xref: /linux/kernel/bpf/verifier.c (revision 510b4d4c5d4cbfdeaf35e4bc6483e8afa16b0e9e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25 
26 #include "disasm.h"
27 
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 	[_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38 
39 /* bpf_check() is a static code analyzer that walks eBPF program
40  * instruction by instruction and updates register/stack state.
41  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42  *
43  * The first pass is depth-first-search to check that the program is a DAG.
44  * It rejects the following programs:
45  * - larger than BPF_MAXINSNS insns
46  * - if loop is present (detected via back-edge)
47  * - unreachable insns exist (shouldn't be a forest. program = one function)
48  * - out of bounds or malformed jumps
49  * The second pass is all possible path descent from the 1st insn.
50  * Since it's analyzing all paths through the program, the length of the
51  * analysis is limited to 64k insn, which may be hit even if total number of
52  * insn is less then 4K, but there are too many branches that change stack/regs.
53  * Number of 'branches to be analyzed' is limited to 1k
54  *
55  * On entry to each instruction, each register has a type, and the instruction
56  * changes the types of the registers depending on instruction semantics.
57  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58  * copied to R1.
59  *
60  * All registers are 64-bit.
61  * R0 - return register
62  * R1-R5 argument passing registers
63  * R6-R9 callee saved registers
64  * R10 - frame pointer read-only
65  *
66  * At the start of BPF program the register R1 contains a pointer to bpf_context
67  * and has type PTR_TO_CTX.
68  *
69  * Verifier tracks arithmetic operations on pointers in case:
70  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72  * 1st insn copies R10 (which has FRAME_PTR) type into R1
73  * and 2nd arithmetic instruction is pattern matched to recognize
74  * that it wants to construct a pointer to some element within stack.
75  * So after 2nd insn, the register R1 has type PTR_TO_STACK
76  * (and -20 constant is saved for further stack bounds checking).
77  * Meaning that this reg is a pointer to stack plus known immediate constant.
78  *
79  * Most of the time the registers have SCALAR_VALUE type, which
80  * means the register has some value, but it's not a valid pointer.
81  * (like pointer plus pointer becomes SCALAR_VALUE type)
82  *
83  * When verifier sees load or store instructions the type of base register
84  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85  * four pointer types recognized by check_mem_access() function.
86  *
87  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88  * and the range of [ptr, ptr + map's value_size) is accessible.
89  *
90  * registers used to pass values to function calls are checked against
91  * function argument constraints.
92  *
93  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94  * It means that the register type passed to this function must be
95  * PTR_TO_STACK and it will be used inside the function as
96  * 'pointer to map element key'
97  *
98  * For example the argument constraints for bpf_map_lookup_elem():
99  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100  *   .arg1_type = ARG_CONST_MAP_PTR,
101  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
102  *
103  * ret_type says that this function returns 'pointer to map elem value or null'
104  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105  * 2nd argument should be a pointer to stack, which will be used inside
106  * the helper function as a pointer to map element key.
107  *
108  * On the kernel side the helper function looks like:
109  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110  * {
111  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112  *    void *key = (void *) (unsigned long) r2;
113  *    void *value;
114  *
115  *    here kernel can access 'key' and 'map' pointers safely, knowing that
116  *    [key, key + map->key_size) bytes are valid and were initialized on
117  *    the stack of eBPF program.
118  * }
119  *
120  * Corresponding eBPF program may look like:
121  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
122  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
124  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125  * here verifier looks at prototype of map_lookup_elem() and sees:
126  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128  *
129  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131  * and were initialized prior to this call.
132  * If it's ok, then verifier allows this BPF_CALL insn and looks at
133  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135  * returns either pointer to map value or NULL.
136  *
137  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138  * insn, the register holding that pointer in the true branch changes state to
139  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140  * branch. See check_cond_jmp_op().
141  *
142  * After the call R0 is set to return type of the function and registers R1-R5
143  * are set to NOT_INIT to indicate that they are no longer readable.
144  *
145  * The following reference types represent a potential reference to a kernel
146  * resource which, after first being allocated, must be checked and freed by
147  * the BPF program:
148  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149  *
150  * When the verifier sees a helper call return a reference type, it allocates a
151  * pointer id for the reference and stores it in the current function state.
152  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154  * passes through a NULL-check conditional. For the branch wherein the state is
155  * changed to CONST_IMM, the verifier releases the reference.
156  *
157  * For each helper function that allocates a reference, such as
158  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159  * bpf_sk_release(). When a reference type passes into the release function,
160  * the verifier also releases the reference. If any unchecked or unreleased
161  * reference remains at the end of the program, the verifier rejects it.
162  */
163 
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 	/* verifer state is 'st'
167 	 * before processing instruction 'insn_idx'
168 	 * and after processing instruction 'prev_insn_idx'
169 	 */
170 	struct bpf_verifier_state st;
171 	int insn_idx;
172 	int prev_insn_idx;
173 	struct bpf_verifier_stack_elem *next;
174 	/* length of verifier log at the time this state was pushed on stack */
175 	u32 log_pos;
176 };
177 
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
179 #define BPF_COMPLEXITY_LIMIT_STATES	64
180 
181 #define BPF_MAP_KEY_POISON	(1ULL << 63)
182 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
183 
184 #define BPF_MAP_PTR_UNPRIV	1UL
185 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
186 					  POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188 
189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193 
194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198 
199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 			      const struct bpf_map *map, bool unpriv)
201 {
202 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 	unpriv |= bpf_map_ptr_unpriv(aux);
204 	aux->map_ptr_state = (unsigned long)map |
205 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207 
208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 	return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212 
213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217 
218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222 
223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 	bool poisoned = bpf_map_key_poisoned(aux);
226 
227 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230 
231 static bool bpf_pseudo_call(const struct bpf_insn *insn)
232 {
233 	return insn->code == (BPF_JMP | BPF_CALL) &&
234 	       insn->src_reg == BPF_PSEUDO_CALL;
235 }
236 
237 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
238 {
239 	return insn->code == (BPF_JMP | BPF_CALL) &&
240 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
241 }
242 
243 static bool bpf_pseudo_func(const struct bpf_insn *insn)
244 {
245 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW) &&
246 	       insn->src_reg == BPF_PSEUDO_FUNC;
247 }
248 
249 struct bpf_call_arg_meta {
250 	struct bpf_map *map_ptr;
251 	bool raw_mode;
252 	bool pkt_access;
253 	int regno;
254 	int access_size;
255 	int mem_size;
256 	u64 msize_max_value;
257 	int ref_obj_id;
258 	int map_uid;
259 	int func_id;
260 	struct btf *btf;
261 	u32 btf_id;
262 	struct btf *ret_btf;
263 	u32 ret_btf_id;
264 	u32 subprogno;
265 };
266 
267 struct btf *btf_vmlinux;
268 
269 static DEFINE_MUTEX(bpf_verifier_lock);
270 
271 static const struct bpf_line_info *
272 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
273 {
274 	const struct bpf_line_info *linfo;
275 	const struct bpf_prog *prog;
276 	u32 i, nr_linfo;
277 
278 	prog = env->prog;
279 	nr_linfo = prog->aux->nr_linfo;
280 
281 	if (!nr_linfo || insn_off >= prog->len)
282 		return NULL;
283 
284 	linfo = prog->aux->linfo;
285 	for (i = 1; i < nr_linfo; i++)
286 		if (insn_off < linfo[i].insn_off)
287 			break;
288 
289 	return &linfo[i - 1];
290 }
291 
292 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
293 		       va_list args)
294 {
295 	unsigned int n;
296 
297 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
298 
299 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
300 		  "verifier log line truncated - local buffer too short\n");
301 
302 	n = min(log->len_total - log->len_used - 1, n);
303 	log->kbuf[n] = '\0';
304 
305 	if (log->level == BPF_LOG_KERNEL) {
306 		pr_err("BPF:%s\n", log->kbuf);
307 		return;
308 	}
309 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
310 		log->len_used += n;
311 	else
312 		log->ubuf = NULL;
313 }
314 
315 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
316 {
317 	char zero = 0;
318 
319 	if (!bpf_verifier_log_needed(log))
320 		return;
321 
322 	log->len_used = new_pos;
323 	if (put_user(zero, log->ubuf + new_pos))
324 		log->ubuf = NULL;
325 }
326 
327 /* log_level controls verbosity level of eBPF verifier.
328  * bpf_verifier_log_write() is used to dump the verification trace to the log,
329  * so the user can figure out what's wrong with the program
330  */
331 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
332 					   const char *fmt, ...)
333 {
334 	va_list args;
335 
336 	if (!bpf_verifier_log_needed(&env->log))
337 		return;
338 
339 	va_start(args, fmt);
340 	bpf_verifier_vlog(&env->log, fmt, args);
341 	va_end(args);
342 }
343 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
344 
345 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
346 {
347 	struct bpf_verifier_env *env = private_data;
348 	va_list args;
349 
350 	if (!bpf_verifier_log_needed(&env->log))
351 		return;
352 
353 	va_start(args, fmt);
354 	bpf_verifier_vlog(&env->log, fmt, args);
355 	va_end(args);
356 }
357 
358 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
359 			    const char *fmt, ...)
360 {
361 	va_list args;
362 
363 	if (!bpf_verifier_log_needed(log))
364 		return;
365 
366 	va_start(args, fmt);
367 	bpf_verifier_vlog(log, fmt, args);
368 	va_end(args);
369 }
370 
371 static const char *ltrim(const char *s)
372 {
373 	while (isspace(*s))
374 		s++;
375 
376 	return s;
377 }
378 
379 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
380 					 u32 insn_off,
381 					 const char *prefix_fmt, ...)
382 {
383 	const struct bpf_line_info *linfo;
384 
385 	if (!bpf_verifier_log_needed(&env->log))
386 		return;
387 
388 	linfo = find_linfo(env, insn_off);
389 	if (!linfo || linfo == env->prev_linfo)
390 		return;
391 
392 	if (prefix_fmt) {
393 		va_list args;
394 
395 		va_start(args, prefix_fmt);
396 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
397 		va_end(args);
398 	}
399 
400 	verbose(env, "%s\n",
401 		ltrim(btf_name_by_offset(env->prog->aux->btf,
402 					 linfo->line_off)));
403 
404 	env->prev_linfo = linfo;
405 }
406 
407 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
408 				   struct bpf_reg_state *reg,
409 				   struct tnum *range, const char *ctx,
410 				   const char *reg_name)
411 {
412 	char tn_buf[48];
413 
414 	verbose(env, "At %s the register %s ", ctx, reg_name);
415 	if (!tnum_is_unknown(reg->var_off)) {
416 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
417 		verbose(env, "has value %s", tn_buf);
418 	} else {
419 		verbose(env, "has unknown scalar value");
420 	}
421 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
422 	verbose(env, " should have been in %s\n", tn_buf);
423 }
424 
425 static bool type_is_pkt_pointer(enum bpf_reg_type type)
426 {
427 	return type == PTR_TO_PACKET ||
428 	       type == PTR_TO_PACKET_META;
429 }
430 
431 static bool type_is_sk_pointer(enum bpf_reg_type type)
432 {
433 	return type == PTR_TO_SOCKET ||
434 		type == PTR_TO_SOCK_COMMON ||
435 		type == PTR_TO_TCP_SOCK ||
436 		type == PTR_TO_XDP_SOCK;
437 }
438 
439 static bool reg_type_not_null(enum bpf_reg_type type)
440 {
441 	return type == PTR_TO_SOCKET ||
442 		type == PTR_TO_TCP_SOCK ||
443 		type == PTR_TO_MAP_VALUE ||
444 		type == PTR_TO_MAP_KEY ||
445 		type == PTR_TO_SOCK_COMMON;
446 }
447 
448 static bool reg_type_may_be_null(enum bpf_reg_type type)
449 {
450 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
451 	       type == PTR_TO_SOCKET_OR_NULL ||
452 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
453 	       type == PTR_TO_TCP_SOCK_OR_NULL ||
454 	       type == PTR_TO_BTF_ID_OR_NULL ||
455 	       type == PTR_TO_MEM_OR_NULL ||
456 	       type == PTR_TO_RDONLY_BUF_OR_NULL ||
457 	       type == PTR_TO_RDWR_BUF_OR_NULL;
458 }
459 
460 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
461 {
462 	return reg->type == PTR_TO_MAP_VALUE &&
463 		map_value_has_spin_lock(reg->map_ptr);
464 }
465 
466 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
467 {
468 	return type == PTR_TO_SOCKET ||
469 		type == PTR_TO_SOCKET_OR_NULL ||
470 		type == PTR_TO_TCP_SOCK ||
471 		type == PTR_TO_TCP_SOCK_OR_NULL ||
472 		type == PTR_TO_MEM ||
473 		type == PTR_TO_MEM_OR_NULL;
474 }
475 
476 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
477 {
478 	return type == ARG_PTR_TO_SOCK_COMMON;
479 }
480 
481 static bool arg_type_may_be_null(enum bpf_arg_type type)
482 {
483 	return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
484 	       type == ARG_PTR_TO_MEM_OR_NULL ||
485 	       type == ARG_PTR_TO_CTX_OR_NULL ||
486 	       type == ARG_PTR_TO_SOCKET_OR_NULL ||
487 	       type == ARG_PTR_TO_ALLOC_MEM_OR_NULL ||
488 	       type == ARG_PTR_TO_STACK_OR_NULL;
489 }
490 
491 /* Determine whether the function releases some resources allocated by another
492  * function call. The first reference type argument will be assumed to be
493  * released by release_reference().
494  */
495 static bool is_release_function(enum bpf_func_id func_id)
496 {
497 	return func_id == BPF_FUNC_sk_release ||
498 	       func_id == BPF_FUNC_ringbuf_submit ||
499 	       func_id == BPF_FUNC_ringbuf_discard;
500 }
501 
502 static bool may_be_acquire_function(enum bpf_func_id func_id)
503 {
504 	return func_id == BPF_FUNC_sk_lookup_tcp ||
505 		func_id == BPF_FUNC_sk_lookup_udp ||
506 		func_id == BPF_FUNC_skc_lookup_tcp ||
507 		func_id == BPF_FUNC_map_lookup_elem ||
508 	        func_id == BPF_FUNC_ringbuf_reserve;
509 }
510 
511 static bool is_acquire_function(enum bpf_func_id func_id,
512 				const struct bpf_map *map)
513 {
514 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
515 
516 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
517 	    func_id == BPF_FUNC_sk_lookup_udp ||
518 	    func_id == BPF_FUNC_skc_lookup_tcp ||
519 	    func_id == BPF_FUNC_ringbuf_reserve)
520 		return true;
521 
522 	if (func_id == BPF_FUNC_map_lookup_elem &&
523 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
524 	     map_type == BPF_MAP_TYPE_SOCKHASH))
525 		return true;
526 
527 	return false;
528 }
529 
530 static bool is_ptr_cast_function(enum bpf_func_id func_id)
531 {
532 	return func_id == BPF_FUNC_tcp_sock ||
533 		func_id == BPF_FUNC_sk_fullsock ||
534 		func_id == BPF_FUNC_skc_to_tcp_sock ||
535 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
536 		func_id == BPF_FUNC_skc_to_udp6_sock ||
537 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
538 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
539 }
540 
541 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
542 {
543 	return BPF_CLASS(insn->code) == BPF_STX &&
544 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
545 	       insn->imm == BPF_CMPXCHG;
546 }
547 
548 /* string representation of 'enum bpf_reg_type' */
549 static const char * const reg_type_str[] = {
550 	[NOT_INIT]		= "?",
551 	[SCALAR_VALUE]		= "inv",
552 	[PTR_TO_CTX]		= "ctx",
553 	[CONST_PTR_TO_MAP]	= "map_ptr",
554 	[PTR_TO_MAP_VALUE]	= "map_value",
555 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
556 	[PTR_TO_STACK]		= "fp",
557 	[PTR_TO_PACKET]		= "pkt",
558 	[PTR_TO_PACKET_META]	= "pkt_meta",
559 	[PTR_TO_PACKET_END]	= "pkt_end",
560 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
561 	[PTR_TO_SOCKET]		= "sock",
562 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
563 	[PTR_TO_SOCK_COMMON]	= "sock_common",
564 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
565 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
566 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
567 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
568 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
569 	[PTR_TO_BTF_ID]		= "ptr_",
570 	[PTR_TO_BTF_ID_OR_NULL]	= "ptr_or_null_",
571 	[PTR_TO_PERCPU_BTF_ID]	= "percpu_ptr_",
572 	[PTR_TO_MEM]		= "mem",
573 	[PTR_TO_MEM_OR_NULL]	= "mem_or_null",
574 	[PTR_TO_RDONLY_BUF]	= "rdonly_buf",
575 	[PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
576 	[PTR_TO_RDWR_BUF]	= "rdwr_buf",
577 	[PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
578 	[PTR_TO_FUNC]		= "func",
579 	[PTR_TO_MAP_KEY]	= "map_key",
580 };
581 
582 static char slot_type_char[] = {
583 	[STACK_INVALID]	= '?',
584 	[STACK_SPILL]	= 'r',
585 	[STACK_MISC]	= 'm',
586 	[STACK_ZERO]	= '0',
587 };
588 
589 static void print_liveness(struct bpf_verifier_env *env,
590 			   enum bpf_reg_liveness live)
591 {
592 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
593 	    verbose(env, "_");
594 	if (live & REG_LIVE_READ)
595 		verbose(env, "r");
596 	if (live & REG_LIVE_WRITTEN)
597 		verbose(env, "w");
598 	if (live & REG_LIVE_DONE)
599 		verbose(env, "D");
600 }
601 
602 static struct bpf_func_state *func(struct bpf_verifier_env *env,
603 				   const struct bpf_reg_state *reg)
604 {
605 	struct bpf_verifier_state *cur = env->cur_state;
606 
607 	return cur->frame[reg->frameno];
608 }
609 
610 static const char *kernel_type_name(const struct btf* btf, u32 id)
611 {
612 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
613 }
614 
615 static void print_verifier_state(struct bpf_verifier_env *env,
616 				 const struct bpf_func_state *state)
617 {
618 	const struct bpf_reg_state *reg;
619 	enum bpf_reg_type t;
620 	int i;
621 
622 	if (state->frameno)
623 		verbose(env, " frame%d:", state->frameno);
624 	for (i = 0; i < MAX_BPF_REG; i++) {
625 		reg = &state->regs[i];
626 		t = reg->type;
627 		if (t == NOT_INIT)
628 			continue;
629 		verbose(env, " R%d", i);
630 		print_liveness(env, reg->live);
631 		verbose(env, "=%s", reg_type_str[t]);
632 		if (t == SCALAR_VALUE && reg->precise)
633 			verbose(env, "P");
634 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
635 		    tnum_is_const(reg->var_off)) {
636 			/* reg->off should be 0 for SCALAR_VALUE */
637 			verbose(env, "%lld", reg->var_off.value + reg->off);
638 		} else {
639 			if (t == PTR_TO_BTF_ID ||
640 			    t == PTR_TO_BTF_ID_OR_NULL ||
641 			    t == PTR_TO_PERCPU_BTF_ID)
642 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
643 			verbose(env, "(id=%d", reg->id);
644 			if (reg_type_may_be_refcounted_or_null(t))
645 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
646 			if (t != SCALAR_VALUE)
647 				verbose(env, ",off=%d", reg->off);
648 			if (type_is_pkt_pointer(t))
649 				verbose(env, ",r=%d", reg->range);
650 			else if (t == CONST_PTR_TO_MAP ||
651 				 t == PTR_TO_MAP_KEY ||
652 				 t == PTR_TO_MAP_VALUE ||
653 				 t == PTR_TO_MAP_VALUE_OR_NULL)
654 				verbose(env, ",ks=%d,vs=%d",
655 					reg->map_ptr->key_size,
656 					reg->map_ptr->value_size);
657 			if (tnum_is_const(reg->var_off)) {
658 				/* Typically an immediate SCALAR_VALUE, but
659 				 * could be a pointer whose offset is too big
660 				 * for reg->off
661 				 */
662 				verbose(env, ",imm=%llx", reg->var_off.value);
663 			} else {
664 				if (reg->smin_value != reg->umin_value &&
665 				    reg->smin_value != S64_MIN)
666 					verbose(env, ",smin_value=%lld",
667 						(long long)reg->smin_value);
668 				if (reg->smax_value != reg->umax_value &&
669 				    reg->smax_value != S64_MAX)
670 					verbose(env, ",smax_value=%lld",
671 						(long long)reg->smax_value);
672 				if (reg->umin_value != 0)
673 					verbose(env, ",umin_value=%llu",
674 						(unsigned long long)reg->umin_value);
675 				if (reg->umax_value != U64_MAX)
676 					verbose(env, ",umax_value=%llu",
677 						(unsigned long long)reg->umax_value);
678 				if (!tnum_is_unknown(reg->var_off)) {
679 					char tn_buf[48];
680 
681 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
682 					verbose(env, ",var_off=%s", tn_buf);
683 				}
684 				if (reg->s32_min_value != reg->smin_value &&
685 				    reg->s32_min_value != S32_MIN)
686 					verbose(env, ",s32_min_value=%d",
687 						(int)(reg->s32_min_value));
688 				if (reg->s32_max_value != reg->smax_value &&
689 				    reg->s32_max_value != S32_MAX)
690 					verbose(env, ",s32_max_value=%d",
691 						(int)(reg->s32_max_value));
692 				if (reg->u32_min_value != reg->umin_value &&
693 				    reg->u32_min_value != U32_MIN)
694 					verbose(env, ",u32_min_value=%d",
695 						(int)(reg->u32_min_value));
696 				if (reg->u32_max_value != reg->umax_value &&
697 				    reg->u32_max_value != U32_MAX)
698 					verbose(env, ",u32_max_value=%d",
699 						(int)(reg->u32_max_value));
700 			}
701 			verbose(env, ")");
702 		}
703 	}
704 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
705 		char types_buf[BPF_REG_SIZE + 1];
706 		bool valid = false;
707 		int j;
708 
709 		for (j = 0; j < BPF_REG_SIZE; j++) {
710 			if (state->stack[i].slot_type[j] != STACK_INVALID)
711 				valid = true;
712 			types_buf[j] = slot_type_char[
713 					state->stack[i].slot_type[j]];
714 		}
715 		types_buf[BPF_REG_SIZE] = 0;
716 		if (!valid)
717 			continue;
718 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
719 		print_liveness(env, state->stack[i].spilled_ptr.live);
720 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
721 			reg = &state->stack[i].spilled_ptr;
722 			t = reg->type;
723 			verbose(env, "=%s", reg_type_str[t]);
724 			if (t == SCALAR_VALUE && reg->precise)
725 				verbose(env, "P");
726 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
727 				verbose(env, "%lld", reg->var_off.value + reg->off);
728 		} else {
729 			verbose(env, "=%s", types_buf);
730 		}
731 	}
732 	if (state->acquired_refs && state->refs[0].id) {
733 		verbose(env, " refs=%d", state->refs[0].id);
734 		for (i = 1; i < state->acquired_refs; i++)
735 			if (state->refs[i].id)
736 				verbose(env, ",%d", state->refs[i].id);
737 	}
738 	if (state->in_callback_fn)
739 		verbose(env, " cb");
740 	if (state->in_async_callback_fn)
741 		verbose(env, " async_cb");
742 	verbose(env, "\n");
743 }
744 
745 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
746  * small to hold src. This is different from krealloc since we don't want to preserve
747  * the contents of dst.
748  *
749  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
750  * not be allocated.
751  */
752 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
753 {
754 	size_t bytes;
755 
756 	if (ZERO_OR_NULL_PTR(src))
757 		goto out;
758 
759 	if (unlikely(check_mul_overflow(n, size, &bytes)))
760 		return NULL;
761 
762 	if (ksize(dst) < bytes) {
763 		kfree(dst);
764 		dst = kmalloc_track_caller(bytes, flags);
765 		if (!dst)
766 			return NULL;
767 	}
768 
769 	memcpy(dst, src, bytes);
770 out:
771 	return dst ? dst : ZERO_SIZE_PTR;
772 }
773 
774 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
775  * small to hold new_n items. new items are zeroed out if the array grows.
776  *
777  * Contrary to krealloc_array, does not free arr if new_n is zero.
778  */
779 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
780 {
781 	if (!new_n || old_n == new_n)
782 		goto out;
783 
784 	arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
785 	if (!arr)
786 		return NULL;
787 
788 	if (new_n > old_n)
789 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
790 
791 out:
792 	return arr ? arr : ZERO_SIZE_PTR;
793 }
794 
795 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
796 {
797 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
798 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
799 	if (!dst->refs)
800 		return -ENOMEM;
801 
802 	dst->acquired_refs = src->acquired_refs;
803 	return 0;
804 }
805 
806 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
807 {
808 	size_t n = src->allocated_stack / BPF_REG_SIZE;
809 
810 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
811 				GFP_KERNEL);
812 	if (!dst->stack)
813 		return -ENOMEM;
814 
815 	dst->allocated_stack = src->allocated_stack;
816 	return 0;
817 }
818 
819 static int resize_reference_state(struct bpf_func_state *state, size_t n)
820 {
821 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
822 				    sizeof(struct bpf_reference_state));
823 	if (!state->refs)
824 		return -ENOMEM;
825 
826 	state->acquired_refs = n;
827 	return 0;
828 }
829 
830 static int grow_stack_state(struct bpf_func_state *state, int size)
831 {
832 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
833 
834 	if (old_n >= n)
835 		return 0;
836 
837 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
838 	if (!state->stack)
839 		return -ENOMEM;
840 
841 	state->allocated_stack = size;
842 	return 0;
843 }
844 
845 /* Acquire a pointer id from the env and update the state->refs to include
846  * this new pointer reference.
847  * On success, returns a valid pointer id to associate with the register
848  * On failure, returns a negative errno.
849  */
850 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
851 {
852 	struct bpf_func_state *state = cur_func(env);
853 	int new_ofs = state->acquired_refs;
854 	int id, err;
855 
856 	err = resize_reference_state(state, state->acquired_refs + 1);
857 	if (err)
858 		return err;
859 	id = ++env->id_gen;
860 	state->refs[new_ofs].id = id;
861 	state->refs[new_ofs].insn_idx = insn_idx;
862 
863 	return id;
864 }
865 
866 /* release function corresponding to acquire_reference_state(). Idempotent. */
867 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
868 {
869 	int i, last_idx;
870 
871 	last_idx = state->acquired_refs - 1;
872 	for (i = 0; i < state->acquired_refs; i++) {
873 		if (state->refs[i].id == ptr_id) {
874 			if (last_idx && i != last_idx)
875 				memcpy(&state->refs[i], &state->refs[last_idx],
876 				       sizeof(*state->refs));
877 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
878 			state->acquired_refs--;
879 			return 0;
880 		}
881 	}
882 	return -EINVAL;
883 }
884 
885 static void free_func_state(struct bpf_func_state *state)
886 {
887 	if (!state)
888 		return;
889 	kfree(state->refs);
890 	kfree(state->stack);
891 	kfree(state);
892 }
893 
894 static void clear_jmp_history(struct bpf_verifier_state *state)
895 {
896 	kfree(state->jmp_history);
897 	state->jmp_history = NULL;
898 	state->jmp_history_cnt = 0;
899 }
900 
901 static void free_verifier_state(struct bpf_verifier_state *state,
902 				bool free_self)
903 {
904 	int i;
905 
906 	for (i = 0; i <= state->curframe; i++) {
907 		free_func_state(state->frame[i]);
908 		state->frame[i] = NULL;
909 	}
910 	clear_jmp_history(state);
911 	if (free_self)
912 		kfree(state);
913 }
914 
915 /* copy verifier state from src to dst growing dst stack space
916  * when necessary to accommodate larger src stack
917  */
918 static int copy_func_state(struct bpf_func_state *dst,
919 			   const struct bpf_func_state *src)
920 {
921 	int err;
922 
923 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
924 	err = copy_reference_state(dst, src);
925 	if (err)
926 		return err;
927 	return copy_stack_state(dst, src);
928 }
929 
930 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
931 			       const struct bpf_verifier_state *src)
932 {
933 	struct bpf_func_state *dst;
934 	int i, err;
935 
936 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
937 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
938 					    GFP_USER);
939 	if (!dst_state->jmp_history)
940 		return -ENOMEM;
941 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
942 
943 	/* if dst has more stack frames then src frame, free them */
944 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
945 		free_func_state(dst_state->frame[i]);
946 		dst_state->frame[i] = NULL;
947 	}
948 	dst_state->speculative = src->speculative;
949 	dst_state->curframe = src->curframe;
950 	dst_state->active_spin_lock = src->active_spin_lock;
951 	dst_state->branches = src->branches;
952 	dst_state->parent = src->parent;
953 	dst_state->first_insn_idx = src->first_insn_idx;
954 	dst_state->last_insn_idx = src->last_insn_idx;
955 	for (i = 0; i <= src->curframe; i++) {
956 		dst = dst_state->frame[i];
957 		if (!dst) {
958 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
959 			if (!dst)
960 				return -ENOMEM;
961 			dst_state->frame[i] = dst;
962 		}
963 		err = copy_func_state(dst, src->frame[i]);
964 		if (err)
965 			return err;
966 	}
967 	return 0;
968 }
969 
970 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
971 {
972 	while (st) {
973 		u32 br = --st->branches;
974 
975 		/* WARN_ON(br > 1) technically makes sense here,
976 		 * but see comment in push_stack(), hence:
977 		 */
978 		WARN_ONCE((int)br < 0,
979 			  "BUG update_branch_counts:branches_to_explore=%d\n",
980 			  br);
981 		if (br)
982 			break;
983 		st = st->parent;
984 	}
985 }
986 
987 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
988 		     int *insn_idx, bool pop_log)
989 {
990 	struct bpf_verifier_state *cur = env->cur_state;
991 	struct bpf_verifier_stack_elem *elem, *head = env->head;
992 	int err;
993 
994 	if (env->head == NULL)
995 		return -ENOENT;
996 
997 	if (cur) {
998 		err = copy_verifier_state(cur, &head->st);
999 		if (err)
1000 			return err;
1001 	}
1002 	if (pop_log)
1003 		bpf_vlog_reset(&env->log, head->log_pos);
1004 	if (insn_idx)
1005 		*insn_idx = head->insn_idx;
1006 	if (prev_insn_idx)
1007 		*prev_insn_idx = head->prev_insn_idx;
1008 	elem = head->next;
1009 	free_verifier_state(&head->st, false);
1010 	kfree(head);
1011 	env->head = elem;
1012 	env->stack_size--;
1013 	return 0;
1014 }
1015 
1016 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1017 					     int insn_idx, int prev_insn_idx,
1018 					     bool speculative)
1019 {
1020 	struct bpf_verifier_state *cur = env->cur_state;
1021 	struct bpf_verifier_stack_elem *elem;
1022 	int err;
1023 
1024 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1025 	if (!elem)
1026 		goto err;
1027 
1028 	elem->insn_idx = insn_idx;
1029 	elem->prev_insn_idx = prev_insn_idx;
1030 	elem->next = env->head;
1031 	elem->log_pos = env->log.len_used;
1032 	env->head = elem;
1033 	env->stack_size++;
1034 	err = copy_verifier_state(&elem->st, cur);
1035 	if (err)
1036 		goto err;
1037 	elem->st.speculative |= speculative;
1038 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1039 		verbose(env, "The sequence of %d jumps is too complex.\n",
1040 			env->stack_size);
1041 		goto err;
1042 	}
1043 	if (elem->st.parent) {
1044 		++elem->st.parent->branches;
1045 		/* WARN_ON(branches > 2) technically makes sense here,
1046 		 * but
1047 		 * 1. speculative states will bump 'branches' for non-branch
1048 		 * instructions
1049 		 * 2. is_state_visited() heuristics may decide not to create
1050 		 * a new state for a sequence of branches and all such current
1051 		 * and cloned states will be pointing to a single parent state
1052 		 * which might have large 'branches' count.
1053 		 */
1054 	}
1055 	return &elem->st;
1056 err:
1057 	free_verifier_state(env->cur_state, true);
1058 	env->cur_state = NULL;
1059 	/* pop all elements and return */
1060 	while (!pop_stack(env, NULL, NULL, false));
1061 	return NULL;
1062 }
1063 
1064 #define CALLER_SAVED_REGS 6
1065 static const int caller_saved[CALLER_SAVED_REGS] = {
1066 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1067 };
1068 
1069 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1070 				struct bpf_reg_state *reg);
1071 
1072 /* This helper doesn't clear reg->id */
1073 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1074 {
1075 	reg->var_off = tnum_const(imm);
1076 	reg->smin_value = (s64)imm;
1077 	reg->smax_value = (s64)imm;
1078 	reg->umin_value = imm;
1079 	reg->umax_value = imm;
1080 
1081 	reg->s32_min_value = (s32)imm;
1082 	reg->s32_max_value = (s32)imm;
1083 	reg->u32_min_value = (u32)imm;
1084 	reg->u32_max_value = (u32)imm;
1085 }
1086 
1087 /* Mark the unknown part of a register (variable offset or scalar value) as
1088  * known to have the value @imm.
1089  */
1090 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1091 {
1092 	/* Clear id, off, and union(map_ptr, range) */
1093 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1094 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1095 	___mark_reg_known(reg, imm);
1096 }
1097 
1098 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1099 {
1100 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1101 	reg->s32_min_value = (s32)imm;
1102 	reg->s32_max_value = (s32)imm;
1103 	reg->u32_min_value = (u32)imm;
1104 	reg->u32_max_value = (u32)imm;
1105 }
1106 
1107 /* Mark the 'variable offset' part of a register as zero.  This should be
1108  * used only on registers holding a pointer type.
1109  */
1110 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1111 {
1112 	__mark_reg_known(reg, 0);
1113 }
1114 
1115 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1116 {
1117 	__mark_reg_known(reg, 0);
1118 	reg->type = SCALAR_VALUE;
1119 }
1120 
1121 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1122 				struct bpf_reg_state *regs, u32 regno)
1123 {
1124 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1125 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1126 		/* Something bad happened, let's kill all regs */
1127 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1128 			__mark_reg_not_init(env, regs + regno);
1129 		return;
1130 	}
1131 	__mark_reg_known_zero(regs + regno);
1132 }
1133 
1134 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1135 {
1136 	switch (reg->type) {
1137 	case PTR_TO_MAP_VALUE_OR_NULL: {
1138 		const struct bpf_map *map = reg->map_ptr;
1139 
1140 		if (map->inner_map_meta) {
1141 			reg->type = CONST_PTR_TO_MAP;
1142 			reg->map_ptr = map->inner_map_meta;
1143 			/* transfer reg's id which is unique for every map_lookup_elem
1144 			 * as UID of the inner map.
1145 			 */
1146 			reg->map_uid = reg->id;
1147 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1148 			reg->type = PTR_TO_XDP_SOCK;
1149 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1150 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1151 			reg->type = PTR_TO_SOCKET;
1152 		} else {
1153 			reg->type = PTR_TO_MAP_VALUE;
1154 		}
1155 		break;
1156 	}
1157 	case PTR_TO_SOCKET_OR_NULL:
1158 		reg->type = PTR_TO_SOCKET;
1159 		break;
1160 	case PTR_TO_SOCK_COMMON_OR_NULL:
1161 		reg->type = PTR_TO_SOCK_COMMON;
1162 		break;
1163 	case PTR_TO_TCP_SOCK_OR_NULL:
1164 		reg->type = PTR_TO_TCP_SOCK;
1165 		break;
1166 	case PTR_TO_BTF_ID_OR_NULL:
1167 		reg->type = PTR_TO_BTF_ID;
1168 		break;
1169 	case PTR_TO_MEM_OR_NULL:
1170 		reg->type = PTR_TO_MEM;
1171 		break;
1172 	case PTR_TO_RDONLY_BUF_OR_NULL:
1173 		reg->type = PTR_TO_RDONLY_BUF;
1174 		break;
1175 	case PTR_TO_RDWR_BUF_OR_NULL:
1176 		reg->type = PTR_TO_RDWR_BUF;
1177 		break;
1178 	default:
1179 		WARN_ONCE(1, "unknown nullable register type");
1180 	}
1181 }
1182 
1183 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1184 {
1185 	return type_is_pkt_pointer(reg->type);
1186 }
1187 
1188 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1189 {
1190 	return reg_is_pkt_pointer(reg) ||
1191 	       reg->type == PTR_TO_PACKET_END;
1192 }
1193 
1194 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1195 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1196 				    enum bpf_reg_type which)
1197 {
1198 	/* The register can already have a range from prior markings.
1199 	 * This is fine as long as it hasn't been advanced from its
1200 	 * origin.
1201 	 */
1202 	return reg->type == which &&
1203 	       reg->id == 0 &&
1204 	       reg->off == 0 &&
1205 	       tnum_equals_const(reg->var_off, 0);
1206 }
1207 
1208 /* Reset the min/max bounds of a register */
1209 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1210 {
1211 	reg->smin_value = S64_MIN;
1212 	reg->smax_value = S64_MAX;
1213 	reg->umin_value = 0;
1214 	reg->umax_value = U64_MAX;
1215 
1216 	reg->s32_min_value = S32_MIN;
1217 	reg->s32_max_value = S32_MAX;
1218 	reg->u32_min_value = 0;
1219 	reg->u32_max_value = U32_MAX;
1220 }
1221 
1222 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1223 {
1224 	reg->smin_value = S64_MIN;
1225 	reg->smax_value = S64_MAX;
1226 	reg->umin_value = 0;
1227 	reg->umax_value = U64_MAX;
1228 }
1229 
1230 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1231 {
1232 	reg->s32_min_value = S32_MIN;
1233 	reg->s32_max_value = S32_MAX;
1234 	reg->u32_min_value = 0;
1235 	reg->u32_max_value = U32_MAX;
1236 }
1237 
1238 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1239 {
1240 	struct tnum var32_off = tnum_subreg(reg->var_off);
1241 
1242 	/* min signed is max(sign bit) | min(other bits) */
1243 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1244 			var32_off.value | (var32_off.mask & S32_MIN));
1245 	/* max signed is min(sign bit) | max(other bits) */
1246 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1247 			var32_off.value | (var32_off.mask & S32_MAX));
1248 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1249 	reg->u32_max_value = min(reg->u32_max_value,
1250 				 (u32)(var32_off.value | var32_off.mask));
1251 }
1252 
1253 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1254 {
1255 	/* min signed is max(sign bit) | min(other bits) */
1256 	reg->smin_value = max_t(s64, reg->smin_value,
1257 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1258 	/* max signed is min(sign bit) | max(other bits) */
1259 	reg->smax_value = min_t(s64, reg->smax_value,
1260 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1261 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1262 	reg->umax_value = min(reg->umax_value,
1263 			      reg->var_off.value | reg->var_off.mask);
1264 }
1265 
1266 static void __update_reg_bounds(struct bpf_reg_state *reg)
1267 {
1268 	__update_reg32_bounds(reg);
1269 	__update_reg64_bounds(reg);
1270 }
1271 
1272 /* Uses signed min/max values to inform unsigned, and vice-versa */
1273 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1274 {
1275 	/* Learn sign from signed bounds.
1276 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1277 	 * are the same, so combine.  This works even in the negative case, e.g.
1278 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1279 	 */
1280 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1281 		reg->s32_min_value = reg->u32_min_value =
1282 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1283 		reg->s32_max_value = reg->u32_max_value =
1284 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1285 		return;
1286 	}
1287 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1288 	 * boundary, so we must be careful.
1289 	 */
1290 	if ((s32)reg->u32_max_value >= 0) {
1291 		/* Positive.  We can't learn anything from the smin, but smax
1292 		 * is positive, hence safe.
1293 		 */
1294 		reg->s32_min_value = reg->u32_min_value;
1295 		reg->s32_max_value = reg->u32_max_value =
1296 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1297 	} else if ((s32)reg->u32_min_value < 0) {
1298 		/* Negative.  We can't learn anything from the smax, but smin
1299 		 * is negative, hence safe.
1300 		 */
1301 		reg->s32_min_value = reg->u32_min_value =
1302 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1303 		reg->s32_max_value = reg->u32_max_value;
1304 	}
1305 }
1306 
1307 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1308 {
1309 	/* Learn sign from signed bounds.
1310 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1311 	 * are the same, so combine.  This works even in the negative case, e.g.
1312 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1313 	 */
1314 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1315 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1316 							  reg->umin_value);
1317 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1318 							  reg->umax_value);
1319 		return;
1320 	}
1321 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1322 	 * boundary, so we must be careful.
1323 	 */
1324 	if ((s64)reg->umax_value >= 0) {
1325 		/* Positive.  We can't learn anything from the smin, but smax
1326 		 * is positive, hence safe.
1327 		 */
1328 		reg->smin_value = reg->umin_value;
1329 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1330 							  reg->umax_value);
1331 	} else if ((s64)reg->umin_value < 0) {
1332 		/* Negative.  We can't learn anything from the smax, but smin
1333 		 * is negative, hence safe.
1334 		 */
1335 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1336 							  reg->umin_value);
1337 		reg->smax_value = reg->umax_value;
1338 	}
1339 }
1340 
1341 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1342 {
1343 	__reg32_deduce_bounds(reg);
1344 	__reg64_deduce_bounds(reg);
1345 }
1346 
1347 /* Attempts to improve var_off based on unsigned min/max information */
1348 static void __reg_bound_offset(struct bpf_reg_state *reg)
1349 {
1350 	struct tnum var64_off = tnum_intersect(reg->var_off,
1351 					       tnum_range(reg->umin_value,
1352 							  reg->umax_value));
1353 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1354 						tnum_range(reg->u32_min_value,
1355 							   reg->u32_max_value));
1356 
1357 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1358 }
1359 
1360 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1361 {
1362 	reg->umin_value = reg->u32_min_value;
1363 	reg->umax_value = reg->u32_max_value;
1364 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1365 	 * but must be positive otherwise set to worse case bounds
1366 	 * and refine later from tnum.
1367 	 */
1368 	if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1369 		reg->smax_value = reg->s32_max_value;
1370 	else
1371 		reg->smax_value = U32_MAX;
1372 	if (reg->s32_min_value >= 0)
1373 		reg->smin_value = reg->s32_min_value;
1374 	else
1375 		reg->smin_value = 0;
1376 }
1377 
1378 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1379 {
1380 	/* special case when 64-bit register has upper 32-bit register
1381 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1382 	 * allowing us to use 32-bit bounds directly,
1383 	 */
1384 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1385 		__reg_assign_32_into_64(reg);
1386 	} else {
1387 		/* Otherwise the best we can do is push lower 32bit known and
1388 		 * unknown bits into register (var_off set from jmp logic)
1389 		 * then learn as much as possible from the 64-bit tnum
1390 		 * known and unknown bits. The previous smin/smax bounds are
1391 		 * invalid here because of jmp32 compare so mark them unknown
1392 		 * so they do not impact tnum bounds calculation.
1393 		 */
1394 		__mark_reg64_unbounded(reg);
1395 		__update_reg_bounds(reg);
1396 	}
1397 
1398 	/* Intersecting with the old var_off might have improved our bounds
1399 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1400 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1401 	 */
1402 	__reg_deduce_bounds(reg);
1403 	__reg_bound_offset(reg);
1404 	__update_reg_bounds(reg);
1405 }
1406 
1407 static bool __reg64_bound_s32(s64 a)
1408 {
1409 	return a > S32_MIN && a < S32_MAX;
1410 }
1411 
1412 static bool __reg64_bound_u32(u64 a)
1413 {
1414 	return a > U32_MIN && a < U32_MAX;
1415 }
1416 
1417 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1418 {
1419 	__mark_reg32_unbounded(reg);
1420 
1421 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1422 		reg->s32_min_value = (s32)reg->smin_value;
1423 		reg->s32_max_value = (s32)reg->smax_value;
1424 	}
1425 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1426 		reg->u32_min_value = (u32)reg->umin_value;
1427 		reg->u32_max_value = (u32)reg->umax_value;
1428 	}
1429 
1430 	/* Intersecting with the old var_off might have improved our bounds
1431 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1432 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1433 	 */
1434 	__reg_deduce_bounds(reg);
1435 	__reg_bound_offset(reg);
1436 	__update_reg_bounds(reg);
1437 }
1438 
1439 /* Mark a register as having a completely unknown (scalar) value. */
1440 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1441 			       struct bpf_reg_state *reg)
1442 {
1443 	/*
1444 	 * Clear type, id, off, and union(map_ptr, range) and
1445 	 * padding between 'type' and union
1446 	 */
1447 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1448 	reg->type = SCALAR_VALUE;
1449 	reg->var_off = tnum_unknown;
1450 	reg->frameno = 0;
1451 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1452 	__mark_reg_unbounded(reg);
1453 }
1454 
1455 static void mark_reg_unknown(struct bpf_verifier_env *env,
1456 			     struct bpf_reg_state *regs, u32 regno)
1457 {
1458 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1459 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1460 		/* Something bad happened, let's kill all regs except FP */
1461 		for (regno = 0; regno < BPF_REG_FP; regno++)
1462 			__mark_reg_not_init(env, regs + regno);
1463 		return;
1464 	}
1465 	__mark_reg_unknown(env, regs + regno);
1466 }
1467 
1468 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1469 				struct bpf_reg_state *reg)
1470 {
1471 	__mark_reg_unknown(env, reg);
1472 	reg->type = NOT_INIT;
1473 }
1474 
1475 static void mark_reg_not_init(struct bpf_verifier_env *env,
1476 			      struct bpf_reg_state *regs, u32 regno)
1477 {
1478 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1479 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1480 		/* Something bad happened, let's kill all regs except FP */
1481 		for (regno = 0; regno < BPF_REG_FP; regno++)
1482 			__mark_reg_not_init(env, regs + regno);
1483 		return;
1484 	}
1485 	__mark_reg_not_init(env, regs + regno);
1486 }
1487 
1488 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1489 			    struct bpf_reg_state *regs, u32 regno,
1490 			    enum bpf_reg_type reg_type,
1491 			    struct btf *btf, u32 btf_id)
1492 {
1493 	if (reg_type == SCALAR_VALUE) {
1494 		mark_reg_unknown(env, regs, regno);
1495 		return;
1496 	}
1497 	mark_reg_known_zero(env, regs, regno);
1498 	regs[regno].type = PTR_TO_BTF_ID;
1499 	regs[regno].btf = btf;
1500 	regs[regno].btf_id = btf_id;
1501 }
1502 
1503 #define DEF_NOT_SUBREG	(0)
1504 static void init_reg_state(struct bpf_verifier_env *env,
1505 			   struct bpf_func_state *state)
1506 {
1507 	struct bpf_reg_state *regs = state->regs;
1508 	int i;
1509 
1510 	for (i = 0; i < MAX_BPF_REG; i++) {
1511 		mark_reg_not_init(env, regs, i);
1512 		regs[i].live = REG_LIVE_NONE;
1513 		regs[i].parent = NULL;
1514 		regs[i].subreg_def = DEF_NOT_SUBREG;
1515 	}
1516 
1517 	/* frame pointer */
1518 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1519 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1520 	regs[BPF_REG_FP].frameno = state->frameno;
1521 }
1522 
1523 #define BPF_MAIN_FUNC (-1)
1524 static void init_func_state(struct bpf_verifier_env *env,
1525 			    struct bpf_func_state *state,
1526 			    int callsite, int frameno, int subprogno)
1527 {
1528 	state->callsite = callsite;
1529 	state->frameno = frameno;
1530 	state->subprogno = subprogno;
1531 	init_reg_state(env, state);
1532 }
1533 
1534 /* Similar to push_stack(), but for async callbacks */
1535 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1536 						int insn_idx, int prev_insn_idx,
1537 						int subprog)
1538 {
1539 	struct bpf_verifier_stack_elem *elem;
1540 	struct bpf_func_state *frame;
1541 
1542 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1543 	if (!elem)
1544 		goto err;
1545 
1546 	elem->insn_idx = insn_idx;
1547 	elem->prev_insn_idx = prev_insn_idx;
1548 	elem->next = env->head;
1549 	elem->log_pos = env->log.len_used;
1550 	env->head = elem;
1551 	env->stack_size++;
1552 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1553 		verbose(env,
1554 			"The sequence of %d jumps is too complex for async cb.\n",
1555 			env->stack_size);
1556 		goto err;
1557 	}
1558 	/* Unlike push_stack() do not copy_verifier_state().
1559 	 * The caller state doesn't matter.
1560 	 * This is async callback. It starts in a fresh stack.
1561 	 * Initialize it similar to do_check_common().
1562 	 */
1563 	elem->st.branches = 1;
1564 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1565 	if (!frame)
1566 		goto err;
1567 	init_func_state(env, frame,
1568 			BPF_MAIN_FUNC /* callsite */,
1569 			0 /* frameno within this callchain */,
1570 			subprog /* subprog number within this prog */);
1571 	elem->st.frame[0] = frame;
1572 	return &elem->st;
1573 err:
1574 	free_verifier_state(env->cur_state, true);
1575 	env->cur_state = NULL;
1576 	/* pop all elements and return */
1577 	while (!pop_stack(env, NULL, NULL, false));
1578 	return NULL;
1579 }
1580 
1581 
1582 enum reg_arg_type {
1583 	SRC_OP,		/* register is used as source operand */
1584 	DST_OP,		/* register is used as destination operand */
1585 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1586 };
1587 
1588 static int cmp_subprogs(const void *a, const void *b)
1589 {
1590 	return ((struct bpf_subprog_info *)a)->start -
1591 	       ((struct bpf_subprog_info *)b)->start;
1592 }
1593 
1594 static int find_subprog(struct bpf_verifier_env *env, int off)
1595 {
1596 	struct bpf_subprog_info *p;
1597 
1598 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1599 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1600 	if (!p)
1601 		return -ENOENT;
1602 	return p - env->subprog_info;
1603 
1604 }
1605 
1606 static int add_subprog(struct bpf_verifier_env *env, int off)
1607 {
1608 	int insn_cnt = env->prog->len;
1609 	int ret;
1610 
1611 	if (off >= insn_cnt || off < 0) {
1612 		verbose(env, "call to invalid destination\n");
1613 		return -EINVAL;
1614 	}
1615 	ret = find_subprog(env, off);
1616 	if (ret >= 0)
1617 		return ret;
1618 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1619 		verbose(env, "too many subprograms\n");
1620 		return -E2BIG;
1621 	}
1622 	/* determine subprog starts. The end is one before the next starts */
1623 	env->subprog_info[env->subprog_cnt++].start = off;
1624 	sort(env->subprog_info, env->subprog_cnt,
1625 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1626 	return env->subprog_cnt - 1;
1627 }
1628 
1629 struct bpf_kfunc_desc {
1630 	struct btf_func_model func_model;
1631 	u32 func_id;
1632 	s32 imm;
1633 };
1634 
1635 #define MAX_KFUNC_DESCS 256
1636 struct bpf_kfunc_desc_tab {
1637 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1638 	u32 nr_descs;
1639 };
1640 
1641 static int kfunc_desc_cmp_by_id(const void *a, const void *b)
1642 {
1643 	const struct bpf_kfunc_desc *d0 = a;
1644 	const struct bpf_kfunc_desc *d1 = b;
1645 
1646 	/* func_id is not greater than BTF_MAX_TYPE */
1647 	return d0->func_id - d1->func_id;
1648 }
1649 
1650 static const struct bpf_kfunc_desc *
1651 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id)
1652 {
1653 	struct bpf_kfunc_desc desc = {
1654 		.func_id = func_id,
1655 	};
1656 	struct bpf_kfunc_desc_tab *tab;
1657 
1658 	tab = prog->aux->kfunc_tab;
1659 	return bsearch(&desc, tab->descs, tab->nr_descs,
1660 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id);
1661 }
1662 
1663 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id)
1664 {
1665 	const struct btf_type *func, *func_proto;
1666 	struct bpf_kfunc_desc_tab *tab;
1667 	struct bpf_prog_aux *prog_aux;
1668 	struct bpf_kfunc_desc *desc;
1669 	const char *func_name;
1670 	unsigned long addr;
1671 	int err;
1672 
1673 	prog_aux = env->prog->aux;
1674 	tab = prog_aux->kfunc_tab;
1675 	if (!tab) {
1676 		if (!btf_vmlinux) {
1677 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
1678 			return -ENOTSUPP;
1679 		}
1680 
1681 		if (!env->prog->jit_requested) {
1682 			verbose(env, "JIT is required for calling kernel function\n");
1683 			return -ENOTSUPP;
1684 		}
1685 
1686 		if (!bpf_jit_supports_kfunc_call()) {
1687 			verbose(env, "JIT does not support calling kernel function\n");
1688 			return -ENOTSUPP;
1689 		}
1690 
1691 		if (!env->prog->gpl_compatible) {
1692 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
1693 			return -EINVAL;
1694 		}
1695 
1696 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
1697 		if (!tab)
1698 			return -ENOMEM;
1699 		prog_aux->kfunc_tab = tab;
1700 	}
1701 
1702 	if (find_kfunc_desc(env->prog, func_id))
1703 		return 0;
1704 
1705 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
1706 		verbose(env, "too many different kernel function calls\n");
1707 		return -E2BIG;
1708 	}
1709 
1710 	func = btf_type_by_id(btf_vmlinux, func_id);
1711 	if (!func || !btf_type_is_func(func)) {
1712 		verbose(env, "kernel btf_id %u is not a function\n",
1713 			func_id);
1714 		return -EINVAL;
1715 	}
1716 	func_proto = btf_type_by_id(btf_vmlinux, func->type);
1717 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
1718 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
1719 			func_id);
1720 		return -EINVAL;
1721 	}
1722 
1723 	func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
1724 	addr = kallsyms_lookup_name(func_name);
1725 	if (!addr) {
1726 		verbose(env, "cannot find address for kernel function %s\n",
1727 			func_name);
1728 		return -EINVAL;
1729 	}
1730 
1731 	desc = &tab->descs[tab->nr_descs++];
1732 	desc->func_id = func_id;
1733 	desc->imm = BPF_CAST_CALL(addr) - __bpf_call_base;
1734 	err = btf_distill_func_proto(&env->log, btf_vmlinux,
1735 				     func_proto, func_name,
1736 				     &desc->func_model);
1737 	if (!err)
1738 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1739 		     kfunc_desc_cmp_by_id, NULL);
1740 	return err;
1741 }
1742 
1743 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
1744 {
1745 	const struct bpf_kfunc_desc *d0 = a;
1746 	const struct bpf_kfunc_desc *d1 = b;
1747 
1748 	if (d0->imm > d1->imm)
1749 		return 1;
1750 	else if (d0->imm < d1->imm)
1751 		return -1;
1752 	return 0;
1753 }
1754 
1755 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
1756 {
1757 	struct bpf_kfunc_desc_tab *tab;
1758 
1759 	tab = prog->aux->kfunc_tab;
1760 	if (!tab)
1761 		return;
1762 
1763 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1764 	     kfunc_desc_cmp_by_imm, NULL);
1765 }
1766 
1767 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
1768 {
1769 	return !!prog->aux->kfunc_tab;
1770 }
1771 
1772 const struct btf_func_model *
1773 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
1774 			 const struct bpf_insn *insn)
1775 {
1776 	const struct bpf_kfunc_desc desc = {
1777 		.imm = insn->imm,
1778 	};
1779 	const struct bpf_kfunc_desc *res;
1780 	struct bpf_kfunc_desc_tab *tab;
1781 
1782 	tab = prog->aux->kfunc_tab;
1783 	res = bsearch(&desc, tab->descs, tab->nr_descs,
1784 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
1785 
1786 	return res ? &res->func_model : NULL;
1787 }
1788 
1789 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
1790 {
1791 	struct bpf_subprog_info *subprog = env->subprog_info;
1792 	struct bpf_insn *insn = env->prog->insnsi;
1793 	int i, ret, insn_cnt = env->prog->len;
1794 
1795 	/* Add entry function. */
1796 	ret = add_subprog(env, 0);
1797 	if (ret)
1798 		return ret;
1799 
1800 	for (i = 0; i < insn_cnt; i++, insn++) {
1801 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
1802 		    !bpf_pseudo_kfunc_call(insn))
1803 			continue;
1804 
1805 		if (!env->bpf_capable) {
1806 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1807 			return -EPERM;
1808 		}
1809 
1810 		if (bpf_pseudo_func(insn)) {
1811 			ret = add_subprog(env, i + insn->imm + 1);
1812 			if (ret >= 0)
1813 				/* remember subprog */
1814 				insn[1].imm = ret;
1815 		} else if (bpf_pseudo_call(insn)) {
1816 			ret = add_subprog(env, i + insn->imm + 1);
1817 		} else {
1818 			ret = add_kfunc_call(env, insn->imm);
1819 		}
1820 
1821 		if (ret < 0)
1822 			return ret;
1823 	}
1824 
1825 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1826 	 * logic. 'subprog_cnt' should not be increased.
1827 	 */
1828 	subprog[env->subprog_cnt].start = insn_cnt;
1829 
1830 	if (env->log.level & BPF_LOG_LEVEL2)
1831 		for (i = 0; i < env->subprog_cnt; i++)
1832 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1833 
1834 	return 0;
1835 }
1836 
1837 static int check_subprogs(struct bpf_verifier_env *env)
1838 {
1839 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
1840 	struct bpf_subprog_info *subprog = env->subprog_info;
1841 	struct bpf_insn *insn = env->prog->insnsi;
1842 	int insn_cnt = env->prog->len;
1843 
1844 	/* now check that all jumps are within the same subprog */
1845 	subprog_start = subprog[cur_subprog].start;
1846 	subprog_end = subprog[cur_subprog + 1].start;
1847 	for (i = 0; i < insn_cnt; i++) {
1848 		u8 code = insn[i].code;
1849 
1850 		if (code == (BPF_JMP | BPF_CALL) &&
1851 		    insn[i].imm == BPF_FUNC_tail_call &&
1852 		    insn[i].src_reg != BPF_PSEUDO_CALL)
1853 			subprog[cur_subprog].has_tail_call = true;
1854 		if (BPF_CLASS(code) == BPF_LD &&
1855 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1856 			subprog[cur_subprog].has_ld_abs = true;
1857 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1858 			goto next;
1859 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1860 			goto next;
1861 		off = i + insn[i].off + 1;
1862 		if (off < subprog_start || off >= subprog_end) {
1863 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1864 			return -EINVAL;
1865 		}
1866 next:
1867 		if (i == subprog_end - 1) {
1868 			/* to avoid fall-through from one subprog into another
1869 			 * the last insn of the subprog should be either exit
1870 			 * or unconditional jump back
1871 			 */
1872 			if (code != (BPF_JMP | BPF_EXIT) &&
1873 			    code != (BPF_JMP | BPF_JA)) {
1874 				verbose(env, "last insn is not an exit or jmp\n");
1875 				return -EINVAL;
1876 			}
1877 			subprog_start = subprog_end;
1878 			cur_subprog++;
1879 			if (cur_subprog < env->subprog_cnt)
1880 				subprog_end = subprog[cur_subprog + 1].start;
1881 		}
1882 	}
1883 	return 0;
1884 }
1885 
1886 /* Parentage chain of this register (or stack slot) should take care of all
1887  * issues like callee-saved registers, stack slot allocation time, etc.
1888  */
1889 static int mark_reg_read(struct bpf_verifier_env *env,
1890 			 const struct bpf_reg_state *state,
1891 			 struct bpf_reg_state *parent, u8 flag)
1892 {
1893 	bool writes = parent == state->parent; /* Observe write marks */
1894 	int cnt = 0;
1895 
1896 	while (parent) {
1897 		/* if read wasn't screened by an earlier write ... */
1898 		if (writes && state->live & REG_LIVE_WRITTEN)
1899 			break;
1900 		if (parent->live & REG_LIVE_DONE) {
1901 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1902 				reg_type_str[parent->type],
1903 				parent->var_off.value, parent->off);
1904 			return -EFAULT;
1905 		}
1906 		/* The first condition is more likely to be true than the
1907 		 * second, checked it first.
1908 		 */
1909 		if ((parent->live & REG_LIVE_READ) == flag ||
1910 		    parent->live & REG_LIVE_READ64)
1911 			/* The parentage chain never changes and
1912 			 * this parent was already marked as LIVE_READ.
1913 			 * There is no need to keep walking the chain again and
1914 			 * keep re-marking all parents as LIVE_READ.
1915 			 * This case happens when the same register is read
1916 			 * multiple times without writes into it in-between.
1917 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1918 			 * then no need to set the weak REG_LIVE_READ32.
1919 			 */
1920 			break;
1921 		/* ... then we depend on parent's value */
1922 		parent->live |= flag;
1923 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1924 		if (flag == REG_LIVE_READ64)
1925 			parent->live &= ~REG_LIVE_READ32;
1926 		state = parent;
1927 		parent = state->parent;
1928 		writes = true;
1929 		cnt++;
1930 	}
1931 
1932 	if (env->longest_mark_read_walk < cnt)
1933 		env->longest_mark_read_walk = cnt;
1934 	return 0;
1935 }
1936 
1937 /* This function is supposed to be used by the following 32-bit optimization
1938  * code only. It returns TRUE if the source or destination register operates
1939  * on 64-bit, otherwise return FALSE.
1940  */
1941 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1942 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1943 {
1944 	u8 code, class, op;
1945 
1946 	code = insn->code;
1947 	class = BPF_CLASS(code);
1948 	op = BPF_OP(code);
1949 	if (class == BPF_JMP) {
1950 		/* BPF_EXIT for "main" will reach here. Return TRUE
1951 		 * conservatively.
1952 		 */
1953 		if (op == BPF_EXIT)
1954 			return true;
1955 		if (op == BPF_CALL) {
1956 			/* BPF to BPF call will reach here because of marking
1957 			 * caller saved clobber with DST_OP_NO_MARK for which we
1958 			 * don't care the register def because they are anyway
1959 			 * marked as NOT_INIT already.
1960 			 */
1961 			if (insn->src_reg == BPF_PSEUDO_CALL)
1962 				return false;
1963 			/* Helper call will reach here because of arg type
1964 			 * check, conservatively return TRUE.
1965 			 */
1966 			if (t == SRC_OP)
1967 				return true;
1968 
1969 			return false;
1970 		}
1971 	}
1972 
1973 	if (class == BPF_ALU64 || class == BPF_JMP ||
1974 	    /* BPF_END always use BPF_ALU class. */
1975 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1976 		return true;
1977 
1978 	if (class == BPF_ALU || class == BPF_JMP32)
1979 		return false;
1980 
1981 	if (class == BPF_LDX) {
1982 		if (t != SRC_OP)
1983 			return BPF_SIZE(code) == BPF_DW;
1984 		/* LDX source must be ptr. */
1985 		return true;
1986 	}
1987 
1988 	if (class == BPF_STX) {
1989 		/* BPF_STX (including atomic variants) has multiple source
1990 		 * operands, one of which is a ptr. Check whether the caller is
1991 		 * asking about it.
1992 		 */
1993 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
1994 			return true;
1995 		return BPF_SIZE(code) == BPF_DW;
1996 	}
1997 
1998 	if (class == BPF_LD) {
1999 		u8 mode = BPF_MODE(code);
2000 
2001 		/* LD_IMM64 */
2002 		if (mode == BPF_IMM)
2003 			return true;
2004 
2005 		/* Both LD_IND and LD_ABS return 32-bit data. */
2006 		if (t != SRC_OP)
2007 			return  false;
2008 
2009 		/* Implicit ctx ptr. */
2010 		if (regno == BPF_REG_6)
2011 			return true;
2012 
2013 		/* Explicit source could be any width. */
2014 		return true;
2015 	}
2016 
2017 	if (class == BPF_ST)
2018 		/* The only source register for BPF_ST is a ptr. */
2019 		return true;
2020 
2021 	/* Conservatively return true at default. */
2022 	return true;
2023 }
2024 
2025 /* Return the regno defined by the insn, or -1. */
2026 static int insn_def_regno(const struct bpf_insn *insn)
2027 {
2028 	switch (BPF_CLASS(insn->code)) {
2029 	case BPF_JMP:
2030 	case BPF_JMP32:
2031 	case BPF_ST:
2032 		return -1;
2033 	case BPF_STX:
2034 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2035 		    (insn->imm & BPF_FETCH)) {
2036 			if (insn->imm == BPF_CMPXCHG)
2037 				return BPF_REG_0;
2038 			else
2039 				return insn->src_reg;
2040 		} else {
2041 			return -1;
2042 		}
2043 	default:
2044 		return insn->dst_reg;
2045 	}
2046 }
2047 
2048 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
2049 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2050 {
2051 	int dst_reg = insn_def_regno(insn);
2052 
2053 	if (dst_reg == -1)
2054 		return false;
2055 
2056 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2057 }
2058 
2059 static void mark_insn_zext(struct bpf_verifier_env *env,
2060 			   struct bpf_reg_state *reg)
2061 {
2062 	s32 def_idx = reg->subreg_def;
2063 
2064 	if (def_idx == DEF_NOT_SUBREG)
2065 		return;
2066 
2067 	env->insn_aux_data[def_idx - 1].zext_dst = true;
2068 	/* The dst will be zero extended, so won't be sub-register anymore. */
2069 	reg->subreg_def = DEF_NOT_SUBREG;
2070 }
2071 
2072 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2073 			 enum reg_arg_type t)
2074 {
2075 	struct bpf_verifier_state *vstate = env->cur_state;
2076 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2077 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2078 	struct bpf_reg_state *reg, *regs = state->regs;
2079 	bool rw64;
2080 
2081 	if (regno >= MAX_BPF_REG) {
2082 		verbose(env, "R%d is invalid\n", regno);
2083 		return -EINVAL;
2084 	}
2085 
2086 	reg = &regs[regno];
2087 	rw64 = is_reg64(env, insn, regno, reg, t);
2088 	if (t == SRC_OP) {
2089 		/* check whether register used as source operand can be read */
2090 		if (reg->type == NOT_INIT) {
2091 			verbose(env, "R%d !read_ok\n", regno);
2092 			return -EACCES;
2093 		}
2094 		/* We don't need to worry about FP liveness because it's read-only */
2095 		if (regno == BPF_REG_FP)
2096 			return 0;
2097 
2098 		if (rw64)
2099 			mark_insn_zext(env, reg);
2100 
2101 		return mark_reg_read(env, reg, reg->parent,
2102 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2103 	} else {
2104 		/* check whether register used as dest operand can be written to */
2105 		if (regno == BPF_REG_FP) {
2106 			verbose(env, "frame pointer is read only\n");
2107 			return -EACCES;
2108 		}
2109 		reg->live |= REG_LIVE_WRITTEN;
2110 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2111 		if (t == DST_OP)
2112 			mark_reg_unknown(env, regs, regno);
2113 	}
2114 	return 0;
2115 }
2116 
2117 /* for any branch, call, exit record the history of jmps in the given state */
2118 static int push_jmp_history(struct bpf_verifier_env *env,
2119 			    struct bpf_verifier_state *cur)
2120 {
2121 	u32 cnt = cur->jmp_history_cnt;
2122 	struct bpf_idx_pair *p;
2123 
2124 	cnt++;
2125 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2126 	if (!p)
2127 		return -ENOMEM;
2128 	p[cnt - 1].idx = env->insn_idx;
2129 	p[cnt - 1].prev_idx = env->prev_insn_idx;
2130 	cur->jmp_history = p;
2131 	cur->jmp_history_cnt = cnt;
2132 	return 0;
2133 }
2134 
2135 /* Backtrack one insn at a time. If idx is not at the top of recorded
2136  * history then previous instruction came from straight line execution.
2137  */
2138 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2139 			     u32 *history)
2140 {
2141 	u32 cnt = *history;
2142 
2143 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
2144 		i = st->jmp_history[cnt - 1].prev_idx;
2145 		(*history)--;
2146 	} else {
2147 		i--;
2148 	}
2149 	return i;
2150 }
2151 
2152 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2153 {
2154 	const struct btf_type *func;
2155 
2156 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2157 		return NULL;
2158 
2159 	func = btf_type_by_id(btf_vmlinux, insn->imm);
2160 	return btf_name_by_offset(btf_vmlinux, func->name_off);
2161 }
2162 
2163 /* For given verifier state backtrack_insn() is called from the last insn to
2164  * the first insn. Its purpose is to compute a bitmask of registers and
2165  * stack slots that needs precision in the parent verifier state.
2166  */
2167 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2168 			  u32 *reg_mask, u64 *stack_mask)
2169 {
2170 	const struct bpf_insn_cbs cbs = {
2171 		.cb_call	= disasm_kfunc_name,
2172 		.cb_print	= verbose,
2173 		.private_data	= env,
2174 	};
2175 	struct bpf_insn *insn = env->prog->insnsi + idx;
2176 	u8 class = BPF_CLASS(insn->code);
2177 	u8 opcode = BPF_OP(insn->code);
2178 	u8 mode = BPF_MODE(insn->code);
2179 	u32 dreg = 1u << insn->dst_reg;
2180 	u32 sreg = 1u << insn->src_reg;
2181 	u32 spi;
2182 
2183 	if (insn->code == 0)
2184 		return 0;
2185 	if (env->log.level & BPF_LOG_LEVEL) {
2186 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2187 		verbose(env, "%d: ", idx);
2188 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2189 	}
2190 
2191 	if (class == BPF_ALU || class == BPF_ALU64) {
2192 		if (!(*reg_mask & dreg))
2193 			return 0;
2194 		if (opcode == BPF_MOV) {
2195 			if (BPF_SRC(insn->code) == BPF_X) {
2196 				/* dreg = sreg
2197 				 * dreg needs precision after this insn
2198 				 * sreg needs precision before this insn
2199 				 */
2200 				*reg_mask &= ~dreg;
2201 				*reg_mask |= sreg;
2202 			} else {
2203 				/* dreg = K
2204 				 * dreg needs precision after this insn.
2205 				 * Corresponding register is already marked
2206 				 * as precise=true in this verifier state.
2207 				 * No further markings in parent are necessary
2208 				 */
2209 				*reg_mask &= ~dreg;
2210 			}
2211 		} else {
2212 			if (BPF_SRC(insn->code) == BPF_X) {
2213 				/* dreg += sreg
2214 				 * both dreg and sreg need precision
2215 				 * before this insn
2216 				 */
2217 				*reg_mask |= sreg;
2218 			} /* else dreg += K
2219 			   * dreg still needs precision before this insn
2220 			   */
2221 		}
2222 	} else if (class == BPF_LDX) {
2223 		if (!(*reg_mask & dreg))
2224 			return 0;
2225 		*reg_mask &= ~dreg;
2226 
2227 		/* scalars can only be spilled into stack w/o losing precision.
2228 		 * Load from any other memory can be zero extended.
2229 		 * The desire to keep that precision is already indicated
2230 		 * by 'precise' mark in corresponding register of this state.
2231 		 * No further tracking necessary.
2232 		 */
2233 		if (insn->src_reg != BPF_REG_FP)
2234 			return 0;
2235 		if (BPF_SIZE(insn->code) != BPF_DW)
2236 			return 0;
2237 
2238 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
2239 		 * that [fp - off] slot contains scalar that needs to be
2240 		 * tracked with precision
2241 		 */
2242 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2243 		if (spi >= 64) {
2244 			verbose(env, "BUG spi %d\n", spi);
2245 			WARN_ONCE(1, "verifier backtracking bug");
2246 			return -EFAULT;
2247 		}
2248 		*stack_mask |= 1ull << spi;
2249 	} else if (class == BPF_STX || class == BPF_ST) {
2250 		if (*reg_mask & dreg)
2251 			/* stx & st shouldn't be using _scalar_ dst_reg
2252 			 * to access memory. It means backtracking
2253 			 * encountered a case of pointer subtraction.
2254 			 */
2255 			return -ENOTSUPP;
2256 		/* scalars can only be spilled into stack */
2257 		if (insn->dst_reg != BPF_REG_FP)
2258 			return 0;
2259 		if (BPF_SIZE(insn->code) != BPF_DW)
2260 			return 0;
2261 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2262 		if (spi >= 64) {
2263 			verbose(env, "BUG spi %d\n", spi);
2264 			WARN_ONCE(1, "verifier backtracking bug");
2265 			return -EFAULT;
2266 		}
2267 		if (!(*stack_mask & (1ull << spi)))
2268 			return 0;
2269 		*stack_mask &= ~(1ull << spi);
2270 		if (class == BPF_STX)
2271 			*reg_mask |= sreg;
2272 	} else if (class == BPF_JMP || class == BPF_JMP32) {
2273 		if (opcode == BPF_CALL) {
2274 			if (insn->src_reg == BPF_PSEUDO_CALL)
2275 				return -ENOTSUPP;
2276 			/* regular helper call sets R0 */
2277 			*reg_mask &= ~1;
2278 			if (*reg_mask & 0x3f) {
2279 				/* if backtracing was looking for registers R1-R5
2280 				 * they should have been found already.
2281 				 */
2282 				verbose(env, "BUG regs %x\n", *reg_mask);
2283 				WARN_ONCE(1, "verifier backtracking bug");
2284 				return -EFAULT;
2285 			}
2286 		} else if (opcode == BPF_EXIT) {
2287 			return -ENOTSUPP;
2288 		}
2289 	} else if (class == BPF_LD) {
2290 		if (!(*reg_mask & dreg))
2291 			return 0;
2292 		*reg_mask &= ~dreg;
2293 		/* It's ld_imm64 or ld_abs or ld_ind.
2294 		 * For ld_imm64 no further tracking of precision
2295 		 * into parent is necessary
2296 		 */
2297 		if (mode == BPF_IND || mode == BPF_ABS)
2298 			/* to be analyzed */
2299 			return -ENOTSUPP;
2300 	}
2301 	return 0;
2302 }
2303 
2304 /* the scalar precision tracking algorithm:
2305  * . at the start all registers have precise=false.
2306  * . scalar ranges are tracked as normal through alu and jmp insns.
2307  * . once precise value of the scalar register is used in:
2308  *   .  ptr + scalar alu
2309  *   . if (scalar cond K|scalar)
2310  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2311  *   backtrack through the verifier states and mark all registers and
2312  *   stack slots with spilled constants that these scalar regisers
2313  *   should be precise.
2314  * . during state pruning two registers (or spilled stack slots)
2315  *   are equivalent if both are not precise.
2316  *
2317  * Note the verifier cannot simply walk register parentage chain,
2318  * since many different registers and stack slots could have been
2319  * used to compute single precise scalar.
2320  *
2321  * The approach of starting with precise=true for all registers and then
2322  * backtrack to mark a register as not precise when the verifier detects
2323  * that program doesn't care about specific value (e.g., when helper
2324  * takes register as ARG_ANYTHING parameter) is not safe.
2325  *
2326  * It's ok to walk single parentage chain of the verifier states.
2327  * It's possible that this backtracking will go all the way till 1st insn.
2328  * All other branches will be explored for needing precision later.
2329  *
2330  * The backtracking needs to deal with cases like:
2331  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2332  * r9 -= r8
2333  * r5 = r9
2334  * if r5 > 0x79f goto pc+7
2335  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2336  * r5 += 1
2337  * ...
2338  * call bpf_perf_event_output#25
2339  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2340  *
2341  * and this case:
2342  * r6 = 1
2343  * call foo // uses callee's r6 inside to compute r0
2344  * r0 += r6
2345  * if r0 == 0 goto
2346  *
2347  * to track above reg_mask/stack_mask needs to be independent for each frame.
2348  *
2349  * Also if parent's curframe > frame where backtracking started,
2350  * the verifier need to mark registers in both frames, otherwise callees
2351  * may incorrectly prune callers. This is similar to
2352  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2353  *
2354  * For now backtracking falls back into conservative marking.
2355  */
2356 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2357 				     struct bpf_verifier_state *st)
2358 {
2359 	struct bpf_func_state *func;
2360 	struct bpf_reg_state *reg;
2361 	int i, j;
2362 
2363 	/* big hammer: mark all scalars precise in this path.
2364 	 * pop_stack may still get !precise scalars.
2365 	 */
2366 	for (; st; st = st->parent)
2367 		for (i = 0; i <= st->curframe; i++) {
2368 			func = st->frame[i];
2369 			for (j = 0; j < BPF_REG_FP; j++) {
2370 				reg = &func->regs[j];
2371 				if (reg->type != SCALAR_VALUE)
2372 					continue;
2373 				reg->precise = true;
2374 			}
2375 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2376 				if (func->stack[j].slot_type[0] != STACK_SPILL)
2377 					continue;
2378 				reg = &func->stack[j].spilled_ptr;
2379 				if (reg->type != SCALAR_VALUE)
2380 					continue;
2381 				reg->precise = true;
2382 			}
2383 		}
2384 }
2385 
2386 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2387 				  int spi)
2388 {
2389 	struct bpf_verifier_state *st = env->cur_state;
2390 	int first_idx = st->first_insn_idx;
2391 	int last_idx = env->insn_idx;
2392 	struct bpf_func_state *func;
2393 	struct bpf_reg_state *reg;
2394 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2395 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2396 	bool skip_first = true;
2397 	bool new_marks = false;
2398 	int i, err;
2399 
2400 	if (!env->bpf_capable)
2401 		return 0;
2402 
2403 	func = st->frame[st->curframe];
2404 	if (regno >= 0) {
2405 		reg = &func->regs[regno];
2406 		if (reg->type != SCALAR_VALUE) {
2407 			WARN_ONCE(1, "backtracing misuse");
2408 			return -EFAULT;
2409 		}
2410 		if (!reg->precise)
2411 			new_marks = true;
2412 		else
2413 			reg_mask = 0;
2414 		reg->precise = true;
2415 	}
2416 
2417 	while (spi >= 0) {
2418 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2419 			stack_mask = 0;
2420 			break;
2421 		}
2422 		reg = &func->stack[spi].spilled_ptr;
2423 		if (reg->type != SCALAR_VALUE) {
2424 			stack_mask = 0;
2425 			break;
2426 		}
2427 		if (!reg->precise)
2428 			new_marks = true;
2429 		else
2430 			stack_mask = 0;
2431 		reg->precise = true;
2432 		break;
2433 	}
2434 
2435 	if (!new_marks)
2436 		return 0;
2437 	if (!reg_mask && !stack_mask)
2438 		return 0;
2439 	for (;;) {
2440 		DECLARE_BITMAP(mask, 64);
2441 		u32 history = st->jmp_history_cnt;
2442 
2443 		if (env->log.level & BPF_LOG_LEVEL)
2444 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2445 		for (i = last_idx;;) {
2446 			if (skip_first) {
2447 				err = 0;
2448 				skip_first = false;
2449 			} else {
2450 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2451 			}
2452 			if (err == -ENOTSUPP) {
2453 				mark_all_scalars_precise(env, st);
2454 				return 0;
2455 			} else if (err) {
2456 				return err;
2457 			}
2458 			if (!reg_mask && !stack_mask)
2459 				/* Found assignment(s) into tracked register in this state.
2460 				 * Since this state is already marked, just return.
2461 				 * Nothing to be tracked further in the parent state.
2462 				 */
2463 				return 0;
2464 			if (i == first_idx)
2465 				break;
2466 			i = get_prev_insn_idx(st, i, &history);
2467 			if (i >= env->prog->len) {
2468 				/* This can happen if backtracking reached insn 0
2469 				 * and there are still reg_mask or stack_mask
2470 				 * to backtrack.
2471 				 * It means the backtracking missed the spot where
2472 				 * particular register was initialized with a constant.
2473 				 */
2474 				verbose(env, "BUG backtracking idx %d\n", i);
2475 				WARN_ONCE(1, "verifier backtracking bug");
2476 				return -EFAULT;
2477 			}
2478 		}
2479 		st = st->parent;
2480 		if (!st)
2481 			break;
2482 
2483 		new_marks = false;
2484 		func = st->frame[st->curframe];
2485 		bitmap_from_u64(mask, reg_mask);
2486 		for_each_set_bit(i, mask, 32) {
2487 			reg = &func->regs[i];
2488 			if (reg->type != SCALAR_VALUE) {
2489 				reg_mask &= ~(1u << i);
2490 				continue;
2491 			}
2492 			if (!reg->precise)
2493 				new_marks = true;
2494 			reg->precise = true;
2495 		}
2496 
2497 		bitmap_from_u64(mask, stack_mask);
2498 		for_each_set_bit(i, mask, 64) {
2499 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2500 				/* the sequence of instructions:
2501 				 * 2: (bf) r3 = r10
2502 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2503 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2504 				 * doesn't contain jmps. It's backtracked
2505 				 * as a single block.
2506 				 * During backtracking insn 3 is not recognized as
2507 				 * stack access, so at the end of backtracking
2508 				 * stack slot fp-8 is still marked in stack_mask.
2509 				 * However the parent state may not have accessed
2510 				 * fp-8 and it's "unallocated" stack space.
2511 				 * In such case fallback to conservative.
2512 				 */
2513 				mark_all_scalars_precise(env, st);
2514 				return 0;
2515 			}
2516 
2517 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
2518 				stack_mask &= ~(1ull << i);
2519 				continue;
2520 			}
2521 			reg = &func->stack[i].spilled_ptr;
2522 			if (reg->type != SCALAR_VALUE) {
2523 				stack_mask &= ~(1ull << i);
2524 				continue;
2525 			}
2526 			if (!reg->precise)
2527 				new_marks = true;
2528 			reg->precise = true;
2529 		}
2530 		if (env->log.level & BPF_LOG_LEVEL) {
2531 			print_verifier_state(env, func);
2532 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2533 				new_marks ? "didn't have" : "already had",
2534 				reg_mask, stack_mask);
2535 		}
2536 
2537 		if (!reg_mask && !stack_mask)
2538 			break;
2539 		if (!new_marks)
2540 			break;
2541 
2542 		last_idx = st->last_insn_idx;
2543 		first_idx = st->first_insn_idx;
2544 	}
2545 	return 0;
2546 }
2547 
2548 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2549 {
2550 	return __mark_chain_precision(env, regno, -1);
2551 }
2552 
2553 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2554 {
2555 	return __mark_chain_precision(env, -1, spi);
2556 }
2557 
2558 static bool is_spillable_regtype(enum bpf_reg_type type)
2559 {
2560 	switch (type) {
2561 	case PTR_TO_MAP_VALUE:
2562 	case PTR_TO_MAP_VALUE_OR_NULL:
2563 	case PTR_TO_STACK:
2564 	case PTR_TO_CTX:
2565 	case PTR_TO_PACKET:
2566 	case PTR_TO_PACKET_META:
2567 	case PTR_TO_PACKET_END:
2568 	case PTR_TO_FLOW_KEYS:
2569 	case CONST_PTR_TO_MAP:
2570 	case PTR_TO_SOCKET:
2571 	case PTR_TO_SOCKET_OR_NULL:
2572 	case PTR_TO_SOCK_COMMON:
2573 	case PTR_TO_SOCK_COMMON_OR_NULL:
2574 	case PTR_TO_TCP_SOCK:
2575 	case PTR_TO_TCP_SOCK_OR_NULL:
2576 	case PTR_TO_XDP_SOCK:
2577 	case PTR_TO_BTF_ID:
2578 	case PTR_TO_BTF_ID_OR_NULL:
2579 	case PTR_TO_RDONLY_BUF:
2580 	case PTR_TO_RDONLY_BUF_OR_NULL:
2581 	case PTR_TO_RDWR_BUF:
2582 	case PTR_TO_RDWR_BUF_OR_NULL:
2583 	case PTR_TO_PERCPU_BTF_ID:
2584 	case PTR_TO_MEM:
2585 	case PTR_TO_MEM_OR_NULL:
2586 	case PTR_TO_FUNC:
2587 	case PTR_TO_MAP_KEY:
2588 		return true;
2589 	default:
2590 		return false;
2591 	}
2592 }
2593 
2594 /* Does this register contain a constant zero? */
2595 static bool register_is_null(struct bpf_reg_state *reg)
2596 {
2597 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2598 }
2599 
2600 static bool register_is_const(struct bpf_reg_state *reg)
2601 {
2602 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2603 }
2604 
2605 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2606 {
2607 	return tnum_is_unknown(reg->var_off) &&
2608 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2609 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2610 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2611 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2612 }
2613 
2614 static bool register_is_bounded(struct bpf_reg_state *reg)
2615 {
2616 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2617 }
2618 
2619 static bool __is_pointer_value(bool allow_ptr_leaks,
2620 			       const struct bpf_reg_state *reg)
2621 {
2622 	if (allow_ptr_leaks)
2623 		return false;
2624 
2625 	return reg->type != SCALAR_VALUE;
2626 }
2627 
2628 static void save_register_state(struct bpf_func_state *state,
2629 				int spi, struct bpf_reg_state *reg)
2630 {
2631 	int i;
2632 
2633 	state->stack[spi].spilled_ptr = *reg;
2634 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2635 
2636 	for (i = 0; i < BPF_REG_SIZE; i++)
2637 		state->stack[spi].slot_type[i] = STACK_SPILL;
2638 }
2639 
2640 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2641  * stack boundary and alignment are checked in check_mem_access()
2642  */
2643 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2644 				       /* stack frame we're writing to */
2645 				       struct bpf_func_state *state,
2646 				       int off, int size, int value_regno,
2647 				       int insn_idx)
2648 {
2649 	struct bpf_func_state *cur; /* state of the current function */
2650 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2651 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2652 	struct bpf_reg_state *reg = NULL;
2653 
2654 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
2655 	if (err)
2656 		return err;
2657 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2658 	 * so it's aligned access and [off, off + size) are within stack limits
2659 	 */
2660 	if (!env->allow_ptr_leaks &&
2661 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2662 	    size != BPF_REG_SIZE) {
2663 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2664 		return -EACCES;
2665 	}
2666 
2667 	cur = env->cur_state->frame[env->cur_state->curframe];
2668 	if (value_regno >= 0)
2669 		reg = &cur->regs[value_regno];
2670 
2671 	if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2672 	    !register_is_null(reg) && env->bpf_capable) {
2673 		if (dst_reg != BPF_REG_FP) {
2674 			/* The backtracking logic can only recognize explicit
2675 			 * stack slot address like [fp - 8]. Other spill of
2676 			 * scalar via different register has to be conservative.
2677 			 * Backtrack from here and mark all registers as precise
2678 			 * that contributed into 'reg' being a constant.
2679 			 */
2680 			err = mark_chain_precision(env, value_regno);
2681 			if (err)
2682 				return err;
2683 		}
2684 		save_register_state(state, spi, reg);
2685 	} else if (reg && is_spillable_regtype(reg->type)) {
2686 		/* register containing pointer is being spilled into stack */
2687 		if (size != BPF_REG_SIZE) {
2688 			verbose_linfo(env, insn_idx, "; ");
2689 			verbose(env, "invalid size of register spill\n");
2690 			return -EACCES;
2691 		}
2692 
2693 		if (state != cur && reg->type == PTR_TO_STACK) {
2694 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2695 			return -EINVAL;
2696 		}
2697 
2698 		if (!env->bypass_spec_v4) {
2699 			bool sanitize = false;
2700 
2701 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2702 			    register_is_const(&state->stack[spi].spilled_ptr))
2703 				sanitize = true;
2704 			for (i = 0; i < BPF_REG_SIZE; i++)
2705 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
2706 					sanitize = true;
2707 					break;
2708 				}
2709 			if (sanitize) {
2710 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2711 				int soff = (-spi - 1) * BPF_REG_SIZE;
2712 
2713 				/* detected reuse of integer stack slot with a pointer
2714 				 * which means either llvm is reusing stack slot or
2715 				 * an attacker is trying to exploit CVE-2018-3639
2716 				 * (speculative store bypass)
2717 				 * Have to sanitize that slot with preemptive
2718 				 * store of zero.
2719 				 */
2720 				if (*poff && *poff != soff) {
2721 					/* disallow programs where single insn stores
2722 					 * into two different stack slots, since verifier
2723 					 * cannot sanitize them
2724 					 */
2725 					verbose(env,
2726 						"insn %d cannot access two stack slots fp%d and fp%d",
2727 						insn_idx, *poff, soff);
2728 					return -EINVAL;
2729 				}
2730 				*poff = soff;
2731 			}
2732 		}
2733 		save_register_state(state, spi, reg);
2734 	} else {
2735 		u8 type = STACK_MISC;
2736 
2737 		/* regular write of data into stack destroys any spilled ptr */
2738 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2739 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2740 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
2741 			for (i = 0; i < BPF_REG_SIZE; i++)
2742 				state->stack[spi].slot_type[i] = STACK_MISC;
2743 
2744 		/* only mark the slot as written if all 8 bytes were written
2745 		 * otherwise read propagation may incorrectly stop too soon
2746 		 * when stack slots are partially written.
2747 		 * This heuristic means that read propagation will be
2748 		 * conservative, since it will add reg_live_read marks
2749 		 * to stack slots all the way to first state when programs
2750 		 * writes+reads less than 8 bytes
2751 		 */
2752 		if (size == BPF_REG_SIZE)
2753 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2754 
2755 		/* when we zero initialize stack slots mark them as such */
2756 		if (reg && register_is_null(reg)) {
2757 			/* backtracking doesn't work for STACK_ZERO yet. */
2758 			err = mark_chain_precision(env, value_regno);
2759 			if (err)
2760 				return err;
2761 			type = STACK_ZERO;
2762 		}
2763 
2764 		/* Mark slots affected by this stack write. */
2765 		for (i = 0; i < size; i++)
2766 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2767 				type;
2768 	}
2769 	return 0;
2770 }
2771 
2772 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2773  * known to contain a variable offset.
2774  * This function checks whether the write is permitted and conservatively
2775  * tracks the effects of the write, considering that each stack slot in the
2776  * dynamic range is potentially written to.
2777  *
2778  * 'off' includes 'regno->off'.
2779  * 'value_regno' can be -1, meaning that an unknown value is being written to
2780  * the stack.
2781  *
2782  * Spilled pointers in range are not marked as written because we don't know
2783  * what's going to be actually written. This means that read propagation for
2784  * future reads cannot be terminated by this write.
2785  *
2786  * For privileged programs, uninitialized stack slots are considered
2787  * initialized by this write (even though we don't know exactly what offsets
2788  * are going to be written to). The idea is that we don't want the verifier to
2789  * reject future reads that access slots written to through variable offsets.
2790  */
2791 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2792 				     /* func where register points to */
2793 				     struct bpf_func_state *state,
2794 				     int ptr_regno, int off, int size,
2795 				     int value_regno, int insn_idx)
2796 {
2797 	struct bpf_func_state *cur; /* state of the current function */
2798 	int min_off, max_off;
2799 	int i, err;
2800 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2801 	bool writing_zero = false;
2802 	/* set if the fact that we're writing a zero is used to let any
2803 	 * stack slots remain STACK_ZERO
2804 	 */
2805 	bool zero_used = false;
2806 
2807 	cur = env->cur_state->frame[env->cur_state->curframe];
2808 	ptr_reg = &cur->regs[ptr_regno];
2809 	min_off = ptr_reg->smin_value + off;
2810 	max_off = ptr_reg->smax_value + off + size;
2811 	if (value_regno >= 0)
2812 		value_reg = &cur->regs[value_regno];
2813 	if (value_reg && register_is_null(value_reg))
2814 		writing_zero = true;
2815 
2816 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
2817 	if (err)
2818 		return err;
2819 
2820 
2821 	/* Variable offset writes destroy any spilled pointers in range. */
2822 	for (i = min_off; i < max_off; i++) {
2823 		u8 new_type, *stype;
2824 		int slot, spi;
2825 
2826 		slot = -i - 1;
2827 		spi = slot / BPF_REG_SIZE;
2828 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2829 
2830 		if (!env->allow_ptr_leaks
2831 				&& *stype != NOT_INIT
2832 				&& *stype != SCALAR_VALUE) {
2833 			/* Reject the write if there's are spilled pointers in
2834 			 * range. If we didn't reject here, the ptr status
2835 			 * would be erased below (even though not all slots are
2836 			 * actually overwritten), possibly opening the door to
2837 			 * leaks.
2838 			 */
2839 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2840 				insn_idx, i);
2841 			return -EINVAL;
2842 		}
2843 
2844 		/* Erase all spilled pointers. */
2845 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2846 
2847 		/* Update the slot type. */
2848 		new_type = STACK_MISC;
2849 		if (writing_zero && *stype == STACK_ZERO) {
2850 			new_type = STACK_ZERO;
2851 			zero_used = true;
2852 		}
2853 		/* If the slot is STACK_INVALID, we check whether it's OK to
2854 		 * pretend that it will be initialized by this write. The slot
2855 		 * might not actually be written to, and so if we mark it as
2856 		 * initialized future reads might leak uninitialized memory.
2857 		 * For privileged programs, we will accept such reads to slots
2858 		 * that may or may not be written because, if we're reject
2859 		 * them, the error would be too confusing.
2860 		 */
2861 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2862 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2863 					insn_idx, i);
2864 			return -EINVAL;
2865 		}
2866 		*stype = new_type;
2867 	}
2868 	if (zero_used) {
2869 		/* backtracking doesn't work for STACK_ZERO yet. */
2870 		err = mark_chain_precision(env, value_regno);
2871 		if (err)
2872 			return err;
2873 	}
2874 	return 0;
2875 }
2876 
2877 /* When register 'dst_regno' is assigned some values from stack[min_off,
2878  * max_off), we set the register's type according to the types of the
2879  * respective stack slots. If all the stack values are known to be zeros, then
2880  * so is the destination reg. Otherwise, the register is considered to be
2881  * SCALAR. This function does not deal with register filling; the caller must
2882  * ensure that all spilled registers in the stack range have been marked as
2883  * read.
2884  */
2885 static void mark_reg_stack_read(struct bpf_verifier_env *env,
2886 				/* func where src register points to */
2887 				struct bpf_func_state *ptr_state,
2888 				int min_off, int max_off, int dst_regno)
2889 {
2890 	struct bpf_verifier_state *vstate = env->cur_state;
2891 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2892 	int i, slot, spi;
2893 	u8 *stype;
2894 	int zeros = 0;
2895 
2896 	for (i = min_off; i < max_off; i++) {
2897 		slot = -i - 1;
2898 		spi = slot / BPF_REG_SIZE;
2899 		stype = ptr_state->stack[spi].slot_type;
2900 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
2901 			break;
2902 		zeros++;
2903 	}
2904 	if (zeros == max_off - min_off) {
2905 		/* any access_size read into register is zero extended,
2906 		 * so the whole register == const_zero
2907 		 */
2908 		__mark_reg_const_zero(&state->regs[dst_regno]);
2909 		/* backtracking doesn't support STACK_ZERO yet,
2910 		 * so mark it precise here, so that later
2911 		 * backtracking can stop here.
2912 		 * Backtracking may not need this if this register
2913 		 * doesn't participate in pointer adjustment.
2914 		 * Forward propagation of precise flag is not
2915 		 * necessary either. This mark is only to stop
2916 		 * backtracking. Any register that contributed
2917 		 * to const 0 was marked precise before spill.
2918 		 */
2919 		state->regs[dst_regno].precise = true;
2920 	} else {
2921 		/* have read misc data from the stack */
2922 		mark_reg_unknown(env, state->regs, dst_regno);
2923 	}
2924 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2925 }
2926 
2927 /* Read the stack at 'off' and put the results into the register indicated by
2928  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
2929  * spilled reg.
2930  *
2931  * 'dst_regno' can be -1, meaning that the read value is not going to a
2932  * register.
2933  *
2934  * The access is assumed to be within the current stack bounds.
2935  */
2936 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
2937 				      /* func where src register points to */
2938 				      struct bpf_func_state *reg_state,
2939 				      int off, int size, int dst_regno)
2940 {
2941 	struct bpf_verifier_state *vstate = env->cur_state;
2942 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2943 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2944 	struct bpf_reg_state *reg;
2945 	u8 *stype;
2946 
2947 	stype = reg_state->stack[spi].slot_type;
2948 	reg = &reg_state->stack[spi].spilled_ptr;
2949 
2950 	if (stype[0] == STACK_SPILL) {
2951 		if (size != BPF_REG_SIZE) {
2952 			if (reg->type != SCALAR_VALUE) {
2953 				verbose_linfo(env, env->insn_idx, "; ");
2954 				verbose(env, "invalid size of register fill\n");
2955 				return -EACCES;
2956 			}
2957 			if (dst_regno >= 0) {
2958 				mark_reg_unknown(env, state->regs, dst_regno);
2959 				state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2960 			}
2961 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2962 			return 0;
2963 		}
2964 		for (i = 1; i < BPF_REG_SIZE; i++) {
2965 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2966 				verbose(env, "corrupted spill memory\n");
2967 				return -EACCES;
2968 			}
2969 		}
2970 
2971 		if (dst_regno >= 0) {
2972 			/* restore register state from stack */
2973 			state->regs[dst_regno] = *reg;
2974 			/* mark reg as written since spilled pointer state likely
2975 			 * has its liveness marks cleared by is_state_visited()
2976 			 * which resets stack/reg liveness for state transitions
2977 			 */
2978 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2979 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2980 			/* If dst_regno==-1, the caller is asking us whether
2981 			 * it is acceptable to use this value as a SCALAR_VALUE
2982 			 * (e.g. for XADD).
2983 			 * We must not allow unprivileged callers to do that
2984 			 * with spilled pointers.
2985 			 */
2986 			verbose(env, "leaking pointer from stack off %d\n",
2987 				off);
2988 			return -EACCES;
2989 		}
2990 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2991 	} else {
2992 		u8 type;
2993 
2994 		for (i = 0; i < size; i++) {
2995 			type = stype[(slot - i) % BPF_REG_SIZE];
2996 			if (type == STACK_MISC)
2997 				continue;
2998 			if (type == STACK_ZERO)
2999 				continue;
3000 			verbose(env, "invalid read from stack off %d+%d size %d\n",
3001 				off, i, size);
3002 			return -EACCES;
3003 		}
3004 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3005 		if (dst_regno >= 0)
3006 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
3007 	}
3008 	return 0;
3009 }
3010 
3011 enum stack_access_src {
3012 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
3013 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
3014 };
3015 
3016 static int check_stack_range_initialized(struct bpf_verifier_env *env,
3017 					 int regno, int off, int access_size,
3018 					 bool zero_size_allowed,
3019 					 enum stack_access_src type,
3020 					 struct bpf_call_arg_meta *meta);
3021 
3022 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3023 {
3024 	return cur_regs(env) + regno;
3025 }
3026 
3027 /* Read the stack at 'ptr_regno + off' and put the result into the register
3028  * 'dst_regno'.
3029  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3030  * but not its variable offset.
3031  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3032  *
3033  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3034  * filling registers (i.e. reads of spilled register cannot be detected when
3035  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3036  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3037  * offset; for a fixed offset check_stack_read_fixed_off should be used
3038  * instead.
3039  */
3040 static int check_stack_read_var_off(struct bpf_verifier_env *env,
3041 				    int ptr_regno, int off, int size, int dst_regno)
3042 {
3043 	/* The state of the source register. */
3044 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3045 	struct bpf_func_state *ptr_state = func(env, reg);
3046 	int err;
3047 	int min_off, max_off;
3048 
3049 	/* Note that we pass a NULL meta, so raw access will not be permitted.
3050 	 */
3051 	err = check_stack_range_initialized(env, ptr_regno, off, size,
3052 					    false, ACCESS_DIRECT, NULL);
3053 	if (err)
3054 		return err;
3055 
3056 	min_off = reg->smin_value + off;
3057 	max_off = reg->smax_value + off;
3058 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3059 	return 0;
3060 }
3061 
3062 /* check_stack_read dispatches to check_stack_read_fixed_off or
3063  * check_stack_read_var_off.
3064  *
3065  * The caller must ensure that the offset falls within the allocated stack
3066  * bounds.
3067  *
3068  * 'dst_regno' is a register which will receive the value from the stack. It
3069  * can be -1, meaning that the read value is not going to a register.
3070  */
3071 static int check_stack_read(struct bpf_verifier_env *env,
3072 			    int ptr_regno, int off, int size,
3073 			    int dst_regno)
3074 {
3075 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3076 	struct bpf_func_state *state = func(env, reg);
3077 	int err;
3078 	/* Some accesses are only permitted with a static offset. */
3079 	bool var_off = !tnum_is_const(reg->var_off);
3080 
3081 	/* The offset is required to be static when reads don't go to a
3082 	 * register, in order to not leak pointers (see
3083 	 * check_stack_read_fixed_off).
3084 	 */
3085 	if (dst_regno < 0 && var_off) {
3086 		char tn_buf[48];
3087 
3088 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3089 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3090 			tn_buf, off, size);
3091 		return -EACCES;
3092 	}
3093 	/* Variable offset is prohibited for unprivileged mode for simplicity
3094 	 * since it requires corresponding support in Spectre masking for stack
3095 	 * ALU. See also retrieve_ptr_limit().
3096 	 */
3097 	if (!env->bypass_spec_v1 && var_off) {
3098 		char tn_buf[48];
3099 
3100 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3101 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3102 				ptr_regno, tn_buf);
3103 		return -EACCES;
3104 	}
3105 
3106 	if (!var_off) {
3107 		off += reg->var_off.value;
3108 		err = check_stack_read_fixed_off(env, state, off, size,
3109 						 dst_regno);
3110 	} else {
3111 		/* Variable offset stack reads need more conservative handling
3112 		 * than fixed offset ones. Note that dst_regno >= 0 on this
3113 		 * branch.
3114 		 */
3115 		err = check_stack_read_var_off(env, ptr_regno, off, size,
3116 					       dst_regno);
3117 	}
3118 	return err;
3119 }
3120 
3121 
3122 /* check_stack_write dispatches to check_stack_write_fixed_off or
3123  * check_stack_write_var_off.
3124  *
3125  * 'ptr_regno' is the register used as a pointer into the stack.
3126  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3127  * 'value_regno' is the register whose value we're writing to the stack. It can
3128  * be -1, meaning that we're not writing from a register.
3129  *
3130  * The caller must ensure that the offset falls within the maximum stack size.
3131  */
3132 static int check_stack_write(struct bpf_verifier_env *env,
3133 			     int ptr_regno, int off, int size,
3134 			     int value_regno, int insn_idx)
3135 {
3136 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3137 	struct bpf_func_state *state = func(env, reg);
3138 	int err;
3139 
3140 	if (tnum_is_const(reg->var_off)) {
3141 		off += reg->var_off.value;
3142 		err = check_stack_write_fixed_off(env, state, off, size,
3143 						  value_regno, insn_idx);
3144 	} else {
3145 		/* Variable offset stack reads need more conservative handling
3146 		 * than fixed offset ones.
3147 		 */
3148 		err = check_stack_write_var_off(env, state,
3149 						ptr_regno, off, size,
3150 						value_regno, insn_idx);
3151 	}
3152 	return err;
3153 }
3154 
3155 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3156 				 int off, int size, enum bpf_access_type type)
3157 {
3158 	struct bpf_reg_state *regs = cur_regs(env);
3159 	struct bpf_map *map = regs[regno].map_ptr;
3160 	u32 cap = bpf_map_flags_to_cap(map);
3161 
3162 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3163 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3164 			map->value_size, off, size);
3165 		return -EACCES;
3166 	}
3167 
3168 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3169 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3170 			map->value_size, off, size);
3171 		return -EACCES;
3172 	}
3173 
3174 	return 0;
3175 }
3176 
3177 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3178 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3179 			      int off, int size, u32 mem_size,
3180 			      bool zero_size_allowed)
3181 {
3182 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3183 	struct bpf_reg_state *reg;
3184 
3185 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3186 		return 0;
3187 
3188 	reg = &cur_regs(env)[regno];
3189 	switch (reg->type) {
3190 	case PTR_TO_MAP_KEY:
3191 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3192 			mem_size, off, size);
3193 		break;
3194 	case PTR_TO_MAP_VALUE:
3195 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3196 			mem_size, off, size);
3197 		break;
3198 	case PTR_TO_PACKET:
3199 	case PTR_TO_PACKET_META:
3200 	case PTR_TO_PACKET_END:
3201 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3202 			off, size, regno, reg->id, off, mem_size);
3203 		break;
3204 	case PTR_TO_MEM:
3205 	default:
3206 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3207 			mem_size, off, size);
3208 	}
3209 
3210 	return -EACCES;
3211 }
3212 
3213 /* check read/write into a memory region with possible variable offset */
3214 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3215 				   int off, int size, u32 mem_size,
3216 				   bool zero_size_allowed)
3217 {
3218 	struct bpf_verifier_state *vstate = env->cur_state;
3219 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3220 	struct bpf_reg_state *reg = &state->regs[regno];
3221 	int err;
3222 
3223 	/* We may have adjusted the register pointing to memory region, so we
3224 	 * need to try adding each of min_value and max_value to off
3225 	 * to make sure our theoretical access will be safe.
3226 	 */
3227 	if (env->log.level & BPF_LOG_LEVEL)
3228 		print_verifier_state(env, state);
3229 
3230 	/* The minimum value is only important with signed
3231 	 * comparisons where we can't assume the floor of a
3232 	 * value is 0.  If we are using signed variables for our
3233 	 * index'es we need to make sure that whatever we use
3234 	 * will have a set floor within our range.
3235 	 */
3236 	if (reg->smin_value < 0 &&
3237 	    (reg->smin_value == S64_MIN ||
3238 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3239 	      reg->smin_value + off < 0)) {
3240 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3241 			regno);
3242 		return -EACCES;
3243 	}
3244 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
3245 				 mem_size, zero_size_allowed);
3246 	if (err) {
3247 		verbose(env, "R%d min value is outside of the allowed memory range\n",
3248 			regno);
3249 		return err;
3250 	}
3251 
3252 	/* If we haven't set a max value then we need to bail since we can't be
3253 	 * sure we won't do bad things.
3254 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
3255 	 */
3256 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3257 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3258 			regno);
3259 		return -EACCES;
3260 	}
3261 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
3262 				 mem_size, zero_size_allowed);
3263 	if (err) {
3264 		verbose(env, "R%d max value is outside of the allowed memory range\n",
3265 			regno);
3266 		return err;
3267 	}
3268 
3269 	return 0;
3270 }
3271 
3272 /* check read/write into a map element with possible variable offset */
3273 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3274 			    int off, int size, bool zero_size_allowed)
3275 {
3276 	struct bpf_verifier_state *vstate = env->cur_state;
3277 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3278 	struct bpf_reg_state *reg = &state->regs[regno];
3279 	struct bpf_map *map = reg->map_ptr;
3280 	int err;
3281 
3282 	err = check_mem_region_access(env, regno, off, size, map->value_size,
3283 				      zero_size_allowed);
3284 	if (err)
3285 		return err;
3286 
3287 	if (map_value_has_spin_lock(map)) {
3288 		u32 lock = map->spin_lock_off;
3289 
3290 		/* if any part of struct bpf_spin_lock can be touched by
3291 		 * load/store reject this program.
3292 		 * To check that [x1, x2) overlaps with [y1, y2)
3293 		 * it is sufficient to check x1 < y2 && y1 < x2.
3294 		 */
3295 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3296 		     lock < reg->umax_value + off + size) {
3297 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3298 			return -EACCES;
3299 		}
3300 	}
3301 	if (map_value_has_timer(map)) {
3302 		u32 t = map->timer_off;
3303 
3304 		if (reg->smin_value + off < t + sizeof(struct bpf_timer) &&
3305 		     t < reg->umax_value + off + size) {
3306 			verbose(env, "bpf_timer cannot be accessed directly by load/store\n");
3307 			return -EACCES;
3308 		}
3309 	}
3310 	return err;
3311 }
3312 
3313 #define MAX_PACKET_OFF 0xffff
3314 
3315 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3316 {
3317 	return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
3318 }
3319 
3320 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3321 				       const struct bpf_call_arg_meta *meta,
3322 				       enum bpf_access_type t)
3323 {
3324 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3325 
3326 	switch (prog_type) {
3327 	/* Program types only with direct read access go here! */
3328 	case BPF_PROG_TYPE_LWT_IN:
3329 	case BPF_PROG_TYPE_LWT_OUT:
3330 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3331 	case BPF_PROG_TYPE_SK_REUSEPORT:
3332 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
3333 	case BPF_PROG_TYPE_CGROUP_SKB:
3334 		if (t == BPF_WRITE)
3335 			return false;
3336 		fallthrough;
3337 
3338 	/* Program types with direct read + write access go here! */
3339 	case BPF_PROG_TYPE_SCHED_CLS:
3340 	case BPF_PROG_TYPE_SCHED_ACT:
3341 	case BPF_PROG_TYPE_XDP:
3342 	case BPF_PROG_TYPE_LWT_XMIT:
3343 	case BPF_PROG_TYPE_SK_SKB:
3344 	case BPF_PROG_TYPE_SK_MSG:
3345 		if (meta)
3346 			return meta->pkt_access;
3347 
3348 		env->seen_direct_write = true;
3349 		return true;
3350 
3351 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3352 		if (t == BPF_WRITE)
3353 			env->seen_direct_write = true;
3354 
3355 		return true;
3356 
3357 	default:
3358 		return false;
3359 	}
3360 }
3361 
3362 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3363 			       int size, bool zero_size_allowed)
3364 {
3365 	struct bpf_reg_state *regs = cur_regs(env);
3366 	struct bpf_reg_state *reg = &regs[regno];
3367 	int err;
3368 
3369 	/* We may have added a variable offset to the packet pointer; but any
3370 	 * reg->range we have comes after that.  We are only checking the fixed
3371 	 * offset.
3372 	 */
3373 
3374 	/* We don't allow negative numbers, because we aren't tracking enough
3375 	 * detail to prove they're safe.
3376 	 */
3377 	if (reg->smin_value < 0) {
3378 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3379 			regno);
3380 		return -EACCES;
3381 	}
3382 
3383 	err = reg->range < 0 ? -EINVAL :
3384 	      __check_mem_access(env, regno, off, size, reg->range,
3385 				 zero_size_allowed);
3386 	if (err) {
3387 		verbose(env, "R%d offset is outside of the packet\n", regno);
3388 		return err;
3389 	}
3390 
3391 	/* __check_mem_access has made sure "off + size - 1" is within u16.
3392 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3393 	 * otherwise find_good_pkt_pointers would have refused to set range info
3394 	 * that __check_mem_access would have rejected this pkt access.
3395 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3396 	 */
3397 	env->prog->aux->max_pkt_offset =
3398 		max_t(u32, env->prog->aux->max_pkt_offset,
3399 		      off + reg->umax_value + size - 1);
3400 
3401 	return err;
3402 }
3403 
3404 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
3405 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3406 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
3407 			    struct btf **btf, u32 *btf_id)
3408 {
3409 	struct bpf_insn_access_aux info = {
3410 		.reg_type = *reg_type,
3411 		.log = &env->log,
3412 	};
3413 
3414 	if (env->ops->is_valid_access &&
3415 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3416 		/* A non zero info.ctx_field_size indicates that this field is a
3417 		 * candidate for later verifier transformation to load the whole
3418 		 * field and then apply a mask when accessed with a narrower
3419 		 * access than actual ctx access size. A zero info.ctx_field_size
3420 		 * will only allow for whole field access and rejects any other
3421 		 * type of narrower access.
3422 		 */
3423 		*reg_type = info.reg_type;
3424 
3425 		if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3426 			*btf = info.btf;
3427 			*btf_id = info.btf_id;
3428 		} else {
3429 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3430 		}
3431 		/* remember the offset of last byte accessed in ctx */
3432 		if (env->prog->aux->max_ctx_offset < off + size)
3433 			env->prog->aux->max_ctx_offset = off + size;
3434 		return 0;
3435 	}
3436 
3437 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3438 	return -EACCES;
3439 }
3440 
3441 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3442 				  int size)
3443 {
3444 	if (size < 0 || off < 0 ||
3445 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
3446 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
3447 			off, size);
3448 		return -EACCES;
3449 	}
3450 	return 0;
3451 }
3452 
3453 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3454 			     u32 regno, int off, int size,
3455 			     enum bpf_access_type t)
3456 {
3457 	struct bpf_reg_state *regs = cur_regs(env);
3458 	struct bpf_reg_state *reg = &regs[regno];
3459 	struct bpf_insn_access_aux info = {};
3460 	bool valid;
3461 
3462 	if (reg->smin_value < 0) {
3463 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3464 			regno);
3465 		return -EACCES;
3466 	}
3467 
3468 	switch (reg->type) {
3469 	case PTR_TO_SOCK_COMMON:
3470 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3471 		break;
3472 	case PTR_TO_SOCKET:
3473 		valid = bpf_sock_is_valid_access(off, size, t, &info);
3474 		break;
3475 	case PTR_TO_TCP_SOCK:
3476 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3477 		break;
3478 	case PTR_TO_XDP_SOCK:
3479 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3480 		break;
3481 	default:
3482 		valid = false;
3483 	}
3484 
3485 
3486 	if (valid) {
3487 		env->insn_aux_data[insn_idx].ctx_field_size =
3488 			info.ctx_field_size;
3489 		return 0;
3490 	}
3491 
3492 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
3493 		regno, reg_type_str[reg->type], off, size);
3494 
3495 	return -EACCES;
3496 }
3497 
3498 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3499 {
3500 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3501 }
3502 
3503 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3504 {
3505 	const struct bpf_reg_state *reg = reg_state(env, regno);
3506 
3507 	return reg->type == PTR_TO_CTX;
3508 }
3509 
3510 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3511 {
3512 	const struct bpf_reg_state *reg = reg_state(env, regno);
3513 
3514 	return type_is_sk_pointer(reg->type);
3515 }
3516 
3517 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3518 {
3519 	const struct bpf_reg_state *reg = reg_state(env, regno);
3520 
3521 	return type_is_pkt_pointer(reg->type);
3522 }
3523 
3524 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3525 {
3526 	const struct bpf_reg_state *reg = reg_state(env, regno);
3527 
3528 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3529 	return reg->type == PTR_TO_FLOW_KEYS;
3530 }
3531 
3532 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3533 				   const struct bpf_reg_state *reg,
3534 				   int off, int size, bool strict)
3535 {
3536 	struct tnum reg_off;
3537 	int ip_align;
3538 
3539 	/* Byte size accesses are always allowed. */
3540 	if (!strict || size == 1)
3541 		return 0;
3542 
3543 	/* For platforms that do not have a Kconfig enabling
3544 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3545 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
3546 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3547 	 * to this code only in strict mode where we want to emulate
3548 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
3549 	 * unconditional IP align value of '2'.
3550 	 */
3551 	ip_align = 2;
3552 
3553 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3554 	if (!tnum_is_aligned(reg_off, size)) {
3555 		char tn_buf[48];
3556 
3557 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3558 		verbose(env,
3559 			"misaligned packet access off %d+%s+%d+%d size %d\n",
3560 			ip_align, tn_buf, reg->off, off, size);
3561 		return -EACCES;
3562 	}
3563 
3564 	return 0;
3565 }
3566 
3567 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3568 				       const struct bpf_reg_state *reg,
3569 				       const char *pointer_desc,
3570 				       int off, int size, bool strict)
3571 {
3572 	struct tnum reg_off;
3573 
3574 	/* Byte size accesses are always allowed. */
3575 	if (!strict || size == 1)
3576 		return 0;
3577 
3578 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3579 	if (!tnum_is_aligned(reg_off, size)) {
3580 		char tn_buf[48];
3581 
3582 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3583 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3584 			pointer_desc, tn_buf, reg->off, off, size);
3585 		return -EACCES;
3586 	}
3587 
3588 	return 0;
3589 }
3590 
3591 static int check_ptr_alignment(struct bpf_verifier_env *env,
3592 			       const struct bpf_reg_state *reg, int off,
3593 			       int size, bool strict_alignment_once)
3594 {
3595 	bool strict = env->strict_alignment || strict_alignment_once;
3596 	const char *pointer_desc = "";
3597 
3598 	switch (reg->type) {
3599 	case PTR_TO_PACKET:
3600 	case PTR_TO_PACKET_META:
3601 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
3602 		 * right in front, treat it the very same way.
3603 		 */
3604 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
3605 	case PTR_TO_FLOW_KEYS:
3606 		pointer_desc = "flow keys ";
3607 		break;
3608 	case PTR_TO_MAP_KEY:
3609 		pointer_desc = "key ";
3610 		break;
3611 	case PTR_TO_MAP_VALUE:
3612 		pointer_desc = "value ";
3613 		break;
3614 	case PTR_TO_CTX:
3615 		pointer_desc = "context ";
3616 		break;
3617 	case PTR_TO_STACK:
3618 		pointer_desc = "stack ";
3619 		/* The stack spill tracking logic in check_stack_write_fixed_off()
3620 		 * and check_stack_read_fixed_off() relies on stack accesses being
3621 		 * aligned.
3622 		 */
3623 		strict = true;
3624 		break;
3625 	case PTR_TO_SOCKET:
3626 		pointer_desc = "sock ";
3627 		break;
3628 	case PTR_TO_SOCK_COMMON:
3629 		pointer_desc = "sock_common ";
3630 		break;
3631 	case PTR_TO_TCP_SOCK:
3632 		pointer_desc = "tcp_sock ";
3633 		break;
3634 	case PTR_TO_XDP_SOCK:
3635 		pointer_desc = "xdp_sock ";
3636 		break;
3637 	default:
3638 		break;
3639 	}
3640 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3641 					   strict);
3642 }
3643 
3644 static int update_stack_depth(struct bpf_verifier_env *env,
3645 			      const struct bpf_func_state *func,
3646 			      int off)
3647 {
3648 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
3649 
3650 	if (stack >= -off)
3651 		return 0;
3652 
3653 	/* update known max for given subprogram */
3654 	env->subprog_info[func->subprogno].stack_depth = -off;
3655 	return 0;
3656 }
3657 
3658 /* starting from main bpf function walk all instructions of the function
3659  * and recursively walk all callees that given function can call.
3660  * Ignore jump and exit insns.
3661  * Since recursion is prevented by check_cfg() this algorithm
3662  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3663  */
3664 static int check_max_stack_depth(struct bpf_verifier_env *env)
3665 {
3666 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3667 	struct bpf_subprog_info *subprog = env->subprog_info;
3668 	struct bpf_insn *insn = env->prog->insnsi;
3669 	bool tail_call_reachable = false;
3670 	int ret_insn[MAX_CALL_FRAMES];
3671 	int ret_prog[MAX_CALL_FRAMES];
3672 	int j;
3673 
3674 process_func:
3675 	/* protect against potential stack overflow that might happen when
3676 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3677 	 * depth for such case down to 256 so that the worst case scenario
3678 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
3679 	 * 8k).
3680 	 *
3681 	 * To get the idea what might happen, see an example:
3682 	 * func1 -> sub rsp, 128
3683 	 *  subfunc1 -> sub rsp, 256
3684 	 *  tailcall1 -> add rsp, 256
3685 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3686 	 *   subfunc2 -> sub rsp, 64
3687 	 *   subfunc22 -> sub rsp, 128
3688 	 *   tailcall2 -> add rsp, 128
3689 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3690 	 *
3691 	 * tailcall will unwind the current stack frame but it will not get rid
3692 	 * of caller's stack as shown on the example above.
3693 	 */
3694 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
3695 		verbose(env,
3696 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3697 			depth);
3698 		return -EACCES;
3699 	}
3700 	/* round up to 32-bytes, since this is granularity
3701 	 * of interpreter stack size
3702 	 */
3703 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3704 	if (depth > MAX_BPF_STACK) {
3705 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
3706 			frame + 1, depth);
3707 		return -EACCES;
3708 	}
3709 continue_func:
3710 	subprog_end = subprog[idx + 1].start;
3711 	for (; i < subprog_end; i++) {
3712 		int next_insn;
3713 
3714 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
3715 			continue;
3716 		/* remember insn and function to return to */
3717 		ret_insn[frame] = i + 1;
3718 		ret_prog[frame] = idx;
3719 
3720 		/* find the callee */
3721 		next_insn = i + insn[i].imm + 1;
3722 		idx = find_subprog(env, next_insn);
3723 		if (idx < 0) {
3724 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3725 				  next_insn);
3726 			return -EFAULT;
3727 		}
3728 		if (subprog[idx].is_async_cb) {
3729 			if (subprog[idx].has_tail_call) {
3730 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
3731 				return -EFAULT;
3732 			}
3733 			 /* async callbacks don't increase bpf prog stack size */
3734 			continue;
3735 		}
3736 		i = next_insn;
3737 
3738 		if (subprog[idx].has_tail_call)
3739 			tail_call_reachable = true;
3740 
3741 		frame++;
3742 		if (frame >= MAX_CALL_FRAMES) {
3743 			verbose(env, "the call stack of %d frames is too deep !\n",
3744 				frame);
3745 			return -E2BIG;
3746 		}
3747 		goto process_func;
3748 	}
3749 	/* if tail call got detected across bpf2bpf calls then mark each of the
3750 	 * currently present subprog frames as tail call reachable subprogs;
3751 	 * this info will be utilized by JIT so that we will be preserving the
3752 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
3753 	 */
3754 	if (tail_call_reachable)
3755 		for (j = 0; j < frame; j++)
3756 			subprog[ret_prog[j]].tail_call_reachable = true;
3757 
3758 	/* end of for() loop means the last insn of the 'subprog'
3759 	 * was reached. Doesn't matter whether it was JA or EXIT
3760 	 */
3761 	if (frame == 0)
3762 		return 0;
3763 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3764 	frame--;
3765 	i = ret_insn[frame];
3766 	idx = ret_prog[frame];
3767 	goto continue_func;
3768 }
3769 
3770 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3771 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3772 				  const struct bpf_insn *insn, int idx)
3773 {
3774 	int start = idx + insn->imm + 1, subprog;
3775 
3776 	subprog = find_subprog(env, start);
3777 	if (subprog < 0) {
3778 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3779 			  start);
3780 		return -EFAULT;
3781 	}
3782 	return env->subprog_info[subprog].stack_depth;
3783 }
3784 #endif
3785 
3786 int check_ctx_reg(struct bpf_verifier_env *env,
3787 		  const struct bpf_reg_state *reg, int regno)
3788 {
3789 	/* Access to ctx or passing it to a helper is only allowed in
3790 	 * its original, unmodified form.
3791 	 */
3792 
3793 	if (reg->off) {
3794 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3795 			regno, reg->off);
3796 		return -EACCES;
3797 	}
3798 
3799 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3800 		char tn_buf[48];
3801 
3802 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3803 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3804 		return -EACCES;
3805 	}
3806 
3807 	return 0;
3808 }
3809 
3810 static int __check_buffer_access(struct bpf_verifier_env *env,
3811 				 const char *buf_info,
3812 				 const struct bpf_reg_state *reg,
3813 				 int regno, int off, int size)
3814 {
3815 	if (off < 0) {
3816 		verbose(env,
3817 			"R%d invalid %s buffer access: off=%d, size=%d\n",
3818 			regno, buf_info, off, size);
3819 		return -EACCES;
3820 	}
3821 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3822 		char tn_buf[48];
3823 
3824 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3825 		verbose(env,
3826 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3827 			regno, off, tn_buf);
3828 		return -EACCES;
3829 	}
3830 
3831 	return 0;
3832 }
3833 
3834 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3835 				  const struct bpf_reg_state *reg,
3836 				  int regno, int off, int size)
3837 {
3838 	int err;
3839 
3840 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3841 	if (err)
3842 		return err;
3843 
3844 	if (off + size > env->prog->aux->max_tp_access)
3845 		env->prog->aux->max_tp_access = off + size;
3846 
3847 	return 0;
3848 }
3849 
3850 static int check_buffer_access(struct bpf_verifier_env *env,
3851 			       const struct bpf_reg_state *reg,
3852 			       int regno, int off, int size,
3853 			       bool zero_size_allowed,
3854 			       const char *buf_info,
3855 			       u32 *max_access)
3856 {
3857 	int err;
3858 
3859 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3860 	if (err)
3861 		return err;
3862 
3863 	if (off + size > *max_access)
3864 		*max_access = off + size;
3865 
3866 	return 0;
3867 }
3868 
3869 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
3870 static void zext_32_to_64(struct bpf_reg_state *reg)
3871 {
3872 	reg->var_off = tnum_subreg(reg->var_off);
3873 	__reg_assign_32_into_64(reg);
3874 }
3875 
3876 /* truncate register to smaller size (in bytes)
3877  * must be called with size < BPF_REG_SIZE
3878  */
3879 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3880 {
3881 	u64 mask;
3882 
3883 	/* clear high bits in bit representation */
3884 	reg->var_off = tnum_cast(reg->var_off, size);
3885 
3886 	/* fix arithmetic bounds */
3887 	mask = ((u64)1 << (size * 8)) - 1;
3888 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3889 		reg->umin_value &= mask;
3890 		reg->umax_value &= mask;
3891 	} else {
3892 		reg->umin_value = 0;
3893 		reg->umax_value = mask;
3894 	}
3895 	reg->smin_value = reg->umin_value;
3896 	reg->smax_value = reg->umax_value;
3897 
3898 	/* If size is smaller than 32bit register the 32bit register
3899 	 * values are also truncated so we push 64-bit bounds into
3900 	 * 32-bit bounds. Above were truncated < 32-bits already.
3901 	 */
3902 	if (size >= 4)
3903 		return;
3904 	__reg_combine_64_into_32(reg);
3905 }
3906 
3907 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3908 {
3909 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3910 }
3911 
3912 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3913 {
3914 	void *ptr;
3915 	u64 addr;
3916 	int err;
3917 
3918 	err = map->ops->map_direct_value_addr(map, &addr, off);
3919 	if (err)
3920 		return err;
3921 	ptr = (void *)(long)addr + off;
3922 
3923 	switch (size) {
3924 	case sizeof(u8):
3925 		*val = (u64)*(u8 *)ptr;
3926 		break;
3927 	case sizeof(u16):
3928 		*val = (u64)*(u16 *)ptr;
3929 		break;
3930 	case sizeof(u32):
3931 		*val = (u64)*(u32 *)ptr;
3932 		break;
3933 	case sizeof(u64):
3934 		*val = *(u64 *)ptr;
3935 		break;
3936 	default:
3937 		return -EINVAL;
3938 	}
3939 	return 0;
3940 }
3941 
3942 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3943 				   struct bpf_reg_state *regs,
3944 				   int regno, int off, int size,
3945 				   enum bpf_access_type atype,
3946 				   int value_regno)
3947 {
3948 	struct bpf_reg_state *reg = regs + regno;
3949 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
3950 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
3951 	u32 btf_id;
3952 	int ret;
3953 
3954 	if (off < 0) {
3955 		verbose(env,
3956 			"R%d is ptr_%s invalid negative access: off=%d\n",
3957 			regno, tname, off);
3958 		return -EACCES;
3959 	}
3960 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3961 		char tn_buf[48];
3962 
3963 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3964 		verbose(env,
3965 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3966 			regno, tname, off, tn_buf);
3967 		return -EACCES;
3968 	}
3969 
3970 	if (env->ops->btf_struct_access) {
3971 		ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
3972 						  off, size, atype, &btf_id);
3973 	} else {
3974 		if (atype != BPF_READ) {
3975 			verbose(env, "only read is supported\n");
3976 			return -EACCES;
3977 		}
3978 
3979 		ret = btf_struct_access(&env->log, reg->btf, t, off, size,
3980 					atype, &btf_id);
3981 	}
3982 
3983 	if (ret < 0)
3984 		return ret;
3985 
3986 	if (atype == BPF_READ && value_regno >= 0)
3987 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
3988 
3989 	return 0;
3990 }
3991 
3992 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3993 				   struct bpf_reg_state *regs,
3994 				   int regno, int off, int size,
3995 				   enum bpf_access_type atype,
3996 				   int value_regno)
3997 {
3998 	struct bpf_reg_state *reg = regs + regno;
3999 	struct bpf_map *map = reg->map_ptr;
4000 	const struct btf_type *t;
4001 	const char *tname;
4002 	u32 btf_id;
4003 	int ret;
4004 
4005 	if (!btf_vmlinux) {
4006 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4007 		return -ENOTSUPP;
4008 	}
4009 
4010 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4011 		verbose(env, "map_ptr access not supported for map type %d\n",
4012 			map->map_type);
4013 		return -ENOTSUPP;
4014 	}
4015 
4016 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4017 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4018 
4019 	if (!env->allow_ptr_to_map_access) {
4020 		verbose(env,
4021 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4022 			tname);
4023 		return -EPERM;
4024 	}
4025 
4026 	if (off < 0) {
4027 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
4028 			regno, tname, off);
4029 		return -EACCES;
4030 	}
4031 
4032 	if (atype != BPF_READ) {
4033 		verbose(env, "only read from %s is supported\n", tname);
4034 		return -EACCES;
4035 	}
4036 
4037 	ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
4038 	if (ret < 0)
4039 		return ret;
4040 
4041 	if (value_regno >= 0)
4042 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
4043 
4044 	return 0;
4045 }
4046 
4047 /* Check that the stack access at the given offset is within bounds. The
4048  * maximum valid offset is -1.
4049  *
4050  * The minimum valid offset is -MAX_BPF_STACK for writes, and
4051  * -state->allocated_stack for reads.
4052  */
4053 static int check_stack_slot_within_bounds(int off,
4054 					  struct bpf_func_state *state,
4055 					  enum bpf_access_type t)
4056 {
4057 	int min_valid_off;
4058 
4059 	if (t == BPF_WRITE)
4060 		min_valid_off = -MAX_BPF_STACK;
4061 	else
4062 		min_valid_off = -state->allocated_stack;
4063 
4064 	if (off < min_valid_off || off > -1)
4065 		return -EACCES;
4066 	return 0;
4067 }
4068 
4069 /* Check that the stack access at 'regno + off' falls within the maximum stack
4070  * bounds.
4071  *
4072  * 'off' includes `regno->offset`, but not its dynamic part (if any).
4073  */
4074 static int check_stack_access_within_bounds(
4075 		struct bpf_verifier_env *env,
4076 		int regno, int off, int access_size,
4077 		enum stack_access_src src, enum bpf_access_type type)
4078 {
4079 	struct bpf_reg_state *regs = cur_regs(env);
4080 	struct bpf_reg_state *reg = regs + regno;
4081 	struct bpf_func_state *state = func(env, reg);
4082 	int min_off, max_off;
4083 	int err;
4084 	char *err_extra;
4085 
4086 	if (src == ACCESS_HELPER)
4087 		/* We don't know if helpers are reading or writing (or both). */
4088 		err_extra = " indirect access to";
4089 	else if (type == BPF_READ)
4090 		err_extra = " read from";
4091 	else
4092 		err_extra = " write to";
4093 
4094 	if (tnum_is_const(reg->var_off)) {
4095 		min_off = reg->var_off.value + off;
4096 		if (access_size > 0)
4097 			max_off = min_off + access_size - 1;
4098 		else
4099 			max_off = min_off;
4100 	} else {
4101 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4102 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
4103 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4104 				err_extra, regno);
4105 			return -EACCES;
4106 		}
4107 		min_off = reg->smin_value + off;
4108 		if (access_size > 0)
4109 			max_off = reg->smax_value + off + access_size - 1;
4110 		else
4111 			max_off = min_off;
4112 	}
4113 
4114 	err = check_stack_slot_within_bounds(min_off, state, type);
4115 	if (!err)
4116 		err = check_stack_slot_within_bounds(max_off, state, type);
4117 
4118 	if (err) {
4119 		if (tnum_is_const(reg->var_off)) {
4120 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4121 				err_extra, regno, off, access_size);
4122 		} else {
4123 			char tn_buf[48];
4124 
4125 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4126 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4127 				err_extra, regno, tn_buf, access_size);
4128 		}
4129 	}
4130 	return err;
4131 }
4132 
4133 /* check whether memory at (regno + off) is accessible for t = (read | write)
4134  * if t==write, value_regno is a register which value is stored into memory
4135  * if t==read, value_regno is a register which will receive the value from memory
4136  * if t==write && value_regno==-1, some unknown value is stored into memory
4137  * if t==read && value_regno==-1, don't care what we read from memory
4138  */
4139 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4140 			    int off, int bpf_size, enum bpf_access_type t,
4141 			    int value_regno, bool strict_alignment_once)
4142 {
4143 	struct bpf_reg_state *regs = cur_regs(env);
4144 	struct bpf_reg_state *reg = regs + regno;
4145 	struct bpf_func_state *state;
4146 	int size, err = 0;
4147 
4148 	size = bpf_size_to_bytes(bpf_size);
4149 	if (size < 0)
4150 		return size;
4151 
4152 	/* alignment checks will add in reg->off themselves */
4153 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
4154 	if (err)
4155 		return err;
4156 
4157 	/* for access checks, reg->off is just part of off */
4158 	off += reg->off;
4159 
4160 	if (reg->type == PTR_TO_MAP_KEY) {
4161 		if (t == BPF_WRITE) {
4162 			verbose(env, "write to change key R%d not allowed\n", regno);
4163 			return -EACCES;
4164 		}
4165 
4166 		err = check_mem_region_access(env, regno, off, size,
4167 					      reg->map_ptr->key_size, false);
4168 		if (err)
4169 			return err;
4170 		if (value_regno >= 0)
4171 			mark_reg_unknown(env, regs, value_regno);
4172 	} else if (reg->type == PTR_TO_MAP_VALUE) {
4173 		if (t == BPF_WRITE && value_regno >= 0 &&
4174 		    is_pointer_value(env, value_regno)) {
4175 			verbose(env, "R%d leaks addr into map\n", value_regno);
4176 			return -EACCES;
4177 		}
4178 		err = check_map_access_type(env, regno, off, size, t);
4179 		if (err)
4180 			return err;
4181 		err = check_map_access(env, regno, off, size, false);
4182 		if (!err && t == BPF_READ && value_regno >= 0) {
4183 			struct bpf_map *map = reg->map_ptr;
4184 
4185 			/* if map is read-only, track its contents as scalars */
4186 			if (tnum_is_const(reg->var_off) &&
4187 			    bpf_map_is_rdonly(map) &&
4188 			    map->ops->map_direct_value_addr) {
4189 				int map_off = off + reg->var_off.value;
4190 				u64 val = 0;
4191 
4192 				err = bpf_map_direct_read(map, map_off, size,
4193 							  &val);
4194 				if (err)
4195 					return err;
4196 
4197 				regs[value_regno].type = SCALAR_VALUE;
4198 				__mark_reg_known(&regs[value_regno], val);
4199 			} else {
4200 				mark_reg_unknown(env, regs, value_regno);
4201 			}
4202 		}
4203 	} else if (reg->type == PTR_TO_MEM) {
4204 		if (t == BPF_WRITE && value_regno >= 0 &&
4205 		    is_pointer_value(env, value_regno)) {
4206 			verbose(env, "R%d leaks addr into mem\n", value_regno);
4207 			return -EACCES;
4208 		}
4209 		err = check_mem_region_access(env, regno, off, size,
4210 					      reg->mem_size, false);
4211 		if (!err && t == BPF_READ && value_regno >= 0)
4212 			mark_reg_unknown(env, regs, value_regno);
4213 	} else if (reg->type == PTR_TO_CTX) {
4214 		enum bpf_reg_type reg_type = SCALAR_VALUE;
4215 		struct btf *btf = NULL;
4216 		u32 btf_id = 0;
4217 
4218 		if (t == BPF_WRITE && value_regno >= 0 &&
4219 		    is_pointer_value(env, value_regno)) {
4220 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
4221 			return -EACCES;
4222 		}
4223 
4224 		err = check_ctx_reg(env, reg, regno);
4225 		if (err < 0)
4226 			return err;
4227 
4228 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
4229 		if (err)
4230 			verbose_linfo(env, insn_idx, "; ");
4231 		if (!err && t == BPF_READ && value_regno >= 0) {
4232 			/* ctx access returns either a scalar, or a
4233 			 * PTR_TO_PACKET[_META,_END]. In the latter
4234 			 * case, we know the offset is zero.
4235 			 */
4236 			if (reg_type == SCALAR_VALUE) {
4237 				mark_reg_unknown(env, regs, value_regno);
4238 			} else {
4239 				mark_reg_known_zero(env, regs,
4240 						    value_regno);
4241 				if (reg_type_may_be_null(reg_type))
4242 					regs[value_regno].id = ++env->id_gen;
4243 				/* A load of ctx field could have different
4244 				 * actual load size with the one encoded in the
4245 				 * insn. When the dst is PTR, it is for sure not
4246 				 * a sub-register.
4247 				 */
4248 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
4249 				if (reg_type == PTR_TO_BTF_ID ||
4250 				    reg_type == PTR_TO_BTF_ID_OR_NULL) {
4251 					regs[value_regno].btf = btf;
4252 					regs[value_regno].btf_id = btf_id;
4253 				}
4254 			}
4255 			regs[value_regno].type = reg_type;
4256 		}
4257 
4258 	} else if (reg->type == PTR_TO_STACK) {
4259 		/* Basic bounds checks. */
4260 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
4261 		if (err)
4262 			return err;
4263 
4264 		state = func(env, reg);
4265 		err = update_stack_depth(env, state, off);
4266 		if (err)
4267 			return err;
4268 
4269 		if (t == BPF_READ)
4270 			err = check_stack_read(env, regno, off, size,
4271 					       value_regno);
4272 		else
4273 			err = check_stack_write(env, regno, off, size,
4274 						value_regno, insn_idx);
4275 	} else if (reg_is_pkt_pointer(reg)) {
4276 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4277 			verbose(env, "cannot write into packet\n");
4278 			return -EACCES;
4279 		}
4280 		if (t == BPF_WRITE && value_regno >= 0 &&
4281 		    is_pointer_value(env, value_regno)) {
4282 			verbose(env, "R%d leaks addr into packet\n",
4283 				value_regno);
4284 			return -EACCES;
4285 		}
4286 		err = check_packet_access(env, regno, off, size, false);
4287 		if (!err && t == BPF_READ && value_regno >= 0)
4288 			mark_reg_unknown(env, regs, value_regno);
4289 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
4290 		if (t == BPF_WRITE && value_regno >= 0 &&
4291 		    is_pointer_value(env, value_regno)) {
4292 			verbose(env, "R%d leaks addr into flow keys\n",
4293 				value_regno);
4294 			return -EACCES;
4295 		}
4296 
4297 		err = check_flow_keys_access(env, off, size);
4298 		if (!err && t == BPF_READ && value_regno >= 0)
4299 			mark_reg_unknown(env, regs, value_regno);
4300 	} else if (type_is_sk_pointer(reg->type)) {
4301 		if (t == BPF_WRITE) {
4302 			verbose(env, "R%d cannot write into %s\n",
4303 				regno, reg_type_str[reg->type]);
4304 			return -EACCES;
4305 		}
4306 		err = check_sock_access(env, insn_idx, regno, off, size, t);
4307 		if (!err && value_regno >= 0)
4308 			mark_reg_unknown(env, regs, value_regno);
4309 	} else if (reg->type == PTR_TO_TP_BUFFER) {
4310 		err = check_tp_buffer_access(env, reg, regno, off, size);
4311 		if (!err && t == BPF_READ && value_regno >= 0)
4312 			mark_reg_unknown(env, regs, value_regno);
4313 	} else if (reg->type == PTR_TO_BTF_ID) {
4314 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4315 					      value_regno);
4316 	} else if (reg->type == CONST_PTR_TO_MAP) {
4317 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4318 					      value_regno);
4319 	} else if (reg->type == PTR_TO_RDONLY_BUF) {
4320 		if (t == BPF_WRITE) {
4321 			verbose(env, "R%d cannot write into %s\n",
4322 				regno, reg_type_str[reg->type]);
4323 			return -EACCES;
4324 		}
4325 		err = check_buffer_access(env, reg, regno, off, size, false,
4326 					  "rdonly",
4327 					  &env->prog->aux->max_rdonly_access);
4328 		if (!err && value_regno >= 0)
4329 			mark_reg_unknown(env, regs, value_regno);
4330 	} else if (reg->type == PTR_TO_RDWR_BUF) {
4331 		err = check_buffer_access(env, reg, regno, off, size, false,
4332 					  "rdwr",
4333 					  &env->prog->aux->max_rdwr_access);
4334 		if (!err && t == BPF_READ && value_regno >= 0)
4335 			mark_reg_unknown(env, regs, value_regno);
4336 	} else {
4337 		verbose(env, "R%d invalid mem access '%s'\n", regno,
4338 			reg_type_str[reg->type]);
4339 		return -EACCES;
4340 	}
4341 
4342 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4343 	    regs[value_regno].type == SCALAR_VALUE) {
4344 		/* b/h/w load zero-extends, mark upper bits as known 0 */
4345 		coerce_reg_to_size(&regs[value_regno], size);
4346 	}
4347 	return err;
4348 }
4349 
4350 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4351 {
4352 	int load_reg;
4353 	int err;
4354 
4355 	switch (insn->imm) {
4356 	case BPF_ADD:
4357 	case BPF_ADD | BPF_FETCH:
4358 	case BPF_AND:
4359 	case BPF_AND | BPF_FETCH:
4360 	case BPF_OR:
4361 	case BPF_OR | BPF_FETCH:
4362 	case BPF_XOR:
4363 	case BPF_XOR | BPF_FETCH:
4364 	case BPF_XCHG:
4365 	case BPF_CMPXCHG:
4366 		break;
4367 	default:
4368 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4369 		return -EINVAL;
4370 	}
4371 
4372 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4373 		verbose(env, "invalid atomic operand size\n");
4374 		return -EINVAL;
4375 	}
4376 
4377 	/* check src1 operand */
4378 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
4379 	if (err)
4380 		return err;
4381 
4382 	/* check src2 operand */
4383 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4384 	if (err)
4385 		return err;
4386 
4387 	if (insn->imm == BPF_CMPXCHG) {
4388 		/* Check comparison of R0 with memory location */
4389 		err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4390 		if (err)
4391 			return err;
4392 	}
4393 
4394 	if (is_pointer_value(env, insn->src_reg)) {
4395 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4396 		return -EACCES;
4397 	}
4398 
4399 	if (is_ctx_reg(env, insn->dst_reg) ||
4400 	    is_pkt_reg(env, insn->dst_reg) ||
4401 	    is_flow_key_reg(env, insn->dst_reg) ||
4402 	    is_sk_reg(env, insn->dst_reg)) {
4403 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4404 			insn->dst_reg,
4405 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
4406 		return -EACCES;
4407 	}
4408 
4409 	if (insn->imm & BPF_FETCH) {
4410 		if (insn->imm == BPF_CMPXCHG)
4411 			load_reg = BPF_REG_0;
4412 		else
4413 			load_reg = insn->src_reg;
4414 
4415 		/* check and record load of old value */
4416 		err = check_reg_arg(env, load_reg, DST_OP);
4417 		if (err)
4418 			return err;
4419 	} else {
4420 		/* This instruction accesses a memory location but doesn't
4421 		 * actually load it into a register.
4422 		 */
4423 		load_reg = -1;
4424 	}
4425 
4426 	/* check whether we can read the memory */
4427 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4428 			       BPF_SIZE(insn->code), BPF_READ, load_reg, true);
4429 	if (err)
4430 		return err;
4431 
4432 	/* check whether we can write into the same memory */
4433 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4434 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4435 	if (err)
4436 		return err;
4437 
4438 	return 0;
4439 }
4440 
4441 /* When register 'regno' is used to read the stack (either directly or through
4442  * a helper function) make sure that it's within stack boundary and, depending
4443  * on the access type, that all elements of the stack are initialized.
4444  *
4445  * 'off' includes 'regno->off', but not its dynamic part (if any).
4446  *
4447  * All registers that have been spilled on the stack in the slots within the
4448  * read offsets are marked as read.
4449  */
4450 static int check_stack_range_initialized(
4451 		struct bpf_verifier_env *env, int regno, int off,
4452 		int access_size, bool zero_size_allowed,
4453 		enum stack_access_src type, struct bpf_call_arg_meta *meta)
4454 {
4455 	struct bpf_reg_state *reg = reg_state(env, regno);
4456 	struct bpf_func_state *state = func(env, reg);
4457 	int err, min_off, max_off, i, j, slot, spi;
4458 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4459 	enum bpf_access_type bounds_check_type;
4460 	/* Some accesses can write anything into the stack, others are
4461 	 * read-only.
4462 	 */
4463 	bool clobber = false;
4464 
4465 	if (access_size == 0 && !zero_size_allowed) {
4466 		verbose(env, "invalid zero-sized read\n");
4467 		return -EACCES;
4468 	}
4469 
4470 	if (type == ACCESS_HELPER) {
4471 		/* The bounds checks for writes are more permissive than for
4472 		 * reads. However, if raw_mode is not set, we'll do extra
4473 		 * checks below.
4474 		 */
4475 		bounds_check_type = BPF_WRITE;
4476 		clobber = true;
4477 	} else {
4478 		bounds_check_type = BPF_READ;
4479 	}
4480 	err = check_stack_access_within_bounds(env, regno, off, access_size,
4481 					       type, bounds_check_type);
4482 	if (err)
4483 		return err;
4484 
4485 
4486 	if (tnum_is_const(reg->var_off)) {
4487 		min_off = max_off = reg->var_off.value + off;
4488 	} else {
4489 		/* Variable offset is prohibited for unprivileged mode for
4490 		 * simplicity since it requires corresponding support in
4491 		 * Spectre masking for stack ALU.
4492 		 * See also retrieve_ptr_limit().
4493 		 */
4494 		if (!env->bypass_spec_v1) {
4495 			char tn_buf[48];
4496 
4497 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4498 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4499 				regno, err_extra, tn_buf);
4500 			return -EACCES;
4501 		}
4502 		/* Only initialized buffer on stack is allowed to be accessed
4503 		 * with variable offset. With uninitialized buffer it's hard to
4504 		 * guarantee that whole memory is marked as initialized on
4505 		 * helper return since specific bounds are unknown what may
4506 		 * cause uninitialized stack leaking.
4507 		 */
4508 		if (meta && meta->raw_mode)
4509 			meta = NULL;
4510 
4511 		min_off = reg->smin_value + off;
4512 		max_off = reg->smax_value + off;
4513 	}
4514 
4515 	if (meta && meta->raw_mode) {
4516 		meta->access_size = access_size;
4517 		meta->regno = regno;
4518 		return 0;
4519 	}
4520 
4521 	for (i = min_off; i < max_off + access_size; i++) {
4522 		u8 *stype;
4523 
4524 		slot = -i - 1;
4525 		spi = slot / BPF_REG_SIZE;
4526 		if (state->allocated_stack <= slot)
4527 			goto err;
4528 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4529 		if (*stype == STACK_MISC)
4530 			goto mark;
4531 		if (*stype == STACK_ZERO) {
4532 			if (clobber) {
4533 				/* helper can write anything into the stack */
4534 				*stype = STACK_MISC;
4535 			}
4536 			goto mark;
4537 		}
4538 
4539 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4540 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4541 			goto mark;
4542 
4543 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4544 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4545 		     env->allow_ptr_leaks)) {
4546 			if (clobber) {
4547 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4548 				for (j = 0; j < BPF_REG_SIZE; j++)
4549 					state->stack[spi].slot_type[j] = STACK_MISC;
4550 			}
4551 			goto mark;
4552 		}
4553 
4554 err:
4555 		if (tnum_is_const(reg->var_off)) {
4556 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4557 				err_extra, regno, min_off, i - min_off, access_size);
4558 		} else {
4559 			char tn_buf[48];
4560 
4561 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4562 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4563 				err_extra, regno, tn_buf, i - min_off, access_size);
4564 		}
4565 		return -EACCES;
4566 mark:
4567 		/* reading any byte out of 8-byte 'spill_slot' will cause
4568 		 * the whole slot to be marked as 'read'
4569 		 */
4570 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
4571 			      state->stack[spi].spilled_ptr.parent,
4572 			      REG_LIVE_READ64);
4573 	}
4574 	return update_stack_depth(env, state, min_off);
4575 }
4576 
4577 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4578 				   int access_size, bool zero_size_allowed,
4579 				   struct bpf_call_arg_meta *meta)
4580 {
4581 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4582 
4583 	switch (reg->type) {
4584 	case PTR_TO_PACKET:
4585 	case PTR_TO_PACKET_META:
4586 		return check_packet_access(env, regno, reg->off, access_size,
4587 					   zero_size_allowed);
4588 	case PTR_TO_MAP_KEY:
4589 		return check_mem_region_access(env, regno, reg->off, access_size,
4590 					       reg->map_ptr->key_size, false);
4591 	case PTR_TO_MAP_VALUE:
4592 		if (check_map_access_type(env, regno, reg->off, access_size,
4593 					  meta && meta->raw_mode ? BPF_WRITE :
4594 					  BPF_READ))
4595 			return -EACCES;
4596 		return check_map_access(env, regno, reg->off, access_size,
4597 					zero_size_allowed);
4598 	case PTR_TO_MEM:
4599 		return check_mem_region_access(env, regno, reg->off,
4600 					       access_size, reg->mem_size,
4601 					       zero_size_allowed);
4602 	case PTR_TO_RDONLY_BUF:
4603 		if (meta && meta->raw_mode)
4604 			return -EACCES;
4605 		return check_buffer_access(env, reg, regno, reg->off,
4606 					   access_size, zero_size_allowed,
4607 					   "rdonly",
4608 					   &env->prog->aux->max_rdonly_access);
4609 	case PTR_TO_RDWR_BUF:
4610 		return check_buffer_access(env, reg, regno, reg->off,
4611 					   access_size, zero_size_allowed,
4612 					   "rdwr",
4613 					   &env->prog->aux->max_rdwr_access);
4614 	case PTR_TO_STACK:
4615 		return check_stack_range_initialized(
4616 				env,
4617 				regno, reg->off, access_size,
4618 				zero_size_allowed, ACCESS_HELPER, meta);
4619 	default: /* scalar_value or invalid ptr */
4620 		/* Allow zero-byte read from NULL, regardless of pointer type */
4621 		if (zero_size_allowed && access_size == 0 &&
4622 		    register_is_null(reg))
4623 			return 0;
4624 
4625 		verbose(env, "R%d type=%s expected=%s\n", regno,
4626 			reg_type_str[reg->type],
4627 			reg_type_str[PTR_TO_STACK]);
4628 		return -EACCES;
4629 	}
4630 }
4631 
4632 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4633 		   u32 regno, u32 mem_size)
4634 {
4635 	if (register_is_null(reg))
4636 		return 0;
4637 
4638 	if (reg_type_may_be_null(reg->type)) {
4639 		/* Assuming that the register contains a value check if the memory
4640 		 * access is safe. Temporarily save and restore the register's state as
4641 		 * the conversion shouldn't be visible to a caller.
4642 		 */
4643 		const struct bpf_reg_state saved_reg = *reg;
4644 		int rv;
4645 
4646 		mark_ptr_not_null_reg(reg);
4647 		rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4648 		*reg = saved_reg;
4649 		return rv;
4650 	}
4651 
4652 	return check_helper_mem_access(env, regno, mem_size, true, NULL);
4653 }
4654 
4655 /* Implementation details:
4656  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4657  * Two bpf_map_lookups (even with the same key) will have different reg->id.
4658  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4659  * value_or_null->value transition, since the verifier only cares about
4660  * the range of access to valid map value pointer and doesn't care about actual
4661  * address of the map element.
4662  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4663  * reg->id > 0 after value_or_null->value transition. By doing so
4664  * two bpf_map_lookups will be considered two different pointers that
4665  * point to different bpf_spin_locks.
4666  * The verifier allows taking only one bpf_spin_lock at a time to avoid
4667  * dead-locks.
4668  * Since only one bpf_spin_lock is allowed the checks are simpler than
4669  * reg_is_refcounted() logic. The verifier needs to remember only
4670  * one spin_lock instead of array of acquired_refs.
4671  * cur_state->active_spin_lock remembers which map value element got locked
4672  * and clears it after bpf_spin_unlock.
4673  */
4674 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4675 			     bool is_lock)
4676 {
4677 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4678 	struct bpf_verifier_state *cur = env->cur_state;
4679 	bool is_const = tnum_is_const(reg->var_off);
4680 	struct bpf_map *map = reg->map_ptr;
4681 	u64 val = reg->var_off.value;
4682 
4683 	if (!is_const) {
4684 		verbose(env,
4685 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4686 			regno);
4687 		return -EINVAL;
4688 	}
4689 	if (!map->btf) {
4690 		verbose(env,
4691 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
4692 			map->name);
4693 		return -EINVAL;
4694 	}
4695 	if (!map_value_has_spin_lock(map)) {
4696 		if (map->spin_lock_off == -E2BIG)
4697 			verbose(env,
4698 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
4699 				map->name);
4700 		else if (map->spin_lock_off == -ENOENT)
4701 			verbose(env,
4702 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
4703 				map->name);
4704 		else
4705 			verbose(env,
4706 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4707 				map->name);
4708 		return -EINVAL;
4709 	}
4710 	if (map->spin_lock_off != val + reg->off) {
4711 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4712 			val + reg->off);
4713 		return -EINVAL;
4714 	}
4715 	if (is_lock) {
4716 		if (cur->active_spin_lock) {
4717 			verbose(env,
4718 				"Locking two bpf_spin_locks are not allowed\n");
4719 			return -EINVAL;
4720 		}
4721 		cur->active_spin_lock = reg->id;
4722 	} else {
4723 		if (!cur->active_spin_lock) {
4724 			verbose(env, "bpf_spin_unlock without taking a lock\n");
4725 			return -EINVAL;
4726 		}
4727 		if (cur->active_spin_lock != reg->id) {
4728 			verbose(env, "bpf_spin_unlock of different lock\n");
4729 			return -EINVAL;
4730 		}
4731 		cur->active_spin_lock = 0;
4732 	}
4733 	return 0;
4734 }
4735 
4736 static int process_timer_func(struct bpf_verifier_env *env, int regno,
4737 			      struct bpf_call_arg_meta *meta)
4738 {
4739 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4740 	bool is_const = tnum_is_const(reg->var_off);
4741 	struct bpf_map *map = reg->map_ptr;
4742 	u64 val = reg->var_off.value;
4743 
4744 	if (!is_const) {
4745 		verbose(env,
4746 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
4747 			regno);
4748 		return -EINVAL;
4749 	}
4750 	if (!map->btf) {
4751 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
4752 			map->name);
4753 		return -EINVAL;
4754 	}
4755 	if (!map_value_has_timer(map)) {
4756 		if (map->timer_off == -E2BIG)
4757 			verbose(env,
4758 				"map '%s' has more than one 'struct bpf_timer'\n",
4759 				map->name);
4760 		else if (map->timer_off == -ENOENT)
4761 			verbose(env,
4762 				"map '%s' doesn't have 'struct bpf_timer'\n",
4763 				map->name);
4764 		else
4765 			verbose(env,
4766 				"map '%s' is not a struct type or bpf_timer is mangled\n",
4767 				map->name);
4768 		return -EINVAL;
4769 	}
4770 	if (map->timer_off != val + reg->off) {
4771 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
4772 			val + reg->off, map->timer_off);
4773 		return -EINVAL;
4774 	}
4775 	if (meta->map_ptr) {
4776 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
4777 		return -EFAULT;
4778 	}
4779 	meta->map_uid = reg->map_uid;
4780 	meta->map_ptr = map;
4781 	return 0;
4782 }
4783 
4784 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4785 {
4786 	return type == ARG_PTR_TO_MEM ||
4787 	       type == ARG_PTR_TO_MEM_OR_NULL ||
4788 	       type == ARG_PTR_TO_UNINIT_MEM;
4789 }
4790 
4791 static bool arg_type_is_mem_size(enum bpf_arg_type type)
4792 {
4793 	return type == ARG_CONST_SIZE ||
4794 	       type == ARG_CONST_SIZE_OR_ZERO;
4795 }
4796 
4797 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4798 {
4799 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4800 }
4801 
4802 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4803 {
4804 	return type == ARG_PTR_TO_INT ||
4805 	       type == ARG_PTR_TO_LONG;
4806 }
4807 
4808 static int int_ptr_type_to_size(enum bpf_arg_type type)
4809 {
4810 	if (type == ARG_PTR_TO_INT)
4811 		return sizeof(u32);
4812 	else if (type == ARG_PTR_TO_LONG)
4813 		return sizeof(u64);
4814 
4815 	return -EINVAL;
4816 }
4817 
4818 static int resolve_map_arg_type(struct bpf_verifier_env *env,
4819 				 const struct bpf_call_arg_meta *meta,
4820 				 enum bpf_arg_type *arg_type)
4821 {
4822 	if (!meta->map_ptr) {
4823 		/* kernel subsystem misconfigured verifier */
4824 		verbose(env, "invalid map_ptr to access map->type\n");
4825 		return -EACCES;
4826 	}
4827 
4828 	switch (meta->map_ptr->map_type) {
4829 	case BPF_MAP_TYPE_SOCKMAP:
4830 	case BPF_MAP_TYPE_SOCKHASH:
4831 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4832 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4833 		} else {
4834 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
4835 			return -EINVAL;
4836 		}
4837 		break;
4838 
4839 	default:
4840 		break;
4841 	}
4842 	return 0;
4843 }
4844 
4845 struct bpf_reg_types {
4846 	const enum bpf_reg_type types[10];
4847 	u32 *btf_id;
4848 };
4849 
4850 static const struct bpf_reg_types map_key_value_types = {
4851 	.types = {
4852 		PTR_TO_STACK,
4853 		PTR_TO_PACKET,
4854 		PTR_TO_PACKET_META,
4855 		PTR_TO_MAP_KEY,
4856 		PTR_TO_MAP_VALUE,
4857 	},
4858 };
4859 
4860 static const struct bpf_reg_types sock_types = {
4861 	.types = {
4862 		PTR_TO_SOCK_COMMON,
4863 		PTR_TO_SOCKET,
4864 		PTR_TO_TCP_SOCK,
4865 		PTR_TO_XDP_SOCK,
4866 	},
4867 };
4868 
4869 #ifdef CONFIG_NET
4870 static const struct bpf_reg_types btf_id_sock_common_types = {
4871 	.types = {
4872 		PTR_TO_SOCK_COMMON,
4873 		PTR_TO_SOCKET,
4874 		PTR_TO_TCP_SOCK,
4875 		PTR_TO_XDP_SOCK,
4876 		PTR_TO_BTF_ID,
4877 	},
4878 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4879 };
4880 #endif
4881 
4882 static const struct bpf_reg_types mem_types = {
4883 	.types = {
4884 		PTR_TO_STACK,
4885 		PTR_TO_PACKET,
4886 		PTR_TO_PACKET_META,
4887 		PTR_TO_MAP_KEY,
4888 		PTR_TO_MAP_VALUE,
4889 		PTR_TO_MEM,
4890 		PTR_TO_RDONLY_BUF,
4891 		PTR_TO_RDWR_BUF,
4892 	},
4893 };
4894 
4895 static const struct bpf_reg_types int_ptr_types = {
4896 	.types = {
4897 		PTR_TO_STACK,
4898 		PTR_TO_PACKET,
4899 		PTR_TO_PACKET_META,
4900 		PTR_TO_MAP_KEY,
4901 		PTR_TO_MAP_VALUE,
4902 	},
4903 };
4904 
4905 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4906 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4907 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4908 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4909 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4910 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4911 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4912 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4913 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
4914 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
4915 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
4916 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
4917 
4918 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4919 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
4920 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
4921 	[ARG_PTR_TO_UNINIT_MAP_VALUE]	= &map_key_value_types,
4922 	[ARG_PTR_TO_MAP_VALUE_OR_NULL]	= &map_key_value_types,
4923 	[ARG_CONST_SIZE]		= &scalar_types,
4924 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
4925 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
4926 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
4927 	[ARG_PTR_TO_CTX]		= &context_types,
4928 	[ARG_PTR_TO_CTX_OR_NULL]	= &context_types,
4929 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
4930 #ifdef CONFIG_NET
4931 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
4932 #endif
4933 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
4934 	[ARG_PTR_TO_SOCKET_OR_NULL]	= &fullsock_types,
4935 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
4936 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
4937 	[ARG_PTR_TO_MEM]		= &mem_types,
4938 	[ARG_PTR_TO_MEM_OR_NULL]	= &mem_types,
4939 	[ARG_PTR_TO_UNINIT_MEM]		= &mem_types,
4940 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
4941 	[ARG_PTR_TO_ALLOC_MEM_OR_NULL]	= &alloc_mem_types,
4942 	[ARG_PTR_TO_INT]		= &int_ptr_types,
4943 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
4944 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
4945 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
4946 	[ARG_PTR_TO_STACK_OR_NULL]	= &stack_ptr_types,
4947 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
4948 	[ARG_PTR_TO_TIMER]		= &timer_types,
4949 };
4950 
4951 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4952 			  enum bpf_arg_type arg_type,
4953 			  const u32 *arg_btf_id)
4954 {
4955 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4956 	enum bpf_reg_type expected, type = reg->type;
4957 	const struct bpf_reg_types *compatible;
4958 	int i, j;
4959 
4960 	compatible = compatible_reg_types[arg_type];
4961 	if (!compatible) {
4962 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4963 		return -EFAULT;
4964 	}
4965 
4966 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4967 		expected = compatible->types[i];
4968 		if (expected == NOT_INIT)
4969 			break;
4970 
4971 		if (type == expected)
4972 			goto found;
4973 	}
4974 
4975 	verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4976 	for (j = 0; j + 1 < i; j++)
4977 		verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4978 	verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4979 	return -EACCES;
4980 
4981 found:
4982 	if (type == PTR_TO_BTF_ID) {
4983 		if (!arg_btf_id) {
4984 			if (!compatible->btf_id) {
4985 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4986 				return -EFAULT;
4987 			}
4988 			arg_btf_id = compatible->btf_id;
4989 		}
4990 
4991 		if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4992 					  btf_vmlinux, *arg_btf_id)) {
4993 			verbose(env, "R%d is of type %s but %s is expected\n",
4994 				regno, kernel_type_name(reg->btf, reg->btf_id),
4995 				kernel_type_name(btf_vmlinux, *arg_btf_id));
4996 			return -EACCES;
4997 		}
4998 
4999 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5000 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
5001 				regno);
5002 			return -EACCES;
5003 		}
5004 	}
5005 
5006 	return 0;
5007 }
5008 
5009 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
5010 			  struct bpf_call_arg_meta *meta,
5011 			  const struct bpf_func_proto *fn)
5012 {
5013 	u32 regno = BPF_REG_1 + arg;
5014 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5015 	enum bpf_arg_type arg_type = fn->arg_type[arg];
5016 	enum bpf_reg_type type = reg->type;
5017 	int err = 0;
5018 
5019 	if (arg_type == ARG_DONTCARE)
5020 		return 0;
5021 
5022 	err = check_reg_arg(env, regno, SRC_OP);
5023 	if (err)
5024 		return err;
5025 
5026 	if (arg_type == ARG_ANYTHING) {
5027 		if (is_pointer_value(env, regno)) {
5028 			verbose(env, "R%d leaks addr into helper function\n",
5029 				regno);
5030 			return -EACCES;
5031 		}
5032 		return 0;
5033 	}
5034 
5035 	if (type_is_pkt_pointer(type) &&
5036 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
5037 		verbose(env, "helper access to the packet is not allowed\n");
5038 		return -EACCES;
5039 	}
5040 
5041 	if (arg_type == ARG_PTR_TO_MAP_VALUE ||
5042 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
5043 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
5044 		err = resolve_map_arg_type(env, meta, &arg_type);
5045 		if (err)
5046 			return err;
5047 	}
5048 
5049 	if (register_is_null(reg) && arg_type_may_be_null(arg_type))
5050 		/* A NULL register has a SCALAR_VALUE type, so skip
5051 		 * type checking.
5052 		 */
5053 		goto skip_type_check;
5054 
5055 	err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
5056 	if (err)
5057 		return err;
5058 
5059 	if (type == PTR_TO_CTX) {
5060 		err = check_ctx_reg(env, reg, regno);
5061 		if (err < 0)
5062 			return err;
5063 	}
5064 
5065 skip_type_check:
5066 	if (reg->ref_obj_id) {
5067 		if (meta->ref_obj_id) {
5068 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
5069 				regno, reg->ref_obj_id,
5070 				meta->ref_obj_id);
5071 			return -EFAULT;
5072 		}
5073 		meta->ref_obj_id = reg->ref_obj_id;
5074 	}
5075 
5076 	if (arg_type == ARG_CONST_MAP_PTR) {
5077 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
5078 		if (meta->map_ptr) {
5079 			/* Use map_uid (which is unique id of inner map) to reject:
5080 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
5081 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
5082 			 * if (inner_map1 && inner_map2) {
5083 			 *     timer = bpf_map_lookup_elem(inner_map1);
5084 			 *     if (timer)
5085 			 *         // mismatch would have been allowed
5086 			 *         bpf_timer_init(timer, inner_map2);
5087 			 * }
5088 			 *
5089 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
5090 			 */
5091 			if (meta->map_ptr != reg->map_ptr ||
5092 			    meta->map_uid != reg->map_uid) {
5093 				verbose(env,
5094 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
5095 					meta->map_uid, reg->map_uid);
5096 				return -EINVAL;
5097 			}
5098 		}
5099 		meta->map_ptr = reg->map_ptr;
5100 		meta->map_uid = reg->map_uid;
5101 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
5102 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
5103 		 * check that [key, key + map->key_size) are within
5104 		 * stack limits and initialized
5105 		 */
5106 		if (!meta->map_ptr) {
5107 			/* in function declaration map_ptr must come before
5108 			 * map_key, so that it's verified and known before
5109 			 * we have to check map_key here. Otherwise it means
5110 			 * that kernel subsystem misconfigured verifier
5111 			 */
5112 			verbose(env, "invalid map_ptr to access map->key\n");
5113 			return -EACCES;
5114 		}
5115 		err = check_helper_mem_access(env, regno,
5116 					      meta->map_ptr->key_size, false,
5117 					      NULL);
5118 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
5119 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
5120 		    !register_is_null(reg)) ||
5121 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
5122 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
5123 		 * check [value, value + map->value_size) validity
5124 		 */
5125 		if (!meta->map_ptr) {
5126 			/* kernel subsystem misconfigured verifier */
5127 			verbose(env, "invalid map_ptr to access map->value\n");
5128 			return -EACCES;
5129 		}
5130 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
5131 		err = check_helper_mem_access(env, regno,
5132 					      meta->map_ptr->value_size, false,
5133 					      meta);
5134 	} else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
5135 		if (!reg->btf_id) {
5136 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
5137 			return -EACCES;
5138 		}
5139 		meta->ret_btf = reg->btf;
5140 		meta->ret_btf_id = reg->btf_id;
5141 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
5142 		if (meta->func_id == BPF_FUNC_spin_lock) {
5143 			if (process_spin_lock(env, regno, true))
5144 				return -EACCES;
5145 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
5146 			if (process_spin_lock(env, regno, false))
5147 				return -EACCES;
5148 		} else {
5149 			verbose(env, "verifier internal error\n");
5150 			return -EFAULT;
5151 		}
5152 	} else if (arg_type == ARG_PTR_TO_TIMER) {
5153 		if (process_timer_func(env, regno, meta))
5154 			return -EACCES;
5155 	} else if (arg_type == ARG_PTR_TO_FUNC) {
5156 		meta->subprogno = reg->subprogno;
5157 	} else if (arg_type_is_mem_ptr(arg_type)) {
5158 		/* The access to this pointer is only checked when we hit the
5159 		 * next is_mem_size argument below.
5160 		 */
5161 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
5162 	} else if (arg_type_is_mem_size(arg_type)) {
5163 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
5164 
5165 		/* This is used to refine r0 return value bounds for helpers
5166 		 * that enforce this value as an upper bound on return values.
5167 		 * See do_refine_retval_range() for helpers that can refine
5168 		 * the return value. C type of helper is u32 so we pull register
5169 		 * bound from umax_value however, if negative verifier errors
5170 		 * out. Only upper bounds can be learned because retval is an
5171 		 * int type and negative retvals are allowed.
5172 		 */
5173 		meta->msize_max_value = reg->umax_value;
5174 
5175 		/* The register is SCALAR_VALUE; the access check
5176 		 * happens using its boundaries.
5177 		 */
5178 		if (!tnum_is_const(reg->var_off))
5179 			/* For unprivileged variable accesses, disable raw
5180 			 * mode so that the program is required to
5181 			 * initialize all the memory that the helper could
5182 			 * just partially fill up.
5183 			 */
5184 			meta = NULL;
5185 
5186 		if (reg->smin_value < 0) {
5187 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5188 				regno);
5189 			return -EACCES;
5190 		}
5191 
5192 		if (reg->umin_value == 0) {
5193 			err = check_helper_mem_access(env, regno - 1, 0,
5194 						      zero_size_allowed,
5195 						      meta);
5196 			if (err)
5197 				return err;
5198 		}
5199 
5200 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5201 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5202 				regno);
5203 			return -EACCES;
5204 		}
5205 		err = check_helper_mem_access(env, regno - 1,
5206 					      reg->umax_value,
5207 					      zero_size_allowed, meta);
5208 		if (!err)
5209 			err = mark_chain_precision(env, regno);
5210 	} else if (arg_type_is_alloc_size(arg_type)) {
5211 		if (!tnum_is_const(reg->var_off)) {
5212 			verbose(env, "R%d is not a known constant'\n",
5213 				regno);
5214 			return -EACCES;
5215 		}
5216 		meta->mem_size = reg->var_off.value;
5217 	} else if (arg_type_is_int_ptr(arg_type)) {
5218 		int size = int_ptr_type_to_size(arg_type);
5219 
5220 		err = check_helper_mem_access(env, regno, size, false, meta);
5221 		if (err)
5222 			return err;
5223 		err = check_ptr_alignment(env, reg, 0, size, true);
5224 	} else if (arg_type == ARG_PTR_TO_CONST_STR) {
5225 		struct bpf_map *map = reg->map_ptr;
5226 		int map_off;
5227 		u64 map_addr;
5228 		char *str_ptr;
5229 
5230 		if (!bpf_map_is_rdonly(map)) {
5231 			verbose(env, "R%d does not point to a readonly map'\n", regno);
5232 			return -EACCES;
5233 		}
5234 
5235 		if (!tnum_is_const(reg->var_off)) {
5236 			verbose(env, "R%d is not a constant address'\n", regno);
5237 			return -EACCES;
5238 		}
5239 
5240 		if (!map->ops->map_direct_value_addr) {
5241 			verbose(env, "no direct value access support for this map type\n");
5242 			return -EACCES;
5243 		}
5244 
5245 		err = check_map_access(env, regno, reg->off,
5246 				       map->value_size - reg->off, false);
5247 		if (err)
5248 			return err;
5249 
5250 		map_off = reg->off + reg->var_off.value;
5251 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
5252 		if (err) {
5253 			verbose(env, "direct value access on string failed\n");
5254 			return err;
5255 		}
5256 
5257 		str_ptr = (char *)(long)(map_addr);
5258 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
5259 			verbose(env, "string is not zero-terminated\n");
5260 			return -EINVAL;
5261 		}
5262 	}
5263 
5264 	return err;
5265 }
5266 
5267 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
5268 {
5269 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
5270 	enum bpf_prog_type type = resolve_prog_type(env->prog);
5271 
5272 	if (func_id != BPF_FUNC_map_update_elem)
5273 		return false;
5274 
5275 	/* It's not possible to get access to a locked struct sock in these
5276 	 * contexts, so updating is safe.
5277 	 */
5278 	switch (type) {
5279 	case BPF_PROG_TYPE_TRACING:
5280 		if (eatype == BPF_TRACE_ITER)
5281 			return true;
5282 		break;
5283 	case BPF_PROG_TYPE_SOCKET_FILTER:
5284 	case BPF_PROG_TYPE_SCHED_CLS:
5285 	case BPF_PROG_TYPE_SCHED_ACT:
5286 	case BPF_PROG_TYPE_XDP:
5287 	case BPF_PROG_TYPE_SK_REUSEPORT:
5288 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5289 	case BPF_PROG_TYPE_SK_LOOKUP:
5290 		return true;
5291 	default:
5292 		break;
5293 	}
5294 
5295 	verbose(env, "cannot update sockmap in this context\n");
5296 	return false;
5297 }
5298 
5299 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
5300 {
5301 	return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
5302 }
5303 
5304 static int check_map_func_compatibility(struct bpf_verifier_env *env,
5305 					struct bpf_map *map, int func_id)
5306 {
5307 	if (!map)
5308 		return 0;
5309 
5310 	/* We need a two way check, first is from map perspective ... */
5311 	switch (map->map_type) {
5312 	case BPF_MAP_TYPE_PROG_ARRAY:
5313 		if (func_id != BPF_FUNC_tail_call)
5314 			goto error;
5315 		break;
5316 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5317 		if (func_id != BPF_FUNC_perf_event_read &&
5318 		    func_id != BPF_FUNC_perf_event_output &&
5319 		    func_id != BPF_FUNC_skb_output &&
5320 		    func_id != BPF_FUNC_perf_event_read_value &&
5321 		    func_id != BPF_FUNC_xdp_output)
5322 			goto error;
5323 		break;
5324 	case BPF_MAP_TYPE_RINGBUF:
5325 		if (func_id != BPF_FUNC_ringbuf_output &&
5326 		    func_id != BPF_FUNC_ringbuf_reserve &&
5327 		    func_id != BPF_FUNC_ringbuf_submit &&
5328 		    func_id != BPF_FUNC_ringbuf_discard &&
5329 		    func_id != BPF_FUNC_ringbuf_query)
5330 			goto error;
5331 		break;
5332 	case BPF_MAP_TYPE_STACK_TRACE:
5333 		if (func_id != BPF_FUNC_get_stackid)
5334 			goto error;
5335 		break;
5336 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5337 		if (func_id != BPF_FUNC_skb_under_cgroup &&
5338 		    func_id != BPF_FUNC_current_task_under_cgroup)
5339 			goto error;
5340 		break;
5341 	case BPF_MAP_TYPE_CGROUP_STORAGE:
5342 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
5343 		if (func_id != BPF_FUNC_get_local_storage)
5344 			goto error;
5345 		break;
5346 	case BPF_MAP_TYPE_DEVMAP:
5347 	case BPF_MAP_TYPE_DEVMAP_HASH:
5348 		if (func_id != BPF_FUNC_redirect_map &&
5349 		    func_id != BPF_FUNC_map_lookup_elem)
5350 			goto error;
5351 		break;
5352 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
5353 	 * appear.
5354 	 */
5355 	case BPF_MAP_TYPE_CPUMAP:
5356 		if (func_id != BPF_FUNC_redirect_map)
5357 			goto error;
5358 		break;
5359 	case BPF_MAP_TYPE_XSKMAP:
5360 		if (func_id != BPF_FUNC_redirect_map &&
5361 		    func_id != BPF_FUNC_map_lookup_elem)
5362 			goto error;
5363 		break;
5364 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5365 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5366 		if (func_id != BPF_FUNC_map_lookup_elem)
5367 			goto error;
5368 		break;
5369 	case BPF_MAP_TYPE_SOCKMAP:
5370 		if (func_id != BPF_FUNC_sk_redirect_map &&
5371 		    func_id != BPF_FUNC_sock_map_update &&
5372 		    func_id != BPF_FUNC_map_delete_elem &&
5373 		    func_id != BPF_FUNC_msg_redirect_map &&
5374 		    func_id != BPF_FUNC_sk_select_reuseport &&
5375 		    func_id != BPF_FUNC_map_lookup_elem &&
5376 		    !may_update_sockmap(env, func_id))
5377 			goto error;
5378 		break;
5379 	case BPF_MAP_TYPE_SOCKHASH:
5380 		if (func_id != BPF_FUNC_sk_redirect_hash &&
5381 		    func_id != BPF_FUNC_sock_hash_update &&
5382 		    func_id != BPF_FUNC_map_delete_elem &&
5383 		    func_id != BPF_FUNC_msg_redirect_hash &&
5384 		    func_id != BPF_FUNC_sk_select_reuseport &&
5385 		    func_id != BPF_FUNC_map_lookup_elem &&
5386 		    !may_update_sockmap(env, func_id))
5387 			goto error;
5388 		break;
5389 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5390 		if (func_id != BPF_FUNC_sk_select_reuseport)
5391 			goto error;
5392 		break;
5393 	case BPF_MAP_TYPE_QUEUE:
5394 	case BPF_MAP_TYPE_STACK:
5395 		if (func_id != BPF_FUNC_map_peek_elem &&
5396 		    func_id != BPF_FUNC_map_pop_elem &&
5397 		    func_id != BPF_FUNC_map_push_elem)
5398 			goto error;
5399 		break;
5400 	case BPF_MAP_TYPE_SK_STORAGE:
5401 		if (func_id != BPF_FUNC_sk_storage_get &&
5402 		    func_id != BPF_FUNC_sk_storage_delete)
5403 			goto error;
5404 		break;
5405 	case BPF_MAP_TYPE_INODE_STORAGE:
5406 		if (func_id != BPF_FUNC_inode_storage_get &&
5407 		    func_id != BPF_FUNC_inode_storage_delete)
5408 			goto error;
5409 		break;
5410 	case BPF_MAP_TYPE_TASK_STORAGE:
5411 		if (func_id != BPF_FUNC_task_storage_get &&
5412 		    func_id != BPF_FUNC_task_storage_delete)
5413 			goto error;
5414 		break;
5415 	default:
5416 		break;
5417 	}
5418 
5419 	/* ... and second from the function itself. */
5420 	switch (func_id) {
5421 	case BPF_FUNC_tail_call:
5422 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5423 			goto error;
5424 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5425 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
5426 			return -EINVAL;
5427 		}
5428 		break;
5429 	case BPF_FUNC_perf_event_read:
5430 	case BPF_FUNC_perf_event_output:
5431 	case BPF_FUNC_perf_event_read_value:
5432 	case BPF_FUNC_skb_output:
5433 	case BPF_FUNC_xdp_output:
5434 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5435 			goto error;
5436 		break;
5437 	case BPF_FUNC_get_stackid:
5438 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5439 			goto error;
5440 		break;
5441 	case BPF_FUNC_current_task_under_cgroup:
5442 	case BPF_FUNC_skb_under_cgroup:
5443 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5444 			goto error;
5445 		break;
5446 	case BPF_FUNC_redirect_map:
5447 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
5448 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
5449 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
5450 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
5451 			goto error;
5452 		break;
5453 	case BPF_FUNC_sk_redirect_map:
5454 	case BPF_FUNC_msg_redirect_map:
5455 	case BPF_FUNC_sock_map_update:
5456 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5457 			goto error;
5458 		break;
5459 	case BPF_FUNC_sk_redirect_hash:
5460 	case BPF_FUNC_msg_redirect_hash:
5461 	case BPF_FUNC_sock_hash_update:
5462 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
5463 			goto error;
5464 		break;
5465 	case BPF_FUNC_get_local_storage:
5466 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5467 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
5468 			goto error;
5469 		break;
5470 	case BPF_FUNC_sk_select_reuseport:
5471 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5472 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5473 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
5474 			goto error;
5475 		break;
5476 	case BPF_FUNC_map_peek_elem:
5477 	case BPF_FUNC_map_pop_elem:
5478 	case BPF_FUNC_map_push_elem:
5479 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5480 		    map->map_type != BPF_MAP_TYPE_STACK)
5481 			goto error;
5482 		break;
5483 	case BPF_FUNC_sk_storage_get:
5484 	case BPF_FUNC_sk_storage_delete:
5485 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5486 			goto error;
5487 		break;
5488 	case BPF_FUNC_inode_storage_get:
5489 	case BPF_FUNC_inode_storage_delete:
5490 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5491 			goto error;
5492 		break;
5493 	case BPF_FUNC_task_storage_get:
5494 	case BPF_FUNC_task_storage_delete:
5495 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5496 			goto error;
5497 		break;
5498 	default:
5499 		break;
5500 	}
5501 
5502 	return 0;
5503 error:
5504 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
5505 		map->map_type, func_id_name(func_id), func_id);
5506 	return -EINVAL;
5507 }
5508 
5509 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
5510 {
5511 	int count = 0;
5512 
5513 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
5514 		count++;
5515 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
5516 		count++;
5517 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
5518 		count++;
5519 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
5520 		count++;
5521 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
5522 		count++;
5523 
5524 	/* We only support one arg being in raw mode at the moment,
5525 	 * which is sufficient for the helper functions we have
5526 	 * right now.
5527 	 */
5528 	return count <= 1;
5529 }
5530 
5531 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5532 				    enum bpf_arg_type arg_next)
5533 {
5534 	return (arg_type_is_mem_ptr(arg_curr) &&
5535 	        !arg_type_is_mem_size(arg_next)) ||
5536 	       (!arg_type_is_mem_ptr(arg_curr) &&
5537 		arg_type_is_mem_size(arg_next));
5538 }
5539 
5540 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5541 {
5542 	/* bpf_xxx(..., buf, len) call will access 'len'
5543 	 * bytes from memory 'buf'. Both arg types need
5544 	 * to be paired, so make sure there's no buggy
5545 	 * helper function specification.
5546 	 */
5547 	if (arg_type_is_mem_size(fn->arg1_type) ||
5548 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
5549 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5550 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5551 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5552 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5553 		return false;
5554 
5555 	return true;
5556 }
5557 
5558 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5559 {
5560 	int count = 0;
5561 
5562 	if (arg_type_may_be_refcounted(fn->arg1_type))
5563 		count++;
5564 	if (arg_type_may_be_refcounted(fn->arg2_type))
5565 		count++;
5566 	if (arg_type_may_be_refcounted(fn->arg3_type))
5567 		count++;
5568 	if (arg_type_may_be_refcounted(fn->arg4_type))
5569 		count++;
5570 	if (arg_type_may_be_refcounted(fn->arg5_type))
5571 		count++;
5572 
5573 	/* A reference acquiring function cannot acquire
5574 	 * another refcounted ptr.
5575 	 */
5576 	if (may_be_acquire_function(func_id) && count)
5577 		return false;
5578 
5579 	/* We only support one arg being unreferenced at the moment,
5580 	 * which is sufficient for the helper functions we have right now.
5581 	 */
5582 	return count <= 1;
5583 }
5584 
5585 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5586 {
5587 	int i;
5588 
5589 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5590 		if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5591 			return false;
5592 
5593 		if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5594 			return false;
5595 	}
5596 
5597 	return true;
5598 }
5599 
5600 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5601 {
5602 	return check_raw_mode_ok(fn) &&
5603 	       check_arg_pair_ok(fn) &&
5604 	       check_btf_id_ok(fn) &&
5605 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5606 }
5607 
5608 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5609  * are now invalid, so turn them into unknown SCALAR_VALUE.
5610  */
5611 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5612 				     struct bpf_func_state *state)
5613 {
5614 	struct bpf_reg_state *regs = state->regs, *reg;
5615 	int i;
5616 
5617 	for (i = 0; i < MAX_BPF_REG; i++)
5618 		if (reg_is_pkt_pointer_any(&regs[i]))
5619 			mark_reg_unknown(env, regs, i);
5620 
5621 	bpf_for_each_spilled_reg(i, state, reg) {
5622 		if (!reg)
5623 			continue;
5624 		if (reg_is_pkt_pointer_any(reg))
5625 			__mark_reg_unknown(env, reg);
5626 	}
5627 }
5628 
5629 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5630 {
5631 	struct bpf_verifier_state *vstate = env->cur_state;
5632 	int i;
5633 
5634 	for (i = 0; i <= vstate->curframe; i++)
5635 		__clear_all_pkt_pointers(env, vstate->frame[i]);
5636 }
5637 
5638 enum {
5639 	AT_PKT_END = -1,
5640 	BEYOND_PKT_END = -2,
5641 };
5642 
5643 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5644 {
5645 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5646 	struct bpf_reg_state *reg = &state->regs[regn];
5647 
5648 	if (reg->type != PTR_TO_PACKET)
5649 		/* PTR_TO_PACKET_META is not supported yet */
5650 		return;
5651 
5652 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5653 	 * How far beyond pkt_end it goes is unknown.
5654 	 * if (!range_open) it's the case of pkt >= pkt_end
5655 	 * if (range_open) it's the case of pkt > pkt_end
5656 	 * hence this pointer is at least 1 byte bigger than pkt_end
5657 	 */
5658 	if (range_open)
5659 		reg->range = BEYOND_PKT_END;
5660 	else
5661 		reg->range = AT_PKT_END;
5662 }
5663 
5664 static void release_reg_references(struct bpf_verifier_env *env,
5665 				   struct bpf_func_state *state,
5666 				   int ref_obj_id)
5667 {
5668 	struct bpf_reg_state *regs = state->regs, *reg;
5669 	int i;
5670 
5671 	for (i = 0; i < MAX_BPF_REG; i++)
5672 		if (regs[i].ref_obj_id == ref_obj_id)
5673 			mark_reg_unknown(env, regs, i);
5674 
5675 	bpf_for_each_spilled_reg(i, state, reg) {
5676 		if (!reg)
5677 			continue;
5678 		if (reg->ref_obj_id == ref_obj_id)
5679 			__mark_reg_unknown(env, reg);
5680 	}
5681 }
5682 
5683 /* The pointer with the specified id has released its reference to kernel
5684  * resources. Identify all copies of the same pointer and clear the reference.
5685  */
5686 static int release_reference(struct bpf_verifier_env *env,
5687 			     int ref_obj_id)
5688 {
5689 	struct bpf_verifier_state *vstate = env->cur_state;
5690 	int err;
5691 	int i;
5692 
5693 	err = release_reference_state(cur_func(env), ref_obj_id);
5694 	if (err)
5695 		return err;
5696 
5697 	for (i = 0; i <= vstate->curframe; i++)
5698 		release_reg_references(env, vstate->frame[i], ref_obj_id);
5699 
5700 	return 0;
5701 }
5702 
5703 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5704 				    struct bpf_reg_state *regs)
5705 {
5706 	int i;
5707 
5708 	/* after the call registers r0 - r5 were scratched */
5709 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5710 		mark_reg_not_init(env, regs, caller_saved[i]);
5711 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5712 	}
5713 }
5714 
5715 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
5716 				   struct bpf_func_state *caller,
5717 				   struct bpf_func_state *callee,
5718 				   int insn_idx);
5719 
5720 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5721 			     int *insn_idx, int subprog,
5722 			     set_callee_state_fn set_callee_state_cb)
5723 {
5724 	struct bpf_verifier_state *state = env->cur_state;
5725 	struct bpf_func_info_aux *func_info_aux;
5726 	struct bpf_func_state *caller, *callee;
5727 	int err;
5728 	bool is_global = false;
5729 
5730 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5731 		verbose(env, "the call stack of %d frames is too deep\n",
5732 			state->curframe + 2);
5733 		return -E2BIG;
5734 	}
5735 
5736 	caller = state->frame[state->curframe];
5737 	if (state->frame[state->curframe + 1]) {
5738 		verbose(env, "verifier bug. Frame %d already allocated\n",
5739 			state->curframe + 1);
5740 		return -EFAULT;
5741 	}
5742 
5743 	func_info_aux = env->prog->aux->func_info_aux;
5744 	if (func_info_aux)
5745 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5746 	err = btf_check_subprog_arg_match(env, subprog, caller->regs);
5747 	if (err == -EFAULT)
5748 		return err;
5749 	if (is_global) {
5750 		if (err) {
5751 			verbose(env, "Caller passes invalid args into func#%d\n",
5752 				subprog);
5753 			return err;
5754 		} else {
5755 			if (env->log.level & BPF_LOG_LEVEL)
5756 				verbose(env,
5757 					"Func#%d is global and valid. Skipping.\n",
5758 					subprog);
5759 			clear_caller_saved_regs(env, caller->regs);
5760 
5761 			/* All global functions return a 64-bit SCALAR_VALUE */
5762 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
5763 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5764 
5765 			/* continue with next insn after call */
5766 			return 0;
5767 		}
5768 	}
5769 
5770 	if (insn->code == (BPF_JMP | BPF_CALL) &&
5771 	    insn->imm == BPF_FUNC_timer_set_callback) {
5772 		struct bpf_verifier_state *async_cb;
5773 
5774 		/* there is no real recursion here. timer callbacks are async */
5775 		env->subprog_info[subprog].is_async_cb = true;
5776 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
5777 					 *insn_idx, subprog);
5778 		if (!async_cb)
5779 			return -EFAULT;
5780 		callee = async_cb->frame[0];
5781 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
5782 
5783 		/* Convert bpf_timer_set_callback() args into timer callback args */
5784 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
5785 		if (err)
5786 			return err;
5787 
5788 		clear_caller_saved_regs(env, caller->regs);
5789 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
5790 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5791 		/* continue with next insn after call */
5792 		return 0;
5793 	}
5794 
5795 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5796 	if (!callee)
5797 		return -ENOMEM;
5798 	state->frame[state->curframe + 1] = callee;
5799 
5800 	/* callee cannot access r0, r6 - r9 for reading and has to write
5801 	 * into its own stack before reading from it.
5802 	 * callee can read/write into caller's stack
5803 	 */
5804 	init_func_state(env, callee,
5805 			/* remember the callsite, it will be used by bpf_exit */
5806 			*insn_idx /* callsite */,
5807 			state->curframe + 1 /* frameno within this callchain */,
5808 			subprog /* subprog number within this prog */);
5809 
5810 	/* Transfer references to the callee */
5811 	err = copy_reference_state(callee, caller);
5812 	if (err)
5813 		return err;
5814 
5815 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
5816 	if (err)
5817 		return err;
5818 
5819 	clear_caller_saved_regs(env, caller->regs);
5820 
5821 	/* only increment it after check_reg_arg() finished */
5822 	state->curframe++;
5823 
5824 	/* and go analyze first insn of the callee */
5825 	*insn_idx = env->subprog_info[subprog].start - 1;
5826 
5827 	if (env->log.level & BPF_LOG_LEVEL) {
5828 		verbose(env, "caller:\n");
5829 		print_verifier_state(env, caller);
5830 		verbose(env, "callee:\n");
5831 		print_verifier_state(env, callee);
5832 	}
5833 	return 0;
5834 }
5835 
5836 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
5837 				   struct bpf_func_state *caller,
5838 				   struct bpf_func_state *callee)
5839 {
5840 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
5841 	 *      void *callback_ctx, u64 flags);
5842 	 * callback_fn(struct bpf_map *map, void *key, void *value,
5843 	 *      void *callback_ctx);
5844 	 */
5845 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
5846 
5847 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
5848 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
5849 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5850 
5851 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
5852 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
5853 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5854 
5855 	/* pointer to stack or null */
5856 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
5857 
5858 	/* unused */
5859 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
5860 	return 0;
5861 }
5862 
5863 static int set_callee_state(struct bpf_verifier_env *env,
5864 			    struct bpf_func_state *caller,
5865 			    struct bpf_func_state *callee, int insn_idx)
5866 {
5867 	int i;
5868 
5869 	/* copy r1 - r5 args that callee can access.  The copy includes parent
5870 	 * pointers, which connects us up to the liveness chain
5871 	 */
5872 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
5873 		callee->regs[i] = caller->regs[i];
5874 	return 0;
5875 }
5876 
5877 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5878 			   int *insn_idx)
5879 {
5880 	int subprog, target_insn;
5881 
5882 	target_insn = *insn_idx + insn->imm + 1;
5883 	subprog = find_subprog(env, target_insn);
5884 	if (subprog < 0) {
5885 		verbose(env, "verifier bug. No program starts at insn %d\n",
5886 			target_insn);
5887 		return -EFAULT;
5888 	}
5889 
5890 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
5891 }
5892 
5893 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
5894 				       struct bpf_func_state *caller,
5895 				       struct bpf_func_state *callee,
5896 				       int insn_idx)
5897 {
5898 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
5899 	struct bpf_map *map;
5900 	int err;
5901 
5902 	if (bpf_map_ptr_poisoned(insn_aux)) {
5903 		verbose(env, "tail_call abusing map_ptr\n");
5904 		return -EINVAL;
5905 	}
5906 
5907 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
5908 	if (!map->ops->map_set_for_each_callback_args ||
5909 	    !map->ops->map_for_each_callback) {
5910 		verbose(env, "callback function not allowed for map\n");
5911 		return -ENOTSUPP;
5912 	}
5913 
5914 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
5915 	if (err)
5916 		return err;
5917 
5918 	callee->in_callback_fn = true;
5919 	return 0;
5920 }
5921 
5922 static int set_timer_callback_state(struct bpf_verifier_env *env,
5923 				    struct bpf_func_state *caller,
5924 				    struct bpf_func_state *callee,
5925 				    int insn_idx)
5926 {
5927 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
5928 
5929 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
5930 	 * callback_fn(struct bpf_map *map, void *key, void *value);
5931 	 */
5932 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
5933 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
5934 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
5935 
5936 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
5937 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
5938 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
5939 
5940 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
5941 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
5942 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
5943 
5944 	/* unused */
5945 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
5946 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
5947 	callee->in_async_callback_fn = true;
5948 	return 0;
5949 }
5950 
5951 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
5952 {
5953 	struct bpf_verifier_state *state = env->cur_state;
5954 	struct bpf_func_state *caller, *callee;
5955 	struct bpf_reg_state *r0;
5956 	int err;
5957 
5958 	callee = state->frame[state->curframe];
5959 	r0 = &callee->regs[BPF_REG_0];
5960 	if (r0->type == PTR_TO_STACK) {
5961 		/* technically it's ok to return caller's stack pointer
5962 		 * (or caller's caller's pointer) back to the caller,
5963 		 * since these pointers are valid. Only current stack
5964 		 * pointer will be invalid as soon as function exits,
5965 		 * but let's be conservative
5966 		 */
5967 		verbose(env, "cannot return stack pointer to the caller\n");
5968 		return -EINVAL;
5969 	}
5970 
5971 	state->curframe--;
5972 	caller = state->frame[state->curframe];
5973 	if (callee->in_callback_fn) {
5974 		/* enforce R0 return value range [0, 1]. */
5975 		struct tnum range = tnum_range(0, 1);
5976 
5977 		if (r0->type != SCALAR_VALUE) {
5978 			verbose(env, "R0 not a scalar value\n");
5979 			return -EACCES;
5980 		}
5981 		if (!tnum_in(range, r0->var_off)) {
5982 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
5983 			return -EINVAL;
5984 		}
5985 	} else {
5986 		/* return to the caller whatever r0 had in the callee */
5987 		caller->regs[BPF_REG_0] = *r0;
5988 	}
5989 
5990 	/* Transfer references to the caller */
5991 	err = copy_reference_state(caller, callee);
5992 	if (err)
5993 		return err;
5994 
5995 	*insn_idx = callee->callsite + 1;
5996 	if (env->log.level & BPF_LOG_LEVEL) {
5997 		verbose(env, "returning from callee:\n");
5998 		print_verifier_state(env, callee);
5999 		verbose(env, "to caller at %d:\n", *insn_idx);
6000 		print_verifier_state(env, caller);
6001 	}
6002 	/* clear everything in the callee */
6003 	free_func_state(callee);
6004 	state->frame[state->curframe + 1] = NULL;
6005 	return 0;
6006 }
6007 
6008 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
6009 				   int func_id,
6010 				   struct bpf_call_arg_meta *meta)
6011 {
6012 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
6013 
6014 	if (ret_type != RET_INTEGER ||
6015 	    (func_id != BPF_FUNC_get_stack &&
6016 	     func_id != BPF_FUNC_get_task_stack &&
6017 	     func_id != BPF_FUNC_probe_read_str &&
6018 	     func_id != BPF_FUNC_probe_read_kernel_str &&
6019 	     func_id != BPF_FUNC_probe_read_user_str))
6020 		return;
6021 
6022 	ret_reg->smax_value = meta->msize_max_value;
6023 	ret_reg->s32_max_value = meta->msize_max_value;
6024 	ret_reg->smin_value = -MAX_ERRNO;
6025 	ret_reg->s32_min_value = -MAX_ERRNO;
6026 	__reg_deduce_bounds(ret_reg);
6027 	__reg_bound_offset(ret_reg);
6028 	__update_reg_bounds(ret_reg);
6029 }
6030 
6031 static int
6032 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6033 		int func_id, int insn_idx)
6034 {
6035 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6036 	struct bpf_map *map = meta->map_ptr;
6037 
6038 	if (func_id != BPF_FUNC_tail_call &&
6039 	    func_id != BPF_FUNC_map_lookup_elem &&
6040 	    func_id != BPF_FUNC_map_update_elem &&
6041 	    func_id != BPF_FUNC_map_delete_elem &&
6042 	    func_id != BPF_FUNC_map_push_elem &&
6043 	    func_id != BPF_FUNC_map_pop_elem &&
6044 	    func_id != BPF_FUNC_map_peek_elem &&
6045 	    func_id != BPF_FUNC_for_each_map_elem &&
6046 	    func_id != BPF_FUNC_redirect_map)
6047 		return 0;
6048 
6049 	if (map == NULL) {
6050 		verbose(env, "kernel subsystem misconfigured verifier\n");
6051 		return -EINVAL;
6052 	}
6053 
6054 	/* In case of read-only, some additional restrictions
6055 	 * need to be applied in order to prevent altering the
6056 	 * state of the map from program side.
6057 	 */
6058 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
6059 	    (func_id == BPF_FUNC_map_delete_elem ||
6060 	     func_id == BPF_FUNC_map_update_elem ||
6061 	     func_id == BPF_FUNC_map_push_elem ||
6062 	     func_id == BPF_FUNC_map_pop_elem)) {
6063 		verbose(env, "write into map forbidden\n");
6064 		return -EACCES;
6065 	}
6066 
6067 	if (!BPF_MAP_PTR(aux->map_ptr_state))
6068 		bpf_map_ptr_store(aux, meta->map_ptr,
6069 				  !meta->map_ptr->bypass_spec_v1);
6070 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
6071 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
6072 				  !meta->map_ptr->bypass_spec_v1);
6073 	return 0;
6074 }
6075 
6076 static int
6077 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6078 		int func_id, int insn_idx)
6079 {
6080 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6081 	struct bpf_reg_state *regs = cur_regs(env), *reg;
6082 	struct bpf_map *map = meta->map_ptr;
6083 	struct tnum range;
6084 	u64 val;
6085 	int err;
6086 
6087 	if (func_id != BPF_FUNC_tail_call)
6088 		return 0;
6089 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
6090 		verbose(env, "kernel subsystem misconfigured verifier\n");
6091 		return -EINVAL;
6092 	}
6093 
6094 	range = tnum_range(0, map->max_entries - 1);
6095 	reg = &regs[BPF_REG_3];
6096 
6097 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
6098 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6099 		return 0;
6100 	}
6101 
6102 	err = mark_chain_precision(env, BPF_REG_3);
6103 	if (err)
6104 		return err;
6105 
6106 	val = reg->var_off.value;
6107 	if (bpf_map_key_unseen(aux))
6108 		bpf_map_key_store(aux, val);
6109 	else if (!bpf_map_key_poisoned(aux) &&
6110 		  bpf_map_key_immediate(aux) != val)
6111 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6112 	return 0;
6113 }
6114 
6115 static int check_reference_leak(struct bpf_verifier_env *env)
6116 {
6117 	struct bpf_func_state *state = cur_func(env);
6118 	int i;
6119 
6120 	for (i = 0; i < state->acquired_refs; i++) {
6121 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
6122 			state->refs[i].id, state->refs[i].insn_idx);
6123 	}
6124 	return state->acquired_refs ? -EINVAL : 0;
6125 }
6126 
6127 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
6128 				   struct bpf_reg_state *regs)
6129 {
6130 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
6131 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
6132 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
6133 	int err, fmt_map_off, num_args;
6134 	u64 fmt_addr;
6135 	char *fmt;
6136 
6137 	/* data must be an array of u64 */
6138 	if (data_len_reg->var_off.value % 8)
6139 		return -EINVAL;
6140 	num_args = data_len_reg->var_off.value / 8;
6141 
6142 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
6143 	 * and map_direct_value_addr is set.
6144 	 */
6145 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
6146 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
6147 						  fmt_map_off);
6148 	if (err) {
6149 		verbose(env, "verifier bug\n");
6150 		return -EFAULT;
6151 	}
6152 	fmt = (char *)(long)fmt_addr + fmt_map_off;
6153 
6154 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
6155 	 * can focus on validating the format specifiers.
6156 	 */
6157 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
6158 	if (err < 0)
6159 		verbose(env, "Invalid format string\n");
6160 
6161 	return err;
6162 }
6163 
6164 static int check_get_func_ip(struct bpf_verifier_env *env)
6165 {
6166 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
6167 	enum bpf_prog_type type = resolve_prog_type(env->prog);
6168 	int func_id = BPF_FUNC_get_func_ip;
6169 
6170 	if (type == BPF_PROG_TYPE_TRACING) {
6171 		if (eatype != BPF_TRACE_FENTRY && eatype != BPF_TRACE_FEXIT &&
6172 		    eatype != BPF_MODIFY_RETURN) {
6173 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
6174 				func_id_name(func_id), func_id);
6175 			return -ENOTSUPP;
6176 		}
6177 		return 0;
6178 	} else if (type == BPF_PROG_TYPE_KPROBE) {
6179 		return 0;
6180 	}
6181 
6182 	verbose(env, "func %s#%d not supported for program type %d\n",
6183 		func_id_name(func_id), func_id, type);
6184 	return -ENOTSUPP;
6185 }
6186 
6187 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6188 			     int *insn_idx_p)
6189 {
6190 	const struct bpf_func_proto *fn = NULL;
6191 	struct bpf_reg_state *regs;
6192 	struct bpf_call_arg_meta meta;
6193 	int insn_idx = *insn_idx_p;
6194 	bool changes_data;
6195 	int i, err, func_id;
6196 
6197 	/* find function prototype */
6198 	func_id = insn->imm;
6199 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
6200 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
6201 			func_id);
6202 		return -EINVAL;
6203 	}
6204 
6205 	if (env->ops->get_func_proto)
6206 		fn = env->ops->get_func_proto(func_id, env->prog);
6207 	if (!fn) {
6208 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
6209 			func_id);
6210 		return -EINVAL;
6211 	}
6212 
6213 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
6214 	if (!env->prog->gpl_compatible && fn->gpl_only) {
6215 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
6216 		return -EINVAL;
6217 	}
6218 
6219 	if (fn->allowed && !fn->allowed(env->prog)) {
6220 		verbose(env, "helper call is not allowed in probe\n");
6221 		return -EINVAL;
6222 	}
6223 
6224 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
6225 	changes_data = bpf_helper_changes_pkt_data(fn->func);
6226 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
6227 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
6228 			func_id_name(func_id), func_id);
6229 		return -EINVAL;
6230 	}
6231 
6232 	memset(&meta, 0, sizeof(meta));
6233 	meta.pkt_access = fn->pkt_access;
6234 
6235 	err = check_func_proto(fn, func_id);
6236 	if (err) {
6237 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
6238 			func_id_name(func_id), func_id);
6239 		return err;
6240 	}
6241 
6242 	meta.func_id = func_id;
6243 	/* check args */
6244 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6245 		err = check_func_arg(env, i, &meta, fn);
6246 		if (err)
6247 			return err;
6248 	}
6249 
6250 	err = record_func_map(env, &meta, func_id, insn_idx);
6251 	if (err)
6252 		return err;
6253 
6254 	err = record_func_key(env, &meta, func_id, insn_idx);
6255 	if (err)
6256 		return err;
6257 
6258 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
6259 	 * is inferred from register state.
6260 	 */
6261 	for (i = 0; i < meta.access_size; i++) {
6262 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
6263 				       BPF_WRITE, -1, false);
6264 		if (err)
6265 			return err;
6266 	}
6267 
6268 	if (func_id == BPF_FUNC_tail_call) {
6269 		err = check_reference_leak(env);
6270 		if (err) {
6271 			verbose(env, "tail_call would lead to reference leak\n");
6272 			return err;
6273 		}
6274 	} else if (is_release_function(func_id)) {
6275 		err = release_reference(env, meta.ref_obj_id);
6276 		if (err) {
6277 			verbose(env, "func %s#%d reference has not been acquired before\n",
6278 				func_id_name(func_id), func_id);
6279 			return err;
6280 		}
6281 	}
6282 
6283 	regs = cur_regs(env);
6284 
6285 	/* check that flags argument in get_local_storage(map, flags) is 0,
6286 	 * this is required because get_local_storage() can't return an error.
6287 	 */
6288 	if (func_id == BPF_FUNC_get_local_storage &&
6289 	    !register_is_null(&regs[BPF_REG_2])) {
6290 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
6291 		return -EINVAL;
6292 	}
6293 
6294 	if (func_id == BPF_FUNC_for_each_map_elem) {
6295 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6296 					set_map_elem_callback_state);
6297 		if (err < 0)
6298 			return -EINVAL;
6299 	}
6300 
6301 	if (func_id == BPF_FUNC_timer_set_callback) {
6302 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6303 					set_timer_callback_state);
6304 		if (err < 0)
6305 			return -EINVAL;
6306 	}
6307 
6308 	if (func_id == BPF_FUNC_snprintf) {
6309 		err = check_bpf_snprintf_call(env, regs);
6310 		if (err < 0)
6311 			return err;
6312 	}
6313 
6314 	/* reset caller saved regs */
6315 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6316 		mark_reg_not_init(env, regs, caller_saved[i]);
6317 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6318 	}
6319 
6320 	/* helper call returns 64-bit value. */
6321 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6322 
6323 	/* update return register (already marked as written above) */
6324 	if (fn->ret_type == RET_INTEGER) {
6325 		/* sets type to SCALAR_VALUE */
6326 		mark_reg_unknown(env, regs, BPF_REG_0);
6327 	} else if (fn->ret_type == RET_VOID) {
6328 		regs[BPF_REG_0].type = NOT_INIT;
6329 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
6330 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6331 		/* There is no offset yet applied, variable or fixed */
6332 		mark_reg_known_zero(env, regs, BPF_REG_0);
6333 		/* remember map_ptr, so that check_map_access()
6334 		 * can check 'value_size' boundary of memory access
6335 		 * to map element returned from bpf_map_lookup_elem()
6336 		 */
6337 		if (meta.map_ptr == NULL) {
6338 			verbose(env,
6339 				"kernel subsystem misconfigured verifier\n");
6340 			return -EINVAL;
6341 		}
6342 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
6343 		regs[BPF_REG_0].map_uid = meta.map_uid;
6344 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6345 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
6346 			if (map_value_has_spin_lock(meta.map_ptr))
6347 				regs[BPF_REG_0].id = ++env->id_gen;
6348 		} else {
6349 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
6350 		}
6351 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
6352 		mark_reg_known_zero(env, regs, BPF_REG_0);
6353 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
6354 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
6355 		mark_reg_known_zero(env, regs, BPF_REG_0);
6356 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
6357 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
6358 		mark_reg_known_zero(env, regs, BPF_REG_0);
6359 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
6360 	} else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
6361 		mark_reg_known_zero(env, regs, BPF_REG_0);
6362 		regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
6363 		regs[BPF_REG_0].mem_size = meta.mem_size;
6364 	} else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
6365 		   fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
6366 		const struct btf_type *t;
6367 
6368 		mark_reg_known_zero(env, regs, BPF_REG_0);
6369 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
6370 		if (!btf_type_is_struct(t)) {
6371 			u32 tsize;
6372 			const struct btf_type *ret;
6373 			const char *tname;
6374 
6375 			/* resolve the type size of ksym. */
6376 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
6377 			if (IS_ERR(ret)) {
6378 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
6379 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
6380 					tname, PTR_ERR(ret));
6381 				return -EINVAL;
6382 			}
6383 			regs[BPF_REG_0].type =
6384 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6385 				PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
6386 			regs[BPF_REG_0].mem_size = tsize;
6387 		} else {
6388 			regs[BPF_REG_0].type =
6389 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6390 				PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
6391 			regs[BPF_REG_0].btf = meta.ret_btf;
6392 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
6393 		}
6394 	} else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
6395 		   fn->ret_type == RET_PTR_TO_BTF_ID) {
6396 		int ret_btf_id;
6397 
6398 		mark_reg_known_zero(env, regs, BPF_REG_0);
6399 		regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
6400 						     PTR_TO_BTF_ID :
6401 						     PTR_TO_BTF_ID_OR_NULL;
6402 		ret_btf_id = *fn->ret_btf_id;
6403 		if (ret_btf_id == 0) {
6404 			verbose(env, "invalid return type %d of func %s#%d\n",
6405 				fn->ret_type, func_id_name(func_id), func_id);
6406 			return -EINVAL;
6407 		}
6408 		/* current BPF helper definitions are only coming from
6409 		 * built-in code with type IDs from  vmlinux BTF
6410 		 */
6411 		regs[BPF_REG_0].btf = btf_vmlinux;
6412 		regs[BPF_REG_0].btf_id = ret_btf_id;
6413 	} else {
6414 		verbose(env, "unknown return type %d of func %s#%d\n",
6415 			fn->ret_type, func_id_name(func_id), func_id);
6416 		return -EINVAL;
6417 	}
6418 
6419 	if (reg_type_may_be_null(regs[BPF_REG_0].type))
6420 		regs[BPF_REG_0].id = ++env->id_gen;
6421 
6422 	if (is_ptr_cast_function(func_id)) {
6423 		/* For release_reference() */
6424 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
6425 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
6426 		int id = acquire_reference_state(env, insn_idx);
6427 
6428 		if (id < 0)
6429 			return id;
6430 		/* For mark_ptr_or_null_reg() */
6431 		regs[BPF_REG_0].id = id;
6432 		/* For release_reference() */
6433 		regs[BPF_REG_0].ref_obj_id = id;
6434 	}
6435 
6436 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
6437 
6438 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
6439 	if (err)
6440 		return err;
6441 
6442 	if ((func_id == BPF_FUNC_get_stack ||
6443 	     func_id == BPF_FUNC_get_task_stack) &&
6444 	    !env->prog->has_callchain_buf) {
6445 		const char *err_str;
6446 
6447 #ifdef CONFIG_PERF_EVENTS
6448 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
6449 		err_str = "cannot get callchain buffer for func %s#%d\n";
6450 #else
6451 		err = -ENOTSUPP;
6452 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
6453 #endif
6454 		if (err) {
6455 			verbose(env, err_str, func_id_name(func_id), func_id);
6456 			return err;
6457 		}
6458 
6459 		env->prog->has_callchain_buf = true;
6460 	}
6461 
6462 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
6463 		env->prog->call_get_stack = true;
6464 
6465 	if (func_id == BPF_FUNC_get_func_ip) {
6466 		if (check_get_func_ip(env))
6467 			return -ENOTSUPP;
6468 		env->prog->call_get_func_ip = true;
6469 	}
6470 
6471 	if (changes_data)
6472 		clear_all_pkt_pointers(env);
6473 	return 0;
6474 }
6475 
6476 /* mark_btf_func_reg_size() is used when the reg size is determined by
6477  * the BTF func_proto's return value size and argument.
6478  */
6479 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
6480 				   size_t reg_size)
6481 {
6482 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
6483 
6484 	if (regno == BPF_REG_0) {
6485 		/* Function return value */
6486 		reg->live |= REG_LIVE_WRITTEN;
6487 		reg->subreg_def = reg_size == sizeof(u64) ?
6488 			DEF_NOT_SUBREG : env->insn_idx + 1;
6489 	} else {
6490 		/* Function argument */
6491 		if (reg_size == sizeof(u64)) {
6492 			mark_insn_zext(env, reg);
6493 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
6494 		} else {
6495 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
6496 		}
6497 	}
6498 }
6499 
6500 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn)
6501 {
6502 	const struct btf_type *t, *func, *func_proto, *ptr_type;
6503 	struct bpf_reg_state *regs = cur_regs(env);
6504 	const char *func_name, *ptr_type_name;
6505 	u32 i, nargs, func_id, ptr_type_id;
6506 	const struct btf_param *args;
6507 	int err;
6508 
6509 	func_id = insn->imm;
6510 	func = btf_type_by_id(btf_vmlinux, func_id);
6511 	func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
6512 	func_proto = btf_type_by_id(btf_vmlinux, func->type);
6513 
6514 	if (!env->ops->check_kfunc_call ||
6515 	    !env->ops->check_kfunc_call(func_id)) {
6516 		verbose(env, "calling kernel function %s is not allowed\n",
6517 			func_name);
6518 		return -EACCES;
6519 	}
6520 
6521 	/* Check the arguments */
6522 	err = btf_check_kfunc_arg_match(env, btf_vmlinux, func_id, regs);
6523 	if (err)
6524 		return err;
6525 
6526 	for (i = 0; i < CALLER_SAVED_REGS; i++)
6527 		mark_reg_not_init(env, regs, caller_saved[i]);
6528 
6529 	/* Check return type */
6530 	t = btf_type_skip_modifiers(btf_vmlinux, func_proto->type, NULL);
6531 	if (btf_type_is_scalar(t)) {
6532 		mark_reg_unknown(env, regs, BPF_REG_0);
6533 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
6534 	} else if (btf_type_is_ptr(t)) {
6535 		ptr_type = btf_type_skip_modifiers(btf_vmlinux, t->type,
6536 						   &ptr_type_id);
6537 		if (!btf_type_is_struct(ptr_type)) {
6538 			ptr_type_name = btf_name_by_offset(btf_vmlinux,
6539 							   ptr_type->name_off);
6540 			verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
6541 				func_name, btf_type_str(ptr_type),
6542 				ptr_type_name);
6543 			return -EINVAL;
6544 		}
6545 		mark_reg_known_zero(env, regs, BPF_REG_0);
6546 		regs[BPF_REG_0].btf = btf_vmlinux;
6547 		regs[BPF_REG_0].type = PTR_TO_BTF_ID;
6548 		regs[BPF_REG_0].btf_id = ptr_type_id;
6549 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
6550 	} /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
6551 
6552 	nargs = btf_type_vlen(func_proto);
6553 	args = (const struct btf_param *)(func_proto + 1);
6554 	for (i = 0; i < nargs; i++) {
6555 		u32 regno = i + 1;
6556 
6557 		t = btf_type_skip_modifiers(btf_vmlinux, args[i].type, NULL);
6558 		if (btf_type_is_ptr(t))
6559 			mark_btf_func_reg_size(env, regno, sizeof(void *));
6560 		else
6561 			/* scalar. ensured by btf_check_kfunc_arg_match() */
6562 			mark_btf_func_reg_size(env, regno, t->size);
6563 	}
6564 
6565 	return 0;
6566 }
6567 
6568 static bool signed_add_overflows(s64 a, s64 b)
6569 {
6570 	/* Do the add in u64, where overflow is well-defined */
6571 	s64 res = (s64)((u64)a + (u64)b);
6572 
6573 	if (b < 0)
6574 		return res > a;
6575 	return res < a;
6576 }
6577 
6578 static bool signed_add32_overflows(s32 a, s32 b)
6579 {
6580 	/* Do the add in u32, where overflow is well-defined */
6581 	s32 res = (s32)((u32)a + (u32)b);
6582 
6583 	if (b < 0)
6584 		return res > a;
6585 	return res < a;
6586 }
6587 
6588 static bool signed_sub_overflows(s64 a, s64 b)
6589 {
6590 	/* Do the sub in u64, where overflow is well-defined */
6591 	s64 res = (s64)((u64)a - (u64)b);
6592 
6593 	if (b < 0)
6594 		return res < a;
6595 	return res > a;
6596 }
6597 
6598 static bool signed_sub32_overflows(s32 a, s32 b)
6599 {
6600 	/* Do the sub in u32, where overflow is well-defined */
6601 	s32 res = (s32)((u32)a - (u32)b);
6602 
6603 	if (b < 0)
6604 		return res < a;
6605 	return res > a;
6606 }
6607 
6608 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
6609 				  const struct bpf_reg_state *reg,
6610 				  enum bpf_reg_type type)
6611 {
6612 	bool known = tnum_is_const(reg->var_off);
6613 	s64 val = reg->var_off.value;
6614 	s64 smin = reg->smin_value;
6615 
6616 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
6617 		verbose(env, "math between %s pointer and %lld is not allowed\n",
6618 			reg_type_str[type], val);
6619 		return false;
6620 	}
6621 
6622 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
6623 		verbose(env, "%s pointer offset %d is not allowed\n",
6624 			reg_type_str[type], reg->off);
6625 		return false;
6626 	}
6627 
6628 	if (smin == S64_MIN) {
6629 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
6630 			reg_type_str[type]);
6631 		return false;
6632 	}
6633 
6634 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
6635 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
6636 			smin, reg_type_str[type]);
6637 		return false;
6638 	}
6639 
6640 	return true;
6641 }
6642 
6643 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
6644 {
6645 	return &env->insn_aux_data[env->insn_idx];
6646 }
6647 
6648 enum {
6649 	REASON_BOUNDS	= -1,
6650 	REASON_TYPE	= -2,
6651 	REASON_PATHS	= -3,
6652 	REASON_LIMIT	= -4,
6653 	REASON_STACK	= -5,
6654 };
6655 
6656 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
6657 			      u32 *alu_limit, bool mask_to_left)
6658 {
6659 	u32 max = 0, ptr_limit = 0;
6660 
6661 	switch (ptr_reg->type) {
6662 	case PTR_TO_STACK:
6663 		/* Offset 0 is out-of-bounds, but acceptable start for the
6664 		 * left direction, see BPF_REG_FP. Also, unknown scalar
6665 		 * offset where we would need to deal with min/max bounds is
6666 		 * currently prohibited for unprivileged.
6667 		 */
6668 		max = MAX_BPF_STACK + mask_to_left;
6669 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
6670 		break;
6671 	case PTR_TO_MAP_VALUE:
6672 		max = ptr_reg->map_ptr->value_size;
6673 		ptr_limit = (mask_to_left ?
6674 			     ptr_reg->smin_value :
6675 			     ptr_reg->umax_value) + ptr_reg->off;
6676 		break;
6677 	default:
6678 		return REASON_TYPE;
6679 	}
6680 
6681 	if (ptr_limit >= max)
6682 		return REASON_LIMIT;
6683 	*alu_limit = ptr_limit;
6684 	return 0;
6685 }
6686 
6687 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
6688 				    const struct bpf_insn *insn)
6689 {
6690 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
6691 }
6692 
6693 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
6694 				       u32 alu_state, u32 alu_limit)
6695 {
6696 	/* If we arrived here from different branches with different
6697 	 * state or limits to sanitize, then this won't work.
6698 	 */
6699 	if (aux->alu_state &&
6700 	    (aux->alu_state != alu_state ||
6701 	     aux->alu_limit != alu_limit))
6702 		return REASON_PATHS;
6703 
6704 	/* Corresponding fixup done in do_misc_fixups(). */
6705 	aux->alu_state = alu_state;
6706 	aux->alu_limit = alu_limit;
6707 	return 0;
6708 }
6709 
6710 static int sanitize_val_alu(struct bpf_verifier_env *env,
6711 			    struct bpf_insn *insn)
6712 {
6713 	struct bpf_insn_aux_data *aux = cur_aux(env);
6714 
6715 	if (can_skip_alu_sanitation(env, insn))
6716 		return 0;
6717 
6718 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
6719 }
6720 
6721 static bool sanitize_needed(u8 opcode)
6722 {
6723 	return opcode == BPF_ADD || opcode == BPF_SUB;
6724 }
6725 
6726 struct bpf_sanitize_info {
6727 	struct bpf_insn_aux_data aux;
6728 	bool mask_to_left;
6729 };
6730 
6731 static struct bpf_verifier_state *
6732 sanitize_speculative_path(struct bpf_verifier_env *env,
6733 			  const struct bpf_insn *insn,
6734 			  u32 next_idx, u32 curr_idx)
6735 {
6736 	struct bpf_verifier_state *branch;
6737 	struct bpf_reg_state *regs;
6738 
6739 	branch = push_stack(env, next_idx, curr_idx, true);
6740 	if (branch && insn) {
6741 		regs = branch->frame[branch->curframe]->regs;
6742 		if (BPF_SRC(insn->code) == BPF_K) {
6743 			mark_reg_unknown(env, regs, insn->dst_reg);
6744 		} else if (BPF_SRC(insn->code) == BPF_X) {
6745 			mark_reg_unknown(env, regs, insn->dst_reg);
6746 			mark_reg_unknown(env, regs, insn->src_reg);
6747 		}
6748 	}
6749 	return branch;
6750 }
6751 
6752 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
6753 			    struct bpf_insn *insn,
6754 			    const struct bpf_reg_state *ptr_reg,
6755 			    const struct bpf_reg_state *off_reg,
6756 			    struct bpf_reg_state *dst_reg,
6757 			    struct bpf_sanitize_info *info,
6758 			    const bool commit_window)
6759 {
6760 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
6761 	struct bpf_verifier_state *vstate = env->cur_state;
6762 	bool off_is_imm = tnum_is_const(off_reg->var_off);
6763 	bool off_is_neg = off_reg->smin_value < 0;
6764 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
6765 	u8 opcode = BPF_OP(insn->code);
6766 	u32 alu_state, alu_limit;
6767 	struct bpf_reg_state tmp;
6768 	bool ret;
6769 	int err;
6770 
6771 	if (can_skip_alu_sanitation(env, insn))
6772 		return 0;
6773 
6774 	/* We already marked aux for masking from non-speculative
6775 	 * paths, thus we got here in the first place. We only care
6776 	 * to explore bad access from here.
6777 	 */
6778 	if (vstate->speculative)
6779 		goto do_sim;
6780 
6781 	if (!commit_window) {
6782 		if (!tnum_is_const(off_reg->var_off) &&
6783 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
6784 			return REASON_BOUNDS;
6785 
6786 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
6787 				     (opcode == BPF_SUB && !off_is_neg);
6788 	}
6789 
6790 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
6791 	if (err < 0)
6792 		return err;
6793 
6794 	if (commit_window) {
6795 		/* In commit phase we narrow the masking window based on
6796 		 * the observed pointer move after the simulated operation.
6797 		 */
6798 		alu_state = info->aux.alu_state;
6799 		alu_limit = abs(info->aux.alu_limit - alu_limit);
6800 	} else {
6801 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
6802 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
6803 		alu_state |= ptr_is_dst_reg ?
6804 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
6805 	}
6806 
6807 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
6808 	if (err < 0)
6809 		return err;
6810 do_sim:
6811 	/* If we're in commit phase, we're done here given we already
6812 	 * pushed the truncated dst_reg into the speculative verification
6813 	 * stack.
6814 	 *
6815 	 * Also, when register is a known constant, we rewrite register-based
6816 	 * operation to immediate-based, and thus do not need masking (and as
6817 	 * a consequence, do not need to simulate the zero-truncation either).
6818 	 */
6819 	if (commit_window || off_is_imm)
6820 		return 0;
6821 
6822 	/* Simulate and find potential out-of-bounds access under
6823 	 * speculative execution from truncation as a result of
6824 	 * masking when off was not within expected range. If off
6825 	 * sits in dst, then we temporarily need to move ptr there
6826 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
6827 	 * for cases where we use K-based arithmetic in one direction
6828 	 * and truncated reg-based in the other in order to explore
6829 	 * bad access.
6830 	 */
6831 	if (!ptr_is_dst_reg) {
6832 		tmp = *dst_reg;
6833 		*dst_reg = *ptr_reg;
6834 	}
6835 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
6836 					env->insn_idx);
6837 	if (!ptr_is_dst_reg && ret)
6838 		*dst_reg = tmp;
6839 	return !ret ? REASON_STACK : 0;
6840 }
6841 
6842 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
6843 {
6844 	struct bpf_verifier_state *vstate = env->cur_state;
6845 
6846 	/* If we simulate paths under speculation, we don't update the
6847 	 * insn as 'seen' such that when we verify unreachable paths in
6848 	 * the non-speculative domain, sanitize_dead_code() can still
6849 	 * rewrite/sanitize them.
6850 	 */
6851 	if (!vstate->speculative)
6852 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
6853 }
6854 
6855 static int sanitize_err(struct bpf_verifier_env *env,
6856 			const struct bpf_insn *insn, int reason,
6857 			const struct bpf_reg_state *off_reg,
6858 			const struct bpf_reg_state *dst_reg)
6859 {
6860 	static const char *err = "pointer arithmetic with it prohibited for !root";
6861 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
6862 	u32 dst = insn->dst_reg, src = insn->src_reg;
6863 
6864 	switch (reason) {
6865 	case REASON_BOUNDS:
6866 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
6867 			off_reg == dst_reg ? dst : src, err);
6868 		break;
6869 	case REASON_TYPE:
6870 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
6871 			off_reg == dst_reg ? src : dst, err);
6872 		break;
6873 	case REASON_PATHS:
6874 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
6875 			dst, op, err);
6876 		break;
6877 	case REASON_LIMIT:
6878 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
6879 			dst, op, err);
6880 		break;
6881 	case REASON_STACK:
6882 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
6883 			dst, err);
6884 		break;
6885 	default:
6886 		verbose(env, "verifier internal error: unknown reason (%d)\n",
6887 			reason);
6888 		break;
6889 	}
6890 
6891 	return -EACCES;
6892 }
6893 
6894 /* check that stack access falls within stack limits and that 'reg' doesn't
6895  * have a variable offset.
6896  *
6897  * Variable offset is prohibited for unprivileged mode for simplicity since it
6898  * requires corresponding support in Spectre masking for stack ALU.  See also
6899  * retrieve_ptr_limit().
6900  *
6901  *
6902  * 'off' includes 'reg->off'.
6903  */
6904 static int check_stack_access_for_ptr_arithmetic(
6905 				struct bpf_verifier_env *env,
6906 				int regno,
6907 				const struct bpf_reg_state *reg,
6908 				int off)
6909 {
6910 	if (!tnum_is_const(reg->var_off)) {
6911 		char tn_buf[48];
6912 
6913 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6914 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
6915 			regno, tn_buf, off);
6916 		return -EACCES;
6917 	}
6918 
6919 	if (off >= 0 || off < -MAX_BPF_STACK) {
6920 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
6921 			"prohibited for !root; off=%d\n", regno, off);
6922 		return -EACCES;
6923 	}
6924 
6925 	return 0;
6926 }
6927 
6928 static int sanitize_check_bounds(struct bpf_verifier_env *env,
6929 				 const struct bpf_insn *insn,
6930 				 const struct bpf_reg_state *dst_reg)
6931 {
6932 	u32 dst = insn->dst_reg;
6933 
6934 	/* For unprivileged we require that resulting offset must be in bounds
6935 	 * in order to be able to sanitize access later on.
6936 	 */
6937 	if (env->bypass_spec_v1)
6938 		return 0;
6939 
6940 	switch (dst_reg->type) {
6941 	case PTR_TO_STACK:
6942 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
6943 					dst_reg->off + dst_reg->var_off.value))
6944 			return -EACCES;
6945 		break;
6946 	case PTR_TO_MAP_VALUE:
6947 		if (check_map_access(env, dst, dst_reg->off, 1, false)) {
6948 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
6949 				"prohibited for !root\n", dst);
6950 			return -EACCES;
6951 		}
6952 		break;
6953 	default:
6954 		break;
6955 	}
6956 
6957 	return 0;
6958 }
6959 
6960 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
6961  * Caller should also handle BPF_MOV case separately.
6962  * If we return -EACCES, caller may want to try again treating pointer as a
6963  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
6964  */
6965 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
6966 				   struct bpf_insn *insn,
6967 				   const struct bpf_reg_state *ptr_reg,
6968 				   const struct bpf_reg_state *off_reg)
6969 {
6970 	struct bpf_verifier_state *vstate = env->cur_state;
6971 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6972 	struct bpf_reg_state *regs = state->regs, *dst_reg;
6973 	bool known = tnum_is_const(off_reg->var_off);
6974 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
6975 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
6976 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
6977 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
6978 	struct bpf_sanitize_info info = {};
6979 	u8 opcode = BPF_OP(insn->code);
6980 	u32 dst = insn->dst_reg;
6981 	int ret;
6982 
6983 	dst_reg = &regs[dst];
6984 
6985 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
6986 	    smin_val > smax_val || umin_val > umax_val) {
6987 		/* Taint dst register if offset had invalid bounds derived from
6988 		 * e.g. dead branches.
6989 		 */
6990 		__mark_reg_unknown(env, dst_reg);
6991 		return 0;
6992 	}
6993 
6994 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
6995 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
6996 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6997 			__mark_reg_unknown(env, dst_reg);
6998 			return 0;
6999 		}
7000 
7001 		verbose(env,
7002 			"R%d 32-bit pointer arithmetic prohibited\n",
7003 			dst);
7004 		return -EACCES;
7005 	}
7006 
7007 	switch (ptr_reg->type) {
7008 	case PTR_TO_MAP_VALUE_OR_NULL:
7009 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
7010 			dst, reg_type_str[ptr_reg->type]);
7011 		return -EACCES;
7012 	case CONST_PTR_TO_MAP:
7013 		/* smin_val represents the known value */
7014 		if (known && smin_val == 0 && opcode == BPF_ADD)
7015 			break;
7016 		fallthrough;
7017 	case PTR_TO_PACKET_END:
7018 	case PTR_TO_SOCKET:
7019 	case PTR_TO_SOCKET_OR_NULL:
7020 	case PTR_TO_SOCK_COMMON:
7021 	case PTR_TO_SOCK_COMMON_OR_NULL:
7022 	case PTR_TO_TCP_SOCK:
7023 	case PTR_TO_TCP_SOCK_OR_NULL:
7024 	case PTR_TO_XDP_SOCK:
7025 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
7026 			dst, reg_type_str[ptr_reg->type]);
7027 		return -EACCES;
7028 	default:
7029 		break;
7030 	}
7031 
7032 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
7033 	 * The id may be overwritten later if we create a new variable offset.
7034 	 */
7035 	dst_reg->type = ptr_reg->type;
7036 	dst_reg->id = ptr_reg->id;
7037 
7038 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
7039 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
7040 		return -EINVAL;
7041 
7042 	/* pointer types do not carry 32-bit bounds at the moment. */
7043 	__mark_reg32_unbounded(dst_reg);
7044 
7045 	if (sanitize_needed(opcode)) {
7046 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
7047 				       &info, false);
7048 		if (ret < 0)
7049 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
7050 	}
7051 
7052 	switch (opcode) {
7053 	case BPF_ADD:
7054 		/* We can take a fixed offset as long as it doesn't overflow
7055 		 * the s32 'off' field
7056 		 */
7057 		if (known && (ptr_reg->off + smin_val ==
7058 			      (s64)(s32)(ptr_reg->off + smin_val))) {
7059 			/* pointer += K.  Accumulate it into fixed offset */
7060 			dst_reg->smin_value = smin_ptr;
7061 			dst_reg->smax_value = smax_ptr;
7062 			dst_reg->umin_value = umin_ptr;
7063 			dst_reg->umax_value = umax_ptr;
7064 			dst_reg->var_off = ptr_reg->var_off;
7065 			dst_reg->off = ptr_reg->off + smin_val;
7066 			dst_reg->raw = ptr_reg->raw;
7067 			break;
7068 		}
7069 		/* A new variable offset is created.  Note that off_reg->off
7070 		 * == 0, since it's a scalar.
7071 		 * dst_reg gets the pointer type and since some positive
7072 		 * integer value was added to the pointer, give it a new 'id'
7073 		 * if it's a PTR_TO_PACKET.
7074 		 * this creates a new 'base' pointer, off_reg (variable) gets
7075 		 * added into the variable offset, and we copy the fixed offset
7076 		 * from ptr_reg.
7077 		 */
7078 		if (signed_add_overflows(smin_ptr, smin_val) ||
7079 		    signed_add_overflows(smax_ptr, smax_val)) {
7080 			dst_reg->smin_value = S64_MIN;
7081 			dst_reg->smax_value = S64_MAX;
7082 		} else {
7083 			dst_reg->smin_value = smin_ptr + smin_val;
7084 			dst_reg->smax_value = smax_ptr + smax_val;
7085 		}
7086 		if (umin_ptr + umin_val < umin_ptr ||
7087 		    umax_ptr + umax_val < umax_ptr) {
7088 			dst_reg->umin_value = 0;
7089 			dst_reg->umax_value = U64_MAX;
7090 		} else {
7091 			dst_reg->umin_value = umin_ptr + umin_val;
7092 			dst_reg->umax_value = umax_ptr + umax_val;
7093 		}
7094 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
7095 		dst_reg->off = ptr_reg->off;
7096 		dst_reg->raw = ptr_reg->raw;
7097 		if (reg_is_pkt_pointer(ptr_reg)) {
7098 			dst_reg->id = ++env->id_gen;
7099 			/* something was added to pkt_ptr, set range to zero */
7100 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
7101 		}
7102 		break;
7103 	case BPF_SUB:
7104 		if (dst_reg == off_reg) {
7105 			/* scalar -= pointer.  Creates an unknown scalar */
7106 			verbose(env, "R%d tried to subtract pointer from scalar\n",
7107 				dst);
7108 			return -EACCES;
7109 		}
7110 		/* We don't allow subtraction from FP, because (according to
7111 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
7112 		 * be able to deal with it.
7113 		 */
7114 		if (ptr_reg->type == PTR_TO_STACK) {
7115 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
7116 				dst);
7117 			return -EACCES;
7118 		}
7119 		if (known && (ptr_reg->off - smin_val ==
7120 			      (s64)(s32)(ptr_reg->off - smin_val))) {
7121 			/* pointer -= K.  Subtract it from fixed offset */
7122 			dst_reg->smin_value = smin_ptr;
7123 			dst_reg->smax_value = smax_ptr;
7124 			dst_reg->umin_value = umin_ptr;
7125 			dst_reg->umax_value = umax_ptr;
7126 			dst_reg->var_off = ptr_reg->var_off;
7127 			dst_reg->id = ptr_reg->id;
7128 			dst_reg->off = ptr_reg->off - smin_val;
7129 			dst_reg->raw = ptr_reg->raw;
7130 			break;
7131 		}
7132 		/* A new variable offset is created.  If the subtrahend is known
7133 		 * nonnegative, then any reg->range we had before is still good.
7134 		 */
7135 		if (signed_sub_overflows(smin_ptr, smax_val) ||
7136 		    signed_sub_overflows(smax_ptr, smin_val)) {
7137 			/* Overflow possible, we know nothing */
7138 			dst_reg->smin_value = S64_MIN;
7139 			dst_reg->smax_value = S64_MAX;
7140 		} else {
7141 			dst_reg->smin_value = smin_ptr - smax_val;
7142 			dst_reg->smax_value = smax_ptr - smin_val;
7143 		}
7144 		if (umin_ptr < umax_val) {
7145 			/* Overflow possible, we know nothing */
7146 			dst_reg->umin_value = 0;
7147 			dst_reg->umax_value = U64_MAX;
7148 		} else {
7149 			/* Cannot overflow (as long as bounds are consistent) */
7150 			dst_reg->umin_value = umin_ptr - umax_val;
7151 			dst_reg->umax_value = umax_ptr - umin_val;
7152 		}
7153 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
7154 		dst_reg->off = ptr_reg->off;
7155 		dst_reg->raw = ptr_reg->raw;
7156 		if (reg_is_pkt_pointer(ptr_reg)) {
7157 			dst_reg->id = ++env->id_gen;
7158 			/* something was added to pkt_ptr, set range to zero */
7159 			if (smin_val < 0)
7160 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
7161 		}
7162 		break;
7163 	case BPF_AND:
7164 	case BPF_OR:
7165 	case BPF_XOR:
7166 		/* bitwise ops on pointers are troublesome, prohibit. */
7167 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
7168 			dst, bpf_alu_string[opcode >> 4]);
7169 		return -EACCES;
7170 	default:
7171 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
7172 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
7173 			dst, bpf_alu_string[opcode >> 4]);
7174 		return -EACCES;
7175 	}
7176 
7177 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
7178 		return -EINVAL;
7179 
7180 	__update_reg_bounds(dst_reg);
7181 	__reg_deduce_bounds(dst_reg);
7182 	__reg_bound_offset(dst_reg);
7183 
7184 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
7185 		return -EACCES;
7186 	if (sanitize_needed(opcode)) {
7187 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
7188 				       &info, true);
7189 		if (ret < 0)
7190 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
7191 	}
7192 
7193 	return 0;
7194 }
7195 
7196 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
7197 				 struct bpf_reg_state *src_reg)
7198 {
7199 	s32 smin_val = src_reg->s32_min_value;
7200 	s32 smax_val = src_reg->s32_max_value;
7201 	u32 umin_val = src_reg->u32_min_value;
7202 	u32 umax_val = src_reg->u32_max_value;
7203 
7204 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
7205 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
7206 		dst_reg->s32_min_value = S32_MIN;
7207 		dst_reg->s32_max_value = S32_MAX;
7208 	} else {
7209 		dst_reg->s32_min_value += smin_val;
7210 		dst_reg->s32_max_value += smax_val;
7211 	}
7212 	if (dst_reg->u32_min_value + umin_val < umin_val ||
7213 	    dst_reg->u32_max_value + umax_val < umax_val) {
7214 		dst_reg->u32_min_value = 0;
7215 		dst_reg->u32_max_value = U32_MAX;
7216 	} else {
7217 		dst_reg->u32_min_value += umin_val;
7218 		dst_reg->u32_max_value += umax_val;
7219 	}
7220 }
7221 
7222 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
7223 			       struct bpf_reg_state *src_reg)
7224 {
7225 	s64 smin_val = src_reg->smin_value;
7226 	s64 smax_val = src_reg->smax_value;
7227 	u64 umin_val = src_reg->umin_value;
7228 	u64 umax_val = src_reg->umax_value;
7229 
7230 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
7231 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
7232 		dst_reg->smin_value = S64_MIN;
7233 		dst_reg->smax_value = S64_MAX;
7234 	} else {
7235 		dst_reg->smin_value += smin_val;
7236 		dst_reg->smax_value += smax_val;
7237 	}
7238 	if (dst_reg->umin_value + umin_val < umin_val ||
7239 	    dst_reg->umax_value + umax_val < umax_val) {
7240 		dst_reg->umin_value = 0;
7241 		dst_reg->umax_value = U64_MAX;
7242 	} else {
7243 		dst_reg->umin_value += umin_val;
7244 		dst_reg->umax_value += umax_val;
7245 	}
7246 }
7247 
7248 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
7249 				 struct bpf_reg_state *src_reg)
7250 {
7251 	s32 smin_val = src_reg->s32_min_value;
7252 	s32 smax_val = src_reg->s32_max_value;
7253 	u32 umin_val = src_reg->u32_min_value;
7254 	u32 umax_val = src_reg->u32_max_value;
7255 
7256 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
7257 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
7258 		/* Overflow possible, we know nothing */
7259 		dst_reg->s32_min_value = S32_MIN;
7260 		dst_reg->s32_max_value = S32_MAX;
7261 	} else {
7262 		dst_reg->s32_min_value -= smax_val;
7263 		dst_reg->s32_max_value -= smin_val;
7264 	}
7265 	if (dst_reg->u32_min_value < umax_val) {
7266 		/* Overflow possible, we know nothing */
7267 		dst_reg->u32_min_value = 0;
7268 		dst_reg->u32_max_value = U32_MAX;
7269 	} else {
7270 		/* Cannot overflow (as long as bounds are consistent) */
7271 		dst_reg->u32_min_value -= umax_val;
7272 		dst_reg->u32_max_value -= umin_val;
7273 	}
7274 }
7275 
7276 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
7277 			       struct bpf_reg_state *src_reg)
7278 {
7279 	s64 smin_val = src_reg->smin_value;
7280 	s64 smax_val = src_reg->smax_value;
7281 	u64 umin_val = src_reg->umin_value;
7282 	u64 umax_val = src_reg->umax_value;
7283 
7284 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
7285 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
7286 		/* Overflow possible, we know nothing */
7287 		dst_reg->smin_value = S64_MIN;
7288 		dst_reg->smax_value = S64_MAX;
7289 	} else {
7290 		dst_reg->smin_value -= smax_val;
7291 		dst_reg->smax_value -= smin_val;
7292 	}
7293 	if (dst_reg->umin_value < umax_val) {
7294 		/* Overflow possible, we know nothing */
7295 		dst_reg->umin_value = 0;
7296 		dst_reg->umax_value = U64_MAX;
7297 	} else {
7298 		/* Cannot overflow (as long as bounds are consistent) */
7299 		dst_reg->umin_value -= umax_val;
7300 		dst_reg->umax_value -= umin_val;
7301 	}
7302 }
7303 
7304 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
7305 				 struct bpf_reg_state *src_reg)
7306 {
7307 	s32 smin_val = src_reg->s32_min_value;
7308 	u32 umin_val = src_reg->u32_min_value;
7309 	u32 umax_val = src_reg->u32_max_value;
7310 
7311 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
7312 		/* Ain't nobody got time to multiply that sign */
7313 		__mark_reg32_unbounded(dst_reg);
7314 		return;
7315 	}
7316 	/* Both values are positive, so we can work with unsigned and
7317 	 * copy the result to signed (unless it exceeds S32_MAX).
7318 	 */
7319 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
7320 		/* Potential overflow, we know nothing */
7321 		__mark_reg32_unbounded(dst_reg);
7322 		return;
7323 	}
7324 	dst_reg->u32_min_value *= umin_val;
7325 	dst_reg->u32_max_value *= umax_val;
7326 	if (dst_reg->u32_max_value > S32_MAX) {
7327 		/* Overflow possible, we know nothing */
7328 		dst_reg->s32_min_value = S32_MIN;
7329 		dst_reg->s32_max_value = S32_MAX;
7330 	} else {
7331 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7332 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7333 	}
7334 }
7335 
7336 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
7337 			       struct bpf_reg_state *src_reg)
7338 {
7339 	s64 smin_val = src_reg->smin_value;
7340 	u64 umin_val = src_reg->umin_value;
7341 	u64 umax_val = src_reg->umax_value;
7342 
7343 	if (smin_val < 0 || dst_reg->smin_value < 0) {
7344 		/* Ain't nobody got time to multiply that sign */
7345 		__mark_reg64_unbounded(dst_reg);
7346 		return;
7347 	}
7348 	/* Both values are positive, so we can work with unsigned and
7349 	 * copy the result to signed (unless it exceeds S64_MAX).
7350 	 */
7351 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
7352 		/* Potential overflow, we know nothing */
7353 		__mark_reg64_unbounded(dst_reg);
7354 		return;
7355 	}
7356 	dst_reg->umin_value *= umin_val;
7357 	dst_reg->umax_value *= umax_val;
7358 	if (dst_reg->umax_value > S64_MAX) {
7359 		/* Overflow possible, we know nothing */
7360 		dst_reg->smin_value = S64_MIN;
7361 		dst_reg->smax_value = S64_MAX;
7362 	} else {
7363 		dst_reg->smin_value = dst_reg->umin_value;
7364 		dst_reg->smax_value = dst_reg->umax_value;
7365 	}
7366 }
7367 
7368 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
7369 				 struct bpf_reg_state *src_reg)
7370 {
7371 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7372 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7373 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7374 	s32 smin_val = src_reg->s32_min_value;
7375 	u32 umax_val = src_reg->u32_max_value;
7376 
7377 	if (src_known && dst_known) {
7378 		__mark_reg32_known(dst_reg, var32_off.value);
7379 		return;
7380 	}
7381 
7382 	/* We get our minimum from the var_off, since that's inherently
7383 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
7384 	 */
7385 	dst_reg->u32_min_value = var32_off.value;
7386 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
7387 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7388 		/* Lose signed bounds when ANDing negative numbers,
7389 		 * ain't nobody got time for that.
7390 		 */
7391 		dst_reg->s32_min_value = S32_MIN;
7392 		dst_reg->s32_max_value = S32_MAX;
7393 	} else {
7394 		/* ANDing two positives gives a positive, so safe to
7395 		 * cast result into s64.
7396 		 */
7397 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7398 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7399 	}
7400 }
7401 
7402 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
7403 			       struct bpf_reg_state *src_reg)
7404 {
7405 	bool src_known = tnum_is_const(src_reg->var_off);
7406 	bool dst_known = tnum_is_const(dst_reg->var_off);
7407 	s64 smin_val = src_reg->smin_value;
7408 	u64 umax_val = src_reg->umax_value;
7409 
7410 	if (src_known && dst_known) {
7411 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7412 		return;
7413 	}
7414 
7415 	/* We get our minimum from the var_off, since that's inherently
7416 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
7417 	 */
7418 	dst_reg->umin_value = dst_reg->var_off.value;
7419 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
7420 	if (dst_reg->smin_value < 0 || smin_val < 0) {
7421 		/* Lose signed bounds when ANDing negative numbers,
7422 		 * ain't nobody got time for that.
7423 		 */
7424 		dst_reg->smin_value = S64_MIN;
7425 		dst_reg->smax_value = S64_MAX;
7426 	} else {
7427 		/* ANDing two positives gives a positive, so safe to
7428 		 * cast result into s64.
7429 		 */
7430 		dst_reg->smin_value = dst_reg->umin_value;
7431 		dst_reg->smax_value = dst_reg->umax_value;
7432 	}
7433 	/* We may learn something more from the var_off */
7434 	__update_reg_bounds(dst_reg);
7435 }
7436 
7437 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
7438 				struct bpf_reg_state *src_reg)
7439 {
7440 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7441 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7442 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7443 	s32 smin_val = src_reg->s32_min_value;
7444 	u32 umin_val = src_reg->u32_min_value;
7445 
7446 	if (src_known && dst_known) {
7447 		__mark_reg32_known(dst_reg, var32_off.value);
7448 		return;
7449 	}
7450 
7451 	/* We get our maximum from the var_off, and our minimum is the
7452 	 * maximum of the operands' minima
7453 	 */
7454 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
7455 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7456 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7457 		/* Lose signed bounds when ORing negative numbers,
7458 		 * ain't nobody got time for that.
7459 		 */
7460 		dst_reg->s32_min_value = S32_MIN;
7461 		dst_reg->s32_max_value = S32_MAX;
7462 	} else {
7463 		/* ORing two positives gives a positive, so safe to
7464 		 * cast result into s64.
7465 		 */
7466 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7467 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7468 	}
7469 }
7470 
7471 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
7472 			      struct bpf_reg_state *src_reg)
7473 {
7474 	bool src_known = tnum_is_const(src_reg->var_off);
7475 	bool dst_known = tnum_is_const(dst_reg->var_off);
7476 	s64 smin_val = src_reg->smin_value;
7477 	u64 umin_val = src_reg->umin_value;
7478 
7479 	if (src_known && dst_known) {
7480 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7481 		return;
7482 	}
7483 
7484 	/* We get our maximum from the var_off, and our minimum is the
7485 	 * maximum of the operands' minima
7486 	 */
7487 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
7488 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7489 	if (dst_reg->smin_value < 0 || smin_val < 0) {
7490 		/* Lose signed bounds when ORing negative numbers,
7491 		 * ain't nobody got time for that.
7492 		 */
7493 		dst_reg->smin_value = S64_MIN;
7494 		dst_reg->smax_value = S64_MAX;
7495 	} else {
7496 		/* ORing two positives gives a positive, so safe to
7497 		 * cast result into s64.
7498 		 */
7499 		dst_reg->smin_value = dst_reg->umin_value;
7500 		dst_reg->smax_value = dst_reg->umax_value;
7501 	}
7502 	/* We may learn something more from the var_off */
7503 	__update_reg_bounds(dst_reg);
7504 }
7505 
7506 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
7507 				 struct bpf_reg_state *src_reg)
7508 {
7509 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7510 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7511 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7512 	s32 smin_val = src_reg->s32_min_value;
7513 
7514 	if (src_known && dst_known) {
7515 		__mark_reg32_known(dst_reg, var32_off.value);
7516 		return;
7517 	}
7518 
7519 	/* We get both minimum and maximum from the var32_off. */
7520 	dst_reg->u32_min_value = var32_off.value;
7521 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7522 
7523 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
7524 		/* XORing two positive sign numbers gives a positive,
7525 		 * so safe to cast u32 result into s32.
7526 		 */
7527 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7528 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7529 	} else {
7530 		dst_reg->s32_min_value = S32_MIN;
7531 		dst_reg->s32_max_value = S32_MAX;
7532 	}
7533 }
7534 
7535 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
7536 			       struct bpf_reg_state *src_reg)
7537 {
7538 	bool src_known = tnum_is_const(src_reg->var_off);
7539 	bool dst_known = tnum_is_const(dst_reg->var_off);
7540 	s64 smin_val = src_reg->smin_value;
7541 
7542 	if (src_known && dst_known) {
7543 		/* dst_reg->var_off.value has been updated earlier */
7544 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7545 		return;
7546 	}
7547 
7548 	/* We get both minimum and maximum from the var_off. */
7549 	dst_reg->umin_value = dst_reg->var_off.value;
7550 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7551 
7552 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
7553 		/* XORing two positive sign numbers gives a positive,
7554 		 * so safe to cast u64 result into s64.
7555 		 */
7556 		dst_reg->smin_value = dst_reg->umin_value;
7557 		dst_reg->smax_value = dst_reg->umax_value;
7558 	} else {
7559 		dst_reg->smin_value = S64_MIN;
7560 		dst_reg->smax_value = S64_MAX;
7561 	}
7562 
7563 	__update_reg_bounds(dst_reg);
7564 }
7565 
7566 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7567 				   u64 umin_val, u64 umax_val)
7568 {
7569 	/* We lose all sign bit information (except what we can pick
7570 	 * up from var_off)
7571 	 */
7572 	dst_reg->s32_min_value = S32_MIN;
7573 	dst_reg->s32_max_value = S32_MAX;
7574 	/* If we might shift our top bit out, then we know nothing */
7575 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
7576 		dst_reg->u32_min_value = 0;
7577 		dst_reg->u32_max_value = U32_MAX;
7578 	} else {
7579 		dst_reg->u32_min_value <<= umin_val;
7580 		dst_reg->u32_max_value <<= umax_val;
7581 	}
7582 }
7583 
7584 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7585 				 struct bpf_reg_state *src_reg)
7586 {
7587 	u32 umax_val = src_reg->u32_max_value;
7588 	u32 umin_val = src_reg->u32_min_value;
7589 	/* u32 alu operation will zext upper bits */
7590 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
7591 
7592 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7593 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
7594 	/* Not required but being careful mark reg64 bounds as unknown so
7595 	 * that we are forced to pick them up from tnum and zext later and
7596 	 * if some path skips this step we are still safe.
7597 	 */
7598 	__mark_reg64_unbounded(dst_reg);
7599 	__update_reg32_bounds(dst_reg);
7600 }
7601 
7602 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
7603 				   u64 umin_val, u64 umax_val)
7604 {
7605 	/* Special case <<32 because it is a common compiler pattern to sign
7606 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
7607 	 * positive we know this shift will also be positive so we can track
7608 	 * bounds correctly. Otherwise we lose all sign bit information except
7609 	 * what we can pick up from var_off. Perhaps we can generalize this
7610 	 * later to shifts of any length.
7611 	 */
7612 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
7613 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
7614 	else
7615 		dst_reg->smax_value = S64_MAX;
7616 
7617 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
7618 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
7619 	else
7620 		dst_reg->smin_value = S64_MIN;
7621 
7622 	/* If we might shift our top bit out, then we know nothing */
7623 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
7624 		dst_reg->umin_value = 0;
7625 		dst_reg->umax_value = U64_MAX;
7626 	} else {
7627 		dst_reg->umin_value <<= umin_val;
7628 		dst_reg->umax_value <<= umax_val;
7629 	}
7630 }
7631 
7632 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
7633 			       struct bpf_reg_state *src_reg)
7634 {
7635 	u64 umax_val = src_reg->umax_value;
7636 	u64 umin_val = src_reg->umin_value;
7637 
7638 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
7639 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
7640 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7641 
7642 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
7643 	/* We may learn something more from the var_off */
7644 	__update_reg_bounds(dst_reg);
7645 }
7646 
7647 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
7648 				 struct bpf_reg_state *src_reg)
7649 {
7650 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
7651 	u32 umax_val = src_reg->u32_max_value;
7652 	u32 umin_val = src_reg->u32_min_value;
7653 
7654 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
7655 	 * be negative, then either:
7656 	 * 1) src_reg might be zero, so the sign bit of the result is
7657 	 *    unknown, so we lose our signed bounds
7658 	 * 2) it's known negative, thus the unsigned bounds capture the
7659 	 *    signed bounds
7660 	 * 3) the signed bounds cross zero, so they tell us nothing
7661 	 *    about the result
7662 	 * If the value in dst_reg is known nonnegative, then again the
7663 	 * unsigned bounds capture the signed bounds.
7664 	 * Thus, in all cases it suffices to blow away our signed bounds
7665 	 * and rely on inferring new ones from the unsigned bounds and
7666 	 * var_off of the result.
7667 	 */
7668 	dst_reg->s32_min_value = S32_MIN;
7669 	dst_reg->s32_max_value = S32_MAX;
7670 
7671 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
7672 	dst_reg->u32_min_value >>= umax_val;
7673 	dst_reg->u32_max_value >>= umin_val;
7674 
7675 	__mark_reg64_unbounded(dst_reg);
7676 	__update_reg32_bounds(dst_reg);
7677 }
7678 
7679 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
7680 			       struct bpf_reg_state *src_reg)
7681 {
7682 	u64 umax_val = src_reg->umax_value;
7683 	u64 umin_val = src_reg->umin_value;
7684 
7685 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
7686 	 * be negative, then either:
7687 	 * 1) src_reg might be zero, so the sign bit of the result is
7688 	 *    unknown, so we lose our signed bounds
7689 	 * 2) it's known negative, thus the unsigned bounds capture the
7690 	 *    signed bounds
7691 	 * 3) the signed bounds cross zero, so they tell us nothing
7692 	 *    about the result
7693 	 * If the value in dst_reg is known nonnegative, then again the
7694 	 * unsigned bounds capture the signed bounds.
7695 	 * Thus, in all cases it suffices to blow away our signed bounds
7696 	 * and rely on inferring new ones from the unsigned bounds and
7697 	 * var_off of the result.
7698 	 */
7699 	dst_reg->smin_value = S64_MIN;
7700 	dst_reg->smax_value = S64_MAX;
7701 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
7702 	dst_reg->umin_value >>= umax_val;
7703 	dst_reg->umax_value >>= umin_val;
7704 
7705 	/* Its not easy to operate on alu32 bounds here because it depends
7706 	 * on bits being shifted in. Take easy way out and mark unbounded
7707 	 * so we can recalculate later from tnum.
7708 	 */
7709 	__mark_reg32_unbounded(dst_reg);
7710 	__update_reg_bounds(dst_reg);
7711 }
7712 
7713 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
7714 				  struct bpf_reg_state *src_reg)
7715 {
7716 	u64 umin_val = src_reg->u32_min_value;
7717 
7718 	/* Upon reaching here, src_known is true and
7719 	 * umax_val is equal to umin_val.
7720 	 */
7721 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
7722 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
7723 
7724 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
7725 
7726 	/* blow away the dst_reg umin_value/umax_value and rely on
7727 	 * dst_reg var_off to refine the result.
7728 	 */
7729 	dst_reg->u32_min_value = 0;
7730 	dst_reg->u32_max_value = U32_MAX;
7731 
7732 	__mark_reg64_unbounded(dst_reg);
7733 	__update_reg32_bounds(dst_reg);
7734 }
7735 
7736 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
7737 				struct bpf_reg_state *src_reg)
7738 {
7739 	u64 umin_val = src_reg->umin_value;
7740 
7741 	/* Upon reaching here, src_known is true and umax_val is equal
7742 	 * to umin_val.
7743 	 */
7744 	dst_reg->smin_value >>= umin_val;
7745 	dst_reg->smax_value >>= umin_val;
7746 
7747 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
7748 
7749 	/* blow away the dst_reg umin_value/umax_value and rely on
7750 	 * dst_reg var_off to refine the result.
7751 	 */
7752 	dst_reg->umin_value = 0;
7753 	dst_reg->umax_value = U64_MAX;
7754 
7755 	/* Its not easy to operate on alu32 bounds here because it depends
7756 	 * on bits being shifted in from upper 32-bits. Take easy way out
7757 	 * and mark unbounded so we can recalculate later from tnum.
7758 	 */
7759 	__mark_reg32_unbounded(dst_reg);
7760 	__update_reg_bounds(dst_reg);
7761 }
7762 
7763 /* WARNING: This function does calculations on 64-bit values, but the actual
7764  * execution may occur on 32-bit values. Therefore, things like bitshifts
7765  * need extra checks in the 32-bit case.
7766  */
7767 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
7768 				      struct bpf_insn *insn,
7769 				      struct bpf_reg_state *dst_reg,
7770 				      struct bpf_reg_state src_reg)
7771 {
7772 	struct bpf_reg_state *regs = cur_regs(env);
7773 	u8 opcode = BPF_OP(insn->code);
7774 	bool src_known;
7775 	s64 smin_val, smax_val;
7776 	u64 umin_val, umax_val;
7777 	s32 s32_min_val, s32_max_val;
7778 	u32 u32_min_val, u32_max_val;
7779 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
7780 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
7781 	int ret;
7782 
7783 	smin_val = src_reg.smin_value;
7784 	smax_val = src_reg.smax_value;
7785 	umin_val = src_reg.umin_value;
7786 	umax_val = src_reg.umax_value;
7787 
7788 	s32_min_val = src_reg.s32_min_value;
7789 	s32_max_val = src_reg.s32_max_value;
7790 	u32_min_val = src_reg.u32_min_value;
7791 	u32_max_val = src_reg.u32_max_value;
7792 
7793 	if (alu32) {
7794 		src_known = tnum_subreg_is_const(src_reg.var_off);
7795 		if ((src_known &&
7796 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
7797 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
7798 			/* Taint dst register if offset had invalid bounds
7799 			 * derived from e.g. dead branches.
7800 			 */
7801 			__mark_reg_unknown(env, dst_reg);
7802 			return 0;
7803 		}
7804 	} else {
7805 		src_known = tnum_is_const(src_reg.var_off);
7806 		if ((src_known &&
7807 		     (smin_val != smax_val || umin_val != umax_val)) ||
7808 		    smin_val > smax_val || umin_val > umax_val) {
7809 			/* Taint dst register if offset had invalid bounds
7810 			 * derived from e.g. dead branches.
7811 			 */
7812 			__mark_reg_unknown(env, dst_reg);
7813 			return 0;
7814 		}
7815 	}
7816 
7817 	if (!src_known &&
7818 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
7819 		__mark_reg_unknown(env, dst_reg);
7820 		return 0;
7821 	}
7822 
7823 	if (sanitize_needed(opcode)) {
7824 		ret = sanitize_val_alu(env, insn);
7825 		if (ret < 0)
7826 			return sanitize_err(env, insn, ret, NULL, NULL);
7827 	}
7828 
7829 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
7830 	 * There are two classes of instructions: The first class we track both
7831 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
7832 	 * greatest amount of precision when alu operations are mixed with jmp32
7833 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
7834 	 * and BPF_OR. This is possible because these ops have fairly easy to
7835 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
7836 	 * See alu32 verifier tests for examples. The second class of
7837 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
7838 	 * with regards to tracking sign/unsigned bounds because the bits may
7839 	 * cross subreg boundaries in the alu64 case. When this happens we mark
7840 	 * the reg unbounded in the subreg bound space and use the resulting
7841 	 * tnum to calculate an approximation of the sign/unsigned bounds.
7842 	 */
7843 	switch (opcode) {
7844 	case BPF_ADD:
7845 		scalar32_min_max_add(dst_reg, &src_reg);
7846 		scalar_min_max_add(dst_reg, &src_reg);
7847 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
7848 		break;
7849 	case BPF_SUB:
7850 		scalar32_min_max_sub(dst_reg, &src_reg);
7851 		scalar_min_max_sub(dst_reg, &src_reg);
7852 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
7853 		break;
7854 	case BPF_MUL:
7855 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
7856 		scalar32_min_max_mul(dst_reg, &src_reg);
7857 		scalar_min_max_mul(dst_reg, &src_reg);
7858 		break;
7859 	case BPF_AND:
7860 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
7861 		scalar32_min_max_and(dst_reg, &src_reg);
7862 		scalar_min_max_and(dst_reg, &src_reg);
7863 		break;
7864 	case BPF_OR:
7865 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
7866 		scalar32_min_max_or(dst_reg, &src_reg);
7867 		scalar_min_max_or(dst_reg, &src_reg);
7868 		break;
7869 	case BPF_XOR:
7870 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
7871 		scalar32_min_max_xor(dst_reg, &src_reg);
7872 		scalar_min_max_xor(dst_reg, &src_reg);
7873 		break;
7874 	case BPF_LSH:
7875 		if (umax_val >= insn_bitness) {
7876 			/* Shifts greater than 31 or 63 are undefined.
7877 			 * This includes shifts by a negative number.
7878 			 */
7879 			mark_reg_unknown(env, regs, insn->dst_reg);
7880 			break;
7881 		}
7882 		if (alu32)
7883 			scalar32_min_max_lsh(dst_reg, &src_reg);
7884 		else
7885 			scalar_min_max_lsh(dst_reg, &src_reg);
7886 		break;
7887 	case BPF_RSH:
7888 		if (umax_val >= insn_bitness) {
7889 			/* Shifts greater than 31 or 63 are undefined.
7890 			 * This includes shifts by a negative number.
7891 			 */
7892 			mark_reg_unknown(env, regs, insn->dst_reg);
7893 			break;
7894 		}
7895 		if (alu32)
7896 			scalar32_min_max_rsh(dst_reg, &src_reg);
7897 		else
7898 			scalar_min_max_rsh(dst_reg, &src_reg);
7899 		break;
7900 	case BPF_ARSH:
7901 		if (umax_val >= insn_bitness) {
7902 			/* Shifts greater than 31 or 63 are undefined.
7903 			 * This includes shifts by a negative number.
7904 			 */
7905 			mark_reg_unknown(env, regs, insn->dst_reg);
7906 			break;
7907 		}
7908 		if (alu32)
7909 			scalar32_min_max_arsh(dst_reg, &src_reg);
7910 		else
7911 			scalar_min_max_arsh(dst_reg, &src_reg);
7912 		break;
7913 	default:
7914 		mark_reg_unknown(env, regs, insn->dst_reg);
7915 		break;
7916 	}
7917 
7918 	/* ALU32 ops are zero extended into 64bit register */
7919 	if (alu32)
7920 		zext_32_to_64(dst_reg);
7921 
7922 	__update_reg_bounds(dst_reg);
7923 	__reg_deduce_bounds(dst_reg);
7924 	__reg_bound_offset(dst_reg);
7925 	return 0;
7926 }
7927 
7928 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
7929  * and var_off.
7930  */
7931 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
7932 				   struct bpf_insn *insn)
7933 {
7934 	struct bpf_verifier_state *vstate = env->cur_state;
7935 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7936 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
7937 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
7938 	u8 opcode = BPF_OP(insn->code);
7939 	int err;
7940 
7941 	dst_reg = &regs[insn->dst_reg];
7942 	src_reg = NULL;
7943 	if (dst_reg->type != SCALAR_VALUE)
7944 		ptr_reg = dst_reg;
7945 	else
7946 		/* Make sure ID is cleared otherwise dst_reg min/max could be
7947 		 * incorrectly propagated into other registers by find_equal_scalars()
7948 		 */
7949 		dst_reg->id = 0;
7950 	if (BPF_SRC(insn->code) == BPF_X) {
7951 		src_reg = &regs[insn->src_reg];
7952 		if (src_reg->type != SCALAR_VALUE) {
7953 			if (dst_reg->type != SCALAR_VALUE) {
7954 				/* Combining two pointers by any ALU op yields
7955 				 * an arbitrary scalar. Disallow all math except
7956 				 * pointer subtraction
7957 				 */
7958 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7959 					mark_reg_unknown(env, regs, insn->dst_reg);
7960 					return 0;
7961 				}
7962 				verbose(env, "R%d pointer %s pointer prohibited\n",
7963 					insn->dst_reg,
7964 					bpf_alu_string[opcode >> 4]);
7965 				return -EACCES;
7966 			} else {
7967 				/* scalar += pointer
7968 				 * This is legal, but we have to reverse our
7969 				 * src/dest handling in computing the range
7970 				 */
7971 				err = mark_chain_precision(env, insn->dst_reg);
7972 				if (err)
7973 					return err;
7974 				return adjust_ptr_min_max_vals(env, insn,
7975 							       src_reg, dst_reg);
7976 			}
7977 		} else if (ptr_reg) {
7978 			/* pointer += scalar */
7979 			err = mark_chain_precision(env, insn->src_reg);
7980 			if (err)
7981 				return err;
7982 			return adjust_ptr_min_max_vals(env, insn,
7983 						       dst_reg, src_reg);
7984 		}
7985 	} else {
7986 		/* Pretend the src is a reg with a known value, since we only
7987 		 * need to be able to read from this state.
7988 		 */
7989 		off_reg.type = SCALAR_VALUE;
7990 		__mark_reg_known(&off_reg, insn->imm);
7991 		src_reg = &off_reg;
7992 		if (ptr_reg) /* pointer += K */
7993 			return adjust_ptr_min_max_vals(env, insn,
7994 						       ptr_reg, src_reg);
7995 	}
7996 
7997 	/* Got here implies adding two SCALAR_VALUEs */
7998 	if (WARN_ON_ONCE(ptr_reg)) {
7999 		print_verifier_state(env, state);
8000 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
8001 		return -EINVAL;
8002 	}
8003 	if (WARN_ON(!src_reg)) {
8004 		print_verifier_state(env, state);
8005 		verbose(env, "verifier internal error: no src_reg\n");
8006 		return -EINVAL;
8007 	}
8008 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
8009 }
8010 
8011 /* check validity of 32-bit and 64-bit arithmetic operations */
8012 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
8013 {
8014 	struct bpf_reg_state *regs = cur_regs(env);
8015 	u8 opcode = BPF_OP(insn->code);
8016 	int err;
8017 
8018 	if (opcode == BPF_END || opcode == BPF_NEG) {
8019 		if (opcode == BPF_NEG) {
8020 			if (BPF_SRC(insn->code) != 0 ||
8021 			    insn->src_reg != BPF_REG_0 ||
8022 			    insn->off != 0 || insn->imm != 0) {
8023 				verbose(env, "BPF_NEG uses reserved fields\n");
8024 				return -EINVAL;
8025 			}
8026 		} else {
8027 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
8028 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
8029 			    BPF_CLASS(insn->code) == BPF_ALU64) {
8030 				verbose(env, "BPF_END uses reserved fields\n");
8031 				return -EINVAL;
8032 			}
8033 		}
8034 
8035 		/* check src operand */
8036 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8037 		if (err)
8038 			return err;
8039 
8040 		if (is_pointer_value(env, insn->dst_reg)) {
8041 			verbose(env, "R%d pointer arithmetic prohibited\n",
8042 				insn->dst_reg);
8043 			return -EACCES;
8044 		}
8045 
8046 		/* check dest operand */
8047 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
8048 		if (err)
8049 			return err;
8050 
8051 	} else if (opcode == BPF_MOV) {
8052 
8053 		if (BPF_SRC(insn->code) == BPF_X) {
8054 			if (insn->imm != 0 || insn->off != 0) {
8055 				verbose(env, "BPF_MOV uses reserved fields\n");
8056 				return -EINVAL;
8057 			}
8058 
8059 			/* check src operand */
8060 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8061 			if (err)
8062 				return err;
8063 		} else {
8064 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
8065 				verbose(env, "BPF_MOV uses reserved fields\n");
8066 				return -EINVAL;
8067 			}
8068 		}
8069 
8070 		/* check dest operand, mark as required later */
8071 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
8072 		if (err)
8073 			return err;
8074 
8075 		if (BPF_SRC(insn->code) == BPF_X) {
8076 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
8077 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
8078 
8079 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
8080 				/* case: R1 = R2
8081 				 * copy register state to dest reg
8082 				 */
8083 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
8084 					/* Assign src and dst registers the same ID
8085 					 * that will be used by find_equal_scalars()
8086 					 * to propagate min/max range.
8087 					 */
8088 					src_reg->id = ++env->id_gen;
8089 				*dst_reg = *src_reg;
8090 				dst_reg->live |= REG_LIVE_WRITTEN;
8091 				dst_reg->subreg_def = DEF_NOT_SUBREG;
8092 			} else {
8093 				/* R1 = (u32) R2 */
8094 				if (is_pointer_value(env, insn->src_reg)) {
8095 					verbose(env,
8096 						"R%d partial copy of pointer\n",
8097 						insn->src_reg);
8098 					return -EACCES;
8099 				} else if (src_reg->type == SCALAR_VALUE) {
8100 					*dst_reg = *src_reg;
8101 					/* Make sure ID is cleared otherwise
8102 					 * dst_reg min/max could be incorrectly
8103 					 * propagated into src_reg by find_equal_scalars()
8104 					 */
8105 					dst_reg->id = 0;
8106 					dst_reg->live |= REG_LIVE_WRITTEN;
8107 					dst_reg->subreg_def = env->insn_idx + 1;
8108 				} else {
8109 					mark_reg_unknown(env, regs,
8110 							 insn->dst_reg);
8111 				}
8112 				zext_32_to_64(dst_reg);
8113 			}
8114 		} else {
8115 			/* case: R = imm
8116 			 * remember the value we stored into this reg
8117 			 */
8118 			/* clear any state __mark_reg_known doesn't set */
8119 			mark_reg_unknown(env, regs, insn->dst_reg);
8120 			regs[insn->dst_reg].type = SCALAR_VALUE;
8121 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
8122 				__mark_reg_known(regs + insn->dst_reg,
8123 						 insn->imm);
8124 			} else {
8125 				__mark_reg_known(regs + insn->dst_reg,
8126 						 (u32)insn->imm);
8127 			}
8128 		}
8129 
8130 	} else if (opcode > BPF_END) {
8131 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
8132 		return -EINVAL;
8133 
8134 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
8135 
8136 		if (BPF_SRC(insn->code) == BPF_X) {
8137 			if (insn->imm != 0 || insn->off != 0) {
8138 				verbose(env, "BPF_ALU uses reserved fields\n");
8139 				return -EINVAL;
8140 			}
8141 			/* check src1 operand */
8142 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8143 			if (err)
8144 				return err;
8145 		} else {
8146 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
8147 				verbose(env, "BPF_ALU uses reserved fields\n");
8148 				return -EINVAL;
8149 			}
8150 		}
8151 
8152 		/* check src2 operand */
8153 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8154 		if (err)
8155 			return err;
8156 
8157 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
8158 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
8159 			verbose(env, "div by zero\n");
8160 			return -EINVAL;
8161 		}
8162 
8163 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
8164 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
8165 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
8166 
8167 			if (insn->imm < 0 || insn->imm >= size) {
8168 				verbose(env, "invalid shift %d\n", insn->imm);
8169 				return -EINVAL;
8170 			}
8171 		}
8172 
8173 		/* check dest operand */
8174 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
8175 		if (err)
8176 			return err;
8177 
8178 		return adjust_reg_min_max_vals(env, insn);
8179 	}
8180 
8181 	return 0;
8182 }
8183 
8184 static void __find_good_pkt_pointers(struct bpf_func_state *state,
8185 				     struct bpf_reg_state *dst_reg,
8186 				     enum bpf_reg_type type, int new_range)
8187 {
8188 	struct bpf_reg_state *reg;
8189 	int i;
8190 
8191 	for (i = 0; i < MAX_BPF_REG; i++) {
8192 		reg = &state->regs[i];
8193 		if (reg->type == type && reg->id == dst_reg->id)
8194 			/* keep the maximum range already checked */
8195 			reg->range = max(reg->range, new_range);
8196 	}
8197 
8198 	bpf_for_each_spilled_reg(i, state, reg) {
8199 		if (!reg)
8200 			continue;
8201 		if (reg->type == type && reg->id == dst_reg->id)
8202 			reg->range = max(reg->range, new_range);
8203 	}
8204 }
8205 
8206 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
8207 				   struct bpf_reg_state *dst_reg,
8208 				   enum bpf_reg_type type,
8209 				   bool range_right_open)
8210 {
8211 	int new_range, i;
8212 
8213 	if (dst_reg->off < 0 ||
8214 	    (dst_reg->off == 0 && range_right_open))
8215 		/* This doesn't give us any range */
8216 		return;
8217 
8218 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
8219 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
8220 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
8221 		 * than pkt_end, but that's because it's also less than pkt.
8222 		 */
8223 		return;
8224 
8225 	new_range = dst_reg->off;
8226 	if (range_right_open)
8227 		new_range--;
8228 
8229 	/* Examples for register markings:
8230 	 *
8231 	 * pkt_data in dst register:
8232 	 *
8233 	 *   r2 = r3;
8234 	 *   r2 += 8;
8235 	 *   if (r2 > pkt_end) goto <handle exception>
8236 	 *   <access okay>
8237 	 *
8238 	 *   r2 = r3;
8239 	 *   r2 += 8;
8240 	 *   if (r2 < pkt_end) goto <access okay>
8241 	 *   <handle exception>
8242 	 *
8243 	 *   Where:
8244 	 *     r2 == dst_reg, pkt_end == src_reg
8245 	 *     r2=pkt(id=n,off=8,r=0)
8246 	 *     r3=pkt(id=n,off=0,r=0)
8247 	 *
8248 	 * pkt_data in src register:
8249 	 *
8250 	 *   r2 = r3;
8251 	 *   r2 += 8;
8252 	 *   if (pkt_end >= r2) goto <access okay>
8253 	 *   <handle exception>
8254 	 *
8255 	 *   r2 = r3;
8256 	 *   r2 += 8;
8257 	 *   if (pkt_end <= r2) goto <handle exception>
8258 	 *   <access okay>
8259 	 *
8260 	 *   Where:
8261 	 *     pkt_end == dst_reg, r2 == src_reg
8262 	 *     r2=pkt(id=n,off=8,r=0)
8263 	 *     r3=pkt(id=n,off=0,r=0)
8264 	 *
8265 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
8266 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
8267 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
8268 	 * the check.
8269 	 */
8270 
8271 	/* If our ids match, then we must have the same max_value.  And we
8272 	 * don't care about the other reg's fixed offset, since if it's too big
8273 	 * the range won't allow anything.
8274 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
8275 	 */
8276 	for (i = 0; i <= vstate->curframe; i++)
8277 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
8278 					 new_range);
8279 }
8280 
8281 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
8282 {
8283 	struct tnum subreg = tnum_subreg(reg->var_off);
8284 	s32 sval = (s32)val;
8285 
8286 	switch (opcode) {
8287 	case BPF_JEQ:
8288 		if (tnum_is_const(subreg))
8289 			return !!tnum_equals_const(subreg, val);
8290 		break;
8291 	case BPF_JNE:
8292 		if (tnum_is_const(subreg))
8293 			return !tnum_equals_const(subreg, val);
8294 		break;
8295 	case BPF_JSET:
8296 		if ((~subreg.mask & subreg.value) & val)
8297 			return 1;
8298 		if (!((subreg.mask | subreg.value) & val))
8299 			return 0;
8300 		break;
8301 	case BPF_JGT:
8302 		if (reg->u32_min_value > val)
8303 			return 1;
8304 		else if (reg->u32_max_value <= val)
8305 			return 0;
8306 		break;
8307 	case BPF_JSGT:
8308 		if (reg->s32_min_value > sval)
8309 			return 1;
8310 		else if (reg->s32_max_value <= sval)
8311 			return 0;
8312 		break;
8313 	case BPF_JLT:
8314 		if (reg->u32_max_value < val)
8315 			return 1;
8316 		else if (reg->u32_min_value >= val)
8317 			return 0;
8318 		break;
8319 	case BPF_JSLT:
8320 		if (reg->s32_max_value < sval)
8321 			return 1;
8322 		else if (reg->s32_min_value >= sval)
8323 			return 0;
8324 		break;
8325 	case BPF_JGE:
8326 		if (reg->u32_min_value >= val)
8327 			return 1;
8328 		else if (reg->u32_max_value < val)
8329 			return 0;
8330 		break;
8331 	case BPF_JSGE:
8332 		if (reg->s32_min_value >= sval)
8333 			return 1;
8334 		else if (reg->s32_max_value < sval)
8335 			return 0;
8336 		break;
8337 	case BPF_JLE:
8338 		if (reg->u32_max_value <= val)
8339 			return 1;
8340 		else if (reg->u32_min_value > val)
8341 			return 0;
8342 		break;
8343 	case BPF_JSLE:
8344 		if (reg->s32_max_value <= sval)
8345 			return 1;
8346 		else if (reg->s32_min_value > sval)
8347 			return 0;
8348 		break;
8349 	}
8350 
8351 	return -1;
8352 }
8353 
8354 
8355 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
8356 {
8357 	s64 sval = (s64)val;
8358 
8359 	switch (opcode) {
8360 	case BPF_JEQ:
8361 		if (tnum_is_const(reg->var_off))
8362 			return !!tnum_equals_const(reg->var_off, val);
8363 		break;
8364 	case BPF_JNE:
8365 		if (tnum_is_const(reg->var_off))
8366 			return !tnum_equals_const(reg->var_off, val);
8367 		break;
8368 	case BPF_JSET:
8369 		if ((~reg->var_off.mask & reg->var_off.value) & val)
8370 			return 1;
8371 		if (!((reg->var_off.mask | reg->var_off.value) & val))
8372 			return 0;
8373 		break;
8374 	case BPF_JGT:
8375 		if (reg->umin_value > val)
8376 			return 1;
8377 		else if (reg->umax_value <= val)
8378 			return 0;
8379 		break;
8380 	case BPF_JSGT:
8381 		if (reg->smin_value > sval)
8382 			return 1;
8383 		else if (reg->smax_value <= sval)
8384 			return 0;
8385 		break;
8386 	case BPF_JLT:
8387 		if (reg->umax_value < val)
8388 			return 1;
8389 		else if (reg->umin_value >= val)
8390 			return 0;
8391 		break;
8392 	case BPF_JSLT:
8393 		if (reg->smax_value < sval)
8394 			return 1;
8395 		else if (reg->smin_value >= sval)
8396 			return 0;
8397 		break;
8398 	case BPF_JGE:
8399 		if (reg->umin_value >= val)
8400 			return 1;
8401 		else if (reg->umax_value < val)
8402 			return 0;
8403 		break;
8404 	case BPF_JSGE:
8405 		if (reg->smin_value >= sval)
8406 			return 1;
8407 		else if (reg->smax_value < sval)
8408 			return 0;
8409 		break;
8410 	case BPF_JLE:
8411 		if (reg->umax_value <= val)
8412 			return 1;
8413 		else if (reg->umin_value > val)
8414 			return 0;
8415 		break;
8416 	case BPF_JSLE:
8417 		if (reg->smax_value <= sval)
8418 			return 1;
8419 		else if (reg->smin_value > sval)
8420 			return 0;
8421 		break;
8422 	}
8423 
8424 	return -1;
8425 }
8426 
8427 /* compute branch direction of the expression "if (reg opcode val) goto target;"
8428  * and return:
8429  *  1 - branch will be taken and "goto target" will be executed
8430  *  0 - branch will not be taken and fall-through to next insn
8431  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
8432  *      range [0,10]
8433  */
8434 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
8435 			   bool is_jmp32)
8436 {
8437 	if (__is_pointer_value(false, reg)) {
8438 		if (!reg_type_not_null(reg->type))
8439 			return -1;
8440 
8441 		/* If pointer is valid tests against zero will fail so we can
8442 		 * use this to direct branch taken.
8443 		 */
8444 		if (val != 0)
8445 			return -1;
8446 
8447 		switch (opcode) {
8448 		case BPF_JEQ:
8449 			return 0;
8450 		case BPF_JNE:
8451 			return 1;
8452 		default:
8453 			return -1;
8454 		}
8455 	}
8456 
8457 	if (is_jmp32)
8458 		return is_branch32_taken(reg, val, opcode);
8459 	return is_branch64_taken(reg, val, opcode);
8460 }
8461 
8462 static int flip_opcode(u32 opcode)
8463 {
8464 	/* How can we transform "a <op> b" into "b <op> a"? */
8465 	static const u8 opcode_flip[16] = {
8466 		/* these stay the same */
8467 		[BPF_JEQ  >> 4] = BPF_JEQ,
8468 		[BPF_JNE  >> 4] = BPF_JNE,
8469 		[BPF_JSET >> 4] = BPF_JSET,
8470 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
8471 		[BPF_JGE  >> 4] = BPF_JLE,
8472 		[BPF_JGT  >> 4] = BPF_JLT,
8473 		[BPF_JLE  >> 4] = BPF_JGE,
8474 		[BPF_JLT  >> 4] = BPF_JGT,
8475 		[BPF_JSGE >> 4] = BPF_JSLE,
8476 		[BPF_JSGT >> 4] = BPF_JSLT,
8477 		[BPF_JSLE >> 4] = BPF_JSGE,
8478 		[BPF_JSLT >> 4] = BPF_JSGT
8479 	};
8480 	return opcode_flip[opcode >> 4];
8481 }
8482 
8483 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
8484 				   struct bpf_reg_state *src_reg,
8485 				   u8 opcode)
8486 {
8487 	struct bpf_reg_state *pkt;
8488 
8489 	if (src_reg->type == PTR_TO_PACKET_END) {
8490 		pkt = dst_reg;
8491 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
8492 		pkt = src_reg;
8493 		opcode = flip_opcode(opcode);
8494 	} else {
8495 		return -1;
8496 	}
8497 
8498 	if (pkt->range >= 0)
8499 		return -1;
8500 
8501 	switch (opcode) {
8502 	case BPF_JLE:
8503 		/* pkt <= pkt_end */
8504 		fallthrough;
8505 	case BPF_JGT:
8506 		/* pkt > pkt_end */
8507 		if (pkt->range == BEYOND_PKT_END)
8508 			/* pkt has at last one extra byte beyond pkt_end */
8509 			return opcode == BPF_JGT;
8510 		break;
8511 	case BPF_JLT:
8512 		/* pkt < pkt_end */
8513 		fallthrough;
8514 	case BPF_JGE:
8515 		/* pkt >= pkt_end */
8516 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
8517 			return opcode == BPF_JGE;
8518 		break;
8519 	}
8520 	return -1;
8521 }
8522 
8523 /* Adjusts the register min/max values in the case that the dst_reg is the
8524  * variable register that we are working on, and src_reg is a constant or we're
8525  * simply doing a BPF_K check.
8526  * In JEQ/JNE cases we also adjust the var_off values.
8527  */
8528 static void reg_set_min_max(struct bpf_reg_state *true_reg,
8529 			    struct bpf_reg_state *false_reg,
8530 			    u64 val, u32 val32,
8531 			    u8 opcode, bool is_jmp32)
8532 {
8533 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
8534 	struct tnum false_64off = false_reg->var_off;
8535 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
8536 	struct tnum true_64off = true_reg->var_off;
8537 	s64 sval = (s64)val;
8538 	s32 sval32 = (s32)val32;
8539 
8540 	/* If the dst_reg is a pointer, we can't learn anything about its
8541 	 * variable offset from the compare (unless src_reg were a pointer into
8542 	 * the same object, but we don't bother with that.
8543 	 * Since false_reg and true_reg have the same type by construction, we
8544 	 * only need to check one of them for pointerness.
8545 	 */
8546 	if (__is_pointer_value(false, false_reg))
8547 		return;
8548 
8549 	switch (opcode) {
8550 	case BPF_JEQ:
8551 	case BPF_JNE:
8552 	{
8553 		struct bpf_reg_state *reg =
8554 			opcode == BPF_JEQ ? true_reg : false_reg;
8555 
8556 		/* JEQ/JNE comparison doesn't change the register equivalence.
8557 		 * r1 = r2;
8558 		 * if (r1 == 42) goto label;
8559 		 * ...
8560 		 * label: // here both r1 and r2 are known to be 42.
8561 		 *
8562 		 * Hence when marking register as known preserve it's ID.
8563 		 */
8564 		if (is_jmp32)
8565 			__mark_reg32_known(reg, val32);
8566 		else
8567 			___mark_reg_known(reg, val);
8568 		break;
8569 	}
8570 	case BPF_JSET:
8571 		if (is_jmp32) {
8572 			false_32off = tnum_and(false_32off, tnum_const(~val32));
8573 			if (is_power_of_2(val32))
8574 				true_32off = tnum_or(true_32off,
8575 						     tnum_const(val32));
8576 		} else {
8577 			false_64off = tnum_and(false_64off, tnum_const(~val));
8578 			if (is_power_of_2(val))
8579 				true_64off = tnum_or(true_64off,
8580 						     tnum_const(val));
8581 		}
8582 		break;
8583 	case BPF_JGE:
8584 	case BPF_JGT:
8585 	{
8586 		if (is_jmp32) {
8587 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
8588 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
8589 
8590 			false_reg->u32_max_value = min(false_reg->u32_max_value,
8591 						       false_umax);
8592 			true_reg->u32_min_value = max(true_reg->u32_min_value,
8593 						      true_umin);
8594 		} else {
8595 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
8596 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
8597 
8598 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
8599 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
8600 		}
8601 		break;
8602 	}
8603 	case BPF_JSGE:
8604 	case BPF_JSGT:
8605 	{
8606 		if (is_jmp32) {
8607 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
8608 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
8609 
8610 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
8611 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
8612 		} else {
8613 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
8614 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
8615 
8616 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
8617 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
8618 		}
8619 		break;
8620 	}
8621 	case BPF_JLE:
8622 	case BPF_JLT:
8623 	{
8624 		if (is_jmp32) {
8625 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
8626 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
8627 
8628 			false_reg->u32_min_value = max(false_reg->u32_min_value,
8629 						       false_umin);
8630 			true_reg->u32_max_value = min(true_reg->u32_max_value,
8631 						      true_umax);
8632 		} else {
8633 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
8634 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
8635 
8636 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
8637 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
8638 		}
8639 		break;
8640 	}
8641 	case BPF_JSLE:
8642 	case BPF_JSLT:
8643 	{
8644 		if (is_jmp32) {
8645 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
8646 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
8647 
8648 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
8649 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
8650 		} else {
8651 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
8652 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
8653 
8654 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
8655 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
8656 		}
8657 		break;
8658 	}
8659 	default:
8660 		return;
8661 	}
8662 
8663 	if (is_jmp32) {
8664 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
8665 					     tnum_subreg(false_32off));
8666 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
8667 					    tnum_subreg(true_32off));
8668 		__reg_combine_32_into_64(false_reg);
8669 		__reg_combine_32_into_64(true_reg);
8670 	} else {
8671 		false_reg->var_off = false_64off;
8672 		true_reg->var_off = true_64off;
8673 		__reg_combine_64_into_32(false_reg);
8674 		__reg_combine_64_into_32(true_reg);
8675 	}
8676 }
8677 
8678 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
8679  * the variable reg.
8680  */
8681 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
8682 				struct bpf_reg_state *false_reg,
8683 				u64 val, u32 val32,
8684 				u8 opcode, bool is_jmp32)
8685 {
8686 	opcode = flip_opcode(opcode);
8687 	/* This uses zero as "not present in table"; luckily the zero opcode,
8688 	 * BPF_JA, can't get here.
8689 	 */
8690 	if (opcode)
8691 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
8692 }
8693 
8694 /* Regs are known to be equal, so intersect their min/max/var_off */
8695 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
8696 				  struct bpf_reg_state *dst_reg)
8697 {
8698 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
8699 							dst_reg->umin_value);
8700 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
8701 							dst_reg->umax_value);
8702 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
8703 							dst_reg->smin_value);
8704 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
8705 							dst_reg->smax_value);
8706 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
8707 							     dst_reg->var_off);
8708 	/* We might have learned new bounds from the var_off. */
8709 	__update_reg_bounds(src_reg);
8710 	__update_reg_bounds(dst_reg);
8711 	/* We might have learned something about the sign bit. */
8712 	__reg_deduce_bounds(src_reg);
8713 	__reg_deduce_bounds(dst_reg);
8714 	/* We might have learned some bits from the bounds. */
8715 	__reg_bound_offset(src_reg);
8716 	__reg_bound_offset(dst_reg);
8717 	/* Intersecting with the old var_off might have improved our bounds
8718 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
8719 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
8720 	 */
8721 	__update_reg_bounds(src_reg);
8722 	__update_reg_bounds(dst_reg);
8723 }
8724 
8725 static void reg_combine_min_max(struct bpf_reg_state *true_src,
8726 				struct bpf_reg_state *true_dst,
8727 				struct bpf_reg_state *false_src,
8728 				struct bpf_reg_state *false_dst,
8729 				u8 opcode)
8730 {
8731 	switch (opcode) {
8732 	case BPF_JEQ:
8733 		__reg_combine_min_max(true_src, true_dst);
8734 		break;
8735 	case BPF_JNE:
8736 		__reg_combine_min_max(false_src, false_dst);
8737 		break;
8738 	}
8739 }
8740 
8741 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
8742 				 struct bpf_reg_state *reg, u32 id,
8743 				 bool is_null)
8744 {
8745 	if (reg_type_may_be_null(reg->type) && reg->id == id &&
8746 	    !WARN_ON_ONCE(!reg->id)) {
8747 		/* Old offset (both fixed and variable parts) should
8748 		 * have been known-zero, because we don't allow pointer
8749 		 * arithmetic on pointers that might be NULL.
8750 		 */
8751 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
8752 				 !tnum_equals_const(reg->var_off, 0) ||
8753 				 reg->off)) {
8754 			__mark_reg_known_zero(reg);
8755 			reg->off = 0;
8756 		}
8757 		if (is_null) {
8758 			reg->type = SCALAR_VALUE;
8759 			/* We don't need id and ref_obj_id from this point
8760 			 * onwards anymore, thus we should better reset it,
8761 			 * so that state pruning has chances to take effect.
8762 			 */
8763 			reg->id = 0;
8764 			reg->ref_obj_id = 0;
8765 
8766 			return;
8767 		}
8768 
8769 		mark_ptr_not_null_reg(reg);
8770 
8771 		if (!reg_may_point_to_spin_lock(reg)) {
8772 			/* For not-NULL ptr, reg->ref_obj_id will be reset
8773 			 * in release_reg_references().
8774 			 *
8775 			 * reg->id is still used by spin_lock ptr. Other
8776 			 * than spin_lock ptr type, reg->id can be reset.
8777 			 */
8778 			reg->id = 0;
8779 		}
8780 	}
8781 }
8782 
8783 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
8784 				    bool is_null)
8785 {
8786 	struct bpf_reg_state *reg;
8787 	int i;
8788 
8789 	for (i = 0; i < MAX_BPF_REG; i++)
8790 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
8791 
8792 	bpf_for_each_spilled_reg(i, state, reg) {
8793 		if (!reg)
8794 			continue;
8795 		mark_ptr_or_null_reg(state, reg, id, is_null);
8796 	}
8797 }
8798 
8799 /* The logic is similar to find_good_pkt_pointers(), both could eventually
8800  * be folded together at some point.
8801  */
8802 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
8803 				  bool is_null)
8804 {
8805 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8806 	struct bpf_reg_state *regs = state->regs;
8807 	u32 ref_obj_id = regs[regno].ref_obj_id;
8808 	u32 id = regs[regno].id;
8809 	int i;
8810 
8811 	if (ref_obj_id && ref_obj_id == id && is_null)
8812 		/* regs[regno] is in the " == NULL" branch.
8813 		 * No one could have freed the reference state before
8814 		 * doing the NULL check.
8815 		 */
8816 		WARN_ON_ONCE(release_reference_state(state, id));
8817 
8818 	for (i = 0; i <= vstate->curframe; i++)
8819 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
8820 }
8821 
8822 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
8823 				   struct bpf_reg_state *dst_reg,
8824 				   struct bpf_reg_state *src_reg,
8825 				   struct bpf_verifier_state *this_branch,
8826 				   struct bpf_verifier_state *other_branch)
8827 {
8828 	if (BPF_SRC(insn->code) != BPF_X)
8829 		return false;
8830 
8831 	/* Pointers are always 64-bit. */
8832 	if (BPF_CLASS(insn->code) == BPF_JMP32)
8833 		return false;
8834 
8835 	switch (BPF_OP(insn->code)) {
8836 	case BPF_JGT:
8837 		if ((dst_reg->type == PTR_TO_PACKET &&
8838 		     src_reg->type == PTR_TO_PACKET_END) ||
8839 		    (dst_reg->type == PTR_TO_PACKET_META &&
8840 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8841 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
8842 			find_good_pkt_pointers(this_branch, dst_reg,
8843 					       dst_reg->type, false);
8844 			mark_pkt_end(other_branch, insn->dst_reg, true);
8845 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8846 			    src_reg->type == PTR_TO_PACKET) ||
8847 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8848 			    src_reg->type == PTR_TO_PACKET_META)) {
8849 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
8850 			find_good_pkt_pointers(other_branch, src_reg,
8851 					       src_reg->type, true);
8852 			mark_pkt_end(this_branch, insn->src_reg, false);
8853 		} else {
8854 			return false;
8855 		}
8856 		break;
8857 	case BPF_JLT:
8858 		if ((dst_reg->type == PTR_TO_PACKET &&
8859 		     src_reg->type == PTR_TO_PACKET_END) ||
8860 		    (dst_reg->type == PTR_TO_PACKET_META &&
8861 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8862 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
8863 			find_good_pkt_pointers(other_branch, dst_reg,
8864 					       dst_reg->type, true);
8865 			mark_pkt_end(this_branch, insn->dst_reg, false);
8866 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8867 			    src_reg->type == PTR_TO_PACKET) ||
8868 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8869 			    src_reg->type == PTR_TO_PACKET_META)) {
8870 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
8871 			find_good_pkt_pointers(this_branch, src_reg,
8872 					       src_reg->type, false);
8873 			mark_pkt_end(other_branch, insn->src_reg, true);
8874 		} else {
8875 			return false;
8876 		}
8877 		break;
8878 	case BPF_JGE:
8879 		if ((dst_reg->type == PTR_TO_PACKET &&
8880 		     src_reg->type == PTR_TO_PACKET_END) ||
8881 		    (dst_reg->type == PTR_TO_PACKET_META &&
8882 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8883 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
8884 			find_good_pkt_pointers(this_branch, dst_reg,
8885 					       dst_reg->type, true);
8886 			mark_pkt_end(other_branch, insn->dst_reg, false);
8887 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8888 			    src_reg->type == PTR_TO_PACKET) ||
8889 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8890 			    src_reg->type == PTR_TO_PACKET_META)) {
8891 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
8892 			find_good_pkt_pointers(other_branch, src_reg,
8893 					       src_reg->type, false);
8894 			mark_pkt_end(this_branch, insn->src_reg, true);
8895 		} else {
8896 			return false;
8897 		}
8898 		break;
8899 	case BPF_JLE:
8900 		if ((dst_reg->type == PTR_TO_PACKET &&
8901 		     src_reg->type == PTR_TO_PACKET_END) ||
8902 		    (dst_reg->type == PTR_TO_PACKET_META &&
8903 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8904 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
8905 			find_good_pkt_pointers(other_branch, dst_reg,
8906 					       dst_reg->type, false);
8907 			mark_pkt_end(this_branch, insn->dst_reg, true);
8908 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8909 			    src_reg->type == PTR_TO_PACKET) ||
8910 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8911 			    src_reg->type == PTR_TO_PACKET_META)) {
8912 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
8913 			find_good_pkt_pointers(this_branch, src_reg,
8914 					       src_reg->type, true);
8915 			mark_pkt_end(other_branch, insn->src_reg, false);
8916 		} else {
8917 			return false;
8918 		}
8919 		break;
8920 	default:
8921 		return false;
8922 	}
8923 
8924 	return true;
8925 }
8926 
8927 static void find_equal_scalars(struct bpf_verifier_state *vstate,
8928 			       struct bpf_reg_state *known_reg)
8929 {
8930 	struct bpf_func_state *state;
8931 	struct bpf_reg_state *reg;
8932 	int i, j;
8933 
8934 	for (i = 0; i <= vstate->curframe; i++) {
8935 		state = vstate->frame[i];
8936 		for (j = 0; j < MAX_BPF_REG; j++) {
8937 			reg = &state->regs[j];
8938 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8939 				*reg = *known_reg;
8940 		}
8941 
8942 		bpf_for_each_spilled_reg(j, state, reg) {
8943 			if (!reg)
8944 				continue;
8945 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8946 				*reg = *known_reg;
8947 		}
8948 	}
8949 }
8950 
8951 static int check_cond_jmp_op(struct bpf_verifier_env *env,
8952 			     struct bpf_insn *insn, int *insn_idx)
8953 {
8954 	struct bpf_verifier_state *this_branch = env->cur_state;
8955 	struct bpf_verifier_state *other_branch;
8956 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
8957 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
8958 	u8 opcode = BPF_OP(insn->code);
8959 	bool is_jmp32;
8960 	int pred = -1;
8961 	int err;
8962 
8963 	/* Only conditional jumps are expected to reach here. */
8964 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
8965 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
8966 		return -EINVAL;
8967 	}
8968 
8969 	if (BPF_SRC(insn->code) == BPF_X) {
8970 		if (insn->imm != 0) {
8971 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8972 			return -EINVAL;
8973 		}
8974 
8975 		/* check src1 operand */
8976 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
8977 		if (err)
8978 			return err;
8979 
8980 		if (is_pointer_value(env, insn->src_reg)) {
8981 			verbose(env, "R%d pointer comparison prohibited\n",
8982 				insn->src_reg);
8983 			return -EACCES;
8984 		}
8985 		src_reg = &regs[insn->src_reg];
8986 	} else {
8987 		if (insn->src_reg != BPF_REG_0) {
8988 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8989 			return -EINVAL;
8990 		}
8991 	}
8992 
8993 	/* check src2 operand */
8994 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8995 	if (err)
8996 		return err;
8997 
8998 	dst_reg = &regs[insn->dst_reg];
8999 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
9000 
9001 	if (BPF_SRC(insn->code) == BPF_K) {
9002 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
9003 	} else if (src_reg->type == SCALAR_VALUE &&
9004 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
9005 		pred = is_branch_taken(dst_reg,
9006 				       tnum_subreg(src_reg->var_off).value,
9007 				       opcode,
9008 				       is_jmp32);
9009 	} else if (src_reg->type == SCALAR_VALUE &&
9010 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
9011 		pred = is_branch_taken(dst_reg,
9012 				       src_reg->var_off.value,
9013 				       opcode,
9014 				       is_jmp32);
9015 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
9016 		   reg_is_pkt_pointer_any(src_reg) &&
9017 		   !is_jmp32) {
9018 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
9019 	}
9020 
9021 	if (pred >= 0) {
9022 		/* If we get here with a dst_reg pointer type it is because
9023 		 * above is_branch_taken() special cased the 0 comparison.
9024 		 */
9025 		if (!__is_pointer_value(false, dst_reg))
9026 			err = mark_chain_precision(env, insn->dst_reg);
9027 		if (BPF_SRC(insn->code) == BPF_X && !err &&
9028 		    !__is_pointer_value(false, src_reg))
9029 			err = mark_chain_precision(env, insn->src_reg);
9030 		if (err)
9031 			return err;
9032 	}
9033 
9034 	if (pred == 1) {
9035 		/* Only follow the goto, ignore fall-through. If needed, push
9036 		 * the fall-through branch for simulation under speculative
9037 		 * execution.
9038 		 */
9039 		if (!env->bypass_spec_v1 &&
9040 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
9041 					       *insn_idx))
9042 			return -EFAULT;
9043 		*insn_idx += insn->off;
9044 		return 0;
9045 	} else if (pred == 0) {
9046 		/* Only follow the fall-through branch, since that's where the
9047 		 * program will go. If needed, push the goto branch for
9048 		 * simulation under speculative execution.
9049 		 */
9050 		if (!env->bypass_spec_v1 &&
9051 		    !sanitize_speculative_path(env, insn,
9052 					       *insn_idx + insn->off + 1,
9053 					       *insn_idx))
9054 			return -EFAULT;
9055 		return 0;
9056 	}
9057 
9058 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
9059 				  false);
9060 	if (!other_branch)
9061 		return -EFAULT;
9062 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
9063 
9064 	/* detect if we are comparing against a constant value so we can adjust
9065 	 * our min/max values for our dst register.
9066 	 * this is only legit if both are scalars (or pointers to the same
9067 	 * object, I suppose, but we don't support that right now), because
9068 	 * otherwise the different base pointers mean the offsets aren't
9069 	 * comparable.
9070 	 */
9071 	if (BPF_SRC(insn->code) == BPF_X) {
9072 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
9073 
9074 		if (dst_reg->type == SCALAR_VALUE &&
9075 		    src_reg->type == SCALAR_VALUE) {
9076 			if (tnum_is_const(src_reg->var_off) ||
9077 			    (is_jmp32 &&
9078 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
9079 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
9080 						dst_reg,
9081 						src_reg->var_off.value,
9082 						tnum_subreg(src_reg->var_off).value,
9083 						opcode, is_jmp32);
9084 			else if (tnum_is_const(dst_reg->var_off) ||
9085 				 (is_jmp32 &&
9086 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
9087 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
9088 						    src_reg,
9089 						    dst_reg->var_off.value,
9090 						    tnum_subreg(dst_reg->var_off).value,
9091 						    opcode, is_jmp32);
9092 			else if (!is_jmp32 &&
9093 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
9094 				/* Comparing for equality, we can combine knowledge */
9095 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
9096 						    &other_branch_regs[insn->dst_reg],
9097 						    src_reg, dst_reg, opcode);
9098 			if (src_reg->id &&
9099 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
9100 				find_equal_scalars(this_branch, src_reg);
9101 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
9102 			}
9103 
9104 		}
9105 	} else if (dst_reg->type == SCALAR_VALUE) {
9106 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
9107 					dst_reg, insn->imm, (u32)insn->imm,
9108 					opcode, is_jmp32);
9109 	}
9110 
9111 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
9112 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
9113 		find_equal_scalars(this_branch, dst_reg);
9114 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
9115 	}
9116 
9117 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
9118 	 * NOTE: these optimizations below are related with pointer comparison
9119 	 *       which will never be JMP32.
9120 	 */
9121 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
9122 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
9123 	    reg_type_may_be_null(dst_reg->type)) {
9124 		/* Mark all identical registers in each branch as either
9125 		 * safe or unknown depending R == 0 or R != 0 conditional.
9126 		 */
9127 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
9128 				      opcode == BPF_JNE);
9129 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
9130 				      opcode == BPF_JEQ);
9131 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
9132 					   this_branch, other_branch) &&
9133 		   is_pointer_value(env, insn->dst_reg)) {
9134 		verbose(env, "R%d pointer comparison prohibited\n",
9135 			insn->dst_reg);
9136 		return -EACCES;
9137 	}
9138 	if (env->log.level & BPF_LOG_LEVEL)
9139 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
9140 	return 0;
9141 }
9142 
9143 /* verify BPF_LD_IMM64 instruction */
9144 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
9145 {
9146 	struct bpf_insn_aux_data *aux = cur_aux(env);
9147 	struct bpf_reg_state *regs = cur_regs(env);
9148 	struct bpf_reg_state *dst_reg;
9149 	struct bpf_map *map;
9150 	int err;
9151 
9152 	if (BPF_SIZE(insn->code) != BPF_DW) {
9153 		verbose(env, "invalid BPF_LD_IMM insn\n");
9154 		return -EINVAL;
9155 	}
9156 	if (insn->off != 0) {
9157 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
9158 		return -EINVAL;
9159 	}
9160 
9161 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
9162 	if (err)
9163 		return err;
9164 
9165 	dst_reg = &regs[insn->dst_reg];
9166 	if (insn->src_reg == 0) {
9167 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
9168 
9169 		dst_reg->type = SCALAR_VALUE;
9170 		__mark_reg_known(&regs[insn->dst_reg], imm);
9171 		return 0;
9172 	}
9173 
9174 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
9175 		mark_reg_known_zero(env, regs, insn->dst_reg);
9176 
9177 		dst_reg->type = aux->btf_var.reg_type;
9178 		switch (dst_reg->type) {
9179 		case PTR_TO_MEM:
9180 			dst_reg->mem_size = aux->btf_var.mem_size;
9181 			break;
9182 		case PTR_TO_BTF_ID:
9183 		case PTR_TO_PERCPU_BTF_ID:
9184 			dst_reg->btf = aux->btf_var.btf;
9185 			dst_reg->btf_id = aux->btf_var.btf_id;
9186 			break;
9187 		default:
9188 			verbose(env, "bpf verifier is misconfigured\n");
9189 			return -EFAULT;
9190 		}
9191 		return 0;
9192 	}
9193 
9194 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
9195 		struct bpf_prog_aux *aux = env->prog->aux;
9196 		u32 subprogno = insn[1].imm;
9197 
9198 		if (!aux->func_info) {
9199 			verbose(env, "missing btf func_info\n");
9200 			return -EINVAL;
9201 		}
9202 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
9203 			verbose(env, "callback function not static\n");
9204 			return -EINVAL;
9205 		}
9206 
9207 		dst_reg->type = PTR_TO_FUNC;
9208 		dst_reg->subprogno = subprogno;
9209 		return 0;
9210 	}
9211 
9212 	map = env->used_maps[aux->map_index];
9213 	mark_reg_known_zero(env, regs, insn->dst_reg);
9214 	dst_reg->map_ptr = map;
9215 
9216 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
9217 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
9218 		dst_reg->type = PTR_TO_MAP_VALUE;
9219 		dst_reg->off = aux->map_off;
9220 		if (map_value_has_spin_lock(map))
9221 			dst_reg->id = ++env->id_gen;
9222 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
9223 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
9224 		dst_reg->type = CONST_PTR_TO_MAP;
9225 	} else {
9226 		verbose(env, "bpf verifier is misconfigured\n");
9227 		return -EINVAL;
9228 	}
9229 
9230 	return 0;
9231 }
9232 
9233 static bool may_access_skb(enum bpf_prog_type type)
9234 {
9235 	switch (type) {
9236 	case BPF_PROG_TYPE_SOCKET_FILTER:
9237 	case BPF_PROG_TYPE_SCHED_CLS:
9238 	case BPF_PROG_TYPE_SCHED_ACT:
9239 		return true;
9240 	default:
9241 		return false;
9242 	}
9243 }
9244 
9245 /* verify safety of LD_ABS|LD_IND instructions:
9246  * - they can only appear in the programs where ctx == skb
9247  * - since they are wrappers of function calls, they scratch R1-R5 registers,
9248  *   preserve R6-R9, and store return value into R0
9249  *
9250  * Implicit input:
9251  *   ctx == skb == R6 == CTX
9252  *
9253  * Explicit input:
9254  *   SRC == any register
9255  *   IMM == 32-bit immediate
9256  *
9257  * Output:
9258  *   R0 - 8/16/32-bit skb data converted to cpu endianness
9259  */
9260 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
9261 {
9262 	struct bpf_reg_state *regs = cur_regs(env);
9263 	static const int ctx_reg = BPF_REG_6;
9264 	u8 mode = BPF_MODE(insn->code);
9265 	int i, err;
9266 
9267 	if (!may_access_skb(resolve_prog_type(env->prog))) {
9268 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
9269 		return -EINVAL;
9270 	}
9271 
9272 	if (!env->ops->gen_ld_abs) {
9273 		verbose(env, "bpf verifier is misconfigured\n");
9274 		return -EINVAL;
9275 	}
9276 
9277 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
9278 	    BPF_SIZE(insn->code) == BPF_DW ||
9279 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
9280 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
9281 		return -EINVAL;
9282 	}
9283 
9284 	/* check whether implicit source operand (register R6) is readable */
9285 	err = check_reg_arg(env, ctx_reg, SRC_OP);
9286 	if (err)
9287 		return err;
9288 
9289 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
9290 	 * gen_ld_abs() may terminate the program at runtime, leading to
9291 	 * reference leak.
9292 	 */
9293 	err = check_reference_leak(env);
9294 	if (err) {
9295 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
9296 		return err;
9297 	}
9298 
9299 	if (env->cur_state->active_spin_lock) {
9300 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
9301 		return -EINVAL;
9302 	}
9303 
9304 	if (regs[ctx_reg].type != PTR_TO_CTX) {
9305 		verbose(env,
9306 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
9307 		return -EINVAL;
9308 	}
9309 
9310 	if (mode == BPF_IND) {
9311 		/* check explicit source operand */
9312 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
9313 		if (err)
9314 			return err;
9315 	}
9316 
9317 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
9318 	if (err < 0)
9319 		return err;
9320 
9321 	/* reset caller saved regs to unreadable */
9322 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9323 		mark_reg_not_init(env, regs, caller_saved[i]);
9324 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9325 	}
9326 
9327 	/* mark destination R0 register as readable, since it contains
9328 	 * the value fetched from the packet.
9329 	 * Already marked as written above.
9330 	 */
9331 	mark_reg_unknown(env, regs, BPF_REG_0);
9332 	/* ld_abs load up to 32-bit skb data. */
9333 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
9334 	return 0;
9335 }
9336 
9337 static int check_return_code(struct bpf_verifier_env *env)
9338 {
9339 	struct tnum enforce_attach_type_range = tnum_unknown;
9340 	const struct bpf_prog *prog = env->prog;
9341 	struct bpf_reg_state *reg;
9342 	struct tnum range = tnum_range(0, 1);
9343 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9344 	int err;
9345 	struct bpf_func_state *frame = env->cur_state->frame[0];
9346 	const bool is_subprog = frame->subprogno;
9347 
9348 	/* LSM and struct_ops func-ptr's return type could be "void" */
9349 	if (!is_subprog &&
9350 	    (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
9351 	     prog_type == BPF_PROG_TYPE_LSM) &&
9352 	    !prog->aux->attach_func_proto->type)
9353 		return 0;
9354 
9355 	/* eBPF calling convention is such that R0 is used
9356 	 * to return the value from eBPF program.
9357 	 * Make sure that it's readable at this time
9358 	 * of bpf_exit, which means that program wrote
9359 	 * something into it earlier
9360 	 */
9361 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
9362 	if (err)
9363 		return err;
9364 
9365 	if (is_pointer_value(env, BPF_REG_0)) {
9366 		verbose(env, "R0 leaks addr as return value\n");
9367 		return -EACCES;
9368 	}
9369 
9370 	reg = cur_regs(env) + BPF_REG_0;
9371 
9372 	if (frame->in_async_callback_fn) {
9373 		/* enforce return zero from async callbacks like timer */
9374 		if (reg->type != SCALAR_VALUE) {
9375 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
9376 				reg_type_str[reg->type]);
9377 			return -EINVAL;
9378 		}
9379 
9380 		if (!tnum_in(tnum_const(0), reg->var_off)) {
9381 			verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
9382 			return -EINVAL;
9383 		}
9384 		return 0;
9385 	}
9386 
9387 	if (is_subprog) {
9388 		if (reg->type != SCALAR_VALUE) {
9389 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
9390 				reg_type_str[reg->type]);
9391 			return -EINVAL;
9392 		}
9393 		return 0;
9394 	}
9395 
9396 	switch (prog_type) {
9397 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
9398 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
9399 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
9400 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
9401 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
9402 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
9403 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
9404 			range = tnum_range(1, 1);
9405 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
9406 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
9407 			range = tnum_range(0, 3);
9408 		break;
9409 	case BPF_PROG_TYPE_CGROUP_SKB:
9410 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
9411 			range = tnum_range(0, 3);
9412 			enforce_attach_type_range = tnum_range(2, 3);
9413 		}
9414 		break;
9415 	case BPF_PROG_TYPE_CGROUP_SOCK:
9416 	case BPF_PROG_TYPE_SOCK_OPS:
9417 	case BPF_PROG_TYPE_CGROUP_DEVICE:
9418 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
9419 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
9420 		break;
9421 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
9422 		if (!env->prog->aux->attach_btf_id)
9423 			return 0;
9424 		range = tnum_const(0);
9425 		break;
9426 	case BPF_PROG_TYPE_TRACING:
9427 		switch (env->prog->expected_attach_type) {
9428 		case BPF_TRACE_FENTRY:
9429 		case BPF_TRACE_FEXIT:
9430 			range = tnum_const(0);
9431 			break;
9432 		case BPF_TRACE_RAW_TP:
9433 		case BPF_MODIFY_RETURN:
9434 			return 0;
9435 		case BPF_TRACE_ITER:
9436 			break;
9437 		default:
9438 			return -ENOTSUPP;
9439 		}
9440 		break;
9441 	case BPF_PROG_TYPE_SK_LOOKUP:
9442 		range = tnum_range(SK_DROP, SK_PASS);
9443 		break;
9444 	case BPF_PROG_TYPE_EXT:
9445 		/* freplace program can return anything as its return value
9446 		 * depends on the to-be-replaced kernel func or bpf program.
9447 		 */
9448 	default:
9449 		return 0;
9450 	}
9451 
9452 	if (reg->type != SCALAR_VALUE) {
9453 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
9454 			reg_type_str[reg->type]);
9455 		return -EINVAL;
9456 	}
9457 
9458 	if (!tnum_in(range, reg->var_off)) {
9459 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
9460 		return -EINVAL;
9461 	}
9462 
9463 	if (!tnum_is_unknown(enforce_attach_type_range) &&
9464 	    tnum_in(enforce_attach_type_range, reg->var_off))
9465 		env->prog->enforce_expected_attach_type = 1;
9466 	return 0;
9467 }
9468 
9469 /* non-recursive DFS pseudo code
9470  * 1  procedure DFS-iterative(G,v):
9471  * 2      label v as discovered
9472  * 3      let S be a stack
9473  * 4      S.push(v)
9474  * 5      while S is not empty
9475  * 6            t <- S.pop()
9476  * 7            if t is what we're looking for:
9477  * 8                return t
9478  * 9            for all edges e in G.adjacentEdges(t) do
9479  * 10               if edge e is already labelled
9480  * 11                   continue with the next edge
9481  * 12               w <- G.adjacentVertex(t,e)
9482  * 13               if vertex w is not discovered and not explored
9483  * 14                   label e as tree-edge
9484  * 15                   label w as discovered
9485  * 16                   S.push(w)
9486  * 17                   continue at 5
9487  * 18               else if vertex w is discovered
9488  * 19                   label e as back-edge
9489  * 20               else
9490  * 21                   // vertex w is explored
9491  * 22                   label e as forward- or cross-edge
9492  * 23           label t as explored
9493  * 24           S.pop()
9494  *
9495  * convention:
9496  * 0x10 - discovered
9497  * 0x11 - discovered and fall-through edge labelled
9498  * 0x12 - discovered and fall-through and branch edges labelled
9499  * 0x20 - explored
9500  */
9501 
9502 enum {
9503 	DISCOVERED = 0x10,
9504 	EXPLORED = 0x20,
9505 	FALLTHROUGH = 1,
9506 	BRANCH = 2,
9507 };
9508 
9509 static u32 state_htab_size(struct bpf_verifier_env *env)
9510 {
9511 	return env->prog->len;
9512 }
9513 
9514 static struct bpf_verifier_state_list **explored_state(
9515 					struct bpf_verifier_env *env,
9516 					int idx)
9517 {
9518 	struct bpf_verifier_state *cur = env->cur_state;
9519 	struct bpf_func_state *state = cur->frame[cur->curframe];
9520 
9521 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
9522 }
9523 
9524 static void init_explored_state(struct bpf_verifier_env *env, int idx)
9525 {
9526 	env->insn_aux_data[idx].prune_point = true;
9527 }
9528 
9529 enum {
9530 	DONE_EXPLORING = 0,
9531 	KEEP_EXPLORING = 1,
9532 };
9533 
9534 /* t, w, e - match pseudo-code above:
9535  * t - index of current instruction
9536  * w - next instruction
9537  * e - edge
9538  */
9539 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
9540 		     bool loop_ok)
9541 {
9542 	int *insn_stack = env->cfg.insn_stack;
9543 	int *insn_state = env->cfg.insn_state;
9544 
9545 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
9546 		return DONE_EXPLORING;
9547 
9548 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
9549 		return DONE_EXPLORING;
9550 
9551 	if (w < 0 || w >= env->prog->len) {
9552 		verbose_linfo(env, t, "%d: ", t);
9553 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
9554 		return -EINVAL;
9555 	}
9556 
9557 	if (e == BRANCH)
9558 		/* mark branch target for state pruning */
9559 		init_explored_state(env, w);
9560 
9561 	if (insn_state[w] == 0) {
9562 		/* tree-edge */
9563 		insn_state[t] = DISCOVERED | e;
9564 		insn_state[w] = DISCOVERED;
9565 		if (env->cfg.cur_stack >= env->prog->len)
9566 			return -E2BIG;
9567 		insn_stack[env->cfg.cur_stack++] = w;
9568 		return KEEP_EXPLORING;
9569 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
9570 		if (loop_ok && env->bpf_capable)
9571 			return DONE_EXPLORING;
9572 		verbose_linfo(env, t, "%d: ", t);
9573 		verbose_linfo(env, w, "%d: ", w);
9574 		verbose(env, "back-edge from insn %d to %d\n", t, w);
9575 		return -EINVAL;
9576 	} else if (insn_state[w] == EXPLORED) {
9577 		/* forward- or cross-edge */
9578 		insn_state[t] = DISCOVERED | e;
9579 	} else {
9580 		verbose(env, "insn state internal bug\n");
9581 		return -EFAULT;
9582 	}
9583 	return DONE_EXPLORING;
9584 }
9585 
9586 static int visit_func_call_insn(int t, int insn_cnt,
9587 				struct bpf_insn *insns,
9588 				struct bpf_verifier_env *env,
9589 				bool visit_callee)
9590 {
9591 	int ret;
9592 
9593 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
9594 	if (ret)
9595 		return ret;
9596 
9597 	if (t + 1 < insn_cnt)
9598 		init_explored_state(env, t + 1);
9599 	if (visit_callee) {
9600 		init_explored_state(env, t);
9601 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
9602 				/* It's ok to allow recursion from CFG point of
9603 				 * view. __check_func_call() will do the actual
9604 				 * check.
9605 				 */
9606 				bpf_pseudo_func(insns + t));
9607 	}
9608 	return ret;
9609 }
9610 
9611 /* Visits the instruction at index t and returns one of the following:
9612  *  < 0 - an error occurred
9613  *  DONE_EXPLORING - the instruction was fully explored
9614  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
9615  */
9616 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
9617 {
9618 	struct bpf_insn *insns = env->prog->insnsi;
9619 	int ret;
9620 
9621 	if (bpf_pseudo_func(insns + t))
9622 		return visit_func_call_insn(t, insn_cnt, insns, env, true);
9623 
9624 	/* All non-branch instructions have a single fall-through edge. */
9625 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
9626 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
9627 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
9628 
9629 	switch (BPF_OP(insns[t].code)) {
9630 	case BPF_EXIT:
9631 		return DONE_EXPLORING;
9632 
9633 	case BPF_CALL:
9634 		if (insns[t].imm == BPF_FUNC_timer_set_callback)
9635 			/* Mark this call insn to trigger is_state_visited() check
9636 			 * before call itself is processed by __check_func_call().
9637 			 * Otherwise new async state will be pushed for further
9638 			 * exploration.
9639 			 */
9640 			init_explored_state(env, t);
9641 		return visit_func_call_insn(t, insn_cnt, insns, env,
9642 					    insns[t].src_reg == BPF_PSEUDO_CALL);
9643 
9644 	case BPF_JA:
9645 		if (BPF_SRC(insns[t].code) != BPF_K)
9646 			return -EINVAL;
9647 
9648 		/* unconditional jump with single edge */
9649 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
9650 				true);
9651 		if (ret)
9652 			return ret;
9653 
9654 		/* unconditional jmp is not a good pruning point,
9655 		 * but it's marked, since backtracking needs
9656 		 * to record jmp history in is_state_visited().
9657 		 */
9658 		init_explored_state(env, t + insns[t].off + 1);
9659 		/* tell verifier to check for equivalent states
9660 		 * after every call and jump
9661 		 */
9662 		if (t + 1 < insn_cnt)
9663 			init_explored_state(env, t + 1);
9664 
9665 		return ret;
9666 
9667 	default:
9668 		/* conditional jump with two edges */
9669 		init_explored_state(env, t);
9670 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
9671 		if (ret)
9672 			return ret;
9673 
9674 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
9675 	}
9676 }
9677 
9678 /* non-recursive depth-first-search to detect loops in BPF program
9679  * loop == back-edge in directed graph
9680  */
9681 static int check_cfg(struct bpf_verifier_env *env)
9682 {
9683 	int insn_cnt = env->prog->len;
9684 	int *insn_stack, *insn_state;
9685 	int ret = 0;
9686 	int i;
9687 
9688 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9689 	if (!insn_state)
9690 		return -ENOMEM;
9691 
9692 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9693 	if (!insn_stack) {
9694 		kvfree(insn_state);
9695 		return -ENOMEM;
9696 	}
9697 
9698 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
9699 	insn_stack[0] = 0; /* 0 is the first instruction */
9700 	env->cfg.cur_stack = 1;
9701 
9702 	while (env->cfg.cur_stack > 0) {
9703 		int t = insn_stack[env->cfg.cur_stack - 1];
9704 
9705 		ret = visit_insn(t, insn_cnt, env);
9706 		switch (ret) {
9707 		case DONE_EXPLORING:
9708 			insn_state[t] = EXPLORED;
9709 			env->cfg.cur_stack--;
9710 			break;
9711 		case KEEP_EXPLORING:
9712 			break;
9713 		default:
9714 			if (ret > 0) {
9715 				verbose(env, "visit_insn internal bug\n");
9716 				ret = -EFAULT;
9717 			}
9718 			goto err_free;
9719 		}
9720 	}
9721 
9722 	if (env->cfg.cur_stack < 0) {
9723 		verbose(env, "pop stack internal bug\n");
9724 		ret = -EFAULT;
9725 		goto err_free;
9726 	}
9727 
9728 	for (i = 0; i < insn_cnt; i++) {
9729 		if (insn_state[i] != EXPLORED) {
9730 			verbose(env, "unreachable insn %d\n", i);
9731 			ret = -EINVAL;
9732 			goto err_free;
9733 		}
9734 	}
9735 	ret = 0; /* cfg looks good */
9736 
9737 err_free:
9738 	kvfree(insn_state);
9739 	kvfree(insn_stack);
9740 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
9741 	return ret;
9742 }
9743 
9744 static int check_abnormal_return(struct bpf_verifier_env *env)
9745 {
9746 	int i;
9747 
9748 	for (i = 1; i < env->subprog_cnt; i++) {
9749 		if (env->subprog_info[i].has_ld_abs) {
9750 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
9751 			return -EINVAL;
9752 		}
9753 		if (env->subprog_info[i].has_tail_call) {
9754 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
9755 			return -EINVAL;
9756 		}
9757 	}
9758 	return 0;
9759 }
9760 
9761 /* The minimum supported BTF func info size */
9762 #define MIN_BPF_FUNCINFO_SIZE	8
9763 #define MAX_FUNCINFO_REC_SIZE	252
9764 
9765 static int check_btf_func(struct bpf_verifier_env *env,
9766 			  const union bpf_attr *attr,
9767 			  bpfptr_t uattr)
9768 {
9769 	const struct btf_type *type, *func_proto, *ret_type;
9770 	u32 i, nfuncs, urec_size, min_size;
9771 	u32 krec_size = sizeof(struct bpf_func_info);
9772 	struct bpf_func_info *krecord;
9773 	struct bpf_func_info_aux *info_aux = NULL;
9774 	struct bpf_prog *prog;
9775 	const struct btf *btf;
9776 	bpfptr_t urecord;
9777 	u32 prev_offset = 0;
9778 	bool scalar_return;
9779 	int ret = -ENOMEM;
9780 
9781 	nfuncs = attr->func_info_cnt;
9782 	if (!nfuncs) {
9783 		if (check_abnormal_return(env))
9784 			return -EINVAL;
9785 		return 0;
9786 	}
9787 
9788 	if (nfuncs != env->subprog_cnt) {
9789 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
9790 		return -EINVAL;
9791 	}
9792 
9793 	urec_size = attr->func_info_rec_size;
9794 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
9795 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
9796 	    urec_size % sizeof(u32)) {
9797 		verbose(env, "invalid func info rec size %u\n", urec_size);
9798 		return -EINVAL;
9799 	}
9800 
9801 	prog = env->prog;
9802 	btf = prog->aux->btf;
9803 
9804 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
9805 	min_size = min_t(u32, krec_size, urec_size);
9806 
9807 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
9808 	if (!krecord)
9809 		return -ENOMEM;
9810 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
9811 	if (!info_aux)
9812 		goto err_free;
9813 
9814 	for (i = 0; i < nfuncs; i++) {
9815 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
9816 		if (ret) {
9817 			if (ret == -E2BIG) {
9818 				verbose(env, "nonzero tailing record in func info");
9819 				/* set the size kernel expects so loader can zero
9820 				 * out the rest of the record.
9821 				 */
9822 				if (copy_to_bpfptr_offset(uattr,
9823 							  offsetof(union bpf_attr, func_info_rec_size),
9824 							  &min_size, sizeof(min_size)))
9825 					ret = -EFAULT;
9826 			}
9827 			goto err_free;
9828 		}
9829 
9830 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
9831 			ret = -EFAULT;
9832 			goto err_free;
9833 		}
9834 
9835 		/* check insn_off */
9836 		ret = -EINVAL;
9837 		if (i == 0) {
9838 			if (krecord[i].insn_off) {
9839 				verbose(env,
9840 					"nonzero insn_off %u for the first func info record",
9841 					krecord[i].insn_off);
9842 				goto err_free;
9843 			}
9844 		} else if (krecord[i].insn_off <= prev_offset) {
9845 			verbose(env,
9846 				"same or smaller insn offset (%u) than previous func info record (%u)",
9847 				krecord[i].insn_off, prev_offset);
9848 			goto err_free;
9849 		}
9850 
9851 		if (env->subprog_info[i].start != krecord[i].insn_off) {
9852 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
9853 			goto err_free;
9854 		}
9855 
9856 		/* check type_id */
9857 		type = btf_type_by_id(btf, krecord[i].type_id);
9858 		if (!type || !btf_type_is_func(type)) {
9859 			verbose(env, "invalid type id %d in func info",
9860 				krecord[i].type_id);
9861 			goto err_free;
9862 		}
9863 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
9864 
9865 		func_proto = btf_type_by_id(btf, type->type);
9866 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
9867 			/* btf_func_check() already verified it during BTF load */
9868 			goto err_free;
9869 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
9870 		scalar_return =
9871 			btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
9872 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
9873 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
9874 			goto err_free;
9875 		}
9876 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
9877 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
9878 			goto err_free;
9879 		}
9880 
9881 		prev_offset = krecord[i].insn_off;
9882 		bpfptr_add(&urecord, urec_size);
9883 	}
9884 
9885 	prog->aux->func_info = krecord;
9886 	prog->aux->func_info_cnt = nfuncs;
9887 	prog->aux->func_info_aux = info_aux;
9888 	return 0;
9889 
9890 err_free:
9891 	kvfree(krecord);
9892 	kfree(info_aux);
9893 	return ret;
9894 }
9895 
9896 static void adjust_btf_func(struct bpf_verifier_env *env)
9897 {
9898 	struct bpf_prog_aux *aux = env->prog->aux;
9899 	int i;
9900 
9901 	if (!aux->func_info)
9902 		return;
9903 
9904 	for (i = 0; i < env->subprog_cnt; i++)
9905 		aux->func_info[i].insn_off = env->subprog_info[i].start;
9906 }
9907 
9908 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
9909 		sizeof(((struct bpf_line_info *)(0))->line_col))
9910 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
9911 
9912 static int check_btf_line(struct bpf_verifier_env *env,
9913 			  const union bpf_attr *attr,
9914 			  bpfptr_t uattr)
9915 {
9916 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
9917 	struct bpf_subprog_info *sub;
9918 	struct bpf_line_info *linfo;
9919 	struct bpf_prog *prog;
9920 	const struct btf *btf;
9921 	bpfptr_t ulinfo;
9922 	int err;
9923 
9924 	nr_linfo = attr->line_info_cnt;
9925 	if (!nr_linfo)
9926 		return 0;
9927 
9928 	rec_size = attr->line_info_rec_size;
9929 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
9930 	    rec_size > MAX_LINEINFO_REC_SIZE ||
9931 	    rec_size & (sizeof(u32) - 1))
9932 		return -EINVAL;
9933 
9934 	/* Need to zero it in case the userspace may
9935 	 * pass in a smaller bpf_line_info object.
9936 	 */
9937 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
9938 			 GFP_KERNEL | __GFP_NOWARN);
9939 	if (!linfo)
9940 		return -ENOMEM;
9941 
9942 	prog = env->prog;
9943 	btf = prog->aux->btf;
9944 
9945 	s = 0;
9946 	sub = env->subprog_info;
9947 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
9948 	expected_size = sizeof(struct bpf_line_info);
9949 	ncopy = min_t(u32, expected_size, rec_size);
9950 	for (i = 0; i < nr_linfo; i++) {
9951 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
9952 		if (err) {
9953 			if (err == -E2BIG) {
9954 				verbose(env, "nonzero tailing record in line_info");
9955 				if (copy_to_bpfptr_offset(uattr,
9956 							  offsetof(union bpf_attr, line_info_rec_size),
9957 							  &expected_size, sizeof(expected_size)))
9958 					err = -EFAULT;
9959 			}
9960 			goto err_free;
9961 		}
9962 
9963 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
9964 			err = -EFAULT;
9965 			goto err_free;
9966 		}
9967 
9968 		/*
9969 		 * Check insn_off to ensure
9970 		 * 1) strictly increasing AND
9971 		 * 2) bounded by prog->len
9972 		 *
9973 		 * The linfo[0].insn_off == 0 check logically falls into
9974 		 * the later "missing bpf_line_info for func..." case
9975 		 * because the first linfo[0].insn_off must be the
9976 		 * first sub also and the first sub must have
9977 		 * subprog_info[0].start == 0.
9978 		 */
9979 		if ((i && linfo[i].insn_off <= prev_offset) ||
9980 		    linfo[i].insn_off >= prog->len) {
9981 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
9982 				i, linfo[i].insn_off, prev_offset,
9983 				prog->len);
9984 			err = -EINVAL;
9985 			goto err_free;
9986 		}
9987 
9988 		if (!prog->insnsi[linfo[i].insn_off].code) {
9989 			verbose(env,
9990 				"Invalid insn code at line_info[%u].insn_off\n",
9991 				i);
9992 			err = -EINVAL;
9993 			goto err_free;
9994 		}
9995 
9996 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
9997 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
9998 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
9999 			err = -EINVAL;
10000 			goto err_free;
10001 		}
10002 
10003 		if (s != env->subprog_cnt) {
10004 			if (linfo[i].insn_off == sub[s].start) {
10005 				sub[s].linfo_idx = i;
10006 				s++;
10007 			} else if (sub[s].start < linfo[i].insn_off) {
10008 				verbose(env, "missing bpf_line_info for func#%u\n", s);
10009 				err = -EINVAL;
10010 				goto err_free;
10011 			}
10012 		}
10013 
10014 		prev_offset = linfo[i].insn_off;
10015 		bpfptr_add(&ulinfo, rec_size);
10016 	}
10017 
10018 	if (s != env->subprog_cnt) {
10019 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
10020 			env->subprog_cnt - s, s);
10021 		err = -EINVAL;
10022 		goto err_free;
10023 	}
10024 
10025 	prog->aux->linfo = linfo;
10026 	prog->aux->nr_linfo = nr_linfo;
10027 
10028 	return 0;
10029 
10030 err_free:
10031 	kvfree(linfo);
10032 	return err;
10033 }
10034 
10035 static int check_btf_info(struct bpf_verifier_env *env,
10036 			  const union bpf_attr *attr,
10037 			  bpfptr_t uattr)
10038 {
10039 	struct btf *btf;
10040 	int err;
10041 
10042 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
10043 		if (check_abnormal_return(env))
10044 			return -EINVAL;
10045 		return 0;
10046 	}
10047 
10048 	btf = btf_get_by_fd(attr->prog_btf_fd);
10049 	if (IS_ERR(btf))
10050 		return PTR_ERR(btf);
10051 	if (btf_is_kernel(btf)) {
10052 		btf_put(btf);
10053 		return -EACCES;
10054 	}
10055 	env->prog->aux->btf = btf;
10056 
10057 	err = check_btf_func(env, attr, uattr);
10058 	if (err)
10059 		return err;
10060 
10061 	err = check_btf_line(env, attr, uattr);
10062 	if (err)
10063 		return err;
10064 
10065 	return 0;
10066 }
10067 
10068 /* check %cur's range satisfies %old's */
10069 static bool range_within(struct bpf_reg_state *old,
10070 			 struct bpf_reg_state *cur)
10071 {
10072 	return old->umin_value <= cur->umin_value &&
10073 	       old->umax_value >= cur->umax_value &&
10074 	       old->smin_value <= cur->smin_value &&
10075 	       old->smax_value >= cur->smax_value &&
10076 	       old->u32_min_value <= cur->u32_min_value &&
10077 	       old->u32_max_value >= cur->u32_max_value &&
10078 	       old->s32_min_value <= cur->s32_min_value &&
10079 	       old->s32_max_value >= cur->s32_max_value;
10080 }
10081 
10082 /* If in the old state two registers had the same id, then they need to have
10083  * the same id in the new state as well.  But that id could be different from
10084  * the old state, so we need to track the mapping from old to new ids.
10085  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
10086  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
10087  * regs with a different old id could still have new id 9, we don't care about
10088  * that.
10089  * So we look through our idmap to see if this old id has been seen before.  If
10090  * so, we require the new id to match; otherwise, we add the id pair to the map.
10091  */
10092 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
10093 {
10094 	unsigned int i;
10095 
10096 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
10097 		if (!idmap[i].old) {
10098 			/* Reached an empty slot; haven't seen this id before */
10099 			idmap[i].old = old_id;
10100 			idmap[i].cur = cur_id;
10101 			return true;
10102 		}
10103 		if (idmap[i].old == old_id)
10104 			return idmap[i].cur == cur_id;
10105 	}
10106 	/* We ran out of idmap slots, which should be impossible */
10107 	WARN_ON_ONCE(1);
10108 	return false;
10109 }
10110 
10111 static void clean_func_state(struct bpf_verifier_env *env,
10112 			     struct bpf_func_state *st)
10113 {
10114 	enum bpf_reg_liveness live;
10115 	int i, j;
10116 
10117 	for (i = 0; i < BPF_REG_FP; i++) {
10118 		live = st->regs[i].live;
10119 		/* liveness must not touch this register anymore */
10120 		st->regs[i].live |= REG_LIVE_DONE;
10121 		if (!(live & REG_LIVE_READ))
10122 			/* since the register is unused, clear its state
10123 			 * to make further comparison simpler
10124 			 */
10125 			__mark_reg_not_init(env, &st->regs[i]);
10126 	}
10127 
10128 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
10129 		live = st->stack[i].spilled_ptr.live;
10130 		/* liveness must not touch this stack slot anymore */
10131 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
10132 		if (!(live & REG_LIVE_READ)) {
10133 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
10134 			for (j = 0; j < BPF_REG_SIZE; j++)
10135 				st->stack[i].slot_type[j] = STACK_INVALID;
10136 		}
10137 	}
10138 }
10139 
10140 static void clean_verifier_state(struct bpf_verifier_env *env,
10141 				 struct bpf_verifier_state *st)
10142 {
10143 	int i;
10144 
10145 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
10146 		/* all regs in this state in all frames were already marked */
10147 		return;
10148 
10149 	for (i = 0; i <= st->curframe; i++)
10150 		clean_func_state(env, st->frame[i]);
10151 }
10152 
10153 /* the parentage chains form a tree.
10154  * the verifier states are added to state lists at given insn and
10155  * pushed into state stack for future exploration.
10156  * when the verifier reaches bpf_exit insn some of the verifer states
10157  * stored in the state lists have their final liveness state already,
10158  * but a lot of states will get revised from liveness point of view when
10159  * the verifier explores other branches.
10160  * Example:
10161  * 1: r0 = 1
10162  * 2: if r1 == 100 goto pc+1
10163  * 3: r0 = 2
10164  * 4: exit
10165  * when the verifier reaches exit insn the register r0 in the state list of
10166  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
10167  * of insn 2 and goes exploring further. At the insn 4 it will walk the
10168  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
10169  *
10170  * Since the verifier pushes the branch states as it sees them while exploring
10171  * the program the condition of walking the branch instruction for the second
10172  * time means that all states below this branch were already explored and
10173  * their final liveness marks are already propagated.
10174  * Hence when the verifier completes the search of state list in is_state_visited()
10175  * we can call this clean_live_states() function to mark all liveness states
10176  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
10177  * will not be used.
10178  * This function also clears the registers and stack for states that !READ
10179  * to simplify state merging.
10180  *
10181  * Important note here that walking the same branch instruction in the callee
10182  * doesn't meant that the states are DONE. The verifier has to compare
10183  * the callsites
10184  */
10185 static void clean_live_states(struct bpf_verifier_env *env, int insn,
10186 			      struct bpf_verifier_state *cur)
10187 {
10188 	struct bpf_verifier_state_list *sl;
10189 	int i;
10190 
10191 	sl = *explored_state(env, insn);
10192 	while (sl) {
10193 		if (sl->state.branches)
10194 			goto next;
10195 		if (sl->state.insn_idx != insn ||
10196 		    sl->state.curframe != cur->curframe)
10197 			goto next;
10198 		for (i = 0; i <= cur->curframe; i++)
10199 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
10200 				goto next;
10201 		clean_verifier_state(env, &sl->state);
10202 next:
10203 		sl = sl->next;
10204 	}
10205 }
10206 
10207 /* Returns true if (rold safe implies rcur safe) */
10208 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
10209 		    struct bpf_id_pair *idmap)
10210 {
10211 	bool equal;
10212 
10213 	if (!(rold->live & REG_LIVE_READ))
10214 		/* explored state didn't use this */
10215 		return true;
10216 
10217 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
10218 
10219 	if (rold->type == PTR_TO_STACK)
10220 		/* two stack pointers are equal only if they're pointing to
10221 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
10222 		 */
10223 		return equal && rold->frameno == rcur->frameno;
10224 
10225 	if (equal)
10226 		return true;
10227 
10228 	if (rold->type == NOT_INIT)
10229 		/* explored state can't have used this */
10230 		return true;
10231 	if (rcur->type == NOT_INIT)
10232 		return false;
10233 	switch (rold->type) {
10234 	case SCALAR_VALUE:
10235 		if (rcur->type == SCALAR_VALUE) {
10236 			if (!rold->precise && !rcur->precise)
10237 				return true;
10238 			/* new val must satisfy old val knowledge */
10239 			return range_within(rold, rcur) &&
10240 			       tnum_in(rold->var_off, rcur->var_off);
10241 		} else {
10242 			/* We're trying to use a pointer in place of a scalar.
10243 			 * Even if the scalar was unbounded, this could lead to
10244 			 * pointer leaks because scalars are allowed to leak
10245 			 * while pointers are not. We could make this safe in
10246 			 * special cases if root is calling us, but it's
10247 			 * probably not worth the hassle.
10248 			 */
10249 			return false;
10250 		}
10251 	case PTR_TO_MAP_KEY:
10252 	case PTR_TO_MAP_VALUE:
10253 		/* If the new min/max/var_off satisfy the old ones and
10254 		 * everything else matches, we are OK.
10255 		 * 'id' is not compared, since it's only used for maps with
10256 		 * bpf_spin_lock inside map element and in such cases if
10257 		 * the rest of the prog is valid for one map element then
10258 		 * it's valid for all map elements regardless of the key
10259 		 * used in bpf_map_lookup()
10260 		 */
10261 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
10262 		       range_within(rold, rcur) &&
10263 		       tnum_in(rold->var_off, rcur->var_off);
10264 	case PTR_TO_MAP_VALUE_OR_NULL:
10265 		/* a PTR_TO_MAP_VALUE could be safe to use as a
10266 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
10267 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
10268 		 * checked, doing so could have affected others with the same
10269 		 * id, and we can't check for that because we lost the id when
10270 		 * we converted to a PTR_TO_MAP_VALUE.
10271 		 */
10272 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
10273 			return false;
10274 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
10275 			return false;
10276 		/* Check our ids match any regs they're supposed to */
10277 		return check_ids(rold->id, rcur->id, idmap);
10278 	case PTR_TO_PACKET_META:
10279 	case PTR_TO_PACKET:
10280 		if (rcur->type != rold->type)
10281 			return false;
10282 		/* We must have at least as much range as the old ptr
10283 		 * did, so that any accesses which were safe before are
10284 		 * still safe.  This is true even if old range < old off,
10285 		 * since someone could have accessed through (ptr - k), or
10286 		 * even done ptr -= k in a register, to get a safe access.
10287 		 */
10288 		if (rold->range > rcur->range)
10289 			return false;
10290 		/* If the offsets don't match, we can't trust our alignment;
10291 		 * nor can we be sure that we won't fall out of range.
10292 		 */
10293 		if (rold->off != rcur->off)
10294 			return false;
10295 		/* id relations must be preserved */
10296 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
10297 			return false;
10298 		/* new val must satisfy old val knowledge */
10299 		return range_within(rold, rcur) &&
10300 		       tnum_in(rold->var_off, rcur->var_off);
10301 	case PTR_TO_CTX:
10302 	case CONST_PTR_TO_MAP:
10303 	case PTR_TO_PACKET_END:
10304 	case PTR_TO_FLOW_KEYS:
10305 	case PTR_TO_SOCKET:
10306 	case PTR_TO_SOCKET_OR_NULL:
10307 	case PTR_TO_SOCK_COMMON:
10308 	case PTR_TO_SOCK_COMMON_OR_NULL:
10309 	case PTR_TO_TCP_SOCK:
10310 	case PTR_TO_TCP_SOCK_OR_NULL:
10311 	case PTR_TO_XDP_SOCK:
10312 		/* Only valid matches are exact, which memcmp() above
10313 		 * would have accepted
10314 		 */
10315 	default:
10316 		/* Don't know what's going on, just say it's not safe */
10317 		return false;
10318 	}
10319 
10320 	/* Shouldn't get here; if we do, say it's not safe */
10321 	WARN_ON_ONCE(1);
10322 	return false;
10323 }
10324 
10325 static bool stacksafe(struct bpf_func_state *old,
10326 		      struct bpf_func_state *cur,
10327 		      struct bpf_id_pair *idmap)
10328 {
10329 	int i, spi;
10330 
10331 	/* walk slots of the explored stack and ignore any additional
10332 	 * slots in the current stack, since explored(safe) state
10333 	 * didn't use them
10334 	 */
10335 	for (i = 0; i < old->allocated_stack; i++) {
10336 		spi = i / BPF_REG_SIZE;
10337 
10338 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
10339 			i += BPF_REG_SIZE - 1;
10340 			/* explored state didn't use this */
10341 			continue;
10342 		}
10343 
10344 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
10345 			continue;
10346 
10347 		/* explored stack has more populated slots than current stack
10348 		 * and these slots were used
10349 		 */
10350 		if (i >= cur->allocated_stack)
10351 			return false;
10352 
10353 		/* if old state was safe with misc data in the stack
10354 		 * it will be safe with zero-initialized stack.
10355 		 * The opposite is not true
10356 		 */
10357 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
10358 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
10359 			continue;
10360 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
10361 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
10362 			/* Ex: old explored (safe) state has STACK_SPILL in
10363 			 * this stack slot, but current has STACK_MISC ->
10364 			 * this verifier states are not equivalent,
10365 			 * return false to continue verification of this path
10366 			 */
10367 			return false;
10368 		if (i % BPF_REG_SIZE)
10369 			continue;
10370 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
10371 			continue;
10372 		if (!regsafe(&old->stack[spi].spilled_ptr,
10373 			     &cur->stack[spi].spilled_ptr,
10374 			     idmap))
10375 			/* when explored and current stack slot are both storing
10376 			 * spilled registers, check that stored pointers types
10377 			 * are the same as well.
10378 			 * Ex: explored safe path could have stored
10379 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
10380 			 * but current path has stored:
10381 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
10382 			 * such verifier states are not equivalent.
10383 			 * return false to continue verification of this path
10384 			 */
10385 			return false;
10386 	}
10387 	return true;
10388 }
10389 
10390 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
10391 {
10392 	if (old->acquired_refs != cur->acquired_refs)
10393 		return false;
10394 	return !memcmp(old->refs, cur->refs,
10395 		       sizeof(*old->refs) * old->acquired_refs);
10396 }
10397 
10398 /* compare two verifier states
10399  *
10400  * all states stored in state_list are known to be valid, since
10401  * verifier reached 'bpf_exit' instruction through them
10402  *
10403  * this function is called when verifier exploring different branches of
10404  * execution popped from the state stack. If it sees an old state that has
10405  * more strict register state and more strict stack state then this execution
10406  * branch doesn't need to be explored further, since verifier already
10407  * concluded that more strict state leads to valid finish.
10408  *
10409  * Therefore two states are equivalent if register state is more conservative
10410  * and explored stack state is more conservative than the current one.
10411  * Example:
10412  *       explored                   current
10413  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
10414  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
10415  *
10416  * In other words if current stack state (one being explored) has more
10417  * valid slots than old one that already passed validation, it means
10418  * the verifier can stop exploring and conclude that current state is valid too
10419  *
10420  * Similarly with registers. If explored state has register type as invalid
10421  * whereas register type in current state is meaningful, it means that
10422  * the current state will reach 'bpf_exit' instruction safely
10423  */
10424 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
10425 			      struct bpf_func_state *cur)
10426 {
10427 	int i;
10428 
10429 	memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
10430 	for (i = 0; i < MAX_BPF_REG; i++)
10431 		if (!regsafe(&old->regs[i], &cur->regs[i], env->idmap_scratch))
10432 			return false;
10433 
10434 	if (!stacksafe(old, cur, env->idmap_scratch))
10435 		return false;
10436 
10437 	if (!refsafe(old, cur))
10438 		return false;
10439 
10440 	return true;
10441 }
10442 
10443 static bool states_equal(struct bpf_verifier_env *env,
10444 			 struct bpf_verifier_state *old,
10445 			 struct bpf_verifier_state *cur)
10446 {
10447 	int i;
10448 
10449 	if (old->curframe != cur->curframe)
10450 		return false;
10451 
10452 	/* Verification state from speculative execution simulation
10453 	 * must never prune a non-speculative execution one.
10454 	 */
10455 	if (old->speculative && !cur->speculative)
10456 		return false;
10457 
10458 	if (old->active_spin_lock != cur->active_spin_lock)
10459 		return false;
10460 
10461 	/* for states to be equal callsites have to be the same
10462 	 * and all frame states need to be equivalent
10463 	 */
10464 	for (i = 0; i <= old->curframe; i++) {
10465 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
10466 			return false;
10467 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
10468 			return false;
10469 	}
10470 	return true;
10471 }
10472 
10473 /* Return 0 if no propagation happened. Return negative error code if error
10474  * happened. Otherwise, return the propagated bit.
10475  */
10476 static int propagate_liveness_reg(struct bpf_verifier_env *env,
10477 				  struct bpf_reg_state *reg,
10478 				  struct bpf_reg_state *parent_reg)
10479 {
10480 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
10481 	u8 flag = reg->live & REG_LIVE_READ;
10482 	int err;
10483 
10484 	/* When comes here, read flags of PARENT_REG or REG could be any of
10485 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
10486 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
10487 	 */
10488 	if (parent_flag == REG_LIVE_READ64 ||
10489 	    /* Or if there is no read flag from REG. */
10490 	    !flag ||
10491 	    /* Or if the read flag from REG is the same as PARENT_REG. */
10492 	    parent_flag == flag)
10493 		return 0;
10494 
10495 	err = mark_reg_read(env, reg, parent_reg, flag);
10496 	if (err)
10497 		return err;
10498 
10499 	return flag;
10500 }
10501 
10502 /* A write screens off any subsequent reads; but write marks come from the
10503  * straight-line code between a state and its parent.  When we arrive at an
10504  * equivalent state (jump target or such) we didn't arrive by the straight-line
10505  * code, so read marks in the state must propagate to the parent regardless
10506  * of the state's write marks. That's what 'parent == state->parent' comparison
10507  * in mark_reg_read() is for.
10508  */
10509 static int propagate_liveness(struct bpf_verifier_env *env,
10510 			      const struct bpf_verifier_state *vstate,
10511 			      struct bpf_verifier_state *vparent)
10512 {
10513 	struct bpf_reg_state *state_reg, *parent_reg;
10514 	struct bpf_func_state *state, *parent;
10515 	int i, frame, err = 0;
10516 
10517 	if (vparent->curframe != vstate->curframe) {
10518 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
10519 		     vparent->curframe, vstate->curframe);
10520 		return -EFAULT;
10521 	}
10522 	/* Propagate read liveness of registers... */
10523 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
10524 	for (frame = 0; frame <= vstate->curframe; frame++) {
10525 		parent = vparent->frame[frame];
10526 		state = vstate->frame[frame];
10527 		parent_reg = parent->regs;
10528 		state_reg = state->regs;
10529 		/* We don't need to worry about FP liveness, it's read-only */
10530 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
10531 			err = propagate_liveness_reg(env, &state_reg[i],
10532 						     &parent_reg[i]);
10533 			if (err < 0)
10534 				return err;
10535 			if (err == REG_LIVE_READ64)
10536 				mark_insn_zext(env, &parent_reg[i]);
10537 		}
10538 
10539 		/* Propagate stack slots. */
10540 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
10541 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
10542 			parent_reg = &parent->stack[i].spilled_ptr;
10543 			state_reg = &state->stack[i].spilled_ptr;
10544 			err = propagate_liveness_reg(env, state_reg,
10545 						     parent_reg);
10546 			if (err < 0)
10547 				return err;
10548 		}
10549 	}
10550 	return 0;
10551 }
10552 
10553 /* find precise scalars in the previous equivalent state and
10554  * propagate them into the current state
10555  */
10556 static int propagate_precision(struct bpf_verifier_env *env,
10557 			       const struct bpf_verifier_state *old)
10558 {
10559 	struct bpf_reg_state *state_reg;
10560 	struct bpf_func_state *state;
10561 	int i, err = 0;
10562 
10563 	state = old->frame[old->curframe];
10564 	state_reg = state->regs;
10565 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
10566 		if (state_reg->type != SCALAR_VALUE ||
10567 		    !state_reg->precise)
10568 			continue;
10569 		if (env->log.level & BPF_LOG_LEVEL2)
10570 			verbose(env, "propagating r%d\n", i);
10571 		err = mark_chain_precision(env, i);
10572 		if (err < 0)
10573 			return err;
10574 	}
10575 
10576 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
10577 		if (state->stack[i].slot_type[0] != STACK_SPILL)
10578 			continue;
10579 		state_reg = &state->stack[i].spilled_ptr;
10580 		if (state_reg->type != SCALAR_VALUE ||
10581 		    !state_reg->precise)
10582 			continue;
10583 		if (env->log.level & BPF_LOG_LEVEL2)
10584 			verbose(env, "propagating fp%d\n",
10585 				(-i - 1) * BPF_REG_SIZE);
10586 		err = mark_chain_precision_stack(env, i);
10587 		if (err < 0)
10588 			return err;
10589 	}
10590 	return 0;
10591 }
10592 
10593 static bool states_maybe_looping(struct bpf_verifier_state *old,
10594 				 struct bpf_verifier_state *cur)
10595 {
10596 	struct bpf_func_state *fold, *fcur;
10597 	int i, fr = cur->curframe;
10598 
10599 	if (old->curframe != fr)
10600 		return false;
10601 
10602 	fold = old->frame[fr];
10603 	fcur = cur->frame[fr];
10604 	for (i = 0; i < MAX_BPF_REG; i++)
10605 		if (memcmp(&fold->regs[i], &fcur->regs[i],
10606 			   offsetof(struct bpf_reg_state, parent)))
10607 			return false;
10608 	return true;
10609 }
10610 
10611 
10612 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
10613 {
10614 	struct bpf_verifier_state_list *new_sl;
10615 	struct bpf_verifier_state_list *sl, **pprev;
10616 	struct bpf_verifier_state *cur = env->cur_state, *new;
10617 	int i, j, err, states_cnt = 0;
10618 	bool add_new_state = env->test_state_freq ? true : false;
10619 
10620 	cur->last_insn_idx = env->prev_insn_idx;
10621 	if (!env->insn_aux_data[insn_idx].prune_point)
10622 		/* this 'insn_idx' instruction wasn't marked, so we will not
10623 		 * be doing state search here
10624 		 */
10625 		return 0;
10626 
10627 	/* bpf progs typically have pruning point every 4 instructions
10628 	 * http://vger.kernel.org/bpfconf2019.html#session-1
10629 	 * Do not add new state for future pruning if the verifier hasn't seen
10630 	 * at least 2 jumps and at least 8 instructions.
10631 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
10632 	 * In tests that amounts to up to 50% reduction into total verifier
10633 	 * memory consumption and 20% verifier time speedup.
10634 	 */
10635 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
10636 	    env->insn_processed - env->prev_insn_processed >= 8)
10637 		add_new_state = true;
10638 
10639 	pprev = explored_state(env, insn_idx);
10640 	sl = *pprev;
10641 
10642 	clean_live_states(env, insn_idx, cur);
10643 
10644 	while (sl) {
10645 		states_cnt++;
10646 		if (sl->state.insn_idx != insn_idx)
10647 			goto next;
10648 
10649 		if (sl->state.branches) {
10650 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
10651 
10652 			if (frame->in_async_callback_fn &&
10653 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
10654 				/* Different async_entry_cnt means that the verifier is
10655 				 * processing another entry into async callback.
10656 				 * Seeing the same state is not an indication of infinite
10657 				 * loop or infinite recursion.
10658 				 * But finding the same state doesn't mean that it's safe
10659 				 * to stop processing the current state. The previous state
10660 				 * hasn't yet reached bpf_exit, since state.branches > 0.
10661 				 * Checking in_async_callback_fn alone is not enough either.
10662 				 * Since the verifier still needs to catch infinite loops
10663 				 * inside async callbacks.
10664 				 */
10665 			} else if (states_maybe_looping(&sl->state, cur) &&
10666 				   states_equal(env, &sl->state, cur)) {
10667 				verbose_linfo(env, insn_idx, "; ");
10668 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
10669 				return -EINVAL;
10670 			}
10671 			/* if the verifier is processing a loop, avoid adding new state
10672 			 * too often, since different loop iterations have distinct
10673 			 * states and may not help future pruning.
10674 			 * This threshold shouldn't be too low to make sure that
10675 			 * a loop with large bound will be rejected quickly.
10676 			 * The most abusive loop will be:
10677 			 * r1 += 1
10678 			 * if r1 < 1000000 goto pc-2
10679 			 * 1M insn_procssed limit / 100 == 10k peak states.
10680 			 * This threshold shouldn't be too high either, since states
10681 			 * at the end of the loop are likely to be useful in pruning.
10682 			 */
10683 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
10684 			    env->insn_processed - env->prev_insn_processed < 100)
10685 				add_new_state = false;
10686 			goto miss;
10687 		}
10688 		if (states_equal(env, &sl->state, cur)) {
10689 			sl->hit_cnt++;
10690 			/* reached equivalent register/stack state,
10691 			 * prune the search.
10692 			 * Registers read by the continuation are read by us.
10693 			 * If we have any write marks in env->cur_state, they
10694 			 * will prevent corresponding reads in the continuation
10695 			 * from reaching our parent (an explored_state).  Our
10696 			 * own state will get the read marks recorded, but
10697 			 * they'll be immediately forgotten as we're pruning
10698 			 * this state and will pop a new one.
10699 			 */
10700 			err = propagate_liveness(env, &sl->state, cur);
10701 
10702 			/* if previous state reached the exit with precision and
10703 			 * current state is equivalent to it (except precsion marks)
10704 			 * the precision needs to be propagated back in
10705 			 * the current state.
10706 			 */
10707 			err = err ? : push_jmp_history(env, cur);
10708 			err = err ? : propagate_precision(env, &sl->state);
10709 			if (err)
10710 				return err;
10711 			return 1;
10712 		}
10713 miss:
10714 		/* when new state is not going to be added do not increase miss count.
10715 		 * Otherwise several loop iterations will remove the state
10716 		 * recorded earlier. The goal of these heuristics is to have
10717 		 * states from some iterations of the loop (some in the beginning
10718 		 * and some at the end) to help pruning.
10719 		 */
10720 		if (add_new_state)
10721 			sl->miss_cnt++;
10722 		/* heuristic to determine whether this state is beneficial
10723 		 * to keep checking from state equivalence point of view.
10724 		 * Higher numbers increase max_states_per_insn and verification time,
10725 		 * but do not meaningfully decrease insn_processed.
10726 		 */
10727 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
10728 			/* the state is unlikely to be useful. Remove it to
10729 			 * speed up verification
10730 			 */
10731 			*pprev = sl->next;
10732 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
10733 				u32 br = sl->state.branches;
10734 
10735 				WARN_ONCE(br,
10736 					  "BUG live_done but branches_to_explore %d\n",
10737 					  br);
10738 				free_verifier_state(&sl->state, false);
10739 				kfree(sl);
10740 				env->peak_states--;
10741 			} else {
10742 				/* cannot free this state, since parentage chain may
10743 				 * walk it later. Add it for free_list instead to
10744 				 * be freed at the end of verification
10745 				 */
10746 				sl->next = env->free_list;
10747 				env->free_list = sl;
10748 			}
10749 			sl = *pprev;
10750 			continue;
10751 		}
10752 next:
10753 		pprev = &sl->next;
10754 		sl = *pprev;
10755 	}
10756 
10757 	if (env->max_states_per_insn < states_cnt)
10758 		env->max_states_per_insn = states_cnt;
10759 
10760 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
10761 		return push_jmp_history(env, cur);
10762 
10763 	if (!add_new_state)
10764 		return push_jmp_history(env, cur);
10765 
10766 	/* There were no equivalent states, remember the current one.
10767 	 * Technically the current state is not proven to be safe yet,
10768 	 * but it will either reach outer most bpf_exit (which means it's safe)
10769 	 * or it will be rejected. When there are no loops the verifier won't be
10770 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
10771 	 * again on the way to bpf_exit.
10772 	 * When looping the sl->state.branches will be > 0 and this state
10773 	 * will not be considered for equivalence until branches == 0.
10774 	 */
10775 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
10776 	if (!new_sl)
10777 		return -ENOMEM;
10778 	env->total_states++;
10779 	env->peak_states++;
10780 	env->prev_jmps_processed = env->jmps_processed;
10781 	env->prev_insn_processed = env->insn_processed;
10782 
10783 	/* add new state to the head of linked list */
10784 	new = &new_sl->state;
10785 	err = copy_verifier_state(new, cur);
10786 	if (err) {
10787 		free_verifier_state(new, false);
10788 		kfree(new_sl);
10789 		return err;
10790 	}
10791 	new->insn_idx = insn_idx;
10792 	WARN_ONCE(new->branches != 1,
10793 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
10794 
10795 	cur->parent = new;
10796 	cur->first_insn_idx = insn_idx;
10797 	clear_jmp_history(cur);
10798 	new_sl->next = *explored_state(env, insn_idx);
10799 	*explored_state(env, insn_idx) = new_sl;
10800 	/* connect new state to parentage chain. Current frame needs all
10801 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
10802 	 * to the stack implicitly by JITs) so in callers' frames connect just
10803 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
10804 	 * the state of the call instruction (with WRITTEN set), and r0 comes
10805 	 * from callee with its full parentage chain, anyway.
10806 	 */
10807 	/* clear write marks in current state: the writes we did are not writes
10808 	 * our child did, so they don't screen off its reads from us.
10809 	 * (There are no read marks in current state, because reads always mark
10810 	 * their parent and current state never has children yet.  Only
10811 	 * explored_states can get read marks.)
10812 	 */
10813 	for (j = 0; j <= cur->curframe; j++) {
10814 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
10815 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
10816 		for (i = 0; i < BPF_REG_FP; i++)
10817 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
10818 	}
10819 
10820 	/* all stack frames are accessible from callee, clear them all */
10821 	for (j = 0; j <= cur->curframe; j++) {
10822 		struct bpf_func_state *frame = cur->frame[j];
10823 		struct bpf_func_state *newframe = new->frame[j];
10824 
10825 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
10826 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
10827 			frame->stack[i].spilled_ptr.parent =
10828 						&newframe->stack[i].spilled_ptr;
10829 		}
10830 	}
10831 	return 0;
10832 }
10833 
10834 /* Return true if it's OK to have the same insn return a different type. */
10835 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
10836 {
10837 	switch (type) {
10838 	case PTR_TO_CTX:
10839 	case PTR_TO_SOCKET:
10840 	case PTR_TO_SOCKET_OR_NULL:
10841 	case PTR_TO_SOCK_COMMON:
10842 	case PTR_TO_SOCK_COMMON_OR_NULL:
10843 	case PTR_TO_TCP_SOCK:
10844 	case PTR_TO_TCP_SOCK_OR_NULL:
10845 	case PTR_TO_XDP_SOCK:
10846 	case PTR_TO_BTF_ID:
10847 	case PTR_TO_BTF_ID_OR_NULL:
10848 		return false;
10849 	default:
10850 		return true;
10851 	}
10852 }
10853 
10854 /* If an instruction was previously used with particular pointer types, then we
10855  * need to be careful to avoid cases such as the below, where it may be ok
10856  * for one branch accessing the pointer, but not ok for the other branch:
10857  *
10858  * R1 = sock_ptr
10859  * goto X;
10860  * ...
10861  * R1 = some_other_valid_ptr;
10862  * goto X;
10863  * ...
10864  * R2 = *(u32 *)(R1 + 0);
10865  */
10866 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
10867 {
10868 	return src != prev && (!reg_type_mismatch_ok(src) ||
10869 			       !reg_type_mismatch_ok(prev));
10870 }
10871 
10872 static int do_check(struct bpf_verifier_env *env)
10873 {
10874 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
10875 	struct bpf_verifier_state *state = env->cur_state;
10876 	struct bpf_insn *insns = env->prog->insnsi;
10877 	struct bpf_reg_state *regs;
10878 	int insn_cnt = env->prog->len;
10879 	bool do_print_state = false;
10880 	int prev_insn_idx = -1;
10881 
10882 	for (;;) {
10883 		struct bpf_insn *insn;
10884 		u8 class;
10885 		int err;
10886 
10887 		env->prev_insn_idx = prev_insn_idx;
10888 		if (env->insn_idx >= insn_cnt) {
10889 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
10890 				env->insn_idx, insn_cnt);
10891 			return -EFAULT;
10892 		}
10893 
10894 		insn = &insns[env->insn_idx];
10895 		class = BPF_CLASS(insn->code);
10896 
10897 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
10898 			verbose(env,
10899 				"BPF program is too large. Processed %d insn\n",
10900 				env->insn_processed);
10901 			return -E2BIG;
10902 		}
10903 
10904 		err = is_state_visited(env, env->insn_idx);
10905 		if (err < 0)
10906 			return err;
10907 		if (err == 1) {
10908 			/* found equivalent state, can prune the search */
10909 			if (env->log.level & BPF_LOG_LEVEL) {
10910 				if (do_print_state)
10911 					verbose(env, "\nfrom %d to %d%s: safe\n",
10912 						env->prev_insn_idx, env->insn_idx,
10913 						env->cur_state->speculative ?
10914 						" (speculative execution)" : "");
10915 				else
10916 					verbose(env, "%d: safe\n", env->insn_idx);
10917 			}
10918 			goto process_bpf_exit;
10919 		}
10920 
10921 		if (signal_pending(current))
10922 			return -EAGAIN;
10923 
10924 		if (need_resched())
10925 			cond_resched();
10926 
10927 		if (env->log.level & BPF_LOG_LEVEL2 ||
10928 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
10929 			if (env->log.level & BPF_LOG_LEVEL2)
10930 				verbose(env, "%d:", env->insn_idx);
10931 			else
10932 				verbose(env, "\nfrom %d to %d%s:",
10933 					env->prev_insn_idx, env->insn_idx,
10934 					env->cur_state->speculative ?
10935 					" (speculative execution)" : "");
10936 			print_verifier_state(env, state->frame[state->curframe]);
10937 			do_print_state = false;
10938 		}
10939 
10940 		if (env->log.level & BPF_LOG_LEVEL) {
10941 			const struct bpf_insn_cbs cbs = {
10942 				.cb_call	= disasm_kfunc_name,
10943 				.cb_print	= verbose,
10944 				.private_data	= env,
10945 			};
10946 
10947 			verbose_linfo(env, env->insn_idx, "; ");
10948 			verbose(env, "%d: ", env->insn_idx);
10949 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
10950 		}
10951 
10952 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
10953 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
10954 							   env->prev_insn_idx);
10955 			if (err)
10956 				return err;
10957 		}
10958 
10959 		regs = cur_regs(env);
10960 		sanitize_mark_insn_seen(env);
10961 		prev_insn_idx = env->insn_idx;
10962 
10963 		if (class == BPF_ALU || class == BPF_ALU64) {
10964 			err = check_alu_op(env, insn);
10965 			if (err)
10966 				return err;
10967 
10968 		} else if (class == BPF_LDX) {
10969 			enum bpf_reg_type *prev_src_type, src_reg_type;
10970 
10971 			/* check for reserved fields is already done */
10972 
10973 			/* check src operand */
10974 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10975 			if (err)
10976 				return err;
10977 
10978 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
10979 			if (err)
10980 				return err;
10981 
10982 			src_reg_type = regs[insn->src_reg].type;
10983 
10984 			/* check that memory (src_reg + off) is readable,
10985 			 * the state of dst_reg will be updated by this func
10986 			 */
10987 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
10988 					       insn->off, BPF_SIZE(insn->code),
10989 					       BPF_READ, insn->dst_reg, false);
10990 			if (err)
10991 				return err;
10992 
10993 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10994 
10995 			if (*prev_src_type == NOT_INIT) {
10996 				/* saw a valid insn
10997 				 * dst_reg = *(u32 *)(src_reg + off)
10998 				 * save type to validate intersecting paths
10999 				 */
11000 				*prev_src_type = src_reg_type;
11001 
11002 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
11003 				/* ABuser program is trying to use the same insn
11004 				 * dst_reg = *(u32*) (src_reg + off)
11005 				 * with different pointer types:
11006 				 * src_reg == ctx in one branch and
11007 				 * src_reg == stack|map in some other branch.
11008 				 * Reject it.
11009 				 */
11010 				verbose(env, "same insn cannot be used with different pointers\n");
11011 				return -EINVAL;
11012 			}
11013 
11014 		} else if (class == BPF_STX) {
11015 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
11016 
11017 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
11018 				err = check_atomic(env, env->insn_idx, insn);
11019 				if (err)
11020 					return err;
11021 				env->insn_idx++;
11022 				continue;
11023 			}
11024 
11025 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
11026 				verbose(env, "BPF_STX uses reserved fields\n");
11027 				return -EINVAL;
11028 			}
11029 
11030 			/* check src1 operand */
11031 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
11032 			if (err)
11033 				return err;
11034 			/* check src2 operand */
11035 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11036 			if (err)
11037 				return err;
11038 
11039 			dst_reg_type = regs[insn->dst_reg].type;
11040 
11041 			/* check that memory (dst_reg + off) is writeable */
11042 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11043 					       insn->off, BPF_SIZE(insn->code),
11044 					       BPF_WRITE, insn->src_reg, false);
11045 			if (err)
11046 				return err;
11047 
11048 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
11049 
11050 			if (*prev_dst_type == NOT_INIT) {
11051 				*prev_dst_type = dst_reg_type;
11052 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
11053 				verbose(env, "same insn cannot be used with different pointers\n");
11054 				return -EINVAL;
11055 			}
11056 
11057 		} else if (class == BPF_ST) {
11058 			if (BPF_MODE(insn->code) != BPF_MEM ||
11059 			    insn->src_reg != BPF_REG_0) {
11060 				verbose(env, "BPF_ST uses reserved fields\n");
11061 				return -EINVAL;
11062 			}
11063 			/* check src operand */
11064 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11065 			if (err)
11066 				return err;
11067 
11068 			if (is_ctx_reg(env, insn->dst_reg)) {
11069 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
11070 					insn->dst_reg,
11071 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
11072 				return -EACCES;
11073 			}
11074 
11075 			/* check that memory (dst_reg + off) is writeable */
11076 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11077 					       insn->off, BPF_SIZE(insn->code),
11078 					       BPF_WRITE, -1, false);
11079 			if (err)
11080 				return err;
11081 
11082 		} else if (class == BPF_JMP || class == BPF_JMP32) {
11083 			u8 opcode = BPF_OP(insn->code);
11084 
11085 			env->jmps_processed++;
11086 			if (opcode == BPF_CALL) {
11087 				if (BPF_SRC(insn->code) != BPF_K ||
11088 				    insn->off != 0 ||
11089 				    (insn->src_reg != BPF_REG_0 &&
11090 				     insn->src_reg != BPF_PSEUDO_CALL &&
11091 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
11092 				    insn->dst_reg != BPF_REG_0 ||
11093 				    class == BPF_JMP32) {
11094 					verbose(env, "BPF_CALL uses reserved fields\n");
11095 					return -EINVAL;
11096 				}
11097 
11098 				if (env->cur_state->active_spin_lock &&
11099 				    (insn->src_reg == BPF_PSEUDO_CALL ||
11100 				     insn->imm != BPF_FUNC_spin_unlock)) {
11101 					verbose(env, "function calls are not allowed while holding a lock\n");
11102 					return -EINVAL;
11103 				}
11104 				if (insn->src_reg == BPF_PSEUDO_CALL)
11105 					err = check_func_call(env, insn, &env->insn_idx);
11106 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
11107 					err = check_kfunc_call(env, insn);
11108 				else
11109 					err = check_helper_call(env, insn, &env->insn_idx);
11110 				if (err)
11111 					return err;
11112 			} else if (opcode == BPF_JA) {
11113 				if (BPF_SRC(insn->code) != BPF_K ||
11114 				    insn->imm != 0 ||
11115 				    insn->src_reg != BPF_REG_0 ||
11116 				    insn->dst_reg != BPF_REG_0 ||
11117 				    class == BPF_JMP32) {
11118 					verbose(env, "BPF_JA uses reserved fields\n");
11119 					return -EINVAL;
11120 				}
11121 
11122 				env->insn_idx += insn->off + 1;
11123 				continue;
11124 
11125 			} else if (opcode == BPF_EXIT) {
11126 				if (BPF_SRC(insn->code) != BPF_K ||
11127 				    insn->imm != 0 ||
11128 				    insn->src_reg != BPF_REG_0 ||
11129 				    insn->dst_reg != BPF_REG_0 ||
11130 				    class == BPF_JMP32) {
11131 					verbose(env, "BPF_EXIT uses reserved fields\n");
11132 					return -EINVAL;
11133 				}
11134 
11135 				if (env->cur_state->active_spin_lock) {
11136 					verbose(env, "bpf_spin_unlock is missing\n");
11137 					return -EINVAL;
11138 				}
11139 
11140 				if (state->curframe) {
11141 					/* exit from nested function */
11142 					err = prepare_func_exit(env, &env->insn_idx);
11143 					if (err)
11144 						return err;
11145 					do_print_state = true;
11146 					continue;
11147 				}
11148 
11149 				err = check_reference_leak(env);
11150 				if (err)
11151 					return err;
11152 
11153 				err = check_return_code(env);
11154 				if (err)
11155 					return err;
11156 process_bpf_exit:
11157 				update_branch_counts(env, env->cur_state);
11158 				err = pop_stack(env, &prev_insn_idx,
11159 						&env->insn_idx, pop_log);
11160 				if (err < 0) {
11161 					if (err != -ENOENT)
11162 						return err;
11163 					break;
11164 				} else {
11165 					do_print_state = true;
11166 					continue;
11167 				}
11168 			} else {
11169 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
11170 				if (err)
11171 					return err;
11172 			}
11173 		} else if (class == BPF_LD) {
11174 			u8 mode = BPF_MODE(insn->code);
11175 
11176 			if (mode == BPF_ABS || mode == BPF_IND) {
11177 				err = check_ld_abs(env, insn);
11178 				if (err)
11179 					return err;
11180 
11181 			} else if (mode == BPF_IMM) {
11182 				err = check_ld_imm(env, insn);
11183 				if (err)
11184 					return err;
11185 
11186 				env->insn_idx++;
11187 				sanitize_mark_insn_seen(env);
11188 			} else {
11189 				verbose(env, "invalid BPF_LD mode\n");
11190 				return -EINVAL;
11191 			}
11192 		} else {
11193 			verbose(env, "unknown insn class %d\n", class);
11194 			return -EINVAL;
11195 		}
11196 
11197 		env->insn_idx++;
11198 	}
11199 
11200 	return 0;
11201 }
11202 
11203 static int find_btf_percpu_datasec(struct btf *btf)
11204 {
11205 	const struct btf_type *t;
11206 	const char *tname;
11207 	int i, n;
11208 
11209 	/*
11210 	 * Both vmlinux and module each have their own ".data..percpu"
11211 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
11212 	 * types to look at only module's own BTF types.
11213 	 */
11214 	n = btf_nr_types(btf);
11215 	if (btf_is_module(btf))
11216 		i = btf_nr_types(btf_vmlinux);
11217 	else
11218 		i = 1;
11219 
11220 	for(; i < n; i++) {
11221 		t = btf_type_by_id(btf, i);
11222 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
11223 			continue;
11224 
11225 		tname = btf_name_by_offset(btf, t->name_off);
11226 		if (!strcmp(tname, ".data..percpu"))
11227 			return i;
11228 	}
11229 
11230 	return -ENOENT;
11231 }
11232 
11233 /* replace pseudo btf_id with kernel symbol address */
11234 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
11235 			       struct bpf_insn *insn,
11236 			       struct bpf_insn_aux_data *aux)
11237 {
11238 	const struct btf_var_secinfo *vsi;
11239 	const struct btf_type *datasec;
11240 	struct btf_mod_pair *btf_mod;
11241 	const struct btf_type *t;
11242 	const char *sym_name;
11243 	bool percpu = false;
11244 	u32 type, id = insn->imm;
11245 	struct btf *btf;
11246 	s32 datasec_id;
11247 	u64 addr;
11248 	int i, btf_fd, err;
11249 
11250 	btf_fd = insn[1].imm;
11251 	if (btf_fd) {
11252 		btf = btf_get_by_fd(btf_fd);
11253 		if (IS_ERR(btf)) {
11254 			verbose(env, "invalid module BTF object FD specified.\n");
11255 			return -EINVAL;
11256 		}
11257 	} else {
11258 		if (!btf_vmlinux) {
11259 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
11260 			return -EINVAL;
11261 		}
11262 		btf = btf_vmlinux;
11263 		btf_get(btf);
11264 	}
11265 
11266 	t = btf_type_by_id(btf, id);
11267 	if (!t) {
11268 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
11269 		err = -ENOENT;
11270 		goto err_put;
11271 	}
11272 
11273 	if (!btf_type_is_var(t)) {
11274 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
11275 		err = -EINVAL;
11276 		goto err_put;
11277 	}
11278 
11279 	sym_name = btf_name_by_offset(btf, t->name_off);
11280 	addr = kallsyms_lookup_name(sym_name);
11281 	if (!addr) {
11282 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
11283 			sym_name);
11284 		err = -ENOENT;
11285 		goto err_put;
11286 	}
11287 
11288 	datasec_id = find_btf_percpu_datasec(btf);
11289 	if (datasec_id > 0) {
11290 		datasec = btf_type_by_id(btf, datasec_id);
11291 		for_each_vsi(i, datasec, vsi) {
11292 			if (vsi->type == id) {
11293 				percpu = true;
11294 				break;
11295 			}
11296 		}
11297 	}
11298 
11299 	insn[0].imm = (u32)addr;
11300 	insn[1].imm = addr >> 32;
11301 
11302 	type = t->type;
11303 	t = btf_type_skip_modifiers(btf, type, NULL);
11304 	if (percpu) {
11305 		aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
11306 		aux->btf_var.btf = btf;
11307 		aux->btf_var.btf_id = type;
11308 	} else if (!btf_type_is_struct(t)) {
11309 		const struct btf_type *ret;
11310 		const char *tname;
11311 		u32 tsize;
11312 
11313 		/* resolve the type size of ksym. */
11314 		ret = btf_resolve_size(btf, t, &tsize);
11315 		if (IS_ERR(ret)) {
11316 			tname = btf_name_by_offset(btf, t->name_off);
11317 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
11318 				tname, PTR_ERR(ret));
11319 			err = -EINVAL;
11320 			goto err_put;
11321 		}
11322 		aux->btf_var.reg_type = PTR_TO_MEM;
11323 		aux->btf_var.mem_size = tsize;
11324 	} else {
11325 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
11326 		aux->btf_var.btf = btf;
11327 		aux->btf_var.btf_id = type;
11328 	}
11329 
11330 	/* check whether we recorded this BTF (and maybe module) already */
11331 	for (i = 0; i < env->used_btf_cnt; i++) {
11332 		if (env->used_btfs[i].btf == btf) {
11333 			btf_put(btf);
11334 			return 0;
11335 		}
11336 	}
11337 
11338 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
11339 		err = -E2BIG;
11340 		goto err_put;
11341 	}
11342 
11343 	btf_mod = &env->used_btfs[env->used_btf_cnt];
11344 	btf_mod->btf = btf;
11345 	btf_mod->module = NULL;
11346 
11347 	/* if we reference variables from kernel module, bump its refcount */
11348 	if (btf_is_module(btf)) {
11349 		btf_mod->module = btf_try_get_module(btf);
11350 		if (!btf_mod->module) {
11351 			err = -ENXIO;
11352 			goto err_put;
11353 		}
11354 	}
11355 
11356 	env->used_btf_cnt++;
11357 
11358 	return 0;
11359 err_put:
11360 	btf_put(btf);
11361 	return err;
11362 }
11363 
11364 static int check_map_prealloc(struct bpf_map *map)
11365 {
11366 	return (map->map_type != BPF_MAP_TYPE_HASH &&
11367 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
11368 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
11369 		!(map->map_flags & BPF_F_NO_PREALLOC);
11370 }
11371 
11372 static bool is_tracing_prog_type(enum bpf_prog_type type)
11373 {
11374 	switch (type) {
11375 	case BPF_PROG_TYPE_KPROBE:
11376 	case BPF_PROG_TYPE_TRACEPOINT:
11377 	case BPF_PROG_TYPE_PERF_EVENT:
11378 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
11379 		return true;
11380 	default:
11381 		return false;
11382 	}
11383 }
11384 
11385 static bool is_preallocated_map(struct bpf_map *map)
11386 {
11387 	if (!check_map_prealloc(map))
11388 		return false;
11389 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
11390 		return false;
11391 	return true;
11392 }
11393 
11394 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
11395 					struct bpf_map *map,
11396 					struct bpf_prog *prog)
11397 
11398 {
11399 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
11400 	/*
11401 	 * Validate that trace type programs use preallocated hash maps.
11402 	 *
11403 	 * For programs attached to PERF events this is mandatory as the
11404 	 * perf NMI can hit any arbitrary code sequence.
11405 	 *
11406 	 * All other trace types using preallocated hash maps are unsafe as
11407 	 * well because tracepoint or kprobes can be inside locked regions
11408 	 * of the memory allocator or at a place where a recursion into the
11409 	 * memory allocator would see inconsistent state.
11410 	 *
11411 	 * On RT enabled kernels run-time allocation of all trace type
11412 	 * programs is strictly prohibited due to lock type constraints. On
11413 	 * !RT kernels it is allowed for backwards compatibility reasons for
11414 	 * now, but warnings are emitted so developers are made aware of
11415 	 * the unsafety and can fix their programs before this is enforced.
11416 	 */
11417 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
11418 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
11419 			verbose(env, "perf_event programs can only use preallocated hash map\n");
11420 			return -EINVAL;
11421 		}
11422 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
11423 			verbose(env, "trace type programs can only use preallocated hash map\n");
11424 			return -EINVAL;
11425 		}
11426 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
11427 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
11428 	}
11429 
11430 	if (map_value_has_spin_lock(map)) {
11431 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
11432 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
11433 			return -EINVAL;
11434 		}
11435 
11436 		if (is_tracing_prog_type(prog_type)) {
11437 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
11438 			return -EINVAL;
11439 		}
11440 
11441 		if (prog->aux->sleepable) {
11442 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
11443 			return -EINVAL;
11444 		}
11445 	}
11446 
11447 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
11448 	    !bpf_offload_prog_map_match(prog, map)) {
11449 		verbose(env, "offload device mismatch between prog and map\n");
11450 		return -EINVAL;
11451 	}
11452 
11453 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
11454 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
11455 		return -EINVAL;
11456 	}
11457 
11458 	if (prog->aux->sleepable)
11459 		switch (map->map_type) {
11460 		case BPF_MAP_TYPE_HASH:
11461 		case BPF_MAP_TYPE_LRU_HASH:
11462 		case BPF_MAP_TYPE_ARRAY:
11463 		case BPF_MAP_TYPE_PERCPU_HASH:
11464 		case BPF_MAP_TYPE_PERCPU_ARRAY:
11465 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
11466 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
11467 		case BPF_MAP_TYPE_HASH_OF_MAPS:
11468 			if (!is_preallocated_map(map)) {
11469 				verbose(env,
11470 					"Sleepable programs can only use preallocated maps\n");
11471 				return -EINVAL;
11472 			}
11473 			break;
11474 		case BPF_MAP_TYPE_RINGBUF:
11475 			break;
11476 		default:
11477 			verbose(env,
11478 				"Sleepable programs can only use array, hash, and ringbuf maps\n");
11479 			return -EINVAL;
11480 		}
11481 
11482 	return 0;
11483 }
11484 
11485 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
11486 {
11487 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
11488 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
11489 }
11490 
11491 /* find and rewrite pseudo imm in ld_imm64 instructions:
11492  *
11493  * 1. if it accesses map FD, replace it with actual map pointer.
11494  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
11495  *
11496  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
11497  */
11498 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
11499 {
11500 	struct bpf_insn *insn = env->prog->insnsi;
11501 	int insn_cnt = env->prog->len;
11502 	int i, j, err;
11503 
11504 	err = bpf_prog_calc_tag(env->prog);
11505 	if (err)
11506 		return err;
11507 
11508 	for (i = 0; i < insn_cnt; i++, insn++) {
11509 		if (BPF_CLASS(insn->code) == BPF_LDX &&
11510 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
11511 			verbose(env, "BPF_LDX uses reserved fields\n");
11512 			return -EINVAL;
11513 		}
11514 
11515 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
11516 			struct bpf_insn_aux_data *aux;
11517 			struct bpf_map *map;
11518 			struct fd f;
11519 			u64 addr;
11520 			u32 fd;
11521 
11522 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
11523 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
11524 			    insn[1].off != 0) {
11525 				verbose(env, "invalid bpf_ld_imm64 insn\n");
11526 				return -EINVAL;
11527 			}
11528 
11529 			if (insn[0].src_reg == 0)
11530 				/* valid generic load 64-bit imm */
11531 				goto next_insn;
11532 
11533 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
11534 				aux = &env->insn_aux_data[i];
11535 				err = check_pseudo_btf_id(env, insn, aux);
11536 				if (err)
11537 					return err;
11538 				goto next_insn;
11539 			}
11540 
11541 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
11542 				aux = &env->insn_aux_data[i];
11543 				aux->ptr_type = PTR_TO_FUNC;
11544 				goto next_insn;
11545 			}
11546 
11547 			/* In final convert_pseudo_ld_imm64() step, this is
11548 			 * converted into regular 64-bit imm load insn.
11549 			 */
11550 			switch (insn[0].src_reg) {
11551 			case BPF_PSEUDO_MAP_VALUE:
11552 			case BPF_PSEUDO_MAP_IDX_VALUE:
11553 				break;
11554 			case BPF_PSEUDO_MAP_FD:
11555 			case BPF_PSEUDO_MAP_IDX:
11556 				if (insn[1].imm == 0)
11557 					break;
11558 				fallthrough;
11559 			default:
11560 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
11561 				return -EINVAL;
11562 			}
11563 
11564 			switch (insn[0].src_reg) {
11565 			case BPF_PSEUDO_MAP_IDX_VALUE:
11566 			case BPF_PSEUDO_MAP_IDX:
11567 				if (bpfptr_is_null(env->fd_array)) {
11568 					verbose(env, "fd_idx without fd_array is invalid\n");
11569 					return -EPROTO;
11570 				}
11571 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
11572 							    insn[0].imm * sizeof(fd),
11573 							    sizeof(fd)))
11574 					return -EFAULT;
11575 				break;
11576 			default:
11577 				fd = insn[0].imm;
11578 				break;
11579 			}
11580 
11581 			f = fdget(fd);
11582 			map = __bpf_map_get(f);
11583 			if (IS_ERR(map)) {
11584 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
11585 					insn[0].imm);
11586 				return PTR_ERR(map);
11587 			}
11588 
11589 			err = check_map_prog_compatibility(env, map, env->prog);
11590 			if (err) {
11591 				fdput(f);
11592 				return err;
11593 			}
11594 
11595 			aux = &env->insn_aux_data[i];
11596 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
11597 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
11598 				addr = (unsigned long)map;
11599 			} else {
11600 				u32 off = insn[1].imm;
11601 
11602 				if (off >= BPF_MAX_VAR_OFF) {
11603 					verbose(env, "direct value offset of %u is not allowed\n", off);
11604 					fdput(f);
11605 					return -EINVAL;
11606 				}
11607 
11608 				if (!map->ops->map_direct_value_addr) {
11609 					verbose(env, "no direct value access support for this map type\n");
11610 					fdput(f);
11611 					return -EINVAL;
11612 				}
11613 
11614 				err = map->ops->map_direct_value_addr(map, &addr, off);
11615 				if (err) {
11616 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
11617 						map->value_size, off);
11618 					fdput(f);
11619 					return err;
11620 				}
11621 
11622 				aux->map_off = off;
11623 				addr += off;
11624 			}
11625 
11626 			insn[0].imm = (u32)addr;
11627 			insn[1].imm = addr >> 32;
11628 
11629 			/* check whether we recorded this map already */
11630 			for (j = 0; j < env->used_map_cnt; j++) {
11631 				if (env->used_maps[j] == map) {
11632 					aux->map_index = j;
11633 					fdput(f);
11634 					goto next_insn;
11635 				}
11636 			}
11637 
11638 			if (env->used_map_cnt >= MAX_USED_MAPS) {
11639 				fdput(f);
11640 				return -E2BIG;
11641 			}
11642 
11643 			/* hold the map. If the program is rejected by verifier,
11644 			 * the map will be released by release_maps() or it
11645 			 * will be used by the valid program until it's unloaded
11646 			 * and all maps are released in free_used_maps()
11647 			 */
11648 			bpf_map_inc(map);
11649 
11650 			aux->map_index = env->used_map_cnt;
11651 			env->used_maps[env->used_map_cnt++] = map;
11652 
11653 			if (bpf_map_is_cgroup_storage(map) &&
11654 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
11655 				verbose(env, "only one cgroup storage of each type is allowed\n");
11656 				fdput(f);
11657 				return -EBUSY;
11658 			}
11659 
11660 			fdput(f);
11661 next_insn:
11662 			insn++;
11663 			i++;
11664 			continue;
11665 		}
11666 
11667 		/* Basic sanity check before we invest more work here. */
11668 		if (!bpf_opcode_in_insntable(insn->code)) {
11669 			verbose(env, "unknown opcode %02x\n", insn->code);
11670 			return -EINVAL;
11671 		}
11672 	}
11673 
11674 	/* now all pseudo BPF_LD_IMM64 instructions load valid
11675 	 * 'struct bpf_map *' into a register instead of user map_fd.
11676 	 * These pointers will be used later by verifier to validate map access.
11677 	 */
11678 	return 0;
11679 }
11680 
11681 /* drop refcnt of maps used by the rejected program */
11682 static void release_maps(struct bpf_verifier_env *env)
11683 {
11684 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
11685 			     env->used_map_cnt);
11686 }
11687 
11688 /* drop refcnt of maps used by the rejected program */
11689 static void release_btfs(struct bpf_verifier_env *env)
11690 {
11691 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
11692 			     env->used_btf_cnt);
11693 }
11694 
11695 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
11696 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
11697 {
11698 	struct bpf_insn *insn = env->prog->insnsi;
11699 	int insn_cnt = env->prog->len;
11700 	int i;
11701 
11702 	for (i = 0; i < insn_cnt; i++, insn++) {
11703 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
11704 			continue;
11705 		if (insn->src_reg == BPF_PSEUDO_FUNC)
11706 			continue;
11707 		insn->src_reg = 0;
11708 	}
11709 }
11710 
11711 /* single env->prog->insni[off] instruction was replaced with the range
11712  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
11713  * [0, off) and [off, end) to new locations, so the patched range stays zero
11714  */
11715 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
11716 				 struct bpf_insn_aux_data *new_data,
11717 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
11718 {
11719 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
11720 	struct bpf_insn *insn = new_prog->insnsi;
11721 	u32 old_seen = old_data[off].seen;
11722 	u32 prog_len;
11723 	int i;
11724 
11725 	/* aux info at OFF always needs adjustment, no matter fast path
11726 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
11727 	 * original insn at old prog.
11728 	 */
11729 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
11730 
11731 	if (cnt == 1)
11732 		return;
11733 	prog_len = new_prog->len;
11734 
11735 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
11736 	memcpy(new_data + off + cnt - 1, old_data + off,
11737 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
11738 	for (i = off; i < off + cnt - 1; i++) {
11739 		/* Expand insni[off]'s seen count to the patched range. */
11740 		new_data[i].seen = old_seen;
11741 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
11742 	}
11743 	env->insn_aux_data = new_data;
11744 	vfree(old_data);
11745 }
11746 
11747 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
11748 {
11749 	int i;
11750 
11751 	if (len == 1)
11752 		return;
11753 	/* NOTE: fake 'exit' subprog should be updated as well. */
11754 	for (i = 0; i <= env->subprog_cnt; i++) {
11755 		if (env->subprog_info[i].start <= off)
11756 			continue;
11757 		env->subprog_info[i].start += len - 1;
11758 	}
11759 }
11760 
11761 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
11762 {
11763 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
11764 	int i, sz = prog->aux->size_poke_tab;
11765 	struct bpf_jit_poke_descriptor *desc;
11766 
11767 	for (i = 0; i < sz; i++) {
11768 		desc = &tab[i];
11769 		if (desc->insn_idx <= off)
11770 			continue;
11771 		desc->insn_idx += len - 1;
11772 	}
11773 }
11774 
11775 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
11776 					    const struct bpf_insn *patch, u32 len)
11777 {
11778 	struct bpf_prog *new_prog;
11779 	struct bpf_insn_aux_data *new_data = NULL;
11780 
11781 	if (len > 1) {
11782 		new_data = vzalloc(array_size(env->prog->len + len - 1,
11783 					      sizeof(struct bpf_insn_aux_data)));
11784 		if (!new_data)
11785 			return NULL;
11786 	}
11787 
11788 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
11789 	if (IS_ERR(new_prog)) {
11790 		if (PTR_ERR(new_prog) == -ERANGE)
11791 			verbose(env,
11792 				"insn %d cannot be patched due to 16-bit range\n",
11793 				env->insn_aux_data[off].orig_idx);
11794 		vfree(new_data);
11795 		return NULL;
11796 	}
11797 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
11798 	adjust_subprog_starts(env, off, len);
11799 	adjust_poke_descs(new_prog, off, len);
11800 	return new_prog;
11801 }
11802 
11803 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
11804 					      u32 off, u32 cnt)
11805 {
11806 	int i, j;
11807 
11808 	/* find first prog starting at or after off (first to remove) */
11809 	for (i = 0; i < env->subprog_cnt; i++)
11810 		if (env->subprog_info[i].start >= off)
11811 			break;
11812 	/* find first prog starting at or after off + cnt (first to stay) */
11813 	for (j = i; j < env->subprog_cnt; j++)
11814 		if (env->subprog_info[j].start >= off + cnt)
11815 			break;
11816 	/* if j doesn't start exactly at off + cnt, we are just removing
11817 	 * the front of previous prog
11818 	 */
11819 	if (env->subprog_info[j].start != off + cnt)
11820 		j--;
11821 
11822 	if (j > i) {
11823 		struct bpf_prog_aux *aux = env->prog->aux;
11824 		int move;
11825 
11826 		/* move fake 'exit' subprog as well */
11827 		move = env->subprog_cnt + 1 - j;
11828 
11829 		memmove(env->subprog_info + i,
11830 			env->subprog_info + j,
11831 			sizeof(*env->subprog_info) * move);
11832 		env->subprog_cnt -= j - i;
11833 
11834 		/* remove func_info */
11835 		if (aux->func_info) {
11836 			move = aux->func_info_cnt - j;
11837 
11838 			memmove(aux->func_info + i,
11839 				aux->func_info + j,
11840 				sizeof(*aux->func_info) * move);
11841 			aux->func_info_cnt -= j - i;
11842 			/* func_info->insn_off is set after all code rewrites,
11843 			 * in adjust_btf_func() - no need to adjust
11844 			 */
11845 		}
11846 	} else {
11847 		/* convert i from "first prog to remove" to "first to adjust" */
11848 		if (env->subprog_info[i].start == off)
11849 			i++;
11850 	}
11851 
11852 	/* update fake 'exit' subprog as well */
11853 	for (; i <= env->subprog_cnt; i++)
11854 		env->subprog_info[i].start -= cnt;
11855 
11856 	return 0;
11857 }
11858 
11859 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
11860 				      u32 cnt)
11861 {
11862 	struct bpf_prog *prog = env->prog;
11863 	u32 i, l_off, l_cnt, nr_linfo;
11864 	struct bpf_line_info *linfo;
11865 
11866 	nr_linfo = prog->aux->nr_linfo;
11867 	if (!nr_linfo)
11868 		return 0;
11869 
11870 	linfo = prog->aux->linfo;
11871 
11872 	/* find first line info to remove, count lines to be removed */
11873 	for (i = 0; i < nr_linfo; i++)
11874 		if (linfo[i].insn_off >= off)
11875 			break;
11876 
11877 	l_off = i;
11878 	l_cnt = 0;
11879 	for (; i < nr_linfo; i++)
11880 		if (linfo[i].insn_off < off + cnt)
11881 			l_cnt++;
11882 		else
11883 			break;
11884 
11885 	/* First live insn doesn't match first live linfo, it needs to "inherit"
11886 	 * last removed linfo.  prog is already modified, so prog->len == off
11887 	 * means no live instructions after (tail of the program was removed).
11888 	 */
11889 	if (prog->len != off && l_cnt &&
11890 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
11891 		l_cnt--;
11892 		linfo[--i].insn_off = off + cnt;
11893 	}
11894 
11895 	/* remove the line info which refer to the removed instructions */
11896 	if (l_cnt) {
11897 		memmove(linfo + l_off, linfo + i,
11898 			sizeof(*linfo) * (nr_linfo - i));
11899 
11900 		prog->aux->nr_linfo -= l_cnt;
11901 		nr_linfo = prog->aux->nr_linfo;
11902 	}
11903 
11904 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
11905 	for (i = l_off; i < nr_linfo; i++)
11906 		linfo[i].insn_off -= cnt;
11907 
11908 	/* fix up all subprogs (incl. 'exit') which start >= off */
11909 	for (i = 0; i <= env->subprog_cnt; i++)
11910 		if (env->subprog_info[i].linfo_idx > l_off) {
11911 			/* program may have started in the removed region but
11912 			 * may not be fully removed
11913 			 */
11914 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
11915 				env->subprog_info[i].linfo_idx -= l_cnt;
11916 			else
11917 				env->subprog_info[i].linfo_idx = l_off;
11918 		}
11919 
11920 	return 0;
11921 }
11922 
11923 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
11924 {
11925 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11926 	unsigned int orig_prog_len = env->prog->len;
11927 	int err;
11928 
11929 	if (bpf_prog_is_dev_bound(env->prog->aux))
11930 		bpf_prog_offload_remove_insns(env, off, cnt);
11931 
11932 	err = bpf_remove_insns(env->prog, off, cnt);
11933 	if (err)
11934 		return err;
11935 
11936 	err = adjust_subprog_starts_after_remove(env, off, cnt);
11937 	if (err)
11938 		return err;
11939 
11940 	err = bpf_adj_linfo_after_remove(env, off, cnt);
11941 	if (err)
11942 		return err;
11943 
11944 	memmove(aux_data + off,	aux_data + off + cnt,
11945 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
11946 
11947 	return 0;
11948 }
11949 
11950 /* The verifier does more data flow analysis than llvm and will not
11951  * explore branches that are dead at run time. Malicious programs can
11952  * have dead code too. Therefore replace all dead at-run-time code
11953  * with 'ja -1'.
11954  *
11955  * Just nops are not optimal, e.g. if they would sit at the end of the
11956  * program and through another bug we would manage to jump there, then
11957  * we'd execute beyond program memory otherwise. Returning exception
11958  * code also wouldn't work since we can have subprogs where the dead
11959  * code could be located.
11960  */
11961 static void sanitize_dead_code(struct bpf_verifier_env *env)
11962 {
11963 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11964 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
11965 	struct bpf_insn *insn = env->prog->insnsi;
11966 	const int insn_cnt = env->prog->len;
11967 	int i;
11968 
11969 	for (i = 0; i < insn_cnt; i++) {
11970 		if (aux_data[i].seen)
11971 			continue;
11972 		memcpy(insn + i, &trap, sizeof(trap));
11973 	}
11974 }
11975 
11976 static bool insn_is_cond_jump(u8 code)
11977 {
11978 	u8 op;
11979 
11980 	if (BPF_CLASS(code) == BPF_JMP32)
11981 		return true;
11982 
11983 	if (BPF_CLASS(code) != BPF_JMP)
11984 		return false;
11985 
11986 	op = BPF_OP(code);
11987 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
11988 }
11989 
11990 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
11991 {
11992 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11993 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11994 	struct bpf_insn *insn = env->prog->insnsi;
11995 	const int insn_cnt = env->prog->len;
11996 	int i;
11997 
11998 	for (i = 0; i < insn_cnt; i++, insn++) {
11999 		if (!insn_is_cond_jump(insn->code))
12000 			continue;
12001 
12002 		if (!aux_data[i + 1].seen)
12003 			ja.off = insn->off;
12004 		else if (!aux_data[i + 1 + insn->off].seen)
12005 			ja.off = 0;
12006 		else
12007 			continue;
12008 
12009 		if (bpf_prog_is_dev_bound(env->prog->aux))
12010 			bpf_prog_offload_replace_insn(env, i, &ja);
12011 
12012 		memcpy(insn, &ja, sizeof(ja));
12013 	}
12014 }
12015 
12016 static int opt_remove_dead_code(struct bpf_verifier_env *env)
12017 {
12018 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12019 	int insn_cnt = env->prog->len;
12020 	int i, err;
12021 
12022 	for (i = 0; i < insn_cnt; i++) {
12023 		int j;
12024 
12025 		j = 0;
12026 		while (i + j < insn_cnt && !aux_data[i + j].seen)
12027 			j++;
12028 		if (!j)
12029 			continue;
12030 
12031 		err = verifier_remove_insns(env, i, j);
12032 		if (err)
12033 			return err;
12034 		insn_cnt = env->prog->len;
12035 	}
12036 
12037 	return 0;
12038 }
12039 
12040 static int opt_remove_nops(struct bpf_verifier_env *env)
12041 {
12042 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12043 	struct bpf_insn *insn = env->prog->insnsi;
12044 	int insn_cnt = env->prog->len;
12045 	int i, err;
12046 
12047 	for (i = 0; i < insn_cnt; i++) {
12048 		if (memcmp(&insn[i], &ja, sizeof(ja)))
12049 			continue;
12050 
12051 		err = verifier_remove_insns(env, i, 1);
12052 		if (err)
12053 			return err;
12054 		insn_cnt--;
12055 		i--;
12056 	}
12057 
12058 	return 0;
12059 }
12060 
12061 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
12062 					 const union bpf_attr *attr)
12063 {
12064 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
12065 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
12066 	int i, patch_len, delta = 0, len = env->prog->len;
12067 	struct bpf_insn *insns = env->prog->insnsi;
12068 	struct bpf_prog *new_prog;
12069 	bool rnd_hi32;
12070 
12071 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
12072 	zext_patch[1] = BPF_ZEXT_REG(0);
12073 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
12074 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
12075 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
12076 	for (i = 0; i < len; i++) {
12077 		int adj_idx = i + delta;
12078 		struct bpf_insn insn;
12079 		int load_reg;
12080 
12081 		insn = insns[adj_idx];
12082 		load_reg = insn_def_regno(&insn);
12083 		if (!aux[adj_idx].zext_dst) {
12084 			u8 code, class;
12085 			u32 imm_rnd;
12086 
12087 			if (!rnd_hi32)
12088 				continue;
12089 
12090 			code = insn.code;
12091 			class = BPF_CLASS(code);
12092 			if (load_reg == -1)
12093 				continue;
12094 
12095 			/* NOTE: arg "reg" (the fourth one) is only used for
12096 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
12097 			 *       here.
12098 			 */
12099 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
12100 				if (class == BPF_LD &&
12101 				    BPF_MODE(code) == BPF_IMM)
12102 					i++;
12103 				continue;
12104 			}
12105 
12106 			/* ctx load could be transformed into wider load. */
12107 			if (class == BPF_LDX &&
12108 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
12109 				continue;
12110 
12111 			imm_rnd = get_random_int();
12112 			rnd_hi32_patch[0] = insn;
12113 			rnd_hi32_patch[1].imm = imm_rnd;
12114 			rnd_hi32_patch[3].dst_reg = load_reg;
12115 			patch = rnd_hi32_patch;
12116 			patch_len = 4;
12117 			goto apply_patch_buffer;
12118 		}
12119 
12120 		/* Add in an zero-extend instruction if a) the JIT has requested
12121 		 * it or b) it's a CMPXCHG.
12122 		 *
12123 		 * The latter is because: BPF_CMPXCHG always loads a value into
12124 		 * R0, therefore always zero-extends. However some archs'
12125 		 * equivalent instruction only does this load when the
12126 		 * comparison is successful. This detail of CMPXCHG is
12127 		 * orthogonal to the general zero-extension behaviour of the
12128 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
12129 		 */
12130 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
12131 			continue;
12132 
12133 		if (WARN_ON(load_reg == -1)) {
12134 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
12135 			return -EFAULT;
12136 		}
12137 
12138 		zext_patch[0] = insn;
12139 		zext_patch[1].dst_reg = load_reg;
12140 		zext_patch[1].src_reg = load_reg;
12141 		patch = zext_patch;
12142 		patch_len = 2;
12143 apply_patch_buffer:
12144 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
12145 		if (!new_prog)
12146 			return -ENOMEM;
12147 		env->prog = new_prog;
12148 		insns = new_prog->insnsi;
12149 		aux = env->insn_aux_data;
12150 		delta += patch_len - 1;
12151 	}
12152 
12153 	return 0;
12154 }
12155 
12156 /* convert load instructions that access fields of a context type into a
12157  * sequence of instructions that access fields of the underlying structure:
12158  *     struct __sk_buff    -> struct sk_buff
12159  *     struct bpf_sock_ops -> struct sock
12160  */
12161 static int convert_ctx_accesses(struct bpf_verifier_env *env)
12162 {
12163 	const struct bpf_verifier_ops *ops = env->ops;
12164 	int i, cnt, size, ctx_field_size, delta = 0;
12165 	const int insn_cnt = env->prog->len;
12166 	struct bpf_insn insn_buf[16], *insn;
12167 	u32 target_size, size_default, off;
12168 	struct bpf_prog *new_prog;
12169 	enum bpf_access_type type;
12170 	bool is_narrower_load;
12171 
12172 	if (ops->gen_prologue || env->seen_direct_write) {
12173 		if (!ops->gen_prologue) {
12174 			verbose(env, "bpf verifier is misconfigured\n");
12175 			return -EINVAL;
12176 		}
12177 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
12178 					env->prog);
12179 		if (cnt >= ARRAY_SIZE(insn_buf)) {
12180 			verbose(env, "bpf verifier is misconfigured\n");
12181 			return -EINVAL;
12182 		} else if (cnt) {
12183 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
12184 			if (!new_prog)
12185 				return -ENOMEM;
12186 
12187 			env->prog = new_prog;
12188 			delta += cnt - 1;
12189 		}
12190 	}
12191 
12192 	if (bpf_prog_is_dev_bound(env->prog->aux))
12193 		return 0;
12194 
12195 	insn = env->prog->insnsi + delta;
12196 
12197 	for (i = 0; i < insn_cnt; i++, insn++) {
12198 		bpf_convert_ctx_access_t convert_ctx_access;
12199 
12200 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
12201 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
12202 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
12203 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
12204 			type = BPF_READ;
12205 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
12206 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
12207 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
12208 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
12209 			type = BPF_WRITE;
12210 		else
12211 			continue;
12212 
12213 		if (type == BPF_WRITE &&
12214 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
12215 			struct bpf_insn patch[] = {
12216 				/* Sanitize suspicious stack slot with zero.
12217 				 * There are no memory dependencies for this store,
12218 				 * since it's only using frame pointer and immediate
12219 				 * constant of zero
12220 				 */
12221 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
12222 					   env->insn_aux_data[i + delta].sanitize_stack_off,
12223 					   0),
12224 				/* the original STX instruction will immediately
12225 				 * overwrite the same stack slot with appropriate value
12226 				 */
12227 				*insn,
12228 			};
12229 
12230 			cnt = ARRAY_SIZE(patch);
12231 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
12232 			if (!new_prog)
12233 				return -ENOMEM;
12234 
12235 			delta    += cnt - 1;
12236 			env->prog = new_prog;
12237 			insn      = new_prog->insnsi + i + delta;
12238 			continue;
12239 		}
12240 
12241 		switch (env->insn_aux_data[i + delta].ptr_type) {
12242 		case PTR_TO_CTX:
12243 			if (!ops->convert_ctx_access)
12244 				continue;
12245 			convert_ctx_access = ops->convert_ctx_access;
12246 			break;
12247 		case PTR_TO_SOCKET:
12248 		case PTR_TO_SOCK_COMMON:
12249 			convert_ctx_access = bpf_sock_convert_ctx_access;
12250 			break;
12251 		case PTR_TO_TCP_SOCK:
12252 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
12253 			break;
12254 		case PTR_TO_XDP_SOCK:
12255 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
12256 			break;
12257 		case PTR_TO_BTF_ID:
12258 			if (type == BPF_READ) {
12259 				insn->code = BPF_LDX | BPF_PROBE_MEM |
12260 					BPF_SIZE((insn)->code);
12261 				env->prog->aux->num_exentries++;
12262 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
12263 				verbose(env, "Writes through BTF pointers are not allowed\n");
12264 				return -EINVAL;
12265 			}
12266 			continue;
12267 		default:
12268 			continue;
12269 		}
12270 
12271 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
12272 		size = BPF_LDST_BYTES(insn);
12273 
12274 		/* If the read access is a narrower load of the field,
12275 		 * convert to a 4/8-byte load, to minimum program type specific
12276 		 * convert_ctx_access changes. If conversion is successful,
12277 		 * we will apply proper mask to the result.
12278 		 */
12279 		is_narrower_load = size < ctx_field_size;
12280 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
12281 		off = insn->off;
12282 		if (is_narrower_load) {
12283 			u8 size_code;
12284 
12285 			if (type == BPF_WRITE) {
12286 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
12287 				return -EINVAL;
12288 			}
12289 
12290 			size_code = BPF_H;
12291 			if (ctx_field_size == 4)
12292 				size_code = BPF_W;
12293 			else if (ctx_field_size == 8)
12294 				size_code = BPF_DW;
12295 
12296 			insn->off = off & ~(size_default - 1);
12297 			insn->code = BPF_LDX | BPF_MEM | size_code;
12298 		}
12299 
12300 		target_size = 0;
12301 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
12302 					 &target_size);
12303 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
12304 		    (ctx_field_size && !target_size)) {
12305 			verbose(env, "bpf verifier is misconfigured\n");
12306 			return -EINVAL;
12307 		}
12308 
12309 		if (is_narrower_load && size < target_size) {
12310 			u8 shift = bpf_ctx_narrow_access_offset(
12311 				off, size, size_default) * 8;
12312 			if (ctx_field_size <= 4) {
12313 				if (shift)
12314 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
12315 									insn->dst_reg,
12316 									shift);
12317 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
12318 								(1 << size * 8) - 1);
12319 			} else {
12320 				if (shift)
12321 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
12322 									insn->dst_reg,
12323 									shift);
12324 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
12325 								(1ULL << size * 8) - 1);
12326 			}
12327 		}
12328 
12329 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12330 		if (!new_prog)
12331 			return -ENOMEM;
12332 
12333 		delta += cnt - 1;
12334 
12335 		/* keep walking new program and skip insns we just inserted */
12336 		env->prog = new_prog;
12337 		insn      = new_prog->insnsi + i + delta;
12338 	}
12339 
12340 	return 0;
12341 }
12342 
12343 static int jit_subprogs(struct bpf_verifier_env *env)
12344 {
12345 	struct bpf_prog *prog = env->prog, **func, *tmp;
12346 	int i, j, subprog_start, subprog_end = 0, len, subprog;
12347 	struct bpf_map *map_ptr;
12348 	struct bpf_insn *insn;
12349 	void *old_bpf_func;
12350 	int err, num_exentries;
12351 
12352 	if (env->subprog_cnt <= 1)
12353 		return 0;
12354 
12355 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12356 		if (bpf_pseudo_func(insn)) {
12357 			env->insn_aux_data[i].call_imm = insn->imm;
12358 			/* subprog is encoded in insn[1].imm */
12359 			continue;
12360 		}
12361 
12362 		if (!bpf_pseudo_call(insn))
12363 			continue;
12364 		/* Upon error here we cannot fall back to interpreter but
12365 		 * need a hard reject of the program. Thus -EFAULT is
12366 		 * propagated in any case.
12367 		 */
12368 		subprog = find_subprog(env, i + insn->imm + 1);
12369 		if (subprog < 0) {
12370 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
12371 				  i + insn->imm + 1);
12372 			return -EFAULT;
12373 		}
12374 		/* temporarily remember subprog id inside insn instead of
12375 		 * aux_data, since next loop will split up all insns into funcs
12376 		 */
12377 		insn->off = subprog;
12378 		/* remember original imm in case JIT fails and fallback
12379 		 * to interpreter will be needed
12380 		 */
12381 		env->insn_aux_data[i].call_imm = insn->imm;
12382 		/* point imm to __bpf_call_base+1 from JITs point of view */
12383 		insn->imm = 1;
12384 	}
12385 
12386 	err = bpf_prog_alloc_jited_linfo(prog);
12387 	if (err)
12388 		goto out_undo_insn;
12389 
12390 	err = -ENOMEM;
12391 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
12392 	if (!func)
12393 		goto out_undo_insn;
12394 
12395 	for (i = 0; i < env->subprog_cnt; i++) {
12396 		subprog_start = subprog_end;
12397 		subprog_end = env->subprog_info[i + 1].start;
12398 
12399 		len = subprog_end - subprog_start;
12400 		/* BPF_PROG_RUN doesn't call subprogs directly,
12401 		 * hence main prog stats include the runtime of subprogs.
12402 		 * subprogs don't have IDs and not reachable via prog_get_next_id
12403 		 * func[i]->stats will never be accessed and stays NULL
12404 		 */
12405 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
12406 		if (!func[i])
12407 			goto out_free;
12408 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
12409 		       len * sizeof(struct bpf_insn));
12410 		func[i]->type = prog->type;
12411 		func[i]->len = len;
12412 		if (bpf_prog_calc_tag(func[i]))
12413 			goto out_free;
12414 		func[i]->is_func = 1;
12415 		func[i]->aux->func_idx = i;
12416 		/* Below members will be freed only at prog->aux */
12417 		func[i]->aux->btf = prog->aux->btf;
12418 		func[i]->aux->func_info = prog->aux->func_info;
12419 		func[i]->aux->poke_tab = prog->aux->poke_tab;
12420 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
12421 
12422 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
12423 			struct bpf_jit_poke_descriptor *poke;
12424 
12425 			poke = &prog->aux->poke_tab[j];
12426 			if (poke->insn_idx < subprog_end &&
12427 			    poke->insn_idx >= subprog_start)
12428 				poke->aux = func[i]->aux;
12429 		}
12430 
12431 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
12432 		 * Long term would need debug info to populate names
12433 		 */
12434 		func[i]->aux->name[0] = 'F';
12435 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
12436 		func[i]->jit_requested = 1;
12437 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
12438 		func[i]->aux->linfo = prog->aux->linfo;
12439 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
12440 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
12441 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
12442 		num_exentries = 0;
12443 		insn = func[i]->insnsi;
12444 		for (j = 0; j < func[i]->len; j++, insn++) {
12445 			if (BPF_CLASS(insn->code) == BPF_LDX &&
12446 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
12447 				num_exentries++;
12448 		}
12449 		func[i]->aux->num_exentries = num_exentries;
12450 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
12451 		func[i] = bpf_int_jit_compile(func[i]);
12452 		if (!func[i]->jited) {
12453 			err = -ENOTSUPP;
12454 			goto out_free;
12455 		}
12456 		cond_resched();
12457 	}
12458 
12459 	/* at this point all bpf functions were successfully JITed
12460 	 * now populate all bpf_calls with correct addresses and
12461 	 * run last pass of JIT
12462 	 */
12463 	for (i = 0; i < env->subprog_cnt; i++) {
12464 		insn = func[i]->insnsi;
12465 		for (j = 0; j < func[i]->len; j++, insn++) {
12466 			if (bpf_pseudo_func(insn)) {
12467 				subprog = insn[1].imm;
12468 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
12469 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
12470 				continue;
12471 			}
12472 			if (!bpf_pseudo_call(insn))
12473 				continue;
12474 			subprog = insn->off;
12475 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
12476 				    __bpf_call_base;
12477 		}
12478 
12479 		/* we use the aux data to keep a list of the start addresses
12480 		 * of the JITed images for each function in the program
12481 		 *
12482 		 * for some architectures, such as powerpc64, the imm field
12483 		 * might not be large enough to hold the offset of the start
12484 		 * address of the callee's JITed image from __bpf_call_base
12485 		 *
12486 		 * in such cases, we can lookup the start address of a callee
12487 		 * by using its subprog id, available from the off field of
12488 		 * the call instruction, as an index for this list
12489 		 */
12490 		func[i]->aux->func = func;
12491 		func[i]->aux->func_cnt = env->subprog_cnt;
12492 	}
12493 	for (i = 0; i < env->subprog_cnt; i++) {
12494 		old_bpf_func = func[i]->bpf_func;
12495 		tmp = bpf_int_jit_compile(func[i]);
12496 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
12497 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
12498 			err = -ENOTSUPP;
12499 			goto out_free;
12500 		}
12501 		cond_resched();
12502 	}
12503 
12504 	/* finally lock prog and jit images for all functions and
12505 	 * populate kallsysm
12506 	 */
12507 	for (i = 0; i < env->subprog_cnt; i++) {
12508 		bpf_prog_lock_ro(func[i]);
12509 		bpf_prog_kallsyms_add(func[i]);
12510 	}
12511 
12512 	/* Last step: make now unused interpreter insns from main
12513 	 * prog consistent for later dump requests, so they can
12514 	 * later look the same as if they were interpreted only.
12515 	 */
12516 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12517 		if (bpf_pseudo_func(insn)) {
12518 			insn[0].imm = env->insn_aux_data[i].call_imm;
12519 			insn[1].imm = find_subprog(env, i + insn[0].imm + 1);
12520 			continue;
12521 		}
12522 		if (!bpf_pseudo_call(insn))
12523 			continue;
12524 		insn->off = env->insn_aux_data[i].call_imm;
12525 		subprog = find_subprog(env, i + insn->off + 1);
12526 		insn->imm = subprog;
12527 	}
12528 
12529 	prog->jited = 1;
12530 	prog->bpf_func = func[0]->bpf_func;
12531 	prog->aux->func = func;
12532 	prog->aux->func_cnt = env->subprog_cnt;
12533 	bpf_prog_jit_attempt_done(prog);
12534 	return 0;
12535 out_free:
12536 	/* We failed JIT'ing, so at this point we need to unregister poke
12537 	 * descriptors from subprogs, so that kernel is not attempting to
12538 	 * patch it anymore as we're freeing the subprog JIT memory.
12539 	 */
12540 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
12541 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
12542 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
12543 	}
12544 	/* At this point we're guaranteed that poke descriptors are not
12545 	 * live anymore. We can just unlink its descriptor table as it's
12546 	 * released with the main prog.
12547 	 */
12548 	for (i = 0; i < env->subprog_cnt; i++) {
12549 		if (!func[i])
12550 			continue;
12551 		func[i]->aux->poke_tab = NULL;
12552 		bpf_jit_free(func[i]);
12553 	}
12554 	kfree(func);
12555 out_undo_insn:
12556 	/* cleanup main prog to be interpreted */
12557 	prog->jit_requested = 0;
12558 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12559 		if (!bpf_pseudo_call(insn))
12560 			continue;
12561 		insn->off = 0;
12562 		insn->imm = env->insn_aux_data[i].call_imm;
12563 	}
12564 	bpf_prog_jit_attempt_done(prog);
12565 	return err;
12566 }
12567 
12568 static int fixup_call_args(struct bpf_verifier_env *env)
12569 {
12570 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12571 	struct bpf_prog *prog = env->prog;
12572 	struct bpf_insn *insn = prog->insnsi;
12573 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
12574 	int i, depth;
12575 #endif
12576 	int err = 0;
12577 
12578 	if (env->prog->jit_requested &&
12579 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
12580 		err = jit_subprogs(env);
12581 		if (err == 0)
12582 			return 0;
12583 		if (err == -EFAULT)
12584 			return err;
12585 	}
12586 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12587 	if (has_kfunc_call) {
12588 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
12589 		return -EINVAL;
12590 	}
12591 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
12592 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
12593 		 * have to be rejected, since interpreter doesn't support them yet.
12594 		 */
12595 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
12596 		return -EINVAL;
12597 	}
12598 	for (i = 0; i < prog->len; i++, insn++) {
12599 		if (bpf_pseudo_func(insn)) {
12600 			/* When JIT fails the progs with callback calls
12601 			 * have to be rejected, since interpreter doesn't support them yet.
12602 			 */
12603 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
12604 			return -EINVAL;
12605 		}
12606 
12607 		if (!bpf_pseudo_call(insn))
12608 			continue;
12609 		depth = get_callee_stack_depth(env, insn, i);
12610 		if (depth < 0)
12611 			return depth;
12612 		bpf_patch_call_args(insn, depth);
12613 	}
12614 	err = 0;
12615 #endif
12616 	return err;
12617 }
12618 
12619 static int fixup_kfunc_call(struct bpf_verifier_env *env,
12620 			    struct bpf_insn *insn)
12621 {
12622 	const struct bpf_kfunc_desc *desc;
12623 
12624 	/* insn->imm has the btf func_id. Replace it with
12625 	 * an address (relative to __bpf_base_call).
12626 	 */
12627 	desc = find_kfunc_desc(env->prog, insn->imm);
12628 	if (!desc) {
12629 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
12630 			insn->imm);
12631 		return -EFAULT;
12632 	}
12633 
12634 	insn->imm = desc->imm;
12635 
12636 	return 0;
12637 }
12638 
12639 /* Do various post-verification rewrites in a single program pass.
12640  * These rewrites simplify JIT and interpreter implementations.
12641  */
12642 static int do_misc_fixups(struct bpf_verifier_env *env)
12643 {
12644 	struct bpf_prog *prog = env->prog;
12645 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
12646 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
12647 	struct bpf_insn *insn = prog->insnsi;
12648 	const struct bpf_func_proto *fn;
12649 	const int insn_cnt = prog->len;
12650 	const struct bpf_map_ops *ops;
12651 	struct bpf_insn_aux_data *aux;
12652 	struct bpf_insn insn_buf[16];
12653 	struct bpf_prog *new_prog;
12654 	struct bpf_map *map_ptr;
12655 	int i, ret, cnt, delta = 0;
12656 
12657 	for (i = 0; i < insn_cnt; i++, insn++) {
12658 		/* Make divide-by-zero exceptions impossible. */
12659 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
12660 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
12661 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
12662 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
12663 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
12664 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
12665 			struct bpf_insn *patchlet;
12666 			struct bpf_insn chk_and_div[] = {
12667 				/* [R,W]x div 0 -> 0 */
12668 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12669 					     BPF_JNE | BPF_K, insn->src_reg,
12670 					     0, 2, 0),
12671 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
12672 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12673 				*insn,
12674 			};
12675 			struct bpf_insn chk_and_mod[] = {
12676 				/* [R,W]x mod 0 -> [R,W]x */
12677 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12678 					     BPF_JEQ | BPF_K, insn->src_reg,
12679 					     0, 1 + (is64 ? 0 : 1), 0),
12680 				*insn,
12681 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12682 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
12683 			};
12684 
12685 			patchlet = isdiv ? chk_and_div : chk_and_mod;
12686 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
12687 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
12688 
12689 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
12690 			if (!new_prog)
12691 				return -ENOMEM;
12692 
12693 			delta    += cnt - 1;
12694 			env->prog = prog = new_prog;
12695 			insn      = new_prog->insnsi + i + delta;
12696 			continue;
12697 		}
12698 
12699 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
12700 		if (BPF_CLASS(insn->code) == BPF_LD &&
12701 		    (BPF_MODE(insn->code) == BPF_ABS ||
12702 		     BPF_MODE(insn->code) == BPF_IND)) {
12703 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
12704 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12705 				verbose(env, "bpf verifier is misconfigured\n");
12706 				return -EINVAL;
12707 			}
12708 
12709 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12710 			if (!new_prog)
12711 				return -ENOMEM;
12712 
12713 			delta    += cnt - 1;
12714 			env->prog = prog = new_prog;
12715 			insn      = new_prog->insnsi + i + delta;
12716 			continue;
12717 		}
12718 
12719 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
12720 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
12721 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
12722 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
12723 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
12724 			struct bpf_insn *patch = &insn_buf[0];
12725 			bool issrc, isneg, isimm;
12726 			u32 off_reg;
12727 
12728 			aux = &env->insn_aux_data[i + delta];
12729 			if (!aux->alu_state ||
12730 			    aux->alu_state == BPF_ALU_NON_POINTER)
12731 				continue;
12732 
12733 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
12734 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
12735 				BPF_ALU_SANITIZE_SRC;
12736 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
12737 
12738 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
12739 			if (isimm) {
12740 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12741 			} else {
12742 				if (isneg)
12743 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12744 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12745 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
12746 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
12747 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
12748 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
12749 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
12750 			}
12751 			if (!issrc)
12752 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
12753 			insn->src_reg = BPF_REG_AX;
12754 			if (isneg)
12755 				insn->code = insn->code == code_add ?
12756 					     code_sub : code_add;
12757 			*patch++ = *insn;
12758 			if (issrc && isneg && !isimm)
12759 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12760 			cnt = patch - insn_buf;
12761 
12762 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12763 			if (!new_prog)
12764 				return -ENOMEM;
12765 
12766 			delta    += cnt - 1;
12767 			env->prog = prog = new_prog;
12768 			insn      = new_prog->insnsi + i + delta;
12769 			continue;
12770 		}
12771 
12772 		if (insn->code != (BPF_JMP | BPF_CALL))
12773 			continue;
12774 		if (insn->src_reg == BPF_PSEUDO_CALL)
12775 			continue;
12776 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
12777 			ret = fixup_kfunc_call(env, insn);
12778 			if (ret)
12779 				return ret;
12780 			continue;
12781 		}
12782 
12783 		if (insn->imm == BPF_FUNC_get_route_realm)
12784 			prog->dst_needed = 1;
12785 		if (insn->imm == BPF_FUNC_get_prandom_u32)
12786 			bpf_user_rnd_init_once();
12787 		if (insn->imm == BPF_FUNC_override_return)
12788 			prog->kprobe_override = 1;
12789 		if (insn->imm == BPF_FUNC_tail_call) {
12790 			/* If we tail call into other programs, we
12791 			 * cannot make any assumptions since they can
12792 			 * be replaced dynamically during runtime in
12793 			 * the program array.
12794 			 */
12795 			prog->cb_access = 1;
12796 			if (!allow_tail_call_in_subprogs(env))
12797 				prog->aux->stack_depth = MAX_BPF_STACK;
12798 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
12799 
12800 			/* mark bpf_tail_call as different opcode to avoid
12801 			 * conditional branch in the interpreter for every normal
12802 			 * call and to prevent accidental JITing by JIT compiler
12803 			 * that doesn't support bpf_tail_call yet
12804 			 */
12805 			insn->imm = 0;
12806 			insn->code = BPF_JMP | BPF_TAIL_CALL;
12807 
12808 			aux = &env->insn_aux_data[i + delta];
12809 			if (env->bpf_capable && !expect_blinding &&
12810 			    prog->jit_requested &&
12811 			    !bpf_map_key_poisoned(aux) &&
12812 			    !bpf_map_ptr_poisoned(aux) &&
12813 			    !bpf_map_ptr_unpriv(aux)) {
12814 				struct bpf_jit_poke_descriptor desc = {
12815 					.reason = BPF_POKE_REASON_TAIL_CALL,
12816 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
12817 					.tail_call.key = bpf_map_key_immediate(aux),
12818 					.insn_idx = i + delta,
12819 				};
12820 
12821 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
12822 				if (ret < 0) {
12823 					verbose(env, "adding tail call poke descriptor failed\n");
12824 					return ret;
12825 				}
12826 
12827 				insn->imm = ret + 1;
12828 				continue;
12829 			}
12830 
12831 			if (!bpf_map_ptr_unpriv(aux))
12832 				continue;
12833 
12834 			/* instead of changing every JIT dealing with tail_call
12835 			 * emit two extra insns:
12836 			 * if (index >= max_entries) goto out;
12837 			 * index &= array->index_mask;
12838 			 * to avoid out-of-bounds cpu speculation
12839 			 */
12840 			if (bpf_map_ptr_poisoned(aux)) {
12841 				verbose(env, "tail_call abusing map_ptr\n");
12842 				return -EINVAL;
12843 			}
12844 
12845 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
12846 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
12847 						  map_ptr->max_entries, 2);
12848 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
12849 						    container_of(map_ptr,
12850 								 struct bpf_array,
12851 								 map)->index_mask);
12852 			insn_buf[2] = *insn;
12853 			cnt = 3;
12854 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12855 			if (!new_prog)
12856 				return -ENOMEM;
12857 
12858 			delta    += cnt - 1;
12859 			env->prog = prog = new_prog;
12860 			insn      = new_prog->insnsi + i + delta;
12861 			continue;
12862 		}
12863 
12864 		if (insn->imm == BPF_FUNC_timer_set_callback) {
12865 			/* The verifier will process callback_fn as many times as necessary
12866 			 * with different maps and the register states prepared by
12867 			 * set_timer_callback_state will be accurate.
12868 			 *
12869 			 * The following use case is valid:
12870 			 *   map1 is shared by prog1, prog2, prog3.
12871 			 *   prog1 calls bpf_timer_init for some map1 elements
12872 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
12873 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
12874 			 *   prog3 calls bpf_timer_start for some map1 elements.
12875 			 *     Those that were not both bpf_timer_init-ed and
12876 			 *     bpf_timer_set_callback-ed will return -EINVAL.
12877 			 */
12878 			struct bpf_insn ld_addrs[2] = {
12879 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
12880 			};
12881 
12882 			insn_buf[0] = ld_addrs[0];
12883 			insn_buf[1] = ld_addrs[1];
12884 			insn_buf[2] = *insn;
12885 			cnt = 3;
12886 
12887 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12888 			if (!new_prog)
12889 				return -ENOMEM;
12890 
12891 			delta    += cnt - 1;
12892 			env->prog = prog = new_prog;
12893 			insn      = new_prog->insnsi + i + delta;
12894 			goto patch_call_imm;
12895 		}
12896 
12897 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
12898 		 * and other inlining handlers are currently limited to 64 bit
12899 		 * only.
12900 		 */
12901 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
12902 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
12903 		     insn->imm == BPF_FUNC_map_update_elem ||
12904 		     insn->imm == BPF_FUNC_map_delete_elem ||
12905 		     insn->imm == BPF_FUNC_map_push_elem   ||
12906 		     insn->imm == BPF_FUNC_map_pop_elem    ||
12907 		     insn->imm == BPF_FUNC_map_peek_elem   ||
12908 		     insn->imm == BPF_FUNC_redirect_map)) {
12909 			aux = &env->insn_aux_data[i + delta];
12910 			if (bpf_map_ptr_poisoned(aux))
12911 				goto patch_call_imm;
12912 
12913 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
12914 			ops = map_ptr->ops;
12915 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
12916 			    ops->map_gen_lookup) {
12917 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
12918 				if (cnt == -EOPNOTSUPP)
12919 					goto patch_map_ops_generic;
12920 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12921 					verbose(env, "bpf verifier is misconfigured\n");
12922 					return -EINVAL;
12923 				}
12924 
12925 				new_prog = bpf_patch_insn_data(env, i + delta,
12926 							       insn_buf, cnt);
12927 				if (!new_prog)
12928 					return -ENOMEM;
12929 
12930 				delta    += cnt - 1;
12931 				env->prog = prog = new_prog;
12932 				insn      = new_prog->insnsi + i + delta;
12933 				continue;
12934 			}
12935 
12936 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
12937 				     (void *(*)(struct bpf_map *map, void *key))NULL));
12938 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
12939 				     (int (*)(struct bpf_map *map, void *key))NULL));
12940 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
12941 				     (int (*)(struct bpf_map *map, void *key, void *value,
12942 					      u64 flags))NULL));
12943 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
12944 				     (int (*)(struct bpf_map *map, void *value,
12945 					      u64 flags))NULL));
12946 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
12947 				     (int (*)(struct bpf_map *map, void *value))NULL));
12948 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
12949 				     (int (*)(struct bpf_map *map, void *value))NULL));
12950 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
12951 				     (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
12952 
12953 patch_map_ops_generic:
12954 			switch (insn->imm) {
12955 			case BPF_FUNC_map_lookup_elem:
12956 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
12957 					    __bpf_call_base;
12958 				continue;
12959 			case BPF_FUNC_map_update_elem:
12960 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
12961 					    __bpf_call_base;
12962 				continue;
12963 			case BPF_FUNC_map_delete_elem:
12964 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
12965 					    __bpf_call_base;
12966 				continue;
12967 			case BPF_FUNC_map_push_elem:
12968 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
12969 					    __bpf_call_base;
12970 				continue;
12971 			case BPF_FUNC_map_pop_elem:
12972 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
12973 					    __bpf_call_base;
12974 				continue;
12975 			case BPF_FUNC_map_peek_elem:
12976 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
12977 					    __bpf_call_base;
12978 				continue;
12979 			case BPF_FUNC_redirect_map:
12980 				insn->imm = BPF_CAST_CALL(ops->map_redirect) -
12981 					    __bpf_call_base;
12982 				continue;
12983 			}
12984 
12985 			goto patch_call_imm;
12986 		}
12987 
12988 		/* Implement bpf_jiffies64 inline. */
12989 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
12990 		    insn->imm == BPF_FUNC_jiffies64) {
12991 			struct bpf_insn ld_jiffies_addr[2] = {
12992 				BPF_LD_IMM64(BPF_REG_0,
12993 					     (unsigned long)&jiffies),
12994 			};
12995 
12996 			insn_buf[0] = ld_jiffies_addr[0];
12997 			insn_buf[1] = ld_jiffies_addr[1];
12998 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
12999 						  BPF_REG_0, 0);
13000 			cnt = 3;
13001 
13002 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
13003 						       cnt);
13004 			if (!new_prog)
13005 				return -ENOMEM;
13006 
13007 			delta    += cnt - 1;
13008 			env->prog = prog = new_prog;
13009 			insn      = new_prog->insnsi + i + delta;
13010 			continue;
13011 		}
13012 
13013 		/* Implement bpf_get_func_ip inline. */
13014 		if (prog_type == BPF_PROG_TYPE_TRACING &&
13015 		    insn->imm == BPF_FUNC_get_func_ip) {
13016 			/* Load IP address from ctx - 8 */
13017 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
13018 
13019 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
13020 			if (!new_prog)
13021 				return -ENOMEM;
13022 
13023 			env->prog = prog = new_prog;
13024 			insn      = new_prog->insnsi + i + delta;
13025 			continue;
13026 		}
13027 
13028 patch_call_imm:
13029 		fn = env->ops->get_func_proto(insn->imm, env->prog);
13030 		/* all functions that have prototype and verifier allowed
13031 		 * programs to call them, must be real in-kernel functions
13032 		 */
13033 		if (!fn->func) {
13034 			verbose(env,
13035 				"kernel subsystem misconfigured func %s#%d\n",
13036 				func_id_name(insn->imm), insn->imm);
13037 			return -EFAULT;
13038 		}
13039 		insn->imm = fn->func - __bpf_call_base;
13040 	}
13041 
13042 	/* Since poke tab is now finalized, publish aux to tracker. */
13043 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
13044 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
13045 		if (!map_ptr->ops->map_poke_track ||
13046 		    !map_ptr->ops->map_poke_untrack ||
13047 		    !map_ptr->ops->map_poke_run) {
13048 			verbose(env, "bpf verifier is misconfigured\n");
13049 			return -EINVAL;
13050 		}
13051 
13052 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
13053 		if (ret < 0) {
13054 			verbose(env, "tracking tail call prog failed\n");
13055 			return ret;
13056 		}
13057 	}
13058 
13059 	sort_kfunc_descs_by_imm(env->prog);
13060 
13061 	return 0;
13062 }
13063 
13064 static void free_states(struct bpf_verifier_env *env)
13065 {
13066 	struct bpf_verifier_state_list *sl, *sln;
13067 	int i;
13068 
13069 	sl = env->free_list;
13070 	while (sl) {
13071 		sln = sl->next;
13072 		free_verifier_state(&sl->state, false);
13073 		kfree(sl);
13074 		sl = sln;
13075 	}
13076 	env->free_list = NULL;
13077 
13078 	if (!env->explored_states)
13079 		return;
13080 
13081 	for (i = 0; i < state_htab_size(env); i++) {
13082 		sl = env->explored_states[i];
13083 
13084 		while (sl) {
13085 			sln = sl->next;
13086 			free_verifier_state(&sl->state, false);
13087 			kfree(sl);
13088 			sl = sln;
13089 		}
13090 		env->explored_states[i] = NULL;
13091 	}
13092 }
13093 
13094 /* The verifier is using insn_aux_data[] to store temporary data during
13095  * verification and to store information for passes that run after the
13096  * verification like dead code sanitization. do_check_common() for subprogram N
13097  * may analyze many other subprograms. sanitize_insn_aux_data() clears all
13098  * temporary data after do_check_common() finds that subprogram N cannot be
13099  * verified independently. pass_cnt counts the number of times
13100  * do_check_common() was run and insn->aux->seen tells the pass number
13101  * insn_aux_data was touched. These variables are compared to clear temporary
13102  * data from failed pass. For testing and experiments do_check_common() can be
13103  * run multiple times even when prior attempt to verify is unsuccessful.
13104  *
13105  * Note that special handling is needed on !env->bypass_spec_v1 if this is
13106  * ever called outside of error path with subsequent program rejection.
13107  */
13108 static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
13109 {
13110 	struct bpf_insn *insn = env->prog->insnsi;
13111 	struct bpf_insn_aux_data *aux;
13112 	int i, class;
13113 
13114 	for (i = 0; i < env->prog->len; i++) {
13115 		class = BPF_CLASS(insn[i].code);
13116 		if (class != BPF_LDX && class != BPF_STX)
13117 			continue;
13118 		aux = &env->insn_aux_data[i];
13119 		if (aux->seen != env->pass_cnt)
13120 			continue;
13121 		memset(aux, 0, offsetof(typeof(*aux), orig_idx));
13122 	}
13123 }
13124 
13125 static int do_check_common(struct bpf_verifier_env *env, int subprog)
13126 {
13127 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
13128 	struct bpf_verifier_state *state;
13129 	struct bpf_reg_state *regs;
13130 	int ret, i;
13131 
13132 	env->prev_linfo = NULL;
13133 	env->pass_cnt++;
13134 
13135 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
13136 	if (!state)
13137 		return -ENOMEM;
13138 	state->curframe = 0;
13139 	state->speculative = false;
13140 	state->branches = 1;
13141 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
13142 	if (!state->frame[0]) {
13143 		kfree(state);
13144 		return -ENOMEM;
13145 	}
13146 	env->cur_state = state;
13147 	init_func_state(env, state->frame[0],
13148 			BPF_MAIN_FUNC /* callsite */,
13149 			0 /* frameno */,
13150 			subprog);
13151 
13152 	regs = state->frame[state->curframe]->regs;
13153 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
13154 		ret = btf_prepare_func_args(env, subprog, regs);
13155 		if (ret)
13156 			goto out;
13157 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
13158 			if (regs[i].type == PTR_TO_CTX)
13159 				mark_reg_known_zero(env, regs, i);
13160 			else if (regs[i].type == SCALAR_VALUE)
13161 				mark_reg_unknown(env, regs, i);
13162 			else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
13163 				const u32 mem_size = regs[i].mem_size;
13164 
13165 				mark_reg_known_zero(env, regs, i);
13166 				regs[i].mem_size = mem_size;
13167 				regs[i].id = ++env->id_gen;
13168 			}
13169 		}
13170 	} else {
13171 		/* 1st arg to a function */
13172 		regs[BPF_REG_1].type = PTR_TO_CTX;
13173 		mark_reg_known_zero(env, regs, BPF_REG_1);
13174 		ret = btf_check_subprog_arg_match(env, subprog, regs);
13175 		if (ret == -EFAULT)
13176 			/* unlikely verifier bug. abort.
13177 			 * ret == 0 and ret < 0 are sadly acceptable for
13178 			 * main() function due to backward compatibility.
13179 			 * Like socket filter program may be written as:
13180 			 * int bpf_prog(struct pt_regs *ctx)
13181 			 * and never dereference that ctx in the program.
13182 			 * 'struct pt_regs' is a type mismatch for socket
13183 			 * filter that should be using 'struct __sk_buff'.
13184 			 */
13185 			goto out;
13186 	}
13187 
13188 	ret = do_check(env);
13189 out:
13190 	/* check for NULL is necessary, since cur_state can be freed inside
13191 	 * do_check() under memory pressure.
13192 	 */
13193 	if (env->cur_state) {
13194 		free_verifier_state(env->cur_state, true);
13195 		env->cur_state = NULL;
13196 	}
13197 	while (!pop_stack(env, NULL, NULL, false));
13198 	if (!ret && pop_log)
13199 		bpf_vlog_reset(&env->log, 0);
13200 	free_states(env);
13201 	if (ret)
13202 		/* clean aux data in case subprog was rejected */
13203 		sanitize_insn_aux_data(env);
13204 	return ret;
13205 }
13206 
13207 /* Verify all global functions in a BPF program one by one based on their BTF.
13208  * All global functions must pass verification. Otherwise the whole program is rejected.
13209  * Consider:
13210  * int bar(int);
13211  * int foo(int f)
13212  * {
13213  *    return bar(f);
13214  * }
13215  * int bar(int b)
13216  * {
13217  *    ...
13218  * }
13219  * foo() will be verified first for R1=any_scalar_value. During verification it
13220  * will be assumed that bar() already verified successfully and call to bar()
13221  * from foo() will be checked for type match only. Later bar() will be verified
13222  * independently to check that it's safe for R1=any_scalar_value.
13223  */
13224 static int do_check_subprogs(struct bpf_verifier_env *env)
13225 {
13226 	struct bpf_prog_aux *aux = env->prog->aux;
13227 	int i, ret;
13228 
13229 	if (!aux->func_info)
13230 		return 0;
13231 
13232 	for (i = 1; i < env->subprog_cnt; i++) {
13233 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
13234 			continue;
13235 		env->insn_idx = env->subprog_info[i].start;
13236 		WARN_ON_ONCE(env->insn_idx == 0);
13237 		ret = do_check_common(env, i);
13238 		if (ret) {
13239 			return ret;
13240 		} else if (env->log.level & BPF_LOG_LEVEL) {
13241 			verbose(env,
13242 				"Func#%d is safe for any args that match its prototype\n",
13243 				i);
13244 		}
13245 	}
13246 	return 0;
13247 }
13248 
13249 static int do_check_main(struct bpf_verifier_env *env)
13250 {
13251 	int ret;
13252 
13253 	env->insn_idx = 0;
13254 	ret = do_check_common(env, 0);
13255 	if (!ret)
13256 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
13257 	return ret;
13258 }
13259 
13260 
13261 static void print_verification_stats(struct bpf_verifier_env *env)
13262 {
13263 	int i;
13264 
13265 	if (env->log.level & BPF_LOG_STATS) {
13266 		verbose(env, "verification time %lld usec\n",
13267 			div_u64(env->verification_time, 1000));
13268 		verbose(env, "stack depth ");
13269 		for (i = 0; i < env->subprog_cnt; i++) {
13270 			u32 depth = env->subprog_info[i].stack_depth;
13271 
13272 			verbose(env, "%d", depth);
13273 			if (i + 1 < env->subprog_cnt)
13274 				verbose(env, "+");
13275 		}
13276 		verbose(env, "\n");
13277 	}
13278 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
13279 		"total_states %d peak_states %d mark_read %d\n",
13280 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
13281 		env->max_states_per_insn, env->total_states,
13282 		env->peak_states, env->longest_mark_read_walk);
13283 }
13284 
13285 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
13286 {
13287 	const struct btf_type *t, *func_proto;
13288 	const struct bpf_struct_ops *st_ops;
13289 	const struct btf_member *member;
13290 	struct bpf_prog *prog = env->prog;
13291 	u32 btf_id, member_idx;
13292 	const char *mname;
13293 
13294 	if (!prog->gpl_compatible) {
13295 		verbose(env, "struct ops programs must have a GPL compatible license\n");
13296 		return -EINVAL;
13297 	}
13298 
13299 	btf_id = prog->aux->attach_btf_id;
13300 	st_ops = bpf_struct_ops_find(btf_id);
13301 	if (!st_ops) {
13302 		verbose(env, "attach_btf_id %u is not a supported struct\n",
13303 			btf_id);
13304 		return -ENOTSUPP;
13305 	}
13306 
13307 	t = st_ops->type;
13308 	member_idx = prog->expected_attach_type;
13309 	if (member_idx >= btf_type_vlen(t)) {
13310 		verbose(env, "attach to invalid member idx %u of struct %s\n",
13311 			member_idx, st_ops->name);
13312 		return -EINVAL;
13313 	}
13314 
13315 	member = &btf_type_member(t)[member_idx];
13316 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
13317 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
13318 					       NULL);
13319 	if (!func_proto) {
13320 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
13321 			mname, member_idx, st_ops->name);
13322 		return -EINVAL;
13323 	}
13324 
13325 	if (st_ops->check_member) {
13326 		int err = st_ops->check_member(t, member);
13327 
13328 		if (err) {
13329 			verbose(env, "attach to unsupported member %s of struct %s\n",
13330 				mname, st_ops->name);
13331 			return err;
13332 		}
13333 	}
13334 
13335 	prog->aux->attach_func_proto = func_proto;
13336 	prog->aux->attach_func_name = mname;
13337 	env->ops = st_ops->verifier_ops;
13338 
13339 	return 0;
13340 }
13341 #define SECURITY_PREFIX "security_"
13342 
13343 static int check_attach_modify_return(unsigned long addr, const char *func_name)
13344 {
13345 	if (within_error_injection_list(addr) ||
13346 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
13347 		return 0;
13348 
13349 	return -EINVAL;
13350 }
13351 
13352 /* list of non-sleepable functions that are otherwise on
13353  * ALLOW_ERROR_INJECTION list
13354  */
13355 BTF_SET_START(btf_non_sleepable_error_inject)
13356 /* Three functions below can be called from sleepable and non-sleepable context.
13357  * Assume non-sleepable from bpf safety point of view.
13358  */
13359 BTF_ID(func, __add_to_page_cache_locked)
13360 BTF_ID(func, should_fail_alloc_page)
13361 BTF_ID(func, should_failslab)
13362 BTF_SET_END(btf_non_sleepable_error_inject)
13363 
13364 static int check_non_sleepable_error_inject(u32 btf_id)
13365 {
13366 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
13367 }
13368 
13369 int bpf_check_attach_target(struct bpf_verifier_log *log,
13370 			    const struct bpf_prog *prog,
13371 			    const struct bpf_prog *tgt_prog,
13372 			    u32 btf_id,
13373 			    struct bpf_attach_target_info *tgt_info)
13374 {
13375 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
13376 	const char prefix[] = "btf_trace_";
13377 	int ret = 0, subprog = -1, i;
13378 	const struct btf_type *t;
13379 	bool conservative = true;
13380 	const char *tname;
13381 	struct btf *btf;
13382 	long addr = 0;
13383 
13384 	if (!btf_id) {
13385 		bpf_log(log, "Tracing programs must provide btf_id\n");
13386 		return -EINVAL;
13387 	}
13388 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
13389 	if (!btf) {
13390 		bpf_log(log,
13391 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
13392 		return -EINVAL;
13393 	}
13394 	t = btf_type_by_id(btf, btf_id);
13395 	if (!t) {
13396 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
13397 		return -EINVAL;
13398 	}
13399 	tname = btf_name_by_offset(btf, t->name_off);
13400 	if (!tname) {
13401 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
13402 		return -EINVAL;
13403 	}
13404 	if (tgt_prog) {
13405 		struct bpf_prog_aux *aux = tgt_prog->aux;
13406 
13407 		for (i = 0; i < aux->func_info_cnt; i++)
13408 			if (aux->func_info[i].type_id == btf_id) {
13409 				subprog = i;
13410 				break;
13411 			}
13412 		if (subprog == -1) {
13413 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
13414 			return -EINVAL;
13415 		}
13416 		conservative = aux->func_info_aux[subprog].unreliable;
13417 		if (prog_extension) {
13418 			if (conservative) {
13419 				bpf_log(log,
13420 					"Cannot replace static functions\n");
13421 				return -EINVAL;
13422 			}
13423 			if (!prog->jit_requested) {
13424 				bpf_log(log,
13425 					"Extension programs should be JITed\n");
13426 				return -EINVAL;
13427 			}
13428 		}
13429 		if (!tgt_prog->jited) {
13430 			bpf_log(log, "Can attach to only JITed progs\n");
13431 			return -EINVAL;
13432 		}
13433 		if (tgt_prog->type == prog->type) {
13434 			/* Cannot fentry/fexit another fentry/fexit program.
13435 			 * Cannot attach program extension to another extension.
13436 			 * It's ok to attach fentry/fexit to extension program.
13437 			 */
13438 			bpf_log(log, "Cannot recursively attach\n");
13439 			return -EINVAL;
13440 		}
13441 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
13442 		    prog_extension &&
13443 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
13444 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
13445 			/* Program extensions can extend all program types
13446 			 * except fentry/fexit. The reason is the following.
13447 			 * The fentry/fexit programs are used for performance
13448 			 * analysis, stats and can be attached to any program
13449 			 * type except themselves. When extension program is
13450 			 * replacing XDP function it is necessary to allow
13451 			 * performance analysis of all functions. Both original
13452 			 * XDP program and its program extension. Hence
13453 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
13454 			 * allowed. If extending of fentry/fexit was allowed it
13455 			 * would be possible to create long call chain
13456 			 * fentry->extension->fentry->extension beyond
13457 			 * reasonable stack size. Hence extending fentry is not
13458 			 * allowed.
13459 			 */
13460 			bpf_log(log, "Cannot extend fentry/fexit\n");
13461 			return -EINVAL;
13462 		}
13463 	} else {
13464 		if (prog_extension) {
13465 			bpf_log(log, "Cannot replace kernel functions\n");
13466 			return -EINVAL;
13467 		}
13468 	}
13469 
13470 	switch (prog->expected_attach_type) {
13471 	case BPF_TRACE_RAW_TP:
13472 		if (tgt_prog) {
13473 			bpf_log(log,
13474 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
13475 			return -EINVAL;
13476 		}
13477 		if (!btf_type_is_typedef(t)) {
13478 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
13479 				btf_id);
13480 			return -EINVAL;
13481 		}
13482 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
13483 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
13484 				btf_id, tname);
13485 			return -EINVAL;
13486 		}
13487 		tname += sizeof(prefix) - 1;
13488 		t = btf_type_by_id(btf, t->type);
13489 		if (!btf_type_is_ptr(t))
13490 			/* should never happen in valid vmlinux build */
13491 			return -EINVAL;
13492 		t = btf_type_by_id(btf, t->type);
13493 		if (!btf_type_is_func_proto(t))
13494 			/* should never happen in valid vmlinux build */
13495 			return -EINVAL;
13496 
13497 		break;
13498 	case BPF_TRACE_ITER:
13499 		if (!btf_type_is_func(t)) {
13500 			bpf_log(log, "attach_btf_id %u is not a function\n",
13501 				btf_id);
13502 			return -EINVAL;
13503 		}
13504 		t = btf_type_by_id(btf, t->type);
13505 		if (!btf_type_is_func_proto(t))
13506 			return -EINVAL;
13507 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13508 		if (ret)
13509 			return ret;
13510 		break;
13511 	default:
13512 		if (!prog_extension)
13513 			return -EINVAL;
13514 		fallthrough;
13515 	case BPF_MODIFY_RETURN:
13516 	case BPF_LSM_MAC:
13517 	case BPF_TRACE_FENTRY:
13518 	case BPF_TRACE_FEXIT:
13519 		if (!btf_type_is_func(t)) {
13520 			bpf_log(log, "attach_btf_id %u is not a function\n",
13521 				btf_id);
13522 			return -EINVAL;
13523 		}
13524 		if (prog_extension &&
13525 		    btf_check_type_match(log, prog, btf, t))
13526 			return -EINVAL;
13527 		t = btf_type_by_id(btf, t->type);
13528 		if (!btf_type_is_func_proto(t))
13529 			return -EINVAL;
13530 
13531 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
13532 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
13533 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
13534 			return -EINVAL;
13535 
13536 		if (tgt_prog && conservative)
13537 			t = NULL;
13538 
13539 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13540 		if (ret < 0)
13541 			return ret;
13542 
13543 		if (tgt_prog) {
13544 			if (subprog == 0)
13545 				addr = (long) tgt_prog->bpf_func;
13546 			else
13547 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
13548 		} else {
13549 			addr = kallsyms_lookup_name(tname);
13550 			if (!addr) {
13551 				bpf_log(log,
13552 					"The address of function %s cannot be found\n",
13553 					tname);
13554 				return -ENOENT;
13555 			}
13556 		}
13557 
13558 		if (prog->aux->sleepable) {
13559 			ret = -EINVAL;
13560 			switch (prog->type) {
13561 			case BPF_PROG_TYPE_TRACING:
13562 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
13563 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
13564 				 */
13565 				if (!check_non_sleepable_error_inject(btf_id) &&
13566 				    within_error_injection_list(addr))
13567 					ret = 0;
13568 				break;
13569 			case BPF_PROG_TYPE_LSM:
13570 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
13571 				 * Only some of them are sleepable.
13572 				 */
13573 				if (bpf_lsm_is_sleepable_hook(btf_id))
13574 					ret = 0;
13575 				break;
13576 			default:
13577 				break;
13578 			}
13579 			if (ret) {
13580 				bpf_log(log, "%s is not sleepable\n", tname);
13581 				return ret;
13582 			}
13583 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
13584 			if (tgt_prog) {
13585 				bpf_log(log, "can't modify return codes of BPF programs\n");
13586 				return -EINVAL;
13587 			}
13588 			ret = check_attach_modify_return(addr, tname);
13589 			if (ret) {
13590 				bpf_log(log, "%s() is not modifiable\n", tname);
13591 				return ret;
13592 			}
13593 		}
13594 
13595 		break;
13596 	}
13597 	tgt_info->tgt_addr = addr;
13598 	tgt_info->tgt_name = tname;
13599 	tgt_info->tgt_type = t;
13600 	return 0;
13601 }
13602 
13603 BTF_SET_START(btf_id_deny)
13604 BTF_ID_UNUSED
13605 #ifdef CONFIG_SMP
13606 BTF_ID(func, migrate_disable)
13607 BTF_ID(func, migrate_enable)
13608 #endif
13609 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
13610 BTF_ID(func, rcu_read_unlock_strict)
13611 #endif
13612 BTF_SET_END(btf_id_deny)
13613 
13614 static int check_attach_btf_id(struct bpf_verifier_env *env)
13615 {
13616 	struct bpf_prog *prog = env->prog;
13617 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
13618 	struct bpf_attach_target_info tgt_info = {};
13619 	u32 btf_id = prog->aux->attach_btf_id;
13620 	struct bpf_trampoline *tr;
13621 	int ret;
13622 	u64 key;
13623 
13624 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
13625 		if (prog->aux->sleepable)
13626 			/* attach_btf_id checked to be zero already */
13627 			return 0;
13628 		verbose(env, "Syscall programs can only be sleepable\n");
13629 		return -EINVAL;
13630 	}
13631 
13632 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
13633 	    prog->type != BPF_PROG_TYPE_LSM) {
13634 		verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
13635 		return -EINVAL;
13636 	}
13637 
13638 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
13639 		return check_struct_ops_btf_id(env);
13640 
13641 	if (prog->type != BPF_PROG_TYPE_TRACING &&
13642 	    prog->type != BPF_PROG_TYPE_LSM &&
13643 	    prog->type != BPF_PROG_TYPE_EXT)
13644 		return 0;
13645 
13646 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
13647 	if (ret)
13648 		return ret;
13649 
13650 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
13651 		/* to make freplace equivalent to their targets, they need to
13652 		 * inherit env->ops and expected_attach_type for the rest of the
13653 		 * verification
13654 		 */
13655 		env->ops = bpf_verifier_ops[tgt_prog->type];
13656 		prog->expected_attach_type = tgt_prog->expected_attach_type;
13657 	}
13658 
13659 	/* store info about the attachment target that will be used later */
13660 	prog->aux->attach_func_proto = tgt_info.tgt_type;
13661 	prog->aux->attach_func_name = tgt_info.tgt_name;
13662 
13663 	if (tgt_prog) {
13664 		prog->aux->saved_dst_prog_type = tgt_prog->type;
13665 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
13666 	}
13667 
13668 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
13669 		prog->aux->attach_btf_trace = true;
13670 		return 0;
13671 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
13672 		if (!bpf_iter_prog_supported(prog))
13673 			return -EINVAL;
13674 		return 0;
13675 	}
13676 
13677 	if (prog->type == BPF_PROG_TYPE_LSM) {
13678 		ret = bpf_lsm_verify_prog(&env->log, prog);
13679 		if (ret < 0)
13680 			return ret;
13681 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
13682 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
13683 		return -EINVAL;
13684 	}
13685 
13686 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
13687 	tr = bpf_trampoline_get(key, &tgt_info);
13688 	if (!tr)
13689 		return -ENOMEM;
13690 
13691 	prog->aux->dst_trampoline = tr;
13692 	return 0;
13693 }
13694 
13695 struct btf *bpf_get_btf_vmlinux(void)
13696 {
13697 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
13698 		mutex_lock(&bpf_verifier_lock);
13699 		if (!btf_vmlinux)
13700 			btf_vmlinux = btf_parse_vmlinux();
13701 		mutex_unlock(&bpf_verifier_lock);
13702 	}
13703 	return btf_vmlinux;
13704 }
13705 
13706 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
13707 {
13708 	u64 start_time = ktime_get_ns();
13709 	struct bpf_verifier_env *env;
13710 	struct bpf_verifier_log *log;
13711 	int i, len, ret = -EINVAL;
13712 	bool is_priv;
13713 
13714 	/* no program is valid */
13715 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
13716 		return -EINVAL;
13717 
13718 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
13719 	 * allocate/free it every time bpf_check() is called
13720 	 */
13721 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
13722 	if (!env)
13723 		return -ENOMEM;
13724 	log = &env->log;
13725 
13726 	len = (*prog)->len;
13727 	env->insn_aux_data =
13728 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
13729 	ret = -ENOMEM;
13730 	if (!env->insn_aux_data)
13731 		goto err_free_env;
13732 	for (i = 0; i < len; i++)
13733 		env->insn_aux_data[i].orig_idx = i;
13734 	env->prog = *prog;
13735 	env->ops = bpf_verifier_ops[env->prog->type];
13736 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
13737 	is_priv = bpf_capable();
13738 
13739 	bpf_get_btf_vmlinux();
13740 
13741 	/* grab the mutex to protect few globals used by verifier */
13742 	if (!is_priv)
13743 		mutex_lock(&bpf_verifier_lock);
13744 
13745 	if (attr->log_level || attr->log_buf || attr->log_size) {
13746 		/* user requested verbose verifier output
13747 		 * and supplied buffer to store the verification trace
13748 		 */
13749 		log->level = attr->log_level;
13750 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
13751 		log->len_total = attr->log_size;
13752 
13753 		ret = -EINVAL;
13754 		/* log attributes have to be sane */
13755 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
13756 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
13757 			goto err_unlock;
13758 	}
13759 
13760 	if (IS_ERR(btf_vmlinux)) {
13761 		/* Either gcc or pahole or kernel are broken. */
13762 		verbose(env, "in-kernel BTF is malformed\n");
13763 		ret = PTR_ERR(btf_vmlinux);
13764 		goto skip_full_check;
13765 	}
13766 
13767 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
13768 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
13769 		env->strict_alignment = true;
13770 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
13771 		env->strict_alignment = false;
13772 
13773 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
13774 	env->allow_uninit_stack = bpf_allow_uninit_stack();
13775 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
13776 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
13777 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
13778 	env->bpf_capable = bpf_capable();
13779 
13780 	if (is_priv)
13781 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
13782 
13783 	env->explored_states = kvcalloc(state_htab_size(env),
13784 				       sizeof(struct bpf_verifier_state_list *),
13785 				       GFP_USER);
13786 	ret = -ENOMEM;
13787 	if (!env->explored_states)
13788 		goto skip_full_check;
13789 
13790 	ret = add_subprog_and_kfunc(env);
13791 	if (ret < 0)
13792 		goto skip_full_check;
13793 
13794 	ret = check_subprogs(env);
13795 	if (ret < 0)
13796 		goto skip_full_check;
13797 
13798 	ret = check_btf_info(env, attr, uattr);
13799 	if (ret < 0)
13800 		goto skip_full_check;
13801 
13802 	ret = check_attach_btf_id(env);
13803 	if (ret)
13804 		goto skip_full_check;
13805 
13806 	ret = resolve_pseudo_ldimm64(env);
13807 	if (ret < 0)
13808 		goto skip_full_check;
13809 
13810 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
13811 		ret = bpf_prog_offload_verifier_prep(env->prog);
13812 		if (ret)
13813 			goto skip_full_check;
13814 	}
13815 
13816 	ret = check_cfg(env);
13817 	if (ret < 0)
13818 		goto skip_full_check;
13819 
13820 	ret = do_check_subprogs(env);
13821 	ret = ret ?: do_check_main(env);
13822 
13823 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
13824 		ret = bpf_prog_offload_finalize(env);
13825 
13826 skip_full_check:
13827 	kvfree(env->explored_states);
13828 
13829 	if (ret == 0)
13830 		ret = check_max_stack_depth(env);
13831 
13832 	/* instruction rewrites happen after this point */
13833 	if (is_priv) {
13834 		if (ret == 0)
13835 			opt_hard_wire_dead_code_branches(env);
13836 		if (ret == 0)
13837 			ret = opt_remove_dead_code(env);
13838 		if (ret == 0)
13839 			ret = opt_remove_nops(env);
13840 	} else {
13841 		if (ret == 0)
13842 			sanitize_dead_code(env);
13843 	}
13844 
13845 	if (ret == 0)
13846 		/* program is valid, convert *(u32*)(ctx + off) accesses */
13847 		ret = convert_ctx_accesses(env);
13848 
13849 	if (ret == 0)
13850 		ret = do_misc_fixups(env);
13851 
13852 	/* do 32-bit optimization after insn patching has done so those patched
13853 	 * insns could be handled correctly.
13854 	 */
13855 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
13856 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
13857 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
13858 								     : false;
13859 	}
13860 
13861 	if (ret == 0)
13862 		ret = fixup_call_args(env);
13863 
13864 	env->verification_time = ktime_get_ns() - start_time;
13865 	print_verification_stats(env);
13866 
13867 	if (log->level && bpf_verifier_log_full(log))
13868 		ret = -ENOSPC;
13869 	if (log->level && !log->ubuf) {
13870 		ret = -EFAULT;
13871 		goto err_release_maps;
13872 	}
13873 
13874 	if (ret)
13875 		goto err_release_maps;
13876 
13877 	if (env->used_map_cnt) {
13878 		/* if program passed verifier, update used_maps in bpf_prog_info */
13879 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
13880 							  sizeof(env->used_maps[0]),
13881 							  GFP_KERNEL);
13882 
13883 		if (!env->prog->aux->used_maps) {
13884 			ret = -ENOMEM;
13885 			goto err_release_maps;
13886 		}
13887 
13888 		memcpy(env->prog->aux->used_maps, env->used_maps,
13889 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
13890 		env->prog->aux->used_map_cnt = env->used_map_cnt;
13891 	}
13892 	if (env->used_btf_cnt) {
13893 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
13894 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
13895 							  sizeof(env->used_btfs[0]),
13896 							  GFP_KERNEL);
13897 		if (!env->prog->aux->used_btfs) {
13898 			ret = -ENOMEM;
13899 			goto err_release_maps;
13900 		}
13901 
13902 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
13903 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
13904 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
13905 	}
13906 	if (env->used_map_cnt || env->used_btf_cnt) {
13907 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
13908 		 * bpf_ld_imm64 instructions
13909 		 */
13910 		convert_pseudo_ld_imm64(env);
13911 	}
13912 
13913 	adjust_btf_func(env);
13914 
13915 err_release_maps:
13916 	if (!env->prog->aux->used_maps)
13917 		/* if we didn't copy map pointers into bpf_prog_info, release
13918 		 * them now. Otherwise free_used_maps() will release them.
13919 		 */
13920 		release_maps(env);
13921 	if (!env->prog->aux->used_btfs)
13922 		release_btfs(env);
13923 
13924 	/* extension progs temporarily inherit the attach_type of their targets
13925 	   for verification purposes, so set it back to zero before returning
13926 	 */
13927 	if (env->prog->type == BPF_PROG_TYPE_EXT)
13928 		env->prog->expected_attach_type = 0;
13929 
13930 	*prog = env->prog;
13931 err_unlock:
13932 	if (!is_priv)
13933 		mutex_unlock(&bpf_verifier_lock);
13934 	vfree(env->insn_aux_data);
13935 err_free_env:
13936 	kfree(env);
13937 	return ret;
13938 }
13939