xref: /linux/kernel/bpf/verifier.c (revision 41fb0cf1bced59c1fe178cf6cc9f716b5da9e40e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25 
26 #include "disasm.h"
27 
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 	[_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38 
39 /* bpf_check() is a static code analyzer that walks eBPF program
40  * instruction by instruction and updates register/stack state.
41  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42  *
43  * The first pass is depth-first-search to check that the program is a DAG.
44  * It rejects the following programs:
45  * - larger than BPF_MAXINSNS insns
46  * - if loop is present (detected via back-edge)
47  * - unreachable insns exist (shouldn't be a forest. program = one function)
48  * - out of bounds or malformed jumps
49  * The second pass is all possible path descent from the 1st insn.
50  * Since it's analyzing all paths through the program, the length of the
51  * analysis is limited to 64k insn, which may be hit even if total number of
52  * insn is less then 4K, but there are too many branches that change stack/regs.
53  * Number of 'branches to be analyzed' is limited to 1k
54  *
55  * On entry to each instruction, each register has a type, and the instruction
56  * changes the types of the registers depending on instruction semantics.
57  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58  * copied to R1.
59  *
60  * All registers are 64-bit.
61  * R0 - return register
62  * R1-R5 argument passing registers
63  * R6-R9 callee saved registers
64  * R10 - frame pointer read-only
65  *
66  * At the start of BPF program the register R1 contains a pointer to bpf_context
67  * and has type PTR_TO_CTX.
68  *
69  * Verifier tracks arithmetic operations on pointers in case:
70  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72  * 1st insn copies R10 (which has FRAME_PTR) type into R1
73  * and 2nd arithmetic instruction is pattern matched to recognize
74  * that it wants to construct a pointer to some element within stack.
75  * So after 2nd insn, the register R1 has type PTR_TO_STACK
76  * (and -20 constant is saved for further stack bounds checking).
77  * Meaning that this reg is a pointer to stack plus known immediate constant.
78  *
79  * Most of the time the registers have SCALAR_VALUE type, which
80  * means the register has some value, but it's not a valid pointer.
81  * (like pointer plus pointer becomes SCALAR_VALUE type)
82  *
83  * When verifier sees load or store instructions the type of base register
84  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85  * four pointer types recognized by check_mem_access() function.
86  *
87  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88  * and the range of [ptr, ptr + map's value_size) is accessible.
89  *
90  * registers used to pass values to function calls are checked against
91  * function argument constraints.
92  *
93  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94  * It means that the register type passed to this function must be
95  * PTR_TO_STACK and it will be used inside the function as
96  * 'pointer to map element key'
97  *
98  * For example the argument constraints for bpf_map_lookup_elem():
99  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100  *   .arg1_type = ARG_CONST_MAP_PTR,
101  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
102  *
103  * ret_type says that this function returns 'pointer to map elem value or null'
104  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105  * 2nd argument should be a pointer to stack, which will be used inside
106  * the helper function as a pointer to map element key.
107  *
108  * On the kernel side the helper function looks like:
109  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110  * {
111  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112  *    void *key = (void *) (unsigned long) r2;
113  *    void *value;
114  *
115  *    here kernel can access 'key' and 'map' pointers safely, knowing that
116  *    [key, key + map->key_size) bytes are valid and were initialized on
117  *    the stack of eBPF program.
118  * }
119  *
120  * Corresponding eBPF program may look like:
121  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
122  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
124  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125  * here verifier looks at prototype of map_lookup_elem() and sees:
126  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128  *
129  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131  * and were initialized prior to this call.
132  * If it's ok, then verifier allows this BPF_CALL insn and looks at
133  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135  * returns either pointer to map value or NULL.
136  *
137  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138  * insn, the register holding that pointer in the true branch changes state to
139  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140  * branch. See check_cond_jmp_op().
141  *
142  * After the call R0 is set to return type of the function and registers R1-R5
143  * are set to NOT_INIT to indicate that they are no longer readable.
144  *
145  * The following reference types represent a potential reference to a kernel
146  * resource which, after first being allocated, must be checked and freed by
147  * the BPF program:
148  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149  *
150  * When the verifier sees a helper call return a reference type, it allocates a
151  * pointer id for the reference and stores it in the current function state.
152  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154  * passes through a NULL-check conditional. For the branch wherein the state is
155  * changed to CONST_IMM, the verifier releases the reference.
156  *
157  * For each helper function that allocates a reference, such as
158  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159  * bpf_sk_release(). When a reference type passes into the release function,
160  * the verifier also releases the reference. If any unchecked or unreleased
161  * reference remains at the end of the program, the verifier rejects it.
162  */
163 
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 	/* verifer state is 'st'
167 	 * before processing instruction 'insn_idx'
168 	 * and after processing instruction 'prev_insn_idx'
169 	 */
170 	struct bpf_verifier_state st;
171 	int insn_idx;
172 	int prev_insn_idx;
173 	struct bpf_verifier_stack_elem *next;
174 	/* length of verifier log at the time this state was pushed on stack */
175 	u32 log_pos;
176 };
177 
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
179 #define BPF_COMPLEXITY_LIMIT_STATES	64
180 
181 #define BPF_MAP_KEY_POISON	(1ULL << 63)
182 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
183 
184 #define BPF_MAP_PTR_UNPRIV	1UL
185 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
186 					  POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188 
189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193 
194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198 
199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 			      const struct bpf_map *map, bool unpriv)
201 {
202 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 	unpriv |= bpf_map_ptr_unpriv(aux);
204 	aux->map_ptr_state = (unsigned long)map |
205 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207 
208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 	return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212 
213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217 
218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222 
223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 	bool poisoned = bpf_map_key_poisoned(aux);
226 
227 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230 
231 static bool bpf_pseudo_call(const struct bpf_insn *insn)
232 {
233 	return insn->code == (BPF_JMP | BPF_CALL) &&
234 	       insn->src_reg == BPF_PSEUDO_CALL;
235 }
236 
237 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
238 {
239 	return insn->code == (BPF_JMP | BPF_CALL) &&
240 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
241 }
242 
243 struct bpf_call_arg_meta {
244 	struct bpf_map *map_ptr;
245 	bool raw_mode;
246 	bool pkt_access;
247 	int regno;
248 	int access_size;
249 	int mem_size;
250 	u64 msize_max_value;
251 	int ref_obj_id;
252 	int map_uid;
253 	int func_id;
254 	struct btf *btf;
255 	u32 btf_id;
256 	struct btf *ret_btf;
257 	u32 ret_btf_id;
258 	u32 subprogno;
259 };
260 
261 struct btf *btf_vmlinux;
262 
263 static DEFINE_MUTEX(bpf_verifier_lock);
264 
265 static const struct bpf_line_info *
266 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
267 {
268 	const struct bpf_line_info *linfo;
269 	const struct bpf_prog *prog;
270 	u32 i, nr_linfo;
271 
272 	prog = env->prog;
273 	nr_linfo = prog->aux->nr_linfo;
274 
275 	if (!nr_linfo || insn_off >= prog->len)
276 		return NULL;
277 
278 	linfo = prog->aux->linfo;
279 	for (i = 1; i < nr_linfo; i++)
280 		if (insn_off < linfo[i].insn_off)
281 			break;
282 
283 	return &linfo[i - 1];
284 }
285 
286 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
287 		       va_list args)
288 {
289 	unsigned int n;
290 
291 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
292 
293 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
294 		  "verifier log line truncated - local buffer too short\n");
295 
296 	n = min(log->len_total - log->len_used - 1, n);
297 	log->kbuf[n] = '\0';
298 
299 	if (log->level == BPF_LOG_KERNEL) {
300 		pr_err("BPF:%s\n", log->kbuf);
301 		return;
302 	}
303 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
304 		log->len_used += n;
305 	else
306 		log->ubuf = NULL;
307 }
308 
309 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
310 {
311 	char zero = 0;
312 
313 	if (!bpf_verifier_log_needed(log))
314 		return;
315 
316 	log->len_used = new_pos;
317 	if (put_user(zero, log->ubuf + new_pos))
318 		log->ubuf = NULL;
319 }
320 
321 /* log_level controls verbosity level of eBPF verifier.
322  * bpf_verifier_log_write() is used to dump the verification trace to the log,
323  * so the user can figure out what's wrong with the program
324  */
325 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
326 					   const char *fmt, ...)
327 {
328 	va_list args;
329 
330 	if (!bpf_verifier_log_needed(&env->log))
331 		return;
332 
333 	va_start(args, fmt);
334 	bpf_verifier_vlog(&env->log, fmt, args);
335 	va_end(args);
336 }
337 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
338 
339 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
340 {
341 	struct bpf_verifier_env *env = private_data;
342 	va_list args;
343 
344 	if (!bpf_verifier_log_needed(&env->log))
345 		return;
346 
347 	va_start(args, fmt);
348 	bpf_verifier_vlog(&env->log, fmt, args);
349 	va_end(args);
350 }
351 
352 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
353 			    const char *fmt, ...)
354 {
355 	va_list args;
356 
357 	if (!bpf_verifier_log_needed(log))
358 		return;
359 
360 	va_start(args, fmt);
361 	bpf_verifier_vlog(log, fmt, args);
362 	va_end(args);
363 }
364 
365 static const char *ltrim(const char *s)
366 {
367 	while (isspace(*s))
368 		s++;
369 
370 	return s;
371 }
372 
373 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
374 					 u32 insn_off,
375 					 const char *prefix_fmt, ...)
376 {
377 	const struct bpf_line_info *linfo;
378 
379 	if (!bpf_verifier_log_needed(&env->log))
380 		return;
381 
382 	linfo = find_linfo(env, insn_off);
383 	if (!linfo || linfo == env->prev_linfo)
384 		return;
385 
386 	if (prefix_fmt) {
387 		va_list args;
388 
389 		va_start(args, prefix_fmt);
390 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
391 		va_end(args);
392 	}
393 
394 	verbose(env, "%s\n",
395 		ltrim(btf_name_by_offset(env->prog->aux->btf,
396 					 linfo->line_off)));
397 
398 	env->prev_linfo = linfo;
399 }
400 
401 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
402 				   struct bpf_reg_state *reg,
403 				   struct tnum *range, const char *ctx,
404 				   const char *reg_name)
405 {
406 	char tn_buf[48];
407 
408 	verbose(env, "At %s the register %s ", ctx, reg_name);
409 	if (!tnum_is_unknown(reg->var_off)) {
410 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
411 		verbose(env, "has value %s", tn_buf);
412 	} else {
413 		verbose(env, "has unknown scalar value");
414 	}
415 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
416 	verbose(env, " should have been in %s\n", tn_buf);
417 }
418 
419 static bool type_is_pkt_pointer(enum bpf_reg_type type)
420 {
421 	return type == PTR_TO_PACKET ||
422 	       type == PTR_TO_PACKET_META;
423 }
424 
425 static bool type_is_sk_pointer(enum bpf_reg_type type)
426 {
427 	return type == PTR_TO_SOCKET ||
428 		type == PTR_TO_SOCK_COMMON ||
429 		type == PTR_TO_TCP_SOCK ||
430 		type == PTR_TO_XDP_SOCK;
431 }
432 
433 static bool reg_type_not_null(enum bpf_reg_type type)
434 {
435 	return type == PTR_TO_SOCKET ||
436 		type == PTR_TO_TCP_SOCK ||
437 		type == PTR_TO_MAP_VALUE ||
438 		type == PTR_TO_MAP_KEY ||
439 		type == PTR_TO_SOCK_COMMON;
440 }
441 
442 static bool reg_type_may_be_null(enum bpf_reg_type type)
443 {
444 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
445 	       type == PTR_TO_SOCKET_OR_NULL ||
446 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
447 	       type == PTR_TO_TCP_SOCK_OR_NULL ||
448 	       type == PTR_TO_BTF_ID_OR_NULL ||
449 	       type == PTR_TO_MEM_OR_NULL ||
450 	       type == PTR_TO_RDONLY_BUF_OR_NULL ||
451 	       type == PTR_TO_RDWR_BUF_OR_NULL;
452 }
453 
454 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
455 {
456 	return reg->type == PTR_TO_MAP_VALUE &&
457 		map_value_has_spin_lock(reg->map_ptr);
458 }
459 
460 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
461 {
462 	return type == PTR_TO_SOCKET ||
463 		type == PTR_TO_SOCKET_OR_NULL ||
464 		type == PTR_TO_TCP_SOCK ||
465 		type == PTR_TO_TCP_SOCK_OR_NULL ||
466 		type == PTR_TO_MEM ||
467 		type == PTR_TO_MEM_OR_NULL;
468 }
469 
470 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
471 {
472 	return type == ARG_PTR_TO_SOCK_COMMON;
473 }
474 
475 static bool arg_type_may_be_null(enum bpf_arg_type type)
476 {
477 	return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
478 	       type == ARG_PTR_TO_MEM_OR_NULL ||
479 	       type == ARG_PTR_TO_CTX_OR_NULL ||
480 	       type == ARG_PTR_TO_SOCKET_OR_NULL ||
481 	       type == ARG_PTR_TO_ALLOC_MEM_OR_NULL ||
482 	       type == ARG_PTR_TO_STACK_OR_NULL;
483 }
484 
485 /* Determine whether the function releases some resources allocated by another
486  * function call. The first reference type argument will be assumed to be
487  * released by release_reference().
488  */
489 static bool is_release_function(enum bpf_func_id func_id)
490 {
491 	return func_id == BPF_FUNC_sk_release ||
492 	       func_id == BPF_FUNC_ringbuf_submit ||
493 	       func_id == BPF_FUNC_ringbuf_discard;
494 }
495 
496 static bool may_be_acquire_function(enum bpf_func_id func_id)
497 {
498 	return func_id == BPF_FUNC_sk_lookup_tcp ||
499 		func_id == BPF_FUNC_sk_lookup_udp ||
500 		func_id == BPF_FUNC_skc_lookup_tcp ||
501 		func_id == BPF_FUNC_map_lookup_elem ||
502 	        func_id == BPF_FUNC_ringbuf_reserve;
503 }
504 
505 static bool is_acquire_function(enum bpf_func_id func_id,
506 				const struct bpf_map *map)
507 {
508 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
509 
510 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
511 	    func_id == BPF_FUNC_sk_lookup_udp ||
512 	    func_id == BPF_FUNC_skc_lookup_tcp ||
513 	    func_id == BPF_FUNC_ringbuf_reserve)
514 		return true;
515 
516 	if (func_id == BPF_FUNC_map_lookup_elem &&
517 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
518 	     map_type == BPF_MAP_TYPE_SOCKHASH))
519 		return true;
520 
521 	return false;
522 }
523 
524 static bool is_ptr_cast_function(enum bpf_func_id func_id)
525 {
526 	return func_id == BPF_FUNC_tcp_sock ||
527 		func_id == BPF_FUNC_sk_fullsock ||
528 		func_id == BPF_FUNC_skc_to_tcp_sock ||
529 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
530 		func_id == BPF_FUNC_skc_to_udp6_sock ||
531 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
532 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
533 }
534 
535 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
536 {
537 	return BPF_CLASS(insn->code) == BPF_STX &&
538 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
539 	       insn->imm == BPF_CMPXCHG;
540 }
541 
542 /* string representation of 'enum bpf_reg_type' */
543 static const char * const reg_type_str[] = {
544 	[NOT_INIT]		= "?",
545 	[SCALAR_VALUE]		= "inv",
546 	[PTR_TO_CTX]		= "ctx",
547 	[CONST_PTR_TO_MAP]	= "map_ptr",
548 	[PTR_TO_MAP_VALUE]	= "map_value",
549 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
550 	[PTR_TO_STACK]		= "fp",
551 	[PTR_TO_PACKET]		= "pkt",
552 	[PTR_TO_PACKET_META]	= "pkt_meta",
553 	[PTR_TO_PACKET_END]	= "pkt_end",
554 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
555 	[PTR_TO_SOCKET]		= "sock",
556 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
557 	[PTR_TO_SOCK_COMMON]	= "sock_common",
558 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
559 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
560 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
561 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
562 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
563 	[PTR_TO_BTF_ID]		= "ptr_",
564 	[PTR_TO_BTF_ID_OR_NULL]	= "ptr_or_null_",
565 	[PTR_TO_PERCPU_BTF_ID]	= "percpu_ptr_",
566 	[PTR_TO_MEM]		= "mem",
567 	[PTR_TO_MEM_OR_NULL]	= "mem_or_null",
568 	[PTR_TO_RDONLY_BUF]	= "rdonly_buf",
569 	[PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
570 	[PTR_TO_RDWR_BUF]	= "rdwr_buf",
571 	[PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
572 	[PTR_TO_FUNC]		= "func",
573 	[PTR_TO_MAP_KEY]	= "map_key",
574 };
575 
576 static char slot_type_char[] = {
577 	[STACK_INVALID]	= '?',
578 	[STACK_SPILL]	= 'r',
579 	[STACK_MISC]	= 'm',
580 	[STACK_ZERO]	= '0',
581 };
582 
583 static void print_liveness(struct bpf_verifier_env *env,
584 			   enum bpf_reg_liveness live)
585 {
586 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
587 	    verbose(env, "_");
588 	if (live & REG_LIVE_READ)
589 		verbose(env, "r");
590 	if (live & REG_LIVE_WRITTEN)
591 		verbose(env, "w");
592 	if (live & REG_LIVE_DONE)
593 		verbose(env, "D");
594 }
595 
596 static struct bpf_func_state *func(struct bpf_verifier_env *env,
597 				   const struct bpf_reg_state *reg)
598 {
599 	struct bpf_verifier_state *cur = env->cur_state;
600 
601 	return cur->frame[reg->frameno];
602 }
603 
604 static const char *kernel_type_name(const struct btf* btf, u32 id)
605 {
606 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
607 }
608 
609 /* The reg state of a pointer or a bounded scalar was saved when
610  * it was spilled to the stack.
611  */
612 static bool is_spilled_reg(const struct bpf_stack_state *stack)
613 {
614 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
615 }
616 
617 static void scrub_spilled_slot(u8 *stype)
618 {
619 	if (*stype != STACK_INVALID)
620 		*stype = STACK_MISC;
621 }
622 
623 static void print_verifier_state(struct bpf_verifier_env *env,
624 				 const struct bpf_func_state *state)
625 {
626 	const struct bpf_reg_state *reg;
627 	enum bpf_reg_type t;
628 	int i;
629 
630 	if (state->frameno)
631 		verbose(env, " frame%d:", state->frameno);
632 	for (i = 0; i < MAX_BPF_REG; i++) {
633 		reg = &state->regs[i];
634 		t = reg->type;
635 		if (t == NOT_INIT)
636 			continue;
637 		verbose(env, " R%d", i);
638 		print_liveness(env, reg->live);
639 		verbose(env, "=%s", reg_type_str[t]);
640 		if (t == SCALAR_VALUE && reg->precise)
641 			verbose(env, "P");
642 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
643 		    tnum_is_const(reg->var_off)) {
644 			/* reg->off should be 0 for SCALAR_VALUE */
645 			verbose(env, "%lld", reg->var_off.value + reg->off);
646 		} else {
647 			if (t == PTR_TO_BTF_ID ||
648 			    t == PTR_TO_BTF_ID_OR_NULL ||
649 			    t == PTR_TO_PERCPU_BTF_ID)
650 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
651 			verbose(env, "(id=%d", reg->id);
652 			if (reg_type_may_be_refcounted_or_null(t))
653 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
654 			if (t != SCALAR_VALUE)
655 				verbose(env, ",off=%d", reg->off);
656 			if (type_is_pkt_pointer(t))
657 				verbose(env, ",r=%d", reg->range);
658 			else if (t == CONST_PTR_TO_MAP ||
659 				 t == PTR_TO_MAP_KEY ||
660 				 t == PTR_TO_MAP_VALUE ||
661 				 t == PTR_TO_MAP_VALUE_OR_NULL)
662 				verbose(env, ",ks=%d,vs=%d",
663 					reg->map_ptr->key_size,
664 					reg->map_ptr->value_size);
665 			if (tnum_is_const(reg->var_off)) {
666 				/* Typically an immediate SCALAR_VALUE, but
667 				 * could be a pointer whose offset is too big
668 				 * for reg->off
669 				 */
670 				verbose(env, ",imm=%llx", reg->var_off.value);
671 			} else {
672 				if (reg->smin_value != reg->umin_value &&
673 				    reg->smin_value != S64_MIN)
674 					verbose(env, ",smin_value=%lld",
675 						(long long)reg->smin_value);
676 				if (reg->smax_value != reg->umax_value &&
677 				    reg->smax_value != S64_MAX)
678 					verbose(env, ",smax_value=%lld",
679 						(long long)reg->smax_value);
680 				if (reg->umin_value != 0)
681 					verbose(env, ",umin_value=%llu",
682 						(unsigned long long)reg->umin_value);
683 				if (reg->umax_value != U64_MAX)
684 					verbose(env, ",umax_value=%llu",
685 						(unsigned long long)reg->umax_value);
686 				if (!tnum_is_unknown(reg->var_off)) {
687 					char tn_buf[48];
688 
689 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
690 					verbose(env, ",var_off=%s", tn_buf);
691 				}
692 				if (reg->s32_min_value != reg->smin_value &&
693 				    reg->s32_min_value != S32_MIN)
694 					verbose(env, ",s32_min_value=%d",
695 						(int)(reg->s32_min_value));
696 				if (reg->s32_max_value != reg->smax_value &&
697 				    reg->s32_max_value != S32_MAX)
698 					verbose(env, ",s32_max_value=%d",
699 						(int)(reg->s32_max_value));
700 				if (reg->u32_min_value != reg->umin_value &&
701 				    reg->u32_min_value != U32_MIN)
702 					verbose(env, ",u32_min_value=%d",
703 						(int)(reg->u32_min_value));
704 				if (reg->u32_max_value != reg->umax_value &&
705 				    reg->u32_max_value != U32_MAX)
706 					verbose(env, ",u32_max_value=%d",
707 						(int)(reg->u32_max_value));
708 			}
709 			verbose(env, ")");
710 		}
711 	}
712 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
713 		char types_buf[BPF_REG_SIZE + 1];
714 		bool valid = false;
715 		int j;
716 
717 		for (j = 0; j < BPF_REG_SIZE; j++) {
718 			if (state->stack[i].slot_type[j] != STACK_INVALID)
719 				valid = true;
720 			types_buf[j] = slot_type_char[
721 					state->stack[i].slot_type[j]];
722 		}
723 		types_buf[BPF_REG_SIZE] = 0;
724 		if (!valid)
725 			continue;
726 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
727 		print_liveness(env, state->stack[i].spilled_ptr.live);
728 		if (is_spilled_reg(&state->stack[i])) {
729 			reg = &state->stack[i].spilled_ptr;
730 			t = reg->type;
731 			verbose(env, "=%s", reg_type_str[t]);
732 			if (t == SCALAR_VALUE && reg->precise)
733 				verbose(env, "P");
734 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
735 				verbose(env, "%lld", reg->var_off.value + reg->off);
736 		} else {
737 			verbose(env, "=%s", types_buf);
738 		}
739 	}
740 	if (state->acquired_refs && state->refs[0].id) {
741 		verbose(env, " refs=%d", state->refs[0].id);
742 		for (i = 1; i < state->acquired_refs; i++)
743 			if (state->refs[i].id)
744 				verbose(env, ",%d", state->refs[i].id);
745 	}
746 	if (state->in_callback_fn)
747 		verbose(env, " cb");
748 	if (state->in_async_callback_fn)
749 		verbose(env, " async_cb");
750 	verbose(env, "\n");
751 }
752 
753 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
754  * small to hold src. This is different from krealloc since we don't want to preserve
755  * the contents of dst.
756  *
757  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
758  * not be allocated.
759  */
760 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
761 {
762 	size_t bytes;
763 
764 	if (ZERO_OR_NULL_PTR(src))
765 		goto out;
766 
767 	if (unlikely(check_mul_overflow(n, size, &bytes)))
768 		return NULL;
769 
770 	if (ksize(dst) < bytes) {
771 		kfree(dst);
772 		dst = kmalloc_track_caller(bytes, flags);
773 		if (!dst)
774 			return NULL;
775 	}
776 
777 	memcpy(dst, src, bytes);
778 out:
779 	return dst ? dst : ZERO_SIZE_PTR;
780 }
781 
782 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
783  * small to hold new_n items. new items are zeroed out if the array grows.
784  *
785  * Contrary to krealloc_array, does not free arr if new_n is zero.
786  */
787 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
788 {
789 	if (!new_n || old_n == new_n)
790 		goto out;
791 
792 	arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
793 	if (!arr)
794 		return NULL;
795 
796 	if (new_n > old_n)
797 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
798 
799 out:
800 	return arr ? arr : ZERO_SIZE_PTR;
801 }
802 
803 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
804 {
805 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
806 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
807 	if (!dst->refs)
808 		return -ENOMEM;
809 
810 	dst->acquired_refs = src->acquired_refs;
811 	return 0;
812 }
813 
814 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
815 {
816 	size_t n = src->allocated_stack / BPF_REG_SIZE;
817 
818 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
819 				GFP_KERNEL);
820 	if (!dst->stack)
821 		return -ENOMEM;
822 
823 	dst->allocated_stack = src->allocated_stack;
824 	return 0;
825 }
826 
827 static int resize_reference_state(struct bpf_func_state *state, size_t n)
828 {
829 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
830 				    sizeof(struct bpf_reference_state));
831 	if (!state->refs)
832 		return -ENOMEM;
833 
834 	state->acquired_refs = n;
835 	return 0;
836 }
837 
838 static int grow_stack_state(struct bpf_func_state *state, int size)
839 {
840 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
841 
842 	if (old_n >= n)
843 		return 0;
844 
845 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
846 	if (!state->stack)
847 		return -ENOMEM;
848 
849 	state->allocated_stack = size;
850 	return 0;
851 }
852 
853 /* Acquire a pointer id from the env and update the state->refs to include
854  * this new pointer reference.
855  * On success, returns a valid pointer id to associate with the register
856  * On failure, returns a negative errno.
857  */
858 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
859 {
860 	struct bpf_func_state *state = cur_func(env);
861 	int new_ofs = state->acquired_refs;
862 	int id, err;
863 
864 	err = resize_reference_state(state, state->acquired_refs + 1);
865 	if (err)
866 		return err;
867 	id = ++env->id_gen;
868 	state->refs[new_ofs].id = id;
869 	state->refs[new_ofs].insn_idx = insn_idx;
870 
871 	return id;
872 }
873 
874 /* release function corresponding to acquire_reference_state(). Idempotent. */
875 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
876 {
877 	int i, last_idx;
878 
879 	last_idx = state->acquired_refs - 1;
880 	for (i = 0; i < state->acquired_refs; i++) {
881 		if (state->refs[i].id == ptr_id) {
882 			if (last_idx && i != last_idx)
883 				memcpy(&state->refs[i], &state->refs[last_idx],
884 				       sizeof(*state->refs));
885 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
886 			state->acquired_refs--;
887 			return 0;
888 		}
889 	}
890 	return -EINVAL;
891 }
892 
893 static void free_func_state(struct bpf_func_state *state)
894 {
895 	if (!state)
896 		return;
897 	kfree(state->refs);
898 	kfree(state->stack);
899 	kfree(state);
900 }
901 
902 static void clear_jmp_history(struct bpf_verifier_state *state)
903 {
904 	kfree(state->jmp_history);
905 	state->jmp_history = NULL;
906 	state->jmp_history_cnt = 0;
907 }
908 
909 static void free_verifier_state(struct bpf_verifier_state *state,
910 				bool free_self)
911 {
912 	int i;
913 
914 	for (i = 0; i <= state->curframe; i++) {
915 		free_func_state(state->frame[i]);
916 		state->frame[i] = NULL;
917 	}
918 	clear_jmp_history(state);
919 	if (free_self)
920 		kfree(state);
921 }
922 
923 /* copy verifier state from src to dst growing dst stack space
924  * when necessary to accommodate larger src stack
925  */
926 static int copy_func_state(struct bpf_func_state *dst,
927 			   const struct bpf_func_state *src)
928 {
929 	int err;
930 
931 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
932 	err = copy_reference_state(dst, src);
933 	if (err)
934 		return err;
935 	return copy_stack_state(dst, src);
936 }
937 
938 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
939 			       const struct bpf_verifier_state *src)
940 {
941 	struct bpf_func_state *dst;
942 	int i, err;
943 
944 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
945 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
946 					    GFP_USER);
947 	if (!dst_state->jmp_history)
948 		return -ENOMEM;
949 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
950 
951 	/* if dst has more stack frames then src frame, free them */
952 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
953 		free_func_state(dst_state->frame[i]);
954 		dst_state->frame[i] = NULL;
955 	}
956 	dst_state->speculative = src->speculative;
957 	dst_state->curframe = src->curframe;
958 	dst_state->active_spin_lock = src->active_spin_lock;
959 	dst_state->branches = src->branches;
960 	dst_state->parent = src->parent;
961 	dst_state->first_insn_idx = src->first_insn_idx;
962 	dst_state->last_insn_idx = src->last_insn_idx;
963 	for (i = 0; i <= src->curframe; i++) {
964 		dst = dst_state->frame[i];
965 		if (!dst) {
966 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
967 			if (!dst)
968 				return -ENOMEM;
969 			dst_state->frame[i] = dst;
970 		}
971 		err = copy_func_state(dst, src->frame[i]);
972 		if (err)
973 			return err;
974 	}
975 	return 0;
976 }
977 
978 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
979 {
980 	while (st) {
981 		u32 br = --st->branches;
982 
983 		/* WARN_ON(br > 1) technically makes sense here,
984 		 * but see comment in push_stack(), hence:
985 		 */
986 		WARN_ONCE((int)br < 0,
987 			  "BUG update_branch_counts:branches_to_explore=%d\n",
988 			  br);
989 		if (br)
990 			break;
991 		st = st->parent;
992 	}
993 }
994 
995 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
996 		     int *insn_idx, bool pop_log)
997 {
998 	struct bpf_verifier_state *cur = env->cur_state;
999 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1000 	int err;
1001 
1002 	if (env->head == NULL)
1003 		return -ENOENT;
1004 
1005 	if (cur) {
1006 		err = copy_verifier_state(cur, &head->st);
1007 		if (err)
1008 			return err;
1009 	}
1010 	if (pop_log)
1011 		bpf_vlog_reset(&env->log, head->log_pos);
1012 	if (insn_idx)
1013 		*insn_idx = head->insn_idx;
1014 	if (prev_insn_idx)
1015 		*prev_insn_idx = head->prev_insn_idx;
1016 	elem = head->next;
1017 	free_verifier_state(&head->st, false);
1018 	kfree(head);
1019 	env->head = elem;
1020 	env->stack_size--;
1021 	return 0;
1022 }
1023 
1024 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1025 					     int insn_idx, int prev_insn_idx,
1026 					     bool speculative)
1027 {
1028 	struct bpf_verifier_state *cur = env->cur_state;
1029 	struct bpf_verifier_stack_elem *elem;
1030 	int err;
1031 
1032 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1033 	if (!elem)
1034 		goto err;
1035 
1036 	elem->insn_idx = insn_idx;
1037 	elem->prev_insn_idx = prev_insn_idx;
1038 	elem->next = env->head;
1039 	elem->log_pos = env->log.len_used;
1040 	env->head = elem;
1041 	env->stack_size++;
1042 	err = copy_verifier_state(&elem->st, cur);
1043 	if (err)
1044 		goto err;
1045 	elem->st.speculative |= speculative;
1046 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1047 		verbose(env, "The sequence of %d jumps is too complex.\n",
1048 			env->stack_size);
1049 		goto err;
1050 	}
1051 	if (elem->st.parent) {
1052 		++elem->st.parent->branches;
1053 		/* WARN_ON(branches > 2) technically makes sense here,
1054 		 * but
1055 		 * 1. speculative states will bump 'branches' for non-branch
1056 		 * instructions
1057 		 * 2. is_state_visited() heuristics may decide not to create
1058 		 * a new state for a sequence of branches and all such current
1059 		 * and cloned states will be pointing to a single parent state
1060 		 * which might have large 'branches' count.
1061 		 */
1062 	}
1063 	return &elem->st;
1064 err:
1065 	free_verifier_state(env->cur_state, true);
1066 	env->cur_state = NULL;
1067 	/* pop all elements and return */
1068 	while (!pop_stack(env, NULL, NULL, false));
1069 	return NULL;
1070 }
1071 
1072 #define CALLER_SAVED_REGS 6
1073 static const int caller_saved[CALLER_SAVED_REGS] = {
1074 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1075 };
1076 
1077 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1078 				struct bpf_reg_state *reg);
1079 
1080 /* This helper doesn't clear reg->id */
1081 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1082 {
1083 	reg->var_off = tnum_const(imm);
1084 	reg->smin_value = (s64)imm;
1085 	reg->smax_value = (s64)imm;
1086 	reg->umin_value = imm;
1087 	reg->umax_value = imm;
1088 
1089 	reg->s32_min_value = (s32)imm;
1090 	reg->s32_max_value = (s32)imm;
1091 	reg->u32_min_value = (u32)imm;
1092 	reg->u32_max_value = (u32)imm;
1093 }
1094 
1095 /* Mark the unknown part of a register (variable offset or scalar value) as
1096  * known to have the value @imm.
1097  */
1098 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1099 {
1100 	/* Clear id, off, and union(map_ptr, range) */
1101 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1102 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1103 	___mark_reg_known(reg, imm);
1104 }
1105 
1106 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1107 {
1108 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1109 	reg->s32_min_value = (s32)imm;
1110 	reg->s32_max_value = (s32)imm;
1111 	reg->u32_min_value = (u32)imm;
1112 	reg->u32_max_value = (u32)imm;
1113 }
1114 
1115 /* Mark the 'variable offset' part of a register as zero.  This should be
1116  * used only on registers holding a pointer type.
1117  */
1118 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1119 {
1120 	__mark_reg_known(reg, 0);
1121 }
1122 
1123 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1124 {
1125 	__mark_reg_known(reg, 0);
1126 	reg->type = SCALAR_VALUE;
1127 }
1128 
1129 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1130 				struct bpf_reg_state *regs, u32 regno)
1131 {
1132 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1133 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1134 		/* Something bad happened, let's kill all regs */
1135 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1136 			__mark_reg_not_init(env, regs + regno);
1137 		return;
1138 	}
1139 	__mark_reg_known_zero(regs + regno);
1140 }
1141 
1142 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1143 {
1144 	switch (reg->type) {
1145 	case PTR_TO_MAP_VALUE_OR_NULL: {
1146 		const struct bpf_map *map = reg->map_ptr;
1147 
1148 		if (map->inner_map_meta) {
1149 			reg->type = CONST_PTR_TO_MAP;
1150 			reg->map_ptr = map->inner_map_meta;
1151 			/* transfer reg's id which is unique for every map_lookup_elem
1152 			 * as UID of the inner map.
1153 			 */
1154 			if (map_value_has_timer(map->inner_map_meta))
1155 				reg->map_uid = reg->id;
1156 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1157 			reg->type = PTR_TO_XDP_SOCK;
1158 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1159 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1160 			reg->type = PTR_TO_SOCKET;
1161 		} else {
1162 			reg->type = PTR_TO_MAP_VALUE;
1163 		}
1164 		break;
1165 	}
1166 	case PTR_TO_SOCKET_OR_NULL:
1167 		reg->type = PTR_TO_SOCKET;
1168 		break;
1169 	case PTR_TO_SOCK_COMMON_OR_NULL:
1170 		reg->type = PTR_TO_SOCK_COMMON;
1171 		break;
1172 	case PTR_TO_TCP_SOCK_OR_NULL:
1173 		reg->type = PTR_TO_TCP_SOCK;
1174 		break;
1175 	case PTR_TO_BTF_ID_OR_NULL:
1176 		reg->type = PTR_TO_BTF_ID;
1177 		break;
1178 	case PTR_TO_MEM_OR_NULL:
1179 		reg->type = PTR_TO_MEM;
1180 		break;
1181 	case PTR_TO_RDONLY_BUF_OR_NULL:
1182 		reg->type = PTR_TO_RDONLY_BUF;
1183 		break;
1184 	case PTR_TO_RDWR_BUF_OR_NULL:
1185 		reg->type = PTR_TO_RDWR_BUF;
1186 		break;
1187 	default:
1188 		WARN_ONCE(1, "unknown nullable register type");
1189 	}
1190 }
1191 
1192 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1193 {
1194 	return type_is_pkt_pointer(reg->type);
1195 }
1196 
1197 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1198 {
1199 	return reg_is_pkt_pointer(reg) ||
1200 	       reg->type == PTR_TO_PACKET_END;
1201 }
1202 
1203 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1204 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1205 				    enum bpf_reg_type which)
1206 {
1207 	/* The register can already have a range from prior markings.
1208 	 * This is fine as long as it hasn't been advanced from its
1209 	 * origin.
1210 	 */
1211 	return reg->type == which &&
1212 	       reg->id == 0 &&
1213 	       reg->off == 0 &&
1214 	       tnum_equals_const(reg->var_off, 0);
1215 }
1216 
1217 /* Reset the min/max bounds of a register */
1218 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1219 {
1220 	reg->smin_value = S64_MIN;
1221 	reg->smax_value = S64_MAX;
1222 	reg->umin_value = 0;
1223 	reg->umax_value = U64_MAX;
1224 
1225 	reg->s32_min_value = S32_MIN;
1226 	reg->s32_max_value = S32_MAX;
1227 	reg->u32_min_value = 0;
1228 	reg->u32_max_value = U32_MAX;
1229 }
1230 
1231 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1232 {
1233 	reg->smin_value = S64_MIN;
1234 	reg->smax_value = S64_MAX;
1235 	reg->umin_value = 0;
1236 	reg->umax_value = U64_MAX;
1237 }
1238 
1239 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1240 {
1241 	reg->s32_min_value = S32_MIN;
1242 	reg->s32_max_value = S32_MAX;
1243 	reg->u32_min_value = 0;
1244 	reg->u32_max_value = U32_MAX;
1245 }
1246 
1247 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1248 {
1249 	struct tnum var32_off = tnum_subreg(reg->var_off);
1250 
1251 	/* min signed is max(sign bit) | min(other bits) */
1252 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1253 			var32_off.value | (var32_off.mask & S32_MIN));
1254 	/* max signed is min(sign bit) | max(other bits) */
1255 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1256 			var32_off.value | (var32_off.mask & S32_MAX));
1257 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1258 	reg->u32_max_value = min(reg->u32_max_value,
1259 				 (u32)(var32_off.value | var32_off.mask));
1260 }
1261 
1262 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1263 {
1264 	/* min signed is max(sign bit) | min(other bits) */
1265 	reg->smin_value = max_t(s64, reg->smin_value,
1266 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1267 	/* max signed is min(sign bit) | max(other bits) */
1268 	reg->smax_value = min_t(s64, reg->smax_value,
1269 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1270 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1271 	reg->umax_value = min(reg->umax_value,
1272 			      reg->var_off.value | reg->var_off.mask);
1273 }
1274 
1275 static void __update_reg_bounds(struct bpf_reg_state *reg)
1276 {
1277 	__update_reg32_bounds(reg);
1278 	__update_reg64_bounds(reg);
1279 }
1280 
1281 /* Uses signed min/max values to inform unsigned, and vice-versa */
1282 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1283 {
1284 	/* Learn sign from signed bounds.
1285 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1286 	 * are the same, so combine.  This works even in the negative case, e.g.
1287 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1288 	 */
1289 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1290 		reg->s32_min_value = reg->u32_min_value =
1291 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1292 		reg->s32_max_value = reg->u32_max_value =
1293 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1294 		return;
1295 	}
1296 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1297 	 * boundary, so we must be careful.
1298 	 */
1299 	if ((s32)reg->u32_max_value >= 0) {
1300 		/* Positive.  We can't learn anything from the smin, but smax
1301 		 * is positive, hence safe.
1302 		 */
1303 		reg->s32_min_value = reg->u32_min_value;
1304 		reg->s32_max_value = reg->u32_max_value =
1305 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1306 	} else if ((s32)reg->u32_min_value < 0) {
1307 		/* Negative.  We can't learn anything from the smax, but smin
1308 		 * is negative, hence safe.
1309 		 */
1310 		reg->s32_min_value = reg->u32_min_value =
1311 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1312 		reg->s32_max_value = reg->u32_max_value;
1313 	}
1314 }
1315 
1316 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1317 {
1318 	/* Learn sign from signed bounds.
1319 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1320 	 * are the same, so combine.  This works even in the negative case, e.g.
1321 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1322 	 */
1323 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1324 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1325 							  reg->umin_value);
1326 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1327 							  reg->umax_value);
1328 		return;
1329 	}
1330 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1331 	 * boundary, so we must be careful.
1332 	 */
1333 	if ((s64)reg->umax_value >= 0) {
1334 		/* Positive.  We can't learn anything from the smin, but smax
1335 		 * is positive, hence safe.
1336 		 */
1337 		reg->smin_value = reg->umin_value;
1338 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1339 							  reg->umax_value);
1340 	} else if ((s64)reg->umin_value < 0) {
1341 		/* Negative.  We can't learn anything from the smax, but smin
1342 		 * is negative, hence safe.
1343 		 */
1344 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1345 							  reg->umin_value);
1346 		reg->smax_value = reg->umax_value;
1347 	}
1348 }
1349 
1350 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1351 {
1352 	__reg32_deduce_bounds(reg);
1353 	__reg64_deduce_bounds(reg);
1354 }
1355 
1356 /* Attempts to improve var_off based on unsigned min/max information */
1357 static void __reg_bound_offset(struct bpf_reg_state *reg)
1358 {
1359 	struct tnum var64_off = tnum_intersect(reg->var_off,
1360 					       tnum_range(reg->umin_value,
1361 							  reg->umax_value));
1362 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1363 						tnum_range(reg->u32_min_value,
1364 							   reg->u32_max_value));
1365 
1366 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1367 }
1368 
1369 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1370 {
1371 	reg->umin_value = reg->u32_min_value;
1372 	reg->umax_value = reg->u32_max_value;
1373 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1374 	 * but must be positive otherwise set to worse case bounds
1375 	 * and refine later from tnum.
1376 	 */
1377 	if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1378 		reg->smax_value = reg->s32_max_value;
1379 	else
1380 		reg->smax_value = U32_MAX;
1381 	if (reg->s32_min_value >= 0)
1382 		reg->smin_value = reg->s32_min_value;
1383 	else
1384 		reg->smin_value = 0;
1385 }
1386 
1387 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1388 {
1389 	/* special case when 64-bit register has upper 32-bit register
1390 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1391 	 * allowing us to use 32-bit bounds directly,
1392 	 */
1393 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1394 		__reg_assign_32_into_64(reg);
1395 	} else {
1396 		/* Otherwise the best we can do is push lower 32bit known and
1397 		 * unknown bits into register (var_off set from jmp logic)
1398 		 * then learn as much as possible from the 64-bit tnum
1399 		 * known and unknown bits. The previous smin/smax bounds are
1400 		 * invalid here because of jmp32 compare so mark them unknown
1401 		 * so they do not impact tnum bounds calculation.
1402 		 */
1403 		__mark_reg64_unbounded(reg);
1404 		__update_reg_bounds(reg);
1405 	}
1406 
1407 	/* Intersecting with the old var_off might have improved our bounds
1408 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1409 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1410 	 */
1411 	__reg_deduce_bounds(reg);
1412 	__reg_bound_offset(reg);
1413 	__update_reg_bounds(reg);
1414 }
1415 
1416 static bool __reg64_bound_s32(s64 a)
1417 {
1418 	return a >= S32_MIN && a <= S32_MAX;
1419 }
1420 
1421 static bool __reg64_bound_u32(u64 a)
1422 {
1423 	return a >= U32_MIN && a <= U32_MAX;
1424 }
1425 
1426 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1427 {
1428 	__mark_reg32_unbounded(reg);
1429 
1430 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1431 		reg->s32_min_value = (s32)reg->smin_value;
1432 		reg->s32_max_value = (s32)reg->smax_value;
1433 	}
1434 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1435 		reg->u32_min_value = (u32)reg->umin_value;
1436 		reg->u32_max_value = (u32)reg->umax_value;
1437 	}
1438 
1439 	/* Intersecting with the old var_off might have improved our bounds
1440 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1441 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1442 	 */
1443 	__reg_deduce_bounds(reg);
1444 	__reg_bound_offset(reg);
1445 	__update_reg_bounds(reg);
1446 }
1447 
1448 /* Mark a register as having a completely unknown (scalar) value. */
1449 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1450 			       struct bpf_reg_state *reg)
1451 {
1452 	/*
1453 	 * Clear type, id, off, and union(map_ptr, range) and
1454 	 * padding between 'type' and union
1455 	 */
1456 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1457 	reg->type = SCALAR_VALUE;
1458 	reg->var_off = tnum_unknown;
1459 	reg->frameno = 0;
1460 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1461 	__mark_reg_unbounded(reg);
1462 }
1463 
1464 static void mark_reg_unknown(struct bpf_verifier_env *env,
1465 			     struct bpf_reg_state *regs, u32 regno)
1466 {
1467 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1468 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1469 		/* Something bad happened, let's kill all regs except FP */
1470 		for (regno = 0; regno < BPF_REG_FP; regno++)
1471 			__mark_reg_not_init(env, regs + regno);
1472 		return;
1473 	}
1474 	__mark_reg_unknown(env, regs + regno);
1475 }
1476 
1477 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1478 				struct bpf_reg_state *reg)
1479 {
1480 	__mark_reg_unknown(env, reg);
1481 	reg->type = NOT_INIT;
1482 }
1483 
1484 static void mark_reg_not_init(struct bpf_verifier_env *env,
1485 			      struct bpf_reg_state *regs, u32 regno)
1486 {
1487 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1488 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1489 		/* Something bad happened, let's kill all regs except FP */
1490 		for (regno = 0; regno < BPF_REG_FP; regno++)
1491 			__mark_reg_not_init(env, regs + regno);
1492 		return;
1493 	}
1494 	__mark_reg_not_init(env, regs + regno);
1495 }
1496 
1497 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1498 			    struct bpf_reg_state *regs, u32 regno,
1499 			    enum bpf_reg_type reg_type,
1500 			    struct btf *btf, u32 btf_id)
1501 {
1502 	if (reg_type == SCALAR_VALUE) {
1503 		mark_reg_unknown(env, regs, regno);
1504 		return;
1505 	}
1506 	mark_reg_known_zero(env, regs, regno);
1507 	regs[regno].type = PTR_TO_BTF_ID;
1508 	regs[regno].btf = btf;
1509 	regs[regno].btf_id = btf_id;
1510 }
1511 
1512 #define DEF_NOT_SUBREG	(0)
1513 static void init_reg_state(struct bpf_verifier_env *env,
1514 			   struct bpf_func_state *state)
1515 {
1516 	struct bpf_reg_state *regs = state->regs;
1517 	int i;
1518 
1519 	for (i = 0; i < MAX_BPF_REG; i++) {
1520 		mark_reg_not_init(env, regs, i);
1521 		regs[i].live = REG_LIVE_NONE;
1522 		regs[i].parent = NULL;
1523 		regs[i].subreg_def = DEF_NOT_SUBREG;
1524 	}
1525 
1526 	/* frame pointer */
1527 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1528 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1529 	regs[BPF_REG_FP].frameno = state->frameno;
1530 }
1531 
1532 #define BPF_MAIN_FUNC (-1)
1533 static void init_func_state(struct bpf_verifier_env *env,
1534 			    struct bpf_func_state *state,
1535 			    int callsite, int frameno, int subprogno)
1536 {
1537 	state->callsite = callsite;
1538 	state->frameno = frameno;
1539 	state->subprogno = subprogno;
1540 	init_reg_state(env, state);
1541 }
1542 
1543 /* Similar to push_stack(), but for async callbacks */
1544 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1545 						int insn_idx, int prev_insn_idx,
1546 						int subprog)
1547 {
1548 	struct bpf_verifier_stack_elem *elem;
1549 	struct bpf_func_state *frame;
1550 
1551 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1552 	if (!elem)
1553 		goto err;
1554 
1555 	elem->insn_idx = insn_idx;
1556 	elem->prev_insn_idx = prev_insn_idx;
1557 	elem->next = env->head;
1558 	elem->log_pos = env->log.len_used;
1559 	env->head = elem;
1560 	env->stack_size++;
1561 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1562 		verbose(env,
1563 			"The sequence of %d jumps is too complex for async cb.\n",
1564 			env->stack_size);
1565 		goto err;
1566 	}
1567 	/* Unlike push_stack() do not copy_verifier_state().
1568 	 * The caller state doesn't matter.
1569 	 * This is async callback. It starts in a fresh stack.
1570 	 * Initialize it similar to do_check_common().
1571 	 */
1572 	elem->st.branches = 1;
1573 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1574 	if (!frame)
1575 		goto err;
1576 	init_func_state(env, frame,
1577 			BPF_MAIN_FUNC /* callsite */,
1578 			0 /* frameno within this callchain */,
1579 			subprog /* subprog number within this prog */);
1580 	elem->st.frame[0] = frame;
1581 	return &elem->st;
1582 err:
1583 	free_verifier_state(env->cur_state, true);
1584 	env->cur_state = NULL;
1585 	/* pop all elements and return */
1586 	while (!pop_stack(env, NULL, NULL, false));
1587 	return NULL;
1588 }
1589 
1590 
1591 enum reg_arg_type {
1592 	SRC_OP,		/* register is used as source operand */
1593 	DST_OP,		/* register is used as destination operand */
1594 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1595 };
1596 
1597 static int cmp_subprogs(const void *a, const void *b)
1598 {
1599 	return ((struct bpf_subprog_info *)a)->start -
1600 	       ((struct bpf_subprog_info *)b)->start;
1601 }
1602 
1603 static int find_subprog(struct bpf_verifier_env *env, int off)
1604 {
1605 	struct bpf_subprog_info *p;
1606 
1607 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1608 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1609 	if (!p)
1610 		return -ENOENT;
1611 	return p - env->subprog_info;
1612 
1613 }
1614 
1615 static int add_subprog(struct bpf_verifier_env *env, int off)
1616 {
1617 	int insn_cnt = env->prog->len;
1618 	int ret;
1619 
1620 	if (off >= insn_cnt || off < 0) {
1621 		verbose(env, "call to invalid destination\n");
1622 		return -EINVAL;
1623 	}
1624 	ret = find_subprog(env, off);
1625 	if (ret >= 0)
1626 		return ret;
1627 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1628 		verbose(env, "too many subprograms\n");
1629 		return -E2BIG;
1630 	}
1631 	/* determine subprog starts. The end is one before the next starts */
1632 	env->subprog_info[env->subprog_cnt++].start = off;
1633 	sort(env->subprog_info, env->subprog_cnt,
1634 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1635 	return env->subprog_cnt - 1;
1636 }
1637 
1638 #define MAX_KFUNC_DESCS 256
1639 #define MAX_KFUNC_BTFS	256
1640 
1641 struct bpf_kfunc_desc {
1642 	struct btf_func_model func_model;
1643 	u32 func_id;
1644 	s32 imm;
1645 	u16 offset;
1646 };
1647 
1648 struct bpf_kfunc_btf {
1649 	struct btf *btf;
1650 	struct module *module;
1651 	u16 offset;
1652 };
1653 
1654 struct bpf_kfunc_desc_tab {
1655 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1656 	u32 nr_descs;
1657 };
1658 
1659 struct bpf_kfunc_btf_tab {
1660 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
1661 	u32 nr_descs;
1662 };
1663 
1664 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
1665 {
1666 	const struct bpf_kfunc_desc *d0 = a;
1667 	const struct bpf_kfunc_desc *d1 = b;
1668 
1669 	/* func_id is not greater than BTF_MAX_TYPE */
1670 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
1671 }
1672 
1673 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
1674 {
1675 	const struct bpf_kfunc_btf *d0 = a;
1676 	const struct bpf_kfunc_btf *d1 = b;
1677 
1678 	return d0->offset - d1->offset;
1679 }
1680 
1681 static const struct bpf_kfunc_desc *
1682 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
1683 {
1684 	struct bpf_kfunc_desc desc = {
1685 		.func_id = func_id,
1686 		.offset = offset,
1687 	};
1688 	struct bpf_kfunc_desc_tab *tab;
1689 
1690 	tab = prog->aux->kfunc_tab;
1691 	return bsearch(&desc, tab->descs, tab->nr_descs,
1692 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
1693 }
1694 
1695 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
1696 					 s16 offset, struct module **btf_modp)
1697 {
1698 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
1699 	struct bpf_kfunc_btf_tab *tab;
1700 	struct bpf_kfunc_btf *b;
1701 	struct module *mod;
1702 	struct btf *btf;
1703 	int btf_fd;
1704 
1705 	tab = env->prog->aux->kfunc_btf_tab;
1706 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
1707 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
1708 	if (!b) {
1709 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
1710 			verbose(env, "too many different module BTFs\n");
1711 			return ERR_PTR(-E2BIG);
1712 		}
1713 
1714 		if (bpfptr_is_null(env->fd_array)) {
1715 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
1716 			return ERR_PTR(-EPROTO);
1717 		}
1718 
1719 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
1720 					    offset * sizeof(btf_fd),
1721 					    sizeof(btf_fd)))
1722 			return ERR_PTR(-EFAULT);
1723 
1724 		btf = btf_get_by_fd(btf_fd);
1725 		if (IS_ERR(btf)) {
1726 			verbose(env, "invalid module BTF fd specified\n");
1727 			return btf;
1728 		}
1729 
1730 		if (!btf_is_module(btf)) {
1731 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
1732 			btf_put(btf);
1733 			return ERR_PTR(-EINVAL);
1734 		}
1735 
1736 		mod = btf_try_get_module(btf);
1737 		if (!mod) {
1738 			btf_put(btf);
1739 			return ERR_PTR(-ENXIO);
1740 		}
1741 
1742 		b = &tab->descs[tab->nr_descs++];
1743 		b->btf = btf;
1744 		b->module = mod;
1745 		b->offset = offset;
1746 
1747 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1748 		     kfunc_btf_cmp_by_off, NULL);
1749 	}
1750 	if (btf_modp)
1751 		*btf_modp = b->module;
1752 	return b->btf;
1753 }
1754 
1755 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
1756 {
1757 	if (!tab)
1758 		return;
1759 
1760 	while (tab->nr_descs--) {
1761 		module_put(tab->descs[tab->nr_descs].module);
1762 		btf_put(tab->descs[tab->nr_descs].btf);
1763 	}
1764 	kfree(tab);
1765 }
1766 
1767 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env,
1768 				       u32 func_id, s16 offset,
1769 				       struct module **btf_modp)
1770 {
1771 	if (offset) {
1772 		if (offset < 0) {
1773 			/* In the future, this can be allowed to increase limit
1774 			 * of fd index into fd_array, interpreted as u16.
1775 			 */
1776 			verbose(env, "negative offset disallowed for kernel module function call\n");
1777 			return ERR_PTR(-EINVAL);
1778 		}
1779 
1780 		return __find_kfunc_desc_btf(env, offset, btf_modp);
1781 	}
1782 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
1783 }
1784 
1785 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
1786 {
1787 	const struct btf_type *func, *func_proto;
1788 	struct bpf_kfunc_btf_tab *btf_tab;
1789 	struct bpf_kfunc_desc_tab *tab;
1790 	struct bpf_prog_aux *prog_aux;
1791 	struct bpf_kfunc_desc *desc;
1792 	const char *func_name;
1793 	struct btf *desc_btf;
1794 	unsigned long addr;
1795 	int err;
1796 
1797 	prog_aux = env->prog->aux;
1798 	tab = prog_aux->kfunc_tab;
1799 	btf_tab = prog_aux->kfunc_btf_tab;
1800 	if (!tab) {
1801 		if (!btf_vmlinux) {
1802 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
1803 			return -ENOTSUPP;
1804 		}
1805 
1806 		if (!env->prog->jit_requested) {
1807 			verbose(env, "JIT is required for calling kernel function\n");
1808 			return -ENOTSUPP;
1809 		}
1810 
1811 		if (!bpf_jit_supports_kfunc_call()) {
1812 			verbose(env, "JIT does not support calling kernel function\n");
1813 			return -ENOTSUPP;
1814 		}
1815 
1816 		if (!env->prog->gpl_compatible) {
1817 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
1818 			return -EINVAL;
1819 		}
1820 
1821 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
1822 		if (!tab)
1823 			return -ENOMEM;
1824 		prog_aux->kfunc_tab = tab;
1825 	}
1826 
1827 	/* func_id == 0 is always invalid, but instead of returning an error, be
1828 	 * conservative and wait until the code elimination pass before returning
1829 	 * error, so that invalid calls that get pruned out can be in BPF programs
1830 	 * loaded from userspace.  It is also required that offset be untouched
1831 	 * for such calls.
1832 	 */
1833 	if (!func_id && !offset)
1834 		return 0;
1835 
1836 	if (!btf_tab && offset) {
1837 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
1838 		if (!btf_tab)
1839 			return -ENOMEM;
1840 		prog_aux->kfunc_btf_tab = btf_tab;
1841 	}
1842 
1843 	desc_btf = find_kfunc_desc_btf(env, func_id, offset, NULL);
1844 	if (IS_ERR(desc_btf)) {
1845 		verbose(env, "failed to find BTF for kernel function\n");
1846 		return PTR_ERR(desc_btf);
1847 	}
1848 
1849 	if (find_kfunc_desc(env->prog, func_id, offset))
1850 		return 0;
1851 
1852 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
1853 		verbose(env, "too many different kernel function calls\n");
1854 		return -E2BIG;
1855 	}
1856 
1857 	func = btf_type_by_id(desc_btf, func_id);
1858 	if (!func || !btf_type_is_func(func)) {
1859 		verbose(env, "kernel btf_id %u is not a function\n",
1860 			func_id);
1861 		return -EINVAL;
1862 	}
1863 	func_proto = btf_type_by_id(desc_btf, func->type);
1864 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
1865 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
1866 			func_id);
1867 		return -EINVAL;
1868 	}
1869 
1870 	func_name = btf_name_by_offset(desc_btf, func->name_off);
1871 	addr = kallsyms_lookup_name(func_name);
1872 	if (!addr) {
1873 		verbose(env, "cannot find address for kernel function %s\n",
1874 			func_name);
1875 		return -EINVAL;
1876 	}
1877 
1878 	desc = &tab->descs[tab->nr_descs++];
1879 	desc->func_id = func_id;
1880 	desc->imm = BPF_CALL_IMM(addr);
1881 	desc->offset = offset;
1882 	err = btf_distill_func_proto(&env->log, desc_btf,
1883 				     func_proto, func_name,
1884 				     &desc->func_model);
1885 	if (!err)
1886 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1887 		     kfunc_desc_cmp_by_id_off, NULL);
1888 	return err;
1889 }
1890 
1891 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
1892 {
1893 	const struct bpf_kfunc_desc *d0 = a;
1894 	const struct bpf_kfunc_desc *d1 = b;
1895 
1896 	if (d0->imm > d1->imm)
1897 		return 1;
1898 	else if (d0->imm < d1->imm)
1899 		return -1;
1900 	return 0;
1901 }
1902 
1903 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
1904 {
1905 	struct bpf_kfunc_desc_tab *tab;
1906 
1907 	tab = prog->aux->kfunc_tab;
1908 	if (!tab)
1909 		return;
1910 
1911 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1912 	     kfunc_desc_cmp_by_imm, NULL);
1913 }
1914 
1915 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
1916 {
1917 	return !!prog->aux->kfunc_tab;
1918 }
1919 
1920 const struct btf_func_model *
1921 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
1922 			 const struct bpf_insn *insn)
1923 {
1924 	const struct bpf_kfunc_desc desc = {
1925 		.imm = insn->imm,
1926 	};
1927 	const struct bpf_kfunc_desc *res;
1928 	struct bpf_kfunc_desc_tab *tab;
1929 
1930 	tab = prog->aux->kfunc_tab;
1931 	res = bsearch(&desc, tab->descs, tab->nr_descs,
1932 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
1933 
1934 	return res ? &res->func_model : NULL;
1935 }
1936 
1937 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
1938 {
1939 	struct bpf_subprog_info *subprog = env->subprog_info;
1940 	struct bpf_insn *insn = env->prog->insnsi;
1941 	int i, ret, insn_cnt = env->prog->len;
1942 
1943 	/* Add entry function. */
1944 	ret = add_subprog(env, 0);
1945 	if (ret)
1946 		return ret;
1947 
1948 	for (i = 0; i < insn_cnt; i++, insn++) {
1949 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
1950 		    !bpf_pseudo_kfunc_call(insn))
1951 			continue;
1952 
1953 		if (!env->bpf_capable) {
1954 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1955 			return -EPERM;
1956 		}
1957 
1958 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
1959 			ret = add_subprog(env, i + insn->imm + 1);
1960 		else
1961 			ret = add_kfunc_call(env, insn->imm, insn->off);
1962 
1963 		if (ret < 0)
1964 			return ret;
1965 	}
1966 
1967 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1968 	 * logic. 'subprog_cnt' should not be increased.
1969 	 */
1970 	subprog[env->subprog_cnt].start = insn_cnt;
1971 
1972 	if (env->log.level & BPF_LOG_LEVEL2)
1973 		for (i = 0; i < env->subprog_cnt; i++)
1974 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1975 
1976 	return 0;
1977 }
1978 
1979 static int check_subprogs(struct bpf_verifier_env *env)
1980 {
1981 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
1982 	struct bpf_subprog_info *subprog = env->subprog_info;
1983 	struct bpf_insn *insn = env->prog->insnsi;
1984 	int insn_cnt = env->prog->len;
1985 
1986 	/* now check that all jumps are within the same subprog */
1987 	subprog_start = subprog[cur_subprog].start;
1988 	subprog_end = subprog[cur_subprog + 1].start;
1989 	for (i = 0; i < insn_cnt; i++) {
1990 		u8 code = insn[i].code;
1991 
1992 		if (code == (BPF_JMP | BPF_CALL) &&
1993 		    insn[i].imm == BPF_FUNC_tail_call &&
1994 		    insn[i].src_reg != BPF_PSEUDO_CALL)
1995 			subprog[cur_subprog].has_tail_call = true;
1996 		if (BPF_CLASS(code) == BPF_LD &&
1997 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1998 			subprog[cur_subprog].has_ld_abs = true;
1999 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2000 			goto next;
2001 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2002 			goto next;
2003 		off = i + insn[i].off + 1;
2004 		if (off < subprog_start || off >= subprog_end) {
2005 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2006 			return -EINVAL;
2007 		}
2008 next:
2009 		if (i == subprog_end - 1) {
2010 			/* to avoid fall-through from one subprog into another
2011 			 * the last insn of the subprog should be either exit
2012 			 * or unconditional jump back
2013 			 */
2014 			if (code != (BPF_JMP | BPF_EXIT) &&
2015 			    code != (BPF_JMP | BPF_JA)) {
2016 				verbose(env, "last insn is not an exit or jmp\n");
2017 				return -EINVAL;
2018 			}
2019 			subprog_start = subprog_end;
2020 			cur_subprog++;
2021 			if (cur_subprog < env->subprog_cnt)
2022 				subprog_end = subprog[cur_subprog + 1].start;
2023 		}
2024 	}
2025 	return 0;
2026 }
2027 
2028 /* Parentage chain of this register (or stack slot) should take care of all
2029  * issues like callee-saved registers, stack slot allocation time, etc.
2030  */
2031 static int mark_reg_read(struct bpf_verifier_env *env,
2032 			 const struct bpf_reg_state *state,
2033 			 struct bpf_reg_state *parent, u8 flag)
2034 {
2035 	bool writes = parent == state->parent; /* Observe write marks */
2036 	int cnt = 0;
2037 
2038 	while (parent) {
2039 		/* if read wasn't screened by an earlier write ... */
2040 		if (writes && state->live & REG_LIVE_WRITTEN)
2041 			break;
2042 		if (parent->live & REG_LIVE_DONE) {
2043 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2044 				reg_type_str[parent->type],
2045 				parent->var_off.value, parent->off);
2046 			return -EFAULT;
2047 		}
2048 		/* The first condition is more likely to be true than the
2049 		 * second, checked it first.
2050 		 */
2051 		if ((parent->live & REG_LIVE_READ) == flag ||
2052 		    parent->live & REG_LIVE_READ64)
2053 			/* The parentage chain never changes and
2054 			 * this parent was already marked as LIVE_READ.
2055 			 * There is no need to keep walking the chain again and
2056 			 * keep re-marking all parents as LIVE_READ.
2057 			 * This case happens when the same register is read
2058 			 * multiple times without writes into it in-between.
2059 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
2060 			 * then no need to set the weak REG_LIVE_READ32.
2061 			 */
2062 			break;
2063 		/* ... then we depend on parent's value */
2064 		parent->live |= flag;
2065 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2066 		if (flag == REG_LIVE_READ64)
2067 			parent->live &= ~REG_LIVE_READ32;
2068 		state = parent;
2069 		parent = state->parent;
2070 		writes = true;
2071 		cnt++;
2072 	}
2073 
2074 	if (env->longest_mark_read_walk < cnt)
2075 		env->longest_mark_read_walk = cnt;
2076 	return 0;
2077 }
2078 
2079 /* This function is supposed to be used by the following 32-bit optimization
2080  * code only. It returns TRUE if the source or destination register operates
2081  * on 64-bit, otherwise return FALSE.
2082  */
2083 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2084 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2085 {
2086 	u8 code, class, op;
2087 
2088 	code = insn->code;
2089 	class = BPF_CLASS(code);
2090 	op = BPF_OP(code);
2091 	if (class == BPF_JMP) {
2092 		/* BPF_EXIT for "main" will reach here. Return TRUE
2093 		 * conservatively.
2094 		 */
2095 		if (op == BPF_EXIT)
2096 			return true;
2097 		if (op == BPF_CALL) {
2098 			/* BPF to BPF call will reach here because of marking
2099 			 * caller saved clobber with DST_OP_NO_MARK for which we
2100 			 * don't care the register def because they are anyway
2101 			 * marked as NOT_INIT already.
2102 			 */
2103 			if (insn->src_reg == BPF_PSEUDO_CALL)
2104 				return false;
2105 			/* Helper call will reach here because of arg type
2106 			 * check, conservatively return TRUE.
2107 			 */
2108 			if (t == SRC_OP)
2109 				return true;
2110 
2111 			return false;
2112 		}
2113 	}
2114 
2115 	if (class == BPF_ALU64 || class == BPF_JMP ||
2116 	    /* BPF_END always use BPF_ALU class. */
2117 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2118 		return true;
2119 
2120 	if (class == BPF_ALU || class == BPF_JMP32)
2121 		return false;
2122 
2123 	if (class == BPF_LDX) {
2124 		if (t != SRC_OP)
2125 			return BPF_SIZE(code) == BPF_DW;
2126 		/* LDX source must be ptr. */
2127 		return true;
2128 	}
2129 
2130 	if (class == BPF_STX) {
2131 		/* BPF_STX (including atomic variants) has multiple source
2132 		 * operands, one of which is a ptr. Check whether the caller is
2133 		 * asking about it.
2134 		 */
2135 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
2136 			return true;
2137 		return BPF_SIZE(code) == BPF_DW;
2138 	}
2139 
2140 	if (class == BPF_LD) {
2141 		u8 mode = BPF_MODE(code);
2142 
2143 		/* LD_IMM64 */
2144 		if (mode == BPF_IMM)
2145 			return true;
2146 
2147 		/* Both LD_IND and LD_ABS return 32-bit data. */
2148 		if (t != SRC_OP)
2149 			return  false;
2150 
2151 		/* Implicit ctx ptr. */
2152 		if (regno == BPF_REG_6)
2153 			return true;
2154 
2155 		/* Explicit source could be any width. */
2156 		return true;
2157 	}
2158 
2159 	if (class == BPF_ST)
2160 		/* The only source register for BPF_ST is a ptr. */
2161 		return true;
2162 
2163 	/* Conservatively return true at default. */
2164 	return true;
2165 }
2166 
2167 /* Return the regno defined by the insn, or -1. */
2168 static int insn_def_regno(const struct bpf_insn *insn)
2169 {
2170 	switch (BPF_CLASS(insn->code)) {
2171 	case BPF_JMP:
2172 	case BPF_JMP32:
2173 	case BPF_ST:
2174 		return -1;
2175 	case BPF_STX:
2176 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2177 		    (insn->imm & BPF_FETCH)) {
2178 			if (insn->imm == BPF_CMPXCHG)
2179 				return BPF_REG_0;
2180 			else
2181 				return insn->src_reg;
2182 		} else {
2183 			return -1;
2184 		}
2185 	default:
2186 		return insn->dst_reg;
2187 	}
2188 }
2189 
2190 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
2191 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2192 {
2193 	int dst_reg = insn_def_regno(insn);
2194 
2195 	if (dst_reg == -1)
2196 		return false;
2197 
2198 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2199 }
2200 
2201 static void mark_insn_zext(struct bpf_verifier_env *env,
2202 			   struct bpf_reg_state *reg)
2203 {
2204 	s32 def_idx = reg->subreg_def;
2205 
2206 	if (def_idx == DEF_NOT_SUBREG)
2207 		return;
2208 
2209 	env->insn_aux_data[def_idx - 1].zext_dst = true;
2210 	/* The dst will be zero extended, so won't be sub-register anymore. */
2211 	reg->subreg_def = DEF_NOT_SUBREG;
2212 }
2213 
2214 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2215 			 enum reg_arg_type t)
2216 {
2217 	struct bpf_verifier_state *vstate = env->cur_state;
2218 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2219 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2220 	struct bpf_reg_state *reg, *regs = state->regs;
2221 	bool rw64;
2222 
2223 	if (regno >= MAX_BPF_REG) {
2224 		verbose(env, "R%d is invalid\n", regno);
2225 		return -EINVAL;
2226 	}
2227 
2228 	reg = &regs[regno];
2229 	rw64 = is_reg64(env, insn, regno, reg, t);
2230 	if (t == SRC_OP) {
2231 		/* check whether register used as source operand can be read */
2232 		if (reg->type == NOT_INIT) {
2233 			verbose(env, "R%d !read_ok\n", regno);
2234 			return -EACCES;
2235 		}
2236 		/* We don't need to worry about FP liveness because it's read-only */
2237 		if (regno == BPF_REG_FP)
2238 			return 0;
2239 
2240 		if (rw64)
2241 			mark_insn_zext(env, reg);
2242 
2243 		return mark_reg_read(env, reg, reg->parent,
2244 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2245 	} else {
2246 		/* check whether register used as dest operand can be written to */
2247 		if (regno == BPF_REG_FP) {
2248 			verbose(env, "frame pointer is read only\n");
2249 			return -EACCES;
2250 		}
2251 		reg->live |= REG_LIVE_WRITTEN;
2252 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2253 		if (t == DST_OP)
2254 			mark_reg_unknown(env, regs, regno);
2255 	}
2256 	return 0;
2257 }
2258 
2259 /* for any branch, call, exit record the history of jmps in the given state */
2260 static int push_jmp_history(struct bpf_verifier_env *env,
2261 			    struct bpf_verifier_state *cur)
2262 {
2263 	u32 cnt = cur->jmp_history_cnt;
2264 	struct bpf_idx_pair *p;
2265 
2266 	cnt++;
2267 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2268 	if (!p)
2269 		return -ENOMEM;
2270 	p[cnt - 1].idx = env->insn_idx;
2271 	p[cnt - 1].prev_idx = env->prev_insn_idx;
2272 	cur->jmp_history = p;
2273 	cur->jmp_history_cnt = cnt;
2274 	return 0;
2275 }
2276 
2277 /* Backtrack one insn at a time. If idx is not at the top of recorded
2278  * history then previous instruction came from straight line execution.
2279  */
2280 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2281 			     u32 *history)
2282 {
2283 	u32 cnt = *history;
2284 
2285 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
2286 		i = st->jmp_history[cnt - 1].prev_idx;
2287 		(*history)--;
2288 	} else {
2289 		i--;
2290 	}
2291 	return i;
2292 }
2293 
2294 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2295 {
2296 	const struct btf_type *func;
2297 	struct btf *desc_btf;
2298 
2299 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2300 		return NULL;
2301 
2302 	desc_btf = find_kfunc_desc_btf(data, insn->imm, insn->off, NULL);
2303 	if (IS_ERR(desc_btf))
2304 		return "<error>";
2305 
2306 	func = btf_type_by_id(desc_btf, insn->imm);
2307 	return btf_name_by_offset(desc_btf, func->name_off);
2308 }
2309 
2310 /* For given verifier state backtrack_insn() is called from the last insn to
2311  * the first insn. Its purpose is to compute a bitmask of registers and
2312  * stack slots that needs precision in the parent verifier state.
2313  */
2314 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2315 			  u32 *reg_mask, u64 *stack_mask)
2316 {
2317 	const struct bpf_insn_cbs cbs = {
2318 		.cb_call	= disasm_kfunc_name,
2319 		.cb_print	= verbose,
2320 		.private_data	= env,
2321 	};
2322 	struct bpf_insn *insn = env->prog->insnsi + idx;
2323 	u8 class = BPF_CLASS(insn->code);
2324 	u8 opcode = BPF_OP(insn->code);
2325 	u8 mode = BPF_MODE(insn->code);
2326 	u32 dreg = 1u << insn->dst_reg;
2327 	u32 sreg = 1u << insn->src_reg;
2328 	u32 spi;
2329 
2330 	if (insn->code == 0)
2331 		return 0;
2332 	if (env->log.level & BPF_LOG_LEVEL) {
2333 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2334 		verbose(env, "%d: ", idx);
2335 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2336 	}
2337 
2338 	if (class == BPF_ALU || class == BPF_ALU64) {
2339 		if (!(*reg_mask & dreg))
2340 			return 0;
2341 		if (opcode == BPF_MOV) {
2342 			if (BPF_SRC(insn->code) == BPF_X) {
2343 				/* dreg = sreg
2344 				 * dreg needs precision after this insn
2345 				 * sreg needs precision before this insn
2346 				 */
2347 				*reg_mask &= ~dreg;
2348 				*reg_mask |= sreg;
2349 			} else {
2350 				/* dreg = K
2351 				 * dreg needs precision after this insn.
2352 				 * Corresponding register is already marked
2353 				 * as precise=true in this verifier state.
2354 				 * No further markings in parent are necessary
2355 				 */
2356 				*reg_mask &= ~dreg;
2357 			}
2358 		} else {
2359 			if (BPF_SRC(insn->code) == BPF_X) {
2360 				/* dreg += sreg
2361 				 * both dreg and sreg need precision
2362 				 * before this insn
2363 				 */
2364 				*reg_mask |= sreg;
2365 			} /* else dreg += K
2366 			   * dreg still needs precision before this insn
2367 			   */
2368 		}
2369 	} else if (class == BPF_LDX) {
2370 		if (!(*reg_mask & dreg))
2371 			return 0;
2372 		*reg_mask &= ~dreg;
2373 
2374 		/* scalars can only be spilled into stack w/o losing precision.
2375 		 * Load from any other memory can be zero extended.
2376 		 * The desire to keep that precision is already indicated
2377 		 * by 'precise' mark in corresponding register of this state.
2378 		 * No further tracking necessary.
2379 		 */
2380 		if (insn->src_reg != BPF_REG_FP)
2381 			return 0;
2382 		if (BPF_SIZE(insn->code) != BPF_DW)
2383 			return 0;
2384 
2385 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
2386 		 * that [fp - off] slot contains scalar that needs to be
2387 		 * tracked with precision
2388 		 */
2389 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2390 		if (spi >= 64) {
2391 			verbose(env, "BUG spi %d\n", spi);
2392 			WARN_ONCE(1, "verifier backtracking bug");
2393 			return -EFAULT;
2394 		}
2395 		*stack_mask |= 1ull << spi;
2396 	} else if (class == BPF_STX || class == BPF_ST) {
2397 		if (*reg_mask & dreg)
2398 			/* stx & st shouldn't be using _scalar_ dst_reg
2399 			 * to access memory. It means backtracking
2400 			 * encountered a case of pointer subtraction.
2401 			 */
2402 			return -ENOTSUPP;
2403 		/* scalars can only be spilled into stack */
2404 		if (insn->dst_reg != BPF_REG_FP)
2405 			return 0;
2406 		if (BPF_SIZE(insn->code) != BPF_DW)
2407 			return 0;
2408 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2409 		if (spi >= 64) {
2410 			verbose(env, "BUG spi %d\n", spi);
2411 			WARN_ONCE(1, "verifier backtracking bug");
2412 			return -EFAULT;
2413 		}
2414 		if (!(*stack_mask & (1ull << spi)))
2415 			return 0;
2416 		*stack_mask &= ~(1ull << spi);
2417 		if (class == BPF_STX)
2418 			*reg_mask |= sreg;
2419 	} else if (class == BPF_JMP || class == BPF_JMP32) {
2420 		if (opcode == BPF_CALL) {
2421 			if (insn->src_reg == BPF_PSEUDO_CALL)
2422 				return -ENOTSUPP;
2423 			/* regular helper call sets R0 */
2424 			*reg_mask &= ~1;
2425 			if (*reg_mask & 0x3f) {
2426 				/* if backtracing was looking for registers R1-R5
2427 				 * they should have been found already.
2428 				 */
2429 				verbose(env, "BUG regs %x\n", *reg_mask);
2430 				WARN_ONCE(1, "verifier backtracking bug");
2431 				return -EFAULT;
2432 			}
2433 		} else if (opcode == BPF_EXIT) {
2434 			return -ENOTSUPP;
2435 		}
2436 	} else if (class == BPF_LD) {
2437 		if (!(*reg_mask & dreg))
2438 			return 0;
2439 		*reg_mask &= ~dreg;
2440 		/* It's ld_imm64 or ld_abs or ld_ind.
2441 		 * For ld_imm64 no further tracking of precision
2442 		 * into parent is necessary
2443 		 */
2444 		if (mode == BPF_IND || mode == BPF_ABS)
2445 			/* to be analyzed */
2446 			return -ENOTSUPP;
2447 	}
2448 	return 0;
2449 }
2450 
2451 /* the scalar precision tracking algorithm:
2452  * . at the start all registers have precise=false.
2453  * . scalar ranges are tracked as normal through alu and jmp insns.
2454  * . once precise value of the scalar register is used in:
2455  *   .  ptr + scalar alu
2456  *   . if (scalar cond K|scalar)
2457  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2458  *   backtrack through the verifier states and mark all registers and
2459  *   stack slots with spilled constants that these scalar regisers
2460  *   should be precise.
2461  * . during state pruning two registers (or spilled stack slots)
2462  *   are equivalent if both are not precise.
2463  *
2464  * Note the verifier cannot simply walk register parentage chain,
2465  * since many different registers and stack slots could have been
2466  * used to compute single precise scalar.
2467  *
2468  * The approach of starting with precise=true for all registers and then
2469  * backtrack to mark a register as not precise when the verifier detects
2470  * that program doesn't care about specific value (e.g., when helper
2471  * takes register as ARG_ANYTHING parameter) is not safe.
2472  *
2473  * It's ok to walk single parentage chain of the verifier states.
2474  * It's possible that this backtracking will go all the way till 1st insn.
2475  * All other branches will be explored for needing precision later.
2476  *
2477  * The backtracking needs to deal with cases like:
2478  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2479  * r9 -= r8
2480  * r5 = r9
2481  * if r5 > 0x79f goto pc+7
2482  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2483  * r5 += 1
2484  * ...
2485  * call bpf_perf_event_output#25
2486  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2487  *
2488  * and this case:
2489  * r6 = 1
2490  * call foo // uses callee's r6 inside to compute r0
2491  * r0 += r6
2492  * if r0 == 0 goto
2493  *
2494  * to track above reg_mask/stack_mask needs to be independent for each frame.
2495  *
2496  * Also if parent's curframe > frame where backtracking started,
2497  * the verifier need to mark registers in both frames, otherwise callees
2498  * may incorrectly prune callers. This is similar to
2499  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2500  *
2501  * For now backtracking falls back into conservative marking.
2502  */
2503 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2504 				     struct bpf_verifier_state *st)
2505 {
2506 	struct bpf_func_state *func;
2507 	struct bpf_reg_state *reg;
2508 	int i, j;
2509 
2510 	/* big hammer: mark all scalars precise in this path.
2511 	 * pop_stack may still get !precise scalars.
2512 	 */
2513 	for (; st; st = st->parent)
2514 		for (i = 0; i <= st->curframe; i++) {
2515 			func = st->frame[i];
2516 			for (j = 0; j < BPF_REG_FP; j++) {
2517 				reg = &func->regs[j];
2518 				if (reg->type != SCALAR_VALUE)
2519 					continue;
2520 				reg->precise = true;
2521 			}
2522 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2523 				if (!is_spilled_reg(&func->stack[j]))
2524 					continue;
2525 				reg = &func->stack[j].spilled_ptr;
2526 				if (reg->type != SCALAR_VALUE)
2527 					continue;
2528 				reg->precise = true;
2529 			}
2530 		}
2531 }
2532 
2533 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2534 				  int spi)
2535 {
2536 	struct bpf_verifier_state *st = env->cur_state;
2537 	int first_idx = st->first_insn_idx;
2538 	int last_idx = env->insn_idx;
2539 	struct bpf_func_state *func;
2540 	struct bpf_reg_state *reg;
2541 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2542 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2543 	bool skip_first = true;
2544 	bool new_marks = false;
2545 	int i, err;
2546 
2547 	if (!env->bpf_capable)
2548 		return 0;
2549 
2550 	func = st->frame[st->curframe];
2551 	if (regno >= 0) {
2552 		reg = &func->regs[regno];
2553 		if (reg->type != SCALAR_VALUE) {
2554 			WARN_ONCE(1, "backtracing misuse");
2555 			return -EFAULT;
2556 		}
2557 		if (!reg->precise)
2558 			new_marks = true;
2559 		else
2560 			reg_mask = 0;
2561 		reg->precise = true;
2562 	}
2563 
2564 	while (spi >= 0) {
2565 		if (!is_spilled_reg(&func->stack[spi])) {
2566 			stack_mask = 0;
2567 			break;
2568 		}
2569 		reg = &func->stack[spi].spilled_ptr;
2570 		if (reg->type != SCALAR_VALUE) {
2571 			stack_mask = 0;
2572 			break;
2573 		}
2574 		if (!reg->precise)
2575 			new_marks = true;
2576 		else
2577 			stack_mask = 0;
2578 		reg->precise = true;
2579 		break;
2580 	}
2581 
2582 	if (!new_marks)
2583 		return 0;
2584 	if (!reg_mask && !stack_mask)
2585 		return 0;
2586 	for (;;) {
2587 		DECLARE_BITMAP(mask, 64);
2588 		u32 history = st->jmp_history_cnt;
2589 
2590 		if (env->log.level & BPF_LOG_LEVEL)
2591 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2592 		for (i = last_idx;;) {
2593 			if (skip_first) {
2594 				err = 0;
2595 				skip_first = false;
2596 			} else {
2597 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2598 			}
2599 			if (err == -ENOTSUPP) {
2600 				mark_all_scalars_precise(env, st);
2601 				return 0;
2602 			} else if (err) {
2603 				return err;
2604 			}
2605 			if (!reg_mask && !stack_mask)
2606 				/* Found assignment(s) into tracked register in this state.
2607 				 * Since this state is already marked, just return.
2608 				 * Nothing to be tracked further in the parent state.
2609 				 */
2610 				return 0;
2611 			if (i == first_idx)
2612 				break;
2613 			i = get_prev_insn_idx(st, i, &history);
2614 			if (i >= env->prog->len) {
2615 				/* This can happen if backtracking reached insn 0
2616 				 * and there are still reg_mask or stack_mask
2617 				 * to backtrack.
2618 				 * It means the backtracking missed the spot where
2619 				 * particular register was initialized with a constant.
2620 				 */
2621 				verbose(env, "BUG backtracking idx %d\n", i);
2622 				WARN_ONCE(1, "verifier backtracking bug");
2623 				return -EFAULT;
2624 			}
2625 		}
2626 		st = st->parent;
2627 		if (!st)
2628 			break;
2629 
2630 		new_marks = false;
2631 		func = st->frame[st->curframe];
2632 		bitmap_from_u64(mask, reg_mask);
2633 		for_each_set_bit(i, mask, 32) {
2634 			reg = &func->regs[i];
2635 			if (reg->type != SCALAR_VALUE) {
2636 				reg_mask &= ~(1u << i);
2637 				continue;
2638 			}
2639 			if (!reg->precise)
2640 				new_marks = true;
2641 			reg->precise = true;
2642 		}
2643 
2644 		bitmap_from_u64(mask, stack_mask);
2645 		for_each_set_bit(i, mask, 64) {
2646 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2647 				/* the sequence of instructions:
2648 				 * 2: (bf) r3 = r10
2649 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2650 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2651 				 * doesn't contain jmps. It's backtracked
2652 				 * as a single block.
2653 				 * During backtracking insn 3 is not recognized as
2654 				 * stack access, so at the end of backtracking
2655 				 * stack slot fp-8 is still marked in stack_mask.
2656 				 * However the parent state may not have accessed
2657 				 * fp-8 and it's "unallocated" stack space.
2658 				 * In such case fallback to conservative.
2659 				 */
2660 				mark_all_scalars_precise(env, st);
2661 				return 0;
2662 			}
2663 
2664 			if (!is_spilled_reg(&func->stack[i])) {
2665 				stack_mask &= ~(1ull << i);
2666 				continue;
2667 			}
2668 			reg = &func->stack[i].spilled_ptr;
2669 			if (reg->type != SCALAR_VALUE) {
2670 				stack_mask &= ~(1ull << i);
2671 				continue;
2672 			}
2673 			if (!reg->precise)
2674 				new_marks = true;
2675 			reg->precise = true;
2676 		}
2677 		if (env->log.level & BPF_LOG_LEVEL) {
2678 			print_verifier_state(env, func);
2679 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2680 				new_marks ? "didn't have" : "already had",
2681 				reg_mask, stack_mask);
2682 		}
2683 
2684 		if (!reg_mask && !stack_mask)
2685 			break;
2686 		if (!new_marks)
2687 			break;
2688 
2689 		last_idx = st->last_insn_idx;
2690 		first_idx = st->first_insn_idx;
2691 	}
2692 	return 0;
2693 }
2694 
2695 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2696 {
2697 	return __mark_chain_precision(env, regno, -1);
2698 }
2699 
2700 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2701 {
2702 	return __mark_chain_precision(env, -1, spi);
2703 }
2704 
2705 static bool is_spillable_regtype(enum bpf_reg_type type)
2706 {
2707 	switch (type) {
2708 	case PTR_TO_MAP_VALUE:
2709 	case PTR_TO_MAP_VALUE_OR_NULL:
2710 	case PTR_TO_STACK:
2711 	case PTR_TO_CTX:
2712 	case PTR_TO_PACKET:
2713 	case PTR_TO_PACKET_META:
2714 	case PTR_TO_PACKET_END:
2715 	case PTR_TO_FLOW_KEYS:
2716 	case CONST_PTR_TO_MAP:
2717 	case PTR_TO_SOCKET:
2718 	case PTR_TO_SOCKET_OR_NULL:
2719 	case PTR_TO_SOCK_COMMON:
2720 	case PTR_TO_SOCK_COMMON_OR_NULL:
2721 	case PTR_TO_TCP_SOCK:
2722 	case PTR_TO_TCP_SOCK_OR_NULL:
2723 	case PTR_TO_XDP_SOCK:
2724 	case PTR_TO_BTF_ID:
2725 	case PTR_TO_BTF_ID_OR_NULL:
2726 	case PTR_TO_RDONLY_BUF:
2727 	case PTR_TO_RDONLY_BUF_OR_NULL:
2728 	case PTR_TO_RDWR_BUF:
2729 	case PTR_TO_RDWR_BUF_OR_NULL:
2730 	case PTR_TO_PERCPU_BTF_ID:
2731 	case PTR_TO_MEM:
2732 	case PTR_TO_MEM_OR_NULL:
2733 	case PTR_TO_FUNC:
2734 	case PTR_TO_MAP_KEY:
2735 		return true;
2736 	default:
2737 		return false;
2738 	}
2739 }
2740 
2741 /* Does this register contain a constant zero? */
2742 static bool register_is_null(struct bpf_reg_state *reg)
2743 {
2744 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2745 }
2746 
2747 static bool register_is_const(struct bpf_reg_state *reg)
2748 {
2749 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2750 }
2751 
2752 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2753 {
2754 	return tnum_is_unknown(reg->var_off) &&
2755 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2756 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2757 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2758 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2759 }
2760 
2761 static bool register_is_bounded(struct bpf_reg_state *reg)
2762 {
2763 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2764 }
2765 
2766 static bool __is_pointer_value(bool allow_ptr_leaks,
2767 			       const struct bpf_reg_state *reg)
2768 {
2769 	if (allow_ptr_leaks)
2770 		return false;
2771 
2772 	return reg->type != SCALAR_VALUE;
2773 }
2774 
2775 static void save_register_state(struct bpf_func_state *state,
2776 				int spi, struct bpf_reg_state *reg,
2777 				int size)
2778 {
2779 	int i;
2780 
2781 	state->stack[spi].spilled_ptr = *reg;
2782 	if (size == BPF_REG_SIZE)
2783 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2784 
2785 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
2786 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
2787 
2788 	/* size < 8 bytes spill */
2789 	for (; i; i--)
2790 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
2791 }
2792 
2793 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2794  * stack boundary and alignment are checked in check_mem_access()
2795  */
2796 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2797 				       /* stack frame we're writing to */
2798 				       struct bpf_func_state *state,
2799 				       int off, int size, int value_regno,
2800 				       int insn_idx)
2801 {
2802 	struct bpf_func_state *cur; /* state of the current function */
2803 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2804 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2805 	struct bpf_reg_state *reg = NULL;
2806 
2807 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
2808 	if (err)
2809 		return err;
2810 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2811 	 * so it's aligned access and [off, off + size) are within stack limits
2812 	 */
2813 	if (!env->allow_ptr_leaks &&
2814 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2815 	    size != BPF_REG_SIZE) {
2816 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2817 		return -EACCES;
2818 	}
2819 
2820 	cur = env->cur_state->frame[env->cur_state->curframe];
2821 	if (value_regno >= 0)
2822 		reg = &cur->regs[value_regno];
2823 	if (!env->bypass_spec_v4) {
2824 		bool sanitize = reg && is_spillable_regtype(reg->type);
2825 
2826 		for (i = 0; i < size; i++) {
2827 			if (state->stack[spi].slot_type[i] == STACK_INVALID) {
2828 				sanitize = true;
2829 				break;
2830 			}
2831 		}
2832 
2833 		if (sanitize)
2834 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
2835 	}
2836 
2837 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
2838 	    !register_is_null(reg) && env->bpf_capable) {
2839 		if (dst_reg != BPF_REG_FP) {
2840 			/* The backtracking logic can only recognize explicit
2841 			 * stack slot address like [fp - 8]. Other spill of
2842 			 * scalar via different register has to be conservative.
2843 			 * Backtrack from here and mark all registers as precise
2844 			 * that contributed into 'reg' being a constant.
2845 			 */
2846 			err = mark_chain_precision(env, value_regno);
2847 			if (err)
2848 				return err;
2849 		}
2850 		save_register_state(state, spi, reg, size);
2851 	} else if (reg && is_spillable_regtype(reg->type)) {
2852 		/* register containing pointer is being spilled into stack */
2853 		if (size != BPF_REG_SIZE) {
2854 			verbose_linfo(env, insn_idx, "; ");
2855 			verbose(env, "invalid size of register spill\n");
2856 			return -EACCES;
2857 		}
2858 		if (state != cur && reg->type == PTR_TO_STACK) {
2859 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2860 			return -EINVAL;
2861 		}
2862 		save_register_state(state, spi, reg, size);
2863 	} else {
2864 		u8 type = STACK_MISC;
2865 
2866 		/* regular write of data into stack destroys any spilled ptr */
2867 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2868 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2869 		if (is_spilled_reg(&state->stack[spi]))
2870 			for (i = 0; i < BPF_REG_SIZE; i++)
2871 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
2872 
2873 		/* only mark the slot as written if all 8 bytes were written
2874 		 * otherwise read propagation may incorrectly stop too soon
2875 		 * when stack slots are partially written.
2876 		 * This heuristic means that read propagation will be
2877 		 * conservative, since it will add reg_live_read marks
2878 		 * to stack slots all the way to first state when programs
2879 		 * writes+reads less than 8 bytes
2880 		 */
2881 		if (size == BPF_REG_SIZE)
2882 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2883 
2884 		/* when we zero initialize stack slots mark them as such */
2885 		if (reg && register_is_null(reg)) {
2886 			/* backtracking doesn't work for STACK_ZERO yet. */
2887 			err = mark_chain_precision(env, value_regno);
2888 			if (err)
2889 				return err;
2890 			type = STACK_ZERO;
2891 		}
2892 
2893 		/* Mark slots affected by this stack write. */
2894 		for (i = 0; i < size; i++)
2895 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2896 				type;
2897 	}
2898 	return 0;
2899 }
2900 
2901 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2902  * known to contain a variable offset.
2903  * This function checks whether the write is permitted and conservatively
2904  * tracks the effects of the write, considering that each stack slot in the
2905  * dynamic range is potentially written to.
2906  *
2907  * 'off' includes 'regno->off'.
2908  * 'value_regno' can be -1, meaning that an unknown value is being written to
2909  * the stack.
2910  *
2911  * Spilled pointers in range are not marked as written because we don't know
2912  * what's going to be actually written. This means that read propagation for
2913  * future reads cannot be terminated by this write.
2914  *
2915  * For privileged programs, uninitialized stack slots are considered
2916  * initialized by this write (even though we don't know exactly what offsets
2917  * are going to be written to). The idea is that we don't want the verifier to
2918  * reject future reads that access slots written to through variable offsets.
2919  */
2920 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2921 				     /* func where register points to */
2922 				     struct bpf_func_state *state,
2923 				     int ptr_regno, int off, int size,
2924 				     int value_regno, int insn_idx)
2925 {
2926 	struct bpf_func_state *cur; /* state of the current function */
2927 	int min_off, max_off;
2928 	int i, err;
2929 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2930 	bool writing_zero = false;
2931 	/* set if the fact that we're writing a zero is used to let any
2932 	 * stack slots remain STACK_ZERO
2933 	 */
2934 	bool zero_used = false;
2935 
2936 	cur = env->cur_state->frame[env->cur_state->curframe];
2937 	ptr_reg = &cur->regs[ptr_regno];
2938 	min_off = ptr_reg->smin_value + off;
2939 	max_off = ptr_reg->smax_value + off + size;
2940 	if (value_regno >= 0)
2941 		value_reg = &cur->regs[value_regno];
2942 	if (value_reg && register_is_null(value_reg))
2943 		writing_zero = true;
2944 
2945 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
2946 	if (err)
2947 		return err;
2948 
2949 
2950 	/* Variable offset writes destroy any spilled pointers in range. */
2951 	for (i = min_off; i < max_off; i++) {
2952 		u8 new_type, *stype;
2953 		int slot, spi;
2954 
2955 		slot = -i - 1;
2956 		spi = slot / BPF_REG_SIZE;
2957 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2958 
2959 		if (!env->allow_ptr_leaks
2960 				&& *stype != NOT_INIT
2961 				&& *stype != SCALAR_VALUE) {
2962 			/* Reject the write if there's are spilled pointers in
2963 			 * range. If we didn't reject here, the ptr status
2964 			 * would be erased below (even though not all slots are
2965 			 * actually overwritten), possibly opening the door to
2966 			 * leaks.
2967 			 */
2968 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2969 				insn_idx, i);
2970 			return -EINVAL;
2971 		}
2972 
2973 		/* Erase all spilled pointers. */
2974 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2975 
2976 		/* Update the slot type. */
2977 		new_type = STACK_MISC;
2978 		if (writing_zero && *stype == STACK_ZERO) {
2979 			new_type = STACK_ZERO;
2980 			zero_used = true;
2981 		}
2982 		/* If the slot is STACK_INVALID, we check whether it's OK to
2983 		 * pretend that it will be initialized by this write. The slot
2984 		 * might not actually be written to, and so if we mark it as
2985 		 * initialized future reads might leak uninitialized memory.
2986 		 * For privileged programs, we will accept such reads to slots
2987 		 * that may or may not be written because, if we're reject
2988 		 * them, the error would be too confusing.
2989 		 */
2990 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2991 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2992 					insn_idx, i);
2993 			return -EINVAL;
2994 		}
2995 		*stype = new_type;
2996 	}
2997 	if (zero_used) {
2998 		/* backtracking doesn't work for STACK_ZERO yet. */
2999 		err = mark_chain_precision(env, value_regno);
3000 		if (err)
3001 			return err;
3002 	}
3003 	return 0;
3004 }
3005 
3006 /* When register 'dst_regno' is assigned some values from stack[min_off,
3007  * max_off), we set the register's type according to the types of the
3008  * respective stack slots. If all the stack values are known to be zeros, then
3009  * so is the destination reg. Otherwise, the register is considered to be
3010  * SCALAR. This function does not deal with register filling; the caller must
3011  * ensure that all spilled registers in the stack range have been marked as
3012  * read.
3013  */
3014 static void mark_reg_stack_read(struct bpf_verifier_env *env,
3015 				/* func where src register points to */
3016 				struct bpf_func_state *ptr_state,
3017 				int min_off, int max_off, int dst_regno)
3018 {
3019 	struct bpf_verifier_state *vstate = env->cur_state;
3020 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3021 	int i, slot, spi;
3022 	u8 *stype;
3023 	int zeros = 0;
3024 
3025 	for (i = min_off; i < max_off; i++) {
3026 		slot = -i - 1;
3027 		spi = slot / BPF_REG_SIZE;
3028 		stype = ptr_state->stack[spi].slot_type;
3029 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3030 			break;
3031 		zeros++;
3032 	}
3033 	if (zeros == max_off - min_off) {
3034 		/* any access_size read into register is zero extended,
3035 		 * so the whole register == const_zero
3036 		 */
3037 		__mark_reg_const_zero(&state->regs[dst_regno]);
3038 		/* backtracking doesn't support STACK_ZERO yet,
3039 		 * so mark it precise here, so that later
3040 		 * backtracking can stop here.
3041 		 * Backtracking may not need this if this register
3042 		 * doesn't participate in pointer adjustment.
3043 		 * Forward propagation of precise flag is not
3044 		 * necessary either. This mark is only to stop
3045 		 * backtracking. Any register that contributed
3046 		 * to const 0 was marked precise before spill.
3047 		 */
3048 		state->regs[dst_regno].precise = true;
3049 	} else {
3050 		/* have read misc data from the stack */
3051 		mark_reg_unknown(env, state->regs, dst_regno);
3052 	}
3053 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3054 }
3055 
3056 /* Read the stack at 'off' and put the results into the register indicated by
3057  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3058  * spilled reg.
3059  *
3060  * 'dst_regno' can be -1, meaning that the read value is not going to a
3061  * register.
3062  *
3063  * The access is assumed to be within the current stack bounds.
3064  */
3065 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3066 				      /* func where src register points to */
3067 				      struct bpf_func_state *reg_state,
3068 				      int off, int size, int dst_regno)
3069 {
3070 	struct bpf_verifier_state *vstate = env->cur_state;
3071 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3072 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
3073 	struct bpf_reg_state *reg;
3074 	u8 *stype, type;
3075 
3076 	stype = reg_state->stack[spi].slot_type;
3077 	reg = &reg_state->stack[spi].spilled_ptr;
3078 
3079 	if (is_spilled_reg(&reg_state->stack[spi])) {
3080 		u8 spill_size = 1;
3081 
3082 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3083 			spill_size++;
3084 
3085 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
3086 			if (reg->type != SCALAR_VALUE) {
3087 				verbose_linfo(env, env->insn_idx, "; ");
3088 				verbose(env, "invalid size of register fill\n");
3089 				return -EACCES;
3090 			}
3091 
3092 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3093 			if (dst_regno < 0)
3094 				return 0;
3095 
3096 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
3097 				/* The earlier check_reg_arg() has decided the
3098 				 * subreg_def for this insn.  Save it first.
3099 				 */
3100 				s32 subreg_def = state->regs[dst_regno].subreg_def;
3101 
3102 				state->regs[dst_regno] = *reg;
3103 				state->regs[dst_regno].subreg_def = subreg_def;
3104 			} else {
3105 				for (i = 0; i < size; i++) {
3106 					type = stype[(slot - i) % BPF_REG_SIZE];
3107 					if (type == STACK_SPILL)
3108 						continue;
3109 					if (type == STACK_MISC)
3110 						continue;
3111 					verbose(env, "invalid read from stack off %d+%d size %d\n",
3112 						off, i, size);
3113 					return -EACCES;
3114 				}
3115 				mark_reg_unknown(env, state->regs, dst_regno);
3116 			}
3117 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3118 			return 0;
3119 		}
3120 
3121 		if (dst_regno >= 0) {
3122 			/* restore register state from stack */
3123 			state->regs[dst_regno] = *reg;
3124 			/* mark reg as written since spilled pointer state likely
3125 			 * has its liveness marks cleared by is_state_visited()
3126 			 * which resets stack/reg liveness for state transitions
3127 			 */
3128 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3129 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
3130 			/* If dst_regno==-1, the caller is asking us whether
3131 			 * it is acceptable to use this value as a SCALAR_VALUE
3132 			 * (e.g. for XADD).
3133 			 * We must not allow unprivileged callers to do that
3134 			 * with spilled pointers.
3135 			 */
3136 			verbose(env, "leaking pointer from stack off %d\n",
3137 				off);
3138 			return -EACCES;
3139 		}
3140 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3141 	} else {
3142 		for (i = 0; i < size; i++) {
3143 			type = stype[(slot - i) % BPF_REG_SIZE];
3144 			if (type == STACK_MISC)
3145 				continue;
3146 			if (type == STACK_ZERO)
3147 				continue;
3148 			verbose(env, "invalid read from stack off %d+%d size %d\n",
3149 				off, i, size);
3150 			return -EACCES;
3151 		}
3152 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3153 		if (dst_regno >= 0)
3154 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
3155 	}
3156 	return 0;
3157 }
3158 
3159 enum stack_access_src {
3160 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
3161 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
3162 };
3163 
3164 static int check_stack_range_initialized(struct bpf_verifier_env *env,
3165 					 int regno, int off, int access_size,
3166 					 bool zero_size_allowed,
3167 					 enum stack_access_src type,
3168 					 struct bpf_call_arg_meta *meta);
3169 
3170 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3171 {
3172 	return cur_regs(env) + regno;
3173 }
3174 
3175 /* Read the stack at 'ptr_regno + off' and put the result into the register
3176  * 'dst_regno'.
3177  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3178  * but not its variable offset.
3179  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3180  *
3181  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3182  * filling registers (i.e. reads of spilled register cannot be detected when
3183  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3184  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3185  * offset; for a fixed offset check_stack_read_fixed_off should be used
3186  * instead.
3187  */
3188 static int check_stack_read_var_off(struct bpf_verifier_env *env,
3189 				    int ptr_regno, int off, int size, int dst_regno)
3190 {
3191 	/* The state of the source register. */
3192 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3193 	struct bpf_func_state *ptr_state = func(env, reg);
3194 	int err;
3195 	int min_off, max_off;
3196 
3197 	/* Note that we pass a NULL meta, so raw access will not be permitted.
3198 	 */
3199 	err = check_stack_range_initialized(env, ptr_regno, off, size,
3200 					    false, ACCESS_DIRECT, NULL);
3201 	if (err)
3202 		return err;
3203 
3204 	min_off = reg->smin_value + off;
3205 	max_off = reg->smax_value + off;
3206 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3207 	return 0;
3208 }
3209 
3210 /* check_stack_read dispatches to check_stack_read_fixed_off or
3211  * check_stack_read_var_off.
3212  *
3213  * The caller must ensure that the offset falls within the allocated stack
3214  * bounds.
3215  *
3216  * 'dst_regno' is a register which will receive the value from the stack. It
3217  * can be -1, meaning that the read value is not going to a register.
3218  */
3219 static int check_stack_read(struct bpf_verifier_env *env,
3220 			    int ptr_regno, int off, int size,
3221 			    int dst_regno)
3222 {
3223 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3224 	struct bpf_func_state *state = func(env, reg);
3225 	int err;
3226 	/* Some accesses are only permitted with a static offset. */
3227 	bool var_off = !tnum_is_const(reg->var_off);
3228 
3229 	/* The offset is required to be static when reads don't go to a
3230 	 * register, in order to not leak pointers (see
3231 	 * check_stack_read_fixed_off).
3232 	 */
3233 	if (dst_regno < 0 && var_off) {
3234 		char tn_buf[48];
3235 
3236 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3237 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3238 			tn_buf, off, size);
3239 		return -EACCES;
3240 	}
3241 	/* Variable offset is prohibited for unprivileged mode for simplicity
3242 	 * since it requires corresponding support in Spectre masking for stack
3243 	 * ALU. See also retrieve_ptr_limit().
3244 	 */
3245 	if (!env->bypass_spec_v1 && var_off) {
3246 		char tn_buf[48];
3247 
3248 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3249 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3250 				ptr_regno, tn_buf);
3251 		return -EACCES;
3252 	}
3253 
3254 	if (!var_off) {
3255 		off += reg->var_off.value;
3256 		err = check_stack_read_fixed_off(env, state, off, size,
3257 						 dst_regno);
3258 	} else {
3259 		/* Variable offset stack reads need more conservative handling
3260 		 * than fixed offset ones. Note that dst_regno >= 0 on this
3261 		 * branch.
3262 		 */
3263 		err = check_stack_read_var_off(env, ptr_regno, off, size,
3264 					       dst_regno);
3265 	}
3266 	return err;
3267 }
3268 
3269 
3270 /* check_stack_write dispatches to check_stack_write_fixed_off or
3271  * check_stack_write_var_off.
3272  *
3273  * 'ptr_regno' is the register used as a pointer into the stack.
3274  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3275  * 'value_regno' is the register whose value we're writing to the stack. It can
3276  * be -1, meaning that we're not writing from a register.
3277  *
3278  * The caller must ensure that the offset falls within the maximum stack size.
3279  */
3280 static int check_stack_write(struct bpf_verifier_env *env,
3281 			     int ptr_regno, int off, int size,
3282 			     int value_regno, int insn_idx)
3283 {
3284 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3285 	struct bpf_func_state *state = func(env, reg);
3286 	int err;
3287 
3288 	if (tnum_is_const(reg->var_off)) {
3289 		off += reg->var_off.value;
3290 		err = check_stack_write_fixed_off(env, state, off, size,
3291 						  value_regno, insn_idx);
3292 	} else {
3293 		/* Variable offset stack reads need more conservative handling
3294 		 * than fixed offset ones.
3295 		 */
3296 		err = check_stack_write_var_off(env, state,
3297 						ptr_regno, off, size,
3298 						value_regno, insn_idx);
3299 	}
3300 	return err;
3301 }
3302 
3303 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3304 				 int off, int size, enum bpf_access_type type)
3305 {
3306 	struct bpf_reg_state *regs = cur_regs(env);
3307 	struct bpf_map *map = regs[regno].map_ptr;
3308 	u32 cap = bpf_map_flags_to_cap(map);
3309 
3310 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3311 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3312 			map->value_size, off, size);
3313 		return -EACCES;
3314 	}
3315 
3316 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3317 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3318 			map->value_size, off, size);
3319 		return -EACCES;
3320 	}
3321 
3322 	return 0;
3323 }
3324 
3325 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3326 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3327 			      int off, int size, u32 mem_size,
3328 			      bool zero_size_allowed)
3329 {
3330 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3331 	struct bpf_reg_state *reg;
3332 
3333 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3334 		return 0;
3335 
3336 	reg = &cur_regs(env)[regno];
3337 	switch (reg->type) {
3338 	case PTR_TO_MAP_KEY:
3339 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3340 			mem_size, off, size);
3341 		break;
3342 	case PTR_TO_MAP_VALUE:
3343 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3344 			mem_size, off, size);
3345 		break;
3346 	case PTR_TO_PACKET:
3347 	case PTR_TO_PACKET_META:
3348 	case PTR_TO_PACKET_END:
3349 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3350 			off, size, regno, reg->id, off, mem_size);
3351 		break;
3352 	case PTR_TO_MEM:
3353 	default:
3354 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3355 			mem_size, off, size);
3356 	}
3357 
3358 	return -EACCES;
3359 }
3360 
3361 /* check read/write into a memory region with possible variable offset */
3362 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3363 				   int off, int size, u32 mem_size,
3364 				   bool zero_size_allowed)
3365 {
3366 	struct bpf_verifier_state *vstate = env->cur_state;
3367 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3368 	struct bpf_reg_state *reg = &state->regs[regno];
3369 	int err;
3370 
3371 	/* We may have adjusted the register pointing to memory region, so we
3372 	 * need to try adding each of min_value and max_value to off
3373 	 * to make sure our theoretical access will be safe.
3374 	 */
3375 	if (env->log.level & BPF_LOG_LEVEL)
3376 		print_verifier_state(env, state);
3377 
3378 	/* The minimum value is only important with signed
3379 	 * comparisons where we can't assume the floor of a
3380 	 * value is 0.  If we are using signed variables for our
3381 	 * index'es we need to make sure that whatever we use
3382 	 * will have a set floor within our range.
3383 	 */
3384 	if (reg->smin_value < 0 &&
3385 	    (reg->smin_value == S64_MIN ||
3386 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3387 	      reg->smin_value + off < 0)) {
3388 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3389 			regno);
3390 		return -EACCES;
3391 	}
3392 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
3393 				 mem_size, zero_size_allowed);
3394 	if (err) {
3395 		verbose(env, "R%d min value is outside of the allowed memory range\n",
3396 			regno);
3397 		return err;
3398 	}
3399 
3400 	/* If we haven't set a max value then we need to bail since we can't be
3401 	 * sure we won't do bad things.
3402 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
3403 	 */
3404 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3405 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3406 			regno);
3407 		return -EACCES;
3408 	}
3409 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
3410 				 mem_size, zero_size_allowed);
3411 	if (err) {
3412 		verbose(env, "R%d max value is outside of the allowed memory range\n",
3413 			regno);
3414 		return err;
3415 	}
3416 
3417 	return 0;
3418 }
3419 
3420 /* check read/write into a map element with possible variable offset */
3421 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3422 			    int off, int size, bool zero_size_allowed)
3423 {
3424 	struct bpf_verifier_state *vstate = env->cur_state;
3425 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3426 	struct bpf_reg_state *reg = &state->regs[regno];
3427 	struct bpf_map *map = reg->map_ptr;
3428 	int err;
3429 
3430 	err = check_mem_region_access(env, regno, off, size, map->value_size,
3431 				      zero_size_allowed);
3432 	if (err)
3433 		return err;
3434 
3435 	if (map_value_has_spin_lock(map)) {
3436 		u32 lock = map->spin_lock_off;
3437 
3438 		/* if any part of struct bpf_spin_lock can be touched by
3439 		 * load/store reject this program.
3440 		 * To check that [x1, x2) overlaps with [y1, y2)
3441 		 * it is sufficient to check x1 < y2 && y1 < x2.
3442 		 */
3443 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3444 		     lock < reg->umax_value + off + size) {
3445 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3446 			return -EACCES;
3447 		}
3448 	}
3449 	if (map_value_has_timer(map)) {
3450 		u32 t = map->timer_off;
3451 
3452 		if (reg->smin_value + off < t + sizeof(struct bpf_timer) &&
3453 		     t < reg->umax_value + off + size) {
3454 			verbose(env, "bpf_timer cannot be accessed directly by load/store\n");
3455 			return -EACCES;
3456 		}
3457 	}
3458 	return err;
3459 }
3460 
3461 #define MAX_PACKET_OFF 0xffff
3462 
3463 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3464 {
3465 	return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
3466 }
3467 
3468 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3469 				       const struct bpf_call_arg_meta *meta,
3470 				       enum bpf_access_type t)
3471 {
3472 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3473 
3474 	switch (prog_type) {
3475 	/* Program types only with direct read access go here! */
3476 	case BPF_PROG_TYPE_LWT_IN:
3477 	case BPF_PROG_TYPE_LWT_OUT:
3478 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3479 	case BPF_PROG_TYPE_SK_REUSEPORT:
3480 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
3481 	case BPF_PROG_TYPE_CGROUP_SKB:
3482 		if (t == BPF_WRITE)
3483 			return false;
3484 		fallthrough;
3485 
3486 	/* Program types with direct read + write access go here! */
3487 	case BPF_PROG_TYPE_SCHED_CLS:
3488 	case BPF_PROG_TYPE_SCHED_ACT:
3489 	case BPF_PROG_TYPE_XDP:
3490 	case BPF_PROG_TYPE_LWT_XMIT:
3491 	case BPF_PROG_TYPE_SK_SKB:
3492 	case BPF_PROG_TYPE_SK_MSG:
3493 		if (meta)
3494 			return meta->pkt_access;
3495 
3496 		env->seen_direct_write = true;
3497 		return true;
3498 
3499 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3500 		if (t == BPF_WRITE)
3501 			env->seen_direct_write = true;
3502 
3503 		return true;
3504 
3505 	default:
3506 		return false;
3507 	}
3508 }
3509 
3510 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3511 			       int size, bool zero_size_allowed)
3512 {
3513 	struct bpf_reg_state *regs = cur_regs(env);
3514 	struct bpf_reg_state *reg = &regs[regno];
3515 	int err;
3516 
3517 	/* We may have added a variable offset to the packet pointer; but any
3518 	 * reg->range we have comes after that.  We are only checking the fixed
3519 	 * offset.
3520 	 */
3521 
3522 	/* We don't allow negative numbers, because we aren't tracking enough
3523 	 * detail to prove they're safe.
3524 	 */
3525 	if (reg->smin_value < 0) {
3526 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3527 			regno);
3528 		return -EACCES;
3529 	}
3530 
3531 	err = reg->range < 0 ? -EINVAL :
3532 	      __check_mem_access(env, regno, off, size, reg->range,
3533 				 zero_size_allowed);
3534 	if (err) {
3535 		verbose(env, "R%d offset is outside of the packet\n", regno);
3536 		return err;
3537 	}
3538 
3539 	/* __check_mem_access has made sure "off + size - 1" is within u16.
3540 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3541 	 * otherwise find_good_pkt_pointers would have refused to set range info
3542 	 * that __check_mem_access would have rejected this pkt access.
3543 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3544 	 */
3545 	env->prog->aux->max_pkt_offset =
3546 		max_t(u32, env->prog->aux->max_pkt_offset,
3547 		      off + reg->umax_value + size - 1);
3548 
3549 	return err;
3550 }
3551 
3552 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
3553 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3554 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
3555 			    struct btf **btf, u32 *btf_id)
3556 {
3557 	struct bpf_insn_access_aux info = {
3558 		.reg_type = *reg_type,
3559 		.log = &env->log,
3560 	};
3561 
3562 	if (env->ops->is_valid_access &&
3563 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3564 		/* A non zero info.ctx_field_size indicates that this field is a
3565 		 * candidate for later verifier transformation to load the whole
3566 		 * field and then apply a mask when accessed with a narrower
3567 		 * access than actual ctx access size. A zero info.ctx_field_size
3568 		 * will only allow for whole field access and rejects any other
3569 		 * type of narrower access.
3570 		 */
3571 		*reg_type = info.reg_type;
3572 
3573 		if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3574 			*btf = info.btf;
3575 			*btf_id = info.btf_id;
3576 		} else {
3577 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3578 		}
3579 		/* remember the offset of last byte accessed in ctx */
3580 		if (env->prog->aux->max_ctx_offset < off + size)
3581 			env->prog->aux->max_ctx_offset = off + size;
3582 		return 0;
3583 	}
3584 
3585 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3586 	return -EACCES;
3587 }
3588 
3589 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3590 				  int size)
3591 {
3592 	if (size < 0 || off < 0 ||
3593 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
3594 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
3595 			off, size);
3596 		return -EACCES;
3597 	}
3598 	return 0;
3599 }
3600 
3601 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3602 			     u32 regno, int off, int size,
3603 			     enum bpf_access_type t)
3604 {
3605 	struct bpf_reg_state *regs = cur_regs(env);
3606 	struct bpf_reg_state *reg = &regs[regno];
3607 	struct bpf_insn_access_aux info = {};
3608 	bool valid;
3609 
3610 	if (reg->smin_value < 0) {
3611 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3612 			regno);
3613 		return -EACCES;
3614 	}
3615 
3616 	switch (reg->type) {
3617 	case PTR_TO_SOCK_COMMON:
3618 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3619 		break;
3620 	case PTR_TO_SOCKET:
3621 		valid = bpf_sock_is_valid_access(off, size, t, &info);
3622 		break;
3623 	case PTR_TO_TCP_SOCK:
3624 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3625 		break;
3626 	case PTR_TO_XDP_SOCK:
3627 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3628 		break;
3629 	default:
3630 		valid = false;
3631 	}
3632 
3633 
3634 	if (valid) {
3635 		env->insn_aux_data[insn_idx].ctx_field_size =
3636 			info.ctx_field_size;
3637 		return 0;
3638 	}
3639 
3640 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
3641 		regno, reg_type_str[reg->type], off, size);
3642 
3643 	return -EACCES;
3644 }
3645 
3646 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3647 {
3648 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3649 }
3650 
3651 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3652 {
3653 	const struct bpf_reg_state *reg = reg_state(env, regno);
3654 
3655 	return reg->type == PTR_TO_CTX;
3656 }
3657 
3658 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3659 {
3660 	const struct bpf_reg_state *reg = reg_state(env, regno);
3661 
3662 	return type_is_sk_pointer(reg->type);
3663 }
3664 
3665 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3666 {
3667 	const struct bpf_reg_state *reg = reg_state(env, regno);
3668 
3669 	return type_is_pkt_pointer(reg->type);
3670 }
3671 
3672 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3673 {
3674 	const struct bpf_reg_state *reg = reg_state(env, regno);
3675 
3676 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3677 	return reg->type == PTR_TO_FLOW_KEYS;
3678 }
3679 
3680 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3681 				   const struct bpf_reg_state *reg,
3682 				   int off, int size, bool strict)
3683 {
3684 	struct tnum reg_off;
3685 	int ip_align;
3686 
3687 	/* Byte size accesses are always allowed. */
3688 	if (!strict || size == 1)
3689 		return 0;
3690 
3691 	/* For platforms that do not have a Kconfig enabling
3692 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3693 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
3694 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3695 	 * to this code only in strict mode where we want to emulate
3696 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
3697 	 * unconditional IP align value of '2'.
3698 	 */
3699 	ip_align = 2;
3700 
3701 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3702 	if (!tnum_is_aligned(reg_off, size)) {
3703 		char tn_buf[48];
3704 
3705 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3706 		verbose(env,
3707 			"misaligned packet access off %d+%s+%d+%d size %d\n",
3708 			ip_align, tn_buf, reg->off, off, size);
3709 		return -EACCES;
3710 	}
3711 
3712 	return 0;
3713 }
3714 
3715 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3716 				       const struct bpf_reg_state *reg,
3717 				       const char *pointer_desc,
3718 				       int off, int size, bool strict)
3719 {
3720 	struct tnum reg_off;
3721 
3722 	/* Byte size accesses are always allowed. */
3723 	if (!strict || size == 1)
3724 		return 0;
3725 
3726 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3727 	if (!tnum_is_aligned(reg_off, size)) {
3728 		char tn_buf[48];
3729 
3730 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3731 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3732 			pointer_desc, tn_buf, reg->off, off, size);
3733 		return -EACCES;
3734 	}
3735 
3736 	return 0;
3737 }
3738 
3739 static int check_ptr_alignment(struct bpf_verifier_env *env,
3740 			       const struct bpf_reg_state *reg, int off,
3741 			       int size, bool strict_alignment_once)
3742 {
3743 	bool strict = env->strict_alignment || strict_alignment_once;
3744 	const char *pointer_desc = "";
3745 
3746 	switch (reg->type) {
3747 	case PTR_TO_PACKET:
3748 	case PTR_TO_PACKET_META:
3749 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
3750 		 * right in front, treat it the very same way.
3751 		 */
3752 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
3753 	case PTR_TO_FLOW_KEYS:
3754 		pointer_desc = "flow keys ";
3755 		break;
3756 	case PTR_TO_MAP_KEY:
3757 		pointer_desc = "key ";
3758 		break;
3759 	case PTR_TO_MAP_VALUE:
3760 		pointer_desc = "value ";
3761 		break;
3762 	case PTR_TO_CTX:
3763 		pointer_desc = "context ";
3764 		break;
3765 	case PTR_TO_STACK:
3766 		pointer_desc = "stack ";
3767 		/* The stack spill tracking logic in check_stack_write_fixed_off()
3768 		 * and check_stack_read_fixed_off() relies on stack accesses being
3769 		 * aligned.
3770 		 */
3771 		strict = true;
3772 		break;
3773 	case PTR_TO_SOCKET:
3774 		pointer_desc = "sock ";
3775 		break;
3776 	case PTR_TO_SOCK_COMMON:
3777 		pointer_desc = "sock_common ";
3778 		break;
3779 	case PTR_TO_TCP_SOCK:
3780 		pointer_desc = "tcp_sock ";
3781 		break;
3782 	case PTR_TO_XDP_SOCK:
3783 		pointer_desc = "xdp_sock ";
3784 		break;
3785 	default:
3786 		break;
3787 	}
3788 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3789 					   strict);
3790 }
3791 
3792 static int update_stack_depth(struct bpf_verifier_env *env,
3793 			      const struct bpf_func_state *func,
3794 			      int off)
3795 {
3796 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
3797 
3798 	if (stack >= -off)
3799 		return 0;
3800 
3801 	/* update known max for given subprogram */
3802 	env->subprog_info[func->subprogno].stack_depth = -off;
3803 	return 0;
3804 }
3805 
3806 /* starting from main bpf function walk all instructions of the function
3807  * and recursively walk all callees that given function can call.
3808  * Ignore jump and exit insns.
3809  * Since recursion is prevented by check_cfg() this algorithm
3810  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3811  */
3812 static int check_max_stack_depth(struct bpf_verifier_env *env)
3813 {
3814 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3815 	struct bpf_subprog_info *subprog = env->subprog_info;
3816 	struct bpf_insn *insn = env->prog->insnsi;
3817 	bool tail_call_reachable = false;
3818 	int ret_insn[MAX_CALL_FRAMES];
3819 	int ret_prog[MAX_CALL_FRAMES];
3820 	int j;
3821 
3822 process_func:
3823 	/* protect against potential stack overflow that might happen when
3824 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3825 	 * depth for such case down to 256 so that the worst case scenario
3826 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
3827 	 * 8k).
3828 	 *
3829 	 * To get the idea what might happen, see an example:
3830 	 * func1 -> sub rsp, 128
3831 	 *  subfunc1 -> sub rsp, 256
3832 	 *  tailcall1 -> add rsp, 256
3833 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3834 	 *   subfunc2 -> sub rsp, 64
3835 	 *   subfunc22 -> sub rsp, 128
3836 	 *   tailcall2 -> add rsp, 128
3837 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3838 	 *
3839 	 * tailcall will unwind the current stack frame but it will not get rid
3840 	 * of caller's stack as shown on the example above.
3841 	 */
3842 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
3843 		verbose(env,
3844 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3845 			depth);
3846 		return -EACCES;
3847 	}
3848 	/* round up to 32-bytes, since this is granularity
3849 	 * of interpreter stack size
3850 	 */
3851 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3852 	if (depth > MAX_BPF_STACK) {
3853 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
3854 			frame + 1, depth);
3855 		return -EACCES;
3856 	}
3857 continue_func:
3858 	subprog_end = subprog[idx + 1].start;
3859 	for (; i < subprog_end; i++) {
3860 		int next_insn;
3861 
3862 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
3863 			continue;
3864 		/* remember insn and function to return to */
3865 		ret_insn[frame] = i + 1;
3866 		ret_prog[frame] = idx;
3867 
3868 		/* find the callee */
3869 		next_insn = i + insn[i].imm + 1;
3870 		idx = find_subprog(env, next_insn);
3871 		if (idx < 0) {
3872 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3873 				  next_insn);
3874 			return -EFAULT;
3875 		}
3876 		if (subprog[idx].is_async_cb) {
3877 			if (subprog[idx].has_tail_call) {
3878 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
3879 				return -EFAULT;
3880 			}
3881 			 /* async callbacks don't increase bpf prog stack size */
3882 			continue;
3883 		}
3884 		i = next_insn;
3885 
3886 		if (subprog[idx].has_tail_call)
3887 			tail_call_reachable = true;
3888 
3889 		frame++;
3890 		if (frame >= MAX_CALL_FRAMES) {
3891 			verbose(env, "the call stack of %d frames is too deep !\n",
3892 				frame);
3893 			return -E2BIG;
3894 		}
3895 		goto process_func;
3896 	}
3897 	/* if tail call got detected across bpf2bpf calls then mark each of the
3898 	 * currently present subprog frames as tail call reachable subprogs;
3899 	 * this info will be utilized by JIT so that we will be preserving the
3900 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
3901 	 */
3902 	if (tail_call_reachable)
3903 		for (j = 0; j < frame; j++)
3904 			subprog[ret_prog[j]].tail_call_reachable = true;
3905 	if (subprog[0].tail_call_reachable)
3906 		env->prog->aux->tail_call_reachable = true;
3907 
3908 	/* end of for() loop means the last insn of the 'subprog'
3909 	 * was reached. Doesn't matter whether it was JA or EXIT
3910 	 */
3911 	if (frame == 0)
3912 		return 0;
3913 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3914 	frame--;
3915 	i = ret_insn[frame];
3916 	idx = ret_prog[frame];
3917 	goto continue_func;
3918 }
3919 
3920 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3921 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3922 				  const struct bpf_insn *insn, int idx)
3923 {
3924 	int start = idx + insn->imm + 1, subprog;
3925 
3926 	subprog = find_subprog(env, start);
3927 	if (subprog < 0) {
3928 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3929 			  start);
3930 		return -EFAULT;
3931 	}
3932 	return env->subprog_info[subprog].stack_depth;
3933 }
3934 #endif
3935 
3936 int check_ctx_reg(struct bpf_verifier_env *env,
3937 		  const struct bpf_reg_state *reg, int regno)
3938 {
3939 	/* Access to ctx or passing it to a helper is only allowed in
3940 	 * its original, unmodified form.
3941 	 */
3942 
3943 	if (reg->off) {
3944 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3945 			regno, reg->off);
3946 		return -EACCES;
3947 	}
3948 
3949 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3950 		char tn_buf[48];
3951 
3952 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3953 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3954 		return -EACCES;
3955 	}
3956 
3957 	return 0;
3958 }
3959 
3960 static int __check_buffer_access(struct bpf_verifier_env *env,
3961 				 const char *buf_info,
3962 				 const struct bpf_reg_state *reg,
3963 				 int regno, int off, int size)
3964 {
3965 	if (off < 0) {
3966 		verbose(env,
3967 			"R%d invalid %s buffer access: off=%d, size=%d\n",
3968 			regno, buf_info, off, size);
3969 		return -EACCES;
3970 	}
3971 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3972 		char tn_buf[48];
3973 
3974 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3975 		verbose(env,
3976 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3977 			regno, off, tn_buf);
3978 		return -EACCES;
3979 	}
3980 
3981 	return 0;
3982 }
3983 
3984 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3985 				  const struct bpf_reg_state *reg,
3986 				  int regno, int off, int size)
3987 {
3988 	int err;
3989 
3990 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3991 	if (err)
3992 		return err;
3993 
3994 	if (off + size > env->prog->aux->max_tp_access)
3995 		env->prog->aux->max_tp_access = off + size;
3996 
3997 	return 0;
3998 }
3999 
4000 static int check_buffer_access(struct bpf_verifier_env *env,
4001 			       const struct bpf_reg_state *reg,
4002 			       int regno, int off, int size,
4003 			       bool zero_size_allowed,
4004 			       const char *buf_info,
4005 			       u32 *max_access)
4006 {
4007 	int err;
4008 
4009 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4010 	if (err)
4011 		return err;
4012 
4013 	if (off + size > *max_access)
4014 		*max_access = off + size;
4015 
4016 	return 0;
4017 }
4018 
4019 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
4020 static void zext_32_to_64(struct bpf_reg_state *reg)
4021 {
4022 	reg->var_off = tnum_subreg(reg->var_off);
4023 	__reg_assign_32_into_64(reg);
4024 }
4025 
4026 /* truncate register to smaller size (in bytes)
4027  * must be called with size < BPF_REG_SIZE
4028  */
4029 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4030 {
4031 	u64 mask;
4032 
4033 	/* clear high bits in bit representation */
4034 	reg->var_off = tnum_cast(reg->var_off, size);
4035 
4036 	/* fix arithmetic bounds */
4037 	mask = ((u64)1 << (size * 8)) - 1;
4038 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4039 		reg->umin_value &= mask;
4040 		reg->umax_value &= mask;
4041 	} else {
4042 		reg->umin_value = 0;
4043 		reg->umax_value = mask;
4044 	}
4045 	reg->smin_value = reg->umin_value;
4046 	reg->smax_value = reg->umax_value;
4047 
4048 	/* If size is smaller than 32bit register the 32bit register
4049 	 * values are also truncated so we push 64-bit bounds into
4050 	 * 32-bit bounds. Above were truncated < 32-bits already.
4051 	 */
4052 	if (size >= 4)
4053 		return;
4054 	__reg_combine_64_into_32(reg);
4055 }
4056 
4057 static bool bpf_map_is_rdonly(const struct bpf_map *map)
4058 {
4059 	/* A map is considered read-only if the following condition are true:
4060 	 *
4061 	 * 1) BPF program side cannot change any of the map content. The
4062 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
4063 	 *    and was set at map creation time.
4064 	 * 2) The map value(s) have been initialized from user space by a
4065 	 *    loader and then "frozen", such that no new map update/delete
4066 	 *    operations from syscall side are possible for the rest of
4067 	 *    the map's lifetime from that point onwards.
4068 	 * 3) Any parallel/pending map update/delete operations from syscall
4069 	 *    side have been completed. Only after that point, it's safe to
4070 	 *    assume that map value(s) are immutable.
4071 	 */
4072 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
4073 	       READ_ONCE(map->frozen) &&
4074 	       !bpf_map_write_active(map);
4075 }
4076 
4077 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4078 {
4079 	void *ptr;
4080 	u64 addr;
4081 	int err;
4082 
4083 	err = map->ops->map_direct_value_addr(map, &addr, off);
4084 	if (err)
4085 		return err;
4086 	ptr = (void *)(long)addr + off;
4087 
4088 	switch (size) {
4089 	case sizeof(u8):
4090 		*val = (u64)*(u8 *)ptr;
4091 		break;
4092 	case sizeof(u16):
4093 		*val = (u64)*(u16 *)ptr;
4094 		break;
4095 	case sizeof(u32):
4096 		*val = (u64)*(u32 *)ptr;
4097 		break;
4098 	case sizeof(u64):
4099 		*val = *(u64 *)ptr;
4100 		break;
4101 	default:
4102 		return -EINVAL;
4103 	}
4104 	return 0;
4105 }
4106 
4107 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4108 				   struct bpf_reg_state *regs,
4109 				   int regno, int off, int size,
4110 				   enum bpf_access_type atype,
4111 				   int value_regno)
4112 {
4113 	struct bpf_reg_state *reg = regs + regno;
4114 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4115 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
4116 	u32 btf_id;
4117 	int ret;
4118 
4119 	if (off < 0) {
4120 		verbose(env,
4121 			"R%d is ptr_%s invalid negative access: off=%d\n",
4122 			regno, tname, off);
4123 		return -EACCES;
4124 	}
4125 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4126 		char tn_buf[48];
4127 
4128 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4129 		verbose(env,
4130 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4131 			regno, tname, off, tn_buf);
4132 		return -EACCES;
4133 	}
4134 
4135 	if (env->ops->btf_struct_access) {
4136 		ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
4137 						  off, size, atype, &btf_id);
4138 	} else {
4139 		if (atype != BPF_READ) {
4140 			verbose(env, "only read is supported\n");
4141 			return -EACCES;
4142 		}
4143 
4144 		ret = btf_struct_access(&env->log, reg->btf, t, off, size,
4145 					atype, &btf_id);
4146 	}
4147 
4148 	if (ret < 0)
4149 		return ret;
4150 
4151 	if (atype == BPF_READ && value_regno >= 0)
4152 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
4153 
4154 	return 0;
4155 }
4156 
4157 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
4158 				   struct bpf_reg_state *regs,
4159 				   int regno, int off, int size,
4160 				   enum bpf_access_type atype,
4161 				   int value_regno)
4162 {
4163 	struct bpf_reg_state *reg = regs + regno;
4164 	struct bpf_map *map = reg->map_ptr;
4165 	const struct btf_type *t;
4166 	const char *tname;
4167 	u32 btf_id;
4168 	int ret;
4169 
4170 	if (!btf_vmlinux) {
4171 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4172 		return -ENOTSUPP;
4173 	}
4174 
4175 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4176 		verbose(env, "map_ptr access not supported for map type %d\n",
4177 			map->map_type);
4178 		return -ENOTSUPP;
4179 	}
4180 
4181 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4182 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4183 
4184 	if (!env->allow_ptr_to_map_access) {
4185 		verbose(env,
4186 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4187 			tname);
4188 		return -EPERM;
4189 	}
4190 
4191 	if (off < 0) {
4192 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
4193 			regno, tname, off);
4194 		return -EACCES;
4195 	}
4196 
4197 	if (atype != BPF_READ) {
4198 		verbose(env, "only read from %s is supported\n", tname);
4199 		return -EACCES;
4200 	}
4201 
4202 	ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
4203 	if (ret < 0)
4204 		return ret;
4205 
4206 	if (value_regno >= 0)
4207 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
4208 
4209 	return 0;
4210 }
4211 
4212 /* Check that the stack access at the given offset is within bounds. The
4213  * maximum valid offset is -1.
4214  *
4215  * The minimum valid offset is -MAX_BPF_STACK for writes, and
4216  * -state->allocated_stack for reads.
4217  */
4218 static int check_stack_slot_within_bounds(int off,
4219 					  struct bpf_func_state *state,
4220 					  enum bpf_access_type t)
4221 {
4222 	int min_valid_off;
4223 
4224 	if (t == BPF_WRITE)
4225 		min_valid_off = -MAX_BPF_STACK;
4226 	else
4227 		min_valid_off = -state->allocated_stack;
4228 
4229 	if (off < min_valid_off || off > -1)
4230 		return -EACCES;
4231 	return 0;
4232 }
4233 
4234 /* Check that the stack access at 'regno + off' falls within the maximum stack
4235  * bounds.
4236  *
4237  * 'off' includes `regno->offset`, but not its dynamic part (if any).
4238  */
4239 static int check_stack_access_within_bounds(
4240 		struct bpf_verifier_env *env,
4241 		int regno, int off, int access_size,
4242 		enum stack_access_src src, enum bpf_access_type type)
4243 {
4244 	struct bpf_reg_state *regs = cur_regs(env);
4245 	struct bpf_reg_state *reg = regs + regno;
4246 	struct bpf_func_state *state = func(env, reg);
4247 	int min_off, max_off;
4248 	int err;
4249 	char *err_extra;
4250 
4251 	if (src == ACCESS_HELPER)
4252 		/* We don't know if helpers are reading or writing (or both). */
4253 		err_extra = " indirect access to";
4254 	else if (type == BPF_READ)
4255 		err_extra = " read from";
4256 	else
4257 		err_extra = " write to";
4258 
4259 	if (tnum_is_const(reg->var_off)) {
4260 		min_off = reg->var_off.value + off;
4261 		if (access_size > 0)
4262 			max_off = min_off + access_size - 1;
4263 		else
4264 			max_off = min_off;
4265 	} else {
4266 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4267 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
4268 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4269 				err_extra, regno);
4270 			return -EACCES;
4271 		}
4272 		min_off = reg->smin_value + off;
4273 		if (access_size > 0)
4274 			max_off = reg->smax_value + off + access_size - 1;
4275 		else
4276 			max_off = min_off;
4277 	}
4278 
4279 	err = check_stack_slot_within_bounds(min_off, state, type);
4280 	if (!err)
4281 		err = check_stack_slot_within_bounds(max_off, state, type);
4282 
4283 	if (err) {
4284 		if (tnum_is_const(reg->var_off)) {
4285 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4286 				err_extra, regno, off, access_size);
4287 		} else {
4288 			char tn_buf[48];
4289 
4290 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4291 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4292 				err_extra, regno, tn_buf, access_size);
4293 		}
4294 	}
4295 	return err;
4296 }
4297 
4298 /* check whether memory at (regno + off) is accessible for t = (read | write)
4299  * if t==write, value_regno is a register which value is stored into memory
4300  * if t==read, value_regno is a register which will receive the value from memory
4301  * if t==write && value_regno==-1, some unknown value is stored into memory
4302  * if t==read && value_regno==-1, don't care what we read from memory
4303  */
4304 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4305 			    int off, int bpf_size, enum bpf_access_type t,
4306 			    int value_regno, bool strict_alignment_once)
4307 {
4308 	struct bpf_reg_state *regs = cur_regs(env);
4309 	struct bpf_reg_state *reg = regs + regno;
4310 	struct bpf_func_state *state;
4311 	int size, err = 0;
4312 
4313 	size = bpf_size_to_bytes(bpf_size);
4314 	if (size < 0)
4315 		return size;
4316 
4317 	/* alignment checks will add in reg->off themselves */
4318 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
4319 	if (err)
4320 		return err;
4321 
4322 	/* for access checks, reg->off is just part of off */
4323 	off += reg->off;
4324 
4325 	if (reg->type == PTR_TO_MAP_KEY) {
4326 		if (t == BPF_WRITE) {
4327 			verbose(env, "write to change key R%d not allowed\n", regno);
4328 			return -EACCES;
4329 		}
4330 
4331 		err = check_mem_region_access(env, regno, off, size,
4332 					      reg->map_ptr->key_size, false);
4333 		if (err)
4334 			return err;
4335 		if (value_regno >= 0)
4336 			mark_reg_unknown(env, regs, value_regno);
4337 	} else if (reg->type == PTR_TO_MAP_VALUE) {
4338 		if (t == BPF_WRITE && value_regno >= 0 &&
4339 		    is_pointer_value(env, value_regno)) {
4340 			verbose(env, "R%d leaks addr into map\n", value_regno);
4341 			return -EACCES;
4342 		}
4343 		err = check_map_access_type(env, regno, off, size, t);
4344 		if (err)
4345 			return err;
4346 		err = check_map_access(env, regno, off, size, false);
4347 		if (!err && t == BPF_READ && value_regno >= 0) {
4348 			struct bpf_map *map = reg->map_ptr;
4349 
4350 			/* if map is read-only, track its contents as scalars */
4351 			if (tnum_is_const(reg->var_off) &&
4352 			    bpf_map_is_rdonly(map) &&
4353 			    map->ops->map_direct_value_addr) {
4354 				int map_off = off + reg->var_off.value;
4355 				u64 val = 0;
4356 
4357 				err = bpf_map_direct_read(map, map_off, size,
4358 							  &val);
4359 				if (err)
4360 					return err;
4361 
4362 				regs[value_regno].type = SCALAR_VALUE;
4363 				__mark_reg_known(&regs[value_regno], val);
4364 			} else {
4365 				mark_reg_unknown(env, regs, value_regno);
4366 			}
4367 		}
4368 	} else if (reg->type == PTR_TO_MEM) {
4369 		if (t == BPF_WRITE && value_regno >= 0 &&
4370 		    is_pointer_value(env, value_regno)) {
4371 			verbose(env, "R%d leaks addr into mem\n", value_regno);
4372 			return -EACCES;
4373 		}
4374 		err = check_mem_region_access(env, regno, off, size,
4375 					      reg->mem_size, false);
4376 		if (!err && t == BPF_READ && value_regno >= 0)
4377 			mark_reg_unknown(env, regs, value_regno);
4378 	} else if (reg->type == PTR_TO_CTX) {
4379 		enum bpf_reg_type reg_type = SCALAR_VALUE;
4380 		struct btf *btf = NULL;
4381 		u32 btf_id = 0;
4382 
4383 		if (t == BPF_WRITE && value_regno >= 0 &&
4384 		    is_pointer_value(env, value_regno)) {
4385 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
4386 			return -EACCES;
4387 		}
4388 
4389 		err = check_ctx_reg(env, reg, regno);
4390 		if (err < 0)
4391 			return err;
4392 
4393 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
4394 		if (err)
4395 			verbose_linfo(env, insn_idx, "; ");
4396 		if (!err && t == BPF_READ && value_regno >= 0) {
4397 			/* ctx access returns either a scalar, or a
4398 			 * PTR_TO_PACKET[_META,_END]. In the latter
4399 			 * case, we know the offset is zero.
4400 			 */
4401 			if (reg_type == SCALAR_VALUE) {
4402 				mark_reg_unknown(env, regs, value_regno);
4403 			} else {
4404 				mark_reg_known_zero(env, regs,
4405 						    value_regno);
4406 				if (reg_type_may_be_null(reg_type))
4407 					regs[value_regno].id = ++env->id_gen;
4408 				/* A load of ctx field could have different
4409 				 * actual load size with the one encoded in the
4410 				 * insn. When the dst is PTR, it is for sure not
4411 				 * a sub-register.
4412 				 */
4413 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
4414 				if (reg_type == PTR_TO_BTF_ID ||
4415 				    reg_type == PTR_TO_BTF_ID_OR_NULL) {
4416 					regs[value_regno].btf = btf;
4417 					regs[value_regno].btf_id = btf_id;
4418 				}
4419 			}
4420 			regs[value_regno].type = reg_type;
4421 		}
4422 
4423 	} else if (reg->type == PTR_TO_STACK) {
4424 		/* Basic bounds checks. */
4425 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
4426 		if (err)
4427 			return err;
4428 
4429 		state = func(env, reg);
4430 		err = update_stack_depth(env, state, off);
4431 		if (err)
4432 			return err;
4433 
4434 		if (t == BPF_READ)
4435 			err = check_stack_read(env, regno, off, size,
4436 					       value_regno);
4437 		else
4438 			err = check_stack_write(env, regno, off, size,
4439 						value_regno, insn_idx);
4440 	} else if (reg_is_pkt_pointer(reg)) {
4441 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4442 			verbose(env, "cannot write into packet\n");
4443 			return -EACCES;
4444 		}
4445 		if (t == BPF_WRITE && value_regno >= 0 &&
4446 		    is_pointer_value(env, value_regno)) {
4447 			verbose(env, "R%d leaks addr into packet\n",
4448 				value_regno);
4449 			return -EACCES;
4450 		}
4451 		err = check_packet_access(env, regno, off, size, false);
4452 		if (!err && t == BPF_READ && value_regno >= 0)
4453 			mark_reg_unknown(env, regs, value_regno);
4454 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
4455 		if (t == BPF_WRITE && value_regno >= 0 &&
4456 		    is_pointer_value(env, value_regno)) {
4457 			verbose(env, "R%d leaks addr into flow keys\n",
4458 				value_regno);
4459 			return -EACCES;
4460 		}
4461 
4462 		err = check_flow_keys_access(env, off, size);
4463 		if (!err && t == BPF_READ && value_regno >= 0)
4464 			mark_reg_unknown(env, regs, value_regno);
4465 	} else if (type_is_sk_pointer(reg->type)) {
4466 		if (t == BPF_WRITE) {
4467 			verbose(env, "R%d cannot write into %s\n",
4468 				regno, reg_type_str[reg->type]);
4469 			return -EACCES;
4470 		}
4471 		err = check_sock_access(env, insn_idx, regno, off, size, t);
4472 		if (!err && value_regno >= 0)
4473 			mark_reg_unknown(env, regs, value_regno);
4474 	} else if (reg->type == PTR_TO_TP_BUFFER) {
4475 		err = check_tp_buffer_access(env, reg, regno, off, size);
4476 		if (!err && t == BPF_READ && value_regno >= 0)
4477 			mark_reg_unknown(env, regs, value_regno);
4478 	} else if (reg->type == PTR_TO_BTF_ID) {
4479 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4480 					      value_regno);
4481 	} else if (reg->type == CONST_PTR_TO_MAP) {
4482 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4483 					      value_regno);
4484 	} else if (reg->type == PTR_TO_RDONLY_BUF) {
4485 		if (t == BPF_WRITE) {
4486 			verbose(env, "R%d cannot write into %s\n",
4487 				regno, reg_type_str[reg->type]);
4488 			return -EACCES;
4489 		}
4490 		err = check_buffer_access(env, reg, regno, off, size, false,
4491 					  "rdonly",
4492 					  &env->prog->aux->max_rdonly_access);
4493 		if (!err && value_regno >= 0)
4494 			mark_reg_unknown(env, regs, value_regno);
4495 	} else if (reg->type == PTR_TO_RDWR_BUF) {
4496 		err = check_buffer_access(env, reg, regno, off, size, false,
4497 					  "rdwr",
4498 					  &env->prog->aux->max_rdwr_access);
4499 		if (!err && t == BPF_READ && value_regno >= 0)
4500 			mark_reg_unknown(env, regs, value_regno);
4501 	} else {
4502 		verbose(env, "R%d invalid mem access '%s'\n", regno,
4503 			reg_type_str[reg->type]);
4504 		return -EACCES;
4505 	}
4506 
4507 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4508 	    regs[value_regno].type == SCALAR_VALUE) {
4509 		/* b/h/w load zero-extends, mark upper bits as known 0 */
4510 		coerce_reg_to_size(&regs[value_regno], size);
4511 	}
4512 	return err;
4513 }
4514 
4515 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4516 {
4517 	int load_reg;
4518 	int err;
4519 
4520 	switch (insn->imm) {
4521 	case BPF_ADD:
4522 	case BPF_ADD | BPF_FETCH:
4523 	case BPF_AND:
4524 	case BPF_AND | BPF_FETCH:
4525 	case BPF_OR:
4526 	case BPF_OR | BPF_FETCH:
4527 	case BPF_XOR:
4528 	case BPF_XOR | BPF_FETCH:
4529 	case BPF_XCHG:
4530 	case BPF_CMPXCHG:
4531 		break;
4532 	default:
4533 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4534 		return -EINVAL;
4535 	}
4536 
4537 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4538 		verbose(env, "invalid atomic operand size\n");
4539 		return -EINVAL;
4540 	}
4541 
4542 	/* check src1 operand */
4543 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
4544 	if (err)
4545 		return err;
4546 
4547 	/* check src2 operand */
4548 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4549 	if (err)
4550 		return err;
4551 
4552 	if (insn->imm == BPF_CMPXCHG) {
4553 		/* Check comparison of R0 with memory location */
4554 		err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4555 		if (err)
4556 			return err;
4557 	}
4558 
4559 	if (is_pointer_value(env, insn->src_reg)) {
4560 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4561 		return -EACCES;
4562 	}
4563 
4564 	if (is_ctx_reg(env, insn->dst_reg) ||
4565 	    is_pkt_reg(env, insn->dst_reg) ||
4566 	    is_flow_key_reg(env, insn->dst_reg) ||
4567 	    is_sk_reg(env, insn->dst_reg)) {
4568 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4569 			insn->dst_reg,
4570 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
4571 		return -EACCES;
4572 	}
4573 
4574 	if (insn->imm & BPF_FETCH) {
4575 		if (insn->imm == BPF_CMPXCHG)
4576 			load_reg = BPF_REG_0;
4577 		else
4578 			load_reg = insn->src_reg;
4579 
4580 		/* check and record load of old value */
4581 		err = check_reg_arg(env, load_reg, DST_OP);
4582 		if (err)
4583 			return err;
4584 	} else {
4585 		/* This instruction accesses a memory location but doesn't
4586 		 * actually load it into a register.
4587 		 */
4588 		load_reg = -1;
4589 	}
4590 
4591 	/* check whether we can read the memory */
4592 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4593 			       BPF_SIZE(insn->code), BPF_READ, load_reg, true);
4594 	if (err)
4595 		return err;
4596 
4597 	/* check whether we can write into the same memory */
4598 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4599 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4600 	if (err)
4601 		return err;
4602 
4603 	return 0;
4604 }
4605 
4606 /* When register 'regno' is used to read the stack (either directly or through
4607  * a helper function) make sure that it's within stack boundary and, depending
4608  * on the access type, that all elements of the stack are initialized.
4609  *
4610  * 'off' includes 'regno->off', but not its dynamic part (if any).
4611  *
4612  * All registers that have been spilled on the stack in the slots within the
4613  * read offsets are marked as read.
4614  */
4615 static int check_stack_range_initialized(
4616 		struct bpf_verifier_env *env, int regno, int off,
4617 		int access_size, bool zero_size_allowed,
4618 		enum stack_access_src type, struct bpf_call_arg_meta *meta)
4619 {
4620 	struct bpf_reg_state *reg = reg_state(env, regno);
4621 	struct bpf_func_state *state = func(env, reg);
4622 	int err, min_off, max_off, i, j, slot, spi;
4623 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4624 	enum bpf_access_type bounds_check_type;
4625 	/* Some accesses can write anything into the stack, others are
4626 	 * read-only.
4627 	 */
4628 	bool clobber = false;
4629 
4630 	if (access_size == 0 && !zero_size_allowed) {
4631 		verbose(env, "invalid zero-sized read\n");
4632 		return -EACCES;
4633 	}
4634 
4635 	if (type == ACCESS_HELPER) {
4636 		/* The bounds checks for writes are more permissive than for
4637 		 * reads. However, if raw_mode is not set, we'll do extra
4638 		 * checks below.
4639 		 */
4640 		bounds_check_type = BPF_WRITE;
4641 		clobber = true;
4642 	} else {
4643 		bounds_check_type = BPF_READ;
4644 	}
4645 	err = check_stack_access_within_bounds(env, regno, off, access_size,
4646 					       type, bounds_check_type);
4647 	if (err)
4648 		return err;
4649 
4650 
4651 	if (tnum_is_const(reg->var_off)) {
4652 		min_off = max_off = reg->var_off.value + off;
4653 	} else {
4654 		/* Variable offset is prohibited for unprivileged mode for
4655 		 * simplicity since it requires corresponding support in
4656 		 * Spectre masking for stack ALU.
4657 		 * See also retrieve_ptr_limit().
4658 		 */
4659 		if (!env->bypass_spec_v1) {
4660 			char tn_buf[48];
4661 
4662 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4663 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4664 				regno, err_extra, tn_buf);
4665 			return -EACCES;
4666 		}
4667 		/* Only initialized buffer on stack is allowed to be accessed
4668 		 * with variable offset. With uninitialized buffer it's hard to
4669 		 * guarantee that whole memory is marked as initialized on
4670 		 * helper return since specific bounds are unknown what may
4671 		 * cause uninitialized stack leaking.
4672 		 */
4673 		if (meta && meta->raw_mode)
4674 			meta = NULL;
4675 
4676 		min_off = reg->smin_value + off;
4677 		max_off = reg->smax_value + off;
4678 	}
4679 
4680 	if (meta && meta->raw_mode) {
4681 		meta->access_size = access_size;
4682 		meta->regno = regno;
4683 		return 0;
4684 	}
4685 
4686 	for (i = min_off; i < max_off + access_size; i++) {
4687 		u8 *stype;
4688 
4689 		slot = -i - 1;
4690 		spi = slot / BPF_REG_SIZE;
4691 		if (state->allocated_stack <= slot)
4692 			goto err;
4693 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4694 		if (*stype == STACK_MISC)
4695 			goto mark;
4696 		if (*stype == STACK_ZERO) {
4697 			if (clobber) {
4698 				/* helper can write anything into the stack */
4699 				*stype = STACK_MISC;
4700 			}
4701 			goto mark;
4702 		}
4703 
4704 		if (is_spilled_reg(&state->stack[spi]) &&
4705 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4706 			goto mark;
4707 
4708 		if (is_spilled_reg(&state->stack[spi]) &&
4709 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4710 		     env->allow_ptr_leaks)) {
4711 			if (clobber) {
4712 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4713 				for (j = 0; j < BPF_REG_SIZE; j++)
4714 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
4715 			}
4716 			goto mark;
4717 		}
4718 
4719 err:
4720 		if (tnum_is_const(reg->var_off)) {
4721 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4722 				err_extra, regno, min_off, i - min_off, access_size);
4723 		} else {
4724 			char tn_buf[48];
4725 
4726 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4727 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4728 				err_extra, regno, tn_buf, i - min_off, access_size);
4729 		}
4730 		return -EACCES;
4731 mark:
4732 		/* reading any byte out of 8-byte 'spill_slot' will cause
4733 		 * the whole slot to be marked as 'read'
4734 		 */
4735 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
4736 			      state->stack[spi].spilled_ptr.parent,
4737 			      REG_LIVE_READ64);
4738 	}
4739 	return update_stack_depth(env, state, min_off);
4740 }
4741 
4742 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4743 				   int access_size, bool zero_size_allowed,
4744 				   struct bpf_call_arg_meta *meta)
4745 {
4746 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4747 
4748 	switch (reg->type) {
4749 	case PTR_TO_PACKET:
4750 	case PTR_TO_PACKET_META:
4751 		return check_packet_access(env, regno, reg->off, access_size,
4752 					   zero_size_allowed);
4753 	case PTR_TO_MAP_KEY:
4754 		return check_mem_region_access(env, regno, reg->off, access_size,
4755 					       reg->map_ptr->key_size, false);
4756 	case PTR_TO_MAP_VALUE:
4757 		if (check_map_access_type(env, regno, reg->off, access_size,
4758 					  meta && meta->raw_mode ? BPF_WRITE :
4759 					  BPF_READ))
4760 			return -EACCES;
4761 		return check_map_access(env, regno, reg->off, access_size,
4762 					zero_size_allowed);
4763 	case PTR_TO_MEM:
4764 		return check_mem_region_access(env, regno, reg->off,
4765 					       access_size, reg->mem_size,
4766 					       zero_size_allowed);
4767 	case PTR_TO_RDONLY_BUF:
4768 		if (meta && meta->raw_mode)
4769 			return -EACCES;
4770 		return check_buffer_access(env, reg, regno, reg->off,
4771 					   access_size, zero_size_allowed,
4772 					   "rdonly",
4773 					   &env->prog->aux->max_rdonly_access);
4774 	case PTR_TO_RDWR_BUF:
4775 		return check_buffer_access(env, reg, regno, reg->off,
4776 					   access_size, zero_size_allowed,
4777 					   "rdwr",
4778 					   &env->prog->aux->max_rdwr_access);
4779 	case PTR_TO_STACK:
4780 		return check_stack_range_initialized(
4781 				env,
4782 				regno, reg->off, access_size,
4783 				zero_size_allowed, ACCESS_HELPER, meta);
4784 	default: /* scalar_value or invalid ptr */
4785 		/* Allow zero-byte read from NULL, regardless of pointer type */
4786 		if (zero_size_allowed && access_size == 0 &&
4787 		    register_is_null(reg))
4788 			return 0;
4789 
4790 		verbose(env, "R%d type=%s expected=%s\n", regno,
4791 			reg_type_str[reg->type],
4792 			reg_type_str[PTR_TO_STACK]);
4793 		return -EACCES;
4794 	}
4795 }
4796 
4797 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4798 		   u32 regno, u32 mem_size)
4799 {
4800 	if (register_is_null(reg))
4801 		return 0;
4802 
4803 	if (reg_type_may_be_null(reg->type)) {
4804 		/* Assuming that the register contains a value check if the memory
4805 		 * access is safe. Temporarily save and restore the register's state as
4806 		 * the conversion shouldn't be visible to a caller.
4807 		 */
4808 		const struct bpf_reg_state saved_reg = *reg;
4809 		int rv;
4810 
4811 		mark_ptr_not_null_reg(reg);
4812 		rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4813 		*reg = saved_reg;
4814 		return rv;
4815 	}
4816 
4817 	return check_helper_mem_access(env, regno, mem_size, true, NULL);
4818 }
4819 
4820 /* Implementation details:
4821  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4822  * Two bpf_map_lookups (even with the same key) will have different reg->id.
4823  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4824  * value_or_null->value transition, since the verifier only cares about
4825  * the range of access to valid map value pointer and doesn't care about actual
4826  * address of the map element.
4827  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4828  * reg->id > 0 after value_or_null->value transition. By doing so
4829  * two bpf_map_lookups will be considered two different pointers that
4830  * point to different bpf_spin_locks.
4831  * The verifier allows taking only one bpf_spin_lock at a time to avoid
4832  * dead-locks.
4833  * Since only one bpf_spin_lock is allowed the checks are simpler than
4834  * reg_is_refcounted() logic. The verifier needs to remember only
4835  * one spin_lock instead of array of acquired_refs.
4836  * cur_state->active_spin_lock remembers which map value element got locked
4837  * and clears it after bpf_spin_unlock.
4838  */
4839 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4840 			     bool is_lock)
4841 {
4842 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4843 	struct bpf_verifier_state *cur = env->cur_state;
4844 	bool is_const = tnum_is_const(reg->var_off);
4845 	struct bpf_map *map = reg->map_ptr;
4846 	u64 val = reg->var_off.value;
4847 
4848 	if (!is_const) {
4849 		verbose(env,
4850 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4851 			regno);
4852 		return -EINVAL;
4853 	}
4854 	if (!map->btf) {
4855 		verbose(env,
4856 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
4857 			map->name);
4858 		return -EINVAL;
4859 	}
4860 	if (!map_value_has_spin_lock(map)) {
4861 		if (map->spin_lock_off == -E2BIG)
4862 			verbose(env,
4863 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
4864 				map->name);
4865 		else if (map->spin_lock_off == -ENOENT)
4866 			verbose(env,
4867 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
4868 				map->name);
4869 		else
4870 			verbose(env,
4871 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4872 				map->name);
4873 		return -EINVAL;
4874 	}
4875 	if (map->spin_lock_off != val + reg->off) {
4876 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4877 			val + reg->off);
4878 		return -EINVAL;
4879 	}
4880 	if (is_lock) {
4881 		if (cur->active_spin_lock) {
4882 			verbose(env,
4883 				"Locking two bpf_spin_locks are not allowed\n");
4884 			return -EINVAL;
4885 		}
4886 		cur->active_spin_lock = reg->id;
4887 	} else {
4888 		if (!cur->active_spin_lock) {
4889 			verbose(env, "bpf_spin_unlock without taking a lock\n");
4890 			return -EINVAL;
4891 		}
4892 		if (cur->active_spin_lock != reg->id) {
4893 			verbose(env, "bpf_spin_unlock of different lock\n");
4894 			return -EINVAL;
4895 		}
4896 		cur->active_spin_lock = 0;
4897 	}
4898 	return 0;
4899 }
4900 
4901 static int process_timer_func(struct bpf_verifier_env *env, int regno,
4902 			      struct bpf_call_arg_meta *meta)
4903 {
4904 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4905 	bool is_const = tnum_is_const(reg->var_off);
4906 	struct bpf_map *map = reg->map_ptr;
4907 	u64 val = reg->var_off.value;
4908 
4909 	if (!is_const) {
4910 		verbose(env,
4911 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
4912 			regno);
4913 		return -EINVAL;
4914 	}
4915 	if (!map->btf) {
4916 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
4917 			map->name);
4918 		return -EINVAL;
4919 	}
4920 	if (!map_value_has_timer(map)) {
4921 		if (map->timer_off == -E2BIG)
4922 			verbose(env,
4923 				"map '%s' has more than one 'struct bpf_timer'\n",
4924 				map->name);
4925 		else if (map->timer_off == -ENOENT)
4926 			verbose(env,
4927 				"map '%s' doesn't have 'struct bpf_timer'\n",
4928 				map->name);
4929 		else
4930 			verbose(env,
4931 				"map '%s' is not a struct type or bpf_timer is mangled\n",
4932 				map->name);
4933 		return -EINVAL;
4934 	}
4935 	if (map->timer_off != val + reg->off) {
4936 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
4937 			val + reg->off, map->timer_off);
4938 		return -EINVAL;
4939 	}
4940 	if (meta->map_ptr) {
4941 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
4942 		return -EFAULT;
4943 	}
4944 	meta->map_uid = reg->map_uid;
4945 	meta->map_ptr = map;
4946 	return 0;
4947 }
4948 
4949 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4950 {
4951 	return type == ARG_PTR_TO_MEM ||
4952 	       type == ARG_PTR_TO_MEM_OR_NULL ||
4953 	       type == ARG_PTR_TO_UNINIT_MEM;
4954 }
4955 
4956 static bool arg_type_is_mem_size(enum bpf_arg_type type)
4957 {
4958 	return type == ARG_CONST_SIZE ||
4959 	       type == ARG_CONST_SIZE_OR_ZERO;
4960 }
4961 
4962 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4963 {
4964 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4965 }
4966 
4967 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4968 {
4969 	return type == ARG_PTR_TO_INT ||
4970 	       type == ARG_PTR_TO_LONG;
4971 }
4972 
4973 static int int_ptr_type_to_size(enum bpf_arg_type type)
4974 {
4975 	if (type == ARG_PTR_TO_INT)
4976 		return sizeof(u32);
4977 	else if (type == ARG_PTR_TO_LONG)
4978 		return sizeof(u64);
4979 
4980 	return -EINVAL;
4981 }
4982 
4983 static int resolve_map_arg_type(struct bpf_verifier_env *env,
4984 				 const struct bpf_call_arg_meta *meta,
4985 				 enum bpf_arg_type *arg_type)
4986 {
4987 	if (!meta->map_ptr) {
4988 		/* kernel subsystem misconfigured verifier */
4989 		verbose(env, "invalid map_ptr to access map->type\n");
4990 		return -EACCES;
4991 	}
4992 
4993 	switch (meta->map_ptr->map_type) {
4994 	case BPF_MAP_TYPE_SOCKMAP:
4995 	case BPF_MAP_TYPE_SOCKHASH:
4996 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4997 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4998 		} else {
4999 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
5000 			return -EINVAL;
5001 		}
5002 		break;
5003 	case BPF_MAP_TYPE_BLOOM_FILTER:
5004 		if (meta->func_id == BPF_FUNC_map_peek_elem)
5005 			*arg_type = ARG_PTR_TO_MAP_VALUE;
5006 		break;
5007 	default:
5008 		break;
5009 	}
5010 	return 0;
5011 }
5012 
5013 struct bpf_reg_types {
5014 	const enum bpf_reg_type types[10];
5015 	u32 *btf_id;
5016 };
5017 
5018 static const struct bpf_reg_types map_key_value_types = {
5019 	.types = {
5020 		PTR_TO_STACK,
5021 		PTR_TO_PACKET,
5022 		PTR_TO_PACKET_META,
5023 		PTR_TO_MAP_KEY,
5024 		PTR_TO_MAP_VALUE,
5025 	},
5026 };
5027 
5028 static const struct bpf_reg_types sock_types = {
5029 	.types = {
5030 		PTR_TO_SOCK_COMMON,
5031 		PTR_TO_SOCKET,
5032 		PTR_TO_TCP_SOCK,
5033 		PTR_TO_XDP_SOCK,
5034 	},
5035 };
5036 
5037 #ifdef CONFIG_NET
5038 static const struct bpf_reg_types btf_id_sock_common_types = {
5039 	.types = {
5040 		PTR_TO_SOCK_COMMON,
5041 		PTR_TO_SOCKET,
5042 		PTR_TO_TCP_SOCK,
5043 		PTR_TO_XDP_SOCK,
5044 		PTR_TO_BTF_ID,
5045 	},
5046 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5047 };
5048 #endif
5049 
5050 static const struct bpf_reg_types mem_types = {
5051 	.types = {
5052 		PTR_TO_STACK,
5053 		PTR_TO_PACKET,
5054 		PTR_TO_PACKET_META,
5055 		PTR_TO_MAP_KEY,
5056 		PTR_TO_MAP_VALUE,
5057 		PTR_TO_MEM,
5058 		PTR_TO_RDONLY_BUF,
5059 		PTR_TO_RDWR_BUF,
5060 	},
5061 };
5062 
5063 static const struct bpf_reg_types int_ptr_types = {
5064 	.types = {
5065 		PTR_TO_STACK,
5066 		PTR_TO_PACKET,
5067 		PTR_TO_PACKET_META,
5068 		PTR_TO_MAP_KEY,
5069 		PTR_TO_MAP_VALUE,
5070 	},
5071 };
5072 
5073 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
5074 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
5075 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
5076 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
5077 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
5078 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
5079 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
5080 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
5081 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
5082 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
5083 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
5084 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
5085 
5086 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
5087 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
5088 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
5089 	[ARG_PTR_TO_UNINIT_MAP_VALUE]	= &map_key_value_types,
5090 	[ARG_PTR_TO_MAP_VALUE_OR_NULL]	= &map_key_value_types,
5091 	[ARG_CONST_SIZE]		= &scalar_types,
5092 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
5093 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
5094 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
5095 	[ARG_PTR_TO_CTX]		= &context_types,
5096 	[ARG_PTR_TO_CTX_OR_NULL]	= &context_types,
5097 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
5098 #ifdef CONFIG_NET
5099 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
5100 #endif
5101 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
5102 	[ARG_PTR_TO_SOCKET_OR_NULL]	= &fullsock_types,
5103 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
5104 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
5105 	[ARG_PTR_TO_MEM]		= &mem_types,
5106 	[ARG_PTR_TO_MEM_OR_NULL]	= &mem_types,
5107 	[ARG_PTR_TO_UNINIT_MEM]		= &mem_types,
5108 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
5109 	[ARG_PTR_TO_ALLOC_MEM_OR_NULL]	= &alloc_mem_types,
5110 	[ARG_PTR_TO_INT]		= &int_ptr_types,
5111 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
5112 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
5113 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
5114 	[ARG_PTR_TO_STACK_OR_NULL]	= &stack_ptr_types,
5115 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
5116 	[ARG_PTR_TO_TIMER]		= &timer_types,
5117 };
5118 
5119 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
5120 			  enum bpf_arg_type arg_type,
5121 			  const u32 *arg_btf_id)
5122 {
5123 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5124 	enum bpf_reg_type expected, type = reg->type;
5125 	const struct bpf_reg_types *compatible;
5126 	int i, j;
5127 
5128 	compatible = compatible_reg_types[arg_type];
5129 	if (!compatible) {
5130 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
5131 		return -EFAULT;
5132 	}
5133 
5134 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
5135 		expected = compatible->types[i];
5136 		if (expected == NOT_INIT)
5137 			break;
5138 
5139 		if (type == expected)
5140 			goto found;
5141 	}
5142 
5143 	verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
5144 	for (j = 0; j + 1 < i; j++)
5145 		verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
5146 	verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
5147 	return -EACCES;
5148 
5149 found:
5150 	if (type == PTR_TO_BTF_ID) {
5151 		if (!arg_btf_id) {
5152 			if (!compatible->btf_id) {
5153 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
5154 				return -EFAULT;
5155 			}
5156 			arg_btf_id = compatible->btf_id;
5157 		}
5158 
5159 		if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5160 					  btf_vmlinux, *arg_btf_id)) {
5161 			verbose(env, "R%d is of type %s but %s is expected\n",
5162 				regno, kernel_type_name(reg->btf, reg->btf_id),
5163 				kernel_type_name(btf_vmlinux, *arg_btf_id));
5164 			return -EACCES;
5165 		}
5166 
5167 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5168 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
5169 				regno);
5170 			return -EACCES;
5171 		}
5172 	}
5173 
5174 	return 0;
5175 }
5176 
5177 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
5178 			  struct bpf_call_arg_meta *meta,
5179 			  const struct bpf_func_proto *fn)
5180 {
5181 	u32 regno = BPF_REG_1 + arg;
5182 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5183 	enum bpf_arg_type arg_type = fn->arg_type[arg];
5184 	enum bpf_reg_type type = reg->type;
5185 	int err = 0;
5186 
5187 	if (arg_type == ARG_DONTCARE)
5188 		return 0;
5189 
5190 	err = check_reg_arg(env, regno, SRC_OP);
5191 	if (err)
5192 		return err;
5193 
5194 	if (arg_type == ARG_ANYTHING) {
5195 		if (is_pointer_value(env, regno)) {
5196 			verbose(env, "R%d leaks addr into helper function\n",
5197 				regno);
5198 			return -EACCES;
5199 		}
5200 		return 0;
5201 	}
5202 
5203 	if (type_is_pkt_pointer(type) &&
5204 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
5205 		verbose(env, "helper access to the packet is not allowed\n");
5206 		return -EACCES;
5207 	}
5208 
5209 	if (arg_type == ARG_PTR_TO_MAP_VALUE ||
5210 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
5211 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
5212 		err = resolve_map_arg_type(env, meta, &arg_type);
5213 		if (err)
5214 			return err;
5215 	}
5216 
5217 	if (register_is_null(reg) && arg_type_may_be_null(arg_type))
5218 		/* A NULL register has a SCALAR_VALUE type, so skip
5219 		 * type checking.
5220 		 */
5221 		goto skip_type_check;
5222 
5223 	err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
5224 	if (err)
5225 		return err;
5226 
5227 	if (type == PTR_TO_CTX) {
5228 		err = check_ctx_reg(env, reg, regno);
5229 		if (err < 0)
5230 			return err;
5231 	}
5232 
5233 skip_type_check:
5234 	if (reg->ref_obj_id) {
5235 		if (meta->ref_obj_id) {
5236 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
5237 				regno, reg->ref_obj_id,
5238 				meta->ref_obj_id);
5239 			return -EFAULT;
5240 		}
5241 		meta->ref_obj_id = reg->ref_obj_id;
5242 	}
5243 
5244 	if (arg_type == ARG_CONST_MAP_PTR) {
5245 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
5246 		if (meta->map_ptr) {
5247 			/* Use map_uid (which is unique id of inner map) to reject:
5248 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
5249 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
5250 			 * if (inner_map1 && inner_map2) {
5251 			 *     timer = bpf_map_lookup_elem(inner_map1);
5252 			 *     if (timer)
5253 			 *         // mismatch would have been allowed
5254 			 *         bpf_timer_init(timer, inner_map2);
5255 			 * }
5256 			 *
5257 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
5258 			 */
5259 			if (meta->map_ptr != reg->map_ptr ||
5260 			    meta->map_uid != reg->map_uid) {
5261 				verbose(env,
5262 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
5263 					meta->map_uid, reg->map_uid);
5264 				return -EINVAL;
5265 			}
5266 		}
5267 		meta->map_ptr = reg->map_ptr;
5268 		meta->map_uid = reg->map_uid;
5269 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
5270 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
5271 		 * check that [key, key + map->key_size) are within
5272 		 * stack limits and initialized
5273 		 */
5274 		if (!meta->map_ptr) {
5275 			/* in function declaration map_ptr must come before
5276 			 * map_key, so that it's verified and known before
5277 			 * we have to check map_key here. Otherwise it means
5278 			 * that kernel subsystem misconfigured verifier
5279 			 */
5280 			verbose(env, "invalid map_ptr to access map->key\n");
5281 			return -EACCES;
5282 		}
5283 		err = check_helper_mem_access(env, regno,
5284 					      meta->map_ptr->key_size, false,
5285 					      NULL);
5286 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
5287 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
5288 		    !register_is_null(reg)) ||
5289 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
5290 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
5291 		 * check [value, value + map->value_size) validity
5292 		 */
5293 		if (!meta->map_ptr) {
5294 			/* kernel subsystem misconfigured verifier */
5295 			verbose(env, "invalid map_ptr to access map->value\n");
5296 			return -EACCES;
5297 		}
5298 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
5299 		err = check_helper_mem_access(env, regno,
5300 					      meta->map_ptr->value_size, false,
5301 					      meta);
5302 	} else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
5303 		if (!reg->btf_id) {
5304 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
5305 			return -EACCES;
5306 		}
5307 		meta->ret_btf = reg->btf;
5308 		meta->ret_btf_id = reg->btf_id;
5309 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
5310 		if (meta->func_id == BPF_FUNC_spin_lock) {
5311 			if (process_spin_lock(env, regno, true))
5312 				return -EACCES;
5313 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
5314 			if (process_spin_lock(env, regno, false))
5315 				return -EACCES;
5316 		} else {
5317 			verbose(env, "verifier internal error\n");
5318 			return -EFAULT;
5319 		}
5320 	} else if (arg_type == ARG_PTR_TO_TIMER) {
5321 		if (process_timer_func(env, regno, meta))
5322 			return -EACCES;
5323 	} else if (arg_type == ARG_PTR_TO_FUNC) {
5324 		meta->subprogno = reg->subprogno;
5325 	} else if (arg_type_is_mem_ptr(arg_type)) {
5326 		/* The access to this pointer is only checked when we hit the
5327 		 * next is_mem_size argument below.
5328 		 */
5329 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
5330 	} else if (arg_type_is_mem_size(arg_type)) {
5331 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
5332 
5333 		/* This is used to refine r0 return value bounds for helpers
5334 		 * that enforce this value as an upper bound on return values.
5335 		 * See do_refine_retval_range() for helpers that can refine
5336 		 * the return value. C type of helper is u32 so we pull register
5337 		 * bound from umax_value however, if negative verifier errors
5338 		 * out. Only upper bounds can be learned because retval is an
5339 		 * int type and negative retvals are allowed.
5340 		 */
5341 		meta->msize_max_value = reg->umax_value;
5342 
5343 		/* The register is SCALAR_VALUE; the access check
5344 		 * happens using its boundaries.
5345 		 */
5346 		if (!tnum_is_const(reg->var_off))
5347 			/* For unprivileged variable accesses, disable raw
5348 			 * mode so that the program is required to
5349 			 * initialize all the memory that the helper could
5350 			 * just partially fill up.
5351 			 */
5352 			meta = NULL;
5353 
5354 		if (reg->smin_value < 0) {
5355 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5356 				regno);
5357 			return -EACCES;
5358 		}
5359 
5360 		if (reg->umin_value == 0) {
5361 			err = check_helper_mem_access(env, regno - 1, 0,
5362 						      zero_size_allowed,
5363 						      meta);
5364 			if (err)
5365 				return err;
5366 		}
5367 
5368 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5369 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5370 				regno);
5371 			return -EACCES;
5372 		}
5373 		err = check_helper_mem_access(env, regno - 1,
5374 					      reg->umax_value,
5375 					      zero_size_allowed, meta);
5376 		if (!err)
5377 			err = mark_chain_precision(env, regno);
5378 	} else if (arg_type_is_alloc_size(arg_type)) {
5379 		if (!tnum_is_const(reg->var_off)) {
5380 			verbose(env, "R%d is not a known constant'\n",
5381 				regno);
5382 			return -EACCES;
5383 		}
5384 		meta->mem_size = reg->var_off.value;
5385 	} else if (arg_type_is_int_ptr(arg_type)) {
5386 		int size = int_ptr_type_to_size(arg_type);
5387 
5388 		err = check_helper_mem_access(env, regno, size, false, meta);
5389 		if (err)
5390 			return err;
5391 		err = check_ptr_alignment(env, reg, 0, size, true);
5392 	} else if (arg_type == ARG_PTR_TO_CONST_STR) {
5393 		struct bpf_map *map = reg->map_ptr;
5394 		int map_off;
5395 		u64 map_addr;
5396 		char *str_ptr;
5397 
5398 		if (!bpf_map_is_rdonly(map)) {
5399 			verbose(env, "R%d does not point to a readonly map'\n", regno);
5400 			return -EACCES;
5401 		}
5402 
5403 		if (!tnum_is_const(reg->var_off)) {
5404 			verbose(env, "R%d is not a constant address'\n", regno);
5405 			return -EACCES;
5406 		}
5407 
5408 		if (!map->ops->map_direct_value_addr) {
5409 			verbose(env, "no direct value access support for this map type\n");
5410 			return -EACCES;
5411 		}
5412 
5413 		err = check_map_access(env, regno, reg->off,
5414 				       map->value_size - reg->off, false);
5415 		if (err)
5416 			return err;
5417 
5418 		map_off = reg->off + reg->var_off.value;
5419 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
5420 		if (err) {
5421 			verbose(env, "direct value access on string failed\n");
5422 			return err;
5423 		}
5424 
5425 		str_ptr = (char *)(long)(map_addr);
5426 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
5427 			verbose(env, "string is not zero-terminated\n");
5428 			return -EINVAL;
5429 		}
5430 	}
5431 
5432 	return err;
5433 }
5434 
5435 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
5436 {
5437 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
5438 	enum bpf_prog_type type = resolve_prog_type(env->prog);
5439 
5440 	if (func_id != BPF_FUNC_map_update_elem)
5441 		return false;
5442 
5443 	/* It's not possible to get access to a locked struct sock in these
5444 	 * contexts, so updating is safe.
5445 	 */
5446 	switch (type) {
5447 	case BPF_PROG_TYPE_TRACING:
5448 		if (eatype == BPF_TRACE_ITER)
5449 			return true;
5450 		break;
5451 	case BPF_PROG_TYPE_SOCKET_FILTER:
5452 	case BPF_PROG_TYPE_SCHED_CLS:
5453 	case BPF_PROG_TYPE_SCHED_ACT:
5454 	case BPF_PROG_TYPE_XDP:
5455 	case BPF_PROG_TYPE_SK_REUSEPORT:
5456 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5457 	case BPF_PROG_TYPE_SK_LOOKUP:
5458 		return true;
5459 	default:
5460 		break;
5461 	}
5462 
5463 	verbose(env, "cannot update sockmap in this context\n");
5464 	return false;
5465 }
5466 
5467 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
5468 {
5469 	return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
5470 }
5471 
5472 static int check_map_func_compatibility(struct bpf_verifier_env *env,
5473 					struct bpf_map *map, int func_id)
5474 {
5475 	if (!map)
5476 		return 0;
5477 
5478 	/* We need a two way check, first is from map perspective ... */
5479 	switch (map->map_type) {
5480 	case BPF_MAP_TYPE_PROG_ARRAY:
5481 		if (func_id != BPF_FUNC_tail_call)
5482 			goto error;
5483 		break;
5484 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5485 		if (func_id != BPF_FUNC_perf_event_read &&
5486 		    func_id != BPF_FUNC_perf_event_output &&
5487 		    func_id != BPF_FUNC_skb_output &&
5488 		    func_id != BPF_FUNC_perf_event_read_value &&
5489 		    func_id != BPF_FUNC_xdp_output)
5490 			goto error;
5491 		break;
5492 	case BPF_MAP_TYPE_RINGBUF:
5493 		if (func_id != BPF_FUNC_ringbuf_output &&
5494 		    func_id != BPF_FUNC_ringbuf_reserve &&
5495 		    func_id != BPF_FUNC_ringbuf_query)
5496 			goto error;
5497 		break;
5498 	case BPF_MAP_TYPE_STACK_TRACE:
5499 		if (func_id != BPF_FUNC_get_stackid)
5500 			goto error;
5501 		break;
5502 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5503 		if (func_id != BPF_FUNC_skb_under_cgroup &&
5504 		    func_id != BPF_FUNC_current_task_under_cgroup)
5505 			goto error;
5506 		break;
5507 	case BPF_MAP_TYPE_CGROUP_STORAGE:
5508 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
5509 		if (func_id != BPF_FUNC_get_local_storage)
5510 			goto error;
5511 		break;
5512 	case BPF_MAP_TYPE_DEVMAP:
5513 	case BPF_MAP_TYPE_DEVMAP_HASH:
5514 		if (func_id != BPF_FUNC_redirect_map &&
5515 		    func_id != BPF_FUNC_map_lookup_elem)
5516 			goto error;
5517 		break;
5518 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
5519 	 * appear.
5520 	 */
5521 	case BPF_MAP_TYPE_CPUMAP:
5522 		if (func_id != BPF_FUNC_redirect_map)
5523 			goto error;
5524 		break;
5525 	case BPF_MAP_TYPE_XSKMAP:
5526 		if (func_id != BPF_FUNC_redirect_map &&
5527 		    func_id != BPF_FUNC_map_lookup_elem)
5528 			goto error;
5529 		break;
5530 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5531 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5532 		if (func_id != BPF_FUNC_map_lookup_elem)
5533 			goto error;
5534 		break;
5535 	case BPF_MAP_TYPE_SOCKMAP:
5536 		if (func_id != BPF_FUNC_sk_redirect_map &&
5537 		    func_id != BPF_FUNC_sock_map_update &&
5538 		    func_id != BPF_FUNC_map_delete_elem &&
5539 		    func_id != BPF_FUNC_msg_redirect_map &&
5540 		    func_id != BPF_FUNC_sk_select_reuseport &&
5541 		    func_id != BPF_FUNC_map_lookup_elem &&
5542 		    !may_update_sockmap(env, func_id))
5543 			goto error;
5544 		break;
5545 	case BPF_MAP_TYPE_SOCKHASH:
5546 		if (func_id != BPF_FUNC_sk_redirect_hash &&
5547 		    func_id != BPF_FUNC_sock_hash_update &&
5548 		    func_id != BPF_FUNC_map_delete_elem &&
5549 		    func_id != BPF_FUNC_msg_redirect_hash &&
5550 		    func_id != BPF_FUNC_sk_select_reuseport &&
5551 		    func_id != BPF_FUNC_map_lookup_elem &&
5552 		    !may_update_sockmap(env, func_id))
5553 			goto error;
5554 		break;
5555 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5556 		if (func_id != BPF_FUNC_sk_select_reuseport)
5557 			goto error;
5558 		break;
5559 	case BPF_MAP_TYPE_QUEUE:
5560 	case BPF_MAP_TYPE_STACK:
5561 		if (func_id != BPF_FUNC_map_peek_elem &&
5562 		    func_id != BPF_FUNC_map_pop_elem &&
5563 		    func_id != BPF_FUNC_map_push_elem)
5564 			goto error;
5565 		break;
5566 	case BPF_MAP_TYPE_SK_STORAGE:
5567 		if (func_id != BPF_FUNC_sk_storage_get &&
5568 		    func_id != BPF_FUNC_sk_storage_delete)
5569 			goto error;
5570 		break;
5571 	case BPF_MAP_TYPE_INODE_STORAGE:
5572 		if (func_id != BPF_FUNC_inode_storage_get &&
5573 		    func_id != BPF_FUNC_inode_storage_delete)
5574 			goto error;
5575 		break;
5576 	case BPF_MAP_TYPE_TASK_STORAGE:
5577 		if (func_id != BPF_FUNC_task_storage_get &&
5578 		    func_id != BPF_FUNC_task_storage_delete)
5579 			goto error;
5580 		break;
5581 	case BPF_MAP_TYPE_BLOOM_FILTER:
5582 		if (func_id != BPF_FUNC_map_peek_elem &&
5583 		    func_id != BPF_FUNC_map_push_elem)
5584 			goto error;
5585 		break;
5586 	default:
5587 		break;
5588 	}
5589 
5590 	/* ... and second from the function itself. */
5591 	switch (func_id) {
5592 	case BPF_FUNC_tail_call:
5593 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5594 			goto error;
5595 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5596 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
5597 			return -EINVAL;
5598 		}
5599 		break;
5600 	case BPF_FUNC_perf_event_read:
5601 	case BPF_FUNC_perf_event_output:
5602 	case BPF_FUNC_perf_event_read_value:
5603 	case BPF_FUNC_skb_output:
5604 	case BPF_FUNC_xdp_output:
5605 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5606 			goto error;
5607 		break;
5608 	case BPF_FUNC_ringbuf_output:
5609 	case BPF_FUNC_ringbuf_reserve:
5610 	case BPF_FUNC_ringbuf_query:
5611 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
5612 			goto error;
5613 		break;
5614 	case BPF_FUNC_get_stackid:
5615 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5616 			goto error;
5617 		break;
5618 	case BPF_FUNC_current_task_under_cgroup:
5619 	case BPF_FUNC_skb_under_cgroup:
5620 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5621 			goto error;
5622 		break;
5623 	case BPF_FUNC_redirect_map:
5624 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
5625 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
5626 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
5627 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
5628 			goto error;
5629 		break;
5630 	case BPF_FUNC_sk_redirect_map:
5631 	case BPF_FUNC_msg_redirect_map:
5632 	case BPF_FUNC_sock_map_update:
5633 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5634 			goto error;
5635 		break;
5636 	case BPF_FUNC_sk_redirect_hash:
5637 	case BPF_FUNC_msg_redirect_hash:
5638 	case BPF_FUNC_sock_hash_update:
5639 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
5640 			goto error;
5641 		break;
5642 	case BPF_FUNC_get_local_storage:
5643 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5644 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
5645 			goto error;
5646 		break;
5647 	case BPF_FUNC_sk_select_reuseport:
5648 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5649 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5650 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
5651 			goto error;
5652 		break;
5653 	case BPF_FUNC_map_pop_elem:
5654 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5655 		    map->map_type != BPF_MAP_TYPE_STACK)
5656 			goto error;
5657 		break;
5658 	case BPF_FUNC_map_peek_elem:
5659 	case BPF_FUNC_map_push_elem:
5660 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5661 		    map->map_type != BPF_MAP_TYPE_STACK &&
5662 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
5663 			goto error;
5664 		break;
5665 	case BPF_FUNC_sk_storage_get:
5666 	case BPF_FUNC_sk_storage_delete:
5667 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5668 			goto error;
5669 		break;
5670 	case BPF_FUNC_inode_storage_get:
5671 	case BPF_FUNC_inode_storage_delete:
5672 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5673 			goto error;
5674 		break;
5675 	case BPF_FUNC_task_storage_get:
5676 	case BPF_FUNC_task_storage_delete:
5677 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5678 			goto error;
5679 		break;
5680 	default:
5681 		break;
5682 	}
5683 
5684 	return 0;
5685 error:
5686 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
5687 		map->map_type, func_id_name(func_id), func_id);
5688 	return -EINVAL;
5689 }
5690 
5691 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
5692 {
5693 	int count = 0;
5694 
5695 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
5696 		count++;
5697 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
5698 		count++;
5699 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
5700 		count++;
5701 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
5702 		count++;
5703 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
5704 		count++;
5705 
5706 	/* We only support one arg being in raw mode at the moment,
5707 	 * which is sufficient for the helper functions we have
5708 	 * right now.
5709 	 */
5710 	return count <= 1;
5711 }
5712 
5713 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5714 				    enum bpf_arg_type arg_next)
5715 {
5716 	return (arg_type_is_mem_ptr(arg_curr) &&
5717 	        !arg_type_is_mem_size(arg_next)) ||
5718 	       (!arg_type_is_mem_ptr(arg_curr) &&
5719 		arg_type_is_mem_size(arg_next));
5720 }
5721 
5722 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5723 {
5724 	/* bpf_xxx(..., buf, len) call will access 'len'
5725 	 * bytes from memory 'buf'. Both arg types need
5726 	 * to be paired, so make sure there's no buggy
5727 	 * helper function specification.
5728 	 */
5729 	if (arg_type_is_mem_size(fn->arg1_type) ||
5730 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
5731 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5732 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5733 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5734 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5735 		return false;
5736 
5737 	return true;
5738 }
5739 
5740 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5741 {
5742 	int count = 0;
5743 
5744 	if (arg_type_may_be_refcounted(fn->arg1_type))
5745 		count++;
5746 	if (arg_type_may_be_refcounted(fn->arg2_type))
5747 		count++;
5748 	if (arg_type_may_be_refcounted(fn->arg3_type))
5749 		count++;
5750 	if (arg_type_may_be_refcounted(fn->arg4_type))
5751 		count++;
5752 	if (arg_type_may_be_refcounted(fn->arg5_type))
5753 		count++;
5754 
5755 	/* A reference acquiring function cannot acquire
5756 	 * another refcounted ptr.
5757 	 */
5758 	if (may_be_acquire_function(func_id) && count)
5759 		return false;
5760 
5761 	/* We only support one arg being unreferenced at the moment,
5762 	 * which is sufficient for the helper functions we have right now.
5763 	 */
5764 	return count <= 1;
5765 }
5766 
5767 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5768 {
5769 	int i;
5770 
5771 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5772 		if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5773 			return false;
5774 
5775 		if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5776 			return false;
5777 	}
5778 
5779 	return true;
5780 }
5781 
5782 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5783 {
5784 	return check_raw_mode_ok(fn) &&
5785 	       check_arg_pair_ok(fn) &&
5786 	       check_btf_id_ok(fn) &&
5787 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5788 }
5789 
5790 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5791  * are now invalid, so turn them into unknown SCALAR_VALUE.
5792  */
5793 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5794 				     struct bpf_func_state *state)
5795 {
5796 	struct bpf_reg_state *regs = state->regs, *reg;
5797 	int i;
5798 
5799 	for (i = 0; i < MAX_BPF_REG; i++)
5800 		if (reg_is_pkt_pointer_any(&regs[i]))
5801 			mark_reg_unknown(env, regs, i);
5802 
5803 	bpf_for_each_spilled_reg(i, state, reg) {
5804 		if (!reg)
5805 			continue;
5806 		if (reg_is_pkt_pointer_any(reg))
5807 			__mark_reg_unknown(env, reg);
5808 	}
5809 }
5810 
5811 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5812 {
5813 	struct bpf_verifier_state *vstate = env->cur_state;
5814 	int i;
5815 
5816 	for (i = 0; i <= vstate->curframe; i++)
5817 		__clear_all_pkt_pointers(env, vstate->frame[i]);
5818 }
5819 
5820 enum {
5821 	AT_PKT_END = -1,
5822 	BEYOND_PKT_END = -2,
5823 };
5824 
5825 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5826 {
5827 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5828 	struct bpf_reg_state *reg = &state->regs[regn];
5829 
5830 	if (reg->type != PTR_TO_PACKET)
5831 		/* PTR_TO_PACKET_META is not supported yet */
5832 		return;
5833 
5834 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5835 	 * How far beyond pkt_end it goes is unknown.
5836 	 * if (!range_open) it's the case of pkt >= pkt_end
5837 	 * if (range_open) it's the case of pkt > pkt_end
5838 	 * hence this pointer is at least 1 byte bigger than pkt_end
5839 	 */
5840 	if (range_open)
5841 		reg->range = BEYOND_PKT_END;
5842 	else
5843 		reg->range = AT_PKT_END;
5844 }
5845 
5846 static void release_reg_references(struct bpf_verifier_env *env,
5847 				   struct bpf_func_state *state,
5848 				   int ref_obj_id)
5849 {
5850 	struct bpf_reg_state *regs = state->regs, *reg;
5851 	int i;
5852 
5853 	for (i = 0; i < MAX_BPF_REG; i++)
5854 		if (regs[i].ref_obj_id == ref_obj_id)
5855 			mark_reg_unknown(env, regs, i);
5856 
5857 	bpf_for_each_spilled_reg(i, state, reg) {
5858 		if (!reg)
5859 			continue;
5860 		if (reg->ref_obj_id == ref_obj_id)
5861 			__mark_reg_unknown(env, reg);
5862 	}
5863 }
5864 
5865 /* The pointer with the specified id has released its reference to kernel
5866  * resources. Identify all copies of the same pointer and clear the reference.
5867  */
5868 static int release_reference(struct bpf_verifier_env *env,
5869 			     int ref_obj_id)
5870 {
5871 	struct bpf_verifier_state *vstate = env->cur_state;
5872 	int err;
5873 	int i;
5874 
5875 	err = release_reference_state(cur_func(env), ref_obj_id);
5876 	if (err)
5877 		return err;
5878 
5879 	for (i = 0; i <= vstate->curframe; i++)
5880 		release_reg_references(env, vstate->frame[i], ref_obj_id);
5881 
5882 	return 0;
5883 }
5884 
5885 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5886 				    struct bpf_reg_state *regs)
5887 {
5888 	int i;
5889 
5890 	/* after the call registers r0 - r5 were scratched */
5891 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5892 		mark_reg_not_init(env, regs, caller_saved[i]);
5893 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5894 	}
5895 }
5896 
5897 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
5898 				   struct bpf_func_state *caller,
5899 				   struct bpf_func_state *callee,
5900 				   int insn_idx);
5901 
5902 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5903 			     int *insn_idx, int subprog,
5904 			     set_callee_state_fn set_callee_state_cb)
5905 {
5906 	struct bpf_verifier_state *state = env->cur_state;
5907 	struct bpf_func_info_aux *func_info_aux;
5908 	struct bpf_func_state *caller, *callee;
5909 	int err;
5910 	bool is_global = false;
5911 
5912 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5913 		verbose(env, "the call stack of %d frames is too deep\n",
5914 			state->curframe + 2);
5915 		return -E2BIG;
5916 	}
5917 
5918 	caller = state->frame[state->curframe];
5919 	if (state->frame[state->curframe + 1]) {
5920 		verbose(env, "verifier bug. Frame %d already allocated\n",
5921 			state->curframe + 1);
5922 		return -EFAULT;
5923 	}
5924 
5925 	func_info_aux = env->prog->aux->func_info_aux;
5926 	if (func_info_aux)
5927 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5928 	err = btf_check_subprog_arg_match(env, subprog, caller->regs);
5929 	if (err == -EFAULT)
5930 		return err;
5931 	if (is_global) {
5932 		if (err) {
5933 			verbose(env, "Caller passes invalid args into func#%d\n",
5934 				subprog);
5935 			return err;
5936 		} else {
5937 			if (env->log.level & BPF_LOG_LEVEL)
5938 				verbose(env,
5939 					"Func#%d is global and valid. Skipping.\n",
5940 					subprog);
5941 			clear_caller_saved_regs(env, caller->regs);
5942 
5943 			/* All global functions return a 64-bit SCALAR_VALUE */
5944 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
5945 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5946 
5947 			/* continue with next insn after call */
5948 			return 0;
5949 		}
5950 	}
5951 
5952 	if (insn->code == (BPF_JMP | BPF_CALL) &&
5953 	    insn->imm == BPF_FUNC_timer_set_callback) {
5954 		struct bpf_verifier_state *async_cb;
5955 
5956 		/* there is no real recursion here. timer callbacks are async */
5957 		env->subprog_info[subprog].is_async_cb = true;
5958 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
5959 					 *insn_idx, subprog);
5960 		if (!async_cb)
5961 			return -EFAULT;
5962 		callee = async_cb->frame[0];
5963 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
5964 
5965 		/* Convert bpf_timer_set_callback() args into timer callback args */
5966 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
5967 		if (err)
5968 			return err;
5969 
5970 		clear_caller_saved_regs(env, caller->regs);
5971 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
5972 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5973 		/* continue with next insn after call */
5974 		return 0;
5975 	}
5976 
5977 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5978 	if (!callee)
5979 		return -ENOMEM;
5980 	state->frame[state->curframe + 1] = callee;
5981 
5982 	/* callee cannot access r0, r6 - r9 for reading and has to write
5983 	 * into its own stack before reading from it.
5984 	 * callee can read/write into caller's stack
5985 	 */
5986 	init_func_state(env, callee,
5987 			/* remember the callsite, it will be used by bpf_exit */
5988 			*insn_idx /* callsite */,
5989 			state->curframe + 1 /* frameno within this callchain */,
5990 			subprog /* subprog number within this prog */);
5991 
5992 	/* Transfer references to the callee */
5993 	err = copy_reference_state(callee, caller);
5994 	if (err)
5995 		return err;
5996 
5997 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
5998 	if (err)
5999 		return err;
6000 
6001 	clear_caller_saved_regs(env, caller->regs);
6002 
6003 	/* only increment it after check_reg_arg() finished */
6004 	state->curframe++;
6005 
6006 	/* and go analyze first insn of the callee */
6007 	*insn_idx = env->subprog_info[subprog].start - 1;
6008 
6009 	if (env->log.level & BPF_LOG_LEVEL) {
6010 		verbose(env, "caller:\n");
6011 		print_verifier_state(env, caller);
6012 		verbose(env, "callee:\n");
6013 		print_verifier_state(env, callee);
6014 	}
6015 	return 0;
6016 }
6017 
6018 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
6019 				   struct bpf_func_state *caller,
6020 				   struct bpf_func_state *callee)
6021 {
6022 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
6023 	 *      void *callback_ctx, u64 flags);
6024 	 * callback_fn(struct bpf_map *map, void *key, void *value,
6025 	 *      void *callback_ctx);
6026 	 */
6027 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6028 
6029 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6030 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6031 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6032 
6033 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6034 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6035 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6036 
6037 	/* pointer to stack or null */
6038 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
6039 
6040 	/* unused */
6041 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6042 	return 0;
6043 }
6044 
6045 static int set_callee_state(struct bpf_verifier_env *env,
6046 			    struct bpf_func_state *caller,
6047 			    struct bpf_func_state *callee, int insn_idx)
6048 {
6049 	int i;
6050 
6051 	/* copy r1 - r5 args that callee can access.  The copy includes parent
6052 	 * pointers, which connects us up to the liveness chain
6053 	 */
6054 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
6055 		callee->regs[i] = caller->regs[i];
6056 	return 0;
6057 }
6058 
6059 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6060 			   int *insn_idx)
6061 {
6062 	int subprog, target_insn;
6063 
6064 	target_insn = *insn_idx + insn->imm + 1;
6065 	subprog = find_subprog(env, target_insn);
6066 	if (subprog < 0) {
6067 		verbose(env, "verifier bug. No program starts at insn %d\n",
6068 			target_insn);
6069 		return -EFAULT;
6070 	}
6071 
6072 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
6073 }
6074 
6075 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
6076 				       struct bpf_func_state *caller,
6077 				       struct bpf_func_state *callee,
6078 				       int insn_idx)
6079 {
6080 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
6081 	struct bpf_map *map;
6082 	int err;
6083 
6084 	if (bpf_map_ptr_poisoned(insn_aux)) {
6085 		verbose(env, "tail_call abusing map_ptr\n");
6086 		return -EINVAL;
6087 	}
6088 
6089 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
6090 	if (!map->ops->map_set_for_each_callback_args ||
6091 	    !map->ops->map_for_each_callback) {
6092 		verbose(env, "callback function not allowed for map\n");
6093 		return -ENOTSUPP;
6094 	}
6095 
6096 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
6097 	if (err)
6098 		return err;
6099 
6100 	callee->in_callback_fn = true;
6101 	return 0;
6102 }
6103 
6104 static int set_timer_callback_state(struct bpf_verifier_env *env,
6105 				    struct bpf_func_state *caller,
6106 				    struct bpf_func_state *callee,
6107 				    int insn_idx)
6108 {
6109 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
6110 
6111 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
6112 	 * callback_fn(struct bpf_map *map, void *key, void *value);
6113 	 */
6114 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
6115 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
6116 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
6117 
6118 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6119 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6120 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
6121 
6122 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6123 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6124 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
6125 
6126 	/* unused */
6127 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6128 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6129 	callee->in_async_callback_fn = true;
6130 	return 0;
6131 }
6132 
6133 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
6134 				       struct bpf_func_state *caller,
6135 				       struct bpf_func_state *callee,
6136 				       int insn_idx)
6137 {
6138 	/* bpf_find_vma(struct task_struct *task, u64 addr,
6139 	 *               void *callback_fn, void *callback_ctx, u64 flags)
6140 	 * (callback_fn)(struct task_struct *task,
6141 	 *               struct vm_area_struct *vma, void *callback_ctx);
6142 	 */
6143 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6144 
6145 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
6146 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6147 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
6148 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
6149 
6150 	/* pointer to stack or null */
6151 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
6152 
6153 	/* unused */
6154 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6155 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6156 	callee->in_callback_fn = true;
6157 	return 0;
6158 }
6159 
6160 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
6161 {
6162 	struct bpf_verifier_state *state = env->cur_state;
6163 	struct bpf_func_state *caller, *callee;
6164 	struct bpf_reg_state *r0;
6165 	int err;
6166 
6167 	callee = state->frame[state->curframe];
6168 	r0 = &callee->regs[BPF_REG_0];
6169 	if (r0->type == PTR_TO_STACK) {
6170 		/* technically it's ok to return caller's stack pointer
6171 		 * (or caller's caller's pointer) back to the caller,
6172 		 * since these pointers are valid. Only current stack
6173 		 * pointer will be invalid as soon as function exits,
6174 		 * but let's be conservative
6175 		 */
6176 		verbose(env, "cannot return stack pointer to the caller\n");
6177 		return -EINVAL;
6178 	}
6179 
6180 	state->curframe--;
6181 	caller = state->frame[state->curframe];
6182 	if (callee->in_callback_fn) {
6183 		/* enforce R0 return value range [0, 1]. */
6184 		struct tnum range = tnum_range(0, 1);
6185 
6186 		if (r0->type != SCALAR_VALUE) {
6187 			verbose(env, "R0 not a scalar value\n");
6188 			return -EACCES;
6189 		}
6190 		if (!tnum_in(range, r0->var_off)) {
6191 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
6192 			return -EINVAL;
6193 		}
6194 	} else {
6195 		/* return to the caller whatever r0 had in the callee */
6196 		caller->regs[BPF_REG_0] = *r0;
6197 	}
6198 
6199 	/* Transfer references to the caller */
6200 	err = copy_reference_state(caller, callee);
6201 	if (err)
6202 		return err;
6203 
6204 	*insn_idx = callee->callsite + 1;
6205 	if (env->log.level & BPF_LOG_LEVEL) {
6206 		verbose(env, "returning from callee:\n");
6207 		print_verifier_state(env, callee);
6208 		verbose(env, "to caller at %d:\n", *insn_idx);
6209 		print_verifier_state(env, caller);
6210 	}
6211 	/* clear everything in the callee */
6212 	free_func_state(callee);
6213 	state->frame[state->curframe + 1] = NULL;
6214 	return 0;
6215 }
6216 
6217 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
6218 				   int func_id,
6219 				   struct bpf_call_arg_meta *meta)
6220 {
6221 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
6222 
6223 	if (ret_type != RET_INTEGER ||
6224 	    (func_id != BPF_FUNC_get_stack &&
6225 	     func_id != BPF_FUNC_get_task_stack &&
6226 	     func_id != BPF_FUNC_probe_read_str &&
6227 	     func_id != BPF_FUNC_probe_read_kernel_str &&
6228 	     func_id != BPF_FUNC_probe_read_user_str))
6229 		return;
6230 
6231 	ret_reg->smax_value = meta->msize_max_value;
6232 	ret_reg->s32_max_value = meta->msize_max_value;
6233 	ret_reg->smin_value = -MAX_ERRNO;
6234 	ret_reg->s32_min_value = -MAX_ERRNO;
6235 	__reg_deduce_bounds(ret_reg);
6236 	__reg_bound_offset(ret_reg);
6237 	__update_reg_bounds(ret_reg);
6238 }
6239 
6240 static int
6241 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6242 		int func_id, int insn_idx)
6243 {
6244 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6245 	struct bpf_map *map = meta->map_ptr;
6246 
6247 	if (func_id != BPF_FUNC_tail_call &&
6248 	    func_id != BPF_FUNC_map_lookup_elem &&
6249 	    func_id != BPF_FUNC_map_update_elem &&
6250 	    func_id != BPF_FUNC_map_delete_elem &&
6251 	    func_id != BPF_FUNC_map_push_elem &&
6252 	    func_id != BPF_FUNC_map_pop_elem &&
6253 	    func_id != BPF_FUNC_map_peek_elem &&
6254 	    func_id != BPF_FUNC_for_each_map_elem &&
6255 	    func_id != BPF_FUNC_redirect_map)
6256 		return 0;
6257 
6258 	if (map == NULL) {
6259 		verbose(env, "kernel subsystem misconfigured verifier\n");
6260 		return -EINVAL;
6261 	}
6262 
6263 	/* In case of read-only, some additional restrictions
6264 	 * need to be applied in order to prevent altering the
6265 	 * state of the map from program side.
6266 	 */
6267 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
6268 	    (func_id == BPF_FUNC_map_delete_elem ||
6269 	     func_id == BPF_FUNC_map_update_elem ||
6270 	     func_id == BPF_FUNC_map_push_elem ||
6271 	     func_id == BPF_FUNC_map_pop_elem)) {
6272 		verbose(env, "write into map forbidden\n");
6273 		return -EACCES;
6274 	}
6275 
6276 	if (!BPF_MAP_PTR(aux->map_ptr_state))
6277 		bpf_map_ptr_store(aux, meta->map_ptr,
6278 				  !meta->map_ptr->bypass_spec_v1);
6279 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
6280 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
6281 				  !meta->map_ptr->bypass_spec_v1);
6282 	return 0;
6283 }
6284 
6285 static int
6286 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6287 		int func_id, int insn_idx)
6288 {
6289 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6290 	struct bpf_reg_state *regs = cur_regs(env), *reg;
6291 	struct bpf_map *map = meta->map_ptr;
6292 	struct tnum range;
6293 	u64 val;
6294 	int err;
6295 
6296 	if (func_id != BPF_FUNC_tail_call)
6297 		return 0;
6298 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
6299 		verbose(env, "kernel subsystem misconfigured verifier\n");
6300 		return -EINVAL;
6301 	}
6302 
6303 	range = tnum_range(0, map->max_entries - 1);
6304 	reg = &regs[BPF_REG_3];
6305 
6306 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
6307 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6308 		return 0;
6309 	}
6310 
6311 	err = mark_chain_precision(env, BPF_REG_3);
6312 	if (err)
6313 		return err;
6314 
6315 	val = reg->var_off.value;
6316 	if (bpf_map_key_unseen(aux))
6317 		bpf_map_key_store(aux, val);
6318 	else if (!bpf_map_key_poisoned(aux) &&
6319 		  bpf_map_key_immediate(aux) != val)
6320 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6321 	return 0;
6322 }
6323 
6324 static int check_reference_leak(struct bpf_verifier_env *env)
6325 {
6326 	struct bpf_func_state *state = cur_func(env);
6327 	int i;
6328 
6329 	for (i = 0; i < state->acquired_refs; i++) {
6330 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
6331 			state->refs[i].id, state->refs[i].insn_idx);
6332 	}
6333 	return state->acquired_refs ? -EINVAL : 0;
6334 }
6335 
6336 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
6337 				   struct bpf_reg_state *regs)
6338 {
6339 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
6340 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
6341 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
6342 	int err, fmt_map_off, num_args;
6343 	u64 fmt_addr;
6344 	char *fmt;
6345 
6346 	/* data must be an array of u64 */
6347 	if (data_len_reg->var_off.value % 8)
6348 		return -EINVAL;
6349 	num_args = data_len_reg->var_off.value / 8;
6350 
6351 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
6352 	 * and map_direct_value_addr is set.
6353 	 */
6354 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
6355 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
6356 						  fmt_map_off);
6357 	if (err) {
6358 		verbose(env, "verifier bug\n");
6359 		return -EFAULT;
6360 	}
6361 	fmt = (char *)(long)fmt_addr + fmt_map_off;
6362 
6363 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
6364 	 * can focus on validating the format specifiers.
6365 	 */
6366 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
6367 	if (err < 0)
6368 		verbose(env, "Invalid format string\n");
6369 
6370 	return err;
6371 }
6372 
6373 static int check_get_func_ip(struct bpf_verifier_env *env)
6374 {
6375 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
6376 	enum bpf_prog_type type = resolve_prog_type(env->prog);
6377 	int func_id = BPF_FUNC_get_func_ip;
6378 
6379 	if (type == BPF_PROG_TYPE_TRACING) {
6380 		if (eatype != BPF_TRACE_FENTRY && eatype != BPF_TRACE_FEXIT &&
6381 		    eatype != BPF_MODIFY_RETURN) {
6382 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
6383 				func_id_name(func_id), func_id);
6384 			return -ENOTSUPP;
6385 		}
6386 		return 0;
6387 	} else if (type == BPF_PROG_TYPE_KPROBE) {
6388 		return 0;
6389 	}
6390 
6391 	verbose(env, "func %s#%d not supported for program type %d\n",
6392 		func_id_name(func_id), func_id, type);
6393 	return -ENOTSUPP;
6394 }
6395 
6396 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6397 			     int *insn_idx_p)
6398 {
6399 	const struct bpf_func_proto *fn = NULL;
6400 	struct bpf_reg_state *regs;
6401 	struct bpf_call_arg_meta meta;
6402 	int insn_idx = *insn_idx_p;
6403 	bool changes_data;
6404 	int i, err, func_id;
6405 
6406 	/* find function prototype */
6407 	func_id = insn->imm;
6408 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
6409 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
6410 			func_id);
6411 		return -EINVAL;
6412 	}
6413 
6414 	if (env->ops->get_func_proto)
6415 		fn = env->ops->get_func_proto(func_id, env->prog);
6416 	if (!fn) {
6417 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
6418 			func_id);
6419 		return -EINVAL;
6420 	}
6421 
6422 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
6423 	if (!env->prog->gpl_compatible && fn->gpl_only) {
6424 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
6425 		return -EINVAL;
6426 	}
6427 
6428 	if (fn->allowed && !fn->allowed(env->prog)) {
6429 		verbose(env, "helper call is not allowed in probe\n");
6430 		return -EINVAL;
6431 	}
6432 
6433 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
6434 	changes_data = bpf_helper_changes_pkt_data(fn->func);
6435 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
6436 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
6437 			func_id_name(func_id), func_id);
6438 		return -EINVAL;
6439 	}
6440 
6441 	memset(&meta, 0, sizeof(meta));
6442 	meta.pkt_access = fn->pkt_access;
6443 
6444 	err = check_func_proto(fn, func_id);
6445 	if (err) {
6446 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
6447 			func_id_name(func_id), func_id);
6448 		return err;
6449 	}
6450 
6451 	meta.func_id = func_id;
6452 	/* check args */
6453 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6454 		err = check_func_arg(env, i, &meta, fn);
6455 		if (err)
6456 			return err;
6457 	}
6458 
6459 	err = record_func_map(env, &meta, func_id, insn_idx);
6460 	if (err)
6461 		return err;
6462 
6463 	err = record_func_key(env, &meta, func_id, insn_idx);
6464 	if (err)
6465 		return err;
6466 
6467 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
6468 	 * is inferred from register state.
6469 	 */
6470 	for (i = 0; i < meta.access_size; i++) {
6471 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
6472 				       BPF_WRITE, -1, false);
6473 		if (err)
6474 			return err;
6475 	}
6476 
6477 	if (func_id == BPF_FUNC_tail_call) {
6478 		err = check_reference_leak(env);
6479 		if (err) {
6480 			verbose(env, "tail_call would lead to reference leak\n");
6481 			return err;
6482 		}
6483 	} else if (is_release_function(func_id)) {
6484 		err = release_reference(env, meta.ref_obj_id);
6485 		if (err) {
6486 			verbose(env, "func %s#%d reference has not been acquired before\n",
6487 				func_id_name(func_id), func_id);
6488 			return err;
6489 		}
6490 	}
6491 
6492 	regs = cur_regs(env);
6493 
6494 	/* check that flags argument in get_local_storage(map, flags) is 0,
6495 	 * this is required because get_local_storage() can't return an error.
6496 	 */
6497 	if (func_id == BPF_FUNC_get_local_storage &&
6498 	    !register_is_null(&regs[BPF_REG_2])) {
6499 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
6500 		return -EINVAL;
6501 	}
6502 
6503 	if (func_id == BPF_FUNC_for_each_map_elem) {
6504 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6505 					set_map_elem_callback_state);
6506 		if (err < 0)
6507 			return -EINVAL;
6508 	}
6509 
6510 	if (func_id == BPF_FUNC_timer_set_callback) {
6511 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6512 					set_timer_callback_state);
6513 		if (err < 0)
6514 			return -EINVAL;
6515 	}
6516 
6517 	if (func_id == BPF_FUNC_find_vma) {
6518 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6519 					set_find_vma_callback_state);
6520 		if (err < 0)
6521 			return -EINVAL;
6522 	}
6523 
6524 	if (func_id == BPF_FUNC_snprintf) {
6525 		err = check_bpf_snprintf_call(env, regs);
6526 		if (err < 0)
6527 			return err;
6528 	}
6529 
6530 	/* reset caller saved regs */
6531 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6532 		mark_reg_not_init(env, regs, caller_saved[i]);
6533 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6534 	}
6535 
6536 	/* helper call returns 64-bit value. */
6537 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6538 
6539 	/* update return register (already marked as written above) */
6540 	if (fn->ret_type == RET_INTEGER) {
6541 		/* sets type to SCALAR_VALUE */
6542 		mark_reg_unknown(env, regs, BPF_REG_0);
6543 	} else if (fn->ret_type == RET_VOID) {
6544 		regs[BPF_REG_0].type = NOT_INIT;
6545 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
6546 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6547 		/* There is no offset yet applied, variable or fixed */
6548 		mark_reg_known_zero(env, regs, BPF_REG_0);
6549 		/* remember map_ptr, so that check_map_access()
6550 		 * can check 'value_size' boundary of memory access
6551 		 * to map element returned from bpf_map_lookup_elem()
6552 		 */
6553 		if (meta.map_ptr == NULL) {
6554 			verbose(env,
6555 				"kernel subsystem misconfigured verifier\n");
6556 			return -EINVAL;
6557 		}
6558 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
6559 		regs[BPF_REG_0].map_uid = meta.map_uid;
6560 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6561 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
6562 			if (map_value_has_spin_lock(meta.map_ptr))
6563 				regs[BPF_REG_0].id = ++env->id_gen;
6564 		} else {
6565 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
6566 		}
6567 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
6568 		mark_reg_known_zero(env, regs, BPF_REG_0);
6569 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
6570 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
6571 		mark_reg_known_zero(env, regs, BPF_REG_0);
6572 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
6573 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
6574 		mark_reg_known_zero(env, regs, BPF_REG_0);
6575 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
6576 	} else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
6577 		mark_reg_known_zero(env, regs, BPF_REG_0);
6578 		regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
6579 		regs[BPF_REG_0].mem_size = meta.mem_size;
6580 	} else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
6581 		   fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
6582 		const struct btf_type *t;
6583 
6584 		mark_reg_known_zero(env, regs, BPF_REG_0);
6585 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
6586 		if (!btf_type_is_struct(t)) {
6587 			u32 tsize;
6588 			const struct btf_type *ret;
6589 			const char *tname;
6590 
6591 			/* resolve the type size of ksym. */
6592 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
6593 			if (IS_ERR(ret)) {
6594 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
6595 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
6596 					tname, PTR_ERR(ret));
6597 				return -EINVAL;
6598 			}
6599 			regs[BPF_REG_0].type =
6600 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6601 				PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
6602 			regs[BPF_REG_0].mem_size = tsize;
6603 		} else {
6604 			regs[BPF_REG_0].type =
6605 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6606 				PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
6607 			regs[BPF_REG_0].btf = meta.ret_btf;
6608 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
6609 		}
6610 	} else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
6611 		   fn->ret_type == RET_PTR_TO_BTF_ID) {
6612 		int ret_btf_id;
6613 
6614 		mark_reg_known_zero(env, regs, BPF_REG_0);
6615 		regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
6616 						     PTR_TO_BTF_ID :
6617 						     PTR_TO_BTF_ID_OR_NULL;
6618 		ret_btf_id = *fn->ret_btf_id;
6619 		if (ret_btf_id == 0) {
6620 			verbose(env, "invalid return type %d of func %s#%d\n",
6621 				fn->ret_type, func_id_name(func_id), func_id);
6622 			return -EINVAL;
6623 		}
6624 		/* current BPF helper definitions are only coming from
6625 		 * built-in code with type IDs from  vmlinux BTF
6626 		 */
6627 		regs[BPF_REG_0].btf = btf_vmlinux;
6628 		regs[BPF_REG_0].btf_id = ret_btf_id;
6629 	} else {
6630 		verbose(env, "unknown return type %d of func %s#%d\n",
6631 			fn->ret_type, func_id_name(func_id), func_id);
6632 		return -EINVAL;
6633 	}
6634 
6635 	if (reg_type_may_be_null(regs[BPF_REG_0].type))
6636 		regs[BPF_REG_0].id = ++env->id_gen;
6637 
6638 	if (is_ptr_cast_function(func_id)) {
6639 		/* For release_reference() */
6640 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
6641 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
6642 		int id = acquire_reference_state(env, insn_idx);
6643 
6644 		if (id < 0)
6645 			return id;
6646 		/* For mark_ptr_or_null_reg() */
6647 		regs[BPF_REG_0].id = id;
6648 		/* For release_reference() */
6649 		regs[BPF_REG_0].ref_obj_id = id;
6650 	}
6651 
6652 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
6653 
6654 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
6655 	if (err)
6656 		return err;
6657 
6658 	if ((func_id == BPF_FUNC_get_stack ||
6659 	     func_id == BPF_FUNC_get_task_stack) &&
6660 	    !env->prog->has_callchain_buf) {
6661 		const char *err_str;
6662 
6663 #ifdef CONFIG_PERF_EVENTS
6664 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
6665 		err_str = "cannot get callchain buffer for func %s#%d\n";
6666 #else
6667 		err = -ENOTSUPP;
6668 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
6669 #endif
6670 		if (err) {
6671 			verbose(env, err_str, func_id_name(func_id), func_id);
6672 			return err;
6673 		}
6674 
6675 		env->prog->has_callchain_buf = true;
6676 	}
6677 
6678 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
6679 		env->prog->call_get_stack = true;
6680 
6681 	if (func_id == BPF_FUNC_get_func_ip) {
6682 		if (check_get_func_ip(env))
6683 			return -ENOTSUPP;
6684 		env->prog->call_get_func_ip = true;
6685 	}
6686 
6687 	if (changes_data)
6688 		clear_all_pkt_pointers(env);
6689 	return 0;
6690 }
6691 
6692 /* mark_btf_func_reg_size() is used when the reg size is determined by
6693  * the BTF func_proto's return value size and argument.
6694  */
6695 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
6696 				   size_t reg_size)
6697 {
6698 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
6699 
6700 	if (regno == BPF_REG_0) {
6701 		/* Function return value */
6702 		reg->live |= REG_LIVE_WRITTEN;
6703 		reg->subreg_def = reg_size == sizeof(u64) ?
6704 			DEF_NOT_SUBREG : env->insn_idx + 1;
6705 	} else {
6706 		/* Function argument */
6707 		if (reg_size == sizeof(u64)) {
6708 			mark_insn_zext(env, reg);
6709 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
6710 		} else {
6711 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
6712 		}
6713 	}
6714 }
6715 
6716 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn)
6717 {
6718 	const struct btf_type *t, *func, *func_proto, *ptr_type;
6719 	struct bpf_reg_state *regs = cur_regs(env);
6720 	const char *func_name, *ptr_type_name;
6721 	u32 i, nargs, func_id, ptr_type_id;
6722 	struct module *btf_mod = NULL;
6723 	const struct btf_param *args;
6724 	struct btf *desc_btf;
6725 	int err;
6726 
6727 	/* skip for now, but return error when we find this in fixup_kfunc_call */
6728 	if (!insn->imm)
6729 		return 0;
6730 
6731 	desc_btf = find_kfunc_desc_btf(env, insn->imm, insn->off, &btf_mod);
6732 	if (IS_ERR(desc_btf))
6733 		return PTR_ERR(desc_btf);
6734 
6735 	func_id = insn->imm;
6736 	func = btf_type_by_id(desc_btf, func_id);
6737 	func_name = btf_name_by_offset(desc_btf, func->name_off);
6738 	func_proto = btf_type_by_id(desc_btf, func->type);
6739 
6740 	if (!env->ops->check_kfunc_call ||
6741 	    !env->ops->check_kfunc_call(func_id, btf_mod)) {
6742 		verbose(env, "calling kernel function %s is not allowed\n",
6743 			func_name);
6744 		return -EACCES;
6745 	}
6746 
6747 	/* Check the arguments */
6748 	err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs);
6749 	if (err)
6750 		return err;
6751 
6752 	for (i = 0; i < CALLER_SAVED_REGS; i++)
6753 		mark_reg_not_init(env, regs, caller_saved[i]);
6754 
6755 	/* Check return type */
6756 	t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
6757 	if (btf_type_is_scalar(t)) {
6758 		mark_reg_unknown(env, regs, BPF_REG_0);
6759 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
6760 	} else if (btf_type_is_ptr(t)) {
6761 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type,
6762 						   &ptr_type_id);
6763 		if (!btf_type_is_struct(ptr_type)) {
6764 			ptr_type_name = btf_name_by_offset(desc_btf,
6765 							   ptr_type->name_off);
6766 			verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
6767 				func_name, btf_type_str(ptr_type),
6768 				ptr_type_name);
6769 			return -EINVAL;
6770 		}
6771 		mark_reg_known_zero(env, regs, BPF_REG_0);
6772 		regs[BPF_REG_0].btf = desc_btf;
6773 		regs[BPF_REG_0].type = PTR_TO_BTF_ID;
6774 		regs[BPF_REG_0].btf_id = ptr_type_id;
6775 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
6776 	} /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
6777 
6778 	nargs = btf_type_vlen(func_proto);
6779 	args = (const struct btf_param *)(func_proto + 1);
6780 	for (i = 0; i < nargs; i++) {
6781 		u32 regno = i + 1;
6782 
6783 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
6784 		if (btf_type_is_ptr(t))
6785 			mark_btf_func_reg_size(env, regno, sizeof(void *));
6786 		else
6787 			/* scalar. ensured by btf_check_kfunc_arg_match() */
6788 			mark_btf_func_reg_size(env, regno, t->size);
6789 	}
6790 
6791 	return 0;
6792 }
6793 
6794 static bool signed_add_overflows(s64 a, s64 b)
6795 {
6796 	/* Do the add in u64, where overflow is well-defined */
6797 	s64 res = (s64)((u64)a + (u64)b);
6798 
6799 	if (b < 0)
6800 		return res > a;
6801 	return res < a;
6802 }
6803 
6804 static bool signed_add32_overflows(s32 a, s32 b)
6805 {
6806 	/* Do the add in u32, where overflow is well-defined */
6807 	s32 res = (s32)((u32)a + (u32)b);
6808 
6809 	if (b < 0)
6810 		return res > a;
6811 	return res < a;
6812 }
6813 
6814 static bool signed_sub_overflows(s64 a, s64 b)
6815 {
6816 	/* Do the sub in u64, where overflow is well-defined */
6817 	s64 res = (s64)((u64)a - (u64)b);
6818 
6819 	if (b < 0)
6820 		return res < a;
6821 	return res > a;
6822 }
6823 
6824 static bool signed_sub32_overflows(s32 a, s32 b)
6825 {
6826 	/* Do the sub in u32, where overflow is well-defined */
6827 	s32 res = (s32)((u32)a - (u32)b);
6828 
6829 	if (b < 0)
6830 		return res < a;
6831 	return res > a;
6832 }
6833 
6834 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
6835 				  const struct bpf_reg_state *reg,
6836 				  enum bpf_reg_type type)
6837 {
6838 	bool known = tnum_is_const(reg->var_off);
6839 	s64 val = reg->var_off.value;
6840 	s64 smin = reg->smin_value;
6841 
6842 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
6843 		verbose(env, "math between %s pointer and %lld is not allowed\n",
6844 			reg_type_str[type], val);
6845 		return false;
6846 	}
6847 
6848 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
6849 		verbose(env, "%s pointer offset %d is not allowed\n",
6850 			reg_type_str[type], reg->off);
6851 		return false;
6852 	}
6853 
6854 	if (smin == S64_MIN) {
6855 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
6856 			reg_type_str[type]);
6857 		return false;
6858 	}
6859 
6860 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
6861 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
6862 			smin, reg_type_str[type]);
6863 		return false;
6864 	}
6865 
6866 	return true;
6867 }
6868 
6869 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
6870 {
6871 	return &env->insn_aux_data[env->insn_idx];
6872 }
6873 
6874 enum {
6875 	REASON_BOUNDS	= -1,
6876 	REASON_TYPE	= -2,
6877 	REASON_PATHS	= -3,
6878 	REASON_LIMIT	= -4,
6879 	REASON_STACK	= -5,
6880 };
6881 
6882 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
6883 			      u32 *alu_limit, bool mask_to_left)
6884 {
6885 	u32 max = 0, ptr_limit = 0;
6886 
6887 	switch (ptr_reg->type) {
6888 	case PTR_TO_STACK:
6889 		/* Offset 0 is out-of-bounds, but acceptable start for the
6890 		 * left direction, see BPF_REG_FP. Also, unknown scalar
6891 		 * offset where we would need to deal with min/max bounds is
6892 		 * currently prohibited for unprivileged.
6893 		 */
6894 		max = MAX_BPF_STACK + mask_to_left;
6895 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
6896 		break;
6897 	case PTR_TO_MAP_VALUE:
6898 		max = ptr_reg->map_ptr->value_size;
6899 		ptr_limit = (mask_to_left ?
6900 			     ptr_reg->smin_value :
6901 			     ptr_reg->umax_value) + ptr_reg->off;
6902 		break;
6903 	default:
6904 		return REASON_TYPE;
6905 	}
6906 
6907 	if (ptr_limit >= max)
6908 		return REASON_LIMIT;
6909 	*alu_limit = ptr_limit;
6910 	return 0;
6911 }
6912 
6913 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
6914 				    const struct bpf_insn *insn)
6915 {
6916 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
6917 }
6918 
6919 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
6920 				       u32 alu_state, u32 alu_limit)
6921 {
6922 	/* If we arrived here from different branches with different
6923 	 * state or limits to sanitize, then this won't work.
6924 	 */
6925 	if (aux->alu_state &&
6926 	    (aux->alu_state != alu_state ||
6927 	     aux->alu_limit != alu_limit))
6928 		return REASON_PATHS;
6929 
6930 	/* Corresponding fixup done in do_misc_fixups(). */
6931 	aux->alu_state = alu_state;
6932 	aux->alu_limit = alu_limit;
6933 	return 0;
6934 }
6935 
6936 static int sanitize_val_alu(struct bpf_verifier_env *env,
6937 			    struct bpf_insn *insn)
6938 {
6939 	struct bpf_insn_aux_data *aux = cur_aux(env);
6940 
6941 	if (can_skip_alu_sanitation(env, insn))
6942 		return 0;
6943 
6944 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
6945 }
6946 
6947 static bool sanitize_needed(u8 opcode)
6948 {
6949 	return opcode == BPF_ADD || opcode == BPF_SUB;
6950 }
6951 
6952 struct bpf_sanitize_info {
6953 	struct bpf_insn_aux_data aux;
6954 	bool mask_to_left;
6955 };
6956 
6957 static struct bpf_verifier_state *
6958 sanitize_speculative_path(struct bpf_verifier_env *env,
6959 			  const struct bpf_insn *insn,
6960 			  u32 next_idx, u32 curr_idx)
6961 {
6962 	struct bpf_verifier_state *branch;
6963 	struct bpf_reg_state *regs;
6964 
6965 	branch = push_stack(env, next_idx, curr_idx, true);
6966 	if (branch && insn) {
6967 		regs = branch->frame[branch->curframe]->regs;
6968 		if (BPF_SRC(insn->code) == BPF_K) {
6969 			mark_reg_unknown(env, regs, insn->dst_reg);
6970 		} else if (BPF_SRC(insn->code) == BPF_X) {
6971 			mark_reg_unknown(env, regs, insn->dst_reg);
6972 			mark_reg_unknown(env, regs, insn->src_reg);
6973 		}
6974 	}
6975 	return branch;
6976 }
6977 
6978 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
6979 			    struct bpf_insn *insn,
6980 			    const struct bpf_reg_state *ptr_reg,
6981 			    const struct bpf_reg_state *off_reg,
6982 			    struct bpf_reg_state *dst_reg,
6983 			    struct bpf_sanitize_info *info,
6984 			    const bool commit_window)
6985 {
6986 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
6987 	struct bpf_verifier_state *vstate = env->cur_state;
6988 	bool off_is_imm = tnum_is_const(off_reg->var_off);
6989 	bool off_is_neg = off_reg->smin_value < 0;
6990 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
6991 	u8 opcode = BPF_OP(insn->code);
6992 	u32 alu_state, alu_limit;
6993 	struct bpf_reg_state tmp;
6994 	bool ret;
6995 	int err;
6996 
6997 	if (can_skip_alu_sanitation(env, insn))
6998 		return 0;
6999 
7000 	/* We already marked aux for masking from non-speculative
7001 	 * paths, thus we got here in the first place. We only care
7002 	 * to explore bad access from here.
7003 	 */
7004 	if (vstate->speculative)
7005 		goto do_sim;
7006 
7007 	if (!commit_window) {
7008 		if (!tnum_is_const(off_reg->var_off) &&
7009 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
7010 			return REASON_BOUNDS;
7011 
7012 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
7013 				     (opcode == BPF_SUB && !off_is_neg);
7014 	}
7015 
7016 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
7017 	if (err < 0)
7018 		return err;
7019 
7020 	if (commit_window) {
7021 		/* In commit phase we narrow the masking window based on
7022 		 * the observed pointer move after the simulated operation.
7023 		 */
7024 		alu_state = info->aux.alu_state;
7025 		alu_limit = abs(info->aux.alu_limit - alu_limit);
7026 	} else {
7027 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
7028 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
7029 		alu_state |= ptr_is_dst_reg ?
7030 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
7031 
7032 		/* Limit pruning on unknown scalars to enable deep search for
7033 		 * potential masking differences from other program paths.
7034 		 */
7035 		if (!off_is_imm)
7036 			env->explore_alu_limits = true;
7037 	}
7038 
7039 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
7040 	if (err < 0)
7041 		return err;
7042 do_sim:
7043 	/* If we're in commit phase, we're done here given we already
7044 	 * pushed the truncated dst_reg into the speculative verification
7045 	 * stack.
7046 	 *
7047 	 * Also, when register is a known constant, we rewrite register-based
7048 	 * operation to immediate-based, and thus do not need masking (and as
7049 	 * a consequence, do not need to simulate the zero-truncation either).
7050 	 */
7051 	if (commit_window || off_is_imm)
7052 		return 0;
7053 
7054 	/* Simulate and find potential out-of-bounds access under
7055 	 * speculative execution from truncation as a result of
7056 	 * masking when off was not within expected range. If off
7057 	 * sits in dst, then we temporarily need to move ptr there
7058 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
7059 	 * for cases where we use K-based arithmetic in one direction
7060 	 * and truncated reg-based in the other in order to explore
7061 	 * bad access.
7062 	 */
7063 	if (!ptr_is_dst_reg) {
7064 		tmp = *dst_reg;
7065 		*dst_reg = *ptr_reg;
7066 	}
7067 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
7068 					env->insn_idx);
7069 	if (!ptr_is_dst_reg && ret)
7070 		*dst_reg = tmp;
7071 	return !ret ? REASON_STACK : 0;
7072 }
7073 
7074 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
7075 {
7076 	struct bpf_verifier_state *vstate = env->cur_state;
7077 
7078 	/* If we simulate paths under speculation, we don't update the
7079 	 * insn as 'seen' such that when we verify unreachable paths in
7080 	 * the non-speculative domain, sanitize_dead_code() can still
7081 	 * rewrite/sanitize them.
7082 	 */
7083 	if (!vstate->speculative)
7084 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
7085 }
7086 
7087 static int sanitize_err(struct bpf_verifier_env *env,
7088 			const struct bpf_insn *insn, int reason,
7089 			const struct bpf_reg_state *off_reg,
7090 			const struct bpf_reg_state *dst_reg)
7091 {
7092 	static const char *err = "pointer arithmetic with it prohibited for !root";
7093 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
7094 	u32 dst = insn->dst_reg, src = insn->src_reg;
7095 
7096 	switch (reason) {
7097 	case REASON_BOUNDS:
7098 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
7099 			off_reg == dst_reg ? dst : src, err);
7100 		break;
7101 	case REASON_TYPE:
7102 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
7103 			off_reg == dst_reg ? src : dst, err);
7104 		break;
7105 	case REASON_PATHS:
7106 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
7107 			dst, op, err);
7108 		break;
7109 	case REASON_LIMIT:
7110 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
7111 			dst, op, err);
7112 		break;
7113 	case REASON_STACK:
7114 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
7115 			dst, err);
7116 		break;
7117 	default:
7118 		verbose(env, "verifier internal error: unknown reason (%d)\n",
7119 			reason);
7120 		break;
7121 	}
7122 
7123 	return -EACCES;
7124 }
7125 
7126 /* check that stack access falls within stack limits and that 'reg' doesn't
7127  * have a variable offset.
7128  *
7129  * Variable offset is prohibited for unprivileged mode for simplicity since it
7130  * requires corresponding support in Spectre masking for stack ALU.  See also
7131  * retrieve_ptr_limit().
7132  *
7133  *
7134  * 'off' includes 'reg->off'.
7135  */
7136 static int check_stack_access_for_ptr_arithmetic(
7137 				struct bpf_verifier_env *env,
7138 				int regno,
7139 				const struct bpf_reg_state *reg,
7140 				int off)
7141 {
7142 	if (!tnum_is_const(reg->var_off)) {
7143 		char tn_buf[48];
7144 
7145 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7146 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
7147 			regno, tn_buf, off);
7148 		return -EACCES;
7149 	}
7150 
7151 	if (off >= 0 || off < -MAX_BPF_STACK) {
7152 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
7153 			"prohibited for !root; off=%d\n", regno, off);
7154 		return -EACCES;
7155 	}
7156 
7157 	return 0;
7158 }
7159 
7160 static int sanitize_check_bounds(struct bpf_verifier_env *env,
7161 				 const struct bpf_insn *insn,
7162 				 const struct bpf_reg_state *dst_reg)
7163 {
7164 	u32 dst = insn->dst_reg;
7165 
7166 	/* For unprivileged we require that resulting offset must be in bounds
7167 	 * in order to be able to sanitize access later on.
7168 	 */
7169 	if (env->bypass_spec_v1)
7170 		return 0;
7171 
7172 	switch (dst_reg->type) {
7173 	case PTR_TO_STACK:
7174 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
7175 					dst_reg->off + dst_reg->var_off.value))
7176 			return -EACCES;
7177 		break;
7178 	case PTR_TO_MAP_VALUE:
7179 		if (check_map_access(env, dst, dst_reg->off, 1, false)) {
7180 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
7181 				"prohibited for !root\n", dst);
7182 			return -EACCES;
7183 		}
7184 		break;
7185 	default:
7186 		break;
7187 	}
7188 
7189 	return 0;
7190 }
7191 
7192 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
7193  * Caller should also handle BPF_MOV case separately.
7194  * If we return -EACCES, caller may want to try again treating pointer as a
7195  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
7196  */
7197 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
7198 				   struct bpf_insn *insn,
7199 				   const struct bpf_reg_state *ptr_reg,
7200 				   const struct bpf_reg_state *off_reg)
7201 {
7202 	struct bpf_verifier_state *vstate = env->cur_state;
7203 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7204 	struct bpf_reg_state *regs = state->regs, *dst_reg;
7205 	bool known = tnum_is_const(off_reg->var_off);
7206 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
7207 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
7208 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
7209 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
7210 	struct bpf_sanitize_info info = {};
7211 	u8 opcode = BPF_OP(insn->code);
7212 	u32 dst = insn->dst_reg;
7213 	int ret;
7214 
7215 	dst_reg = &regs[dst];
7216 
7217 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
7218 	    smin_val > smax_val || umin_val > umax_val) {
7219 		/* Taint dst register if offset had invalid bounds derived from
7220 		 * e.g. dead branches.
7221 		 */
7222 		__mark_reg_unknown(env, dst_reg);
7223 		return 0;
7224 	}
7225 
7226 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
7227 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
7228 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7229 			__mark_reg_unknown(env, dst_reg);
7230 			return 0;
7231 		}
7232 
7233 		verbose(env,
7234 			"R%d 32-bit pointer arithmetic prohibited\n",
7235 			dst);
7236 		return -EACCES;
7237 	}
7238 
7239 	switch (ptr_reg->type) {
7240 	case PTR_TO_MAP_VALUE_OR_NULL:
7241 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
7242 			dst, reg_type_str[ptr_reg->type]);
7243 		return -EACCES;
7244 	case CONST_PTR_TO_MAP:
7245 		/* smin_val represents the known value */
7246 		if (known && smin_val == 0 && opcode == BPF_ADD)
7247 			break;
7248 		fallthrough;
7249 	case PTR_TO_PACKET_END:
7250 	case PTR_TO_SOCKET:
7251 	case PTR_TO_SOCKET_OR_NULL:
7252 	case PTR_TO_SOCK_COMMON:
7253 	case PTR_TO_SOCK_COMMON_OR_NULL:
7254 	case PTR_TO_TCP_SOCK:
7255 	case PTR_TO_TCP_SOCK_OR_NULL:
7256 	case PTR_TO_XDP_SOCK:
7257 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
7258 			dst, reg_type_str[ptr_reg->type]);
7259 		return -EACCES;
7260 	default:
7261 		break;
7262 	}
7263 
7264 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
7265 	 * The id may be overwritten later if we create a new variable offset.
7266 	 */
7267 	dst_reg->type = ptr_reg->type;
7268 	dst_reg->id = ptr_reg->id;
7269 
7270 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
7271 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
7272 		return -EINVAL;
7273 
7274 	/* pointer types do not carry 32-bit bounds at the moment. */
7275 	__mark_reg32_unbounded(dst_reg);
7276 
7277 	if (sanitize_needed(opcode)) {
7278 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
7279 				       &info, false);
7280 		if (ret < 0)
7281 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
7282 	}
7283 
7284 	switch (opcode) {
7285 	case BPF_ADD:
7286 		/* We can take a fixed offset as long as it doesn't overflow
7287 		 * the s32 'off' field
7288 		 */
7289 		if (known && (ptr_reg->off + smin_val ==
7290 			      (s64)(s32)(ptr_reg->off + smin_val))) {
7291 			/* pointer += K.  Accumulate it into fixed offset */
7292 			dst_reg->smin_value = smin_ptr;
7293 			dst_reg->smax_value = smax_ptr;
7294 			dst_reg->umin_value = umin_ptr;
7295 			dst_reg->umax_value = umax_ptr;
7296 			dst_reg->var_off = ptr_reg->var_off;
7297 			dst_reg->off = ptr_reg->off + smin_val;
7298 			dst_reg->raw = ptr_reg->raw;
7299 			break;
7300 		}
7301 		/* A new variable offset is created.  Note that off_reg->off
7302 		 * == 0, since it's a scalar.
7303 		 * dst_reg gets the pointer type and since some positive
7304 		 * integer value was added to the pointer, give it a new 'id'
7305 		 * if it's a PTR_TO_PACKET.
7306 		 * this creates a new 'base' pointer, off_reg (variable) gets
7307 		 * added into the variable offset, and we copy the fixed offset
7308 		 * from ptr_reg.
7309 		 */
7310 		if (signed_add_overflows(smin_ptr, smin_val) ||
7311 		    signed_add_overflows(smax_ptr, smax_val)) {
7312 			dst_reg->smin_value = S64_MIN;
7313 			dst_reg->smax_value = S64_MAX;
7314 		} else {
7315 			dst_reg->smin_value = smin_ptr + smin_val;
7316 			dst_reg->smax_value = smax_ptr + smax_val;
7317 		}
7318 		if (umin_ptr + umin_val < umin_ptr ||
7319 		    umax_ptr + umax_val < umax_ptr) {
7320 			dst_reg->umin_value = 0;
7321 			dst_reg->umax_value = U64_MAX;
7322 		} else {
7323 			dst_reg->umin_value = umin_ptr + umin_val;
7324 			dst_reg->umax_value = umax_ptr + umax_val;
7325 		}
7326 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
7327 		dst_reg->off = ptr_reg->off;
7328 		dst_reg->raw = ptr_reg->raw;
7329 		if (reg_is_pkt_pointer(ptr_reg)) {
7330 			dst_reg->id = ++env->id_gen;
7331 			/* something was added to pkt_ptr, set range to zero */
7332 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
7333 		}
7334 		break;
7335 	case BPF_SUB:
7336 		if (dst_reg == off_reg) {
7337 			/* scalar -= pointer.  Creates an unknown scalar */
7338 			verbose(env, "R%d tried to subtract pointer from scalar\n",
7339 				dst);
7340 			return -EACCES;
7341 		}
7342 		/* We don't allow subtraction from FP, because (according to
7343 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
7344 		 * be able to deal with it.
7345 		 */
7346 		if (ptr_reg->type == PTR_TO_STACK) {
7347 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
7348 				dst);
7349 			return -EACCES;
7350 		}
7351 		if (known && (ptr_reg->off - smin_val ==
7352 			      (s64)(s32)(ptr_reg->off - smin_val))) {
7353 			/* pointer -= K.  Subtract it from fixed offset */
7354 			dst_reg->smin_value = smin_ptr;
7355 			dst_reg->smax_value = smax_ptr;
7356 			dst_reg->umin_value = umin_ptr;
7357 			dst_reg->umax_value = umax_ptr;
7358 			dst_reg->var_off = ptr_reg->var_off;
7359 			dst_reg->id = ptr_reg->id;
7360 			dst_reg->off = ptr_reg->off - smin_val;
7361 			dst_reg->raw = ptr_reg->raw;
7362 			break;
7363 		}
7364 		/* A new variable offset is created.  If the subtrahend is known
7365 		 * nonnegative, then any reg->range we had before is still good.
7366 		 */
7367 		if (signed_sub_overflows(smin_ptr, smax_val) ||
7368 		    signed_sub_overflows(smax_ptr, smin_val)) {
7369 			/* Overflow possible, we know nothing */
7370 			dst_reg->smin_value = S64_MIN;
7371 			dst_reg->smax_value = S64_MAX;
7372 		} else {
7373 			dst_reg->smin_value = smin_ptr - smax_val;
7374 			dst_reg->smax_value = smax_ptr - smin_val;
7375 		}
7376 		if (umin_ptr < umax_val) {
7377 			/* Overflow possible, we know nothing */
7378 			dst_reg->umin_value = 0;
7379 			dst_reg->umax_value = U64_MAX;
7380 		} else {
7381 			/* Cannot overflow (as long as bounds are consistent) */
7382 			dst_reg->umin_value = umin_ptr - umax_val;
7383 			dst_reg->umax_value = umax_ptr - umin_val;
7384 		}
7385 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
7386 		dst_reg->off = ptr_reg->off;
7387 		dst_reg->raw = ptr_reg->raw;
7388 		if (reg_is_pkt_pointer(ptr_reg)) {
7389 			dst_reg->id = ++env->id_gen;
7390 			/* something was added to pkt_ptr, set range to zero */
7391 			if (smin_val < 0)
7392 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
7393 		}
7394 		break;
7395 	case BPF_AND:
7396 	case BPF_OR:
7397 	case BPF_XOR:
7398 		/* bitwise ops on pointers are troublesome, prohibit. */
7399 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
7400 			dst, bpf_alu_string[opcode >> 4]);
7401 		return -EACCES;
7402 	default:
7403 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
7404 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
7405 			dst, bpf_alu_string[opcode >> 4]);
7406 		return -EACCES;
7407 	}
7408 
7409 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
7410 		return -EINVAL;
7411 
7412 	__update_reg_bounds(dst_reg);
7413 	__reg_deduce_bounds(dst_reg);
7414 	__reg_bound_offset(dst_reg);
7415 
7416 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
7417 		return -EACCES;
7418 	if (sanitize_needed(opcode)) {
7419 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
7420 				       &info, true);
7421 		if (ret < 0)
7422 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
7423 	}
7424 
7425 	return 0;
7426 }
7427 
7428 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
7429 				 struct bpf_reg_state *src_reg)
7430 {
7431 	s32 smin_val = src_reg->s32_min_value;
7432 	s32 smax_val = src_reg->s32_max_value;
7433 	u32 umin_val = src_reg->u32_min_value;
7434 	u32 umax_val = src_reg->u32_max_value;
7435 
7436 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
7437 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
7438 		dst_reg->s32_min_value = S32_MIN;
7439 		dst_reg->s32_max_value = S32_MAX;
7440 	} else {
7441 		dst_reg->s32_min_value += smin_val;
7442 		dst_reg->s32_max_value += smax_val;
7443 	}
7444 	if (dst_reg->u32_min_value + umin_val < umin_val ||
7445 	    dst_reg->u32_max_value + umax_val < umax_val) {
7446 		dst_reg->u32_min_value = 0;
7447 		dst_reg->u32_max_value = U32_MAX;
7448 	} else {
7449 		dst_reg->u32_min_value += umin_val;
7450 		dst_reg->u32_max_value += umax_val;
7451 	}
7452 }
7453 
7454 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
7455 			       struct bpf_reg_state *src_reg)
7456 {
7457 	s64 smin_val = src_reg->smin_value;
7458 	s64 smax_val = src_reg->smax_value;
7459 	u64 umin_val = src_reg->umin_value;
7460 	u64 umax_val = src_reg->umax_value;
7461 
7462 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
7463 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
7464 		dst_reg->smin_value = S64_MIN;
7465 		dst_reg->smax_value = S64_MAX;
7466 	} else {
7467 		dst_reg->smin_value += smin_val;
7468 		dst_reg->smax_value += smax_val;
7469 	}
7470 	if (dst_reg->umin_value + umin_val < umin_val ||
7471 	    dst_reg->umax_value + umax_val < umax_val) {
7472 		dst_reg->umin_value = 0;
7473 		dst_reg->umax_value = U64_MAX;
7474 	} else {
7475 		dst_reg->umin_value += umin_val;
7476 		dst_reg->umax_value += umax_val;
7477 	}
7478 }
7479 
7480 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
7481 				 struct bpf_reg_state *src_reg)
7482 {
7483 	s32 smin_val = src_reg->s32_min_value;
7484 	s32 smax_val = src_reg->s32_max_value;
7485 	u32 umin_val = src_reg->u32_min_value;
7486 	u32 umax_val = src_reg->u32_max_value;
7487 
7488 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
7489 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
7490 		/* Overflow possible, we know nothing */
7491 		dst_reg->s32_min_value = S32_MIN;
7492 		dst_reg->s32_max_value = S32_MAX;
7493 	} else {
7494 		dst_reg->s32_min_value -= smax_val;
7495 		dst_reg->s32_max_value -= smin_val;
7496 	}
7497 	if (dst_reg->u32_min_value < umax_val) {
7498 		/* Overflow possible, we know nothing */
7499 		dst_reg->u32_min_value = 0;
7500 		dst_reg->u32_max_value = U32_MAX;
7501 	} else {
7502 		/* Cannot overflow (as long as bounds are consistent) */
7503 		dst_reg->u32_min_value -= umax_val;
7504 		dst_reg->u32_max_value -= umin_val;
7505 	}
7506 }
7507 
7508 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
7509 			       struct bpf_reg_state *src_reg)
7510 {
7511 	s64 smin_val = src_reg->smin_value;
7512 	s64 smax_val = src_reg->smax_value;
7513 	u64 umin_val = src_reg->umin_value;
7514 	u64 umax_val = src_reg->umax_value;
7515 
7516 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
7517 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
7518 		/* Overflow possible, we know nothing */
7519 		dst_reg->smin_value = S64_MIN;
7520 		dst_reg->smax_value = S64_MAX;
7521 	} else {
7522 		dst_reg->smin_value -= smax_val;
7523 		dst_reg->smax_value -= smin_val;
7524 	}
7525 	if (dst_reg->umin_value < umax_val) {
7526 		/* Overflow possible, we know nothing */
7527 		dst_reg->umin_value = 0;
7528 		dst_reg->umax_value = U64_MAX;
7529 	} else {
7530 		/* Cannot overflow (as long as bounds are consistent) */
7531 		dst_reg->umin_value -= umax_val;
7532 		dst_reg->umax_value -= umin_val;
7533 	}
7534 }
7535 
7536 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
7537 				 struct bpf_reg_state *src_reg)
7538 {
7539 	s32 smin_val = src_reg->s32_min_value;
7540 	u32 umin_val = src_reg->u32_min_value;
7541 	u32 umax_val = src_reg->u32_max_value;
7542 
7543 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
7544 		/* Ain't nobody got time to multiply that sign */
7545 		__mark_reg32_unbounded(dst_reg);
7546 		return;
7547 	}
7548 	/* Both values are positive, so we can work with unsigned and
7549 	 * copy the result to signed (unless it exceeds S32_MAX).
7550 	 */
7551 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
7552 		/* Potential overflow, we know nothing */
7553 		__mark_reg32_unbounded(dst_reg);
7554 		return;
7555 	}
7556 	dst_reg->u32_min_value *= umin_val;
7557 	dst_reg->u32_max_value *= umax_val;
7558 	if (dst_reg->u32_max_value > S32_MAX) {
7559 		/* Overflow possible, we know nothing */
7560 		dst_reg->s32_min_value = S32_MIN;
7561 		dst_reg->s32_max_value = S32_MAX;
7562 	} else {
7563 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7564 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7565 	}
7566 }
7567 
7568 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
7569 			       struct bpf_reg_state *src_reg)
7570 {
7571 	s64 smin_val = src_reg->smin_value;
7572 	u64 umin_val = src_reg->umin_value;
7573 	u64 umax_val = src_reg->umax_value;
7574 
7575 	if (smin_val < 0 || dst_reg->smin_value < 0) {
7576 		/* Ain't nobody got time to multiply that sign */
7577 		__mark_reg64_unbounded(dst_reg);
7578 		return;
7579 	}
7580 	/* Both values are positive, so we can work with unsigned and
7581 	 * copy the result to signed (unless it exceeds S64_MAX).
7582 	 */
7583 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
7584 		/* Potential overflow, we know nothing */
7585 		__mark_reg64_unbounded(dst_reg);
7586 		return;
7587 	}
7588 	dst_reg->umin_value *= umin_val;
7589 	dst_reg->umax_value *= umax_val;
7590 	if (dst_reg->umax_value > S64_MAX) {
7591 		/* Overflow possible, we know nothing */
7592 		dst_reg->smin_value = S64_MIN;
7593 		dst_reg->smax_value = S64_MAX;
7594 	} else {
7595 		dst_reg->smin_value = dst_reg->umin_value;
7596 		dst_reg->smax_value = dst_reg->umax_value;
7597 	}
7598 }
7599 
7600 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
7601 				 struct bpf_reg_state *src_reg)
7602 {
7603 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7604 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7605 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7606 	s32 smin_val = src_reg->s32_min_value;
7607 	u32 umax_val = src_reg->u32_max_value;
7608 
7609 	if (src_known && dst_known) {
7610 		__mark_reg32_known(dst_reg, var32_off.value);
7611 		return;
7612 	}
7613 
7614 	/* We get our minimum from the var_off, since that's inherently
7615 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
7616 	 */
7617 	dst_reg->u32_min_value = var32_off.value;
7618 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
7619 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7620 		/* Lose signed bounds when ANDing negative numbers,
7621 		 * ain't nobody got time for that.
7622 		 */
7623 		dst_reg->s32_min_value = S32_MIN;
7624 		dst_reg->s32_max_value = S32_MAX;
7625 	} else {
7626 		/* ANDing two positives gives a positive, so safe to
7627 		 * cast result into s64.
7628 		 */
7629 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7630 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7631 	}
7632 }
7633 
7634 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
7635 			       struct bpf_reg_state *src_reg)
7636 {
7637 	bool src_known = tnum_is_const(src_reg->var_off);
7638 	bool dst_known = tnum_is_const(dst_reg->var_off);
7639 	s64 smin_val = src_reg->smin_value;
7640 	u64 umax_val = src_reg->umax_value;
7641 
7642 	if (src_known && dst_known) {
7643 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7644 		return;
7645 	}
7646 
7647 	/* We get our minimum from the var_off, since that's inherently
7648 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
7649 	 */
7650 	dst_reg->umin_value = dst_reg->var_off.value;
7651 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
7652 	if (dst_reg->smin_value < 0 || smin_val < 0) {
7653 		/* Lose signed bounds when ANDing negative numbers,
7654 		 * ain't nobody got time for that.
7655 		 */
7656 		dst_reg->smin_value = S64_MIN;
7657 		dst_reg->smax_value = S64_MAX;
7658 	} else {
7659 		/* ANDing two positives gives a positive, so safe to
7660 		 * cast result into s64.
7661 		 */
7662 		dst_reg->smin_value = dst_reg->umin_value;
7663 		dst_reg->smax_value = dst_reg->umax_value;
7664 	}
7665 	/* We may learn something more from the var_off */
7666 	__update_reg_bounds(dst_reg);
7667 }
7668 
7669 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
7670 				struct bpf_reg_state *src_reg)
7671 {
7672 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7673 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7674 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7675 	s32 smin_val = src_reg->s32_min_value;
7676 	u32 umin_val = src_reg->u32_min_value;
7677 
7678 	if (src_known && dst_known) {
7679 		__mark_reg32_known(dst_reg, var32_off.value);
7680 		return;
7681 	}
7682 
7683 	/* We get our maximum from the var_off, and our minimum is the
7684 	 * maximum of the operands' minima
7685 	 */
7686 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
7687 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7688 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7689 		/* Lose signed bounds when ORing negative numbers,
7690 		 * ain't nobody got time for that.
7691 		 */
7692 		dst_reg->s32_min_value = S32_MIN;
7693 		dst_reg->s32_max_value = S32_MAX;
7694 	} else {
7695 		/* ORing two positives gives a positive, so safe to
7696 		 * cast result into s64.
7697 		 */
7698 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7699 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7700 	}
7701 }
7702 
7703 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
7704 			      struct bpf_reg_state *src_reg)
7705 {
7706 	bool src_known = tnum_is_const(src_reg->var_off);
7707 	bool dst_known = tnum_is_const(dst_reg->var_off);
7708 	s64 smin_val = src_reg->smin_value;
7709 	u64 umin_val = src_reg->umin_value;
7710 
7711 	if (src_known && dst_known) {
7712 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7713 		return;
7714 	}
7715 
7716 	/* We get our maximum from the var_off, and our minimum is the
7717 	 * maximum of the operands' minima
7718 	 */
7719 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
7720 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7721 	if (dst_reg->smin_value < 0 || smin_val < 0) {
7722 		/* Lose signed bounds when ORing negative numbers,
7723 		 * ain't nobody got time for that.
7724 		 */
7725 		dst_reg->smin_value = S64_MIN;
7726 		dst_reg->smax_value = S64_MAX;
7727 	} else {
7728 		/* ORing two positives gives a positive, so safe to
7729 		 * cast result into s64.
7730 		 */
7731 		dst_reg->smin_value = dst_reg->umin_value;
7732 		dst_reg->smax_value = dst_reg->umax_value;
7733 	}
7734 	/* We may learn something more from the var_off */
7735 	__update_reg_bounds(dst_reg);
7736 }
7737 
7738 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
7739 				 struct bpf_reg_state *src_reg)
7740 {
7741 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7742 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7743 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7744 	s32 smin_val = src_reg->s32_min_value;
7745 
7746 	if (src_known && dst_known) {
7747 		__mark_reg32_known(dst_reg, var32_off.value);
7748 		return;
7749 	}
7750 
7751 	/* We get both minimum and maximum from the var32_off. */
7752 	dst_reg->u32_min_value = var32_off.value;
7753 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7754 
7755 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
7756 		/* XORing two positive sign numbers gives a positive,
7757 		 * so safe to cast u32 result into s32.
7758 		 */
7759 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7760 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7761 	} else {
7762 		dst_reg->s32_min_value = S32_MIN;
7763 		dst_reg->s32_max_value = S32_MAX;
7764 	}
7765 }
7766 
7767 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
7768 			       struct bpf_reg_state *src_reg)
7769 {
7770 	bool src_known = tnum_is_const(src_reg->var_off);
7771 	bool dst_known = tnum_is_const(dst_reg->var_off);
7772 	s64 smin_val = src_reg->smin_value;
7773 
7774 	if (src_known && dst_known) {
7775 		/* dst_reg->var_off.value has been updated earlier */
7776 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7777 		return;
7778 	}
7779 
7780 	/* We get both minimum and maximum from the var_off. */
7781 	dst_reg->umin_value = dst_reg->var_off.value;
7782 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7783 
7784 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
7785 		/* XORing two positive sign numbers gives a positive,
7786 		 * so safe to cast u64 result into s64.
7787 		 */
7788 		dst_reg->smin_value = dst_reg->umin_value;
7789 		dst_reg->smax_value = dst_reg->umax_value;
7790 	} else {
7791 		dst_reg->smin_value = S64_MIN;
7792 		dst_reg->smax_value = S64_MAX;
7793 	}
7794 
7795 	__update_reg_bounds(dst_reg);
7796 }
7797 
7798 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7799 				   u64 umin_val, u64 umax_val)
7800 {
7801 	/* We lose all sign bit information (except what we can pick
7802 	 * up from var_off)
7803 	 */
7804 	dst_reg->s32_min_value = S32_MIN;
7805 	dst_reg->s32_max_value = S32_MAX;
7806 	/* If we might shift our top bit out, then we know nothing */
7807 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
7808 		dst_reg->u32_min_value = 0;
7809 		dst_reg->u32_max_value = U32_MAX;
7810 	} else {
7811 		dst_reg->u32_min_value <<= umin_val;
7812 		dst_reg->u32_max_value <<= umax_val;
7813 	}
7814 }
7815 
7816 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7817 				 struct bpf_reg_state *src_reg)
7818 {
7819 	u32 umax_val = src_reg->u32_max_value;
7820 	u32 umin_val = src_reg->u32_min_value;
7821 	/* u32 alu operation will zext upper bits */
7822 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
7823 
7824 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7825 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
7826 	/* Not required but being careful mark reg64 bounds as unknown so
7827 	 * that we are forced to pick them up from tnum and zext later and
7828 	 * if some path skips this step we are still safe.
7829 	 */
7830 	__mark_reg64_unbounded(dst_reg);
7831 	__update_reg32_bounds(dst_reg);
7832 }
7833 
7834 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
7835 				   u64 umin_val, u64 umax_val)
7836 {
7837 	/* Special case <<32 because it is a common compiler pattern to sign
7838 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
7839 	 * positive we know this shift will also be positive so we can track
7840 	 * bounds correctly. Otherwise we lose all sign bit information except
7841 	 * what we can pick up from var_off. Perhaps we can generalize this
7842 	 * later to shifts of any length.
7843 	 */
7844 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
7845 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
7846 	else
7847 		dst_reg->smax_value = S64_MAX;
7848 
7849 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
7850 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
7851 	else
7852 		dst_reg->smin_value = S64_MIN;
7853 
7854 	/* If we might shift our top bit out, then we know nothing */
7855 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
7856 		dst_reg->umin_value = 0;
7857 		dst_reg->umax_value = U64_MAX;
7858 	} else {
7859 		dst_reg->umin_value <<= umin_val;
7860 		dst_reg->umax_value <<= umax_val;
7861 	}
7862 }
7863 
7864 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
7865 			       struct bpf_reg_state *src_reg)
7866 {
7867 	u64 umax_val = src_reg->umax_value;
7868 	u64 umin_val = src_reg->umin_value;
7869 
7870 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
7871 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
7872 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7873 
7874 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
7875 	/* We may learn something more from the var_off */
7876 	__update_reg_bounds(dst_reg);
7877 }
7878 
7879 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
7880 				 struct bpf_reg_state *src_reg)
7881 {
7882 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
7883 	u32 umax_val = src_reg->u32_max_value;
7884 	u32 umin_val = src_reg->u32_min_value;
7885 
7886 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
7887 	 * be negative, then either:
7888 	 * 1) src_reg might be zero, so the sign bit of the result is
7889 	 *    unknown, so we lose our signed bounds
7890 	 * 2) it's known negative, thus the unsigned bounds capture the
7891 	 *    signed bounds
7892 	 * 3) the signed bounds cross zero, so they tell us nothing
7893 	 *    about the result
7894 	 * If the value in dst_reg is known nonnegative, then again the
7895 	 * unsigned bounds capture the signed bounds.
7896 	 * Thus, in all cases it suffices to blow away our signed bounds
7897 	 * and rely on inferring new ones from the unsigned bounds and
7898 	 * var_off of the result.
7899 	 */
7900 	dst_reg->s32_min_value = S32_MIN;
7901 	dst_reg->s32_max_value = S32_MAX;
7902 
7903 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
7904 	dst_reg->u32_min_value >>= umax_val;
7905 	dst_reg->u32_max_value >>= umin_val;
7906 
7907 	__mark_reg64_unbounded(dst_reg);
7908 	__update_reg32_bounds(dst_reg);
7909 }
7910 
7911 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
7912 			       struct bpf_reg_state *src_reg)
7913 {
7914 	u64 umax_val = src_reg->umax_value;
7915 	u64 umin_val = src_reg->umin_value;
7916 
7917 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
7918 	 * be negative, then either:
7919 	 * 1) src_reg might be zero, so the sign bit of the result is
7920 	 *    unknown, so we lose our signed bounds
7921 	 * 2) it's known negative, thus the unsigned bounds capture the
7922 	 *    signed bounds
7923 	 * 3) the signed bounds cross zero, so they tell us nothing
7924 	 *    about the result
7925 	 * If the value in dst_reg is known nonnegative, then again the
7926 	 * unsigned bounds capture the signed bounds.
7927 	 * Thus, in all cases it suffices to blow away our signed bounds
7928 	 * and rely on inferring new ones from the unsigned bounds and
7929 	 * var_off of the result.
7930 	 */
7931 	dst_reg->smin_value = S64_MIN;
7932 	dst_reg->smax_value = S64_MAX;
7933 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
7934 	dst_reg->umin_value >>= umax_val;
7935 	dst_reg->umax_value >>= umin_val;
7936 
7937 	/* Its not easy to operate on alu32 bounds here because it depends
7938 	 * on bits being shifted in. Take easy way out and mark unbounded
7939 	 * so we can recalculate later from tnum.
7940 	 */
7941 	__mark_reg32_unbounded(dst_reg);
7942 	__update_reg_bounds(dst_reg);
7943 }
7944 
7945 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
7946 				  struct bpf_reg_state *src_reg)
7947 {
7948 	u64 umin_val = src_reg->u32_min_value;
7949 
7950 	/* Upon reaching here, src_known is true and
7951 	 * umax_val is equal to umin_val.
7952 	 */
7953 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
7954 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
7955 
7956 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
7957 
7958 	/* blow away the dst_reg umin_value/umax_value and rely on
7959 	 * dst_reg var_off to refine the result.
7960 	 */
7961 	dst_reg->u32_min_value = 0;
7962 	dst_reg->u32_max_value = U32_MAX;
7963 
7964 	__mark_reg64_unbounded(dst_reg);
7965 	__update_reg32_bounds(dst_reg);
7966 }
7967 
7968 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
7969 				struct bpf_reg_state *src_reg)
7970 {
7971 	u64 umin_val = src_reg->umin_value;
7972 
7973 	/* Upon reaching here, src_known is true and umax_val is equal
7974 	 * to umin_val.
7975 	 */
7976 	dst_reg->smin_value >>= umin_val;
7977 	dst_reg->smax_value >>= umin_val;
7978 
7979 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
7980 
7981 	/* blow away the dst_reg umin_value/umax_value and rely on
7982 	 * dst_reg var_off to refine the result.
7983 	 */
7984 	dst_reg->umin_value = 0;
7985 	dst_reg->umax_value = U64_MAX;
7986 
7987 	/* Its not easy to operate on alu32 bounds here because it depends
7988 	 * on bits being shifted in from upper 32-bits. Take easy way out
7989 	 * and mark unbounded so we can recalculate later from tnum.
7990 	 */
7991 	__mark_reg32_unbounded(dst_reg);
7992 	__update_reg_bounds(dst_reg);
7993 }
7994 
7995 /* WARNING: This function does calculations on 64-bit values, but the actual
7996  * execution may occur on 32-bit values. Therefore, things like bitshifts
7997  * need extra checks in the 32-bit case.
7998  */
7999 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
8000 				      struct bpf_insn *insn,
8001 				      struct bpf_reg_state *dst_reg,
8002 				      struct bpf_reg_state src_reg)
8003 {
8004 	struct bpf_reg_state *regs = cur_regs(env);
8005 	u8 opcode = BPF_OP(insn->code);
8006 	bool src_known;
8007 	s64 smin_val, smax_val;
8008 	u64 umin_val, umax_val;
8009 	s32 s32_min_val, s32_max_val;
8010 	u32 u32_min_val, u32_max_val;
8011 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
8012 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
8013 	int ret;
8014 
8015 	smin_val = src_reg.smin_value;
8016 	smax_val = src_reg.smax_value;
8017 	umin_val = src_reg.umin_value;
8018 	umax_val = src_reg.umax_value;
8019 
8020 	s32_min_val = src_reg.s32_min_value;
8021 	s32_max_val = src_reg.s32_max_value;
8022 	u32_min_val = src_reg.u32_min_value;
8023 	u32_max_val = src_reg.u32_max_value;
8024 
8025 	if (alu32) {
8026 		src_known = tnum_subreg_is_const(src_reg.var_off);
8027 		if ((src_known &&
8028 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
8029 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
8030 			/* Taint dst register if offset had invalid bounds
8031 			 * derived from e.g. dead branches.
8032 			 */
8033 			__mark_reg_unknown(env, dst_reg);
8034 			return 0;
8035 		}
8036 	} else {
8037 		src_known = tnum_is_const(src_reg.var_off);
8038 		if ((src_known &&
8039 		     (smin_val != smax_val || umin_val != umax_val)) ||
8040 		    smin_val > smax_val || umin_val > umax_val) {
8041 			/* Taint dst register if offset had invalid bounds
8042 			 * derived from e.g. dead branches.
8043 			 */
8044 			__mark_reg_unknown(env, dst_reg);
8045 			return 0;
8046 		}
8047 	}
8048 
8049 	if (!src_known &&
8050 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
8051 		__mark_reg_unknown(env, dst_reg);
8052 		return 0;
8053 	}
8054 
8055 	if (sanitize_needed(opcode)) {
8056 		ret = sanitize_val_alu(env, insn);
8057 		if (ret < 0)
8058 			return sanitize_err(env, insn, ret, NULL, NULL);
8059 	}
8060 
8061 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
8062 	 * There are two classes of instructions: The first class we track both
8063 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
8064 	 * greatest amount of precision when alu operations are mixed with jmp32
8065 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
8066 	 * and BPF_OR. This is possible because these ops have fairly easy to
8067 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
8068 	 * See alu32 verifier tests for examples. The second class of
8069 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
8070 	 * with regards to tracking sign/unsigned bounds because the bits may
8071 	 * cross subreg boundaries in the alu64 case. When this happens we mark
8072 	 * the reg unbounded in the subreg bound space and use the resulting
8073 	 * tnum to calculate an approximation of the sign/unsigned bounds.
8074 	 */
8075 	switch (opcode) {
8076 	case BPF_ADD:
8077 		scalar32_min_max_add(dst_reg, &src_reg);
8078 		scalar_min_max_add(dst_reg, &src_reg);
8079 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
8080 		break;
8081 	case BPF_SUB:
8082 		scalar32_min_max_sub(dst_reg, &src_reg);
8083 		scalar_min_max_sub(dst_reg, &src_reg);
8084 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
8085 		break;
8086 	case BPF_MUL:
8087 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
8088 		scalar32_min_max_mul(dst_reg, &src_reg);
8089 		scalar_min_max_mul(dst_reg, &src_reg);
8090 		break;
8091 	case BPF_AND:
8092 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
8093 		scalar32_min_max_and(dst_reg, &src_reg);
8094 		scalar_min_max_and(dst_reg, &src_reg);
8095 		break;
8096 	case BPF_OR:
8097 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
8098 		scalar32_min_max_or(dst_reg, &src_reg);
8099 		scalar_min_max_or(dst_reg, &src_reg);
8100 		break;
8101 	case BPF_XOR:
8102 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
8103 		scalar32_min_max_xor(dst_reg, &src_reg);
8104 		scalar_min_max_xor(dst_reg, &src_reg);
8105 		break;
8106 	case BPF_LSH:
8107 		if (umax_val >= insn_bitness) {
8108 			/* Shifts greater than 31 or 63 are undefined.
8109 			 * This includes shifts by a negative number.
8110 			 */
8111 			mark_reg_unknown(env, regs, insn->dst_reg);
8112 			break;
8113 		}
8114 		if (alu32)
8115 			scalar32_min_max_lsh(dst_reg, &src_reg);
8116 		else
8117 			scalar_min_max_lsh(dst_reg, &src_reg);
8118 		break;
8119 	case BPF_RSH:
8120 		if (umax_val >= insn_bitness) {
8121 			/* Shifts greater than 31 or 63 are undefined.
8122 			 * This includes shifts by a negative number.
8123 			 */
8124 			mark_reg_unknown(env, regs, insn->dst_reg);
8125 			break;
8126 		}
8127 		if (alu32)
8128 			scalar32_min_max_rsh(dst_reg, &src_reg);
8129 		else
8130 			scalar_min_max_rsh(dst_reg, &src_reg);
8131 		break;
8132 	case BPF_ARSH:
8133 		if (umax_val >= insn_bitness) {
8134 			/* Shifts greater than 31 or 63 are undefined.
8135 			 * This includes shifts by a negative number.
8136 			 */
8137 			mark_reg_unknown(env, regs, insn->dst_reg);
8138 			break;
8139 		}
8140 		if (alu32)
8141 			scalar32_min_max_arsh(dst_reg, &src_reg);
8142 		else
8143 			scalar_min_max_arsh(dst_reg, &src_reg);
8144 		break;
8145 	default:
8146 		mark_reg_unknown(env, regs, insn->dst_reg);
8147 		break;
8148 	}
8149 
8150 	/* ALU32 ops are zero extended into 64bit register */
8151 	if (alu32)
8152 		zext_32_to_64(dst_reg);
8153 
8154 	__update_reg_bounds(dst_reg);
8155 	__reg_deduce_bounds(dst_reg);
8156 	__reg_bound_offset(dst_reg);
8157 	return 0;
8158 }
8159 
8160 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
8161  * and var_off.
8162  */
8163 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
8164 				   struct bpf_insn *insn)
8165 {
8166 	struct bpf_verifier_state *vstate = env->cur_state;
8167 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8168 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
8169 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
8170 	u8 opcode = BPF_OP(insn->code);
8171 	int err;
8172 
8173 	dst_reg = &regs[insn->dst_reg];
8174 	src_reg = NULL;
8175 	if (dst_reg->type != SCALAR_VALUE)
8176 		ptr_reg = dst_reg;
8177 	else
8178 		/* Make sure ID is cleared otherwise dst_reg min/max could be
8179 		 * incorrectly propagated into other registers by find_equal_scalars()
8180 		 */
8181 		dst_reg->id = 0;
8182 	if (BPF_SRC(insn->code) == BPF_X) {
8183 		src_reg = &regs[insn->src_reg];
8184 		if (src_reg->type != SCALAR_VALUE) {
8185 			if (dst_reg->type != SCALAR_VALUE) {
8186 				/* Combining two pointers by any ALU op yields
8187 				 * an arbitrary scalar. Disallow all math except
8188 				 * pointer subtraction
8189 				 */
8190 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
8191 					mark_reg_unknown(env, regs, insn->dst_reg);
8192 					return 0;
8193 				}
8194 				verbose(env, "R%d pointer %s pointer prohibited\n",
8195 					insn->dst_reg,
8196 					bpf_alu_string[opcode >> 4]);
8197 				return -EACCES;
8198 			} else {
8199 				/* scalar += pointer
8200 				 * This is legal, but we have to reverse our
8201 				 * src/dest handling in computing the range
8202 				 */
8203 				err = mark_chain_precision(env, insn->dst_reg);
8204 				if (err)
8205 					return err;
8206 				return adjust_ptr_min_max_vals(env, insn,
8207 							       src_reg, dst_reg);
8208 			}
8209 		} else if (ptr_reg) {
8210 			/* pointer += scalar */
8211 			err = mark_chain_precision(env, insn->src_reg);
8212 			if (err)
8213 				return err;
8214 			return adjust_ptr_min_max_vals(env, insn,
8215 						       dst_reg, src_reg);
8216 		}
8217 	} else {
8218 		/* Pretend the src is a reg with a known value, since we only
8219 		 * need to be able to read from this state.
8220 		 */
8221 		off_reg.type = SCALAR_VALUE;
8222 		__mark_reg_known(&off_reg, insn->imm);
8223 		src_reg = &off_reg;
8224 		if (ptr_reg) /* pointer += K */
8225 			return adjust_ptr_min_max_vals(env, insn,
8226 						       ptr_reg, src_reg);
8227 	}
8228 
8229 	/* Got here implies adding two SCALAR_VALUEs */
8230 	if (WARN_ON_ONCE(ptr_reg)) {
8231 		print_verifier_state(env, state);
8232 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
8233 		return -EINVAL;
8234 	}
8235 	if (WARN_ON(!src_reg)) {
8236 		print_verifier_state(env, state);
8237 		verbose(env, "verifier internal error: no src_reg\n");
8238 		return -EINVAL;
8239 	}
8240 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
8241 }
8242 
8243 /* check validity of 32-bit and 64-bit arithmetic operations */
8244 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
8245 {
8246 	struct bpf_reg_state *regs = cur_regs(env);
8247 	u8 opcode = BPF_OP(insn->code);
8248 	int err;
8249 
8250 	if (opcode == BPF_END || opcode == BPF_NEG) {
8251 		if (opcode == BPF_NEG) {
8252 			if (BPF_SRC(insn->code) != 0 ||
8253 			    insn->src_reg != BPF_REG_0 ||
8254 			    insn->off != 0 || insn->imm != 0) {
8255 				verbose(env, "BPF_NEG uses reserved fields\n");
8256 				return -EINVAL;
8257 			}
8258 		} else {
8259 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
8260 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
8261 			    BPF_CLASS(insn->code) == BPF_ALU64) {
8262 				verbose(env, "BPF_END uses reserved fields\n");
8263 				return -EINVAL;
8264 			}
8265 		}
8266 
8267 		/* check src operand */
8268 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8269 		if (err)
8270 			return err;
8271 
8272 		if (is_pointer_value(env, insn->dst_reg)) {
8273 			verbose(env, "R%d pointer arithmetic prohibited\n",
8274 				insn->dst_reg);
8275 			return -EACCES;
8276 		}
8277 
8278 		/* check dest operand */
8279 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
8280 		if (err)
8281 			return err;
8282 
8283 	} else if (opcode == BPF_MOV) {
8284 
8285 		if (BPF_SRC(insn->code) == BPF_X) {
8286 			if (insn->imm != 0 || insn->off != 0) {
8287 				verbose(env, "BPF_MOV uses reserved fields\n");
8288 				return -EINVAL;
8289 			}
8290 
8291 			/* check src operand */
8292 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8293 			if (err)
8294 				return err;
8295 		} else {
8296 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
8297 				verbose(env, "BPF_MOV uses reserved fields\n");
8298 				return -EINVAL;
8299 			}
8300 		}
8301 
8302 		/* check dest operand, mark as required later */
8303 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
8304 		if (err)
8305 			return err;
8306 
8307 		if (BPF_SRC(insn->code) == BPF_X) {
8308 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
8309 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
8310 
8311 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
8312 				/* case: R1 = R2
8313 				 * copy register state to dest reg
8314 				 */
8315 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
8316 					/* Assign src and dst registers the same ID
8317 					 * that will be used by find_equal_scalars()
8318 					 * to propagate min/max range.
8319 					 */
8320 					src_reg->id = ++env->id_gen;
8321 				*dst_reg = *src_reg;
8322 				dst_reg->live |= REG_LIVE_WRITTEN;
8323 				dst_reg->subreg_def = DEF_NOT_SUBREG;
8324 			} else {
8325 				/* R1 = (u32) R2 */
8326 				if (is_pointer_value(env, insn->src_reg)) {
8327 					verbose(env,
8328 						"R%d partial copy of pointer\n",
8329 						insn->src_reg);
8330 					return -EACCES;
8331 				} else if (src_reg->type == SCALAR_VALUE) {
8332 					*dst_reg = *src_reg;
8333 					/* Make sure ID is cleared otherwise
8334 					 * dst_reg min/max could be incorrectly
8335 					 * propagated into src_reg by find_equal_scalars()
8336 					 */
8337 					dst_reg->id = 0;
8338 					dst_reg->live |= REG_LIVE_WRITTEN;
8339 					dst_reg->subreg_def = env->insn_idx + 1;
8340 				} else {
8341 					mark_reg_unknown(env, regs,
8342 							 insn->dst_reg);
8343 				}
8344 				zext_32_to_64(dst_reg);
8345 			}
8346 		} else {
8347 			/* case: R = imm
8348 			 * remember the value we stored into this reg
8349 			 */
8350 			/* clear any state __mark_reg_known doesn't set */
8351 			mark_reg_unknown(env, regs, insn->dst_reg);
8352 			regs[insn->dst_reg].type = SCALAR_VALUE;
8353 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
8354 				__mark_reg_known(regs + insn->dst_reg,
8355 						 insn->imm);
8356 			} else {
8357 				__mark_reg_known(regs + insn->dst_reg,
8358 						 (u32)insn->imm);
8359 			}
8360 		}
8361 
8362 	} else if (opcode > BPF_END) {
8363 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
8364 		return -EINVAL;
8365 
8366 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
8367 
8368 		if (BPF_SRC(insn->code) == BPF_X) {
8369 			if (insn->imm != 0 || insn->off != 0) {
8370 				verbose(env, "BPF_ALU uses reserved fields\n");
8371 				return -EINVAL;
8372 			}
8373 			/* check src1 operand */
8374 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8375 			if (err)
8376 				return err;
8377 		} else {
8378 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
8379 				verbose(env, "BPF_ALU uses reserved fields\n");
8380 				return -EINVAL;
8381 			}
8382 		}
8383 
8384 		/* check src2 operand */
8385 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8386 		if (err)
8387 			return err;
8388 
8389 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
8390 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
8391 			verbose(env, "div by zero\n");
8392 			return -EINVAL;
8393 		}
8394 
8395 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
8396 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
8397 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
8398 
8399 			if (insn->imm < 0 || insn->imm >= size) {
8400 				verbose(env, "invalid shift %d\n", insn->imm);
8401 				return -EINVAL;
8402 			}
8403 		}
8404 
8405 		/* check dest operand */
8406 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
8407 		if (err)
8408 			return err;
8409 
8410 		return adjust_reg_min_max_vals(env, insn);
8411 	}
8412 
8413 	return 0;
8414 }
8415 
8416 static void __find_good_pkt_pointers(struct bpf_func_state *state,
8417 				     struct bpf_reg_state *dst_reg,
8418 				     enum bpf_reg_type type, int new_range)
8419 {
8420 	struct bpf_reg_state *reg;
8421 	int i;
8422 
8423 	for (i = 0; i < MAX_BPF_REG; i++) {
8424 		reg = &state->regs[i];
8425 		if (reg->type == type && reg->id == dst_reg->id)
8426 			/* keep the maximum range already checked */
8427 			reg->range = max(reg->range, new_range);
8428 	}
8429 
8430 	bpf_for_each_spilled_reg(i, state, reg) {
8431 		if (!reg)
8432 			continue;
8433 		if (reg->type == type && reg->id == dst_reg->id)
8434 			reg->range = max(reg->range, new_range);
8435 	}
8436 }
8437 
8438 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
8439 				   struct bpf_reg_state *dst_reg,
8440 				   enum bpf_reg_type type,
8441 				   bool range_right_open)
8442 {
8443 	int new_range, i;
8444 
8445 	if (dst_reg->off < 0 ||
8446 	    (dst_reg->off == 0 && range_right_open))
8447 		/* This doesn't give us any range */
8448 		return;
8449 
8450 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
8451 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
8452 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
8453 		 * than pkt_end, but that's because it's also less than pkt.
8454 		 */
8455 		return;
8456 
8457 	new_range = dst_reg->off;
8458 	if (range_right_open)
8459 		new_range--;
8460 
8461 	/* Examples for register markings:
8462 	 *
8463 	 * pkt_data in dst register:
8464 	 *
8465 	 *   r2 = r3;
8466 	 *   r2 += 8;
8467 	 *   if (r2 > pkt_end) goto <handle exception>
8468 	 *   <access okay>
8469 	 *
8470 	 *   r2 = r3;
8471 	 *   r2 += 8;
8472 	 *   if (r2 < pkt_end) goto <access okay>
8473 	 *   <handle exception>
8474 	 *
8475 	 *   Where:
8476 	 *     r2 == dst_reg, pkt_end == src_reg
8477 	 *     r2=pkt(id=n,off=8,r=0)
8478 	 *     r3=pkt(id=n,off=0,r=0)
8479 	 *
8480 	 * pkt_data in src register:
8481 	 *
8482 	 *   r2 = r3;
8483 	 *   r2 += 8;
8484 	 *   if (pkt_end >= r2) goto <access okay>
8485 	 *   <handle exception>
8486 	 *
8487 	 *   r2 = r3;
8488 	 *   r2 += 8;
8489 	 *   if (pkt_end <= r2) goto <handle exception>
8490 	 *   <access okay>
8491 	 *
8492 	 *   Where:
8493 	 *     pkt_end == dst_reg, r2 == src_reg
8494 	 *     r2=pkt(id=n,off=8,r=0)
8495 	 *     r3=pkt(id=n,off=0,r=0)
8496 	 *
8497 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
8498 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
8499 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
8500 	 * the check.
8501 	 */
8502 
8503 	/* If our ids match, then we must have the same max_value.  And we
8504 	 * don't care about the other reg's fixed offset, since if it's too big
8505 	 * the range won't allow anything.
8506 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
8507 	 */
8508 	for (i = 0; i <= vstate->curframe; i++)
8509 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
8510 					 new_range);
8511 }
8512 
8513 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
8514 {
8515 	struct tnum subreg = tnum_subreg(reg->var_off);
8516 	s32 sval = (s32)val;
8517 
8518 	switch (opcode) {
8519 	case BPF_JEQ:
8520 		if (tnum_is_const(subreg))
8521 			return !!tnum_equals_const(subreg, val);
8522 		break;
8523 	case BPF_JNE:
8524 		if (tnum_is_const(subreg))
8525 			return !tnum_equals_const(subreg, val);
8526 		break;
8527 	case BPF_JSET:
8528 		if ((~subreg.mask & subreg.value) & val)
8529 			return 1;
8530 		if (!((subreg.mask | subreg.value) & val))
8531 			return 0;
8532 		break;
8533 	case BPF_JGT:
8534 		if (reg->u32_min_value > val)
8535 			return 1;
8536 		else if (reg->u32_max_value <= val)
8537 			return 0;
8538 		break;
8539 	case BPF_JSGT:
8540 		if (reg->s32_min_value > sval)
8541 			return 1;
8542 		else if (reg->s32_max_value <= sval)
8543 			return 0;
8544 		break;
8545 	case BPF_JLT:
8546 		if (reg->u32_max_value < val)
8547 			return 1;
8548 		else if (reg->u32_min_value >= val)
8549 			return 0;
8550 		break;
8551 	case BPF_JSLT:
8552 		if (reg->s32_max_value < sval)
8553 			return 1;
8554 		else if (reg->s32_min_value >= sval)
8555 			return 0;
8556 		break;
8557 	case BPF_JGE:
8558 		if (reg->u32_min_value >= val)
8559 			return 1;
8560 		else if (reg->u32_max_value < val)
8561 			return 0;
8562 		break;
8563 	case BPF_JSGE:
8564 		if (reg->s32_min_value >= sval)
8565 			return 1;
8566 		else if (reg->s32_max_value < sval)
8567 			return 0;
8568 		break;
8569 	case BPF_JLE:
8570 		if (reg->u32_max_value <= val)
8571 			return 1;
8572 		else if (reg->u32_min_value > val)
8573 			return 0;
8574 		break;
8575 	case BPF_JSLE:
8576 		if (reg->s32_max_value <= sval)
8577 			return 1;
8578 		else if (reg->s32_min_value > sval)
8579 			return 0;
8580 		break;
8581 	}
8582 
8583 	return -1;
8584 }
8585 
8586 
8587 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
8588 {
8589 	s64 sval = (s64)val;
8590 
8591 	switch (opcode) {
8592 	case BPF_JEQ:
8593 		if (tnum_is_const(reg->var_off))
8594 			return !!tnum_equals_const(reg->var_off, val);
8595 		break;
8596 	case BPF_JNE:
8597 		if (tnum_is_const(reg->var_off))
8598 			return !tnum_equals_const(reg->var_off, val);
8599 		break;
8600 	case BPF_JSET:
8601 		if ((~reg->var_off.mask & reg->var_off.value) & val)
8602 			return 1;
8603 		if (!((reg->var_off.mask | reg->var_off.value) & val))
8604 			return 0;
8605 		break;
8606 	case BPF_JGT:
8607 		if (reg->umin_value > val)
8608 			return 1;
8609 		else if (reg->umax_value <= val)
8610 			return 0;
8611 		break;
8612 	case BPF_JSGT:
8613 		if (reg->smin_value > sval)
8614 			return 1;
8615 		else if (reg->smax_value <= sval)
8616 			return 0;
8617 		break;
8618 	case BPF_JLT:
8619 		if (reg->umax_value < val)
8620 			return 1;
8621 		else if (reg->umin_value >= val)
8622 			return 0;
8623 		break;
8624 	case BPF_JSLT:
8625 		if (reg->smax_value < sval)
8626 			return 1;
8627 		else if (reg->smin_value >= sval)
8628 			return 0;
8629 		break;
8630 	case BPF_JGE:
8631 		if (reg->umin_value >= val)
8632 			return 1;
8633 		else if (reg->umax_value < val)
8634 			return 0;
8635 		break;
8636 	case BPF_JSGE:
8637 		if (reg->smin_value >= sval)
8638 			return 1;
8639 		else if (reg->smax_value < sval)
8640 			return 0;
8641 		break;
8642 	case BPF_JLE:
8643 		if (reg->umax_value <= val)
8644 			return 1;
8645 		else if (reg->umin_value > val)
8646 			return 0;
8647 		break;
8648 	case BPF_JSLE:
8649 		if (reg->smax_value <= sval)
8650 			return 1;
8651 		else if (reg->smin_value > sval)
8652 			return 0;
8653 		break;
8654 	}
8655 
8656 	return -1;
8657 }
8658 
8659 /* compute branch direction of the expression "if (reg opcode val) goto target;"
8660  * and return:
8661  *  1 - branch will be taken and "goto target" will be executed
8662  *  0 - branch will not be taken and fall-through to next insn
8663  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
8664  *      range [0,10]
8665  */
8666 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
8667 			   bool is_jmp32)
8668 {
8669 	if (__is_pointer_value(false, reg)) {
8670 		if (!reg_type_not_null(reg->type))
8671 			return -1;
8672 
8673 		/* If pointer is valid tests against zero will fail so we can
8674 		 * use this to direct branch taken.
8675 		 */
8676 		if (val != 0)
8677 			return -1;
8678 
8679 		switch (opcode) {
8680 		case BPF_JEQ:
8681 			return 0;
8682 		case BPF_JNE:
8683 			return 1;
8684 		default:
8685 			return -1;
8686 		}
8687 	}
8688 
8689 	if (is_jmp32)
8690 		return is_branch32_taken(reg, val, opcode);
8691 	return is_branch64_taken(reg, val, opcode);
8692 }
8693 
8694 static int flip_opcode(u32 opcode)
8695 {
8696 	/* How can we transform "a <op> b" into "b <op> a"? */
8697 	static const u8 opcode_flip[16] = {
8698 		/* these stay the same */
8699 		[BPF_JEQ  >> 4] = BPF_JEQ,
8700 		[BPF_JNE  >> 4] = BPF_JNE,
8701 		[BPF_JSET >> 4] = BPF_JSET,
8702 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
8703 		[BPF_JGE  >> 4] = BPF_JLE,
8704 		[BPF_JGT  >> 4] = BPF_JLT,
8705 		[BPF_JLE  >> 4] = BPF_JGE,
8706 		[BPF_JLT  >> 4] = BPF_JGT,
8707 		[BPF_JSGE >> 4] = BPF_JSLE,
8708 		[BPF_JSGT >> 4] = BPF_JSLT,
8709 		[BPF_JSLE >> 4] = BPF_JSGE,
8710 		[BPF_JSLT >> 4] = BPF_JSGT
8711 	};
8712 	return opcode_flip[opcode >> 4];
8713 }
8714 
8715 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
8716 				   struct bpf_reg_state *src_reg,
8717 				   u8 opcode)
8718 {
8719 	struct bpf_reg_state *pkt;
8720 
8721 	if (src_reg->type == PTR_TO_PACKET_END) {
8722 		pkt = dst_reg;
8723 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
8724 		pkt = src_reg;
8725 		opcode = flip_opcode(opcode);
8726 	} else {
8727 		return -1;
8728 	}
8729 
8730 	if (pkt->range >= 0)
8731 		return -1;
8732 
8733 	switch (opcode) {
8734 	case BPF_JLE:
8735 		/* pkt <= pkt_end */
8736 		fallthrough;
8737 	case BPF_JGT:
8738 		/* pkt > pkt_end */
8739 		if (pkt->range == BEYOND_PKT_END)
8740 			/* pkt has at last one extra byte beyond pkt_end */
8741 			return opcode == BPF_JGT;
8742 		break;
8743 	case BPF_JLT:
8744 		/* pkt < pkt_end */
8745 		fallthrough;
8746 	case BPF_JGE:
8747 		/* pkt >= pkt_end */
8748 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
8749 			return opcode == BPF_JGE;
8750 		break;
8751 	}
8752 	return -1;
8753 }
8754 
8755 /* Adjusts the register min/max values in the case that the dst_reg is the
8756  * variable register that we are working on, and src_reg is a constant or we're
8757  * simply doing a BPF_K check.
8758  * In JEQ/JNE cases we also adjust the var_off values.
8759  */
8760 static void reg_set_min_max(struct bpf_reg_state *true_reg,
8761 			    struct bpf_reg_state *false_reg,
8762 			    u64 val, u32 val32,
8763 			    u8 opcode, bool is_jmp32)
8764 {
8765 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
8766 	struct tnum false_64off = false_reg->var_off;
8767 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
8768 	struct tnum true_64off = true_reg->var_off;
8769 	s64 sval = (s64)val;
8770 	s32 sval32 = (s32)val32;
8771 
8772 	/* If the dst_reg is a pointer, we can't learn anything about its
8773 	 * variable offset from the compare (unless src_reg were a pointer into
8774 	 * the same object, but we don't bother with that.
8775 	 * Since false_reg and true_reg have the same type by construction, we
8776 	 * only need to check one of them for pointerness.
8777 	 */
8778 	if (__is_pointer_value(false, false_reg))
8779 		return;
8780 
8781 	switch (opcode) {
8782 	case BPF_JEQ:
8783 	case BPF_JNE:
8784 	{
8785 		struct bpf_reg_state *reg =
8786 			opcode == BPF_JEQ ? true_reg : false_reg;
8787 
8788 		/* JEQ/JNE comparison doesn't change the register equivalence.
8789 		 * r1 = r2;
8790 		 * if (r1 == 42) goto label;
8791 		 * ...
8792 		 * label: // here both r1 and r2 are known to be 42.
8793 		 *
8794 		 * Hence when marking register as known preserve it's ID.
8795 		 */
8796 		if (is_jmp32)
8797 			__mark_reg32_known(reg, val32);
8798 		else
8799 			___mark_reg_known(reg, val);
8800 		break;
8801 	}
8802 	case BPF_JSET:
8803 		if (is_jmp32) {
8804 			false_32off = tnum_and(false_32off, tnum_const(~val32));
8805 			if (is_power_of_2(val32))
8806 				true_32off = tnum_or(true_32off,
8807 						     tnum_const(val32));
8808 		} else {
8809 			false_64off = tnum_and(false_64off, tnum_const(~val));
8810 			if (is_power_of_2(val))
8811 				true_64off = tnum_or(true_64off,
8812 						     tnum_const(val));
8813 		}
8814 		break;
8815 	case BPF_JGE:
8816 	case BPF_JGT:
8817 	{
8818 		if (is_jmp32) {
8819 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
8820 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
8821 
8822 			false_reg->u32_max_value = min(false_reg->u32_max_value,
8823 						       false_umax);
8824 			true_reg->u32_min_value = max(true_reg->u32_min_value,
8825 						      true_umin);
8826 		} else {
8827 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
8828 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
8829 
8830 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
8831 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
8832 		}
8833 		break;
8834 	}
8835 	case BPF_JSGE:
8836 	case BPF_JSGT:
8837 	{
8838 		if (is_jmp32) {
8839 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
8840 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
8841 
8842 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
8843 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
8844 		} else {
8845 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
8846 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
8847 
8848 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
8849 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
8850 		}
8851 		break;
8852 	}
8853 	case BPF_JLE:
8854 	case BPF_JLT:
8855 	{
8856 		if (is_jmp32) {
8857 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
8858 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
8859 
8860 			false_reg->u32_min_value = max(false_reg->u32_min_value,
8861 						       false_umin);
8862 			true_reg->u32_max_value = min(true_reg->u32_max_value,
8863 						      true_umax);
8864 		} else {
8865 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
8866 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
8867 
8868 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
8869 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
8870 		}
8871 		break;
8872 	}
8873 	case BPF_JSLE:
8874 	case BPF_JSLT:
8875 	{
8876 		if (is_jmp32) {
8877 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
8878 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
8879 
8880 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
8881 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
8882 		} else {
8883 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
8884 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
8885 
8886 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
8887 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
8888 		}
8889 		break;
8890 	}
8891 	default:
8892 		return;
8893 	}
8894 
8895 	if (is_jmp32) {
8896 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
8897 					     tnum_subreg(false_32off));
8898 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
8899 					    tnum_subreg(true_32off));
8900 		__reg_combine_32_into_64(false_reg);
8901 		__reg_combine_32_into_64(true_reg);
8902 	} else {
8903 		false_reg->var_off = false_64off;
8904 		true_reg->var_off = true_64off;
8905 		__reg_combine_64_into_32(false_reg);
8906 		__reg_combine_64_into_32(true_reg);
8907 	}
8908 }
8909 
8910 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
8911  * the variable reg.
8912  */
8913 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
8914 				struct bpf_reg_state *false_reg,
8915 				u64 val, u32 val32,
8916 				u8 opcode, bool is_jmp32)
8917 {
8918 	opcode = flip_opcode(opcode);
8919 	/* This uses zero as "not present in table"; luckily the zero opcode,
8920 	 * BPF_JA, can't get here.
8921 	 */
8922 	if (opcode)
8923 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
8924 }
8925 
8926 /* Regs are known to be equal, so intersect their min/max/var_off */
8927 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
8928 				  struct bpf_reg_state *dst_reg)
8929 {
8930 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
8931 							dst_reg->umin_value);
8932 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
8933 							dst_reg->umax_value);
8934 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
8935 							dst_reg->smin_value);
8936 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
8937 							dst_reg->smax_value);
8938 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
8939 							     dst_reg->var_off);
8940 	/* We might have learned new bounds from the var_off. */
8941 	__update_reg_bounds(src_reg);
8942 	__update_reg_bounds(dst_reg);
8943 	/* We might have learned something about the sign bit. */
8944 	__reg_deduce_bounds(src_reg);
8945 	__reg_deduce_bounds(dst_reg);
8946 	/* We might have learned some bits from the bounds. */
8947 	__reg_bound_offset(src_reg);
8948 	__reg_bound_offset(dst_reg);
8949 	/* Intersecting with the old var_off might have improved our bounds
8950 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
8951 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
8952 	 */
8953 	__update_reg_bounds(src_reg);
8954 	__update_reg_bounds(dst_reg);
8955 }
8956 
8957 static void reg_combine_min_max(struct bpf_reg_state *true_src,
8958 				struct bpf_reg_state *true_dst,
8959 				struct bpf_reg_state *false_src,
8960 				struct bpf_reg_state *false_dst,
8961 				u8 opcode)
8962 {
8963 	switch (opcode) {
8964 	case BPF_JEQ:
8965 		__reg_combine_min_max(true_src, true_dst);
8966 		break;
8967 	case BPF_JNE:
8968 		__reg_combine_min_max(false_src, false_dst);
8969 		break;
8970 	}
8971 }
8972 
8973 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
8974 				 struct bpf_reg_state *reg, u32 id,
8975 				 bool is_null)
8976 {
8977 	if (reg_type_may_be_null(reg->type) && reg->id == id &&
8978 	    !WARN_ON_ONCE(!reg->id)) {
8979 		/* Old offset (both fixed and variable parts) should
8980 		 * have been known-zero, because we don't allow pointer
8981 		 * arithmetic on pointers that might be NULL.
8982 		 */
8983 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
8984 				 !tnum_equals_const(reg->var_off, 0) ||
8985 				 reg->off)) {
8986 			__mark_reg_known_zero(reg);
8987 			reg->off = 0;
8988 		}
8989 		if (is_null) {
8990 			reg->type = SCALAR_VALUE;
8991 			/* We don't need id and ref_obj_id from this point
8992 			 * onwards anymore, thus we should better reset it,
8993 			 * so that state pruning has chances to take effect.
8994 			 */
8995 			reg->id = 0;
8996 			reg->ref_obj_id = 0;
8997 
8998 			return;
8999 		}
9000 
9001 		mark_ptr_not_null_reg(reg);
9002 
9003 		if (!reg_may_point_to_spin_lock(reg)) {
9004 			/* For not-NULL ptr, reg->ref_obj_id will be reset
9005 			 * in release_reg_references().
9006 			 *
9007 			 * reg->id is still used by spin_lock ptr. Other
9008 			 * than spin_lock ptr type, reg->id can be reset.
9009 			 */
9010 			reg->id = 0;
9011 		}
9012 	}
9013 }
9014 
9015 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
9016 				    bool is_null)
9017 {
9018 	struct bpf_reg_state *reg;
9019 	int i;
9020 
9021 	for (i = 0; i < MAX_BPF_REG; i++)
9022 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
9023 
9024 	bpf_for_each_spilled_reg(i, state, reg) {
9025 		if (!reg)
9026 			continue;
9027 		mark_ptr_or_null_reg(state, reg, id, is_null);
9028 	}
9029 }
9030 
9031 /* The logic is similar to find_good_pkt_pointers(), both could eventually
9032  * be folded together at some point.
9033  */
9034 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
9035 				  bool is_null)
9036 {
9037 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9038 	struct bpf_reg_state *regs = state->regs;
9039 	u32 ref_obj_id = regs[regno].ref_obj_id;
9040 	u32 id = regs[regno].id;
9041 	int i;
9042 
9043 	if (ref_obj_id && ref_obj_id == id && is_null)
9044 		/* regs[regno] is in the " == NULL" branch.
9045 		 * No one could have freed the reference state before
9046 		 * doing the NULL check.
9047 		 */
9048 		WARN_ON_ONCE(release_reference_state(state, id));
9049 
9050 	for (i = 0; i <= vstate->curframe; i++)
9051 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
9052 }
9053 
9054 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
9055 				   struct bpf_reg_state *dst_reg,
9056 				   struct bpf_reg_state *src_reg,
9057 				   struct bpf_verifier_state *this_branch,
9058 				   struct bpf_verifier_state *other_branch)
9059 {
9060 	if (BPF_SRC(insn->code) != BPF_X)
9061 		return false;
9062 
9063 	/* Pointers are always 64-bit. */
9064 	if (BPF_CLASS(insn->code) == BPF_JMP32)
9065 		return false;
9066 
9067 	switch (BPF_OP(insn->code)) {
9068 	case BPF_JGT:
9069 		if ((dst_reg->type == PTR_TO_PACKET &&
9070 		     src_reg->type == PTR_TO_PACKET_END) ||
9071 		    (dst_reg->type == PTR_TO_PACKET_META &&
9072 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9073 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
9074 			find_good_pkt_pointers(this_branch, dst_reg,
9075 					       dst_reg->type, false);
9076 			mark_pkt_end(other_branch, insn->dst_reg, true);
9077 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9078 			    src_reg->type == PTR_TO_PACKET) ||
9079 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9080 			    src_reg->type == PTR_TO_PACKET_META)) {
9081 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
9082 			find_good_pkt_pointers(other_branch, src_reg,
9083 					       src_reg->type, true);
9084 			mark_pkt_end(this_branch, insn->src_reg, false);
9085 		} else {
9086 			return false;
9087 		}
9088 		break;
9089 	case BPF_JLT:
9090 		if ((dst_reg->type == PTR_TO_PACKET &&
9091 		     src_reg->type == PTR_TO_PACKET_END) ||
9092 		    (dst_reg->type == PTR_TO_PACKET_META &&
9093 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9094 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
9095 			find_good_pkt_pointers(other_branch, dst_reg,
9096 					       dst_reg->type, true);
9097 			mark_pkt_end(this_branch, insn->dst_reg, false);
9098 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9099 			    src_reg->type == PTR_TO_PACKET) ||
9100 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9101 			    src_reg->type == PTR_TO_PACKET_META)) {
9102 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
9103 			find_good_pkt_pointers(this_branch, src_reg,
9104 					       src_reg->type, false);
9105 			mark_pkt_end(other_branch, insn->src_reg, true);
9106 		} else {
9107 			return false;
9108 		}
9109 		break;
9110 	case BPF_JGE:
9111 		if ((dst_reg->type == PTR_TO_PACKET &&
9112 		     src_reg->type == PTR_TO_PACKET_END) ||
9113 		    (dst_reg->type == PTR_TO_PACKET_META &&
9114 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9115 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
9116 			find_good_pkt_pointers(this_branch, dst_reg,
9117 					       dst_reg->type, true);
9118 			mark_pkt_end(other_branch, insn->dst_reg, false);
9119 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9120 			    src_reg->type == PTR_TO_PACKET) ||
9121 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9122 			    src_reg->type == PTR_TO_PACKET_META)) {
9123 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
9124 			find_good_pkt_pointers(other_branch, src_reg,
9125 					       src_reg->type, false);
9126 			mark_pkt_end(this_branch, insn->src_reg, true);
9127 		} else {
9128 			return false;
9129 		}
9130 		break;
9131 	case BPF_JLE:
9132 		if ((dst_reg->type == PTR_TO_PACKET &&
9133 		     src_reg->type == PTR_TO_PACKET_END) ||
9134 		    (dst_reg->type == PTR_TO_PACKET_META &&
9135 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9136 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
9137 			find_good_pkt_pointers(other_branch, dst_reg,
9138 					       dst_reg->type, false);
9139 			mark_pkt_end(this_branch, insn->dst_reg, true);
9140 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9141 			    src_reg->type == PTR_TO_PACKET) ||
9142 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9143 			    src_reg->type == PTR_TO_PACKET_META)) {
9144 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
9145 			find_good_pkt_pointers(this_branch, src_reg,
9146 					       src_reg->type, true);
9147 			mark_pkt_end(other_branch, insn->src_reg, false);
9148 		} else {
9149 			return false;
9150 		}
9151 		break;
9152 	default:
9153 		return false;
9154 	}
9155 
9156 	return true;
9157 }
9158 
9159 static void find_equal_scalars(struct bpf_verifier_state *vstate,
9160 			       struct bpf_reg_state *known_reg)
9161 {
9162 	struct bpf_func_state *state;
9163 	struct bpf_reg_state *reg;
9164 	int i, j;
9165 
9166 	for (i = 0; i <= vstate->curframe; i++) {
9167 		state = vstate->frame[i];
9168 		for (j = 0; j < MAX_BPF_REG; j++) {
9169 			reg = &state->regs[j];
9170 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
9171 				*reg = *known_reg;
9172 		}
9173 
9174 		bpf_for_each_spilled_reg(j, state, reg) {
9175 			if (!reg)
9176 				continue;
9177 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
9178 				*reg = *known_reg;
9179 		}
9180 	}
9181 }
9182 
9183 static int check_cond_jmp_op(struct bpf_verifier_env *env,
9184 			     struct bpf_insn *insn, int *insn_idx)
9185 {
9186 	struct bpf_verifier_state *this_branch = env->cur_state;
9187 	struct bpf_verifier_state *other_branch;
9188 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
9189 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
9190 	u8 opcode = BPF_OP(insn->code);
9191 	bool is_jmp32;
9192 	int pred = -1;
9193 	int err;
9194 
9195 	/* Only conditional jumps are expected to reach here. */
9196 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
9197 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
9198 		return -EINVAL;
9199 	}
9200 
9201 	if (BPF_SRC(insn->code) == BPF_X) {
9202 		if (insn->imm != 0) {
9203 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
9204 			return -EINVAL;
9205 		}
9206 
9207 		/* check src1 operand */
9208 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
9209 		if (err)
9210 			return err;
9211 
9212 		if (is_pointer_value(env, insn->src_reg)) {
9213 			verbose(env, "R%d pointer comparison prohibited\n",
9214 				insn->src_reg);
9215 			return -EACCES;
9216 		}
9217 		src_reg = &regs[insn->src_reg];
9218 	} else {
9219 		if (insn->src_reg != BPF_REG_0) {
9220 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
9221 			return -EINVAL;
9222 		}
9223 	}
9224 
9225 	/* check src2 operand */
9226 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9227 	if (err)
9228 		return err;
9229 
9230 	dst_reg = &regs[insn->dst_reg];
9231 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
9232 
9233 	if (BPF_SRC(insn->code) == BPF_K) {
9234 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
9235 	} else if (src_reg->type == SCALAR_VALUE &&
9236 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
9237 		pred = is_branch_taken(dst_reg,
9238 				       tnum_subreg(src_reg->var_off).value,
9239 				       opcode,
9240 				       is_jmp32);
9241 	} else if (src_reg->type == SCALAR_VALUE &&
9242 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
9243 		pred = is_branch_taken(dst_reg,
9244 				       src_reg->var_off.value,
9245 				       opcode,
9246 				       is_jmp32);
9247 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
9248 		   reg_is_pkt_pointer_any(src_reg) &&
9249 		   !is_jmp32) {
9250 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
9251 	}
9252 
9253 	if (pred >= 0) {
9254 		/* If we get here with a dst_reg pointer type it is because
9255 		 * above is_branch_taken() special cased the 0 comparison.
9256 		 */
9257 		if (!__is_pointer_value(false, dst_reg))
9258 			err = mark_chain_precision(env, insn->dst_reg);
9259 		if (BPF_SRC(insn->code) == BPF_X && !err &&
9260 		    !__is_pointer_value(false, src_reg))
9261 			err = mark_chain_precision(env, insn->src_reg);
9262 		if (err)
9263 			return err;
9264 	}
9265 
9266 	if (pred == 1) {
9267 		/* Only follow the goto, ignore fall-through. If needed, push
9268 		 * the fall-through branch for simulation under speculative
9269 		 * execution.
9270 		 */
9271 		if (!env->bypass_spec_v1 &&
9272 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
9273 					       *insn_idx))
9274 			return -EFAULT;
9275 		*insn_idx += insn->off;
9276 		return 0;
9277 	} else if (pred == 0) {
9278 		/* Only follow the fall-through branch, since that's where the
9279 		 * program will go. If needed, push the goto branch for
9280 		 * simulation under speculative execution.
9281 		 */
9282 		if (!env->bypass_spec_v1 &&
9283 		    !sanitize_speculative_path(env, insn,
9284 					       *insn_idx + insn->off + 1,
9285 					       *insn_idx))
9286 			return -EFAULT;
9287 		return 0;
9288 	}
9289 
9290 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
9291 				  false);
9292 	if (!other_branch)
9293 		return -EFAULT;
9294 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
9295 
9296 	/* detect if we are comparing against a constant value so we can adjust
9297 	 * our min/max values for our dst register.
9298 	 * this is only legit if both are scalars (or pointers to the same
9299 	 * object, I suppose, but we don't support that right now), because
9300 	 * otherwise the different base pointers mean the offsets aren't
9301 	 * comparable.
9302 	 */
9303 	if (BPF_SRC(insn->code) == BPF_X) {
9304 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
9305 
9306 		if (dst_reg->type == SCALAR_VALUE &&
9307 		    src_reg->type == SCALAR_VALUE) {
9308 			if (tnum_is_const(src_reg->var_off) ||
9309 			    (is_jmp32 &&
9310 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
9311 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
9312 						dst_reg,
9313 						src_reg->var_off.value,
9314 						tnum_subreg(src_reg->var_off).value,
9315 						opcode, is_jmp32);
9316 			else if (tnum_is_const(dst_reg->var_off) ||
9317 				 (is_jmp32 &&
9318 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
9319 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
9320 						    src_reg,
9321 						    dst_reg->var_off.value,
9322 						    tnum_subreg(dst_reg->var_off).value,
9323 						    opcode, is_jmp32);
9324 			else if (!is_jmp32 &&
9325 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
9326 				/* Comparing for equality, we can combine knowledge */
9327 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
9328 						    &other_branch_regs[insn->dst_reg],
9329 						    src_reg, dst_reg, opcode);
9330 			if (src_reg->id &&
9331 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
9332 				find_equal_scalars(this_branch, src_reg);
9333 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
9334 			}
9335 
9336 		}
9337 	} else if (dst_reg->type == SCALAR_VALUE) {
9338 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
9339 					dst_reg, insn->imm, (u32)insn->imm,
9340 					opcode, is_jmp32);
9341 	}
9342 
9343 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
9344 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
9345 		find_equal_scalars(this_branch, dst_reg);
9346 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
9347 	}
9348 
9349 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
9350 	 * NOTE: these optimizations below are related with pointer comparison
9351 	 *       which will never be JMP32.
9352 	 */
9353 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
9354 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
9355 	    reg_type_may_be_null(dst_reg->type)) {
9356 		/* Mark all identical registers in each branch as either
9357 		 * safe or unknown depending R == 0 or R != 0 conditional.
9358 		 */
9359 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
9360 				      opcode == BPF_JNE);
9361 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
9362 				      opcode == BPF_JEQ);
9363 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
9364 					   this_branch, other_branch) &&
9365 		   is_pointer_value(env, insn->dst_reg)) {
9366 		verbose(env, "R%d pointer comparison prohibited\n",
9367 			insn->dst_reg);
9368 		return -EACCES;
9369 	}
9370 	if (env->log.level & BPF_LOG_LEVEL)
9371 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
9372 	return 0;
9373 }
9374 
9375 /* verify BPF_LD_IMM64 instruction */
9376 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
9377 {
9378 	struct bpf_insn_aux_data *aux = cur_aux(env);
9379 	struct bpf_reg_state *regs = cur_regs(env);
9380 	struct bpf_reg_state *dst_reg;
9381 	struct bpf_map *map;
9382 	int err;
9383 
9384 	if (BPF_SIZE(insn->code) != BPF_DW) {
9385 		verbose(env, "invalid BPF_LD_IMM insn\n");
9386 		return -EINVAL;
9387 	}
9388 	if (insn->off != 0) {
9389 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
9390 		return -EINVAL;
9391 	}
9392 
9393 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
9394 	if (err)
9395 		return err;
9396 
9397 	dst_reg = &regs[insn->dst_reg];
9398 	if (insn->src_reg == 0) {
9399 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
9400 
9401 		dst_reg->type = SCALAR_VALUE;
9402 		__mark_reg_known(&regs[insn->dst_reg], imm);
9403 		return 0;
9404 	}
9405 
9406 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
9407 		mark_reg_known_zero(env, regs, insn->dst_reg);
9408 
9409 		dst_reg->type = aux->btf_var.reg_type;
9410 		switch (dst_reg->type) {
9411 		case PTR_TO_MEM:
9412 			dst_reg->mem_size = aux->btf_var.mem_size;
9413 			break;
9414 		case PTR_TO_BTF_ID:
9415 		case PTR_TO_PERCPU_BTF_ID:
9416 			dst_reg->btf = aux->btf_var.btf;
9417 			dst_reg->btf_id = aux->btf_var.btf_id;
9418 			break;
9419 		default:
9420 			verbose(env, "bpf verifier is misconfigured\n");
9421 			return -EFAULT;
9422 		}
9423 		return 0;
9424 	}
9425 
9426 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
9427 		struct bpf_prog_aux *aux = env->prog->aux;
9428 		u32 subprogno = find_subprog(env,
9429 					     env->insn_idx + insn->imm + 1);
9430 
9431 		if (!aux->func_info) {
9432 			verbose(env, "missing btf func_info\n");
9433 			return -EINVAL;
9434 		}
9435 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
9436 			verbose(env, "callback function not static\n");
9437 			return -EINVAL;
9438 		}
9439 
9440 		dst_reg->type = PTR_TO_FUNC;
9441 		dst_reg->subprogno = subprogno;
9442 		return 0;
9443 	}
9444 
9445 	map = env->used_maps[aux->map_index];
9446 	mark_reg_known_zero(env, regs, insn->dst_reg);
9447 	dst_reg->map_ptr = map;
9448 
9449 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
9450 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
9451 		dst_reg->type = PTR_TO_MAP_VALUE;
9452 		dst_reg->off = aux->map_off;
9453 		if (map_value_has_spin_lock(map))
9454 			dst_reg->id = ++env->id_gen;
9455 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
9456 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
9457 		dst_reg->type = CONST_PTR_TO_MAP;
9458 	} else {
9459 		verbose(env, "bpf verifier is misconfigured\n");
9460 		return -EINVAL;
9461 	}
9462 
9463 	return 0;
9464 }
9465 
9466 static bool may_access_skb(enum bpf_prog_type type)
9467 {
9468 	switch (type) {
9469 	case BPF_PROG_TYPE_SOCKET_FILTER:
9470 	case BPF_PROG_TYPE_SCHED_CLS:
9471 	case BPF_PROG_TYPE_SCHED_ACT:
9472 		return true;
9473 	default:
9474 		return false;
9475 	}
9476 }
9477 
9478 /* verify safety of LD_ABS|LD_IND instructions:
9479  * - they can only appear in the programs where ctx == skb
9480  * - since they are wrappers of function calls, they scratch R1-R5 registers,
9481  *   preserve R6-R9, and store return value into R0
9482  *
9483  * Implicit input:
9484  *   ctx == skb == R6 == CTX
9485  *
9486  * Explicit input:
9487  *   SRC == any register
9488  *   IMM == 32-bit immediate
9489  *
9490  * Output:
9491  *   R0 - 8/16/32-bit skb data converted to cpu endianness
9492  */
9493 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
9494 {
9495 	struct bpf_reg_state *regs = cur_regs(env);
9496 	static const int ctx_reg = BPF_REG_6;
9497 	u8 mode = BPF_MODE(insn->code);
9498 	int i, err;
9499 
9500 	if (!may_access_skb(resolve_prog_type(env->prog))) {
9501 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
9502 		return -EINVAL;
9503 	}
9504 
9505 	if (!env->ops->gen_ld_abs) {
9506 		verbose(env, "bpf verifier is misconfigured\n");
9507 		return -EINVAL;
9508 	}
9509 
9510 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
9511 	    BPF_SIZE(insn->code) == BPF_DW ||
9512 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
9513 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
9514 		return -EINVAL;
9515 	}
9516 
9517 	/* check whether implicit source operand (register R6) is readable */
9518 	err = check_reg_arg(env, ctx_reg, SRC_OP);
9519 	if (err)
9520 		return err;
9521 
9522 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
9523 	 * gen_ld_abs() may terminate the program at runtime, leading to
9524 	 * reference leak.
9525 	 */
9526 	err = check_reference_leak(env);
9527 	if (err) {
9528 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
9529 		return err;
9530 	}
9531 
9532 	if (env->cur_state->active_spin_lock) {
9533 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
9534 		return -EINVAL;
9535 	}
9536 
9537 	if (regs[ctx_reg].type != PTR_TO_CTX) {
9538 		verbose(env,
9539 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
9540 		return -EINVAL;
9541 	}
9542 
9543 	if (mode == BPF_IND) {
9544 		/* check explicit source operand */
9545 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
9546 		if (err)
9547 			return err;
9548 	}
9549 
9550 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
9551 	if (err < 0)
9552 		return err;
9553 
9554 	/* reset caller saved regs to unreadable */
9555 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9556 		mark_reg_not_init(env, regs, caller_saved[i]);
9557 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9558 	}
9559 
9560 	/* mark destination R0 register as readable, since it contains
9561 	 * the value fetched from the packet.
9562 	 * Already marked as written above.
9563 	 */
9564 	mark_reg_unknown(env, regs, BPF_REG_0);
9565 	/* ld_abs load up to 32-bit skb data. */
9566 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
9567 	return 0;
9568 }
9569 
9570 static int check_return_code(struct bpf_verifier_env *env)
9571 {
9572 	struct tnum enforce_attach_type_range = tnum_unknown;
9573 	const struct bpf_prog *prog = env->prog;
9574 	struct bpf_reg_state *reg;
9575 	struct tnum range = tnum_range(0, 1);
9576 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9577 	int err;
9578 	struct bpf_func_state *frame = env->cur_state->frame[0];
9579 	const bool is_subprog = frame->subprogno;
9580 
9581 	/* LSM and struct_ops func-ptr's return type could be "void" */
9582 	if (!is_subprog &&
9583 	    (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
9584 	     prog_type == BPF_PROG_TYPE_LSM) &&
9585 	    !prog->aux->attach_func_proto->type)
9586 		return 0;
9587 
9588 	/* eBPF calling convention is such that R0 is used
9589 	 * to return the value from eBPF program.
9590 	 * Make sure that it's readable at this time
9591 	 * of bpf_exit, which means that program wrote
9592 	 * something into it earlier
9593 	 */
9594 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
9595 	if (err)
9596 		return err;
9597 
9598 	if (is_pointer_value(env, BPF_REG_0)) {
9599 		verbose(env, "R0 leaks addr as return value\n");
9600 		return -EACCES;
9601 	}
9602 
9603 	reg = cur_regs(env) + BPF_REG_0;
9604 
9605 	if (frame->in_async_callback_fn) {
9606 		/* enforce return zero from async callbacks like timer */
9607 		if (reg->type != SCALAR_VALUE) {
9608 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
9609 				reg_type_str[reg->type]);
9610 			return -EINVAL;
9611 		}
9612 
9613 		if (!tnum_in(tnum_const(0), reg->var_off)) {
9614 			verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
9615 			return -EINVAL;
9616 		}
9617 		return 0;
9618 	}
9619 
9620 	if (is_subprog) {
9621 		if (reg->type != SCALAR_VALUE) {
9622 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
9623 				reg_type_str[reg->type]);
9624 			return -EINVAL;
9625 		}
9626 		return 0;
9627 	}
9628 
9629 	switch (prog_type) {
9630 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
9631 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
9632 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
9633 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
9634 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
9635 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
9636 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
9637 			range = tnum_range(1, 1);
9638 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
9639 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
9640 			range = tnum_range(0, 3);
9641 		break;
9642 	case BPF_PROG_TYPE_CGROUP_SKB:
9643 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
9644 			range = tnum_range(0, 3);
9645 			enforce_attach_type_range = tnum_range(2, 3);
9646 		}
9647 		break;
9648 	case BPF_PROG_TYPE_CGROUP_SOCK:
9649 	case BPF_PROG_TYPE_SOCK_OPS:
9650 	case BPF_PROG_TYPE_CGROUP_DEVICE:
9651 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
9652 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
9653 		break;
9654 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
9655 		if (!env->prog->aux->attach_btf_id)
9656 			return 0;
9657 		range = tnum_const(0);
9658 		break;
9659 	case BPF_PROG_TYPE_TRACING:
9660 		switch (env->prog->expected_attach_type) {
9661 		case BPF_TRACE_FENTRY:
9662 		case BPF_TRACE_FEXIT:
9663 			range = tnum_const(0);
9664 			break;
9665 		case BPF_TRACE_RAW_TP:
9666 		case BPF_MODIFY_RETURN:
9667 			return 0;
9668 		case BPF_TRACE_ITER:
9669 			break;
9670 		default:
9671 			return -ENOTSUPP;
9672 		}
9673 		break;
9674 	case BPF_PROG_TYPE_SK_LOOKUP:
9675 		range = tnum_range(SK_DROP, SK_PASS);
9676 		break;
9677 	case BPF_PROG_TYPE_EXT:
9678 		/* freplace program can return anything as its return value
9679 		 * depends on the to-be-replaced kernel func or bpf program.
9680 		 */
9681 	default:
9682 		return 0;
9683 	}
9684 
9685 	if (reg->type != SCALAR_VALUE) {
9686 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
9687 			reg_type_str[reg->type]);
9688 		return -EINVAL;
9689 	}
9690 
9691 	if (!tnum_in(range, reg->var_off)) {
9692 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
9693 		return -EINVAL;
9694 	}
9695 
9696 	if (!tnum_is_unknown(enforce_attach_type_range) &&
9697 	    tnum_in(enforce_attach_type_range, reg->var_off))
9698 		env->prog->enforce_expected_attach_type = 1;
9699 	return 0;
9700 }
9701 
9702 /* non-recursive DFS pseudo code
9703  * 1  procedure DFS-iterative(G,v):
9704  * 2      label v as discovered
9705  * 3      let S be a stack
9706  * 4      S.push(v)
9707  * 5      while S is not empty
9708  * 6            t <- S.pop()
9709  * 7            if t is what we're looking for:
9710  * 8                return t
9711  * 9            for all edges e in G.adjacentEdges(t) do
9712  * 10               if edge e is already labelled
9713  * 11                   continue with the next edge
9714  * 12               w <- G.adjacentVertex(t,e)
9715  * 13               if vertex w is not discovered and not explored
9716  * 14                   label e as tree-edge
9717  * 15                   label w as discovered
9718  * 16                   S.push(w)
9719  * 17                   continue at 5
9720  * 18               else if vertex w is discovered
9721  * 19                   label e as back-edge
9722  * 20               else
9723  * 21                   // vertex w is explored
9724  * 22                   label e as forward- or cross-edge
9725  * 23           label t as explored
9726  * 24           S.pop()
9727  *
9728  * convention:
9729  * 0x10 - discovered
9730  * 0x11 - discovered and fall-through edge labelled
9731  * 0x12 - discovered and fall-through and branch edges labelled
9732  * 0x20 - explored
9733  */
9734 
9735 enum {
9736 	DISCOVERED = 0x10,
9737 	EXPLORED = 0x20,
9738 	FALLTHROUGH = 1,
9739 	BRANCH = 2,
9740 };
9741 
9742 static u32 state_htab_size(struct bpf_verifier_env *env)
9743 {
9744 	return env->prog->len;
9745 }
9746 
9747 static struct bpf_verifier_state_list **explored_state(
9748 					struct bpf_verifier_env *env,
9749 					int idx)
9750 {
9751 	struct bpf_verifier_state *cur = env->cur_state;
9752 	struct bpf_func_state *state = cur->frame[cur->curframe];
9753 
9754 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
9755 }
9756 
9757 static void init_explored_state(struct bpf_verifier_env *env, int idx)
9758 {
9759 	env->insn_aux_data[idx].prune_point = true;
9760 }
9761 
9762 enum {
9763 	DONE_EXPLORING = 0,
9764 	KEEP_EXPLORING = 1,
9765 };
9766 
9767 /* t, w, e - match pseudo-code above:
9768  * t - index of current instruction
9769  * w - next instruction
9770  * e - edge
9771  */
9772 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
9773 		     bool loop_ok)
9774 {
9775 	int *insn_stack = env->cfg.insn_stack;
9776 	int *insn_state = env->cfg.insn_state;
9777 
9778 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
9779 		return DONE_EXPLORING;
9780 
9781 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
9782 		return DONE_EXPLORING;
9783 
9784 	if (w < 0 || w >= env->prog->len) {
9785 		verbose_linfo(env, t, "%d: ", t);
9786 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
9787 		return -EINVAL;
9788 	}
9789 
9790 	if (e == BRANCH)
9791 		/* mark branch target for state pruning */
9792 		init_explored_state(env, w);
9793 
9794 	if (insn_state[w] == 0) {
9795 		/* tree-edge */
9796 		insn_state[t] = DISCOVERED | e;
9797 		insn_state[w] = DISCOVERED;
9798 		if (env->cfg.cur_stack >= env->prog->len)
9799 			return -E2BIG;
9800 		insn_stack[env->cfg.cur_stack++] = w;
9801 		return KEEP_EXPLORING;
9802 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
9803 		if (loop_ok && env->bpf_capable)
9804 			return DONE_EXPLORING;
9805 		verbose_linfo(env, t, "%d: ", t);
9806 		verbose_linfo(env, w, "%d: ", w);
9807 		verbose(env, "back-edge from insn %d to %d\n", t, w);
9808 		return -EINVAL;
9809 	} else if (insn_state[w] == EXPLORED) {
9810 		/* forward- or cross-edge */
9811 		insn_state[t] = DISCOVERED | e;
9812 	} else {
9813 		verbose(env, "insn state internal bug\n");
9814 		return -EFAULT;
9815 	}
9816 	return DONE_EXPLORING;
9817 }
9818 
9819 static int visit_func_call_insn(int t, int insn_cnt,
9820 				struct bpf_insn *insns,
9821 				struct bpf_verifier_env *env,
9822 				bool visit_callee)
9823 {
9824 	int ret;
9825 
9826 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
9827 	if (ret)
9828 		return ret;
9829 
9830 	if (t + 1 < insn_cnt)
9831 		init_explored_state(env, t + 1);
9832 	if (visit_callee) {
9833 		init_explored_state(env, t);
9834 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
9835 				/* It's ok to allow recursion from CFG point of
9836 				 * view. __check_func_call() will do the actual
9837 				 * check.
9838 				 */
9839 				bpf_pseudo_func(insns + t));
9840 	}
9841 	return ret;
9842 }
9843 
9844 /* Visits the instruction at index t and returns one of the following:
9845  *  < 0 - an error occurred
9846  *  DONE_EXPLORING - the instruction was fully explored
9847  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
9848  */
9849 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
9850 {
9851 	struct bpf_insn *insns = env->prog->insnsi;
9852 	int ret;
9853 
9854 	if (bpf_pseudo_func(insns + t))
9855 		return visit_func_call_insn(t, insn_cnt, insns, env, true);
9856 
9857 	/* All non-branch instructions have a single fall-through edge. */
9858 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
9859 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
9860 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
9861 
9862 	switch (BPF_OP(insns[t].code)) {
9863 	case BPF_EXIT:
9864 		return DONE_EXPLORING;
9865 
9866 	case BPF_CALL:
9867 		if (insns[t].imm == BPF_FUNC_timer_set_callback)
9868 			/* Mark this call insn to trigger is_state_visited() check
9869 			 * before call itself is processed by __check_func_call().
9870 			 * Otherwise new async state will be pushed for further
9871 			 * exploration.
9872 			 */
9873 			init_explored_state(env, t);
9874 		return visit_func_call_insn(t, insn_cnt, insns, env,
9875 					    insns[t].src_reg == BPF_PSEUDO_CALL);
9876 
9877 	case BPF_JA:
9878 		if (BPF_SRC(insns[t].code) != BPF_K)
9879 			return -EINVAL;
9880 
9881 		/* unconditional jump with single edge */
9882 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
9883 				true);
9884 		if (ret)
9885 			return ret;
9886 
9887 		/* unconditional jmp is not a good pruning point,
9888 		 * but it's marked, since backtracking needs
9889 		 * to record jmp history in is_state_visited().
9890 		 */
9891 		init_explored_state(env, t + insns[t].off + 1);
9892 		/* tell verifier to check for equivalent states
9893 		 * after every call and jump
9894 		 */
9895 		if (t + 1 < insn_cnt)
9896 			init_explored_state(env, t + 1);
9897 
9898 		return ret;
9899 
9900 	default:
9901 		/* conditional jump with two edges */
9902 		init_explored_state(env, t);
9903 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
9904 		if (ret)
9905 			return ret;
9906 
9907 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
9908 	}
9909 }
9910 
9911 /* non-recursive depth-first-search to detect loops in BPF program
9912  * loop == back-edge in directed graph
9913  */
9914 static int check_cfg(struct bpf_verifier_env *env)
9915 {
9916 	int insn_cnt = env->prog->len;
9917 	int *insn_stack, *insn_state;
9918 	int ret = 0;
9919 	int i;
9920 
9921 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9922 	if (!insn_state)
9923 		return -ENOMEM;
9924 
9925 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9926 	if (!insn_stack) {
9927 		kvfree(insn_state);
9928 		return -ENOMEM;
9929 	}
9930 
9931 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
9932 	insn_stack[0] = 0; /* 0 is the first instruction */
9933 	env->cfg.cur_stack = 1;
9934 
9935 	while (env->cfg.cur_stack > 0) {
9936 		int t = insn_stack[env->cfg.cur_stack - 1];
9937 
9938 		ret = visit_insn(t, insn_cnt, env);
9939 		switch (ret) {
9940 		case DONE_EXPLORING:
9941 			insn_state[t] = EXPLORED;
9942 			env->cfg.cur_stack--;
9943 			break;
9944 		case KEEP_EXPLORING:
9945 			break;
9946 		default:
9947 			if (ret > 0) {
9948 				verbose(env, "visit_insn internal bug\n");
9949 				ret = -EFAULT;
9950 			}
9951 			goto err_free;
9952 		}
9953 	}
9954 
9955 	if (env->cfg.cur_stack < 0) {
9956 		verbose(env, "pop stack internal bug\n");
9957 		ret = -EFAULT;
9958 		goto err_free;
9959 	}
9960 
9961 	for (i = 0; i < insn_cnt; i++) {
9962 		if (insn_state[i] != EXPLORED) {
9963 			verbose(env, "unreachable insn %d\n", i);
9964 			ret = -EINVAL;
9965 			goto err_free;
9966 		}
9967 	}
9968 	ret = 0; /* cfg looks good */
9969 
9970 err_free:
9971 	kvfree(insn_state);
9972 	kvfree(insn_stack);
9973 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
9974 	return ret;
9975 }
9976 
9977 static int check_abnormal_return(struct bpf_verifier_env *env)
9978 {
9979 	int i;
9980 
9981 	for (i = 1; i < env->subprog_cnt; i++) {
9982 		if (env->subprog_info[i].has_ld_abs) {
9983 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
9984 			return -EINVAL;
9985 		}
9986 		if (env->subprog_info[i].has_tail_call) {
9987 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
9988 			return -EINVAL;
9989 		}
9990 	}
9991 	return 0;
9992 }
9993 
9994 /* The minimum supported BTF func info size */
9995 #define MIN_BPF_FUNCINFO_SIZE	8
9996 #define MAX_FUNCINFO_REC_SIZE	252
9997 
9998 static int check_btf_func(struct bpf_verifier_env *env,
9999 			  const union bpf_attr *attr,
10000 			  bpfptr_t uattr)
10001 {
10002 	const struct btf_type *type, *func_proto, *ret_type;
10003 	u32 i, nfuncs, urec_size, min_size;
10004 	u32 krec_size = sizeof(struct bpf_func_info);
10005 	struct bpf_func_info *krecord;
10006 	struct bpf_func_info_aux *info_aux = NULL;
10007 	struct bpf_prog *prog;
10008 	const struct btf *btf;
10009 	bpfptr_t urecord;
10010 	u32 prev_offset = 0;
10011 	bool scalar_return;
10012 	int ret = -ENOMEM;
10013 
10014 	nfuncs = attr->func_info_cnt;
10015 	if (!nfuncs) {
10016 		if (check_abnormal_return(env))
10017 			return -EINVAL;
10018 		return 0;
10019 	}
10020 
10021 	if (nfuncs != env->subprog_cnt) {
10022 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
10023 		return -EINVAL;
10024 	}
10025 
10026 	urec_size = attr->func_info_rec_size;
10027 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
10028 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
10029 	    urec_size % sizeof(u32)) {
10030 		verbose(env, "invalid func info rec size %u\n", urec_size);
10031 		return -EINVAL;
10032 	}
10033 
10034 	prog = env->prog;
10035 	btf = prog->aux->btf;
10036 
10037 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
10038 	min_size = min_t(u32, krec_size, urec_size);
10039 
10040 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
10041 	if (!krecord)
10042 		return -ENOMEM;
10043 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
10044 	if (!info_aux)
10045 		goto err_free;
10046 
10047 	for (i = 0; i < nfuncs; i++) {
10048 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
10049 		if (ret) {
10050 			if (ret == -E2BIG) {
10051 				verbose(env, "nonzero tailing record in func info");
10052 				/* set the size kernel expects so loader can zero
10053 				 * out the rest of the record.
10054 				 */
10055 				if (copy_to_bpfptr_offset(uattr,
10056 							  offsetof(union bpf_attr, func_info_rec_size),
10057 							  &min_size, sizeof(min_size)))
10058 					ret = -EFAULT;
10059 			}
10060 			goto err_free;
10061 		}
10062 
10063 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
10064 			ret = -EFAULT;
10065 			goto err_free;
10066 		}
10067 
10068 		/* check insn_off */
10069 		ret = -EINVAL;
10070 		if (i == 0) {
10071 			if (krecord[i].insn_off) {
10072 				verbose(env,
10073 					"nonzero insn_off %u for the first func info record",
10074 					krecord[i].insn_off);
10075 				goto err_free;
10076 			}
10077 		} else if (krecord[i].insn_off <= prev_offset) {
10078 			verbose(env,
10079 				"same or smaller insn offset (%u) than previous func info record (%u)",
10080 				krecord[i].insn_off, prev_offset);
10081 			goto err_free;
10082 		}
10083 
10084 		if (env->subprog_info[i].start != krecord[i].insn_off) {
10085 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
10086 			goto err_free;
10087 		}
10088 
10089 		/* check type_id */
10090 		type = btf_type_by_id(btf, krecord[i].type_id);
10091 		if (!type || !btf_type_is_func(type)) {
10092 			verbose(env, "invalid type id %d in func info",
10093 				krecord[i].type_id);
10094 			goto err_free;
10095 		}
10096 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
10097 
10098 		func_proto = btf_type_by_id(btf, type->type);
10099 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
10100 			/* btf_func_check() already verified it during BTF load */
10101 			goto err_free;
10102 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
10103 		scalar_return =
10104 			btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
10105 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
10106 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
10107 			goto err_free;
10108 		}
10109 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
10110 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
10111 			goto err_free;
10112 		}
10113 
10114 		prev_offset = krecord[i].insn_off;
10115 		bpfptr_add(&urecord, urec_size);
10116 	}
10117 
10118 	prog->aux->func_info = krecord;
10119 	prog->aux->func_info_cnt = nfuncs;
10120 	prog->aux->func_info_aux = info_aux;
10121 	return 0;
10122 
10123 err_free:
10124 	kvfree(krecord);
10125 	kfree(info_aux);
10126 	return ret;
10127 }
10128 
10129 static void adjust_btf_func(struct bpf_verifier_env *env)
10130 {
10131 	struct bpf_prog_aux *aux = env->prog->aux;
10132 	int i;
10133 
10134 	if (!aux->func_info)
10135 		return;
10136 
10137 	for (i = 0; i < env->subprog_cnt; i++)
10138 		aux->func_info[i].insn_off = env->subprog_info[i].start;
10139 }
10140 
10141 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
10142 		sizeof(((struct bpf_line_info *)(0))->line_col))
10143 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
10144 
10145 static int check_btf_line(struct bpf_verifier_env *env,
10146 			  const union bpf_attr *attr,
10147 			  bpfptr_t uattr)
10148 {
10149 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
10150 	struct bpf_subprog_info *sub;
10151 	struct bpf_line_info *linfo;
10152 	struct bpf_prog *prog;
10153 	const struct btf *btf;
10154 	bpfptr_t ulinfo;
10155 	int err;
10156 
10157 	nr_linfo = attr->line_info_cnt;
10158 	if (!nr_linfo)
10159 		return 0;
10160 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
10161 		return -EINVAL;
10162 
10163 	rec_size = attr->line_info_rec_size;
10164 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
10165 	    rec_size > MAX_LINEINFO_REC_SIZE ||
10166 	    rec_size & (sizeof(u32) - 1))
10167 		return -EINVAL;
10168 
10169 	/* Need to zero it in case the userspace may
10170 	 * pass in a smaller bpf_line_info object.
10171 	 */
10172 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
10173 			 GFP_KERNEL | __GFP_NOWARN);
10174 	if (!linfo)
10175 		return -ENOMEM;
10176 
10177 	prog = env->prog;
10178 	btf = prog->aux->btf;
10179 
10180 	s = 0;
10181 	sub = env->subprog_info;
10182 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
10183 	expected_size = sizeof(struct bpf_line_info);
10184 	ncopy = min_t(u32, expected_size, rec_size);
10185 	for (i = 0; i < nr_linfo; i++) {
10186 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
10187 		if (err) {
10188 			if (err == -E2BIG) {
10189 				verbose(env, "nonzero tailing record in line_info");
10190 				if (copy_to_bpfptr_offset(uattr,
10191 							  offsetof(union bpf_attr, line_info_rec_size),
10192 							  &expected_size, sizeof(expected_size)))
10193 					err = -EFAULT;
10194 			}
10195 			goto err_free;
10196 		}
10197 
10198 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
10199 			err = -EFAULT;
10200 			goto err_free;
10201 		}
10202 
10203 		/*
10204 		 * Check insn_off to ensure
10205 		 * 1) strictly increasing AND
10206 		 * 2) bounded by prog->len
10207 		 *
10208 		 * The linfo[0].insn_off == 0 check logically falls into
10209 		 * the later "missing bpf_line_info for func..." case
10210 		 * because the first linfo[0].insn_off must be the
10211 		 * first sub also and the first sub must have
10212 		 * subprog_info[0].start == 0.
10213 		 */
10214 		if ((i && linfo[i].insn_off <= prev_offset) ||
10215 		    linfo[i].insn_off >= prog->len) {
10216 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
10217 				i, linfo[i].insn_off, prev_offset,
10218 				prog->len);
10219 			err = -EINVAL;
10220 			goto err_free;
10221 		}
10222 
10223 		if (!prog->insnsi[linfo[i].insn_off].code) {
10224 			verbose(env,
10225 				"Invalid insn code at line_info[%u].insn_off\n",
10226 				i);
10227 			err = -EINVAL;
10228 			goto err_free;
10229 		}
10230 
10231 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
10232 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
10233 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
10234 			err = -EINVAL;
10235 			goto err_free;
10236 		}
10237 
10238 		if (s != env->subprog_cnt) {
10239 			if (linfo[i].insn_off == sub[s].start) {
10240 				sub[s].linfo_idx = i;
10241 				s++;
10242 			} else if (sub[s].start < linfo[i].insn_off) {
10243 				verbose(env, "missing bpf_line_info for func#%u\n", s);
10244 				err = -EINVAL;
10245 				goto err_free;
10246 			}
10247 		}
10248 
10249 		prev_offset = linfo[i].insn_off;
10250 		bpfptr_add(&ulinfo, rec_size);
10251 	}
10252 
10253 	if (s != env->subprog_cnt) {
10254 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
10255 			env->subprog_cnt - s, s);
10256 		err = -EINVAL;
10257 		goto err_free;
10258 	}
10259 
10260 	prog->aux->linfo = linfo;
10261 	prog->aux->nr_linfo = nr_linfo;
10262 
10263 	return 0;
10264 
10265 err_free:
10266 	kvfree(linfo);
10267 	return err;
10268 }
10269 
10270 static int check_btf_info(struct bpf_verifier_env *env,
10271 			  const union bpf_attr *attr,
10272 			  bpfptr_t uattr)
10273 {
10274 	struct btf *btf;
10275 	int err;
10276 
10277 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
10278 		if (check_abnormal_return(env))
10279 			return -EINVAL;
10280 		return 0;
10281 	}
10282 
10283 	btf = btf_get_by_fd(attr->prog_btf_fd);
10284 	if (IS_ERR(btf))
10285 		return PTR_ERR(btf);
10286 	if (btf_is_kernel(btf)) {
10287 		btf_put(btf);
10288 		return -EACCES;
10289 	}
10290 	env->prog->aux->btf = btf;
10291 
10292 	err = check_btf_func(env, attr, uattr);
10293 	if (err)
10294 		return err;
10295 
10296 	err = check_btf_line(env, attr, uattr);
10297 	if (err)
10298 		return err;
10299 
10300 	return 0;
10301 }
10302 
10303 /* check %cur's range satisfies %old's */
10304 static bool range_within(struct bpf_reg_state *old,
10305 			 struct bpf_reg_state *cur)
10306 {
10307 	return old->umin_value <= cur->umin_value &&
10308 	       old->umax_value >= cur->umax_value &&
10309 	       old->smin_value <= cur->smin_value &&
10310 	       old->smax_value >= cur->smax_value &&
10311 	       old->u32_min_value <= cur->u32_min_value &&
10312 	       old->u32_max_value >= cur->u32_max_value &&
10313 	       old->s32_min_value <= cur->s32_min_value &&
10314 	       old->s32_max_value >= cur->s32_max_value;
10315 }
10316 
10317 /* If in the old state two registers had the same id, then they need to have
10318  * the same id in the new state as well.  But that id could be different from
10319  * the old state, so we need to track the mapping from old to new ids.
10320  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
10321  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
10322  * regs with a different old id could still have new id 9, we don't care about
10323  * that.
10324  * So we look through our idmap to see if this old id has been seen before.  If
10325  * so, we require the new id to match; otherwise, we add the id pair to the map.
10326  */
10327 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
10328 {
10329 	unsigned int i;
10330 
10331 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
10332 		if (!idmap[i].old) {
10333 			/* Reached an empty slot; haven't seen this id before */
10334 			idmap[i].old = old_id;
10335 			idmap[i].cur = cur_id;
10336 			return true;
10337 		}
10338 		if (idmap[i].old == old_id)
10339 			return idmap[i].cur == cur_id;
10340 	}
10341 	/* We ran out of idmap slots, which should be impossible */
10342 	WARN_ON_ONCE(1);
10343 	return false;
10344 }
10345 
10346 static void clean_func_state(struct bpf_verifier_env *env,
10347 			     struct bpf_func_state *st)
10348 {
10349 	enum bpf_reg_liveness live;
10350 	int i, j;
10351 
10352 	for (i = 0; i < BPF_REG_FP; i++) {
10353 		live = st->regs[i].live;
10354 		/* liveness must not touch this register anymore */
10355 		st->regs[i].live |= REG_LIVE_DONE;
10356 		if (!(live & REG_LIVE_READ))
10357 			/* since the register is unused, clear its state
10358 			 * to make further comparison simpler
10359 			 */
10360 			__mark_reg_not_init(env, &st->regs[i]);
10361 	}
10362 
10363 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
10364 		live = st->stack[i].spilled_ptr.live;
10365 		/* liveness must not touch this stack slot anymore */
10366 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
10367 		if (!(live & REG_LIVE_READ)) {
10368 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
10369 			for (j = 0; j < BPF_REG_SIZE; j++)
10370 				st->stack[i].slot_type[j] = STACK_INVALID;
10371 		}
10372 	}
10373 }
10374 
10375 static void clean_verifier_state(struct bpf_verifier_env *env,
10376 				 struct bpf_verifier_state *st)
10377 {
10378 	int i;
10379 
10380 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
10381 		/* all regs in this state in all frames were already marked */
10382 		return;
10383 
10384 	for (i = 0; i <= st->curframe; i++)
10385 		clean_func_state(env, st->frame[i]);
10386 }
10387 
10388 /* the parentage chains form a tree.
10389  * the verifier states are added to state lists at given insn and
10390  * pushed into state stack for future exploration.
10391  * when the verifier reaches bpf_exit insn some of the verifer states
10392  * stored in the state lists have their final liveness state already,
10393  * but a lot of states will get revised from liveness point of view when
10394  * the verifier explores other branches.
10395  * Example:
10396  * 1: r0 = 1
10397  * 2: if r1 == 100 goto pc+1
10398  * 3: r0 = 2
10399  * 4: exit
10400  * when the verifier reaches exit insn the register r0 in the state list of
10401  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
10402  * of insn 2 and goes exploring further. At the insn 4 it will walk the
10403  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
10404  *
10405  * Since the verifier pushes the branch states as it sees them while exploring
10406  * the program the condition of walking the branch instruction for the second
10407  * time means that all states below this branch were already explored and
10408  * their final liveness marks are already propagated.
10409  * Hence when the verifier completes the search of state list in is_state_visited()
10410  * we can call this clean_live_states() function to mark all liveness states
10411  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
10412  * will not be used.
10413  * This function also clears the registers and stack for states that !READ
10414  * to simplify state merging.
10415  *
10416  * Important note here that walking the same branch instruction in the callee
10417  * doesn't meant that the states are DONE. The verifier has to compare
10418  * the callsites
10419  */
10420 static void clean_live_states(struct bpf_verifier_env *env, int insn,
10421 			      struct bpf_verifier_state *cur)
10422 {
10423 	struct bpf_verifier_state_list *sl;
10424 	int i;
10425 
10426 	sl = *explored_state(env, insn);
10427 	while (sl) {
10428 		if (sl->state.branches)
10429 			goto next;
10430 		if (sl->state.insn_idx != insn ||
10431 		    sl->state.curframe != cur->curframe)
10432 			goto next;
10433 		for (i = 0; i <= cur->curframe; i++)
10434 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
10435 				goto next;
10436 		clean_verifier_state(env, &sl->state);
10437 next:
10438 		sl = sl->next;
10439 	}
10440 }
10441 
10442 /* Returns true if (rold safe implies rcur safe) */
10443 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
10444 		    struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
10445 {
10446 	bool equal;
10447 
10448 	if (!(rold->live & REG_LIVE_READ))
10449 		/* explored state didn't use this */
10450 		return true;
10451 
10452 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
10453 
10454 	if (rold->type == PTR_TO_STACK)
10455 		/* two stack pointers are equal only if they're pointing to
10456 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
10457 		 */
10458 		return equal && rold->frameno == rcur->frameno;
10459 
10460 	if (equal)
10461 		return true;
10462 
10463 	if (rold->type == NOT_INIT)
10464 		/* explored state can't have used this */
10465 		return true;
10466 	if (rcur->type == NOT_INIT)
10467 		return false;
10468 	switch (rold->type) {
10469 	case SCALAR_VALUE:
10470 		if (env->explore_alu_limits)
10471 			return false;
10472 		if (rcur->type == SCALAR_VALUE) {
10473 			if (!rold->precise && !rcur->precise)
10474 				return true;
10475 			/* new val must satisfy old val knowledge */
10476 			return range_within(rold, rcur) &&
10477 			       tnum_in(rold->var_off, rcur->var_off);
10478 		} else {
10479 			/* We're trying to use a pointer in place of a scalar.
10480 			 * Even if the scalar was unbounded, this could lead to
10481 			 * pointer leaks because scalars are allowed to leak
10482 			 * while pointers are not. We could make this safe in
10483 			 * special cases if root is calling us, but it's
10484 			 * probably not worth the hassle.
10485 			 */
10486 			return false;
10487 		}
10488 	case PTR_TO_MAP_KEY:
10489 	case PTR_TO_MAP_VALUE:
10490 		/* If the new min/max/var_off satisfy the old ones and
10491 		 * everything else matches, we are OK.
10492 		 * 'id' is not compared, since it's only used for maps with
10493 		 * bpf_spin_lock inside map element and in such cases if
10494 		 * the rest of the prog is valid for one map element then
10495 		 * it's valid for all map elements regardless of the key
10496 		 * used in bpf_map_lookup()
10497 		 */
10498 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
10499 		       range_within(rold, rcur) &&
10500 		       tnum_in(rold->var_off, rcur->var_off);
10501 	case PTR_TO_MAP_VALUE_OR_NULL:
10502 		/* a PTR_TO_MAP_VALUE could be safe to use as a
10503 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
10504 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
10505 		 * checked, doing so could have affected others with the same
10506 		 * id, and we can't check for that because we lost the id when
10507 		 * we converted to a PTR_TO_MAP_VALUE.
10508 		 */
10509 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
10510 			return false;
10511 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
10512 			return false;
10513 		/* Check our ids match any regs they're supposed to */
10514 		return check_ids(rold->id, rcur->id, idmap);
10515 	case PTR_TO_PACKET_META:
10516 	case PTR_TO_PACKET:
10517 		if (rcur->type != rold->type)
10518 			return false;
10519 		/* We must have at least as much range as the old ptr
10520 		 * did, so that any accesses which were safe before are
10521 		 * still safe.  This is true even if old range < old off,
10522 		 * since someone could have accessed through (ptr - k), or
10523 		 * even done ptr -= k in a register, to get a safe access.
10524 		 */
10525 		if (rold->range > rcur->range)
10526 			return false;
10527 		/* If the offsets don't match, we can't trust our alignment;
10528 		 * nor can we be sure that we won't fall out of range.
10529 		 */
10530 		if (rold->off != rcur->off)
10531 			return false;
10532 		/* id relations must be preserved */
10533 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
10534 			return false;
10535 		/* new val must satisfy old val knowledge */
10536 		return range_within(rold, rcur) &&
10537 		       tnum_in(rold->var_off, rcur->var_off);
10538 	case PTR_TO_CTX:
10539 	case CONST_PTR_TO_MAP:
10540 	case PTR_TO_PACKET_END:
10541 	case PTR_TO_FLOW_KEYS:
10542 	case PTR_TO_SOCKET:
10543 	case PTR_TO_SOCKET_OR_NULL:
10544 	case PTR_TO_SOCK_COMMON:
10545 	case PTR_TO_SOCK_COMMON_OR_NULL:
10546 	case PTR_TO_TCP_SOCK:
10547 	case PTR_TO_TCP_SOCK_OR_NULL:
10548 	case PTR_TO_XDP_SOCK:
10549 		/* Only valid matches are exact, which memcmp() above
10550 		 * would have accepted
10551 		 */
10552 	default:
10553 		/* Don't know what's going on, just say it's not safe */
10554 		return false;
10555 	}
10556 
10557 	/* Shouldn't get here; if we do, say it's not safe */
10558 	WARN_ON_ONCE(1);
10559 	return false;
10560 }
10561 
10562 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
10563 		      struct bpf_func_state *cur, struct bpf_id_pair *idmap)
10564 {
10565 	int i, spi;
10566 
10567 	/* walk slots of the explored stack and ignore any additional
10568 	 * slots in the current stack, since explored(safe) state
10569 	 * didn't use them
10570 	 */
10571 	for (i = 0; i < old->allocated_stack; i++) {
10572 		spi = i / BPF_REG_SIZE;
10573 
10574 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
10575 			i += BPF_REG_SIZE - 1;
10576 			/* explored state didn't use this */
10577 			continue;
10578 		}
10579 
10580 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
10581 			continue;
10582 
10583 		/* explored stack has more populated slots than current stack
10584 		 * and these slots were used
10585 		 */
10586 		if (i >= cur->allocated_stack)
10587 			return false;
10588 
10589 		/* if old state was safe with misc data in the stack
10590 		 * it will be safe with zero-initialized stack.
10591 		 * The opposite is not true
10592 		 */
10593 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
10594 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
10595 			continue;
10596 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
10597 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
10598 			/* Ex: old explored (safe) state has STACK_SPILL in
10599 			 * this stack slot, but current has STACK_MISC ->
10600 			 * this verifier states are not equivalent,
10601 			 * return false to continue verification of this path
10602 			 */
10603 			return false;
10604 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
10605 			continue;
10606 		if (!is_spilled_reg(&old->stack[spi]))
10607 			continue;
10608 		if (!regsafe(env, &old->stack[spi].spilled_ptr,
10609 			     &cur->stack[spi].spilled_ptr, idmap))
10610 			/* when explored and current stack slot are both storing
10611 			 * spilled registers, check that stored pointers types
10612 			 * are the same as well.
10613 			 * Ex: explored safe path could have stored
10614 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
10615 			 * but current path has stored:
10616 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
10617 			 * such verifier states are not equivalent.
10618 			 * return false to continue verification of this path
10619 			 */
10620 			return false;
10621 	}
10622 	return true;
10623 }
10624 
10625 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
10626 {
10627 	if (old->acquired_refs != cur->acquired_refs)
10628 		return false;
10629 	return !memcmp(old->refs, cur->refs,
10630 		       sizeof(*old->refs) * old->acquired_refs);
10631 }
10632 
10633 /* compare two verifier states
10634  *
10635  * all states stored in state_list are known to be valid, since
10636  * verifier reached 'bpf_exit' instruction through them
10637  *
10638  * this function is called when verifier exploring different branches of
10639  * execution popped from the state stack. If it sees an old state that has
10640  * more strict register state and more strict stack state then this execution
10641  * branch doesn't need to be explored further, since verifier already
10642  * concluded that more strict state leads to valid finish.
10643  *
10644  * Therefore two states are equivalent if register state is more conservative
10645  * and explored stack state is more conservative than the current one.
10646  * Example:
10647  *       explored                   current
10648  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
10649  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
10650  *
10651  * In other words if current stack state (one being explored) has more
10652  * valid slots than old one that already passed validation, it means
10653  * the verifier can stop exploring and conclude that current state is valid too
10654  *
10655  * Similarly with registers. If explored state has register type as invalid
10656  * whereas register type in current state is meaningful, it means that
10657  * the current state will reach 'bpf_exit' instruction safely
10658  */
10659 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
10660 			      struct bpf_func_state *cur)
10661 {
10662 	int i;
10663 
10664 	memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
10665 	for (i = 0; i < MAX_BPF_REG; i++)
10666 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
10667 			     env->idmap_scratch))
10668 			return false;
10669 
10670 	if (!stacksafe(env, old, cur, env->idmap_scratch))
10671 		return false;
10672 
10673 	if (!refsafe(old, cur))
10674 		return false;
10675 
10676 	return true;
10677 }
10678 
10679 static bool states_equal(struct bpf_verifier_env *env,
10680 			 struct bpf_verifier_state *old,
10681 			 struct bpf_verifier_state *cur)
10682 {
10683 	int i;
10684 
10685 	if (old->curframe != cur->curframe)
10686 		return false;
10687 
10688 	/* Verification state from speculative execution simulation
10689 	 * must never prune a non-speculative execution one.
10690 	 */
10691 	if (old->speculative && !cur->speculative)
10692 		return false;
10693 
10694 	if (old->active_spin_lock != cur->active_spin_lock)
10695 		return false;
10696 
10697 	/* for states to be equal callsites have to be the same
10698 	 * and all frame states need to be equivalent
10699 	 */
10700 	for (i = 0; i <= old->curframe; i++) {
10701 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
10702 			return false;
10703 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
10704 			return false;
10705 	}
10706 	return true;
10707 }
10708 
10709 /* Return 0 if no propagation happened. Return negative error code if error
10710  * happened. Otherwise, return the propagated bit.
10711  */
10712 static int propagate_liveness_reg(struct bpf_verifier_env *env,
10713 				  struct bpf_reg_state *reg,
10714 				  struct bpf_reg_state *parent_reg)
10715 {
10716 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
10717 	u8 flag = reg->live & REG_LIVE_READ;
10718 	int err;
10719 
10720 	/* When comes here, read flags of PARENT_REG or REG could be any of
10721 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
10722 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
10723 	 */
10724 	if (parent_flag == REG_LIVE_READ64 ||
10725 	    /* Or if there is no read flag from REG. */
10726 	    !flag ||
10727 	    /* Or if the read flag from REG is the same as PARENT_REG. */
10728 	    parent_flag == flag)
10729 		return 0;
10730 
10731 	err = mark_reg_read(env, reg, parent_reg, flag);
10732 	if (err)
10733 		return err;
10734 
10735 	return flag;
10736 }
10737 
10738 /* A write screens off any subsequent reads; but write marks come from the
10739  * straight-line code between a state and its parent.  When we arrive at an
10740  * equivalent state (jump target or such) we didn't arrive by the straight-line
10741  * code, so read marks in the state must propagate to the parent regardless
10742  * of the state's write marks. That's what 'parent == state->parent' comparison
10743  * in mark_reg_read() is for.
10744  */
10745 static int propagate_liveness(struct bpf_verifier_env *env,
10746 			      const struct bpf_verifier_state *vstate,
10747 			      struct bpf_verifier_state *vparent)
10748 {
10749 	struct bpf_reg_state *state_reg, *parent_reg;
10750 	struct bpf_func_state *state, *parent;
10751 	int i, frame, err = 0;
10752 
10753 	if (vparent->curframe != vstate->curframe) {
10754 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
10755 		     vparent->curframe, vstate->curframe);
10756 		return -EFAULT;
10757 	}
10758 	/* Propagate read liveness of registers... */
10759 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
10760 	for (frame = 0; frame <= vstate->curframe; frame++) {
10761 		parent = vparent->frame[frame];
10762 		state = vstate->frame[frame];
10763 		parent_reg = parent->regs;
10764 		state_reg = state->regs;
10765 		/* We don't need to worry about FP liveness, it's read-only */
10766 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
10767 			err = propagate_liveness_reg(env, &state_reg[i],
10768 						     &parent_reg[i]);
10769 			if (err < 0)
10770 				return err;
10771 			if (err == REG_LIVE_READ64)
10772 				mark_insn_zext(env, &parent_reg[i]);
10773 		}
10774 
10775 		/* Propagate stack slots. */
10776 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
10777 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
10778 			parent_reg = &parent->stack[i].spilled_ptr;
10779 			state_reg = &state->stack[i].spilled_ptr;
10780 			err = propagate_liveness_reg(env, state_reg,
10781 						     parent_reg);
10782 			if (err < 0)
10783 				return err;
10784 		}
10785 	}
10786 	return 0;
10787 }
10788 
10789 /* find precise scalars in the previous equivalent state and
10790  * propagate them into the current state
10791  */
10792 static int propagate_precision(struct bpf_verifier_env *env,
10793 			       const struct bpf_verifier_state *old)
10794 {
10795 	struct bpf_reg_state *state_reg;
10796 	struct bpf_func_state *state;
10797 	int i, err = 0;
10798 
10799 	state = old->frame[old->curframe];
10800 	state_reg = state->regs;
10801 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
10802 		if (state_reg->type != SCALAR_VALUE ||
10803 		    !state_reg->precise)
10804 			continue;
10805 		if (env->log.level & BPF_LOG_LEVEL2)
10806 			verbose(env, "propagating r%d\n", i);
10807 		err = mark_chain_precision(env, i);
10808 		if (err < 0)
10809 			return err;
10810 	}
10811 
10812 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
10813 		if (!is_spilled_reg(&state->stack[i]))
10814 			continue;
10815 		state_reg = &state->stack[i].spilled_ptr;
10816 		if (state_reg->type != SCALAR_VALUE ||
10817 		    !state_reg->precise)
10818 			continue;
10819 		if (env->log.level & BPF_LOG_LEVEL2)
10820 			verbose(env, "propagating fp%d\n",
10821 				(-i - 1) * BPF_REG_SIZE);
10822 		err = mark_chain_precision_stack(env, i);
10823 		if (err < 0)
10824 			return err;
10825 	}
10826 	return 0;
10827 }
10828 
10829 static bool states_maybe_looping(struct bpf_verifier_state *old,
10830 				 struct bpf_verifier_state *cur)
10831 {
10832 	struct bpf_func_state *fold, *fcur;
10833 	int i, fr = cur->curframe;
10834 
10835 	if (old->curframe != fr)
10836 		return false;
10837 
10838 	fold = old->frame[fr];
10839 	fcur = cur->frame[fr];
10840 	for (i = 0; i < MAX_BPF_REG; i++)
10841 		if (memcmp(&fold->regs[i], &fcur->regs[i],
10842 			   offsetof(struct bpf_reg_state, parent)))
10843 			return false;
10844 	return true;
10845 }
10846 
10847 
10848 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
10849 {
10850 	struct bpf_verifier_state_list *new_sl;
10851 	struct bpf_verifier_state_list *sl, **pprev;
10852 	struct bpf_verifier_state *cur = env->cur_state, *new;
10853 	int i, j, err, states_cnt = 0;
10854 	bool add_new_state = env->test_state_freq ? true : false;
10855 
10856 	cur->last_insn_idx = env->prev_insn_idx;
10857 	if (!env->insn_aux_data[insn_idx].prune_point)
10858 		/* this 'insn_idx' instruction wasn't marked, so we will not
10859 		 * be doing state search here
10860 		 */
10861 		return 0;
10862 
10863 	/* bpf progs typically have pruning point every 4 instructions
10864 	 * http://vger.kernel.org/bpfconf2019.html#session-1
10865 	 * Do not add new state for future pruning if the verifier hasn't seen
10866 	 * at least 2 jumps and at least 8 instructions.
10867 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
10868 	 * In tests that amounts to up to 50% reduction into total verifier
10869 	 * memory consumption and 20% verifier time speedup.
10870 	 */
10871 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
10872 	    env->insn_processed - env->prev_insn_processed >= 8)
10873 		add_new_state = true;
10874 
10875 	pprev = explored_state(env, insn_idx);
10876 	sl = *pprev;
10877 
10878 	clean_live_states(env, insn_idx, cur);
10879 
10880 	while (sl) {
10881 		states_cnt++;
10882 		if (sl->state.insn_idx != insn_idx)
10883 			goto next;
10884 
10885 		if (sl->state.branches) {
10886 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
10887 
10888 			if (frame->in_async_callback_fn &&
10889 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
10890 				/* Different async_entry_cnt means that the verifier is
10891 				 * processing another entry into async callback.
10892 				 * Seeing the same state is not an indication of infinite
10893 				 * loop or infinite recursion.
10894 				 * But finding the same state doesn't mean that it's safe
10895 				 * to stop processing the current state. The previous state
10896 				 * hasn't yet reached bpf_exit, since state.branches > 0.
10897 				 * Checking in_async_callback_fn alone is not enough either.
10898 				 * Since the verifier still needs to catch infinite loops
10899 				 * inside async callbacks.
10900 				 */
10901 			} else if (states_maybe_looping(&sl->state, cur) &&
10902 				   states_equal(env, &sl->state, cur)) {
10903 				verbose_linfo(env, insn_idx, "; ");
10904 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
10905 				return -EINVAL;
10906 			}
10907 			/* if the verifier is processing a loop, avoid adding new state
10908 			 * too often, since different loop iterations have distinct
10909 			 * states and may not help future pruning.
10910 			 * This threshold shouldn't be too low to make sure that
10911 			 * a loop with large bound will be rejected quickly.
10912 			 * The most abusive loop will be:
10913 			 * r1 += 1
10914 			 * if r1 < 1000000 goto pc-2
10915 			 * 1M insn_procssed limit / 100 == 10k peak states.
10916 			 * This threshold shouldn't be too high either, since states
10917 			 * at the end of the loop are likely to be useful in pruning.
10918 			 */
10919 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
10920 			    env->insn_processed - env->prev_insn_processed < 100)
10921 				add_new_state = false;
10922 			goto miss;
10923 		}
10924 		if (states_equal(env, &sl->state, cur)) {
10925 			sl->hit_cnt++;
10926 			/* reached equivalent register/stack state,
10927 			 * prune the search.
10928 			 * Registers read by the continuation are read by us.
10929 			 * If we have any write marks in env->cur_state, they
10930 			 * will prevent corresponding reads in the continuation
10931 			 * from reaching our parent (an explored_state).  Our
10932 			 * own state will get the read marks recorded, but
10933 			 * they'll be immediately forgotten as we're pruning
10934 			 * this state and will pop a new one.
10935 			 */
10936 			err = propagate_liveness(env, &sl->state, cur);
10937 
10938 			/* if previous state reached the exit with precision and
10939 			 * current state is equivalent to it (except precsion marks)
10940 			 * the precision needs to be propagated back in
10941 			 * the current state.
10942 			 */
10943 			err = err ? : push_jmp_history(env, cur);
10944 			err = err ? : propagate_precision(env, &sl->state);
10945 			if (err)
10946 				return err;
10947 			return 1;
10948 		}
10949 miss:
10950 		/* when new state is not going to be added do not increase miss count.
10951 		 * Otherwise several loop iterations will remove the state
10952 		 * recorded earlier. The goal of these heuristics is to have
10953 		 * states from some iterations of the loop (some in the beginning
10954 		 * and some at the end) to help pruning.
10955 		 */
10956 		if (add_new_state)
10957 			sl->miss_cnt++;
10958 		/* heuristic to determine whether this state is beneficial
10959 		 * to keep checking from state equivalence point of view.
10960 		 * Higher numbers increase max_states_per_insn and verification time,
10961 		 * but do not meaningfully decrease insn_processed.
10962 		 */
10963 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
10964 			/* the state is unlikely to be useful. Remove it to
10965 			 * speed up verification
10966 			 */
10967 			*pprev = sl->next;
10968 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
10969 				u32 br = sl->state.branches;
10970 
10971 				WARN_ONCE(br,
10972 					  "BUG live_done but branches_to_explore %d\n",
10973 					  br);
10974 				free_verifier_state(&sl->state, false);
10975 				kfree(sl);
10976 				env->peak_states--;
10977 			} else {
10978 				/* cannot free this state, since parentage chain may
10979 				 * walk it later. Add it for free_list instead to
10980 				 * be freed at the end of verification
10981 				 */
10982 				sl->next = env->free_list;
10983 				env->free_list = sl;
10984 			}
10985 			sl = *pprev;
10986 			continue;
10987 		}
10988 next:
10989 		pprev = &sl->next;
10990 		sl = *pprev;
10991 	}
10992 
10993 	if (env->max_states_per_insn < states_cnt)
10994 		env->max_states_per_insn = states_cnt;
10995 
10996 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
10997 		return push_jmp_history(env, cur);
10998 
10999 	if (!add_new_state)
11000 		return push_jmp_history(env, cur);
11001 
11002 	/* There were no equivalent states, remember the current one.
11003 	 * Technically the current state is not proven to be safe yet,
11004 	 * but it will either reach outer most bpf_exit (which means it's safe)
11005 	 * or it will be rejected. When there are no loops the verifier won't be
11006 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
11007 	 * again on the way to bpf_exit.
11008 	 * When looping the sl->state.branches will be > 0 and this state
11009 	 * will not be considered for equivalence until branches == 0.
11010 	 */
11011 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
11012 	if (!new_sl)
11013 		return -ENOMEM;
11014 	env->total_states++;
11015 	env->peak_states++;
11016 	env->prev_jmps_processed = env->jmps_processed;
11017 	env->prev_insn_processed = env->insn_processed;
11018 
11019 	/* add new state to the head of linked list */
11020 	new = &new_sl->state;
11021 	err = copy_verifier_state(new, cur);
11022 	if (err) {
11023 		free_verifier_state(new, false);
11024 		kfree(new_sl);
11025 		return err;
11026 	}
11027 	new->insn_idx = insn_idx;
11028 	WARN_ONCE(new->branches != 1,
11029 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
11030 
11031 	cur->parent = new;
11032 	cur->first_insn_idx = insn_idx;
11033 	clear_jmp_history(cur);
11034 	new_sl->next = *explored_state(env, insn_idx);
11035 	*explored_state(env, insn_idx) = new_sl;
11036 	/* connect new state to parentage chain. Current frame needs all
11037 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
11038 	 * to the stack implicitly by JITs) so in callers' frames connect just
11039 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
11040 	 * the state of the call instruction (with WRITTEN set), and r0 comes
11041 	 * from callee with its full parentage chain, anyway.
11042 	 */
11043 	/* clear write marks in current state: the writes we did are not writes
11044 	 * our child did, so they don't screen off its reads from us.
11045 	 * (There are no read marks in current state, because reads always mark
11046 	 * their parent and current state never has children yet.  Only
11047 	 * explored_states can get read marks.)
11048 	 */
11049 	for (j = 0; j <= cur->curframe; j++) {
11050 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
11051 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
11052 		for (i = 0; i < BPF_REG_FP; i++)
11053 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
11054 	}
11055 
11056 	/* all stack frames are accessible from callee, clear them all */
11057 	for (j = 0; j <= cur->curframe; j++) {
11058 		struct bpf_func_state *frame = cur->frame[j];
11059 		struct bpf_func_state *newframe = new->frame[j];
11060 
11061 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
11062 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
11063 			frame->stack[i].spilled_ptr.parent =
11064 						&newframe->stack[i].spilled_ptr;
11065 		}
11066 	}
11067 	return 0;
11068 }
11069 
11070 /* Return true if it's OK to have the same insn return a different type. */
11071 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
11072 {
11073 	switch (type) {
11074 	case PTR_TO_CTX:
11075 	case PTR_TO_SOCKET:
11076 	case PTR_TO_SOCKET_OR_NULL:
11077 	case PTR_TO_SOCK_COMMON:
11078 	case PTR_TO_SOCK_COMMON_OR_NULL:
11079 	case PTR_TO_TCP_SOCK:
11080 	case PTR_TO_TCP_SOCK_OR_NULL:
11081 	case PTR_TO_XDP_SOCK:
11082 	case PTR_TO_BTF_ID:
11083 	case PTR_TO_BTF_ID_OR_NULL:
11084 		return false;
11085 	default:
11086 		return true;
11087 	}
11088 }
11089 
11090 /* If an instruction was previously used with particular pointer types, then we
11091  * need to be careful to avoid cases such as the below, where it may be ok
11092  * for one branch accessing the pointer, but not ok for the other branch:
11093  *
11094  * R1 = sock_ptr
11095  * goto X;
11096  * ...
11097  * R1 = some_other_valid_ptr;
11098  * goto X;
11099  * ...
11100  * R2 = *(u32 *)(R1 + 0);
11101  */
11102 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
11103 {
11104 	return src != prev && (!reg_type_mismatch_ok(src) ||
11105 			       !reg_type_mismatch_ok(prev));
11106 }
11107 
11108 static int do_check(struct bpf_verifier_env *env)
11109 {
11110 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
11111 	struct bpf_verifier_state *state = env->cur_state;
11112 	struct bpf_insn *insns = env->prog->insnsi;
11113 	struct bpf_reg_state *regs;
11114 	int insn_cnt = env->prog->len;
11115 	bool do_print_state = false;
11116 	int prev_insn_idx = -1;
11117 
11118 	for (;;) {
11119 		struct bpf_insn *insn;
11120 		u8 class;
11121 		int err;
11122 
11123 		env->prev_insn_idx = prev_insn_idx;
11124 		if (env->insn_idx >= insn_cnt) {
11125 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
11126 				env->insn_idx, insn_cnt);
11127 			return -EFAULT;
11128 		}
11129 
11130 		insn = &insns[env->insn_idx];
11131 		class = BPF_CLASS(insn->code);
11132 
11133 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
11134 			verbose(env,
11135 				"BPF program is too large. Processed %d insn\n",
11136 				env->insn_processed);
11137 			return -E2BIG;
11138 		}
11139 
11140 		err = is_state_visited(env, env->insn_idx);
11141 		if (err < 0)
11142 			return err;
11143 		if (err == 1) {
11144 			/* found equivalent state, can prune the search */
11145 			if (env->log.level & BPF_LOG_LEVEL) {
11146 				if (do_print_state)
11147 					verbose(env, "\nfrom %d to %d%s: safe\n",
11148 						env->prev_insn_idx, env->insn_idx,
11149 						env->cur_state->speculative ?
11150 						" (speculative execution)" : "");
11151 				else
11152 					verbose(env, "%d: safe\n", env->insn_idx);
11153 			}
11154 			goto process_bpf_exit;
11155 		}
11156 
11157 		if (signal_pending(current))
11158 			return -EAGAIN;
11159 
11160 		if (need_resched())
11161 			cond_resched();
11162 
11163 		if (env->log.level & BPF_LOG_LEVEL2 ||
11164 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
11165 			if (env->log.level & BPF_LOG_LEVEL2)
11166 				verbose(env, "%d:", env->insn_idx);
11167 			else
11168 				verbose(env, "\nfrom %d to %d%s:",
11169 					env->prev_insn_idx, env->insn_idx,
11170 					env->cur_state->speculative ?
11171 					" (speculative execution)" : "");
11172 			print_verifier_state(env, state->frame[state->curframe]);
11173 			do_print_state = false;
11174 		}
11175 
11176 		if (env->log.level & BPF_LOG_LEVEL) {
11177 			const struct bpf_insn_cbs cbs = {
11178 				.cb_call	= disasm_kfunc_name,
11179 				.cb_print	= verbose,
11180 				.private_data	= env,
11181 			};
11182 
11183 			verbose_linfo(env, env->insn_idx, "; ");
11184 			verbose(env, "%d: ", env->insn_idx);
11185 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
11186 		}
11187 
11188 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
11189 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
11190 							   env->prev_insn_idx);
11191 			if (err)
11192 				return err;
11193 		}
11194 
11195 		regs = cur_regs(env);
11196 		sanitize_mark_insn_seen(env);
11197 		prev_insn_idx = env->insn_idx;
11198 
11199 		if (class == BPF_ALU || class == BPF_ALU64) {
11200 			err = check_alu_op(env, insn);
11201 			if (err)
11202 				return err;
11203 
11204 		} else if (class == BPF_LDX) {
11205 			enum bpf_reg_type *prev_src_type, src_reg_type;
11206 
11207 			/* check for reserved fields is already done */
11208 
11209 			/* check src operand */
11210 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
11211 			if (err)
11212 				return err;
11213 
11214 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
11215 			if (err)
11216 				return err;
11217 
11218 			src_reg_type = regs[insn->src_reg].type;
11219 
11220 			/* check that memory (src_reg + off) is readable,
11221 			 * the state of dst_reg will be updated by this func
11222 			 */
11223 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
11224 					       insn->off, BPF_SIZE(insn->code),
11225 					       BPF_READ, insn->dst_reg, false);
11226 			if (err)
11227 				return err;
11228 
11229 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
11230 
11231 			if (*prev_src_type == NOT_INIT) {
11232 				/* saw a valid insn
11233 				 * dst_reg = *(u32 *)(src_reg + off)
11234 				 * save type to validate intersecting paths
11235 				 */
11236 				*prev_src_type = src_reg_type;
11237 
11238 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
11239 				/* ABuser program is trying to use the same insn
11240 				 * dst_reg = *(u32*) (src_reg + off)
11241 				 * with different pointer types:
11242 				 * src_reg == ctx in one branch and
11243 				 * src_reg == stack|map in some other branch.
11244 				 * Reject it.
11245 				 */
11246 				verbose(env, "same insn cannot be used with different pointers\n");
11247 				return -EINVAL;
11248 			}
11249 
11250 		} else if (class == BPF_STX) {
11251 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
11252 
11253 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
11254 				err = check_atomic(env, env->insn_idx, insn);
11255 				if (err)
11256 					return err;
11257 				env->insn_idx++;
11258 				continue;
11259 			}
11260 
11261 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
11262 				verbose(env, "BPF_STX uses reserved fields\n");
11263 				return -EINVAL;
11264 			}
11265 
11266 			/* check src1 operand */
11267 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
11268 			if (err)
11269 				return err;
11270 			/* check src2 operand */
11271 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11272 			if (err)
11273 				return err;
11274 
11275 			dst_reg_type = regs[insn->dst_reg].type;
11276 
11277 			/* check that memory (dst_reg + off) is writeable */
11278 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11279 					       insn->off, BPF_SIZE(insn->code),
11280 					       BPF_WRITE, insn->src_reg, false);
11281 			if (err)
11282 				return err;
11283 
11284 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
11285 
11286 			if (*prev_dst_type == NOT_INIT) {
11287 				*prev_dst_type = dst_reg_type;
11288 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
11289 				verbose(env, "same insn cannot be used with different pointers\n");
11290 				return -EINVAL;
11291 			}
11292 
11293 		} else if (class == BPF_ST) {
11294 			if (BPF_MODE(insn->code) != BPF_MEM ||
11295 			    insn->src_reg != BPF_REG_0) {
11296 				verbose(env, "BPF_ST uses reserved fields\n");
11297 				return -EINVAL;
11298 			}
11299 			/* check src operand */
11300 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11301 			if (err)
11302 				return err;
11303 
11304 			if (is_ctx_reg(env, insn->dst_reg)) {
11305 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
11306 					insn->dst_reg,
11307 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
11308 				return -EACCES;
11309 			}
11310 
11311 			/* check that memory (dst_reg + off) is writeable */
11312 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11313 					       insn->off, BPF_SIZE(insn->code),
11314 					       BPF_WRITE, -1, false);
11315 			if (err)
11316 				return err;
11317 
11318 		} else if (class == BPF_JMP || class == BPF_JMP32) {
11319 			u8 opcode = BPF_OP(insn->code);
11320 
11321 			env->jmps_processed++;
11322 			if (opcode == BPF_CALL) {
11323 				if (BPF_SRC(insn->code) != BPF_K ||
11324 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
11325 				     && insn->off != 0) ||
11326 				    (insn->src_reg != BPF_REG_0 &&
11327 				     insn->src_reg != BPF_PSEUDO_CALL &&
11328 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
11329 				    insn->dst_reg != BPF_REG_0 ||
11330 				    class == BPF_JMP32) {
11331 					verbose(env, "BPF_CALL uses reserved fields\n");
11332 					return -EINVAL;
11333 				}
11334 
11335 				if (env->cur_state->active_spin_lock &&
11336 				    (insn->src_reg == BPF_PSEUDO_CALL ||
11337 				     insn->imm != BPF_FUNC_spin_unlock)) {
11338 					verbose(env, "function calls are not allowed while holding a lock\n");
11339 					return -EINVAL;
11340 				}
11341 				if (insn->src_reg == BPF_PSEUDO_CALL)
11342 					err = check_func_call(env, insn, &env->insn_idx);
11343 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
11344 					err = check_kfunc_call(env, insn);
11345 				else
11346 					err = check_helper_call(env, insn, &env->insn_idx);
11347 				if (err)
11348 					return err;
11349 			} else if (opcode == BPF_JA) {
11350 				if (BPF_SRC(insn->code) != BPF_K ||
11351 				    insn->imm != 0 ||
11352 				    insn->src_reg != BPF_REG_0 ||
11353 				    insn->dst_reg != BPF_REG_0 ||
11354 				    class == BPF_JMP32) {
11355 					verbose(env, "BPF_JA uses reserved fields\n");
11356 					return -EINVAL;
11357 				}
11358 
11359 				env->insn_idx += insn->off + 1;
11360 				continue;
11361 
11362 			} else if (opcode == BPF_EXIT) {
11363 				if (BPF_SRC(insn->code) != BPF_K ||
11364 				    insn->imm != 0 ||
11365 				    insn->src_reg != BPF_REG_0 ||
11366 				    insn->dst_reg != BPF_REG_0 ||
11367 				    class == BPF_JMP32) {
11368 					verbose(env, "BPF_EXIT uses reserved fields\n");
11369 					return -EINVAL;
11370 				}
11371 
11372 				if (env->cur_state->active_spin_lock) {
11373 					verbose(env, "bpf_spin_unlock is missing\n");
11374 					return -EINVAL;
11375 				}
11376 
11377 				if (state->curframe) {
11378 					/* exit from nested function */
11379 					err = prepare_func_exit(env, &env->insn_idx);
11380 					if (err)
11381 						return err;
11382 					do_print_state = true;
11383 					continue;
11384 				}
11385 
11386 				err = check_reference_leak(env);
11387 				if (err)
11388 					return err;
11389 
11390 				err = check_return_code(env);
11391 				if (err)
11392 					return err;
11393 process_bpf_exit:
11394 				update_branch_counts(env, env->cur_state);
11395 				err = pop_stack(env, &prev_insn_idx,
11396 						&env->insn_idx, pop_log);
11397 				if (err < 0) {
11398 					if (err != -ENOENT)
11399 						return err;
11400 					break;
11401 				} else {
11402 					do_print_state = true;
11403 					continue;
11404 				}
11405 			} else {
11406 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
11407 				if (err)
11408 					return err;
11409 			}
11410 		} else if (class == BPF_LD) {
11411 			u8 mode = BPF_MODE(insn->code);
11412 
11413 			if (mode == BPF_ABS || mode == BPF_IND) {
11414 				err = check_ld_abs(env, insn);
11415 				if (err)
11416 					return err;
11417 
11418 			} else if (mode == BPF_IMM) {
11419 				err = check_ld_imm(env, insn);
11420 				if (err)
11421 					return err;
11422 
11423 				env->insn_idx++;
11424 				sanitize_mark_insn_seen(env);
11425 			} else {
11426 				verbose(env, "invalid BPF_LD mode\n");
11427 				return -EINVAL;
11428 			}
11429 		} else {
11430 			verbose(env, "unknown insn class %d\n", class);
11431 			return -EINVAL;
11432 		}
11433 
11434 		env->insn_idx++;
11435 	}
11436 
11437 	return 0;
11438 }
11439 
11440 static int find_btf_percpu_datasec(struct btf *btf)
11441 {
11442 	const struct btf_type *t;
11443 	const char *tname;
11444 	int i, n;
11445 
11446 	/*
11447 	 * Both vmlinux and module each have their own ".data..percpu"
11448 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
11449 	 * types to look at only module's own BTF types.
11450 	 */
11451 	n = btf_nr_types(btf);
11452 	if (btf_is_module(btf))
11453 		i = btf_nr_types(btf_vmlinux);
11454 	else
11455 		i = 1;
11456 
11457 	for(; i < n; i++) {
11458 		t = btf_type_by_id(btf, i);
11459 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
11460 			continue;
11461 
11462 		tname = btf_name_by_offset(btf, t->name_off);
11463 		if (!strcmp(tname, ".data..percpu"))
11464 			return i;
11465 	}
11466 
11467 	return -ENOENT;
11468 }
11469 
11470 /* replace pseudo btf_id with kernel symbol address */
11471 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
11472 			       struct bpf_insn *insn,
11473 			       struct bpf_insn_aux_data *aux)
11474 {
11475 	const struct btf_var_secinfo *vsi;
11476 	const struct btf_type *datasec;
11477 	struct btf_mod_pair *btf_mod;
11478 	const struct btf_type *t;
11479 	const char *sym_name;
11480 	bool percpu = false;
11481 	u32 type, id = insn->imm;
11482 	struct btf *btf;
11483 	s32 datasec_id;
11484 	u64 addr;
11485 	int i, btf_fd, err;
11486 
11487 	btf_fd = insn[1].imm;
11488 	if (btf_fd) {
11489 		btf = btf_get_by_fd(btf_fd);
11490 		if (IS_ERR(btf)) {
11491 			verbose(env, "invalid module BTF object FD specified.\n");
11492 			return -EINVAL;
11493 		}
11494 	} else {
11495 		if (!btf_vmlinux) {
11496 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
11497 			return -EINVAL;
11498 		}
11499 		btf = btf_vmlinux;
11500 		btf_get(btf);
11501 	}
11502 
11503 	t = btf_type_by_id(btf, id);
11504 	if (!t) {
11505 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
11506 		err = -ENOENT;
11507 		goto err_put;
11508 	}
11509 
11510 	if (!btf_type_is_var(t)) {
11511 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
11512 		err = -EINVAL;
11513 		goto err_put;
11514 	}
11515 
11516 	sym_name = btf_name_by_offset(btf, t->name_off);
11517 	addr = kallsyms_lookup_name(sym_name);
11518 	if (!addr) {
11519 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
11520 			sym_name);
11521 		err = -ENOENT;
11522 		goto err_put;
11523 	}
11524 
11525 	datasec_id = find_btf_percpu_datasec(btf);
11526 	if (datasec_id > 0) {
11527 		datasec = btf_type_by_id(btf, datasec_id);
11528 		for_each_vsi(i, datasec, vsi) {
11529 			if (vsi->type == id) {
11530 				percpu = true;
11531 				break;
11532 			}
11533 		}
11534 	}
11535 
11536 	insn[0].imm = (u32)addr;
11537 	insn[1].imm = addr >> 32;
11538 
11539 	type = t->type;
11540 	t = btf_type_skip_modifiers(btf, type, NULL);
11541 	if (percpu) {
11542 		aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
11543 		aux->btf_var.btf = btf;
11544 		aux->btf_var.btf_id = type;
11545 	} else if (!btf_type_is_struct(t)) {
11546 		const struct btf_type *ret;
11547 		const char *tname;
11548 		u32 tsize;
11549 
11550 		/* resolve the type size of ksym. */
11551 		ret = btf_resolve_size(btf, t, &tsize);
11552 		if (IS_ERR(ret)) {
11553 			tname = btf_name_by_offset(btf, t->name_off);
11554 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
11555 				tname, PTR_ERR(ret));
11556 			err = -EINVAL;
11557 			goto err_put;
11558 		}
11559 		aux->btf_var.reg_type = PTR_TO_MEM;
11560 		aux->btf_var.mem_size = tsize;
11561 	} else {
11562 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
11563 		aux->btf_var.btf = btf;
11564 		aux->btf_var.btf_id = type;
11565 	}
11566 
11567 	/* check whether we recorded this BTF (and maybe module) already */
11568 	for (i = 0; i < env->used_btf_cnt; i++) {
11569 		if (env->used_btfs[i].btf == btf) {
11570 			btf_put(btf);
11571 			return 0;
11572 		}
11573 	}
11574 
11575 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
11576 		err = -E2BIG;
11577 		goto err_put;
11578 	}
11579 
11580 	btf_mod = &env->used_btfs[env->used_btf_cnt];
11581 	btf_mod->btf = btf;
11582 	btf_mod->module = NULL;
11583 
11584 	/* if we reference variables from kernel module, bump its refcount */
11585 	if (btf_is_module(btf)) {
11586 		btf_mod->module = btf_try_get_module(btf);
11587 		if (!btf_mod->module) {
11588 			err = -ENXIO;
11589 			goto err_put;
11590 		}
11591 	}
11592 
11593 	env->used_btf_cnt++;
11594 
11595 	return 0;
11596 err_put:
11597 	btf_put(btf);
11598 	return err;
11599 }
11600 
11601 static int check_map_prealloc(struct bpf_map *map)
11602 {
11603 	return (map->map_type != BPF_MAP_TYPE_HASH &&
11604 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
11605 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
11606 		!(map->map_flags & BPF_F_NO_PREALLOC);
11607 }
11608 
11609 static bool is_tracing_prog_type(enum bpf_prog_type type)
11610 {
11611 	switch (type) {
11612 	case BPF_PROG_TYPE_KPROBE:
11613 	case BPF_PROG_TYPE_TRACEPOINT:
11614 	case BPF_PROG_TYPE_PERF_EVENT:
11615 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
11616 		return true;
11617 	default:
11618 		return false;
11619 	}
11620 }
11621 
11622 static bool is_preallocated_map(struct bpf_map *map)
11623 {
11624 	if (!check_map_prealloc(map))
11625 		return false;
11626 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
11627 		return false;
11628 	return true;
11629 }
11630 
11631 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
11632 					struct bpf_map *map,
11633 					struct bpf_prog *prog)
11634 
11635 {
11636 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
11637 	/*
11638 	 * Validate that trace type programs use preallocated hash maps.
11639 	 *
11640 	 * For programs attached to PERF events this is mandatory as the
11641 	 * perf NMI can hit any arbitrary code sequence.
11642 	 *
11643 	 * All other trace types using preallocated hash maps are unsafe as
11644 	 * well because tracepoint or kprobes can be inside locked regions
11645 	 * of the memory allocator or at a place where a recursion into the
11646 	 * memory allocator would see inconsistent state.
11647 	 *
11648 	 * On RT enabled kernels run-time allocation of all trace type
11649 	 * programs is strictly prohibited due to lock type constraints. On
11650 	 * !RT kernels it is allowed for backwards compatibility reasons for
11651 	 * now, but warnings are emitted so developers are made aware of
11652 	 * the unsafety and can fix their programs before this is enforced.
11653 	 */
11654 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
11655 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
11656 			verbose(env, "perf_event programs can only use preallocated hash map\n");
11657 			return -EINVAL;
11658 		}
11659 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
11660 			verbose(env, "trace type programs can only use preallocated hash map\n");
11661 			return -EINVAL;
11662 		}
11663 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
11664 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
11665 	}
11666 
11667 	if (map_value_has_spin_lock(map)) {
11668 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
11669 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
11670 			return -EINVAL;
11671 		}
11672 
11673 		if (is_tracing_prog_type(prog_type)) {
11674 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
11675 			return -EINVAL;
11676 		}
11677 
11678 		if (prog->aux->sleepable) {
11679 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
11680 			return -EINVAL;
11681 		}
11682 	}
11683 
11684 	if (map_value_has_timer(map)) {
11685 		if (is_tracing_prog_type(prog_type)) {
11686 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
11687 			return -EINVAL;
11688 		}
11689 	}
11690 
11691 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
11692 	    !bpf_offload_prog_map_match(prog, map)) {
11693 		verbose(env, "offload device mismatch between prog and map\n");
11694 		return -EINVAL;
11695 	}
11696 
11697 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
11698 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
11699 		return -EINVAL;
11700 	}
11701 
11702 	if (prog->aux->sleepable)
11703 		switch (map->map_type) {
11704 		case BPF_MAP_TYPE_HASH:
11705 		case BPF_MAP_TYPE_LRU_HASH:
11706 		case BPF_MAP_TYPE_ARRAY:
11707 		case BPF_MAP_TYPE_PERCPU_HASH:
11708 		case BPF_MAP_TYPE_PERCPU_ARRAY:
11709 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
11710 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
11711 		case BPF_MAP_TYPE_HASH_OF_MAPS:
11712 			if (!is_preallocated_map(map)) {
11713 				verbose(env,
11714 					"Sleepable programs can only use preallocated maps\n");
11715 				return -EINVAL;
11716 			}
11717 			break;
11718 		case BPF_MAP_TYPE_RINGBUF:
11719 			break;
11720 		default:
11721 			verbose(env,
11722 				"Sleepable programs can only use array, hash, and ringbuf maps\n");
11723 			return -EINVAL;
11724 		}
11725 
11726 	return 0;
11727 }
11728 
11729 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
11730 {
11731 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
11732 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
11733 }
11734 
11735 /* find and rewrite pseudo imm in ld_imm64 instructions:
11736  *
11737  * 1. if it accesses map FD, replace it with actual map pointer.
11738  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
11739  *
11740  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
11741  */
11742 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
11743 {
11744 	struct bpf_insn *insn = env->prog->insnsi;
11745 	int insn_cnt = env->prog->len;
11746 	int i, j, err;
11747 
11748 	err = bpf_prog_calc_tag(env->prog);
11749 	if (err)
11750 		return err;
11751 
11752 	for (i = 0; i < insn_cnt; i++, insn++) {
11753 		if (BPF_CLASS(insn->code) == BPF_LDX &&
11754 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
11755 			verbose(env, "BPF_LDX uses reserved fields\n");
11756 			return -EINVAL;
11757 		}
11758 
11759 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
11760 			struct bpf_insn_aux_data *aux;
11761 			struct bpf_map *map;
11762 			struct fd f;
11763 			u64 addr;
11764 			u32 fd;
11765 
11766 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
11767 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
11768 			    insn[1].off != 0) {
11769 				verbose(env, "invalid bpf_ld_imm64 insn\n");
11770 				return -EINVAL;
11771 			}
11772 
11773 			if (insn[0].src_reg == 0)
11774 				/* valid generic load 64-bit imm */
11775 				goto next_insn;
11776 
11777 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
11778 				aux = &env->insn_aux_data[i];
11779 				err = check_pseudo_btf_id(env, insn, aux);
11780 				if (err)
11781 					return err;
11782 				goto next_insn;
11783 			}
11784 
11785 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
11786 				aux = &env->insn_aux_data[i];
11787 				aux->ptr_type = PTR_TO_FUNC;
11788 				goto next_insn;
11789 			}
11790 
11791 			/* In final convert_pseudo_ld_imm64() step, this is
11792 			 * converted into regular 64-bit imm load insn.
11793 			 */
11794 			switch (insn[0].src_reg) {
11795 			case BPF_PSEUDO_MAP_VALUE:
11796 			case BPF_PSEUDO_MAP_IDX_VALUE:
11797 				break;
11798 			case BPF_PSEUDO_MAP_FD:
11799 			case BPF_PSEUDO_MAP_IDX:
11800 				if (insn[1].imm == 0)
11801 					break;
11802 				fallthrough;
11803 			default:
11804 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
11805 				return -EINVAL;
11806 			}
11807 
11808 			switch (insn[0].src_reg) {
11809 			case BPF_PSEUDO_MAP_IDX_VALUE:
11810 			case BPF_PSEUDO_MAP_IDX:
11811 				if (bpfptr_is_null(env->fd_array)) {
11812 					verbose(env, "fd_idx without fd_array is invalid\n");
11813 					return -EPROTO;
11814 				}
11815 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
11816 							    insn[0].imm * sizeof(fd),
11817 							    sizeof(fd)))
11818 					return -EFAULT;
11819 				break;
11820 			default:
11821 				fd = insn[0].imm;
11822 				break;
11823 			}
11824 
11825 			f = fdget(fd);
11826 			map = __bpf_map_get(f);
11827 			if (IS_ERR(map)) {
11828 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
11829 					insn[0].imm);
11830 				return PTR_ERR(map);
11831 			}
11832 
11833 			err = check_map_prog_compatibility(env, map, env->prog);
11834 			if (err) {
11835 				fdput(f);
11836 				return err;
11837 			}
11838 
11839 			aux = &env->insn_aux_data[i];
11840 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
11841 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
11842 				addr = (unsigned long)map;
11843 			} else {
11844 				u32 off = insn[1].imm;
11845 
11846 				if (off >= BPF_MAX_VAR_OFF) {
11847 					verbose(env, "direct value offset of %u is not allowed\n", off);
11848 					fdput(f);
11849 					return -EINVAL;
11850 				}
11851 
11852 				if (!map->ops->map_direct_value_addr) {
11853 					verbose(env, "no direct value access support for this map type\n");
11854 					fdput(f);
11855 					return -EINVAL;
11856 				}
11857 
11858 				err = map->ops->map_direct_value_addr(map, &addr, off);
11859 				if (err) {
11860 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
11861 						map->value_size, off);
11862 					fdput(f);
11863 					return err;
11864 				}
11865 
11866 				aux->map_off = off;
11867 				addr += off;
11868 			}
11869 
11870 			insn[0].imm = (u32)addr;
11871 			insn[1].imm = addr >> 32;
11872 
11873 			/* check whether we recorded this map already */
11874 			for (j = 0; j < env->used_map_cnt; j++) {
11875 				if (env->used_maps[j] == map) {
11876 					aux->map_index = j;
11877 					fdput(f);
11878 					goto next_insn;
11879 				}
11880 			}
11881 
11882 			if (env->used_map_cnt >= MAX_USED_MAPS) {
11883 				fdput(f);
11884 				return -E2BIG;
11885 			}
11886 
11887 			/* hold the map. If the program is rejected by verifier,
11888 			 * the map will be released by release_maps() or it
11889 			 * will be used by the valid program until it's unloaded
11890 			 * and all maps are released in free_used_maps()
11891 			 */
11892 			bpf_map_inc(map);
11893 
11894 			aux->map_index = env->used_map_cnt;
11895 			env->used_maps[env->used_map_cnt++] = map;
11896 
11897 			if (bpf_map_is_cgroup_storage(map) &&
11898 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
11899 				verbose(env, "only one cgroup storage of each type is allowed\n");
11900 				fdput(f);
11901 				return -EBUSY;
11902 			}
11903 
11904 			fdput(f);
11905 next_insn:
11906 			insn++;
11907 			i++;
11908 			continue;
11909 		}
11910 
11911 		/* Basic sanity check before we invest more work here. */
11912 		if (!bpf_opcode_in_insntable(insn->code)) {
11913 			verbose(env, "unknown opcode %02x\n", insn->code);
11914 			return -EINVAL;
11915 		}
11916 	}
11917 
11918 	/* now all pseudo BPF_LD_IMM64 instructions load valid
11919 	 * 'struct bpf_map *' into a register instead of user map_fd.
11920 	 * These pointers will be used later by verifier to validate map access.
11921 	 */
11922 	return 0;
11923 }
11924 
11925 /* drop refcnt of maps used by the rejected program */
11926 static void release_maps(struct bpf_verifier_env *env)
11927 {
11928 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
11929 			     env->used_map_cnt);
11930 }
11931 
11932 /* drop refcnt of maps used by the rejected program */
11933 static void release_btfs(struct bpf_verifier_env *env)
11934 {
11935 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
11936 			     env->used_btf_cnt);
11937 }
11938 
11939 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
11940 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
11941 {
11942 	struct bpf_insn *insn = env->prog->insnsi;
11943 	int insn_cnt = env->prog->len;
11944 	int i;
11945 
11946 	for (i = 0; i < insn_cnt; i++, insn++) {
11947 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
11948 			continue;
11949 		if (insn->src_reg == BPF_PSEUDO_FUNC)
11950 			continue;
11951 		insn->src_reg = 0;
11952 	}
11953 }
11954 
11955 /* single env->prog->insni[off] instruction was replaced with the range
11956  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
11957  * [0, off) and [off, end) to new locations, so the patched range stays zero
11958  */
11959 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
11960 				 struct bpf_insn_aux_data *new_data,
11961 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
11962 {
11963 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
11964 	struct bpf_insn *insn = new_prog->insnsi;
11965 	u32 old_seen = old_data[off].seen;
11966 	u32 prog_len;
11967 	int i;
11968 
11969 	/* aux info at OFF always needs adjustment, no matter fast path
11970 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
11971 	 * original insn at old prog.
11972 	 */
11973 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
11974 
11975 	if (cnt == 1)
11976 		return;
11977 	prog_len = new_prog->len;
11978 
11979 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
11980 	memcpy(new_data + off + cnt - 1, old_data + off,
11981 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
11982 	for (i = off; i < off + cnt - 1; i++) {
11983 		/* Expand insni[off]'s seen count to the patched range. */
11984 		new_data[i].seen = old_seen;
11985 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
11986 	}
11987 	env->insn_aux_data = new_data;
11988 	vfree(old_data);
11989 }
11990 
11991 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
11992 {
11993 	int i;
11994 
11995 	if (len == 1)
11996 		return;
11997 	/* NOTE: fake 'exit' subprog should be updated as well. */
11998 	for (i = 0; i <= env->subprog_cnt; i++) {
11999 		if (env->subprog_info[i].start <= off)
12000 			continue;
12001 		env->subprog_info[i].start += len - 1;
12002 	}
12003 }
12004 
12005 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
12006 {
12007 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
12008 	int i, sz = prog->aux->size_poke_tab;
12009 	struct bpf_jit_poke_descriptor *desc;
12010 
12011 	for (i = 0; i < sz; i++) {
12012 		desc = &tab[i];
12013 		if (desc->insn_idx <= off)
12014 			continue;
12015 		desc->insn_idx += len - 1;
12016 	}
12017 }
12018 
12019 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
12020 					    const struct bpf_insn *patch, u32 len)
12021 {
12022 	struct bpf_prog *new_prog;
12023 	struct bpf_insn_aux_data *new_data = NULL;
12024 
12025 	if (len > 1) {
12026 		new_data = vzalloc(array_size(env->prog->len + len - 1,
12027 					      sizeof(struct bpf_insn_aux_data)));
12028 		if (!new_data)
12029 			return NULL;
12030 	}
12031 
12032 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
12033 	if (IS_ERR(new_prog)) {
12034 		if (PTR_ERR(new_prog) == -ERANGE)
12035 			verbose(env,
12036 				"insn %d cannot be patched due to 16-bit range\n",
12037 				env->insn_aux_data[off].orig_idx);
12038 		vfree(new_data);
12039 		return NULL;
12040 	}
12041 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
12042 	adjust_subprog_starts(env, off, len);
12043 	adjust_poke_descs(new_prog, off, len);
12044 	return new_prog;
12045 }
12046 
12047 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
12048 					      u32 off, u32 cnt)
12049 {
12050 	int i, j;
12051 
12052 	/* find first prog starting at or after off (first to remove) */
12053 	for (i = 0; i < env->subprog_cnt; i++)
12054 		if (env->subprog_info[i].start >= off)
12055 			break;
12056 	/* find first prog starting at or after off + cnt (first to stay) */
12057 	for (j = i; j < env->subprog_cnt; j++)
12058 		if (env->subprog_info[j].start >= off + cnt)
12059 			break;
12060 	/* if j doesn't start exactly at off + cnt, we are just removing
12061 	 * the front of previous prog
12062 	 */
12063 	if (env->subprog_info[j].start != off + cnt)
12064 		j--;
12065 
12066 	if (j > i) {
12067 		struct bpf_prog_aux *aux = env->prog->aux;
12068 		int move;
12069 
12070 		/* move fake 'exit' subprog as well */
12071 		move = env->subprog_cnt + 1 - j;
12072 
12073 		memmove(env->subprog_info + i,
12074 			env->subprog_info + j,
12075 			sizeof(*env->subprog_info) * move);
12076 		env->subprog_cnt -= j - i;
12077 
12078 		/* remove func_info */
12079 		if (aux->func_info) {
12080 			move = aux->func_info_cnt - j;
12081 
12082 			memmove(aux->func_info + i,
12083 				aux->func_info + j,
12084 				sizeof(*aux->func_info) * move);
12085 			aux->func_info_cnt -= j - i;
12086 			/* func_info->insn_off is set after all code rewrites,
12087 			 * in adjust_btf_func() - no need to adjust
12088 			 */
12089 		}
12090 	} else {
12091 		/* convert i from "first prog to remove" to "first to adjust" */
12092 		if (env->subprog_info[i].start == off)
12093 			i++;
12094 	}
12095 
12096 	/* update fake 'exit' subprog as well */
12097 	for (; i <= env->subprog_cnt; i++)
12098 		env->subprog_info[i].start -= cnt;
12099 
12100 	return 0;
12101 }
12102 
12103 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
12104 				      u32 cnt)
12105 {
12106 	struct bpf_prog *prog = env->prog;
12107 	u32 i, l_off, l_cnt, nr_linfo;
12108 	struct bpf_line_info *linfo;
12109 
12110 	nr_linfo = prog->aux->nr_linfo;
12111 	if (!nr_linfo)
12112 		return 0;
12113 
12114 	linfo = prog->aux->linfo;
12115 
12116 	/* find first line info to remove, count lines to be removed */
12117 	for (i = 0; i < nr_linfo; i++)
12118 		if (linfo[i].insn_off >= off)
12119 			break;
12120 
12121 	l_off = i;
12122 	l_cnt = 0;
12123 	for (; i < nr_linfo; i++)
12124 		if (linfo[i].insn_off < off + cnt)
12125 			l_cnt++;
12126 		else
12127 			break;
12128 
12129 	/* First live insn doesn't match first live linfo, it needs to "inherit"
12130 	 * last removed linfo.  prog is already modified, so prog->len == off
12131 	 * means no live instructions after (tail of the program was removed).
12132 	 */
12133 	if (prog->len != off && l_cnt &&
12134 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
12135 		l_cnt--;
12136 		linfo[--i].insn_off = off + cnt;
12137 	}
12138 
12139 	/* remove the line info which refer to the removed instructions */
12140 	if (l_cnt) {
12141 		memmove(linfo + l_off, linfo + i,
12142 			sizeof(*linfo) * (nr_linfo - i));
12143 
12144 		prog->aux->nr_linfo -= l_cnt;
12145 		nr_linfo = prog->aux->nr_linfo;
12146 	}
12147 
12148 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
12149 	for (i = l_off; i < nr_linfo; i++)
12150 		linfo[i].insn_off -= cnt;
12151 
12152 	/* fix up all subprogs (incl. 'exit') which start >= off */
12153 	for (i = 0; i <= env->subprog_cnt; i++)
12154 		if (env->subprog_info[i].linfo_idx > l_off) {
12155 			/* program may have started in the removed region but
12156 			 * may not be fully removed
12157 			 */
12158 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
12159 				env->subprog_info[i].linfo_idx -= l_cnt;
12160 			else
12161 				env->subprog_info[i].linfo_idx = l_off;
12162 		}
12163 
12164 	return 0;
12165 }
12166 
12167 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
12168 {
12169 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12170 	unsigned int orig_prog_len = env->prog->len;
12171 	int err;
12172 
12173 	if (bpf_prog_is_dev_bound(env->prog->aux))
12174 		bpf_prog_offload_remove_insns(env, off, cnt);
12175 
12176 	err = bpf_remove_insns(env->prog, off, cnt);
12177 	if (err)
12178 		return err;
12179 
12180 	err = adjust_subprog_starts_after_remove(env, off, cnt);
12181 	if (err)
12182 		return err;
12183 
12184 	err = bpf_adj_linfo_after_remove(env, off, cnt);
12185 	if (err)
12186 		return err;
12187 
12188 	memmove(aux_data + off,	aux_data + off + cnt,
12189 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
12190 
12191 	return 0;
12192 }
12193 
12194 /* The verifier does more data flow analysis than llvm and will not
12195  * explore branches that are dead at run time. Malicious programs can
12196  * have dead code too. Therefore replace all dead at-run-time code
12197  * with 'ja -1'.
12198  *
12199  * Just nops are not optimal, e.g. if they would sit at the end of the
12200  * program and through another bug we would manage to jump there, then
12201  * we'd execute beyond program memory otherwise. Returning exception
12202  * code also wouldn't work since we can have subprogs where the dead
12203  * code could be located.
12204  */
12205 static void sanitize_dead_code(struct bpf_verifier_env *env)
12206 {
12207 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12208 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
12209 	struct bpf_insn *insn = env->prog->insnsi;
12210 	const int insn_cnt = env->prog->len;
12211 	int i;
12212 
12213 	for (i = 0; i < insn_cnt; i++) {
12214 		if (aux_data[i].seen)
12215 			continue;
12216 		memcpy(insn + i, &trap, sizeof(trap));
12217 		aux_data[i].zext_dst = false;
12218 	}
12219 }
12220 
12221 static bool insn_is_cond_jump(u8 code)
12222 {
12223 	u8 op;
12224 
12225 	if (BPF_CLASS(code) == BPF_JMP32)
12226 		return true;
12227 
12228 	if (BPF_CLASS(code) != BPF_JMP)
12229 		return false;
12230 
12231 	op = BPF_OP(code);
12232 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
12233 }
12234 
12235 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
12236 {
12237 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12238 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12239 	struct bpf_insn *insn = env->prog->insnsi;
12240 	const int insn_cnt = env->prog->len;
12241 	int i;
12242 
12243 	for (i = 0; i < insn_cnt; i++, insn++) {
12244 		if (!insn_is_cond_jump(insn->code))
12245 			continue;
12246 
12247 		if (!aux_data[i + 1].seen)
12248 			ja.off = insn->off;
12249 		else if (!aux_data[i + 1 + insn->off].seen)
12250 			ja.off = 0;
12251 		else
12252 			continue;
12253 
12254 		if (bpf_prog_is_dev_bound(env->prog->aux))
12255 			bpf_prog_offload_replace_insn(env, i, &ja);
12256 
12257 		memcpy(insn, &ja, sizeof(ja));
12258 	}
12259 }
12260 
12261 static int opt_remove_dead_code(struct bpf_verifier_env *env)
12262 {
12263 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12264 	int insn_cnt = env->prog->len;
12265 	int i, err;
12266 
12267 	for (i = 0; i < insn_cnt; i++) {
12268 		int j;
12269 
12270 		j = 0;
12271 		while (i + j < insn_cnt && !aux_data[i + j].seen)
12272 			j++;
12273 		if (!j)
12274 			continue;
12275 
12276 		err = verifier_remove_insns(env, i, j);
12277 		if (err)
12278 			return err;
12279 		insn_cnt = env->prog->len;
12280 	}
12281 
12282 	return 0;
12283 }
12284 
12285 static int opt_remove_nops(struct bpf_verifier_env *env)
12286 {
12287 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12288 	struct bpf_insn *insn = env->prog->insnsi;
12289 	int insn_cnt = env->prog->len;
12290 	int i, err;
12291 
12292 	for (i = 0; i < insn_cnt; i++) {
12293 		if (memcmp(&insn[i], &ja, sizeof(ja)))
12294 			continue;
12295 
12296 		err = verifier_remove_insns(env, i, 1);
12297 		if (err)
12298 			return err;
12299 		insn_cnt--;
12300 		i--;
12301 	}
12302 
12303 	return 0;
12304 }
12305 
12306 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
12307 					 const union bpf_attr *attr)
12308 {
12309 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
12310 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
12311 	int i, patch_len, delta = 0, len = env->prog->len;
12312 	struct bpf_insn *insns = env->prog->insnsi;
12313 	struct bpf_prog *new_prog;
12314 	bool rnd_hi32;
12315 
12316 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
12317 	zext_patch[1] = BPF_ZEXT_REG(0);
12318 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
12319 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
12320 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
12321 	for (i = 0; i < len; i++) {
12322 		int adj_idx = i + delta;
12323 		struct bpf_insn insn;
12324 		int load_reg;
12325 
12326 		insn = insns[adj_idx];
12327 		load_reg = insn_def_regno(&insn);
12328 		if (!aux[adj_idx].zext_dst) {
12329 			u8 code, class;
12330 			u32 imm_rnd;
12331 
12332 			if (!rnd_hi32)
12333 				continue;
12334 
12335 			code = insn.code;
12336 			class = BPF_CLASS(code);
12337 			if (load_reg == -1)
12338 				continue;
12339 
12340 			/* NOTE: arg "reg" (the fourth one) is only used for
12341 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
12342 			 *       here.
12343 			 */
12344 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
12345 				if (class == BPF_LD &&
12346 				    BPF_MODE(code) == BPF_IMM)
12347 					i++;
12348 				continue;
12349 			}
12350 
12351 			/* ctx load could be transformed into wider load. */
12352 			if (class == BPF_LDX &&
12353 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
12354 				continue;
12355 
12356 			imm_rnd = get_random_int();
12357 			rnd_hi32_patch[0] = insn;
12358 			rnd_hi32_patch[1].imm = imm_rnd;
12359 			rnd_hi32_patch[3].dst_reg = load_reg;
12360 			patch = rnd_hi32_patch;
12361 			patch_len = 4;
12362 			goto apply_patch_buffer;
12363 		}
12364 
12365 		/* Add in an zero-extend instruction if a) the JIT has requested
12366 		 * it or b) it's a CMPXCHG.
12367 		 *
12368 		 * The latter is because: BPF_CMPXCHG always loads a value into
12369 		 * R0, therefore always zero-extends. However some archs'
12370 		 * equivalent instruction only does this load when the
12371 		 * comparison is successful. This detail of CMPXCHG is
12372 		 * orthogonal to the general zero-extension behaviour of the
12373 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
12374 		 */
12375 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
12376 			continue;
12377 
12378 		if (WARN_ON(load_reg == -1)) {
12379 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
12380 			return -EFAULT;
12381 		}
12382 
12383 		zext_patch[0] = insn;
12384 		zext_patch[1].dst_reg = load_reg;
12385 		zext_patch[1].src_reg = load_reg;
12386 		patch = zext_patch;
12387 		patch_len = 2;
12388 apply_patch_buffer:
12389 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
12390 		if (!new_prog)
12391 			return -ENOMEM;
12392 		env->prog = new_prog;
12393 		insns = new_prog->insnsi;
12394 		aux = env->insn_aux_data;
12395 		delta += patch_len - 1;
12396 	}
12397 
12398 	return 0;
12399 }
12400 
12401 /* convert load instructions that access fields of a context type into a
12402  * sequence of instructions that access fields of the underlying structure:
12403  *     struct __sk_buff    -> struct sk_buff
12404  *     struct bpf_sock_ops -> struct sock
12405  */
12406 static int convert_ctx_accesses(struct bpf_verifier_env *env)
12407 {
12408 	const struct bpf_verifier_ops *ops = env->ops;
12409 	int i, cnt, size, ctx_field_size, delta = 0;
12410 	const int insn_cnt = env->prog->len;
12411 	struct bpf_insn insn_buf[16], *insn;
12412 	u32 target_size, size_default, off;
12413 	struct bpf_prog *new_prog;
12414 	enum bpf_access_type type;
12415 	bool is_narrower_load;
12416 
12417 	if (ops->gen_prologue || env->seen_direct_write) {
12418 		if (!ops->gen_prologue) {
12419 			verbose(env, "bpf verifier is misconfigured\n");
12420 			return -EINVAL;
12421 		}
12422 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
12423 					env->prog);
12424 		if (cnt >= ARRAY_SIZE(insn_buf)) {
12425 			verbose(env, "bpf verifier is misconfigured\n");
12426 			return -EINVAL;
12427 		} else if (cnt) {
12428 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
12429 			if (!new_prog)
12430 				return -ENOMEM;
12431 
12432 			env->prog = new_prog;
12433 			delta += cnt - 1;
12434 		}
12435 	}
12436 
12437 	if (bpf_prog_is_dev_bound(env->prog->aux))
12438 		return 0;
12439 
12440 	insn = env->prog->insnsi + delta;
12441 
12442 	for (i = 0; i < insn_cnt; i++, insn++) {
12443 		bpf_convert_ctx_access_t convert_ctx_access;
12444 		bool ctx_access;
12445 
12446 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
12447 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
12448 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
12449 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
12450 			type = BPF_READ;
12451 			ctx_access = true;
12452 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
12453 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
12454 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
12455 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
12456 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
12457 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
12458 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
12459 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
12460 			type = BPF_WRITE;
12461 			ctx_access = BPF_CLASS(insn->code) == BPF_STX;
12462 		} else {
12463 			continue;
12464 		}
12465 
12466 		if (type == BPF_WRITE &&
12467 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
12468 			struct bpf_insn patch[] = {
12469 				*insn,
12470 				BPF_ST_NOSPEC(),
12471 			};
12472 
12473 			cnt = ARRAY_SIZE(patch);
12474 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
12475 			if (!new_prog)
12476 				return -ENOMEM;
12477 
12478 			delta    += cnt - 1;
12479 			env->prog = new_prog;
12480 			insn      = new_prog->insnsi + i + delta;
12481 			continue;
12482 		}
12483 
12484 		if (!ctx_access)
12485 			continue;
12486 
12487 		switch (env->insn_aux_data[i + delta].ptr_type) {
12488 		case PTR_TO_CTX:
12489 			if (!ops->convert_ctx_access)
12490 				continue;
12491 			convert_ctx_access = ops->convert_ctx_access;
12492 			break;
12493 		case PTR_TO_SOCKET:
12494 		case PTR_TO_SOCK_COMMON:
12495 			convert_ctx_access = bpf_sock_convert_ctx_access;
12496 			break;
12497 		case PTR_TO_TCP_SOCK:
12498 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
12499 			break;
12500 		case PTR_TO_XDP_SOCK:
12501 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
12502 			break;
12503 		case PTR_TO_BTF_ID:
12504 			if (type == BPF_READ) {
12505 				insn->code = BPF_LDX | BPF_PROBE_MEM |
12506 					BPF_SIZE((insn)->code);
12507 				env->prog->aux->num_exentries++;
12508 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
12509 				verbose(env, "Writes through BTF pointers are not allowed\n");
12510 				return -EINVAL;
12511 			}
12512 			continue;
12513 		default:
12514 			continue;
12515 		}
12516 
12517 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
12518 		size = BPF_LDST_BYTES(insn);
12519 
12520 		/* If the read access is a narrower load of the field,
12521 		 * convert to a 4/8-byte load, to minimum program type specific
12522 		 * convert_ctx_access changes. If conversion is successful,
12523 		 * we will apply proper mask to the result.
12524 		 */
12525 		is_narrower_load = size < ctx_field_size;
12526 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
12527 		off = insn->off;
12528 		if (is_narrower_load) {
12529 			u8 size_code;
12530 
12531 			if (type == BPF_WRITE) {
12532 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
12533 				return -EINVAL;
12534 			}
12535 
12536 			size_code = BPF_H;
12537 			if (ctx_field_size == 4)
12538 				size_code = BPF_W;
12539 			else if (ctx_field_size == 8)
12540 				size_code = BPF_DW;
12541 
12542 			insn->off = off & ~(size_default - 1);
12543 			insn->code = BPF_LDX | BPF_MEM | size_code;
12544 		}
12545 
12546 		target_size = 0;
12547 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
12548 					 &target_size);
12549 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
12550 		    (ctx_field_size && !target_size)) {
12551 			verbose(env, "bpf verifier is misconfigured\n");
12552 			return -EINVAL;
12553 		}
12554 
12555 		if (is_narrower_load && size < target_size) {
12556 			u8 shift = bpf_ctx_narrow_access_offset(
12557 				off, size, size_default) * 8;
12558 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
12559 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
12560 				return -EINVAL;
12561 			}
12562 			if (ctx_field_size <= 4) {
12563 				if (shift)
12564 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
12565 									insn->dst_reg,
12566 									shift);
12567 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
12568 								(1 << size * 8) - 1);
12569 			} else {
12570 				if (shift)
12571 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
12572 									insn->dst_reg,
12573 									shift);
12574 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
12575 								(1ULL << size * 8) - 1);
12576 			}
12577 		}
12578 
12579 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12580 		if (!new_prog)
12581 			return -ENOMEM;
12582 
12583 		delta += cnt - 1;
12584 
12585 		/* keep walking new program and skip insns we just inserted */
12586 		env->prog = new_prog;
12587 		insn      = new_prog->insnsi + i + delta;
12588 	}
12589 
12590 	return 0;
12591 }
12592 
12593 static int jit_subprogs(struct bpf_verifier_env *env)
12594 {
12595 	struct bpf_prog *prog = env->prog, **func, *tmp;
12596 	int i, j, subprog_start, subprog_end = 0, len, subprog;
12597 	struct bpf_map *map_ptr;
12598 	struct bpf_insn *insn;
12599 	void *old_bpf_func;
12600 	int err, num_exentries;
12601 
12602 	if (env->subprog_cnt <= 1)
12603 		return 0;
12604 
12605 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12606 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
12607 			continue;
12608 
12609 		/* Upon error here we cannot fall back to interpreter but
12610 		 * need a hard reject of the program. Thus -EFAULT is
12611 		 * propagated in any case.
12612 		 */
12613 		subprog = find_subprog(env, i + insn->imm + 1);
12614 		if (subprog < 0) {
12615 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
12616 				  i + insn->imm + 1);
12617 			return -EFAULT;
12618 		}
12619 		/* temporarily remember subprog id inside insn instead of
12620 		 * aux_data, since next loop will split up all insns into funcs
12621 		 */
12622 		insn->off = subprog;
12623 		/* remember original imm in case JIT fails and fallback
12624 		 * to interpreter will be needed
12625 		 */
12626 		env->insn_aux_data[i].call_imm = insn->imm;
12627 		/* point imm to __bpf_call_base+1 from JITs point of view */
12628 		insn->imm = 1;
12629 		if (bpf_pseudo_func(insn))
12630 			/* jit (e.g. x86_64) may emit fewer instructions
12631 			 * if it learns a u32 imm is the same as a u64 imm.
12632 			 * Force a non zero here.
12633 			 */
12634 			insn[1].imm = 1;
12635 	}
12636 
12637 	err = bpf_prog_alloc_jited_linfo(prog);
12638 	if (err)
12639 		goto out_undo_insn;
12640 
12641 	err = -ENOMEM;
12642 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
12643 	if (!func)
12644 		goto out_undo_insn;
12645 
12646 	for (i = 0; i < env->subprog_cnt; i++) {
12647 		subprog_start = subprog_end;
12648 		subprog_end = env->subprog_info[i + 1].start;
12649 
12650 		len = subprog_end - subprog_start;
12651 		/* bpf_prog_run() doesn't call subprogs directly,
12652 		 * hence main prog stats include the runtime of subprogs.
12653 		 * subprogs don't have IDs and not reachable via prog_get_next_id
12654 		 * func[i]->stats will never be accessed and stays NULL
12655 		 */
12656 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
12657 		if (!func[i])
12658 			goto out_free;
12659 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
12660 		       len * sizeof(struct bpf_insn));
12661 		func[i]->type = prog->type;
12662 		func[i]->len = len;
12663 		if (bpf_prog_calc_tag(func[i]))
12664 			goto out_free;
12665 		func[i]->is_func = 1;
12666 		func[i]->aux->func_idx = i;
12667 		/* Below members will be freed only at prog->aux */
12668 		func[i]->aux->btf = prog->aux->btf;
12669 		func[i]->aux->func_info = prog->aux->func_info;
12670 		func[i]->aux->poke_tab = prog->aux->poke_tab;
12671 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
12672 
12673 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
12674 			struct bpf_jit_poke_descriptor *poke;
12675 
12676 			poke = &prog->aux->poke_tab[j];
12677 			if (poke->insn_idx < subprog_end &&
12678 			    poke->insn_idx >= subprog_start)
12679 				poke->aux = func[i]->aux;
12680 		}
12681 
12682 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
12683 		 * Long term would need debug info to populate names
12684 		 */
12685 		func[i]->aux->name[0] = 'F';
12686 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
12687 		func[i]->jit_requested = 1;
12688 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
12689 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
12690 		func[i]->aux->linfo = prog->aux->linfo;
12691 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
12692 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
12693 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
12694 		num_exentries = 0;
12695 		insn = func[i]->insnsi;
12696 		for (j = 0; j < func[i]->len; j++, insn++) {
12697 			if (BPF_CLASS(insn->code) == BPF_LDX &&
12698 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
12699 				num_exentries++;
12700 		}
12701 		func[i]->aux->num_exentries = num_exentries;
12702 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
12703 		func[i] = bpf_int_jit_compile(func[i]);
12704 		if (!func[i]->jited) {
12705 			err = -ENOTSUPP;
12706 			goto out_free;
12707 		}
12708 		cond_resched();
12709 	}
12710 
12711 	/* at this point all bpf functions were successfully JITed
12712 	 * now populate all bpf_calls with correct addresses and
12713 	 * run last pass of JIT
12714 	 */
12715 	for (i = 0; i < env->subprog_cnt; i++) {
12716 		insn = func[i]->insnsi;
12717 		for (j = 0; j < func[i]->len; j++, insn++) {
12718 			if (bpf_pseudo_func(insn)) {
12719 				subprog = insn->off;
12720 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
12721 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
12722 				continue;
12723 			}
12724 			if (!bpf_pseudo_call(insn))
12725 				continue;
12726 			subprog = insn->off;
12727 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
12728 		}
12729 
12730 		/* we use the aux data to keep a list of the start addresses
12731 		 * of the JITed images for each function in the program
12732 		 *
12733 		 * for some architectures, such as powerpc64, the imm field
12734 		 * might not be large enough to hold the offset of the start
12735 		 * address of the callee's JITed image from __bpf_call_base
12736 		 *
12737 		 * in such cases, we can lookup the start address of a callee
12738 		 * by using its subprog id, available from the off field of
12739 		 * the call instruction, as an index for this list
12740 		 */
12741 		func[i]->aux->func = func;
12742 		func[i]->aux->func_cnt = env->subprog_cnt;
12743 	}
12744 	for (i = 0; i < env->subprog_cnt; i++) {
12745 		old_bpf_func = func[i]->bpf_func;
12746 		tmp = bpf_int_jit_compile(func[i]);
12747 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
12748 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
12749 			err = -ENOTSUPP;
12750 			goto out_free;
12751 		}
12752 		cond_resched();
12753 	}
12754 
12755 	/* finally lock prog and jit images for all functions and
12756 	 * populate kallsysm
12757 	 */
12758 	for (i = 0; i < env->subprog_cnt; i++) {
12759 		bpf_prog_lock_ro(func[i]);
12760 		bpf_prog_kallsyms_add(func[i]);
12761 	}
12762 
12763 	/* Last step: make now unused interpreter insns from main
12764 	 * prog consistent for later dump requests, so they can
12765 	 * later look the same as if they were interpreted only.
12766 	 */
12767 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12768 		if (bpf_pseudo_func(insn)) {
12769 			insn[0].imm = env->insn_aux_data[i].call_imm;
12770 			insn[1].imm = insn->off;
12771 			insn->off = 0;
12772 			continue;
12773 		}
12774 		if (!bpf_pseudo_call(insn))
12775 			continue;
12776 		insn->off = env->insn_aux_data[i].call_imm;
12777 		subprog = find_subprog(env, i + insn->off + 1);
12778 		insn->imm = subprog;
12779 	}
12780 
12781 	prog->jited = 1;
12782 	prog->bpf_func = func[0]->bpf_func;
12783 	prog->aux->func = func;
12784 	prog->aux->func_cnt = env->subprog_cnt;
12785 	bpf_prog_jit_attempt_done(prog);
12786 	return 0;
12787 out_free:
12788 	/* We failed JIT'ing, so at this point we need to unregister poke
12789 	 * descriptors from subprogs, so that kernel is not attempting to
12790 	 * patch it anymore as we're freeing the subprog JIT memory.
12791 	 */
12792 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
12793 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
12794 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
12795 	}
12796 	/* At this point we're guaranteed that poke descriptors are not
12797 	 * live anymore. We can just unlink its descriptor table as it's
12798 	 * released with the main prog.
12799 	 */
12800 	for (i = 0; i < env->subprog_cnt; i++) {
12801 		if (!func[i])
12802 			continue;
12803 		func[i]->aux->poke_tab = NULL;
12804 		bpf_jit_free(func[i]);
12805 	}
12806 	kfree(func);
12807 out_undo_insn:
12808 	/* cleanup main prog to be interpreted */
12809 	prog->jit_requested = 0;
12810 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12811 		if (!bpf_pseudo_call(insn))
12812 			continue;
12813 		insn->off = 0;
12814 		insn->imm = env->insn_aux_data[i].call_imm;
12815 	}
12816 	bpf_prog_jit_attempt_done(prog);
12817 	return err;
12818 }
12819 
12820 static int fixup_call_args(struct bpf_verifier_env *env)
12821 {
12822 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12823 	struct bpf_prog *prog = env->prog;
12824 	struct bpf_insn *insn = prog->insnsi;
12825 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
12826 	int i, depth;
12827 #endif
12828 	int err = 0;
12829 
12830 	if (env->prog->jit_requested &&
12831 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
12832 		err = jit_subprogs(env);
12833 		if (err == 0)
12834 			return 0;
12835 		if (err == -EFAULT)
12836 			return err;
12837 	}
12838 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12839 	if (has_kfunc_call) {
12840 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
12841 		return -EINVAL;
12842 	}
12843 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
12844 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
12845 		 * have to be rejected, since interpreter doesn't support them yet.
12846 		 */
12847 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
12848 		return -EINVAL;
12849 	}
12850 	for (i = 0; i < prog->len; i++, insn++) {
12851 		if (bpf_pseudo_func(insn)) {
12852 			/* When JIT fails the progs with callback calls
12853 			 * have to be rejected, since interpreter doesn't support them yet.
12854 			 */
12855 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
12856 			return -EINVAL;
12857 		}
12858 
12859 		if (!bpf_pseudo_call(insn))
12860 			continue;
12861 		depth = get_callee_stack_depth(env, insn, i);
12862 		if (depth < 0)
12863 			return depth;
12864 		bpf_patch_call_args(insn, depth);
12865 	}
12866 	err = 0;
12867 #endif
12868 	return err;
12869 }
12870 
12871 static int fixup_kfunc_call(struct bpf_verifier_env *env,
12872 			    struct bpf_insn *insn)
12873 {
12874 	const struct bpf_kfunc_desc *desc;
12875 
12876 	if (!insn->imm) {
12877 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
12878 		return -EINVAL;
12879 	}
12880 
12881 	/* insn->imm has the btf func_id. Replace it with
12882 	 * an address (relative to __bpf_base_call).
12883 	 */
12884 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
12885 	if (!desc) {
12886 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
12887 			insn->imm);
12888 		return -EFAULT;
12889 	}
12890 
12891 	insn->imm = desc->imm;
12892 
12893 	return 0;
12894 }
12895 
12896 /* Do various post-verification rewrites in a single program pass.
12897  * These rewrites simplify JIT and interpreter implementations.
12898  */
12899 static int do_misc_fixups(struct bpf_verifier_env *env)
12900 {
12901 	struct bpf_prog *prog = env->prog;
12902 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
12903 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
12904 	struct bpf_insn *insn = prog->insnsi;
12905 	const struct bpf_func_proto *fn;
12906 	const int insn_cnt = prog->len;
12907 	const struct bpf_map_ops *ops;
12908 	struct bpf_insn_aux_data *aux;
12909 	struct bpf_insn insn_buf[16];
12910 	struct bpf_prog *new_prog;
12911 	struct bpf_map *map_ptr;
12912 	int i, ret, cnt, delta = 0;
12913 
12914 	for (i = 0; i < insn_cnt; i++, insn++) {
12915 		/* Make divide-by-zero exceptions impossible. */
12916 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
12917 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
12918 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
12919 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
12920 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
12921 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
12922 			struct bpf_insn *patchlet;
12923 			struct bpf_insn chk_and_div[] = {
12924 				/* [R,W]x div 0 -> 0 */
12925 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12926 					     BPF_JNE | BPF_K, insn->src_reg,
12927 					     0, 2, 0),
12928 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
12929 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12930 				*insn,
12931 			};
12932 			struct bpf_insn chk_and_mod[] = {
12933 				/* [R,W]x mod 0 -> [R,W]x */
12934 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12935 					     BPF_JEQ | BPF_K, insn->src_reg,
12936 					     0, 1 + (is64 ? 0 : 1), 0),
12937 				*insn,
12938 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12939 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
12940 			};
12941 
12942 			patchlet = isdiv ? chk_and_div : chk_and_mod;
12943 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
12944 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
12945 
12946 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
12947 			if (!new_prog)
12948 				return -ENOMEM;
12949 
12950 			delta    += cnt - 1;
12951 			env->prog = prog = new_prog;
12952 			insn      = new_prog->insnsi + i + delta;
12953 			continue;
12954 		}
12955 
12956 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
12957 		if (BPF_CLASS(insn->code) == BPF_LD &&
12958 		    (BPF_MODE(insn->code) == BPF_ABS ||
12959 		     BPF_MODE(insn->code) == BPF_IND)) {
12960 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
12961 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12962 				verbose(env, "bpf verifier is misconfigured\n");
12963 				return -EINVAL;
12964 			}
12965 
12966 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12967 			if (!new_prog)
12968 				return -ENOMEM;
12969 
12970 			delta    += cnt - 1;
12971 			env->prog = prog = new_prog;
12972 			insn      = new_prog->insnsi + i + delta;
12973 			continue;
12974 		}
12975 
12976 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
12977 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
12978 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
12979 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
12980 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
12981 			struct bpf_insn *patch = &insn_buf[0];
12982 			bool issrc, isneg, isimm;
12983 			u32 off_reg;
12984 
12985 			aux = &env->insn_aux_data[i + delta];
12986 			if (!aux->alu_state ||
12987 			    aux->alu_state == BPF_ALU_NON_POINTER)
12988 				continue;
12989 
12990 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
12991 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
12992 				BPF_ALU_SANITIZE_SRC;
12993 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
12994 
12995 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
12996 			if (isimm) {
12997 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12998 			} else {
12999 				if (isneg)
13000 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
13001 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
13002 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
13003 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
13004 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
13005 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
13006 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
13007 			}
13008 			if (!issrc)
13009 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
13010 			insn->src_reg = BPF_REG_AX;
13011 			if (isneg)
13012 				insn->code = insn->code == code_add ?
13013 					     code_sub : code_add;
13014 			*patch++ = *insn;
13015 			if (issrc && isneg && !isimm)
13016 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
13017 			cnt = patch - insn_buf;
13018 
13019 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13020 			if (!new_prog)
13021 				return -ENOMEM;
13022 
13023 			delta    += cnt - 1;
13024 			env->prog = prog = new_prog;
13025 			insn      = new_prog->insnsi + i + delta;
13026 			continue;
13027 		}
13028 
13029 		if (insn->code != (BPF_JMP | BPF_CALL))
13030 			continue;
13031 		if (insn->src_reg == BPF_PSEUDO_CALL)
13032 			continue;
13033 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
13034 			ret = fixup_kfunc_call(env, insn);
13035 			if (ret)
13036 				return ret;
13037 			continue;
13038 		}
13039 
13040 		if (insn->imm == BPF_FUNC_get_route_realm)
13041 			prog->dst_needed = 1;
13042 		if (insn->imm == BPF_FUNC_get_prandom_u32)
13043 			bpf_user_rnd_init_once();
13044 		if (insn->imm == BPF_FUNC_override_return)
13045 			prog->kprobe_override = 1;
13046 		if (insn->imm == BPF_FUNC_tail_call) {
13047 			/* If we tail call into other programs, we
13048 			 * cannot make any assumptions since they can
13049 			 * be replaced dynamically during runtime in
13050 			 * the program array.
13051 			 */
13052 			prog->cb_access = 1;
13053 			if (!allow_tail_call_in_subprogs(env))
13054 				prog->aux->stack_depth = MAX_BPF_STACK;
13055 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
13056 
13057 			/* mark bpf_tail_call as different opcode to avoid
13058 			 * conditional branch in the interpreter for every normal
13059 			 * call and to prevent accidental JITing by JIT compiler
13060 			 * that doesn't support bpf_tail_call yet
13061 			 */
13062 			insn->imm = 0;
13063 			insn->code = BPF_JMP | BPF_TAIL_CALL;
13064 
13065 			aux = &env->insn_aux_data[i + delta];
13066 			if (env->bpf_capable && !expect_blinding &&
13067 			    prog->jit_requested &&
13068 			    !bpf_map_key_poisoned(aux) &&
13069 			    !bpf_map_ptr_poisoned(aux) &&
13070 			    !bpf_map_ptr_unpriv(aux)) {
13071 				struct bpf_jit_poke_descriptor desc = {
13072 					.reason = BPF_POKE_REASON_TAIL_CALL,
13073 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
13074 					.tail_call.key = bpf_map_key_immediate(aux),
13075 					.insn_idx = i + delta,
13076 				};
13077 
13078 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
13079 				if (ret < 0) {
13080 					verbose(env, "adding tail call poke descriptor failed\n");
13081 					return ret;
13082 				}
13083 
13084 				insn->imm = ret + 1;
13085 				continue;
13086 			}
13087 
13088 			if (!bpf_map_ptr_unpriv(aux))
13089 				continue;
13090 
13091 			/* instead of changing every JIT dealing with tail_call
13092 			 * emit two extra insns:
13093 			 * if (index >= max_entries) goto out;
13094 			 * index &= array->index_mask;
13095 			 * to avoid out-of-bounds cpu speculation
13096 			 */
13097 			if (bpf_map_ptr_poisoned(aux)) {
13098 				verbose(env, "tail_call abusing map_ptr\n");
13099 				return -EINVAL;
13100 			}
13101 
13102 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
13103 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
13104 						  map_ptr->max_entries, 2);
13105 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
13106 						    container_of(map_ptr,
13107 								 struct bpf_array,
13108 								 map)->index_mask);
13109 			insn_buf[2] = *insn;
13110 			cnt = 3;
13111 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13112 			if (!new_prog)
13113 				return -ENOMEM;
13114 
13115 			delta    += cnt - 1;
13116 			env->prog = prog = new_prog;
13117 			insn      = new_prog->insnsi + i + delta;
13118 			continue;
13119 		}
13120 
13121 		if (insn->imm == BPF_FUNC_timer_set_callback) {
13122 			/* The verifier will process callback_fn as many times as necessary
13123 			 * with different maps and the register states prepared by
13124 			 * set_timer_callback_state will be accurate.
13125 			 *
13126 			 * The following use case is valid:
13127 			 *   map1 is shared by prog1, prog2, prog3.
13128 			 *   prog1 calls bpf_timer_init for some map1 elements
13129 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
13130 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
13131 			 *   prog3 calls bpf_timer_start for some map1 elements.
13132 			 *     Those that were not both bpf_timer_init-ed and
13133 			 *     bpf_timer_set_callback-ed will return -EINVAL.
13134 			 */
13135 			struct bpf_insn ld_addrs[2] = {
13136 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
13137 			};
13138 
13139 			insn_buf[0] = ld_addrs[0];
13140 			insn_buf[1] = ld_addrs[1];
13141 			insn_buf[2] = *insn;
13142 			cnt = 3;
13143 
13144 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13145 			if (!new_prog)
13146 				return -ENOMEM;
13147 
13148 			delta    += cnt - 1;
13149 			env->prog = prog = new_prog;
13150 			insn      = new_prog->insnsi + i + delta;
13151 			goto patch_call_imm;
13152 		}
13153 
13154 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
13155 		 * and other inlining handlers are currently limited to 64 bit
13156 		 * only.
13157 		 */
13158 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
13159 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
13160 		     insn->imm == BPF_FUNC_map_update_elem ||
13161 		     insn->imm == BPF_FUNC_map_delete_elem ||
13162 		     insn->imm == BPF_FUNC_map_push_elem   ||
13163 		     insn->imm == BPF_FUNC_map_pop_elem    ||
13164 		     insn->imm == BPF_FUNC_map_peek_elem   ||
13165 		     insn->imm == BPF_FUNC_redirect_map    ||
13166 		     insn->imm == BPF_FUNC_for_each_map_elem)) {
13167 			aux = &env->insn_aux_data[i + delta];
13168 			if (bpf_map_ptr_poisoned(aux))
13169 				goto patch_call_imm;
13170 
13171 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
13172 			ops = map_ptr->ops;
13173 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
13174 			    ops->map_gen_lookup) {
13175 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
13176 				if (cnt == -EOPNOTSUPP)
13177 					goto patch_map_ops_generic;
13178 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
13179 					verbose(env, "bpf verifier is misconfigured\n");
13180 					return -EINVAL;
13181 				}
13182 
13183 				new_prog = bpf_patch_insn_data(env, i + delta,
13184 							       insn_buf, cnt);
13185 				if (!new_prog)
13186 					return -ENOMEM;
13187 
13188 				delta    += cnt - 1;
13189 				env->prog = prog = new_prog;
13190 				insn      = new_prog->insnsi + i + delta;
13191 				continue;
13192 			}
13193 
13194 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
13195 				     (void *(*)(struct bpf_map *map, void *key))NULL));
13196 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
13197 				     (int (*)(struct bpf_map *map, void *key))NULL));
13198 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
13199 				     (int (*)(struct bpf_map *map, void *key, void *value,
13200 					      u64 flags))NULL));
13201 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
13202 				     (int (*)(struct bpf_map *map, void *value,
13203 					      u64 flags))NULL));
13204 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
13205 				     (int (*)(struct bpf_map *map, void *value))NULL));
13206 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
13207 				     (int (*)(struct bpf_map *map, void *value))NULL));
13208 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
13209 				     (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
13210 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
13211 				     (int (*)(struct bpf_map *map,
13212 					      bpf_callback_t callback_fn,
13213 					      void *callback_ctx,
13214 					      u64 flags))NULL));
13215 
13216 patch_map_ops_generic:
13217 			switch (insn->imm) {
13218 			case BPF_FUNC_map_lookup_elem:
13219 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
13220 				continue;
13221 			case BPF_FUNC_map_update_elem:
13222 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
13223 				continue;
13224 			case BPF_FUNC_map_delete_elem:
13225 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
13226 				continue;
13227 			case BPF_FUNC_map_push_elem:
13228 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
13229 				continue;
13230 			case BPF_FUNC_map_pop_elem:
13231 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
13232 				continue;
13233 			case BPF_FUNC_map_peek_elem:
13234 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
13235 				continue;
13236 			case BPF_FUNC_redirect_map:
13237 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
13238 				continue;
13239 			case BPF_FUNC_for_each_map_elem:
13240 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
13241 				continue;
13242 			}
13243 
13244 			goto patch_call_imm;
13245 		}
13246 
13247 		/* Implement bpf_jiffies64 inline. */
13248 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
13249 		    insn->imm == BPF_FUNC_jiffies64) {
13250 			struct bpf_insn ld_jiffies_addr[2] = {
13251 				BPF_LD_IMM64(BPF_REG_0,
13252 					     (unsigned long)&jiffies),
13253 			};
13254 
13255 			insn_buf[0] = ld_jiffies_addr[0];
13256 			insn_buf[1] = ld_jiffies_addr[1];
13257 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
13258 						  BPF_REG_0, 0);
13259 			cnt = 3;
13260 
13261 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
13262 						       cnt);
13263 			if (!new_prog)
13264 				return -ENOMEM;
13265 
13266 			delta    += cnt - 1;
13267 			env->prog = prog = new_prog;
13268 			insn      = new_prog->insnsi + i + delta;
13269 			continue;
13270 		}
13271 
13272 		/* Implement bpf_get_func_ip inline. */
13273 		if (prog_type == BPF_PROG_TYPE_TRACING &&
13274 		    insn->imm == BPF_FUNC_get_func_ip) {
13275 			/* Load IP address from ctx - 8 */
13276 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
13277 
13278 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
13279 			if (!new_prog)
13280 				return -ENOMEM;
13281 
13282 			env->prog = prog = new_prog;
13283 			insn      = new_prog->insnsi + i + delta;
13284 			continue;
13285 		}
13286 
13287 patch_call_imm:
13288 		fn = env->ops->get_func_proto(insn->imm, env->prog);
13289 		/* all functions that have prototype and verifier allowed
13290 		 * programs to call them, must be real in-kernel functions
13291 		 */
13292 		if (!fn->func) {
13293 			verbose(env,
13294 				"kernel subsystem misconfigured func %s#%d\n",
13295 				func_id_name(insn->imm), insn->imm);
13296 			return -EFAULT;
13297 		}
13298 		insn->imm = fn->func - __bpf_call_base;
13299 	}
13300 
13301 	/* Since poke tab is now finalized, publish aux to tracker. */
13302 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
13303 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
13304 		if (!map_ptr->ops->map_poke_track ||
13305 		    !map_ptr->ops->map_poke_untrack ||
13306 		    !map_ptr->ops->map_poke_run) {
13307 			verbose(env, "bpf verifier is misconfigured\n");
13308 			return -EINVAL;
13309 		}
13310 
13311 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
13312 		if (ret < 0) {
13313 			verbose(env, "tracking tail call prog failed\n");
13314 			return ret;
13315 		}
13316 	}
13317 
13318 	sort_kfunc_descs_by_imm(env->prog);
13319 
13320 	return 0;
13321 }
13322 
13323 static void free_states(struct bpf_verifier_env *env)
13324 {
13325 	struct bpf_verifier_state_list *sl, *sln;
13326 	int i;
13327 
13328 	sl = env->free_list;
13329 	while (sl) {
13330 		sln = sl->next;
13331 		free_verifier_state(&sl->state, false);
13332 		kfree(sl);
13333 		sl = sln;
13334 	}
13335 	env->free_list = NULL;
13336 
13337 	if (!env->explored_states)
13338 		return;
13339 
13340 	for (i = 0; i < state_htab_size(env); i++) {
13341 		sl = env->explored_states[i];
13342 
13343 		while (sl) {
13344 			sln = sl->next;
13345 			free_verifier_state(&sl->state, false);
13346 			kfree(sl);
13347 			sl = sln;
13348 		}
13349 		env->explored_states[i] = NULL;
13350 	}
13351 }
13352 
13353 static int do_check_common(struct bpf_verifier_env *env, int subprog)
13354 {
13355 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
13356 	struct bpf_verifier_state *state;
13357 	struct bpf_reg_state *regs;
13358 	int ret, i;
13359 
13360 	env->prev_linfo = NULL;
13361 	env->pass_cnt++;
13362 
13363 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
13364 	if (!state)
13365 		return -ENOMEM;
13366 	state->curframe = 0;
13367 	state->speculative = false;
13368 	state->branches = 1;
13369 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
13370 	if (!state->frame[0]) {
13371 		kfree(state);
13372 		return -ENOMEM;
13373 	}
13374 	env->cur_state = state;
13375 	init_func_state(env, state->frame[0],
13376 			BPF_MAIN_FUNC /* callsite */,
13377 			0 /* frameno */,
13378 			subprog);
13379 
13380 	regs = state->frame[state->curframe]->regs;
13381 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
13382 		ret = btf_prepare_func_args(env, subprog, regs);
13383 		if (ret)
13384 			goto out;
13385 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
13386 			if (regs[i].type == PTR_TO_CTX)
13387 				mark_reg_known_zero(env, regs, i);
13388 			else if (regs[i].type == SCALAR_VALUE)
13389 				mark_reg_unknown(env, regs, i);
13390 			else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
13391 				const u32 mem_size = regs[i].mem_size;
13392 
13393 				mark_reg_known_zero(env, regs, i);
13394 				regs[i].mem_size = mem_size;
13395 				regs[i].id = ++env->id_gen;
13396 			}
13397 		}
13398 	} else {
13399 		/* 1st arg to a function */
13400 		regs[BPF_REG_1].type = PTR_TO_CTX;
13401 		mark_reg_known_zero(env, regs, BPF_REG_1);
13402 		ret = btf_check_subprog_arg_match(env, subprog, regs);
13403 		if (ret == -EFAULT)
13404 			/* unlikely verifier bug. abort.
13405 			 * ret == 0 and ret < 0 are sadly acceptable for
13406 			 * main() function due to backward compatibility.
13407 			 * Like socket filter program may be written as:
13408 			 * int bpf_prog(struct pt_regs *ctx)
13409 			 * and never dereference that ctx in the program.
13410 			 * 'struct pt_regs' is a type mismatch for socket
13411 			 * filter that should be using 'struct __sk_buff'.
13412 			 */
13413 			goto out;
13414 	}
13415 
13416 	ret = do_check(env);
13417 out:
13418 	/* check for NULL is necessary, since cur_state can be freed inside
13419 	 * do_check() under memory pressure.
13420 	 */
13421 	if (env->cur_state) {
13422 		free_verifier_state(env->cur_state, true);
13423 		env->cur_state = NULL;
13424 	}
13425 	while (!pop_stack(env, NULL, NULL, false));
13426 	if (!ret && pop_log)
13427 		bpf_vlog_reset(&env->log, 0);
13428 	free_states(env);
13429 	return ret;
13430 }
13431 
13432 /* Verify all global functions in a BPF program one by one based on their BTF.
13433  * All global functions must pass verification. Otherwise the whole program is rejected.
13434  * Consider:
13435  * int bar(int);
13436  * int foo(int f)
13437  * {
13438  *    return bar(f);
13439  * }
13440  * int bar(int b)
13441  * {
13442  *    ...
13443  * }
13444  * foo() will be verified first for R1=any_scalar_value. During verification it
13445  * will be assumed that bar() already verified successfully and call to bar()
13446  * from foo() will be checked for type match only. Later bar() will be verified
13447  * independently to check that it's safe for R1=any_scalar_value.
13448  */
13449 static int do_check_subprogs(struct bpf_verifier_env *env)
13450 {
13451 	struct bpf_prog_aux *aux = env->prog->aux;
13452 	int i, ret;
13453 
13454 	if (!aux->func_info)
13455 		return 0;
13456 
13457 	for (i = 1; i < env->subprog_cnt; i++) {
13458 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
13459 			continue;
13460 		env->insn_idx = env->subprog_info[i].start;
13461 		WARN_ON_ONCE(env->insn_idx == 0);
13462 		ret = do_check_common(env, i);
13463 		if (ret) {
13464 			return ret;
13465 		} else if (env->log.level & BPF_LOG_LEVEL) {
13466 			verbose(env,
13467 				"Func#%d is safe for any args that match its prototype\n",
13468 				i);
13469 		}
13470 	}
13471 	return 0;
13472 }
13473 
13474 static int do_check_main(struct bpf_verifier_env *env)
13475 {
13476 	int ret;
13477 
13478 	env->insn_idx = 0;
13479 	ret = do_check_common(env, 0);
13480 	if (!ret)
13481 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
13482 	return ret;
13483 }
13484 
13485 
13486 static void print_verification_stats(struct bpf_verifier_env *env)
13487 {
13488 	int i;
13489 
13490 	if (env->log.level & BPF_LOG_STATS) {
13491 		verbose(env, "verification time %lld usec\n",
13492 			div_u64(env->verification_time, 1000));
13493 		verbose(env, "stack depth ");
13494 		for (i = 0; i < env->subprog_cnt; i++) {
13495 			u32 depth = env->subprog_info[i].stack_depth;
13496 
13497 			verbose(env, "%d", depth);
13498 			if (i + 1 < env->subprog_cnt)
13499 				verbose(env, "+");
13500 		}
13501 		verbose(env, "\n");
13502 	}
13503 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
13504 		"total_states %d peak_states %d mark_read %d\n",
13505 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
13506 		env->max_states_per_insn, env->total_states,
13507 		env->peak_states, env->longest_mark_read_walk);
13508 }
13509 
13510 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
13511 {
13512 	const struct btf_type *t, *func_proto;
13513 	const struct bpf_struct_ops *st_ops;
13514 	const struct btf_member *member;
13515 	struct bpf_prog *prog = env->prog;
13516 	u32 btf_id, member_idx;
13517 	const char *mname;
13518 
13519 	if (!prog->gpl_compatible) {
13520 		verbose(env, "struct ops programs must have a GPL compatible license\n");
13521 		return -EINVAL;
13522 	}
13523 
13524 	btf_id = prog->aux->attach_btf_id;
13525 	st_ops = bpf_struct_ops_find(btf_id);
13526 	if (!st_ops) {
13527 		verbose(env, "attach_btf_id %u is not a supported struct\n",
13528 			btf_id);
13529 		return -ENOTSUPP;
13530 	}
13531 
13532 	t = st_ops->type;
13533 	member_idx = prog->expected_attach_type;
13534 	if (member_idx >= btf_type_vlen(t)) {
13535 		verbose(env, "attach to invalid member idx %u of struct %s\n",
13536 			member_idx, st_ops->name);
13537 		return -EINVAL;
13538 	}
13539 
13540 	member = &btf_type_member(t)[member_idx];
13541 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
13542 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
13543 					       NULL);
13544 	if (!func_proto) {
13545 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
13546 			mname, member_idx, st_ops->name);
13547 		return -EINVAL;
13548 	}
13549 
13550 	if (st_ops->check_member) {
13551 		int err = st_ops->check_member(t, member);
13552 
13553 		if (err) {
13554 			verbose(env, "attach to unsupported member %s of struct %s\n",
13555 				mname, st_ops->name);
13556 			return err;
13557 		}
13558 	}
13559 
13560 	prog->aux->attach_func_proto = func_proto;
13561 	prog->aux->attach_func_name = mname;
13562 	env->ops = st_ops->verifier_ops;
13563 
13564 	return 0;
13565 }
13566 #define SECURITY_PREFIX "security_"
13567 
13568 static int check_attach_modify_return(unsigned long addr, const char *func_name)
13569 {
13570 	if (within_error_injection_list(addr) ||
13571 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
13572 		return 0;
13573 
13574 	return -EINVAL;
13575 }
13576 
13577 /* list of non-sleepable functions that are otherwise on
13578  * ALLOW_ERROR_INJECTION list
13579  */
13580 BTF_SET_START(btf_non_sleepable_error_inject)
13581 /* Three functions below can be called from sleepable and non-sleepable context.
13582  * Assume non-sleepable from bpf safety point of view.
13583  */
13584 BTF_ID(func, __filemap_add_folio)
13585 BTF_ID(func, should_fail_alloc_page)
13586 BTF_ID(func, should_failslab)
13587 BTF_SET_END(btf_non_sleepable_error_inject)
13588 
13589 static int check_non_sleepable_error_inject(u32 btf_id)
13590 {
13591 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
13592 }
13593 
13594 int bpf_check_attach_target(struct bpf_verifier_log *log,
13595 			    const struct bpf_prog *prog,
13596 			    const struct bpf_prog *tgt_prog,
13597 			    u32 btf_id,
13598 			    struct bpf_attach_target_info *tgt_info)
13599 {
13600 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
13601 	const char prefix[] = "btf_trace_";
13602 	int ret = 0, subprog = -1, i;
13603 	const struct btf_type *t;
13604 	bool conservative = true;
13605 	const char *tname;
13606 	struct btf *btf;
13607 	long addr = 0;
13608 
13609 	if (!btf_id) {
13610 		bpf_log(log, "Tracing programs must provide btf_id\n");
13611 		return -EINVAL;
13612 	}
13613 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
13614 	if (!btf) {
13615 		bpf_log(log,
13616 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
13617 		return -EINVAL;
13618 	}
13619 	t = btf_type_by_id(btf, btf_id);
13620 	if (!t) {
13621 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
13622 		return -EINVAL;
13623 	}
13624 	tname = btf_name_by_offset(btf, t->name_off);
13625 	if (!tname) {
13626 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
13627 		return -EINVAL;
13628 	}
13629 	if (tgt_prog) {
13630 		struct bpf_prog_aux *aux = tgt_prog->aux;
13631 
13632 		for (i = 0; i < aux->func_info_cnt; i++)
13633 			if (aux->func_info[i].type_id == btf_id) {
13634 				subprog = i;
13635 				break;
13636 			}
13637 		if (subprog == -1) {
13638 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
13639 			return -EINVAL;
13640 		}
13641 		conservative = aux->func_info_aux[subprog].unreliable;
13642 		if (prog_extension) {
13643 			if (conservative) {
13644 				bpf_log(log,
13645 					"Cannot replace static functions\n");
13646 				return -EINVAL;
13647 			}
13648 			if (!prog->jit_requested) {
13649 				bpf_log(log,
13650 					"Extension programs should be JITed\n");
13651 				return -EINVAL;
13652 			}
13653 		}
13654 		if (!tgt_prog->jited) {
13655 			bpf_log(log, "Can attach to only JITed progs\n");
13656 			return -EINVAL;
13657 		}
13658 		if (tgt_prog->type == prog->type) {
13659 			/* Cannot fentry/fexit another fentry/fexit program.
13660 			 * Cannot attach program extension to another extension.
13661 			 * It's ok to attach fentry/fexit to extension program.
13662 			 */
13663 			bpf_log(log, "Cannot recursively attach\n");
13664 			return -EINVAL;
13665 		}
13666 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
13667 		    prog_extension &&
13668 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
13669 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
13670 			/* Program extensions can extend all program types
13671 			 * except fentry/fexit. The reason is the following.
13672 			 * The fentry/fexit programs are used for performance
13673 			 * analysis, stats and can be attached to any program
13674 			 * type except themselves. When extension program is
13675 			 * replacing XDP function it is necessary to allow
13676 			 * performance analysis of all functions. Both original
13677 			 * XDP program and its program extension. Hence
13678 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
13679 			 * allowed. If extending of fentry/fexit was allowed it
13680 			 * would be possible to create long call chain
13681 			 * fentry->extension->fentry->extension beyond
13682 			 * reasonable stack size. Hence extending fentry is not
13683 			 * allowed.
13684 			 */
13685 			bpf_log(log, "Cannot extend fentry/fexit\n");
13686 			return -EINVAL;
13687 		}
13688 	} else {
13689 		if (prog_extension) {
13690 			bpf_log(log, "Cannot replace kernel functions\n");
13691 			return -EINVAL;
13692 		}
13693 	}
13694 
13695 	switch (prog->expected_attach_type) {
13696 	case BPF_TRACE_RAW_TP:
13697 		if (tgt_prog) {
13698 			bpf_log(log,
13699 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
13700 			return -EINVAL;
13701 		}
13702 		if (!btf_type_is_typedef(t)) {
13703 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
13704 				btf_id);
13705 			return -EINVAL;
13706 		}
13707 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
13708 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
13709 				btf_id, tname);
13710 			return -EINVAL;
13711 		}
13712 		tname += sizeof(prefix) - 1;
13713 		t = btf_type_by_id(btf, t->type);
13714 		if (!btf_type_is_ptr(t))
13715 			/* should never happen in valid vmlinux build */
13716 			return -EINVAL;
13717 		t = btf_type_by_id(btf, t->type);
13718 		if (!btf_type_is_func_proto(t))
13719 			/* should never happen in valid vmlinux build */
13720 			return -EINVAL;
13721 
13722 		break;
13723 	case BPF_TRACE_ITER:
13724 		if (!btf_type_is_func(t)) {
13725 			bpf_log(log, "attach_btf_id %u is not a function\n",
13726 				btf_id);
13727 			return -EINVAL;
13728 		}
13729 		t = btf_type_by_id(btf, t->type);
13730 		if (!btf_type_is_func_proto(t))
13731 			return -EINVAL;
13732 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13733 		if (ret)
13734 			return ret;
13735 		break;
13736 	default:
13737 		if (!prog_extension)
13738 			return -EINVAL;
13739 		fallthrough;
13740 	case BPF_MODIFY_RETURN:
13741 	case BPF_LSM_MAC:
13742 	case BPF_TRACE_FENTRY:
13743 	case BPF_TRACE_FEXIT:
13744 		if (!btf_type_is_func(t)) {
13745 			bpf_log(log, "attach_btf_id %u is not a function\n",
13746 				btf_id);
13747 			return -EINVAL;
13748 		}
13749 		if (prog_extension &&
13750 		    btf_check_type_match(log, prog, btf, t))
13751 			return -EINVAL;
13752 		t = btf_type_by_id(btf, t->type);
13753 		if (!btf_type_is_func_proto(t))
13754 			return -EINVAL;
13755 
13756 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
13757 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
13758 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
13759 			return -EINVAL;
13760 
13761 		if (tgt_prog && conservative)
13762 			t = NULL;
13763 
13764 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13765 		if (ret < 0)
13766 			return ret;
13767 
13768 		if (tgt_prog) {
13769 			if (subprog == 0)
13770 				addr = (long) tgt_prog->bpf_func;
13771 			else
13772 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
13773 		} else {
13774 			addr = kallsyms_lookup_name(tname);
13775 			if (!addr) {
13776 				bpf_log(log,
13777 					"The address of function %s cannot be found\n",
13778 					tname);
13779 				return -ENOENT;
13780 			}
13781 		}
13782 
13783 		if (prog->aux->sleepable) {
13784 			ret = -EINVAL;
13785 			switch (prog->type) {
13786 			case BPF_PROG_TYPE_TRACING:
13787 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
13788 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
13789 				 */
13790 				if (!check_non_sleepable_error_inject(btf_id) &&
13791 				    within_error_injection_list(addr))
13792 					ret = 0;
13793 				break;
13794 			case BPF_PROG_TYPE_LSM:
13795 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
13796 				 * Only some of them are sleepable.
13797 				 */
13798 				if (bpf_lsm_is_sleepable_hook(btf_id))
13799 					ret = 0;
13800 				break;
13801 			default:
13802 				break;
13803 			}
13804 			if (ret) {
13805 				bpf_log(log, "%s is not sleepable\n", tname);
13806 				return ret;
13807 			}
13808 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
13809 			if (tgt_prog) {
13810 				bpf_log(log, "can't modify return codes of BPF programs\n");
13811 				return -EINVAL;
13812 			}
13813 			ret = check_attach_modify_return(addr, tname);
13814 			if (ret) {
13815 				bpf_log(log, "%s() is not modifiable\n", tname);
13816 				return ret;
13817 			}
13818 		}
13819 
13820 		break;
13821 	}
13822 	tgt_info->tgt_addr = addr;
13823 	tgt_info->tgt_name = tname;
13824 	tgt_info->tgt_type = t;
13825 	return 0;
13826 }
13827 
13828 BTF_SET_START(btf_id_deny)
13829 BTF_ID_UNUSED
13830 #ifdef CONFIG_SMP
13831 BTF_ID(func, migrate_disable)
13832 BTF_ID(func, migrate_enable)
13833 #endif
13834 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
13835 BTF_ID(func, rcu_read_unlock_strict)
13836 #endif
13837 BTF_SET_END(btf_id_deny)
13838 
13839 static int check_attach_btf_id(struct bpf_verifier_env *env)
13840 {
13841 	struct bpf_prog *prog = env->prog;
13842 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
13843 	struct bpf_attach_target_info tgt_info = {};
13844 	u32 btf_id = prog->aux->attach_btf_id;
13845 	struct bpf_trampoline *tr;
13846 	int ret;
13847 	u64 key;
13848 
13849 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
13850 		if (prog->aux->sleepable)
13851 			/* attach_btf_id checked to be zero already */
13852 			return 0;
13853 		verbose(env, "Syscall programs can only be sleepable\n");
13854 		return -EINVAL;
13855 	}
13856 
13857 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
13858 	    prog->type != BPF_PROG_TYPE_LSM) {
13859 		verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
13860 		return -EINVAL;
13861 	}
13862 
13863 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
13864 		return check_struct_ops_btf_id(env);
13865 
13866 	if (prog->type != BPF_PROG_TYPE_TRACING &&
13867 	    prog->type != BPF_PROG_TYPE_LSM &&
13868 	    prog->type != BPF_PROG_TYPE_EXT)
13869 		return 0;
13870 
13871 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
13872 	if (ret)
13873 		return ret;
13874 
13875 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
13876 		/* to make freplace equivalent to their targets, they need to
13877 		 * inherit env->ops and expected_attach_type for the rest of the
13878 		 * verification
13879 		 */
13880 		env->ops = bpf_verifier_ops[tgt_prog->type];
13881 		prog->expected_attach_type = tgt_prog->expected_attach_type;
13882 	}
13883 
13884 	/* store info about the attachment target that will be used later */
13885 	prog->aux->attach_func_proto = tgt_info.tgt_type;
13886 	prog->aux->attach_func_name = tgt_info.tgt_name;
13887 
13888 	if (tgt_prog) {
13889 		prog->aux->saved_dst_prog_type = tgt_prog->type;
13890 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
13891 	}
13892 
13893 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
13894 		prog->aux->attach_btf_trace = true;
13895 		return 0;
13896 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
13897 		if (!bpf_iter_prog_supported(prog))
13898 			return -EINVAL;
13899 		return 0;
13900 	}
13901 
13902 	if (prog->type == BPF_PROG_TYPE_LSM) {
13903 		ret = bpf_lsm_verify_prog(&env->log, prog);
13904 		if (ret < 0)
13905 			return ret;
13906 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
13907 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
13908 		return -EINVAL;
13909 	}
13910 
13911 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
13912 	tr = bpf_trampoline_get(key, &tgt_info);
13913 	if (!tr)
13914 		return -ENOMEM;
13915 
13916 	prog->aux->dst_trampoline = tr;
13917 	return 0;
13918 }
13919 
13920 struct btf *bpf_get_btf_vmlinux(void)
13921 {
13922 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
13923 		mutex_lock(&bpf_verifier_lock);
13924 		if (!btf_vmlinux)
13925 			btf_vmlinux = btf_parse_vmlinux();
13926 		mutex_unlock(&bpf_verifier_lock);
13927 	}
13928 	return btf_vmlinux;
13929 }
13930 
13931 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
13932 {
13933 	u64 start_time = ktime_get_ns();
13934 	struct bpf_verifier_env *env;
13935 	struct bpf_verifier_log *log;
13936 	int i, len, ret = -EINVAL;
13937 	bool is_priv;
13938 
13939 	/* no program is valid */
13940 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
13941 		return -EINVAL;
13942 
13943 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
13944 	 * allocate/free it every time bpf_check() is called
13945 	 */
13946 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
13947 	if (!env)
13948 		return -ENOMEM;
13949 	log = &env->log;
13950 
13951 	len = (*prog)->len;
13952 	env->insn_aux_data =
13953 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
13954 	ret = -ENOMEM;
13955 	if (!env->insn_aux_data)
13956 		goto err_free_env;
13957 	for (i = 0; i < len; i++)
13958 		env->insn_aux_data[i].orig_idx = i;
13959 	env->prog = *prog;
13960 	env->ops = bpf_verifier_ops[env->prog->type];
13961 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
13962 	is_priv = bpf_capable();
13963 
13964 	bpf_get_btf_vmlinux();
13965 
13966 	/* grab the mutex to protect few globals used by verifier */
13967 	if (!is_priv)
13968 		mutex_lock(&bpf_verifier_lock);
13969 
13970 	if (attr->log_level || attr->log_buf || attr->log_size) {
13971 		/* user requested verbose verifier output
13972 		 * and supplied buffer to store the verification trace
13973 		 */
13974 		log->level = attr->log_level;
13975 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
13976 		log->len_total = attr->log_size;
13977 
13978 		ret = -EINVAL;
13979 		/* log attributes have to be sane */
13980 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
13981 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
13982 			goto err_unlock;
13983 	}
13984 
13985 	if (IS_ERR(btf_vmlinux)) {
13986 		/* Either gcc or pahole or kernel are broken. */
13987 		verbose(env, "in-kernel BTF is malformed\n");
13988 		ret = PTR_ERR(btf_vmlinux);
13989 		goto skip_full_check;
13990 	}
13991 
13992 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
13993 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
13994 		env->strict_alignment = true;
13995 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
13996 		env->strict_alignment = false;
13997 
13998 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
13999 	env->allow_uninit_stack = bpf_allow_uninit_stack();
14000 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
14001 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
14002 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
14003 	env->bpf_capable = bpf_capable();
14004 
14005 	if (is_priv)
14006 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
14007 
14008 	env->explored_states = kvcalloc(state_htab_size(env),
14009 				       sizeof(struct bpf_verifier_state_list *),
14010 				       GFP_USER);
14011 	ret = -ENOMEM;
14012 	if (!env->explored_states)
14013 		goto skip_full_check;
14014 
14015 	ret = add_subprog_and_kfunc(env);
14016 	if (ret < 0)
14017 		goto skip_full_check;
14018 
14019 	ret = check_subprogs(env);
14020 	if (ret < 0)
14021 		goto skip_full_check;
14022 
14023 	ret = check_btf_info(env, attr, uattr);
14024 	if (ret < 0)
14025 		goto skip_full_check;
14026 
14027 	ret = check_attach_btf_id(env);
14028 	if (ret)
14029 		goto skip_full_check;
14030 
14031 	ret = resolve_pseudo_ldimm64(env);
14032 	if (ret < 0)
14033 		goto skip_full_check;
14034 
14035 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
14036 		ret = bpf_prog_offload_verifier_prep(env->prog);
14037 		if (ret)
14038 			goto skip_full_check;
14039 	}
14040 
14041 	ret = check_cfg(env);
14042 	if (ret < 0)
14043 		goto skip_full_check;
14044 
14045 	ret = do_check_subprogs(env);
14046 	ret = ret ?: do_check_main(env);
14047 
14048 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
14049 		ret = bpf_prog_offload_finalize(env);
14050 
14051 skip_full_check:
14052 	kvfree(env->explored_states);
14053 
14054 	if (ret == 0)
14055 		ret = check_max_stack_depth(env);
14056 
14057 	/* instruction rewrites happen after this point */
14058 	if (is_priv) {
14059 		if (ret == 0)
14060 			opt_hard_wire_dead_code_branches(env);
14061 		if (ret == 0)
14062 			ret = opt_remove_dead_code(env);
14063 		if (ret == 0)
14064 			ret = opt_remove_nops(env);
14065 	} else {
14066 		if (ret == 0)
14067 			sanitize_dead_code(env);
14068 	}
14069 
14070 	if (ret == 0)
14071 		/* program is valid, convert *(u32*)(ctx + off) accesses */
14072 		ret = convert_ctx_accesses(env);
14073 
14074 	if (ret == 0)
14075 		ret = do_misc_fixups(env);
14076 
14077 	/* do 32-bit optimization after insn patching has done so those patched
14078 	 * insns could be handled correctly.
14079 	 */
14080 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
14081 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
14082 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
14083 								     : false;
14084 	}
14085 
14086 	if (ret == 0)
14087 		ret = fixup_call_args(env);
14088 
14089 	env->verification_time = ktime_get_ns() - start_time;
14090 	print_verification_stats(env);
14091 	env->prog->aux->verified_insns = env->insn_processed;
14092 
14093 	if (log->level && bpf_verifier_log_full(log))
14094 		ret = -ENOSPC;
14095 	if (log->level && !log->ubuf) {
14096 		ret = -EFAULT;
14097 		goto err_release_maps;
14098 	}
14099 
14100 	if (ret)
14101 		goto err_release_maps;
14102 
14103 	if (env->used_map_cnt) {
14104 		/* if program passed verifier, update used_maps in bpf_prog_info */
14105 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
14106 							  sizeof(env->used_maps[0]),
14107 							  GFP_KERNEL);
14108 
14109 		if (!env->prog->aux->used_maps) {
14110 			ret = -ENOMEM;
14111 			goto err_release_maps;
14112 		}
14113 
14114 		memcpy(env->prog->aux->used_maps, env->used_maps,
14115 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
14116 		env->prog->aux->used_map_cnt = env->used_map_cnt;
14117 	}
14118 	if (env->used_btf_cnt) {
14119 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
14120 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
14121 							  sizeof(env->used_btfs[0]),
14122 							  GFP_KERNEL);
14123 		if (!env->prog->aux->used_btfs) {
14124 			ret = -ENOMEM;
14125 			goto err_release_maps;
14126 		}
14127 
14128 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
14129 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
14130 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
14131 	}
14132 	if (env->used_map_cnt || env->used_btf_cnt) {
14133 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
14134 		 * bpf_ld_imm64 instructions
14135 		 */
14136 		convert_pseudo_ld_imm64(env);
14137 	}
14138 
14139 	adjust_btf_func(env);
14140 
14141 err_release_maps:
14142 	if (!env->prog->aux->used_maps)
14143 		/* if we didn't copy map pointers into bpf_prog_info, release
14144 		 * them now. Otherwise free_used_maps() will release them.
14145 		 */
14146 		release_maps(env);
14147 	if (!env->prog->aux->used_btfs)
14148 		release_btfs(env);
14149 
14150 	/* extension progs temporarily inherit the attach_type of their targets
14151 	   for verification purposes, so set it back to zero before returning
14152 	 */
14153 	if (env->prog->type == BPF_PROG_TYPE_EXT)
14154 		env->prog->expected_attach_type = 0;
14155 
14156 	*prog = env->prog;
14157 err_unlock:
14158 	if (!is_priv)
14159 		mutex_unlock(&bpf_verifier_lock);
14160 	vfree(env->insn_aux_data);
14161 err_free_env:
14162 	kfree(env);
14163 	return ret;
14164 }
14165