1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 28 #include "disasm.h" 29 30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 31 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 32 [_id] = & _name ## _verifier_ops, 33 #define BPF_MAP_TYPE(_id, _ops) 34 #define BPF_LINK_TYPE(_id, _name) 35 #include <linux/bpf_types.h> 36 #undef BPF_PROG_TYPE 37 #undef BPF_MAP_TYPE 38 #undef BPF_LINK_TYPE 39 }; 40 41 /* bpf_check() is a static code analyzer that walks eBPF program 42 * instruction by instruction and updates register/stack state. 43 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 44 * 45 * The first pass is depth-first-search to check that the program is a DAG. 46 * It rejects the following programs: 47 * - larger than BPF_MAXINSNS insns 48 * - if loop is present (detected via back-edge) 49 * - unreachable insns exist (shouldn't be a forest. program = one function) 50 * - out of bounds or malformed jumps 51 * The second pass is all possible path descent from the 1st insn. 52 * Since it's analyzing all paths through the program, the length of the 53 * analysis is limited to 64k insn, which may be hit even if total number of 54 * insn is less then 4K, but there are too many branches that change stack/regs. 55 * Number of 'branches to be analyzed' is limited to 1k 56 * 57 * On entry to each instruction, each register has a type, and the instruction 58 * changes the types of the registers depending on instruction semantics. 59 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 60 * copied to R1. 61 * 62 * All registers are 64-bit. 63 * R0 - return register 64 * R1-R5 argument passing registers 65 * R6-R9 callee saved registers 66 * R10 - frame pointer read-only 67 * 68 * At the start of BPF program the register R1 contains a pointer to bpf_context 69 * and has type PTR_TO_CTX. 70 * 71 * Verifier tracks arithmetic operations on pointers in case: 72 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 73 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 74 * 1st insn copies R10 (which has FRAME_PTR) type into R1 75 * and 2nd arithmetic instruction is pattern matched to recognize 76 * that it wants to construct a pointer to some element within stack. 77 * So after 2nd insn, the register R1 has type PTR_TO_STACK 78 * (and -20 constant is saved for further stack bounds checking). 79 * Meaning that this reg is a pointer to stack plus known immediate constant. 80 * 81 * Most of the time the registers have SCALAR_VALUE type, which 82 * means the register has some value, but it's not a valid pointer. 83 * (like pointer plus pointer becomes SCALAR_VALUE type) 84 * 85 * When verifier sees load or store instructions the type of base register 86 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 87 * four pointer types recognized by check_mem_access() function. 88 * 89 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 90 * and the range of [ptr, ptr + map's value_size) is accessible. 91 * 92 * registers used to pass values to function calls are checked against 93 * function argument constraints. 94 * 95 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 96 * It means that the register type passed to this function must be 97 * PTR_TO_STACK and it will be used inside the function as 98 * 'pointer to map element key' 99 * 100 * For example the argument constraints for bpf_map_lookup_elem(): 101 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 102 * .arg1_type = ARG_CONST_MAP_PTR, 103 * .arg2_type = ARG_PTR_TO_MAP_KEY, 104 * 105 * ret_type says that this function returns 'pointer to map elem value or null' 106 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 107 * 2nd argument should be a pointer to stack, which will be used inside 108 * the helper function as a pointer to map element key. 109 * 110 * On the kernel side the helper function looks like: 111 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 112 * { 113 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 114 * void *key = (void *) (unsigned long) r2; 115 * void *value; 116 * 117 * here kernel can access 'key' and 'map' pointers safely, knowing that 118 * [key, key + map->key_size) bytes are valid and were initialized on 119 * the stack of eBPF program. 120 * } 121 * 122 * Corresponding eBPF program may look like: 123 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 124 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 125 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 126 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 127 * here verifier looks at prototype of map_lookup_elem() and sees: 128 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 129 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 130 * 131 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 132 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 133 * and were initialized prior to this call. 134 * If it's ok, then verifier allows this BPF_CALL insn and looks at 135 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 136 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 137 * returns either pointer to map value or NULL. 138 * 139 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 140 * insn, the register holding that pointer in the true branch changes state to 141 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 142 * branch. See check_cond_jmp_op(). 143 * 144 * After the call R0 is set to return type of the function and registers R1-R5 145 * are set to NOT_INIT to indicate that they are no longer readable. 146 * 147 * The following reference types represent a potential reference to a kernel 148 * resource which, after first being allocated, must be checked and freed by 149 * the BPF program: 150 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 151 * 152 * When the verifier sees a helper call return a reference type, it allocates a 153 * pointer id for the reference and stores it in the current function state. 154 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 155 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 156 * passes through a NULL-check conditional. For the branch wherein the state is 157 * changed to CONST_IMM, the verifier releases the reference. 158 * 159 * For each helper function that allocates a reference, such as 160 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 161 * bpf_sk_release(). When a reference type passes into the release function, 162 * the verifier also releases the reference. If any unchecked or unreleased 163 * reference remains at the end of the program, the verifier rejects it. 164 */ 165 166 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 167 struct bpf_verifier_stack_elem { 168 /* verifer state is 'st' 169 * before processing instruction 'insn_idx' 170 * and after processing instruction 'prev_insn_idx' 171 */ 172 struct bpf_verifier_state st; 173 int insn_idx; 174 int prev_insn_idx; 175 struct bpf_verifier_stack_elem *next; 176 /* length of verifier log at the time this state was pushed on stack */ 177 u32 log_pos; 178 }; 179 180 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 181 #define BPF_COMPLEXITY_LIMIT_STATES 64 182 183 #define BPF_MAP_KEY_POISON (1ULL << 63) 184 #define BPF_MAP_KEY_SEEN (1ULL << 62) 185 186 #define BPF_MAP_PTR_UNPRIV 1UL 187 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 188 POISON_POINTER_DELTA)) 189 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 190 191 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 192 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 193 194 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 195 { 196 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 197 } 198 199 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 200 { 201 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 202 } 203 204 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 205 const struct bpf_map *map, bool unpriv) 206 { 207 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 208 unpriv |= bpf_map_ptr_unpriv(aux); 209 aux->map_ptr_state = (unsigned long)map | 210 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 211 } 212 213 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 214 { 215 return aux->map_key_state & BPF_MAP_KEY_POISON; 216 } 217 218 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 219 { 220 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 221 } 222 223 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 224 { 225 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 226 } 227 228 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 229 { 230 bool poisoned = bpf_map_key_poisoned(aux); 231 232 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 233 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 234 } 235 236 static bool bpf_pseudo_call(const struct bpf_insn *insn) 237 { 238 return insn->code == (BPF_JMP | BPF_CALL) && 239 insn->src_reg == BPF_PSEUDO_CALL; 240 } 241 242 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 243 { 244 return insn->code == (BPF_JMP | BPF_CALL) && 245 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 246 } 247 248 struct bpf_call_arg_meta { 249 struct bpf_map *map_ptr; 250 bool raw_mode; 251 bool pkt_access; 252 u8 release_regno; 253 int regno; 254 int access_size; 255 int mem_size; 256 u64 msize_max_value; 257 int ref_obj_id; 258 int map_uid; 259 int func_id; 260 struct btf *btf; 261 u32 btf_id; 262 struct btf *ret_btf; 263 u32 ret_btf_id; 264 u32 subprogno; 265 struct btf_field *kptr_field; 266 u8 uninit_dynptr_regno; 267 }; 268 269 struct btf *btf_vmlinux; 270 271 static DEFINE_MUTEX(bpf_verifier_lock); 272 273 static const struct bpf_line_info * 274 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 275 { 276 const struct bpf_line_info *linfo; 277 const struct bpf_prog *prog; 278 u32 i, nr_linfo; 279 280 prog = env->prog; 281 nr_linfo = prog->aux->nr_linfo; 282 283 if (!nr_linfo || insn_off >= prog->len) 284 return NULL; 285 286 linfo = prog->aux->linfo; 287 for (i = 1; i < nr_linfo; i++) 288 if (insn_off < linfo[i].insn_off) 289 break; 290 291 return &linfo[i - 1]; 292 } 293 294 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 295 va_list args) 296 { 297 unsigned int n; 298 299 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 300 301 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 302 "verifier log line truncated - local buffer too short\n"); 303 304 if (log->level == BPF_LOG_KERNEL) { 305 bool newline = n > 0 && log->kbuf[n - 1] == '\n'; 306 307 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n"); 308 return; 309 } 310 311 n = min(log->len_total - log->len_used - 1, n); 312 log->kbuf[n] = '\0'; 313 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 314 log->len_used += n; 315 else 316 log->ubuf = NULL; 317 } 318 319 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 320 { 321 char zero = 0; 322 323 if (!bpf_verifier_log_needed(log)) 324 return; 325 326 log->len_used = new_pos; 327 if (put_user(zero, log->ubuf + new_pos)) 328 log->ubuf = NULL; 329 } 330 331 /* log_level controls verbosity level of eBPF verifier. 332 * bpf_verifier_log_write() is used to dump the verification trace to the log, 333 * so the user can figure out what's wrong with the program 334 */ 335 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 336 const char *fmt, ...) 337 { 338 va_list args; 339 340 if (!bpf_verifier_log_needed(&env->log)) 341 return; 342 343 va_start(args, fmt); 344 bpf_verifier_vlog(&env->log, fmt, args); 345 va_end(args); 346 } 347 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 348 349 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 350 { 351 struct bpf_verifier_env *env = private_data; 352 va_list args; 353 354 if (!bpf_verifier_log_needed(&env->log)) 355 return; 356 357 va_start(args, fmt); 358 bpf_verifier_vlog(&env->log, fmt, args); 359 va_end(args); 360 } 361 362 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 363 const char *fmt, ...) 364 { 365 va_list args; 366 367 if (!bpf_verifier_log_needed(log)) 368 return; 369 370 va_start(args, fmt); 371 bpf_verifier_vlog(log, fmt, args); 372 va_end(args); 373 } 374 EXPORT_SYMBOL_GPL(bpf_log); 375 376 static const char *ltrim(const char *s) 377 { 378 while (isspace(*s)) 379 s++; 380 381 return s; 382 } 383 384 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 385 u32 insn_off, 386 const char *prefix_fmt, ...) 387 { 388 const struct bpf_line_info *linfo; 389 390 if (!bpf_verifier_log_needed(&env->log)) 391 return; 392 393 linfo = find_linfo(env, insn_off); 394 if (!linfo || linfo == env->prev_linfo) 395 return; 396 397 if (prefix_fmt) { 398 va_list args; 399 400 va_start(args, prefix_fmt); 401 bpf_verifier_vlog(&env->log, prefix_fmt, args); 402 va_end(args); 403 } 404 405 verbose(env, "%s\n", 406 ltrim(btf_name_by_offset(env->prog->aux->btf, 407 linfo->line_off))); 408 409 env->prev_linfo = linfo; 410 } 411 412 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 413 struct bpf_reg_state *reg, 414 struct tnum *range, const char *ctx, 415 const char *reg_name) 416 { 417 char tn_buf[48]; 418 419 verbose(env, "At %s the register %s ", ctx, reg_name); 420 if (!tnum_is_unknown(reg->var_off)) { 421 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 422 verbose(env, "has value %s", tn_buf); 423 } else { 424 verbose(env, "has unknown scalar value"); 425 } 426 tnum_strn(tn_buf, sizeof(tn_buf), *range); 427 verbose(env, " should have been in %s\n", tn_buf); 428 } 429 430 static bool type_is_pkt_pointer(enum bpf_reg_type type) 431 { 432 type = base_type(type); 433 return type == PTR_TO_PACKET || 434 type == PTR_TO_PACKET_META; 435 } 436 437 static bool type_is_sk_pointer(enum bpf_reg_type type) 438 { 439 return type == PTR_TO_SOCKET || 440 type == PTR_TO_SOCK_COMMON || 441 type == PTR_TO_TCP_SOCK || 442 type == PTR_TO_XDP_SOCK; 443 } 444 445 static bool reg_type_not_null(enum bpf_reg_type type) 446 { 447 return type == PTR_TO_SOCKET || 448 type == PTR_TO_TCP_SOCK || 449 type == PTR_TO_MAP_VALUE || 450 type == PTR_TO_MAP_KEY || 451 type == PTR_TO_SOCK_COMMON; 452 } 453 454 static bool type_is_ptr_alloc_obj(u32 type) 455 { 456 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 457 } 458 459 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 460 { 461 struct btf_record *rec = NULL; 462 struct btf_struct_meta *meta; 463 464 if (reg->type == PTR_TO_MAP_VALUE) { 465 rec = reg->map_ptr->record; 466 } else if (type_is_ptr_alloc_obj(reg->type)) { 467 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 468 if (meta) 469 rec = meta->record; 470 } 471 return rec; 472 } 473 474 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 475 { 476 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 477 } 478 479 static bool type_is_rdonly_mem(u32 type) 480 { 481 return type & MEM_RDONLY; 482 } 483 484 static bool type_may_be_null(u32 type) 485 { 486 return type & PTR_MAYBE_NULL; 487 } 488 489 static bool is_acquire_function(enum bpf_func_id func_id, 490 const struct bpf_map *map) 491 { 492 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 493 494 if (func_id == BPF_FUNC_sk_lookup_tcp || 495 func_id == BPF_FUNC_sk_lookup_udp || 496 func_id == BPF_FUNC_skc_lookup_tcp || 497 func_id == BPF_FUNC_ringbuf_reserve || 498 func_id == BPF_FUNC_kptr_xchg) 499 return true; 500 501 if (func_id == BPF_FUNC_map_lookup_elem && 502 (map_type == BPF_MAP_TYPE_SOCKMAP || 503 map_type == BPF_MAP_TYPE_SOCKHASH)) 504 return true; 505 506 return false; 507 } 508 509 static bool is_ptr_cast_function(enum bpf_func_id func_id) 510 { 511 return func_id == BPF_FUNC_tcp_sock || 512 func_id == BPF_FUNC_sk_fullsock || 513 func_id == BPF_FUNC_skc_to_tcp_sock || 514 func_id == BPF_FUNC_skc_to_tcp6_sock || 515 func_id == BPF_FUNC_skc_to_udp6_sock || 516 func_id == BPF_FUNC_skc_to_mptcp_sock || 517 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 518 func_id == BPF_FUNC_skc_to_tcp_request_sock; 519 } 520 521 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 522 { 523 return func_id == BPF_FUNC_dynptr_data; 524 } 525 526 static bool is_callback_calling_function(enum bpf_func_id func_id) 527 { 528 return func_id == BPF_FUNC_for_each_map_elem || 529 func_id == BPF_FUNC_timer_set_callback || 530 func_id == BPF_FUNC_find_vma || 531 func_id == BPF_FUNC_loop || 532 func_id == BPF_FUNC_user_ringbuf_drain; 533 } 534 535 static bool is_storage_get_function(enum bpf_func_id func_id) 536 { 537 return func_id == BPF_FUNC_sk_storage_get || 538 func_id == BPF_FUNC_inode_storage_get || 539 func_id == BPF_FUNC_task_storage_get || 540 func_id == BPF_FUNC_cgrp_storage_get; 541 } 542 543 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 544 const struct bpf_map *map) 545 { 546 int ref_obj_uses = 0; 547 548 if (is_ptr_cast_function(func_id)) 549 ref_obj_uses++; 550 if (is_acquire_function(func_id, map)) 551 ref_obj_uses++; 552 if (is_dynptr_ref_function(func_id)) 553 ref_obj_uses++; 554 555 return ref_obj_uses > 1; 556 } 557 558 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 559 { 560 return BPF_CLASS(insn->code) == BPF_STX && 561 BPF_MODE(insn->code) == BPF_ATOMIC && 562 insn->imm == BPF_CMPXCHG; 563 } 564 565 /* string representation of 'enum bpf_reg_type' 566 * 567 * Note that reg_type_str() can not appear more than once in a single verbose() 568 * statement. 569 */ 570 static const char *reg_type_str(struct bpf_verifier_env *env, 571 enum bpf_reg_type type) 572 { 573 char postfix[16] = {0}, prefix[64] = {0}; 574 static const char * const str[] = { 575 [NOT_INIT] = "?", 576 [SCALAR_VALUE] = "scalar", 577 [PTR_TO_CTX] = "ctx", 578 [CONST_PTR_TO_MAP] = "map_ptr", 579 [PTR_TO_MAP_VALUE] = "map_value", 580 [PTR_TO_STACK] = "fp", 581 [PTR_TO_PACKET] = "pkt", 582 [PTR_TO_PACKET_META] = "pkt_meta", 583 [PTR_TO_PACKET_END] = "pkt_end", 584 [PTR_TO_FLOW_KEYS] = "flow_keys", 585 [PTR_TO_SOCKET] = "sock", 586 [PTR_TO_SOCK_COMMON] = "sock_common", 587 [PTR_TO_TCP_SOCK] = "tcp_sock", 588 [PTR_TO_TP_BUFFER] = "tp_buffer", 589 [PTR_TO_XDP_SOCK] = "xdp_sock", 590 [PTR_TO_BTF_ID] = "ptr_", 591 [PTR_TO_MEM] = "mem", 592 [PTR_TO_BUF] = "buf", 593 [PTR_TO_FUNC] = "func", 594 [PTR_TO_MAP_KEY] = "map_key", 595 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr", 596 }; 597 598 if (type & PTR_MAYBE_NULL) { 599 if (base_type(type) == PTR_TO_BTF_ID) 600 strncpy(postfix, "or_null_", 16); 601 else 602 strncpy(postfix, "_or_null", 16); 603 } 604 605 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s", 606 type & MEM_RDONLY ? "rdonly_" : "", 607 type & MEM_RINGBUF ? "ringbuf_" : "", 608 type & MEM_USER ? "user_" : "", 609 type & MEM_PERCPU ? "percpu_" : "", 610 type & MEM_RCU ? "rcu_" : "", 611 type & PTR_UNTRUSTED ? "untrusted_" : "", 612 type & PTR_TRUSTED ? "trusted_" : "" 613 ); 614 615 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s", 616 prefix, str[base_type(type)], postfix); 617 return env->type_str_buf; 618 } 619 620 static char slot_type_char[] = { 621 [STACK_INVALID] = '?', 622 [STACK_SPILL] = 'r', 623 [STACK_MISC] = 'm', 624 [STACK_ZERO] = '0', 625 [STACK_DYNPTR] = 'd', 626 }; 627 628 static void print_liveness(struct bpf_verifier_env *env, 629 enum bpf_reg_liveness live) 630 { 631 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 632 verbose(env, "_"); 633 if (live & REG_LIVE_READ) 634 verbose(env, "r"); 635 if (live & REG_LIVE_WRITTEN) 636 verbose(env, "w"); 637 if (live & REG_LIVE_DONE) 638 verbose(env, "D"); 639 } 640 641 static int get_spi(s32 off) 642 { 643 return (-off - 1) / BPF_REG_SIZE; 644 } 645 646 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 647 { 648 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 649 650 /* We need to check that slots between [spi - nr_slots + 1, spi] are 651 * within [0, allocated_stack). 652 * 653 * Please note that the spi grows downwards. For example, a dynptr 654 * takes the size of two stack slots; the first slot will be at 655 * spi and the second slot will be at spi - 1. 656 */ 657 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 658 } 659 660 static struct bpf_func_state *func(struct bpf_verifier_env *env, 661 const struct bpf_reg_state *reg) 662 { 663 struct bpf_verifier_state *cur = env->cur_state; 664 665 return cur->frame[reg->frameno]; 666 } 667 668 static const char *kernel_type_name(const struct btf* btf, u32 id) 669 { 670 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 671 } 672 673 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 674 { 675 env->scratched_regs |= 1U << regno; 676 } 677 678 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 679 { 680 env->scratched_stack_slots |= 1ULL << spi; 681 } 682 683 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 684 { 685 return (env->scratched_regs >> regno) & 1; 686 } 687 688 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 689 { 690 return (env->scratched_stack_slots >> regno) & 1; 691 } 692 693 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 694 { 695 return env->scratched_regs || env->scratched_stack_slots; 696 } 697 698 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 699 { 700 env->scratched_regs = 0U; 701 env->scratched_stack_slots = 0ULL; 702 } 703 704 /* Used for printing the entire verifier state. */ 705 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 706 { 707 env->scratched_regs = ~0U; 708 env->scratched_stack_slots = ~0ULL; 709 } 710 711 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 712 { 713 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 714 case DYNPTR_TYPE_LOCAL: 715 return BPF_DYNPTR_TYPE_LOCAL; 716 case DYNPTR_TYPE_RINGBUF: 717 return BPF_DYNPTR_TYPE_RINGBUF; 718 default: 719 return BPF_DYNPTR_TYPE_INVALID; 720 } 721 } 722 723 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 724 { 725 return type == BPF_DYNPTR_TYPE_RINGBUF; 726 } 727 728 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 729 enum bpf_dynptr_type type, 730 bool first_slot); 731 732 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 733 struct bpf_reg_state *reg); 734 735 static void mark_dynptr_stack_regs(struct bpf_reg_state *sreg1, 736 struct bpf_reg_state *sreg2, 737 enum bpf_dynptr_type type) 738 { 739 __mark_dynptr_reg(sreg1, type, true); 740 __mark_dynptr_reg(sreg2, type, false); 741 } 742 743 static void mark_dynptr_cb_reg(struct bpf_reg_state *reg, 744 enum bpf_dynptr_type type) 745 { 746 __mark_dynptr_reg(reg, type, true); 747 } 748 749 750 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 751 enum bpf_arg_type arg_type, int insn_idx) 752 { 753 struct bpf_func_state *state = func(env, reg); 754 enum bpf_dynptr_type type; 755 int spi, i, id; 756 757 spi = get_spi(reg->off); 758 759 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 760 return -EINVAL; 761 762 for (i = 0; i < BPF_REG_SIZE; i++) { 763 state->stack[spi].slot_type[i] = STACK_DYNPTR; 764 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 765 } 766 767 type = arg_to_dynptr_type(arg_type); 768 if (type == BPF_DYNPTR_TYPE_INVALID) 769 return -EINVAL; 770 771 mark_dynptr_stack_regs(&state->stack[spi].spilled_ptr, 772 &state->stack[spi - 1].spilled_ptr, type); 773 774 if (dynptr_type_refcounted(type)) { 775 /* The id is used to track proper releasing */ 776 id = acquire_reference_state(env, insn_idx); 777 if (id < 0) 778 return id; 779 780 state->stack[spi].spilled_ptr.ref_obj_id = id; 781 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 782 } 783 784 return 0; 785 } 786 787 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 788 { 789 struct bpf_func_state *state = func(env, reg); 790 int spi, i; 791 792 spi = get_spi(reg->off); 793 794 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 795 return -EINVAL; 796 797 for (i = 0; i < BPF_REG_SIZE; i++) { 798 state->stack[spi].slot_type[i] = STACK_INVALID; 799 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 800 } 801 802 /* Invalidate any slices associated with this dynptr */ 803 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) 804 WARN_ON_ONCE(release_reference(env, state->stack[spi].spilled_ptr.ref_obj_id)); 805 806 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 807 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 808 return 0; 809 } 810 811 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 812 { 813 struct bpf_func_state *state = func(env, reg); 814 int spi, i; 815 816 if (reg->type == CONST_PTR_TO_DYNPTR) 817 return false; 818 819 spi = get_spi(reg->off); 820 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 821 return true; 822 823 for (i = 0; i < BPF_REG_SIZE; i++) { 824 if (state->stack[spi].slot_type[i] == STACK_DYNPTR || 825 state->stack[spi - 1].slot_type[i] == STACK_DYNPTR) 826 return false; 827 } 828 829 return true; 830 } 831 832 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 833 { 834 struct bpf_func_state *state = func(env, reg); 835 int spi; 836 int i; 837 838 /* This already represents first slot of initialized bpf_dynptr */ 839 if (reg->type == CONST_PTR_TO_DYNPTR) 840 return true; 841 842 spi = get_spi(reg->off); 843 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) || 844 !state->stack[spi].spilled_ptr.dynptr.first_slot) 845 return false; 846 847 for (i = 0; i < BPF_REG_SIZE; i++) { 848 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 849 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 850 return false; 851 } 852 853 return true; 854 } 855 856 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 857 enum bpf_arg_type arg_type) 858 { 859 struct bpf_func_state *state = func(env, reg); 860 enum bpf_dynptr_type dynptr_type; 861 int spi; 862 863 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 864 if (arg_type == ARG_PTR_TO_DYNPTR) 865 return true; 866 867 dynptr_type = arg_to_dynptr_type(arg_type); 868 if (reg->type == CONST_PTR_TO_DYNPTR) { 869 return reg->dynptr.type == dynptr_type; 870 } else { 871 spi = get_spi(reg->off); 872 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 873 } 874 } 875 876 /* The reg state of a pointer or a bounded scalar was saved when 877 * it was spilled to the stack. 878 */ 879 static bool is_spilled_reg(const struct bpf_stack_state *stack) 880 { 881 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 882 } 883 884 static void scrub_spilled_slot(u8 *stype) 885 { 886 if (*stype != STACK_INVALID) 887 *stype = STACK_MISC; 888 } 889 890 static void print_verifier_state(struct bpf_verifier_env *env, 891 const struct bpf_func_state *state, 892 bool print_all) 893 { 894 const struct bpf_reg_state *reg; 895 enum bpf_reg_type t; 896 int i; 897 898 if (state->frameno) 899 verbose(env, " frame%d:", state->frameno); 900 for (i = 0; i < MAX_BPF_REG; i++) { 901 reg = &state->regs[i]; 902 t = reg->type; 903 if (t == NOT_INIT) 904 continue; 905 if (!print_all && !reg_scratched(env, i)) 906 continue; 907 verbose(env, " R%d", i); 908 print_liveness(env, reg->live); 909 verbose(env, "="); 910 if (t == SCALAR_VALUE && reg->precise) 911 verbose(env, "P"); 912 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 913 tnum_is_const(reg->var_off)) { 914 /* reg->off should be 0 for SCALAR_VALUE */ 915 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 916 verbose(env, "%lld", reg->var_off.value + reg->off); 917 } else { 918 const char *sep = ""; 919 920 verbose(env, "%s", reg_type_str(env, t)); 921 if (base_type(t) == PTR_TO_BTF_ID) 922 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 923 verbose(env, "("); 924 /* 925 * _a stands for append, was shortened to avoid multiline statements below. 926 * This macro is used to output a comma separated list of attributes. 927 */ 928 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 929 930 if (reg->id) 931 verbose_a("id=%d", reg->id); 932 if (reg->ref_obj_id) 933 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 934 if (t != SCALAR_VALUE) 935 verbose_a("off=%d", reg->off); 936 if (type_is_pkt_pointer(t)) 937 verbose_a("r=%d", reg->range); 938 else if (base_type(t) == CONST_PTR_TO_MAP || 939 base_type(t) == PTR_TO_MAP_KEY || 940 base_type(t) == PTR_TO_MAP_VALUE) 941 verbose_a("ks=%d,vs=%d", 942 reg->map_ptr->key_size, 943 reg->map_ptr->value_size); 944 if (tnum_is_const(reg->var_off)) { 945 /* Typically an immediate SCALAR_VALUE, but 946 * could be a pointer whose offset is too big 947 * for reg->off 948 */ 949 verbose_a("imm=%llx", reg->var_off.value); 950 } else { 951 if (reg->smin_value != reg->umin_value && 952 reg->smin_value != S64_MIN) 953 verbose_a("smin=%lld", (long long)reg->smin_value); 954 if (reg->smax_value != reg->umax_value && 955 reg->smax_value != S64_MAX) 956 verbose_a("smax=%lld", (long long)reg->smax_value); 957 if (reg->umin_value != 0) 958 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 959 if (reg->umax_value != U64_MAX) 960 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 961 if (!tnum_is_unknown(reg->var_off)) { 962 char tn_buf[48]; 963 964 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 965 verbose_a("var_off=%s", tn_buf); 966 } 967 if (reg->s32_min_value != reg->smin_value && 968 reg->s32_min_value != S32_MIN) 969 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 970 if (reg->s32_max_value != reg->smax_value && 971 reg->s32_max_value != S32_MAX) 972 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 973 if (reg->u32_min_value != reg->umin_value && 974 reg->u32_min_value != U32_MIN) 975 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 976 if (reg->u32_max_value != reg->umax_value && 977 reg->u32_max_value != U32_MAX) 978 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 979 } 980 #undef verbose_a 981 982 verbose(env, ")"); 983 } 984 } 985 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 986 char types_buf[BPF_REG_SIZE + 1]; 987 bool valid = false; 988 int j; 989 990 for (j = 0; j < BPF_REG_SIZE; j++) { 991 if (state->stack[i].slot_type[j] != STACK_INVALID) 992 valid = true; 993 types_buf[j] = slot_type_char[ 994 state->stack[i].slot_type[j]]; 995 } 996 types_buf[BPF_REG_SIZE] = 0; 997 if (!valid) 998 continue; 999 if (!print_all && !stack_slot_scratched(env, i)) 1000 continue; 1001 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1002 print_liveness(env, state->stack[i].spilled_ptr.live); 1003 if (is_spilled_reg(&state->stack[i])) { 1004 reg = &state->stack[i].spilled_ptr; 1005 t = reg->type; 1006 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1007 if (t == SCALAR_VALUE && reg->precise) 1008 verbose(env, "P"); 1009 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 1010 verbose(env, "%lld", reg->var_off.value + reg->off); 1011 } else { 1012 verbose(env, "=%s", types_buf); 1013 } 1014 } 1015 if (state->acquired_refs && state->refs[0].id) { 1016 verbose(env, " refs=%d", state->refs[0].id); 1017 for (i = 1; i < state->acquired_refs; i++) 1018 if (state->refs[i].id) 1019 verbose(env, ",%d", state->refs[i].id); 1020 } 1021 if (state->in_callback_fn) 1022 verbose(env, " cb"); 1023 if (state->in_async_callback_fn) 1024 verbose(env, " async_cb"); 1025 verbose(env, "\n"); 1026 mark_verifier_state_clean(env); 1027 } 1028 1029 static inline u32 vlog_alignment(u32 pos) 1030 { 1031 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 1032 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 1033 } 1034 1035 static void print_insn_state(struct bpf_verifier_env *env, 1036 const struct bpf_func_state *state) 1037 { 1038 if (env->prev_log_len && env->prev_log_len == env->log.len_used) { 1039 /* remove new line character */ 1040 bpf_vlog_reset(&env->log, env->prev_log_len - 1); 1041 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' '); 1042 } else { 1043 verbose(env, "%d:", env->insn_idx); 1044 } 1045 print_verifier_state(env, state, false); 1046 } 1047 1048 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1049 * small to hold src. This is different from krealloc since we don't want to preserve 1050 * the contents of dst. 1051 * 1052 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1053 * not be allocated. 1054 */ 1055 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1056 { 1057 size_t alloc_bytes; 1058 void *orig = dst; 1059 size_t bytes; 1060 1061 if (ZERO_OR_NULL_PTR(src)) 1062 goto out; 1063 1064 if (unlikely(check_mul_overflow(n, size, &bytes))) 1065 return NULL; 1066 1067 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1068 dst = krealloc(orig, alloc_bytes, flags); 1069 if (!dst) { 1070 kfree(orig); 1071 return NULL; 1072 } 1073 1074 memcpy(dst, src, bytes); 1075 out: 1076 return dst ? dst : ZERO_SIZE_PTR; 1077 } 1078 1079 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1080 * small to hold new_n items. new items are zeroed out if the array grows. 1081 * 1082 * Contrary to krealloc_array, does not free arr if new_n is zero. 1083 */ 1084 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1085 { 1086 size_t alloc_size; 1087 void *new_arr; 1088 1089 if (!new_n || old_n == new_n) 1090 goto out; 1091 1092 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1093 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1094 if (!new_arr) { 1095 kfree(arr); 1096 return NULL; 1097 } 1098 arr = new_arr; 1099 1100 if (new_n > old_n) 1101 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1102 1103 out: 1104 return arr ? arr : ZERO_SIZE_PTR; 1105 } 1106 1107 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1108 { 1109 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1110 sizeof(struct bpf_reference_state), GFP_KERNEL); 1111 if (!dst->refs) 1112 return -ENOMEM; 1113 1114 dst->acquired_refs = src->acquired_refs; 1115 return 0; 1116 } 1117 1118 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1119 { 1120 size_t n = src->allocated_stack / BPF_REG_SIZE; 1121 1122 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1123 GFP_KERNEL); 1124 if (!dst->stack) 1125 return -ENOMEM; 1126 1127 dst->allocated_stack = src->allocated_stack; 1128 return 0; 1129 } 1130 1131 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1132 { 1133 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1134 sizeof(struct bpf_reference_state)); 1135 if (!state->refs) 1136 return -ENOMEM; 1137 1138 state->acquired_refs = n; 1139 return 0; 1140 } 1141 1142 static int grow_stack_state(struct bpf_func_state *state, int size) 1143 { 1144 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1145 1146 if (old_n >= n) 1147 return 0; 1148 1149 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1150 if (!state->stack) 1151 return -ENOMEM; 1152 1153 state->allocated_stack = size; 1154 return 0; 1155 } 1156 1157 /* Acquire a pointer id from the env and update the state->refs to include 1158 * this new pointer reference. 1159 * On success, returns a valid pointer id to associate with the register 1160 * On failure, returns a negative errno. 1161 */ 1162 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1163 { 1164 struct bpf_func_state *state = cur_func(env); 1165 int new_ofs = state->acquired_refs; 1166 int id, err; 1167 1168 err = resize_reference_state(state, state->acquired_refs + 1); 1169 if (err) 1170 return err; 1171 id = ++env->id_gen; 1172 state->refs[new_ofs].id = id; 1173 state->refs[new_ofs].insn_idx = insn_idx; 1174 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1175 1176 return id; 1177 } 1178 1179 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1180 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1181 { 1182 int i, last_idx; 1183 1184 last_idx = state->acquired_refs - 1; 1185 for (i = 0; i < state->acquired_refs; i++) { 1186 if (state->refs[i].id == ptr_id) { 1187 /* Cannot release caller references in callbacks */ 1188 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1189 return -EINVAL; 1190 if (last_idx && i != last_idx) 1191 memcpy(&state->refs[i], &state->refs[last_idx], 1192 sizeof(*state->refs)); 1193 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1194 state->acquired_refs--; 1195 return 0; 1196 } 1197 } 1198 return -EINVAL; 1199 } 1200 1201 static void free_func_state(struct bpf_func_state *state) 1202 { 1203 if (!state) 1204 return; 1205 kfree(state->refs); 1206 kfree(state->stack); 1207 kfree(state); 1208 } 1209 1210 static void clear_jmp_history(struct bpf_verifier_state *state) 1211 { 1212 kfree(state->jmp_history); 1213 state->jmp_history = NULL; 1214 state->jmp_history_cnt = 0; 1215 } 1216 1217 static void free_verifier_state(struct bpf_verifier_state *state, 1218 bool free_self) 1219 { 1220 int i; 1221 1222 for (i = 0; i <= state->curframe; i++) { 1223 free_func_state(state->frame[i]); 1224 state->frame[i] = NULL; 1225 } 1226 clear_jmp_history(state); 1227 if (free_self) 1228 kfree(state); 1229 } 1230 1231 /* copy verifier state from src to dst growing dst stack space 1232 * when necessary to accommodate larger src stack 1233 */ 1234 static int copy_func_state(struct bpf_func_state *dst, 1235 const struct bpf_func_state *src) 1236 { 1237 int err; 1238 1239 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1240 err = copy_reference_state(dst, src); 1241 if (err) 1242 return err; 1243 return copy_stack_state(dst, src); 1244 } 1245 1246 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1247 const struct bpf_verifier_state *src) 1248 { 1249 struct bpf_func_state *dst; 1250 int i, err; 1251 1252 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1253 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1254 GFP_USER); 1255 if (!dst_state->jmp_history) 1256 return -ENOMEM; 1257 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1258 1259 /* if dst has more stack frames then src frame, free them */ 1260 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1261 free_func_state(dst_state->frame[i]); 1262 dst_state->frame[i] = NULL; 1263 } 1264 dst_state->speculative = src->speculative; 1265 dst_state->active_rcu_lock = src->active_rcu_lock; 1266 dst_state->curframe = src->curframe; 1267 dst_state->active_lock.ptr = src->active_lock.ptr; 1268 dst_state->active_lock.id = src->active_lock.id; 1269 dst_state->branches = src->branches; 1270 dst_state->parent = src->parent; 1271 dst_state->first_insn_idx = src->first_insn_idx; 1272 dst_state->last_insn_idx = src->last_insn_idx; 1273 for (i = 0; i <= src->curframe; i++) { 1274 dst = dst_state->frame[i]; 1275 if (!dst) { 1276 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1277 if (!dst) 1278 return -ENOMEM; 1279 dst_state->frame[i] = dst; 1280 } 1281 err = copy_func_state(dst, src->frame[i]); 1282 if (err) 1283 return err; 1284 } 1285 return 0; 1286 } 1287 1288 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1289 { 1290 while (st) { 1291 u32 br = --st->branches; 1292 1293 /* WARN_ON(br > 1) technically makes sense here, 1294 * but see comment in push_stack(), hence: 1295 */ 1296 WARN_ONCE((int)br < 0, 1297 "BUG update_branch_counts:branches_to_explore=%d\n", 1298 br); 1299 if (br) 1300 break; 1301 st = st->parent; 1302 } 1303 } 1304 1305 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1306 int *insn_idx, bool pop_log) 1307 { 1308 struct bpf_verifier_state *cur = env->cur_state; 1309 struct bpf_verifier_stack_elem *elem, *head = env->head; 1310 int err; 1311 1312 if (env->head == NULL) 1313 return -ENOENT; 1314 1315 if (cur) { 1316 err = copy_verifier_state(cur, &head->st); 1317 if (err) 1318 return err; 1319 } 1320 if (pop_log) 1321 bpf_vlog_reset(&env->log, head->log_pos); 1322 if (insn_idx) 1323 *insn_idx = head->insn_idx; 1324 if (prev_insn_idx) 1325 *prev_insn_idx = head->prev_insn_idx; 1326 elem = head->next; 1327 free_verifier_state(&head->st, false); 1328 kfree(head); 1329 env->head = elem; 1330 env->stack_size--; 1331 return 0; 1332 } 1333 1334 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1335 int insn_idx, int prev_insn_idx, 1336 bool speculative) 1337 { 1338 struct bpf_verifier_state *cur = env->cur_state; 1339 struct bpf_verifier_stack_elem *elem; 1340 int err; 1341 1342 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1343 if (!elem) 1344 goto err; 1345 1346 elem->insn_idx = insn_idx; 1347 elem->prev_insn_idx = prev_insn_idx; 1348 elem->next = env->head; 1349 elem->log_pos = env->log.len_used; 1350 env->head = elem; 1351 env->stack_size++; 1352 err = copy_verifier_state(&elem->st, cur); 1353 if (err) 1354 goto err; 1355 elem->st.speculative |= speculative; 1356 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1357 verbose(env, "The sequence of %d jumps is too complex.\n", 1358 env->stack_size); 1359 goto err; 1360 } 1361 if (elem->st.parent) { 1362 ++elem->st.parent->branches; 1363 /* WARN_ON(branches > 2) technically makes sense here, 1364 * but 1365 * 1. speculative states will bump 'branches' for non-branch 1366 * instructions 1367 * 2. is_state_visited() heuristics may decide not to create 1368 * a new state for a sequence of branches and all such current 1369 * and cloned states will be pointing to a single parent state 1370 * which might have large 'branches' count. 1371 */ 1372 } 1373 return &elem->st; 1374 err: 1375 free_verifier_state(env->cur_state, true); 1376 env->cur_state = NULL; 1377 /* pop all elements and return */ 1378 while (!pop_stack(env, NULL, NULL, false)); 1379 return NULL; 1380 } 1381 1382 #define CALLER_SAVED_REGS 6 1383 static const int caller_saved[CALLER_SAVED_REGS] = { 1384 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1385 }; 1386 1387 /* This helper doesn't clear reg->id */ 1388 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1389 { 1390 reg->var_off = tnum_const(imm); 1391 reg->smin_value = (s64)imm; 1392 reg->smax_value = (s64)imm; 1393 reg->umin_value = imm; 1394 reg->umax_value = imm; 1395 1396 reg->s32_min_value = (s32)imm; 1397 reg->s32_max_value = (s32)imm; 1398 reg->u32_min_value = (u32)imm; 1399 reg->u32_max_value = (u32)imm; 1400 } 1401 1402 /* Mark the unknown part of a register (variable offset or scalar value) as 1403 * known to have the value @imm. 1404 */ 1405 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1406 { 1407 /* Clear off and union(map_ptr, range) */ 1408 memset(((u8 *)reg) + sizeof(reg->type), 0, 1409 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1410 reg->id = 0; 1411 reg->ref_obj_id = 0; 1412 ___mark_reg_known(reg, imm); 1413 } 1414 1415 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1416 { 1417 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1418 reg->s32_min_value = (s32)imm; 1419 reg->s32_max_value = (s32)imm; 1420 reg->u32_min_value = (u32)imm; 1421 reg->u32_max_value = (u32)imm; 1422 } 1423 1424 /* Mark the 'variable offset' part of a register as zero. This should be 1425 * used only on registers holding a pointer type. 1426 */ 1427 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1428 { 1429 __mark_reg_known(reg, 0); 1430 } 1431 1432 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1433 { 1434 __mark_reg_known(reg, 0); 1435 reg->type = SCALAR_VALUE; 1436 } 1437 1438 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1439 struct bpf_reg_state *regs, u32 regno) 1440 { 1441 if (WARN_ON(regno >= MAX_BPF_REG)) { 1442 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1443 /* Something bad happened, let's kill all regs */ 1444 for (regno = 0; regno < MAX_BPF_REG; regno++) 1445 __mark_reg_not_init(env, regs + regno); 1446 return; 1447 } 1448 __mark_reg_known_zero(regs + regno); 1449 } 1450 1451 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 1452 bool first_slot) 1453 { 1454 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 1455 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 1456 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 1457 */ 1458 __mark_reg_known_zero(reg); 1459 reg->type = CONST_PTR_TO_DYNPTR; 1460 reg->dynptr.type = type; 1461 reg->dynptr.first_slot = first_slot; 1462 } 1463 1464 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1465 { 1466 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1467 const struct bpf_map *map = reg->map_ptr; 1468 1469 if (map->inner_map_meta) { 1470 reg->type = CONST_PTR_TO_MAP; 1471 reg->map_ptr = map->inner_map_meta; 1472 /* transfer reg's id which is unique for every map_lookup_elem 1473 * as UID of the inner map. 1474 */ 1475 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1476 reg->map_uid = reg->id; 1477 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1478 reg->type = PTR_TO_XDP_SOCK; 1479 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1480 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1481 reg->type = PTR_TO_SOCKET; 1482 } else { 1483 reg->type = PTR_TO_MAP_VALUE; 1484 } 1485 return; 1486 } 1487 1488 reg->type &= ~PTR_MAYBE_NULL; 1489 } 1490 1491 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1492 { 1493 return type_is_pkt_pointer(reg->type); 1494 } 1495 1496 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1497 { 1498 return reg_is_pkt_pointer(reg) || 1499 reg->type == PTR_TO_PACKET_END; 1500 } 1501 1502 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1503 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1504 enum bpf_reg_type which) 1505 { 1506 /* The register can already have a range from prior markings. 1507 * This is fine as long as it hasn't been advanced from its 1508 * origin. 1509 */ 1510 return reg->type == which && 1511 reg->id == 0 && 1512 reg->off == 0 && 1513 tnum_equals_const(reg->var_off, 0); 1514 } 1515 1516 /* Reset the min/max bounds of a register */ 1517 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1518 { 1519 reg->smin_value = S64_MIN; 1520 reg->smax_value = S64_MAX; 1521 reg->umin_value = 0; 1522 reg->umax_value = U64_MAX; 1523 1524 reg->s32_min_value = S32_MIN; 1525 reg->s32_max_value = S32_MAX; 1526 reg->u32_min_value = 0; 1527 reg->u32_max_value = U32_MAX; 1528 } 1529 1530 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1531 { 1532 reg->smin_value = S64_MIN; 1533 reg->smax_value = S64_MAX; 1534 reg->umin_value = 0; 1535 reg->umax_value = U64_MAX; 1536 } 1537 1538 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1539 { 1540 reg->s32_min_value = S32_MIN; 1541 reg->s32_max_value = S32_MAX; 1542 reg->u32_min_value = 0; 1543 reg->u32_max_value = U32_MAX; 1544 } 1545 1546 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1547 { 1548 struct tnum var32_off = tnum_subreg(reg->var_off); 1549 1550 /* min signed is max(sign bit) | min(other bits) */ 1551 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1552 var32_off.value | (var32_off.mask & S32_MIN)); 1553 /* max signed is min(sign bit) | max(other bits) */ 1554 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1555 var32_off.value | (var32_off.mask & S32_MAX)); 1556 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1557 reg->u32_max_value = min(reg->u32_max_value, 1558 (u32)(var32_off.value | var32_off.mask)); 1559 } 1560 1561 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1562 { 1563 /* min signed is max(sign bit) | min(other bits) */ 1564 reg->smin_value = max_t(s64, reg->smin_value, 1565 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1566 /* max signed is min(sign bit) | max(other bits) */ 1567 reg->smax_value = min_t(s64, reg->smax_value, 1568 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1569 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1570 reg->umax_value = min(reg->umax_value, 1571 reg->var_off.value | reg->var_off.mask); 1572 } 1573 1574 static void __update_reg_bounds(struct bpf_reg_state *reg) 1575 { 1576 __update_reg32_bounds(reg); 1577 __update_reg64_bounds(reg); 1578 } 1579 1580 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1581 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1582 { 1583 /* Learn sign from signed bounds. 1584 * If we cannot cross the sign boundary, then signed and unsigned bounds 1585 * are the same, so combine. This works even in the negative case, e.g. 1586 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1587 */ 1588 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1589 reg->s32_min_value = reg->u32_min_value = 1590 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1591 reg->s32_max_value = reg->u32_max_value = 1592 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1593 return; 1594 } 1595 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1596 * boundary, so we must be careful. 1597 */ 1598 if ((s32)reg->u32_max_value >= 0) { 1599 /* Positive. We can't learn anything from the smin, but smax 1600 * is positive, hence safe. 1601 */ 1602 reg->s32_min_value = reg->u32_min_value; 1603 reg->s32_max_value = reg->u32_max_value = 1604 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1605 } else if ((s32)reg->u32_min_value < 0) { 1606 /* Negative. We can't learn anything from the smax, but smin 1607 * is negative, hence safe. 1608 */ 1609 reg->s32_min_value = reg->u32_min_value = 1610 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1611 reg->s32_max_value = reg->u32_max_value; 1612 } 1613 } 1614 1615 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1616 { 1617 /* Learn sign from signed bounds. 1618 * If we cannot cross the sign boundary, then signed and unsigned bounds 1619 * are the same, so combine. This works even in the negative case, e.g. 1620 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1621 */ 1622 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1623 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1624 reg->umin_value); 1625 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1626 reg->umax_value); 1627 return; 1628 } 1629 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1630 * boundary, so we must be careful. 1631 */ 1632 if ((s64)reg->umax_value >= 0) { 1633 /* Positive. We can't learn anything from the smin, but smax 1634 * is positive, hence safe. 1635 */ 1636 reg->smin_value = reg->umin_value; 1637 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1638 reg->umax_value); 1639 } else if ((s64)reg->umin_value < 0) { 1640 /* Negative. We can't learn anything from the smax, but smin 1641 * is negative, hence safe. 1642 */ 1643 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1644 reg->umin_value); 1645 reg->smax_value = reg->umax_value; 1646 } 1647 } 1648 1649 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1650 { 1651 __reg32_deduce_bounds(reg); 1652 __reg64_deduce_bounds(reg); 1653 } 1654 1655 /* Attempts to improve var_off based on unsigned min/max information */ 1656 static void __reg_bound_offset(struct bpf_reg_state *reg) 1657 { 1658 struct tnum var64_off = tnum_intersect(reg->var_off, 1659 tnum_range(reg->umin_value, 1660 reg->umax_value)); 1661 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1662 tnum_range(reg->u32_min_value, 1663 reg->u32_max_value)); 1664 1665 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1666 } 1667 1668 static void reg_bounds_sync(struct bpf_reg_state *reg) 1669 { 1670 /* We might have learned new bounds from the var_off. */ 1671 __update_reg_bounds(reg); 1672 /* We might have learned something about the sign bit. */ 1673 __reg_deduce_bounds(reg); 1674 /* We might have learned some bits from the bounds. */ 1675 __reg_bound_offset(reg); 1676 /* Intersecting with the old var_off might have improved our bounds 1677 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1678 * then new var_off is (0; 0x7f...fc) which improves our umax. 1679 */ 1680 __update_reg_bounds(reg); 1681 } 1682 1683 static bool __reg32_bound_s64(s32 a) 1684 { 1685 return a >= 0 && a <= S32_MAX; 1686 } 1687 1688 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1689 { 1690 reg->umin_value = reg->u32_min_value; 1691 reg->umax_value = reg->u32_max_value; 1692 1693 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 1694 * be positive otherwise set to worse case bounds and refine later 1695 * from tnum. 1696 */ 1697 if (__reg32_bound_s64(reg->s32_min_value) && 1698 __reg32_bound_s64(reg->s32_max_value)) { 1699 reg->smin_value = reg->s32_min_value; 1700 reg->smax_value = reg->s32_max_value; 1701 } else { 1702 reg->smin_value = 0; 1703 reg->smax_value = U32_MAX; 1704 } 1705 } 1706 1707 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1708 { 1709 /* special case when 64-bit register has upper 32-bit register 1710 * zeroed. Typically happens after zext or <<32, >>32 sequence 1711 * allowing us to use 32-bit bounds directly, 1712 */ 1713 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1714 __reg_assign_32_into_64(reg); 1715 } else { 1716 /* Otherwise the best we can do is push lower 32bit known and 1717 * unknown bits into register (var_off set from jmp logic) 1718 * then learn as much as possible from the 64-bit tnum 1719 * known and unknown bits. The previous smin/smax bounds are 1720 * invalid here because of jmp32 compare so mark them unknown 1721 * so they do not impact tnum bounds calculation. 1722 */ 1723 __mark_reg64_unbounded(reg); 1724 } 1725 reg_bounds_sync(reg); 1726 } 1727 1728 static bool __reg64_bound_s32(s64 a) 1729 { 1730 return a >= S32_MIN && a <= S32_MAX; 1731 } 1732 1733 static bool __reg64_bound_u32(u64 a) 1734 { 1735 return a >= U32_MIN && a <= U32_MAX; 1736 } 1737 1738 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1739 { 1740 __mark_reg32_unbounded(reg); 1741 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1742 reg->s32_min_value = (s32)reg->smin_value; 1743 reg->s32_max_value = (s32)reg->smax_value; 1744 } 1745 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1746 reg->u32_min_value = (u32)reg->umin_value; 1747 reg->u32_max_value = (u32)reg->umax_value; 1748 } 1749 reg_bounds_sync(reg); 1750 } 1751 1752 /* Mark a register as having a completely unknown (scalar) value. */ 1753 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1754 struct bpf_reg_state *reg) 1755 { 1756 /* 1757 * Clear type, off, and union(map_ptr, range) and 1758 * padding between 'type' and union 1759 */ 1760 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1761 reg->type = SCALAR_VALUE; 1762 reg->id = 0; 1763 reg->ref_obj_id = 0; 1764 reg->var_off = tnum_unknown; 1765 reg->frameno = 0; 1766 reg->precise = !env->bpf_capable; 1767 __mark_reg_unbounded(reg); 1768 } 1769 1770 static void mark_reg_unknown(struct bpf_verifier_env *env, 1771 struct bpf_reg_state *regs, u32 regno) 1772 { 1773 if (WARN_ON(regno >= MAX_BPF_REG)) { 1774 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1775 /* Something bad happened, let's kill all regs except FP */ 1776 for (regno = 0; regno < BPF_REG_FP; regno++) 1777 __mark_reg_not_init(env, regs + regno); 1778 return; 1779 } 1780 __mark_reg_unknown(env, regs + regno); 1781 } 1782 1783 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1784 struct bpf_reg_state *reg) 1785 { 1786 __mark_reg_unknown(env, reg); 1787 reg->type = NOT_INIT; 1788 } 1789 1790 static void mark_reg_not_init(struct bpf_verifier_env *env, 1791 struct bpf_reg_state *regs, u32 regno) 1792 { 1793 if (WARN_ON(regno >= MAX_BPF_REG)) { 1794 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1795 /* Something bad happened, let's kill all regs except FP */ 1796 for (regno = 0; regno < BPF_REG_FP; regno++) 1797 __mark_reg_not_init(env, regs + regno); 1798 return; 1799 } 1800 __mark_reg_not_init(env, regs + regno); 1801 } 1802 1803 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1804 struct bpf_reg_state *regs, u32 regno, 1805 enum bpf_reg_type reg_type, 1806 struct btf *btf, u32 btf_id, 1807 enum bpf_type_flag flag) 1808 { 1809 if (reg_type == SCALAR_VALUE) { 1810 mark_reg_unknown(env, regs, regno); 1811 return; 1812 } 1813 mark_reg_known_zero(env, regs, regno); 1814 regs[regno].type = PTR_TO_BTF_ID | flag; 1815 regs[regno].btf = btf; 1816 regs[regno].btf_id = btf_id; 1817 } 1818 1819 #define DEF_NOT_SUBREG (0) 1820 static void init_reg_state(struct bpf_verifier_env *env, 1821 struct bpf_func_state *state) 1822 { 1823 struct bpf_reg_state *regs = state->regs; 1824 int i; 1825 1826 for (i = 0; i < MAX_BPF_REG; i++) { 1827 mark_reg_not_init(env, regs, i); 1828 regs[i].live = REG_LIVE_NONE; 1829 regs[i].parent = NULL; 1830 regs[i].subreg_def = DEF_NOT_SUBREG; 1831 } 1832 1833 /* frame pointer */ 1834 regs[BPF_REG_FP].type = PTR_TO_STACK; 1835 mark_reg_known_zero(env, regs, BPF_REG_FP); 1836 regs[BPF_REG_FP].frameno = state->frameno; 1837 } 1838 1839 #define BPF_MAIN_FUNC (-1) 1840 static void init_func_state(struct bpf_verifier_env *env, 1841 struct bpf_func_state *state, 1842 int callsite, int frameno, int subprogno) 1843 { 1844 state->callsite = callsite; 1845 state->frameno = frameno; 1846 state->subprogno = subprogno; 1847 state->callback_ret_range = tnum_range(0, 0); 1848 init_reg_state(env, state); 1849 mark_verifier_state_scratched(env); 1850 } 1851 1852 /* Similar to push_stack(), but for async callbacks */ 1853 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 1854 int insn_idx, int prev_insn_idx, 1855 int subprog) 1856 { 1857 struct bpf_verifier_stack_elem *elem; 1858 struct bpf_func_state *frame; 1859 1860 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1861 if (!elem) 1862 goto err; 1863 1864 elem->insn_idx = insn_idx; 1865 elem->prev_insn_idx = prev_insn_idx; 1866 elem->next = env->head; 1867 elem->log_pos = env->log.len_used; 1868 env->head = elem; 1869 env->stack_size++; 1870 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1871 verbose(env, 1872 "The sequence of %d jumps is too complex for async cb.\n", 1873 env->stack_size); 1874 goto err; 1875 } 1876 /* Unlike push_stack() do not copy_verifier_state(). 1877 * The caller state doesn't matter. 1878 * This is async callback. It starts in a fresh stack. 1879 * Initialize it similar to do_check_common(). 1880 */ 1881 elem->st.branches = 1; 1882 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1883 if (!frame) 1884 goto err; 1885 init_func_state(env, frame, 1886 BPF_MAIN_FUNC /* callsite */, 1887 0 /* frameno within this callchain */, 1888 subprog /* subprog number within this prog */); 1889 elem->st.frame[0] = frame; 1890 return &elem->st; 1891 err: 1892 free_verifier_state(env->cur_state, true); 1893 env->cur_state = NULL; 1894 /* pop all elements and return */ 1895 while (!pop_stack(env, NULL, NULL, false)); 1896 return NULL; 1897 } 1898 1899 1900 enum reg_arg_type { 1901 SRC_OP, /* register is used as source operand */ 1902 DST_OP, /* register is used as destination operand */ 1903 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1904 }; 1905 1906 static int cmp_subprogs(const void *a, const void *b) 1907 { 1908 return ((struct bpf_subprog_info *)a)->start - 1909 ((struct bpf_subprog_info *)b)->start; 1910 } 1911 1912 static int find_subprog(struct bpf_verifier_env *env, int off) 1913 { 1914 struct bpf_subprog_info *p; 1915 1916 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1917 sizeof(env->subprog_info[0]), cmp_subprogs); 1918 if (!p) 1919 return -ENOENT; 1920 return p - env->subprog_info; 1921 1922 } 1923 1924 static int add_subprog(struct bpf_verifier_env *env, int off) 1925 { 1926 int insn_cnt = env->prog->len; 1927 int ret; 1928 1929 if (off >= insn_cnt || off < 0) { 1930 verbose(env, "call to invalid destination\n"); 1931 return -EINVAL; 1932 } 1933 ret = find_subprog(env, off); 1934 if (ret >= 0) 1935 return ret; 1936 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1937 verbose(env, "too many subprograms\n"); 1938 return -E2BIG; 1939 } 1940 /* determine subprog starts. The end is one before the next starts */ 1941 env->subprog_info[env->subprog_cnt++].start = off; 1942 sort(env->subprog_info, env->subprog_cnt, 1943 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1944 return env->subprog_cnt - 1; 1945 } 1946 1947 #define MAX_KFUNC_DESCS 256 1948 #define MAX_KFUNC_BTFS 256 1949 1950 struct bpf_kfunc_desc { 1951 struct btf_func_model func_model; 1952 u32 func_id; 1953 s32 imm; 1954 u16 offset; 1955 }; 1956 1957 struct bpf_kfunc_btf { 1958 struct btf *btf; 1959 struct module *module; 1960 u16 offset; 1961 }; 1962 1963 struct bpf_kfunc_desc_tab { 1964 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 1965 u32 nr_descs; 1966 }; 1967 1968 struct bpf_kfunc_btf_tab { 1969 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 1970 u32 nr_descs; 1971 }; 1972 1973 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 1974 { 1975 const struct bpf_kfunc_desc *d0 = a; 1976 const struct bpf_kfunc_desc *d1 = b; 1977 1978 /* func_id is not greater than BTF_MAX_TYPE */ 1979 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 1980 } 1981 1982 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 1983 { 1984 const struct bpf_kfunc_btf *d0 = a; 1985 const struct bpf_kfunc_btf *d1 = b; 1986 1987 return d0->offset - d1->offset; 1988 } 1989 1990 static const struct bpf_kfunc_desc * 1991 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 1992 { 1993 struct bpf_kfunc_desc desc = { 1994 .func_id = func_id, 1995 .offset = offset, 1996 }; 1997 struct bpf_kfunc_desc_tab *tab; 1998 1999 tab = prog->aux->kfunc_tab; 2000 return bsearch(&desc, tab->descs, tab->nr_descs, 2001 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2002 } 2003 2004 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2005 s16 offset) 2006 { 2007 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2008 struct bpf_kfunc_btf_tab *tab; 2009 struct bpf_kfunc_btf *b; 2010 struct module *mod; 2011 struct btf *btf; 2012 int btf_fd; 2013 2014 tab = env->prog->aux->kfunc_btf_tab; 2015 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2016 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2017 if (!b) { 2018 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2019 verbose(env, "too many different module BTFs\n"); 2020 return ERR_PTR(-E2BIG); 2021 } 2022 2023 if (bpfptr_is_null(env->fd_array)) { 2024 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2025 return ERR_PTR(-EPROTO); 2026 } 2027 2028 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2029 offset * sizeof(btf_fd), 2030 sizeof(btf_fd))) 2031 return ERR_PTR(-EFAULT); 2032 2033 btf = btf_get_by_fd(btf_fd); 2034 if (IS_ERR(btf)) { 2035 verbose(env, "invalid module BTF fd specified\n"); 2036 return btf; 2037 } 2038 2039 if (!btf_is_module(btf)) { 2040 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2041 btf_put(btf); 2042 return ERR_PTR(-EINVAL); 2043 } 2044 2045 mod = btf_try_get_module(btf); 2046 if (!mod) { 2047 btf_put(btf); 2048 return ERR_PTR(-ENXIO); 2049 } 2050 2051 b = &tab->descs[tab->nr_descs++]; 2052 b->btf = btf; 2053 b->module = mod; 2054 b->offset = offset; 2055 2056 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2057 kfunc_btf_cmp_by_off, NULL); 2058 } 2059 return b->btf; 2060 } 2061 2062 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2063 { 2064 if (!tab) 2065 return; 2066 2067 while (tab->nr_descs--) { 2068 module_put(tab->descs[tab->nr_descs].module); 2069 btf_put(tab->descs[tab->nr_descs].btf); 2070 } 2071 kfree(tab); 2072 } 2073 2074 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2075 { 2076 if (offset) { 2077 if (offset < 0) { 2078 /* In the future, this can be allowed to increase limit 2079 * of fd index into fd_array, interpreted as u16. 2080 */ 2081 verbose(env, "negative offset disallowed for kernel module function call\n"); 2082 return ERR_PTR(-EINVAL); 2083 } 2084 2085 return __find_kfunc_desc_btf(env, offset); 2086 } 2087 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2088 } 2089 2090 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2091 { 2092 const struct btf_type *func, *func_proto; 2093 struct bpf_kfunc_btf_tab *btf_tab; 2094 struct bpf_kfunc_desc_tab *tab; 2095 struct bpf_prog_aux *prog_aux; 2096 struct bpf_kfunc_desc *desc; 2097 const char *func_name; 2098 struct btf *desc_btf; 2099 unsigned long call_imm; 2100 unsigned long addr; 2101 int err; 2102 2103 prog_aux = env->prog->aux; 2104 tab = prog_aux->kfunc_tab; 2105 btf_tab = prog_aux->kfunc_btf_tab; 2106 if (!tab) { 2107 if (!btf_vmlinux) { 2108 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2109 return -ENOTSUPP; 2110 } 2111 2112 if (!env->prog->jit_requested) { 2113 verbose(env, "JIT is required for calling kernel function\n"); 2114 return -ENOTSUPP; 2115 } 2116 2117 if (!bpf_jit_supports_kfunc_call()) { 2118 verbose(env, "JIT does not support calling kernel function\n"); 2119 return -ENOTSUPP; 2120 } 2121 2122 if (!env->prog->gpl_compatible) { 2123 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2124 return -EINVAL; 2125 } 2126 2127 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2128 if (!tab) 2129 return -ENOMEM; 2130 prog_aux->kfunc_tab = tab; 2131 } 2132 2133 /* func_id == 0 is always invalid, but instead of returning an error, be 2134 * conservative and wait until the code elimination pass before returning 2135 * error, so that invalid calls that get pruned out can be in BPF programs 2136 * loaded from userspace. It is also required that offset be untouched 2137 * for such calls. 2138 */ 2139 if (!func_id && !offset) 2140 return 0; 2141 2142 if (!btf_tab && offset) { 2143 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2144 if (!btf_tab) 2145 return -ENOMEM; 2146 prog_aux->kfunc_btf_tab = btf_tab; 2147 } 2148 2149 desc_btf = find_kfunc_desc_btf(env, offset); 2150 if (IS_ERR(desc_btf)) { 2151 verbose(env, "failed to find BTF for kernel function\n"); 2152 return PTR_ERR(desc_btf); 2153 } 2154 2155 if (find_kfunc_desc(env->prog, func_id, offset)) 2156 return 0; 2157 2158 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2159 verbose(env, "too many different kernel function calls\n"); 2160 return -E2BIG; 2161 } 2162 2163 func = btf_type_by_id(desc_btf, func_id); 2164 if (!func || !btf_type_is_func(func)) { 2165 verbose(env, "kernel btf_id %u is not a function\n", 2166 func_id); 2167 return -EINVAL; 2168 } 2169 func_proto = btf_type_by_id(desc_btf, func->type); 2170 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2171 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2172 func_id); 2173 return -EINVAL; 2174 } 2175 2176 func_name = btf_name_by_offset(desc_btf, func->name_off); 2177 addr = kallsyms_lookup_name(func_name); 2178 if (!addr) { 2179 verbose(env, "cannot find address for kernel function %s\n", 2180 func_name); 2181 return -EINVAL; 2182 } 2183 2184 call_imm = BPF_CALL_IMM(addr); 2185 /* Check whether or not the relative offset overflows desc->imm */ 2186 if ((unsigned long)(s32)call_imm != call_imm) { 2187 verbose(env, "address of kernel function %s is out of range\n", 2188 func_name); 2189 return -EINVAL; 2190 } 2191 2192 desc = &tab->descs[tab->nr_descs++]; 2193 desc->func_id = func_id; 2194 desc->imm = call_imm; 2195 desc->offset = offset; 2196 err = btf_distill_func_proto(&env->log, desc_btf, 2197 func_proto, func_name, 2198 &desc->func_model); 2199 if (!err) 2200 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2201 kfunc_desc_cmp_by_id_off, NULL); 2202 return err; 2203 } 2204 2205 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 2206 { 2207 const struct bpf_kfunc_desc *d0 = a; 2208 const struct bpf_kfunc_desc *d1 = b; 2209 2210 if (d0->imm > d1->imm) 2211 return 1; 2212 else if (d0->imm < d1->imm) 2213 return -1; 2214 return 0; 2215 } 2216 2217 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 2218 { 2219 struct bpf_kfunc_desc_tab *tab; 2220 2221 tab = prog->aux->kfunc_tab; 2222 if (!tab) 2223 return; 2224 2225 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2226 kfunc_desc_cmp_by_imm, NULL); 2227 } 2228 2229 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2230 { 2231 return !!prog->aux->kfunc_tab; 2232 } 2233 2234 const struct btf_func_model * 2235 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2236 const struct bpf_insn *insn) 2237 { 2238 const struct bpf_kfunc_desc desc = { 2239 .imm = insn->imm, 2240 }; 2241 const struct bpf_kfunc_desc *res; 2242 struct bpf_kfunc_desc_tab *tab; 2243 2244 tab = prog->aux->kfunc_tab; 2245 res = bsearch(&desc, tab->descs, tab->nr_descs, 2246 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 2247 2248 return res ? &res->func_model : NULL; 2249 } 2250 2251 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2252 { 2253 struct bpf_subprog_info *subprog = env->subprog_info; 2254 struct bpf_insn *insn = env->prog->insnsi; 2255 int i, ret, insn_cnt = env->prog->len; 2256 2257 /* Add entry function. */ 2258 ret = add_subprog(env, 0); 2259 if (ret) 2260 return ret; 2261 2262 for (i = 0; i < insn_cnt; i++, insn++) { 2263 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2264 !bpf_pseudo_kfunc_call(insn)) 2265 continue; 2266 2267 if (!env->bpf_capable) { 2268 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2269 return -EPERM; 2270 } 2271 2272 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2273 ret = add_subprog(env, i + insn->imm + 1); 2274 else 2275 ret = add_kfunc_call(env, insn->imm, insn->off); 2276 2277 if (ret < 0) 2278 return ret; 2279 } 2280 2281 /* Add a fake 'exit' subprog which could simplify subprog iteration 2282 * logic. 'subprog_cnt' should not be increased. 2283 */ 2284 subprog[env->subprog_cnt].start = insn_cnt; 2285 2286 if (env->log.level & BPF_LOG_LEVEL2) 2287 for (i = 0; i < env->subprog_cnt; i++) 2288 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2289 2290 return 0; 2291 } 2292 2293 static int check_subprogs(struct bpf_verifier_env *env) 2294 { 2295 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2296 struct bpf_subprog_info *subprog = env->subprog_info; 2297 struct bpf_insn *insn = env->prog->insnsi; 2298 int insn_cnt = env->prog->len; 2299 2300 /* now check that all jumps are within the same subprog */ 2301 subprog_start = subprog[cur_subprog].start; 2302 subprog_end = subprog[cur_subprog + 1].start; 2303 for (i = 0; i < insn_cnt; i++) { 2304 u8 code = insn[i].code; 2305 2306 if (code == (BPF_JMP | BPF_CALL) && 2307 insn[i].imm == BPF_FUNC_tail_call && 2308 insn[i].src_reg != BPF_PSEUDO_CALL) 2309 subprog[cur_subprog].has_tail_call = true; 2310 if (BPF_CLASS(code) == BPF_LD && 2311 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2312 subprog[cur_subprog].has_ld_abs = true; 2313 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2314 goto next; 2315 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2316 goto next; 2317 off = i + insn[i].off + 1; 2318 if (off < subprog_start || off >= subprog_end) { 2319 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2320 return -EINVAL; 2321 } 2322 next: 2323 if (i == subprog_end - 1) { 2324 /* to avoid fall-through from one subprog into another 2325 * the last insn of the subprog should be either exit 2326 * or unconditional jump back 2327 */ 2328 if (code != (BPF_JMP | BPF_EXIT) && 2329 code != (BPF_JMP | BPF_JA)) { 2330 verbose(env, "last insn is not an exit or jmp\n"); 2331 return -EINVAL; 2332 } 2333 subprog_start = subprog_end; 2334 cur_subprog++; 2335 if (cur_subprog < env->subprog_cnt) 2336 subprog_end = subprog[cur_subprog + 1].start; 2337 } 2338 } 2339 return 0; 2340 } 2341 2342 /* Parentage chain of this register (or stack slot) should take care of all 2343 * issues like callee-saved registers, stack slot allocation time, etc. 2344 */ 2345 static int mark_reg_read(struct bpf_verifier_env *env, 2346 const struct bpf_reg_state *state, 2347 struct bpf_reg_state *parent, u8 flag) 2348 { 2349 bool writes = parent == state->parent; /* Observe write marks */ 2350 int cnt = 0; 2351 2352 while (parent) { 2353 /* if read wasn't screened by an earlier write ... */ 2354 if (writes && state->live & REG_LIVE_WRITTEN) 2355 break; 2356 if (parent->live & REG_LIVE_DONE) { 2357 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2358 reg_type_str(env, parent->type), 2359 parent->var_off.value, parent->off); 2360 return -EFAULT; 2361 } 2362 /* The first condition is more likely to be true than the 2363 * second, checked it first. 2364 */ 2365 if ((parent->live & REG_LIVE_READ) == flag || 2366 parent->live & REG_LIVE_READ64) 2367 /* The parentage chain never changes and 2368 * this parent was already marked as LIVE_READ. 2369 * There is no need to keep walking the chain again and 2370 * keep re-marking all parents as LIVE_READ. 2371 * This case happens when the same register is read 2372 * multiple times without writes into it in-between. 2373 * Also, if parent has the stronger REG_LIVE_READ64 set, 2374 * then no need to set the weak REG_LIVE_READ32. 2375 */ 2376 break; 2377 /* ... then we depend on parent's value */ 2378 parent->live |= flag; 2379 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2380 if (flag == REG_LIVE_READ64) 2381 parent->live &= ~REG_LIVE_READ32; 2382 state = parent; 2383 parent = state->parent; 2384 writes = true; 2385 cnt++; 2386 } 2387 2388 if (env->longest_mark_read_walk < cnt) 2389 env->longest_mark_read_walk = cnt; 2390 return 0; 2391 } 2392 2393 /* This function is supposed to be used by the following 32-bit optimization 2394 * code only. It returns TRUE if the source or destination register operates 2395 * on 64-bit, otherwise return FALSE. 2396 */ 2397 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2398 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2399 { 2400 u8 code, class, op; 2401 2402 code = insn->code; 2403 class = BPF_CLASS(code); 2404 op = BPF_OP(code); 2405 if (class == BPF_JMP) { 2406 /* BPF_EXIT for "main" will reach here. Return TRUE 2407 * conservatively. 2408 */ 2409 if (op == BPF_EXIT) 2410 return true; 2411 if (op == BPF_CALL) { 2412 /* BPF to BPF call will reach here because of marking 2413 * caller saved clobber with DST_OP_NO_MARK for which we 2414 * don't care the register def because they are anyway 2415 * marked as NOT_INIT already. 2416 */ 2417 if (insn->src_reg == BPF_PSEUDO_CALL) 2418 return false; 2419 /* Helper call will reach here because of arg type 2420 * check, conservatively return TRUE. 2421 */ 2422 if (t == SRC_OP) 2423 return true; 2424 2425 return false; 2426 } 2427 } 2428 2429 if (class == BPF_ALU64 || class == BPF_JMP || 2430 /* BPF_END always use BPF_ALU class. */ 2431 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 2432 return true; 2433 2434 if (class == BPF_ALU || class == BPF_JMP32) 2435 return false; 2436 2437 if (class == BPF_LDX) { 2438 if (t != SRC_OP) 2439 return BPF_SIZE(code) == BPF_DW; 2440 /* LDX source must be ptr. */ 2441 return true; 2442 } 2443 2444 if (class == BPF_STX) { 2445 /* BPF_STX (including atomic variants) has multiple source 2446 * operands, one of which is a ptr. Check whether the caller is 2447 * asking about it. 2448 */ 2449 if (t == SRC_OP && reg->type != SCALAR_VALUE) 2450 return true; 2451 return BPF_SIZE(code) == BPF_DW; 2452 } 2453 2454 if (class == BPF_LD) { 2455 u8 mode = BPF_MODE(code); 2456 2457 /* LD_IMM64 */ 2458 if (mode == BPF_IMM) 2459 return true; 2460 2461 /* Both LD_IND and LD_ABS return 32-bit data. */ 2462 if (t != SRC_OP) 2463 return false; 2464 2465 /* Implicit ctx ptr. */ 2466 if (regno == BPF_REG_6) 2467 return true; 2468 2469 /* Explicit source could be any width. */ 2470 return true; 2471 } 2472 2473 if (class == BPF_ST) 2474 /* The only source register for BPF_ST is a ptr. */ 2475 return true; 2476 2477 /* Conservatively return true at default. */ 2478 return true; 2479 } 2480 2481 /* Return the regno defined by the insn, or -1. */ 2482 static int insn_def_regno(const struct bpf_insn *insn) 2483 { 2484 switch (BPF_CLASS(insn->code)) { 2485 case BPF_JMP: 2486 case BPF_JMP32: 2487 case BPF_ST: 2488 return -1; 2489 case BPF_STX: 2490 if (BPF_MODE(insn->code) == BPF_ATOMIC && 2491 (insn->imm & BPF_FETCH)) { 2492 if (insn->imm == BPF_CMPXCHG) 2493 return BPF_REG_0; 2494 else 2495 return insn->src_reg; 2496 } else { 2497 return -1; 2498 } 2499 default: 2500 return insn->dst_reg; 2501 } 2502 } 2503 2504 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 2505 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 2506 { 2507 int dst_reg = insn_def_regno(insn); 2508 2509 if (dst_reg == -1) 2510 return false; 2511 2512 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2513 } 2514 2515 static void mark_insn_zext(struct bpf_verifier_env *env, 2516 struct bpf_reg_state *reg) 2517 { 2518 s32 def_idx = reg->subreg_def; 2519 2520 if (def_idx == DEF_NOT_SUBREG) 2521 return; 2522 2523 env->insn_aux_data[def_idx - 1].zext_dst = true; 2524 /* The dst will be zero extended, so won't be sub-register anymore. */ 2525 reg->subreg_def = DEF_NOT_SUBREG; 2526 } 2527 2528 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2529 enum reg_arg_type t) 2530 { 2531 struct bpf_verifier_state *vstate = env->cur_state; 2532 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2533 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2534 struct bpf_reg_state *reg, *regs = state->regs; 2535 bool rw64; 2536 2537 if (regno >= MAX_BPF_REG) { 2538 verbose(env, "R%d is invalid\n", regno); 2539 return -EINVAL; 2540 } 2541 2542 mark_reg_scratched(env, regno); 2543 2544 reg = ®s[regno]; 2545 rw64 = is_reg64(env, insn, regno, reg, t); 2546 if (t == SRC_OP) { 2547 /* check whether register used as source operand can be read */ 2548 if (reg->type == NOT_INIT) { 2549 verbose(env, "R%d !read_ok\n", regno); 2550 return -EACCES; 2551 } 2552 /* We don't need to worry about FP liveness because it's read-only */ 2553 if (regno == BPF_REG_FP) 2554 return 0; 2555 2556 if (rw64) 2557 mark_insn_zext(env, reg); 2558 2559 return mark_reg_read(env, reg, reg->parent, 2560 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2561 } else { 2562 /* check whether register used as dest operand can be written to */ 2563 if (regno == BPF_REG_FP) { 2564 verbose(env, "frame pointer is read only\n"); 2565 return -EACCES; 2566 } 2567 reg->live |= REG_LIVE_WRITTEN; 2568 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2569 if (t == DST_OP) 2570 mark_reg_unknown(env, regs, regno); 2571 } 2572 return 0; 2573 } 2574 2575 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 2576 { 2577 env->insn_aux_data[idx].jmp_point = true; 2578 } 2579 2580 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 2581 { 2582 return env->insn_aux_data[insn_idx].jmp_point; 2583 } 2584 2585 /* for any branch, call, exit record the history of jmps in the given state */ 2586 static int push_jmp_history(struct bpf_verifier_env *env, 2587 struct bpf_verifier_state *cur) 2588 { 2589 u32 cnt = cur->jmp_history_cnt; 2590 struct bpf_idx_pair *p; 2591 size_t alloc_size; 2592 2593 if (!is_jmp_point(env, env->insn_idx)) 2594 return 0; 2595 2596 cnt++; 2597 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 2598 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 2599 if (!p) 2600 return -ENOMEM; 2601 p[cnt - 1].idx = env->insn_idx; 2602 p[cnt - 1].prev_idx = env->prev_insn_idx; 2603 cur->jmp_history = p; 2604 cur->jmp_history_cnt = cnt; 2605 return 0; 2606 } 2607 2608 /* Backtrack one insn at a time. If idx is not at the top of recorded 2609 * history then previous instruction came from straight line execution. 2610 */ 2611 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2612 u32 *history) 2613 { 2614 u32 cnt = *history; 2615 2616 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2617 i = st->jmp_history[cnt - 1].prev_idx; 2618 (*history)--; 2619 } else { 2620 i--; 2621 } 2622 return i; 2623 } 2624 2625 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2626 { 2627 const struct btf_type *func; 2628 struct btf *desc_btf; 2629 2630 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2631 return NULL; 2632 2633 desc_btf = find_kfunc_desc_btf(data, insn->off); 2634 if (IS_ERR(desc_btf)) 2635 return "<error>"; 2636 2637 func = btf_type_by_id(desc_btf, insn->imm); 2638 return btf_name_by_offset(desc_btf, func->name_off); 2639 } 2640 2641 /* For given verifier state backtrack_insn() is called from the last insn to 2642 * the first insn. Its purpose is to compute a bitmask of registers and 2643 * stack slots that needs precision in the parent verifier state. 2644 */ 2645 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2646 u32 *reg_mask, u64 *stack_mask) 2647 { 2648 const struct bpf_insn_cbs cbs = { 2649 .cb_call = disasm_kfunc_name, 2650 .cb_print = verbose, 2651 .private_data = env, 2652 }; 2653 struct bpf_insn *insn = env->prog->insnsi + idx; 2654 u8 class = BPF_CLASS(insn->code); 2655 u8 opcode = BPF_OP(insn->code); 2656 u8 mode = BPF_MODE(insn->code); 2657 u32 dreg = 1u << insn->dst_reg; 2658 u32 sreg = 1u << insn->src_reg; 2659 u32 spi; 2660 2661 if (insn->code == 0) 2662 return 0; 2663 if (env->log.level & BPF_LOG_LEVEL2) { 2664 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2665 verbose(env, "%d: ", idx); 2666 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2667 } 2668 2669 if (class == BPF_ALU || class == BPF_ALU64) { 2670 if (!(*reg_mask & dreg)) 2671 return 0; 2672 if (opcode == BPF_MOV) { 2673 if (BPF_SRC(insn->code) == BPF_X) { 2674 /* dreg = sreg 2675 * dreg needs precision after this insn 2676 * sreg needs precision before this insn 2677 */ 2678 *reg_mask &= ~dreg; 2679 *reg_mask |= sreg; 2680 } else { 2681 /* dreg = K 2682 * dreg needs precision after this insn. 2683 * Corresponding register is already marked 2684 * as precise=true in this verifier state. 2685 * No further markings in parent are necessary 2686 */ 2687 *reg_mask &= ~dreg; 2688 } 2689 } else { 2690 if (BPF_SRC(insn->code) == BPF_X) { 2691 /* dreg += sreg 2692 * both dreg and sreg need precision 2693 * before this insn 2694 */ 2695 *reg_mask |= sreg; 2696 } /* else dreg += K 2697 * dreg still needs precision before this insn 2698 */ 2699 } 2700 } else if (class == BPF_LDX) { 2701 if (!(*reg_mask & dreg)) 2702 return 0; 2703 *reg_mask &= ~dreg; 2704 2705 /* scalars can only be spilled into stack w/o losing precision. 2706 * Load from any other memory can be zero extended. 2707 * The desire to keep that precision is already indicated 2708 * by 'precise' mark in corresponding register of this state. 2709 * No further tracking necessary. 2710 */ 2711 if (insn->src_reg != BPF_REG_FP) 2712 return 0; 2713 2714 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2715 * that [fp - off] slot contains scalar that needs to be 2716 * tracked with precision 2717 */ 2718 spi = (-insn->off - 1) / BPF_REG_SIZE; 2719 if (spi >= 64) { 2720 verbose(env, "BUG spi %d\n", spi); 2721 WARN_ONCE(1, "verifier backtracking bug"); 2722 return -EFAULT; 2723 } 2724 *stack_mask |= 1ull << spi; 2725 } else if (class == BPF_STX || class == BPF_ST) { 2726 if (*reg_mask & dreg) 2727 /* stx & st shouldn't be using _scalar_ dst_reg 2728 * to access memory. It means backtracking 2729 * encountered a case of pointer subtraction. 2730 */ 2731 return -ENOTSUPP; 2732 /* scalars can only be spilled into stack */ 2733 if (insn->dst_reg != BPF_REG_FP) 2734 return 0; 2735 spi = (-insn->off - 1) / BPF_REG_SIZE; 2736 if (spi >= 64) { 2737 verbose(env, "BUG spi %d\n", spi); 2738 WARN_ONCE(1, "verifier backtracking bug"); 2739 return -EFAULT; 2740 } 2741 if (!(*stack_mask & (1ull << spi))) 2742 return 0; 2743 *stack_mask &= ~(1ull << spi); 2744 if (class == BPF_STX) 2745 *reg_mask |= sreg; 2746 } else if (class == BPF_JMP || class == BPF_JMP32) { 2747 if (opcode == BPF_CALL) { 2748 if (insn->src_reg == BPF_PSEUDO_CALL) 2749 return -ENOTSUPP; 2750 /* BPF helpers that invoke callback subprogs are 2751 * equivalent to BPF_PSEUDO_CALL above 2752 */ 2753 if (insn->src_reg == 0 && is_callback_calling_function(insn->imm)) 2754 return -ENOTSUPP; 2755 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 2756 * catch this error later. Make backtracking conservative 2757 * with ENOTSUPP. 2758 */ 2759 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 2760 return -ENOTSUPP; 2761 /* regular helper call sets R0 */ 2762 *reg_mask &= ~1; 2763 if (*reg_mask & 0x3f) { 2764 /* if backtracing was looking for registers R1-R5 2765 * they should have been found already. 2766 */ 2767 verbose(env, "BUG regs %x\n", *reg_mask); 2768 WARN_ONCE(1, "verifier backtracking bug"); 2769 return -EFAULT; 2770 } 2771 } else if (opcode == BPF_EXIT) { 2772 return -ENOTSUPP; 2773 } 2774 } else if (class == BPF_LD) { 2775 if (!(*reg_mask & dreg)) 2776 return 0; 2777 *reg_mask &= ~dreg; 2778 /* It's ld_imm64 or ld_abs or ld_ind. 2779 * For ld_imm64 no further tracking of precision 2780 * into parent is necessary 2781 */ 2782 if (mode == BPF_IND || mode == BPF_ABS) 2783 /* to be analyzed */ 2784 return -ENOTSUPP; 2785 } 2786 return 0; 2787 } 2788 2789 /* the scalar precision tracking algorithm: 2790 * . at the start all registers have precise=false. 2791 * . scalar ranges are tracked as normal through alu and jmp insns. 2792 * . once precise value of the scalar register is used in: 2793 * . ptr + scalar alu 2794 * . if (scalar cond K|scalar) 2795 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2796 * backtrack through the verifier states and mark all registers and 2797 * stack slots with spilled constants that these scalar regisers 2798 * should be precise. 2799 * . during state pruning two registers (or spilled stack slots) 2800 * are equivalent if both are not precise. 2801 * 2802 * Note the verifier cannot simply walk register parentage chain, 2803 * since many different registers and stack slots could have been 2804 * used to compute single precise scalar. 2805 * 2806 * The approach of starting with precise=true for all registers and then 2807 * backtrack to mark a register as not precise when the verifier detects 2808 * that program doesn't care about specific value (e.g., when helper 2809 * takes register as ARG_ANYTHING parameter) is not safe. 2810 * 2811 * It's ok to walk single parentage chain of the verifier states. 2812 * It's possible that this backtracking will go all the way till 1st insn. 2813 * All other branches will be explored for needing precision later. 2814 * 2815 * The backtracking needs to deal with cases like: 2816 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2817 * r9 -= r8 2818 * r5 = r9 2819 * if r5 > 0x79f goto pc+7 2820 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2821 * r5 += 1 2822 * ... 2823 * call bpf_perf_event_output#25 2824 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2825 * 2826 * and this case: 2827 * r6 = 1 2828 * call foo // uses callee's r6 inside to compute r0 2829 * r0 += r6 2830 * if r0 == 0 goto 2831 * 2832 * to track above reg_mask/stack_mask needs to be independent for each frame. 2833 * 2834 * Also if parent's curframe > frame where backtracking started, 2835 * the verifier need to mark registers in both frames, otherwise callees 2836 * may incorrectly prune callers. This is similar to 2837 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2838 * 2839 * For now backtracking falls back into conservative marking. 2840 */ 2841 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2842 struct bpf_verifier_state *st) 2843 { 2844 struct bpf_func_state *func; 2845 struct bpf_reg_state *reg; 2846 int i, j; 2847 2848 /* big hammer: mark all scalars precise in this path. 2849 * pop_stack may still get !precise scalars. 2850 * We also skip current state and go straight to first parent state, 2851 * because precision markings in current non-checkpointed state are 2852 * not needed. See why in the comment in __mark_chain_precision below. 2853 */ 2854 for (st = st->parent; st; st = st->parent) { 2855 for (i = 0; i <= st->curframe; i++) { 2856 func = st->frame[i]; 2857 for (j = 0; j < BPF_REG_FP; j++) { 2858 reg = &func->regs[j]; 2859 if (reg->type != SCALAR_VALUE) 2860 continue; 2861 reg->precise = true; 2862 } 2863 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2864 if (!is_spilled_reg(&func->stack[j])) 2865 continue; 2866 reg = &func->stack[j].spilled_ptr; 2867 if (reg->type != SCALAR_VALUE) 2868 continue; 2869 reg->precise = true; 2870 } 2871 } 2872 } 2873 } 2874 2875 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 2876 { 2877 struct bpf_func_state *func; 2878 struct bpf_reg_state *reg; 2879 int i, j; 2880 2881 for (i = 0; i <= st->curframe; i++) { 2882 func = st->frame[i]; 2883 for (j = 0; j < BPF_REG_FP; j++) { 2884 reg = &func->regs[j]; 2885 if (reg->type != SCALAR_VALUE) 2886 continue; 2887 reg->precise = false; 2888 } 2889 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2890 if (!is_spilled_reg(&func->stack[j])) 2891 continue; 2892 reg = &func->stack[j].spilled_ptr; 2893 if (reg->type != SCALAR_VALUE) 2894 continue; 2895 reg->precise = false; 2896 } 2897 } 2898 } 2899 2900 /* 2901 * __mark_chain_precision() backtracks BPF program instruction sequence and 2902 * chain of verifier states making sure that register *regno* (if regno >= 0) 2903 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 2904 * SCALARS, as well as any other registers and slots that contribute to 2905 * a tracked state of given registers/stack slots, depending on specific BPF 2906 * assembly instructions (see backtrack_insns() for exact instruction handling 2907 * logic). This backtracking relies on recorded jmp_history and is able to 2908 * traverse entire chain of parent states. This process ends only when all the 2909 * necessary registers/slots and their transitive dependencies are marked as 2910 * precise. 2911 * 2912 * One important and subtle aspect is that precise marks *do not matter* in 2913 * the currently verified state (current state). It is important to understand 2914 * why this is the case. 2915 * 2916 * First, note that current state is the state that is not yet "checkpointed", 2917 * i.e., it is not yet put into env->explored_states, and it has no children 2918 * states as well. It's ephemeral, and can end up either a) being discarded if 2919 * compatible explored state is found at some point or BPF_EXIT instruction is 2920 * reached or b) checkpointed and put into env->explored_states, branching out 2921 * into one or more children states. 2922 * 2923 * In the former case, precise markings in current state are completely 2924 * ignored by state comparison code (see regsafe() for details). Only 2925 * checkpointed ("old") state precise markings are important, and if old 2926 * state's register/slot is precise, regsafe() assumes current state's 2927 * register/slot as precise and checks value ranges exactly and precisely. If 2928 * states turn out to be compatible, current state's necessary precise 2929 * markings and any required parent states' precise markings are enforced 2930 * after the fact with propagate_precision() logic, after the fact. But it's 2931 * important to realize that in this case, even after marking current state 2932 * registers/slots as precise, we immediately discard current state. So what 2933 * actually matters is any of the precise markings propagated into current 2934 * state's parent states, which are always checkpointed (due to b) case above). 2935 * As such, for scenario a) it doesn't matter if current state has precise 2936 * markings set or not. 2937 * 2938 * Now, for the scenario b), checkpointing and forking into child(ren) 2939 * state(s). Note that before current state gets to checkpointing step, any 2940 * processed instruction always assumes precise SCALAR register/slot 2941 * knowledge: if precise value or range is useful to prune jump branch, BPF 2942 * verifier takes this opportunity enthusiastically. Similarly, when 2943 * register's value is used to calculate offset or memory address, exact 2944 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 2945 * what we mentioned above about state comparison ignoring precise markings 2946 * during state comparison, BPF verifier ignores and also assumes precise 2947 * markings *at will* during instruction verification process. But as verifier 2948 * assumes precision, it also propagates any precision dependencies across 2949 * parent states, which are not yet finalized, so can be further restricted 2950 * based on new knowledge gained from restrictions enforced by their children 2951 * states. This is so that once those parent states are finalized, i.e., when 2952 * they have no more active children state, state comparison logic in 2953 * is_state_visited() would enforce strict and precise SCALAR ranges, if 2954 * required for correctness. 2955 * 2956 * To build a bit more intuition, note also that once a state is checkpointed, 2957 * the path we took to get to that state is not important. This is crucial 2958 * property for state pruning. When state is checkpointed and finalized at 2959 * some instruction index, it can be correctly and safely used to "short 2960 * circuit" any *compatible* state that reaches exactly the same instruction 2961 * index. I.e., if we jumped to that instruction from a completely different 2962 * code path than original finalized state was derived from, it doesn't 2963 * matter, current state can be discarded because from that instruction 2964 * forward having a compatible state will ensure we will safely reach the 2965 * exit. States describe preconditions for further exploration, but completely 2966 * forget the history of how we got here. 2967 * 2968 * This also means that even if we needed precise SCALAR range to get to 2969 * finalized state, but from that point forward *that same* SCALAR register is 2970 * never used in a precise context (i.e., it's precise value is not needed for 2971 * correctness), it's correct and safe to mark such register as "imprecise" 2972 * (i.e., precise marking set to false). This is what we rely on when we do 2973 * not set precise marking in current state. If no child state requires 2974 * precision for any given SCALAR register, it's safe to dictate that it can 2975 * be imprecise. If any child state does require this register to be precise, 2976 * we'll mark it precise later retroactively during precise markings 2977 * propagation from child state to parent states. 2978 * 2979 * Skipping precise marking setting in current state is a mild version of 2980 * relying on the above observation. But we can utilize this property even 2981 * more aggressively by proactively forgetting any precise marking in the 2982 * current state (which we inherited from the parent state), right before we 2983 * checkpoint it and branch off into new child state. This is done by 2984 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 2985 * finalized states which help in short circuiting more future states. 2986 */ 2987 static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno, 2988 int spi) 2989 { 2990 struct bpf_verifier_state *st = env->cur_state; 2991 int first_idx = st->first_insn_idx; 2992 int last_idx = env->insn_idx; 2993 struct bpf_func_state *func; 2994 struct bpf_reg_state *reg; 2995 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2996 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2997 bool skip_first = true; 2998 bool new_marks = false; 2999 int i, err; 3000 3001 if (!env->bpf_capable) 3002 return 0; 3003 3004 /* Do sanity checks against current state of register and/or stack 3005 * slot, but don't set precise flag in current state, as precision 3006 * tracking in the current state is unnecessary. 3007 */ 3008 func = st->frame[frame]; 3009 if (regno >= 0) { 3010 reg = &func->regs[regno]; 3011 if (reg->type != SCALAR_VALUE) { 3012 WARN_ONCE(1, "backtracing misuse"); 3013 return -EFAULT; 3014 } 3015 new_marks = true; 3016 } 3017 3018 while (spi >= 0) { 3019 if (!is_spilled_reg(&func->stack[spi])) { 3020 stack_mask = 0; 3021 break; 3022 } 3023 reg = &func->stack[spi].spilled_ptr; 3024 if (reg->type != SCALAR_VALUE) { 3025 stack_mask = 0; 3026 break; 3027 } 3028 new_marks = true; 3029 break; 3030 } 3031 3032 if (!new_marks) 3033 return 0; 3034 if (!reg_mask && !stack_mask) 3035 return 0; 3036 3037 for (;;) { 3038 DECLARE_BITMAP(mask, 64); 3039 u32 history = st->jmp_history_cnt; 3040 3041 if (env->log.level & BPF_LOG_LEVEL2) 3042 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 3043 3044 if (last_idx < 0) { 3045 /* we are at the entry into subprog, which 3046 * is expected for global funcs, but only if 3047 * requested precise registers are R1-R5 3048 * (which are global func's input arguments) 3049 */ 3050 if (st->curframe == 0 && 3051 st->frame[0]->subprogno > 0 && 3052 st->frame[0]->callsite == BPF_MAIN_FUNC && 3053 stack_mask == 0 && (reg_mask & ~0x3e) == 0) { 3054 bitmap_from_u64(mask, reg_mask); 3055 for_each_set_bit(i, mask, 32) { 3056 reg = &st->frame[0]->regs[i]; 3057 if (reg->type != SCALAR_VALUE) { 3058 reg_mask &= ~(1u << i); 3059 continue; 3060 } 3061 reg->precise = true; 3062 } 3063 return 0; 3064 } 3065 3066 verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n", 3067 st->frame[0]->subprogno, reg_mask, stack_mask); 3068 WARN_ONCE(1, "verifier backtracking bug"); 3069 return -EFAULT; 3070 } 3071 3072 for (i = last_idx;;) { 3073 if (skip_first) { 3074 err = 0; 3075 skip_first = false; 3076 } else { 3077 err = backtrack_insn(env, i, ®_mask, &stack_mask); 3078 } 3079 if (err == -ENOTSUPP) { 3080 mark_all_scalars_precise(env, st); 3081 return 0; 3082 } else if (err) { 3083 return err; 3084 } 3085 if (!reg_mask && !stack_mask) 3086 /* Found assignment(s) into tracked register in this state. 3087 * Since this state is already marked, just return. 3088 * Nothing to be tracked further in the parent state. 3089 */ 3090 return 0; 3091 if (i == first_idx) 3092 break; 3093 i = get_prev_insn_idx(st, i, &history); 3094 if (i >= env->prog->len) { 3095 /* This can happen if backtracking reached insn 0 3096 * and there are still reg_mask or stack_mask 3097 * to backtrack. 3098 * It means the backtracking missed the spot where 3099 * particular register was initialized with a constant. 3100 */ 3101 verbose(env, "BUG backtracking idx %d\n", i); 3102 WARN_ONCE(1, "verifier backtracking bug"); 3103 return -EFAULT; 3104 } 3105 } 3106 st = st->parent; 3107 if (!st) 3108 break; 3109 3110 new_marks = false; 3111 func = st->frame[frame]; 3112 bitmap_from_u64(mask, reg_mask); 3113 for_each_set_bit(i, mask, 32) { 3114 reg = &func->regs[i]; 3115 if (reg->type != SCALAR_VALUE) { 3116 reg_mask &= ~(1u << i); 3117 continue; 3118 } 3119 if (!reg->precise) 3120 new_marks = true; 3121 reg->precise = true; 3122 } 3123 3124 bitmap_from_u64(mask, stack_mask); 3125 for_each_set_bit(i, mask, 64) { 3126 if (i >= func->allocated_stack / BPF_REG_SIZE) { 3127 /* the sequence of instructions: 3128 * 2: (bf) r3 = r10 3129 * 3: (7b) *(u64 *)(r3 -8) = r0 3130 * 4: (79) r4 = *(u64 *)(r10 -8) 3131 * doesn't contain jmps. It's backtracked 3132 * as a single block. 3133 * During backtracking insn 3 is not recognized as 3134 * stack access, so at the end of backtracking 3135 * stack slot fp-8 is still marked in stack_mask. 3136 * However the parent state may not have accessed 3137 * fp-8 and it's "unallocated" stack space. 3138 * In such case fallback to conservative. 3139 */ 3140 mark_all_scalars_precise(env, st); 3141 return 0; 3142 } 3143 3144 if (!is_spilled_reg(&func->stack[i])) { 3145 stack_mask &= ~(1ull << i); 3146 continue; 3147 } 3148 reg = &func->stack[i].spilled_ptr; 3149 if (reg->type != SCALAR_VALUE) { 3150 stack_mask &= ~(1ull << i); 3151 continue; 3152 } 3153 if (!reg->precise) 3154 new_marks = true; 3155 reg->precise = true; 3156 } 3157 if (env->log.level & BPF_LOG_LEVEL2) { 3158 verbose(env, "parent %s regs=%x stack=%llx marks:", 3159 new_marks ? "didn't have" : "already had", 3160 reg_mask, stack_mask); 3161 print_verifier_state(env, func, true); 3162 } 3163 3164 if (!reg_mask && !stack_mask) 3165 break; 3166 if (!new_marks) 3167 break; 3168 3169 last_idx = st->last_insn_idx; 3170 first_idx = st->first_insn_idx; 3171 } 3172 return 0; 3173 } 3174 3175 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 3176 { 3177 return __mark_chain_precision(env, env->cur_state->curframe, regno, -1); 3178 } 3179 3180 static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno) 3181 { 3182 return __mark_chain_precision(env, frame, regno, -1); 3183 } 3184 3185 static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi) 3186 { 3187 return __mark_chain_precision(env, frame, -1, spi); 3188 } 3189 3190 static bool is_spillable_regtype(enum bpf_reg_type type) 3191 { 3192 switch (base_type(type)) { 3193 case PTR_TO_MAP_VALUE: 3194 case PTR_TO_STACK: 3195 case PTR_TO_CTX: 3196 case PTR_TO_PACKET: 3197 case PTR_TO_PACKET_META: 3198 case PTR_TO_PACKET_END: 3199 case PTR_TO_FLOW_KEYS: 3200 case CONST_PTR_TO_MAP: 3201 case PTR_TO_SOCKET: 3202 case PTR_TO_SOCK_COMMON: 3203 case PTR_TO_TCP_SOCK: 3204 case PTR_TO_XDP_SOCK: 3205 case PTR_TO_BTF_ID: 3206 case PTR_TO_BUF: 3207 case PTR_TO_MEM: 3208 case PTR_TO_FUNC: 3209 case PTR_TO_MAP_KEY: 3210 return true; 3211 default: 3212 return false; 3213 } 3214 } 3215 3216 /* Does this register contain a constant zero? */ 3217 static bool register_is_null(struct bpf_reg_state *reg) 3218 { 3219 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 3220 } 3221 3222 static bool register_is_const(struct bpf_reg_state *reg) 3223 { 3224 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 3225 } 3226 3227 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 3228 { 3229 return tnum_is_unknown(reg->var_off) && 3230 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 3231 reg->umin_value == 0 && reg->umax_value == U64_MAX && 3232 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 3233 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 3234 } 3235 3236 static bool register_is_bounded(struct bpf_reg_state *reg) 3237 { 3238 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 3239 } 3240 3241 static bool __is_pointer_value(bool allow_ptr_leaks, 3242 const struct bpf_reg_state *reg) 3243 { 3244 if (allow_ptr_leaks) 3245 return false; 3246 3247 return reg->type != SCALAR_VALUE; 3248 } 3249 3250 static void save_register_state(struct bpf_func_state *state, 3251 int spi, struct bpf_reg_state *reg, 3252 int size) 3253 { 3254 int i; 3255 3256 state->stack[spi].spilled_ptr = *reg; 3257 if (size == BPF_REG_SIZE) 3258 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3259 3260 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 3261 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 3262 3263 /* size < 8 bytes spill */ 3264 for (; i; i--) 3265 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 3266 } 3267 3268 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 3269 * stack boundary and alignment are checked in check_mem_access() 3270 */ 3271 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 3272 /* stack frame we're writing to */ 3273 struct bpf_func_state *state, 3274 int off, int size, int value_regno, 3275 int insn_idx) 3276 { 3277 struct bpf_func_state *cur; /* state of the current function */ 3278 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 3279 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 3280 struct bpf_reg_state *reg = NULL; 3281 3282 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 3283 if (err) 3284 return err; 3285 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 3286 * so it's aligned access and [off, off + size) are within stack limits 3287 */ 3288 if (!env->allow_ptr_leaks && 3289 state->stack[spi].slot_type[0] == STACK_SPILL && 3290 size != BPF_REG_SIZE) { 3291 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 3292 return -EACCES; 3293 } 3294 3295 cur = env->cur_state->frame[env->cur_state->curframe]; 3296 if (value_regno >= 0) 3297 reg = &cur->regs[value_regno]; 3298 if (!env->bypass_spec_v4) { 3299 bool sanitize = reg && is_spillable_regtype(reg->type); 3300 3301 for (i = 0; i < size; i++) { 3302 u8 type = state->stack[spi].slot_type[i]; 3303 3304 if (type != STACK_MISC && type != STACK_ZERO) { 3305 sanitize = true; 3306 break; 3307 } 3308 } 3309 3310 if (sanitize) 3311 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 3312 } 3313 3314 mark_stack_slot_scratched(env, spi); 3315 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 3316 !register_is_null(reg) && env->bpf_capable) { 3317 if (dst_reg != BPF_REG_FP) { 3318 /* The backtracking logic can only recognize explicit 3319 * stack slot address like [fp - 8]. Other spill of 3320 * scalar via different register has to be conservative. 3321 * Backtrack from here and mark all registers as precise 3322 * that contributed into 'reg' being a constant. 3323 */ 3324 err = mark_chain_precision(env, value_regno); 3325 if (err) 3326 return err; 3327 } 3328 save_register_state(state, spi, reg, size); 3329 } else if (reg && is_spillable_regtype(reg->type)) { 3330 /* register containing pointer is being spilled into stack */ 3331 if (size != BPF_REG_SIZE) { 3332 verbose_linfo(env, insn_idx, "; "); 3333 verbose(env, "invalid size of register spill\n"); 3334 return -EACCES; 3335 } 3336 if (state != cur && reg->type == PTR_TO_STACK) { 3337 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 3338 return -EINVAL; 3339 } 3340 save_register_state(state, spi, reg, size); 3341 } else { 3342 u8 type = STACK_MISC; 3343 3344 /* regular write of data into stack destroys any spilled ptr */ 3345 state->stack[spi].spilled_ptr.type = NOT_INIT; 3346 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 3347 if (is_spilled_reg(&state->stack[spi])) 3348 for (i = 0; i < BPF_REG_SIZE; i++) 3349 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 3350 3351 /* only mark the slot as written if all 8 bytes were written 3352 * otherwise read propagation may incorrectly stop too soon 3353 * when stack slots are partially written. 3354 * This heuristic means that read propagation will be 3355 * conservative, since it will add reg_live_read marks 3356 * to stack slots all the way to first state when programs 3357 * writes+reads less than 8 bytes 3358 */ 3359 if (size == BPF_REG_SIZE) 3360 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3361 3362 /* when we zero initialize stack slots mark them as such */ 3363 if (reg && register_is_null(reg)) { 3364 /* backtracking doesn't work for STACK_ZERO yet. */ 3365 err = mark_chain_precision(env, value_regno); 3366 if (err) 3367 return err; 3368 type = STACK_ZERO; 3369 } 3370 3371 /* Mark slots affected by this stack write. */ 3372 for (i = 0; i < size; i++) 3373 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 3374 type; 3375 } 3376 return 0; 3377 } 3378 3379 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 3380 * known to contain a variable offset. 3381 * This function checks whether the write is permitted and conservatively 3382 * tracks the effects of the write, considering that each stack slot in the 3383 * dynamic range is potentially written to. 3384 * 3385 * 'off' includes 'regno->off'. 3386 * 'value_regno' can be -1, meaning that an unknown value is being written to 3387 * the stack. 3388 * 3389 * Spilled pointers in range are not marked as written because we don't know 3390 * what's going to be actually written. This means that read propagation for 3391 * future reads cannot be terminated by this write. 3392 * 3393 * For privileged programs, uninitialized stack slots are considered 3394 * initialized by this write (even though we don't know exactly what offsets 3395 * are going to be written to). The idea is that we don't want the verifier to 3396 * reject future reads that access slots written to through variable offsets. 3397 */ 3398 static int check_stack_write_var_off(struct bpf_verifier_env *env, 3399 /* func where register points to */ 3400 struct bpf_func_state *state, 3401 int ptr_regno, int off, int size, 3402 int value_regno, int insn_idx) 3403 { 3404 struct bpf_func_state *cur; /* state of the current function */ 3405 int min_off, max_off; 3406 int i, err; 3407 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 3408 bool writing_zero = false; 3409 /* set if the fact that we're writing a zero is used to let any 3410 * stack slots remain STACK_ZERO 3411 */ 3412 bool zero_used = false; 3413 3414 cur = env->cur_state->frame[env->cur_state->curframe]; 3415 ptr_reg = &cur->regs[ptr_regno]; 3416 min_off = ptr_reg->smin_value + off; 3417 max_off = ptr_reg->smax_value + off + size; 3418 if (value_regno >= 0) 3419 value_reg = &cur->regs[value_regno]; 3420 if (value_reg && register_is_null(value_reg)) 3421 writing_zero = true; 3422 3423 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 3424 if (err) 3425 return err; 3426 3427 3428 /* Variable offset writes destroy any spilled pointers in range. */ 3429 for (i = min_off; i < max_off; i++) { 3430 u8 new_type, *stype; 3431 int slot, spi; 3432 3433 slot = -i - 1; 3434 spi = slot / BPF_REG_SIZE; 3435 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3436 mark_stack_slot_scratched(env, spi); 3437 3438 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 3439 /* Reject the write if range we may write to has not 3440 * been initialized beforehand. If we didn't reject 3441 * here, the ptr status would be erased below (even 3442 * though not all slots are actually overwritten), 3443 * possibly opening the door to leaks. 3444 * 3445 * We do however catch STACK_INVALID case below, and 3446 * only allow reading possibly uninitialized memory 3447 * later for CAP_PERFMON, as the write may not happen to 3448 * that slot. 3449 */ 3450 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 3451 insn_idx, i); 3452 return -EINVAL; 3453 } 3454 3455 /* Erase all spilled pointers. */ 3456 state->stack[spi].spilled_ptr.type = NOT_INIT; 3457 3458 /* Update the slot type. */ 3459 new_type = STACK_MISC; 3460 if (writing_zero && *stype == STACK_ZERO) { 3461 new_type = STACK_ZERO; 3462 zero_used = true; 3463 } 3464 /* If the slot is STACK_INVALID, we check whether it's OK to 3465 * pretend that it will be initialized by this write. The slot 3466 * might not actually be written to, and so if we mark it as 3467 * initialized future reads might leak uninitialized memory. 3468 * For privileged programs, we will accept such reads to slots 3469 * that may or may not be written because, if we're reject 3470 * them, the error would be too confusing. 3471 */ 3472 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 3473 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 3474 insn_idx, i); 3475 return -EINVAL; 3476 } 3477 *stype = new_type; 3478 } 3479 if (zero_used) { 3480 /* backtracking doesn't work for STACK_ZERO yet. */ 3481 err = mark_chain_precision(env, value_regno); 3482 if (err) 3483 return err; 3484 } 3485 return 0; 3486 } 3487 3488 /* When register 'dst_regno' is assigned some values from stack[min_off, 3489 * max_off), we set the register's type according to the types of the 3490 * respective stack slots. If all the stack values are known to be zeros, then 3491 * so is the destination reg. Otherwise, the register is considered to be 3492 * SCALAR. This function does not deal with register filling; the caller must 3493 * ensure that all spilled registers in the stack range have been marked as 3494 * read. 3495 */ 3496 static void mark_reg_stack_read(struct bpf_verifier_env *env, 3497 /* func where src register points to */ 3498 struct bpf_func_state *ptr_state, 3499 int min_off, int max_off, int dst_regno) 3500 { 3501 struct bpf_verifier_state *vstate = env->cur_state; 3502 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3503 int i, slot, spi; 3504 u8 *stype; 3505 int zeros = 0; 3506 3507 for (i = min_off; i < max_off; i++) { 3508 slot = -i - 1; 3509 spi = slot / BPF_REG_SIZE; 3510 stype = ptr_state->stack[spi].slot_type; 3511 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 3512 break; 3513 zeros++; 3514 } 3515 if (zeros == max_off - min_off) { 3516 /* any access_size read into register is zero extended, 3517 * so the whole register == const_zero 3518 */ 3519 __mark_reg_const_zero(&state->regs[dst_regno]); 3520 /* backtracking doesn't support STACK_ZERO yet, 3521 * so mark it precise here, so that later 3522 * backtracking can stop here. 3523 * Backtracking may not need this if this register 3524 * doesn't participate in pointer adjustment. 3525 * Forward propagation of precise flag is not 3526 * necessary either. This mark is only to stop 3527 * backtracking. Any register that contributed 3528 * to const 0 was marked precise before spill. 3529 */ 3530 state->regs[dst_regno].precise = true; 3531 } else { 3532 /* have read misc data from the stack */ 3533 mark_reg_unknown(env, state->regs, dst_regno); 3534 } 3535 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3536 } 3537 3538 /* Read the stack at 'off' and put the results into the register indicated by 3539 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 3540 * spilled reg. 3541 * 3542 * 'dst_regno' can be -1, meaning that the read value is not going to a 3543 * register. 3544 * 3545 * The access is assumed to be within the current stack bounds. 3546 */ 3547 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 3548 /* func where src register points to */ 3549 struct bpf_func_state *reg_state, 3550 int off, int size, int dst_regno) 3551 { 3552 struct bpf_verifier_state *vstate = env->cur_state; 3553 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3554 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 3555 struct bpf_reg_state *reg; 3556 u8 *stype, type; 3557 3558 stype = reg_state->stack[spi].slot_type; 3559 reg = ®_state->stack[spi].spilled_ptr; 3560 3561 if (is_spilled_reg(®_state->stack[spi])) { 3562 u8 spill_size = 1; 3563 3564 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 3565 spill_size++; 3566 3567 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 3568 if (reg->type != SCALAR_VALUE) { 3569 verbose_linfo(env, env->insn_idx, "; "); 3570 verbose(env, "invalid size of register fill\n"); 3571 return -EACCES; 3572 } 3573 3574 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3575 if (dst_regno < 0) 3576 return 0; 3577 3578 if (!(off % BPF_REG_SIZE) && size == spill_size) { 3579 /* The earlier check_reg_arg() has decided the 3580 * subreg_def for this insn. Save it first. 3581 */ 3582 s32 subreg_def = state->regs[dst_regno].subreg_def; 3583 3584 state->regs[dst_regno] = *reg; 3585 state->regs[dst_regno].subreg_def = subreg_def; 3586 } else { 3587 for (i = 0; i < size; i++) { 3588 type = stype[(slot - i) % BPF_REG_SIZE]; 3589 if (type == STACK_SPILL) 3590 continue; 3591 if (type == STACK_MISC) 3592 continue; 3593 verbose(env, "invalid read from stack off %d+%d size %d\n", 3594 off, i, size); 3595 return -EACCES; 3596 } 3597 mark_reg_unknown(env, state->regs, dst_regno); 3598 } 3599 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3600 return 0; 3601 } 3602 3603 if (dst_regno >= 0) { 3604 /* restore register state from stack */ 3605 state->regs[dst_regno] = *reg; 3606 /* mark reg as written since spilled pointer state likely 3607 * has its liveness marks cleared by is_state_visited() 3608 * which resets stack/reg liveness for state transitions 3609 */ 3610 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3611 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 3612 /* If dst_regno==-1, the caller is asking us whether 3613 * it is acceptable to use this value as a SCALAR_VALUE 3614 * (e.g. for XADD). 3615 * We must not allow unprivileged callers to do that 3616 * with spilled pointers. 3617 */ 3618 verbose(env, "leaking pointer from stack off %d\n", 3619 off); 3620 return -EACCES; 3621 } 3622 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3623 } else { 3624 for (i = 0; i < size; i++) { 3625 type = stype[(slot - i) % BPF_REG_SIZE]; 3626 if (type == STACK_MISC) 3627 continue; 3628 if (type == STACK_ZERO) 3629 continue; 3630 verbose(env, "invalid read from stack off %d+%d size %d\n", 3631 off, i, size); 3632 return -EACCES; 3633 } 3634 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3635 if (dst_regno >= 0) 3636 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 3637 } 3638 return 0; 3639 } 3640 3641 enum bpf_access_src { 3642 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 3643 ACCESS_HELPER = 2, /* the access is performed by a helper */ 3644 }; 3645 3646 static int check_stack_range_initialized(struct bpf_verifier_env *env, 3647 int regno, int off, int access_size, 3648 bool zero_size_allowed, 3649 enum bpf_access_src type, 3650 struct bpf_call_arg_meta *meta); 3651 3652 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 3653 { 3654 return cur_regs(env) + regno; 3655 } 3656 3657 /* Read the stack at 'ptr_regno + off' and put the result into the register 3658 * 'dst_regno'. 3659 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 3660 * but not its variable offset. 3661 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 3662 * 3663 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 3664 * filling registers (i.e. reads of spilled register cannot be detected when 3665 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 3666 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 3667 * offset; for a fixed offset check_stack_read_fixed_off should be used 3668 * instead. 3669 */ 3670 static int check_stack_read_var_off(struct bpf_verifier_env *env, 3671 int ptr_regno, int off, int size, int dst_regno) 3672 { 3673 /* The state of the source register. */ 3674 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3675 struct bpf_func_state *ptr_state = func(env, reg); 3676 int err; 3677 int min_off, max_off; 3678 3679 /* Note that we pass a NULL meta, so raw access will not be permitted. 3680 */ 3681 err = check_stack_range_initialized(env, ptr_regno, off, size, 3682 false, ACCESS_DIRECT, NULL); 3683 if (err) 3684 return err; 3685 3686 min_off = reg->smin_value + off; 3687 max_off = reg->smax_value + off; 3688 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3689 return 0; 3690 } 3691 3692 /* check_stack_read dispatches to check_stack_read_fixed_off or 3693 * check_stack_read_var_off. 3694 * 3695 * The caller must ensure that the offset falls within the allocated stack 3696 * bounds. 3697 * 3698 * 'dst_regno' is a register which will receive the value from the stack. It 3699 * can be -1, meaning that the read value is not going to a register. 3700 */ 3701 static int check_stack_read(struct bpf_verifier_env *env, 3702 int ptr_regno, int off, int size, 3703 int dst_regno) 3704 { 3705 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3706 struct bpf_func_state *state = func(env, reg); 3707 int err; 3708 /* Some accesses are only permitted with a static offset. */ 3709 bool var_off = !tnum_is_const(reg->var_off); 3710 3711 /* The offset is required to be static when reads don't go to a 3712 * register, in order to not leak pointers (see 3713 * check_stack_read_fixed_off). 3714 */ 3715 if (dst_regno < 0 && var_off) { 3716 char tn_buf[48]; 3717 3718 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3719 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3720 tn_buf, off, size); 3721 return -EACCES; 3722 } 3723 /* Variable offset is prohibited for unprivileged mode for simplicity 3724 * since it requires corresponding support in Spectre masking for stack 3725 * ALU. See also retrieve_ptr_limit(). 3726 */ 3727 if (!env->bypass_spec_v1 && var_off) { 3728 char tn_buf[48]; 3729 3730 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3731 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3732 ptr_regno, tn_buf); 3733 return -EACCES; 3734 } 3735 3736 if (!var_off) { 3737 off += reg->var_off.value; 3738 err = check_stack_read_fixed_off(env, state, off, size, 3739 dst_regno); 3740 } else { 3741 /* Variable offset stack reads need more conservative handling 3742 * than fixed offset ones. Note that dst_regno >= 0 on this 3743 * branch. 3744 */ 3745 err = check_stack_read_var_off(env, ptr_regno, off, size, 3746 dst_regno); 3747 } 3748 return err; 3749 } 3750 3751 3752 /* check_stack_write dispatches to check_stack_write_fixed_off or 3753 * check_stack_write_var_off. 3754 * 3755 * 'ptr_regno' is the register used as a pointer into the stack. 3756 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3757 * 'value_regno' is the register whose value we're writing to the stack. It can 3758 * be -1, meaning that we're not writing from a register. 3759 * 3760 * The caller must ensure that the offset falls within the maximum stack size. 3761 */ 3762 static int check_stack_write(struct bpf_verifier_env *env, 3763 int ptr_regno, int off, int size, 3764 int value_regno, int insn_idx) 3765 { 3766 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3767 struct bpf_func_state *state = func(env, reg); 3768 int err; 3769 3770 if (tnum_is_const(reg->var_off)) { 3771 off += reg->var_off.value; 3772 err = check_stack_write_fixed_off(env, state, off, size, 3773 value_regno, insn_idx); 3774 } else { 3775 /* Variable offset stack reads need more conservative handling 3776 * than fixed offset ones. 3777 */ 3778 err = check_stack_write_var_off(env, state, 3779 ptr_regno, off, size, 3780 value_regno, insn_idx); 3781 } 3782 return err; 3783 } 3784 3785 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 3786 int off, int size, enum bpf_access_type type) 3787 { 3788 struct bpf_reg_state *regs = cur_regs(env); 3789 struct bpf_map *map = regs[regno].map_ptr; 3790 u32 cap = bpf_map_flags_to_cap(map); 3791 3792 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 3793 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 3794 map->value_size, off, size); 3795 return -EACCES; 3796 } 3797 3798 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 3799 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 3800 map->value_size, off, size); 3801 return -EACCES; 3802 } 3803 3804 return 0; 3805 } 3806 3807 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 3808 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 3809 int off, int size, u32 mem_size, 3810 bool zero_size_allowed) 3811 { 3812 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 3813 struct bpf_reg_state *reg; 3814 3815 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 3816 return 0; 3817 3818 reg = &cur_regs(env)[regno]; 3819 switch (reg->type) { 3820 case PTR_TO_MAP_KEY: 3821 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 3822 mem_size, off, size); 3823 break; 3824 case PTR_TO_MAP_VALUE: 3825 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 3826 mem_size, off, size); 3827 break; 3828 case PTR_TO_PACKET: 3829 case PTR_TO_PACKET_META: 3830 case PTR_TO_PACKET_END: 3831 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 3832 off, size, regno, reg->id, off, mem_size); 3833 break; 3834 case PTR_TO_MEM: 3835 default: 3836 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 3837 mem_size, off, size); 3838 } 3839 3840 return -EACCES; 3841 } 3842 3843 /* check read/write into a memory region with possible variable offset */ 3844 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 3845 int off, int size, u32 mem_size, 3846 bool zero_size_allowed) 3847 { 3848 struct bpf_verifier_state *vstate = env->cur_state; 3849 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3850 struct bpf_reg_state *reg = &state->regs[regno]; 3851 int err; 3852 3853 /* We may have adjusted the register pointing to memory region, so we 3854 * need to try adding each of min_value and max_value to off 3855 * to make sure our theoretical access will be safe. 3856 * 3857 * The minimum value is only important with signed 3858 * comparisons where we can't assume the floor of a 3859 * value is 0. If we are using signed variables for our 3860 * index'es we need to make sure that whatever we use 3861 * will have a set floor within our range. 3862 */ 3863 if (reg->smin_value < 0 && 3864 (reg->smin_value == S64_MIN || 3865 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 3866 reg->smin_value + off < 0)) { 3867 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3868 regno); 3869 return -EACCES; 3870 } 3871 err = __check_mem_access(env, regno, reg->smin_value + off, size, 3872 mem_size, zero_size_allowed); 3873 if (err) { 3874 verbose(env, "R%d min value is outside of the allowed memory range\n", 3875 regno); 3876 return err; 3877 } 3878 3879 /* If we haven't set a max value then we need to bail since we can't be 3880 * sure we won't do bad things. 3881 * If reg->umax_value + off could overflow, treat that as unbounded too. 3882 */ 3883 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 3884 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 3885 regno); 3886 return -EACCES; 3887 } 3888 err = __check_mem_access(env, regno, reg->umax_value + off, size, 3889 mem_size, zero_size_allowed); 3890 if (err) { 3891 verbose(env, "R%d max value is outside of the allowed memory range\n", 3892 regno); 3893 return err; 3894 } 3895 3896 return 0; 3897 } 3898 3899 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 3900 const struct bpf_reg_state *reg, int regno, 3901 bool fixed_off_ok) 3902 { 3903 /* Access to this pointer-typed register or passing it to a helper 3904 * is only allowed in its original, unmodified form. 3905 */ 3906 3907 if (reg->off < 0) { 3908 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 3909 reg_type_str(env, reg->type), regno, reg->off); 3910 return -EACCES; 3911 } 3912 3913 if (!fixed_off_ok && reg->off) { 3914 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 3915 reg_type_str(env, reg->type), regno, reg->off); 3916 return -EACCES; 3917 } 3918 3919 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3920 char tn_buf[48]; 3921 3922 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3923 verbose(env, "variable %s access var_off=%s disallowed\n", 3924 reg_type_str(env, reg->type), tn_buf); 3925 return -EACCES; 3926 } 3927 3928 return 0; 3929 } 3930 3931 int check_ptr_off_reg(struct bpf_verifier_env *env, 3932 const struct bpf_reg_state *reg, int regno) 3933 { 3934 return __check_ptr_off_reg(env, reg, regno, false); 3935 } 3936 3937 static int map_kptr_match_type(struct bpf_verifier_env *env, 3938 struct btf_field *kptr_field, 3939 struct bpf_reg_state *reg, u32 regno) 3940 { 3941 const char *targ_name = kernel_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 3942 int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED; 3943 const char *reg_name = ""; 3944 3945 /* Only unreferenced case accepts untrusted pointers */ 3946 if (kptr_field->type == BPF_KPTR_UNREF) 3947 perm_flags |= PTR_UNTRUSTED; 3948 3949 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 3950 goto bad_type; 3951 3952 if (!btf_is_kernel(reg->btf)) { 3953 verbose(env, "R%d must point to kernel BTF\n", regno); 3954 return -EINVAL; 3955 } 3956 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 3957 reg_name = kernel_type_name(reg->btf, reg->btf_id); 3958 3959 /* For ref_ptr case, release function check should ensure we get one 3960 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 3961 * normal store of unreferenced kptr, we must ensure var_off is zero. 3962 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 3963 * reg->off and reg->ref_obj_id are not needed here. 3964 */ 3965 if (__check_ptr_off_reg(env, reg, regno, true)) 3966 return -EACCES; 3967 3968 /* A full type match is needed, as BTF can be vmlinux or module BTF, and 3969 * we also need to take into account the reg->off. 3970 * 3971 * We want to support cases like: 3972 * 3973 * struct foo { 3974 * struct bar br; 3975 * struct baz bz; 3976 * }; 3977 * 3978 * struct foo *v; 3979 * v = func(); // PTR_TO_BTF_ID 3980 * val->foo = v; // reg->off is zero, btf and btf_id match type 3981 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 3982 * // first member type of struct after comparison fails 3983 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 3984 * // to match type 3985 * 3986 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 3987 * is zero. We must also ensure that btf_struct_ids_match does not walk 3988 * the struct to match type against first member of struct, i.e. reject 3989 * second case from above. Hence, when type is BPF_KPTR_REF, we set 3990 * strict mode to true for type match. 3991 */ 3992 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 3993 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 3994 kptr_field->type == BPF_KPTR_REF)) 3995 goto bad_type; 3996 return 0; 3997 bad_type: 3998 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 3999 reg_type_str(env, reg->type), reg_name); 4000 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 4001 if (kptr_field->type == BPF_KPTR_UNREF) 4002 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 4003 targ_name); 4004 else 4005 verbose(env, "\n"); 4006 return -EINVAL; 4007 } 4008 4009 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 4010 int value_regno, int insn_idx, 4011 struct btf_field *kptr_field) 4012 { 4013 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4014 int class = BPF_CLASS(insn->code); 4015 struct bpf_reg_state *val_reg; 4016 4017 /* Things we already checked for in check_map_access and caller: 4018 * - Reject cases where variable offset may touch kptr 4019 * - size of access (must be BPF_DW) 4020 * - tnum_is_const(reg->var_off) 4021 * - kptr_field->offset == off + reg->var_off.value 4022 */ 4023 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 4024 if (BPF_MODE(insn->code) != BPF_MEM) { 4025 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 4026 return -EACCES; 4027 } 4028 4029 /* We only allow loading referenced kptr, since it will be marked as 4030 * untrusted, similar to unreferenced kptr. 4031 */ 4032 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) { 4033 verbose(env, "store to referenced kptr disallowed\n"); 4034 return -EACCES; 4035 } 4036 4037 if (class == BPF_LDX) { 4038 val_reg = reg_state(env, value_regno); 4039 /* We can simply mark the value_regno receiving the pointer 4040 * value from map as PTR_TO_BTF_ID, with the correct type. 4041 */ 4042 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 4043 kptr_field->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED); 4044 /* For mark_ptr_or_null_reg */ 4045 val_reg->id = ++env->id_gen; 4046 } else if (class == BPF_STX) { 4047 val_reg = reg_state(env, value_regno); 4048 if (!register_is_null(val_reg) && 4049 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 4050 return -EACCES; 4051 } else if (class == BPF_ST) { 4052 if (insn->imm) { 4053 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 4054 kptr_field->offset); 4055 return -EACCES; 4056 } 4057 } else { 4058 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 4059 return -EACCES; 4060 } 4061 return 0; 4062 } 4063 4064 /* check read/write into a map element with possible variable offset */ 4065 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 4066 int off, int size, bool zero_size_allowed, 4067 enum bpf_access_src src) 4068 { 4069 struct bpf_verifier_state *vstate = env->cur_state; 4070 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4071 struct bpf_reg_state *reg = &state->regs[regno]; 4072 struct bpf_map *map = reg->map_ptr; 4073 struct btf_record *rec; 4074 int err, i; 4075 4076 err = check_mem_region_access(env, regno, off, size, map->value_size, 4077 zero_size_allowed); 4078 if (err) 4079 return err; 4080 4081 if (IS_ERR_OR_NULL(map->record)) 4082 return 0; 4083 rec = map->record; 4084 for (i = 0; i < rec->cnt; i++) { 4085 struct btf_field *field = &rec->fields[i]; 4086 u32 p = field->offset; 4087 4088 /* If any part of a field can be touched by load/store, reject 4089 * this program. To check that [x1, x2) overlaps with [y1, y2), 4090 * it is sufficient to check x1 < y2 && y1 < x2. 4091 */ 4092 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 4093 p < reg->umax_value + off + size) { 4094 switch (field->type) { 4095 case BPF_KPTR_UNREF: 4096 case BPF_KPTR_REF: 4097 if (src != ACCESS_DIRECT) { 4098 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 4099 return -EACCES; 4100 } 4101 if (!tnum_is_const(reg->var_off)) { 4102 verbose(env, "kptr access cannot have variable offset\n"); 4103 return -EACCES; 4104 } 4105 if (p != off + reg->var_off.value) { 4106 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 4107 p, off + reg->var_off.value); 4108 return -EACCES; 4109 } 4110 if (size != bpf_size_to_bytes(BPF_DW)) { 4111 verbose(env, "kptr access size must be BPF_DW\n"); 4112 return -EACCES; 4113 } 4114 break; 4115 default: 4116 verbose(env, "%s cannot be accessed directly by load/store\n", 4117 btf_field_type_name(field->type)); 4118 return -EACCES; 4119 } 4120 } 4121 } 4122 return 0; 4123 } 4124 4125 #define MAX_PACKET_OFF 0xffff 4126 4127 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 4128 const struct bpf_call_arg_meta *meta, 4129 enum bpf_access_type t) 4130 { 4131 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 4132 4133 switch (prog_type) { 4134 /* Program types only with direct read access go here! */ 4135 case BPF_PROG_TYPE_LWT_IN: 4136 case BPF_PROG_TYPE_LWT_OUT: 4137 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 4138 case BPF_PROG_TYPE_SK_REUSEPORT: 4139 case BPF_PROG_TYPE_FLOW_DISSECTOR: 4140 case BPF_PROG_TYPE_CGROUP_SKB: 4141 if (t == BPF_WRITE) 4142 return false; 4143 fallthrough; 4144 4145 /* Program types with direct read + write access go here! */ 4146 case BPF_PROG_TYPE_SCHED_CLS: 4147 case BPF_PROG_TYPE_SCHED_ACT: 4148 case BPF_PROG_TYPE_XDP: 4149 case BPF_PROG_TYPE_LWT_XMIT: 4150 case BPF_PROG_TYPE_SK_SKB: 4151 case BPF_PROG_TYPE_SK_MSG: 4152 if (meta) 4153 return meta->pkt_access; 4154 4155 env->seen_direct_write = true; 4156 return true; 4157 4158 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 4159 if (t == BPF_WRITE) 4160 env->seen_direct_write = true; 4161 4162 return true; 4163 4164 default: 4165 return false; 4166 } 4167 } 4168 4169 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 4170 int size, bool zero_size_allowed) 4171 { 4172 struct bpf_reg_state *regs = cur_regs(env); 4173 struct bpf_reg_state *reg = ®s[regno]; 4174 int err; 4175 4176 /* We may have added a variable offset to the packet pointer; but any 4177 * reg->range we have comes after that. We are only checking the fixed 4178 * offset. 4179 */ 4180 4181 /* We don't allow negative numbers, because we aren't tracking enough 4182 * detail to prove they're safe. 4183 */ 4184 if (reg->smin_value < 0) { 4185 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4186 regno); 4187 return -EACCES; 4188 } 4189 4190 err = reg->range < 0 ? -EINVAL : 4191 __check_mem_access(env, regno, off, size, reg->range, 4192 zero_size_allowed); 4193 if (err) { 4194 verbose(env, "R%d offset is outside of the packet\n", regno); 4195 return err; 4196 } 4197 4198 /* __check_mem_access has made sure "off + size - 1" is within u16. 4199 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 4200 * otherwise find_good_pkt_pointers would have refused to set range info 4201 * that __check_mem_access would have rejected this pkt access. 4202 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 4203 */ 4204 env->prog->aux->max_pkt_offset = 4205 max_t(u32, env->prog->aux->max_pkt_offset, 4206 off + reg->umax_value + size - 1); 4207 4208 return err; 4209 } 4210 4211 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 4212 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 4213 enum bpf_access_type t, enum bpf_reg_type *reg_type, 4214 struct btf **btf, u32 *btf_id) 4215 { 4216 struct bpf_insn_access_aux info = { 4217 .reg_type = *reg_type, 4218 .log = &env->log, 4219 }; 4220 4221 if (env->ops->is_valid_access && 4222 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 4223 /* A non zero info.ctx_field_size indicates that this field is a 4224 * candidate for later verifier transformation to load the whole 4225 * field and then apply a mask when accessed with a narrower 4226 * access than actual ctx access size. A zero info.ctx_field_size 4227 * will only allow for whole field access and rejects any other 4228 * type of narrower access. 4229 */ 4230 *reg_type = info.reg_type; 4231 4232 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 4233 *btf = info.btf; 4234 *btf_id = info.btf_id; 4235 } else { 4236 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 4237 } 4238 /* remember the offset of last byte accessed in ctx */ 4239 if (env->prog->aux->max_ctx_offset < off + size) 4240 env->prog->aux->max_ctx_offset = off + size; 4241 return 0; 4242 } 4243 4244 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 4245 return -EACCES; 4246 } 4247 4248 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 4249 int size) 4250 { 4251 if (size < 0 || off < 0 || 4252 (u64)off + size > sizeof(struct bpf_flow_keys)) { 4253 verbose(env, "invalid access to flow keys off=%d size=%d\n", 4254 off, size); 4255 return -EACCES; 4256 } 4257 return 0; 4258 } 4259 4260 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 4261 u32 regno, int off, int size, 4262 enum bpf_access_type t) 4263 { 4264 struct bpf_reg_state *regs = cur_regs(env); 4265 struct bpf_reg_state *reg = ®s[regno]; 4266 struct bpf_insn_access_aux info = {}; 4267 bool valid; 4268 4269 if (reg->smin_value < 0) { 4270 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4271 regno); 4272 return -EACCES; 4273 } 4274 4275 switch (reg->type) { 4276 case PTR_TO_SOCK_COMMON: 4277 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 4278 break; 4279 case PTR_TO_SOCKET: 4280 valid = bpf_sock_is_valid_access(off, size, t, &info); 4281 break; 4282 case PTR_TO_TCP_SOCK: 4283 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 4284 break; 4285 case PTR_TO_XDP_SOCK: 4286 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 4287 break; 4288 default: 4289 valid = false; 4290 } 4291 4292 4293 if (valid) { 4294 env->insn_aux_data[insn_idx].ctx_field_size = 4295 info.ctx_field_size; 4296 return 0; 4297 } 4298 4299 verbose(env, "R%d invalid %s access off=%d size=%d\n", 4300 regno, reg_type_str(env, reg->type), off, size); 4301 4302 return -EACCES; 4303 } 4304 4305 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 4306 { 4307 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 4308 } 4309 4310 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 4311 { 4312 const struct bpf_reg_state *reg = reg_state(env, regno); 4313 4314 return reg->type == PTR_TO_CTX; 4315 } 4316 4317 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 4318 { 4319 const struct bpf_reg_state *reg = reg_state(env, regno); 4320 4321 return type_is_sk_pointer(reg->type); 4322 } 4323 4324 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 4325 { 4326 const struct bpf_reg_state *reg = reg_state(env, regno); 4327 4328 return type_is_pkt_pointer(reg->type); 4329 } 4330 4331 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 4332 { 4333 const struct bpf_reg_state *reg = reg_state(env, regno); 4334 4335 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 4336 return reg->type == PTR_TO_FLOW_KEYS; 4337 } 4338 4339 static bool is_trusted_reg(const struct bpf_reg_state *reg) 4340 { 4341 /* A referenced register is always trusted. */ 4342 if (reg->ref_obj_id) 4343 return true; 4344 4345 /* If a register is not referenced, it is trusted if it has the 4346 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 4347 * other type modifiers may be safe, but we elect to take an opt-in 4348 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 4349 * not. 4350 * 4351 * Eventually, we should make PTR_TRUSTED the single source of truth 4352 * for whether a register is trusted. 4353 */ 4354 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 4355 !bpf_type_has_unsafe_modifiers(reg->type); 4356 } 4357 4358 static bool is_rcu_reg(const struct bpf_reg_state *reg) 4359 { 4360 return reg->type & MEM_RCU; 4361 } 4362 4363 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 4364 const struct bpf_reg_state *reg, 4365 int off, int size, bool strict) 4366 { 4367 struct tnum reg_off; 4368 int ip_align; 4369 4370 /* Byte size accesses are always allowed. */ 4371 if (!strict || size == 1) 4372 return 0; 4373 4374 /* For platforms that do not have a Kconfig enabling 4375 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 4376 * NET_IP_ALIGN is universally set to '2'. And on platforms 4377 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 4378 * to this code only in strict mode where we want to emulate 4379 * the NET_IP_ALIGN==2 checking. Therefore use an 4380 * unconditional IP align value of '2'. 4381 */ 4382 ip_align = 2; 4383 4384 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 4385 if (!tnum_is_aligned(reg_off, size)) { 4386 char tn_buf[48]; 4387 4388 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4389 verbose(env, 4390 "misaligned packet access off %d+%s+%d+%d size %d\n", 4391 ip_align, tn_buf, reg->off, off, size); 4392 return -EACCES; 4393 } 4394 4395 return 0; 4396 } 4397 4398 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 4399 const struct bpf_reg_state *reg, 4400 const char *pointer_desc, 4401 int off, int size, bool strict) 4402 { 4403 struct tnum reg_off; 4404 4405 /* Byte size accesses are always allowed. */ 4406 if (!strict || size == 1) 4407 return 0; 4408 4409 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 4410 if (!tnum_is_aligned(reg_off, size)) { 4411 char tn_buf[48]; 4412 4413 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4414 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 4415 pointer_desc, tn_buf, reg->off, off, size); 4416 return -EACCES; 4417 } 4418 4419 return 0; 4420 } 4421 4422 static int check_ptr_alignment(struct bpf_verifier_env *env, 4423 const struct bpf_reg_state *reg, int off, 4424 int size, bool strict_alignment_once) 4425 { 4426 bool strict = env->strict_alignment || strict_alignment_once; 4427 const char *pointer_desc = ""; 4428 4429 switch (reg->type) { 4430 case PTR_TO_PACKET: 4431 case PTR_TO_PACKET_META: 4432 /* Special case, because of NET_IP_ALIGN. Given metadata sits 4433 * right in front, treat it the very same way. 4434 */ 4435 return check_pkt_ptr_alignment(env, reg, off, size, strict); 4436 case PTR_TO_FLOW_KEYS: 4437 pointer_desc = "flow keys "; 4438 break; 4439 case PTR_TO_MAP_KEY: 4440 pointer_desc = "key "; 4441 break; 4442 case PTR_TO_MAP_VALUE: 4443 pointer_desc = "value "; 4444 break; 4445 case PTR_TO_CTX: 4446 pointer_desc = "context "; 4447 break; 4448 case PTR_TO_STACK: 4449 pointer_desc = "stack "; 4450 /* The stack spill tracking logic in check_stack_write_fixed_off() 4451 * and check_stack_read_fixed_off() relies on stack accesses being 4452 * aligned. 4453 */ 4454 strict = true; 4455 break; 4456 case PTR_TO_SOCKET: 4457 pointer_desc = "sock "; 4458 break; 4459 case PTR_TO_SOCK_COMMON: 4460 pointer_desc = "sock_common "; 4461 break; 4462 case PTR_TO_TCP_SOCK: 4463 pointer_desc = "tcp_sock "; 4464 break; 4465 case PTR_TO_XDP_SOCK: 4466 pointer_desc = "xdp_sock "; 4467 break; 4468 default: 4469 break; 4470 } 4471 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 4472 strict); 4473 } 4474 4475 static int update_stack_depth(struct bpf_verifier_env *env, 4476 const struct bpf_func_state *func, 4477 int off) 4478 { 4479 u16 stack = env->subprog_info[func->subprogno].stack_depth; 4480 4481 if (stack >= -off) 4482 return 0; 4483 4484 /* update known max for given subprogram */ 4485 env->subprog_info[func->subprogno].stack_depth = -off; 4486 return 0; 4487 } 4488 4489 /* starting from main bpf function walk all instructions of the function 4490 * and recursively walk all callees that given function can call. 4491 * Ignore jump and exit insns. 4492 * Since recursion is prevented by check_cfg() this algorithm 4493 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 4494 */ 4495 static int check_max_stack_depth(struct bpf_verifier_env *env) 4496 { 4497 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 4498 struct bpf_subprog_info *subprog = env->subprog_info; 4499 struct bpf_insn *insn = env->prog->insnsi; 4500 bool tail_call_reachable = false; 4501 int ret_insn[MAX_CALL_FRAMES]; 4502 int ret_prog[MAX_CALL_FRAMES]; 4503 int j; 4504 4505 process_func: 4506 /* protect against potential stack overflow that might happen when 4507 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 4508 * depth for such case down to 256 so that the worst case scenario 4509 * would result in 8k stack size (32 which is tailcall limit * 256 = 4510 * 8k). 4511 * 4512 * To get the idea what might happen, see an example: 4513 * func1 -> sub rsp, 128 4514 * subfunc1 -> sub rsp, 256 4515 * tailcall1 -> add rsp, 256 4516 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 4517 * subfunc2 -> sub rsp, 64 4518 * subfunc22 -> sub rsp, 128 4519 * tailcall2 -> add rsp, 128 4520 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 4521 * 4522 * tailcall will unwind the current stack frame but it will not get rid 4523 * of caller's stack as shown on the example above. 4524 */ 4525 if (idx && subprog[idx].has_tail_call && depth >= 256) { 4526 verbose(env, 4527 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 4528 depth); 4529 return -EACCES; 4530 } 4531 /* round up to 32-bytes, since this is granularity 4532 * of interpreter stack size 4533 */ 4534 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4535 if (depth > MAX_BPF_STACK) { 4536 verbose(env, "combined stack size of %d calls is %d. Too large\n", 4537 frame + 1, depth); 4538 return -EACCES; 4539 } 4540 continue_func: 4541 subprog_end = subprog[idx + 1].start; 4542 for (; i < subprog_end; i++) { 4543 int next_insn; 4544 4545 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 4546 continue; 4547 /* remember insn and function to return to */ 4548 ret_insn[frame] = i + 1; 4549 ret_prog[frame] = idx; 4550 4551 /* find the callee */ 4552 next_insn = i + insn[i].imm + 1; 4553 idx = find_subprog(env, next_insn); 4554 if (idx < 0) { 4555 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4556 next_insn); 4557 return -EFAULT; 4558 } 4559 if (subprog[idx].is_async_cb) { 4560 if (subprog[idx].has_tail_call) { 4561 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 4562 return -EFAULT; 4563 } 4564 /* async callbacks don't increase bpf prog stack size */ 4565 continue; 4566 } 4567 i = next_insn; 4568 4569 if (subprog[idx].has_tail_call) 4570 tail_call_reachable = true; 4571 4572 frame++; 4573 if (frame >= MAX_CALL_FRAMES) { 4574 verbose(env, "the call stack of %d frames is too deep !\n", 4575 frame); 4576 return -E2BIG; 4577 } 4578 goto process_func; 4579 } 4580 /* if tail call got detected across bpf2bpf calls then mark each of the 4581 * currently present subprog frames as tail call reachable subprogs; 4582 * this info will be utilized by JIT so that we will be preserving the 4583 * tail call counter throughout bpf2bpf calls combined with tailcalls 4584 */ 4585 if (tail_call_reachable) 4586 for (j = 0; j < frame; j++) 4587 subprog[ret_prog[j]].tail_call_reachable = true; 4588 if (subprog[0].tail_call_reachable) 4589 env->prog->aux->tail_call_reachable = true; 4590 4591 /* end of for() loop means the last insn of the 'subprog' 4592 * was reached. Doesn't matter whether it was JA or EXIT 4593 */ 4594 if (frame == 0) 4595 return 0; 4596 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4597 frame--; 4598 i = ret_insn[frame]; 4599 idx = ret_prog[frame]; 4600 goto continue_func; 4601 } 4602 4603 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 4604 static int get_callee_stack_depth(struct bpf_verifier_env *env, 4605 const struct bpf_insn *insn, int idx) 4606 { 4607 int start = idx + insn->imm + 1, subprog; 4608 4609 subprog = find_subprog(env, start); 4610 if (subprog < 0) { 4611 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4612 start); 4613 return -EFAULT; 4614 } 4615 return env->subprog_info[subprog].stack_depth; 4616 } 4617 #endif 4618 4619 static int __check_buffer_access(struct bpf_verifier_env *env, 4620 const char *buf_info, 4621 const struct bpf_reg_state *reg, 4622 int regno, int off, int size) 4623 { 4624 if (off < 0) { 4625 verbose(env, 4626 "R%d invalid %s buffer access: off=%d, size=%d\n", 4627 regno, buf_info, off, size); 4628 return -EACCES; 4629 } 4630 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4631 char tn_buf[48]; 4632 4633 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4634 verbose(env, 4635 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 4636 regno, off, tn_buf); 4637 return -EACCES; 4638 } 4639 4640 return 0; 4641 } 4642 4643 static int check_tp_buffer_access(struct bpf_verifier_env *env, 4644 const struct bpf_reg_state *reg, 4645 int regno, int off, int size) 4646 { 4647 int err; 4648 4649 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 4650 if (err) 4651 return err; 4652 4653 if (off + size > env->prog->aux->max_tp_access) 4654 env->prog->aux->max_tp_access = off + size; 4655 4656 return 0; 4657 } 4658 4659 static int check_buffer_access(struct bpf_verifier_env *env, 4660 const struct bpf_reg_state *reg, 4661 int regno, int off, int size, 4662 bool zero_size_allowed, 4663 u32 *max_access) 4664 { 4665 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 4666 int err; 4667 4668 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 4669 if (err) 4670 return err; 4671 4672 if (off + size > *max_access) 4673 *max_access = off + size; 4674 4675 return 0; 4676 } 4677 4678 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 4679 static void zext_32_to_64(struct bpf_reg_state *reg) 4680 { 4681 reg->var_off = tnum_subreg(reg->var_off); 4682 __reg_assign_32_into_64(reg); 4683 } 4684 4685 /* truncate register to smaller size (in bytes) 4686 * must be called with size < BPF_REG_SIZE 4687 */ 4688 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 4689 { 4690 u64 mask; 4691 4692 /* clear high bits in bit representation */ 4693 reg->var_off = tnum_cast(reg->var_off, size); 4694 4695 /* fix arithmetic bounds */ 4696 mask = ((u64)1 << (size * 8)) - 1; 4697 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 4698 reg->umin_value &= mask; 4699 reg->umax_value &= mask; 4700 } else { 4701 reg->umin_value = 0; 4702 reg->umax_value = mask; 4703 } 4704 reg->smin_value = reg->umin_value; 4705 reg->smax_value = reg->umax_value; 4706 4707 /* If size is smaller than 32bit register the 32bit register 4708 * values are also truncated so we push 64-bit bounds into 4709 * 32-bit bounds. Above were truncated < 32-bits already. 4710 */ 4711 if (size >= 4) 4712 return; 4713 __reg_combine_64_into_32(reg); 4714 } 4715 4716 static bool bpf_map_is_rdonly(const struct bpf_map *map) 4717 { 4718 /* A map is considered read-only if the following condition are true: 4719 * 4720 * 1) BPF program side cannot change any of the map content. The 4721 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 4722 * and was set at map creation time. 4723 * 2) The map value(s) have been initialized from user space by a 4724 * loader and then "frozen", such that no new map update/delete 4725 * operations from syscall side are possible for the rest of 4726 * the map's lifetime from that point onwards. 4727 * 3) Any parallel/pending map update/delete operations from syscall 4728 * side have been completed. Only after that point, it's safe to 4729 * assume that map value(s) are immutable. 4730 */ 4731 return (map->map_flags & BPF_F_RDONLY_PROG) && 4732 READ_ONCE(map->frozen) && 4733 !bpf_map_write_active(map); 4734 } 4735 4736 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 4737 { 4738 void *ptr; 4739 u64 addr; 4740 int err; 4741 4742 err = map->ops->map_direct_value_addr(map, &addr, off); 4743 if (err) 4744 return err; 4745 ptr = (void *)(long)addr + off; 4746 4747 switch (size) { 4748 case sizeof(u8): 4749 *val = (u64)*(u8 *)ptr; 4750 break; 4751 case sizeof(u16): 4752 *val = (u64)*(u16 *)ptr; 4753 break; 4754 case sizeof(u32): 4755 *val = (u64)*(u32 *)ptr; 4756 break; 4757 case sizeof(u64): 4758 *val = *(u64 *)ptr; 4759 break; 4760 default: 4761 return -EINVAL; 4762 } 4763 return 0; 4764 } 4765 4766 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 4767 struct bpf_reg_state *regs, 4768 int regno, int off, int size, 4769 enum bpf_access_type atype, 4770 int value_regno) 4771 { 4772 struct bpf_reg_state *reg = regs + regno; 4773 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 4774 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 4775 enum bpf_type_flag flag = 0; 4776 u32 btf_id; 4777 int ret; 4778 4779 if (!env->allow_ptr_leaks) { 4780 verbose(env, 4781 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 4782 tname); 4783 return -EPERM; 4784 } 4785 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 4786 verbose(env, 4787 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 4788 tname); 4789 return -EINVAL; 4790 } 4791 if (off < 0) { 4792 verbose(env, 4793 "R%d is ptr_%s invalid negative access: off=%d\n", 4794 regno, tname, off); 4795 return -EACCES; 4796 } 4797 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4798 char tn_buf[48]; 4799 4800 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4801 verbose(env, 4802 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 4803 regno, tname, off, tn_buf); 4804 return -EACCES; 4805 } 4806 4807 if (reg->type & MEM_USER) { 4808 verbose(env, 4809 "R%d is ptr_%s access user memory: off=%d\n", 4810 regno, tname, off); 4811 return -EACCES; 4812 } 4813 4814 if (reg->type & MEM_PERCPU) { 4815 verbose(env, 4816 "R%d is ptr_%s access percpu memory: off=%d\n", 4817 regno, tname, off); 4818 return -EACCES; 4819 } 4820 4821 if (env->ops->btf_struct_access && !type_is_alloc(reg->type)) { 4822 if (!btf_is_kernel(reg->btf)) { 4823 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 4824 return -EFAULT; 4825 } 4826 ret = env->ops->btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag); 4827 } else { 4828 /* Writes are permitted with default btf_struct_access for 4829 * program allocated objects (which always have ref_obj_id > 0), 4830 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 4831 */ 4832 if (atype != BPF_READ && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 4833 verbose(env, "only read is supported\n"); 4834 return -EACCES; 4835 } 4836 4837 if (type_is_alloc(reg->type) && !reg->ref_obj_id) { 4838 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 4839 return -EFAULT; 4840 } 4841 4842 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag); 4843 } 4844 4845 if (ret < 0) 4846 return ret; 4847 4848 /* If this is an untrusted pointer, all pointers formed by walking it 4849 * also inherit the untrusted flag. 4850 */ 4851 if (type_flag(reg->type) & PTR_UNTRUSTED) 4852 flag |= PTR_UNTRUSTED; 4853 4854 /* By default any pointer obtained from walking a trusted pointer is 4855 * no longer trusted except the rcu case below. 4856 */ 4857 flag &= ~PTR_TRUSTED; 4858 4859 if (flag & MEM_RCU) { 4860 /* Mark value register as MEM_RCU only if it is protected by 4861 * bpf_rcu_read_lock() and the ptr reg is rcu or trusted. MEM_RCU 4862 * itself can already indicate trustedness inside the rcu 4863 * read lock region. Also mark rcu pointer as PTR_MAYBE_NULL since 4864 * it could be null in some cases. 4865 */ 4866 if (!env->cur_state->active_rcu_lock || 4867 !(is_trusted_reg(reg) || is_rcu_reg(reg))) 4868 flag &= ~MEM_RCU; 4869 else 4870 flag |= PTR_MAYBE_NULL; 4871 } else if (reg->type & MEM_RCU) { 4872 /* ptr (reg) is marked as MEM_RCU, but the struct field is not tagged 4873 * with __rcu. Mark the flag as PTR_UNTRUSTED conservatively. 4874 */ 4875 flag |= PTR_UNTRUSTED; 4876 } 4877 4878 if (atype == BPF_READ && value_regno >= 0) 4879 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 4880 4881 return 0; 4882 } 4883 4884 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 4885 struct bpf_reg_state *regs, 4886 int regno, int off, int size, 4887 enum bpf_access_type atype, 4888 int value_regno) 4889 { 4890 struct bpf_reg_state *reg = regs + regno; 4891 struct bpf_map *map = reg->map_ptr; 4892 struct bpf_reg_state map_reg; 4893 enum bpf_type_flag flag = 0; 4894 const struct btf_type *t; 4895 const char *tname; 4896 u32 btf_id; 4897 int ret; 4898 4899 if (!btf_vmlinux) { 4900 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 4901 return -ENOTSUPP; 4902 } 4903 4904 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 4905 verbose(env, "map_ptr access not supported for map type %d\n", 4906 map->map_type); 4907 return -ENOTSUPP; 4908 } 4909 4910 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 4911 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 4912 4913 if (!env->allow_ptr_leaks) { 4914 verbose(env, 4915 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 4916 tname); 4917 return -EPERM; 4918 } 4919 4920 if (off < 0) { 4921 verbose(env, "R%d is %s invalid negative access: off=%d\n", 4922 regno, tname, off); 4923 return -EACCES; 4924 } 4925 4926 if (atype != BPF_READ) { 4927 verbose(env, "only read from %s is supported\n", tname); 4928 return -EACCES; 4929 } 4930 4931 /* Simulate access to a PTR_TO_BTF_ID */ 4932 memset(&map_reg, 0, sizeof(map_reg)); 4933 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 4934 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag); 4935 if (ret < 0) 4936 return ret; 4937 4938 if (value_regno >= 0) 4939 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 4940 4941 return 0; 4942 } 4943 4944 /* Check that the stack access at the given offset is within bounds. The 4945 * maximum valid offset is -1. 4946 * 4947 * The minimum valid offset is -MAX_BPF_STACK for writes, and 4948 * -state->allocated_stack for reads. 4949 */ 4950 static int check_stack_slot_within_bounds(int off, 4951 struct bpf_func_state *state, 4952 enum bpf_access_type t) 4953 { 4954 int min_valid_off; 4955 4956 if (t == BPF_WRITE) 4957 min_valid_off = -MAX_BPF_STACK; 4958 else 4959 min_valid_off = -state->allocated_stack; 4960 4961 if (off < min_valid_off || off > -1) 4962 return -EACCES; 4963 return 0; 4964 } 4965 4966 /* Check that the stack access at 'regno + off' falls within the maximum stack 4967 * bounds. 4968 * 4969 * 'off' includes `regno->offset`, but not its dynamic part (if any). 4970 */ 4971 static int check_stack_access_within_bounds( 4972 struct bpf_verifier_env *env, 4973 int regno, int off, int access_size, 4974 enum bpf_access_src src, enum bpf_access_type type) 4975 { 4976 struct bpf_reg_state *regs = cur_regs(env); 4977 struct bpf_reg_state *reg = regs + regno; 4978 struct bpf_func_state *state = func(env, reg); 4979 int min_off, max_off; 4980 int err; 4981 char *err_extra; 4982 4983 if (src == ACCESS_HELPER) 4984 /* We don't know if helpers are reading or writing (or both). */ 4985 err_extra = " indirect access to"; 4986 else if (type == BPF_READ) 4987 err_extra = " read from"; 4988 else 4989 err_extra = " write to"; 4990 4991 if (tnum_is_const(reg->var_off)) { 4992 min_off = reg->var_off.value + off; 4993 if (access_size > 0) 4994 max_off = min_off + access_size - 1; 4995 else 4996 max_off = min_off; 4997 } else { 4998 if (reg->smax_value >= BPF_MAX_VAR_OFF || 4999 reg->smin_value <= -BPF_MAX_VAR_OFF) { 5000 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 5001 err_extra, regno); 5002 return -EACCES; 5003 } 5004 min_off = reg->smin_value + off; 5005 if (access_size > 0) 5006 max_off = reg->smax_value + off + access_size - 1; 5007 else 5008 max_off = min_off; 5009 } 5010 5011 err = check_stack_slot_within_bounds(min_off, state, type); 5012 if (!err) 5013 err = check_stack_slot_within_bounds(max_off, state, type); 5014 5015 if (err) { 5016 if (tnum_is_const(reg->var_off)) { 5017 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 5018 err_extra, regno, off, access_size); 5019 } else { 5020 char tn_buf[48]; 5021 5022 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5023 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 5024 err_extra, regno, tn_buf, access_size); 5025 } 5026 } 5027 return err; 5028 } 5029 5030 /* check whether memory at (regno + off) is accessible for t = (read | write) 5031 * if t==write, value_regno is a register which value is stored into memory 5032 * if t==read, value_regno is a register which will receive the value from memory 5033 * if t==write && value_regno==-1, some unknown value is stored into memory 5034 * if t==read && value_regno==-1, don't care what we read from memory 5035 */ 5036 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 5037 int off, int bpf_size, enum bpf_access_type t, 5038 int value_regno, bool strict_alignment_once) 5039 { 5040 struct bpf_reg_state *regs = cur_regs(env); 5041 struct bpf_reg_state *reg = regs + regno; 5042 struct bpf_func_state *state; 5043 int size, err = 0; 5044 5045 size = bpf_size_to_bytes(bpf_size); 5046 if (size < 0) 5047 return size; 5048 5049 /* alignment checks will add in reg->off themselves */ 5050 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 5051 if (err) 5052 return err; 5053 5054 /* for access checks, reg->off is just part of off */ 5055 off += reg->off; 5056 5057 if (reg->type == PTR_TO_MAP_KEY) { 5058 if (t == BPF_WRITE) { 5059 verbose(env, "write to change key R%d not allowed\n", regno); 5060 return -EACCES; 5061 } 5062 5063 err = check_mem_region_access(env, regno, off, size, 5064 reg->map_ptr->key_size, false); 5065 if (err) 5066 return err; 5067 if (value_regno >= 0) 5068 mark_reg_unknown(env, regs, value_regno); 5069 } else if (reg->type == PTR_TO_MAP_VALUE) { 5070 struct btf_field *kptr_field = NULL; 5071 5072 if (t == BPF_WRITE && value_regno >= 0 && 5073 is_pointer_value(env, value_regno)) { 5074 verbose(env, "R%d leaks addr into map\n", value_regno); 5075 return -EACCES; 5076 } 5077 err = check_map_access_type(env, regno, off, size, t); 5078 if (err) 5079 return err; 5080 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 5081 if (err) 5082 return err; 5083 if (tnum_is_const(reg->var_off)) 5084 kptr_field = btf_record_find(reg->map_ptr->record, 5085 off + reg->var_off.value, BPF_KPTR); 5086 if (kptr_field) { 5087 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 5088 } else if (t == BPF_READ && value_regno >= 0) { 5089 struct bpf_map *map = reg->map_ptr; 5090 5091 /* if map is read-only, track its contents as scalars */ 5092 if (tnum_is_const(reg->var_off) && 5093 bpf_map_is_rdonly(map) && 5094 map->ops->map_direct_value_addr) { 5095 int map_off = off + reg->var_off.value; 5096 u64 val = 0; 5097 5098 err = bpf_map_direct_read(map, map_off, size, 5099 &val); 5100 if (err) 5101 return err; 5102 5103 regs[value_regno].type = SCALAR_VALUE; 5104 __mark_reg_known(®s[value_regno], val); 5105 } else { 5106 mark_reg_unknown(env, regs, value_regno); 5107 } 5108 } 5109 } else if (base_type(reg->type) == PTR_TO_MEM) { 5110 bool rdonly_mem = type_is_rdonly_mem(reg->type); 5111 5112 if (type_may_be_null(reg->type)) { 5113 verbose(env, "R%d invalid mem access '%s'\n", regno, 5114 reg_type_str(env, reg->type)); 5115 return -EACCES; 5116 } 5117 5118 if (t == BPF_WRITE && rdonly_mem) { 5119 verbose(env, "R%d cannot write into %s\n", 5120 regno, reg_type_str(env, reg->type)); 5121 return -EACCES; 5122 } 5123 5124 if (t == BPF_WRITE && value_regno >= 0 && 5125 is_pointer_value(env, value_regno)) { 5126 verbose(env, "R%d leaks addr into mem\n", value_regno); 5127 return -EACCES; 5128 } 5129 5130 err = check_mem_region_access(env, regno, off, size, 5131 reg->mem_size, false); 5132 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 5133 mark_reg_unknown(env, regs, value_regno); 5134 } else if (reg->type == PTR_TO_CTX) { 5135 enum bpf_reg_type reg_type = SCALAR_VALUE; 5136 struct btf *btf = NULL; 5137 u32 btf_id = 0; 5138 5139 if (t == BPF_WRITE && value_regno >= 0 && 5140 is_pointer_value(env, value_regno)) { 5141 verbose(env, "R%d leaks addr into ctx\n", value_regno); 5142 return -EACCES; 5143 } 5144 5145 err = check_ptr_off_reg(env, reg, regno); 5146 if (err < 0) 5147 return err; 5148 5149 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 5150 &btf_id); 5151 if (err) 5152 verbose_linfo(env, insn_idx, "; "); 5153 if (!err && t == BPF_READ && value_regno >= 0) { 5154 /* ctx access returns either a scalar, or a 5155 * PTR_TO_PACKET[_META,_END]. In the latter 5156 * case, we know the offset is zero. 5157 */ 5158 if (reg_type == SCALAR_VALUE) { 5159 mark_reg_unknown(env, regs, value_regno); 5160 } else { 5161 mark_reg_known_zero(env, regs, 5162 value_regno); 5163 if (type_may_be_null(reg_type)) 5164 regs[value_regno].id = ++env->id_gen; 5165 /* A load of ctx field could have different 5166 * actual load size with the one encoded in the 5167 * insn. When the dst is PTR, it is for sure not 5168 * a sub-register. 5169 */ 5170 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 5171 if (base_type(reg_type) == PTR_TO_BTF_ID) { 5172 regs[value_regno].btf = btf; 5173 regs[value_regno].btf_id = btf_id; 5174 } 5175 } 5176 regs[value_regno].type = reg_type; 5177 } 5178 5179 } else if (reg->type == PTR_TO_STACK) { 5180 /* Basic bounds checks. */ 5181 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 5182 if (err) 5183 return err; 5184 5185 state = func(env, reg); 5186 err = update_stack_depth(env, state, off); 5187 if (err) 5188 return err; 5189 5190 if (t == BPF_READ) 5191 err = check_stack_read(env, regno, off, size, 5192 value_regno); 5193 else 5194 err = check_stack_write(env, regno, off, size, 5195 value_regno, insn_idx); 5196 } else if (reg_is_pkt_pointer(reg)) { 5197 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 5198 verbose(env, "cannot write into packet\n"); 5199 return -EACCES; 5200 } 5201 if (t == BPF_WRITE && value_regno >= 0 && 5202 is_pointer_value(env, value_regno)) { 5203 verbose(env, "R%d leaks addr into packet\n", 5204 value_regno); 5205 return -EACCES; 5206 } 5207 err = check_packet_access(env, regno, off, size, false); 5208 if (!err && t == BPF_READ && value_regno >= 0) 5209 mark_reg_unknown(env, regs, value_regno); 5210 } else if (reg->type == PTR_TO_FLOW_KEYS) { 5211 if (t == BPF_WRITE && value_regno >= 0 && 5212 is_pointer_value(env, value_regno)) { 5213 verbose(env, "R%d leaks addr into flow keys\n", 5214 value_regno); 5215 return -EACCES; 5216 } 5217 5218 err = check_flow_keys_access(env, off, size); 5219 if (!err && t == BPF_READ && value_regno >= 0) 5220 mark_reg_unknown(env, regs, value_regno); 5221 } else if (type_is_sk_pointer(reg->type)) { 5222 if (t == BPF_WRITE) { 5223 verbose(env, "R%d cannot write into %s\n", 5224 regno, reg_type_str(env, reg->type)); 5225 return -EACCES; 5226 } 5227 err = check_sock_access(env, insn_idx, regno, off, size, t); 5228 if (!err && value_regno >= 0) 5229 mark_reg_unknown(env, regs, value_regno); 5230 } else if (reg->type == PTR_TO_TP_BUFFER) { 5231 err = check_tp_buffer_access(env, reg, regno, off, size); 5232 if (!err && t == BPF_READ && value_regno >= 0) 5233 mark_reg_unknown(env, regs, value_regno); 5234 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 5235 !type_may_be_null(reg->type)) { 5236 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 5237 value_regno); 5238 } else if (reg->type == CONST_PTR_TO_MAP) { 5239 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 5240 value_regno); 5241 } else if (base_type(reg->type) == PTR_TO_BUF) { 5242 bool rdonly_mem = type_is_rdonly_mem(reg->type); 5243 u32 *max_access; 5244 5245 if (rdonly_mem) { 5246 if (t == BPF_WRITE) { 5247 verbose(env, "R%d cannot write into %s\n", 5248 regno, reg_type_str(env, reg->type)); 5249 return -EACCES; 5250 } 5251 max_access = &env->prog->aux->max_rdonly_access; 5252 } else { 5253 max_access = &env->prog->aux->max_rdwr_access; 5254 } 5255 5256 err = check_buffer_access(env, reg, regno, off, size, false, 5257 max_access); 5258 5259 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 5260 mark_reg_unknown(env, regs, value_regno); 5261 } else { 5262 verbose(env, "R%d invalid mem access '%s'\n", regno, 5263 reg_type_str(env, reg->type)); 5264 return -EACCES; 5265 } 5266 5267 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 5268 regs[value_regno].type == SCALAR_VALUE) { 5269 /* b/h/w load zero-extends, mark upper bits as known 0 */ 5270 coerce_reg_to_size(®s[value_regno], size); 5271 } 5272 return err; 5273 } 5274 5275 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 5276 { 5277 int load_reg; 5278 int err; 5279 5280 switch (insn->imm) { 5281 case BPF_ADD: 5282 case BPF_ADD | BPF_FETCH: 5283 case BPF_AND: 5284 case BPF_AND | BPF_FETCH: 5285 case BPF_OR: 5286 case BPF_OR | BPF_FETCH: 5287 case BPF_XOR: 5288 case BPF_XOR | BPF_FETCH: 5289 case BPF_XCHG: 5290 case BPF_CMPXCHG: 5291 break; 5292 default: 5293 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 5294 return -EINVAL; 5295 } 5296 5297 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 5298 verbose(env, "invalid atomic operand size\n"); 5299 return -EINVAL; 5300 } 5301 5302 /* check src1 operand */ 5303 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5304 if (err) 5305 return err; 5306 5307 /* check src2 operand */ 5308 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5309 if (err) 5310 return err; 5311 5312 if (insn->imm == BPF_CMPXCHG) { 5313 /* Check comparison of R0 with memory location */ 5314 const u32 aux_reg = BPF_REG_0; 5315 5316 err = check_reg_arg(env, aux_reg, SRC_OP); 5317 if (err) 5318 return err; 5319 5320 if (is_pointer_value(env, aux_reg)) { 5321 verbose(env, "R%d leaks addr into mem\n", aux_reg); 5322 return -EACCES; 5323 } 5324 } 5325 5326 if (is_pointer_value(env, insn->src_reg)) { 5327 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 5328 return -EACCES; 5329 } 5330 5331 if (is_ctx_reg(env, insn->dst_reg) || 5332 is_pkt_reg(env, insn->dst_reg) || 5333 is_flow_key_reg(env, insn->dst_reg) || 5334 is_sk_reg(env, insn->dst_reg)) { 5335 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 5336 insn->dst_reg, 5337 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 5338 return -EACCES; 5339 } 5340 5341 if (insn->imm & BPF_FETCH) { 5342 if (insn->imm == BPF_CMPXCHG) 5343 load_reg = BPF_REG_0; 5344 else 5345 load_reg = insn->src_reg; 5346 5347 /* check and record load of old value */ 5348 err = check_reg_arg(env, load_reg, DST_OP); 5349 if (err) 5350 return err; 5351 } else { 5352 /* This instruction accesses a memory location but doesn't 5353 * actually load it into a register. 5354 */ 5355 load_reg = -1; 5356 } 5357 5358 /* Check whether we can read the memory, with second call for fetch 5359 * case to simulate the register fill. 5360 */ 5361 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5362 BPF_SIZE(insn->code), BPF_READ, -1, true); 5363 if (!err && load_reg >= 0) 5364 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5365 BPF_SIZE(insn->code), BPF_READ, load_reg, 5366 true); 5367 if (err) 5368 return err; 5369 5370 /* Check whether we can write into the same memory. */ 5371 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5372 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 5373 if (err) 5374 return err; 5375 5376 return 0; 5377 } 5378 5379 /* When register 'regno' is used to read the stack (either directly or through 5380 * a helper function) make sure that it's within stack boundary and, depending 5381 * on the access type, that all elements of the stack are initialized. 5382 * 5383 * 'off' includes 'regno->off', but not its dynamic part (if any). 5384 * 5385 * All registers that have been spilled on the stack in the slots within the 5386 * read offsets are marked as read. 5387 */ 5388 static int check_stack_range_initialized( 5389 struct bpf_verifier_env *env, int regno, int off, 5390 int access_size, bool zero_size_allowed, 5391 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 5392 { 5393 struct bpf_reg_state *reg = reg_state(env, regno); 5394 struct bpf_func_state *state = func(env, reg); 5395 int err, min_off, max_off, i, j, slot, spi; 5396 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 5397 enum bpf_access_type bounds_check_type; 5398 /* Some accesses can write anything into the stack, others are 5399 * read-only. 5400 */ 5401 bool clobber = false; 5402 5403 if (access_size == 0 && !zero_size_allowed) { 5404 verbose(env, "invalid zero-sized read\n"); 5405 return -EACCES; 5406 } 5407 5408 if (type == ACCESS_HELPER) { 5409 /* The bounds checks for writes are more permissive than for 5410 * reads. However, if raw_mode is not set, we'll do extra 5411 * checks below. 5412 */ 5413 bounds_check_type = BPF_WRITE; 5414 clobber = true; 5415 } else { 5416 bounds_check_type = BPF_READ; 5417 } 5418 err = check_stack_access_within_bounds(env, regno, off, access_size, 5419 type, bounds_check_type); 5420 if (err) 5421 return err; 5422 5423 5424 if (tnum_is_const(reg->var_off)) { 5425 min_off = max_off = reg->var_off.value + off; 5426 } else { 5427 /* Variable offset is prohibited for unprivileged mode for 5428 * simplicity since it requires corresponding support in 5429 * Spectre masking for stack ALU. 5430 * See also retrieve_ptr_limit(). 5431 */ 5432 if (!env->bypass_spec_v1) { 5433 char tn_buf[48]; 5434 5435 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5436 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 5437 regno, err_extra, tn_buf); 5438 return -EACCES; 5439 } 5440 /* Only initialized buffer on stack is allowed to be accessed 5441 * with variable offset. With uninitialized buffer it's hard to 5442 * guarantee that whole memory is marked as initialized on 5443 * helper return since specific bounds are unknown what may 5444 * cause uninitialized stack leaking. 5445 */ 5446 if (meta && meta->raw_mode) 5447 meta = NULL; 5448 5449 min_off = reg->smin_value + off; 5450 max_off = reg->smax_value + off; 5451 } 5452 5453 if (meta && meta->raw_mode) { 5454 meta->access_size = access_size; 5455 meta->regno = regno; 5456 return 0; 5457 } 5458 5459 for (i = min_off; i < max_off + access_size; i++) { 5460 u8 *stype; 5461 5462 slot = -i - 1; 5463 spi = slot / BPF_REG_SIZE; 5464 if (state->allocated_stack <= slot) 5465 goto err; 5466 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 5467 if (*stype == STACK_MISC) 5468 goto mark; 5469 if (*stype == STACK_ZERO) { 5470 if (clobber) { 5471 /* helper can write anything into the stack */ 5472 *stype = STACK_MISC; 5473 } 5474 goto mark; 5475 } 5476 5477 if (is_spilled_reg(&state->stack[spi]) && 5478 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 5479 env->allow_ptr_leaks)) { 5480 if (clobber) { 5481 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 5482 for (j = 0; j < BPF_REG_SIZE; j++) 5483 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 5484 } 5485 goto mark; 5486 } 5487 5488 err: 5489 if (tnum_is_const(reg->var_off)) { 5490 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 5491 err_extra, regno, min_off, i - min_off, access_size); 5492 } else { 5493 char tn_buf[48]; 5494 5495 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5496 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 5497 err_extra, regno, tn_buf, i - min_off, access_size); 5498 } 5499 return -EACCES; 5500 mark: 5501 /* reading any byte out of 8-byte 'spill_slot' will cause 5502 * the whole slot to be marked as 'read' 5503 */ 5504 mark_reg_read(env, &state->stack[spi].spilled_ptr, 5505 state->stack[spi].spilled_ptr.parent, 5506 REG_LIVE_READ64); 5507 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 5508 * be sure that whether stack slot is written to or not. Hence, 5509 * we must still conservatively propagate reads upwards even if 5510 * helper may write to the entire memory range. 5511 */ 5512 } 5513 return update_stack_depth(env, state, min_off); 5514 } 5515 5516 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 5517 int access_size, bool zero_size_allowed, 5518 struct bpf_call_arg_meta *meta) 5519 { 5520 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5521 u32 *max_access; 5522 5523 switch (base_type(reg->type)) { 5524 case PTR_TO_PACKET: 5525 case PTR_TO_PACKET_META: 5526 return check_packet_access(env, regno, reg->off, access_size, 5527 zero_size_allowed); 5528 case PTR_TO_MAP_KEY: 5529 if (meta && meta->raw_mode) { 5530 verbose(env, "R%d cannot write into %s\n", regno, 5531 reg_type_str(env, reg->type)); 5532 return -EACCES; 5533 } 5534 return check_mem_region_access(env, regno, reg->off, access_size, 5535 reg->map_ptr->key_size, false); 5536 case PTR_TO_MAP_VALUE: 5537 if (check_map_access_type(env, regno, reg->off, access_size, 5538 meta && meta->raw_mode ? BPF_WRITE : 5539 BPF_READ)) 5540 return -EACCES; 5541 return check_map_access(env, regno, reg->off, access_size, 5542 zero_size_allowed, ACCESS_HELPER); 5543 case PTR_TO_MEM: 5544 if (type_is_rdonly_mem(reg->type)) { 5545 if (meta && meta->raw_mode) { 5546 verbose(env, "R%d cannot write into %s\n", regno, 5547 reg_type_str(env, reg->type)); 5548 return -EACCES; 5549 } 5550 } 5551 return check_mem_region_access(env, regno, reg->off, 5552 access_size, reg->mem_size, 5553 zero_size_allowed); 5554 case PTR_TO_BUF: 5555 if (type_is_rdonly_mem(reg->type)) { 5556 if (meta && meta->raw_mode) { 5557 verbose(env, "R%d cannot write into %s\n", regno, 5558 reg_type_str(env, reg->type)); 5559 return -EACCES; 5560 } 5561 5562 max_access = &env->prog->aux->max_rdonly_access; 5563 } else { 5564 max_access = &env->prog->aux->max_rdwr_access; 5565 } 5566 return check_buffer_access(env, reg, regno, reg->off, 5567 access_size, zero_size_allowed, 5568 max_access); 5569 case PTR_TO_STACK: 5570 return check_stack_range_initialized( 5571 env, 5572 regno, reg->off, access_size, 5573 zero_size_allowed, ACCESS_HELPER, meta); 5574 case PTR_TO_CTX: 5575 /* in case the function doesn't know how to access the context, 5576 * (because we are in a program of type SYSCALL for example), we 5577 * can not statically check its size. 5578 * Dynamically check it now. 5579 */ 5580 if (!env->ops->convert_ctx_access) { 5581 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 5582 int offset = access_size - 1; 5583 5584 /* Allow zero-byte read from PTR_TO_CTX */ 5585 if (access_size == 0) 5586 return zero_size_allowed ? 0 : -EACCES; 5587 5588 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 5589 atype, -1, false); 5590 } 5591 5592 fallthrough; 5593 default: /* scalar_value or invalid ptr */ 5594 /* Allow zero-byte read from NULL, regardless of pointer type */ 5595 if (zero_size_allowed && access_size == 0 && 5596 register_is_null(reg)) 5597 return 0; 5598 5599 verbose(env, "R%d type=%s ", regno, 5600 reg_type_str(env, reg->type)); 5601 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 5602 return -EACCES; 5603 } 5604 } 5605 5606 static int check_mem_size_reg(struct bpf_verifier_env *env, 5607 struct bpf_reg_state *reg, u32 regno, 5608 bool zero_size_allowed, 5609 struct bpf_call_arg_meta *meta) 5610 { 5611 int err; 5612 5613 /* This is used to refine r0 return value bounds for helpers 5614 * that enforce this value as an upper bound on return values. 5615 * See do_refine_retval_range() for helpers that can refine 5616 * the return value. C type of helper is u32 so we pull register 5617 * bound from umax_value however, if negative verifier errors 5618 * out. Only upper bounds can be learned because retval is an 5619 * int type and negative retvals are allowed. 5620 */ 5621 meta->msize_max_value = reg->umax_value; 5622 5623 /* The register is SCALAR_VALUE; the access check 5624 * happens using its boundaries. 5625 */ 5626 if (!tnum_is_const(reg->var_off)) 5627 /* For unprivileged variable accesses, disable raw 5628 * mode so that the program is required to 5629 * initialize all the memory that the helper could 5630 * just partially fill up. 5631 */ 5632 meta = NULL; 5633 5634 if (reg->smin_value < 0) { 5635 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5636 regno); 5637 return -EACCES; 5638 } 5639 5640 if (reg->umin_value == 0) { 5641 err = check_helper_mem_access(env, regno - 1, 0, 5642 zero_size_allowed, 5643 meta); 5644 if (err) 5645 return err; 5646 } 5647 5648 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5649 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5650 regno); 5651 return -EACCES; 5652 } 5653 err = check_helper_mem_access(env, regno - 1, 5654 reg->umax_value, 5655 zero_size_allowed, meta); 5656 if (!err) 5657 err = mark_chain_precision(env, regno); 5658 return err; 5659 } 5660 5661 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5662 u32 regno, u32 mem_size) 5663 { 5664 bool may_be_null = type_may_be_null(reg->type); 5665 struct bpf_reg_state saved_reg; 5666 struct bpf_call_arg_meta meta; 5667 int err; 5668 5669 if (register_is_null(reg)) 5670 return 0; 5671 5672 memset(&meta, 0, sizeof(meta)); 5673 /* Assuming that the register contains a value check if the memory 5674 * access is safe. Temporarily save and restore the register's state as 5675 * the conversion shouldn't be visible to a caller. 5676 */ 5677 if (may_be_null) { 5678 saved_reg = *reg; 5679 mark_ptr_not_null_reg(reg); 5680 } 5681 5682 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 5683 /* Check access for BPF_WRITE */ 5684 meta.raw_mode = true; 5685 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 5686 5687 if (may_be_null) 5688 *reg = saved_reg; 5689 5690 return err; 5691 } 5692 5693 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5694 u32 regno) 5695 { 5696 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 5697 bool may_be_null = type_may_be_null(mem_reg->type); 5698 struct bpf_reg_state saved_reg; 5699 struct bpf_call_arg_meta meta; 5700 int err; 5701 5702 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 5703 5704 memset(&meta, 0, sizeof(meta)); 5705 5706 if (may_be_null) { 5707 saved_reg = *mem_reg; 5708 mark_ptr_not_null_reg(mem_reg); 5709 } 5710 5711 err = check_mem_size_reg(env, reg, regno, true, &meta); 5712 /* Check access for BPF_WRITE */ 5713 meta.raw_mode = true; 5714 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 5715 5716 if (may_be_null) 5717 *mem_reg = saved_reg; 5718 return err; 5719 } 5720 5721 /* Implementation details: 5722 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 5723 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 5724 * Two bpf_map_lookups (even with the same key) will have different reg->id. 5725 * Two separate bpf_obj_new will also have different reg->id. 5726 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 5727 * clears reg->id after value_or_null->value transition, since the verifier only 5728 * cares about the range of access to valid map value pointer and doesn't care 5729 * about actual address of the map element. 5730 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 5731 * reg->id > 0 after value_or_null->value transition. By doing so 5732 * two bpf_map_lookups will be considered two different pointers that 5733 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 5734 * returned from bpf_obj_new. 5735 * The verifier allows taking only one bpf_spin_lock at a time to avoid 5736 * dead-locks. 5737 * Since only one bpf_spin_lock is allowed the checks are simpler than 5738 * reg_is_refcounted() logic. The verifier needs to remember only 5739 * one spin_lock instead of array of acquired_refs. 5740 * cur_state->active_lock remembers which map value element or allocated 5741 * object got locked and clears it after bpf_spin_unlock. 5742 */ 5743 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 5744 bool is_lock) 5745 { 5746 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5747 struct bpf_verifier_state *cur = env->cur_state; 5748 bool is_const = tnum_is_const(reg->var_off); 5749 u64 val = reg->var_off.value; 5750 struct bpf_map *map = NULL; 5751 struct btf *btf = NULL; 5752 struct btf_record *rec; 5753 5754 if (!is_const) { 5755 verbose(env, 5756 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 5757 regno); 5758 return -EINVAL; 5759 } 5760 if (reg->type == PTR_TO_MAP_VALUE) { 5761 map = reg->map_ptr; 5762 if (!map->btf) { 5763 verbose(env, 5764 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 5765 map->name); 5766 return -EINVAL; 5767 } 5768 } else { 5769 btf = reg->btf; 5770 } 5771 5772 rec = reg_btf_record(reg); 5773 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 5774 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 5775 map ? map->name : "kptr"); 5776 return -EINVAL; 5777 } 5778 if (rec->spin_lock_off != val + reg->off) { 5779 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 5780 val + reg->off, rec->spin_lock_off); 5781 return -EINVAL; 5782 } 5783 if (is_lock) { 5784 if (cur->active_lock.ptr) { 5785 verbose(env, 5786 "Locking two bpf_spin_locks are not allowed\n"); 5787 return -EINVAL; 5788 } 5789 if (map) 5790 cur->active_lock.ptr = map; 5791 else 5792 cur->active_lock.ptr = btf; 5793 cur->active_lock.id = reg->id; 5794 } else { 5795 struct bpf_func_state *fstate = cur_func(env); 5796 void *ptr; 5797 int i; 5798 5799 if (map) 5800 ptr = map; 5801 else 5802 ptr = btf; 5803 5804 if (!cur->active_lock.ptr) { 5805 verbose(env, "bpf_spin_unlock without taking a lock\n"); 5806 return -EINVAL; 5807 } 5808 if (cur->active_lock.ptr != ptr || 5809 cur->active_lock.id != reg->id) { 5810 verbose(env, "bpf_spin_unlock of different lock\n"); 5811 return -EINVAL; 5812 } 5813 cur->active_lock.ptr = NULL; 5814 cur->active_lock.id = 0; 5815 5816 for (i = fstate->acquired_refs - 1; i >= 0; i--) { 5817 int err; 5818 5819 /* Complain on error because this reference state cannot 5820 * be freed before this point, as bpf_spin_lock critical 5821 * section does not allow functions that release the 5822 * allocated object immediately. 5823 */ 5824 if (!fstate->refs[i].release_on_unlock) 5825 continue; 5826 err = release_reference(env, fstate->refs[i].id); 5827 if (err) { 5828 verbose(env, "failed to release release_on_unlock reference"); 5829 return err; 5830 } 5831 } 5832 } 5833 return 0; 5834 } 5835 5836 static int process_timer_func(struct bpf_verifier_env *env, int regno, 5837 struct bpf_call_arg_meta *meta) 5838 { 5839 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5840 bool is_const = tnum_is_const(reg->var_off); 5841 struct bpf_map *map = reg->map_ptr; 5842 u64 val = reg->var_off.value; 5843 5844 if (!is_const) { 5845 verbose(env, 5846 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 5847 regno); 5848 return -EINVAL; 5849 } 5850 if (!map->btf) { 5851 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 5852 map->name); 5853 return -EINVAL; 5854 } 5855 if (!btf_record_has_field(map->record, BPF_TIMER)) { 5856 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 5857 return -EINVAL; 5858 } 5859 if (map->record->timer_off != val + reg->off) { 5860 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 5861 val + reg->off, map->record->timer_off); 5862 return -EINVAL; 5863 } 5864 if (meta->map_ptr) { 5865 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 5866 return -EFAULT; 5867 } 5868 meta->map_uid = reg->map_uid; 5869 meta->map_ptr = map; 5870 return 0; 5871 } 5872 5873 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 5874 struct bpf_call_arg_meta *meta) 5875 { 5876 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5877 struct bpf_map *map_ptr = reg->map_ptr; 5878 struct btf_field *kptr_field; 5879 u32 kptr_off; 5880 5881 if (!tnum_is_const(reg->var_off)) { 5882 verbose(env, 5883 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 5884 regno); 5885 return -EINVAL; 5886 } 5887 if (!map_ptr->btf) { 5888 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 5889 map_ptr->name); 5890 return -EINVAL; 5891 } 5892 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 5893 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 5894 return -EINVAL; 5895 } 5896 5897 meta->map_ptr = map_ptr; 5898 kptr_off = reg->off + reg->var_off.value; 5899 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 5900 if (!kptr_field) { 5901 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 5902 return -EACCES; 5903 } 5904 if (kptr_field->type != BPF_KPTR_REF) { 5905 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 5906 return -EACCES; 5907 } 5908 meta->kptr_field = kptr_field; 5909 return 0; 5910 } 5911 5912 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 5913 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 5914 * 5915 * In both cases we deal with the first 8 bytes, but need to mark the next 8 5916 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 5917 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 5918 * 5919 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 5920 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 5921 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 5922 * mutate the view of the dynptr and also possibly destroy it. In the latter 5923 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 5924 * memory that dynptr points to. 5925 * 5926 * The verifier will keep track both levels of mutation (bpf_dynptr's in 5927 * reg->type and the memory's in reg->dynptr.type), but there is no support for 5928 * readonly dynptr view yet, hence only the first case is tracked and checked. 5929 * 5930 * This is consistent with how C applies the const modifier to a struct object, 5931 * where the pointer itself inside bpf_dynptr becomes const but not what it 5932 * points to. 5933 * 5934 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 5935 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 5936 */ 5937 int process_dynptr_func(struct bpf_verifier_env *env, int regno, 5938 enum bpf_arg_type arg_type, struct bpf_call_arg_meta *meta) 5939 { 5940 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5941 5942 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 5943 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 5944 */ 5945 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 5946 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 5947 return -EFAULT; 5948 } 5949 /* CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 5950 * check_func_arg_reg_off's logic. We only need to check offset 5951 * alignment for PTR_TO_STACK. 5952 */ 5953 if (reg->type == PTR_TO_STACK && (reg->off % BPF_REG_SIZE)) { 5954 verbose(env, "cannot pass in dynptr at an offset=%d\n", reg->off); 5955 return -EINVAL; 5956 } 5957 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 5958 * constructing a mutable bpf_dynptr object. 5959 * 5960 * Currently, this is only possible with PTR_TO_STACK 5961 * pointing to a region of at least 16 bytes which doesn't 5962 * contain an existing bpf_dynptr. 5963 * 5964 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 5965 * mutated or destroyed. However, the memory it points to 5966 * may be mutated. 5967 * 5968 * None - Points to a initialized dynptr that can be mutated and 5969 * destroyed, including mutation of the memory it points 5970 * to. 5971 */ 5972 if (arg_type & MEM_UNINIT) { 5973 if (!is_dynptr_reg_valid_uninit(env, reg)) { 5974 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 5975 return -EINVAL; 5976 } 5977 5978 /* We only support one dynptr being uninitialized at the moment, 5979 * which is sufficient for the helper functions we have right now. 5980 */ 5981 if (meta->uninit_dynptr_regno) { 5982 verbose(env, "verifier internal error: multiple uninitialized dynptr args\n"); 5983 return -EFAULT; 5984 } 5985 5986 meta->uninit_dynptr_regno = regno; 5987 } else /* MEM_RDONLY and None case from above */ { 5988 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 5989 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 5990 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 5991 return -EINVAL; 5992 } 5993 5994 if (!is_dynptr_reg_valid_init(env, reg)) { 5995 verbose(env, 5996 "Expected an initialized dynptr as arg #%d\n", 5997 regno); 5998 return -EINVAL; 5999 } 6000 6001 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 6002 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 6003 const char *err_extra = ""; 6004 6005 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 6006 case DYNPTR_TYPE_LOCAL: 6007 err_extra = "local"; 6008 break; 6009 case DYNPTR_TYPE_RINGBUF: 6010 err_extra = "ringbuf"; 6011 break; 6012 default: 6013 err_extra = "<unknown>"; 6014 break; 6015 } 6016 verbose(env, 6017 "Expected a dynptr of type %s as arg #%d\n", 6018 err_extra, regno); 6019 return -EINVAL; 6020 } 6021 } 6022 return 0; 6023 } 6024 6025 static bool arg_type_is_mem_size(enum bpf_arg_type type) 6026 { 6027 return type == ARG_CONST_SIZE || 6028 type == ARG_CONST_SIZE_OR_ZERO; 6029 } 6030 6031 static bool arg_type_is_release(enum bpf_arg_type type) 6032 { 6033 return type & OBJ_RELEASE; 6034 } 6035 6036 static bool arg_type_is_dynptr(enum bpf_arg_type type) 6037 { 6038 return base_type(type) == ARG_PTR_TO_DYNPTR; 6039 } 6040 6041 static int int_ptr_type_to_size(enum bpf_arg_type type) 6042 { 6043 if (type == ARG_PTR_TO_INT) 6044 return sizeof(u32); 6045 else if (type == ARG_PTR_TO_LONG) 6046 return sizeof(u64); 6047 6048 return -EINVAL; 6049 } 6050 6051 static int resolve_map_arg_type(struct bpf_verifier_env *env, 6052 const struct bpf_call_arg_meta *meta, 6053 enum bpf_arg_type *arg_type) 6054 { 6055 if (!meta->map_ptr) { 6056 /* kernel subsystem misconfigured verifier */ 6057 verbose(env, "invalid map_ptr to access map->type\n"); 6058 return -EACCES; 6059 } 6060 6061 switch (meta->map_ptr->map_type) { 6062 case BPF_MAP_TYPE_SOCKMAP: 6063 case BPF_MAP_TYPE_SOCKHASH: 6064 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 6065 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 6066 } else { 6067 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 6068 return -EINVAL; 6069 } 6070 break; 6071 case BPF_MAP_TYPE_BLOOM_FILTER: 6072 if (meta->func_id == BPF_FUNC_map_peek_elem) 6073 *arg_type = ARG_PTR_TO_MAP_VALUE; 6074 break; 6075 default: 6076 break; 6077 } 6078 return 0; 6079 } 6080 6081 struct bpf_reg_types { 6082 const enum bpf_reg_type types[10]; 6083 u32 *btf_id; 6084 }; 6085 6086 static const struct bpf_reg_types sock_types = { 6087 .types = { 6088 PTR_TO_SOCK_COMMON, 6089 PTR_TO_SOCKET, 6090 PTR_TO_TCP_SOCK, 6091 PTR_TO_XDP_SOCK, 6092 }, 6093 }; 6094 6095 #ifdef CONFIG_NET 6096 static const struct bpf_reg_types btf_id_sock_common_types = { 6097 .types = { 6098 PTR_TO_SOCK_COMMON, 6099 PTR_TO_SOCKET, 6100 PTR_TO_TCP_SOCK, 6101 PTR_TO_XDP_SOCK, 6102 PTR_TO_BTF_ID, 6103 PTR_TO_BTF_ID | PTR_TRUSTED, 6104 }, 6105 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 6106 }; 6107 #endif 6108 6109 static const struct bpf_reg_types mem_types = { 6110 .types = { 6111 PTR_TO_STACK, 6112 PTR_TO_PACKET, 6113 PTR_TO_PACKET_META, 6114 PTR_TO_MAP_KEY, 6115 PTR_TO_MAP_VALUE, 6116 PTR_TO_MEM, 6117 PTR_TO_MEM | MEM_RINGBUF, 6118 PTR_TO_BUF, 6119 }, 6120 }; 6121 6122 static const struct bpf_reg_types int_ptr_types = { 6123 .types = { 6124 PTR_TO_STACK, 6125 PTR_TO_PACKET, 6126 PTR_TO_PACKET_META, 6127 PTR_TO_MAP_KEY, 6128 PTR_TO_MAP_VALUE, 6129 }, 6130 }; 6131 6132 static const struct bpf_reg_types spin_lock_types = { 6133 .types = { 6134 PTR_TO_MAP_VALUE, 6135 PTR_TO_BTF_ID | MEM_ALLOC, 6136 } 6137 }; 6138 6139 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 6140 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 6141 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 6142 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 6143 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 6144 static const struct bpf_reg_types btf_ptr_types = { 6145 .types = { 6146 PTR_TO_BTF_ID, 6147 PTR_TO_BTF_ID | PTR_TRUSTED, 6148 PTR_TO_BTF_ID | MEM_RCU, 6149 }, 6150 }; 6151 static const struct bpf_reg_types percpu_btf_ptr_types = { 6152 .types = { 6153 PTR_TO_BTF_ID | MEM_PERCPU, 6154 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 6155 } 6156 }; 6157 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 6158 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 6159 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 6160 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 6161 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 6162 static const struct bpf_reg_types dynptr_types = { 6163 .types = { 6164 PTR_TO_STACK, 6165 CONST_PTR_TO_DYNPTR, 6166 } 6167 }; 6168 6169 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 6170 [ARG_PTR_TO_MAP_KEY] = &mem_types, 6171 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 6172 [ARG_CONST_SIZE] = &scalar_types, 6173 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 6174 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 6175 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 6176 [ARG_PTR_TO_CTX] = &context_types, 6177 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 6178 #ifdef CONFIG_NET 6179 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 6180 #endif 6181 [ARG_PTR_TO_SOCKET] = &fullsock_types, 6182 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 6183 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 6184 [ARG_PTR_TO_MEM] = &mem_types, 6185 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 6186 [ARG_PTR_TO_INT] = &int_ptr_types, 6187 [ARG_PTR_TO_LONG] = &int_ptr_types, 6188 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 6189 [ARG_PTR_TO_FUNC] = &func_ptr_types, 6190 [ARG_PTR_TO_STACK] = &stack_ptr_types, 6191 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 6192 [ARG_PTR_TO_TIMER] = &timer_types, 6193 [ARG_PTR_TO_KPTR] = &kptr_types, 6194 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 6195 }; 6196 6197 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 6198 enum bpf_arg_type arg_type, 6199 const u32 *arg_btf_id, 6200 struct bpf_call_arg_meta *meta) 6201 { 6202 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6203 enum bpf_reg_type expected, type = reg->type; 6204 const struct bpf_reg_types *compatible; 6205 int i, j; 6206 6207 compatible = compatible_reg_types[base_type(arg_type)]; 6208 if (!compatible) { 6209 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 6210 return -EFAULT; 6211 } 6212 6213 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 6214 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 6215 * 6216 * Same for MAYBE_NULL: 6217 * 6218 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 6219 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 6220 * 6221 * Therefore we fold these flags depending on the arg_type before comparison. 6222 */ 6223 if (arg_type & MEM_RDONLY) 6224 type &= ~MEM_RDONLY; 6225 if (arg_type & PTR_MAYBE_NULL) 6226 type &= ~PTR_MAYBE_NULL; 6227 6228 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 6229 expected = compatible->types[i]; 6230 if (expected == NOT_INIT) 6231 break; 6232 6233 if (type == expected) 6234 goto found; 6235 } 6236 6237 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 6238 for (j = 0; j + 1 < i; j++) 6239 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 6240 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 6241 return -EACCES; 6242 6243 found: 6244 if (reg->type == PTR_TO_BTF_ID || reg->type & PTR_TRUSTED) { 6245 /* For bpf_sk_release, it needs to match against first member 6246 * 'struct sock_common', hence make an exception for it. This 6247 * allows bpf_sk_release to work for multiple socket types. 6248 */ 6249 bool strict_type_match = arg_type_is_release(arg_type) && 6250 meta->func_id != BPF_FUNC_sk_release; 6251 6252 if (!arg_btf_id) { 6253 if (!compatible->btf_id) { 6254 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 6255 return -EFAULT; 6256 } 6257 arg_btf_id = compatible->btf_id; 6258 } 6259 6260 if (meta->func_id == BPF_FUNC_kptr_xchg) { 6261 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 6262 return -EACCES; 6263 } else { 6264 if (arg_btf_id == BPF_PTR_POISON) { 6265 verbose(env, "verifier internal error:"); 6266 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 6267 regno); 6268 return -EACCES; 6269 } 6270 6271 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 6272 btf_vmlinux, *arg_btf_id, 6273 strict_type_match)) { 6274 verbose(env, "R%d is of type %s but %s is expected\n", 6275 regno, kernel_type_name(reg->btf, reg->btf_id), 6276 kernel_type_name(btf_vmlinux, *arg_btf_id)); 6277 return -EACCES; 6278 } 6279 } 6280 } else if (type_is_alloc(reg->type)) { 6281 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock) { 6282 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 6283 return -EFAULT; 6284 } 6285 } 6286 6287 return 0; 6288 } 6289 6290 int check_func_arg_reg_off(struct bpf_verifier_env *env, 6291 const struct bpf_reg_state *reg, int regno, 6292 enum bpf_arg_type arg_type) 6293 { 6294 u32 type = reg->type; 6295 6296 /* When referenced register is passed to release function, its fixed 6297 * offset must be 0. 6298 * 6299 * We will check arg_type_is_release reg has ref_obj_id when storing 6300 * meta->release_regno. 6301 */ 6302 if (arg_type_is_release(arg_type)) { 6303 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 6304 * may not directly point to the object being released, but to 6305 * dynptr pointing to such object, which might be at some offset 6306 * on the stack. In that case, we simply to fallback to the 6307 * default handling. 6308 */ 6309 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 6310 return 0; 6311 /* Doing check_ptr_off_reg check for the offset will catch this 6312 * because fixed_off_ok is false, but checking here allows us 6313 * to give the user a better error message. 6314 */ 6315 if (reg->off) { 6316 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 6317 regno); 6318 return -EINVAL; 6319 } 6320 return __check_ptr_off_reg(env, reg, regno, false); 6321 } 6322 6323 switch (type) { 6324 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 6325 case PTR_TO_STACK: 6326 case PTR_TO_PACKET: 6327 case PTR_TO_PACKET_META: 6328 case PTR_TO_MAP_KEY: 6329 case PTR_TO_MAP_VALUE: 6330 case PTR_TO_MEM: 6331 case PTR_TO_MEM | MEM_RDONLY: 6332 case PTR_TO_MEM | MEM_RINGBUF: 6333 case PTR_TO_BUF: 6334 case PTR_TO_BUF | MEM_RDONLY: 6335 case SCALAR_VALUE: 6336 return 0; 6337 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 6338 * fixed offset. 6339 */ 6340 case PTR_TO_BTF_ID: 6341 case PTR_TO_BTF_ID | MEM_ALLOC: 6342 case PTR_TO_BTF_ID | PTR_TRUSTED: 6343 case PTR_TO_BTF_ID | MEM_RCU: 6344 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED: 6345 /* When referenced PTR_TO_BTF_ID is passed to release function, 6346 * its fixed offset must be 0. In the other cases, fixed offset 6347 * can be non-zero. This was already checked above. So pass 6348 * fixed_off_ok as true to allow fixed offset for all other 6349 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 6350 * still need to do checks instead of returning. 6351 */ 6352 return __check_ptr_off_reg(env, reg, regno, true); 6353 default: 6354 return __check_ptr_off_reg(env, reg, regno, false); 6355 } 6356 } 6357 6358 static u32 dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 6359 { 6360 struct bpf_func_state *state = func(env, reg); 6361 int spi; 6362 6363 if (reg->type == CONST_PTR_TO_DYNPTR) 6364 return reg->ref_obj_id; 6365 6366 spi = get_spi(reg->off); 6367 return state->stack[spi].spilled_ptr.ref_obj_id; 6368 } 6369 6370 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 6371 struct bpf_call_arg_meta *meta, 6372 const struct bpf_func_proto *fn) 6373 { 6374 u32 regno = BPF_REG_1 + arg; 6375 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6376 enum bpf_arg_type arg_type = fn->arg_type[arg]; 6377 enum bpf_reg_type type = reg->type; 6378 u32 *arg_btf_id = NULL; 6379 int err = 0; 6380 6381 if (arg_type == ARG_DONTCARE) 6382 return 0; 6383 6384 err = check_reg_arg(env, regno, SRC_OP); 6385 if (err) 6386 return err; 6387 6388 if (arg_type == ARG_ANYTHING) { 6389 if (is_pointer_value(env, regno)) { 6390 verbose(env, "R%d leaks addr into helper function\n", 6391 regno); 6392 return -EACCES; 6393 } 6394 return 0; 6395 } 6396 6397 if (type_is_pkt_pointer(type) && 6398 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 6399 verbose(env, "helper access to the packet is not allowed\n"); 6400 return -EACCES; 6401 } 6402 6403 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 6404 err = resolve_map_arg_type(env, meta, &arg_type); 6405 if (err) 6406 return err; 6407 } 6408 6409 if (register_is_null(reg) && type_may_be_null(arg_type)) 6410 /* A NULL register has a SCALAR_VALUE type, so skip 6411 * type checking. 6412 */ 6413 goto skip_type_check; 6414 6415 /* arg_btf_id and arg_size are in a union. */ 6416 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 6417 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 6418 arg_btf_id = fn->arg_btf_id[arg]; 6419 6420 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 6421 if (err) 6422 return err; 6423 6424 err = check_func_arg_reg_off(env, reg, regno, arg_type); 6425 if (err) 6426 return err; 6427 6428 skip_type_check: 6429 if (arg_type_is_release(arg_type)) { 6430 if (arg_type_is_dynptr(arg_type)) { 6431 struct bpf_func_state *state = func(env, reg); 6432 int spi; 6433 6434 /* Only dynptr created on stack can be released, thus 6435 * the get_spi and stack state checks for spilled_ptr 6436 * should only be done before process_dynptr_func for 6437 * PTR_TO_STACK. 6438 */ 6439 if (reg->type == PTR_TO_STACK) { 6440 spi = get_spi(reg->off); 6441 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) || 6442 !state->stack[spi].spilled_ptr.ref_obj_id) { 6443 verbose(env, "arg %d is an unacquired reference\n", regno); 6444 return -EINVAL; 6445 } 6446 } else { 6447 verbose(env, "cannot release unowned const bpf_dynptr\n"); 6448 return -EINVAL; 6449 } 6450 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 6451 verbose(env, "R%d must be referenced when passed to release function\n", 6452 regno); 6453 return -EINVAL; 6454 } 6455 if (meta->release_regno) { 6456 verbose(env, "verifier internal error: more than one release argument\n"); 6457 return -EFAULT; 6458 } 6459 meta->release_regno = regno; 6460 } 6461 6462 if (reg->ref_obj_id) { 6463 if (meta->ref_obj_id) { 6464 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 6465 regno, reg->ref_obj_id, 6466 meta->ref_obj_id); 6467 return -EFAULT; 6468 } 6469 meta->ref_obj_id = reg->ref_obj_id; 6470 } 6471 6472 switch (base_type(arg_type)) { 6473 case ARG_CONST_MAP_PTR: 6474 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 6475 if (meta->map_ptr) { 6476 /* Use map_uid (which is unique id of inner map) to reject: 6477 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 6478 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 6479 * if (inner_map1 && inner_map2) { 6480 * timer = bpf_map_lookup_elem(inner_map1); 6481 * if (timer) 6482 * // mismatch would have been allowed 6483 * bpf_timer_init(timer, inner_map2); 6484 * } 6485 * 6486 * Comparing map_ptr is enough to distinguish normal and outer maps. 6487 */ 6488 if (meta->map_ptr != reg->map_ptr || 6489 meta->map_uid != reg->map_uid) { 6490 verbose(env, 6491 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 6492 meta->map_uid, reg->map_uid); 6493 return -EINVAL; 6494 } 6495 } 6496 meta->map_ptr = reg->map_ptr; 6497 meta->map_uid = reg->map_uid; 6498 break; 6499 case ARG_PTR_TO_MAP_KEY: 6500 /* bpf_map_xxx(..., map_ptr, ..., key) call: 6501 * check that [key, key + map->key_size) are within 6502 * stack limits and initialized 6503 */ 6504 if (!meta->map_ptr) { 6505 /* in function declaration map_ptr must come before 6506 * map_key, so that it's verified and known before 6507 * we have to check map_key here. Otherwise it means 6508 * that kernel subsystem misconfigured verifier 6509 */ 6510 verbose(env, "invalid map_ptr to access map->key\n"); 6511 return -EACCES; 6512 } 6513 err = check_helper_mem_access(env, regno, 6514 meta->map_ptr->key_size, false, 6515 NULL); 6516 break; 6517 case ARG_PTR_TO_MAP_VALUE: 6518 if (type_may_be_null(arg_type) && register_is_null(reg)) 6519 return 0; 6520 6521 /* bpf_map_xxx(..., map_ptr, ..., value) call: 6522 * check [value, value + map->value_size) validity 6523 */ 6524 if (!meta->map_ptr) { 6525 /* kernel subsystem misconfigured verifier */ 6526 verbose(env, "invalid map_ptr to access map->value\n"); 6527 return -EACCES; 6528 } 6529 meta->raw_mode = arg_type & MEM_UNINIT; 6530 err = check_helper_mem_access(env, regno, 6531 meta->map_ptr->value_size, false, 6532 meta); 6533 break; 6534 case ARG_PTR_TO_PERCPU_BTF_ID: 6535 if (!reg->btf_id) { 6536 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 6537 return -EACCES; 6538 } 6539 meta->ret_btf = reg->btf; 6540 meta->ret_btf_id = reg->btf_id; 6541 break; 6542 case ARG_PTR_TO_SPIN_LOCK: 6543 if (meta->func_id == BPF_FUNC_spin_lock) { 6544 err = process_spin_lock(env, regno, true); 6545 if (err) 6546 return err; 6547 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 6548 err = process_spin_lock(env, regno, false); 6549 if (err) 6550 return err; 6551 } else { 6552 verbose(env, "verifier internal error\n"); 6553 return -EFAULT; 6554 } 6555 break; 6556 case ARG_PTR_TO_TIMER: 6557 err = process_timer_func(env, regno, meta); 6558 if (err) 6559 return err; 6560 break; 6561 case ARG_PTR_TO_FUNC: 6562 meta->subprogno = reg->subprogno; 6563 break; 6564 case ARG_PTR_TO_MEM: 6565 /* The access to this pointer is only checked when we hit the 6566 * next is_mem_size argument below. 6567 */ 6568 meta->raw_mode = arg_type & MEM_UNINIT; 6569 if (arg_type & MEM_FIXED_SIZE) { 6570 err = check_helper_mem_access(env, regno, 6571 fn->arg_size[arg], false, 6572 meta); 6573 } 6574 break; 6575 case ARG_CONST_SIZE: 6576 err = check_mem_size_reg(env, reg, regno, false, meta); 6577 break; 6578 case ARG_CONST_SIZE_OR_ZERO: 6579 err = check_mem_size_reg(env, reg, regno, true, meta); 6580 break; 6581 case ARG_PTR_TO_DYNPTR: 6582 err = process_dynptr_func(env, regno, arg_type, meta); 6583 if (err) 6584 return err; 6585 break; 6586 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 6587 if (!tnum_is_const(reg->var_off)) { 6588 verbose(env, "R%d is not a known constant'\n", 6589 regno); 6590 return -EACCES; 6591 } 6592 meta->mem_size = reg->var_off.value; 6593 err = mark_chain_precision(env, regno); 6594 if (err) 6595 return err; 6596 break; 6597 case ARG_PTR_TO_INT: 6598 case ARG_PTR_TO_LONG: 6599 { 6600 int size = int_ptr_type_to_size(arg_type); 6601 6602 err = check_helper_mem_access(env, regno, size, false, meta); 6603 if (err) 6604 return err; 6605 err = check_ptr_alignment(env, reg, 0, size, true); 6606 break; 6607 } 6608 case ARG_PTR_TO_CONST_STR: 6609 { 6610 struct bpf_map *map = reg->map_ptr; 6611 int map_off; 6612 u64 map_addr; 6613 char *str_ptr; 6614 6615 if (!bpf_map_is_rdonly(map)) { 6616 verbose(env, "R%d does not point to a readonly map'\n", regno); 6617 return -EACCES; 6618 } 6619 6620 if (!tnum_is_const(reg->var_off)) { 6621 verbose(env, "R%d is not a constant address'\n", regno); 6622 return -EACCES; 6623 } 6624 6625 if (!map->ops->map_direct_value_addr) { 6626 verbose(env, "no direct value access support for this map type\n"); 6627 return -EACCES; 6628 } 6629 6630 err = check_map_access(env, regno, reg->off, 6631 map->value_size - reg->off, false, 6632 ACCESS_HELPER); 6633 if (err) 6634 return err; 6635 6636 map_off = reg->off + reg->var_off.value; 6637 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 6638 if (err) { 6639 verbose(env, "direct value access on string failed\n"); 6640 return err; 6641 } 6642 6643 str_ptr = (char *)(long)(map_addr); 6644 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 6645 verbose(env, "string is not zero-terminated\n"); 6646 return -EINVAL; 6647 } 6648 break; 6649 } 6650 case ARG_PTR_TO_KPTR: 6651 err = process_kptr_func(env, regno, meta); 6652 if (err) 6653 return err; 6654 break; 6655 } 6656 6657 return err; 6658 } 6659 6660 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 6661 { 6662 enum bpf_attach_type eatype = env->prog->expected_attach_type; 6663 enum bpf_prog_type type = resolve_prog_type(env->prog); 6664 6665 if (func_id != BPF_FUNC_map_update_elem) 6666 return false; 6667 6668 /* It's not possible to get access to a locked struct sock in these 6669 * contexts, so updating is safe. 6670 */ 6671 switch (type) { 6672 case BPF_PROG_TYPE_TRACING: 6673 if (eatype == BPF_TRACE_ITER) 6674 return true; 6675 break; 6676 case BPF_PROG_TYPE_SOCKET_FILTER: 6677 case BPF_PROG_TYPE_SCHED_CLS: 6678 case BPF_PROG_TYPE_SCHED_ACT: 6679 case BPF_PROG_TYPE_XDP: 6680 case BPF_PROG_TYPE_SK_REUSEPORT: 6681 case BPF_PROG_TYPE_FLOW_DISSECTOR: 6682 case BPF_PROG_TYPE_SK_LOOKUP: 6683 return true; 6684 default: 6685 break; 6686 } 6687 6688 verbose(env, "cannot update sockmap in this context\n"); 6689 return false; 6690 } 6691 6692 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 6693 { 6694 return env->prog->jit_requested && 6695 bpf_jit_supports_subprog_tailcalls(); 6696 } 6697 6698 static int check_map_func_compatibility(struct bpf_verifier_env *env, 6699 struct bpf_map *map, int func_id) 6700 { 6701 if (!map) 6702 return 0; 6703 6704 /* We need a two way check, first is from map perspective ... */ 6705 switch (map->map_type) { 6706 case BPF_MAP_TYPE_PROG_ARRAY: 6707 if (func_id != BPF_FUNC_tail_call) 6708 goto error; 6709 break; 6710 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 6711 if (func_id != BPF_FUNC_perf_event_read && 6712 func_id != BPF_FUNC_perf_event_output && 6713 func_id != BPF_FUNC_skb_output && 6714 func_id != BPF_FUNC_perf_event_read_value && 6715 func_id != BPF_FUNC_xdp_output) 6716 goto error; 6717 break; 6718 case BPF_MAP_TYPE_RINGBUF: 6719 if (func_id != BPF_FUNC_ringbuf_output && 6720 func_id != BPF_FUNC_ringbuf_reserve && 6721 func_id != BPF_FUNC_ringbuf_query && 6722 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 6723 func_id != BPF_FUNC_ringbuf_submit_dynptr && 6724 func_id != BPF_FUNC_ringbuf_discard_dynptr) 6725 goto error; 6726 break; 6727 case BPF_MAP_TYPE_USER_RINGBUF: 6728 if (func_id != BPF_FUNC_user_ringbuf_drain) 6729 goto error; 6730 break; 6731 case BPF_MAP_TYPE_STACK_TRACE: 6732 if (func_id != BPF_FUNC_get_stackid) 6733 goto error; 6734 break; 6735 case BPF_MAP_TYPE_CGROUP_ARRAY: 6736 if (func_id != BPF_FUNC_skb_under_cgroup && 6737 func_id != BPF_FUNC_current_task_under_cgroup) 6738 goto error; 6739 break; 6740 case BPF_MAP_TYPE_CGROUP_STORAGE: 6741 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 6742 if (func_id != BPF_FUNC_get_local_storage) 6743 goto error; 6744 break; 6745 case BPF_MAP_TYPE_DEVMAP: 6746 case BPF_MAP_TYPE_DEVMAP_HASH: 6747 if (func_id != BPF_FUNC_redirect_map && 6748 func_id != BPF_FUNC_map_lookup_elem) 6749 goto error; 6750 break; 6751 /* Restrict bpf side of cpumap and xskmap, open when use-cases 6752 * appear. 6753 */ 6754 case BPF_MAP_TYPE_CPUMAP: 6755 if (func_id != BPF_FUNC_redirect_map) 6756 goto error; 6757 break; 6758 case BPF_MAP_TYPE_XSKMAP: 6759 if (func_id != BPF_FUNC_redirect_map && 6760 func_id != BPF_FUNC_map_lookup_elem) 6761 goto error; 6762 break; 6763 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 6764 case BPF_MAP_TYPE_HASH_OF_MAPS: 6765 if (func_id != BPF_FUNC_map_lookup_elem) 6766 goto error; 6767 break; 6768 case BPF_MAP_TYPE_SOCKMAP: 6769 if (func_id != BPF_FUNC_sk_redirect_map && 6770 func_id != BPF_FUNC_sock_map_update && 6771 func_id != BPF_FUNC_map_delete_elem && 6772 func_id != BPF_FUNC_msg_redirect_map && 6773 func_id != BPF_FUNC_sk_select_reuseport && 6774 func_id != BPF_FUNC_map_lookup_elem && 6775 !may_update_sockmap(env, func_id)) 6776 goto error; 6777 break; 6778 case BPF_MAP_TYPE_SOCKHASH: 6779 if (func_id != BPF_FUNC_sk_redirect_hash && 6780 func_id != BPF_FUNC_sock_hash_update && 6781 func_id != BPF_FUNC_map_delete_elem && 6782 func_id != BPF_FUNC_msg_redirect_hash && 6783 func_id != BPF_FUNC_sk_select_reuseport && 6784 func_id != BPF_FUNC_map_lookup_elem && 6785 !may_update_sockmap(env, func_id)) 6786 goto error; 6787 break; 6788 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 6789 if (func_id != BPF_FUNC_sk_select_reuseport) 6790 goto error; 6791 break; 6792 case BPF_MAP_TYPE_QUEUE: 6793 case BPF_MAP_TYPE_STACK: 6794 if (func_id != BPF_FUNC_map_peek_elem && 6795 func_id != BPF_FUNC_map_pop_elem && 6796 func_id != BPF_FUNC_map_push_elem) 6797 goto error; 6798 break; 6799 case BPF_MAP_TYPE_SK_STORAGE: 6800 if (func_id != BPF_FUNC_sk_storage_get && 6801 func_id != BPF_FUNC_sk_storage_delete) 6802 goto error; 6803 break; 6804 case BPF_MAP_TYPE_INODE_STORAGE: 6805 if (func_id != BPF_FUNC_inode_storage_get && 6806 func_id != BPF_FUNC_inode_storage_delete) 6807 goto error; 6808 break; 6809 case BPF_MAP_TYPE_TASK_STORAGE: 6810 if (func_id != BPF_FUNC_task_storage_get && 6811 func_id != BPF_FUNC_task_storage_delete) 6812 goto error; 6813 break; 6814 case BPF_MAP_TYPE_CGRP_STORAGE: 6815 if (func_id != BPF_FUNC_cgrp_storage_get && 6816 func_id != BPF_FUNC_cgrp_storage_delete) 6817 goto error; 6818 break; 6819 case BPF_MAP_TYPE_BLOOM_FILTER: 6820 if (func_id != BPF_FUNC_map_peek_elem && 6821 func_id != BPF_FUNC_map_push_elem) 6822 goto error; 6823 break; 6824 default: 6825 break; 6826 } 6827 6828 /* ... and second from the function itself. */ 6829 switch (func_id) { 6830 case BPF_FUNC_tail_call: 6831 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 6832 goto error; 6833 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 6834 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 6835 return -EINVAL; 6836 } 6837 break; 6838 case BPF_FUNC_perf_event_read: 6839 case BPF_FUNC_perf_event_output: 6840 case BPF_FUNC_perf_event_read_value: 6841 case BPF_FUNC_skb_output: 6842 case BPF_FUNC_xdp_output: 6843 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 6844 goto error; 6845 break; 6846 case BPF_FUNC_ringbuf_output: 6847 case BPF_FUNC_ringbuf_reserve: 6848 case BPF_FUNC_ringbuf_query: 6849 case BPF_FUNC_ringbuf_reserve_dynptr: 6850 case BPF_FUNC_ringbuf_submit_dynptr: 6851 case BPF_FUNC_ringbuf_discard_dynptr: 6852 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 6853 goto error; 6854 break; 6855 case BPF_FUNC_user_ringbuf_drain: 6856 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 6857 goto error; 6858 break; 6859 case BPF_FUNC_get_stackid: 6860 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 6861 goto error; 6862 break; 6863 case BPF_FUNC_current_task_under_cgroup: 6864 case BPF_FUNC_skb_under_cgroup: 6865 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 6866 goto error; 6867 break; 6868 case BPF_FUNC_redirect_map: 6869 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 6870 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 6871 map->map_type != BPF_MAP_TYPE_CPUMAP && 6872 map->map_type != BPF_MAP_TYPE_XSKMAP) 6873 goto error; 6874 break; 6875 case BPF_FUNC_sk_redirect_map: 6876 case BPF_FUNC_msg_redirect_map: 6877 case BPF_FUNC_sock_map_update: 6878 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 6879 goto error; 6880 break; 6881 case BPF_FUNC_sk_redirect_hash: 6882 case BPF_FUNC_msg_redirect_hash: 6883 case BPF_FUNC_sock_hash_update: 6884 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 6885 goto error; 6886 break; 6887 case BPF_FUNC_get_local_storage: 6888 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 6889 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 6890 goto error; 6891 break; 6892 case BPF_FUNC_sk_select_reuseport: 6893 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 6894 map->map_type != BPF_MAP_TYPE_SOCKMAP && 6895 map->map_type != BPF_MAP_TYPE_SOCKHASH) 6896 goto error; 6897 break; 6898 case BPF_FUNC_map_pop_elem: 6899 if (map->map_type != BPF_MAP_TYPE_QUEUE && 6900 map->map_type != BPF_MAP_TYPE_STACK) 6901 goto error; 6902 break; 6903 case BPF_FUNC_map_peek_elem: 6904 case BPF_FUNC_map_push_elem: 6905 if (map->map_type != BPF_MAP_TYPE_QUEUE && 6906 map->map_type != BPF_MAP_TYPE_STACK && 6907 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 6908 goto error; 6909 break; 6910 case BPF_FUNC_map_lookup_percpu_elem: 6911 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 6912 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 6913 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 6914 goto error; 6915 break; 6916 case BPF_FUNC_sk_storage_get: 6917 case BPF_FUNC_sk_storage_delete: 6918 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 6919 goto error; 6920 break; 6921 case BPF_FUNC_inode_storage_get: 6922 case BPF_FUNC_inode_storage_delete: 6923 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 6924 goto error; 6925 break; 6926 case BPF_FUNC_task_storage_get: 6927 case BPF_FUNC_task_storage_delete: 6928 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 6929 goto error; 6930 break; 6931 case BPF_FUNC_cgrp_storage_get: 6932 case BPF_FUNC_cgrp_storage_delete: 6933 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 6934 goto error; 6935 break; 6936 default: 6937 break; 6938 } 6939 6940 return 0; 6941 error: 6942 verbose(env, "cannot pass map_type %d into func %s#%d\n", 6943 map->map_type, func_id_name(func_id), func_id); 6944 return -EINVAL; 6945 } 6946 6947 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 6948 { 6949 int count = 0; 6950 6951 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 6952 count++; 6953 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 6954 count++; 6955 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 6956 count++; 6957 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 6958 count++; 6959 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 6960 count++; 6961 6962 /* We only support one arg being in raw mode at the moment, 6963 * which is sufficient for the helper functions we have 6964 * right now. 6965 */ 6966 return count <= 1; 6967 } 6968 6969 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 6970 { 6971 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 6972 bool has_size = fn->arg_size[arg] != 0; 6973 bool is_next_size = false; 6974 6975 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 6976 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 6977 6978 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 6979 return is_next_size; 6980 6981 return has_size == is_next_size || is_next_size == is_fixed; 6982 } 6983 6984 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 6985 { 6986 /* bpf_xxx(..., buf, len) call will access 'len' 6987 * bytes from memory 'buf'. Both arg types need 6988 * to be paired, so make sure there's no buggy 6989 * helper function specification. 6990 */ 6991 if (arg_type_is_mem_size(fn->arg1_type) || 6992 check_args_pair_invalid(fn, 0) || 6993 check_args_pair_invalid(fn, 1) || 6994 check_args_pair_invalid(fn, 2) || 6995 check_args_pair_invalid(fn, 3) || 6996 check_args_pair_invalid(fn, 4)) 6997 return false; 6998 6999 return true; 7000 } 7001 7002 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 7003 { 7004 int i; 7005 7006 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 7007 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 7008 return !!fn->arg_btf_id[i]; 7009 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 7010 return fn->arg_btf_id[i] == BPF_PTR_POISON; 7011 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 7012 /* arg_btf_id and arg_size are in a union. */ 7013 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 7014 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 7015 return false; 7016 } 7017 7018 return true; 7019 } 7020 7021 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 7022 { 7023 return check_raw_mode_ok(fn) && 7024 check_arg_pair_ok(fn) && 7025 check_btf_id_ok(fn) ? 0 : -EINVAL; 7026 } 7027 7028 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 7029 * are now invalid, so turn them into unknown SCALAR_VALUE. 7030 */ 7031 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 7032 { 7033 struct bpf_func_state *state; 7034 struct bpf_reg_state *reg; 7035 7036 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 7037 if (reg_is_pkt_pointer_any(reg)) 7038 __mark_reg_unknown(env, reg); 7039 })); 7040 } 7041 7042 enum { 7043 AT_PKT_END = -1, 7044 BEYOND_PKT_END = -2, 7045 }; 7046 7047 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 7048 { 7049 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7050 struct bpf_reg_state *reg = &state->regs[regn]; 7051 7052 if (reg->type != PTR_TO_PACKET) 7053 /* PTR_TO_PACKET_META is not supported yet */ 7054 return; 7055 7056 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 7057 * How far beyond pkt_end it goes is unknown. 7058 * if (!range_open) it's the case of pkt >= pkt_end 7059 * if (range_open) it's the case of pkt > pkt_end 7060 * hence this pointer is at least 1 byte bigger than pkt_end 7061 */ 7062 if (range_open) 7063 reg->range = BEYOND_PKT_END; 7064 else 7065 reg->range = AT_PKT_END; 7066 } 7067 7068 /* The pointer with the specified id has released its reference to kernel 7069 * resources. Identify all copies of the same pointer and clear the reference. 7070 */ 7071 static int release_reference(struct bpf_verifier_env *env, 7072 int ref_obj_id) 7073 { 7074 struct bpf_func_state *state; 7075 struct bpf_reg_state *reg; 7076 int err; 7077 7078 err = release_reference_state(cur_func(env), ref_obj_id); 7079 if (err) 7080 return err; 7081 7082 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 7083 if (reg->ref_obj_id == ref_obj_id) { 7084 if (!env->allow_ptr_leaks) 7085 __mark_reg_not_init(env, reg); 7086 else 7087 __mark_reg_unknown(env, reg); 7088 } 7089 })); 7090 7091 return 0; 7092 } 7093 7094 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 7095 struct bpf_reg_state *regs) 7096 { 7097 int i; 7098 7099 /* after the call registers r0 - r5 were scratched */ 7100 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7101 mark_reg_not_init(env, regs, caller_saved[i]); 7102 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7103 } 7104 } 7105 7106 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 7107 struct bpf_func_state *caller, 7108 struct bpf_func_state *callee, 7109 int insn_idx); 7110 7111 static int set_callee_state(struct bpf_verifier_env *env, 7112 struct bpf_func_state *caller, 7113 struct bpf_func_state *callee, int insn_idx); 7114 7115 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7116 int *insn_idx, int subprog, 7117 set_callee_state_fn set_callee_state_cb) 7118 { 7119 struct bpf_verifier_state *state = env->cur_state; 7120 struct bpf_func_info_aux *func_info_aux; 7121 struct bpf_func_state *caller, *callee; 7122 int err; 7123 bool is_global = false; 7124 7125 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 7126 verbose(env, "the call stack of %d frames is too deep\n", 7127 state->curframe + 2); 7128 return -E2BIG; 7129 } 7130 7131 caller = state->frame[state->curframe]; 7132 if (state->frame[state->curframe + 1]) { 7133 verbose(env, "verifier bug. Frame %d already allocated\n", 7134 state->curframe + 1); 7135 return -EFAULT; 7136 } 7137 7138 func_info_aux = env->prog->aux->func_info_aux; 7139 if (func_info_aux) 7140 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 7141 err = btf_check_subprog_call(env, subprog, caller->regs); 7142 if (err == -EFAULT) 7143 return err; 7144 if (is_global) { 7145 if (err) { 7146 verbose(env, "Caller passes invalid args into func#%d\n", 7147 subprog); 7148 return err; 7149 } else { 7150 if (env->log.level & BPF_LOG_LEVEL) 7151 verbose(env, 7152 "Func#%d is global and valid. Skipping.\n", 7153 subprog); 7154 clear_caller_saved_regs(env, caller->regs); 7155 7156 /* All global functions return a 64-bit SCALAR_VALUE */ 7157 mark_reg_unknown(env, caller->regs, BPF_REG_0); 7158 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7159 7160 /* continue with next insn after call */ 7161 return 0; 7162 } 7163 } 7164 7165 /* set_callee_state is used for direct subprog calls, but we are 7166 * interested in validating only BPF helpers that can call subprogs as 7167 * callbacks 7168 */ 7169 if (set_callee_state_cb != set_callee_state && !is_callback_calling_function(insn->imm)) { 7170 verbose(env, "verifier bug: helper %s#%d is not marked as callback-calling\n", 7171 func_id_name(insn->imm), insn->imm); 7172 return -EFAULT; 7173 } 7174 7175 if (insn->code == (BPF_JMP | BPF_CALL) && 7176 insn->src_reg == 0 && 7177 insn->imm == BPF_FUNC_timer_set_callback) { 7178 struct bpf_verifier_state *async_cb; 7179 7180 /* there is no real recursion here. timer callbacks are async */ 7181 env->subprog_info[subprog].is_async_cb = true; 7182 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 7183 *insn_idx, subprog); 7184 if (!async_cb) 7185 return -EFAULT; 7186 callee = async_cb->frame[0]; 7187 callee->async_entry_cnt = caller->async_entry_cnt + 1; 7188 7189 /* Convert bpf_timer_set_callback() args into timer callback args */ 7190 err = set_callee_state_cb(env, caller, callee, *insn_idx); 7191 if (err) 7192 return err; 7193 7194 clear_caller_saved_regs(env, caller->regs); 7195 mark_reg_unknown(env, caller->regs, BPF_REG_0); 7196 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7197 /* continue with next insn after call */ 7198 return 0; 7199 } 7200 7201 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 7202 if (!callee) 7203 return -ENOMEM; 7204 state->frame[state->curframe + 1] = callee; 7205 7206 /* callee cannot access r0, r6 - r9 for reading and has to write 7207 * into its own stack before reading from it. 7208 * callee can read/write into caller's stack 7209 */ 7210 init_func_state(env, callee, 7211 /* remember the callsite, it will be used by bpf_exit */ 7212 *insn_idx /* callsite */, 7213 state->curframe + 1 /* frameno within this callchain */, 7214 subprog /* subprog number within this prog */); 7215 7216 /* Transfer references to the callee */ 7217 err = copy_reference_state(callee, caller); 7218 if (err) 7219 goto err_out; 7220 7221 err = set_callee_state_cb(env, caller, callee, *insn_idx); 7222 if (err) 7223 goto err_out; 7224 7225 clear_caller_saved_regs(env, caller->regs); 7226 7227 /* only increment it after check_reg_arg() finished */ 7228 state->curframe++; 7229 7230 /* and go analyze first insn of the callee */ 7231 *insn_idx = env->subprog_info[subprog].start - 1; 7232 7233 if (env->log.level & BPF_LOG_LEVEL) { 7234 verbose(env, "caller:\n"); 7235 print_verifier_state(env, caller, true); 7236 verbose(env, "callee:\n"); 7237 print_verifier_state(env, callee, true); 7238 } 7239 return 0; 7240 7241 err_out: 7242 free_func_state(callee); 7243 state->frame[state->curframe + 1] = NULL; 7244 return err; 7245 } 7246 7247 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 7248 struct bpf_func_state *caller, 7249 struct bpf_func_state *callee) 7250 { 7251 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 7252 * void *callback_ctx, u64 flags); 7253 * callback_fn(struct bpf_map *map, void *key, void *value, 7254 * void *callback_ctx); 7255 */ 7256 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 7257 7258 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 7259 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 7260 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 7261 7262 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 7263 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 7264 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 7265 7266 /* pointer to stack or null */ 7267 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 7268 7269 /* unused */ 7270 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7271 return 0; 7272 } 7273 7274 static int set_callee_state(struct bpf_verifier_env *env, 7275 struct bpf_func_state *caller, 7276 struct bpf_func_state *callee, int insn_idx) 7277 { 7278 int i; 7279 7280 /* copy r1 - r5 args that callee can access. The copy includes parent 7281 * pointers, which connects us up to the liveness chain 7282 */ 7283 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 7284 callee->regs[i] = caller->regs[i]; 7285 return 0; 7286 } 7287 7288 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7289 int *insn_idx) 7290 { 7291 int subprog, target_insn; 7292 7293 target_insn = *insn_idx + insn->imm + 1; 7294 subprog = find_subprog(env, target_insn); 7295 if (subprog < 0) { 7296 verbose(env, "verifier bug. No program starts at insn %d\n", 7297 target_insn); 7298 return -EFAULT; 7299 } 7300 7301 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 7302 } 7303 7304 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 7305 struct bpf_func_state *caller, 7306 struct bpf_func_state *callee, 7307 int insn_idx) 7308 { 7309 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 7310 struct bpf_map *map; 7311 int err; 7312 7313 if (bpf_map_ptr_poisoned(insn_aux)) { 7314 verbose(env, "tail_call abusing map_ptr\n"); 7315 return -EINVAL; 7316 } 7317 7318 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 7319 if (!map->ops->map_set_for_each_callback_args || 7320 !map->ops->map_for_each_callback) { 7321 verbose(env, "callback function not allowed for map\n"); 7322 return -ENOTSUPP; 7323 } 7324 7325 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 7326 if (err) 7327 return err; 7328 7329 callee->in_callback_fn = true; 7330 callee->callback_ret_range = tnum_range(0, 1); 7331 return 0; 7332 } 7333 7334 static int set_loop_callback_state(struct bpf_verifier_env *env, 7335 struct bpf_func_state *caller, 7336 struct bpf_func_state *callee, 7337 int insn_idx) 7338 { 7339 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 7340 * u64 flags); 7341 * callback_fn(u32 index, void *callback_ctx); 7342 */ 7343 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 7344 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 7345 7346 /* unused */ 7347 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 7348 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7349 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7350 7351 callee->in_callback_fn = true; 7352 callee->callback_ret_range = tnum_range(0, 1); 7353 return 0; 7354 } 7355 7356 static int set_timer_callback_state(struct bpf_verifier_env *env, 7357 struct bpf_func_state *caller, 7358 struct bpf_func_state *callee, 7359 int insn_idx) 7360 { 7361 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 7362 7363 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 7364 * callback_fn(struct bpf_map *map, void *key, void *value); 7365 */ 7366 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 7367 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 7368 callee->regs[BPF_REG_1].map_ptr = map_ptr; 7369 7370 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 7371 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 7372 callee->regs[BPF_REG_2].map_ptr = map_ptr; 7373 7374 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 7375 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 7376 callee->regs[BPF_REG_3].map_ptr = map_ptr; 7377 7378 /* unused */ 7379 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7380 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7381 callee->in_async_callback_fn = true; 7382 callee->callback_ret_range = tnum_range(0, 1); 7383 return 0; 7384 } 7385 7386 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 7387 struct bpf_func_state *caller, 7388 struct bpf_func_state *callee, 7389 int insn_idx) 7390 { 7391 /* bpf_find_vma(struct task_struct *task, u64 addr, 7392 * void *callback_fn, void *callback_ctx, u64 flags) 7393 * (callback_fn)(struct task_struct *task, 7394 * struct vm_area_struct *vma, void *callback_ctx); 7395 */ 7396 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 7397 7398 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 7399 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 7400 callee->regs[BPF_REG_2].btf = btf_vmlinux; 7401 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 7402 7403 /* pointer to stack or null */ 7404 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 7405 7406 /* unused */ 7407 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7408 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7409 callee->in_callback_fn = true; 7410 callee->callback_ret_range = tnum_range(0, 1); 7411 return 0; 7412 } 7413 7414 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 7415 struct bpf_func_state *caller, 7416 struct bpf_func_state *callee, 7417 int insn_idx) 7418 { 7419 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 7420 * callback_ctx, u64 flags); 7421 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 7422 */ 7423 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 7424 mark_dynptr_cb_reg(&callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 7425 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 7426 7427 /* unused */ 7428 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 7429 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7430 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7431 7432 callee->in_callback_fn = true; 7433 callee->callback_ret_range = tnum_range(0, 1); 7434 return 0; 7435 } 7436 7437 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 7438 { 7439 struct bpf_verifier_state *state = env->cur_state; 7440 struct bpf_func_state *caller, *callee; 7441 struct bpf_reg_state *r0; 7442 int err; 7443 7444 callee = state->frame[state->curframe]; 7445 r0 = &callee->regs[BPF_REG_0]; 7446 if (r0->type == PTR_TO_STACK) { 7447 /* technically it's ok to return caller's stack pointer 7448 * (or caller's caller's pointer) back to the caller, 7449 * since these pointers are valid. Only current stack 7450 * pointer will be invalid as soon as function exits, 7451 * but let's be conservative 7452 */ 7453 verbose(env, "cannot return stack pointer to the caller\n"); 7454 return -EINVAL; 7455 } 7456 7457 caller = state->frame[state->curframe - 1]; 7458 if (callee->in_callback_fn) { 7459 /* enforce R0 return value range [0, 1]. */ 7460 struct tnum range = callee->callback_ret_range; 7461 7462 if (r0->type != SCALAR_VALUE) { 7463 verbose(env, "R0 not a scalar value\n"); 7464 return -EACCES; 7465 } 7466 if (!tnum_in(range, r0->var_off)) { 7467 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 7468 return -EINVAL; 7469 } 7470 } else { 7471 /* return to the caller whatever r0 had in the callee */ 7472 caller->regs[BPF_REG_0] = *r0; 7473 } 7474 7475 /* callback_fn frame should have released its own additions to parent's 7476 * reference state at this point, or check_reference_leak would 7477 * complain, hence it must be the same as the caller. There is no need 7478 * to copy it back. 7479 */ 7480 if (!callee->in_callback_fn) { 7481 /* Transfer references to the caller */ 7482 err = copy_reference_state(caller, callee); 7483 if (err) 7484 return err; 7485 } 7486 7487 *insn_idx = callee->callsite + 1; 7488 if (env->log.level & BPF_LOG_LEVEL) { 7489 verbose(env, "returning from callee:\n"); 7490 print_verifier_state(env, callee, true); 7491 verbose(env, "to caller at %d:\n", *insn_idx); 7492 print_verifier_state(env, caller, true); 7493 } 7494 /* clear everything in the callee */ 7495 free_func_state(callee); 7496 state->frame[state->curframe--] = NULL; 7497 return 0; 7498 } 7499 7500 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 7501 int func_id, 7502 struct bpf_call_arg_meta *meta) 7503 { 7504 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 7505 7506 if (ret_type != RET_INTEGER || 7507 (func_id != BPF_FUNC_get_stack && 7508 func_id != BPF_FUNC_get_task_stack && 7509 func_id != BPF_FUNC_probe_read_str && 7510 func_id != BPF_FUNC_probe_read_kernel_str && 7511 func_id != BPF_FUNC_probe_read_user_str)) 7512 return; 7513 7514 ret_reg->smax_value = meta->msize_max_value; 7515 ret_reg->s32_max_value = meta->msize_max_value; 7516 ret_reg->smin_value = -MAX_ERRNO; 7517 ret_reg->s32_min_value = -MAX_ERRNO; 7518 reg_bounds_sync(ret_reg); 7519 } 7520 7521 static int 7522 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 7523 int func_id, int insn_idx) 7524 { 7525 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 7526 struct bpf_map *map = meta->map_ptr; 7527 7528 if (func_id != BPF_FUNC_tail_call && 7529 func_id != BPF_FUNC_map_lookup_elem && 7530 func_id != BPF_FUNC_map_update_elem && 7531 func_id != BPF_FUNC_map_delete_elem && 7532 func_id != BPF_FUNC_map_push_elem && 7533 func_id != BPF_FUNC_map_pop_elem && 7534 func_id != BPF_FUNC_map_peek_elem && 7535 func_id != BPF_FUNC_for_each_map_elem && 7536 func_id != BPF_FUNC_redirect_map && 7537 func_id != BPF_FUNC_map_lookup_percpu_elem) 7538 return 0; 7539 7540 if (map == NULL) { 7541 verbose(env, "kernel subsystem misconfigured verifier\n"); 7542 return -EINVAL; 7543 } 7544 7545 /* In case of read-only, some additional restrictions 7546 * need to be applied in order to prevent altering the 7547 * state of the map from program side. 7548 */ 7549 if ((map->map_flags & BPF_F_RDONLY_PROG) && 7550 (func_id == BPF_FUNC_map_delete_elem || 7551 func_id == BPF_FUNC_map_update_elem || 7552 func_id == BPF_FUNC_map_push_elem || 7553 func_id == BPF_FUNC_map_pop_elem)) { 7554 verbose(env, "write into map forbidden\n"); 7555 return -EACCES; 7556 } 7557 7558 if (!BPF_MAP_PTR(aux->map_ptr_state)) 7559 bpf_map_ptr_store(aux, meta->map_ptr, 7560 !meta->map_ptr->bypass_spec_v1); 7561 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 7562 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 7563 !meta->map_ptr->bypass_spec_v1); 7564 return 0; 7565 } 7566 7567 static int 7568 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 7569 int func_id, int insn_idx) 7570 { 7571 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 7572 struct bpf_reg_state *regs = cur_regs(env), *reg; 7573 struct bpf_map *map = meta->map_ptr; 7574 u64 val, max; 7575 int err; 7576 7577 if (func_id != BPF_FUNC_tail_call) 7578 return 0; 7579 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 7580 verbose(env, "kernel subsystem misconfigured verifier\n"); 7581 return -EINVAL; 7582 } 7583 7584 reg = ®s[BPF_REG_3]; 7585 val = reg->var_off.value; 7586 max = map->max_entries; 7587 7588 if (!(register_is_const(reg) && val < max)) { 7589 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7590 return 0; 7591 } 7592 7593 err = mark_chain_precision(env, BPF_REG_3); 7594 if (err) 7595 return err; 7596 if (bpf_map_key_unseen(aux)) 7597 bpf_map_key_store(aux, val); 7598 else if (!bpf_map_key_poisoned(aux) && 7599 bpf_map_key_immediate(aux) != val) 7600 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7601 return 0; 7602 } 7603 7604 static int check_reference_leak(struct bpf_verifier_env *env) 7605 { 7606 struct bpf_func_state *state = cur_func(env); 7607 bool refs_lingering = false; 7608 int i; 7609 7610 if (state->frameno && !state->in_callback_fn) 7611 return 0; 7612 7613 for (i = 0; i < state->acquired_refs; i++) { 7614 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 7615 continue; 7616 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 7617 state->refs[i].id, state->refs[i].insn_idx); 7618 refs_lingering = true; 7619 } 7620 return refs_lingering ? -EINVAL : 0; 7621 } 7622 7623 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 7624 struct bpf_reg_state *regs) 7625 { 7626 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 7627 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 7628 struct bpf_map *fmt_map = fmt_reg->map_ptr; 7629 struct bpf_bprintf_data data = {}; 7630 int err, fmt_map_off, num_args; 7631 u64 fmt_addr; 7632 char *fmt; 7633 7634 /* data must be an array of u64 */ 7635 if (data_len_reg->var_off.value % 8) 7636 return -EINVAL; 7637 num_args = data_len_reg->var_off.value / 8; 7638 7639 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 7640 * and map_direct_value_addr is set. 7641 */ 7642 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 7643 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 7644 fmt_map_off); 7645 if (err) { 7646 verbose(env, "verifier bug\n"); 7647 return -EFAULT; 7648 } 7649 fmt = (char *)(long)fmt_addr + fmt_map_off; 7650 7651 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 7652 * can focus on validating the format specifiers. 7653 */ 7654 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 7655 if (err < 0) 7656 verbose(env, "Invalid format string\n"); 7657 7658 return err; 7659 } 7660 7661 static int check_get_func_ip(struct bpf_verifier_env *env) 7662 { 7663 enum bpf_prog_type type = resolve_prog_type(env->prog); 7664 int func_id = BPF_FUNC_get_func_ip; 7665 7666 if (type == BPF_PROG_TYPE_TRACING) { 7667 if (!bpf_prog_has_trampoline(env->prog)) { 7668 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 7669 func_id_name(func_id), func_id); 7670 return -ENOTSUPP; 7671 } 7672 return 0; 7673 } else if (type == BPF_PROG_TYPE_KPROBE) { 7674 return 0; 7675 } 7676 7677 verbose(env, "func %s#%d not supported for program type %d\n", 7678 func_id_name(func_id), func_id, type); 7679 return -ENOTSUPP; 7680 } 7681 7682 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 7683 { 7684 return &env->insn_aux_data[env->insn_idx]; 7685 } 7686 7687 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 7688 { 7689 struct bpf_reg_state *regs = cur_regs(env); 7690 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 7691 bool reg_is_null = register_is_null(reg); 7692 7693 if (reg_is_null) 7694 mark_chain_precision(env, BPF_REG_4); 7695 7696 return reg_is_null; 7697 } 7698 7699 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 7700 { 7701 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 7702 7703 if (!state->initialized) { 7704 state->initialized = 1; 7705 state->fit_for_inline = loop_flag_is_zero(env); 7706 state->callback_subprogno = subprogno; 7707 return; 7708 } 7709 7710 if (!state->fit_for_inline) 7711 return; 7712 7713 state->fit_for_inline = (loop_flag_is_zero(env) && 7714 state->callback_subprogno == subprogno); 7715 } 7716 7717 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7718 int *insn_idx_p) 7719 { 7720 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 7721 const struct bpf_func_proto *fn = NULL; 7722 enum bpf_return_type ret_type; 7723 enum bpf_type_flag ret_flag; 7724 struct bpf_reg_state *regs; 7725 struct bpf_call_arg_meta meta; 7726 int insn_idx = *insn_idx_p; 7727 bool changes_data; 7728 int i, err, func_id; 7729 7730 /* find function prototype */ 7731 func_id = insn->imm; 7732 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 7733 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 7734 func_id); 7735 return -EINVAL; 7736 } 7737 7738 if (env->ops->get_func_proto) 7739 fn = env->ops->get_func_proto(func_id, env->prog); 7740 if (!fn) { 7741 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 7742 func_id); 7743 return -EINVAL; 7744 } 7745 7746 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 7747 if (!env->prog->gpl_compatible && fn->gpl_only) { 7748 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 7749 return -EINVAL; 7750 } 7751 7752 if (fn->allowed && !fn->allowed(env->prog)) { 7753 verbose(env, "helper call is not allowed in probe\n"); 7754 return -EINVAL; 7755 } 7756 7757 if (!env->prog->aux->sleepable && fn->might_sleep) { 7758 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 7759 return -EINVAL; 7760 } 7761 7762 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 7763 changes_data = bpf_helper_changes_pkt_data(fn->func); 7764 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 7765 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 7766 func_id_name(func_id), func_id); 7767 return -EINVAL; 7768 } 7769 7770 memset(&meta, 0, sizeof(meta)); 7771 meta.pkt_access = fn->pkt_access; 7772 7773 err = check_func_proto(fn, func_id); 7774 if (err) { 7775 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 7776 func_id_name(func_id), func_id); 7777 return err; 7778 } 7779 7780 if (env->cur_state->active_rcu_lock) { 7781 if (fn->might_sleep) { 7782 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 7783 func_id_name(func_id), func_id); 7784 return -EINVAL; 7785 } 7786 7787 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 7788 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 7789 } 7790 7791 meta.func_id = func_id; 7792 /* check args */ 7793 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7794 err = check_func_arg(env, i, &meta, fn); 7795 if (err) 7796 return err; 7797 } 7798 7799 err = record_func_map(env, &meta, func_id, insn_idx); 7800 if (err) 7801 return err; 7802 7803 err = record_func_key(env, &meta, func_id, insn_idx); 7804 if (err) 7805 return err; 7806 7807 /* Mark slots with STACK_MISC in case of raw mode, stack offset 7808 * is inferred from register state. 7809 */ 7810 for (i = 0; i < meta.access_size; i++) { 7811 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 7812 BPF_WRITE, -1, false); 7813 if (err) 7814 return err; 7815 } 7816 7817 regs = cur_regs(env); 7818 7819 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 7820 * be reinitialized by any dynptr helper. Hence, mark_stack_slots_dynptr 7821 * is safe to do directly. 7822 */ 7823 if (meta.uninit_dynptr_regno) { 7824 if (regs[meta.uninit_dynptr_regno].type == CONST_PTR_TO_DYNPTR) { 7825 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be initialized\n"); 7826 return -EFAULT; 7827 } 7828 /* we write BPF_DW bits (8 bytes) at a time */ 7829 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7830 err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno, 7831 i, BPF_DW, BPF_WRITE, -1, false); 7832 if (err) 7833 return err; 7834 } 7835 7836 err = mark_stack_slots_dynptr(env, ®s[meta.uninit_dynptr_regno], 7837 fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1], 7838 insn_idx); 7839 if (err) 7840 return err; 7841 } 7842 7843 if (meta.release_regno) { 7844 err = -EINVAL; 7845 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 7846 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 7847 * is safe to do directly. 7848 */ 7849 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 7850 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 7851 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 7852 return -EFAULT; 7853 } 7854 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 7855 } else if (meta.ref_obj_id) { 7856 err = release_reference(env, meta.ref_obj_id); 7857 } else if (register_is_null(®s[meta.release_regno])) { 7858 /* meta.ref_obj_id can only be 0 if register that is meant to be 7859 * released is NULL, which must be > R0. 7860 */ 7861 err = 0; 7862 } 7863 if (err) { 7864 verbose(env, "func %s#%d reference has not been acquired before\n", 7865 func_id_name(func_id), func_id); 7866 return err; 7867 } 7868 } 7869 7870 switch (func_id) { 7871 case BPF_FUNC_tail_call: 7872 err = check_reference_leak(env); 7873 if (err) { 7874 verbose(env, "tail_call would lead to reference leak\n"); 7875 return err; 7876 } 7877 break; 7878 case BPF_FUNC_get_local_storage: 7879 /* check that flags argument in get_local_storage(map, flags) is 0, 7880 * this is required because get_local_storage() can't return an error. 7881 */ 7882 if (!register_is_null(®s[BPF_REG_2])) { 7883 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 7884 return -EINVAL; 7885 } 7886 break; 7887 case BPF_FUNC_for_each_map_elem: 7888 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7889 set_map_elem_callback_state); 7890 break; 7891 case BPF_FUNC_timer_set_callback: 7892 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7893 set_timer_callback_state); 7894 break; 7895 case BPF_FUNC_find_vma: 7896 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7897 set_find_vma_callback_state); 7898 break; 7899 case BPF_FUNC_snprintf: 7900 err = check_bpf_snprintf_call(env, regs); 7901 break; 7902 case BPF_FUNC_loop: 7903 update_loop_inline_state(env, meta.subprogno); 7904 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7905 set_loop_callback_state); 7906 break; 7907 case BPF_FUNC_dynptr_from_mem: 7908 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 7909 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 7910 reg_type_str(env, regs[BPF_REG_1].type)); 7911 return -EACCES; 7912 } 7913 break; 7914 case BPF_FUNC_set_retval: 7915 if (prog_type == BPF_PROG_TYPE_LSM && 7916 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 7917 if (!env->prog->aux->attach_func_proto->type) { 7918 /* Make sure programs that attach to void 7919 * hooks don't try to modify return value. 7920 */ 7921 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 7922 return -EINVAL; 7923 } 7924 } 7925 break; 7926 case BPF_FUNC_dynptr_data: 7927 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7928 if (arg_type_is_dynptr(fn->arg_type[i])) { 7929 struct bpf_reg_state *reg = ®s[BPF_REG_1 + i]; 7930 7931 if (meta.ref_obj_id) { 7932 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 7933 return -EFAULT; 7934 } 7935 7936 meta.ref_obj_id = dynptr_ref_obj_id(env, reg); 7937 break; 7938 } 7939 } 7940 if (i == MAX_BPF_FUNC_REG_ARGS) { 7941 verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n"); 7942 return -EFAULT; 7943 } 7944 break; 7945 case BPF_FUNC_user_ringbuf_drain: 7946 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7947 set_user_ringbuf_callback_state); 7948 break; 7949 } 7950 7951 if (err) 7952 return err; 7953 7954 /* reset caller saved regs */ 7955 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7956 mark_reg_not_init(env, regs, caller_saved[i]); 7957 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7958 } 7959 7960 /* helper call returns 64-bit value. */ 7961 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7962 7963 /* update return register (already marked as written above) */ 7964 ret_type = fn->ret_type; 7965 ret_flag = type_flag(ret_type); 7966 7967 switch (base_type(ret_type)) { 7968 case RET_INTEGER: 7969 /* sets type to SCALAR_VALUE */ 7970 mark_reg_unknown(env, regs, BPF_REG_0); 7971 break; 7972 case RET_VOID: 7973 regs[BPF_REG_0].type = NOT_INIT; 7974 break; 7975 case RET_PTR_TO_MAP_VALUE: 7976 /* There is no offset yet applied, variable or fixed */ 7977 mark_reg_known_zero(env, regs, BPF_REG_0); 7978 /* remember map_ptr, so that check_map_access() 7979 * can check 'value_size' boundary of memory access 7980 * to map element returned from bpf_map_lookup_elem() 7981 */ 7982 if (meta.map_ptr == NULL) { 7983 verbose(env, 7984 "kernel subsystem misconfigured verifier\n"); 7985 return -EINVAL; 7986 } 7987 regs[BPF_REG_0].map_ptr = meta.map_ptr; 7988 regs[BPF_REG_0].map_uid = meta.map_uid; 7989 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 7990 if (!type_may_be_null(ret_type) && 7991 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 7992 regs[BPF_REG_0].id = ++env->id_gen; 7993 } 7994 break; 7995 case RET_PTR_TO_SOCKET: 7996 mark_reg_known_zero(env, regs, BPF_REG_0); 7997 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 7998 break; 7999 case RET_PTR_TO_SOCK_COMMON: 8000 mark_reg_known_zero(env, regs, BPF_REG_0); 8001 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 8002 break; 8003 case RET_PTR_TO_TCP_SOCK: 8004 mark_reg_known_zero(env, regs, BPF_REG_0); 8005 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 8006 break; 8007 case RET_PTR_TO_MEM: 8008 mark_reg_known_zero(env, regs, BPF_REG_0); 8009 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 8010 regs[BPF_REG_0].mem_size = meta.mem_size; 8011 break; 8012 case RET_PTR_TO_MEM_OR_BTF_ID: 8013 { 8014 const struct btf_type *t; 8015 8016 mark_reg_known_zero(env, regs, BPF_REG_0); 8017 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 8018 if (!btf_type_is_struct(t)) { 8019 u32 tsize; 8020 const struct btf_type *ret; 8021 const char *tname; 8022 8023 /* resolve the type size of ksym. */ 8024 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 8025 if (IS_ERR(ret)) { 8026 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 8027 verbose(env, "unable to resolve the size of type '%s': %ld\n", 8028 tname, PTR_ERR(ret)); 8029 return -EINVAL; 8030 } 8031 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 8032 regs[BPF_REG_0].mem_size = tsize; 8033 } else { 8034 /* MEM_RDONLY may be carried from ret_flag, but it 8035 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 8036 * it will confuse the check of PTR_TO_BTF_ID in 8037 * check_mem_access(). 8038 */ 8039 ret_flag &= ~MEM_RDONLY; 8040 8041 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 8042 regs[BPF_REG_0].btf = meta.ret_btf; 8043 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 8044 } 8045 break; 8046 } 8047 case RET_PTR_TO_BTF_ID: 8048 { 8049 struct btf *ret_btf; 8050 int ret_btf_id; 8051 8052 mark_reg_known_zero(env, regs, BPF_REG_0); 8053 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 8054 if (func_id == BPF_FUNC_kptr_xchg) { 8055 ret_btf = meta.kptr_field->kptr.btf; 8056 ret_btf_id = meta.kptr_field->kptr.btf_id; 8057 } else { 8058 if (fn->ret_btf_id == BPF_PTR_POISON) { 8059 verbose(env, "verifier internal error:"); 8060 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 8061 func_id_name(func_id)); 8062 return -EINVAL; 8063 } 8064 ret_btf = btf_vmlinux; 8065 ret_btf_id = *fn->ret_btf_id; 8066 } 8067 if (ret_btf_id == 0) { 8068 verbose(env, "invalid return type %u of func %s#%d\n", 8069 base_type(ret_type), func_id_name(func_id), 8070 func_id); 8071 return -EINVAL; 8072 } 8073 regs[BPF_REG_0].btf = ret_btf; 8074 regs[BPF_REG_0].btf_id = ret_btf_id; 8075 break; 8076 } 8077 default: 8078 verbose(env, "unknown return type %u of func %s#%d\n", 8079 base_type(ret_type), func_id_name(func_id), func_id); 8080 return -EINVAL; 8081 } 8082 8083 if (type_may_be_null(regs[BPF_REG_0].type)) 8084 regs[BPF_REG_0].id = ++env->id_gen; 8085 8086 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 8087 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 8088 func_id_name(func_id), func_id); 8089 return -EFAULT; 8090 } 8091 8092 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 8093 /* For release_reference() */ 8094 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 8095 } else if (is_acquire_function(func_id, meta.map_ptr)) { 8096 int id = acquire_reference_state(env, insn_idx); 8097 8098 if (id < 0) 8099 return id; 8100 /* For mark_ptr_or_null_reg() */ 8101 regs[BPF_REG_0].id = id; 8102 /* For release_reference() */ 8103 regs[BPF_REG_0].ref_obj_id = id; 8104 } 8105 8106 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 8107 8108 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 8109 if (err) 8110 return err; 8111 8112 if ((func_id == BPF_FUNC_get_stack || 8113 func_id == BPF_FUNC_get_task_stack) && 8114 !env->prog->has_callchain_buf) { 8115 const char *err_str; 8116 8117 #ifdef CONFIG_PERF_EVENTS 8118 err = get_callchain_buffers(sysctl_perf_event_max_stack); 8119 err_str = "cannot get callchain buffer for func %s#%d\n"; 8120 #else 8121 err = -ENOTSUPP; 8122 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 8123 #endif 8124 if (err) { 8125 verbose(env, err_str, func_id_name(func_id), func_id); 8126 return err; 8127 } 8128 8129 env->prog->has_callchain_buf = true; 8130 } 8131 8132 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 8133 env->prog->call_get_stack = true; 8134 8135 if (func_id == BPF_FUNC_get_func_ip) { 8136 if (check_get_func_ip(env)) 8137 return -ENOTSUPP; 8138 env->prog->call_get_func_ip = true; 8139 } 8140 8141 if (changes_data) 8142 clear_all_pkt_pointers(env); 8143 return 0; 8144 } 8145 8146 /* mark_btf_func_reg_size() is used when the reg size is determined by 8147 * the BTF func_proto's return value size and argument. 8148 */ 8149 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 8150 size_t reg_size) 8151 { 8152 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 8153 8154 if (regno == BPF_REG_0) { 8155 /* Function return value */ 8156 reg->live |= REG_LIVE_WRITTEN; 8157 reg->subreg_def = reg_size == sizeof(u64) ? 8158 DEF_NOT_SUBREG : env->insn_idx + 1; 8159 } else { 8160 /* Function argument */ 8161 if (reg_size == sizeof(u64)) { 8162 mark_insn_zext(env, reg); 8163 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 8164 } else { 8165 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 8166 } 8167 } 8168 } 8169 8170 struct bpf_kfunc_call_arg_meta { 8171 /* In parameters */ 8172 struct btf *btf; 8173 u32 func_id; 8174 u32 kfunc_flags; 8175 const struct btf_type *func_proto; 8176 const char *func_name; 8177 /* Out parameters */ 8178 u32 ref_obj_id; 8179 u8 release_regno; 8180 bool r0_rdonly; 8181 u32 ret_btf_id; 8182 u64 r0_size; 8183 struct { 8184 u64 value; 8185 bool found; 8186 } arg_constant; 8187 struct { 8188 struct btf *btf; 8189 u32 btf_id; 8190 } arg_obj_drop; 8191 struct { 8192 struct btf_field *field; 8193 } arg_list_head; 8194 }; 8195 8196 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 8197 { 8198 return meta->kfunc_flags & KF_ACQUIRE; 8199 } 8200 8201 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 8202 { 8203 return meta->kfunc_flags & KF_RET_NULL; 8204 } 8205 8206 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 8207 { 8208 return meta->kfunc_flags & KF_RELEASE; 8209 } 8210 8211 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 8212 { 8213 return meta->kfunc_flags & KF_TRUSTED_ARGS; 8214 } 8215 8216 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 8217 { 8218 return meta->kfunc_flags & KF_SLEEPABLE; 8219 } 8220 8221 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 8222 { 8223 return meta->kfunc_flags & KF_DESTRUCTIVE; 8224 } 8225 8226 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 8227 { 8228 return meta->kfunc_flags & KF_RCU; 8229 } 8230 8231 static bool is_kfunc_arg_kptr_get(struct bpf_kfunc_call_arg_meta *meta, int arg) 8232 { 8233 return arg == 0 && (meta->kfunc_flags & KF_KPTR_GET); 8234 } 8235 8236 static bool __kfunc_param_match_suffix(const struct btf *btf, 8237 const struct btf_param *arg, 8238 const char *suffix) 8239 { 8240 int suffix_len = strlen(suffix), len; 8241 const char *param_name; 8242 8243 /* In the future, this can be ported to use BTF tagging */ 8244 param_name = btf_name_by_offset(btf, arg->name_off); 8245 if (str_is_empty(param_name)) 8246 return false; 8247 len = strlen(param_name); 8248 if (len < suffix_len) 8249 return false; 8250 param_name += len - suffix_len; 8251 return !strncmp(param_name, suffix, suffix_len); 8252 } 8253 8254 static bool is_kfunc_arg_mem_size(const struct btf *btf, 8255 const struct btf_param *arg, 8256 const struct bpf_reg_state *reg) 8257 { 8258 const struct btf_type *t; 8259 8260 t = btf_type_skip_modifiers(btf, arg->type, NULL); 8261 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 8262 return false; 8263 8264 return __kfunc_param_match_suffix(btf, arg, "__sz"); 8265 } 8266 8267 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 8268 { 8269 return __kfunc_param_match_suffix(btf, arg, "__k"); 8270 } 8271 8272 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 8273 { 8274 return __kfunc_param_match_suffix(btf, arg, "__ign"); 8275 } 8276 8277 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 8278 { 8279 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 8280 } 8281 8282 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 8283 const struct btf_param *arg, 8284 const char *name) 8285 { 8286 int len, target_len = strlen(name); 8287 const char *param_name; 8288 8289 param_name = btf_name_by_offset(btf, arg->name_off); 8290 if (str_is_empty(param_name)) 8291 return false; 8292 len = strlen(param_name); 8293 if (len != target_len) 8294 return false; 8295 if (strcmp(param_name, name)) 8296 return false; 8297 8298 return true; 8299 } 8300 8301 enum { 8302 KF_ARG_DYNPTR_ID, 8303 KF_ARG_LIST_HEAD_ID, 8304 KF_ARG_LIST_NODE_ID, 8305 }; 8306 8307 BTF_ID_LIST(kf_arg_btf_ids) 8308 BTF_ID(struct, bpf_dynptr_kern) 8309 BTF_ID(struct, bpf_list_head) 8310 BTF_ID(struct, bpf_list_node) 8311 8312 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 8313 const struct btf_param *arg, int type) 8314 { 8315 const struct btf_type *t; 8316 u32 res_id; 8317 8318 t = btf_type_skip_modifiers(btf, arg->type, NULL); 8319 if (!t) 8320 return false; 8321 if (!btf_type_is_ptr(t)) 8322 return false; 8323 t = btf_type_skip_modifiers(btf, t->type, &res_id); 8324 if (!t) 8325 return false; 8326 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 8327 } 8328 8329 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 8330 { 8331 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 8332 } 8333 8334 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 8335 { 8336 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 8337 } 8338 8339 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 8340 { 8341 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 8342 } 8343 8344 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 8345 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 8346 const struct btf *btf, 8347 const struct btf_type *t, int rec) 8348 { 8349 const struct btf_type *member_type; 8350 const struct btf_member *member; 8351 u32 i; 8352 8353 if (!btf_type_is_struct(t)) 8354 return false; 8355 8356 for_each_member(i, t, member) { 8357 const struct btf_array *array; 8358 8359 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 8360 if (btf_type_is_struct(member_type)) { 8361 if (rec >= 3) { 8362 verbose(env, "max struct nesting depth exceeded\n"); 8363 return false; 8364 } 8365 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 8366 return false; 8367 continue; 8368 } 8369 if (btf_type_is_array(member_type)) { 8370 array = btf_array(member_type); 8371 if (!array->nelems) 8372 return false; 8373 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 8374 if (!btf_type_is_scalar(member_type)) 8375 return false; 8376 continue; 8377 } 8378 if (!btf_type_is_scalar(member_type)) 8379 return false; 8380 } 8381 return true; 8382 } 8383 8384 8385 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 8386 #ifdef CONFIG_NET 8387 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 8388 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 8389 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 8390 #endif 8391 }; 8392 8393 enum kfunc_ptr_arg_type { 8394 KF_ARG_PTR_TO_CTX, 8395 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 8396 KF_ARG_PTR_TO_KPTR, /* PTR_TO_KPTR but type specific */ 8397 KF_ARG_PTR_TO_DYNPTR, 8398 KF_ARG_PTR_TO_LIST_HEAD, 8399 KF_ARG_PTR_TO_LIST_NODE, 8400 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 8401 KF_ARG_PTR_TO_MEM, 8402 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 8403 }; 8404 8405 enum special_kfunc_type { 8406 KF_bpf_obj_new_impl, 8407 KF_bpf_obj_drop_impl, 8408 KF_bpf_list_push_front, 8409 KF_bpf_list_push_back, 8410 KF_bpf_list_pop_front, 8411 KF_bpf_list_pop_back, 8412 KF_bpf_cast_to_kern_ctx, 8413 KF_bpf_rdonly_cast, 8414 KF_bpf_rcu_read_lock, 8415 KF_bpf_rcu_read_unlock, 8416 }; 8417 8418 BTF_SET_START(special_kfunc_set) 8419 BTF_ID(func, bpf_obj_new_impl) 8420 BTF_ID(func, bpf_obj_drop_impl) 8421 BTF_ID(func, bpf_list_push_front) 8422 BTF_ID(func, bpf_list_push_back) 8423 BTF_ID(func, bpf_list_pop_front) 8424 BTF_ID(func, bpf_list_pop_back) 8425 BTF_ID(func, bpf_cast_to_kern_ctx) 8426 BTF_ID(func, bpf_rdonly_cast) 8427 BTF_SET_END(special_kfunc_set) 8428 8429 BTF_ID_LIST(special_kfunc_list) 8430 BTF_ID(func, bpf_obj_new_impl) 8431 BTF_ID(func, bpf_obj_drop_impl) 8432 BTF_ID(func, bpf_list_push_front) 8433 BTF_ID(func, bpf_list_push_back) 8434 BTF_ID(func, bpf_list_pop_front) 8435 BTF_ID(func, bpf_list_pop_back) 8436 BTF_ID(func, bpf_cast_to_kern_ctx) 8437 BTF_ID(func, bpf_rdonly_cast) 8438 BTF_ID(func, bpf_rcu_read_lock) 8439 BTF_ID(func, bpf_rcu_read_unlock) 8440 8441 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 8442 { 8443 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 8444 } 8445 8446 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 8447 { 8448 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 8449 } 8450 8451 static enum kfunc_ptr_arg_type 8452 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 8453 struct bpf_kfunc_call_arg_meta *meta, 8454 const struct btf_type *t, const struct btf_type *ref_t, 8455 const char *ref_tname, const struct btf_param *args, 8456 int argno, int nargs) 8457 { 8458 u32 regno = argno + 1; 8459 struct bpf_reg_state *regs = cur_regs(env); 8460 struct bpf_reg_state *reg = ®s[regno]; 8461 bool arg_mem_size = false; 8462 8463 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 8464 return KF_ARG_PTR_TO_CTX; 8465 8466 /* In this function, we verify the kfunc's BTF as per the argument type, 8467 * leaving the rest of the verification with respect to the register 8468 * type to our caller. When a set of conditions hold in the BTF type of 8469 * arguments, we resolve it to a known kfunc_ptr_arg_type. 8470 */ 8471 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 8472 return KF_ARG_PTR_TO_CTX; 8473 8474 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 8475 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 8476 8477 if (is_kfunc_arg_kptr_get(meta, argno)) { 8478 if (!btf_type_is_ptr(ref_t)) { 8479 verbose(env, "arg#0 BTF type must be a double pointer for kptr_get kfunc\n"); 8480 return -EINVAL; 8481 } 8482 ref_t = btf_type_by_id(meta->btf, ref_t->type); 8483 ref_tname = btf_name_by_offset(meta->btf, ref_t->name_off); 8484 if (!btf_type_is_struct(ref_t)) { 8485 verbose(env, "kernel function %s args#0 pointer type %s %s is not supported\n", 8486 meta->func_name, btf_type_str(ref_t), ref_tname); 8487 return -EINVAL; 8488 } 8489 return KF_ARG_PTR_TO_KPTR; 8490 } 8491 8492 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 8493 return KF_ARG_PTR_TO_DYNPTR; 8494 8495 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 8496 return KF_ARG_PTR_TO_LIST_HEAD; 8497 8498 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 8499 return KF_ARG_PTR_TO_LIST_NODE; 8500 8501 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 8502 if (!btf_type_is_struct(ref_t)) { 8503 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 8504 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 8505 return -EINVAL; 8506 } 8507 return KF_ARG_PTR_TO_BTF_ID; 8508 } 8509 8510 if (argno + 1 < nargs && is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1])) 8511 arg_mem_size = true; 8512 8513 /* This is the catch all argument type of register types supported by 8514 * check_helper_mem_access. However, we only allow when argument type is 8515 * pointer to scalar, or struct composed (recursively) of scalars. When 8516 * arg_mem_size is true, the pointer can be void *. 8517 */ 8518 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 8519 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 8520 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 8521 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 8522 return -EINVAL; 8523 } 8524 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 8525 } 8526 8527 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 8528 struct bpf_reg_state *reg, 8529 const struct btf_type *ref_t, 8530 const char *ref_tname, u32 ref_id, 8531 struct bpf_kfunc_call_arg_meta *meta, 8532 int argno) 8533 { 8534 const struct btf_type *reg_ref_t; 8535 bool strict_type_match = false; 8536 const struct btf *reg_btf; 8537 const char *reg_ref_tname; 8538 u32 reg_ref_id; 8539 8540 if (base_type(reg->type) == PTR_TO_BTF_ID) { 8541 reg_btf = reg->btf; 8542 reg_ref_id = reg->btf_id; 8543 } else { 8544 reg_btf = btf_vmlinux; 8545 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 8546 } 8547 8548 if (is_kfunc_trusted_args(meta) || (is_kfunc_release(meta) && reg->ref_obj_id)) 8549 strict_type_match = true; 8550 8551 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 8552 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 8553 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 8554 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 8555 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 8556 btf_type_str(reg_ref_t), reg_ref_tname); 8557 return -EINVAL; 8558 } 8559 return 0; 8560 } 8561 8562 static int process_kf_arg_ptr_to_kptr(struct bpf_verifier_env *env, 8563 struct bpf_reg_state *reg, 8564 const struct btf_type *ref_t, 8565 const char *ref_tname, 8566 struct bpf_kfunc_call_arg_meta *meta, 8567 int argno) 8568 { 8569 struct btf_field *kptr_field; 8570 8571 /* check_func_arg_reg_off allows var_off for 8572 * PTR_TO_MAP_VALUE, but we need fixed offset to find 8573 * off_desc. 8574 */ 8575 if (!tnum_is_const(reg->var_off)) { 8576 verbose(env, "arg#0 must have constant offset\n"); 8577 return -EINVAL; 8578 } 8579 8580 kptr_field = btf_record_find(reg->map_ptr->record, reg->off + reg->var_off.value, BPF_KPTR); 8581 if (!kptr_field || kptr_field->type != BPF_KPTR_REF) { 8582 verbose(env, "arg#0 no referenced kptr at map value offset=%llu\n", 8583 reg->off + reg->var_off.value); 8584 return -EINVAL; 8585 } 8586 8587 if (!btf_struct_ids_match(&env->log, meta->btf, ref_t->type, 0, kptr_field->kptr.btf, 8588 kptr_field->kptr.btf_id, true)) { 8589 verbose(env, "kernel function %s args#%d expected pointer to %s %s\n", 8590 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 8591 return -EINVAL; 8592 } 8593 return 0; 8594 } 8595 8596 static int ref_set_release_on_unlock(struct bpf_verifier_env *env, u32 ref_obj_id) 8597 { 8598 struct bpf_func_state *state = cur_func(env); 8599 struct bpf_reg_state *reg; 8600 int i; 8601 8602 /* bpf_spin_lock only allows calling list_push and list_pop, no BPF 8603 * subprogs, no global functions. This means that the references would 8604 * not be released inside the critical section but they may be added to 8605 * the reference state, and the acquired_refs are never copied out for a 8606 * different frame as BPF to BPF calls don't work in bpf_spin_lock 8607 * critical sections. 8608 */ 8609 if (!ref_obj_id) { 8610 verbose(env, "verifier internal error: ref_obj_id is zero for release_on_unlock\n"); 8611 return -EFAULT; 8612 } 8613 for (i = 0; i < state->acquired_refs; i++) { 8614 if (state->refs[i].id == ref_obj_id) { 8615 if (state->refs[i].release_on_unlock) { 8616 verbose(env, "verifier internal error: expected false release_on_unlock"); 8617 return -EFAULT; 8618 } 8619 state->refs[i].release_on_unlock = true; 8620 /* Now mark everyone sharing same ref_obj_id as untrusted */ 8621 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 8622 if (reg->ref_obj_id == ref_obj_id) 8623 reg->type |= PTR_UNTRUSTED; 8624 })); 8625 return 0; 8626 } 8627 } 8628 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 8629 return -EFAULT; 8630 } 8631 8632 /* Implementation details: 8633 * 8634 * Each register points to some region of memory, which we define as an 8635 * allocation. Each allocation may embed a bpf_spin_lock which protects any 8636 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 8637 * allocation. The lock and the data it protects are colocated in the same 8638 * memory region. 8639 * 8640 * Hence, everytime a register holds a pointer value pointing to such 8641 * allocation, the verifier preserves a unique reg->id for it. 8642 * 8643 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 8644 * bpf_spin_lock is called. 8645 * 8646 * To enable this, lock state in the verifier captures two values: 8647 * active_lock.ptr = Register's type specific pointer 8648 * active_lock.id = A unique ID for each register pointer value 8649 * 8650 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 8651 * supported register types. 8652 * 8653 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 8654 * allocated objects is the reg->btf pointer. 8655 * 8656 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 8657 * can establish the provenance of the map value statically for each distinct 8658 * lookup into such maps. They always contain a single map value hence unique 8659 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 8660 * 8661 * So, in case of global variables, they use array maps with max_entries = 1, 8662 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 8663 * into the same map value as max_entries is 1, as described above). 8664 * 8665 * In case of inner map lookups, the inner map pointer has same map_ptr as the 8666 * outer map pointer (in verifier context), but each lookup into an inner map 8667 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 8668 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 8669 * will get different reg->id assigned to each lookup, hence different 8670 * active_lock.id. 8671 * 8672 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 8673 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 8674 * returned from bpf_obj_new. Each allocation receives a new reg->id. 8675 */ 8676 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8677 { 8678 void *ptr; 8679 u32 id; 8680 8681 switch ((int)reg->type) { 8682 case PTR_TO_MAP_VALUE: 8683 ptr = reg->map_ptr; 8684 break; 8685 case PTR_TO_BTF_ID | MEM_ALLOC: 8686 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED: 8687 ptr = reg->btf; 8688 break; 8689 default: 8690 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 8691 return -EFAULT; 8692 } 8693 id = reg->id; 8694 8695 if (!env->cur_state->active_lock.ptr) 8696 return -EINVAL; 8697 if (env->cur_state->active_lock.ptr != ptr || 8698 env->cur_state->active_lock.id != id) { 8699 verbose(env, "held lock and object are not in the same allocation\n"); 8700 return -EINVAL; 8701 } 8702 return 0; 8703 } 8704 8705 static bool is_bpf_list_api_kfunc(u32 btf_id) 8706 { 8707 return btf_id == special_kfunc_list[KF_bpf_list_push_front] || 8708 btf_id == special_kfunc_list[KF_bpf_list_push_back] || 8709 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 8710 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 8711 } 8712 8713 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 8714 struct bpf_reg_state *reg, u32 regno, 8715 struct bpf_kfunc_call_arg_meta *meta) 8716 { 8717 struct btf_field *field; 8718 struct btf_record *rec; 8719 u32 list_head_off; 8720 8721 if (meta->btf != btf_vmlinux || !is_bpf_list_api_kfunc(meta->func_id)) { 8722 verbose(env, "verifier internal error: bpf_list_head argument for unknown kfunc\n"); 8723 return -EFAULT; 8724 } 8725 8726 if (!tnum_is_const(reg->var_off)) { 8727 verbose(env, 8728 "R%d doesn't have constant offset. bpf_list_head has to be at the constant offset\n", 8729 regno); 8730 return -EINVAL; 8731 } 8732 8733 rec = reg_btf_record(reg); 8734 list_head_off = reg->off + reg->var_off.value; 8735 field = btf_record_find(rec, list_head_off, BPF_LIST_HEAD); 8736 if (!field) { 8737 verbose(env, "bpf_list_head not found at offset=%u\n", list_head_off); 8738 return -EINVAL; 8739 } 8740 8741 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 8742 if (check_reg_allocation_locked(env, reg)) { 8743 verbose(env, "bpf_spin_lock at off=%d must be held for bpf_list_head\n", 8744 rec->spin_lock_off); 8745 return -EINVAL; 8746 } 8747 8748 if (meta->arg_list_head.field) { 8749 verbose(env, "verifier internal error: repeating bpf_list_head arg\n"); 8750 return -EFAULT; 8751 } 8752 meta->arg_list_head.field = field; 8753 return 0; 8754 } 8755 8756 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 8757 struct bpf_reg_state *reg, u32 regno, 8758 struct bpf_kfunc_call_arg_meta *meta) 8759 { 8760 const struct btf_type *et, *t; 8761 struct btf_field *field; 8762 struct btf_record *rec; 8763 u32 list_node_off; 8764 8765 if (meta->btf != btf_vmlinux || 8766 (meta->func_id != special_kfunc_list[KF_bpf_list_push_front] && 8767 meta->func_id != special_kfunc_list[KF_bpf_list_push_back])) { 8768 verbose(env, "verifier internal error: bpf_list_node argument for unknown kfunc\n"); 8769 return -EFAULT; 8770 } 8771 8772 if (!tnum_is_const(reg->var_off)) { 8773 verbose(env, 8774 "R%d doesn't have constant offset. bpf_list_node has to be at the constant offset\n", 8775 regno); 8776 return -EINVAL; 8777 } 8778 8779 rec = reg_btf_record(reg); 8780 list_node_off = reg->off + reg->var_off.value; 8781 field = btf_record_find(rec, list_node_off, BPF_LIST_NODE); 8782 if (!field || field->offset != list_node_off) { 8783 verbose(env, "bpf_list_node not found at offset=%u\n", list_node_off); 8784 return -EINVAL; 8785 } 8786 8787 field = meta->arg_list_head.field; 8788 8789 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 8790 t = btf_type_by_id(reg->btf, reg->btf_id); 8791 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 8792 field->graph_root.value_btf_id, true)) { 8793 verbose(env, "operation on bpf_list_head expects arg#1 bpf_list_node at offset=%d " 8794 "in struct %s, but arg is at offset=%d in struct %s\n", 8795 field->graph_root.node_offset, 8796 btf_name_by_offset(field->graph_root.btf, et->name_off), 8797 list_node_off, btf_name_by_offset(reg->btf, t->name_off)); 8798 return -EINVAL; 8799 } 8800 8801 if (list_node_off != field->graph_root.node_offset) { 8802 verbose(env, "arg#1 offset=%d, but expected bpf_list_node at offset=%d in struct %s\n", 8803 list_node_off, field->graph_root.node_offset, 8804 btf_name_by_offset(field->graph_root.btf, et->name_off)); 8805 return -EINVAL; 8806 } 8807 /* Set arg#1 for expiration after unlock */ 8808 return ref_set_release_on_unlock(env, reg->ref_obj_id); 8809 } 8810 8811 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta) 8812 { 8813 const char *func_name = meta->func_name, *ref_tname; 8814 const struct btf *btf = meta->btf; 8815 const struct btf_param *args; 8816 u32 i, nargs; 8817 int ret; 8818 8819 args = (const struct btf_param *)(meta->func_proto + 1); 8820 nargs = btf_type_vlen(meta->func_proto); 8821 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 8822 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 8823 MAX_BPF_FUNC_REG_ARGS); 8824 return -EINVAL; 8825 } 8826 8827 /* Check that BTF function arguments match actual types that the 8828 * verifier sees. 8829 */ 8830 for (i = 0; i < nargs; i++) { 8831 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 8832 const struct btf_type *t, *ref_t, *resolve_ret; 8833 enum bpf_arg_type arg_type = ARG_DONTCARE; 8834 u32 regno = i + 1, ref_id, type_size; 8835 bool is_ret_buf_sz = false; 8836 int kf_arg_type; 8837 8838 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 8839 8840 if (is_kfunc_arg_ignore(btf, &args[i])) 8841 continue; 8842 8843 if (btf_type_is_scalar(t)) { 8844 if (reg->type != SCALAR_VALUE) { 8845 verbose(env, "R%d is not a scalar\n", regno); 8846 return -EINVAL; 8847 } 8848 8849 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 8850 if (meta->arg_constant.found) { 8851 verbose(env, "verifier internal error: only one constant argument permitted\n"); 8852 return -EFAULT; 8853 } 8854 if (!tnum_is_const(reg->var_off)) { 8855 verbose(env, "R%d must be a known constant\n", regno); 8856 return -EINVAL; 8857 } 8858 ret = mark_chain_precision(env, regno); 8859 if (ret < 0) 8860 return ret; 8861 meta->arg_constant.found = true; 8862 meta->arg_constant.value = reg->var_off.value; 8863 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 8864 meta->r0_rdonly = true; 8865 is_ret_buf_sz = true; 8866 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 8867 is_ret_buf_sz = true; 8868 } 8869 8870 if (is_ret_buf_sz) { 8871 if (meta->r0_size) { 8872 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 8873 return -EINVAL; 8874 } 8875 8876 if (!tnum_is_const(reg->var_off)) { 8877 verbose(env, "R%d is not a const\n", regno); 8878 return -EINVAL; 8879 } 8880 8881 meta->r0_size = reg->var_off.value; 8882 ret = mark_chain_precision(env, regno); 8883 if (ret) 8884 return ret; 8885 } 8886 continue; 8887 } 8888 8889 if (!btf_type_is_ptr(t)) { 8890 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 8891 return -EINVAL; 8892 } 8893 8894 if (reg->ref_obj_id) { 8895 if (is_kfunc_release(meta) && meta->ref_obj_id) { 8896 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 8897 regno, reg->ref_obj_id, 8898 meta->ref_obj_id); 8899 return -EFAULT; 8900 } 8901 meta->ref_obj_id = reg->ref_obj_id; 8902 if (is_kfunc_release(meta)) 8903 meta->release_regno = regno; 8904 } 8905 8906 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 8907 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 8908 8909 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 8910 if (kf_arg_type < 0) 8911 return kf_arg_type; 8912 8913 switch (kf_arg_type) { 8914 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 8915 case KF_ARG_PTR_TO_BTF_ID: 8916 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 8917 break; 8918 8919 if (!is_trusted_reg(reg)) { 8920 if (!is_kfunc_rcu(meta)) { 8921 verbose(env, "R%d must be referenced or trusted\n", regno); 8922 return -EINVAL; 8923 } 8924 if (!is_rcu_reg(reg)) { 8925 verbose(env, "R%d must be a rcu pointer\n", regno); 8926 return -EINVAL; 8927 } 8928 } 8929 8930 fallthrough; 8931 case KF_ARG_PTR_TO_CTX: 8932 /* Trusted arguments have the same offset checks as release arguments */ 8933 arg_type |= OBJ_RELEASE; 8934 break; 8935 case KF_ARG_PTR_TO_KPTR: 8936 case KF_ARG_PTR_TO_DYNPTR: 8937 case KF_ARG_PTR_TO_LIST_HEAD: 8938 case KF_ARG_PTR_TO_LIST_NODE: 8939 case KF_ARG_PTR_TO_MEM: 8940 case KF_ARG_PTR_TO_MEM_SIZE: 8941 /* Trusted by default */ 8942 break; 8943 default: 8944 WARN_ON_ONCE(1); 8945 return -EFAULT; 8946 } 8947 8948 if (is_kfunc_release(meta) && reg->ref_obj_id) 8949 arg_type |= OBJ_RELEASE; 8950 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 8951 if (ret < 0) 8952 return ret; 8953 8954 switch (kf_arg_type) { 8955 case KF_ARG_PTR_TO_CTX: 8956 if (reg->type != PTR_TO_CTX) { 8957 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 8958 return -EINVAL; 8959 } 8960 8961 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 8962 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 8963 if (ret < 0) 8964 return -EINVAL; 8965 meta->ret_btf_id = ret; 8966 } 8967 break; 8968 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 8969 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 8970 verbose(env, "arg#%d expected pointer to allocated object\n", i); 8971 return -EINVAL; 8972 } 8973 if (!reg->ref_obj_id) { 8974 verbose(env, "allocated object must be referenced\n"); 8975 return -EINVAL; 8976 } 8977 if (meta->btf == btf_vmlinux && 8978 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 8979 meta->arg_obj_drop.btf = reg->btf; 8980 meta->arg_obj_drop.btf_id = reg->btf_id; 8981 } 8982 break; 8983 case KF_ARG_PTR_TO_KPTR: 8984 if (reg->type != PTR_TO_MAP_VALUE) { 8985 verbose(env, "arg#0 expected pointer to map value\n"); 8986 return -EINVAL; 8987 } 8988 ret = process_kf_arg_ptr_to_kptr(env, reg, ref_t, ref_tname, meta, i); 8989 if (ret < 0) 8990 return ret; 8991 break; 8992 case KF_ARG_PTR_TO_DYNPTR: 8993 if (reg->type != PTR_TO_STACK && 8994 reg->type != CONST_PTR_TO_DYNPTR) { 8995 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 8996 return -EINVAL; 8997 } 8998 8999 ret = process_dynptr_func(env, regno, ARG_PTR_TO_DYNPTR | MEM_RDONLY, NULL); 9000 if (ret < 0) 9001 return ret; 9002 break; 9003 case KF_ARG_PTR_TO_LIST_HEAD: 9004 if (reg->type != PTR_TO_MAP_VALUE && 9005 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 9006 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 9007 return -EINVAL; 9008 } 9009 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 9010 verbose(env, "allocated object must be referenced\n"); 9011 return -EINVAL; 9012 } 9013 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 9014 if (ret < 0) 9015 return ret; 9016 break; 9017 case KF_ARG_PTR_TO_LIST_NODE: 9018 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 9019 verbose(env, "arg#%d expected pointer to allocated object\n", i); 9020 return -EINVAL; 9021 } 9022 if (!reg->ref_obj_id) { 9023 verbose(env, "allocated object must be referenced\n"); 9024 return -EINVAL; 9025 } 9026 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 9027 if (ret < 0) 9028 return ret; 9029 break; 9030 case KF_ARG_PTR_TO_BTF_ID: 9031 /* Only base_type is checked, further checks are done here */ 9032 if ((base_type(reg->type) != PTR_TO_BTF_ID || 9033 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 9034 !reg2btf_ids[base_type(reg->type)]) { 9035 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 9036 verbose(env, "expected %s or socket\n", 9037 reg_type_str(env, base_type(reg->type) | 9038 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 9039 return -EINVAL; 9040 } 9041 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 9042 if (ret < 0) 9043 return ret; 9044 break; 9045 case KF_ARG_PTR_TO_MEM: 9046 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 9047 if (IS_ERR(resolve_ret)) { 9048 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 9049 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 9050 return -EINVAL; 9051 } 9052 ret = check_mem_reg(env, reg, regno, type_size); 9053 if (ret < 0) 9054 return ret; 9055 break; 9056 case KF_ARG_PTR_TO_MEM_SIZE: 9057 ret = check_kfunc_mem_size_reg(env, ®s[regno + 1], regno + 1); 9058 if (ret < 0) { 9059 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 9060 return ret; 9061 } 9062 /* Skip next '__sz' argument */ 9063 i++; 9064 break; 9065 } 9066 } 9067 9068 if (is_kfunc_release(meta) && !meta->release_regno) { 9069 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 9070 func_name); 9071 return -EINVAL; 9072 } 9073 9074 return 0; 9075 } 9076 9077 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9078 int *insn_idx_p) 9079 { 9080 const struct btf_type *t, *func, *func_proto, *ptr_type; 9081 struct bpf_reg_state *regs = cur_regs(env); 9082 const char *func_name, *ptr_type_name; 9083 bool sleepable, rcu_lock, rcu_unlock; 9084 struct bpf_kfunc_call_arg_meta meta; 9085 u32 i, nargs, func_id, ptr_type_id; 9086 int err, insn_idx = *insn_idx_p; 9087 const struct btf_param *args; 9088 const struct btf_type *ret_t; 9089 struct btf *desc_btf; 9090 u32 *kfunc_flags; 9091 9092 /* skip for now, but return error when we find this in fixup_kfunc_call */ 9093 if (!insn->imm) 9094 return 0; 9095 9096 desc_btf = find_kfunc_desc_btf(env, insn->off); 9097 if (IS_ERR(desc_btf)) 9098 return PTR_ERR(desc_btf); 9099 9100 func_id = insn->imm; 9101 func = btf_type_by_id(desc_btf, func_id); 9102 func_name = btf_name_by_offset(desc_btf, func->name_off); 9103 func_proto = btf_type_by_id(desc_btf, func->type); 9104 9105 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id); 9106 if (!kfunc_flags) { 9107 verbose(env, "calling kernel function %s is not allowed\n", 9108 func_name); 9109 return -EACCES; 9110 } 9111 9112 /* Prepare kfunc call metadata */ 9113 memset(&meta, 0, sizeof(meta)); 9114 meta.btf = desc_btf; 9115 meta.func_id = func_id; 9116 meta.kfunc_flags = *kfunc_flags; 9117 meta.func_proto = func_proto; 9118 meta.func_name = func_name; 9119 9120 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 9121 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 9122 return -EACCES; 9123 } 9124 9125 sleepable = is_kfunc_sleepable(&meta); 9126 if (sleepable && !env->prog->aux->sleepable) { 9127 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 9128 return -EACCES; 9129 } 9130 9131 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 9132 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 9133 if ((rcu_lock || rcu_unlock) && !env->rcu_tag_supported) { 9134 verbose(env, "no vmlinux btf rcu tag support for kfunc %s\n", func_name); 9135 return -EACCES; 9136 } 9137 9138 if (env->cur_state->active_rcu_lock) { 9139 struct bpf_func_state *state; 9140 struct bpf_reg_state *reg; 9141 9142 if (rcu_lock) { 9143 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 9144 return -EINVAL; 9145 } else if (rcu_unlock) { 9146 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9147 if (reg->type & MEM_RCU) { 9148 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 9149 reg->type |= PTR_UNTRUSTED; 9150 } 9151 })); 9152 env->cur_state->active_rcu_lock = false; 9153 } else if (sleepable) { 9154 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 9155 return -EACCES; 9156 } 9157 } else if (rcu_lock) { 9158 env->cur_state->active_rcu_lock = true; 9159 } else if (rcu_unlock) { 9160 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 9161 return -EINVAL; 9162 } 9163 9164 /* Check the arguments */ 9165 err = check_kfunc_args(env, &meta); 9166 if (err < 0) 9167 return err; 9168 /* In case of release function, we get register number of refcounted 9169 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 9170 */ 9171 if (meta.release_regno) { 9172 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 9173 if (err) { 9174 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 9175 func_name, func_id); 9176 return err; 9177 } 9178 } 9179 9180 for (i = 0; i < CALLER_SAVED_REGS; i++) 9181 mark_reg_not_init(env, regs, caller_saved[i]); 9182 9183 /* Check return type */ 9184 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL); 9185 9186 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 9187 /* Only exception is bpf_obj_new_impl */ 9188 if (meta.btf != btf_vmlinux || meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl]) { 9189 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 9190 return -EINVAL; 9191 } 9192 } 9193 9194 if (btf_type_is_scalar(t)) { 9195 mark_reg_unknown(env, regs, BPF_REG_0); 9196 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 9197 } else if (btf_type_is_ptr(t)) { 9198 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 9199 9200 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 9201 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 9202 struct btf *ret_btf; 9203 u32 ret_btf_id; 9204 9205 if (unlikely(!bpf_global_ma_set)) 9206 return -ENOMEM; 9207 9208 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 9209 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 9210 return -EINVAL; 9211 } 9212 9213 ret_btf = env->prog->aux->btf; 9214 ret_btf_id = meta.arg_constant.value; 9215 9216 /* This may be NULL due to user not supplying a BTF */ 9217 if (!ret_btf) { 9218 verbose(env, "bpf_obj_new requires prog BTF\n"); 9219 return -EINVAL; 9220 } 9221 9222 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 9223 if (!ret_t || !__btf_type_is_struct(ret_t)) { 9224 verbose(env, "bpf_obj_new type ID argument must be of a struct\n"); 9225 return -EINVAL; 9226 } 9227 9228 mark_reg_known_zero(env, regs, BPF_REG_0); 9229 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 9230 regs[BPF_REG_0].btf = ret_btf; 9231 regs[BPF_REG_0].btf_id = ret_btf_id; 9232 9233 env->insn_aux_data[insn_idx].obj_new_size = ret_t->size; 9234 env->insn_aux_data[insn_idx].kptr_struct_meta = 9235 btf_find_struct_meta(ret_btf, ret_btf_id); 9236 } else if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 9237 env->insn_aux_data[insn_idx].kptr_struct_meta = 9238 btf_find_struct_meta(meta.arg_obj_drop.btf, 9239 meta.arg_obj_drop.btf_id); 9240 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 9241 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 9242 struct btf_field *field = meta.arg_list_head.field; 9243 9244 mark_reg_known_zero(env, regs, BPF_REG_0); 9245 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 9246 regs[BPF_REG_0].btf = field->graph_root.btf; 9247 regs[BPF_REG_0].btf_id = field->graph_root.value_btf_id; 9248 regs[BPF_REG_0].off = field->graph_root.node_offset; 9249 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 9250 mark_reg_known_zero(env, regs, BPF_REG_0); 9251 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 9252 regs[BPF_REG_0].btf = desc_btf; 9253 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 9254 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 9255 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 9256 if (!ret_t || !btf_type_is_struct(ret_t)) { 9257 verbose(env, 9258 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 9259 return -EINVAL; 9260 } 9261 9262 mark_reg_known_zero(env, regs, BPF_REG_0); 9263 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 9264 regs[BPF_REG_0].btf = desc_btf; 9265 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 9266 } else { 9267 verbose(env, "kernel function %s unhandled dynamic return type\n", 9268 meta.func_name); 9269 return -EFAULT; 9270 } 9271 } else if (!__btf_type_is_struct(ptr_type)) { 9272 if (!meta.r0_size) { 9273 ptr_type_name = btf_name_by_offset(desc_btf, 9274 ptr_type->name_off); 9275 verbose(env, 9276 "kernel function %s returns pointer type %s %s is not supported\n", 9277 func_name, 9278 btf_type_str(ptr_type), 9279 ptr_type_name); 9280 return -EINVAL; 9281 } 9282 9283 mark_reg_known_zero(env, regs, BPF_REG_0); 9284 regs[BPF_REG_0].type = PTR_TO_MEM; 9285 regs[BPF_REG_0].mem_size = meta.r0_size; 9286 9287 if (meta.r0_rdonly) 9288 regs[BPF_REG_0].type |= MEM_RDONLY; 9289 9290 /* Ensures we don't access the memory after a release_reference() */ 9291 if (meta.ref_obj_id) 9292 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 9293 } else { 9294 mark_reg_known_zero(env, regs, BPF_REG_0); 9295 regs[BPF_REG_0].btf = desc_btf; 9296 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 9297 regs[BPF_REG_0].btf_id = ptr_type_id; 9298 } 9299 9300 if (is_kfunc_ret_null(&meta)) { 9301 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 9302 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 9303 regs[BPF_REG_0].id = ++env->id_gen; 9304 } 9305 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 9306 if (is_kfunc_acquire(&meta)) { 9307 int id = acquire_reference_state(env, insn_idx); 9308 9309 if (id < 0) 9310 return id; 9311 if (is_kfunc_ret_null(&meta)) 9312 regs[BPF_REG_0].id = id; 9313 regs[BPF_REG_0].ref_obj_id = id; 9314 } 9315 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 9316 regs[BPF_REG_0].id = ++env->id_gen; 9317 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 9318 9319 nargs = btf_type_vlen(func_proto); 9320 args = (const struct btf_param *)(func_proto + 1); 9321 for (i = 0; i < nargs; i++) { 9322 u32 regno = i + 1; 9323 9324 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 9325 if (btf_type_is_ptr(t)) 9326 mark_btf_func_reg_size(env, regno, sizeof(void *)); 9327 else 9328 /* scalar. ensured by btf_check_kfunc_arg_match() */ 9329 mark_btf_func_reg_size(env, regno, t->size); 9330 } 9331 9332 return 0; 9333 } 9334 9335 static bool signed_add_overflows(s64 a, s64 b) 9336 { 9337 /* Do the add in u64, where overflow is well-defined */ 9338 s64 res = (s64)((u64)a + (u64)b); 9339 9340 if (b < 0) 9341 return res > a; 9342 return res < a; 9343 } 9344 9345 static bool signed_add32_overflows(s32 a, s32 b) 9346 { 9347 /* Do the add in u32, where overflow is well-defined */ 9348 s32 res = (s32)((u32)a + (u32)b); 9349 9350 if (b < 0) 9351 return res > a; 9352 return res < a; 9353 } 9354 9355 static bool signed_sub_overflows(s64 a, s64 b) 9356 { 9357 /* Do the sub in u64, where overflow is well-defined */ 9358 s64 res = (s64)((u64)a - (u64)b); 9359 9360 if (b < 0) 9361 return res < a; 9362 return res > a; 9363 } 9364 9365 static bool signed_sub32_overflows(s32 a, s32 b) 9366 { 9367 /* Do the sub in u32, where overflow is well-defined */ 9368 s32 res = (s32)((u32)a - (u32)b); 9369 9370 if (b < 0) 9371 return res < a; 9372 return res > a; 9373 } 9374 9375 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 9376 const struct bpf_reg_state *reg, 9377 enum bpf_reg_type type) 9378 { 9379 bool known = tnum_is_const(reg->var_off); 9380 s64 val = reg->var_off.value; 9381 s64 smin = reg->smin_value; 9382 9383 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 9384 verbose(env, "math between %s pointer and %lld is not allowed\n", 9385 reg_type_str(env, type), val); 9386 return false; 9387 } 9388 9389 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 9390 verbose(env, "%s pointer offset %d is not allowed\n", 9391 reg_type_str(env, type), reg->off); 9392 return false; 9393 } 9394 9395 if (smin == S64_MIN) { 9396 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 9397 reg_type_str(env, type)); 9398 return false; 9399 } 9400 9401 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 9402 verbose(env, "value %lld makes %s pointer be out of bounds\n", 9403 smin, reg_type_str(env, type)); 9404 return false; 9405 } 9406 9407 return true; 9408 } 9409 9410 enum { 9411 REASON_BOUNDS = -1, 9412 REASON_TYPE = -2, 9413 REASON_PATHS = -3, 9414 REASON_LIMIT = -4, 9415 REASON_STACK = -5, 9416 }; 9417 9418 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 9419 u32 *alu_limit, bool mask_to_left) 9420 { 9421 u32 max = 0, ptr_limit = 0; 9422 9423 switch (ptr_reg->type) { 9424 case PTR_TO_STACK: 9425 /* Offset 0 is out-of-bounds, but acceptable start for the 9426 * left direction, see BPF_REG_FP. Also, unknown scalar 9427 * offset where we would need to deal with min/max bounds is 9428 * currently prohibited for unprivileged. 9429 */ 9430 max = MAX_BPF_STACK + mask_to_left; 9431 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 9432 break; 9433 case PTR_TO_MAP_VALUE: 9434 max = ptr_reg->map_ptr->value_size; 9435 ptr_limit = (mask_to_left ? 9436 ptr_reg->smin_value : 9437 ptr_reg->umax_value) + ptr_reg->off; 9438 break; 9439 default: 9440 return REASON_TYPE; 9441 } 9442 9443 if (ptr_limit >= max) 9444 return REASON_LIMIT; 9445 *alu_limit = ptr_limit; 9446 return 0; 9447 } 9448 9449 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 9450 const struct bpf_insn *insn) 9451 { 9452 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 9453 } 9454 9455 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 9456 u32 alu_state, u32 alu_limit) 9457 { 9458 /* If we arrived here from different branches with different 9459 * state or limits to sanitize, then this won't work. 9460 */ 9461 if (aux->alu_state && 9462 (aux->alu_state != alu_state || 9463 aux->alu_limit != alu_limit)) 9464 return REASON_PATHS; 9465 9466 /* Corresponding fixup done in do_misc_fixups(). */ 9467 aux->alu_state = alu_state; 9468 aux->alu_limit = alu_limit; 9469 return 0; 9470 } 9471 9472 static int sanitize_val_alu(struct bpf_verifier_env *env, 9473 struct bpf_insn *insn) 9474 { 9475 struct bpf_insn_aux_data *aux = cur_aux(env); 9476 9477 if (can_skip_alu_sanitation(env, insn)) 9478 return 0; 9479 9480 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 9481 } 9482 9483 static bool sanitize_needed(u8 opcode) 9484 { 9485 return opcode == BPF_ADD || opcode == BPF_SUB; 9486 } 9487 9488 struct bpf_sanitize_info { 9489 struct bpf_insn_aux_data aux; 9490 bool mask_to_left; 9491 }; 9492 9493 static struct bpf_verifier_state * 9494 sanitize_speculative_path(struct bpf_verifier_env *env, 9495 const struct bpf_insn *insn, 9496 u32 next_idx, u32 curr_idx) 9497 { 9498 struct bpf_verifier_state *branch; 9499 struct bpf_reg_state *regs; 9500 9501 branch = push_stack(env, next_idx, curr_idx, true); 9502 if (branch && insn) { 9503 regs = branch->frame[branch->curframe]->regs; 9504 if (BPF_SRC(insn->code) == BPF_K) { 9505 mark_reg_unknown(env, regs, insn->dst_reg); 9506 } else if (BPF_SRC(insn->code) == BPF_X) { 9507 mark_reg_unknown(env, regs, insn->dst_reg); 9508 mark_reg_unknown(env, regs, insn->src_reg); 9509 } 9510 } 9511 return branch; 9512 } 9513 9514 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 9515 struct bpf_insn *insn, 9516 const struct bpf_reg_state *ptr_reg, 9517 const struct bpf_reg_state *off_reg, 9518 struct bpf_reg_state *dst_reg, 9519 struct bpf_sanitize_info *info, 9520 const bool commit_window) 9521 { 9522 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 9523 struct bpf_verifier_state *vstate = env->cur_state; 9524 bool off_is_imm = tnum_is_const(off_reg->var_off); 9525 bool off_is_neg = off_reg->smin_value < 0; 9526 bool ptr_is_dst_reg = ptr_reg == dst_reg; 9527 u8 opcode = BPF_OP(insn->code); 9528 u32 alu_state, alu_limit; 9529 struct bpf_reg_state tmp; 9530 bool ret; 9531 int err; 9532 9533 if (can_skip_alu_sanitation(env, insn)) 9534 return 0; 9535 9536 /* We already marked aux for masking from non-speculative 9537 * paths, thus we got here in the first place. We only care 9538 * to explore bad access from here. 9539 */ 9540 if (vstate->speculative) 9541 goto do_sim; 9542 9543 if (!commit_window) { 9544 if (!tnum_is_const(off_reg->var_off) && 9545 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 9546 return REASON_BOUNDS; 9547 9548 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 9549 (opcode == BPF_SUB && !off_is_neg); 9550 } 9551 9552 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 9553 if (err < 0) 9554 return err; 9555 9556 if (commit_window) { 9557 /* In commit phase we narrow the masking window based on 9558 * the observed pointer move after the simulated operation. 9559 */ 9560 alu_state = info->aux.alu_state; 9561 alu_limit = abs(info->aux.alu_limit - alu_limit); 9562 } else { 9563 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 9564 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 9565 alu_state |= ptr_is_dst_reg ? 9566 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 9567 9568 /* Limit pruning on unknown scalars to enable deep search for 9569 * potential masking differences from other program paths. 9570 */ 9571 if (!off_is_imm) 9572 env->explore_alu_limits = true; 9573 } 9574 9575 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 9576 if (err < 0) 9577 return err; 9578 do_sim: 9579 /* If we're in commit phase, we're done here given we already 9580 * pushed the truncated dst_reg into the speculative verification 9581 * stack. 9582 * 9583 * Also, when register is a known constant, we rewrite register-based 9584 * operation to immediate-based, and thus do not need masking (and as 9585 * a consequence, do not need to simulate the zero-truncation either). 9586 */ 9587 if (commit_window || off_is_imm) 9588 return 0; 9589 9590 /* Simulate and find potential out-of-bounds access under 9591 * speculative execution from truncation as a result of 9592 * masking when off was not within expected range. If off 9593 * sits in dst, then we temporarily need to move ptr there 9594 * to simulate dst (== 0) +/-= ptr. Needed, for example, 9595 * for cases where we use K-based arithmetic in one direction 9596 * and truncated reg-based in the other in order to explore 9597 * bad access. 9598 */ 9599 if (!ptr_is_dst_reg) { 9600 tmp = *dst_reg; 9601 *dst_reg = *ptr_reg; 9602 } 9603 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 9604 env->insn_idx); 9605 if (!ptr_is_dst_reg && ret) 9606 *dst_reg = tmp; 9607 return !ret ? REASON_STACK : 0; 9608 } 9609 9610 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 9611 { 9612 struct bpf_verifier_state *vstate = env->cur_state; 9613 9614 /* If we simulate paths under speculation, we don't update the 9615 * insn as 'seen' such that when we verify unreachable paths in 9616 * the non-speculative domain, sanitize_dead_code() can still 9617 * rewrite/sanitize them. 9618 */ 9619 if (!vstate->speculative) 9620 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 9621 } 9622 9623 static int sanitize_err(struct bpf_verifier_env *env, 9624 const struct bpf_insn *insn, int reason, 9625 const struct bpf_reg_state *off_reg, 9626 const struct bpf_reg_state *dst_reg) 9627 { 9628 static const char *err = "pointer arithmetic with it prohibited for !root"; 9629 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 9630 u32 dst = insn->dst_reg, src = insn->src_reg; 9631 9632 switch (reason) { 9633 case REASON_BOUNDS: 9634 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 9635 off_reg == dst_reg ? dst : src, err); 9636 break; 9637 case REASON_TYPE: 9638 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 9639 off_reg == dst_reg ? src : dst, err); 9640 break; 9641 case REASON_PATHS: 9642 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 9643 dst, op, err); 9644 break; 9645 case REASON_LIMIT: 9646 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 9647 dst, op, err); 9648 break; 9649 case REASON_STACK: 9650 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 9651 dst, err); 9652 break; 9653 default: 9654 verbose(env, "verifier internal error: unknown reason (%d)\n", 9655 reason); 9656 break; 9657 } 9658 9659 return -EACCES; 9660 } 9661 9662 /* check that stack access falls within stack limits and that 'reg' doesn't 9663 * have a variable offset. 9664 * 9665 * Variable offset is prohibited for unprivileged mode for simplicity since it 9666 * requires corresponding support in Spectre masking for stack ALU. See also 9667 * retrieve_ptr_limit(). 9668 * 9669 * 9670 * 'off' includes 'reg->off'. 9671 */ 9672 static int check_stack_access_for_ptr_arithmetic( 9673 struct bpf_verifier_env *env, 9674 int regno, 9675 const struct bpf_reg_state *reg, 9676 int off) 9677 { 9678 if (!tnum_is_const(reg->var_off)) { 9679 char tn_buf[48]; 9680 9681 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 9682 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 9683 regno, tn_buf, off); 9684 return -EACCES; 9685 } 9686 9687 if (off >= 0 || off < -MAX_BPF_STACK) { 9688 verbose(env, "R%d stack pointer arithmetic goes out of range, " 9689 "prohibited for !root; off=%d\n", regno, off); 9690 return -EACCES; 9691 } 9692 9693 return 0; 9694 } 9695 9696 static int sanitize_check_bounds(struct bpf_verifier_env *env, 9697 const struct bpf_insn *insn, 9698 const struct bpf_reg_state *dst_reg) 9699 { 9700 u32 dst = insn->dst_reg; 9701 9702 /* For unprivileged we require that resulting offset must be in bounds 9703 * in order to be able to sanitize access later on. 9704 */ 9705 if (env->bypass_spec_v1) 9706 return 0; 9707 9708 switch (dst_reg->type) { 9709 case PTR_TO_STACK: 9710 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 9711 dst_reg->off + dst_reg->var_off.value)) 9712 return -EACCES; 9713 break; 9714 case PTR_TO_MAP_VALUE: 9715 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 9716 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 9717 "prohibited for !root\n", dst); 9718 return -EACCES; 9719 } 9720 break; 9721 default: 9722 break; 9723 } 9724 9725 return 0; 9726 } 9727 9728 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 9729 * Caller should also handle BPF_MOV case separately. 9730 * If we return -EACCES, caller may want to try again treating pointer as a 9731 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 9732 */ 9733 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 9734 struct bpf_insn *insn, 9735 const struct bpf_reg_state *ptr_reg, 9736 const struct bpf_reg_state *off_reg) 9737 { 9738 struct bpf_verifier_state *vstate = env->cur_state; 9739 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9740 struct bpf_reg_state *regs = state->regs, *dst_reg; 9741 bool known = tnum_is_const(off_reg->var_off); 9742 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 9743 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 9744 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 9745 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 9746 struct bpf_sanitize_info info = {}; 9747 u8 opcode = BPF_OP(insn->code); 9748 u32 dst = insn->dst_reg; 9749 int ret; 9750 9751 dst_reg = ®s[dst]; 9752 9753 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 9754 smin_val > smax_val || umin_val > umax_val) { 9755 /* Taint dst register if offset had invalid bounds derived from 9756 * e.g. dead branches. 9757 */ 9758 __mark_reg_unknown(env, dst_reg); 9759 return 0; 9760 } 9761 9762 if (BPF_CLASS(insn->code) != BPF_ALU64) { 9763 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 9764 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 9765 __mark_reg_unknown(env, dst_reg); 9766 return 0; 9767 } 9768 9769 verbose(env, 9770 "R%d 32-bit pointer arithmetic prohibited\n", 9771 dst); 9772 return -EACCES; 9773 } 9774 9775 if (ptr_reg->type & PTR_MAYBE_NULL) { 9776 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 9777 dst, reg_type_str(env, ptr_reg->type)); 9778 return -EACCES; 9779 } 9780 9781 switch (base_type(ptr_reg->type)) { 9782 case CONST_PTR_TO_MAP: 9783 /* smin_val represents the known value */ 9784 if (known && smin_val == 0 && opcode == BPF_ADD) 9785 break; 9786 fallthrough; 9787 case PTR_TO_PACKET_END: 9788 case PTR_TO_SOCKET: 9789 case PTR_TO_SOCK_COMMON: 9790 case PTR_TO_TCP_SOCK: 9791 case PTR_TO_XDP_SOCK: 9792 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 9793 dst, reg_type_str(env, ptr_reg->type)); 9794 return -EACCES; 9795 default: 9796 break; 9797 } 9798 9799 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 9800 * The id may be overwritten later if we create a new variable offset. 9801 */ 9802 dst_reg->type = ptr_reg->type; 9803 dst_reg->id = ptr_reg->id; 9804 9805 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 9806 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 9807 return -EINVAL; 9808 9809 /* pointer types do not carry 32-bit bounds at the moment. */ 9810 __mark_reg32_unbounded(dst_reg); 9811 9812 if (sanitize_needed(opcode)) { 9813 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 9814 &info, false); 9815 if (ret < 0) 9816 return sanitize_err(env, insn, ret, off_reg, dst_reg); 9817 } 9818 9819 switch (opcode) { 9820 case BPF_ADD: 9821 /* We can take a fixed offset as long as it doesn't overflow 9822 * the s32 'off' field 9823 */ 9824 if (known && (ptr_reg->off + smin_val == 9825 (s64)(s32)(ptr_reg->off + smin_val))) { 9826 /* pointer += K. Accumulate it into fixed offset */ 9827 dst_reg->smin_value = smin_ptr; 9828 dst_reg->smax_value = smax_ptr; 9829 dst_reg->umin_value = umin_ptr; 9830 dst_reg->umax_value = umax_ptr; 9831 dst_reg->var_off = ptr_reg->var_off; 9832 dst_reg->off = ptr_reg->off + smin_val; 9833 dst_reg->raw = ptr_reg->raw; 9834 break; 9835 } 9836 /* A new variable offset is created. Note that off_reg->off 9837 * == 0, since it's a scalar. 9838 * dst_reg gets the pointer type and since some positive 9839 * integer value was added to the pointer, give it a new 'id' 9840 * if it's a PTR_TO_PACKET. 9841 * this creates a new 'base' pointer, off_reg (variable) gets 9842 * added into the variable offset, and we copy the fixed offset 9843 * from ptr_reg. 9844 */ 9845 if (signed_add_overflows(smin_ptr, smin_val) || 9846 signed_add_overflows(smax_ptr, smax_val)) { 9847 dst_reg->smin_value = S64_MIN; 9848 dst_reg->smax_value = S64_MAX; 9849 } else { 9850 dst_reg->smin_value = smin_ptr + smin_val; 9851 dst_reg->smax_value = smax_ptr + smax_val; 9852 } 9853 if (umin_ptr + umin_val < umin_ptr || 9854 umax_ptr + umax_val < umax_ptr) { 9855 dst_reg->umin_value = 0; 9856 dst_reg->umax_value = U64_MAX; 9857 } else { 9858 dst_reg->umin_value = umin_ptr + umin_val; 9859 dst_reg->umax_value = umax_ptr + umax_val; 9860 } 9861 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 9862 dst_reg->off = ptr_reg->off; 9863 dst_reg->raw = ptr_reg->raw; 9864 if (reg_is_pkt_pointer(ptr_reg)) { 9865 dst_reg->id = ++env->id_gen; 9866 /* something was added to pkt_ptr, set range to zero */ 9867 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 9868 } 9869 break; 9870 case BPF_SUB: 9871 if (dst_reg == off_reg) { 9872 /* scalar -= pointer. Creates an unknown scalar */ 9873 verbose(env, "R%d tried to subtract pointer from scalar\n", 9874 dst); 9875 return -EACCES; 9876 } 9877 /* We don't allow subtraction from FP, because (according to 9878 * test_verifier.c test "invalid fp arithmetic", JITs might not 9879 * be able to deal with it. 9880 */ 9881 if (ptr_reg->type == PTR_TO_STACK) { 9882 verbose(env, "R%d subtraction from stack pointer prohibited\n", 9883 dst); 9884 return -EACCES; 9885 } 9886 if (known && (ptr_reg->off - smin_val == 9887 (s64)(s32)(ptr_reg->off - smin_val))) { 9888 /* pointer -= K. Subtract it from fixed offset */ 9889 dst_reg->smin_value = smin_ptr; 9890 dst_reg->smax_value = smax_ptr; 9891 dst_reg->umin_value = umin_ptr; 9892 dst_reg->umax_value = umax_ptr; 9893 dst_reg->var_off = ptr_reg->var_off; 9894 dst_reg->id = ptr_reg->id; 9895 dst_reg->off = ptr_reg->off - smin_val; 9896 dst_reg->raw = ptr_reg->raw; 9897 break; 9898 } 9899 /* A new variable offset is created. If the subtrahend is known 9900 * nonnegative, then any reg->range we had before is still good. 9901 */ 9902 if (signed_sub_overflows(smin_ptr, smax_val) || 9903 signed_sub_overflows(smax_ptr, smin_val)) { 9904 /* Overflow possible, we know nothing */ 9905 dst_reg->smin_value = S64_MIN; 9906 dst_reg->smax_value = S64_MAX; 9907 } else { 9908 dst_reg->smin_value = smin_ptr - smax_val; 9909 dst_reg->smax_value = smax_ptr - smin_val; 9910 } 9911 if (umin_ptr < umax_val) { 9912 /* Overflow possible, we know nothing */ 9913 dst_reg->umin_value = 0; 9914 dst_reg->umax_value = U64_MAX; 9915 } else { 9916 /* Cannot overflow (as long as bounds are consistent) */ 9917 dst_reg->umin_value = umin_ptr - umax_val; 9918 dst_reg->umax_value = umax_ptr - umin_val; 9919 } 9920 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 9921 dst_reg->off = ptr_reg->off; 9922 dst_reg->raw = ptr_reg->raw; 9923 if (reg_is_pkt_pointer(ptr_reg)) { 9924 dst_reg->id = ++env->id_gen; 9925 /* something was added to pkt_ptr, set range to zero */ 9926 if (smin_val < 0) 9927 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 9928 } 9929 break; 9930 case BPF_AND: 9931 case BPF_OR: 9932 case BPF_XOR: 9933 /* bitwise ops on pointers are troublesome, prohibit. */ 9934 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 9935 dst, bpf_alu_string[opcode >> 4]); 9936 return -EACCES; 9937 default: 9938 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 9939 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 9940 dst, bpf_alu_string[opcode >> 4]); 9941 return -EACCES; 9942 } 9943 9944 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 9945 return -EINVAL; 9946 reg_bounds_sync(dst_reg); 9947 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 9948 return -EACCES; 9949 if (sanitize_needed(opcode)) { 9950 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 9951 &info, true); 9952 if (ret < 0) 9953 return sanitize_err(env, insn, ret, off_reg, dst_reg); 9954 } 9955 9956 return 0; 9957 } 9958 9959 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 9960 struct bpf_reg_state *src_reg) 9961 { 9962 s32 smin_val = src_reg->s32_min_value; 9963 s32 smax_val = src_reg->s32_max_value; 9964 u32 umin_val = src_reg->u32_min_value; 9965 u32 umax_val = src_reg->u32_max_value; 9966 9967 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 9968 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 9969 dst_reg->s32_min_value = S32_MIN; 9970 dst_reg->s32_max_value = S32_MAX; 9971 } else { 9972 dst_reg->s32_min_value += smin_val; 9973 dst_reg->s32_max_value += smax_val; 9974 } 9975 if (dst_reg->u32_min_value + umin_val < umin_val || 9976 dst_reg->u32_max_value + umax_val < umax_val) { 9977 dst_reg->u32_min_value = 0; 9978 dst_reg->u32_max_value = U32_MAX; 9979 } else { 9980 dst_reg->u32_min_value += umin_val; 9981 dst_reg->u32_max_value += umax_val; 9982 } 9983 } 9984 9985 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 9986 struct bpf_reg_state *src_reg) 9987 { 9988 s64 smin_val = src_reg->smin_value; 9989 s64 smax_val = src_reg->smax_value; 9990 u64 umin_val = src_reg->umin_value; 9991 u64 umax_val = src_reg->umax_value; 9992 9993 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 9994 signed_add_overflows(dst_reg->smax_value, smax_val)) { 9995 dst_reg->smin_value = S64_MIN; 9996 dst_reg->smax_value = S64_MAX; 9997 } else { 9998 dst_reg->smin_value += smin_val; 9999 dst_reg->smax_value += smax_val; 10000 } 10001 if (dst_reg->umin_value + umin_val < umin_val || 10002 dst_reg->umax_value + umax_val < umax_val) { 10003 dst_reg->umin_value = 0; 10004 dst_reg->umax_value = U64_MAX; 10005 } else { 10006 dst_reg->umin_value += umin_val; 10007 dst_reg->umax_value += umax_val; 10008 } 10009 } 10010 10011 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 10012 struct bpf_reg_state *src_reg) 10013 { 10014 s32 smin_val = src_reg->s32_min_value; 10015 s32 smax_val = src_reg->s32_max_value; 10016 u32 umin_val = src_reg->u32_min_value; 10017 u32 umax_val = src_reg->u32_max_value; 10018 10019 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 10020 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 10021 /* Overflow possible, we know nothing */ 10022 dst_reg->s32_min_value = S32_MIN; 10023 dst_reg->s32_max_value = S32_MAX; 10024 } else { 10025 dst_reg->s32_min_value -= smax_val; 10026 dst_reg->s32_max_value -= smin_val; 10027 } 10028 if (dst_reg->u32_min_value < umax_val) { 10029 /* Overflow possible, we know nothing */ 10030 dst_reg->u32_min_value = 0; 10031 dst_reg->u32_max_value = U32_MAX; 10032 } else { 10033 /* Cannot overflow (as long as bounds are consistent) */ 10034 dst_reg->u32_min_value -= umax_val; 10035 dst_reg->u32_max_value -= umin_val; 10036 } 10037 } 10038 10039 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 10040 struct bpf_reg_state *src_reg) 10041 { 10042 s64 smin_val = src_reg->smin_value; 10043 s64 smax_val = src_reg->smax_value; 10044 u64 umin_val = src_reg->umin_value; 10045 u64 umax_val = src_reg->umax_value; 10046 10047 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 10048 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 10049 /* Overflow possible, we know nothing */ 10050 dst_reg->smin_value = S64_MIN; 10051 dst_reg->smax_value = S64_MAX; 10052 } else { 10053 dst_reg->smin_value -= smax_val; 10054 dst_reg->smax_value -= smin_val; 10055 } 10056 if (dst_reg->umin_value < umax_val) { 10057 /* Overflow possible, we know nothing */ 10058 dst_reg->umin_value = 0; 10059 dst_reg->umax_value = U64_MAX; 10060 } else { 10061 /* Cannot overflow (as long as bounds are consistent) */ 10062 dst_reg->umin_value -= umax_val; 10063 dst_reg->umax_value -= umin_val; 10064 } 10065 } 10066 10067 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 10068 struct bpf_reg_state *src_reg) 10069 { 10070 s32 smin_val = src_reg->s32_min_value; 10071 u32 umin_val = src_reg->u32_min_value; 10072 u32 umax_val = src_reg->u32_max_value; 10073 10074 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 10075 /* Ain't nobody got time to multiply that sign */ 10076 __mark_reg32_unbounded(dst_reg); 10077 return; 10078 } 10079 /* Both values are positive, so we can work with unsigned and 10080 * copy the result to signed (unless it exceeds S32_MAX). 10081 */ 10082 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 10083 /* Potential overflow, we know nothing */ 10084 __mark_reg32_unbounded(dst_reg); 10085 return; 10086 } 10087 dst_reg->u32_min_value *= umin_val; 10088 dst_reg->u32_max_value *= umax_val; 10089 if (dst_reg->u32_max_value > S32_MAX) { 10090 /* Overflow possible, we know nothing */ 10091 dst_reg->s32_min_value = S32_MIN; 10092 dst_reg->s32_max_value = S32_MAX; 10093 } else { 10094 dst_reg->s32_min_value = dst_reg->u32_min_value; 10095 dst_reg->s32_max_value = dst_reg->u32_max_value; 10096 } 10097 } 10098 10099 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 10100 struct bpf_reg_state *src_reg) 10101 { 10102 s64 smin_val = src_reg->smin_value; 10103 u64 umin_val = src_reg->umin_value; 10104 u64 umax_val = src_reg->umax_value; 10105 10106 if (smin_val < 0 || dst_reg->smin_value < 0) { 10107 /* Ain't nobody got time to multiply that sign */ 10108 __mark_reg64_unbounded(dst_reg); 10109 return; 10110 } 10111 /* Both values are positive, so we can work with unsigned and 10112 * copy the result to signed (unless it exceeds S64_MAX). 10113 */ 10114 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 10115 /* Potential overflow, we know nothing */ 10116 __mark_reg64_unbounded(dst_reg); 10117 return; 10118 } 10119 dst_reg->umin_value *= umin_val; 10120 dst_reg->umax_value *= umax_val; 10121 if (dst_reg->umax_value > S64_MAX) { 10122 /* Overflow possible, we know nothing */ 10123 dst_reg->smin_value = S64_MIN; 10124 dst_reg->smax_value = S64_MAX; 10125 } else { 10126 dst_reg->smin_value = dst_reg->umin_value; 10127 dst_reg->smax_value = dst_reg->umax_value; 10128 } 10129 } 10130 10131 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 10132 struct bpf_reg_state *src_reg) 10133 { 10134 bool src_known = tnum_subreg_is_const(src_reg->var_off); 10135 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 10136 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 10137 s32 smin_val = src_reg->s32_min_value; 10138 u32 umax_val = src_reg->u32_max_value; 10139 10140 if (src_known && dst_known) { 10141 __mark_reg32_known(dst_reg, var32_off.value); 10142 return; 10143 } 10144 10145 /* We get our minimum from the var_off, since that's inherently 10146 * bitwise. Our maximum is the minimum of the operands' maxima. 10147 */ 10148 dst_reg->u32_min_value = var32_off.value; 10149 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 10150 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 10151 /* Lose signed bounds when ANDing negative numbers, 10152 * ain't nobody got time for that. 10153 */ 10154 dst_reg->s32_min_value = S32_MIN; 10155 dst_reg->s32_max_value = S32_MAX; 10156 } else { 10157 /* ANDing two positives gives a positive, so safe to 10158 * cast result into s64. 10159 */ 10160 dst_reg->s32_min_value = dst_reg->u32_min_value; 10161 dst_reg->s32_max_value = dst_reg->u32_max_value; 10162 } 10163 } 10164 10165 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 10166 struct bpf_reg_state *src_reg) 10167 { 10168 bool src_known = tnum_is_const(src_reg->var_off); 10169 bool dst_known = tnum_is_const(dst_reg->var_off); 10170 s64 smin_val = src_reg->smin_value; 10171 u64 umax_val = src_reg->umax_value; 10172 10173 if (src_known && dst_known) { 10174 __mark_reg_known(dst_reg, dst_reg->var_off.value); 10175 return; 10176 } 10177 10178 /* We get our minimum from the var_off, since that's inherently 10179 * bitwise. Our maximum is the minimum of the operands' maxima. 10180 */ 10181 dst_reg->umin_value = dst_reg->var_off.value; 10182 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 10183 if (dst_reg->smin_value < 0 || smin_val < 0) { 10184 /* Lose signed bounds when ANDing negative numbers, 10185 * ain't nobody got time for that. 10186 */ 10187 dst_reg->smin_value = S64_MIN; 10188 dst_reg->smax_value = S64_MAX; 10189 } else { 10190 /* ANDing two positives gives a positive, so safe to 10191 * cast result into s64. 10192 */ 10193 dst_reg->smin_value = dst_reg->umin_value; 10194 dst_reg->smax_value = dst_reg->umax_value; 10195 } 10196 /* We may learn something more from the var_off */ 10197 __update_reg_bounds(dst_reg); 10198 } 10199 10200 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 10201 struct bpf_reg_state *src_reg) 10202 { 10203 bool src_known = tnum_subreg_is_const(src_reg->var_off); 10204 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 10205 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 10206 s32 smin_val = src_reg->s32_min_value; 10207 u32 umin_val = src_reg->u32_min_value; 10208 10209 if (src_known && dst_known) { 10210 __mark_reg32_known(dst_reg, var32_off.value); 10211 return; 10212 } 10213 10214 /* We get our maximum from the var_off, and our minimum is the 10215 * maximum of the operands' minima 10216 */ 10217 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 10218 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 10219 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 10220 /* Lose signed bounds when ORing negative numbers, 10221 * ain't nobody got time for that. 10222 */ 10223 dst_reg->s32_min_value = S32_MIN; 10224 dst_reg->s32_max_value = S32_MAX; 10225 } else { 10226 /* ORing two positives gives a positive, so safe to 10227 * cast result into s64. 10228 */ 10229 dst_reg->s32_min_value = dst_reg->u32_min_value; 10230 dst_reg->s32_max_value = dst_reg->u32_max_value; 10231 } 10232 } 10233 10234 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 10235 struct bpf_reg_state *src_reg) 10236 { 10237 bool src_known = tnum_is_const(src_reg->var_off); 10238 bool dst_known = tnum_is_const(dst_reg->var_off); 10239 s64 smin_val = src_reg->smin_value; 10240 u64 umin_val = src_reg->umin_value; 10241 10242 if (src_known && dst_known) { 10243 __mark_reg_known(dst_reg, dst_reg->var_off.value); 10244 return; 10245 } 10246 10247 /* We get our maximum from the var_off, and our minimum is the 10248 * maximum of the operands' minima 10249 */ 10250 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 10251 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 10252 if (dst_reg->smin_value < 0 || smin_val < 0) { 10253 /* Lose signed bounds when ORing negative numbers, 10254 * ain't nobody got time for that. 10255 */ 10256 dst_reg->smin_value = S64_MIN; 10257 dst_reg->smax_value = S64_MAX; 10258 } else { 10259 /* ORing two positives gives a positive, so safe to 10260 * cast result into s64. 10261 */ 10262 dst_reg->smin_value = dst_reg->umin_value; 10263 dst_reg->smax_value = dst_reg->umax_value; 10264 } 10265 /* We may learn something more from the var_off */ 10266 __update_reg_bounds(dst_reg); 10267 } 10268 10269 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 10270 struct bpf_reg_state *src_reg) 10271 { 10272 bool src_known = tnum_subreg_is_const(src_reg->var_off); 10273 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 10274 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 10275 s32 smin_val = src_reg->s32_min_value; 10276 10277 if (src_known && dst_known) { 10278 __mark_reg32_known(dst_reg, var32_off.value); 10279 return; 10280 } 10281 10282 /* We get both minimum and maximum from the var32_off. */ 10283 dst_reg->u32_min_value = var32_off.value; 10284 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 10285 10286 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 10287 /* XORing two positive sign numbers gives a positive, 10288 * so safe to cast u32 result into s32. 10289 */ 10290 dst_reg->s32_min_value = dst_reg->u32_min_value; 10291 dst_reg->s32_max_value = dst_reg->u32_max_value; 10292 } else { 10293 dst_reg->s32_min_value = S32_MIN; 10294 dst_reg->s32_max_value = S32_MAX; 10295 } 10296 } 10297 10298 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 10299 struct bpf_reg_state *src_reg) 10300 { 10301 bool src_known = tnum_is_const(src_reg->var_off); 10302 bool dst_known = tnum_is_const(dst_reg->var_off); 10303 s64 smin_val = src_reg->smin_value; 10304 10305 if (src_known && dst_known) { 10306 /* dst_reg->var_off.value has been updated earlier */ 10307 __mark_reg_known(dst_reg, dst_reg->var_off.value); 10308 return; 10309 } 10310 10311 /* We get both minimum and maximum from the var_off. */ 10312 dst_reg->umin_value = dst_reg->var_off.value; 10313 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 10314 10315 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 10316 /* XORing two positive sign numbers gives a positive, 10317 * so safe to cast u64 result into s64. 10318 */ 10319 dst_reg->smin_value = dst_reg->umin_value; 10320 dst_reg->smax_value = dst_reg->umax_value; 10321 } else { 10322 dst_reg->smin_value = S64_MIN; 10323 dst_reg->smax_value = S64_MAX; 10324 } 10325 10326 __update_reg_bounds(dst_reg); 10327 } 10328 10329 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 10330 u64 umin_val, u64 umax_val) 10331 { 10332 /* We lose all sign bit information (except what we can pick 10333 * up from var_off) 10334 */ 10335 dst_reg->s32_min_value = S32_MIN; 10336 dst_reg->s32_max_value = S32_MAX; 10337 /* If we might shift our top bit out, then we know nothing */ 10338 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 10339 dst_reg->u32_min_value = 0; 10340 dst_reg->u32_max_value = U32_MAX; 10341 } else { 10342 dst_reg->u32_min_value <<= umin_val; 10343 dst_reg->u32_max_value <<= umax_val; 10344 } 10345 } 10346 10347 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 10348 struct bpf_reg_state *src_reg) 10349 { 10350 u32 umax_val = src_reg->u32_max_value; 10351 u32 umin_val = src_reg->u32_min_value; 10352 /* u32 alu operation will zext upper bits */ 10353 struct tnum subreg = tnum_subreg(dst_reg->var_off); 10354 10355 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 10356 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 10357 /* Not required but being careful mark reg64 bounds as unknown so 10358 * that we are forced to pick them up from tnum and zext later and 10359 * if some path skips this step we are still safe. 10360 */ 10361 __mark_reg64_unbounded(dst_reg); 10362 __update_reg32_bounds(dst_reg); 10363 } 10364 10365 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 10366 u64 umin_val, u64 umax_val) 10367 { 10368 /* Special case <<32 because it is a common compiler pattern to sign 10369 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 10370 * positive we know this shift will also be positive so we can track 10371 * bounds correctly. Otherwise we lose all sign bit information except 10372 * what we can pick up from var_off. Perhaps we can generalize this 10373 * later to shifts of any length. 10374 */ 10375 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 10376 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 10377 else 10378 dst_reg->smax_value = S64_MAX; 10379 10380 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 10381 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 10382 else 10383 dst_reg->smin_value = S64_MIN; 10384 10385 /* If we might shift our top bit out, then we know nothing */ 10386 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 10387 dst_reg->umin_value = 0; 10388 dst_reg->umax_value = U64_MAX; 10389 } else { 10390 dst_reg->umin_value <<= umin_val; 10391 dst_reg->umax_value <<= umax_val; 10392 } 10393 } 10394 10395 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 10396 struct bpf_reg_state *src_reg) 10397 { 10398 u64 umax_val = src_reg->umax_value; 10399 u64 umin_val = src_reg->umin_value; 10400 10401 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 10402 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 10403 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 10404 10405 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 10406 /* We may learn something more from the var_off */ 10407 __update_reg_bounds(dst_reg); 10408 } 10409 10410 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 10411 struct bpf_reg_state *src_reg) 10412 { 10413 struct tnum subreg = tnum_subreg(dst_reg->var_off); 10414 u32 umax_val = src_reg->u32_max_value; 10415 u32 umin_val = src_reg->u32_min_value; 10416 10417 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 10418 * be negative, then either: 10419 * 1) src_reg might be zero, so the sign bit of the result is 10420 * unknown, so we lose our signed bounds 10421 * 2) it's known negative, thus the unsigned bounds capture the 10422 * signed bounds 10423 * 3) the signed bounds cross zero, so they tell us nothing 10424 * about the result 10425 * If the value in dst_reg is known nonnegative, then again the 10426 * unsigned bounds capture the signed bounds. 10427 * Thus, in all cases it suffices to blow away our signed bounds 10428 * and rely on inferring new ones from the unsigned bounds and 10429 * var_off of the result. 10430 */ 10431 dst_reg->s32_min_value = S32_MIN; 10432 dst_reg->s32_max_value = S32_MAX; 10433 10434 dst_reg->var_off = tnum_rshift(subreg, umin_val); 10435 dst_reg->u32_min_value >>= umax_val; 10436 dst_reg->u32_max_value >>= umin_val; 10437 10438 __mark_reg64_unbounded(dst_reg); 10439 __update_reg32_bounds(dst_reg); 10440 } 10441 10442 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 10443 struct bpf_reg_state *src_reg) 10444 { 10445 u64 umax_val = src_reg->umax_value; 10446 u64 umin_val = src_reg->umin_value; 10447 10448 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 10449 * be negative, then either: 10450 * 1) src_reg might be zero, so the sign bit of the result is 10451 * unknown, so we lose our signed bounds 10452 * 2) it's known negative, thus the unsigned bounds capture the 10453 * signed bounds 10454 * 3) the signed bounds cross zero, so they tell us nothing 10455 * about the result 10456 * If the value in dst_reg is known nonnegative, then again the 10457 * unsigned bounds capture the signed bounds. 10458 * Thus, in all cases it suffices to blow away our signed bounds 10459 * and rely on inferring new ones from the unsigned bounds and 10460 * var_off of the result. 10461 */ 10462 dst_reg->smin_value = S64_MIN; 10463 dst_reg->smax_value = S64_MAX; 10464 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 10465 dst_reg->umin_value >>= umax_val; 10466 dst_reg->umax_value >>= umin_val; 10467 10468 /* Its not easy to operate on alu32 bounds here because it depends 10469 * on bits being shifted in. Take easy way out and mark unbounded 10470 * so we can recalculate later from tnum. 10471 */ 10472 __mark_reg32_unbounded(dst_reg); 10473 __update_reg_bounds(dst_reg); 10474 } 10475 10476 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 10477 struct bpf_reg_state *src_reg) 10478 { 10479 u64 umin_val = src_reg->u32_min_value; 10480 10481 /* Upon reaching here, src_known is true and 10482 * umax_val is equal to umin_val. 10483 */ 10484 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 10485 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 10486 10487 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 10488 10489 /* blow away the dst_reg umin_value/umax_value and rely on 10490 * dst_reg var_off to refine the result. 10491 */ 10492 dst_reg->u32_min_value = 0; 10493 dst_reg->u32_max_value = U32_MAX; 10494 10495 __mark_reg64_unbounded(dst_reg); 10496 __update_reg32_bounds(dst_reg); 10497 } 10498 10499 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 10500 struct bpf_reg_state *src_reg) 10501 { 10502 u64 umin_val = src_reg->umin_value; 10503 10504 /* Upon reaching here, src_known is true and umax_val is equal 10505 * to umin_val. 10506 */ 10507 dst_reg->smin_value >>= umin_val; 10508 dst_reg->smax_value >>= umin_val; 10509 10510 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 10511 10512 /* blow away the dst_reg umin_value/umax_value and rely on 10513 * dst_reg var_off to refine the result. 10514 */ 10515 dst_reg->umin_value = 0; 10516 dst_reg->umax_value = U64_MAX; 10517 10518 /* Its not easy to operate on alu32 bounds here because it depends 10519 * on bits being shifted in from upper 32-bits. Take easy way out 10520 * and mark unbounded so we can recalculate later from tnum. 10521 */ 10522 __mark_reg32_unbounded(dst_reg); 10523 __update_reg_bounds(dst_reg); 10524 } 10525 10526 /* WARNING: This function does calculations on 64-bit values, but the actual 10527 * execution may occur on 32-bit values. Therefore, things like bitshifts 10528 * need extra checks in the 32-bit case. 10529 */ 10530 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 10531 struct bpf_insn *insn, 10532 struct bpf_reg_state *dst_reg, 10533 struct bpf_reg_state src_reg) 10534 { 10535 struct bpf_reg_state *regs = cur_regs(env); 10536 u8 opcode = BPF_OP(insn->code); 10537 bool src_known; 10538 s64 smin_val, smax_val; 10539 u64 umin_val, umax_val; 10540 s32 s32_min_val, s32_max_val; 10541 u32 u32_min_val, u32_max_val; 10542 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 10543 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 10544 int ret; 10545 10546 smin_val = src_reg.smin_value; 10547 smax_val = src_reg.smax_value; 10548 umin_val = src_reg.umin_value; 10549 umax_val = src_reg.umax_value; 10550 10551 s32_min_val = src_reg.s32_min_value; 10552 s32_max_val = src_reg.s32_max_value; 10553 u32_min_val = src_reg.u32_min_value; 10554 u32_max_val = src_reg.u32_max_value; 10555 10556 if (alu32) { 10557 src_known = tnum_subreg_is_const(src_reg.var_off); 10558 if ((src_known && 10559 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 10560 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 10561 /* Taint dst register if offset had invalid bounds 10562 * derived from e.g. dead branches. 10563 */ 10564 __mark_reg_unknown(env, dst_reg); 10565 return 0; 10566 } 10567 } else { 10568 src_known = tnum_is_const(src_reg.var_off); 10569 if ((src_known && 10570 (smin_val != smax_val || umin_val != umax_val)) || 10571 smin_val > smax_val || umin_val > umax_val) { 10572 /* Taint dst register if offset had invalid bounds 10573 * derived from e.g. dead branches. 10574 */ 10575 __mark_reg_unknown(env, dst_reg); 10576 return 0; 10577 } 10578 } 10579 10580 if (!src_known && 10581 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 10582 __mark_reg_unknown(env, dst_reg); 10583 return 0; 10584 } 10585 10586 if (sanitize_needed(opcode)) { 10587 ret = sanitize_val_alu(env, insn); 10588 if (ret < 0) 10589 return sanitize_err(env, insn, ret, NULL, NULL); 10590 } 10591 10592 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 10593 * There are two classes of instructions: The first class we track both 10594 * alu32 and alu64 sign/unsigned bounds independently this provides the 10595 * greatest amount of precision when alu operations are mixed with jmp32 10596 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 10597 * and BPF_OR. This is possible because these ops have fairly easy to 10598 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 10599 * See alu32 verifier tests for examples. The second class of 10600 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 10601 * with regards to tracking sign/unsigned bounds because the bits may 10602 * cross subreg boundaries in the alu64 case. When this happens we mark 10603 * the reg unbounded in the subreg bound space and use the resulting 10604 * tnum to calculate an approximation of the sign/unsigned bounds. 10605 */ 10606 switch (opcode) { 10607 case BPF_ADD: 10608 scalar32_min_max_add(dst_reg, &src_reg); 10609 scalar_min_max_add(dst_reg, &src_reg); 10610 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 10611 break; 10612 case BPF_SUB: 10613 scalar32_min_max_sub(dst_reg, &src_reg); 10614 scalar_min_max_sub(dst_reg, &src_reg); 10615 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 10616 break; 10617 case BPF_MUL: 10618 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 10619 scalar32_min_max_mul(dst_reg, &src_reg); 10620 scalar_min_max_mul(dst_reg, &src_reg); 10621 break; 10622 case BPF_AND: 10623 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 10624 scalar32_min_max_and(dst_reg, &src_reg); 10625 scalar_min_max_and(dst_reg, &src_reg); 10626 break; 10627 case BPF_OR: 10628 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 10629 scalar32_min_max_or(dst_reg, &src_reg); 10630 scalar_min_max_or(dst_reg, &src_reg); 10631 break; 10632 case BPF_XOR: 10633 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 10634 scalar32_min_max_xor(dst_reg, &src_reg); 10635 scalar_min_max_xor(dst_reg, &src_reg); 10636 break; 10637 case BPF_LSH: 10638 if (umax_val >= insn_bitness) { 10639 /* Shifts greater than 31 or 63 are undefined. 10640 * This includes shifts by a negative number. 10641 */ 10642 mark_reg_unknown(env, regs, insn->dst_reg); 10643 break; 10644 } 10645 if (alu32) 10646 scalar32_min_max_lsh(dst_reg, &src_reg); 10647 else 10648 scalar_min_max_lsh(dst_reg, &src_reg); 10649 break; 10650 case BPF_RSH: 10651 if (umax_val >= insn_bitness) { 10652 /* Shifts greater than 31 or 63 are undefined. 10653 * This includes shifts by a negative number. 10654 */ 10655 mark_reg_unknown(env, regs, insn->dst_reg); 10656 break; 10657 } 10658 if (alu32) 10659 scalar32_min_max_rsh(dst_reg, &src_reg); 10660 else 10661 scalar_min_max_rsh(dst_reg, &src_reg); 10662 break; 10663 case BPF_ARSH: 10664 if (umax_val >= insn_bitness) { 10665 /* Shifts greater than 31 or 63 are undefined. 10666 * This includes shifts by a negative number. 10667 */ 10668 mark_reg_unknown(env, regs, insn->dst_reg); 10669 break; 10670 } 10671 if (alu32) 10672 scalar32_min_max_arsh(dst_reg, &src_reg); 10673 else 10674 scalar_min_max_arsh(dst_reg, &src_reg); 10675 break; 10676 default: 10677 mark_reg_unknown(env, regs, insn->dst_reg); 10678 break; 10679 } 10680 10681 /* ALU32 ops are zero extended into 64bit register */ 10682 if (alu32) 10683 zext_32_to_64(dst_reg); 10684 reg_bounds_sync(dst_reg); 10685 return 0; 10686 } 10687 10688 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 10689 * and var_off. 10690 */ 10691 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 10692 struct bpf_insn *insn) 10693 { 10694 struct bpf_verifier_state *vstate = env->cur_state; 10695 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 10696 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 10697 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 10698 u8 opcode = BPF_OP(insn->code); 10699 int err; 10700 10701 dst_reg = ®s[insn->dst_reg]; 10702 src_reg = NULL; 10703 if (dst_reg->type != SCALAR_VALUE) 10704 ptr_reg = dst_reg; 10705 else 10706 /* Make sure ID is cleared otherwise dst_reg min/max could be 10707 * incorrectly propagated into other registers by find_equal_scalars() 10708 */ 10709 dst_reg->id = 0; 10710 if (BPF_SRC(insn->code) == BPF_X) { 10711 src_reg = ®s[insn->src_reg]; 10712 if (src_reg->type != SCALAR_VALUE) { 10713 if (dst_reg->type != SCALAR_VALUE) { 10714 /* Combining two pointers by any ALU op yields 10715 * an arbitrary scalar. Disallow all math except 10716 * pointer subtraction 10717 */ 10718 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 10719 mark_reg_unknown(env, regs, insn->dst_reg); 10720 return 0; 10721 } 10722 verbose(env, "R%d pointer %s pointer prohibited\n", 10723 insn->dst_reg, 10724 bpf_alu_string[opcode >> 4]); 10725 return -EACCES; 10726 } else { 10727 /* scalar += pointer 10728 * This is legal, but we have to reverse our 10729 * src/dest handling in computing the range 10730 */ 10731 err = mark_chain_precision(env, insn->dst_reg); 10732 if (err) 10733 return err; 10734 return adjust_ptr_min_max_vals(env, insn, 10735 src_reg, dst_reg); 10736 } 10737 } else if (ptr_reg) { 10738 /* pointer += scalar */ 10739 err = mark_chain_precision(env, insn->src_reg); 10740 if (err) 10741 return err; 10742 return adjust_ptr_min_max_vals(env, insn, 10743 dst_reg, src_reg); 10744 } else if (dst_reg->precise) { 10745 /* if dst_reg is precise, src_reg should be precise as well */ 10746 err = mark_chain_precision(env, insn->src_reg); 10747 if (err) 10748 return err; 10749 } 10750 } else { 10751 /* Pretend the src is a reg with a known value, since we only 10752 * need to be able to read from this state. 10753 */ 10754 off_reg.type = SCALAR_VALUE; 10755 __mark_reg_known(&off_reg, insn->imm); 10756 src_reg = &off_reg; 10757 if (ptr_reg) /* pointer += K */ 10758 return adjust_ptr_min_max_vals(env, insn, 10759 ptr_reg, src_reg); 10760 } 10761 10762 /* Got here implies adding two SCALAR_VALUEs */ 10763 if (WARN_ON_ONCE(ptr_reg)) { 10764 print_verifier_state(env, state, true); 10765 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 10766 return -EINVAL; 10767 } 10768 if (WARN_ON(!src_reg)) { 10769 print_verifier_state(env, state, true); 10770 verbose(env, "verifier internal error: no src_reg\n"); 10771 return -EINVAL; 10772 } 10773 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 10774 } 10775 10776 /* check validity of 32-bit and 64-bit arithmetic operations */ 10777 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 10778 { 10779 struct bpf_reg_state *regs = cur_regs(env); 10780 u8 opcode = BPF_OP(insn->code); 10781 int err; 10782 10783 if (opcode == BPF_END || opcode == BPF_NEG) { 10784 if (opcode == BPF_NEG) { 10785 if (BPF_SRC(insn->code) != BPF_K || 10786 insn->src_reg != BPF_REG_0 || 10787 insn->off != 0 || insn->imm != 0) { 10788 verbose(env, "BPF_NEG uses reserved fields\n"); 10789 return -EINVAL; 10790 } 10791 } else { 10792 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 10793 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 10794 BPF_CLASS(insn->code) == BPF_ALU64) { 10795 verbose(env, "BPF_END uses reserved fields\n"); 10796 return -EINVAL; 10797 } 10798 } 10799 10800 /* check src operand */ 10801 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10802 if (err) 10803 return err; 10804 10805 if (is_pointer_value(env, insn->dst_reg)) { 10806 verbose(env, "R%d pointer arithmetic prohibited\n", 10807 insn->dst_reg); 10808 return -EACCES; 10809 } 10810 10811 /* check dest operand */ 10812 err = check_reg_arg(env, insn->dst_reg, DST_OP); 10813 if (err) 10814 return err; 10815 10816 } else if (opcode == BPF_MOV) { 10817 10818 if (BPF_SRC(insn->code) == BPF_X) { 10819 if (insn->imm != 0 || insn->off != 0) { 10820 verbose(env, "BPF_MOV uses reserved fields\n"); 10821 return -EINVAL; 10822 } 10823 10824 /* check src operand */ 10825 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10826 if (err) 10827 return err; 10828 } else { 10829 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 10830 verbose(env, "BPF_MOV uses reserved fields\n"); 10831 return -EINVAL; 10832 } 10833 } 10834 10835 /* check dest operand, mark as required later */ 10836 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 10837 if (err) 10838 return err; 10839 10840 if (BPF_SRC(insn->code) == BPF_X) { 10841 struct bpf_reg_state *src_reg = regs + insn->src_reg; 10842 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 10843 10844 if (BPF_CLASS(insn->code) == BPF_ALU64) { 10845 /* case: R1 = R2 10846 * copy register state to dest reg 10847 */ 10848 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 10849 /* Assign src and dst registers the same ID 10850 * that will be used by find_equal_scalars() 10851 * to propagate min/max range. 10852 */ 10853 src_reg->id = ++env->id_gen; 10854 *dst_reg = *src_reg; 10855 dst_reg->live |= REG_LIVE_WRITTEN; 10856 dst_reg->subreg_def = DEF_NOT_SUBREG; 10857 } else { 10858 /* R1 = (u32) R2 */ 10859 if (is_pointer_value(env, insn->src_reg)) { 10860 verbose(env, 10861 "R%d partial copy of pointer\n", 10862 insn->src_reg); 10863 return -EACCES; 10864 } else if (src_reg->type == SCALAR_VALUE) { 10865 *dst_reg = *src_reg; 10866 /* Make sure ID is cleared otherwise 10867 * dst_reg min/max could be incorrectly 10868 * propagated into src_reg by find_equal_scalars() 10869 */ 10870 dst_reg->id = 0; 10871 dst_reg->live |= REG_LIVE_WRITTEN; 10872 dst_reg->subreg_def = env->insn_idx + 1; 10873 } else { 10874 mark_reg_unknown(env, regs, 10875 insn->dst_reg); 10876 } 10877 zext_32_to_64(dst_reg); 10878 reg_bounds_sync(dst_reg); 10879 } 10880 } else { 10881 /* case: R = imm 10882 * remember the value we stored into this reg 10883 */ 10884 /* clear any state __mark_reg_known doesn't set */ 10885 mark_reg_unknown(env, regs, insn->dst_reg); 10886 regs[insn->dst_reg].type = SCALAR_VALUE; 10887 if (BPF_CLASS(insn->code) == BPF_ALU64) { 10888 __mark_reg_known(regs + insn->dst_reg, 10889 insn->imm); 10890 } else { 10891 __mark_reg_known(regs + insn->dst_reg, 10892 (u32)insn->imm); 10893 } 10894 } 10895 10896 } else if (opcode > BPF_END) { 10897 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 10898 return -EINVAL; 10899 10900 } else { /* all other ALU ops: and, sub, xor, add, ... */ 10901 10902 if (BPF_SRC(insn->code) == BPF_X) { 10903 if (insn->imm != 0 || insn->off != 0) { 10904 verbose(env, "BPF_ALU uses reserved fields\n"); 10905 return -EINVAL; 10906 } 10907 /* check src1 operand */ 10908 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10909 if (err) 10910 return err; 10911 } else { 10912 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 10913 verbose(env, "BPF_ALU uses reserved fields\n"); 10914 return -EINVAL; 10915 } 10916 } 10917 10918 /* check src2 operand */ 10919 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10920 if (err) 10921 return err; 10922 10923 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 10924 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 10925 verbose(env, "div by zero\n"); 10926 return -EINVAL; 10927 } 10928 10929 if ((opcode == BPF_LSH || opcode == BPF_RSH || 10930 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 10931 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 10932 10933 if (insn->imm < 0 || insn->imm >= size) { 10934 verbose(env, "invalid shift %d\n", insn->imm); 10935 return -EINVAL; 10936 } 10937 } 10938 10939 /* check dest operand */ 10940 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 10941 if (err) 10942 return err; 10943 10944 return adjust_reg_min_max_vals(env, insn); 10945 } 10946 10947 return 0; 10948 } 10949 10950 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 10951 struct bpf_reg_state *dst_reg, 10952 enum bpf_reg_type type, 10953 bool range_right_open) 10954 { 10955 struct bpf_func_state *state; 10956 struct bpf_reg_state *reg; 10957 int new_range; 10958 10959 if (dst_reg->off < 0 || 10960 (dst_reg->off == 0 && range_right_open)) 10961 /* This doesn't give us any range */ 10962 return; 10963 10964 if (dst_reg->umax_value > MAX_PACKET_OFF || 10965 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 10966 /* Risk of overflow. For instance, ptr + (1<<63) may be less 10967 * than pkt_end, but that's because it's also less than pkt. 10968 */ 10969 return; 10970 10971 new_range = dst_reg->off; 10972 if (range_right_open) 10973 new_range++; 10974 10975 /* Examples for register markings: 10976 * 10977 * pkt_data in dst register: 10978 * 10979 * r2 = r3; 10980 * r2 += 8; 10981 * if (r2 > pkt_end) goto <handle exception> 10982 * <access okay> 10983 * 10984 * r2 = r3; 10985 * r2 += 8; 10986 * if (r2 < pkt_end) goto <access okay> 10987 * <handle exception> 10988 * 10989 * Where: 10990 * r2 == dst_reg, pkt_end == src_reg 10991 * r2=pkt(id=n,off=8,r=0) 10992 * r3=pkt(id=n,off=0,r=0) 10993 * 10994 * pkt_data in src register: 10995 * 10996 * r2 = r3; 10997 * r2 += 8; 10998 * if (pkt_end >= r2) goto <access okay> 10999 * <handle exception> 11000 * 11001 * r2 = r3; 11002 * r2 += 8; 11003 * if (pkt_end <= r2) goto <handle exception> 11004 * <access okay> 11005 * 11006 * Where: 11007 * pkt_end == dst_reg, r2 == src_reg 11008 * r2=pkt(id=n,off=8,r=0) 11009 * r3=pkt(id=n,off=0,r=0) 11010 * 11011 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 11012 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 11013 * and [r3, r3 + 8-1) respectively is safe to access depending on 11014 * the check. 11015 */ 11016 11017 /* If our ids match, then we must have the same max_value. And we 11018 * don't care about the other reg's fixed offset, since if it's too big 11019 * the range won't allow anything. 11020 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 11021 */ 11022 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 11023 if (reg->type == type && reg->id == dst_reg->id) 11024 /* keep the maximum range already checked */ 11025 reg->range = max(reg->range, new_range); 11026 })); 11027 } 11028 11029 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 11030 { 11031 struct tnum subreg = tnum_subreg(reg->var_off); 11032 s32 sval = (s32)val; 11033 11034 switch (opcode) { 11035 case BPF_JEQ: 11036 if (tnum_is_const(subreg)) 11037 return !!tnum_equals_const(subreg, val); 11038 break; 11039 case BPF_JNE: 11040 if (tnum_is_const(subreg)) 11041 return !tnum_equals_const(subreg, val); 11042 break; 11043 case BPF_JSET: 11044 if ((~subreg.mask & subreg.value) & val) 11045 return 1; 11046 if (!((subreg.mask | subreg.value) & val)) 11047 return 0; 11048 break; 11049 case BPF_JGT: 11050 if (reg->u32_min_value > val) 11051 return 1; 11052 else if (reg->u32_max_value <= val) 11053 return 0; 11054 break; 11055 case BPF_JSGT: 11056 if (reg->s32_min_value > sval) 11057 return 1; 11058 else if (reg->s32_max_value <= sval) 11059 return 0; 11060 break; 11061 case BPF_JLT: 11062 if (reg->u32_max_value < val) 11063 return 1; 11064 else if (reg->u32_min_value >= val) 11065 return 0; 11066 break; 11067 case BPF_JSLT: 11068 if (reg->s32_max_value < sval) 11069 return 1; 11070 else if (reg->s32_min_value >= sval) 11071 return 0; 11072 break; 11073 case BPF_JGE: 11074 if (reg->u32_min_value >= val) 11075 return 1; 11076 else if (reg->u32_max_value < val) 11077 return 0; 11078 break; 11079 case BPF_JSGE: 11080 if (reg->s32_min_value >= sval) 11081 return 1; 11082 else if (reg->s32_max_value < sval) 11083 return 0; 11084 break; 11085 case BPF_JLE: 11086 if (reg->u32_max_value <= val) 11087 return 1; 11088 else if (reg->u32_min_value > val) 11089 return 0; 11090 break; 11091 case BPF_JSLE: 11092 if (reg->s32_max_value <= sval) 11093 return 1; 11094 else if (reg->s32_min_value > sval) 11095 return 0; 11096 break; 11097 } 11098 11099 return -1; 11100 } 11101 11102 11103 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 11104 { 11105 s64 sval = (s64)val; 11106 11107 switch (opcode) { 11108 case BPF_JEQ: 11109 if (tnum_is_const(reg->var_off)) 11110 return !!tnum_equals_const(reg->var_off, val); 11111 break; 11112 case BPF_JNE: 11113 if (tnum_is_const(reg->var_off)) 11114 return !tnum_equals_const(reg->var_off, val); 11115 break; 11116 case BPF_JSET: 11117 if ((~reg->var_off.mask & reg->var_off.value) & val) 11118 return 1; 11119 if (!((reg->var_off.mask | reg->var_off.value) & val)) 11120 return 0; 11121 break; 11122 case BPF_JGT: 11123 if (reg->umin_value > val) 11124 return 1; 11125 else if (reg->umax_value <= val) 11126 return 0; 11127 break; 11128 case BPF_JSGT: 11129 if (reg->smin_value > sval) 11130 return 1; 11131 else if (reg->smax_value <= sval) 11132 return 0; 11133 break; 11134 case BPF_JLT: 11135 if (reg->umax_value < val) 11136 return 1; 11137 else if (reg->umin_value >= val) 11138 return 0; 11139 break; 11140 case BPF_JSLT: 11141 if (reg->smax_value < sval) 11142 return 1; 11143 else if (reg->smin_value >= sval) 11144 return 0; 11145 break; 11146 case BPF_JGE: 11147 if (reg->umin_value >= val) 11148 return 1; 11149 else if (reg->umax_value < val) 11150 return 0; 11151 break; 11152 case BPF_JSGE: 11153 if (reg->smin_value >= sval) 11154 return 1; 11155 else if (reg->smax_value < sval) 11156 return 0; 11157 break; 11158 case BPF_JLE: 11159 if (reg->umax_value <= val) 11160 return 1; 11161 else if (reg->umin_value > val) 11162 return 0; 11163 break; 11164 case BPF_JSLE: 11165 if (reg->smax_value <= sval) 11166 return 1; 11167 else if (reg->smin_value > sval) 11168 return 0; 11169 break; 11170 } 11171 11172 return -1; 11173 } 11174 11175 /* compute branch direction of the expression "if (reg opcode val) goto target;" 11176 * and return: 11177 * 1 - branch will be taken and "goto target" will be executed 11178 * 0 - branch will not be taken and fall-through to next insn 11179 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 11180 * range [0,10] 11181 */ 11182 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 11183 bool is_jmp32) 11184 { 11185 if (__is_pointer_value(false, reg)) { 11186 if (!reg_type_not_null(reg->type)) 11187 return -1; 11188 11189 /* If pointer is valid tests against zero will fail so we can 11190 * use this to direct branch taken. 11191 */ 11192 if (val != 0) 11193 return -1; 11194 11195 switch (opcode) { 11196 case BPF_JEQ: 11197 return 0; 11198 case BPF_JNE: 11199 return 1; 11200 default: 11201 return -1; 11202 } 11203 } 11204 11205 if (is_jmp32) 11206 return is_branch32_taken(reg, val, opcode); 11207 return is_branch64_taken(reg, val, opcode); 11208 } 11209 11210 static int flip_opcode(u32 opcode) 11211 { 11212 /* How can we transform "a <op> b" into "b <op> a"? */ 11213 static const u8 opcode_flip[16] = { 11214 /* these stay the same */ 11215 [BPF_JEQ >> 4] = BPF_JEQ, 11216 [BPF_JNE >> 4] = BPF_JNE, 11217 [BPF_JSET >> 4] = BPF_JSET, 11218 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 11219 [BPF_JGE >> 4] = BPF_JLE, 11220 [BPF_JGT >> 4] = BPF_JLT, 11221 [BPF_JLE >> 4] = BPF_JGE, 11222 [BPF_JLT >> 4] = BPF_JGT, 11223 [BPF_JSGE >> 4] = BPF_JSLE, 11224 [BPF_JSGT >> 4] = BPF_JSLT, 11225 [BPF_JSLE >> 4] = BPF_JSGE, 11226 [BPF_JSLT >> 4] = BPF_JSGT 11227 }; 11228 return opcode_flip[opcode >> 4]; 11229 } 11230 11231 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 11232 struct bpf_reg_state *src_reg, 11233 u8 opcode) 11234 { 11235 struct bpf_reg_state *pkt; 11236 11237 if (src_reg->type == PTR_TO_PACKET_END) { 11238 pkt = dst_reg; 11239 } else if (dst_reg->type == PTR_TO_PACKET_END) { 11240 pkt = src_reg; 11241 opcode = flip_opcode(opcode); 11242 } else { 11243 return -1; 11244 } 11245 11246 if (pkt->range >= 0) 11247 return -1; 11248 11249 switch (opcode) { 11250 case BPF_JLE: 11251 /* pkt <= pkt_end */ 11252 fallthrough; 11253 case BPF_JGT: 11254 /* pkt > pkt_end */ 11255 if (pkt->range == BEYOND_PKT_END) 11256 /* pkt has at last one extra byte beyond pkt_end */ 11257 return opcode == BPF_JGT; 11258 break; 11259 case BPF_JLT: 11260 /* pkt < pkt_end */ 11261 fallthrough; 11262 case BPF_JGE: 11263 /* pkt >= pkt_end */ 11264 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 11265 return opcode == BPF_JGE; 11266 break; 11267 } 11268 return -1; 11269 } 11270 11271 /* Adjusts the register min/max values in the case that the dst_reg is the 11272 * variable register that we are working on, and src_reg is a constant or we're 11273 * simply doing a BPF_K check. 11274 * In JEQ/JNE cases we also adjust the var_off values. 11275 */ 11276 static void reg_set_min_max(struct bpf_reg_state *true_reg, 11277 struct bpf_reg_state *false_reg, 11278 u64 val, u32 val32, 11279 u8 opcode, bool is_jmp32) 11280 { 11281 struct tnum false_32off = tnum_subreg(false_reg->var_off); 11282 struct tnum false_64off = false_reg->var_off; 11283 struct tnum true_32off = tnum_subreg(true_reg->var_off); 11284 struct tnum true_64off = true_reg->var_off; 11285 s64 sval = (s64)val; 11286 s32 sval32 = (s32)val32; 11287 11288 /* If the dst_reg is a pointer, we can't learn anything about its 11289 * variable offset from the compare (unless src_reg were a pointer into 11290 * the same object, but we don't bother with that. 11291 * Since false_reg and true_reg have the same type by construction, we 11292 * only need to check one of them for pointerness. 11293 */ 11294 if (__is_pointer_value(false, false_reg)) 11295 return; 11296 11297 switch (opcode) { 11298 /* JEQ/JNE comparison doesn't change the register equivalence. 11299 * 11300 * r1 = r2; 11301 * if (r1 == 42) goto label; 11302 * ... 11303 * label: // here both r1 and r2 are known to be 42. 11304 * 11305 * Hence when marking register as known preserve it's ID. 11306 */ 11307 case BPF_JEQ: 11308 if (is_jmp32) { 11309 __mark_reg32_known(true_reg, val32); 11310 true_32off = tnum_subreg(true_reg->var_off); 11311 } else { 11312 ___mark_reg_known(true_reg, val); 11313 true_64off = true_reg->var_off; 11314 } 11315 break; 11316 case BPF_JNE: 11317 if (is_jmp32) { 11318 __mark_reg32_known(false_reg, val32); 11319 false_32off = tnum_subreg(false_reg->var_off); 11320 } else { 11321 ___mark_reg_known(false_reg, val); 11322 false_64off = false_reg->var_off; 11323 } 11324 break; 11325 case BPF_JSET: 11326 if (is_jmp32) { 11327 false_32off = tnum_and(false_32off, tnum_const(~val32)); 11328 if (is_power_of_2(val32)) 11329 true_32off = tnum_or(true_32off, 11330 tnum_const(val32)); 11331 } else { 11332 false_64off = tnum_and(false_64off, tnum_const(~val)); 11333 if (is_power_of_2(val)) 11334 true_64off = tnum_or(true_64off, 11335 tnum_const(val)); 11336 } 11337 break; 11338 case BPF_JGE: 11339 case BPF_JGT: 11340 { 11341 if (is_jmp32) { 11342 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 11343 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 11344 11345 false_reg->u32_max_value = min(false_reg->u32_max_value, 11346 false_umax); 11347 true_reg->u32_min_value = max(true_reg->u32_min_value, 11348 true_umin); 11349 } else { 11350 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 11351 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 11352 11353 false_reg->umax_value = min(false_reg->umax_value, false_umax); 11354 true_reg->umin_value = max(true_reg->umin_value, true_umin); 11355 } 11356 break; 11357 } 11358 case BPF_JSGE: 11359 case BPF_JSGT: 11360 { 11361 if (is_jmp32) { 11362 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 11363 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 11364 11365 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 11366 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 11367 } else { 11368 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 11369 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 11370 11371 false_reg->smax_value = min(false_reg->smax_value, false_smax); 11372 true_reg->smin_value = max(true_reg->smin_value, true_smin); 11373 } 11374 break; 11375 } 11376 case BPF_JLE: 11377 case BPF_JLT: 11378 { 11379 if (is_jmp32) { 11380 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 11381 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 11382 11383 false_reg->u32_min_value = max(false_reg->u32_min_value, 11384 false_umin); 11385 true_reg->u32_max_value = min(true_reg->u32_max_value, 11386 true_umax); 11387 } else { 11388 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 11389 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 11390 11391 false_reg->umin_value = max(false_reg->umin_value, false_umin); 11392 true_reg->umax_value = min(true_reg->umax_value, true_umax); 11393 } 11394 break; 11395 } 11396 case BPF_JSLE: 11397 case BPF_JSLT: 11398 { 11399 if (is_jmp32) { 11400 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 11401 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 11402 11403 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 11404 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 11405 } else { 11406 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 11407 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 11408 11409 false_reg->smin_value = max(false_reg->smin_value, false_smin); 11410 true_reg->smax_value = min(true_reg->smax_value, true_smax); 11411 } 11412 break; 11413 } 11414 default: 11415 return; 11416 } 11417 11418 if (is_jmp32) { 11419 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 11420 tnum_subreg(false_32off)); 11421 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 11422 tnum_subreg(true_32off)); 11423 __reg_combine_32_into_64(false_reg); 11424 __reg_combine_32_into_64(true_reg); 11425 } else { 11426 false_reg->var_off = false_64off; 11427 true_reg->var_off = true_64off; 11428 __reg_combine_64_into_32(false_reg); 11429 __reg_combine_64_into_32(true_reg); 11430 } 11431 } 11432 11433 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 11434 * the variable reg. 11435 */ 11436 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 11437 struct bpf_reg_state *false_reg, 11438 u64 val, u32 val32, 11439 u8 opcode, bool is_jmp32) 11440 { 11441 opcode = flip_opcode(opcode); 11442 /* This uses zero as "not present in table"; luckily the zero opcode, 11443 * BPF_JA, can't get here. 11444 */ 11445 if (opcode) 11446 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 11447 } 11448 11449 /* Regs are known to be equal, so intersect their min/max/var_off */ 11450 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 11451 struct bpf_reg_state *dst_reg) 11452 { 11453 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 11454 dst_reg->umin_value); 11455 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 11456 dst_reg->umax_value); 11457 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 11458 dst_reg->smin_value); 11459 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 11460 dst_reg->smax_value); 11461 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 11462 dst_reg->var_off); 11463 reg_bounds_sync(src_reg); 11464 reg_bounds_sync(dst_reg); 11465 } 11466 11467 static void reg_combine_min_max(struct bpf_reg_state *true_src, 11468 struct bpf_reg_state *true_dst, 11469 struct bpf_reg_state *false_src, 11470 struct bpf_reg_state *false_dst, 11471 u8 opcode) 11472 { 11473 switch (opcode) { 11474 case BPF_JEQ: 11475 __reg_combine_min_max(true_src, true_dst); 11476 break; 11477 case BPF_JNE: 11478 __reg_combine_min_max(false_src, false_dst); 11479 break; 11480 } 11481 } 11482 11483 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 11484 struct bpf_reg_state *reg, u32 id, 11485 bool is_null) 11486 { 11487 if (type_may_be_null(reg->type) && reg->id == id && 11488 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 11489 /* Old offset (both fixed and variable parts) should have been 11490 * known-zero, because we don't allow pointer arithmetic on 11491 * pointers that might be NULL. If we see this happening, don't 11492 * convert the register. 11493 * 11494 * But in some cases, some helpers that return local kptrs 11495 * advance offset for the returned pointer. In those cases, it 11496 * is fine to expect to see reg->off. 11497 */ 11498 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 11499 return; 11500 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL) && WARN_ON_ONCE(reg->off)) 11501 return; 11502 if (is_null) { 11503 reg->type = SCALAR_VALUE; 11504 /* We don't need id and ref_obj_id from this point 11505 * onwards anymore, thus we should better reset it, 11506 * so that state pruning has chances to take effect. 11507 */ 11508 reg->id = 0; 11509 reg->ref_obj_id = 0; 11510 11511 return; 11512 } 11513 11514 mark_ptr_not_null_reg(reg); 11515 11516 if (!reg_may_point_to_spin_lock(reg)) { 11517 /* For not-NULL ptr, reg->ref_obj_id will be reset 11518 * in release_reference(). 11519 * 11520 * reg->id is still used by spin_lock ptr. Other 11521 * than spin_lock ptr type, reg->id can be reset. 11522 */ 11523 reg->id = 0; 11524 } 11525 } 11526 } 11527 11528 /* The logic is similar to find_good_pkt_pointers(), both could eventually 11529 * be folded together at some point. 11530 */ 11531 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 11532 bool is_null) 11533 { 11534 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 11535 struct bpf_reg_state *regs = state->regs, *reg; 11536 u32 ref_obj_id = regs[regno].ref_obj_id; 11537 u32 id = regs[regno].id; 11538 11539 if (ref_obj_id && ref_obj_id == id && is_null) 11540 /* regs[regno] is in the " == NULL" branch. 11541 * No one could have freed the reference state before 11542 * doing the NULL check. 11543 */ 11544 WARN_ON_ONCE(release_reference_state(state, id)); 11545 11546 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 11547 mark_ptr_or_null_reg(state, reg, id, is_null); 11548 })); 11549 } 11550 11551 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 11552 struct bpf_reg_state *dst_reg, 11553 struct bpf_reg_state *src_reg, 11554 struct bpf_verifier_state *this_branch, 11555 struct bpf_verifier_state *other_branch) 11556 { 11557 if (BPF_SRC(insn->code) != BPF_X) 11558 return false; 11559 11560 /* Pointers are always 64-bit. */ 11561 if (BPF_CLASS(insn->code) == BPF_JMP32) 11562 return false; 11563 11564 switch (BPF_OP(insn->code)) { 11565 case BPF_JGT: 11566 if ((dst_reg->type == PTR_TO_PACKET && 11567 src_reg->type == PTR_TO_PACKET_END) || 11568 (dst_reg->type == PTR_TO_PACKET_META && 11569 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 11570 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 11571 find_good_pkt_pointers(this_branch, dst_reg, 11572 dst_reg->type, false); 11573 mark_pkt_end(other_branch, insn->dst_reg, true); 11574 } else if ((dst_reg->type == PTR_TO_PACKET_END && 11575 src_reg->type == PTR_TO_PACKET) || 11576 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 11577 src_reg->type == PTR_TO_PACKET_META)) { 11578 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 11579 find_good_pkt_pointers(other_branch, src_reg, 11580 src_reg->type, true); 11581 mark_pkt_end(this_branch, insn->src_reg, false); 11582 } else { 11583 return false; 11584 } 11585 break; 11586 case BPF_JLT: 11587 if ((dst_reg->type == PTR_TO_PACKET && 11588 src_reg->type == PTR_TO_PACKET_END) || 11589 (dst_reg->type == PTR_TO_PACKET_META && 11590 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 11591 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 11592 find_good_pkt_pointers(other_branch, dst_reg, 11593 dst_reg->type, true); 11594 mark_pkt_end(this_branch, insn->dst_reg, false); 11595 } else if ((dst_reg->type == PTR_TO_PACKET_END && 11596 src_reg->type == PTR_TO_PACKET) || 11597 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 11598 src_reg->type == PTR_TO_PACKET_META)) { 11599 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 11600 find_good_pkt_pointers(this_branch, src_reg, 11601 src_reg->type, false); 11602 mark_pkt_end(other_branch, insn->src_reg, true); 11603 } else { 11604 return false; 11605 } 11606 break; 11607 case BPF_JGE: 11608 if ((dst_reg->type == PTR_TO_PACKET && 11609 src_reg->type == PTR_TO_PACKET_END) || 11610 (dst_reg->type == PTR_TO_PACKET_META && 11611 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 11612 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 11613 find_good_pkt_pointers(this_branch, dst_reg, 11614 dst_reg->type, true); 11615 mark_pkt_end(other_branch, insn->dst_reg, false); 11616 } else if ((dst_reg->type == PTR_TO_PACKET_END && 11617 src_reg->type == PTR_TO_PACKET) || 11618 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 11619 src_reg->type == PTR_TO_PACKET_META)) { 11620 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 11621 find_good_pkt_pointers(other_branch, src_reg, 11622 src_reg->type, false); 11623 mark_pkt_end(this_branch, insn->src_reg, true); 11624 } else { 11625 return false; 11626 } 11627 break; 11628 case BPF_JLE: 11629 if ((dst_reg->type == PTR_TO_PACKET && 11630 src_reg->type == PTR_TO_PACKET_END) || 11631 (dst_reg->type == PTR_TO_PACKET_META && 11632 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 11633 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 11634 find_good_pkt_pointers(other_branch, dst_reg, 11635 dst_reg->type, false); 11636 mark_pkt_end(this_branch, insn->dst_reg, true); 11637 } else if ((dst_reg->type == PTR_TO_PACKET_END && 11638 src_reg->type == PTR_TO_PACKET) || 11639 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 11640 src_reg->type == PTR_TO_PACKET_META)) { 11641 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 11642 find_good_pkt_pointers(this_branch, src_reg, 11643 src_reg->type, true); 11644 mark_pkt_end(other_branch, insn->src_reg, false); 11645 } else { 11646 return false; 11647 } 11648 break; 11649 default: 11650 return false; 11651 } 11652 11653 return true; 11654 } 11655 11656 static void find_equal_scalars(struct bpf_verifier_state *vstate, 11657 struct bpf_reg_state *known_reg) 11658 { 11659 struct bpf_func_state *state; 11660 struct bpf_reg_state *reg; 11661 11662 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 11663 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 11664 *reg = *known_reg; 11665 })); 11666 } 11667 11668 static int check_cond_jmp_op(struct bpf_verifier_env *env, 11669 struct bpf_insn *insn, int *insn_idx) 11670 { 11671 struct bpf_verifier_state *this_branch = env->cur_state; 11672 struct bpf_verifier_state *other_branch; 11673 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 11674 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 11675 struct bpf_reg_state *eq_branch_regs; 11676 u8 opcode = BPF_OP(insn->code); 11677 bool is_jmp32; 11678 int pred = -1; 11679 int err; 11680 11681 /* Only conditional jumps are expected to reach here. */ 11682 if (opcode == BPF_JA || opcode > BPF_JSLE) { 11683 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 11684 return -EINVAL; 11685 } 11686 11687 if (BPF_SRC(insn->code) == BPF_X) { 11688 if (insn->imm != 0) { 11689 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 11690 return -EINVAL; 11691 } 11692 11693 /* check src1 operand */ 11694 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11695 if (err) 11696 return err; 11697 11698 if (is_pointer_value(env, insn->src_reg)) { 11699 verbose(env, "R%d pointer comparison prohibited\n", 11700 insn->src_reg); 11701 return -EACCES; 11702 } 11703 src_reg = ®s[insn->src_reg]; 11704 } else { 11705 if (insn->src_reg != BPF_REG_0) { 11706 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 11707 return -EINVAL; 11708 } 11709 } 11710 11711 /* check src2 operand */ 11712 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11713 if (err) 11714 return err; 11715 11716 dst_reg = ®s[insn->dst_reg]; 11717 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 11718 11719 if (BPF_SRC(insn->code) == BPF_K) { 11720 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 11721 } else if (src_reg->type == SCALAR_VALUE && 11722 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 11723 pred = is_branch_taken(dst_reg, 11724 tnum_subreg(src_reg->var_off).value, 11725 opcode, 11726 is_jmp32); 11727 } else if (src_reg->type == SCALAR_VALUE && 11728 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 11729 pred = is_branch_taken(dst_reg, 11730 src_reg->var_off.value, 11731 opcode, 11732 is_jmp32); 11733 } else if (reg_is_pkt_pointer_any(dst_reg) && 11734 reg_is_pkt_pointer_any(src_reg) && 11735 !is_jmp32) { 11736 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 11737 } 11738 11739 if (pred >= 0) { 11740 /* If we get here with a dst_reg pointer type it is because 11741 * above is_branch_taken() special cased the 0 comparison. 11742 */ 11743 if (!__is_pointer_value(false, dst_reg)) 11744 err = mark_chain_precision(env, insn->dst_reg); 11745 if (BPF_SRC(insn->code) == BPF_X && !err && 11746 !__is_pointer_value(false, src_reg)) 11747 err = mark_chain_precision(env, insn->src_reg); 11748 if (err) 11749 return err; 11750 } 11751 11752 if (pred == 1) { 11753 /* Only follow the goto, ignore fall-through. If needed, push 11754 * the fall-through branch for simulation under speculative 11755 * execution. 11756 */ 11757 if (!env->bypass_spec_v1 && 11758 !sanitize_speculative_path(env, insn, *insn_idx + 1, 11759 *insn_idx)) 11760 return -EFAULT; 11761 *insn_idx += insn->off; 11762 return 0; 11763 } else if (pred == 0) { 11764 /* Only follow the fall-through branch, since that's where the 11765 * program will go. If needed, push the goto branch for 11766 * simulation under speculative execution. 11767 */ 11768 if (!env->bypass_spec_v1 && 11769 !sanitize_speculative_path(env, insn, 11770 *insn_idx + insn->off + 1, 11771 *insn_idx)) 11772 return -EFAULT; 11773 return 0; 11774 } 11775 11776 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 11777 false); 11778 if (!other_branch) 11779 return -EFAULT; 11780 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 11781 11782 /* detect if we are comparing against a constant value so we can adjust 11783 * our min/max values for our dst register. 11784 * this is only legit if both are scalars (or pointers to the same 11785 * object, I suppose, see the PTR_MAYBE_NULL related if block below), 11786 * because otherwise the different base pointers mean the offsets aren't 11787 * comparable. 11788 */ 11789 if (BPF_SRC(insn->code) == BPF_X) { 11790 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 11791 11792 if (dst_reg->type == SCALAR_VALUE && 11793 src_reg->type == SCALAR_VALUE) { 11794 if (tnum_is_const(src_reg->var_off) || 11795 (is_jmp32 && 11796 tnum_is_const(tnum_subreg(src_reg->var_off)))) 11797 reg_set_min_max(&other_branch_regs[insn->dst_reg], 11798 dst_reg, 11799 src_reg->var_off.value, 11800 tnum_subreg(src_reg->var_off).value, 11801 opcode, is_jmp32); 11802 else if (tnum_is_const(dst_reg->var_off) || 11803 (is_jmp32 && 11804 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 11805 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 11806 src_reg, 11807 dst_reg->var_off.value, 11808 tnum_subreg(dst_reg->var_off).value, 11809 opcode, is_jmp32); 11810 else if (!is_jmp32 && 11811 (opcode == BPF_JEQ || opcode == BPF_JNE)) 11812 /* Comparing for equality, we can combine knowledge */ 11813 reg_combine_min_max(&other_branch_regs[insn->src_reg], 11814 &other_branch_regs[insn->dst_reg], 11815 src_reg, dst_reg, opcode); 11816 if (src_reg->id && 11817 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 11818 find_equal_scalars(this_branch, src_reg); 11819 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 11820 } 11821 11822 } 11823 } else if (dst_reg->type == SCALAR_VALUE) { 11824 reg_set_min_max(&other_branch_regs[insn->dst_reg], 11825 dst_reg, insn->imm, (u32)insn->imm, 11826 opcode, is_jmp32); 11827 } 11828 11829 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 11830 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 11831 find_equal_scalars(this_branch, dst_reg); 11832 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 11833 } 11834 11835 /* if one pointer register is compared to another pointer 11836 * register check if PTR_MAYBE_NULL could be lifted. 11837 * E.g. register A - maybe null 11838 * register B - not null 11839 * for JNE A, B, ... - A is not null in the false branch; 11840 * for JEQ A, B, ... - A is not null in the true branch. 11841 * 11842 * Since PTR_TO_BTF_ID points to a kernel struct that does 11843 * not need to be null checked by the BPF program, i.e., 11844 * could be null even without PTR_MAYBE_NULL marking, so 11845 * only propagate nullness when neither reg is that type. 11846 */ 11847 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 11848 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 11849 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 11850 base_type(src_reg->type) != PTR_TO_BTF_ID && 11851 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 11852 eq_branch_regs = NULL; 11853 switch (opcode) { 11854 case BPF_JEQ: 11855 eq_branch_regs = other_branch_regs; 11856 break; 11857 case BPF_JNE: 11858 eq_branch_regs = regs; 11859 break; 11860 default: 11861 /* do nothing */ 11862 break; 11863 } 11864 if (eq_branch_regs) { 11865 if (type_may_be_null(src_reg->type)) 11866 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 11867 else 11868 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 11869 } 11870 } 11871 11872 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 11873 * NOTE: these optimizations below are related with pointer comparison 11874 * which will never be JMP32. 11875 */ 11876 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 11877 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 11878 type_may_be_null(dst_reg->type)) { 11879 /* Mark all identical registers in each branch as either 11880 * safe or unknown depending R == 0 or R != 0 conditional. 11881 */ 11882 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 11883 opcode == BPF_JNE); 11884 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 11885 opcode == BPF_JEQ); 11886 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 11887 this_branch, other_branch) && 11888 is_pointer_value(env, insn->dst_reg)) { 11889 verbose(env, "R%d pointer comparison prohibited\n", 11890 insn->dst_reg); 11891 return -EACCES; 11892 } 11893 if (env->log.level & BPF_LOG_LEVEL) 11894 print_insn_state(env, this_branch->frame[this_branch->curframe]); 11895 return 0; 11896 } 11897 11898 /* verify BPF_LD_IMM64 instruction */ 11899 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 11900 { 11901 struct bpf_insn_aux_data *aux = cur_aux(env); 11902 struct bpf_reg_state *regs = cur_regs(env); 11903 struct bpf_reg_state *dst_reg; 11904 struct bpf_map *map; 11905 int err; 11906 11907 if (BPF_SIZE(insn->code) != BPF_DW) { 11908 verbose(env, "invalid BPF_LD_IMM insn\n"); 11909 return -EINVAL; 11910 } 11911 if (insn->off != 0) { 11912 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 11913 return -EINVAL; 11914 } 11915 11916 err = check_reg_arg(env, insn->dst_reg, DST_OP); 11917 if (err) 11918 return err; 11919 11920 dst_reg = ®s[insn->dst_reg]; 11921 if (insn->src_reg == 0) { 11922 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 11923 11924 dst_reg->type = SCALAR_VALUE; 11925 __mark_reg_known(®s[insn->dst_reg], imm); 11926 return 0; 11927 } 11928 11929 /* All special src_reg cases are listed below. From this point onwards 11930 * we either succeed and assign a corresponding dst_reg->type after 11931 * zeroing the offset, or fail and reject the program. 11932 */ 11933 mark_reg_known_zero(env, regs, insn->dst_reg); 11934 11935 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 11936 dst_reg->type = aux->btf_var.reg_type; 11937 switch (base_type(dst_reg->type)) { 11938 case PTR_TO_MEM: 11939 dst_reg->mem_size = aux->btf_var.mem_size; 11940 break; 11941 case PTR_TO_BTF_ID: 11942 dst_reg->btf = aux->btf_var.btf; 11943 dst_reg->btf_id = aux->btf_var.btf_id; 11944 break; 11945 default: 11946 verbose(env, "bpf verifier is misconfigured\n"); 11947 return -EFAULT; 11948 } 11949 return 0; 11950 } 11951 11952 if (insn->src_reg == BPF_PSEUDO_FUNC) { 11953 struct bpf_prog_aux *aux = env->prog->aux; 11954 u32 subprogno = find_subprog(env, 11955 env->insn_idx + insn->imm + 1); 11956 11957 if (!aux->func_info) { 11958 verbose(env, "missing btf func_info\n"); 11959 return -EINVAL; 11960 } 11961 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 11962 verbose(env, "callback function not static\n"); 11963 return -EINVAL; 11964 } 11965 11966 dst_reg->type = PTR_TO_FUNC; 11967 dst_reg->subprogno = subprogno; 11968 return 0; 11969 } 11970 11971 map = env->used_maps[aux->map_index]; 11972 dst_reg->map_ptr = map; 11973 11974 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 11975 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 11976 dst_reg->type = PTR_TO_MAP_VALUE; 11977 dst_reg->off = aux->map_off; 11978 WARN_ON_ONCE(map->max_entries != 1); 11979 /* We want reg->id to be same (0) as map_value is not distinct */ 11980 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 11981 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 11982 dst_reg->type = CONST_PTR_TO_MAP; 11983 } else { 11984 verbose(env, "bpf verifier is misconfigured\n"); 11985 return -EINVAL; 11986 } 11987 11988 return 0; 11989 } 11990 11991 static bool may_access_skb(enum bpf_prog_type type) 11992 { 11993 switch (type) { 11994 case BPF_PROG_TYPE_SOCKET_FILTER: 11995 case BPF_PROG_TYPE_SCHED_CLS: 11996 case BPF_PROG_TYPE_SCHED_ACT: 11997 return true; 11998 default: 11999 return false; 12000 } 12001 } 12002 12003 /* verify safety of LD_ABS|LD_IND instructions: 12004 * - they can only appear in the programs where ctx == skb 12005 * - since they are wrappers of function calls, they scratch R1-R5 registers, 12006 * preserve R6-R9, and store return value into R0 12007 * 12008 * Implicit input: 12009 * ctx == skb == R6 == CTX 12010 * 12011 * Explicit input: 12012 * SRC == any register 12013 * IMM == 32-bit immediate 12014 * 12015 * Output: 12016 * R0 - 8/16/32-bit skb data converted to cpu endianness 12017 */ 12018 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 12019 { 12020 struct bpf_reg_state *regs = cur_regs(env); 12021 static const int ctx_reg = BPF_REG_6; 12022 u8 mode = BPF_MODE(insn->code); 12023 int i, err; 12024 12025 if (!may_access_skb(resolve_prog_type(env->prog))) { 12026 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 12027 return -EINVAL; 12028 } 12029 12030 if (!env->ops->gen_ld_abs) { 12031 verbose(env, "bpf verifier is misconfigured\n"); 12032 return -EINVAL; 12033 } 12034 12035 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 12036 BPF_SIZE(insn->code) == BPF_DW || 12037 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 12038 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 12039 return -EINVAL; 12040 } 12041 12042 /* check whether implicit source operand (register R6) is readable */ 12043 err = check_reg_arg(env, ctx_reg, SRC_OP); 12044 if (err) 12045 return err; 12046 12047 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 12048 * gen_ld_abs() may terminate the program at runtime, leading to 12049 * reference leak. 12050 */ 12051 err = check_reference_leak(env); 12052 if (err) { 12053 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 12054 return err; 12055 } 12056 12057 if (env->cur_state->active_lock.ptr) { 12058 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 12059 return -EINVAL; 12060 } 12061 12062 if (env->cur_state->active_rcu_lock) { 12063 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 12064 return -EINVAL; 12065 } 12066 12067 if (regs[ctx_reg].type != PTR_TO_CTX) { 12068 verbose(env, 12069 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 12070 return -EINVAL; 12071 } 12072 12073 if (mode == BPF_IND) { 12074 /* check explicit source operand */ 12075 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12076 if (err) 12077 return err; 12078 } 12079 12080 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 12081 if (err < 0) 12082 return err; 12083 12084 /* reset caller saved regs to unreadable */ 12085 for (i = 0; i < CALLER_SAVED_REGS; i++) { 12086 mark_reg_not_init(env, regs, caller_saved[i]); 12087 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 12088 } 12089 12090 /* mark destination R0 register as readable, since it contains 12091 * the value fetched from the packet. 12092 * Already marked as written above. 12093 */ 12094 mark_reg_unknown(env, regs, BPF_REG_0); 12095 /* ld_abs load up to 32-bit skb data. */ 12096 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 12097 return 0; 12098 } 12099 12100 static int check_return_code(struct bpf_verifier_env *env) 12101 { 12102 struct tnum enforce_attach_type_range = tnum_unknown; 12103 const struct bpf_prog *prog = env->prog; 12104 struct bpf_reg_state *reg; 12105 struct tnum range = tnum_range(0, 1); 12106 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 12107 int err; 12108 struct bpf_func_state *frame = env->cur_state->frame[0]; 12109 const bool is_subprog = frame->subprogno; 12110 12111 /* LSM and struct_ops func-ptr's return type could be "void" */ 12112 if (!is_subprog) { 12113 switch (prog_type) { 12114 case BPF_PROG_TYPE_LSM: 12115 if (prog->expected_attach_type == BPF_LSM_CGROUP) 12116 /* See below, can be 0 or 0-1 depending on hook. */ 12117 break; 12118 fallthrough; 12119 case BPF_PROG_TYPE_STRUCT_OPS: 12120 if (!prog->aux->attach_func_proto->type) 12121 return 0; 12122 break; 12123 default: 12124 break; 12125 } 12126 } 12127 12128 /* eBPF calling convention is such that R0 is used 12129 * to return the value from eBPF program. 12130 * Make sure that it's readable at this time 12131 * of bpf_exit, which means that program wrote 12132 * something into it earlier 12133 */ 12134 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 12135 if (err) 12136 return err; 12137 12138 if (is_pointer_value(env, BPF_REG_0)) { 12139 verbose(env, "R0 leaks addr as return value\n"); 12140 return -EACCES; 12141 } 12142 12143 reg = cur_regs(env) + BPF_REG_0; 12144 12145 if (frame->in_async_callback_fn) { 12146 /* enforce return zero from async callbacks like timer */ 12147 if (reg->type != SCALAR_VALUE) { 12148 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 12149 reg_type_str(env, reg->type)); 12150 return -EINVAL; 12151 } 12152 12153 if (!tnum_in(tnum_const(0), reg->var_off)) { 12154 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 12155 return -EINVAL; 12156 } 12157 return 0; 12158 } 12159 12160 if (is_subprog) { 12161 if (reg->type != SCALAR_VALUE) { 12162 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 12163 reg_type_str(env, reg->type)); 12164 return -EINVAL; 12165 } 12166 return 0; 12167 } 12168 12169 switch (prog_type) { 12170 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 12171 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 12172 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 12173 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 12174 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 12175 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 12176 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 12177 range = tnum_range(1, 1); 12178 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 12179 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 12180 range = tnum_range(0, 3); 12181 break; 12182 case BPF_PROG_TYPE_CGROUP_SKB: 12183 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 12184 range = tnum_range(0, 3); 12185 enforce_attach_type_range = tnum_range(2, 3); 12186 } 12187 break; 12188 case BPF_PROG_TYPE_CGROUP_SOCK: 12189 case BPF_PROG_TYPE_SOCK_OPS: 12190 case BPF_PROG_TYPE_CGROUP_DEVICE: 12191 case BPF_PROG_TYPE_CGROUP_SYSCTL: 12192 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 12193 break; 12194 case BPF_PROG_TYPE_RAW_TRACEPOINT: 12195 if (!env->prog->aux->attach_btf_id) 12196 return 0; 12197 range = tnum_const(0); 12198 break; 12199 case BPF_PROG_TYPE_TRACING: 12200 switch (env->prog->expected_attach_type) { 12201 case BPF_TRACE_FENTRY: 12202 case BPF_TRACE_FEXIT: 12203 range = tnum_const(0); 12204 break; 12205 case BPF_TRACE_RAW_TP: 12206 case BPF_MODIFY_RETURN: 12207 return 0; 12208 case BPF_TRACE_ITER: 12209 break; 12210 default: 12211 return -ENOTSUPP; 12212 } 12213 break; 12214 case BPF_PROG_TYPE_SK_LOOKUP: 12215 range = tnum_range(SK_DROP, SK_PASS); 12216 break; 12217 12218 case BPF_PROG_TYPE_LSM: 12219 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 12220 /* Regular BPF_PROG_TYPE_LSM programs can return 12221 * any value. 12222 */ 12223 return 0; 12224 } 12225 if (!env->prog->aux->attach_func_proto->type) { 12226 /* Make sure programs that attach to void 12227 * hooks don't try to modify return value. 12228 */ 12229 range = tnum_range(1, 1); 12230 } 12231 break; 12232 12233 case BPF_PROG_TYPE_EXT: 12234 /* freplace program can return anything as its return value 12235 * depends on the to-be-replaced kernel func or bpf program. 12236 */ 12237 default: 12238 return 0; 12239 } 12240 12241 if (reg->type != SCALAR_VALUE) { 12242 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 12243 reg_type_str(env, reg->type)); 12244 return -EINVAL; 12245 } 12246 12247 if (!tnum_in(range, reg->var_off)) { 12248 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 12249 if (prog->expected_attach_type == BPF_LSM_CGROUP && 12250 prog_type == BPF_PROG_TYPE_LSM && 12251 !prog->aux->attach_func_proto->type) 12252 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 12253 return -EINVAL; 12254 } 12255 12256 if (!tnum_is_unknown(enforce_attach_type_range) && 12257 tnum_in(enforce_attach_type_range, reg->var_off)) 12258 env->prog->enforce_expected_attach_type = 1; 12259 return 0; 12260 } 12261 12262 /* non-recursive DFS pseudo code 12263 * 1 procedure DFS-iterative(G,v): 12264 * 2 label v as discovered 12265 * 3 let S be a stack 12266 * 4 S.push(v) 12267 * 5 while S is not empty 12268 * 6 t <- S.peek() 12269 * 7 if t is what we're looking for: 12270 * 8 return t 12271 * 9 for all edges e in G.adjacentEdges(t) do 12272 * 10 if edge e is already labelled 12273 * 11 continue with the next edge 12274 * 12 w <- G.adjacentVertex(t,e) 12275 * 13 if vertex w is not discovered and not explored 12276 * 14 label e as tree-edge 12277 * 15 label w as discovered 12278 * 16 S.push(w) 12279 * 17 continue at 5 12280 * 18 else if vertex w is discovered 12281 * 19 label e as back-edge 12282 * 20 else 12283 * 21 // vertex w is explored 12284 * 22 label e as forward- or cross-edge 12285 * 23 label t as explored 12286 * 24 S.pop() 12287 * 12288 * convention: 12289 * 0x10 - discovered 12290 * 0x11 - discovered and fall-through edge labelled 12291 * 0x12 - discovered and fall-through and branch edges labelled 12292 * 0x20 - explored 12293 */ 12294 12295 enum { 12296 DISCOVERED = 0x10, 12297 EXPLORED = 0x20, 12298 FALLTHROUGH = 1, 12299 BRANCH = 2, 12300 }; 12301 12302 static u32 state_htab_size(struct bpf_verifier_env *env) 12303 { 12304 return env->prog->len; 12305 } 12306 12307 static struct bpf_verifier_state_list **explored_state( 12308 struct bpf_verifier_env *env, 12309 int idx) 12310 { 12311 struct bpf_verifier_state *cur = env->cur_state; 12312 struct bpf_func_state *state = cur->frame[cur->curframe]; 12313 12314 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 12315 } 12316 12317 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 12318 { 12319 env->insn_aux_data[idx].prune_point = true; 12320 } 12321 12322 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 12323 { 12324 return env->insn_aux_data[insn_idx].prune_point; 12325 } 12326 12327 enum { 12328 DONE_EXPLORING = 0, 12329 KEEP_EXPLORING = 1, 12330 }; 12331 12332 /* t, w, e - match pseudo-code above: 12333 * t - index of current instruction 12334 * w - next instruction 12335 * e - edge 12336 */ 12337 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 12338 bool loop_ok) 12339 { 12340 int *insn_stack = env->cfg.insn_stack; 12341 int *insn_state = env->cfg.insn_state; 12342 12343 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 12344 return DONE_EXPLORING; 12345 12346 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 12347 return DONE_EXPLORING; 12348 12349 if (w < 0 || w >= env->prog->len) { 12350 verbose_linfo(env, t, "%d: ", t); 12351 verbose(env, "jump out of range from insn %d to %d\n", t, w); 12352 return -EINVAL; 12353 } 12354 12355 if (e == BRANCH) { 12356 /* mark branch target for state pruning */ 12357 mark_prune_point(env, w); 12358 mark_jmp_point(env, w); 12359 } 12360 12361 if (insn_state[w] == 0) { 12362 /* tree-edge */ 12363 insn_state[t] = DISCOVERED | e; 12364 insn_state[w] = DISCOVERED; 12365 if (env->cfg.cur_stack >= env->prog->len) 12366 return -E2BIG; 12367 insn_stack[env->cfg.cur_stack++] = w; 12368 return KEEP_EXPLORING; 12369 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 12370 if (loop_ok && env->bpf_capable) 12371 return DONE_EXPLORING; 12372 verbose_linfo(env, t, "%d: ", t); 12373 verbose_linfo(env, w, "%d: ", w); 12374 verbose(env, "back-edge from insn %d to %d\n", t, w); 12375 return -EINVAL; 12376 } else if (insn_state[w] == EXPLORED) { 12377 /* forward- or cross-edge */ 12378 insn_state[t] = DISCOVERED | e; 12379 } else { 12380 verbose(env, "insn state internal bug\n"); 12381 return -EFAULT; 12382 } 12383 return DONE_EXPLORING; 12384 } 12385 12386 static int visit_func_call_insn(int t, struct bpf_insn *insns, 12387 struct bpf_verifier_env *env, 12388 bool visit_callee) 12389 { 12390 int ret; 12391 12392 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 12393 if (ret) 12394 return ret; 12395 12396 mark_prune_point(env, t + 1); 12397 /* when we exit from subprog, we need to record non-linear history */ 12398 mark_jmp_point(env, t + 1); 12399 12400 if (visit_callee) { 12401 mark_prune_point(env, t); 12402 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 12403 /* It's ok to allow recursion from CFG point of 12404 * view. __check_func_call() will do the actual 12405 * check. 12406 */ 12407 bpf_pseudo_func(insns + t)); 12408 } 12409 return ret; 12410 } 12411 12412 /* Visits the instruction at index t and returns one of the following: 12413 * < 0 - an error occurred 12414 * DONE_EXPLORING - the instruction was fully explored 12415 * KEEP_EXPLORING - there is still work to be done before it is fully explored 12416 */ 12417 static int visit_insn(int t, struct bpf_verifier_env *env) 12418 { 12419 struct bpf_insn *insns = env->prog->insnsi; 12420 int ret; 12421 12422 if (bpf_pseudo_func(insns + t)) 12423 return visit_func_call_insn(t, insns, env, true); 12424 12425 /* All non-branch instructions have a single fall-through edge. */ 12426 if (BPF_CLASS(insns[t].code) != BPF_JMP && 12427 BPF_CLASS(insns[t].code) != BPF_JMP32) 12428 return push_insn(t, t + 1, FALLTHROUGH, env, false); 12429 12430 switch (BPF_OP(insns[t].code)) { 12431 case BPF_EXIT: 12432 return DONE_EXPLORING; 12433 12434 case BPF_CALL: 12435 if (insns[t].imm == BPF_FUNC_timer_set_callback) 12436 /* Mark this call insn as a prune point to trigger 12437 * is_state_visited() check before call itself is 12438 * processed by __check_func_call(). Otherwise new 12439 * async state will be pushed for further exploration. 12440 */ 12441 mark_prune_point(env, t); 12442 return visit_func_call_insn(t, insns, env, 12443 insns[t].src_reg == BPF_PSEUDO_CALL); 12444 12445 case BPF_JA: 12446 if (BPF_SRC(insns[t].code) != BPF_K) 12447 return -EINVAL; 12448 12449 /* unconditional jump with single edge */ 12450 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 12451 true); 12452 if (ret) 12453 return ret; 12454 12455 mark_prune_point(env, t + insns[t].off + 1); 12456 mark_jmp_point(env, t + insns[t].off + 1); 12457 12458 return ret; 12459 12460 default: 12461 /* conditional jump with two edges */ 12462 mark_prune_point(env, t); 12463 12464 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 12465 if (ret) 12466 return ret; 12467 12468 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 12469 } 12470 } 12471 12472 /* non-recursive depth-first-search to detect loops in BPF program 12473 * loop == back-edge in directed graph 12474 */ 12475 static int check_cfg(struct bpf_verifier_env *env) 12476 { 12477 int insn_cnt = env->prog->len; 12478 int *insn_stack, *insn_state; 12479 int ret = 0; 12480 int i; 12481 12482 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 12483 if (!insn_state) 12484 return -ENOMEM; 12485 12486 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 12487 if (!insn_stack) { 12488 kvfree(insn_state); 12489 return -ENOMEM; 12490 } 12491 12492 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 12493 insn_stack[0] = 0; /* 0 is the first instruction */ 12494 env->cfg.cur_stack = 1; 12495 12496 while (env->cfg.cur_stack > 0) { 12497 int t = insn_stack[env->cfg.cur_stack - 1]; 12498 12499 ret = visit_insn(t, env); 12500 switch (ret) { 12501 case DONE_EXPLORING: 12502 insn_state[t] = EXPLORED; 12503 env->cfg.cur_stack--; 12504 break; 12505 case KEEP_EXPLORING: 12506 break; 12507 default: 12508 if (ret > 0) { 12509 verbose(env, "visit_insn internal bug\n"); 12510 ret = -EFAULT; 12511 } 12512 goto err_free; 12513 } 12514 } 12515 12516 if (env->cfg.cur_stack < 0) { 12517 verbose(env, "pop stack internal bug\n"); 12518 ret = -EFAULT; 12519 goto err_free; 12520 } 12521 12522 for (i = 0; i < insn_cnt; i++) { 12523 if (insn_state[i] != EXPLORED) { 12524 verbose(env, "unreachable insn %d\n", i); 12525 ret = -EINVAL; 12526 goto err_free; 12527 } 12528 } 12529 ret = 0; /* cfg looks good */ 12530 12531 err_free: 12532 kvfree(insn_state); 12533 kvfree(insn_stack); 12534 env->cfg.insn_state = env->cfg.insn_stack = NULL; 12535 return ret; 12536 } 12537 12538 static int check_abnormal_return(struct bpf_verifier_env *env) 12539 { 12540 int i; 12541 12542 for (i = 1; i < env->subprog_cnt; i++) { 12543 if (env->subprog_info[i].has_ld_abs) { 12544 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 12545 return -EINVAL; 12546 } 12547 if (env->subprog_info[i].has_tail_call) { 12548 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 12549 return -EINVAL; 12550 } 12551 } 12552 return 0; 12553 } 12554 12555 /* The minimum supported BTF func info size */ 12556 #define MIN_BPF_FUNCINFO_SIZE 8 12557 #define MAX_FUNCINFO_REC_SIZE 252 12558 12559 static int check_btf_func(struct bpf_verifier_env *env, 12560 const union bpf_attr *attr, 12561 bpfptr_t uattr) 12562 { 12563 const struct btf_type *type, *func_proto, *ret_type; 12564 u32 i, nfuncs, urec_size, min_size; 12565 u32 krec_size = sizeof(struct bpf_func_info); 12566 struct bpf_func_info *krecord; 12567 struct bpf_func_info_aux *info_aux = NULL; 12568 struct bpf_prog *prog; 12569 const struct btf *btf; 12570 bpfptr_t urecord; 12571 u32 prev_offset = 0; 12572 bool scalar_return; 12573 int ret = -ENOMEM; 12574 12575 nfuncs = attr->func_info_cnt; 12576 if (!nfuncs) { 12577 if (check_abnormal_return(env)) 12578 return -EINVAL; 12579 return 0; 12580 } 12581 12582 if (nfuncs != env->subprog_cnt) { 12583 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 12584 return -EINVAL; 12585 } 12586 12587 urec_size = attr->func_info_rec_size; 12588 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 12589 urec_size > MAX_FUNCINFO_REC_SIZE || 12590 urec_size % sizeof(u32)) { 12591 verbose(env, "invalid func info rec size %u\n", urec_size); 12592 return -EINVAL; 12593 } 12594 12595 prog = env->prog; 12596 btf = prog->aux->btf; 12597 12598 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 12599 min_size = min_t(u32, krec_size, urec_size); 12600 12601 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 12602 if (!krecord) 12603 return -ENOMEM; 12604 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 12605 if (!info_aux) 12606 goto err_free; 12607 12608 for (i = 0; i < nfuncs; i++) { 12609 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 12610 if (ret) { 12611 if (ret == -E2BIG) { 12612 verbose(env, "nonzero tailing record in func info"); 12613 /* set the size kernel expects so loader can zero 12614 * out the rest of the record. 12615 */ 12616 if (copy_to_bpfptr_offset(uattr, 12617 offsetof(union bpf_attr, func_info_rec_size), 12618 &min_size, sizeof(min_size))) 12619 ret = -EFAULT; 12620 } 12621 goto err_free; 12622 } 12623 12624 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 12625 ret = -EFAULT; 12626 goto err_free; 12627 } 12628 12629 /* check insn_off */ 12630 ret = -EINVAL; 12631 if (i == 0) { 12632 if (krecord[i].insn_off) { 12633 verbose(env, 12634 "nonzero insn_off %u for the first func info record", 12635 krecord[i].insn_off); 12636 goto err_free; 12637 } 12638 } else if (krecord[i].insn_off <= prev_offset) { 12639 verbose(env, 12640 "same or smaller insn offset (%u) than previous func info record (%u)", 12641 krecord[i].insn_off, prev_offset); 12642 goto err_free; 12643 } 12644 12645 if (env->subprog_info[i].start != krecord[i].insn_off) { 12646 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 12647 goto err_free; 12648 } 12649 12650 /* check type_id */ 12651 type = btf_type_by_id(btf, krecord[i].type_id); 12652 if (!type || !btf_type_is_func(type)) { 12653 verbose(env, "invalid type id %d in func info", 12654 krecord[i].type_id); 12655 goto err_free; 12656 } 12657 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 12658 12659 func_proto = btf_type_by_id(btf, type->type); 12660 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 12661 /* btf_func_check() already verified it during BTF load */ 12662 goto err_free; 12663 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 12664 scalar_return = 12665 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 12666 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 12667 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 12668 goto err_free; 12669 } 12670 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 12671 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 12672 goto err_free; 12673 } 12674 12675 prev_offset = krecord[i].insn_off; 12676 bpfptr_add(&urecord, urec_size); 12677 } 12678 12679 prog->aux->func_info = krecord; 12680 prog->aux->func_info_cnt = nfuncs; 12681 prog->aux->func_info_aux = info_aux; 12682 return 0; 12683 12684 err_free: 12685 kvfree(krecord); 12686 kfree(info_aux); 12687 return ret; 12688 } 12689 12690 static void adjust_btf_func(struct bpf_verifier_env *env) 12691 { 12692 struct bpf_prog_aux *aux = env->prog->aux; 12693 int i; 12694 12695 if (!aux->func_info) 12696 return; 12697 12698 for (i = 0; i < env->subprog_cnt; i++) 12699 aux->func_info[i].insn_off = env->subprog_info[i].start; 12700 } 12701 12702 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 12703 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 12704 12705 static int check_btf_line(struct bpf_verifier_env *env, 12706 const union bpf_attr *attr, 12707 bpfptr_t uattr) 12708 { 12709 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 12710 struct bpf_subprog_info *sub; 12711 struct bpf_line_info *linfo; 12712 struct bpf_prog *prog; 12713 const struct btf *btf; 12714 bpfptr_t ulinfo; 12715 int err; 12716 12717 nr_linfo = attr->line_info_cnt; 12718 if (!nr_linfo) 12719 return 0; 12720 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 12721 return -EINVAL; 12722 12723 rec_size = attr->line_info_rec_size; 12724 if (rec_size < MIN_BPF_LINEINFO_SIZE || 12725 rec_size > MAX_LINEINFO_REC_SIZE || 12726 rec_size & (sizeof(u32) - 1)) 12727 return -EINVAL; 12728 12729 /* Need to zero it in case the userspace may 12730 * pass in a smaller bpf_line_info object. 12731 */ 12732 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 12733 GFP_KERNEL | __GFP_NOWARN); 12734 if (!linfo) 12735 return -ENOMEM; 12736 12737 prog = env->prog; 12738 btf = prog->aux->btf; 12739 12740 s = 0; 12741 sub = env->subprog_info; 12742 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 12743 expected_size = sizeof(struct bpf_line_info); 12744 ncopy = min_t(u32, expected_size, rec_size); 12745 for (i = 0; i < nr_linfo; i++) { 12746 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 12747 if (err) { 12748 if (err == -E2BIG) { 12749 verbose(env, "nonzero tailing record in line_info"); 12750 if (copy_to_bpfptr_offset(uattr, 12751 offsetof(union bpf_attr, line_info_rec_size), 12752 &expected_size, sizeof(expected_size))) 12753 err = -EFAULT; 12754 } 12755 goto err_free; 12756 } 12757 12758 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 12759 err = -EFAULT; 12760 goto err_free; 12761 } 12762 12763 /* 12764 * Check insn_off to ensure 12765 * 1) strictly increasing AND 12766 * 2) bounded by prog->len 12767 * 12768 * The linfo[0].insn_off == 0 check logically falls into 12769 * the later "missing bpf_line_info for func..." case 12770 * because the first linfo[0].insn_off must be the 12771 * first sub also and the first sub must have 12772 * subprog_info[0].start == 0. 12773 */ 12774 if ((i && linfo[i].insn_off <= prev_offset) || 12775 linfo[i].insn_off >= prog->len) { 12776 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 12777 i, linfo[i].insn_off, prev_offset, 12778 prog->len); 12779 err = -EINVAL; 12780 goto err_free; 12781 } 12782 12783 if (!prog->insnsi[linfo[i].insn_off].code) { 12784 verbose(env, 12785 "Invalid insn code at line_info[%u].insn_off\n", 12786 i); 12787 err = -EINVAL; 12788 goto err_free; 12789 } 12790 12791 if (!btf_name_by_offset(btf, linfo[i].line_off) || 12792 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 12793 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 12794 err = -EINVAL; 12795 goto err_free; 12796 } 12797 12798 if (s != env->subprog_cnt) { 12799 if (linfo[i].insn_off == sub[s].start) { 12800 sub[s].linfo_idx = i; 12801 s++; 12802 } else if (sub[s].start < linfo[i].insn_off) { 12803 verbose(env, "missing bpf_line_info for func#%u\n", s); 12804 err = -EINVAL; 12805 goto err_free; 12806 } 12807 } 12808 12809 prev_offset = linfo[i].insn_off; 12810 bpfptr_add(&ulinfo, rec_size); 12811 } 12812 12813 if (s != env->subprog_cnt) { 12814 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 12815 env->subprog_cnt - s, s); 12816 err = -EINVAL; 12817 goto err_free; 12818 } 12819 12820 prog->aux->linfo = linfo; 12821 prog->aux->nr_linfo = nr_linfo; 12822 12823 return 0; 12824 12825 err_free: 12826 kvfree(linfo); 12827 return err; 12828 } 12829 12830 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 12831 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 12832 12833 static int check_core_relo(struct bpf_verifier_env *env, 12834 const union bpf_attr *attr, 12835 bpfptr_t uattr) 12836 { 12837 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 12838 struct bpf_core_relo core_relo = {}; 12839 struct bpf_prog *prog = env->prog; 12840 const struct btf *btf = prog->aux->btf; 12841 struct bpf_core_ctx ctx = { 12842 .log = &env->log, 12843 .btf = btf, 12844 }; 12845 bpfptr_t u_core_relo; 12846 int err; 12847 12848 nr_core_relo = attr->core_relo_cnt; 12849 if (!nr_core_relo) 12850 return 0; 12851 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 12852 return -EINVAL; 12853 12854 rec_size = attr->core_relo_rec_size; 12855 if (rec_size < MIN_CORE_RELO_SIZE || 12856 rec_size > MAX_CORE_RELO_SIZE || 12857 rec_size % sizeof(u32)) 12858 return -EINVAL; 12859 12860 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 12861 expected_size = sizeof(struct bpf_core_relo); 12862 ncopy = min_t(u32, expected_size, rec_size); 12863 12864 /* Unlike func_info and line_info, copy and apply each CO-RE 12865 * relocation record one at a time. 12866 */ 12867 for (i = 0; i < nr_core_relo; i++) { 12868 /* future proofing when sizeof(bpf_core_relo) changes */ 12869 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 12870 if (err) { 12871 if (err == -E2BIG) { 12872 verbose(env, "nonzero tailing record in core_relo"); 12873 if (copy_to_bpfptr_offset(uattr, 12874 offsetof(union bpf_attr, core_relo_rec_size), 12875 &expected_size, sizeof(expected_size))) 12876 err = -EFAULT; 12877 } 12878 break; 12879 } 12880 12881 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 12882 err = -EFAULT; 12883 break; 12884 } 12885 12886 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 12887 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 12888 i, core_relo.insn_off, prog->len); 12889 err = -EINVAL; 12890 break; 12891 } 12892 12893 err = bpf_core_apply(&ctx, &core_relo, i, 12894 &prog->insnsi[core_relo.insn_off / 8]); 12895 if (err) 12896 break; 12897 bpfptr_add(&u_core_relo, rec_size); 12898 } 12899 return err; 12900 } 12901 12902 static int check_btf_info(struct bpf_verifier_env *env, 12903 const union bpf_attr *attr, 12904 bpfptr_t uattr) 12905 { 12906 struct btf *btf; 12907 int err; 12908 12909 if (!attr->func_info_cnt && !attr->line_info_cnt) { 12910 if (check_abnormal_return(env)) 12911 return -EINVAL; 12912 return 0; 12913 } 12914 12915 btf = btf_get_by_fd(attr->prog_btf_fd); 12916 if (IS_ERR(btf)) 12917 return PTR_ERR(btf); 12918 if (btf_is_kernel(btf)) { 12919 btf_put(btf); 12920 return -EACCES; 12921 } 12922 env->prog->aux->btf = btf; 12923 12924 err = check_btf_func(env, attr, uattr); 12925 if (err) 12926 return err; 12927 12928 err = check_btf_line(env, attr, uattr); 12929 if (err) 12930 return err; 12931 12932 err = check_core_relo(env, attr, uattr); 12933 if (err) 12934 return err; 12935 12936 return 0; 12937 } 12938 12939 /* check %cur's range satisfies %old's */ 12940 static bool range_within(struct bpf_reg_state *old, 12941 struct bpf_reg_state *cur) 12942 { 12943 return old->umin_value <= cur->umin_value && 12944 old->umax_value >= cur->umax_value && 12945 old->smin_value <= cur->smin_value && 12946 old->smax_value >= cur->smax_value && 12947 old->u32_min_value <= cur->u32_min_value && 12948 old->u32_max_value >= cur->u32_max_value && 12949 old->s32_min_value <= cur->s32_min_value && 12950 old->s32_max_value >= cur->s32_max_value; 12951 } 12952 12953 /* If in the old state two registers had the same id, then they need to have 12954 * the same id in the new state as well. But that id could be different from 12955 * the old state, so we need to track the mapping from old to new ids. 12956 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 12957 * regs with old id 5 must also have new id 9 for the new state to be safe. But 12958 * regs with a different old id could still have new id 9, we don't care about 12959 * that. 12960 * So we look through our idmap to see if this old id has been seen before. If 12961 * so, we require the new id to match; otherwise, we add the id pair to the map. 12962 */ 12963 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 12964 { 12965 unsigned int i; 12966 12967 /* either both IDs should be set or both should be zero */ 12968 if (!!old_id != !!cur_id) 12969 return false; 12970 12971 if (old_id == 0) /* cur_id == 0 as well */ 12972 return true; 12973 12974 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 12975 if (!idmap[i].old) { 12976 /* Reached an empty slot; haven't seen this id before */ 12977 idmap[i].old = old_id; 12978 idmap[i].cur = cur_id; 12979 return true; 12980 } 12981 if (idmap[i].old == old_id) 12982 return idmap[i].cur == cur_id; 12983 } 12984 /* We ran out of idmap slots, which should be impossible */ 12985 WARN_ON_ONCE(1); 12986 return false; 12987 } 12988 12989 static void clean_func_state(struct bpf_verifier_env *env, 12990 struct bpf_func_state *st) 12991 { 12992 enum bpf_reg_liveness live; 12993 int i, j; 12994 12995 for (i = 0; i < BPF_REG_FP; i++) { 12996 live = st->regs[i].live; 12997 /* liveness must not touch this register anymore */ 12998 st->regs[i].live |= REG_LIVE_DONE; 12999 if (!(live & REG_LIVE_READ)) 13000 /* since the register is unused, clear its state 13001 * to make further comparison simpler 13002 */ 13003 __mark_reg_not_init(env, &st->regs[i]); 13004 } 13005 13006 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 13007 live = st->stack[i].spilled_ptr.live; 13008 /* liveness must not touch this stack slot anymore */ 13009 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 13010 if (!(live & REG_LIVE_READ)) { 13011 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 13012 for (j = 0; j < BPF_REG_SIZE; j++) 13013 st->stack[i].slot_type[j] = STACK_INVALID; 13014 } 13015 } 13016 } 13017 13018 static void clean_verifier_state(struct bpf_verifier_env *env, 13019 struct bpf_verifier_state *st) 13020 { 13021 int i; 13022 13023 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 13024 /* all regs in this state in all frames were already marked */ 13025 return; 13026 13027 for (i = 0; i <= st->curframe; i++) 13028 clean_func_state(env, st->frame[i]); 13029 } 13030 13031 /* the parentage chains form a tree. 13032 * the verifier states are added to state lists at given insn and 13033 * pushed into state stack for future exploration. 13034 * when the verifier reaches bpf_exit insn some of the verifer states 13035 * stored in the state lists have their final liveness state already, 13036 * but a lot of states will get revised from liveness point of view when 13037 * the verifier explores other branches. 13038 * Example: 13039 * 1: r0 = 1 13040 * 2: if r1 == 100 goto pc+1 13041 * 3: r0 = 2 13042 * 4: exit 13043 * when the verifier reaches exit insn the register r0 in the state list of 13044 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 13045 * of insn 2 and goes exploring further. At the insn 4 it will walk the 13046 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 13047 * 13048 * Since the verifier pushes the branch states as it sees them while exploring 13049 * the program the condition of walking the branch instruction for the second 13050 * time means that all states below this branch were already explored and 13051 * their final liveness marks are already propagated. 13052 * Hence when the verifier completes the search of state list in is_state_visited() 13053 * we can call this clean_live_states() function to mark all liveness states 13054 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 13055 * will not be used. 13056 * This function also clears the registers and stack for states that !READ 13057 * to simplify state merging. 13058 * 13059 * Important note here that walking the same branch instruction in the callee 13060 * doesn't meant that the states are DONE. The verifier has to compare 13061 * the callsites 13062 */ 13063 static void clean_live_states(struct bpf_verifier_env *env, int insn, 13064 struct bpf_verifier_state *cur) 13065 { 13066 struct bpf_verifier_state_list *sl; 13067 int i; 13068 13069 sl = *explored_state(env, insn); 13070 while (sl) { 13071 if (sl->state.branches) 13072 goto next; 13073 if (sl->state.insn_idx != insn || 13074 sl->state.curframe != cur->curframe) 13075 goto next; 13076 for (i = 0; i <= cur->curframe; i++) 13077 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 13078 goto next; 13079 clean_verifier_state(env, &sl->state); 13080 next: 13081 sl = sl->next; 13082 } 13083 } 13084 13085 static bool regs_exact(const struct bpf_reg_state *rold, 13086 const struct bpf_reg_state *rcur, 13087 struct bpf_id_pair *idmap) 13088 { 13089 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 13090 check_ids(rold->id, rcur->id, idmap) && 13091 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 13092 } 13093 13094 /* Returns true if (rold safe implies rcur safe) */ 13095 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 13096 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 13097 { 13098 if (!(rold->live & REG_LIVE_READ)) 13099 /* explored state didn't use this */ 13100 return true; 13101 if (rold->type == NOT_INIT) 13102 /* explored state can't have used this */ 13103 return true; 13104 if (rcur->type == NOT_INIT) 13105 return false; 13106 13107 /* Enforce that register types have to match exactly, including their 13108 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 13109 * rule. 13110 * 13111 * One can make a point that using a pointer register as unbounded 13112 * SCALAR would be technically acceptable, but this could lead to 13113 * pointer leaks because scalars are allowed to leak while pointers 13114 * are not. We could make this safe in special cases if root is 13115 * calling us, but it's probably not worth the hassle. 13116 * 13117 * Also, register types that are *not* MAYBE_NULL could technically be 13118 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 13119 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 13120 * to the same map). 13121 * However, if the old MAYBE_NULL register then got NULL checked, 13122 * doing so could have affected others with the same id, and we can't 13123 * check for that because we lost the id when we converted to 13124 * a non-MAYBE_NULL variant. 13125 * So, as a general rule we don't allow mixing MAYBE_NULL and 13126 * non-MAYBE_NULL registers as well. 13127 */ 13128 if (rold->type != rcur->type) 13129 return false; 13130 13131 switch (base_type(rold->type)) { 13132 case SCALAR_VALUE: 13133 if (regs_exact(rold, rcur, idmap)) 13134 return true; 13135 if (env->explore_alu_limits) 13136 return false; 13137 if (!rold->precise) 13138 return true; 13139 /* new val must satisfy old val knowledge */ 13140 return range_within(rold, rcur) && 13141 tnum_in(rold->var_off, rcur->var_off); 13142 case PTR_TO_MAP_KEY: 13143 case PTR_TO_MAP_VALUE: 13144 /* If the new min/max/var_off satisfy the old ones and 13145 * everything else matches, we are OK. 13146 */ 13147 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 13148 range_within(rold, rcur) && 13149 tnum_in(rold->var_off, rcur->var_off) && 13150 check_ids(rold->id, rcur->id, idmap); 13151 case PTR_TO_PACKET_META: 13152 case PTR_TO_PACKET: 13153 /* We must have at least as much range as the old ptr 13154 * did, so that any accesses which were safe before are 13155 * still safe. This is true even if old range < old off, 13156 * since someone could have accessed through (ptr - k), or 13157 * even done ptr -= k in a register, to get a safe access. 13158 */ 13159 if (rold->range > rcur->range) 13160 return false; 13161 /* If the offsets don't match, we can't trust our alignment; 13162 * nor can we be sure that we won't fall out of range. 13163 */ 13164 if (rold->off != rcur->off) 13165 return false; 13166 /* id relations must be preserved */ 13167 if (!check_ids(rold->id, rcur->id, idmap)) 13168 return false; 13169 /* new val must satisfy old val knowledge */ 13170 return range_within(rold, rcur) && 13171 tnum_in(rold->var_off, rcur->var_off); 13172 case PTR_TO_STACK: 13173 /* two stack pointers are equal only if they're pointing to 13174 * the same stack frame, since fp-8 in foo != fp-8 in bar 13175 */ 13176 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 13177 default: 13178 return regs_exact(rold, rcur, idmap); 13179 } 13180 } 13181 13182 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 13183 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 13184 { 13185 int i, spi; 13186 13187 /* walk slots of the explored stack and ignore any additional 13188 * slots in the current stack, since explored(safe) state 13189 * didn't use them 13190 */ 13191 for (i = 0; i < old->allocated_stack; i++) { 13192 spi = i / BPF_REG_SIZE; 13193 13194 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 13195 i += BPF_REG_SIZE - 1; 13196 /* explored state didn't use this */ 13197 continue; 13198 } 13199 13200 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 13201 continue; 13202 13203 /* explored stack has more populated slots than current stack 13204 * and these slots were used 13205 */ 13206 if (i >= cur->allocated_stack) 13207 return false; 13208 13209 /* if old state was safe with misc data in the stack 13210 * it will be safe with zero-initialized stack. 13211 * The opposite is not true 13212 */ 13213 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 13214 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 13215 continue; 13216 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 13217 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 13218 /* Ex: old explored (safe) state has STACK_SPILL in 13219 * this stack slot, but current has STACK_MISC -> 13220 * this verifier states are not equivalent, 13221 * return false to continue verification of this path 13222 */ 13223 return false; 13224 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 13225 continue; 13226 if (!is_spilled_reg(&old->stack[spi])) 13227 continue; 13228 if (!regsafe(env, &old->stack[spi].spilled_ptr, 13229 &cur->stack[spi].spilled_ptr, idmap)) 13230 /* when explored and current stack slot are both storing 13231 * spilled registers, check that stored pointers types 13232 * are the same as well. 13233 * Ex: explored safe path could have stored 13234 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 13235 * but current path has stored: 13236 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 13237 * such verifier states are not equivalent. 13238 * return false to continue verification of this path 13239 */ 13240 return false; 13241 } 13242 return true; 13243 } 13244 13245 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 13246 struct bpf_id_pair *idmap) 13247 { 13248 int i; 13249 13250 if (old->acquired_refs != cur->acquired_refs) 13251 return false; 13252 13253 for (i = 0; i < old->acquired_refs; i++) { 13254 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 13255 return false; 13256 } 13257 13258 return true; 13259 } 13260 13261 /* compare two verifier states 13262 * 13263 * all states stored in state_list are known to be valid, since 13264 * verifier reached 'bpf_exit' instruction through them 13265 * 13266 * this function is called when verifier exploring different branches of 13267 * execution popped from the state stack. If it sees an old state that has 13268 * more strict register state and more strict stack state then this execution 13269 * branch doesn't need to be explored further, since verifier already 13270 * concluded that more strict state leads to valid finish. 13271 * 13272 * Therefore two states are equivalent if register state is more conservative 13273 * and explored stack state is more conservative than the current one. 13274 * Example: 13275 * explored current 13276 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 13277 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 13278 * 13279 * In other words if current stack state (one being explored) has more 13280 * valid slots than old one that already passed validation, it means 13281 * the verifier can stop exploring and conclude that current state is valid too 13282 * 13283 * Similarly with registers. If explored state has register type as invalid 13284 * whereas register type in current state is meaningful, it means that 13285 * the current state will reach 'bpf_exit' instruction safely 13286 */ 13287 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 13288 struct bpf_func_state *cur) 13289 { 13290 int i; 13291 13292 for (i = 0; i < MAX_BPF_REG; i++) 13293 if (!regsafe(env, &old->regs[i], &cur->regs[i], 13294 env->idmap_scratch)) 13295 return false; 13296 13297 if (!stacksafe(env, old, cur, env->idmap_scratch)) 13298 return false; 13299 13300 if (!refsafe(old, cur, env->idmap_scratch)) 13301 return false; 13302 13303 return true; 13304 } 13305 13306 static bool states_equal(struct bpf_verifier_env *env, 13307 struct bpf_verifier_state *old, 13308 struct bpf_verifier_state *cur) 13309 { 13310 int i; 13311 13312 if (old->curframe != cur->curframe) 13313 return false; 13314 13315 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 13316 13317 /* Verification state from speculative execution simulation 13318 * must never prune a non-speculative execution one. 13319 */ 13320 if (old->speculative && !cur->speculative) 13321 return false; 13322 13323 if (old->active_lock.ptr != cur->active_lock.ptr) 13324 return false; 13325 13326 /* Old and cur active_lock's have to be either both present 13327 * or both absent. 13328 */ 13329 if (!!old->active_lock.id != !!cur->active_lock.id) 13330 return false; 13331 13332 if (old->active_lock.id && 13333 !check_ids(old->active_lock.id, cur->active_lock.id, env->idmap_scratch)) 13334 return false; 13335 13336 if (old->active_rcu_lock != cur->active_rcu_lock) 13337 return false; 13338 13339 /* for states to be equal callsites have to be the same 13340 * and all frame states need to be equivalent 13341 */ 13342 for (i = 0; i <= old->curframe; i++) { 13343 if (old->frame[i]->callsite != cur->frame[i]->callsite) 13344 return false; 13345 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 13346 return false; 13347 } 13348 return true; 13349 } 13350 13351 /* Return 0 if no propagation happened. Return negative error code if error 13352 * happened. Otherwise, return the propagated bit. 13353 */ 13354 static int propagate_liveness_reg(struct bpf_verifier_env *env, 13355 struct bpf_reg_state *reg, 13356 struct bpf_reg_state *parent_reg) 13357 { 13358 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 13359 u8 flag = reg->live & REG_LIVE_READ; 13360 int err; 13361 13362 /* When comes here, read flags of PARENT_REG or REG could be any of 13363 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 13364 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 13365 */ 13366 if (parent_flag == REG_LIVE_READ64 || 13367 /* Or if there is no read flag from REG. */ 13368 !flag || 13369 /* Or if the read flag from REG is the same as PARENT_REG. */ 13370 parent_flag == flag) 13371 return 0; 13372 13373 err = mark_reg_read(env, reg, parent_reg, flag); 13374 if (err) 13375 return err; 13376 13377 return flag; 13378 } 13379 13380 /* A write screens off any subsequent reads; but write marks come from the 13381 * straight-line code between a state and its parent. When we arrive at an 13382 * equivalent state (jump target or such) we didn't arrive by the straight-line 13383 * code, so read marks in the state must propagate to the parent regardless 13384 * of the state's write marks. That's what 'parent == state->parent' comparison 13385 * in mark_reg_read() is for. 13386 */ 13387 static int propagate_liveness(struct bpf_verifier_env *env, 13388 const struct bpf_verifier_state *vstate, 13389 struct bpf_verifier_state *vparent) 13390 { 13391 struct bpf_reg_state *state_reg, *parent_reg; 13392 struct bpf_func_state *state, *parent; 13393 int i, frame, err = 0; 13394 13395 if (vparent->curframe != vstate->curframe) { 13396 WARN(1, "propagate_live: parent frame %d current frame %d\n", 13397 vparent->curframe, vstate->curframe); 13398 return -EFAULT; 13399 } 13400 /* Propagate read liveness of registers... */ 13401 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 13402 for (frame = 0; frame <= vstate->curframe; frame++) { 13403 parent = vparent->frame[frame]; 13404 state = vstate->frame[frame]; 13405 parent_reg = parent->regs; 13406 state_reg = state->regs; 13407 /* We don't need to worry about FP liveness, it's read-only */ 13408 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 13409 err = propagate_liveness_reg(env, &state_reg[i], 13410 &parent_reg[i]); 13411 if (err < 0) 13412 return err; 13413 if (err == REG_LIVE_READ64) 13414 mark_insn_zext(env, &parent_reg[i]); 13415 } 13416 13417 /* Propagate stack slots. */ 13418 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 13419 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 13420 parent_reg = &parent->stack[i].spilled_ptr; 13421 state_reg = &state->stack[i].spilled_ptr; 13422 err = propagate_liveness_reg(env, state_reg, 13423 parent_reg); 13424 if (err < 0) 13425 return err; 13426 } 13427 } 13428 return 0; 13429 } 13430 13431 /* find precise scalars in the previous equivalent state and 13432 * propagate them into the current state 13433 */ 13434 static int propagate_precision(struct bpf_verifier_env *env, 13435 const struct bpf_verifier_state *old) 13436 { 13437 struct bpf_reg_state *state_reg; 13438 struct bpf_func_state *state; 13439 int i, err = 0, fr; 13440 13441 for (fr = old->curframe; fr >= 0; fr--) { 13442 state = old->frame[fr]; 13443 state_reg = state->regs; 13444 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 13445 if (state_reg->type != SCALAR_VALUE || 13446 !state_reg->precise) 13447 continue; 13448 if (env->log.level & BPF_LOG_LEVEL2) 13449 verbose(env, "frame %d: propagating r%d\n", i, fr); 13450 err = mark_chain_precision_frame(env, fr, i); 13451 if (err < 0) 13452 return err; 13453 } 13454 13455 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 13456 if (!is_spilled_reg(&state->stack[i])) 13457 continue; 13458 state_reg = &state->stack[i].spilled_ptr; 13459 if (state_reg->type != SCALAR_VALUE || 13460 !state_reg->precise) 13461 continue; 13462 if (env->log.level & BPF_LOG_LEVEL2) 13463 verbose(env, "frame %d: propagating fp%d\n", 13464 (-i - 1) * BPF_REG_SIZE, fr); 13465 err = mark_chain_precision_stack_frame(env, fr, i); 13466 if (err < 0) 13467 return err; 13468 } 13469 } 13470 return 0; 13471 } 13472 13473 static bool states_maybe_looping(struct bpf_verifier_state *old, 13474 struct bpf_verifier_state *cur) 13475 { 13476 struct bpf_func_state *fold, *fcur; 13477 int i, fr = cur->curframe; 13478 13479 if (old->curframe != fr) 13480 return false; 13481 13482 fold = old->frame[fr]; 13483 fcur = cur->frame[fr]; 13484 for (i = 0; i < MAX_BPF_REG; i++) 13485 if (memcmp(&fold->regs[i], &fcur->regs[i], 13486 offsetof(struct bpf_reg_state, parent))) 13487 return false; 13488 return true; 13489 } 13490 13491 13492 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 13493 { 13494 struct bpf_verifier_state_list *new_sl; 13495 struct bpf_verifier_state_list *sl, **pprev; 13496 struct bpf_verifier_state *cur = env->cur_state, *new; 13497 int i, j, err, states_cnt = 0; 13498 bool add_new_state = env->test_state_freq ? true : false; 13499 13500 /* bpf progs typically have pruning point every 4 instructions 13501 * http://vger.kernel.org/bpfconf2019.html#session-1 13502 * Do not add new state for future pruning if the verifier hasn't seen 13503 * at least 2 jumps and at least 8 instructions. 13504 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 13505 * In tests that amounts to up to 50% reduction into total verifier 13506 * memory consumption and 20% verifier time speedup. 13507 */ 13508 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 13509 env->insn_processed - env->prev_insn_processed >= 8) 13510 add_new_state = true; 13511 13512 pprev = explored_state(env, insn_idx); 13513 sl = *pprev; 13514 13515 clean_live_states(env, insn_idx, cur); 13516 13517 while (sl) { 13518 states_cnt++; 13519 if (sl->state.insn_idx != insn_idx) 13520 goto next; 13521 13522 if (sl->state.branches) { 13523 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 13524 13525 if (frame->in_async_callback_fn && 13526 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 13527 /* Different async_entry_cnt means that the verifier is 13528 * processing another entry into async callback. 13529 * Seeing the same state is not an indication of infinite 13530 * loop or infinite recursion. 13531 * But finding the same state doesn't mean that it's safe 13532 * to stop processing the current state. The previous state 13533 * hasn't yet reached bpf_exit, since state.branches > 0. 13534 * Checking in_async_callback_fn alone is not enough either. 13535 * Since the verifier still needs to catch infinite loops 13536 * inside async callbacks. 13537 */ 13538 } else if (states_maybe_looping(&sl->state, cur) && 13539 states_equal(env, &sl->state, cur)) { 13540 verbose_linfo(env, insn_idx, "; "); 13541 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 13542 return -EINVAL; 13543 } 13544 /* if the verifier is processing a loop, avoid adding new state 13545 * too often, since different loop iterations have distinct 13546 * states and may not help future pruning. 13547 * This threshold shouldn't be too low to make sure that 13548 * a loop with large bound will be rejected quickly. 13549 * The most abusive loop will be: 13550 * r1 += 1 13551 * if r1 < 1000000 goto pc-2 13552 * 1M insn_procssed limit / 100 == 10k peak states. 13553 * This threshold shouldn't be too high either, since states 13554 * at the end of the loop are likely to be useful in pruning. 13555 */ 13556 if (env->jmps_processed - env->prev_jmps_processed < 20 && 13557 env->insn_processed - env->prev_insn_processed < 100) 13558 add_new_state = false; 13559 goto miss; 13560 } 13561 if (states_equal(env, &sl->state, cur)) { 13562 sl->hit_cnt++; 13563 /* reached equivalent register/stack state, 13564 * prune the search. 13565 * Registers read by the continuation are read by us. 13566 * If we have any write marks in env->cur_state, they 13567 * will prevent corresponding reads in the continuation 13568 * from reaching our parent (an explored_state). Our 13569 * own state will get the read marks recorded, but 13570 * they'll be immediately forgotten as we're pruning 13571 * this state and will pop a new one. 13572 */ 13573 err = propagate_liveness(env, &sl->state, cur); 13574 13575 /* if previous state reached the exit with precision and 13576 * current state is equivalent to it (except precsion marks) 13577 * the precision needs to be propagated back in 13578 * the current state. 13579 */ 13580 err = err ? : push_jmp_history(env, cur); 13581 err = err ? : propagate_precision(env, &sl->state); 13582 if (err) 13583 return err; 13584 return 1; 13585 } 13586 miss: 13587 /* when new state is not going to be added do not increase miss count. 13588 * Otherwise several loop iterations will remove the state 13589 * recorded earlier. The goal of these heuristics is to have 13590 * states from some iterations of the loop (some in the beginning 13591 * and some at the end) to help pruning. 13592 */ 13593 if (add_new_state) 13594 sl->miss_cnt++; 13595 /* heuristic to determine whether this state is beneficial 13596 * to keep checking from state equivalence point of view. 13597 * Higher numbers increase max_states_per_insn and verification time, 13598 * but do not meaningfully decrease insn_processed. 13599 */ 13600 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 13601 /* the state is unlikely to be useful. Remove it to 13602 * speed up verification 13603 */ 13604 *pprev = sl->next; 13605 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 13606 u32 br = sl->state.branches; 13607 13608 WARN_ONCE(br, 13609 "BUG live_done but branches_to_explore %d\n", 13610 br); 13611 free_verifier_state(&sl->state, false); 13612 kfree(sl); 13613 env->peak_states--; 13614 } else { 13615 /* cannot free this state, since parentage chain may 13616 * walk it later. Add it for free_list instead to 13617 * be freed at the end of verification 13618 */ 13619 sl->next = env->free_list; 13620 env->free_list = sl; 13621 } 13622 sl = *pprev; 13623 continue; 13624 } 13625 next: 13626 pprev = &sl->next; 13627 sl = *pprev; 13628 } 13629 13630 if (env->max_states_per_insn < states_cnt) 13631 env->max_states_per_insn = states_cnt; 13632 13633 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 13634 return 0; 13635 13636 if (!add_new_state) 13637 return 0; 13638 13639 /* There were no equivalent states, remember the current one. 13640 * Technically the current state is not proven to be safe yet, 13641 * but it will either reach outer most bpf_exit (which means it's safe) 13642 * or it will be rejected. When there are no loops the verifier won't be 13643 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 13644 * again on the way to bpf_exit. 13645 * When looping the sl->state.branches will be > 0 and this state 13646 * will not be considered for equivalence until branches == 0. 13647 */ 13648 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 13649 if (!new_sl) 13650 return -ENOMEM; 13651 env->total_states++; 13652 env->peak_states++; 13653 env->prev_jmps_processed = env->jmps_processed; 13654 env->prev_insn_processed = env->insn_processed; 13655 13656 /* forget precise markings we inherited, see __mark_chain_precision */ 13657 if (env->bpf_capable) 13658 mark_all_scalars_imprecise(env, cur); 13659 13660 /* add new state to the head of linked list */ 13661 new = &new_sl->state; 13662 err = copy_verifier_state(new, cur); 13663 if (err) { 13664 free_verifier_state(new, false); 13665 kfree(new_sl); 13666 return err; 13667 } 13668 new->insn_idx = insn_idx; 13669 WARN_ONCE(new->branches != 1, 13670 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 13671 13672 cur->parent = new; 13673 cur->first_insn_idx = insn_idx; 13674 clear_jmp_history(cur); 13675 new_sl->next = *explored_state(env, insn_idx); 13676 *explored_state(env, insn_idx) = new_sl; 13677 /* connect new state to parentage chain. Current frame needs all 13678 * registers connected. Only r6 - r9 of the callers are alive (pushed 13679 * to the stack implicitly by JITs) so in callers' frames connect just 13680 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 13681 * the state of the call instruction (with WRITTEN set), and r0 comes 13682 * from callee with its full parentage chain, anyway. 13683 */ 13684 /* clear write marks in current state: the writes we did are not writes 13685 * our child did, so they don't screen off its reads from us. 13686 * (There are no read marks in current state, because reads always mark 13687 * their parent and current state never has children yet. Only 13688 * explored_states can get read marks.) 13689 */ 13690 for (j = 0; j <= cur->curframe; j++) { 13691 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 13692 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 13693 for (i = 0; i < BPF_REG_FP; i++) 13694 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 13695 } 13696 13697 /* all stack frames are accessible from callee, clear them all */ 13698 for (j = 0; j <= cur->curframe; j++) { 13699 struct bpf_func_state *frame = cur->frame[j]; 13700 struct bpf_func_state *newframe = new->frame[j]; 13701 13702 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 13703 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 13704 frame->stack[i].spilled_ptr.parent = 13705 &newframe->stack[i].spilled_ptr; 13706 } 13707 } 13708 return 0; 13709 } 13710 13711 /* Return true if it's OK to have the same insn return a different type. */ 13712 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 13713 { 13714 switch (base_type(type)) { 13715 case PTR_TO_CTX: 13716 case PTR_TO_SOCKET: 13717 case PTR_TO_SOCK_COMMON: 13718 case PTR_TO_TCP_SOCK: 13719 case PTR_TO_XDP_SOCK: 13720 case PTR_TO_BTF_ID: 13721 return false; 13722 default: 13723 return true; 13724 } 13725 } 13726 13727 /* If an instruction was previously used with particular pointer types, then we 13728 * need to be careful to avoid cases such as the below, where it may be ok 13729 * for one branch accessing the pointer, but not ok for the other branch: 13730 * 13731 * R1 = sock_ptr 13732 * goto X; 13733 * ... 13734 * R1 = some_other_valid_ptr; 13735 * goto X; 13736 * ... 13737 * R2 = *(u32 *)(R1 + 0); 13738 */ 13739 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 13740 { 13741 return src != prev && (!reg_type_mismatch_ok(src) || 13742 !reg_type_mismatch_ok(prev)); 13743 } 13744 13745 static int do_check(struct bpf_verifier_env *env) 13746 { 13747 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 13748 struct bpf_verifier_state *state = env->cur_state; 13749 struct bpf_insn *insns = env->prog->insnsi; 13750 struct bpf_reg_state *regs; 13751 int insn_cnt = env->prog->len; 13752 bool do_print_state = false; 13753 int prev_insn_idx = -1; 13754 13755 for (;;) { 13756 struct bpf_insn *insn; 13757 u8 class; 13758 int err; 13759 13760 env->prev_insn_idx = prev_insn_idx; 13761 if (env->insn_idx >= insn_cnt) { 13762 verbose(env, "invalid insn idx %d insn_cnt %d\n", 13763 env->insn_idx, insn_cnt); 13764 return -EFAULT; 13765 } 13766 13767 insn = &insns[env->insn_idx]; 13768 class = BPF_CLASS(insn->code); 13769 13770 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 13771 verbose(env, 13772 "BPF program is too large. Processed %d insn\n", 13773 env->insn_processed); 13774 return -E2BIG; 13775 } 13776 13777 state->last_insn_idx = env->prev_insn_idx; 13778 13779 if (is_prune_point(env, env->insn_idx)) { 13780 err = is_state_visited(env, env->insn_idx); 13781 if (err < 0) 13782 return err; 13783 if (err == 1) { 13784 /* found equivalent state, can prune the search */ 13785 if (env->log.level & BPF_LOG_LEVEL) { 13786 if (do_print_state) 13787 verbose(env, "\nfrom %d to %d%s: safe\n", 13788 env->prev_insn_idx, env->insn_idx, 13789 env->cur_state->speculative ? 13790 " (speculative execution)" : ""); 13791 else 13792 verbose(env, "%d: safe\n", env->insn_idx); 13793 } 13794 goto process_bpf_exit; 13795 } 13796 } 13797 13798 if (is_jmp_point(env, env->insn_idx)) { 13799 err = push_jmp_history(env, state); 13800 if (err) 13801 return err; 13802 } 13803 13804 if (signal_pending(current)) 13805 return -EAGAIN; 13806 13807 if (need_resched()) 13808 cond_resched(); 13809 13810 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 13811 verbose(env, "\nfrom %d to %d%s:", 13812 env->prev_insn_idx, env->insn_idx, 13813 env->cur_state->speculative ? 13814 " (speculative execution)" : ""); 13815 print_verifier_state(env, state->frame[state->curframe], true); 13816 do_print_state = false; 13817 } 13818 13819 if (env->log.level & BPF_LOG_LEVEL) { 13820 const struct bpf_insn_cbs cbs = { 13821 .cb_call = disasm_kfunc_name, 13822 .cb_print = verbose, 13823 .private_data = env, 13824 }; 13825 13826 if (verifier_state_scratched(env)) 13827 print_insn_state(env, state->frame[state->curframe]); 13828 13829 verbose_linfo(env, env->insn_idx, "; "); 13830 env->prev_log_len = env->log.len_used; 13831 verbose(env, "%d: ", env->insn_idx); 13832 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 13833 env->prev_insn_print_len = env->log.len_used - env->prev_log_len; 13834 env->prev_log_len = env->log.len_used; 13835 } 13836 13837 if (bpf_prog_is_dev_bound(env->prog->aux)) { 13838 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 13839 env->prev_insn_idx); 13840 if (err) 13841 return err; 13842 } 13843 13844 regs = cur_regs(env); 13845 sanitize_mark_insn_seen(env); 13846 prev_insn_idx = env->insn_idx; 13847 13848 if (class == BPF_ALU || class == BPF_ALU64) { 13849 err = check_alu_op(env, insn); 13850 if (err) 13851 return err; 13852 13853 } else if (class == BPF_LDX) { 13854 enum bpf_reg_type *prev_src_type, src_reg_type; 13855 13856 /* check for reserved fields is already done */ 13857 13858 /* check src operand */ 13859 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13860 if (err) 13861 return err; 13862 13863 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13864 if (err) 13865 return err; 13866 13867 src_reg_type = regs[insn->src_reg].type; 13868 13869 /* check that memory (src_reg + off) is readable, 13870 * the state of dst_reg will be updated by this func 13871 */ 13872 err = check_mem_access(env, env->insn_idx, insn->src_reg, 13873 insn->off, BPF_SIZE(insn->code), 13874 BPF_READ, insn->dst_reg, false); 13875 if (err) 13876 return err; 13877 13878 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 13879 13880 if (*prev_src_type == NOT_INIT) { 13881 /* saw a valid insn 13882 * dst_reg = *(u32 *)(src_reg + off) 13883 * save type to validate intersecting paths 13884 */ 13885 *prev_src_type = src_reg_type; 13886 13887 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 13888 /* ABuser program is trying to use the same insn 13889 * dst_reg = *(u32*) (src_reg + off) 13890 * with different pointer types: 13891 * src_reg == ctx in one branch and 13892 * src_reg == stack|map in some other branch. 13893 * Reject it. 13894 */ 13895 verbose(env, "same insn cannot be used with different pointers\n"); 13896 return -EINVAL; 13897 } 13898 13899 } else if (class == BPF_STX) { 13900 enum bpf_reg_type *prev_dst_type, dst_reg_type; 13901 13902 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 13903 err = check_atomic(env, env->insn_idx, insn); 13904 if (err) 13905 return err; 13906 env->insn_idx++; 13907 continue; 13908 } 13909 13910 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 13911 verbose(env, "BPF_STX uses reserved fields\n"); 13912 return -EINVAL; 13913 } 13914 13915 /* check src1 operand */ 13916 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13917 if (err) 13918 return err; 13919 /* check src2 operand */ 13920 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13921 if (err) 13922 return err; 13923 13924 dst_reg_type = regs[insn->dst_reg].type; 13925 13926 /* check that memory (dst_reg + off) is writeable */ 13927 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 13928 insn->off, BPF_SIZE(insn->code), 13929 BPF_WRITE, insn->src_reg, false); 13930 if (err) 13931 return err; 13932 13933 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 13934 13935 if (*prev_dst_type == NOT_INIT) { 13936 *prev_dst_type = dst_reg_type; 13937 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 13938 verbose(env, "same insn cannot be used with different pointers\n"); 13939 return -EINVAL; 13940 } 13941 13942 } else if (class == BPF_ST) { 13943 if (BPF_MODE(insn->code) != BPF_MEM || 13944 insn->src_reg != BPF_REG_0) { 13945 verbose(env, "BPF_ST uses reserved fields\n"); 13946 return -EINVAL; 13947 } 13948 /* check src operand */ 13949 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13950 if (err) 13951 return err; 13952 13953 if (is_ctx_reg(env, insn->dst_reg)) { 13954 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 13955 insn->dst_reg, 13956 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 13957 return -EACCES; 13958 } 13959 13960 /* check that memory (dst_reg + off) is writeable */ 13961 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 13962 insn->off, BPF_SIZE(insn->code), 13963 BPF_WRITE, -1, false); 13964 if (err) 13965 return err; 13966 13967 } else if (class == BPF_JMP || class == BPF_JMP32) { 13968 u8 opcode = BPF_OP(insn->code); 13969 13970 env->jmps_processed++; 13971 if (opcode == BPF_CALL) { 13972 if (BPF_SRC(insn->code) != BPF_K || 13973 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 13974 && insn->off != 0) || 13975 (insn->src_reg != BPF_REG_0 && 13976 insn->src_reg != BPF_PSEUDO_CALL && 13977 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 13978 insn->dst_reg != BPF_REG_0 || 13979 class == BPF_JMP32) { 13980 verbose(env, "BPF_CALL uses reserved fields\n"); 13981 return -EINVAL; 13982 } 13983 13984 if (env->cur_state->active_lock.ptr) { 13985 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 13986 (insn->src_reg == BPF_PSEUDO_CALL) || 13987 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 13988 (insn->off != 0 || !is_bpf_list_api_kfunc(insn->imm)))) { 13989 verbose(env, "function calls are not allowed while holding a lock\n"); 13990 return -EINVAL; 13991 } 13992 } 13993 if (insn->src_reg == BPF_PSEUDO_CALL) 13994 err = check_func_call(env, insn, &env->insn_idx); 13995 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 13996 err = check_kfunc_call(env, insn, &env->insn_idx); 13997 else 13998 err = check_helper_call(env, insn, &env->insn_idx); 13999 if (err) 14000 return err; 14001 } else if (opcode == BPF_JA) { 14002 if (BPF_SRC(insn->code) != BPF_K || 14003 insn->imm != 0 || 14004 insn->src_reg != BPF_REG_0 || 14005 insn->dst_reg != BPF_REG_0 || 14006 class == BPF_JMP32) { 14007 verbose(env, "BPF_JA uses reserved fields\n"); 14008 return -EINVAL; 14009 } 14010 14011 env->insn_idx += insn->off + 1; 14012 continue; 14013 14014 } else if (opcode == BPF_EXIT) { 14015 if (BPF_SRC(insn->code) != BPF_K || 14016 insn->imm != 0 || 14017 insn->src_reg != BPF_REG_0 || 14018 insn->dst_reg != BPF_REG_0 || 14019 class == BPF_JMP32) { 14020 verbose(env, "BPF_EXIT uses reserved fields\n"); 14021 return -EINVAL; 14022 } 14023 14024 if (env->cur_state->active_lock.ptr) { 14025 verbose(env, "bpf_spin_unlock is missing\n"); 14026 return -EINVAL; 14027 } 14028 14029 if (env->cur_state->active_rcu_lock) { 14030 verbose(env, "bpf_rcu_read_unlock is missing\n"); 14031 return -EINVAL; 14032 } 14033 14034 /* We must do check_reference_leak here before 14035 * prepare_func_exit to handle the case when 14036 * state->curframe > 0, it may be a callback 14037 * function, for which reference_state must 14038 * match caller reference state when it exits. 14039 */ 14040 err = check_reference_leak(env); 14041 if (err) 14042 return err; 14043 14044 if (state->curframe) { 14045 /* exit from nested function */ 14046 err = prepare_func_exit(env, &env->insn_idx); 14047 if (err) 14048 return err; 14049 do_print_state = true; 14050 continue; 14051 } 14052 14053 err = check_return_code(env); 14054 if (err) 14055 return err; 14056 process_bpf_exit: 14057 mark_verifier_state_scratched(env); 14058 update_branch_counts(env, env->cur_state); 14059 err = pop_stack(env, &prev_insn_idx, 14060 &env->insn_idx, pop_log); 14061 if (err < 0) { 14062 if (err != -ENOENT) 14063 return err; 14064 break; 14065 } else { 14066 do_print_state = true; 14067 continue; 14068 } 14069 } else { 14070 err = check_cond_jmp_op(env, insn, &env->insn_idx); 14071 if (err) 14072 return err; 14073 } 14074 } else if (class == BPF_LD) { 14075 u8 mode = BPF_MODE(insn->code); 14076 14077 if (mode == BPF_ABS || mode == BPF_IND) { 14078 err = check_ld_abs(env, insn); 14079 if (err) 14080 return err; 14081 14082 } else if (mode == BPF_IMM) { 14083 err = check_ld_imm(env, insn); 14084 if (err) 14085 return err; 14086 14087 env->insn_idx++; 14088 sanitize_mark_insn_seen(env); 14089 } else { 14090 verbose(env, "invalid BPF_LD mode\n"); 14091 return -EINVAL; 14092 } 14093 } else { 14094 verbose(env, "unknown insn class %d\n", class); 14095 return -EINVAL; 14096 } 14097 14098 env->insn_idx++; 14099 } 14100 14101 return 0; 14102 } 14103 14104 static int find_btf_percpu_datasec(struct btf *btf) 14105 { 14106 const struct btf_type *t; 14107 const char *tname; 14108 int i, n; 14109 14110 /* 14111 * Both vmlinux and module each have their own ".data..percpu" 14112 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 14113 * types to look at only module's own BTF types. 14114 */ 14115 n = btf_nr_types(btf); 14116 if (btf_is_module(btf)) 14117 i = btf_nr_types(btf_vmlinux); 14118 else 14119 i = 1; 14120 14121 for(; i < n; i++) { 14122 t = btf_type_by_id(btf, i); 14123 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 14124 continue; 14125 14126 tname = btf_name_by_offset(btf, t->name_off); 14127 if (!strcmp(tname, ".data..percpu")) 14128 return i; 14129 } 14130 14131 return -ENOENT; 14132 } 14133 14134 /* replace pseudo btf_id with kernel symbol address */ 14135 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 14136 struct bpf_insn *insn, 14137 struct bpf_insn_aux_data *aux) 14138 { 14139 const struct btf_var_secinfo *vsi; 14140 const struct btf_type *datasec; 14141 struct btf_mod_pair *btf_mod; 14142 const struct btf_type *t; 14143 const char *sym_name; 14144 bool percpu = false; 14145 u32 type, id = insn->imm; 14146 struct btf *btf; 14147 s32 datasec_id; 14148 u64 addr; 14149 int i, btf_fd, err; 14150 14151 btf_fd = insn[1].imm; 14152 if (btf_fd) { 14153 btf = btf_get_by_fd(btf_fd); 14154 if (IS_ERR(btf)) { 14155 verbose(env, "invalid module BTF object FD specified.\n"); 14156 return -EINVAL; 14157 } 14158 } else { 14159 if (!btf_vmlinux) { 14160 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 14161 return -EINVAL; 14162 } 14163 btf = btf_vmlinux; 14164 btf_get(btf); 14165 } 14166 14167 t = btf_type_by_id(btf, id); 14168 if (!t) { 14169 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 14170 err = -ENOENT; 14171 goto err_put; 14172 } 14173 14174 if (!btf_type_is_var(t)) { 14175 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 14176 err = -EINVAL; 14177 goto err_put; 14178 } 14179 14180 sym_name = btf_name_by_offset(btf, t->name_off); 14181 addr = kallsyms_lookup_name(sym_name); 14182 if (!addr) { 14183 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 14184 sym_name); 14185 err = -ENOENT; 14186 goto err_put; 14187 } 14188 14189 datasec_id = find_btf_percpu_datasec(btf); 14190 if (datasec_id > 0) { 14191 datasec = btf_type_by_id(btf, datasec_id); 14192 for_each_vsi(i, datasec, vsi) { 14193 if (vsi->type == id) { 14194 percpu = true; 14195 break; 14196 } 14197 } 14198 } 14199 14200 insn[0].imm = (u32)addr; 14201 insn[1].imm = addr >> 32; 14202 14203 type = t->type; 14204 t = btf_type_skip_modifiers(btf, type, NULL); 14205 if (percpu) { 14206 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 14207 aux->btf_var.btf = btf; 14208 aux->btf_var.btf_id = type; 14209 } else if (!btf_type_is_struct(t)) { 14210 const struct btf_type *ret; 14211 const char *tname; 14212 u32 tsize; 14213 14214 /* resolve the type size of ksym. */ 14215 ret = btf_resolve_size(btf, t, &tsize); 14216 if (IS_ERR(ret)) { 14217 tname = btf_name_by_offset(btf, t->name_off); 14218 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 14219 tname, PTR_ERR(ret)); 14220 err = -EINVAL; 14221 goto err_put; 14222 } 14223 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 14224 aux->btf_var.mem_size = tsize; 14225 } else { 14226 aux->btf_var.reg_type = PTR_TO_BTF_ID; 14227 aux->btf_var.btf = btf; 14228 aux->btf_var.btf_id = type; 14229 } 14230 14231 /* check whether we recorded this BTF (and maybe module) already */ 14232 for (i = 0; i < env->used_btf_cnt; i++) { 14233 if (env->used_btfs[i].btf == btf) { 14234 btf_put(btf); 14235 return 0; 14236 } 14237 } 14238 14239 if (env->used_btf_cnt >= MAX_USED_BTFS) { 14240 err = -E2BIG; 14241 goto err_put; 14242 } 14243 14244 btf_mod = &env->used_btfs[env->used_btf_cnt]; 14245 btf_mod->btf = btf; 14246 btf_mod->module = NULL; 14247 14248 /* if we reference variables from kernel module, bump its refcount */ 14249 if (btf_is_module(btf)) { 14250 btf_mod->module = btf_try_get_module(btf); 14251 if (!btf_mod->module) { 14252 err = -ENXIO; 14253 goto err_put; 14254 } 14255 } 14256 14257 env->used_btf_cnt++; 14258 14259 return 0; 14260 err_put: 14261 btf_put(btf); 14262 return err; 14263 } 14264 14265 static bool is_tracing_prog_type(enum bpf_prog_type type) 14266 { 14267 switch (type) { 14268 case BPF_PROG_TYPE_KPROBE: 14269 case BPF_PROG_TYPE_TRACEPOINT: 14270 case BPF_PROG_TYPE_PERF_EVENT: 14271 case BPF_PROG_TYPE_RAW_TRACEPOINT: 14272 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 14273 return true; 14274 default: 14275 return false; 14276 } 14277 } 14278 14279 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 14280 struct bpf_map *map, 14281 struct bpf_prog *prog) 14282 14283 { 14284 enum bpf_prog_type prog_type = resolve_prog_type(prog); 14285 14286 if (btf_record_has_field(map->record, BPF_LIST_HEAD)) { 14287 if (is_tracing_prog_type(prog_type)) { 14288 verbose(env, "tracing progs cannot use bpf_list_head yet\n"); 14289 return -EINVAL; 14290 } 14291 } 14292 14293 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 14294 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 14295 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 14296 return -EINVAL; 14297 } 14298 14299 if (is_tracing_prog_type(prog_type)) { 14300 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 14301 return -EINVAL; 14302 } 14303 14304 if (prog->aux->sleepable) { 14305 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 14306 return -EINVAL; 14307 } 14308 } 14309 14310 if (btf_record_has_field(map->record, BPF_TIMER)) { 14311 if (is_tracing_prog_type(prog_type)) { 14312 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 14313 return -EINVAL; 14314 } 14315 } 14316 14317 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 14318 !bpf_offload_prog_map_match(prog, map)) { 14319 verbose(env, "offload device mismatch between prog and map\n"); 14320 return -EINVAL; 14321 } 14322 14323 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 14324 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 14325 return -EINVAL; 14326 } 14327 14328 if (prog->aux->sleepable) 14329 switch (map->map_type) { 14330 case BPF_MAP_TYPE_HASH: 14331 case BPF_MAP_TYPE_LRU_HASH: 14332 case BPF_MAP_TYPE_ARRAY: 14333 case BPF_MAP_TYPE_PERCPU_HASH: 14334 case BPF_MAP_TYPE_PERCPU_ARRAY: 14335 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 14336 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 14337 case BPF_MAP_TYPE_HASH_OF_MAPS: 14338 case BPF_MAP_TYPE_RINGBUF: 14339 case BPF_MAP_TYPE_USER_RINGBUF: 14340 case BPF_MAP_TYPE_INODE_STORAGE: 14341 case BPF_MAP_TYPE_SK_STORAGE: 14342 case BPF_MAP_TYPE_TASK_STORAGE: 14343 case BPF_MAP_TYPE_CGRP_STORAGE: 14344 break; 14345 default: 14346 verbose(env, 14347 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 14348 return -EINVAL; 14349 } 14350 14351 return 0; 14352 } 14353 14354 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 14355 { 14356 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 14357 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 14358 } 14359 14360 /* find and rewrite pseudo imm in ld_imm64 instructions: 14361 * 14362 * 1. if it accesses map FD, replace it with actual map pointer. 14363 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 14364 * 14365 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 14366 */ 14367 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 14368 { 14369 struct bpf_insn *insn = env->prog->insnsi; 14370 int insn_cnt = env->prog->len; 14371 int i, j, err; 14372 14373 err = bpf_prog_calc_tag(env->prog); 14374 if (err) 14375 return err; 14376 14377 for (i = 0; i < insn_cnt; i++, insn++) { 14378 if (BPF_CLASS(insn->code) == BPF_LDX && 14379 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 14380 verbose(env, "BPF_LDX uses reserved fields\n"); 14381 return -EINVAL; 14382 } 14383 14384 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 14385 struct bpf_insn_aux_data *aux; 14386 struct bpf_map *map; 14387 struct fd f; 14388 u64 addr; 14389 u32 fd; 14390 14391 if (i == insn_cnt - 1 || insn[1].code != 0 || 14392 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 14393 insn[1].off != 0) { 14394 verbose(env, "invalid bpf_ld_imm64 insn\n"); 14395 return -EINVAL; 14396 } 14397 14398 if (insn[0].src_reg == 0) 14399 /* valid generic load 64-bit imm */ 14400 goto next_insn; 14401 14402 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 14403 aux = &env->insn_aux_data[i]; 14404 err = check_pseudo_btf_id(env, insn, aux); 14405 if (err) 14406 return err; 14407 goto next_insn; 14408 } 14409 14410 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 14411 aux = &env->insn_aux_data[i]; 14412 aux->ptr_type = PTR_TO_FUNC; 14413 goto next_insn; 14414 } 14415 14416 /* In final convert_pseudo_ld_imm64() step, this is 14417 * converted into regular 64-bit imm load insn. 14418 */ 14419 switch (insn[0].src_reg) { 14420 case BPF_PSEUDO_MAP_VALUE: 14421 case BPF_PSEUDO_MAP_IDX_VALUE: 14422 break; 14423 case BPF_PSEUDO_MAP_FD: 14424 case BPF_PSEUDO_MAP_IDX: 14425 if (insn[1].imm == 0) 14426 break; 14427 fallthrough; 14428 default: 14429 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 14430 return -EINVAL; 14431 } 14432 14433 switch (insn[0].src_reg) { 14434 case BPF_PSEUDO_MAP_IDX_VALUE: 14435 case BPF_PSEUDO_MAP_IDX: 14436 if (bpfptr_is_null(env->fd_array)) { 14437 verbose(env, "fd_idx without fd_array is invalid\n"); 14438 return -EPROTO; 14439 } 14440 if (copy_from_bpfptr_offset(&fd, env->fd_array, 14441 insn[0].imm * sizeof(fd), 14442 sizeof(fd))) 14443 return -EFAULT; 14444 break; 14445 default: 14446 fd = insn[0].imm; 14447 break; 14448 } 14449 14450 f = fdget(fd); 14451 map = __bpf_map_get(f); 14452 if (IS_ERR(map)) { 14453 verbose(env, "fd %d is not pointing to valid bpf_map\n", 14454 insn[0].imm); 14455 return PTR_ERR(map); 14456 } 14457 14458 err = check_map_prog_compatibility(env, map, env->prog); 14459 if (err) { 14460 fdput(f); 14461 return err; 14462 } 14463 14464 aux = &env->insn_aux_data[i]; 14465 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 14466 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 14467 addr = (unsigned long)map; 14468 } else { 14469 u32 off = insn[1].imm; 14470 14471 if (off >= BPF_MAX_VAR_OFF) { 14472 verbose(env, "direct value offset of %u is not allowed\n", off); 14473 fdput(f); 14474 return -EINVAL; 14475 } 14476 14477 if (!map->ops->map_direct_value_addr) { 14478 verbose(env, "no direct value access support for this map type\n"); 14479 fdput(f); 14480 return -EINVAL; 14481 } 14482 14483 err = map->ops->map_direct_value_addr(map, &addr, off); 14484 if (err) { 14485 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 14486 map->value_size, off); 14487 fdput(f); 14488 return err; 14489 } 14490 14491 aux->map_off = off; 14492 addr += off; 14493 } 14494 14495 insn[0].imm = (u32)addr; 14496 insn[1].imm = addr >> 32; 14497 14498 /* check whether we recorded this map already */ 14499 for (j = 0; j < env->used_map_cnt; j++) { 14500 if (env->used_maps[j] == map) { 14501 aux->map_index = j; 14502 fdput(f); 14503 goto next_insn; 14504 } 14505 } 14506 14507 if (env->used_map_cnt >= MAX_USED_MAPS) { 14508 fdput(f); 14509 return -E2BIG; 14510 } 14511 14512 /* hold the map. If the program is rejected by verifier, 14513 * the map will be released by release_maps() or it 14514 * will be used by the valid program until it's unloaded 14515 * and all maps are released in free_used_maps() 14516 */ 14517 bpf_map_inc(map); 14518 14519 aux->map_index = env->used_map_cnt; 14520 env->used_maps[env->used_map_cnt++] = map; 14521 14522 if (bpf_map_is_cgroup_storage(map) && 14523 bpf_cgroup_storage_assign(env->prog->aux, map)) { 14524 verbose(env, "only one cgroup storage of each type is allowed\n"); 14525 fdput(f); 14526 return -EBUSY; 14527 } 14528 14529 fdput(f); 14530 next_insn: 14531 insn++; 14532 i++; 14533 continue; 14534 } 14535 14536 /* Basic sanity check before we invest more work here. */ 14537 if (!bpf_opcode_in_insntable(insn->code)) { 14538 verbose(env, "unknown opcode %02x\n", insn->code); 14539 return -EINVAL; 14540 } 14541 } 14542 14543 /* now all pseudo BPF_LD_IMM64 instructions load valid 14544 * 'struct bpf_map *' into a register instead of user map_fd. 14545 * These pointers will be used later by verifier to validate map access. 14546 */ 14547 return 0; 14548 } 14549 14550 /* drop refcnt of maps used by the rejected program */ 14551 static void release_maps(struct bpf_verifier_env *env) 14552 { 14553 __bpf_free_used_maps(env->prog->aux, env->used_maps, 14554 env->used_map_cnt); 14555 } 14556 14557 /* drop refcnt of maps used by the rejected program */ 14558 static void release_btfs(struct bpf_verifier_env *env) 14559 { 14560 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 14561 env->used_btf_cnt); 14562 } 14563 14564 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 14565 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 14566 { 14567 struct bpf_insn *insn = env->prog->insnsi; 14568 int insn_cnt = env->prog->len; 14569 int i; 14570 14571 for (i = 0; i < insn_cnt; i++, insn++) { 14572 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 14573 continue; 14574 if (insn->src_reg == BPF_PSEUDO_FUNC) 14575 continue; 14576 insn->src_reg = 0; 14577 } 14578 } 14579 14580 /* single env->prog->insni[off] instruction was replaced with the range 14581 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 14582 * [0, off) and [off, end) to new locations, so the patched range stays zero 14583 */ 14584 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 14585 struct bpf_insn_aux_data *new_data, 14586 struct bpf_prog *new_prog, u32 off, u32 cnt) 14587 { 14588 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 14589 struct bpf_insn *insn = new_prog->insnsi; 14590 u32 old_seen = old_data[off].seen; 14591 u32 prog_len; 14592 int i; 14593 14594 /* aux info at OFF always needs adjustment, no matter fast path 14595 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 14596 * original insn at old prog. 14597 */ 14598 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 14599 14600 if (cnt == 1) 14601 return; 14602 prog_len = new_prog->len; 14603 14604 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 14605 memcpy(new_data + off + cnt - 1, old_data + off, 14606 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 14607 for (i = off; i < off + cnt - 1; i++) { 14608 /* Expand insni[off]'s seen count to the patched range. */ 14609 new_data[i].seen = old_seen; 14610 new_data[i].zext_dst = insn_has_def32(env, insn + i); 14611 } 14612 env->insn_aux_data = new_data; 14613 vfree(old_data); 14614 } 14615 14616 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 14617 { 14618 int i; 14619 14620 if (len == 1) 14621 return; 14622 /* NOTE: fake 'exit' subprog should be updated as well. */ 14623 for (i = 0; i <= env->subprog_cnt; i++) { 14624 if (env->subprog_info[i].start <= off) 14625 continue; 14626 env->subprog_info[i].start += len - 1; 14627 } 14628 } 14629 14630 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 14631 { 14632 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 14633 int i, sz = prog->aux->size_poke_tab; 14634 struct bpf_jit_poke_descriptor *desc; 14635 14636 for (i = 0; i < sz; i++) { 14637 desc = &tab[i]; 14638 if (desc->insn_idx <= off) 14639 continue; 14640 desc->insn_idx += len - 1; 14641 } 14642 } 14643 14644 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 14645 const struct bpf_insn *patch, u32 len) 14646 { 14647 struct bpf_prog *new_prog; 14648 struct bpf_insn_aux_data *new_data = NULL; 14649 14650 if (len > 1) { 14651 new_data = vzalloc(array_size(env->prog->len + len - 1, 14652 sizeof(struct bpf_insn_aux_data))); 14653 if (!new_data) 14654 return NULL; 14655 } 14656 14657 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 14658 if (IS_ERR(new_prog)) { 14659 if (PTR_ERR(new_prog) == -ERANGE) 14660 verbose(env, 14661 "insn %d cannot be patched due to 16-bit range\n", 14662 env->insn_aux_data[off].orig_idx); 14663 vfree(new_data); 14664 return NULL; 14665 } 14666 adjust_insn_aux_data(env, new_data, new_prog, off, len); 14667 adjust_subprog_starts(env, off, len); 14668 adjust_poke_descs(new_prog, off, len); 14669 return new_prog; 14670 } 14671 14672 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 14673 u32 off, u32 cnt) 14674 { 14675 int i, j; 14676 14677 /* find first prog starting at or after off (first to remove) */ 14678 for (i = 0; i < env->subprog_cnt; i++) 14679 if (env->subprog_info[i].start >= off) 14680 break; 14681 /* find first prog starting at or after off + cnt (first to stay) */ 14682 for (j = i; j < env->subprog_cnt; j++) 14683 if (env->subprog_info[j].start >= off + cnt) 14684 break; 14685 /* if j doesn't start exactly at off + cnt, we are just removing 14686 * the front of previous prog 14687 */ 14688 if (env->subprog_info[j].start != off + cnt) 14689 j--; 14690 14691 if (j > i) { 14692 struct bpf_prog_aux *aux = env->prog->aux; 14693 int move; 14694 14695 /* move fake 'exit' subprog as well */ 14696 move = env->subprog_cnt + 1 - j; 14697 14698 memmove(env->subprog_info + i, 14699 env->subprog_info + j, 14700 sizeof(*env->subprog_info) * move); 14701 env->subprog_cnt -= j - i; 14702 14703 /* remove func_info */ 14704 if (aux->func_info) { 14705 move = aux->func_info_cnt - j; 14706 14707 memmove(aux->func_info + i, 14708 aux->func_info + j, 14709 sizeof(*aux->func_info) * move); 14710 aux->func_info_cnt -= j - i; 14711 /* func_info->insn_off is set after all code rewrites, 14712 * in adjust_btf_func() - no need to adjust 14713 */ 14714 } 14715 } else { 14716 /* convert i from "first prog to remove" to "first to adjust" */ 14717 if (env->subprog_info[i].start == off) 14718 i++; 14719 } 14720 14721 /* update fake 'exit' subprog as well */ 14722 for (; i <= env->subprog_cnt; i++) 14723 env->subprog_info[i].start -= cnt; 14724 14725 return 0; 14726 } 14727 14728 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 14729 u32 cnt) 14730 { 14731 struct bpf_prog *prog = env->prog; 14732 u32 i, l_off, l_cnt, nr_linfo; 14733 struct bpf_line_info *linfo; 14734 14735 nr_linfo = prog->aux->nr_linfo; 14736 if (!nr_linfo) 14737 return 0; 14738 14739 linfo = prog->aux->linfo; 14740 14741 /* find first line info to remove, count lines to be removed */ 14742 for (i = 0; i < nr_linfo; i++) 14743 if (linfo[i].insn_off >= off) 14744 break; 14745 14746 l_off = i; 14747 l_cnt = 0; 14748 for (; i < nr_linfo; i++) 14749 if (linfo[i].insn_off < off + cnt) 14750 l_cnt++; 14751 else 14752 break; 14753 14754 /* First live insn doesn't match first live linfo, it needs to "inherit" 14755 * last removed linfo. prog is already modified, so prog->len == off 14756 * means no live instructions after (tail of the program was removed). 14757 */ 14758 if (prog->len != off && l_cnt && 14759 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 14760 l_cnt--; 14761 linfo[--i].insn_off = off + cnt; 14762 } 14763 14764 /* remove the line info which refer to the removed instructions */ 14765 if (l_cnt) { 14766 memmove(linfo + l_off, linfo + i, 14767 sizeof(*linfo) * (nr_linfo - i)); 14768 14769 prog->aux->nr_linfo -= l_cnt; 14770 nr_linfo = prog->aux->nr_linfo; 14771 } 14772 14773 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 14774 for (i = l_off; i < nr_linfo; i++) 14775 linfo[i].insn_off -= cnt; 14776 14777 /* fix up all subprogs (incl. 'exit') which start >= off */ 14778 for (i = 0; i <= env->subprog_cnt; i++) 14779 if (env->subprog_info[i].linfo_idx > l_off) { 14780 /* program may have started in the removed region but 14781 * may not be fully removed 14782 */ 14783 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 14784 env->subprog_info[i].linfo_idx -= l_cnt; 14785 else 14786 env->subprog_info[i].linfo_idx = l_off; 14787 } 14788 14789 return 0; 14790 } 14791 14792 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 14793 { 14794 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 14795 unsigned int orig_prog_len = env->prog->len; 14796 int err; 14797 14798 if (bpf_prog_is_dev_bound(env->prog->aux)) 14799 bpf_prog_offload_remove_insns(env, off, cnt); 14800 14801 err = bpf_remove_insns(env->prog, off, cnt); 14802 if (err) 14803 return err; 14804 14805 err = adjust_subprog_starts_after_remove(env, off, cnt); 14806 if (err) 14807 return err; 14808 14809 err = bpf_adj_linfo_after_remove(env, off, cnt); 14810 if (err) 14811 return err; 14812 14813 memmove(aux_data + off, aux_data + off + cnt, 14814 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 14815 14816 return 0; 14817 } 14818 14819 /* The verifier does more data flow analysis than llvm and will not 14820 * explore branches that are dead at run time. Malicious programs can 14821 * have dead code too. Therefore replace all dead at-run-time code 14822 * with 'ja -1'. 14823 * 14824 * Just nops are not optimal, e.g. if they would sit at the end of the 14825 * program and through another bug we would manage to jump there, then 14826 * we'd execute beyond program memory otherwise. Returning exception 14827 * code also wouldn't work since we can have subprogs where the dead 14828 * code could be located. 14829 */ 14830 static void sanitize_dead_code(struct bpf_verifier_env *env) 14831 { 14832 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 14833 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 14834 struct bpf_insn *insn = env->prog->insnsi; 14835 const int insn_cnt = env->prog->len; 14836 int i; 14837 14838 for (i = 0; i < insn_cnt; i++) { 14839 if (aux_data[i].seen) 14840 continue; 14841 memcpy(insn + i, &trap, sizeof(trap)); 14842 aux_data[i].zext_dst = false; 14843 } 14844 } 14845 14846 static bool insn_is_cond_jump(u8 code) 14847 { 14848 u8 op; 14849 14850 if (BPF_CLASS(code) == BPF_JMP32) 14851 return true; 14852 14853 if (BPF_CLASS(code) != BPF_JMP) 14854 return false; 14855 14856 op = BPF_OP(code); 14857 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 14858 } 14859 14860 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 14861 { 14862 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 14863 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 14864 struct bpf_insn *insn = env->prog->insnsi; 14865 const int insn_cnt = env->prog->len; 14866 int i; 14867 14868 for (i = 0; i < insn_cnt; i++, insn++) { 14869 if (!insn_is_cond_jump(insn->code)) 14870 continue; 14871 14872 if (!aux_data[i + 1].seen) 14873 ja.off = insn->off; 14874 else if (!aux_data[i + 1 + insn->off].seen) 14875 ja.off = 0; 14876 else 14877 continue; 14878 14879 if (bpf_prog_is_dev_bound(env->prog->aux)) 14880 bpf_prog_offload_replace_insn(env, i, &ja); 14881 14882 memcpy(insn, &ja, sizeof(ja)); 14883 } 14884 } 14885 14886 static int opt_remove_dead_code(struct bpf_verifier_env *env) 14887 { 14888 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 14889 int insn_cnt = env->prog->len; 14890 int i, err; 14891 14892 for (i = 0; i < insn_cnt; i++) { 14893 int j; 14894 14895 j = 0; 14896 while (i + j < insn_cnt && !aux_data[i + j].seen) 14897 j++; 14898 if (!j) 14899 continue; 14900 14901 err = verifier_remove_insns(env, i, j); 14902 if (err) 14903 return err; 14904 insn_cnt = env->prog->len; 14905 } 14906 14907 return 0; 14908 } 14909 14910 static int opt_remove_nops(struct bpf_verifier_env *env) 14911 { 14912 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 14913 struct bpf_insn *insn = env->prog->insnsi; 14914 int insn_cnt = env->prog->len; 14915 int i, err; 14916 14917 for (i = 0; i < insn_cnt; i++) { 14918 if (memcmp(&insn[i], &ja, sizeof(ja))) 14919 continue; 14920 14921 err = verifier_remove_insns(env, i, 1); 14922 if (err) 14923 return err; 14924 insn_cnt--; 14925 i--; 14926 } 14927 14928 return 0; 14929 } 14930 14931 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 14932 const union bpf_attr *attr) 14933 { 14934 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 14935 struct bpf_insn_aux_data *aux = env->insn_aux_data; 14936 int i, patch_len, delta = 0, len = env->prog->len; 14937 struct bpf_insn *insns = env->prog->insnsi; 14938 struct bpf_prog *new_prog; 14939 bool rnd_hi32; 14940 14941 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 14942 zext_patch[1] = BPF_ZEXT_REG(0); 14943 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 14944 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 14945 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 14946 for (i = 0; i < len; i++) { 14947 int adj_idx = i + delta; 14948 struct bpf_insn insn; 14949 int load_reg; 14950 14951 insn = insns[adj_idx]; 14952 load_reg = insn_def_regno(&insn); 14953 if (!aux[adj_idx].zext_dst) { 14954 u8 code, class; 14955 u32 imm_rnd; 14956 14957 if (!rnd_hi32) 14958 continue; 14959 14960 code = insn.code; 14961 class = BPF_CLASS(code); 14962 if (load_reg == -1) 14963 continue; 14964 14965 /* NOTE: arg "reg" (the fourth one) is only used for 14966 * BPF_STX + SRC_OP, so it is safe to pass NULL 14967 * here. 14968 */ 14969 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 14970 if (class == BPF_LD && 14971 BPF_MODE(code) == BPF_IMM) 14972 i++; 14973 continue; 14974 } 14975 14976 /* ctx load could be transformed into wider load. */ 14977 if (class == BPF_LDX && 14978 aux[adj_idx].ptr_type == PTR_TO_CTX) 14979 continue; 14980 14981 imm_rnd = get_random_u32(); 14982 rnd_hi32_patch[0] = insn; 14983 rnd_hi32_patch[1].imm = imm_rnd; 14984 rnd_hi32_patch[3].dst_reg = load_reg; 14985 patch = rnd_hi32_patch; 14986 patch_len = 4; 14987 goto apply_patch_buffer; 14988 } 14989 14990 /* Add in an zero-extend instruction if a) the JIT has requested 14991 * it or b) it's a CMPXCHG. 14992 * 14993 * The latter is because: BPF_CMPXCHG always loads a value into 14994 * R0, therefore always zero-extends. However some archs' 14995 * equivalent instruction only does this load when the 14996 * comparison is successful. This detail of CMPXCHG is 14997 * orthogonal to the general zero-extension behaviour of the 14998 * CPU, so it's treated independently of bpf_jit_needs_zext. 14999 */ 15000 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 15001 continue; 15002 15003 /* Zero-extension is done by the caller. */ 15004 if (bpf_pseudo_kfunc_call(&insn)) 15005 continue; 15006 15007 if (WARN_ON(load_reg == -1)) { 15008 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 15009 return -EFAULT; 15010 } 15011 15012 zext_patch[0] = insn; 15013 zext_patch[1].dst_reg = load_reg; 15014 zext_patch[1].src_reg = load_reg; 15015 patch = zext_patch; 15016 patch_len = 2; 15017 apply_patch_buffer: 15018 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 15019 if (!new_prog) 15020 return -ENOMEM; 15021 env->prog = new_prog; 15022 insns = new_prog->insnsi; 15023 aux = env->insn_aux_data; 15024 delta += patch_len - 1; 15025 } 15026 15027 return 0; 15028 } 15029 15030 /* convert load instructions that access fields of a context type into a 15031 * sequence of instructions that access fields of the underlying structure: 15032 * struct __sk_buff -> struct sk_buff 15033 * struct bpf_sock_ops -> struct sock 15034 */ 15035 static int convert_ctx_accesses(struct bpf_verifier_env *env) 15036 { 15037 const struct bpf_verifier_ops *ops = env->ops; 15038 int i, cnt, size, ctx_field_size, delta = 0; 15039 const int insn_cnt = env->prog->len; 15040 struct bpf_insn insn_buf[16], *insn; 15041 u32 target_size, size_default, off; 15042 struct bpf_prog *new_prog; 15043 enum bpf_access_type type; 15044 bool is_narrower_load; 15045 15046 if (ops->gen_prologue || env->seen_direct_write) { 15047 if (!ops->gen_prologue) { 15048 verbose(env, "bpf verifier is misconfigured\n"); 15049 return -EINVAL; 15050 } 15051 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 15052 env->prog); 15053 if (cnt >= ARRAY_SIZE(insn_buf)) { 15054 verbose(env, "bpf verifier is misconfigured\n"); 15055 return -EINVAL; 15056 } else if (cnt) { 15057 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 15058 if (!new_prog) 15059 return -ENOMEM; 15060 15061 env->prog = new_prog; 15062 delta += cnt - 1; 15063 } 15064 } 15065 15066 if (bpf_prog_is_dev_bound(env->prog->aux)) 15067 return 0; 15068 15069 insn = env->prog->insnsi + delta; 15070 15071 for (i = 0; i < insn_cnt; i++, insn++) { 15072 bpf_convert_ctx_access_t convert_ctx_access; 15073 bool ctx_access; 15074 15075 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 15076 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 15077 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 15078 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 15079 type = BPF_READ; 15080 ctx_access = true; 15081 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 15082 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 15083 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 15084 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 15085 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 15086 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 15087 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 15088 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 15089 type = BPF_WRITE; 15090 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 15091 } else { 15092 continue; 15093 } 15094 15095 if (type == BPF_WRITE && 15096 env->insn_aux_data[i + delta].sanitize_stack_spill) { 15097 struct bpf_insn patch[] = { 15098 *insn, 15099 BPF_ST_NOSPEC(), 15100 }; 15101 15102 cnt = ARRAY_SIZE(patch); 15103 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 15104 if (!new_prog) 15105 return -ENOMEM; 15106 15107 delta += cnt - 1; 15108 env->prog = new_prog; 15109 insn = new_prog->insnsi + i + delta; 15110 continue; 15111 } 15112 15113 if (!ctx_access) 15114 continue; 15115 15116 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 15117 case PTR_TO_CTX: 15118 if (!ops->convert_ctx_access) 15119 continue; 15120 convert_ctx_access = ops->convert_ctx_access; 15121 break; 15122 case PTR_TO_SOCKET: 15123 case PTR_TO_SOCK_COMMON: 15124 convert_ctx_access = bpf_sock_convert_ctx_access; 15125 break; 15126 case PTR_TO_TCP_SOCK: 15127 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 15128 break; 15129 case PTR_TO_XDP_SOCK: 15130 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 15131 break; 15132 case PTR_TO_BTF_ID: 15133 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 15134 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 15135 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 15136 * be said once it is marked PTR_UNTRUSTED, hence we must handle 15137 * any faults for loads into such types. BPF_WRITE is disallowed 15138 * for this case. 15139 */ 15140 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 15141 if (type == BPF_READ) { 15142 insn->code = BPF_LDX | BPF_PROBE_MEM | 15143 BPF_SIZE((insn)->code); 15144 env->prog->aux->num_exentries++; 15145 } 15146 continue; 15147 default: 15148 continue; 15149 } 15150 15151 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 15152 size = BPF_LDST_BYTES(insn); 15153 15154 /* If the read access is a narrower load of the field, 15155 * convert to a 4/8-byte load, to minimum program type specific 15156 * convert_ctx_access changes. If conversion is successful, 15157 * we will apply proper mask to the result. 15158 */ 15159 is_narrower_load = size < ctx_field_size; 15160 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 15161 off = insn->off; 15162 if (is_narrower_load) { 15163 u8 size_code; 15164 15165 if (type == BPF_WRITE) { 15166 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 15167 return -EINVAL; 15168 } 15169 15170 size_code = BPF_H; 15171 if (ctx_field_size == 4) 15172 size_code = BPF_W; 15173 else if (ctx_field_size == 8) 15174 size_code = BPF_DW; 15175 15176 insn->off = off & ~(size_default - 1); 15177 insn->code = BPF_LDX | BPF_MEM | size_code; 15178 } 15179 15180 target_size = 0; 15181 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 15182 &target_size); 15183 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 15184 (ctx_field_size && !target_size)) { 15185 verbose(env, "bpf verifier is misconfigured\n"); 15186 return -EINVAL; 15187 } 15188 15189 if (is_narrower_load && size < target_size) { 15190 u8 shift = bpf_ctx_narrow_access_offset( 15191 off, size, size_default) * 8; 15192 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 15193 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 15194 return -EINVAL; 15195 } 15196 if (ctx_field_size <= 4) { 15197 if (shift) 15198 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 15199 insn->dst_reg, 15200 shift); 15201 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 15202 (1 << size * 8) - 1); 15203 } else { 15204 if (shift) 15205 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 15206 insn->dst_reg, 15207 shift); 15208 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 15209 (1ULL << size * 8) - 1); 15210 } 15211 } 15212 15213 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15214 if (!new_prog) 15215 return -ENOMEM; 15216 15217 delta += cnt - 1; 15218 15219 /* keep walking new program and skip insns we just inserted */ 15220 env->prog = new_prog; 15221 insn = new_prog->insnsi + i + delta; 15222 } 15223 15224 return 0; 15225 } 15226 15227 static int jit_subprogs(struct bpf_verifier_env *env) 15228 { 15229 struct bpf_prog *prog = env->prog, **func, *tmp; 15230 int i, j, subprog_start, subprog_end = 0, len, subprog; 15231 struct bpf_map *map_ptr; 15232 struct bpf_insn *insn; 15233 void *old_bpf_func; 15234 int err, num_exentries; 15235 15236 if (env->subprog_cnt <= 1) 15237 return 0; 15238 15239 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 15240 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 15241 continue; 15242 15243 /* Upon error here we cannot fall back to interpreter but 15244 * need a hard reject of the program. Thus -EFAULT is 15245 * propagated in any case. 15246 */ 15247 subprog = find_subprog(env, i + insn->imm + 1); 15248 if (subprog < 0) { 15249 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 15250 i + insn->imm + 1); 15251 return -EFAULT; 15252 } 15253 /* temporarily remember subprog id inside insn instead of 15254 * aux_data, since next loop will split up all insns into funcs 15255 */ 15256 insn->off = subprog; 15257 /* remember original imm in case JIT fails and fallback 15258 * to interpreter will be needed 15259 */ 15260 env->insn_aux_data[i].call_imm = insn->imm; 15261 /* point imm to __bpf_call_base+1 from JITs point of view */ 15262 insn->imm = 1; 15263 if (bpf_pseudo_func(insn)) 15264 /* jit (e.g. x86_64) may emit fewer instructions 15265 * if it learns a u32 imm is the same as a u64 imm. 15266 * Force a non zero here. 15267 */ 15268 insn[1].imm = 1; 15269 } 15270 15271 err = bpf_prog_alloc_jited_linfo(prog); 15272 if (err) 15273 goto out_undo_insn; 15274 15275 err = -ENOMEM; 15276 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 15277 if (!func) 15278 goto out_undo_insn; 15279 15280 for (i = 0; i < env->subprog_cnt; i++) { 15281 subprog_start = subprog_end; 15282 subprog_end = env->subprog_info[i + 1].start; 15283 15284 len = subprog_end - subprog_start; 15285 /* bpf_prog_run() doesn't call subprogs directly, 15286 * hence main prog stats include the runtime of subprogs. 15287 * subprogs don't have IDs and not reachable via prog_get_next_id 15288 * func[i]->stats will never be accessed and stays NULL 15289 */ 15290 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 15291 if (!func[i]) 15292 goto out_free; 15293 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 15294 len * sizeof(struct bpf_insn)); 15295 func[i]->type = prog->type; 15296 func[i]->len = len; 15297 if (bpf_prog_calc_tag(func[i])) 15298 goto out_free; 15299 func[i]->is_func = 1; 15300 func[i]->aux->func_idx = i; 15301 /* Below members will be freed only at prog->aux */ 15302 func[i]->aux->btf = prog->aux->btf; 15303 func[i]->aux->func_info = prog->aux->func_info; 15304 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 15305 func[i]->aux->poke_tab = prog->aux->poke_tab; 15306 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 15307 15308 for (j = 0; j < prog->aux->size_poke_tab; j++) { 15309 struct bpf_jit_poke_descriptor *poke; 15310 15311 poke = &prog->aux->poke_tab[j]; 15312 if (poke->insn_idx < subprog_end && 15313 poke->insn_idx >= subprog_start) 15314 poke->aux = func[i]->aux; 15315 } 15316 15317 func[i]->aux->name[0] = 'F'; 15318 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 15319 func[i]->jit_requested = 1; 15320 func[i]->blinding_requested = prog->blinding_requested; 15321 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 15322 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 15323 func[i]->aux->linfo = prog->aux->linfo; 15324 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 15325 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 15326 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 15327 num_exentries = 0; 15328 insn = func[i]->insnsi; 15329 for (j = 0; j < func[i]->len; j++, insn++) { 15330 if (BPF_CLASS(insn->code) == BPF_LDX && 15331 BPF_MODE(insn->code) == BPF_PROBE_MEM) 15332 num_exentries++; 15333 } 15334 func[i]->aux->num_exentries = num_exentries; 15335 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 15336 func[i] = bpf_int_jit_compile(func[i]); 15337 if (!func[i]->jited) { 15338 err = -ENOTSUPP; 15339 goto out_free; 15340 } 15341 cond_resched(); 15342 } 15343 15344 /* at this point all bpf functions were successfully JITed 15345 * now populate all bpf_calls with correct addresses and 15346 * run last pass of JIT 15347 */ 15348 for (i = 0; i < env->subprog_cnt; i++) { 15349 insn = func[i]->insnsi; 15350 for (j = 0; j < func[i]->len; j++, insn++) { 15351 if (bpf_pseudo_func(insn)) { 15352 subprog = insn->off; 15353 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 15354 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 15355 continue; 15356 } 15357 if (!bpf_pseudo_call(insn)) 15358 continue; 15359 subprog = insn->off; 15360 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 15361 } 15362 15363 /* we use the aux data to keep a list of the start addresses 15364 * of the JITed images for each function in the program 15365 * 15366 * for some architectures, such as powerpc64, the imm field 15367 * might not be large enough to hold the offset of the start 15368 * address of the callee's JITed image from __bpf_call_base 15369 * 15370 * in such cases, we can lookup the start address of a callee 15371 * by using its subprog id, available from the off field of 15372 * the call instruction, as an index for this list 15373 */ 15374 func[i]->aux->func = func; 15375 func[i]->aux->func_cnt = env->subprog_cnt; 15376 } 15377 for (i = 0; i < env->subprog_cnt; i++) { 15378 old_bpf_func = func[i]->bpf_func; 15379 tmp = bpf_int_jit_compile(func[i]); 15380 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 15381 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 15382 err = -ENOTSUPP; 15383 goto out_free; 15384 } 15385 cond_resched(); 15386 } 15387 15388 /* finally lock prog and jit images for all functions and 15389 * populate kallsysm 15390 */ 15391 for (i = 0; i < env->subprog_cnt; i++) { 15392 bpf_prog_lock_ro(func[i]); 15393 bpf_prog_kallsyms_add(func[i]); 15394 } 15395 15396 /* Last step: make now unused interpreter insns from main 15397 * prog consistent for later dump requests, so they can 15398 * later look the same as if they were interpreted only. 15399 */ 15400 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 15401 if (bpf_pseudo_func(insn)) { 15402 insn[0].imm = env->insn_aux_data[i].call_imm; 15403 insn[1].imm = insn->off; 15404 insn->off = 0; 15405 continue; 15406 } 15407 if (!bpf_pseudo_call(insn)) 15408 continue; 15409 insn->off = env->insn_aux_data[i].call_imm; 15410 subprog = find_subprog(env, i + insn->off + 1); 15411 insn->imm = subprog; 15412 } 15413 15414 prog->jited = 1; 15415 prog->bpf_func = func[0]->bpf_func; 15416 prog->jited_len = func[0]->jited_len; 15417 prog->aux->func = func; 15418 prog->aux->func_cnt = env->subprog_cnt; 15419 bpf_prog_jit_attempt_done(prog); 15420 return 0; 15421 out_free: 15422 /* We failed JIT'ing, so at this point we need to unregister poke 15423 * descriptors from subprogs, so that kernel is not attempting to 15424 * patch it anymore as we're freeing the subprog JIT memory. 15425 */ 15426 for (i = 0; i < prog->aux->size_poke_tab; i++) { 15427 map_ptr = prog->aux->poke_tab[i].tail_call.map; 15428 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 15429 } 15430 /* At this point we're guaranteed that poke descriptors are not 15431 * live anymore. We can just unlink its descriptor table as it's 15432 * released with the main prog. 15433 */ 15434 for (i = 0; i < env->subprog_cnt; i++) { 15435 if (!func[i]) 15436 continue; 15437 func[i]->aux->poke_tab = NULL; 15438 bpf_jit_free(func[i]); 15439 } 15440 kfree(func); 15441 out_undo_insn: 15442 /* cleanup main prog to be interpreted */ 15443 prog->jit_requested = 0; 15444 prog->blinding_requested = 0; 15445 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 15446 if (!bpf_pseudo_call(insn)) 15447 continue; 15448 insn->off = 0; 15449 insn->imm = env->insn_aux_data[i].call_imm; 15450 } 15451 bpf_prog_jit_attempt_done(prog); 15452 return err; 15453 } 15454 15455 static int fixup_call_args(struct bpf_verifier_env *env) 15456 { 15457 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 15458 struct bpf_prog *prog = env->prog; 15459 struct bpf_insn *insn = prog->insnsi; 15460 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 15461 int i, depth; 15462 #endif 15463 int err = 0; 15464 15465 if (env->prog->jit_requested && 15466 !bpf_prog_is_dev_bound(env->prog->aux)) { 15467 err = jit_subprogs(env); 15468 if (err == 0) 15469 return 0; 15470 if (err == -EFAULT) 15471 return err; 15472 } 15473 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 15474 if (has_kfunc_call) { 15475 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 15476 return -EINVAL; 15477 } 15478 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 15479 /* When JIT fails the progs with bpf2bpf calls and tail_calls 15480 * have to be rejected, since interpreter doesn't support them yet. 15481 */ 15482 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 15483 return -EINVAL; 15484 } 15485 for (i = 0; i < prog->len; i++, insn++) { 15486 if (bpf_pseudo_func(insn)) { 15487 /* When JIT fails the progs with callback calls 15488 * have to be rejected, since interpreter doesn't support them yet. 15489 */ 15490 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 15491 return -EINVAL; 15492 } 15493 15494 if (!bpf_pseudo_call(insn)) 15495 continue; 15496 depth = get_callee_stack_depth(env, insn, i); 15497 if (depth < 0) 15498 return depth; 15499 bpf_patch_call_args(insn, depth); 15500 } 15501 err = 0; 15502 #endif 15503 return err; 15504 } 15505 15506 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 15507 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 15508 { 15509 const struct bpf_kfunc_desc *desc; 15510 15511 if (!insn->imm) { 15512 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 15513 return -EINVAL; 15514 } 15515 15516 /* insn->imm has the btf func_id. Replace it with 15517 * an address (relative to __bpf_call_base). 15518 */ 15519 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 15520 if (!desc) { 15521 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 15522 insn->imm); 15523 return -EFAULT; 15524 } 15525 15526 *cnt = 0; 15527 insn->imm = desc->imm; 15528 if (insn->off) 15529 return 0; 15530 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 15531 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 15532 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 15533 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 15534 15535 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 15536 insn_buf[1] = addr[0]; 15537 insn_buf[2] = addr[1]; 15538 insn_buf[3] = *insn; 15539 *cnt = 4; 15540 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 15541 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 15542 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 15543 15544 insn_buf[0] = addr[0]; 15545 insn_buf[1] = addr[1]; 15546 insn_buf[2] = *insn; 15547 *cnt = 3; 15548 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 15549 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 15550 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 15551 *cnt = 1; 15552 } 15553 return 0; 15554 } 15555 15556 /* Do various post-verification rewrites in a single program pass. 15557 * These rewrites simplify JIT and interpreter implementations. 15558 */ 15559 static int do_misc_fixups(struct bpf_verifier_env *env) 15560 { 15561 struct bpf_prog *prog = env->prog; 15562 enum bpf_attach_type eatype = prog->expected_attach_type; 15563 enum bpf_prog_type prog_type = resolve_prog_type(prog); 15564 struct bpf_insn *insn = prog->insnsi; 15565 const struct bpf_func_proto *fn; 15566 const int insn_cnt = prog->len; 15567 const struct bpf_map_ops *ops; 15568 struct bpf_insn_aux_data *aux; 15569 struct bpf_insn insn_buf[16]; 15570 struct bpf_prog *new_prog; 15571 struct bpf_map *map_ptr; 15572 int i, ret, cnt, delta = 0; 15573 15574 for (i = 0; i < insn_cnt; i++, insn++) { 15575 /* Make divide-by-zero exceptions impossible. */ 15576 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 15577 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 15578 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 15579 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 15580 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 15581 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 15582 struct bpf_insn *patchlet; 15583 struct bpf_insn chk_and_div[] = { 15584 /* [R,W]x div 0 -> 0 */ 15585 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 15586 BPF_JNE | BPF_K, insn->src_reg, 15587 0, 2, 0), 15588 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 15589 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 15590 *insn, 15591 }; 15592 struct bpf_insn chk_and_mod[] = { 15593 /* [R,W]x mod 0 -> [R,W]x */ 15594 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 15595 BPF_JEQ | BPF_K, insn->src_reg, 15596 0, 1 + (is64 ? 0 : 1), 0), 15597 *insn, 15598 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 15599 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 15600 }; 15601 15602 patchlet = isdiv ? chk_and_div : chk_and_mod; 15603 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 15604 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 15605 15606 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 15607 if (!new_prog) 15608 return -ENOMEM; 15609 15610 delta += cnt - 1; 15611 env->prog = prog = new_prog; 15612 insn = new_prog->insnsi + i + delta; 15613 continue; 15614 } 15615 15616 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 15617 if (BPF_CLASS(insn->code) == BPF_LD && 15618 (BPF_MODE(insn->code) == BPF_ABS || 15619 BPF_MODE(insn->code) == BPF_IND)) { 15620 cnt = env->ops->gen_ld_abs(insn, insn_buf); 15621 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 15622 verbose(env, "bpf verifier is misconfigured\n"); 15623 return -EINVAL; 15624 } 15625 15626 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15627 if (!new_prog) 15628 return -ENOMEM; 15629 15630 delta += cnt - 1; 15631 env->prog = prog = new_prog; 15632 insn = new_prog->insnsi + i + delta; 15633 continue; 15634 } 15635 15636 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 15637 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 15638 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 15639 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 15640 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 15641 struct bpf_insn *patch = &insn_buf[0]; 15642 bool issrc, isneg, isimm; 15643 u32 off_reg; 15644 15645 aux = &env->insn_aux_data[i + delta]; 15646 if (!aux->alu_state || 15647 aux->alu_state == BPF_ALU_NON_POINTER) 15648 continue; 15649 15650 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 15651 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 15652 BPF_ALU_SANITIZE_SRC; 15653 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 15654 15655 off_reg = issrc ? insn->src_reg : insn->dst_reg; 15656 if (isimm) { 15657 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 15658 } else { 15659 if (isneg) 15660 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 15661 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 15662 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 15663 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 15664 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 15665 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 15666 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 15667 } 15668 if (!issrc) 15669 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 15670 insn->src_reg = BPF_REG_AX; 15671 if (isneg) 15672 insn->code = insn->code == code_add ? 15673 code_sub : code_add; 15674 *patch++ = *insn; 15675 if (issrc && isneg && !isimm) 15676 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 15677 cnt = patch - insn_buf; 15678 15679 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15680 if (!new_prog) 15681 return -ENOMEM; 15682 15683 delta += cnt - 1; 15684 env->prog = prog = new_prog; 15685 insn = new_prog->insnsi + i + delta; 15686 continue; 15687 } 15688 15689 if (insn->code != (BPF_JMP | BPF_CALL)) 15690 continue; 15691 if (insn->src_reg == BPF_PSEUDO_CALL) 15692 continue; 15693 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 15694 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 15695 if (ret) 15696 return ret; 15697 if (cnt == 0) 15698 continue; 15699 15700 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15701 if (!new_prog) 15702 return -ENOMEM; 15703 15704 delta += cnt - 1; 15705 env->prog = prog = new_prog; 15706 insn = new_prog->insnsi + i + delta; 15707 continue; 15708 } 15709 15710 if (insn->imm == BPF_FUNC_get_route_realm) 15711 prog->dst_needed = 1; 15712 if (insn->imm == BPF_FUNC_get_prandom_u32) 15713 bpf_user_rnd_init_once(); 15714 if (insn->imm == BPF_FUNC_override_return) 15715 prog->kprobe_override = 1; 15716 if (insn->imm == BPF_FUNC_tail_call) { 15717 /* If we tail call into other programs, we 15718 * cannot make any assumptions since they can 15719 * be replaced dynamically during runtime in 15720 * the program array. 15721 */ 15722 prog->cb_access = 1; 15723 if (!allow_tail_call_in_subprogs(env)) 15724 prog->aux->stack_depth = MAX_BPF_STACK; 15725 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 15726 15727 /* mark bpf_tail_call as different opcode to avoid 15728 * conditional branch in the interpreter for every normal 15729 * call and to prevent accidental JITing by JIT compiler 15730 * that doesn't support bpf_tail_call yet 15731 */ 15732 insn->imm = 0; 15733 insn->code = BPF_JMP | BPF_TAIL_CALL; 15734 15735 aux = &env->insn_aux_data[i + delta]; 15736 if (env->bpf_capable && !prog->blinding_requested && 15737 prog->jit_requested && 15738 !bpf_map_key_poisoned(aux) && 15739 !bpf_map_ptr_poisoned(aux) && 15740 !bpf_map_ptr_unpriv(aux)) { 15741 struct bpf_jit_poke_descriptor desc = { 15742 .reason = BPF_POKE_REASON_TAIL_CALL, 15743 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 15744 .tail_call.key = bpf_map_key_immediate(aux), 15745 .insn_idx = i + delta, 15746 }; 15747 15748 ret = bpf_jit_add_poke_descriptor(prog, &desc); 15749 if (ret < 0) { 15750 verbose(env, "adding tail call poke descriptor failed\n"); 15751 return ret; 15752 } 15753 15754 insn->imm = ret + 1; 15755 continue; 15756 } 15757 15758 if (!bpf_map_ptr_unpriv(aux)) 15759 continue; 15760 15761 /* instead of changing every JIT dealing with tail_call 15762 * emit two extra insns: 15763 * if (index >= max_entries) goto out; 15764 * index &= array->index_mask; 15765 * to avoid out-of-bounds cpu speculation 15766 */ 15767 if (bpf_map_ptr_poisoned(aux)) { 15768 verbose(env, "tail_call abusing map_ptr\n"); 15769 return -EINVAL; 15770 } 15771 15772 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 15773 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 15774 map_ptr->max_entries, 2); 15775 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 15776 container_of(map_ptr, 15777 struct bpf_array, 15778 map)->index_mask); 15779 insn_buf[2] = *insn; 15780 cnt = 3; 15781 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15782 if (!new_prog) 15783 return -ENOMEM; 15784 15785 delta += cnt - 1; 15786 env->prog = prog = new_prog; 15787 insn = new_prog->insnsi + i + delta; 15788 continue; 15789 } 15790 15791 if (insn->imm == BPF_FUNC_timer_set_callback) { 15792 /* The verifier will process callback_fn as many times as necessary 15793 * with different maps and the register states prepared by 15794 * set_timer_callback_state will be accurate. 15795 * 15796 * The following use case is valid: 15797 * map1 is shared by prog1, prog2, prog3. 15798 * prog1 calls bpf_timer_init for some map1 elements 15799 * prog2 calls bpf_timer_set_callback for some map1 elements. 15800 * Those that were not bpf_timer_init-ed will return -EINVAL. 15801 * prog3 calls bpf_timer_start for some map1 elements. 15802 * Those that were not both bpf_timer_init-ed and 15803 * bpf_timer_set_callback-ed will return -EINVAL. 15804 */ 15805 struct bpf_insn ld_addrs[2] = { 15806 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 15807 }; 15808 15809 insn_buf[0] = ld_addrs[0]; 15810 insn_buf[1] = ld_addrs[1]; 15811 insn_buf[2] = *insn; 15812 cnt = 3; 15813 15814 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15815 if (!new_prog) 15816 return -ENOMEM; 15817 15818 delta += cnt - 1; 15819 env->prog = prog = new_prog; 15820 insn = new_prog->insnsi + i + delta; 15821 goto patch_call_imm; 15822 } 15823 15824 if (is_storage_get_function(insn->imm)) { 15825 if (!env->prog->aux->sleepable || 15826 env->insn_aux_data[i + delta].storage_get_func_atomic) 15827 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 15828 else 15829 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 15830 insn_buf[1] = *insn; 15831 cnt = 2; 15832 15833 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15834 if (!new_prog) 15835 return -ENOMEM; 15836 15837 delta += cnt - 1; 15838 env->prog = prog = new_prog; 15839 insn = new_prog->insnsi + i + delta; 15840 goto patch_call_imm; 15841 } 15842 15843 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 15844 * and other inlining handlers are currently limited to 64 bit 15845 * only. 15846 */ 15847 if (prog->jit_requested && BITS_PER_LONG == 64 && 15848 (insn->imm == BPF_FUNC_map_lookup_elem || 15849 insn->imm == BPF_FUNC_map_update_elem || 15850 insn->imm == BPF_FUNC_map_delete_elem || 15851 insn->imm == BPF_FUNC_map_push_elem || 15852 insn->imm == BPF_FUNC_map_pop_elem || 15853 insn->imm == BPF_FUNC_map_peek_elem || 15854 insn->imm == BPF_FUNC_redirect_map || 15855 insn->imm == BPF_FUNC_for_each_map_elem || 15856 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 15857 aux = &env->insn_aux_data[i + delta]; 15858 if (bpf_map_ptr_poisoned(aux)) 15859 goto patch_call_imm; 15860 15861 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 15862 ops = map_ptr->ops; 15863 if (insn->imm == BPF_FUNC_map_lookup_elem && 15864 ops->map_gen_lookup) { 15865 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 15866 if (cnt == -EOPNOTSUPP) 15867 goto patch_map_ops_generic; 15868 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 15869 verbose(env, "bpf verifier is misconfigured\n"); 15870 return -EINVAL; 15871 } 15872 15873 new_prog = bpf_patch_insn_data(env, i + delta, 15874 insn_buf, cnt); 15875 if (!new_prog) 15876 return -ENOMEM; 15877 15878 delta += cnt - 1; 15879 env->prog = prog = new_prog; 15880 insn = new_prog->insnsi + i + delta; 15881 continue; 15882 } 15883 15884 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 15885 (void *(*)(struct bpf_map *map, void *key))NULL)); 15886 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 15887 (int (*)(struct bpf_map *map, void *key))NULL)); 15888 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 15889 (int (*)(struct bpf_map *map, void *key, void *value, 15890 u64 flags))NULL)); 15891 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 15892 (int (*)(struct bpf_map *map, void *value, 15893 u64 flags))NULL)); 15894 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 15895 (int (*)(struct bpf_map *map, void *value))NULL)); 15896 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 15897 (int (*)(struct bpf_map *map, void *value))NULL)); 15898 BUILD_BUG_ON(!__same_type(ops->map_redirect, 15899 (int (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 15900 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 15901 (int (*)(struct bpf_map *map, 15902 bpf_callback_t callback_fn, 15903 void *callback_ctx, 15904 u64 flags))NULL)); 15905 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 15906 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 15907 15908 patch_map_ops_generic: 15909 switch (insn->imm) { 15910 case BPF_FUNC_map_lookup_elem: 15911 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 15912 continue; 15913 case BPF_FUNC_map_update_elem: 15914 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 15915 continue; 15916 case BPF_FUNC_map_delete_elem: 15917 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 15918 continue; 15919 case BPF_FUNC_map_push_elem: 15920 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 15921 continue; 15922 case BPF_FUNC_map_pop_elem: 15923 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 15924 continue; 15925 case BPF_FUNC_map_peek_elem: 15926 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 15927 continue; 15928 case BPF_FUNC_redirect_map: 15929 insn->imm = BPF_CALL_IMM(ops->map_redirect); 15930 continue; 15931 case BPF_FUNC_for_each_map_elem: 15932 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 15933 continue; 15934 case BPF_FUNC_map_lookup_percpu_elem: 15935 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 15936 continue; 15937 } 15938 15939 goto patch_call_imm; 15940 } 15941 15942 /* Implement bpf_jiffies64 inline. */ 15943 if (prog->jit_requested && BITS_PER_LONG == 64 && 15944 insn->imm == BPF_FUNC_jiffies64) { 15945 struct bpf_insn ld_jiffies_addr[2] = { 15946 BPF_LD_IMM64(BPF_REG_0, 15947 (unsigned long)&jiffies), 15948 }; 15949 15950 insn_buf[0] = ld_jiffies_addr[0]; 15951 insn_buf[1] = ld_jiffies_addr[1]; 15952 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 15953 BPF_REG_0, 0); 15954 cnt = 3; 15955 15956 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 15957 cnt); 15958 if (!new_prog) 15959 return -ENOMEM; 15960 15961 delta += cnt - 1; 15962 env->prog = prog = new_prog; 15963 insn = new_prog->insnsi + i + delta; 15964 continue; 15965 } 15966 15967 /* Implement bpf_get_func_arg inline. */ 15968 if (prog_type == BPF_PROG_TYPE_TRACING && 15969 insn->imm == BPF_FUNC_get_func_arg) { 15970 /* Load nr_args from ctx - 8 */ 15971 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 15972 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 15973 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 15974 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 15975 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 15976 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 15977 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 15978 insn_buf[7] = BPF_JMP_A(1); 15979 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 15980 cnt = 9; 15981 15982 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15983 if (!new_prog) 15984 return -ENOMEM; 15985 15986 delta += cnt - 1; 15987 env->prog = prog = new_prog; 15988 insn = new_prog->insnsi + i + delta; 15989 continue; 15990 } 15991 15992 /* Implement bpf_get_func_ret inline. */ 15993 if (prog_type == BPF_PROG_TYPE_TRACING && 15994 insn->imm == BPF_FUNC_get_func_ret) { 15995 if (eatype == BPF_TRACE_FEXIT || 15996 eatype == BPF_MODIFY_RETURN) { 15997 /* Load nr_args from ctx - 8 */ 15998 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 15999 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 16000 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 16001 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 16002 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 16003 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 16004 cnt = 6; 16005 } else { 16006 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 16007 cnt = 1; 16008 } 16009 16010 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16011 if (!new_prog) 16012 return -ENOMEM; 16013 16014 delta += cnt - 1; 16015 env->prog = prog = new_prog; 16016 insn = new_prog->insnsi + i + delta; 16017 continue; 16018 } 16019 16020 /* Implement get_func_arg_cnt inline. */ 16021 if (prog_type == BPF_PROG_TYPE_TRACING && 16022 insn->imm == BPF_FUNC_get_func_arg_cnt) { 16023 /* Load nr_args from ctx - 8 */ 16024 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 16025 16026 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 16027 if (!new_prog) 16028 return -ENOMEM; 16029 16030 env->prog = prog = new_prog; 16031 insn = new_prog->insnsi + i + delta; 16032 continue; 16033 } 16034 16035 /* Implement bpf_get_func_ip inline. */ 16036 if (prog_type == BPF_PROG_TYPE_TRACING && 16037 insn->imm == BPF_FUNC_get_func_ip) { 16038 /* Load IP address from ctx - 16 */ 16039 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 16040 16041 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 16042 if (!new_prog) 16043 return -ENOMEM; 16044 16045 env->prog = prog = new_prog; 16046 insn = new_prog->insnsi + i + delta; 16047 continue; 16048 } 16049 16050 patch_call_imm: 16051 fn = env->ops->get_func_proto(insn->imm, env->prog); 16052 /* all functions that have prototype and verifier allowed 16053 * programs to call them, must be real in-kernel functions 16054 */ 16055 if (!fn->func) { 16056 verbose(env, 16057 "kernel subsystem misconfigured func %s#%d\n", 16058 func_id_name(insn->imm), insn->imm); 16059 return -EFAULT; 16060 } 16061 insn->imm = fn->func - __bpf_call_base; 16062 } 16063 16064 /* Since poke tab is now finalized, publish aux to tracker. */ 16065 for (i = 0; i < prog->aux->size_poke_tab; i++) { 16066 map_ptr = prog->aux->poke_tab[i].tail_call.map; 16067 if (!map_ptr->ops->map_poke_track || 16068 !map_ptr->ops->map_poke_untrack || 16069 !map_ptr->ops->map_poke_run) { 16070 verbose(env, "bpf verifier is misconfigured\n"); 16071 return -EINVAL; 16072 } 16073 16074 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 16075 if (ret < 0) { 16076 verbose(env, "tracking tail call prog failed\n"); 16077 return ret; 16078 } 16079 } 16080 16081 sort_kfunc_descs_by_imm(env->prog); 16082 16083 return 0; 16084 } 16085 16086 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 16087 int position, 16088 s32 stack_base, 16089 u32 callback_subprogno, 16090 u32 *cnt) 16091 { 16092 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 16093 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 16094 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 16095 int reg_loop_max = BPF_REG_6; 16096 int reg_loop_cnt = BPF_REG_7; 16097 int reg_loop_ctx = BPF_REG_8; 16098 16099 struct bpf_prog *new_prog; 16100 u32 callback_start; 16101 u32 call_insn_offset; 16102 s32 callback_offset; 16103 16104 /* This represents an inlined version of bpf_iter.c:bpf_loop, 16105 * be careful to modify this code in sync. 16106 */ 16107 struct bpf_insn insn_buf[] = { 16108 /* Return error and jump to the end of the patch if 16109 * expected number of iterations is too big. 16110 */ 16111 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 16112 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 16113 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 16114 /* spill R6, R7, R8 to use these as loop vars */ 16115 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 16116 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 16117 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 16118 /* initialize loop vars */ 16119 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 16120 BPF_MOV32_IMM(reg_loop_cnt, 0), 16121 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 16122 /* loop header, 16123 * if reg_loop_cnt >= reg_loop_max skip the loop body 16124 */ 16125 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 16126 /* callback call, 16127 * correct callback offset would be set after patching 16128 */ 16129 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 16130 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 16131 BPF_CALL_REL(0), 16132 /* increment loop counter */ 16133 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 16134 /* jump to loop header if callback returned 0 */ 16135 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 16136 /* return value of bpf_loop, 16137 * set R0 to the number of iterations 16138 */ 16139 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 16140 /* restore original values of R6, R7, R8 */ 16141 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 16142 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 16143 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 16144 }; 16145 16146 *cnt = ARRAY_SIZE(insn_buf); 16147 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 16148 if (!new_prog) 16149 return new_prog; 16150 16151 /* callback start is known only after patching */ 16152 callback_start = env->subprog_info[callback_subprogno].start; 16153 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 16154 call_insn_offset = position + 12; 16155 callback_offset = callback_start - call_insn_offset - 1; 16156 new_prog->insnsi[call_insn_offset].imm = callback_offset; 16157 16158 return new_prog; 16159 } 16160 16161 static bool is_bpf_loop_call(struct bpf_insn *insn) 16162 { 16163 return insn->code == (BPF_JMP | BPF_CALL) && 16164 insn->src_reg == 0 && 16165 insn->imm == BPF_FUNC_loop; 16166 } 16167 16168 /* For all sub-programs in the program (including main) check 16169 * insn_aux_data to see if there are bpf_loop calls that require 16170 * inlining. If such calls are found the calls are replaced with a 16171 * sequence of instructions produced by `inline_bpf_loop` function and 16172 * subprog stack_depth is increased by the size of 3 registers. 16173 * This stack space is used to spill values of the R6, R7, R8. These 16174 * registers are used to store the loop bound, counter and context 16175 * variables. 16176 */ 16177 static int optimize_bpf_loop(struct bpf_verifier_env *env) 16178 { 16179 struct bpf_subprog_info *subprogs = env->subprog_info; 16180 int i, cur_subprog = 0, cnt, delta = 0; 16181 struct bpf_insn *insn = env->prog->insnsi; 16182 int insn_cnt = env->prog->len; 16183 u16 stack_depth = subprogs[cur_subprog].stack_depth; 16184 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 16185 u16 stack_depth_extra = 0; 16186 16187 for (i = 0; i < insn_cnt; i++, insn++) { 16188 struct bpf_loop_inline_state *inline_state = 16189 &env->insn_aux_data[i + delta].loop_inline_state; 16190 16191 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 16192 struct bpf_prog *new_prog; 16193 16194 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 16195 new_prog = inline_bpf_loop(env, 16196 i + delta, 16197 -(stack_depth + stack_depth_extra), 16198 inline_state->callback_subprogno, 16199 &cnt); 16200 if (!new_prog) 16201 return -ENOMEM; 16202 16203 delta += cnt - 1; 16204 env->prog = new_prog; 16205 insn = new_prog->insnsi + i + delta; 16206 } 16207 16208 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 16209 subprogs[cur_subprog].stack_depth += stack_depth_extra; 16210 cur_subprog++; 16211 stack_depth = subprogs[cur_subprog].stack_depth; 16212 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 16213 stack_depth_extra = 0; 16214 } 16215 } 16216 16217 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 16218 16219 return 0; 16220 } 16221 16222 static void free_states(struct bpf_verifier_env *env) 16223 { 16224 struct bpf_verifier_state_list *sl, *sln; 16225 int i; 16226 16227 sl = env->free_list; 16228 while (sl) { 16229 sln = sl->next; 16230 free_verifier_state(&sl->state, false); 16231 kfree(sl); 16232 sl = sln; 16233 } 16234 env->free_list = NULL; 16235 16236 if (!env->explored_states) 16237 return; 16238 16239 for (i = 0; i < state_htab_size(env); i++) { 16240 sl = env->explored_states[i]; 16241 16242 while (sl) { 16243 sln = sl->next; 16244 free_verifier_state(&sl->state, false); 16245 kfree(sl); 16246 sl = sln; 16247 } 16248 env->explored_states[i] = NULL; 16249 } 16250 } 16251 16252 static int do_check_common(struct bpf_verifier_env *env, int subprog) 16253 { 16254 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 16255 struct bpf_verifier_state *state; 16256 struct bpf_reg_state *regs; 16257 int ret, i; 16258 16259 env->prev_linfo = NULL; 16260 env->pass_cnt++; 16261 16262 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 16263 if (!state) 16264 return -ENOMEM; 16265 state->curframe = 0; 16266 state->speculative = false; 16267 state->branches = 1; 16268 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 16269 if (!state->frame[0]) { 16270 kfree(state); 16271 return -ENOMEM; 16272 } 16273 env->cur_state = state; 16274 init_func_state(env, state->frame[0], 16275 BPF_MAIN_FUNC /* callsite */, 16276 0 /* frameno */, 16277 subprog); 16278 state->first_insn_idx = env->subprog_info[subprog].start; 16279 state->last_insn_idx = -1; 16280 16281 regs = state->frame[state->curframe]->regs; 16282 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 16283 ret = btf_prepare_func_args(env, subprog, regs); 16284 if (ret) 16285 goto out; 16286 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 16287 if (regs[i].type == PTR_TO_CTX) 16288 mark_reg_known_zero(env, regs, i); 16289 else if (regs[i].type == SCALAR_VALUE) 16290 mark_reg_unknown(env, regs, i); 16291 else if (base_type(regs[i].type) == PTR_TO_MEM) { 16292 const u32 mem_size = regs[i].mem_size; 16293 16294 mark_reg_known_zero(env, regs, i); 16295 regs[i].mem_size = mem_size; 16296 regs[i].id = ++env->id_gen; 16297 } 16298 } 16299 } else { 16300 /* 1st arg to a function */ 16301 regs[BPF_REG_1].type = PTR_TO_CTX; 16302 mark_reg_known_zero(env, regs, BPF_REG_1); 16303 ret = btf_check_subprog_arg_match(env, subprog, regs); 16304 if (ret == -EFAULT) 16305 /* unlikely verifier bug. abort. 16306 * ret == 0 and ret < 0 are sadly acceptable for 16307 * main() function due to backward compatibility. 16308 * Like socket filter program may be written as: 16309 * int bpf_prog(struct pt_regs *ctx) 16310 * and never dereference that ctx in the program. 16311 * 'struct pt_regs' is a type mismatch for socket 16312 * filter that should be using 'struct __sk_buff'. 16313 */ 16314 goto out; 16315 } 16316 16317 ret = do_check(env); 16318 out: 16319 /* check for NULL is necessary, since cur_state can be freed inside 16320 * do_check() under memory pressure. 16321 */ 16322 if (env->cur_state) { 16323 free_verifier_state(env->cur_state, true); 16324 env->cur_state = NULL; 16325 } 16326 while (!pop_stack(env, NULL, NULL, false)); 16327 if (!ret && pop_log) 16328 bpf_vlog_reset(&env->log, 0); 16329 free_states(env); 16330 return ret; 16331 } 16332 16333 /* Verify all global functions in a BPF program one by one based on their BTF. 16334 * All global functions must pass verification. Otherwise the whole program is rejected. 16335 * Consider: 16336 * int bar(int); 16337 * int foo(int f) 16338 * { 16339 * return bar(f); 16340 * } 16341 * int bar(int b) 16342 * { 16343 * ... 16344 * } 16345 * foo() will be verified first for R1=any_scalar_value. During verification it 16346 * will be assumed that bar() already verified successfully and call to bar() 16347 * from foo() will be checked for type match only. Later bar() will be verified 16348 * independently to check that it's safe for R1=any_scalar_value. 16349 */ 16350 static int do_check_subprogs(struct bpf_verifier_env *env) 16351 { 16352 struct bpf_prog_aux *aux = env->prog->aux; 16353 int i, ret; 16354 16355 if (!aux->func_info) 16356 return 0; 16357 16358 for (i = 1; i < env->subprog_cnt; i++) { 16359 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 16360 continue; 16361 env->insn_idx = env->subprog_info[i].start; 16362 WARN_ON_ONCE(env->insn_idx == 0); 16363 ret = do_check_common(env, i); 16364 if (ret) { 16365 return ret; 16366 } else if (env->log.level & BPF_LOG_LEVEL) { 16367 verbose(env, 16368 "Func#%d is safe for any args that match its prototype\n", 16369 i); 16370 } 16371 } 16372 return 0; 16373 } 16374 16375 static int do_check_main(struct bpf_verifier_env *env) 16376 { 16377 int ret; 16378 16379 env->insn_idx = 0; 16380 ret = do_check_common(env, 0); 16381 if (!ret) 16382 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 16383 return ret; 16384 } 16385 16386 16387 static void print_verification_stats(struct bpf_verifier_env *env) 16388 { 16389 int i; 16390 16391 if (env->log.level & BPF_LOG_STATS) { 16392 verbose(env, "verification time %lld usec\n", 16393 div_u64(env->verification_time, 1000)); 16394 verbose(env, "stack depth "); 16395 for (i = 0; i < env->subprog_cnt; i++) { 16396 u32 depth = env->subprog_info[i].stack_depth; 16397 16398 verbose(env, "%d", depth); 16399 if (i + 1 < env->subprog_cnt) 16400 verbose(env, "+"); 16401 } 16402 verbose(env, "\n"); 16403 } 16404 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 16405 "total_states %d peak_states %d mark_read %d\n", 16406 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 16407 env->max_states_per_insn, env->total_states, 16408 env->peak_states, env->longest_mark_read_walk); 16409 } 16410 16411 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 16412 { 16413 const struct btf_type *t, *func_proto; 16414 const struct bpf_struct_ops *st_ops; 16415 const struct btf_member *member; 16416 struct bpf_prog *prog = env->prog; 16417 u32 btf_id, member_idx; 16418 const char *mname; 16419 16420 if (!prog->gpl_compatible) { 16421 verbose(env, "struct ops programs must have a GPL compatible license\n"); 16422 return -EINVAL; 16423 } 16424 16425 btf_id = prog->aux->attach_btf_id; 16426 st_ops = bpf_struct_ops_find(btf_id); 16427 if (!st_ops) { 16428 verbose(env, "attach_btf_id %u is not a supported struct\n", 16429 btf_id); 16430 return -ENOTSUPP; 16431 } 16432 16433 t = st_ops->type; 16434 member_idx = prog->expected_attach_type; 16435 if (member_idx >= btf_type_vlen(t)) { 16436 verbose(env, "attach to invalid member idx %u of struct %s\n", 16437 member_idx, st_ops->name); 16438 return -EINVAL; 16439 } 16440 16441 member = &btf_type_member(t)[member_idx]; 16442 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 16443 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 16444 NULL); 16445 if (!func_proto) { 16446 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 16447 mname, member_idx, st_ops->name); 16448 return -EINVAL; 16449 } 16450 16451 if (st_ops->check_member) { 16452 int err = st_ops->check_member(t, member); 16453 16454 if (err) { 16455 verbose(env, "attach to unsupported member %s of struct %s\n", 16456 mname, st_ops->name); 16457 return err; 16458 } 16459 } 16460 16461 prog->aux->attach_func_proto = func_proto; 16462 prog->aux->attach_func_name = mname; 16463 env->ops = st_ops->verifier_ops; 16464 16465 return 0; 16466 } 16467 #define SECURITY_PREFIX "security_" 16468 16469 static int check_attach_modify_return(unsigned long addr, const char *func_name) 16470 { 16471 if (within_error_injection_list(addr) || 16472 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 16473 return 0; 16474 16475 return -EINVAL; 16476 } 16477 16478 /* list of non-sleepable functions that are otherwise on 16479 * ALLOW_ERROR_INJECTION list 16480 */ 16481 BTF_SET_START(btf_non_sleepable_error_inject) 16482 /* Three functions below can be called from sleepable and non-sleepable context. 16483 * Assume non-sleepable from bpf safety point of view. 16484 */ 16485 BTF_ID(func, __filemap_add_folio) 16486 BTF_ID(func, should_fail_alloc_page) 16487 BTF_ID(func, should_failslab) 16488 BTF_SET_END(btf_non_sleepable_error_inject) 16489 16490 static int check_non_sleepable_error_inject(u32 btf_id) 16491 { 16492 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 16493 } 16494 16495 int bpf_check_attach_target(struct bpf_verifier_log *log, 16496 const struct bpf_prog *prog, 16497 const struct bpf_prog *tgt_prog, 16498 u32 btf_id, 16499 struct bpf_attach_target_info *tgt_info) 16500 { 16501 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 16502 const char prefix[] = "btf_trace_"; 16503 int ret = 0, subprog = -1, i; 16504 const struct btf_type *t; 16505 bool conservative = true; 16506 const char *tname; 16507 struct btf *btf; 16508 long addr = 0; 16509 16510 if (!btf_id) { 16511 bpf_log(log, "Tracing programs must provide btf_id\n"); 16512 return -EINVAL; 16513 } 16514 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 16515 if (!btf) { 16516 bpf_log(log, 16517 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 16518 return -EINVAL; 16519 } 16520 t = btf_type_by_id(btf, btf_id); 16521 if (!t) { 16522 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 16523 return -EINVAL; 16524 } 16525 tname = btf_name_by_offset(btf, t->name_off); 16526 if (!tname) { 16527 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 16528 return -EINVAL; 16529 } 16530 if (tgt_prog) { 16531 struct bpf_prog_aux *aux = tgt_prog->aux; 16532 16533 for (i = 0; i < aux->func_info_cnt; i++) 16534 if (aux->func_info[i].type_id == btf_id) { 16535 subprog = i; 16536 break; 16537 } 16538 if (subprog == -1) { 16539 bpf_log(log, "Subprog %s doesn't exist\n", tname); 16540 return -EINVAL; 16541 } 16542 conservative = aux->func_info_aux[subprog].unreliable; 16543 if (prog_extension) { 16544 if (conservative) { 16545 bpf_log(log, 16546 "Cannot replace static functions\n"); 16547 return -EINVAL; 16548 } 16549 if (!prog->jit_requested) { 16550 bpf_log(log, 16551 "Extension programs should be JITed\n"); 16552 return -EINVAL; 16553 } 16554 } 16555 if (!tgt_prog->jited) { 16556 bpf_log(log, "Can attach to only JITed progs\n"); 16557 return -EINVAL; 16558 } 16559 if (tgt_prog->type == prog->type) { 16560 /* Cannot fentry/fexit another fentry/fexit program. 16561 * Cannot attach program extension to another extension. 16562 * It's ok to attach fentry/fexit to extension program. 16563 */ 16564 bpf_log(log, "Cannot recursively attach\n"); 16565 return -EINVAL; 16566 } 16567 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 16568 prog_extension && 16569 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 16570 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 16571 /* Program extensions can extend all program types 16572 * except fentry/fexit. The reason is the following. 16573 * The fentry/fexit programs are used for performance 16574 * analysis, stats and can be attached to any program 16575 * type except themselves. When extension program is 16576 * replacing XDP function it is necessary to allow 16577 * performance analysis of all functions. Both original 16578 * XDP program and its program extension. Hence 16579 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 16580 * allowed. If extending of fentry/fexit was allowed it 16581 * would be possible to create long call chain 16582 * fentry->extension->fentry->extension beyond 16583 * reasonable stack size. Hence extending fentry is not 16584 * allowed. 16585 */ 16586 bpf_log(log, "Cannot extend fentry/fexit\n"); 16587 return -EINVAL; 16588 } 16589 } else { 16590 if (prog_extension) { 16591 bpf_log(log, "Cannot replace kernel functions\n"); 16592 return -EINVAL; 16593 } 16594 } 16595 16596 switch (prog->expected_attach_type) { 16597 case BPF_TRACE_RAW_TP: 16598 if (tgt_prog) { 16599 bpf_log(log, 16600 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 16601 return -EINVAL; 16602 } 16603 if (!btf_type_is_typedef(t)) { 16604 bpf_log(log, "attach_btf_id %u is not a typedef\n", 16605 btf_id); 16606 return -EINVAL; 16607 } 16608 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 16609 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 16610 btf_id, tname); 16611 return -EINVAL; 16612 } 16613 tname += sizeof(prefix) - 1; 16614 t = btf_type_by_id(btf, t->type); 16615 if (!btf_type_is_ptr(t)) 16616 /* should never happen in valid vmlinux build */ 16617 return -EINVAL; 16618 t = btf_type_by_id(btf, t->type); 16619 if (!btf_type_is_func_proto(t)) 16620 /* should never happen in valid vmlinux build */ 16621 return -EINVAL; 16622 16623 break; 16624 case BPF_TRACE_ITER: 16625 if (!btf_type_is_func(t)) { 16626 bpf_log(log, "attach_btf_id %u is not a function\n", 16627 btf_id); 16628 return -EINVAL; 16629 } 16630 t = btf_type_by_id(btf, t->type); 16631 if (!btf_type_is_func_proto(t)) 16632 return -EINVAL; 16633 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 16634 if (ret) 16635 return ret; 16636 break; 16637 default: 16638 if (!prog_extension) 16639 return -EINVAL; 16640 fallthrough; 16641 case BPF_MODIFY_RETURN: 16642 case BPF_LSM_MAC: 16643 case BPF_LSM_CGROUP: 16644 case BPF_TRACE_FENTRY: 16645 case BPF_TRACE_FEXIT: 16646 if (!btf_type_is_func(t)) { 16647 bpf_log(log, "attach_btf_id %u is not a function\n", 16648 btf_id); 16649 return -EINVAL; 16650 } 16651 if (prog_extension && 16652 btf_check_type_match(log, prog, btf, t)) 16653 return -EINVAL; 16654 t = btf_type_by_id(btf, t->type); 16655 if (!btf_type_is_func_proto(t)) 16656 return -EINVAL; 16657 16658 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 16659 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 16660 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 16661 return -EINVAL; 16662 16663 if (tgt_prog && conservative) 16664 t = NULL; 16665 16666 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 16667 if (ret < 0) 16668 return ret; 16669 16670 if (tgt_prog) { 16671 if (subprog == 0) 16672 addr = (long) tgt_prog->bpf_func; 16673 else 16674 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 16675 } else { 16676 addr = kallsyms_lookup_name(tname); 16677 if (!addr) { 16678 bpf_log(log, 16679 "The address of function %s cannot be found\n", 16680 tname); 16681 return -ENOENT; 16682 } 16683 } 16684 16685 if (prog->aux->sleepable) { 16686 ret = -EINVAL; 16687 switch (prog->type) { 16688 case BPF_PROG_TYPE_TRACING: 16689 16690 /* fentry/fexit/fmod_ret progs can be sleepable if they are 16691 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 16692 */ 16693 if (!check_non_sleepable_error_inject(btf_id) && 16694 within_error_injection_list(addr)) 16695 ret = 0; 16696 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 16697 * in the fmodret id set with the KF_SLEEPABLE flag. 16698 */ 16699 else { 16700 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id); 16701 16702 if (flags && (*flags & KF_SLEEPABLE)) 16703 ret = 0; 16704 } 16705 break; 16706 case BPF_PROG_TYPE_LSM: 16707 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 16708 * Only some of them are sleepable. 16709 */ 16710 if (bpf_lsm_is_sleepable_hook(btf_id)) 16711 ret = 0; 16712 break; 16713 default: 16714 break; 16715 } 16716 if (ret) { 16717 bpf_log(log, "%s is not sleepable\n", tname); 16718 return ret; 16719 } 16720 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 16721 if (tgt_prog) { 16722 bpf_log(log, "can't modify return codes of BPF programs\n"); 16723 return -EINVAL; 16724 } 16725 ret = -EINVAL; 16726 if (btf_kfunc_is_modify_return(btf, btf_id) || 16727 !check_attach_modify_return(addr, tname)) 16728 ret = 0; 16729 if (ret) { 16730 bpf_log(log, "%s() is not modifiable\n", tname); 16731 return ret; 16732 } 16733 } 16734 16735 break; 16736 } 16737 tgt_info->tgt_addr = addr; 16738 tgt_info->tgt_name = tname; 16739 tgt_info->tgt_type = t; 16740 return 0; 16741 } 16742 16743 BTF_SET_START(btf_id_deny) 16744 BTF_ID_UNUSED 16745 #ifdef CONFIG_SMP 16746 BTF_ID(func, migrate_disable) 16747 BTF_ID(func, migrate_enable) 16748 #endif 16749 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 16750 BTF_ID(func, rcu_read_unlock_strict) 16751 #endif 16752 BTF_SET_END(btf_id_deny) 16753 16754 static int check_attach_btf_id(struct bpf_verifier_env *env) 16755 { 16756 struct bpf_prog *prog = env->prog; 16757 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 16758 struct bpf_attach_target_info tgt_info = {}; 16759 u32 btf_id = prog->aux->attach_btf_id; 16760 struct bpf_trampoline *tr; 16761 int ret; 16762 u64 key; 16763 16764 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 16765 if (prog->aux->sleepable) 16766 /* attach_btf_id checked to be zero already */ 16767 return 0; 16768 verbose(env, "Syscall programs can only be sleepable\n"); 16769 return -EINVAL; 16770 } 16771 16772 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 16773 prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_KPROBE) { 16774 verbose(env, "Only fentry/fexit/fmod_ret, lsm, and kprobe/uprobe programs can be sleepable\n"); 16775 return -EINVAL; 16776 } 16777 16778 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 16779 return check_struct_ops_btf_id(env); 16780 16781 if (prog->type != BPF_PROG_TYPE_TRACING && 16782 prog->type != BPF_PROG_TYPE_LSM && 16783 prog->type != BPF_PROG_TYPE_EXT) 16784 return 0; 16785 16786 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 16787 if (ret) 16788 return ret; 16789 16790 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 16791 /* to make freplace equivalent to their targets, they need to 16792 * inherit env->ops and expected_attach_type for the rest of the 16793 * verification 16794 */ 16795 env->ops = bpf_verifier_ops[tgt_prog->type]; 16796 prog->expected_attach_type = tgt_prog->expected_attach_type; 16797 } 16798 16799 /* store info about the attachment target that will be used later */ 16800 prog->aux->attach_func_proto = tgt_info.tgt_type; 16801 prog->aux->attach_func_name = tgt_info.tgt_name; 16802 16803 if (tgt_prog) { 16804 prog->aux->saved_dst_prog_type = tgt_prog->type; 16805 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 16806 } 16807 16808 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 16809 prog->aux->attach_btf_trace = true; 16810 return 0; 16811 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 16812 if (!bpf_iter_prog_supported(prog)) 16813 return -EINVAL; 16814 return 0; 16815 } 16816 16817 if (prog->type == BPF_PROG_TYPE_LSM) { 16818 ret = bpf_lsm_verify_prog(&env->log, prog); 16819 if (ret < 0) 16820 return ret; 16821 } else if (prog->type == BPF_PROG_TYPE_TRACING && 16822 btf_id_set_contains(&btf_id_deny, btf_id)) { 16823 return -EINVAL; 16824 } 16825 16826 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 16827 tr = bpf_trampoline_get(key, &tgt_info); 16828 if (!tr) 16829 return -ENOMEM; 16830 16831 prog->aux->dst_trampoline = tr; 16832 return 0; 16833 } 16834 16835 struct btf *bpf_get_btf_vmlinux(void) 16836 { 16837 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 16838 mutex_lock(&bpf_verifier_lock); 16839 if (!btf_vmlinux) 16840 btf_vmlinux = btf_parse_vmlinux(); 16841 mutex_unlock(&bpf_verifier_lock); 16842 } 16843 return btf_vmlinux; 16844 } 16845 16846 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 16847 { 16848 u64 start_time = ktime_get_ns(); 16849 struct bpf_verifier_env *env; 16850 struct bpf_verifier_log *log; 16851 int i, len, ret = -EINVAL; 16852 bool is_priv; 16853 16854 /* no program is valid */ 16855 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 16856 return -EINVAL; 16857 16858 /* 'struct bpf_verifier_env' can be global, but since it's not small, 16859 * allocate/free it every time bpf_check() is called 16860 */ 16861 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 16862 if (!env) 16863 return -ENOMEM; 16864 log = &env->log; 16865 16866 len = (*prog)->len; 16867 env->insn_aux_data = 16868 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 16869 ret = -ENOMEM; 16870 if (!env->insn_aux_data) 16871 goto err_free_env; 16872 for (i = 0; i < len; i++) 16873 env->insn_aux_data[i].orig_idx = i; 16874 env->prog = *prog; 16875 env->ops = bpf_verifier_ops[env->prog->type]; 16876 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 16877 is_priv = bpf_capable(); 16878 16879 bpf_get_btf_vmlinux(); 16880 16881 /* grab the mutex to protect few globals used by verifier */ 16882 if (!is_priv) 16883 mutex_lock(&bpf_verifier_lock); 16884 16885 if (attr->log_level || attr->log_buf || attr->log_size) { 16886 /* user requested verbose verifier output 16887 * and supplied buffer to store the verification trace 16888 */ 16889 log->level = attr->log_level; 16890 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 16891 log->len_total = attr->log_size; 16892 16893 /* log attributes have to be sane */ 16894 if (!bpf_verifier_log_attr_valid(log)) { 16895 ret = -EINVAL; 16896 goto err_unlock; 16897 } 16898 } 16899 16900 mark_verifier_state_clean(env); 16901 16902 if (IS_ERR(btf_vmlinux)) { 16903 /* Either gcc or pahole or kernel are broken. */ 16904 verbose(env, "in-kernel BTF is malformed\n"); 16905 ret = PTR_ERR(btf_vmlinux); 16906 goto skip_full_check; 16907 } 16908 16909 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 16910 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 16911 env->strict_alignment = true; 16912 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 16913 env->strict_alignment = false; 16914 16915 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 16916 env->allow_uninit_stack = bpf_allow_uninit_stack(); 16917 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 16918 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 16919 env->bpf_capable = bpf_capable(); 16920 env->rcu_tag_supported = btf_vmlinux && 16921 btf_find_by_name_kind(btf_vmlinux, "rcu", BTF_KIND_TYPE_TAG) > 0; 16922 16923 if (is_priv) 16924 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 16925 16926 env->explored_states = kvcalloc(state_htab_size(env), 16927 sizeof(struct bpf_verifier_state_list *), 16928 GFP_USER); 16929 ret = -ENOMEM; 16930 if (!env->explored_states) 16931 goto skip_full_check; 16932 16933 ret = add_subprog_and_kfunc(env); 16934 if (ret < 0) 16935 goto skip_full_check; 16936 16937 ret = check_subprogs(env); 16938 if (ret < 0) 16939 goto skip_full_check; 16940 16941 ret = check_btf_info(env, attr, uattr); 16942 if (ret < 0) 16943 goto skip_full_check; 16944 16945 ret = check_attach_btf_id(env); 16946 if (ret) 16947 goto skip_full_check; 16948 16949 ret = resolve_pseudo_ldimm64(env); 16950 if (ret < 0) 16951 goto skip_full_check; 16952 16953 if (bpf_prog_is_dev_bound(env->prog->aux)) { 16954 ret = bpf_prog_offload_verifier_prep(env->prog); 16955 if (ret) 16956 goto skip_full_check; 16957 } 16958 16959 ret = check_cfg(env); 16960 if (ret < 0) 16961 goto skip_full_check; 16962 16963 ret = do_check_subprogs(env); 16964 ret = ret ?: do_check_main(env); 16965 16966 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 16967 ret = bpf_prog_offload_finalize(env); 16968 16969 skip_full_check: 16970 kvfree(env->explored_states); 16971 16972 if (ret == 0) 16973 ret = check_max_stack_depth(env); 16974 16975 /* instruction rewrites happen after this point */ 16976 if (ret == 0) 16977 ret = optimize_bpf_loop(env); 16978 16979 if (is_priv) { 16980 if (ret == 0) 16981 opt_hard_wire_dead_code_branches(env); 16982 if (ret == 0) 16983 ret = opt_remove_dead_code(env); 16984 if (ret == 0) 16985 ret = opt_remove_nops(env); 16986 } else { 16987 if (ret == 0) 16988 sanitize_dead_code(env); 16989 } 16990 16991 if (ret == 0) 16992 /* program is valid, convert *(u32*)(ctx + off) accesses */ 16993 ret = convert_ctx_accesses(env); 16994 16995 if (ret == 0) 16996 ret = do_misc_fixups(env); 16997 16998 /* do 32-bit optimization after insn patching has done so those patched 16999 * insns could be handled correctly. 17000 */ 17001 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 17002 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 17003 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 17004 : false; 17005 } 17006 17007 if (ret == 0) 17008 ret = fixup_call_args(env); 17009 17010 env->verification_time = ktime_get_ns() - start_time; 17011 print_verification_stats(env); 17012 env->prog->aux->verified_insns = env->insn_processed; 17013 17014 if (log->level && bpf_verifier_log_full(log)) 17015 ret = -ENOSPC; 17016 if (log->level && !log->ubuf) { 17017 ret = -EFAULT; 17018 goto err_release_maps; 17019 } 17020 17021 if (ret) 17022 goto err_release_maps; 17023 17024 if (env->used_map_cnt) { 17025 /* if program passed verifier, update used_maps in bpf_prog_info */ 17026 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 17027 sizeof(env->used_maps[0]), 17028 GFP_KERNEL); 17029 17030 if (!env->prog->aux->used_maps) { 17031 ret = -ENOMEM; 17032 goto err_release_maps; 17033 } 17034 17035 memcpy(env->prog->aux->used_maps, env->used_maps, 17036 sizeof(env->used_maps[0]) * env->used_map_cnt); 17037 env->prog->aux->used_map_cnt = env->used_map_cnt; 17038 } 17039 if (env->used_btf_cnt) { 17040 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 17041 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 17042 sizeof(env->used_btfs[0]), 17043 GFP_KERNEL); 17044 if (!env->prog->aux->used_btfs) { 17045 ret = -ENOMEM; 17046 goto err_release_maps; 17047 } 17048 17049 memcpy(env->prog->aux->used_btfs, env->used_btfs, 17050 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 17051 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 17052 } 17053 if (env->used_map_cnt || env->used_btf_cnt) { 17054 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 17055 * bpf_ld_imm64 instructions 17056 */ 17057 convert_pseudo_ld_imm64(env); 17058 } 17059 17060 adjust_btf_func(env); 17061 17062 err_release_maps: 17063 if (!env->prog->aux->used_maps) 17064 /* if we didn't copy map pointers into bpf_prog_info, release 17065 * them now. Otherwise free_used_maps() will release them. 17066 */ 17067 release_maps(env); 17068 if (!env->prog->aux->used_btfs) 17069 release_btfs(env); 17070 17071 /* extension progs temporarily inherit the attach_type of their targets 17072 for verification purposes, so set it back to zero before returning 17073 */ 17074 if (env->prog->type == BPF_PROG_TYPE_EXT) 17075 env->prog->expected_attach_type = 0; 17076 17077 *prog = env->prog; 17078 err_unlock: 17079 if (!is_priv) 17080 mutex_unlock(&bpf_verifier_lock); 17081 vfree(env->insn_aux_data); 17082 err_free_env: 17083 kfree(env); 17084 return ret; 17085 } 17086