xref: /linux/kernel/bpf/verifier.c (revision 4cde72fead4cebb5b6b2fe9425904c2064739184)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <linux/bpf_mem_alloc.h>
30 #include <net/xdp.h>
31 
32 #include "disasm.h"
33 
34 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
35 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
36 	[_id] = & _name ## _verifier_ops,
37 #define BPF_MAP_TYPE(_id, _ops)
38 #define BPF_LINK_TYPE(_id, _name)
39 #include <linux/bpf_types.h>
40 #undef BPF_PROG_TYPE
41 #undef BPF_MAP_TYPE
42 #undef BPF_LINK_TYPE
43 };
44 
45 struct bpf_mem_alloc bpf_global_percpu_ma;
46 static bool bpf_global_percpu_ma_set;
47 
48 /* bpf_check() is a static code analyzer that walks eBPF program
49  * instruction by instruction and updates register/stack state.
50  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
51  *
52  * The first pass is depth-first-search to check that the program is a DAG.
53  * It rejects the following programs:
54  * - larger than BPF_MAXINSNS insns
55  * - if loop is present (detected via back-edge)
56  * - unreachable insns exist (shouldn't be a forest. program = one function)
57  * - out of bounds or malformed jumps
58  * The second pass is all possible path descent from the 1st insn.
59  * Since it's analyzing all paths through the program, the length of the
60  * analysis is limited to 64k insn, which may be hit even if total number of
61  * insn is less then 4K, but there are too many branches that change stack/regs.
62  * Number of 'branches to be analyzed' is limited to 1k
63  *
64  * On entry to each instruction, each register has a type, and the instruction
65  * changes the types of the registers depending on instruction semantics.
66  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
67  * copied to R1.
68  *
69  * All registers are 64-bit.
70  * R0 - return register
71  * R1-R5 argument passing registers
72  * R6-R9 callee saved registers
73  * R10 - frame pointer read-only
74  *
75  * At the start of BPF program the register R1 contains a pointer to bpf_context
76  * and has type PTR_TO_CTX.
77  *
78  * Verifier tracks arithmetic operations on pointers in case:
79  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
80  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
81  * 1st insn copies R10 (which has FRAME_PTR) type into R1
82  * and 2nd arithmetic instruction is pattern matched to recognize
83  * that it wants to construct a pointer to some element within stack.
84  * So after 2nd insn, the register R1 has type PTR_TO_STACK
85  * (and -20 constant is saved for further stack bounds checking).
86  * Meaning that this reg is a pointer to stack plus known immediate constant.
87  *
88  * Most of the time the registers have SCALAR_VALUE type, which
89  * means the register has some value, but it's not a valid pointer.
90  * (like pointer plus pointer becomes SCALAR_VALUE type)
91  *
92  * When verifier sees load or store instructions the type of base register
93  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
94  * four pointer types recognized by check_mem_access() function.
95  *
96  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
97  * and the range of [ptr, ptr + map's value_size) is accessible.
98  *
99  * registers used to pass values to function calls are checked against
100  * function argument constraints.
101  *
102  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
103  * It means that the register type passed to this function must be
104  * PTR_TO_STACK and it will be used inside the function as
105  * 'pointer to map element key'
106  *
107  * For example the argument constraints for bpf_map_lookup_elem():
108  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
109  *   .arg1_type = ARG_CONST_MAP_PTR,
110  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
111  *
112  * ret_type says that this function returns 'pointer to map elem value or null'
113  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
114  * 2nd argument should be a pointer to stack, which will be used inside
115  * the helper function as a pointer to map element key.
116  *
117  * On the kernel side the helper function looks like:
118  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
119  * {
120  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
121  *    void *key = (void *) (unsigned long) r2;
122  *    void *value;
123  *
124  *    here kernel can access 'key' and 'map' pointers safely, knowing that
125  *    [key, key + map->key_size) bytes are valid and were initialized on
126  *    the stack of eBPF program.
127  * }
128  *
129  * Corresponding eBPF program may look like:
130  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
131  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
132  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
133  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
134  * here verifier looks at prototype of map_lookup_elem() and sees:
135  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
136  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
137  *
138  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
139  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
140  * and were initialized prior to this call.
141  * If it's ok, then verifier allows this BPF_CALL insn and looks at
142  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
143  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
144  * returns either pointer to map value or NULL.
145  *
146  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
147  * insn, the register holding that pointer in the true branch changes state to
148  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
149  * branch. See check_cond_jmp_op().
150  *
151  * After the call R0 is set to return type of the function and registers R1-R5
152  * are set to NOT_INIT to indicate that they are no longer readable.
153  *
154  * The following reference types represent a potential reference to a kernel
155  * resource which, after first being allocated, must be checked and freed by
156  * the BPF program:
157  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
158  *
159  * When the verifier sees a helper call return a reference type, it allocates a
160  * pointer id for the reference and stores it in the current function state.
161  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
162  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
163  * passes through a NULL-check conditional. For the branch wherein the state is
164  * changed to CONST_IMM, the verifier releases the reference.
165  *
166  * For each helper function that allocates a reference, such as
167  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
168  * bpf_sk_release(). When a reference type passes into the release function,
169  * the verifier also releases the reference. If any unchecked or unreleased
170  * reference remains at the end of the program, the verifier rejects it.
171  */
172 
173 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
174 struct bpf_verifier_stack_elem {
175 	/* verifer state is 'st'
176 	 * before processing instruction 'insn_idx'
177 	 * and after processing instruction 'prev_insn_idx'
178 	 */
179 	struct bpf_verifier_state st;
180 	int insn_idx;
181 	int prev_insn_idx;
182 	struct bpf_verifier_stack_elem *next;
183 	/* length of verifier log at the time this state was pushed on stack */
184 	u32 log_pos;
185 };
186 
187 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
188 #define BPF_COMPLEXITY_LIMIT_STATES	64
189 
190 #define BPF_MAP_KEY_POISON	(1ULL << 63)
191 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
192 
193 #define BPF_MAP_PTR_UNPRIV	1UL
194 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
195 					  POISON_POINTER_DELTA))
196 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
197 
198 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
199 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
200 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
201 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
202 static int ref_set_non_owning(struct bpf_verifier_env *env,
203 			      struct bpf_reg_state *reg);
204 static void specialize_kfunc(struct bpf_verifier_env *env,
205 			     u32 func_id, u16 offset, unsigned long *addr);
206 static bool is_trusted_reg(const struct bpf_reg_state *reg);
207 
208 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
211 }
212 
213 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
214 {
215 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
216 }
217 
218 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
219 			      const struct bpf_map *map, bool unpriv)
220 {
221 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
222 	unpriv |= bpf_map_ptr_unpriv(aux);
223 	aux->map_ptr_state = (unsigned long)map |
224 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
225 }
226 
227 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
228 {
229 	return aux->map_key_state & BPF_MAP_KEY_POISON;
230 }
231 
232 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
233 {
234 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
235 }
236 
237 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
238 {
239 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
240 }
241 
242 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
243 {
244 	bool poisoned = bpf_map_key_poisoned(aux);
245 
246 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
247 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
248 }
249 
250 static bool bpf_helper_call(const struct bpf_insn *insn)
251 {
252 	return insn->code == (BPF_JMP | BPF_CALL) &&
253 	       insn->src_reg == 0;
254 }
255 
256 static bool bpf_pseudo_call(const struct bpf_insn *insn)
257 {
258 	return insn->code == (BPF_JMP | BPF_CALL) &&
259 	       insn->src_reg == BPF_PSEUDO_CALL;
260 }
261 
262 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
263 {
264 	return insn->code == (BPF_JMP | BPF_CALL) &&
265 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
266 }
267 
268 struct bpf_call_arg_meta {
269 	struct bpf_map *map_ptr;
270 	bool raw_mode;
271 	bool pkt_access;
272 	u8 release_regno;
273 	int regno;
274 	int access_size;
275 	int mem_size;
276 	u64 msize_max_value;
277 	int ref_obj_id;
278 	int dynptr_id;
279 	int map_uid;
280 	int func_id;
281 	struct btf *btf;
282 	u32 btf_id;
283 	struct btf *ret_btf;
284 	u32 ret_btf_id;
285 	u32 subprogno;
286 	struct btf_field *kptr_field;
287 };
288 
289 struct bpf_kfunc_call_arg_meta {
290 	/* In parameters */
291 	struct btf *btf;
292 	u32 func_id;
293 	u32 kfunc_flags;
294 	const struct btf_type *func_proto;
295 	const char *func_name;
296 	/* Out parameters */
297 	u32 ref_obj_id;
298 	u8 release_regno;
299 	bool r0_rdonly;
300 	u32 ret_btf_id;
301 	u64 r0_size;
302 	u32 subprogno;
303 	struct {
304 		u64 value;
305 		bool found;
306 	} arg_constant;
307 
308 	/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
309 	 * generally to pass info about user-defined local kptr types to later
310 	 * verification logic
311 	 *   bpf_obj_drop/bpf_percpu_obj_drop
312 	 *     Record the local kptr type to be drop'd
313 	 *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
314 	 *     Record the local kptr type to be refcount_incr'd and use
315 	 *     arg_owning_ref to determine whether refcount_acquire should be
316 	 *     fallible
317 	 */
318 	struct btf *arg_btf;
319 	u32 arg_btf_id;
320 	bool arg_owning_ref;
321 
322 	struct {
323 		struct btf_field *field;
324 	} arg_list_head;
325 	struct {
326 		struct btf_field *field;
327 	} arg_rbtree_root;
328 	struct {
329 		enum bpf_dynptr_type type;
330 		u32 id;
331 		u32 ref_obj_id;
332 	} initialized_dynptr;
333 	struct {
334 		u8 spi;
335 		u8 frameno;
336 	} iter;
337 	u64 mem_size;
338 };
339 
340 struct btf *btf_vmlinux;
341 
342 static const char *btf_type_name(const struct btf *btf, u32 id)
343 {
344 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
345 }
346 
347 static DEFINE_MUTEX(bpf_verifier_lock);
348 static DEFINE_MUTEX(bpf_percpu_ma_lock);
349 
350 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
351 {
352 	struct bpf_verifier_env *env = private_data;
353 	va_list args;
354 
355 	if (!bpf_verifier_log_needed(&env->log))
356 		return;
357 
358 	va_start(args, fmt);
359 	bpf_verifier_vlog(&env->log, fmt, args);
360 	va_end(args);
361 }
362 
363 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
364 				   struct bpf_reg_state *reg,
365 				   struct bpf_retval_range range, const char *ctx,
366 				   const char *reg_name)
367 {
368 	bool unknown = true;
369 
370 	verbose(env, "%s the register %s has", ctx, reg_name);
371 	if (reg->smin_value > S64_MIN) {
372 		verbose(env, " smin=%lld", reg->smin_value);
373 		unknown = false;
374 	}
375 	if (reg->smax_value < S64_MAX) {
376 		verbose(env, " smax=%lld", reg->smax_value);
377 		unknown = false;
378 	}
379 	if (unknown)
380 		verbose(env, " unknown scalar value");
381 	verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval);
382 }
383 
384 static bool type_may_be_null(u32 type)
385 {
386 	return type & PTR_MAYBE_NULL;
387 }
388 
389 static bool reg_not_null(const struct bpf_reg_state *reg)
390 {
391 	enum bpf_reg_type type;
392 
393 	type = reg->type;
394 	if (type_may_be_null(type))
395 		return false;
396 
397 	type = base_type(type);
398 	return type == PTR_TO_SOCKET ||
399 		type == PTR_TO_TCP_SOCK ||
400 		type == PTR_TO_MAP_VALUE ||
401 		type == PTR_TO_MAP_KEY ||
402 		type == PTR_TO_SOCK_COMMON ||
403 		(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
404 		type == PTR_TO_MEM;
405 }
406 
407 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
408 {
409 	struct btf_record *rec = NULL;
410 	struct btf_struct_meta *meta;
411 
412 	if (reg->type == PTR_TO_MAP_VALUE) {
413 		rec = reg->map_ptr->record;
414 	} else if (type_is_ptr_alloc_obj(reg->type)) {
415 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
416 		if (meta)
417 			rec = meta->record;
418 	}
419 	return rec;
420 }
421 
422 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
423 {
424 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
425 
426 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
427 }
428 
429 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog)
430 {
431 	struct bpf_func_info *info;
432 
433 	if (!env->prog->aux->func_info)
434 		return "";
435 
436 	info = &env->prog->aux->func_info[subprog];
437 	return btf_type_name(env->prog->aux->btf, info->type_id);
438 }
439 
440 static struct bpf_func_info_aux *subprog_aux(const struct bpf_verifier_env *env, int subprog)
441 {
442 	return &env->prog->aux->func_info_aux[subprog];
443 }
444 
445 static struct bpf_subprog_info *subprog_info(struct bpf_verifier_env *env, int subprog)
446 {
447 	return &env->subprog_info[subprog];
448 }
449 
450 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog)
451 {
452 	struct bpf_subprog_info *info = subprog_info(env, subprog);
453 
454 	info->is_cb = true;
455 	info->is_async_cb = true;
456 	info->is_exception_cb = true;
457 }
458 
459 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog)
460 {
461 	return subprog_info(env, subprog)->is_exception_cb;
462 }
463 
464 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
465 {
466 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
467 }
468 
469 static bool type_is_rdonly_mem(u32 type)
470 {
471 	return type & MEM_RDONLY;
472 }
473 
474 static bool is_acquire_function(enum bpf_func_id func_id,
475 				const struct bpf_map *map)
476 {
477 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
478 
479 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
480 	    func_id == BPF_FUNC_sk_lookup_udp ||
481 	    func_id == BPF_FUNC_skc_lookup_tcp ||
482 	    func_id == BPF_FUNC_ringbuf_reserve ||
483 	    func_id == BPF_FUNC_kptr_xchg)
484 		return true;
485 
486 	if (func_id == BPF_FUNC_map_lookup_elem &&
487 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
488 	     map_type == BPF_MAP_TYPE_SOCKHASH))
489 		return true;
490 
491 	return false;
492 }
493 
494 static bool is_ptr_cast_function(enum bpf_func_id func_id)
495 {
496 	return func_id == BPF_FUNC_tcp_sock ||
497 		func_id == BPF_FUNC_sk_fullsock ||
498 		func_id == BPF_FUNC_skc_to_tcp_sock ||
499 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
500 		func_id == BPF_FUNC_skc_to_udp6_sock ||
501 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
502 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
503 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
504 }
505 
506 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
507 {
508 	return func_id == BPF_FUNC_dynptr_data;
509 }
510 
511 static bool is_sync_callback_calling_kfunc(u32 btf_id);
512 static bool is_bpf_throw_kfunc(struct bpf_insn *insn);
513 
514 static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
515 {
516 	return func_id == BPF_FUNC_for_each_map_elem ||
517 	       func_id == BPF_FUNC_find_vma ||
518 	       func_id == BPF_FUNC_loop ||
519 	       func_id == BPF_FUNC_user_ringbuf_drain;
520 }
521 
522 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
523 {
524 	return func_id == BPF_FUNC_timer_set_callback;
525 }
526 
527 static bool is_callback_calling_function(enum bpf_func_id func_id)
528 {
529 	return is_sync_callback_calling_function(func_id) ||
530 	       is_async_callback_calling_function(func_id);
531 }
532 
533 static bool is_sync_callback_calling_insn(struct bpf_insn *insn)
534 {
535 	return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) ||
536 	       (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm));
537 }
538 
539 static bool is_storage_get_function(enum bpf_func_id func_id)
540 {
541 	return func_id == BPF_FUNC_sk_storage_get ||
542 	       func_id == BPF_FUNC_inode_storage_get ||
543 	       func_id == BPF_FUNC_task_storage_get ||
544 	       func_id == BPF_FUNC_cgrp_storage_get;
545 }
546 
547 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
548 					const struct bpf_map *map)
549 {
550 	int ref_obj_uses = 0;
551 
552 	if (is_ptr_cast_function(func_id))
553 		ref_obj_uses++;
554 	if (is_acquire_function(func_id, map))
555 		ref_obj_uses++;
556 	if (is_dynptr_ref_function(func_id))
557 		ref_obj_uses++;
558 
559 	return ref_obj_uses > 1;
560 }
561 
562 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
563 {
564 	return BPF_CLASS(insn->code) == BPF_STX &&
565 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
566 	       insn->imm == BPF_CMPXCHG;
567 }
568 
569 static int __get_spi(s32 off)
570 {
571 	return (-off - 1) / BPF_REG_SIZE;
572 }
573 
574 static struct bpf_func_state *func(struct bpf_verifier_env *env,
575 				   const struct bpf_reg_state *reg)
576 {
577 	struct bpf_verifier_state *cur = env->cur_state;
578 
579 	return cur->frame[reg->frameno];
580 }
581 
582 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
583 {
584        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
585 
586        /* We need to check that slots between [spi - nr_slots + 1, spi] are
587 	* within [0, allocated_stack).
588 	*
589 	* Please note that the spi grows downwards. For example, a dynptr
590 	* takes the size of two stack slots; the first slot will be at
591 	* spi and the second slot will be at spi - 1.
592 	*/
593        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
594 }
595 
596 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
597 			          const char *obj_kind, int nr_slots)
598 {
599 	int off, spi;
600 
601 	if (!tnum_is_const(reg->var_off)) {
602 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
603 		return -EINVAL;
604 	}
605 
606 	off = reg->off + reg->var_off.value;
607 	if (off % BPF_REG_SIZE) {
608 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
609 		return -EINVAL;
610 	}
611 
612 	spi = __get_spi(off);
613 	if (spi + 1 < nr_slots) {
614 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
615 		return -EINVAL;
616 	}
617 
618 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
619 		return -ERANGE;
620 	return spi;
621 }
622 
623 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
624 {
625 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
626 }
627 
628 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
629 {
630 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
631 }
632 
633 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
634 {
635 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
636 	case DYNPTR_TYPE_LOCAL:
637 		return BPF_DYNPTR_TYPE_LOCAL;
638 	case DYNPTR_TYPE_RINGBUF:
639 		return BPF_DYNPTR_TYPE_RINGBUF;
640 	case DYNPTR_TYPE_SKB:
641 		return BPF_DYNPTR_TYPE_SKB;
642 	case DYNPTR_TYPE_XDP:
643 		return BPF_DYNPTR_TYPE_XDP;
644 	default:
645 		return BPF_DYNPTR_TYPE_INVALID;
646 	}
647 }
648 
649 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
650 {
651 	switch (type) {
652 	case BPF_DYNPTR_TYPE_LOCAL:
653 		return DYNPTR_TYPE_LOCAL;
654 	case BPF_DYNPTR_TYPE_RINGBUF:
655 		return DYNPTR_TYPE_RINGBUF;
656 	case BPF_DYNPTR_TYPE_SKB:
657 		return DYNPTR_TYPE_SKB;
658 	case BPF_DYNPTR_TYPE_XDP:
659 		return DYNPTR_TYPE_XDP;
660 	default:
661 		return 0;
662 	}
663 }
664 
665 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
666 {
667 	return type == BPF_DYNPTR_TYPE_RINGBUF;
668 }
669 
670 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
671 			      enum bpf_dynptr_type type,
672 			      bool first_slot, int dynptr_id);
673 
674 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
675 				struct bpf_reg_state *reg);
676 
677 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
678 				   struct bpf_reg_state *sreg1,
679 				   struct bpf_reg_state *sreg2,
680 				   enum bpf_dynptr_type type)
681 {
682 	int id = ++env->id_gen;
683 
684 	__mark_dynptr_reg(sreg1, type, true, id);
685 	__mark_dynptr_reg(sreg2, type, false, id);
686 }
687 
688 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
689 			       struct bpf_reg_state *reg,
690 			       enum bpf_dynptr_type type)
691 {
692 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
693 }
694 
695 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
696 				        struct bpf_func_state *state, int spi);
697 
698 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
699 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
700 {
701 	struct bpf_func_state *state = func(env, reg);
702 	enum bpf_dynptr_type type;
703 	int spi, i, err;
704 
705 	spi = dynptr_get_spi(env, reg);
706 	if (spi < 0)
707 		return spi;
708 
709 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
710 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
711 	 * to ensure that for the following example:
712 	 *	[d1][d1][d2][d2]
713 	 * spi    3   2   1   0
714 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
715 	 * case they do belong to same dynptr, second call won't see slot_type
716 	 * as STACK_DYNPTR and will simply skip destruction.
717 	 */
718 	err = destroy_if_dynptr_stack_slot(env, state, spi);
719 	if (err)
720 		return err;
721 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
722 	if (err)
723 		return err;
724 
725 	for (i = 0; i < BPF_REG_SIZE; i++) {
726 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
727 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
728 	}
729 
730 	type = arg_to_dynptr_type(arg_type);
731 	if (type == BPF_DYNPTR_TYPE_INVALID)
732 		return -EINVAL;
733 
734 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
735 			       &state->stack[spi - 1].spilled_ptr, type);
736 
737 	if (dynptr_type_refcounted(type)) {
738 		/* The id is used to track proper releasing */
739 		int id;
740 
741 		if (clone_ref_obj_id)
742 			id = clone_ref_obj_id;
743 		else
744 			id = acquire_reference_state(env, insn_idx);
745 
746 		if (id < 0)
747 			return id;
748 
749 		state->stack[spi].spilled_ptr.ref_obj_id = id;
750 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
751 	}
752 
753 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
754 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
755 
756 	return 0;
757 }
758 
759 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
760 {
761 	int i;
762 
763 	for (i = 0; i < BPF_REG_SIZE; i++) {
764 		state->stack[spi].slot_type[i] = STACK_INVALID;
765 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
766 	}
767 
768 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
769 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
770 
771 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
772 	 *
773 	 * While we don't allow reading STACK_INVALID, it is still possible to
774 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
775 	 * helpers or insns can do partial read of that part without failing,
776 	 * but check_stack_range_initialized, check_stack_read_var_off, and
777 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
778 	 * the slot conservatively. Hence we need to prevent those liveness
779 	 * marking walks.
780 	 *
781 	 * This was not a problem before because STACK_INVALID is only set by
782 	 * default (where the default reg state has its reg->parent as NULL), or
783 	 * in clean_live_states after REG_LIVE_DONE (at which point
784 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
785 	 * verifier state exploration (like we did above). Hence, for our case
786 	 * parentage chain will still be live (i.e. reg->parent may be
787 	 * non-NULL), while earlier reg->parent was NULL, so we need
788 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
789 	 * done later on reads or by mark_dynptr_read as well to unnecessary
790 	 * mark registers in verifier state.
791 	 */
792 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
793 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
794 }
795 
796 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
797 {
798 	struct bpf_func_state *state = func(env, reg);
799 	int spi, ref_obj_id, i;
800 
801 	spi = dynptr_get_spi(env, reg);
802 	if (spi < 0)
803 		return spi;
804 
805 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
806 		invalidate_dynptr(env, state, spi);
807 		return 0;
808 	}
809 
810 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
811 
812 	/* If the dynptr has a ref_obj_id, then we need to invalidate
813 	 * two things:
814 	 *
815 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
816 	 * 2) Any slices derived from this dynptr.
817 	 */
818 
819 	/* Invalidate any slices associated with this dynptr */
820 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
821 
822 	/* Invalidate any dynptr clones */
823 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
824 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
825 			continue;
826 
827 		/* it should always be the case that if the ref obj id
828 		 * matches then the stack slot also belongs to a
829 		 * dynptr
830 		 */
831 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
832 			verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
833 			return -EFAULT;
834 		}
835 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
836 			invalidate_dynptr(env, state, i);
837 	}
838 
839 	return 0;
840 }
841 
842 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
843 			       struct bpf_reg_state *reg);
844 
845 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
846 {
847 	if (!env->allow_ptr_leaks)
848 		__mark_reg_not_init(env, reg);
849 	else
850 		__mark_reg_unknown(env, reg);
851 }
852 
853 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
854 				        struct bpf_func_state *state, int spi)
855 {
856 	struct bpf_func_state *fstate;
857 	struct bpf_reg_state *dreg;
858 	int i, dynptr_id;
859 
860 	/* We always ensure that STACK_DYNPTR is never set partially,
861 	 * hence just checking for slot_type[0] is enough. This is
862 	 * different for STACK_SPILL, where it may be only set for
863 	 * 1 byte, so code has to use is_spilled_reg.
864 	 */
865 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
866 		return 0;
867 
868 	/* Reposition spi to first slot */
869 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
870 		spi = spi + 1;
871 
872 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
873 		verbose(env, "cannot overwrite referenced dynptr\n");
874 		return -EINVAL;
875 	}
876 
877 	mark_stack_slot_scratched(env, spi);
878 	mark_stack_slot_scratched(env, spi - 1);
879 
880 	/* Writing partially to one dynptr stack slot destroys both. */
881 	for (i = 0; i < BPF_REG_SIZE; i++) {
882 		state->stack[spi].slot_type[i] = STACK_INVALID;
883 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
884 	}
885 
886 	dynptr_id = state->stack[spi].spilled_ptr.id;
887 	/* Invalidate any slices associated with this dynptr */
888 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
889 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
890 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
891 			continue;
892 		if (dreg->dynptr_id == dynptr_id)
893 			mark_reg_invalid(env, dreg);
894 	}));
895 
896 	/* Do not release reference state, we are destroying dynptr on stack,
897 	 * not using some helper to release it. Just reset register.
898 	 */
899 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
900 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
901 
902 	/* Same reason as unmark_stack_slots_dynptr above */
903 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
904 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
905 
906 	return 0;
907 }
908 
909 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
910 {
911 	int spi;
912 
913 	if (reg->type == CONST_PTR_TO_DYNPTR)
914 		return false;
915 
916 	spi = dynptr_get_spi(env, reg);
917 
918 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
919 	 * error because this just means the stack state hasn't been updated yet.
920 	 * We will do check_mem_access to check and update stack bounds later.
921 	 */
922 	if (spi < 0 && spi != -ERANGE)
923 		return false;
924 
925 	/* We don't need to check if the stack slots are marked by previous
926 	 * dynptr initializations because we allow overwriting existing unreferenced
927 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
928 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
929 	 * touching are completely destructed before we reinitialize them for a new
930 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
931 	 * instead of delaying it until the end where the user will get "Unreleased
932 	 * reference" error.
933 	 */
934 	return true;
935 }
936 
937 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
938 {
939 	struct bpf_func_state *state = func(env, reg);
940 	int i, spi;
941 
942 	/* This already represents first slot of initialized bpf_dynptr.
943 	 *
944 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
945 	 * check_func_arg_reg_off's logic, so we don't need to check its
946 	 * offset and alignment.
947 	 */
948 	if (reg->type == CONST_PTR_TO_DYNPTR)
949 		return true;
950 
951 	spi = dynptr_get_spi(env, reg);
952 	if (spi < 0)
953 		return false;
954 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
955 		return false;
956 
957 	for (i = 0; i < BPF_REG_SIZE; i++) {
958 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
959 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
960 			return false;
961 	}
962 
963 	return true;
964 }
965 
966 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
967 				    enum bpf_arg_type arg_type)
968 {
969 	struct bpf_func_state *state = func(env, reg);
970 	enum bpf_dynptr_type dynptr_type;
971 	int spi;
972 
973 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
974 	if (arg_type == ARG_PTR_TO_DYNPTR)
975 		return true;
976 
977 	dynptr_type = arg_to_dynptr_type(arg_type);
978 	if (reg->type == CONST_PTR_TO_DYNPTR) {
979 		return reg->dynptr.type == dynptr_type;
980 	} else {
981 		spi = dynptr_get_spi(env, reg);
982 		if (spi < 0)
983 			return false;
984 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
985 	}
986 }
987 
988 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
989 
990 static bool in_rcu_cs(struct bpf_verifier_env *env);
991 
992 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta);
993 
994 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
995 				 struct bpf_kfunc_call_arg_meta *meta,
996 				 struct bpf_reg_state *reg, int insn_idx,
997 				 struct btf *btf, u32 btf_id, int nr_slots)
998 {
999 	struct bpf_func_state *state = func(env, reg);
1000 	int spi, i, j, id;
1001 
1002 	spi = iter_get_spi(env, reg, nr_slots);
1003 	if (spi < 0)
1004 		return spi;
1005 
1006 	id = acquire_reference_state(env, insn_idx);
1007 	if (id < 0)
1008 		return id;
1009 
1010 	for (i = 0; i < nr_slots; i++) {
1011 		struct bpf_stack_state *slot = &state->stack[spi - i];
1012 		struct bpf_reg_state *st = &slot->spilled_ptr;
1013 
1014 		__mark_reg_known_zero(st);
1015 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1016 		if (is_kfunc_rcu_protected(meta)) {
1017 			if (in_rcu_cs(env))
1018 				st->type |= MEM_RCU;
1019 			else
1020 				st->type |= PTR_UNTRUSTED;
1021 		}
1022 		st->live |= REG_LIVE_WRITTEN;
1023 		st->ref_obj_id = i == 0 ? id : 0;
1024 		st->iter.btf = btf;
1025 		st->iter.btf_id = btf_id;
1026 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1027 		st->iter.depth = 0;
1028 
1029 		for (j = 0; j < BPF_REG_SIZE; j++)
1030 			slot->slot_type[j] = STACK_ITER;
1031 
1032 		mark_stack_slot_scratched(env, spi - i);
1033 	}
1034 
1035 	return 0;
1036 }
1037 
1038 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1039 				   struct bpf_reg_state *reg, int nr_slots)
1040 {
1041 	struct bpf_func_state *state = func(env, reg);
1042 	int spi, i, j;
1043 
1044 	spi = iter_get_spi(env, reg, nr_slots);
1045 	if (spi < 0)
1046 		return spi;
1047 
1048 	for (i = 0; i < nr_slots; i++) {
1049 		struct bpf_stack_state *slot = &state->stack[spi - i];
1050 		struct bpf_reg_state *st = &slot->spilled_ptr;
1051 
1052 		if (i == 0)
1053 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1054 
1055 		__mark_reg_not_init(env, st);
1056 
1057 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1058 		st->live |= REG_LIVE_WRITTEN;
1059 
1060 		for (j = 0; j < BPF_REG_SIZE; j++)
1061 			slot->slot_type[j] = STACK_INVALID;
1062 
1063 		mark_stack_slot_scratched(env, spi - i);
1064 	}
1065 
1066 	return 0;
1067 }
1068 
1069 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1070 				     struct bpf_reg_state *reg, int nr_slots)
1071 {
1072 	struct bpf_func_state *state = func(env, reg);
1073 	int spi, i, j;
1074 
1075 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1076 	 * will do check_mem_access to check and update stack bounds later, so
1077 	 * return true for that case.
1078 	 */
1079 	spi = iter_get_spi(env, reg, nr_slots);
1080 	if (spi == -ERANGE)
1081 		return true;
1082 	if (spi < 0)
1083 		return false;
1084 
1085 	for (i = 0; i < nr_slots; i++) {
1086 		struct bpf_stack_state *slot = &state->stack[spi - i];
1087 
1088 		for (j = 0; j < BPF_REG_SIZE; j++)
1089 			if (slot->slot_type[j] == STACK_ITER)
1090 				return false;
1091 	}
1092 
1093 	return true;
1094 }
1095 
1096 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1097 				   struct btf *btf, u32 btf_id, int nr_slots)
1098 {
1099 	struct bpf_func_state *state = func(env, reg);
1100 	int spi, i, j;
1101 
1102 	spi = iter_get_spi(env, reg, nr_slots);
1103 	if (spi < 0)
1104 		return -EINVAL;
1105 
1106 	for (i = 0; i < nr_slots; i++) {
1107 		struct bpf_stack_state *slot = &state->stack[spi - i];
1108 		struct bpf_reg_state *st = &slot->spilled_ptr;
1109 
1110 		if (st->type & PTR_UNTRUSTED)
1111 			return -EPROTO;
1112 		/* only main (first) slot has ref_obj_id set */
1113 		if (i == 0 && !st->ref_obj_id)
1114 			return -EINVAL;
1115 		if (i != 0 && st->ref_obj_id)
1116 			return -EINVAL;
1117 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1118 			return -EINVAL;
1119 
1120 		for (j = 0; j < BPF_REG_SIZE; j++)
1121 			if (slot->slot_type[j] != STACK_ITER)
1122 				return -EINVAL;
1123 	}
1124 
1125 	return 0;
1126 }
1127 
1128 /* Check if given stack slot is "special":
1129  *   - spilled register state (STACK_SPILL);
1130  *   - dynptr state (STACK_DYNPTR);
1131  *   - iter state (STACK_ITER).
1132  */
1133 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1134 {
1135 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1136 
1137 	switch (type) {
1138 	case STACK_SPILL:
1139 	case STACK_DYNPTR:
1140 	case STACK_ITER:
1141 		return true;
1142 	case STACK_INVALID:
1143 	case STACK_MISC:
1144 	case STACK_ZERO:
1145 		return false;
1146 	default:
1147 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1148 		return true;
1149 	}
1150 }
1151 
1152 /* The reg state of a pointer or a bounded scalar was saved when
1153  * it was spilled to the stack.
1154  */
1155 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1156 {
1157 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1158 }
1159 
1160 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1161 {
1162 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1163 	       stack->spilled_ptr.type == SCALAR_VALUE;
1164 }
1165 
1166 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which
1167  * case they are equivalent, or it's STACK_ZERO, in which case we preserve
1168  * more precise STACK_ZERO.
1169  * Note, in uprivileged mode leaving STACK_INVALID is wrong, so we take
1170  * env->allow_ptr_leaks into account and force STACK_MISC, if necessary.
1171  */
1172 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype)
1173 {
1174 	if (*stype == STACK_ZERO)
1175 		return;
1176 	if (env->allow_ptr_leaks && *stype == STACK_INVALID)
1177 		return;
1178 	*stype = STACK_MISC;
1179 }
1180 
1181 static void scrub_spilled_slot(u8 *stype)
1182 {
1183 	if (*stype != STACK_INVALID)
1184 		*stype = STACK_MISC;
1185 }
1186 
1187 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1188  * small to hold src. This is different from krealloc since we don't want to preserve
1189  * the contents of dst.
1190  *
1191  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1192  * not be allocated.
1193  */
1194 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1195 {
1196 	size_t alloc_bytes;
1197 	void *orig = dst;
1198 	size_t bytes;
1199 
1200 	if (ZERO_OR_NULL_PTR(src))
1201 		goto out;
1202 
1203 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1204 		return NULL;
1205 
1206 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1207 	dst = krealloc(orig, alloc_bytes, flags);
1208 	if (!dst) {
1209 		kfree(orig);
1210 		return NULL;
1211 	}
1212 
1213 	memcpy(dst, src, bytes);
1214 out:
1215 	return dst ? dst : ZERO_SIZE_PTR;
1216 }
1217 
1218 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1219  * small to hold new_n items. new items are zeroed out if the array grows.
1220  *
1221  * Contrary to krealloc_array, does not free arr if new_n is zero.
1222  */
1223 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1224 {
1225 	size_t alloc_size;
1226 	void *new_arr;
1227 
1228 	if (!new_n || old_n == new_n)
1229 		goto out;
1230 
1231 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1232 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1233 	if (!new_arr) {
1234 		kfree(arr);
1235 		return NULL;
1236 	}
1237 	arr = new_arr;
1238 
1239 	if (new_n > old_n)
1240 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1241 
1242 out:
1243 	return arr ? arr : ZERO_SIZE_PTR;
1244 }
1245 
1246 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1247 {
1248 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1249 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1250 	if (!dst->refs)
1251 		return -ENOMEM;
1252 
1253 	dst->acquired_refs = src->acquired_refs;
1254 	return 0;
1255 }
1256 
1257 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1258 {
1259 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1260 
1261 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1262 				GFP_KERNEL);
1263 	if (!dst->stack)
1264 		return -ENOMEM;
1265 
1266 	dst->allocated_stack = src->allocated_stack;
1267 	return 0;
1268 }
1269 
1270 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1271 {
1272 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1273 				    sizeof(struct bpf_reference_state));
1274 	if (!state->refs)
1275 		return -ENOMEM;
1276 
1277 	state->acquired_refs = n;
1278 	return 0;
1279 }
1280 
1281 /* Possibly update state->allocated_stack to be at least size bytes. Also
1282  * possibly update the function's high-water mark in its bpf_subprog_info.
1283  */
1284 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size)
1285 {
1286 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n;
1287 
1288 	/* The stack size is always a multiple of BPF_REG_SIZE. */
1289 	size = round_up(size, BPF_REG_SIZE);
1290 	n = size / BPF_REG_SIZE;
1291 
1292 	if (old_n >= n)
1293 		return 0;
1294 
1295 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1296 	if (!state->stack)
1297 		return -ENOMEM;
1298 
1299 	state->allocated_stack = size;
1300 
1301 	/* update known max for given subprogram */
1302 	if (env->subprog_info[state->subprogno].stack_depth < size)
1303 		env->subprog_info[state->subprogno].stack_depth = size;
1304 
1305 	return 0;
1306 }
1307 
1308 /* Acquire a pointer id from the env and update the state->refs to include
1309  * this new pointer reference.
1310  * On success, returns a valid pointer id to associate with the register
1311  * On failure, returns a negative errno.
1312  */
1313 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1314 {
1315 	struct bpf_func_state *state = cur_func(env);
1316 	int new_ofs = state->acquired_refs;
1317 	int id, err;
1318 
1319 	err = resize_reference_state(state, state->acquired_refs + 1);
1320 	if (err)
1321 		return err;
1322 	id = ++env->id_gen;
1323 	state->refs[new_ofs].id = id;
1324 	state->refs[new_ofs].insn_idx = insn_idx;
1325 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1326 
1327 	return id;
1328 }
1329 
1330 /* release function corresponding to acquire_reference_state(). Idempotent. */
1331 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1332 {
1333 	int i, last_idx;
1334 
1335 	last_idx = state->acquired_refs - 1;
1336 	for (i = 0; i < state->acquired_refs; i++) {
1337 		if (state->refs[i].id == ptr_id) {
1338 			/* Cannot release caller references in callbacks */
1339 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1340 				return -EINVAL;
1341 			if (last_idx && i != last_idx)
1342 				memcpy(&state->refs[i], &state->refs[last_idx],
1343 				       sizeof(*state->refs));
1344 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1345 			state->acquired_refs--;
1346 			return 0;
1347 		}
1348 	}
1349 	return -EINVAL;
1350 }
1351 
1352 static void free_func_state(struct bpf_func_state *state)
1353 {
1354 	if (!state)
1355 		return;
1356 	kfree(state->refs);
1357 	kfree(state->stack);
1358 	kfree(state);
1359 }
1360 
1361 static void clear_jmp_history(struct bpf_verifier_state *state)
1362 {
1363 	kfree(state->jmp_history);
1364 	state->jmp_history = NULL;
1365 	state->jmp_history_cnt = 0;
1366 }
1367 
1368 static void free_verifier_state(struct bpf_verifier_state *state,
1369 				bool free_self)
1370 {
1371 	int i;
1372 
1373 	for (i = 0; i <= state->curframe; i++) {
1374 		free_func_state(state->frame[i]);
1375 		state->frame[i] = NULL;
1376 	}
1377 	clear_jmp_history(state);
1378 	if (free_self)
1379 		kfree(state);
1380 }
1381 
1382 /* copy verifier state from src to dst growing dst stack space
1383  * when necessary to accommodate larger src stack
1384  */
1385 static int copy_func_state(struct bpf_func_state *dst,
1386 			   const struct bpf_func_state *src)
1387 {
1388 	int err;
1389 
1390 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1391 	err = copy_reference_state(dst, src);
1392 	if (err)
1393 		return err;
1394 	return copy_stack_state(dst, src);
1395 }
1396 
1397 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1398 			       const struct bpf_verifier_state *src)
1399 {
1400 	struct bpf_func_state *dst;
1401 	int i, err;
1402 
1403 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1404 					  src->jmp_history_cnt, sizeof(*dst_state->jmp_history),
1405 					  GFP_USER);
1406 	if (!dst_state->jmp_history)
1407 		return -ENOMEM;
1408 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1409 
1410 	/* if dst has more stack frames then src frame, free them, this is also
1411 	 * necessary in case of exceptional exits using bpf_throw.
1412 	 */
1413 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1414 		free_func_state(dst_state->frame[i]);
1415 		dst_state->frame[i] = NULL;
1416 	}
1417 	dst_state->speculative = src->speculative;
1418 	dst_state->active_rcu_lock = src->active_rcu_lock;
1419 	dst_state->curframe = src->curframe;
1420 	dst_state->active_lock.ptr = src->active_lock.ptr;
1421 	dst_state->active_lock.id = src->active_lock.id;
1422 	dst_state->branches = src->branches;
1423 	dst_state->parent = src->parent;
1424 	dst_state->first_insn_idx = src->first_insn_idx;
1425 	dst_state->last_insn_idx = src->last_insn_idx;
1426 	dst_state->dfs_depth = src->dfs_depth;
1427 	dst_state->callback_unroll_depth = src->callback_unroll_depth;
1428 	dst_state->used_as_loop_entry = src->used_as_loop_entry;
1429 	for (i = 0; i <= src->curframe; i++) {
1430 		dst = dst_state->frame[i];
1431 		if (!dst) {
1432 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1433 			if (!dst)
1434 				return -ENOMEM;
1435 			dst_state->frame[i] = dst;
1436 		}
1437 		err = copy_func_state(dst, src->frame[i]);
1438 		if (err)
1439 			return err;
1440 	}
1441 	return 0;
1442 }
1443 
1444 static u32 state_htab_size(struct bpf_verifier_env *env)
1445 {
1446 	return env->prog->len;
1447 }
1448 
1449 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx)
1450 {
1451 	struct bpf_verifier_state *cur = env->cur_state;
1452 	struct bpf_func_state *state = cur->frame[cur->curframe];
1453 
1454 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1455 }
1456 
1457 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1458 {
1459 	int fr;
1460 
1461 	if (a->curframe != b->curframe)
1462 		return false;
1463 
1464 	for (fr = a->curframe; fr >= 0; fr--)
1465 		if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1466 			return false;
1467 
1468 	return true;
1469 }
1470 
1471 /* Open coded iterators allow back-edges in the state graph in order to
1472  * check unbounded loops that iterators.
1473  *
1474  * In is_state_visited() it is necessary to know if explored states are
1475  * part of some loops in order to decide whether non-exact states
1476  * comparison could be used:
1477  * - non-exact states comparison establishes sub-state relation and uses
1478  *   read and precision marks to do so, these marks are propagated from
1479  *   children states and thus are not guaranteed to be final in a loop;
1480  * - exact states comparison just checks if current and explored states
1481  *   are identical (and thus form a back-edge).
1482  *
1483  * Paper "A New Algorithm for Identifying Loops in Decompilation"
1484  * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient
1485  * algorithm for loop structure detection and gives an overview of
1486  * relevant terminology. It also has helpful illustrations.
1487  *
1488  * [1] https://api.semanticscholar.org/CorpusID:15784067
1489  *
1490  * We use a similar algorithm but because loop nested structure is
1491  * irrelevant for verifier ours is significantly simpler and resembles
1492  * strongly connected components algorithm from Sedgewick's textbook.
1493  *
1494  * Define topmost loop entry as a first node of the loop traversed in a
1495  * depth first search starting from initial state. The goal of the loop
1496  * tracking algorithm is to associate topmost loop entries with states
1497  * derived from these entries.
1498  *
1499  * For each step in the DFS states traversal algorithm needs to identify
1500  * the following situations:
1501  *
1502  *          initial                     initial                   initial
1503  *            |                           |                         |
1504  *            V                           V                         V
1505  *           ...                         ...           .---------> hdr
1506  *            |                           |            |            |
1507  *            V                           V            |            V
1508  *           cur                     .-> succ          |    .------...
1509  *            |                      |    |            |    |       |
1510  *            V                      |    V            |    V       V
1511  *           succ                    '-- cur           |   ...     ...
1512  *                                                     |    |       |
1513  *                                                     |    V       V
1514  *                                                     |   succ <- cur
1515  *                                                     |    |
1516  *                                                     |    V
1517  *                                                     |   ...
1518  *                                                     |    |
1519  *                                                     '----'
1520  *
1521  *  (A) successor state of cur   (B) successor state of cur or it's entry
1522  *      not yet traversed            are in current DFS path, thus cur and succ
1523  *                                   are members of the same outermost loop
1524  *
1525  *                      initial                  initial
1526  *                        |                        |
1527  *                        V                        V
1528  *                       ...                      ...
1529  *                        |                        |
1530  *                        V                        V
1531  *                .------...               .------...
1532  *                |       |                |       |
1533  *                V       V                V       V
1534  *           .-> hdr     ...              ...     ...
1535  *           |    |       |                |       |
1536  *           |    V       V                V       V
1537  *           |   succ <- cur              succ <- cur
1538  *           |    |                        |
1539  *           |    V                        V
1540  *           |   ...                      ...
1541  *           |    |                        |
1542  *           '----'                       exit
1543  *
1544  * (C) successor state of cur is a part of some loop but this loop
1545  *     does not include cur or successor state is not in a loop at all.
1546  *
1547  * Algorithm could be described as the following python code:
1548  *
1549  *     traversed = set()   # Set of traversed nodes
1550  *     entries = {}        # Mapping from node to loop entry
1551  *     depths = {}         # Depth level assigned to graph node
1552  *     path = set()        # Current DFS path
1553  *
1554  *     # Find outermost loop entry known for n
1555  *     def get_loop_entry(n):
1556  *         h = entries.get(n, None)
1557  *         while h in entries and entries[h] != h:
1558  *             h = entries[h]
1559  *         return h
1560  *
1561  *     # Update n's loop entry if h's outermost entry comes
1562  *     # before n's outermost entry in current DFS path.
1563  *     def update_loop_entry(n, h):
1564  *         n1 = get_loop_entry(n) or n
1565  *         h1 = get_loop_entry(h) or h
1566  *         if h1 in path and depths[h1] <= depths[n1]:
1567  *             entries[n] = h1
1568  *
1569  *     def dfs(n, depth):
1570  *         traversed.add(n)
1571  *         path.add(n)
1572  *         depths[n] = depth
1573  *         for succ in G.successors(n):
1574  *             if succ not in traversed:
1575  *                 # Case A: explore succ and update cur's loop entry
1576  *                 #         only if succ's entry is in current DFS path.
1577  *                 dfs(succ, depth + 1)
1578  *                 h = get_loop_entry(succ)
1579  *                 update_loop_entry(n, h)
1580  *             else:
1581  *                 # Case B or C depending on `h1 in path` check in update_loop_entry().
1582  *                 update_loop_entry(n, succ)
1583  *         path.remove(n)
1584  *
1585  * To adapt this algorithm for use with verifier:
1586  * - use st->branch == 0 as a signal that DFS of succ had been finished
1587  *   and cur's loop entry has to be updated (case A), handle this in
1588  *   update_branch_counts();
1589  * - use st->branch > 0 as a signal that st is in the current DFS path;
1590  * - handle cases B and C in is_state_visited();
1591  * - update topmost loop entry for intermediate states in get_loop_entry().
1592  */
1593 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st)
1594 {
1595 	struct bpf_verifier_state *topmost = st->loop_entry, *old;
1596 
1597 	while (topmost && topmost->loop_entry && topmost != topmost->loop_entry)
1598 		topmost = topmost->loop_entry;
1599 	/* Update loop entries for intermediate states to avoid this
1600 	 * traversal in future get_loop_entry() calls.
1601 	 */
1602 	while (st && st->loop_entry != topmost) {
1603 		old = st->loop_entry;
1604 		st->loop_entry = topmost;
1605 		st = old;
1606 	}
1607 	return topmost;
1608 }
1609 
1610 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr)
1611 {
1612 	struct bpf_verifier_state *cur1, *hdr1;
1613 
1614 	cur1 = get_loop_entry(cur) ?: cur;
1615 	hdr1 = get_loop_entry(hdr) ?: hdr;
1616 	/* The head1->branches check decides between cases B and C in
1617 	 * comment for get_loop_entry(). If hdr1->branches == 0 then
1618 	 * head's topmost loop entry is not in current DFS path,
1619 	 * hence 'cur' and 'hdr' are not in the same loop and there is
1620 	 * no need to update cur->loop_entry.
1621 	 */
1622 	if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) {
1623 		cur->loop_entry = hdr;
1624 		hdr->used_as_loop_entry = true;
1625 	}
1626 }
1627 
1628 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1629 {
1630 	while (st) {
1631 		u32 br = --st->branches;
1632 
1633 		/* br == 0 signals that DFS exploration for 'st' is finished,
1634 		 * thus it is necessary to update parent's loop entry if it
1635 		 * turned out that st is a part of some loop.
1636 		 * This is a part of 'case A' in get_loop_entry() comment.
1637 		 */
1638 		if (br == 0 && st->parent && st->loop_entry)
1639 			update_loop_entry(st->parent, st->loop_entry);
1640 
1641 		/* WARN_ON(br > 1) technically makes sense here,
1642 		 * but see comment in push_stack(), hence:
1643 		 */
1644 		WARN_ONCE((int)br < 0,
1645 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1646 			  br);
1647 		if (br)
1648 			break;
1649 		st = st->parent;
1650 	}
1651 }
1652 
1653 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1654 		     int *insn_idx, bool pop_log)
1655 {
1656 	struct bpf_verifier_state *cur = env->cur_state;
1657 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1658 	int err;
1659 
1660 	if (env->head == NULL)
1661 		return -ENOENT;
1662 
1663 	if (cur) {
1664 		err = copy_verifier_state(cur, &head->st);
1665 		if (err)
1666 			return err;
1667 	}
1668 	if (pop_log)
1669 		bpf_vlog_reset(&env->log, head->log_pos);
1670 	if (insn_idx)
1671 		*insn_idx = head->insn_idx;
1672 	if (prev_insn_idx)
1673 		*prev_insn_idx = head->prev_insn_idx;
1674 	elem = head->next;
1675 	free_verifier_state(&head->st, false);
1676 	kfree(head);
1677 	env->head = elem;
1678 	env->stack_size--;
1679 	return 0;
1680 }
1681 
1682 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1683 					     int insn_idx, int prev_insn_idx,
1684 					     bool speculative)
1685 {
1686 	struct bpf_verifier_state *cur = env->cur_state;
1687 	struct bpf_verifier_stack_elem *elem;
1688 	int err;
1689 
1690 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1691 	if (!elem)
1692 		goto err;
1693 
1694 	elem->insn_idx = insn_idx;
1695 	elem->prev_insn_idx = prev_insn_idx;
1696 	elem->next = env->head;
1697 	elem->log_pos = env->log.end_pos;
1698 	env->head = elem;
1699 	env->stack_size++;
1700 	err = copy_verifier_state(&elem->st, cur);
1701 	if (err)
1702 		goto err;
1703 	elem->st.speculative |= speculative;
1704 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1705 		verbose(env, "The sequence of %d jumps is too complex.\n",
1706 			env->stack_size);
1707 		goto err;
1708 	}
1709 	if (elem->st.parent) {
1710 		++elem->st.parent->branches;
1711 		/* WARN_ON(branches > 2) technically makes sense here,
1712 		 * but
1713 		 * 1. speculative states will bump 'branches' for non-branch
1714 		 * instructions
1715 		 * 2. is_state_visited() heuristics may decide not to create
1716 		 * a new state for a sequence of branches and all such current
1717 		 * and cloned states will be pointing to a single parent state
1718 		 * which might have large 'branches' count.
1719 		 */
1720 	}
1721 	return &elem->st;
1722 err:
1723 	free_verifier_state(env->cur_state, true);
1724 	env->cur_state = NULL;
1725 	/* pop all elements and return */
1726 	while (!pop_stack(env, NULL, NULL, false));
1727 	return NULL;
1728 }
1729 
1730 #define CALLER_SAVED_REGS 6
1731 static const int caller_saved[CALLER_SAVED_REGS] = {
1732 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1733 };
1734 
1735 /* This helper doesn't clear reg->id */
1736 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1737 {
1738 	reg->var_off = tnum_const(imm);
1739 	reg->smin_value = (s64)imm;
1740 	reg->smax_value = (s64)imm;
1741 	reg->umin_value = imm;
1742 	reg->umax_value = imm;
1743 
1744 	reg->s32_min_value = (s32)imm;
1745 	reg->s32_max_value = (s32)imm;
1746 	reg->u32_min_value = (u32)imm;
1747 	reg->u32_max_value = (u32)imm;
1748 }
1749 
1750 /* Mark the unknown part of a register (variable offset or scalar value) as
1751  * known to have the value @imm.
1752  */
1753 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1754 {
1755 	/* Clear off and union(map_ptr, range) */
1756 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1757 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1758 	reg->id = 0;
1759 	reg->ref_obj_id = 0;
1760 	___mark_reg_known(reg, imm);
1761 }
1762 
1763 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1764 {
1765 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1766 	reg->s32_min_value = (s32)imm;
1767 	reg->s32_max_value = (s32)imm;
1768 	reg->u32_min_value = (u32)imm;
1769 	reg->u32_max_value = (u32)imm;
1770 }
1771 
1772 /* Mark the 'variable offset' part of a register as zero.  This should be
1773  * used only on registers holding a pointer type.
1774  */
1775 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1776 {
1777 	__mark_reg_known(reg, 0);
1778 }
1779 
1780 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1781 {
1782 	__mark_reg_known(reg, 0);
1783 	reg->type = SCALAR_VALUE;
1784 	/* all scalars are assumed imprecise initially (unless unprivileged,
1785 	 * in which case everything is forced to be precise)
1786 	 */
1787 	reg->precise = !env->bpf_capable;
1788 }
1789 
1790 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1791 				struct bpf_reg_state *regs, u32 regno)
1792 {
1793 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1794 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1795 		/* Something bad happened, let's kill all regs */
1796 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1797 			__mark_reg_not_init(env, regs + regno);
1798 		return;
1799 	}
1800 	__mark_reg_known_zero(regs + regno);
1801 }
1802 
1803 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
1804 			      bool first_slot, int dynptr_id)
1805 {
1806 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1807 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1808 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1809 	 */
1810 	__mark_reg_known_zero(reg);
1811 	reg->type = CONST_PTR_TO_DYNPTR;
1812 	/* Give each dynptr a unique id to uniquely associate slices to it. */
1813 	reg->id = dynptr_id;
1814 	reg->dynptr.type = type;
1815 	reg->dynptr.first_slot = first_slot;
1816 }
1817 
1818 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1819 {
1820 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1821 		const struct bpf_map *map = reg->map_ptr;
1822 
1823 		if (map->inner_map_meta) {
1824 			reg->type = CONST_PTR_TO_MAP;
1825 			reg->map_ptr = map->inner_map_meta;
1826 			/* transfer reg's id which is unique for every map_lookup_elem
1827 			 * as UID of the inner map.
1828 			 */
1829 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1830 				reg->map_uid = reg->id;
1831 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1832 			reg->type = PTR_TO_XDP_SOCK;
1833 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1834 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1835 			reg->type = PTR_TO_SOCKET;
1836 		} else {
1837 			reg->type = PTR_TO_MAP_VALUE;
1838 		}
1839 		return;
1840 	}
1841 
1842 	reg->type &= ~PTR_MAYBE_NULL;
1843 }
1844 
1845 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
1846 				struct btf_field_graph_root *ds_head)
1847 {
1848 	__mark_reg_known_zero(&regs[regno]);
1849 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
1850 	regs[regno].btf = ds_head->btf;
1851 	regs[regno].btf_id = ds_head->value_btf_id;
1852 	regs[regno].off = ds_head->node_offset;
1853 }
1854 
1855 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1856 {
1857 	return type_is_pkt_pointer(reg->type);
1858 }
1859 
1860 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1861 {
1862 	return reg_is_pkt_pointer(reg) ||
1863 	       reg->type == PTR_TO_PACKET_END;
1864 }
1865 
1866 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
1867 {
1868 	return base_type(reg->type) == PTR_TO_MEM &&
1869 		(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
1870 }
1871 
1872 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1873 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1874 				    enum bpf_reg_type which)
1875 {
1876 	/* The register can already have a range from prior markings.
1877 	 * This is fine as long as it hasn't been advanced from its
1878 	 * origin.
1879 	 */
1880 	return reg->type == which &&
1881 	       reg->id == 0 &&
1882 	       reg->off == 0 &&
1883 	       tnum_equals_const(reg->var_off, 0);
1884 }
1885 
1886 /* Reset the min/max bounds of a register */
1887 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1888 {
1889 	reg->smin_value = S64_MIN;
1890 	reg->smax_value = S64_MAX;
1891 	reg->umin_value = 0;
1892 	reg->umax_value = U64_MAX;
1893 
1894 	reg->s32_min_value = S32_MIN;
1895 	reg->s32_max_value = S32_MAX;
1896 	reg->u32_min_value = 0;
1897 	reg->u32_max_value = U32_MAX;
1898 }
1899 
1900 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1901 {
1902 	reg->smin_value = S64_MIN;
1903 	reg->smax_value = S64_MAX;
1904 	reg->umin_value = 0;
1905 	reg->umax_value = U64_MAX;
1906 }
1907 
1908 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1909 {
1910 	reg->s32_min_value = S32_MIN;
1911 	reg->s32_max_value = S32_MAX;
1912 	reg->u32_min_value = 0;
1913 	reg->u32_max_value = U32_MAX;
1914 }
1915 
1916 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1917 {
1918 	struct tnum var32_off = tnum_subreg(reg->var_off);
1919 
1920 	/* min signed is max(sign bit) | min(other bits) */
1921 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1922 			var32_off.value | (var32_off.mask & S32_MIN));
1923 	/* max signed is min(sign bit) | max(other bits) */
1924 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1925 			var32_off.value | (var32_off.mask & S32_MAX));
1926 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1927 	reg->u32_max_value = min(reg->u32_max_value,
1928 				 (u32)(var32_off.value | var32_off.mask));
1929 }
1930 
1931 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1932 {
1933 	/* min signed is max(sign bit) | min(other bits) */
1934 	reg->smin_value = max_t(s64, reg->smin_value,
1935 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1936 	/* max signed is min(sign bit) | max(other bits) */
1937 	reg->smax_value = min_t(s64, reg->smax_value,
1938 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1939 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1940 	reg->umax_value = min(reg->umax_value,
1941 			      reg->var_off.value | reg->var_off.mask);
1942 }
1943 
1944 static void __update_reg_bounds(struct bpf_reg_state *reg)
1945 {
1946 	__update_reg32_bounds(reg);
1947 	__update_reg64_bounds(reg);
1948 }
1949 
1950 /* Uses signed min/max values to inform unsigned, and vice-versa */
1951 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1952 {
1953 	/* If upper 32 bits of u64/s64 range don't change, we can use lower 32
1954 	 * bits to improve our u32/s32 boundaries.
1955 	 *
1956 	 * E.g., the case where we have upper 32 bits as zero ([10, 20] in
1957 	 * u64) is pretty trivial, it's obvious that in u32 we'll also have
1958 	 * [10, 20] range. But this property holds for any 64-bit range as
1959 	 * long as upper 32 bits in that entire range of values stay the same.
1960 	 *
1961 	 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311]
1962 	 * in decimal) has the same upper 32 bits throughout all the values in
1963 	 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15])
1964 	 * range.
1965 	 *
1966 	 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32,
1967 	 * following the rules outlined below about u64/s64 correspondence
1968 	 * (which equally applies to u32 vs s32 correspondence). In general it
1969 	 * depends on actual hexadecimal values of 32-bit range. They can form
1970 	 * only valid u32, or only valid s32 ranges in some cases.
1971 	 *
1972 	 * So we use all these insights to derive bounds for subregisters here.
1973 	 */
1974 	if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) {
1975 		/* u64 to u32 casting preserves validity of low 32 bits as
1976 		 * a range, if upper 32 bits are the same
1977 		 */
1978 		reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value);
1979 		reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value);
1980 
1981 		if ((s32)reg->umin_value <= (s32)reg->umax_value) {
1982 			reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
1983 			reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
1984 		}
1985 	}
1986 	if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) {
1987 		/* low 32 bits should form a proper u32 range */
1988 		if ((u32)reg->smin_value <= (u32)reg->smax_value) {
1989 			reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value);
1990 			reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value);
1991 		}
1992 		/* low 32 bits should form a proper s32 range */
1993 		if ((s32)reg->smin_value <= (s32)reg->smax_value) {
1994 			reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
1995 			reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
1996 		}
1997 	}
1998 	/* Special case where upper bits form a small sequence of two
1999 	 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to
2000 	 * 0x00000000 is also valid), while lower bits form a proper s32 range
2001 	 * going from negative numbers to positive numbers. E.g., let's say we
2002 	 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]).
2003 	 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff,
2004 	 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits,
2005 	 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]).
2006 	 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in
2007 	 * upper 32 bits. As a random example, s64 range
2008 	 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range
2009 	 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister.
2010 	 */
2011 	if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) &&
2012 	    (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) {
2013 		reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
2014 		reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
2015 	}
2016 	if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) &&
2017 	    (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) {
2018 		reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
2019 		reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
2020 	}
2021 	/* if u32 range forms a valid s32 range (due to matching sign bit),
2022 	 * try to learn from that
2023 	 */
2024 	if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) {
2025 		reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value);
2026 		reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value);
2027 	}
2028 	/* If we cannot cross the sign boundary, then signed and unsigned bounds
2029 	 * are the same, so combine.  This works even in the negative case, e.g.
2030 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2031 	 */
2032 	if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2033 		reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value);
2034 		reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value);
2035 	}
2036 }
2037 
2038 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2039 {
2040 	/* If u64 range forms a valid s64 range (due to matching sign bit),
2041 	 * try to learn from that. Let's do a bit of ASCII art to see when
2042 	 * this is happening. Let's take u64 range first:
2043 	 *
2044 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2045 	 * |-------------------------------|--------------------------------|
2046 	 *
2047 	 * Valid u64 range is formed when umin and umax are anywhere in the
2048 	 * range [0, U64_MAX], and umin <= umax. u64 case is simple and
2049 	 * straightforward. Let's see how s64 range maps onto the same range
2050 	 * of values, annotated below the line for comparison:
2051 	 *
2052 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2053 	 * |-------------------------------|--------------------------------|
2054 	 * 0                        S64_MAX S64_MIN                        -1
2055 	 *
2056 	 * So s64 values basically start in the middle and they are logically
2057 	 * contiguous to the right of it, wrapping around from -1 to 0, and
2058 	 * then finishing as S64_MAX (0x7fffffffffffffff) right before
2059 	 * S64_MIN. We can try drawing the continuity of u64 vs s64 values
2060 	 * more visually as mapped to sign-agnostic range of hex values.
2061 	 *
2062 	 *  u64 start                                               u64 end
2063 	 *  _______________________________________________________________
2064 	 * /                                                               \
2065 	 * 0             0x7fffffffffffffff 0x8000000000000000        U64_MAX
2066 	 * |-------------------------------|--------------------------------|
2067 	 * 0                        S64_MAX S64_MIN                        -1
2068 	 *                                / \
2069 	 * >------------------------------   ------------------------------->
2070 	 * s64 continues...        s64 end   s64 start          s64 "midpoint"
2071 	 *
2072 	 * What this means is that, in general, we can't always derive
2073 	 * something new about u64 from any random s64 range, and vice versa.
2074 	 *
2075 	 * But we can do that in two particular cases. One is when entire
2076 	 * u64/s64 range is *entirely* contained within left half of the above
2077 	 * diagram or when it is *entirely* contained in the right half. I.e.:
2078 	 *
2079 	 * |-------------------------------|--------------------------------|
2080 	 *     ^                   ^            ^                 ^
2081 	 *     A                   B            C                 D
2082 	 *
2083 	 * [A, B] and [C, D] are contained entirely in their respective halves
2084 	 * and form valid contiguous ranges as both u64 and s64 values. [A, B]
2085 	 * will be non-negative both as u64 and s64 (and in fact it will be
2086 	 * identical ranges no matter the signedness). [C, D] treated as s64
2087 	 * will be a range of negative values, while in u64 it will be
2088 	 * non-negative range of values larger than 0x8000000000000000.
2089 	 *
2090 	 * Now, any other range here can't be represented in both u64 and s64
2091 	 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid
2092 	 * contiguous u64 ranges, but they are discontinuous in s64. [B, C]
2093 	 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX],
2094 	 * for example. Similarly, valid s64 range [D, A] (going from negative
2095 	 * to positive values), would be two separate [D, U64_MAX] and [0, A]
2096 	 * ranges as u64. Currently reg_state can't represent two segments per
2097 	 * numeric domain, so in such situations we can only derive maximal
2098 	 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64).
2099 	 *
2100 	 * So we use these facts to derive umin/umax from smin/smax and vice
2101 	 * versa only if they stay within the same "half". This is equivalent
2102 	 * to checking sign bit: lower half will have sign bit as zero, upper
2103 	 * half have sign bit 1. Below in code we simplify this by just
2104 	 * casting umin/umax as smin/smax and checking if they form valid
2105 	 * range, and vice versa. Those are equivalent checks.
2106 	 */
2107 	if ((s64)reg->umin_value <= (s64)reg->umax_value) {
2108 		reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value);
2109 		reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value);
2110 	}
2111 	/* If we cannot cross the sign boundary, then signed and unsigned bounds
2112 	 * are the same, so combine.  This works even in the negative case, e.g.
2113 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2114 	 */
2115 	if ((u64)reg->smin_value <= (u64)reg->smax_value) {
2116 		reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value);
2117 		reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value);
2118 	}
2119 }
2120 
2121 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg)
2122 {
2123 	/* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit
2124 	 * values on both sides of 64-bit range in hope to have tigher range.
2125 	 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from
2126 	 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff].
2127 	 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound
2128 	 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of
2129 	 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a
2130 	 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff].
2131 	 * We just need to make sure that derived bounds we are intersecting
2132 	 * with are well-formed ranges in respecitve s64 or u64 domain, just
2133 	 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments.
2134 	 */
2135 	__u64 new_umin, new_umax;
2136 	__s64 new_smin, new_smax;
2137 
2138 	/* u32 -> u64 tightening, it's always well-formed */
2139 	new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value;
2140 	new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value;
2141 	reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2142 	reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2143 	/* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */
2144 	new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value;
2145 	new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value;
2146 	reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2147 	reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2148 
2149 	/* if s32 can be treated as valid u32 range, we can use it as well */
2150 	if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
2151 		/* s32 -> u64 tightening */
2152 		new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
2153 		new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
2154 		reg->umin_value = max_t(u64, reg->umin_value, new_umin);
2155 		reg->umax_value = min_t(u64, reg->umax_value, new_umax);
2156 		/* s32 -> s64 tightening */
2157 		new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
2158 		new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
2159 		reg->smin_value = max_t(s64, reg->smin_value, new_smin);
2160 		reg->smax_value = min_t(s64, reg->smax_value, new_smax);
2161 	}
2162 }
2163 
2164 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2165 {
2166 	__reg32_deduce_bounds(reg);
2167 	__reg64_deduce_bounds(reg);
2168 	__reg_deduce_mixed_bounds(reg);
2169 }
2170 
2171 /* Attempts to improve var_off based on unsigned min/max information */
2172 static void __reg_bound_offset(struct bpf_reg_state *reg)
2173 {
2174 	struct tnum var64_off = tnum_intersect(reg->var_off,
2175 					       tnum_range(reg->umin_value,
2176 							  reg->umax_value));
2177 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2178 					       tnum_range(reg->u32_min_value,
2179 							  reg->u32_max_value));
2180 
2181 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2182 }
2183 
2184 static void reg_bounds_sync(struct bpf_reg_state *reg)
2185 {
2186 	/* We might have learned new bounds from the var_off. */
2187 	__update_reg_bounds(reg);
2188 	/* We might have learned something about the sign bit. */
2189 	__reg_deduce_bounds(reg);
2190 	__reg_deduce_bounds(reg);
2191 	/* We might have learned some bits from the bounds. */
2192 	__reg_bound_offset(reg);
2193 	/* Intersecting with the old var_off might have improved our bounds
2194 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2195 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2196 	 */
2197 	__update_reg_bounds(reg);
2198 }
2199 
2200 static int reg_bounds_sanity_check(struct bpf_verifier_env *env,
2201 				   struct bpf_reg_state *reg, const char *ctx)
2202 {
2203 	const char *msg;
2204 
2205 	if (reg->umin_value > reg->umax_value ||
2206 	    reg->smin_value > reg->smax_value ||
2207 	    reg->u32_min_value > reg->u32_max_value ||
2208 	    reg->s32_min_value > reg->s32_max_value) {
2209 		    msg = "range bounds violation";
2210 		    goto out;
2211 	}
2212 
2213 	if (tnum_is_const(reg->var_off)) {
2214 		u64 uval = reg->var_off.value;
2215 		s64 sval = (s64)uval;
2216 
2217 		if (reg->umin_value != uval || reg->umax_value != uval ||
2218 		    reg->smin_value != sval || reg->smax_value != sval) {
2219 			msg = "const tnum out of sync with range bounds";
2220 			goto out;
2221 		}
2222 	}
2223 
2224 	if (tnum_subreg_is_const(reg->var_off)) {
2225 		u32 uval32 = tnum_subreg(reg->var_off).value;
2226 		s32 sval32 = (s32)uval32;
2227 
2228 		if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 ||
2229 		    reg->s32_min_value != sval32 || reg->s32_max_value != sval32) {
2230 			msg = "const subreg tnum out of sync with range bounds";
2231 			goto out;
2232 		}
2233 	}
2234 
2235 	return 0;
2236 out:
2237 	verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] "
2238 		"s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n",
2239 		ctx, msg, reg->umin_value, reg->umax_value,
2240 		reg->smin_value, reg->smax_value,
2241 		reg->u32_min_value, reg->u32_max_value,
2242 		reg->s32_min_value, reg->s32_max_value,
2243 		reg->var_off.value, reg->var_off.mask);
2244 	if (env->test_reg_invariants)
2245 		return -EFAULT;
2246 	__mark_reg_unbounded(reg);
2247 	return 0;
2248 }
2249 
2250 static bool __reg32_bound_s64(s32 a)
2251 {
2252 	return a >= 0 && a <= S32_MAX;
2253 }
2254 
2255 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2256 {
2257 	reg->umin_value = reg->u32_min_value;
2258 	reg->umax_value = reg->u32_max_value;
2259 
2260 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2261 	 * be positive otherwise set to worse case bounds and refine later
2262 	 * from tnum.
2263 	 */
2264 	if (__reg32_bound_s64(reg->s32_min_value) &&
2265 	    __reg32_bound_s64(reg->s32_max_value)) {
2266 		reg->smin_value = reg->s32_min_value;
2267 		reg->smax_value = reg->s32_max_value;
2268 	} else {
2269 		reg->smin_value = 0;
2270 		reg->smax_value = U32_MAX;
2271 	}
2272 }
2273 
2274 /* Mark a register as having a completely unknown (scalar) value. */
2275 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2276 			       struct bpf_reg_state *reg)
2277 {
2278 	/*
2279 	 * Clear type, off, and union(map_ptr, range) and
2280 	 * padding between 'type' and union
2281 	 */
2282 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2283 	reg->type = SCALAR_VALUE;
2284 	reg->id = 0;
2285 	reg->ref_obj_id = 0;
2286 	reg->var_off = tnum_unknown;
2287 	reg->frameno = 0;
2288 	reg->precise = !env->bpf_capable;
2289 	__mark_reg_unbounded(reg);
2290 }
2291 
2292 static void mark_reg_unknown(struct bpf_verifier_env *env,
2293 			     struct bpf_reg_state *regs, u32 regno)
2294 {
2295 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2296 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2297 		/* Something bad happened, let's kill all regs except FP */
2298 		for (regno = 0; regno < BPF_REG_FP; regno++)
2299 			__mark_reg_not_init(env, regs + regno);
2300 		return;
2301 	}
2302 	__mark_reg_unknown(env, regs + regno);
2303 }
2304 
2305 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2306 				struct bpf_reg_state *reg)
2307 {
2308 	__mark_reg_unknown(env, reg);
2309 	reg->type = NOT_INIT;
2310 }
2311 
2312 static void mark_reg_not_init(struct bpf_verifier_env *env,
2313 			      struct bpf_reg_state *regs, u32 regno)
2314 {
2315 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2316 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2317 		/* Something bad happened, let's kill all regs except FP */
2318 		for (regno = 0; regno < BPF_REG_FP; regno++)
2319 			__mark_reg_not_init(env, regs + regno);
2320 		return;
2321 	}
2322 	__mark_reg_not_init(env, regs + regno);
2323 }
2324 
2325 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2326 			    struct bpf_reg_state *regs, u32 regno,
2327 			    enum bpf_reg_type reg_type,
2328 			    struct btf *btf, u32 btf_id,
2329 			    enum bpf_type_flag flag)
2330 {
2331 	if (reg_type == SCALAR_VALUE) {
2332 		mark_reg_unknown(env, regs, regno);
2333 		return;
2334 	}
2335 	mark_reg_known_zero(env, regs, regno);
2336 	regs[regno].type = PTR_TO_BTF_ID | flag;
2337 	regs[regno].btf = btf;
2338 	regs[regno].btf_id = btf_id;
2339 }
2340 
2341 #define DEF_NOT_SUBREG	(0)
2342 static void init_reg_state(struct bpf_verifier_env *env,
2343 			   struct bpf_func_state *state)
2344 {
2345 	struct bpf_reg_state *regs = state->regs;
2346 	int i;
2347 
2348 	for (i = 0; i < MAX_BPF_REG; i++) {
2349 		mark_reg_not_init(env, regs, i);
2350 		regs[i].live = REG_LIVE_NONE;
2351 		regs[i].parent = NULL;
2352 		regs[i].subreg_def = DEF_NOT_SUBREG;
2353 	}
2354 
2355 	/* frame pointer */
2356 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2357 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2358 	regs[BPF_REG_FP].frameno = state->frameno;
2359 }
2360 
2361 static struct bpf_retval_range retval_range(s32 minval, s32 maxval)
2362 {
2363 	return (struct bpf_retval_range){ minval, maxval };
2364 }
2365 
2366 #define BPF_MAIN_FUNC (-1)
2367 static void init_func_state(struct bpf_verifier_env *env,
2368 			    struct bpf_func_state *state,
2369 			    int callsite, int frameno, int subprogno)
2370 {
2371 	state->callsite = callsite;
2372 	state->frameno = frameno;
2373 	state->subprogno = subprogno;
2374 	state->callback_ret_range = retval_range(0, 0);
2375 	init_reg_state(env, state);
2376 	mark_verifier_state_scratched(env);
2377 }
2378 
2379 /* Similar to push_stack(), but for async callbacks */
2380 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2381 						int insn_idx, int prev_insn_idx,
2382 						int subprog)
2383 {
2384 	struct bpf_verifier_stack_elem *elem;
2385 	struct bpf_func_state *frame;
2386 
2387 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2388 	if (!elem)
2389 		goto err;
2390 
2391 	elem->insn_idx = insn_idx;
2392 	elem->prev_insn_idx = prev_insn_idx;
2393 	elem->next = env->head;
2394 	elem->log_pos = env->log.end_pos;
2395 	env->head = elem;
2396 	env->stack_size++;
2397 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2398 		verbose(env,
2399 			"The sequence of %d jumps is too complex for async cb.\n",
2400 			env->stack_size);
2401 		goto err;
2402 	}
2403 	/* Unlike push_stack() do not copy_verifier_state().
2404 	 * The caller state doesn't matter.
2405 	 * This is async callback. It starts in a fresh stack.
2406 	 * Initialize it similar to do_check_common().
2407 	 */
2408 	elem->st.branches = 1;
2409 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2410 	if (!frame)
2411 		goto err;
2412 	init_func_state(env, frame,
2413 			BPF_MAIN_FUNC /* callsite */,
2414 			0 /* frameno within this callchain */,
2415 			subprog /* subprog number within this prog */);
2416 	elem->st.frame[0] = frame;
2417 	return &elem->st;
2418 err:
2419 	free_verifier_state(env->cur_state, true);
2420 	env->cur_state = NULL;
2421 	/* pop all elements and return */
2422 	while (!pop_stack(env, NULL, NULL, false));
2423 	return NULL;
2424 }
2425 
2426 
2427 enum reg_arg_type {
2428 	SRC_OP,		/* register is used as source operand */
2429 	DST_OP,		/* register is used as destination operand */
2430 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2431 };
2432 
2433 static int cmp_subprogs(const void *a, const void *b)
2434 {
2435 	return ((struct bpf_subprog_info *)a)->start -
2436 	       ((struct bpf_subprog_info *)b)->start;
2437 }
2438 
2439 static int find_subprog(struct bpf_verifier_env *env, int off)
2440 {
2441 	struct bpf_subprog_info *p;
2442 
2443 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2444 		    sizeof(env->subprog_info[0]), cmp_subprogs);
2445 	if (!p)
2446 		return -ENOENT;
2447 	return p - env->subprog_info;
2448 
2449 }
2450 
2451 static int add_subprog(struct bpf_verifier_env *env, int off)
2452 {
2453 	int insn_cnt = env->prog->len;
2454 	int ret;
2455 
2456 	if (off >= insn_cnt || off < 0) {
2457 		verbose(env, "call to invalid destination\n");
2458 		return -EINVAL;
2459 	}
2460 	ret = find_subprog(env, off);
2461 	if (ret >= 0)
2462 		return ret;
2463 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2464 		verbose(env, "too many subprograms\n");
2465 		return -E2BIG;
2466 	}
2467 	/* determine subprog starts. The end is one before the next starts */
2468 	env->subprog_info[env->subprog_cnt++].start = off;
2469 	sort(env->subprog_info, env->subprog_cnt,
2470 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2471 	return env->subprog_cnt - 1;
2472 }
2473 
2474 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env)
2475 {
2476 	struct bpf_prog_aux *aux = env->prog->aux;
2477 	struct btf *btf = aux->btf;
2478 	const struct btf_type *t;
2479 	u32 main_btf_id, id;
2480 	const char *name;
2481 	int ret, i;
2482 
2483 	/* Non-zero func_info_cnt implies valid btf */
2484 	if (!aux->func_info_cnt)
2485 		return 0;
2486 	main_btf_id = aux->func_info[0].type_id;
2487 
2488 	t = btf_type_by_id(btf, main_btf_id);
2489 	if (!t) {
2490 		verbose(env, "invalid btf id for main subprog in func_info\n");
2491 		return -EINVAL;
2492 	}
2493 
2494 	name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:");
2495 	if (IS_ERR(name)) {
2496 		ret = PTR_ERR(name);
2497 		/* If there is no tag present, there is no exception callback */
2498 		if (ret == -ENOENT)
2499 			ret = 0;
2500 		else if (ret == -EEXIST)
2501 			verbose(env, "multiple exception callback tags for main subprog\n");
2502 		return ret;
2503 	}
2504 
2505 	ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC);
2506 	if (ret < 0) {
2507 		verbose(env, "exception callback '%s' could not be found in BTF\n", name);
2508 		return ret;
2509 	}
2510 	id = ret;
2511 	t = btf_type_by_id(btf, id);
2512 	if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
2513 		verbose(env, "exception callback '%s' must have global linkage\n", name);
2514 		return -EINVAL;
2515 	}
2516 	ret = 0;
2517 	for (i = 0; i < aux->func_info_cnt; i++) {
2518 		if (aux->func_info[i].type_id != id)
2519 			continue;
2520 		ret = aux->func_info[i].insn_off;
2521 		/* Further func_info and subprog checks will also happen
2522 		 * later, so assume this is the right insn_off for now.
2523 		 */
2524 		if (!ret) {
2525 			verbose(env, "invalid exception callback insn_off in func_info: 0\n");
2526 			ret = -EINVAL;
2527 		}
2528 	}
2529 	if (!ret) {
2530 		verbose(env, "exception callback type id not found in func_info\n");
2531 		ret = -EINVAL;
2532 	}
2533 	return ret;
2534 }
2535 
2536 #define MAX_KFUNC_DESCS 256
2537 #define MAX_KFUNC_BTFS	256
2538 
2539 struct bpf_kfunc_desc {
2540 	struct btf_func_model func_model;
2541 	u32 func_id;
2542 	s32 imm;
2543 	u16 offset;
2544 	unsigned long addr;
2545 };
2546 
2547 struct bpf_kfunc_btf {
2548 	struct btf *btf;
2549 	struct module *module;
2550 	u16 offset;
2551 };
2552 
2553 struct bpf_kfunc_desc_tab {
2554 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2555 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
2556 	 * available, therefore at the end of verification do_misc_fixups()
2557 	 * sorts this by imm and offset.
2558 	 */
2559 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2560 	u32 nr_descs;
2561 };
2562 
2563 struct bpf_kfunc_btf_tab {
2564 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2565 	u32 nr_descs;
2566 };
2567 
2568 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2569 {
2570 	const struct bpf_kfunc_desc *d0 = a;
2571 	const struct bpf_kfunc_desc *d1 = b;
2572 
2573 	/* func_id is not greater than BTF_MAX_TYPE */
2574 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2575 }
2576 
2577 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2578 {
2579 	const struct bpf_kfunc_btf *d0 = a;
2580 	const struct bpf_kfunc_btf *d1 = b;
2581 
2582 	return d0->offset - d1->offset;
2583 }
2584 
2585 static const struct bpf_kfunc_desc *
2586 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2587 {
2588 	struct bpf_kfunc_desc desc = {
2589 		.func_id = func_id,
2590 		.offset = offset,
2591 	};
2592 	struct bpf_kfunc_desc_tab *tab;
2593 
2594 	tab = prog->aux->kfunc_tab;
2595 	return bsearch(&desc, tab->descs, tab->nr_descs,
2596 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2597 }
2598 
2599 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2600 		       u16 btf_fd_idx, u8 **func_addr)
2601 {
2602 	const struct bpf_kfunc_desc *desc;
2603 
2604 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2605 	if (!desc)
2606 		return -EFAULT;
2607 
2608 	*func_addr = (u8 *)desc->addr;
2609 	return 0;
2610 }
2611 
2612 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2613 					 s16 offset)
2614 {
2615 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2616 	struct bpf_kfunc_btf_tab *tab;
2617 	struct bpf_kfunc_btf *b;
2618 	struct module *mod;
2619 	struct btf *btf;
2620 	int btf_fd;
2621 
2622 	tab = env->prog->aux->kfunc_btf_tab;
2623 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2624 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2625 	if (!b) {
2626 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2627 			verbose(env, "too many different module BTFs\n");
2628 			return ERR_PTR(-E2BIG);
2629 		}
2630 
2631 		if (bpfptr_is_null(env->fd_array)) {
2632 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2633 			return ERR_PTR(-EPROTO);
2634 		}
2635 
2636 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2637 					    offset * sizeof(btf_fd),
2638 					    sizeof(btf_fd)))
2639 			return ERR_PTR(-EFAULT);
2640 
2641 		btf = btf_get_by_fd(btf_fd);
2642 		if (IS_ERR(btf)) {
2643 			verbose(env, "invalid module BTF fd specified\n");
2644 			return btf;
2645 		}
2646 
2647 		if (!btf_is_module(btf)) {
2648 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2649 			btf_put(btf);
2650 			return ERR_PTR(-EINVAL);
2651 		}
2652 
2653 		mod = btf_try_get_module(btf);
2654 		if (!mod) {
2655 			btf_put(btf);
2656 			return ERR_PTR(-ENXIO);
2657 		}
2658 
2659 		b = &tab->descs[tab->nr_descs++];
2660 		b->btf = btf;
2661 		b->module = mod;
2662 		b->offset = offset;
2663 
2664 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2665 		     kfunc_btf_cmp_by_off, NULL);
2666 	}
2667 	return b->btf;
2668 }
2669 
2670 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2671 {
2672 	if (!tab)
2673 		return;
2674 
2675 	while (tab->nr_descs--) {
2676 		module_put(tab->descs[tab->nr_descs].module);
2677 		btf_put(tab->descs[tab->nr_descs].btf);
2678 	}
2679 	kfree(tab);
2680 }
2681 
2682 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2683 {
2684 	if (offset) {
2685 		if (offset < 0) {
2686 			/* In the future, this can be allowed to increase limit
2687 			 * of fd index into fd_array, interpreted as u16.
2688 			 */
2689 			verbose(env, "negative offset disallowed for kernel module function call\n");
2690 			return ERR_PTR(-EINVAL);
2691 		}
2692 
2693 		return __find_kfunc_desc_btf(env, offset);
2694 	}
2695 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2696 }
2697 
2698 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2699 {
2700 	const struct btf_type *func, *func_proto;
2701 	struct bpf_kfunc_btf_tab *btf_tab;
2702 	struct bpf_kfunc_desc_tab *tab;
2703 	struct bpf_prog_aux *prog_aux;
2704 	struct bpf_kfunc_desc *desc;
2705 	const char *func_name;
2706 	struct btf *desc_btf;
2707 	unsigned long call_imm;
2708 	unsigned long addr;
2709 	int err;
2710 
2711 	prog_aux = env->prog->aux;
2712 	tab = prog_aux->kfunc_tab;
2713 	btf_tab = prog_aux->kfunc_btf_tab;
2714 	if (!tab) {
2715 		if (!btf_vmlinux) {
2716 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2717 			return -ENOTSUPP;
2718 		}
2719 
2720 		if (!env->prog->jit_requested) {
2721 			verbose(env, "JIT is required for calling kernel function\n");
2722 			return -ENOTSUPP;
2723 		}
2724 
2725 		if (!bpf_jit_supports_kfunc_call()) {
2726 			verbose(env, "JIT does not support calling kernel function\n");
2727 			return -ENOTSUPP;
2728 		}
2729 
2730 		if (!env->prog->gpl_compatible) {
2731 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2732 			return -EINVAL;
2733 		}
2734 
2735 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2736 		if (!tab)
2737 			return -ENOMEM;
2738 		prog_aux->kfunc_tab = tab;
2739 	}
2740 
2741 	/* func_id == 0 is always invalid, but instead of returning an error, be
2742 	 * conservative and wait until the code elimination pass before returning
2743 	 * error, so that invalid calls that get pruned out can be in BPF programs
2744 	 * loaded from userspace.  It is also required that offset be untouched
2745 	 * for such calls.
2746 	 */
2747 	if (!func_id && !offset)
2748 		return 0;
2749 
2750 	if (!btf_tab && offset) {
2751 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2752 		if (!btf_tab)
2753 			return -ENOMEM;
2754 		prog_aux->kfunc_btf_tab = btf_tab;
2755 	}
2756 
2757 	desc_btf = find_kfunc_desc_btf(env, offset);
2758 	if (IS_ERR(desc_btf)) {
2759 		verbose(env, "failed to find BTF for kernel function\n");
2760 		return PTR_ERR(desc_btf);
2761 	}
2762 
2763 	if (find_kfunc_desc(env->prog, func_id, offset))
2764 		return 0;
2765 
2766 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2767 		verbose(env, "too many different kernel function calls\n");
2768 		return -E2BIG;
2769 	}
2770 
2771 	func = btf_type_by_id(desc_btf, func_id);
2772 	if (!func || !btf_type_is_func(func)) {
2773 		verbose(env, "kernel btf_id %u is not a function\n",
2774 			func_id);
2775 		return -EINVAL;
2776 	}
2777 	func_proto = btf_type_by_id(desc_btf, func->type);
2778 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2779 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2780 			func_id);
2781 		return -EINVAL;
2782 	}
2783 
2784 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2785 	addr = kallsyms_lookup_name(func_name);
2786 	if (!addr) {
2787 		verbose(env, "cannot find address for kernel function %s\n",
2788 			func_name);
2789 		return -EINVAL;
2790 	}
2791 	specialize_kfunc(env, func_id, offset, &addr);
2792 
2793 	if (bpf_jit_supports_far_kfunc_call()) {
2794 		call_imm = func_id;
2795 	} else {
2796 		call_imm = BPF_CALL_IMM(addr);
2797 		/* Check whether the relative offset overflows desc->imm */
2798 		if ((unsigned long)(s32)call_imm != call_imm) {
2799 			verbose(env, "address of kernel function %s is out of range\n",
2800 				func_name);
2801 			return -EINVAL;
2802 		}
2803 	}
2804 
2805 	if (bpf_dev_bound_kfunc_id(func_id)) {
2806 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2807 		if (err)
2808 			return err;
2809 	}
2810 
2811 	desc = &tab->descs[tab->nr_descs++];
2812 	desc->func_id = func_id;
2813 	desc->imm = call_imm;
2814 	desc->offset = offset;
2815 	desc->addr = addr;
2816 	err = btf_distill_func_proto(&env->log, desc_btf,
2817 				     func_proto, func_name,
2818 				     &desc->func_model);
2819 	if (!err)
2820 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2821 		     kfunc_desc_cmp_by_id_off, NULL);
2822 	return err;
2823 }
2824 
2825 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2826 {
2827 	const struct bpf_kfunc_desc *d0 = a;
2828 	const struct bpf_kfunc_desc *d1 = b;
2829 
2830 	if (d0->imm != d1->imm)
2831 		return d0->imm < d1->imm ? -1 : 1;
2832 	if (d0->offset != d1->offset)
2833 		return d0->offset < d1->offset ? -1 : 1;
2834 	return 0;
2835 }
2836 
2837 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
2838 {
2839 	struct bpf_kfunc_desc_tab *tab;
2840 
2841 	tab = prog->aux->kfunc_tab;
2842 	if (!tab)
2843 		return;
2844 
2845 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2846 	     kfunc_desc_cmp_by_imm_off, NULL);
2847 }
2848 
2849 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2850 {
2851 	return !!prog->aux->kfunc_tab;
2852 }
2853 
2854 const struct btf_func_model *
2855 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2856 			 const struct bpf_insn *insn)
2857 {
2858 	const struct bpf_kfunc_desc desc = {
2859 		.imm = insn->imm,
2860 		.offset = insn->off,
2861 	};
2862 	const struct bpf_kfunc_desc *res;
2863 	struct bpf_kfunc_desc_tab *tab;
2864 
2865 	tab = prog->aux->kfunc_tab;
2866 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2867 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
2868 
2869 	return res ? &res->func_model : NULL;
2870 }
2871 
2872 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2873 {
2874 	struct bpf_subprog_info *subprog = env->subprog_info;
2875 	int i, ret, insn_cnt = env->prog->len, ex_cb_insn;
2876 	struct bpf_insn *insn = env->prog->insnsi;
2877 
2878 	/* Add entry function. */
2879 	ret = add_subprog(env, 0);
2880 	if (ret)
2881 		return ret;
2882 
2883 	for (i = 0; i < insn_cnt; i++, insn++) {
2884 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2885 		    !bpf_pseudo_kfunc_call(insn))
2886 			continue;
2887 
2888 		if (!env->bpf_capable) {
2889 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2890 			return -EPERM;
2891 		}
2892 
2893 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2894 			ret = add_subprog(env, i + insn->imm + 1);
2895 		else
2896 			ret = add_kfunc_call(env, insn->imm, insn->off);
2897 
2898 		if (ret < 0)
2899 			return ret;
2900 	}
2901 
2902 	ret = bpf_find_exception_callback_insn_off(env);
2903 	if (ret < 0)
2904 		return ret;
2905 	ex_cb_insn = ret;
2906 
2907 	/* If ex_cb_insn > 0, this means that the main program has a subprog
2908 	 * marked using BTF decl tag to serve as the exception callback.
2909 	 */
2910 	if (ex_cb_insn) {
2911 		ret = add_subprog(env, ex_cb_insn);
2912 		if (ret < 0)
2913 			return ret;
2914 		for (i = 1; i < env->subprog_cnt; i++) {
2915 			if (env->subprog_info[i].start != ex_cb_insn)
2916 				continue;
2917 			env->exception_callback_subprog = i;
2918 			mark_subprog_exc_cb(env, i);
2919 			break;
2920 		}
2921 	}
2922 
2923 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2924 	 * logic. 'subprog_cnt' should not be increased.
2925 	 */
2926 	subprog[env->subprog_cnt].start = insn_cnt;
2927 
2928 	if (env->log.level & BPF_LOG_LEVEL2)
2929 		for (i = 0; i < env->subprog_cnt; i++)
2930 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2931 
2932 	return 0;
2933 }
2934 
2935 static int check_subprogs(struct bpf_verifier_env *env)
2936 {
2937 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2938 	struct bpf_subprog_info *subprog = env->subprog_info;
2939 	struct bpf_insn *insn = env->prog->insnsi;
2940 	int insn_cnt = env->prog->len;
2941 
2942 	/* now check that all jumps are within the same subprog */
2943 	subprog_start = subprog[cur_subprog].start;
2944 	subprog_end = subprog[cur_subprog + 1].start;
2945 	for (i = 0; i < insn_cnt; i++) {
2946 		u8 code = insn[i].code;
2947 
2948 		if (code == (BPF_JMP | BPF_CALL) &&
2949 		    insn[i].src_reg == 0 &&
2950 		    insn[i].imm == BPF_FUNC_tail_call)
2951 			subprog[cur_subprog].has_tail_call = true;
2952 		if (BPF_CLASS(code) == BPF_LD &&
2953 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2954 			subprog[cur_subprog].has_ld_abs = true;
2955 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2956 			goto next;
2957 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2958 			goto next;
2959 		if (code == (BPF_JMP32 | BPF_JA))
2960 			off = i + insn[i].imm + 1;
2961 		else
2962 			off = i + insn[i].off + 1;
2963 		if (off < subprog_start || off >= subprog_end) {
2964 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2965 			return -EINVAL;
2966 		}
2967 next:
2968 		if (i == subprog_end - 1) {
2969 			/* to avoid fall-through from one subprog into another
2970 			 * the last insn of the subprog should be either exit
2971 			 * or unconditional jump back or bpf_throw call
2972 			 */
2973 			if (code != (BPF_JMP | BPF_EXIT) &&
2974 			    code != (BPF_JMP32 | BPF_JA) &&
2975 			    code != (BPF_JMP | BPF_JA)) {
2976 				verbose(env, "last insn is not an exit or jmp\n");
2977 				return -EINVAL;
2978 			}
2979 			subprog_start = subprog_end;
2980 			cur_subprog++;
2981 			if (cur_subprog < env->subprog_cnt)
2982 				subprog_end = subprog[cur_subprog + 1].start;
2983 		}
2984 	}
2985 	return 0;
2986 }
2987 
2988 /* Parentage chain of this register (or stack slot) should take care of all
2989  * issues like callee-saved registers, stack slot allocation time, etc.
2990  */
2991 static int mark_reg_read(struct bpf_verifier_env *env,
2992 			 const struct bpf_reg_state *state,
2993 			 struct bpf_reg_state *parent, u8 flag)
2994 {
2995 	bool writes = parent == state->parent; /* Observe write marks */
2996 	int cnt = 0;
2997 
2998 	while (parent) {
2999 		/* if read wasn't screened by an earlier write ... */
3000 		if (writes && state->live & REG_LIVE_WRITTEN)
3001 			break;
3002 		if (parent->live & REG_LIVE_DONE) {
3003 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
3004 				reg_type_str(env, parent->type),
3005 				parent->var_off.value, parent->off);
3006 			return -EFAULT;
3007 		}
3008 		/* The first condition is more likely to be true than the
3009 		 * second, checked it first.
3010 		 */
3011 		if ((parent->live & REG_LIVE_READ) == flag ||
3012 		    parent->live & REG_LIVE_READ64)
3013 			/* The parentage chain never changes and
3014 			 * this parent was already marked as LIVE_READ.
3015 			 * There is no need to keep walking the chain again and
3016 			 * keep re-marking all parents as LIVE_READ.
3017 			 * This case happens when the same register is read
3018 			 * multiple times without writes into it in-between.
3019 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
3020 			 * then no need to set the weak REG_LIVE_READ32.
3021 			 */
3022 			break;
3023 		/* ... then we depend on parent's value */
3024 		parent->live |= flag;
3025 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
3026 		if (flag == REG_LIVE_READ64)
3027 			parent->live &= ~REG_LIVE_READ32;
3028 		state = parent;
3029 		parent = state->parent;
3030 		writes = true;
3031 		cnt++;
3032 	}
3033 
3034 	if (env->longest_mark_read_walk < cnt)
3035 		env->longest_mark_read_walk = cnt;
3036 	return 0;
3037 }
3038 
3039 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3040 {
3041 	struct bpf_func_state *state = func(env, reg);
3042 	int spi, ret;
3043 
3044 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
3045 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3046 	 * check_kfunc_call.
3047 	 */
3048 	if (reg->type == CONST_PTR_TO_DYNPTR)
3049 		return 0;
3050 	spi = dynptr_get_spi(env, reg);
3051 	if (spi < 0)
3052 		return spi;
3053 	/* Caller ensures dynptr is valid and initialized, which means spi is in
3054 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3055 	 * read.
3056 	 */
3057 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
3058 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
3059 	if (ret)
3060 		return ret;
3061 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
3062 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
3063 }
3064 
3065 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3066 			  int spi, int nr_slots)
3067 {
3068 	struct bpf_func_state *state = func(env, reg);
3069 	int err, i;
3070 
3071 	for (i = 0; i < nr_slots; i++) {
3072 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
3073 
3074 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
3075 		if (err)
3076 			return err;
3077 
3078 		mark_stack_slot_scratched(env, spi - i);
3079 	}
3080 
3081 	return 0;
3082 }
3083 
3084 /* This function is supposed to be used by the following 32-bit optimization
3085  * code only. It returns TRUE if the source or destination register operates
3086  * on 64-bit, otherwise return FALSE.
3087  */
3088 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
3089 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3090 {
3091 	u8 code, class, op;
3092 
3093 	code = insn->code;
3094 	class = BPF_CLASS(code);
3095 	op = BPF_OP(code);
3096 	if (class == BPF_JMP) {
3097 		/* BPF_EXIT for "main" will reach here. Return TRUE
3098 		 * conservatively.
3099 		 */
3100 		if (op == BPF_EXIT)
3101 			return true;
3102 		if (op == BPF_CALL) {
3103 			/* BPF to BPF call will reach here because of marking
3104 			 * caller saved clobber with DST_OP_NO_MARK for which we
3105 			 * don't care the register def because they are anyway
3106 			 * marked as NOT_INIT already.
3107 			 */
3108 			if (insn->src_reg == BPF_PSEUDO_CALL)
3109 				return false;
3110 			/* Helper call will reach here because of arg type
3111 			 * check, conservatively return TRUE.
3112 			 */
3113 			if (t == SRC_OP)
3114 				return true;
3115 
3116 			return false;
3117 		}
3118 	}
3119 
3120 	if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3121 		return false;
3122 
3123 	if (class == BPF_ALU64 || class == BPF_JMP ||
3124 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3125 		return true;
3126 
3127 	if (class == BPF_ALU || class == BPF_JMP32)
3128 		return false;
3129 
3130 	if (class == BPF_LDX) {
3131 		if (t != SRC_OP)
3132 			return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX;
3133 		/* LDX source must be ptr. */
3134 		return true;
3135 	}
3136 
3137 	if (class == BPF_STX) {
3138 		/* BPF_STX (including atomic variants) has multiple source
3139 		 * operands, one of which is a ptr. Check whether the caller is
3140 		 * asking about it.
3141 		 */
3142 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3143 			return true;
3144 		return BPF_SIZE(code) == BPF_DW;
3145 	}
3146 
3147 	if (class == BPF_LD) {
3148 		u8 mode = BPF_MODE(code);
3149 
3150 		/* LD_IMM64 */
3151 		if (mode == BPF_IMM)
3152 			return true;
3153 
3154 		/* Both LD_IND and LD_ABS return 32-bit data. */
3155 		if (t != SRC_OP)
3156 			return  false;
3157 
3158 		/* Implicit ctx ptr. */
3159 		if (regno == BPF_REG_6)
3160 			return true;
3161 
3162 		/* Explicit source could be any width. */
3163 		return true;
3164 	}
3165 
3166 	if (class == BPF_ST)
3167 		/* The only source register for BPF_ST is a ptr. */
3168 		return true;
3169 
3170 	/* Conservatively return true at default. */
3171 	return true;
3172 }
3173 
3174 /* Return the regno defined by the insn, or -1. */
3175 static int insn_def_regno(const struct bpf_insn *insn)
3176 {
3177 	switch (BPF_CLASS(insn->code)) {
3178 	case BPF_JMP:
3179 	case BPF_JMP32:
3180 	case BPF_ST:
3181 		return -1;
3182 	case BPF_STX:
3183 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3184 		    (insn->imm & BPF_FETCH)) {
3185 			if (insn->imm == BPF_CMPXCHG)
3186 				return BPF_REG_0;
3187 			else
3188 				return insn->src_reg;
3189 		} else {
3190 			return -1;
3191 		}
3192 	default:
3193 		return insn->dst_reg;
3194 	}
3195 }
3196 
3197 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3198 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3199 {
3200 	int dst_reg = insn_def_regno(insn);
3201 
3202 	if (dst_reg == -1)
3203 		return false;
3204 
3205 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3206 }
3207 
3208 static void mark_insn_zext(struct bpf_verifier_env *env,
3209 			   struct bpf_reg_state *reg)
3210 {
3211 	s32 def_idx = reg->subreg_def;
3212 
3213 	if (def_idx == DEF_NOT_SUBREG)
3214 		return;
3215 
3216 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3217 	/* The dst will be zero extended, so won't be sub-register anymore. */
3218 	reg->subreg_def = DEF_NOT_SUBREG;
3219 }
3220 
3221 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno,
3222 			   enum reg_arg_type t)
3223 {
3224 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3225 	struct bpf_reg_state *reg;
3226 	bool rw64;
3227 
3228 	if (regno >= MAX_BPF_REG) {
3229 		verbose(env, "R%d is invalid\n", regno);
3230 		return -EINVAL;
3231 	}
3232 
3233 	mark_reg_scratched(env, regno);
3234 
3235 	reg = &regs[regno];
3236 	rw64 = is_reg64(env, insn, regno, reg, t);
3237 	if (t == SRC_OP) {
3238 		/* check whether register used as source operand can be read */
3239 		if (reg->type == NOT_INIT) {
3240 			verbose(env, "R%d !read_ok\n", regno);
3241 			return -EACCES;
3242 		}
3243 		/* We don't need to worry about FP liveness because it's read-only */
3244 		if (regno == BPF_REG_FP)
3245 			return 0;
3246 
3247 		if (rw64)
3248 			mark_insn_zext(env, reg);
3249 
3250 		return mark_reg_read(env, reg, reg->parent,
3251 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3252 	} else {
3253 		/* check whether register used as dest operand can be written to */
3254 		if (regno == BPF_REG_FP) {
3255 			verbose(env, "frame pointer is read only\n");
3256 			return -EACCES;
3257 		}
3258 		reg->live |= REG_LIVE_WRITTEN;
3259 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3260 		if (t == DST_OP)
3261 			mark_reg_unknown(env, regs, regno);
3262 	}
3263 	return 0;
3264 }
3265 
3266 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3267 			 enum reg_arg_type t)
3268 {
3269 	struct bpf_verifier_state *vstate = env->cur_state;
3270 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3271 
3272 	return __check_reg_arg(env, state->regs, regno, t);
3273 }
3274 
3275 static int insn_stack_access_flags(int frameno, int spi)
3276 {
3277 	return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno;
3278 }
3279 
3280 static int insn_stack_access_spi(int insn_flags)
3281 {
3282 	return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK;
3283 }
3284 
3285 static int insn_stack_access_frameno(int insn_flags)
3286 {
3287 	return insn_flags & INSN_F_FRAMENO_MASK;
3288 }
3289 
3290 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3291 {
3292 	env->insn_aux_data[idx].jmp_point = true;
3293 }
3294 
3295 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3296 {
3297 	return env->insn_aux_data[insn_idx].jmp_point;
3298 }
3299 
3300 /* for any branch, call, exit record the history of jmps in the given state */
3301 static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur,
3302 			    int insn_flags)
3303 {
3304 	u32 cnt = cur->jmp_history_cnt;
3305 	struct bpf_jmp_history_entry *p;
3306 	size_t alloc_size;
3307 
3308 	/* combine instruction flags if we already recorded this instruction */
3309 	if (env->cur_hist_ent) {
3310 		/* atomic instructions push insn_flags twice, for READ and
3311 		 * WRITE sides, but they should agree on stack slot
3312 		 */
3313 		WARN_ONCE((env->cur_hist_ent->flags & insn_flags) &&
3314 			  (env->cur_hist_ent->flags & insn_flags) != insn_flags,
3315 			  "verifier insn history bug: insn_idx %d cur flags %x new flags %x\n",
3316 			  env->insn_idx, env->cur_hist_ent->flags, insn_flags);
3317 		env->cur_hist_ent->flags |= insn_flags;
3318 		return 0;
3319 	}
3320 
3321 	cnt++;
3322 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3323 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3324 	if (!p)
3325 		return -ENOMEM;
3326 	cur->jmp_history = p;
3327 
3328 	p = &cur->jmp_history[cnt - 1];
3329 	p->idx = env->insn_idx;
3330 	p->prev_idx = env->prev_insn_idx;
3331 	p->flags = insn_flags;
3332 	cur->jmp_history_cnt = cnt;
3333 	env->cur_hist_ent = p;
3334 
3335 	return 0;
3336 }
3337 
3338 static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st,
3339 						        u32 hist_end, int insn_idx)
3340 {
3341 	if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx)
3342 		return &st->jmp_history[hist_end - 1];
3343 	return NULL;
3344 }
3345 
3346 /* Backtrack one insn at a time. If idx is not at the top of recorded
3347  * history then previous instruction came from straight line execution.
3348  * Return -ENOENT if we exhausted all instructions within given state.
3349  *
3350  * It's legal to have a bit of a looping with the same starting and ending
3351  * insn index within the same state, e.g.: 3->4->5->3, so just because current
3352  * instruction index is the same as state's first_idx doesn't mean we are
3353  * done. If there is still some jump history left, we should keep going. We
3354  * need to take into account that we might have a jump history between given
3355  * state's parent and itself, due to checkpointing. In this case, we'll have
3356  * history entry recording a jump from last instruction of parent state and
3357  * first instruction of given state.
3358  */
3359 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3360 			     u32 *history)
3361 {
3362 	u32 cnt = *history;
3363 
3364 	if (i == st->first_insn_idx) {
3365 		if (cnt == 0)
3366 			return -ENOENT;
3367 		if (cnt == 1 && st->jmp_history[0].idx == i)
3368 			return -ENOENT;
3369 	}
3370 
3371 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
3372 		i = st->jmp_history[cnt - 1].prev_idx;
3373 		(*history)--;
3374 	} else {
3375 		i--;
3376 	}
3377 	return i;
3378 }
3379 
3380 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3381 {
3382 	const struct btf_type *func;
3383 	struct btf *desc_btf;
3384 
3385 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3386 		return NULL;
3387 
3388 	desc_btf = find_kfunc_desc_btf(data, insn->off);
3389 	if (IS_ERR(desc_btf))
3390 		return "<error>";
3391 
3392 	func = btf_type_by_id(desc_btf, insn->imm);
3393 	return btf_name_by_offset(desc_btf, func->name_off);
3394 }
3395 
3396 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3397 {
3398 	bt->frame = frame;
3399 }
3400 
3401 static inline void bt_reset(struct backtrack_state *bt)
3402 {
3403 	struct bpf_verifier_env *env = bt->env;
3404 
3405 	memset(bt, 0, sizeof(*bt));
3406 	bt->env = env;
3407 }
3408 
3409 static inline u32 bt_empty(struct backtrack_state *bt)
3410 {
3411 	u64 mask = 0;
3412 	int i;
3413 
3414 	for (i = 0; i <= bt->frame; i++)
3415 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
3416 
3417 	return mask == 0;
3418 }
3419 
3420 static inline int bt_subprog_enter(struct backtrack_state *bt)
3421 {
3422 	if (bt->frame == MAX_CALL_FRAMES - 1) {
3423 		verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3424 		WARN_ONCE(1, "verifier backtracking bug");
3425 		return -EFAULT;
3426 	}
3427 	bt->frame++;
3428 	return 0;
3429 }
3430 
3431 static inline int bt_subprog_exit(struct backtrack_state *bt)
3432 {
3433 	if (bt->frame == 0) {
3434 		verbose(bt->env, "BUG subprog exit from frame 0\n");
3435 		WARN_ONCE(1, "verifier backtracking bug");
3436 		return -EFAULT;
3437 	}
3438 	bt->frame--;
3439 	return 0;
3440 }
3441 
3442 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3443 {
3444 	bt->reg_masks[frame] |= 1 << reg;
3445 }
3446 
3447 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3448 {
3449 	bt->reg_masks[frame] &= ~(1 << reg);
3450 }
3451 
3452 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3453 {
3454 	bt_set_frame_reg(bt, bt->frame, reg);
3455 }
3456 
3457 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3458 {
3459 	bt_clear_frame_reg(bt, bt->frame, reg);
3460 }
3461 
3462 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3463 {
3464 	bt->stack_masks[frame] |= 1ull << slot;
3465 }
3466 
3467 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3468 {
3469 	bt->stack_masks[frame] &= ~(1ull << slot);
3470 }
3471 
3472 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3473 {
3474 	return bt->reg_masks[frame];
3475 }
3476 
3477 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3478 {
3479 	return bt->reg_masks[bt->frame];
3480 }
3481 
3482 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3483 {
3484 	return bt->stack_masks[frame];
3485 }
3486 
3487 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3488 {
3489 	return bt->stack_masks[bt->frame];
3490 }
3491 
3492 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3493 {
3494 	return bt->reg_masks[bt->frame] & (1 << reg);
3495 }
3496 
3497 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot)
3498 {
3499 	return bt->stack_masks[frame] & (1ull << slot);
3500 }
3501 
3502 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
3503 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3504 {
3505 	DECLARE_BITMAP(mask, 64);
3506 	bool first = true;
3507 	int i, n;
3508 
3509 	buf[0] = '\0';
3510 
3511 	bitmap_from_u64(mask, reg_mask);
3512 	for_each_set_bit(i, mask, 32) {
3513 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3514 		first = false;
3515 		buf += n;
3516 		buf_sz -= n;
3517 		if (buf_sz < 0)
3518 			break;
3519 	}
3520 }
3521 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
3522 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3523 {
3524 	DECLARE_BITMAP(mask, 64);
3525 	bool first = true;
3526 	int i, n;
3527 
3528 	buf[0] = '\0';
3529 
3530 	bitmap_from_u64(mask, stack_mask);
3531 	for_each_set_bit(i, mask, 64) {
3532 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3533 		first = false;
3534 		buf += n;
3535 		buf_sz -= n;
3536 		if (buf_sz < 0)
3537 			break;
3538 	}
3539 }
3540 
3541 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx);
3542 
3543 /* For given verifier state backtrack_insn() is called from the last insn to
3544  * the first insn. Its purpose is to compute a bitmask of registers and
3545  * stack slots that needs precision in the parent verifier state.
3546  *
3547  * @idx is an index of the instruction we are currently processing;
3548  * @subseq_idx is an index of the subsequent instruction that:
3549  *   - *would be* executed next, if jump history is viewed in forward order;
3550  *   - *was* processed previously during backtracking.
3551  */
3552 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3553 			  struct bpf_jmp_history_entry *hist, struct backtrack_state *bt)
3554 {
3555 	const struct bpf_insn_cbs cbs = {
3556 		.cb_call	= disasm_kfunc_name,
3557 		.cb_print	= verbose,
3558 		.private_data	= env,
3559 	};
3560 	struct bpf_insn *insn = env->prog->insnsi + idx;
3561 	u8 class = BPF_CLASS(insn->code);
3562 	u8 opcode = BPF_OP(insn->code);
3563 	u8 mode = BPF_MODE(insn->code);
3564 	u32 dreg = insn->dst_reg;
3565 	u32 sreg = insn->src_reg;
3566 	u32 spi, i, fr;
3567 
3568 	if (insn->code == 0)
3569 		return 0;
3570 	if (env->log.level & BPF_LOG_LEVEL2) {
3571 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3572 		verbose(env, "mark_precise: frame%d: regs=%s ",
3573 			bt->frame, env->tmp_str_buf);
3574 		fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3575 		verbose(env, "stack=%s before ", env->tmp_str_buf);
3576 		verbose(env, "%d: ", idx);
3577 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3578 	}
3579 
3580 	if (class == BPF_ALU || class == BPF_ALU64) {
3581 		if (!bt_is_reg_set(bt, dreg))
3582 			return 0;
3583 		if (opcode == BPF_END || opcode == BPF_NEG) {
3584 			/* sreg is reserved and unused
3585 			 * dreg still need precision before this insn
3586 			 */
3587 			return 0;
3588 		} else if (opcode == BPF_MOV) {
3589 			if (BPF_SRC(insn->code) == BPF_X) {
3590 				/* dreg = sreg or dreg = (s8, s16, s32)sreg
3591 				 * dreg needs precision after this insn
3592 				 * sreg needs precision before this insn
3593 				 */
3594 				bt_clear_reg(bt, dreg);
3595 				bt_set_reg(bt, sreg);
3596 			} else {
3597 				/* dreg = K
3598 				 * dreg needs precision after this insn.
3599 				 * Corresponding register is already marked
3600 				 * as precise=true in this verifier state.
3601 				 * No further markings in parent are necessary
3602 				 */
3603 				bt_clear_reg(bt, dreg);
3604 			}
3605 		} else {
3606 			if (BPF_SRC(insn->code) == BPF_X) {
3607 				/* dreg += sreg
3608 				 * both dreg and sreg need precision
3609 				 * before this insn
3610 				 */
3611 				bt_set_reg(bt, sreg);
3612 			} /* else dreg += K
3613 			   * dreg still needs precision before this insn
3614 			   */
3615 		}
3616 	} else if (class == BPF_LDX) {
3617 		if (!bt_is_reg_set(bt, dreg))
3618 			return 0;
3619 		bt_clear_reg(bt, dreg);
3620 
3621 		/* scalars can only be spilled into stack w/o losing precision.
3622 		 * Load from any other memory can be zero extended.
3623 		 * The desire to keep that precision is already indicated
3624 		 * by 'precise' mark in corresponding register of this state.
3625 		 * No further tracking necessary.
3626 		 */
3627 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
3628 			return 0;
3629 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
3630 		 * that [fp - off] slot contains scalar that needs to be
3631 		 * tracked with precision
3632 		 */
3633 		spi = insn_stack_access_spi(hist->flags);
3634 		fr = insn_stack_access_frameno(hist->flags);
3635 		bt_set_frame_slot(bt, fr, spi);
3636 	} else if (class == BPF_STX || class == BPF_ST) {
3637 		if (bt_is_reg_set(bt, dreg))
3638 			/* stx & st shouldn't be using _scalar_ dst_reg
3639 			 * to access memory. It means backtracking
3640 			 * encountered a case of pointer subtraction.
3641 			 */
3642 			return -ENOTSUPP;
3643 		/* scalars can only be spilled into stack */
3644 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
3645 			return 0;
3646 		spi = insn_stack_access_spi(hist->flags);
3647 		fr = insn_stack_access_frameno(hist->flags);
3648 		if (!bt_is_frame_slot_set(bt, fr, spi))
3649 			return 0;
3650 		bt_clear_frame_slot(bt, fr, spi);
3651 		if (class == BPF_STX)
3652 			bt_set_reg(bt, sreg);
3653 	} else if (class == BPF_JMP || class == BPF_JMP32) {
3654 		if (bpf_pseudo_call(insn)) {
3655 			int subprog_insn_idx, subprog;
3656 
3657 			subprog_insn_idx = idx + insn->imm + 1;
3658 			subprog = find_subprog(env, subprog_insn_idx);
3659 			if (subprog < 0)
3660 				return -EFAULT;
3661 
3662 			if (subprog_is_global(env, subprog)) {
3663 				/* check that jump history doesn't have any
3664 				 * extra instructions from subprog; the next
3665 				 * instruction after call to global subprog
3666 				 * should be literally next instruction in
3667 				 * caller program
3668 				 */
3669 				WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3670 				/* r1-r5 are invalidated after subprog call,
3671 				 * so for global func call it shouldn't be set
3672 				 * anymore
3673 				 */
3674 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3675 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3676 					WARN_ONCE(1, "verifier backtracking bug");
3677 					return -EFAULT;
3678 				}
3679 				/* global subprog always sets R0 */
3680 				bt_clear_reg(bt, BPF_REG_0);
3681 				return 0;
3682 			} else {
3683 				/* static subprog call instruction, which
3684 				 * means that we are exiting current subprog,
3685 				 * so only r1-r5 could be still requested as
3686 				 * precise, r0 and r6-r10 or any stack slot in
3687 				 * the current frame should be zero by now
3688 				 */
3689 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3690 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3691 					WARN_ONCE(1, "verifier backtracking bug");
3692 					return -EFAULT;
3693 				}
3694 				/* we are now tracking register spills correctly,
3695 				 * so any instance of leftover slots is a bug
3696 				 */
3697 				if (bt_stack_mask(bt) != 0) {
3698 					verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
3699 					WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)");
3700 					return -EFAULT;
3701 				}
3702 				/* propagate r1-r5 to the caller */
3703 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3704 					if (bt_is_reg_set(bt, i)) {
3705 						bt_clear_reg(bt, i);
3706 						bt_set_frame_reg(bt, bt->frame - 1, i);
3707 					}
3708 				}
3709 				if (bt_subprog_exit(bt))
3710 					return -EFAULT;
3711 				return 0;
3712 			}
3713 		} else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) {
3714 			/* exit from callback subprog to callback-calling helper or
3715 			 * kfunc call. Use idx/subseq_idx check to discern it from
3716 			 * straight line code backtracking.
3717 			 * Unlike the subprog call handling above, we shouldn't
3718 			 * propagate precision of r1-r5 (if any requested), as they are
3719 			 * not actually arguments passed directly to callback subprogs
3720 			 */
3721 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3722 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3723 				WARN_ONCE(1, "verifier backtracking bug");
3724 				return -EFAULT;
3725 			}
3726 			if (bt_stack_mask(bt) != 0) {
3727 				verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
3728 				WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)");
3729 				return -EFAULT;
3730 			}
3731 			/* clear r1-r5 in callback subprog's mask */
3732 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3733 				bt_clear_reg(bt, i);
3734 			if (bt_subprog_exit(bt))
3735 				return -EFAULT;
3736 			return 0;
3737 		} else if (opcode == BPF_CALL) {
3738 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
3739 			 * catch this error later. Make backtracking conservative
3740 			 * with ENOTSUPP.
3741 			 */
3742 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3743 				return -ENOTSUPP;
3744 			/* regular helper call sets R0 */
3745 			bt_clear_reg(bt, BPF_REG_0);
3746 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3747 				/* if backtracing was looking for registers R1-R5
3748 				 * they should have been found already.
3749 				 */
3750 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3751 				WARN_ONCE(1, "verifier backtracking bug");
3752 				return -EFAULT;
3753 			}
3754 		} else if (opcode == BPF_EXIT) {
3755 			bool r0_precise;
3756 
3757 			/* Backtracking to a nested function call, 'idx' is a part of
3758 			 * the inner frame 'subseq_idx' is a part of the outer frame.
3759 			 * In case of a regular function call, instructions giving
3760 			 * precision to registers R1-R5 should have been found already.
3761 			 * In case of a callback, it is ok to have R1-R5 marked for
3762 			 * backtracking, as these registers are set by the function
3763 			 * invoking callback.
3764 			 */
3765 			if (subseq_idx >= 0 && calls_callback(env, subseq_idx))
3766 				for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3767 					bt_clear_reg(bt, i);
3768 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3769 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3770 				WARN_ONCE(1, "verifier backtracking bug");
3771 				return -EFAULT;
3772 			}
3773 
3774 			/* BPF_EXIT in subprog or callback always returns
3775 			 * right after the call instruction, so by checking
3776 			 * whether the instruction at subseq_idx-1 is subprog
3777 			 * call or not we can distinguish actual exit from
3778 			 * *subprog* from exit from *callback*. In the former
3779 			 * case, we need to propagate r0 precision, if
3780 			 * necessary. In the former we never do that.
3781 			 */
3782 			r0_precise = subseq_idx - 1 >= 0 &&
3783 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3784 				     bt_is_reg_set(bt, BPF_REG_0);
3785 
3786 			bt_clear_reg(bt, BPF_REG_0);
3787 			if (bt_subprog_enter(bt))
3788 				return -EFAULT;
3789 
3790 			if (r0_precise)
3791 				bt_set_reg(bt, BPF_REG_0);
3792 			/* r6-r9 and stack slots will stay set in caller frame
3793 			 * bitmasks until we return back from callee(s)
3794 			 */
3795 			return 0;
3796 		} else if (BPF_SRC(insn->code) == BPF_X) {
3797 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
3798 				return 0;
3799 			/* dreg <cond> sreg
3800 			 * Both dreg and sreg need precision before
3801 			 * this insn. If only sreg was marked precise
3802 			 * before it would be equally necessary to
3803 			 * propagate it to dreg.
3804 			 */
3805 			bt_set_reg(bt, dreg);
3806 			bt_set_reg(bt, sreg);
3807 			 /* else dreg <cond> K
3808 			  * Only dreg still needs precision before
3809 			  * this insn, so for the K-based conditional
3810 			  * there is nothing new to be marked.
3811 			  */
3812 		}
3813 	} else if (class == BPF_LD) {
3814 		if (!bt_is_reg_set(bt, dreg))
3815 			return 0;
3816 		bt_clear_reg(bt, dreg);
3817 		/* It's ld_imm64 or ld_abs or ld_ind.
3818 		 * For ld_imm64 no further tracking of precision
3819 		 * into parent is necessary
3820 		 */
3821 		if (mode == BPF_IND || mode == BPF_ABS)
3822 			/* to be analyzed */
3823 			return -ENOTSUPP;
3824 	}
3825 	return 0;
3826 }
3827 
3828 /* the scalar precision tracking algorithm:
3829  * . at the start all registers have precise=false.
3830  * . scalar ranges are tracked as normal through alu and jmp insns.
3831  * . once precise value of the scalar register is used in:
3832  *   .  ptr + scalar alu
3833  *   . if (scalar cond K|scalar)
3834  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
3835  *   backtrack through the verifier states and mark all registers and
3836  *   stack slots with spilled constants that these scalar regisers
3837  *   should be precise.
3838  * . during state pruning two registers (or spilled stack slots)
3839  *   are equivalent if both are not precise.
3840  *
3841  * Note the verifier cannot simply walk register parentage chain,
3842  * since many different registers and stack slots could have been
3843  * used to compute single precise scalar.
3844  *
3845  * The approach of starting with precise=true for all registers and then
3846  * backtrack to mark a register as not precise when the verifier detects
3847  * that program doesn't care about specific value (e.g., when helper
3848  * takes register as ARG_ANYTHING parameter) is not safe.
3849  *
3850  * It's ok to walk single parentage chain of the verifier states.
3851  * It's possible that this backtracking will go all the way till 1st insn.
3852  * All other branches will be explored for needing precision later.
3853  *
3854  * The backtracking needs to deal with cases like:
3855  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3856  * r9 -= r8
3857  * r5 = r9
3858  * if r5 > 0x79f goto pc+7
3859  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
3860  * r5 += 1
3861  * ...
3862  * call bpf_perf_event_output#25
3863  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
3864  *
3865  * and this case:
3866  * r6 = 1
3867  * call foo // uses callee's r6 inside to compute r0
3868  * r0 += r6
3869  * if r0 == 0 goto
3870  *
3871  * to track above reg_mask/stack_mask needs to be independent for each frame.
3872  *
3873  * Also if parent's curframe > frame where backtracking started,
3874  * the verifier need to mark registers in both frames, otherwise callees
3875  * may incorrectly prune callers. This is similar to
3876  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
3877  *
3878  * For now backtracking falls back into conservative marking.
3879  */
3880 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
3881 				     struct bpf_verifier_state *st)
3882 {
3883 	struct bpf_func_state *func;
3884 	struct bpf_reg_state *reg;
3885 	int i, j;
3886 
3887 	if (env->log.level & BPF_LOG_LEVEL2) {
3888 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
3889 			st->curframe);
3890 	}
3891 
3892 	/* big hammer: mark all scalars precise in this path.
3893 	 * pop_stack may still get !precise scalars.
3894 	 * We also skip current state and go straight to first parent state,
3895 	 * because precision markings in current non-checkpointed state are
3896 	 * not needed. See why in the comment in __mark_chain_precision below.
3897 	 */
3898 	for (st = st->parent; st; st = st->parent) {
3899 		for (i = 0; i <= st->curframe; i++) {
3900 			func = st->frame[i];
3901 			for (j = 0; j < BPF_REG_FP; j++) {
3902 				reg = &func->regs[j];
3903 				if (reg->type != SCALAR_VALUE || reg->precise)
3904 					continue;
3905 				reg->precise = true;
3906 				if (env->log.level & BPF_LOG_LEVEL2) {
3907 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
3908 						i, j);
3909 				}
3910 			}
3911 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3912 				if (!is_spilled_reg(&func->stack[j]))
3913 					continue;
3914 				reg = &func->stack[j].spilled_ptr;
3915 				if (reg->type != SCALAR_VALUE || reg->precise)
3916 					continue;
3917 				reg->precise = true;
3918 				if (env->log.level & BPF_LOG_LEVEL2) {
3919 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
3920 						i, -(j + 1) * 8);
3921 				}
3922 			}
3923 		}
3924 	}
3925 }
3926 
3927 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3928 {
3929 	struct bpf_func_state *func;
3930 	struct bpf_reg_state *reg;
3931 	int i, j;
3932 
3933 	for (i = 0; i <= st->curframe; i++) {
3934 		func = st->frame[i];
3935 		for (j = 0; j < BPF_REG_FP; j++) {
3936 			reg = &func->regs[j];
3937 			if (reg->type != SCALAR_VALUE)
3938 				continue;
3939 			reg->precise = false;
3940 		}
3941 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3942 			if (!is_spilled_reg(&func->stack[j]))
3943 				continue;
3944 			reg = &func->stack[j].spilled_ptr;
3945 			if (reg->type != SCALAR_VALUE)
3946 				continue;
3947 			reg->precise = false;
3948 		}
3949 	}
3950 }
3951 
3952 static bool idset_contains(struct bpf_idset *s, u32 id)
3953 {
3954 	u32 i;
3955 
3956 	for (i = 0; i < s->count; ++i)
3957 		if (s->ids[i] == id)
3958 			return true;
3959 
3960 	return false;
3961 }
3962 
3963 static int idset_push(struct bpf_idset *s, u32 id)
3964 {
3965 	if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
3966 		return -EFAULT;
3967 	s->ids[s->count++] = id;
3968 	return 0;
3969 }
3970 
3971 static void idset_reset(struct bpf_idset *s)
3972 {
3973 	s->count = 0;
3974 }
3975 
3976 /* Collect a set of IDs for all registers currently marked as precise in env->bt.
3977  * Mark all registers with these IDs as precise.
3978  */
3979 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3980 {
3981 	struct bpf_idset *precise_ids = &env->idset_scratch;
3982 	struct backtrack_state *bt = &env->bt;
3983 	struct bpf_func_state *func;
3984 	struct bpf_reg_state *reg;
3985 	DECLARE_BITMAP(mask, 64);
3986 	int i, fr;
3987 
3988 	idset_reset(precise_ids);
3989 
3990 	for (fr = bt->frame; fr >= 0; fr--) {
3991 		func = st->frame[fr];
3992 
3993 		bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
3994 		for_each_set_bit(i, mask, 32) {
3995 			reg = &func->regs[i];
3996 			if (!reg->id || reg->type != SCALAR_VALUE)
3997 				continue;
3998 			if (idset_push(precise_ids, reg->id))
3999 				return -EFAULT;
4000 		}
4001 
4002 		bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4003 		for_each_set_bit(i, mask, 64) {
4004 			if (i >= func->allocated_stack / BPF_REG_SIZE)
4005 				break;
4006 			if (!is_spilled_scalar_reg(&func->stack[i]))
4007 				continue;
4008 			reg = &func->stack[i].spilled_ptr;
4009 			if (!reg->id)
4010 				continue;
4011 			if (idset_push(precise_ids, reg->id))
4012 				return -EFAULT;
4013 		}
4014 	}
4015 
4016 	for (fr = 0; fr <= st->curframe; ++fr) {
4017 		func = st->frame[fr];
4018 
4019 		for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
4020 			reg = &func->regs[i];
4021 			if (!reg->id)
4022 				continue;
4023 			if (!idset_contains(precise_ids, reg->id))
4024 				continue;
4025 			bt_set_frame_reg(bt, fr, i);
4026 		}
4027 		for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
4028 			if (!is_spilled_scalar_reg(&func->stack[i]))
4029 				continue;
4030 			reg = &func->stack[i].spilled_ptr;
4031 			if (!reg->id)
4032 				continue;
4033 			if (!idset_contains(precise_ids, reg->id))
4034 				continue;
4035 			bt_set_frame_slot(bt, fr, i);
4036 		}
4037 	}
4038 
4039 	return 0;
4040 }
4041 
4042 /*
4043  * __mark_chain_precision() backtracks BPF program instruction sequence and
4044  * chain of verifier states making sure that register *regno* (if regno >= 0)
4045  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
4046  * SCALARS, as well as any other registers and slots that contribute to
4047  * a tracked state of given registers/stack slots, depending on specific BPF
4048  * assembly instructions (see backtrack_insns() for exact instruction handling
4049  * logic). This backtracking relies on recorded jmp_history and is able to
4050  * traverse entire chain of parent states. This process ends only when all the
4051  * necessary registers/slots and their transitive dependencies are marked as
4052  * precise.
4053  *
4054  * One important and subtle aspect is that precise marks *do not matter* in
4055  * the currently verified state (current state). It is important to understand
4056  * why this is the case.
4057  *
4058  * First, note that current state is the state that is not yet "checkpointed",
4059  * i.e., it is not yet put into env->explored_states, and it has no children
4060  * states as well. It's ephemeral, and can end up either a) being discarded if
4061  * compatible explored state is found at some point or BPF_EXIT instruction is
4062  * reached or b) checkpointed and put into env->explored_states, branching out
4063  * into one or more children states.
4064  *
4065  * In the former case, precise markings in current state are completely
4066  * ignored by state comparison code (see regsafe() for details). Only
4067  * checkpointed ("old") state precise markings are important, and if old
4068  * state's register/slot is precise, regsafe() assumes current state's
4069  * register/slot as precise and checks value ranges exactly and precisely. If
4070  * states turn out to be compatible, current state's necessary precise
4071  * markings and any required parent states' precise markings are enforced
4072  * after the fact with propagate_precision() logic, after the fact. But it's
4073  * important to realize that in this case, even after marking current state
4074  * registers/slots as precise, we immediately discard current state. So what
4075  * actually matters is any of the precise markings propagated into current
4076  * state's parent states, which are always checkpointed (due to b) case above).
4077  * As such, for scenario a) it doesn't matter if current state has precise
4078  * markings set or not.
4079  *
4080  * Now, for the scenario b), checkpointing and forking into child(ren)
4081  * state(s). Note that before current state gets to checkpointing step, any
4082  * processed instruction always assumes precise SCALAR register/slot
4083  * knowledge: if precise value or range is useful to prune jump branch, BPF
4084  * verifier takes this opportunity enthusiastically. Similarly, when
4085  * register's value is used to calculate offset or memory address, exact
4086  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4087  * what we mentioned above about state comparison ignoring precise markings
4088  * during state comparison, BPF verifier ignores and also assumes precise
4089  * markings *at will* during instruction verification process. But as verifier
4090  * assumes precision, it also propagates any precision dependencies across
4091  * parent states, which are not yet finalized, so can be further restricted
4092  * based on new knowledge gained from restrictions enforced by their children
4093  * states. This is so that once those parent states are finalized, i.e., when
4094  * they have no more active children state, state comparison logic in
4095  * is_state_visited() would enforce strict and precise SCALAR ranges, if
4096  * required for correctness.
4097  *
4098  * To build a bit more intuition, note also that once a state is checkpointed,
4099  * the path we took to get to that state is not important. This is crucial
4100  * property for state pruning. When state is checkpointed and finalized at
4101  * some instruction index, it can be correctly and safely used to "short
4102  * circuit" any *compatible* state that reaches exactly the same instruction
4103  * index. I.e., if we jumped to that instruction from a completely different
4104  * code path than original finalized state was derived from, it doesn't
4105  * matter, current state can be discarded because from that instruction
4106  * forward having a compatible state will ensure we will safely reach the
4107  * exit. States describe preconditions for further exploration, but completely
4108  * forget the history of how we got here.
4109  *
4110  * This also means that even if we needed precise SCALAR range to get to
4111  * finalized state, but from that point forward *that same* SCALAR register is
4112  * never used in a precise context (i.e., it's precise value is not needed for
4113  * correctness), it's correct and safe to mark such register as "imprecise"
4114  * (i.e., precise marking set to false). This is what we rely on when we do
4115  * not set precise marking in current state. If no child state requires
4116  * precision for any given SCALAR register, it's safe to dictate that it can
4117  * be imprecise. If any child state does require this register to be precise,
4118  * we'll mark it precise later retroactively during precise markings
4119  * propagation from child state to parent states.
4120  *
4121  * Skipping precise marking setting in current state is a mild version of
4122  * relying on the above observation. But we can utilize this property even
4123  * more aggressively by proactively forgetting any precise marking in the
4124  * current state (which we inherited from the parent state), right before we
4125  * checkpoint it and branch off into new child state. This is done by
4126  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4127  * finalized states which help in short circuiting more future states.
4128  */
4129 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
4130 {
4131 	struct backtrack_state *bt = &env->bt;
4132 	struct bpf_verifier_state *st = env->cur_state;
4133 	int first_idx = st->first_insn_idx;
4134 	int last_idx = env->insn_idx;
4135 	int subseq_idx = -1;
4136 	struct bpf_func_state *func;
4137 	struct bpf_reg_state *reg;
4138 	bool skip_first = true;
4139 	int i, fr, err;
4140 
4141 	if (!env->bpf_capable)
4142 		return 0;
4143 
4144 	/* set frame number from which we are starting to backtrack */
4145 	bt_init(bt, env->cur_state->curframe);
4146 
4147 	/* Do sanity checks against current state of register and/or stack
4148 	 * slot, but don't set precise flag in current state, as precision
4149 	 * tracking in the current state is unnecessary.
4150 	 */
4151 	func = st->frame[bt->frame];
4152 	if (regno >= 0) {
4153 		reg = &func->regs[regno];
4154 		if (reg->type != SCALAR_VALUE) {
4155 			WARN_ONCE(1, "backtracing misuse");
4156 			return -EFAULT;
4157 		}
4158 		bt_set_reg(bt, regno);
4159 	}
4160 
4161 	if (bt_empty(bt))
4162 		return 0;
4163 
4164 	for (;;) {
4165 		DECLARE_BITMAP(mask, 64);
4166 		u32 history = st->jmp_history_cnt;
4167 		struct bpf_jmp_history_entry *hist;
4168 
4169 		if (env->log.level & BPF_LOG_LEVEL2) {
4170 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4171 				bt->frame, last_idx, first_idx, subseq_idx);
4172 		}
4173 
4174 		/* If some register with scalar ID is marked as precise,
4175 		 * make sure that all registers sharing this ID are also precise.
4176 		 * This is needed to estimate effect of find_equal_scalars().
4177 		 * Do this at the last instruction of each state,
4178 		 * bpf_reg_state::id fields are valid for these instructions.
4179 		 *
4180 		 * Allows to track precision in situation like below:
4181 		 *
4182 		 *     r2 = unknown value
4183 		 *     ...
4184 		 *   --- state #0 ---
4185 		 *     ...
4186 		 *     r1 = r2                 // r1 and r2 now share the same ID
4187 		 *     ...
4188 		 *   --- state #1 {r1.id = A, r2.id = A} ---
4189 		 *     ...
4190 		 *     if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
4191 		 *     ...
4192 		 *   --- state #2 {r1.id = A, r2.id = A} ---
4193 		 *     r3 = r10
4194 		 *     r3 += r1                // need to mark both r1 and r2
4195 		 */
4196 		if (mark_precise_scalar_ids(env, st))
4197 			return -EFAULT;
4198 
4199 		if (last_idx < 0) {
4200 			/* we are at the entry into subprog, which
4201 			 * is expected for global funcs, but only if
4202 			 * requested precise registers are R1-R5
4203 			 * (which are global func's input arguments)
4204 			 */
4205 			if (st->curframe == 0 &&
4206 			    st->frame[0]->subprogno > 0 &&
4207 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
4208 			    bt_stack_mask(bt) == 0 &&
4209 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4210 				bitmap_from_u64(mask, bt_reg_mask(bt));
4211 				for_each_set_bit(i, mask, 32) {
4212 					reg = &st->frame[0]->regs[i];
4213 					bt_clear_reg(bt, i);
4214 					if (reg->type == SCALAR_VALUE)
4215 						reg->precise = true;
4216 				}
4217 				return 0;
4218 			}
4219 
4220 			verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4221 				st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4222 			WARN_ONCE(1, "verifier backtracking bug");
4223 			return -EFAULT;
4224 		}
4225 
4226 		for (i = last_idx;;) {
4227 			if (skip_first) {
4228 				err = 0;
4229 				skip_first = false;
4230 			} else {
4231 				hist = get_jmp_hist_entry(st, history, i);
4232 				err = backtrack_insn(env, i, subseq_idx, hist, bt);
4233 			}
4234 			if (err == -ENOTSUPP) {
4235 				mark_all_scalars_precise(env, env->cur_state);
4236 				bt_reset(bt);
4237 				return 0;
4238 			} else if (err) {
4239 				return err;
4240 			}
4241 			if (bt_empty(bt))
4242 				/* Found assignment(s) into tracked register in this state.
4243 				 * Since this state is already marked, just return.
4244 				 * Nothing to be tracked further in the parent state.
4245 				 */
4246 				return 0;
4247 			subseq_idx = i;
4248 			i = get_prev_insn_idx(st, i, &history);
4249 			if (i == -ENOENT)
4250 				break;
4251 			if (i >= env->prog->len) {
4252 				/* This can happen if backtracking reached insn 0
4253 				 * and there are still reg_mask or stack_mask
4254 				 * to backtrack.
4255 				 * It means the backtracking missed the spot where
4256 				 * particular register was initialized with a constant.
4257 				 */
4258 				verbose(env, "BUG backtracking idx %d\n", i);
4259 				WARN_ONCE(1, "verifier backtracking bug");
4260 				return -EFAULT;
4261 			}
4262 		}
4263 		st = st->parent;
4264 		if (!st)
4265 			break;
4266 
4267 		for (fr = bt->frame; fr >= 0; fr--) {
4268 			func = st->frame[fr];
4269 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4270 			for_each_set_bit(i, mask, 32) {
4271 				reg = &func->regs[i];
4272 				if (reg->type != SCALAR_VALUE) {
4273 					bt_clear_frame_reg(bt, fr, i);
4274 					continue;
4275 				}
4276 				if (reg->precise)
4277 					bt_clear_frame_reg(bt, fr, i);
4278 				else
4279 					reg->precise = true;
4280 			}
4281 
4282 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4283 			for_each_set_bit(i, mask, 64) {
4284 				if (i >= func->allocated_stack / BPF_REG_SIZE) {
4285 					verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n",
4286 						i, func->allocated_stack / BPF_REG_SIZE);
4287 					WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)");
4288 					return -EFAULT;
4289 				}
4290 
4291 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4292 					bt_clear_frame_slot(bt, fr, i);
4293 					continue;
4294 				}
4295 				reg = &func->stack[i].spilled_ptr;
4296 				if (reg->precise)
4297 					bt_clear_frame_slot(bt, fr, i);
4298 				else
4299 					reg->precise = true;
4300 			}
4301 			if (env->log.level & BPF_LOG_LEVEL2) {
4302 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4303 					     bt_frame_reg_mask(bt, fr));
4304 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4305 					fr, env->tmp_str_buf);
4306 				fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4307 					       bt_frame_stack_mask(bt, fr));
4308 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4309 				print_verifier_state(env, func, true);
4310 			}
4311 		}
4312 
4313 		if (bt_empty(bt))
4314 			return 0;
4315 
4316 		subseq_idx = first_idx;
4317 		last_idx = st->last_insn_idx;
4318 		first_idx = st->first_insn_idx;
4319 	}
4320 
4321 	/* if we still have requested precise regs or slots, we missed
4322 	 * something (e.g., stack access through non-r10 register), so
4323 	 * fallback to marking all precise
4324 	 */
4325 	if (!bt_empty(bt)) {
4326 		mark_all_scalars_precise(env, env->cur_state);
4327 		bt_reset(bt);
4328 	}
4329 
4330 	return 0;
4331 }
4332 
4333 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4334 {
4335 	return __mark_chain_precision(env, regno);
4336 }
4337 
4338 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4339  * desired reg and stack masks across all relevant frames
4340  */
4341 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4342 {
4343 	return __mark_chain_precision(env, -1);
4344 }
4345 
4346 static bool is_spillable_regtype(enum bpf_reg_type type)
4347 {
4348 	switch (base_type(type)) {
4349 	case PTR_TO_MAP_VALUE:
4350 	case PTR_TO_STACK:
4351 	case PTR_TO_CTX:
4352 	case PTR_TO_PACKET:
4353 	case PTR_TO_PACKET_META:
4354 	case PTR_TO_PACKET_END:
4355 	case PTR_TO_FLOW_KEYS:
4356 	case CONST_PTR_TO_MAP:
4357 	case PTR_TO_SOCKET:
4358 	case PTR_TO_SOCK_COMMON:
4359 	case PTR_TO_TCP_SOCK:
4360 	case PTR_TO_XDP_SOCK:
4361 	case PTR_TO_BTF_ID:
4362 	case PTR_TO_BUF:
4363 	case PTR_TO_MEM:
4364 	case PTR_TO_FUNC:
4365 	case PTR_TO_MAP_KEY:
4366 		return true;
4367 	default:
4368 		return false;
4369 	}
4370 }
4371 
4372 /* Does this register contain a constant zero? */
4373 static bool register_is_null(struct bpf_reg_state *reg)
4374 {
4375 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4376 }
4377 
4378 /* check if register is a constant scalar value */
4379 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32)
4380 {
4381 	return reg->type == SCALAR_VALUE &&
4382 	       tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off);
4383 }
4384 
4385 /* assuming is_reg_const() is true, return constant value of a register */
4386 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32)
4387 {
4388 	return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value;
4389 }
4390 
4391 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
4392 {
4393 	return tnum_is_unknown(reg->var_off) &&
4394 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
4395 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
4396 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
4397 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
4398 }
4399 
4400 static bool register_is_bounded(struct bpf_reg_state *reg)
4401 {
4402 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
4403 }
4404 
4405 static bool __is_pointer_value(bool allow_ptr_leaks,
4406 			       const struct bpf_reg_state *reg)
4407 {
4408 	if (allow_ptr_leaks)
4409 		return false;
4410 
4411 	return reg->type != SCALAR_VALUE;
4412 }
4413 
4414 /* Copy src state preserving dst->parent and dst->live fields */
4415 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4416 {
4417 	struct bpf_reg_state *parent = dst->parent;
4418 	enum bpf_reg_liveness live = dst->live;
4419 
4420 	*dst = *src;
4421 	dst->parent = parent;
4422 	dst->live = live;
4423 }
4424 
4425 static void save_register_state(struct bpf_verifier_env *env,
4426 				struct bpf_func_state *state,
4427 				int spi, struct bpf_reg_state *reg,
4428 				int size)
4429 {
4430 	int i;
4431 
4432 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
4433 	if (size == BPF_REG_SIZE)
4434 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4435 
4436 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4437 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4438 
4439 	/* size < 8 bytes spill */
4440 	for (; i; i--)
4441 		mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]);
4442 }
4443 
4444 static bool is_bpf_st_mem(struct bpf_insn *insn)
4445 {
4446 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4447 }
4448 
4449 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4450  * stack boundary and alignment are checked in check_mem_access()
4451  */
4452 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4453 				       /* stack frame we're writing to */
4454 				       struct bpf_func_state *state,
4455 				       int off, int size, int value_regno,
4456 				       int insn_idx)
4457 {
4458 	struct bpf_func_state *cur; /* state of the current function */
4459 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4460 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4461 	struct bpf_reg_state *reg = NULL;
4462 	int insn_flags = insn_stack_access_flags(state->frameno, spi);
4463 
4464 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4465 	 * so it's aligned access and [off, off + size) are within stack limits
4466 	 */
4467 	if (!env->allow_ptr_leaks &&
4468 	    is_spilled_reg(&state->stack[spi]) &&
4469 	    size != BPF_REG_SIZE) {
4470 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
4471 		return -EACCES;
4472 	}
4473 
4474 	cur = env->cur_state->frame[env->cur_state->curframe];
4475 	if (value_regno >= 0)
4476 		reg = &cur->regs[value_regno];
4477 	if (!env->bypass_spec_v4) {
4478 		bool sanitize = reg && is_spillable_regtype(reg->type);
4479 
4480 		for (i = 0; i < size; i++) {
4481 			u8 type = state->stack[spi].slot_type[i];
4482 
4483 			if (type != STACK_MISC && type != STACK_ZERO) {
4484 				sanitize = true;
4485 				break;
4486 			}
4487 		}
4488 
4489 		if (sanitize)
4490 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4491 	}
4492 
4493 	err = destroy_if_dynptr_stack_slot(env, state, spi);
4494 	if (err)
4495 		return err;
4496 
4497 	mark_stack_slot_scratched(env, spi);
4498 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && env->bpf_capable) {
4499 		save_register_state(env, state, spi, reg, size);
4500 		/* Break the relation on a narrowing spill. */
4501 		if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
4502 			state->stack[spi].spilled_ptr.id = 0;
4503 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4504 		   insn->imm != 0 && env->bpf_capable) {
4505 		struct bpf_reg_state fake_reg = {};
4506 
4507 		__mark_reg_known(&fake_reg, insn->imm);
4508 		fake_reg.type = SCALAR_VALUE;
4509 		save_register_state(env, state, spi, &fake_reg, size);
4510 	} else if (reg && is_spillable_regtype(reg->type)) {
4511 		/* register containing pointer is being spilled into stack */
4512 		if (size != BPF_REG_SIZE) {
4513 			verbose_linfo(env, insn_idx, "; ");
4514 			verbose(env, "invalid size of register spill\n");
4515 			return -EACCES;
4516 		}
4517 		if (state != cur && reg->type == PTR_TO_STACK) {
4518 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4519 			return -EINVAL;
4520 		}
4521 		save_register_state(env, state, spi, reg, size);
4522 	} else {
4523 		u8 type = STACK_MISC;
4524 
4525 		/* regular write of data into stack destroys any spilled ptr */
4526 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4527 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4528 		if (is_stack_slot_special(&state->stack[spi]))
4529 			for (i = 0; i < BPF_REG_SIZE; i++)
4530 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4531 
4532 		/* only mark the slot as written if all 8 bytes were written
4533 		 * otherwise read propagation may incorrectly stop too soon
4534 		 * when stack slots are partially written.
4535 		 * This heuristic means that read propagation will be
4536 		 * conservative, since it will add reg_live_read marks
4537 		 * to stack slots all the way to first state when programs
4538 		 * writes+reads less than 8 bytes
4539 		 */
4540 		if (size == BPF_REG_SIZE)
4541 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4542 
4543 		/* when we zero initialize stack slots mark them as such */
4544 		if ((reg && register_is_null(reg)) ||
4545 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4546 			/* STACK_ZERO case happened because register spill
4547 			 * wasn't properly aligned at the stack slot boundary,
4548 			 * so it's not a register spill anymore; force
4549 			 * originating register to be precise to make
4550 			 * STACK_ZERO correct for subsequent states
4551 			 */
4552 			err = mark_chain_precision(env, value_regno);
4553 			if (err)
4554 				return err;
4555 			type = STACK_ZERO;
4556 		}
4557 
4558 		/* Mark slots affected by this stack write. */
4559 		for (i = 0; i < size; i++)
4560 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type;
4561 		insn_flags = 0; /* not a register spill */
4562 	}
4563 
4564 	if (insn_flags)
4565 		return push_jmp_history(env, env->cur_state, insn_flags);
4566 	return 0;
4567 }
4568 
4569 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4570  * known to contain a variable offset.
4571  * This function checks whether the write is permitted and conservatively
4572  * tracks the effects of the write, considering that each stack slot in the
4573  * dynamic range is potentially written to.
4574  *
4575  * 'off' includes 'regno->off'.
4576  * 'value_regno' can be -1, meaning that an unknown value is being written to
4577  * the stack.
4578  *
4579  * Spilled pointers in range are not marked as written because we don't know
4580  * what's going to be actually written. This means that read propagation for
4581  * future reads cannot be terminated by this write.
4582  *
4583  * For privileged programs, uninitialized stack slots are considered
4584  * initialized by this write (even though we don't know exactly what offsets
4585  * are going to be written to). The idea is that we don't want the verifier to
4586  * reject future reads that access slots written to through variable offsets.
4587  */
4588 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4589 				     /* func where register points to */
4590 				     struct bpf_func_state *state,
4591 				     int ptr_regno, int off, int size,
4592 				     int value_regno, int insn_idx)
4593 {
4594 	struct bpf_func_state *cur; /* state of the current function */
4595 	int min_off, max_off;
4596 	int i, err;
4597 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4598 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4599 	bool writing_zero = false;
4600 	/* set if the fact that we're writing a zero is used to let any
4601 	 * stack slots remain STACK_ZERO
4602 	 */
4603 	bool zero_used = false;
4604 
4605 	cur = env->cur_state->frame[env->cur_state->curframe];
4606 	ptr_reg = &cur->regs[ptr_regno];
4607 	min_off = ptr_reg->smin_value + off;
4608 	max_off = ptr_reg->smax_value + off + size;
4609 	if (value_regno >= 0)
4610 		value_reg = &cur->regs[value_regno];
4611 	if ((value_reg && register_is_null(value_reg)) ||
4612 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4613 		writing_zero = true;
4614 
4615 	for (i = min_off; i < max_off; i++) {
4616 		int spi;
4617 
4618 		spi = __get_spi(i);
4619 		err = destroy_if_dynptr_stack_slot(env, state, spi);
4620 		if (err)
4621 			return err;
4622 	}
4623 
4624 	/* Variable offset writes destroy any spilled pointers in range. */
4625 	for (i = min_off; i < max_off; i++) {
4626 		u8 new_type, *stype;
4627 		int slot, spi;
4628 
4629 		slot = -i - 1;
4630 		spi = slot / BPF_REG_SIZE;
4631 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4632 		mark_stack_slot_scratched(env, spi);
4633 
4634 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4635 			/* Reject the write if range we may write to has not
4636 			 * been initialized beforehand. If we didn't reject
4637 			 * here, the ptr status would be erased below (even
4638 			 * though not all slots are actually overwritten),
4639 			 * possibly opening the door to leaks.
4640 			 *
4641 			 * We do however catch STACK_INVALID case below, and
4642 			 * only allow reading possibly uninitialized memory
4643 			 * later for CAP_PERFMON, as the write may not happen to
4644 			 * that slot.
4645 			 */
4646 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4647 				insn_idx, i);
4648 			return -EINVAL;
4649 		}
4650 
4651 		/* Erase all spilled pointers. */
4652 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4653 
4654 		/* Update the slot type. */
4655 		new_type = STACK_MISC;
4656 		if (writing_zero && *stype == STACK_ZERO) {
4657 			new_type = STACK_ZERO;
4658 			zero_used = true;
4659 		}
4660 		/* If the slot is STACK_INVALID, we check whether it's OK to
4661 		 * pretend that it will be initialized by this write. The slot
4662 		 * might not actually be written to, and so if we mark it as
4663 		 * initialized future reads might leak uninitialized memory.
4664 		 * For privileged programs, we will accept such reads to slots
4665 		 * that may or may not be written because, if we're reject
4666 		 * them, the error would be too confusing.
4667 		 */
4668 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4669 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4670 					insn_idx, i);
4671 			return -EINVAL;
4672 		}
4673 		*stype = new_type;
4674 	}
4675 	if (zero_used) {
4676 		/* backtracking doesn't work for STACK_ZERO yet. */
4677 		err = mark_chain_precision(env, value_regno);
4678 		if (err)
4679 			return err;
4680 	}
4681 	return 0;
4682 }
4683 
4684 /* When register 'dst_regno' is assigned some values from stack[min_off,
4685  * max_off), we set the register's type according to the types of the
4686  * respective stack slots. If all the stack values are known to be zeros, then
4687  * so is the destination reg. Otherwise, the register is considered to be
4688  * SCALAR. This function does not deal with register filling; the caller must
4689  * ensure that all spilled registers in the stack range have been marked as
4690  * read.
4691  */
4692 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4693 				/* func where src register points to */
4694 				struct bpf_func_state *ptr_state,
4695 				int min_off, int max_off, int dst_regno)
4696 {
4697 	struct bpf_verifier_state *vstate = env->cur_state;
4698 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4699 	int i, slot, spi;
4700 	u8 *stype;
4701 	int zeros = 0;
4702 
4703 	for (i = min_off; i < max_off; i++) {
4704 		slot = -i - 1;
4705 		spi = slot / BPF_REG_SIZE;
4706 		mark_stack_slot_scratched(env, spi);
4707 		stype = ptr_state->stack[spi].slot_type;
4708 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4709 			break;
4710 		zeros++;
4711 	}
4712 	if (zeros == max_off - min_off) {
4713 		/* Any access_size read into register is zero extended,
4714 		 * so the whole register == const_zero.
4715 		 */
4716 		__mark_reg_const_zero(env, &state->regs[dst_regno]);
4717 	} else {
4718 		/* have read misc data from the stack */
4719 		mark_reg_unknown(env, state->regs, dst_regno);
4720 	}
4721 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4722 }
4723 
4724 /* Read the stack at 'off' and put the results into the register indicated by
4725  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4726  * spilled reg.
4727  *
4728  * 'dst_regno' can be -1, meaning that the read value is not going to a
4729  * register.
4730  *
4731  * The access is assumed to be within the current stack bounds.
4732  */
4733 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4734 				      /* func where src register points to */
4735 				      struct bpf_func_state *reg_state,
4736 				      int off, int size, int dst_regno)
4737 {
4738 	struct bpf_verifier_state *vstate = env->cur_state;
4739 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4740 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4741 	struct bpf_reg_state *reg;
4742 	u8 *stype, type;
4743 	int insn_flags = insn_stack_access_flags(reg_state->frameno, spi);
4744 
4745 	stype = reg_state->stack[spi].slot_type;
4746 	reg = &reg_state->stack[spi].spilled_ptr;
4747 
4748 	mark_stack_slot_scratched(env, spi);
4749 
4750 	if (is_spilled_reg(&reg_state->stack[spi])) {
4751 		u8 spill_size = 1;
4752 
4753 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4754 			spill_size++;
4755 
4756 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4757 			if (reg->type != SCALAR_VALUE) {
4758 				verbose_linfo(env, env->insn_idx, "; ");
4759 				verbose(env, "invalid size of register fill\n");
4760 				return -EACCES;
4761 			}
4762 
4763 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4764 			if (dst_regno < 0)
4765 				return 0;
4766 
4767 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
4768 				/* The earlier check_reg_arg() has decided the
4769 				 * subreg_def for this insn.  Save it first.
4770 				 */
4771 				s32 subreg_def = state->regs[dst_regno].subreg_def;
4772 
4773 				copy_register_state(&state->regs[dst_regno], reg);
4774 				state->regs[dst_regno].subreg_def = subreg_def;
4775 			} else {
4776 				int spill_cnt = 0, zero_cnt = 0;
4777 
4778 				for (i = 0; i < size; i++) {
4779 					type = stype[(slot - i) % BPF_REG_SIZE];
4780 					if (type == STACK_SPILL) {
4781 						spill_cnt++;
4782 						continue;
4783 					}
4784 					if (type == STACK_MISC)
4785 						continue;
4786 					if (type == STACK_ZERO) {
4787 						zero_cnt++;
4788 						continue;
4789 					}
4790 					if (type == STACK_INVALID && env->allow_uninit_stack)
4791 						continue;
4792 					verbose(env, "invalid read from stack off %d+%d size %d\n",
4793 						off, i, size);
4794 					return -EACCES;
4795 				}
4796 
4797 				if (spill_cnt == size &&
4798 				    tnum_is_const(reg->var_off) && reg->var_off.value == 0) {
4799 					__mark_reg_const_zero(env, &state->regs[dst_regno]);
4800 					/* this IS register fill, so keep insn_flags */
4801 				} else if (zero_cnt == size) {
4802 					/* similarly to mark_reg_stack_read(), preserve zeroes */
4803 					__mark_reg_const_zero(env, &state->regs[dst_regno]);
4804 					insn_flags = 0; /* not restoring original register state */
4805 				} else {
4806 					mark_reg_unknown(env, state->regs, dst_regno);
4807 					insn_flags = 0; /* not restoring original register state */
4808 				}
4809 			}
4810 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4811 		} else if (dst_regno >= 0) {
4812 			/* restore register state from stack */
4813 			copy_register_state(&state->regs[dst_regno], reg);
4814 			/* mark reg as written since spilled pointer state likely
4815 			 * has its liveness marks cleared by is_state_visited()
4816 			 * which resets stack/reg liveness for state transitions
4817 			 */
4818 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4819 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
4820 			/* If dst_regno==-1, the caller is asking us whether
4821 			 * it is acceptable to use this value as a SCALAR_VALUE
4822 			 * (e.g. for XADD).
4823 			 * We must not allow unprivileged callers to do that
4824 			 * with spilled pointers.
4825 			 */
4826 			verbose(env, "leaking pointer from stack off %d\n",
4827 				off);
4828 			return -EACCES;
4829 		}
4830 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4831 	} else {
4832 		for (i = 0; i < size; i++) {
4833 			type = stype[(slot - i) % BPF_REG_SIZE];
4834 			if (type == STACK_MISC)
4835 				continue;
4836 			if (type == STACK_ZERO)
4837 				continue;
4838 			if (type == STACK_INVALID && env->allow_uninit_stack)
4839 				continue;
4840 			verbose(env, "invalid read from stack off %d+%d size %d\n",
4841 				off, i, size);
4842 			return -EACCES;
4843 		}
4844 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4845 		if (dst_regno >= 0)
4846 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
4847 		insn_flags = 0; /* we are not restoring spilled register */
4848 	}
4849 	if (insn_flags)
4850 		return push_jmp_history(env, env->cur_state, insn_flags);
4851 	return 0;
4852 }
4853 
4854 enum bpf_access_src {
4855 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
4856 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
4857 };
4858 
4859 static int check_stack_range_initialized(struct bpf_verifier_env *env,
4860 					 int regno, int off, int access_size,
4861 					 bool zero_size_allowed,
4862 					 enum bpf_access_src type,
4863 					 struct bpf_call_arg_meta *meta);
4864 
4865 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4866 {
4867 	return cur_regs(env) + regno;
4868 }
4869 
4870 /* Read the stack at 'ptr_regno + off' and put the result into the register
4871  * 'dst_regno'.
4872  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4873  * but not its variable offset.
4874  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4875  *
4876  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
4877  * filling registers (i.e. reads of spilled register cannot be detected when
4878  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
4879  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
4880  * offset; for a fixed offset check_stack_read_fixed_off should be used
4881  * instead.
4882  */
4883 static int check_stack_read_var_off(struct bpf_verifier_env *env,
4884 				    int ptr_regno, int off, int size, int dst_regno)
4885 {
4886 	/* The state of the source register. */
4887 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4888 	struct bpf_func_state *ptr_state = func(env, reg);
4889 	int err;
4890 	int min_off, max_off;
4891 
4892 	/* Note that we pass a NULL meta, so raw access will not be permitted.
4893 	 */
4894 	err = check_stack_range_initialized(env, ptr_regno, off, size,
4895 					    false, ACCESS_DIRECT, NULL);
4896 	if (err)
4897 		return err;
4898 
4899 	min_off = reg->smin_value + off;
4900 	max_off = reg->smax_value + off;
4901 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
4902 	return 0;
4903 }
4904 
4905 /* check_stack_read dispatches to check_stack_read_fixed_off or
4906  * check_stack_read_var_off.
4907  *
4908  * The caller must ensure that the offset falls within the allocated stack
4909  * bounds.
4910  *
4911  * 'dst_regno' is a register which will receive the value from the stack. It
4912  * can be -1, meaning that the read value is not going to a register.
4913  */
4914 static int check_stack_read(struct bpf_verifier_env *env,
4915 			    int ptr_regno, int off, int size,
4916 			    int dst_regno)
4917 {
4918 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4919 	struct bpf_func_state *state = func(env, reg);
4920 	int err;
4921 	/* Some accesses are only permitted with a static offset. */
4922 	bool var_off = !tnum_is_const(reg->var_off);
4923 
4924 	/* The offset is required to be static when reads don't go to a
4925 	 * register, in order to not leak pointers (see
4926 	 * check_stack_read_fixed_off).
4927 	 */
4928 	if (dst_regno < 0 && var_off) {
4929 		char tn_buf[48];
4930 
4931 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4932 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
4933 			tn_buf, off, size);
4934 		return -EACCES;
4935 	}
4936 	/* Variable offset is prohibited for unprivileged mode for simplicity
4937 	 * since it requires corresponding support in Spectre masking for stack
4938 	 * ALU. See also retrieve_ptr_limit(). The check in
4939 	 * check_stack_access_for_ptr_arithmetic() called by
4940 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
4941 	 * with variable offsets, therefore no check is required here. Further,
4942 	 * just checking it here would be insufficient as speculative stack
4943 	 * writes could still lead to unsafe speculative behaviour.
4944 	 */
4945 	if (!var_off) {
4946 		off += reg->var_off.value;
4947 		err = check_stack_read_fixed_off(env, state, off, size,
4948 						 dst_regno);
4949 	} else {
4950 		/* Variable offset stack reads need more conservative handling
4951 		 * than fixed offset ones. Note that dst_regno >= 0 on this
4952 		 * branch.
4953 		 */
4954 		err = check_stack_read_var_off(env, ptr_regno, off, size,
4955 					       dst_regno);
4956 	}
4957 	return err;
4958 }
4959 
4960 
4961 /* check_stack_write dispatches to check_stack_write_fixed_off or
4962  * check_stack_write_var_off.
4963  *
4964  * 'ptr_regno' is the register used as a pointer into the stack.
4965  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
4966  * 'value_regno' is the register whose value we're writing to the stack. It can
4967  * be -1, meaning that we're not writing from a register.
4968  *
4969  * The caller must ensure that the offset falls within the maximum stack size.
4970  */
4971 static int check_stack_write(struct bpf_verifier_env *env,
4972 			     int ptr_regno, int off, int size,
4973 			     int value_regno, int insn_idx)
4974 {
4975 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4976 	struct bpf_func_state *state = func(env, reg);
4977 	int err;
4978 
4979 	if (tnum_is_const(reg->var_off)) {
4980 		off += reg->var_off.value;
4981 		err = check_stack_write_fixed_off(env, state, off, size,
4982 						  value_regno, insn_idx);
4983 	} else {
4984 		/* Variable offset stack reads need more conservative handling
4985 		 * than fixed offset ones.
4986 		 */
4987 		err = check_stack_write_var_off(env, state,
4988 						ptr_regno, off, size,
4989 						value_regno, insn_idx);
4990 	}
4991 	return err;
4992 }
4993 
4994 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
4995 				 int off, int size, enum bpf_access_type type)
4996 {
4997 	struct bpf_reg_state *regs = cur_regs(env);
4998 	struct bpf_map *map = regs[regno].map_ptr;
4999 	u32 cap = bpf_map_flags_to_cap(map);
5000 
5001 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
5002 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
5003 			map->value_size, off, size);
5004 		return -EACCES;
5005 	}
5006 
5007 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
5008 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
5009 			map->value_size, off, size);
5010 		return -EACCES;
5011 	}
5012 
5013 	return 0;
5014 }
5015 
5016 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
5017 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
5018 			      int off, int size, u32 mem_size,
5019 			      bool zero_size_allowed)
5020 {
5021 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
5022 	struct bpf_reg_state *reg;
5023 
5024 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
5025 		return 0;
5026 
5027 	reg = &cur_regs(env)[regno];
5028 	switch (reg->type) {
5029 	case PTR_TO_MAP_KEY:
5030 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
5031 			mem_size, off, size);
5032 		break;
5033 	case PTR_TO_MAP_VALUE:
5034 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
5035 			mem_size, off, size);
5036 		break;
5037 	case PTR_TO_PACKET:
5038 	case PTR_TO_PACKET_META:
5039 	case PTR_TO_PACKET_END:
5040 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
5041 			off, size, regno, reg->id, off, mem_size);
5042 		break;
5043 	case PTR_TO_MEM:
5044 	default:
5045 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
5046 			mem_size, off, size);
5047 	}
5048 
5049 	return -EACCES;
5050 }
5051 
5052 /* check read/write into a memory region with possible variable offset */
5053 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5054 				   int off, int size, u32 mem_size,
5055 				   bool zero_size_allowed)
5056 {
5057 	struct bpf_verifier_state *vstate = env->cur_state;
5058 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5059 	struct bpf_reg_state *reg = &state->regs[regno];
5060 	int err;
5061 
5062 	/* We may have adjusted the register pointing to memory region, so we
5063 	 * need to try adding each of min_value and max_value to off
5064 	 * to make sure our theoretical access will be safe.
5065 	 *
5066 	 * The minimum value is only important with signed
5067 	 * comparisons where we can't assume the floor of a
5068 	 * value is 0.  If we are using signed variables for our
5069 	 * index'es we need to make sure that whatever we use
5070 	 * will have a set floor within our range.
5071 	 */
5072 	if (reg->smin_value < 0 &&
5073 	    (reg->smin_value == S64_MIN ||
5074 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5075 	      reg->smin_value + off < 0)) {
5076 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5077 			regno);
5078 		return -EACCES;
5079 	}
5080 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
5081 				 mem_size, zero_size_allowed);
5082 	if (err) {
5083 		verbose(env, "R%d min value is outside of the allowed memory range\n",
5084 			regno);
5085 		return err;
5086 	}
5087 
5088 	/* If we haven't set a max value then we need to bail since we can't be
5089 	 * sure we won't do bad things.
5090 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
5091 	 */
5092 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5093 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5094 			regno);
5095 		return -EACCES;
5096 	}
5097 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
5098 				 mem_size, zero_size_allowed);
5099 	if (err) {
5100 		verbose(env, "R%d max value is outside of the allowed memory range\n",
5101 			regno);
5102 		return err;
5103 	}
5104 
5105 	return 0;
5106 }
5107 
5108 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5109 			       const struct bpf_reg_state *reg, int regno,
5110 			       bool fixed_off_ok)
5111 {
5112 	/* Access to this pointer-typed register or passing it to a helper
5113 	 * is only allowed in its original, unmodified form.
5114 	 */
5115 
5116 	if (reg->off < 0) {
5117 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5118 			reg_type_str(env, reg->type), regno, reg->off);
5119 		return -EACCES;
5120 	}
5121 
5122 	if (!fixed_off_ok && reg->off) {
5123 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5124 			reg_type_str(env, reg->type), regno, reg->off);
5125 		return -EACCES;
5126 	}
5127 
5128 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5129 		char tn_buf[48];
5130 
5131 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5132 		verbose(env, "variable %s access var_off=%s disallowed\n",
5133 			reg_type_str(env, reg->type), tn_buf);
5134 		return -EACCES;
5135 	}
5136 
5137 	return 0;
5138 }
5139 
5140 int check_ptr_off_reg(struct bpf_verifier_env *env,
5141 		      const struct bpf_reg_state *reg, int regno)
5142 {
5143 	return __check_ptr_off_reg(env, reg, regno, false);
5144 }
5145 
5146 static int map_kptr_match_type(struct bpf_verifier_env *env,
5147 			       struct btf_field *kptr_field,
5148 			       struct bpf_reg_state *reg, u32 regno)
5149 {
5150 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5151 	int perm_flags;
5152 	const char *reg_name = "";
5153 
5154 	if (btf_is_kernel(reg->btf)) {
5155 		perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5156 
5157 		/* Only unreferenced case accepts untrusted pointers */
5158 		if (kptr_field->type == BPF_KPTR_UNREF)
5159 			perm_flags |= PTR_UNTRUSTED;
5160 	} else {
5161 		perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5162 		if (kptr_field->type == BPF_KPTR_PERCPU)
5163 			perm_flags |= MEM_PERCPU;
5164 	}
5165 
5166 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5167 		goto bad_type;
5168 
5169 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
5170 	reg_name = btf_type_name(reg->btf, reg->btf_id);
5171 
5172 	/* For ref_ptr case, release function check should ensure we get one
5173 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5174 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
5175 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5176 	 * reg->off and reg->ref_obj_id are not needed here.
5177 	 */
5178 	if (__check_ptr_off_reg(env, reg, regno, true))
5179 		return -EACCES;
5180 
5181 	/* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5182 	 * we also need to take into account the reg->off.
5183 	 *
5184 	 * We want to support cases like:
5185 	 *
5186 	 * struct foo {
5187 	 *         struct bar br;
5188 	 *         struct baz bz;
5189 	 * };
5190 	 *
5191 	 * struct foo *v;
5192 	 * v = func();	      // PTR_TO_BTF_ID
5193 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
5194 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5195 	 *                    // first member type of struct after comparison fails
5196 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5197 	 *                    // to match type
5198 	 *
5199 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5200 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
5201 	 * the struct to match type against first member of struct, i.e. reject
5202 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5203 	 * strict mode to true for type match.
5204 	 */
5205 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5206 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5207 				  kptr_field->type != BPF_KPTR_UNREF))
5208 		goto bad_type;
5209 	return 0;
5210 bad_type:
5211 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5212 		reg_type_str(env, reg->type), reg_name);
5213 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5214 	if (kptr_field->type == BPF_KPTR_UNREF)
5215 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5216 			targ_name);
5217 	else
5218 		verbose(env, "\n");
5219 	return -EINVAL;
5220 }
5221 
5222 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5223  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5224  */
5225 static bool in_rcu_cs(struct bpf_verifier_env *env)
5226 {
5227 	return env->cur_state->active_rcu_lock ||
5228 	       env->cur_state->active_lock.ptr ||
5229 	       !env->prog->aux->sleepable;
5230 }
5231 
5232 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5233 BTF_SET_START(rcu_protected_types)
5234 BTF_ID(struct, prog_test_ref_kfunc)
5235 #ifdef CONFIG_CGROUPS
5236 BTF_ID(struct, cgroup)
5237 #endif
5238 BTF_ID(struct, bpf_cpumask)
5239 BTF_ID(struct, task_struct)
5240 BTF_SET_END(rcu_protected_types)
5241 
5242 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5243 {
5244 	if (!btf_is_kernel(btf))
5245 		return true;
5246 	return btf_id_set_contains(&rcu_protected_types, btf_id);
5247 }
5248 
5249 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field)
5250 {
5251 	struct btf_struct_meta *meta;
5252 
5253 	if (btf_is_kernel(kptr_field->kptr.btf))
5254 		return NULL;
5255 
5256 	meta = btf_find_struct_meta(kptr_field->kptr.btf,
5257 				    kptr_field->kptr.btf_id);
5258 
5259 	return meta ? meta->record : NULL;
5260 }
5261 
5262 static bool rcu_safe_kptr(const struct btf_field *field)
5263 {
5264 	const struct btf_field_kptr *kptr = &field->kptr;
5265 
5266 	return field->type == BPF_KPTR_PERCPU ||
5267 	       (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id));
5268 }
5269 
5270 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field)
5271 {
5272 	struct btf_record *rec;
5273 	u32 ret;
5274 
5275 	ret = PTR_MAYBE_NULL;
5276 	if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) {
5277 		ret |= MEM_RCU;
5278 		if (kptr_field->type == BPF_KPTR_PERCPU)
5279 			ret |= MEM_PERCPU;
5280 		else if (!btf_is_kernel(kptr_field->kptr.btf))
5281 			ret |= MEM_ALLOC;
5282 
5283 		rec = kptr_pointee_btf_record(kptr_field);
5284 		if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE))
5285 			ret |= NON_OWN_REF;
5286 	} else {
5287 		ret |= PTR_UNTRUSTED;
5288 	}
5289 
5290 	return ret;
5291 }
5292 
5293 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5294 				 int value_regno, int insn_idx,
5295 				 struct btf_field *kptr_field)
5296 {
5297 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5298 	int class = BPF_CLASS(insn->code);
5299 	struct bpf_reg_state *val_reg;
5300 
5301 	/* Things we already checked for in check_map_access and caller:
5302 	 *  - Reject cases where variable offset may touch kptr
5303 	 *  - size of access (must be BPF_DW)
5304 	 *  - tnum_is_const(reg->var_off)
5305 	 *  - kptr_field->offset == off + reg->var_off.value
5306 	 */
5307 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5308 	if (BPF_MODE(insn->code) != BPF_MEM) {
5309 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5310 		return -EACCES;
5311 	}
5312 
5313 	/* We only allow loading referenced kptr, since it will be marked as
5314 	 * untrusted, similar to unreferenced kptr.
5315 	 */
5316 	if (class != BPF_LDX &&
5317 	    (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) {
5318 		verbose(env, "store to referenced kptr disallowed\n");
5319 		return -EACCES;
5320 	}
5321 
5322 	if (class == BPF_LDX) {
5323 		val_reg = reg_state(env, value_regno);
5324 		/* We can simply mark the value_regno receiving the pointer
5325 		 * value from map as PTR_TO_BTF_ID, with the correct type.
5326 		 */
5327 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5328 				kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field));
5329 		/* For mark_ptr_or_null_reg */
5330 		val_reg->id = ++env->id_gen;
5331 	} else if (class == BPF_STX) {
5332 		val_reg = reg_state(env, value_regno);
5333 		if (!register_is_null(val_reg) &&
5334 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5335 			return -EACCES;
5336 	} else if (class == BPF_ST) {
5337 		if (insn->imm) {
5338 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5339 				kptr_field->offset);
5340 			return -EACCES;
5341 		}
5342 	} else {
5343 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5344 		return -EACCES;
5345 	}
5346 	return 0;
5347 }
5348 
5349 /* check read/write into a map element with possible variable offset */
5350 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5351 			    int off, int size, bool zero_size_allowed,
5352 			    enum bpf_access_src src)
5353 {
5354 	struct bpf_verifier_state *vstate = env->cur_state;
5355 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5356 	struct bpf_reg_state *reg = &state->regs[regno];
5357 	struct bpf_map *map = reg->map_ptr;
5358 	struct btf_record *rec;
5359 	int err, i;
5360 
5361 	err = check_mem_region_access(env, regno, off, size, map->value_size,
5362 				      zero_size_allowed);
5363 	if (err)
5364 		return err;
5365 
5366 	if (IS_ERR_OR_NULL(map->record))
5367 		return 0;
5368 	rec = map->record;
5369 	for (i = 0; i < rec->cnt; i++) {
5370 		struct btf_field *field = &rec->fields[i];
5371 		u32 p = field->offset;
5372 
5373 		/* If any part of a field  can be touched by load/store, reject
5374 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
5375 		 * it is sufficient to check x1 < y2 && y1 < x2.
5376 		 */
5377 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5378 		    p < reg->umax_value + off + size) {
5379 			switch (field->type) {
5380 			case BPF_KPTR_UNREF:
5381 			case BPF_KPTR_REF:
5382 			case BPF_KPTR_PERCPU:
5383 				if (src != ACCESS_DIRECT) {
5384 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
5385 					return -EACCES;
5386 				}
5387 				if (!tnum_is_const(reg->var_off)) {
5388 					verbose(env, "kptr access cannot have variable offset\n");
5389 					return -EACCES;
5390 				}
5391 				if (p != off + reg->var_off.value) {
5392 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5393 						p, off + reg->var_off.value);
5394 					return -EACCES;
5395 				}
5396 				if (size != bpf_size_to_bytes(BPF_DW)) {
5397 					verbose(env, "kptr access size must be BPF_DW\n");
5398 					return -EACCES;
5399 				}
5400 				break;
5401 			default:
5402 				verbose(env, "%s cannot be accessed directly by load/store\n",
5403 					btf_field_type_name(field->type));
5404 				return -EACCES;
5405 			}
5406 		}
5407 	}
5408 	return 0;
5409 }
5410 
5411 #define MAX_PACKET_OFF 0xffff
5412 
5413 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5414 				       const struct bpf_call_arg_meta *meta,
5415 				       enum bpf_access_type t)
5416 {
5417 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5418 
5419 	switch (prog_type) {
5420 	/* Program types only with direct read access go here! */
5421 	case BPF_PROG_TYPE_LWT_IN:
5422 	case BPF_PROG_TYPE_LWT_OUT:
5423 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5424 	case BPF_PROG_TYPE_SK_REUSEPORT:
5425 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5426 	case BPF_PROG_TYPE_CGROUP_SKB:
5427 		if (t == BPF_WRITE)
5428 			return false;
5429 		fallthrough;
5430 
5431 	/* Program types with direct read + write access go here! */
5432 	case BPF_PROG_TYPE_SCHED_CLS:
5433 	case BPF_PROG_TYPE_SCHED_ACT:
5434 	case BPF_PROG_TYPE_XDP:
5435 	case BPF_PROG_TYPE_LWT_XMIT:
5436 	case BPF_PROG_TYPE_SK_SKB:
5437 	case BPF_PROG_TYPE_SK_MSG:
5438 		if (meta)
5439 			return meta->pkt_access;
5440 
5441 		env->seen_direct_write = true;
5442 		return true;
5443 
5444 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5445 		if (t == BPF_WRITE)
5446 			env->seen_direct_write = true;
5447 
5448 		return true;
5449 
5450 	default:
5451 		return false;
5452 	}
5453 }
5454 
5455 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5456 			       int size, bool zero_size_allowed)
5457 {
5458 	struct bpf_reg_state *regs = cur_regs(env);
5459 	struct bpf_reg_state *reg = &regs[regno];
5460 	int err;
5461 
5462 	/* We may have added a variable offset to the packet pointer; but any
5463 	 * reg->range we have comes after that.  We are only checking the fixed
5464 	 * offset.
5465 	 */
5466 
5467 	/* We don't allow negative numbers, because we aren't tracking enough
5468 	 * detail to prove they're safe.
5469 	 */
5470 	if (reg->smin_value < 0) {
5471 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5472 			regno);
5473 		return -EACCES;
5474 	}
5475 
5476 	err = reg->range < 0 ? -EINVAL :
5477 	      __check_mem_access(env, regno, off, size, reg->range,
5478 				 zero_size_allowed);
5479 	if (err) {
5480 		verbose(env, "R%d offset is outside of the packet\n", regno);
5481 		return err;
5482 	}
5483 
5484 	/* __check_mem_access has made sure "off + size - 1" is within u16.
5485 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5486 	 * otherwise find_good_pkt_pointers would have refused to set range info
5487 	 * that __check_mem_access would have rejected this pkt access.
5488 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5489 	 */
5490 	env->prog->aux->max_pkt_offset =
5491 		max_t(u32, env->prog->aux->max_pkt_offset,
5492 		      off + reg->umax_value + size - 1);
5493 
5494 	return err;
5495 }
5496 
5497 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
5498 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5499 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
5500 			    struct btf **btf, u32 *btf_id)
5501 {
5502 	struct bpf_insn_access_aux info = {
5503 		.reg_type = *reg_type,
5504 		.log = &env->log,
5505 	};
5506 
5507 	if (env->ops->is_valid_access &&
5508 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5509 		/* A non zero info.ctx_field_size indicates that this field is a
5510 		 * candidate for later verifier transformation to load the whole
5511 		 * field and then apply a mask when accessed with a narrower
5512 		 * access than actual ctx access size. A zero info.ctx_field_size
5513 		 * will only allow for whole field access and rejects any other
5514 		 * type of narrower access.
5515 		 */
5516 		*reg_type = info.reg_type;
5517 
5518 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5519 			*btf = info.btf;
5520 			*btf_id = info.btf_id;
5521 		} else {
5522 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5523 		}
5524 		/* remember the offset of last byte accessed in ctx */
5525 		if (env->prog->aux->max_ctx_offset < off + size)
5526 			env->prog->aux->max_ctx_offset = off + size;
5527 		return 0;
5528 	}
5529 
5530 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5531 	return -EACCES;
5532 }
5533 
5534 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5535 				  int size)
5536 {
5537 	if (size < 0 || off < 0 ||
5538 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
5539 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
5540 			off, size);
5541 		return -EACCES;
5542 	}
5543 	return 0;
5544 }
5545 
5546 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5547 			     u32 regno, int off, int size,
5548 			     enum bpf_access_type t)
5549 {
5550 	struct bpf_reg_state *regs = cur_regs(env);
5551 	struct bpf_reg_state *reg = &regs[regno];
5552 	struct bpf_insn_access_aux info = {};
5553 	bool valid;
5554 
5555 	if (reg->smin_value < 0) {
5556 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5557 			regno);
5558 		return -EACCES;
5559 	}
5560 
5561 	switch (reg->type) {
5562 	case PTR_TO_SOCK_COMMON:
5563 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5564 		break;
5565 	case PTR_TO_SOCKET:
5566 		valid = bpf_sock_is_valid_access(off, size, t, &info);
5567 		break;
5568 	case PTR_TO_TCP_SOCK:
5569 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5570 		break;
5571 	case PTR_TO_XDP_SOCK:
5572 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5573 		break;
5574 	default:
5575 		valid = false;
5576 	}
5577 
5578 
5579 	if (valid) {
5580 		env->insn_aux_data[insn_idx].ctx_field_size =
5581 			info.ctx_field_size;
5582 		return 0;
5583 	}
5584 
5585 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
5586 		regno, reg_type_str(env, reg->type), off, size);
5587 
5588 	return -EACCES;
5589 }
5590 
5591 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5592 {
5593 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5594 }
5595 
5596 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5597 {
5598 	const struct bpf_reg_state *reg = reg_state(env, regno);
5599 
5600 	return reg->type == PTR_TO_CTX;
5601 }
5602 
5603 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5604 {
5605 	const struct bpf_reg_state *reg = reg_state(env, regno);
5606 
5607 	return type_is_sk_pointer(reg->type);
5608 }
5609 
5610 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5611 {
5612 	const struct bpf_reg_state *reg = reg_state(env, regno);
5613 
5614 	return type_is_pkt_pointer(reg->type);
5615 }
5616 
5617 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5618 {
5619 	const struct bpf_reg_state *reg = reg_state(env, regno);
5620 
5621 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5622 	return reg->type == PTR_TO_FLOW_KEYS;
5623 }
5624 
5625 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5626 #ifdef CONFIG_NET
5627 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5628 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5629 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5630 #endif
5631 	[CONST_PTR_TO_MAP] = btf_bpf_map_id,
5632 };
5633 
5634 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5635 {
5636 	/* A referenced register is always trusted. */
5637 	if (reg->ref_obj_id)
5638 		return true;
5639 
5640 	/* Types listed in the reg2btf_ids are always trusted */
5641 	if (reg2btf_ids[base_type(reg->type)])
5642 		return true;
5643 
5644 	/* If a register is not referenced, it is trusted if it has the
5645 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5646 	 * other type modifiers may be safe, but we elect to take an opt-in
5647 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5648 	 * not.
5649 	 *
5650 	 * Eventually, we should make PTR_TRUSTED the single source of truth
5651 	 * for whether a register is trusted.
5652 	 */
5653 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5654 	       !bpf_type_has_unsafe_modifiers(reg->type);
5655 }
5656 
5657 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5658 {
5659 	return reg->type & MEM_RCU;
5660 }
5661 
5662 static void clear_trusted_flags(enum bpf_type_flag *flag)
5663 {
5664 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5665 }
5666 
5667 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5668 				   const struct bpf_reg_state *reg,
5669 				   int off, int size, bool strict)
5670 {
5671 	struct tnum reg_off;
5672 	int ip_align;
5673 
5674 	/* Byte size accesses are always allowed. */
5675 	if (!strict || size == 1)
5676 		return 0;
5677 
5678 	/* For platforms that do not have a Kconfig enabling
5679 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5680 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
5681 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5682 	 * to this code only in strict mode where we want to emulate
5683 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
5684 	 * unconditional IP align value of '2'.
5685 	 */
5686 	ip_align = 2;
5687 
5688 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5689 	if (!tnum_is_aligned(reg_off, size)) {
5690 		char tn_buf[48];
5691 
5692 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5693 		verbose(env,
5694 			"misaligned packet access off %d+%s+%d+%d size %d\n",
5695 			ip_align, tn_buf, reg->off, off, size);
5696 		return -EACCES;
5697 	}
5698 
5699 	return 0;
5700 }
5701 
5702 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5703 				       const struct bpf_reg_state *reg,
5704 				       const char *pointer_desc,
5705 				       int off, int size, bool strict)
5706 {
5707 	struct tnum reg_off;
5708 
5709 	/* Byte size accesses are always allowed. */
5710 	if (!strict || size == 1)
5711 		return 0;
5712 
5713 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5714 	if (!tnum_is_aligned(reg_off, size)) {
5715 		char tn_buf[48];
5716 
5717 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5718 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5719 			pointer_desc, tn_buf, reg->off, off, size);
5720 		return -EACCES;
5721 	}
5722 
5723 	return 0;
5724 }
5725 
5726 static int check_ptr_alignment(struct bpf_verifier_env *env,
5727 			       const struct bpf_reg_state *reg, int off,
5728 			       int size, bool strict_alignment_once)
5729 {
5730 	bool strict = env->strict_alignment || strict_alignment_once;
5731 	const char *pointer_desc = "";
5732 
5733 	switch (reg->type) {
5734 	case PTR_TO_PACKET:
5735 	case PTR_TO_PACKET_META:
5736 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
5737 		 * right in front, treat it the very same way.
5738 		 */
5739 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
5740 	case PTR_TO_FLOW_KEYS:
5741 		pointer_desc = "flow keys ";
5742 		break;
5743 	case PTR_TO_MAP_KEY:
5744 		pointer_desc = "key ";
5745 		break;
5746 	case PTR_TO_MAP_VALUE:
5747 		pointer_desc = "value ";
5748 		break;
5749 	case PTR_TO_CTX:
5750 		pointer_desc = "context ";
5751 		break;
5752 	case PTR_TO_STACK:
5753 		pointer_desc = "stack ";
5754 		/* The stack spill tracking logic in check_stack_write_fixed_off()
5755 		 * and check_stack_read_fixed_off() relies on stack accesses being
5756 		 * aligned.
5757 		 */
5758 		strict = true;
5759 		break;
5760 	case PTR_TO_SOCKET:
5761 		pointer_desc = "sock ";
5762 		break;
5763 	case PTR_TO_SOCK_COMMON:
5764 		pointer_desc = "sock_common ";
5765 		break;
5766 	case PTR_TO_TCP_SOCK:
5767 		pointer_desc = "tcp_sock ";
5768 		break;
5769 	case PTR_TO_XDP_SOCK:
5770 		pointer_desc = "xdp_sock ";
5771 		break;
5772 	default:
5773 		break;
5774 	}
5775 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5776 					   strict);
5777 }
5778 
5779 /* starting from main bpf function walk all instructions of the function
5780  * and recursively walk all callees that given function can call.
5781  * Ignore jump and exit insns.
5782  * Since recursion is prevented by check_cfg() this algorithm
5783  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5784  */
5785 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
5786 {
5787 	struct bpf_subprog_info *subprog = env->subprog_info;
5788 	struct bpf_insn *insn = env->prog->insnsi;
5789 	int depth = 0, frame = 0, i, subprog_end;
5790 	bool tail_call_reachable = false;
5791 	int ret_insn[MAX_CALL_FRAMES];
5792 	int ret_prog[MAX_CALL_FRAMES];
5793 	int j;
5794 
5795 	i = subprog[idx].start;
5796 process_func:
5797 	/* protect against potential stack overflow that might happen when
5798 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5799 	 * depth for such case down to 256 so that the worst case scenario
5800 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
5801 	 * 8k).
5802 	 *
5803 	 * To get the idea what might happen, see an example:
5804 	 * func1 -> sub rsp, 128
5805 	 *  subfunc1 -> sub rsp, 256
5806 	 *  tailcall1 -> add rsp, 256
5807 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5808 	 *   subfunc2 -> sub rsp, 64
5809 	 *   subfunc22 -> sub rsp, 128
5810 	 *   tailcall2 -> add rsp, 128
5811 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5812 	 *
5813 	 * tailcall will unwind the current stack frame but it will not get rid
5814 	 * of caller's stack as shown on the example above.
5815 	 */
5816 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
5817 		verbose(env,
5818 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5819 			depth);
5820 		return -EACCES;
5821 	}
5822 	/* round up to 32-bytes, since this is granularity
5823 	 * of interpreter stack size
5824 	 */
5825 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5826 	if (depth > MAX_BPF_STACK) {
5827 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
5828 			frame + 1, depth);
5829 		return -EACCES;
5830 	}
5831 continue_func:
5832 	subprog_end = subprog[idx + 1].start;
5833 	for (; i < subprog_end; i++) {
5834 		int next_insn, sidx;
5835 
5836 		if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) {
5837 			bool err = false;
5838 
5839 			if (!is_bpf_throw_kfunc(insn + i))
5840 				continue;
5841 			if (subprog[idx].is_cb)
5842 				err = true;
5843 			for (int c = 0; c < frame && !err; c++) {
5844 				if (subprog[ret_prog[c]].is_cb) {
5845 					err = true;
5846 					break;
5847 				}
5848 			}
5849 			if (!err)
5850 				continue;
5851 			verbose(env,
5852 				"bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n",
5853 				i, idx);
5854 			return -EINVAL;
5855 		}
5856 
5857 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
5858 			continue;
5859 		/* remember insn and function to return to */
5860 		ret_insn[frame] = i + 1;
5861 		ret_prog[frame] = idx;
5862 
5863 		/* find the callee */
5864 		next_insn = i + insn[i].imm + 1;
5865 		sidx = find_subprog(env, next_insn);
5866 		if (sidx < 0) {
5867 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5868 				  next_insn);
5869 			return -EFAULT;
5870 		}
5871 		if (subprog[sidx].is_async_cb) {
5872 			if (subprog[sidx].has_tail_call) {
5873 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5874 				return -EFAULT;
5875 			}
5876 			/* async callbacks don't increase bpf prog stack size unless called directly */
5877 			if (!bpf_pseudo_call(insn + i))
5878 				continue;
5879 			if (subprog[sidx].is_exception_cb) {
5880 				verbose(env, "insn %d cannot call exception cb directly\n", i);
5881 				return -EINVAL;
5882 			}
5883 		}
5884 		i = next_insn;
5885 		idx = sidx;
5886 
5887 		if (subprog[idx].has_tail_call)
5888 			tail_call_reachable = true;
5889 
5890 		frame++;
5891 		if (frame >= MAX_CALL_FRAMES) {
5892 			verbose(env, "the call stack of %d frames is too deep !\n",
5893 				frame);
5894 			return -E2BIG;
5895 		}
5896 		goto process_func;
5897 	}
5898 	/* if tail call got detected across bpf2bpf calls then mark each of the
5899 	 * currently present subprog frames as tail call reachable subprogs;
5900 	 * this info will be utilized by JIT so that we will be preserving the
5901 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
5902 	 */
5903 	if (tail_call_reachable)
5904 		for (j = 0; j < frame; j++) {
5905 			if (subprog[ret_prog[j]].is_exception_cb) {
5906 				verbose(env, "cannot tail call within exception cb\n");
5907 				return -EINVAL;
5908 			}
5909 			subprog[ret_prog[j]].tail_call_reachable = true;
5910 		}
5911 	if (subprog[0].tail_call_reachable)
5912 		env->prog->aux->tail_call_reachable = true;
5913 
5914 	/* end of for() loop means the last insn of the 'subprog'
5915 	 * was reached. Doesn't matter whether it was JA or EXIT
5916 	 */
5917 	if (frame == 0)
5918 		return 0;
5919 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5920 	frame--;
5921 	i = ret_insn[frame];
5922 	idx = ret_prog[frame];
5923 	goto continue_func;
5924 }
5925 
5926 static int check_max_stack_depth(struct bpf_verifier_env *env)
5927 {
5928 	struct bpf_subprog_info *si = env->subprog_info;
5929 	int ret;
5930 
5931 	for (int i = 0; i < env->subprog_cnt; i++) {
5932 		if (!i || si[i].is_async_cb) {
5933 			ret = check_max_stack_depth_subprog(env, i);
5934 			if (ret < 0)
5935 				return ret;
5936 		}
5937 		continue;
5938 	}
5939 	return 0;
5940 }
5941 
5942 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5943 static int get_callee_stack_depth(struct bpf_verifier_env *env,
5944 				  const struct bpf_insn *insn, int idx)
5945 {
5946 	int start = idx + insn->imm + 1, subprog;
5947 
5948 	subprog = find_subprog(env, start);
5949 	if (subprog < 0) {
5950 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5951 			  start);
5952 		return -EFAULT;
5953 	}
5954 	return env->subprog_info[subprog].stack_depth;
5955 }
5956 #endif
5957 
5958 static int __check_buffer_access(struct bpf_verifier_env *env,
5959 				 const char *buf_info,
5960 				 const struct bpf_reg_state *reg,
5961 				 int regno, int off, int size)
5962 {
5963 	if (off < 0) {
5964 		verbose(env,
5965 			"R%d invalid %s buffer access: off=%d, size=%d\n",
5966 			regno, buf_info, off, size);
5967 		return -EACCES;
5968 	}
5969 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5970 		char tn_buf[48];
5971 
5972 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5973 		verbose(env,
5974 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
5975 			regno, off, tn_buf);
5976 		return -EACCES;
5977 	}
5978 
5979 	return 0;
5980 }
5981 
5982 static int check_tp_buffer_access(struct bpf_verifier_env *env,
5983 				  const struct bpf_reg_state *reg,
5984 				  int regno, int off, int size)
5985 {
5986 	int err;
5987 
5988 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
5989 	if (err)
5990 		return err;
5991 
5992 	if (off + size > env->prog->aux->max_tp_access)
5993 		env->prog->aux->max_tp_access = off + size;
5994 
5995 	return 0;
5996 }
5997 
5998 static int check_buffer_access(struct bpf_verifier_env *env,
5999 			       const struct bpf_reg_state *reg,
6000 			       int regno, int off, int size,
6001 			       bool zero_size_allowed,
6002 			       u32 *max_access)
6003 {
6004 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
6005 	int err;
6006 
6007 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
6008 	if (err)
6009 		return err;
6010 
6011 	if (off + size > *max_access)
6012 		*max_access = off + size;
6013 
6014 	return 0;
6015 }
6016 
6017 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
6018 static void zext_32_to_64(struct bpf_reg_state *reg)
6019 {
6020 	reg->var_off = tnum_subreg(reg->var_off);
6021 	__reg_assign_32_into_64(reg);
6022 }
6023 
6024 /* truncate register to smaller size (in bytes)
6025  * must be called with size < BPF_REG_SIZE
6026  */
6027 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
6028 {
6029 	u64 mask;
6030 
6031 	/* clear high bits in bit representation */
6032 	reg->var_off = tnum_cast(reg->var_off, size);
6033 
6034 	/* fix arithmetic bounds */
6035 	mask = ((u64)1 << (size * 8)) - 1;
6036 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
6037 		reg->umin_value &= mask;
6038 		reg->umax_value &= mask;
6039 	} else {
6040 		reg->umin_value = 0;
6041 		reg->umax_value = mask;
6042 	}
6043 	reg->smin_value = reg->umin_value;
6044 	reg->smax_value = reg->umax_value;
6045 
6046 	/* If size is smaller than 32bit register the 32bit register
6047 	 * values are also truncated so we push 64-bit bounds into
6048 	 * 32-bit bounds. Above were truncated < 32-bits already.
6049 	 */
6050 	if (size < 4) {
6051 		__mark_reg32_unbounded(reg);
6052 		reg_bounds_sync(reg);
6053 	}
6054 }
6055 
6056 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
6057 {
6058 	if (size == 1) {
6059 		reg->smin_value = reg->s32_min_value = S8_MIN;
6060 		reg->smax_value = reg->s32_max_value = S8_MAX;
6061 	} else if (size == 2) {
6062 		reg->smin_value = reg->s32_min_value = S16_MIN;
6063 		reg->smax_value = reg->s32_max_value = S16_MAX;
6064 	} else {
6065 		/* size == 4 */
6066 		reg->smin_value = reg->s32_min_value = S32_MIN;
6067 		reg->smax_value = reg->s32_max_value = S32_MAX;
6068 	}
6069 	reg->umin_value = reg->u32_min_value = 0;
6070 	reg->umax_value = U64_MAX;
6071 	reg->u32_max_value = U32_MAX;
6072 	reg->var_off = tnum_unknown;
6073 }
6074 
6075 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
6076 {
6077 	s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6078 	u64 top_smax_value, top_smin_value;
6079 	u64 num_bits = size * 8;
6080 
6081 	if (tnum_is_const(reg->var_off)) {
6082 		u64_cval = reg->var_off.value;
6083 		if (size == 1)
6084 			reg->var_off = tnum_const((s8)u64_cval);
6085 		else if (size == 2)
6086 			reg->var_off = tnum_const((s16)u64_cval);
6087 		else
6088 			/* size == 4 */
6089 			reg->var_off = tnum_const((s32)u64_cval);
6090 
6091 		u64_cval = reg->var_off.value;
6092 		reg->smax_value = reg->smin_value = u64_cval;
6093 		reg->umax_value = reg->umin_value = u64_cval;
6094 		reg->s32_max_value = reg->s32_min_value = u64_cval;
6095 		reg->u32_max_value = reg->u32_min_value = u64_cval;
6096 		return;
6097 	}
6098 
6099 	top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6100 	top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6101 
6102 	if (top_smax_value != top_smin_value)
6103 		goto out;
6104 
6105 	/* find the s64_min and s64_min after sign extension */
6106 	if (size == 1) {
6107 		init_s64_max = (s8)reg->smax_value;
6108 		init_s64_min = (s8)reg->smin_value;
6109 	} else if (size == 2) {
6110 		init_s64_max = (s16)reg->smax_value;
6111 		init_s64_min = (s16)reg->smin_value;
6112 	} else {
6113 		init_s64_max = (s32)reg->smax_value;
6114 		init_s64_min = (s32)reg->smin_value;
6115 	}
6116 
6117 	s64_max = max(init_s64_max, init_s64_min);
6118 	s64_min = min(init_s64_max, init_s64_min);
6119 
6120 	/* both of s64_max/s64_min positive or negative */
6121 	if ((s64_max >= 0) == (s64_min >= 0)) {
6122 		reg->smin_value = reg->s32_min_value = s64_min;
6123 		reg->smax_value = reg->s32_max_value = s64_max;
6124 		reg->umin_value = reg->u32_min_value = s64_min;
6125 		reg->umax_value = reg->u32_max_value = s64_max;
6126 		reg->var_off = tnum_range(s64_min, s64_max);
6127 		return;
6128 	}
6129 
6130 out:
6131 	set_sext64_default_val(reg, size);
6132 }
6133 
6134 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6135 {
6136 	if (size == 1) {
6137 		reg->s32_min_value = S8_MIN;
6138 		reg->s32_max_value = S8_MAX;
6139 	} else {
6140 		/* size == 2 */
6141 		reg->s32_min_value = S16_MIN;
6142 		reg->s32_max_value = S16_MAX;
6143 	}
6144 	reg->u32_min_value = 0;
6145 	reg->u32_max_value = U32_MAX;
6146 }
6147 
6148 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6149 {
6150 	s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6151 	u32 top_smax_value, top_smin_value;
6152 	u32 num_bits = size * 8;
6153 
6154 	if (tnum_is_const(reg->var_off)) {
6155 		u32_val = reg->var_off.value;
6156 		if (size == 1)
6157 			reg->var_off = tnum_const((s8)u32_val);
6158 		else
6159 			reg->var_off = tnum_const((s16)u32_val);
6160 
6161 		u32_val = reg->var_off.value;
6162 		reg->s32_min_value = reg->s32_max_value = u32_val;
6163 		reg->u32_min_value = reg->u32_max_value = u32_val;
6164 		return;
6165 	}
6166 
6167 	top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
6168 	top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
6169 
6170 	if (top_smax_value != top_smin_value)
6171 		goto out;
6172 
6173 	/* find the s32_min and s32_min after sign extension */
6174 	if (size == 1) {
6175 		init_s32_max = (s8)reg->s32_max_value;
6176 		init_s32_min = (s8)reg->s32_min_value;
6177 	} else {
6178 		/* size == 2 */
6179 		init_s32_max = (s16)reg->s32_max_value;
6180 		init_s32_min = (s16)reg->s32_min_value;
6181 	}
6182 	s32_max = max(init_s32_max, init_s32_min);
6183 	s32_min = min(init_s32_max, init_s32_min);
6184 
6185 	if ((s32_min >= 0) == (s32_max >= 0)) {
6186 		reg->s32_min_value = s32_min;
6187 		reg->s32_max_value = s32_max;
6188 		reg->u32_min_value = (u32)s32_min;
6189 		reg->u32_max_value = (u32)s32_max;
6190 		return;
6191 	}
6192 
6193 out:
6194 	set_sext32_default_val(reg, size);
6195 }
6196 
6197 static bool bpf_map_is_rdonly(const struct bpf_map *map)
6198 {
6199 	/* A map is considered read-only if the following condition are true:
6200 	 *
6201 	 * 1) BPF program side cannot change any of the map content. The
6202 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6203 	 *    and was set at map creation time.
6204 	 * 2) The map value(s) have been initialized from user space by a
6205 	 *    loader and then "frozen", such that no new map update/delete
6206 	 *    operations from syscall side are possible for the rest of
6207 	 *    the map's lifetime from that point onwards.
6208 	 * 3) Any parallel/pending map update/delete operations from syscall
6209 	 *    side have been completed. Only after that point, it's safe to
6210 	 *    assume that map value(s) are immutable.
6211 	 */
6212 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
6213 	       READ_ONCE(map->frozen) &&
6214 	       !bpf_map_write_active(map);
6215 }
6216 
6217 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6218 			       bool is_ldsx)
6219 {
6220 	void *ptr;
6221 	u64 addr;
6222 	int err;
6223 
6224 	err = map->ops->map_direct_value_addr(map, &addr, off);
6225 	if (err)
6226 		return err;
6227 	ptr = (void *)(long)addr + off;
6228 
6229 	switch (size) {
6230 	case sizeof(u8):
6231 		*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6232 		break;
6233 	case sizeof(u16):
6234 		*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6235 		break;
6236 	case sizeof(u32):
6237 		*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6238 		break;
6239 	case sizeof(u64):
6240 		*val = *(u64 *)ptr;
6241 		break;
6242 	default:
6243 		return -EINVAL;
6244 	}
6245 	return 0;
6246 }
6247 
6248 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
6249 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
6250 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
6251 
6252 /*
6253  * Allow list few fields as RCU trusted or full trusted.
6254  * This logic doesn't allow mix tagging and will be removed once GCC supports
6255  * btf_type_tag.
6256  */
6257 
6258 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
6259 BTF_TYPE_SAFE_RCU(struct task_struct) {
6260 	const cpumask_t *cpus_ptr;
6261 	struct css_set __rcu *cgroups;
6262 	struct task_struct __rcu *real_parent;
6263 	struct task_struct *group_leader;
6264 };
6265 
6266 BTF_TYPE_SAFE_RCU(struct cgroup) {
6267 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6268 	struct kernfs_node *kn;
6269 };
6270 
6271 BTF_TYPE_SAFE_RCU(struct css_set) {
6272 	struct cgroup *dfl_cgrp;
6273 };
6274 
6275 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
6276 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6277 	struct file __rcu *exe_file;
6278 };
6279 
6280 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6281  * because bpf prog accessible sockets are SOCK_RCU_FREE.
6282  */
6283 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6284 	struct sock *sk;
6285 };
6286 
6287 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6288 	struct sock *sk;
6289 };
6290 
6291 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
6292 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6293 	struct seq_file *seq;
6294 };
6295 
6296 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6297 	struct bpf_iter_meta *meta;
6298 	struct task_struct *task;
6299 };
6300 
6301 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6302 	struct file *file;
6303 };
6304 
6305 BTF_TYPE_SAFE_TRUSTED(struct file) {
6306 	struct inode *f_inode;
6307 };
6308 
6309 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6310 	/* no negative dentry-s in places where bpf can see it */
6311 	struct inode *d_inode;
6312 };
6313 
6314 BTF_TYPE_SAFE_TRUSTED(struct socket) {
6315 	struct sock *sk;
6316 };
6317 
6318 static bool type_is_rcu(struct bpf_verifier_env *env,
6319 			struct bpf_reg_state *reg,
6320 			const char *field_name, u32 btf_id)
6321 {
6322 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6323 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6324 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6325 
6326 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6327 }
6328 
6329 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6330 				struct bpf_reg_state *reg,
6331 				const char *field_name, u32 btf_id)
6332 {
6333 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6334 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6335 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6336 
6337 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6338 }
6339 
6340 static bool type_is_trusted(struct bpf_verifier_env *env,
6341 			    struct bpf_reg_state *reg,
6342 			    const char *field_name, u32 btf_id)
6343 {
6344 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6345 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6346 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6347 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6348 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6349 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket));
6350 
6351 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6352 }
6353 
6354 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6355 				   struct bpf_reg_state *regs,
6356 				   int regno, int off, int size,
6357 				   enum bpf_access_type atype,
6358 				   int value_regno)
6359 {
6360 	struct bpf_reg_state *reg = regs + regno;
6361 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6362 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6363 	const char *field_name = NULL;
6364 	enum bpf_type_flag flag = 0;
6365 	u32 btf_id = 0;
6366 	int ret;
6367 
6368 	if (!env->allow_ptr_leaks) {
6369 		verbose(env,
6370 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6371 			tname);
6372 		return -EPERM;
6373 	}
6374 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6375 		verbose(env,
6376 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6377 			tname);
6378 		return -EINVAL;
6379 	}
6380 	if (off < 0) {
6381 		verbose(env,
6382 			"R%d is ptr_%s invalid negative access: off=%d\n",
6383 			regno, tname, off);
6384 		return -EACCES;
6385 	}
6386 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6387 		char tn_buf[48];
6388 
6389 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6390 		verbose(env,
6391 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6392 			regno, tname, off, tn_buf);
6393 		return -EACCES;
6394 	}
6395 
6396 	if (reg->type & MEM_USER) {
6397 		verbose(env,
6398 			"R%d is ptr_%s access user memory: off=%d\n",
6399 			regno, tname, off);
6400 		return -EACCES;
6401 	}
6402 
6403 	if (reg->type & MEM_PERCPU) {
6404 		verbose(env,
6405 			"R%d is ptr_%s access percpu memory: off=%d\n",
6406 			regno, tname, off);
6407 		return -EACCES;
6408 	}
6409 
6410 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6411 		if (!btf_is_kernel(reg->btf)) {
6412 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6413 			return -EFAULT;
6414 		}
6415 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6416 	} else {
6417 		/* Writes are permitted with default btf_struct_access for
6418 		 * program allocated objects (which always have ref_obj_id > 0),
6419 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6420 		 */
6421 		if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6422 			verbose(env, "only read is supported\n");
6423 			return -EACCES;
6424 		}
6425 
6426 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6427 		    !(reg->type & MEM_RCU) && !reg->ref_obj_id) {
6428 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6429 			return -EFAULT;
6430 		}
6431 
6432 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6433 	}
6434 
6435 	if (ret < 0)
6436 		return ret;
6437 
6438 	if (ret != PTR_TO_BTF_ID) {
6439 		/* just mark; */
6440 
6441 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6442 		/* If this is an untrusted pointer, all pointers formed by walking it
6443 		 * also inherit the untrusted flag.
6444 		 */
6445 		flag = PTR_UNTRUSTED;
6446 
6447 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6448 		/* By default any pointer obtained from walking a trusted pointer is no
6449 		 * longer trusted, unless the field being accessed has explicitly been
6450 		 * marked as inheriting its parent's state of trust (either full or RCU).
6451 		 * For example:
6452 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
6453 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
6454 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6455 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6456 		 *
6457 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
6458 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
6459 		 */
6460 		if (type_is_trusted(env, reg, field_name, btf_id)) {
6461 			flag |= PTR_TRUSTED;
6462 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6463 			if (type_is_rcu(env, reg, field_name, btf_id)) {
6464 				/* ignore __rcu tag and mark it MEM_RCU */
6465 				flag |= MEM_RCU;
6466 			} else if (flag & MEM_RCU ||
6467 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6468 				/* __rcu tagged pointers can be NULL */
6469 				flag |= MEM_RCU | PTR_MAYBE_NULL;
6470 
6471 				/* We always trust them */
6472 				if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6473 				    flag & PTR_UNTRUSTED)
6474 					flag &= ~PTR_UNTRUSTED;
6475 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
6476 				/* keep as-is */
6477 			} else {
6478 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6479 				clear_trusted_flags(&flag);
6480 			}
6481 		} else {
6482 			/*
6483 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
6484 			 * aggressively mark as untrusted otherwise such
6485 			 * pointers will be plain PTR_TO_BTF_ID without flags
6486 			 * and will be allowed to be passed into helpers for
6487 			 * compat reasons.
6488 			 */
6489 			flag = PTR_UNTRUSTED;
6490 		}
6491 	} else {
6492 		/* Old compat. Deprecated */
6493 		clear_trusted_flags(&flag);
6494 	}
6495 
6496 	if (atype == BPF_READ && value_regno >= 0)
6497 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6498 
6499 	return 0;
6500 }
6501 
6502 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6503 				   struct bpf_reg_state *regs,
6504 				   int regno, int off, int size,
6505 				   enum bpf_access_type atype,
6506 				   int value_regno)
6507 {
6508 	struct bpf_reg_state *reg = regs + regno;
6509 	struct bpf_map *map = reg->map_ptr;
6510 	struct bpf_reg_state map_reg;
6511 	enum bpf_type_flag flag = 0;
6512 	const struct btf_type *t;
6513 	const char *tname;
6514 	u32 btf_id;
6515 	int ret;
6516 
6517 	if (!btf_vmlinux) {
6518 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6519 		return -ENOTSUPP;
6520 	}
6521 
6522 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6523 		verbose(env, "map_ptr access not supported for map type %d\n",
6524 			map->map_type);
6525 		return -ENOTSUPP;
6526 	}
6527 
6528 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6529 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6530 
6531 	if (!env->allow_ptr_leaks) {
6532 		verbose(env,
6533 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6534 			tname);
6535 		return -EPERM;
6536 	}
6537 
6538 	if (off < 0) {
6539 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
6540 			regno, tname, off);
6541 		return -EACCES;
6542 	}
6543 
6544 	if (atype != BPF_READ) {
6545 		verbose(env, "only read from %s is supported\n", tname);
6546 		return -EACCES;
6547 	}
6548 
6549 	/* Simulate access to a PTR_TO_BTF_ID */
6550 	memset(&map_reg, 0, sizeof(map_reg));
6551 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6552 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6553 	if (ret < 0)
6554 		return ret;
6555 
6556 	if (value_regno >= 0)
6557 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6558 
6559 	return 0;
6560 }
6561 
6562 /* Check that the stack access at the given offset is within bounds. The
6563  * maximum valid offset is -1.
6564  *
6565  * The minimum valid offset is -MAX_BPF_STACK for writes, and
6566  * -state->allocated_stack for reads.
6567  */
6568 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env,
6569                                           s64 off,
6570                                           struct bpf_func_state *state,
6571                                           enum bpf_access_type t)
6572 {
6573 	int min_valid_off;
6574 
6575 	if (t == BPF_WRITE || env->allow_uninit_stack)
6576 		min_valid_off = -MAX_BPF_STACK;
6577 	else
6578 		min_valid_off = -state->allocated_stack;
6579 
6580 	if (off < min_valid_off || off > -1)
6581 		return -EACCES;
6582 	return 0;
6583 }
6584 
6585 /* Check that the stack access at 'regno + off' falls within the maximum stack
6586  * bounds.
6587  *
6588  * 'off' includes `regno->offset`, but not its dynamic part (if any).
6589  */
6590 static int check_stack_access_within_bounds(
6591 		struct bpf_verifier_env *env,
6592 		int regno, int off, int access_size,
6593 		enum bpf_access_src src, enum bpf_access_type type)
6594 {
6595 	struct bpf_reg_state *regs = cur_regs(env);
6596 	struct bpf_reg_state *reg = regs + regno;
6597 	struct bpf_func_state *state = func(env, reg);
6598 	s64 min_off, max_off;
6599 	int err;
6600 	char *err_extra;
6601 
6602 	if (src == ACCESS_HELPER)
6603 		/* We don't know if helpers are reading or writing (or both). */
6604 		err_extra = " indirect access to";
6605 	else if (type == BPF_READ)
6606 		err_extra = " read from";
6607 	else
6608 		err_extra = " write to";
6609 
6610 	if (tnum_is_const(reg->var_off)) {
6611 		min_off = (s64)reg->var_off.value + off;
6612 		max_off = min_off + access_size;
6613 	} else {
6614 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6615 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
6616 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6617 				err_extra, regno);
6618 			return -EACCES;
6619 		}
6620 		min_off = reg->smin_value + off;
6621 		max_off = reg->smax_value + off + access_size;
6622 	}
6623 
6624 	err = check_stack_slot_within_bounds(env, min_off, state, type);
6625 	if (!err && max_off > 0)
6626 		err = -EINVAL; /* out of stack access into non-negative offsets */
6627 
6628 	if (err) {
6629 		if (tnum_is_const(reg->var_off)) {
6630 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6631 				err_extra, regno, off, access_size);
6632 		} else {
6633 			char tn_buf[48];
6634 
6635 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6636 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n",
6637 				err_extra, regno, tn_buf, off, access_size);
6638 		}
6639 		return err;
6640 	}
6641 
6642 	/* Note that there is no stack access with offset zero, so the needed stack
6643 	 * size is -min_off, not -min_off+1.
6644 	 */
6645 	return grow_stack_state(env, state, -min_off /* size */);
6646 }
6647 
6648 /* check whether memory at (regno + off) is accessible for t = (read | write)
6649  * if t==write, value_regno is a register which value is stored into memory
6650  * if t==read, value_regno is a register which will receive the value from memory
6651  * if t==write && value_regno==-1, some unknown value is stored into memory
6652  * if t==read && value_regno==-1, don't care what we read from memory
6653  */
6654 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6655 			    int off, int bpf_size, enum bpf_access_type t,
6656 			    int value_regno, bool strict_alignment_once, bool is_ldsx)
6657 {
6658 	struct bpf_reg_state *regs = cur_regs(env);
6659 	struct bpf_reg_state *reg = regs + regno;
6660 	int size, err = 0;
6661 
6662 	size = bpf_size_to_bytes(bpf_size);
6663 	if (size < 0)
6664 		return size;
6665 
6666 	/* alignment checks will add in reg->off themselves */
6667 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6668 	if (err)
6669 		return err;
6670 
6671 	/* for access checks, reg->off is just part of off */
6672 	off += reg->off;
6673 
6674 	if (reg->type == PTR_TO_MAP_KEY) {
6675 		if (t == BPF_WRITE) {
6676 			verbose(env, "write to change key R%d not allowed\n", regno);
6677 			return -EACCES;
6678 		}
6679 
6680 		err = check_mem_region_access(env, regno, off, size,
6681 					      reg->map_ptr->key_size, false);
6682 		if (err)
6683 			return err;
6684 		if (value_regno >= 0)
6685 			mark_reg_unknown(env, regs, value_regno);
6686 	} else if (reg->type == PTR_TO_MAP_VALUE) {
6687 		struct btf_field *kptr_field = NULL;
6688 
6689 		if (t == BPF_WRITE && value_regno >= 0 &&
6690 		    is_pointer_value(env, value_regno)) {
6691 			verbose(env, "R%d leaks addr into map\n", value_regno);
6692 			return -EACCES;
6693 		}
6694 		err = check_map_access_type(env, regno, off, size, t);
6695 		if (err)
6696 			return err;
6697 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6698 		if (err)
6699 			return err;
6700 		if (tnum_is_const(reg->var_off))
6701 			kptr_field = btf_record_find(reg->map_ptr->record,
6702 						     off + reg->var_off.value, BPF_KPTR);
6703 		if (kptr_field) {
6704 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6705 		} else if (t == BPF_READ && value_regno >= 0) {
6706 			struct bpf_map *map = reg->map_ptr;
6707 
6708 			/* if map is read-only, track its contents as scalars */
6709 			if (tnum_is_const(reg->var_off) &&
6710 			    bpf_map_is_rdonly(map) &&
6711 			    map->ops->map_direct_value_addr) {
6712 				int map_off = off + reg->var_off.value;
6713 				u64 val = 0;
6714 
6715 				err = bpf_map_direct_read(map, map_off, size,
6716 							  &val, is_ldsx);
6717 				if (err)
6718 					return err;
6719 
6720 				regs[value_regno].type = SCALAR_VALUE;
6721 				__mark_reg_known(&regs[value_regno], val);
6722 			} else {
6723 				mark_reg_unknown(env, regs, value_regno);
6724 			}
6725 		}
6726 	} else if (base_type(reg->type) == PTR_TO_MEM) {
6727 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6728 
6729 		if (type_may_be_null(reg->type)) {
6730 			verbose(env, "R%d invalid mem access '%s'\n", regno,
6731 				reg_type_str(env, reg->type));
6732 			return -EACCES;
6733 		}
6734 
6735 		if (t == BPF_WRITE && rdonly_mem) {
6736 			verbose(env, "R%d cannot write into %s\n",
6737 				regno, reg_type_str(env, reg->type));
6738 			return -EACCES;
6739 		}
6740 
6741 		if (t == BPF_WRITE && value_regno >= 0 &&
6742 		    is_pointer_value(env, value_regno)) {
6743 			verbose(env, "R%d leaks addr into mem\n", value_regno);
6744 			return -EACCES;
6745 		}
6746 
6747 		err = check_mem_region_access(env, regno, off, size,
6748 					      reg->mem_size, false);
6749 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
6750 			mark_reg_unknown(env, regs, value_regno);
6751 	} else if (reg->type == PTR_TO_CTX) {
6752 		enum bpf_reg_type reg_type = SCALAR_VALUE;
6753 		struct btf *btf = NULL;
6754 		u32 btf_id = 0;
6755 
6756 		if (t == BPF_WRITE && value_regno >= 0 &&
6757 		    is_pointer_value(env, value_regno)) {
6758 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
6759 			return -EACCES;
6760 		}
6761 
6762 		err = check_ptr_off_reg(env, reg, regno);
6763 		if (err < 0)
6764 			return err;
6765 
6766 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
6767 				       &btf_id);
6768 		if (err)
6769 			verbose_linfo(env, insn_idx, "; ");
6770 		if (!err && t == BPF_READ && value_regno >= 0) {
6771 			/* ctx access returns either a scalar, or a
6772 			 * PTR_TO_PACKET[_META,_END]. In the latter
6773 			 * case, we know the offset is zero.
6774 			 */
6775 			if (reg_type == SCALAR_VALUE) {
6776 				mark_reg_unknown(env, regs, value_regno);
6777 			} else {
6778 				mark_reg_known_zero(env, regs,
6779 						    value_regno);
6780 				if (type_may_be_null(reg_type))
6781 					regs[value_regno].id = ++env->id_gen;
6782 				/* A load of ctx field could have different
6783 				 * actual load size with the one encoded in the
6784 				 * insn. When the dst is PTR, it is for sure not
6785 				 * a sub-register.
6786 				 */
6787 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
6788 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
6789 					regs[value_regno].btf = btf;
6790 					regs[value_regno].btf_id = btf_id;
6791 				}
6792 			}
6793 			regs[value_regno].type = reg_type;
6794 		}
6795 
6796 	} else if (reg->type == PTR_TO_STACK) {
6797 		/* Basic bounds checks. */
6798 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
6799 		if (err)
6800 			return err;
6801 
6802 		if (t == BPF_READ)
6803 			err = check_stack_read(env, regno, off, size,
6804 					       value_regno);
6805 		else
6806 			err = check_stack_write(env, regno, off, size,
6807 						value_regno, insn_idx);
6808 	} else if (reg_is_pkt_pointer(reg)) {
6809 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
6810 			verbose(env, "cannot write into packet\n");
6811 			return -EACCES;
6812 		}
6813 		if (t == BPF_WRITE && value_regno >= 0 &&
6814 		    is_pointer_value(env, value_regno)) {
6815 			verbose(env, "R%d leaks addr into packet\n",
6816 				value_regno);
6817 			return -EACCES;
6818 		}
6819 		err = check_packet_access(env, regno, off, size, false);
6820 		if (!err && t == BPF_READ && value_regno >= 0)
6821 			mark_reg_unknown(env, regs, value_regno);
6822 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
6823 		if (t == BPF_WRITE && value_regno >= 0 &&
6824 		    is_pointer_value(env, value_regno)) {
6825 			verbose(env, "R%d leaks addr into flow keys\n",
6826 				value_regno);
6827 			return -EACCES;
6828 		}
6829 
6830 		err = check_flow_keys_access(env, off, size);
6831 		if (!err && t == BPF_READ && value_regno >= 0)
6832 			mark_reg_unknown(env, regs, value_regno);
6833 	} else if (type_is_sk_pointer(reg->type)) {
6834 		if (t == BPF_WRITE) {
6835 			verbose(env, "R%d cannot write into %s\n",
6836 				regno, reg_type_str(env, reg->type));
6837 			return -EACCES;
6838 		}
6839 		err = check_sock_access(env, insn_idx, regno, off, size, t);
6840 		if (!err && value_regno >= 0)
6841 			mark_reg_unknown(env, regs, value_regno);
6842 	} else if (reg->type == PTR_TO_TP_BUFFER) {
6843 		err = check_tp_buffer_access(env, reg, regno, off, size);
6844 		if (!err && t == BPF_READ && value_regno >= 0)
6845 			mark_reg_unknown(env, regs, value_regno);
6846 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
6847 		   !type_may_be_null(reg->type)) {
6848 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
6849 					      value_regno);
6850 	} else if (reg->type == CONST_PTR_TO_MAP) {
6851 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
6852 					      value_regno);
6853 	} else if (base_type(reg->type) == PTR_TO_BUF) {
6854 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6855 		u32 *max_access;
6856 
6857 		if (rdonly_mem) {
6858 			if (t == BPF_WRITE) {
6859 				verbose(env, "R%d cannot write into %s\n",
6860 					regno, reg_type_str(env, reg->type));
6861 				return -EACCES;
6862 			}
6863 			max_access = &env->prog->aux->max_rdonly_access;
6864 		} else {
6865 			max_access = &env->prog->aux->max_rdwr_access;
6866 		}
6867 
6868 		err = check_buffer_access(env, reg, regno, off, size, false,
6869 					  max_access);
6870 
6871 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
6872 			mark_reg_unknown(env, regs, value_regno);
6873 	} else {
6874 		verbose(env, "R%d invalid mem access '%s'\n", regno,
6875 			reg_type_str(env, reg->type));
6876 		return -EACCES;
6877 	}
6878 
6879 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
6880 	    regs[value_regno].type == SCALAR_VALUE) {
6881 		if (!is_ldsx)
6882 			/* b/h/w load zero-extends, mark upper bits as known 0 */
6883 			coerce_reg_to_size(&regs[value_regno], size);
6884 		else
6885 			coerce_reg_to_size_sx(&regs[value_regno], size);
6886 	}
6887 	return err;
6888 }
6889 
6890 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
6891 {
6892 	int load_reg;
6893 	int err;
6894 
6895 	switch (insn->imm) {
6896 	case BPF_ADD:
6897 	case BPF_ADD | BPF_FETCH:
6898 	case BPF_AND:
6899 	case BPF_AND | BPF_FETCH:
6900 	case BPF_OR:
6901 	case BPF_OR | BPF_FETCH:
6902 	case BPF_XOR:
6903 	case BPF_XOR | BPF_FETCH:
6904 	case BPF_XCHG:
6905 	case BPF_CMPXCHG:
6906 		break;
6907 	default:
6908 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
6909 		return -EINVAL;
6910 	}
6911 
6912 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
6913 		verbose(env, "invalid atomic operand size\n");
6914 		return -EINVAL;
6915 	}
6916 
6917 	/* check src1 operand */
6918 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
6919 	if (err)
6920 		return err;
6921 
6922 	/* check src2 operand */
6923 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6924 	if (err)
6925 		return err;
6926 
6927 	if (insn->imm == BPF_CMPXCHG) {
6928 		/* Check comparison of R0 with memory location */
6929 		const u32 aux_reg = BPF_REG_0;
6930 
6931 		err = check_reg_arg(env, aux_reg, SRC_OP);
6932 		if (err)
6933 			return err;
6934 
6935 		if (is_pointer_value(env, aux_reg)) {
6936 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
6937 			return -EACCES;
6938 		}
6939 	}
6940 
6941 	if (is_pointer_value(env, insn->src_reg)) {
6942 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6943 		return -EACCES;
6944 	}
6945 
6946 	if (is_ctx_reg(env, insn->dst_reg) ||
6947 	    is_pkt_reg(env, insn->dst_reg) ||
6948 	    is_flow_key_reg(env, insn->dst_reg) ||
6949 	    is_sk_reg(env, insn->dst_reg)) {
6950 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
6951 			insn->dst_reg,
6952 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
6953 		return -EACCES;
6954 	}
6955 
6956 	if (insn->imm & BPF_FETCH) {
6957 		if (insn->imm == BPF_CMPXCHG)
6958 			load_reg = BPF_REG_0;
6959 		else
6960 			load_reg = insn->src_reg;
6961 
6962 		/* check and record load of old value */
6963 		err = check_reg_arg(env, load_reg, DST_OP);
6964 		if (err)
6965 			return err;
6966 	} else {
6967 		/* This instruction accesses a memory location but doesn't
6968 		 * actually load it into a register.
6969 		 */
6970 		load_reg = -1;
6971 	}
6972 
6973 	/* Check whether we can read the memory, with second call for fetch
6974 	 * case to simulate the register fill.
6975 	 */
6976 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6977 			       BPF_SIZE(insn->code), BPF_READ, -1, true, false);
6978 	if (!err && load_reg >= 0)
6979 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6980 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
6981 				       true, false);
6982 	if (err)
6983 		return err;
6984 
6985 	/* Check whether we can write into the same memory. */
6986 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6987 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
6988 	if (err)
6989 		return err;
6990 	return 0;
6991 }
6992 
6993 /* When register 'regno' is used to read the stack (either directly or through
6994  * a helper function) make sure that it's within stack boundary and, depending
6995  * on the access type and privileges, that all elements of the stack are
6996  * initialized.
6997  *
6998  * 'off' includes 'regno->off', but not its dynamic part (if any).
6999  *
7000  * All registers that have been spilled on the stack in the slots within the
7001  * read offsets are marked as read.
7002  */
7003 static int check_stack_range_initialized(
7004 		struct bpf_verifier_env *env, int regno, int off,
7005 		int access_size, bool zero_size_allowed,
7006 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
7007 {
7008 	struct bpf_reg_state *reg = reg_state(env, regno);
7009 	struct bpf_func_state *state = func(env, reg);
7010 	int err, min_off, max_off, i, j, slot, spi;
7011 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
7012 	enum bpf_access_type bounds_check_type;
7013 	/* Some accesses can write anything into the stack, others are
7014 	 * read-only.
7015 	 */
7016 	bool clobber = false;
7017 
7018 	if (access_size == 0 && !zero_size_allowed) {
7019 		verbose(env, "invalid zero-sized read\n");
7020 		return -EACCES;
7021 	}
7022 
7023 	if (type == ACCESS_HELPER) {
7024 		/* The bounds checks for writes are more permissive than for
7025 		 * reads. However, if raw_mode is not set, we'll do extra
7026 		 * checks below.
7027 		 */
7028 		bounds_check_type = BPF_WRITE;
7029 		clobber = true;
7030 	} else {
7031 		bounds_check_type = BPF_READ;
7032 	}
7033 	err = check_stack_access_within_bounds(env, regno, off, access_size,
7034 					       type, bounds_check_type);
7035 	if (err)
7036 		return err;
7037 
7038 
7039 	if (tnum_is_const(reg->var_off)) {
7040 		min_off = max_off = reg->var_off.value + off;
7041 	} else {
7042 		/* Variable offset is prohibited for unprivileged mode for
7043 		 * simplicity since it requires corresponding support in
7044 		 * Spectre masking for stack ALU.
7045 		 * See also retrieve_ptr_limit().
7046 		 */
7047 		if (!env->bypass_spec_v1) {
7048 			char tn_buf[48];
7049 
7050 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7051 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
7052 				regno, err_extra, tn_buf);
7053 			return -EACCES;
7054 		}
7055 		/* Only initialized buffer on stack is allowed to be accessed
7056 		 * with variable offset. With uninitialized buffer it's hard to
7057 		 * guarantee that whole memory is marked as initialized on
7058 		 * helper return since specific bounds are unknown what may
7059 		 * cause uninitialized stack leaking.
7060 		 */
7061 		if (meta && meta->raw_mode)
7062 			meta = NULL;
7063 
7064 		min_off = reg->smin_value + off;
7065 		max_off = reg->smax_value + off;
7066 	}
7067 
7068 	if (meta && meta->raw_mode) {
7069 		/* Ensure we won't be overwriting dynptrs when simulating byte
7070 		 * by byte access in check_helper_call using meta.access_size.
7071 		 * This would be a problem if we have a helper in the future
7072 		 * which takes:
7073 		 *
7074 		 *	helper(uninit_mem, len, dynptr)
7075 		 *
7076 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
7077 		 * may end up writing to dynptr itself when touching memory from
7078 		 * arg 1. This can be relaxed on a case by case basis for known
7079 		 * safe cases, but reject due to the possibilitiy of aliasing by
7080 		 * default.
7081 		 */
7082 		for (i = min_off; i < max_off + access_size; i++) {
7083 			int stack_off = -i - 1;
7084 
7085 			spi = __get_spi(i);
7086 			/* raw_mode may write past allocated_stack */
7087 			if (state->allocated_stack <= stack_off)
7088 				continue;
7089 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
7090 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
7091 				return -EACCES;
7092 			}
7093 		}
7094 		meta->access_size = access_size;
7095 		meta->regno = regno;
7096 		return 0;
7097 	}
7098 
7099 	for (i = min_off; i < max_off + access_size; i++) {
7100 		u8 *stype;
7101 
7102 		slot = -i - 1;
7103 		spi = slot / BPF_REG_SIZE;
7104 		if (state->allocated_stack <= slot) {
7105 			verbose(env, "verifier bug: allocated_stack too small");
7106 			return -EFAULT;
7107 		}
7108 
7109 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
7110 		if (*stype == STACK_MISC)
7111 			goto mark;
7112 		if ((*stype == STACK_ZERO) ||
7113 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
7114 			if (clobber) {
7115 				/* helper can write anything into the stack */
7116 				*stype = STACK_MISC;
7117 			}
7118 			goto mark;
7119 		}
7120 
7121 		if (is_spilled_reg(&state->stack[spi]) &&
7122 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
7123 		     env->allow_ptr_leaks)) {
7124 			if (clobber) {
7125 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
7126 				for (j = 0; j < BPF_REG_SIZE; j++)
7127 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
7128 			}
7129 			goto mark;
7130 		}
7131 
7132 		if (tnum_is_const(reg->var_off)) {
7133 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
7134 				err_extra, regno, min_off, i - min_off, access_size);
7135 		} else {
7136 			char tn_buf[48];
7137 
7138 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7139 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
7140 				err_extra, regno, tn_buf, i - min_off, access_size);
7141 		}
7142 		return -EACCES;
7143 mark:
7144 		/* reading any byte out of 8-byte 'spill_slot' will cause
7145 		 * the whole slot to be marked as 'read'
7146 		 */
7147 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
7148 			      state->stack[spi].spilled_ptr.parent,
7149 			      REG_LIVE_READ64);
7150 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
7151 		 * be sure that whether stack slot is written to or not. Hence,
7152 		 * we must still conservatively propagate reads upwards even if
7153 		 * helper may write to the entire memory range.
7154 		 */
7155 	}
7156 	return 0;
7157 }
7158 
7159 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
7160 				   int access_size, bool zero_size_allowed,
7161 				   struct bpf_call_arg_meta *meta)
7162 {
7163 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7164 	u32 *max_access;
7165 
7166 	switch (base_type(reg->type)) {
7167 	case PTR_TO_PACKET:
7168 	case PTR_TO_PACKET_META:
7169 		return check_packet_access(env, regno, reg->off, access_size,
7170 					   zero_size_allowed);
7171 	case PTR_TO_MAP_KEY:
7172 		if (meta && meta->raw_mode) {
7173 			verbose(env, "R%d cannot write into %s\n", regno,
7174 				reg_type_str(env, reg->type));
7175 			return -EACCES;
7176 		}
7177 		return check_mem_region_access(env, regno, reg->off, access_size,
7178 					       reg->map_ptr->key_size, false);
7179 	case PTR_TO_MAP_VALUE:
7180 		if (check_map_access_type(env, regno, reg->off, access_size,
7181 					  meta && meta->raw_mode ? BPF_WRITE :
7182 					  BPF_READ))
7183 			return -EACCES;
7184 		return check_map_access(env, regno, reg->off, access_size,
7185 					zero_size_allowed, ACCESS_HELPER);
7186 	case PTR_TO_MEM:
7187 		if (type_is_rdonly_mem(reg->type)) {
7188 			if (meta && meta->raw_mode) {
7189 				verbose(env, "R%d cannot write into %s\n", regno,
7190 					reg_type_str(env, reg->type));
7191 				return -EACCES;
7192 			}
7193 		}
7194 		return check_mem_region_access(env, regno, reg->off,
7195 					       access_size, reg->mem_size,
7196 					       zero_size_allowed);
7197 	case PTR_TO_BUF:
7198 		if (type_is_rdonly_mem(reg->type)) {
7199 			if (meta && meta->raw_mode) {
7200 				verbose(env, "R%d cannot write into %s\n", regno,
7201 					reg_type_str(env, reg->type));
7202 				return -EACCES;
7203 			}
7204 
7205 			max_access = &env->prog->aux->max_rdonly_access;
7206 		} else {
7207 			max_access = &env->prog->aux->max_rdwr_access;
7208 		}
7209 		return check_buffer_access(env, reg, regno, reg->off,
7210 					   access_size, zero_size_allowed,
7211 					   max_access);
7212 	case PTR_TO_STACK:
7213 		return check_stack_range_initialized(
7214 				env,
7215 				regno, reg->off, access_size,
7216 				zero_size_allowed, ACCESS_HELPER, meta);
7217 	case PTR_TO_BTF_ID:
7218 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
7219 					       access_size, BPF_READ, -1);
7220 	case PTR_TO_CTX:
7221 		/* in case the function doesn't know how to access the context,
7222 		 * (because we are in a program of type SYSCALL for example), we
7223 		 * can not statically check its size.
7224 		 * Dynamically check it now.
7225 		 */
7226 		if (!env->ops->convert_ctx_access) {
7227 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
7228 			int offset = access_size - 1;
7229 
7230 			/* Allow zero-byte read from PTR_TO_CTX */
7231 			if (access_size == 0)
7232 				return zero_size_allowed ? 0 : -EACCES;
7233 
7234 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7235 						atype, -1, false, false);
7236 		}
7237 
7238 		fallthrough;
7239 	default: /* scalar_value or invalid ptr */
7240 		/* Allow zero-byte read from NULL, regardless of pointer type */
7241 		if (zero_size_allowed && access_size == 0 &&
7242 		    register_is_null(reg))
7243 			return 0;
7244 
7245 		verbose(env, "R%d type=%s ", regno,
7246 			reg_type_str(env, reg->type));
7247 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7248 		return -EACCES;
7249 	}
7250 }
7251 
7252 /* verify arguments to helpers or kfuncs consisting of a pointer and an access
7253  * size.
7254  *
7255  * @regno is the register containing the access size. regno-1 is the register
7256  * containing the pointer.
7257  */
7258 static int check_mem_size_reg(struct bpf_verifier_env *env,
7259 			      struct bpf_reg_state *reg, u32 regno,
7260 			      bool zero_size_allowed,
7261 			      struct bpf_call_arg_meta *meta)
7262 {
7263 	int err;
7264 
7265 	/* This is used to refine r0 return value bounds for helpers
7266 	 * that enforce this value as an upper bound on return values.
7267 	 * See do_refine_retval_range() for helpers that can refine
7268 	 * the return value. C type of helper is u32 so we pull register
7269 	 * bound from umax_value however, if negative verifier errors
7270 	 * out. Only upper bounds can be learned because retval is an
7271 	 * int type and negative retvals are allowed.
7272 	 */
7273 	meta->msize_max_value = reg->umax_value;
7274 
7275 	/* The register is SCALAR_VALUE; the access check
7276 	 * happens using its boundaries.
7277 	 */
7278 	if (!tnum_is_const(reg->var_off))
7279 		/* For unprivileged variable accesses, disable raw
7280 		 * mode so that the program is required to
7281 		 * initialize all the memory that the helper could
7282 		 * just partially fill up.
7283 		 */
7284 		meta = NULL;
7285 
7286 	if (reg->smin_value < 0) {
7287 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7288 			regno);
7289 		return -EACCES;
7290 	}
7291 
7292 	if (reg->umin_value == 0) {
7293 		err = check_helper_mem_access(env, regno - 1, 0,
7294 					      zero_size_allowed,
7295 					      meta);
7296 		if (err)
7297 			return err;
7298 	}
7299 
7300 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7301 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7302 			regno);
7303 		return -EACCES;
7304 	}
7305 	err = check_helper_mem_access(env, regno - 1,
7306 				      reg->umax_value,
7307 				      zero_size_allowed, meta);
7308 	if (!err)
7309 		err = mark_chain_precision(env, regno);
7310 	return err;
7311 }
7312 
7313 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7314 		   u32 regno, u32 mem_size)
7315 {
7316 	bool may_be_null = type_may_be_null(reg->type);
7317 	struct bpf_reg_state saved_reg;
7318 	struct bpf_call_arg_meta meta;
7319 	int err;
7320 
7321 	if (register_is_null(reg))
7322 		return 0;
7323 
7324 	memset(&meta, 0, sizeof(meta));
7325 	/* Assuming that the register contains a value check if the memory
7326 	 * access is safe. Temporarily save and restore the register's state as
7327 	 * the conversion shouldn't be visible to a caller.
7328 	 */
7329 	if (may_be_null) {
7330 		saved_reg = *reg;
7331 		mark_ptr_not_null_reg(reg);
7332 	}
7333 
7334 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
7335 	/* Check access for BPF_WRITE */
7336 	meta.raw_mode = true;
7337 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
7338 
7339 	if (may_be_null)
7340 		*reg = saved_reg;
7341 
7342 	return err;
7343 }
7344 
7345 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7346 				    u32 regno)
7347 {
7348 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7349 	bool may_be_null = type_may_be_null(mem_reg->type);
7350 	struct bpf_reg_state saved_reg;
7351 	struct bpf_call_arg_meta meta;
7352 	int err;
7353 
7354 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7355 
7356 	memset(&meta, 0, sizeof(meta));
7357 
7358 	if (may_be_null) {
7359 		saved_reg = *mem_reg;
7360 		mark_ptr_not_null_reg(mem_reg);
7361 	}
7362 
7363 	err = check_mem_size_reg(env, reg, regno, true, &meta);
7364 	/* Check access for BPF_WRITE */
7365 	meta.raw_mode = true;
7366 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
7367 
7368 	if (may_be_null)
7369 		*mem_reg = saved_reg;
7370 	return err;
7371 }
7372 
7373 /* Implementation details:
7374  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7375  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7376  * Two bpf_map_lookups (even with the same key) will have different reg->id.
7377  * Two separate bpf_obj_new will also have different reg->id.
7378  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7379  * clears reg->id after value_or_null->value transition, since the verifier only
7380  * cares about the range of access to valid map value pointer and doesn't care
7381  * about actual address of the map element.
7382  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7383  * reg->id > 0 after value_or_null->value transition. By doing so
7384  * two bpf_map_lookups will be considered two different pointers that
7385  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7386  * returned from bpf_obj_new.
7387  * The verifier allows taking only one bpf_spin_lock at a time to avoid
7388  * dead-locks.
7389  * Since only one bpf_spin_lock is allowed the checks are simpler than
7390  * reg_is_refcounted() logic. The verifier needs to remember only
7391  * one spin_lock instead of array of acquired_refs.
7392  * cur_state->active_lock remembers which map value element or allocated
7393  * object got locked and clears it after bpf_spin_unlock.
7394  */
7395 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7396 			     bool is_lock)
7397 {
7398 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7399 	struct bpf_verifier_state *cur = env->cur_state;
7400 	bool is_const = tnum_is_const(reg->var_off);
7401 	u64 val = reg->var_off.value;
7402 	struct bpf_map *map = NULL;
7403 	struct btf *btf = NULL;
7404 	struct btf_record *rec;
7405 
7406 	if (!is_const) {
7407 		verbose(env,
7408 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7409 			regno);
7410 		return -EINVAL;
7411 	}
7412 	if (reg->type == PTR_TO_MAP_VALUE) {
7413 		map = reg->map_ptr;
7414 		if (!map->btf) {
7415 			verbose(env,
7416 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
7417 				map->name);
7418 			return -EINVAL;
7419 		}
7420 	} else {
7421 		btf = reg->btf;
7422 	}
7423 
7424 	rec = reg_btf_record(reg);
7425 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7426 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7427 			map ? map->name : "kptr");
7428 		return -EINVAL;
7429 	}
7430 	if (rec->spin_lock_off != val + reg->off) {
7431 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7432 			val + reg->off, rec->spin_lock_off);
7433 		return -EINVAL;
7434 	}
7435 	if (is_lock) {
7436 		if (cur->active_lock.ptr) {
7437 			verbose(env,
7438 				"Locking two bpf_spin_locks are not allowed\n");
7439 			return -EINVAL;
7440 		}
7441 		if (map)
7442 			cur->active_lock.ptr = map;
7443 		else
7444 			cur->active_lock.ptr = btf;
7445 		cur->active_lock.id = reg->id;
7446 	} else {
7447 		void *ptr;
7448 
7449 		if (map)
7450 			ptr = map;
7451 		else
7452 			ptr = btf;
7453 
7454 		if (!cur->active_lock.ptr) {
7455 			verbose(env, "bpf_spin_unlock without taking a lock\n");
7456 			return -EINVAL;
7457 		}
7458 		if (cur->active_lock.ptr != ptr ||
7459 		    cur->active_lock.id != reg->id) {
7460 			verbose(env, "bpf_spin_unlock of different lock\n");
7461 			return -EINVAL;
7462 		}
7463 
7464 		invalidate_non_owning_refs(env);
7465 
7466 		cur->active_lock.ptr = NULL;
7467 		cur->active_lock.id = 0;
7468 	}
7469 	return 0;
7470 }
7471 
7472 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7473 			      struct bpf_call_arg_meta *meta)
7474 {
7475 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7476 	bool is_const = tnum_is_const(reg->var_off);
7477 	struct bpf_map *map = reg->map_ptr;
7478 	u64 val = reg->var_off.value;
7479 
7480 	if (!is_const) {
7481 		verbose(env,
7482 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7483 			regno);
7484 		return -EINVAL;
7485 	}
7486 	if (!map->btf) {
7487 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7488 			map->name);
7489 		return -EINVAL;
7490 	}
7491 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
7492 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7493 		return -EINVAL;
7494 	}
7495 	if (map->record->timer_off != val + reg->off) {
7496 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7497 			val + reg->off, map->record->timer_off);
7498 		return -EINVAL;
7499 	}
7500 	if (meta->map_ptr) {
7501 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7502 		return -EFAULT;
7503 	}
7504 	meta->map_uid = reg->map_uid;
7505 	meta->map_ptr = map;
7506 	return 0;
7507 }
7508 
7509 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7510 			     struct bpf_call_arg_meta *meta)
7511 {
7512 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7513 	struct bpf_map *map_ptr = reg->map_ptr;
7514 	struct btf_field *kptr_field;
7515 	u32 kptr_off;
7516 
7517 	if (!tnum_is_const(reg->var_off)) {
7518 		verbose(env,
7519 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7520 			regno);
7521 		return -EINVAL;
7522 	}
7523 	if (!map_ptr->btf) {
7524 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7525 			map_ptr->name);
7526 		return -EINVAL;
7527 	}
7528 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
7529 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
7530 		return -EINVAL;
7531 	}
7532 
7533 	meta->map_ptr = map_ptr;
7534 	kptr_off = reg->off + reg->var_off.value;
7535 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
7536 	if (!kptr_field) {
7537 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7538 		return -EACCES;
7539 	}
7540 	if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) {
7541 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7542 		return -EACCES;
7543 	}
7544 	meta->kptr_field = kptr_field;
7545 	return 0;
7546 }
7547 
7548 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7549  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7550  *
7551  * In both cases we deal with the first 8 bytes, but need to mark the next 8
7552  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7553  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7554  *
7555  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7556  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7557  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7558  * mutate the view of the dynptr and also possibly destroy it. In the latter
7559  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7560  * memory that dynptr points to.
7561  *
7562  * The verifier will keep track both levels of mutation (bpf_dynptr's in
7563  * reg->type and the memory's in reg->dynptr.type), but there is no support for
7564  * readonly dynptr view yet, hence only the first case is tracked and checked.
7565  *
7566  * This is consistent with how C applies the const modifier to a struct object,
7567  * where the pointer itself inside bpf_dynptr becomes const but not what it
7568  * points to.
7569  *
7570  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7571  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7572  */
7573 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7574 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
7575 {
7576 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7577 	int err;
7578 
7579 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7580 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7581 	 */
7582 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7583 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7584 		return -EFAULT;
7585 	}
7586 
7587 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
7588 	 *		 constructing a mutable bpf_dynptr object.
7589 	 *
7590 	 *		 Currently, this is only possible with PTR_TO_STACK
7591 	 *		 pointing to a region of at least 16 bytes which doesn't
7592 	 *		 contain an existing bpf_dynptr.
7593 	 *
7594 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7595 	 *		 mutated or destroyed. However, the memory it points to
7596 	 *		 may be mutated.
7597 	 *
7598 	 *  None       - Points to a initialized dynptr that can be mutated and
7599 	 *		 destroyed, including mutation of the memory it points
7600 	 *		 to.
7601 	 */
7602 	if (arg_type & MEM_UNINIT) {
7603 		int i;
7604 
7605 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
7606 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7607 			return -EINVAL;
7608 		}
7609 
7610 		/* we write BPF_DW bits (8 bytes) at a time */
7611 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7612 			err = check_mem_access(env, insn_idx, regno,
7613 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7614 			if (err)
7615 				return err;
7616 		}
7617 
7618 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7619 	} else /* MEM_RDONLY and None case from above */ {
7620 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7621 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7622 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7623 			return -EINVAL;
7624 		}
7625 
7626 		if (!is_dynptr_reg_valid_init(env, reg)) {
7627 			verbose(env,
7628 				"Expected an initialized dynptr as arg #%d\n",
7629 				regno);
7630 			return -EINVAL;
7631 		}
7632 
7633 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7634 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7635 			verbose(env,
7636 				"Expected a dynptr of type %s as arg #%d\n",
7637 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7638 			return -EINVAL;
7639 		}
7640 
7641 		err = mark_dynptr_read(env, reg);
7642 	}
7643 	return err;
7644 }
7645 
7646 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7647 {
7648 	struct bpf_func_state *state = func(env, reg);
7649 
7650 	return state->stack[spi].spilled_ptr.ref_obj_id;
7651 }
7652 
7653 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7654 {
7655 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7656 }
7657 
7658 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7659 {
7660 	return meta->kfunc_flags & KF_ITER_NEW;
7661 }
7662 
7663 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7664 {
7665 	return meta->kfunc_flags & KF_ITER_NEXT;
7666 }
7667 
7668 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7669 {
7670 	return meta->kfunc_flags & KF_ITER_DESTROY;
7671 }
7672 
7673 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7674 {
7675 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
7676 	 * kfunc is iter state pointer
7677 	 */
7678 	return arg == 0 && is_iter_kfunc(meta);
7679 }
7680 
7681 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7682 			    struct bpf_kfunc_call_arg_meta *meta)
7683 {
7684 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7685 	const struct btf_type *t;
7686 	const struct btf_param *arg;
7687 	int spi, err, i, nr_slots;
7688 	u32 btf_id;
7689 
7690 	/* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7691 	arg = &btf_params(meta->func_proto)[0];
7692 	t = btf_type_skip_modifiers(meta->btf, arg->type, NULL);	/* PTR */
7693 	t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id);	/* STRUCT */
7694 	nr_slots = t->size / BPF_REG_SIZE;
7695 
7696 	if (is_iter_new_kfunc(meta)) {
7697 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
7698 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7699 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7700 				iter_type_str(meta->btf, btf_id), regno);
7701 			return -EINVAL;
7702 		}
7703 
7704 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7705 			err = check_mem_access(env, insn_idx, regno,
7706 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7707 			if (err)
7708 				return err;
7709 		}
7710 
7711 		err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots);
7712 		if (err)
7713 			return err;
7714 	} else {
7715 		/* iter_next() or iter_destroy() expect initialized iter state*/
7716 		err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots);
7717 		switch (err) {
7718 		case 0:
7719 			break;
7720 		case -EINVAL:
7721 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
7722 				iter_type_str(meta->btf, btf_id), regno);
7723 			return err;
7724 		case -EPROTO:
7725 			verbose(env, "expected an RCU CS when using %s\n", meta->func_name);
7726 			return err;
7727 		default:
7728 			return err;
7729 		}
7730 
7731 		spi = iter_get_spi(env, reg, nr_slots);
7732 		if (spi < 0)
7733 			return spi;
7734 
7735 		err = mark_iter_read(env, reg, spi, nr_slots);
7736 		if (err)
7737 			return err;
7738 
7739 		/* remember meta->iter info for process_iter_next_call() */
7740 		meta->iter.spi = spi;
7741 		meta->iter.frameno = reg->frameno;
7742 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7743 
7744 		if (is_iter_destroy_kfunc(meta)) {
7745 			err = unmark_stack_slots_iter(env, reg, nr_slots);
7746 			if (err)
7747 				return err;
7748 		}
7749 	}
7750 
7751 	return 0;
7752 }
7753 
7754 /* Look for a previous loop entry at insn_idx: nearest parent state
7755  * stopped at insn_idx with callsites matching those in cur->frame.
7756  */
7757 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
7758 						  struct bpf_verifier_state *cur,
7759 						  int insn_idx)
7760 {
7761 	struct bpf_verifier_state_list *sl;
7762 	struct bpf_verifier_state *st;
7763 
7764 	/* Explored states are pushed in stack order, most recent states come first */
7765 	sl = *explored_state(env, insn_idx);
7766 	for (; sl; sl = sl->next) {
7767 		/* If st->branches != 0 state is a part of current DFS verification path,
7768 		 * hence cur & st for a loop.
7769 		 */
7770 		st = &sl->state;
7771 		if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
7772 		    st->dfs_depth < cur->dfs_depth)
7773 			return st;
7774 	}
7775 
7776 	return NULL;
7777 }
7778 
7779 static void reset_idmap_scratch(struct bpf_verifier_env *env);
7780 static bool regs_exact(const struct bpf_reg_state *rold,
7781 		       const struct bpf_reg_state *rcur,
7782 		       struct bpf_idmap *idmap);
7783 
7784 static void maybe_widen_reg(struct bpf_verifier_env *env,
7785 			    struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7786 			    struct bpf_idmap *idmap)
7787 {
7788 	if (rold->type != SCALAR_VALUE)
7789 		return;
7790 	if (rold->type != rcur->type)
7791 		return;
7792 	if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
7793 		return;
7794 	__mark_reg_unknown(env, rcur);
7795 }
7796 
7797 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
7798 				   struct bpf_verifier_state *old,
7799 				   struct bpf_verifier_state *cur)
7800 {
7801 	struct bpf_func_state *fold, *fcur;
7802 	int i, fr;
7803 
7804 	reset_idmap_scratch(env);
7805 	for (fr = old->curframe; fr >= 0; fr--) {
7806 		fold = old->frame[fr];
7807 		fcur = cur->frame[fr];
7808 
7809 		for (i = 0; i < MAX_BPF_REG; i++)
7810 			maybe_widen_reg(env,
7811 					&fold->regs[i],
7812 					&fcur->regs[i],
7813 					&env->idmap_scratch);
7814 
7815 		for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
7816 			if (!is_spilled_reg(&fold->stack[i]) ||
7817 			    !is_spilled_reg(&fcur->stack[i]))
7818 				continue;
7819 
7820 			maybe_widen_reg(env,
7821 					&fold->stack[i].spilled_ptr,
7822 					&fcur->stack[i].spilled_ptr,
7823 					&env->idmap_scratch);
7824 		}
7825 	}
7826 	return 0;
7827 }
7828 
7829 /* process_iter_next_call() is called when verifier gets to iterator's next
7830  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
7831  * to it as just "iter_next()" in comments below.
7832  *
7833  * BPF verifier relies on a crucial contract for any iter_next()
7834  * implementation: it should *eventually* return NULL, and once that happens
7835  * it should keep returning NULL. That is, once iterator exhausts elements to
7836  * iterate, it should never reset or spuriously return new elements.
7837  *
7838  * With the assumption of such contract, process_iter_next_call() simulates
7839  * a fork in the verifier state to validate loop logic correctness and safety
7840  * without having to simulate infinite amount of iterations.
7841  *
7842  * In current state, we first assume that iter_next() returned NULL and
7843  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
7844  * conditions we should not form an infinite loop and should eventually reach
7845  * exit.
7846  *
7847  * Besides that, we also fork current state and enqueue it for later
7848  * verification. In a forked state we keep iterator state as ACTIVE
7849  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
7850  * also bump iteration depth to prevent erroneous infinite loop detection
7851  * later on (see iter_active_depths_differ() comment for details). In this
7852  * state we assume that we'll eventually loop back to another iter_next()
7853  * calls (it could be in exactly same location or in some other instruction,
7854  * it doesn't matter, we don't make any unnecessary assumptions about this,
7855  * everything revolves around iterator state in a stack slot, not which
7856  * instruction is calling iter_next()). When that happens, we either will come
7857  * to iter_next() with equivalent state and can conclude that next iteration
7858  * will proceed in exactly the same way as we just verified, so it's safe to
7859  * assume that loop converges. If not, we'll go on another iteration
7860  * simulation with a different input state, until all possible starting states
7861  * are validated or we reach maximum number of instructions limit.
7862  *
7863  * This way, we will either exhaustively discover all possible input states
7864  * that iterator loop can start with and eventually will converge, or we'll
7865  * effectively regress into bounded loop simulation logic and either reach
7866  * maximum number of instructions if loop is not provably convergent, or there
7867  * is some statically known limit on number of iterations (e.g., if there is
7868  * an explicit `if n > 100 then break;` statement somewhere in the loop).
7869  *
7870  * Iteration convergence logic in is_state_visited() relies on exact
7871  * states comparison, which ignores read and precision marks.
7872  * This is necessary because read and precision marks are not finalized
7873  * while in the loop. Exact comparison might preclude convergence for
7874  * simple programs like below:
7875  *
7876  *     i = 0;
7877  *     while(iter_next(&it))
7878  *       i++;
7879  *
7880  * At each iteration step i++ would produce a new distinct state and
7881  * eventually instruction processing limit would be reached.
7882  *
7883  * To avoid such behavior speculatively forget (widen) range for
7884  * imprecise scalar registers, if those registers were not precise at the
7885  * end of the previous iteration and do not match exactly.
7886  *
7887  * This is a conservative heuristic that allows to verify wide range of programs,
7888  * however it precludes verification of programs that conjure an
7889  * imprecise value on the first loop iteration and use it as precise on a second.
7890  * For example, the following safe program would fail to verify:
7891  *
7892  *     struct bpf_num_iter it;
7893  *     int arr[10];
7894  *     int i = 0, a = 0;
7895  *     bpf_iter_num_new(&it, 0, 10);
7896  *     while (bpf_iter_num_next(&it)) {
7897  *       if (a == 0) {
7898  *         a = 1;
7899  *         i = 7; // Because i changed verifier would forget
7900  *                // it's range on second loop entry.
7901  *       } else {
7902  *         arr[i] = 42; // This would fail to verify.
7903  *       }
7904  *     }
7905  *     bpf_iter_num_destroy(&it);
7906  */
7907 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
7908 				  struct bpf_kfunc_call_arg_meta *meta)
7909 {
7910 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
7911 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
7912 	struct bpf_reg_state *cur_iter, *queued_iter;
7913 	int iter_frameno = meta->iter.frameno;
7914 	int iter_spi = meta->iter.spi;
7915 
7916 	BTF_TYPE_EMIT(struct bpf_iter);
7917 
7918 	cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7919 
7920 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
7921 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
7922 		verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
7923 			cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
7924 		return -EFAULT;
7925 	}
7926 
7927 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
7928 		/* Because iter_next() call is a checkpoint is_state_visitied()
7929 		 * should guarantee parent state with same call sites and insn_idx.
7930 		 */
7931 		if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
7932 		    !same_callsites(cur_st->parent, cur_st)) {
7933 			verbose(env, "bug: bad parent state for iter next call");
7934 			return -EFAULT;
7935 		}
7936 		/* Note cur_st->parent in the call below, it is necessary to skip
7937 		 * checkpoint created for cur_st by is_state_visited()
7938 		 * right at this instruction.
7939 		 */
7940 		prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
7941 		/* branch out active iter state */
7942 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
7943 		if (!queued_st)
7944 			return -ENOMEM;
7945 
7946 		queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7947 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
7948 		queued_iter->iter.depth++;
7949 		if (prev_st)
7950 			widen_imprecise_scalars(env, prev_st, queued_st);
7951 
7952 		queued_fr = queued_st->frame[queued_st->curframe];
7953 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
7954 	}
7955 
7956 	/* switch to DRAINED state, but keep the depth unchanged */
7957 	/* mark current iter state as drained and assume returned NULL */
7958 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
7959 	__mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]);
7960 
7961 	return 0;
7962 }
7963 
7964 static bool arg_type_is_mem_size(enum bpf_arg_type type)
7965 {
7966 	return type == ARG_CONST_SIZE ||
7967 	       type == ARG_CONST_SIZE_OR_ZERO;
7968 }
7969 
7970 static bool arg_type_is_release(enum bpf_arg_type type)
7971 {
7972 	return type & OBJ_RELEASE;
7973 }
7974 
7975 static bool arg_type_is_dynptr(enum bpf_arg_type type)
7976 {
7977 	return base_type(type) == ARG_PTR_TO_DYNPTR;
7978 }
7979 
7980 static int int_ptr_type_to_size(enum bpf_arg_type type)
7981 {
7982 	if (type == ARG_PTR_TO_INT)
7983 		return sizeof(u32);
7984 	else if (type == ARG_PTR_TO_LONG)
7985 		return sizeof(u64);
7986 
7987 	return -EINVAL;
7988 }
7989 
7990 static int resolve_map_arg_type(struct bpf_verifier_env *env,
7991 				 const struct bpf_call_arg_meta *meta,
7992 				 enum bpf_arg_type *arg_type)
7993 {
7994 	if (!meta->map_ptr) {
7995 		/* kernel subsystem misconfigured verifier */
7996 		verbose(env, "invalid map_ptr to access map->type\n");
7997 		return -EACCES;
7998 	}
7999 
8000 	switch (meta->map_ptr->map_type) {
8001 	case BPF_MAP_TYPE_SOCKMAP:
8002 	case BPF_MAP_TYPE_SOCKHASH:
8003 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
8004 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
8005 		} else {
8006 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
8007 			return -EINVAL;
8008 		}
8009 		break;
8010 	case BPF_MAP_TYPE_BLOOM_FILTER:
8011 		if (meta->func_id == BPF_FUNC_map_peek_elem)
8012 			*arg_type = ARG_PTR_TO_MAP_VALUE;
8013 		break;
8014 	default:
8015 		break;
8016 	}
8017 	return 0;
8018 }
8019 
8020 struct bpf_reg_types {
8021 	const enum bpf_reg_type types[10];
8022 	u32 *btf_id;
8023 };
8024 
8025 static const struct bpf_reg_types sock_types = {
8026 	.types = {
8027 		PTR_TO_SOCK_COMMON,
8028 		PTR_TO_SOCKET,
8029 		PTR_TO_TCP_SOCK,
8030 		PTR_TO_XDP_SOCK,
8031 	},
8032 };
8033 
8034 #ifdef CONFIG_NET
8035 static const struct bpf_reg_types btf_id_sock_common_types = {
8036 	.types = {
8037 		PTR_TO_SOCK_COMMON,
8038 		PTR_TO_SOCKET,
8039 		PTR_TO_TCP_SOCK,
8040 		PTR_TO_XDP_SOCK,
8041 		PTR_TO_BTF_ID,
8042 		PTR_TO_BTF_ID | PTR_TRUSTED,
8043 	},
8044 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8045 };
8046 #endif
8047 
8048 static const struct bpf_reg_types mem_types = {
8049 	.types = {
8050 		PTR_TO_STACK,
8051 		PTR_TO_PACKET,
8052 		PTR_TO_PACKET_META,
8053 		PTR_TO_MAP_KEY,
8054 		PTR_TO_MAP_VALUE,
8055 		PTR_TO_MEM,
8056 		PTR_TO_MEM | MEM_RINGBUF,
8057 		PTR_TO_BUF,
8058 		PTR_TO_BTF_ID | PTR_TRUSTED,
8059 	},
8060 };
8061 
8062 static const struct bpf_reg_types int_ptr_types = {
8063 	.types = {
8064 		PTR_TO_STACK,
8065 		PTR_TO_PACKET,
8066 		PTR_TO_PACKET_META,
8067 		PTR_TO_MAP_KEY,
8068 		PTR_TO_MAP_VALUE,
8069 	},
8070 };
8071 
8072 static const struct bpf_reg_types spin_lock_types = {
8073 	.types = {
8074 		PTR_TO_MAP_VALUE,
8075 		PTR_TO_BTF_ID | MEM_ALLOC,
8076 	}
8077 };
8078 
8079 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
8080 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
8081 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
8082 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
8083 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
8084 static const struct bpf_reg_types btf_ptr_types = {
8085 	.types = {
8086 		PTR_TO_BTF_ID,
8087 		PTR_TO_BTF_ID | PTR_TRUSTED,
8088 		PTR_TO_BTF_ID | MEM_RCU,
8089 	},
8090 };
8091 static const struct bpf_reg_types percpu_btf_ptr_types = {
8092 	.types = {
8093 		PTR_TO_BTF_ID | MEM_PERCPU,
8094 		PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU,
8095 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
8096 	}
8097 };
8098 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
8099 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
8100 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
8101 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
8102 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
8103 static const struct bpf_reg_types dynptr_types = {
8104 	.types = {
8105 		PTR_TO_STACK,
8106 		CONST_PTR_TO_DYNPTR,
8107 	}
8108 };
8109 
8110 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
8111 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
8112 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
8113 	[ARG_CONST_SIZE]		= &scalar_types,
8114 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
8115 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
8116 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
8117 	[ARG_PTR_TO_CTX]		= &context_types,
8118 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
8119 #ifdef CONFIG_NET
8120 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
8121 #endif
8122 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
8123 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
8124 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
8125 	[ARG_PTR_TO_MEM]		= &mem_types,
8126 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
8127 	[ARG_PTR_TO_INT]		= &int_ptr_types,
8128 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
8129 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
8130 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
8131 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
8132 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
8133 	[ARG_PTR_TO_TIMER]		= &timer_types,
8134 	[ARG_PTR_TO_KPTR]		= &kptr_types,
8135 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
8136 };
8137 
8138 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
8139 			  enum bpf_arg_type arg_type,
8140 			  const u32 *arg_btf_id,
8141 			  struct bpf_call_arg_meta *meta)
8142 {
8143 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8144 	enum bpf_reg_type expected, type = reg->type;
8145 	const struct bpf_reg_types *compatible;
8146 	int i, j;
8147 
8148 	compatible = compatible_reg_types[base_type(arg_type)];
8149 	if (!compatible) {
8150 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
8151 		return -EFAULT;
8152 	}
8153 
8154 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
8155 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
8156 	 *
8157 	 * Same for MAYBE_NULL:
8158 	 *
8159 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
8160 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
8161 	 *
8162 	 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
8163 	 *
8164 	 * Therefore we fold these flags depending on the arg_type before comparison.
8165 	 */
8166 	if (arg_type & MEM_RDONLY)
8167 		type &= ~MEM_RDONLY;
8168 	if (arg_type & PTR_MAYBE_NULL)
8169 		type &= ~PTR_MAYBE_NULL;
8170 	if (base_type(arg_type) == ARG_PTR_TO_MEM)
8171 		type &= ~DYNPTR_TYPE_FLAG_MASK;
8172 
8173 	if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) {
8174 		type &= ~MEM_ALLOC;
8175 		type &= ~MEM_PERCPU;
8176 	}
8177 
8178 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
8179 		expected = compatible->types[i];
8180 		if (expected == NOT_INIT)
8181 			break;
8182 
8183 		if (type == expected)
8184 			goto found;
8185 	}
8186 
8187 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
8188 	for (j = 0; j + 1 < i; j++)
8189 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
8190 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
8191 	return -EACCES;
8192 
8193 found:
8194 	if (base_type(reg->type) != PTR_TO_BTF_ID)
8195 		return 0;
8196 
8197 	if (compatible == &mem_types) {
8198 		if (!(arg_type & MEM_RDONLY)) {
8199 			verbose(env,
8200 				"%s() may write into memory pointed by R%d type=%s\n",
8201 				func_id_name(meta->func_id),
8202 				regno, reg_type_str(env, reg->type));
8203 			return -EACCES;
8204 		}
8205 		return 0;
8206 	}
8207 
8208 	switch ((int)reg->type) {
8209 	case PTR_TO_BTF_ID:
8210 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8211 	case PTR_TO_BTF_ID | MEM_RCU:
8212 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
8213 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
8214 	{
8215 		/* For bpf_sk_release, it needs to match against first member
8216 		 * 'struct sock_common', hence make an exception for it. This
8217 		 * allows bpf_sk_release to work for multiple socket types.
8218 		 */
8219 		bool strict_type_match = arg_type_is_release(arg_type) &&
8220 					 meta->func_id != BPF_FUNC_sk_release;
8221 
8222 		if (type_may_be_null(reg->type) &&
8223 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
8224 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
8225 			return -EACCES;
8226 		}
8227 
8228 		if (!arg_btf_id) {
8229 			if (!compatible->btf_id) {
8230 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
8231 				return -EFAULT;
8232 			}
8233 			arg_btf_id = compatible->btf_id;
8234 		}
8235 
8236 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8237 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8238 				return -EACCES;
8239 		} else {
8240 			if (arg_btf_id == BPF_PTR_POISON) {
8241 				verbose(env, "verifier internal error:");
8242 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
8243 					regno);
8244 				return -EACCES;
8245 			}
8246 
8247 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
8248 						  btf_vmlinux, *arg_btf_id,
8249 						  strict_type_match)) {
8250 				verbose(env, "R%d is of type %s but %s is expected\n",
8251 					regno, btf_type_name(reg->btf, reg->btf_id),
8252 					btf_type_name(btf_vmlinux, *arg_btf_id));
8253 				return -EACCES;
8254 			}
8255 		}
8256 		break;
8257 	}
8258 	case PTR_TO_BTF_ID | MEM_ALLOC:
8259 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC:
8260 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
8261 		    meta->func_id != BPF_FUNC_kptr_xchg) {
8262 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
8263 			return -EFAULT;
8264 		}
8265 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8266 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8267 				return -EACCES;
8268 		}
8269 		break;
8270 	case PTR_TO_BTF_ID | MEM_PERCPU:
8271 	case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU:
8272 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
8273 		/* Handled by helper specific checks */
8274 		break;
8275 	default:
8276 		verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
8277 		return -EFAULT;
8278 	}
8279 	return 0;
8280 }
8281 
8282 static struct btf_field *
8283 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
8284 {
8285 	struct btf_field *field;
8286 	struct btf_record *rec;
8287 
8288 	rec = reg_btf_record(reg);
8289 	if (!rec)
8290 		return NULL;
8291 
8292 	field = btf_record_find(rec, off, fields);
8293 	if (!field)
8294 		return NULL;
8295 
8296 	return field;
8297 }
8298 
8299 int check_func_arg_reg_off(struct bpf_verifier_env *env,
8300 			   const struct bpf_reg_state *reg, int regno,
8301 			   enum bpf_arg_type arg_type)
8302 {
8303 	u32 type = reg->type;
8304 
8305 	/* When referenced register is passed to release function, its fixed
8306 	 * offset must be 0.
8307 	 *
8308 	 * We will check arg_type_is_release reg has ref_obj_id when storing
8309 	 * meta->release_regno.
8310 	 */
8311 	if (arg_type_is_release(arg_type)) {
8312 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
8313 		 * may not directly point to the object being released, but to
8314 		 * dynptr pointing to such object, which might be at some offset
8315 		 * on the stack. In that case, we simply to fallback to the
8316 		 * default handling.
8317 		 */
8318 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
8319 			return 0;
8320 
8321 		/* Doing check_ptr_off_reg check for the offset will catch this
8322 		 * because fixed_off_ok is false, but checking here allows us
8323 		 * to give the user a better error message.
8324 		 */
8325 		if (reg->off) {
8326 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
8327 				regno);
8328 			return -EINVAL;
8329 		}
8330 		return __check_ptr_off_reg(env, reg, regno, false);
8331 	}
8332 
8333 	switch (type) {
8334 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
8335 	case PTR_TO_STACK:
8336 	case PTR_TO_PACKET:
8337 	case PTR_TO_PACKET_META:
8338 	case PTR_TO_MAP_KEY:
8339 	case PTR_TO_MAP_VALUE:
8340 	case PTR_TO_MEM:
8341 	case PTR_TO_MEM | MEM_RDONLY:
8342 	case PTR_TO_MEM | MEM_RINGBUF:
8343 	case PTR_TO_BUF:
8344 	case PTR_TO_BUF | MEM_RDONLY:
8345 	case SCALAR_VALUE:
8346 		return 0;
8347 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8348 	 * fixed offset.
8349 	 */
8350 	case PTR_TO_BTF_ID:
8351 	case PTR_TO_BTF_ID | MEM_ALLOC:
8352 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8353 	case PTR_TO_BTF_ID | MEM_RCU:
8354 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8355 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8356 		/* When referenced PTR_TO_BTF_ID is passed to release function,
8357 		 * its fixed offset must be 0. In the other cases, fixed offset
8358 		 * can be non-zero. This was already checked above. So pass
8359 		 * fixed_off_ok as true to allow fixed offset for all other
8360 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8361 		 * still need to do checks instead of returning.
8362 		 */
8363 		return __check_ptr_off_reg(env, reg, regno, true);
8364 	default:
8365 		return __check_ptr_off_reg(env, reg, regno, false);
8366 	}
8367 }
8368 
8369 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8370 						const struct bpf_func_proto *fn,
8371 						struct bpf_reg_state *regs)
8372 {
8373 	struct bpf_reg_state *state = NULL;
8374 	int i;
8375 
8376 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8377 		if (arg_type_is_dynptr(fn->arg_type[i])) {
8378 			if (state) {
8379 				verbose(env, "verifier internal error: multiple dynptr args\n");
8380 				return NULL;
8381 			}
8382 			state = &regs[BPF_REG_1 + i];
8383 		}
8384 
8385 	if (!state)
8386 		verbose(env, "verifier internal error: no dynptr arg found\n");
8387 
8388 	return state;
8389 }
8390 
8391 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8392 {
8393 	struct bpf_func_state *state = func(env, reg);
8394 	int spi;
8395 
8396 	if (reg->type == CONST_PTR_TO_DYNPTR)
8397 		return reg->id;
8398 	spi = dynptr_get_spi(env, reg);
8399 	if (spi < 0)
8400 		return spi;
8401 	return state->stack[spi].spilled_ptr.id;
8402 }
8403 
8404 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8405 {
8406 	struct bpf_func_state *state = func(env, reg);
8407 	int spi;
8408 
8409 	if (reg->type == CONST_PTR_TO_DYNPTR)
8410 		return reg->ref_obj_id;
8411 	spi = dynptr_get_spi(env, reg);
8412 	if (spi < 0)
8413 		return spi;
8414 	return state->stack[spi].spilled_ptr.ref_obj_id;
8415 }
8416 
8417 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8418 					    struct bpf_reg_state *reg)
8419 {
8420 	struct bpf_func_state *state = func(env, reg);
8421 	int spi;
8422 
8423 	if (reg->type == CONST_PTR_TO_DYNPTR)
8424 		return reg->dynptr.type;
8425 
8426 	spi = __get_spi(reg->off);
8427 	if (spi < 0) {
8428 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8429 		return BPF_DYNPTR_TYPE_INVALID;
8430 	}
8431 
8432 	return state->stack[spi].spilled_ptr.dynptr.type;
8433 }
8434 
8435 static int check_reg_const_str(struct bpf_verifier_env *env,
8436 			       struct bpf_reg_state *reg, u32 regno)
8437 {
8438 	struct bpf_map *map = reg->map_ptr;
8439 	int err;
8440 	int map_off;
8441 	u64 map_addr;
8442 	char *str_ptr;
8443 
8444 	if (reg->type != PTR_TO_MAP_VALUE)
8445 		return -EINVAL;
8446 
8447 	if (!bpf_map_is_rdonly(map)) {
8448 		verbose(env, "R%d does not point to a readonly map'\n", regno);
8449 		return -EACCES;
8450 	}
8451 
8452 	if (!tnum_is_const(reg->var_off)) {
8453 		verbose(env, "R%d is not a constant address'\n", regno);
8454 		return -EACCES;
8455 	}
8456 
8457 	if (!map->ops->map_direct_value_addr) {
8458 		verbose(env, "no direct value access support for this map type\n");
8459 		return -EACCES;
8460 	}
8461 
8462 	err = check_map_access(env, regno, reg->off,
8463 			       map->value_size - reg->off, false,
8464 			       ACCESS_HELPER);
8465 	if (err)
8466 		return err;
8467 
8468 	map_off = reg->off + reg->var_off.value;
8469 	err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8470 	if (err) {
8471 		verbose(env, "direct value access on string failed\n");
8472 		return err;
8473 	}
8474 
8475 	str_ptr = (char *)(long)(map_addr);
8476 	if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8477 		verbose(env, "string is not zero-terminated\n");
8478 		return -EINVAL;
8479 	}
8480 	return 0;
8481 }
8482 
8483 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8484 			  struct bpf_call_arg_meta *meta,
8485 			  const struct bpf_func_proto *fn,
8486 			  int insn_idx)
8487 {
8488 	u32 regno = BPF_REG_1 + arg;
8489 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8490 	enum bpf_arg_type arg_type = fn->arg_type[arg];
8491 	enum bpf_reg_type type = reg->type;
8492 	u32 *arg_btf_id = NULL;
8493 	int err = 0;
8494 
8495 	if (arg_type == ARG_DONTCARE)
8496 		return 0;
8497 
8498 	err = check_reg_arg(env, regno, SRC_OP);
8499 	if (err)
8500 		return err;
8501 
8502 	if (arg_type == ARG_ANYTHING) {
8503 		if (is_pointer_value(env, regno)) {
8504 			verbose(env, "R%d leaks addr into helper function\n",
8505 				regno);
8506 			return -EACCES;
8507 		}
8508 		return 0;
8509 	}
8510 
8511 	if (type_is_pkt_pointer(type) &&
8512 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8513 		verbose(env, "helper access to the packet is not allowed\n");
8514 		return -EACCES;
8515 	}
8516 
8517 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8518 		err = resolve_map_arg_type(env, meta, &arg_type);
8519 		if (err)
8520 			return err;
8521 	}
8522 
8523 	if (register_is_null(reg) && type_may_be_null(arg_type))
8524 		/* A NULL register has a SCALAR_VALUE type, so skip
8525 		 * type checking.
8526 		 */
8527 		goto skip_type_check;
8528 
8529 	/* arg_btf_id and arg_size are in a union. */
8530 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8531 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8532 		arg_btf_id = fn->arg_btf_id[arg];
8533 
8534 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8535 	if (err)
8536 		return err;
8537 
8538 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
8539 	if (err)
8540 		return err;
8541 
8542 skip_type_check:
8543 	if (arg_type_is_release(arg_type)) {
8544 		if (arg_type_is_dynptr(arg_type)) {
8545 			struct bpf_func_state *state = func(env, reg);
8546 			int spi;
8547 
8548 			/* Only dynptr created on stack can be released, thus
8549 			 * the get_spi and stack state checks for spilled_ptr
8550 			 * should only be done before process_dynptr_func for
8551 			 * PTR_TO_STACK.
8552 			 */
8553 			if (reg->type == PTR_TO_STACK) {
8554 				spi = dynptr_get_spi(env, reg);
8555 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8556 					verbose(env, "arg %d is an unacquired reference\n", regno);
8557 					return -EINVAL;
8558 				}
8559 			} else {
8560 				verbose(env, "cannot release unowned const bpf_dynptr\n");
8561 				return -EINVAL;
8562 			}
8563 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
8564 			verbose(env, "R%d must be referenced when passed to release function\n",
8565 				regno);
8566 			return -EINVAL;
8567 		}
8568 		if (meta->release_regno) {
8569 			verbose(env, "verifier internal error: more than one release argument\n");
8570 			return -EFAULT;
8571 		}
8572 		meta->release_regno = regno;
8573 	}
8574 
8575 	if (reg->ref_obj_id) {
8576 		if (meta->ref_obj_id) {
8577 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8578 				regno, reg->ref_obj_id,
8579 				meta->ref_obj_id);
8580 			return -EFAULT;
8581 		}
8582 		meta->ref_obj_id = reg->ref_obj_id;
8583 	}
8584 
8585 	switch (base_type(arg_type)) {
8586 	case ARG_CONST_MAP_PTR:
8587 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8588 		if (meta->map_ptr) {
8589 			/* Use map_uid (which is unique id of inner map) to reject:
8590 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8591 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8592 			 * if (inner_map1 && inner_map2) {
8593 			 *     timer = bpf_map_lookup_elem(inner_map1);
8594 			 *     if (timer)
8595 			 *         // mismatch would have been allowed
8596 			 *         bpf_timer_init(timer, inner_map2);
8597 			 * }
8598 			 *
8599 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
8600 			 */
8601 			if (meta->map_ptr != reg->map_ptr ||
8602 			    meta->map_uid != reg->map_uid) {
8603 				verbose(env,
8604 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8605 					meta->map_uid, reg->map_uid);
8606 				return -EINVAL;
8607 			}
8608 		}
8609 		meta->map_ptr = reg->map_ptr;
8610 		meta->map_uid = reg->map_uid;
8611 		break;
8612 	case ARG_PTR_TO_MAP_KEY:
8613 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
8614 		 * check that [key, key + map->key_size) are within
8615 		 * stack limits and initialized
8616 		 */
8617 		if (!meta->map_ptr) {
8618 			/* in function declaration map_ptr must come before
8619 			 * map_key, so that it's verified and known before
8620 			 * we have to check map_key here. Otherwise it means
8621 			 * that kernel subsystem misconfigured verifier
8622 			 */
8623 			verbose(env, "invalid map_ptr to access map->key\n");
8624 			return -EACCES;
8625 		}
8626 		err = check_helper_mem_access(env, regno,
8627 					      meta->map_ptr->key_size, false,
8628 					      NULL);
8629 		break;
8630 	case ARG_PTR_TO_MAP_VALUE:
8631 		if (type_may_be_null(arg_type) && register_is_null(reg))
8632 			return 0;
8633 
8634 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
8635 		 * check [value, value + map->value_size) validity
8636 		 */
8637 		if (!meta->map_ptr) {
8638 			/* kernel subsystem misconfigured verifier */
8639 			verbose(env, "invalid map_ptr to access map->value\n");
8640 			return -EACCES;
8641 		}
8642 		meta->raw_mode = arg_type & MEM_UNINIT;
8643 		err = check_helper_mem_access(env, regno,
8644 					      meta->map_ptr->value_size, false,
8645 					      meta);
8646 		break;
8647 	case ARG_PTR_TO_PERCPU_BTF_ID:
8648 		if (!reg->btf_id) {
8649 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8650 			return -EACCES;
8651 		}
8652 		meta->ret_btf = reg->btf;
8653 		meta->ret_btf_id = reg->btf_id;
8654 		break;
8655 	case ARG_PTR_TO_SPIN_LOCK:
8656 		if (in_rbtree_lock_required_cb(env)) {
8657 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8658 			return -EACCES;
8659 		}
8660 		if (meta->func_id == BPF_FUNC_spin_lock) {
8661 			err = process_spin_lock(env, regno, true);
8662 			if (err)
8663 				return err;
8664 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
8665 			err = process_spin_lock(env, regno, false);
8666 			if (err)
8667 				return err;
8668 		} else {
8669 			verbose(env, "verifier internal error\n");
8670 			return -EFAULT;
8671 		}
8672 		break;
8673 	case ARG_PTR_TO_TIMER:
8674 		err = process_timer_func(env, regno, meta);
8675 		if (err)
8676 			return err;
8677 		break;
8678 	case ARG_PTR_TO_FUNC:
8679 		meta->subprogno = reg->subprogno;
8680 		break;
8681 	case ARG_PTR_TO_MEM:
8682 		/* The access to this pointer is only checked when we hit the
8683 		 * next is_mem_size argument below.
8684 		 */
8685 		meta->raw_mode = arg_type & MEM_UNINIT;
8686 		if (arg_type & MEM_FIXED_SIZE) {
8687 			err = check_helper_mem_access(env, regno,
8688 						      fn->arg_size[arg], false,
8689 						      meta);
8690 		}
8691 		break;
8692 	case ARG_CONST_SIZE:
8693 		err = check_mem_size_reg(env, reg, regno, false, meta);
8694 		break;
8695 	case ARG_CONST_SIZE_OR_ZERO:
8696 		err = check_mem_size_reg(env, reg, regno, true, meta);
8697 		break;
8698 	case ARG_PTR_TO_DYNPTR:
8699 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
8700 		if (err)
8701 			return err;
8702 		break;
8703 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
8704 		if (!tnum_is_const(reg->var_off)) {
8705 			verbose(env, "R%d is not a known constant'\n",
8706 				regno);
8707 			return -EACCES;
8708 		}
8709 		meta->mem_size = reg->var_off.value;
8710 		err = mark_chain_precision(env, regno);
8711 		if (err)
8712 			return err;
8713 		break;
8714 	case ARG_PTR_TO_INT:
8715 	case ARG_PTR_TO_LONG:
8716 	{
8717 		int size = int_ptr_type_to_size(arg_type);
8718 
8719 		err = check_helper_mem_access(env, regno, size, false, meta);
8720 		if (err)
8721 			return err;
8722 		err = check_ptr_alignment(env, reg, 0, size, true);
8723 		break;
8724 	}
8725 	case ARG_PTR_TO_CONST_STR:
8726 	{
8727 		err = check_reg_const_str(env, reg, regno);
8728 		if (err)
8729 			return err;
8730 		break;
8731 	}
8732 	case ARG_PTR_TO_KPTR:
8733 		err = process_kptr_func(env, regno, meta);
8734 		if (err)
8735 			return err;
8736 		break;
8737 	}
8738 
8739 	return err;
8740 }
8741 
8742 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8743 {
8744 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
8745 	enum bpf_prog_type type = resolve_prog_type(env->prog);
8746 
8747 	if (func_id != BPF_FUNC_map_update_elem)
8748 		return false;
8749 
8750 	/* It's not possible to get access to a locked struct sock in these
8751 	 * contexts, so updating is safe.
8752 	 */
8753 	switch (type) {
8754 	case BPF_PROG_TYPE_TRACING:
8755 		if (eatype == BPF_TRACE_ITER)
8756 			return true;
8757 		break;
8758 	case BPF_PROG_TYPE_SOCKET_FILTER:
8759 	case BPF_PROG_TYPE_SCHED_CLS:
8760 	case BPF_PROG_TYPE_SCHED_ACT:
8761 	case BPF_PROG_TYPE_XDP:
8762 	case BPF_PROG_TYPE_SK_REUSEPORT:
8763 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
8764 	case BPF_PROG_TYPE_SK_LOOKUP:
8765 		return true;
8766 	default:
8767 		break;
8768 	}
8769 
8770 	verbose(env, "cannot update sockmap in this context\n");
8771 	return false;
8772 }
8773 
8774 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8775 {
8776 	return env->prog->jit_requested &&
8777 	       bpf_jit_supports_subprog_tailcalls();
8778 }
8779 
8780 static int check_map_func_compatibility(struct bpf_verifier_env *env,
8781 					struct bpf_map *map, int func_id)
8782 {
8783 	if (!map)
8784 		return 0;
8785 
8786 	/* We need a two way check, first is from map perspective ... */
8787 	switch (map->map_type) {
8788 	case BPF_MAP_TYPE_PROG_ARRAY:
8789 		if (func_id != BPF_FUNC_tail_call)
8790 			goto error;
8791 		break;
8792 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8793 		if (func_id != BPF_FUNC_perf_event_read &&
8794 		    func_id != BPF_FUNC_perf_event_output &&
8795 		    func_id != BPF_FUNC_skb_output &&
8796 		    func_id != BPF_FUNC_perf_event_read_value &&
8797 		    func_id != BPF_FUNC_xdp_output)
8798 			goto error;
8799 		break;
8800 	case BPF_MAP_TYPE_RINGBUF:
8801 		if (func_id != BPF_FUNC_ringbuf_output &&
8802 		    func_id != BPF_FUNC_ringbuf_reserve &&
8803 		    func_id != BPF_FUNC_ringbuf_query &&
8804 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8805 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8806 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
8807 			goto error;
8808 		break;
8809 	case BPF_MAP_TYPE_USER_RINGBUF:
8810 		if (func_id != BPF_FUNC_user_ringbuf_drain)
8811 			goto error;
8812 		break;
8813 	case BPF_MAP_TYPE_STACK_TRACE:
8814 		if (func_id != BPF_FUNC_get_stackid)
8815 			goto error;
8816 		break;
8817 	case BPF_MAP_TYPE_CGROUP_ARRAY:
8818 		if (func_id != BPF_FUNC_skb_under_cgroup &&
8819 		    func_id != BPF_FUNC_current_task_under_cgroup)
8820 			goto error;
8821 		break;
8822 	case BPF_MAP_TYPE_CGROUP_STORAGE:
8823 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
8824 		if (func_id != BPF_FUNC_get_local_storage)
8825 			goto error;
8826 		break;
8827 	case BPF_MAP_TYPE_DEVMAP:
8828 	case BPF_MAP_TYPE_DEVMAP_HASH:
8829 		if (func_id != BPF_FUNC_redirect_map &&
8830 		    func_id != BPF_FUNC_map_lookup_elem)
8831 			goto error;
8832 		break;
8833 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
8834 	 * appear.
8835 	 */
8836 	case BPF_MAP_TYPE_CPUMAP:
8837 		if (func_id != BPF_FUNC_redirect_map)
8838 			goto error;
8839 		break;
8840 	case BPF_MAP_TYPE_XSKMAP:
8841 		if (func_id != BPF_FUNC_redirect_map &&
8842 		    func_id != BPF_FUNC_map_lookup_elem)
8843 			goto error;
8844 		break;
8845 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
8846 	case BPF_MAP_TYPE_HASH_OF_MAPS:
8847 		if (func_id != BPF_FUNC_map_lookup_elem)
8848 			goto error;
8849 		break;
8850 	case BPF_MAP_TYPE_SOCKMAP:
8851 		if (func_id != BPF_FUNC_sk_redirect_map &&
8852 		    func_id != BPF_FUNC_sock_map_update &&
8853 		    func_id != BPF_FUNC_map_delete_elem &&
8854 		    func_id != BPF_FUNC_msg_redirect_map &&
8855 		    func_id != BPF_FUNC_sk_select_reuseport &&
8856 		    func_id != BPF_FUNC_map_lookup_elem &&
8857 		    !may_update_sockmap(env, func_id))
8858 			goto error;
8859 		break;
8860 	case BPF_MAP_TYPE_SOCKHASH:
8861 		if (func_id != BPF_FUNC_sk_redirect_hash &&
8862 		    func_id != BPF_FUNC_sock_hash_update &&
8863 		    func_id != BPF_FUNC_map_delete_elem &&
8864 		    func_id != BPF_FUNC_msg_redirect_hash &&
8865 		    func_id != BPF_FUNC_sk_select_reuseport &&
8866 		    func_id != BPF_FUNC_map_lookup_elem &&
8867 		    !may_update_sockmap(env, func_id))
8868 			goto error;
8869 		break;
8870 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
8871 		if (func_id != BPF_FUNC_sk_select_reuseport)
8872 			goto error;
8873 		break;
8874 	case BPF_MAP_TYPE_QUEUE:
8875 	case BPF_MAP_TYPE_STACK:
8876 		if (func_id != BPF_FUNC_map_peek_elem &&
8877 		    func_id != BPF_FUNC_map_pop_elem &&
8878 		    func_id != BPF_FUNC_map_push_elem)
8879 			goto error;
8880 		break;
8881 	case BPF_MAP_TYPE_SK_STORAGE:
8882 		if (func_id != BPF_FUNC_sk_storage_get &&
8883 		    func_id != BPF_FUNC_sk_storage_delete &&
8884 		    func_id != BPF_FUNC_kptr_xchg)
8885 			goto error;
8886 		break;
8887 	case BPF_MAP_TYPE_INODE_STORAGE:
8888 		if (func_id != BPF_FUNC_inode_storage_get &&
8889 		    func_id != BPF_FUNC_inode_storage_delete &&
8890 		    func_id != BPF_FUNC_kptr_xchg)
8891 			goto error;
8892 		break;
8893 	case BPF_MAP_TYPE_TASK_STORAGE:
8894 		if (func_id != BPF_FUNC_task_storage_get &&
8895 		    func_id != BPF_FUNC_task_storage_delete &&
8896 		    func_id != BPF_FUNC_kptr_xchg)
8897 			goto error;
8898 		break;
8899 	case BPF_MAP_TYPE_CGRP_STORAGE:
8900 		if (func_id != BPF_FUNC_cgrp_storage_get &&
8901 		    func_id != BPF_FUNC_cgrp_storage_delete &&
8902 		    func_id != BPF_FUNC_kptr_xchg)
8903 			goto error;
8904 		break;
8905 	case BPF_MAP_TYPE_BLOOM_FILTER:
8906 		if (func_id != BPF_FUNC_map_peek_elem &&
8907 		    func_id != BPF_FUNC_map_push_elem)
8908 			goto error;
8909 		break;
8910 	default:
8911 		break;
8912 	}
8913 
8914 	/* ... and second from the function itself. */
8915 	switch (func_id) {
8916 	case BPF_FUNC_tail_call:
8917 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
8918 			goto error;
8919 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
8920 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
8921 			return -EINVAL;
8922 		}
8923 		break;
8924 	case BPF_FUNC_perf_event_read:
8925 	case BPF_FUNC_perf_event_output:
8926 	case BPF_FUNC_perf_event_read_value:
8927 	case BPF_FUNC_skb_output:
8928 	case BPF_FUNC_xdp_output:
8929 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
8930 			goto error;
8931 		break;
8932 	case BPF_FUNC_ringbuf_output:
8933 	case BPF_FUNC_ringbuf_reserve:
8934 	case BPF_FUNC_ringbuf_query:
8935 	case BPF_FUNC_ringbuf_reserve_dynptr:
8936 	case BPF_FUNC_ringbuf_submit_dynptr:
8937 	case BPF_FUNC_ringbuf_discard_dynptr:
8938 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
8939 			goto error;
8940 		break;
8941 	case BPF_FUNC_user_ringbuf_drain:
8942 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
8943 			goto error;
8944 		break;
8945 	case BPF_FUNC_get_stackid:
8946 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
8947 			goto error;
8948 		break;
8949 	case BPF_FUNC_current_task_under_cgroup:
8950 	case BPF_FUNC_skb_under_cgroup:
8951 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
8952 			goto error;
8953 		break;
8954 	case BPF_FUNC_redirect_map:
8955 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
8956 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
8957 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
8958 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
8959 			goto error;
8960 		break;
8961 	case BPF_FUNC_sk_redirect_map:
8962 	case BPF_FUNC_msg_redirect_map:
8963 	case BPF_FUNC_sock_map_update:
8964 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
8965 			goto error;
8966 		break;
8967 	case BPF_FUNC_sk_redirect_hash:
8968 	case BPF_FUNC_msg_redirect_hash:
8969 	case BPF_FUNC_sock_hash_update:
8970 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
8971 			goto error;
8972 		break;
8973 	case BPF_FUNC_get_local_storage:
8974 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
8975 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
8976 			goto error;
8977 		break;
8978 	case BPF_FUNC_sk_select_reuseport:
8979 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
8980 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
8981 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
8982 			goto error;
8983 		break;
8984 	case BPF_FUNC_map_pop_elem:
8985 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8986 		    map->map_type != BPF_MAP_TYPE_STACK)
8987 			goto error;
8988 		break;
8989 	case BPF_FUNC_map_peek_elem:
8990 	case BPF_FUNC_map_push_elem:
8991 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8992 		    map->map_type != BPF_MAP_TYPE_STACK &&
8993 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
8994 			goto error;
8995 		break;
8996 	case BPF_FUNC_map_lookup_percpu_elem:
8997 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
8998 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8999 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
9000 			goto error;
9001 		break;
9002 	case BPF_FUNC_sk_storage_get:
9003 	case BPF_FUNC_sk_storage_delete:
9004 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
9005 			goto error;
9006 		break;
9007 	case BPF_FUNC_inode_storage_get:
9008 	case BPF_FUNC_inode_storage_delete:
9009 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
9010 			goto error;
9011 		break;
9012 	case BPF_FUNC_task_storage_get:
9013 	case BPF_FUNC_task_storage_delete:
9014 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
9015 			goto error;
9016 		break;
9017 	case BPF_FUNC_cgrp_storage_get:
9018 	case BPF_FUNC_cgrp_storage_delete:
9019 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
9020 			goto error;
9021 		break;
9022 	default:
9023 		break;
9024 	}
9025 
9026 	return 0;
9027 error:
9028 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
9029 		map->map_type, func_id_name(func_id), func_id);
9030 	return -EINVAL;
9031 }
9032 
9033 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
9034 {
9035 	int count = 0;
9036 
9037 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
9038 		count++;
9039 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
9040 		count++;
9041 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
9042 		count++;
9043 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
9044 		count++;
9045 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
9046 		count++;
9047 
9048 	/* We only support one arg being in raw mode at the moment,
9049 	 * which is sufficient for the helper functions we have
9050 	 * right now.
9051 	 */
9052 	return count <= 1;
9053 }
9054 
9055 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
9056 {
9057 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
9058 	bool has_size = fn->arg_size[arg] != 0;
9059 	bool is_next_size = false;
9060 
9061 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
9062 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
9063 
9064 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
9065 		return is_next_size;
9066 
9067 	return has_size == is_next_size || is_next_size == is_fixed;
9068 }
9069 
9070 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
9071 {
9072 	/* bpf_xxx(..., buf, len) call will access 'len'
9073 	 * bytes from memory 'buf'. Both arg types need
9074 	 * to be paired, so make sure there's no buggy
9075 	 * helper function specification.
9076 	 */
9077 	if (arg_type_is_mem_size(fn->arg1_type) ||
9078 	    check_args_pair_invalid(fn, 0) ||
9079 	    check_args_pair_invalid(fn, 1) ||
9080 	    check_args_pair_invalid(fn, 2) ||
9081 	    check_args_pair_invalid(fn, 3) ||
9082 	    check_args_pair_invalid(fn, 4))
9083 		return false;
9084 
9085 	return true;
9086 }
9087 
9088 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
9089 {
9090 	int i;
9091 
9092 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9093 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
9094 			return !!fn->arg_btf_id[i];
9095 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
9096 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
9097 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
9098 		    /* arg_btf_id and arg_size are in a union. */
9099 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
9100 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
9101 			return false;
9102 	}
9103 
9104 	return true;
9105 }
9106 
9107 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
9108 {
9109 	return check_raw_mode_ok(fn) &&
9110 	       check_arg_pair_ok(fn) &&
9111 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
9112 }
9113 
9114 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
9115  * are now invalid, so turn them into unknown SCALAR_VALUE.
9116  *
9117  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
9118  * since these slices point to packet data.
9119  */
9120 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
9121 {
9122 	struct bpf_func_state *state;
9123 	struct bpf_reg_state *reg;
9124 
9125 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9126 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
9127 			mark_reg_invalid(env, reg);
9128 	}));
9129 }
9130 
9131 enum {
9132 	AT_PKT_END = -1,
9133 	BEYOND_PKT_END = -2,
9134 };
9135 
9136 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
9137 {
9138 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9139 	struct bpf_reg_state *reg = &state->regs[regn];
9140 
9141 	if (reg->type != PTR_TO_PACKET)
9142 		/* PTR_TO_PACKET_META is not supported yet */
9143 		return;
9144 
9145 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
9146 	 * How far beyond pkt_end it goes is unknown.
9147 	 * if (!range_open) it's the case of pkt >= pkt_end
9148 	 * if (range_open) it's the case of pkt > pkt_end
9149 	 * hence this pointer is at least 1 byte bigger than pkt_end
9150 	 */
9151 	if (range_open)
9152 		reg->range = BEYOND_PKT_END;
9153 	else
9154 		reg->range = AT_PKT_END;
9155 }
9156 
9157 /* The pointer with the specified id has released its reference to kernel
9158  * resources. Identify all copies of the same pointer and clear the reference.
9159  */
9160 static int release_reference(struct bpf_verifier_env *env,
9161 			     int ref_obj_id)
9162 {
9163 	struct bpf_func_state *state;
9164 	struct bpf_reg_state *reg;
9165 	int err;
9166 
9167 	err = release_reference_state(cur_func(env), ref_obj_id);
9168 	if (err)
9169 		return err;
9170 
9171 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9172 		if (reg->ref_obj_id == ref_obj_id)
9173 			mark_reg_invalid(env, reg);
9174 	}));
9175 
9176 	return 0;
9177 }
9178 
9179 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
9180 {
9181 	struct bpf_func_state *unused;
9182 	struct bpf_reg_state *reg;
9183 
9184 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
9185 		if (type_is_non_owning_ref(reg->type))
9186 			mark_reg_invalid(env, reg);
9187 	}));
9188 }
9189 
9190 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
9191 				    struct bpf_reg_state *regs)
9192 {
9193 	int i;
9194 
9195 	/* after the call registers r0 - r5 were scratched */
9196 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9197 		mark_reg_not_init(env, regs, caller_saved[i]);
9198 		__check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK);
9199 	}
9200 }
9201 
9202 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
9203 				   struct bpf_func_state *caller,
9204 				   struct bpf_func_state *callee,
9205 				   int insn_idx);
9206 
9207 static int set_callee_state(struct bpf_verifier_env *env,
9208 			    struct bpf_func_state *caller,
9209 			    struct bpf_func_state *callee, int insn_idx);
9210 
9211 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite,
9212 			    set_callee_state_fn set_callee_state_cb,
9213 			    struct bpf_verifier_state *state)
9214 {
9215 	struct bpf_func_state *caller, *callee;
9216 	int err;
9217 
9218 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
9219 		verbose(env, "the call stack of %d frames is too deep\n",
9220 			state->curframe + 2);
9221 		return -E2BIG;
9222 	}
9223 
9224 	if (state->frame[state->curframe + 1]) {
9225 		verbose(env, "verifier bug. Frame %d already allocated\n",
9226 			state->curframe + 1);
9227 		return -EFAULT;
9228 	}
9229 
9230 	caller = state->frame[state->curframe];
9231 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
9232 	if (!callee)
9233 		return -ENOMEM;
9234 	state->frame[state->curframe + 1] = callee;
9235 
9236 	/* callee cannot access r0, r6 - r9 for reading and has to write
9237 	 * into its own stack before reading from it.
9238 	 * callee can read/write into caller's stack
9239 	 */
9240 	init_func_state(env, callee,
9241 			/* remember the callsite, it will be used by bpf_exit */
9242 			callsite,
9243 			state->curframe + 1 /* frameno within this callchain */,
9244 			subprog /* subprog number within this prog */);
9245 	/* Transfer references to the callee */
9246 	err = copy_reference_state(callee, caller);
9247 	err = err ?: set_callee_state_cb(env, caller, callee, callsite);
9248 	if (err)
9249 		goto err_out;
9250 
9251 	/* only increment it after check_reg_arg() finished */
9252 	state->curframe++;
9253 
9254 	return 0;
9255 
9256 err_out:
9257 	free_func_state(callee);
9258 	state->frame[state->curframe + 1] = NULL;
9259 	return err;
9260 }
9261 
9262 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9263 			      int insn_idx, int subprog,
9264 			      set_callee_state_fn set_callee_state_cb)
9265 {
9266 	struct bpf_verifier_state *state = env->cur_state, *callback_state;
9267 	struct bpf_func_state *caller, *callee;
9268 	int err;
9269 
9270 	caller = state->frame[state->curframe];
9271 	err = btf_check_subprog_call(env, subprog, caller->regs);
9272 	if (err == -EFAULT)
9273 		return err;
9274 
9275 	/* set_callee_state is used for direct subprog calls, but we are
9276 	 * interested in validating only BPF helpers that can call subprogs as
9277 	 * callbacks
9278 	 */
9279 	env->subprog_info[subprog].is_cb = true;
9280 	if (bpf_pseudo_kfunc_call(insn) &&
9281 	    !is_sync_callback_calling_kfunc(insn->imm)) {
9282 		verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
9283 			func_id_name(insn->imm), insn->imm);
9284 		return -EFAULT;
9285 	} else if (!bpf_pseudo_kfunc_call(insn) &&
9286 		   !is_callback_calling_function(insn->imm)) { /* helper */
9287 		verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
9288 			func_id_name(insn->imm), insn->imm);
9289 		return -EFAULT;
9290 	}
9291 
9292 	if (insn->code == (BPF_JMP | BPF_CALL) &&
9293 	    insn->src_reg == 0 &&
9294 	    insn->imm == BPF_FUNC_timer_set_callback) {
9295 		struct bpf_verifier_state *async_cb;
9296 
9297 		/* there is no real recursion here. timer callbacks are async */
9298 		env->subprog_info[subprog].is_async_cb = true;
9299 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
9300 					 insn_idx, subprog);
9301 		if (!async_cb)
9302 			return -EFAULT;
9303 		callee = async_cb->frame[0];
9304 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
9305 
9306 		/* Convert bpf_timer_set_callback() args into timer callback args */
9307 		err = set_callee_state_cb(env, caller, callee, insn_idx);
9308 		if (err)
9309 			return err;
9310 
9311 		return 0;
9312 	}
9313 
9314 	/* for callback functions enqueue entry to callback and
9315 	 * proceed with next instruction within current frame.
9316 	 */
9317 	callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false);
9318 	if (!callback_state)
9319 		return -ENOMEM;
9320 
9321 	err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb,
9322 			       callback_state);
9323 	if (err)
9324 		return err;
9325 
9326 	callback_state->callback_unroll_depth++;
9327 	callback_state->frame[callback_state->curframe - 1]->callback_depth++;
9328 	caller->callback_depth = 0;
9329 	return 0;
9330 }
9331 
9332 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9333 			   int *insn_idx)
9334 {
9335 	struct bpf_verifier_state *state = env->cur_state;
9336 	struct bpf_func_state *caller;
9337 	int err, subprog, target_insn;
9338 
9339 	target_insn = *insn_idx + insn->imm + 1;
9340 	subprog = find_subprog(env, target_insn);
9341 	if (subprog < 0) {
9342 		verbose(env, "verifier bug. No program starts at insn %d\n", target_insn);
9343 		return -EFAULT;
9344 	}
9345 
9346 	caller = state->frame[state->curframe];
9347 	err = btf_check_subprog_call(env, subprog, caller->regs);
9348 	if (err == -EFAULT)
9349 		return err;
9350 	if (subprog_is_global(env, subprog)) {
9351 		const char *sub_name = subprog_name(env, subprog);
9352 
9353 		if (err) {
9354 			verbose(env, "Caller passes invalid args into func#%d ('%s')\n",
9355 				subprog, sub_name);
9356 			return err;
9357 		}
9358 
9359 		verbose(env, "Func#%d ('%s') is global and assumed valid.\n",
9360 			subprog, sub_name);
9361 		/* mark global subprog for verifying after main prog */
9362 		subprog_aux(env, subprog)->called = true;
9363 		clear_caller_saved_regs(env, caller->regs);
9364 
9365 		/* All global functions return a 64-bit SCALAR_VALUE */
9366 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
9367 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9368 
9369 		/* continue with next insn after call */
9370 		return 0;
9371 	}
9372 
9373 	/* for regular function entry setup new frame and continue
9374 	 * from that frame.
9375 	 */
9376 	err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state);
9377 	if (err)
9378 		return err;
9379 
9380 	clear_caller_saved_regs(env, caller->regs);
9381 
9382 	/* and go analyze first insn of the callee */
9383 	*insn_idx = env->subprog_info[subprog].start - 1;
9384 
9385 	if (env->log.level & BPF_LOG_LEVEL) {
9386 		verbose(env, "caller:\n");
9387 		print_verifier_state(env, caller, true);
9388 		verbose(env, "callee:\n");
9389 		print_verifier_state(env, state->frame[state->curframe], true);
9390 	}
9391 
9392 	return 0;
9393 }
9394 
9395 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
9396 				   struct bpf_func_state *caller,
9397 				   struct bpf_func_state *callee)
9398 {
9399 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
9400 	 *      void *callback_ctx, u64 flags);
9401 	 * callback_fn(struct bpf_map *map, void *key, void *value,
9402 	 *      void *callback_ctx);
9403 	 */
9404 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9405 
9406 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9407 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9408 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9409 
9410 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9411 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9412 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9413 
9414 	/* pointer to stack or null */
9415 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9416 
9417 	/* unused */
9418 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9419 	return 0;
9420 }
9421 
9422 static int set_callee_state(struct bpf_verifier_env *env,
9423 			    struct bpf_func_state *caller,
9424 			    struct bpf_func_state *callee, int insn_idx)
9425 {
9426 	int i;
9427 
9428 	/* copy r1 - r5 args that callee can access.  The copy includes parent
9429 	 * pointers, which connects us up to the liveness chain
9430 	 */
9431 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9432 		callee->regs[i] = caller->regs[i];
9433 	return 0;
9434 }
9435 
9436 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9437 				       struct bpf_func_state *caller,
9438 				       struct bpf_func_state *callee,
9439 				       int insn_idx)
9440 {
9441 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9442 	struct bpf_map *map;
9443 	int err;
9444 
9445 	if (bpf_map_ptr_poisoned(insn_aux)) {
9446 		verbose(env, "tail_call abusing map_ptr\n");
9447 		return -EINVAL;
9448 	}
9449 
9450 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
9451 	if (!map->ops->map_set_for_each_callback_args ||
9452 	    !map->ops->map_for_each_callback) {
9453 		verbose(env, "callback function not allowed for map\n");
9454 		return -ENOTSUPP;
9455 	}
9456 
9457 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9458 	if (err)
9459 		return err;
9460 
9461 	callee->in_callback_fn = true;
9462 	callee->callback_ret_range = retval_range(0, 1);
9463 	return 0;
9464 }
9465 
9466 static int set_loop_callback_state(struct bpf_verifier_env *env,
9467 				   struct bpf_func_state *caller,
9468 				   struct bpf_func_state *callee,
9469 				   int insn_idx)
9470 {
9471 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9472 	 *	    u64 flags);
9473 	 * callback_fn(u32 index, void *callback_ctx);
9474 	 */
9475 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9476 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9477 
9478 	/* unused */
9479 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9480 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9481 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9482 
9483 	callee->in_callback_fn = true;
9484 	callee->callback_ret_range = retval_range(0, 1);
9485 	return 0;
9486 }
9487 
9488 static int set_timer_callback_state(struct bpf_verifier_env *env,
9489 				    struct bpf_func_state *caller,
9490 				    struct bpf_func_state *callee,
9491 				    int insn_idx)
9492 {
9493 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9494 
9495 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9496 	 * callback_fn(struct bpf_map *map, void *key, void *value);
9497 	 */
9498 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9499 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9500 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
9501 
9502 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9503 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9504 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
9505 
9506 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9507 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9508 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
9509 
9510 	/* unused */
9511 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9512 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9513 	callee->in_async_callback_fn = true;
9514 	callee->callback_ret_range = retval_range(0, 1);
9515 	return 0;
9516 }
9517 
9518 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9519 				       struct bpf_func_state *caller,
9520 				       struct bpf_func_state *callee,
9521 				       int insn_idx)
9522 {
9523 	/* bpf_find_vma(struct task_struct *task, u64 addr,
9524 	 *               void *callback_fn, void *callback_ctx, u64 flags)
9525 	 * (callback_fn)(struct task_struct *task,
9526 	 *               struct vm_area_struct *vma, void *callback_ctx);
9527 	 */
9528 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9529 
9530 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9531 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9532 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
9533 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
9534 
9535 	/* pointer to stack or null */
9536 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9537 
9538 	/* unused */
9539 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9540 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9541 	callee->in_callback_fn = true;
9542 	callee->callback_ret_range = retval_range(0, 1);
9543 	return 0;
9544 }
9545 
9546 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9547 					   struct bpf_func_state *caller,
9548 					   struct bpf_func_state *callee,
9549 					   int insn_idx)
9550 {
9551 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9552 	 *			  callback_ctx, u64 flags);
9553 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
9554 	 */
9555 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
9556 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
9557 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9558 
9559 	/* unused */
9560 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9561 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9562 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9563 
9564 	callee->in_callback_fn = true;
9565 	callee->callback_ret_range = retval_range(0, 1);
9566 	return 0;
9567 }
9568 
9569 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
9570 					 struct bpf_func_state *caller,
9571 					 struct bpf_func_state *callee,
9572 					 int insn_idx)
9573 {
9574 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
9575 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
9576 	 *
9577 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
9578 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
9579 	 * by this point, so look at 'root'
9580 	 */
9581 	struct btf_field *field;
9582 
9583 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
9584 				      BPF_RB_ROOT);
9585 	if (!field || !field->graph_root.value_btf_id)
9586 		return -EFAULT;
9587 
9588 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
9589 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
9590 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
9591 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
9592 
9593 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9594 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9595 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9596 	callee->in_callback_fn = true;
9597 	callee->callback_ret_range = retval_range(0, 1);
9598 	return 0;
9599 }
9600 
9601 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
9602 
9603 /* Are we currently verifying the callback for a rbtree helper that must
9604  * be called with lock held? If so, no need to complain about unreleased
9605  * lock
9606  */
9607 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
9608 {
9609 	struct bpf_verifier_state *state = env->cur_state;
9610 	struct bpf_insn *insn = env->prog->insnsi;
9611 	struct bpf_func_state *callee;
9612 	int kfunc_btf_id;
9613 
9614 	if (!state->curframe)
9615 		return false;
9616 
9617 	callee = state->frame[state->curframe];
9618 
9619 	if (!callee->in_callback_fn)
9620 		return false;
9621 
9622 	kfunc_btf_id = insn[callee->callsite].imm;
9623 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
9624 }
9625 
9626 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg)
9627 {
9628 	return range.minval <= reg->smin_value && reg->smax_value <= range.maxval;
9629 }
9630 
9631 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
9632 {
9633 	struct bpf_verifier_state *state = env->cur_state, *prev_st;
9634 	struct bpf_func_state *caller, *callee;
9635 	struct bpf_reg_state *r0;
9636 	bool in_callback_fn;
9637 	int err;
9638 
9639 	callee = state->frame[state->curframe];
9640 	r0 = &callee->regs[BPF_REG_0];
9641 	if (r0->type == PTR_TO_STACK) {
9642 		/* technically it's ok to return caller's stack pointer
9643 		 * (or caller's caller's pointer) back to the caller,
9644 		 * since these pointers are valid. Only current stack
9645 		 * pointer will be invalid as soon as function exits,
9646 		 * but let's be conservative
9647 		 */
9648 		verbose(env, "cannot return stack pointer to the caller\n");
9649 		return -EINVAL;
9650 	}
9651 
9652 	caller = state->frame[state->curframe - 1];
9653 	if (callee->in_callback_fn) {
9654 		if (r0->type != SCALAR_VALUE) {
9655 			verbose(env, "R0 not a scalar value\n");
9656 			return -EACCES;
9657 		}
9658 
9659 		/* we are going to rely on register's precise value */
9660 		err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
9661 		err = err ?: mark_chain_precision(env, BPF_REG_0);
9662 		if (err)
9663 			return err;
9664 
9665 		/* enforce R0 return value range */
9666 		if (!retval_range_within(callee->callback_ret_range, r0)) {
9667 			verbose_invalid_scalar(env, r0, callee->callback_ret_range,
9668 					       "At callback return", "R0");
9669 			return -EINVAL;
9670 		}
9671 		if (!calls_callback(env, callee->callsite)) {
9672 			verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n",
9673 				*insn_idx, callee->callsite);
9674 			return -EFAULT;
9675 		}
9676 	} else {
9677 		/* return to the caller whatever r0 had in the callee */
9678 		caller->regs[BPF_REG_0] = *r0;
9679 	}
9680 
9681 	/* callback_fn frame should have released its own additions to parent's
9682 	 * reference state at this point, or check_reference_leak would
9683 	 * complain, hence it must be the same as the caller. There is no need
9684 	 * to copy it back.
9685 	 */
9686 	if (!callee->in_callback_fn) {
9687 		/* Transfer references to the caller */
9688 		err = copy_reference_state(caller, callee);
9689 		if (err)
9690 			return err;
9691 	}
9692 
9693 	/* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite,
9694 	 * there function call logic would reschedule callback visit. If iteration
9695 	 * converges is_state_visited() would prune that visit eventually.
9696 	 */
9697 	in_callback_fn = callee->in_callback_fn;
9698 	if (in_callback_fn)
9699 		*insn_idx = callee->callsite;
9700 	else
9701 		*insn_idx = callee->callsite + 1;
9702 
9703 	if (env->log.level & BPF_LOG_LEVEL) {
9704 		verbose(env, "returning from callee:\n");
9705 		print_verifier_state(env, callee, true);
9706 		verbose(env, "to caller at %d:\n", *insn_idx);
9707 		print_verifier_state(env, caller, true);
9708 	}
9709 	/* clear everything in the callee. In case of exceptional exits using
9710 	 * bpf_throw, this will be done by copy_verifier_state for extra frames. */
9711 	free_func_state(callee);
9712 	state->frame[state->curframe--] = NULL;
9713 
9714 	/* for callbacks widen imprecise scalars to make programs like below verify:
9715 	 *
9716 	 *   struct ctx { int i; }
9717 	 *   void cb(int idx, struct ctx *ctx) { ctx->i++; ... }
9718 	 *   ...
9719 	 *   struct ctx = { .i = 0; }
9720 	 *   bpf_loop(100, cb, &ctx, 0);
9721 	 *
9722 	 * This is similar to what is done in process_iter_next_call() for open
9723 	 * coded iterators.
9724 	 */
9725 	prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL;
9726 	if (prev_st) {
9727 		err = widen_imprecise_scalars(env, prev_st, state);
9728 		if (err)
9729 			return err;
9730 	}
9731 	return 0;
9732 }
9733 
9734 static int do_refine_retval_range(struct bpf_verifier_env *env,
9735 				  struct bpf_reg_state *regs, int ret_type,
9736 				  int func_id,
9737 				  struct bpf_call_arg_meta *meta)
9738 {
9739 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
9740 
9741 	if (ret_type != RET_INTEGER)
9742 		return 0;
9743 
9744 	switch (func_id) {
9745 	case BPF_FUNC_get_stack:
9746 	case BPF_FUNC_get_task_stack:
9747 	case BPF_FUNC_probe_read_str:
9748 	case BPF_FUNC_probe_read_kernel_str:
9749 	case BPF_FUNC_probe_read_user_str:
9750 		ret_reg->smax_value = meta->msize_max_value;
9751 		ret_reg->s32_max_value = meta->msize_max_value;
9752 		ret_reg->smin_value = -MAX_ERRNO;
9753 		ret_reg->s32_min_value = -MAX_ERRNO;
9754 		reg_bounds_sync(ret_reg);
9755 		break;
9756 	case BPF_FUNC_get_smp_processor_id:
9757 		ret_reg->umax_value = nr_cpu_ids - 1;
9758 		ret_reg->u32_max_value = nr_cpu_ids - 1;
9759 		ret_reg->smax_value = nr_cpu_ids - 1;
9760 		ret_reg->s32_max_value = nr_cpu_ids - 1;
9761 		ret_reg->umin_value = 0;
9762 		ret_reg->u32_min_value = 0;
9763 		ret_reg->smin_value = 0;
9764 		ret_reg->s32_min_value = 0;
9765 		reg_bounds_sync(ret_reg);
9766 		break;
9767 	}
9768 
9769 	return reg_bounds_sanity_check(env, ret_reg, "retval");
9770 }
9771 
9772 static int
9773 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9774 		int func_id, int insn_idx)
9775 {
9776 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9777 	struct bpf_map *map = meta->map_ptr;
9778 
9779 	if (func_id != BPF_FUNC_tail_call &&
9780 	    func_id != BPF_FUNC_map_lookup_elem &&
9781 	    func_id != BPF_FUNC_map_update_elem &&
9782 	    func_id != BPF_FUNC_map_delete_elem &&
9783 	    func_id != BPF_FUNC_map_push_elem &&
9784 	    func_id != BPF_FUNC_map_pop_elem &&
9785 	    func_id != BPF_FUNC_map_peek_elem &&
9786 	    func_id != BPF_FUNC_for_each_map_elem &&
9787 	    func_id != BPF_FUNC_redirect_map &&
9788 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
9789 		return 0;
9790 
9791 	if (map == NULL) {
9792 		verbose(env, "kernel subsystem misconfigured verifier\n");
9793 		return -EINVAL;
9794 	}
9795 
9796 	/* In case of read-only, some additional restrictions
9797 	 * need to be applied in order to prevent altering the
9798 	 * state of the map from program side.
9799 	 */
9800 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
9801 	    (func_id == BPF_FUNC_map_delete_elem ||
9802 	     func_id == BPF_FUNC_map_update_elem ||
9803 	     func_id == BPF_FUNC_map_push_elem ||
9804 	     func_id == BPF_FUNC_map_pop_elem)) {
9805 		verbose(env, "write into map forbidden\n");
9806 		return -EACCES;
9807 	}
9808 
9809 	if (!BPF_MAP_PTR(aux->map_ptr_state))
9810 		bpf_map_ptr_store(aux, meta->map_ptr,
9811 				  !meta->map_ptr->bypass_spec_v1);
9812 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
9813 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
9814 				  !meta->map_ptr->bypass_spec_v1);
9815 	return 0;
9816 }
9817 
9818 static int
9819 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9820 		int func_id, int insn_idx)
9821 {
9822 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9823 	struct bpf_reg_state *regs = cur_regs(env), *reg;
9824 	struct bpf_map *map = meta->map_ptr;
9825 	u64 val, max;
9826 	int err;
9827 
9828 	if (func_id != BPF_FUNC_tail_call)
9829 		return 0;
9830 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
9831 		verbose(env, "kernel subsystem misconfigured verifier\n");
9832 		return -EINVAL;
9833 	}
9834 
9835 	reg = &regs[BPF_REG_3];
9836 	val = reg->var_off.value;
9837 	max = map->max_entries;
9838 
9839 	if (!(is_reg_const(reg, false) && val < max)) {
9840 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9841 		return 0;
9842 	}
9843 
9844 	err = mark_chain_precision(env, BPF_REG_3);
9845 	if (err)
9846 		return err;
9847 	if (bpf_map_key_unseen(aux))
9848 		bpf_map_key_store(aux, val);
9849 	else if (!bpf_map_key_poisoned(aux) &&
9850 		  bpf_map_key_immediate(aux) != val)
9851 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9852 	return 0;
9853 }
9854 
9855 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit)
9856 {
9857 	struct bpf_func_state *state = cur_func(env);
9858 	bool refs_lingering = false;
9859 	int i;
9860 
9861 	if (!exception_exit && state->frameno && !state->in_callback_fn)
9862 		return 0;
9863 
9864 	for (i = 0; i < state->acquired_refs; i++) {
9865 		if (!exception_exit && state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
9866 			continue;
9867 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
9868 			state->refs[i].id, state->refs[i].insn_idx);
9869 		refs_lingering = true;
9870 	}
9871 	return refs_lingering ? -EINVAL : 0;
9872 }
9873 
9874 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
9875 				   struct bpf_reg_state *regs)
9876 {
9877 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
9878 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
9879 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
9880 	struct bpf_bprintf_data data = {};
9881 	int err, fmt_map_off, num_args;
9882 	u64 fmt_addr;
9883 	char *fmt;
9884 
9885 	/* data must be an array of u64 */
9886 	if (data_len_reg->var_off.value % 8)
9887 		return -EINVAL;
9888 	num_args = data_len_reg->var_off.value / 8;
9889 
9890 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
9891 	 * and map_direct_value_addr is set.
9892 	 */
9893 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
9894 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
9895 						  fmt_map_off);
9896 	if (err) {
9897 		verbose(env, "verifier bug\n");
9898 		return -EFAULT;
9899 	}
9900 	fmt = (char *)(long)fmt_addr + fmt_map_off;
9901 
9902 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
9903 	 * can focus on validating the format specifiers.
9904 	 */
9905 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
9906 	if (err < 0)
9907 		verbose(env, "Invalid format string\n");
9908 
9909 	return err;
9910 }
9911 
9912 static int check_get_func_ip(struct bpf_verifier_env *env)
9913 {
9914 	enum bpf_prog_type type = resolve_prog_type(env->prog);
9915 	int func_id = BPF_FUNC_get_func_ip;
9916 
9917 	if (type == BPF_PROG_TYPE_TRACING) {
9918 		if (!bpf_prog_has_trampoline(env->prog)) {
9919 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
9920 				func_id_name(func_id), func_id);
9921 			return -ENOTSUPP;
9922 		}
9923 		return 0;
9924 	} else if (type == BPF_PROG_TYPE_KPROBE) {
9925 		return 0;
9926 	}
9927 
9928 	verbose(env, "func %s#%d not supported for program type %d\n",
9929 		func_id_name(func_id), func_id, type);
9930 	return -ENOTSUPP;
9931 }
9932 
9933 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
9934 {
9935 	return &env->insn_aux_data[env->insn_idx];
9936 }
9937 
9938 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
9939 {
9940 	struct bpf_reg_state *regs = cur_regs(env);
9941 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
9942 	bool reg_is_null = register_is_null(reg);
9943 
9944 	if (reg_is_null)
9945 		mark_chain_precision(env, BPF_REG_4);
9946 
9947 	return reg_is_null;
9948 }
9949 
9950 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
9951 {
9952 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
9953 
9954 	if (!state->initialized) {
9955 		state->initialized = 1;
9956 		state->fit_for_inline = loop_flag_is_zero(env);
9957 		state->callback_subprogno = subprogno;
9958 		return;
9959 	}
9960 
9961 	if (!state->fit_for_inline)
9962 		return;
9963 
9964 	state->fit_for_inline = (loop_flag_is_zero(env) &&
9965 				 state->callback_subprogno == subprogno);
9966 }
9967 
9968 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9969 			     int *insn_idx_p)
9970 {
9971 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9972 	bool returns_cpu_specific_alloc_ptr = false;
9973 	const struct bpf_func_proto *fn = NULL;
9974 	enum bpf_return_type ret_type;
9975 	enum bpf_type_flag ret_flag;
9976 	struct bpf_reg_state *regs;
9977 	struct bpf_call_arg_meta meta;
9978 	int insn_idx = *insn_idx_p;
9979 	bool changes_data;
9980 	int i, err, func_id;
9981 
9982 	/* find function prototype */
9983 	func_id = insn->imm;
9984 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
9985 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
9986 			func_id);
9987 		return -EINVAL;
9988 	}
9989 
9990 	if (env->ops->get_func_proto)
9991 		fn = env->ops->get_func_proto(func_id, env->prog);
9992 	if (!fn) {
9993 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
9994 			func_id);
9995 		return -EINVAL;
9996 	}
9997 
9998 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
9999 	if (!env->prog->gpl_compatible && fn->gpl_only) {
10000 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
10001 		return -EINVAL;
10002 	}
10003 
10004 	if (fn->allowed && !fn->allowed(env->prog)) {
10005 		verbose(env, "helper call is not allowed in probe\n");
10006 		return -EINVAL;
10007 	}
10008 
10009 	if (!env->prog->aux->sleepable && fn->might_sleep) {
10010 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
10011 		return -EINVAL;
10012 	}
10013 
10014 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
10015 	changes_data = bpf_helper_changes_pkt_data(fn->func);
10016 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
10017 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
10018 			func_id_name(func_id), func_id);
10019 		return -EINVAL;
10020 	}
10021 
10022 	memset(&meta, 0, sizeof(meta));
10023 	meta.pkt_access = fn->pkt_access;
10024 
10025 	err = check_func_proto(fn, func_id);
10026 	if (err) {
10027 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
10028 			func_id_name(func_id), func_id);
10029 		return err;
10030 	}
10031 
10032 	if (env->cur_state->active_rcu_lock) {
10033 		if (fn->might_sleep) {
10034 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
10035 				func_id_name(func_id), func_id);
10036 			return -EINVAL;
10037 		}
10038 
10039 		if (env->prog->aux->sleepable && is_storage_get_function(func_id))
10040 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10041 	}
10042 
10043 	meta.func_id = func_id;
10044 	/* check args */
10045 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
10046 		err = check_func_arg(env, i, &meta, fn, insn_idx);
10047 		if (err)
10048 			return err;
10049 	}
10050 
10051 	err = record_func_map(env, &meta, func_id, insn_idx);
10052 	if (err)
10053 		return err;
10054 
10055 	err = record_func_key(env, &meta, func_id, insn_idx);
10056 	if (err)
10057 		return err;
10058 
10059 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
10060 	 * is inferred from register state.
10061 	 */
10062 	for (i = 0; i < meta.access_size; i++) {
10063 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
10064 				       BPF_WRITE, -1, false, false);
10065 		if (err)
10066 			return err;
10067 	}
10068 
10069 	regs = cur_regs(env);
10070 
10071 	if (meta.release_regno) {
10072 		err = -EINVAL;
10073 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
10074 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
10075 		 * is safe to do directly.
10076 		 */
10077 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
10078 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
10079 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
10080 				return -EFAULT;
10081 			}
10082 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
10083 		} else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) {
10084 			u32 ref_obj_id = meta.ref_obj_id;
10085 			bool in_rcu = in_rcu_cs(env);
10086 			struct bpf_func_state *state;
10087 			struct bpf_reg_state *reg;
10088 
10089 			err = release_reference_state(cur_func(env), ref_obj_id);
10090 			if (!err) {
10091 				bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
10092 					if (reg->ref_obj_id == ref_obj_id) {
10093 						if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) {
10094 							reg->ref_obj_id = 0;
10095 							reg->type &= ~MEM_ALLOC;
10096 							reg->type |= MEM_RCU;
10097 						} else {
10098 							mark_reg_invalid(env, reg);
10099 						}
10100 					}
10101 				}));
10102 			}
10103 		} else if (meta.ref_obj_id) {
10104 			err = release_reference(env, meta.ref_obj_id);
10105 		} else if (register_is_null(&regs[meta.release_regno])) {
10106 			/* meta.ref_obj_id can only be 0 if register that is meant to be
10107 			 * released is NULL, which must be > R0.
10108 			 */
10109 			err = 0;
10110 		}
10111 		if (err) {
10112 			verbose(env, "func %s#%d reference has not been acquired before\n",
10113 				func_id_name(func_id), func_id);
10114 			return err;
10115 		}
10116 	}
10117 
10118 	switch (func_id) {
10119 	case BPF_FUNC_tail_call:
10120 		err = check_reference_leak(env, false);
10121 		if (err) {
10122 			verbose(env, "tail_call would lead to reference leak\n");
10123 			return err;
10124 		}
10125 		break;
10126 	case BPF_FUNC_get_local_storage:
10127 		/* check that flags argument in get_local_storage(map, flags) is 0,
10128 		 * this is required because get_local_storage() can't return an error.
10129 		 */
10130 		if (!register_is_null(&regs[BPF_REG_2])) {
10131 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
10132 			return -EINVAL;
10133 		}
10134 		break;
10135 	case BPF_FUNC_for_each_map_elem:
10136 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10137 					 set_map_elem_callback_state);
10138 		break;
10139 	case BPF_FUNC_timer_set_callback:
10140 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10141 					 set_timer_callback_state);
10142 		break;
10143 	case BPF_FUNC_find_vma:
10144 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10145 					 set_find_vma_callback_state);
10146 		break;
10147 	case BPF_FUNC_snprintf:
10148 		err = check_bpf_snprintf_call(env, regs);
10149 		break;
10150 	case BPF_FUNC_loop:
10151 		update_loop_inline_state(env, meta.subprogno);
10152 		/* Verifier relies on R1 value to determine if bpf_loop() iteration
10153 		 * is finished, thus mark it precise.
10154 		 */
10155 		err = mark_chain_precision(env, BPF_REG_1);
10156 		if (err)
10157 			return err;
10158 		if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) {
10159 			err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10160 						 set_loop_callback_state);
10161 		} else {
10162 			cur_func(env)->callback_depth = 0;
10163 			if (env->log.level & BPF_LOG_LEVEL2)
10164 				verbose(env, "frame%d bpf_loop iteration limit reached\n",
10165 					env->cur_state->curframe);
10166 		}
10167 		break;
10168 	case BPF_FUNC_dynptr_from_mem:
10169 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
10170 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
10171 				reg_type_str(env, regs[BPF_REG_1].type));
10172 			return -EACCES;
10173 		}
10174 		break;
10175 	case BPF_FUNC_set_retval:
10176 		if (prog_type == BPF_PROG_TYPE_LSM &&
10177 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
10178 			if (!env->prog->aux->attach_func_proto->type) {
10179 				/* Make sure programs that attach to void
10180 				 * hooks don't try to modify return value.
10181 				 */
10182 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10183 				return -EINVAL;
10184 			}
10185 		}
10186 		break;
10187 	case BPF_FUNC_dynptr_data:
10188 	{
10189 		struct bpf_reg_state *reg;
10190 		int id, ref_obj_id;
10191 
10192 		reg = get_dynptr_arg_reg(env, fn, regs);
10193 		if (!reg)
10194 			return -EFAULT;
10195 
10196 
10197 		if (meta.dynptr_id) {
10198 			verbose(env, "verifier internal error: meta.dynptr_id already set\n");
10199 			return -EFAULT;
10200 		}
10201 		if (meta.ref_obj_id) {
10202 			verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
10203 			return -EFAULT;
10204 		}
10205 
10206 		id = dynptr_id(env, reg);
10207 		if (id < 0) {
10208 			verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10209 			return id;
10210 		}
10211 
10212 		ref_obj_id = dynptr_ref_obj_id(env, reg);
10213 		if (ref_obj_id < 0) {
10214 			verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
10215 			return ref_obj_id;
10216 		}
10217 
10218 		meta.dynptr_id = id;
10219 		meta.ref_obj_id = ref_obj_id;
10220 
10221 		break;
10222 	}
10223 	case BPF_FUNC_dynptr_write:
10224 	{
10225 		enum bpf_dynptr_type dynptr_type;
10226 		struct bpf_reg_state *reg;
10227 
10228 		reg = get_dynptr_arg_reg(env, fn, regs);
10229 		if (!reg)
10230 			return -EFAULT;
10231 
10232 		dynptr_type = dynptr_get_type(env, reg);
10233 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
10234 			return -EFAULT;
10235 
10236 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
10237 			/* this will trigger clear_all_pkt_pointers(), which will
10238 			 * invalidate all dynptr slices associated with the skb
10239 			 */
10240 			changes_data = true;
10241 
10242 		break;
10243 	}
10244 	case BPF_FUNC_per_cpu_ptr:
10245 	case BPF_FUNC_this_cpu_ptr:
10246 	{
10247 		struct bpf_reg_state *reg = &regs[BPF_REG_1];
10248 		const struct btf_type *type;
10249 
10250 		if (reg->type & MEM_RCU) {
10251 			type = btf_type_by_id(reg->btf, reg->btf_id);
10252 			if (!type || !btf_type_is_struct(type)) {
10253 				verbose(env, "Helper has invalid btf/btf_id in R1\n");
10254 				return -EFAULT;
10255 			}
10256 			returns_cpu_specific_alloc_ptr = true;
10257 			env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true;
10258 		}
10259 		break;
10260 	}
10261 	case BPF_FUNC_user_ringbuf_drain:
10262 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10263 					 set_user_ringbuf_callback_state);
10264 		break;
10265 	}
10266 
10267 	if (err)
10268 		return err;
10269 
10270 	/* reset caller saved regs */
10271 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
10272 		mark_reg_not_init(env, regs, caller_saved[i]);
10273 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10274 	}
10275 
10276 	/* helper call returns 64-bit value. */
10277 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10278 
10279 	/* update return register (already marked as written above) */
10280 	ret_type = fn->ret_type;
10281 	ret_flag = type_flag(ret_type);
10282 
10283 	switch (base_type(ret_type)) {
10284 	case RET_INTEGER:
10285 		/* sets type to SCALAR_VALUE */
10286 		mark_reg_unknown(env, regs, BPF_REG_0);
10287 		break;
10288 	case RET_VOID:
10289 		regs[BPF_REG_0].type = NOT_INIT;
10290 		break;
10291 	case RET_PTR_TO_MAP_VALUE:
10292 		/* There is no offset yet applied, variable or fixed */
10293 		mark_reg_known_zero(env, regs, BPF_REG_0);
10294 		/* remember map_ptr, so that check_map_access()
10295 		 * can check 'value_size' boundary of memory access
10296 		 * to map element returned from bpf_map_lookup_elem()
10297 		 */
10298 		if (meta.map_ptr == NULL) {
10299 			verbose(env,
10300 				"kernel subsystem misconfigured verifier\n");
10301 			return -EINVAL;
10302 		}
10303 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
10304 		regs[BPF_REG_0].map_uid = meta.map_uid;
10305 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
10306 		if (!type_may_be_null(ret_type) &&
10307 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
10308 			regs[BPF_REG_0].id = ++env->id_gen;
10309 		}
10310 		break;
10311 	case RET_PTR_TO_SOCKET:
10312 		mark_reg_known_zero(env, regs, BPF_REG_0);
10313 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
10314 		break;
10315 	case RET_PTR_TO_SOCK_COMMON:
10316 		mark_reg_known_zero(env, regs, BPF_REG_0);
10317 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
10318 		break;
10319 	case RET_PTR_TO_TCP_SOCK:
10320 		mark_reg_known_zero(env, regs, BPF_REG_0);
10321 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
10322 		break;
10323 	case RET_PTR_TO_MEM:
10324 		mark_reg_known_zero(env, regs, BPF_REG_0);
10325 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10326 		regs[BPF_REG_0].mem_size = meta.mem_size;
10327 		break;
10328 	case RET_PTR_TO_MEM_OR_BTF_ID:
10329 	{
10330 		const struct btf_type *t;
10331 
10332 		mark_reg_known_zero(env, regs, BPF_REG_0);
10333 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
10334 		if (!btf_type_is_struct(t)) {
10335 			u32 tsize;
10336 			const struct btf_type *ret;
10337 			const char *tname;
10338 
10339 			/* resolve the type size of ksym. */
10340 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
10341 			if (IS_ERR(ret)) {
10342 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
10343 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
10344 					tname, PTR_ERR(ret));
10345 				return -EINVAL;
10346 			}
10347 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10348 			regs[BPF_REG_0].mem_size = tsize;
10349 		} else {
10350 			if (returns_cpu_specific_alloc_ptr) {
10351 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU;
10352 			} else {
10353 				/* MEM_RDONLY may be carried from ret_flag, but it
10354 				 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
10355 				 * it will confuse the check of PTR_TO_BTF_ID in
10356 				 * check_mem_access().
10357 				 */
10358 				ret_flag &= ~MEM_RDONLY;
10359 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10360 			}
10361 
10362 			regs[BPF_REG_0].btf = meta.ret_btf;
10363 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
10364 		}
10365 		break;
10366 	}
10367 	case RET_PTR_TO_BTF_ID:
10368 	{
10369 		struct btf *ret_btf;
10370 		int ret_btf_id;
10371 
10372 		mark_reg_known_zero(env, regs, BPF_REG_0);
10373 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10374 		if (func_id == BPF_FUNC_kptr_xchg) {
10375 			ret_btf = meta.kptr_field->kptr.btf;
10376 			ret_btf_id = meta.kptr_field->kptr.btf_id;
10377 			if (!btf_is_kernel(ret_btf)) {
10378 				regs[BPF_REG_0].type |= MEM_ALLOC;
10379 				if (meta.kptr_field->type == BPF_KPTR_PERCPU)
10380 					regs[BPF_REG_0].type |= MEM_PERCPU;
10381 			}
10382 		} else {
10383 			if (fn->ret_btf_id == BPF_PTR_POISON) {
10384 				verbose(env, "verifier internal error:");
10385 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
10386 					func_id_name(func_id));
10387 				return -EINVAL;
10388 			}
10389 			ret_btf = btf_vmlinux;
10390 			ret_btf_id = *fn->ret_btf_id;
10391 		}
10392 		if (ret_btf_id == 0) {
10393 			verbose(env, "invalid return type %u of func %s#%d\n",
10394 				base_type(ret_type), func_id_name(func_id),
10395 				func_id);
10396 			return -EINVAL;
10397 		}
10398 		regs[BPF_REG_0].btf = ret_btf;
10399 		regs[BPF_REG_0].btf_id = ret_btf_id;
10400 		break;
10401 	}
10402 	default:
10403 		verbose(env, "unknown return type %u of func %s#%d\n",
10404 			base_type(ret_type), func_id_name(func_id), func_id);
10405 		return -EINVAL;
10406 	}
10407 
10408 	if (type_may_be_null(regs[BPF_REG_0].type))
10409 		regs[BPF_REG_0].id = ++env->id_gen;
10410 
10411 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
10412 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
10413 			func_id_name(func_id), func_id);
10414 		return -EFAULT;
10415 	}
10416 
10417 	if (is_dynptr_ref_function(func_id))
10418 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
10419 
10420 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
10421 		/* For release_reference() */
10422 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
10423 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
10424 		int id = acquire_reference_state(env, insn_idx);
10425 
10426 		if (id < 0)
10427 			return id;
10428 		/* For mark_ptr_or_null_reg() */
10429 		regs[BPF_REG_0].id = id;
10430 		/* For release_reference() */
10431 		regs[BPF_REG_0].ref_obj_id = id;
10432 	}
10433 
10434 	err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta);
10435 	if (err)
10436 		return err;
10437 
10438 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
10439 	if (err)
10440 		return err;
10441 
10442 	if ((func_id == BPF_FUNC_get_stack ||
10443 	     func_id == BPF_FUNC_get_task_stack) &&
10444 	    !env->prog->has_callchain_buf) {
10445 		const char *err_str;
10446 
10447 #ifdef CONFIG_PERF_EVENTS
10448 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
10449 		err_str = "cannot get callchain buffer for func %s#%d\n";
10450 #else
10451 		err = -ENOTSUPP;
10452 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
10453 #endif
10454 		if (err) {
10455 			verbose(env, err_str, func_id_name(func_id), func_id);
10456 			return err;
10457 		}
10458 
10459 		env->prog->has_callchain_buf = true;
10460 	}
10461 
10462 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
10463 		env->prog->call_get_stack = true;
10464 
10465 	if (func_id == BPF_FUNC_get_func_ip) {
10466 		if (check_get_func_ip(env))
10467 			return -ENOTSUPP;
10468 		env->prog->call_get_func_ip = true;
10469 	}
10470 
10471 	if (changes_data)
10472 		clear_all_pkt_pointers(env);
10473 	return 0;
10474 }
10475 
10476 /* mark_btf_func_reg_size() is used when the reg size is determined by
10477  * the BTF func_proto's return value size and argument.
10478  */
10479 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
10480 				   size_t reg_size)
10481 {
10482 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
10483 
10484 	if (regno == BPF_REG_0) {
10485 		/* Function return value */
10486 		reg->live |= REG_LIVE_WRITTEN;
10487 		reg->subreg_def = reg_size == sizeof(u64) ?
10488 			DEF_NOT_SUBREG : env->insn_idx + 1;
10489 	} else {
10490 		/* Function argument */
10491 		if (reg_size == sizeof(u64)) {
10492 			mark_insn_zext(env, reg);
10493 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
10494 		} else {
10495 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
10496 		}
10497 	}
10498 }
10499 
10500 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10501 {
10502 	return meta->kfunc_flags & KF_ACQUIRE;
10503 }
10504 
10505 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10506 {
10507 	return meta->kfunc_flags & KF_RELEASE;
10508 }
10509 
10510 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10511 {
10512 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10513 }
10514 
10515 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10516 {
10517 	return meta->kfunc_flags & KF_SLEEPABLE;
10518 }
10519 
10520 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10521 {
10522 	return meta->kfunc_flags & KF_DESTRUCTIVE;
10523 }
10524 
10525 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10526 {
10527 	return meta->kfunc_flags & KF_RCU;
10528 }
10529 
10530 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta)
10531 {
10532 	return meta->kfunc_flags & KF_RCU_PROTECTED;
10533 }
10534 
10535 static bool __kfunc_param_match_suffix(const struct btf *btf,
10536 				       const struct btf_param *arg,
10537 				       const char *suffix)
10538 {
10539 	int suffix_len = strlen(suffix), len;
10540 	const char *param_name;
10541 
10542 	/* In the future, this can be ported to use BTF tagging */
10543 	param_name = btf_name_by_offset(btf, arg->name_off);
10544 	if (str_is_empty(param_name))
10545 		return false;
10546 	len = strlen(param_name);
10547 	if (len < suffix_len)
10548 		return false;
10549 	param_name += len - suffix_len;
10550 	return !strncmp(param_name, suffix, suffix_len);
10551 }
10552 
10553 static bool is_kfunc_arg_mem_size(const struct btf *btf,
10554 				  const struct btf_param *arg,
10555 				  const struct bpf_reg_state *reg)
10556 {
10557 	const struct btf_type *t;
10558 
10559 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10560 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10561 		return false;
10562 
10563 	return __kfunc_param_match_suffix(btf, arg, "__sz");
10564 }
10565 
10566 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
10567 					const struct btf_param *arg,
10568 					const struct bpf_reg_state *reg)
10569 {
10570 	const struct btf_type *t;
10571 
10572 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10573 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10574 		return false;
10575 
10576 	return __kfunc_param_match_suffix(btf, arg, "__szk");
10577 }
10578 
10579 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
10580 {
10581 	return __kfunc_param_match_suffix(btf, arg, "__opt");
10582 }
10583 
10584 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
10585 {
10586 	return __kfunc_param_match_suffix(btf, arg, "__k");
10587 }
10588 
10589 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
10590 {
10591 	return __kfunc_param_match_suffix(btf, arg, "__ign");
10592 }
10593 
10594 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
10595 {
10596 	return __kfunc_param_match_suffix(btf, arg, "__alloc");
10597 }
10598 
10599 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
10600 {
10601 	return __kfunc_param_match_suffix(btf, arg, "__uninit");
10602 }
10603 
10604 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
10605 {
10606 	return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr");
10607 }
10608 
10609 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg)
10610 {
10611 	return __kfunc_param_match_suffix(btf, arg, "__nullable");
10612 }
10613 
10614 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg)
10615 {
10616 	return __kfunc_param_match_suffix(btf, arg, "__str");
10617 }
10618 
10619 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
10620 					  const struct btf_param *arg,
10621 					  const char *name)
10622 {
10623 	int len, target_len = strlen(name);
10624 	const char *param_name;
10625 
10626 	param_name = btf_name_by_offset(btf, arg->name_off);
10627 	if (str_is_empty(param_name))
10628 		return false;
10629 	len = strlen(param_name);
10630 	if (len != target_len)
10631 		return false;
10632 	if (strcmp(param_name, name))
10633 		return false;
10634 
10635 	return true;
10636 }
10637 
10638 enum {
10639 	KF_ARG_DYNPTR_ID,
10640 	KF_ARG_LIST_HEAD_ID,
10641 	KF_ARG_LIST_NODE_ID,
10642 	KF_ARG_RB_ROOT_ID,
10643 	KF_ARG_RB_NODE_ID,
10644 };
10645 
10646 BTF_ID_LIST(kf_arg_btf_ids)
10647 BTF_ID(struct, bpf_dynptr_kern)
10648 BTF_ID(struct, bpf_list_head)
10649 BTF_ID(struct, bpf_list_node)
10650 BTF_ID(struct, bpf_rb_root)
10651 BTF_ID(struct, bpf_rb_node)
10652 
10653 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
10654 				    const struct btf_param *arg, int type)
10655 {
10656 	const struct btf_type *t;
10657 	u32 res_id;
10658 
10659 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10660 	if (!t)
10661 		return false;
10662 	if (!btf_type_is_ptr(t))
10663 		return false;
10664 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
10665 	if (!t)
10666 		return false;
10667 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
10668 }
10669 
10670 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
10671 {
10672 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
10673 }
10674 
10675 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
10676 {
10677 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
10678 }
10679 
10680 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
10681 {
10682 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
10683 }
10684 
10685 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
10686 {
10687 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
10688 }
10689 
10690 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
10691 {
10692 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
10693 }
10694 
10695 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
10696 				  const struct btf_param *arg)
10697 {
10698 	const struct btf_type *t;
10699 
10700 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
10701 	if (!t)
10702 		return false;
10703 
10704 	return true;
10705 }
10706 
10707 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
10708 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
10709 					const struct btf *btf,
10710 					const struct btf_type *t, int rec)
10711 {
10712 	const struct btf_type *member_type;
10713 	const struct btf_member *member;
10714 	u32 i;
10715 
10716 	if (!btf_type_is_struct(t))
10717 		return false;
10718 
10719 	for_each_member(i, t, member) {
10720 		const struct btf_array *array;
10721 
10722 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
10723 		if (btf_type_is_struct(member_type)) {
10724 			if (rec >= 3) {
10725 				verbose(env, "max struct nesting depth exceeded\n");
10726 				return false;
10727 			}
10728 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
10729 				return false;
10730 			continue;
10731 		}
10732 		if (btf_type_is_array(member_type)) {
10733 			array = btf_array(member_type);
10734 			if (!array->nelems)
10735 				return false;
10736 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
10737 			if (!btf_type_is_scalar(member_type))
10738 				return false;
10739 			continue;
10740 		}
10741 		if (!btf_type_is_scalar(member_type))
10742 			return false;
10743 	}
10744 	return true;
10745 }
10746 
10747 enum kfunc_ptr_arg_type {
10748 	KF_ARG_PTR_TO_CTX,
10749 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
10750 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
10751 	KF_ARG_PTR_TO_DYNPTR,
10752 	KF_ARG_PTR_TO_ITER,
10753 	KF_ARG_PTR_TO_LIST_HEAD,
10754 	KF_ARG_PTR_TO_LIST_NODE,
10755 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
10756 	KF_ARG_PTR_TO_MEM,
10757 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
10758 	KF_ARG_PTR_TO_CALLBACK,
10759 	KF_ARG_PTR_TO_RB_ROOT,
10760 	KF_ARG_PTR_TO_RB_NODE,
10761 	KF_ARG_PTR_TO_NULL,
10762 	KF_ARG_PTR_TO_CONST_STR,
10763 };
10764 
10765 enum special_kfunc_type {
10766 	KF_bpf_obj_new_impl,
10767 	KF_bpf_obj_drop_impl,
10768 	KF_bpf_refcount_acquire_impl,
10769 	KF_bpf_list_push_front_impl,
10770 	KF_bpf_list_push_back_impl,
10771 	KF_bpf_list_pop_front,
10772 	KF_bpf_list_pop_back,
10773 	KF_bpf_cast_to_kern_ctx,
10774 	KF_bpf_rdonly_cast,
10775 	KF_bpf_rcu_read_lock,
10776 	KF_bpf_rcu_read_unlock,
10777 	KF_bpf_rbtree_remove,
10778 	KF_bpf_rbtree_add_impl,
10779 	KF_bpf_rbtree_first,
10780 	KF_bpf_dynptr_from_skb,
10781 	KF_bpf_dynptr_from_xdp,
10782 	KF_bpf_dynptr_slice,
10783 	KF_bpf_dynptr_slice_rdwr,
10784 	KF_bpf_dynptr_clone,
10785 	KF_bpf_percpu_obj_new_impl,
10786 	KF_bpf_percpu_obj_drop_impl,
10787 	KF_bpf_throw,
10788 	KF_bpf_iter_css_task_new,
10789 };
10790 
10791 BTF_SET_START(special_kfunc_set)
10792 BTF_ID(func, bpf_obj_new_impl)
10793 BTF_ID(func, bpf_obj_drop_impl)
10794 BTF_ID(func, bpf_refcount_acquire_impl)
10795 BTF_ID(func, bpf_list_push_front_impl)
10796 BTF_ID(func, bpf_list_push_back_impl)
10797 BTF_ID(func, bpf_list_pop_front)
10798 BTF_ID(func, bpf_list_pop_back)
10799 BTF_ID(func, bpf_cast_to_kern_ctx)
10800 BTF_ID(func, bpf_rdonly_cast)
10801 BTF_ID(func, bpf_rbtree_remove)
10802 BTF_ID(func, bpf_rbtree_add_impl)
10803 BTF_ID(func, bpf_rbtree_first)
10804 BTF_ID(func, bpf_dynptr_from_skb)
10805 BTF_ID(func, bpf_dynptr_from_xdp)
10806 BTF_ID(func, bpf_dynptr_slice)
10807 BTF_ID(func, bpf_dynptr_slice_rdwr)
10808 BTF_ID(func, bpf_dynptr_clone)
10809 BTF_ID(func, bpf_percpu_obj_new_impl)
10810 BTF_ID(func, bpf_percpu_obj_drop_impl)
10811 BTF_ID(func, bpf_throw)
10812 #ifdef CONFIG_CGROUPS
10813 BTF_ID(func, bpf_iter_css_task_new)
10814 #endif
10815 BTF_SET_END(special_kfunc_set)
10816 
10817 BTF_ID_LIST(special_kfunc_list)
10818 BTF_ID(func, bpf_obj_new_impl)
10819 BTF_ID(func, bpf_obj_drop_impl)
10820 BTF_ID(func, bpf_refcount_acquire_impl)
10821 BTF_ID(func, bpf_list_push_front_impl)
10822 BTF_ID(func, bpf_list_push_back_impl)
10823 BTF_ID(func, bpf_list_pop_front)
10824 BTF_ID(func, bpf_list_pop_back)
10825 BTF_ID(func, bpf_cast_to_kern_ctx)
10826 BTF_ID(func, bpf_rdonly_cast)
10827 BTF_ID(func, bpf_rcu_read_lock)
10828 BTF_ID(func, bpf_rcu_read_unlock)
10829 BTF_ID(func, bpf_rbtree_remove)
10830 BTF_ID(func, bpf_rbtree_add_impl)
10831 BTF_ID(func, bpf_rbtree_first)
10832 BTF_ID(func, bpf_dynptr_from_skb)
10833 BTF_ID(func, bpf_dynptr_from_xdp)
10834 BTF_ID(func, bpf_dynptr_slice)
10835 BTF_ID(func, bpf_dynptr_slice_rdwr)
10836 BTF_ID(func, bpf_dynptr_clone)
10837 BTF_ID(func, bpf_percpu_obj_new_impl)
10838 BTF_ID(func, bpf_percpu_obj_drop_impl)
10839 BTF_ID(func, bpf_throw)
10840 #ifdef CONFIG_CGROUPS
10841 BTF_ID(func, bpf_iter_css_task_new)
10842 #else
10843 BTF_ID_UNUSED
10844 #endif
10845 
10846 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
10847 {
10848 	if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
10849 	    meta->arg_owning_ref) {
10850 		return false;
10851 	}
10852 
10853 	return meta->kfunc_flags & KF_RET_NULL;
10854 }
10855 
10856 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
10857 {
10858 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
10859 }
10860 
10861 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
10862 {
10863 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
10864 }
10865 
10866 static enum kfunc_ptr_arg_type
10867 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
10868 		       struct bpf_kfunc_call_arg_meta *meta,
10869 		       const struct btf_type *t, const struct btf_type *ref_t,
10870 		       const char *ref_tname, const struct btf_param *args,
10871 		       int argno, int nargs)
10872 {
10873 	u32 regno = argno + 1;
10874 	struct bpf_reg_state *regs = cur_regs(env);
10875 	struct bpf_reg_state *reg = &regs[regno];
10876 	bool arg_mem_size = false;
10877 
10878 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
10879 		return KF_ARG_PTR_TO_CTX;
10880 
10881 	/* In this function, we verify the kfunc's BTF as per the argument type,
10882 	 * leaving the rest of the verification with respect to the register
10883 	 * type to our caller. When a set of conditions hold in the BTF type of
10884 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
10885 	 */
10886 	if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
10887 		return KF_ARG_PTR_TO_CTX;
10888 
10889 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
10890 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
10891 
10892 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
10893 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
10894 
10895 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
10896 		return KF_ARG_PTR_TO_DYNPTR;
10897 
10898 	if (is_kfunc_arg_iter(meta, argno))
10899 		return KF_ARG_PTR_TO_ITER;
10900 
10901 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
10902 		return KF_ARG_PTR_TO_LIST_HEAD;
10903 
10904 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
10905 		return KF_ARG_PTR_TO_LIST_NODE;
10906 
10907 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
10908 		return KF_ARG_PTR_TO_RB_ROOT;
10909 
10910 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
10911 		return KF_ARG_PTR_TO_RB_NODE;
10912 
10913 	if (is_kfunc_arg_const_str(meta->btf, &args[argno]))
10914 		return KF_ARG_PTR_TO_CONST_STR;
10915 
10916 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
10917 		if (!btf_type_is_struct(ref_t)) {
10918 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
10919 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
10920 			return -EINVAL;
10921 		}
10922 		return KF_ARG_PTR_TO_BTF_ID;
10923 	}
10924 
10925 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
10926 		return KF_ARG_PTR_TO_CALLBACK;
10927 
10928 	if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg))
10929 		return KF_ARG_PTR_TO_NULL;
10930 
10931 	if (argno + 1 < nargs &&
10932 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
10933 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
10934 		arg_mem_size = true;
10935 
10936 	/* This is the catch all argument type of register types supported by
10937 	 * check_helper_mem_access. However, we only allow when argument type is
10938 	 * pointer to scalar, or struct composed (recursively) of scalars. When
10939 	 * arg_mem_size is true, the pointer can be void *.
10940 	 */
10941 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
10942 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
10943 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
10944 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
10945 		return -EINVAL;
10946 	}
10947 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
10948 }
10949 
10950 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
10951 					struct bpf_reg_state *reg,
10952 					const struct btf_type *ref_t,
10953 					const char *ref_tname, u32 ref_id,
10954 					struct bpf_kfunc_call_arg_meta *meta,
10955 					int argno)
10956 {
10957 	const struct btf_type *reg_ref_t;
10958 	bool strict_type_match = false;
10959 	const struct btf *reg_btf;
10960 	const char *reg_ref_tname;
10961 	u32 reg_ref_id;
10962 
10963 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
10964 		reg_btf = reg->btf;
10965 		reg_ref_id = reg->btf_id;
10966 	} else {
10967 		reg_btf = btf_vmlinux;
10968 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
10969 	}
10970 
10971 	/* Enforce strict type matching for calls to kfuncs that are acquiring
10972 	 * or releasing a reference, or are no-cast aliases. We do _not_
10973 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
10974 	 * as we want to enable BPF programs to pass types that are bitwise
10975 	 * equivalent without forcing them to explicitly cast with something
10976 	 * like bpf_cast_to_kern_ctx().
10977 	 *
10978 	 * For example, say we had a type like the following:
10979 	 *
10980 	 * struct bpf_cpumask {
10981 	 *	cpumask_t cpumask;
10982 	 *	refcount_t usage;
10983 	 * };
10984 	 *
10985 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
10986 	 * to a struct cpumask, so it would be safe to pass a struct
10987 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
10988 	 *
10989 	 * The philosophy here is similar to how we allow scalars of different
10990 	 * types to be passed to kfuncs as long as the size is the same. The
10991 	 * only difference here is that we're simply allowing
10992 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
10993 	 * resolve types.
10994 	 */
10995 	if (is_kfunc_acquire(meta) ||
10996 	    (is_kfunc_release(meta) && reg->ref_obj_id) ||
10997 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
10998 		strict_type_match = true;
10999 
11000 	WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
11001 
11002 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
11003 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
11004 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
11005 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
11006 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
11007 			btf_type_str(reg_ref_t), reg_ref_tname);
11008 		return -EINVAL;
11009 	}
11010 	return 0;
11011 }
11012 
11013 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11014 {
11015 	struct bpf_verifier_state *state = env->cur_state;
11016 	struct btf_record *rec = reg_btf_record(reg);
11017 
11018 	if (!state->active_lock.ptr) {
11019 		verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
11020 		return -EFAULT;
11021 	}
11022 
11023 	if (type_flag(reg->type) & NON_OWN_REF) {
11024 		verbose(env, "verifier internal error: NON_OWN_REF already set\n");
11025 		return -EFAULT;
11026 	}
11027 
11028 	reg->type |= NON_OWN_REF;
11029 	if (rec->refcount_off >= 0)
11030 		reg->type |= MEM_RCU;
11031 
11032 	return 0;
11033 }
11034 
11035 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
11036 {
11037 	struct bpf_func_state *state, *unused;
11038 	struct bpf_reg_state *reg;
11039 	int i;
11040 
11041 	state = cur_func(env);
11042 
11043 	if (!ref_obj_id) {
11044 		verbose(env, "verifier internal error: ref_obj_id is zero for "
11045 			     "owning -> non-owning conversion\n");
11046 		return -EFAULT;
11047 	}
11048 
11049 	for (i = 0; i < state->acquired_refs; i++) {
11050 		if (state->refs[i].id != ref_obj_id)
11051 			continue;
11052 
11053 		/* Clear ref_obj_id here so release_reference doesn't clobber
11054 		 * the whole reg
11055 		 */
11056 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
11057 			if (reg->ref_obj_id == ref_obj_id) {
11058 				reg->ref_obj_id = 0;
11059 				ref_set_non_owning(env, reg);
11060 			}
11061 		}));
11062 		return 0;
11063 	}
11064 
11065 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
11066 	return -EFAULT;
11067 }
11068 
11069 /* Implementation details:
11070  *
11071  * Each register points to some region of memory, which we define as an
11072  * allocation. Each allocation may embed a bpf_spin_lock which protects any
11073  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
11074  * allocation. The lock and the data it protects are colocated in the same
11075  * memory region.
11076  *
11077  * Hence, everytime a register holds a pointer value pointing to such
11078  * allocation, the verifier preserves a unique reg->id for it.
11079  *
11080  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
11081  * bpf_spin_lock is called.
11082  *
11083  * To enable this, lock state in the verifier captures two values:
11084  *	active_lock.ptr = Register's type specific pointer
11085  *	active_lock.id  = A unique ID for each register pointer value
11086  *
11087  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
11088  * supported register types.
11089  *
11090  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
11091  * allocated objects is the reg->btf pointer.
11092  *
11093  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
11094  * can establish the provenance of the map value statically for each distinct
11095  * lookup into such maps. They always contain a single map value hence unique
11096  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
11097  *
11098  * So, in case of global variables, they use array maps with max_entries = 1,
11099  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
11100  * into the same map value as max_entries is 1, as described above).
11101  *
11102  * In case of inner map lookups, the inner map pointer has same map_ptr as the
11103  * outer map pointer (in verifier context), but each lookup into an inner map
11104  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
11105  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
11106  * will get different reg->id assigned to each lookup, hence different
11107  * active_lock.id.
11108  *
11109  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
11110  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
11111  * returned from bpf_obj_new. Each allocation receives a new reg->id.
11112  */
11113 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11114 {
11115 	void *ptr;
11116 	u32 id;
11117 
11118 	switch ((int)reg->type) {
11119 	case PTR_TO_MAP_VALUE:
11120 		ptr = reg->map_ptr;
11121 		break;
11122 	case PTR_TO_BTF_ID | MEM_ALLOC:
11123 		ptr = reg->btf;
11124 		break;
11125 	default:
11126 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
11127 		return -EFAULT;
11128 	}
11129 	id = reg->id;
11130 
11131 	if (!env->cur_state->active_lock.ptr)
11132 		return -EINVAL;
11133 	if (env->cur_state->active_lock.ptr != ptr ||
11134 	    env->cur_state->active_lock.id != id) {
11135 		verbose(env, "held lock and object are not in the same allocation\n");
11136 		return -EINVAL;
11137 	}
11138 	return 0;
11139 }
11140 
11141 static bool is_bpf_list_api_kfunc(u32 btf_id)
11142 {
11143 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11144 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11145 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11146 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
11147 }
11148 
11149 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
11150 {
11151 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
11152 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11153 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first];
11154 }
11155 
11156 static bool is_bpf_graph_api_kfunc(u32 btf_id)
11157 {
11158 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
11159 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
11160 }
11161 
11162 static bool is_sync_callback_calling_kfunc(u32 btf_id)
11163 {
11164 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
11165 }
11166 
11167 static bool is_bpf_throw_kfunc(struct bpf_insn *insn)
11168 {
11169 	return bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
11170 	       insn->imm == special_kfunc_list[KF_bpf_throw];
11171 }
11172 
11173 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
11174 {
11175 	return is_bpf_rbtree_api_kfunc(btf_id);
11176 }
11177 
11178 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
11179 					  enum btf_field_type head_field_type,
11180 					  u32 kfunc_btf_id)
11181 {
11182 	bool ret;
11183 
11184 	switch (head_field_type) {
11185 	case BPF_LIST_HEAD:
11186 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
11187 		break;
11188 	case BPF_RB_ROOT:
11189 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
11190 		break;
11191 	default:
11192 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
11193 			btf_field_type_name(head_field_type));
11194 		return false;
11195 	}
11196 
11197 	if (!ret)
11198 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
11199 			btf_field_type_name(head_field_type));
11200 	return ret;
11201 }
11202 
11203 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
11204 					  enum btf_field_type node_field_type,
11205 					  u32 kfunc_btf_id)
11206 {
11207 	bool ret;
11208 
11209 	switch (node_field_type) {
11210 	case BPF_LIST_NODE:
11211 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11212 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
11213 		break;
11214 	case BPF_RB_NODE:
11215 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11216 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
11217 		break;
11218 	default:
11219 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
11220 			btf_field_type_name(node_field_type));
11221 		return false;
11222 	}
11223 
11224 	if (!ret)
11225 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
11226 			btf_field_type_name(node_field_type));
11227 	return ret;
11228 }
11229 
11230 static int
11231 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
11232 				   struct bpf_reg_state *reg, u32 regno,
11233 				   struct bpf_kfunc_call_arg_meta *meta,
11234 				   enum btf_field_type head_field_type,
11235 				   struct btf_field **head_field)
11236 {
11237 	const char *head_type_name;
11238 	struct btf_field *field;
11239 	struct btf_record *rec;
11240 	u32 head_off;
11241 
11242 	if (meta->btf != btf_vmlinux) {
11243 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11244 		return -EFAULT;
11245 	}
11246 
11247 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
11248 		return -EFAULT;
11249 
11250 	head_type_name = btf_field_type_name(head_field_type);
11251 	if (!tnum_is_const(reg->var_off)) {
11252 		verbose(env,
11253 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11254 			regno, head_type_name);
11255 		return -EINVAL;
11256 	}
11257 
11258 	rec = reg_btf_record(reg);
11259 	head_off = reg->off + reg->var_off.value;
11260 	field = btf_record_find(rec, head_off, head_field_type);
11261 	if (!field) {
11262 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
11263 		return -EINVAL;
11264 	}
11265 
11266 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
11267 	if (check_reg_allocation_locked(env, reg)) {
11268 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
11269 			rec->spin_lock_off, head_type_name);
11270 		return -EINVAL;
11271 	}
11272 
11273 	if (*head_field) {
11274 		verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
11275 		return -EFAULT;
11276 	}
11277 	*head_field = field;
11278 	return 0;
11279 }
11280 
11281 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
11282 					   struct bpf_reg_state *reg, u32 regno,
11283 					   struct bpf_kfunc_call_arg_meta *meta)
11284 {
11285 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
11286 							  &meta->arg_list_head.field);
11287 }
11288 
11289 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
11290 					     struct bpf_reg_state *reg, u32 regno,
11291 					     struct bpf_kfunc_call_arg_meta *meta)
11292 {
11293 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
11294 							  &meta->arg_rbtree_root.field);
11295 }
11296 
11297 static int
11298 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
11299 				   struct bpf_reg_state *reg, u32 regno,
11300 				   struct bpf_kfunc_call_arg_meta *meta,
11301 				   enum btf_field_type head_field_type,
11302 				   enum btf_field_type node_field_type,
11303 				   struct btf_field **node_field)
11304 {
11305 	const char *node_type_name;
11306 	const struct btf_type *et, *t;
11307 	struct btf_field *field;
11308 	u32 node_off;
11309 
11310 	if (meta->btf != btf_vmlinux) {
11311 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11312 		return -EFAULT;
11313 	}
11314 
11315 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
11316 		return -EFAULT;
11317 
11318 	node_type_name = btf_field_type_name(node_field_type);
11319 	if (!tnum_is_const(reg->var_off)) {
11320 		verbose(env,
11321 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11322 			regno, node_type_name);
11323 		return -EINVAL;
11324 	}
11325 
11326 	node_off = reg->off + reg->var_off.value;
11327 	field = reg_find_field_offset(reg, node_off, node_field_type);
11328 	if (!field || field->offset != node_off) {
11329 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
11330 		return -EINVAL;
11331 	}
11332 
11333 	field = *node_field;
11334 
11335 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
11336 	t = btf_type_by_id(reg->btf, reg->btf_id);
11337 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
11338 				  field->graph_root.value_btf_id, true)) {
11339 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
11340 			"in struct %s, but arg is at offset=%d in struct %s\n",
11341 			btf_field_type_name(head_field_type),
11342 			btf_field_type_name(node_field_type),
11343 			field->graph_root.node_offset,
11344 			btf_name_by_offset(field->graph_root.btf, et->name_off),
11345 			node_off, btf_name_by_offset(reg->btf, t->name_off));
11346 		return -EINVAL;
11347 	}
11348 	meta->arg_btf = reg->btf;
11349 	meta->arg_btf_id = reg->btf_id;
11350 
11351 	if (node_off != field->graph_root.node_offset) {
11352 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
11353 			node_off, btf_field_type_name(node_field_type),
11354 			field->graph_root.node_offset,
11355 			btf_name_by_offset(field->graph_root.btf, et->name_off));
11356 		return -EINVAL;
11357 	}
11358 
11359 	return 0;
11360 }
11361 
11362 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
11363 					   struct bpf_reg_state *reg, u32 regno,
11364 					   struct bpf_kfunc_call_arg_meta *meta)
11365 {
11366 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11367 						  BPF_LIST_HEAD, BPF_LIST_NODE,
11368 						  &meta->arg_list_head.field);
11369 }
11370 
11371 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
11372 					     struct bpf_reg_state *reg, u32 regno,
11373 					     struct bpf_kfunc_call_arg_meta *meta)
11374 {
11375 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11376 						  BPF_RB_ROOT, BPF_RB_NODE,
11377 						  &meta->arg_rbtree_root.field);
11378 }
11379 
11380 /*
11381  * css_task iter allowlist is needed to avoid dead locking on css_set_lock.
11382  * LSM hooks and iters (both sleepable and non-sleepable) are safe.
11383  * Any sleepable progs are also safe since bpf_check_attach_target() enforce
11384  * them can only be attached to some specific hook points.
11385  */
11386 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env)
11387 {
11388 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
11389 
11390 	switch (prog_type) {
11391 	case BPF_PROG_TYPE_LSM:
11392 		return true;
11393 	case BPF_PROG_TYPE_TRACING:
11394 		if (env->prog->expected_attach_type == BPF_TRACE_ITER)
11395 			return true;
11396 		fallthrough;
11397 	default:
11398 		return env->prog->aux->sleepable;
11399 	}
11400 }
11401 
11402 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
11403 			    int insn_idx)
11404 {
11405 	const char *func_name = meta->func_name, *ref_tname;
11406 	const struct btf *btf = meta->btf;
11407 	const struct btf_param *args;
11408 	struct btf_record *rec;
11409 	u32 i, nargs;
11410 	int ret;
11411 
11412 	args = (const struct btf_param *)(meta->func_proto + 1);
11413 	nargs = btf_type_vlen(meta->func_proto);
11414 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
11415 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
11416 			MAX_BPF_FUNC_REG_ARGS);
11417 		return -EINVAL;
11418 	}
11419 
11420 	/* Check that BTF function arguments match actual types that the
11421 	 * verifier sees.
11422 	 */
11423 	for (i = 0; i < nargs; i++) {
11424 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
11425 		const struct btf_type *t, *ref_t, *resolve_ret;
11426 		enum bpf_arg_type arg_type = ARG_DONTCARE;
11427 		u32 regno = i + 1, ref_id, type_size;
11428 		bool is_ret_buf_sz = false;
11429 		int kf_arg_type;
11430 
11431 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
11432 
11433 		if (is_kfunc_arg_ignore(btf, &args[i]))
11434 			continue;
11435 
11436 		if (btf_type_is_scalar(t)) {
11437 			if (reg->type != SCALAR_VALUE) {
11438 				verbose(env, "R%d is not a scalar\n", regno);
11439 				return -EINVAL;
11440 			}
11441 
11442 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
11443 				if (meta->arg_constant.found) {
11444 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11445 					return -EFAULT;
11446 				}
11447 				if (!tnum_is_const(reg->var_off)) {
11448 					verbose(env, "R%d must be a known constant\n", regno);
11449 					return -EINVAL;
11450 				}
11451 				ret = mark_chain_precision(env, regno);
11452 				if (ret < 0)
11453 					return ret;
11454 				meta->arg_constant.found = true;
11455 				meta->arg_constant.value = reg->var_off.value;
11456 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
11457 				meta->r0_rdonly = true;
11458 				is_ret_buf_sz = true;
11459 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
11460 				is_ret_buf_sz = true;
11461 			}
11462 
11463 			if (is_ret_buf_sz) {
11464 				if (meta->r0_size) {
11465 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
11466 					return -EINVAL;
11467 				}
11468 
11469 				if (!tnum_is_const(reg->var_off)) {
11470 					verbose(env, "R%d is not a const\n", regno);
11471 					return -EINVAL;
11472 				}
11473 
11474 				meta->r0_size = reg->var_off.value;
11475 				ret = mark_chain_precision(env, regno);
11476 				if (ret)
11477 					return ret;
11478 			}
11479 			continue;
11480 		}
11481 
11482 		if (!btf_type_is_ptr(t)) {
11483 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
11484 			return -EINVAL;
11485 		}
11486 
11487 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
11488 		    (register_is_null(reg) || type_may_be_null(reg->type)) &&
11489 			!is_kfunc_arg_nullable(meta->btf, &args[i])) {
11490 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
11491 			return -EACCES;
11492 		}
11493 
11494 		if (reg->ref_obj_id) {
11495 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
11496 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
11497 					regno, reg->ref_obj_id,
11498 					meta->ref_obj_id);
11499 				return -EFAULT;
11500 			}
11501 			meta->ref_obj_id = reg->ref_obj_id;
11502 			if (is_kfunc_release(meta))
11503 				meta->release_regno = regno;
11504 		}
11505 
11506 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
11507 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
11508 
11509 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
11510 		if (kf_arg_type < 0)
11511 			return kf_arg_type;
11512 
11513 		switch (kf_arg_type) {
11514 		case KF_ARG_PTR_TO_NULL:
11515 			continue;
11516 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11517 		case KF_ARG_PTR_TO_BTF_ID:
11518 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
11519 				break;
11520 
11521 			if (!is_trusted_reg(reg)) {
11522 				if (!is_kfunc_rcu(meta)) {
11523 					verbose(env, "R%d must be referenced or trusted\n", regno);
11524 					return -EINVAL;
11525 				}
11526 				if (!is_rcu_reg(reg)) {
11527 					verbose(env, "R%d must be a rcu pointer\n", regno);
11528 					return -EINVAL;
11529 				}
11530 			}
11531 
11532 			fallthrough;
11533 		case KF_ARG_PTR_TO_CTX:
11534 			/* Trusted arguments have the same offset checks as release arguments */
11535 			arg_type |= OBJ_RELEASE;
11536 			break;
11537 		case KF_ARG_PTR_TO_DYNPTR:
11538 		case KF_ARG_PTR_TO_ITER:
11539 		case KF_ARG_PTR_TO_LIST_HEAD:
11540 		case KF_ARG_PTR_TO_LIST_NODE:
11541 		case KF_ARG_PTR_TO_RB_ROOT:
11542 		case KF_ARG_PTR_TO_RB_NODE:
11543 		case KF_ARG_PTR_TO_MEM:
11544 		case KF_ARG_PTR_TO_MEM_SIZE:
11545 		case KF_ARG_PTR_TO_CALLBACK:
11546 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11547 		case KF_ARG_PTR_TO_CONST_STR:
11548 			/* Trusted by default */
11549 			break;
11550 		default:
11551 			WARN_ON_ONCE(1);
11552 			return -EFAULT;
11553 		}
11554 
11555 		if (is_kfunc_release(meta) && reg->ref_obj_id)
11556 			arg_type |= OBJ_RELEASE;
11557 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
11558 		if (ret < 0)
11559 			return ret;
11560 
11561 		switch (kf_arg_type) {
11562 		case KF_ARG_PTR_TO_CTX:
11563 			if (reg->type != PTR_TO_CTX) {
11564 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
11565 				return -EINVAL;
11566 			}
11567 
11568 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11569 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
11570 				if (ret < 0)
11571 					return -EINVAL;
11572 				meta->ret_btf_id  = ret;
11573 			}
11574 			break;
11575 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11576 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) {
11577 				if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) {
11578 					verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i);
11579 					return -EINVAL;
11580 				}
11581 			} else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) {
11582 				if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
11583 					verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i);
11584 					return -EINVAL;
11585 				}
11586 			} else {
11587 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11588 				return -EINVAL;
11589 			}
11590 			if (!reg->ref_obj_id) {
11591 				verbose(env, "allocated object must be referenced\n");
11592 				return -EINVAL;
11593 			}
11594 			if (meta->btf == btf_vmlinux) {
11595 				meta->arg_btf = reg->btf;
11596 				meta->arg_btf_id = reg->btf_id;
11597 			}
11598 			break;
11599 		case KF_ARG_PTR_TO_DYNPTR:
11600 		{
11601 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
11602 			int clone_ref_obj_id = 0;
11603 
11604 			if (reg->type != PTR_TO_STACK &&
11605 			    reg->type != CONST_PTR_TO_DYNPTR) {
11606 				verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
11607 				return -EINVAL;
11608 			}
11609 
11610 			if (reg->type == CONST_PTR_TO_DYNPTR)
11611 				dynptr_arg_type |= MEM_RDONLY;
11612 
11613 			if (is_kfunc_arg_uninit(btf, &args[i]))
11614 				dynptr_arg_type |= MEM_UNINIT;
11615 
11616 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
11617 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
11618 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
11619 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
11620 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
11621 				   (dynptr_arg_type & MEM_UNINIT)) {
11622 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
11623 
11624 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
11625 					verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
11626 					return -EFAULT;
11627 				}
11628 
11629 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
11630 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
11631 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
11632 					verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
11633 					return -EFAULT;
11634 				}
11635 			}
11636 
11637 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
11638 			if (ret < 0)
11639 				return ret;
11640 
11641 			if (!(dynptr_arg_type & MEM_UNINIT)) {
11642 				int id = dynptr_id(env, reg);
11643 
11644 				if (id < 0) {
11645 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
11646 					return id;
11647 				}
11648 				meta->initialized_dynptr.id = id;
11649 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
11650 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
11651 			}
11652 
11653 			break;
11654 		}
11655 		case KF_ARG_PTR_TO_ITER:
11656 			if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) {
11657 				if (!check_css_task_iter_allowlist(env)) {
11658 					verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n");
11659 					return -EINVAL;
11660 				}
11661 			}
11662 			ret = process_iter_arg(env, regno, insn_idx, meta);
11663 			if (ret < 0)
11664 				return ret;
11665 			break;
11666 		case KF_ARG_PTR_TO_LIST_HEAD:
11667 			if (reg->type != PTR_TO_MAP_VALUE &&
11668 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11669 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11670 				return -EINVAL;
11671 			}
11672 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11673 				verbose(env, "allocated object must be referenced\n");
11674 				return -EINVAL;
11675 			}
11676 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
11677 			if (ret < 0)
11678 				return ret;
11679 			break;
11680 		case KF_ARG_PTR_TO_RB_ROOT:
11681 			if (reg->type != PTR_TO_MAP_VALUE &&
11682 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11683 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11684 				return -EINVAL;
11685 			}
11686 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11687 				verbose(env, "allocated object must be referenced\n");
11688 				return -EINVAL;
11689 			}
11690 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
11691 			if (ret < 0)
11692 				return ret;
11693 			break;
11694 		case KF_ARG_PTR_TO_LIST_NODE:
11695 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11696 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11697 				return -EINVAL;
11698 			}
11699 			if (!reg->ref_obj_id) {
11700 				verbose(env, "allocated object must be referenced\n");
11701 				return -EINVAL;
11702 			}
11703 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
11704 			if (ret < 0)
11705 				return ret;
11706 			break;
11707 		case KF_ARG_PTR_TO_RB_NODE:
11708 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
11709 				if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
11710 					verbose(env, "rbtree_remove node input must be non-owning ref\n");
11711 					return -EINVAL;
11712 				}
11713 				if (in_rbtree_lock_required_cb(env)) {
11714 					verbose(env, "rbtree_remove not allowed in rbtree cb\n");
11715 					return -EINVAL;
11716 				}
11717 			} else {
11718 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11719 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
11720 					return -EINVAL;
11721 				}
11722 				if (!reg->ref_obj_id) {
11723 					verbose(env, "allocated object must be referenced\n");
11724 					return -EINVAL;
11725 				}
11726 			}
11727 
11728 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
11729 			if (ret < 0)
11730 				return ret;
11731 			break;
11732 		case KF_ARG_PTR_TO_BTF_ID:
11733 			/* Only base_type is checked, further checks are done here */
11734 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
11735 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
11736 			    !reg2btf_ids[base_type(reg->type)]) {
11737 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
11738 				verbose(env, "expected %s or socket\n",
11739 					reg_type_str(env, base_type(reg->type) |
11740 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
11741 				return -EINVAL;
11742 			}
11743 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
11744 			if (ret < 0)
11745 				return ret;
11746 			break;
11747 		case KF_ARG_PTR_TO_MEM:
11748 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
11749 			if (IS_ERR(resolve_ret)) {
11750 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
11751 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
11752 				return -EINVAL;
11753 			}
11754 			ret = check_mem_reg(env, reg, regno, type_size);
11755 			if (ret < 0)
11756 				return ret;
11757 			break;
11758 		case KF_ARG_PTR_TO_MEM_SIZE:
11759 		{
11760 			struct bpf_reg_state *buff_reg = &regs[regno];
11761 			const struct btf_param *buff_arg = &args[i];
11762 			struct bpf_reg_state *size_reg = &regs[regno + 1];
11763 			const struct btf_param *size_arg = &args[i + 1];
11764 
11765 			if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
11766 				ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
11767 				if (ret < 0) {
11768 					verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
11769 					return ret;
11770 				}
11771 			}
11772 
11773 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
11774 				if (meta->arg_constant.found) {
11775 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11776 					return -EFAULT;
11777 				}
11778 				if (!tnum_is_const(size_reg->var_off)) {
11779 					verbose(env, "R%d must be a known constant\n", regno + 1);
11780 					return -EINVAL;
11781 				}
11782 				meta->arg_constant.found = true;
11783 				meta->arg_constant.value = size_reg->var_off.value;
11784 			}
11785 
11786 			/* Skip next '__sz' or '__szk' argument */
11787 			i++;
11788 			break;
11789 		}
11790 		case KF_ARG_PTR_TO_CALLBACK:
11791 			if (reg->type != PTR_TO_FUNC) {
11792 				verbose(env, "arg%d expected pointer to func\n", i);
11793 				return -EINVAL;
11794 			}
11795 			meta->subprogno = reg->subprogno;
11796 			break;
11797 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11798 			if (!type_is_ptr_alloc_obj(reg->type)) {
11799 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
11800 				return -EINVAL;
11801 			}
11802 			if (!type_is_non_owning_ref(reg->type))
11803 				meta->arg_owning_ref = true;
11804 
11805 			rec = reg_btf_record(reg);
11806 			if (!rec) {
11807 				verbose(env, "verifier internal error: Couldn't find btf_record\n");
11808 				return -EFAULT;
11809 			}
11810 
11811 			if (rec->refcount_off < 0) {
11812 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
11813 				return -EINVAL;
11814 			}
11815 
11816 			meta->arg_btf = reg->btf;
11817 			meta->arg_btf_id = reg->btf_id;
11818 			break;
11819 		case KF_ARG_PTR_TO_CONST_STR:
11820 			if (reg->type != PTR_TO_MAP_VALUE) {
11821 				verbose(env, "arg#%d doesn't point to a const string\n", i);
11822 				return -EINVAL;
11823 			}
11824 			ret = check_reg_const_str(env, reg, regno);
11825 			if (ret)
11826 				return ret;
11827 			break;
11828 		}
11829 	}
11830 
11831 	if (is_kfunc_release(meta) && !meta->release_regno) {
11832 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
11833 			func_name);
11834 		return -EINVAL;
11835 	}
11836 
11837 	return 0;
11838 }
11839 
11840 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
11841 			    struct bpf_insn *insn,
11842 			    struct bpf_kfunc_call_arg_meta *meta,
11843 			    const char **kfunc_name)
11844 {
11845 	const struct btf_type *func, *func_proto;
11846 	u32 func_id, *kfunc_flags;
11847 	const char *func_name;
11848 	struct btf *desc_btf;
11849 
11850 	if (kfunc_name)
11851 		*kfunc_name = NULL;
11852 
11853 	if (!insn->imm)
11854 		return -EINVAL;
11855 
11856 	desc_btf = find_kfunc_desc_btf(env, insn->off);
11857 	if (IS_ERR(desc_btf))
11858 		return PTR_ERR(desc_btf);
11859 
11860 	func_id = insn->imm;
11861 	func = btf_type_by_id(desc_btf, func_id);
11862 	func_name = btf_name_by_offset(desc_btf, func->name_off);
11863 	if (kfunc_name)
11864 		*kfunc_name = func_name;
11865 	func_proto = btf_type_by_id(desc_btf, func->type);
11866 
11867 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
11868 	if (!kfunc_flags) {
11869 		return -EACCES;
11870 	}
11871 
11872 	memset(meta, 0, sizeof(*meta));
11873 	meta->btf = desc_btf;
11874 	meta->func_id = func_id;
11875 	meta->kfunc_flags = *kfunc_flags;
11876 	meta->func_proto = func_proto;
11877 	meta->func_name = func_name;
11878 
11879 	return 0;
11880 }
11881 
11882 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name);
11883 
11884 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11885 			    int *insn_idx_p)
11886 {
11887 	const struct btf_type *t, *ptr_type;
11888 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
11889 	struct bpf_reg_state *regs = cur_regs(env);
11890 	const char *func_name, *ptr_type_name;
11891 	bool sleepable, rcu_lock, rcu_unlock;
11892 	struct bpf_kfunc_call_arg_meta meta;
11893 	struct bpf_insn_aux_data *insn_aux;
11894 	int err, insn_idx = *insn_idx_p;
11895 	const struct btf_param *args;
11896 	const struct btf_type *ret_t;
11897 	struct btf *desc_btf;
11898 
11899 	/* skip for now, but return error when we find this in fixup_kfunc_call */
11900 	if (!insn->imm)
11901 		return 0;
11902 
11903 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
11904 	if (err == -EACCES && func_name)
11905 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
11906 	if (err)
11907 		return err;
11908 	desc_btf = meta.btf;
11909 	insn_aux = &env->insn_aux_data[insn_idx];
11910 
11911 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
11912 
11913 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
11914 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
11915 		return -EACCES;
11916 	}
11917 
11918 	sleepable = is_kfunc_sleepable(&meta);
11919 	if (sleepable && !env->prog->aux->sleepable) {
11920 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
11921 		return -EACCES;
11922 	}
11923 
11924 	/* Check the arguments */
11925 	err = check_kfunc_args(env, &meta, insn_idx);
11926 	if (err < 0)
11927 		return err;
11928 
11929 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11930 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11931 					 set_rbtree_add_callback_state);
11932 		if (err) {
11933 			verbose(env, "kfunc %s#%d failed callback verification\n",
11934 				func_name, meta.func_id);
11935 			return err;
11936 		}
11937 	}
11938 
11939 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
11940 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
11941 
11942 	if (env->cur_state->active_rcu_lock) {
11943 		struct bpf_func_state *state;
11944 		struct bpf_reg_state *reg;
11945 		u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER);
11946 
11947 		if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
11948 			verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
11949 			return -EACCES;
11950 		}
11951 
11952 		if (rcu_lock) {
11953 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
11954 			return -EINVAL;
11955 		} else if (rcu_unlock) {
11956 			bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({
11957 				if (reg->type & MEM_RCU) {
11958 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
11959 					reg->type |= PTR_UNTRUSTED;
11960 				}
11961 			}));
11962 			env->cur_state->active_rcu_lock = false;
11963 		} else if (sleepable) {
11964 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
11965 			return -EACCES;
11966 		}
11967 	} else if (rcu_lock) {
11968 		env->cur_state->active_rcu_lock = true;
11969 	} else if (rcu_unlock) {
11970 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
11971 		return -EINVAL;
11972 	}
11973 
11974 	/* In case of release function, we get register number of refcounted
11975 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
11976 	 */
11977 	if (meta.release_regno) {
11978 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
11979 		if (err) {
11980 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11981 				func_name, meta.func_id);
11982 			return err;
11983 		}
11984 	}
11985 
11986 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11987 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11988 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11989 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
11990 		insn_aux->insert_off = regs[BPF_REG_2].off;
11991 		insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
11992 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
11993 		if (err) {
11994 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
11995 				func_name, meta.func_id);
11996 			return err;
11997 		}
11998 
11999 		err = release_reference(env, release_ref_obj_id);
12000 		if (err) {
12001 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
12002 				func_name, meta.func_id);
12003 			return err;
12004 		}
12005 	}
12006 
12007 	if (meta.func_id == special_kfunc_list[KF_bpf_throw]) {
12008 		if (!bpf_jit_supports_exceptions()) {
12009 			verbose(env, "JIT does not support calling kfunc %s#%d\n",
12010 				func_name, meta.func_id);
12011 			return -ENOTSUPP;
12012 		}
12013 		env->seen_exception = true;
12014 
12015 		/* In the case of the default callback, the cookie value passed
12016 		 * to bpf_throw becomes the return value of the program.
12017 		 */
12018 		if (!env->exception_callback_subprog) {
12019 			err = check_return_code(env, BPF_REG_1, "R1");
12020 			if (err < 0)
12021 				return err;
12022 		}
12023 	}
12024 
12025 	for (i = 0; i < CALLER_SAVED_REGS; i++)
12026 		mark_reg_not_init(env, regs, caller_saved[i]);
12027 
12028 	/* Check return type */
12029 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
12030 
12031 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
12032 		/* Only exception is bpf_obj_new_impl */
12033 		if (meta.btf != btf_vmlinux ||
12034 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
12035 		     meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] &&
12036 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
12037 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
12038 			return -EINVAL;
12039 		}
12040 	}
12041 
12042 	if (btf_type_is_scalar(t)) {
12043 		mark_reg_unknown(env, regs, BPF_REG_0);
12044 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
12045 	} else if (btf_type_is_ptr(t)) {
12046 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
12047 
12048 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12049 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
12050 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12051 				struct btf_struct_meta *struct_meta;
12052 				struct btf *ret_btf;
12053 				u32 ret_btf_id;
12054 
12055 				if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set)
12056 					return -ENOMEM;
12057 
12058 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12059 					if (!bpf_global_percpu_ma_set) {
12060 						mutex_lock(&bpf_percpu_ma_lock);
12061 						if (!bpf_global_percpu_ma_set) {
12062 							err = bpf_mem_alloc_init(&bpf_global_percpu_ma, 0, true);
12063 							if (!err)
12064 								bpf_global_percpu_ma_set = true;
12065 						}
12066 						mutex_unlock(&bpf_percpu_ma_lock);
12067 						if (err)
12068 							return err;
12069 					}
12070 				}
12071 
12072 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
12073 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
12074 					return -EINVAL;
12075 				}
12076 
12077 				ret_btf = env->prog->aux->btf;
12078 				ret_btf_id = meta.arg_constant.value;
12079 
12080 				/* This may be NULL due to user not supplying a BTF */
12081 				if (!ret_btf) {
12082 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n");
12083 					return -EINVAL;
12084 				}
12085 
12086 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
12087 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
12088 					verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n");
12089 					return -EINVAL;
12090 				}
12091 
12092 				struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id);
12093 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
12094 					if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) {
12095 						verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n");
12096 						return -EINVAL;
12097 					}
12098 
12099 					if (struct_meta) {
12100 						verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n");
12101 						return -EINVAL;
12102 					}
12103 				}
12104 
12105 				mark_reg_known_zero(env, regs, BPF_REG_0);
12106 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12107 				regs[BPF_REG_0].btf = ret_btf;
12108 				regs[BPF_REG_0].btf_id = ret_btf_id;
12109 				if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl])
12110 					regs[BPF_REG_0].type |= MEM_PERCPU;
12111 
12112 				insn_aux->obj_new_size = ret_t->size;
12113 				insn_aux->kptr_struct_meta = struct_meta;
12114 			} else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
12115 				mark_reg_known_zero(env, regs, BPF_REG_0);
12116 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
12117 				regs[BPF_REG_0].btf = meta.arg_btf;
12118 				regs[BPF_REG_0].btf_id = meta.arg_btf_id;
12119 
12120 				insn_aux->kptr_struct_meta =
12121 					btf_find_struct_meta(meta.arg_btf,
12122 							     meta.arg_btf_id);
12123 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
12124 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
12125 				struct btf_field *field = meta.arg_list_head.field;
12126 
12127 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12128 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
12129 				   meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12130 				struct btf_field *field = meta.arg_rbtree_root.field;
12131 
12132 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
12133 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
12134 				mark_reg_known_zero(env, regs, BPF_REG_0);
12135 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
12136 				regs[BPF_REG_0].btf = desc_btf;
12137 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
12138 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
12139 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
12140 				if (!ret_t || !btf_type_is_struct(ret_t)) {
12141 					verbose(env,
12142 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
12143 					return -EINVAL;
12144 				}
12145 
12146 				mark_reg_known_zero(env, regs, BPF_REG_0);
12147 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
12148 				regs[BPF_REG_0].btf = desc_btf;
12149 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
12150 			} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
12151 				   meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
12152 				enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
12153 
12154 				mark_reg_known_zero(env, regs, BPF_REG_0);
12155 
12156 				if (!meta.arg_constant.found) {
12157 					verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
12158 					return -EFAULT;
12159 				}
12160 
12161 				regs[BPF_REG_0].mem_size = meta.arg_constant.value;
12162 
12163 				/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
12164 				regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
12165 
12166 				if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
12167 					regs[BPF_REG_0].type |= MEM_RDONLY;
12168 				} else {
12169 					/* this will set env->seen_direct_write to true */
12170 					if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
12171 						verbose(env, "the prog does not allow writes to packet data\n");
12172 						return -EINVAL;
12173 					}
12174 				}
12175 
12176 				if (!meta.initialized_dynptr.id) {
12177 					verbose(env, "verifier internal error: no dynptr id\n");
12178 					return -EFAULT;
12179 				}
12180 				regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
12181 
12182 				/* we don't need to set BPF_REG_0's ref obj id
12183 				 * because packet slices are not refcounted (see
12184 				 * dynptr_type_refcounted)
12185 				 */
12186 			} else {
12187 				verbose(env, "kernel function %s unhandled dynamic return type\n",
12188 					meta.func_name);
12189 				return -EFAULT;
12190 			}
12191 		} else if (!__btf_type_is_struct(ptr_type)) {
12192 			if (!meta.r0_size) {
12193 				__u32 sz;
12194 
12195 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
12196 					meta.r0_size = sz;
12197 					meta.r0_rdonly = true;
12198 				}
12199 			}
12200 			if (!meta.r0_size) {
12201 				ptr_type_name = btf_name_by_offset(desc_btf,
12202 								   ptr_type->name_off);
12203 				verbose(env,
12204 					"kernel function %s returns pointer type %s %s is not supported\n",
12205 					func_name,
12206 					btf_type_str(ptr_type),
12207 					ptr_type_name);
12208 				return -EINVAL;
12209 			}
12210 
12211 			mark_reg_known_zero(env, regs, BPF_REG_0);
12212 			regs[BPF_REG_0].type = PTR_TO_MEM;
12213 			regs[BPF_REG_0].mem_size = meta.r0_size;
12214 
12215 			if (meta.r0_rdonly)
12216 				regs[BPF_REG_0].type |= MEM_RDONLY;
12217 
12218 			/* Ensures we don't access the memory after a release_reference() */
12219 			if (meta.ref_obj_id)
12220 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
12221 		} else {
12222 			mark_reg_known_zero(env, regs, BPF_REG_0);
12223 			regs[BPF_REG_0].btf = desc_btf;
12224 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
12225 			regs[BPF_REG_0].btf_id = ptr_type_id;
12226 		}
12227 
12228 		if (is_kfunc_ret_null(&meta)) {
12229 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
12230 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
12231 			regs[BPF_REG_0].id = ++env->id_gen;
12232 		}
12233 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
12234 		if (is_kfunc_acquire(&meta)) {
12235 			int id = acquire_reference_state(env, insn_idx);
12236 
12237 			if (id < 0)
12238 				return id;
12239 			if (is_kfunc_ret_null(&meta))
12240 				regs[BPF_REG_0].id = id;
12241 			regs[BPF_REG_0].ref_obj_id = id;
12242 		} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12243 			ref_set_non_owning(env, &regs[BPF_REG_0]);
12244 		}
12245 
12246 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
12247 			regs[BPF_REG_0].id = ++env->id_gen;
12248 	} else if (btf_type_is_void(t)) {
12249 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12250 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
12251 			    meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
12252 				insn_aux->kptr_struct_meta =
12253 					btf_find_struct_meta(meta.arg_btf,
12254 							     meta.arg_btf_id);
12255 			}
12256 		}
12257 	}
12258 
12259 	nargs = btf_type_vlen(meta.func_proto);
12260 	args = (const struct btf_param *)(meta.func_proto + 1);
12261 	for (i = 0; i < nargs; i++) {
12262 		u32 regno = i + 1;
12263 
12264 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
12265 		if (btf_type_is_ptr(t))
12266 			mark_btf_func_reg_size(env, regno, sizeof(void *));
12267 		else
12268 			/* scalar. ensured by btf_check_kfunc_arg_match() */
12269 			mark_btf_func_reg_size(env, regno, t->size);
12270 	}
12271 
12272 	if (is_iter_next_kfunc(&meta)) {
12273 		err = process_iter_next_call(env, insn_idx, &meta);
12274 		if (err)
12275 			return err;
12276 	}
12277 
12278 	return 0;
12279 }
12280 
12281 static bool signed_add_overflows(s64 a, s64 b)
12282 {
12283 	/* Do the add in u64, where overflow is well-defined */
12284 	s64 res = (s64)((u64)a + (u64)b);
12285 
12286 	if (b < 0)
12287 		return res > a;
12288 	return res < a;
12289 }
12290 
12291 static bool signed_add32_overflows(s32 a, s32 b)
12292 {
12293 	/* Do the add in u32, where overflow is well-defined */
12294 	s32 res = (s32)((u32)a + (u32)b);
12295 
12296 	if (b < 0)
12297 		return res > a;
12298 	return res < a;
12299 }
12300 
12301 static bool signed_sub_overflows(s64 a, s64 b)
12302 {
12303 	/* Do the sub in u64, where overflow is well-defined */
12304 	s64 res = (s64)((u64)a - (u64)b);
12305 
12306 	if (b < 0)
12307 		return res < a;
12308 	return res > a;
12309 }
12310 
12311 static bool signed_sub32_overflows(s32 a, s32 b)
12312 {
12313 	/* Do the sub in u32, where overflow is well-defined */
12314 	s32 res = (s32)((u32)a - (u32)b);
12315 
12316 	if (b < 0)
12317 		return res < a;
12318 	return res > a;
12319 }
12320 
12321 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
12322 				  const struct bpf_reg_state *reg,
12323 				  enum bpf_reg_type type)
12324 {
12325 	bool known = tnum_is_const(reg->var_off);
12326 	s64 val = reg->var_off.value;
12327 	s64 smin = reg->smin_value;
12328 
12329 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
12330 		verbose(env, "math between %s pointer and %lld is not allowed\n",
12331 			reg_type_str(env, type), val);
12332 		return false;
12333 	}
12334 
12335 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
12336 		verbose(env, "%s pointer offset %d is not allowed\n",
12337 			reg_type_str(env, type), reg->off);
12338 		return false;
12339 	}
12340 
12341 	if (smin == S64_MIN) {
12342 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
12343 			reg_type_str(env, type));
12344 		return false;
12345 	}
12346 
12347 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
12348 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
12349 			smin, reg_type_str(env, type));
12350 		return false;
12351 	}
12352 
12353 	return true;
12354 }
12355 
12356 enum {
12357 	REASON_BOUNDS	= -1,
12358 	REASON_TYPE	= -2,
12359 	REASON_PATHS	= -3,
12360 	REASON_LIMIT	= -4,
12361 	REASON_STACK	= -5,
12362 };
12363 
12364 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
12365 			      u32 *alu_limit, bool mask_to_left)
12366 {
12367 	u32 max = 0, ptr_limit = 0;
12368 
12369 	switch (ptr_reg->type) {
12370 	case PTR_TO_STACK:
12371 		/* Offset 0 is out-of-bounds, but acceptable start for the
12372 		 * left direction, see BPF_REG_FP. Also, unknown scalar
12373 		 * offset where we would need to deal with min/max bounds is
12374 		 * currently prohibited for unprivileged.
12375 		 */
12376 		max = MAX_BPF_STACK + mask_to_left;
12377 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
12378 		break;
12379 	case PTR_TO_MAP_VALUE:
12380 		max = ptr_reg->map_ptr->value_size;
12381 		ptr_limit = (mask_to_left ?
12382 			     ptr_reg->smin_value :
12383 			     ptr_reg->umax_value) + ptr_reg->off;
12384 		break;
12385 	default:
12386 		return REASON_TYPE;
12387 	}
12388 
12389 	if (ptr_limit >= max)
12390 		return REASON_LIMIT;
12391 	*alu_limit = ptr_limit;
12392 	return 0;
12393 }
12394 
12395 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
12396 				    const struct bpf_insn *insn)
12397 {
12398 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
12399 }
12400 
12401 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
12402 				       u32 alu_state, u32 alu_limit)
12403 {
12404 	/* If we arrived here from different branches with different
12405 	 * state or limits to sanitize, then this won't work.
12406 	 */
12407 	if (aux->alu_state &&
12408 	    (aux->alu_state != alu_state ||
12409 	     aux->alu_limit != alu_limit))
12410 		return REASON_PATHS;
12411 
12412 	/* Corresponding fixup done in do_misc_fixups(). */
12413 	aux->alu_state = alu_state;
12414 	aux->alu_limit = alu_limit;
12415 	return 0;
12416 }
12417 
12418 static int sanitize_val_alu(struct bpf_verifier_env *env,
12419 			    struct bpf_insn *insn)
12420 {
12421 	struct bpf_insn_aux_data *aux = cur_aux(env);
12422 
12423 	if (can_skip_alu_sanitation(env, insn))
12424 		return 0;
12425 
12426 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
12427 }
12428 
12429 static bool sanitize_needed(u8 opcode)
12430 {
12431 	return opcode == BPF_ADD || opcode == BPF_SUB;
12432 }
12433 
12434 struct bpf_sanitize_info {
12435 	struct bpf_insn_aux_data aux;
12436 	bool mask_to_left;
12437 };
12438 
12439 static struct bpf_verifier_state *
12440 sanitize_speculative_path(struct bpf_verifier_env *env,
12441 			  const struct bpf_insn *insn,
12442 			  u32 next_idx, u32 curr_idx)
12443 {
12444 	struct bpf_verifier_state *branch;
12445 	struct bpf_reg_state *regs;
12446 
12447 	branch = push_stack(env, next_idx, curr_idx, true);
12448 	if (branch && insn) {
12449 		regs = branch->frame[branch->curframe]->regs;
12450 		if (BPF_SRC(insn->code) == BPF_K) {
12451 			mark_reg_unknown(env, regs, insn->dst_reg);
12452 		} else if (BPF_SRC(insn->code) == BPF_X) {
12453 			mark_reg_unknown(env, regs, insn->dst_reg);
12454 			mark_reg_unknown(env, regs, insn->src_reg);
12455 		}
12456 	}
12457 	return branch;
12458 }
12459 
12460 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
12461 			    struct bpf_insn *insn,
12462 			    const struct bpf_reg_state *ptr_reg,
12463 			    const struct bpf_reg_state *off_reg,
12464 			    struct bpf_reg_state *dst_reg,
12465 			    struct bpf_sanitize_info *info,
12466 			    const bool commit_window)
12467 {
12468 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
12469 	struct bpf_verifier_state *vstate = env->cur_state;
12470 	bool off_is_imm = tnum_is_const(off_reg->var_off);
12471 	bool off_is_neg = off_reg->smin_value < 0;
12472 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
12473 	u8 opcode = BPF_OP(insn->code);
12474 	u32 alu_state, alu_limit;
12475 	struct bpf_reg_state tmp;
12476 	bool ret;
12477 	int err;
12478 
12479 	if (can_skip_alu_sanitation(env, insn))
12480 		return 0;
12481 
12482 	/* We already marked aux for masking from non-speculative
12483 	 * paths, thus we got here in the first place. We only care
12484 	 * to explore bad access from here.
12485 	 */
12486 	if (vstate->speculative)
12487 		goto do_sim;
12488 
12489 	if (!commit_window) {
12490 		if (!tnum_is_const(off_reg->var_off) &&
12491 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
12492 			return REASON_BOUNDS;
12493 
12494 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
12495 				     (opcode == BPF_SUB && !off_is_neg);
12496 	}
12497 
12498 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
12499 	if (err < 0)
12500 		return err;
12501 
12502 	if (commit_window) {
12503 		/* In commit phase we narrow the masking window based on
12504 		 * the observed pointer move after the simulated operation.
12505 		 */
12506 		alu_state = info->aux.alu_state;
12507 		alu_limit = abs(info->aux.alu_limit - alu_limit);
12508 	} else {
12509 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
12510 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
12511 		alu_state |= ptr_is_dst_reg ?
12512 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
12513 
12514 		/* Limit pruning on unknown scalars to enable deep search for
12515 		 * potential masking differences from other program paths.
12516 		 */
12517 		if (!off_is_imm)
12518 			env->explore_alu_limits = true;
12519 	}
12520 
12521 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
12522 	if (err < 0)
12523 		return err;
12524 do_sim:
12525 	/* If we're in commit phase, we're done here given we already
12526 	 * pushed the truncated dst_reg into the speculative verification
12527 	 * stack.
12528 	 *
12529 	 * Also, when register is a known constant, we rewrite register-based
12530 	 * operation to immediate-based, and thus do not need masking (and as
12531 	 * a consequence, do not need to simulate the zero-truncation either).
12532 	 */
12533 	if (commit_window || off_is_imm)
12534 		return 0;
12535 
12536 	/* Simulate and find potential out-of-bounds access under
12537 	 * speculative execution from truncation as a result of
12538 	 * masking when off was not within expected range. If off
12539 	 * sits in dst, then we temporarily need to move ptr there
12540 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
12541 	 * for cases where we use K-based arithmetic in one direction
12542 	 * and truncated reg-based in the other in order to explore
12543 	 * bad access.
12544 	 */
12545 	if (!ptr_is_dst_reg) {
12546 		tmp = *dst_reg;
12547 		copy_register_state(dst_reg, ptr_reg);
12548 	}
12549 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
12550 					env->insn_idx);
12551 	if (!ptr_is_dst_reg && ret)
12552 		*dst_reg = tmp;
12553 	return !ret ? REASON_STACK : 0;
12554 }
12555 
12556 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
12557 {
12558 	struct bpf_verifier_state *vstate = env->cur_state;
12559 
12560 	/* If we simulate paths under speculation, we don't update the
12561 	 * insn as 'seen' such that when we verify unreachable paths in
12562 	 * the non-speculative domain, sanitize_dead_code() can still
12563 	 * rewrite/sanitize them.
12564 	 */
12565 	if (!vstate->speculative)
12566 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
12567 }
12568 
12569 static int sanitize_err(struct bpf_verifier_env *env,
12570 			const struct bpf_insn *insn, int reason,
12571 			const struct bpf_reg_state *off_reg,
12572 			const struct bpf_reg_state *dst_reg)
12573 {
12574 	static const char *err = "pointer arithmetic with it prohibited for !root";
12575 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
12576 	u32 dst = insn->dst_reg, src = insn->src_reg;
12577 
12578 	switch (reason) {
12579 	case REASON_BOUNDS:
12580 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
12581 			off_reg == dst_reg ? dst : src, err);
12582 		break;
12583 	case REASON_TYPE:
12584 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
12585 			off_reg == dst_reg ? src : dst, err);
12586 		break;
12587 	case REASON_PATHS:
12588 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
12589 			dst, op, err);
12590 		break;
12591 	case REASON_LIMIT:
12592 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
12593 			dst, op, err);
12594 		break;
12595 	case REASON_STACK:
12596 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
12597 			dst, err);
12598 		break;
12599 	default:
12600 		verbose(env, "verifier internal error: unknown reason (%d)\n",
12601 			reason);
12602 		break;
12603 	}
12604 
12605 	return -EACCES;
12606 }
12607 
12608 /* check that stack access falls within stack limits and that 'reg' doesn't
12609  * have a variable offset.
12610  *
12611  * Variable offset is prohibited for unprivileged mode for simplicity since it
12612  * requires corresponding support in Spectre masking for stack ALU.  See also
12613  * retrieve_ptr_limit().
12614  *
12615  *
12616  * 'off' includes 'reg->off'.
12617  */
12618 static int check_stack_access_for_ptr_arithmetic(
12619 				struct bpf_verifier_env *env,
12620 				int regno,
12621 				const struct bpf_reg_state *reg,
12622 				int off)
12623 {
12624 	if (!tnum_is_const(reg->var_off)) {
12625 		char tn_buf[48];
12626 
12627 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
12628 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
12629 			regno, tn_buf, off);
12630 		return -EACCES;
12631 	}
12632 
12633 	if (off >= 0 || off < -MAX_BPF_STACK) {
12634 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
12635 			"prohibited for !root; off=%d\n", regno, off);
12636 		return -EACCES;
12637 	}
12638 
12639 	return 0;
12640 }
12641 
12642 static int sanitize_check_bounds(struct bpf_verifier_env *env,
12643 				 const struct bpf_insn *insn,
12644 				 const struct bpf_reg_state *dst_reg)
12645 {
12646 	u32 dst = insn->dst_reg;
12647 
12648 	/* For unprivileged we require that resulting offset must be in bounds
12649 	 * in order to be able to sanitize access later on.
12650 	 */
12651 	if (env->bypass_spec_v1)
12652 		return 0;
12653 
12654 	switch (dst_reg->type) {
12655 	case PTR_TO_STACK:
12656 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
12657 					dst_reg->off + dst_reg->var_off.value))
12658 			return -EACCES;
12659 		break;
12660 	case PTR_TO_MAP_VALUE:
12661 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
12662 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
12663 				"prohibited for !root\n", dst);
12664 			return -EACCES;
12665 		}
12666 		break;
12667 	default:
12668 		break;
12669 	}
12670 
12671 	return 0;
12672 }
12673 
12674 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
12675  * Caller should also handle BPF_MOV case separately.
12676  * If we return -EACCES, caller may want to try again treating pointer as a
12677  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
12678  */
12679 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
12680 				   struct bpf_insn *insn,
12681 				   const struct bpf_reg_state *ptr_reg,
12682 				   const struct bpf_reg_state *off_reg)
12683 {
12684 	struct bpf_verifier_state *vstate = env->cur_state;
12685 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
12686 	struct bpf_reg_state *regs = state->regs, *dst_reg;
12687 	bool known = tnum_is_const(off_reg->var_off);
12688 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
12689 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
12690 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
12691 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
12692 	struct bpf_sanitize_info info = {};
12693 	u8 opcode = BPF_OP(insn->code);
12694 	u32 dst = insn->dst_reg;
12695 	int ret;
12696 
12697 	dst_reg = &regs[dst];
12698 
12699 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
12700 	    smin_val > smax_val || umin_val > umax_val) {
12701 		/* Taint dst register if offset had invalid bounds derived from
12702 		 * e.g. dead branches.
12703 		 */
12704 		__mark_reg_unknown(env, dst_reg);
12705 		return 0;
12706 	}
12707 
12708 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
12709 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
12710 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12711 			__mark_reg_unknown(env, dst_reg);
12712 			return 0;
12713 		}
12714 
12715 		verbose(env,
12716 			"R%d 32-bit pointer arithmetic prohibited\n",
12717 			dst);
12718 		return -EACCES;
12719 	}
12720 
12721 	if (ptr_reg->type & PTR_MAYBE_NULL) {
12722 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
12723 			dst, reg_type_str(env, ptr_reg->type));
12724 		return -EACCES;
12725 	}
12726 
12727 	switch (base_type(ptr_reg->type)) {
12728 	case CONST_PTR_TO_MAP:
12729 		/* smin_val represents the known value */
12730 		if (known && smin_val == 0 && opcode == BPF_ADD)
12731 			break;
12732 		fallthrough;
12733 	case PTR_TO_PACKET_END:
12734 	case PTR_TO_SOCKET:
12735 	case PTR_TO_SOCK_COMMON:
12736 	case PTR_TO_TCP_SOCK:
12737 	case PTR_TO_XDP_SOCK:
12738 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
12739 			dst, reg_type_str(env, ptr_reg->type));
12740 		return -EACCES;
12741 	default:
12742 		break;
12743 	}
12744 
12745 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
12746 	 * The id may be overwritten later if we create a new variable offset.
12747 	 */
12748 	dst_reg->type = ptr_reg->type;
12749 	dst_reg->id = ptr_reg->id;
12750 
12751 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
12752 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
12753 		return -EINVAL;
12754 
12755 	/* pointer types do not carry 32-bit bounds at the moment. */
12756 	__mark_reg32_unbounded(dst_reg);
12757 
12758 	if (sanitize_needed(opcode)) {
12759 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
12760 				       &info, false);
12761 		if (ret < 0)
12762 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12763 	}
12764 
12765 	switch (opcode) {
12766 	case BPF_ADD:
12767 		/* We can take a fixed offset as long as it doesn't overflow
12768 		 * the s32 'off' field
12769 		 */
12770 		if (known && (ptr_reg->off + smin_val ==
12771 			      (s64)(s32)(ptr_reg->off + smin_val))) {
12772 			/* pointer += K.  Accumulate it into fixed offset */
12773 			dst_reg->smin_value = smin_ptr;
12774 			dst_reg->smax_value = smax_ptr;
12775 			dst_reg->umin_value = umin_ptr;
12776 			dst_reg->umax_value = umax_ptr;
12777 			dst_reg->var_off = ptr_reg->var_off;
12778 			dst_reg->off = ptr_reg->off + smin_val;
12779 			dst_reg->raw = ptr_reg->raw;
12780 			break;
12781 		}
12782 		/* A new variable offset is created.  Note that off_reg->off
12783 		 * == 0, since it's a scalar.
12784 		 * dst_reg gets the pointer type and since some positive
12785 		 * integer value was added to the pointer, give it a new 'id'
12786 		 * if it's a PTR_TO_PACKET.
12787 		 * this creates a new 'base' pointer, off_reg (variable) gets
12788 		 * added into the variable offset, and we copy the fixed offset
12789 		 * from ptr_reg.
12790 		 */
12791 		if (signed_add_overflows(smin_ptr, smin_val) ||
12792 		    signed_add_overflows(smax_ptr, smax_val)) {
12793 			dst_reg->smin_value = S64_MIN;
12794 			dst_reg->smax_value = S64_MAX;
12795 		} else {
12796 			dst_reg->smin_value = smin_ptr + smin_val;
12797 			dst_reg->smax_value = smax_ptr + smax_val;
12798 		}
12799 		if (umin_ptr + umin_val < umin_ptr ||
12800 		    umax_ptr + umax_val < umax_ptr) {
12801 			dst_reg->umin_value = 0;
12802 			dst_reg->umax_value = U64_MAX;
12803 		} else {
12804 			dst_reg->umin_value = umin_ptr + umin_val;
12805 			dst_reg->umax_value = umax_ptr + umax_val;
12806 		}
12807 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
12808 		dst_reg->off = ptr_reg->off;
12809 		dst_reg->raw = ptr_reg->raw;
12810 		if (reg_is_pkt_pointer(ptr_reg)) {
12811 			dst_reg->id = ++env->id_gen;
12812 			/* something was added to pkt_ptr, set range to zero */
12813 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12814 		}
12815 		break;
12816 	case BPF_SUB:
12817 		if (dst_reg == off_reg) {
12818 			/* scalar -= pointer.  Creates an unknown scalar */
12819 			verbose(env, "R%d tried to subtract pointer from scalar\n",
12820 				dst);
12821 			return -EACCES;
12822 		}
12823 		/* We don't allow subtraction from FP, because (according to
12824 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
12825 		 * be able to deal with it.
12826 		 */
12827 		if (ptr_reg->type == PTR_TO_STACK) {
12828 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
12829 				dst);
12830 			return -EACCES;
12831 		}
12832 		if (known && (ptr_reg->off - smin_val ==
12833 			      (s64)(s32)(ptr_reg->off - smin_val))) {
12834 			/* pointer -= K.  Subtract it from fixed offset */
12835 			dst_reg->smin_value = smin_ptr;
12836 			dst_reg->smax_value = smax_ptr;
12837 			dst_reg->umin_value = umin_ptr;
12838 			dst_reg->umax_value = umax_ptr;
12839 			dst_reg->var_off = ptr_reg->var_off;
12840 			dst_reg->id = ptr_reg->id;
12841 			dst_reg->off = ptr_reg->off - smin_val;
12842 			dst_reg->raw = ptr_reg->raw;
12843 			break;
12844 		}
12845 		/* A new variable offset is created.  If the subtrahend is known
12846 		 * nonnegative, then any reg->range we had before is still good.
12847 		 */
12848 		if (signed_sub_overflows(smin_ptr, smax_val) ||
12849 		    signed_sub_overflows(smax_ptr, smin_val)) {
12850 			/* Overflow possible, we know nothing */
12851 			dst_reg->smin_value = S64_MIN;
12852 			dst_reg->smax_value = S64_MAX;
12853 		} else {
12854 			dst_reg->smin_value = smin_ptr - smax_val;
12855 			dst_reg->smax_value = smax_ptr - smin_val;
12856 		}
12857 		if (umin_ptr < umax_val) {
12858 			/* Overflow possible, we know nothing */
12859 			dst_reg->umin_value = 0;
12860 			dst_reg->umax_value = U64_MAX;
12861 		} else {
12862 			/* Cannot overflow (as long as bounds are consistent) */
12863 			dst_reg->umin_value = umin_ptr - umax_val;
12864 			dst_reg->umax_value = umax_ptr - umin_val;
12865 		}
12866 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
12867 		dst_reg->off = ptr_reg->off;
12868 		dst_reg->raw = ptr_reg->raw;
12869 		if (reg_is_pkt_pointer(ptr_reg)) {
12870 			dst_reg->id = ++env->id_gen;
12871 			/* something was added to pkt_ptr, set range to zero */
12872 			if (smin_val < 0)
12873 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12874 		}
12875 		break;
12876 	case BPF_AND:
12877 	case BPF_OR:
12878 	case BPF_XOR:
12879 		/* bitwise ops on pointers are troublesome, prohibit. */
12880 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
12881 			dst, bpf_alu_string[opcode >> 4]);
12882 		return -EACCES;
12883 	default:
12884 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
12885 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
12886 			dst, bpf_alu_string[opcode >> 4]);
12887 		return -EACCES;
12888 	}
12889 
12890 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
12891 		return -EINVAL;
12892 	reg_bounds_sync(dst_reg);
12893 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
12894 		return -EACCES;
12895 	if (sanitize_needed(opcode)) {
12896 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
12897 				       &info, true);
12898 		if (ret < 0)
12899 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12900 	}
12901 
12902 	return 0;
12903 }
12904 
12905 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
12906 				 struct bpf_reg_state *src_reg)
12907 {
12908 	s32 smin_val = src_reg->s32_min_value;
12909 	s32 smax_val = src_reg->s32_max_value;
12910 	u32 umin_val = src_reg->u32_min_value;
12911 	u32 umax_val = src_reg->u32_max_value;
12912 
12913 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
12914 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
12915 		dst_reg->s32_min_value = S32_MIN;
12916 		dst_reg->s32_max_value = S32_MAX;
12917 	} else {
12918 		dst_reg->s32_min_value += smin_val;
12919 		dst_reg->s32_max_value += smax_val;
12920 	}
12921 	if (dst_reg->u32_min_value + umin_val < umin_val ||
12922 	    dst_reg->u32_max_value + umax_val < umax_val) {
12923 		dst_reg->u32_min_value = 0;
12924 		dst_reg->u32_max_value = U32_MAX;
12925 	} else {
12926 		dst_reg->u32_min_value += umin_val;
12927 		dst_reg->u32_max_value += umax_val;
12928 	}
12929 }
12930 
12931 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
12932 			       struct bpf_reg_state *src_reg)
12933 {
12934 	s64 smin_val = src_reg->smin_value;
12935 	s64 smax_val = src_reg->smax_value;
12936 	u64 umin_val = src_reg->umin_value;
12937 	u64 umax_val = src_reg->umax_value;
12938 
12939 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
12940 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
12941 		dst_reg->smin_value = S64_MIN;
12942 		dst_reg->smax_value = S64_MAX;
12943 	} else {
12944 		dst_reg->smin_value += smin_val;
12945 		dst_reg->smax_value += smax_val;
12946 	}
12947 	if (dst_reg->umin_value + umin_val < umin_val ||
12948 	    dst_reg->umax_value + umax_val < umax_val) {
12949 		dst_reg->umin_value = 0;
12950 		dst_reg->umax_value = U64_MAX;
12951 	} else {
12952 		dst_reg->umin_value += umin_val;
12953 		dst_reg->umax_value += umax_val;
12954 	}
12955 }
12956 
12957 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
12958 				 struct bpf_reg_state *src_reg)
12959 {
12960 	s32 smin_val = src_reg->s32_min_value;
12961 	s32 smax_val = src_reg->s32_max_value;
12962 	u32 umin_val = src_reg->u32_min_value;
12963 	u32 umax_val = src_reg->u32_max_value;
12964 
12965 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
12966 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
12967 		/* Overflow possible, we know nothing */
12968 		dst_reg->s32_min_value = S32_MIN;
12969 		dst_reg->s32_max_value = S32_MAX;
12970 	} else {
12971 		dst_reg->s32_min_value -= smax_val;
12972 		dst_reg->s32_max_value -= smin_val;
12973 	}
12974 	if (dst_reg->u32_min_value < umax_val) {
12975 		/* Overflow possible, we know nothing */
12976 		dst_reg->u32_min_value = 0;
12977 		dst_reg->u32_max_value = U32_MAX;
12978 	} else {
12979 		/* Cannot overflow (as long as bounds are consistent) */
12980 		dst_reg->u32_min_value -= umax_val;
12981 		dst_reg->u32_max_value -= umin_val;
12982 	}
12983 }
12984 
12985 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
12986 			       struct bpf_reg_state *src_reg)
12987 {
12988 	s64 smin_val = src_reg->smin_value;
12989 	s64 smax_val = src_reg->smax_value;
12990 	u64 umin_val = src_reg->umin_value;
12991 	u64 umax_val = src_reg->umax_value;
12992 
12993 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
12994 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
12995 		/* Overflow possible, we know nothing */
12996 		dst_reg->smin_value = S64_MIN;
12997 		dst_reg->smax_value = S64_MAX;
12998 	} else {
12999 		dst_reg->smin_value -= smax_val;
13000 		dst_reg->smax_value -= smin_val;
13001 	}
13002 	if (dst_reg->umin_value < umax_val) {
13003 		/* Overflow possible, we know nothing */
13004 		dst_reg->umin_value = 0;
13005 		dst_reg->umax_value = U64_MAX;
13006 	} else {
13007 		/* Cannot overflow (as long as bounds are consistent) */
13008 		dst_reg->umin_value -= umax_val;
13009 		dst_reg->umax_value -= umin_val;
13010 	}
13011 }
13012 
13013 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
13014 				 struct bpf_reg_state *src_reg)
13015 {
13016 	s32 smin_val = src_reg->s32_min_value;
13017 	u32 umin_val = src_reg->u32_min_value;
13018 	u32 umax_val = src_reg->u32_max_value;
13019 
13020 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
13021 		/* Ain't nobody got time to multiply that sign */
13022 		__mark_reg32_unbounded(dst_reg);
13023 		return;
13024 	}
13025 	/* Both values are positive, so we can work with unsigned and
13026 	 * copy the result to signed (unless it exceeds S32_MAX).
13027 	 */
13028 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
13029 		/* Potential overflow, we know nothing */
13030 		__mark_reg32_unbounded(dst_reg);
13031 		return;
13032 	}
13033 	dst_reg->u32_min_value *= umin_val;
13034 	dst_reg->u32_max_value *= umax_val;
13035 	if (dst_reg->u32_max_value > S32_MAX) {
13036 		/* Overflow possible, we know nothing */
13037 		dst_reg->s32_min_value = S32_MIN;
13038 		dst_reg->s32_max_value = S32_MAX;
13039 	} else {
13040 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13041 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13042 	}
13043 }
13044 
13045 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
13046 			       struct bpf_reg_state *src_reg)
13047 {
13048 	s64 smin_val = src_reg->smin_value;
13049 	u64 umin_val = src_reg->umin_value;
13050 	u64 umax_val = src_reg->umax_value;
13051 
13052 	if (smin_val < 0 || dst_reg->smin_value < 0) {
13053 		/* Ain't nobody got time to multiply that sign */
13054 		__mark_reg64_unbounded(dst_reg);
13055 		return;
13056 	}
13057 	/* Both values are positive, so we can work with unsigned and
13058 	 * copy the result to signed (unless it exceeds S64_MAX).
13059 	 */
13060 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
13061 		/* Potential overflow, we know nothing */
13062 		__mark_reg64_unbounded(dst_reg);
13063 		return;
13064 	}
13065 	dst_reg->umin_value *= umin_val;
13066 	dst_reg->umax_value *= umax_val;
13067 	if (dst_reg->umax_value > S64_MAX) {
13068 		/* Overflow possible, we know nothing */
13069 		dst_reg->smin_value = S64_MIN;
13070 		dst_reg->smax_value = S64_MAX;
13071 	} else {
13072 		dst_reg->smin_value = dst_reg->umin_value;
13073 		dst_reg->smax_value = dst_reg->umax_value;
13074 	}
13075 }
13076 
13077 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
13078 				 struct bpf_reg_state *src_reg)
13079 {
13080 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13081 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13082 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13083 	s32 smin_val = src_reg->s32_min_value;
13084 	u32 umax_val = src_reg->u32_max_value;
13085 
13086 	if (src_known && dst_known) {
13087 		__mark_reg32_known(dst_reg, var32_off.value);
13088 		return;
13089 	}
13090 
13091 	/* We get our minimum from the var_off, since that's inherently
13092 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
13093 	 */
13094 	dst_reg->u32_min_value = var32_off.value;
13095 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
13096 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
13097 		/* Lose signed bounds when ANDing negative numbers,
13098 		 * ain't nobody got time for that.
13099 		 */
13100 		dst_reg->s32_min_value = S32_MIN;
13101 		dst_reg->s32_max_value = S32_MAX;
13102 	} else {
13103 		/* ANDing two positives gives a positive, so safe to
13104 		 * cast result into s64.
13105 		 */
13106 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13107 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13108 	}
13109 }
13110 
13111 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
13112 			       struct bpf_reg_state *src_reg)
13113 {
13114 	bool src_known = tnum_is_const(src_reg->var_off);
13115 	bool dst_known = tnum_is_const(dst_reg->var_off);
13116 	s64 smin_val = src_reg->smin_value;
13117 	u64 umax_val = src_reg->umax_value;
13118 
13119 	if (src_known && dst_known) {
13120 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13121 		return;
13122 	}
13123 
13124 	/* We get our minimum from the var_off, since that's inherently
13125 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
13126 	 */
13127 	dst_reg->umin_value = dst_reg->var_off.value;
13128 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
13129 	if (dst_reg->smin_value < 0 || smin_val < 0) {
13130 		/* Lose signed bounds when ANDing negative numbers,
13131 		 * ain't nobody got time for that.
13132 		 */
13133 		dst_reg->smin_value = S64_MIN;
13134 		dst_reg->smax_value = S64_MAX;
13135 	} else {
13136 		/* ANDing two positives gives a positive, so safe to
13137 		 * cast result into s64.
13138 		 */
13139 		dst_reg->smin_value = dst_reg->umin_value;
13140 		dst_reg->smax_value = dst_reg->umax_value;
13141 	}
13142 	/* We may learn something more from the var_off */
13143 	__update_reg_bounds(dst_reg);
13144 }
13145 
13146 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
13147 				struct bpf_reg_state *src_reg)
13148 {
13149 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13150 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13151 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13152 	s32 smin_val = src_reg->s32_min_value;
13153 	u32 umin_val = src_reg->u32_min_value;
13154 
13155 	if (src_known && dst_known) {
13156 		__mark_reg32_known(dst_reg, var32_off.value);
13157 		return;
13158 	}
13159 
13160 	/* We get our maximum from the var_off, and our minimum is the
13161 	 * maximum of the operands' minima
13162 	 */
13163 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
13164 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13165 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
13166 		/* Lose signed bounds when ORing negative numbers,
13167 		 * ain't nobody got time for that.
13168 		 */
13169 		dst_reg->s32_min_value = S32_MIN;
13170 		dst_reg->s32_max_value = S32_MAX;
13171 	} else {
13172 		/* ORing two positives gives a positive, so safe to
13173 		 * cast result into s64.
13174 		 */
13175 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13176 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13177 	}
13178 }
13179 
13180 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
13181 			      struct bpf_reg_state *src_reg)
13182 {
13183 	bool src_known = tnum_is_const(src_reg->var_off);
13184 	bool dst_known = tnum_is_const(dst_reg->var_off);
13185 	s64 smin_val = src_reg->smin_value;
13186 	u64 umin_val = src_reg->umin_value;
13187 
13188 	if (src_known && dst_known) {
13189 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13190 		return;
13191 	}
13192 
13193 	/* We get our maximum from the var_off, and our minimum is the
13194 	 * maximum of the operands' minima
13195 	 */
13196 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
13197 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13198 	if (dst_reg->smin_value < 0 || smin_val < 0) {
13199 		/* Lose signed bounds when ORing negative numbers,
13200 		 * ain't nobody got time for that.
13201 		 */
13202 		dst_reg->smin_value = S64_MIN;
13203 		dst_reg->smax_value = S64_MAX;
13204 	} else {
13205 		/* ORing two positives gives a positive, so safe to
13206 		 * cast result into s64.
13207 		 */
13208 		dst_reg->smin_value = dst_reg->umin_value;
13209 		dst_reg->smax_value = dst_reg->umax_value;
13210 	}
13211 	/* We may learn something more from the var_off */
13212 	__update_reg_bounds(dst_reg);
13213 }
13214 
13215 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
13216 				 struct bpf_reg_state *src_reg)
13217 {
13218 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13219 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13220 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13221 	s32 smin_val = src_reg->s32_min_value;
13222 
13223 	if (src_known && dst_known) {
13224 		__mark_reg32_known(dst_reg, var32_off.value);
13225 		return;
13226 	}
13227 
13228 	/* We get both minimum and maximum from the var32_off. */
13229 	dst_reg->u32_min_value = var32_off.value;
13230 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13231 
13232 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
13233 		/* XORing two positive sign numbers gives a positive,
13234 		 * so safe to cast u32 result into s32.
13235 		 */
13236 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13237 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13238 	} else {
13239 		dst_reg->s32_min_value = S32_MIN;
13240 		dst_reg->s32_max_value = S32_MAX;
13241 	}
13242 }
13243 
13244 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
13245 			       struct bpf_reg_state *src_reg)
13246 {
13247 	bool src_known = tnum_is_const(src_reg->var_off);
13248 	bool dst_known = tnum_is_const(dst_reg->var_off);
13249 	s64 smin_val = src_reg->smin_value;
13250 
13251 	if (src_known && dst_known) {
13252 		/* dst_reg->var_off.value has been updated earlier */
13253 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13254 		return;
13255 	}
13256 
13257 	/* We get both minimum and maximum from the var_off. */
13258 	dst_reg->umin_value = dst_reg->var_off.value;
13259 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13260 
13261 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
13262 		/* XORing two positive sign numbers gives a positive,
13263 		 * so safe to cast u64 result into s64.
13264 		 */
13265 		dst_reg->smin_value = dst_reg->umin_value;
13266 		dst_reg->smax_value = dst_reg->umax_value;
13267 	} else {
13268 		dst_reg->smin_value = S64_MIN;
13269 		dst_reg->smax_value = S64_MAX;
13270 	}
13271 
13272 	__update_reg_bounds(dst_reg);
13273 }
13274 
13275 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13276 				   u64 umin_val, u64 umax_val)
13277 {
13278 	/* We lose all sign bit information (except what we can pick
13279 	 * up from var_off)
13280 	 */
13281 	dst_reg->s32_min_value = S32_MIN;
13282 	dst_reg->s32_max_value = S32_MAX;
13283 	/* If we might shift our top bit out, then we know nothing */
13284 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
13285 		dst_reg->u32_min_value = 0;
13286 		dst_reg->u32_max_value = U32_MAX;
13287 	} else {
13288 		dst_reg->u32_min_value <<= umin_val;
13289 		dst_reg->u32_max_value <<= umax_val;
13290 	}
13291 }
13292 
13293 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13294 				 struct bpf_reg_state *src_reg)
13295 {
13296 	u32 umax_val = src_reg->u32_max_value;
13297 	u32 umin_val = src_reg->u32_min_value;
13298 	/* u32 alu operation will zext upper bits */
13299 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13300 
13301 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13302 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
13303 	/* Not required but being careful mark reg64 bounds as unknown so
13304 	 * that we are forced to pick them up from tnum and zext later and
13305 	 * if some path skips this step we are still safe.
13306 	 */
13307 	__mark_reg64_unbounded(dst_reg);
13308 	__update_reg32_bounds(dst_reg);
13309 }
13310 
13311 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
13312 				   u64 umin_val, u64 umax_val)
13313 {
13314 	/* Special case <<32 because it is a common compiler pattern to sign
13315 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
13316 	 * positive we know this shift will also be positive so we can track
13317 	 * bounds correctly. Otherwise we lose all sign bit information except
13318 	 * what we can pick up from var_off. Perhaps we can generalize this
13319 	 * later to shifts of any length.
13320 	 */
13321 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
13322 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
13323 	else
13324 		dst_reg->smax_value = S64_MAX;
13325 
13326 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
13327 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
13328 	else
13329 		dst_reg->smin_value = S64_MIN;
13330 
13331 	/* If we might shift our top bit out, then we know nothing */
13332 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
13333 		dst_reg->umin_value = 0;
13334 		dst_reg->umax_value = U64_MAX;
13335 	} else {
13336 		dst_reg->umin_value <<= umin_val;
13337 		dst_reg->umax_value <<= umax_val;
13338 	}
13339 }
13340 
13341 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
13342 			       struct bpf_reg_state *src_reg)
13343 {
13344 	u64 umax_val = src_reg->umax_value;
13345 	u64 umin_val = src_reg->umin_value;
13346 
13347 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
13348 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
13349 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13350 
13351 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
13352 	/* We may learn something more from the var_off */
13353 	__update_reg_bounds(dst_reg);
13354 }
13355 
13356 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
13357 				 struct bpf_reg_state *src_reg)
13358 {
13359 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13360 	u32 umax_val = src_reg->u32_max_value;
13361 	u32 umin_val = src_reg->u32_min_value;
13362 
13363 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13364 	 * be negative, then either:
13365 	 * 1) src_reg might be zero, so the sign bit of the result is
13366 	 *    unknown, so we lose our signed bounds
13367 	 * 2) it's known negative, thus the unsigned bounds capture the
13368 	 *    signed bounds
13369 	 * 3) the signed bounds cross zero, so they tell us nothing
13370 	 *    about the result
13371 	 * If the value in dst_reg is known nonnegative, then again the
13372 	 * unsigned bounds capture the signed bounds.
13373 	 * Thus, in all cases it suffices to blow away our signed bounds
13374 	 * and rely on inferring new ones from the unsigned bounds and
13375 	 * var_off of the result.
13376 	 */
13377 	dst_reg->s32_min_value = S32_MIN;
13378 	dst_reg->s32_max_value = S32_MAX;
13379 
13380 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
13381 	dst_reg->u32_min_value >>= umax_val;
13382 	dst_reg->u32_max_value >>= umin_val;
13383 
13384 	__mark_reg64_unbounded(dst_reg);
13385 	__update_reg32_bounds(dst_reg);
13386 }
13387 
13388 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
13389 			       struct bpf_reg_state *src_reg)
13390 {
13391 	u64 umax_val = src_reg->umax_value;
13392 	u64 umin_val = src_reg->umin_value;
13393 
13394 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13395 	 * be negative, then either:
13396 	 * 1) src_reg might be zero, so the sign bit of the result is
13397 	 *    unknown, so we lose our signed bounds
13398 	 * 2) it's known negative, thus the unsigned bounds capture the
13399 	 *    signed bounds
13400 	 * 3) the signed bounds cross zero, so they tell us nothing
13401 	 *    about the result
13402 	 * If the value in dst_reg is known nonnegative, then again the
13403 	 * unsigned bounds capture the signed bounds.
13404 	 * Thus, in all cases it suffices to blow away our signed bounds
13405 	 * and rely on inferring new ones from the unsigned bounds and
13406 	 * var_off of the result.
13407 	 */
13408 	dst_reg->smin_value = S64_MIN;
13409 	dst_reg->smax_value = S64_MAX;
13410 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
13411 	dst_reg->umin_value >>= umax_val;
13412 	dst_reg->umax_value >>= umin_val;
13413 
13414 	/* Its not easy to operate on alu32 bounds here because it depends
13415 	 * on bits being shifted in. Take easy way out and mark unbounded
13416 	 * so we can recalculate later from tnum.
13417 	 */
13418 	__mark_reg32_unbounded(dst_reg);
13419 	__update_reg_bounds(dst_reg);
13420 }
13421 
13422 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
13423 				  struct bpf_reg_state *src_reg)
13424 {
13425 	u64 umin_val = src_reg->u32_min_value;
13426 
13427 	/* Upon reaching here, src_known is true and
13428 	 * umax_val is equal to umin_val.
13429 	 */
13430 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
13431 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
13432 
13433 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
13434 
13435 	/* blow away the dst_reg umin_value/umax_value and rely on
13436 	 * dst_reg var_off to refine the result.
13437 	 */
13438 	dst_reg->u32_min_value = 0;
13439 	dst_reg->u32_max_value = U32_MAX;
13440 
13441 	__mark_reg64_unbounded(dst_reg);
13442 	__update_reg32_bounds(dst_reg);
13443 }
13444 
13445 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
13446 				struct bpf_reg_state *src_reg)
13447 {
13448 	u64 umin_val = src_reg->umin_value;
13449 
13450 	/* Upon reaching here, src_known is true and umax_val is equal
13451 	 * to umin_val.
13452 	 */
13453 	dst_reg->smin_value >>= umin_val;
13454 	dst_reg->smax_value >>= umin_val;
13455 
13456 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
13457 
13458 	/* blow away the dst_reg umin_value/umax_value and rely on
13459 	 * dst_reg var_off to refine the result.
13460 	 */
13461 	dst_reg->umin_value = 0;
13462 	dst_reg->umax_value = U64_MAX;
13463 
13464 	/* Its not easy to operate on alu32 bounds here because it depends
13465 	 * on bits being shifted in from upper 32-bits. Take easy way out
13466 	 * and mark unbounded so we can recalculate later from tnum.
13467 	 */
13468 	__mark_reg32_unbounded(dst_reg);
13469 	__update_reg_bounds(dst_reg);
13470 }
13471 
13472 /* WARNING: This function does calculations on 64-bit values, but the actual
13473  * execution may occur on 32-bit values. Therefore, things like bitshifts
13474  * need extra checks in the 32-bit case.
13475  */
13476 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
13477 				      struct bpf_insn *insn,
13478 				      struct bpf_reg_state *dst_reg,
13479 				      struct bpf_reg_state src_reg)
13480 {
13481 	struct bpf_reg_state *regs = cur_regs(env);
13482 	u8 opcode = BPF_OP(insn->code);
13483 	bool src_known;
13484 	s64 smin_val, smax_val;
13485 	u64 umin_val, umax_val;
13486 	s32 s32_min_val, s32_max_val;
13487 	u32 u32_min_val, u32_max_val;
13488 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
13489 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
13490 	int ret;
13491 
13492 	smin_val = src_reg.smin_value;
13493 	smax_val = src_reg.smax_value;
13494 	umin_val = src_reg.umin_value;
13495 	umax_val = src_reg.umax_value;
13496 
13497 	s32_min_val = src_reg.s32_min_value;
13498 	s32_max_val = src_reg.s32_max_value;
13499 	u32_min_val = src_reg.u32_min_value;
13500 	u32_max_val = src_reg.u32_max_value;
13501 
13502 	if (alu32) {
13503 		src_known = tnum_subreg_is_const(src_reg.var_off);
13504 		if ((src_known &&
13505 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
13506 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
13507 			/* Taint dst register if offset had invalid bounds
13508 			 * derived from e.g. dead branches.
13509 			 */
13510 			__mark_reg_unknown(env, dst_reg);
13511 			return 0;
13512 		}
13513 	} else {
13514 		src_known = tnum_is_const(src_reg.var_off);
13515 		if ((src_known &&
13516 		     (smin_val != smax_val || umin_val != umax_val)) ||
13517 		    smin_val > smax_val || umin_val > umax_val) {
13518 			/* Taint dst register if offset had invalid bounds
13519 			 * derived from e.g. dead branches.
13520 			 */
13521 			__mark_reg_unknown(env, dst_reg);
13522 			return 0;
13523 		}
13524 	}
13525 
13526 	if (!src_known &&
13527 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
13528 		__mark_reg_unknown(env, dst_reg);
13529 		return 0;
13530 	}
13531 
13532 	if (sanitize_needed(opcode)) {
13533 		ret = sanitize_val_alu(env, insn);
13534 		if (ret < 0)
13535 			return sanitize_err(env, insn, ret, NULL, NULL);
13536 	}
13537 
13538 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
13539 	 * There are two classes of instructions: The first class we track both
13540 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
13541 	 * greatest amount of precision when alu operations are mixed with jmp32
13542 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
13543 	 * and BPF_OR. This is possible because these ops have fairly easy to
13544 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
13545 	 * See alu32 verifier tests for examples. The second class of
13546 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
13547 	 * with regards to tracking sign/unsigned bounds because the bits may
13548 	 * cross subreg boundaries in the alu64 case. When this happens we mark
13549 	 * the reg unbounded in the subreg bound space and use the resulting
13550 	 * tnum to calculate an approximation of the sign/unsigned bounds.
13551 	 */
13552 	switch (opcode) {
13553 	case BPF_ADD:
13554 		scalar32_min_max_add(dst_reg, &src_reg);
13555 		scalar_min_max_add(dst_reg, &src_reg);
13556 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
13557 		break;
13558 	case BPF_SUB:
13559 		scalar32_min_max_sub(dst_reg, &src_reg);
13560 		scalar_min_max_sub(dst_reg, &src_reg);
13561 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
13562 		break;
13563 	case BPF_MUL:
13564 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
13565 		scalar32_min_max_mul(dst_reg, &src_reg);
13566 		scalar_min_max_mul(dst_reg, &src_reg);
13567 		break;
13568 	case BPF_AND:
13569 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
13570 		scalar32_min_max_and(dst_reg, &src_reg);
13571 		scalar_min_max_and(dst_reg, &src_reg);
13572 		break;
13573 	case BPF_OR:
13574 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
13575 		scalar32_min_max_or(dst_reg, &src_reg);
13576 		scalar_min_max_or(dst_reg, &src_reg);
13577 		break;
13578 	case BPF_XOR:
13579 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
13580 		scalar32_min_max_xor(dst_reg, &src_reg);
13581 		scalar_min_max_xor(dst_reg, &src_reg);
13582 		break;
13583 	case BPF_LSH:
13584 		if (umax_val >= insn_bitness) {
13585 			/* Shifts greater than 31 or 63 are undefined.
13586 			 * This includes shifts by a negative number.
13587 			 */
13588 			mark_reg_unknown(env, regs, insn->dst_reg);
13589 			break;
13590 		}
13591 		if (alu32)
13592 			scalar32_min_max_lsh(dst_reg, &src_reg);
13593 		else
13594 			scalar_min_max_lsh(dst_reg, &src_reg);
13595 		break;
13596 	case BPF_RSH:
13597 		if (umax_val >= insn_bitness) {
13598 			/* Shifts greater than 31 or 63 are undefined.
13599 			 * This includes shifts by a negative number.
13600 			 */
13601 			mark_reg_unknown(env, regs, insn->dst_reg);
13602 			break;
13603 		}
13604 		if (alu32)
13605 			scalar32_min_max_rsh(dst_reg, &src_reg);
13606 		else
13607 			scalar_min_max_rsh(dst_reg, &src_reg);
13608 		break;
13609 	case BPF_ARSH:
13610 		if (umax_val >= insn_bitness) {
13611 			/* Shifts greater than 31 or 63 are undefined.
13612 			 * This includes shifts by a negative number.
13613 			 */
13614 			mark_reg_unknown(env, regs, insn->dst_reg);
13615 			break;
13616 		}
13617 		if (alu32)
13618 			scalar32_min_max_arsh(dst_reg, &src_reg);
13619 		else
13620 			scalar_min_max_arsh(dst_reg, &src_reg);
13621 		break;
13622 	default:
13623 		mark_reg_unknown(env, regs, insn->dst_reg);
13624 		break;
13625 	}
13626 
13627 	/* ALU32 ops are zero extended into 64bit register */
13628 	if (alu32)
13629 		zext_32_to_64(dst_reg);
13630 	reg_bounds_sync(dst_reg);
13631 	return 0;
13632 }
13633 
13634 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
13635  * and var_off.
13636  */
13637 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
13638 				   struct bpf_insn *insn)
13639 {
13640 	struct bpf_verifier_state *vstate = env->cur_state;
13641 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13642 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
13643 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
13644 	u8 opcode = BPF_OP(insn->code);
13645 	int err;
13646 
13647 	dst_reg = &regs[insn->dst_reg];
13648 	src_reg = NULL;
13649 	if (dst_reg->type != SCALAR_VALUE)
13650 		ptr_reg = dst_reg;
13651 	else
13652 		/* Make sure ID is cleared otherwise dst_reg min/max could be
13653 		 * incorrectly propagated into other registers by find_equal_scalars()
13654 		 */
13655 		dst_reg->id = 0;
13656 	if (BPF_SRC(insn->code) == BPF_X) {
13657 		src_reg = &regs[insn->src_reg];
13658 		if (src_reg->type != SCALAR_VALUE) {
13659 			if (dst_reg->type != SCALAR_VALUE) {
13660 				/* Combining two pointers by any ALU op yields
13661 				 * an arbitrary scalar. Disallow all math except
13662 				 * pointer subtraction
13663 				 */
13664 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13665 					mark_reg_unknown(env, regs, insn->dst_reg);
13666 					return 0;
13667 				}
13668 				verbose(env, "R%d pointer %s pointer prohibited\n",
13669 					insn->dst_reg,
13670 					bpf_alu_string[opcode >> 4]);
13671 				return -EACCES;
13672 			} else {
13673 				/* scalar += pointer
13674 				 * This is legal, but we have to reverse our
13675 				 * src/dest handling in computing the range
13676 				 */
13677 				err = mark_chain_precision(env, insn->dst_reg);
13678 				if (err)
13679 					return err;
13680 				return adjust_ptr_min_max_vals(env, insn,
13681 							       src_reg, dst_reg);
13682 			}
13683 		} else if (ptr_reg) {
13684 			/* pointer += scalar */
13685 			err = mark_chain_precision(env, insn->src_reg);
13686 			if (err)
13687 				return err;
13688 			return adjust_ptr_min_max_vals(env, insn,
13689 						       dst_reg, src_reg);
13690 		} else if (dst_reg->precise) {
13691 			/* if dst_reg is precise, src_reg should be precise as well */
13692 			err = mark_chain_precision(env, insn->src_reg);
13693 			if (err)
13694 				return err;
13695 		}
13696 	} else {
13697 		/* Pretend the src is a reg with a known value, since we only
13698 		 * need to be able to read from this state.
13699 		 */
13700 		off_reg.type = SCALAR_VALUE;
13701 		__mark_reg_known(&off_reg, insn->imm);
13702 		src_reg = &off_reg;
13703 		if (ptr_reg) /* pointer += K */
13704 			return adjust_ptr_min_max_vals(env, insn,
13705 						       ptr_reg, src_reg);
13706 	}
13707 
13708 	/* Got here implies adding two SCALAR_VALUEs */
13709 	if (WARN_ON_ONCE(ptr_reg)) {
13710 		print_verifier_state(env, state, true);
13711 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
13712 		return -EINVAL;
13713 	}
13714 	if (WARN_ON(!src_reg)) {
13715 		print_verifier_state(env, state, true);
13716 		verbose(env, "verifier internal error: no src_reg\n");
13717 		return -EINVAL;
13718 	}
13719 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
13720 }
13721 
13722 /* check validity of 32-bit and 64-bit arithmetic operations */
13723 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
13724 {
13725 	struct bpf_reg_state *regs = cur_regs(env);
13726 	u8 opcode = BPF_OP(insn->code);
13727 	int err;
13728 
13729 	if (opcode == BPF_END || opcode == BPF_NEG) {
13730 		if (opcode == BPF_NEG) {
13731 			if (BPF_SRC(insn->code) != BPF_K ||
13732 			    insn->src_reg != BPF_REG_0 ||
13733 			    insn->off != 0 || insn->imm != 0) {
13734 				verbose(env, "BPF_NEG uses reserved fields\n");
13735 				return -EINVAL;
13736 			}
13737 		} else {
13738 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
13739 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
13740 			    (BPF_CLASS(insn->code) == BPF_ALU64 &&
13741 			     BPF_SRC(insn->code) != BPF_TO_LE)) {
13742 				verbose(env, "BPF_END uses reserved fields\n");
13743 				return -EINVAL;
13744 			}
13745 		}
13746 
13747 		/* check src operand */
13748 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13749 		if (err)
13750 			return err;
13751 
13752 		if (is_pointer_value(env, insn->dst_reg)) {
13753 			verbose(env, "R%d pointer arithmetic prohibited\n",
13754 				insn->dst_reg);
13755 			return -EACCES;
13756 		}
13757 
13758 		/* check dest operand */
13759 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
13760 		if (err)
13761 			return err;
13762 
13763 	} else if (opcode == BPF_MOV) {
13764 
13765 		if (BPF_SRC(insn->code) == BPF_X) {
13766 			if (insn->imm != 0) {
13767 				verbose(env, "BPF_MOV uses reserved fields\n");
13768 				return -EINVAL;
13769 			}
13770 
13771 			if (BPF_CLASS(insn->code) == BPF_ALU) {
13772 				if (insn->off != 0 && insn->off != 8 && insn->off != 16) {
13773 					verbose(env, "BPF_MOV uses reserved fields\n");
13774 					return -EINVAL;
13775 				}
13776 			} else {
13777 				if (insn->off != 0 && insn->off != 8 && insn->off != 16 &&
13778 				    insn->off != 32) {
13779 					verbose(env, "BPF_MOV uses reserved fields\n");
13780 					return -EINVAL;
13781 				}
13782 			}
13783 
13784 			/* check src operand */
13785 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13786 			if (err)
13787 				return err;
13788 		} else {
13789 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
13790 				verbose(env, "BPF_MOV uses reserved fields\n");
13791 				return -EINVAL;
13792 			}
13793 		}
13794 
13795 		/* check dest operand, mark as required later */
13796 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13797 		if (err)
13798 			return err;
13799 
13800 		if (BPF_SRC(insn->code) == BPF_X) {
13801 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
13802 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
13803 			bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id &&
13804 				       !tnum_is_const(src_reg->var_off);
13805 
13806 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13807 				if (insn->off == 0) {
13808 					/* case: R1 = R2
13809 					 * copy register state to dest reg
13810 					 */
13811 					if (need_id)
13812 						/* Assign src and dst registers the same ID
13813 						 * that will be used by find_equal_scalars()
13814 						 * to propagate min/max range.
13815 						 */
13816 						src_reg->id = ++env->id_gen;
13817 					copy_register_state(dst_reg, src_reg);
13818 					dst_reg->live |= REG_LIVE_WRITTEN;
13819 					dst_reg->subreg_def = DEF_NOT_SUBREG;
13820 				} else {
13821 					/* case: R1 = (s8, s16 s32)R2 */
13822 					if (is_pointer_value(env, insn->src_reg)) {
13823 						verbose(env,
13824 							"R%d sign-extension part of pointer\n",
13825 							insn->src_reg);
13826 						return -EACCES;
13827 					} else if (src_reg->type == SCALAR_VALUE) {
13828 						bool no_sext;
13829 
13830 						no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13831 						if (no_sext && need_id)
13832 							src_reg->id = ++env->id_gen;
13833 						copy_register_state(dst_reg, src_reg);
13834 						if (!no_sext)
13835 							dst_reg->id = 0;
13836 						coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
13837 						dst_reg->live |= REG_LIVE_WRITTEN;
13838 						dst_reg->subreg_def = DEF_NOT_SUBREG;
13839 					} else {
13840 						mark_reg_unknown(env, regs, insn->dst_reg);
13841 					}
13842 				}
13843 			} else {
13844 				/* R1 = (u32) R2 */
13845 				if (is_pointer_value(env, insn->src_reg)) {
13846 					verbose(env,
13847 						"R%d partial copy of pointer\n",
13848 						insn->src_reg);
13849 					return -EACCES;
13850 				} else if (src_reg->type == SCALAR_VALUE) {
13851 					if (insn->off == 0) {
13852 						bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
13853 
13854 						if (is_src_reg_u32 && need_id)
13855 							src_reg->id = ++env->id_gen;
13856 						copy_register_state(dst_reg, src_reg);
13857 						/* Make sure ID is cleared if src_reg is not in u32
13858 						 * range otherwise dst_reg min/max could be incorrectly
13859 						 * propagated into src_reg by find_equal_scalars()
13860 						 */
13861 						if (!is_src_reg_u32)
13862 							dst_reg->id = 0;
13863 						dst_reg->live |= REG_LIVE_WRITTEN;
13864 						dst_reg->subreg_def = env->insn_idx + 1;
13865 					} else {
13866 						/* case: W1 = (s8, s16)W2 */
13867 						bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13868 
13869 						if (no_sext && need_id)
13870 							src_reg->id = ++env->id_gen;
13871 						copy_register_state(dst_reg, src_reg);
13872 						if (!no_sext)
13873 							dst_reg->id = 0;
13874 						dst_reg->live |= REG_LIVE_WRITTEN;
13875 						dst_reg->subreg_def = env->insn_idx + 1;
13876 						coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
13877 					}
13878 				} else {
13879 					mark_reg_unknown(env, regs,
13880 							 insn->dst_reg);
13881 				}
13882 				zext_32_to_64(dst_reg);
13883 				reg_bounds_sync(dst_reg);
13884 			}
13885 		} else {
13886 			/* case: R = imm
13887 			 * remember the value we stored into this reg
13888 			 */
13889 			/* clear any state __mark_reg_known doesn't set */
13890 			mark_reg_unknown(env, regs, insn->dst_reg);
13891 			regs[insn->dst_reg].type = SCALAR_VALUE;
13892 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13893 				__mark_reg_known(regs + insn->dst_reg,
13894 						 insn->imm);
13895 			} else {
13896 				__mark_reg_known(regs + insn->dst_reg,
13897 						 (u32)insn->imm);
13898 			}
13899 		}
13900 
13901 	} else if (opcode > BPF_END) {
13902 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
13903 		return -EINVAL;
13904 
13905 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
13906 
13907 		if (BPF_SRC(insn->code) == BPF_X) {
13908 			if (insn->imm != 0 || insn->off > 1 ||
13909 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13910 				verbose(env, "BPF_ALU uses reserved fields\n");
13911 				return -EINVAL;
13912 			}
13913 			/* check src1 operand */
13914 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13915 			if (err)
13916 				return err;
13917 		} else {
13918 			if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
13919 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13920 				verbose(env, "BPF_ALU uses reserved fields\n");
13921 				return -EINVAL;
13922 			}
13923 		}
13924 
13925 		/* check src2 operand */
13926 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13927 		if (err)
13928 			return err;
13929 
13930 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
13931 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
13932 			verbose(env, "div by zero\n");
13933 			return -EINVAL;
13934 		}
13935 
13936 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
13937 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
13938 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
13939 
13940 			if (insn->imm < 0 || insn->imm >= size) {
13941 				verbose(env, "invalid shift %d\n", insn->imm);
13942 				return -EINVAL;
13943 			}
13944 		}
13945 
13946 		/* check dest operand */
13947 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13948 		err = err ?: adjust_reg_min_max_vals(env, insn);
13949 		if (err)
13950 			return err;
13951 	}
13952 
13953 	return reg_bounds_sanity_check(env, &regs[insn->dst_reg], "alu");
13954 }
13955 
13956 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
13957 				   struct bpf_reg_state *dst_reg,
13958 				   enum bpf_reg_type type,
13959 				   bool range_right_open)
13960 {
13961 	struct bpf_func_state *state;
13962 	struct bpf_reg_state *reg;
13963 	int new_range;
13964 
13965 	if (dst_reg->off < 0 ||
13966 	    (dst_reg->off == 0 && range_right_open))
13967 		/* This doesn't give us any range */
13968 		return;
13969 
13970 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
13971 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
13972 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
13973 		 * than pkt_end, but that's because it's also less than pkt.
13974 		 */
13975 		return;
13976 
13977 	new_range = dst_reg->off;
13978 	if (range_right_open)
13979 		new_range++;
13980 
13981 	/* Examples for register markings:
13982 	 *
13983 	 * pkt_data in dst register:
13984 	 *
13985 	 *   r2 = r3;
13986 	 *   r2 += 8;
13987 	 *   if (r2 > pkt_end) goto <handle exception>
13988 	 *   <access okay>
13989 	 *
13990 	 *   r2 = r3;
13991 	 *   r2 += 8;
13992 	 *   if (r2 < pkt_end) goto <access okay>
13993 	 *   <handle exception>
13994 	 *
13995 	 *   Where:
13996 	 *     r2 == dst_reg, pkt_end == src_reg
13997 	 *     r2=pkt(id=n,off=8,r=0)
13998 	 *     r3=pkt(id=n,off=0,r=0)
13999 	 *
14000 	 * pkt_data in src register:
14001 	 *
14002 	 *   r2 = r3;
14003 	 *   r2 += 8;
14004 	 *   if (pkt_end >= r2) goto <access okay>
14005 	 *   <handle exception>
14006 	 *
14007 	 *   r2 = r3;
14008 	 *   r2 += 8;
14009 	 *   if (pkt_end <= r2) goto <handle exception>
14010 	 *   <access okay>
14011 	 *
14012 	 *   Where:
14013 	 *     pkt_end == dst_reg, r2 == src_reg
14014 	 *     r2=pkt(id=n,off=8,r=0)
14015 	 *     r3=pkt(id=n,off=0,r=0)
14016 	 *
14017 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
14018 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
14019 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
14020 	 * the check.
14021 	 */
14022 
14023 	/* If our ids match, then we must have the same max_value.  And we
14024 	 * don't care about the other reg's fixed offset, since if it's too big
14025 	 * the range won't allow anything.
14026 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
14027 	 */
14028 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14029 		if (reg->type == type && reg->id == dst_reg->id)
14030 			/* keep the maximum range already checked */
14031 			reg->range = max(reg->range, new_range);
14032 	}));
14033 }
14034 
14035 /*
14036  * <reg1> <op> <reg2>, currently assuming reg2 is a constant
14037  */
14038 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14039 				  u8 opcode, bool is_jmp32)
14040 {
14041 	struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off;
14042 	struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off;
14043 	u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value;
14044 	u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value;
14045 	s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value;
14046 	s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value;
14047 	u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value;
14048 	u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value;
14049 	s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value;
14050 	s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value;
14051 
14052 	switch (opcode) {
14053 	case BPF_JEQ:
14054 		/* constants, umin/umax and smin/smax checks would be
14055 		 * redundant in this case because they all should match
14056 		 */
14057 		if (tnum_is_const(t1) && tnum_is_const(t2))
14058 			return t1.value == t2.value;
14059 		/* non-overlapping ranges */
14060 		if (umin1 > umax2 || umax1 < umin2)
14061 			return 0;
14062 		if (smin1 > smax2 || smax1 < smin2)
14063 			return 0;
14064 		if (!is_jmp32) {
14065 			/* if 64-bit ranges are inconclusive, see if we can
14066 			 * utilize 32-bit subrange knowledge to eliminate
14067 			 * branches that can't be taken a priori
14068 			 */
14069 			if (reg1->u32_min_value > reg2->u32_max_value ||
14070 			    reg1->u32_max_value < reg2->u32_min_value)
14071 				return 0;
14072 			if (reg1->s32_min_value > reg2->s32_max_value ||
14073 			    reg1->s32_max_value < reg2->s32_min_value)
14074 				return 0;
14075 		}
14076 		break;
14077 	case BPF_JNE:
14078 		/* constants, umin/umax and smin/smax checks would be
14079 		 * redundant in this case because they all should match
14080 		 */
14081 		if (tnum_is_const(t1) && tnum_is_const(t2))
14082 			return t1.value != t2.value;
14083 		/* non-overlapping ranges */
14084 		if (umin1 > umax2 || umax1 < umin2)
14085 			return 1;
14086 		if (smin1 > smax2 || smax1 < smin2)
14087 			return 1;
14088 		if (!is_jmp32) {
14089 			/* if 64-bit ranges are inconclusive, see if we can
14090 			 * utilize 32-bit subrange knowledge to eliminate
14091 			 * branches that can't be taken a priori
14092 			 */
14093 			if (reg1->u32_min_value > reg2->u32_max_value ||
14094 			    reg1->u32_max_value < reg2->u32_min_value)
14095 				return 1;
14096 			if (reg1->s32_min_value > reg2->s32_max_value ||
14097 			    reg1->s32_max_value < reg2->s32_min_value)
14098 				return 1;
14099 		}
14100 		break;
14101 	case BPF_JSET:
14102 		if (!is_reg_const(reg2, is_jmp32)) {
14103 			swap(reg1, reg2);
14104 			swap(t1, t2);
14105 		}
14106 		if (!is_reg_const(reg2, is_jmp32))
14107 			return -1;
14108 		if ((~t1.mask & t1.value) & t2.value)
14109 			return 1;
14110 		if (!((t1.mask | t1.value) & t2.value))
14111 			return 0;
14112 		break;
14113 	case BPF_JGT:
14114 		if (umin1 > umax2)
14115 			return 1;
14116 		else if (umax1 <= umin2)
14117 			return 0;
14118 		break;
14119 	case BPF_JSGT:
14120 		if (smin1 > smax2)
14121 			return 1;
14122 		else if (smax1 <= smin2)
14123 			return 0;
14124 		break;
14125 	case BPF_JLT:
14126 		if (umax1 < umin2)
14127 			return 1;
14128 		else if (umin1 >= umax2)
14129 			return 0;
14130 		break;
14131 	case BPF_JSLT:
14132 		if (smax1 < smin2)
14133 			return 1;
14134 		else if (smin1 >= smax2)
14135 			return 0;
14136 		break;
14137 	case BPF_JGE:
14138 		if (umin1 >= umax2)
14139 			return 1;
14140 		else if (umax1 < umin2)
14141 			return 0;
14142 		break;
14143 	case BPF_JSGE:
14144 		if (smin1 >= smax2)
14145 			return 1;
14146 		else if (smax1 < smin2)
14147 			return 0;
14148 		break;
14149 	case BPF_JLE:
14150 		if (umax1 <= umin2)
14151 			return 1;
14152 		else if (umin1 > umax2)
14153 			return 0;
14154 		break;
14155 	case BPF_JSLE:
14156 		if (smax1 <= smin2)
14157 			return 1;
14158 		else if (smin1 > smax2)
14159 			return 0;
14160 		break;
14161 	}
14162 
14163 	return -1;
14164 }
14165 
14166 static int flip_opcode(u32 opcode)
14167 {
14168 	/* How can we transform "a <op> b" into "b <op> a"? */
14169 	static const u8 opcode_flip[16] = {
14170 		/* these stay the same */
14171 		[BPF_JEQ  >> 4] = BPF_JEQ,
14172 		[BPF_JNE  >> 4] = BPF_JNE,
14173 		[BPF_JSET >> 4] = BPF_JSET,
14174 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
14175 		[BPF_JGE  >> 4] = BPF_JLE,
14176 		[BPF_JGT  >> 4] = BPF_JLT,
14177 		[BPF_JLE  >> 4] = BPF_JGE,
14178 		[BPF_JLT  >> 4] = BPF_JGT,
14179 		[BPF_JSGE >> 4] = BPF_JSLE,
14180 		[BPF_JSGT >> 4] = BPF_JSLT,
14181 		[BPF_JSLE >> 4] = BPF_JSGE,
14182 		[BPF_JSLT >> 4] = BPF_JSGT
14183 	};
14184 	return opcode_flip[opcode >> 4];
14185 }
14186 
14187 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
14188 				   struct bpf_reg_state *src_reg,
14189 				   u8 opcode)
14190 {
14191 	struct bpf_reg_state *pkt;
14192 
14193 	if (src_reg->type == PTR_TO_PACKET_END) {
14194 		pkt = dst_reg;
14195 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
14196 		pkt = src_reg;
14197 		opcode = flip_opcode(opcode);
14198 	} else {
14199 		return -1;
14200 	}
14201 
14202 	if (pkt->range >= 0)
14203 		return -1;
14204 
14205 	switch (opcode) {
14206 	case BPF_JLE:
14207 		/* pkt <= pkt_end */
14208 		fallthrough;
14209 	case BPF_JGT:
14210 		/* pkt > pkt_end */
14211 		if (pkt->range == BEYOND_PKT_END)
14212 			/* pkt has at last one extra byte beyond pkt_end */
14213 			return opcode == BPF_JGT;
14214 		break;
14215 	case BPF_JLT:
14216 		/* pkt < pkt_end */
14217 		fallthrough;
14218 	case BPF_JGE:
14219 		/* pkt >= pkt_end */
14220 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
14221 			return opcode == BPF_JGE;
14222 		break;
14223 	}
14224 	return -1;
14225 }
14226 
14227 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;"
14228  * and return:
14229  *  1 - branch will be taken and "goto target" will be executed
14230  *  0 - branch will not be taken and fall-through to next insn
14231  * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value
14232  *      range [0,10]
14233  */
14234 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14235 			   u8 opcode, bool is_jmp32)
14236 {
14237 	if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32)
14238 		return is_pkt_ptr_branch_taken(reg1, reg2, opcode);
14239 
14240 	if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) {
14241 		u64 val;
14242 
14243 		/* arrange that reg2 is a scalar, and reg1 is a pointer */
14244 		if (!is_reg_const(reg2, is_jmp32)) {
14245 			opcode = flip_opcode(opcode);
14246 			swap(reg1, reg2);
14247 		}
14248 		/* and ensure that reg2 is a constant */
14249 		if (!is_reg_const(reg2, is_jmp32))
14250 			return -1;
14251 
14252 		if (!reg_not_null(reg1))
14253 			return -1;
14254 
14255 		/* If pointer is valid tests against zero will fail so we can
14256 		 * use this to direct branch taken.
14257 		 */
14258 		val = reg_const_value(reg2, is_jmp32);
14259 		if (val != 0)
14260 			return -1;
14261 
14262 		switch (opcode) {
14263 		case BPF_JEQ:
14264 			return 0;
14265 		case BPF_JNE:
14266 			return 1;
14267 		default:
14268 			return -1;
14269 		}
14270 	}
14271 
14272 	/* now deal with two scalars, but not necessarily constants */
14273 	return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32);
14274 }
14275 
14276 /* Opcode that corresponds to a *false* branch condition.
14277  * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2
14278  */
14279 static u8 rev_opcode(u8 opcode)
14280 {
14281 	switch (opcode) {
14282 	case BPF_JEQ:		return BPF_JNE;
14283 	case BPF_JNE:		return BPF_JEQ;
14284 	/* JSET doesn't have it's reverse opcode in BPF, so add
14285 	 * BPF_X flag to denote the reverse of that operation
14286 	 */
14287 	case BPF_JSET:		return BPF_JSET | BPF_X;
14288 	case BPF_JSET | BPF_X:	return BPF_JSET;
14289 	case BPF_JGE:		return BPF_JLT;
14290 	case BPF_JGT:		return BPF_JLE;
14291 	case BPF_JLE:		return BPF_JGT;
14292 	case BPF_JLT:		return BPF_JGE;
14293 	case BPF_JSGE:		return BPF_JSLT;
14294 	case BPF_JSGT:		return BPF_JSLE;
14295 	case BPF_JSLE:		return BPF_JSGT;
14296 	case BPF_JSLT:		return BPF_JSGE;
14297 	default:		return 0;
14298 	}
14299 }
14300 
14301 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */
14302 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2,
14303 				u8 opcode, bool is_jmp32)
14304 {
14305 	struct tnum t;
14306 	u64 val;
14307 
14308 again:
14309 	switch (opcode) {
14310 	case BPF_JEQ:
14311 		if (is_jmp32) {
14312 			reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
14313 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
14314 			reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
14315 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
14316 			reg2->u32_min_value = reg1->u32_min_value;
14317 			reg2->u32_max_value = reg1->u32_max_value;
14318 			reg2->s32_min_value = reg1->s32_min_value;
14319 			reg2->s32_max_value = reg1->s32_max_value;
14320 
14321 			t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off));
14322 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
14323 			reg2->var_off = tnum_with_subreg(reg2->var_off, t);
14324 		} else {
14325 			reg1->umin_value = max(reg1->umin_value, reg2->umin_value);
14326 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
14327 			reg1->smin_value = max(reg1->smin_value, reg2->smin_value);
14328 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
14329 			reg2->umin_value = reg1->umin_value;
14330 			reg2->umax_value = reg1->umax_value;
14331 			reg2->smin_value = reg1->smin_value;
14332 			reg2->smax_value = reg1->smax_value;
14333 
14334 			reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off);
14335 			reg2->var_off = reg1->var_off;
14336 		}
14337 		break;
14338 	case BPF_JNE:
14339 		/* we don't derive any new information for inequality yet */
14340 		break;
14341 	case BPF_JSET:
14342 		if (!is_reg_const(reg2, is_jmp32))
14343 			swap(reg1, reg2);
14344 		if (!is_reg_const(reg2, is_jmp32))
14345 			break;
14346 		val = reg_const_value(reg2, is_jmp32);
14347 		/* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X)
14348 		 * requires single bit to learn something useful. E.g., if we
14349 		 * know that `r1 & 0x3` is true, then which bits (0, 1, or both)
14350 		 * are actually set? We can learn something definite only if
14351 		 * it's a single-bit value to begin with.
14352 		 *
14353 		 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have
14354 		 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor
14355 		 * bit 1 is set, which we can readily use in adjustments.
14356 		 */
14357 		if (!is_power_of_2(val))
14358 			break;
14359 		if (is_jmp32) {
14360 			t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val));
14361 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
14362 		} else {
14363 			reg1->var_off = tnum_or(reg1->var_off, tnum_const(val));
14364 		}
14365 		break;
14366 	case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */
14367 		if (!is_reg_const(reg2, is_jmp32))
14368 			swap(reg1, reg2);
14369 		if (!is_reg_const(reg2, is_jmp32))
14370 			break;
14371 		val = reg_const_value(reg2, is_jmp32);
14372 		if (is_jmp32) {
14373 			t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val));
14374 			reg1->var_off = tnum_with_subreg(reg1->var_off, t);
14375 		} else {
14376 			reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val));
14377 		}
14378 		break;
14379 	case BPF_JLE:
14380 		if (is_jmp32) {
14381 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value);
14382 			reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value);
14383 		} else {
14384 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value);
14385 			reg2->umin_value = max(reg1->umin_value, reg2->umin_value);
14386 		}
14387 		break;
14388 	case BPF_JLT:
14389 		if (is_jmp32) {
14390 			reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1);
14391 			reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value);
14392 		} else {
14393 			reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1);
14394 			reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value);
14395 		}
14396 		break;
14397 	case BPF_JSLE:
14398 		if (is_jmp32) {
14399 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value);
14400 			reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value);
14401 		} else {
14402 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value);
14403 			reg2->smin_value = max(reg1->smin_value, reg2->smin_value);
14404 		}
14405 		break;
14406 	case BPF_JSLT:
14407 		if (is_jmp32) {
14408 			reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1);
14409 			reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value);
14410 		} else {
14411 			reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1);
14412 			reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value);
14413 		}
14414 		break;
14415 	case BPF_JGE:
14416 	case BPF_JGT:
14417 	case BPF_JSGE:
14418 	case BPF_JSGT:
14419 		/* just reuse LE/LT logic above */
14420 		opcode = flip_opcode(opcode);
14421 		swap(reg1, reg2);
14422 		goto again;
14423 	default:
14424 		return;
14425 	}
14426 }
14427 
14428 /* Adjusts the register min/max values in the case that the dst_reg and
14429  * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K
14430  * check, in which case we havea fake SCALAR_VALUE representing insn->imm).
14431  * Technically we can do similar adjustments for pointers to the same object,
14432  * but we don't support that right now.
14433  */
14434 static int reg_set_min_max(struct bpf_verifier_env *env,
14435 			   struct bpf_reg_state *true_reg1,
14436 			   struct bpf_reg_state *true_reg2,
14437 			   struct bpf_reg_state *false_reg1,
14438 			   struct bpf_reg_state *false_reg2,
14439 			   u8 opcode, bool is_jmp32)
14440 {
14441 	int err;
14442 
14443 	/* If either register is a pointer, we can't learn anything about its
14444 	 * variable offset from the compare (unless they were a pointer into
14445 	 * the same object, but we don't bother with that).
14446 	 */
14447 	if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE)
14448 		return 0;
14449 
14450 	/* fallthrough (FALSE) branch */
14451 	regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32);
14452 	reg_bounds_sync(false_reg1);
14453 	reg_bounds_sync(false_reg2);
14454 
14455 	/* jump (TRUE) branch */
14456 	regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32);
14457 	reg_bounds_sync(true_reg1);
14458 	reg_bounds_sync(true_reg2);
14459 
14460 	err = reg_bounds_sanity_check(env, true_reg1, "true_reg1");
14461 	err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2");
14462 	err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1");
14463 	err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2");
14464 	return err;
14465 }
14466 
14467 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
14468 				 struct bpf_reg_state *reg, u32 id,
14469 				 bool is_null)
14470 {
14471 	if (type_may_be_null(reg->type) && reg->id == id &&
14472 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
14473 		/* Old offset (both fixed and variable parts) should have been
14474 		 * known-zero, because we don't allow pointer arithmetic on
14475 		 * pointers that might be NULL. If we see this happening, don't
14476 		 * convert the register.
14477 		 *
14478 		 * But in some cases, some helpers that return local kptrs
14479 		 * advance offset for the returned pointer. In those cases, it
14480 		 * is fine to expect to see reg->off.
14481 		 */
14482 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
14483 			return;
14484 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
14485 		    WARN_ON_ONCE(reg->off))
14486 			return;
14487 
14488 		if (is_null) {
14489 			reg->type = SCALAR_VALUE;
14490 			/* We don't need id and ref_obj_id from this point
14491 			 * onwards anymore, thus we should better reset it,
14492 			 * so that state pruning has chances to take effect.
14493 			 */
14494 			reg->id = 0;
14495 			reg->ref_obj_id = 0;
14496 
14497 			return;
14498 		}
14499 
14500 		mark_ptr_not_null_reg(reg);
14501 
14502 		if (!reg_may_point_to_spin_lock(reg)) {
14503 			/* For not-NULL ptr, reg->ref_obj_id will be reset
14504 			 * in release_reference().
14505 			 *
14506 			 * reg->id is still used by spin_lock ptr. Other
14507 			 * than spin_lock ptr type, reg->id can be reset.
14508 			 */
14509 			reg->id = 0;
14510 		}
14511 	}
14512 }
14513 
14514 /* The logic is similar to find_good_pkt_pointers(), both could eventually
14515  * be folded together at some point.
14516  */
14517 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
14518 				  bool is_null)
14519 {
14520 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
14521 	struct bpf_reg_state *regs = state->regs, *reg;
14522 	u32 ref_obj_id = regs[regno].ref_obj_id;
14523 	u32 id = regs[regno].id;
14524 
14525 	if (ref_obj_id && ref_obj_id == id && is_null)
14526 		/* regs[regno] is in the " == NULL" branch.
14527 		 * No one could have freed the reference state before
14528 		 * doing the NULL check.
14529 		 */
14530 		WARN_ON_ONCE(release_reference_state(state, id));
14531 
14532 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14533 		mark_ptr_or_null_reg(state, reg, id, is_null);
14534 	}));
14535 }
14536 
14537 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
14538 				   struct bpf_reg_state *dst_reg,
14539 				   struct bpf_reg_state *src_reg,
14540 				   struct bpf_verifier_state *this_branch,
14541 				   struct bpf_verifier_state *other_branch)
14542 {
14543 	if (BPF_SRC(insn->code) != BPF_X)
14544 		return false;
14545 
14546 	/* Pointers are always 64-bit. */
14547 	if (BPF_CLASS(insn->code) == BPF_JMP32)
14548 		return false;
14549 
14550 	switch (BPF_OP(insn->code)) {
14551 	case BPF_JGT:
14552 		if ((dst_reg->type == PTR_TO_PACKET &&
14553 		     src_reg->type == PTR_TO_PACKET_END) ||
14554 		    (dst_reg->type == PTR_TO_PACKET_META &&
14555 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14556 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
14557 			find_good_pkt_pointers(this_branch, dst_reg,
14558 					       dst_reg->type, false);
14559 			mark_pkt_end(other_branch, insn->dst_reg, true);
14560 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14561 			    src_reg->type == PTR_TO_PACKET) ||
14562 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14563 			    src_reg->type == PTR_TO_PACKET_META)) {
14564 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
14565 			find_good_pkt_pointers(other_branch, src_reg,
14566 					       src_reg->type, true);
14567 			mark_pkt_end(this_branch, insn->src_reg, false);
14568 		} else {
14569 			return false;
14570 		}
14571 		break;
14572 	case BPF_JLT:
14573 		if ((dst_reg->type == PTR_TO_PACKET &&
14574 		     src_reg->type == PTR_TO_PACKET_END) ||
14575 		    (dst_reg->type == PTR_TO_PACKET_META &&
14576 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14577 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
14578 			find_good_pkt_pointers(other_branch, dst_reg,
14579 					       dst_reg->type, true);
14580 			mark_pkt_end(this_branch, insn->dst_reg, false);
14581 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14582 			    src_reg->type == PTR_TO_PACKET) ||
14583 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14584 			    src_reg->type == PTR_TO_PACKET_META)) {
14585 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
14586 			find_good_pkt_pointers(this_branch, src_reg,
14587 					       src_reg->type, false);
14588 			mark_pkt_end(other_branch, insn->src_reg, true);
14589 		} else {
14590 			return false;
14591 		}
14592 		break;
14593 	case BPF_JGE:
14594 		if ((dst_reg->type == PTR_TO_PACKET &&
14595 		     src_reg->type == PTR_TO_PACKET_END) ||
14596 		    (dst_reg->type == PTR_TO_PACKET_META &&
14597 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14598 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
14599 			find_good_pkt_pointers(this_branch, dst_reg,
14600 					       dst_reg->type, true);
14601 			mark_pkt_end(other_branch, insn->dst_reg, false);
14602 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14603 			    src_reg->type == PTR_TO_PACKET) ||
14604 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14605 			    src_reg->type == PTR_TO_PACKET_META)) {
14606 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
14607 			find_good_pkt_pointers(other_branch, src_reg,
14608 					       src_reg->type, false);
14609 			mark_pkt_end(this_branch, insn->src_reg, true);
14610 		} else {
14611 			return false;
14612 		}
14613 		break;
14614 	case BPF_JLE:
14615 		if ((dst_reg->type == PTR_TO_PACKET &&
14616 		     src_reg->type == PTR_TO_PACKET_END) ||
14617 		    (dst_reg->type == PTR_TO_PACKET_META &&
14618 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14619 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
14620 			find_good_pkt_pointers(other_branch, dst_reg,
14621 					       dst_reg->type, false);
14622 			mark_pkt_end(this_branch, insn->dst_reg, true);
14623 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14624 			    src_reg->type == PTR_TO_PACKET) ||
14625 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14626 			    src_reg->type == PTR_TO_PACKET_META)) {
14627 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
14628 			find_good_pkt_pointers(this_branch, src_reg,
14629 					       src_reg->type, true);
14630 			mark_pkt_end(other_branch, insn->src_reg, false);
14631 		} else {
14632 			return false;
14633 		}
14634 		break;
14635 	default:
14636 		return false;
14637 	}
14638 
14639 	return true;
14640 }
14641 
14642 static void find_equal_scalars(struct bpf_verifier_state *vstate,
14643 			       struct bpf_reg_state *known_reg)
14644 {
14645 	struct bpf_func_state *state;
14646 	struct bpf_reg_state *reg;
14647 
14648 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14649 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
14650 			copy_register_state(reg, known_reg);
14651 	}));
14652 }
14653 
14654 static int check_cond_jmp_op(struct bpf_verifier_env *env,
14655 			     struct bpf_insn *insn, int *insn_idx)
14656 {
14657 	struct bpf_verifier_state *this_branch = env->cur_state;
14658 	struct bpf_verifier_state *other_branch;
14659 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
14660 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
14661 	struct bpf_reg_state *eq_branch_regs;
14662 	struct bpf_reg_state fake_reg = {};
14663 	u8 opcode = BPF_OP(insn->code);
14664 	bool is_jmp32;
14665 	int pred = -1;
14666 	int err;
14667 
14668 	/* Only conditional jumps are expected to reach here. */
14669 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
14670 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
14671 		return -EINVAL;
14672 	}
14673 
14674 	/* check src2 operand */
14675 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14676 	if (err)
14677 		return err;
14678 
14679 	dst_reg = &regs[insn->dst_reg];
14680 	if (BPF_SRC(insn->code) == BPF_X) {
14681 		if (insn->imm != 0) {
14682 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14683 			return -EINVAL;
14684 		}
14685 
14686 		/* check src1 operand */
14687 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14688 		if (err)
14689 			return err;
14690 
14691 		src_reg = &regs[insn->src_reg];
14692 		if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
14693 		    is_pointer_value(env, insn->src_reg)) {
14694 			verbose(env, "R%d pointer comparison prohibited\n",
14695 				insn->src_reg);
14696 			return -EACCES;
14697 		}
14698 	} else {
14699 		if (insn->src_reg != BPF_REG_0) {
14700 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14701 			return -EINVAL;
14702 		}
14703 		src_reg = &fake_reg;
14704 		src_reg->type = SCALAR_VALUE;
14705 		__mark_reg_known(src_reg, insn->imm);
14706 	}
14707 
14708 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
14709 	pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32);
14710 	if (pred >= 0) {
14711 		/* If we get here with a dst_reg pointer type it is because
14712 		 * above is_branch_taken() special cased the 0 comparison.
14713 		 */
14714 		if (!__is_pointer_value(false, dst_reg))
14715 			err = mark_chain_precision(env, insn->dst_reg);
14716 		if (BPF_SRC(insn->code) == BPF_X && !err &&
14717 		    !__is_pointer_value(false, src_reg))
14718 			err = mark_chain_precision(env, insn->src_reg);
14719 		if (err)
14720 			return err;
14721 	}
14722 
14723 	if (pred == 1) {
14724 		/* Only follow the goto, ignore fall-through. If needed, push
14725 		 * the fall-through branch for simulation under speculative
14726 		 * execution.
14727 		 */
14728 		if (!env->bypass_spec_v1 &&
14729 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
14730 					       *insn_idx))
14731 			return -EFAULT;
14732 		if (env->log.level & BPF_LOG_LEVEL)
14733 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
14734 		*insn_idx += insn->off;
14735 		return 0;
14736 	} else if (pred == 0) {
14737 		/* Only follow the fall-through branch, since that's where the
14738 		 * program will go. If needed, push the goto branch for
14739 		 * simulation under speculative execution.
14740 		 */
14741 		if (!env->bypass_spec_v1 &&
14742 		    !sanitize_speculative_path(env, insn,
14743 					       *insn_idx + insn->off + 1,
14744 					       *insn_idx))
14745 			return -EFAULT;
14746 		if (env->log.level & BPF_LOG_LEVEL)
14747 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
14748 		return 0;
14749 	}
14750 
14751 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
14752 				  false);
14753 	if (!other_branch)
14754 		return -EFAULT;
14755 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
14756 
14757 	if (BPF_SRC(insn->code) == BPF_X) {
14758 		err = reg_set_min_max(env,
14759 				      &other_branch_regs[insn->dst_reg],
14760 				      &other_branch_regs[insn->src_reg],
14761 				      dst_reg, src_reg, opcode, is_jmp32);
14762 	} else /* BPF_SRC(insn->code) == BPF_K */ {
14763 		err = reg_set_min_max(env,
14764 				      &other_branch_regs[insn->dst_reg],
14765 				      src_reg /* fake one */,
14766 				      dst_reg, src_reg /* same fake one */,
14767 				      opcode, is_jmp32);
14768 	}
14769 	if (err)
14770 		return err;
14771 
14772 	if (BPF_SRC(insn->code) == BPF_X &&
14773 	    src_reg->type == SCALAR_VALUE && src_reg->id &&
14774 	    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
14775 		find_equal_scalars(this_branch, src_reg);
14776 		find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
14777 	}
14778 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
14779 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
14780 		find_equal_scalars(this_branch, dst_reg);
14781 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
14782 	}
14783 
14784 	/* if one pointer register is compared to another pointer
14785 	 * register check if PTR_MAYBE_NULL could be lifted.
14786 	 * E.g. register A - maybe null
14787 	 *      register B - not null
14788 	 * for JNE A, B, ... - A is not null in the false branch;
14789 	 * for JEQ A, B, ... - A is not null in the true branch.
14790 	 *
14791 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
14792 	 * not need to be null checked by the BPF program, i.e.,
14793 	 * could be null even without PTR_MAYBE_NULL marking, so
14794 	 * only propagate nullness when neither reg is that type.
14795 	 */
14796 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
14797 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
14798 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
14799 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
14800 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
14801 		eq_branch_regs = NULL;
14802 		switch (opcode) {
14803 		case BPF_JEQ:
14804 			eq_branch_regs = other_branch_regs;
14805 			break;
14806 		case BPF_JNE:
14807 			eq_branch_regs = regs;
14808 			break;
14809 		default:
14810 			/* do nothing */
14811 			break;
14812 		}
14813 		if (eq_branch_regs) {
14814 			if (type_may_be_null(src_reg->type))
14815 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
14816 			else
14817 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
14818 		}
14819 	}
14820 
14821 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
14822 	 * NOTE: these optimizations below are related with pointer comparison
14823 	 *       which will never be JMP32.
14824 	 */
14825 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
14826 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
14827 	    type_may_be_null(dst_reg->type)) {
14828 		/* Mark all identical registers in each branch as either
14829 		 * safe or unknown depending R == 0 or R != 0 conditional.
14830 		 */
14831 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
14832 				      opcode == BPF_JNE);
14833 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
14834 				      opcode == BPF_JEQ);
14835 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
14836 					   this_branch, other_branch) &&
14837 		   is_pointer_value(env, insn->dst_reg)) {
14838 		verbose(env, "R%d pointer comparison prohibited\n",
14839 			insn->dst_reg);
14840 		return -EACCES;
14841 	}
14842 	if (env->log.level & BPF_LOG_LEVEL)
14843 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
14844 	return 0;
14845 }
14846 
14847 /* verify BPF_LD_IMM64 instruction */
14848 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
14849 {
14850 	struct bpf_insn_aux_data *aux = cur_aux(env);
14851 	struct bpf_reg_state *regs = cur_regs(env);
14852 	struct bpf_reg_state *dst_reg;
14853 	struct bpf_map *map;
14854 	int err;
14855 
14856 	if (BPF_SIZE(insn->code) != BPF_DW) {
14857 		verbose(env, "invalid BPF_LD_IMM insn\n");
14858 		return -EINVAL;
14859 	}
14860 	if (insn->off != 0) {
14861 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
14862 		return -EINVAL;
14863 	}
14864 
14865 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
14866 	if (err)
14867 		return err;
14868 
14869 	dst_reg = &regs[insn->dst_reg];
14870 	if (insn->src_reg == 0) {
14871 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
14872 
14873 		dst_reg->type = SCALAR_VALUE;
14874 		__mark_reg_known(&regs[insn->dst_reg], imm);
14875 		return 0;
14876 	}
14877 
14878 	/* All special src_reg cases are listed below. From this point onwards
14879 	 * we either succeed and assign a corresponding dst_reg->type after
14880 	 * zeroing the offset, or fail and reject the program.
14881 	 */
14882 	mark_reg_known_zero(env, regs, insn->dst_reg);
14883 
14884 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
14885 		dst_reg->type = aux->btf_var.reg_type;
14886 		switch (base_type(dst_reg->type)) {
14887 		case PTR_TO_MEM:
14888 			dst_reg->mem_size = aux->btf_var.mem_size;
14889 			break;
14890 		case PTR_TO_BTF_ID:
14891 			dst_reg->btf = aux->btf_var.btf;
14892 			dst_reg->btf_id = aux->btf_var.btf_id;
14893 			break;
14894 		default:
14895 			verbose(env, "bpf verifier is misconfigured\n");
14896 			return -EFAULT;
14897 		}
14898 		return 0;
14899 	}
14900 
14901 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
14902 		struct bpf_prog_aux *aux = env->prog->aux;
14903 		u32 subprogno = find_subprog(env,
14904 					     env->insn_idx + insn->imm + 1);
14905 
14906 		if (!aux->func_info) {
14907 			verbose(env, "missing btf func_info\n");
14908 			return -EINVAL;
14909 		}
14910 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
14911 			verbose(env, "callback function not static\n");
14912 			return -EINVAL;
14913 		}
14914 
14915 		dst_reg->type = PTR_TO_FUNC;
14916 		dst_reg->subprogno = subprogno;
14917 		return 0;
14918 	}
14919 
14920 	map = env->used_maps[aux->map_index];
14921 	dst_reg->map_ptr = map;
14922 
14923 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
14924 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
14925 		dst_reg->type = PTR_TO_MAP_VALUE;
14926 		dst_reg->off = aux->map_off;
14927 		WARN_ON_ONCE(map->max_entries != 1);
14928 		/* We want reg->id to be same (0) as map_value is not distinct */
14929 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
14930 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
14931 		dst_reg->type = CONST_PTR_TO_MAP;
14932 	} else {
14933 		verbose(env, "bpf verifier is misconfigured\n");
14934 		return -EINVAL;
14935 	}
14936 
14937 	return 0;
14938 }
14939 
14940 static bool may_access_skb(enum bpf_prog_type type)
14941 {
14942 	switch (type) {
14943 	case BPF_PROG_TYPE_SOCKET_FILTER:
14944 	case BPF_PROG_TYPE_SCHED_CLS:
14945 	case BPF_PROG_TYPE_SCHED_ACT:
14946 		return true;
14947 	default:
14948 		return false;
14949 	}
14950 }
14951 
14952 /* verify safety of LD_ABS|LD_IND instructions:
14953  * - they can only appear in the programs where ctx == skb
14954  * - since they are wrappers of function calls, they scratch R1-R5 registers,
14955  *   preserve R6-R9, and store return value into R0
14956  *
14957  * Implicit input:
14958  *   ctx == skb == R6 == CTX
14959  *
14960  * Explicit input:
14961  *   SRC == any register
14962  *   IMM == 32-bit immediate
14963  *
14964  * Output:
14965  *   R0 - 8/16/32-bit skb data converted to cpu endianness
14966  */
14967 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
14968 {
14969 	struct bpf_reg_state *regs = cur_regs(env);
14970 	static const int ctx_reg = BPF_REG_6;
14971 	u8 mode = BPF_MODE(insn->code);
14972 	int i, err;
14973 
14974 	if (!may_access_skb(resolve_prog_type(env->prog))) {
14975 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
14976 		return -EINVAL;
14977 	}
14978 
14979 	if (!env->ops->gen_ld_abs) {
14980 		verbose(env, "bpf verifier is misconfigured\n");
14981 		return -EINVAL;
14982 	}
14983 
14984 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
14985 	    BPF_SIZE(insn->code) == BPF_DW ||
14986 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
14987 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
14988 		return -EINVAL;
14989 	}
14990 
14991 	/* check whether implicit source operand (register R6) is readable */
14992 	err = check_reg_arg(env, ctx_reg, SRC_OP);
14993 	if (err)
14994 		return err;
14995 
14996 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
14997 	 * gen_ld_abs() may terminate the program at runtime, leading to
14998 	 * reference leak.
14999 	 */
15000 	err = check_reference_leak(env, false);
15001 	if (err) {
15002 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
15003 		return err;
15004 	}
15005 
15006 	if (env->cur_state->active_lock.ptr) {
15007 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
15008 		return -EINVAL;
15009 	}
15010 
15011 	if (env->cur_state->active_rcu_lock) {
15012 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
15013 		return -EINVAL;
15014 	}
15015 
15016 	if (regs[ctx_reg].type != PTR_TO_CTX) {
15017 		verbose(env,
15018 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
15019 		return -EINVAL;
15020 	}
15021 
15022 	if (mode == BPF_IND) {
15023 		/* check explicit source operand */
15024 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
15025 		if (err)
15026 			return err;
15027 	}
15028 
15029 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
15030 	if (err < 0)
15031 		return err;
15032 
15033 	/* reset caller saved regs to unreadable */
15034 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
15035 		mark_reg_not_init(env, regs, caller_saved[i]);
15036 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
15037 	}
15038 
15039 	/* mark destination R0 register as readable, since it contains
15040 	 * the value fetched from the packet.
15041 	 * Already marked as written above.
15042 	 */
15043 	mark_reg_unknown(env, regs, BPF_REG_0);
15044 	/* ld_abs load up to 32-bit skb data. */
15045 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
15046 	return 0;
15047 }
15048 
15049 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name)
15050 {
15051 	const char *exit_ctx = "At program exit";
15052 	struct tnum enforce_attach_type_range = tnum_unknown;
15053 	const struct bpf_prog *prog = env->prog;
15054 	struct bpf_reg_state *reg;
15055 	struct bpf_retval_range range = retval_range(0, 1);
15056 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
15057 	int err;
15058 	struct bpf_func_state *frame = env->cur_state->frame[0];
15059 	const bool is_subprog = frame->subprogno;
15060 
15061 	/* LSM and struct_ops func-ptr's return type could be "void" */
15062 	if (!is_subprog || frame->in_exception_callback_fn) {
15063 		switch (prog_type) {
15064 		case BPF_PROG_TYPE_LSM:
15065 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
15066 				/* See below, can be 0 or 0-1 depending on hook. */
15067 				break;
15068 			fallthrough;
15069 		case BPF_PROG_TYPE_STRUCT_OPS:
15070 			if (!prog->aux->attach_func_proto->type)
15071 				return 0;
15072 			break;
15073 		default:
15074 			break;
15075 		}
15076 	}
15077 
15078 	/* eBPF calling convention is such that R0 is used
15079 	 * to return the value from eBPF program.
15080 	 * Make sure that it's readable at this time
15081 	 * of bpf_exit, which means that program wrote
15082 	 * something into it earlier
15083 	 */
15084 	err = check_reg_arg(env, regno, SRC_OP);
15085 	if (err)
15086 		return err;
15087 
15088 	if (is_pointer_value(env, regno)) {
15089 		verbose(env, "R%d leaks addr as return value\n", regno);
15090 		return -EACCES;
15091 	}
15092 
15093 	reg = cur_regs(env) + regno;
15094 
15095 	if (frame->in_async_callback_fn) {
15096 		/* enforce return zero from async callbacks like timer */
15097 		exit_ctx = "At async callback return";
15098 		range = retval_range(0, 0);
15099 		goto enforce_retval;
15100 	}
15101 
15102 	if (is_subprog && !frame->in_exception_callback_fn) {
15103 		if (reg->type != SCALAR_VALUE) {
15104 			verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n",
15105 				regno, reg_type_str(env, reg->type));
15106 			return -EINVAL;
15107 		}
15108 		return 0;
15109 	}
15110 
15111 	switch (prog_type) {
15112 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
15113 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
15114 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
15115 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG ||
15116 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
15117 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
15118 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME ||
15119 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
15120 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME ||
15121 		    env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME)
15122 			range = retval_range(1, 1);
15123 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
15124 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
15125 			range = retval_range(0, 3);
15126 		break;
15127 	case BPF_PROG_TYPE_CGROUP_SKB:
15128 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
15129 			range = retval_range(0, 3);
15130 			enforce_attach_type_range = tnum_range(2, 3);
15131 		}
15132 		break;
15133 	case BPF_PROG_TYPE_CGROUP_SOCK:
15134 	case BPF_PROG_TYPE_SOCK_OPS:
15135 	case BPF_PROG_TYPE_CGROUP_DEVICE:
15136 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
15137 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
15138 		break;
15139 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
15140 		if (!env->prog->aux->attach_btf_id)
15141 			return 0;
15142 		range = retval_range(0, 0);
15143 		break;
15144 	case BPF_PROG_TYPE_TRACING:
15145 		switch (env->prog->expected_attach_type) {
15146 		case BPF_TRACE_FENTRY:
15147 		case BPF_TRACE_FEXIT:
15148 			range = retval_range(0, 0);
15149 			break;
15150 		case BPF_TRACE_RAW_TP:
15151 		case BPF_MODIFY_RETURN:
15152 			return 0;
15153 		case BPF_TRACE_ITER:
15154 			break;
15155 		default:
15156 			return -ENOTSUPP;
15157 		}
15158 		break;
15159 	case BPF_PROG_TYPE_SK_LOOKUP:
15160 		range = retval_range(SK_DROP, SK_PASS);
15161 		break;
15162 
15163 	case BPF_PROG_TYPE_LSM:
15164 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
15165 			/* Regular BPF_PROG_TYPE_LSM programs can return
15166 			 * any value.
15167 			 */
15168 			return 0;
15169 		}
15170 		if (!env->prog->aux->attach_func_proto->type) {
15171 			/* Make sure programs that attach to void
15172 			 * hooks don't try to modify return value.
15173 			 */
15174 			range = retval_range(1, 1);
15175 		}
15176 		break;
15177 
15178 	case BPF_PROG_TYPE_NETFILTER:
15179 		range = retval_range(NF_DROP, NF_ACCEPT);
15180 		break;
15181 	case BPF_PROG_TYPE_EXT:
15182 		/* freplace program can return anything as its return value
15183 		 * depends on the to-be-replaced kernel func or bpf program.
15184 		 */
15185 	default:
15186 		return 0;
15187 	}
15188 
15189 enforce_retval:
15190 	if (reg->type != SCALAR_VALUE) {
15191 		verbose(env, "%s the register R%d is not a known value (%s)\n",
15192 			exit_ctx, regno, reg_type_str(env, reg->type));
15193 		return -EINVAL;
15194 	}
15195 
15196 	err = mark_chain_precision(env, regno);
15197 	if (err)
15198 		return err;
15199 
15200 	if (!retval_range_within(range, reg)) {
15201 		verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name);
15202 		if (!is_subprog &&
15203 		    prog->expected_attach_type == BPF_LSM_CGROUP &&
15204 		    prog_type == BPF_PROG_TYPE_LSM &&
15205 		    !prog->aux->attach_func_proto->type)
15206 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
15207 		return -EINVAL;
15208 	}
15209 
15210 	if (!tnum_is_unknown(enforce_attach_type_range) &&
15211 	    tnum_in(enforce_attach_type_range, reg->var_off))
15212 		env->prog->enforce_expected_attach_type = 1;
15213 	return 0;
15214 }
15215 
15216 /* non-recursive DFS pseudo code
15217  * 1  procedure DFS-iterative(G,v):
15218  * 2      label v as discovered
15219  * 3      let S be a stack
15220  * 4      S.push(v)
15221  * 5      while S is not empty
15222  * 6            t <- S.peek()
15223  * 7            if t is what we're looking for:
15224  * 8                return t
15225  * 9            for all edges e in G.adjacentEdges(t) do
15226  * 10               if edge e is already labelled
15227  * 11                   continue with the next edge
15228  * 12               w <- G.adjacentVertex(t,e)
15229  * 13               if vertex w is not discovered and not explored
15230  * 14                   label e as tree-edge
15231  * 15                   label w as discovered
15232  * 16                   S.push(w)
15233  * 17                   continue at 5
15234  * 18               else if vertex w is discovered
15235  * 19                   label e as back-edge
15236  * 20               else
15237  * 21                   // vertex w is explored
15238  * 22                   label e as forward- or cross-edge
15239  * 23           label t as explored
15240  * 24           S.pop()
15241  *
15242  * convention:
15243  * 0x10 - discovered
15244  * 0x11 - discovered and fall-through edge labelled
15245  * 0x12 - discovered and fall-through and branch edges labelled
15246  * 0x20 - explored
15247  */
15248 
15249 enum {
15250 	DISCOVERED = 0x10,
15251 	EXPLORED = 0x20,
15252 	FALLTHROUGH = 1,
15253 	BRANCH = 2,
15254 };
15255 
15256 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
15257 {
15258 	env->insn_aux_data[idx].prune_point = true;
15259 }
15260 
15261 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
15262 {
15263 	return env->insn_aux_data[insn_idx].prune_point;
15264 }
15265 
15266 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
15267 {
15268 	env->insn_aux_data[idx].force_checkpoint = true;
15269 }
15270 
15271 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
15272 {
15273 	return env->insn_aux_data[insn_idx].force_checkpoint;
15274 }
15275 
15276 static void mark_calls_callback(struct bpf_verifier_env *env, int idx)
15277 {
15278 	env->insn_aux_data[idx].calls_callback = true;
15279 }
15280 
15281 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx)
15282 {
15283 	return env->insn_aux_data[insn_idx].calls_callback;
15284 }
15285 
15286 enum {
15287 	DONE_EXPLORING = 0,
15288 	KEEP_EXPLORING = 1,
15289 };
15290 
15291 /* t, w, e - match pseudo-code above:
15292  * t - index of current instruction
15293  * w - next instruction
15294  * e - edge
15295  */
15296 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
15297 {
15298 	int *insn_stack = env->cfg.insn_stack;
15299 	int *insn_state = env->cfg.insn_state;
15300 
15301 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
15302 		return DONE_EXPLORING;
15303 
15304 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
15305 		return DONE_EXPLORING;
15306 
15307 	if (w < 0 || w >= env->prog->len) {
15308 		verbose_linfo(env, t, "%d: ", t);
15309 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
15310 		return -EINVAL;
15311 	}
15312 
15313 	if (e == BRANCH) {
15314 		/* mark branch target for state pruning */
15315 		mark_prune_point(env, w);
15316 		mark_jmp_point(env, w);
15317 	}
15318 
15319 	if (insn_state[w] == 0) {
15320 		/* tree-edge */
15321 		insn_state[t] = DISCOVERED | e;
15322 		insn_state[w] = DISCOVERED;
15323 		if (env->cfg.cur_stack >= env->prog->len)
15324 			return -E2BIG;
15325 		insn_stack[env->cfg.cur_stack++] = w;
15326 		return KEEP_EXPLORING;
15327 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
15328 		if (env->bpf_capable)
15329 			return DONE_EXPLORING;
15330 		verbose_linfo(env, t, "%d: ", t);
15331 		verbose_linfo(env, w, "%d: ", w);
15332 		verbose(env, "back-edge from insn %d to %d\n", t, w);
15333 		return -EINVAL;
15334 	} else if (insn_state[w] == EXPLORED) {
15335 		/* forward- or cross-edge */
15336 		insn_state[t] = DISCOVERED | e;
15337 	} else {
15338 		verbose(env, "insn state internal bug\n");
15339 		return -EFAULT;
15340 	}
15341 	return DONE_EXPLORING;
15342 }
15343 
15344 static int visit_func_call_insn(int t, struct bpf_insn *insns,
15345 				struct bpf_verifier_env *env,
15346 				bool visit_callee)
15347 {
15348 	int ret, insn_sz;
15349 
15350 	insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
15351 	ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
15352 	if (ret)
15353 		return ret;
15354 
15355 	mark_prune_point(env, t + insn_sz);
15356 	/* when we exit from subprog, we need to record non-linear history */
15357 	mark_jmp_point(env, t + insn_sz);
15358 
15359 	if (visit_callee) {
15360 		mark_prune_point(env, t);
15361 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
15362 	}
15363 	return ret;
15364 }
15365 
15366 /* Visits the instruction at index t and returns one of the following:
15367  *  < 0 - an error occurred
15368  *  DONE_EXPLORING - the instruction was fully explored
15369  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
15370  */
15371 static int visit_insn(int t, struct bpf_verifier_env *env)
15372 {
15373 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
15374 	int ret, off, insn_sz;
15375 
15376 	if (bpf_pseudo_func(insn))
15377 		return visit_func_call_insn(t, insns, env, true);
15378 
15379 	/* All non-branch instructions have a single fall-through edge. */
15380 	if (BPF_CLASS(insn->code) != BPF_JMP &&
15381 	    BPF_CLASS(insn->code) != BPF_JMP32) {
15382 		insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
15383 		return push_insn(t, t + insn_sz, FALLTHROUGH, env);
15384 	}
15385 
15386 	switch (BPF_OP(insn->code)) {
15387 	case BPF_EXIT:
15388 		return DONE_EXPLORING;
15389 
15390 	case BPF_CALL:
15391 		if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
15392 			/* Mark this call insn as a prune point to trigger
15393 			 * is_state_visited() check before call itself is
15394 			 * processed by __check_func_call(). Otherwise new
15395 			 * async state will be pushed for further exploration.
15396 			 */
15397 			mark_prune_point(env, t);
15398 		/* For functions that invoke callbacks it is not known how many times
15399 		 * callback would be called. Verifier models callback calling functions
15400 		 * by repeatedly visiting callback bodies and returning to origin call
15401 		 * instruction.
15402 		 * In order to stop such iteration verifier needs to identify when a
15403 		 * state identical some state from a previous iteration is reached.
15404 		 * Check below forces creation of checkpoint before callback calling
15405 		 * instruction to allow search for such identical states.
15406 		 */
15407 		if (is_sync_callback_calling_insn(insn)) {
15408 			mark_calls_callback(env, t);
15409 			mark_force_checkpoint(env, t);
15410 			mark_prune_point(env, t);
15411 			mark_jmp_point(env, t);
15412 		}
15413 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
15414 			struct bpf_kfunc_call_arg_meta meta;
15415 
15416 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
15417 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
15418 				mark_prune_point(env, t);
15419 				/* Checking and saving state checkpoints at iter_next() call
15420 				 * is crucial for fast convergence of open-coded iterator loop
15421 				 * logic, so we need to force it. If we don't do that,
15422 				 * is_state_visited() might skip saving a checkpoint, causing
15423 				 * unnecessarily long sequence of not checkpointed
15424 				 * instructions and jumps, leading to exhaustion of jump
15425 				 * history buffer, and potentially other undesired outcomes.
15426 				 * It is expected that with correct open-coded iterators
15427 				 * convergence will happen quickly, so we don't run a risk of
15428 				 * exhausting memory.
15429 				 */
15430 				mark_force_checkpoint(env, t);
15431 			}
15432 		}
15433 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
15434 
15435 	case BPF_JA:
15436 		if (BPF_SRC(insn->code) != BPF_K)
15437 			return -EINVAL;
15438 
15439 		if (BPF_CLASS(insn->code) == BPF_JMP)
15440 			off = insn->off;
15441 		else
15442 			off = insn->imm;
15443 
15444 		/* unconditional jump with single edge */
15445 		ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
15446 		if (ret)
15447 			return ret;
15448 
15449 		mark_prune_point(env, t + off + 1);
15450 		mark_jmp_point(env, t + off + 1);
15451 
15452 		return ret;
15453 
15454 	default:
15455 		/* conditional jump with two edges */
15456 		mark_prune_point(env, t);
15457 
15458 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
15459 		if (ret)
15460 			return ret;
15461 
15462 		return push_insn(t, t + insn->off + 1, BRANCH, env);
15463 	}
15464 }
15465 
15466 /* non-recursive depth-first-search to detect loops in BPF program
15467  * loop == back-edge in directed graph
15468  */
15469 static int check_cfg(struct bpf_verifier_env *env)
15470 {
15471 	int insn_cnt = env->prog->len;
15472 	int *insn_stack, *insn_state;
15473 	int ex_insn_beg, i, ret = 0;
15474 	bool ex_done = false;
15475 
15476 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15477 	if (!insn_state)
15478 		return -ENOMEM;
15479 
15480 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15481 	if (!insn_stack) {
15482 		kvfree(insn_state);
15483 		return -ENOMEM;
15484 	}
15485 
15486 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
15487 	insn_stack[0] = 0; /* 0 is the first instruction */
15488 	env->cfg.cur_stack = 1;
15489 
15490 walk_cfg:
15491 	while (env->cfg.cur_stack > 0) {
15492 		int t = insn_stack[env->cfg.cur_stack - 1];
15493 
15494 		ret = visit_insn(t, env);
15495 		switch (ret) {
15496 		case DONE_EXPLORING:
15497 			insn_state[t] = EXPLORED;
15498 			env->cfg.cur_stack--;
15499 			break;
15500 		case KEEP_EXPLORING:
15501 			break;
15502 		default:
15503 			if (ret > 0) {
15504 				verbose(env, "visit_insn internal bug\n");
15505 				ret = -EFAULT;
15506 			}
15507 			goto err_free;
15508 		}
15509 	}
15510 
15511 	if (env->cfg.cur_stack < 0) {
15512 		verbose(env, "pop stack internal bug\n");
15513 		ret = -EFAULT;
15514 		goto err_free;
15515 	}
15516 
15517 	if (env->exception_callback_subprog && !ex_done) {
15518 		ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start;
15519 
15520 		insn_state[ex_insn_beg] = DISCOVERED;
15521 		insn_stack[0] = ex_insn_beg;
15522 		env->cfg.cur_stack = 1;
15523 		ex_done = true;
15524 		goto walk_cfg;
15525 	}
15526 
15527 	for (i = 0; i < insn_cnt; i++) {
15528 		struct bpf_insn *insn = &env->prog->insnsi[i];
15529 
15530 		if (insn_state[i] != EXPLORED) {
15531 			verbose(env, "unreachable insn %d\n", i);
15532 			ret = -EINVAL;
15533 			goto err_free;
15534 		}
15535 		if (bpf_is_ldimm64(insn)) {
15536 			if (insn_state[i + 1] != 0) {
15537 				verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
15538 				ret = -EINVAL;
15539 				goto err_free;
15540 			}
15541 			i++; /* skip second half of ldimm64 */
15542 		}
15543 	}
15544 	ret = 0; /* cfg looks good */
15545 
15546 err_free:
15547 	kvfree(insn_state);
15548 	kvfree(insn_stack);
15549 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
15550 	return ret;
15551 }
15552 
15553 static int check_abnormal_return(struct bpf_verifier_env *env)
15554 {
15555 	int i;
15556 
15557 	for (i = 1; i < env->subprog_cnt; i++) {
15558 		if (env->subprog_info[i].has_ld_abs) {
15559 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
15560 			return -EINVAL;
15561 		}
15562 		if (env->subprog_info[i].has_tail_call) {
15563 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
15564 			return -EINVAL;
15565 		}
15566 	}
15567 	return 0;
15568 }
15569 
15570 /* The minimum supported BTF func info size */
15571 #define MIN_BPF_FUNCINFO_SIZE	8
15572 #define MAX_FUNCINFO_REC_SIZE	252
15573 
15574 static int check_btf_func_early(struct bpf_verifier_env *env,
15575 				const union bpf_attr *attr,
15576 				bpfptr_t uattr)
15577 {
15578 	u32 krec_size = sizeof(struct bpf_func_info);
15579 	const struct btf_type *type, *func_proto;
15580 	u32 i, nfuncs, urec_size, min_size;
15581 	struct bpf_func_info *krecord;
15582 	struct bpf_prog *prog;
15583 	const struct btf *btf;
15584 	u32 prev_offset = 0;
15585 	bpfptr_t urecord;
15586 	int ret = -ENOMEM;
15587 
15588 	nfuncs = attr->func_info_cnt;
15589 	if (!nfuncs) {
15590 		if (check_abnormal_return(env))
15591 			return -EINVAL;
15592 		return 0;
15593 	}
15594 
15595 	urec_size = attr->func_info_rec_size;
15596 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
15597 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
15598 	    urec_size % sizeof(u32)) {
15599 		verbose(env, "invalid func info rec size %u\n", urec_size);
15600 		return -EINVAL;
15601 	}
15602 
15603 	prog = env->prog;
15604 	btf = prog->aux->btf;
15605 
15606 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15607 	min_size = min_t(u32, krec_size, urec_size);
15608 
15609 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
15610 	if (!krecord)
15611 		return -ENOMEM;
15612 
15613 	for (i = 0; i < nfuncs; i++) {
15614 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
15615 		if (ret) {
15616 			if (ret == -E2BIG) {
15617 				verbose(env, "nonzero tailing record in func info");
15618 				/* set the size kernel expects so loader can zero
15619 				 * out the rest of the record.
15620 				 */
15621 				if (copy_to_bpfptr_offset(uattr,
15622 							  offsetof(union bpf_attr, func_info_rec_size),
15623 							  &min_size, sizeof(min_size)))
15624 					ret = -EFAULT;
15625 			}
15626 			goto err_free;
15627 		}
15628 
15629 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
15630 			ret = -EFAULT;
15631 			goto err_free;
15632 		}
15633 
15634 		/* check insn_off */
15635 		ret = -EINVAL;
15636 		if (i == 0) {
15637 			if (krecord[i].insn_off) {
15638 				verbose(env,
15639 					"nonzero insn_off %u for the first func info record",
15640 					krecord[i].insn_off);
15641 				goto err_free;
15642 			}
15643 		} else if (krecord[i].insn_off <= prev_offset) {
15644 			verbose(env,
15645 				"same or smaller insn offset (%u) than previous func info record (%u)",
15646 				krecord[i].insn_off, prev_offset);
15647 			goto err_free;
15648 		}
15649 
15650 		/* check type_id */
15651 		type = btf_type_by_id(btf, krecord[i].type_id);
15652 		if (!type || !btf_type_is_func(type)) {
15653 			verbose(env, "invalid type id %d in func info",
15654 				krecord[i].type_id);
15655 			goto err_free;
15656 		}
15657 
15658 		func_proto = btf_type_by_id(btf, type->type);
15659 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
15660 			/* btf_func_check() already verified it during BTF load */
15661 			goto err_free;
15662 
15663 		prev_offset = krecord[i].insn_off;
15664 		bpfptr_add(&urecord, urec_size);
15665 	}
15666 
15667 	prog->aux->func_info = krecord;
15668 	prog->aux->func_info_cnt = nfuncs;
15669 	return 0;
15670 
15671 err_free:
15672 	kvfree(krecord);
15673 	return ret;
15674 }
15675 
15676 static int check_btf_func(struct bpf_verifier_env *env,
15677 			  const union bpf_attr *attr,
15678 			  bpfptr_t uattr)
15679 {
15680 	const struct btf_type *type, *func_proto, *ret_type;
15681 	u32 i, nfuncs, urec_size;
15682 	struct bpf_func_info *krecord;
15683 	struct bpf_func_info_aux *info_aux = NULL;
15684 	struct bpf_prog *prog;
15685 	const struct btf *btf;
15686 	bpfptr_t urecord;
15687 	bool scalar_return;
15688 	int ret = -ENOMEM;
15689 
15690 	nfuncs = attr->func_info_cnt;
15691 	if (!nfuncs) {
15692 		if (check_abnormal_return(env))
15693 			return -EINVAL;
15694 		return 0;
15695 	}
15696 	if (nfuncs != env->subprog_cnt) {
15697 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
15698 		return -EINVAL;
15699 	}
15700 
15701 	urec_size = attr->func_info_rec_size;
15702 
15703 	prog = env->prog;
15704 	btf = prog->aux->btf;
15705 
15706 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15707 
15708 	krecord = prog->aux->func_info;
15709 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
15710 	if (!info_aux)
15711 		return -ENOMEM;
15712 
15713 	for (i = 0; i < nfuncs; i++) {
15714 		/* check insn_off */
15715 		ret = -EINVAL;
15716 
15717 		if (env->subprog_info[i].start != krecord[i].insn_off) {
15718 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
15719 			goto err_free;
15720 		}
15721 
15722 		/* Already checked type_id */
15723 		type = btf_type_by_id(btf, krecord[i].type_id);
15724 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
15725 		/* Already checked func_proto */
15726 		func_proto = btf_type_by_id(btf, type->type);
15727 
15728 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
15729 		scalar_return =
15730 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
15731 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
15732 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
15733 			goto err_free;
15734 		}
15735 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
15736 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
15737 			goto err_free;
15738 		}
15739 
15740 		bpfptr_add(&urecord, urec_size);
15741 	}
15742 
15743 	prog->aux->func_info_aux = info_aux;
15744 	return 0;
15745 
15746 err_free:
15747 	kfree(info_aux);
15748 	return ret;
15749 }
15750 
15751 static void adjust_btf_func(struct bpf_verifier_env *env)
15752 {
15753 	struct bpf_prog_aux *aux = env->prog->aux;
15754 	int i;
15755 
15756 	if (!aux->func_info)
15757 		return;
15758 
15759 	/* func_info is not available for hidden subprogs */
15760 	for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++)
15761 		aux->func_info[i].insn_off = env->subprog_info[i].start;
15762 }
15763 
15764 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
15765 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
15766 
15767 static int check_btf_line(struct bpf_verifier_env *env,
15768 			  const union bpf_attr *attr,
15769 			  bpfptr_t uattr)
15770 {
15771 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
15772 	struct bpf_subprog_info *sub;
15773 	struct bpf_line_info *linfo;
15774 	struct bpf_prog *prog;
15775 	const struct btf *btf;
15776 	bpfptr_t ulinfo;
15777 	int err;
15778 
15779 	nr_linfo = attr->line_info_cnt;
15780 	if (!nr_linfo)
15781 		return 0;
15782 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
15783 		return -EINVAL;
15784 
15785 	rec_size = attr->line_info_rec_size;
15786 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
15787 	    rec_size > MAX_LINEINFO_REC_SIZE ||
15788 	    rec_size & (sizeof(u32) - 1))
15789 		return -EINVAL;
15790 
15791 	/* Need to zero it in case the userspace may
15792 	 * pass in a smaller bpf_line_info object.
15793 	 */
15794 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
15795 			 GFP_KERNEL | __GFP_NOWARN);
15796 	if (!linfo)
15797 		return -ENOMEM;
15798 
15799 	prog = env->prog;
15800 	btf = prog->aux->btf;
15801 
15802 	s = 0;
15803 	sub = env->subprog_info;
15804 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
15805 	expected_size = sizeof(struct bpf_line_info);
15806 	ncopy = min_t(u32, expected_size, rec_size);
15807 	for (i = 0; i < nr_linfo; i++) {
15808 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
15809 		if (err) {
15810 			if (err == -E2BIG) {
15811 				verbose(env, "nonzero tailing record in line_info");
15812 				if (copy_to_bpfptr_offset(uattr,
15813 							  offsetof(union bpf_attr, line_info_rec_size),
15814 							  &expected_size, sizeof(expected_size)))
15815 					err = -EFAULT;
15816 			}
15817 			goto err_free;
15818 		}
15819 
15820 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
15821 			err = -EFAULT;
15822 			goto err_free;
15823 		}
15824 
15825 		/*
15826 		 * Check insn_off to ensure
15827 		 * 1) strictly increasing AND
15828 		 * 2) bounded by prog->len
15829 		 *
15830 		 * The linfo[0].insn_off == 0 check logically falls into
15831 		 * the later "missing bpf_line_info for func..." case
15832 		 * because the first linfo[0].insn_off must be the
15833 		 * first sub also and the first sub must have
15834 		 * subprog_info[0].start == 0.
15835 		 */
15836 		if ((i && linfo[i].insn_off <= prev_offset) ||
15837 		    linfo[i].insn_off >= prog->len) {
15838 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
15839 				i, linfo[i].insn_off, prev_offset,
15840 				prog->len);
15841 			err = -EINVAL;
15842 			goto err_free;
15843 		}
15844 
15845 		if (!prog->insnsi[linfo[i].insn_off].code) {
15846 			verbose(env,
15847 				"Invalid insn code at line_info[%u].insn_off\n",
15848 				i);
15849 			err = -EINVAL;
15850 			goto err_free;
15851 		}
15852 
15853 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
15854 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
15855 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
15856 			err = -EINVAL;
15857 			goto err_free;
15858 		}
15859 
15860 		if (s != env->subprog_cnt) {
15861 			if (linfo[i].insn_off == sub[s].start) {
15862 				sub[s].linfo_idx = i;
15863 				s++;
15864 			} else if (sub[s].start < linfo[i].insn_off) {
15865 				verbose(env, "missing bpf_line_info for func#%u\n", s);
15866 				err = -EINVAL;
15867 				goto err_free;
15868 			}
15869 		}
15870 
15871 		prev_offset = linfo[i].insn_off;
15872 		bpfptr_add(&ulinfo, rec_size);
15873 	}
15874 
15875 	if (s != env->subprog_cnt) {
15876 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
15877 			env->subprog_cnt - s, s);
15878 		err = -EINVAL;
15879 		goto err_free;
15880 	}
15881 
15882 	prog->aux->linfo = linfo;
15883 	prog->aux->nr_linfo = nr_linfo;
15884 
15885 	return 0;
15886 
15887 err_free:
15888 	kvfree(linfo);
15889 	return err;
15890 }
15891 
15892 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
15893 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
15894 
15895 static int check_core_relo(struct bpf_verifier_env *env,
15896 			   const union bpf_attr *attr,
15897 			   bpfptr_t uattr)
15898 {
15899 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
15900 	struct bpf_core_relo core_relo = {};
15901 	struct bpf_prog *prog = env->prog;
15902 	const struct btf *btf = prog->aux->btf;
15903 	struct bpf_core_ctx ctx = {
15904 		.log = &env->log,
15905 		.btf = btf,
15906 	};
15907 	bpfptr_t u_core_relo;
15908 	int err;
15909 
15910 	nr_core_relo = attr->core_relo_cnt;
15911 	if (!nr_core_relo)
15912 		return 0;
15913 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
15914 		return -EINVAL;
15915 
15916 	rec_size = attr->core_relo_rec_size;
15917 	if (rec_size < MIN_CORE_RELO_SIZE ||
15918 	    rec_size > MAX_CORE_RELO_SIZE ||
15919 	    rec_size % sizeof(u32))
15920 		return -EINVAL;
15921 
15922 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
15923 	expected_size = sizeof(struct bpf_core_relo);
15924 	ncopy = min_t(u32, expected_size, rec_size);
15925 
15926 	/* Unlike func_info and line_info, copy and apply each CO-RE
15927 	 * relocation record one at a time.
15928 	 */
15929 	for (i = 0; i < nr_core_relo; i++) {
15930 		/* future proofing when sizeof(bpf_core_relo) changes */
15931 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
15932 		if (err) {
15933 			if (err == -E2BIG) {
15934 				verbose(env, "nonzero tailing record in core_relo");
15935 				if (copy_to_bpfptr_offset(uattr,
15936 							  offsetof(union bpf_attr, core_relo_rec_size),
15937 							  &expected_size, sizeof(expected_size)))
15938 					err = -EFAULT;
15939 			}
15940 			break;
15941 		}
15942 
15943 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
15944 			err = -EFAULT;
15945 			break;
15946 		}
15947 
15948 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
15949 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
15950 				i, core_relo.insn_off, prog->len);
15951 			err = -EINVAL;
15952 			break;
15953 		}
15954 
15955 		err = bpf_core_apply(&ctx, &core_relo, i,
15956 				     &prog->insnsi[core_relo.insn_off / 8]);
15957 		if (err)
15958 			break;
15959 		bpfptr_add(&u_core_relo, rec_size);
15960 	}
15961 	return err;
15962 }
15963 
15964 static int check_btf_info_early(struct bpf_verifier_env *env,
15965 				const union bpf_attr *attr,
15966 				bpfptr_t uattr)
15967 {
15968 	struct btf *btf;
15969 	int err;
15970 
15971 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
15972 		if (check_abnormal_return(env))
15973 			return -EINVAL;
15974 		return 0;
15975 	}
15976 
15977 	btf = btf_get_by_fd(attr->prog_btf_fd);
15978 	if (IS_ERR(btf))
15979 		return PTR_ERR(btf);
15980 	if (btf_is_kernel(btf)) {
15981 		btf_put(btf);
15982 		return -EACCES;
15983 	}
15984 	env->prog->aux->btf = btf;
15985 
15986 	err = check_btf_func_early(env, attr, uattr);
15987 	if (err)
15988 		return err;
15989 	return 0;
15990 }
15991 
15992 static int check_btf_info(struct bpf_verifier_env *env,
15993 			  const union bpf_attr *attr,
15994 			  bpfptr_t uattr)
15995 {
15996 	int err;
15997 
15998 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
15999 		if (check_abnormal_return(env))
16000 			return -EINVAL;
16001 		return 0;
16002 	}
16003 
16004 	err = check_btf_func(env, attr, uattr);
16005 	if (err)
16006 		return err;
16007 
16008 	err = check_btf_line(env, attr, uattr);
16009 	if (err)
16010 		return err;
16011 
16012 	err = check_core_relo(env, attr, uattr);
16013 	if (err)
16014 		return err;
16015 
16016 	return 0;
16017 }
16018 
16019 /* check %cur's range satisfies %old's */
16020 static bool range_within(struct bpf_reg_state *old,
16021 			 struct bpf_reg_state *cur)
16022 {
16023 	return old->umin_value <= cur->umin_value &&
16024 	       old->umax_value >= cur->umax_value &&
16025 	       old->smin_value <= cur->smin_value &&
16026 	       old->smax_value >= cur->smax_value &&
16027 	       old->u32_min_value <= cur->u32_min_value &&
16028 	       old->u32_max_value >= cur->u32_max_value &&
16029 	       old->s32_min_value <= cur->s32_min_value &&
16030 	       old->s32_max_value >= cur->s32_max_value;
16031 }
16032 
16033 /* If in the old state two registers had the same id, then they need to have
16034  * the same id in the new state as well.  But that id could be different from
16035  * the old state, so we need to track the mapping from old to new ids.
16036  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
16037  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
16038  * regs with a different old id could still have new id 9, we don't care about
16039  * that.
16040  * So we look through our idmap to see if this old id has been seen before.  If
16041  * so, we require the new id to match; otherwise, we add the id pair to the map.
16042  */
16043 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
16044 {
16045 	struct bpf_id_pair *map = idmap->map;
16046 	unsigned int i;
16047 
16048 	/* either both IDs should be set or both should be zero */
16049 	if (!!old_id != !!cur_id)
16050 		return false;
16051 
16052 	if (old_id == 0) /* cur_id == 0 as well */
16053 		return true;
16054 
16055 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
16056 		if (!map[i].old) {
16057 			/* Reached an empty slot; haven't seen this id before */
16058 			map[i].old = old_id;
16059 			map[i].cur = cur_id;
16060 			return true;
16061 		}
16062 		if (map[i].old == old_id)
16063 			return map[i].cur == cur_id;
16064 		if (map[i].cur == cur_id)
16065 			return false;
16066 	}
16067 	/* We ran out of idmap slots, which should be impossible */
16068 	WARN_ON_ONCE(1);
16069 	return false;
16070 }
16071 
16072 /* Similar to check_ids(), but allocate a unique temporary ID
16073  * for 'old_id' or 'cur_id' of zero.
16074  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
16075  */
16076 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
16077 {
16078 	old_id = old_id ? old_id : ++idmap->tmp_id_gen;
16079 	cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
16080 
16081 	return check_ids(old_id, cur_id, idmap);
16082 }
16083 
16084 static void clean_func_state(struct bpf_verifier_env *env,
16085 			     struct bpf_func_state *st)
16086 {
16087 	enum bpf_reg_liveness live;
16088 	int i, j;
16089 
16090 	for (i = 0; i < BPF_REG_FP; i++) {
16091 		live = st->regs[i].live;
16092 		/* liveness must not touch this register anymore */
16093 		st->regs[i].live |= REG_LIVE_DONE;
16094 		if (!(live & REG_LIVE_READ))
16095 			/* since the register is unused, clear its state
16096 			 * to make further comparison simpler
16097 			 */
16098 			__mark_reg_not_init(env, &st->regs[i]);
16099 	}
16100 
16101 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
16102 		live = st->stack[i].spilled_ptr.live;
16103 		/* liveness must not touch this stack slot anymore */
16104 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
16105 		if (!(live & REG_LIVE_READ)) {
16106 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
16107 			for (j = 0; j < BPF_REG_SIZE; j++)
16108 				st->stack[i].slot_type[j] = STACK_INVALID;
16109 		}
16110 	}
16111 }
16112 
16113 static void clean_verifier_state(struct bpf_verifier_env *env,
16114 				 struct bpf_verifier_state *st)
16115 {
16116 	int i;
16117 
16118 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
16119 		/* all regs in this state in all frames were already marked */
16120 		return;
16121 
16122 	for (i = 0; i <= st->curframe; i++)
16123 		clean_func_state(env, st->frame[i]);
16124 }
16125 
16126 /* the parentage chains form a tree.
16127  * the verifier states are added to state lists at given insn and
16128  * pushed into state stack for future exploration.
16129  * when the verifier reaches bpf_exit insn some of the verifer states
16130  * stored in the state lists have their final liveness state already,
16131  * but a lot of states will get revised from liveness point of view when
16132  * the verifier explores other branches.
16133  * Example:
16134  * 1: r0 = 1
16135  * 2: if r1 == 100 goto pc+1
16136  * 3: r0 = 2
16137  * 4: exit
16138  * when the verifier reaches exit insn the register r0 in the state list of
16139  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
16140  * of insn 2 and goes exploring further. At the insn 4 it will walk the
16141  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
16142  *
16143  * Since the verifier pushes the branch states as it sees them while exploring
16144  * the program the condition of walking the branch instruction for the second
16145  * time means that all states below this branch were already explored and
16146  * their final liveness marks are already propagated.
16147  * Hence when the verifier completes the search of state list in is_state_visited()
16148  * we can call this clean_live_states() function to mark all liveness states
16149  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
16150  * will not be used.
16151  * This function also clears the registers and stack for states that !READ
16152  * to simplify state merging.
16153  *
16154  * Important note here that walking the same branch instruction in the callee
16155  * doesn't meant that the states are DONE. The verifier has to compare
16156  * the callsites
16157  */
16158 static void clean_live_states(struct bpf_verifier_env *env, int insn,
16159 			      struct bpf_verifier_state *cur)
16160 {
16161 	struct bpf_verifier_state_list *sl;
16162 
16163 	sl = *explored_state(env, insn);
16164 	while (sl) {
16165 		if (sl->state.branches)
16166 			goto next;
16167 		if (sl->state.insn_idx != insn ||
16168 		    !same_callsites(&sl->state, cur))
16169 			goto next;
16170 		clean_verifier_state(env, &sl->state);
16171 next:
16172 		sl = sl->next;
16173 	}
16174 }
16175 
16176 static bool regs_exact(const struct bpf_reg_state *rold,
16177 		       const struct bpf_reg_state *rcur,
16178 		       struct bpf_idmap *idmap)
16179 {
16180 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16181 	       check_ids(rold->id, rcur->id, idmap) &&
16182 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16183 }
16184 
16185 /* Returns true if (rold safe implies rcur safe) */
16186 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
16187 		    struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact)
16188 {
16189 	if (exact)
16190 		return regs_exact(rold, rcur, idmap);
16191 
16192 	if (!(rold->live & REG_LIVE_READ))
16193 		/* explored state didn't use this */
16194 		return true;
16195 	if (rold->type == NOT_INIT)
16196 		/* explored state can't have used this */
16197 		return true;
16198 	if (rcur->type == NOT_INIT)
16199 		return false;
16200 
16201 	/* Enforce that register types have to match exactly, including their
16202 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
16203 	 * rule.
16204 	 *
16205 	 * One can make a point that using a pointer register as unbounded
16206 	 * SCALAR would be technically acceptable, but this could lead to
16207 	 * pointer leaks because scalars are allowed to leak while pointers
16208 	 * are not. We could make this safe in special cases if root is
16209 	 * calling us, but it's probably not worth the hassle.
16210 	 *
16211 	 * Also, register types that are *not* MAYBE_NULL could technically be
16212 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
16213 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
16214 	 * to the same map).
16215 	 * However, if the old MAYBE_NULL register then got NULL checked,
16216 	 * doing so could have affected others with the same id, and we can't
16217 	 * check for that because we lost the id when we converted to
16218 	 * a non-MAYBE_NULL variant.
16219 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
16220 	 * non-MAYBE_NULL registers as well.
16221 	 */
16222 	if (rold->type != rcur->type)
16223 		return false;
16224 
16225 	switch (base_type(rold->type)) {
16226 	case SCALAR_VALUE:
16227 		if (env->explore_alu_limits) {
16228 			/* explore_alu_limits disables tnum_in() and range_within()
16229 			 * logic and requires everything to be strict
16230 			 */
16231 			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16232 			       check_scalar_ids(rold->id, rcur->id, idmap);
16233 		}
16234 		if (!rold->precise)
16235 			return true;
16236 		/* Why check_ids() for scalar registers?
16237 		 *
16238 		 * Consider the following BPF code:
16239 		 *   1: r6 = ... unbound scalar, ID=a ...
16240 		 *   2: r7 = ... unbound scalar, ID=b ...
16241 		 *   3: if (r6 > r7) goto +1
16242 		 *   4: r6 = r7
16243 		 *   5: if (r6 > X) goto ...
16244 		 *   6: ... memory operation using r7 ...
16245 		 *
16246 		 * First verification path is [1-6]:
16247 		 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
16248 		 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
16249 		 *   r7 <= X, because r6 and r7 share same id.
16250 		 * Next verification path is [1-4, 6].
16251 		 *
16252 		 * Instruction (6) would be reached in two states:
16253 		 *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
16254 		 *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
16255 		 *
16256 		 * Use check_ids() to distinguish these states.
16257 		 * ---
16258 		 * Also verify that new value satisfies old value range knowledge.
16259 		 */
16260 		return range_within(rold, rcur) &&
16261 		       tnum_in(rold->var_off, rcur->var_off) &&
16262 		       check_scalar_ids(rold->id, rcur->id, idmap);
16263 	case PTR_TO_MAP_KEY:
16264 	case PTR_TO_MAP_VALUE:
16265 	case PTR_TO_MEM:
16266 	case PTR_TO_BUF:
16267 	case PTR_TO_TP_BUFFER:
16268 		/* If the new min/max/var_off satisfy the old ones and
16269 		 * everything else matches, we are OK.
16270 		 */
16271 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
16272 		       range_within(rold, rcur) &&
16273 		       tnum_in(rold->var_off, rcur->var_off) &&
16274 		       check_ids(rold->id, rcur->id, idmap) &&
16275 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16276 	case PTR_TO_PACKET_META:
16277 	case PTR_TO_PACKET:
16278 		/* We must have at least as much range as the old ptr
16279 		 * did, so that any accesses which were safe before are
16280 		 * still safe.  This is true even if old range < old off,
16281 		 * since someone could have accessed through (ptr - k), or
16282 		 * even done ptr -= k in a register, to get a safe access.
16283 		 */
16284 		if (rold->range > rcur->range)
16285 			return false;
16286 		/* If the offsets don't match, we can't trust our alignment;
16287 		 * nor can we be sure that we won't fall out of range.
16288 		 */
16289 		if (rold->off != rcur->off)
16290 			return false;
16291 		/* id relations must be preserved */
16292 		if (!check_ids(rold->id, rcur->id, idmap))
16293 			return false;
16294 		/* new val must satisfy old val knowledge */
16295 		return range_within(rold, rcur) &&
16296 		       tnum_in(rold->var_off, rcur->var_off);
16297 	case PTR_TO_STACK:
16298 		/* two stack pointers are equal only if they're pointing to
16299 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
16300 		 */
16301 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
16302 	default:
16303 		return regs_exact(rold, rcur, idmap);
16304 	}
16305 }
16306 
16307 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
16308 		      struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact)
16309 {
16310 	int i, spi;
16311 
16312 	/* walk slots of the explored stack and ignore any additional
16313 	 * slots in the current stack, since explored(safe) state
16314 	 * didn't use them
16315 	 */
16316 	for (i = 0; i < old->allocated_stack; i++) {
16317 		struct bpf_reg_state *old_reg, *cur_reg;
16318 
16319 		spi = i / BPF_REG_SIZE;
16320 
16321 		if (exact &&
16322 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16323 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16324 			return false;
16325 
16326 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) {
16327 			i += BPF_REG_SIZE - 1;
16328 			/* explored state didn't use this */
16329 			continue;
16330 		}
16331 
16332 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
16333 			continue;
16334 
16335 		if (env->allow_uninit_stack &&
16336 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
16337 			continue;
16338 
16339 		/* explored stack has more populated slots than current stack
16340 		 * and these slots were used
16341 		 */
16342 		if (i >= cur->allocated_stack)
16343 			return false;
16344 
16345 		/* if old state was safe with misc data in the stack
16346 		 * it will be safe with zero-initialized stack.
16347 		 * The opposite is not true
16348 		 */
16349 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
16350 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
16351 			continue;
16352 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16353 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16354 			/* Ex: old explored (safe) state has STACK_SPILL in
16355 			 * this stack slot, but current has STACK_MISC ->
16356 			 * this verifier states are not equivalent,
16357 			 * return false to continue verification of this path
16358 			 */
16359 			return false;
16360 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
16361 			continue;
16362 		/* Both old and cur are having same slot_type */
16363 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
16364 		case STACK_SPILL:
16365 			/* when explored and current stack slot are both storing
16366 			 * spilled registers, check that stored pointers types
16367 			 * are the same as well.
16368 			 * Ex: explored safe path could have stored
16369 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
16370 			 * but current path has stored:
16371 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
16372 			 * such verifier states are not equivalent.
16373 			 * return false to continue verification of this path
16374 			 */
16375 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
16376 				     &cur->stack[spi].spilled_ptr, idmap, exact))
16377 				return false;
16378 			break;
16379 		case STACK_DYNPTR:
16380 			old_reg = &old->stack[spi].spilled_ptr;
16381 			cur_reg = &cur->stack[spi].spilled_ptr;
16382 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
16383 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
16384 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16385 				return false;
16386 			break;
16387 		case STACK_ITER:
16388 			old_reg = &old->stack[spi].spilled_ptr;
16389 			cur_reg = &cur->stack[spi].spilled_ptr;
16390 			/* iter.depth is not compared between states as it
16391 			 * doesn't matter for correctness and would otherwise
16392 			 * prevent convergence; we maintain it only to prevent
16393 			 * infinite loop check triggering, see
16394 			 * iter_active_depths_differ()
16395 			 */
16396 			if (old_reg->iter.btf != cur_reg->iter.btf ||
16397 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
16398 			    old_reg->iter.state != cur_reg->iter.state ||
16399 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
16400 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16401 				return false;
16402 			break;
16403 		case STACK_MISC:
16404 		case STACK_ZERO:
16405 		case STACK_INVALID:
16406 			continue;
16407 		/* Ensure that new unhandled slot types return false by default */
16408 		default:
16409 			return false;
16410 		}
16411 	}
16412 	return true;
16413 }
16414 
16415 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
16416 		    struct bpf_idmap *idmap)
16417 {
16418 	int i;
16419 
16420 	if (old->acquired_refs != cur->acquired_refs)
16421 		return false;
16422 
16423 	for (i = 0; i < old->acquired_refs; i++) {
16424 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
16425 			return false;
16426 	}
16427 
16428 	return true;
16429 }
16430 
16431 /* compare two verifier states
16432  *
16433  * all states stored in state_list are known to be valid, since
16434  * verifier reached 'bpf_exit' instruction through them
16435  *
16436  * this function is called when verifier exploring different branches of
16437  * execution popped from the state stack. If it sees an old state that has
16438  * more strict register state and more strict stack state then this execution
16439  * branch doesn't need to be explored further, since verifier already
16440  * concluded that more strict state leads to valid finish.
16441  *
16442  * Therefore two states are equivalent if register state is more conservative
16443  * and explored stack state is more conservative than the current one.
16444  * Example:
16445  *       explored                   current
16446  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
16447  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
16448  *
16449  * In other words if current stack state (one being explored) has more
16450  * valid slots than old one that already passed validation, it means
16451  * the verifier can stop exploring and conclude that current state is valid too
16452  *
16453  * Similarly with registers. If explored state has register type as invalid
16454  * whereas register type in current state is meaningful, it means that
16455  * the current state will reach 'bpf_exit' instruction safely
16456  */
16457 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
16458 			      struct bpf_func_state *cur, bool exact)
16459 {
16460 	int i;
16461 
16462 	for (i = 0; i < MAX_BPF_REG; i++)
16463 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
16464 			     &env->idmap_scratch, exact))
16465 			return false;
16466 
16467 	if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
16468 		return false;
16469 
16470 	if (!refsafe(old, cur, &env->idmap_scratch))
16471 		return false;
16472 
16473 	return true;
16474 }
16475 
16476 static void reset_idmap_scratch(struct bpf_verifier_env *env)
16477 {
16478 	env->idmap_scratch.tmp_id_gen = env->id_gen;
16479 	memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
16480 }
16481 
16482 static bool states_equal(struct bpf_verifier_env *env,
16483 			 struct bpf_verifier_state *old,
16484 			 struct bpf_verifier_state *cur,
16485 			 bool exact)
16486 {
16487 	int i;
16488 
16489 	if (old->curframe != cur->curframe)
16490 		return false;
16491 
16492 	reset_idmap_scratch(env);
16493 
16494 	/* Verification state from speculative execution simulation
16495 	 * must never prune a non-speculative execution one.
16496 	 */
16497 	if (old->speculative && !cur->speculative)
16498 		return false;
16499 
16500 	if (old->active_lock.ptr != cur->active_lock.ptr)
16501 		return false;
16502 
16503 	/* Old and cur active_lock's have to be either both present
16504 	 * or both absent.
16505 	 */
16506 	if (!!old->active_lock.id != !!cur->active_lock.id)
16507 		return false;
16508 
16509 	if (old->active_lock.id &&
16510 	    !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
16511 		return false;
16512 
16513 	if (old->active_rcu_lock != cur->active_rcu_lock)
16514 		return false;
16515 
16516 	/* for states to be equal callsites have to be the same
16517 	 * and all frame states need to be equivalent
16518 	 */
16519 	for (i = 0; i <= old->curframe; i++) {
16520 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
16521 			return false;
16522 		if (!func_states_equal(env, old->frame[i], cur->frame[i], exact))
16523 			return false;
16524 	}
16525 	return true;
16526 }
16527 
16528 /* Return 0 if no propagation happened. Return negative error code if error
16529  * happened. Otherwise, return the propagated bit.
16530  */
16531 static int propagate_liveness_reg(struct bpf_verifier_env *env,
16532 				  struct bpf_reg_state *reg,
16533 				  struct bpf_reg_state *parent_reg)
16534 {
16535 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
16536 	u8 flag = reg->live & REG_LIVE_READ;
16537 	int err;
16538 
16539 	/* When comes here, read flags of PARENT_REG or REG could be any of
16540 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
16541 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
16542 	 */
16543 	if (parent_flag == REG_LIVE_READ64 ||
16544 	    /* Or if there is no read flag from REG. */
16545 	    !flag ||
16546 	    /* Or if the read flag from REG is the same as PARENT_REG. */
16547 	    parent_flag == flag)
16548 		return 0;
16549 
16550 	err = mark_reg_read(env, reg, parent_reg, flag);
16551 	if (err)
16552 		return err;
16553 
16554 	return flag;
16555 }
16556 
16557 /* A write screens off any subsequent reads; but write marks come from the
16558  * straight-line code between a state and its parent.  When we arrive at an
16559  * equivalent state (jump target or such) we didn't arrive by the straight-line
16560  * code, so read marks in the state must propagate to the parent regardless
16561  * of the state's write marks. That's what 'parent == state->parent' comparison
16562  * in mark_reg_read() is for.
16563  */
16564 static int propagate_liveness(struct bpf_verifier_env *env,
16565 			      const struct bpf_verifier_state *vstate,
16566 			      struct bpf_verifier_state *vparent)
16567 {
16568 	struct bpf_reg_state *state_reg, *parent_reg;
16569 	struct bpf_func_state *state, *parent;
16570 	int i, frame, err = 0;
16571 
16572 	if (vparent->curframe != vstate->curframe) {
16573 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
16574 		     vparent->curframe, vstate->curframe);
16575 		return -EFAULT;
16576 	}
16577 	/* Propagate read liveness of registers... */
16578 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
16579 	for (frame = 0; frame <= vstate->curframe; frame++) {
16580 		parent = vparent->frame[frame];
16581 		state = vstate->frame[frame];
16582 		parent_reg = parent->regs;
16583 		state_reg = state->regs;
16584 		/* We don't need to worry about FP liveness, it's read-only */
16585 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
16586 			err = propagate_liveness_reg(env, &state_reg[i],
16587 						     &parent_reg[i]);
16588 			if (err < 0)
16589 				return err;
16590 			if (err == REG_LIVE_READ64)
16591 				mark_insn_zext(env, &parent_reg[i]);
16592 		}
16593 
16594 		/* Propagate stack slots. */
16595 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
16596 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
16597 			parent_reg = &parent->stack[i].spilled_ptr;
16598 			state_reg = &state->stack[i].spilled_ptr;
16599 			err = propagate_liveness_reg(env, state_reg,
16600 						     parent_reg);
16601 			if (err < 0)
16602 				return err;
16603 		}
16604 	}
16605 	return 0;
16606 }
16607 
16608 /* find precise scalars in the previous equivalent state and
16609  * propagate them into the current state
16610  */
16611 static int propagate_precision(struct bpf_verifier_env *env,
16612 			       const struct bpf_verifier_state *old)
16613 {
16614 	struct bpf_reg_state *state_reg;
16615 	struct bpf_func_state *state;
16616 	int i, err = 0, fr;
16617 	bool first;
16618 
16619 	for (fr = old->curframe; fr >= 0; fr--) {
16620 		state = old->frame[fr];
16621 		state_reg = state->regs;
16622 		first = true;
16623 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
16624 			if (state_reg->type != SCALAR_VALUE ||
16625 			    !state_reg->precise ||
16626 			    !(state_reg->live & REG_LIVE_READ))
16627 				continue;
16628 			if (env->log.level & BPF_LOG_LEVEL2) {
16629 				if (first)
16630 					verbose(env, "frame %d: propagating r%d", fr, i);
16631 				else
16632 					verbose(env, ",r%d", i);
16633 			}
16634 			bt_set_frame_reg(&env->bt, fr, i);
16635 			first = false;
16636 		}
16637 
16638 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16639 			if (!is_spilled_reg(&state->stack[i]))
16640 				continue;
16641 			state_reg = &state->stack[i].spilled_ptr;
16642 			if (state_reg->type != SCALAR_VALUE ||
16643 			    !state_reg->precise ||
16644 			    !(state_reg->live & REG_LIVE_READ))
16645 				continue;
16646 			if (env->log.level & BPF_LOG_LEVEL2) {
16647 				if (first)
16648 					verbose(env, "frame %d: propagating fp%d",
16649 						fr, (-i - 1) * BPF_REG_SIZE);
16650 				else
16651 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
16652 			}
16653 			bt_set_frame_slot(&env->bt, fr, i);
16654 			first = false;
16655 		}
16656 		if (!first)
16657 			verbose(env, "\n");
16658 	}
16659 
16660 	err = mark_chain_precision_batch(env);
16661 	if (err < 0)
16662 		return err;
16663 
16664 	return 0;
16665 }
16666 
16667 static bool states_maybe_looping(struct bpf_verifier_state *old,
16668 				 struct bpf_verifier_state *cur)
16669 {
16670 	struct bpf_func_state *fold, *fcur;
16671 	int i, fr = cur->curframe;
16672 
16673 	if (old->curframe != fr)
16674 		return false;
16675 
16676 	fold = old->frame[fr];
16677 	fcur = cur->frame[fr];
16678 	for (i = 0; i < MAX_BPF_REG; i++)
16679 		if (memcmp(&fold->regs[i], &fcur->regs[i],
16680 			   offsetof(struct bpf_reg_state, parent)))
16681 			return false;
16682 	return true;
16683 }
16684 
16685 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
16686 {
16687 	return env->insn_aux_data[insn_idx].is_iter_next;
16688 }
16689 
16690 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
16691  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
16692  * states to match, which otherwise would look like an infinite loop. So while
16693  * iter_next() calls are taken care of, we still need to be careful and
16694  * prevent erroneous and too eager declaration of "ininite loop", when
16695  * iterators are involved.
16696  *
16697  * Here's a situation in pseudo-BPF assembly form:
16698  *
16699  *   0: again:                          ; set up iter_next() call args
16700  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
16701  *   2:   call bpf_iter_num_next        ; this is iter_next() call
16702  *   3:   if r0 == 0 goto done
16703  *   4:   ... something useful here ...
16704  *   5:   goto again                    ; another iteration
16705  *   6: done:
16706  *   7:   r1 = &it
16707  *   8:   call bpf_iter_num_destroy     ; clean up iter state
16708  *   9:   exit
16709  *
16710  * This is a typical loop. Let's assume that we have a prune point at 1:,
16711  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
16712  * again`, assuming other heuristics don't get in a way).
16713  *
16714  * When we first time come to 1:, let's say we have some state X. We proceed
16715  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
16716  * Now we come back to validate that forked ACTIVE state. We proceed through
16717  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
16718  * are converging. But the problem is that we don't know that yet, as this
16719  * convergence has to happen at iter_next() call site only. So if nothing is
16720  * done, at 1: verifier will use bounded loop logic and declare infinite
16721  * looping (and would be *technically* correct, if not for iterator's
16722  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
16723  * don't want that. So what we do in process_iter_next_call() when we go on
16724  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
16725  * a different iteration. So when we suspect an infinite loop, we additionally
16726  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
16727  * pretend we are not looping and wait for next iter_next() call.
16728  *
16729  * This only applies to ACTIVE state. In DRAINED state we don't expect to
16730  * loop, because that would actually mean infinite loop, as DRAINED state is
16731  * "sticky", and so we'll keep returning into the same instruction with the
16732  * same state (at least in one of possible code paths).
16733  *
16734  * This approach allows to keep infinite loop heuristic even in the face of
16735  * active iterator. E.g., C snippet below is and will be detected as
16736  * inifintely looping:
16737  *
16738  *   struct bpf_iter_num it;
16739  *   int *p, x;
16740  *
16741  *   bpf_iter_num_new(&it, 0, 10);
16742  *   while ((p = bpf_iter_num_next(&t))) {
16743  *       x = p;
16744  *       while (x--) {} // <<-- infinite loop here
16745  *   }
16746  *
16747  */
16748 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
16749 {
16750 	struct bpf_reg_state *slot, *cur_slot;
16751 	struct bpf_func_state *state;
16752 	int i, fr;
16753 
16754 	for (fr = old->curframe; fr >= 0; fr--) {
16755 		state = old->frame[fr];
16756 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16757 			if (state->stack[i].slot_type[0] != STACK_ITER)
16758 				continue;
16759 
16760 			slot = &state->stack[i].spilled_ptr;
16761 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
16762 				continue;
16763 
16764 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
16765 			if (cur_slot->iter.depth != slot->iter.depth)
16766 				return true;
16767 		}
16768 	}
16769 	return false;
16770 }
16771 
16772 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
16773 {
16774 	struct bpf_verifier_state_list *new_sl;
16775 	struct bpf_verifier_state_list *sl, **pprev;
16776 	struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry;
16777 	int i, j, n, err, states_cnt = 0;
16778 	bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
16779 	bool add_new_state = force_new_state;
16780 	bool force_exact;
16781 
16782 	/* bpf progs typically have pruning point every 4 instructions
16783 	 * http://vger.kernel.org/bpfconf2019.html#session-1
16784 	 * Do not add new state for future pruning if the verifier hasn't seen
16785 	 * at least 2 jumps and at least 8 instructions.
16786 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
16787 	 * In tests that amounts to up to 50% reduction into total verifier
16788 	 * memory consumption and 20% verifier time speedup.
16789 	 */
16790 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
16791 	    env->insn_processed - env->prev_insn_processed >= 8)
16792 		add_new_state = true;
16793 
16794 	pprev = explored_state(env, insn_idx);
16795 	sl = *pprev;
16796 
16797 	clean_live_states(env, insn_idx, cur);
16798 
16799 	while (sl) {
16800 		states_cnt++;
16801 		if (sl->state.insn_idx != insn_idx)
16802 			goto next;
16803 
16804 		if (sl->state.branches) {
16805 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
16806 
16807 			if (frame->in_async_callback_fn &&
16808 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
16809 				/* Different async_entry_cnt means that the verifier is
16810 				 * processing another entry into async callback.
16811 				 * Seeing the same state is not an indication of infinite
16812 				 * loop or infinite recursion.
16813 				 * But finding the same state doesn't mean that it's safe
16814 				 * to stop processing the current state. The previous state
16815 				 * hasn't yet reached bpf_exit, since state.branches > 0.
16816 				 * Checking in_async_callback_fn alone is not enough either.
16817 				 * Since the verifier still needs to catch infinite loops
16818 				 * inside async callbacks.
16819 				 */
16820 				goto skip_inf_loop_check;
16821 			}
16822 			/* BPF open-coded iterators loop detection is special.
16823 			 * states_maybe_looping() logic is too simplistic in detecting
16824 			 * states that *might* be equivalent, because it doesn't know
16825 			 * about ID remapping, so don't even perform it.
16826 			 * See process_iter_next_call() and iter_active_depths_differ()
16827 			 * for overview of the logic. When current and one of parent
16828 			 * states are detected as equivalent, it's a good thing: we prove
16829 			 * convergence and can stop simulating further iterations.
16830 			 * It's safe to assume that iterator loop will finish, taking into
16831 			 * account iter_next() contract of eventually returning
16832 			 * sticky NULL result.
16833 			 *
16834 			 * Note, that states have to be compared exactly in this case because
16835 			 * read and precision marks might not be finalized inside the loop.
16836 			 * E.g. as in the program below:
16837 			 *
16838 			 *     1. r7 = -16
16839 			 *     2. r6 = bpf_get_prandom_u32()
16840 			 *     3. while (bpf_iter_num_next(&fp[-8])) {
16841 			 *     4.   if (r6 != 42) {
16842 			 *     5.     r7 = -32
16843 			 *     6.     r6 = bpf_get_prandom_u32()
16844 			 *     7.     continue
16845 			 *     8.   }
16846 			 *     9.   r0 = r10
16847 			 *    10.   r0 += r7
16848 			 *    11.   r8 = *(u64 *)(r0 + 0)
16849 			 *    12.   r6 = bpf_get_prandom_u32()
16850 			 *    13. }
16851 			 *
16852 			 * Here verifier would first visit path 1-3, create a checkpoint at 3
16853 			 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
16854 			 * not have read or precision mark for r7 yet, thus inexact states
16855 			 * comparison would discard current state with r7=-32
16856 			 * => unsafe memory access at 11 would not be caught.
16857 			 */
16858 			if (is_iter_next_insn(env, insn_idx)) {
16859 				if (states_equal(env, &sl->state, cur, true)) {
16860 					struct bpf_func_state *cur_frame;
16861 					struct bpf_reg_state *iter_state, *iter_reg;
16862 					int spi;
16863 
16864 					cur_frame = cur->frame[cur->curframe];
16865 					/* btf_check_iter_kfuncs() enforces that
16866 					 * iter state pointer is always the first arg
16867 					 */
16868 					iter_reg = &cur_frame->regs[BPF_REG_1];
16869 					/* current state is valid due to states_equal(),
16870 					 * so we can assume valid iter and reg state,
16871 					 * no need for extra (re-)validations
16872 					 */
16873 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
16874 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
16875 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
16876 						update_loop_entry(cur, &sl->state);
16877 						goto hit;
16878 					}
16879 				}
16880 				goto skip_inf_loop_check;
16881 			}
16882 			if (calls_callback(env, insn_idx)) {
16883 				if (states_equal(env, &sl->state, cur, true))
16884 					goto hit;
16885 				goto skip_inf_loop_check;
16886 			}
16887 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
16888 			if (states_maybe_looping(&sl->state, cur) &&
16889 			    states_equal(env, &sl->state, cur, false) &&
16890 			    !iter_active_depths_differ(&sl->state, cur) &&
16891 			    sl->state.callback_unroll_depth == cur->callback_unroll_depth) {
16892 				verbose_linfo(env, insn_idx, "; ");
16893 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
16894 				verbose(env, "cur state:");
16895 				print_verifier_state(env, cur->frame[cur->curframe], true);
16896 				verbose(env, "old state:");
16897 				print_verifier_state(env, sl->state.frame[cur->curframe], true);
16898 				return -EINVAL;
16899 			}
16900 			/* if the verifier is processing a loop, avoid adding new state
16901 			 * too often, since different loop iterations have distinct
16902 			 * states and may not help future pruning.
16903 			 * This threshold shouldn't be too low to make sure that
16904 			 * a loop with large bound will be rejected quickly.
16905 			 * The most abusive loop will be:
16906 			 * r1 += 1
16907 			 * if r1 < 1000000 goto pc-2
16908 			 * 1M insn_procssed limit / 100 == 10k peak states.
16909 			 * This threshold shouldn't be too high either, since states
16910 			 * at the end of the loop are likely to be useful in pruning.
16911 			 */
16912 skip_inf_loop_check:
16913 			if (!force_new_state &&
16914 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
16915 			    env->insn_processed - env->prev_insn_processed < 100)
16916 				add_new_state = false;
16917 			goto miss;
16918 		}
16919 		/* If sl->state is a part of a loop and this loop's entry is a part of
16920 		 * current verification path then states have to be compared exactly.
16921 		 * 'force_exact' is needed to catch the following case:
16922 		 *
16923 		 *                initial     Here state 'succ' was processed first,
16924 		 *                  |         it was eventually tracked to produce a
16925 		 *                  V         state identical to 'hdr'.
16926 		 *     .---------> hdr        All branches from 'succ' had been explored
16927 		 *     |            |         and thus 'succ' has its .branches == 0.
16928 		 *     |            V
16929 		 *     |    .------...        Suppose states 'cur' and 'succ' correspond
16930 		 *     |    |       |         to the same instruction + callsites.
16931 		 *     |    V       V         In such case it is necessary to check
16932 		 *     |   ...     ...        if 'succ' and 'cur' are states_equal().
16933 		 *     |    |       |         If 'succ' and 'cur' are a part of the
16934 		 *     |    V       V         same loop exact flag has to be set.
16935 		 *     |   succ <- cur        To check if that is the case, verify
16936 		 *     |    |                 if loop entry of 'succ' is in current
16937 		 *     |    V                 DFS path.
16938 		 *     |   ...
16939 		 *     |    |
16940 		 *     '----'
16941 		 *
16942 		 * Additional details are in the comment before get_loop_entry().
16943 		 */
16944 		loop_entry = get_loop_entry(&sl->state);
16945 		force_exact = loop_entry && loop_entry->branches > 0;
16946 		if (states_equal(env, &sl->state, cur, force_exact)) {
16947 			if (force_exact)
16948 				update_loop_entry(cur, loop_entry);
16949 hit:
16950 			sl->hit_cnt++;
16951 			/* reached equivalent register/stack state,
16952 			 * prune the search.
16953 			 * Registers read by the continuation are read by us.
16954 			 * If we have any write marks in env->cur_state, they
16955 			 * will prevent corresponding reads in the continuation
16956 			 * from reaching our parent (an explored_state).  Our
16957 			 * own state will get the read marks recorded, but
16958 			 * they'll be immediately forgotten as we're pruning
16959 			 * this state and will pop a new one.
16960 			 */
16961 			err = propagate_liveness(env, &sl->state, cur);
16962 
16963 			/* if previous state reached the exit with precision and
16964 			 * current state is equivalent to it (except precsion marks)
16965 			 * the precision needs to be propagated back in
16966 			 * the current state.
16967 			 */
16968 			if (is_jmp_point(env, env->insn_idx))
16969 				err = err ? : push_jmp_history(env, cur, 0);
16970 			err = err ? : propagate_precision(env, &sl->state);
16971 			if (err)
16972 				return err;
16973 			return 1;
16974 		}
16975 miss:
16976 		/* when new state is not going to be added do not increase miss count.
16977 		 * Otherwise several loop iterations will remove the state
16978 		 * recorded earlier. The goal of these heuristics is to have
16979 		 * states from some iterations of the loop (some in the beginning
16980 		 * and some at the end) to help pruning.
16981 		 */
16982 		if (add_new_state)
16983 			sl->miss_cnt++;
16984 		/* heuristic to determine whether this state is beneficial
16985 		 * to keep checking from state equivalence point of view.
16986 		 * Higher numbers increase max_states_per_insn and verification time,
16987 		 * but do not meaningfully decrease insn_processed.
16988 		 * 'n' controls how many times state could miss before eviction.
16989 		 * Use bigger 'n' for checkpoints because evicting checkpoint states
16990 		 * too early would hinder iterator convergence.
16991 		 */
16992 		n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
16993 		if (sl->miss_cnt > sl->hit_cnt * n + n) {
16994 			/* the state is unlikely to be useful. Remove it to
16995 			 * speed up verification
16996 			 */
16997 			*pprev = sl->next;
16998 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE &&
16999 			    !sl->state.used_as_loop_entry) {
17000 				u32 br = sl->state.branches;
17001 
17002 				WARN_ONCE(br,
17003 					  "BUG live_done but branches_to_explore %d\n",
17004 					  br);
17005 				free_verifier_state(&sl->state, false);
17006 				kfree(sl);
17007 				env->peak_states--;
17008 			} else {
17009 				/* cannot free this state, since parentage chain may
17010 				 * walk it later. Add it for free_list instead to
17011 				 * be freed at the end of verification
17012 				 */
17013 				sl->next = env->free_list;
17014 				env->free_list = sl;
17015 			}
17016 			sl = *pprev;
17017 			continue;
17018 		}
17019 next:
17020 		pprev = &sl->next;
17021 		sl = *pprev;
17022 	}
17023 
17024 	if (env->max_states_per_insn < states_cnt)
17025 		env->max_states_per_insn = states_cnt;
17026 
17027 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
17028 		return 0;
17029 
17030 	if (!add_new_state)
17031 		return 0;
17032 
17033 	/* There were no equivalent states, remember the current one.
17034 	 * Technically the current state is not proven to be safe yet,
17035 	 * but it will either reach outer most bpf_exit (which means it's safe)
17036 	 * or it will be rejected. When there are no loops the verifier won't be
17037 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
17038 	 * again on the way to bpf_exit.
17039 	 * When looping the sl->state.branches will be > 0 and this state
17040 	 * will not be considered for equivalence until branches == 0.
17041 	 */
17042 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
17043 	if (!new_sl)
17044 		return -ENOMEM;
17045 	env->total_states++;
17046 	env->peak_states++;
17047 	env->prev_jmps_processed = env->jmps_processed;
17048 	env->prev_insn_processed = env->insn_processed;
17049 
17050 	/* forget precise markings we inherited, see __mark_chain_precision */
17051 	if (env->bpf_capable)
17052 		mark_all_scalars_imprecise(env, cur);
17053 
17054 	/* add new state to the head of linked list */
17055 	new = &new_sl->state;
17056 	err = copy_verifier_state(new, cur);
17057 	if (err) {
17058 		free_verifier_state(new, false);
17059 		kfree(new_sl);
17060 		return err;
17061 	}
17062 	new->insn_idx = insn_idx;
17063 	WARN_ONCE(new->branches != 1,
17064 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
17065 
17066 	cur->parent = new;
17067 	cur->first_insn_idx = insn_idx;
17068 	cur->dfs_depth = new->dfs_depth + 1;
17069 	clear_jmp_history(cur);
17070 	new_sl->next = *explored_state(env, insn_idx);
17071 	*explored_state(env, insn_idx) = new_sl;
17072 	/* connect new state to parentage chain. Current frame needs all
17073 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
17074 	 * to the stack implicitly by JITs) so in callers' frames connect just
17075 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
17076 	 * the state of the call instruction (with WRITTEN set), and r0 comes
17077 	 * from callee with its full parentage chain, anyway.
17078 	 */
17079 	/* clear write marks in current state: the writes we did are not writes
17080 	 * our child did, so they don't screen off its reads from us.
17081 	 * (There are no read marks in current state, because reads always mark
17082 	 * their parent and current state never has children yet.  Only
17083 	 * explored_states can get read marks.)
17084 	 */
17085 	for (j = 0; j <= cur->curframe; j++) {
17086 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
17087 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
17088 		for (i = 0; i < BPF_REG_FP; i++)
17089 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
17090 	}
17091 
17092 	/* all stack frames are accessible from callee, clear them all */
17093 	for (j = 0; j <= cur->curframe; j++) {
17094 		struct bpf_func_state *frame = cur->frame[j];
17095 		struct bpf_func_state *newframe = new->frame[j];
17096 
17097 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
17098 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
17099 			frame->stack[i].spilled_ptr.parent =
17100 						&newframe->stack[i].spilled_ptr;
17101 		}
17102 	}
17103 	return 0;
17104 }
17105 
17106 /* Return true if it's OK to have the same insn return a different type. */
17107 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
17108 {
17109 	switch (base_type(type)) {
17110 	case PTR_TO_CTX:
17111 	case PTR_TO_SOCKET:
17112 	case PTR_TO_SOCK_COMMON:
17113 	case PTR_TO_TCP_SOCK:
17114 	case PTR_TO_XDP_SOCK:
17115 	case PTR_TO_BTF_ID:
17116 		return false;
17117 	default:
17118 		return true;
17119 	}
17120 }
17121 
17122 /* If an instruction was previously used with particular pointer types, then we
17123  * need to be careful to avoid cases such as the below, where it may be ok
17124  * for one branch accessing the pointer, but not ok for the other branch:
17125  *
17126  * R1 = sock_ptr
17127  * goto X;
17128  * ...
17129  * R1 = some_other_valid_ptr;
17130  * goto X;
17131  * ...
17132  * R2 = *(u32 *)(R1 + 0);
17133  */
17134 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
17135 {
17136 	return src != prev && (!reg_type_mismatch_ok(src) ||
17137 			       !reg_type_mismatch_ok(prev));
17138 }
17139 
17140 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
17141 			     bool allow_trust_missmatch)
17142 {
17143 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
17144 
17145 	if (*prev_type == NOT_INIT) {
17146 		/* Saw a valid insn
17147 		 * dst_reg = *(u32 *)(src_reg + off)
17148 		 * save type to validate intersecting paths
17149 		 */
17150 		*prev_type = type;
17151 	} else if (reg_type_mismatch(type, *prev_type)) {
17152 		/* Abuser program is trying to use the same insn
17153 		 * dst_reg = *(u32*) (src_reg + off)
17154 		 * with different pointer types:
17155 		 * src_reg == ctx in one branch and
17156 		 * src_reg == stack|map in some other branch.
17157 		 * Reject it.
17158 		 */
17159 		if (allow_trust_missmatch &&
17160 		    base_type(type) == PTR_TO_BTF_ID &&
17161 		    base_type(*prev_type) == PTR_TO_BTF_ID) {
17162 			/*
17163 			 * Have to support a use case when one path through
17164 			 * the program yields TRUSTED pointer while another
17165 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
17166 			 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
17167 			 */
17168 			*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
17169 		} else {
17170 			verbose(env, "same insn cannot be used with different pointers\n");
17171 			return -EINVAL;
17172 		}
17173 	}
17174 
17175 	return 0;
17176 }
17177 
17178 static int do_check(struct bpf_verifier_env *env)
17179 {
17180 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
17181 	struct bpf_verifier_state *state = env->cur_state;
17182 	struct bpf_insn *insns = env->prog->insnsi;
17183 	struct bpf_reg_state *regs;
17184 	int insn_cnt = env->prog->len;
17185 	bool do_print_state = false;
17186 	int prev_insn_idx = -1;
17187 
17188 	for (;;) {
17189 		bool exception_exit = false;
17190 		struct bpf_insn *insn;
17191 		u8 class;
17192 		int err;
17193 
17194 		/* reset current history entry on each new instruction */
17195 		env->cur_hist_ent = NULL;
17196 
17197 		env->prev_insn_idx = prev_insn_idx;
17198 		if (env->insn_idx >= insn_cnt) {
17199 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
17200 				env->insn_idx, insn_cnt);
17201 			return -EFAULT;
17202 		}
17203 
17204 		insn = &insns[env->insn_idx];
17205 		class = BPF_CLASS(insn->code);
17206 
17207 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
17208 			verbose(env,
17209 				"BPF program is too large. Processed %d insn\n",
17210 				env->insn_processed);
17211 			return -E2BIG;
17212 		}
17213 
17214 		state->last_insn_idx = env->prev_insn_idx;
17215 
17216 		if (is_prune_point(env, env->insn_idx)) {
17217 			err = is_state_visited(env, env->insn_idx);
17218 			if (err < 0)
17219 				return err;
17220 			if (err == 1) {
17221 				/* found equivalent state, can prune the search */
17222 				if (env->log.level & BPF_LOG_LEVEL) {
17223 					if (do_print_state)
17224 						verbose(env, "\nfrom %d to %d%s: safe\n",
17225 							env->prev_insn_idx, env->insn_idx,
17226 							env->cur_state->speculative ?
17227 							" (speculative execution)" : "");
17228 					else
17229 						verbose(env, "%d: safe\n", env->insn_idx);
17230 				}
17231 				goto process_bpf_exit;
17232 			}
17233 		}
17234 
17235 		if (is_jmp_point(env, env->insn_idx)) {
17236 			err = push_jmp_history(env, state, 0);
17237 			if (err)
17238 				return err;
17239 		}
17240 
17241 		if (signal_pending(current))
17242 			return -EAGAIN;
17243 
17244 		if (need_resched())
17245 			cond_resched();
17246 
17247 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
17248 			verbose(env, "\nfrom %d to %d%s:",
17249 				env->prev_insn_idx, env->insn_idx,
17250 				env->cur_state->speculative ?
17251 				" (speculative execution)" : "");
17252 			print_verifier_state(env, state->frame[state->curframe], true);
17253 			do_print_state = false;
17254 		}
17255 
17256 		if (env->log.level & BPF_LOG_LEVEL) {
17257 			const struct bpf_insn_cbs cbs = {
17258 				.cb_call	= disasm_kfunc_name,
17259 				.cb_print	= verbose,
17260 				.private_data	= env,
17261 			};
17262 
17263 			if (verifier_state_scratched(env))
17264 				print_insn_state(env, state->frame[state->curframe]);
17265 
17266 			verbose_linfo(env, env->insn_idx, "; ");
17267 			env->prev_log_pos = env->log.end_pos;
17268 			verbose(env, "%d: ", env->insn_idx);
17269 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17270 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
17271 			env->prev_log_pos = env->log.end_pos;
17272 		}
17273 
17274 		if (bpf_prog_is_offloaded(env->prog->aux)) {
17275 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
17276 							   env->prev_insn_idx);
17277 			if (err)
17278 				return err;
17279 		}
17280 
17281 		regs = cur_regs(env);
17282 		sanitize_mark_insn_seen(env);
17283 		prev_insn_idx = env->insn_idx;
17284 
17285 		if (class == BPF_ALU || class == BPF_ALU64) {
17286 			err = check_alu_op(env, insn);
17287 			if (err)
17288 				return err;
17289 
17290 		} else if (class == BPF_LDX) {
17291 			enum bpf_reg_type src_reg_type;
17292 
17293 			/* check for reserved fields is already done */
17294 
17295 			/* check src operand */
17296 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
17297 			if (err)
17298 				return err;
17299 
17300 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17301 			if (err)
17302 				return err;
17303 
17304 			src_reg_type = regs[insn->src_reg].type;
17305 
17306 			/* check that memory (src_reg + off) is readable,
17307 			 * the state of dst_reg will be updated by this func
17308 			 */
17309 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
17310 					       insn->off, BPF_SIZE(insn->code),
17311 					       BPF_READ, insn->dst_reg, false,
17312 					       BPF_MODE(insn->code) == BPF_MEMSX);
17313 			err = err ?: save_aux_ptr_type(env, src_reg_type, true);
17314 			err = err ?: reg_bounds_sanity_check(env, &regs[insn->dst_reg], "ldx");
17315 			if (err)
17316 				return err;
17317 		} else if (class == BPF_STX) {
17318 			enum bpf_reg_type dst_reg_type;
17319 
17320 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
17321 				err = check_atomic(env, env->insn_idx, insn);
17322 				if (err)
17323 					return err;
17324 				env->insn_idx++;
17325 				continue;
17326 			}
17327 
17328 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
17329 				verbose(env, "BPF_STX uses reserved fields\n");
17330 				return -EINVAL;
17331 			}
17332 
17333 			/* check src1 operand */
17334 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
17335 			if (err)
17336 				return err;
17337 			/* check src2 operand */
17338 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17339 			if (err)
17340 				return err;
17341 
17342 			dst_reg_type = regs[insn->dst_reg].type;
17343 
17344 			/* check that memory (dst_reg + off) is writeable */
17345 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17346 					       insn->off, BPF_SIZE(insn->code),
17347 					       BPF_WRITE, insn->src_reg, false, false);
17348 			if (err)
17349 				return err;
17350 
17351 			err = save_aux_ptr_type(env, dst_reg_type, false);
17352 			if (err)
17353 				return err;
17354 		} else if (class == BPF_ST) {
17355 			enum bpf_reg_type dst_reg_type;
17356 
17357 			if (BPF_MODE(insn->code) != BPF_MEM ||
17358 			    insn->src_reg != BPF_REG_0) {
17359 				verbose(env, "BPF_ST uses reserved fields\n");
17360 				return -EINVAL;
17361 			}
17362 			/* check src operand */
17363 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17364 			if (err)
17365 				return err;
17366 
17367 			dst_reg_type = regs[insn->dst_reg].type;
17368 
17369 			/* check that memory (dst_reg + off) is writeable */
17370 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17371 					       insn->off, BPF_SIZE(insn->code),
17372 					       BPF_WRITE, -1, false, false);
17373 			if (err)
17374 				return err;
17375 
17376 			err = save_aux_ptr_type(env, dst_reg_type, false);
17377 			if (err)
17378 				return err;
17379 		} else if (class == BPF_JMP || class == BPF_JMP32) {
17380 			u8 opcode = BPF_OP(insn->code);
17381 
17382 			env->jmps_processed++;
17383 			if (opcode == BPF_CALL) {
17384 				if (BPF_SRC(insn->code) != BPF_K ||
17385 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
17386 				     && insn->off != 0) ||
17387 				    (insn->src_reg != BPF_REG_0 &&
17388 				     insn->src_reg != BPF_PSEUDO_CALL &&
17389 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
17390 				    insn->dst_reg != BPF_REG_0 ||
17391 				    class == BPF_JMP32) {
17392 					verbose(env, "BPF_CALL uses reserved fields\n");
17393 					return -EINVAL;
17394 				}
17395 
17396 				if (env->cur_state->active_lock.ptr) {
17397 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
17398 					    (insn->src_reg == BPF_PSEUDO_CALL) ||
17399 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
17400 					     (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
17401 						verbose(env, "function calls are not allowed while holding a lock\n");
17402 						return -EINVAL;
17403 					}
17404 				}
17405 				if (insn->src_reg == BPF_PSEUDO_CALL) {
17406 					err = check_func_call(env, insn, &env->insn_idx);
17407 				} else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
17408 					err = check_kfunc_call(env, insn, &env->insn_idx);
17409 					if (!err && is_bpf_throw_kfunc(insn)) {
17410 						exception_exit = true;
17411 						goto process_bpf_exit_full;
17412 					}
17413 				} else {
17414 					err = check_helper_call(env, insn, &env->insn_idx);
17415 				}
17416 				if (err)
17417 					return err;
17418 
17419 				mark_reg_scratched(env, BPF_REG_0);
17420 			} else if (opcode == BPF_JA) {
17421 				if (BPF_SRC(insn->code) != BPF_K ||
17422 				    insn->src_reg != BPF_REG_0 ||
17423 				    insn->dst_reg != BPF_REG_0 ||
17424 				    (class == BPF_JMP && insn->imm != 0) ||
17425 				    (class == BPF_JMP32 && insn->off != 0)) {
17426 					verbose(env, "BPF_JA uses reserved fields\n");
17427 					return -EINVAL;
17428 				}
17429 
17430 				if (class == BPF_JMP)
17431 					env->insn_idx += insn->off + 1;
17432 				else
17433 					env->insn_idx += insn->imm + 1;
17434 				continue;
17435 
17436 			} else if (opcode == BPF_EXIT) {
17437 				if (BPF_SRC(insn->code) != BPF_K ||
17438 				    insn->imm != 0 ||
17439 				    insn->src_reg != BPF_REG_0 ||
17440 				    insn->dst_reg != BPF_REG_0 ||
17441 				    class == BPF_JMP32) {
17442 					verbose(env, "BPF_EXIT uses reserved fields\n");
17443 					return -EINVAL;
17444 				}
17445 process_bpf_exit_full:
17446 				if (env->cur_state->active_lock.ptr &&
17447 				    !in_rbtree_lock_required_cb(env)) {
17448 					verbose(env, "bpf_spin_unlock is missing\n");
17449 					return -EINVAL;
17450 				}
17451 
17452 				if (env->cur_state->active_rcu_lock &&
17453 				    !in_rbtree_lock_required_cb(env)) {
17454 					verbose(env, "bpf_rcu_read_unlock is missing\n");
17455 					return -EINVAL;
17456 				}
17457 
17458 				/* We must do check_reference_leak here before
17459 				 * prepare_func_exit to handle the case when
17460 				 * state->curframe > 0, it may be a callback
17461 				 * function, for which reference_state must
17462 				 * match caller reference state when it exits.
17463 				 */
17464 				err = check_reference_leak(env, exception_exit);
17465 				if (err)
17466 					return err;
17467 
17468 				/* The side effect of the prepare_func_exit
17469 				 * which is being skipped is that it frees
17470 				 * bpf_func_state. Typically, process_bpf_exit
17471 				 * will only be hit with outermost exit.
17472 				 * copy_verifier_state in pop_stack will handle
17473 				 * freeing of any extra bpf_func_state left over
17474 				 * from not processing all nested function
17475 				 * exits. We also skip return code checks as
17476 				 * they are not needed for exceptional exits.
17477 				 */
17478 				if (exception_exit)
17479 					goto process_bpf_exit;
17480 
17481 				if (state->curframe) {
17482 					/* exit from nested function */
17483 					err = prepare_func_exit(env, &env->insn_idx);
17484 					if (err)
17485 						return err;
17486 					do_print_state = true;
17487 					continue;
17488 				}
17489 
17490 				err = check_return_code(env, BPF_REG_0, "R0");
17491 				if (err)
17492 					return err;
17493 process_bpf_exit:
17494 				mark_verifier_state_scratched(env);
17495 				update_branch_counts(env, env->cur_state);
17496 				err = pop_stack(env, &prev_insn_idx,
17497 						&env->insn_idx, pop_log);
17498 				if (err < 0) {
17499 					if (err != -ENOENT)
17500 						return err;
17501 					break;
17502 				} else {
17503 					do_print_state = true;
17504 					continue;
17505 				}
17506 			} else {
17507 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
17508 				if (err)
17509 					return err;
17510 			}
17511 		} else if (class == BPF_LD) {
17512 			u8 mode = BPF_MODE(insn->code);
17513 
17514 			if (mode == BPF_ABS || mode == BPF_IND) {
17515 				err = check_ld_abs(env, insn);
17516 				if (err)
17517 					return err;
17518 
17519 			} else if (mode == BPF_IMM) {
17520 				err = check_ld_imm(env, insn);
17521 				if (err)
17522 					return err;
17523 
17524 				env->insn_idx++;
17525 				sanitize_mark_insn_seen(env);
17526 			} else {
17527 				verbose(env, "invalid BPF_LD mode\n");
17528 				return -EINVAL;
17529 			}
17530 		} else {
17531 			verbose(env, "unknown insn class %d\n", class);
17532 			return -EINVAL;
17533 		}
17534 
17535 		env->insn_idx++;
17536 	}
17537 
17538 	return 0;
17539 }
17540 
17541 static int find_btf_percpu_datasec(struct btf *btf)
17542 {
17543 	const struct btf_type *t;
17544 	const char *tname;
17545 	int i, n;
17546 
17547 	/*
17548 	 * Both vmlinux and module each have their own ".data..percpu"
17549 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
17550 	 * types to look at only module's own BTF types.
17551 	 */
17552 	n = btf_nr_types(btf);
17553 	if (btf_is_module(btf))
17554 		i = btf_nr_types(btf_vmlinux);
17555 	else
17556 		i = 1;
17557 
17558 	for(; i < n; i++) {
17559 		t = btf_type_by_id(btf, i);
17560 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
17561 			continue;
17562 
17563 		tname = btf_name_by_offset(btf, t->name_off);
17564 		if (!strcmp(tname, ".data..percpu"))
17565 			return i;
17566 	}
17567 
17568 	return -ENOENT;
17569 }
17570 
17571 /* replace pseudo btf_id with kernel symbol address */
17572 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
17573 			       struct bpf_insn *insn,
17574 			       struct bpf_insn_aux_data *aux)
17575 {
17576 	const struct btf_var_secinfo *vsi;
17577 	const struct btf_type *datasec;
17578 	struct btf_mod_pair *btf_mod;
17579 	const struct btf_type *t;
17580 	const char *sym_name;
17581 	bool percpu = false;
17582 	u32 type, id = insn->imm;
17583 	struct btf *btf;
17584 	s32 datasec_id;
17585 	u64 addr;
17586 	int i, btf_fd, err;
17587 
17588 	btf_fd = insn[1].imm;
17589 	if (btf_fd) {
17590 		btf = btf_get_by_fd(btf_fd);
17591 		if (IS_ERR(btf)) {
17592 			verbose(env, "invalid module BTF object FD specified.\n");
17593 			return -EINVAL;
17594 		}
17595 	} else {
17596 		if (!btf_vmlinux) {
17597 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
17598 			return -EINVAL;
17599 		}
17600 		btf = btf_vmlinux;
17601 		btf_get(btf);
17602 	}
17603 
17604 	t = btf_type_by_id(btf, id);
17605 	if (!t) {
17606 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
17607 		err = -ENOENT;
17608 		goto err_put;
17609 	}
17610 
17611 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
17612 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
17613 		err = -EINVAL;
17614 		goto err_put;
17615 	}
17616 
17617 	sym_name = btf_name_by_offset(btf, t->name_off);
17618 	addr = kallsyms_lookup_name(sym_name);
17619 	if (!addr) {
17620 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
17621 			sym_name);
17622 		err = -ENOENT;
17623 		goto err_put;
17624 	}
17625 	insn[0].imm = (u32)addr;
17626 	insn[1].imm = addr >> 32;
17627 
17628 	if (btf_type_is_func(t)) {
17629 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17630 		aux->btf_var.mem_size = 0;
17631 		goto check_btf;
17632 	}
17633 
17634 	datasec_id = find_btf_percpu_datasec(btf);
17635 	if (datasec_id > 0) {
17636 		datasec = btf_type_by_id(btf, datasec_id);
17637 		for_each_vsi(i, datasec, vsi) {
17638 			if (vsi->type == id) {
17639 				percpu = true;
17640 				break;
17641 			}
17642 		}
17643 	}
17644 
17645 	type = t->type;
17646 	t = btf_type_skip_modifiers(btf, type, NULL);
17647 	if (percpu) {
17648 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
17649 		aux->btf_var.btf = btf;
17650 		aux->btf_var.btf_id = type;
17651 	} else if (!btf_type_is_struct(t)) {
17652 		const struct btf_type *ret;
17653 		const char *tname;
17654 		u32 tsize;
17655 
17656 		/* resolve the type size of ksym. */
17657 		ret = btf_resolve_size(btf, t, &tsize);
17658 		if (IS_ERR(ret)) {
17659 			tname = btf_name_by_offset(btf, t->name_off);
17660 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
17661 				tname, PTR_ERR(ret));
17662 			err = -EINVAL;
17663 			goto err_put;
17664 		}
17665 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17666 		aux->btf_var.mem_size = tsize;
17667 	} else {
17668 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
17669 		aux->btf_var.btf = btf;
17670 		aux->btf_var.btf_id = type;
17671 	}
17672 check_btf:
17673 	/* check whether we recorded this BTF (and maybe module) already */
17674 	for (i = 0; i < env->used_btf_cnt; i++) {
17675 		if (env->used_btfs[i].btf == btf) {
17676 			btf_put(btf);
17677 			return 0;
17678 		}
17679 	}
17680 
17681 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
17682 		err = -E2BIG;
17683 		goto err_put;
17684 	}
17685 
17686 	btf_mod = &env->used_btfs[env->used_btf_cnt];
17687 	btf_mod->btf = btf;
17688 	btf_mod->module = NULL;
17689 
17690 	/* if we reference variables from kernel module, bump its refcount */
17691 	if (btf_is_module(btf)) {
17692 		btf_mod->module = btf_try_get_module(btf);
17693 		if (!btf_mod->module) {
17694 			err = -ENXIO;
17695 			goto err_put;
17696 		}
17697 	}
17698 
17699 	env->used_btf_cnt++;
17700 
17701 	return 0;
17702 err_put:
17703 	btf_put(btf);
17704 	return err;
17705 }
17706 
17707 static bool is_tracing_prog_type(enum bpf_prog_type type)
17708 {
17709 	switch (type) {
17710 	case BPF_PROG_TYPE_KPROBE:
17711 	case BPF_PROG_TYPE_TRACEPOINT:
17712 	case BPF_PROG_TYPE_PERF_EVENT:
17713 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
17714 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
17715 		return true;
17716 	default:
17717 		return false;
17718 	}
17719 }
17720 
17721 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
17722 					struct bpf_map *map,
17723 					struct bpf_prog *prog)
17724 
17725 {
17726 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
17727 
17728 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
17729 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
17730 		if (is_tracing_prog_type(prog_type)) {
17731 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
17732 			return -EINVAL;
17733 		}
17734 	}
17735 
17736 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
17737 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
17738 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
17739 			return -EINVAL;
17740 		}
17741 
17742 		if (is_tracing_prog_type(prog_type)) {
17743 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
17744 			return -EINVAL;
17745 		}
17746 	}
17747 
17748 	if (btf_record_has_field(map->record, BPF_TIMER)) {
17749 		if (is_tracing_prog_type(prog_type)) {
17750 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
17751 			return -EINVAL;
17752 		}
17753 	}
17754 
17755 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
17756 	    !bpf_offload_prog_map_match(prog, map)) {
17757 		verbose(env, "offload device mismatch between prog and map\n");
17758 		return -EINVAL;
17759 	}
17760 
17761 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
17762 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
17763 		return -EINVAL;
17764 	}
17765 
17766 	if (prog->aux->sleepable)
17767 		switch (map->map_type) {
17768 		case BPF_MAP_TYPE_HASH:
17769 		case BPF_MAP_TYPE_LRU_HASH:
17770 		case BPF_MAP_TYPE_ARRAY:
17771 		case BPF_MAP_TYPE_PERCPU_HASH:
17772 		case BPF_MAP_TYPE_PERCPU_ARRAY:
17773 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
17774 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
17775 		case BPF_MAP_TYPE_HASH_OF_MAPS:
17776 		case BPF_MAP_TYPE_RINGBUF:
17777 		case BPF_MAP_TYPE_USER_RINGBUF:
17778 		case BPF_MAP_TYPE_INODE_STORAGE:
17779 		case BPF_MAP_TYPE_SK_STORAGE:
17780 		case BPF_MAP_TYPE_TASK_STORAGE:
17781 		case BPF_MAP_TYPE_CGRP_STORAGE:
17782 			break;
17783 		default:
17784 			verbose(env,
17785 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
17786 			return -EINVAL;
17787 		}
17788 
17789 	return 0;
17790 }
17791 
17792 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
17793 {
17794 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
17795 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
17796 }
17797 
17798 /* find and rewrite pseudo imm in ld_imm64 instructions:
17799  *
17800  * 1. if it accesses map FD, replace it with actual map pointer.
17801  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
17802  *
17803  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
17804  */
17805 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
17806 {
17807 	struct bpf_insn *insn = env->prog->insnsi;
17808 	int insn_cnt = env->prog->len;
17809 	int i, j, err;
17810 
17811 	err = bpf_prog_calc_tag(env->prog);
17812 	if (err)
17813 		return err;
17814 
17815 	for (i = 0; i < insn_cnt; i++, insn++) {
17816 		if (BPF_CLASS(insn->code) == BPF_LDX &&
17817 		    ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
17818 		    insn->imm != 0)) {
17819 			verbose(env, "BPF_LDX uses reserved fields\n");
17820 			return -EINVAL;
17821 		}
17822 
17823 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
17824 			struct bpf_insn_aux_data *aux;
17825 			struct bpf_map *map;
17826 			struct fd f;
17827 			u64 addr;
17828 			u32 fd;
17829 
17830 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
17831 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
17832 			    insn[1].off != 0) {
17833 				verbose(env, "invalid bpf_ld_imm64 insn\n");
17834 				return -EINVAL;
17835 			}
17836 
17837 			if (insn[0].src_reg == 0)
17838 				/* valid generic load 64-bit imm */
17839 				goto next_insn;
17840 
17841 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
17842 				aux = &env->insn_aux_data[i];
17843 				err = check_pseudo_btf_id(env, insn, aux);
17844 				if (err)
17845 					return err;
17846 				goto next_insn;
17847 			}
17848 
17849 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
17850 				aux = &env->insn_aux_data[i];
17851 				aux->ptr_type = PTR_TO_FUNC;
17852 				goto next_insn;
17853 			}
17854 
17855 			/* In final convert_pseudo_ld_imm64() step, this is
17856 			 * converted into regular 64-bit imm load insn.
17857 			 */
17858 			switch (insn[0].src_reg) {
17859 			case BPF_PSEUDO_MAP_VALUE:
17860 			case BPF_PSEUDO_MAP_IDX_VALUE:
17861 				break;
17862 			case BPF_PSEUDO_MAP_FD:
17863 			case BPF_PSEUDO_MAP_IDX:
17864 				if (insn[1].imm == 0)
17865 					break;
17866 				fallthrough;
17867 			default:
17868 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
17869 				return -EINVAL;
17870 			}
17871 
17872 			switch (insn[0].src_reg) {
17873 			case BPF_PSEUDO_MAP_IDX_VALUE:
17874 			case BPF_PSEUDO_MAP_IDX:
17875 				if (bpfptr_is_null(env->fd_array)) {
17876 					verbose(env, "fd_idx without fd_array is invalid\n");
17877 					return -EPROTO;
17878 				}
17879 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
17880 							    insn[0].imm * sizeof(fd),
17881 							    sizeof(fd)))
17882 					return -EFAULT;
17883 				break;
17884 			default:
17885 				fd = insn[0].imm;
17886 				break;
17887 			}
17888 
17889 			f = fdget(fd);
17890 			map = __bpf_map_get(f);
17891 			if (IS_ERR(map)) {
17892 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
17893 					insn[0].imm);
17894 				return PTR_ERR(map);
17895 			}
17896 
17897 			err = check_map_prog_compatibility(env, map, env->prog);
17898 			if (err) {
17899 				fdput(f);
17900 				return err;
17901 			}
17902 
17903 			aux = &env->insn_aux_data[i];
17904 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
17905 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
17906 				addr = (unsigned long)map;
17907 			} else {
17908 				u32 off = insn[1].imm;
17909 
17910 				if (off >= BPF_MAX_VAR_OFF) {
17911 					verbose(env, "direct value offset of %u is not allowed\n", off);
17912 					fdput(f);
17913 					return -EINVAL;
17914 				}
17915 
17916 				if (!map->ops->map_direct_value_addr) {
17917 					verbose(env, "no direct value access support for this map type\n");
17918 					fdput(f);
17919 					return -EINVAL;
17920 				}
17921 
17922 				err = map->ops->map_direct_value_addr(map, &addr, off);
17923 				if (err) {
17924 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
17925 						map->value_size, off);
17926 					fdput(f);
17927 					return err;
17928 				}
17929 
17930 				aux->map_off = off;
17931 				addr += off;
17932 			}
17933 
17934 			insn[0].imm = (u32)addr;
17935 			insn[1].imm = addr >> 32;
17936 
17937 			/* check whether we recorded this map already */
17938 			for (j = 0; j < env->used_map_cnt; j++) {
17939 				if (env->used_maps[j] == map) {
17940 					aux->map_index = j;
17941 					fdput(f);
17942 					goto next_insn;
17943 				}
17944 			}
17945 
17946 			if (env->used_map_cnt >= MAX_USED_MAPS) {
17947 				fdput(f);
17948 				return -E2BIG;
17949 			}
17950 
17951 			if (env->prog->aux->sleepable)
17952 				atomic64_inc(&map->sleepable_refcnt);
17953 			/* hold the map. If the program is rejected by verifier,
17954 			 * the map will be released by release_maps() or it
17955 			 * will be used by the valid program until it's unloaded
17956 			 * and all maps are released in bpf_free_used_maps()
17957 			 */
17958 			bpf_map_inc(map);
17959 
17960 			aux->map_index = env->used_map_cnt;
17961 			env->used_maps[env->used_map_cnt++] = map;
17962 
17963 			if (bpf_map_is_cgroup_storage(map) &&
17964 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
17965 				verbose(env, "only one cgroup storage of each type is allowed\n");
17966 				fdput(f);
17967 				return -EBUSY;
17968 			}
17969 
17970 			fdput(f);
17971 next_insn:
17972 			insn++;
17973 			i++;
17974 			continue;
17975 		}
17976 
17977 		/* Basic sanity check before we invest more work here. */
17978 		if (!bpf_opcode_in_insntable(insn->code)) {
17979 			verbose(env, "unknown opcode %02x\n", insn->code);
17980 			return -EINVAL;
17981 		}
17982 	}
17983 
17984 	/* now all pseudo BPF_LD_IMM64 instructions load valid
17985 	 * 'struct bpf_map *' into a register instead of user map_fd.
17986 	 * These pointers will be used later by verifier to validate map access.
17987 	 */
17988 	return 0;
17989 }
17990 
17991 /* drop refcnt of maps used by the rejected program */
17992 static void release_maps(struct bpf_verifier_env *env)
17993 {
17994 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
17995 			     env->used_map_cnt);
17996 }
17997 
17998 /* drop refcnt of maps used by the rejected program */
17999 static void release_btfs(struct bpf_verifier_env *env)
18000 {
18001 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
18002 			     env->used_btf_cnt);
18003 }
18004 
18005 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
18006 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
18007 {
18008 	struct bpf_insn *insn = env->prog->insnsi;
18009 	int insn_cnt = env->prog->len;
18010 	int i;
18011 
18012 	for (i = 0; i < insn_cnt; i++, insn++) {
18013 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
18014 			continue;
18015 		if (insn->src_reg == BPF_PSEUDO_FUNC)
18016 			continue;
18017 		insn->src_reg = 0;
18018 	}
18019 }
18020 
18021 /* single env->prog->insni[off] instruction was replaced with the range
18022  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
18023  * [0, off) and [off, end) to new locations, so the patched range stays zero
18024  */
18025 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
18026 				 struct bpf_insn_aux_data *new_data,
18027 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
18028 {
18029 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
18030 	struct bpf_insn *insn = new_prog->insnsi;
18031 	u32 old_seen = old_data[off].seen;
18032 	u32 prog_len;
18033 	int i;
18034 
18035 	/* aux info at OFF always needs adjustment, no matter fast path
18036 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
18037 	 * original insn at old prog.
18038 	 */
18039 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
18040 
18041 	if (cnt == 1)
18042 		return;
18043 	prog_len = new_prog->len;
18044 
18045 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
18046 	memcpy(new_data + off + cnt - 1, old_data + off,
18047 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
18048 	for (i = off; i < off + cnt - 1; i++) {
18049 		/* Expand insni[off]'s seen count to the patched range. */
18050 		new_data[i].seen = old_seen;
18051 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
18052 	}
18053 	env->insn_aux_data = new_data;
18054 	vfree(old_data);
18055 }
18056 
18057 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
18058 {
18059 	int i;
18060 
18061 	if (len == 1)
18062 		return;
18063 	/* NOTE: fake 'exit' subprog should be updated as well. */
18064 	for (i = 0; i <= env->subprog_cnt; i++) {
18065 		if (env->subprog_info[i].start <= off)
18066 			continue;
18067 		env->subprog_info[i].start += len - 1;
18068 	}
18069 }
18070 
18071 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
18072 {
18073 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
18074 	int i, sz = prog->aux->size_poke_tab;
18075 	struct bpf_jit_poke_descriptor *desc;
18076 
18077 	for (i = 0; i < sz; i++) {
18078 		desc = &tab[i];
18079 		if (desc->insn_idx <= off)
18080 			continue;
18081 		desc->insn_idx += len - 1;
18082 	}
18083 }
18084 
18085 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
18086 					    const struct bpf_insn *patch, u32 len)
18087 {
18088 	struct bpf_prog *new_prog;
18089 	struct bpf_insn_aux_data *new_data = NULL;
18090 
18091 	if (len > 1) {
18092 		new_data = vzalloc(array_size(env->prog->len + len - 1,
18093 					      sizeof(struct bpf_insn_aux_data)));
18094 		if (!new_data)
18095 			return NULL;
18096 	}
18097 
18098 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
18099 	if (IS_ERR(new_prog)) {
18100 		if (PTR_ERR(new_prog) == -ERANGE)
18101 			verbose(env,
18102 				"insn %d cannot be patched due to 16-bit range\n",
18103 				env->insn_aux_data[off].orig_idx);
18104 		vfree(new_data);
18105 		return NULL;
18106 	}
18107 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
18108 	adjust_subprog_starts(env, off, len);
18109 	adjust_poke_descs(new_prog, off, len);
18110 	return new_prog;
18111 }
18112 
18113 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
18114 					      u32 off, u32 cnt)
18115 {
18116 	int i, j;
18117 
18118 	/* find first prog starting at or after off (first to remove) */
18119 	for (i = 0; i < env->subprog_cnt; i++)
18120 		if (env->subprog_info[i].start >= off)
18121 			break;
18122 	/* find first prog starting at or after off + cnt (first to stay) */
18123 	for (j = i; j < env->subprog_cnt; j++)
18124 		if (env->subprog_info[j].start >= off + cnt)
18125 			break;
18126 	/* if j doesn't start exactly at off + cnt, we are just removing
18127 	 * the front of previous prog
18128 	 */
18129 	if (env->subprog_info[j].start != off + cnt)
18130 		j--;
18131 
18132 	if (j > i) {
18133 		struct bpf_prog_aux *aux = env->prog->aux;
18134 		int move;
18135 
18136 		/* move fake 'exit' subprog as well */
18137 		move = env->subprog_cnt + 1 - j;
18138 
18139 		memmove(env->subprog_info + i,
18140 			env->subprog_info + j,
18141 			sizeof(*env->subprog_info) * move);
18142 		env->subprog_cnt -= j - i;
18143 
18144 		/* remove func_info */
18145 		if (aux->func_info) {
18146 			move = aux->func_info_cnt - j;
18147 
18148 			memmove(aux->func_info + i,
18149 				aux->func_info + j,
18150 				sizeof(*aux->func_info) * move);
18151 			aux->func_info_cnt -= j - i;
18152 			/* func_info->insn_off is set after all code rewrites,
18153 			 * in adjust_btf_func() - no need to adjust
18154 			 */
18155 		}
18156 	} else {
18157 		/* convert i from "first prog to remove" to "first to adjust" */
18158 		if (env->subprog_info[i].start == off)
18159 			i++;
18160 	}
18161 
18162 	/* update fake 'exit' subprog as well */
18163 	for (; i <= env->subprog_cnt; i++)
18164 		env->subprog_info[i].start -= cnt;
18165 
18166 	return 0;
18167 }
18168 
18169 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
18170 				      u32 cnt)
18171 {
18172 	struct bpf_prog *prog = env->prog;
18173 	u32 i, l_off, l_cnt, nr_linfo;
18174 	struct bpf_line_info *linfo;
18175 
18176 	nr_linfo = prog->aux->nr_linfo;
18177 	if (!nr_linfo)
18178 		return 0;
18179 
18180 	linfo = prog->aux->linfo;
18181 
18182 	/* find first line info to remove, count lines to be removed */
18183 	for (i = 0; i < nr_linfo; i++)
18184 		if (linfo[i].insn_off >= off)
18185 			break;
18186 
18187 	l_off = i;
18188 	l_cnt = 0;
18189 	for (; i < nr_linfo; i++)
18190 		if (linfo[i].insn_off < off + cnt)
18191 			l_cnt++;
18192 		else
18193 			break;
18194 
18195 	/* First live insn doesn't match first live linfo, it needs to "inherit"
18196 	 * last removed linfo.  prog is already modified, so prog->len == off
18197 	 * means no live instructions after (tail of the program was removed).
18198 	 */
18199 	if (prog->len != off && l_cnt &&
18200 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
18201 		l_cnt--;
18202 		linfo[--i].insn_off = off + cnt;
18203 	}
18204 
18205 	/* remove the line info which refer to the removed instructions */
18206 	if (l_cnt) {
18207 		memmove(linfo + l_off, linfo + i,
18208 			sizeof(*linfo) * (nr_linfo - i));
18209 
18210 		prog->aux->nr_linfo -= l_cnt;
18211 		nr_linfo = prog->aux->nr_linfo;
18212 	}
18213 
18214 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
18215 	for (i = l_off; i < nr_linfo; i++)
18216 		linfo[i].insn_off -= cnt;
18217 
18218 	/* fix up all subprogs (incl. 'exit') which start >= off */
18219 	for (i = 0; i <= env->subprog_cnt; i++)
18220 		if (env->subprog_info[i].linfo_idx > l_off) {
18221 			/* program may have started in the removed region but
18222 			 * may not be fully removed
18223 			 */
18224 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
18225 				env->subprog_info[i].linfo_idx -= l_cnt;
18226 			else
18227 				env->subprog_info[i].linfo_idx = l_off;
18228 		}
18229 
18230 	return 0;
18231 }
18232 
18233 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
18234 {
18235 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18236 	unsigned int orig_prog_len = env->prog->len;
18237 	int err;
18238 
18239 	if (bpf_prog_is_offloaded(env->prog->aux))
18240 		bpf_prog_offload_remove_insns(env, off, cnt);
18241 
18242 	err = bpf_remove_insns(env->prog, off, cnt);
18243 	if (err)
18244 		return err;
18245 
18246 	err = adjust_subprog_starts_after_remove(env, off, cnt);
18247 	if (err)
18248 		return err;
18249 
18250 	err = bpf_adj_linfo_after_remove(env, off, cnt);
18251 	if (err)
18252 		return err;
18253 
18254 	memmove(aux_data + off,	aux_data + off + cnt,
18255 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
18256 
18257 	return 0;
18258 }
18259 
18260 /* The verifier does more data flow analysis than llvm and will not
18261  * explore branches that are dead at run time. Malicious programs can
18262  * have dead code too. Therefore replace all dead at-run-time code
18263  * with 'ja -1'.
18264  *
18265  * Just nops are not optimal, e.g. if they would sit at the end of the
18266  * program and through another bug we would manage to jump there, then
18267  * we'd execute beyond program memory otherwise. Returning exception
18268  * code also wouldn't work since we can have subprogs where the dead
18269  * code could be located.
18270  */
18271 static void sanitize_dead_code(struct bpf_verifier_env *env)
18272 {
18273 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18274 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
18275 	struct bpf_insn *insn = env->prog->insnsi;
18276 	const int insn_cnt = env->prog->len;
18277 	int i;
18278 
18279 	for (i = 0; i < insn_cnt; i++) {
18280 		if (aux_data[i].seen)
18281 			continue;
18282 		memcpy(insn + i, &trap, sizeof(trap));
18283 		aux_data[i].zext_dst = false;
18284 	}
18285 }
18286 
18287 static bool insn_is_cond_jump(u8 code)
18288 {
18289 	u8 op;
18290 
18291 	op = BPF_OP(code);
18292 	if (BPF_CLASS(code) == BPF_JMP32)
18293 		return op != BPF_JA;
18294 
18295 	if (BPF_CLASS(code) != BPF_JMP)
18296 		return false;
18297 
18298 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
18299 }
18300 
18301 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
18302 {
18303 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18304 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18305 	struct bpf_insn *insn = env->prog->insnsi;
18306 	const int insn_cnt = env->prog->len;
18307 	int i;
18308 
18309 	for (i = 0; i < insn_cnt; i++, insn++) {
18310 		if (!insn_is_cond_jump(insn->code))
18311 			continue;
18312 
18313 		if (!aux_data[i + 1].seen)
18314 			ja.off = insn->off;
18315 		else if (!aux_data[i + 1 + insn->off].seen)
18316 			ja.off = 0;
18317 		else
18318 			continue;
18319 
18320 		if (bpf_prog_is_offloaded(env->prog->aux))
18321 			bpf_prog_offload_replace_insn(env, i, &ja);
18322 
18323 		memcpy(insn, &ja, sizeof(ja));
18324 	}
18325 }
18326 
18327 static int opt_remove_dead_code(struct bpf_verifier_env *env)
18328 {
18329 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18330 	int insn_cnt = env->prog->len;
18331 	int i, err;
18332 
18333 	for (i = 0; i < insn_cnt; i++) {
18334 		int j;
18335 
18336 		j = 0;
18337 		while (i + j < insn_cnt && !aux_data[i + j].seen)
18338 			j++;
18339 		if (!j)
18340 			continue;
18341 
18342 		err = verifier_remove_insns(env, i, j);
18343 		if (err)
18344 			return err;
18345 		insn_cnt = env->prog->len;
18346 	}
18347 
18348 	return 0;
18349 }
18350 
18351 static int opt_remove_nops(struct bpf_verifier_env *env)
18352 {
18353 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18354 	struct bpf_insn *insn = env->prog->insnsi;
18355 	int insn_cnt = env->prog->len;
18356 	int i, err;
18357 
18358 	for (i = 0; i < insn_cnt; i++) {
18359 		if (memcmp(&insn[i], &ja, sizeof(ja)))
18360 			continue;
18361 
18362 		err = verifier_remove_insns(env, i, 1);
18363 		if (err)
18364 			return err;
18365 		insn_cnt--;
18366 		i--;
18367 	}
18368 
18369 	return 0;
18370 }
18371 
18372 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
18373 					 const union bpf_attr *attr)
18374 {
18375 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
18376 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
18377 	int i, patch_len, delta = 0, len = env->prog->len;
18378 	struct bpf_insn *insns = env->prog->insnsi;
18379 	struct bpf_prog *new_prog;
18380 	bool rnd_hi32;
18381 
18382 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
18383 	zext_patch[1] = BPF_ZEXT_REG(0);
18384 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
18385 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
18386 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
18387 	for (i = 0; i < len; i++) {
18388 		int adj_idx = i + delta;
18389 		struct bpf_insn insn;
18390 		int load_reg;
18391 
18392 		insn = insns[adj_idx];
18393 		load_reg = insn_def_regno(&insn);
18394 		if (!aux[adj_idx].zext_dst) {
18395 			u8 code, class;
18396 			u32 imm_rnd;
18397 
18398 			if (!rnd_hi32)
18399 				continue;
18400 
18401 			code = insn.code;
18402 			class = BPF_CLASS(code);
18403 			if (load_reg == -1)
18404 				continue;
18405 
18406 			/* NOTE: arg "reg" (the fourth one) is only used for
18407 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
18408 			 *       here.
18409 			 */
18410 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
18411 				if (class == BPF_LD &&
18412 				    BPF_MODE(code) == BPF_IMM)
18413 					i++;
18414 				continue;
18415 			}
18416 
18417 			/* ctx load could be transformed into wider load. */
18418 			if (class == BPF_LDX &&
18419 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
18420 				continue;
18421 
18422 			imm_rnd = get_random_u32();
18423 			rnd_hi32_patch[0] = insn;
18424 			rnd_hi32_patch[1].imm = imm_rnd;
18425 			rnd_hi32_patch[3].dst_reg = load_reg;
18426 			patch = rnd_hi32_patch;
18427 			patch_len = 4;
18428 			goto apply_patch_buffer;
18429 		}
18430 
18431 		/* Add in an zero-extend instruction if a) the JIT has requested
18432 		 * it or b) it's a CMPXCHG.
18433 		 *
18434 		 * The latter is because: BPF_CMPXCHG always loads a value into
18435 		 * R0, therefore always zero-extends. However some archs'
18436 		 * equivalent instruction only does this load when the
18437 		 * comparison is successful. This detail of CMPXCHG is
18438 		 * orthogonal to the general zero-extension behaviour of the
18439 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
18440 		 */
18441 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
18442 			continue;
18443 
18444 		/* Zero-extension is done by the caller. */
18445 		if (bpf_pseudo_kfunc_call(&insn))
18446 			continue;
18447 
18448 		if (WARN_ON(load_reg == -1)) {
18449 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
18450 			return -EFAULT;
18451 		}
18452 
18453 		zext_patch[0] = insn;
18454 		zext_patch[1].dst_reg = load_reg;
18455 		zext_patch[1].src_reg = load_reg;
18456 		patch = zext_patch;
18457 		patch_len = 2;
18458 apply_patch_buffer:
18459 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
18460 		if (!new_prog)
18461 			return -ENOMEM;
18462 		env->prog = new_prog;
18463 		insns = new_prog->insnsi;
18464 		aux = env->insn_aux_data;
18465 		delta += patch_len - 1;
18466 	}
18467 
18468 	return 0;
18469 }
18470 
18471 /* convert load instructions that access fields of a context type into a
18472  * sequence of instructions that access fields of the underlying structure:
18473  *     struct __sk_buff    -> struct sk_buff
18474  *     struct bpf_sock_ops -> struct sock
18475  */
18476 static int convert_ctx_accesses(struct bpf_verifier_env *env)
18477 {
18478 	const struct bpf_verifier_ops *ops = env->ops;
18479 	int i, cnt, size, ctx_field_size, delta = 0;
18480 	const int insn_cnt = env->prog->len;
18481 	struct bpf_insn insn_buf[16], *insn;
18482 	u32 target_size, size_default, off;
18483 	struct bpf_prog *new_prog;
18484 	enum bpf_access_type type;
18485 	bool is_narrower_load;
18486 
18487 	if (ops->gen_prologue || env->seen_direct_write) {
18488 		if (!ops->gen_prologue) {
18489 			verbose(env, "bpf verifier is misconfigured\n");
18490 			return -EINVAL;
18491 		}
18492 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
18493 					env->prog);
18494 		if (cnt >= ARRAY_SIZE(insn_buf)) {
18495 			verbose(env, "bpf verifier is misconfigured\n");
18496 			return -EINVAL;
18497 		} else if (cnt) {
18498 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
18499 			if (!new_prog)
18500 				return -ENOMEM;
18501 
18502 			env->prog = new_prog;
18503 			delta += cnt - 1;
18504 		}
18505 	}
18506 
18507 	if (bpf_prog_is_offloaded(env->prog->aux))
18508 		return 0;
18509 
18510 	insn = env->prog->insnsi + delta;
18511 
18512 	for (i = 0; i < insn_cnt; i++, insn++) {
18513 		bpf_convert_ctx_access_t convert_ctx_access;
18514 		u8 mode;
18515 
18516 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
18517 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
18518 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
18519 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
18520 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
18521 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
18522 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
18523 			type = BPF_READ;
18524 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
18525 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
18526 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
18527 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
18528 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
18529 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
18530 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
18531 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
18532 			type = BPF_WRITE;
18533 		} else {
18534 			continue;
18535 		}
18536 
18537 		if (type == BPF_WRITE &&
18538 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
18539 			struct bpf_insn patch[] = {
18540 				*insn,
18541 				BPF_ST_NOSPEC(),
18542 			};
18543 
18544 			cnt = ARRAY_SIZE(patch);
18545 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
18546 			if (!new_prog)
18547 				return -ENOMEM;
18548 
18549 			delta    += cnt - 1;
18550 			env->prog = new_prog;
18551 			insn      = new_prog->insnsi + i + delta;
18552 			continue;
18553 		}
18554 
18555 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
18556 		case PTR_TO_CTX:
18557 			if (!ops->convert_ctx_access)
18558 				continue;
18559 			convert_ctx_access = ops->convert_ctx_access;
18560 			break;
18561 		case PTR_TO_SOCKET:
18562 		case PTR_TO_SOCK_COMMON:
18563 			convert_ctx_access = bpf_sock_convert_ctx_access;
18564 			break;
18565 		case PTR_TO_TCP_SOCK:
18566 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
18567 			break;
18568 		case PTR_TO_XDP_SOCK:
18569 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
18570 			break;
18571 		case PTR_TO_BTF_ID:
18572 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
18573 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
18574 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
18575 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
18576 		 * any faults for loads into such types. BPF_WRITE is disallowed
18577 		 * for this case.
18578 		 */
18579 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
18580 			if (type == BPF_READ) {
18581 				if (BPF_MODE(insn->code) == BPF_MEM)
18582 					insn->code = BPF_LDX | BPF_PROBE_MEM |
18583 						     BPF_SIZE((insn)->code);
18584 				else
18585 					insn->code = BPF_LDX | BPF_PROBE_MEMSX |
18586 						     BPF_SIZE((insn)->code);
18587 				env->prog->aux->num_exentries++;
18588 			}
18589 			continue;
18590 		default:
18591 			continue;
18592 		}
18593 
18594 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
18595 		size = BPF_LDST_BYTES(insn);
18596 		mode = BPF_MODE(insn->code);
18597 
18598 		/* If the read access is a narrower load of the field,
18599 		 * convert to a 4/8-byte load, to minimum program type specific
18600 		 * convert_ctx_access changes. If conversion is successful,
18601 		 * we will apply proper mask to the result.
18602 		 */
18603 		is_narrower_load = size < ctx_field_size;
18604 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
18605 		off = insn->off;
18606 		if (is_narrower_load) {
18607 			u8 size_code;
18608 
18609 			if (type == BPF_WRITE) {
18610 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
18611 				return -EINVAL;
18612 			}
18613 
18614 			size_code = BPF_H;
18615 			if (ctx_field_size == 4)
18616 				size_code = BPF_W;
18617 			else if (ctx_field_size == 8)
18618 				size_code = BPF_DW;
18619 
18620 			insn->off = off & ~(size_default - 1);
18621 			insn->code = BPF_LDX | BPF_MEM | size_code;
18622 		}
18623 
18624 		target_size = 0;
18625 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
18626 					 &target_size);
18627 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
18628 		    (ctx_field_size && !target_size)) {
18629 			verbose(env, "bpf verifier is misconfigured\n");
18630 			return -EINVAL;
18631 		}
18632 
18633 		if (is_narrower_load && size < target_size) {
18634 			u8 shift = bpf_ctx_narrow_access_offset(
18635 				off, size, size_default) * 8;
18636 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
18637 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
18638 				return -EINVAL;
18639 			}
18640 			if (ctx_field_size <= 4) {
18641 				if (shift)
18642 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
18643 									insn->dst_reg,
18644 									shift);
18645 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18646 								(1 << size * 8) - 1);
18647 			} else {
18648 				if (shift)
18649 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
18650 									insn->dst_reg,
18651 									shift);
18652 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18653 								(1ULL << size * 8) - 1);
18654 			}
18655 		}
18656 		if (mode == BPF_MEMSX)
18657 			insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
18658 						       insn->dst_reg, insn->dst_reg,
18659 						       size * 8, 0);
18660 
18661 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18662 		if (!new_prog)
18663 			return -ENOMEM;
18664 
18665 		delta += cnt - 1;
18666 
18667 		/* keep walking new program and skip insns we just inserted */
18668 		env->prog = new_prog;
18669 		insn      = new_prog->insnsi + i + delta;
18670 	}
18671 
18672 	return 0;
18673 }
18674 
18675 static int jit_subprogs(struct bpf_verifier_env *env)
18676 {
18677 	struct bpf_prog *prog = env->prog, **func, *tmp;
18678 	int i, j, subprog_start, subprog_end = 0, len, subprog;
18679 	struct bpf_map *map_ptr;
18680 	struct bpf_insn *insn;
18681 	void *old_bpf_func;
18682 	int err, num_exentries;
18683 
18684 	if (env->subprog_cnt <= 1)
18685 		return 0;
18686 
18687 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18688 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
18689 			continue;
18690 
18691 		/* Upon error here we cannot fall back to interpreter but
18692 		 * need a hard reject of the program. Thus -EFAULT is
18693 		 * propagated in any case.
18694 		 */
18695 		subprog = find_subprog(env, i + insn->imm + 1);
18696 		if (subprog < 0) {
18697 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
18698 				  i + insn->imm + 1);
18699 			return -EFAULT;
18700 		}
18701 		/* temporarily remember subprog id inside insn instead of
18702 		 * aux_data, since next loop will split up all insns into funcs
18703 		 */
18704 		insn->off = subprog;
18705 		/* remember original imm in case JIT fails and fallback
18706 		 * to interpreter will be needed
18707 		 */
18708 		env->insn_aux_data[i].call_imm = insn->imm;
18709 		/* point imm to __bpf_call_base+1 from JITs point of view */
18710 		insn->imm = 1;
18711 		if (bpf_pseudo_func(insn))
18712 			/* jit (e.g. x86_64) may emit fewer instructions
18713 			 * if it learns a u32 imm is the same as a u64 imm.
18714 			 * Force a non zero here.
18715 			 */
18716 			insn[1].imm = 1;
18717 	}
18718 
18719 	err = bpf_prog_alloc_jited_linfo(prog);
18720 	if (err)
18721 		goto out_undo_insn;
18722 
18723 	err = -ENOMEM;
18724 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
18725 	if (!func)
18726 		goto out_undo_insn;
18727 
18728 	for (i = 0; i < env->subprog_cnt; i++) {
18729 		subprog_start = subprog_end;
18730 		subprog_end = env->subprog_info[i + 1].start;
18731 
18732 		len = subprog_end - subprog_start;
18733 		/* bpf_prog_run() doesn't call subprogs directly,
18734 		 * hence main prog stats include the runtime of subprogs.
18735 		 * subprogs don't have IDs and not reachable via prog_get_next_id
18736 		 * func[i]->stats will never be accessed and stays NULL
18737 		 */
18738 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
18739 		if (!func[i])
18740 			goto out_free;
18741 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
18742 		       len * sizeof(struct bpf_insn));
18743 		func[i]->type = prog->type;
18744 		func[i]->len = len;
18745 		if (bpf_prog_calc_tag(func[i]))
18746 			goto out_free;
18747 		func[i]->is_func = 1;
18748 		func[i]->aux->func_idx = i;
18749 		/* Below members will be freed only at prog->aux */
18750 		func[i]->aux->btf = prog->aux->btf;
18751 		func[i]->aux->func_info = prog->aux->func_info;
18752 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
18753 		func[i]->aux->poke_tab = prog->aux->poke_tab;
18754 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
18755 
18756 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
18757 			struct bpf_jit_poke_descriptor *poke;
18758 
18759 			poke = &prog->aux->poke_tab[j];
18760 			if (poke->insn_idx < subprog_end &&
18761 			    poke->insn_idx >= subprog_start)
18762 				poke->aux = func[i]->aux;
18763 		}
18764 
18765 		func[i]->aux->name[0] = 'F';
18766 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
18767 		func[i]->jit_requested = 1;
18768 		func[i]->blinding_requested = prog->blinding_requested;
18769 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
18770 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
18771 		func[i]->aux->linfo = prog->aux->linfo;
18772 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
18773 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
18774 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
18775 		num_exentries = 0;
18776 		insn = func[i]->insnsi;
18777 		for (j = 0; j < func[i]->len; j++, insn++) {
18778 			if (BPF_CLASS(insn->code) == BPF_LDX &&
18779 			    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
18780 			     BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
18781 				num_exentries++;
18782 		}
18783 		func[i]->aux->num_exentries = num_exentries;
18784 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
18785 		func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb;
18786 		if (!i)
18787 			func[i]->aux->exception_boundary = env->seen_exception;
18788 		func[i] = bpf_int_jit_compile(func[i]);
18789 		if (!func[i]->jited) {
18790 			err = -ENOTSUPP;
18791 			goto out_free;
18792 		}
18793 		cond_resched();
18794 	}
18795 
18796 	/* at this point all bpf functions were successfully JITed
18797 	 * now populate all bpf_calls with correct addresses and
18798 	 * run last pass of JIT
18799 	 */
18800 	for (i = 0; i < env->subprog_cnt; i++) {
18801 		insn = func[i]->insnsi;
18802 		for (j = 0; j < func[i]->len; j++, insn++) {
18803 			if (bpf_pseudo_func(insn)) {
18804 				subprog = insn->off;
18805 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
18806 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
18807 				continue;
18808 			}
18809 			if (!bpf_pseudo_call(insn))
18810 				continue;
18811 			subprog = insn->off;
18812 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
18813 		}
18814 
18815 		/* we use the aux data to keep a list of the start addresses
18816 		 * of the JITed images for each function in the program
18817 		 *
18818 		 * for some architectures, such as powerpc64, the imm field
18819 		 * might not be large enough to hold the offset of the start
18820 		 * address of the callee's JITed image from __bpf_call_base
18821 		 *
18822 		 * in such cases, we can lookup the start address of a callee
18823 		 * by using its subprog id, available from the off field of
18824 		 * the call instruction, as an index for this list
18825 		 */
18826 		func[i]->aux->func = func;
18827 		func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
18828 		func[i]->aux->real_func_cnt = env->subprog_cnt;
18829 	}
18830 	for (i = 0; i < env->subprog_cnt; i++) {
18831 		old_bpf_func = func[i]->bpf_func;
18832 		tmp = bpf_int_jit_compile(func[i]);
18833 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
18834 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
18835 			err = -ENOTSUPP;
18836 			goto out_free;
18837 		}
18838 		cond_resched();
18839 	}
18840 
18841 	/* finally lock prog and jit images for all functions and
18842 	 * populate kallsysm. Begin at the first subprogram, since
18843 	 * bpf_prog_load will add the kallsyms for the main program.
18844 	 */
18845 	for (i = 1; i < env->subprog_cnt; i++) {
18846 		bpf_prog_lock_ro(func[i]);
18847 		bpf_prog_kallsyms_add(func[i]);
18848 	}
18849 
18850 	/* Last step: make now unused interpreter insns from main
18851 	 * prog consistent for later dump requests, so they can
18852 	 * later look the same as if they were interpreted only.
18853 	 */
18854 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18855 		if (bpf_pseudo_func(insn)) {
18856 			insn[0].imm = env->insn_aux_data[i].call_imm;
18857 			insn[1].imm = insn->off;
18858 			insn->off = 0;
18859 			continue;
18860 		}
18861 		if (!bpf_pseudo_call(insn))
18862 			continue;
18863 		insn->off = env->insn_aux_data[i].call_imm;
18864 		subprog = find_subprog(env, i + insn->off + 1);
18865 		insn->imm = subprog;
18866 	}
18867 
18868 	prog->jited = 1;
18869 	prog->bpf_func = func[0]->bpf_func;
18870 	prog->jited_len = func[0]->jited_len;
18871 	prog->aux->extable = func[0]->aux->extable;
18872 	prog->aux->num_exentries = func[0]->aux->num_exentries;
18873 	prog->aux->func = func;
18874 	prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt;
18875 	prog->aux->real_func_cnt = env->subprog_cnt;
18876 	prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func;
18877 	prog->aux->exception_boundary = func[0]->aux->exception_boundary;
18878 	bpf_prog_jit_attempt_done(prog);
18879 	return 0;
18880 out_free:
18881 	/* We failed JIT'ing, so at this point we need to unregister poke
18882 	 * descriptors from subprogs, so that kernel is not attempting to
18883 	 * patch it anymore as we're freeing the subprog JIT memory.
18884 	 */
18885 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
18886 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
18887 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
18888 	}
18889 	/* At this point we're guaranteed that poke descriptors are not
18890 	 * live anymore. We can just unlink its descriptor table as it's
18891 	 * released with the main prog.
18892 	 */
18893 	for (i = 0; i < env->subprog_cnt; i++) {
18894 		if (!func[i])
18895 			continue;
18896 		func[i]->aux->poke_tab = NULL;
18897 		bpf_jit_free(func[i]);
18898 	}
18899 	kfree(func);
18900 out_undo_insn:
18901 	/* cleanup main prog to be interpreted */
18902 	prog->jit_requested = 0;
18903 	prog->blinding_requested = 0;
18904 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18905 		if (!bpf_pseudo_call(insn))
18906 			continue;
18907 		insn->off = 0;
18908 		insn->imm = env->insn_aux_data[i].call_imm;
18909 	}
18910 	bpf_prog_jit_attempt_done(prog);
18911 	return err;
18912 }
18913 
18914 static int fixup_call_args(struct bpf_verifier_env *env)
18915 {
18916 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18917 	struct bpf_prog *prog = env->prog;
18918 	struct bpf_insn *insn = prog->insnsi;
18919 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
18920 	int i, depth;
18921 #endif
18922 	int err = 0;
18923 
18924 	if (env->prog->jit_requested &&
18925 	    !bpf_prog_is_offloaded(env->prog->aux)) {
18926 		err = jit_subprogs(env);
18927 		if (err == 0)
18928 			return 0;
18929 		if (err == -EFAULT)
18930 			return err;
18931 	}
18932 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18933 	if (has_kfunc_call) {
18934 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
18935 		return -EINVAL;
18936 	}
18937 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
18938 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
18939 		 * have to be rejected, since interpreter doesn't support them yet.
18940 		 */
18941 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
18942 		return -EINVAL;
18943 	}
18944 	for (i = 0; i < prog->len; i++, insn++) {
18945 		if (bpf_pseudo_func(insn)) {
18946 			/* When JIT fails the progs with callback calls
18947 			 * have to be rejected, since interpreter doesn't support them yet.
18948 			 */
18949 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
18950 			return -EINVAL;
18951 		}
18952 
18953 		if (!bpf_pseudo_call(insn))
18954 			continue;
18955 		depth = get_callee_stack_depth(env, insn, i);
18956 		if (depth < 0)
18957 			return depth;
18958 		bpf_patch_call_args(insn, depth);
18959 	}
18960 	err = 0;
18961 #endif
18962 	return err;
18963 }
18964 
18965 /* replace a generic kfunc with a specialized version if necessary */
18966 static void specialize_kfunc(struct bpf_verifier_env *env,
18967 			     u32 func_id, u16 offset, unsigned long *addr)
18968 {
18969 	struct bpf_prog *prog = env->prog;
18970 	bool seen_direct_write;
18971 	void *xdp_kfunc;
18972 	bool is_rdonly;
18973 
18974 	if (bpf_dev_bound_kfunc_id(func_id)) {
18975 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
18976 		if (xdp_kfunc) {
18977 			*addr = (unsigned long)xdp_kfunc;
18978 			return;
18979 		}
18980 		/* fallback to default kfunc when not supported by netdev */
18981 	}
18982 
18983 	if (offset)
18984 		return;
18985 
18986 	if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
18987 		seen_direct_write = env->seen_direct_write;
18988 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
18989 
18990 		if (is_rdonly)
18991 			*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
18992 
18993 		/* restore env->seen_direct_write to its original value, since
18994 		 * may_access_direct_pkt_data mutates it
18995 		 */
18996 		env->seen_direct_write = seen_direct_write;
18997 	}
18998 }
18999 
19000 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
19001 					    u16 struct_meta_reg,
19002 					    u16 node_offset_reg,
19003 					    struct bpf_insn *insn,
19004 					    struct bpf_insn *insn_buf,
19005 					    int *cnt)
19006 {
19007 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
19008 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
19009 
19010 	insn_buf[0] = addr[0];
19011 	insn_buf[1] = addr[1];
19012 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
19013 	insn_buf[3] = *insn;
19014 	*cnt = 4;
19015 }
19016 
19017 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
19018 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
19019 {
19020 	const struct bpf_kfunc_desc *desc;
19021 
19022 	if (!insn->imm) {
19023 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
19024 		return -EINVAL;
19025 	}
19026 
19027 	*cnt = 0;
19028 
19029 	/* insn->imm has the btf func_id. Replace it with an offset relative to
19030 	 * __bpf_call_base, unless the JIT needs to call functions that are
19031 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
19032 	 */
19033 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
19034 	if (!desc) {
19035 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
19036 			insn->imm);
19037 		return -EFAULT;
19038 	}
19039 
19040 	if (!bpf_jit_supports_far_kfunc_call())
19041 		insn->imm = BPF_CALL_IMM(desc->addr);
19042 	if (insn->off)
19043 		return 0;
19044 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
19045 	    desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
19046 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19047 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
19048 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
19049 
19050 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) {
19051 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
19052 				insn_idx);
19053 			return -EFAULT;
19054 		}
19055 
19056 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
19057 		insn_buf[1] = addr[0];
19058 		insn_buf[2] = addr[1];
19059 		insn_buf[3] = *insn;
19060 		*cnt = 4;
19061 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
19062 		   desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] ||
19063 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
19064 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19065 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
19066 
19067 		if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) {
19068 			verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
19069 				insn_idx);
19070 			return -EFAULT;
19071 		}
19072 
19073 		if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
19074 		    !kptr_struct_meta) {
19075 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
19076 				insn_idx);
19077 			return -EFAULT;
19078 		}
19079 
19080 		insn_buf[0] = addr[0];
19081 		insn_buf[1] = addr[1];
19082 		insn_buf[2] = *insn;
19083 		*cnt = 3;
19084 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
19085 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
19086 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
19087 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
19088 		int struct_meta_reg = BPF_REG_3;
19089 		int node_offset_reg = BPF_REG_4;
19090 
19091 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
19092 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
19093 			struct_meta_reg = BPF_REG_4;
19094 			node_offset_reg = BPF_REG_5;
19095 		}
19096 
19097 		if (!kptr_struct_meta) {
19098 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
19099 				insn_idx);
19100 			return -EFAULT;
19101 		}
19102 
19103 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
19104 						node_offset_reg, insn, insn_buf, cnt);
19105 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
19106 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
19107 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
19108 		*cnt = 1;
19109 	}
19110 	return 0;
19111 }
19112 
19113 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */
19114 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len)
19115 {
19116 	struct bpf_subprog_info *info = env->subprog_info;
19117 	int cnt = env->subprog_cnt;
19118 	struct bpf_prog *prog;
19119 
19120 	/* We only reserve one slot for hidden subprogs in subprog_info. */
19121 	if (env->hidden_subprog_cnt) {
19122 		verbose(env, "verifier internal error: only one hidden subprog supported\n");
19123 		return -EFAULT;
19124 	}
19125 	/* We're not patching any existing instruction, just appending the new
19126 	 * ones for the hidden subprog. Hence all of the adjustment operations
19127 	 * in bpf_patch_insn_data are no-ops.
19128 	 */
19129 	prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len);
19130 	if (!prog)
19131 		return -ENOMEM;
19132 	env->prog = prog;
19133 	info[cnt + 1].start = info[cnt].start;
19134 	info[cnt].start = prog->len - len + 1;
19135 	env->subprog_cnt++;
19136 	env->hidden_subprog_cnt++;
19137 	return 0;
19138 }
19139 
19140 /* Do various post-verification rewrites in a single program pass.
19141  * These rewrites simplify JIT and interpreter implementations.
19142  */
19143 static int do_misc_fixups(struct bpf_verifier_env *env)
19144 {
19145 	struct bpf_prog *prog = env->prog;
19146 	enum bpf_attach_type eatype = prog->expected_attach_type;
19147 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
19148 	struct bpf_insn *insn = prog->insnsi;
19149 	const struct bpf_func_proto *fn;
19150 	const int insn_cnt = prog->len;
19151 	const struct bpf_map_ops *ops;
19152 	struct bpf_insn_aux_data *aux;
19153 	struct bpf_insn insn_buf[16];
19154 	struct bpf_prog *new_prog;
19155 	struct bpf_map *map_ptr;
19156 	int i, ret, cnt, delta = 0;
19157 
19158 	if (env->seen_exception && !env->exception_callback_subprog) {
19159 		struct bpf_insn patch[] = {
19160 			env->prog->insnsi[insn_cnt - 1],
19161 			BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
19162 			BPF_EXIT_INSN(),
19163 		};
19164 
19165 		ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch));
19166 		if (ret < 0)
19167 			return ret;
19168 		prog = env->prog;
19169 		insn = prog->insnsi;
19170 
19171 		env->exception_callback_subprog = env->subprog_cnt - 1;
19172 		/* Don't update insn_cnt, as add_hidden_subprog always appends insns */
19173 		mark_subprog_exc_cb(env, env->exception_callback_subprog);
19174 	}
19175 
19176 	for (i = 0; i < insn_cnt; i++, insn++) {
19177 		/* Make divide-by-zero exceptions impossible. */
19178 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
19179 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
19180 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
19181 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
19182 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
19183 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
19184 			struct bpf_insn *patchlet;
19185 			struct bpf_insn chk_and_div[] = {
19186 				/* [R,W]x div 0 -> 0 */
19187 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
19188 					     BPF_JNE | BPF_K, insn->src_reg,
19189 					     0, 2, 0),
19190 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
19191 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
19192 				*insn,
19193 			};
19194 			struct bpf_insn chk_and_mod[] = {
19195 				/* [R,W]x mod 0 -> [R,W]x */
19196 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
19197 					     BPF_JEQ | BPF_K, insn->src_reg,
19198 					     0, 1 + (is64 ? 0 : 1), 0),
19199 				*insn,
19200 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
19201 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
19202 			};
19203 
19204 			patchlet = isdiv ? chk_and_div : chk_and_mod;
19205 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
19206 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
19207 
19208 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
19209 			if (!new_prog)
19210 				return -ENOMEM;
19211 
19212 			delta    += cnt - 1;
19213 			env->prog = prog = new_prog;
19214 			insn      = new_prog->insnsi + i + delta;
19215 			continue;
19216 		}
19217 
19218 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
19219 		if (BPF_CLASS(insn->code) == BPF_LD &&
19220 		    (BPF_MODE(insn->code) == BPF_ABS ||
19221 		     BPF_MODE(insn->code) == BPF_IND)) {
19222 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
19223 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19224 				verbose(env, "bpf verifier is misconfigured\n");
19225 				return -EINVAL;
19226 			}
19227 
19228 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19229 			if (!new_prog)
19230 				return -ENOMEM;
19231 
19232 			delta    += cnt - 1;
19233 			env->prog = prog = new_prog;
19234 			insn      = new_prog->insnsi + i + delta;
19235 			continue;
19236 		}
19237 
19238 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
19239 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
19240 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
19241 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
19242 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
19243 			struct bpf_insn *patch = &insn_buf[0];
19244 			bool issrc, isneg, isimm;
19245 			u32 off_reg;
19246 
19247 			aux = &env->insn_aux_data[i + delta];
19248 			if (!aux->alu_state ||
19249 			    aux->alu_state == BPF_ALU_NON_POINTER)
19250 				continue;
19251 
19252 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
19253 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
19254 				BPF_ALU_SANITIZE_SRC;
19255 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
19256 
19257 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
19258 			if (isimm) {
19259 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
19260 			} else {
19261 				if (isneg)
19262 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19263 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
19264 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
19265 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
19266 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
19267 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
19268 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
19269 			}
19270 			if (!issrc)
19271 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
19272 			insn->src_reg = BPF_REG_AX;
19273 			if (isneg)
19274 				insn->code = insn->code == code_add ?
19275 					     code_sub : code_add;
19276 			*patch++ = *insn;
19277 			if (issrc && isneg && !isimm)
19278 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19279 			cnt = patch - insn_buf;
19280 
19281 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19282 			if (!new_prog)
19283 				return -ENOMEM;
19284 
19285 			delta    += cnt - 1;
19286 			env->prog = prog = new_prog;
19287 			insn      = new_prog->insnsi + i + delta;
19288 			continue;
19289 		}
19290 
19291 		if (insn->code != (BPF_JMP | BPF_CALL))
19292 			continue;
19293 		if (insn->src_reg == BPF_PSEUDO_CALL)
19294 			continue;
19295 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
19296 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
19297 			if (ret)
19298 				return ret;
19299 			if (cnt == 0)
19300 				continue;
19301 
19302 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19303 			if (!new_prog)
19304 				return -ENOMEM;
19305 
19306 			delta	 += cnt - 1;
19307 			env->prog = prog = new_prog;
19308 			insn	  = new_prog->insnsi + i + delta;
19309 			continue;
19310 		}
19311 
19312 		if (insn->imm == BPF_FUNC_get_route_realm)
19313 			prog->dst_needed = 1;
19314 		if (insn->imm == BPF_FUNC_get_prandom_u32)
19315 			bpf_user_rnd_init_once();
19316 		if (insn->imm == BPF_FUNC_override_return)
19317 			prog->kprobe_override = 1;
19318 		if (insn->imm == BPF_FUNC_tail_call) {
19319 			/* If we tail call into other programs, we
19320 			 * cannot make any assumptions since they can
19321 			 * be replaced dynamically during runtime in
19322 			 * the program array.
19323 			 */
19324 			prog->cb_access = 1;
19325 			if (!allow_tail_call_in_subprogs(env))
19326 				prog->aux->stack_depth = MAX_BPF_STACK;
19327 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
19328 
19329 			/* mark bpf_tail_call as different opcode to avoid
19330 			 * conditional branch in the interpreter for every normal
19331 			 * call and to prevent accidental JITing by JIT compiler
19332 			 * that doesn't support bpf_tail_call yet
19333 			 */
19334 			insn->imm = 0;
19335 			insn->code = BPF_JMP | BPF_TAIL_CALL;
19336 
19337 			aux = &env->insn_aux_data[i + delta];
19338 			if (env->bpf_capable && !prog->blinding_requested &&
19339 			    prog->jit_requested &&
19340 			    !bpf_map_key_poisoned(aux) &&
19341 			    !bpf_map_ptr_poisoned(aux) &&
19342 			    !bpf_map_ptr_unpriv(aux)) {
19343 				struct bpf_jit_poke_descriptor desc = {
19344 					.reason = BPF_POKE_REASON_TAIL_CALL,
19345 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
19346 					.tail_call.key = bpf_map_key_immediate(aux),
19347 					.insn_idx = i + delta,
19348 				};
19349 
19350 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
19351 				if (ret < 0) {
19352 					verbose(env, "adding tail call poke descriptor failed\n");
19353 					return ret;
19354 				}
19355 
19356 				insn->imm = ret + 1;
19357 				continue;
19358 			}
19359 
19360 			if (!bpf_map_ptr_unpriv(aux))
19361 				continue;
19362 
19363 			/* instead of changing every JIT dealing with tail_call
19364 			 * emit two extra insns:
19365 			 * if (index >= max_entries) goto out;
19366 			 * index &= array->index_mask;
19367 			 * to avoid out-of-bounds cpu speculation
19368 			 */
19369 			if (bpf_map_ptr_poisoned(aux)) {
19370 				verbose(env, "tail_call abusing map_ptr\n");
19371 				return -EINVAL;
19372 			}
19373 
19374 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19375 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
19376 						  map_ptr->max_entries, 2);
19377 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
19378 						    container_of(map_ptr,
19379 								 struct bpf_array,
19380 								 map)->index_mask);
19381 			insn_buf[2] = *insn;
19382 			cnt = 3;
19383 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19384 			if (!new_prog)
19385 				return -ENOMEM;
19386 
19387 			delta    += cnt - 1;
19388 			env->prog = prog = new_prog;
19389 			insn      = new_prog->insnsi + i + delta;
19390 			continue;
19391 		}
19392 
19393 		if (insn->imm == BPF_FUNC_timer_set_callback) {
19394 			/* The verifier will process callback_fn as many times as necessary
19395 			 * with different maps and the register states prepared by
19396 			 * set_timer_callback_state will be accurate.
19397 			 *
19398 			 * The following use case is valid:
19399 			 *   map1 is shared by prog1, prog2, prog3.
19400 			 *   prog1 calls bpf_timer_init for some map1 elements
19401 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
19402 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
19403 			 *   prog3 calls bpf_timer_start for some map1 elements.
19404 			 *     Those that were not both bpf_timer_init-ed and
19405 			 *     bpf_timer_set_callback-ed will return -EINVAL.
19406 			 */
19407 			struct bpf_insn ld_addrs[2] = {
19408 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
19409 			};
19410 
19411 			insn_buf[0] = ld_addrs[0];
19412 			insn_buf[1] = ld_addrs[1];
19413 			insn_buf[2] = *insn;
19414 			cnt = 3;
19415 
19416 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19417 			if (!new_prog)
19418 				return -ENOMEM;
19419 
19420 			delta    += cnt - 1;
19421 			env->prog = prog = new_prog;
19422 			insn      = new_prog->insnsi + i + delta;
19423 			goto patch_call_imm;
19424 		}
19425 
19426 		if (is_storage_get_function(insn->imm)) {
19427 			if (!env->prog->aux->sleepable ||
19428 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
19429 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
19430 			else
19431 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
19432 			insn_buf[1] = *insn;
19433 			cnt = 2;
19434 
19435 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19436 			if (!new_prog)
19437 				return -ENOMEM;
19438 
19439 			delta += cnt - 1;
19440 			env->prog = prog = new_prog;
19441 			insn = new_prog->insnsi + i + delta;
19442 			goto patch_call_imm;
19443 		}
19444 
19445 		/* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */
19446 		if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) {
19447 			/* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data,
19448 			 * bpf_mem_alloc() returns a ptr to the percpu data ptr.
19449 			 */
19450 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0);
19451 			insn_buf[1] = *insn;
19452 			cnt = 2;
19453 
19454 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19455 			if (!new_prog)
19456 				return -ENOMEM;
19457 
19458 			delta += cnt - 1;
19459 			env->prog = prog = new_prog;
19460 			insn = new_prog->insnsi + i + delta;
19461 			goto patch_call_imm;
19462 		}
19463 
19464 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
19465 		 * and other inlining handlers are currently limited to 64 bit
19466 		 * only.
19467 		 */
19468 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
19469 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
19470 		     insn->imm == BPF_FUNC_map_update_elem ||
19471 		     insn->imm == BPF_FUNC_map_delete_elem ||
19472 		     insn->imm == BPF_FUNC_map_push_elem   ||
19473 		     insn->imm == BPF_FUNC_map_pop_elem    ||
19474 		     insn->imm == BPF_FUNC_map_peek_elem   ||
19475 		     insn->imm == BPF_FUNC_redirect_map    ||
19476 		     insn->imm == BPF_FUNC_for_each_map_elem ||
19477 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
19478 			aux = &env->insn_aux_data[i + delta];
19479 			if (bpf_map_ptr_poisoned(aux))
19480 				goto patch_call_imm;
19481 
19482 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19483 			ops = map_ptr->ops;
19484 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
19485 			    ops->map_gen_lookup) {
19486 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
19487 				if (cnt == -EOPNOTSUPP)
19488 					goto patch_map_ops_generic;
19489 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19490 					verbose(env, "bpf verifier is misconfigured\n");
19491 					return -EINVAL;
19492 				}
19493 
19494 				new_prog = bpf_patch_insn_data(env, i + delta,
19495 							       insn_buf, cnt);
19496 				if (!new_prog)
19497 					return -ENOMEM;
19498 
19499 				delta    += cnt - 1;
19500 				env->prog = prog = new_prog;
19501 				insn      = new_prog->insnsi + i + delta;
19502 				continue;
19503 			}
19504 
19505 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
19506 				     (void *(*)(struct bpf_map *map, void *key))NULL));
19507 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
19508 				     (long (*)(struct bpf_map *map, void *key))NULL));
19509 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
19510 				     (long (*)(struct bpf_map *map, void *key, void *value,
19511 					      u64 flags))NULL));
19512 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
19513 				     (long (*)(struct bpf_map *map, void *value,
19514 					      u64 flags))NULL));
19515 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
19516 				     (long (*)(struct bpf_map *map, void *value))NULL));
19517 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
19518 				     (long (*)(struct bpf_map *map, void *value))NULL));
19519 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
19520 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
19521 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
19522 				     (long (*)(struct bpf_map *map,
19523 					      bpf_callback_t callback_fn,
19524 					      void *callback_ctx,
19525 					      u64 flags))NULL));
19526 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
19527 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
19528 
19529 patch_map_ops_generic:
19530 			switch (insn->imm) {
19531 			case BPF_FUNC_map_lookup_elem:
19532 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
19533 				continue;
19534 			case BPF_FUNC_map_update_elem:
19535 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
19536 				continue;
19537 			case BPF_FUNC_map_delete_elem:
19538 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
19539 				continue;
19540 			case BPF_FUNC_map_push_elem:
19541 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
19542 				continue;
19543 			case BPF_FUNC_map_pop_elem:
19544 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
19545 				continue;
19546 			case BPF_FUNC_map_peek_elem:
19547 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
19548 				continue;
19549 			case BPF_FUNC_redirect_map:
19550 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
19551 				continue;
19552 			case BPF_FUNC_for_each_map_elem:
19553 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
19554 				continue;
19555 			case BPF_FUNC_map_lookup_percpu_elem:
19556 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
19557 				continue;
19558 			}
19559 
19560 			goto patch_call_imm;
19561 		}
19562 
19563 		/* Implement bpf_jiffies64 inline. */
19564 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
19565 		    insn->imm == BPF_FUNC_jiffies64) {
19566 			struct bpf_insn ld_jiffies_addr[2] = {
19567 				BPF_LD_IMM64(BPF_REG_0,
19568 					     (unsigned long)&jiffies),
19569 			};
19570 
19571 			insn_buf[0] = ld_jiffies_addr[0];
19572 			insn_buf[1] = ld_jiffies_addr[1];
19573 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
19574 						  BPF_REG_0, 0);
19575 			cnt = 3;
19576 
19577 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
19578 						       cnt);
19579 			if (!new_prog)
19580 				return -ENOMEM;
19581 
19582 			delta    += cnt - 1;
19583 			env->prog = prog = new_prog;
19584 			insn      = new_prog->insnsi + i + delta;
19585 			continue;
19586 		}
19587 
19588 		/* Implement bpf_get_func_arg inline. */
19589 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19590 		    insn->imm == BPF_FUNC_get_func_arg) {
19591 			/* Load nr_args from ctx - 8 */
19592 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19593 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
19594 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
19595 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
19596 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
19597 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19598 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
19599 			insn_buf[7] = BPF_JMP_A(1);
19600 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
19601 			cnt = 9;
19602 
19603 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19604 			if (!new_prog)
19605 				return -ENOMEM;
19606 
19607 			delta    += cnt - 1;
19608 			env->prog = prog = new_prog;
19609 			insn      = new_prog->insnsi + i + delta;
19610 			continue;
19611 		}
19612 
19613 		/* Implement bpf_get_func_ret inline. */
19614 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19615 		    insn->imm == BPF_FUNC_get_func_ret) {
19616 			if (eatype == BPF_TRACE_FEXIT ||
19617 			    eatype == BPF_MODIFY_RETURN) {
19618 				/* Load nr_args from ctx - 8 */
19619 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19620 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
19621 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
19622 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19623 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
19624 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
19625 				cnt = 6;
19626 			} else {
19627 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
19628 				cnt = 1;
19629 			}
19630 
19631 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19632 			if (!new_prog)
19633 				return -ENOMEM;
19634 
19635 			delta    += cnt - 1;
19636 			env->prog = prog = new_prog;
19637 			insn      = new_prog->insnsi + i + delta;
19638 			continue;
19639 		}
19640 
19641 		/* Implement get_func_arg_cnt inline. */
19642 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19643 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
19644 			/* Load nr_args from ctx - 8 */
19645 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19646 
19647 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19648 			if (!new_prog)
19649 				return -ENOMEM;
19650 
19651 			env->prog = prog = new_prog;
19652 			insn      = new_prog->insnsi + i + delta;
19653 			continue;
19654 		}
19655 
19656 		/* Implement bpf_get_func_ip inline. */
19657 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19658 		    insn->imm == BPF_FUNC_get_func_ip) {
19659 			/* Load IP address from ctx - 16 */
19660 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
19661 
19662 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19663 			if (!new_prog)
19664 				return -ENOMEM;
19665 
19666 			env->prog = prog = new_prog;
19667 			insn      = new_prog->insnsi + i + delta;
19668 			continue;
19669 		}
19670 
19671 patch_call_imm:
19672 		fn = env->ops->get_func_proto(insn->imm, env->prog);
19673 		/* all functions that have prototype and verifier allowed
19674 		 * programs to call them, must be real in-kernel functions
19675 		 */
19676 		if (!fn->func) {
19677 			verbose(env,
19678 				"kernel subsystem misconfigured func %s#%d\n",
19679 				func_id_name(insn->imm), insn->imm);
19680 			return -EFAULT;
19681 		}
19682 		insn->imm = fn->func - __bpf_call_base;
19683 	}
19684 
19685 	/* Since poke tab is now finalized, publish aux to tracker. */
19686 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
19687 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
19688 		if (!map_ptr->ops->map_poke_track ||
19689 		    !map_ptr->ops->map_poke_untrack ||
19690 		    !map_ptr->ops->map_poke_run) {
19691 			verbose(env, "bpf verifier is misconfigured\n");
19692 			return -EINVAL;
19693 		}
19694 
19695 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
19696 		if (ret < 0) {
19697 			verbose(env, "tracking tail call prog failed\n");
19698 			return ret;
19699 		}
19700 	}
19701 
19702 	sort_kfunc_descs_by_imm_off(env->prog);
19703 
19704 	return 0;
19705 }
19706 
19707 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
19708 					int position,
19709 					s32 stack_base,
19710 					u32 callback_subprogno,
19711 					u32 *cnt)
19712 {
19713 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
19714 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
19715 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
19716 	int reg_loop_max = BPF_REG_6;
19717 	int reg_loop_cnt = BPF_REG_7;
19718 	int reg_loop_ctx = BPF_REG_8;
19719 
19720 	struct bpf_prog *new_prog;
19721 	u32 callback_start;
19722 	u32 call_insn_offset;
19723 	s32 callback_offset;
19724 
19725 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
19726 	 * be careful to modify this code in sync.
19727 	 */
19728 	struct bpf_insn insn_buf[] = {
19729 		/* Return error and jump to the end of the patch if
19730 		 * expected number of iterations is too big.
19731 		 */
19732 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
19733 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
19734 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
19735 		/* spill R6, R7, R8 to use these as loop vars */
19736 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
19737 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
19738 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
19739 		/* initialize loop vars */
19740 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
19741 		BPF_MOV32_IMM(reg_loop_cnt, 0),
19742 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
19743 		/* loop header,
19744 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
19745 		 */
19746 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
19747 		/* callback call,
19748 		 * correct callback offset would be set after patching
19749 		 */
19750 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
19751 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
19752 		BPF_CALL_REL(0),
19753 		/* increment loop counter */
19754 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
19755 		/* jump to loop header if callback returned 0 */
19756 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
19757 		/* return value of bpf_loop,
19758 		 * set R0 to the number of iterations
19759 		 */
19760 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
19761 		/* restore original values of R6, R7, R8 */
19762 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
19763 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
19764 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
19765 	};
19766 
19767 	*cnt = ARRAY_SIZE(insn_buf);
19768 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
19769 	if (!new_prog)
19770 		return new_prog;
19771 
19772 	/* callback start is known only after patching */
19773 	callback_start = env->subprog_info[callback_subprogno].start;
19774 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
19775 	call_insn_offset = position + 12;
19776 	callback_offset = callback_start - call_insn_offset - 1;
19777 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
19778 
19779 	return new_prog;
19780 }
19781 
19782 static bool is_bpf_loop_call(struct bpf_insn *insn)
19783 {
19784 	return insn->code == (BPF_JMP | BPF_CALL) &&
19785 		insn->src_reg == 0 &&
19786 		insn->imm == BPF_FUNC_loop;
19787 }
19788 
19789 /* For all sub-programs in the program (including main) check
19790  * insn_aux_data to see if there are bpf_loop calls that require
19791  * inlining. If such calls are found the calls are replaced with a
19792  * sequence of instructions produced by `inline_bpf_loop` function and
19793  * subprog stack_depth is increased by the size of 3 registers.
19794  * This stack space is used to spill values of the R6, R7, R8.  These
19795  * registers are used to store the loop bound, counter and context
19796  * variables.
19797  */
19798 static int optimize_bpf_loop(struct bpf_verifier_env *env)
19799 {
19800 	struct bpf_subprog_info *subprogs = env->subprog_info;
19801 	int i, cur_subprog = 0, cnt, delta = 0;
19802 	struct bpf_insn *insn = env->prog->insnsi;
19803 	int insn_cnt = env->prog->len;
19804 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
19805 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19806 	u16 stack_depth_extra = 0;
19807 
19808 	for (i = 0; i < insn_cnt; i++, insn++) {
19809 		struct bpf_loop_inline_state *inline_state =
19810 			&env->insn_aux_data[i + delta].loop_inline_state;
19811 
19812 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
19813 			struct bpf_prog *new_prog;
19814 
19815 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
19816 			new_prog = inline_bpf_loop(env,
19817 						   i + delta,
19818 						   -(stack_depth + stack_depth_extra),
19819 						   inline_state->callback_subprogno,
19820 						   &cnt);
19821 			if (!new_prog)
19822 				return -ENOMEM;
19823 
19824 			delta     += cnt - 1;
19825 			env->prog  = new_prog;
19826 			insn       = new_prog->insnsi + i + delta;
19827 		}
19828 
19829 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
19830 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
19831 			cur_subprog++;
19832 			stack_depth = subprogs[cur_subprog].stack_depth;
19833 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19834 			stack_depth_extra = 0;
19835 		}
19836 	}
19837 
19838 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19839 
19840 	return 0;
19841 }
19842 
19843 static void free_states(struct bpf_verifier_env *env)
19844 {
19845 	struct bpf_verifier_state_list *sl, *sln;
19846 	int i;
19847 
19848 	sl = env->free_list;
19849 	while (sl) {
19850 		sln = sl->next;
19851 		free_verifier_state(&sl->state, false);
19852 		kfree(sl);
19853 		sl = sln;
19854 	}
19855 	env->free_list = NULL;
19856 
19857 	if (!env->explored_states)
19858 		return;
19859 
19860 	for (i = 0; i < state_htab_size(env); i++) {
19861 		sl = env->explored_states[i];
19862 
19863 		while (sl) {
19864 			sln = sl->next;
19865 			free_verifier_state(&sl->state, false);
19866 			kfree(sl);
19867 			sl = sln;
19868 		}
19869 		env->explored_states[i] = NULL;
19870 	}
19871 }
19872 
19873 static int do_check_common(struct bpf_verifier_env *env, int subprog)
19874 {
19875 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
19876 	struct bpf_verifier_state *state;
19877 	struct bpf_reg_state *regs;
19878 	int ret, i;
19879 
19880 	env->prev_linfo = NULL;
19881 	env->pass_cnt++;
19882 
19883 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
19884 	if (!state)
19885 		return -ENOMEM;
19886 	state->curframe = 0;
19887 	state->speculative = false;
19888 	state->branches = 1;
19889 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
19890 	if (!state->frame[0]) {
19891 		kfree(state);
19892 		return -ENOMEM;
19893 	}
19894 	env->cur_state = state;
19895 	init_func_state(env, state->frame[0],
19896 			BPF_MAIN_FUNC /* callsite */,
19897 			0 /* frameno */,
19898 			subprog);
19899 	state->first_insn_idx = env->subprog_info[subprog].start;
19900 	state->last_insn_idx = -1;
19901 
19902 	regs = state->frame[state->curframe]->regs;
19903 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
19904 		u32 nargs;
19905 
19906 		ret = btf_prepare_func_args(env, subprog, regs, &nargs);
19907 		if (ret)
19908 			goto out;
19909 		if (subprog_is_exc_cb(env, subprog)) {
19910 			state->frame[0]->in_exception_callback_fn = true;
19911 			/* We have already ensured that the callback returns an integer, just
19912 			 * like all global subprogs. We need to determine it only has a single
19913 			 * scalar argument.
19914 			 */
19915 			if (nargs != 1 || regs[BPF_REG_1].type != SCALAR_VALUE) {
19916 				verbose(env, "exception cb only supports single integer argument\n");
19917 				ret = -EINVAL;
19918 				goto out;
19919 			}
19920 		}
19921 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
19922 			if (regs[i].type == PTR_TO_CTX)
19923 				mark_reg_known_zero(env, regs, i);
19924 			else if (regs[i].type == SCALAR_VALUE)
19925 				mark_reg_unknown(env, regs, i);
19926 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
19927 				const u32 mem_size = regs[i].mem_size;
19928 
19929 				mark_reg_known_zero(env, regs, i);
19930 				regs[i].mem_size = mem_size;
19931 				regs[i].id = ++env->id_gen;
19932 			}
19933 		}
19934 	} else {
19935 		/* 1st arg to a function */
19936 		regs[BPF_REG_1].type = PTR_TO_CTX;
19937 		mark_reg_known_zero(env, regs, BPF_REG_1);
19938 		ret = btf_check_subprog_arg_match(env, subprog, regs);
19939 		if (ret == -EFAULT)
19940 			/* unlikely verifier bug. abort.
19941 			 * ret == 0 and ret < 0 are sadly acceptable for
19942 			 * main() function due to backward compatibility.
19943 			 * Like socket filter program may be written as:
19944 			 * int bpf_prog(struct pt_regs *ctx)
19945 			 * and never dereference that ctx in the program.
19946 			 * 'struct pt_regs' is a type mismatch for socket
19947 			 * filter that should be using 'struct __sk_buff'.
19948 			 */
19949 			goto out;
19950 	}
19951 
19952 	ret = do_check(env);
19953 out:
19954 	/* check for NULL is necessary, since cur_state can be freed inside
19955 	 * do_check() under memory pressure.
19956 	 */
19957 	if (env->cur_state) {
19958 		free_verifier_state(env->cur_state, true);
19959 		env->cur_state = NULL;
19960 	}
19961 	while (!pop_stack(env, NULL, NULL, false));
19962 	if (!ret && pop_log)
19963 		bpf_vlog_reset(&env->log, 0);
19964 	free_states(env);
19965 	return ret;
19966 }
19967 
19968 /* Lazily verify all global functions based on their BTF, if they are called
19969  * from main BPF program or any of subprograms transitively.
19970  * BPF global subprogs called from dead code are not validated.
19971  * All callable global functions must pass verification.
19972  * Otherwise the whole program is rejected.
19973  * Consider:
19974  * int bar(int);
19975  * int foo(int f)
19976  * {
19977  *    return bar(f);
19978  * }
19979  * int bar(int b)
19980  * {
19981  *    ...
19982  * }
19983  * foo() will be verified first for R1=any_scalar_value. During verification it
19984  * will be assumed that bar() already verified successfully and call to bar()
19985  * from foo() will be checked for type match only. Later bar() will be verified
19986  * independently to check that it's safe for R1=any_scalar_value.
19987  */
19988 static int do_check_subprogs(struct bpf_verifier_env *env)
19989 {
19990 	struct bpf_prog_aux *aux = env->prog->aux;
19991 	struct bpf_func_info_aux *sub_aux;
19992 	int i, ret, new_cnt;
19993 
19994 	if (!aux->func_info)
19995 		return 0;
19996 
19997 	/* exception callback is presumed to be always called */
19998 	if (env->exception_callback_subprog)
19999 		subprog_aux(env, env->exception_callback_subprog)->called = true;
20000 
20001 again:
20002 	new_cnt = 0;
20003 	for (i = 1; i < env->subprog_cnt; i++) {
20004 		if (!subprog_is_global(env, i))
20005 			continue;
20006 
20007 		sub_aux = subprog_aux(env, i);
20008 		if (!sub_aux->called || sub_aux->verified)
20009 			continue;
20010 
20011 		env->insn_idx = env->subprog_info[i].start;
20012 		WARN_ON_ONCE(env->insn_idx == 0);
20013 		ret = do_check_common(env, i);
20014 		if (ret) {
20015 			return ret;
20016 		} else if (env->log.level & BPF_LOG_LEVEL) {
20017 			verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n",
20018 				i, subprog_name(env, i));
20019 		}
20020 
20021 		/* We verified new global subprog, it might have called some
20022 		 * more global subprogs that we haven't verified yet, so we
20023 		 * need to do another pass over subprogs to verify those.
20024 		 */
20025 		sub_aux->verified = true;
20026 		new_cnt++;
20027 	}
20028 
20029 	/* We can't loop forever as we verify at least one global subprog on
20030 	 * each pass.
20031 	 */
20032 	if (new_cnt)
20033 		goto again;
20034 
20035 	return 0;
20036 }
20037 
20038 static int do_check_main(struct bpf_verifier_env *env)
20039 {
20040 	int ret;
20041 
20042 	env->insn_idx = 0;
20043 	ret = do_check_common(env, 0);
20044 	if (!ret)
20045 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
20046 	return ret;
20047 }
20048 
20049 
20050 static void print_verification_stats(struct bpf_verifier_env *env)
20051 {
20052 	int i;
20053 
20054 	if (env->log.level & BPF_LOG_STATS) {
20055 		verbose(env, "verification time %lld usec\n",
20056 			div_u64(env->verification_time, 1000));
20057 		verbose(env, "stack depth ");
20058 		for (i = 0; i < env->subprog_cnt; i++) {
20059 			u32 depth = env->subprog_info[i].stack_depth;
20060 
20061 			verbose(env, "%d", depth);
20062 			if (i + 1 < env->subprog_cnt)
20063 				verbose(env, "+");
20064 		}
20065 		verbose(env, "\n");
20066 	}
20067 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
20068 		"total_states %d peak_states %d mark_read %d\n",
20069 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
20070 		env->max_states_per_insn, env->total_states,
20071 		env->peak_states, env->longest_mark_read_walk);
20072 }
20073 
20074 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
20075 {
20076 	const struct btf_type *t, *func_proto;
20077 	const struct bpf_struct_ops *st_ops;
20078 	const struct btf_member *member;
20079 	struct bpf_prog *prog = env->prog;
20080 	u32 btf_id, member_idx;
20081 	const char *mname;
20082 
20083 	if (!prog->gpl_compatible) {
20084 		verbose(env, "struct ops programs must have a GPL compatible license\n");
20085 		return -EINVAL;
20086 	}
20087 
20088 	btf_id = prog->aux->attach_btf_id;
20089 	st_ops = bpf_struct_ops_find(btf_id);
20090 	if (!st_ops) {
20091 		verbose(env, "attach_btf_id %u is not a supported struct\n",
20092 			btf_id);
20093 		return -ENOTSUPP;
20094 	}
20095 
20096 	t = st_ops->type;
20097 	member_idx = prog->expected_attach_type;
20098 	if (member_idx >= btf_type_vlen(t)) {
20099 		verbose(env, "attach to invalid member idx %u of struct %s\n",
20100 			member_idx, st_ops->name);
20101 		return -EINVAL;
20102 	}
20103 
20104 	member = &btf_type_member(t)[member_idx];
20105 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
20106 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
20107 					       NULL);
20108 	if (!func_proto) {
20109 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
20110 			mname, member_idx, st_ops->name);
20111 		return -EINVAL;
20112 	}
20113 
20114 	if (st_ops->check_member) {
20115 		int err = st_ops->check_member(t, member, prog);
20116 
20117 		if (err) {
20118 			verbose(env, "attach to unsupported member %s of struct %s\n",
20119 				mname, st_ops->name);
20120 			return err;
20121 		}
20122 	}
20123 
20124 	prog->aux->attach_func_proto = func_proto;
20125 	prog->aux->attach_func_name = mname;
20126 	env->ops = st_ops->verifier_ops;
20127 
20128 	return 0;
20129 }
20130 #define SECURITY_PREFIX "security_"
20131 
20132 static int check_attach_modify_return(unsigned long addr, const char *func_name)
20133 {
20134 	if (within_error_injection_list(addr) ||
20135 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
20136 		return 0;
20137 
20138 	return -EINVAL;
20139 }
20140 
20141 /* list of non-sleepable functions that are otherwise on
20142  * ALLOW_ERROR_INJECTION list
20143  */
20144 BTF_SET_START(btf_non_sleepable_error_inject)
20145 /* Three functions below can be called from sleepable and non-sleepable context.
20146  * Assume non-sleepable from bpf safety point of view.
20147  */
20148 BTF_ID(func, __filemap_add_folio)
20149 BTF_ID(func, should_fail_alloc_page)
20150 BTF_ID(func, should_failslab)
20151 BTF_SET_END(btf_non_sleepable_error_inject)
20152 
20153 static int check_non_sleepable_error_inject(u32 btf_id)
20154 {
20155 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
20156 }
20157 
20158 int bpf_check_attach_target(struct bpf_verifier_log *log,
20159 			    const struct bpf_prog *prog,
20160 			    const struct bpf_prog *tgt_prog,
20161 			    u32 btf_id,
20162 			    struct bpf_attach_target_info *tgt_info)
20163 {
20164 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
20165 	const char prefix[] = "btf_trace_";
20166 	int ret = 0, subprog = -1, i;
20167 	const struct btf_type *t;
20168 	bool conservative = true;
20169 	const char *tname;
20170 	struct btf *btf;
20171 	long addr = 0;
20172 	struct module *mod = NULL;
20173 
20174 	if (!btf_id) {
20175 		bpf_log(log, "Tracing programs must provide btf_id\n");
20176 		return -EINVAL;
20177 	}
20178 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
20179 	if (!btf) {
20180 		bpf_log(log,
20181 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
20182 		return -EINVAL;
20183 	}
20184 	t = btf_type_by_id(btf, btf_id);
20185 	if (!t) {
20186 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
20187 		return -EINVAL;
20188 	}
20189 	tname = btf_name_by_offset(btf, t->name_off);
20190 	if (!tname) {
20191 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
20192 		return -EINVAL;
20193 	}
20194 	if (tgt_prog) {
20195 		struct bpf_prog_aux *aux = tgt_prog->aux;
20196 
20197 		if (bpf_prog_is_dev_bound(prog->aux) &&
20198 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
20199 			bpf_log(log, "Target program bound device mismatch");
20200 			return -EINVAL;
20201 		}
20202 
20203 		for (i = 0; i < aux->func_info_cnt; i++)
20204 			if (aux->func_info[i].type_id == btf_id) {
20205 				subprog = i;
20206 				break;
20207 			}
20208 		if (subprog == -1) {
20209 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
20210 			return -EINVAL;
20211 		}
20212 		if (aux->func && aux->func[subprog]->aux->exception_cb) {
20213 			bpf_log(log,
20214 				"%s programs cannot attach to exception callback\n",
20215 				prog_extension ? "Extension" : "FENTRY/FEXIT");
20216 			return -EINVAL;
20217 		}
20218 		conservative = aux->func_info_aux[subprog].unreliable;
20219 		if (prog_extension) {
20220 			if (conservative) {
20221 				bpf_log(log,
20222 					"Cannot replace static functions\n");
20223 				return -EINVAL;
20224 			}
20225 			if (!prog->jit_requested) {
20226 				bpf_log(log,
20227 					"Extension programs should be JITed\n");
20228 				return -EINVAL;
20229 			}
20230 		}
20231 		if (!tgt_prog->jited) {
20232 			bpf_log(log, "Can attach to only JITed progs\n");
20233 			return -EINVAL;
20234 		}
20235 		if (tgt_prog->type == prog->type) {
20236 			/* Cannot fentry/fexit another fentry/fexit program.
20237 			 * Cannot attach program extension to another extension.
20238 			 * It's ok to attach fentry/fexit to extension program.
20239 			 */
20240 			bpf_log(log, "Cannot recursively attach\n");
20241 			return -EINVAL;
20242 		}
20243 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
20244 		    prog_extension &&
20245 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
20246 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
20247 			/* Program extensions can extend all program types
20248 			 * except fentry/fexit. The reason is the following.
20249 			 * The fentry/fexit programs are used for performance
20250 			 * analysis, stats and can be attached to any program
20251 			 * type except themselves. When extension program is
20252 			 * replacing XDP function it is necessary to allow
20253 			 * performance analysis of all functions. Both original
20254 			 * XDP program and its program extension. Hence
20255 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
20256 			 * allowed. If extending of fentry/fexit was allowed it
20257 			 * would be possible to create long call chain
20258 			 * fentry->extension->fentry->extension beyond
20259 			 * reasonable stack size. Hence extending fentry is not
20260 			 * allowed.
20261 			 */
20262 			bpf_log(log, "Cannot extend fentry/fexit\n");
20263 			return -EINVAL;
20264 		}
20265 	} else {
20266 		if (prog_extension) {
20267 			bpf_log(log, "Cannot replace kernel functions\n");
20268 			return -EINVAL;
20269 		}
20270 	}
20271 
20272 	switch (prog->expected_attach_type) {
20273 	case BPF_TRACE_RAW_TP:
20274 		if (tgt_prog) {
20275 			bpf_log(log,
20276 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
20277 			return -EINVAL;
20278 		}
20279 		if (!btf_type_is_typedef(t)) {
20280 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
20281 				btf_id);
20282 			return -EINVAL;
20283 		}
20284 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
20285 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
20286 				btf_id, tname);
20287 			return -EINVAL;
20288 		}
20289 		tname += sizeof(prefix) - 1;
20290 		t = btf_type_by_id(btf, t->type);
20291 		if (!btf_type_is_ptr(t))
20292 			/* should never happen in valid vmlinux build */
20293 			return -EINVAL;
20294 		t = btf_type_by_id(btf, t->type);
20295 		if (!btf_type_is_func_proto(t))
20296 			/* should never happen in valid vmlinux build */
20297 			return -EINVAL;
20298 
20299 		break;
20300 	case BPF_TRACE_ITER:
20301 		if (!btf_type_is_func(t)) {
20302 			bpf_log(log, "attach_btf_id %u is not a function\n",
20303 				btf_id);
20304 			return -EINVAL;
20305 		}
20306 		t = btf_type_by_id(btf, t->type);
20307 		if (!btf_type_is_func_proto(t))
20308 			return -EINVAL;
20309 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
20310 		if (ret)
20311 			return ret;
20312 		break;
20313 	default:
20314 		if (!prog_extension)
20315 			return -EINVAL;
20316 		fallthrough;
20317 	case BPF_MODIFY_RETURN:
20318 	case BPF_LSM_MAC:
20319 	case BPF_LSM_CGROUP:
20320 	case BPF_TRACE_FENTRY:
20321 	case BPF_TRACE_FEXIT:
20322 		if (!btf_type_is_func(t)) {
20323 			bpf_log(log, "attach_btf_id %u is not a function\n",
20324 				btf_id);
20325 			return -EINVAL;
20326 		}
20327 		if (prog_extension &&
20328 		    btf_check_type_match(log, prog, btf, t))
20329 			return -EINVAL;
20330 		t = btf_type_by_id(btf, t->type);
20331 		if (!btf_type_is_func_proto(t))
20332 			return -EINVAL;
20333 
20334 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
20335 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
20336 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
20337 			return -EINVAL;
20338 
20339 		if (tgt_prog && conservative)
20340 			t = NULL;
20341 
20342 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
20343 		if (ret < 0)
20344 			return ret;
20345 
20346 		if (tgt_prog) {
20347 			if (subprog == 0)
20348 				addr = (long) tgt_prog->bpf_func;
20349 			else
20350 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
20351 		} else {
20352 			if (btf_is_module(btf)) {
20353 				mod = btf_try_get_module(btf);
20354 				if (mod)
20355 					addr = find_kallsyms_symbol_value(mod, tname);
20356 				else
20357 					addr = 0;
20358 			} else {
20359 				addr = kallsyms_lookup_name(tname);
20360 			}
20361 			if (!addr) {
20362 				module_put(mod);
20363 				bpf_log(log,
20364 					"The address of function %s cannot be found\n",
20365 					tname);
20366 				return -ENOENT;
20367 			}
20368 		}
20369 
20370 		if (prog->aux->sleepable) {
20371 			ret = -EINVAL;
20372 			switch (prog->type) {
20373 			case BPF_PROG_TYPE_TRACING:
20374 
20375 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
20376 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
20377 				 */
20378 				if (!check_non_sleepable_error_inject(btf_id) &&
20379 				    within_error_injection_list(addr))
20380 					ret = 0;
20381 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
20382 				 * in the fmodret id set with the KF_SLEEPABLE flag.
20383 				 */
20384 				else {
20385 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
20386 										prog);
20387 
20388 					if (flags && (*flags & KF_SLEEPABLE))
20389 						ret = 0;
20390 				}
20391 				break;
20392 			case BPF_PROG_TYPE_LSM:
20393 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
20394 				 * Only some of them are sleepable.
20395 				 */
20396 				if (bpf_lsm_is_sleepable_hook(btf_id))
20397 					ret = 0;
20398 				break;
20399 			default:
20400 				break;
20401 			}
20402 			if (ret) {
20403 				module_put(mod);
20404 				bpf_log(log, "%s is not sleepable\n", tname);
20405 				return ret;
20406 			}
20407 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
20408 			if (tgt_prog) {
20409 				module_put(mod);
20410 				bpf_log(log, "can't modify return codes of BPF programs\n");
20411 				return -EINVAL;
20412 			}
20413 			ret = -EINVAL;
20414 			if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
20415 			    !check_attach_modify_return(addr, tname))
20416 				ret = 0;
20417 			if (ret) {
20418 				module_put(mod);
20419 				bpf_log(log, "%s() is not modifiable\n", tname);
20420 				return ret;
20421 			}
20422 		}
20423 
20424 		break;
20425 	}
20426 	tgt_info->tgt_addr = addr;
20427 	tgt_info->tgt_name = tname;
20428 	tgt_info->tgt_type = t;
20429 	tgt_info->tgt_mod = mod;
20430 	return 0;
20431 }
20432 
20433 BTF_SET_START(btf_id_deny)
20434 BTF_ID_UNUSED
20435 #ifdef CONFIG_SMP
20436 BTF_ID(func, migrate_disable)
20437 BTF_ID(func, migrate_enable)
20438 #endif
20439 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
20440 BTF_ID(func, rcu_read_unlock_strict)
20441 #endif
20442 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
20443 BTF_ID(func, preempt_count_add)
20444 BTF_ID(func, preempt_count_sub)
20445 #endif
20446 #ifdef CONFIG_PREEMPT_RCU
20447 BTF_ID(func, __rcu_read_lock)
20448 BTF_ID(func, __rcu_read_unlock)
20449 #endif
20450 BTF_SET_END(btf_id_deny)
20451 
20452 static bool can_be_sleepable(struct bpf_prog *prog)
20453 {
20454 	if (prog->type == BPF_PROG_TYPE_TRACING) {
20455 		switch (prog->expected_attach_type) {
20456 		case BPF_TRACE_FENTRY:
20457 		case BPF_TRACE_FEXIT:
20458 		case BPF_MODIFY_RETURN:
20459 		case BPF_TRACE_ITER:
20460 			return true;
20461 		default:
20462 			return false;
20463 		}
20464 	}
20465 	return prog->type == BPF_PROG_TYPE_LSM ||
20466 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
20467 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
20468 }
20469 
20470 static int check_attach_btf_id(struct bpf_verifier_env *env)
20471 {
20472 	struct bpf_prog *prog = env->prog;
20473 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
20474 	struct bpf_attach_target_info tgt_info = {};
20475 	u32 btf_id = prog->aux->attach_btf_id;
20476 	struct bpf_trampoline *tr;
20477 	int ret;
20478 	u64 key;
20479 
20480 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
20481 		if (prog->aux->sleepable)
20482 			/* attach_btf_id checked to be zero already */
20483 			return 0;
20484 		verbose(env, "Syscall programs can only be sleepable\n");
20485 		return -EINVAL;
20486 	}
20487 
20488 	if (prog->aux->sleepable && !can_be_sleepable(prog)) {
20489 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
20490 		return -EINVAL;
20491 	}
20492 
20493 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
20494 		return check_struct_ops_btf_id(env);
20495 
20496 	if (prog->type != BPF_PROG_TYPE_TRACING &&
20497 	    prog->type != BPF_PROG_TYPE_LSM &&
20498 	    prog->type != BPF_PROG_TYPE_EXT)
20499 		return 0;
20500 
20501 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
20502 	if (ret)
20503 		return ret;
20504 
20505 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
20506 		/* to make freplace equivalent to their targets, they need to
20507 		 * inherit env->ops and expected_attach_type for the rest of the
20508 		 * verification
20509 		 */
20510 		env->ops = bpf_verifier_ops[tgt_prog->type];
20511 		prog->expected_attach_type = tgt_prog->expected_attach_type;
20512 	}
20513 
20514 	/* store info about the attachment target that will be used later */
20515 	prog->aux->attach_func_proto = tgt_info.tgt_type;
20516 	prog->aux->attach_func_name = tgt_info.tgt_name;
20517 	prog->aux->mod = tgt_info.tgt_mod;
20518 
20519 	if (tgt_prog) {
20520 		prog->aux->saved_dst_prog_type = tgt_prog->type;
20521 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
20522 	}
20523 
20524 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
20525 		prog->aux->attach_btf_trace = true;
20526 		return 0;
20527 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
20528 		if (!bpf_iter_prog_supported(prog))
20529 			return -EINVAL;
20530 		return 0;
20531 	}
20532 
20533 	if (prog->type == BPF_PROG_TYPE_LSM) {
20534 		ret = bpf_lsm_verify_prog(&env->log, prog);
20535 		if (ret < 0)
20536 			return ret;
20537 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
20538 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
20539 		return -EINVAL;
20540 	}
20541 
20542 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
20543 	tr = bpf_trampoline_get(key, &tgt_info);
20544 	if (!tr)
20545 		return -ENOMEM;
20546 
20547 	if (tgt_prog && tgt_prog->aux->tail_call_reachable)
20548 		tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
20549 
20550 	prog->aux->dst_trampoline = tr;
20551 	return 0;
20552 }
20553 
20554 struct btf *bpf_get_btf_vmlinux(void)
20555 {
20556 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
20557 		mutex_lock(&bpf_verifier_lock);
20558 		if (!btf_vmlinux)
20559 			btf_vmlinux = btf_parse_vmlinux();
20560 		mutex_unlock(&bpf_verifier_lock);
20561 	}
20562 	return btf_vmlinux;
20563 }
20564 
20565 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
20566 {
20567 	u64 start_time = ktime_get_ns();
20568 	struct bpf_verifier_env *env;
20569 	int i, len, ret = -EINVAL, err;
20570 	u32 log_true_size;
20571 	bool is_priv;
20572 
20573 	/* no program is valid */
20574 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
20575 		return -EINVAL;
20576 
20577 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
20578 	 * allocate/free it every time bpf_check() is called
20579 	 */
20580 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
20581 	if (!env)
20582 		return -ENOMEM;
20583 
20584 	env->bt.env = env;
20585 
20586 	len = (*prog)->len;
20587 	env->insn_aux_data =
20588 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
20589 	ret = -ENOMEM;
20590 	if (!env->insn_aux_data)
20591 		goto err_free_env;
20592 	for (i = 0; i < len; i++)
20593 		env->insn_aux_data[i].orig_idx = i;
20594 	env->prog = *prog;
20595 	env->ops = bpf_verifier_ops[env->prog->type];
20596 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
20597 	is_priv = bpf_capable();
20598 
20599 	bpf_get_btf_vmlinux();
20600 
20601 	/* grab the mutex to protect few globals used by verifier */
20602 	if (!is_priv)
20603 		mutex_lock(&bpf_verifier_lock);
20604 
20605 	/* user could have requested verbose verifier output
20606 	 * and supplied buffer to store the verification trace
20607 	 */
20608 	ret = bpf_vlog_init(&env->log, attr->log_level,
20609 			    (char __user *) (unsigned long) attr->log_buf,
20610 			    attr->log_size);
20611 	if (ret)
20612 		goto err_unlock;
20613 
20614 	mark_verifier_state_clean(env);
20615 
20616 	if (IS_ERR(btf_vmlinux)) {
20617 		/* Either gcc or pahole or kernel are broken. */
20618 		verbose(env, "in-kernel BTF is malformed\n");
20619 		ret = PTR_ERR(btf_vmlinux);
20620 		goto skip_full_check;
20621 	}
20622 
20623 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
20624 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
20625 		env->strict_alignment = true;
20626 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
20627 		env->strict_alignment = false;
20628 
20629 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
20630 	env->allow_uninit_stack = bpf_allow_uninit_stack();
20631 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
20632 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
20633 	env->bpf_capable = bpf_capable();
20634 
20635 	if (is_priv)
20636 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
20637 	env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS;
20638 
20639 	env->explored_states = kvcalloc(state_htab_size(env),
20640 				       sizeof(struct bpf_verifier_state_list *),
20641 				       GFP_USER);
20642 	ret = -ENOMEM;
20643 	if (!env->explored_states)
20644 		goto skip_full_check;
20645 
20646 	ret = check_btf_info_early(env, attr, uattr);
20647 	if (ret < 0)
20648 		goto skip_full_check;
20649 
20650 	ret = add_subprog_and_kfunc(env);
20651 	if (ret < 0)
20652 		goto skip_full_check;
20653 
20654 	ret = check_subprogs(env);
20655 	if (ret < 0)
20656 		goto skip_full_check;
20657 
20658 	ret = check_btf_info(env, attr, uattr);
20659 	if (ret < 0)
20660 		goto skip_full_check;
20661 
20662 	ret = check_attach_btf_id(env);
20663 	if (ret)
20664 		goto skip_full_check;
20665 
20666 	ret = resolve_pseudo_ldimm64(env);
20667 	if (ret < 0)
20668 		goto skip_full_check;
20669 
20670 	if (bpf_prog_is_offloaded(env->prog->aux)) {
20671 		ret = bpf_prog_offload_verifier_prep(env->prog);
20672 		if (ret)
20673 			goto skip_full_check;
20674 	}
20675 
20676 	ret = check_cfg(env);
20677 	if (ret < 0)
20678 		goto skip_full_check;
20679 
20680 	ret = do_check_main(env);
20681 	ret = ret ?: do_check_subprogs(env);
20682 
20683 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
20684 		ret = bpf_prog_offload_finalize(env);
20685 
20686 skip_full_check:
20687 	kvfree(env->explored_states);
20688 
20689 	if (ret == 0)
20690 		ret = check_max_stack_depth(env);
20691 
20692 	/* instruction rewrites happen after this point */
20693 	if (ret == 0)
20694 		ret = optimize_bpf_loop(env);
20695 
20696 	if (is_priv) {
20697 		if (ret == 0)
20698 			opt_hard_wire_dead_code_branches(env);
20699 		if (ret == 0)
20700 			ret = opt_remove_dead_code(env);
20701 		if (ret == 0)
20702 			ret = opt_remove_nops(env);
20703 	} else {
20704 		if (ret == 0)
20705 			sanitize_dead_code(env);
20706 	}
20707 
20708 	if (ret == 0)
20709 		/* program is valid, convert *(u32*)(ctx + off) accesses */
20710 		ret = convert_ctx_accesses(env);
20711 
20712 	if (ret == 0)
20713 		ret = do_misc_fixups(env);
20714 
20715 	/* do 32-bit optimization after insn patching has done so those patched
20716 	 * insns could be handled correctly.
20717 	 */
20718 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
20719 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
20720 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
20721 								     : false;
20722 	}
20723 
20724 	if (ret == 0)
20725 		ret = fixup_call_args(env);
20726 
20727 	env->verification_time = ktime_get_ns() - start_time;
20728 	print_verification_stats(env);
20729 	env->prog->aux->verified_insns = env->insn_processed;
20730 
20731 	/* preserve original error even if log finalization is successful */
20732 	err = bpf_vlog_finalize(&env->log, &log_true_size);
20733 	if (err)
20734 		ret = err;
20735 
20736 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
20737 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
20738 				  &log_true_size, sizeof(log_true_size))) {
20739 		ret = -EFAULT;
20740 		goto err_release_maps;
20741 	}
20742 
20743 	if (ret)
20744 		goto err_release_maps;
20745 
20746 	if (env->used_map_cnt) {
20747 		/* if program passed verifier, update used_maps in bpf_prog_info */
20748 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
20749 							  sizeof(env->used_maps[0]),
20750 							  GFP_KERNEL);
20751 
20752 		if (!env->prog->aux->used_maps) {
20753 			ret = -ENOMEM;
20754 			goto err_release_maps;
20755 		}
20756 
20757 		memcpy(env->prog->aux->used_maps, env->used_maps,
20758 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
20759 		env->prog->aux->used_map_cnt = env->used_map_cnt;
20760 	}
20761 	if (env->used_btf_cnt) {
20762 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
20763 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
20764 							  sizeof(env->used_btfs[0]),
20765 							  GFP_KERNEL);
20766 		if (!env->prog->aux->used_btfs) {
20767 			ret = -ENOMEM;
20768 			goto err_release_maps;
20769 		}
20770 
20771 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
20772 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
20773 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
20774 	}
20775 	if (env->used_map_cnt || env->used_btf_cnt) {
20776 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
20777 		 * bpf_ld_imm64 instructions
20778 		 */
20779 		convert_pseudo_ld_imm64(env);
20780 	}
20781 
20782 	adjust_btf_func(env);
20783 
20784 err_release_maps:
20785 	if (!env->prog->aux->used_maps)
20786 		/* if we didn't copy map pointers into bpf_prog_info, release
20787 		 * them now. Otherwise free_used_maps() will release them.
20788 		 */
20789 		release_maps(env);
20790 	if (!env->prog->aux->used_btfs)
20791 		release_btfs(env);
20792 
20793 	/* extension progs temporarily inherit the attach_type of their targets
20794 	   for verification purposes, so set it back to zero before returning
20795 	 */
20796 	if (env->prog->type == BPF_PROG_TYPE_EXT)
20797 		env->prog->expected_attach_type = 0;
20798 
20799 	*prog = env->prog;
20800 err_unlock:
20801 	if (!is_priv)
20802 		mutex_unlock(&bpf_verifier_lock);
20803 	vfree(env->insn_aux_data);
20804 err_free_env:
20805 	kfree(env);
20806 	return ret;
20807 }
20808