1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 #include <linux/error-injection.h> 23 #include <linux/bpf_lsm.h> 24 #include <linux/btf_ids.h> 25 26 #include "disasm.h" 27 28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 30 [_id] = & _name ## _verifier_ops, 31 #define BPF_MAP_TYPE(_id, _ops) 32 #define BPF_LINK_TYPE(_id, _name) 33 #include <linux/bpf_types.h> 34 #undef BPF_PROG_TYPE 35 #undef BPF_MAP_TYPE 36 #undef BPF_LINK_TYPE 37 }; 38 39 /* bpf_check() is a static code analyzer that walks eBPF program 40 * instruction by instruction and updates register/stack state. 41 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 42 * 43 * The first pass is depth-first-search to check that the program is a DAG. 44 * It rejects the following programs: 45 * - larger than BPF_MAXINSNS insns 46 * - if loop is present (detected via back-edge) 47 * - unreachable insns exist (shouldn't be a forest. program = one function) 48 * - out of bounds or malformed jumps 49 * The second pass is all possible path descent from the 1st insn. 50 * Since it's analyzing all paths through the program, the length of the 51 * analysis is limited to 64k insn, which may be hit even if total number of 52 * insn is less then 4K, but there are too many branches that change stack/regs. 53 * Number of 'branches to be analyzed' is limited to 1k 54 * 55 * On entry to each instruction, each register has a type, and the instruction 56 * changes the types of the registers depending on instruction semantics. 57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 58 * copied to R1. 59 * 60 * All registers are 64-bit. 61 * R0 - return register 62 * R1-R5 argument passing registers 63 * R6-R9 callee saved registers 64 * R10 - frame pointer read-only 65 * 66 * At the start of BPF program the register R1 contains a pointer to bpf_context 67 * and has type PTR_TO_CTX. 68 * 69 * Verifier tracks arithmetic operations on pointers in case: 70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 72 * 1st insn copies R10 (which has FRAME_PTR) type into R1 73 * and 2nd arithmetic instruction is pattern matched to recognize 74 * that it wants to construct a pointer to some element within stack. 75 * So after 2nd insn, the register R1 has type PTR_TO_STACK 76 * (and -20 constant is saved for further stack bounds checking). 77 * Meaning that this reg is a pointer to stack plus known immediate constant. 78 * 79 * Most of the time the registers have SCALAR_VALUE type, which 80 * means the register has some value, but it's not a valid pointer. 81 * (like pointer plus pointer becomes SCALAR_VALUE type) 82 * 83 * When verifier sees load or store instructions the type of base register 84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 85 * four pointer types recognized by check_mem_access() function. 86 * 87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 88 * and the range of [ptr, ptr + map's value_size) is accessible. 89 * 90 * registers used to pass values to function calls are checked against 91 * function argument constraints. 92 * 93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 94 * It means that the register type passed to this function must be 95 * PTR_TO_STACK and it will be used inside the function as 96 * 'pointer to map element key' 97 * 98 * For example the argument constraints for bpf_map_lookup_elem(): 99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 100 * .arg1_type = ARG_CONST_MAP_PTR, 101 * .arg2_type = ARG_PTR_TO_MAP_KEY, 102 * 103 * ret_type says that this function returns 'pointer to map elem value or null' 104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 105 * 2nd argument should be a pointer to stack, which will be used inside 106 * the helper function as a pointer to map element key. 107 * 108 * On the kernel side the helper function looks like: 109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 110 * { 111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 112 * void *key = (void *) (unsigned long) r2; 113 * void *value; 114 * 115 * here kernel can access 'key' and 'map' pointers safely, knowing that 116 * [key, key + map->key_size) bytes are valid and were initialized on 117 * the stack of eBPF program. 118 * } 119 * 120 * Corresponding eBPF program may look like: 121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 125 * here verifier looks at prototype of map_lookup_elem() and sees: 126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 128 * 129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 131 * and were initialized prior to this call. 132 * If it's ok, then verifier allows this BPF_CALL insn and looks at 133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 135 * returns either pointer to map value or NULL. 136 * 137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 138 * insn, the register holding that pointer in the true branch changes state to 139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 140 * branch. See check_cond_jmp_op(). 141 * 142 * After the call R0 is set to return type of the function and registers R1-R5 143 * are set to NOT_INIT to indicate that they are no longer readable. 144 * 145 * The following reference types represent a potential reference to a kernel 146 * resource which, after first being allocated, must be checked and freed by 147 * the BPF program: 148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 149 * 150 * When the verifier sees a helper call return a reference type, it allocates a 151 * pointer id for the reference and stores it in the current function state. 152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 154 * passes through a NULL-check conditional. For the branch wherein the state is 155 * changed to CONST_IMM, the verifier releases the reference. 156 * 157 * For each helper function that allocates a reference, such as 158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 159 * bpf_sk_release(). When a reference type passes into the release function, 160 * the verifier also releases the reference. If any unchecked or unreleased 161 * reference remains at the end of the program, the verifier rejects it. 162 */ 163 164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 165 struct bpf_verifier_stack_elem { 166 /* verifer state is 'st' 167 * before processing instruction 'insn_idx' 168 * and after processing instruction 'prev_insn_idx' 169 */ 170 struct bpf_verifier_state st; 171 int insn_idx; 172 int prev_insn_idx; 173 struct bpf_verifier_stack_elem *next; 174 /* length of verifier log at the time this state was pushed on stack */ 175 u32 log_pos; 176 }; 177 178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 179 #define BPF_COMPLEXITY_LIMIT_STATES 64 180 181 #define BPF_MAP_KEY_POISON (1ULL << 63) 182 #define BPF_MAP_KEY_SEEN (1ULL << 62) 183 184 #define BPF_MAP_PTR_UNPRIV 1UL 185 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 186 POISON_POINTER_DELTA)) 187 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 188 189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 190 { 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 192 } 193 194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 195 { 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 197 } 198 199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 200 const struct bpf_map *map, bool unpriv) 201 { 202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 203 unpriv |= bpf_map_ptr_unpriv(aux); 204 aux->map_ptr_state = (unsigned long)map | 205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 206 } 207 208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 209 { 210 return aux->map_key_state & BPF_MAP_KEY_POISON; 211 } 212 213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 214 { 215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 216 } 217 218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 219 { 220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 221 } 222 223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 224 { 225 bool poisoned = bpf_map_key_poisoned(aux); 226 227 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 229 } 230 231 static bool bpf_pseudo_call(const struct bpf_insn *insn) 232 { 233 return insn->code == (BPF_JMP | BPF_CALL) && 234 insn->src_reg == BPF_PSEUDO_CALL; 235 } 236 237 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 238 { 239 return insn->code == (BPF_JMP | BPF_CALL) && 240 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 241 } 242 243 static bool bpf_pseudo_func(const struct bpf_insn *insn) 244 { 245 return insn->code == (BPF_LD | BPF_IMM | BPF_DW) && 246 insn->src_reg == BPF_PSEUDO_FUNC; 247 } 248 249 struct bpf_call_arg_meta { 250 struct bpf_map *map_ptr; 251 bool raw_mode; 252 bool pkt_access; 253 int regno; 254 int access_size; 255 int mem_size; 256 u64 msize_max_value; 257 int ref_obj_id; 258 int map_uid; 259 int func_id; 260 struct btf *btf; 261 u32 btf_id; 262 struct btf *ret_btf; 263 u32 ret_btf_id; 264 u32 subprogno; 265 }; 266 267 struct btf *btf_vmlinux; 268 269 static DEFINE_MUTEX(bpf_verifier_lock); 270 271 static const struct bpf_line_info * 272 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 273 { 274 const struct bpf_line_info *linfo; 275 const struct bpf_prog *prog; 276 u32 i, nr_linfo; 277 278 prog = env->prog; 279 nr_linfo = prog->aux->nr_linfo; 280 281 if (!nr_linfo || insn_off >= prog->len) 282 return NULL; 283 284 linfo = prog->aux->linfo; 285 for (i = 1; i < nr_linfo; i++) 286 if (insn_off < linfo[i].insn_off) 287 break; 288 289 return &linfo[i - 1]; 290 } 291 292 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 293 va_list args) 294 { 295 unsigned int n; 296 297 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 298 299 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 300 "verifier log line truncated - local buffer too short\n"); 301 302 n = min(log->len_total - log->len_used - 1, n); 303 log->kbuf[n] = '\0'; 304 305 if (log->level == BPF_LOG_KERNEL) { 306 pr_err("BPF:%s\n", log->kbuf); 307 return; 308 } 309 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 310 log->len_used += n; 311 else 312 log->ubuf = NULL; 313 } 314 315 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 316 { 317 char zero = 0; 318 319 if (!bpf_verifier_log_needed(log)) 320 return; 321 322 log->len_used = new_pos; 323 if (put_user(zero, log->ubuf + new_pos)) 324 log->ubuf = NULL; 325 } 326 327 /* log_level controls verbosity level of eBPF verifier. 328 * bpf_verifier_log_write() is used to dump the verification trace to the log, 329 * so the user can figure out what's wrong with the program 330 */ 331 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 332 const char *fmt, ...) 333 { 334 va_list args; 335 336 if (!bpf_verifier_log_needed(&env->log)) 337 return; 338 339 va_start(args, fmt); 340 bpf_verifier_vlog(&env->log, fmt, args); 341 va_end(args); 342 } 343 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 344 345 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 346 { 347 struct bpf_verifier_env *env = private_data; 348 va_list args; 349 350 if (!bpf_verifier_log_needed(&env->log)) 351 return; 352 353 va_start(args, fmt); 354 bpf_verifier_vlog(&env->log, fmt, args); 355 va_end(args); 356 } 357 358 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 359 const char *fmt, ...) 360 { 361 va_list args; 362 363 if (!bpf_verifier_log_needed(log)) 364 return; 365 366 va_start(args, fmt); 367 bpf_verifier_vlog(log, fmt, args); 368 va_end(args); 369 } 370 371 static const char *ltrim(const char *s) 372 { 373 while (isspace(*s)) 374 s++; 375 376 return s; 377 } 378 379 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 380 u32 insn_off, 381 const char *prefix_fmt, ...) 382 { 383 const struct bpf_line_info *linfo; 384 385 if (!bpf_verifier_log_needed(&env->log)) 386 return; 387 388 linfo = find_linfo(env, insn_off); 389 if (!linfo || linfo == env->prev_linfo) 390 return; 391 392 if (prefix_fmt) { 393 va_list args; 394 395 va_start(args, prefix_fmt); 396 bpf_verifier_vlog(&env->log, prefix_fmt, args); 397 va_end(args); 398 } 399 400 verbose(env, "%s\n", 401 ltrim(btf_name_by_offset(env->prog->aux->btf, 402 linfo->line_off))); 403 404 env->prev_linfo = linfo; 405 } 406 407 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 408 struct bpf_reg_state *reg, 409 struct tnum *range, const char *ctx, 410 const char *reg_name) 411 { 412 char tn_buf[48]; 413 414 verbose(env, "At %s the register %s ", ctx, reg_name); 415 if (!tnum_is_unknown(reg->var_off)) { 416 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 417 verbose(env, "has value %s", tn_buf); 418 } else { 419 verbose(env, "has unknown scalar value"); 420 } 421 tnum_strn(tn_buf, sizeof(tn_buf), *range); 422 verbose(env, " should have been in %s\n", tn_buf); 423 } 424 425 static bool type_is_pkt_pointer(enum bpf_reg_type type) 426 { 427 return type == PTR_TO_PACKET || 428 type == PTR_TO_PACKET_META; 429 } 430 431 static bool type_is_sk_pointer(enum bpf_reg_type type) 432 { 433 return type == PTR_TO_SOCKET || 434 type == PTR_TO_SOCK_COMMON || 435 type == PTR_TO_TCP_SOCK || 436 type == PTR_TO_XDP_SOCK; 437 } 438 439 static bool reg_type_not_null(enum bpf_reg_type type) 440 { 441 return type == PTR_TO_SOCKET || 442 type == PTR_TO_TCP_SOCK || 443 type == PTR_TO_MAP_VALUE || 444 type == PTR_TO_MAP_KEY || 445 type == PTR_TO_SOCK_COMMON; 446 } 447 448 static bool reg_type_may_be_null(enum bpf_reg_type type) 449 { 450 return type == PTR_TO_MAP_VALUE_OR_NULL || 451 type == PTR_TO_SOCKET_OR_NULL || 452 type == PTR_TO_SOCK_COMMON_OR_NULL || 453 type == PTR_TO_TCP_SOCK_OR_NULL || 454 type == PTR_TO_BTF_ID_OR_NULL || 455 type == PTR_TO_MEM_OR_NULL || 456 type == PTR_TO_RDONLY_BUF_OR_NULL || 457 type == PTR_TO_RDWR_BUF_OR_NULL; 458 } 459 460 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 461 { 462 return reg->type == PTR_TO_MAP_VALUE && 463 map_value_has_spin_lock(reg->map_ptr); 464 } 465 466 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 467 { 468 return type == PTR_TO_SOCKET || 469 type == PTR_TO_SOCKET_OR_NULL || 470 type == PTR_TO_TCP_SOCK || 471 type == PTR_TO_TCP_SOCK_OR_NULL || 472 type == PTR_TO_MEM || 473 type == PTR_TO_MEM_OR_NULL; 474 } 475 476 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 477 { 478 return type == ARG_PTR_TO_SOCK_COMMON; 479 } 480 481 static bool arg_type_may_be_null(enum bpf_arg_type type) 482 { 483 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL || 484 type == ARG_PTR_TO_MEM_OR_NULL || 485 type == ARG_PTR_TO_CTX_OR_NULL || 486 type == ARG_PTR_TO_SOCKET_OR_NULL || 487 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL || 488 type == ARG_PTR_TO_STACK_OR_NULL; 489 } 490 491 /* Determine whether the function releases some resources allocated by another 492 * function call. The first reference type argument will be assumed to be 493 * released by release_reference(). 494 */ 495 static bool is_release_function(enum bpf_func_id func_id) 496 { 497 return func_id == BPF_FUNC_sk_release || 498 func_id == BPF_FUNC_ringbuf_submit || 499 func_id == BPF_FUNC_ringbuf_discard; 500 } 501 502 static bool may_be_acquire_function(enum bpf_func_id func_id) 503 { 504 return func_id == BPF_FUNC_sk_lookup_tcp || 505 func_id == BPF_FUNC_sk_lookup_udp || 506 func_id == BPF_FUNC_skc_lookup_tcp || 507 func_id == BPF_FUNC_map_lookup_elem || 508 func_id == BPF_FUNC_ringbuf_reserve; 509 } 510 511 static bool is_acquire_function(enum bpf_func_id func_id, 512 const struct bpf_map *map) 513 { 514 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 515 516 if (func_id == BPF_FUNC_sk_lookup_tcp || 517 func_id == BPF_FUNC_sk_lookup_udp || 518 func_id == BPF_FUNC_skc_lookup_tcp || 519 func_id == BPF_FUNC_ringbuf_reserve) 520 return true; 521 522 if (func_id == BPF_FUNC_map_lookup_elem && 523 (map_type == BPF_MAP_TYPE_SOCKMAP || 524 map_type == BPF_MAP_TYPE_SOCKHASH)) 525 return true; 526 527 return false; 528 } 529 530 static bool is_ptr_cast_function(enum bpf_func_id func_id) 531 { 532 return func_id == BPF_FUNC_tcp_sock || 533 func_id == BPF_FUNC_sk_fullsock || 534 func_id == BPF_FUNC_skc_to_tcp_sock || 535 func_id == BPF_FUNC_skc_to_tcp6_sock || 536 func_id == BPF_FUNC_skc_to_udp6_sock || 537 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 538 func_id == BPF_FUNC_skc_to_tcp_request_sock; 539 } 540 541 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 542 { 543 return BPF_CLASS(insn->code) == BPF_STX && 544 BPF_MODE(insn->code) == BPF_ATOMIC && 545 insn->imm == BPF_CMPXCHG; 546 } 547 548 /* string representation of 'enum bpf_reg_type' */ 549 static const char * const reg_type_str[] = { 550 [NOT_INIT] = "?", 551 [SCALAR_VALUE] = "inv", 552 [PTR_TO_CTX] = "ctx", 553 [CONST_PTR_TO_MAP] = "map_ptr", 554 [PTR_TO_MAP_VALUE] = "map_value", 555 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 556 [PTR_TO_STACK] = "fp", 557 [PTR_TO_PACKET] = "pkt", 558 [PTR_TO_PACKET_META] = "pkt_meta", 559 [PTR_TO_PACKET_END] = "pkt_end", 560 [PTR_TO_FLOW_KEYS] = "flow_keys", 561 [PTR_TO_SOCKET] = "sock", 562 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 563 [PTR_TO_SOCK_COMMON] = "sock_common", 564 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 565 [PTR_TO_TCP_SOCK] = "tcp_sock", 566 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 567 [PTR_TO_TP_BUFFER] = "tp_buffer", 568 [PTR_TO_XDP_SOCK] = "xdp_sock", 569 [PTR_TO_BTF_ID] = "ptr_", 570 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_", 571 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_", 572 [PTR_TO_MEM] = "mem", 573 [PTR_TO_MEM_OR_NULL] = "mem_or_null", 574 [PTR_TO_RDONLY_BUF] = "rdonly_buf", 575 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null", 576 [PTR_TO_RDWR_BUF] = "rdwr_buf", 577 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null", 578 [PTR_TO_FUNC] = "func", 579 [PTR_TO_MAP_KEY] = "map_key", 580 }; 581 582 static char slot_type_char[] = { 583 [STACK_INVALID] = '?', 584 [STACK_SPILL] = 'r', 585 [STACK_MISC] = 'm', 586 [STACK_ZERO] = '0', 587 }; 588 589 static void print_liveness(struct bpf_verifier_env *env, 590 enum bpf_reg_liveness live) 591 { 592 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 593 verbose(env, "_"); 594 if (live & REG_LIVE_READ) 595 verbose(env, "r"); 596 if (live & REG_LIVE_WRITTEN) 597 verbose(env, "w"); 598 if (live & REG_LIVE_DONE) 599 verbose(env, "D"); 600 } 601 602 static struct bpf_func_state *func(struct bpf_verifier_env *env, 603 const struct bpf_reg_state *reg) 604 { 605 struct bpf_verifier_state *cur = env->cur_state; 606 607 return cur->frame[reg->frameno]; 608 } 609 610 static const char *kernel_type_name(const struct btf* btf, u32 id) 611 { 612 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 613 } 614 615 static void print_verifier_state(struct bpf_verifier_env *env, 616 const struct bpf_func_state *state) 617 { 618 const struct bpf_reg_state *reg; 619 enum bpf_reg_type t; 620 int i; 621 622 if (state->frameno) 623 verbose(env, " frame%d:", state->frameno); 624 for (i = 0; i < MAX_BPF_REG; i++) { 625 reg = &state->regs[i]; 626 t = reg->type; 627 if (t == NOT_INIT) 628 continue; 629 verbose(env, " R%d", i); 630 print_liveness(env, reg->live); 631 verbose(env, "=%s", reg_type_str[t]); 632 if (t == SCALAR_VALUE && reg->precise) 633 verbose(env, "P"); 634 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 635 tnum_is_const(reg->var_off)) { 636 /* reg->off should be 0 for SCALAR_VALUE */ 637 verbose(env, "%lld", reg->var_off.value + reg->off); 638 } else { 639 if (t == PTR_TO_BTF_ID || 640 t == PTR_TO_BTF_ID_OR_NULL || 641 t == PTR_TO_PERCPU_BTF_ID) 642 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 643 verbose(env, "(id=%d", reg->id); 644 if (reg_type_may_be_refcounted_or_null(t)) 645 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 646 if (t != SCALAR_VALUE) 647 verbose(env, ",off=%d", reg->off); 648 if (type_is_pkt_pointer(t)) 649 verbose(env, ",r=%d", reg->range); 650 else if (t == CONST_PTR_TO_MAP || 651 t == PTR_TO_MAP_KEY || 652 t == PTR_TO_MAP_VALUE || 653 t == PTR_TO_MAP_VALUE_OR_NULL) 654 verbose(env, ",ks=%d,vs=%d", 655 reg->map_ptr->key_size, 656 reg->map_ptr->value_size); 657 if (tnum_is_const(reg->var_off)) { 658 /* Typically an immediate SCALAR_VALUE, but 659 * could be a pointer whose offset is too big 660 * for reg->off 661 */ 662 verbose(env, ",imm=%llx", reg->var_off.value); 663 } else { 664 if (reg->smin_value != reg->umin_value && 665 reg->smin_value != S64_MIN) 666 verbose(env, ",smin_value=%lld", 667 (long long)reg->smin_value); 668 if (reg->smax_value != reg->umax_value && 669 reg->smax_value != S64_MAX) 670 verbose(env, ",smax_value=%lld", 671 (long long)reg->smax_value); 672 if (reg->umin_value != 0) 673 verbose(env, ",umin_value=%llu", 674 (unsigned long long)reg->umin_value); 675 if (reg->umax_value != U64_MAX) 676 verbose(env, ",umax_value=%llu", 677 (unsigned long long)reg->umax_value); 678 if (!tnum_is_unknown(reg->var_off)) { 679 char tn_buf[48]; 680 681 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 682 verbose(env, ",var_off=%s", tn_buf); 683 } 684 if (reg->s32_min_value != reg->smin_value && 685 reg->s32_min_value != S32_MIN) 686 verbose(env, ",s32_min_value=%d", 687 (int)(reg->s32_min_value)); 688 if (reg->s32_max_value != reg->smax_value && 689 reg->s32_max_value != S32_MAX) 690 verbose(env, ",s32_max_value=%d", 691 (int)(reg->s32_max_value)); 692 if (reg->u32_min_value != reg->umin_value && 693 reg->u32_min_value != U32_MIN) 694 verbose(env, ",u32_min_value=%d", 695 (int)(reg->u32_min_value)); 696 if (reg->u32_max_value != reg->umax_value && 697 reg->u32_max_value != U32_MAX) 698 verbose(env, ",u32_max_value=%d", 699 (int)(reg->u32_max_value)); 700 } 701 verbose(env, ")"); 702 } 703 } 704 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 705 char types_buf[BPF_REG_SIZE + 1]; 706 bool valid = false; 707 int j; 708 709 for (j = 0; j < BPF_REG_SIZE; j++) { 710 if (state->stack[i].slot_type[j] != STACK_INVALID) 711 valid = true; 712 types_buf[j] = slot_type_char[ 713 state->stack[i].slot_type[j]]; 714 } 715 types_buf[BPF_REG_SIZE] = 0; 716 if (!valid) 717 continue; 718 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 719 print_liveness(env, state->stack[i].spilled_ptr.live); 720 if (state->stack[i].slot_type[0] == STACK_SPILL) { 721 reg = &state->stack[i].spilled_ptr; 722 t = reg->type; 723 verbose(env, "=%s", reg_type_str[t]); 724 if (t == SCALAR_VALUE && reg->precise) 725 verbose(env, "P"); 726 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 727 verbose(env, "%lld", reg->var_off.value + reg->off); 728 } else { 729 verbose(env, "=%s", types_buf); 730 } 731 } 732 if (state->acquired_refs && state->refs[0].id) { 733 verbose(env, " refs=%d", state->refs[0].id); 734 for (i = 1; i < state->acquired_refs; i++) 735 if (state->refs[i].id) 736 verbose(env, ",%d", state->refs[i].id); 737 } 738 if (state->in_callback_fn) 739 verbose(env, " cb"); 740 if (state->in_async_callback_fn) 741 verbose(env, " async_cb"); 742 verbose(env, "\n"); 743 } 744 745 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 746 * small to hold src. This is different from krealloc since we don't want to preserve 747 * the contents of dst. 748 * 749 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 750 * not be allocated. 751 */ 752 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 753 { 754 size_t bytes; 755 756 if (ZERO_OR_NULL_PTR(src)) 757 goto out; 758 759 if (unlikely(check_mul_overflow(n, size, &bytes))) 760 return NULL; 761 762 if (ksize(dst) < bytes) { 763 kfree(dst); 764 dst = kmalloc_track_caller(bytes, flags); 765 if (!dst) 766 return NULL; 767 } 768 769 memcpy(dst, src, bytes); 770 out: 771 return dst ? dst : ZERO_SIZE_PTR; 772 } 773 774 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 775 * small to hold new_n items. new items are zeroed out if the array grows. 776 * 777 * Contrary to krealloc_array, does not free arr if new_n is zero. 778 */ 779 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 780 { 781 if (!new_n || old_n == new_n) 782 goto out; 783 784 arr = krealloc_array(arr, new_n, size, GFP_KERNEL); 785 if (!arr) 786 return NULL; 787 788 if (new_n > old_n) 789 memset(arr + old_n * size, 0, (new_n - old_n) * size); 790 791 out: 792 return arr ? arr : ZERO_SIZE_PTR; 793 } 794 795 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 796 { 797 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 798 sizeof(struct bpf_reference_state), GFP_KERNEL); 799 if (!dst->refs) 800 return -ENOMEM; 801 802 dst->acquired_refs = src->acquired_refs; 803 return 0; 804 } 805 806 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 807 { 808 size_t n = src->allocated_stack / BPF_REG_SIZE; 809 810 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 811 GFP_KERNEL); 812 if (!dst->stack) 813 return -ENOMEM; 814 815 dst->allocated_stack = src->allocated_stack; 816 return 0; 817 } 818 819 static int resize_reference_state(struct bpf_func_state *state, size_t n) 820 { 821 state->refs = realloc_array(state->refs, state->acquired_refs, n, 822 sizeof(struct bpf_reference_state)); 823 if (!state->refs) 824 return -ENOMEM; 825 826 state->acquired_refs = n; 827 return 0; 828 } 829 830 static int grow_stack_state(struct bpf_func_state *state, int size) 831 { 832 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 833 834 if (old_n >= n) 835 return 0; 836 837 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 838 if (!state->stack) 839 return -ENOMEM; 840 841 state->allocated_stack = size; 842 return 0; 843 } 844 845 /* Acquire a pointer id from the env and update the state->refs to include 846 * this new pointer reference. 847 * On success, returns a valid pointer id to associate with the register 848 * On failure, returns a negative errno. 849 */ 850 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 851 { 852 struct bpf_func_state *state = cur_func(env); 853 int new_ofs = state->acquired_refs; 854 int id, err; 855 856 err = resize_reference_state(state, state->acquired_refs + 1); 857 if (err) 858 return err; 859 id = ++env->id_gen; 860 state->refs[new_ofs].id = id; 861 state->refs[new_ofs].insn_idx = insn_idx; 862 863 return id; 864 } 865 866 /* release function corresponding to acquire_reference_state(). Idempotent. */ 867 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 868 { 869 int i, last_idx; 870 871 last_idx = state->acquired_refs - 1; 872 for (i = 0; i < state->acquired_refs; i++) { 873 if (state->refs[i].id == ptr_id) { 874 if (last_idx && i != last_idx) 875 memcpy(&state->refs[i], &state->refs[last_idx], 876 sizeof(*state->refs)); 877 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 878 state->acquired_refs--; 879 return 0; 880 } 881 } 882 return -EINVAL; 883 } 884 885 static void free_func_state(struct bpf_func_state *state) 886 { 887 if (!state) 888 return; 889 kfree(state->refs); 890 kfree(state->stack); 891 kfree(state); 892 } 893 894 static void clear_jmp_history(struct bpf_verifier_state *state) 895 { 896 kfree(state->jmp_history); 897 state->jmp_history = NULL; 898 state->jmp_history_cnt = 0; 899 } 900 901 static void free_verifier_state(struct bpf_verifier_state *state, 902 bool free_self) 903 { 904 int i; 905 906 for (i = 0; i <= state->curframe; i++) { 907 free_func_state(state->frame[i]); 908 state->frame[i] = NULL; 909 } 910 clear_jmp_history(state); 911 if (free_self) 912 kfree(state); 913 } 914 915 /* copy verifier state from src to dst growing dst stack space 916 * when necessary to accommodate larger src stack 917 */ 918 static int copy_func_state(struct bpf_func_state *dst, 919 const struct bpf_func_state *src) 920 { 921 int err; 922 923 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 924 err = copy_reference_state(dst, src); 925 if (err) 926 return err; 927 return copy_stack_state(dst, src); 928 } 929 930 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 931 const struct bpf_verifier_state *src) 932 { 933 struct bpf_func_state *dst; 934 int i, err; 935 936 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 937 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 938 GFP_USER); 939 if (!dst_state->jmp_history) 940 return -ENOMEM; 941 dst_state->jmp_history_cnt = src->jmp_history_cnt; 942 943 /* if dst has more stack frames then src frame, free them */ 944 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 945 free_func_state(dst_state->frame[i]); 946 dst_state->frame[i] = NULL; 947 } 948 dst_state->speculative = src->speculative; 949 dst_state->curframe = src->curframe; 950 dst_state->active_spin_lock = src->active_spin_lock; 951 dst_state->branches = src->branches; 952 dst_state->parent = src->parent; 953 dst_state->first_insn_idx = src->first_insn_idx; 954 dst_state->last_insn_idx = src->last_insn_idx; 955 for (i = 0; i <= src->curframe; i++) { 956 dst = dst_state->frame[i]; 957 if (!dst) { 958 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 959 if (!dst) 960 return -ENOMEM; 961 dst_state->frame[i] = dst; 962 } 963 err = copy_func_state(dst, src->frame[i]); 964 if (err) 965 return err; 966 } 967 return 0; 968 } 969 970 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 971 { 972 while (st) { 973 u32 br = --st->branches; 974 975 /* WARN_ON(br > 1) technically makes sense here, 976 * but see comment in push_stack(), hence: 977 */ 978 WARN_ONCE((int)br < 0, 979 "BUG update_branch_counts:branches_to_explore=%d\n", 980 br); 981 if (br) 982 break; 983 st = st->parent; 984 } 985 } 986 987 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 988 int *insn_idx, bool pop_log) 989 { 990 struct bpf_verifier_state *cur = env->cur_state; 991 struct bpf_verifier_stack_elem *elem, *head = env->head; 992 int err; 993 994 if (env->head == NULL) 995 return -ENOENT; 996 997 if (cur) { 998 err = copy_verifier_state(cur, &head->st); 999 if (err) 1000 return err; 1001 } 1002 if (pop_log) 1003 bpf_vlog_reset(&env->log, head->log_pos); 1004 if (insn_idx) 1005 *insn_idx = head->insn_idx; 1006 if (prev_insn_idx) 1007 *prev_insn_idx = head->prev_insn_idx; 1008 elem = head->next; 1009 free_verifier_state(&head->st, false); 1010 kfree(head); 1011 env->head = elem; 1012 env->stack_size--; 1013 return 0; 1014 } 1015 1016 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1017 int insn_idx, int prev_insn_idx, 1018 bool speculative) 1019 { 1020 struct bpf_verifier_state *cur = env->cur_state; 1021 struct bpf_verifier_stack_elem *elem; 1022 int err; 1023 1024 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1025 if (!elem) 1026 goto err; 1027 1028 elem->insn_idx = insn_idx; 1029 elem->prev_insn_idx = prev_insn_idx; 1030 elem->next = env->head; 1031 elem->log_pos = env->log.len_used; 1032 env->head = elem; 1033 env->stack_size++; 1034 err = copy_verifier_state(&elem->st, cur); 1035 if (err) 1036 goto err; 1037 elem->st.speculative |= speculative; 1038 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1039 verbose(env, "The sequence of %d jumps is too complex.\n", 1040 env->stack_size); 1041 goto err; 1042 } 1043 if (elem->st.parent) { 1044 ++elem->st.parent->branches; 1045 /* WARN_ON(branches > 2) technically makes sense here, 1046 * but 1047 * 1. speculative states will bump 'branches' for non-branch 1048 * instructions 1049 * 2. is_state_visited() heuristics may decide not to create 1050 * a new state for a sequence of branches and all such current 1051 * and cloned states will be pointing to a single parent state 1052 * which might have large 'branches' count. 1053 */ 1054 } 1055 return &elem->st; 1056 err: 1057 free_verifier_state(env->cur_state, true); 1058 env->cur_state = NULL; 1059 /* pop all elements and return */ 1060 while (!pop_stack(env, NULL, NULL, false)); 1061 return NULL; 1062 } 1063 1064 #define CALLER_SAVED_REGS 6 1065 static const int caller_saved[CALLER_SAVED_REGS] = { 1066 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1067 }; 1068 1069 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1070 struct bpf_reg_state *reg); 1071 1072 /* This helper doesn't clear reg->id */ 1073 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1074 { 1075 reg->var_off = tnum_const(imm); 1076 reg->smin_value = (s64)imm; 1077 reg->smax_value = (s64)imm; 1078 reg->umin_value = imm; 1079 reg->umax_value = imm; 1080 1081 reg->s32_min_value = (s32)imm; 1082 reg->s32_max_value = (s32)imm; 1083 reg->u32_min_value = (u32)imm; 1084 reg->u32_max_value = (u32)imm; 1085 } 1086 1087 /* Mark the unknown part of a register (variable offset or scalar value) as 1088 * known to have the value @imm. 1089 */ 1090 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1091 { 1092 /* Clear id, off, and union(map_ptr, range) */ 1093 memset(((u8 *)reg) + sizeof(reg->type), 0, 1094 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1095 ___mark_reg_known(reg, imm); 1096 } 1097 1098 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1099 { 1100 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1101 reg->s32_min_value = (s32)imm; 1102 reg->s32_max_value = (s32)imm; 1103 reg->u32_min_value = (u32)imm; 1104 reg->u32_max_value = (u32)imm; 1105 } 1106 1107 /* Mark the 'variable offset' part of a register as zero. This should be 1108 * used only on registers holding a pointer type. 1109 */ 1110 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1111 { 1112 __mark_reg_known(reg, 0); 1113 } 1114 1115 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1116 { 1117 __mark_reg_known(reg, 0); 1118 reg->type = SCALAR_VALUE; 1119 } 1120 1121 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1122 struct bpf_reg_state *regs, u32 regno) 1123 { 1124 if (WARN_ON(regno >= MAX_BPF_REG)) { 1125 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1126 /* Something bad happened, let's kill all regs */ 1127 for (regno = 0; regno < MAX_BPF_REG; regno++) 1128 __mark_reg_not_init(env, regs + regno); 1129 return; 1130 } 1131 __mark_reg_known_zero(regs + regno); 1132 } 1133 1134 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1135 { 1136 switch (reg->type) { 1137 case PTR_TO_MAP_VALUE_OR_NULL: { 1138 const struct bpf_map *map = reg->map_ptr; 1139 1140 if (map->inner_map_meta) { 1141 reg->type = CONST_PTR_TO_MAP; 1142 reg->map_ptr = map->inner_map_meta; 1143 /* transfer reg's id which is unique for every map_lookup_elem 1144 * as UID of the inner map. 1145 */ 1146 reg->map_uid = reg->id; 1147 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1148 reg->type = PTR_TO_XDP_SOCK; 1149 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1150 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1151 reg->type = PTR_TO_SOCKET; 1152 } else { 1153 reg->type = PTR_TO_MAP_VALUE; 1154 } 1155 break; 1156 } 1157 case PTR_TO_SOCKET_OR_NULL: 1158 reg->type = PTR_TO_SOCKET; 1159 break; 1160 case PTR_TO_SOCK_COMMON_OR_NULL: 1161 reg->type = PTR_TO_SOCK_COMMON; 1162 break; 1163 case PTR_TO_TCP_SOCK_OR_NULL: 1164 reg->type = PTR_TO_TCP_SOCK; 1165 break; 1166 case PTR_TO_BTF_ID_OR_NULL: 1167 reg->type = PTR_TO_BTF_ID; 1168 break; 1169 case PTR_TO_MEM_OR_NULL: 1170 reg->type = PTR_TO_MEM; 1171 break; 1172 case PTR_TO_RDONLY_BUF_OR_NULL: 1173 reg->type = PTR_TO_RDONLY_BUF; 1174 break; 1175 case PTR_TO_RDWR_BUF_OR_NULL: 1176 reg->type = PTR_TO_RDWR_BUF; 1177 break; 1178 default: 1179 WARN_ONCE(1, "unknown nullable register type"); 1180 } 1181 } 1182 1183 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1184 { 1185 return type_is_pkt_pointer(reg->type); 1186 } 1187 1188 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1189 { 1190 return reg_is_pkt_pointer(reg) || 1191 reg->type == PTR_TO_PACKET_END; 1192 } 1193 1194 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1195 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1196 enum bpf_reg_type which) 1197 { 1198 /* The register can already have a range from prior markings. 1199 * This is fine as long as it hasn't been advanced from its 1200 * origin. 1201 */ 1202 return reg->type == which && 1203 reg->id == 0 && 1204 reg->off == 0 && 1205 tnum_equals_const(reg->var_off, 0); 1206 } 1207 1208 /* Reset the min/max bounds of a register */ 1209 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1210 { 1211 reg->smin_value = S64_MIN; 1212 reg->smax_value = S64_MAX; 1213 reg->umin_value = 0; 1214 reg->umax_value = U64_MAX; 1215 1216 reg->s32_min_value = S32_MIN; 1217 reg->s32_max_value = S32_MAX; 1218 reg->u32_min_value = 0; 1219 reg->u32_max_value = U32_MAX; 1220 } 1221 1222 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1223 { 1224 reg->smin_value = S64_MIN; 1225 reg->smax_value = S64_MAX; 1226 reg->umin_value = 0; 1227 reg->umax_value = U64_MAX; 1228 } 1229 1230 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1231 { 1232 reg->s32_min_value = S32_MIN; 1233 reg->s32_max_value = S32_MAX; 1234 reg->u32_min_value = 0; 1235 reg->u32_max_value = U32_MAX; 1236 } 1237 1238 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1239 { 1240 struct tnum var32_off = tnum_subreg(reg->var_off); 1241 1242 /* min signed is max(sign bit) | min(other bits) */ 1243 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1244 var32_off.value | (var32_off.mask & S32_MIN)); 1245 /* max signed is min(sign bit) | max(other bits) */ 1246 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1247 var32_off.value | (var32_off.mask & S32_MAX)); 1248 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1249 reg->u32_max_value = min(reg->u32_max_value, 1250 (u32)(var32_off.value | var32_off.mask)); 1251 } 1252 1253 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1254 { 1255 /* min signed is max(sign bit) | min(other bits) */ 1256 reg->smin_value = max_t(s64, reg->smin_value, 1257 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1258 /* max signed is min(sign bit) | max(other bits) */ 1259 reg->smax_value = min_t(s64, reg->smax_value, 1260 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1261 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1262 reg->umax_value = min(reg->umax_value, 1263 reg->var_off.value | reg->var_off.mask); 1264 } 1265 1266 static void __update_reg_bounds(struct bpf_reg_state *reg) 1267 { 1268 __update_reg32_bounds(reg); 1269 __update_reg64_bounds(reg); 1270 } 1271 1272 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1273 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1274 { 1275 /* Learn sign from signed bounds. 1276 * If we cannot cross the sign boundary, then signed and unsigned bounds 1277 * are the same, so combine. This works even in the negative case, e.g. 1278 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1279 */ 1280 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1281 reg->s32_min_value = reg->u32_min_value = 1282 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1283 reg->s32_max_value = reg->u32_max_value = 1284 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1285 return; 1286 } 1287 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1288 * boundary, so we must be careful. 1289 */ 1290 if ((s32)reg->u32_max_value >= 0) { 1291 /* Positive. We can't learn anything from the smin, but smax 1292 * is positive, hence safe. 1293 */ 1294 reg->s32_min_value = reg->u32_min_value; 1295 reg->s32_max_value = reg->u32_max_value = 1296 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1297 } else if ((s32)reg->u32_min_value < 0) { 1298 /* Negative. We can't learn anything from the smax, but smin 1299 * is negative, hence safe. 1300 */ 1301 reg->s32_min_value = reg->u32_min_value = 1302 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1303 reg->s32_max_value = reg->u32_max_value; 1304 } 1305 } 1306 1307 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1308 { 1309 /* Learn sign from signed bounds. 1310 * If we cannot cross the sign boundary, then signed and unsigned bounds 1311 * are the same, so combine. This works even in the negative case, e.g. 1312 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1313 */ 1314 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1315 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1316 reg->umin_value); 1317 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1318 reg->umax_value); 1319 return; 1320 } 1321 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1322 * boundary, so we must be careful. 1323 */ 1324 if ((s64)reg->umax_value >= 0) { 1325 /* Positive. We can't learn anything from the smin, but smax 1326 * is positive, hence safe. 1327 */ 1328 reg->smin_value = reg->umin_value; 1329 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1330 reg->umax_value); 1331 } else if ((s64)reg->umin_value < 0) { 1332 /* Negative. We can't learn anything from the smax, but smin 1333 * is negative, hence safe. 1334 */ 1335 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1336 reg->umin_value); 1337 reg->smax_value = reg->umax_value; 1338 } 1339 } 1340 1341 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1342 { 1343 __reg32_deduce_bounds(reg); 1344 __reg64_deduce_bounds(reg); 1345 } 1346 1347 /* Attempts to improve var_off based on unsigned min/max information */ 1348 static void __reg_bound_offset(struct bpf_reg_state *reg) 1349 { 1350 struct tnum var64_off = tnum_intersect(reg->var_off, 1351 tnum_range(reg->umin_value, 1352 reg->umax_value)); 1353 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1354 tnum_range(reg->u32_min_value, 1355 reg->u32_max_value)); 1356 1357 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1358 } 1359 1360 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1361 { 1362 reg->umin_value = reg->u32_min_value; 1363 reg->umax_value = reg->u32_max_value; 1364 /* Attempt to pull 32-bit signed bounds into 64-bit bounds 1365 * but must be positive otherwise set to worse case bounds 1366 * and refine later from tnum. 1367 */ 1368 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0) 1369 reg->smax_value = reg->s32_max_value; 1370 else 1371 reg->smax_value = U32_MAX; 1372 if (reg->s32_min_value >= 0) 1373 reg->smin_value = reg->s32_min_value; 1374 else 1375 reg->smin_value = 0; 1376 } 1377 1378 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1379 { 1380 /* special case when 64-bit register has upper 32-bit register 1381 * zeroed. Typically happens after zext or <<32, >>32 sequence 1382 * allowing us to use 32-bit bounds directly, 1383 */ 1384 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1385 __reg_assign_32_into_64(reg); 1386 } else { 1387 /* Otherwise the best we can do is push lower 32bit known and 1388 * unknown bits into register (var_off set from jmp logic) 1389 * then learn as much as possible from the 64-bit tnum 1390 * known and unknown bits. The previous smin/smax bounds are 1391 * invalid here because of jmp32 compare so mark them unknown 1392 * so they do not impact tnum bounds calculation. 1393 */ 1394 __mark_reg64_unbounded(reg); 1395 __update_reg_bounds(reg); 1396 } 1397 1398 /* Intersecting with the old var_off might have improved our bounds 1399 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1400 * then new var_off is (0; 0x7f...fc) which improves our umax. 1401 */ 1402 __reg_deduce_bounds(reg); 1403 __reg_bound_offset(reg); 1404 __update_reg_bounds(reg); 1405 } 1406 1407 static bool __reg64_bound_s32(s64 a) 1408 { 1409 return a > S32_MIN && a < S32_MAX; 1410 } 1411 1412 static bool __reg64_bound_u32(u64 a) 1413 { 1414 return a > U32_MIN && a < U32_MAX; 1415 } 1416 1417 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1418 { 1419 __mark_reg32_unbounded(reg); 1420 1421 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1422 reg->s32_min_value = (s32)reg->smin_value; 1423 reg->s32_max_value = (s32)reg->smax_value; 1424 } 1425 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1426 reg->u32_min_value = (u32)reg->umin_value; 1427 reg->u32_max_value = (u32)reg->umax_value; 1428 } 1429 1430 /* Intersecting with the old var_off might have improved our bounds 1431 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1432 * then new var_off is (0; 0x7f...fc) which improves our umax. 1433 */ 1434 __reg_deduce_bounds(reg); 1435 __reg_bound_offset(reg); 1436 __update_reg_bounds(reg); 1437 } 1438 1439 /* Mark a register as having a completely unknown (scalar) value. */ 1440 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1441 struct bpf_reg_state *reg) 1442 { 1443 /* 1444 * Clear type, id, off, and union(map_ptr, range) and 1445 * padding between 'type' and union 1446 */ 1447 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1448 reg->type = SCALAR_VALUE; 1449 reg->var_off = tnum_unknown; 1450 reg->frameno = 0; 1451 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1452 __mark_reg_unbounded(reg); 1453 } 1454 1455 static void mark_reg_unknown(struct bpf_verifier_env *env, 1456 struct bpf_reg_state *regs, u32 regno) 1457 { 1458 if (WARN_ON(regno >= MAX_BPF_REG)) { 1459 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1460 /* Something bad happened, let's kill all regs except FP */ 1461 for (regno = 0; regno < BPF_REG_FP; regno++) 1462 __mark_reg_not_init(env, regs + regno); 1463 return; 1464 } 1465 __mark_reg_unknown(env, regs + regno); 1466 } 1467 1468 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1469 struct bpf_reg_state *reg) 1470 { 1471 __mark_reg_unknown(env, reg); 1472 reg->type = NOT_INIT; 1473 } 1474 1475 static void mark_reg_not_init(struct bpf_verifier_env *env, 1476 struct bpf_reg_state *regs, u32 regno) 1477 { 1478 if (WARN_ON(regno >= MAX_BPF_REG)) { 1479 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1480 /* Something bad happened, let's kill all regs except FP */ 1481 for (regno = 0; regno < BPF_REG_FP; regno++) 1482 __mark_reg_not_init(env, regs + regno); 1483 return; 1484 } 1485 __mark_reg_not_init(env, regs + regno); 1486 } 1487 1488 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1489 struct bpf_reg_state *regs, u32 regno, 1490 enum bpf_reg_type reg_type, 1491 struct btf *btf, u32 btf_id) 1492 { 1493 if (reg_type == SCALAR_VALUE) { 1494 mark_reg_unknown(env, regs, regno); 1495 return; 1496 } 1497 mark_reg_known_zero(env, regs, regno); 1498 regs[regno].type = PTR_TO_BTF_ID; 1499 regs[regno].btf = btf; 1500 regs[regno].btf_id = btf_id; 1501 } 1502 1503 #define DEF_NOT_SUBREG (0) 1504 static void init_reg_state(struct bpf_verifier_env *env, 1505 struct bpf_func_state *state) 1506 { 1507 struct bpf_reg_state *regs = state->regs; 1508 int i; 1509 1510 for (i = 0; i < MAX_BPF_REG; i++) { 1511 mark_reg_not_init(env, regs, i); 1512 regs[i].live = REG_LIVE_NONE; 1513 regs[i].parent = NULL; 1514 regs[i].subreg_def = DEF_NOT_SUBREG; 1515 } 1516 1517 /* frame pointer */ 1518 regs[BPF_REG_FP].type = PTR_TO_STACK; 1519 mark_reg_known_zero(env, regs, BPF_REG_FP); 1520 regs[BPF_REG_FP].frameno = state->frameno; 1521 } 1522 1523 #define BPF_MAIN_FUNC (-1) 1524 static void init_func_state(struct bpf_verifier_env *env, 1525 struct bpf_func_state *state, 1526 int callsite, int frameno, int subprogno) 1527 { 1528 state->callsite = callsite; 1529 state->frameno = frameno; 1530 state->subprogno = subprogno; 1531 init_reg_state(env, state); 1532 } 1533 1534 /* Similar to push_stack(), but for async callbacks */ 1535 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 1536 int insn_idx, int prev_insn_idx, 1537 int subprog) 1538 { 1539 struct bpf_verifier_stack_elem *elem; 1540 struct bpf_func_state *frame; 1541 1542 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1543 if (!elem) 1544 goto err; 1545 1546 elem->insn_idx = insn_idx; 1547 elem->prev_insn_idx = prev_insn_idx; 1548 elem->next = env->head; 1549 elem->log_pos = env->log.len_used; 1550 env->head = elem; 1551 env->stack_size++; 1552 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1553 verbose(env, 1554 "The sequence of %d jumps is too complex for async cb.\n", 1555 env->stack_size); 1556 goto err; 1557 } 1558 /* Unlike push_stack() do not copy_verifier_state(). 1559 * The caller state doesn't matter. 1560 * This is async callback. It starts in a fresh stack. 1561 * Initialize it similar to do_check_common(). 1562 */ 1563 elem->st.branches = 1; 1564 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1565 if (!frame) 1566 goto err; 1567 init_func_state(env, frame, 1568 BPF_MAIN_FUNC /* callsite */, 1569 0 /* frameno within this callchain */, 1570 subprog /* subprog number within this prog */); 1571 elem->st.frame[0] = frame; 1572 return &elem->st; 1573 err: 1574 free_verifier_state(env->cur_state, true); 1575 env->cur_state = NULL; 1576 /* pop all elements and return */ 1577 while (!pop_stack(env, NULL, NULL, false)); 1578 return NULL; 1579 } 1580 1581 1582 enum reg_arg_type { 1583 SRC_OP, /* register is used as source operand */ 1584 DST_OP, /* register is used as destination operand */ 1585 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1586 }; 1587 1588 static int cmp_subprogs(const void *a, const void *b) 1589 { 1590 return ((struct bpf_subprog_info *)a)->start - 1591 ((struct bpf_subprog_info *)b)->start; 1592 } 1593 1594 static int find_subprog(struct bpf_verifier_env *env, int off) 1595 { 1596 struct bpf_subprog_info *p; 1597 1598 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1599 sizeof(env->subprog_info[0]), cmp_subprogs); 1600 if (!p) 1601 return -ENOENT; 1602 return p - env->subprog_info; 1603 1604 } 1605 1606 static int add_subprog(struct bpf_verifier_env *env, int off) 1607 { 1608 int insn_cnt = env->prog->len; 1609 int ret; 1610 1611 if (off >= insn_cnt || off < 0) { 1612 verbose(env, "call to invalid destination\n"); 1613 return -EINVAL; 1614 } 1615 ret = find_subprog(env, off); 1616 if (ret >= 0) 1617 return ret; 1618 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1619 verbose(env, "too many subprograms\n"); 1620 return -E2BIG; 1621 } 1622 /* determine subprog starts. The end is one before the next starts */ 1623 env->subprog_info[env->subprog_cnt++].start = off; 1624 sort(env->subprog_info, env->subprog_cnt, 1625 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1626 return env->subprog_cnt - 1; 1627 } 1628 1629 struct bpf_kfunc_desc { 1630 struct btf_func_model func_model; 1631 u32 func_id; 1632 s32 imm; 1633 }; 1634 1635 #define MAX_KFUNC_DESCS 256 1636 struct bpf_kfunc_desc_tab { 1637 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 1638 u32 nr_descs; 1639 }; 1640 1641 static int kfunc_desc_cmp_by_id(const void *a, const void *b) 1642 { 1643 const struct bpf_kfunc_desc *d0 = a; 1644 const struct bpf_kfunc_desc *d1 = b; 1645 1646 /* func_id is not greater than BTF_MAX_TYPE */ 1647 return d0->func_id - d1->func_id; 1648 } 1649 1650 static const struct bpf_kfunc_desc * 1651 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id) 1652 { 1653 struct bpf_kfunc_desc desc = { 1654 .func_id = func_id, 1655 }; 1656 struct bpf_kfunc_desc_tab *tab; 1657 1658 tab = prog->aux->kfunc_tab; 1659 return bsearch(&desc, tab->descs, tab->nr_descs, 1660 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id); 1661 } 1662 1663 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id) 1664 { 1665 const struct btf_type *func, *func_proto; 1666 struct bpf_kfunc_desc_tab *tab; 1667 struct bpf_prog_aux *prog_aux; 1668 struct bpf_kfunc_desc *desc; 1669 const char *func_name; 1670 unsigned long addr; 1671 int err; 1672 1673 prog_aux = env->prog->aux; 1674 tab = prog_aux->kfunc_tab; 1675 if (!tab) { 1676 if (!btf_vmlinux) { 1677 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 1678 return -ENOTSUPP; 1679 } 1680 1681 if (!env->prog->jit_requested) { 1682 verbose(env, "JIT is required for calling kernel function\n"); 1683 return -ENOTSUPP; 1684 } 1685 1686 if (!bpf_jit_supports_kfunc_call()) { 1687 verbose(env, "JIT does not support calling kernel function\n"); 1688 return -ENOTSUPP; 1689 } 1690 1691 if (!env->prog->gpl_compatible) { 1692 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 1693 return -EINVAL; 1694 } 1695 1696 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 1697 if (!tab) 1698 return -ENOMEM; 1699 prog_aux->kfunc_tab = tab; 1700 } 1701 1702 if (find_kfunc_desc(env->prog, func_id)) 1703 return 0; 1704 1705 if (tab->nr_descs == MAX_KFUNC_DESCS) { 1706 verbose(env, "too many different kernel function calls\n"); 1707 return -E2BIG; 1708 } 1709 1710 func = btf_type_by_id(btf_vmlinux, func_id); 1711 if (!func || !btf_type_is_func(func)) { 1712 verbose(env, "kernel btf_id %u is not a function\n", 1713 func_id); 1714 return -EINVAL; 1715 } 1716 func_proto = btf_type_by_id(btf_vmlinux, func->type); 1717 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 1718 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 1719 func_id); 1720 return -EINVAL; 1721 } 1722 1723 func_name = btf_name_by_offset(btf_vmlinux, func->name_off); 1724 addr = kallsyms_lookup_name(func_name); 1725 if (!addr) { 1726 verbose(env, "cannot find address for kernel function %s\n", 1727 func_name); 1728 return -EINVAL; 1729 } 1730 1731 desc = &tab->descs[tab->nr_descs++]; 1732 desc->func_id = func_id; 1733 desc->imm = BPF_CAST_CALL(addr) - __bpf_call_base; 1734 err = btf_distill_func_proto(&env->log, btf_vmlinux, 1735 func_proto, func_name, 1736 &desc->func_model); 1737 if (!err) 1738 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1739 kfunc_desc_cmp_by_id, NULL); 1740 return err; 1741 } 1742 1743 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 1744 { 1745 const struct bpf_kfunc_desc *d0 = a; 1746 const struct bpf_kfunc_desc *d1 = b; 1747 1748 if (d0->imm > d1->imm) 1749 return 1; 1750 else if (d0->imm < d1->imm) 1751 return -1; 1752 return 0; 1753 } 1754 1755 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 1756 { 1757 struct bpf_kfunc_desc_tab *tab; 1758 1759 tab = prog->aux->kfunc_tab; 1760 if (!tab) 1761 return; 1762 1763 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1764 kfunc_desc_cmp_by_imm, NULL); 1765 } 1766 1767 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 1768 { 1769 return !!prog->aux->kfunc_tab; 1770 } 1771 1772 const struct btf_func_model * 1773 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 1774 const struct bpf_insn *insn) 1775 { 1776 const struct bpf_kfunc_desc desc = { 1777 .imm = insn->imm, 1778 }; 1779 const struct bpf_kfunc_desc *res; 1780 struct bpf_kfunc_desc_tab *tab; 1781 1782 tab = prog->aux->kfunc_tab; 1783 res = bsearch(&desc, tab->descs, tab->nr_descs, 1784 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 1785 1786 return res ? &res->func_model : NULL; 1787 } 1788 1789 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 1790 { 1791 struct bpf_subprog_info *subprog = env->subprog_info; 1792 struct bpf_insn *insn = env->prog->insnsi; 1793 int i, ret, insn_cnt = env->prog->len; 1794 1795 /* Add entry function. */ 1796 ret = add_subprog(env, 0); 1797 if (ret) 1798 return ret; 1799 1800 for (i = 0; i < insn_cnt; i++, insn++) { 1801 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 1802 !bpf_pseudo_kfunc_call(insn)) 1803 continue; 1804 1805 if (!env->bpf_capable) { 1806 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 1807 return -EPERM; 1808 } 1809 1810 if (bpf_pseudo_func(insn)) { 1811 ret = add_subprog(env, i + insn->imm + 1); 1812 if (ret >= 0) 1813 /* remember subprog */ 1814 insn[1].imm = ret; 1815 } else if (bpf_pseudo_call(insn)) { 1816 ret = add_subprog(env, i + insn->imm + 1); 1817 } else { 1818 ret = add_kfunc_call(env, insn->imm); 1819 } 1820 1821 if (ret < 0) 1822 return ret; 1823 } 1824 1825 /* Add a fake 'exit' subprog which could simplify subprog iteration 1826 * logic. 'subprog_cnt' should not be increased. 1827 */ 1828 subprog[env->subprog_cnt].start = insn_cnt; 1829 1830 if (env->log.level & BPF_LOG_LEVEL2) 1831 for (i = 0; i < env->subprog_cnt; i++) 1832 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1833 1834 return 0; 1835 } 1836 1837 static int check_subprogs(struct bpf_verifier_env *env) 1838 { 1839 int i, subprog_start, subprog_end, off, cur_subprog = 0; 1840 struct bpf_subprog_info *subprog = env->subprog_info; 1841 struct bpf_insn *insn = env->prog->insnsi; 1842 int insn_cnt = env->prog->len; 1843 1844 /* now check that all jumps are within the same subprog */ 1845 subprog_start = subprog[cur_subprog].start; 1846 subprog_end = subprog[cur_subprog + 1].start; 1847 for (i = 0; i < insn_cnt; i++) { 1848 u8 code = insn[i].code; 1849 1850 if (code == (BPF_JMP | BPF_CALL) && 1851 insn[i].imm == BPF_FUNC_tail_call && 1852 insn[i].src_reg != BPF_PSEUDO_CALL) 1853 subprog[cur_subprog].has_tail_call = true; 1854 if (BPF_CLASS(code) == BPF_LD && 1855 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 1856 subprog[cur_subprog].has_ld_abs = true; 1857 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1858 goto next; 1859 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1860 goto next; 1861 off = i + insn[i].off + 1; 1862 if (off < subprog_start || off >= subprog_end) { 1863 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1864 return -EINVAL; 1865 } 1866 next: 1867 if (i == subprog_end - 1) { 1868 /* to avoid fall-through from one subprog into another 1869 * the last insn of the subprog should be either exit 1870 * or unconditional jump back 1871 */ 1872 if (code != (BPF_JMP | BPF_EXIT) && 1873 code != (BPF_JMP | BPF_JA)) { 1874 verbose(env, "last insn is not an exit or jmp\n"); 1875 return -EINVAL; 1876 } 1877 subprog_start = subprog_end; 1878 cur_subprog++; 1879 if (cur_subprog < env->subprog_cnt) 1880 subprog_end = subprog[cur_subprog + 1].start; 1881 } 1882 } 1883 return 0; 1884 } 1885 1886 /* Parentage chain of this register (or stack slot) should take care of all 1887 * issues like callee-saved registers, stack slot allocation time, etc. 1888 */ 1889 static int mark_reg_read(struct bpf_verifier_env *env, 1890 const struct bpf_reg_state *state, 1891 struct bpf_reg_state *parent, u8 flag) 1892 { 1893 bool writes = parent == state->parent; /* Observe write marks */ 1894 int cnt = 0; 1895 1896 while (parent) { 1897 /* if read wasn't screened by an earlier write ... */ 1898 if (writes && state->live & REG_LIVE_WRITTEN) 1899 break; 1900 if (parent->live & REG_LIVE_DONE) { 1901 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1902 reg_type_str[parent->type], 1903 parent->var_off.value, parent->off); 1904 return -EFAULT; 1905 } 1906 /* The first condition is more likely to be true than the 1907 * second, checked it first. 1908 */ 1909 if ((parent->live & REG_LIVE_READ) == flag || 1910 parent->live & REG_LIVE_READ64) 1911 /* The parentage chain never changes and 1912 * this parent was already marked as LIVE_READ. 1913 * There is no need to keep walking the chain again and 1914 * keep re-marking all parents as LIVE_READ. 1915 * This case happens when the same register is read 1916 * multiple times without writes into it in-between. 1917 * Also, if parent has the stronger REG_LIVE_READ64 set, 1918 * then no need to set the weak REG_LIVE_READ32. 1919 */ 1920 break; 1921 /* ... then we depend on parent's value */ 1922 parent->live |= flag; 1923 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1924 if (flag == REG_LIVE_READ64) 1925 parent->live &= ~REG_LIVE_READ32; 1926 state = parent; 1927 parent = state->parent; 1928 writes = true; 1929 cnt++; 1930 } 1931 1932 if (env->longest_mark_read_walk < cnt) 1933 env->longest_mark_read_walk = cnt; 1934 return 0; 1935 } 1936 1937 /* This function is supposed to be used by the following 32-bit optimization 1938 * code only. It returns TRUE if the source or destination register operates 1939 * on 64-bit, otherwise return FALSE. 1940 */ 1941 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1942 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1943 { 1944 u8 code, class, op; 1945 1946 code = insn->code; 1947 class = BPF_CLASS(code); 1948 op = BPF_OP(code); 1949 if (class == BPF_JMP) { 1950 /* BPF_EXIT for "main" will reach here. Return TRUE 1951 * conservatively. 1952 */ 1953 if (op == BPF_EXIT) 1954 return true; 1955 if (op == BPF_CALL) { 1956 /* BPF to BPF call will reach here because of marking 1957 * caller saved clobber with DST_OP_NO_MARK for which we 1958 * don't care the register def because they are anyway 1959 * marked as NOT_INIT already. 1960 */ 1961 if (insn->src_reg == BPF_PSEUDO_CALL) 1962 return false; 1963 /* Helper call will reach here because of arg type 1964 * check, conservatively return TRUE. 1965 */ 1966 if (t == SRC_OP) 1967 return true; 1968 1969 return false; 1970 } 1971 } 1972 1973 if (class == BPF_ALU64 || class == BPF_JMP || 1974 /* BPF_END always use BPF_ALU class. */ 1975 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1976 return true; 1977 1978 if (class == BPF_ALU || class == BPF_JMP32) 1979 return false; 1980 1981 if (class == BPF_LDX) { 1982 if (t != SRC_OP) 1983 return BPF_SIZE(code) == BPF_DW; 1984 /* LDX source must be ptr. */ 1985 return true; 1986 } 1987 1988 if (class == BPF_STX) { 1989 /* BPF_STX (including atomic variants) has multiple source 1990 * operands, one of which is a ptr. Check whether the caller is 1991 * asking about it. 1992 */ 1993 if (t == SRC_OP && reg->type != SCALAR_VALUE) 1994 return true; 1995 return BPF_SIZE(code) == BPF_DW; 1996 } 1997 1998 if (class == BPF_LD) { 1999 u8 mode = BPF_MODE(code); 2000 2001 /* LD_IMM64 */ 2002 if (mode == BPF_IMM) 2003 return true; 2004 2005 /* Both LD_IND and LD_ABS return 32-bit data. */ 2006 if (t != SRC_OP) 2007 return false; 2008 2009 /* Implicit ctx ptr. */ 2010 if (regno == BPF_REG_6) 2011 return true; 2012 2013 /* Explicit source could be any width. */ 2014 return true; 2015 } 2016 2017 if (class == BPF_ST) 2018 /* The only source register for BPF_ST is a ptr. */ 2019 return true; 2020 2021 /* Conservatively return true at default. */ 2022 return true; 2023 } 2024 2025 /* Return the regno defined by the insn, or -1. */ 2026 static int insn_def_regno(const struct bpf_insn *insn) 2027 { 2028 switch (BPF_CLASS(insn->code)) { 2029 case BPF_JMP: 2030 case BPF_JMP32: 2031 case BPF_ST: 2032 return -1; 2033 case BPF_STX: 2034 if (BPF_MODE(insn->code) == BPF_ATOMIC && 2035 (insn->imm & BPF_FETCH)) { 2036 if (insn->imm == BPF_CMPXCHG) 2037 return BPF_REG_0; 2038 else 2039 return insn->src_reg; 2040 } else { 2041 return -1; 2042 } 2043 default: 2044 return insn->dst_reg; 2045 } 2046 } 2047 2048 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 2049 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 2050 { 2051 int dst_reg = insn_def_regno(insn); 2052 2053 if (dst_reg == -1) 2054 return false; 2055 2056 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2057 } 2058 2059 static void mark_insn_zext(struct bpf_verifier_env *env, 2060 struct bpf_reg_state *reg) 2061 { 2062 s32 def_idx = reg->subreg_def; 2063 2064 if (def_idx == DEF_NOT_SUBREG) 2065 return; 2066 2067 env->insn_aux_data[def_idx - 1].zext_dst = true; 2068 /* The dst will be zero extended, so won't be sub-register anymore. */ 2069 reg->subreg_def = DEF_NOT_SUBREG; 2070 } 2071 2072 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2073 enum reg_arg_type t) 2074 { 2075 struct bpf_verifier_state *vstate = env->cur_state; 2076 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2077 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2078 struct bpf_reg_state *reg, *regs = state->regs; 2079 bool rw64; 2080 2081 if (regno >= MAX_BPF_REG) { 2082 verbose(env, "R%d is invalid\n", regno); 2083 return -EINVAL; 2084 } 2085 2086 reg = ®s[regno]; 2087 rw64 = is_reg64(env, insn, regno, reg, t); 2088 if (t == SRC_OP) { 2089 /* check whether register used as source operand can be read */ 2090 if (reg->type == NOT_INIT) { 2091 verbose(env, "R%d !read_ok\n", regno); 2092 return -EACCES; 2093 } 2094 /* We don't need to worry about FP liveness because it's read-only */ 2095 if (regno == BPF_REG_FP) 2096 return 0; 2097 2098 if (rw64) 2099 mark_insn_zext(env, reg); 2100 2101 return mark_reg_read(env, reg, reg->parent, 2102 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2103 } else { 2104 /* check whether register used as dest operand can be written to */ 2105 if (regno == BPF_REG_FP) { 2106 verbose(env, "frame pointer is read only\n"); 2107 return -EACCES; 2108 } 2109 reg->live |= REG_LIVE_WRITTEN; 2110 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2111 if (t == DST_OP) 2112 mark_reg_unknown(env, regs, regno); 2113 } 2114 return 0; 2115 } 2116 2117 /* for any branch, call, exit record the history of jmps in the given state */ 2118 static int push_jmp_history(struct bpf_verifier_env *env, 2119 struct bpf_verifier_state *cur) 2120 { 2121 u32 cnt = cur->jmp_history_cnt; 2122 struct bpf_idx_pair *p; 2123 2124 cnt++; 2125 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 2126 if (!p) 2127 return -ENOMEM; 2128 p[cnt - 1].idx = env->insn_idx; 2129 p[cnt - 1].prev_idx = env->prev_insn_idx; 2130 cur->jmp_history = p; 2131 cur->jmp_history_cnt = cnt; 2132 return 0; 2133 } 2134 2135 /* Backtrack one insn at a time. If idx is not at the top of recorded 2136 * history then previous instruction came from straight line execution. 2137 */ 2138 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2139 u32 *history) 2140 { 2141 u32 cnt = *history; 2142 2143 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2144 i = st->jmp_history[cnt - 1].prev_idx; 2145 (*history)--; 2146 } else { 2147 i--; 2148 } 2149 return i; 2150 } 2151 2152 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2153 { 2154 const struct btf_type *func; 2155 2156 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2157 return NULL; 2158 2159 func = btf_type_by_id(btf_vmlinux, insn->imm); 2160 return btf_name_by_offset(btf_vmlinux, func->name_off); 2161 } 2162 2163 /* For given verifier state backtrack_insn() is called from the last insn to 2164 * the first insn. Its purpose is to compute a bitmask of registers and 2165 * stack slots that needs precision in the parent verifier state. 2166 */ 2167 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2168 u32 *reg_mask, u64 *stack_mask) 2169 { 2170 const struct bpf_insn_cbs cbs = { 2171 .cb_call = disasm_kfunc_name, 2172 .cb_print = verbose, 2173 .private_data = env, 2174 }; 2175 struct bpf_insn *insn = env->prog->insnsi + idx; 2176 u8 class = BPF_CLASS(insn->code); 2177 u8 opcode = BPF_OP(insn->code); 2178 u8 mode = BPF_MODE(insn->code); 2179 u32 dreg = 1u << insn->dst_reg; 2180 u32 sreg = 1u << insn->src_reg; 2181 u32 spi; 2182 2183 if (insn->code == 0) 2184 return 0; 2185 if (env->log.level & BPF_LOG_LEVEL) { 2186 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2187 verbose(env, "%d: ", idx); 2188 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2189 } 2190 2191 if (class == BPF_ALU || class == BPF_ALU64) { 2192 if (!(*reg_mask & dreg)) 2193 return 0; 2194 if (opcode == BPF_MOV) { 2195 if (BPF_SRC(insn->code) == BPF_X) { 2196 /* dreg = sreg 2197 * dreg needs precision after this insn 2198 * sreg needs precision before this insn 2199 */ 2200 *reg_mask &= ~dreg; 2201 *reg_mask |= sreg; 2202 } else { 2203 /* dreg = K 2204 * dreg needs precision after this insn. 2205 * Corresponding register is already marked 2206 * as precise=true in this verifier state. 2207 * No further markings in parent are necessary 2208 */ 2209 *reg_mask &= ~dreg; 2210 } 2211 } else { 2212 if (BPF_SRC(insn->code) == BPF_X) { 2213 /* dreg += sreg 2214 * both dreg and sreg need precision 2215 * before this insn 2216 */ 2217 *reg_mask |= sreg; 2218 } /* else dreg += K 2219 * dreg still needs precision before this insn 2220 */ 2221 } 2222 } else if (class == BPF_LDX) { 2223 if (!(*reg_mask & dreg)) 2224 return 0; 2225 *reg_mask &= ~dreg; 2226 2227 /* scalars can only be spilled into stack w/o losing precision. 2228 * Load from any other memory can be zero extended. 2229 * The desire to keep that precision is already indicated 2230 * by 'precise' mark in corresponding register of this state. 2231 * No further tracking necessary. 2232 */ 2233 if (insn->src_reg != BPF_REG_FP) 2234 return 0; 2235 if (BPF_SIZE(insn->code) != BPF_DW) 2236 return 0; 2237 2238 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2239 * that [fp - off] slot contains scalar that needs to be 2240 * tracked with precision 2241 */ 2242 spi = (-insn->off - 1) / BPF_REG_SIZE; 2243 if (spi >= 64) { 2244 verbose(env, "BUG spi %d\n", spi); 2245 WARN_ONCE(1, "verifier backtracking bug"); 2246 return -EFAULT; 2247 } 2248 *stack_mask |= 1ull << spi; 2249 } else if (class == BPF_STX || class == BPF_ST) { 2250 if (*reg_mask & dreg) 2251 /* stx & st shouldn't be using _scalar_ dst_reg 2252 * to access memory. It means backtracking 2253 * encountered a case of pointer subtraction. 2254 */ 2255 return -ENOTSUPP; 2256 /* scalars can only be spilled into stack */ 2257 if (insn->dst_reg != BPF_REG_FP) 2258 return 0; 2259 if (BPF_SIZE(insn->code) != BPF_DW) 2260 return 0; 2261 spi = (-insn->off - 1) / BPF_REG_SIZE; 2262 if (spi >= 64) { 2263 verbose(env, "BUG spi %d\n", spi); 2264 WARN_ONCE(1, "verifier backtracking bug"); 2265 return -EFAULT; 2266 } 2267 if (!(*stack_mask & (1ull << spi))) 2268 return 0; 2269 *stack_mask &= ~(1ull << spi); 2270 if (class == BPF_STX) 2271 *reg_mask |= sreg; 2272 } else if (class == BPF_JMP || class == BPF_JMP32) { 2273 if (opcode == BPF_CALL) { 2274 if (insn->src_reg == BPF_PSEUDO_CALL) 2275 return -ENOTSUPP; 2276 /* regular helper call sets R0 */ 2277 *reg_mask &= ~1; 2278 if (*reg_mask & 0x3f) { 2279 /* if backtracing was looking for registers R1-R5 2280 * they should have been found already. 2281 */ 2282 verbose(env, "BUG regs %x\n", *reg_mask); 2283 WARN_ONCE(1, "verifier backtracking bug"); 2284 return -EFAULT; 2285 } 2286 } else if (opcode == BPF_EXIT) { 2287 return -ENOTSUPP; 2288 } 2289 } else if (class == BPF_LD) { 2290 if (!(*reg_mask & dreg)) 2291 return 0; 2292 *reg_mask &= ~dreg; 2293 /* It's ld_imm64 or ld_abs or ld_ind. 2294 * For ld_imm64 no further tracking of precision 2295 * into parent is necessary 2296 */ 2297 if (mode == BPF_IND || mode == BPF_ABS) 2298 /* to be analyzed */ 2299 return -ENOTSUPP; 2300 } 2301 return 0; 2302 } 2303 2304 /* the scalar precision tracking algorithm: 2305 * . at the start all registers have precise=false. 2306 * . scalar ranges are tracked as normal through alu and jmp insns. 2307 * . once precise value of the scalar register is used in: 2308 * . ptr + scalar alu 2309 * . if (scalar cond K|scalar) 2310 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2311 * backtrack through the verifier states and mark all registers and 2312 * stack slots with spilled constants that these scalar regisers 2313 * should be precise. 2314 * . during state pruning two registers (or spilled stack slots) 2315 * are equivalent if both are not precise. 2316 * 2317 * Note the verifier cannot simply walk register parentage chain, 2318 * since many different registers and stack slots could have been 2319 * used to compute single precise scalar. 2320 * 2321 * The approach of starting with precise=true for all registers and then 2322 * backtrack to mark a register as not precise when the verifier detects 2323 * that program doesn't care about specific value (e.g., when helper 2324 * takes register as ARG_ANYTHING parameter) is not safe. 2325 * 2326 * It's ok to walk single parentage chain of the verifier states. 2327 * It's possible that this backtracking will go all the way till 1st insn. 2328 * All other branches will be explored for needing precision later. 2329 * 2330 * The backtracking needs to deal with cases like: 2331 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2332 * r9 -= r8 2333 * r5 = r9 2334 * if r5 > 0x79f goto pc+7 2335 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2336 * r5 += 1 2337 * ... 2338 * call bpf_perf_event_output#25 2339 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2340 * 2341 * and this case: 2342 * r6 = 1 2343 * call foo // uses callee's r6 inside to compute r0 2344 * r0 += r6 2345 * if r0 == 0 goto 2346 * 2347 * to track above reg_mask/stack_mask needs to be independent for each frame. 2348 * 2349 * Also if parent's curframe > frame where backtracking started, 2350 * the verifier need to mark registers in both frames, otherwise callees 2351 * may incorrectly prune callers. This is similar to 2352 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2353 * 2354 * For now backtracking falls back into conservative marking. 2355 */ 2356 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2357 struct bpf_verifier_state *st) 2358 { 2359 struct bpf_func_state *func; 2360 struct bpf_reg_state *reg; 2361 int i, j; 2362 2363 /* big hammer: mark all scalars precise in this path. 2364 * pop_stack may still get !precise scalars. 2365 */ 2366 for (; st; st = st->parent) 2367 for (i = 0; i <= st->curframe; i++) { 2368 func = st->frame[i]; 2369 for (j = 0; j < BPF_REG_FP; j++) { 2370 reg = &func->regs[j]; 2371 if (reg->type != SCALAR_VALUE) 2372 continue; 2373 reg->precise = true; 2374 } 2375 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2376 if (func->stack[j].slot_type[0] != STACK_SPILL) 2377 continue; 2378 reg = &func->stack[j].spilled_ptr; 2379 if (reg->type != SCALAR_VALUE) 2380 continue; 2381 reg->precise = true; 2382 } 2383 } 2384 } 2385 2386 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2387 int spi) 2388 { 2389 struct bpf_verifier_state *st = env->cur_state; 2390 int first_idx = st->first_insn_idx; 2391 int last_idx = env->insn_idx; 2392 struct bpf_func_state *func; 2393 struct bpf_reg_state *reg; 2394 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2395 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2396 bool skip_first = true; 2397 bool new_marks = false; 2398 int i, err; 2399 2400 if (!env->bpf_capable) 2401 return 0; 2402 2403 func = st->frame[st->curframe]; 2404 if (regno >= 0) { 2405 reg = &func->regs[regno]; 2406 if (reg->type != SCALAR_VALUE) { 2407 WARN_ONCE(1, "backtracing misuse"); 2408 return -EFAULT; 2409 } 2410 if (!reg->precise) 2411 new_marks = true; 2412 else 2413 reg_mask = 0; 2414 reg->precise = true; 2415 } 2416 2417 while (spi >= 0) { 2418 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 2419 stack_mask = 0; 2420 break; 2421 } 2422 reg = &func->stack[spi].spilled_ptr; 2423 if (reg->type != SCALAR_VALUE) { 2424 stack_mask = 0; 2425 break; 2426 } 2427 if (!reg->precise) 2428 new_marks = true; 2429 else 2430 stack_mask = 0; 2431 reg->precise = true; 2432 break; 2433 } 2434 2435 if (!new_marks) 2436 return 0; 2437 if (!reg_mask && !stack_mask) 2438 return 0; 2439 for (;;) { 2440 DECLARE_BITMAP(mask, 64); 2441 u32 history = st->jmp_history_cnt; 2442 2443 if (env->log.level & BPF_LOG_LEVEL) 2444 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2445 for (i = last_idx;;) { 2446 if (skip_first) { 2447 err = 0; 2448 skip_first = false; 2449 } else { 2450 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2451 } 2452 if (err == -ENOTSUPP) { 2453 mark_all_scalars_precise(env, st); 2454 return 0; 2455 } else if (err) { 2456 return err; 2457 } 2458 if (!reg_mask && !stack_mask) 2459 /* Found assignment(s) into tracked register in this state. 2460 * Since this state is already marked, just return. 2461 * Nothing to be tracked further in the parent state. 2462 */ 2463 return 0; 2464 if (i == first_idx) 2465 break; 2466 i = get_prev_insn_idx(st, i, &history); 2467 if (i >= env->prog->len) { 2468 /* This can happen if backtracking reached insn 0 2469 * and there are still reg_mask or stack_mask 2470 * to backtrack. 2471 * It means the backtracking missed the spot where 2472 * particular register was initialized with a constant. 2473 */ 2474 verbose(env, "BUG backtracking idx %d\n", i); 2475 WARN_ONCE(1, "verifier backtracking bug"); 2476 return -EFAULT; 2477 } 2478 } 2479 st = st->parent; 2480 if (!st) 2481 break; 2482 2483 new_marks = false; 2484 func = st->frame[st->curframe]; 2485 bitmap_from_u64(mask, reg_mask); 2486 for_each_set_bit(i, mask, 32) { 2487 reg = &func->regs[i]; 2488 if (reg->type != SCALAR_VALUE) { 2489 reg_mask &= ~(1u << i); 2490 continue; 2491 } 2492 if (!reg->precise) 2493 new_marks = true; 2494 reg->precise = true; 2495 } 2496 2497 bitmap_from_u64(mask, stack_mask); 2498 for_each_set_bit(i, mask, 64) { 2499 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2500 /* the sequence of instructions: 2501 * 2: (bf) r3 = r10 2502 * 3: (7b) *(u64 *)(r3 -8) = r0 2503 * 4: (79) r4 = *(u64 *)(r10 -8) 2504 * doesn't contain jmps. It's backtracked 2505 * as a single block. 2506 * During backtracking insn 3 is not recognized as 2507 * stack access, so at the end of backtracking 2508 * stack slot fp-8 is still marked in stack_mask. 2509 * However the parent state may not have accessed 2510 * fp-8 and it's "unallocated" stack space. 2511 * In such case fallback to conservative. 2512 */ 2513 mark_all_scalars_precise(env, st); 2514 return 0; 2515 } 2516 2517 if (func->stack[i].slot_type[0] != STACK_SPILL) { 2518 stack_mask &= ~(1ull << i); 2519 continue; 2520 } 2521 reg = &func->stack[i].spilled_ptr; 2522 if (reg->type != SCALAR_VALUE) { 2523 stack_mask &= ~(1ull << i); 2524 continue; 2525 } 2526 if (!reg->precise) 2527 new_marks = true; 2528 reg->precise = true; 2529 } 2530 if (env->log.level & BPF_LOG_LEVEL) { 2531 print_verifier_state(env, func); 2532 verbose(env, "parent %s regs=%x stack=%llx marks\n", 2533 new_marks ? "didn't have" : "already had", 2534 reg_mask, stack_mask); 2535 } 2536 2537 if (!reg_mask && !stack_mask) 2538 break; 2539 if (!new_marks) 2540 break; 2541 2542 last_idx = st->last_insn_idx; 2543 first_idx = st->first_insn_idx; 2544 } 2545 return 0; 2546 } 2547 2548 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2549 { 2550 return __mark_chain_precision(env, regno, -1); 2551 } 2552 2553 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2554 { 2555 return __mark_chain_precision(env, -1, spi); 2556 } 2557 2558 static bool is_spillable_regtype(enum bpf_reg_type type) 2559 { 2560 switch (type) { 2561 case PTR_TO_MAP_VALUE: 2562 case PTR_TO_MAP_VALUE_OR_NULL: 2563 case PTR_TO_STACK: 2564 case PTR_TO_CTX: 2565 case PTR_TO_PACKET: 2566 case PTR_TO_PACKET_META: 2567 case PTR_TO_PACKET_END: 2568 case PTR_TO_FLOW_KEYS: 2569 case CONST_PTR_TO_MAP: 2570 case PTR_TO_SOCKET: 2571 case PTR_TO_SOCKET_OR_NULL: 2572 case PTR_TO_SOCK_COMMON: 2573 case PTR_TO_SOCK_COMMON_OR_NULL: 2574 case PTR_TO_TCP_SOCK: 2575 case PTR_TO_TCP_SOCK_OR_NULL: 2576 case PTR_TO_XDP_SOCK: 2577 case PTR_TO_BTF_ID: 2578 case PTR_TO_BTF_ID_OR_NULL: 2579 case PTR_TO_RDONLY_BUF: 2580 case PTR_TO_RDONLY_BUF_OR_NULL: 2581 case PTR_TO_RDWR_BUF: 2582 case PTR_TO_RDWR_BUF_OR_NULL: 2583 case PTR_TO_PERCPU_BTF_ID: 2584 case PTR_TO_MEM: 2585 case PTR_TO_MEM_OR_NULL: 2586 case PTR_TO_FUNC: 2587 case PTR_TO_MAP_KEY: 2588 return true; 2589 default: 2590 return false; 2591 } 2592 } 2593 2594 /* Does this register contain a constant zero? */ 2595 static bool register_is_null(struct bpf_reg_state *reg) 2596 { 2597 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2598 } 2599 2600 static bool register_is_const(struct bpf_reg_state *reg) 2601 { 2602 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2603 } 2604 2605 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2606 { 2607 return tnum_is_unknown(reg->var_off) && 2608 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2609 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2610 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2611 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2612 } 2613 2614 static bool register_is_bounded(struct bpf_reg_state *reg) 2615 { 2616 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2617 } 2618 2619 static bool __is_pointer_value(bool allow_ptr_leaks, 2620 const struct bpf_reg_state *reg) 2621 { 2622 if (allow_ptr_leaks) 2623 return false; 2624 2625 return reg->type != SCALAR_VALUE; 2626 } 2627 2628 static void save_register_state(struct bpf_func_state *state, 2629 int spi, struct bpf_reg_state *reg) 2630 { 2631 int i; 2632 2633 state->stack[spi].spilled_ptr = *reg; 2634 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2635 2636 for (i = 0; i < BPF_REG_SIZE; i++) 2637 state->stack[spi].slot_type[i] = STACK_SPILL; 2638 } 2639 2640 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 2641 * stack boundary and alignment are checked in check_mem_access() 2642 */ 2643 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 2644 /* stack frame we're writing to */ 2645 struct bpf_func_state *state, 2646 int off, int size, int value_regno, 2647 int insn_idx) 2648 { 2649 struct bpf_func_state *cur; /* state of the current function */ 2650 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2651 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2652 struct bpf_reg_state *reg = NULL; 2653 2654 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 2655 if (err) 2656 return err; 2657 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2658 * so it's aligned access and [off, off + size) are within stack limits 2659 */ 2660 if (!env->allow_ptr_leaks && 2661 state->stack[spi].slot_type[0] == STACK_SPILL && 2662 size != BPF_REG_SIZE) { 2663 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2664 return -EACCES; 2665 } 2666 2667 cur = env->cur_state->frame[env->cur_state->curframe]; 2668 if (value_regno >= 0) 2669 reg = &cur->regs[value_regno]; 2670 2671 if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) && 2672 !register_is_null(reg) && env->bpf_capable) { 2673 if (dst_reg != BPF_REG_FP) { 2674 /* The backtracking logic can only recognize explicit 2675 * stack slot address like [fp - 8]. Other spill of 2676 * scalar via different register has to be conservative. 2677 * Backtrack from here and mark all registers as precise 2678 * that contributed into 'reg' being a constant. 2679 */ 2680 err = mark_chain_precision(env, value_regno); 2681 if (err) 2682 return err; 2683 } 2684 save_register_state(state, spi, reg); 2685 } else if (reg && is_spillable_regtype(reg->type)) { 2686 /* register containing pointer is being spilled into stack */ 2687 if (size != BPF_REG_SIZE) { 2688 verbose_linfo(env, insn_idx, "; "); 2689 verbose(env, "invalid size of register spill\n"); 2690 return -EACCES; 2691 } 2692 2693 if (state != cur && reg->type == PTR_TO_STACK) { 2694 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2695 return -EINVAL; 2696 } 2697 2698 if (!env->bypass_spec_v4) { 2699 bool sanitize = false; 2700 2701 if (state->stack[spi].slot_type[0] == STACK_SPILL && 2702 register_is_const(&state->stack[spi].spilled_ptr)) 2703 sanitize = true; 2704 for (i = 0; i < BPF_REG_SIZE; i++) 2705 if (state->stack[spi].slot_type[i] == STACK_MISC) { 2706 sanitize = true; 2707 break; 2708 } 2709 if (sanitize) { 2710 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 2711 int soff = (-spi - 1) * BPF_REG_SIZE; 2712 2713 /* detected reuse of integer stack slot with a pointer 2714 * which means either llvm is reusing stack slot or 2715 * an attacker is trying to exploit CVE-2018-3639 2716 * (speculative store bypass) 2717 * Have to sanitize that slot with preemptive 2718 * store of zero. 2719 */ 2720 if (*poff && *poff != soff) { 2721 /* disallow programs where single insn stores 2722 * into two different stack slots, since verifier 2723 * cannot sanitize them 2724 */ 2725 verbose(env, 2726 "insn %d cannot access two stack slots fp%d and fp%d", 2727 insn_idx, *poff, soff); 2728 return -EINVAL; 2729 } 2730 *poff = soff; 2731 } 2732 } 2733 save_register_state(state, spi, reg); 2734 } else { 2735 u8 type = STACK_MISC; 2736 2737 /* regular write of data into stack destroys any spilled ptr */ 2738 state->stack[spi].spilled_ptr.type = NOT_INIT; 2739 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2740 if (state->stack[spi].slot_type[0] == STACK_SPILL) 2741 for (i = 0; i < BPF_REG_SIZE; i++) 2742 state->stack[spi].slot_type[i] = STACK_MISC; 2743 2744 /* only mark the slot as written if all 8 bytes were written 2745 * otherwise read propagation may incorrectly stop too soon 2746 * when stack slots are partially written. 2747 * This heuristic means that read propagation will be 2748 * conservative, since it will add reg_live_read marks 2749 * to stack slots all the way to first state when programs 2750 * writes+reads less than 8 bytes 2751 */ 2752 if (size == BPF_REG_SIZE) 2753 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2754 2755 /* when we zero initialize stack slots mark them as such */ 2756 if (reg && register_is_null(reg)) { 2757 /* backtracking doesn't work for STACK_ZERO yet. */ 2758 err = mark_chain_precision(env, value_regno); 2759 if (err) 2760 return err; 2761 type = STACK_ZERO; 2762 } 2763 2764 /* Mark slots affected by this stack write. */ 2765 for (i = 0; i < size; i++) 2766 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2767 type; 2768 } 2769 return 0; 2770 } 2771 2772 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 2773 * known to contain a variable offset. 2774 * This function checks whether the write is permitted and conservatively 2775 * tracks the effects of the write, considering that each stack slot in the 2776 * dynamic range is potentially written to. 2777 * 2778 * 'off' includes 'regno->off'. 2779 * 'value_regno' can be -1, meaning that an unknown value is being written to 2780 * the stack. 2781 * 2782 * Spilled pointers in range are not marked as written because we don't know 2783 * what's going to be actually written. This means that read propagation for 2784 * future reads cannot be terminated by this write. 2785 * 2786 * For privileged programs, uninitialized stack slots are considered 2787 * initialized by this write (even though we don't know exactly what offsets 2788 * are going to be written to). The idea is that we don't want the verifier to 2789 * reject future reads that access slots written to through variable offsets. 2790 */ 2791 static int check_stack_write_var_off(struct bpf_verifier_env *env, 2792 /* func where register points to */ 2793 struct bpf_func_state *state, 2794 int ptr_regno, int off, int size, 2795 int value_regno, int insn_idx) 2796 { 2797 struct bpf_func_state *cur; /* state of the current function */ 2798 int min_off, max_off; 2799 int i, err; 2800 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 2801 bool writing_zero = false; 2802 /* set if the fact that we're writing a zero is used to let any 2803 * stack slots remain STACK_ZERO 2804 */ 2805 bool zero_used = false; 2806 2807 cur = env->cur_state->frame[env->cur_state->curframe]; 2808 ptr_reg = &cur->regs[ptr_regno]; 2809 min_off = ptr_reg->smin_value + off; 2810 max_off = ptr_reg->smax_value + off + size; 2811 if (value_regno >= 0) 2812 value_reg = &cur->regs[value_regno]; 2813 if (value_reg && register_is_null(value_reg)) 2814 writing_zero = true; 2815 2816 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 2817 if (err) 2818 return err; 2819 2820 2821 /* Variable offset writes destroy any spilled pointers in range. */ 2822 for (i = min_off; i < max_off; i++) { 2823 u8 new_type, *stype; 2824 int slot, spi; 2825 2826 slot = -i - 1; 2827 spi = slot / BPF_REG_SIZE; 2828 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2829 2830 if (!env->allow_ptr_leaks 2831 && *stype != NOT_INIT 2832 && *stype != SCALAR_VALUE) { 2833 /* Reject the write if there's are spilled pointers in 2834 * range. If we didn't reject here, the ptr status 2835 * would be erased below (even though not all slots are 2836 * actually overwritten), possibly opening the door to 2837 * leaks. 2838 */ 2839 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 2840 insn_idx, i); 2841 return -EINVAL; 2842 } 2843 2844 /* Erase all spilled pointers. */ 2845 state->stack[spi].spilled_ptr.type = NOT_INIT; 2846 2847 /* Update the slot type. */ 2848 new_type = STACK_MISC; 2849 if (writing_zero && *stype == STACK_ZERO) { 2850 new_type = STACK_ZERO; 2851 zero_used = true; 2852 } 2853 /* If the slot is STACK_INVALID, we check whether it's OK to 2854 * pretend that it will be initialized by this write. The slot 2855 * might not actually be written to, and so if we mark it as 2856 * initialized future reads might leak uninitialized memory. 2857 * For privileged programs, we will accept such reads to slots 2858 * that may or may not be written because, if we're reject 2859 * them, the error would be too confusing. 2860 */ 2861 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 2862 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 2863 insn_idx, i); 2864 return -EINVAL; 2865 } 2866 *stype = new_type; 2867 } 2868 if (zero_used) { 2869 /* backtracking doesn't work for STACK_ZERO yet. */ 2870 err = mark_chain_precision(env, value_regno); 2871 if (err) 2872 return err; 2873 } 2874 return 0; 2875 } 2876 2877 /* When register 'dst_regno' is assigned some values from stack[min_off, 2878 * max_off), we set the register's type according to the types of the 2879 * respective stack slots. If all the stack values are known to be zeros, then 2880 * so is the destination reg. Otherwise, the register is considered to be 2881 * SCALAR. This function does not deal with register filling; the caller must 2882 * ensure that all spilled registers in the stack range have been marked as 2883 * read. 2884 */ 2885 static void mark_reg_stack_read(struct bpf_verifier_env *env, 2886 /* func where src register points to */ 2887 struct bpf_func_state *ptr_state, 2888 int min_off, int max_off, int dst_regno) 2889 { 2890 struct bpf_verifier_state *vstate = env->cur_state; 2891 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2892 int i, slot, spi; 2893 u8 *stype; 2894 int zeros = 0; 2895 2896 for (i = min_off; i < max_off; i++) { 2897 slot = -i - 1; 2898 spi = slot / BPF_REG_SIZE; 2899 stype = ptr_state->stack[spi].slot_type; 2900 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 2901 break; 2902 zeros++; 2903 } 2904 if (zeros == max_off - min_off) { 2905 /* any access_size read into register is zero extended, 2906 * so the whole register == const_zero 2907 */ 2908 __mark_reg_const_zero(&state->regs[dst_regno]); 2909 /* backtracking doesn't support STACK_ZERO yet, 2910 * so mark it precise here, so that later 2911 * backtracking can stop here. 2912 * Backtracking may not need this if this register 2913 * doesn't participate in pointer adjustment. 2914 * Forward propagation of precise flag is not 2915 * necessary either. This mark is only to stop 2916 * backtracking. Any register that contributed 2917 * to const 0 was marked precise before spill. 2918 */ 2919 state->regs[dst_regno].precise = true; 2920 } else { 2921 /* have read misc data from the stack */ 2922 mark_reg_unknown(env, state->regs, dst_regno); 2923 } 2924 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 2925 } 2926 2927 /* Read the stack at 'off' and put the results into the register indicated by 2928 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 2929 * spilled reg. 2930 * 2931 * 'dst_regno' can be -1, meaning that the read value is not going to a 2932 * register. 2933 * 2934 * The access is assumed to be within the current stack bounds. 2935 */ 2936 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 2937 /* func where src register points to */ 2938 struct bpf_func_state *reg_state, 2939 int off, int size, int dst_regno) 2940 { 2941 struct bpf_verifier_state *vstate = env->cur_state; 2942 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2943 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2944 struct bpf_reg_state *reg; 2945 u8 *stype; 2946 2947 stype = reg_state->stack[spi].slot_type; 2948 reg = ®_state->stack[spi].spilled_ptr; 2949 2950 if (stype[0] == STACK_SPILL) { 2951 if (size != BPF_REG_SIZE) { 2952 if (reg->type != SCALAR_VALUE) { 2953 verbose_linfo(env, env->insn_idx, "; "); 2954 verbose(env, "invalid size of register fill\n"); 2955 return -EACCES; 2956 } 2957 if (dst_regno >= 0) { 2958 mark_reg_unknown(env, state->regs, dst_regno); 2959 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 2960 } 2961 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2962 return 0; 2963 } 2964 for (i = 1; i < BPF_REG_SIZE; i++) { 2965 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2966 verbose(env, "corrupted spill memory\n"); 2967 return -EACCES; 2968 } 2969 } 2970 2971 if (dst_regno >= 0) { 2972 /* restore register state from stack */ 2973 state->regs[dst_regno] = *reg; 2974 /* mark reg as written since spilled pointer state likely 2975 * has its liveness marks cleared by is_state_visited() 2976 * which resets stack/reg liveness for state transitions 2977 */ 2978 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 2979 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 2980 /* If dst_regno==-1, the caller is asking us whether 2981 * it is acceptable to use this value as a SCALAR_VALUE 2982 * (e.g. for XADD). 2983 * We must not allow unprivileged callers to do that 2984 * with spilled pointers. 2985 */ 2986 verbose(env, "leaking pointer from stack off %d\n", 2987 off); 2988 return -EACCES; 2989 } 2990 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2991 } else { 2992 u8 type; 2993 2994 for (i = 0; i < size; i++) { 2995 type = stype[(slot - i) % BPF_REG_SIZE]; 2996 if (type == STACK_MISC) 2997 continue; 2998 if (type == STACK_ZERO) 2999 continue; 3000 verbose(env, "invalid read from stack off %d+%d size %d\n", 3001 off, i, size); 3002 return -EACCES; 3003 } 3004 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3005 if (dst_regno >= 0) 3006 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 3007 } 3008 return 0; 3009 } 3010 3011 enum stack_access_src { 3012 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 3013 ACCESS_HELPER = 2, /* the access is performed by a helper */ 3014 }; 3015 3016 static int check_stack_range_initialized(struct bpf_verifier_env *env, 3017 int regno, int off, int access_size, 3018 bool zero_size_allowed, 3019 enum stack_access_src type, 3020 struct bpf_call_arg_meta *meta); 3021 3022 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 3023 { 3024 return cur_regs(env) + regno; 3025 } 3026 3027 /* Read the stack at 'ptr_regno + off' and put the result into the register 3028 * 'dst_regno'. 3029 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 3030 * but not its variable offset. 3031 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 3032 * 3033 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 3034 * filling registers (i.e. reads of spilled register cannot be detected when 3035 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 3036 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 3037 * offset; for a fixed offset check_stack_read_fixed_off should be used 3038 * instead. 3039 */ 3040 static int check_stack_read_var_off(struct bpf_verifier_env *env, 3041 int ptr_regno, int off, int size, int dst_regno) 3042 { 3043 /* The state of the source register. */ 3044 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3045 struct bpf_func_state *ptr_state = func(env, reg); 3046 int err; 3047 int min_off, max_off; 3048 3049 /* Note that we pass a NULL meta, so raw access will not be permitted. 3050 */ 3051 err = check_stack_range_initialized(env, ptr_regno, off, size, 3052 false, ACCESS_DIRECT, NULL); 3053 if (err) 3054 return err; 3055 3056 min_off = reg->smin_value + off; 3057 max_off = reg->smax_value + off; 3058 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3059 return 0; 3060 } 3061 3062 /* check_stack_read dispatches to check_stack_read_fixed_off or 3063 * check_stack_read_var_off. 3064 * 3065 * The caller must ensure that the offset falls within the allocated stack 3066 * bounds. 3067 * 3068 * 'dst_regno' is a register which will receive the value from the stack. It 3069 * can be -1, meaning that the read value is not going to a register. 3070 */ 3071 static int check_stack_read(struct bpf_verifier_env *env, 3072 int ptr_regno, int off, int size, 3073 int dst_regno) 3074 { 3075 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3076 struct bpf_func_state *state = func(env, reg); 3077 int err; 3078 /* Some accesses are only permitted with a static offset. */ 3079 bool var_off = !tnum_is_const(reg->var_off); 3080 3081 /* The offset is required to be static when reads don't go to a 3082 * register, in order to not leak pointers (see 3083 * check_stack_read_fixed_off). 3084 */ 3085 if (dst_regno < 0 && var_off) { 3086 char tn_buf[48]; 3087 3088 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3089 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3090 tn_buf, off, size); 3091 return -EACCES; 3092 } 3093 /* Variable offset is prohibited for unprivileged mode for simplicity 3094 * since it requires corresponding support in Spectre masking for stack 3095 * ALU. See also retrieve_ptr_limit(). 3096 */ 3097 if (!env->bypass_spec_v1 && var_off) { 3098 char tn_buf[48]; 3099 3100 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3101 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3102 ptr_regno, tn_buf); 3103 return -EACCES; 3104 } 3105 3106 if (!var_off) { 3107 off += reg->var_off.value; 3108 err = check_stack_read_fixed_off(env, state, off, size, 3109 dst_regno); 3110 } else { 3111 /* Variable offset stack reads need more conservative handling 3112 * than fixed offset ones. Note that dst_regno >= 0 on this 3113 * branch. 3114 */ 3115 err = check_stack_read_var_off(env, ptr_regno, off, size, 3116 dst_regno); 3117 } 3118 return err; 3119 } 3120 3121 3122 /* check_stack_write dispatches to check_stack_write_fixed_off or 3123 * check_stack_write_var_off. 3124 * 3125 * 'ptr_regno' is the register used as a pointer into the stack. 3126 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3127 * 'value_regno' is the register whose value we're writing to the stack. It can 3128 * be -1, meaning that we're not writing from a register. 3129 * 3130 * The caller must ensure that the offset falls within the maximum stack size. 3131 */ 3132 static int check_stack_write(struct bpf_verifier_env *env, 3133 int ptr_regno, int off, int size, 3134 int value_regno, int insn_idx) 3135 { 3136 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3137 struct bpf_func_state *state = func(env, reg); 3138 int err; 3139 3140 if (tnum_is_const(reg->var_off)) { 3141 off += reg->var_off.value; 3142 err = check_stack_write_fixed_off(env, state, off, size, 3143 value_regno, insn_idx); 3144 } else { 3145 /* Variable offset stack reads need more conservative handling 3146 * than fixed offset ones. 3147 */ 3148 err = check_stack_write_var_off(env, state, 3149 ptr_regno, off, size, 3150 value_regno, insn_idx); 3151 } 3152 return err; 3153 } 3154 3155 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 3156 int off, int size, enum bpf_access_type type) 3157 { 3158 struct bpf_reg_state *regs = cur_regs(env); 3159 struct bpf_map *map = regs[regno].map_ptr; 3160 u32 cap = bpf_map_flags_to_cap(map); 3161 3162 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 3163 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 3164 map->value_size, off, size); 3165 return -EACCES; 3166 } 3167 3168 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 3169 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 3170 map->value_size, off, size); 3171 return -EACCES; 3172 } 3173 3174 return 0; 3175 } 3176 3177 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 3178 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 3179 int off, int size, u32 mem_size, 3180 bool zero_size_allowed) 3181 { 3182 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 3183 struct bpf_reg_state *reg; 3184 3185 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 3186 return 0; 3187 3188 reg = &cur_regs(env)[regno]; 3189 switch (reg->type) { 3190 case PTR_TO_MAP_KEY: 3191 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 3192 mem_size, off, size); 3193 break; 3194 case PTR_TO_MAP_VALUE: 3195 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 3196 mem_size, off, size); 3197 break; 3198 case PTR_TO_PACKET: 3199 case PTR_TO_PACKET_META: 3200 case PTR_TO_PACKET_END: 3201 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 3202 off, size, regno, reg->id, off, mem_size); 3203 break; 3204 case PTR_TO_MEM: 3205 default: 3206 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 3207 mem_size, off, size); 3208 } 3209 3210 return -EACCES; 3211 } 3212 3213 /* check read/write into a memory region with possible variable offset */ 3214 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 3215 int off, int size, u32 mem_size, 3216 bool zero_size_allowed) 3217 { 3218 struct bpf_verifier_state *vstate = env->cur_state; 3219 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3220 struct bpf_reg_state *reg = &state->regs[regno]; 3221 int err; 3222 3223 /* We may have adjusted the register pointing to memory region, so we 3224 * need to try adding each of min_value and max_value to off 3225 * to make sure our theoretical access will be safe. 3226 */ 3227 if (env->log.level & BPF_LOG_LEVEL) 3228 print_verifier_state(env, state); 3229 3230 /* The minimum value is only important with signed 3231 * comparisons where we can't assume the floor of a 3232 * value is 0. If we are using signed variables for our 3233 * index'es we need to make sure that whatever we use 3234 * will have a set floor within our range. 3235 */ 3236 if (reg->smin_value < 0 && 3237 (reg->smin_value == S64_MIN || 3238 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 3239 reg->smin_value + off < 0)) { 3240 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3241 regno); 3242 return -EACCES; 3243 } 3244 err = __check_mem_access(env, regno, reg->smin_value + off, size, 3245 mem_size, zero_size_allowed); 3246 if (err) { 3247 verbose(env, "R%d min value is outside of the allowed memory range\n", 3248 regno); 3249 return err; 3250 } 3251 3252 /* If we haven't set a max value then we need to bail since we can't be 3253 * sure we won't do bad things. 3254 * If reg->umax_value + off could overflow, treat that as unbounded too. 3255 */ 3256 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 3257 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 3258 regno); 3259 return -EACCES; 3260 } 3261 err = __check_mem_access(env, regno, reg->umax_value + off, size, 3262 mem_size, zero_size_allowed); 3263 if (err) { 3264 verbose(env, "R%d max value is outside of the allowed memory range\n", 3265 regno); 3266 return err; 3267 } 3268 3269 return 0; 3270 } 3271 3272 /* check read/write into a map element with possible variable offset */ 3273 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 3274 int off, int size, bool zero_size_allowed) 3275 { 3276 struct bpf_verifier_state *vstate = env->cur_state; 3277 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3278 struct bpf_reg_state *reg = &state->regs[regno]; 3279 struct bpf_map *map = reg->map_ptr; 3280 int err; 3281 3282 err = check_mem_region_access(env, regno, off, size, map->value_size, 3283 zero_size_allowed); 3284 if (err) 3285 return err; 3286 3287 if (map_value_has_spin_lock(map)) { 3288 u32 lock = map->spin_lock_off; 3289 3290 /* if any part of struct bpf_spin_lock can be touched by 3291 * load/store reject this program. 3292 * To check that [x1, x2) overlaps with [y1, y2) 3293 * it is sufficient to check x1 < y2 && y1 < x2. 3294 */ 3295 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 3296 lock < reg->umax_value + off + size) { 3297 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 3298 return -EACCES; 3299 } 3300 } 3301 if (map_value_has_timer(map)) { 3302 u32 t = map->timer_off; 3303 3304 if (reg->smin_value + off < t + sizeof(struct bpf_timer) && 3305 t < reg->umax_value + off + size) { 3306 verbose(env, "bpf_timer cannot be accessed directly by load/store\n"); 3307 return -EACCES; 3308 } 3309 } 3310 return err; 3311 } 3312 3313 #define MAX_PACKET_OFF 0xffff 3314 3315 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog) 3316 { 3317 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type; 3318 } 3319 3320 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 3321 const struct bpf_call_arg_meta *meta, 3322 enum bpf_access_type t) 3323 { 3324 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 3325 3326 switch (prog_type) { 3327 /* Program types only with direct read access go here! */ 3328 case BPF_PROG_TYPE_LWT_IN: 3329 case BPF_PROG_TYPE_LWT_OUT: 3330 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 3331 case BPF_PROG_TYPE_SK_REUSEPORT: 3332 case BPF_PROG_TYPE_FLOW_DISSECTOR: 3333 case BPF_PROG_TYPE_CGROUP_SKB: 3334 if (t == BPF_WRITE) 3335 return false; 3336 fallthrough; 3337 3338 /* Program types with direct read + write access go here! */ 3339 case BPF_PROG_TYPE_SCHED_CLS: 3340 case BPF_PROG_TYPE_SCHED_ACT: 3341 case BPF_PROG_TYPE_XDP: 3342 case BPF_PROG_TYPE_LWT_XMIT: 3343 case BPF_PROG_TYPE_SK_SKB: 3344 case BPF_PROG_TYPE_SK_MSG: 3345 if (meta) 3346 return meta->pkt_access; 3347 3348 env->seen_direct_write = true; 3349 return true; 3350 3351 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 3352 if (t == BPF_WRITE) 3353 env->seen_direct_write = true; 3354 3355 return true; 3356 3357 default: 3358 return false; 3359 } 3360 } 3361 3362 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 3363 int size, bool zero_size_allowed) 3364 { 3365 struct bpf_reg_state *regs = cur_regs(env); 3366 struct bpf_reg_state *reg = ®s[regno]; 3367 int err; 3368 3369 /* We may have added a variable offset to the packet pointer; but any 3370 * reg->range we have comes after that. We are only checking the fixed 3371 * offset. 3372 */ 3373 3374 /* We don't allow negative numbers, because we aren't tracking enough 3375 * detail to prove they're safe. 3376 */ 3377 if (reg->smin_value < 0) { 3378 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3379 regno); 3380 return -EACCES; 3381 } 3382 3383 err = reg->range < 0 ? -EINVAL : 3384 __check_mem_access(env, regno, off, size, reg->range, 3385 zero_size_allowed); 3386 if (err) { 3387 verbose(env, "R%d offset is outside of the packet\n", regno); 3388 return err; 3389 } 3390 3391 /* __check_mem_access has made sure "off + size - 1" is within u16. 3392 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 3393 * otherwise find_good_pkt_pointers would have refused to set range info 3394 * that __check_mem_access would have rejected this pkt access. 3395 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 3396 */ 3397 env->prog->aux->max_pkt_offset = 3398 max_t(u32, env->prog->aux->max_pkt_offset, 3399 off + reg->umax_value + size - 1); 3400 3401 return err; 3402 } 3403 3404 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 3405 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 3406 enum bpf_access_type t, enum bpf_reg_type *reg_type, 3407 struct btf **btf, u32 *btf_id) 3408 { 3409 struct bpf_insn_access_aux info = { 3410 .reg_type = *reg_type, 3411 .log = &env->log, 3412 }; 3413 3414 if (env->ops->is_valid_access && 3415 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 3416 /* A non zero info.ctx_field_size indicates that this field is a 3417 * candidate for later verifier transformation to load the whole 3418 * field and then apply a mask when accessed with a narrower 3419 * access than actual ctx access size. A zero info.ctx_field_size 3420 * will only allow for whole field access and rejects any other 3421 * type of narrower access. 3422 */ 3423 *reg_type = info.reg_type; 3424 3425 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) { 3426 *btf = info.btf; 3427 *btf_id = info.btf_id; 3428 } else { 3429 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 3430 } 3431 /* remember the offset of last byte accessed in ctx */ 3432 if (env->prog->aux->max_ctx_offset < off + size) 3433 env->prog->aux->max_ctx_offset = off + size; 3434 return 0; 3435 } 3436 3437 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 3438 return -EACCES; 3439 } 3440 3441 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 3442 int size) 3443 { 3444 if (size < 0 || off < 0 || 3445 (u64)off + size > sizeof(struct bpf_flow_keys)) { 3446 verbose(env, "invalid access to flow keys off=%d size=%d\n", 3447 off, size); 3448 return -EACCES; 3449 } 3450 return 0; 3451 } 3452 3453 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 3454 u32 regno, int off, int size, 3455 enum bpf_access_type t) 3456 { 3457 struct bpf_reg_state *regs = cur_regs(env); 3458 struct bpf_reg_state *reg = ®s[regno]; 3459 struct bpf_insn_access_aux info = {}; 3460 bool valid; 3461 3462 if (reg->smin_value < 0) { 3463 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3464 regno); 3465 return -EACCES; 3466 } 3467 3468 switch (reg->type) { 3469 case PTR_TO_SOCK_COMMON: 3470 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 3471 break; 3472 case PTR_TO_SOCKET: 3473 valid = bpf_sock_is_valid_access(off, size, t, &info); 3474 break; 3475 case PTR_TO_TCP_SOCK: 3476 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 3477 break; 3478 case PTR_TO_XDP_SOCK: 3479 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 3480 break; 3481 default: 3482 valid = false; 3483 } 3484 3485 3486 if (valid) { 3487 env->insn_aux_data[insn_idx].ctx_field_size = 3488 info.ctx_field_size; 3489 return 0; 3490 } 3491 3492 verbose(env, "R%d invalid %s access off=%d size=%d\n", 3493 regno, reg_type_str[reg->type], off, size); 3494 3495 return -EACCES; 3496 } 3497 3498 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 3499 { 3500 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 3501 } 3502 3503 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 3504 { 3505 const struct bpf_reg_state *reg = reg_state(env, regno); 3506 3507 return reg->type == PTR_TO_CTX; 3508 } 3509 3510 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 3511 { 3512 const struct bpf_reg_state *reg = reg_state(env, regno); 3513 3514 return type_is_sk_pointer(reg->type); 3515 } 3516 3517 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 3518 { 3519 const struct bpf_reg_state *reg = reg_state(env, regno); 3520 3521 return type_is_pkt_pointer(reg->type); 3522 } 3523 3524 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 3525 { 3526 const struct bpf_reg_state *reg = reg_state(env, regno); 3527 3528 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 3529 return reg->type == PTR_TO_FLOW_KEYS; 3530 } 3531 3532 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 3533 const struct bpf_reg_state *reg, 3534 int off, int size, bool strict) 3535 { 3536 struct tnum reg_off; 3537 int ip_align; 3538 3539 /* Byte size accesses are always allowed. */ 3540 if (!strict || size == 1) 3541 return 0; 3542 3543 /* For platforms that do not have a Kconfig enabling 3544 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 3545 * NET_IP_ALIGN is universally set to '2'. And on platforms 3546 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 3547 * to this code only in strict mode where we want to emulate 3548 * the NET_IP_ALIGN==2 checking. Therefore use an 3549 * unconditional IP align value of '2'. 3550 */ 3551 ip_align = 2; 3552 3553 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 3554 if (!tnum_is_aligned(reg_off, size)) { 3555 char tn_buf[48]; 3556 3557 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3558 verbose(env, 3559 "misaligned packet access off %d+%s+%d+%d size %d\n", 3560 ip_align, tn_buf, reg->off, off, size); 3561 return -EACCES; 3562 } 3563 3564 return 0; 3565 } 3566 3567 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 3568 const struct bpf_reg_state *reg, 3569 const char *pointer_desc, 3570 int off, int size, bool strict) 3571 { 3572 struct tnum reg_off; 3573 3574 /* Byte size accesses are always allowed. */ 3575 if (!strict || size == 1) 3576 return 0; 3577 3578 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 3579 if (!tnum_is_aligned(reg_off, size)) { 3580 char tn_buf[48]; 3581 3582 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3583 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 3584 pointer_desc, tn_buf, reg->off, off, size); 3585 return -EACCES; 3586 } 3587 3588 return 0; 3589 } 3590 3591 static int check_ptr_alignment(struct bpf_verifier_env *env, 3592 const struct bpf_reg_state *reg, int off, 3593 int size, bool strict_alignment_once) 3594 { 3595 bool strict = env->strict_alignment || strict_alignment_once; 3596 const char *pointer_desc = ""; 3597 3598 switch (reg->type) { 3599 case PTR_TO_PACKET: 3600 case PTR_TO_PACKET_META: 3601 /* Special case, because of NET_IP_ALIGN. Given metadata sits 3602 * right in front, treat it the very same way. 3603 */ 3604 return check_pkt_ptr_alignment(env, reg, off, size, strict); 3605 case PTR_TO_FLOW_KEYS: 3606 pointer_desc = "flow keys "; 3607 break; 3608 case PTR_TO_MAP_KEY: 3609 pointer_desc = "key "; 3610 break; 3611 case PTR_TO_MAP_VALUE: 3612 pointer_desc = "value "; 3613 break; 3614 case PTR_TO_CTX: 3615 pointer_desc = "context "; 3616 break; 3617 case PTR_TO_STACK: 3618 pointer_desc = "stack "; 3619 /* The stack spill tracking logic in check_stack_write_fixed_off() 3620 * and check_stack_read_fixed_off() relies on stack accesses being 3621 * aligned. 3622 */ 3623 strict = true; 3624 break; 3625 case PTR_TO_SOCKET: 3626 pointer_desc = "sock "; 3627 break; 3628 case PTR_TO_SOCK_COMMON: 3629 pointer_desc = "sock_common "; 3630 break; 3631 case PTR_TO_TCP_SOCK: 3632 pointer_desc = "tcp_sock "; 3633 break; 3634 case PTR_TO_XDP_SOCK: 3635 pointer_desc = "xdp_sock "; 3636 break; 3637 default: 3638 break; 3639 } 3640 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 3641 strict); 3642 } 3643 3644 static int update_stack_depth(struct bpf_verifier_env *env, 3645 const struct bpf_func_state *func, 3646 int off) 3647 { 3648 u16 stack = env->subprog_info[func->subprogno].stack_depth; 3649 3650 if (stack >= -off) 3651 return 0; 3652 3653 /* update known max for given subprogram */ 3654 env->subprog_info[func->subprogno].stack_depth = -off; 3655 return 0; 3656 } 3657 3658 /* starting from main bpf function walk all instructions of the function 3659 * and recursively walk all callees that given function can call. 3660 * Ignore jump and exit insns. 3661 * Since recursion is prevented by check_cfg() this algorithm 3662 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 3663 */ 3664 static int check_max_stack_depth(struct bpf_verifier_env *env) 3665 { 3666 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 3667 struct bpf_subprog_info *subprog = env->subprog_info; 3668 struct bpf_insn *insn = env->prog->insnsi; 3669 bool tail_call_reachable = false; 3670 int ret_insn[MAX_CALL_FRAMES]; 3671 int ret_prog[MAX_CALL_FRAMES]; 3672 int j; 3673 3674 process_func: 3675 /* protect against potential stack overflow that might happen when 3676 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 3677 * depth for such case down to 256 so that the worst case scenario 3678 * would result in 8k stack size (32 which is tailcall limit * 256 = 3679 * 8k). 3680 * 3681 * To get the idea what might happen, see an example: 3682 * func1 -> sub rsp, 128 3683 * subfunc1 -> sub rsp, 256 3684 * tailcall1 -> add rsp, 256 3685 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 3686 * subfunc2 -> sub rsp, 64 3687 * subfunc22 -> sub rsp, 128 3688 * tailcall2 -> add rsp, 128 3689 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 3690 * 3691 * tailcall will unwind the current stack frame but it will not get rid 3692 * of caller's stack as shown on the example above. 3693 */ 3694 if (idx && subprog[idx].has_tail_call && depth >= 256) { 3695 verbose(env, 3696 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 3697 depth); 3698 return -EACCES; 3699 } 3700 /* round up to 32-bytes, since this is granularity 3701 * of interpreter stack size 3702 */ 3703 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3704 if (depth > MAX_BPF_STACK) { 3705 verbose(env, "combined stack size of %d calls is %d. Too large\n", 3706 frame + 1, depth); 3707 return -EACCES; 3708 } 3709 continue_func: 3710 subprog_end = subprog[idx + 1].start; 3711 for (; i < subprog_end; i++) { 3712 int next_insn; 3713 3714 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 3715 continue; 3716 /* remember insn and function to return to */ 3717 ret_insn[frame] = i + 1; 3718 ret_prog[frame] = idx; 3719 3720 /* find the callee */ 3721 next_insn = i + insn[i].imm + 1; 3722 idx = find_subprog(env, next_insn); 3723 if (idx < 0) { 3724 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3725 next_insn); 3726 return -EFAULT; 3727 } 3728 if (subprog[idx].is_async_cb) { 3729 if (subprog[idx].has_tail_call) { 3730 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 3731 return -EFAULT; 3732 } 3733 /* async callbacks don't increase bpf prog stack size */ 3734 continue; 3735 } 3736 i = next_insn; 3737 3738 if (subprog[idx].has_tail_call) 3739 tail_call_reachable = true; 3740 3741 frame++; 3742 if (frame >= MAX_CALL_FRAMES) { 3743 verbose(env, "the call stack of %d frames is too deep !\n", 3744 frame); 3745 return -E2BIG; 3746 } 3747 goto process_func; 3748 } 3749 /* if tail call got detected across bpf2bpf calls then mark each of the 3750 * currently present subprog frames as tail call reachable subprogs; 3751 * this info will be utilized by JIT so that we will be preserving the 3752 * tail call counter throughout bpf2bpf calls combined with tailcalls 3753 */ 3754 if (tail_call_reachable) 3755 for (j = 0; j < frame; j++) 3756 subprog[ret_prog[j]].tail_call_reachable = true; 3757 if (subprog[0].tail_call_reachable) 3758 env->prog->aux->tail_call_reachable = true; 3759 3760 /* end of for() loop means the last insn of the 'subprog' 3761 * was reached. Doesn't matter whether it was JA or EXIT 3762 */ 3763 if (frame == 0) 3764 return 0; 3765 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3766 frame--; 3767 i = ret_insn[frame]; 3768 idx = ret_prog[frame]; 3769 goto continue_func; 3770 } 3771 3772 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 3773 static int get_callee_stack_depth(struct bpf_verifier_env *env, 3774 const struct bpf_insn *insn, int idx) 3775 { 3776 int start = idx + insn->imm + 1, subprog; 3777 3778 subprog = find_subprog(env, start); 3779 if (subprog < 0) { 3780 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3781 start); 3782 return -EFAULT; 3783 } 3784 return env->subprog_info[subprog].stack_depth; 3785 } 3786 #endif 3787 3788 int check_ctx_reg(struct bpf_verifier_env *env, 3789 const struct bpf_reg_state *reg, int regno) 3790 { 3791 /* Access to ctx or passing it to a helper is only allowed in 3792 * its original, unmodified form. 3793 */ 3794 3795 if (reg->off) { 3796 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 3797 regno, reg->off); 3798 return -EACCES; 3799 } 3800 3801 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3802 char tn_buf[48]; 3803 3804 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3805 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 3806 return -EACCES; 3807 } 3808 3809 return 0; 3810 } 3811 3812 static int __check_buffer_access(struct bpf_verifier_env *env, 3813 const char *buf_info, 3814 const struct bpf_reg_state *reg, 3815 int regno, int off, int size) 3816 { 3817 if (off < 0) { 3818 verbose(env, 3819 "R%d invalid %s buffer access: off=%d, size=%d\n", 3820 regno, buf_info, off, size); 3821 return -EACCES; 3822 } 3823 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3824 char tn_buf[48]; 3825 3826 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3827 verbose(env, 3828 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 3829 regno, off, tn_buf); 3830 return -EACCES; 3831 } 3832 3833 return 0; 3834 } 3835 3836 static int check_tp_buffer_access(struct bpf_verifier_env *env, 3837 const struct bpf_reg_state *reg, 3838 int regno, int off, int size) 3839 { 3840 int err; 3841 3842 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 3843 if (err) 3844 return err; 3845 3846 if (off + size > env->prog->aux->max_tp_access) 3847 env->prog->aux->max_tp_access = off + size; 3848 3849 return 0; 3850 } 3851 3852 static int check_buffer_access(struct bpf_verifier_env *env, 3853 const struct bpf_reg_state *reg, 3854 int regno, int off, int size, 3855 bool zero_size_allowed, 3856 const char *buf_info, 3857 u32 *max_access) 3858 { 3859 int err; 3860 3861 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 3862 if (err) 3863 return err; 3864 3865 if (off + size > *max_access) 3866 *max_access = off + size; 3867 3868 return 0; 3869 } 3870 3871 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 3872 static void zext_32_to_64(struct bpf_reg_state *reg) 3873 { 3874 reg->var_off = tnum_subreg(reg->var_off); 3875 __reg_assign_32_into_64(reg); 3876 } 3877 3878 /* truncate register to smaller size (in bytes) 3879 * must be called with size < BPF_REG_SIZE 3880 */ 3881 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 3882 { 3883 u64 mask; 3884 3885 /* clear high bits in bit representation */ 3886 reg->var_off = tnum_cast(reg->var_off, size); 3887 3888 /* fix arithmetic bounds */ 3889 mask = ((u64)1 << (size * 8)) - 1; 3890 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 3891 reg->umin_value &= mask; 3892 reg->umax_value &= mask; 3893 } else { 3894 reg->umin_value = 0; 3895 reg->umax_value = mask; 3896 } 3897 reg->smin_value = reg->umin_value; 3898 reg->smax_value = reg->umax_value; 3899 3900 /* If size is smaller than 32bit register the 32bit register 3901 * values are also truncated so we push 64-bit bounds into 3902 * 32-bit bounds. Above were truncated < 32-bits already. 3903 */ 3904 if (size >= 4) 3905 return; 3906 __reg_combine_64_into_32(reg); 3907 } 3908 3909 static bool bpf_map_is_rdonly(const struct bpf_map *map) 3910 { 3911 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 3912 } 3913 3914 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 3915 { 3916 void *ptr; 3917 u64 addr; 3918 int err; 3919 3920 err = map->ops->map_direct_value_addr(map, &addr, off); 3921 if (err) 3922 return err; 3923 ptr = (void *)(long)addr + off; 3924 3925 switch (size) { 3926 case sizeof(u8): 3927 *val = (u64)*(u8 *)ptr; 3928 break; 3929 case sizeof(u16): 3930 *val = (u64)*(u16 *)ptr; 3931 break; 3932 case sizeof(u32): 3933 *val = (u64)*(u32 *)ptr; 3934 break; 3935 case sizeof(u64): 3936 *val = *(u64 *)ptr; 3937 break; 3938 default: 3939 return -EINVAL; 3940 } 3941 return 0; 3942 } 3943 3944 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 3945 struct bpf_reg_state *regs, 3946 int regno, int off, int size, 3947 enum bpf_access_type atype, 3948 int value_regno) 3949 { 3950 struct bpf_reg_state *reg = regs + regno; 3951 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 3952 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 3953 u32 btf_id; 3954 int ret; 3955 3956 if (off < 0) { 3957 verbose(env, 3958 "R%d is ptr_%s invalid negative access: off=%d\n", 3959 regno, tname, off); 3960 return -EACCES; 3961 } 3962 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3963 char tn_buf[48]; 3964 3965 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3966 verbose(env, 3967 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 3968 regno, tname, off, tn_buf); 3969 return -EACCES; 3970 } 3971 3972 if (env->ops->btf_struct_access) { 3973 ret = env->ops->btf_struct_access(&env->log, reg->btf, t, 3974 off, size, atype, &btf_id); 3975 } else { 3976 if (atype != BPF_READ) { 3977 verbose(env, "only read is supported\n"); 3978 return -EACCES; 3979 } 3980 3981 ret = btf_struct_access(&env->log, reg->btf, t, off, size, 3982 atype, &btf_id); 3983 } 3984 3985 if (ret < 0) 3986 return ret; 3987 3988 if (atype == BPF_READ && value_regno >= 0) 3989 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id); 3990 3991 return 0; 3992 } 3993 3994 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 3995 struct bpf_reg_state *regs, 3996 int regno, int off, int size, 3997 enum bpf_access_type atype, 3998 int value_regno) 3999 { 4000 struct bpf_reg_state *reg = regs + regno; 4001 struct bpf_map *map = reg->map_ptr; 4002 const struct btf_type *t; 4003 const char *tname; 4004 u32 btf_id; 4005 int ret; 4006 4007 if (!btf_vmlinux) { 4008 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 4009 return -ENOTSUPP; 4010 } 4011 4012 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 4013 verbose(env, "map_ptr access not supported for map type %d\n", 4014 map->map_type); 4015 return -ENOTSUPP; 4016 } 4017 4018 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 4019 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 4020 4021 if (!env->allow_ptr_to_map_access) { 4022 verbose(env, 4023 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 4024 tname); 4025 return -EPERM; 4026 } 4027 4028 if (off < 0) { 4029 verbose(env, "R%d is %s invalid negative access: off=%d\n", 4030 regno, tname, off); 4031 return -EACCES; 4032 } 4033 4034 if (atype != BPF_READ) { 4035 verbose(env, "only read from %s is supported\n", tname); 4036 return -EACCES; 4037 } 4038 4039 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id); 4040 if (ret < 0) 4041 return ret; 4042 4043 if (value_regno >= 0) 4044 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id); 4045 4046 return 0; 4047 } 4048 4049 /* Check that the stack access at the given offset is within bounds. The 4050 * maximum valid offset is -1. 4051 * 4052 * The minimum valid offset is -MAX_BPF_STACK for writes, and 4053 * -state->allocated_stack for reads. 4054 */ 4055 static int check_stack_slot_within_bounds(int off, 4056 struct bpf_func_state *state, 4057 enum bpf_access_type t) 4058 { 4059 int min_valid_off; 4060 4061 if (t == BPF_WRITE) 4062 min_valid_off = -MAX_BPF_STACK; 4063 else 4064 min_valid_off = -state->allocated_stack; 4065 4066 if (off < min_valid_off || off > -1) 4067 return -EACCES; 4068 return 0; 4069 } 4070 4071 /* Check that the stack access at 'regno + off' falls within the maximum stack 4072 * bounds. 4073 * 4074 * 'off' includes `regno->offset`, but not its dynamic part (if any). 4075 */ 4076 static int check_stack_access_within_bounds( 4077 struct bpf_verifier_env *env, 4078 int regno, int off, int access_size, 4079 enum stack_access_src src, enum bpf_access_type type) 4080 { 4081 struct bpf_reg_state *regs = cur_regs(env); 4082 struct bpf_reg_state *reg = regs + regno; 4083 struct bpf_func_state *state = func(env, reg); 4084 int min_off, max_off; 4085 int err; 4086 char *err_extra; 4087 4088 if (src == ACCESS_HELPER) 4089 /* We don't know if helpers are reading or writing (or both). */ 4090 err_extra = " indirect access to"; 4091 else if (type == BPF_READ) 4092 err_extra = " read from"; 4093 else 4094 err_extra = " write to"; 4095 4096 if (tnum_is_const(reg->var_off)) { 4097 min_off = reg->var_off.value + off; 4098 if (access_size > 0) 4099 max_off = min_off + access_size - 1; 4100 else 4101 max_off = min_off; 4102 } else { 4103 if (reg->smax_value >= BPF_MAX_VAR_OFF || 4104 reg->smin_value <= -BPF_MAX_VAR_OFF) { 4105 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 4106 err_extra, regno); 4107 return -EACCES; 4108 } 4109 min_off = reg->smin_value + off; 4110 if (access_size > 0) 4111 max_off = reg->smax_value + off + access_size - 1; 4112 else 4113 max_off = min_off; 4114 } 4115 4116 err = check_stack_slot_within_bounds(min_off, state, type); 4117 if (!err) 4118 err = check_stack_slot_within_bounds(max_off, state, type); 4119 4120 if (err) { 4121 if (tnum_is_const(reg->var_off)) { 4122 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 4123 err_extra, regno, off, access_size); 4124 } else { 4125 char tn_buf[48]; 4126 4127 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4128 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 4129 err_extra, regno, tn_buf, access_size); 4130 } 4131 } 4132 return err; 4133 } 4134 4135 /* check whether memory at (regno + off) is accessible for t = (read | write) 4136 * if t==write, value_regno is a register which value is stored into memory 4137 * if t==read, value_regno is a register which will receive the value from memory 4138 * if t==write && value_regno==-1, some unknown value is stored into memory 4139 * if t==read && value_regno==-1, don't care what we read from memory 4140 */ 4141 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 4142 int off, int bpf_size, enum bpf_access_type t, 4143 int value_regno, bool strict_alignment_once) 4144 { 4145 struct bpf_reg_state *regs = cur_regs(env); 4146 struct bpf_reg_state *reg = regs + regno; 4147 struct bpf_func_state *state; 4148 int size, err = 0; 4149 4150 size = bpf_size_to_bytes(bpf_size); 4151 if (size < 0) 4152 return size; 4153 4154 /* alignment checks will add in reg->off themselves */ 4155 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 4156 if (err) 4157 return err; 4158 4159 /* for access checks, reg->off is just part of off */ 4160 off += reg->off; 4161 4162 if (reg->type == PTR_TO_MAP_KEY) { 4163 if (t == BPF_WRITE) { 4164 verbose(env, "write to change key R%d not allowed\n", regno); 4165 return -EACCES; 4166 } 4167 4168 err = check_mem_region_access(env, regno, off, size, 4169 reg->map_ptr->key_size, false); 4170 if (err) 4171 return err; 4172 if (value_regno >= 0) 4173 mark_reg_unknown(env, regs, value_regno); 4174 } else if (reg->type == PTR_TO_MAP_VALUE) { 4175 if (t == BPF_WRITE && value_regno >= 0 && 4176 is_pointer_value(env, value_regno)) { 4177 verbose(env, "R%d leaks addr into map\n", value_regno); 4178 return -EACCES; 4179 } 4180 err = check_map_access_type(env, regno, off, size, t); 4181 if (err) 4182 return err; 4183 err = check_map_access(env, regno, off, size, false); 4184 if (!err && t == BPF_READ && value_regno >= 0) { 4185 struct bpf_map *map = reg->map_ptr; 4186 4187 /* if map is read-only, track its contents as scalars */ 4188 if (tnum_is_const(reg->var_off) && 4189 bpf_map_is_rdonly(map) && 4190 map->ops->map_direct_value_addr) { 4191 int map_off = off + reg->var_off.value; 4192 u64 val = 0; 4193 4194 err = bpf_map_direct_read(map, map_off, size, 4195 &val); 4196 if (err) 4197 return err; 4198 4199 regs[value_regno].type = SCALAR_VALUE; 4200 __mark_reg_known(®s[value_regno], val); 4201 } else { 4202 mark_reg_unknown(env, regs, value_regno); 4203 } 4204 } 4205 } else if (reg->type == PTR_TO_MEM) { 4206 if (t == BPF_WRITE && value_regno >= 0 && 4207 is_pointer_value(env, value_regno)) { 4208 verbose(env, "R%d leaks addr into mem\n", value_regno); 4209 return -EACCES; 4210 } 4211 err = check_mem_region_access(env, regno, off, size, 4212 reg->mem_size, false); 4213 if (!err && t == BPF_READ && value_regno >= 0) 4214 mark_reg_unknown(env, regs, value_regno); 4215 } else if (reg->type == PTR_TO_CTX) { 4216 enum bpf_reg_type reg_type = SCALAR_VALUE; 4217 struct btf *btf = NULL; 4218 u32 btf_id = 0; 4219 4220 if (t == BPF_WRITE && value_regno >= 0 && 4221 is_pointer_value(env, value_regno)) { 4222 verbose(env, "R%d leaks addr into ctx\n", value_regno); 4223 return -EACCES; 4224 } 4225 4226 err = check_ctx_reg(env, reg, regno); 4227 if (err < 0) 4228 return err; 4229 4230 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, &btf_id); 4231 if (err) 4232 verbose_linfo(env, insn_idx, "; "); 4233 if (!err && t == BPF_READ && value_regno >= 0) { 4234 /* ctx access returns either a scalar, or a 4235 * PTR_TO_PACKET[_META,_END]. In the latter 4236 * case, we know the offset is zero. 4237 */ 4238 if (reg_type == SCALAR_VALUE) { 4239 mark_reg_unknown(env, regs, value_regno); 4240 } else { 4241 mark_reg_known_zero(env, regs, 4242 value_regno); 4243 if (reg_type_may_be_null(reg_type)) 4244 regs[value_regno].id = ++env->id_gen; 4245 /* A load of ctx field could have different 4246 * actual load size with the one encoded in the 4247 * insn. When the dst is PTR, it is for sure not 4248 * a sub-register. 4249 */ 4250 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 4251 if (reg_type == PTR_TO_BTF_ID || 4252 reg_type == PTR_TO_BTF_ID_OR_NULL) { 4253 regs[value_regno].btf = btf; 4254 regs[value_regno].btf_id = btf_id; 4255 } 4256 } 4257 regs[value_regno].type = reg_type; 4258 } 4259 4260 } else if (reg->type == PTR_TO_STACK) { 4261 /* Basic bounds checks. */ 4262 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 4263 if (err) 4264 return err; 4265 4266 state = func(env, reg); 4267 err = update_stack_depth(env, state, off); 4268 if (err) 4269 return err; 4270 4271 if (t == BPF_READ) 4272 err = check_stack_read(env, regno, off, size, 4273 value_regno); 4274 else 4275 err = check_stack_write(env, regno, off, size, 4276 value_regno, insn_idx); 4277 } else if (reg_is_pkt_pointer(reg)) { 4278 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 4279 verbose(env, "cannot write into packet\n"); 4280 return -EACCES; 4281 } 4282 if (t == BPF_WRITE && value_regno >= 0 && 4283 is_pointer_value(env, value_regno)) { 4284 verbose(env, "R%d leaks addr into packet\n", 4285 value_regno); 4286 return -EACCES; 4287 } 4288 err = check_packet_access(env, regno, off, size, false); 4289 if (!err && t == BPF_READ && value_regno >= 0) 4290 mark_reg_unknown(env, regs, value_regno); 4291 } else if (reg->type == PTR_TO_FLOW_KEYS) { 4292 if (t == BPF_WRITE && value_regno >= 0 && 4293 is_pointer_value(env, value_regno)) { 4294 verbose(env, "R%d leaks addr into flow keys\n", 4295 value_regno); 4296 return -EACCES; 4297 } 4298 4299 err = check_flow_keys_access(env, off, size); 4300 if (!err && t == BPF_READ && value_regno >= 0) 4301 mark_reg_unknown(env, regs, value_regno); 4302 } else if (type_is_sk_pointer(reg->type)) { 4303 if (t == BPF_WRITE) { 4304 verbose(env, "R%d cannot write into %s\n", 4305 regno, reg_type_str[reg->type]); 4306 return -EACCES; 4307 } 4308 err = check_sock_access(env, insn_idx, regno, off, size, t); 4309 if (!err && value_regno >= 0) 4310 mark_reg_unknown(env, regs, value_regno); 4311 } else if (reg->type == PTR_TO_TP_BUFFER) { 4312 err = check_tp_buffer_access(env, reg, regno, off, size); 4313 if (!err && t == BPF_READ && value_regno >= 0) 4314 mark_reg_unknown(env, regs, value_regno); 4315 } else if (reg->type == PTR_TO_BTF_ID) { 4316 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 4317 value_regno); 4318 } else if (reg->type == CONST_PTR_TO_MAP) { 4319 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 4320 value_regno); 4321 } else if (reg->type == PTR_TO_RDONLY_BUF) { 4322 if (t == BPF_WRITE) { 4323 verbose(env, "R%d cannot write into %s\n", 4324 regno, reg_type_str[reg->type]); 4325 return -EACCES; 4326 } 4327 err = check_buffer_access(env, reg, regno, off, size, false, 4328 "rdonly", 4329 &env->prog->aux->max_rdonly_access); 4330 if (!err && value_regno >= 0) 4331 mark_reg_unknown(env, regs, value_regno); 4332 } else if (reg->type == PTR_TO_RDWR_BUF) { 4333 err = check_buffer_access(env, reg, regno, off, size, false, 4334 "rdwr", 4335 &env->prog->aux->max_rdwr_access); 4336 if (!err && t == BPF_READ && value_regno >= 0) 4337 mark_reg_unknown(env, regs, value_regno); 4338 } else { 4339 verbose(env, "R%d invalid mem access '%s'\n", regno, 4340 reg_type_str[reg->type]); 4341 return -EACCES; 4342 } 4343 4344 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 4345 regs[value_regno].type == SCALAR_VALUE) { 4346 /* b/h/w load zero-extends, mark upper bits as known 0 */ 4347 coerce_reg_to_size(®s[value_regno], size); 4348 } 4349 return err; 4350 } 4351 4352 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 4353 { 4354 int load_reg; 4355 int err; 4356 4357 switch (insn->imm) { 4358 case BPF_ADD: 4359 case BPF_ADD | BPF_FETCH: 4360 case BPF_AND: 4361 case BPF_AND | BPF_FETCH: 4362 case BPF_OR: 4363 case BPF_OR | BPF_FETCH: 4364 case BPF_XOR: 4365 case BPF_XOR | BPF_FETCH: 4366 case BPF_XCHG: 4367 case BPF_CMPXCHG: 4368 break; 4369 default: 4370 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 4371 return -EINVAL; 4372 } 4373 4374 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 4375 verbose(env, "invalid atomic operand size\n"); 4376 return -EINVAL; 4377 } 4378 4379 /* check src1 operand */ 4380 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4381 if (err) 4382 return err; 4383 4384 /* check src2 operand */ 4385 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4386 if (err) 4387 return err; 4388 4389 if (insn->imm == BPF_CMPXCHG) { 4390 /* Check comparison of R0 with memory location */ 4391 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 4392 if (err) 4393 return err; 4394 } 4395 4396 if (is_pointer_value(env, insn->src_reg)) { 4397 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 4398 return -EACCES; 4399 } 4400 4401 if (is_ctx_reg(env, insn->dst_reg) || 4402 is_pkt_reg(env, insn->dst_reg) || 4403 is_flow_key_reg(env, insn->dst_reg) || 4404 is_sk_reg(env, insn->dst_reg)) { 4405 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 4406 insn->dst_reg, 4407 reg_type_str[reg_state(env, insn->dst_reg)->type]); 4408 return -EACCES; 4409 } 4410 4411 if (insn->imm & BPF_FETCH) { 4412 if (insn->imm == BPF_CMPXCHG) 4413 load_reg = BPF_REG_0; 4414 else 4415 load_reg = insn->src_reg; 4416 4417 /* check and record load of old value */ 4418 err = check_reg_arg(env, load_reg, DST_OP); 4419 if (err) 4420 return err; 4421 } else { 4422 /* This instruction accesses a memory location but doesn't 4423 * actually load it into a register. 4424 */ 4425 load_reg = -1; 4426 } 4427 4428 /* check whether we can read the memory */ 4429 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4430 BPF_SIZE(insn->code), BPF_READ, load_reg, true); 4431 if (err) 4432 return err; 4433 4434 /* check whether we can write into the same memory */ 4435 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4436 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 4437 if (err) 4438 return err; 4439 4440 return 0; 4441 } 4442 4443 /* When register 'regno' is used to read the stack (either directly or through 4444 * a helper function) make sure that it's within stack boundary and, depending 4445 * on the access type, that all elements of the stack are initialized. 4446 * 4447 * 'off' includes 'regno->off', but not its dynamic part (if any). 4448 * 4449 * All registers that have been spilled on the stack in the slots within the 4450 * read offsets are marked as read. 4451 */ 4452 static int check_stack_range_initialized( 4453 struct bpf_verifier_env *env, int regno, int off, 4454 int access_size, bool zero_size_allowed, 4455 enum stack_access_src type, struct bpf_call_arg_meta *meta) 4456 { 4457 struct bpf_reg_state *reg = reg_state(env, regno); 4458 struct bpf_func_state *state = func(env, reg); 4459 int err, min_off, max_off, i, j, slot, spi; 4460 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 4461 enum bpf_access_type bounds_check_type; 4462 /* Some accesses can write anything into the stack, others are 4463 * read-only. 4464 */ 4465 bool clobber = false; 4466 4467 if (access_size == 0 && !zero_size_allowed) { 4468 verbose(env, "invalid zero-sized read\n"); 4469 return -EACCES; 4470 } 4471 4472 if (type == ACCESS_HELPER) { 4473 /* The bounds checks for writes are more permissive than for 4474 * reads. However, if raw_mode is not set, we'll do extra 4475 * checks below. 4476 */ 4477 bounds_check_type = BPF_WRITE; 4478 clobber = true; 4479 } else { 4480 bounds_check_type = BPF_READ; 4481 } 4482 err = check_stack_access_within_bounds(env, regno, off, access_size, 4483 type, bounds_check_type); 4484 if (err) 4485 return err; 4486 4487 4488 if (tnum_is_const(reg->var_off)) { 4489 min_off = max_off = reg->var_off.value + off; 4490 } else { 4491 /* Variable offset is prohibited for unprivileged mode for 4492 * simplicity since it requires corresponding support in 4493 * Spectre masking for stack ALU. 4494 * See also retrieve_ptr_limit(). 4495 */ 4496 if (!env->bypass_spec_v1) { 4497 char tn_buf[48]; 4498 4499 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4500 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 4501 regno, err_extra, tn_buf); 4502 return -EACCES; 4503 } 4504 /* Only initialized buffer on stack is allowed to be accessed 4505 * with variable offset. With uninitialized buffer it's hard to 4506 * guarantee that whole memory is marked as initialized on 4507 * helper return since specific bounds are unknown what may 4508 * cause uninitialized stack leaking. 4509 */ 4510 if (meta && meta->raw_mode) 4511 meta = NULL; 4512 4513 min_off = reg->smin_value + off; 4514 max_off = reg->smax_value + off; 4515 } 4516 4517 if (meta && meta->raw_mode) { 4518 meta->access_size = access_size; 4519 meta->regno = regno; 4520 return 0; 4521 } 4522 4523 for (i = min_off; i < max_off + access_size; i++) { 4524 u8 *stype; 4525 4526 slot = -i - 1; 4527 spi = slot / BPF_REG_SIZE; 4528 if (state->allocated_stack <= slot) 4529 goto err; 4530 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4531 if (*stype == STACK_MISC) 4532 goto mark; 4533 if (*stype == STACK_ZERO) { 4534 if (clobber) { 4535 /* helper can write anything into the stack */ 4536 *stype = STACK_MISC; 4537 } 4538 goto mark; 4539 } 4540 4541 if (state->stack[spi].slot_type[0] == STACK_SPILL && 4542 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) 4543 goto mark; 4544 4545 if (state->stack[spi].slot_type[0] == STACK_SPILL && 4546 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 4547 env->allow_ptr_leaks)) { 4548 if (clobber) { 4549 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 4550 for (j = 0; j < BPF_REG_SIZE; j++) 4551 state->stack[spi].slot_type[j] = STACK_MISC; 4552 } 4553 goto mark; 4554 } 4555 4556 err: 4557 if (tnum_is_const(reg->var_off)) { 4558 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 4559 err_extra, regno, min_off, i - min_off, access_size); 4560 } else { 4561 char tn_buf[48]; 4562 4563 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4564 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 4565 err_extra, regno, tn_buf, i - min_off, access_size); 4566 } 4567 return -EACCES; 4568 mark: 4569 /* reading any byte out of 8-byte 'spill_slot' will cause 4570 * the whole slot to be marked as 'read' 4571 */ 4572 mark_reg_read(env, &state->stack[spi].spilled_ptr, 4573 state->stack[spi].spilled_ptr.parent, 4574 REG_LIVE_READ64); 4575 } 4576 return update_stack_depth(env, state, min_off); 4577 } 4578 4579 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 4580 int access_size, bool zero_size_allowed, 4581 struct bpf_call_arg_meta *meta) 4582 { 4583 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4584 4585 switch (reg->type) { 4586 case PTR_TO_PACKET: 4587 case PTR_TO_PACKET_META: 4588 return check_packet_access(env, regno, reg->off, access_size, 4589 zero_size_allowed); 4590 case PTR_TO_MAP_KEY: 4591 return check_mem_region_access(env, regno, reg->off, access_size, 4592 reg->map_ptr->key_size, false); 4593 case PTR_TO_MAP_VALUE: 4594 if (check_map_access_type(env, regno, reg->off, access_size, 4595 meta && meta->raw_mode ? BPF_WRITE : 4596 BPF_READ)) 4597 return -EACCES; 4598 return check_map_access(env, regno, reg->off, access_size, 4599 zero_size_allowed); 4600 case PTR_TO_MEM: 4601 return check_mem_region_access(env, regno, reg->off, 4602 access_size, reg->mem_size, 4603 zero_size_allowed); 4604 case PTR_TO_RDONLY_BUF: 4605 if (meta && meta->raw_mode) 4606 return -EACCES; 4607 return check_buffer_access(env, reg, regno, reg->off, 4608 access_size, zero_size_allowed, 4609 "rdonly", 4610 &env->prog->aux->max_rdonly_access); 4611 case PTR_TO_RDWR_BUF: 4612 return check_buffer_access(env, reg, regno, reg->off, 4613 access_size, zero_size_allowed, 4614 "rdwr", 4615 &env->prog->aux->max_rdwr_access); 4616 case PTR_TO_STACK: 4617 return check_stack_range_initialized( 4618 env, 4619 regno, reg->off, access_size, 4620 zero_size_allowed, ACCESS_HELPER, meta); 4621 default: /* scalar_value or invalid ptr */ 4622 /* Allow zero-byte read from NULL, regardless of pointer type */ 4623 if (zero_size_allowed && access_size == 0 && 4624 register_is_null(reg)) 4625 return 0; 4626 4627 verbose(env, "R%d type=%s expected=%s\n", regno, 4628 reg_type_str[reg->type], 4629 reg_type_str[PTR_TO_STACK]); 4630 return -EACCES; 4631 } 4632 } 4633 4634 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 4635 u32 regno, u32 mem_size) 4636 { 4637 if (register_is_null(reg)) 4638 return 0; 4639 4640 if (reg_type_may_be_null(reg->type)) { 4641 /* Assuming that the register contains a value check if the memory 4642 * access is safe. Temporarily save and restore the register's state as 4643 * the conversion shouldn't be visible to a caller. 4644 */ 4645 const struct bpf_reg_state saved_reg = *reg; 4646 int rv; 4647 4648 mark_ptr_not_null_reg(reg); 4649 rv = check_helper_mem_access(env, regno, mem_size, true, NULL); 4650 *reg = saved_reg; 4651 return rv; 4652 } 4653 4654 return check_helper_mem_access(env, regno, mem_size, true, NULL); 4655 } 4656 4657 /* Implementation details: 4658 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 4659 * Two bpf_map_lookups (even with the same key) will have different reg->id. 4660 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 4661 * value_or_null->value transition, since the verifier only cares about 4662 * the range of access to valid map value pointer and doesn't care about actual 4663 * address of the map element. 4664 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 4665 * reg->id > 0 after value_or_null->value transition. By doing so 4666 * two bpf_map_lookups will be considered two different pointers that 4667 * point to different bpf_spin_locks. 4668 * The verifier allows taking only one bpf_spin_lock at a time to avoid 4669 * dead-locks. 4670 * Since only one bpf_spin_lock is allowed the checks are simpler than 4671 * reg_is_refcounted() logic. The verifier needs to remember only 4672 * one spin_lock instead of array of acquired_refs. 4673 * cur_state->active_spin_lock remembers which map value element got locked 4674 * and clears it after bpf_spin_unlock. 4675 */ 4676 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 4677 bool is_lock) 4678 { 4679 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4680 struct bpf_verifier_state *cur = env->cur_state; 4681 bool is_const = tnum_is_const(reg->var_off); 4682 struct bpf_map *map = reg->map_ptr; 4683 u64 val = reg->var_off.value; 4684 4685 if (!is_const) { 4686 verbose(env, 4687 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 4688 regno); 4689 return -EINVAL; 4690 } 4691 if (!map->btf) { 4692 verbose(env, 4693 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 4694 map->name); 4695 return -EINVAL; 4696 } 4697 if (!map_value_has_spin_lock(map)) { 4698 if (map->spin_lock_off == -E2BIG) 4699 verbose(env, 4700 "map '%s' has more than one 'struct bpf_spin_lock'\n", 4701 map->name); 4702 else if (map->spin_lock_off == -ENOENT) 4703 verbose(env, 4704 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 4705 map->name); 4706 else 4707 verbose(env, 4708 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 4709 map->name); 4710 return -EINVAL; 4711 } 4712 if (map->spin_lock_off != val + reg->off) { 4713 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 4714 val + reg->off); 4715 return -EINVAL; 4716 } 4717 if (is_lock) { 4718 if (cur->active_spin_lock) { 4719 verbose(env, 4720 "Locking two bpf_spin_locks are not allowed\n"); 4721 return -EINVAL; 4722 } 4723 cur->active_spin_lock = reg->id; 4724 } else { 4725 if (!cur->active_spin_lock) { 4726 verbose(env, "bpf_spin_unlock without taking a lock\n"); 4727 return -EINVAL; 4728 } 4729 if (cur->active_spin_lock != reg->id) { 4730 verbose(env, "bpf_spin_unlock of different lock\n"); 4731 return -EINVAL; 4732 } 4733 cur->active_spin_lock = 0; 4734 } 4735 return 0; 4736 } 4737 4738 static int process_timer_func(struct bpf_verifier_env *env, int regno, 4739 struct bpf_call_arg_meta *meta) 4740 { 4741 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4742 bool is_const = tnum_is_const(reg->var_off); 4743 struct bpf_map *map = reg->map_ptr; 4744 u64 val = reg->var_off.value; 4745 4746 if (!is_const) { 4747 verbose(env, 4748 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 4749 regno); 4750 return -EINVAL; 4751 } 4752 if (!map->btf) { 4753 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 4754 map->name); 4755 return -EINVAL; 4756 } 4757 if (!map_value_has_timer(map)) { 4758 if (map->timer_off == -E2BIG) 4759 verbose(env, 4760 "map '%s' has more than one 'struct bpf_timer'\n", 4761 map->name); 4762 else if (map->timer_off == -ENOENT) 4763 verbose(env, 4764 "map '%s' doesn't have 'struct bpf_timer'\n", 4765 map->name); 4766 else 4767 verbose(env, 4768 "map '%s' is not a struct type or bpf_timer is mangled\n", 4769 map->name); 4770 return -EINVAL; 4771 } 4772 if (map->timer_off != val + reg->off) { 4773 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 4774 val + reg->off, map->timer_off); 4775 return -EINVAL; 4776 } 4777 if (meta->map_ptr) { 4778 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 4779 return -EFAULT; 4780 } 4781 meta->map_uid = reg->map_uid; 4782 meta->map_ptr = map; 4783 return 0; 4784 } 4785 4786 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 4787 { 4788 return type == ARG_PTR_TO_MEM || 4789 type == ARG_PTR_TO_MEM_OR_NULL || 4790 type == ARG_PTR_TO_UNINIT_MEM; 4791 } 4792 4793 static bool arg_type_is_mem_size(enum bpf_arg_type type) 4794 { 4795 return type == ARG_CONST_SIZE || 4796 type == ARG_CONST_SIZE_OR_ZERO; 4797 } 4798 4799 static bool arg_type_is_alloc_size(enum bpf_arg_type type) 4800 { 4801 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; 4802 } 4803 4804 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 4805 { 4806 return type == ARG_PTR_TO_INT || 4807 type == ARG_PTR_TO_LONG; 4808 } 4809 4810 static int int_ptr_type_to_size(enum bpf_arg_type type) 4811 { 4812 if (type == ARG_PTR_TO_INT) 4813 return sizeof(u32); 4814 else if (type == ARG_PTR_TO_LONG) 4815 return sizeof(u64); 4816 4817 return -EINVAL; 4818 } 4819 4820 static int resolve_map_arg_type(struct bpf_verifier_env *env, 4821 const struct bpf_call_arg_meta *meta, 4822 enum bpf_arg_type *arg_type) 4823 { 4824 if (!meta->map_ptr) { 4825 /* kernel subsystem misconfigured verifier */ 4826 verbose(env, "invalid map_ptr to access map->type\n"); 4827 return -EACCES; 4828 } 4829 4830 switch (meta->map_ptr->map_type) { 4831 case BPF_MAP_TYPE_SOCKMAP: 4832 case BPF_MAP_TYPE_SOCKHASH: 4833 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 4834 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 4835 } else { 4836 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 4837 return -EINVAL; 4838 } 4839 break; 4840 4841 default: 4842 break; 4843 } 4844 return 0; 4845 } 4846 4847 struct bpf_reg_types { 4848 const enum bpf_reg_type types[10]; 4849 u32 *btf_id; 4850 }; 4851 4852 static const struct bpf_reg_types map_key_value_types = { 4853 .types = { 4854 PTR_TO_STACK, 4855 PTR_TO_PACKET, 4856 PTR_TO_PACKET_META, 4857 PTR_TO_MAP_KEY, 4858 PTR_TO_MAP_VALUE, 4859 }, 4860 }; 4861 4862 static const struct bpf_reg_types sock_types = { 4863 .types = { 4864 PTR_TO_SOCK_COMMON, 4865 PTR_TO_SOCKET, 4866 PTR_TO_TCP_SOCK, 4867 PTR_TO_XDP_SOCK, 4868 }, 4869 }; 4870 4871 #ifdef CONFIG_NET 4872 static const struct bpf_reg_types btf_id_sock_common_types = { 4873 .types = { 4874 PTR_TO_SOCK_COMMON, 4875 PTR_TO_SOCKET, 4876 PTR_TO_TCP_SOCK, 4877 PTR_TO_XDP_SOCK, 4878 PTR_TO_BTF_ID, 4879 }, 4880 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 4881 }; 4882 #endif 4883 4884 static const struct bpf_reg_types mem_types = { 4885 .types = { 4886 PTR_TO_STACK, 4887 PTR_TO_PACKET, 4888 PTR_TO_PACKET_META, 4889 PTR_TO_MAP_KEY, 4890 PTR_TO_MAP_VALUE, 4891 PTR_TO_MEM, 4892 PTR_TO_RDONLY_BUF, 4893 PTR_TO_RDWR_BUF, 4894 }, 4895 }; 4896 4897 static const struct bpf_reg_types int_ptr_types = { 4898 .types = { 4899 PTR_TO_STACK, 4900 PTR_TO_PACKET, 4901 PTR_TO_PACKET_META, 4902 PTR_TO_MAP_KEY, 4903 PTR_TO_MAP_VALUE, 4904 }, 4905 }; 4906 4907 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 4908 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 4909 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 4910 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } }; 4911 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 4912 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 4913 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 4914 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } }; 4915 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 4916 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 4917 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 4918 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 4919 4920 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 4921 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 4922 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 4923 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types, 4924 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types, 4925 [ARG_CONST_SIZE] = &scalar_types, 4926 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 4927 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 4928 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 4929 [ARG_PTR_TO_CTX] = &context_types, 4930 [ARG_PTR_TO_CTX_OR_NULL] = &context_types, 4931 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 4932 #ifdef CONFIG_NET 4933 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 4934 #endif 4935 [ARG_PTR_TO_SOCKET] = &fullsock_types, 4936 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types, 4937 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 4938 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 4939 [ARG_PTR_TO_MEM] = &mem_types, 4940 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types, 4941 [ARG_PTR_TO_UNINIT_MEM] = &mem_types, 4942 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 4943 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types, 4944 [ARG_PTR_TO_INT] = &int_ptr_types, 4945 [ARG_PTR_TO_LONG] = &int_ptr_types, 4946 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 4947 [ARG_PTR_TO_FUNC] = &func_ptr_types, 4948 [ARG_PTR_TO_STACK_OR_NULL] = &stack_ptr_types, 4949 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 4950 [ARG_PTR_TO_TIMER] = &timer_types, 4951 }; 4952 4953 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 4954 enum bpf_arg_type arg_type, 4955 const u32 *arg_btf_id) 4956 { 4957 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4958 enum bpf_reg_type expected, type = reg->type; 4959 const struct bpf_reg_types *compatible; 4960 int i, j; 4961 4962 compatible = compatible_reg_types[arg_type]; 4963 if (!compatible) { 4964 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 4965 return -EFAULT; 4966 } 4967 4968 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 4969 expected = compatible->types[i]; 4970 if (expected == NOT_INIT) 4971 break; 4972 4973 if (type == expected) 4974 goto found; 4975 } 4976 4977 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]); 4978 for (j = 0; j + 1 < i; j++) 4979 verbose(env, "%s, ", reg_type_str[compatible->types[j]]); 4980 verbose(env, "%s\n", reg_type_str[compatible->types[j]]); 4981 return -EACCES; 4982 4983 found: 4984 if (type == PTR_TO_BTF_ID) { 4985 if (!arg_btf_id) { 4986 if (!compatible->btf_id) { 4987 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 4988 return -EFAULT; 4989 } 4990 arg_btf_id = compatible->btf_id; 4991 } 4992 4993 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 4994 btf_vmlinux, *arg_btf_id)) { 4995 verbose(env, "R%d is of type %s but %s is expected\n", 4996 regno, kernel_type_name(reg->btf, reg->btf_id), 4997 kernel_type_name(btf_vmlinux, *arg_btf_id)); 4998 return -EACCES; 4999 } 5000 5001 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5002 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 5003 regno); 5004 return -EACCES; 5005 } 5006 } 5007 5008 return 0; 5009 } 5010 5011 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 5012 struct bpf_call_arg_meta *meta, 5013 const struct bpf_func_proto *fn) 5014 { 5015 u32 regno = BPF_REG_1 + arg; 5016 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5017 enum bpf_arg_type arg_type = fn->arg_type[arg]; 5018 enum bpf_reg_type type = reg->type; 5019 int err = 0; 5020 5021 if (arg_type == ARG_DONTCARE) 5022 return 0; 5023 5024 err = check_reg_arg(env, regno, SRC_OP); 5025 if (err) 5026 return err; 5027 5028 if (arg_type == ARG_ANYTHING) { 5029 if (is_pointer_value(env, regno)) { 5030 verbose(env, "R%d leaks addr into helper function\n", 5031 regno); 5032 return -EACCES; 5033 } 5034 return 0; 5035 } 5036 5037 if (type_is_pkt_pointer(type) && 5038 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 5039 verbose(env, "helper access to the packet is not allowed\n"); 5040 return -EACCES; 5041 } 5042 5043 if (arg_type == ARG_PTR_TO_MAP_VALUE || 5044 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 5045 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 5046 err = resolve_map_arg_type(env, meta, &arg_type); 5047 if (err) 5048 return err; 5049 } 5050 5051 if (register_is_null(reg) && arg_type_may_be_null(arg_type)) 5052 /* A NULL register has a SCALAR_VALUE type, so skip 5053 * type checking. 5054 */ 5055 goto skip_type_check; 5056 5057 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]); 5058 if (err) 5059 return err; 5060 5061 if (type == PTR_TO_CTX) { 5062 err = check_ctx_reg(env, reg, regno); 5063 if (err < 0) 5064 return err; 5065 } 5066 5067 skip_type_check: 5068 if (reg->ref_obj_id) { 5069 if (meta->ref_obj_id) { 5070 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 5071 regno, reg->ref_obj_id, 5072 meta->ref_obj_id); 5073 return -EFAULT; 5074 } 5075 meta->ref_obj_id = reg->ref_obj_id; 5076 } 5077 5078 if (arg_type == ARG_CONST_MAP_PTR) { 5079 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 5080 if (meta->map_ptr) { 5081 /* Use map_uid (which is unique id of inner map) to reject: 5082 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 5083 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 5084 * if (inner_map1 && inner_map2) { 5085 * timer = bpf_map_lookup_elem(inner_map1); 5086 * if (timer) 5087 * // mismatch would have been allowed 5088 * bpf_timer_init(timer, inner_map2); 5089 * } 5090 * 5091 * Comparing map_ptr is enough to distinguish normal and outer maps. 5092 */ 5093 if (meta->map_ptr != reg->map_ptr || 5094 meta->map_uid != reg->map_uid) { 5095 verbose(env, 5096 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 5097 meta->map_uid, reg->map_uid); 5098 return -EINVAL; 5099 } 5100 } 5101 meta->map_ptr = reg->map_ptr; 5102 meta->map_uid = reg->map_uid; 5103 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 5104 /* bpf_map_xxx(..., map_ptr, ..., key) call: 5105 * check that [key, key + map->key_size) are within 5106 * stack limits and initialized 5107 */ 5108 if (!meta->map_ptr) { 5109 /* in function declaration map_ptr must come before 5110 * map_key, so that it's verified and known before 5111 * we have to check map_key here. Otherwise it means 5112 * that kernel subsystem misconfigured verifier 5113 */ 5114 verbose(env, "invalid map_ptr to access map->key\n"); 5115 return -EACCES; 5116 } 5117 err = check_helper_mem_access(env, regno, 5118 meta->map_ptr->key_size, false, 5119 NULL); 5120 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 5121 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 5122 !register_is_null(reg)) || 5123 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 5124 /* bpf_map_xxx(..., map_ptr, ..., value) call: 5125 * check [value, value + map->value_size) validity 5126 */ 5127 if (!meta->map_ptr) { 5128 /* kernel subsystem misconfigured verifier */ 5129 verbose(env, "invalid map_ptr to access map->value\n"); 5130 return -EACCES; 5131 } 5132 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 5133 err = check_helper_mem_access(env, regno, 5134 meta->map_ptr->value_size, false, 5135 meta); 5136 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) { 5137 if (!reg->btf_id) { 5138 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 5139 return -EACCES; 5140 } 5141 meta->ret_btf = reg->btf; 5142 meta->ret_btf_id = reg->btf_id; 5143 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 5144 if (meta->func_id == BPF_FUNC_spin_lock) { 5145 if (process_spin_lock(env, regno, true)) 5146 return -EACCES; 5147 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 5148 if (process_spin_lock(env, regno, false)) 5149 return -EACCES; 5150 } else { 5151 verbose(env, "verifier internal error\n"); 5152 return -EFAULT; 5153 } 5154 } else if (arg_type == ARG_PTR_TO_TIMER) { 5155 if (process_timer_func(env, regno, meta)) 5156 return -EACCES; 5157 } else if (arg_type == ARG_PTR_TO_FUNC) { 5158 meta->subprogno = reg->subprogno; 5159 } else if (arg_type_is_mem_ptr(arg_type)) { 5160 /* The access to this pointer is only checked when we hit the 5161 * next is_mem_size argument below. 5162 */ 5163 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM); 5164 } else if (arg_type_is_mem_size(arg_type)) { 5165 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 5166 5167 /* This is used to refine r0 return value bounds for helpers 5168 * that enforce this value as an upper bound on return values. 5169 * See do_refine_retval_range() for helpers that can refine 5170 * the return value. C type of helper is u32 so we pull register 5171 * bound from umax_value however, if negative verifier errors 5172 * out. Only upper bounds can be learned because retval is an 5173 * int type and negative retvals are allowed. 5174 */ 5175 meta->msize_max_value = reg->umax_value; 5176 5177 /* The register is SCALAR_VALUE; the access check 5178 * happens using its boundaries. 5179 */ 5180 if (!tnum_is_const(reg->var_off)) 5181 /* For unprivileged variable accesses, disable raw 5182 * mode so that the program is required to 5183 * initialize all the memory that the helper could 5184 * just partially fill up. 5185 */ 5186 meta = NULL; 5187 5188 if (reg->smin_value < 0) { 5189 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5190 regno); 5191 return -EACCES; 5192 } 5193 5194 if (reg->umin_value == 0) { 5195 err = check_helper_mem_access(env, regno - 1, 0, 5196 zero_size_allowed, 5197 meta); 5198 if (err) 5199 return err; 5200 } 5201 5202 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5203 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5204 regno); 5205 return -EACCES; 5206 } 5207 err = check_helper_mem_access(env, regno - 1, 5208 reg->umax_value, 5209 zero_size_allowed, meta); 5210 if (!err) 5211 err = mark_chain_precision(env, regno); 5212 } else if (arg_type_is_alloc_size(arg_type)) { 5213 if (!tnum_is_const(reg->var_off)) { 5214 verbose(env, "R%d is not a known constant'\n", 5215 regno); 5216 return -EACCES; 5217 } 5218 meta->mem_size = reg->var_off.value; 5219 } else if (arg_type_is_int_ptr(arg_type)) { 5220 int size = int_ptr_type_to_size(arg_type); 5221 5222 err = check_helper_mem_access(env, regno, size, false, meta); 5223 if (err) 5224 return err; 5225 err = check_ptr_alignment(env, reg, 0, size, true); 5226 } else if (arg_type == ARG_PTR_TO_CONST_STR) { 5227 struct bpf_map *map = reg->map_ptr; 5228 int map_off; 5229 u64 map_addr; 5230 char *str_ptr; 5231 5232 if (!bpf_map_is_rdonly(map)) { 5233 verbose(env, "R%d does not point to a readonly map'\n", regno); 5234 return -EACCES; 5235 } 5236 5237 if (!tnum_is_const(reg->var_off)) { 5238 verbose(env, "R%d is not a constant address'\n", regno); 5239 return -EACCES; 5240 } 5241 5242 if (!map->ops->map_direct_value_addr) { 5243 verbose(env, "no direct value access support for this map type\n"); 5244 return -EACCES; 5245 } 5246 5247 err = check_map_access(env, regno, reg->off, 5248 map->value_size - reg->off, false); 5249 if (err) 5250 return err; 5251 5252 map_off = reg->off + reg->var_off.value; 5253 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 5254 if (err) { 5255 verbose(env, "direct value access on string failed\n"); 5256 return err; 5257 } 5258 5259 str_ptr = (char *)(long)(map_addr); 5260 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 5261 verbose(env, "string is not zero-terminated\n"); 5262 return -EINVAL; 5263 } 5264 } 5265 5266 return err; 5267 } 5268 5269 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 5270 { 5271 enum bpf_attach_type eatype = env->prog->expected_attach_type; 5272 enum bpf_prog_type type = resolve_prog_type(env->prog); 5273 5274 if (func_id != BPF_FUNC_map_update_elem) 5275 return false; 5276 5277 /* It's not possible to get access to a locked struct sock in these 5278 * contexts, so updating is safe. 5279 */ 5280 switch (type) { 5281 case BPF_PROG_TYPE_TRACING: 5282 if (eatype == BPF_TRACE_ITER) 5283 return true; 5284 break; 5285 case BPF_PROG_TYPE_SOCKET_FILTER: 5286 case BPF_PROG_TYPE_SCHED_CLS: 5287 case BPF_PROG_TYPE_SCHED_ACT: 5288 case BPF_PROG_TYPE_XDP: 5289 case BPF_PROG_TYPE_SK_REUSEPORT: 5290 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5291 case BPF_PROG_TYPE_SK_LOOKUP: 5292 return true; 5293 default: 5294 break; 5295 } 5296 5297 verbose(env, "cannot update sockmap in this context\n"); 5298 return false; 5299 } 5300 5301 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 5302 { 5303 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64); 5304 } 5305 5306 static int check_map_func_compatibility(struct bpf_verifier_env *env, 5307 struct bpf_map *map, int func_id) 5308 { 5309 if (!map) 5310 return 0; 5311 5312 /* We need a two way check, first is from map perspective ... */ 5313 switch (map->map_type) { 5314 case BPF_MAP_TYPE_PROG_ARRAY: 5315 if (func_id != BPF_FUNC_tail_call) 5316 goto error; 5317 break; 5318 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5319 if (func_id != BPF_FUNC_perf_event_read && 5320 func_id != BPF_FUNC_perf_event_output && 5321 func_id != BPF_FUNC_skb_output && 5322 func_id != BPF_FUNC_perf_event_read_value && 5323 func_id != BPF_FUNC_xdp_output) 5324 goto error; 5325 break; 5326 case BPF_MAP_TYPE_RINGBUF: 5327 if (func_id != BPF_FUNC_ringbuf_output && 5328 func_id != BPF_FUNC_ringbuf_reserve && 5329 func_id != BPF_FUNC_ringbuf_submit && 5330 func_id != BPF_FUNC_ringbuf_discard && 5331 func_id != BPF_FUNC_ringbuf_query) 5332 goto error; 5333 break; 5334 case BPF_MAP_TYPE_STACK_TRACE: 5335 if (func_id != BPF_FUNC_get_stackid) 5336 goto error; 5337 break; 5338 case BPF_MAP_TYPE_CGROUP_ARRAY: 5339 if (func_id != BPF_FUNC_skb_under_cgroup && 5340 func_id != BPF_FUNC_current_task_under_cgroup) 5341 goto error; 5342 break; 5343 case BPF_MAP_TYPE_CGROUP_STORAGE: 5344 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 5345 if (func_id != BPF_FUNC_get_local_storage) 5346 goto error; 5347 break; 5348 case BPF_MAP_TYPE_DEVMAP: 5349 case BPF_MAP_TYPE_DEVMAP_HASH: 5350 if (func_id != BPF_FUNC_redirect_map && 5351 func_id != BPF_FUNC_map_lookup_elem) 5352 goto error; 5353 break; 5354 /* Restrict bpf side of cpumap and xskmap, open when use-cases 5355 * appear. 5356 */ 5357 case BPF_MAP_TYPE_CPUMAP: 5358 if (func_id != BPF_FUNC_redirect_map) 5359 goto error; 5360 break; 5361 case BPF_MAP_TYPE_XSKMAP: 5362 if (func_id != BPF_FUNC_redirect_map && 5363 func_id != BPF_FUNC_map_lookup_elem) 5364 goto error; 5365 break; 5366 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5367 case BPF_MAP_TYPE_HASH_OF_MAPS: 5368 if (func_id != BPF_FUNC_map_lookup_elem) 5369 goto error; 5370 break; 5371 case BPF_MAP_TYPE_SOCKMAP: 5372 if (func_id != BPF_FUNC_sk_redirect_map && 5373 func_id != BPF_FUNC_sock_map_update && 5374 func_id != BPF_FUNC_map_delete_elem && 5375 func_id != BPF_FUNC_msg_redirect_map && 5376 func_id != BPF_FUNC_sk_select_reuseport && 5377 func_id != BPF_FUNC_map_lookup_elem && 5378 !may_update_sockmap(env, func_id)) 5379 goto error; 5380 break; 5381 case BPF_MAP_TYPE_SOCKHASH: 5382 if (func_id != BPF_FUNC_sk_redirect_hash && 5383 func_id != BPF_FUNC_sock_hash_update && 5384 func_id != BPF_FUNC_map_delete_elem && 5385 func_id != BPF_FUNC_msg_redirect_hash && 5386 func_id != BPF_FUNC_sk_select_reuseport && 5387 func_id != BPF_FUNC_map_lookup_elem && 5388 !may_update_sockmap(env, func_id)) 5389 goto error; 5390 break; 5391 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 5392 if (func_id != BPF_FUNC_sk_select_reuseport) 5393 goto error; 5394 break; 5395 case BPF_MAP_TYPE_QUEUE: 5396 case BPF_MAP_TYPE_STACK: 5397 if (func_id != BPF_FUNC_map_peek_elem && 5398 func_id != BPF_FUNC_map_pop_elem && 5399 func_id != BPF_FUNC_map_push_elem) 5400 goto error; 5401 break; 5402 case BPF_MAP_TYPE_SK_STORAGE: 5403 if (func_id != BPF_FUNC_sk_storage_get && 5404 func_id != BPF_FUNC_sk_storage_delete) 5405 goto error; 5406 break; 5407 case BPF_MAP_TYPE_INODE_STORAGE: 5408 if (func_id != BPF_FUNC_inode_storage_get && 5409 func_id != BPF_FUNC_inode_storage_delete) 5410 goto error; 5411 break; 5412 case BPF_MAP_TYPE_TASK_STORAGE: 5413 if (func_id != BPF_FUNC_task_storage_get && 5414 func_id != BPF_FUNC_task_storage_delete) 5415 goto error; 5416 break; 5417 default: 5418 break; 5419 } 5420 5421 /* ... and second from the function itself. */ 5422 switch (func_id) { 5423 case BPF_FUNC_tail_call: 5424 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 5425 goto error; 5426 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 5427 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 5428 return -EINVAL; 5429 } 5430 break; 5431 case BPF_FUNC_perf_event_read: 5432 case BPF_FUNC_perf_event_output: 5433 case BPF_FUNC_perf_event_read_value: 5434 case BPF_FUNC_skb_output: 5435 case BPF_FUNC_xdp_output: 5436 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 5437 goto error; 5438 break; 5439 case BPF_FUNC_get_stackid: 5440 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 5441 goto error; 5442 break; 5443 case BPF_FUNC_current_task_under_cgroup: 5444 case BPF_FUNC_skb_under_cgroup: 5445 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 5446 goto error; 5447 break; 5448 case BPF_FUNC_redirect_map: 5449 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 5450 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 5451 map->map_type != BPF_MAP_TYPE_CPUMAP && 5452 map->map_type != BPF_MAP_TYPE_XSKMAP) 5453 goto error; 5454 break; 5455 case BPF_FUNC_sk_redirect_map: 5456 case BPF_FUNC_msg_redirect_map: 5457 case BPF_FUNC_sock_map_update: 5458 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 5459 goto error; 5460 break; 5461 case BPF_FUNC_sk_redirect_hash: 5462 case BPF_FUNC_msg_redirect_hash: 5463 case BPF_FUNC_sock_hash_update: 5464 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 5465 goto error; 5466 break; 5467 case BPF_FUNC_get_local_storage: 5468 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 5469 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 5470 goto error; 5471 break; 5472 case BPF_FUNC_sk_select_reuseport: 5473 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 5474 map->map_type != BPF_MAP_TYPE_SOCKMAP && 5475 map->map_type != BPF_MAP_TYPE_SOCKHASH) 5476 goto error; 5477 break; 5478 case BPF_FUNC_map_peek_elem: 5479 case BPF_FUNC_map_pop_elem: 5480 case BPF_FUNC_map_push_elem: 5481 if (map->map_type != BPF_MAP_TYPE_QUEUE && 5482 map->map_type != BPF_MAP_TYPE_STACK) 5483 goto error; 5484 break; 5485 case BPF_FUNC_sk_storage_get: 5486 case BPF_FUNC_sk_storage_delete: 5487 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 5488 goto error; 5489 break; 5490 case BPF_FUNC_inode_storage_get: 5491 case BPF_FUNC_inode_storage_delete: 5492 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 5493 goto error; 5494 break; 5495 case BPF_FUNC_task_storage_get: 5496 case BPF_FUNC_task_storage_delete: 5497 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 5498 goto error; 5499 break; 5500 default: 5501 break; 5502 } 5503 5504 return 0; 5505 error: 5506 verbose(env, "cannot pass map_type %d into func %s#%d\n", 5507 map->map_type, func_id_name(func_id), func_id); 5508 return -EINVAL; 5509 } 5510 5511 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 5512 { 5513 int count = 0; 5514 5515 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 5516 count++; 5517 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 5518 count++; 5519 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 5520 count++; 5521 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 5522 count++; 5523 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 5524 count++; 5525 5526 /* We only support one arg being in raw mode at the moment, 5527 * which is sufficient for the helper functions we have 5528 * right now. 5529 */ 5530 return count <= 1; 5531 } 5532 5533 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 5534 enum bpf_arg_type arg_next) 5535 { 5536 return (arg_type_is_mem_ptr(arg_curr) && 5537 !arg_type_is_mem_size(arg_next)) || 5538 (!arg_type_is_mem_ptr(arg_curr) && 5539 arg_type_is_mem_size(arg_next)); 5540 } 5541 5542 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 5543 { 5544 /* bpf_xxx(..., buf, len) call will access 'len' 5545 * bytes from memory 'buf'. Both arg types need 5546 * to be paired, so make sure there's no buggy 5547 * helper function specification. 5548 */ 5549 if (arg_type_is_mem_size(fn->arg1_type) || 5550 arg_type_is_mem_ptr(fn->arg5_type) || 5551 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 5552 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 5553 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 5554 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 5555 return false; 5556 5557 return true; 5558 } 5559 5560 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 5561 { 5562 int count = 0; 5563 5564 if (arg_type_may_be_refcounted(fn->arg1_type)) 5565 count++; 5566 if (arg_type_may_be_refcounted(fn->arg2_type)) 5567 count++; 5568 if (arg_type_may_be_refcounted(fn->arg3_type)) 5569 count++; 5570 if (arg_type_may_be_refcounted(fn->arg4_type)) 5571 count++; 5572 if (arg_type_may_be_refcounted(fn->arg5_type)) 5573 count++; 5574 5575 /* A reference acquiring function cannot acquire 5576 * another refcounted ptr. 5577 */ 5578 if (may_be_acquire_function(func_id) && count) 5579 return false; 5580 5581 /* We only support one arg being unreferenced at the moment, 5582 * which is sufficient for the helper functions we have right now. 5583 */ 5584 return count <= 1; 5585 } 5586 5587 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 5588 { 5589 int i; 5590 5591 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 5592 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 5593 return false; 5594 5595 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i]) 5596 return false; 5597 } 5598 5599 return true; 5600 } 5601 5602 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 5603 { 5604 return check_raw_mode_ok(fn) && 5605 check_arg_pair_ok(fn) && 5606 check_btf_id_ok(fn) && 5607 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 5608 } 5609 5610 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 5611 * are now invalid, so turn them into unknown SCALAR_VALUE. 5612 */ 5613 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 5614 struct bpf_func_state *state) 5615 { 5616 struct bpf_reg_state *regs = state->regs, *reg; 5617 int i; 5618 5619 for (i = 0; i < MAX_BPF_REG; i++) 5620 if (reg_is_pkt_pointer_any(®s[i])) 5621 mark_reg_unknown(env, regs, i); 5622 5623 bpf_for_each_spilled_reg(i, state, reg) { 5624 if (!reg) 5625 continue; 5626 if (reg_is_pkt_pointer_any(reg)) 5627 __mark_reg_unknown(env, reg); 5628 } 5629 } 5630 5631 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 5632 { 5633 struct bpf_verifier_state *vstate = env->cur_state; 5634 int i; 5635 5636 for (i = 0; i <= vstate->curframe; i++) 5637 __clear_all_pkt_pointers(env, vstate->frame[i]); 5638 } 5639 5640 enum { 5641 AT_PKT_END = -1, 5642 BEYOND_PKT_END = -2, 5643 }; 5644 5645 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 5646 { 5647 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5648 struct bpf_reg_state *reg = &state->regs[regn]; 5649 5650 if (reg->type != PTR_TO_PACKET) 5651 /* PTR_TO_PACKET_META is not supported yet */ 5652 return; 5653 5654 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 5655 * How far beyond pkt_end it goes is unknown. 5656 * if (!range_open) it's the case of pkt >= pkt_end 5657 * if (range_open) it's the case of pkt > pkt_end 5658 * hence this pointer is at least 1 byte bigger than pkt_end 5659 */ 5660 if (range_open) 5661 reg->range = BEYOND_PKT_END; 5662 else 5663 reg->range = AT_PKT_END; 5664 } 5665 5666 static void release_reg_references(struct bpf_verifier_env *env, 5667 struct bpf_func_state *state, 5668 int ref_obj_id) 5669 { 5670 struct bpf_reg_state *regs = state->regs, *reg; 5671 int i; 5672 5673 for (i = 0; i < MAX_BPF_REG; i++) 5674 if (regs[i].ref_obj_id == ref_obj_id) 5675 mark_reg_unknown(env, regs, i); 5676 5677 bpf_for_each_spilled_reg(i, state, reg) { 5678 if (!reg) 5679 continue; 5680 if (reg->ref_obj_id == ref_obj_id) 5681 __mark_reg_unknown(env, reg); 5682 } 5683 } 5684 5685 /* The pointer with the specified id has released its reference to kernel 5686 * resources. Identify all copies of the same pointer and clear the reference. 5687 */ 5688 static int release_reference(struct bpf_verifier_env *env, 5689 int ref_obj_id) 5690 { 5691 struct bpf_verifier_state *vstate = env->cur_state; 5692 int err; 5693 int i; 5694 5695 err = release_reference_state(cur_func(env), ref_obj_id); 5696 if (err) 5697 return err; 5698 5699 for (i = 0; i <= vstate->curframe; i++) 5700 release_reg_references(env, vstate->frame[i], ref_obj_id); 5701 5702 return 0; 5703 } 5704 5705 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 5706 struct bpf_reg_state *regs) 5707 { 5708 int i; 5709 5710 /* after the call registers r0 - r5 were scratched */ 5711 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5712 mark_reg_not_init(env, regs, caller_saved[i]); 5713 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5714 } 5715 } 5716 5717 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 5718 struct bpf_func_state *caller, 5719 struct bpf_func_state *callee, 5720 int insn_idx); 5721 5722 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 5723 int *insn_idx, int subprog, 5724 set_callee_state_fn set_callee_state_cb) 5725 { 5726 struct bpf_verifier_state *state = env->cur_state; 5727 struct bpf_func_info_aux *func_info_aux; 5728 struct bpf_func_state *caller, *callee; 5729 int err; 5730 bool is_global = false; 5731 5732 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 5733 verbose(env, "the call stack of %d frames is too deep\n", 5734 state->curframe + 2); 5735 return -E2BIG; 5736 } 5737 5738 caller = state->frame[state->curframe]; 5739 if (state->frame[state->curframe + 1]) { 5740 verbose(env, "verifier bug. Frame %d already allocated\n", 5741 state->curframe + 1); 5742 return -EFAULT; 5743 } 5744 5745 func_info_aux = env->prog->aux->func_info_aux; 5746 if (func_info_aux) 5747 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 5748 err = btf_check_subprog_arg_match(env, subprog, caller->regs); 5749 if (err == -EFAULT) 5750 return err; 5751 if (is_global) { 5752 if (err) { 5753 verbose(env, "Caller passes invalid args into func#%d\n", 5754 subprog); 5755 return err; 5756 } else { 5757 if (env->log.level & BPF_LOG_LEVEL) 5758 verbose(env, 5759 "Func#%d is global and valid. Skipping.\n", 5760 subprog); 5761 clear_caller_saved_regs(env, caller->regs); 5762 5763 /* All global functions return a 64-bit SCALAR_VALUE */ 5764 mark_reg_unknown(env, caller->regs, BPF_REG_0); 5765 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 5766 5767 /* continue with next insn after call */ 5768 return 0; 5769 } 5770 } 5771 5772 if (insn->code == (BPF_JMP | BPF_CALL) && 5773 insn->imm == BPF_FUNC_timer_set_callback) { 5774 struct bpf_verifier_state *async_cb; 5775 5776 /* there is no real recursion here. timer callbacks are async */ 5777 env->subprog_info[subprog].is_async_cb = true; 5778 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 5779 *insn_idx, subprog); 5780 if (!async_cb) 5781 return -EFAULT; 5782 callee = async_cb->frame[0]; 5783 callee->async_entry_cnt = caller->async_entry_cnt + 1; 5784 5785 /* Convert bpf_timer_set_callback() args into timer callback args */ 5786 err = set_callee_state_cb(env, caller, callee, *insn_idx); 5787 if (err) 5788 return err; 5789 5790 clear_caller_saved_regs(env, caller->regs); 5791 mark_reg_unknown(env, caller->regs, BPF_REG_0); 5792 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 5793 /* continue with next insn after call */ 5794 return 0; 5795 } 5796 5797 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 5798 if (!callee) 5799 return -ENOMEM; 5800 state->frame[state->curframe + 1] = callee; 5801 5802 /* callee cannot access r0, r6 - r9 for reading and has to write 5803 * into its own stack before reading from it. 5804 * callee can read/write into caller's stack 5805 */ 5806 init_func_state(env, callee, 5807 /* remember the callsite, it will be used by bpf_exit */ 5808 *insn_idx /* callsite */, 5809 state->curframe + 1 /* frameno within this callchain */, 5810 subprog /* subprog number within this prog */); 5811 5812 /* Transfer references to the callee */ 5813 err = copy_reference_state(callee, caller); 5814 if (err) 5815 return err; 5816 5817 err = set_callee_state_cb(env, caller, callee, *insn_idx); 5818 if (err) 5819 return err; 5820 5821 clear_caller_saved_regs(env, caller->regs); 5822 5823 /* only increment it after check_reg_arg() finished */ 5824 state->curframe++; 5825 5826 /* and go analyze first insn of the callee */ 5827 *insn_idx = env->subprog_info[subprog].start - 1; 5828 5829 if (env->log.level & BPF_LOG_LEVEL) { 5830 verbose(env, "caller:\n"); 5831 print_verifier_state(env, caller); 5832 verbose(env, "callee:\n"); 5833 print_verifier_state(env, callee); 5834 } 5835 return 0; 5836 } 5837 5838 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 5839 struct bpf_func_state *caller, 5840 struct bpf_func_state *callee) 5841 { 5842 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 5843 * void *callback_ctx, u64 flags); 5844 * callback_fn(struct bpf_map *map, void *key, void *value, 5845 * void *callback_ctx); 5846 */ 5847 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 5848 5849 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 5850 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 5851 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 5852 5853 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 5854 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 5855 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 5856 5857 /* pointer to stack or null */ 5858 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 5859 5860 /* unused */ 5861 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 5862 return 0; 5863 } 5864 5865 static int set_callee_state(struct bpf_verifier_env *env, 5866 struct bpf_func_state *caller, 5867 struct bpf_func_state *callee, int insn_idx) 5868 { 5869 int i; 5870 5871 /* copy r1 - r5 args that callee can access. The copy includes parent 5872 * pointers, which connects us up to the liveness chain 5873 */ 5874 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 5875 callee->regs[i] = caller->regs[i]; 5876 return 0; 5877 } 5878 5879 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 5880 int *insn_idx) 5881 { 5882 int subprog, target_insn; 5883 5884 target_insn = *insn_idx + insn->imm + 1; 5885 subprog = find_subprog(env, target_insn); 5886 if (subprog < 0) { 5887 verbose(env, "verifier bug. No program starts at insn %d\n", 5888 target_insn); 5889 return -EFAULT; 5890 } 5891 5892 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 5893 } 5894 5895 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 5896 struct bpf_func_state *caller, 5897 struct bpf_func_state *callee, 5898 int insn_idx) 5899 { 5900 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 5901 struct bpf_map *map; 5902 int err; 5903 5904 if (bpf_map_ptr_poisoned(insn_aux)) { 5905 verbose(env, "tail_call abusing map_ptr\n"); 5906 return -EINVAL; 5907 } 5908 5909 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 5910 if (!map->ops->map_set_for_each_callback_args || 5911 !map->ops->map_for_each_callback) { 5912 verbose(env, "callback function not allowed for map\n"); 5913 return -ENOTSUPP; 5914 } 5915 5916 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 5917 if (err) 5918 return err; 5919 5920 callee->in_callback_fn = true; 5921 return 0; 5922 } 5923 5924 static int set_timer_callback_state(struct bpf_verifier_env *env, 5925 struct bpf_func_state *caller, 5926 struct bpf_func_state *callee, 5927 int insn_idx) 5928 { 5929 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 5930 5931 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 5932 * callback_fn(struct bpf_map *map, void *key, void *value); 5933 */ 5934 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 5935 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 5936 callee->regs[BPF_REG_1].map_ptr = map_ptr; 5937 5938 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 5939 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 5940 callee->regs[BPF_REG_2].map_ptr = map_ptr; 5941 5942 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 5943 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 5944 callee->regs[BPF_REG_3].map_ptr = map_ptr; 5945 5946 /* unused */ 5947 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 5948 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 5949 callee->in_async_callback_fn = true; 5950 return 0; 5951 } 5952 5953 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 5954 { 5955 struct bpf_verifier_state *state = env->cur_state; 5956 struct bpf_func_state *caller, *callee; 5957 struct bpf_reg_state *r0; 5958 int err; 5959 5960 callee = state->frame[state->curframe]; 5961 r0 = &callee->regs[BPF_REG_0]; 5962 if (r0->type == PTR_TO_STACK) { 5963 /* technically it's ok to return caller's stack pointer 5964 * (or caller's caller's pointer) back to the caller, 5965 * since these pointers are valid. Only current stack 5966 * pointer will be invalid as soon as function exits, 5967 * but let's be conservative 5968 */ 5969 verbose(env, "cannot return stack pointer to the caller\n"); 5970 return -EINVAL; 5971 } 5972 5973 state->curframe--; 5974 caller = state->frame[state->curframe]; 5975 if (callee->in_callback_fn) { 5976 /* enforce R0 return value range [0, 1]. */ 5977 struct tnum range = tnum_range(0, 1); 5978 5979 if (r0->type != SCALAR_VALUE) { 5980 verbose(env, "R0 not a scalar value\n"); 5981 return -EACCES; 5982 } 5983 if (!tnum_in(range, r0->var_off)) { 5984 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 5985 return -EINVAL; 5986 } 5987 } else { 5988 /* return to the caller whatever r0 had in the callee */ 5989 caller->regs[BPF_REG_0] = *r0; 5990 } 5991 5992 /* Transfer references to the caller */ 5993 err = copy_reference_state(caller, callee); 5994 if (err) 5995 return err; 5996 5997 *insn_idx = callee->callsite + 1; 5998 if (env->log.level & BPF_LOG_LEVEL) { 5999 verbose(env, "returning from callee:\n"); 6000 print_verifier_state(env, callee); 6001 verbose(env, "to caller at %d:\n", *insn_idx); 6002 print_verifier_state(env, caller); 6003 } 6004 /* clear everything in the callee */ 6005 free_func_state(callee); 6006 state->frame[state->curframe + 1] = NULL; 6007 return 0; 6008 } 6009 6010 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 6011 int func_id, 6012 struct bpf_call_arg_meta *meta) 6013 { 6014 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 6015 6016 if (ret_type != RET_INTEGER || 6017 (func_id != BPF_FUNC_get_stack && 6018 func_id != BPF_FUNC_get_task_stack && 6019 func_id != BPF_FUNC_probe_read_str && 6020 func_id != BPF_FUNC_probe_read_kernel_str && 6021 func_id != BPF_FUNC_probe_read_user_str)) 6022 return; 6023 6024 ret_reg->smax_value = meta->msize_max_value; 6025 ret_reg->s32_max_value = meta->msize_max_value; 6026 ret_reg->smin_value = -MAX_ERRNO; 6027 ret_reg->s32_min_value = -MAX_ERRNO; 6028 __reg_deduce_bounds(ret_reg); 6029 __reg_bound_offset(ret_reg); 6030 __update_reg_bounds(ret_reg); 6031 } 6032 6033 static int 6034 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 6035 int func_id, int insn_idx) 6036 { 6037 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 6038 struct bpf_map *map = meta->map_ptr; 6039 6040 if (func_id != BPF_FUNC_tail_call && 6041 func_id != BPF_FUNC_map_lookup_elem && 6042 func_id != BPF_FUNC_map_update_elem && 6043 func_id != BPF_FUNC_map_delete_elem && 6044 func_id != BPF_FUNC_map_push_elem && 6045 func_id != BPF_FUNC_map_pop_elem && 6046 func_id != BPF_FUNC_map_peek_elem && 6047 func_id != BPF_FUNC_for_each_map_elem && 6048 func_id != BPF_FUNC_redirect_map) 6049 return 0; 6050 6051 if (map == NULL) { 6052 verbose(env, "kernel subsystem misconfigured verifier\n"); 6053 return -EINVAL; 6054 } 6055 6056 /* In case of read-only, some additional restrictions 6057 * need to be applied in order to prevent altering the 6058 * state of the map from program side. 6059 */ 6060 if ((map->map_flags & BPF_F_RDONLY_PROG) && 6061 (func_id == BPF_FUNC_map_delete_elem || 6062 func_id == BPF_FUNC_map_update_elem || 6063 func_id == BPF_FUNC_map_push_elem || 6064 func_id == BPF_FUNC_map_pop_elem)) { 6065 verbose(env, "write into map forbidden\n"); 6066 return -EACCES; 6067 } 6068 6069 if (!BPF_MAP_PTR(aux->map_ptr_state)) 6070 bpf_map_ptr_store(aux, meta->map_ptr, 6071 !meta->map_ptr->bypass_spec_v1); 6072 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 6073 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 6074 !meta->map_ptr->bypass_spec_v1); 6075 return 0; 6076 } 6077 6078 static int 6079 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 6080 int func_id, int insn_idx) 6081 { 6082 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 6083 struct bpf_reg_state *regs = cur_regs(env), *reg; 6084 struct bpf_map *map = meta->map_ptr; 6085 struct tnum range; 6086 u64 val; 6087 int err; 6088 6089 if (func_id != BPF_FUNC_tail_call) 6090 return 0; 6091 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 6092 verbose(env, "kernel subsystem misconfigured verifier\n"); 6093 return -EINVAL; 6094 } 6095 6096 range = tnum_range(0, map->max_entries - 1); 6097 reg = ®s[BPF_REG_3]; 6098 6099 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 6100 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 6101 return 0; 6102 } 6103 6104 err = mark_chain_precision(env, BPF_REG_3); 6105 if (err) 6106 return err; 6107 6108 val = reg->var_off.value; 6109 if (bpf_map_key_unseen(aux)) 6110 bpf_map_key_store(aux, val); 6111 else if (!bpf_map_key_poisoned(aux) && 6112 bpf_map_key_immediate(aux) != val) 6113 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 6114 return 0; 6115 } 6116 6117 static int check_reference_leak(struct bpf_verifier_env *env) 6118 { 6119 struct bpf_func_state *state = cur_func(env); 6120 int i; 6121 6122 for (i = 0; i < state->acquired_refs; i++) { 6123 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 6124 state->refs[i].id, state->refs[i].insn_idx); 6125 } 6126 return state->acquired_refs ? -EINVAL : 0; 6127 } 6128 6129 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 6130 struct bpf_reg_state *regs) 6131 { 6132 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 6133 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 6134 struct bpf_map *fmt_map = fmt_reg->map_ptr; 6135 int err, fmt_map_off, num_args; 6136 u64 fmt_addr; 6137 char *fmt; 6138 6139 /* data must be an array of u64 */ 6140 if (data_len_reg->var_off.value % 8) 6141 return -EINVAL; 6142 num_args = data_len_reg->var_off.value / 8; 6143 6144 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 6145 * and map_direct_value_addr is set. 6146 */ 6147 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 6148 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 6149 fmt_map_off); 6150 if (err) { 6151 verbose(env, "verifier bug\n"); 6152 return -EFAULT; 6153 } 6154 fmt = (char *)(long)fmt_addr + fmt_map_off; 6155 6156 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 6157 * can focus on validating the format specifiers. 6158 */ 6159 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args); 6160 if (err < 0) 6161 verbose(env, "Invalid format string\n"); 6162 6163 return err; 6164 } 6165 6166 static int check_get_func_ip(struct bpf_verifier_env *env) 6167 { 6168 enum bpf_attach_type eatype = env->prog->expected_attach_type; 6169 enum bpf_prog_type type = resolve_prog_type(env->prog); 6170 int func_id = BPF_FUNC_get_func_ip; 6171 6172 if (type == BPF_PROG_TYPE_TRACING) { 6173 if (eatype != BPF_TRACE_FENTRY && eatype != BPF_TRACE_FEXIT && 6174 eatype != BPF_MODIFY_RETURN) { 6175 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 6176 func_id_name(func_id), func_id); 6177 return -ENOTSUPP; 6178 } 6179 return 0; 6180 } else if (type == BPF_PROG_TYPE_KPROBE) { 6181 return 0; 6182 } 6183 6184 verbose(env, "func %s#%d not supported for program type %d\n", 6185 func_id_name(func_id), func_id, type); 6186 return -ENOTSUPP; 6187 } 6188 6189 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6190 int *insn_idx_p) 6191 { 6192 const struct bpf_func_proto *fn = NULL; 6193 struct bpf_reg_state *regs; 6194 struct bpf_call_arg_meta meta; 6195 int insn_idx = *insn_idx_p; 6196 bool changes_data; 6197 int i, err, func_id; 6198 6199 /* find function prototype */ 6200 func_id = insn->imm; 6201 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 6202 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 6203 func_id); 6204 return -EINVAL; 6205 } 6206 6207 if (env->ops->get_func_proto) 6208 fn = env->ops->get_func_proto(func_id, env->prog); 6209 if (!fn) { 6210 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 6211 func_id); 6212 return -EINVAL; 6213 } 6214 6215 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 6216 if (!env->prog->gpl_compatible && fn->gpl_only) { 6217 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 6218 return -EINVAL; 6219 } 6220 6221 if (fn->allowed && !fn->allowed(env->prog)) { 6222 verbose(env, "helper call is not allowed in probe\n"); 6223 return -EINVAL; 6224 } 6225 6226 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 6227 changes_data = bpf_helper_changes_pkt_data(fn->func); 6228 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 6229 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 6230 func_id_name(func_id), func_id); 6231 return -EINVAL; 6232 } 6233 6234 memset(&meta, 0, sizeof(meta)); 6235 meta.pkt_access = fn->pkt_access; 6236 6237 err = check_func_proto(fn, func_id); 6238 if (err) { 6239 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 6240 func_id_name(func_id), func_id); 6241 return err; 6242 } 6243 6244 meta.func_id = func_id; 6245 /* check args */ 6246 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 6247 err = check_func_arg(env, i, &meta, fn); 6248 if (err) 6249 return err; 6250 } 6251 6252 err = record_func_map(env, &meta, func_id, insn_idx); 6253 if (err) 6254 return err; 6255 6256 err = record_func_key(env, &meta, func_id, insn_idx); 6257 if (err) 6258 return err; 6259 6260 /* Mark slots with STACK_MISC in case of raw mode, stack offset 6261 * is inferred from register state. 6262 */ 6263 for (i = 0; i < meta.access_size; i++) { 6264 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 6265 BPF_WRITE, -1, false); 6266 if (err) 6267 return err; 6268 } 6269 6270 if (func_id == BPF_FUNC_tail_call) { 6271 err = check_reference_leak(env); 6272 if (err) { 6273 verbose(env, "tail_call would lead to reference leak\n"); 6274 return err; 6275 } 6276 } else if (is_release_function(func_id)) { 6277 err = release_reference(env, meta.ref_obj_id); 6278 if (err) { 6279 verbose(env, "func %s#%d reference has not been acquired before\n", 6280 func_id_name(func_id), func_id); 6281 return err; 6282 } 6283 } 6284 6285 regs = cur_regs(env); 6286 6287 /* check that flags argument in get_local_storage(map, flags) is 0, 6288 * this is required because get_local_storage() can't return an error. 6289 */ 6290 if (func_id == BPF_FUNC_get_local_storage && 6291 !register_is_null(®s[BPF_REG_2])) { 6292 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 6293 return -EINVAL; 6294 } 6295 6296 if (func_id == BPF_FUNC_for_each_map_elem) { 6297 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6298 set_map_elem_callback_state); 6299 if (err < 0) 6300 return -EINVAL; 6301 } 6302 6303 if (func_id == BPF_FUNC_timer_set_callback) { 6304 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6305 set_timer_callback_state); 6306 if (err < 0) 6307 return -EINVAL; 6308 } 6309 6310 if (func_id == BPF_FUNC_snprintf) { 6311 err = check_bpf_snprintf_call(env, regs); 6312 if (err < 0) 6313 return err; 6314 } 6315 6316 /* reset caller saved regs */ 6317 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6318 mark_reg_not_init(env, regs, caller_saved[i]); 6319 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6320 } 6321 6322 /* helper call returns 64-bit value. */ 6323 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6324 6325 /* update return register (already marked as written above) */ 6326 if (fn->ret_type == RET_INTEGER) { 6327 /* sets type to SCALAR_VALUE */ 6328 mark_reg_unknown(env, regs, BPF_REG_0); 6329 } else if (fn->ret_type == RET_VOID) { 6330 regs[BPF_REG_0].type = NOT_INIT; 6331 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 6332 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 6333 /* There is no offset yet applied, variable or fixed */ 6334 mark_reg_known_zero(env, regs, BPF_REG_0); 6335 /* remember map_ptr, so that check_map_access() 6336 * can check 'value_size' boundary of memory access 6337 * to map element returned from bpf_map_lookup_elem() 6338 */ 6339 if (meta.map_ptr == NULL) { 6340 verbose(env, 6341 "kernel subsystem misconfigured verifier\n"); 6342 return -EINVAL; 6343 } 6344 regs[BPF_REG_0].map_ptr = meta.map_ptr; 6345 regs[BPF_REG_0].map_uid = meta.map_uid; 6346 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 6347 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 6348 if (map_value_has_spin_lock(meta.map_ptr)) 6349 regs[BPF_REG_0].id = ++env->id_gen; 6350 } else { 6351 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 6352 } 6353 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 6354 mark_reg_known_zero(env, regs, BPF_REG_0); 6355 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 6356 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 6357 mark_reg_known_zero(env, regs, BPF_REG_0); 6358 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 6359 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 6360 mark_reg_known_zero(env, regs, BPF_REG_0); 6361 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 6362 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) { 6363 mark_reg_known_zero(env, regs, BPF_REG_0); 6364 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL; 6365 regs[BPF_REG_0].mem_size = meta.mem_size; 6366 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL || 6367 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) { 6368 const struct btf_type *t; 6369 6370 mark_reg_known_zero(env, regs, BPF_REG_0); 6371 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 6372 if (!btf_type_is_struct(t)) { 6373 u32 tsize; 6374 const struct btf_type *ret; 6375 const char *tname; 6376 6377 /* resolve the type size of ksym. */ 6378 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 6379 if (IS_ERR(ret)) { 6380 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 6381 verbose(env, "unable to resolve the size of type '%s': %ld\n", 6382 tname, PTR_ERR(ret)); 6383 return -EINVAL; 6384 } 6385 regs[BPF_REG_0].type = 6386 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 6387 PTR_TO_MEM : PTR_TO_MEM_OR_NULL; 6388 regs[BPF_REG_0].mem_size = tsize; 6389 } else { 6390 regs[BPF_REG_0].type = 6391 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 6392 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL; 6393 regs[BPF_REG_0].btf = meta.ret_btf; 6394 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 6395 } 6396 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL || 6397 fn->ret_type == RET_PTR_TO_BTF_ID) { 6398 int ret_btf_id; 6399 6400 mark_reg_known_zero(env, regs, BPF_REG_0); 6401 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ? 6402 PTR_TO_BTF_ID : 6403 PTR_TO_BTF_ID_OR_NULL; 6404 ret_btf_id = *fn->ret_btf_id; 6405 if (ret_btf_id == 0) { 6406 verbose(env, "invalid return type %d of func %s#%d\n", 6407 fn->ret_type, func_id_name(func_id), func_id); 6408 return -EINVAL; 6409 } 6410 /* current BPF helper definitions are only coming from 6411 * built-in code with type IDs from vmlinux BTF 6412 */ 6413 regs[BPF_REG_0].btf = btf_vmlinux; 6414 regs[BPF_REG_0].btf_id = ret_btf_id; 6415 } else { 6416 verbose(env, "unknown return type %d of func %s#%d\n", 6417 fn->ret_type, func_id_name(func_id), func_id); 6418 return -EINVAL; 6419 } 6420 6421 if (reg_type_may_be_null(regs[BPF_REG_0].type)) 6422 regs[BPF_REG_0].id = ++env->id_gen; 6423 6424 if (is_ptr_cast_function(func_id)) { 6425 /* For release_reference() */ 6426 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 6427 } else if (is_acquire_function(func_id, meta.map_ptr)) { 6428 int id = acquire_reference_state(env, insn_idx); 6429 6430 if (id < 0) 6431 return id; 6432 /* For mark_ptr_or_null_reg() */ 6433 regs[BPF_REG_0].id = id; 6434 /* For release_reference() */ 6435 regs[BPF_REG_0].ref_obj_id = id; 6436 } 6437 6438 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 6439 6440 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 6441 if (err) 6442 return err; 6443 6444 if ((func_id == BPF_FUNC_get_stack || 6445 func_id == BPF_FUNC_get_task_stack) && 6446 !env->prog->has_callchain_buf) { 6447 const char *err_str; 6448 6449 #ifdef CONFIG_PERF_EVENTS 6450 err = get_callchain_buffers(sysctl_perf_event_max_stack); 6451 err_str = "cannot get callchain buffer for func %s#%d\n"; 6452 #else 6453 err = -ENOTSUPP; 6454 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 6455 #endif 6456 if (err) { 6457 verbose(env, err_str, func_id_name(func_id), func_id); 6458 return err; 6459 } 6460 6461 env->prog->has_callchain_buf = true; 6462 } 6463 6464 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 6465 env->prog->call_get_stack = true; 6466 6467 if (func_id == BPF_FUNC_get_func_ip) { 6468 if (check_get_func_ip(env)) 6469 return -ENOTSUPP; 6470 env->prog->call_get_func_ip = true; 6471 } 6472 6473 if (changes_data) 6474 clear_all_pkt_pointers(env); 6475 return 0; 6476 } 6477 6478 /* mark_btf_func_reg_size() is used when the reg size is determined by 6479 * the BTF func_proto's return value size and argument. 6480 */ 6481 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 6482 size_t reg_size) 6483 { 6484 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 6485 6486 if (regno == BPF_REG_0) { 6487 /* Function return value */ 6488 reg->live |= REG_LIVE_WRITTEN; 6489 reg->subreg_def = reg_size == sizeof(u64) ? 6490 DEF_NOT_SUBREG : env->insn_idx + 1; 6491 } else { 6492 /* Function argument */ 6493 if (reg_size == sizeof(u64)) { 6494 mark_insn_zext(env, reg); 6495 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 6496 } else { 6497 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 6498 } 6499 } 6500 } 6501 6502 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn) 6503 { 6504 const struct btf_type *t, *func, *func_proto, *ptr_type; 6505 struct bpf_reg_state *regs = cur_regs(env); 6506 const char *func_name, *ptr_type_name; 6507 u32 i, nargs, func_id, ptr_type_id; 6508 const struct btf_param *args; 6509 int err; 6510 6511 func_id = insn->imm; 6512 func = btf_type_by_id(btf_vmlinux, func_id); 6513 func_name = btf_name_by_offset(btf_vmlinux, func->name_off); 6514 func_proto = btf_type_by_id(btf_vmlinux, func->type); 6515 6516 if (!env->ops->check_kfunc_call || 6517 !env->ops->check_kfunc_call(func_id)) { 6518 verbose(env, "calling kernel function %s is not allowed\n", 6519 func_name); 6520 return -EACCES; 6521 } 6522 6523 /* Check the arguments */ 6524 err = btf_check_kfunc_arg_match(env, btf_vmlinux, func_id, regs); 6525 if (err) 6526 return err; 6527 6528 for (i = 0; i < CALLER_SAVED_REGS; i++) 6529 mark_reg_not_init(env, regs, caller_saved[i]); 6530 6531 /* Check return type */ 6532 t = btf_type_skip_modifiers(btf_vmlinux, func_proto->type, NULL); 6533 if (btf_type_is_scalar(t)) { 6534 mark_reg_unknown(env, regs, BPF_REG_0); 6535 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 6536 } else if (btf_type_is_ptr(t)) { 6537 ptr_type = btf_type_skip_modifiers(btf_vmlinux, t->type, 6538 &ptr_type_id); 6539 if (!btf_type_is_struct(ptr_type)) { 6540 ptr_type_name = btf_name_by_offset(btf_vmlinux, 6541 ptr_type->name_off); 6542 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n", 6543 func_name, btf_type_str(ptr_type), 6544 ptr_type_name); 6545 return -EINVAL; 6546 } 6547 mark_reg_known_zero(env, regs, BPF_REG_0); 6548 regs[BPF_REG_0].btf = btf_vmlinux; 6549 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 6550 regs[BPF_REG_0].btf_id = ptr_type_id; 6551 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 6552 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 6553 6554 nargs = btf_type_vlen(func_proto); 6555 args = (const struct btf_param *)(func_proto + 1); 6556 for (i = 0; i < nargs; i++) { 6557 u32 regno = i + 1; 6558 6559 t = btf_type_skip_modifiers(btf_vmlinux, args[i].type, NULL); 6560 if (btf_type_is_ptr(t)) 6561 mark_btf_func_reg_size(env, regno, sizeof(void *)); 6562 else 6563 /* scalar. ensured by btf_check_kfunc_arg_match() */ 6564 mark_btf_func_reg_size(env, regno, t->size); 6565 } 6566 6567 return 0; 6568 } 6569 6570 static bool signed_add_overflows(s64 a, s64 b) 6571 { 6572 /* Do the add in u64, where overflow is well-defined */ 6573 s64 res = (s64)((u64)a + (u64)b); 6574 6575 if (b < 0) 6576 return res > a; 6577 return res < a; 6578 } 6579 6580 static bool signed_add32_overflows(s32 a, s32 b) 6581 { 6582 /* Do the add in u32, where overflow is well-defined */ 6583 s32 res = (s32)((u32)a + (u32)b); 6584 6585 if (b < 0) 6586 return res > a; 6587 return res < a; 6588 } 6589 6590 static bool signed_sub_overflows(s64 a, s64 b) 6591 { 6592 /* Do the sub in u64, where overflow is well-defined */ 6593 s64 res = (s64)((u64)a - (u64)b); 6594 6595 if (b < 0) 6596 return res < a; 6597 return res > a; 6598 } 6599 6600 static bool signed_sub32_overflows(s32 a, s32 b) 6601 { 6602 /* Do the sub in u32, where overflow is well-defined */ 6603 s32 res = (s32)((u32)a - (u32)b); 6604 6605 if (b < 0) 6606 return res < a; 6607 return res > a; 6608 } 6609 6610 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 6611 const struct bpf_reg_state *reg, 6612 enum bpf_reg_type type) 6613 { 6614 bool known = tnum_is_const(reg->var_off); 6615 s64 val = reg->var_off.value; 6616 s64 smin = reg->smin_value; 6617 6618 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 6619 verbose(env, "math between %s pointer and %lld is not allowed\n", 6620 reg_type_str[type], val); 6621 return false; 6622 } 6623 6624 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 6625 verbose(env, "%s pointer offset %d is not allowed\n", 6626 reg_type_str[type], reg->off); 6627 return false; 6628 } 6629 6630 if (smin == S64_MIN) { 6631 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 6632 reg_type_str[type]); 6633 return false; 6634 } 6635 6636 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 6637 verbose(env, "value %lld makes %s pointer be out of bounds\n", 6638 smin, reg_type_str[type]); 6639 return false; 6640 } 6641 6642 return true; 6643 } 6644 6645 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 6646 { 6647 return &env->insn_aux_data[env->insn_idx]; 6648 } 6649 6650 enum { 6651 REASON_BOUNDS = -1, 6652 REASON_TYPE = -2, 6653 REASON_PATHS = -3, 6654 REASON_LIMIT = -4, 6655 REASON_STACK = -5, 6656 }; 6657 6658 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 6659 u32 *alu_limit, bool mask_to_left) 6660 { 6661 u32 max = 0, ptr_limit = 0; 6662 6663 switch (ptr_reg->type) { 6664 case PTR_TO_STACK: 6665 /* Offset 0 is out-of-bounds, but acceptable start for the 6666 * left direction, see BPF_REG_FP. Also, unknown scalar 6667 * offset where we would need to deal with min/max bounds is 6668 * currently prohibited for unprivileged. 6669 */ 6670 max = MAX_BPF_STACK + mask_to_left; 6671 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 6672 break; 6673 case PTR_TO_MAP_VALUE: 6674 max = ptr_reg->map_ptr->value_size; 6675 ptr_limit = (mask_to_left ? 6676 ptr_reg->smin_value : 6677 ptr_reg->umax_value) + ptr_reg->off; 6678 break; 6679 default: 6680 return REASON_TYPE; 6681 } 6682 6683 if (ptr_limit >= max) 6684 return REASON_LIMIT; 6685 *alu_limit = ptr_limit; 6686 return 0; 6687 } 6688 6689 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 6690 const struct bpf_insn *insn) 6691 { 6692 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 6693 } 6694 6695 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 6696 u32 alu_state, u32 alu_limit) 6697 { 6698 /* If we arrived here from different branches with different 6699 * state or limits to sanitize, then this won't work. 6700 */ 6701 if (aux->alu_state && 6702 (aux->alu_state != alu_state || 6703 aux->alu_limit != alu_limit)) 6704 return REASON_PATHS; 6705 6706 /* Corresponding fixup done in do_misc_fixups(). */ 6707 aux->alu_state = alu_state; 6708 aux->alu_limit = alu_limit; 6709 return 0; 6710 } 6711 6712 static int sanitize_val_alu(struct bpf_verifier_env *env, 6713 struct bpf_insn *insn) 6714 { 6715 struct bpf_insn_aux_data *aux = cur_aux(env); 6716 6717 if (can_skip_alu_sanitation(env, insn)) 6718 return 0; 6719 6720 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 6721 } 6722 6723 static bool sanitize_needed(u8 opcode) 6724 { 6725 return opcode == BPF_ADD || opcode == BPF_SUB; 6726 } 6727 6728 struct bpf_sanitize_info { 6729 struct bpf_insn_aux_data aux; 6730 bool mask_to_left; 6731 }; 6732 6733 static struct bpf_verifier_state * 6734 sanitize_speculative_path(struct bpf_verifier_env *env, 6735 const struct bpf_insn *insn, 6736 u32 next_idx, u32 curr_idx) 6737 { 6738 struct bpf_verifier_state *branch; 6739 struct bpf_reg_state *regs; 6740 6741 branch = push_stack(env, next_idx, curr_idx, true); 6742 if (branch && insn) { 6743 regs = branch->frame[branch->curframe]->regs; 6744 if (BPF_SRC(insn->code) == BPF_K) { 6745 mark_reg_unknown(env, regs, insn->dst_reg); 6746 } else if (BPF_SRC(insn->code) == BPF_X) { 6747 mark_reg_unknown(env, regs, insn->dst_reg); 6748 mark_reg_unknown(env, regs, insn->src_reg); 6749 } 6750 } 6751 return branch; 6752 } 6753 6754 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 6755 struct bpf_insn *insn, 6756 const struct bpf_reg_state *ptr_reg, 6757 const struct bpf_reg_state *off_reg, 6758 struct bpf_reg_state *dst_reg, 6759 struct bpf_sanitize_info *info, 6760 const bool commit_window) 6761 { 6762 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 6763 struct bpf_verifier_state *vstate = env->cur_state; 6764 bool off_is_imm = tnum_is_const(off_reg->var_off); 6765 bool off_is_neg = off_reg->smin_value < 0; 6766 bool ptr_is_dst_reg = ptr_reg == dst_reg; 6767 u8 opcode = BPF_OP(insn->code); 6768 u32 alu_state, alu_limit; 6769 struct bpf_reg_state tmp; 6770 bool ret; 6771 int err; 6772 6773 if (can_skip_alu_sanitation(env, insn)) 6774 return 0; 6775 6776 /* We already marked aux for masking from non-speculative 6777 * paths, thus we got here in the first place. We only care 6778 * to explore bad access from here. 6779 */ 6780 if (vstate->speculative) 6781 goto do_sim; 6782 6783 if (!commit_window) { 6784 if (!tnum_is_const(off_reg->var_off) && 6785 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 6786 return REASON_BOUNDS; 6787 6788 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 6789 (opcode == BPF_SUB && !off_is_neg); 6790 } 6791 6792 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 6793 if (err < 0) 6794 return err; 6795 6796 if (commit_window) { 6797 /* In commit phase we narrow the masking window based on 6798 * the observed pointer move after the simulated operation. 6799 */ 6800 alu_state = info->aux.alu_state; 6801 alu_limit = abs(info->aux.alu_limit - alu_limit); 6802 } else { 6803 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 6804 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 6805 alu_state |= ptr_is_dst_reg ? 6806 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 6807 } 6808 6809 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 6810 if (err < 0) 6811 return err; 6812 do_sim: 6813 /* If we're in commit phase, we're done here given we already 6814 * pushed the truncated dst_reg into the speculative verification 6815 * stack. 6816 * 6817 * Also, when register is a known constant, we rewrite register-based 6818 * operation to immediate-based, and thus do not need masking (and as 6819 * a consequence, do not need to simulate the zero-truncation either). 6820 */ 6821 if (commit_window || off_is_imm) 6822 return 0; 6823 6824 /* Simulate and find potential out-of-bounds access under 6825 * speculative execution from truncation as a result of 6826 * masking when off was not within expected range. If off 6827 * sits in dst, then we temporarily need to move ptr there 6828 * to simulate dst (== 0) +/-= ptr. Needed, for example, 6829 * for cases where we use K-based arithmetic in one direction 6830 * and truncated reg-based in the other in order to explore 6831 * bad access. 6832 */ 6833 if (!ptr_is_dst_reg) { 6834 tmp = *dst_reg; 6835 *dst_reg = *ptr_reg; 6836 } 6837 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 6838 env->insn_idx); 6839 if (!ptr_is_dst_reg && ret) 6840 *dst_reg = tmp; 6841 return !ret ? REASON_STACK : 0; 6842 } 6843 6844 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 6845 { 6846 struct bpf_verifier_state *vstate = env->cur_state; 6847 6848 /* If we simulate paths under speculation, we don't update the 6849 * insn as 'seen' such that when we verify unreachable paths in 6850 * the non-speculative domain, sanitize_dead_code() can still 6851 * rewrite/sanitize them. 6852 */ 6853 if (!vstate->speculative) 6854 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 6855 } 6856 6857 static int sanitize_err(struct bpf_verifier_env *env, 6858 const struct bpf_insn *insn, int reason, 6859 const struct bpf_reg_state *off_reg, 6860 const struct bpf_reg_state *dst_reg) 6861 { 6862 static const char *err = "pointer arithmetic with it prohibited for !root"; 6863 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 6864 u32 dst = insn->dst_reg, src = insn->src_reg; 6865 6866 switch (reason) { 6867 case REASON_BOUNDS: 6868 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 6869 off_reg == dst_reg ? dst : src, err); 6870 break; 6871 case REASON_TYPE: 6872 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 6873 off_reg == dst_reg ? src : dst, err); 6874 break; 6875 case REASON_PATHS: 6876 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 6877 dst, op, err); 6878 break; 6879 case REASON_LIMIT: 6880 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 6881 dst, op, err); 6882 break; 6883 case REASON_STACK: 6884 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 6885 dst, err); 6886 break; 6887 default: 6888 verbose(env, "verifier internal error: unknown reason (%d)\n", 6889 reason); 6890 break; 6891 } 6892 6893 return -EACCES; 6894 } 6895 6896 /* check that stack access falls within stack limits and that 'reg' doesn't 6897 * have a variable offset. 6898 * 6899 * Variable offset is prohibited for unprivileged mode for simplicity since it 6900 * requires corresponding support in Spectre masking for stack ALU. See also 6901 * retrieve_ptr_limit(). 6902 * 6903 * 6904 * 'off' includes 'reg->off'. 6905 */ 6906 static int check_stack_access_for_ptr_arithmetic( 6907 struct bpf_verifier_env *env, 6908 int regno, 6909 const struct bpf_reg_state *reg, 6910 int off) 6911 { 6912 if (!tnum_is_const(reg->var_off)) { 6913 char tn_buf[48]; 6914 6915 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6916 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 6917 regno, tn_buf, off); 6918 return -EACCES; 6919 } 6920 6921 if (off >= 0 || off < -MAX_BPF_STACK) { 6922 verbose(env, "R%d stack pointer arithmetic goes out of range, " 6923 "prohibited for !root; off=%d\n", regno, off); 6924 return -EACCES; 6925 } 6926 6927 return 0; 6928 } 6929 6930 static int sanitize_check_bounds(struct bpf_verifier_env *env, 6931 const struct bpf_insn *insn, 6932 const struct bpf_reg_state *dst_reg) 6933 { 6934 u32 dst = insn->dst_reg; 6935 6936 /* For unprivileged we require that resulting offset must be in bounds 6937 * in order to be able to sanitize access later on. 6938 */ 6939 if (env->bypass_spec_v1) 6940 return 0; 6941 6942 switch (dst_reg->type) { 6943 case PTR_TO_STACK: 6944 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 6945 dst_reg->off + dst_reg->var_off.value)) 6946 return -EACCES; 6947 break; 6948 case PTR_TO_MAP_VALUE: 6949 if (check_map_access(env, dst, dst_reg->off, 1, false)) { 6950 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 6951 "prohibited for !root\n", dst); 6952 return -EACCES; 6953 } 6954 break; 6955 default: 6956 break; 6957 } 6958 6959 return 0; 6960 } 6961 6962 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 6963 * Caller should also handle BPF_MOV case separately. 6964 * If we return -EACCES, caller may want to try again treating pointer as a 6965 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 6966 */ 6967 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 6968 struct bpf_insn *insn, 6969 const struct bpf_reg_state *ptr_reg, 6970 const struct bpf_reg_state *off_reg) 6971 { 6972 struct bpf_verifier_state *vstate = env->cur_state; 6973 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6974 struct bpf_reg_state *regs = state->regs, *dst_reg; 6975 bool known = tnum_is_const(off_reg->var_off); 6976 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 6977 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 6978 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 6979 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 6980 struct bpf_sanitize_info info = {}; 6981 u8 opcode = BPF_OP(insn->code); 6982 u32 dst = insn->dst_reg; 6983 int ret; 6984 6985 dst_reg = ®s[dst]; 6986 6987 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 6988 smin_val > smax_val || umin_val > umax_val) { 6989 /* Taint dst register if offset had invalid bounds derived from 6990 * e.g. dead branches. 6991 */ 6992 __mark_reg_unknown(env, dst_reg); 6993 return 0; 6994 } 6995 6996 if (BPF_CLASS(insn->code) != BPF_ALU64) { 6997 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 6998 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 6999 __mark_reg_unknown(env, dst_reg); 7000 return 0; 7001 } 7002 7003 verbose(env, 7004 "R%d 32-bit pointer arithmetic prohibited\n", 7005 dst); 7006 return -EACCES; 7007 } 7008 7009 switch (ptr_reg->type) { 7010 case PTR_TO_MAP_VALUE_OR_NULL: 7011 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 7012 dst, reg_type_str[ptr_reg->type]); 7013 return -EACCES; 7014 case CONST_PTR_TO_MAP: 7015 /* smin_val represents the known value */ 7016 if (known && smin_val == 0 && opcode == BPF_ADD) 7017 break; 7018 fallthrough; 7019 case PTR_TO_PACKET_END: 7020 case PTR_TO_SOCKET: 7021 case PTR_TO_SOCKET_OR_NULL: 7022 case PTR_TO_SOCK_COMMON: 7023 case PTR_TO_SOCK_COMMON_OR_NULL: 7024 case PTR_TO_TCP_SOCK: 7025 case PTR_TO_TCP_SOCK_OR_NULL: 7026 case PTR_TO_XDP_SOCK: 7027 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 7028 dst, reg_type_str[ptr_reg->type]); 7029 return -EACCES; 7030 default: 7031 break; 7032 } 7033 7034 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 7035 * The id may be overwritten later if we create a new variable offset. 7036 */ 7037 dst_reg->type = ptr_reg->type; 7038 dst_reg->id = ptr_reg->id; 7039 7040 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 7041 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 7042 return -EINVAL; 7043 7044 /* pointer types do not carry 32-bit bounds at the moment. */ 7045 __mark_reg32_unbounded(dst_reg); 7046 7047 if (sanitize_needed(opcode)) { 7048 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 7049 &info, false); 7050 if (ret < 0) 7051 return sanitize_err(env, insn, ret, off_reg, dst_reg); 7052 } 7053 7054 switch (opcode) { 7055 case BPF_ADD: 7056 /* We can take a fixed offset as long as it doesn't overflow 7057 * the s32 'off' field 7058 */ 7059 if (known && (ptr_reg->off + smin_val == 7060 (s64)(s32)(ptr_reg->off + smin_val))) { 7061 /* pointer += K. Accumulate it into fixed offset */ 7062 dst_reg->smin_value = smin_ptr; 7063 dst_reg->smax_value = smax_ptr; 7064 dst_reg->umin_value = umin_ptr; 7065 dst_reg->umax_value = umax_ptr; 7066 dst_reg->var_off = ptr_reg->var_off; 7067 dst_reg->off = ptr_reg->off + smin_val; 7068 dst_reg->raw = ptr_reg->raw; 7069 break; 7070 } 7071 /* A new variable offset is created. Note that off_reg->off 7072 * == 0, since it's a scalar. 7073 * dst_reg gets the pointer type and since some positive 7074 * integer value was added to the pointer, give it a new 'id' 7075 * if it's a PTR_TO_PACKET. 7076 * this creates a new 'base' pointer, off_reg (variable) gets 7077 * added into the variable offset, and we copy the fixed offset 7078 * from ptr_reg. 7079 */ 7080 if (signed_add_overflows(smin_ptr, smin_val) || 7081 signed_add_overflows(smax_ptr, smax_val)) { 7082 dst_reg->smin_value = S64_MIN; 7083 dst_reg->smax_value = S64_MAX; 7084 } else { 7085 dst_reg->smin_value = smin_ptr + smin_val; 7086 dst_reg->smax_value = smax_ptr + smax_val; 7087 } 7088 if (umin_ptr + umin_val < umin_ptr || 7089 umax_ptr + umax_val < umax_ptr) { 7090 dst_reg->umin_value = 0; 7091 dst_reg->umax_value = U64_MAX; 7092 } else { 7093 dst_reg->umin_value = umin_ptr + umin_val; 7094 dst_reg->umax_value = umax_ptr + umax_val; 7095 } 7096 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 7097 dst_reg->off = ptr_reg->off; 7098 dst_reg->raw = ptr_reg->raw; 7099 if (reg_is_pkt_pointer(ptr_reg)) { 7100 dst_reg->id = ++env->id_gen; 7101 /* something was added to pkt_ptr, set range to zero */ 7102 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 7103 } 7104 break; 7105 case BPF_SUB: 7106 if (dst_reg == off_reg) { 7107 /* scalar -= pointer. Creates an unknown scalar */ 7108 verbose(env, "R%d tried to subtract pointer from scalar\n", 7109 dst); 7110 return -EACCES; 7111 } 7112 /* We don't allow subtraction from FP, because (according to 7113 * test_verifier.c test "invalid fp arithmetic", JITs might not 7114 * be able to deal with it. 7115 */ 7116 if (ptr_reg->type == PTR_TO_STACK) { 7117 verbose(env, "R%d subtraction from stack pointer prohibited\n", 7118 dst); 7119 return -EACCES; 7120 } 7121 if (known && (ptr_reg->off - smin_val == 7122 (s64)(s32)(ptr_reg->off - smin_val))) { 7123 /* pointer -= K. Subtract it from fixed offset */ 7124 dst_reg->smin_value = smin_ptr; 7125 dst_reg->smax_value = smax_ptr; 7126 dst_reg->umin_value = umin_ptr; 7127 dst_reg->umax_value = umax_ptr; 7128 dst_reg->var_off = ptr_reg->var_off; 7129 dst_reg->id = ptr_reg->id; 7130 dst_reg->off = ptr_reg->off - smin_val; 7131 dst_reg->raw = ptr_reg->raw; 7132 break; 7133 } 7134 /* A new variable offset is created. If the subtrahend is known 7135 * nonnegative, then any reg->range we had before is still good. 7136 */ 7137 if (signed_sub_overflows(smin_ptr, smax_val) || 7138 signed_sub_overflows(smax_ptr, smin_val)) { 7139 /* Overflow possible, we know nothing */ 7140 dst_reg->smin_value = S64_MIN; 7141 dst_reg->smax_value = S64_MAX; 7142 } else { 7143 dst_reg->smin_value = smin_ptr - smax_val; 7144 dst_reg->smax_value = smax_ptr - smin_val; 7145 } 7146 if (umin_ptr < umax_val) { 7147 /* Overflow possible, we know nothing */ 7148 dst_reg->umin_value = 0; 7149 dst_reg->umax_value = U64_MAX; 7150 } else { 7151 /* Cannot overflow (as long as bounds are consistent) */ 7152 dst_reg->umin_value = umin_ptr - umax_val; 7153 dst_reg->umax_value = umax_ptr - umin_val; 7154 } 7155 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 7156 dst_reg->off = ptr_reg->off; 7157 dst_reg->raw = ptr_reg->raw; 7158 if (reg_is_pkt_pointer(ptr_reg)) { 7159 dst_reg->id = ++env->id_gen; 7160 /* something was added to pkt_ptr, set range to zero */ 7161 if (smin_val < 0) 7162 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 7163 } 7164 break; 7165 case BPF_AND: 7166 case BPF_OR: 7167 case BPF_XOR: 7168 /* bitwise ops on pointers are troublesome, prohibit. */ 7169 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 7170 dst, bpf_alu_string[opcode >> 4]); 7171 return -EACCES; 7172 default: 7173 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 7174 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 7175 dst, bpf_alu_string[opcode >> 4]); 7176 return -EACCES; 7177 } 7178 7179 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 7180 return -EINVAL; 7181 7182 __update_reg_bounds(dst_reg); 7183 __reg_deduce_bounds(dst_reg); 7184 __reg_bound_offset(dst_reg); 7185 7186 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 7187 return -EACCES; 7188 if (sanitize_needed(opcode)) { 7189 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 7190 &info, true); 7191 if (ret < 0) 7192 return sanitize_err(env, insn, ret, off_reg, dst_reg); 7193 } 7194 7195 return 0; 7196 } 7197 7198 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 7199 struct bpf_reg_state *src_reg) 7200 { 7201 s32 smin_val = src_reg->s32_min_value; 7202 s32 smax_val = src_reg->s32_max_value; 7203 u32 umin_val = src_reg->u32_min_value; 7204 u32 umax_val = src_reg->u32_max_value; 7205 7206 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 7207 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 7208 dst_reg->s32_min_value = S32_MIN; 7209 dst_reg->s32_max_value = S32_MAX; 7210 } else { 7211 dst_reg->s32_min_value += smin_val; 7212 dst_reg->s32_max_value += smax_val; 7213 } 7214 if (dst_reg->u32_min_value + umin_val < umin_val || 7215 dst_reg->u32_max_value + umax_val < umax_val) { 7216 dst_reg->u32_min_value = 0; 7217 dst_reg->u32_max_value = U32_MAX; 7218 } else { 7219 dst_reg->u32_min_value += umin_val; 7220 dst_reg->u32_max_value += umax_val; 7221 } 7222 } 7223 7224 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 7225 struct bpf_reg_state *src_reg) 7226 { 7227 s64 smin_val = src_reg->smin_value; 7228 s64 smax_val = src_reg->smax_value; 7229 u64 umin_val = src_reg->umin_value; 7230 u64 umax_val = src_reg->umax_value; 7231 7232 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 7233 signed_add_overflows(dst_reg->smax_value, smax_val)) { 7234 dst_reg->smin_value = S64_MIN; 7235 dst_reg->smax_value = S64_MAX; 7236 } else { 7237 dst_reg->smin_value += smin_val; 7238 dst_reg->smax_value += smax_val; 7239 } 7240 if (dst_reg->umin_value + umin_val < umin_val || 7241 dst_reg->umax_value + umax_val < umax_val) { 7242 dst_reg->umin_value = 0; 7243 dst_reg->umax_value = U64_MAX; 7244 } else { 7245 dst_reg->umin_value += umin_val; 7246 dst_reg->umax_value += umax_val; 7247 } 7248 } 7249 7250 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 7251 struct bpf_reg_state *src_reg) 7252 { 7253 s32 smin_val = src_reg->s32_min_value; 7254 s32 smax_val = src_reg->s32_max_value; 7255 u32 umin_val = src_reg->u32_min_value; 7256 u32 umax_val = src_reg->u32_max_value; 7257 7258 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 7259 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 7260 /* Overflow possible, we know nothing */ 7261 dst_reg->s32_min_value = S32_MIN; 7262 dst_reg->s32_max_value = S32_MAX; 7263 } else { 7264 dst_reg->s32_min_value -= smax_val; 7265 dst_reg->s32_max_value -= smin_val; 7266 } 7267 if (dst_reg->u32_min_value < umax_val) { 7268 /* Overflow possible, we know nothing */ 7269 dst_reg->u32_min_value = 0; 7270 dst_reg->u32_max_value = U32_MAX; 7271 } else { 7272 /* Cannot overflow (as long as bounds are consistent) */ 7273 dst_reg->u32_min_value -= umax_val; 7274 dst_reg->u32_max_value -= umin_val; 7275 } 7276 } 7277 7278 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 7279 struct bpf_reg_state *src_reg) 7280 { 7281 s64 smin_val = src_reg->smin_value; 7282 s64 smax_val = src_reg->smax_value; 7283 u64 umin_val = src_reg->umin_value; 7284 u64 umax_val = src_reg->umax_value; 7285 7286 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 7287 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 7288 /* Overflow possible, we know nothing */ 7289 dst_reg->smin_value = S64_MIN; 7290 dst_reg->smax_value = S64_MAX; 7291 } else { 7292 dst_reg->smin_value -= smax_val; 7293 dst_reg->smax_value -= smin_val; 7294 } 7295 if (dst_reg->umin_value < umax_val) { 7296 /* Overflow possible, we know nothing */ 7297 dst_reg->umin_value = 0; 7298 dst_reg->umax_value = U64_MAX; 7299 } else { 7300 /* Cannot overflow (as long as bounds are consistent) */ 7301 dst_reg->umin_value -= umax_val; 7302 dst_reg->umax_value -= umin_val; 7303 } 7304 } 7305 7306 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 7307 struct bpf_reg_state *src_reg) 7308 { 7309 s32 smin_val = src_reg->s32_min_value; 7310 u32 umin_val = src_reg->u32_min_value; 7311 u32 umax_val = src_reg->u32_max_value; 7312 7313 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 7314 /* Ain't nobody got time to multiply that sign */ 7315 __mark_reg32_unbounded(dst_reg); 7316 return; 7317 } 7318 /* Both values are positive, so we can work with unsigned and 7319 * copy the result to signed (unless it exceeds S32_MAX). 7320 */ 7321 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 7322 /* Potential overflow, we know nothing */ 7323 __mark_reg32_unbounded(dst_reg); 7324 return; 7325 } 7326 dst_reg->u32_min_value *= umin_val; 7327 dst_reg->u32_max_value *= umax_val; 7328 if (dst_reg->u32_max_value > S32_MAX) { 7329 /* Overflow possible, we know nothing */ 7330 dst_reg->s32_min_value = S32_MIN; 7331 dst_reg->s32_max_value = S32_MAX; 7332 } else { 7333 dst_reg->s32_min_value = dst_reg->u32_min_value; 7334 dst_reg->s32_max_value = dst_reg->u32_max_value; 7335 } 7336 } 7337 7338 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 7339 struct bpf_reg_state *src_reg) 7340 { 7341 s64 smin_val = src_reg->smin_value; 7342 u64 umin_val = src_reg->umin_value; 7343 u64 umax_val = src_reg->umax_value; 7344 7345 if (smin_val < 0 || dst_reg->smin_value < 0) { 7346 /* Ain't nobody got time to multiply that sign */ 7347 __mark_reg64_unbounded(dst_reg); 7348 return; 7349 } 7350 /* Both values are positive, so we can work with unsigned and 7351 * copy the result to signed (unless it exceeds S64_MAX). 7352 */ 7353 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 7354 /* Potential overflow, we know nothing */ 7355 __mark_reg64_unbounded(dst_reg); 7356 return; 7357 } 7358 dst_reg->umin_value *= umin_val; 7359 dst_reg->umax_value *= umax_val; 7360 if (dst_reg->umax_value > S64_MAX) { 7361 /* Overflow possible, we know nothing */ 7362 dst_reg->smin_value = S64_MIN; 7363 dst_reg->smax_value = S64_MAX; 7364 } else { 7365 dst_reg->smin_value = dst_reg->umin_value; 7366 dst_reg->smax_value = dst_reg->umax_value; 7367 } 7368 } 7369 7370 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 7371 struct bpf_reg_state *src_reg) 7372 { 7373 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7374 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7375 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7376 s32 smin_val = src_reg->s32_min_value; 7377 u32 umax_val = src_reg->u32_max_value; 7378 7379 if (src_known && dst_known) { 7380 __mark_reg32_known(dst_reg, var32_off.value); 7381 return; 7382 } 7383 7384 /* We get our minimum from the var_off, since that's inherently 7385 * bitwise. Our maximum is the minimum of the operands' maxima. 7386 */ 7387 dst_reg->u32_min_value = var32_off.value; 7388 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 7389 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 7390 /* Lose signed bounds when ANDing negative numbers, 7391 * ain't nobody got time for that. 7392 */ 7393 dst_reg->s32_min_value = S32_MIN; 7394 dst_reg->s32_max_value = S32_MAX; 7395 } else { 7396 /* ANDing two positives gives a positive, so safe to 7397 * cast result into s64. 7398 */ 7399 dst_reg->s32_min_value = dst_reg->u32_min_value; 7400 dst_reg->s32_max_value = dst_reg->u32_max_value; 7401 } 7402 } 7403 7404 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 7405 struct bpf_reg_state *src_reg) 7406 { 7407 bool src_known = tnum_is_const(src_reg->var_off); 7408 bool dst_known = tnum_is_const(dst_reg->var_off); 7409 s64 smin_val = src_reg->smin_value; 7410 u64 umax_val = src_reg->umax_value; 7411 7412 if (src_known && dst_known) { 7413 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7414 return; 7415 } 7416 7417 /* We get our minimum from the var_off, since that's inherently 7418 * bitwise. Our maximum is the minimum of the operands' maxima. 7419 */ 7420 dst_reg->umin_value = dst_reg->var_off.value; 7421 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 7422 if (dst_reg->smin_value < 0 || smin_val < 0) { 7423 /* Lose signed bounds when ANDing negative numbers, 7424 * ain't nobody got time for that. 7425 */ 7426 dst_reg->smin_value = S64_MIN; 7427 dst_reg->smax_value = S64_MAX; 7428 } else { 7429 /* ANDing two positives gives a positive, so safe to 7430 * cast result into s64. 7431 */ 7432 dst_reg->smin_value = dst_reg->umin_value; 7433 dst_reg->smax_value = dst_reg->umax_value; 7434 } 7435 /* We may learn something more from the var_off */ 7436 __update_reg_bounds(dst_reg); 7437 } 7438 7439 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 7440 struct bpf_reg_state *src_reg) 7441 { 7442 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7443 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7444 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7445 s32 smin_val = src_reg->s32_min_value; 7446 u32 umin_val = src_reg->u32_min_value; 7447 7448 if (src_known && dst_known) { 7449 __mark_reg32_known(dst_reg, var32_off.value); 7450 return; 7451 } 7452 7453 /* We get our maximum from the var_off, and our minimum is the 7454 * maximum of the operands' minima 7455 */ 7456 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 7457 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 7458 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 7459 /* Lose signed bounds when ORing negative numbers, 7460 * ain't nobody got time for that. 7461 */ 7462 dst_reg->s32_min_value = S32_MIN; 7463 dst_reg->s32_max_value = S32_MAX; 7464 } else { 7465 /* ORing two positives gives a positive, so safe to 7466 * cast result into s64. 7467 */ 7468 dst_reg->s32_min_value = dst_reg->u32_min_value; 7469 dst_reg->s32_max_value = dst_reg->u32_max_value; 7470 } 7471 } 7472 7473 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 7474 struct bpf_reg_state *src_reg) 7475 { 7476 bool src_known = tnum_is_const(src_reg->var_off); 7477 bool dst_known = tnum_is_const(dst_reg->var_off); 7478 s64 smin_val = src_reg->smin_value; 7479 u64 umin_val = src_reg->umin_value; 7480 7481 if (src_known && dst_known) { 7482 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7483 return; 7484 } 7485 7486 /* We get our maximum from the var_off, and our minimum is the 7487 * maximum of the operands' minima 7488 */ 7489 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 7490 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 7491 if (dst_reg->smin_value < 0 || smin_val < 0) { 7492 /* Lose signed bounds when ORing negative numbers, 7493 * ain't nobody got time for that. 7494 */ 7495 dst_reg->smin_value = S64_MIN; 7496 dst_reg->smax_value = S64_MAX; 7497 } else { 7498 /* ORing two positives gives a positive, so safe to 7499 * cast result into s64. 7500 */ 7501 dst_reg->smin_value = dst_reg->umin_value; 7502 dst_reg->smax_value = dst_reg->umax_value; 7503 } 7504 /* We may learn something more from the var_off */ 7505 __update_reg_bounds(dst_reg); 7506 } 7507 7508 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 7509 struct bpf_reg_state *src_reg) 7510 { 7511 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7512 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7513 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7514 s32 smin_val = src_reg->s32_min_value; 7515 7516 if (src_known && dst_known) { 7517 __mark_reg32_known(dst_reg, var32_off.value); 7518 return; 7519 } 7520 7521 /* We get both minimum and maximum from the var32_off. */ 7522 dst_reg->u32_min_value = var32_off.value; 7523 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 7524 7525 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 7526 /* XORing two positive sign numbers gives a positive, 7527 * so safe to cast u32 result into s32. 7528 */ 7529 dst_reg->s32_min_value = dst_reg->u32_min_value; 7530 dst_reg->s32_max_value = dst_reg->u32_max_value; 7531 } else { 7532 dst_reg->s32_min_value = S32_MIN; 7533 dst_reg->s32_max_value = S32_MAX; 7534 } 7535 } 7536 7537 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 7538 struct bpf_reg_state *src_reg) 7539 { 7540 bool src_known = tnum_is_const(src_reg->var_off); 7541 bool dst_known = tnum_is_const(dst_reg->var_off); 7542 s64 smin_val = src_reg->smin_value; 7543 7544 if (src_known && dst_known) { 7545 /* dst_reg->var_off.value has been updated earlier */ 7546 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7547 return; 7548 } 7549 7550 /* We get both minimum and maximum from the var_off. */ 7551 dst_reg->umin_value = dst_reg->var_off.value; 7552 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 7553 7554 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 7555 /* XORing two positive sign numbers gives a positive, 7556 * so safe to cast u64 result into s64. 7557 */ 7558 dst_reg->smin_value = dst_reg->umin_value; 7559 dst_reg->smax_value = dst_reg->umax_value; 7560 } else { 7561 dst_reg->smin_value = S64_MIN; 7562 dst_reg->smax_value = S64_MAX; 7563 } 7564 7565 __update_reg_bounds(dst_reg); 7566 } 7567 7568 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 7569 u64 umin_val, u64 umax_val) 7570 { 7571 /* We lose all sign bit information (except what we can pick 7572 * up from var_off) 7573 */ 7574 dst_reg->s32_min_value = S32_MIN; 7575 dst_reg->s32_max_value = S32_MAX; 7576 /* If we might shift our top bit out, then we know nothing */ 7577 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 7578 dst_reg->u32_min_value = 0; 7579 dst_reg->u32_max_value = U32_MAX; 7580 } else { 7581 dst_reg->u32_min_value <<= umin_val; 7582 dst_reg->u32_max_value <<= umax_val; 7583 } 7584 } 7585 7586 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 7587 struct bpf_reg_state *src_reg) 7588 { 7589 u32 umax_val = src_reg->u32_max_value; 7590 u32 umin_val = src_reg->u32_min_value; 7591 /* u32 alu operation will zext upper bits */ 7592 struct tnum subreg = tnum_subreg(dst_reg->var_off); 7593 7594 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 7595 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 7596 /* Not required but being careful mark reg64 bounds as unknown so 7597 * that we are forced to pick them up from tnum and zext later and 7598 * if some path skips this step we are still safe. 7599 */ 7600 __mark_reg64_unbounded(dst_reg); 7601 __update_reg32_bounds(dst_reg); 7602 } 7603 7604 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 7605 u64 umin_val, u64 umax_val) 7606 { 7607 /* Special case <<32 because it is a common compiler pattern to sign 7608 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 7609 * positive we know this shift will also be positive so we can track 7610 * bounds correctly. Otherwise we lose all sign bit information except 7611 * what we can pick up from var_off. Perhaps we can generalize this 7612 * later to shifts of any length. 7613 */ 7614 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 7615 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 7616 else 7617 dst_reg->smax_value = S64_MAX; 7618 7619 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 7620 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 7621 else 7622 dst_reg->smin_value = S64_MIN; 7623 7624 /* If we might shift our top bit out, then we know nothing */ 7625 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 7626 dst_reg->umin_value = 0; 7627 dst_reg->umax_value = U64_MAX; 7628 } else { 7629 dst_reg->umin_value <<= umin_val; 7630 dst_reg->umax_value <<= umax_val; 7631 } 7632 } 7633 7634 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 7635 struct bpf_reg_state *src_reg) 7636 { 7637 u64 umax_val = src_reg->umax_value; 7638 u64 umin_val = src_reg->umin_value; 7639 7640 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 7641 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 7642 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 7643 7644 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 7645 /* We may learn something more from the var_off */ 7646 __update_reg_bounds(dst_reg); 7647 } 7648 7649 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 7650 struct bpf_reg_state *src_reg) 7651 { 7652 struct tnum subreg = tnum_subreg(dst_reg->var_off); 7653 u32 umax_val = src_reg->u32_max_value; 7654 u32 umin_val = src_reg->u32_min_value; 7655 7656 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 7657 * be negative, then either: 7658 * 1) src_reg might be zero, so the sign bit of the result is 7659 * unknown, so we lose our signed bounds 7660 * 2) it's known negative, thus the unsigned bounds capture the 7661 * signed bounds 7662 * 3) the signed bounds cross zero, so they tell us nothing 7663 * about the result 7664 * If the value in dst_reg is known nonnegative, then again the 7665 * unsigned bounds capture the signed bounds. 7666 * Thus, in all cases it suffices to blow away our signed bounds 7667 * and rely on inferring new ones from the unsigned bounds and 7668 * var_off of the result. 7669 */ 7670 dst_reg->s32_min_value = S32_MIN; 7671 dst_reg->s32_max_value = S32_MAX; 7672 7673 dst_reg->var_off = tnum_rshift(subreg, umin_val); 7674 dst_reg->u32_min_value >>= umax_val; 7675 dst_reg->u32_max_value >>= umin_val; 7676 7677 __mark_reg64_unbounded(dst_reg); 7678 __update_reg32_bounds(dst_reg); 7679 } 7680 7681 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 7682 struct bpf_reg_state *src_reg) 7683 { 7684 u64 umax_val = src_reg->umax_value; 7685 u64 umin_val = src_reg->umin_value; 7686 7687 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 7688 * be negative, then either: 7689 * 1) src_reg might be zero, so the sign bit of the result is 7690 * unknown, so we lose our signed bounds 7691 * 2) it's known negative, thus the unsigned bounds capture the 7692 * signed bounds 7693 * 3) the signed bounds cross zero, so they tell us nothing 7694 * about the result 7695 * If the value in dst_reg is known nonnegative, then again the 7696 * unsigned bounds capture the signed bounds. 7697 * Thus, in all cases it suffices to blow away our signed bounds 7698 * and rely on inferring new ones from the unsigned bounds and 7699 * var_off of the result. 7700 */ 7701 dst_reg->smin_value = S64_MIN; 7702 dst_reg->smax_value = S64_MAX; 7703 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 7704 dst_reg->umin_value >>= umax_val; 7705 dst_reg->umax_value >>= umin_val; 7706 7707 /* Its not easy to operate on alu32 bounds here because it depends 7708 * on bits being shifted in. Take easy way out and mark unbounded 7709 * so we can recalculate later from tnum. 7710 */ 7711 __mark_reg32_unbounded(dst_reg); 7712 __update_reg_bounds(dst_reg); 7713 } 7714 7715 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 7716 struct bpf_reg_state *src_reg) 7717 { 7718 u64 umin_val = src_reg->u32_min_value; 7719 7720 /* Upon reaching here, src_known is true and 7721 * umax_val is equal to umin_val. 7722 */ 7723 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 7724 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 7725 7726 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 7727 7728 /* blow away the dst_reg umin_value/umax_value and rely on 7729 * dst_reg var_off to refine the result. 7730 */ 7731 dst_reg->u32_min_value = 0; 7732 dst_reg->u32_max_value = U32_MAX; 7733 7734 __mark_reg64_unbounded(dst_reg); 7735 __update_reg32_bounds(dst_reg); 7736 } 7737 7738 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 7739 struct bpf_reg_state *src_reg) 7740 { 7741 u64 umin_val = src_reg->umin_value; 7742 7743 /* Upon reaching here, src_known is true and umax_val is equal 7744 * to umin_val. 7745 */ 7746 dst_reg->smin_value >>= umin_val; 7747 dst_reg->smax_value >>= umin_val; 7748 7749 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 7750 7751 /* blow away the dst_reg umin_value/umax_value and rely on 7752 * dst_reg var_off to refine the result. 7753 */ 7754 dst_reg->umin_value = 0; 7755 dst_reg->umax_value = U64_MAX; 7756 7757 /* Its not easy to operate on alu32 bounds here because it depends 7758 * on bits being shifted in from upper 32-bits. Take easy way out 7759 * and mark unbounded so we can recalculate later from tnum. 7760 */ 7761 __mark_reg32_unbounded(dst_reg); 7762 __update_reg_bounds(dst_reg); 7763 } 7764 7765 /* WARNING: This function does calculations on 64-bit values, but the actual 7766 * execution may occur on 32-bit values. Therefore, things like bitshifts 7767 * need extra checks in the 32-bit case. 7768 */ 7769 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 7770 struct bpf_insn *insn, 7771 struct bpf_reg_state *dst_reg, 7772 struct bpf_reg_state src_reg) 7773 { 7774 struct bpf_reg_state *regs = cur_regs(env); 7775 u8 opcode = BPF_OP(insn->code); 7776 bool src_known; 7777 s64 smin_val, smax_val; 7778 u64 umin_val, umax_val; 7779 s32 s32_min_val, s32_max_val; 7780 u32 u32_min_val, u32_max_val; 7781 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 7782 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 7783 int ret; 7784 7785 smin_val = src_reg.smin_value; 7786 smax_val = src_reg.smax_value; 7787 umin_val = src_reg.umin_value; 7788 umax_val = src_reg.umax_value; 7789 7790 s32_min_val = src_reg.s32_min_value; 7791 s32_max_val = src_reg.s32_max_value; 7792 u32_min_val = src_reg.u32_min_value; 7793 u32_max_val = src_reg.u32_max_value; 7794 7795 if (alu32) { 7796 src_known = tnum_subreg_is_const(src_reg.var_off); 7797 if ((src_known && 7798 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 7799 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 7800 /* Taint dst register if offset had invalid bounds 7801 * derived from e.g. dead branches. 7802 */ 7803 __mark_reg_unknown(env, dst_reg); 7804 return 0; 7805 } 7806 } else { 7807 src_known = tnum_is_const(src_reg.var_off); 7808 if ((src_known && 7809 (smin_val != smax_val || umin_val != umax_val)) || 7810 smin_val > smax_val || umin_val > umax_val) { 7811 /* Taint dst register if offset had invalid bounds 7812 * derived from e.g. dead branches. 7813 */ 7814 __mark_reg_unknown(env, dst_reg); 7815 return 0; 7816 } 7817 } 7818 7819 if (!src_known && 7820 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 7821 __mark_reg_unknown(env, dst_reg); 7822 return 0; 7823 } 7824 7825 if (sanitize_needed(opcode)) { 7826 ret = sanitize_val_alu(env, insn); 7827 if (ret < 0) 7828 return sanitize_err(env, insn, ret, NULL, NULL); 7829 } 7830 7831 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 7832 * There are two classes of instructions: The first class we track both 7833 * alu32 and alu64 sign/unsigned bounds independently this provides the 7834 * greatest amount of precision when alu operations are mixed with jmp32 7835 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 7836 * and BPF_OR. This is possible because these ops have fairly easy to 7837 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 7838 * See alu32 verifier tests for examples. The second class of 7839 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 7840 * with regards to tracking sign/unsigned bounds because the bits may 7841 * cross subreg boundaries in the alu64 case. When this happens we mark 7842 * the reg unbounded in the subreg bound space and use the resulting 7843 * tnum to calculate an approximation of the sign/unsigned bounds. 7844 */ 7845 switch (opcode) { 7846 case BPF_ADD: 7847 scalar32_min_max_add(dst_reg, &src_reg); 7848 scalar_min_max_add(dst_reg, &src_reg); 7849 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 7850 break; 7851 case BPF_SUB: 7852 scalar32_min_max_sub(dst_reg, &src_reg); 7853 scalar_min_max_sub(dst_reg, &src_reg); 7854 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 7855 break; 7856 case BPF_MUL: 7857 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 7858 scalar32_min_max_mul(dst_reg, &src_reg); 7859 scalar_min_max_mul(dst_reg, &src_reg); 7860 break; 7861 case BPF_AND: 7862 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 7863 scalar32_min_max_and(dst_reg, &src_reg); 7864 scalar_min_max_and(dst_reg, &src_reg); 7865 break; 7866 case BPF_OR: 7867 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 7868 scalar32_min_max_or(dst_reg, &src_reg); 7869 scalar_min_max_or(dst_reg, &src_reg); 7870 break; 7871 case BPF_XOR: 7872 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 7873 scalar32_min_max_xor(dst_reg, &src_reg); 7874 scalar_min_max_xor(dst_reg, &src_reg); 7875 break; 7876 case BPF_LSH: 7877 if (umax_val >= insn_bitness) { 7878 /* Shifts greater than 31 or 63 are undefined. 7879 * This includes shifts by a negative number. 7880 */ 7881 mark_reg_unknown(env, regs, insn->dst_reg); 7882 break; 7883 } 7884 if (alu32) 7885 scalar32_min_max_lsh(dst_reg, &src_reg); 7886 else 7887 scalar_min_max_lsh(dst_reg, &src_reg); 7888 break; 7889 case BPF_RSH: 7890 if (umax_val >= insn_bitness) { 7891 /* Shifts greater than 31 or 63 are undefined. 7892 * This includes shifts by a negative number. 7893 */ 7894 mark_reg_unknown(env, regs, insn->dst_reg); 7895 break; 7896 } 7897 if (alu32) 7898 scalar32_min_max_rsh(dst_reg, &src_reg); 7899 else 7900 scalar_min_max_rsh(dst_reg, &src_reg); 7901 break; 7902 case BPF_ARSH: 7903 if (umax_val >= insn_bitness) { 7904 /* Shifts greater than 31 or 63 are undefined. 7905 * This includes shifts by a negative number. 7906 */ 7907 mark_reg_unknown(env, regs, insn->dst_reg); 7908 break; 7909 } 7910 if (alu32) 7911 scalar32_min_max_arsh(dst_reg, &src_reg); 7912 else 7913 scalar_min_max_arsh(dst_reg, &src_reg); 7914 break; 7915 default: 7916 mark_reg_unknown(env, regs, insn->dst_reg); 7917 break; 7918 } 7919 7920 /* ALU32 ops are zero extended into 64bit register */ 7921 if (alu32) 7922 zext_32_to_64(dst_reg); 7923 7924 __update_reg_bounds(dst_reg); 7925 __reg_deduce_bounds(dst_reg); 7926 __reg_bound_offset(dst_reg); 7927 return 0; 7928 } 7929 7930 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 7931 * and var_off. 7932 */ 7933 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 7934 struct bpf_insn *insn) 7935 { 7936 struct bpf_verifier_state *vstate = env->cur_state; 7937 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7938 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 7939 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 7940 u8 opcode = BPF_OP(insn->code); 7941 int err; 7942 7943 dst_reg = ®s[insn->dst_reg]; 7944 src_reg = NULL; 7945 if (dst_reg->type != SCALAR_VALUE) 7946 ptr_reg = dst_reg; 7947 else 7948 /* Make sure ID is cleared otherwise dst_reg min/max could be 7949 * incorrectly propagated into other registers by find_equal_scalars() 7950 */ 7951 dst_reg->id = 0; 7952 if (BPF_SRC(insn->code) == BPF_X) { 7953 src_reg = ®s[insn->src_reg]; 7954 if (src_reg->type != SCALAR_VALUE) { 7955 if (dst_reg->type != SCALAR_VALUE) { 7956 /* Combining two pointers by any ALU op yields 7957 * an arbitrary scalar. Disallow all math except 7958 * pointer subtraction 7959 */ 7960 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 7961 mark_reg_unknown(env, regs, insn->dst_reg); 7962 return 0; 7963 } 7964 verbose(env, "R%d pointer %s pointer prohibited\n", 7965 insn->dst_reg, 7966 bpf_alu_string[opcode >> 4]); 7967 return -EACCES; 7968 } else { 7969 /* scalar += pointer 7970 * This is legal, but we have to reverse our 7971 * src/dest handling in computing the range 7972 */ 7973 err = mark_chain_precision(env, insn->dst_reg); 7974 if (err) 7975 return err; 7976 return adjust_ptr_min_max_vals(env, insn, 7977 src_reg, dst_reg); 7978 } 7979 } else if (ptr_reg) { 7980 /* pointer += scalar */ 7981 err = mark_chain_precision(env, insn->src_reg); 7982 if (err) 7983 return err; 7984 return adjust_ptr_min_max_vals(env, insn, 7985 dst_reg, src_reg); 7986 } 7987 } else { 7988 /* Pretend the src is a reg with a known value, since we only 7989 * need to be able to read from this state. 7990 */ 7991 off_reg.type = SCALAR_VALUE; 7992 __mark_reg_known(&off_reg, insn->imm); 7993 src_reg = &off_reg; 7994 if (ptr_reg) /* pointer += K */ 7995 return adjust_ptr_min_max_vals(env, insn, 7996 ptr_reg, src_reg); 7997 } 7998 7999 /* Got here implies adding two SCALAR_VALUEs */ 8000 if (WARN_ON_ONCE(ptr_reg)) { 8001 print_verifier_state(env, state); 8002 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 8003 return -EINVAL; 8004 } 8005 if (WARN_ON(!src_reg)) { 8006 print_verifier_state(env, state); 8007 verbose(env, "verifier internal error: no src_reg\n"); 8008 return -EINVAL; 8009 } 8010 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 8011 } 8012 8013 /* check validity of 32-bit and 64-bit arithmetic operations */ 8014 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 8015 { 8016 struct bpf_reg_state *regs = cur_regs(env); 8017 u8 opcode = BPF_OP(insn->code); 8018 int err; 8019 8020 if (opcode == BPF_END || opcode == BPF_NEG) { 8021 if (opcode == BPF_NEG) { 8022 if (BPF_SRC(insn->code) != 0 || 8023 insn->src_reg != BPF_REG_0 || 8024 insn->off != 0 || insn->imm != 0) { 8025 verbose(env, "BPF_NEG uses reserved fields\n"); 8026 return -EINVAL; 8027 } 8028 } else { 8029 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 8030 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 8031 BPF_CLASS(insn->code) == BPF_ALU64) { 8032 verbose(env, "BPF_END uses reserved fields\n"); 8033 return -EINVAL; 8034 } 8035 } 8036 8037 /* check src operand */ 8038 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8039 if (err) 8040 return err; 8041 8042 if (is_pointer_value(env, insn->dst_reg)) { 8043 verbose(env, "R%d pointer arithmetic prohibited\n", 8044 insn->dst_reg); 8045 return -EACCES; 8046 } 8047 8048 /* check dest operand */ 8049 err = check_reg_arg(env, insn->dst_reg, DST_OP); 8050 if (err) 8051 return err; 8052 8053 } else if (opcode == BPF_MOV) { 8054 8055 if (BPF_SRC(insn->code) == BPF_X) { 8056 if (insn->imm != 0 || insn->off != 0) { 8057 verbose(env, "BPF_MOV uses reserved fields\n"); 8058 return -EINVAL; 8059 } 8060 8061 /* check src operand */ 8062 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8063 if (err) 8064 return err; 8065 } else { 8066 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 8067 verbose(env, "BPF_MOV uses reserved fields\n"); 8068 return -EINVAL; 8069 } 8070 } 8071 8072 /* check dest operand, mark as required later */ 8073 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8074 if (err) 8075 return err; 8076 8077 if (BPF_SRC(insn->code) == BPF_X) { 8078 struct bpf_reg_state *src_reg = regs + insn->src_reg; 8079 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 8080 8081 if (BPF_CLASS(insn->code) == BPF_ALU64) { 8082 /* case: R1 = R2 8083 * copy register state to dest reg 8084 */ 8085 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 8086 /* Assign src and dst registers the same ID 8087 * that will be used by find_equal_scalars() 8088 * to propagate min/max range. 8089 */ 8090 src_reg->id = ++env->id_gen; 8091 *dst_reg = *src_reg; 8092 dst_reg->live |= REG_LIVE_WRITTEN; 8093 dst_reg->subreg_def = DEF_NOT_SUBREG; 8094 } else { 8095 /* R1 = (u32) R2 */ 8096 if (is_pointer_value(env, insn->src_reg)) { 8097 verbose(env, 8098 "R%d partial copy of pointer\n", 8099 insn->src_reg); 8100 return -EACCES; 8101 } else if (src_reg->type == SCALAR_VALUE) { 8102 *dst_reg = *src_reg; 8103 /* Make sure ID is cleared otherwise 8104 * dst_reg min/max could be incorrectly 8105 * propagated into src_reg by find_equal_scalars() 8106 */ 8107 dst_reg->id = 0; 8108 dst_reg->live |= REG_LIVE_WRITTEN; 8109 dst_reg->subreg_def = env->insn_idx + 1; 8110 } else { 8111 mark_reg_unknown(env, regs, 8112 insn->dst_reg); 8113 } 8114 zext_32_to_64(dst_reg); 8115 } 8116 } else { 8117 /* case: R = imm 8118 * remember the value we stored into this reg 8119 */ 8120 /* clear any state __mark_reg_known doesn't set */ 8121 mark_reg_unknown(env, regs, insn->dst_reg); 8122 regs[insn->dst_reg].type = SCALAR_VALUE; 8123 if (BPF_CLASS(insn->code) == BPF_ALU64) { 8124 __mark_reg_known(regs + insn->dst_reg, 8125 insn->imm); 8126 } else { 8127 __mark_reg_known(regs + insn->dst_reg, 8128 (u32)insn->imm); 8129 } 8130 } 8131 8132 } else if (opcode > BPF_END) { 8133 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 8134 return -EINVAL; 8135 8136 } else { /* all other ALU ops: and, sub, xor, add, ... */ 8137 8138 if (BPF_SRC(insn->code) == BPF_X) { 8139 if (insn->imm != 0 || insn->off != 0) { 8140 verbose(env, "BPF_ALU uses reserved fields\n"); 8141 return -EINVAL; 8142 } 8143 /* check src1 operand */ 8144 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8145 if (err) 8146 return err; 8147 } else { 8148 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 8149 verbose(env, "BPF_ALU uses reserved fields\n"); 8150 return -EINVAL; 8151 } 8152 } 8153 8154 /* check src2 operand */ 8155 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8156 if (err) 8157 return err; 8158 8159 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 8160 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 8161 verbose(env, "div by zero\n"); 8162 return -EINVAL; 8163 } 8164 8165 if ((opcode == BPF_LSH || opcode == BPF_RSH || 8166 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 8167 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 8168 8169 if (insn->imm < 0 || insn->imm >= size) { 8170 verbose(env, "invalid shift %d\n", insn->imm); 8171 return -EINVAL; 8172 } 8173 } 8174 8175 /* check dest operand */ 8176 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8177 if (err) 8178 return err; 8179 8180 return adjust_reg_min_max_vals(env, insn); 8181 } 8182 8183 return 0; 8184 } 8185 8186 static void __find_good_pkt_pointers(struct bpf_func_state *state, 8187 struct bpf_reg_state *dst_reg, 8188 enum bpf_reg_type type, int new_range) 8189 { 8190 struct bpf_reg_state *reg; 8191 int i; 8192 8193 for (i = 0; i < MAX_BPF_REG; i++) { 8194 reg = &state->regs[i]; 8195 if (reg->type == type && reg->id == dst_reg->id) 8196 /* keep the maximum range already checked */ 8197 reg->range = max(reg->range, new_range); 8198 } 8199 8200 bpf_for_each_spilled_reg(i, state, reg) { 8201 if (!reg) 8202 continue; 8203 if (reg->type == type && reg->id == dst_reg->id) 8204 reg->range = max(reg->range, new_range); 8205 } 8206 } 8207 8208 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 8209 struct bpf_reg_state *dst_reg, 8210 enum bpf_reg_type type, 8211 bool range_right_open) 8212 { 8213 int new_range, i; 8214 8215 if (dst_reg->off < 0 || 8216 (dst_reg->off == 0 && range_right_open)) 8217 /* This doesn't give us any range */ 8218 return; 8219 8220 if (dst_reg->umax_value > MAX_PACKET_OFF || 8221 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 8222 /* Risk of overflow. For instance, ptr + (1<<63) may be less 8223 * than pkt_end, but that's because it's also less than pkt. 8224 */ 8225 return; 8226 8227 new_range = dst_reg->off; 8228 if (range_right_open) 8229 new_range--; 8230 8231 /* Examples for register markings: 8232 * 8233 * pkt_data in dst register: 8234 * 8235 * r2 = r3; 8236 * r2 += 8; 8237 * if (r2 > pkt_end) goto <handle exception> 8238 * <access okay> 8239 * 8240 * r2 = r3; 8241 * r2 += 8; 8242 * if (r2 < pkt_end) goto <access okay> 8243 * <handle exception> 8244 * 8245 * Where: 8246 * r2 == dst_reg, pkt_end == src_reg 8247 * r2=pkt(id=n,off=8,r=0) 8248 * r3=pkt(id=n,off=0,r=0) 8249 * 8250 * pkt_data in src register: 8251 * 8252 * r2 = r3; 8253 * r2 += 8; 8254 * if (pkt_end >= r2) goto <access okay> 8255 * <handle exception> 8256 * 8257 * r2 = r3; 8258 * r2 += 8; 8259 * if (pkt_end <= r2) goto <handle exception> 8260 * <access okay> 8261 * 8262 * Where: 8263 * pkt_end == dst_reg, r2 == src_reg 8264 * r2=pkt(id=n,off=8,r=0) 8265 * r3=pkt(id=n,off=0,r=0) 8266 * 8267 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 8268 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 8269 * and [r3, r3 + 8-1) respectively is safe to access depending on 8270 * the check. 8271 */ 8272 8273 /* If our ids match, then we must have the same max_value. And we 8274 * don't care about the other reg's fixed offset, since if it's too big 8275 * the range won't allow anything. 8276 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 8277 */ 8278 for (i = 0; i <= vstate->curframe; i++) 8279 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 8280 new_range); 8281 } 8282 8283 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 8284 { 8285 struct tnum subreg = tnum_subreg(reg->var_off); 8286 s32 sval = (s32)val; 8287 8288 switch (opcode) { 8289 case BPF_JEQ: 8290 if (tnum_is_const(subreg)) 8291 return !!tnum_equals_const(subreg, val); 8292 break; 8293 case BPF_JNE: 8294 if (tnum_is_const(subreg)) 8295 return !tnum_equals_const(subreg, val); 8296 break; 8297 case BPF_JSET: 8298 if ((~subreg.mask & subreg.value) & val) 8299 return 1; 8300 if (!((subreg.mask | subreg.value) & val)) 8301 return 0; 8302 break; 8303 case BPF_JGT: 8304 if (reg->u32_min_value > val) 8305 return 1; 8306 else if (reg->u32_max_value <= val) 8307 return 0; 8308 break; 8309 case BPF_JSGT: 8310 if (reg->s32_min_value > sval) 8311 return 1; 8312 else if (reg->s32_max_value <= sval) 8313 return 0; 8314 break; 8315 case BPF_JLT: 8316 if (reg->u32_max_value < val) 8317 return 1; 8318 else if (reg->u32_min_value >= val) 8319 return 0; 8320 break; 8321 case BPF_JSLT: 8322 if (reg->s32_max_value < sval) 8323 return 1; 8324 else if (reg->s32_min_value >= sval) 8325 return 0; 8326 break; 8327 case BPF_JGE: 8328 if (reg->u32_min_value >= val) 8329 return 1; 8330 else if (reg->u32_max_value < val) 8331 return 0; 8332 break; 8333 case BPF_JSGE: 8334 if (reg->s32_min_value >= sval) 8335 return 1; 8336 else if (reg->s32_max_value < sval) 8337 return 0; 8338 break; 8339 case BPF_JLE: 8340 if (reg->u32_max_value <= val) 8341 return 1; 8342 else if (reg->u32_min_value > val) 8343 return 0; 8344 break; 8345 case BPF_JSLE: 8346 if (reg->s32_max_value <= sval) 8347 return 1; 8348 else if (reg->s32_min_value > sval) 8349 return 0; 8350 break; 8351 } 8352 8353 return -1; 8354 } 8355 8356 8357 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 8358 { 8359 s64 sval = (s64)val; 8360 8361 switch (opcode) { 8362 case BPF_JEQ: 8363 if (tnum_is_const(reg->var_off)) 8364 return !!tnum_equals_const(reg->var_off, val); 8365 break; 8366 case BPF_JNE: 8367 if (tnum_is_const(reg->var_off)) 8368 return !tnum_equals_const(reg->var_off, val); 8369 break; 8370 case BPF_JSET: 8371 if ((~reg->var_off.mask & reg->var_off.value) & val) 8372 return 1; 8373 if (!((reg->var_off.mask | reg->var_off.value) & val)) 8374 return 0; 8375 break; 8376 case BPF_JGT: 8377 if (reg->umin_value > val) 8378 return 1; 8379 else if (reg->umax_value <= val) 8380 return 0; 8381 break; 8382 case BPF_JSGT: 8383 if (reg->smin_value > sval) 8384 return 1; 8385 else if (reg->smax_value <= sval) 8386 return 0; 8387 break; 8388 case BPF_JLT: 8389 if (reg->umax_value < val) 8390 return 1; 8391 else if (reg->umin_value >= val) 8392 return 0; 8393 break; 8394 case BPF_JSLT: 8395 if (reg->smax_value < sval) 8396 return 1; 8397 else if (reg->smin_value >= sval) 8398 return 0; 8399 break; 8400 case BPF_JGE: 8401 if (reg->umin_value >= val) 8402 return 1; 8403 else if (reg->umax_value < val) 8404 return 0; 8405 break; 8406 case BPF_JSGE: 8407 if (reg->smin_value >= sval) 8408 return 1; 8409 else if (reg->smax_value < sval) 8410 return 0; 8411 break; 8412 case BPF_JLE: 8413 if (reg->umax_value <= val) 8414 return 1; 8415 else if (reg->umin_value > val) 8416 return 0; 8417 break; 8418 case BPF_JSLE: 8419 if (reg->smax_value <= sval) 8420 return 1; 8421 else if (reg->smin_value > sval) 8422 return 0; 8423 break; 8424 } 8425 8426 return -1; 8427 } 8428 8429 /* compute branch direction of the expression "if (reg opcode val) goto target;" 8430 * and return: 8431 * 1 - branch will be taken and "goto target" will be executed 8432 * 0 - branch will not be taken and fall-through to next insn 8433 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 8434 * range [0,10] 8435 */ 8436 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 8437 bool is_jmp32) 8438 { 8439 if (__is_pointer_value(false, reg)) { 8440 if (!reg_type_not_null(reg->type)) 8441 return -1; 8442 8443 /* If pointer is valid tests against zero will fail so we can 8444 * use this to direct branch taken. 8445 */ 8446 if (val != 0) 8447 return -1; 8448 8449 switch (opcode) { 8450 case BPF_JEQ: 8451 return 0; 8452 case BPF_JNE: 8453 return 1; 8454 default: 8455 return -1; 8456 } 8457 } 8458 8459 if (is_jmp32) 8460 return is_branch32_taken(reg, val, opcode); 8461 return is_branch64_taken(reg, val, opcode); 8462 } 8463 8464 static int flip_opcode(u32 opcode) 8465 { 8466 /* How can we transform "a <op> b" into "b <op> a"? */ 8467 static const u8 opcode_flip[16] = { 8468 /* these stay the same */ 8469 [BPF_JEQ >> 4] = BPF_JEQ, 8470 [BPF_JNE >> 4] = BPF_JNE, 8471 [BPF_JSET >> 4] = BPF_JSET, 8472 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 8473 [BPF_JGE >> 4] = BPF_JLE, 8474 [BPF_JGT >> 4] = BPF_JLT, 8475 [BPF_JLE >> 4] = BPF_JGE, 8476 [BPF_JLT >> 4] = BPF_JGT, 8477 [BPF_JSGE >> 4] = BPF_JSLE, 8478 [BPF_JSGT >> 4] = BPF_JSLT, 8479 [BPF_JSLE >> 4] = BPF_JSGE, 8480 [BPF_JSLT >> 4] = BPF_JSGT 8481 }; 8482 return opcode_flip[opcode >> 4]; 8483 } 8484 8485 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 8486 struct bpf_reg_state *src_reg, 8487 u8 opcode) 8488 { 8489 struct bpf_reg_state *pkt; 8490 8491 if (src_reg->type == PTR_TO_PACKET_END) { 8492 pkt = dst_reg; 8493 } else if (dst_reg->type == PTR_TO_PACKET_END) { 8494 pkt = src_reg; 8495 opcode = flip_opcode(opcode); 8496 } else { 8497 return -1; 8498 } 8499 8500 if (pkt->range >= 0) 8501 return -1; 8502 8503 switch (opcode) { 8504 case BPF_JLE: 8505 /* pkt <= pkt_end */ 8506 fallthrough; 8507 case BPF_JGT: 8508 /* pkt > pkt_end */ 8509 if (pkt->range == BEYOND_PKT_END) 8510 /* pkt has at last one extra byte beyond pkt_end */ 8511 return opcode == BPF_JGT; 8512 break; 8513 case BPF_JLT: 8514 /* pkt < pkt_end */ 8515 fallthrough; 8516 case BPF_JGE: 8517 /* pkt >= pkt_end */ 8518 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 8519 return opcode == BPF_JGE; 8520 break; 8521 } 8522 return -1; 8523 } 8524 8525 /* Adjusts the register min/max values in the case that the dst_reg is the 8526 * variable register that we are working on, and src_reg is a constant or we're 8527 * simply doing a BPF_K check. 8528 * In JEQ/JNE cases we also adjust the var_off values. 8529 */ 8530 static void reg_set_min_max(struct bpf_reg_state *true_reg, 8531 struct bpf_reg_state *false_reg, 8532 u64 val, u32 val32, 8533 u8 opcode, bool is_jmp32) 8534 { 8535 struct tnum false_32off = tnum_subreg(false_reg->var_off); 8536 struct tnum false_64off = false_reg->var_off; 8537 struct tnum true_32off = tnum_subreg(true_reg->var_off); 8538 struct tnum true_64off = true_reg->var_off; 8539 s64 sval = (s64)val; 8540 s32 sval32 = (s32)val32; 8541 8542 /* If the dst_reg is a pointer, we can't learn anything about its 8543 * variable offset from the compare (unless src_reg were a pointer into 8544 * the same object, but we don't bother with that. 8545 * Since false_reg and true_reg have the same type by construction, we 8546 * only need to check one of them for pointerness. 8547 */ 8548 if (__is_pointer_value(false, false_reg)) 8549 return; 8550 8551 switch (opcode) { 8552 case BPF_JEQ: 8553 case BPF_JNE: 8554 { 8555 struct bpf_reg_state *reg = 8556 opcode == BPF_JEQ ? true_reg : false_reg; 8557 8558 /* JEQ/JNE comparison doesn't change the register equivalence. 8559 * r1 = r2; 8560 * if (r1 == 42) goto label; 8561 * ... 8562 * label: // here both r1 and r2 are known to be 42. 8563 * 8564 * Hence when marking register as known preserve it's ID. 8565 */ 8566 if (is_jmp32) 8567 __mark_reg32_known(reg, val32); 8568 else 8569 ___mark_reg_known(reg, val); 8570 break; 8571 } 8572 case BPF_JSET: 8573 if (is_jmp32) { 8574 false_32off = tnum_and(false_32off, tnum_const(~val32)); 8575 if (is_power_of_2(val32)) 8576 true_32off = tnum_or(true_32off, 8577 tnum_const(val32)); 8578 } else { 8579 false_64off = tnum_and(false_64off, tnum_const(~val)); 8580 if (is_power_of_2(val)) 8581 true_64off = tnum_or(true_64off, 8582 tnum_const(val)); 8583 } 8584 break; 8585 case BPF_JGE: 8586 case BPF_JGT: 8587 { 8588 if (is_jmp32) { 8589 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 8590 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 8591 8592 false_reg->u32_max_value = min(false_reg->u32_max_value, 8593 false_umax); 8594 true_reg->u32_min_value = max(true_reg->u32_min_value, 8595 true_umin); 8596 } else { 8597 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 8598 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 8599 8600 false_reg->umax_value = min(false_reg->umax_value, false_umax); 8601 true_reg->umin_value = max(true_reg->umin_value, true_umin); 8602 } 8603 break; 8604 } 8605 case BPF_JSGE: 8606 case BPF_JSGT: 8607 { 8608 if (is_jmp32) { 8609 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 8610 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 8611 8612 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 8613 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 8614 } else { 8615 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 8616 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 8617 8618 false_reg->smax_value = min(false_reg->smax_value, false_smax); 8619 true_reg->smin_value = max(true_reg->smin_value, true_smin); 8620 } 8621 break; 8622 } 8623 case BPF_JLE: 8624 case BPF_JLT: 8625 { 8626 if (is_jmp32) { 8627 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 8628 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 8629 8630 false_reg->u32_min_value = max(false_reg->u32_min_value, 8631 false_umin); 8632 true_reg->u32_max_value = min(true_reg->u32_max_value, 8633 true_umax); 8634 } else { 8635 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 8636 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 8637 8638 false_reg->umin_value = max(false_reg->umin_value, false_umin); 8639 true_reg->umax_value = min(true_reg->umax_value, true_umax); 8640 } 8641 break; 8642 } 8643 case BPF_JSLE: 8644 case BPF_JSLT: 8645 { 8646 if (is_jmp32) { 8647 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 8648 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 8649 8650 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 8651 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 8652 } else { 8653 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 8654 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 8655 8656 false_reg->smin_value = max(false_reg->smin_value, false_smin); 8657 true_reg->smax_value = min(true_reg->smax_value, true_smax); 8658 } 8659 break; 8660 } 8661 default: 8662 return; 8663 } 8664 8665 if (is_jmp32) { 8666 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 8667 tnum_subreg(false_32off)); 8668 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 8669 tnum_subreg(true_32off)); 8670 __reg_combine_32_into_64(false_reg); 8671 __reg_combine_32_into_64(true_reg); 8672 } else { 8673 false_reg->var_off = false_64off; 8674 true_reg->var_off = true_64off; 8675 __reg_combine_64_into_32(false_reg); 8676 __reg_combine_64_into_32(true_reg); 8677 } 8678 } 8679 8680 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 8681 * the variable reg. 8682 */ 8683 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 8684 struct bpf_reg_state *false_reg, 8685 u64 val, u32 val32, 8686 u8 opcode, bool is_jmp32) 8687 { 8688 opcode = flip_opcode(opcode); 8689 /* This uses zero as "not present in table"; luckily the zero opcode, 8690 * BPF_JA, can't get here. 8691 */ 8692 if (opcode) 8693 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 8694 } 8695 8696 /* Regs are known to be equal, so intersect their min/max/var_off */ 8697 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 8698 struct bpf_reg_state *dst_reg) 8699 { 8700 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 8701 dst_reg->umin_value); 8702 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 8703 dst_reg->umax_value); 8704 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 8705 dst_reg->smin_value); 8706 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 8707 dst_reg->smax_value); 8708 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 8709 dst_reg->var_off); 8710 /* We might have learned new bounds from the var_off. */ 8711 __update_reg_bounds(src_reg); 8712 __update_reg_bounds(dst_reg); 8713 /* We might have learned something about the sign bit. */ 8714 __reg_deduce_bounds(src_reg); 8715 __reg_deduce_bounds(dst_reg); 8716 /* We might have learned some bits from the bounds. */ 8717 __reg_bound_offset(src_reg); 8718 __reg_bound_offset(dst_reg); 8719 /* Intersecting with the old var_off might have improved our bounds 8720 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 8721 * then new var_off is (0; 0x7f...fc) which improves our umax. 8722 */ 8723 __update_reg_bounds(src_reg); 8724 __update_reg_bounds(dst_reg); 8725 } 8726 8727 static void reg_combine_min_max(struct bpf_reg_state *true_src, 8728 struct bpf_reg_state *true_dst, 8729 struct bpf_reg_state *false_src, 8730 struct bpf_reg_state *false_dst, 8731 u8 opcode) 8732 { 8733 switch (opcode) { 8734 case BPF_JEQ: 8735 __reg_combine_min_max(true_src, true_dst); 8736 break; 8737 case BPF_JNE: 8738 __reg_combine_min_max(false_src, false_dst); 8739 break; 8740 } 8741 } 8742 8743 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 8744 struct bpf_reg_state *reg, u32 id, 8745 bool is_null) 8746 { 8747 if (reg_type_may_be_null(reg->type) && reg->id == id && 8748 !WARN_ON_ONCE(!reg->id)) { 8749 /* Old offset (both fixed and variable parts) should 8750 * have been known-zero, because we don't allow pointer 8751 * arithmetic on pointers that might be NULL. 8752 */ 8753 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 8754 !tnum_equals_const(reg->var_off, 0) || 8755 reg->off)) { 8756 __mark_reg_known_zero(reg); 8757 reg->off = 0; 8758 } 8759 if (is_null) { 8760 reg->type = SCALAR_VALUE; 8761 /* We don't need id and ref_obj_id from this point 8762 * onwards anymore, thus we should better reset it, 8763 * so that state pruning has chances to take effect. 8764 */ 8765 reg->id = 0; 8766 reg->ref_obj_id = 0; 8767 8768 return; 8769 } 8770 8771 mark_ptr_not_null_reg(reg); 8772 8773 if (!reg_may_point_to_spin_lock(reg)) { 8774 /* For not-NULL ptr, reg->ref_obj_id will be reset 8775 * in release_reg_references(). 8776 * 8777 * reg->id is still used by spin_lock ptr. Other 8778 * than spin_lock ptr type, reg->id can be reset. 8779 */ 8780 reg->id = 0; 8781 } 8782 } 8783 } 8784 8785 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 8786 bool is_null) 8787 { 8788 struct bpf_reg_state *reg; 8789 int i; 8790 8791 for (i = 0; i < MAX_BPF_REG; i++) 8792 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 8793 8794 bpf_for_each_spilled_reg(i, state, reg) { 8795 if (!reg) 8796 continue; 8797 mark_ptr_or_null_reg(state, reg, id, is_null); 8798 } 8799 } 8800 8801 /* The logic is similar to find_good_pkt_pointers(), both could eventually 8802 * be folded together at some point. 8803 */ 8804 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 8805 bool is_null) 8806 { 8807 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8808 struct bpf_reg_state *regs = state->regs; 8809 u32 ref_obj_id = regs[regno].ref_obj_id; 8810 u32 id = regs[regno].id; 8811 int i; 8812 8813 if (ref_obj_id && ref_obj_id == id && is_null) 8814 /* regs[regno] is in the " == NULL" branch. 8815 * No one could have freed the reference state before 8816 * doing the NULL check. 8817 */ 8818 WARN_ON_ONCE(release_reference_state(state, id)); 8819 8820 for (i = 0; i <= vstate->curframe; i++) 8821 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 8822 } 8823 8824 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 8825 struct bpf_reg_state *dst_reg, 8826 struct bpf_reg_state *src_reg, 8827 struct bpf_verifier_state *this_branch, 8828 struct bpf_verifier_state *other_branch) 8829 { 8830 if (BPF_SRC(insn->code) != BPF_X) 8831 return false; 8832 8833 /* Pointers are always 64-bit. */ 8834 if (BPF_CLASS(insn->code) == BPF_JMP32) 8835 return false; 8836 8837 switch (BPF_OP(insn->code)) { 8838 case BPF_JGT: 8839 if ((dst_reg->type == PTR_TO_PACKET && 8840 src_reg->type == PTR_TO_PACKET_END) || 8841 (dst_reg->type == PTR_TO_PACKET_META && 8842 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 8843 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 8844 find_good_pkt_pointers(this_branch, dst_reg, 8845 dst_reg->type, false); 8846 mark_pkt_end(other_branch, insn->dst_reg, true); 8847 } else if ((dst_reg->type == PTR_TO_PACKET_END && 8848 src_reg->type == PTR_TO_PACKET) || 8849 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 8850 src_reg->type == PTR_TO_PACKET_META)) { 8851 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 8852 find_good_pkt_pointers(other_branch, src_reg, 8853 src_reg->type, true); 8854 mark_pkt_end(this_branch, insn->src_reg, false); 8855 } else { 8856 return false; 8857 } 8858 break; 8859 case BPF_JLT: 8860 if ((dst_reg->type == PTR_TO_PACKET && 8861 src_reg->type == PTR_TO_PACKET_END) || 8862 (dst_reg->type == PTR_TO_PACKET_META && 8863 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 8864 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 8865 find_good_pkt_pointers(other_branch, dst_reg, 8866 dst_reg->type, true); 8867 mark_pkt_end(this_branch, insn->dst_reg, false); 8868 } else if ((dst_reg->type == PTR_TO_PACKET_END && 8869 src_reg->type == PTR_TO_PACKET) || 8870 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 8871 src_reg->type == PTR_TO_PACKET_META)) { 8872 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 8873 find_good_pkt_pointers(this_branch, src_reg, 8874 src_reg->type, false); 8875 mark_pkt_end(other_branch, insn->src_reg, true); 8876 } else { 8877 return false; 8878 } 8879 break; 8880 case BPF_JGE: 8881 if ((dst_reg->type == PTR_TO_PACKET && 8882 src_reg->type == PTR_TO_PACKET_END) || 8883 (dst_reg->type == PTR_TO_PACKET_META && 8884 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 8885 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 8886 find_good_pkt_pointers(this_branch, dst_reg, 8887 dst_reg->type, true); 8888 mark_pkt_end(other_branch, insn->dst_reg, false); 8889 } else if ((dst_reg->type == PTR_TO_PACKET_END && 8890 src_reg->type == PTR_TO_PACKET) || 8891 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 8892 src_reg->type == PTR_TO_PACKET_META)) { 8893 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 8894 find_good_pkt_pointers(other_branch, src_reg, 8895 src_reg->type, false); 8896 mark_pkt_end(this_branch, insn->src_reg, true); 8897 } else { 8898 return false; 8899 } 8900 break; 8901 case BPF_JLE: 8902 if ((dst_reg->type == PTR_TO_PACKET && 8903 src_reg->type == PTR_TO_PACKET_END) || 8904 (dst_reg->type == PTR_TO_PACKET_META && 8905 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 8906 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 8907 find_good_pkt_pointers(other_branch, dst_reg, 8908 dst_reg->type, false); 8909 mark_pkt_end(this_branch, insn->dst_reg, true); 8910 } else if ((dst_reg->type == PTR_TO_PACKET_END && 8911 src_reg->type == PTR_TO_PACKET) || 8912 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 8913 src_reg->type == PTR_TO_PACKET_META)) { 8914 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 8915 find_good_pkt_pointers(this_branch, src_reg, 8916 src_reg->type, true); 8917 mark_pkt_end(other_branch, insn->src_reg, false); 8918 } else { 8919 return false; 8920 } 8921 break; 8922 default: 8923 return false; 8924 } 8925 8926 return true; 8927 } 8928 8929 static void find_equal_scalars(struct bpf_verifier_state *vstate, 8930 struct bpf_reg_state *known_reg) 8931 { 8932 struct bpf_func_state *state; 8933 struct bpf_reg_state *reg; 8934 int i, j; 8935 8936 for (i = 0; i <= vstate->curframe; i++) { 8937 state = vstate->frame[i]; 8938 for (j = 0; j < MAX_BPF_REG; j++) { 8939 reg = &state->regs[j]; 8940 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 8941 *reg = *known_reg; 8942 } 8943 8944 bpf_for_each_spilled_reg(j, state, reg) { 8945 if (!reg) 8946 continue; 8947 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 8948 *reg = *known_reg; 8949 } 8950 } 8951 } 8952 8953 static int check_cond_jmp_op(struct bpf_verifier_env *env, 8954 struct bpf_insn *insn, int *insn_idx) 8955 { 8956 struct bpf_verifier_state *this_branch = env->cur_state; 8957 struct bpf_verifier_state *other_branch; 8958 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 8959 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 8960 u8 opcode = BPF_OP(insn->code); 8961 bool is_jmp32; 8962 int pred = -1; 8963 int err; 8964 8965 /* Only conditional jumps are expected to reach here. */ 8966 if (opcode == BPF_JA || opcode > BPF_JSLE) { 8967 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 8968 return -EINVAL; 8969 } 8970 8971 if (BPF_SRC(insn->code) == BPF_X) { 8972 if (insn->imm != 0) { 8973 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 8974 return -EINVAL; 8975 } 8976 8977 /* check src1 operand */ 8978 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8979 if (err) 8980 return err; 8981 8982 if (is_pointer_value(env, insn->src_reg)) { 8983 verbose(env, "R%d pointer comparison prohibited\n", 8984 insn->src_reg); 8985 return -EACCES; 8986 } 8987 src_reg = ®s[insn->src_reg]; 8988 } else { 8989 if (insn->src_reg != BPF_REG_0) { 8990 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 8991 return -EINVAL; 8992 } 8993 } 8994 8995 /* check src2 operand */ 8996 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8997 if (err) 8998 return err; 8999 9000 dst_reg = ®s[insn->dst_reg]; 9001 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 9002 9003 if (BPF_SRC(insn->code) == BPF_K) { 9004 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 9005 } else if (src_reg->type == SCALAR_VALUE && 9006 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 9007 pred = is_branch_taken(dst_reg, 9008 tnum_subreg(src_reg->var_off).value, 9009 opcode, 9010 is_jmp32); 9011 } else if (src_reg->type == SCALAR_VALUE && 9012 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 9013 pred = is_branch_taken(dst_reg, 9014 src_reg->var_off.value, 9015 opcode, 9016 is_jmp32); 9017 } else if (reg_is_pkt_pointer_any(dst_reg) && 9018 reg_is_pkt_pointer_any(src_reg) && 9019 !is_jmp32) { 9020 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 9021 } 9022 9023 if (pred >= 0) { 9024 /* If we get here with a dst_reg pointer type it is because 9025 * above is_branch_taken() special cased the 0 comparison. 9026 */ 9027 if (!__is_pointer_value(false, dst_reg)) 9028 err = mark_chain_precision(env, insn->dst_reg); 9029 if (BPF_SRC(insn->code) == BPF_X && !err && 9030 !__is_pointer_value(false, src_reg)) 9031 err = mark_chain_precision(env, insn->src_reg); 9032 if (err) 9033 return err; 9034 } 9035 9036 if (pred == 1) { 9037 /* Only follow the goto, ignore fall-through. If needed, push 9038 * the fall-through branch for simulation under speculative 9039 * execution. 9040 */ 9041 if (!env->bypass_spec_v1 && 9042 !sanitize_speculative_path(env, insn, *insn_idx + 1, 9043 *insn_idx)) 9044 return -EFAULT; 9045 *insn_idx += insn->off; 9046 return 0; 9047 } else if (pred == 0) { 9048 /* Only follow the fall-through branch, since that's where the 9049 * program will go. If needed, push the goto branch for 9050 * simulation under speculative execution. 9051 */ 9052 if (!env->bypass_spec_v1 && 9053 !sanitize_speculative_path(env, insn, 9054 *insn_idx + insn->off + 1, 9055 *insn_idx)) 9056 return -EFAULT; 9057 return 0; 9058 } 9059 9060 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 9061 false); 9062 if (!other_branch) 9063 return -EFAULT; 9064 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 9065 9066 /* detect if we are comparing against a constant value so we can adjust 9067 * our min/max values for our dst register. 9068 * this is only legit if both are scalars (or pointers to the same 9069 * object, I suppose, but we don't support that right now), because 9070 * otherwise the different base pointers mean the offsets aren't 9071 * comparable. 9072 */ 9073 if (BPF_SRC(insn->code) == BPF_X) { 9074 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 9075 9076 if (dst_reg->type == SCALAR_VALUE && 9077 src_reg->type == SCALAR_VALUE) { 9078 if (tnum_is_const(src_reg->var_off) || 9079 (is_jmp32 && 9080 tnum_is_const(tnum_subreg(src_reg->var_off)))) 9081 reg_set_min_max(&other_branch_regs[insn->dst_reg], 9082 dst_reg, 9083 src_reg->var_off.value, 9084 tnum_subreg(src_reg->var_off).value, 9085 opcode, is_jmp32); 9086 else if (tnum_is_const(dst_reg->var_off) || 9087 (is_jmp32 && 9088 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 9089 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 9090 src_reg, 9091 dst_reg->var_off.value, 9092 tnum_subreg(dst_reg->var_off).value, 9093 opcode, is_jmp32); 9094 else if (!is_jmp32 && 9095 (opcode == BPF_JEQ || opcode == BPF_JNE)) 9096 /* Comparing for equality, we can combine knowledge */ 9097 reg_combine_min_max(&other_branch_regs[insn->src_reg], 9098 &other_branch_regs[insn->dst_reg], 9099 src_reg, dst_reg, opcode); 9100 if (src_reg->id && 9101 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 9102 find_equal_scalars(this_branch, src_reg); 9103 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 9104 } 9105 9106 } 9107 } else if (dst_reg->type == SCALAR_VALUE) { 9108 reg_set_min_max(&other_branch_regs[insn->dst_reg], 9109 dst_reg, insn->imm, (u32)insn->imm, 9110 opcode, is_jmp32); 9111 } 9112 9113 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 9114 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 9115 find_equal_scalars(this_branch, dst_reg); 9116 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 9117 } 9118 9119 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 9120 * NOTE: these optimizations below are related with pointer comparison 9121 * which will never be JMP32. 9122 */ 9123 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 9124 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 9125 reg_type_may_be_null(dst_reg->type)) { 9126 /* Mark all identical registers in each branch as either 9127 * safe or unknown depending R == 0 or R != 0 conditional. 9128 */ 9129 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 9130 opcode == BPF_JNE); 9131 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 9132 opcode == BPF_JEQ); 9133 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 9134 this_branch, other_branch) && 9135 is_pointer_value(env, insn->dst_reg)) { 9136 verbose(env, "R%d pointer comparison prohibited\n", 9137 insn->dst_reg); 9138 return -EACCES; 9139 } 9140 if (env->log.level & BPF_LOG_LEVEL) 9141 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 9142 return 0; 9143 } 9144 9145 /* verify BPF_LD_IMM64 instruction */ 9146 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 9147 { 9148 struct bpf_insn_aux_data *aux = cur_aux(env); 9149 struct bpf_reg_state *regs = cur_regs(env); 9150 struct bpf_reg_state *dst_reg; 9151 struct bpf_map *map; 9152 int err; 9153 9154 if (BPF_SIZE(insn->code) != BPF_DW) { 9155 verbose(env, "invalid BPF_LD_IMM insn\n"); 9156 return -EINVAL; 9157 } 9158 if (insn->off != 0) { 9159 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 9160 return -EINVAL; 9161 } 9162 9163 err = check_reg_arg(env, insn->dst_reg, DST_OP); 9164 if (err) 9165 return err; 9166 9167 dst_reg = ®s[insn->dst_reg]; 9168 if (insn->src_reg == 0) { 9169 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 9170 9171 dst_reg->type = SCALAR_VALUE; 9172 __mark_reg_known(®s[insn->dst_reg], imm); 9173 return 0; 9174 } 9175 9176 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 9177 mark_reg_known_zero(env, regs, insn->dst_reg); 9178 9179 dst_reg->type = aux->btf_var.reg_type; 9180 switch (dst_reg->type) { 9181 case PTR_TO_MEM: 9182 dst_reg->mem_size = aux->btf_var.mem_size; 9183 break; 9184 case PTR_TO_BTF_ID: 9185 case PTR_TO_PERCPU_BTF_ID: 9186 dst_reg->btf = aux->btf_var.btf; 9187 dst_reg->btf_id = aux->btf_var.btf_id; 9188 break; 9189 default: 9190 verbose(env, "bpf verifier is misconfigured\n"); 9191 return -EFAULT; 9192 } 9193 return 0; 9194 } 9195 9196 if (insn->src_reg == BPF_PSEUDO_FUNC) { 9197 struct bpf_prog_aux *aux = env->prog->aux; 9198 u32 subprogno = insn[1].imm; 9199 9200 if (!aux->func_info) { 9201 verbose(env, "missing btf func_info\n"); 9202 return -EINVAL; 9203 } 9204 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 9205 verbose(env, "callback function not static\n"); 9206 return -EINVAL; 9207 } 9208 9209 dst_reg->type = PTR_TO_FUNC; 9210 dst_reg->subprogno = subprogno; 9211 return 0; 9212 } 9213 9214 map = env->used_maps[aux->map_index]; 9215 mark_reg_known_zero(env, regs, insn->dst_reg); 9216 dst_reg->map_ptr = map; 9217 9218 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 9219 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 9220 dst_reg->type = PTR_TO_MAP_VALUE; 9221 dst_reg->off = aux->map_off; 9222 if (map_value_has_spin_lock(map)) 9223 dst_reg->id = ++env->id_gen; 9224 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 9225 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 9226 dst_reg->type = CONST_PTR_TO_MAP; 9227 } else { 9228 verbose(env, "bpf verifier is misconfigured\n"); 9229 return -EINVAL; 9230 } 9231 9232 return 0; 9233 } 9234 9235 static bool may_access_skb(enum bpf_prog_type type) 9236 { 9237 switch (type) { 9238 case BPF_PROG_TYPE_SOCKET_FILTER: 9239 case BPF_PROG_TYPE_SCHED_CLS: 9240 case BPF_PROG_TYPE_SCHED_ACT: 9241 return true; 9242 default: 9243 return false; 9244 } 9245 } 9246 9247 /* verify safety of LD_ABS|LD_IND instructions: 9248 * - they can only appear in the programs where ctx == skb 9249 * - since they are wrappers of function calls, they scratch R1-R5 registers, 9250 * preserve R6-R9, and store return value into R0 9251 * 9252 * Implicit input: 9253 * ctx == skb == R6 == CTX 9254 * 9255 * Explicit input: 9256 * SRC == any register 9257 * IMM == 32-bit immediate 9258 * 9259 * Output: 9260 * R0 - 8/16/32-bit skb data converted to cpu endianness 9261 */ 9262 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 9263 { 9264 struct bpf_reg_state *regs = cur_regs(env); 9265 static const int ctx_reg = BPF_REG_6; 9266 u8 mode = BPF_MODE(insn->code); 9267 int i, err; 9268 9269 if (!may_access_skb(resolve_prog_type(env->prog))) { 9270 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 9271 return -EINVAL; 9272 } 9273 9274 if (!env->ops->gen_ld_abs) { 9275 verbose(env, "bpf verifier is misconfigured\n"); 9276 return -EINVAL; 9277 } 9278 9279 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 9280 BPF_SIZE(insn->code) == BPF_DW || 9281 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 9282 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 9283 return -EINVAL; 9284 } 9285 9286 /* check whether implicit source operand (register R6) is readable */ 9287 err = check_reg_arg(env, ctx_reg, SRC_OP); 9288 if (err) 9289 return err; 9290 9291 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 9292 * gen_ld_abs() may terminate the program at runtime, leading to 9293 * reference leak. 9294 */ 9295 err = check_reference_leak(env); 9296 if (err) { 9297 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 9298 return err; 9299 } 9300 9301 if (env->cur_state->active_spin_lock) { 9302 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 9303 return -EINVAL; 9304 } 9305 9306 if (regs[ctx_reg].type != PTR_TO_CTX) { 9307 verbose(env, 9308 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 9309 return -EINVAL; 9310 } 9311 9312 if (mode == BPF_IND) { 9313 /* check explicit source operand */ 9314 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9315 if (err) 9316 return err; 9317 } 9318 9319 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 9320 if (err < 0) 9321 return err; 9322 9323 /* reset caller saved regs to unreadable */ 9324 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9325 mark_reg_not_init(env, regs, caller_saved[i]); 9326 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 9327 } 9328 9329 /* mark destination R0 register as readable, since it contains 9330 * the value fetched from the packet. 9331 * Already marked as written above. 9332 */ 9333 mark_reg_unknown(env, regs, BPF_REG_0); 9334 /* ld_abs load up to 32-bit skb data. */ 9335 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 9336 return 0; 9337 } 9338 9339 static int check_return_code(struct bpf_verifier_env *env) 9340 { 9341 struct tnum enforce_attach_type_range = tnum_unknown; 9342 const struct bpf_prog *prog = env->prog; 9343 struct bpf_reg_state *reg; 9344 struct tnum range = tnum_range(0, 1); 9345 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9346 int err; 9347 struct bpf_func_state *frame = env->cur_state->frame[0]; 9348 const bool is_subprog = frame->subprogno; 9349 9350 /* LSM and struct_ops func-ptr's return type could be "void" */ 9351 if (!is_subprog && 9352 (prog_type == BPF_PROG_TYPE_STRUCT_OPS || 9353 prog_type == BPF_PROG_TYPE_LSM) && 9354 !prog->aux->attach_func_proto->type) 9355 return 0; 9356 9357 /* eBPF calling convention is such that R0 is used 9358 * to return the value from eBPF program. 9359 * Make sure that it's readable at this time 9360 * of bpf_exit, which means that program wrote 9361 * something into it earlier 9362 */ 9363 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 9364 if (err) 9365 return err; 9366 9367 if (is_pointer_value(env, BPF_REG_0)) { 9368 verbose(env, "R0 leaks addr as return value\n"); 9369 return -EACCES; 9370 } 9371 9372 reg = cur_regs(env) + BPF_REG_0; 9373 9374 if (frame->in_async_callback_fn) { 9375 /* enforce return zero from async callbacks like timer */ 9376 if (reg->type != SCALAR_VALUE) { 9377 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 9378 reg_type_str[reg->type]); 9379 return -EINVAL; 9380 } 9381 9382 if (!tnum_in(tnum_const(0), reg->var_off)) { 9383 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 9384 return -EINVAL; 9385 } 9386 return 0; 9387 } 9388 9389 if (is_subprog) { 9390 if (reg->type != SCALAR_VALUE) { 9391 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 9392 reg_type_str[reg->type]); 9393 return -EINVAL; 9394 } 9395 return 0; 9396 } 9397 9398 switch (prog_type) { 9399 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 9400 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 9401 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 9402 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 9403 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 9404 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 9405 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 9406 range = tnum_range(1, 1); 9407 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 9408 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 9409 range = tnum_range(0, 3); 9410 break; 9411 case BPF_PROG_TYPE_CGROUP_SKB: 9412 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 9413 range = tnum_range(0, 3); 9414 enforce_attach_type_range = tnum_range(2, 3); 9415 } 9416 break; 9417 case BPF_PROG_TYPE_CGROUP_SOCK: 9418 case BPF_PROG_TYPE_SOCK_OPS: 9419 case BPF_PROG_TYPE_CGROUP_DEVICE: 9420 case BPF_PROG_TYPE_CGROUP_SYSCTL: 9421 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 9422 break; 9423 case BPF_PROG_TYPE_RAW_TRACEPOINT: 9424 if (!env->prog->aux->attach_btf_id) 9425 return 0; 9426 range = tnum_const(0); 9427 break; 9428 case BPF_PROG_TYPE_TRACING: 9429 switch (env->prog->expected_attach_type) { 9430 case BPF_TRACE_FENTRY: 9431 case BPF_TRACE_FEXIT: 9432 range = tnum_const(0); 9433 break; 9434 case BPF_TRACE_RAW_TP: 9435 case BPF_MODIFY_RETURN: 9436 return 0; 9437 case BPF_TRACE_ITER: 9438 break; 9439 default: 9440 return -ENOTSUPP; 9441 } 9442 break; 9443 case BPF_PROG_TYPE_SK_LOOKUP: 9444 range = tnum_range(SK_DROP, SK_PASS); 9445 break; 9446 case BPF_PROG_TYPE_EXT: 9447 /* freplace program can return anything as its return value 9448 * depends on the to-be-replaced kernel func or bpf program. 9449 */ 9450 default: 9451 return 0; 9452 } 9453 9454 if (reg->type != SCALAR_VALUE) { 9455 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 9456 reg_type_str[reg->type]); 9457 return -EINVAL; 9458 } 9459 9460 if (!tnum_in(range, reg->var_off)) { 9461 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 9462 return -EINVAL; 9463 } 9464 9465 if (!tnum_is_unknown(enforce_attach_type_range) && 9466 tnum_in(enforce_attach_type_range, reg->var_off)) 9467 env->prog->enforce_expected_attach_type = 1; 9468 return 0; 9469 } 9470 9471 /* non-recursive DFS pseudo code 9472 * 1 procedure DFS-iterative(G,v): 9473 * 2 label v as discovered 9474 * 3 let S be a stack 9475 * 4 S.push(v) 9476 * 5 while S is not empty 9477 * 6 t <- S.pop() 9478 * 7 if t is what we're looking for: 9479 * 8 return t 9480 * 9 for all edges e in G.adjacentEdges(t) do 9481 * 10 if edge e is already labelled 9482 * 11 continue with the next edge 9483 * 12 w <- G.adjacentVertex(t,e) 9484 * 13 if vertex w is not discovered and not explored 9485 * 14 label e as tree-edge 9486 * 15 label w as discovered 9487 * 16 S.push(w) 9488 * 17 continue at 5 9489 * 18 else if vertex w is discovered 9490 * 19 label e as back-edge 9491 * 20 else 9492 * 21 // vertex w is explored 9493 * 22 label e as forward- or cross-edge 9494 * 23 label t as explored 9495 * 24 S.pop() 9496 * 9497 * convention: 9498 * 0x10 - discovered 9499 * 0x11 - discovered and fall-through edge labelled 9500 * 0x12 - discovered and fall-through and branch edges labelled 9501 * 0x20 - explored 9502 */ 9503 9504 enum { 9505 DISCOVERED = 0x10, 9506 EXPLORED = 0x20, 9507 FALLTHROUGH = 1, 9508 BRANCH = 2, 9509 }; 9510 9511 static u32 state_htab_size(struct bpf_verifier_env *env) 9512 { 9513 return env->prog->len; 9514 } 9515 9516 static struct bpf_verifier_state_list **explored_state( 9517 struct bpf_verifier_env *env, 9518 int idx) 9519 { 9520 struct bpf_verifier_state *cur = env->cur_state; 9521 struct bpf_func_state *state = cur->frame[cur->curframe]; 9522 9523 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 9524 } 9525 9526 static void init_explored_state(struct bpf_verifier_env *env, int idx) 9527 { 9528 env->insn_aux_data[idx].prune_point = true; 9529 } 9530 9531 enum { 9532 DONE_EXPLORING = 0, 9533 KEEP_EXPLORING = 1, 9534 }; 9535 9536 /* t, w, e - match pseudo-code above: 9537 * t - index of current instruction 9538 * w - next instruction 9539 * e - edge 9540 */ 9541 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 9542 bool loop_ok) 9543 { 9544 int *insn_stack = env->cfg.insn_stack; 9545 int *insn_state = env->cfg.insn_state; 9546 9547 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 9548 return DONE_EXPLORING; 9549 9550 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 9551 return DONE_EXPLORING; 9552 9553 if (w < 0 || w >= env->prog->len) { 9554 verbose_linfo(env, t, "%d: ", t); 9555 verbose(env, "jump out of range from insn %d to %d\n", t, w); 9556 return -EINVAL; 9557 } 9558 9559 if (e == BRANCH) 9560 /* mark branch target for state pruning */ 9561 init_explored_state(env, w); 9562 9563 if (insn_state[w] == 0) { 9564 /* tree-edge */ 9565 insn_state[t] = DISCOVERED | e; 9566 insn_state[w] = DISCOVERED; 9567 if (env->cfg.cur_stack >= env->prog->len) 9568 return -E2BIG; 9569 insn_stack[env->cfg.cur_stack++] = w; 9570 return KEEP_EXPLORING; 9571 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 9572 if (loop_ok && env->bpf_capable) 9573 return DONE_EXPLORING; 9574 verbose_linfo(env, t, "%d: ", t); 9575 verbose_linfo(env, w, "%d: ", w); 9576 verbose(env, "back-edge from insn %d to %d\n", t, w); 9577 return -EINVAL; 9578 } else if (insn_state[w] == EXPLORED) { 9579 /* forward- or cross-edge */ 9580 insn_state[t] = DISCOVERED | e; 9581 } else { 9582 verbose(env, "insn state internal bug\n"); 9583 return -EFAULT; 9584 } 9585 return DONE_EXPLORING; 9586 } 9587 9588 static int visit_func_call_insn(int t, int insn_cnt, 9589 struct bpf_insn *insns, 9590 struct bpf_verifier_env *env, 9591 bool visit_callee) 9592 { 9593 int ret; 9594 9595 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 9596 if (ret) 9597 return ret; 9598 9599 if (t + 1 < insn_cnt) 9600 init_explored_state(env, t + 1); 9601 if (visit_callee) { 9602 init_explored_state(env, t); 9603 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 9604 /* It's ok to allow recursion from CFG point of 9605 * view. __check_func_call() will do the actual 9606 * check. 9607 */ 9608 bpf_pseudo_func(insns + t)); 9609 } 9610 return ret; 9611 } 9612 9613 /* Visits the instruction at index t and returns one of the following: 9614 * < 0 - an error occurred 9615 * DONE_EXPLORING - the instruction was fully explored 9616 * KEEP_EXPLORING - there is still work to be done before it is fully explored 9617 */ 9618 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) 9619 { 9620 struct bpf_insn *insns = env->prog->insnsi; 9621 int ret; 9622 9623 if (bpf_pseudo_func(insns + t)) 9624 return visit_func_call_insn(t, insn_cnt, insns, env, true); 9625 9626 /* All non-branch instructions have a single fall-through edge. */ 9627 if (BPF_CLASS(insns[t].code) != BPF_JMP && 9628 BPF_CLASS(insns[t].code) != BPF_JMP32) 9629 return push_insn(t, t + 1, FALLTHROUGH, env, false); 9630 9631 switch (BPF_OP(insns[t].code)) { 9632 case BPF_EXIT: 9633 return DONE_EXPLORING; 9634 9635 case BPF_CALL: 9636 if (insns[t].imm == BPF_FUNC_timer_set_callback) 9637 /* Mark this call insn to trigger is_state_visited() check 9638 * before call itself is processed by __check_func_call(). 9639 * Otherwise new async state will be pushed for further 9640 * exploration. 9641 */ 9642 init_explored_state(env, t); 9643 return visit_func_call_insn(t, insn_cnt, insns, env, 9644 insns[t].src_reg == BPF_PSEUDO_CALL); 9645 9646 case BPF_JA: 9647 if (BPF_SRC(insns[t].code) != BPF_K) 9648 return -EINVAL; 9649 9650 /* unconditional jump with single edge */ 9651 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 9652 true); 9653 if (ret) 9654 return ret; 9655 9656 /* unconditional jmp is not a good pruning point, 9657 * but it's marked, since backtracking needs 9658 * to record jmp history in is_state_visited(). 9659 */ 9660 init_explored_state(env, t + insns[t].off + 1); 9661 /* tell verifier to check for equivalent states 9662 * after every call and jump 9663 */ 9664 if (t + 1 < insn_cnt) 9665 init_explored_state(env, t + 1); 9666 9667 return ret; 9668 9669 default: 9670 /* conditional jump with two edges */ 9671 init_explored_state(env, t); 9672 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 9673 if (ret) 9674 return ret; 9675 9676 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 9677 } 9678 } 9679 9680 /* non-recursive depth-first-search to detect loops in BPF program 9681 * loop == back-edge in directed graph 9682 */ 9683 static int check_cfg(struct bpf_verifier_env *env) 9684 { 9685 int insn_cnt = env->prog->len; 9686 int *insn_stack, *insn_state; 9687 int ret = 0; 9688 int i; 9689 9690 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 9691 if (!insn_state) 9692 return -ENOMEM; 9693 9694 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 9695 if (!insn_stack) { 9696 kvfree(insn_state); 9697 return -ENOMEM; 9698 } 9699 9700 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 9701 insn_stack[0] = 0; /* 0 is the first instruction */ 9702 env->cfg.cur_stack = 1; 9703 9704 while (env->cfg.cur_stack > 0) { 9705 int t = insn_stack[env->cfg.cur_stack - 1]; 9706 9707 ret = visit_insn(t, insn_cnt, env); 9708 switch (ret) { 9709 case DONE_EXPLORING: 9710 insn_state[t] = EXPLORED; 9711 env->cfg.cur_stack--; 9712 break; 9713 case KEEP_EXPLORING: 9714 break; 9715 default: 9716 if (ret > 0) { 9717 verbose(env, "visit_insn internal bug\n"); 9718 ret = -EFAULT; 9719 } 9720 goto err_free; 9721 } 9722 } 9723 9724 if (env->cfg.cur_stack < 0) { 9725 verbose(env, "pop stack internal bug\n"); 9726 ret = -EFAULT; 9727 goto err_free; 9728 } 9729 9730 for (i = 0; i < insn_cnt; i++) { 9731 if (insn_state[i] != EXPLORED) { 9732 verbose(env, "unreachable insn %d\n", i); 9733 ret = -EINVAL; 9734 goto err_free; 9735 } 9736 } 9737 ret = 0; /* cfg looks good */ 9738 9739 err_free: 9740 kvfree(insn_state); 9741 kvfree(insn_stack); 9742 env->cfg.insn_state = env->cfg.insn_stack = NULL; 9743 return ret; 9744 } 9745 9746 static int check_abnormal_return(struct bpf_verifier_env *env) 9747 { 9748 int i; 9749 9750 for (i = 1; i < env->subprog_cnt; i++) { 9751 if (env->subprog_info[i].has_ld_abs) { 9752 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 9753 return -EINVAL; 9754 } 9755 if (env->subprog_info[i].has_tail_call) { 9756 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 9757 return -EINVAL; 9758 } 9759 } 9760 return 0; 9761 } 9762 9763 /* The minimum supported BTF func info size */ 9764 #define MIN_BPF_FUNCINFO_SIZE 8 9765 #define MAX_FUNCINFO_REC_SIZE 252 9766 9767 static int check_btf_func(struct bpf_verifier_env *env, 9768 const union bpf_attr *attr, 9769 bpfptr_t uattr) 9770 { 9771 const struct btf_type *type, *func_proto, *ret_type; 9772 u32 i, nfuncs, urec_size, min_size; 9773 u32 krec_size = sizeof(struct bpf_func_info); 9774 struct bpf_func_info *krecord; 9775 struct bpf_func_info_aux *info_aux = NULL; 9776 struct bpf_prog *prog; 9777 const struct btf *btf; 9778 bpfptr_t urecord; 9779 u32 prev_offset = 0; 9780 bool scalar_return; 9781 int ret = -ENOMEM; 9782 9783 nfuncs = attr->func_info_cnt; 9784 if (!nfuncs) { 9785 if (check_abnormal_return(env)) 9786 return -EINVAL; 9787 return 0; 9788 } 9789 9790 if (nfuncs != env->subprog_cnt) { 9791 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 9792 return -EINVAL; 9793 } 9794 9795 urec_size = attr->func_info_rec_size; 9796 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 9797 urec_size > MAX_FUNCINFO_REC_SIZE || 9798 urec_size % sizeof(u32)) { 9799 verbose(env, "invalid func info rec size %u\n", urec_size); 9800 return -EINVAL; 9801 } 9802 9803 prog = env->prog; 9804 btf = prog->aux->btf; 9805 9806 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 9807 min_size = min_t(u32, krec_size, urec_size); 9808 9809 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 9810 if (!krecord) 9811 return -ENOMEM; 9812 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 9813 if (!info_aux) 9814 goto err_free; 9815 9816 for (i = 0; i < nfuncs; i++) { 9817 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 9818 if (ret) { 9819 if (ret == -E2BIG) { 9820 verbose(env, "nonzero tailing record in func info"); 9821 /* set the size kernel expects so loader can zero 9822 * out the rest of the record. 9823 */ 9824 if (copy_to_bpfptr_offset(uattr, 9825 offsetof(union bpf_attr, func_info_rec_size), 9826 &min_size, sizeof(min_size))) 9827 ret = -EFAULT; 9828 } 9829 goto err_free; 9830 } 9831 9832 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 9833 ret = -EFAULT; 9834 goto err_free; 9835 } 9836 9837 /* check insn_off */ 9838 ret = -EINVAL; 9839 if (i == 0) { 9840 if (krecord[i].insn_off) { 9841 verbose(env, 9842 "nonzero insn_off %u for the first func info record", 9843 krecord[i].insn_off); 9844 goto err_free; 9845 } 9846 } else if (krecord[i].insn_off <= prev_offset) { 9847 verbose(env, 9848 "same or smaller insn offset (%u) than previous func info record (%u)", 9849 krecord[i].insn_off, prev_offset); 9850 goto err_free; 9851 } 9852 9853 if (env->subprog_info[i].start != krecord[i].insn_off) { 9854 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 9855 goto err_free; 9856 } 9857 9858 /* check type_id */ 9859 type = btf_type_by_id(btf, krecord[i].type_id); 9860 if (!type || !btf_type_is_func(type)) { 9861 verbose(env, "invalid type id %d in func info", 9862 krecord[i].type_id); 9863 goto err_free; 9864 } 9865 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 9866 9867 func_proto = btf_type_by_id(btf, type->type); 9868 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 9869 /* btf_func_check() already verified it during BTF load */ 9870 goto err_free; 9871 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 9872 scalar_return = 9873 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type); 9874 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 9875 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 9876 goto err_free; 9877 } 9878 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 9879 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 9880 goto err_free; 9881 } 9882 9883 prev_offset = krecord[i].insn_off; 9884 bpfptr_add(&urecord, urec_size); 9885 } 9886 9887 prog->aux->func_info = krecord; 9888 prog->aux->func_info_cnt = nfuncs; 9889 prog->aux->func_info_aux = info_aux; 9890 return 0; 9891 9892 err_free: 9893 kvfree(krecord); 9894 kfree(info_aux); 9895 return ret; 9896 } 9897 9898 static void adjust_btf_func(struct bpf_verifier_env *env) 9899 { 9900 struct bpf_prog_aux *aux = env->prog->aux; 9901 int i; 9902 9903 if (!aux->func_info) 9904 return; 9905 9906 for (i = 0; i < env->subprog_cnt; i++) 9907 aux->func_info[i].insn_off = env->subprog_info[i].start; 9908 } 9909 9910 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 9911 sizeof(((struct bpf_line_info *)(0))->line_col)) 9912 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 9913 9914 static int check_btf_line(struct bpf_verifier_env *env, 9915 const union bpf_attr *attr, 9916 bpfptr_t uattr) 9917 { 9918 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 9919 struct bpf_subprog_info *sub; 9920 struct bpf_line_info *linfo; 9921 struct bpf_prog *prog; 9922 const struct btf *btf; 9923 bpfptr_t ulinfo; 9924 int err; 9925 9926 nr_linfo = attr->line_info_cnt; 9927 if (!nr_linfo) 9928 return 0; 9929 9930 rec_size = attr->line_info_rec_size; 9931 if (rec_size < MIN_BPF_LINEINFO_SIZE || 9932 rec_size > MAX_LINEINFO_REC_SIZE || 9933 rec_size & (sizeof(u32) - 1)) 9934 return -EINVAL; 9935 9936 /* Need to zero it in case the userspace may 9937 * pass in a smaller bpf_line_info object. 9938 */ 9939 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 9940 GFP_KERNEL | __GFP_NOWARN); 9941 if (!linfo) 9942 return -ENOMEM; 9943 9944 prog = env->prog; 9945 btf = prog->aux->btf; 9946 9947 s = 0; 9948 sub = env->subprog_info; 9949 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 9950 expected_size = sizeof(struct bpf_line_info); 9951 ncopy = min_t(u32, expected_size, rec_size); 9952 for (i = 0; i < nr_linfo; i++) { 9953 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 9954 if (err) { 9955 if (err == -E2BIG) { 9956 verbose(env, "nonzero tailing record in line_info"); 9957 if (copy_to_bpfptr_offset(uattr, 9958 offsetof(union bpf_attr, line_info_rec_size), 9959 &expected_size, sizeof(expected_size))) 9960 err = -EFAULT; 9961 } 9962 goto err_free; 9963 } 9964 9965 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 9966 err = -EFAULT; 9967 goto err_free; 9968 } 9969 9970 /* 9971 * Check insn_off to ensure 9972 * 1) strictly increasing AND 9973 * 2) bounded by prog->len 9974 * 9975 * The linfo[0].insn_off == 0 check logically falls into 9976 * the later "missing bpf_line_info for func..." case 9977 * because the first linfo[0].insn_off must be the 9978 * first sub also and the first sub must have 9979 * subprog_info[0].start == 0. 9980 */ 9981 if ((i && linfo[i].insn_off <= prev_offset) || 9982 linfo[i].insn_off >= prog->len) { 9983 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 9984 i, linfo[i].insn_off, prev_offset, 9985 prog->len); 9986 err = -EINVAL; 9987 goto err_free; 9988 } 9989 9990 if (!prog->insnsi[linfo[i].insn_off].code) { 9991 verbose(env, 9992 "Invalid insn code at line_info[%u].insn_off\n", 9993 i); 9994 err = -EINVAL; 9995 goto err_free; 9996 } 9997 9998 if (!btf_name_by_offset(btf, linfo[i].line_off) || 9999 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 10000 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 10001 err = -EINVAL; 10002 goto err_free; 10003 } 10004 10005 if (s != env->subprog_cnt) { 10006 if (linfo[i].insn_off == sub[s].start) { 10007 sub[s].linfo_idx = i; 10008 s++; 10009 } else if (sub[s].start < linfo[i].insn_off) { 10010 verbose(env, "missing bpf_line_info for func#%u\n", s); 10011 err = -EINVAL; 10012 goto err_free; 10013 } 10014 } 10015 10016 prev_offset = linfo[i].insn_off; 10017 bpfptr_add(&ulinfo, rec_size); 10018 } 10019 10020 if (s != env->subprog_cnt) { 10021 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 10022 env->subprog_cnt - s, s); 10023 err = -EINVAL; 10024 goto err_free; 10025 } 10026 10027 prog->aux->linfo = linfo; 10028 prog->aux->nr_linfo = nr_linfo; 10029 10030 return 0; 10031 10032 err_free: 10033 kvfree(linfo); 10034 return err; 10035 } 10036 10037 static int check_btf_info(struct bpf_verifier_env *env, 10038 const union bpf_attr *attr, 10039 bpfptr_t uattr) 10040 { 10041 struct btf *btf; 10042 int err; 10043 10044 if (!attr->func_info_cnt && !attr->line_info_cnt) { 10045 if (check_abnormal_return(env)) 10046 return -EINVAL; 10047 return 0; 10048 } 10049 10050 btf = btf_get_by_fd(attr->prog_btf_fd); 10051 if (IS_ERR(btf)) 10052 return PTR_ERR(btf); 10053 if (btf_is_kernel(btf)) { 10054 btf_put(btf); 10055 return -EACCES; 10056 } 10057 env->prog->aux->btf = btf; 10058 10059 err = check_btf_func(env, attr, uattr); 10060 if (err) 10061 return err; 10062 10063 err = check_btf_line(env, attr, uattr); 10064 if (err) 10065 return err; 10066 10067 return 0; 10068 } 10069 10070 /* check %cur's range satisfies %old's */ 10071 static bool range_within(struct bpf_reg_state *old, 10072 struct bpf_reg_state *cur) 10073 { 10074 return old->umin_value <= cur->umin_value && 10075 old->umax_value >= cur->umax_value && 10076 old->smin_value <= cur->smin_value && 10077 old->smax_value >= cur->smax_value && 10078 old->u32_min_value <= cur->u32_min_value && 10079 old->u32_max_value >= cur->u32_max_value && 10080 old->s32_min_value <= cur->s32_min_value && 10081 old->s32_max_value >= cur->s32_max_value; 10082 } 10083 10084 /* If in the old state two registers had the same id, then they need to have 10085 * the same id in the new state as well. But that id could be different from 10086 * the old state, so we need to track the mapping from old to new ids. 10087 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 10088 * regs with old id 5 must also have new id 9 for the new state to be safe. But 10089 * regs with a different old id could still have new id 9, we don't care about 10090 * that. 10091 * So we look through our idmap to see if this old id has been seen before. If 10092 * so, we require the new id to match; otherwise, we add the id pair to the map. 10093 */ 10094 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 10095 { 10096 unsigned int i; 10097 10098 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 10099 if (!idmap[i].old) { 10100 /* Reached an empty slot; haven't seen this id before */ 10101 idmap[i].old = old_id; 10102 idmap[i].cur = cur_id; 10103 return true; 10104 } 10105 if (idmap[i].old == old_id) 10106 return idmap[i].cur == cur_id; 10107 } 10108 /* We ran out of idmap slots, which should be impossible */ 10109 WARN_ON_ONCE(1); 10110 return false; 10111 } 10112 10113 static void clean_func_state(struct bpf_verifier_env *env, 10114 struct bpf_func_state *st) 10115 { 10116 enum bpf_reg_liveness live; 10117 int i, j; 10118 10119 for (i = 0; i < BPF_REG_FP; i++) { 10120 live = st->regs[i].live; 10121 /* liveness must not touch this register anymore */ 10122 st->regs[i].live |= REG_LIVE_DONE; 10123 if (!(live & REG_LIVE_READ)) 10124 /* since the register is unused, clear its state 10125 * to make further comparison simpler 10126 */ 10127 __mark_reg_not_init(env, &st->regs[i]); 10128 } 10129 10130 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 10131 live = st->stack[i].spilled_ptr.live; 10132 /* liveness must not touch this stack slot anymore */ 10133 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 10134 if (!(live & REG_LIVE_READ)) { 10135 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 10136 for (j = 0; j < BPF_REG_SIZE; j++) 10137 st->stack[i].slot_type[j] = STACK_INVALID; 10138 } 10139 } 10140 } 10141 10142 static void clean_verifier_state(struct bpf_verifier_env *env, 10143 struct bpf_verifier_state *st) 10144 { 10145 int i; 10146 10147 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 10148 /* all regs in this state in all frames were already marked */ 10149 return; 10150 10151 for (i = 0; i <= st->curframe; i++) 10152 clean_func_state(env, st->frame[i]); 10153 } 10154 10155 /* the parentage chains form a tree. 10156 * the verifier states are added to state lists at given insn and 10157 * pushed into state stack for future exploration. 10158 * when the verifier reaches bpf_exit insn some of the verifer states 10159 * stored in the state lists have their final liveness state already, 10160 * but a lot of states will get revised from liveness point of view when 10161 * the verifier explores other branches. 10162 * Example: 10163 * 1: r0 = 1 10164 * 2: if r1 == 100 goto pc+1 10165 * 3: r0 = 2 10166 * 4: exit 10167 * when the verifier reaches exit insn the register r0 in the state list of 10168 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 10169 * of insn 2 and goes exploring further. At the insn 4 it will walk the 10170 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 10171 * 10172 * Since the verifier pushes the branch states as it sees them while exploring 10173 * the program the condition of walking the branch instruction for the second 10174 * time means that all states below this branch were already explored and 10175 * their final liveness marks are already propagated. 10176 * Hence when the verifier completes the search of state list in is_state_visited() 10177 * we can call this clean_live_states() function to mark all liveness states 10178 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 10179 * will not be used. 10180 * This function also clears the registers and stack for states that !READ 10181 * to simplify state merging. 10182 * 10183 * Important note here that walking the same branch instruction in the callee 10184 * doesn't meant that the states are DONE. The verifier has to compare 10185 * the callsites 10186 */ 10187 static void clean_live_states(struct bpf_verifier_env *env, int insn, 10188 struct bpf_verifier_state *cur) 10189 { 10190 struct bpf_verifier_state_list *sl; 10191 int i; 10192 10193 sl = *explored_state(env, insn); 10194 while (sl) { 10195 if (sl->state.branches) 10196 goto next; 10197 if (sl->state.insn_idx != insn || 10198 sl->state.curframe != cur->curframe) 10199 goto next; 10200 for (i = 0; i <= cur->curframe; i++) 10201 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 10202 goto next; 10203 clean_verifier_state(env, &sl->state); 10204 next: 10205 sl = sl->next; 10206 } 10207 } 10208 10209 /* Returns true if (rold safe implies rcur safe) */ 10210 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 10211 struct bpf_id_pair *idmap) 10212 { 10213 bool equal; 10214 10215 if (!(rold->live & REG_LIVE_READ)) 10216 /* explored state didn't use this */ 10217 return true; 10218 10219 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 10220 10221 if (rold->type == PTR_TO_STACK) 10222 /* two stack pointers are equal only if they're pointing to 10223 * the same stack frame, since fp-8 in foo != fp-8 in bar 10224 */ 10225 return equal && rold->frameno == rcur->frameno; 10226 10227 if (equal) 10228 return true; 10229 10230 if (rold->type == NOT_INIT) 10231 /* explored state can't have used this */ 10232 return true; 10233 if (rcur->type == NOT_INIT) 10234 return false; 10235 switch (rold->type) { 10236 case SCALAR_VALUE: 10237 if (rcur->type == SCALAR_VALUE) { 10238 if (!rold->precise && !rcur->precise) 10239 return true; 10240 /* new val must satisfy old val knowledge */ 10241 return range_within(rold, rcur) && 10242 tnum_in(rold->var_off, rcur->var_off); 10243 } else { 10244 /* We're trying to use a pointer in place of a scalar. 10245 * Even if the scalar was unbounded, this could lead to 10246 * pointer leaks because scalars are allowed to leak 10247 * while pointers are not. We could make this safe in 10248 * special cases if root is calling us, but it's 10249 * probably not worth the hassle. 10250 */ 10251 return false; 10252 } 10253 case PTR_TO_MAP_KEY: 10254 case PTR_TO_MAP_VALUE: 10255 /* If the new min/max/var_off satisfy the old ones and 10256 * everything else matches, we are OK. 10257 * 'id' is not compared, since it's only used for maps with 10258 * bpf_spin_lock inside map element and in such cases if 10259 * the rest of the prog is valid for one map element then 10260 * it's valid for all map elements regardless of the key 10261 * used in bpf_map_lookup() 10262 */ 10263 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 10264 range_within(rold, rcur) && 10265 tnum_in(rold->var_off, rcur->var_off); 10266 case PTR_TO_MAP_VALUE_OR_NULL: 10267 /* a PTR_TO_MAP_VALUE could be safe to use as a 10268 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 10269 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 10270 * checked, doing so could have affected others with the same 10271 * id, and we can't check for that because we lost the id when 10272 * we converted to a PTR_TO_MAP_VALUE. 10273 */ 10274 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 10275 return false; 10276 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 10277 return false; 10278 /* Check our ids match any regs they're supposed to */ 10279 return check_ids(rold->id, rcur->id, idmap); 10280 case PTR_TO_PACKET_META: 10281 case PTR_TO_PACKET: 10282 if (rcur->type != rold->type) 10283 return false; 10284 /* We must have at least as much range as the old ptr 10285 * did, so that any accesses which were safe before are 10286 * still safe. This is true even if old range < old off, 10287 * since someone could have accessed through (ptr - k), or 10288 * even done ptr -= k in a register, to get a safe access. 10289 */ 10290 if (rold->range > rcur->range) 10291 return false; 10292 /* If the offsets don't match, we can't trust our alignment; 10293 * nor can we be sure that we won't fall out of range. 10294 */ 10295 if (rold->off != rcur->off) 10296 return false; 10297 /* id relations must be preserved */ 10298 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 10299 return false; 10300 /* new val must satisfy old val knowledge */ 10301 return range_within(rold, rcur) && 10302 tnum_in(rold->var_off, rcur->var_off); 10303 case PTR_TO_CTX: 10304 case CONST_PTR_TO_MAP: 10305 case PTR_TO_PACKET_END: 10306 case PTR_TO_FLOW_KEYS: 10307 case PTR_TO_SOCKET: 10308 case PTR_TO_SOCKET_OR_NULL: 10309 case PTR_TO_SOCK_COMMON: 10310 case PTR_TO_SOCK_COMMON_OR_NULL: 10311 case PTR_TO_TCP_SOCK: 10312 case PTR_TO_TCP_SOCK_OR_NULL: 10313 case PTR_TO_XDP_SOCK: 10314 /* Only valid matches are exact, which memcmp() above 10315 * would have accepted 10316 */ 10317 default: 10318 /* Don't know what's going on, just say it's not safe */ 10319 return false; 10320 } 10321 10322 /* Shouldn't get here; if we do, say it's not safe */ 10323 WARN_ON_ONCE(1); 10324 return false; 10325 } 10326 10327 static bool stacksafe(struct bpf_func_state *old, 10328 struct bpf_func_state *cur, 10329 struct bpf_id_pair *idmap) 10330 { 10331 int i, spi; 10332 10333 /* walk slots of the explored stack and ignore any additional 10334 * slots in the current stack, since explored(safe) state 10335 * didn't use them 10336 */ 10337 for (i = 0; i < old->allocated_stack; i++) { 10338 spi = i / BPF_REG_SIZE; 10339 10340 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 10341 i += BPF_REG_SIZE - 1; 10342 /* explored state didn't use this */ 10343 continue; 10344 } 10345 10346 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 10347 continue; 10348 10349 /* explored stack has more populated slots than current stack 10350 * and these slots were used 10351 */ 10352 if (i >= cur->allocated_stack) 10353 return false; 10354 10355 /* if old state was safe with misc data in the stack 10356 * it will be safe with zero-initialized stack. 10357 * The opposite is not true 10358 */ 10359 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 10360 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 10361 continue; 10362 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 10363 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 10364 /* Ex: old explored (safe) state has STACK_SPILL in 10365 * this stack slot, but current has STACK_MISC -> 10366 * this verifier states are not equivalent, 10367 * return false to continue verification of this path 10368 */ 10369 return false; 10370 if (i % BPF_REG_SIZE) 10371 continue; 10372 if (old->stack[spi].slot_type[0] != STACK_SPILL) 10373 continue; 10374 if (!regsafe(&old->stack[spi].spilled_ptr, 10375 &cur->stack[spi].spilled_ptr, 10376 idmap)) 10377 /* when explored and current stack slot are both storing 10378 * spilled registers, check that stored pointers types 10379 * are the same as well. 10380 * Ex: explored safe path could have stored 10381 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 10382 * but current path has stored: 10383 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 10384 * such verifier states are not equivalent. 10385 * return false to continue verification of this path 10386 */ 10387 return false; 10388 } 10389 return true; 10390 } 10391 10392 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 10393 { 10394 if (old->acquired_refs != cur->acquired_refs) 10395 return false; 10396 return !memcmp(old->refs, cur->refs, 10397 sizeof(*old->refs) * old->acquired_refs); 10398 } 10399 10400 /* compare two verifier states 10401 * 10402 * all states stored in state_list are known to be valid, since 10403 * verifier reached 'bpf_exit' instruction through them 10404 * 10405 * this function is called when verifier exploring different branches of 10406 * execution popped from the state stack. If it sees an old state that has 10407 * more strict register state and more strict stack state then this execution 10408 * branch doesn't need to be explored further, since verifier already 10409 * concluded that more strict state leads to valid finish. 10410 * 10411 * Therefore two states are equivalent if register state is more conservative 10412 * and explored stack state is more conservative than the current one. 10413 * Example: 10414 * explored current 10415 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 10416 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 10417 * 10418 * In other words if current stack state (one being explored) has more 10419 * valid slots than old one that already passed validation, it means 10420 * the verifier can stop exploring and conclude that current state is valid too 10421 * 10422 * Similarly with registers. If explored state has register type as invalid 10423 * whereas register type in current state is meaningful, it means that 10424 * the current state will reach 'bpf_exit' instruction safely 10425 */ 10426 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 10427 struct bpf_func_state *cur) 10428 { 10429 int i; 10430 10431 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 10432 for (i = 0; i < MAX_BPF_REG; i++) 10433 if (!regsafe(&old->regs[i], &cur->regs[i], env->idmap_scratch)) 10434 return false; 10435 10436 if (!stacksafe(old, cur, env->idmap_scratch)) 10437 return false; 10438 10439 if (!refsafe(old, cur)) 10440 return false; 10441 10442 return true; 10443 } 10444 10445 static bool states_equal(struct bpf_verifier_env *env, 10446 struct bpf_verifier_state *old, 10447 struct bpf_verifier_state *cur) 10448 { 10449 int i; 10450 10451 if (old->curframe != cur->curframe) 10452 return false; 10453 10454 /* Verification state from speculative execution simulation 10455 * must never prune a non-speculative execution one. 10456 */ 10457 if (old->speculative && !cur->speculative) 10458 return false; 10459 10460 if (old->active_spin_lock != cur->active_spin_lock) 10461 return false; 10462 10463 /* for states to be equal callsites have to be the same 10464 * and all frame states need to be equivalent 10465 */ 10466 for (i = 0; i <= old->curframe; i++) { 10467 if (old->frame[i]->callsite != cur->frame[i]->callsite) 10468 return false; 10469 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 10470 return false; 10471 } 10472 return true; 10473 } 10474 10475 /* Return 0 if no propagation happened. Return negative error code if error 10476 * happened. Otherwise, return the propagated bit. 10477 */ 10478 static int propagate_liveness_reg(struct bpf_verifier_env *env, 10479 struct bpf_reg_state *reg, 10480 struct bpf_reg_state *parent_reg) 10481 { 10482 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 10483 u8 flag = reg->live & REG_LIVE_READ; 10484 int err; 10485 10486 /* When comes here, read flags of PARENT_REG or REG could be any of 10487 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 10488 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 10489 */ 10490 if (parent_flag == REG_LIVE_READ64 || 10491 /* Or if there is no read flag from REG. */ 10492 !flag || 10493 /* Or if the read flag from REG is the same as PARENT_REG. */ 10494 parent_flag == flag) 10495 return 0; 10496 10497 err = mark_reg_read(env, reg, parent_reg, flag); 10498 if (err) 10499 return err; 10500 10501 return flag; 10502 } 10503 10504 /* A write screens off any subsequent reads; but write marks come from the 10505 * straight-line code between a state and its parent. When we arrive at an 10506 * equivalent state (jump target or such) we didn't arrive by the straight-line 10507 * code, so read marks in the state must propagate to the parent regardless 10508 * of the state's write marks. That's what 'parent == state->parent' comparison 10509 * in mark_reg_read() is for. 10510 */ 10511 static int propagate_liveness(struct bpf_verifier_env *env, 10512 const struct bpf_verifier_state *vstate, 10513 struct bpf_verifier_state *vparent) 10514 { 10515 struct bpf_reg_state *state_reg, *parent_reg; 10516 struct bpf_func_state *state, *parent; 10517 int i, frame, err = 0; 10518 10519 if (vparent->curframe != vstate->curframe) { 10520 WARN(1, "propagate_live: parent frame %d current frame %d\n", 10521 vparent->curframe, vstate->curframe); 10522 return -EFAULT; 10523 } 10524 /* Propagate read liveness of registers... */ 10525 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 10526 for (frame = 0; frame <= vstate->curframe; frame++) { 10527 parent = vparent->frame[frame]; 10528 state = vstate->frame[frame]; 10529 parent_reg = parent->regs; 10530 state_reg = state->regs; 10531 /* We don't need to worry about FP liveness, it's read-only */ 10532 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 10533 err = propagate_liveness_reg(env, &state_reg[i], 10534 &parent_reg[i]); 10535 if (err < 0) 10536 return err; 10537 if (err == REG_LIVE_READ64) 10538 mark_insn_zext(env, &parent_reg[i]); 10539 } 10540 10541 /* Propagate stack slots. */ 10542 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 10543 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 10544 parent_reg = &parent->stack[i].spilled_ptr; 10545 state_reg = &state->stack[i].spilled_ptr; 10546 err = propagate_liveness_reg(env, state_reg, 10547 parent_reg); 10548 if (err < 0) 10549 return err; 10550 } 10551 } 10552 return 0; 10553 } 10554 10555 /* find precise scalars in the previous equivalent state and 10556 * propagate them into the current state 10557 */ 10558 static int propagate_precision(struct bpf_verifier_env *env, 10559 const struct bpf_verifier_state *old) 10560 { 10561 struct bpf_reg_state *state_reg; 10562 struct bpf_func_state *state; 10563 int i, err = 0; 10564 10565 state = old->frame[old->curframe]; 10566 state_reg = state->regs; 10567 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 10568 if (state_reg->type != SCALAR_VALUE || 10569 !state_reg->precise) 10570 continue; 10571 if (env->log.level & BPF_LOG_LEVEL2) 10572 verbose(env, "propagating r%d\n", i); 10573 err = mark_chain_precision(env, i); 10574 if (err < 0) 10575 return err; 10576 } 10577 10578 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 10579 if (state->stack[i].slot_type[0] != STACK_SPILL) 10580 continue; 10581 state_reg = &state->stack[i].spilled_ptr; 10582 if (state_reg->type != SCALAR_VALUE || 10583 !state_reg->precise) 10584 continue; 10585 if (env->log.level & BPF_LOG_LEVEL2) 10586 verbose(env, "propagating fp%d\n", 10587 (-i - 1) * BPF_REG_SIZE); 10588 err = mark_chain_precision_stack(env, i); 10589 if (err < 0) 10590 return err; 10591 } 10592 return 0; 10593 } 10594 10595 static bool states_maybe_looping(struct bpf_verifier_state *old, 10596 struct bpf_verifier_state *cur) 10597 { 10598 struct bpf_func_state *fold, *fcur; 10599 int i, fr = cur->curframe; 10600 10601 if (old->curframe != fr) 10602 return false; 10603 10604 fold = old->frame[fr]; 10605 fcur = cur->frame[fr]; 10606 for (i = 0; i < MAX_BPF_REG; i++) 10607 if (memcmp(&fold->regs[i], &fcur->regs[i], 10608 offsetof(struct bpf_reg_state, parent))) 10609 return false; 10610 return true; 10611 } 10612 10613 10614 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 10615 { 10616 struct bpf_verifier_state_list *new_sl; 10617 struct bpf_verifier_state_list *sl, **pprev; 10618 struct bpf_verifier_state *cur = env->cur_state, *new; 10619 int i, j, err, states_cnt = 0; 10620 bool add_new_state = env->test_state_freq ? true : false; 10621 10622 cur->last_insn_idx = env->prev_insn_idx; 10623 if (!env->insn_aux_data[insn_idx].prune_point) 10624 /* this 'insn_idx' instruction wasn't marked, so we will not 10625 * be doing state search here 10626 */ 10627 return 0; 10628 10629 /* bpf progs typically have pruning point every 4 instructions 10630 * http://vger.kernel.org/bpfconf2019.html#session-1 10631 * Do not add new state for future pruning if the verifier hasn't seen 10632 * at least 2 jumps and at least 8 instructions. 10633 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 10634 * In tests that amounts to up to 50% reduction into total verifier 10635 * memory consumption and 20% verifier time speedup. 10636 */ 10637 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 10638 env->insn_processed - env->prev_insn_processed >= 8) 10639 add_new_state = true; 10640 10641 pprev = explored_state(env, insn_idx); 10642 sl = *pprev; 10643 10644 clean_live_states(env, insn_idx, cur); 10645 10646 while (sl) { 10647 states_cnt++; 10648 if (sl->state.insn_idx != insn_idx) 10649 goto next; 10650 10651 if (sl->state.branches) { 10652 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 10653 10654 if (frame->in_async_callback_fn && 10655 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 10656 /* Different async_entry_cnt means that the verifier is 10657 * processing another entry into async callback. 10658 * Seeing the same state is not an indication of infinite 10659 * loop or infinite recursion. 10660 * But finding the same state doesn't mean that it's safe 10661 * to stop processing the current state. The previous state 10662 * hasn't yet reached bpf_exit, since state.branches > 0. 10663 * Checking in_async_callback_fn alone is not enough either. 10664 * Since the verifier still needs to catch infinite loops 10665 * inside async callbacks. 10666 */ 10667 } else if (states_maybe_looping(&sl->state, cur) && 10668 states_equal(env, &sl->state, cur)) { 10669 verbose_linfo(env, insn_idx, "; "); 10670 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 10671 return -EINVAL; 10672 } 10673 /* if the verifier is processing a loop, avoid adding new state 10674 * too often, since different loop iterations have distinct 10675 * states and may not help future pruning. 10676 * This threshold shouldn't be too low to make sure that 10677 * a loop with large bound will be rejected quickly. 10678 * The most abusive loop will be: 10679 * r1 += 1 10680 * if r1 < 1000000 goto pc-2 10681 * 1M insn_procssed limit / 100 == 10k peak states. 10682 * This threshold shouldn't be too high either, since states 10683 * at the end of the loop are likely to be useful in pruning. 10684 */ 10685 if (env->jmps_processed - env->prev_jmps_processed < 20 && 10686 env->insn_processed - env->prev_insn_processed < 100) 10687 add_new_state = false; 10688 goto miss; 10689 } 10690 if (states_equal(env, &sl->state, cur)) { 10691 sl->hit_cnt++; 10692 /* reached equivalent register/stack state, 10693 * prune the search. 10694 * Registers read by the continuation are read by us. 10695 * If we have any write marks in env->cur_state, they 10696 * will prevent corresponding reads in the continuation 10697 * from reaching our parent (an explored_state). Our 10698 * own state will get the read marks recorded, but 10699 * they'll be immediately forgotten as we're pruning 10700 * this state and will pop a new one. 10701 */ 10702 err = propagate_liveness(env, &sl->state, cur); 10703 10704 /* if previous state reached the exit with precision and 10705 * current state is equivalent to it (except precsion marks) 10706 * the precision needs to be propagated back in 10707 * the current state. 10708 */ 10709 err = err ? : push_jmp_history(env, cur); 10710 err = err ? : propagate_precision(env, &sl->state); 10711 if (err) 10712 return err; 10713 return 1; 10714 } 10715 miss: 10716 /* when new state is not going to be added do not increase miss count. 10717 * Otherwise several loop iterations will remove the state 10718 * recorded earlier. The goal of these heuristics is to have 10719 * states from some iterations of the loop (some in the beginning 10720 * and some at the end) to help pruning. 10721 */ 10722 if (add_new_state) 10723 sl->miss_cnt++; 10724 /* heuristic to determine whether this state is beneficial 10725 * to keep checking from state equivalence point of view. 10726 * Higher numbers increase max_states_per_insn and verification time, 10727 * but do not meaningfully decrease insn_processed. 10728 */ 10729 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 10730 /* the state is unlikely to be useful. Remove it to 10731 * speed up verification 10732 */ 10733 *pprev = sl->next; 10734 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 10735 u32 br = sl->state.branches; 10736 10737 WARN_ONCE(br, 10738 "BUG live_done but branches_to_explore %d\n", 10739 br); 10740 free_verifier_state(&sl->state, false); 10741 kfree(sl); 10742 env->peak_states--; 10743 } else { 10744 /* cannot free this state, since parentage chain may 10745 * walk it later. Add it for free_list instead to 10746 * be freed at the end of verification 10747 */ 10748 sl->next = env->free_list; 10749 env->free_list = sl; 10750 } 10751 sl = *pprev; 10752 continue; 10753 } 10754 next: 10755 pprev = &sl->next; 10756 sl = *pprev; 10757 } 10758 10759 if (env->max_states_per_insn < states_cnt) 10760 env->max_states_per_insn = states_cnt; 10761 10762 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 10763 return push_jmp_history(env, cur); 10764 10765 if (!add_new_state) 10766 return push_jmp_history(env, cur); 10767 10768 /* There were no equivalent states, remember the current one. 10769 * Technically the current state is not proven to be safe yet, 10770 * but it will either reach outer most bpf_exit (which means it's safe) 10771 * or it will be rejected. When there are no loops the verifier won't be 10772 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 10773 * again on the way to bpf_exit. 10774 * When looping the sl->state.branches will be > 0 and this state 10775 * will not be considered for equivalence until branches == 0. 10776 */ 10777 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 10778 if (!new_sl) 10779 return -ENOMEM; 10780 env->total_states++; 10781 env->peak_states++; 10782 env->prev_jmps_processed = env->jmps_processed; 10783 env->prev_insn_processed = env->insn_processed; 10784 10785 /* add new state to the head of linked list */ 10786 new = &new_sl->state; 10787 err = copy_verifier_state(new, cur); 10788 if (err) { 10789 free_verifier_state(new, false); 10790 kfree(new_sl); 10791 return err; 10792 } 10793 new->insn_idx = insn_idx; 10794 WARN_ONCE(new->branches != 1, 10795 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 10796 10797 cur->parent = new; 10798 cur->first_insn_idx = insn_idx; 10799 clear_jmp_history(cur); 10800 new_sl->next = *explored_state(env, insn_idx); 10801 *explored_state(env, insn_idx) = new_sl; 10802 /* connect new state to parentage chain. Current frame needs all 10803 * registers connected. Only r6 - r9 of the callers are alive (pushed 10804 * to the stack implicitly by JITs) so in callers' frames connect just 10805 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 10806 * the state of the call instruction (with WRITTEN set), and r0 comes 10807 * from callee with its full parentage chain, anyway. 10808 */ 10809 /* clear write marks in current state: the writes we did are not writes 10810 * our child did, so they don't screen off its reads from us. 10811 * (There are no read marks in current state, because reads always mark 10812 * their parent and current state never has children yet. Only 10813 * explored_states can get read marks.) 10814 */ 10815 for (j = 0; j <= cur->curframe; j++) { 10816 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 10817 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 10818 for (i = 0; i < BPF_REG_FP; i++) 10819 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 10820 } 10821 10822 /* all stack frames are accessible from callee, clear them all */ 10823 for (j = 0; j <= cur->curframe; j++) { 10824 struct bpf_func_state *frame = cur->frame[j]; 10825 struct bpf_func_state *newframe = new->frame[j]; 10826 10827 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 10828 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 10829 frame->stack[i].spilled_ptr.parent = 10830 &newframe->stack[i].spilled_ptr; 10831 } 10832 } 10833 return 0; 10834 } 10835 10836 /* Return true if it's OK to have the same insn return a different type. */ 10837 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 10838 { 10839 switch (type) { 10840 case PTR_TO_CTX: 10841 case PTR_TO_SOCKET: 10842 case PTR_TO_SOCKET_OR_NULL: 10843 case PTR_TO_SOCK_COMMON: 10844 case PTR_TO_SOCK_COMMON_OR_NULL: 10845 case PTR_TO_TCP_SOCK: 10846 case PTR_TO_TCP_SOCK_OR_NULL: 10847 case PTR_TO_XDP_SOCK: 10848 case PTR_TO_BTF_ID: 10849 case PTR_TO_BTF_ID_OR_NULL: 10850 return false; 10851 default: 10852 return true; 10853 } 10854 } 10855 10856 /* If an instruction was previously used with particular pointer types, then we 10857 * need to be careful to avoid cases such as the below, where it may be ok 10858 * for one branch accessing the pointer, but not ok for the other branch: 10859 * 10860 * R1 = sock_ptr 10861 * goto X; 10862 * ... 10863 * R1 = some_other_valid_ptr; 10864 * goto X; 10865 * ... 10866 * R2 = *(u32 *)(R1 + 0); 10867 */ 10868 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 10869 { 10870 return src != prev && (!reg_type_mismatch_ok(src) || 10871 !reg_type_mismatch_ok(prev)); 10872 } 10873 10874 static int do_check(struct bpf_verifier_env *env) 10875 { 10876 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 10877 struct bpf_verifier_state *state = env->cur_state; 10878 struct bpf_insn *insns = env->prog->insnsi; 10879 struct bpf_reg_state *regs; 10880 int insn_cnt = env->prog->len; 10881 bool do_print_state = false; 10882 int prev_insn_idx = -1; 10883 10884 for (;;) { 10885 struct bpf_insn *insn; 10886 u8 class; 10887 int err; 10888 10889 env->prev_insn_idx = prev_insn_idx; 10890 if (env->insn_idx >= insn_cnt) { 10891 verbose(env, "invalid insn idx %d insn_cnt %d\n", 10892 env->insn_idx, insn_cnt); 10893 return -EFAULT; 10894 } 10895 10896 insn = &insns[env->insn_idx]; 10897 class = BPF_CLASS(insn->code); 10898 10899 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 10900 verbose(env, 10901 "BPF program is too large. Processed %d insn\n", 10902 env->insn_processed); 10903 return -E2BIG; 10904 } 10905 10906 err = is_state_visited(env, env->insn_idx); 10907 if (err < 0) 10908 return err; 10909 if (err == 1) { 10910 /* found equivalent state, can prune the search */ 10911 if (env->log.level & BPF_LOG_LEVEL) { 10912 if (do_print_state) 10913 verbose(env, "\nfrom %d to %d%s: safe\n", 10914 env->prev_insn_idx, env->insn_idx, 10915 env->cur_state->speculative ? 10916 " (speculative execution)" : ""); 10917 else 10918 verbose(env, "%d: safe\n", env->insn_idx); 10919 } 10920 goto process_bpf_exit; 10921 } 10922 10923 if (signal_pending(current)) 10924 return -EAGAIN; 10925 10926 if (need_resched()) 10927 cond_resched(); 10928 10929 if (env->log.level & BPF_LOG_LEVEL2 || 10930 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 10931 if (env->log.level & BPF_LOG_LEVEL2) 10932 verbose(env, "%d:", env->insn_idx); 10933 else 10934 verbose(env, "\nfrom %d to %d%s:", 10935 env->prev_insn_idx, env->insn_idx, 10936 env->cur_state->speculative ? 10937 " (speculative execution)" : ""); 10938 print_verifier_state(env, state->frame[state->curframe]); 10939 do_print_state = false; 10940 } 10941 10942 if (env->log.level & BPF_LOG_LEVEL) { 10943 const struct bpf_insn_cbs cbs = { 10944 .cb_call = disasm_kfunc_name, 10945 .cb_print = verbose, 10946 .private_data = env, 10947 }; 10948 10949 verbose_linfo(env, env->insn_idx, "; "); 10950 verbose(env, "%d: ", env->insn_idx); 10951 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 10952 } 10953 10954 if (bpf_prog_is_dev_bound(env->prog->aux)) { 10955 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 10956 env->prev_insn_idx); 10957 if (err) 10958 return err; 10959 } 10960 10961 regs = cur_regs(env); 10962 sanitize_mark_insn_seen(env); 10963 prev_insn_idx = env->insn_idx; 10964 10965 if (class == BPF_ALU || class == BPF_ALU64) { 10966 err = check_alu_op(env, insn); 10967 if (err) 10968 return err; 10969 10970 } else if (class == BPF_LDX) { 10971 enum bpf_reg_type *prev_src_type, src_reg_type; 10972 10973 /* check for reserved fields is already done */ 10974 10975 /* check src operand */ 10976 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10977 if (err) 10978 return err; 10979 10980 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 10981 if (err) 10982 return err; 10983 10984 src_reg_type = regs[insn->src_reg].type; 10985 10986 /* check that memory (src_reg + off) is readable, 10987 * the state of dst_reg will be updated by this func 10988 */ 10989 err = check_mem_access(env, env->insn_idx, insn->src_reg, 10990 insn->off, BPF_SIZE(insn->code), 10991 BPF_READ, insn->dst_reg, false); 10992 if (err) 10993 return err; 10994 10995 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 10996 10997 if (*prev_src_type == NOT_INIT) { 10998 /* saw a valid insn 10999 * dst_reg = *(u32 *)(src_reg + off) 11000 * save type to validate intersecting paths 11001 */ 11002 *prev_src_type = src_reg_type; 11003 11004 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 11005 /* ABuser program is trying to use the same insn 11006 * dst_reg = *(u32*) (src_reg + off) 11007 * with different pointer types: 11008 * src_reg == ctx in one branch and 11009 * src_reg == stack|map in some other branch. 11010 * Reject it. 11011 */ 11012 verbose(env, "same insn cannot be used with different pointers\n"); 11013 return -EINVAL; 11014 } 11015 11016 } else if (class == BPF_STX) { 11017 enum bpf_reg_type *prev_dst_type, dst_reg_type; 11018 11019 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 11020 err = check_atomic(env, env->insn_idx, insn); 11021 if (err) 11022 return err; 11023 env->insn_idx++; 11024 continue; 11025 } 11026 11027 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 11028 verbose(env, "BPF_STX uses reserved fields\n"); 11029 return -EINVAL; 11030 } 11031 11032 /* check src1 operand */ 11033 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11034 if (err) 11035 return err; 11036 /* check src2 operand */ 11037 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11038 if (err) 11039 return err; 11040 11041 dst_reg_type = regs[insn->dst_reg].type; 11042 11043 /* check that memory (dst_reg + off) is writeable */ 11044 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 11045 insn->off, BPF_SIZE(insn->code), 11046 BPF_WRITE, insn->src_reg, false); 11047 if (err) 11048 return err; 11049 11050 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 11051 11052 if (*prev_dst_type == NOT_INIT) { 11053 *prev_dst_type = dst_reg_type; 11054 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 11055 verbose(env, "same insn cannot be used with different pointers\n"); 11056 return -EINVAL; 11057 } 11058 11059 } else if (class == BPF_ST) { 11060 if (BPF_MODE(insn->code) != BPF_MEM || 11061 insn->src_reg != BPF_REG_0) { 11062 verbose(env, "BPF_ST uses reserved fields\n"); 11063 return -EINVAL; 11064 } 11065 /* check src operand */ 11066 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11067 if (err) 11068 return err; 11069 11070 if (is_ctx_reg(env, insn->dst_reg)) { 11071 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 11072 insn->dst_reg, 11073 reg_type_str[reg_state(env, insn->dst_reg)->type]); 11074 return -EACCES; 11075 } 11076 11077 /* check that memory (dst_reg + off) is writeable */ 11078 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 11079 insn->off, BPF_SIZE(insn->code), 11080 BPF_WRITE, -1, false); 11081 if (err) 11082 return err; 11083 11084 } else if (class == BPF_JMP || class == BPF_JMP32) { 11085 u8 opcode = BPF_OP(insn->code); 11086 11087 env->jmps_processed++; 11088 if (opcode == BPF_CALL) { 11089 if (BPF_SRC(insn->code) != BPF_K || 11090 insn->off != 0 || 11091 (insn->src_reg != BPF_REG_0 && 11092 insn->src_reg != BPF_PSEUDO_CALL && 11093 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 11094 insn->dst_reg != BPF_REG_0 || 11095 class == BPF_JMP32) { 11096 verbose(env, "BPF_CALL uses reserved fields\n"); 11097 return -EINVAL; 11098 } 11099 11100 if (env->cur_state->active_spin_lock && 11101 (insn->src_reg == BPF_PSEUDO_CALL || 11102 insn->imm != BPF_FUNC_spin_unlock)) { 11103 verbose(env, "function calls are not allowed while holding a lock\n"); 11104 return -EINVAL; 11105 } 11106 if (insn->src_reg == BPF_PSEUDO_CALL) 11107 err = check_func_call(env, insn, &env->insn_idx); 11108 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 11109 err = check_kfunc_call(env, insn); 11110 else 11111 err = check_helper_call(env, insn, &env->insn_idx); 11112 if (err) 11113 return err; 11114 } else if (opcode == BPF_JA) { 11115 if (BPF_SRC(insn->code) != BPF_K || 11116 insn->imm != 0 || 11117 insn->src_reg != BPF_REG_0 || 11118 insn->dst_reg != BPF_REG_0 || 11119 class == BPF_JMP32) { 11120 verbose(env, "BPF_JA uses reserved fields\n"); 11121 return -EINVAL; 11122 } 11123 11124 env->insn_idx += insn->off + 1; 11125 continue; 11126 11127 } else if (opcode == BPF_EXIT) { 11128 if (BPF_SRC(insn->code) != BPF_K || 11129 insn->imm != 0 || 11130 insn->src_reg != BPF_REG_0 || 11131 insn->dst_reg != BPF_REG_0 || 11132 class == BPF_JMP32) { 11133 verbose(env, "BPF_EXIT uses reserved fields\n"); 11134 return -EINVAL; 11135 } 11136 11137 if (env->cur_state->active_spin_lock) { 11138 verbose(env, "bpf_spin_unlock is missing\n"); 11139 return -EINVAL; 11140 } 11141 11142 if (state->curframe) { 11143 /* exit from nested function */ 11144 err = prepare_func_exit(env, &env->insn_idx); 11145 if (err) 11146 return err; 11147 do_print_state = true; 11148 continue; 11149 } 11150 11151 err = check_reference_leak(env); 11152 if (err) 11153 return err; 11154 11155 err = check_return_code(env); 11156 if (err) 11157 return err; 11158 process_bpf_exit: 11159 update_branch_counts(env, env->cur_state); 11160 err = pop_stack(env, &prev_insn_idx, 11161 &env->insn_idx, pop_log); 11162 if (err < 0) { 11163 if (err != -ENOENT) 11164 return err; 11165 break; 11166 } else { 11167 do_print_state = true; 11168 continue; 11169 } 11170 } else { 11171 err = check_cond_jmp_op(env, insn, &env->insn_idx); 11172 if (err) 11173 return err; 11174 } 11175 } else if (class == BPF_LD) { 11176 u8 mode = BPF_MODE(insn->code); 11177 11178 if (mode == BPF_ABS || mode == BPF_IND) { 11179 err = check_ld_abs(env, insn); 11180 if (err) 11181 return err; 11182 11183 } else if (mode == BPF_IMM) { 11184 err = check_ld_imm(env, insn); 11185 if (err) 11186 return err; 11187 11188 env->insn_idx++; 11189 sanitize_mark_insn_seen(env); 11190 } else { 11191 verbose(env, "invalid BPF_LD mode\n"); 11192 return -EINVAL; 11193 } 11194 } else { 11195 verbose(env, "unknown insn class %d\n", class); 11196 return -EINVAL; 11197 } 11198 11199 env->insn_idx++; 11200 } 11201 11202 return 0; 11203 } 11204 11205 static int find_btf_percpu_datasec(struct btf *btf) 11206 { 11207 const struct btf_type *t; 11208 const char *tname; 11209 int i, n; 11210 11211 /* 11212 * Both vmlinux and module each have their own ".data..percpu" 11213 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 11214 * types to look at only module's own BTF types. 11215 */ 11216 n = btf_nr_types(btf); 11217 if (btf_is_module(btf)) 11218 i = btf_nr_types(btf_vmlinux); 11219 else 11220 i = 1; 11221 11222 for(; i < n; i++) { 11223 t = btf_type_by_id(btf, i); 11224 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 11225 continue; 11226 11227 tname = btf_name_by_offset(btf, t->name_off); 11228 if (!strcmp(tname, ".data..percpu")) 11229 return i; 11230 } 11231 11232 return -ENOENT; 11233 } 11234 11235 /* replace pseudo btf_id with kernel symbol address */ 11236 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 11237 struct bpf_insn *insn, 11238 struct bpf_insn_aux_data *aux) 11239 { 11240 const struct btf_var_secinfo *vsi; 11241 const struct btf_type *datasec; 11242 struct btf_mod_pair *btf_mod; 11243 const struct btf_type *t; 11244 const char *sym_name; 11245 bool percpu = false; 11246 u32 type, id = insn->imm; 11247 struct btf *btf; 11248 s32 datasec_id; 11249 u64 addr; 11250 int i, btf_fd, err; 11251 11252 btf_fd = insn[1].imm; 11253 if (btf_fd) { 11254 btf = btf_get_by_fd(btf_fd); 11255 if (IS_ERR(btf)) { 11256 verbose(env, "invalid module BTF object FD specified.\n"); 11257 return -EINVAL; 11258 } 11259 } else { 11260 if (!btf_vmlinux) { 11261 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 11262 return -EINVAL; 11263 } 11264 btf = btf_vmlinux; 11265 btf_get(btf); 11266 } 11267 11268 t = btf_type_by_id(btf, id); 11269 if (!t) { 11270 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 11271 err = -ENOENT; 11272 goto err_put; 11273 } 11274 11275 if (!btf_type_is_var(t)) { 11276 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 11277 err = -EINVAL; 11278 goto err_put; 11279 } 11280 11281 sym_name = btf_name_by_offset(btf, t->name_off); 11282 addr = kallsyms_lookup_name(sym_name); 11283 if (!addr) { 11284 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 11285 sym_name); 11286 err = -ENOENT; 11287 goto err_put; 11288 } 11289 11290 datasec_id = find_btf_percpu_datasec(btf); 11291 if (datasec_id > 0) { 11292 datasec = btf_type_by_id(btf, datasec_id); 11293 for_each_vsi(i, datasec, vsi) { 11294 if (vsi->type == id) { 11295 percpu = true; 11296 break; 11297 } 11298 } 11299 } 11300 11301 insn[0].imm = (u32)addr; 11302 insn[1].imm = addr >> 32; 11303 11304 type = t->type; 11305 t = btf_type_skip_modifiers(btf, type, NULL); 11306 if (percpu) { 11307 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID; 11308 aux->btf_var.btf = btf; 11309 aux->btf_var.btf_id = type; 11310 } else if (!btf_type_is_struct(t)) { 11311 const struct btf_type *ret; 11312 const char *tname; 11313 u32 tsize; 11314 11315 /* resolve the type size of ksym. */ 11316 ret = btf_resolve_size(btf, t, &tsize); 11317 if (IS_ERR(ret)) { 11318 tname = btf_name_by_offset(btf, t->name_off); 11319 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 11320 tname, PTR_ERR(ret)); 11321 err = -EINVAL; 11322 goto err_put; 11323 } 11324 aux->btf_var.reg_type = PTR_TO_MEM; 11325 aux->btf_var.mem_size = tsize; 11326 } else { 11327 aux->btf_var.reg_type = PTR_TO_BTF_ID; 11328 aux->btf_var.btf = btf; 11329 aux->btf_var.btf_id = type; 11330 } 11331 11332 /* check whether we recorded this BTF (and maybe module) already */ 11333 for (i = 0; i < env->used_btf_cnt; i++) { 11334 if (env->used_btfs[i].btf == btf) { 11335 btf_put(btf); 11336 return 0; 11337 } 11338 } 11339 11340 if (env->used_btf_cnt >= MAX_USED_BTFS) { 11341 err = -E2BIG; 11342 goto err_put; 11343 } 11344 11345 btf_mod = &env->used_btfs[env->used_btf_cnt]; 11346 btf_mod->btf = btf; 11347 btf_mod->module = NULL; 11348 11349 /* if we reference variables from kernel module, bump its refcount */ 11350 if (btf_is_module(btf)) { 11351 btf_mod->module = btf_try_get_module(btf); 11352 if (!btf_mod->module) { 11353 err = -ENXIO; 11354 goto err_put; 11355 } 11356 } 11357 11358 env->used_btf_cnt++; 11359 11360 return 0; 11361 err_put: 11362 btf_put(btf); 11363 return err; 11364 } 11365 11366 static int check_map_prealloc(struct bpf_map *map) 11367 { 11368 return (map->map_type != BPF_MAP_TYPE_HASH && 11369 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 11370 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 11371 !(map->map_flags & BPF_F_NO_PREALLOC); 11372 } 11373 11374 static bool is_tracing_prog_type(enum bpf_prog_type type) 11375 { 11376 switch (type) { 11377 case BPF_PROG_TYPE_KPROBE: 11378 case BPF_PROG_TYPE_TRACEPOINT: 11379 case BPF_PROG_TYPE_PERF_EVENT: 11380 case BPF_PROG_TYPE_RAW_TRACEPOINT: 11381 return true; 11382 default: 11383 return false; 11384 } 11385 } 11386 11387 static bool is_preallocated_map(struct bpf_map *map) 11388 { 11389 if (!check_map_prealloc(map)) 11390 return false; 11391 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 11392 return false; 11393 return true; 11394 } 11395 11396 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 11397 struct bpf_map *map, 11398 struct bpf_prog *prog) 11399 11400 { 11401 enum bpf_prog_type prog_type = resolve_prog_type(prog); 11402 /* 11403 * Validate that trace type programs use preallocated hash maps. 11404 * 11405 * For programs attached to PERF events this is mandatory as the 11406 * perf NMI can hit any arbitrary code sequence. 11407 * 11408 * All other trace types using preallocated hash maps are unsafe as 11409 * well because tracepoint or kprobes can be inside locked regions 11410 * of the memory allocator or at a place where a recursion into the 11411 * memory allocator would see inconsistent state. 11412 * 11413 * On RT enabled kernels run-time allocation of all trace type 11414 * programs is strictly prohibited due to lock type constraints. On 11415 * !RT kernels it is allowed for backwards compatibility reasons for 11416 * now, but warnings are emitted so developers are made aware of 11417 * the unsafety and can fix their programs before this is enforced. 11418 */ 11419 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) { 11420 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) { 11421 verbose(env, "perf_event programs can only use preallocated hash map\n"); 11422 return -EINVAL; 11423 } 11424 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 11425 verbose(env, "trace type programs can only use preallocated hash map\n"); 11426 return -EINVAL; 11427 } 11428 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 11429 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 11430 } 11431 11432 if (map_value_has_spin_lock(map)) { 11433 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 11434 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 11435 return -EINVAL; 11436 } 11437 11438 if (is_tracing_prog_type(prog_type)) { 11439 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 11440 return -EINVAL; 11441 } 11442 11443 if (prog->aux->sleepable) { 11444 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 11445 return -EINVAL; 11446 } 11447 } 11448 11449 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 11450 !bpf_offload_prog_map_match(prog, map)) { 11451 verbose(env, "offload device mismatch between prog and map\n"); 11452 return -EINVAL; 11453 } 11454 11455 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 11456 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 11457 return -EINVAL; 11458 } 11459 11460 if (prog->aux->sleepable) 11461 switch (map->map_type) { 11462 case BPF_MAP_TYPE_HASH: 11463 case BPF_MAP_TYPE_LRU_HASH: 11464 case BPF_MAP_TYPE_ARRAY: 11465 case BPF_MAP_TYPE_PERCPU_HASH: 11466 case BPF_MAP_TYPE_PERCPU_ARRAY: 11467 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 11468 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 11469 case BPF_MAP_TYPE_HASH_OF_MAPS: 11470 if (!is_preallocated_map(map)) { 11471 verbose(env, 11472 "Sleepable programs can only use preallocated maps\n"); 11473 return -EINVAL; 11474 } 11475 break; 11476 case BPF_MAP_TYPE_RINGBUF: 11477 break; 11478 default: 11479 verbose(env, 11480 "Sleepable programs can only use array, hash, and ringbuf maps\n"); 11481 return -EINVAL; 11482 } 11483 11484 return 0; 11485 } 11486 11487 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 11488 { 11489 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 11490 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 11491 } 11492 11493 /* find and rewrite pseudo imm in ld_imm64 instructions: 11494 * 11495 * 1. if it accesses map FD, replace it with actual map pointer. 11496 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 11497 * 11498 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 11499 */ 11500 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 11501 { 11502 struct bpf_insn *insn = env->prog->insnsi; 11503 int insn_cnt = env->prog->len; 11504 int i, j, err; 11505 11506 err = bpf_prog_calc_tag(env->prog); 11507 if (err) 11508 return err; 11509 11510 for (i = 0; i < insn_cnt; i++, insn++) { 11511 if (BPF_CLASS(insn->code) == BPF_LDX && 11512 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 11513 verbose(env, "BPF_LDX uses reserved fields\n"); 11514 return -EINVAL; 11515 } 11516 11517 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 11518 struct bpf_insn_aux_data *aux; 11519 struct bpf_map *map; 11520 struct fd f; 11521 u64 addr; 11522 u32 fd; 11523 11524 if (i == insn_cnt - 1 || insn[1].code != 0 || 11525 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 11526 insn[1].off != 0) { 11527 verbose(env, "invalid bpf_ld_imm64 insn\n"); 11528 return -EINVAL; 11529 } 11530 11531 if (insn[0].src_reg == 0) 11532 /* valid generic load 64-bit imm */ 11533 goto next_insn; 11534 11535 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 11536 aux = &env->insn_aux_data[i]; 11537 err = check_pseudo_btf_id(env, insn, aux); 11538 if (err) 11539 return err; 11540 goto next_insn; 11541 } 11542 11543 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 11544 aux = &env->insn_aux_data[i]; 11545 aux->ptr_type = PTR_TO_FUNC; 11546 goto next_insn; 11547 } 11548 11549 /* In final convert_pseudo_ld_imm64() step, this is 11550 * converted into regular 64-bit imm load insn. 11551 */ 11552 switch (insn[0].src_reg) { 11553 case BPF_PSEUDO_MAP_VALUE: 11554 case BPF_PSEUDO_MAP_IDX_VALUE: 11555 break; 11556 case BPF_PSEUDO_MAP_FD: 11557 case BPF_PSEUDO_MAP_IDX: 11558 if (insn[1].imm == 0) 11559 break; 11560 fallthrough; 11561 default: 11562 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 11563 return -EINVAL; 11564 } 11565 11566 switch (insn[0].src_reg) { 11567 case BPF_PSEUDO_MAP_IDX_VALUE: 11568 case BPF_PSEUDO_MAP_IDX: 11569 if (bpfptr_is_null(env->fd_array)) { 11570 verbose(env, "fd_idx without fd_array is invalid\n"); 11571 return -EPROTO; 11572 } 11573 if (copy_from_bpfptr_offset(&fd, env->fd_array, 11574 insn[0].imm * sizeof(fd), 11575 sizeof(fd))) 11576 return -EFAULT; 11577 break; 11578 default: 11579 fd = insn[0].imm; 11580 break; 11581 } 11582 11583 f = fdget(fd); 11584 map = __bpf_map_get(f); 11585 if (IS_ERR(map)) { 11586 verbose(env, "fd %d is not pointing to valid bpf_map\n", 11587 insn[0].imm); 11588 return PTR_ERR(map); 11589 } 11590 11591 err = check_map_prog_compatibility(env, map, env->prog); 11592 if (err) { 11593 fdput(f); 11594 return err; 11595 } 11596 11597 aux = &env->insn_aux_data[i]; 11598 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 11599 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 11600 addr = (unsigned long)map; 11601 } else { 11602 u32 off = insn[1].imm; 11603 11604 if (off >= BPF_MAX_VAR_OFF) { 11605 verbose(env, "direct value offset of %u is not allowed\n", off); 11606 fdput(f); 11607 return -EINVAL; 11608 } 11609 11610 if (!map->ops->map_direct_value_addr) { 11611 verbose(env, "no direct value access support for this map type\n"); 11612 fdput(f); 11613 return -EINVAL; 11614 } 11615 11616 err = map->ops->map_direct_value_addr(map, &addr, off); 11617 if (err) { 11618 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 11619 map->value_size, off); 11620 fdput(f); 11621 return err; 11622 } 11623 11624 aux->map_off = off; 11625 addr += off; 11626 } 11627 11628 insn[0].imm = (u32)addr; 11629 insn[1].imm = addr >> 32; 11630 11631 /* check whether we recorded this map already */ 11632 for (j = 0; j < env->used_map_cnt; j++) { 11633 if (env->used_maps[j] == map) { 11634 aux->map_index = j; 11635 fdput(f); 11636 goto next_insn; 11637 } 11638 } 11639 11640 if (env->used_map_cnt >= MAX_USED_MAPS) { 11641 fdput(f); 11642 return -E2BIG; 11643 } 11644 11645 /* hold the map. If the program is rejected by verifier, 11646 * the map will be released by release_maps() or it 11647 * will be used by the valid program until it's unloaded 11648 * and all maps are released in free_used_maps() 11649 */ 11650 bpf_map_inc(map); 11651 11652 aux->map_index = env->used_map_cnt; 11653 env->used_maps[env->used_map_cnt++] = map; 11654 11655 if (bpf_map_is_cgroup_storage(map) && 11656 bpf_cgroup_storage_assign(env->prog->aux, map)) { 11657 verbose(env, "only one cgroup storage of each type is allowed\n"); 11658 fdput(f); 11659 return -EBUSY; 11660 } 11661 11662 fdput(f); 11663 next_insn: 11664 insn++; 11665 i++; 11666 continue; 11667 } 11668 11669 /* Basic sanity check before we invest more work here. */ 11670 if (!bpf_opcode_in_insntable(insn->code)) { 11671 verbose(env, "unknown opcode %02x\n", insn->code); 11672 return -EINVAL; 11673 } 11674 } 11675 11676 /* now all pseudo BPF_LD_IMM64 instructions load valid 11677 * 'struct bpf_map *' into a register instead of user map_fd. 11678 * These pointers will be used later by verifier to validate map access. 11679 */ 11680 return 0; 11681 } 11682 11683 /* drop refcnt of maps used by the rejected program */ 11684 static void release_maps(struct bpf_verifier_env *env) 11685 { 11686 __bpf_free_used_maps(env->prog->aux, env->used_maps, 11687 env->used_map_cnt); 11688 } 11689 11690 /* drop refcnt of maps used by the rejected program */ 11691 static void release_btfs(struct bpf_verifier_env *env) 11692 { 11693 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 11694 env->used_btf_cnt); 11695 } 11696 11697 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 11698 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 11699 { 11700 struct bpf_insn *insn = env->prog->insnsi; 11701 int insn_cnt = env->prog->len; 11702 int i; 11703 11704 for (i = 0; i < insn_cnt; i++, insn++) { 11705 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 11706 continue; 11707 if (insn->src_reg == BPF_PSEUDO_FUNC) 11708 continue; 11709 insn->src_reg = 0; 11710 } 11711 } 11712 11713 /* single env->prog->insni[off] instruction was replaced with the range 11714 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 11715 * [0, off) and [off, end) to new locations, so the patched range stays zero 11716 */ 11717 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 11718 struct bpf_insn_aux_data *new_data, 11719 struct bpf_prog *new_prog, u32 off, u32 cnt) 11720 { 11721 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 11722 struct bpf_insn *insn = new_prog->insnsi; 11723 u32 old_seen = old_data[off].seen; 11724 u32 prog_len; 11725 int i; 11726 11727 /* aux info at OFF always needs adjustment, no matter fast path 11728 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 11729 * original insn at old prog. 11730 */ 11731 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 11732 11733 if (cnt == 1) 11734 return; 11735 prog_len = new_prog->len; 11736 11737 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 11738 memcpy(new_data + off + cnt - 1, old_data + off, 11739 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 11740 for (i = off; i < off + cnt - 1; i++) { 11741 /* Expand insni[off]'s seen count to the patched range. */ 11742 new_data[i].seen = old_seen; 11743 new_data[i].zext_dst = insn_has_def32(env, insn + i); 11744 } 11745 env->insn_aux_data = new_data; 11746 vfree(old_data); 11747 } 11748 11749 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 11750 { 11751 int i; 11752 11753 if (len == 1) 11754 return; 11755 /* NOTE: fake 'exit' subprog should be updated as well. */ 11756 for (i = 0; i <= env->subprog_cnt; i++) { 11757 if (env->subprog_info[i].start <= off) 11758 continue; 11759 env->subprog_info[i].start += len - 1; 11760 } 11761 } 11762 11763 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 11764 { 11765 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 11766 int i, sz = prog->aux->size_poke_tab; 11767 struct bpf_jit_poke_descriptor *desc; 11768 11769 for (i = 0; i < sz; i++) { 11770 desc = &tab[i]; 11771 if (desc->insn_idx <= off) 11772 continue; 11773 desc->insn_idx += len - 1; 11774 } 11775 } 11776 11777 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 11778 const struct bpf_insn *patch, u32 len) 11779 { 11780 struct bpf_prog *new_prog; 11781 struct bpf_insn_aux_data *new_data = NULL; 11782 11783 if (len > 1) { 11784 new_data = vzalloc(array_size(env->prog->len + len - 1, 11785 sizeof(struct bpf_insn_aux_data))); 11786 if (!new_data) 11787 return NULL; 11788 } 11789 11790 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 11791 if (IS_ERR(new_prog)) { 11792 if (PTR_ERR(new_prog) == -ERANGE) 11793 verbose(env, 11794 "insn %d cannot be patched due to 16-bit range\n", 11795 env->insn_aux_data[off].orig_idx); 11796 vfree(new_data); 11797 return NULL; 11798 } 11799 adjust_insn_aux_data(env, new_data, new_prog, off, len); 11800 adjust_subprog_starts(env, off, len); 11801 adjust_poke_descs(new_prog, off, len); 11802 return new_prog; 11803 } 11804 11805 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 11806 u32 off, u32 cnt) 11807 { 11808 int i, j; 11809 11810 /* find first prog starting at or after off (first to remove) */ 11811 for (i = 0; i < env->subprog_cnt; i++) 11812 if (env->subprog_info[i].start >= off) 11813 break; 11814 /* find first prog starting at or after off + cnt (first to stay) */ 11815 for (j = i; j < env->subprog_cnt; j++) 11816 if (env->subprog_info[j].start >= off + cnt) 11817 break; 11818 /* if j doesn't start exactly at off + cnt, we are just removing 11819 * the front of previous prog 11820 */ 11821 if (env->subprog_info[j].start != off + cnt) 11822 j--; 11823 11824 if (j > i) { 11825 struct bpf_prog_aux *aux = env->prog->aux; 11826 int move; 11827 11828 /* move fake 'exit' subprog as well */ 11829 move = env->subprog_cnt + 1 - j; 11830 11831 memmove(env->subprog_info + i, 11832 env->subprog_info + j, 11833 sizeof(*env->subprog_info) * move); 11834 env->subprog_cnt -= j - i; 11835 11836 /* remove func_info */ 11837 if (aux->func_info) { 11838 move = aux->func_info_cnt - j; 11839 11840 memmove(aux->func_info + i, 11841 aux->func_info + j, 11842 sizeof(*aux->func_info) * move); 11843 aux->func_info_cnt -= j - i; 11844 /* func_info->insn_off is set after all code rewrites, 11845 * in adjust_btf_func() - no need to adjust 11846 */ 11847 } 11848 } else { 11849 /* convert i from "first prog to remove" to "first to adjust" */ 11850 if (env->subprog_info[i].start == off) 11851 i++; 11852 } 11853 11854 /* update fake 'exit' subprog as well */ 11855 for (; i <= env->subprog_cnt; i++) 11856 env->subprog_info[i].start -= cnt; 11857 11858 return 0; 11859 } 11860 11861 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 11862 u32 cnt) 11863 { 11864 struct bpf_prog *prog = env->prog; 11865 u32 i, l_off, l_cnt, nr_linfo; 11866 struct bpf_line_info *linfo; 11867 11868 nr_linfo = prog->aux->nr_linfo; 11869 if (!nr_linfo) 11870 return 0; 11871 11872 linfo = prog->aux->linfo; 11873 11874 /* find first line info to remove, count lines to be removed */ 11875 for (i = 0; i < nr_linfo; i++) 11876 if (linfo[i].insn_off >= off) 11877 break; 11878 11879 l_off = i; 11880 l_cnt = 0; 11881 for (; i < nr_linfo; i++) 11882 if (linfo[i].insn_off < off + cnt) 11883 l_cnt++; 11884 else 11885 break; 11886 11887 /* First live insn doesn't match first live linfo, it needs to "inherit" 11888 * last removed linfo. prog is already modified, so prog->len == off 11889 * means no live instructions after (tail of the program was removed). 11890 */ 11891 if (prog->len != off && l_cnt && 11892 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 11893 l_cnt--; 11894 linfo[--i].insn_off = off + cnt; 11895 } 11896 11897 /* remove the line info which refer to the removed instructions */ 11898 if (l_cnt) { 11899 memmove(linfo + l_off, linfo + i, 11900 sizeof(*linfo) * (nr_linfo - i)); 11901 11902 prog->aux->nr_linfo -= l_cnt; 11903 nr_linfo = prog->aux->nr_linfo; 11904 } 11905 11906 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 11907 for (i = l_off; i < nr_linfo; i++) 11908 linfo[i].insn_off -= cnt; 11909 11910 /* fix up all subprogs (incl. 'exit') which start >= off */ 11911 for (i = 0; i <= env->subprog_cnt; i++) 11912 if (env->subprog_info[i].linfo_idx > l_off) { 11913 /* program may have started in the removed region but 11914 * may not be fully removed 11915 */ 11916 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 11917 env->subprog_info[i].linfo_idx -= l_cnt; 11918 else 11919 env->subprog_info[i].linfo_idx = l_off; 11920 } 11921 11922 return 0; 11923 } 11924 11925 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 11926 { 11927 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 11928 unsigned int orig_prog_len = env->prog->len; 11929 int err; 11930 11931 if (bpf_prog_is_dev_bound(env->prog->aux)) 11932 bpf_prog_offload_remove_insns(env, off, cnt); 11933 11934 err = bpf_remove_insns(env->prog, off, cnt); 11935 if (err) 11936 return err; 11937 11938 err = adjust_subprog_starts_after_remove(env, off, cnt); 11939 if (err) 11940 return err; 11941 11942 err = bpf_adj_linfo_after_remove(env, off, cnt); 11943 if (err) 11944 return err; 11945 11946 memmove(aux_data + off, aux_data + off + cnt, 11947 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 11948 11949 return 0; 11950 } 11951 11952 /* The verifier does more data flow analysis than llvm and will not 11953 * explore branches that are dead at run time. Malicious programs can 11954 * have dead code too. Therefore replace all dead at-run-time code 11955 * with 'ja -1'. 11956 * 11957 * Just nops are not optimal, e.g. if they would sit at the end of the 11958 * program and through another bug we would manage to jump there, then 11959 * we'd execute beyond program memory otherwise. Returning exception 11960 * code also wouldn't work since we can have subprogs where the dead 11961 * code could be located. 11962 */ 11963 static void sanitize_dead_code(struct bpf_verifier_env *env) 11964 { 11965 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 11966 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 11967 struct bpf_insn *insn = env->prog->insnsi; 11968 const int insn_cnt = env->prog->len; 11969 int i; 11970 11971 for (i = 0; i < insn_cnt; i++) { 11972 if (aux_data[i].seen) 11973 continue; 11974 memcpy(insn + i, &trap, sizeof(trap)); 11975 } 11976 } 11977 11978 static bool insn_is_cond_jump(u8 code) 11979 { 11980 u8 op; 11981 11982 if (BPF_CLASS(code) == BPF_JMP32) 11983 return true; 11984 11985 if (BPF_CLASS(code) != BPF_JMP) 11986 return false; 11987 11988 op = BPF_OP(code); 11989 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 11990 } 11991 11992 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 11993 { 11994 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 11995 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 11996 struct bpf_insn *insn = env->prog->insnsi; 11997 const int insn_cnt = env->prog->len; 11998 int i; 11999 12000 for (i = 0; i < insn_cnt; i++, insn++) { 12001 if (!insn_is_cond_jump(insn->code)) 12002 continue; 12003 12004 if (!aux_data[i + 1].seen) 12005 ja.off = insn->off; 12006 else if (!aux_data[i + 1 + insn->off].seen) 12007 ja.off = 0; 12008 else 12009 continue; 12010 12011 if (bpf_prog_is_dev_bound(env->prog->aux)) 12012 bpf_prog_offload_replace_insn(env, i, &ja); 12013 12014 memcpy(insn, &ja, sizeof(ja)); 12015 } 12016 } 12017 12018 static int opt_remove_dead_code(struct bpf_verifier_env *env) 12019 { 12020 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12021 int insn_cnt = env->prog->len; 12022 int i, err; 12023 12024 for (i = 0; i < insn_cnt; i++) { 12025 int j; 12026 12027 j = 0; 12028 while (i + j < insn_cnt && !aux_data[i + j].seen) 12029 j++; 12030 if (!j) 12031 continue; 12032 12033 err = verifier_remove_insns(env, i, j); 12034 if (err) 12035 return err; 12036 insn_cnt = env->prog->len; 12037 } 12038 12039 return 0; 12040 } 12041 12042 static int opt_remove_nops(struct bpf_verifier_env *env) 12043 { 12044 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 12045 struct bpf_insn *insn = env->prog->insnsi; 12046 int insn_cnt = env->prog->len; 12047 int i, err; 12048 12049 for (i = 0; i < insn_cnt; i++) { 12050 if (memcmp(&insn[i], &ja, sizeof(ja))) 12051 continue; 12052 12053 err = verifier_remove_insns(env, i, 1); 12054 if (err) 12055 return err; 12056 insn_cnt--; 12057 i--; 12058 } 12059 12060 return 0; 12061 } 12062 12063 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 12064 const union bpf_attr *attr) 12065 { 12066 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 12067 struct bpf_insn_aux_data *aux = env->insn_aux_data; 12068 int i, patch_len, delta = 0, len = env->prog->len; 12069 struct bpf_insn *insns = env->prog->insnsi; 12070 struct bpf_prog *new_prog; 12071 bool rnd_hi32; 12072 12073 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 12074 zext_patch[1] = BPF_ZEXT_REG(0); 12075 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 12076 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 12077 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 12078 for (i = 0; i < len; i++) { 12079 int adj_idx = i + delta; 12080 struct bpf_insn insn; 12081 int load_reg; 12082 12083 insn = insns[adj_idx]; 12084 load_reg = insn_def_regno(&insn); 12085 if (!aux[adj_idx].zext_dst) { 12086 u8 code, class; 12087 u32 imm_rnd; 12088 12089 if (!rnd_hi32) 12090 continue; 12091 12092 code = insn.code; 12093 class = BPF_CLASS(code); 12094 if (load_reg == -1) 12095 continue; 12096 12097 /* NOTE: arg "reg" (the fourth one) is only used for 12098 * BPF_STX + SRC_OP, so it is safe to pass NULL 12099 * here. 12100 */ 12101 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 12102 if (class == BPF_LD && 12103 BPF_MODE(code) == BPF_IMM) 12104 i++; 12105 continue; 12106 } 12107 12108 /* ctx load could be transformed into wider load. */ 12109 if (class == BPF_LDX && 12110 aux[adj_idx].ptr_type == PTR_TO_CTX) 12111 continue; 12112 12113 imm_rnd = get_random_int(); 12114 rnd_hi32_patch[0] = insn; 12115 rnd_hi32_patch[1].imm = imm_rnd; 12116 rnd_hi32_patch[3].dst_reg = load_reg; 12117 patch = rnd_hi32_patch; 12118 patch_len = 4; 12119 goto apply_patch_buffer; 12120 } 12121 12122 /* Add in an zero-extend instruction if a) the JIT has requested 12123 * it or b) it's a CMPXCHG. 12124 * 12125 * The latter is because: BPF_CMPXCHG always loads a value into 12126 * R0, therefore always zero-extends. However some archs' 12127 * equivalent instruction only does this load when the 12128 * comparison is successful. This detail of CMPXCHG is 12129 * orthogonal to the general zero-extension behaviour of the 12130 * CPU, so it's treated independently of bpf_jit_needs_zext. 12131 */ 12132 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 12133 continue; 12134 12135 if (WARN_ON(load_reg == -1)) { 12136 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 12137 return -EFAULT; 12138 } 12139 12140 zext_patch[0] = insn; 12141 zext_patch[1].dst_reg = load_reg; 12142 zext_patch[1].src_reg = load_reg; 12143 patch = zext_patch; 12144 patch_len = 2; 12145 apply_patch_buffer: 12146 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 12147 if (!new_prog) 12148 return -ENOMEM; 12149 env->prog = new_prog; 12150 insns = new_prog->insnsi; 12151 aux = env->insn_aux_data; 12152 delta += patch_len - 1; 12153 } 12154 12155 return 0; 12156 } 12157 12158 /* convert load instructions that access fields of a context type into a 12159 * sequence of instructions that access fields of the underlying structure: 12160 * struct __sk_buff -> struct sk_buff 12161 * struct bpf_sock_ops -> struct sock 12162 */ 12163 static int convert_ctx_accesses(struct bpf_verifier_env *env) 12164 { 12165 const struct bpf_verifier_ops *ops = env->ops; 12166 int i, cnt, size, ctx_field_size, delta = 0; 12167 const int insn_cnt = env->prog->len; 12168 struct bpf_insn insn_buf[16], *insn; 12169 u32 target_size, size_default, off; 12170 struct bpf_prog *new_prog; 12171 enum bpf_access_type type; 12172 bool is_narrower_load; 12173 12174 if (ops->gen_prologue || env->seen_direct_write) { 12175 if (!ops->gen_prologue) { 12176 verbose(env, "bpf verifier is misconfigured\n"); 12177 return -EINVAL; 12178 } 12179 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 12180 env->prog); 12181 if (cnt >= ARRAY_SIZE(insn_buf)) { 12182 verbose(env, "bpf verifier is misconfigured\n"); 12183 return -EINVAL; 12184 } else if (cnt) { 12185 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 12186 if (!new_prog) 12187 return -ENOMEM; 12188 12189 env->prog = new_prog; 12190 delta += cnt - 1; 12191 } 12192 } 12193 12194 if (bpf_prog_is_dev_bound(env->prog->aux)) 12195 return 0; 12196 12197 insn = env->prog->insnsi + delta; 12198 12199 for (i = 0; i < insn_cnt; i++, insn++) { 12200 bpf_convert_ctx_access_t convert_ctx_access; 12201 12202 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 12203 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 12204 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 12205 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 12206 type = BPF_READ; 12207 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 12208 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 12209 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 12210 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 12211 type = BPF_WRITE; 12212 else 12213 continue; 12214 12215 if (type == BPF_WRITE && 12216 env->insn_aux_data[i + delta].sanitize_stack_off) { 12217 struct bpf_insn patch[] = { 12218 /* Sanitize suspicious stack slot with zero. 12219 * There are no memory dependencies for this store, 12220 * since it's only using frame pointer and immediate 12221 * constant of zero 12222 */ 12223 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 12224 env->insn_aux_data[i + delta].sanitize_stack_off, 12225 0), 12226 /* the original STX instruction will immediately 12227 * overwrite the same stack slot with appropriate value 12228 */ 12229 *insn, 12230 }; 12231 12232 cnt = ARRAY_SIZE(patch); 12233 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 12234 if (!new_prog) 12235 return -ENOMEM; 12236 12237 delta += cnt - 1; 12238 env->prog = new_prog; 12239 insn = new_prog->insnsi + i + delta; 12240 continue; 12241 } 12242 12243 switch (env->insn_aux_data[i + delta].ptr_type) { 12244 case PTR_TO_CTX: 12245 if (!ops->convert_ctx_access) 12246 continue; 12247 convert_ctx_access = ops->convert_ctx_access; 12248 break; 12249 case PTR_TO_SOCKET: 12250 case PTR_TO_SOCK_COMMON: 12251 convert_ctx_access = bpf_sock_convert_ctx_access; 12252 break; 12253 case PTR_TO_TCP_SOCK: 12254 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 12255 break; 12256 case PTR_TO_XDP_SOCK: 12257 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 12258 break; 12259 case PTR_TO_BTF_ID: 12260 if (type == BPF_READ) { 12261 insn->code = BPF_LDX | BPF_PROBE_MEM | 12262 BPF_SIZE((insn)->code); 12263 env->prog->aux->num_exentries++; 12264 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { 12265 verbose(env, "Writes through BTF pointers are not allowed\n"); 12266 return -EINVAL; 12267 } 12268 continue; 12269 default: 12270 continue; 12271 } 12272 12273 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 12274 size = BPF_LDST_BYTES(insn); 12275 12276 /* If the read access is a narrower load of the field, 12277 * convert to a 4/8-byte load, to minimum program type specific 12278 * convert_ctx_access changes. If conversion is successful, 12279 * we will apply proper mask to the result. 12280 */ 12281 is_narrower_load = size < ctx_field_size; 12282 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 12283 off = insn->off; 12284 if (is_narrower_load) { 12285 u8 size_code; 12286 12287 if (type == BPF_WRITE) { 12288 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 12289 return -EINVAL; 12290 } 12291 12292 size_code = BPF_H; 12293 if (ctx_field_size == 4) 12294 size_code = BPF_W; 12295 else if (ctx_field_size == 8) 12296 size_code = BPF_DW; 12297 12298 insn->off = off & ~(size_default - 1); 12299 insn->code = BPF_LDX | BPF_MEM | size_code; 12300 } 12301 12302 target_size = 0; 12303 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 12304 &target_size); 12305 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 12306 (ctx_field_size && !target_size)) { 12307 verbose(env, "bpf verifier is misconfigured\n"); 12308 return -EINVAL; 12309 } 12310 12311 if (is_narrower_load && size < target_size) { 12312 u8 shift = bpf_ctx_narrow_access_offset( 12313 off, size, size_default) * 8; 12314 if (ctx_field_size <= 4) { 12315 if (shift) 12316 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 12317 insn->dst_reg, 12318 shift); 12319 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 12320 (1 << size * 8) - 1); 12321 } else { 12322 if (shift) 12323 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 12324 insn->dst_reg, 12325 shift); 12326 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 12327 (1ULL << size * 8) - 1); 12328 } 12329 } 12330 12331 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12332 if (!new_prog) 12333 return -ENOMEM; 12334 12335 delta += cnt - 1; 12336 12337 /* keep walking new program and skip insns we just inserted */ 12338 env->prog = new_prog; 12339 insn = new_prog->insnsi + i + delta; 12340 } 12341 12342 return 0; 12343 } 12344 12345 static int jit_subprogs(struct bpf_verifier_env *env) 12346 { 12347 struct bpf_prog *prog = env->prog, **func, *tmp; 12348 int i, j, subprog_start, subprog_end = 0, len, subprog; 12349 struct bpf_map *map_ptr; 12350 struct bpf_insn *insn; 12351 void *old_bpf_func; 12352 int err, num_exentries; 12353 12354 if (env->subprog_cnt <= 1) 12355 return 0; 12356 12357 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12358 if (bpf_pseudo_func(insn)) { 12359 env->insn_aux_data[i].call_imm = insn->imm; 12360 /* subprog is encoded in insn[1].imm */ 12361 continue; 12362 } 12363 12364 if (!bpf_pseudo_call(insn)) 12365 continue; 12366 /* Upon error here we cannot fall back to interpreter but 12367 * need a hard reject of the program. Thus -EFAULT is 12368 * propagated in any case. 12369 */ 12370 subprog = find_subprog(env, i + insn->imm + 1); 12371 if (subprog < 0) { 12372 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 12373 i + insn->imm + 1); 12374 return -EFAULT; 12375 } 12376 /* temporarily remember subprog id inside insn instead of 12377 * aux_data, since next loop will split up all insns into funcs 12378 */ 12379 insn->off = subprog; 12380 /* remember original imm in case JIT fails and fallback 12381 * to interpreter will be needed 12382 */ 12383 env->insn_aux_data[i].call_imm = insn->imm; 12384 /* point imm to __bpf_call_base+1 from JITs point of view */ 12385 insn->imm = 1; 12386 } 12387 12388 err = bpf_prog_alloc_jited_linfo(prog); 12389 if (err) 12390 goto out_undo_insn; 12391 12392 err = -ENOMEM; 12393 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 12394 if (!func) 12395 goto out_undo_insn; 12396 12397 for (i = 0; i < env->subprog_cnt; i++) { 12398 subprog_start = subprog_end; 12399 subprog_end = env->subprog_info[i + 1].start; 12400 12401 len = subprog_end - subprog_start; 12402 /* BPF_PROG_RUN doesn't call subprogs directly, 12403 * hence main prog stats include the runtime of subprogs. 12404 * subprogs don't have IDs and not reachable via prog_get_next_id 12405 * func[i]->stats will never be accessed and stays NULL 12406 */ 12407 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 12408 if (!func[i]) 12409 goto out_free; 12410 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 12411 len * sizeof(struct bpf_insn)); 12412 func[i]->type = prog->type; 12413 func[i]->len = len; 12414 if (bpf_prog_calc_tag(func[i])) 12415 goto out_free; 12416 func[i]->is_func = 1; 12417 func[i]->aux->func_idx = i; 12418 /* Below members will be freed only at prog->aux */ 12419 func[i]->aux->btf = prog->aux->btf; 12420 func[i]->aux->func_info = prog->aux->func_info; 12421 func[i]->aux->poke_tab = prog->aux->poke_tab; 12422 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 12423 12424 for (j = 0; j < prog->aux->size_poke_tab; j++) { 12425 struct bpf_jit_poke_descriptor *poke; 12426 12427 poke = &prog->aux->poke_tab[j]; 12428 if (poke->insn_idx < subprog_end && 12429 poke->insn_idx >= subprog_start) 12430 poke->aux = func[i]->aux; 12431 } 12432 12433 /* Use bpf_prog_F_tag to indicate functions in stack traces. 12434 * Long term would need debug info to populate names 12435 */ 12436 func[i]->aux->name[0] = 'F'; 12437 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 12438 func[i]->jit_requested = 1; 12439 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 12440 func[i]->aux->linfo = prog->aux->linfo; 12441 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 12442 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 12443 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 12444 num_exentries = 0; 12445 insn = func[i]->insnsi; 12446 for (j = 0; j < func[i]->len; j++, insn++) { 12447 if (BPF_CLASS(insn->code) == BPF_LDX && 12448 BPF_MODE(insn->code) == BPF_PROBE_MEM) 12449 num_exentries++; 12450 } 12451 func[i]->aux->num_exentries = num_exentries; 12452 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 12453 func[i] = bpf_int_jit_compile(func[i]); 12454 if (!func[i]->jited) { 12455 err = -ENOTSUPP; 12456 goto out_free; 12457 } 12458 cond_resched(); 12459 } 12460 12461 /* at this point all bpf functions were successfully JITed 12462 * now populate all bpf_calls with correct addresses and 12463 * run last pass of JIT 12464 */ 12465 for (i = 0; i < env->subprog_cnt; i++) { 12466 insn = func[i]->insnsi; 12467 for (j = 0; j < func[i]->len; j++, insn++) { 12468 if (bpf_pseudo_func(insn)) { 12469 subprog = insn[1].imm; 12470 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 12471 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 12472 continue; 12473 } 12474 if (!bpf_pseudo_call(insn)) 12475 continue; 12476 subprog = insn->off; 12477 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 12478 __bpf_call_base; 12479 } 12480 12481 /* we use the aux data to keep a list of the start addresses 12482 * of the JITed images for each function in the program 12483 * 12484 * for some architectures, such as powerpc64, the imm field 12485 * might not be large enough to hold the offset of the start 12486 * address of the callee's JITed image from __bpf_call_base 12487 * 12488 * in such cases, we can lookup the start address of a callee 12489 * by using its subprog id, available from the off field of 12490 * the call instruction, as an index for this list 12491 */ 12492 func[i]->aux->func = func; 12493 func[i]->aux->func_cnt = env->subprog_cnt; 12494 } 12495 for (i = 0; i < env->subprog_cnt; i++) { 12496 old_bpf_func = func[i]->bpf_func; 12497 tmp = bpf_int_jit_compile(func[i]); 12498 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 12499 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 12500 err = -ENOTSUPP; 12501 goto out_free; 12502 } 12503 cond_resched(); 12504 } 12505 12506 /* finally lock prog and jit images for all functions and 12507 * populate kallsysm 12508 */ 12509 for (i = 0; i < env->subprog_cnt; i++) { 12510 bpf_prog_lock_ro(func[i]); 12511 bpf_prog_kallsyms_add(func[i]); 12512 } 12513 12514 /* Last step: make now unused interpreter insns from main 12515 * prog consistent for later dump requests, so they can 12516 * later look the same as if they were interpreted only. 12517 */ 12518 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12519 if (bpf_pseudo_func(insn)) { 12520 insn[0].imm = env->insn_aux_data[i].call_imm; 12521 insn[1].imm = find_subprog(env, i + insn[0].imm + 1); 12522 continue; 12523 } 12524 if (!bpf_pseudo_call(insn)) 12525 continue; 12526 insn->off = env->insn_aux_data[i].call_imm; 12527 subprog = find_subprog(env, i + insn->off + 1); 12528 insn->imm = subprog; 12529 } 12530 12531 prog->jited = 1; 12532 prog->bpf_func = func[0]->bpf_func; 12533 prog->aux->func = func; 12534 prog->aux->func_cnt = env->subprog_cnt; 12535 bpf_prog_jit_attempt_done(prog); 12536 return 0; 12537 out_free: 12538 /* We failed JIT'ing, so at this point we need to unregister poke 12539 * descriptors from subprogs, so that kernel is not attempting to 12540 * patch it anymore as we're freeing the subprog JIT memory. 12541 */ 12542 for (i = 0; i < prog->aux->size_poke_tab; i++) { 12543 map_ptr = prog->aux->poke_tab[i].tail_call.map; 12544 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 12545 } 12546 /* At this point we're guaranteed that poke descriptors are not 12547 * live anymore. We can just unlink its descriptor table as it's 12548 * released with the main prog. 12549 */ 12550 for (i = 0; i < env->subprog_cnt; i++) { 12551 if (!func[i]) 12552 continue; 12553 func[i]->aux->poke_tab = NULL; 12554 bpf_jit_free(func[i]); 12555 } 12556 kfree(func); 12557 out_undo_insn: 12558 /* cleanup main prog to be interpreted */ 12559 prog->jit_requested = 0; 12560 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12561 if (!bpf_pseudo_call(insn)) 12562 continue; 12563 insn->off = 0; 12564 insn->imm = env->insn_aux_data[i].call_imm; 12565 } 12566 bpf_prog_jit_attempt_done(prog); 12567 return err; 12568 } 12569 12570 static int fixup_call_args(struct bpf_verifier_env *env) 12571 { 12572 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 12573 struct bpf_prog *prog = env->prog; 12574 struct bpf_insn *insn = prog->insnsi; 12575 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 12576 int i, depth; 12577 #endif 12578 int err = 0; 12579 12580 if (env->prog->jit_requested && 12581 !bpf_prog_is_dev_bound(env->prog->aux)) { 12582 err = jit_subprogs(env); 12583 if (err == 0) 12584 return 0; 12585 if (err == -EFAULT) 12586 return err; 12587 } 12588 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 12589 if (has_kfunc_call) { 12590 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 12591 return -EINVAL; 12592 } 12593 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 12594 /* When JIT fails the progs with bpf2bpf calls and tail_calls 12595 * have to be rejected, since interpreter doesn't support them yet. 12596 */ 12597 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 12598 return -EINVAL; 12599 } 12600 for (i = 0; i < prog->len; i++, insn++) { 12601 if (bpf_pseudo_func(insn)) { 12602 /* When JIT fails the progs with callback calls 12603 * have to be rejected, since interpreter doesn't support them yet. 12604 */ 12605 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 12606 return -EINVAL; 12607 } 12608 12609 if (!bpf_pseudo_call(insn)) 12610 continue; 12611 depth = get_callee_stack_depth(env, insn, i); 12612 if (depth < 0) 12613 return depth; 12614 bpf_patch_call_args(insn, depth); 12615 } 12616 err = 0; 12617 #endif 12618 return err; 12619 } 12620 12621 static int fixup_kfunc_call(struct bpf_verifier_env *env, 12622 struct bpf_insn *insn) 12623 { 12624 const struct bpf_kfunc_desc *desc; 12625 12626 /* insn->imm has the btf func_id. Replace it with 12627 * an address (relative to __bpf_base_call). 12628 */ 12629 desc = find_kfunc_desc(env->prog, insn->imm); 12630 if (!desc) { 12631 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 12632 insn->imm); 12633 return -EFAULT; 12634 } 12635 12636 insn->imm = desc->imm; 12637 12638 return 0; 12639 } 12640 12641 /* Do various post-verification rewrites in a single program pass. 12642 * These rewrites simplify JIT and interpreter implementations. 12643 */ 12644 static int do_misc_fixups(struct bpf_verifier_env *env) 12645 { 12646 struct bpf_prog *prog = env->prog; 12647 bool expect_blinding = bpf_jit_blinding_enabled(prog); 12648 enum bpf_prog_type prog_type = resolve_prog_type(prog); 12649 struct bpf_insn *insn = prog->insnsi; 12650 const struct bpf_func_proto *fn; 12651 const int insn_cnt = prog->len; 12652 const struct bpf_map_ops *ops; 12653 struct bpf_insn_aux_data *aux; 12654 struct bpf_insn insn_buf[16]; 12655 struct bpf_prog *new_prog; 12656 struct bpf_map *map_ptr; 12657 int i, ret, cnt, delta = 0; 12658 12659 for (i = 0; i < insn_cnt; i++, insn++) { 12660 /* Make divide-by-zero exceptions impossible. */ 12661 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 12662 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 12663 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 12664 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 12665 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 12666 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 12667 struct bpf_insn *patchlet; 12668 struct bpf_insn chk_and_div[] = { 12669 /* [R,W]x div 0 -> 0 */ 12670 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 12671 BPF_JNE | BPF_K, insn->src_reg, 12672 0, 2, 0), 12673 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 12674 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 12675 *insn, 12676 }; 12677 struct bpf_insn chk_and_mod[] = { 12678 /* [R,W]x mod 0 -> [R,W]x */ 12679 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 12680 BPF_JEQ | BPF_K, insn->src_reg, 12681 0, 1 + (is64 ? 0 : 1), 0), 12682 *insn, 12683 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 12684 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 12685 }; 12686 12687 patchlet = isdiv ? chk_and_div : chk_and_mod; 12688 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 12689 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 12690 12691 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 12692 if (!new_prog) 12693 return -ENOMEM; 12694 12695 delta += cnt - 1; 12696 env->prog = prog = new_prog; 12697 insn = new_prog->insnsi + i + delta; 12698 continue; 12699 } 12700 12701 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 12702 if (BPF_CLASS(insn->code) == BPF_LD && 12703 (BPF_MODE(insn->code) == BPF_ABS || 12704 BPF_MODE(insn->code) == BPF_IND)) { 12705 cnt = env->ops->gen_ld_abs(insn, insn_buf); 12706 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 12707 verbose(env, "bpf verifier is misconfigured\n"); 12708 return -EINVAL; 12709 } 12710 12711 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12712 if (!new_prog) 12713 return -ENOMEM; 12714 12715 delta += cnt - 1; 12716 env->prog = prog = new_prog; 12717 insn = new_prog->insnsi + i + delta; 12718 continue; 12719 } 12720 12721 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 12722 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 12723 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 12724 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 12725 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 12726 struct bpf_insn *patch = &insn_buf[0]; 12727 bool issrc, isneg, isimm; 12728 u32 off_reg; 12729 12730 aux = &env->insn_aux_data[i + delta]; 12731 if (!aux->alu_state || 12732 aux->alu_state == BPF_ALU_NON_POINTER) 12733 continue; 12734 12735 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 12736 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 12737 BPF_ALU_SANITIZE_SRC; 12738 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 12739 12740 off_reg = issrc ? insn->src_reg : insn->dst_reg; 12741 if (isimm) { 12742 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 12743 } else { 12744 if (isneg) 12745 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 12746 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 12747 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 12748 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 12749 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 12750 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 12751 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 12752 } 12753 if (!issrc) 12754 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 12755 insn->src_reg = BPF_REG_AX; 12756 if (isneg) 12757 insn->code = insn->code == code_add ? 12758 code_sub : code_add; 12759 *patch++ = *insn; 12760 if (issrc && isneg && !isimm) 12761 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 12762 cnt = patch - insn_buf; 12763 12764 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12765 if (!new_prog) 12766 return -ENOMEM; 12767 12768 delta += cnt - 1; 12769 env->prog = prog = new_prog; 12770 insn = new_prog->insnsi + i + delta; 12771 continue; 12772 } 12773 12774 if (insn->code != (BPF_JMP | BPF_CALL)) 12775 continue; 12776 if (insn->src_reg == BPF_PSEUDO_CALL) 12777 continue; 12778 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 12779 ret = fixup_kfunc_call(env, insn); 12780 if (ret) 12781 return ret; 12782 continue; 12783 } 12784 12785 if (insn->imm == BPF_FUNC_get_route_realm) 12786 prog->dst_needed = 1; 12787 if (insn->imm == BPF_FUNC_get_prandom_u32) 12788 bpf_user_rnd_init_once(); 12789 if (insn->imm == BPF_FUNC_override_return) 12790 prog->kprobe_override = 1; 12791 if (insn->imm == BPF_FUNC_tail_call) { 12792 /* If we tail call into other programs, we 12793 * cannot make any assumptions since they can 12794 * be replaced dynamically during runtime in 12795 * the program array. 12796 */ 12797 prog->cb_access = 1; 12798 if (!allow_tail_call_in_subprogs(env)) 12799 prog->aux->stack_depth = MAX_BPF_STACK; 12800 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 12801 12802 /* mark bpf_tail_call as different opcode to avoid 12803 * conditional branch in the interpreter for every normal 12804 * call and to prevent accidental JITing by JIT compiler 12805 * that doesn't support bpf_tail_call yet 12806 */ 12807 insn->imm = 0; 12808 insn->code = BPF_JMP | BPF_TAIL_CALL; 12809 12810 aux = &env->insn_aux_data[i + delta]; 12811 if (env->bpf_capable && !expect_blinding && 12812 prog->jit_requested && 12813 !bpf_map_key_poisoned(aux) && 12814 !bpf_map_ptr_poisoned(aux) && 12815 !bpf_map_ptr_unpriv(aux)) { 12816 struct bpf_jit_poke_descriptor desc = { 12817 .reason = BPF_POKE_REASON_TAIL_CALL, 12818 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 12819 .tail_call.key = bpf_map_key_immediate(aux), 12820 .insn_idx = i + delta, 12821 }; 12822 12823 ret = bpf_jit_add_poke_descriptor(prog, &desc); 12824 if (ret < 0) { 12825 verbose(env, "adding tail call poke descriptor failed\n"); 12826 return ret; 12827 } 12828 12829 insn->imm = ret + 1; 12830 continue; 12831 } 12832 12833 if (!bpf_map_ptr_unpriv(aux)) 12834 continue; 12835 12836 /* instead of changing every JIT dealing with tail_call 12837 * emit two extra insns: 12838 * if (index >= max_entries) goto out; 12839 * index &= array->index_mask; 12840 * to avoid out-of-bounds cpu speculation 12841 */ 12842 if (bpf_map_ptr_poisoned(aux)) { 12843 verbose(env, "tail_call abusing map_ptr\n"); 12844 return -EINVAL; 12845 } 12846 12847 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 12848 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 12849 map_ptr->max_entries, 2); 12850 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 12851 container_of(map_ptr, 12852 struct bpf_array, 12853 map)->index_mask); 12854 insn_buf[2] = *insn; 12855 cnt = 3; 12856 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12857 if (!new_prog) 12858 return -ENOMEM; 12859 12860 delta += cnt - 1; 12861 env->prog = prog = new_prog; 12862 insn = new_prog->insnsi + i + delta; 12863 continue; 12864 } 12865 12866 if (insn->imm == BPF_FUNC_timer_set_callback) { 12867 /* The verifier will process callback_fn as many times as necessary 12868 * with different maps and the register states prepared by 12869 * set_timer_callback_state will be accurate. 12870 * 12871 * The following use case is valid: 12872 * map1 is shared by prog1, prog2, prog3. 12873 * prog1 calls bpf_timer_init for some map1 elements 12874 * prog2 calls bpf_timer_set_callback for some map1 elements. 12875 * Those that were not bpf_timer_init-ed will return -EINVAL. 12876 * prog3 calls bpf_timer_start for some map1 elements. 12877 * Those that were not both bpf_timer_init-ed and 12878 * bpf_timer_set_callback-ed will return -EINVAL. 12879 */ 12880 struct bpf_insn ld_addrs[2] = { 12881 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 12882 }; 12883 12884 insn_buf[0] = ld_addrs[0]; 12885 insn_buf[1] = ld_addrs[1]; 12886 insn_buf[2] = *insn; 12887 cnt = 3; 12888 12889 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12890 if (!new_prog) 12891 return -ENOMEM; 12892 12893 delta += cnt - 1; 12894 env->prog = prog = new_prog; 12895 insn = new_prog->insnsi + i + delta; 12896 goto patch_call_imm; 12897 } 12898 12899 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 12900 * and other inlining handlers are currently limited to 64 bit 12901 * only. 12902 */ 12903 if (prog->jit_requested && BITS_PER_LONG == 64 && 12904 (insn->imm == BPF_FUNC_map_lookup_elem || 12905 insn->imm == BPF_FUNC_map_update_elem || 12906 insn->imm == BPF_FUNC_map_delete_elem || 12907 insn->imm == BPF_FUNC_map_push_elem || 12908 insn->imm == BPF_FUNC_map_pop_elem || 12909 insn->imm == BPF_FUNC_map_peek_elem || 12910 insn->imm == BPF_FUNC_redirect_map)) { 12911 aux = &env->insn_aux_data[i + delta]; 12912 if (bpf_map_ptr_poisoned(aux)) 12913 goto patch_call_imm; 12914 12915 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 12916 ops = map_ptr->ops; 12917 if (insn->imm == BPF_FUNC_map_lookup_elem && 12918 ops->map_gen_lookup) { 12919 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 12920 if (cnt == -EOPNOTSUPP) 12921 goto patch_map_ops_generic; 12922 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 12923 verbose(env, "bpf verifier is misconfigured\n"); 12924 return -EINVAL; 12925 } 12926 12927 new_prog = bpf_patch_insn_data(env, i + delta, 12928 insn_buf, cnt); 12929 if (!new_prog) 12930 return -ENOMEM; 12931 12932 delta += cnt - 1; 12933 env->prog = prog = new_prog; 12934 insn = new_prog->insnsi + i + delta; 12935 continue; 12936 } 12937 12938 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 12939 (void *(*)(struct bpf_map *map, void *key))NULL)); 12940 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 12941 (int (*)(struct bpf_map *map, void *key))NULL)); 12942 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 12943 (int (*)(struct bpf_map *map, void *key, void *value, 12944 u64 flags))NULL)); 12945 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 12946 (int (*)(struct bpf_map *map, void *value, 12947 u64 flags))NULL)); 12948 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 12949 (int (*)(struct bpf_map *map, void *value))NULL)); 12950 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 12951 (int (*)(struct bpf_map *map, void *value))NULL)); 12952 BUILD_BUG_ON(!__same_type(ops->map_redirect, 12953 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL)); 12954 12955 patch_map_ops_generic: 12956 switch (insn->imm) { 12957 case BPF_FUNC_map_lookup_elem: 12958 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 12959 __bpf_call_base; 12960 continue; 12961 case BPF_FUNC_map_update_elem: 12962 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 12963 __bpf_call_base; 12964 continue; 12965 case BPF_FUNC_map_delete_elem: 12966 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 12967 __bpf_call_base; 12968 continue; 12969 case BPF_FUNC_map_push_elem: 12970 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 12971 __bpf_call_base; 12972 continue; 12973 case BPF_FUNC_map_pop_elem: 12974 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 12975 __bpf_call_base; 12976 continue; 12977 case BPF_FUNC_map_peek_elem: 12978 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 12979 __bpf_call_base; 12980 continue; 12981 case BPF_FUNC_redirect_map: 12982 insn->imm = BPF_CAST_CALL(ops->map_redirect) - 12983 __bpf_call_base; 12984 continue; 12985 } 12986 12987 goto patch_call_imm; 12988 } 12989 12990 /* Implement bpf_jiffies64 inline. */ 12991 if (prog->jit_requested && BITS_PER_LONG == 64 && 12992 insn->imm == BPF_FUNC_jiffies64) { 12993 struct bpf_insn ld_jiffies_addr[2] = { 12994 BPF_LD_IMM64(BPF_REG_0, 12995 (unsigned long)&jiffies), 12996 }; 12997 12998 insn_buf[0] = ld_jiffies_addr[0]; 12999 insn_buf[1] = ld_jiffies_addr[1]; 13000 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 13001 BPF_REG_0, 0); 13002 cnt = 3; 13003 13004 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 13005 cnt); 13006 if (!new_prog) 13007 return -ENOMEM; 13008 13009 delta += cnt - 1; 13010 env->prog = prog = new_prog; 13011 insn = new_prog->insnsi + i + delta; 13012 continue; 13013 } 13014 13015 /* Implement bpf_get_func_ip inline. */ 13016 if (prog_type == BPF_PROG_TYPE_TRACING && 13017 insn->imm == BPF_FUNC_get_func_ip) { 13018 /* Load IP address from ctx - 8 */ 13019 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 13020 13021 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 13022 if (!new_prog) 13023 return -ENOMEM; 13024 13025 env->prog = prog = new_prog; 13026 insn = new_prog->insnsi + i + delta; 13027 continue; 13028 } 13029 13030 patch_call_imm: 13031 fn = env->ops->get_func_proto(insn->imm, env->prog); 13032 /* all functions that have prototype and verifier allowed 13033 * programs to call them, must be real in-kernel functions 13034 */ 13035 if (!fn->func) { 13036 verbose(env, 13037 "kernel subsystem misconfigured func %s#%d\n", 13038 func_id_name(insn->imm), insn->imm); 13039 return -EFAULT; 13040 } 13041 insn->imm = fn->func - __bpf_call_base; 13042 } 13043 13044 /* Since poke tab is now finalized, publish aux to tracker. */ 13045 for (i = 0; i < prog->aux->size_poke_tab; i++) { 13046 map_ptr = prog->aux->poke_tab[i].tail_call.map; 13047 if (!map_ptr->ops->map_poke_track || 13048 !map_ptr->ops->map_poke_untrack || 13049 !map_ptr->ops->map_poke_run) { 13050 verbose(env, "bpf verifier is misconfigured\n"); 13051 return -EINVAL; 13052 } 13053 13054 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 13055 if (ret < 0) { 13056 verbose(env, "tracking tail call prog failed\n"); 13057 return ret; 13058 } 13059 } 13060 13061 sort_kfunc_descs_by_imm(env->prog); 13062 13063 return 0; 13064 } 13065 13066 static void free_states(struct bpf_verifier_env *env) 13067 { 13068 struct bpf_verifier_state_list *sl, *sln; 13069 int i; 13070 13071 sl = env->free_list; 13072 while (sl) { 13073 sln = sl->next; 13074 free_verifier_state(&sl->state, false); 13075 kfree(sl); 13076 sl = sln; 13077 } 13078 env->free_list = NULL; 13079 13080 if (!env->explored_states) 13081 return; 13082 13083 for (i = 0; i < state_htab_size(env); i++) { 13084 sl = env->explored_states[i]; 13085 13086 while (sl) { 13087 sln = sl->next; 13088 free_verifier_state(&sl->state, false); 13089 kfree(sl); 13090 sl = sln; 13091 } 13092 env->explored_states[i] = NULL; 13093 } 13094 } 13095 13096 /* The verifier is using insn_aux_data[] to store temporary data during 13097 * verification and to store information for passes that run after the 13098 * verification like dead code sanitization. do_check_common() for subprogram N 13099 * may analyze many other subprograms. sanitize_insn_aux_data() clears all 13100 * temporary data after do_check_common() finds that subprogram N cannot be 13101 * verified independently. pass_cnt counts the number of times 13102 * do_check_common() was run and insn->aux->seen tells the pass number 13103 * insn_aux_data was touched. These variables are compared to clear temporary 13104 * data from failed pass. For testing and experiments do_check_common() can be 13105 * run multiple times even when prior attempt to verify is unsuccessful. 13106 * 13107 * Note that special handling is needed on !env->bypass_spec_v1 if this is 13108 * ever called outside of error path with subsequent program rejection. 13109 */ 13110 static void sanitize_insn_aux_data(struct bpf_verifier_env *env) 13111 { 13112 struct bpf_insn *insn = env->prog->insnsi; 13113 struct bpf_insn_aux_data *aux; 13114 int i, class; 13115 13116 for (i = 0; i < env->prog->len; i++) { 13117 class = BPF_CLASS(insn[i].code); 13118 if (class != BPF_LDX && class != BPF_STX) 13119 continue; 13120 aux = &env->insn_aux_data[i]; 13121 if (aux->seen != env->pass_cnt) 13122 continue; 13123 memset(aux, 0, offsetof(typeof(*aux), orig_idx)); 13124 } 13125 } 13126 13127 static int do_check_common(struct bpf_verifier_env *env, int subprog) 13128 { 13129 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 13130 struct bpf_verifier_state *state; 13131 struct bpf_reg_state *regs; 13132 int ret, i; 13133 13134 env->prev_linfo = NULL; 13135 env->pass_cnt++; 13136 13137 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 13138 if (!state) 13139 return -ENOMEM; 13140 state->curframe = 0; 13141 state->speculative = false; 13142 state->branches = 1; 13143 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 13144 if (!state->frame[0]) { 13145 kfree(state); 13146 return -ENOMEM; 13147 } 13148 env->cur_state = state; 13149 init_func_state(env, state->frame[0], 13150 BPF_MAIN_FUNC /* callsite */, 13151 0 /* frameno */, 13152 subprog); 13153 13154 regs = state->frame[state->curframe]->regs; 13155 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 13156 ret = btf_prepare_func_args(env, subprog, regs); 13157 if (ret) 13158 goto out; 13159 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 13160 if (regs[i].type == PTR_TO_CTX) 13161 mark_reg_known_zero(env, regs, i); 13162 else if (regs[i].type == SCALAR_VALUE) 13163 mark_reg_unknown(env, regs, i); 13164 else if (regs[i].type == PTR_TO_MEM_OR_NULL) { 13165 const u32 mem_size = regs[i].mem_size; 13166 13167 mark_reg_known_zero(env, regs, i); 13168 regs[i].mem_size = mem_size; 13169 regs[i].id = ++env->id_gen; 13170 } 13171 } 13172 } else { 13173 /* 1st arg to a function */ 13174 regs[BPF_REG_1].type = PTR_TO_CTX; 13175 mark_reg_known_zero(env, regs, BPF_REG_1); 13176 ret = btf_check_subprog_arg_match(env, subprog, regs); 13177 if (ret == -EFAULT) 13178 /* unlikely verifier bug. abort. 13179 * ret == 0 and ret < 0 are sadly acceptable for 13180 * main() function due to backward compatibility. 13181 * Like socket filter program may be written as: 13182 * int bpf_prog(struct pt_regs *ctx) 13183 * and never dereference that ctx in the program. 13184 * 'struct pt_regs' is a type mismatch for socket 13185 * filter that should be using 'struct __sk_buff'. 13186 */ 13187 goto out; 13188 } 13189 13190 ret = do_check(env); 13191 out: 13192 /* check for NULL is necessary, since cur_state can be freed inside 13193 * do_check() under memory pressure. 13194 */ 13195 if (env->cur_state) { 13196 free_verifier_state(env->cur_state, true); 13197 env->cur_state = NULL; 13198 } 13199 while (!pop_stack(env, NULL, NULL, false)); 13200 if (!ret && pop_log) 13201 bpf_vlog_reset(&env->log, 0); 13202 free_states(env); 13203 if (ret) 13204 /* clean aux data in case subprog was rejected */ 13205 sanitize_insn_aux_data(env); 13206 return ret; 13207 } 13208 13209 /* Verify all global functions in a BPF program one by one based on their BTF. 13210 * All global functions must pass verification. Otherwise the whole program is rejected. 13211 * Consider: 13212 * int bar(int); 13213 * int foo(int f) 13214 * { 13215 * return bar(f); 13216 * } 13217 * int bar(int b) 13218 * { 13219 * ... 13220 * } 13221 * foo() will be verified first for R1=any_scalar_value. During verification it 13222 * will be assumed that bar() already verified successfully and call to bar() 13223 * from foo() will be checked for type match only. Later bar() will be verified 13224 * independently to check that it's safe for R1=any_scalar_value. 13225 */ 13226 static int do_check_subprogs(struct bpf_verifier_env *env) 13227 { 13228 struct bpf_prog_aux *aux = env->prog->aux; 13229 int i, ret; 13230 13231 if (!aux->func_info) 13232 return 0; 13233 13234 for (i = 1; i < env->subprog_cnt; i++) { 13235 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 13236 continue; 13237 env->insn_idx = env->subprog_info[i].start; 13238 WARN_ON_ONCE(env->insn_idx == 0); 13239 ret = do_check_common(env, i); 13240 if (ret) { 13241 return ret; 13242 } else if (env->log.level & BPF_LOG_LEVEL) { 13243 verbose(env, 13244 "Func#%d is safe for any args that match its prototype\n", 13245 i); 13246 } 13247 } 13248 return 0; 13249 } 13250 13251 static int do_check_main(struct bpf_verifier_env *env) 13252 { 13253 int ret; 13254 13255 env->insn_idx = 0; 13256 ret = do_check_common(env, 0); 13257 if (!ret) 13258 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 13259 return ret; 13260 } 13261 13262 13263 static void print_verification_stats(struct bpf_verifier_env *env) 13264 { 13265 int i; 13266 13267 if (env->log.level & BPF_LOG_STATS) { 13268 verbose(env, "verification time %lld usec\n", 13269 div_u64(env->verification_time, 1000)); 13270 verbose(env, "stack depth "); 13271 for (i = 0; i < env->subprog_cnt; i++) { 13272 u32 depth = env->subprog_info[i].stack_depth; 13273 13274 verbose(env, "%d", depth); 13275 if (i + 1 < env->subprog_cnt) 13276 verbose(env, "+"); 13277 } 13278 verbose(env, "\n"); 13279 } 13280 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 13281 "total_states %d peak_states %d mark_read %d\n", 13282 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 13283 env->max_states_per_insn, env->total_states, 13284 env->peak_states, env->longest_mark_read_walk); 13285 } 13286 13287 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 13288 { 13289 const struct btf_type *t, *func_proto; 13290 const struct bpf_struct_ops *st_ops; 13291 const struct btf_member *member; 13292 struct bpf_prog *prog = env->prog; 13293 u32 btf_id, member_idx; 13294 const char *mname; 13295 13296 if (!prog->gpl_compatible) { 13297 verbose(env, "struct ops programs must have a GPL compatible license\n"); 13298 return -EINVAL; 13299 } 13300 13301 btf_id = prog->aux->attach_btf_id; 13302 st_ops = bpf_struct_ops_find(btf_id); 13303 if (!st_ops) { 13304 verbose(env, "attach_btf_id %u is not a supported struct\n", 13305 btf_id); 13306 return -ENOTSUPP; 13307 } 13308 13309 t = st_ops->type; 13310 member_idx = prog->expected_attach_type; 13311 if (member_idx >= btf_type_vlen(t)) { 13312 verbose(env, "attach to invalid member idx %u of struct %s\n", 13313 member_idx, st_ops->name); 13314 return -EINVAL; 13315 } 13316 13317 member = &btf_type_member(t)[member_idx]; 13318 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 13319 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 13320 NULL); 13321 if (!func_proto) { 13322 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 13323 mname, member_idx, st_ops->name); 13324 return -EINVAL; 13325 } 13326 13327 if (st_ops->check_member) { 13328 int err = st_ops->check_member(t, member); 13329 13330 if (err) { 13331 verbose(env, "attach to unsupported member %s of struct %s\n", 13332 mname, st_ops->name); 13333 return err; 13334 } 13335 } 13336 13337 prog->aux->attach_func_proto = func_proto; 13338 prog->aux->attach_func_name = mname; 13339 env->ops = st_ops->verifier_ops; 13340 13341 return 0; 13342 } 13343 #define SECURITY_PREFIX "security_" 13344 13345 static int check_attach_modify_return(unsigned long addr, const char *func_name) 13346 { 13347 if (within_error_injection_list(addr) || 13348 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 13349 return 0; 13350 13351 return -EINVAL; 13352 } 13353 13354 /* list of non-sleepable functions that are otherwise on 13355 * ALLOW_ERROR_INJECTION list 13356 */ 13357 BTF_SET_START(btf_non_sleepable_error_inject) 13358 /* Three functions below can be called from sleepable and non-sleepable context. 13359 * Assume non-sleepable from bpf safety point of view. 13360 */ 13361 BTF_ID(func, __add_to_page_cache_locked) 13362 BTF_ID(func, should_fail_alloc_page) 13363 BTF_ID(func, should_failslab) 13364 BTF_SET_END(btf_non_sleepable_error_inject) 13365 13366 static int check_non_sleepable_error_inject(u32 btf_id) 13367 { 13368 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 13369 } 13370 13371 int bpf_check_attach_target(struct bpf_verifier_log *log, 13372 const struct bpf_prog *prog, 13373 const struct bpf_prog *tgt_prog, 13374 u32 btf_id, 13375 struct bpf_attach_target_info *tgt_info) 13376 { 13377 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 13378 const char prefix[] = "btf_trace_"; 13379 int ret = 0, subprog = -1, i; 13380 const struct btf_type *t; 13381 bool conservative = true; 13382 const char *tname; 13383 struct btf *btf; 13384 long addr = 0; 13385 13386 if (!btf_id) { 13387 bpf_log(log, "Tracing programs must provide btf_id\n"); 13388 return -EINVAL; 13389 } 13390 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 13391 if (!btf) { 13392 bpf_log(log, 13393 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 13394 return -EINVAL; 13395 } 13396 t = btf_type_by_id(btf, btf_id); 13397 if (!t) { 13398 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 13399 return -EINVAL; 13400 } 13401 tname = btf_name_by_offset(btf, t->name_off); 13402 if (!tname) { 13403 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 13404 return -EINVAL; 13405 } 13406 if (tgt_prog) { 13407 struct bpf_prog_aux *aux = tgt_prog->aux; 13408 13409 for (i = 0; i < aux->func_info_cnt; i++) 13410 if (aux->func_info[i].type_id == btf_id) { 13411 subprog = i; 13412 break; 13413 } 13414 if (subprog == -1) { 13415 bpf_log(log, "Subprog %s doesn't exist\n", tname); 13416 return -EINVAL; 13417 } 13418 conservative = aux->func_info_aux[subprog].unreliable; 13419 if (prog_extension) { 13420 if (conservative) { 13421 bpf_log(log, 13422 "Cannot replace static functions\n"); 13423 return -EINVAL; 13424 } 13425 if (!prog->jit_requested) { 13426 bpf_log(log, 13427 "Extension programs should be JITed\n"); 13428 return -EINVAL; 13429 } 13430 } 13431 if (!tgt_prog->jited) { 13432 bpf_log(log, "Can attach to only JITed progs\n"); 13433 return -EINVAL; 13434 } 13435 if (tgt_prog->type == prog->type) { 13436 /* Cannot fentry/fexit another fentry/fexit program. 13437 * Cannot attach program extension to another extension. 13438 * It's ok to attach fentry/fexit to extension program. 13439 */ 13440 bpf_log(log, "Cannot recursively attach\n"); 13441 return -EINVAL; 13442 } 13443 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 13444 prog_extension && 13445 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 13446 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 13447 /* Program extensions can extend all program types 13448 * except fentry/fexit. The reason is the following. 13449 * The fentry/fexit programs are used for performance 13450 * analysis, stats and can be attached to any program 13451 * type except themselves. When extension program is 13452 * replacing XDP function it is necessary to allow 13453 * performance analysis of all functions. Both original 13454 * XDP program and its program extension. Hence 13455 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 13456 * allowed. If extending of fentry/fexit was allowed it 13457 * would be possible to create long call chain 13458 * fentry->extension->fentry->extension beyond 13459 * reasonable stack size. Hence extending fentry is not 13460 * allowed. 13461 */ 13462 bpf_log(log, "Cannot extend fentry/fexit\n"); 13463 return -EINVAL; 13464 } 13465 } else { 13466 if (prog_extension) { 13467 bpf_log(log, "Cannot replace kernel functions\n"); 13468 return -EINVAL; 13469 } 13470 } 13471 13472 switch (prog->expected_attach_type) { 13473 case BPF_TRACE_RAW_TP: 13474 if (tgt_prog) { 13475 bpf_log(log, 13476 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 13477 return -EINVAL; 13478 } 13479 if (!btf_type_is_typedef(t)) { 13480 bpf_log(log, "attach_btf_id %u is not a typedef\n", 13481 btf_id); 13482 return -EINVAL; 13483 } 13484 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 13485 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 13486 btf_id, tname); 13487 return -EINVAL; 13488 } 13489 tname += sizeof(prefix) - 1; 13490 t = btf_type_by_id(btf, t->type); 13491 if (!btf_type_is_ptr(t)) 13492 /* should never happen in valid vmlinux build */ 13493 return -EINVAL; 13494 t = btf_type_by_id(btf, t->type); 13495 if (!btf_type_is_func_proto(t)) 13496 /* should never happen in valid vmlinux build */ 13497 return -EINVAL; 13498 13499 break; 13500 case BPF_TRACE_ITER: 13501 if (!btf_type_is_func(t)) { 13502 bpf_log(log, "attach_btf_id %u is not a function\n", 13503 btf_id); 13504 return -EINVAL; 13505 } 13506 t = btf_type_by_id(btf, t->type); 13507 if (!btf_type_is_func_proto(t)) 13508 return -EINVAL; 13509 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 13510 if (ret) 13511 return ret; 13512 break; 13513 default: 13514 if (!prog_extension) 13515 return -EINVAL; 13516 fallthrough; 13517 case BPF_MODIFY_RETURN: 13518 case BPF_LSM_MAC: 13519 case BPF_TRACE_FENTRY: 13520 case BPF_TRACE_FEXIT: 13521 if (!btf_type_is_func(t)) { 13522 bpf_log(log, "attach_btf_id %u is not a function\n", 13523 btf_id); 13524 return -EINVAL; 13525 } 13526 if (prog_extension && 13527 btf_check_type_match(log, prog, btf, t)) 13528 return -EINVAL; 13529 t = btf_type_by_id(btf, t->type); 13530 if (!btf_type_is_func_proto(t)) 13531 return -EINVAL; 13532 13533 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 13534 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 13535 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 13536 return -EINVAL; 13537 13538 if (tgt_prog && conservative) 13539 t = NULL; 13540 13541 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 13542 if (ret < 0) 13543 return ret; 13544 13545 if (tgt_prog) { 13546 if (subprog == 0) 13547 addr = (long) tgt_prog->bpf_func; 13548 else 13549 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 13550 } else { 13551 addr = kallsyms_lookup_name(tname); 13552 if (!addr) { 13553 bpf_log(log, 13554 "The address of function %s cannot be found\n", 13555 tname); 13556 return -ENOENT; 13557 } 13558 } 13559 13560 if (prog->aux->sleepable) { 13561 ret = -EINVAL; 13562 switch (prog->type) { 13563 case BPF_PROG_TYPE_TRACING: 13564 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 13565 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 13566 */ 13567 if (!check_non_sleepable_error_inject(btf_id) && 13568 within_error_injection_list(addr)) 13569 ret = 0; 13570 break; 13571 case BPF_PROG_TYPE_LSM: 13572 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 13573 * Only some of them are sleepable. 13574 */ 13575 if (bpf_lsm_is_sleepable_hook(btf_id)) 13576 ret = 0; 13577 break; 13578 default: 13579 break; 13580 } 13581 if (ret) { 13582 bpf_log(log, "%s is not sleepable\n", tname); 13583 return ret; 13584 } 13585 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 13586 if (tgt_prog) { 13587 bpf_log(log, "can't modify return codes of BPF programs\n"); 13588 return -EINVAL; 13589 } 13590 ret = check_attach_modify_return(addr, tname); 13591 if (ret) { 13592 bpf_log(log, "%s() is not modifiable\n", tname); 13593 return ret; 13594 } 13595 } 13596 13597 break; 13598 } 13599 tgt_info->tgt_addr = addr; 13600 tgt_info->tgt_name = tname; 13601 tgt_info->tgt_type = t; 13602 return 0; 13603 } 13604 13605 BTF_SET_START(btf_id_deny) 13606 BTF_ID_UNUSED 13607 #ifdef CONFIG_SMP 13608 BTF_ID(func, migrate_disable) 13609 BTF_ID(func, migrate_enable) 13610 #endif 13611 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 13612 BTF_ID(func, rcu_read_unlock_strict) 13613 #endif 13614 BTF_SET_END(btf_id_deny) 13615 13616 static int check_attach_btf_id(struct bpf_verifier_env *env) 13617 { 13618 struct bpf_prog *prog = env->prog; 13619 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 13620 struct bpf_attach_target_info tgt_info = {}; 13621 u32 btf_id = prog->aux->attach_btf_id; 13622 struct bpf_trampoline *tr; 13623 int ret; 13624 u64 key; 13625 13626 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 13627 if (prog->aux->sleepable) 13628 /* attach_btf_id checked to be zero already */ 13629 return 0; 13630 verbose(env, "Syscall programs can only be sleepable\n"); 13631 return -EINVAL; 13632 } 13633 13634 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 13635 prog->type != BPF_PROG_TYPE_LSM) { 13636 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n"); 13637 return -EINVAL; 13638 } 13639 13640 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 13641 return check_struct_ops_btf_id(env); 13642 13643 if (prog->type != BPF_PROG_TYPE_TRACING && 13644 prog->type != BPF_PROG_TYPE_LSM && 13645 prog->type != BPF_PROG_TYPE_EXT) 13646 return 0; 13647 13648 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 13649 if (ret) 13650 return ret; 13651 13652 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 13653 /* to make freplace equivalent to their targets, they need to 13654 * inherit env->ops and expected_attach_type for the rest of the 13655 * verification 13656 */ 13657 env->ops = bpf_verifier_ops[tgt_prog->type]; 13658 prog->expected_attach_type = tgt_prog->expected_attach_type; 13659 } 13660 13661 /* store info about the attachment target that will be used later */ 13662 prog->aux->attach_func_proto = tgt_info.tgt_type; 13663 prog->aux->attach_func_name = tgt_info.tgt_name; 13664 13665 if (tgt_prog) { 13666 prog->aux->saved_dst_prog_type = tgt_prog->type; 13667 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 13668 } 13669 13670 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 13671 prog->aux->attach_btf_trace = true; 13672 return 0; 13673 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 13674 if (!bpf_iter_prog_supported(prog)) 13675 return -EINVAL; 13676 return 0; 13677 } 13678 13679 if (prog->type == BPF_PROG_TYPE_LSM) { 13680 ret = bpf_lsm_verify_prog(&env->log, prog); 13681 if (ret < 0) 13682 return ret; 13683 } else if (prog->type == BPF_PROG_TYPE_TRACING && 13684 btf_id_set_contains(&btf_id_deny, btf_id)) { 13685 return -EINVAL; 13686 } 13687 13688 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 13689 tr = bpf_trampoline_get(key, &tgt_info); 13690 if (!tr) 13691 return -ENOMEM; 13692 13693 prog->aux->dst_trampoline = tr; 13694 return 0; 13695 } 13696 13697 struct btf *bpf_get_btf_vmlinux(void) 13698 { 13699 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 13700 mutex_lock(&bpf_verifier_lock); 13701 if (!btf_vmlinux) 13702 btf_vmlinux = btf_parse_vmlinux(); 13703 mutex_unlock(&bpf_verifier_lock); 13704 } 13705 return btf_vmlinux; 13706 } 13707 13708 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 13709 { 13710 u64 start_time = ktime_get_ns(); 13711 struct bpf_verifier_env *env; 13712 struct bpf_verifier_log *log; 13713 int i, len, ret = -EINVAL; 13714 bool is_priv; 13715 13716 /* no program is valid */ 13717 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 13718 return -EINVAL; 13719 13720 /* 'struct bpf_verifier_env' can be global, but since it's not small, 13721 * allocate/free it every time bpf_check() is called 13722 */ 13723 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 13724 if (!env) 13725 return -ENOMEM; 13726 log = &env->log; 13727 13728 len = (*prog)->len; 13729 env->insn_aux_data = 13730 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 13731 ret = -ENOMEM; 13732 if (!env->insn_aux_data) 13733 goto err_free_env; 13734 for (i = 0; i < len; i++) 13735 env->insn_aux_data[i].orig_idx = i; 13736 env->prog = *prog; 13737 env->ops = bpf_verifier_ops[env->prog->type]; 13738 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 13739 is_priv = bpf_capable(); 13740 13741 bpf_get_btf_vmlinux(); 13742 13743 /* grab the mutex to protect few globals used by verifier */ 13744 if (!is_priv) 13745 mutex_lock(&bpf_verifier_lock); 13746 13747 if (attr->log_level || attr->log_buf || attr->log_size) { 13748 /* user requested verbose verifier output 13749 * and supplied buffer to store the verification trace 13750 */ 13751 log->level = attr->log_level; 13752 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 13753 log->len_total = attr->log_size; 13754 13755 ret = -EINVAL; 13756 /* log attributes have to be sane */ 13757 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 13758 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 13759 goto err_unlock; 13760 } 13761 13762 if (IS_ERR(btf_vmlinux)) { 13763 /* Either gcc or pahole or kernel are broken. */ 13764 verbose(env, "in-kernel BTF is malformed\n"); 13765 ret = PTR_ERR(btf_vmlinux); 13766 goto skip_full_check; 13767 } 13768 13769 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 13770 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 13771 env->strict_alignment = true; 13772 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 13773 env->strict_alignment = false; 13774 13775 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 13776 env->allow_uninit_stack = bpf_allow_uninit_stack(); 13777 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 13778 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 13779 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 13780 env->bpf_capable = bpf_capable(); 13781 13782 if (is_priv) 13783 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 13784 13785 env->explored_states = kvcalloc(state_htab_size(env), 13786 sizeof(struct bpf_verifier_state_list *), 13787 GFP_USER); 13788 ret = -ENOMEM; 13789 if (!env->explored_states) 13790 goto skip_full_check; 13791 13792 ret = add_subprog_and_kfunc(env); 13793 if (ret < 0) 13794 goto skip_full_check; 13795 13796 ret = check_subprogs(env); 13797 if (ret < 0) 13798 goto skip_full_check; 13799 13800 ret = check_btf_info(env, attr, uattr); 13801 if (ret < 0) 13802 goto skip_full_check; 13803 13804 ret = check_attach_btf_id(env); 13805 if (ret) 13806 goto skip_full_check; 13807 13808 ret = resolve_pseudo_ldimm64(env); 13809 if (ret < 0) 13810 goto skip_full_check; 13811 13812 if (bpf_prog_is_dev_bound(env->prog->aux)) { 13813 ret = bpf_prog_offload_verifier_prep(env->prog); 13814 if (ret) 13815 goto skip_full_check; 13816 } 13817 13818 ret = check_cfg(env); 13819 if (ret < 0) 13820 goto skip_full_check; 13821 13822 ret = do_check_subprogs(env); 13823 ret = ret ?: do_check_main(env); 13824 13825 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 13826 ret = bpf_prog_offload_finalize(env); 13827 13828 skip_full_check: 13829 kvfree(env->explored_states); 13830 13831 if (ret == 0) 13832 ret = check_max_stack_depth(env); 13833 13834 /* instruction rewrites happen after this point */ 13835 if (is_priv) { 13836 if (ret == 0) 13837 opt_hard_wire_dead_code_branches(env); 13838 if (ret == 0) 13839 ret = opt_remove_dead_code(env); 13840 if (ret == 0) 13841 ret = opt_remove_nops(env); 13842 } else { 13843 if (ret == 0) 13844 sanitize_dead_code(env); 13845 } 13846 13847 if (ret == 0) 13848 /* program is valid, convert *(u32*)(ctx + off) accesses */ 13849 ret = convert_ctx_accesses(env); 13850 13851 if (ret == 0) 13852 ret = do_misc_fixups(env); 13853 13854 /* do 32-bit optimization after insn patching has done so those patched 13855 * insns could be handled correctly. 13856 */ 13857 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 13858 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 13859 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 13860 : false; 13861 } 13862 13863 if (ret == 0) 13864 ret = fixup_call_args(env); 13865 13866 env->verification_time = ktime_get_ns() - start_time; 13867 print_verification_stats(env); 13868 13869 if (log->level && bpf_verifier_log_full(log)) 13870 ret = -ENOSPC; 13871 if (log->level && !log->ubuf) { 13872 ret = -EFAULT; 13873 goto err_release_maps; 13874 } 13875 13876 if (ret) 13877 goto err_release_maps; 13878 13879 if (env->used_map_cnt) { 13880 /* if program passed verifier, update used_maps in bpf_prog_info */ 13881 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 13882 sizeof(env->used_maps[0]), 13883 GFP_KERNEL); 13884 13885 if (!env->prog->aux->used_maps) { 13886 ret = -ENOMEM; 13887 goto err_release_maps; 13888 } 13889 13890 memcpy(env->prog->aux->used_maps, env->used_maps, 13891 sizeof(env->used_maps[0]) * env->used_map_cnt); 13892 env->prog->aux->used_map_cnt = env->used_map_cnt; 13893 } 13894 if (env->used_btf_cnt) { 13895 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 13896 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 13897 sizeof(env->used_btfs[0]), 13898 GFP_KERNEL); 13899 if (!env->prog->aux->used_btfs) { 13900 ret = -ENOMEM; 13901 goto err_release_maps; 13902 } 13903 13904 memcpy(env->prog->aux->used_btfs, env->used_btfs, 13905 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 13906 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 13907 } 13908 if (env->used_map_cnt || env->used_btf_cnt) { 13909 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 13910 * bpf_ld_imm64 instructions 13911 */ 13912 convert_pseudo_ld_imm64(env); 13913 } 13914 13915 adjust_btf_func(env); 13916 13917 err_release_maps: 13918 if (!env->prog->aux->used_maps) 13919 /* if we didn't copy map pointers into bpf_prog_info, release 13920 * them now. Otherwise free_used_maps() will release them. 13921 */ 13922 release_maps(env); 13923 if (!env->prog->aux->used_btfs) 13924 release_btfs(env); 13925 13926 /* extension progs temporarily inherit the attach_type of their targets 13927 for verification purposes, so set it back to zero before returning 13928 */ 13929 if (env->prog->type == BPF_PROG_TYPE_EXT) 13930 env->prog->expected_attach_type = 0; 13931 13932 *prog = env->prog; 13933 err_unlock: 13934 if (!is_priv) 13935 mutex_unlock(&bpf_verifier_lock); 13936 vfree(env->insn_aux_data); 13937 err_free_env: 13938 kfree(env); 13939 return ret; 13940 } 13941