i = 0; i < env->subprog_cnt; i++) { 16093 insn = func[i]->insnsi; 16094 for (j = 0; j < func[i]->len; j++, insn++) { 16095 if (bpf_pseudo_func(insn)) { 16096 subprog = insn->off; 16097 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 16098 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 16099 continue; 16100 } 16101 if (!bpf_pseudo_call(insn)) 16102 continue; 16103 subprog = insn->off; 16104 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 16105 } 16106 16107 /* we use the aux data to keep a list of the start addresses 16108 * of the JITed images for each function in the program 16109 * 16110 * for some architectures, such as powerpc64, the imm field 16111 * might not be large enough to hold the offset of the start 16112 * address of the callee's JITed image from __bpf_call_base 16113 * 16114 * in such cases, we can lookup the start address of a callee 16115 * by using its subprog id, available from the off field of 16116 * the call instruction, as an index for this list 16117 */ 16118 func[i]->aux->func = func; 16119 func[i]->aux->func_cnt = env->subprog_cnt; 16120 } 16121 for (i = 0; i < env->subprog_cnt; i++) { 16122 old_bpf_func = func[i]->bpf_func; 16123 tmp = bpf_int_jit_compile(func[i]); 16124 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 16125 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 16126 err = -ENOTSUPP; 16127 goto out_free; 16128 } 16129 cond_resched(); 16130 } 16131 16132 /* finally lock prog and jit images for all functions and 16133 * populate kallsysm 16134 */ 16135 for (i = 0; i < env->subprog_cnt; i++) { 16136 bpf_prog_lock_ro(func[i]); 16137 bpf_prog_kallsyms_add(func[i]); 16138 } 16139 16140 /* Last step: make now unused interpreter insns from main 16141 * prog consistent for later dump requests, so they can 16142 * later look the same as if they were interpreted only. 16143 */ 16144 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 16145 if (bpf_pseudo_func(insn)) { 16146 insn[0].imm = env->insn_aux_data[i].call_imm; 16147 insn[1].imm = insn->off; 16148 insn->off = 0; 16149 continue; 16150 } 16151 if (!bpf_pseudo_call(insn)) 16152 continue; 16153 insn->off = env->insn_aux_data[i].call_imm; 16154 subprog = find_subprog(env, i + insn->off + 1); 16155 insn->imm = subprog; 16156 } 16157 16158 prog->jited = 1; 16159 prog->bpf_func = func[0]->bpf_func; 16160 prog->jited_len = func[0]->jited_len; 16161 prog->aux->func = func; 16162 prog->aux->func_cnt = env->subprog_cnt; 16163 bpf_prog_jit_attempt_done(prog); 16164 return 0; 16165 out_free: 16166 /* We failed JIT'ing, so at this point we need to unregister poke 16167 * descriptors from subprogs, so that kernel is not attempting to 16168 * patch it anymore as we're freeing the subprog JIT memory. 16169 */ 16170 for (i = 0; i < prog->aux->size_poke_tab; i++) { 16171 map_ptr = prog->aux->poke_tab[i].tail_call.map; 16172 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 16173 } 16174 /* At this point we're guaranteed that poke descriptors are not 16175 * live anymore. We can just unlink its descriptor table as it's 16176 * released with the main prog. 16177 */ 16178 for (i = 0; i < env->subprog_cnt; i++) { 16179 if (!func[i]) 16180 continue; 16181 func[i]->aux->poke_tab = NULL; 16182 bpf_jit_free(func[i]); 16183 } 16184 kfree(func); 16185 out_undo_insn: 16186 /* cleanup main prog to be interpreted */ 16187 prog->jit_requested = 0; 16188 prog->blinding_requested = 0; 16189 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 16190 if (!bpf_pseudo_call(insn)) 16191 continue; 16192 insn->off = 0; 16193 insn->imm = env->insn_aux_data[i].call_imm; 16194 } 16195 bpf_prog_jit_attempt_done(prog); 16196 return err; 16197 } 16198 16199 static int fixup_call_args(struct bpf_verifier_env *env) 16200 { 16201 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 16202 struct bpf_prog *prog = env->prog; 16203 struct bpf_insn *insn = prog->insnsi; 16204 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 16205 int i, depth; 16206 #endif 16207 int err = 0; 16208 16209 if (env->prog->jit_requested && 16210 !bpf_prog_is_offloaded(env->prog->aux)) { 16211 err = jit_subprogs(env); 16212 if (err == 0) 16213 return 0; 16214 if (err == -EFAULT) 16215 return err; 16216 } 16217 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 16218 if (has_kfunc_call) { 16219 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 16220 return -EINVAL; 16221 } 16222 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 16223 /* When JIT fails the progs with bpf2bpf calls and tail_calls 16224 * have to be rejected, since interpreter doesn't support them yet. 16225 */ 16226 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 16227 return -EINVAL; 16228 } 16229 for (i = 0; i < prog->len; i++, insn++) { 16230 if (bpf_pseudo_func(insn)) { 16231 /* When JIT fails the progs with callback calls 16232 * have to be rejected, since interpreter doesn't support them yet. 16233 */ 16234 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 16235 return -EINVAL; 16236 } 16237 16238 if (!bpf_pseudo_call(insn)) 16239 continue; 16240 depth = get_callee_stack_depth(env, insn, i); 16241 if (depth < 0) 16242 return depth; 16243 bpf_patch_call_args(insn, depth); 16244 } 16245 err = 0; 16246 #endif 16247 return err; 16248 } 16249 16250 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 16251 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 16252 { 16253 const struct bpf_kfunc_desc *desc; 16254 void *xdp_kfunc; 16255 16256 if (!insn->imm) { 16257 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 16258 return -EINVAL; 16259 } 16260 16261 *cnt = 0; 16262 16263 if (bpf_dev_bound_kfunc_id(insn->imm)) { 16264 xdp_kfunc = bpf_dev_bound_resolve_kfunc(env->prog, insn->imm); 16265 if (xdp_kfunc) { 16266 insn->imm = BPF_CALL_IMM(xdp_kfunc); 16267 return 0; 16268 } 16269 16270 /* fallback to default kfunc when not supported by netdev */ 16271 } 16272 16273 /* insn->imm has the btf func_id. Replace it with 16274 * an address (relative to __bpf_call_base). 16275 */ 16276 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 16277 if (!desc) { 16278 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 16279 insn->imm); 16280 return -EFAULT; 16281 } 16282 16283 insn->imm = desc->imm; 16284 if (insn->off) 16285 return 0; 16286 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 16287 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 16288 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 16289 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 16290 16291 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 16292 insn_buf[1] = addr[0]; 16293 insn_buf[2] = addr[1]; 16294 insn_buf[3] = *insn; 16295 *cnt = 4; 16296 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 16297 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 16298 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 16299 16300 insn_buf[0] = addr[0]; 16301 insn_buf[1] = addr[1]; 16302 insn_buf[2] = *insn; 16303 *cnt = 3; 16304 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 16305 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 16306 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 16307 *cnt = 1; 16308 } 16309 return 0; 16310 } 16311 16312 /* Do various post-verification rewrites in a single program pass. 16313 * These rewrites simplify JIT and interpreter implementations. 16314 */ 16315 static int do_misc_fixups(struct bpf_verifier_env *env) 16316 { 16317 struct bpf_prog *prog = env->prog; 16318 enum bpf_attach_type eatype = prog->expected_attach_type; 16319 enum bpf_prog_type prog_type = resolve_prog_type(prog); 16320 struct bpf_insn *insn = prog->insnsi; 16321 const struct bpf_func_proto *fn; 16322 const int insn_cnt = prog->len; 16323 const struct bpf_map_ops *ops; 16324 struct bpf_insn_aux_data *aux; 16325 struct bpf_insn insn_buf[16]; 16326 struct bpf_prog *new_prog; 16327 struct bpf_map *map_ptr; 16328 int i, ret, cnt, delta = 0; 16329 16330 for (i = 0; i < insn_cnt; i++, insn++) { 16331 /* Make divide-by-zero exceptions impossible. */ 16332 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 16333 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 16334 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 16335 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 16336 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 16337 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 16338 struct bpf_insn *patchlet; 16339 struct bpf_insn chk_and_div[] = { 16340 /* [R,W]x div 0 -> 0 */ 16341 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 16342 BPF_JNE | BPF_K, insn->src_reg, 16343 0, 2, 0), 16344 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 16345 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 16346 *insn, 16347 }; 16348 struct bpf_insn chk_and_mod[] = { 16349 /* [R,W]x mod 0 -> [R,W]x */ 16350 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 16351 BPF_JEQ | BPF_K, insn->src_reg, 16352 0, 1 + (is64 ? 0 : 1), 0), 16353 *insn, 16354 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 16355 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 16356 }; 16357 16358 patchlet = isdiv ? chk_and_div : chk_and_mod; 16359 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 16360 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 16361 16362 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 16363 if (!new_prog) 16364 return -ENOMEM; 16365 16366 delta += cnt - 1; 16367 env->prog = prog = new_prog; 16368 insn = new_prog->insnsi + i + delta; 16369 continue; 16370 } 16371 16372 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 16373 if (BPF_CLASS(insn->code) == BPF_LD && 16374 (BPF_MODE(insn->code) == BPF_ABS || 16375 BPF_MODE(insn->code) == BPF_IND)) { 16376 cnt = env->ops->gen_ld_abs(insn, insn_buf); 16377 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 16378 verbose(env, "bpf verifier is misconfigured\n"); 16379 return -EINVAL; 16380 } 16381 16382 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16383 if (!new_prog) 16384 return -ENOMEM; 16385 16386 delta += cnt - 1; 16387 env->prog = prog = new_prog; 16388 insn = new_prog->insnsi + i + delta; 16389 continue; 16390 } 16391 16392 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 16393 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 16394 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 16395 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 16396 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 16397 struct bpf_insn *patch = &insn_buf[0]; 16398 bool issrc, isneg, isimm; 16399 u32 off_reg; 16400 16401 aux = &env->insn_aux_data[i + delta]; 16402 if (!aux->alu_state || 16403 aux->alu_state == BPF_ALU_NON_POINTER) 16404 continue; 16405 16406 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 16407 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 16408 BPF_ALU_SANITIZE_SRC; 16409 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 16410 16411 off_reg = issrc ? insn->src_reg : insn->dst_reg; 16412 if (isimm) { 16413 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 16414 } else { 16415 if (isneg) 16416 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 16417 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 16418 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 16419 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 16420 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 16421 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 16422 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 16423 } 16424 if (!issrc) 16425 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 16426 insn->src_reg = BPF_REG_AX; 16427 if (isneg) 16428 insn->code = insn->code == code_add ? 16429 code_sub : code_add; 16430 *patch++ = *insn; 16431 if (issrc && isneg && !isimm) 16432 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 16433 cnt = patch - insn_buf; 16434 16435 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16436 if (!new_prog) 16437 return -ENOMEM; 16438 16439 delta += cnt - 1; 16440 env->prog = prog = new_prog; 16441 insn = new_prog->insnsi + i + delta; 16442 continue; 16443 } 16444 16445 if (insn->code != (BPF_JMP | BPF_CALL)) 16446 continue; 16447 if (insn->src_reg == BPF_PSEUDO_CALL) 16448 continue; 16449 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 16450 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 16451 if (ret) 16452 return ret; 16453 if (cnt == 0) 16454 continue; 16455 16456 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16457 if (!new_prog) 16458 return -ENOMEM; 16459 16460 delta += cnt - 1; 16461 env->prog = prog = new_prog; 16462 insn = new_prog->insnsi + i + delta; 16463 continue; 16464 } 16465 16466 if (insn->imm == BPF_FUNC_get_route_realm) 16467 prog->dst_needed = 1; 16468 if (insn->imm == BPF_FUNC_get_prandom_u32) 16469 bpf_user_rnd_init_once(); 16470 if (insn->imm == BPF_FUNC_override_return) 16471 prog->kprobe_override = 1; 16472 if (insn->imm == BPF_FUNC_tail_call) { 16473 /* If we tail call into other programs, we 16474 * cannot make any assumptions since they can 16475 * be replaced dynamically during runtime in 16476 * the program array. 16477 */ 16478 prog->cb_access = 1; 16479 if (!allow_tail_call_in_subprogs(env)) 16480 prog->aux->stack_depth = MAX_BPF_STACK; 16481 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 16482 16483 /* mark bpf_tail_call as different opcode to avoid 16484 * conditional branch in the interpreter for every normal 16485 * call and to prevent accidental JITing by JIT compiler 16486 * that doesn't support bpf_tail_call yet 16487 */ 16488 insn->imm = 0; 16489 insn->code = BPF_JMP | BPF_TAIL_CALL; 16490 16491 aux = &env->insn_aux_data[i + delta]; 16492 if (env->bpf_capable && !prog->blinding_requested && 16493 prog->jit_requested && 16494 !bpf_map_key_poisoned(aux) && 16495 !bpf_map_ptr_poisoned(aux) && 16496 !bpf_map_ptr_unpriv(aux)) { 16497 struct bpf_jit_poke_descriptor desc = { 16498 .reason = BPF_POKE_REASON_TAIL_CALL, 16499 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 16500 .tail_call.key = bpf_map_key_immediate(aux), 16501 .insn_idx = i + delta, 16502 }; 16503 16504 ret = bpf_jit_add_poke_descriptor(prog, &desc); 16505 if (ret < 0) { 16506 verbose(env, "adding tail call poke descriptor failed\n"); 16507 return ret; 16508 } 16509 16510 insn->imm = ret + 1; 16511 continue; 16512 } 16513 16514 if (!bpf_map_ptr_unpriv(aux)) 16515 continue; 16516 16517 /* instead of changing every JIT dealing with tail_call 16518 * emit two extra insns: 16519 * if (index >= max_entries) goto out; 16520 * index &= array->index_mask; 16521 * to avoid out-of-bounds cpu speculation 16522 */ 16523 if (bpf_map_ptr_poisoned(aux)) { 16524 verbose(env, "tail_call abusing map_ptr\n"); 16525 return -EINVAL; 16526 } 16527 16528 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 16529 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 16530 map_ptr->max_entries, 2); 16531 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 16532 container_of(map_ptr, 16533 struct bpf_array, 16534 map)->index_mask); 16535 insn_buf[2] = *insn; 16536 cnt = 3; 16537 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16538 if (!new_prog) 16539 return -ENOMEM; 16540 16541 delta += cnt - 1; 16542 env->prog = prog = new_prog; 16543 insn = new_prog->insnsi + i + delta; 16544 continue; 16545 } 16546 16547 if (insn->imm == BPF_FUNC_timer_set_callback) { 16548 /* The verifier will process callback_fn as many times as necessary 16549 * with different maps and the register states prepared by 16550 * set_timer_callback_state will be accurate. 16551 * 16552 * The following use case is valid: 16553 * map1 is shared by prog1, prog2, prog3. 16554 * prog1 calls bpf_timer_init for some map1 elements 16555 * prog2 calls bpf_timer_set_callback for some map1 elements. 16556 * Those that were not bpf_timer_init-ed will return -EINVAL. 16557 * prog3 calls bpf_timer_start for some map1 elements. 16558 * Those that were not both bpf_timer_init-ed and 16559 * bpf_timer_set_callback-ed will return -EINVAL. 16560 */ 16561 struct bpf_insn ld_addrs[2] = { 16562 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 16563 }; 16564 16565 insn_buf[0] = ld_addrs[0]; 16566 insn_buf[1] = ld_addrs[1]; 16567 insn_buf[2] = *insn; 16568 cnt = 3; 16569 16570 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16571 if (!new_prog) 16572 return -ENOMEM; 16573 16574 delta += cnt - 1; 16575 env->prog = prog = new_prog; 16576 insn = new_prog->insnsi + i + delta; 16577 goto patch_call_imm; 16578 } 16579 16580 if (is_storage_get_function(insn->imm)) { 16581 if (!env->prog->aux->sleepable || 16582 env->insn_aux_data[i + delta].storage_get_func_atomic) 16583 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 16584 else 16585 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 16586 insn_buf[1] = *insn; 16587 cnt = 2; 16588 16589 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16590 if (!new_prog) 16591 return -ENOMEM; 16592 16593 delta += cnt - 1; 16594 env->prog = prog = new_prog; 16595 insn = new_prog->insnsi + i + delta; 16596 goto patch_call_imm; 16597 } 16598 16599 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 16600 * and other inlining handlers are currently limited to 64 bit 16601 * only. 16602 */ 16603 if (prog->jit_requested && BITS_PER_LONG == 64 && 16604 (insn->imm == BPF_FUNC_map_lookup_elem || 16605 insn->imm == BPF_FUNC_map_update_elem || 16606 insn->imm == BPF_FUNC_map_delete_elem || 16607 insn->imm == BPF_FUNC_map_push_elem || 16608 insn->imm == BPF_FUNC_map_pop_elem || 16609 insn->imm == BPF_FUNC_map_peek_elem || 16610 insn->imm == BPF_FUNC_redirect_map || 16611 insn->imm == BPF_FUNC_for_each_map_elem || 16612 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 16613 aux = &env->insn_aux_data[i + delta]; 16614 if (bpf_map_ptr_poisoned(aux)) 16615 goto patch_call_imm; 16616 16617 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 16618 ops = map_ptr->ops; 16619 if (insn->imm == BPF_FUNC_map_lookup_elem && 16620 ops->map_gen_lookup) { 16621 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 16622 if (cnt == -EOPNOTSUPP) 16623 goto patch_map_ops_generic; 16624 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 16625 verbose(env, "bpf verifier is misconfigured\n"); 16626 return -EINVAL; 16627 } 16628 16629 new_prog = bpf_patch_insn_data(env, i + delta, 16630 insn_buf, cnt); 16631 if (!new_prog) 16632 return -ENOMEM; 16633 16634 delta += cnt - 1; 16635 env->prog = prog = new_prog; 16636 insn = new_prog->insnsi + i + delta; 16637 continue; 16638 } 16639 16640 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 16641 (void *(*)(struct bpf_map *map, void *key))NULL)); 16642 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 16643 (int (*)(struct bpf_map *map, void *key))NULL)); 16644 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 16645 (int (*)(struct bpf_map *map, void *key, void *value, 16646 u64 flags))NULL)); 16647 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 16648 (int (*)(struct bpf_map *map, void *value, 16649 u64 flags))NULL)); 16650 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 16651 (int (*)(struct bpf_map *map, void *value))NULL)); 16652 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 16653 (int (*)(struct bpf_map *map, void *value))NULL)); 16654 BUILD_BUG_ON(!__same_type(ops->map_redirect, 16655 (int (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 16656 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 16657 (int (*)(struct bpf_map *map, 16658 bpf_callback_t callback_fn, 16659 void *callback_ctx, 16660 u64 flags))NULL)); 16661 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 16662 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 16663 16664 patch_map_ops_generic: 16665 switch (insn->imm) { 16666 case BPF_FUNC_map_lookup_elem: 16667 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 16668 continue; 16669 case BPF_FUNC_map_update_elem: 16670 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 16671 continue; 16672 case BPF_FUNC_map_delete_elem: 16673 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 16674 continue; 16675 case BPF_FUNC_map_push_elem: 16676 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 16677 continue; 16678 case BPF_FUNC_map_pop_elem: 16679 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 16680 continue; 16681 case BPF_FUNC_map_peek_elem: 16682 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 16683 continue; 16684 case BPF_FUNC_redirect_map: 16685 insn->imm = BPF_CALL_IMM(ops->map_redirect); 16686 continue; 16687 case BPF_FUNC_for_each_map_elem: 16688 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 16689 continue; 16690 case BPF_FUNC_map_lookup_percpu_elem: 16691 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 16692 continue; 16693 } 16694 16695 goto patch_call_imm; 16696 } 16697 16698 /* Implement bpf_jiffies64 inline. */ 16699 if (prog->jit_requested && BITS_PER_LONG == 64 && 16700 insn->imm == BPF_FUNC_jiffies64) { 16701 struct bpf_insn ld_jiffies_addr[2] = { 16702 BPF_LD_IMM64(BPF_REG_0, 16703 (unsigned long)&jiffies), 16704 }; 16705 16706 insn_buf[0] = ld_jiffies_addr[0]; 16707 insn_buf[1] = ld_jiffies_addr[1]; 16708 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 16709 BPF_REG_0, 0); 16710 cnt = 3; 16711 16712 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 16713 cnt); 16714 if (!new_prog) 16715 return -ENOMEM; 16716 16717 delta += cnt - 1; 16718 env->prog = prog = new_prog; 16719 insn = new_prog->insnsi + i + delta; 16720 continue; 16721 } 16722 16723 /* Implement bpf_get_func_arg inline. */ 16724 if (prog_type == BPF_PROG_TYPE_TRACING && 16725 insn->imm == BPF_FUNC_get_func_arg) { 16726 /* Load nr_args from ctx - 8 */ 16727 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 16728 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 16729 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 16730 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 16731 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 16732 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 16733 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 16734 insn_buf[7] = BPF_JMP_A(1); 16735 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 16736 cnt = 9; 16737 16738 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16739 if (!new_prog) 16740 return -ENOMEM; 16741 16742 delta += cnt - 1; 16743 env->prog = prog = new_prog; 16744 insn = new_prog->insnsi + i + delta; 16745 continue; 16746 } 16747 16748 /* Implement bpf_get_func_ret inline. */ 16749 if (prog_type == BPF_PROG_TYPE_TRACING && 16750 insn->imm == BPF_FUNC_get_func_ret) { 16751 if (eatype == BPF_TRACE_FEXIT || 16752 eatype == BPF_MODIFY_RETURN) { 16753 /* Load nr_args from ctx - 8 */ 16754 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 16755 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 16756 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 16757 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 16758 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 16759 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 16760 cnt = 6; 16761 } else { 16762 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 16763 cnt = 1; 16764 } 16765 16766 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16767 if (!new_prog) 16768 return -ENOMEM; 16769 16770 delta += cnt - 1; 16771 env->prog = prog = new_prog; 16772 insn = new_prog->insnsi + i + delta; 16773 continue; 16774 } 16775 16776 /* Implement get_func_arg_cnt inline. */ 16777 if (prog_type == BPF_PROG_TYPE_TRACING && 16778 insn->imm == BPF_FUNC_get_func_arg_cnt) { 16779 /* Load nr_args from ctx - 8 */ 16780 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 16781 16782 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 16783 if (!new_prog) 16784 return -ENOMEM; 16785 16786 env->prog = prog = new_prog; 16787 insn = new_prog->insnsi + i + delta; 16788 continue; 16789 } 16790 16791 /* Implement bpf_get_func_ip inline. */ 16792 if (prog_type == BPF_PROG_TYPE_TRACING && 16793 insn->imm == BPF_FUNC_get_func_ip) { 16794 /* Load IP address from ctx - 16 */ 16795 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 16796 16797 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 16798 if (!new_prog) 16799 return -ENOMEM; 16800 16801 env->prog = prog = new_prog; 16802 insn = new_prog->insnsi + i + delta; 16803 continue; 16804 } 16805 16806 patch_call_imm: 16807 fn = env->ops->get_func_proto(insn->imm, env->prog); 16808 /* all functions that have prototype and verifier allowed 16809 * programs to call them, must be real in-kernel functions 16810 */ 16811 if (!fn->func) { 16812 verbose(env, 16813 "kernel subsystem misconfigured func %s#%d\n", 16814 func_id_name(insn->imm), insn->imm); 16815 return -EFAULT; 16816 } 16817 insn->imm = fn->func - __bpf_call_base; 16818 } 16819 16820 /* Since poke tab is now finalized, publish aux to tracker. */ 16821 for (i = 0; i < prog->aux->size_poke_tab; i++) { 16822 map_ptr = prog->aux->poke_tab[i].tail_call.map; 16823 if (!map_ptr->ops->map_poke_track || 16824 !map_ptr->ops->map_poke_untrack || 16825 !map_ptr->ops->map_poke_run) { 16826 verbose(env, "bpf verifier is misconfigured\n"); 16827 return -EINVAL; 16828 } 16829 16830 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 16831 if (ret < 0) { 16832 verbose(env, "tracking tail call prog failed\n"); 16833 return ret; 16834 } 16835 } 16836 16837 sort_kfunc_descs_by_imm(env->prog); 16838 16839 return 0; 16840 } 16841 16842 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 16843 int position, 16844 s32 stack_base, 16845 u32 callback_subprogno, 16846 u32 *cnt) 16847 { 16848 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 16849 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 16850 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 16851 int reg_loop_max = BPF_REG_6; 16852 int reg_loop_cnt = BPF_REG_7; 16853 int reg_loop_ctx = BPF_REG_8; 16854 16855 struct bpf_prog *new_prog; 16856 u32 callback_start; 16857 u32 call_insn_offset; 16858 s32 callback_offset; 16859 16860 /* This represents an inlined version of bpf_iter.c:bpf_loop, 16861 * be careful to modify this code in sync. 16862 */ 16863 struct bpf_insn insn_buf[] = { 16864 /* Return error and jump to the end of the patch if 16865 * expected number of iterations is too big. 16866 */ 16867 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 16868 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 16869 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 16870 /* spill R6, R7, R8 to use these as loop vars */ 16871 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 16872 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 16873 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 16874 /* initialize loop vars */ 16875 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 16876 BPF_MOV32_IMM(reg_loop_cnt, 0), 16877 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 16878 /* loop header, 16879 * if reg_loop_cnt >= reg_loop_max skip the loop body 16880 */ 16881 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 16882 /* callback call, 16883 * correct callback offset would be set after patching 16884 */ 16885 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 16886 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 16887 BPF_CALL_REL(0), 16888 /* increment loop counter */ 16889 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 16890 /* jump to loop header if callback returned 0 */ 16891 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 16892 /* return value of bpf_loop, 16893 * set R0 to the number of iterations 16894 */ 16895 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 16896 /* restore original values of R6, R7, R8 */ 16897 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 16898 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 16899 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 16900 }; 16901 16902 *cnt = ARRAY_SIZE(insn_buf); 16903 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 16904 if (!new_prog) 16905 return new_prog; 16906 16907 /* callback start is known only after patching */ 16908 callback_start = env->subprog_info[callback_subprogno].start; 16909 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 16910 call_insn_offset = position + 12; 16911 callback_offset = callback_start - call_insn_offset - 1; 16912 new_prog->insnsi[call_insn_offset].imm = callback_offset; 16913 16914 return new_prog; 16915 } 16916 16917 static bool is_bpf_loop_call(struct bpf_insn *insn) 16918 { 16919 return insn->code == (BPF_JMP | BPF_CALL) && 16920 insn->src_reg == 0 && 16921 insn->imm == BPF_FUNC_loop; 16922 } 16923 16924 /* For all sub-programs in the program (including main) check 16925 * insn_aux_data to see if there are bpf_loop calls that require 16926 * inlining. If such calls are found the calls are replaced with a 16927 * sequence of instructions produced by `inline_bpf_loop` function and 16928 * subprog stack_depth is increased by the size of 3 registers. 16929 * This stack space is used to spill values of the R6, R7, R8. These 16930 * registers are used to store the loop bound, counter and context 16931 * variables. 16932 */ 16933 static int optimize_bpf_loop(struct bpf_verifier_env *env) 16934 { 16935 struct bpf_subprog_info *subprogs = env->subprog_info; 16936 int i, cur_subprog = 0, cnt, delta = 0; 16937 struct bpf_insn *insn = env->prog->insnsi; 16938 int insn_cnt = env->prog->len; 16939 u16 stack_depth = subprogs[cur_subprog].stack_depth; 16940 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 16941 u16 stack_depth_extra = 0; 16942 16943 for (i = 0; i < insn_cnt; i++, insn++) { 16944 struct bpf_loop_inline_state *inline_state = 16945 &env->insn_aux_data[i + delta].loop_inline_state; 16946 16947 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 16948 struct bpf_prog *new_prog; 16949 16950 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 16951 new_prog = inline_bpf_loop(env, 16952 i + delta, 16953 -(stack_depth + stack_depth_extra), 16954 inline_state->callback_subprogno, 16955 &cnt); 16956 if (!new_prog) 16957 return -ENOMEM; 16958 16959 delta += cnt - 1; 16960 env->prog = new_prog; 16961 insn = new_prog->insnsi + i + delta; 16962 } 16963 16964 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 16965 subprogs[cur_subprog].stack_depth += stack_depth_extra; 16966 cur_subprog++; 16967 stack_depth = subprogs[cur_subprog].stack_depth; 16968 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 16969 stack_depth_extra = 0; 16970 } 16971 } 16972 16973 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 16974 16975 return 0; 16976 } 16977 16978 static void free_states(struct bpf_verifier_env *env) 16979 { 16980 struct bpf_verifier_state_list *sl, *sln; 16981 int i; 16982 16983 sl = env->free_list; 16984 while (sl) { 16985 sln = sl->next; 16986 free_verifier_state(&sl->state, false); 16987 kfree(sl); 16988 sl = sln; 16989 } 16990 env->free_list = NULL; 16991 16992 if (!env->explored_states) 16993 return; 16994 16995 for (i = 0; i < state_htab_size(env); i++) { 16996 sl = env->explored_states[i]; 16997 16998 while (sl) { 16999 sln = sl->next; 17000 free_verifier_state(&sl->state, false); 17001 kfree(sl); 17002 sl = sln; 17003 } 17004 env->explored_states[i] = NULL; 17005 } 17006 } 17007 17008 static int do_check_common(struct bpf_verifier_env *env, int subprog) 17009 { 17010 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 17011 struct bpf_verifier_state *state; 17012 struct bpf_reg_state *regs; 17013 int ret, i; 17014 17015 env->prev_linfo = NULL; 17016 env->pass_cnt++; 17017 17018 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 17019 if (!state) 17020 return -ENOMEM; 17021 state->curframe = 0; 17022 state->speculative = false; 17023 state->branches = 1; 17024 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 17025 if (!state->frame[0]) { 17026 kfree(state); 17027 return -ENOMEM; 17028 } 17029 env->cur_state = state; 17030 init_func_state(env, state->frame[0], 17031 BPF_MAIN_FUNC /* callsite */, 17032 0 /* frameno */, 17033 subprog); 17034 state->first_insn_idx = env->subprog_info[subprog].start; 17035 state->last_insn_idx = -1; 17036 17037 regs = state->frame[state->curframe]->regs; 17038 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 17039 ret = btf_prepare_func_args(env, subprog, regs); 17040 if (ret) 17041 goto out; 17042 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 17043 if (regs[i].type == PTR_TO_CTX) 17044 mark_reg_known_zero(env, regs, i); 17045 else if (regs[i].type == SCALAR_VALUE) 17046 mark_reg_unknown(env, regs, i); 17047 else if (base_type(regs[i].type) == PTR_TO_MEM) { 17048 const u32 mem_size = regs[i].mem_size; 17049 17050 mark_reg_known_zero(env, regs, i); 17051 regs[i].mem_size = mem_size; 17052 regs[i].id = ++env->id_gen; 17053 } 17054 } 17055 } else { 17056 /* 1st arg to a function */ 17057 regs[BPF_REG_1].type = PTR_TO_CTX; 17058 mark_reg_known_zero(env, regs, BPF_REG_1); 17059 ret = btf_check_subprog_arg_match(env, subprog, regs); 17060 if (ret == -EFAULT) 17061 /* unlikely verifier bug. abort. 17062 * ret == 0 and ret < 0 are sadly acceptable for 17063 * main() function due to backward compatibility. 17064 * Like socket filter program may be written as: 17065 * int bpf_prog(struct pt_regs *ctx) 17066 * and never dereference that ctx in the program. 17067 * 'struct pt_regs' is a type mismatch for socket 17068 * filter that should be using 'struct __sk_buff'. 17069 */ 17070 goto out; 17071 } 17072 17073 ret = do_check(env); 17074 out: 17075 /* check for NULL is necessary, since cur_state can be freed inside 17076 * do_check() under memory pressure. 17077 */ 17078 if (env->cur_state) { 17079 free_verifier_state(env->cur_state, true); 17080 env->cur_state = NULL; 17081 } 17082 while (!pop_stack(env, NULL, NULL, false)); 17083 if (!ret && pop_log) 17084 bpf_vlog_reset(&env->log, 0); 17085 free_states(env); 17086 return ret; 17087 } 17088 17089 /* Verify all global functions in a BPF program one by one based on their BTF. 17090 * All global functions must pass verification. Otherwise the whole program is rejected. 17091 * Consider: 17092 * int bar(int); 17093 * int foo(int f) 17094 * { 17095 * return bar(f); 17096 * } 17097 * int bar(int b) 17098 * { 17099 * ... 17100 * } 17101 * foo() will be verified first for R1=any_scalar_value. During verification it 17102 * will be assumed that bar() already verified successfully and call to bar() 17103 * from foo() will be checked for type match only. Later bar() will be verified 17104 * independently to check that it's safe for R1=any_scalar_value. 17105 */ 17106 static int do_check_subprogs(struct bpf_verifier_env *env) 17107 { 17108 struct bpf_prog_aux *aux = env->prog->aux; 17109 int i, ret; 17110 17111 if (!aux->func_info) 17112 return 0; 17113 17114 for (i = 1; i < env->subprog_cnt; i++) { 17115 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 17116 continue; 17117 env->insn_idx = env->subprog_info[i].start; 17118 WARN_ON_ONCE(env->insn_idx == 0); 17119 ret = do_check_common(env, i); 17120 if (ret) { 17121 return ret; 17122 } else if (env->log.level & BPF_LOG_LEVEL) { 17123 verbose(env, 17124 "Func#%d is safe for any args that match its prototype\n", 17125 i); 17126 } 17127 } 17128 return 0; 17129 } 17130 17131 static int do_check_main(struct bpf_verifier_env *env) 17132 { 17133 int ret; 17134 17135 env->insn_idx = 0; 17136 ret = do_check_common(env, 0); 17137 if (!ret) 17138 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 17139 return ret; 17140 } 17141 17142 17143 static void print_verification_stats(struct bpf_verifier_env *env) 17144 { 17145 int i; 17146 17147 if (env->log.level & BPF_LOG_STATS) { 17148 verbose(env, "verification time %lld usec\n", 17149 div_u64(env->verification_time, 1000)); 17150 verbose(env, "stack depth "); 17151 for (i = 0; i < env->subprog_cnt; i++) { 17152 u32 depth = env->subprog_info[i].stack_depth; 17153 17154 verbose(env, "%d", depth); 17155 if (i + 1 < env->subprog_cnt) 17156 verbose(env, "+"); 17157 } 17158 verbose(env, "\n"); 17159 } 17160 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 17161 "total_states %d peak_states %d mark_read %d\n", 17162 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 17163 env->max_states_per_insn, env->total_states, 17164 env->peak_states, env->longest_mark_read_walk); 17165 } 17166 17167 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 17168 { 17169 const struct btf_type *t, *func_proto; 17170 const struct bpf_struct_ops *st_ops; 17171 const struct btf_member *member; 17172 struct bpf_prog *prog = env->prog; 17173 u32 btf_id, member_idx; 17174 const char *mname; 17175 17176 if (!prog->gpl_compatible) { 17177 verbose(env, "struct ops programs must have a GPL compatible license\n"); 17178 return -EINVAL; 17179 } 17180 17181 btf_id = prog->aux->attach_btf_id; 17182 st_ops = bpf_struct_ops_find(btf_id); 17183 if (!st_ops) { 17184 verbose(env, "attach_btf_id %u is not a supported struct\n", 17185 btf_id); 17186 return -ENOTSUPP; 17187 } 17188 17189 t = st_ops->type; 17190 member_idx = prog->expected_attach_type; 17191 if (member_idx >= btf_type_vlen(t)) { 17192 verbose(env, "attach to invalid member idx %u of struct %s\n", 17193 member_idx, st_ops->name); 17194 return -EINVAL; 17195 } 17196 17197 member = &btf_type_member(t)[member_idx]; 17198 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 17199 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 17200 NULL); 17201 if (!func_proto) { 17202 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 17203 mname, member_idx, st_ops->name); 17204 return -EINVAL; 17205 } 17206 17207 if (st_ops->check_member) { 17208 int err = st_ops->check_member(t, member, prog); 17209 17210 if (err) { 17211 verbose(env, "attach to unsupported member %s of struct %s\n", 17212 mname, st_ops->name); 17213 return err; 17214 } 17215 } 17216 17217 prog->aux->attach_func_proto = func_proto; 17218 prog->aux->attach_func_name = mname; 17219 env->ops = st_ops->verifier_ops; 17220 17221 return 0; 17222 } 17223 #define SECURITY_PREFIX "security_" 17224 17225 static int check_attach_modify_return(unsigned long addr, const char *func_name) 17226 { 17227 if (within_error_injection_list(addr) || 17228 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 17229 return 0; 17230 17231 return -EINVAL; 17232 } 17233 17234 /* list of non-sleepable functions that are otherwise on 17235 * ALLOW_ERROR_INJECTION list 17236 */ 17237 BTF_SET_START(btf_non_sleepable_error_inject) 17238 /* Three functions below can be called from sleepable and non-sleepable context. 17239 * Assume non-sleepable from bpf safety point of view. 17240 */ 17241 BTF_ID(func, __filemap_add_folio) 17242 BTF_ID(func, should_fail_alloc_page) 17243 BTF_ID(func, should_failslab) 17244 BTF_SET_END(btf_non_sleepable_error_inject) 17245 17246 static int check_non_sleepable_error_inject(u32 btf_id) 17247 { 17248 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 17249 } 17250 17251 int bpf_check_attach_target(struct bpf_verifier_log *log, 17252 const struct bpf_prog *prog, 17253 const struct bpf_prog *tgt_prog, 17254 u32 btf_id, 17255 struct bpf_attach_target_info *tgt_info) 17256 { 17257 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 17258 const char prefix[] = "btf_trace_"; 17259 int ret = 0, subprog = -1, i; 17260 const struct btf_type *t; 17261 bool conservative = true; 17262 const char *tname; 17263 struct btf *btf; 17264 long addr = 0; 17265 17266 if (!btf_id) { 17267 bpf_log(log, "Tracing programs must provide btf_id\n"); 17268 return -EINVAL; 17269 } 17270 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 17271 if (!btf) { 17272 bpf_log(log, 17273 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 17274 return -EINVAL; 17275 } 17276 t = btf_type_by_id(btf, btf_id); 17277 if (!t) { 17278 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 17279 return -EINVAL; 17280 } 17281 tname = btf_name_by_offset(btf, t->name_off); 17282 if (!tname) { 17283 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 17284 return -EINVAL; 17285 } 17286 if (tgt_prog) { 17287 struct bpf_prog_aux *aux = tgt_prog->aux; 17288 17289 if (bpf_prog_is_dev_bound(prog->aux) && 17290 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 17291 bpf_log(log, "Target program bound device mismatch"); 17292 return -EINVAL; 17293 } 17294 17295 for (i = 0; i < aux->func_info_cnt; i++) 17296 if (aux->func_info[i].type_id == btf_id) { 17297 subprog = i; 17298 break; 17299 } 17300 if (subprog == -1) { 17301 bpf_log(log, "Subprog %s doesn't exist\n", tname); 17302 return -EINVAL; 17303 } 17304 conservative = aux->func_info_aux[subprog].unreliable; 17305 if (prog_extension) { 17306 if (conservative) { 17307 bpf_log(log, 17308 "Cannot replace static functions\n"); 17309 return -EINVAL; 17310 } 17311 if (!prog->jit_requested) { 17312 bpf_log(log, 17313 "Extension programs should be JITed\n"); 17314 return -EINVAL; 17315 } 17316 } 17317 if (!tgt_prog->jited) { 17318 bpf_log(log, "Can attach to only JITed progs\n"); 17319 return -EINVAL; 17320 } 17321 if (tgt_prog->type == prog->type) { 17322 /* Cannot fentry/fexit another fentry/fexit program. 17323 * Cannot attach program extension to another extension. 17324 * It's ok to attach fentry/fexit to extension program. 17325 */ 17326 bpf_log(log, "Cannot recursively attach\n"); 17327 return -EINVAL; 17328 } 17329 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 17330 prog_extension && 17331 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 17332 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 17333 /* Program extensions can extend all program types 17334 * except fentry/fexit. The reason is the following. 17335 * The fentry/fexit programs are used for performance 17336 * analysis, stats and can be attached to any program 17337 * type except themselves. When extension program is 17338 * replacing XDP function it is necessary to allow 17339 * performance analysis of all functions. Both original 17340 * XDP program and its program extension. Hence 17341 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 17342 * allowed. If extending of fentry/fexit was allowed it 17343 * would be possible to create long call chain 17344 * fentry->extension->fentry->extension beyond 17345 * reasonable stack size. Hence extending fentry is not 17346 * allowed. 17347 */ 17348 bpf_log(log, "Cannot extend fentry/fexit\n"); 17349 return -EINVAL; 17350 } 17351 } else { 17352 if (prog_extension) { 17353 bpf_log(log, "Cannot replace kernel functions\n"); 17354 return -EINVAL; 17355 } 17356 } 17357 17358 switch (prog->expected_attach_type) { 17359 case BPF_TRACE_RAW_TP: 17360 if (tgt_prog) { 17361 bpf_log(log, 17362 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 17363 return -EINVAL; 17364 } 17365 if (!btf_type_is_typedef(t)) { 17366 bpf_log(log, "attach_btf_id %u is not a typedef\n", 17367 btf_id); 17368 return -EINVAL; 17369 } 17370 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 17371 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 17372 btf_id, tname); 17373 return -EINVAL; 17374 } 17375 tname += sizeof(prefix) - 1; 17376 t = btf_type_by_id(btf, t->type); 17377 if (!btf_type_is_ptr(t)) 17378 /* should never happen in valid vmlinux build */ 17379 return -EINVAL; 17380 t = btf_type_by_id(btf, t->type); 17381 if (!btf_type_is_func_proto(t)) 17382 /* should never happen in valid vmlinux build */ 17383 return -EINVAL; 17384 17385 break; 17386 case BPF_TRACE_ITER: 17387 if (!btf_type_is_func(t)) { 17388 bpf_log(log, "attach_btf_id %u is not a function\n", 17389 btf_id); 17390 return -EINVAL; 17391 } 17392 t = btf_type_by_id(btf, t->type); 17393 if (!btf_type_is_func_proto(t)) 17394 return -EINVAL; 17395 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 17396 if (ret) 17397 return ret; 17398 break; 17399 default: 17400 if (!prog_extension) 17401 return -EINVAL; 17402 fallthrough; 17403 case BPF_MODIFY_RETURN: 17404 case BPF_LSM_MAC: 17405 case BPF_LSM_CGROUP: 17406 case BPF_TRACE_FENTRY: 17407 case BPF_TRACE_FEXIT: 17408 if (!btf_type_is_func(t)) { 17409 bpf_log(log, "attach_btf_id %u is not a function\n", 17410 btf_id); 17411 return -EINVAL; 17412 } 17413 if (prog_extension && 17414 btf_check_type_match(log, prog, btf, t)) 17415 return -EINVAL; 17416 t = btf_type_by_id(btf, t->type); 17417 if (!btf_type_is_func_proto(t)) 17418 return -EINVAL; 17419 17420 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 17421 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 17422 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 17423 return -EINVAL; 17424 17425 if (tgt_prog && conservative) 17426 t = NULL; 17427 17428 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 17429 if (ret < 0) 17430 return ret; 17431 17432 if (tgt_prog) { 17433 if (subprog == 0) 17434 addr = (long) tgt_prog->bpf_func; 17435 else 17436 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 17437 } else { 17438 addr = kallsyms_lookup_name(tname); 17439 if (!addr) { 17440 bpf_log(log, 17441 "The address of function %s cannot be found\n", 17442 tname); 17443 return -ENOENT; 17444 } 17445 } 17446 17447 if (prog->aux->sleepable) { 17448 ret = -EINVAL; 17449 switch (prog->type) { 17450 case BPF_PROG_TYPE_TRACING: 17451 17452 /* fentry/fexit/fmod_ret progs can be sleepable if they are 17453 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 17454 */ 17455 if (!check_non_sleepable_error_inject(btf_id) && 17456 within_error_injection_list(addr)) 17457 ret = 0; 17458 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 17459 * in the fmodret id set with the KF_SLEEPABLE flag. 17460 */ 17461 else { 17462 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id); 17463 17464 if (flags && (*flags & KF_SLEEPABLE)) 17465 ret = 0; 17466 } 17467 break; 17468 case BPF_PROG_TYPE_LSM: 17469 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 17470 * Only some of them are sleepable. 17471 */ 17472 if (bpf_lsm_is_sleepable_hook(btf_id)) 17473 ret = 0; 17474 break; 17475 default: 17476 break; 17477 } 17478 if (ret) { 17479 bpf_log(log, "%s is not sleepable\n", tname); 17480 return ret; 17481 } 17482 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 17483 if (tgt_prog) { 17484 bpf_log(log, "can't modify return codes of BPF programs\n"); 17485 return -EINVAL; 17486 } 17487 ret = -EINVAL; 17488 if (btf_kfunc_is_modify_return(btf, btf_id) || 17489 !check_attach_modify_return(addr, tname)) 17490 ret = 0; 17491 if (ret) { 17492 bpf_log(log, "%s() is not modifiable\n", tname); 17493 return ret; 17494 } 17495 } 17496 17497 break; 17498 } 17499 tgt_info->tgt_addr = addr; 17500 tgt_info->tgt_name = tname; 17501 tgt_info->tgt_type = t; 17502 return 0; 17503 } 17504 17505 BTF_SET_START(btf_id_deny) 17506 BTF_ID_UNUSED 17507 #ifdef CONFIG_SMP 17508 BTF_ID(func, migrate_disable) 17509 BTF_ID(func, migrate_enable) 17510 #endif 17511 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 17512 BTF_ID(func, rcu_read_unlock_strict) 17513 #endif 17514 BTF_SET_END(btf_id_deny) 17515 17516 static bool can_be_sleepable(struct bpf_prog *prog) 17517 { 17518 if (prog->type == BPF_PROG_TYPE_TRACING) { 17519 switch (prog->expected_attach_type) { 17520 case BPF_TRACE_FENTRY: 17521 case BPF_TRACE_FEXIT: 17522 case BPF_MODIFY_RETURN: 17523 case BPF_TRACE_ITER: 17524 return true; 17525 default: 17526 return false; 17527 } 17528 } 17529 return prog->type == BPF_PROG_TYPE_LSM || 17530 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 17531 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 17532 } 17533 17534 static int check_attach_btf_id(struct bpf_verifier_env *env) 17535 { 17536 struct bpf_prog *prog = env->prog; 17537 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 17538 struct bpf_attach_target_info tgt_info = {}; 17539 u32 btf_id = prog->aux->attach_btf_id; 17540 struct bpf_trampoline *tr; 17541 int ret; 17542 u64 key; 17543 17544 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 17545 if (prog->aux->sleepable) 17546 /* attach_btf_id checked to be zero already */ 17547 return 0; 17548 verbose(env, "Syscall programs can only be sleepable\n"); 17549 return -EINVAL; 17550 } 17551 17552 if (prog->aux->sleepable && !can_be_sleepable(prog)) { 17553 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 17554 return -EINVAL; 17555 } 17556 17557 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 17558 return check_struct_ops_btf_id(env); 17559 17560 if (prog->type != BPF_PROG_TYPE_TRACING && 17561 prog->type != BPF_PROG_TYPE_LSM && 17562 prog->type != BPF_PROG_TYPE_EXT) 17563 return 0; 17564 17565 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 17566 if (ret) 17567 return ret; 17568 17569 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 17570 /* to make freplace equivalent to their targets, they need to 17571 * inherit env->ops and expected_attach_type for the rest of the 17572 * verification 17573 */ 17574 env->ops = bpf_verifier_ops[tgt_prog->type]; 17575 prog->expected_attach_type = tgt_prog->expected_attach_type; 17576 } 17577 17578 /* store info about the attachment target that will be used later */ 17579 prog->aux->attach_func_proto = tgt_info.tgt_type; 17580 prog->aux->attach_func_name = tgt_info.tgt_name; 17581 17582 if (tgt_prog) { 17583 prog->aux->saved_dst_prog_type = tgt_prog->type; 17584 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 17585 } 17586 17587 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 17588 prog->aux->attach_btf_trace = true; 17589 return 0; 17590 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 17591 if (!bpf_iter_prog_supported(prog)) 17592 return -EINVAL; 17593 return 0; 17594 } 17595 17596 if (prog->type == BPF_PROG_TYPE_LSM) { 17597 ret = bpf_lsm_verify_prog(&env->log, prog); 17598 if (ret < 0) 17599 return ret; 17600 } else if (prog->type == BPF_PROG_TYPE_TRACING && 17601 btf_id_set_contains(&btf_id_deny, btf_id)) { 17602 return -EINVAL; 17603 } 17604 17605 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 17606 tr = bpf_trampoline_get(key, &tgt_info); 17607 if (!tr) 17608 return -ENOMEM; 17609 17610 prog->aux->dst_trampoline = tr; 17611 return 0; 17612 } 17613 17614 struct btf *bpf_get_btf_vmlinux(void) 17615 { 17616 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 17617 mutex_lock(&bpf_verifier_lock); 17618 if (!btf_vmlinux) 17619 btf_vmlinux = btf_parse_vmlinux(); 17620 mutex_unlock(&bpf_verifier_lock); 17621 } 17622 return btf_vmlinux; 17623 } 17624 17625 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 17626 { 17627 u64 start_time = ktime_get_ns(); 17628 struct bpf_verifier_env *env; 17629 struct bpf_verifier_log *log; 17630 int i, len, ret = -EINVAL; 17631 bool is_priv; 17632 17633 /* no program is valid */ 17634 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 17635 return -EINVAL; 17636 17637 /* 'struct bpf_verifier_env' can be global, but since it's not small, 17638 * allocate/free it every time bpf_check() is called 17639 */ 17640 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 17641 if (!env) 17642 return -ENOMEM; 17643 log = &env->log; 17644 17645 len = (*prog)->len; 17646 env->insn_aux_data = 17647 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 17648 ret = -ENOMEM; 17649 if (!env->insn_aux_data) 17650 goto err_free_env; 17651 for (i = 0; i < len; i++) 17652 env->insn_aux_data[i].orig_idx = i; 17653 env->prog = *prog; 17654 env->ops = bpf_verifier_ops[env->prog->type]; 17655 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 17656 is_priv = bpf_capable(); 17657 17658 bpf_get_btf_vmlinux(); 17659 17660 /* grab the mutex to protect few globals used by verifier */ 17661 if (!is_priv) 17662 mutex_lock(&bpf_verifier_lock); 17663 17664 if (attr->log_level || attr->log_buf || attr->log_size) { 17665 /* user requested verbose verifier output 17666 * and supplied buffer to store the verification trace 17667 */ 17668 log->level = attr->log_level; 17669 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 17670 log->len_total = attr->log_size; 17671 17672 /* log attributes have to be sane */ 17673 if (!bpf_verifier_log_attr_valid(log)) { 17674 ret = -EINVAL; 17675 goto err_unlock; 17676 } 17677 } 17678 17679 mark_verifier_state_clean(env); 17680 17681 if (IS_ERR(btf_vmlinux)) { 17682 /* Either gcc or pahole or kernel are broken. */ 17683 verbose(env, "in-kernel BTF is malformed\n"); 17684 ret = PTR_ERR(btf_vmlinux); 17685 goto skip_full_check; 17686 } 17687 17688 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 17689 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 17690 env->strict_alignment = true; 17691 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 17692 env->strict_alignment = false; 17693 17694 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 17695 env->allow_uninit_stack = bpf_allow_uninit_stack(); 17696 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 17697 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 17698 env->bpf_capable = bpf_capable(); 17699 env->rcu_tag_supported = btf_vmlinux && 17700 btf_find_by_name_kind(btf_vmlinux, "rcu", BTF_KIND_TYPE_TAG) > 0; 17701 17702 if (is_priv) 17703 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 17704 17705 env->explored_states = kvcalloc(state_htab_size(env), 17706 sizeof(struct bpf_verifier_state_list *), 17707 GFP_USER); 17708 ret = -ENOMEM; 17709 if (!env->explored_states) 17710 goto skip_full_check; 17711 17712 ret = add_subprog_and_kfunc(env); 17713 if (ret < 0) 17714 goto skip_full_check; 17715 17716 ret = check_subprogs(env); 17717 if (ret < 0) 17718 goto skip_full_check; 17719 17720 ret = check_btf_info(env, attr, uattr); 17721 if (ret < 0) 17722 goto skip_full_check; 17723 17724 ret = check_attach_btf_id(env); 17725 if (ret) 17726 goto skip_full_check; 17727 17728 ret = resolve_pseudo_ldimm64(env); 17729 if (ret < 0) 17730 goto skip_full_check; 17731 17732 if (bpf_prog_is_offloaded(env->prog->aux)) { 17733 ret = bpf_prog_offload_verifier_prep(env->prog); 17734 if (ret) 17735 goto skip_full_check; 17736 } 17737 17738 ret = check_cfg(env); 17739 if (ret < 0) 17740 goto skip_full_check; 17741 17742 ret = do_check_subprogs(env); 17743 ret = ret ?: do_check_main(env); 17744 17745 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 17746 ret = bpf_prog_offload_finalize(env); 17747 17748 skip_full_check: 17749 kvfree(env->explored_states); 17750 17751 if (ret == 0) 17752 ret = check_max_stack_depth(env); 17753 17754 /* instruction rewrites happen after this point */ 17755 if (ret == 0) 17756 ret = optimize_bpf_loop(env); 17757 17758 if (is_priv) { 17759 if (ret == 0) 17760 opt_hard_wire_dead_code_branches(env); 17761 if (ret == 0) 17762 ret = opt_remove_dead_code(env); 17763 if (ret == 0) 17764 ret = opt_remove_nops(env); 17765 } else { 17766 if (ret == 0) 17767 sanitize_dead_code(env); 17768 } 17769 17770 if (ret == 0) 17771 /* program is valid, convert *(u32*)(ctx + off) accesses */ 17772 ret = convert_ctx_accesses(env); 17773 17774 if (ret == 0) 17775 ret = do_misc_fixups(env); 17776 17777 /* do 32-bit optimization after insn patching has done so those patched 17778 * insns could be handled correctly. 17779 */ 17780 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 17781 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 17782 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 17783 : false; 17784 } 17785 17786 if (ret == 0) 17787 ret = fixup_call_args(env); 17788 17789 env->verification_time = ktime_get_ns() - start_time; 17790 print_verification_stats(env); 17791 env->prog->aux->verified_insns = env->insn_processed; 17792 17793 if (log->level && bpf_verifier_log_full(log)) 17794 ret = -ENOSPC; 17795 if (log->level && !log->ubuf) { 17796 ret = -EFAULT; 17797 goto err_release_maps; 17798 } 17799 17800 if (ret) 17801 goto err_release_maps; 17802 17803 if (env->used_map_cnt) { 17804 /* if program passed verifier, update used_maps in bpf_prog_info */ 17805 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 17806 sizeof(env->used_maps[0]), 17807 GFP_KERNEL); 17808 17809 if (!env->prog->aux->used_maps) { 17810 ret = -ENOMEM; 17811 goto err_release_maps; 17812 } 17813 17814 memcpy(env->prog->aux->used_maps, env->used_maps, 17815 sizeof(env->used_maps[0]) * env->used_map_cnt); 17816 env->prog->aux->used_map_cnt = env->used_map_cnt; 17817 } 17818 if (env->used_btf_cnt) { 17819 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 17820 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 17821 sizeof(env->used_btfs[0]), 17822 GFP_KERNEL); 17823 if (!env->prog->aux->used_btfs) { 17824 ret = -ENOMEM; 17825 goto err_release_maps; 17826 } 17827 17828 memcpy(env->prog->aux->used_btfs, env->used_btfs, 17829 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 17830 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 17831 } 17832 if (env->used_map_cnt || env->used_btf_cnt) { 17833 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 17834 * bpf_ld_imm64 instructions 17835 */ 17836 convert_pseudo_ld_imm64(env); 17837 } 17838 17839 adjust_btf_func(env); 17840 17841 err_release_maps: 17842 if (!env->prog->aux->used_maps) 17843 /* if we didn't copy map pointers into bpf_prog_info, release 17844 * them now. Otherwise free_used_maps() will release them. 17845 */ 17846 release_maps(env); 17847 if (!env->prog->aux->used_btfs) 17848 release_btfs(env); 17849 17850 /* extension progs temporarily inherit the attach_type of their targets 17851 for verification purposes, so set it back to zero before returning 17852 */ 17853 if (env->prog->type == BPF_PROG_TYPE_EXT) 17854 env->prog->expected_attach_type = 0; 17855 17856 *prog = env->prog; 17857 err_unlock: 17858 if (!is_priv) 17859 mutex_unlock(&bpf_verifier_lock); 17860 vfree(env->insn_aux_data); 17861 err_free_env: 17862 kfree(env); 17863 return ret; 17864 } 17865