xref: /linux/kernel/bpf/verifier.c (revision 3fec0eaaf04adf5e23b2704f5490d5943fb8b0b1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25 
26 #include "disasm.h"
27 
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 	[_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38 
39 /* bpf_check() is a static code analyzer that walks eBPF program
40  * instruction by instruction and updates register/stack state.
41  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42  *
43  * The first pass is depth-first-search to check that the program is a DAG.
44  * It rejects the following programs:
45  * - larger than BPF_MAXINSNS insns
46  * - if loop is present (detected via back-edge)
47  * - unreachable insns exist (shouldn't be a forest. program = one function)
48  * - out of bounds or malformed jumps
49  * The second pass is all possible path descent from the 1st insn.
50  * Since it's analyzing all pathes through the program, the length of the
51  * analysis is limited to 64k insn, which may be hit even if total number of
52  * insn is less then 4K, but there are too many branches that change stack/regs.
53  * Number of 'branches to be analyzed' is limited to 1k
54  *
55  * On entry to each instruction, each register has a type, and the instruction
56  * changes the types of the registers depending on instruction semantics.
57  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58  * copied to R1.
59  *
60  * All registers are 64-bit.
61  * R0 - return register
62  * R1-R5 argument passing registers
63  * R6-R9 callee saved registers
64  * R10 - frame pointer read-only
65  *
66  * At the start of BPF program the register R1 contains a pointer to bpf_context
67  * and has type PTR_TO_CTX.
68  *
69  * Verifier tracks arithmetic operations on pointers in case:
70  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72  * 1st insn copies R10 (which has FRAME_PTR) type into R1
73  * and 2nd arithmetic instruction is pattern matched to recognize
74  * that it wants to construct a pointer to some element within stack.
75  * So after 2nd insn, the register R1 has type PTR_TO_STACK
76  * (and -20 constant is saved for further stack bounds checking).
77  * Meaning that this reg is a pointer to stack plus known immediate constant.
78  *
79  * Most of the time the registers have SCALAR_VALUE type, which
80  * means the register has some value, but it's not a valid pointer.
81  * (like pointer plus pointer becomes SCALAR_VALUE type)
82  *
83  * When verifier sees load or store instructions the type of base register
84  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85  * four pointer types recognized by check_mem_access() function.
86  *
87  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88  * and the range of [ptr, ptr + map's value_size) is accessible.
89  *
90  * registers used to pass values to function calls are checked against
91  * function argument constraints.
92  *
93  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94  * It means that the register type passed to this function must be
95  * PTR_TO_STACK and it will be used inside the function as
96  * 'pointer to map element key'
97  *
98  * For example the argument constraints for bpf_map_lookup_elem():
99  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100  *   .arg1_type = ARG_CONST_MAP_PTR,
101  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
102  *
103  * ret_type says that this function returns 'pointer to map elem value or null'
104  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105  * 2nd argument should be a pointer to stack, which will be used inside
106  * the helper function as a pointer to map element key.
107  *
108  * On the kernel side the helper function looks like:
109  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110  * {
111  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112  *    void *key = (void *) (unsigned long) r2;
113  *    void *value;
114  *
115  *    here kernel can access 'key' and 'map' pointers safely, knowing that
116  *    [key, key + map->key_size) bytes are valid and were initialized on
117  *    the stack of eBPF program.
118  * }
119  *
120  * Corresponding eBPF program may look like:
121  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
122  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
124  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125  * here verifier looks at prototype of map_lookup_elem() and sees:
126  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128  *
129  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131  * and were initialized prior to this call.
132  * If it's ok, then verifier allows this BPF_CALL insn and looks at
133  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135  * returns ether pointer to map value or NULL.
136  *
137  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138  * insn, the register holding that pointer in the true branch changes state to
139  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140  * branch. See check_cond_jmp_op().
141  *
142  * After the call R0 is set to return type of the function and registers R1-R5
143  * are set to NOT_INIT to indicate that they are no longer readable.
144  *
145  * The following reference types represent a potential reference to a kernel
146  * resource which, after first being allocated, must be checked and freed by
147  * the BPF program:
148  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149  *
150  * When the verifier sees a helper call return a reference type, it allocates a
151  * pointer id for the reference and stores it in the current function state.
152  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154  * passes through a NULL-check conditional. For the branch wherein the state is
155  * changed to CONST_IMM, the verifier releases the reference.
156  *
157  * For each helper function that allocates a reference, such as
158  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159  * bpf_sk_release(). When a reference type passes into the release function,
160  * the verifier also releases the reference. If any unchecked or unreleased
161  * reference remains at the end of the program, the verifier rejects it.
162  */
163 
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 	/* verifer state is 'st'
167 	 * before processing instruction 'insn_idx'
168 	 * and after processing instruction 'prev_insn_idx'
169 	 */
170 	struct bpf_verifier_state st;
171 	int insn_idx;
172 	int prev_insn_idx;
173 	struct bpf_verifier_stack_elem *next;
174 	/* length of verifier log at the time this state was pushed on stack */
175 	u32 log_pos;
176 };
177 
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
179 #define BPF_COMPLEXITY_LIMIT_STATES	64
180 
181 #define BPF_MAP_KEY_POISON	(1ULL << 63)
182 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
183 
184 #define BPF_MAP_PTR_UNPRIV	1UL
185 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
186 					  POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188 
189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193 
194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198 
199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 			      const struct bpf_map *map, bool unpriv)
201 {
202 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 	unpriv |= bpf_map_ptr_unpriv(aux);
204 	aux->map_ptr_state = (unsigned long)map |
205 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207 
208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 	return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212 
213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217 
218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222 
223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 	bool poisoned = bpf_map_key_poisoned(aux);
226 
227 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230 
231 struct bpf_call_arg_meta {
232 	struct bpf_map *map_ptr;
233 	bool raw_mode;
234 	bool pkt_access;
235 	int regno;
236 	int access_size;
237 	int mem_size;
238 	u64 msize_max_value;
239 	int ref_obj_id;
240 	int func_id;
241 	u32 btf_id;
242 	u32 ret_btf_id;
243 };
244 
245 struct btf *btf_vmlinux;
246 
247 static DEFINE_MUTEX(bpf_verifier_lock);
248 
249 static const struct bpf_line_info *
250 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
251 {
252 	const struct bpf_line_info *linfo;
253 	const struct bpf_prog *prog;
254 	u32 i, nr_linfo;
255 
256 	prog = env->prog;
257 	nr_linfo = prog->aux->nr_linfo;
258 
259 	if (!nr_linfo || insn_off >= prog->len)
260 		return NULL;
261 
262 	linfo = prog->aux->linfo;
263 	for (i = 1; i < nr_linfo; i++)
264 		if (insn_off < linfo[i].insn_off)
265 			break;
266 
267 	return &linfo[i - 1];
268 }
269 
270 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
271 		       va_list args)
272 {
273 	unsigned int n;
274 
275 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
276 
277 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
278 		  "verifier log line truncated - local buffer too short\n");
279 
280 	n = min(log->len_total - log->len_used - 1, n);
281 	log->kbuf[n] = '\0';
282 
283 	if (log->level == BPF_LOG_KERNEL) {
284 		pr_err("BPF:%s\n", log->kbuf);
285 		return;
286 	}
287 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
288 		log->len_used += n;
289 	else
290 		log->ubuf = NULL;
291 }
292 
293 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
294 {
295 	char zero = 0;
296 
297 	if (!bpf_verifier_log_needed(log))
298 		return;
299 
300 	log->len_used = new_pos;
301 	if (put_user(zero, log->ubuf + new_pos))
302 		log->ubuf = NULL;
303 }
304 
305 /* log_level controls verbosity level of eBPF verifier.
306  * bpf_verifier_log_write() is used to dump the verification trace to the log,
307  * so the user can figure out what's wrong with the program
308  */
309 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
310 					   const char *fmt, ...)
311 {
312 	va_list args;
313 
314 	if (!bpf_verifier_log_needed(&env->log))
315 		return;
316 
317 	va_start(args, fmt);
318 	bpf_verifier_vlog(&env->log, fmt, args);
319 	va_end(args);
320 }
321 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
322 
323 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
324 {
325 	struct bpf_verifier_env *env = private_data;
326 	va_list args;
327 
328 	if (!bpf_verifier_log_needed(&env->log))
329 		return;
330 
331 	va_start(args, fmt);
332 	bpf_verifier_vlog(&env->log, fmt, args);
333 	va_end(args);
334 }
335 
336 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
337 			    const char *fmt, ...)
338 {
339 	va_list args;
340 
341 	if (!bpf_verifier_log_needed(log))
342 		return;
343 
344 	va_start(args, fmt);
345 	bpf_verifier_vlog(log, fmt, args);
346 	va_end(args);
347 }
348 
349 static const char *ltrim(const char *s)
350 {
351 	while (isspace(*s))
352 		s++;
353 
354 	return s;
355 }
356 
357 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
358 					 u32 insn_off,
359 					 const char *prefix_fmt, ...)
360 {
361 	const struct bpf_line_info *linfo;
362 
363 	if (!bpf_verifier_log_needed(&env->log))
364 		return;
365 
366 	linfo = find_linfo(env, insn_off);
367 	if (!linfo || linfo == env->prev_linfo)
368 		return;
369 
370 	if (prefix_fmt) {
371 		va_list args;
372 
373 		va_start(args, prefix_fmt);
374 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
375 		va_end(args);
376 	}
377 
378 	verbose(env, "%s\n",
379 		ltrim(btf_name_by_offset(env->prog->aux->btf,
380 					 linfo->line_off)));
381 
382 	env->prev_linfo = linfo;
383 }
384 
385 static bool type_is_pkt_pointer(enum bpf_reg_type type)
386 {
387 	return type == PTR_TO_PACKET ||
388 	       type == PTR_TO_PACKET_META;
389 }
390 
391 static bool type_is_sk_pointer(enum bpf_reg_type type)
392 {
393 	return type == PTR_TO_SOCKET ||
394 		type == PTR_TO_SOCK_COMMON ||
395 		type == PTR_TO_TCP_SOCK ||
396 		type == PTR_TO_XDP_SOCK;
397 }
398 
399 static bool reg_type_not_null(enum bpf_reg_type type)
400 {
401 	return type == PTR_TO_SOCKET ||
402 		type == PTR_TO_TCP_SOCK ||
403 		type == PTR_TO_MAP_VALUE ||
404 		type == PTR_TO_SOCK_COMMON;
405 }
406 
407 static bool reg_type_may_be_null(enum bpf_reg_type type)
408 {
409 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
410 	       type == PTR_TO_SOCKET_OR_NULL ||
411 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
412 	       type == PTR_TO_TCP_SOCK_OR_NULL ||
413 	       type == PTR_TO_BTF_ID_OR_NULL ||
414 	       type == PTR_TO_MEM_OR_NULL ||
415 	       type == PTR_TO_RDONLY_BUF_OR_NULL ||
416 	       type == PTR_TO_RDWR_BUF_OR_NULL;
417 }
418 
419 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
420 {
421 	return reg->type == PTR_TO_MAP_VALUE &&
422 		map_value_has_spin_lock(reg->map_ptr);
423 }
424 
425 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
426 {
427 	return type == PTR_TO_SOCKET ||
428 		type == PTR_TO_SOCKET_OR_NULL ||
429 		type == PTR_TO_TCP_SOCK ||
430 		type == PTR_TO_TCP_SOCK_OR_NULL ||
431 		type == PTR_TO_MEM ||
432 		type == PTR_TO_MEM_OR_NULL;
433 }
434 
435 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
436 {
437 	return type == ARG_PTR_TO_SOCK_COMMON;
438 }
439 
440 static bool arg_type_may_be_null(enum bpf_arg_type type)
441 {
442 	return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
443 	       type == ARG_PTR_TO_MEM_OR_NULL ||
444 	       type == ARG_PTR_TO_CTX_OR_NULL ||
445 	       type == ARG_PTR_TO_SOCKET_OR_NULL ||
446 	       type == ARG_PTR_TO_ALLOC_MEM_OR_NULL;
447 }
448 
449 /* Determine whether the function releases some resources allocated by another
450  * function call. The first reference type argument will be assumed to be
451  * released by release_reference().
452  */
453 static bool is_release_function(enum bpf_func_id func_id)
454 {
455 	return func_id == BPF_FUNC_sk_release ||
456 	       func_id == BPF_FUNC_ringbuf_submit ||
457 	       func_id == BPF_FUNC_ringbuf_discard;
458 }
459 
460 static bool may_be_acquire_function(enum bpf_func_id func_id)
461 {
462 	return func_id == BPF_FUNC_sk_lookup_tcp ||
463 		func_id == BPF_FUNC_sk_lookup_udp ||
464 		func_id == BPF_FUNC_skc_lookup_tcp ||
465 		func_id == BPF_FUNC_map_lookup_elem ||
466 	        func_id == BPF_FUNC_ringbuf_reserve;
467 }
468 
469 static bool is_acquire_function(enum bpf_func_id func_id,
470 				const struct bpf_map *map)
471 {
472 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
473 
474 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
475 	    func_id == BPF_FUNC_sk_lookup_udp ||
476 	    func_id == BPF_FUNC_skc_lookup_tcp ||
477 	    func_id == BPF_FUNC_ringbuf_reserve)
478 		return true;
479 
480 	if (func_id == BPF_FUNC_map_lookup_elem &&
481 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
482 	     map_type == BPF_MAP_TYPE_SOCKHASH))
483 		return true;
484 
485 	return false;
486 }
487 
488 static bool is_ptr_cast_function(enum bpf_func_id func_id)
489 {
490 	return func_id == BPF_FUNC_tcp_sock ||
491 		func_id == BPF_FUNC_sk_fullsock ||
492 		func_id == BPF_FUNC_skc_to_tcp_sock ||
493 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
494 		func_id == BPF_FUNC_skc_to_udp6_sock ||
495 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
496 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
497 }
498 
499 /* string representation of 'enum bpf_reg_type' */
500 static const char * const reg_type_str[] = {
501 	[NOT_INIT]		= "?",
502 	[SCALAR_VALUE]		= "inv",
503 	[PTR_TO_CTX]		= "ctx",
504 	[CONST_PTR_TO_MAP]	= "map_ptr",
505 	[PTR_TO_MAP_VALUE]	= "map_value",
506 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
507 	[PTR_TO_STACK]		= "fp",
508 	[PTR_TO_PACKET]		= "pkt",
509 	[PTR_TO_PACKET_META]	= "pkt_meta",
510 	[PTR_TO_PACKET_END]	= "pkt_end",
511 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
512 	[PTR_TO_SOCKET]		= "sock",
513 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
514 	[PTR_TO_SOCK_COMMON]	= "sock_common",
515 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
516 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
517 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
518 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
519 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
520 	[PTR_TO_BTF_ID]		= "ptr_",
521 	[PTR_TO_BTF_ID_OR_NULL]	= "ptr_or_null_",
522 	[PTR_TO_PERCPU_BTF_ID]	= "percpu_ptr_",
523 	[PTR_TO_MEM]		= "mem",
524 	[PTR_TO_MEM_OR_NULL]	= "mem_or_null",
525 	[PTR_TO_RDONLY_BUF]	= "rdonly_buf",
526 	[PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
527 	[PTR_TO_RDWR_BUF]	= "rdwr_buf",
528 	[PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
529 };
530 
531 static char slot_type_char[] = {
532 	[STACK_INVALID]	= '?',
533 	[STACK_SPILL]	= 'r',
534 	[STACK_MISC]	= 'm',
535 	[STACK_ZERO]	= '0',
536 };
537 
538 static void print_liveness(struct bpf_verifier_env *env,
539 			   enum bpf_reg_liveness live)
540 {
541 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
542 	    verbose(env, "_");
543 	if (live & REG_LIVE_READ)
544 		verbose(env, "r");
545 	if (live & REG_LIVE_WRITTEN)
546 		verbose(env, "w");
547 	if (live & REG_LIVE_DONE)
548 		verbose(env, "D");
549 }
550 
551 static struct bpf_func_state *func(struct bpf_verifier_env *env,
552 				   const struct bpf_reg_state *reg)
553 {
554 	struct bpf_verifier_state *cur = env->cur_state;
555 
556 	return cur->frame[reg->frameno];
557 }
558 
559 const char *kernel_type_name(u32 id)
560 {
561 	return btf_name_by_offset(btf_vmlinux,
562 				  btf_type_by_id(btf_vmlinux, id)->name_off);
563 }
564 
565 static void print_verifier_state(struct bpf_verifier_env *env,
566 				 const struct bpf_func_state *state)
567 {
568 	const struct bpf_reg_state *reg;
569 	enum bpf_reg_type t;
570 	int i;
571 
572 	if (state->frameno)
573 		verbose(env, " frame%d:", state->frameno);
574 	for (i = 0; i < MAX_BPF_REG; i++) {
575 		reg = &state->regs[i];
576 		t = reg->type;
577 		if (t == NOT_INIT)
578 			continue;
579 		verbose(env, " R%d", i);
580 		print_liveness(env, reg->live);
581 		verbose(env, "=%s", reg_type_str[t]);
582 		if (t == SCALAR_VALUE && reg->precise)
583 			verbose(env, "P");
584 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
585 		    tnum_is_const(reg->var_off)) {
586 			/* reg->off should be 0 for SCALAR_VALUE */
587 			verbose(env, "%lld", reg->var_off.value + reg->off);
588 		} else {
589 			if (t == PTR_TO_BTF_ID ||
590 			    t == PTR_TO_BTF_ID_OR_NULL ||
591 			    t == PTR_TO_PERCPU_BTF_ID)
592 				verbose(env, "%s", kernel_type_name(reg->btf_id));
593 			verbose(env, "(id=%d", reg->id);
594 			if (reg_type_may_be_refcounted_or_null(t))
595 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
596 			if (t != SCALAR_VALUE)
597 				verbose(env, ",off=%d", reg->off);
598 			if (type_is_pkt_pointer(t))
599 				verbose(env, ",r=%d", reg->range);
600 			else if (t == CONST_PTR_TO_MAP ||
601 				 t == PTR_TO_MAP_VALUE ||
602 				 t == PTR_TO_MAP_VALUE_OR_NULL)
603 				verbose(env, ",ks=%d,vs=%d",
604 					reg->map_ptr->key_size,
605 					reg->map_ptr->value_size);
606 			if (tnum_is_const(reg->var_off)) {
607 				/* Typically an immediate SCALAR_VALUE, but
608 				 * could be a pointer whose offset is too big
609 				 * for reg->off
610 				 */
611 				verbose(env, ",imm=%llx", reg->var_off.value);
612 			} else {
613 				if (reg->smin_value != reg->umin_value &&
614 				    reg->smin_value != S64_MIN)
615 					verbose(env, ",smin_value=%lld",
616 						(long long)reg->smin_value);
617 				if (reg->smax_value != reg->umax_value &&
618 				    reg->smax_value != S64_MAX)
619 					verbose(env, ",smax_value=%lld",
620 						(long long)reg->smax_value);
621 				if (reg->umin_value != 0)
622 					verbose(env, ",umin_value=%llu",
623 						(unsigned long long)reg->umin_value);
624 				if (reg->umax_value != U64_MAX)
625 					verbose(env, ",umax_value=%llu",
626 						(unsigned long long)reg->umax_value);
627 				if (!tnum_is_unknown(reg->var_off)) {
628 					char tn_buf[48];
629 
630 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
631 					verbose(env, ",var_off=%s", tn_buf);
632 				}
633 				if (reg->s32_min_value != reg->smin_value &&
634 				    reg->s32_min_value != S32_MIN)
635 					verbose(env, ",s32_min_value=%d",
636 						(int)(reg->s32_min_value));
637 				if (reg->s32_max_value != reg->smax_value &&
638 				    reg->s32_max_value != S32_MAX)
639 					verbose(env, ",s32_max_value=%d",
640 						(int)(reg->s32_max_value));
641 				if (reg->u32_min_value != reg->umin_value &&
642 				    reg->u32_min_value != U32_MIN)
643 					verbose(env, ",u32_min_value=%d",
644 						(int)(reg->u32_min_value));
645 				if (reg->u32_max_value != reg->umax_value &&
646 				    reg->u32_max_value != U32_MAX)
647 					verbose(env, ",u32_max_value=%d",
648 						(int)(reg->u32_max_value));
649 			}
650 			verbose(env, ")");
651 		}
652 	}
653 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
654 		char types_buf[BPF_REG_SIZE + 1];
655 		bool valid = false;
656 		int j;
657 
658 		for (j = 0; j < BPF_REG_SIZE; j++) {
659 			if (state->stack[i].slot_type[j] != STACK_INVALID)
660 				valid = true;
661 			types_buf[j] = slot_type_char[
662 					state->stack[i].slot_type[j]];
663 		}
664 		types_buf[BPF_REG_SIZE] = 0;
665 		if (!valid)
666 			continue;
667 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
668 		print_liveness(env, state->stack[i].spilled_ptr.live);
669 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
670 			reg = &state->stack[i].spilled_ptr;
671 			t = reg->type;
672 			verbose(env, "=%s", reg_type_str[t]);
673 			if (t == SCALAR_VALUE && reg->precise)
674 				verbose(env, "P");
675 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
676 				verbose(env, "%lld", reg->var_off.value + reg->off);
677 		} else {
678 			verbose(env, "=%s", types_buf);
679 		}
680 	}
681 	if (state->acquired_refs && state->refs[0].id) {
682 		verbose(env, " refs=%d", state->refs[0].id);
683 		for (i = 1; i < state->acquired_refs; i++)
684 			if (state->refs[i].id)
685 				verbose(env, ",%d", state->refs[i].id);
686 	}
687 	verbose(env, "\n");
688 }
689 
690 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
691 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
692 			       const struct bpf_func_state *src)	\
693 {									\
694 	if (!src->FIELD)						\
695 		return 0;						\
696 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
697 		/* internal bug, make state invalid to reject the program */ \
698 		memset(dst, 0, sizeof(*dst));				\
699 		return -EFAULT;						\
700 	}								\
701 	memcpy(dst->FIELD, src->FIELD,					\
702 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
703 	return 0;							\
704 }
705 /* copy_reference_state() */
706 COPY_STATE_FN(reference, acquired_refs, refs, 1)
707 /* copy_stack_state() */
708 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
709 #undef COPY_STATE_FN
710 
711 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
712 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
713 				  bool copy_old)			\
714 {									\
715 	u32 old_size = state->COUNT;					\
716 	struct bpf_##NAME##_state *new_##FIELD;				\
717 	int slot = size / SIZE;						\
718 									\
719 	if (size <= old_size || !size) {				\
720 		if (copy_old)						\
721 			return 0;					\
722 		state->COUNT = slot * SIZE;				\
723 		if (!size && old_size) {				\
724 			kfree(state->FIELD);				\
725 			state->FIELD = NULL;				\
726 		}							\
727 		return 0;						\
728 	}								\
729 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
730 				    GFP_KERNEL);			\
731 	if (!new_##FIELD)						\
732 		return -ENOMEM;						\
733 	if (copy_old) {							\
734 		if (state->FIELD)					\
735 			memcpy(new_##FIELD, state->FIELD,		\
736 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
737 		memset(new_##FIELD + old_size / SIZE, 0,		\
738 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
739 	}								\
740 	state->COUNT = slot * SIZE;					\
741 	kfree(state->FIELD);						\
742 	state->FIELD = new_##FIELD;					\
743 	return 0;							\
744 }
745 /* realloc_reference_state() */
746 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
747 /* realloc_stack_state() */
748 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
749 #undef REALLOC_STATE_FN
750 
751 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
752  * make it consume minimal amount of memory. check_stack_write() access from
753  * the program calls into realloc_func_state() to grow the stack size.
754  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
755  * which realloc_stack_state() copies over. It points to previous
756  * bpf_verifier_state which is never reallocated.
757  */
758 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
759 			      int refs_size, bool copy_old)
760 {
761 	int err = realloc_reference_state(state, refs_size, copy_old);
762 	if (err)
763 		return err;
764 	return realloc_stack_state(state, stack_size, copy_old);
765 }
766 
767 /* Acquire a pointer id from the env and update the state->refs to include
768  * this new pointer reference.
769  * On success, returns a valid pointer id to associate with the register
770  * On failure, returns a negative errno.
771  */
772 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
773 {
774 	struct bpf_func_state *state = cur_func(env);
775 	int new_ofs = state->acquired_refs;
776 	int id, err;
777 
778 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
779 	if (err)
780 		return err;
781 	id = ++env->id_gen;
782 	state->refs[new_ofs].id = id;
783 	state->refs[new_ofs].insn_idx = insn_idx;
784 
785 	return id;
786 }
787 
788 /* release function corresponding to acquire_reference_state(). Idempotent. */
789 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
790 {
791 	int i, last_idx;
792 
793 	last_idx = state->acquired_refs - 1;
794 	for (i = 0; i < state->acquired_refs; i++) {
795 		if (state->refs[i].id == ptr_id) {
796 			if (last_idx && i != last_idx)
797 				memcpy(&state->refs[i], &state->refs[last_idx],
798 				       sizeof(*state->refs));
799 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
800 			state->acquired_refs--;
801 			return 0;
802 		}
803 	}
804 	return -EINVAL;
805 }
806 
807 static int transfer_reference_state(struct bpf_func_state *dst,
808 				    struct bpf_func_state *src)
809 {
810 	int err = realloc_reference_state(dst, src->acquired_refs, false);
811 	if (err)
812 		return err;
813 	err = copy_reference_state(dst, src);
814 	if (err)
815 		return err;
816 	return 0;
817 }
818 
819 static void free_func_state(struct bpf_func_state *state)
820 {
821 	if (!state)
822 		return;
823 	kfree(state->refs);
824 	kfree(state->stack);
825 	kfree(state);
826 }
827 
828 static void clear_jmp_history(struct bpf_verifier_state *state)
829 {
830 	kfree(state->jmp_history);
831 	state->jmp_history = NULL;
832 	state->jmp_history_cnt = 0;
833 }
834 
835 static void free_verifier_state(struct bpf_verifier_state *state,
836 				bool free_self)
837 {
838 	int i;
839 
840 	for (i = 0; i <= state->curframe; i++) {
841 		free_func_state(state->frame[i]);
842 		state->frame[i] = NULL;
843 	}
844 	clear_jmp_history(state);
845 	if (free_self)
846 		kfree(state);
847 }
848 
849 /* copy verifier state from src to dst growing dst stack space
850  * when necessary to accommodate larger src stack
851  */
852 static int copy_func_state(struct bpf_func_state *dst,
853 			   const struct bpf_func_state *src)
854 {
855 	int err;
856 
857 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
858 				 false);
859 	if (err)
860 		return err;
861 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
862 	err = copy_reference_state(dst, src);
863 	if (err)
864 		return err;
865 	return copy_stack_state(dst, src);
866 }
867 
868 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
869 			       const struct bpf_verifier_state *src)
870 {
871 	struct bpf_func_state *dst;
872 	u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
873 	int i, err;
874 
875 	if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
876 		kfree(dst_state->jmp_history);
877 		dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
878 		if (!dst_state->jmp_history)
879 			return -ENOMEM;
880 	}
881 	memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
882 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
883 
884 	/* if dst has more stack frames then src frame, free them */
885 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
886 		free_func_state(dst_state->frame[i]);
887 		dst_state->frame[i] = NULL;
888 	}
889 	dst_state->speculative = src->speculative;
890 	dst_state->curframe = src->curframe;
891 	dst_state->active_spin_lock = src->active_spin_lock;
892 	dst_state->branches = src->branches;
893 	dst_state->parent = src->parent;
894 	dst_state->first_insn_idx = src->first_insn_idx;
895 	dst_state->last_insn_idx = src->last_insn_idx;
896 	for (i = 0; i <= src->curframe; i++) {
897 		dst = dst_state->frame[i];
898 		if (!dst) {
899 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
900 			if (!dst)
901 				return -ENOMEM;
902 			dst_state->frame[i] = dst;
903 		}
904 		err = copy_func_state(dst, src->frame[i]);
905 		if (err)
906 			return err;
907 	}
908 	return 0;
909 }
910 
911 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
912 {
913 	while (st) {
914 		u32 br = --st->branches;
915 
916 		/* WARN_ON(br > 1) technically makes sense here,
917 		 * but see comment in push_stack(), hence:
918 		 */
919 		WARN_ONCE((int)br < 0,
920 			  "BUG update_branch_counts:branches_to_explore=%d\n",
921 			  br);
922 		if (br)
923 			break;
924 		st = st->parent;
925 	}
926 }
927 
928 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
929 		     int *insn_idx, bool pop_log)
930 {
931 	struct bpf_verifier_state *cur = env->cur_state;
932 	struct bpf_verifier_stack_elem *elem, *head = env->head;
933 	int err;
934 
935 	if (env->head == NULL)
936 		return -ENOENT;
937 
938 	if (cur) {
939 		err = copy_verifier_state(cur, &head->st);
940 		if (err)
941 			return err;
942 	}
943 	if (pop_log)
944 		bpf_vlog_reset(&env->log, head->log_pos);
945 	if (insn_idx)
946 		*insn_idx = head->insn_idx;
947 	if (prev_insn_idx)
948 		*prev_insn_idx = head->prev_insn_idx;
949 	elem = head->next;
950 	free_verifier_state(&head->st, false);
951 	kfree(head);
952 	env->head = elem;
953 	env->stack_size--;
954 	return 0;
955 }
956 
957 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
958 					     int insn_idx, int prev_insn_idx,
959 					     bool speculative)
960 {
961 	struct bpf_verifier_state *cur = env->cur_state;
962 	struct bpf_verifier_stack_elem *elem;
963 	int err;
964 
965 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
966 	if (!elem)
967 		goto err;
968 
969 	elem->insn_idx = insn_idx;
970 	elem->prev_insn_idx = prev_insn_idx;
971 	elem->next = env->head;
972 	elem->log_pos = env->log.len_used;
973 	env->head = elem;
974 	env->stack_size++;
975 	err = copy_verifier_state(&elem->st, cur);
976 	if (err)
977 		goto err;
978 	elem->st.speculative |= speculative;
979 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
980 		verbose(env, "The sequence of %d jumps is too complex.\n",
981 			env->stack_size);
982 		goto err;
983 	}
984 	if (elem->st.parent) {
985 		++elem->st.parent->branches;
986 		/* WARN_ON(branches > 2) technically makes sense here,
987 		 * but
988 		 * 1. speculative states will bump 'branches' for non-branch
989 		 * instructions
990 		 * 2. is_state_visited() heuristics may decide not to create
991 		 * a new state for a sequence of branches and all such current
992 		 * and cloned states will be pointing to a single parent state
993 		 * which might have large 'branches' count.
994 		 */
995 	}
996 	return &elem->st;
997 err:
998 	free_verifier_state(env->cur_state, true);
999 	env->cur_state = NULL;
1000 	/* pop all elements and return */
1001 	while (!pop_stack(env, NULL, NULL, false));
1002 	return NULL;
1003 }
1004 
1005 #define CALLER_SAVED_REGS 6
1006 static const int caller_saved[CALLER_SAVED_REGS] = {
1007 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1008 };
1009 
1010 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1011 				struct bpf_reg_state *reg);
1012 
1013 /* This helper doesn't clear reg->id */
1014 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1015 {
1016 	reg->var_off = tnum_const(imm);
1017 	reg->smin_value = (s64)imm;
1018 	reg->smax_value = (s64)imm;
1019 	reg->umin_value = imm;
1020 	reg->umax_value = imm;
1021 
1022 	reg->s32_min_value = (s32)imm;
1023 	reg->s32_max_value = (s32)imm;
1024 	reg->u32_min_value = (u32)imm;
1025 	reg->u32_max_value = (u32)imm;
1026 }
1027 
1028 /* Mark the unknown part of a register (variable offset or scalar value) as
1029  * known to have the value @imm.
1030  */
1031 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1032 {
1033 	/* Clear id, off, and union(map_ptr, range) */
1034 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1035 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1036 	___mark_reg_known(reg, imm);
1037 }
1038 
1039 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1040 {
1041 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1042 	reg->s32_min_value = (s32)imm;
1043 	reg->s32_max_value = (s32)imm;
1044 	reg->u32_min_value = (u32)imm;
1045 	reg->u32_max_value = (u32)imm;
1046 }
1047 
1048 /* Mark the 'variable offset' part of a register as zero.  This should be
1049  * used only on registers holding a pointer type.
1050  */
1051 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1052 {
1053 	__mark_reg_known(reg, 0);
1054 }
1055 
1056 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1057 {
1058 	__mark_reg_known(reg, 0);
1059 	reg->type = SCALAR_VALUE;
1060 }
1061 
1062 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1063 				struct bpf_reg_state *regs, u32 regno)
1064 {
1065 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1066 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1067 		/* Something bad happened, let's kill all regs */
1068 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1069 			__mark_reg_not_init(env, regs + regno);
1070 		return;
1071 	}
1072 	__mark_reg_known_zero(regs + regno);
1073 }
1074 
1075 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1076 {
1077 	return type_is_pkt_pointer(reg->type);
1078 }
1079 
1080 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1081 {
1082 	return reg_is_pkt_pointer(reg) ||
1083 	       reg->type == PTR_TO_PACKET_END;
1084 }
1085 
1086 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1087 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1088 				    enum bpf_reg_type which)
1089 {
1090 	/* The register can already have a range from prior markings.
1091 	 * This is fine as long as it hasn't been advanced from its
1092 	 * origin.
1093 	 */
1094 	return reg->type == which &&
1095 	       reg->id == 0 &&
1096 	       reg->off == 0 &&
1097 	       tnum_equals_const(reg->var_off, 0);
1098 }
1099 
1100 /* Reset the min/max bounds of a register */
1101 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1102 {
1103 	reg->smin_value = S64_MIN;
1104 	reg->smax_value = S64_MAX;
1105 	reg->umin_value = 0;
1106 	reg->umax_value = U64_MAX;
1107 
1108 	reg->s32_min_value = S32_MIN;
1109 	reg->s32_max_value = S32_MAX;
1110 	reg->u32_min_value = 0;
1111 	reg->u32_max_value = U32_MAX;
1112 }
1113 
1114 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1115 {
1116 	reg->smin_value = S64_MIN;
1117 	reg->smax_value = S64_MAX;
1118 	reg->umin_value = 0;
1119 	reg->umax_value = U64_MAX;
1120 }
1121 
1122 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1123 {
1124 	reg->s32_min_value = S32_MIN;
1125 	reg->s32_max_value = S32_MAX;
1126 	reg->u32_min_value = 0;
1127 	reg->u32_max_value = U32_MAX;
1128 }
1129 
1130 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1131 {
1132 	struct tnum var32_off = tnum_subreg(reg->var_off);
1133 
1134 	/* min signed is max(sign bit) | min(other bits) */
1135 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1136 			var32_off.value | (var32_off.mask & S32_MIN));
1137 	/* max signed is min(sign bit) | max(other bits) */
1138 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1139 			var32_off.value | (var32_off.mask & S32_MAX));
1140 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1141 	reg->u32_max_value = min(reg->u32_max_value,
1142 				 (u32)(var32_off.value | var32_off.mask));
1143 }
1144 
1145 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1146 {
1147 	/* min signed is max(sign bit) | min(other bits) */
1148 	reg->smin_value = max_t(s64, reg->smin_value,
1149 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1150 	/* max signed is min(sign bit) | max(other bits) */
1151 	reg->smax_value = min_t(s64, reg->smax_value,
1152 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1153 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1154 	reg->umax_value = min(reg->umax_value,
1155 			      reg->var_off.value | reg->var_off.mask);
1156 }
1157 
1158 static void __update_reg_bounds(struct bpf_reg_state *reg)
1159 {
1160 	__update_reg32_bounds(reg);
1161 	__update_reg64_bounds(reg);
1162 }
1163 
1164 /* Uses signed min/max values to inform unsigned, and vice-versa */
1165 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1166 {
1167 	/* Learn sign from signed bounds.
1168 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1169 	 * are the same, so combine.  This works even in the negative case, e.g.
1170 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1171 	 */
1172 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1173 		reg->s32_min_value = reg->u32_min_value =
1174 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1175 		reg->s32_max_value = reg->u32_max_value =
1176 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1177 		return;
1178 	}
1179 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1180 	 * boundary, so we must be careful.
1181 	 */
1182 	if ((s32)reg->u32_max_value >= 0) {
1183 		/* Positive.  We can't learn anything from the smin, but smax
1184 		 * is positive, hence safe.
1185 		 */
1186 		reg->s32_min_value = reg->u32_min_value;
1187 		reg->s32_max_value = reg->u32_max_value =
1188 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1189 	} else if ((s32)reg->u32_min_value < 0) {
1190 		/* Negative.  We can't learn anything from the smax, but smin
1191 		 * is negative, hence safe.
1192 		 */
1193 		reg->s32_min_value = reg->u32_min_value =
1194 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1195 		reg->s32_max_value = reg->u32_max_value;
1196 	}
1197 }
1198 
1199 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1200 {
1201 	/* Learn sign from signed bounds.
1202 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1203 	 * are the same, so combine.  This works even in the negative case, e.g.
1204 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1205 	 */
1206 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1207 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1208 							  reg->umin_value);
1209 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1210 							  reg->umax_value);
1211 		return;
1212 	}
1213 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1214 	 * boundary, so we must be careful.
1215 	 */
1216 	if ((s64)reg->umax_value >= 0) {
1217 		/* Positive.  We can't learn anything from the smin, but smax
1218 		 * is positive, hence safe.
1219 		 */
1220 		reg->smin_value = reg->umin_value;
1221 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1222 							  reg->umax_value);
1223 	} else if ((s64)reg->umin_value < 0) {
1224 		/* Negative.  We can't learn anything from the smax, but smin
1225 		 * is negative, hence safe.
1226 		 */
1227 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1228 							  reg->umin_value);
1229 		reg->smax_value = reg->umax_value;
1230 	}
1231 }
1232 
1233 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1234 {
1235 	__reg32_deduce_bounds(reg);
1236 	__reg64_deduce_bounds(reg);
1237 }
1238 
1239 /* Attempts to improve var_off based on unsigned min/max information */
1240 static void __reg_bound_offset(struct bpf_reg_state *reg)
1241 {
1242 	struct tnum var64_off = tnum_intersect(reg->var_off,
1243 					       tnum_range(reg->umin_value,
1244 							  reg->umax_value));
1245 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1246 						tnum_range(reg->u32_min_value,
1247 							   reg->u32_max_value));
1248 
1249 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1250 }
1251 
1252 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1253 {
1254 	reg->umin_value = reg->u32_min_value;
1255 	reg->umax_value = reg->u32_max_value;
1256 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1257 	 * but must be positive otherwise set to worse case bounds
1258 	 * and refine later from tnum.
1259 	 */
1260 	if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1261 		reg->smax_value = reg->s32_max_value;
1262 	else
1263 		reg->smax_value = U32_MAX;
1264 	if (reg->s32_min_value >= 0)
1265 		reg->smin_value = reg->s32_min_value;
1266 	else
1267 		reg->smin_value = 0;
1268 }
1269 
1270 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1271 {
1272 	/* special case when 64-bit register has upper 32-bit register
1273 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1274 	 * allowing us to use 32-bit bounds directly,
1275 	 */
1276 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1277 		__reg_assign_32_into_64(reg);
1278 	} else {
1279 		/* Otherwise the best we can do is push lower 32bit known and
1280 		 * unknown bits into register (var_off set from jmp logic)
1281 		 * then learn as much as possible from the 64-bit tnum
1282 		 * known and unknown bits. The previous smin/smax bounds are
1283 		 * invalid here because of jmp32 compare so mark them unknown
1284 		 * so they do not impact tnum bounds calculation.
1285 		 */
1286 		__mark_reg64_unbounded(reg);
1287 		__update_reg_bounds(reg);
1288 	}
1289 
1290 	/* Intersecting with the old var_off might have improved our bounds
1291 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1292 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1293 	 */
1294 	__reg_deduce_bounds(reg);
1295 	__reg_bound_offset(reg);
1296 	__update_reg_bounds(reg);
1297 }
1298 
1299 static bool __reg64_bound_s32(s64 a)
1300 {
1301 	if (a > S32_MIN && a < S32_MAX)
1302 		return true;
1303 	return false;
1304 }
1305 
1306 static bool __reg64_bound_u32(u64 a)
1307 {
1308 	if (a > U32_MIN && a < U32_MAX)
1309 		return true;
1310 	return false;
1311 }
1312 
1313 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1314 {
1315 	__mark_reg32_unbounded(reg);
1316 
1317 	if (__reg64_bound_s32(reg->smin_value))
1318 		reg->s32_min_value = (s32)reg->smin_value;
1319 	if (__reg64_bound_s32(reg->smax_value))
1320 		reg->s32_max_value = (s32)reg->smax_value;
1321 	if (__reg64_bound_u32(reg->umin_value))
1322 		reg->u32_min_value = (u32)reg->umin_value;
1323 	if (__reg64_bound_u32(reg->umax_value))
1324 		reg->u32_max_value = (u32)reg->umax_value;
1325 
1326 	/* Intersecting with the old var_off might have improved our bounds
1327 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1328 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1329 	 */
1330 	__reg_deduce_bounds(reg);
1331 	__reg_bound_offset(reg);
1332 	__update_reg_bounds(reg);
1333 }
1334 
1335 /* Mark a register as having a completely unknown (scalar) value. */
1336 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1337 			       struct bpf_reg_state *reg)
1338 {
1339 	/*
1340 	 * Clear type, id, off, and union(map_ptr, range) and
1341 	 * padding between 'type' and union
1342 	 */
1343 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1344 	reg->type = SCALAR_VALUE;
1345 	reg->var_off = tnum_unknown;
1346 	reg->frameno = 0;
1347 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1348 	__mark_reg_unbounded(reg);
1349 }
1350 
1351 static void mark_reg_unknown(struct bpf_verifier_env *env,
1352 			     struct bpf_reg_state *regs, u32 regno)
1353 {
1354 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1355 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1356 		/* Something bad happened, let's kill all regs except FP */
1357 		for (regno = 0; regno < BPF_REG_FP; regno++)
1358 			__mark_reg_not_init(env, regs + regno);
1359 		return;
1360 	}
1361 	__mark_reg_unknown(env, regs + regno);
1362 }
1363 
1364 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1365 				struct bpf_reg_state *reg)
1366 {
1367 	__mark_reg_unknown(env, reg);
1368 	reg->type = NOT_INIT;
1369 }
1370 
1371 static void mark_reg_not_init(struct bpf_verifier_env *env,
1372 			      struct bpf_reg_state *regs, u32 regno)
1373 {
1374 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1375 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1376 		/* Something bad happened, let's kill all regs except FP */
1377 		for (regno = 0; regno < BPF_REG_FP; regno++)
1378 			__mark_reg_not_init(env, regs + regno);
1379 		return;
1380 	}
1381 	__mark_reg_not_init(env, regs + regno);
1382 }
1383 
1384 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1385 			    struct bpf_reg_state *regs, u32 regno,
1386 			    enum bpf_reg_type reg_type, u32 btf_id)
1387 {
1388 	if (reg_type == SCALAR_VALUE) {
1389 		mark_reg_unknown(env, regs, regno);
1390 		return;
1391 	}
1392 	mark_reg_known_zero(env, regs, regno);
1393 	regs[regno].type = PTR_TO_BTF_ID;
1394 	regs[regno].btf_id = btf_id;
1395 }
1396 
1397 #define DEF_NOT_SUBREG	(0)
1398 static void init_reg_state(struct bpf_verifier_env *env,
1399 			   struct bpf_func_state *state)
1400 {
1401 	struct bpf_reg_state *regs = state->regs;
1402 	int i;
1403 
1404 	for (i = 0; i < MAX_BPF_REG; i++) {
1405 		mark_reg_not_init(env, regs, i);
1406 		regs[i].live = REG_LIVE_NONE;
1407 		regs[i].parent = NULL;
1408 		regs[i].subreg_def = DEF_NOT_SUBREG;
1409 	}
1410 
1411 	/* frame pointer */
1412 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1413 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1414 	regs[BPF_REG_FP].frameno = state->frameno;
1415 }
1416 
1417 #define BPF_MAIN_FUNC (-1)
1418 static void init_func_state(struct bpf_verifier_env *env,
1419 			    struct bpf_func_state *state,
1420 			    int callsite, int frameno, int subprogno)
1421 {
1422 	state->callsite = callsite;
1423 	state->frameno = frameno;
1424 	state->subprogno = subprogno;
1425 	init_reg_state(env, state);
1426 }
1427 
1428 enum reg_arg_type {
1429 	SRC_OP,		/* register is used as source operand */
1430 	DST_OP,		/* register is used as destination operand */
1431 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1432 };
1433 
1434 static int cmp_subprogs(const void *a, const void *b)
1435 {
1436 	return ((struct bpf_subprog_info *)a)->start -
1437 	       ((struct bpf_subprog_info *)b)->start;
1438 }
1439 
1440 static int find_subprog(struct bpf_verifier_env *env, int off)
1441 {
1442 	struct bpf_subprog_info *p;
1443 
1444 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1445 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1446 	if (!p)
1447 		return -ENOENT;
1448 	return p - env->subprog_info;
1449 
1450 }
1451 
1452 static int add_subprog(struct bpf_verifier_env *env, int off)
1453 {
1454 	int insn_cnt = env->prog->len;
1455 	int ret;
1456 
1457 	if (off >= insn_cnt || off < 0) {
1458 		verbose(env, "call to invalid destination\n");
1459 		return -EINVAL;
1460 	}
1461 	ret = find_subprog(env, off);
1462 	if (ret >= 0)
1463 		return 0;
1464 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1465 		verbose(env, "too many subprograms\n");
1466 		return -E2BIG;
1467 	}
1468 	env->subprog_info[env->subprog_cnt++].start = off;
1469 	sort(env->subprog_info, env->subprog_cnt,
1470 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1471 	return 0;
1472 }
1473 
1474 static int check_subprogs(struct bpf_verifier_env *env)
1475 {
1476 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1477 	struct bpf_subprog_info *subprog = env->subprog_info;
1478 	struct bpf_insn *insn = env->prog->insnsi;
1479 	int insn_cnt = env->prog->len;
1480 
1481 	/* Add entry function. */
1482 	ret = add_subprog(env, 0);
1483 	if (ret < 0)
1484 		return ret;
1485 
1486 	/* determine subprog starts. The end is one before the next starts */
1487 	for (i = 0; i < insn_cnt; i++) {
1488 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1489 			continue;
1490 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1491 			continue;
1492 		if (!env->bpf_capable) {
1493 			verbose(env,
1494 				"function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1495 			return -EPERM;
1496 		}
1497 		ret = add_subprog(env, i + insn[i].imm + 1);
1498 		if (ret < 0)
1499 			return ret;
1500 	}
1501 
1502 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1503 	 * logic. 'subprog_cnt' should not be increased.
1504 	 */
1505 	subprog[env->subprog_cnt].start = insn_cnt;
1506 
1507 	if (env->log.level & BPF_LOG_LEVEL2)
1508 		for (i = 0; i < env->subprog_cnt; i++)
1509 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1510 
1511 	/* now check that all jumps are within the same subprog */
1512 	subprog_start = subprog[cur_subprog].start;
1513 	subprog_end = subprog[cur_subprog + 1].start;
1514 	for (i = 0; i < insn_cnt; i++) {
1515 		u8 code = insn[i].code;
1516 
1517 		if (code == (BPF_JMP | BPF_CALL) &&
1518 		    insn[i].imm == BPF_FUNC_tail_call &&
1519 		    insn[i].src_reg != BPF_PSEUDO_CALL)
1520 			subprog[cur_subprog].has_tail_call = true;
1521 		if (BPF_CLASS(code) == BPF_LD &&
1522 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1523 			subprog[cur_subprog].has_ld_abs = true;
1524 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1525 			goto next;
1526 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1527 			goto next;
1528 		off = i + insn[i].off + 1;
1529 		if (off < subprog_start || off >= subprog_end) {
1530 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1531 			return -EINVAL;
1532 		}
1533 next:
1534 		if (i == subprog_end - 1) {
1535 			/* to avoid fall-through from one subprog into another
1536 			 * the last insn of the subprog should be either exit
1537 			 * or unconditional jump back
1538 			 */
1539 			if (code != (BPF_JMP | BPF_EXIT) &&
1540 			    code != (BPF_JMP | BPF_JA)) {
1541 				verbose(env, "last insn is not an exit or jmp\n");
1542 				return -EINVAL;
1543 			}
1544 			subprog_start = subprog_end;
1545 			cur_subprog++;
1546 			if (cur_subprog < env->subprog_cnt)
1547 				subprog_end = subprog[cur_subprog + 1].start;
1548 		}
1549 	}
1550 	return 0;
1551 }
1552 
1553 /* Parentage chain of this register (or stack slot) should take care of all
1554  * issues like callee-saved registers, stack slot allocation time, etc.
1555  */
1556 static int mark_reg_read(struct bpf_verifier_env *env,
1557 			 const struct bpf_reg_state *state,
1558 			 struct bpf_reg_state *parent, u8 flag)
1559 {
1560 	bool writes = parent == state->parent; /* Observe write marks */
1561 	int cnt = 0;
1562 
1563 	while (parent) {
1564 		/* if read wasn't screened by an earlier write ... */
1565 		if (writes && state->live & REG_LIVE_WRITTEN)
1566 			break;
1567 		if (parent->live & REG_LIVE_DONE) {
1568 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1569 				reg_type_str[parent->type],
1570 				parent->var_off.value, parent->off);
1571 			return -EFAULT;
1572 		}
1573 		/* The first condition is more likely to be true than the
1574 		 * second, checked it first.
1575 		 */
1576 		if ((parent->live & REG_LIVE_READ) == flag ||
1577 		    parent->live & REG_LIVE_READ64)
1578 			/* The parentage chain never changes and
1579 			 * this parent was already marked as LIVE_READ.
1580 			 * There is no need to keep walking the chain again and
1581 			 * keep re-marking all parents as LIVE_READ.
1582 			 * This case happens when the same register is read
1583 			 * multiple times without writes into it in-between.
1584 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1585 			 * then no need to set the weak REG_LIVE_READ32.
1586 			 */
1587 			break;
1588 		/* ... then we depend on parent's value */
1589 		parent->live |= flag;
1590 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1591 		if (flag == REG_LIVE_READ64)
1592 			parent->live &= ~REG_LIVE_READ32;
1593 		state = parent;
1594 		parent = state->parent;
1595 		writes = true;
1596 		cnt++;
1597 	}
1598 
1599 	if (env->longest_mark_read_walk < cnt)
1600 		env->longest_mark_read_walk = cnt;
1601 	return 0;
1602 }
1603 
1604 /* This function is supposed to be used by the following 32-bit optimization
1605  * code only. It returns TRUE if the source or destination register operates
1606  * on 64-bit, otherwise return FALSE.
1607  */
1608 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1609 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1610 {
1611 	u8 code, class, op;
1612 
1613 	code = insn->code;
1614 	class = BPF_CLASS(code);
1615 	op = BPF_OP(code);
1616 	if (class == BPF_JMP) {
1617 		/* BPF_EXIT for "main" will reach here. Return TRUE
1618 		 * conservatively.
1619 		 */
1620 		if (op == BPF_EXIT)
1621 			return true;
1622 		if (op == BPF_CALL) {
1623 			/* BPF to BPF call will reach here because of marking
1624 			 * caller saved clobber with DST_OP_NO_MARK for which we
1625 			 * don't care the register def because they are anyway
1626 			 * marked as NOT_INIT already.
1627 			 */
1628 			if (insn->src_reg == BPF_PSEUDO_CALL)
1629 				return false;
1630 			/* Helper call will reach here because of arg type
1631 			 * check, conservatively return TRUE.
1632 			 */
1633 			if (t == SRC_OP)
1634 				return true;
1635 
1636 			return false;
1637 		}
1638 	}
1639 
1640 	if (class == BPF_ALU64 || class == BPF_JMP ||
1641 	    /* BPF_END always use BPF_ALU class. */
1642 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1643 		return true;
1644 
1645 	if (class == BPF_ALU || class == BPF_JMP32)
1646 		return false;
1647 
1648 	if (class == BPF_LDX) {
1649 		if (t != SRC_OP)
1650 			return BPF_SIZE(code) == BPF_DW;
1651 		/* LDX source must be ptr. */
1652 		return true;
1653 	}
1654 
1655 	if (class == BPF_STX) {
1656 		if (reg->type != SCALAR_VALUE)
1657 			return true;
1658 		return BPF_SIZE(code) == BPF_DW;
1659 	}
1660 
1661 	if (class == BPF_LD) {
1662 		u8 mode = BPF_MODE(code);
1663 
1664 		/* LD_IMM64 */
1665 		if (mode == BPF_IMM)
1666 			return true;
1667 
1668 		/* Both LD_IND and LD_ABS return 32-bit data. */
1669 		if (t != SRC_OP)
1670 			return  false;
1671 
1672 		/* Implicit ctx ptr. */
1673 		if (regno == BPF_REG_6)
1674 			return true;
1675 
1676 		/* Explicit source could be any width. */
1677 		return true;
1678 	}
1679 
1680 	if (class == BPF_ST)
1681 		/* The only source register for BPF_ST is a ptr. */
1682 		return true;
1683 
1684 	/* Conservatively return true at default. */
1685 	return true;
1686 }
1687 
1688 /* Return TRUE if INSN doesn't have explicit value define. */
1689 static bool insn_no_def(struct bpf_insn *insn)
1690 {
1691 	u8 class = BPF_CLASS(insn->code);
1692 
1693 	return (class == BPF_JMP || class == BPF_JMP32 ||
1694 		class == BPF_STX || class == BPF_ST);
1695 }
1696 
1697 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1698 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1699 {
1700 	if (insn_no_def(insn))
1701 		return false;
1702 
1703 	return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1704 }
1705 
1706 static void mark_insn_zext(struct bpf_verifier_env *env,
1707 			   struct bpf_reg_state *reg)
1708 {
1709 	s32 def_idx = reg->subreg_def;
1710 
1711 	if (def_idx == DEF_NOT_SUBREG)
1712 		return;
1713 
1714 	env->insn_aux_data[def_idx - 1].zext_dst = true;
1715 	/* The dst will be zero extended, so won't be sub-register anymore. */
1716 	reg->subreg_def = DEF_NOT_SUBREG;
1717 }
1718 
1719 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1720 			 enum reg_arg_type t)
1721 {
1722 	struct bpf_verifier_state *vstate = env->cur_state;
1723 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1724 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1725 	struct bpf_reg_state *reg, *regs = state->regs;
1726 	bool rw64;
1727 
1728 	if (regno >= MAX_BPF_REG) {
1729 		verbose(env, "R%d is invalid\n", regno);
1730 		return -EINVAL;
1731 	}
1732 
1733 	reg = &regs[regno];
1734 	rw64 = is_reg64(env, insn, regno, reg, t);
1735 	if (t == SRC_OP) {
1736 		/* check whether register used as source operand can be read */
1737 		if (reg->type == NOT_INIT) {
1738 			verbose(env, "R%d !read_ok\n", regno);
1739 			return -EACCES;
1740 		}
1741 		/* We don't need to worry about FP liveness because it's read-only */
1742 		if (regno == BPF_REG_FP)
1743 			return 0;
1744 
1745 		if (rw64)
1746 			mark_insn_zext(env, reg);
1747 
1748 		return mark_reg_read(env, reg, reg->parent,
1749 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1750 	} else {
1751 		/* check whether register used as dest operand can be written to */
1752 		if (regno == BPF_REG_FP) {
1753 			verbose(env, "frame pointer is read only\n");
1754 			return -EACCES;
1755 		}
1756 		reg->live |= REG_LIVE_WRITTEN;
1757 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1758 		if (t == DST_OP)
1759 			mark_reg_unknown(env, regs, regno);
1760 	}
1761 	return 0;
1762 }
1763 
1764 /* for any branch, call, exit record the history of jmps in the given state */
1765 static int push_jmp_history(struct bpf_verifier_env *env,
1766 			    struct bpf_verifier_state *cur)
1767 {
1768 	u32 cnt = cur->jmp_history_cnt;
1769 	struct bpf_idx_pair *p;
1770 
1771 	cnt++;
1772 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1773 	if (!p)
1774 		return -ENOMEM;
1775 	p[cnt - 1].idx = env->insn_idx;
1776 	p[cnt - 1].prev_idx = env->prev_insn_idx;
1777 	cur->jmp_history = p;
1778 	cur->jmp_history_cnt = cnt;
1779 	return 0;
1780 }
1781 
1782 /* Backtrack one insn at a time. If idx is not at the top of recorded
1783  * history then previous instruction came from straight line execution.
1784  */
1785 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1786 			     u32 *history)
1787 {
1788 	u32 cnt = *history;
1789 
1790 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
1791 		i = st->jmp_history[cnt - 1].prev_idx;
1792 		(*history)--;
1793 	} else {
1794 		i--;
1795 	}
1796 	return i;
1797 }
1798 
1799 /* For given verifier state backtrack_insn() is called from the last insn to
1800  * the first insn. Its purpose is to compute a bitmask of registers and
1801  * stack slots that needs precision in the parent verifier state.
1802  */
1803 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1804 			  u32 *reg_mask, u64 *stack_mask)
1805 {
1806 	const struct bpf_insn_cbs cbs = {
1807 		.cb_print	= verbose,
1808 		.private_data	= env,
1809 	};
1810 	struct bpf_insn *insn = env->prog->insnsi + idx;
1811 	u8 class = BPF_CLASS(insn->code);
1812 	u8 opcode = BPF_OP(insn->code);
1813 	u8 mode = BPF_MODE(insn->code);
1814 	u32 dreg = 1u << insn->dst_reg;
1815 	u32 sreg = 1u << insn->src_reg;
1816 	u32 spi;
1817 
1818 	if (insn->code == 0)
1819 		return 0;
1820 	if (env->log.level & BPF_LOG_LEVEL) {
1821 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1822 		verbose(env, "%d: ", idx);
1823 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1824 	}
1825 
1826 	if (class == BPF_ALU || class == BPF_ALU64) {
1827 		if (!(*reg_mask & dreg))
1828 			return 0;
1829 		if (opcode == BPF_MOV) {
1830 			if (BPF_SRC(insn->code) == BPF_X) {
1831 				/* dreg = sreg
1832 				 * dreg needs precision after this insn
1833 				 * sreg needs precision before this insn
1834 				 */
1835 				*reg_mask &= ~dreg;
1836 				*reg_mask |= sreg;
1837 			} else {
1838 				/* dreg = K
1839 				 * dreg needs precision after this insn.
1840 				 * Corresponding register is already marked
1841 				 * as precise=true in this verifier state.
1842 				 * No further markings in parent are necessary
1843 				 */
1844 				*reg_mask &= ~dreg;
1845 			}
1846 		} else {
1847 			if (BPF_SRC(insn->code) == BPF_X) {
1848 				/* dreg += sreg
1849 				 * both dreg and sreg need precision
1850 				 * before this insn
1851 				 */
1852 				*reg_mask |= sreg;
1853 			} /* else dreg += K
1854 			   * dreg still needs precision before this insn
1855 			   */
1856 		}
1857 	} else if (class == BPF_LDX) {
1858 		if (!(*reg_mask & dreg))
1859 			return 0;
1860 		*reg_mask &= ~dreg;
1861 
1862 		/* scalars can only be spilled into stack w/o losing precision.
1863 		 * Load from any other memory can be zero extended.
1864 		 * The desire to keep that precision is already indicated
1865 		 * by 'precise' mark in corresponding register of this state.
1866 		 * No further tracking necessary.
1867 		 */
1868 		if (insn->src_reg != BPF_REG_FP)
1869 			return 0;
1870 		if (BPF_SIZE(insn->code) != BPF_DW)
1871 			return 0;
1872 
1873 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
1874 		 * that [fp - off] slot contains scalar that needs to be
1875 		 * tracked with precision
1876 		 */
1877 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1878 		if (spi >= 64) {
1879 			verbose(env, "BUG spi %d\n", spi);
1880 			WARN_ONCE(1, "verifier backtracking bug");
1881 			return -EFAULT;
1882 		}
1883 		*stack_mask |= 1ull << spi;
1884 	} else if (class == BPF_STX || class == BPF_ST) {
1885 		if (*reg_mask & dreg)
1886 			/* stx & st shouldn't be using _scalar_ dst_reg
1887 			 * to access memory. It means backtracking
1888 			 * encountered a case of pointer subtraction.
1889 			 */
1890 			return -ENOTSUPP;
1891 		/* scalars can only be spilled into stack */
1892 		if (insn->dst_reg != BPF_REG_FP)
1893 			return 0;
1894 		if (BPF_SIZE(insn->code) != BPF_DW)
1895 			return 0;
1896 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1897 		if (spi >= 64) {
1898 			verbose(env, "BUG spi %d\n", spi);
1899 			WARN_ONCE(1, "verifier backtracking bug");
1900 			return -EFAULT;
1901 		}
1902 		if (!(*stack_mask & (1ull << spi)))
1903 			return 0;
1904 		*stack_mask &= ~(1ull << spi);
1905 		if (class == BPF_STX)
1906 			*reg_mask |= sreg;
1907 	} else if (class == BPF_JMP || class == BPF_JMP32) {
1908 		if (opcode == BPF_CALL) {
1909 			if (insn->src_reg == BPF_PSEUDO_CALL)
1910 				return -ENOTSUPP;
1911 			/* regular helper call sets R0 */
1912 			*reg_mask &= ~1;
1913 			if (*reg_mask & 0x3f) {
1914 				/* if backtracing was looking for registers R1-R5
1915 				 * they should have been found already.
1916 				 */
1917 				verbose(env, "BUG regs %x\n", *reg_mask);
1918 				WARN_ONCE(1, "verifier backtracking bug");
1919 				return -EFAULT;
1920 			}
1921 		} else if (opcode == BPF_EXIT) {
1922 			return -ENOTSUPP;
1923 		}
1924 	} else if (class == BPF_LD) {
1925 		if (!(*reg_mask & dreg))
1926 			return 0;
1927 		*reg_mask &= ~dreg;
1928 		/* It's ld_imm64 or ld_abs or ld_ind.
1929 		 * For ld_imm64 no further tracking of precision
1930 		 * into parent is necessary
1931 		 */
1932 		if (mode == BPF_IND || mode == BPF_ABS)
1933 			/* to be analyzed */
1934 			return -ENOTSUPP;
1935 	}
1936 	return 0;
1937 }
1938 
1939 /* the scalar precision tracking algorithm:
1940  * . at the start all registers have precise=false.
1941  * . scalar ranges are tracked as normal through alu and jmp insns.
1942  * . once precise value of the scalar register is used in:
1943  *   .  ptr + scalar alu
1944  *   . if (scalar cond K|scalar)
1945  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
1946  *   backtrack through the verifier states and mark all registers and
1947  *   stack slots with spilled constants that these scalar regisers
1948  *   should be precise.
1949  * . during state pruning two registers (or spilled stack slots)
1950  *   are equivalent if both are not precise.
1951  *
1952  * Note the verifier cannot simply walk register parentage chain,
1953  * since many different registers and stack slots could have been
1954  * used to compute single precise scalar.
1955  *
1956  * The approach of starting with precise=true for all registers and then
1957  * backtrack to mark a register as not precise when the verifier detects
1958  * that program doesn't care about specific value (e.g., when helper
1959  * takes register as ARG_ANYTHING parameter) is not safe.
1960  *
1961  * It's ok to walk single parentage chain of the verifier states.
1962  * It's possible that this backtracking will go all the way till 1st insn.
1963  * All other branches will be explored for needing precision later.
1964  *
1965  * The backtracking needs to deal with cases like:
1966  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1967  * r9 -= r8
1968  * r5 = r9
1969  * if r5 > 0x79f goto pc+7
1970  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1971  * r5 += 1
1972  * ...
1973  * call bpf_perf_event_output#25
1974  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1975  *
1976  * and this case:
1977  * r6 = 1
1978  * call foo // uses callee's r6 inside to compute r0
1979  * r0 += r6
1980  * if r0 == 0 goto
1981  *
1982  * to track above reg_mask/stack_mask needs to be independent for each frame.
1983  *
1984  * Also if parent's curframe > frame where backtracking started,
1985  * the verifier need to mark registers in both frames, otherwise callees
1986  * may incorrectly prune callers. This is similar to
1987  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1988  *
1989  * For now backtracking falls back into conservative marking.
1990  */
1991 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1992 				     struct bpf_verifier_state *st)
1993 {
1994 	struct bpf_func_state *func;
1995 	struct bpf_reg_state *reg;
1996 	int i, j;
1997 
1998 	/* big hammer: mark all scalars precise in this path.
1999 	 * pop_stack may still get !precise scalars.
2000 	 */
2001 	for (; st; st = st->parent)
2002 		for (i = 0; i <= st->curframe; i++) {
2003 			func = st->frame[i];
2004 			for (j = 0; j < BPF_REG_FP; j++) {
2005 				reg = &func->regs[j];
2006 				if (reg->type != SCALAR_VALUE)
2007 					continue;
2008 				reg->precise = true;
2009 			}
2010 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2011 				if (func->stack[j].slot_type[0] != STACK_SPILL)
2012 					continue;
2013 				reg = &func->stack[j].spilled_ptr;
2014 				if (reg->type != SCALAR_VALUE)
2015 					continue;
2016 				reg->precise = true;
2017 			}
2018 		}
2019 }
2020 
2021 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2022 				  int spi)
2023 {
2024 	struct bpf_verifier_state *st = env->cur_state;
2025 	int first_idx = st->first_insn_idx;
2026 	int last_idx = env->insn_idx;
2027 	struct bpf_func_state *func;
2028 	struct bpf_reg_state *reg;
2029 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2030 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2031 	bool skip_first = true;
2032 	bool new_marks = false;
2033 	int i, err;
2034 
2035 	if (!env->bpf_capable)
2036 		return 0;
2037 
2038 	func = st->frame[st->curframe];
2039 	if (regno >= 0) {
2040 		reg = &func->regs[regno];
2041 		if (reg->type != SCALAR_VALUE) {
2042 			WARN_ONCE(1, "backtracing misuse");
2043 			return -EFAULT;
2044 		}
2045 		if (!reg->precise)
2046 			new_marks = true;
2047 		else
2048 			reg_mask = 0;
2049 		reg->precise = true;
2050 	}
2051 
2052 	while (spi >= 0) {
2053 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2054 			stack_mask = 0;
2055 			break;
2056 		}
2057 		reg = &func->stack[spi].spilled_ptr;
2058 		if (reg->type != SCALAR_VALUE) {
2059 			stack_mask = 0;
2060 			break;
2061 		}
2062 		if (!reg->precise)
2063 			new_marks = true;
2064 		else
2065 			stack_mask = 0;
2066 		reg->precise = true;
2067 		break;
2068 	}
2069 
2070 	if (!new_marks)
2071 		return 0;
2072 	if (!reg_mask && !stack_mask)
2073 		return 0;
2074 	for (;;) {
2075 		DECLARE_BITMAP(mask, 64);
2076 		u32 history = st->jmp_history_cnt;
2077 
2078 		if (env->log.level & BPF_LOG_LEVEL)
2079 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2080 		for (i = last_idx;;) {
2081 			if (skip_first) {
2082 				err = 0;
2083 				skip_first = false;
2084 			} else {
2085 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2086 			}
2087 			if (err == -ENOTSUPP) {
2088 				mark_all_scalars_precise(env, st);
2089 				return 0;
2090 			} else if (err) {
2091 				return err;
2092 			}
2093 			if (!reg_mask && !stack_mask)
2094 				/* Found assignment(s) into tracked register in this state.
2095 				 * Since this state is already marked, just return.
2096 				 * Nothing to be tracked further in the parent state.
2097 				 */
2098 				return 0;
2099 			if (i == first_idx)
2100 				break;
2101 			i = get_prev_insn_idx(st, i, &history);
2102 			if (i >= env->prog->len) {
2103 				/* This can happen if backtracking reached insn 0
2104 				 * and there are still reg_mask or stack_mask
2105 				 * to backtrack.
2106 				 * It means the backtracking missed the spot where
2107 				 * particular register was initialized with a constant.
2108 				 */
2109 				verbose(env, "BUG backtracking idx %d\n", i);
2110 				WARN_ONCE(1, "verifier backtracking bug");
2111 				return -EFAULT;
2112 			}
2113 		}
2114 		st = st->parent;
2115 		if (!st)
2116 			break;
2117 
2118 		new_marks = false;
2119 		func = st->frame[st->curframe];
2120 		bitmap_from_u64(mask, reg_mask);
2121 		for_each_set_bit(i, mask, 32) {
2122 			reg = &func->regs[i];
2123 			if (reg->type != SCALAR_VALUE) {
2124 				reg_mask &= ~(1u << i);
2125 				continue;
2126 			}
2127 			if (!reg->precise)
2128 				new_marks = true;
2129 			reg->precise = true;
2130 		}
2131 
2132 		bitmap_from_u64(mask, stack_mask);
2133 		for_each_set_bit(i, mask, 64) {
2134 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2135 				/* the sequence of instructions:
2136 				 * 2: (bf) r3 = r10
2137 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2138 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2139 				 * doesn't contain jmps. It's backtracked
2140 				 * as a single block.
2141 				 * During backtracking insn 3 is not recognized as
2142 				 * stack access, so at the end of backtracking
2143 				 * stack slot fp-8 is still marked in stack_mask.
2144 				 * However the parent state may not have accessed
2145 				 * fp-8 and it's "unallocated" stack space.
2146 				 * In such case fallback to conservative.
2147 				 */
2148 				mark_all_scalars_precise(env, st);
2149 				return 0;
2150 			}
2151 
2152 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
2153 				stack_mask &= ~(1ull << i);
2154 				continue;
2155 			}
2156 			reg = &func->stack[i].spilled_ptr;
2157 			if (reg->type != SCALAR_VALUE) {
2158 				stack_mask &= ~(1ull << i);
2159 				continue;
2160 			}
2161 			if (!reg->precise)
2162 				new_marks = true;
2163 			reg->precise = true;
2164 		}
2165 		if (env->log.level & BPF_LOG_LEVEL) {
2166 			print_verifier_state(env, func);
2167 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2168 				new_marks ? "didn't have" : "already had",
2169 				reg_mask, stack_mask);
2170 		}
2171 
2172 		if (!reg_mask && !stack_mask)
2173 			break;
2174 		if (!new_marks)
2175 			break;
2176 
2177 		last_idx = st->last_insn_idx;
2178 		first_idx = st->first_insn_idx;
2179 	}
2180 	return 0;
2181 }
2182 
2183 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2184 {
2185 	return __mark_chain_precision(env, regno, -1);
2186 }
2187 
2188 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2189 {
2190 	return __mark_chain_precision(env, -1, spi);
2191 }
2192 
2193 static bool is_spillable_regtype(enum bpf_reg_type type)
2194 {
2195 	switch (type) {
2196 	case PTR_TO_MAP_VALUE:
2197 	case PTR_TO_MAP_VALUE_OR_NULL:
2198 	case PTR_TO_STACK:
2199 	case PTR_TO_CTX:
2200 	case PTR_TO_PACKET:
2201 	case PTR_TO_PACKET_META:
2202 	case PTR_TO_PACKET_END:
2203 	case PTR_TO_FLOW_KEYS:
2204 	case CONST_PTR_TO_MAP:
2205 	case PTR_TO_SOCKET:
2206 	case PTR_TO_SOCKET_OR_NULL:
2207 	case PTR_TO_SOCK_COMMON:
2208 	case PTR_TO_SOCK_COMMON_OR_NULL:
2209 	case PTR_TO_TCP_SOCK:
2210 	case PTR_TO_TCP_SOCK_OR_NULL:
2211 	case PTR_TO_XDP_SOCK:
2212 	case PTR_TO_BTF_ID:
2213 	case PTR_TO_BTF_ID_OR_NULL:
2214 	case PTR_TO_RDONLY_BUF:
2215 	case PTR_TO_RDONLY_BUF_OR_NULL:
2216 	case PTR_TO_RDWR_BUF:
2217 	case PTR_TO_RDWR_BUF_OR_NULL:
2218 	case PTR_TO_PERCPU_BTF_ID:
2219 		return true;
2220 	default:
2221 		return false;
2222 	}
2223 }
2224 
2225 /* Does this register contain a constant zero? */
2226 static bool register_is_null(struct bpf_reg_state *reg)
2227 {
2228 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2229 }
2230 
2231 static bool register_is_const(struct bpf_reg_state *reg)
2232 {
2233 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2234 }
2235 
2236 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2237 {
2238 	return tnum_is_unknown(reg->var_off) &&
2239 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2240 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2241 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2242 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2243 }
2244 
2245 static bool register_is_bounded(struct bpf_reg_state *reg)
2246 {
2247 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2248 }
2249 
2250 static bool __is_pointer_value(bool allow_ptr_leaks,
2251 			       const struct bpf_reg_state *reg)
2252 {
2253 	if (allow_ptr_leaks)
2254 		return false;
2255 
2256 	return reg->type != SCALAR_VALUE;
2257 }
2258 
2259 static void save_register_state(struct bpf_func_state *state,
2260 				int spi, struct bpf_reg_state *reg)
2261 {
2262 	int i;
2263 
2264 	state->stack[spi].spilled_ptr = *reg;
2265 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2266 
2267 	for (i = 0; i < BPF_REG_SIZE; i++)
2268 		state->stack[spi].slot_type[i] = STACK_SPILL;
2269 }
2270 
2271 /* check_stack_read/write functions track spill/fill of registers,
2272  * stack boundary and alignment are checked in check_mem_access()
2273  */
2274 static int check_stack_write(struct bpf_verifier_env *env,
2275 			     struct bpf_func_state *state, /* func where register points to */
2276 			     int off, int size, int value_regno, int insn_idx)
2277 {
2278 	struct bpf_func_state *cur; /* state of the current function */
2279 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2280 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2281 	struct bpf_reg_state *reg = NULL;
2282 
2283 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2284 				 state->acquired_refs, true);
2285 	if (err)
2286 		return err;
2287 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2288 	 * so it's aligned access and [off, off + size) are within stack limits
2289 	 */
2290 	if (!env->allow_ptr_leaks &&
2291 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2292 	    size != BPF_REG_SIZE) {
2293 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2294 		return -EACCES;
2295 	}
2296 
2297 	cur = env->cur_state->frame[env->cur_state->curframe];
2298 	if (value_regno >= 0)
2299 		reg = &cur->regs[value_regno];
2300 
2301 	if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2302 	    !register_is_null(reg) && env->bpf_capable) {
2303 		if (dst_reg != BPF_REG_FP) {
2304 			/* The backtracking logic can only recognize explicit
2305 			 * stack slot address like [fp - 8]. Other spill of
2306 			 * scalar via different register has to be conervative.
2307 			 * Backtrack from here and mark all registers as precise
2308 			 * that contributed into 'reg' being a constant.
2309 			 */
2310 			err = mark_chain_precision(env, value_regno);
2311 			if (err)
2312 				return err;
2313 		}
2314 		save_register_state(state, spi, reg);
2315 	} else if (reg && is_spillable_regtype(reg->type)) {
2316 		/* register containing pointer is being spilled into stack */
2317 		if (size != BPF_REG_SIZE) {
2318 			verbose_linfo(env, insn_idx, "; ");
2319 			verbose(env, "invalid size of register spill\n");
2320 			return -EACCES;
2321 		}
2322 
2323 		if (state != cur && reg->type == PTR_TO_STACK) {
2324 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2325 			return -EINVAL;
2326 		}
2327 
2328 		if (!env->bypass_spec_v4) {
2329 			bool sanitize = false;
2330 
2331 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2332 			    register_is_const(&state->stack[spi].spilled_ptr))
2333 				sanitize = true;
2334 			for (i = 0; i < BPF_REG_SIZE; i++)
2335 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
2336 					sanitize = true;
2337 					break;
2338 				}
2339 			if (sanitize) {
2340 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2341 				int soff = (-spi - 1) * BPF_REG_SIZE;
2342 
2343 				/* detected reuse of integer stack slot with a pointer
2344 				 * which means either llvm is reusing stack slot or
2345 				 * an attacker is trying to exploit CVE-2018-3639
2346 				 * (speculative store bypass)
2347 				 * Have to sanitize that slot with preemptive
2348 				 * store of zero.
2349 				 */
2350 				if (*poff && *poff != soff) {
2351 					/* disallow programs where single insn stores
2352 					 * into two different stack slots, since verifier
2353 					 * cannot sanitize them
2354 					 */
2355 					verbose(env,
2356 						"insn %d cannot access two stack slots fp%d and fp%d",
2357 						insn_idx, *poff, soff);
2358 					return -EINVAL;
2359 				}
2360 				*poff = soff;
2361 			}
2362 		}
2363 		save_register_state(state, spi, reg);
2364 	} else {
2365 		u8 type = STACK_MISC;
2366 
2367 		/* regular write of data into stack destroys any spilled ptr */
2368 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2369 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2370 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
2371 			for (i = 0; i < BPF_REG_SIZE; i++)
2372 				state->stack[spi].slot_type[i] = STACK_MISC;
2373 
2374 		/* only mark the slot as written if all 8 bytes were written
2375 		 * otherwise read propagation may incorrectly stop too soon
2376 		 * when stack slots are partially written.
2377 		 * This heuristic means that read propagation will be
2378 		 * conservative, since it will add reg_live_read marks
2379 		 * to stack slots all the way to first state when programs
2380 		 * writes+reads less than 8 bytes
2381 		 */
2382 		if (size == BPF_REG_SIZE)
2383 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2384 
2385 		/* when we zero initialize stack slots mark them as such */
2386 		if (reg && register_is_null(reg)) {
2387 			/* backtracking doesn't work for STACK_ZERO yet. */
2388 			err = mark_chain_precision(env, value_regno);
2389 			if (err)
2390 				return err;
2391 			type = STACK_ZERO;
2392 		}
2393 
2394 		/* Mark slots affected by this stack write. */
2395 		for (i = 0; i < size; i++)
2396 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2397 				type;
2398 	}
2399 	return 0;
2400 }
2401 
2402 static int check_stack_read(struct bpf_verifier_env *env,
2403 			    struct bpf_func_state *reg_state /* func where register points to */,
2404 			    int off, int size, int value_regno)
2405 {
2406 	struct bpf_verifier_state *vstate = env->cur_state;
2407 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2408 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2409 	struct bpf_reg_state *reg;
2410 	u8 *stype;
2411 
2412 	if (reg_state->allocated_stack <= slot) {
2413 		verbose(env, "invalid read from stack off %d+0 size %d\n",
2414 			off, size);
2415 		return -EACCES;
2416 	}
2417 	stype = reg_state->stack[spi].slot_type;
2418 	reg = &reg_state->stack[spi].spilled_ptr;
2419 
2420 	if (stype[0] == STACK_SPILL) {
2421 		if (size != BPF_REG_SIZE) {
2422 			if (reg->type != SCALAR_VALUE) {
2423 				verbose_linfo(env, env->insn_idx, "; ");
2424 				verbose(env, "invalid size of register fill\n");
2425 				return -EACCES;
2426 			}
2427 			if (value_regno >= 0) {
2428 				mark_reg_unknown(env, state->regs, value_regno);
2429 				state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2430 			}
2431 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2432 			return 0;
2433 		}
2434 		for (i = 1; i < BPF_REG_SIZE; i++) {
2435 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2436 				verbose(env, "corrupted spill memory\n");
2437 				return -EACCES;
2438 			}
2439 		}
2440 
2441 		if (value_regno >= 0) {
2442 			/* restore register state from stack */
2443 			state->regs[value_regno] = *reg;
2444 			/* mark reg as written since spilled pointer state likely
2445 			 * has its liveness marks cleared by is_state_visited()
2446 			 * which resets stack/reg liveness for state transitions
2447 			 */
2448 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2449 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2450 			/* If value_regno==-1, the caller is asking us whether
2451 			 * it is acceptable to use this value as a SCALAR_VALUE
2452 			 * (e.g. for XADD).
2453 			 * We must not allow unprivileged callers to do that
2454 			 * with spilled pointers.
2455 			 */
2456 			verbose(env, "leaking pointer from stack off %d\n",
2457 				off);
2458 			return -EACCES;
2459 		}
2460 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2461 	} else {
2462 		int zeros = 0;
2463 
2464 		for (i = 0; i < size; i++) {
2465 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2466 				continue;
2467 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2468 				zeros++;
2469 				continue;
2470 			}
2471 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2472 				off, i, size);
2473 			return -EACCES;
2474 		}
2475 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2476 		if (value_regno >= 0) {
2477 			if (zeros == size) {
2478 				/* any size read into register is zero extended,
2479 				 * so the whole register == const_zero
2480 				 */
2481 				__mark_reg_const_zero(&state->regs[value_regno]);
2482 				/* backtracking doesn't support STACK_ZERO yet,
2483 				 * so mark it precise here, so that later
2484 				 * backtracking can stop here.
2485 				 * Backtracking may not need this if this register
2486 				 * doesn't participate in pointer adjustment.
2487 				 * Forward propagation of precise flag is not
2488 				 * necessary either. This mark is only to stop
2489 				 * backtracking. Any register that contributed
2490 				 * to const 0 was marked precise before spill.
2491 				 */
2492 				state->regs[value_regno].precise = true;
2493 			} else {
2494 				/* have read misc data from the stack */
2495 				mark_reg_unknown(env, state->regs, value_regno);
2496 			}
2497 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2498 		}
2499 	}
2500 	return 0;
2501 }
2502 
2503 static int check_stack_access(struct bpf_verifier_env *env,
2504 			      const struct bpf_reg_state *reg,
2505 			      int off, int size)
2506 {
2507 	/* Stack accesses must be at a fixed offset, so that we
2508 	 * can determine what type of data were returned. See
2509 	 * check_stack_read().
2510 	 */
2511 	if (!tnum_is_const(reg->var_off)) {
2512 		char tn_buf[48];
2513 
2514 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2515 		verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
2516 			tn_buf, off, size);
2517 		return -EACCES;
2518 	}
2519 
2520 	if (off >= 0 || off < -MAX_BPF_STACK) {
2521 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
2522 		return -EACCES;
2523 	}
2524 
2525 	return 0;
2526 }
2527 
2528 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2529 				 int off, int size, enum bpf_access_type type)
2530 {
2531 	struct bpf_reg_state *regs = cur_regs(env);
2532 	struct bpf_map *map = regs[regno].map_ptr;
2533 	u32 cap = bpf_map_flags_to_cap(map);
2534 
2535 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2536 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2537 			map->value_size, off, size);
2538 		return -EACCES;
2539 	}
2540 
2541 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2542 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2543 			map->value_size, off, size);
2544 		return -EACCES;
2545 	}
2546 
2547 	return 0;
2548 }
2549 
2550 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
2551 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2552 			      int off, int size, u32 mem_size,
2553 			      bool zero_size_allowed)
2554 {
2555 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2556 	struct bpf_reg_state *reg;
2557 
2558 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2559 		return 0;
2560 
2561 	reg = &cur_regs(env)[regno];
2562 	switch (reg->type) {
2563 	case PTR_TO_MAP_VALUE:
2564 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2565 			mem_size, off, size);
2566 		break;
2567 	case PTR_TO_PACKET:
2568 	case PTR_TO_PACKET_META:
2569 	case PTR_TO_PACKET_END:
2570 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2571 			off, size, regno, reg->id, off, mem_size);
2572 		break;
2573 	case PTR_TO_MEM:
2574 	default:
2575 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2576 			mem_size, off, size);
2577 	}
2578 
2579 	return -EACCES;
2580 }
2581 
2582 /* check read/write into a memory region with possible variable offset */
2583 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2584 				   int off, int size, u32 mem_size,
2585 				   bool zero_size_allowed)
2586 {
2587 	struct bpf_verifier_state *vstate = env->cur_state;
2588 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2589 	struct bpf_reg_state *reg = &state->regs[regno];
2590 	int err;
2591 
2592 	/* We may have adjusted the register pointing to memory region, so we
2593 	 * need to try adding each of min_value and max_value to off
2594 	 * to make sure our theoretical access will be safe.
2595 	 */
2596 	if (env->log.level & BPF_LOG_LEVEL)
2597 		print_verifier_state(env, state);
2598 
2599 	/* The minimum value is only important with signed
2600 	 * comparisons where we can't assume the floor of a
2601 	 * value is 0.  If we are using signed variables for our
2602 	 * index'es we need to make sure that whatever we use
2603 	 * will have a set floor within our range.
2604 	 */
2605 	if (reg->smin_value < 0 &&
2606 	    (reg->smin_value == S64_MIN ||
2607 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2608 	      reg->smin_value + off < 0)) {
2609 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2610 			regno);
2611 		return -EACCES;
2612 	}
2613 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
2614 				 mem_size, zero_size_allowed);
2615 	if (err) {
2616 		verbose(env, "R%d min value is outside of the allowed memory range\n",
2617 			regno);
2618 		return err;
2619 	}
2620 
2621 	/* If we haven't set a max value then we need to bail since we can't be
2622 	 * sure we won't do bad things.
2623 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
2624 	 */
2625 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2626 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
2627 			regno);
2628 		return -EACCES;
2629 	}
2630 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
2631 				 mem_size, zero_size_allowed);
2632 	if (err) {
2633 		verbose(env, "R%d max value is outside of the allowed memory range\n",
2634 			regno);
2635 		return err;
2636 	}
2637 
2638 	return 0;
2639 }
2640 
2641 /* check read/write into a map element with possible variable offset */
2642 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2643 			    int off, int size, bool zero_size_allowed)
2644 {
2645 	struct bpf_verifier_state *vstate = env->cur_state;
2646 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2647 	struct bpf_reg_state *reg = &state->regs[regno];
2648 	struct bpf_map *map = reg->map_ptr;
2649 	int err;
2650 
2651 	err = check_mem_region_access(env, regno, off, size, map->value_size,
2652 				      zero_size_allowed);
2653 	if (err)
2654 		return err;
2655 
2656 	if (map_value_has_spin_lock(map)) {
2657 		u32 lock = map->spin_lock_off;
2658 
2659 		/* if any part of struct bpf_spin_lock can be touched by
2660 		 * load/store reject this program.
2661 		 * To check that [x1, x2) overlaps with [y1, y2)
2662 		 * it is sufficient to check x1 < y2 && y1 < x2.
2663 		 */
2664 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2665 		     lock < reg->umax_value + off + size) {
2666 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2667 			return -EACCES;
2668 		}
2669 	}
2670 	return err;
2671 }
2672 
2673 #define MAX_PACKET_OFF 0xffff
2674 
2675 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
2676 {
2677 	return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
2678 }
2679 
2680 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2681 				       const struct bpf_call_arg_meta *meta,
2682 				       enum bpf_access_type t)
2683 {
2684 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
2685 
2686 	switch (prog_type) {
2687 	/* Program types only with direct read access go here! */
2688 	case BPF_PROG_TYPE_LWT_IN:
2689 	case BPF_PROG_TYPE_LWT_OUT:
2690 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2691 	case BPF_PROG_TYPE_SK_REUSEPORT:
2692 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
2693 	case BPF_PROG_TYPE_CGROUP_SKB:
2694 		if (t == BPF_WRITE)
2695 			return false;
2696 		fallthrough;
2697 
2698 	/* Program types with direct read + write access go here! */
2699 	case BPF_PROG_TYPE_SCHED_CLS:
2700 	case BPF_PROG_TYPE_SCHED_ACT:
2701 	case BPF_PROG_TYPE_XDP:
2702 	case BPF_PROG_TYPE_LWT_XMIT:
2703 	case BPF_PROG_TYPE_SK_SKB:
2704 	case BPF_PROG_TYPE_SK_MSG:
2705 		if (meta)
2706 			return meta->pkt_access;
2707 
2708 		env->seen_direct_write = true;
2709 		return true;
2710 
2711 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2712 		if (t == BPF_WRITE)
2713 			env->seen_direct_write = true;
2714 
2715 		return true;
2716 
2717 	default:
2718 		return false;
2719 	}
2720 }
2721 
2722 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2723 			       int size, bool zero_size_allowed)
2724 {
2725 	struct bpf_reg_state *regs = cur_regs(env);
2726 	struct bpf_reg_state *reg = &regs[regno];
2727 	int err;
2728 
2729 	/* We may have added a variable offset to the packet pointer; but any
2730 	 * reg->range we have comes after that.  We are only checking the fixed
2731 	 * offset.
2732 	 */
2733 
2734 	/* We don't allow negative numbers, because we aren't tracking enough
2735 	 * detail to prove they're safe.
2736 	 */
2737 	if (reg->smin_value < 0) {
2738 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2739 			regno);
2740 		return -EACCES;
2741 	}
2742 	err = __check_mem_access(env, regno, off, size, reg->range,
2743 				 zero_size_allowed);
2744 	if (err) {
2745 		verbose(env, "R%d offset is outside of the packet\n", regno);
2746 		return err;
2747 	}
2748 
2749 	/* __check_mem_access has made sure "off + size - 1" is within u16.
2750 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2751 	 * otherwise find_good_pkt_pointers would have refused to set range info
2752 	 * that __check_mem_access would have rejected this pkt access.
2753 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2754 	 */
2755 	env->prog->aux->max_pkt_offset =
2756 		max_t(u32, env->prog->aux->max_pkt_offset,
2757 		      off + reg->umax_value + size - 1);
2758 
2759 	return err;
2760 }
2761 
2762 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
2763 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
2764 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
2765 			    u32 *btf_id)
2766 {
2767 	struct bpf_insn_access_aux info = {
2768 		.reg_type = *reg_type,
2769 		.log = &env->log,
2770 	};
2771 
2772 	if (env->ops->is_valid_access &&
2773 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
2774 		/* A non zero info.ctx_field_size indicates that this field is a
2775 		 * candidate for later verifier transformation to load the whole
2776 		 * field and then apply a mask when accessed with a narrower
2777 		 * access than actual ctx access size. A zero info.ctx_field_size
2778 		 * will only allow for whole field access and rejects any other
2779 		 * type of narrower access.
2780 		 */
2781 		*reg_type = info.reg_type;
2782 
2783 		if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL)
2784 			*btf_id = info.btf_id;
2785 		else
2786 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
2787 		/* remember the offset of last byte accessed in ctx */
2788 		if (env->prog->aux->max_ctx_offset < off + size)
2789 			env->prog->aux->max_ctx_offset = off + size;
2790 		return 0;
2791 	}
2792 
2793 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
2794 	return -EACCES;
2795 }
2796 
2797 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2798 				  int size)
2799 {
2800 	if (size < 0 || off < 0 ||
2801 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
2802 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
2803 			off, size);
2804 		return -EACCES;
2805 	}
2806 	return 0;
2807 }
2808 
2809 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2810 			     u32 regno, int off, int size,
2811 			     enum bpf_access_type t)
2812 {
2813 	struct bpf_reg_state *regs = cur_regs(env);
2814 	struct bpf_reg_state *reg = &regs[regno];
2815 	struct bpf_insn_access_aux info = {};
2816 	bool valid;
2817 
2818 	if (reg->smin_value < 0) {
2819 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2820 			regno);
2821 		return -EACCES;
2822 	}
2823 
2824 	switch (reg->type) {
2825 	case PTR_TO_SOCK_COMMON:
2826 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2827 		break;
2828 	case PTR_TO_SOCKET:
2829 		valid = bpf_sock_is_valid_access(off, size, t, &info);
2830 		break;
2831 	case PTR_TO_TCP_SOCK:
2832 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2833 		break;
2834 	case PTR_TO_XDP_SOCK:
2835 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2836 		break;
2837 	default:
2838 		valid = false;
2839 	}
2840 
2841 
2842 	if (valid) {
2843 		env->insn_aux_data[insn_idx].ctx_field_size =
2844 			info.ctx_field_size;
2845 		return 0;
2846 	}
2847 
2848 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
2849 		regno, reg_type_str[reg->type], off, size);
2850 
2851 	return -EACCES;
2852 }
2853 
2854 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2855 {
2856 	return cur_regs(env) + regno;
2857 }
2858 
2859 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2860 {
2861 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
2862 }
2863 
2864 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2865 {
2866 	const struct bpf_reg_state *reg = reg_state(env, regno);
2867 
2868 	return reg->type == PTR_TO_CTX;
2869 }
2870 
2871 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2872 {
2873 	const struct bpf_reg_state *reg = reg_state(env, regno);
2874 
2875 	return type_is_sk_pointer(reg->type);
2876 }
2877 
2878 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2879 {
2880 	const struct bpf_reg_state *reg = reg_state(env, regno);
2881 
2882 	return type_is_pkt_pointer(reg->type);
2883 }
2884 
2885 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2886 {
2887 	const struct bpf_reg_state *reg = reg_state(env, regno);
2888 
2889 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2890 	return reg->type == PTR_TO_FLOW_KEYS;
2891 }
2892 
2893 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2894 				   const struct bpf_reg_state *reg,
2895 				   int off, int size, bool strict)
2896 {
2897 	struct tnum reg_off;
2898 	int ip_align;
2899 
2900 	/* Byte size accesses are always allowed. */
2901 	if (!strict || size == 1)
2902 		return 0;
2903 
2904 	/* For platforms that do not have a Kconfig enabling
2905 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2906 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
2907 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2908 	 * to this code only in strict mode where we want to emulate
2909 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
2910 	 * unconditional IP align value of '2'.
2911 	 */
2912 	ip_align = 2;
2913 
2914 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2915 	if (!tnum_is_aligned(reg_off, size)) {
2916 		char tn_buf[48];
2917 
2918 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2919 		verbose(env,
2920 			"misaligned packet access off %d+%s+%d+%d size %d\n",
2921 			ip_align, tn_buf, reg->off, off, size);
2922 		return -EACCES;
2923 	}
2924 
2925 	return 0;
2926 }
2927 
2928 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2929 				       const struct bpf_reg_state *reg,
2930 				       const char *pointer_desc,
2931 				       int off, int size, bool strict)
2932 {
2933 	struct tnum reg_off;
2934 
2935 	/* Byte size accesses are always allowed. */
2936 	if (!strict || size == 1)
2937 		return 0;
2938 
2939 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2940 	if (!tnum_is_aligned(reg_off, size)) {
2941 		char tn_buf[48];
2942 
2943 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2944 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
2945 			pointer_desc, tn_buf, reg->off, off, size);
2946 		return -EACCES;
2947 	}
2948 
2949 	return 0;
2950 }
2951 
2952 static int check_ptr_alignment(struct bpf_verifier_env *env,
2953 			       const struct bpf_reg_state *reg, int off,
2954 			       int size, bool strict_alignment_once)
2955 {
2956 	bool strict = env->strict_alignment || strict_alignment_once;
2957 	const char *pointer_desc = "";
2958 
2959 	switch (reg->type) {
2960 	case PTR_TO_PACKET:
2961 	case PTR_TO_PACKET_META:
2962 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
2963 		 * right in front, treat it the very same way.
2964 		 */
2965 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
2966 	case PTR_TO_FLOW_KEYS:
2967 		pointer_desc = "flow keys ";
2968 		break;
2969 	case PTR_TO_MAP_VALUE:
2970 		pointer_desc = "value ";
2971 		break;
2972 	case PTR_TO_CTX:
2973 		pointer_desc = "context ";
2974 		break;
2975 	case PTR_TO_STACK:
2976 		pointer_desc = "stack ";
2977 		/* The stack spill tracking logic in check_stack_write()
2978 		 * and check_stack_read() relies on stack accesses being
2979 		 * aligned.
2980 		 */
2981 		strict = true;
2982 		break;
2983 	case PTR_TO_SOCKET:
2984 		pointer_desc = "sock ";
2985 		break;
2986 	case PTR_TO_SOCK_COMMON:
2987 		pointer_desc = "sock_common ";
2988 		break;
2989 	case PTR_TO_TCP_SOCK:
2990 		pointer_desc = "tcp_sock ";
2991 		break;
2992 	case PTR_TO_XDP_SOCK:
2993 		pointer_desc = "xdp_sock ";
2994 		break;
2995 	default:
2996 		break;
2997 	}
2998 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2999 					   strict);
3000 }
3001 
3002 static int update_stack_depth(struct bpf_verifier_env *env,
3003 			      const struct bpf_func_state *func,
3004 			      int off)
3005 {
3006 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
3007 
3008 	if (stack >= -off)
3009 		return 0;
3010 
3011 	/* update known max for given subprogram */
3012 	env->subprog_info[func->subprogno].stack_depth = -off;
3013 	return 0;
3014 }
3015 
3016 /* starting from main bpf function walk all instructions of the function
3017  * and recursively walk all callees that given function can call.
3018  * Ignore jump and exit insns.
3019  * Since recursion is prevented by check_cfg() this algorithm
3020  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3021  */
3022 static int check_max_stack_depth(struct bpf_verifier_env *env)
3023 {
3024 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3025 	struct bpf_subprog_info *subprog = env->subprog_info;
3026 	struct bpf_insn *insn = env->prog->insnsi;
3027 	bool tail_call_reachable = false;
3028 	int ret_insn[MAX_CALL_FRAMES];
3029 	int ret_prog[MAX_CALL_FRAMES];
3030 	int j;
3031 
3032 process_func:
3033 	/* protect against potential stack overflow that might happen when
3034 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3035 	 * depth for such case down to 256 so that the worst case scenario
3036 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
3037 	 * 8k).
3038 	 *
3039 	 * To get the idea what might happen, see an example:
3040 	 * func1 -> sub rsp, 128
3041 	 *  subfunc1 -> sub rsp, 256
3042 	 *  tailcall1 -> add rsp, 256
3043 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3044 	 *   subfunc2 -> sub rsp, 64
3045 	 *   subfunc22 -> sub rsp, 128
3046 	 *   tailcall2 -> add rsp, 128
3047 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3048 	 *
3049 	 * tailcall will unwind the current stack frame but it will not get rid
3050 	 * of caller's stack as shown on the example above.
3051 	 */
3052 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
3053 		verbose(env,
3054 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3055 			depth);
3056 		return -EACCES;
3057 	}
3058 	/* round up to 32-bytes, since this is granularity
3059 	 * of interpreter stack size
3060 	 */
3061 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3062 	if (depth > MAX_BPF_STACK) {
3063 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
3064 			frame + 1, depth);
3065 		return -EACCES;
3066 	}
3067 continue_func:
3068 	subprog_end = subprog[idx + 1].start;
3069 	for (; i < subprog_end; i++) {
3070 		if (insn[i].code != (BPF_JMP | BPF_CALL))
3071 			continue;
3072 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
3073 			continue;
3074 		/* remember insn and function to return to */
3075 		ret_insn[frame] = i + 1;
3076 		ret_prog[frame] = idx;
3077 
3078 		/* find the callee */
3079 		i = i + insn[i].imm + 1;
3080 		idx = find_subprog(env, i);
3081 		if (idx < 0) {
3082 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3083 				  i);
3084 			return -EFAULT;
3085 		}
3086 
3087 		if (subprog[idx].has_tail_call)
3088 			tail_call_reachable = true;
3089 
3090 		frame++;
3091 		if (frame >= MAX_CALL_FRAMES) {
3092 			verbose(env, "the call stack of %d frames is too deep !\n",
3093 				frame);
3094 			return -E2BIG;
3095 		}
3096 		goto process_func;
3097 	}
3098 	/* if tail call got detected across bpf2bpf calls then mark each of the
3099 	 * currently present subprog frames as tail call reachable subprogs;
3100 	 * this info will be utilized by JIT so that we will be preserving the
3101 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
3102 	 */
3103 	if (tail_call_reachable)
3104 		for (j = 0; j < frame; j++)
3105 			subprog[ret_prog[j]].tail_call_reachable = true;
3106 
3107 	/* end of for() loop means the last insn of the 'subprog'
3108 	 * was reached. Doesn't matter whether it was JA or EXIT
3109 	 */
3110 	if (frame == 0)
3111 		return 0;
3112 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3113 	frame--;
3114 	i = ret_insn[frame];
3115 	idx = ret_prog[frame];
3116 	goto continue_func;
3117 }
3118 
3119 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3120 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3121 				  const struct bpf_insn *insn, int idx)
3122 {
3123 	int start = idx + insn->imm + 1, subprog;
3124 
3125 	subprog = find_subprog(env, start);
3126 	if (subprog < 0) {
3127 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3128 			  start);
3129 		return -EFAULT;
3130 	}
3131 	return env->subprog_info[subprog].stack_depth;
3132 }
3133 #endif
3134 
3135 int check_ctx_reg(struct bpf_verifier_env *env,
3136 		  const struct bpf_reg_state *reg, int regno)
3137 {
3138 	/* Access to ctx or passing it to a helper is only allowed in
3139 	 * its original, unmodified form.
3140 	 */
3141 
3142 	if (reg->off) {
3143 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3144 			regno, reg->off);
3145 		return -EACCES;
3146 	}
3147 
3148 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3149 		char tn_buf[48];
3150 
3151 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3152 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3153 		return -EACCES;
3154 	}
3155 
3156 	return 0;
3157 }
3158 
3159 static int __check_buffer_access(struct bpf_verifier_env *env,
3160 				 const char *buf_info,
3161 				 const struct bpf_reg_state *reg,
3162 				 int regno, int off, int size)
3163 {
3164 	if (off < 0) {
3165 		verbose(env,
3166 			"R%d invalid %s buffer access: off=%d, size=%d\n",
3167 			regno, buf_info, off, size);
3168 		return -EACCES;
3169 	}
3170 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3171 		char tn_buf[48];
3172 
3173 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3174 		verbose(env,
3175 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3176 			regno, off, tn_buf);
3177 		return -EACCES;
3178 	}
3179 
3180 	return 0;
3181 }
3182 
3183 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3184 				  const struct bpf_reg_state *reg,
3185 				  int regno, int off, int size)
3186 {
3187 	int err;
3188 
3189 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3190 	if (err)
3191 		return err;
3192 
3193 	if (off + size > env->prog->aux->max_tp_access)
3194 		env->prog->aux->max_tp_access = off + size;
3195 
3196 	return 0;
3197 }
3198 
3199 static int check_buffer_access(struct bpf_verifier_env *env,
3200 			       const struct bpf_reg_state *reg,
3201 			       int regno, int off, int size,
3202 			       bool zero_size_allowed,
3203 			       const char *buf_info,
3204 			       u32 *max_access)
3205 {
3206 	int err;
3207 
3208 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3209 	if (err)
3210 		return err;
3211 
3212 	if (off + size > *max_access)
3213 		*max_access = off + size;
3214 
3215 	return 0;
3216 }
3217 
3218 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
3219 static void zext_32_to_64(struct bpf_reg_state *reg)
3220 {
3221 	reg->var_off = tnum_subreg(reg->var_off);
3222 	__reg_assign_32_into_64(reg);
3223 }
3224 
3225 /* truncate register to smaller size (in bytes)
3226  * must be called with size < BPF_REG_SIZE
3227  */
3228 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3229 {
3230 	u64 mask;
3231 
3232 	/* clear high bits in bit representation */
3233 	reg->var_off = tnum_cast(reg->var_off, size);
3234 
3235 	/* fix arithmetic bounds */
3236 	mask = ((u64)1 << (size * 8)) - 1;
3237 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3238 		reg->umin_value &= mask;
3239 		reg->umax_value &= mask;
3240 	} else {
3241 		reg->umin_value = 0;
3242 		reg->umax_value = mask;
3243 	}
3244 	reg->smin_value = reg->umin_value;
3245 	reg->smax_value = reg->umax_value;
3246 
3247 	/* If size is smaller than 32bit register the 32bit register
3248 	 * values are also truncated so we push 64-bit bounds into
3249 	 * 32-bit bounds. Above were truncated < 32-bits already.
3250 	 */
3251 	if (size >= 4)
3252 		return;
3253 	__reg_combine_64_into_32(reg);
3254 }
3255 
3256 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3257 {
3258 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3259 }
3260 
3261 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3262 {
3263 	void *ptr;
3264 	u64 addr;
3265 	int err;
3266 
3267 	err = map->ops->map_direct_value_addr(map, &addr, off);
3268 	if (err)
3269 		return err;
3270 	ptr = (void *)(long)addr + off;
3271 
3272 	switch (size) {
3273 	case sizeof(u8):
3274 		*val = (u64)*(u8 *)ptr;
3275 		break;
3276 	case sizeof(u16):
3277 		*val = (u64)*(u16 *)ptr;
3278 		break;
3279 	case sizeof(u32):
3280 		*val = (u64)*(u32 *)ptr;
3281 		break;
3282 	case sizeof(u64):
3283 		*val = *(u64 *)ptr;
3284 		break;
3285 	default:
3286 		return -EINVAL;
3287 	}
3288 	return 0;
3289 }
3290 
3291 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3292 				   struct bpf_reg_state *regs,
3293 				   int regno, int off, int size,
3294 				   enum bpf_access_type atype,
3295 				   int value_regno)
3296 {
3297 	struct bpf_reg_state *reg = regs + regno;
3298 	const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
3299 	const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3300 	u32 btf_id;
3301 	int ret;
3302 
3303 	if (off < 0) {
3304 		verbose(env,
3305 			"R%d is ptr_%s invalid negative access: off=%d\n",
3306 			regno, tname, off);
3307 		return -EACCES;
3308 	}
3309 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3310 		char tn_buf[48];
3311 
3312 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3313 		verbose(env,
3314 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3315 			regno, tname, off, tn_buf);
3316 		return -EACCES;
3317 	}
3318 
3319 	if (env->ops->btf_struct_access) {
3320 		ret = env->ops->btf_struct_access(&env->log, t, off, size,
3321 						  atype, &btf_id);
3322 	} else {
3323 		if (atype != BPF_READ) {
3324 			verbose(env, "only read is supported\n");
3325 			return -EACCES;
3326 		}
3327 
3328 		ret = btf_struct_access(&env->log, t, off, size, atype,
3329 					&btf_id);
3330 	}
3331 
3332 	if (ret < 0)
3333 		return ret;
3334 
3335 	if (atype == BPF_READ && value_regno >= 0)
3336 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3337 
3338 	return 0;
3339 }
3340 
3341 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3342 				   struct bpf_reg_state *regs,
3343 				   int regno, int off, int size,
3344 				   enum bpf_access_type atype,
3345 				   int value_regno)
3346 {
3347 	struct bpf_reg_state *reg = regs + regno;
3348 	struct bpf_map *map = reg->map_ptr;
3349 	const struct btf_type *t;
3350 	const char *tname;
3351 	u32 btf_id;
3352 	int ret;
3353 
3354 	if (!btf_vmlinux) {
3355 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3356 		return -ENOTSUPP;
3357 	}
3358 
3359 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3360 		verbose(env, "map_ptr access not supported for map type %d\n",
3361 			map->map_type);
3362 		return -ENOTSUPP;
3363 	}
3364 
3365 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3366 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3367 
3368 	if (!env->allow_ptr_to_map_access) {
3369 		verbose(env,
3370 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3371 			tname);
3372 		return -EPERM;
3373 	}
3374 
3375 	if (off < 0) {
3376 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
3377 			regno, tname, off);
3378 		return -EACCES;
3379 	}
3380 
3381 	if (atype != BPF_READ) {
3382 		verbose(env, "only read from %s is supported\n", tname);
3383 		return -EACCES;
3384 	}
3385 
3386 	ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id);
3387 	if (ret < 0)
3388 		return ret;
3389 
3390 	if (value_regno >= 0)
3391 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3392 
3393 	return 0;
3394 }
3395 
3396 
3397 /* check whether memory at (regno + off) is accessible for t = (read | write)
3398  * if t==write, value_regno is a register which value is stored into memory
3399  * if t==read, value_regno is a register which will receive the value from memory
3400  * if t==write && value_regno==-1, some unknown value is stored into memory
3401  * if t==read && value_regno==-1, don't care what we read from memory
3402  */
3403 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3404 			    int off, int bpf_size, enum bpf_access_type t,
3405 			    int value_regno, bool strict_alignment_once)
3406 {
3407 	struct bpf_reg_state *regs = cur_regs(env);
3408 	struct bpf_reg_state *reg = regs + regno;
3409 	struct bpf_func_state *state;
3410 	int size, err = 0;
3411 
3412 	size = bpf_size_to_bytes(bpf_size);
3413 	if (size < 0)
3414 		return size;
3415 
3416 	/* alignment checks will add in reg->off themselves */
3417 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3418 	if (err)
3419 		return err;
3420 
3421 	/* for access checks, reg->off is just part of off */
3422 	off += reg->off;
3423 
3424 	if (reg->type == PTR_TO_MAP_VALUE) {
3425 		if (t == BPF_WRITE && value_regno >= 0 &&
3426 		    is_pointer_value(env, value_regno)) {
3427 			verbose(env, "R%d leaks addr into map\n", value_regno);
3428 			return -EACCES;
3429 		}
3430 		err = check_map_access_type(env, regno, off, size, t);
3431 		if (err)
3432 			return err;
3433 		err = check_map_access(env, regno, off, size, false);
3434 		if (!err && t == BPF_READ && value_regno >= 0) {
3435 			struct bpf_map *map = reg->map_ptr;
3436 
3437 			/* if map is read-only, track its contents as scalars */
3438 			if (tnum_is_const(reg->var_off) &&
3439 			    bpf_map_is_rdonly(map) &&
3440 			    map->ops->map_direct_value_addr) {
3441 				int map_off = off + reg->var_off.value;
3442 				u64 val = 0;
3443 
3444 				err = bpf_map_direct_read(map, map_off, size,
3445 							  &val);
3446 				if (err)
3447 					return err;
3448 
3449 				regs[value_regno].type = SCALAR_VALUE;
3450 				__mark_reg_known(&regs[value_regno], val);
3451 			} else {
3452 				mark_reg_unknown(env, regs, value_regno);
3453 			}
3454 		}
3455 	} else if (reg->type == PTR_TO_MEM) {
3456 		if (t == BPF_WRITE && value_regno >= 0 &&
3457 		    is_pointer_value(env, value_regno)) {
3458 			verbose(env, "R%d leaks addr into mem\n", value_regno);
3459 			return -EACCES;
3460 		}
3461 		err = check_mem_region_access(env, regno, off, size,
3462 					      reg->mem_size, false);
3463 		if (!err && t == BPF_READ && value_regno >= 0)
3464 			mark_reg_unknown(env, regs, value_regno);
3465 	} else if (reg->type == PTR_TO_CTX) {
3466 		enum bpf_reg_type reg_type = SCALAR_VALUE;
3467 		u32 btf_id = 0;
3468 
3469 		if (t == BPF_WRITE && value_regno >= 0 &&
3470 		    is_pointer_value(env, value_regno)) {
3471 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
3472 			return -EACCES;
3473 		}
3474 
3475 		err = check_ctx_reg(env, reg, regno);
3476 		if (err < 0)
3477 			return err;
3478 
3479 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf_id);
3480 		if (err)
3481 			verbose_linfo(env, insn_idx, "; ");
3482 		if (!err && t == BPF_READ && value_regno >= 0) {
3483 			/* ctx access returns either a scalar, or a
3484 			 * PTR_TO_PACKET[_META,_END]. In the latter
3485 			 * case, we know the offset is zero.
3486 			 */
3487 			if (reg_type == SCALAR_VALUE) {
3488 				mark_reg_unknown(env, regs, value_regno);
3489 			} else {
3490 				mark_reg_known_zero(env, regs,
3491 						    value_regno);
3492 				if (reg_type_may_be_null(reg_type))
3493 					regs[value_regno].id = ++env->id_gen;
3494 				/* A load of ctx field could have different
3495 				 * actual load size with the one encoded in the
3496 				 * insn. When the dst is PTR, it is for sure not
3497 				 * a sub-register.
3498 				 */
3499 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
3500 				if (reg_type == PTR_TO_BTF_ID ||
3501 				    reg_type == PTR_TO_BTF_ID_OR_NULL)
3502 					regs[value_regno].btf_id = btf_id;
3503 			}
3504 			regs[value_regno].type = reg_type;
3505 		}
3506 
3507 	} else if (reg->type == PTR_TO_STACK) {
3508 		off += reg->var_off.value;
3509 		err = check_stack_access(env, reg, off, size);
3510 		if (err)
3511 			return err;
3512 
3513 		state = func(env, reg);
3514 		err = update_stack_depth(env, state, off);
3515 		if (err)
3516 			return err;
3517 
3518 		if (t == BPF_WRITE)
3519 			err = check_stack_write(env, state, off, size,
3520 						value_regno, insn_idx);
3521 		else
3522 			err = check_stack_read(env, state, off, size,
3523 					       value_regno);
3524 	} else if (reg_is_pkt_pointer(reg)) {
3525 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3526 			verbose(env, "cannot write into packet\n");
3527 			return -EACCES;
3528 		}
3529 		if (t == BPF_WRITE && value_regno >= 0 &&
3530 		    is_pointer_value(env, value_regno)) {
3531 			verbose(env, "R%d leaks addr into packet\n",
3532 				value_regno);
3533 			return -EACCES;
3534 		}
3535 		err = check_packet_access(env, regno, off, size, false);
3536 		if (!err && t == BPF_READ && value_regno >= 0)
3537 			mark_reg_unknown(env, regs, value_regno);
3538 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
3539 		if (t == BPF_WRITE && value_regno >= 0 &&
3540 		    is_pointer_value(env, value_regno)) {
3541 			verbose(env, "R%d leaks addr into flow keys\n",
3542 				value_regno);
3543 			return -EACCES;
3544 		}
3545 
3546 		err = check_flow_keys_access(env, off, size);
3547 		if (!err && t == BPF_READ && value_regno >= 0)
3548 			mark_reg_unknown(env, regs, value_regno);
3549 	} else if (type_is_sk_pointer(reg->type)) {
3550 		if (t == BPF_WRITE) {
3551 			verbose(env, "R%d cannot write into %s\n",
3552 				regno, reg_type_str[reg->type]);
3553 			return -EACCES;
3554 		}
3555 		err = check_sock_access(env, insn_idx, regno, off, size, t);
3556 		if (!err && value_regno >= 0)
3557 			mark_reg_unknown(env, regs, value_regno);
3558 	} else if (reg->type == PTR_TO_TP_BUFFER) {
3559 		err = check_tp_buffer_access(env, reg, regno, off, size);
3560 		if (!err && t == BPF_READ && value_regno >= 0)
3561 			mark_reg_unknown(env, regs, value_regno);
3562 	} else if (reg->type == PTR_TO_BTF_ID) {
3563 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3564 					      value_regno);
3565 	} else if (reg->type == CONST_PTR_TO_MAP) {
3566 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
3567 					      value_regno);
3568 	} else if (reg->type == PTR_TO_RDONLY_BUF) {
3569 		if (t == BPF_WRITE) {
3570 			verbose(env, "R%d cannot write into %s\n",
3571 				regno, reg_type_str[reg->type]);
3572 			return -EACCES;
3573 		}
3574 		err = check_buffer_access(env, reg, regno, off, size, false,
3575 					  "rdonly",
3576 					  &env->prog->aux->max_rdonly_access);
3577 		if (!err && value_regno >= 0)
3578 			mark_reg_unknown(env, regs, value_regno);
3579 	} else if (reg->type == PTR_TO_RDWR_BUF) {
3580 		err = check_buffer_access(env, reg, regno, off, size, false,
3581 					  "rdwr",
3582 					  &env->prog->aux->max_rdwr_access);
3583 		if (!err && t == BPF_READ && value_regno >= 0)
3584 			mark_reg_unknown(env, regs, value_regno);
3585 	} else {
3586 		verbose(env, "R%d invalid mem access '%s'\n", regno,
3587 			reg_type_str[reg->type]);
3588 		return -EACCES;
3589 	}
3590 
3591 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
3592 	    regs[value_regno].type == SCALAR_VALUE) {
3593 		/* b/h/w load zero-extends, mark upper bits as known 0 */
3594 		coerce_reg_to_size(&regs[value_regno], size);
3595 	}
3596 	return err;
3597 }
3598 
3599 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
3600 {
3601 	int err;
3602 
3603 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3604 	    insn->imm != 0) {
3605 		verbose(env, "BPF_XADD uses reserved fields\n");
3606 		return -EINVAL;
3607 	}
3608 
3609 	/* check src1 operand */
3610 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
3611 	if (err)
3612 		return err;
3613 
3614 	/* check src2 operand */
3615 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3616 	if (err)
3617 		return err;
3618 
3619 	if (is_pointer_value(env, insn->src_reg)) {
3620 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
3621 		return -EACCES;
3622 	}
3623 
3624 	if (is_ctx_reg(env, insn->dst_reg) ||
3625 	    is_pkt_reg(env, insn->dst_reg) ||
3626 	    is_flow_key_reg(env, insn->dst_reg) ||
3627 	    is_sk_reg(env, insn->dst_reg)) {
3628 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
3629 			insn->dst_reg,
3630 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
3631 		return -EACCES;
3632 	}
3633 
3634 	/* check whether atomic_add can read the memory */
3635 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3636 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
3637 	if (err)
3638 		return err;
3639 
3640 	/* check whether atomic_add can write into the same memory */
3641 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3642 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
3643 }
3644 
3645 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3646 				  int off, int access_size,
3647 				  bool zero_size_allowed)
3648 {
3649 	struct bpf_reg_state *reg = reg_state(env, regno);
3650 
3651 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3652 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3653 		if (tnum_is_const(reg->var_off)) {
3654 			verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3655 				regno, off, access_size);
3656 		} else {
3657 			char tn_buf[48];
3658 
3659 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3660 			verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3661 				regno, tn_buf, access_size);
3662 		}
3663 		return -EACCES;
3664 	}
3665 	return 0;
3666 }
3667 
3668 /* when register 'regno' is passed into function that will read 'access_size'
3669  * bytes from that pointer, make sure that it's within stack boundary
3670  * and all elements of stack are initialized.
3671  * Unlike most pointer bounds-checking functions, this one doesn't take an
3672  * 'off' argument, so it has to add in reg->off itself.
3673  */
3674 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
3675 				int access_size, bool zero_size_allowed,
3676 				struct bpf_call_arg_meta *meta)
3677 {
3678 	struct bpf_reg_state *reg = reg_state(env, regno);
3679 	struct bpf_func_state *state = func(env, reg);
3680 	int err, min_off, max_off, i, j, slot, spi;
3681 
3682 	if (tnum_is_const(reg->var_off)) {
3683 		min_off = max_off = reg->var_off.value + reg->off;
3684 		err = __check_stack_boundary(env, regno, min_off, access_size,
3685 					     zero_size_allowed);
3686 		if (err)
3687 			return err;
3688 	} else {
3689 		/* Variable offset is prohibited for unprivileged mode for
3690 		 * simplicity since it requires corresponding support in
3691 		 * Spectre masking for stack ALU.
3692 		 * See also retrieve_ptr_limit().
3693 		 */
3694 		if (!env->bypass_spec_v1) {
3695 			char tn_buf[48];
3696 
3697 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3698 			verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3699 				regno, tn_buf);
3700 			return -EACCES;
3701 		}
3702 		/* Only initialized buffer on stack is allowed to be accessed
3703 		 * with variable offset. With uninitialized buffer it's hard to
3704 		 * guarantee that whole memory is marked as initialized on
3705 		 * helper return since specific bounds are unknown what may
3706 		 * cause uninitialized stack leaking.
3707 		 */
3708 		if (meta && meta->raw_mode)
3709 			meta = NULL;
3710 
3711 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3712 		    reg->smax_value <= -BPF_MAX_VAR_OFF) {
3713 			verbose(env, "R%d unbounded indirect variable offset stack access\n",
3714 				regno);
3715 			return -EACCES;
3716 		}
3717 		min_off = reg->smin_value + reg->off;
3718 		max_off = reg->smax_value + reg->off;
3719 		err = __check_stack_boundary(env, regno, min_off, access_size,
3720 					     zero_size_allowed);
3721 		if (err) {
3722 			verbose(env, "R%d min value is outside of stack bound\n",
3723 				regno);
3724 			return err;
3725 		}
3726 		err = __check_stack_boundary(env, regno, max_off, access_size,
3727 					     zero_size_allowed);
3728 		if (err) {
3729 			verbose(env, "R%d max value is outside of stack bound\n",
3730 				regno);
3731 			return err;
3732 		}
3733 	}
3734 
3735 	if (meta && meta->raw_mode) {
3736 		meta->access_size = access_size;
3737 		meta->regno = regno;
3738 		return 0;
3739 	}
3740 
3741 	for (i = min_off; i < max_off + access_size; i++) {
3742 		u8 *stype;
3743 
3744 		slot = -i - 1;
3745 		spi = slot / BPF_REG_SIZE;
3746 		if (state->allocated_stack <= slot)
3747 			goto err;
3748 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3749 		if (*stype == STACK_MISC)
3750 			goto mark;
3751 		if (*stype == STACK_ZERO) {
3752 			/* helper can write anything into the stack */
3753 			*stype = STACK_MISC;
3754 			goto mark;
3755 		}
3756 
3757 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3758 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
3759 			goto mark;
3760 
3761 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3762 		    state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
3763 			__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
3764 			for (j = 0; j < BPF_REG_SIZE; j++)
3765 				state->stack[spi].slot_type[j] = STACK_MISC;
3766 			goto mark;
3767 		}
3768 
3769 err:
3770 		if (tnum_is_const(reg->var_off)) {
3771 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3772 				min_off, i - min_off, access_size);
3773 		} else {
3774 			char tn_buf[48];
3775 
3776 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3777 			verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3778 				tn_buf, i - min_off, access_size);
3779 		}
3780 		return -EACCES;
3781 mark:
3782 		/* reading any byte out of 8-byte 'spill_slot' will cause
3783 		 * the whole slot to be marked as 'read'
3784 		 */
3785 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
3786 			      state->stack[spi].spilled_ptr.parent,
3787 			      REG_LIVE_READ64);
3788 	}
3789 	return update_stack_depth(env, state, min_off);
3790 }
3791 
3792 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3793 				   int access_size, bool zero_size_allowed,
3794 				   struct bpf_call_arg_meta *meta)
3795 {
3796 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3797 
3798 	switch (reg->type) {
3799 	case PTR_TO_PACKET:
3800 	case PTR_TO_PACKET_META:
3801 		return check_packet_access(env, regno, reg->off, access_size,
3802 					   zero_size_allowed);
3803 	case PTR_TO_MAP_VALUE:
3804 		if (check_map_access_type(env, regno, reg->off, access_size,
3805 					  meta && meta->raw_mode ? BPF_WRITE :
3806 					  BPF_READ))
3807 			return -EACCES;
3808 		return check_map_access(env, regno, reg->off, access_size,
3809 					zero_size_allowed);
3810 	case PTR_TO_MEM:
3811 		return check_mem_region_access(env, regno, reg->off,
3812 					       access_size, reg->mem_size,
3813 					       zero_size_allowed);
3814 	case PTR_TO_RDONLY_BUF:
3815 		if (meta && meta->raw_mode)
3816 			return -EACCES;
3817 		return check_buffer_access(env, reg, regno, reg->off,
3818 					   access_size, zero_size_allowed,
3819 					   "rdonly",
3820 					   &env->prog->aux->max_rdonly_access);
3821 	case PTR_TO_RDWR_BUF:
3822 		return check_buffer_access(env, reg, regno, reg->off,
3823 					   access_size, zero_size_allowed,
3824 					   "rdwr",
3825 					   &env->prog->aux->max_rdwr_access);
3826 	case PTR_TO_STACK:
3827 		return check_stack_boundary(env, regno, access_size,
3828 					    zero_size_allowed, meta);
3829 	default: /* scalar_value or invalid ptr */
3830 		/* Allow zero-byte read from NULL, regardless of pointer type */
3831 		if (zero_size_allowed && access_size == 0 &&
3832 		    register_is_null(reg))
3833 			return 0;
3834 
3835 		verbose(env, "R%d type=%s expected=%s\n", regno,
3836 			reg_type_str[reg->type],
3837 			reg_type_str[PTR_TO_STACK]);
3838 		return -EACCES;
3839 	}
3840 }
3841 
3842 /* Implementation details:
3843  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3844  * Two bpf_map_lookups (even with the same key) will have different reg->id.
3845  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3846  * value_or_null->value transition, since the verifier only cares about
3847  * the range of access to valid map value pointer and doesn't care about actual
3848  * address of the map element.
3849  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3850  * reg->id > 0 after value_or_null->value transition. By doing so
3851  * two bpf_map_lookups will be considered two different pointers that
3852  * point to different bpf_spin_locks.
3853  * The verifier allows taking only one bpf_spin_lock at a time to avoid
3854  * dead-locks.
3855  * Since only one bpf_spin_lock is allowed the checks are simpler than
3856  * reg_is_refcounted() logic. The verifier needs to remember only
3857  * one spin_lock instead of array of acquired_refs.
3858  * cur_state->active_spin_lock remembers which map value element got locked
3859  * and clears it after bpf_spin_unlock.
3860  */
3861 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3862 			     bool is_lock)
3863 {
3864 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3865 	struct bpf_verifier_state *cur = env->cur_state;
3866 	bool is_const = tnum_is_const(reg->var_off);
3867 	struct bpf_map *map = reg->map_ptr;
3868 	u64 val = reg->var_off.value;
3869 
3870 	if (!is_const) {
3871 		verbose(env,
3872 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3873 			regno);
3874 		return -EINVAL;
3875 	}
3876 	if (!map->btf) {
3877 		verbose(env,
3878 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
3879 			map->name);
3880 		return -EINVAL;
3881 	}
3882 	if (!map_value_has_spin_lock(map)) {
3883 		if (map->spin_lock_off == -E2BIG)
3884 			verbose(env,
3885 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
3886 				map->name);
3887 		else if (map->spin_lock_off == -ENOENT)
3888 			verbose(env,
3889 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
3890 				map->name);
3891 		else
3892 			verbose(env,
3893 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3894 				map->name);
3895 		return -EINVAL;
3896 	}
3897 	if (map->spin_lock_off != val + reg->off) {
3898 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3899 			val + reg->off);
3900 		return -EINVAL;
3901 	}
3902 	if (is_lock) {
3903 		if (cur->active_spin_lock) {
3904 			verbose(env,
3905 				"Locking two bpf_spin_locks are not allowed\n");
3906 			return -EINVAL;
3907 		}
3908 		cur->active_spin_lock = reg->id;
3909 	} else {
3910 		if (!cur->active_spin_lock) {
3911 			verbose(env, "bpf_spin_unlock without taking a lock\n");
3912 			return -EINVAL;
3913 		}
3914 		if (cur->active_spin_lock != reg->id) {
3915 			verbose(env, "bpf_spin_unlock of different lock\n");
3916 			return -EINVAL;
3917 		}
3918 		cur->active_spin_lock = 0;
3919 	}
3920 	return 0;
3921 }
3922 
3923 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3924 {
3925 	return type == ARG_PTR_TO_MEM ||
3926 	       type == ARG_PTR_TO_MEM_OR_NULL ||
3927 	       type == ARG_PTR_TO_UNINIT_MEM;
3928 }
3929 
3930 static bool arg_type_is_mem_size(enum bpf_arg_type type)
3931 {
3932 	return type == ARG_CONST_SIZE ||
3933 	       type == ARG_CONST_SIZE_OR_ZERO;
3934 }
3935 
3936 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
3937 {
3938 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
3939 }
3940 
3941 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3942 {
3943 	return type == ARG_PTR_TO_INT ||
3944 	       type == ARG_PTR_TO_LONG;
3945 }
3946 
3947 static int int_ptr_type_to_size(enum bpf_arg_type type)
3948 {
3949 	if (type == ARG_PTR_TO_INT)
3950 		return sizeof(u32);
3951 	else if (type == ARG_PTR_TO_LONG)
3952 		return sizeof(u64);
3953 
3954 	return -EINVAL;
3955 }
3956 
3957 static int resolve_map_arg_type(struct bpf_verifier_env *env,
3958 				 const struct bpf_call_arg_meta *meta,
3959 				 enum bpf_arg_type *arg_type)
3960 {
3961 	if (!meta->map_ptr) {
3962 		/* kernel subsystem misconfigured verifier */
3963 		verbose(env, "invalid map_ptr to access map->type\n");
3964 		return -EACCES;
3965 	}
3966 
3967 	switch (meta->map_ptr->map_type) {
3968 	case BPF_MAP_TYPE_SOCKMAP:
3969 	case BPF_MAP_TYPE_SOCKHASH:
3970 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
3971 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
3972 		} else {
3973 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
3974 			return -EINVAL;
3975 		}
3976 		break;
3977 
3978 	default:
3979 		break;
3980 	}
3981 	return 0;
3982 }
3983 
3984 struct bpf_reg_types {
3985 	const enum bpf_reg_type types[10];
3986 	u32 *btf_id;
3987 };
3988 
3989 static const struct bpf_reg_types map_key_value_types = {
3990 	.types = {
3991 		PTR_TO_STACK,
3992 		PTR_TO_PACKET,
3993 		PTR_TO_PACKET_META,
3994 		PTR_TO_MAP_VALUE,
3995 	},
3996 };
3997 
3998 static const struct bpf_reg_types sock_types = {
3999 	.types = {
4000 		PTR_TO_SOCK_COMMON,
4001 		PTR_TO_SOCKET,
4002 		PTR_TO_TCP_SOCK,
4003 		PTR_TO_XDP_SOCK,
4004 	},
4005 };
4006 
4007 #ifdef CONFIG_NET
4008 static const struct bpf_reg_types btf_id_sock_common_types = {
4009 	.types = {
4010 		PTR_TO_SOCK_COMMON,
4011 		PTR_TO_SOCKET,
4012 		PTR_TO_TCP_SOCK,
4013 		PTR_TO_XDP_SOCK,
4014 		PTR_TO_BTF_ID,
4015 	},
4016 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4017 };
4018 #endif
4019 
4020 static const struct bpf_reg_types mem_types = {
4021 	.types = {
4022 		PTR_TO_STACK,
4023 		PTR_TO_PACKET,
4024 		PTR_TO_PACKET_META,
4025 		PTR_TO_MAP_VALUE,
4026 		PTR_TO_MEM,
4027 		PTR_TO_RDONLY_BUF,
4028 		PTR_TO_RDWR_BUF,
4029 	},
4030 };
4031 
4032 static const struct bpf_reg_types int_ptr_types = {
4033 	.types = {
4034 		PTR_TO_STACK,
4035 		PTR_TO_PACKET,
4036 		PTR_TO_PACKET_META,
4037 		PTR_TO_MAP_VALUE,
4038 	},
4039 };
4040 
4041 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4042 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4043 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4044 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4045 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4046 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4047 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4048 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4049 
4050 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4051 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
4052 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
4053 	[ARG_PTR_TO_UNINIT_MAP_VALUE]	= &map_key_value_types,
4054 	[ARG_PTR_TO_MAP_VALUE_OR_NULL]	= &map_key_value_types,
4055 	[ARG_CONST_SIZE]		= &scalar_types,
4056 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
4057 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
4058 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
4059 	[ARG_PTR_TO_CTX]		= &context_types,
4060 	[ARG_PTR_TO_CTX_OR_NULL]	= &context_types,
4061 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
4062 #ifdef CONFIG_NET
4063 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
4064 #endif
4065 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
4066 	[ARG_PTR_TO_SOCKET_OR_NULL]	= &fullsock_types,
4067 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
4068 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
4069 	[ARG_PTR_TO_MEM]		= &mem_types,
4070 	[ARG_PTR_TO_MEM_OR_NULL]	= &mem_types,
4071 	[ARG_PTR_TO_UNINIT_MEM]		= &mem_types,
4072 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
4073 	[ARG_PTR_TO_ALLOC_MEM_OR_NULL]	= &alloc_mem_types,
4074 	[ARG_PTR_TO_INT]		= &int_ptr_types,
4075 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
4076 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
4077 };
4078 
4079 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4080 			  enum bpf_arg_type arg_type,
4081 			  const u32 *arg_btf_id)
4082 {
4083 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4084 	enum bpf_reg_type expected, type = reg->type;
4085 	const struct bpf_reg_types *compatible;
4086 	int i, j;
4087 
4088 	compatible = compatible_reg_types[arg_type];
4089 	if (!compatible) {
4090 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4091 		return -EFAULT;
4092 	}
4093 
4094 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4095 		expected = compatible->types[i];
4096 		if (expected == NOT_INIT)
4097 			break;
4098 
4099 		if (type == expected)
4100 			goto found;
4101 	}
4102 
4103 	verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4104 	for (j = 0; j + 1 < i; j++)
4105 		verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4106 	verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4107 	return -EACCES;
4108 
4109 found:
4110 	if (type == PTR_TO_BTF_ID) {
4111 		if (!arg_btf_id) {
4112 			if (!compatible->btf_id) {
4113 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4114 				return -EFAULT;
4115 			}
4116 			arg_btf_id = compatible->btf_id;
4117 		}
4118 
4119 		if (!btf_struct_ids_match(&env->log, reg->off, reg->btf_id,
4120 					  *arg_btf_id)) {
4121 			verbose(env, "R%d is of type %s but %s is expected\n",
4122 				regno, kernel_type_name(reg->btf_id),
4123 				kernel_type_name(*arg_btf_id));
4124 			return -EACCES;
4125 		}
4126 
4127 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4128 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4129 				regno);
4130 			return -EACCES;
4131 		}
4132 	}
4133 
4134 	return 0;
4135 }
4136 
4137 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4138 			  struct bpf_call_arg_meta *meta,
4139 			  const struct bpf_func_proto *fn)
4140 {
4141 	u32 regno = BPF_REG_1 + arg;
4142 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4143 	enum bpf_arg_type arg_type = fn->arg_type[arg];
4144 	enum bpf_reg_type type = reg->type;
4145 	int err = 0;
4146 
4147 	if (arg_type == ARG_DONTCARE)
4148 		return 0;
4149 
4150 	err = check_reg_arg(env, regno, SRC_OP);
4151 	if (err)
4152 		return err;
4153 
4154 	if (arg_type == ARG_ANYTHING) {
4155 		if (is_pointer_value(env, regno)) {
4156 			verbose(env, "R%d leaks addr into helper function\n",
4157 				regno);
4158 			return -EACCES;
4159 		}
4160 		return 0;
4161 	}
4162 
4163 	if (type_is_pkt_pointer(type) &&
4164 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4165 		verbose(env, "helper access to the packet is not allowed\n");
4166 		return -EACCES;
4167 	}
4168 
4169 	if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4170 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4171 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4172 		err = resolve_map_arg_type(env, meta, &arg_type);
4173 		if (err)
4174 			return err;
4175 	}
4176 
4177 	if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4178 		/* A NULL register has a SCALAR_VALUE type, so skip
4179 		 * type checking.
4180 		 */
4181 		goto skip_type_check;
4182 
4183 	err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4184 	if (err)
4185 		return err;
4186 
4187 	if (type == PTR_TO_CTX) {
4188 		err = check_ctx_reg(env, reg, regno);
4189 		if (err < 0)
4190 			return err;
4191 	}
4192 
4193 skip_type_check:
4194 	if (reg->ref_obj_id) {
4195 		if (meta->ref_obj_id) {
4196 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4197 				regno, reg->ref_obj_id,
4198 				meta->ref_obj_id);
4199 			return -EFAULT;
4200 		}
4201 		meta->ref_obj_id = reg->ref_obj_id;
4202 	}
4203 
4204 	if (arg_type == ARG_CONST_MAP_PTR) {
4205 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4206 		meta->map_ptr = reg->map_ptr;
4207 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4208 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
4209 		 * check that [key, key + map->key_size) are within
4210 		 * stack limits and initialized
4211 		 */
4212 		if (!meta->map_ptr) {
4213 			/* in function declaration map_ptr must come before
4214 			 * map_key, so that it's verified and known before
4215 			 * we have to check map_key here. Otherwise it means
4216 			 * that kernel subsystem misconfigured verifier
4217 			 */
4218 			verbose(env, "invalid map_ptr to access map->key\n");
4219 			return -EACCES;
4220 		}
4221 		err = check_helper_mem_access(env, regno,
4222 					      meta->map_ptr->key_size, false,
4223 					      NULL);
4224 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4225 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4226 		    !register_is_null(reg)) ||
4227 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4228 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
4229 		 * check [value, value + map->value_size) validity
4230 		 */
4231 		if (!meta->map_ptr) {
4232 			/* kernel subsystem misconfigured verifier */
4233 			verbose(env, "invalid map_ptr to access map->value\n");
4234 			return -EACCES;
4235 		}
4236 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4237 		err = check_helper_mem_access(env, regno,
4238 					      meta->map_ptr->value_size, false,
4239 					      meta);
4240 	} else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4241 		if (!reg->btf_id) {
4242 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4243 			return -EACCES;
4244 		}
4245 		meta->ret_btf_id = reg->btf_id;
4246 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4247 		if (meta->func_id == BPF_FUNC_spin_lock) {
4248 			if (process_spin_lock(env, regno, true))
4249 				return -EACCES;
4250 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
4251 			if (process_spin_lock(env, regno, false))
4252 				return -EACCES;
4253 		} else {
4254 			verbose(env, "verifier internal error\n");
4255 			return -EFAULT;
4256 		}
4257 	} else if (arg_type_is_mem_ptr(arg_type)) {
4258 		/* The access to this pointer is only checked when we hit the
4259 		 * next is_mem_size argument below.
4260 		 */
4261 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
4262 	} else if (arg_type_is_mem_size(arg_type)) {
4263 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
4264 
4265 		/* This is used to refine r0 return value bounds for helpers
4266 		 * that enforce this value as an upper bound on return values.
4267 		 * See do_refine_retval_range() for helpers that can refine
4268 		 * the return value. C type of helper is u32 so we pull register
4269 		 * bound from umax_value however, if negative verifier errors
4270 		 * out. Only upper bounds can be learned because retval is an
4271 		 * int type and negative retvals are allowed.
4272 		 */
4273 		meta->msize_max_value = reg->umax_value;
4274 
4275 		/* The register is SCALAR_VALUE; the access check
4276 		 * happens using its boundaries.
4277 		 */
4278 		if (!tnum_is_const(reg->var_off))
4279 			/* For unprivileged variable accesses, disable raw
4280 			 * mode so that the program is required to
4281 			 * initialize all the memory that the helper could
4282 			 * just partially fill up.
4283 			 */
4284 			meta = NULL;
4285 
4286 		if (reg->smin_value < 0) {
4287 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
4288 				regno);
4289 			return -EACCES;
4290 		}
4291 
4292 		if (reg->umin_value == 0) {
4293 			err = check_helper_mem_access(env, regno - 1, 0,
4294 						      zero_size_allowed,
4295 						      meta);
4296 			if (err)
4297 				return err;
4298 		}
4299 
4300 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
4301 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
4302 				regno);
4303 			return -EACCES;
4304 		}
4305 		err = check_helper_mem_access(env, regno - 1,
4306 					      reg->umax_value,
4307 					      zero_size_allowed, meta);
4308 		if (!err)
4309 			err = mark_chain_precision(env, regno);
4310 	} else if (arg_type_is_alloc_size(arg_type)) {
4311 		if (!tnum_is_const(reg->var_off)) {
4312 			verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n",
4313 				regno);
4314 			return -EACCES;
4315 		}
4316 		meta->mem_size = reg->var_off.value;
4317 	} else if (arg_type_is_int_ptr(arg_type)) {
4318 		int size = int_ptr_type_to_size(arg_type);
4319 
4320 		err = check_helper_mem_access(env, regno, size, false, meta);
4321 		if (err)
4322 			return err;
4323 		err = check_ptr_alignment(env, reg, 0, size, true);
4324 	}
4325 
4326 	return err;
4327 }
4328 
4329 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
4330 {
4331 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
4332 	enum bpf_prog_type type = resolve_prog_type(env->prog);
4333 
4334 	if (func_id != BPF_FUNC_map_update_elem)
4335 		return false;
4336 
4337 	/* It's not possible to get access to a locked struct sock in these
4338 	 * contexts, so updating is safe.
4339 	 */
4340 	switch (type) {
4341 	case BPF_PROG_TYPE_TRACING:
4342 		if (eatype == BPF_TRACE_ITER)
4343 			return true;
4344 		break;
4345 	case BPF_PROG_TYPE_SOCKET_FILTER:
4346 	case BPF_PROG_TYPE_SCHED_CLS:
4347 	case BPF_PROG_TYPE_SCHED_ACT:
4348 	case BPF_PROG_TYPE_XDP:
4349 	case BPF_PROG_TYPE_SK_REUSEPORT:
4350 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
4351 	case BPF_PROG_TYPE_SK_LOOKUP:
4352 		return true;
4353 	default:
4354 		break;
4355 	}
4356 
4357 	verbose(env, "cannot update sockmap in this context\n");
4358 	return false;
4359 }
4360 
4361 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
4362 {
4363 	return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
4364 }
4365 
4366 static int check_map_func_compatibility(struct bpf_verifier_env *env,
4367 					struct bpf_map *map, int func_id)
4368 {
4369 	if (!map)
4370 		return 0;
4371 
4372 	/* We need a two way check, first is from map perspective ... */
4373 	switch (map->map_type) {
4374 	case BPF_MAP_TYPE_PROG_ARRAY:
4375 		if (func_id != BPF_FUNC_tail_call)
4376 			goto error;
4377 		break;
4378 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4379 		if (func_id != BPF_FUNC_perf_event_read &&
4380 		    func_id != BPF_FUNC_perf_event_output &&
4381 		    func_id != BPF_FUNC_skb_output &&
4382 		    func_id != BPF_FUNC_perf_event_read_value &&
4383 		    func_id != BPF_FUNC_xdp_output)
4384 			goto error;
4385 		break;
4386 	case BPF_MAP_TYPE_RINGBUF:
4387 		if (func_id != BPF_FUNC_ringbuf_output &&
4388 		    func_id != BPF_FUNC_ringbuf_reserve &&
4389 		    func_id != BPF_FUNC_ringbuf_submit &&
4390 		    func_id != BPF_FUNC_ringbuf_discard &&
4391 		    func_id != BPF_FUNC_ringbuf_query)
4392 			goto error;
4393 		break;
4394 	case BPF_MAP_TYPE_STACK_TRACE:
4395 		if (func_id != BPF_FUNC_get_stackid)
4396 			goto error;
4397 		break;
4398 	case BPF_MAP_TYPE_CGROUP_ARRAY:
4399 		if (func_id != BPF_FUNC_skb_under_cgroup &&
4400 		    func_id != BPF_FUNC_current_task_under_cgroup)
4401 			goto error;
4402 		break;
4403 	case BPF_MAP_TYPE_CGROUP_STORAGE:
4404 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
4405 		if (func_id != BPF_FUNC_get_local_storage)
4406 			goto error;
4407 		break;
4408 	case BPF_MAP_TYPE_DEVMAP:
4409 	case BPF_MAP_TYPE_DEVMAP_HASH:
4410 		if (func_id != BPF_FUNC_redirect_map &&
4411 		    func_id != BPF_FUNC_map_lookup_elem)
4412 			goto error;
4413 		break;
4414 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
4415 	 * appear.
4416 	 */
4417 	case BPF_MAP_TYPE_CPUMAP:
4418 		if (func_id != BPF_FUNC_redirect_map)
4419 			goto error;
4420 		break;
4421 	case BPF_MAP_TYPE_XSKMAP:
4422 		if (func_id != BPF_FUNC_redirect_map &&
4423 		    func_id != BPF_FUNC_map_lookup_elem)
4424 			goto error;
4425 		break;
4426 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4427 	case BPF_MAP_TYPE_HASH_OF_MAPS:
4428 		if (func_id != BPF_FUNC_map_lookup_elem)
4429 			goto error;
4430 		break;
4431 	case BPF_MAP_TYPE_SOCKMAP:
4432 		if (func_id != BPF_FUNC_sk_redirect_map &&
4433 		    func_id != BPF_FUNC_sock_map_update &&
4434 		    func_id != BPF_FUNC_map_delete_elem &&
4435 		    func_id != BPF_FUNC_msg_redirect_map &&
4436 		    func_id != BPF_FUNC_sk_select_reuseport &&
4437 		    func_id != BPF_FUNC_map_lookup_elem &&
4438 		    !may_update_sockmap(env, func_id))
4439 			goto error;
4440 		break;
4441 	case BPF_MAP_TYPE_SOCKHASH:
4442 		if (func_id != BPF_FUNC_sk_redirect_hash &&
4443 		    func_id != BPF_FUNC_sock_hash_update &&
4444 		    func_id != BPF_FUNC_map_delete_elem &&
4445 		    func_id != BPF_FUNC_msg_redirect_hash &&
4446 		    func_id != BPF_FUNC_sk_select_reuseport &&
4447 		    func_id != BPF_FUNC_map_lookup_elem &&
4448 		    !may_update_sockmap(env, func_id))
4449 			goto error;
4450 		break;
4451 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4452 		if (func_id != BPF_FUNC_sk_select_reuseport)
4453 			goto error;
4454 		break;
4455 	case BPF_MAP_TYPE_QUEUE:
4456 	case BPF_MAP_TYPE_STACK:
4457 		if (func_id != BPF_FUNC_map_peek_elem &&
4458 		    func_id != BPF_FUNC_map_pop_elem &&
4459 		    func_id != BPF_FUNC_map_push_elem)
4460 			goto error;
4461 		break;
4462 	case BPF_MAP_TYPE_SK_STORAGE:
4463 		if (func_id != BPF_FUNC_sk_storage_get &&
4464 		    func_id != BPF_FUNC_sk_storage_delete)
4465 			goto error;
4466 		break;
4467 	case BPF_MAP_TYPE_INODE_STORAGE:
4468 		if (func_id != BPF_FUNC_inode_storage_get &&
4469 		    func_id != BPF_FUNC_inode_storage_delete)
4470 			goto error;
4471 		break;
4472 	default:
4473 		break;
4474 	}
4475 
4476 	/* ... and second from the function itself. */
4477 	switch (func_id) {
4478 	case BPF_FUNC_tail_call:
4479 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4480 			goto error;
4481 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
4482 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
4483 			return -EINVAL;
4484 		}
4485 		break;
4486 	case BPF_FUNC_perf_event_read:
4487 	case BPF_FUNC_perf_event_output:
4488 	case BPF_FUNC_perf_event_read_value:
4489 	case BPF_FUNC_skb_output:
4490 	case BPF_FUNC_xdp_output:
4491 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4492 			goto error;
4493 		break;
4494 	case BPF_FUNC_get_stackid:
4495 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4496 			goto error;
4497 		break;
4498 	case BPF_FUNC_current_task_under_cgroup:
4499 	case BPF_FUNC_skb_under_cgroup:
4500 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4501 			goto error;
4502 		break;
4503 	case BPF_FUNC_redirect_map:
4504 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
4505 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
4506 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
4507 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
4508 			goto error;
4509 		break;
4510 	case BPF_FUNC_sk_redirect_map:
4511 	case BPF_FUNC_msg_redirect_map:
4512 	case BPF_FUNC_sock_map_update:
4513 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
4514 			goto error;
4515 		break;
4516 	case BPF_FUNC_sk_redirect_hash:
4517 	case BPF_FUNC_msg_redirect_hash:
4518 	case BPF_FUNC_sock_hash_update:
4519 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
4520 			goto error;
4521 		break;
4522 	case BPF_FUNC_get_local_storage:
4523 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
4524 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
4525 			goto error;
4526 		break;
4527 	case BPF_FUNC_sk_select_reuseport:
4528 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
4529 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
4530 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
4531 			goto error;
4532 		break;
4533 	case BPF_FUNC_map_peek_elem:
4534 	case BPF_FUNC_map_pop_elem:
4535 	case BPF_FUNC_map_push_elem:
4536 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4537 		    map->map_type != BPF_MAP_TYPE_STACK)
4538 			goto error;
4539 		break;
4540 	case BPF_FUNC_sk_storage_get:
4541 	case BPF_FUNC_sk_storage_delete:
4542 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4543 			goto error;
4544 		break;
4545 	case BPF_FUNC_inode_storage_get:
4546 	case BPF_FUNC_inode_storage_delete:
4547 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
4548 			goto error;
4549 		break;
4550 	default:
4551 		break;
4552 	}
4553 
4554 	return 0;
4555 error:
4556 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
4557 		map->map_type, func_id_name(func_id), func_id);
4558 	return -EINVAL;
4559 }
4560 
4561 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
4562 {
4563 	int count = 0;
4564 
4565 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
4566 		count++;
4567 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
4568 		count++;
4569 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
4570 		count++;
4571 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
4572 		count++;
4573 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
4574 		count++;
4575 
4576 	/* We only support one arg being in raw mode at the moment,
4577 	 * which is sufficient for the helper functions we have
4578 	 * right now.
4579 	 */
4580 	return count <= 1;
4581 }
4582 
4583 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
4584 				    enum bpf_arg_type arg_next)
4585 {
4586 	return (arg_type_is_mem_ptr(arg_curr) &&
4587 	        !arg_type_is_mem_size(arg_next)) ||
4588 	       (!arg_type_is_mem_ptr(arg_curr) &&
4589 		arg_type_is_mem_size(arg_next));
4590 }
4591 
4592 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
4593 {
4594 	/* bpf_xxx(..., buf, len) call will access 'len'
4595 	 * bytes from memory 'buf'. Both arg types need
4596 	 * to be paired, so make sure there's no buggy
4597 	 * helper function specification.
4598 	 */
4599 	if (arg_type_is_mem_size(fn->arg1_type) ||
4600 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
4601 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
4602 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
4603 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
4604 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
4605 		return false;
4606 
4607 	return true;
4608 }
4609 
4610 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
4611 {
4612 	int count = 0;
4613 
4614 	if (arg_type_may_be_refcounted(fn->arg1_type))
4615 		count++;
4616 	if (arg_type_may_be_refcounted(fn->arg2_type))
4617 		count++;
4618 	if (arg_type_may_be_refcounted(fn->arg3_type))
4619 		count++;
4620 	if (arg_type_may_be_refcounted(fn->arg4_type))
4621 		count++;
4622 	if (arg_type_may_be_refcounted(fn->arg5_type))
4623 		count++;
4624 
4625 	/* A reference acquiring function cannot acquire
4626 	 * another refcounted ptr.
4627 	 */
4628 	if (may_be_acquire_function(func_id) && count)
4629 		return false;
4630 
4631 	/* We only support one arg being unreferenced at the moment,
4632 	 * which is sufficient for the helper functions we have right now.
4633 	 */
4634 	return count <= 1;
4635 }
4636 
4637 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
4638 {
4639 	int i;
4640 
4641 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
4642 		if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
4643 			return false;
4644 
4645 		if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
4646 			return false;
4647 	}
4648 
4649 	return true;
4650 }
4651 
4652 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
4653 {
4654 	return check_raw_mode_ok(fn) &&
4655 	       check_arg_pair_ok(fn) &&
4656 	       check_btf_id_ok(fn) &&
4657 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
4658 }
4659 
4660 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
4661  * are now invalid, so turn them into unknown SCALAR_VALUE.
4662  */
4663 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
4664 				     struct bpf_func_state *state)
4665 {
4666 	struct bpf_reg_state *regs = state->regs, *reg;
4667 	int i;
4668 
4669 	for (i = 0; i < MAX_BPF_REG; i++)
4670 		if (reg_is_pkt_pointer_any(&regs[i]))
4671 			mark_reg_unknown(env, regs, i);
4672 
4673 	bpf_for_each_spilled_reg(i, state, reg) {
4674 		if (!reg)
4675 			continue;
4676 		if (reg_is_pkt_pointer_any(reg))
4677 			__mark_reg_unknown(env, reg);
4678 	}
4679 }
4680 
4681 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
4682 {
4683 	struct bpf_verifier_state *vstate = env->cur_state;
4684 	int i;
4685 
4686 	for (i = 0; i <= vstate->curframe; i++)
4687 		__clear_all_pkt_pointers(env, vstate->frame[i]);
4688 }
4689 
4690 static void release_reg_references(struct bpf_verifier_env *env,
4691 				   struct bpf_func_state *state,
4692 				   int ref_obj_id)
4693 {
4694 	struct bpf_reg_state *regs = state->regs, *reg;
4695 	int i;
4696 
4697 	for (i = 0; i < MAX_BPF_REG; i++)
4698 		if (regs[i].ref_obj_id == ref_obj_id)
4699 			mark_reg_unknown(env, regs, i);
4700 
4701 	bpf_for_each_spilled_reg(i, state, reg) {
4702 		if (!reg)
4703 			continue;
4704 		if (reg->ref_obj_id == ref_obj_id)
4705 			__mark_reg_unknown(env, reg);
4706 	}
4707 }
4708 
4709 /* The pointer with the specified id has released its reference to kernel
4710  * resources. Identify all copies of the same pointer and clear the reference.
4711  */
4712 static int release_reference(struct bpf_verifier_env *env,
4713 			     int ref_obj_id)
4714 {
4715 	struct bpf_verifier_state *vstate = env->cur_state;
4716 	int err;
4717 	int i;
4718 
4719 	err = release_reference_state(cur_func(env), ref_obj_id);
4720 	if (err)
4721 		return err;
4722 
4723 	for (i = 0; i <= vstate->curframe; i++)
4724 		release_reg_references(env, vstate->frame[i], ref_obj_id);
4725 
4726 	return 0;
4727 }
4728 
4729 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
4730 				    struct bpf_reg_state *regs)
4731 {
4732 	int i;
4733 
4734 	/* after the call registers r0 - r5 were scratched */
4735 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4736 		mark_reg_not_init(env, regs, caller_saved[i]);
4737 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4738 	}
4739 }
4740 
4741 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
4742 			   int *insn_idx)
4743 {
4744 	struct bpf_verifier_state *state = env->cur_state;
4745 	struct bpf_func_info_aux *func_info_aux;
4746 	struct bpf_func_state *caller, *callee;
4747 	int i, err, subprog, target_insn;
4748 	bool is_global = false;
4749 
4750 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
4751 		verbose(env, "the call stack of %d frames is too deep\n",
4752 			state->curframe + 2);
4753 		return -E2BIG;
4754 	}
4755 
4756 	target_insn = *insn_idx + insn->imm;
4757 	subprog = find_subprog(env, target_insn + 1);
4758 	if (subprog < 0) {
4759 		verbose(env, "verifier bug. No program starts at insn %d\n",
4760 			target_insn + 1);
4761 		return -EFAULT;
4762 	}
4763 
4764 	caller = state->frame[state->curframe];
4765 	if (state->frame[state->curframe + 1]) {
4766 		verbose(env, "verifier bug. Frame %d already allocated\n",
4767 			state->curframe + 1);
4768 		return -EFAULT;
4769 	}
4770 
4771 	func_info_aux = env->prog->aux->func_info_aux;
4772 	if (func_info_aux)
4773 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
4774 	err = btf_check_func_arg_match(env, subprog, caller->regs);
4775 	if (err == -EFAULT)
4776 		return err;
4777 	if (is_global) {
4778 		if (err) {
4779 			verbose(env, "Caller passes invalid args into func#%d\n",
4780 				subprog);
4781 			return err;
4782 		} else {
4783 			if (env->log.level & BPF_LOG_LEVEL)
4784 				verbose(env,
4785 					"Func#%d is global and valid. Skipping.\n",
4786 					subprog);
4787 			clear_caller_saved_regs(env, caller->regs);
4788 
4789 			/* All global functions return SCALAR_VALUE */
4790 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
4791 
4792 			/* continue with next insn after call */
4793 			return 0;
4794 		}
4795 	}
4796 
4797 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
4798 	if (!callee)
4799 		return -ENOMEM;
4800 	state->frame[state->curframe + 1] = callee;
4801 
4802 	/* callee cannot access r0, r6 - r9 for reading and has to write
4803 	 * into its own stack before reading from it.
4804 	 * callee can read/write into caller's stack
4805 	 */
4806 	init_func_state(env, callee,
4807 			/* remember the callsite, it will be used by bpf_exit */
4808 			*insn_idx /* callsite */,
4809 			state->curframe + 1 /* frameno within this callchain */,
4810 			subprog /* subprog number within this prog */);
4811 
4812 	/* Transfer references to the callee */
4813 	err = transfer_reference_state(callee, caller);
4814 	if (err)
4815 		return err;
4816 
4817 	/* copy r1 - r5 args that callee can access.  The copy includes parent
4818 	 * pointers, which connects us up to the liveness chain
4819 	 */
4820 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4821 		callee->regs[i] = caller->regs[i];
4822 
4823 	clear_caller_saved_regs(env, caller->regs);
4824 
4825 	/* only increment it after check_reg_arg() finished */
4826 	state->curframe++;
4827 
4828 	/* and go analyze first insn of the callee */
4829 	*insn_idx = target_insn;
4830 
4831 	if (env->log.level & BPF_LOG_LEVEL) {
4832 		verbose(env, "caller:\n");
4833 		print_verifier_state(env, caller);
4834 		verbose(env, "callee:\n");
4835 		print_verifier_state(env, callee);
4836 	}
4837 	return 0;
4838 }
4839 
4840 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4841 {
4842 	struct bpf_verifier_state *state = env->cur_state;
4843 	struct bpf_func_state *caller, *callee;
4844 	struct bpf_reg_state *r0;
4845 	int err;
4846 
4847 	callee = state->frame[state->curframe];
4848 	r0 = &callee->regs[BPF_REG_0];
4849 	if (r0->type == PTR_TO_STACK) {
4850 		/* technically it's ok to return caller's stack pointer
4851 		 * (or caller's caller's pointer) back to the caller,
4852 		 * since these pointers are valid. Only current stack
4853 		 * pointer will be invalid as soon as function exits,
4854 		 * but let's be conservative
4855 		 */
4856 		verbose(env, "cannot return stack pointer to the caller\n");
4857 		return -EINVAL;
4858 	}
4859 
4860 	state->curframe--;
4861 	caller = state->frame[state->curframe];
4862 	/* return to the caller whatever r0 had in the callee */
4863 	caller->regs[BPF_REG_0] = *r0;
4864 
4865 	/* Transfer references to the caller */
4866 	err = transfer_reference_state(caller, callee);
4867 	if (err)
4868 		return err;
4869 
4870 	*insn_idx = callee->callsite + 1;
4871 	if (env->log.level & BPF_LOG_LEVEL) {
4872 		verbose(env, "returning from callee:\n");
4873 		print_verifier_state(env, callee);
4874 		verbose(env, "to caller at %d:\n", *insn_idx);
4875 		print_verifier_state(env, caller);
4876 	}
4877 	/* clear everything in the callee */
4878 	free_func_state(callee);
4879 	state->frame[state->curframe + 1] = NULL;
4880 	return 0;
4881 }
4882 
4883 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4884 				   int func_id,
4885 				   struct bpf_call_arg_meta *meta)
4886 {
4887 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4888 
4889 	if (ret_type != RET_INTEGER ||
4890 	    (func_id != BPF_FUNC_get_stack &&
4891 	     func_id != BPF_FUNC_probe_read_str &&
4892 	     func_id != BPF_FUNC_probe_read_kernel_str &&
4893 	     func_id != BPF_FUNC_probe_read_user_str))
4894 		return;
4895 
4896 	ret_reg->smax_value = meta->msize_max_value;
4897 	ret_reg->s32_max_value = meta->msize_max_value;
4898 	__reg_deduce_bounds(ret_reg);
4899 	__reg_bound_offset(ret_reg);
4900 	__update_reg_bounds(ret_reg);
4901 }
4902 
4903 static int
4904 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4905 		int func_id, int insn_idx)
4906 {
4907 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4908 	struct bpf_map *map = meta->map_ptr;
4909 
4910 	if (func_id != BPF_FUNC_tail_call &&
4911 	    func_id != BPF_FUNC_map_lookup_elem &&
4912 	    func_id != BPF_FUNC_map_update_elem &&
4913 	    func_id != BPF_FUNC_map_delete_elem &&
4914 	    func_id != BPF_FUNC_map_push_elem &&
4915 	    func_id != BPF_FUNC_map_pop_elem &&
4916 	    func_id != BPF_FUNC_map_peek_elem)
4917 		return 0;
4918 
4919 	if (map == NULL) {
4920 		verbose(env, "kernel subsystem misconfigured verifier\n");
4921 		return -EINVAL;
4922 	}
4923 
4924 	/* In case of read-only, some additional restrictions
4925 	 * need to be applied in order to prevent altering the
4926 	 * state of the map from program side.
4927 	 */
4928 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4929 	    (func_id == BPF_FUNC_map_delete_elem ||
4930 	     func_id == BPF_FUNC_map_update_elem ||
4931 	     func_id == BPF_FUNC_map_push_elem ||
4932 	     func_id == BPF_FUNC_map_pop_elem)) {
4933 		verbose(env, "write into map forbidden\n");
4934 		return -EACCES;
4935 	}
4936 
4937 	if (!BPF_MAP_PTR(aux->map_ptr_state))
4938 		bpf_map_ptr_store(aux, meta->map_ptr,
4939 				  !meta->map_ptr->bypass_spec_v1);
4940 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
4941 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
4942 				  !meta->map_ptr->bypass_spec_v1);
4943 	return 0;
4944 }
4945 
4946 static int
4947 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4948 		int func_id, int insn_idx)
4949 {
4950 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4951 	struct bpf_reg_state *regs = cur_regs(env), *reg;
4952 	struct bpf_map *map = meta->map_ptr;
4953 	struct tnum range;
4954 	u64 val;
4955 	int err;
4956 
4957 	if (func_id != BPF_FUNC_tail_call)
4958 		return 0;
4959 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
4960 		verbose(env, "kernel subsystem misconfigured verifier\n");
4961 		return -EINVAL;
4962 	}
4963 
4964 	range = tnum_range(0, map->max_entries - 1);
4965 	reg = &regs[BPF_REG_3];
4966 
4967 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
4968 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4969 		return 0;
4970 	}
4971 
4972 	err = mark_chain_precision(env, BPF_REG_3);
4973 	if (err)
4974 		return err;
4975 
4976 	val = reg->var_off.value;
4977 	if (bpf_map_key_unseen(aux))
4978 		bpf_map_key_store(aux, val);
4979 	else if (!bpf_map_key_poisoned(aux) &&
4980 		  bpf_map_key_immediate(aux) != val)
4981 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4982 	return 0;
4983 }
4984 
4985 static int check_reference_leak(struct bpf_verifier_env *env)
4986 {
4987 	struct bpf_func_state *state = cur_func(env);
4988 	int i;
4989 
4990 	for (i = 0; i < state->acquired_refs; i++) {
4991 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
4992 			state->refs[i].id, state->refs[i].insn_idx);
4993 	}
4994 	return state->acquired_refs ? -EINVAL : 0;
4995 }
4996 
4997 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
4998 {
4999 	const struct bpf_func_proto *fn = NULL;
5000 	struct bpf_reg_state *regs;
5001 	struct bpf_call_arg_meta meta;
5002 	bool changes_data;
5003 	int i, err;
5004 
5005 	/* find function prototype */
5006 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5007 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5008 			func_id);
5009 		return -EINVAL;
5010 	}
5011 
5012 	if (env->ops->get_func_proto)
5013 		fn = env->ops->get_func_proto(func_id, env->prog);
5014 	if (!fn) {
5015 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5016 			func_id);
5017 		return -EINVAL;
5018 	}
5019 
5020 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
5021 	if (!env->prog->gpl_compatible && fn->gpl_only) {
5022 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5023 		return -EINVAL;
5024 	}
5025 
5026 	if (fn->allowed && !fn->allowed(env->prog)) {
5027 		verbose(env, "helper call is not allowed in probe\n");
5028 		return -EINVAL;
5029 	}
5030 
5031 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
5032 	changes_data = bpf_helper_changes_pkt_data(fn->func);
5033 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5034 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5035 			func_id_name(func_id), func_id);
5036 		return -EINVAL;
5037 	}
5038 
5039 	memset(&meta, 0, sizeof(meta));
5040 	meta.pkt_access = fn->pkt_access;
5041 
5042 	err = check_func_proto(fn, func_id);
5043 	if (err) {
5044 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
5045 			func_id_name(func_id), func_id);
5046 		return err;
5047 	}
5048 
5049 	meta.func_id = func_id;
5050 	/* check args */
5051 	for (i = 0; i < 5; i++) {
5052 		err = check_func_arg(env, i, &meta, fn);
5053 		if (err)
5054 			return err;
5055 	}
5056 
5057 	err = record_func_map(env, &meta, func_id, insn_idx);
5058 	if (err)
5059 		return err;
5060 
5061 	err = record_func_key(env, &meta, func_id, insn_idx);
5062 	if (err)
5063 		return err;
5064 
5065 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
5066 	 * is inferred from register state.
5067 	 */
5068 	for (i = 0; i < meta.access_size; i++) {
5069 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
5070 				       BPF_WRITE, -1, false);
5071 		if (err)
5072 			return err;
5073 	}
5074 
5075 	if (func_id == BPF_FUNC_tail_call) {
5076 		err = check_reference_leak(env);
5077 		if (err) {
5078 			verbose(env, "tail_call would lead to reference leak\n");
5079 			return err;
5080 		}
5081 	} else if (is_release_function(func_id)) {
5082 		err = release_reference(env, meta.ref_obj_id);
5083 		if (err) {
5084 			verbose(env, "func %s#%d reference has not been acquired before\n",
5085 				func_id_name(func_id), func_id);
5086 			return err;
5087 		}
5088 	}
5089 
5090 	regs = cur_regs(env);
5091 
5092 	/* check that flags argument in get_local_storage(map, flags) is 0,
5093 	 * this is required because get_local_storage() can't return an error.
5094 	 */
5095 	if (func_id == BPF_FUNC_get_local_storage &&
5096 	    !register_is_null(&regs[BPF_REG_2])) {
5097 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
5098 		return -EINVAL;
5099 	}
5100 
5101 	/* reset caller saved regs */
5102 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5103 		mark_reg_not_init(env, regs, caller_saved[i]);
5104 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5105 	}
5106 
5107 	/* helper call returns 64-bit value. */
5108 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5109 
5110 	/* update return register (already marked as written above) */
5111 	if (fn->ret_type == RET_INTEGER) {
5112 		/* sets type to SCALAR_VALUE */
5113 		mark_reg_unknown(env, regs, BPF_REG_0);
5114 	} else if (fn->ret_type == RET_VOID) {
5115 		regs[BPF_REG_0].type = NOT_INIT;
5116 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
5117 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5118 		/* There is no offset yet applied, variable or fixed */
5119 		mark_reg_known_zero(env, regs, BPF_REG_0);
5120 		/* remember map_ptr, so that check_map_access()
5121 		 * can check 'value_size' boundary of memory access
5122 		 * to map element returned from bpf_map_lookup_elem()
5123 		 */
5124 		if (meta.map_ptr == NULL) {
5125 			verbose(env,
5126 				"kernel subsystem misconfigured verifier\n");
5127 			return -EINVAL;
5128 		}
5129 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
5130 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5131 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
5132 			if (map_value_has_spin_lock(meta.map_ptr))
5133 				regs[BPF_REG_0].id = ++env->id_gen;
5134 		} else {
5135 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
5136 			regs[BPF_REG_0].id = ++env->id_gen;
5137 		}
5138 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
5139 		mark_reg_known_zero(env, regs, BPF_REG_0);
5140 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
5141 		regs[BPF_REG_0].id = ++env->id_gen;
5142 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
5143 		mark_reg_known_zero(env, regs, BPF_REG_0);
5144 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
5145 		regs[BPF_REG_0].id = ++env->id_gen;
5146 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
5147 		mark_reg_known_zero(env, regs, BPF_REG_0);
5148 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
5149 		regs[BPF_REG_0].id = ++env->id_gen;
5150 	} else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
5151 		mark_reg_known_zero(env, regs, BPF_REG_0);
5152 		regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
5153 		regs[BPF_REG_0].id = ++env->id_gen;
5154 		regs[BPF_REG_0].mem_size = meta.mem_size;
5155 	} else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
5156 		   fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
5157 		const struct btf_type *t;
5158 
5159 		mark_reg_known_zero(env, regs, BPF_REG_0);
5160 		t = btf_type_skip_modifiers(btf_vmlinux, meta.ret_btf_id, NULL);
5161 		if (!btf_type_is_struct(t)) {
5162 			u32 tsize;
5163 			const struct btf_type *ret;
5164 			const char *tname;
5165 
5166 			/* resolve the type size of ksym. */
5167 			ret = btf_resolve_size(btf_vmlinux, t, &tsize);
5168 			if (IS_ERR(ret)) {
5169 				tname = btf_name_by_offset(btf_vmlinux, t->name_off);
5170 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
5171 					tname, PTR_ERR(ret));
5172 				return -EINVAL;
5173 			}
5174 			regs[BPF_REG_0].type =
5175 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5176 				PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
5177 			regs[BPF_REG_0].mem_size = tsize;
5178 		} else {
5179 			regs[BPF_REG_0].type =
5180 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5181 				PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
5182 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
5183 		}
5184 	} else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL) {
5185 		int ret_btf_id;
5186 
5187 		mark_reg_known_zero(env, regs, BPF_REG_0);
5188 		regs[BPF_REG_0].type = PTR_TO_BTF_ID_OR_NULL;
5189 		ret_btf_id = *fn->ret_btf_id;
5190 		if (ret_btf_id == 0) {
5191 			verbose(env, "invalid return type %d of func %s#%d\n",
5192 				fn->ret_type, func_id_name(func_id), func_id);
5193 			return -EINVAL;
5194 		}
5195 		regs[BPF_REG_0].btf_id = ret_btf_id;
5196 	} else {
5197 		verbose(env, "unknown return type %d of func %s#%d\n",
5198 			fn->ret_type, func_id_name(func_id), func_id);
5199 		return -EINVAL;
5200 	}
5201 
5202 	if (is_ptr_cast_function(func_id)) {
5203 		/* For release_reference() */
5204 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
5205 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
5206 		int id = acquire_reference_state(env, insn_idx);
5207 
5208 		if (id < 0)
5209 			return id;
5210 		/* For mark_ptr_or_null_reg() */
5211 		regs[BPF_REG_0].id = id;
5212 		/* For release_reference() */
5213 		regs[BPF_REG_0].ref_obj_id = id;
5214 	}
5215 
5216 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
5217 
5218 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
5219 	if (err)
5220 		return err;
5221 
5222 	if ((func_id == BPF_FUNC_get_stack ||
5223 	     func_id == BPF_FUNC_get_task_stack) &&
5224 	    !env->prog->has_callchain_buf) {
5225 		const char *err_str;
5226 
5227 #ifdef CONFIG_PERF_EVENTS
5228 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
5229 		err_str = "cannot get callchain buffer for func %s#%d\n";
5230 #else
5231 		err = -ENOTSUPP;
5232 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
5233 #endif
5234 		if (err) {
5235 			verbose(env, err_str, func_id_name(func_id), func_id);
5236 			return err;
5237 		}
5238 
5239 		env->prog->has_callchain_buf = true;
5240 	}
5241 
5242 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
5243 		env->prog->call_get_stack = true;
5244 
5245 	if (changes_data)
5246 		clear_all_pkt_pointers(env);
5247 	return 0;
5248 }
5249 
5250 static bool signed_add_overflows(s64 a, s64 b)
5251 {
5252 	/* Do the add in u64, where overflow is well-defined */
5253 	s64 res = (s64)((u64)a + (u64)b);
5254 
5255 	if (b < 0)
5256 		return res > a;
5257 	return res < a;
5258 }
5259 
5260 static bool signed_add32_overflows(s64 a, s64 b)
5261 {
5262 	/* Do the add in u32, where overflow is well-defined */
5263 	s32 res = (s32)((u32)a + (u32)b);
5264 
5265 	if (b < 0)
5266 		return res > a;
5267 	return res < a;
5268 }
5269 
5270 static bool signed_sub_overflows(s32 a, s32 b)
5271 {
5272 	/* Do the sub in u64, where overflow is well-defined */
5273 	s64 res = (s64)((u64)a - (u64)b);
5274 
5275 	if (b < 0)
5276 		return res < a;
5277 	return res > a;
5278 }
5279 
5280 static bool signed_sub32_overflows(s32 a, s32 b)
5281 {
5282 	/* Do the sub in u64, where overflow is well-defined */
5283 	s32 res = (s32)((u32)a - (u32)b);
5284 
5285 	if (b < 0)
5286 		return res < a;
5287 	return res > a;
5288 }
5289 
5290 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
5291 				  const struct bpf_reg_state *reg,
5292 				  enum bpf_reg_type type)
5293 {
5294 	bool known = tnum_is_const(reg->var_off);
5295 	s64 val = reg->var_off.value;
5296 	s64 smin = reg->smin_value;
5297 
5298 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
5299 		verbose(env, "math between %s pointer and %lld is not allowed\n",
5300 			reg_type_str[type], val);
5301 		return false;
5302 	}
5303 
5304 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
5305 		verbose(env, "%s pointer offset %d is not allowed\n",
5306 			reg_type_str[type], reg->off);
5307 		return false;
5308 	}
5309 
5310 	if (smin == S64_MIN) {
5311 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
5312 			reg_type_str[type]);
5313 		return false;
5314 	}
5315 
5316 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
5317 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
5318 			smin, reg_type_str[type]);
5319 		return false;
5320 	}
5321 
5322 	return true;
5323 }
5324 
5325 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
5326 {
5327 	return &env->insn_aux_data[env->insn_idx];
5328 }
5329 
5330 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
5331 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
5332 {
5333 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
5334 			    (opcode == BPF_SUB && !off_is_neg);
5335 	u32 off;
5336 
5337 	switch (ptr_reg->type) {
5338 	case PTR_TO_STACK:
5339 		/* Indirect variable offset stack access is prohibited in
5340 		 * unprivileged mode so it's not handled here.
5341 		 */
5342 		off = ptr_reg->off + ptr_reg->var_off.value;
5343 		if (mask_to_left)
5344 			*ptr_limit = MAX_BPF_STACK + off;
5345 		else
5346 			*ptr_limit = -off;
5347 		return 0;
5348 	case PTR_TO_MAP_VALUE:
5349 		if (mask_to_left) {
5350 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
5351 		} else {
5352 			off = ptr_reg->smin_value + ptr_reg->off;
5353 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
5354 		}
5355 		return 0;
5356 	default:
5357 		return -EINVAL;
5358 	}
5359 }
5360 
5361 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
5362 				    const struct bpf_insn *insn)
5363 {
5364 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
5365 }
5366 
5367 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
5368 				       u32 alu_state, u32 alu_limit)
5369 {
5370 	/* If we arrived here from different branches with different
5371 	 * state or limits to sanitize, then this won't work.
5372 	 */
5373 	if (aux->alu_state &&
5374 	    (aux->alu_state != alu_state ||
5375 	     aux->alu_limit != alu_limit))
5376 		return -EACCES;
5377 
5378 	/* Corresponding fixup done in fixup_bpf_calls(). */
5379 	aux->alu_state = alu_state;
5380 	aux->alu_limit = alu_limit;
5381 	return 0;
5382 }
5383 
5384 static int sanitize_val_alu(struct bpf_verifier_env *env,
5385 			    struct bpf_insn *insn)
5386 {
5387 	struct bpf_insn_aux_data *aux = cur_aux(env);
5388 
5389 	if (can_skip_alu_sanitation(env, insn))
5390 		return 0;
5391 
5392 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
5393 }
5394 
5395 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
5396 			    struct bpf_insn *insn,
5397 			    const struct bpf_reg_state *ptr_reg,
5398 			    struct bpf_reg_state *dst_reg,
5399 			    bool off_is_neg)
5400 {
5401 	struct bpf_verifier_state *vstate = env->cur_state;
5402 	struct bpf_insn_aux_data *aux = cur_aux(env);
5403 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
5404 	u8 opcode = BPF_OP(insn->code);
5405 	u32 alu_state, alu_limit;
5406 	struct bpf_reg_state tmp;
5407 	bool ret;
5408 
5409 	if (can_skip_alu_sanitation(env, insn))
5410 		return 0;
5411 
5412 	/* We already marked aux for masking from non-speculative
5413 	 * paths, thus we got here in the first place. We only care
5414 	 * to explore bad access from here.
5415 	 */
5416 	if (vstate->speculative)
5417 		goto do_sim;
5418 
5419 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
5420 	alu_state |= ptr_is_dst_reg ?
5421 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
5422 
5423 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
5424 		return 0;
5425 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
5426 		return -EACCES;
5427 do_sim:
5428 	/* Simulate and find potential out-of-bounds access under
5429 	 * speculative execution from truncation as a result of
5430 	 * masking when off was not within expected range. If off
5431 	 * sits in dst, then we temporarily need to move ptr there
5432 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
5433 	 * for cases where we use K-based arithmetic in one direction
5434 	 * and truncated reg-based in the other in order to explore
5435 	 * bad access.
5436 	 */
5437 	if (!ptr_is_dst_reg) {
5438 		tmp = *dst_reg;
5439 		*dst_reg = *ptr_reg;
5440 	}
5441 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
5442 	if (!ptr_is_dst_reg && ret)
5443 		*dst_reg = tmp;
5444 	return !ret ? -EFAULT : 0;
5445 }
5446 
5447 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
5448  * Caller should also handle BPF_MOV case separately.
5449  * If we return -EACCES, caller may want to try again treating pointer as a
5450  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
5451  */
5452 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
5453 				   struct bpf_insn *insn,
5454 				   const struct bpf_reg_state *ptr_reg,
5455 				   const struct bpf_reg_state *off_reg)
5456 {
5457 	struct bpf_verifier_state *vstate = env->cur_state;
5458 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5459 	struct bpf_reg_state *regs = state->regs, *dst_reg;
5460 	bool known = tnum_is_const(off_reg->var_off);
5461 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
5462 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
5463 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
5464 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
5465 	u32 dst = insn->dst_reg, src = insn->src_reg;
5466 	u8 opcode = BPF_OP(insn->code);
5467 	int ret;
5468 
5469 	dst_reg = &regs[dst];
5470 
5471 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
5472 	    smin_val > smax_val || umin_val > umax_val) {
5473 		/* Taint dst register if offset had invalid bounds derived from
5474 		 * e.g. dead branches.
5475 		 */
5476 		__mark_reg_unknown(env, dst_reg);
5477 		return 0;
5478 	}
5479 
5480 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
5481 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
5482 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
5483 			__mark_reg_unknown(env, dst_reg);
5484 			return 0;
5485 		}
5486 
5487 		verbose(env,
5488 			"R%d 32-bit pointer arithmetic prohibited\n",
5489 			dst);
5490 		return -EACCES;
5491 	}
5492 
5493 	switch (ptr_reg->type) {
5494 	case PTR_TO_MAP_VALUE_OR_NULL:
5495 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
5496 			dst, reg_type_str[ptr_reg->type]);
5497 		return -EACCES;
5498 	case CONST_PTR_TO_MAP:
5499 		/* smin_val represents the known value */
5500 		if (known && smin_val == 0 && opcode == BPF_ADD)
5501 			break;
5502 		fallthrough;
5503 	case PTR_TO_PACKET_END:
5504 	case PTR_TO_SOCKET:
5505 	case PTR_TO_SOCKET_OR_NULL:
5506 	case PTR_TO_SOCK_COMMON:
5507 	case PTR_TO_SOCK_COMMON_OR_NULL:
5508 	case PTR_TO_TCP_SOCK:
5509 	case PTR_TO_TCP_SOCK_OR_NULL:
5510 	case PTR_TO_XDP_SOCK:
5511 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
5512 			dst, reg_type_str[ptr_reg->type]);
5513 		return -EACCES;
5514 	case PTR_TO_MAP_VALUE:
5515 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
5516 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
5517 				off_reg == dst_reg ? dst : src);
5518 			return -EACCES;
5519 		}
5520 		fallthrough;
5521 	default:
5522 		break;
5523 	}
5524 
5525 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
5526 	 * The id may be overwritten later if we create a new variable offset.
5527 	 */
5528 	dst_reg->type = ptr_reg->type;
5529 	dst_reg->id = ptr_reg->id;
5530 
5531 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
5532 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
5533 		return -EINVAL;
5534 
5535 	/* pointer types do not carry 32-bit bounds at the moment. */
5536 	__mark_reg32_unbounded(dst_reg);
5537 
5538 	switch (opcode) {
5539 	case BPF_ADD:
5540 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5541 		if (ret < 0) {
5542 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
5543 			return ret;
5544 		}
5545 		/* We can take a fixed offset as long as it doesn't overflow
5546 		 * the s32 'off' field
5547 		 */
5548 		if (known && (ptr_reg->off + smin_val ==
5549 			      (s64)(s32)(ptr_reg->off + smin_val))) {
5550 			/* pointer += K.  Accumulate it into fixed offset */
5551 			dst_reg->smin_value = smin_ptr;
5552 			dst_reg->smax_value = smax_ptr;
5553 			dst_reg->umin_value = umin_ptr;
5554 			dst_reg->umax_value = umax_ptr;
5555 			dst_reg->var_off = ptr_reg->var_off;
5556 			dst_reg->off = ptr_reg->off + smin_val;
5557 			dst_reg->raw = ptr_reg->raw;
5558 			break;
5559 		}
5560 		/* A new variable offset is created.  Note that off_reg->off
5561 		 * == 0, since it's a scalar.
5562 		 * dst_reg gets the pointer type and since some positive
5563 		 * integer value was added to the pointer, give it a new 'id'
5564 		 * if it's a PTR_TO_PACKET.
5565 		 * this creates a new 'base' pointer, off_reg (variable) gets
5566 		 * added into the variable offset, and we copy the fixed offset
5567 		 * from ptr_reg.
5568 		 */
5569 		if (signed_add_overflows(smin_ptr, smin_val) ||
5570 		    signed_add_overflows(smax_ptr, smax_val)) {
5571 			dst_reg->smin_value = S64_MIN;
5572 			dst_reg->smax_value = S64_MAX;
5573 		} else {
5574 			dst_reg->smin_value = smin_ptr + smin_val;
5575 			dst_reg->smax_value = smax_ptr + smax_val;
5576 		}
5577 		if (umin_ptr + umin_val < umin_ptr ||
5578 		    umax_ptr + umax_val < umax_ptr) {
5579 			dst_reg->umin_value = 0;
5580 			dst_reg->umax_value = U64_MAX;
5581 		} else {
5582 			dst_reg->umin_value = umin_ptr + umin_val;
5583 			dst_reg->umax_value = umax_ptr + umax_val;
5584 		}
5585 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
5586 		dst_reg->off = ptr_reg->off;
5587 		dst_reg->raw = ptr_reg->raw;
5588 		if (reg_is_pkt_pointer(ptr_reg)) {
5589 			dst_reg->id = ++env->id_gen;
5590 			/* something was added to pkt_ptr, set range to zero */
5591 			dst_reg->raw = 0;
5592 		}
5593 		break;
5594 	case BPF_SUB:
5595 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5596 		if (ret < 0) {
5597 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
5598 			return ret;
5599 		}
5600 		if (dst_reg == off_reg) {
5601 			/* scalar -= pointer.  Creates an unknown scalar */
5602 			verbose(env, "R%d tried to subtract pointer from scalar\n",
5603 				dst);
5604 			return -EACCES;
5605 		}
5606 		/* We don't allow subtraction from FP, because (according to
5607 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
5608 		 * be able to deal with it.
5609 		 */
5610 		if (ptr_reg->type == PTR_TO_STACK) {
5611 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
5612 				dst);
5613 			return -EACCES;
5614 		}
5615 		if (known && (ptr_reg->off - smin_val ==
5616 			      (s64)(s32)(ptr_reg->off - smin_val))) {
5617 			/* pointer -= K.  Subtract it from fixed offset */
5618 			dst_reg->smin_value = smin_ptr;
5619 			dst_reg->smax_value = smax_ptr;
5620 			dst_reg->umin_value = umin_ptr;
5621 			dst_reg->umax_value = umax_ptr;
5622 			dst_reg->var_off = ptr_reg->var_off;
5623 			dst_reg->id = ptr_reg->id;
5624 			dst_reg->off = ptr_reg->off - smin_val;
5625 			dst_reg->raw = ptr_reg->raw;
5626 			break;
5627 		}
5628 		/* A new variable offset is created.  If the subtrahend is known
5629 		 * nonnegative, then any reg->range we had before is still good.
5630 		 */
5631 		if (signed_sub_overflows(smin_ptr, smax_val) ||
5632 		    signed_sub_overflows(smax_ptr, smin_val)) {
5633 			/* Overflow possible, we know nothing */
5634 			dst_reg->smin_value = S64_MIN;
5635 			dst_reg->smax_value = S64_MAX;
5636 		} else {
5637 			dst_reg->smin_value = smin_ptr - smax_val;
5638 			dst_reg->smax_value = smax_ptr - smin_val;
5639 		}
5640 		if (umin_ptr < umax_val) {
5641 			/* Overflow possible, we know nothing */
5642 			dst_reg->umin_value = 0;
5643 			dst_reg->umax_value = U64_MAX;
5644 		} else {
5645 			/* Cannot overflow (as long as bounds are consistent) */
5646 			dst_reg->umin_value = umin_ptr - umax_val;
5647 			dst_reg->umax_value = umax_ptr - umin_val;
5648 		}
5649 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
5650 		dst_reg->off = ptr_reg->off;
5651 		dst_reg->raw = ptr_reg->raw;
5652 		if (reg_is_pkt_pointer(ptr_reg)) {
5653 			dst_reg->id = ++env->id_gen;
5654 			/* something was added to pkt_ptr, set range to zero */
5655 			if (smin_val < 0)
5656 				dst_reg->raw = 0;
5657 		}
5658 		break;
5659 	case BPF_AND:
5660 	case BPF_OR:
5661 	case BPF_XOR:
5662 		/* bitwise ops on pointers are troublesome, prohibit. */
5663 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
5664 			dst, bpf_alu_string[opcode >> 4]);
5665 		return -EACCES;
5666 	default:
5667 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
5668 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
5669 			dst, bpf_alu_string[opcode >> 4]);
5670 		return -EACCES;
5671 	}
5672 
5673 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
5674 		return -EINVAL;
5675 
5676 	__update_reg_bounds(dst_reg);
5677 	__reg_deduce_bounds(dst_reg);
5678 	__reg_bound_offset(dst_reg);
5679 
5680 	/* For unprivileged we require that resulting offset must be in bounds
5681 	 * in order to be able to sanitize access later on.
5682 	 */
5683 	if (!env->bypass_spec_v1) {
5684 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
5685 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
5686 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
5687 				"prohibited for !root\n", dst);
5688 			return -EACCES;
5689 		} else if (dst_reg->type == PTR_TO_STACK &&
5690 			   check_stack_access(env, dst_reg, dst_reg->off +
5691 					      dst_reg->var_off.value, 1)) {
5692 			verbose(env, "R%d stack pointer arithmetic goes out of range, "
5693 				"prohibited for !root\n", dst);
5694 			return -EACCES;
5695 		}
5696 	}
5697 
5698 	return 0;
5699 }
5700 
5701 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
5702 				 struct bpf_reg_state *src_reg)
5703 {
5704 	s32 smin_val = src_reg->s32_min_value;
5705 	s32 smax_val = src_reg->s32_max_value;
5706 	u32 umin_val = src_reg->u32_min_value;
5707 	u32 umax_val = src_reg->u32_max_value;
5708 
5709 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
5710 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
5711 		dst_reg->s32_min_value = S32_MIN;
5712 		dst_reg->s32_max_value = S32_MAX;
5713 	} else {
5714 		dst_reg->s32_min_value += smin_val;
5715 		dst_reg->s32_max_value += smax_val;
5716 	}
5717 	if (dst_reg->u32_min_value + umin_val < umin_val ||
5718 	    dst_reg->u32_max_value + umax_val < umax_val) {
5719 		dst_reg->u32_min_value = 0;
5720 		dst_reg->u32_max_value = U32_MAX;
5721 	} else {
5722 		dst_reg->u32_min_value += umin_val;
5723 		dst_reg->u32_max_value += umax_val;
5724 	}
5725 }
5726 
5727 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
5728 			       struct bpf_reg_state *src_reg)
5729 {
5730 	s64 smin_val = src_reg->smin_value;
5731 	s64 smax_val = src_reg->smax_value;
5732 	u64 umin_val = src_reg->umin_value;
5733 	u64 umax_val = src_reg->umax_value;
5734 
5735 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
5736 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
5737 		dst_reg->smin_value = S64_MIN;
5738 		dst_reg->smax_value = S64_MAX;
5739 	} else {
5740 		dst_reg->smin_value += smin_val;
5741 		dst_reg->smax_value += smax_val;
5742 	}
5743 	if (dst_reg->umin_value + umin_val < umin_val ||
5744 	    dst_reg->umax_value + umax_val < umax_val) {
5745 		dst_reg->umin_value = 0;
5746 		dst_reg->umax_value = U64_MAX;
5747 	} else {
5748 		dst_reg->umin_value += umin_val;
5749 		dst_reg->umax_value += umax_val;
5750 	}
5751 }
5752 
5753 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
5754 				 struct bpf_reg_state *src_reg)
5755 {
5756 	s32 smin_val = src_reg->s32_min_value;
5757 	s32 smax_val = src_reg->s32_max_value;
5758 	u32 umin_val = src_reg->u32_min_value;
5759 	u32 umax_val = src_reg->u32_max_value;
5760 
5761 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
5762 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
5763 		/* Overflow possible, we know nothing */
5764 		dst_reg->s32_min_value = S32_MIN;
5765 		dst_reg->s32_max_value = S32_MAX;
5766 	} else {
5767 		dst_reg->s32_min_value -= smax_val;
5768 		dst_reg->s32_max_value -= smin_val;
5769 	}
5770 	if (dst_reg->u32_min_value < umax_val) {
5771 		/* Overflow possible, we know nothing */
5772 		dst_reg->u32_min_value = 0;
5773 		dst_reg->u32_max_value = U32_MAX;
5774 	} else {
5775 		/* Cannot overflow (as long as bounds are consistent) */
5776 		dst_reg->u32_min_value -= umax_val;
5777 		dst_reg->u32_max_value -= umin_val;
5778 	}
5779 }
5780 
5781 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
5782 			       struct bpf_reg_state *src_reg)
5783 {
5784 	s64 smin_val = src_reg->smin_value;
5785 	s64 smax_val = src_reg->smax_value;
5786 	u64 umin_val = src_reg->umin_value;
5787 	u64 umax_val = src_reg->umax_value;
5788 
5789 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
5790 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
5791 		/* Overflow possible, we know nothing */
5792 		dst_reg->smin_value = S64_MIN;
5793 		dst_reg->smax_value = S64_MAX;
5794 	} else {
5795 		dst_reg->smin_value -= smax_val;
5796 		dst_reg->smax_value -= smin_val;
5797 	}
5798 	if (dst_reg->umin_value < umax_val) {
5799 		/* Overflow possible, we know nothing */
5800 		dst_reg->umin_value = 0;
5801 		dst_reg->umax_value = U64_MAX;
5802 	} else {
5803 		/* Cannot overflow (as long as bounds are consistent) */
5804 		dst_reg->umin_value -= umax_val;
5805 		dst_reg->umax_value -= umin_val;
5806 	}
5807 }
5808 
5809 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
5810 				 struct bpf_reg_state *src_reg)
5811 {
5812 	s32 smin_val = src_reg->s32_min_value;
5813 	u32 umin_val = src_reg->u32_min_value;
5814 	u32 umax_val = src_reg->u32_max_value;
5815 
5816 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
5817 		/* Ain't nobody got time to multiply that sign */
5818 		__mark_reg32_unbounded(dst_reg);
5819 		return;
5820 	}
5821 	/* Both values are positive, so we can work with unsigned and
5822 	 * copy the result to signed (unless it exceeds S32_MAX).
5823 	 */
5824 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
5825 		/* Potential overflow, we know nothing */
5826 		__mark_reg32_unbounded(dst_reg);
5827 		return;
5828 	}
5829 	dst_reg->u32_min_value *= umin_val;
5830 	dst_reg->u32_max_value *= umax_val;
5831 	if (dst_reg->u32_max_value > S32_MAX) {
5832 		/* Overflow possible, we know nothing */
5833 		dst_reg->s32_min_value = S32_MIN;
5834 		dst_reg->s32_max_value = S32_MAX;
5835 	} else {
5836 		dst_reg->s32_min_value = dst_reg->u32_min_value;
5837 		dst_reg->s32_max_value = dst_reg->u32_max_value;
5838 	}
5839 }
5840 
5841 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
5842 			       struct bpf_reg_state *src_reg)
5843 {
5844 	s64 smin_val = src_reg->smin_value;
5845 	u64 umin_val = src_reg->umin_value;
5846 	u64 umax_val = src_reg->umax_value;
5847 
5848 	if (smin_val < 0 || dst_reg->smin_value < 0) {
5849 		/* Ain't nobody got time to multiply that sign */
5850 		__mark_reg64_unbounded(dst_reg);
5851 		return;
5852 	}
5853 	/* Both values are positive, so we can work with unsigned and
5854 	 * copy the result to signed (unless it exceeds S64_MAX).
5855 	 */
5856 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
5857 		/* Potential overflow, we know nothing */
5858 		__mark_reg64_unbounded(dst_reg);
5859 		return;
5860 	}
5861 	dst_reg->umin_value *= umin_val;
5862 	dst_reg->umax_value *= umax_val;
5863 	if (dst_reg->umax_value > S64_MAX) {
5864 		/* Overflow possible, we know nothing */
5865 		dst_reg->smin_value = S64_MIN;
5866 		dst_reg->smax_value = S64_MAX;
5867 	} else {
5868 		dst_reg->smin_value = dst_reg->umin_value;
5869 		dst_reg->smax_value = dst_reg->umax_value;
5870 	}
5871 }
5872 
5873 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
5874 				 struct bpf_reg_state *src_reg)
5875 {
5876 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
5877 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5878 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5879 	s32 smin_val = src_reg->s32_min_value;
5880 	u32 umax_val = src_reg->u32_max_value;
5881 
5882 	/* Assuming scalar64_min_max_and will be called so its safe
5883 	 * to skip updating register for known 32-bit case.
5884 	 */
5885 	if (src_known && dst_known)
5886 		return;
5887 
5888 	/* We get our minimum from the var_off, since that's inherently
5889 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
5890 	 */
5891 	dst_reg->u32_min_value = var32_off.value;
5892 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
5893 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5894 		/* Lose signed bounds when ANDing negative numbers,
5895 		 * ain't nobody got time for that.
5896 		 */
5897 		dst_reg->s32_min_value = S32_MIN;
5898 		dst_reg->s32_max_value = S32_MAX;
5899 	} else {
5900 		/* ANDing two positives gives a positive, so safe to
5901 		 * cast result into s64.
5902 		 */
5903 		dst_reg->s32_min_value = dst_reg->u32_min_value;
5904 		dst_reg->s32_max_value = dst_reg->u32_max_value;
5905 	}
5906 
5907 }
5908 
5909 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
5910 			       struct bpf_reg_state *src_reg)
5911 {
5912 	bool src_known = tnum_is_const(src_reg->var_off);
5913 	bool dst_known = tnum_is_const(dst_reg->var_off);
5914 	s64 smin_val = src_reg->smin_value;
5915 	u64 umax_val = src_reg->umax_value;
5916 
5917 	if (src_known && dst_known) {
5918 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
5919 		return;
5920 	}
5921 
5922 	/* We get our minimum from the var_off, since that's inherently
5923 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
5924 	 */
5925 	dst_reg->umin_value = dst_reg->var_off.value;
5926 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
5927 	if (dst_reg->smin_value < 0 || smin_val < 0) {
5928 		/* Lose signed bounds when ANDing negative numbers,
5929 		 * ain't nobody got time for that.
5930 		 */
5931 		dst_reg->smin_value = S64_MIN;
5932 		dst_reg->smax_value = S64_MAX;
5933 	} else {
5934 		/* ANDing two positives gives a positive, so safe to
5935 		 * cast result into s64.
5936 		 */
5937 		dst_reg->smin_value = dst_reg->umin_value;
5938 		dst_reg->smax_value = dst_reg->umax_value;
5939 	}
5940 	/* We may learn something more from the var_off */
5941 	__update_reg_bounds(dst_reg);
5942 }
5943 
5944 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
5945 				struct bpf_reg_state *src_reg)
5946 {
5947 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
5948 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5949 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5950 	s32 smin_val = src_reg->s32_min_value;
5951 	u32 umin_val = src_reg->u32_min_value;
5952 
5953 	/* Assuming scalar64_min_max_or will be called so it is safe
5954 	 * to skip updating register for known case.
5955 	 */
5956 	if (src_known && dst_known)
5957 		return;
5958 
5959 	/* We get our maximum from the var_off, and our minimum is the
5960 	 * maximum of the operands' minima
5961 	 */
5962 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
5963 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
5964 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5965 		/* Lose signed bounds when ORing negative numbers,
5966 		 * ain't nobody got time for that.
5967 		 */
5968 		dst_reg->s32_min_value = S32_MIN;
5969 		dst_reg->s32_max_value = S32_MAX;
5970 	} else {
5971 		/* ORing two positives gives a positive, so safe to
5972 		 * cast result into s64.
5973 		 */
5974 		dst_reg->s32_min_value = dst_reg->u32_min_value;
5975 		dst_reg->s32_max_value = dst_reg->u32_max_value;
5976 	}
5977 }
5978 
5979 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
5980 			      struct bpf_reg_state *src_reg)
5981 {
5982 	bool src_known = tnum_is_const(src_reg->var_off);
5983 	bool dst_known = tnum_is_const(dst_reg->var_off);
5984 	s64 smin_val = src_reg->smin_value;
5985 	u64 umin_val = src_reg->umin_value;
5986 
5987 	if (src_known && dst_known) {
5988 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
5989 		return;
5990 	}
5991 
5992 	/* We get our maximum from the var_off, and our minimum is the
5993 	 * maximum of the operands' minima
5994 	 */
5995 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
5996 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
5997 	if (dst_reg->smin_value < 0 || smin_val < 0) {
5998 		/* Lose signed bounds when ORing negative numbers,
5999 		 * ain't nobody got time for that.
6000 		 */
6001 		dst_reg->smin_value = S64_MIN;
6002 		dst_reg->smax_value = S64_MAX;
6003 	} else {
6004 		/* ORing two positives gives a positive, so safe to
6005 		 * cast result into s64.
6006 		 */
6007 		dst_reg->smin_value = dst_reg->umin_value;
6008 		dst_reg->smax_value = dst_reg->umax_value;
6009 	}
6010 	/* We may learn something more from the var_off */
6011 	__update_reg_bounds(dst_reg);
6012 }
6013 
6014 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
6015 				 struct bpf_reg_state *src_reg)
6016 {
6017 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
6018 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6019 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6020 	s32 smin_val = src_reg->s32_min_value;
6021 
6022 	/* Assuming scalar64_min_max_xor will be called so it is safe
6023 	 * to skip updating register for known case.
6024 	 */
6025 	if (src_known && dst_known)
6026 		return;
6027 
6028 	/* We get both minimum and maximum from the var32_off. */
6029 	dst_reg->u32_min_value = var32_off.value;
6030 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6031 
6032 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
6033 		/* XORing two positive sign numbers gives a positive,
6034 		 * so safe to cast u32 result into s32.
6035 		 */
6036 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6037 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6038 	} else {
6039 		dst_reg->s32_min_value = S32_MIN;
6040 		dst_reg->s32_max_value = S32_MAX;
6041 	}
6042 }
6043 
6044 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
6045 			       struct bpf_reg_state *src_reg)
6046 {
6047 	bool src_known = tnum_is_const(src_reg->var_off);
6048 	bool dst_known = tnum_is_const(dst_reg->var_off);
6049 	s64 smin_val = src_reg->smin_value;
6050 
6051 	if (src_known && dst_known) {
6052 		/* dst_reg->var_off.value has been updated earlier */
6053 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
6054 		return;
6055 	}
6056 
6057 	/* We get both minimum and maximum from the var_off. */
6058 	dst_reg->umin_value = dst_reg->var_off.value;
6059 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6060 
6061 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
6062 		/* XORing two positive sign numbers gives a positive,
6063 		 * so safe to cast u64 result into s64.
6064 		 */
6065 		dst_reg->smin_value = dst_reg->umin_value;
6066 		dst_reg->smax_value = dst_reg->umax_value;
6067 	} else {
6068 		dst_reg->smin_value = S64_MIN;
6069 		dst_reg->smax_value = S64_MAX;
6070 	}
6071 
6072 	__update_reg_bounds(dst_reg);
6073 }
6074 
6075 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6076 				   u64 umin_val, u64 umax_val)
6077 {
6078 	/* We lose all sign bit information (except what we can pick
6079 	 * up from var_off)
6080 	 */
6081 	dst_reg->s32_min_value = S32_MIN;
6082 	dst_reg->s32_max_value = S32_MAX;
6083 	/* If we might shift our top bit out, then we know nothing */
6084 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
6085 		dst_reg->u32_min_value = 0;
6086 		dst_reg->u32_max_value = U32_MAX;
6087 	} else {
6088 		dst_reg->u32_min_value <<= umin_val;
6089 		dst_reg->u32_max_value <<= umax_val;
6090 	}
6091 }
6092 
6093 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6094 				 struct bpf_reg_state *src_reg)
6095 {
6096 	u32 umax_val = src_reg->u32_max_value;
6097 	u32 umin_val = src_reg->u32_min_value;
6098 	/* u32 alu operation will zext upper bits */
6099 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
6100 
6101 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6102 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
6103 	/* Not required but being careful mark reg64 bounds as unknown so
6104 	 * that we are forced to pick them up from tnum and zext later and
6105 	 * if some path skips this step we are still safe.
6106 	 */
6107 	__mark_reg64_unbounded(dst_reg);
6108 	__update_reg32_bounds(dst_reg);
6109 }
6110 
6111 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
6112 				   u64 umin_val, u64 umax_val)
6113 {
6114 	/* Special case <<32 because it is a common compiler pattern to sign
6115 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
6116 	 * positive we know this shift will also be positive so we can track
6117 	 * bounds correctly. Otherwise we lose all sign bit information except
6118 	 * what we can pick up from var_off. Perhaps we can generalize this
6119 	 * later to shifts of any length.
6120 	 */
6121 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
6122 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
6123 	else
6124 		dst_reg->smax_value = S64_MAX;
6125 
6126 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
6127 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
6128 	else
6129 		dst_reg->smin_value = S64_MIN;
6130 
6131 	/* If we might shift our top bit out, then we know nothing */
6132 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
6133 		dst_reg->umin_value = 0;
6134 		dst_reg->umax_value = U64_MAX;
6135 	} else {
6136 		dst_reg->umin_value <<= umin_val;
6137 		dst_reg->umax_value <<= umax_val;
6138 	}
6139 }
6140 
6141 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
6142 			       struct bpf_reg_state *src_reg)
6143 {
6144 	u64 umax_val = src_reg->umax_value;
6145 	u64 umin_val = src_reg->umin_value;
6146 
6147 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
6148 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
6149 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6150 
6151 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
6152 	/* We may learn something more from the var_off */
6153 	__update_reg_bounds(dst_reg);
6154 }
6155 
6156 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
6157 				 struct bpf_reg_state *src_reg)
6158 {
6159 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
6160 	u32 umax_val = src_reg->u32_max_value;
6161 	u32 umin_val = src_reg->u32_min_value;
6162 
6163 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
6164 	 * be negative, then either:
6165 	 * 1) src_reg might be zero, so the sign bit of the result is
6166 	 *    unknown, so we lose our signed bounds
6167 	 * 2) it's known negative, thus the unsigned bounds capture the
6168 	 *    signed bounds
6169 	 * 3) the signed bounds cross zero, so they tell us nothing
6170 	 *    about the result
6171 	 * If the value in dst_reg is known nonnegative, then again the
6172 	 * unsigned bounts capture the signed bounds.
6173 	 * Thus, in all cases it suffices to blow away our signed bounds
6174 	 * and rely on inferring new ones from the unsigned bounds and
6175 	 * var_off of the result.
6176 	 */
6177 	dst_reg->s32_min_value = S32_MIN;
6178 	dst_reg->s32_max_value = S32_MAX;
6179 
6180 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
6181 	dst_reg->u32_min_value >>= umax_val;
6182 	dst_reg->u32_max_value >>= umin_val;
6183 
6184 	__mark_reg64_unbounded(dst_reg);
6185 	__update_reg32_bounds(dst_reg);
6186 }
6187 
6188 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
6189 			       struct bpf_reg_state *src_reg)
6190 {
6191 	u64 umax_val = src_reg->umax_value;
6192 	u64 umin_val = src_reg->umin_value;
6193 
6194 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
6195 	 * be negative, then either:
6196 	 * 1) src_reg might be zero, so the sign bit of the result is
6197 	 *    unknown, so we lose our signed bounds
6198 	 * 2) it's known negative, thus the unsigned bounds capture the
6199 	 *    signed bounds
6200 	 * 3) the signed bounds cross zero, so they tell us nothing
6201 	 *    about the result
6202 	 * If the value in dst_reg is known nonnegative, then again the
6203 	 * unsigned bounts capture the signed bounds.
6204 	 * Thus, in all cases it suffices to blow away our signed bounds
6205 	 * and rely on inferring new ones from the unsigned bounds and
6206 	 * var_off of the result.
6207 	 */
6208 	dst_reg->smin_value = S64_MIN;
6209 	dst_reg->smax_value = S64_MAX;
6210 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
6211 	dst_reg->umin_value >>= umax_val;
6212 	dst_reg->umax_value >>= umin_val;
6213 
6214 	/* Its not easy to operate on alu32 bounds here because it depends
6215 	 * on bits being shifted in. Take easy way out and mark unbounded
6216 	 * so we can recalculate later from tnum.
6217 	 */
6218 	__mark_reg32_unbounded(dst_reg);
6219 	__update_reg_bounds(dst_reg);
6220 }
6221 
6222 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
6223 				  struct bpf_reg_state *src_reg)
6224 {
6225 	u64 umin_val = src_reg->u32_min_value;
6226 
6227 	/* Upon reaching here, src_known is true and
6228 	 * umax_val is equal to umin_val.
6229 	 */
6230 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
6231 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
6232 
6233 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
6234 
6235 	/* blow away the dst_reg umin_value/umax_value and rely on
6236 	 * dst_reg var_off to refine the result.
6237 	 */
6238 	dst_reg->u32_min_value = 0;
6239 	dst_reg->u32_max_value = U32_MAX;
6240 
6241 	__mark_reg64_unbounded(dst_reg);
6242 	__update_reg32_bounds(dst_reg);
6243 }
6244 
6245 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
6246 				struct bpf_reg_state *src_reg)
6247 {
6248 	u64 umin_val = src_reg->umin_value;
6249 
6250 	/* Upon reaching here, src_known is true and umax_val is equal
6251 	 * to umin_val.
6252 	 */
6253 	dst_reg->smin_value >>= umin_val;
6254 	dst_reg->smax_value >>= umin_val;
6255 
6256 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
6257 
6258 	/* blow away the dst_reg umin_value/umax_value and rely on
6259 	 * dst_reg var_off to refine the result.
6260 	 */
6261 	dst_reg->umin_value = 0;
6262 	dst_reg->umax_value = U64_MAX;
6263 
6264 	/* Its not easy to operate on alu32 bounds here because it depends
6265 	 * on bits being shifted in from upper 32-bits. Take easy way out
6266 	 * and mark unbounded so we can recalculate later from tnum.
6267 	 */
6268 	__mark_reg32_unbounded(dst_reg);
6269 	__update_reg_bounds(dst_reg);
6270 }
6271 
6272 /* WARNING: This function does calculations on 64-bit values, but the actual
6273  * execution may occur on 32-bit values. Therefore, things like bitshifts
6274  * need extra checks in the 32-bit case.
6275  */
6276 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
6277 				      struct bpf_insn *insn,
6278 				      struct bpf_reg_state *dst_reg,
6279 				      struct bpf_reg_state src_reg)
6280 {
6281 	struct bpf_reg_state *regs = cur_regs(env);
6282 	u8 opcode = BPF_OP(insn->code);
6283 	bool src_known;
6284 	s64 smin_val, smax_val;
6285 	u64 umin_val, umax_val;
6286 	s32 s32_min_val, s32_max_val;
6287 	u32 u32_min_val, u32_max_val;
6288 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
6289 	u32 dst = insn->dst_reg;
6290 	int ret;
6291 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
6292 
6293 	smin_val = src_reg.smin_value;
6294 	smax_val = src_reg.smax_value;
6295 	umin_val = src_reg.umin_value;
6296 	umax_val = src_reg.umax_value;
6297 
6298 	s32_min_val = src_reg.s32_min_value;
6299 	s32_max_val = src_reg.s32_max_value;
6300 	u32_min_val = src_reg.u32_min_value;
6301 	u32_max_val = src_reg.u32_max_value;
6302 
6303 	if (alu32) {
6304 		src_known = tnum_subreg_is_const(src_reg.var_off);
6305 		if ((src_known &&
6306 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
6307 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
6308 			/* Taint dst register if offset had invalid bounds
6309 			 * derived from e.g. dead branches.
6310 			 */
6311 			__mark_reg_unknown(env, dst_reg);
6312 			return 0;
6313 		}
6314 	} else {
6315 		src_known = tnum_is_const(src_reg.var_off);
6316 		if ((src_known &&
6317 		     (smin_val != smax_val || umin_val != umax_val)) ||
6318 		    smin_val > smax_val || umin_val > umax_val) {
6319 			/* Taint dst register if offset had invalid bounds
6320 			 * derived from e.g. dead branches.
6321 			 */
6322 			__mark_reg_unknown(env, dst_reg);
6323 			return 0;
6324 		}
6325 	}
6326 
6327 	if (!src_known &&
6328 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
6329 		__mark_reg_unknown(env, dst_reg);
6330 		return 0;
6331 	}
6332 
6333 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
6334 	 * There are two classes of instructions: The first class we track both
6335 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
6336 	 * greatest amount of precision when alu operations are mixed with jmp32
6337 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
6338 	 * and BPF_OR. This is possible because these ops have fairly easy to
6339 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
6340 	 * See alu32 verifier tests for examples. The second class of
6341 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
6342 	 * with regards to tracking sign/unsigned bounds because the bits may
6343 	 * cross subreg boundaries in the alu64 case. When this happens we mark
6344 	 * the reg unbounded in the subreg bound space and use the resulting
6345 	 * tnum to calculate an approximation of the sign/unsigned bounds.
6346 	 */
6347 	switch (opcode) {
6348 	case BPF_ADD:
6349 		ret = sanitize_val_alu(env, insn);
6350 		if (ret < 0) {
6351 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
6352 			return ret;
6353 		}
6354 		scalar32_min_max_add(dst_reg, &src_reg);
6355 		scalar_min_max_add(dst_reg, &src_reg);
6356 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
6357 		break;
6358 	case BPF_SUB:
6359 		ret = sanitize_val_alu(env, insn);
6360 		if (ret < 0) {
6361 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
6362 			return ret;
6363 		}
6364 		scalar32_min_max_sub(dst_reg, &src_reg);
6365 		scalar_min_max_sub(dst_reg, &src_reg);
6366 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
6367 		break;
6368 	case BPF_MUL:
6369 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
6370 		scalar32_min_max_mul(dst_reg, &src_reg);
6371 		scalar_min_max_mul(dst_reg, &src_reg);
6372 		break;
6373 	case BPF_AND:
6374 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
6375 		scalar32_min_max_and(dst_reg, &src_reg);
6376 		scalar_min_max_and(dst_reg, &src_reg);
6377 		break;
6378 	case BPF_OR:
6379 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
6380 		scalar32_min_max_or(dst_reg, &src_reg);
6381 		scalar_min_max_or(dst_reg, &src_reg);
6382 		break;
6383 	case BPF_XOR:
6384 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
6385 		scalar32_min_max_xor(dst_reg, &src_reg);
6386 		scalar_min_max_xor(dst_reg, &src_reg);
6387 		break;
6388 	case BPF_LSH:
6389 		if (umax_val >= insn_bitness) {
6390 			/* Shifts greater than 31 or 63 are undefined.
6391 			 * This includes shifts by a negative number.
6392 			 */
6393 			mark_reg_unknown(env, regs, insn->dst_reg);
6394 			break;
6395 		}
6396 		if (alu32)
6397 			scalar32_min_max_lsh(dst_reg, &src_reg);
6398 		else
6399 			scalar_min_max_lsh(dst_reg, &src_reg);
6400 		break;
6401 	case BPF_RSH:
6402 		if (umax_val >= insn_bitness) {
6403 			/* Shifts greater than 31 or 63 are undefined.
6404 			 * This includes shifts by a negative number.
6405 			 */
6406 			mark_reg_unknown(env, regs, insn->dst_reg);
6407 			break;
6408 		}
6409 		if (alu32)
6410 			scalar32_min_max_rsh(dst_reg, &src_reg);
6411 		else
6412 			scalar_min_max_rsh(dst_reg, &src_reg);
6413 		break;
6414 	case BPF_ARSH:
6415 		if (umax_val >= insn_bitness) {
6416 			/* Shifts greater than 31 or 63 are undefined.
6417 			 * This includes shifts by a negative number.
6418 			 */
6419 			mark_reg_unknown(env, regs, insn->dst_reg);
6420 			break;
6421 		}
6422 		if (alu32)
6423 			scalar32_min_max_arsh(dst_reg, &src_reg);
6424 		else
6425 			scalar_min_max_arsh(dst_reg, &src_reg);
6426 		break;
6427 	default:
6428 		mark_reg_unknown(env, regs, insn->dst_reg);
6429 		break;
6430 	}
6431 
6432 	/* ALU32 ops are zero extended into 64bit register */
6433 	if (alu32)
6434 		zext_32_to_64(dst_reg);
6435 
6436 	__update_reg_bounds(dst_reg);
6437 	__reg_deduce_bounds(dst_reg);
6438 	__reg_bound_offset(dst_reg);
6439 	return 0;
6440 }
6441 
6442 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
6443  * and var_off.
6444  */
6445 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
6446 				   struct bpf_insn *insn)
6447 {
6448 	struct bpf_verifier_state *vstate = env->cur_state;
6449 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6450 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
6451 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
6452 	u8 opcode = BPF_OP(insn->code);
6453 	int err;
6454 
6455 	dst_reg = &regs[insn->dst_reg];
6456 	src_reg = NULL;
6457 	if (dst_reg->type != SCALAR_VALUE)
6458 		ptr_reg = dst_reg;
6459 	else
6460 		/* Make sure ID is cleared otherwise dst_reg min/max could be
6461 		 * incorrectly propagated into other registers by find_equal_scalars()
6462 		 */
6463 		dst_reg->id = 0;
6464 	if (BPF_SRC(insn->code) == BPF_X) {
6465 		src_reg = &regs[insn->src_reg];
6466 		if (src_reg->type != SCALAR_VALUE) {
6467 			if (dst_reg->type != SCALAR_VALUE) {
6468 				/* Combining two pointers by any ALU op yields
6469 				 * an arbitrary scalar. Disallow all math except
6470 				 * pointer subtraction
6471 				 */
6472 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6473 					mark_reg_unknown(env, regs, insn->dst_reg);
6474 					return 0;
6475 				}
6476 				verbose(env, "R%d pointer %s pointer prohibited\n",
6477 					insn->dst_reg,
6478 					bpf_alu_string[opcode >> 4]);
6479 				return -EACCES;
6480 			} else {
6481 				/* scalar += pointer
6482 				 * This is legal, but we have to reverse our
6483 				 * src/dest handling in computing the range
6484 				 */
6485 				err = mark_chain_precision(env, insn->dst_reg);
6486 				if (err)
6487 					return err;
6488 				return adjust_ptr_min_max_vals(env, insn,
6489 							       src_reg, dst_reg);
6490 			}
6491 		} else if (ptr_reg) {
6492 			/* pointer += scalar */
6493 			err = mark_chain_precision(env, insn->src_reg);
6494 			if (err)
6495 				return err;
6496 			return adjust_ptr_min_max_vals(env, insn,
6497 						       dst_reg, src_reg);
6498 		}
6499 	} else {
6500 		/* Pretend the src is a reg with a known value, since we only
6501 		 * need to be able to read from this state.
6502 		 */
6503 		off_reg.type = SCALAR_VALUE;
6504 		__mark_reg_known(&off_reg, insn->imm);
6505 		src_reg = &off_reg;
6506 		if (ptr_reg) /* pointer += K */
6507 			return adjust_ptr_min_max_vals(env, insn,
6508 						       ptr_reg, src_reg);
6509 	}
6510 
6511 	/* Got here implies adding two SCALAR_VALUEs */
6512 	if (WARN_ON_ONCE(ptr_reg)) {
6513 		print_verifier_state(env, state);
6514 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
6515 		return -EINVAL;
6516 	}
6517 	if (WARN_ON(!src_reg)) {
6518 		print_verifier_state(env, state);
6519 		verbose(env, "verifier internal error: no src_reg\n");
6520 		return -EINVAL;
6521 	}
6522 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
6523 }
6524 
6525 /* check validity of 32-bit and 64-bit arithmetic operations */
6526 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
6527 {
6528 	struct bpf_reg_state *regs = cur_regs(env);
6529 	u8 opcode = BPF_OP(insn->code);
6530 	int err;
6531 
6532 	if (opcode == BPF_END || opcode == BPF_NEG) {
6533 		if (opcode == BPF_NEG) {
6534 			if (BPF_SRC(insn->code) != 0 ||
6535 			    insn->src_reg != BPF_REG_0 ||
6536 			    insn->off != 0 || insn->imm != 0) {
6537 				verbose(env, "BPF_NEG uses reserved fields\n");
6538 				return -EINVAL;
6539 			}
6540 		} else {
6541 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
6542 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
6543 			    BPF_CLASS(insn->code) == BPF_ALU64) {
6544 				verbose(env, "BPF_END uses reserved fields\n");
6545 				return -EINVAL;
6546 			}
6547 		}
6548 
6549 		/* check src operand */
6550 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6551 		if (err)
6552 			return err;
6553 
6554 		if (is_pointer_value(env, insn->dst_reg)) {
6555 			verbose(env, "R%d pointer arithmetic prohibited\n",
6556 				insn->dst_reg);
6557 			return -EACCES;
6558 		}
6559 
6560 		/* check dest operand */
6561 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
6562 		if (err)
6563 			return err;
6564 
6565 	} else if (opcode == BPF_MOV) {
6566 
6567 		if (BPF_SRC(insn->code) == BPF_X) {
6568 			if (insn->imm != 0 || insn->off != 0) {
6569 				verbose(env, "BPF_MOV uses reserved fields\n");
6570 				return -EINVAL;
6571 			}
6572 
6573 			/* check src operand */
6574 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6575 			if (err)
6576 				return err;
6577 		} else {
6578 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
6579 				verbose(env, "BPF_MOV uses reserved fields\n");
6580 				return -EINVAL;
6581 			}
6582 		}
6583 
6584 		/* check dest operand, mark as required later */
6585 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6586 		if (err)
6587 			return err;
6588 
6589 		if (BPF_SRC(insn->code) == BPF_X) {
6590 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
6591 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
6592 
6593 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
6594 				/* case: R1 = R2
6595 				 * copy register state to dest reg
6596 				 */
6597 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
6598 					/* Assign src and dst registers the same ID
6599 					 * that will be used by find_equal_scalars()
6600 					 * to propagate min/max range.
6601 					 */
6602 					src_reg->id = ++env->id_gen;
6603 				*dst_reg = *src_reg;
6604 				dst_reg->live |= REG_LIVE_WRITTEN;
6605 				dst_reg->subreg_def = DEF_NOT_SUBREG;
6606 			} else {
6607 				/* R1 = (u32) R2 */
6608 				if (is_pointer_value(env, insn->src_reg)) {
6609 					verbose(env,
6610 						"R%d partial copy of pointer\n",
6611 						insn->src_reg);
6612 					return -EACCES;
6613 				} else if (src_reg->type == SCALAR_VALUE) {
6614 					*dst_reg = *src_reg;
6615 					/* Make sure ID is cleared otherwise
6616 					 * dst_reg min/max could be incorrectly
6617 					 * propagated into src_reg by find_equal_scalars()
6618 					 */
6619 					dst_reg->id = 0;
6620 					dst_reg->live |= REG_LIVE_WRITTEN;
6621 					dst_reg->subreg_def = env->insn_idx + 1;
6622 				} else {
6623 					mark_reg_unknown(env, regs,
6624 							 insn->dst_reg);
6625 				}
6626 				zext_32_to_64(dst_reg);
6627 			}
6628 		} else {
6629 			/* case: R = imm
6630 			 * remember the value we stored into this reg
6631 			 */
6632 			/* clear any state __mark_reg_known doesn't set */
6633 			mark_reg_unknown(env, regs, insn->dst_reg);
6634 			regs[insn->dst_reg].type = SCALAR_VALUE;
6635 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
6636 				__mark_reg_known(regs + insn->dst_reg,
6637 						 insn->imm);
6638 			} else {
6639 				__mark_reg_known(regs + insn->dst_reg,
6640 						 (u32)insn->imm);
6641 			}
6642 		}
6643 
6644 	} else if (opcode > BPF_END) {
6645 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
6646 		return -EINVAL;
6647 
6648 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
6649 
6650 		if (BPF_SRC(insn->code) == BPF_X) {
6651 			if (insn->imm != 0 || insn->off != 0) {
6652 				verbose(env, "BPF_ALU uses reserved fields\n");
6653 				return -EINVAL;
6654 			}
6655 			/* check src1 operand */
6656 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6657 			if (err)
6658 				return err;
6659 		} else {
6660 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
6661 				verbose(env, "BPF_ALU uses reserved fields\n");
6662 				return -EINVAL;
6663 			}
6664 		}
6665 
6666 		/* check src2 operand */
6667 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6668 		if (err)
6669 			return err;
6670 
6671 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
6672 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
6673 			verbose(env, "div by zero\n");
6674 			return -EINVAL;
6675 		}
6676 
6677 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
6678 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
6679 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
6680 
6681 			if (insn->imm < 0 || insn->imm >= size) {
6682 				verbose(env, "invalid shift %d\n", insn->imm);
6683 				return -EINVAL;
6684 			}
6685 		}
6686 
6687 		/* check dest operand */
6688 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6689 		if (err)
6690 			return err;
6691 
6692 		return adjust_reg_min_max_vals(env, insn);
6693 	}
6694 
6695 	return 0;
6696 }
6697 
6698 static void __find_good_pkt_pointers(struct bpf_func_state *state,
6699 				     struct bpf_reg_state *dst_reg,
6700 				     enum bpf_reg_type type, u16 new_range)
6701 {
6702 	struct bpf_reg_state *reg;
6703 	int i;
6704 
6705 	for (i = 0; i < MAX_BPF_REG; i++) {
6706 		reg = &state->regs[i];
6707 		if (reg->type == type && reg->id == dst_reg->id)
6708 			/* keep the maximum range already checked */
6709 			reg->range = max(reg->range, new_range);
6710 	}
6711 
6712 	bpf_for_each_spilled_reg(i, state, reg) {
6713 		if (!reg)
6714 			continue;
6715 		if (reg->type == type && reg->id == dst_reg->id)
6716 			reg->range = max(reg->range, new_range);
6717 	}
6718 }
6719 
6720 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
6721 				   struct bpf_reg_state *dst_reg,
6722 				   enum bpf_reg_type type,
6723 				   bool range_right_open)
6724 {
6725 	u16 new_range;
6726 	int i;
6727 
6728 	if (dst_reg->off < 0 ||
6729 	    (dst_reg->off == 0 && range_right_open))
6730 		/* This doesn't give us any range */
6731 		return;
6732 
6733 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
6734 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
6735 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
6736 		 * than pkt_end, but that's because it's also less than pkt.
6737 		 */
6738 		return;
6739 
6740 	new_range = dst_reg->off;
6741 	if (range_right_open)
6742 		new_range--;
6743 
6744 	/* Examples for register markings:
6745 	 *
6746 	 * pkt_data in dst register:
6747 	 *
6748 	 *   r2 = r3;
6749 	 *   r2 += 8;
6750 	 *   if (r2 > pkt_end) goto <handle exception>
6751 	 *   <access okay>
6752 	 *
6753 	 *   r2 = r3;
6754 	 *   r2 += 8;
6755 	 *   if (r2 < pkt_end) goto <access okay>
6756 	 *   <handle exception>
6757 	 *
6758 	 *   Where:
6759 	 *     r2 == dst_reg, pkt_end == src_reg
6760 	 *     r2=pkt(id=n,off=8,r=0)
6761 	 *     r3=pkt(id=n,off=0,r=0)
6762 	 *
6763 	 * pkt_data in src register:
6764 	 *
6765 	 *   r2 = r3;
6766 	 *   r2 += 8;
6767 	 *   if (pkt_end >= r2) goto <access okay>
6768 	 *   <handle exception>
6769 	 *
6770 	 *   r2 = r3;
6771 	 *   r2 += 8;
6772 	 *   if (pkt_end <= r2) goto <handle exception>
6773 	 *   <access okay>
6774 	 *
6775 	 *   Where:
6776 	 *     pkt_end == dst_reg, r2 == src_reg
6777 	 *     r2=pkt(id=n,off=8,r=0)
6778 	 *     r3=pkt(id=n,off=0,r=0)
6779 	 *
6780 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
6781 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
6782 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
6783 	 * the check.
6784 	 */
6785 
6786 	/* If our ids match, then we must have the same max_value.  And we
6787 	 * don't care about the other reg's fixed offset, since if it's too big
6788 	 * the range won't allow anything.
6789 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
6790 	 */
6791 	for (i = 0; i <= vstate->curframe; i++)
6792 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
6793 					 new_range);
6794 }
6795 
6796 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
6797 {
6798 	struct tnum subreg = tnum_subreg(reg->var_off);
6799 	s32 sval = (s32)val;
6800 
6801 	switch (opcode) {
6802 	case BPF_JEQ:
6803 		if (tnum_is_const(subreg))
6804 			return !!tnum_equals_const(subreg, val);
6805 		break;
6806 	case BPF_JNE:
6807 		if (tnum_is_const(subreg))
6808 			return !tnum_equals_const(subreg, val);
6809 		break;
6810 	case BPF_JSET:
6811 		if ((~subreg.mask & subreg.value) & val)
6812 			return 1;
6813 		if (!((subreg.mask | subreg.value) & val))
6814 			return 0;
6815 		break;
6816 	case BPF_JGT:
6817 		if (reg->u32_min_value > val)
6818 			return 1;
6819 		else if (reg->u32_max_value <= val)
6820 			return 0;
6821 		break;
6822 	case BPF_JSGT:
6823 		if (reg->s32_min_value > sval)
6824 			return 1;
6825 		else if (reg->s32_max_value < sval)
6826 			return 0;
6827 		break;
6828 	case BPF_JLT:
6829 		if (reg->u32_max_value < val)
6830 			return 1;
6831 		else if (reg->u32_min_value >= val)
6832 			return 0;
6833 		break;
6834 	case BPF_JSLT:
6835 		if (reg->s32_max_value < sval)
6836 			return 1;
6837 		else if (reg->s32_min_value >= sval)
6838 			return 0;
6839 		break;
6840 	case BPF_JGE:
6841 		if (reg->u32_min_value >= val)
6842 			return 1;
6843 		else if (reg->u32_max_value < val)
6844 			return 0;
6845 		break;
6846 	case BPF_JSGE:
6847 		if (reg->s32_min_value >= sval)
6848 			return 1;
6849 		else if (reg->s32_max_value < sval)
6850 			return 0;
6851 		break;
6852 	case BPF_JLE:
6853 		if (reg->u32_max_value <= val)
6854 			return 1;
6855 		else if (reg->u32_min_value > val)
6856 			return 0;
6857 		break;
6858 	case BPF_JSLE:
6859 		if (reg->s32_max_value <= sval)
6860 			return 1;
6861 		else if (reg->s32_min_value > sval)
6862 			return 0;
6863 		break;
6864 	}
6865 
6866 	return -1;
6867 }
6868 
6869 
6870 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
6871 {
6872 	s64 sval = (s64)val;
6873 
6874 	switch (opcode) {
6875 	case BPF_JEQ:
6876 		if (tnum_is_const(reg->var_off))
6877 			return !!tnum_equals_const(reg->var_off, val);
6878 		break;
6879 	case BPF_JNE:
6880 		if (tnum_is_const(reg->var_off))
6881 			return !tnum_equals_const(reg->var_off, val);
6882 		break;
6883 	case BPF_JSET:
6884 		if ((~reg->var_off.mask & reg->var_off.value) & val)
6885 			return 1;
6886 		if (!((reg->var_off.mask | reg->var_off.value) & val))
6887 			return 0;
6888 		break;
6889 	case BPF_JGT:
6890 		if (reg->umin_value > val)
6891 			return 1;
6892 		else if (reg->umax_value <= val)
6893 			return 0;
6894 		break;
6895 	case BPF_JSGT:
6896 		if (reg->smin_value > sval)
6897 			return 1;
6898 		else if (reg->smax_value < sval)
6899 			return 0;
6900 		break;
6901 	case BPF_JLT:
6902 		if (reg->umax_value < val)
6903 			return 1;
6904 		else if (reg->umin_value >= val)
6905 			return 0;
6906 		break;
6907 	case BPF_JSLT:
6908 		if (reg->smax_value < sval)
6909 			return 1;
6910 		else if (reg->smin_value >= sval)
6911 			return 0;
6912 		break;
6913 	case BPF_JGE:
6914 		if (reg->umin_value >= val)
6915 			return 1;
6916 		else if (reg->umax_value < val)
6917 			return 0;
6918 		break;
6919 	case BPF_JSGE:
6920 		if (reg->smin_value >= sval)
6921 			return 1;
6922 		else if (reg->smax_value < sval)
6923 			return 0;
6924 		break;
6925 	case BPF_JLE:
6926 		if (reg->umax_value <= val)
6927 			return 1;
6928 		else if (reg->umin_value > val)
6929 			return 0;
6930 		break;
6931 	case BPF_JSLE:
6932 		if (reg->smax_value <= sval)
6933 			return 1;
6934 		else if (reg->smin_value > sval)
6935 			return 0;
6936 		break;
6937 	}
6938 
6939 	return -1;
6940 }
6941 
6942 /* compute branch direction of the expression "if (reg opcode val) goto target;"
6943  * and return:
6944  *  1 - branch will be taken and "goto target" will be executed
6945  *  0 - branch will not be taken and fall-through to next insn
6946  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
6947  *      range [0,10]
6948  */
6949 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
6950 			   bool is_jmp32)
6951 {
6952 	if (__is_pointer_value(false, reg)) {
6953 		if (!reg_type_not_null(reg->type))
6954 			return -1;
6955 
6956 		/* If pointer is valid tests against zero will fail so we can
6957 		 * use this to direct branch taken.
6958 		 */
6959 		if (val != 0)
6960 			return -1;
6961 
6962 		switch (opcode) {
6963 		case BPF_JEQ:
6964 			return 0;
6965 		case BPF_JNE:
6966 			return 1;
6967 		default:
6968 			return -1;
6969 		}
6970 	}
6971 
6972 	if (is_jmp32)
6973 		return is_branch32_taken(reg, val, opcode);
6974 	return is_branch64_taken(reg, val, opcode);
6975 }
6976 
6977 /* Adjusts the register min/max values in the case that the dst_reg is the
6978  * variable register that we are working on, and src_reg is a constant or we're
6979  * simply doing a BPF_K check.
6980  * In JEQ/JNE cases we also adjust the var_off values.
6981  */
6982 static void reg_set_min_max(struct bpf_reg_state *true_reg,
6983 			    struct bpf_reg_state *false_reg,
6984 			    u64 val, u32 val32,
6985 			    u8 opcode, bool is_jmp32)
6986 {
6987 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
6988 	struct tnum false_64off = false_reg->var_off;
6989 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
6990 	struct tnum true_64off = true_reg->var_off;
6991 	s64 sval = (s64)val;
6992 	s32 sval32 = (s32)val32;
6993 
6994 	/* If the dst_reg is a pointer, we can't learn anything about its
6995 	 * variable offset from the compare (unless src_reg were a pointer into
6996 	 * the same object, but we don't bother with that.
6997 	 * Since false_reg and true_reg have the same type by construction, we
6998 	 * only need to check one of them for pointerness.
6999 	 */
7000 	if (__is_pointer_value(false, false_reg))
7001 		return;
7002 
7003 	switch (opcode) {
7004 	case BPF_JEQ:
7005 	case BPF_JNE:
7006 	{
7007 		struct bpf_reg_state *reg =
7008 			opcode == BPF_JEQ ? true_reg : false_reg;
7009 
7010 		/* JEQ/JNE comparison doesn't change the register equivalence.
7011 		 * r1 = r2;
7012 		 * if (r1 == 42) goto label;
7013 		 * ...
7014 		 * label: // here both r1 and r2 are known to be 42.
7015 		 *
7016 		 * Hence when marking register as known preserve it's ID.
7017 		 */
7018 		if (is_jmp32)
7019 			__mark_reg32_known(reg, val32);
7020 		else
7021 			___mark_reg_known(reg, val);
7022 		break;
7023 	}
7024 	case BPF_JSET:
7025 		if (is_jmp32) {
7026 			false_32off = tnum_and(false_32off, tnum_const(~val32));
7027 			if (is_power_of_2(val32))
7028 				true_32off = tnum_or(true_32off,
7029 						     tnum_const(val32));
7030 		} else {
7031 			false_64off = tnum_and(false_64off, tnum_const(~val));
7032 			if (is_power_of_2(val))
7033 				true_64off = tnum_or(true_64off,
7034 						     tnum_const(val));
7035 		}
7036 		break;
7037 	case BPF_JGE:
7038 	case BPF_JGT:
7039 	{
7040 		if (is_jmp32) {
7041 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
7042 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
7043 
7044 			false_reg->u32_max_value = min(false_reg->u32_max_value,
7045 						       false_umax);
7046 			true_reg->u32_min_value = max(true_reg->u32_min_value,
7047 						      true_umin);
7048 		} else {
7049 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
7050 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
7051 
7052 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
7053 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
7054 		}
7055 		break;
7056 	}
7057 	case BPF_JSGE:
7058 	case BPF_JSGT:
7059 	{
7060 		if (is_jmp32) {
7061 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
7062 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
7063 
7064 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
7065 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
7066 		} else {
7067 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
7068 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
7069 
7070 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
7071 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
7072 		}
7073 		break;
7074 	}
7075 	case BPF_JLE:
7076 	case BPF_JLT:
7077 	{
7078 		if (is_jmp32) {
7079 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
7080 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
7081 
7082 			false_reg->u32_min_value = max(false_reg->u32_min_value,
7083 						       false_umin);
7084 			true_reg->u32_max_value = min(true_reg->u32_max_value,
7085 						      true_umax);
7086 		} else {
7087 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
7088 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
7089 
7090 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
7091 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
7092 		}
7093 		break;
7094 	}
7095 	case BPF_JSLE:
7096 	case BPF_JSLT:
7097 	{
7098 		if (is_jmp32) {
7099 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
7100 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
7101 
7102 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
7103 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
7104 		} else {
7105 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
7106 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
7107 
7108 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
7109 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
7110 		}
7111 		break;
7112 	}
7113 	default:
7114 		return;
7115 	}
7116 
7117 	if (is_jmp32) {
7118 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
7119 					     tnum_subreg(false_32off));
7120 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
7121 					    tnum_subreg(true_32off));
7122 		__reg_combine_32_into_64(false_reg);
7123 		__reg_combine_32_into_64(true_reg);
7124 	} else {
7125 		false_reg->var_off = false_64off;
7126 		true_reg->var_off = true_64off;
7127 		__reg_combine_64_into_32(false_reg);
7128 		__reg_combine_64_into_32(true_reg);
7129 	}
7130 }
7131 
7132 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
7133  * the variable reg.
7134  */
7135 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
7136 				struct bpf_reg_state *false_reg,
7137 				u64 val, u32 val32,
7138 				u8 opcode, bool is_jmp32)
7139 {
7140 	/* How can we transform "a <op> b" into "b <op> a"? */
7141 	static const u8 opcode_flip[16] = {
7142 		/* these stay the same */
7143 		[BPF_JEQ  >> 4] = BPF_JEQ,
7144 		[BPF_JNE  >> 4] = BPF_JNE,
7145 		[BPF_JSET >> 4] = BPF_JSET,
7146 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
7147 		[BPF_JGE  >> 4] = BPF_JLE,
7148 		[BPF_JGT  >> 4] = BPF_JLT,
7149 		[BPF_JLE  >> 4] = BPF_JGE,
7150 		[BPF_JLT  >> 4] = BPF_JGT,
7151 		[BPF_JSGE >> 4] = BPF_JSLE,
7152 		[BPF_JSGT >> 4] = BPF_JSLT,
7153 		[BPF_JSLE >> 4] = BPF_JSGE,
7154 		[BPF_JSLT >> 4] = BPF_JSGT
7155 	};
7156 	opcode = opcode_flip[opcode >> 4];
7157 	/* This uses zero as "not present in table"; luckily the zero opcode,
7158 	 * BPF_JA, can't get here.
7159 	 */
7160 	if (opcode)
7161 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
7162 }
7163 
7164 /* Regs are known to be equal, so intersect their min/max/var_off */
7165 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
7166 				  struct bpf_reg_state *dst_reg)
7167 {
7168 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
7169 							dst_reg->umin_value);
7170 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
7171 							dst_reg->umax_value);
7172 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
7173 							dst_reg->smin_value);
7174 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
7175 							dst_reg->smax_value);
7176 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
7177 							     dst_reg->var_off);
7178 	/* We might have learned new bounds from the var_off. */
7179 	__update_reg_bounds(src_reg);
7180 	__update_reg_bounds(dst_reg);
7181 	/* We might have learned something about the sign bit. */
7182 	__reg_deduce_bounds(src_reg);
7183 	__reg_deduce_bounds(dst_reg);
7184 	/* We might have learned some bits from the bounds. */
7185 	__reg_bound_offset(src_reg);
7186 	__reg_bound_offset(dst_reg);
7187 	/* Intersecting with the old var_off might have improved our bounds
7188 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
7189 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
7190 	 */
7191 	__update_reg_bounds(src_reg);
7192 	__update_reg_bounds(dst_reg);
7193 }
7194 
7195 static void reg_combine_min_max(struct bpf_reg_state *true_src,
7196 				struct bpf_reg_state *true_dst,
7197 				struct bpf_reg_state *false_src,
7198 				struct bpf_reg_state *false_dst,
7199 				u8 opcode)
7200 {
7201 	switch (opcode) {
7202 	case BPF_JEQ:
7203 		__reg_combine_min_max(true_src, true_dst);
7204 		break;
7205 	case BPF_JNE:
7206 		__reg_combine_min_max(false_src, false_dst);
7207 		break;
7208 	}
7209 }
7210 
7211 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
7212 				 struct bpf_reg_state *reg, u32 id,
7213 				 bool is_null)
7214 {
7215 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
7216 		/* Old offset (both fixed and variable parts) should
7217 		 * have been known-zero, because we don't allow pointer
7218 		 * arithmetic on pointers that might be NULL.
7219 		 */
7220 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
7221 				 !tnum_equals_const(reg->var_off, 0) ||
7222 				 reg->off)) {
7223 			__mark_reg_known_zero(reg);
7224 			reg->off = 0;
7225 		}
7226 		if (is_null) {
7227 			reg->type = SCALAR_VALUE;
7228 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
7229 			const struct bpf_map *map = reg->map_ptr;
7230 
7231 			if (map->inner_map_meta) {
7232 				reg->type = CONST_PTR_TO_MAP;
7233 				reg->map_ptr = map->inner_map_meta;
7234 			} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
7235 				reg->type = PTR_TO_XDP_SOCK;
7236 			} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
7237 				   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
7238 				reg->type = PTR_TO_SOCKET;
7239 			} else {
7240 				reg->type = PTR_TO_MAP_VALUE;
7241 			}
7242 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
7243 			reg->type = PTR_TO_SOCKET;
7244 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
7245 			reg->type = PTR_TO_SOCK_COMMON;
7246 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
7247 			reg->type = PTR_TO_TCP_SOCK;
7248 		} else if (reg->type == PTR_TO_BTF_ID_OR_NULL) {
7249 			reg->type = PTR_TO_BTF_ID;
7250 		} else if (reg->type == PTR_TO_MEM_OR_NULL) {
7251 			reg->type = PTR_TO_MEM;
7252 		} else if (reg->type == PTR_TO_RDONLY_BUF_OR_NULL) {
7253 			reg->type = PTR_TO_RDONLY_BUF;
7254 		} else if (reg->type == PTR_TO_RDWR_BUF_OR_NULL) {
7255 			reg->type = PTR_TO_RDWR_BUF;
7256 		}
7257 		if (is_null) {
7258 			/* We don't need id and ref_obj_id from this point
7259 			 * onwards anymore, thus we should better reset it,
7260 			 * so that state pruning has chances to take effect.
7261 			 */
7262 			reg->id = 0;
7263 			reg->ref_obj_id = 0;
7264 		} else if (!reg_may_point_to_spin_lock(reg)) {
7265 			/* For not-NULL ptr, reg->ref_obj_id will be reset
7266 			 * in release_reg_references().
7267 			 *
7268 			 * reg->id is still used by spin_lock ptr. Other
7269 			 * than spin_lock ptr type, reg->id can be reset.
7270 			 */
7271 			reg->id = 0;
7272 		}
7273 	}
7274 }
7275 
7276 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
7277 				    bool is_null)
7278 {
7279 	struct bpf_reg_state *reg;
7280 	int i;
7281 
7282 	for (i = 0; i < MAX_BPF_REG; i++)
7283 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
7284 
7285 	bpf_for_each_spilled_reg(i, state, reg) {
7286 		if (!reg)
7287 			continue;
7288 		mark_ptr_or_null_reg(state, reg, id, is_null);
7289 	}
7290 }
7291 
7292 /* The logic is similar to find_good_pkt_pointers(), both could eventually
7293  * be folded together at some point.
7294  */
7295 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
7296 				  bool is_null)
7297 {
7298 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7299 	struct bpf_reg_state *regs = state->regs;
7300 	u32 ref_obj_id = regs[regno].ref_obj_id;
7301 	u32 id = regs[regno].id;
7302 	int i;
7303 
7304 	if (ref_obj_id && ref_obj_id == id && is_null)
7305 		/* regs[regno] is in the " == NULL" branch.
7306 		 * No one could have freed the reference state before
7307 		 * doing the NULL check.
7308 		 */
7309 		WARN_ON_ONCE(release_reference_state(state, id));
7310 
7311 	for (i = 0; i <= vstate->curframe; i++)
7312 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
7313 }
7314 
7315 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
7316 				   struct bpf_reg_state *dst_reg,
7317 				   struct bpf_reg_state *src_reg,
7318 				   struct bpf_verifier_state *this_branch,
7319 				   struct bpf_verifier_state *other_branch)
7320 {
7321 	if (BPF_SRC(insn->code) != BPF_X)
7322 		return false;
7323 
7324 	/* Pointers are always 64-bit. */
7325 	if (BPF_CLASS(insn->code) == BPF_JMP32)
7326 		return false;
7327 
7328 	switch (BPF_OP(insn->code)) {
7329 	case BPF_JGT:
7330 		if ((dst_reg->type == PTR_TO_PACKET &&
7331 		     src_reg->type == PTR_TO_PACKET_END) ||
7332 		    (dst_reg->type == PTR_TO_PACKET_META &&
7333 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7334 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
7335 			find_good_pkt_pointers(this_branch, dst_reg,
7336 					       dst_reg->type, false);
7337 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7338 			    src_reg->type == PTR_TO_PACKET) ||
7339 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7340 			    src_reg->type == PTR_TO_PACKET_META)) {
7341 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
7342 			find_good_pkt_pointers(other_branch, src_reg,
7343 					       src_reg->type, true);
7344 		} else {
7345 			return false;
7346 		}
7347 		break;
7348 	case BPF_JLT:
7349 		if ((dst_reg->type == PTR_TO_PACKET &&
7350 		     src_reg->type == PTR_TO_PACKET_END) ||
7351 		    (dst_reg->type == PTR_TO_PACKET_META &&
7352 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7353 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
7354 			find_good_pkt_pointers(other_branch, dst_reg,
7355 					       dst_reg->type, true);
7356 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7357 			    src_reg->type == PTR_TO_PACKET) ||
7358 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7359 			    src_reg->type == PTR_TO_PACKET_META)) {
7360 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
7361 			find_good_pkt_pointers(this_branch, src_reg,
7362 					       src_reg->type, false);
7363 		} else {
7364 			return false;
7365 		}
7366 		break;
7367 	case BPF_JGE:
7368 		if ((dst_reg->type == PTR_TO_PACKET &&
7369 		     src_reg->type == PTR_TO_PACKET_END) ||
7370 		    (dst_reg->type == PTR_TO_PACKET_META &&
7371 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7372 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
7373 			find_good_pkt_pointers(this_branch, dst_reg,
7374 					       dst_reg->type, true);
7375 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7376 			    src_reg->type == PTR_TO_PACKET) ||
7377 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7378 			    src_reg->type == PTR_TO_PACKET_META)) {
7379 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
7380 			find_good_pkt_pointers(other_branch, src_reg,
7381 					       src_reg->type, false);
7382 		} else {
7383 			return false;
7384 		}
7385 		break;
7386 	case BPF_JLE:
7387 		if ((dst_reg->type == PTR_TO_PACKET &&
7388 		     src_reg->type == PTR_TO_PACKET_END) ||
7389 		    (dst_reg->type == PTR_TO_PACKET_META &&
7390 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7391 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
7392 			find_good_pkt_pointers(other_branch, dst_reg,
7393 					       dst_reg->type, false);
7394 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7395 			    src_reg->type == PTR_TO_PACKET) ||
7396 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7397 			    src_reg->type == PTR_TO_PACKET_META)) {
7398 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
7399 			find_good_pkt_pointers(this_branch, src_reg,
7400 					       src_reg->type, true);
7401 		} else {
7402 			return false;
7403 		}
7404 		break;
7405 	default:
7406 		return false;
7407 	}
7408 
7409 	return true;
7410 }
7411 
7412 static void find_equal_scalars(struct bpf_verifier_state *vstate,
7413 			       struct bpf_reg_state *known_reg)
7414 {
7415 	struct bpf_func_state *state;
7416 	struct bpf_reg_state *reg;
7417 	int i, j;
7418 
7419 	for (i = 0; i <= vstate->curframe; i++) {
7420 		state = vstate->frame[i];
7421 		for (j = 0; j < MAX_BPF_REG; j++) {
7422 			reg = &state->regs[j];
7423 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
7424 				*reg = *known_reg;
7425 		}
7426 
7427 		bpf_for_each_spilled_reg(j, state, reg) {
7428 			if (!reg)
7429 				continue;
7430 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
7431 				*reg = *known_reg;
7432 		}
7433 	}
7434 }
7435 
7436 static int check_cond_jmp_op(struct bpf_verifier_env *env,
7437 			     struct bpf_insn *insn, int *insn_idx)
7438 {
7439 	struct bpf_verifier_state *this_branch = env->cur_state;
7440 	struct bpf_verifier_state *other_branch;
7441 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
7442 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
7443 	u8 opcode = BPF_OP(insn->code);
7444 	bool is_jmp32;
7445 	int pred = -1;
7446 	int err;
7447 
7448 	/* Only conditional jumps are expected to reach here. */
7449 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
7450 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
7451 		return -EINVAL;
7452 	}
7453 
7454 	if (BPF_SRC(insn->code) == BPF_X) {
7455 		if (insn->imm != 0) {
7456 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
7457 			return -EINVAL;
7458 		}
7459 
7460 		/* check src1 operand */
7461 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
7462 		if (err)
7463 			return err;
7464 
7465 		if (is_pointer_value(env, insn->src_reg)) {
7466 			verbose(env, "R%d pointer comparison prohibited\n",
7467 				insn->src_reg);
7468 			return -EACCES;
7469 		}
7470 		src_reg = &regs[insn->src_reg];
7471 	} else {
7472 		if (insn->src_reg != BPF_REG_0) {
7473 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
7474 			return -EINVAL;
7475 		}
7476 	}
7477 
7478 	/* check src2 operand */
7479 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7480 	if (err)
7481 		return err;
7482 
7483 	dst_reg = &regs[insn->dst_reg];
7484 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
7485 
7486 	if (BPF_SRC(insn->code) == BPF_K) {
7487 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
7488 	} else if (src_reg->type == SCALAR_VALUE &&
7489 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
7490 		pred = is_branch_taken(dst_reg,
7491 				       tnum_subreg(src_reg->var_off).value,
7492 				       opcode,
7493 				       is_jmp32);
7494 	} else if (src_reg->type == SCALAR_VALUE &&
7495 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
7496 		pred = is_branch_taken(dst_reg,
7497 				       src_reg->var_off.value,
7498 				       opcode,
7499 				       is_jmp32);
7500 	}
7501 
7502 	if (pred >= 0) {
7503 		/* If we get here with a dst_reg pointer type it is because
7504 		 * above is_branch_taken() special cased the 0 comparison.
7505 		 */
7506 		if (!__is_pointer_value(false, dst_reg))
7507 			err = mark_chain_precision(env, insn->dst_reg);
7508 		if (BPF_SRC(insn->code) == BPF_X && !err)
7509 			err = mark_chain_precision(env, insn->src_reg);
7510 		if (err)
7511 			return err;
7512 	}
7513 	if (pred == 1) {
7514 		/* only follow the goto, ignore fall-through */
7515 		*insn_idx += insn->off;
7516 		return 0;
7517 	} else if (pred == 0) {
7518 		/* only follow fall-through branch, since
7519 		 * that's where the program will go
7520 		 */
7521 		return 0;
7522 	}
7523 
7524 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
7525 				  false);
7526 	if (!other_branch)
7527 		return -EFAULT;
7528 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
7529 
7530 	/* detect if we are comparing against a constant value so we can adjust
7531 	 * our min/max values for our dst register.
7532 	 * this is only legit if both are scalars (or pointers to the same
7533 	 * object, I suppose, but we don't support that right now), because
7534 	 * otherwise the different base pointers mean the offsets aren't
7535 	 * comparable.
7536 	 */
7537 	if (BPF_SRC(insn->code) == BPF_X) {
7538 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
7539 
7540 		if (dst_reg->type == SCALAR_VALUE &&
7541 		    src_reg->type == SCALAR_VALUE) {
7542 			if (tnum_is_const(src_reg->var_off) ||
7543 			    (is_jmp32 &&
7544 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
7545 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
7546 						dst_reg,
7547 						src_reg->var_off.value,
7548 						tnum_subreg(src_reg->var_off).value,
7549 						opcode, is_jmp32);
7550 			else if (tnum_is_const(dst_reg->var_off) ||
7551 				 (is_jmp32 &&
7552 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
7553 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
7554 						    src_reg,
7555 						    dst_reg->var_off.value,
7556 						    tnum_subreg(dst_reg->var_off).value,
7557 						    opcode, is_jmp32);
7558 			else if (!is_jmp32 &&
7559 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
7560 				/* Comparing for equality, we can combine knowledge */
7561 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
7562 						    &other_branch_regs[insn->dst_reg],
7563 						    src_reg, dst_reg, opcode);
7564 			if (src_reg->id &&
7565 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
7566 				find_equal_scalars(this_branch, src_reg);
7567 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
7568 			}
7569 
7570 		}
7571 	} else if (dst_reg->type == SCALAR_VALUE) {
7572 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
7573 					dst_reg, insn->imm, (u32)insn->imm,
7574 					opcode, is_jmp32);
7575 	}
7576 
7577 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
7578 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
7579 		find_equal_scalars(this_branch, dst_reg);
7580 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
7581 	}
7582 
7583 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
7584 	 * NOTE: these optimizations below are related with pointer comparison
7585 	 *       which will never be JMP32.
7586 	 */
7587 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
7588 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
7589 	    reg_type_may_be_null(dst_reg->type)) {
7590 		/* Mark all identical registers in each branch as either
7591 		 * safe or unknown depending R == 0 or R != 0 conditional.
7592 		 */
7593 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
7594 				      opcode == BPF_JNE);
7595 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
7596 				      opcode == BPF_JEQ);
7597 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
7598 					   this_branch, other_branch) &&
7599 		   is_pointer_value(env, insn->dst_reg)) {
7600 		verbose(env, "R%d pointer comparison prohibited\n",
7601 			insn->dst_reg);
7602 		return -EACCES;
7603 	}
7604 	if (env->log.level & BPF_LOG_LEVEL)
7605 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
7606 	return 0;
7607 }
7608 
7609 /* verify BPF_LD_IMM64 instruction */
7610 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
7611 {
7612 	struct bpf_insn_aux_data *aux = cur_aux(env);
7613 	struct bpf_reg_state *regs = cur_regs(env);
7614 	struct bpf_reg_state *dst_reg;
7615 	struct bpf_map *map;
7616 	int err;
7617 
7618 	if (BPF_SIZE(insn->code) != BPF_DW) {
7619 		verbose(env, "invalid BPF_LD_IMM insn\n");
7620 		return -EINVAL;
7621 	}
7622 	if (insn->off != 0) {
7623 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
7624 		return -EINVAL;
7625 	}
7626 
7627 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
7628 	if (err)
7629 		return err;
7630 
7631 	dst_reg = &regs[insn->dst_reg];
7632 	if (insn->src_reg == 0) {
7633 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
7634 
7635 		dst_reg->type = SCALAR_VALUE;
7636 		__mark_reg_known(&regs[insn->dst_reg], imm);
7637 		return 0;
7638 	}
7639 
7640 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
7641 		mark_reg_known_zero(env, regs, insn->dst_reg);
7642 
7643 		dst_reg->type = aux->btf_var.reg_type;
7644 		switch (dst_reg->type) {
7645 		case PTR_TO_MEM:
7646 			dst_reg->mem_size = aux->btf_var.mem_size;
7647 			break;
7648 		case PTR_TO_BTF_ID:
7649 		case PTR_TO_PERCPU_BTF_ID:
7650 			dst_reg->btf_id = aux->btf_var.btf_id;
7651 			break;
7652 		default:
7653 			verbose(env, "bpf verifier is misconfigured\n");
7654 			return -EFAULT;
7655 		}
7656 		return 0;
7657 	}
7658 
7659 	map = env->used_maps[aux->map_index];
7660 	mark_reg_known_zero(env, regs, insn->dst_reg);
7661 	dst_reg->map_ptr = map;
7662 
7663 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
7664 		dst_reg->type = PTR_TO_MAP_VALUE;
7665 		dst_reg->off = aux->map_off;
7666 		if (map_value_has_spin_lock(map))
7667 			dst_reg->id = ++env->id_gen;
7668 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7669 		dst_reg->type = CONST_PTR_TO_MAP;
7670 	} else {
7671 		verbose(env, "bpf verifier is misconfigured\n");
7672 		return -EINVAL;
7673 	}
7674 
7675 	return 0;
7676 }
7677 
7678 static bool may_access_skb(enum bpf_prog_type type)
7679 {
7680 	switch (type) {
7681 	case BPF_PROG_TYPE_SOCKET_FILTER:
7682 	case BPF_PROG_TYPE_SCHED_CLS:
7683 	case BPF_PROG_TYPE_SCHED_ACT:
7684 		return true;
7685 	default:
7686 		return false;
7687 	}
7688 }
7689 
7690 /* verify safety of LD_ABS|LD_IND instructions:
7691  * - they can only appear in the programs where ctx == skb
7692  * - since they are wrappers of function calls, they scratch R1-R5 registers,
7693  *   preserve R6-R9, and store return value into R0
7694  *
7695  * Implicit input:
7696  *   ctx == skb == R6 == CTX
7697  *
7698  * Explicit input:
7699  *   SRC == any register
7700  *   IMM == 32-bit immediate
7701  *
7702  * Output:
7703  *   R0 - 8/16/32-bit skb data converted to cpu endianness
7704  */
7705 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
7706 {
7707 	struct bpf_reg_state *regs = cur_regs(env);
7708 	static const int ctx_reg = BPF_REG_6;
7709 	u8 mode = BPF_MODE(insn->code);
7710 	int i, err;
7711 
7712 	if (!may_access_skb(resolve_prog_type(env->prog))) {
7713 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
7714 		return -EINVAL;
7715 	}
7716 
7717 	if (!env->ops->gen_ld_abs) {
7718 		verbose(env, "bpf verifier is misconfigured\n");
7719 		return -EINVAL;
7720 	}
7721 
7722 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
7723 	    BPF_SIZE(insn->code) == BPF_DW ||
7724 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
7725 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
7726 		return -EINVAL;
7727 	}
7728 
7729 	/* check whether implicit source operand (register R6) is readable */
7730 	err = check_reg_arg(env, ctx_reg, SRC_OP);
7731 	if (err)
7732 		return err;
7733 
7734 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
7735 	 * gen_ld_abs() may terminate the program at runtime, leading to
7736 	 * reference leak.
7737 	 */
7738 	err = check_reference_leak(env);
7739 	if (err) {
7740 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
7741 		return err;
7742 	}
7743 
7744 	if (env->cur_state->active_spin_lock) {
7745 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
7746 		return -EINVAL;
7747 	}
7748 
7749 	if (regs[ctx_reg].type != PTR_TO_CTX) {
7750 		verbose(env,
7751 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
7752 		return -EINVAL;
7753 	}
7754 
7755 	if (mode == BPF_IND) {
7756 		/* check explicit source operand */
7757 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
7758 		if (err)
7759 			return err;
7760 	}
7761 
7762 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
7763 	if (err < 0)
7764 		return err;
7765 
7766 	/* reset caller saved regs to unreadable */
7767 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
7768 		mark_reg_not_init(env, regs, caller_saved[i]);
7769 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7770 	}
7771 
7772 	/* mark destination R0 register as readable, since it contains
7773 	 * the value fetched from the packet.
7774 	 * Already marked as written above.
7775 	 */
7776 	mark_reg_unknown(env, regs, BPF_REG_0);
7777 	/* ld_abs load up to 32-bit skb data. */
7778 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
7779 	return 0;
7780 }
7781 
7782 static int check_return_code(struct bpf_verifier_env *env)
7783 {
7784 	struct tnum enforce_attach_type_range = tnum_unknown;
7785 	const struct bpf_prog *prog = env->prog;
7786 	struct bpf_reg_state *reg;
7787 	struct tnum range = tnum_range(0, 1);
7788 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
7789 	int err;
7790 
7791 	/* LSM and struct_ops func-ptr's return type could be "void" */
7792 	if ((prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
7793 	     prog_type == BPF_PROG_TYPE_LSM) &&
7794 	    !prog->aux->attach_func_proto->type)
7795 		return 0;
7796 
7797 	/* eBPF calling convetion is such that R0 is used
7798 	 * to return the value from eBPF program.
7799 	 * Make sure that it's readable at this time
7800 	 * of bpf_exit, which means that program wrote
7801 	 * something into it earlier
7802 	 */
7803 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7804 	if (err)
7805 		return err;
7806 
7807 	if (is_pointer_value(env, BPF_REG_0)) {
7808 		verbose(env, "R0 leaks addr as return value\n");
7809 		return -EACCES;
7810 	}
7811 
7812 	switch (prog_type) {
7813 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
7814 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
7815 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
7816 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
7817 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
7818 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
7819 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
7820 			range = tnum_range(1, 1);
7821 		break;
7822 	case BPF_PROG_TYPE_CGROUP_SKB:
7823 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
7824 			range = tnum_range(0, 3);
7825 			enforce_attach_type_range = tnum_range(2, 3);
7826 		}
7827 		break;
7828 	case BPF_PROG_TYPE_CGROUP_SOCK:
7829 	case BPF_PROG_TYPE_SOCK_OPS:
7830 	case BPF_PROG_TYPE_CGROUP_DEVICE:
7831 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
7832 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
7833 		break;
7834 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
7835 		if (!env->prog->aux->attach_btf_id)
7836 			return 0;
7837 		range = tnum_const(0);
7838 		break;
7839 	case BPF_PROG_TYPE_TRACING:
7840 		switch (env->prog->expected_attach_type) {
7841 		case BPF_TRACE_FENTRY:
7842 		case BPF_TRACE_FEXIT:
7843 			range = tnum_const(0);
7844 			break;
7845 		case BPF_TRACE_RAW_TP:
7846 		case BPF_MODIFY_RETURN:
7847 			return 0;
7848 		case BPF_TRACE_ITER:
7849 			break;
7850 		default:
7851 			return -ENOTSUPP;
7852 		}
7853 		break;
7854 	case BPF_PROG_TYPE_SK_LOOKUP:
7855 		range = tnum_range(SK_DROP, SK_PASS);
7856 		break;
7857 	case BPF_PROG_TYPE_EXT:
7858 		/* freplace program can return anything as its return value
7859 		 * depends on the to-be-replaced kernel func or bpf program.
7860 		 */
7861 	default:
7862 		return 0;
7863 	}
7864 
7865 	reg = cur_regs(env) + BPF_REG_0;
7866 	if (reg->type != SCALAR_VALUE) {
7867 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
7868 			reg_type_str[reg->type]);
7869 		return -EINVAL;
7870 	}
7871 
7872 	if (!tnum_in(range, reg->var_off)) {
7873 		char tn_buf[48];
7874 
7875 		verbose(env, "At program exit the register R0 ");
7876 		if (!tnum_is_unknown(reg->var_off)) {
7877 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7878 			verbose(env, "has value %s", tn_buf);
7879 		} else {
7880 			verbose(env, "has unknown scalar value");
7881 		}
7882 		tnum_strn(tn_buf, sizeof(tn_buf), range);
7883 		verbose(env, " should have been in %s\n", tn_buf);
7884 		return -EINVAL;
7885 	}
7886 
7887 	if (!tnum_is_unknown(enforce_attach_type_range) &&
7888 	    tnum_in(enforce_attach_type_range, reg->var_off))
7889 		env->prog->enforce_expected_attach_type = 1;
7890 	return 0;
7891 }
7892 
7893 /* non-recursive DFS pseudo code
7894  * 1  procedure DFS-iterative(G,v):
7895  * 2      label v as discovered
7896  * 3      let S be a stack
7897  * 4      S.push(v)
7898  * 5      while S is not empty
7899  * 6            t <- S.pop()
7900  * 7            if t is what we're looking for:
7901  * 8                return t
7902  * 9            for all edges e in G.adjacentEdges(t) do
7903  * 10               if edge e is already labelled
7904  * 11                   continue with the next edge
7905  * 12               w <- G.adjacentVertex(t,e)
7906  * 13               if vertex w is not discovered and not explored
7907  * 14                   label e as tree-edge
7908  * 15                   label w as discovered
7909  * 16                   S.push(w)
7910  * 17                   continue at 5
7911  * 18               else if vertex w is discovered
7912  * 19                   label e as back-edge
7913  * 20               else
7914  * 21                   // vertex w is explored
7915  * 22                   label e as forward- or cross-edge
7916  * 23           label t as explored
7917  * 24           S.pop()
7918  *
7919  * convention:
7920  * 0x10 - discovered
7921  * 0x11 - discovered and fall-through edge labelled
7922  * 0x12 - discovered and fall-through and branch edges labelled
7923  * 0x20 - explored
7924  */
7925 
7926 enum {
7927 	DISCOVERED = 0x10,
7928 	EXPLORED = 0x20,
7929 	FALLTHROUGH = 1,
7930 	BRANCH = 2,
7931 };
7932 
7933 static u32 state_htab_size(struct bpf_verifier_env *env)
7934 {
7935 	return env->prog->len;
7936 }
7937 
7938 static struct bpf_verifier_state_list **explored_state(
7939 					struct bpf_verifier_env *env,
7940 					int idx)
7941 {
7942 	struct bpf_verifier_state *cur = env->cur_state;
7943 	struct bpf_func_state *state = cur->frame[cur->curframe];
7944 
7945 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
7946 }
7947 
7948 static void init_explored_state(struct bpf_verifier_env *env, int idx)
7949 {
7950 	env->insn_aux_data[idx].prune_point = true;
7951 }
7952 
7953 /* t, w, e - match pseudo-code above:
7954  * t - index of current instruction
7955  * w - next instruction
7956  * e - edge
7957  */
7958 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
7959 		     bool loop_ok)
7960 {
7961 	int *insn_stack = env->cfg.insn_stack;
7962 	int *insn_state = env->cfg.insn_state;
7963 
7964 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
7965 		return 0;
7966 
7967 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
7968 		return 0;
7969 
7970 	if (w < 0 || w >= env->prog->len) {
7971 		verbose_linfo(env, t, "%d: ", t);
7972 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
7973 		return -EINVAL;
7974 	}
7975 
7976 	if (e == BRANCH)
7977 		/* mark branch target for state pruning */
7978 		init_explored_state(env, w);
7979 
7980 	if (insn_state[w] == 0) {
7981 		/* tree-edge */
7982 		insn_state[t] = DISCOVERED | e;
7983 		insn_state[w] = DISCOVERED;
7984 		if (env->cfg.cur_stack >= env->prog->len)
7985 			return -E2BIG;
7986 		insn_stack[env->cfg.cur_stack++] = w;
7987 		return 1;
7988 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
7989 		if (loop_ok && env->bpf_capable)
7990 			return 0;
7991 		verbose_linfo(env, t, "%d: ", t);
7992 		verbose_linfo(env, w, "%d: ", w);
7993 		verbose(env, "back-edge from insn %d to %d\n", t, w);
7994 		return -EINVAL;
7995 	} else if (insn_state[w] == EXPLORED) {
7996 		/* forward- or cross-edge */
7997 		insn_state[t] = DISCOVERED | e;
7998 	} else {
7999 		verbose(env, "insn state internal bug\n");
8000 		return -EFAULT;
8001 	}
8002 	return 0;
8003 }
8004 
8005 /* non-recursive depth-first-search to detect loops in BPF program
8006  * loop == back-edge in directed graph
8007  */
8008 static int check_cfg(struct bpf_verifier_env *env)
8009 {
8010 	struct bpf_insn *insns = env->prog->insnsi;
8011 	int insn_cnt = env->prog->len;
8012 	int *insn_stack, *insn_state;
8013 	int ret = 0;
8014 	int i, t;
8015 
8016 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8017 	if (!insn_state)
8018 		return -ENOMEM;
8019 
8020 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8021 	if (!insn_stack) {
8022 		kvfree(insn_state);
8023 		return -ENOMEM;
8024 	}
8025 
8026 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
8027 	insn_stack[0] = 0; /* 0 is the first instruction */
8028 	env->cfg.cur_stack = 1;
8029 
8030 peek_stack:
8031 	if (env->cfg.cur_stack == 0)
8032 		goto check_state;
8033 	t = insn_stack[env->cfg.cur_stack - 1];
8034 
8035 	if (BPF_CLASS(insns[t].code) == BPF_JMP ||
8036 	    BPF_CLASS(insns[t].code) == BPF_JMP32) {
8037 		u8 opcode = BPF_OP(insns[t].code);
8038 
8039 		if (opcode == BPF_EXIT) {
8040 			goto mark_explored;
8041 		} else if (opcode == BPF_CALL) {
8042 			ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8043 			if (ret == 1)
8044 				goto peek_stack;
8045 			else if (ret < 0)
8046 				goto err_free;
8047 			if (t + 1 < insn_cnt)
8048 				init_explored_state(env, t + 1);
8049 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
8050 				init_explored_state(env, t);
8051 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
8052 						env, false);
8053 				if (ret == 1)
8054 					goto peek_stack;
8055 				else if (ret < 0)
8056 					goto err_free;
8057 			}
8058 		} else if (opcode == BPF_JA) {
8059 			if (BPF_SRC(insns[t].code) != BPF_K) {
8060 				ret = -EINVAL;
8061 				goto err_free;
8062 			}
8063 			/* unconditional jump with single edge */
8064 			ret = push_insn(t, t + insns[t].off + 1,
8065 					FALLTHROUGH, env, true);
8066 			if (ret == 1)
8067 				goto peek_stack;
8068 			else if (ret < 0)
8069 				goto err_free;
8070 			/* unconditional jmp is not a good pruning point,
8071 			 * but it's marked, since backtracking needs
8072 			 * to record jmp history in is_state_visited().
8073 			 */
8074 			init_explored_state(env, t + insns[t].off + 1);
8075 			/* tell verifier to check for equivalent states
8076 			 * after every call and jump
8077 			 */
8078 			if (t + 1 < insn_cnt)
8079 				init_explored_state(env, t + 1);
8080 		} else {
8081 			/* conditional jump with two edges */
8082 			init_explored_state(env, t);
8083 			ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
8084 			if (ret == 1)
8085 				goto peek_stack;
8086 			else if (ret < 0)
8087 				goto err_free;
8088 
8089 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
8090 			if (ret == 1)
8091 				goto peek_stack;
8092 			else if (ret < 0)
8093 				goto err_free;
8094 		}
8095 	} else {
8096 		/* all other non-branch instructions with single
8097 		 * fall-through edge
8098 		 */
8099 		ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8100 		if (ret == 1)
8101 			goto peek_stack;
8102 		else if (ret < 0)
8103 			goto err_free;
8104 	}
8105 
8106 mark_explored:
8107 	insn_state[t] = EXPLORED;
8108 	if (env->cfg.cur_stack-- <= 0) {
8109 		verbose(env, "pop stack internal bug\n");
8110 		ret = -EFAULT;
8111 		goto err_free;
8112 	}
8113 	goto peek_stack;
8114 
8115 check_state:
8116 	for (i = 0; i < insn_cnt; i++) {
8117 		if (insn_state[i] != EXPLORED) {
8118 			verbose(env, "unreachable insn %d\n", i);
8119 			ret = -EINVAL;
8120 			goto err_free;
8121 		}
8122 	}
8123 	ret = 0; /* cfg looks good */
8124 
8125 err_free:
8126 	kvfree(insn_state);
8127 	kvfree(insn_stack);
8128 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
8129 	return ret;
8130 }
8131 
8132 static int check_abnormal_return(struct bpf_verifier_env *env)
8133 {
8134 	int i;
8135 
8136 	for (i = 1; i < env->subprog_cnt; i++) {
8137 		if (env->subprog_info[i].has_ld_abs) {
8138 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
8139 			return -EINVAL;
8140 		}
8141 		if (env->subprog_info[i].has_tail_call) {
8142 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
8143 			return -EINVAL;
8144 		}
8145 	}
8146 	return 0;
8147 }
8148 
8149 /* The minimum supported BTF func info size */
8150 #define MIN_BPF_FUNCINFO_SIZE	8
8151 #define MAX_FUNCINFO_REC_SIZE	252
8152 
8153 static int check_btf_func(struct bpf_verifier_env *env,
8154 			  const union bpf_attr *attr,
8155 			  union bpf_attr __user *uattr)
8156 {
8157 	const struct btf_type *type, *func_proto, *ret_type;
8158 	u32 i, nfuncs, urec_size, min_size;
8159 	u32 krec_size = sizeof(struct bpf_func_info);
8160 	struct bpf_func_info *krecord;
8161 	struct bpf_func_info_aux *info_aux = NULL;
8162 	struct bpf_prog *prog;
8163 	const struct btf *btf;
8164 	void __user *urecord;
8165 	u32 prev_offset = 0;
8166 	bool scalar_return;
8167 	int ret = -ENOMEM;
8168 
8169 	nfuncs = attr->func_info_cnt;
8170 	if (!nfuncs) {
8171 		if (check_abnormal_return(env))
8172 			return -EINVAL;
8173 		return 0;
8174 	}
8175 
8176 	if (nfuncs != env->subprog_cnt) {
8177 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
8178 		return -EINVAL;
8179 	}
8180 
8181 	urec_size = attr->func_info_rec_size;
8182 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
8183 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
8184 	    urec_size % sizeof(u32)) {
8185 		verbose(env, "invalid func info rec size %u\n", urec_size);
8186 		return -EINVAL;
8187 	}
8188 
8189 	prog = env->prog;
8190 	btf = prog->aux->btf;
8191 
8192 	urecord = u64_to_user_ptr(attr->func_info);
8193 	min_size = min_t(u32, krec_size, urec_size);
8194 
8195 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
8196 	if (!krecord)
8197 		return -ENOMEM;
8198 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
8199 	if (!info_aux)
8200 		goto err_free;
8201 
8202 	for (i = 0; i < nfuncs; i++) {
8203 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
8204 		if (ret) {
8205 			if (ret == -E2BIG) {
8206 				verbose(env, "nonzero tailing record in func info");
8207 				/* set the size kernel expects so loader can zero
8208 				 * out the rest of the record.
8209 				 */
8210 				if (put_user(min_size, &uattr->func_info_rec_size))
8211 					ret = -EFAULT;
8212 			}
8213 			goto err_free;
8214 		}
8215 
8216 		if (copy_from_user(&krecord[i], urecord, min_size)) {
8217 			ret = -EFAULT;
8218 			goto err_free;
8219 		}
8220 
8221 		/* check insn_off */
8222 		ret = -EINVAL;
8223 		if (i == 0) {
8224 			if (krecord[i].insn_off) {
8225 				verbose(env,
8226 					"nonzero insn_off %u for the first func info record",
8227 					krecord[i].insn_off);
8228 				goto err_free;
8229 			}
8230 		} else if (krecord[i].insn_off <= prev_offset) {
8231 			verbose(env,
8232 				"same or smaller insn offset (%u) than previous func info record (%u)",
8233 				krecord[i].insn_off, prev_offset);
8234 			goto err_free;
8235 		}
8236 
8237 		if (env->subprog_info[i].start != krecord[i].insn_off) {
8238 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
8239 			goto err_free;
8240 		}
8241 
8242 		/* check type_id */
8243 		type = btf_type_by_id(btf, krecord[i].type_id);
8244 		if (!type || !btf_type_is_func(type)) {
8245 			verbose(env, "invalid type id %d in func info",
8246 				krecord[i].type_id);
8247 			goto err_free;
8248 		}
8249 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
8250 
8251 		func_proto = btf_type_by_id(btf, type->type);
8252 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
8253 			/* btf_func_check() already verified it during BTF load */
8254 			goto err_free;
8255 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
8256 		scalar_return =
8257 			btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
8258 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
8259 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
8260 			goto err_free;
8261 		}
8262 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
8263 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
8264 			goto err_free;
8265 		}
8266 
8267 		prev_offset = krecord[i].insn_off;
8268 		urecord += urec_size;
8269 	}
8270 
8271 	prog->aux->func_info = krecord;
8272 	prog->aux->func_info_cnt = nfuncs;
8273 	prog->aux->func_info_aux = info_aux;
8274 	return 0;
8275 
8276 err_free:
8277 	kvfree(krecord);
8278 	kfree(info_aux);
8279 	return ret;
8280 }
8281 
8282 static void adjust_btf_func(struct bpf_verifier_env *env)
8283 {
8284 	struct bpf_prog_aux *aux = env->prog->aux;
8285 	int i;
8286 
8287 	if (!aux->func_info)
8288 		return;
8289 
8290 	for (i = 0; i < env->subprog_cnt; i++)
8291 		aux->func_info[i].insn_off = env->subprog_info[i].start;
8292 }
8293 
8294 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
8295 		sizeof(((struct bpf_line_info *)(0))->line_col))
8296 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
8297 
8298 static int check_btf_line(struct bpf_verifier_env *env,
8299 			  const union bpf_attr *attr,
8300 			  union bpf_attr __user *uattr)
8301 {
8302 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
8303 	struct bpf_subprog_info *sub;
8304 	struct bpf_line_info *linfo;
8305 	struct bpf_prog *prog;
8306 	const struct btf *btf;
8307 	void __user *ulinfo;
8308 	int err;
8309 
8310 	nr_linfo = attr->line_info_cnt;
8311 	if (!nr_linfo)
8312 		return 0;
8313 
8314 	rec_size = attr->line_info_rec_size;
8315 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
8316 	    rec_size > MAX_LINEINFO_REC_SIZE ||
8317 	    rec_size & (sizeof(u32) - 1))
8318 		return -EINVAL;
8319 
8320 	/* Need to zero it in case the userspace may
8321 	 * pass in a smaller bpf_line_info object.
8322 	 */
8323 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
8324 			 GFP_KERNEL | __GFP_NOWARN);
8325 	if (!linfo)
8326 		return -ENOMEM;
8327 
8328 	prog = env->prog;
8329 	btf = prog->aux->btf;
8330 
8331 	s = 0;
8332 	sub = env->subprog_info;
8333 	ulinfo = u64_to_user_ptr(attr->line_info);
8334 	expected_size = sizeof(struct bpf_line_info);
8335 	ncopy = min_t(u32, expected_size, rec_size);
8336 	for (i = 0; i < nr_linfo; i++) {
8337 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
8338 		if (err) {
8339 			if (err == -E2BIG) {
8340 				verbose(env, "nonzero tailing record in line_info");
8341 				if (put_user(expected_size,
8342 					     &uattr->line_info_rec_size))
8343 					err = -EFAULT;
8344 			}
8345 			goto err_free;
8346 		}
8347 
8348 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
8349 			err = -EFAULT;
8350 			goto err_free;
8351 		}
8352 
8353 		/*
8354 		 * Check insn_off to ensure
8355 		 * 1) strictly increasing AND
8356 		 * 2) bounded by prog->len
8357 		 *
8358 		 * The linfo[0].insn_off == 0 check logically falls into
8359 		 * the later "missing bpf_line_info for func..." case
8360 		 * because the first linfo[0].insn_off must be the
8361 		 * first sub also and the first sub must have
8362 		 * subprog_info[0].start == 0.
8363 		 */
8364 		if ((i && linfo[i].insn_off <= prev_offset) ||
8365 		    linfo[i].insn_off >= prog->len) {
8366 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
8367 				i, linfo[i].insn_off, prev_offset,
8368 				prog->len);
8369 			err = -EINVAL;
8370 			goto err_free;
8371 		}
8372 
8373 		if (!prog->insnsi[linfo[i].insn_off].code) {
8374 			verbose(env,
8375 				"Invalid insn code at line_info[%u].insn_off\n",
8376 				i);
8377 			err = -EINVAL;
8378 			goto err_free;
8379 		}
8380 
8381 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
8382 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
8383 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
8384 			err = -EINVAL;
8385 			goto err_free;
8386 		}
8387 
8388 		if (s != env->subprog_cnt) {
8389 			if (linfo[i].insn_off == sub[s].start) {
8390 				sub[s].linfo_idx = i;
8391 				s++;
8392 			} else if (sub[s].start < linfo[i].insn_off) {
8393 				verbose(env, "missing bpf_line_info for func#%u\n", s);
8394 				err = -EINVAL;
8395 				goto err_free;
8396 			}
8397 		}
8398 
8399 		prev_offset = linfo[i].insn_off;
8400 		ulinfo += rec_size;
8401 	}
8402 
8403 	if (s != env->subprog_cnt) {
8404 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
8405 			env->subprog_cnt - s, s);
8406 		err = -EINVAL;
8407 		goto err_free;
8408 	}
8409 
8410 	prog->aux->linfo = linfo;
8411 	prog->aux->nr_linfo = nr_linfo;
8412 
8413 	return 0;
8414 
8415 err_free:
8416 	kvfree(linfo);
8417 	return err;
8418 }
8419 
8420 static int check_btf_info(struct bpf_verifier_env *env,
8421 			  const union bpf_attr *attr,
8422 			  union bpf_attr __user *uattr)
8423 {
8424 	struct btf *btf;
8425 	int err;
8426 
8427 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
8428 		if (check_abnormal_return(env))
8429 			return -EINVAL;
8430 		return 0;
8431 	}
8432 
8433 	btf = btf_get_by_fd(attr->prog_btf_fd);
8434 	if (IS_ERR(btf))
8435 		return PTR_ERR(btf);
8436 	env->prog->aux->btf = btf;
8437 
8438 	err = check_btf_func(env, attr, uattr);
8439 	if (err)
8440 		return err;
8441 
8442 	err = check_btf_line(env, attr, uattr);
8443 	if (err)
8444 		return err;
8445 
8446 	return 0;
8447 }
8448 
8449 /* check %cur's range satisfies %old's */
8450 static bool range_within(struct bpf_reg_state *old,
8451 			 struct bpf_reg_state *cur)
8452 {
8453 	return old->umin_value <= cur->umin_value &&
8454 	       old->umax_value >= cur->umax_value &&
8455 	       old->smin_value <= cur->smin_value &&
8456 	       old->smax_value >= cur->smax_value;
8457 }
8458 
8459 /* Maximum number of register states that can exist at once */
8460 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
8461 struct idpair {
8462 	u32 old;
8463 	u32 cur;
8464 };
8465 
8466 /* If in the old state two registers had the same id, then they need to have
8467  * the same id in the new state as well.  But that id could be different from
8468  * the old state, so we need to track the mapping from old to new ids.
8469  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
8470  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
8471  * regs with a different old id could still have new id 9, we don't care about
8472  * that.
8473  * So we look through our idmap to see if this old id has been seen before.  If
8474  * so, we require the new id to match; otherwise, we add the id pair to the map.
8475  */
8476 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
8477 {
8478 	unsigned int i;
8479 
8480 	for (i = 0; i < ID_MAP_SIZE; i++) {
8481 		if (!idmap[i].old) {
8482 			/* Reached an empty slot; haven't seen this id before */
8483 			idmap[i].old = old_id;
8484 			idmap[i].cur = cur_id;
8485 			return true;
8486 		}
8487 		if (idmap[i].old == old_id)
8488 			return idmap[i].cur == cur_id;
8489 	}
8490 	/* We ran out of idmap slots, which should be impossible */
8491 	WARN_ON_ONCE(1);
8492 	return false;
8493 }
8494 
8495 static void clean_func_state(struct bpf_verifier_env *env,
8496 			     struct bpf_func_state *st)
8497 {
8498 	enum bpf_reg_liveness live;
8499 	int i, j;
8500 
8501 	for (i = 0; i < BPF_REG_FP; i++) {
8502 		live = st->regs[i].live;
8503 		/* liveness must not touch this register anymore */
8504 		st->regs[i].live |= REG_LIVE_DONE;
8505 		if (!(live & REG_LIVE_READ))
8506 			/* since the register is unused, clear its state
8507 			 * to make further comparison simpler
8508 			 */
8509 			__mark_reg_not_init(env, &st->regs[i]);
8510 	}
8511 
8512 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
8513 		live = st->stack[i].spilled_ptr.live;
8514 		/* liveness must not touch this stack slot anymore */
8515 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
8516 		if (!(live & REG_LIVE_READ)) {
8517 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
8518 			for (j = 0; j < BPF_REG_SIZE; j++)
8519 				st->stack[i].slot_type[j] = STACK_INVALID;
8520 		}
8521 	}
8522 }
8523 
8524 static void clean_verifier_state(struct bpf_verifier_env *env,
8525 				 struct bpf_verifier_state *st)
8526 {
8527 	int i;
8528 
8529 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
8530 		/* all regs in this state in all frames were already marked */
8531 		return;
8532 
8533 	for (i = 0; i <= st->curframe; i++)
8534 		clean_func_state(env, st->frame[i]);
8535 }
8536 
8537 /* the parentage chains form a tree.
8538  * the verifier states are added to state lists at given insn and
8539  * pushed into state stack for future exploration.
8540  * when the verifier reaches bpf_exit insn some of the verifer states
8541  * stored in the state lists have their final liveness state already,
8542  * but a lot of states will get revised from liveness point of view when
8543  * the verifier explores other branches.
8544  * Example:
8545  * 1: r0 = 1
8546  * 2: if r1 == 100 goto pc+1
8547  * 3: r0 = 2
8548  * 4: exit
8549  * when the verifier reaches exit insn the register r0 in the state list of
8550  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
8551  * of insn 2 and goes exploring further. At the insn 4 it will walk the
8552  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
8553  *
8554  * Since the verifier pushes the branch states as it sees them while exploring
8555  * the program the condition of walking the branch instruction for the second
8556  * time means that all states below this branch were already explored and
8557  * their final liveness markes are already propagated.
8558  * Hence when the verifier completes the search of state list in is_state_visited()
8559  * we can call this clean_live_states() function to mark all liveness states
8560  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
8561  * will not be used.
8562  * This function also clears the registers and stack for states that !READ
8563  * to simplify state merging.
8564  *
8565  * Important note here that walking the same branch instruction in the callee
8566  * doesn't meant that the states are DONE. The verifier has to compare
8567  * the callsites
8568  */
8569 static void clean_live_states(struct bpf_verifier_env *env, int insn,
8570 			      struct bpf_verifier_state *cur)
8571 {
8572 	struct bpf_verifier_state_list *sl;
8573 	int i;
8574 
8575 	sl = *explored_state(env, insn);
8576 	while (sl) {
8577 		if (sl->state.branches)
8578 			goto next;
8579 		if (sl->state.insn_idx != insn ||
8580 		    sl->state.curframe != cur->curframe)
8581 			goto next;
8582 		for (i = 0; i <= cur->curframe; i++)
8583 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
8584 				goto next;
8585 		clean_verifier_state(env, &sl->state);
8586 next:
8587 		sl = sl->next;
8588 	}
8589 }
8590 
8591 /* Returns true if (rold safe implies rcur safe) */
8592 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
8593 		    struct idpair *idmap)
8594 {
8595 	bool equal;
8596 
8597 	if (!(rold->live & REG_LIVE_READ))
8598 		/* explored state didn't use this */
8599 		return true;
8600 
8601 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
8602 
8603 	if (rold->type == PTR_TO_STACK)
8604 		/* two stack pointers are equal only if they're pointing to
8605 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
8606 		 */
8607 		return equal && rold->frameno == rcur->frameno;
8608 
8609 	if (equal)
8610 		return true;
8611 
8612 	if (rold->type == NOT_INIT)
8613 		/* explored state can't have used this */
8614 		return true;
8615 	if (rcur->type == NOT_INIT)
8616 		return false;
8617 	switch (rold->type) {
8618 	case SCALAR_VALUE:
8619 		if (rcur->type == SCALAR_VALUE) {
8620 			if (!rold->precise && !rcur->precise)
8621 				return true;
8622 			/* new val must satisfy old val knowledge */
8623 			return range_within(rold, rcur) &&
8624 			       tnum_in(rold->var_off, rcur->var_off);
8625 		} else {
8626 			/* We're trying to use a pointer in place of a scalar.
8627 			 * Even if the scalar was unbounded, this could lead to
8628 			 * pointer leaks because scalars are allowed to leak
8629 			 * while pointers are not. We could make this safe in
8630 			 * special cases if root is calling us, but it's
8631 			 * probably not worth the hassle.
8632 			 */
8633 			return false;
8634 		}
8635 	case PTR_TO_MAP_VALUE:
8636 		/* If the new min/max/var_off satisfy the old ones and
8637 		 * everything else matches, we are OK.
8638 		 * 'id' is not compared, since it's only used for maps with
8639 		 * bpf_spin_lock inside map element and in such cases if
8640 		 * the rest of the prog is valid for one map element then
8641 		 * it's valid for all map elements regardless of the key
8642 		 * used in bpf_map_lookup()
8643 		 */
8644 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
8645 		       range_within(rold, rcur) &&
8646 		       tnum_in(rold->var_off, rcur->var_off);
8647 	case PTR_TO_MAP_VALUE_OR_NULL:
8648 		/* a PTR_TO_MAP_VALUE could be safe to use as a
8649 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
8650 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
8651 		 * checked, doing so could have affected others with the same
8652 		 * id, and we can't check for that because we lost the id when
8653 		 * we converted to a PTR_TO_MAP_VALUE.
8654 		 */
8655 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
8656 			return false;
8657 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
8658 			return false;
8659 		/* Check our ids match any regs they're supposed to */
8660 		return check_ids(rold->id, rcur->id, idmap);
8661 	case PTR_TO_PACKET_META:
8662 	case PTR_TO_PACKET:
8663 		if (rcur->type != rold->type)
8664 			return false;
8665 		/* We must have at least as much range as the old ptr
8666 		 * did, so that any accesses which were safe before are
8667 		 * still safe.  This is true even if old range < old off,
8668 		 * since someone could have accessed through (ptr - k), or
8669 		 * even done ptr -= k in a register, to get a safe access.
8670 		 */
8671 		if (rold->range > rcur->range)
8672 			return false;
8673 		/* If the offsets don't match, we can't trust our alignment;
8674 		 * nor can we be sure that we won't fall out of range.
8675 		 */
8676 		if (rold->off != rcur->off)
8677 			return false;
8678 		/* id relations must be preserved */
8679 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
8680 			return false;
8681 		/* new val must satisfy old val knowledge */
8682 		return range_within(rold, rcur) &&
8683 		       tnum_in(rold->var_off, rcur->var_off);
8684 	case PTR_TO_CTX:
8685 	case CONST_PTR_TO_MAP:
8686 	case PTR_TO_PACKET_END:
8687 	case PTR_TO_FLOW_KEYS:
8688 	case PTR_TO_SOCKET:
8689 	case PTR_TO_SOCKET_OR_NULL:
8690 	case PTR_TO_SOCK_COMMON:
8691 	case PTR_TO_SOCK_COMMON_OR_NULL:
8692 	case PTR_TO_TCP_SOCK:
8693 	case PTR_TO_TCP_SOCK_OR_NULL:
8694 	case PTR_TO_XDP_SOCK:
8695 		/* Only valid matches are exact, which memcmp() above
8696 		 * would have accepted
8697 		 */
8698 	default:
8699 		/* Don't know what's going on, just say it's not safe */
8700 		return false;
8701 	}
8702 
8703 	/* Shouldn't get here; if we do, say it's not safe */
8704 	WARN_ON_ONCE(1);
8705 	return false;
8706 }
8707 
8708 static bool stacksafe(struct bpf_func_state *old,
8709 		      struct bpf_func_state *cur,
8710 		      struct idpair *idmap)
8711 {
8712 	int i, spi;
8713 
8714 	/* walk slots of the explored stack and ignore any additional
8715 	 * slots in the current stack, since explored(safe) state
8716 	 * didn't use them
8717 	 */
8718 	for (i = 0; i < old->allocated_stack; i++) {
8719 		spi = i / BPF_REG_SIZE;
8720 
8721 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
8722 			i += BPF_REG_SIZE - 1;
8723 			/* explored state didn't use this */
8724 			continue;
8725 		}
8726 
8727 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
8728 			continue;
8729 
8730 		/* explored stack has more populated slots than current stack
8731 		 * and these slots were used
8732 		 */
8733 		if (i >= cur->allocated_stack)
8734 			return false;
8735 
8736 		/* if old state was safe with misc data in the stack
8737 		 * it will be safe with zero-initialized stack.
8738 		 * The opposite is not true
8739 		 */
8740 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
8741 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
8742 			continue;
8743 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
8744 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
8745 			/* Ex: old explored (safe) state has STACK_SPILL in
8746 			 * this stack slot, but current has STACK_MISC ->
8747 			 * this verifier states are not equivalent,
8748 			 * return false to continue verification of this path
8749 			 */
8750 			return false;
8751 		if (i % BPF_REG_SIZE)
8752 			continue;
8753 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
8754 			continue;
8755 		if (!regsafe(&old->stack[spi].spilled_ptr,
8756 			     &cur->stack[spi].spilled_ptr,
8757 			     idmap))
8758 			/* when explored and current stack slot are both storing
8759 			 * spilled registers, check that stored pointers types
8760 			 * are the same as well.
8761 			 * Ex: explored safe path could have stored
8762 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
8763 			 * but current path has stored:
8764 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
8765 			 * such verifier states are not equivalent.
8766 			 * return false to continue verification of this path
8767 			 */
8768 			return false;
8769 	}
8770 	return true;
8771 }
8772 
8773 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
8774 {
8775 	if (old->acquired_refs != cur->acquired_refs)
8776 		return false;
8777 	return !memcmp(old->refs, cur->refs,
8778 		       sizeof(*old->refs) * old->acquired_refs);
8779 }
8780 
8781 /* compare two verifier states
8782  *
8783  * all states stored in state_list are known to be valid, since
8784  * verifier reached 'bpf_exit' instruction through them
8785  *
8786  * this function is called when verifier exploring different branches of
8787  * execution popped from the state stack. If it sees an old state that has
8788  * more strict register state and more strict stack state then this execution
8789  * branch doesn't need to be explored further, since verifier already
8790  * concluded that more strict state leads to valid finish.
8791  *
8792  * Therefore two states are equivalent if register state is more conservative
8793  * and explored stack state is more conservative than the current one.
8794  * Example:
8795  *       explored                   current
8796  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
8797  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
8798  *
8799  * In other words if current stack state (one being explored) has more
8800  * valid slots than old one that already passed validation, it means
8801  * the verifier can stop exploring and conclude that current state is valid too
8802  *
8803  * Similarly with registers. If explored state has register type as invalid
8804  * whereas register type in current state is meaningful, it means that
8805  * the current state will reach 'bpf_exit' instruction safely
8806  */
8807 static bool func_states_equal(struct bpf_func_state *old,
8808 			      struct bpf_func_state *cur)
8809 {
8810 	struct idpair *idmap;
8811 	bool ret = false;
8812 	int i;
8813 
8814 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
8815 	/* If we failed to allocate the idmap, just say it's not safe */
8816 	if (!idmap)
8817 		return false;
8818 
8819 	for (i = 0; i < MAX_BPF_REG; i++) {
8820 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
8821 			goto out_free;
8822 	}
8823 
8824 	if (!stacksafe(old, cur, idmap))
8825 		goto out_free;
8826 
8827 	if (!refsafe(old, cur))
8828 		goto out_free;
8829 	ret = true;
8830 out_free:
8831 	kfree(idmap);
8832 	return ret;
8833 }
8834 
8835 static bool states_equal(struct bpf_verifier_env *env,
8836 			 struct bpf_verifier_state *old,
8837 			 struct bpf_verifier_state *cur)
8838 {
8839 	int i;
8840 
8841 	if (old->curframe != cur->curframe)
8842 		return false;
8843 
8844 	/* Verification state from speculative execution simulation
8845 	 * must never prune a non-speculative execution one.
8846 	 */
8847 	if (old->speculative && !cur->speculative)
8848 		return false;
8849 
8850 	if (old->active_spin_lock != cur->active_spin_lock)
8851 		return false;
8852 
8853 	/* for states to be equal callsites have to be the same
8854 	 * and all frame states need to be equivalent
8855 	 */
8856 	for (i = 0; i <= old->curframe; i++) {
8857 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
8858 			return false;
8859 		if (!func_states_equal(old->frame[i], cur->frame[i]))
8860 			return false;
8861 	}
8862 	return true;
8863 }
8864 
8865 /* Return 0 if no propagation happened. Return negative error code if error
8866  * happened. Otherwise, return the propagated bit.
8867  */
8868 static int propagate_liveness_reg(struct bpf_verifier_env *env,
8869 				  struct bpf_reg_state *reg,
8870 				  struct bpf_reg_state *parent_reg)
8871 {
8872 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
8873 	u8 flag = reg->live & REG_LIVE_READ;
8874 	int err;
8875 
8876 	/* When comes here, read flags of PARENT_REG or REG could be any of
8877 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
8878 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
8879 	 */
8880 	if (parent_flag == REG_LIVE_READ64 ||
8881 	    /* Or if there is no read flag from REG. */
8882 	    !flag ||
8883 	    /* Or if the read flag from REG is the same as PARENT_REG. */
8884 	    parent_flag == flag)
8885 		return 0;
8886 
8887 	err = mark_reg_read(env, reg, parent_reg, flag);
8888 	if (err)
8889 		return err;
8890 
8891 	return flag;
8892 }
8893 
8894 /* A write screens off any subsequent reads; but write marks come from the
8895  * straight-line code between a state and its parent.  When we arrive at an
8896  * equivalent state (jump target or such) we didn't arrive by the straight-line
8897  * code, so read marks in the state must propagate to the parent regardless
8898  * of the state's write marks. That's what 'parent == state->parent' comparison
8899  * in mark_reg_read() is for.
8900  */
8901 static int propagate_liveness(struct bpf_verifier_env *env,
8902 			      const struct bpf_verifier_state *vstate,
8903 			      struct bpf_verifier_state *vparent)
8904 {
8905 	struct bpf_reg_state *state_reg, *parent_reg;
8906 	struct bpf_func_state *state, *parent;
8907 	int i, frame, err = 0;
8908 
8909 	if (vparent->curframe != vstate->curframe) {
8910 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
8911 		     vparent->curframe, vstate->curframe);
8912 		return -EFAULT;
8913 	}
8914 	/* Propagate read liveness of registers... */
8915 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
8916 	for (frame = 0; frame <= vstate->curframe; frame++) {
8917 		parent = vparent->frame[frame];
8918 		state = vstate->frame[frame];
8919 		parent_reg = parent->regs;
8920 		state_reg = state->regs;
8921 		/* We don't need to worry about FP liveness, it's read-only */
8922 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
8923 			err = propagate_liveness_reg(env, &state_reg[i],
8924 						     &parent_reg[i]);
8925 			if (err < 0)
8926 				return err;
8927 			if (err == REG_LIVE_READ64)
8928 				mark_insn_zext(env, &parent_reg[i]);
8929 		}
8930 
8931 		/* Propagate stack slots. */
8932 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
8933 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
8934 			parent_reg = &parent->stack[i].spilled_ptr;
8935 			state_reg = &state->stack[i].spilled_ptr;
8936 			err = propagate_liveness_reg(env, state_reg,
8937 						     parent_reg);
8938 			if (err < 0)
8939 				return err;
8940 		}
8941 	}
8942 	return 0;
8943 }
8944 
8945 /* find precise scalars in the previous equivalent state and
8946  * propagate them into the current state
8947  */
8948 static int propagate_precision(struct bpf_verifier_env *env,
8949 			       const struct bpf_verifier_state *old)
8950 {
8951 	struct bpf_reg_state *state_reg;
8952 	struct bpf_func_state *state;
8953 	int i, err = 0;
8954 
8955 	state = old->frame[old->curframe];
8956 	state_reg = state->regs;
8957 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
8958 		if (state_reg->type != SCALAR_VALUE ||
8959 		    !state_reg->precise)
8960 			continue;
8961 		if (env->log.level & BPF_LOG_LEVEL2)
8962 			verbose(env, "propagating r%d\n", i);
8963 		err = mark_chain_precision(env, i);
8964 		if (err < 0)
8965 			return err;
8966 	}
8967 
8968 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8969 		if (state->stack[i].slot_type[0] != STACK_SPILL)
8970 			continue;
8971 		state_reg = &state->stack[i].spilled_ptr;
8972 		if (state_reg->type != SCALAR_VALUE ||
8973 		    !state_reg->precise)
8974 			continue;
8975 		if (env->log.level & BPF_LOG_LEVEL2)
8976 			verbose(env, "propagating fp%d\n",
8977 				(-i - 1) * BPF_REG_SIZE);
8978 		err = mark_chain_precision_stack(env, i);
8979 		if (err < 0)
8980 			return err;
8981 	}
8982 	return 0;
8983 }
8984 
8985 static bool states_maybe_looping(struct bpf_verifier_state *old,
8986 				 struct bpf_verifier_state *cur)
8987 {
8988 	struct bpf_func_state *fold, *fcur;
8989 	int i, fr = cur->curframe;
8990 
8991 	if (old->curframe != fr)
8992 		return false;
8993 
8994 	fold = old->frame[fr];
8995 	fcur = cur->frame[fr];
8996 	for (i = 0; i < MAX_BPF_REG; i++)
8997 		if (memcmp(&fold->regs[i], &fcur->regs[i],
8998 			   offsetof(struct bpf_reg_state, parent)))
8999 			return false;
9000 	return true;
9001 }
9002 
9003 
9004 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
9005 {
9006 	struct bpf_verifier_state_list *new_sl;
9007 	struct bpf_verifier_state_list *sl, **pprev;
9008 	struct bpf_verifier_state *cur = env->cur_state, *new;
9009 	int i, j, err, states_cnt = 0;
9010 	bool add_new_state = env->test_state_freq ? true : false;
9011 
9012 	cur->last_insn_idx = env->prev_insn_idx;
9013 	if (!env->insn_aux_data[insn_idx].prune_point)
9014 		/* this 'insn_idx' instruction wasn't marked, so we will not
9015 		 * be doing state search here
9016 		 */
9017 		return 0;
9018 
9019 	/* bpf progs typically have pruning point every 4 instructions
9020 	 * http://vger.kernel.org/bpfconf2019.html#session-1
9021 	 * Do not add new state for future pruning if the verifier hasn't seen
9022 	 * at least 2 jumps and at least 8 instructions.
9023 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
9024 	 * In tests that amounts to up to 50% reduction into total verifier
9025 	 * memory consumption and 20% verifier time speedup.
9026 	 */
9027 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
9028 	    env->insn_processed - env->prev_insn_processed >= 8)
9029 		add_new_state = true;
9030 
9031 	pprev = explored_state(env, insn_idx);
9032 	sl = *pprev;
9033 
9034 	clean_live_states(env, insn_idx, cur);
9035 
9036 	while (sl) {
9037 		states_cnt++;
9038 		if (sl->state.insn_idx != insn_idx)
9039 			goto next;
9040 		if (sl->state.branches) {
9041 			if (states_maybe_looping(&sl->state, cur) &&
9042 			    states_equal(env, &sl->state, cur)) {
9043 				verbose_linfo(env, insn_idx, "; ");
9044 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
9045 				return -EINVAL;
9046 			}
9047 			/* if the verifier is processing a loop, avoid adding new state
9048 			 * too often, since different loop iterations have distinct
9049 			 * states and may not help future pruning.
9050 			 * This threshold shouldn't be too low to make sure that
9051 			 * a loop with large bound will be rejected quickly.
9052 			 * The most abusive loop will be:
9053 			 * r1 += 1
9054 			 * if r1 < 1000000 goto pc-2
9055 			 * 1M insn_procssed limit / 100 == 10k peak states.
9056 			 * This threshold shouldn't be too high either, since states
9057 			 * at the end of the loop are likely to be useful in pruning.
9058 			 */
9059 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
9060 			    env->insn_processed - env->prev_insn_processed < 100)
9061 				add_new_state = false;
9062 			goto miss;
9063 		}
9064 		if (states_equal(env, &sl->state, cur)) {
9065 			sl->hit_cnt++;
9066 			/* reached equivalent register/stack state,
9067 			 * prune the search.
9068 			 * Registers read by the continuation are read by us.
9069 			 * If we have any write marks in env->cur_state, they
9070 			 * will prevent corresponding reads in the continuation
9071 			 * from reaching our parent (an explored_state).  Our
9072 			 * own state will get the read marks recorded, but
9073 			 * they'll be immediately forgotten as we're pruning
9074 			 * this state and will pop a new one.
9075 			 */
9076 			err = propagate_liveness(env, &sl->state, cur);
9077 
9078 			/* if previous state reached the exit with precision and
9079 			 * current state is equivalent to it (except precsion marks)
9080 			 * the precision needs to be propagated back in
9081 			 * the current state.
9082 			 */
9083 			err = err ? : push_jmp_history(env, cur);
9084 			err = err ? : propagate_precision(env, &sl->state);
9085 			if (err)
9086 				return err;
9087 			return 1;
9088 		}
9089 miss:
9090 		/* when new state is not going to be added do not increase miss count.
9091 		 * Otherwise several loop iterations will remove the state
9092 		 * recorded earlier. The goal of these heuristics is to have
9093 		 * states from some iterations of the loop (some in the beginning
9094 		 * and some at the end) to help pruning.
9095 		 */
9096 		if (add_new_state)
9097 			sl->miss_cnt++;
9098 		/* heuristic to determine whether this state is beneficial
9099 		 * to keep checking from state equivalence point of view.
9100 		 * Higher numbers increase max_states_per_insn and verification time,
9101 		 * but do not meaningfully decrease insn_processed.
9102 		 */
9103 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
9104 			/* the state is unlikely to be useful. Remove it to
9105 			 * speed up verification
9106 			 */
9107 			*pprev = sl->next;
9108 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
9109 				u32 br = sl->state.branches;
9110 
9111 				WARN_ONCE(br,
9112 					  "BUG live_done but branches_to_explore %d\n",
9113 					  br);
9114 				free_verifier_state(&sl->state, false);
9115 				kfree(sl);
9116 				env->peak_states--;
9117 			} else {
9118 				/* cannot free this state, since parentage chain may
9119 				 * walk it later. Add it for free_list instead to
9120 				 * be freed at the end of verification
9121 				 */
9122 				sl->next = env->free_list;
9123 				env->free_list = sl;
9124 			}
9125 			sl = *pprev;
9126 			continue;
9127 		}
9128 next:
9129 		pprev = &sl->next;
9130 		sl = *pprev;
9131 	}
9132 
9133 	if (env->max_states_per_insn < states_cnt)
9134 		env->max_states_per_insn = states_cnt;
9135 
9136 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
9137 		return push_jmp_history(env, cur);
9138 
9139 	if (!add_new_state)
9140 		return push_jmp_history(env, cur);
9141 
9142 	/* There were no equivalent states, remember the current one.
9143 	 * Technically the current state is not proven to be safe yet,
9144 	 * but it will either reach outer most bpf_exit (which means it's safe)
9145 	 * or it will be rejected. When there are no loops the verifier won't be
9146 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
9147 	 * again on the way to bpf_exit.
9148 	 * When looping the sl->state.branches will be > 0 and this state
9149 	 * will not be considered for equivalence until branches == 0.
9150 	 */
9151 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
9152 	if (!new_sl)
9153 		return -ENOMEM;
9154 	env->total_states++;
9155 	env->peak_states++;
9156 	env->prev_jmps_processed = env->jmps_processed;
9157 	env->prev_insn_processed = env->insn_processed;
9158 
9159 	/* add new state to the head of linked list */
9160 	new = &new_sl->state;
9161 	err = copy_verifier_state(new, cur);
9162 	if (err) {
9163 		free_verifier_state(new, false);
9164 		kfree(new_sl);
9165 		return err;
9166 	}
9167 	new->insn_idx = insn_idx;
9168 	WARN_ONCE(new->branches != 1,
9169 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
9170 
9171 	cur->parent = new;
9172 	cur->first_insn_idx = insn_idx;
9173 	clear_jmp_history(cur);
9174 	new_sl->next = *explored_state(env, insn_idx);
9175 	*explored_state(env, insn_idx) = new_sl;
9176 	/* connect new state to parentage chain. Current frame needs all
9177 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
9178 	 * to the stack implicitly by JITs) so in callers' frames connect just
9179 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
9180 	 * the state of the call instruction (with WRITTEN set), and r0 comes
9181 	 * from callee with its full parentage chain, anyway.
9182 	 */
9183 	/* clear write marks in current state: the writes we did are not writes
9184 	 * our child did, so they don't screen off its reads from us.
9185 	 * (There are no read marks in current state, because reads always mark
9186 	 * their parent and current state never has children yet.  Only
9187 	 * explored_states can get read marks.)
9188 	 */
9189 	for (j = 0; j <= cur->curframe; j++) {
9190 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
9191 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
9192 		for (i = 0; i < BPF_REG_FP; i++)
9193 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
9194 	}
9195 
9196 	/* all stack frames are accessible from callee, clear them all */
9197 	for (j = 0; j <= cur->curframe; j++) {
9198 		struct bpf_func_state *frame = cur->frame[j];
9199 		struct bpf_func_state *newframe = new->frame[j];
9200 
9201 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
9202 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
9203 			frame->stack[i].spilled_ptr.parent =
9204 						&newframe->stack[i].spilled_ptr;
9205 		}
9206 	}
9207 	return 0;
9208 }
9209 
9210 /* Return true if it's OK to have the same insn return a different type. */
9211 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
9212 {
9213 	switch (type) {
9214 	case PTR_TO_CTX:
9215 	case PTR_TO_SOCKET:
9216 	case PTR_TO_SOCKET_OR_NULL:
9217 	case PTR_TO_SOCK_COMMON:
9218 	case PTR_TO_SOCK_COMMON_OR_NULL:
9219 	case PTR_TO_TCP_SOCK:
9220 	case PTR_TO_TCP_SOCK_OR_NULL:
9221 	case PTR_TO_XDP_SOCK:
9222 	case PTR_TO_BTF_ID:
9223 	case PTR_TO_BTF_ID_OR_NULL:
9224 		return false;
9225 	default:
9226 		return true;
9227 	}
9228 }
9229 
9230 /* If an instruction was previously used with particular pointer types, then we
9231  * need to be careful to avoid cases such as the below, where it may be ok
9232  * for one branch accessing the pointer, but not ok for the other branch:
9233  *
9234  * R1 = sock_ptr
9235  * goto X;
9236  * ...
9237  * R1 = some_other_valid_ptr;
9238  * goto X;
9239  * ...
9240  * R2 = *(u32 *)(R1 + 0);
9241  */
9242 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
9243 {
9244 	return src != prev && (!reg_type_mismatch_ok(src) ||
9245 			       !reg_type_mismatch_ok(prev));
9246 }
9247 
9248 static int do_check(struct bpf_verifier_env *env)
9249 {
9250 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
9251 	struct bpf_verifier_state *state = env->cur_state;
9252 	struct bpf_insn *insns = env->prog->insnsi;
9253 	struct bpf_reg_state *regs;
9254 	int insn_cnt = env->prog->len;
9255 	bool do_print_state = false;
9256 	int prev_insn_idx = -1;
9257 
9258 	for (;;) {
9259 		struct bpf_insn *insn;
9260 		u8 class;
9261 		int err;
9262 
9263 		env->prev_insn_idx = prev_insn_idx;
9264 		if (env->insn_idx >= insn_cnt) {
9265 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
9266 				env->insn_idx, insn_cnt);
9267 			return -EFAULT;
9268 		}
9269 
9270 		insn = &insns[env->insn_idx];
9271 		class = BPF_CLASS(insn->code);
9272 
9273 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
9274 			verbose(env,
9275 				"BPF program is too large. Processed %d insn\n",
9276 				env->insn_processed);
9277 			return -E2BIG;
9278 		}
9279 
9280 		err = is_state_visited(env, env->insn_idx);
9281 		if (err < 0)
9282 			return err;
9283 		if (err == 1) {
9284 			/* found equivalent state, can prune the search */
9285 			if (env->log.level & BPF_LOG_LEVEL) {
9286 				if (do_print_state)
9287 					verbose(env, "\nfrom %d to %d%s: safe\n",
9288 						env->prev_insn_idx, env->insn_idx,
9289 						env->cur_state->speculative ?
9290 						" (speculative execution)" : "");
9291 				else
9292 					verbose(env, "%d: safe\n", env->insn_idx);
9293 			}
9294 			goto process_bpf_exit;
9295 		}
9296 
9297 		if (signal_pending(current))
9298 			return -EAGAIN;
9299 
9300 		if (need_resched())
9301 			cond_resched();
9302 
9303 		if (env->log.level & BPF_LOG_LEVEL2 ||
9304 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
9305 			if (env->log.level & BPF_LOG_LEVEL2)
9306 				verbose(env, "%d:", env->insn_idx);
9307 			else
9308 				verbose(env, "\nfrom %d to %d%s:",
9309 					env->prev_insn_idx, env->insn_idx,
9310 					env->cur_state->speculative ?
9311 					" (speculative execution)" : "");
9312 			print_verifier_state(env, state->frame[state->curframe]);
9313 			do_print_state = false;
9314 		}
9315 
9316 		if (env->log.level & BPF_LOG_LEVEL) {
9317 			const struct bpf_insn_cbs cbs = {
9318 				.cb_print	= verbose,
9319 				.private_data	= env,
9320 			};
9321 
9322 			verbose_linfo(env, env->insn_idx, "; ");
9323 			verbose(env, "%d: ", env->insn_idx);
9324 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
9325 		}
9326 
9327 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
9328 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
9329 							   env->prev_insn_idx);
9330 			if (err)
9331 				return err;
9332 		}
9333 
9334 		regs = cur_regs(env);
9335 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
9336 		prev_insn_idx = env->insn_idx;
9337 
9338 		if (class == BPF_ALU || class == BPF_ALU64) {
9339 			err = check_alu_op(env, insn);
9340 			if (err)
9341 				return err;
9342 
9343 		} else if (class == BPF_LDX) {
9344 			enum bpf_reg_type *prev_src_type, src_reg_type;
9345 
9346 			/* check for reserved fields is already done */
9347 
9348 			/* check src operand */
9349 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
9350 			if (err)
9351 				return err;
9352 
9353 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9354 			if (err)
9355 				return err;
9356 
9357 			src_reg_type = regs[insn->src_reg].type;
9358 
9359 			/* check that memory (src_reg + off) is readable,
9360 			 * the state of dst_reg will be updated by this func
9361 			 */
9362 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
9363 					       insn->off, BPF_SIZE(insn->code),
9364 					       BPF_READ, insn->dst_reg, false);
9365 			if (err)
9366 				return err;
9367 
9368 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
9369 
9370 			if (*prev_src_type == NOT_INIT) {
9371 				/* saw a valid insn
9372 				 * dst_reg = *(u32 *)(src_reg + off)
9373 				 * save type to validate intersecting paths
9374 				 */
9375 				*prev_src_type = src_reg_type;
9376 
9377 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9378 				/* ABuser program is trying to use the same insn
9379 				 * dst_reg = *(u32*) (src_reg + off)
9380 				 * with different pointer types:
9381 				 * src_reg == ctx in one branch and
9382 				 * src_reg == stack|map in some other branch.
9383 				 * Reject it.
9384 				 */
9385 				verbose(env, "same insn cannot be used with different pointers\n");
9386 				return -EINVAL;
9387 			}
9388 
9389 		} else if (class == BPF_STX) {
9390 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
9391 
9392 			if (BPF_MODE(insn->code) == BPF_XADD) {
9393 				err = check_xadd(env, env->insn_idx, insn);
9394 				if (err)
9395 					return err;
9396 				env->insn_idx++;
9397 				continue;
9398 			}
9399 
9400 			/* check src1 operand */
9401 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
9402 			if (err)
9403 				return err;
9404 			/* check src2 operand */
9405 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9406 			if (err)
9407 				return err;
9408 
9409 			dst_reg_type = regs[insn->dst_reg].type;
9410 
9411 			/* check that memory (dst_reg + off) is writeable */
9412 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9413 					       insn->off, BPF_SIZE(insn->code),
9414 					       BPF_WRITE, insn->src_reg, false);
9415 			if (err)
9416 				return err;
9417 
9418 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
9419 
9420 			if (*prev_dst_type == NOT_INIT) {
9421 				*prev_dst_type = dst_reg_type;
9422 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
9423 				verbose(env, "same insn cannot be used with different pointers\n");
9424 				return -EINVAL;
9425 			}
9426 
9427 		} else if (class == BPF_ST) {
9428 			if (BPF_MODE(insn->code) != BPF_MEM ||
9429 			    insn->src_reg != BPF_REG_0) {
9430 				verbose(env, "BPF_ST uses reserved fields\n");
9431 				return -EINVAL;
9432 			}
9433 			/* check src operand */
9434 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9435 			if (err)
9436 				return err;
9437 
9438 			if (is_ctx_reg(env, insn->dst_reg)) {
9439 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
9440 					insn->dst_reg,
9441 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
9442 				return -EACCES;
9443 			}
9444 
9445 			/* check that memory (dst_reg + off) is writeable */
9446 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9447 					       insn->off, BPF_SIZE(insn->code),
9448 					       BPF_WRITE, -1, false);
9449 			if (err)
9450 				return err;
9451 
9452 		} else if (class == BPF_JMP || class == BPF_JMP32) {
9453 			u8 opcode = BPF_OP(insn->code);
9454 
9455 			env->jmps_processed++;
9456 			if (opcode == BPF_CALL) {
9457 				if (BPF_SRC(insn->code) != BPF_K ||
9458 				    insn->off != 0 ||
9459 				    (insn->src_reg != BPF_REG_0 &&
9460 				     insn->src_reg != BPF_PSEUDO_CALL) ||
9461 				    insn->dst_reg != BPF_REG_0 ||
9462 				    class == BPF_JMP32) {
9463 					verbose(env, "BPF_CALL uses reserved fields\n");
9464 					return -EINVAL;
9465 				}
9466 
9467 				if (env->cur_state->active_spin_lock &&
9468 				    (insn->src_reg == BPF_PSEUDO_CALL ||
9469 				     insn->imm != BPF_FUNC_spin_unlock)) {
9470 					verbose(env, "function calls are not allowed while holding a lock\n");
9471 					return -EINVAL;
9472 				}
9473 				if (insn->src_reg == BPF_PSEUDO_CALL)
9474 					err = check_func_call(env, insn, &env->insn_idx);
9475 				else
9476 					err = check_helper_call(env, insn->imm, env->insn_idx);
9477 				if (err)
9478 					return err;
9479 
9480 			} else if (opcode == BPF_JA) {
9481 				if (BPF_SRC(insn->code) != BPF_K ||
9482 				    insn->imm != 0 ||
9483 				    insn->src_reg != BPF_REG_0 ||
9484 				    insn->dst_reg != BPF_REG_0 ||
9485 				    class == BPF_JMP32) {
9486 					verbose(env, "BPF_JA uses reserved fields\n");
9487 					return -EINVAL;
9488 				}
9489 
9490 				env->insn_idx += insn->off + 1;
9491 				continue;
9492 
9493 			} else if (opcode == BPF_EXIT) {
9494 				if (BPF_SRC(insn->code) != BPF_K ||
9495 				    insn->imm != 0 ||
9496 				    insn->src_reg != BPF_REG_0 ||
9497 				    insn->dst_reg != BPF_REG_0 ||
9498 				    class == BPF_JMP32) {
9499 					verbose(env, "BPF_EXIT uses reserved fields\n");
9500 					return -EINVAL;
9501 				}
9502 
9503 				if (env->cur_state->active_spin_lock) {
9504 					verbose(env, "bpf_spin_unlock is missing\n");
9505 					return -EINVAL;
9506 				}
9507 
9508 				if (state->curframe) {
9509 					/* exit from nested function */
9510 					err = prepare_func_exit(env, &env->insn_idx);
9511 					if (err)
9512 						return err;
9513 					do_print_state = true;
9514 					continue;
9515 				}
9516 
9517 				err = check_reference_leak(env);
9518 				if (err)
9519 					return err;
9520 
9521 				err = check_return_code(env);
9522 				if (err)
9523 					return err;
9524 process_bpf_exit:
9525 				update_branch_counts(env, env->cur_state);
9526 				err = pop_stack(env, &prev_insn_idx,
9527 						&env->insn_idx, pop_log);
9528 				if (err < 0) {
9529 					if (err != -ENOENT)
9530 						return err;
9531 					break;
9532 				} else {
9533 					do_print_state = true;
9534 					continue;
9535 				}
9536 			} else {
9537 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
9538 				if (err)
9539 					return err;
9540 			}
9541 		} else if (class == BPF_LD) {
9542 			u8 mode = BPF_MODE(insn->code);
9543 
9544 			if (mode == BPF_ABS || mode == BPF_IND) {
9545 				err = check_ld_abs(env, insn);
9546 				if (err)
9547 					return err;
9548 
9549 			} else if (mode == BPF_IMM) {
9550 				err = check_ld_imm(env, insn);
9551 				if (err)
9552 					return err;
9553 
9554 				env->insn_idx++;
9555 				env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
9556 			} else {
9557 				verbose(env, "invalid BPF_LD mode\n");
9558 				return -EINVAL;
9559 			}
9560 		} else {
9561 			verbose(env, "unknown insn class %d\n", class);
9562 			return -EINVAL;
9563 		}
9564 
9565 		env->insn_idx++;
9566 	}
9567 
9568 	return 0;
9569 }
9570 
9571 /* replace pseudo btf_id with kernel symbol address */
9572 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
9573 			       struct bpf_insn *insn,
9574 			       struct bpf_insn_aux_data *aux)
9575 {
9576 	u32 datasec_id, type, id = insn->imm;
9577 	const struct btf_var_secinfo *vsi;
9578 	const struct btf_type *datasec;
9579 	const struct btf_type *t;
9580 	const char *sym_name;
9581 	bool percpu = false;
9582 	u64 addr;
9583 	int i;
9584 
9585 	if (!btf_vmlinux) {
9586 		verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
9587 		return -EINVAL;
9588 	}
9589 
9590 	if (insn[1].imm != 0) {
9591 		verbose(env, "reserved field (insn[1].imm) is used in pseudo_btf_id ldimm64 insn.\n");
9592 		return -EINVAL;
9593 	}
9594 
9595 	t = btf_type_by_id(btf_vmlinux, id);
9596 	if (!t) {
9597 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
9598 		return -ENOENT;
9599 	}
9600 
9601 	if (!btf_type_is_var(t)) {
9602 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n",
9603 			id);
9604 		return -EINVAL;
9605 	}
9606 
9607 	sym_name = btf_name_by_offset(btf_vmlinux, t->name_off);
9608 	addr = kallsyms_lookup_name(sym_name);
9609 	if (!addr) {
9610 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
9611 			sym_name);
9612 		return -ENOENT;
9613 	}
9614 
9615 	datasec_id = btf_find_by_name_kind(btf_vmlinux, ".data..percpu",
9616 					   BTF_KIND_DATASEC);
9617 	if (datasec_id > 0) {
9618 		datasec = btf_type_by_id(btf_vmlinux, datasec_id);
9619 		for_each_vsi(i, datasec, vsi) {
9620 			if (vsi->type == id) {
9621 				percpu = true;
9622 				break;
9623 			}
9624 		}
9625 	}
9626 
9627 	insn[0].imm = (u32)addr;
9628 	insn[1].imm = addr >> 32;
9629 
9630 	type = t->type;
9631 	t = btf_type_skip_modifiers(btf_vmlinux, type, NULL);
9632 	if (percpu) {
9633 		aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
9634 		aux->btf_var.btf_id = type;
9635 	} else if (!btf_type_is_struct(t)) {
9636 		const struct btf_type *ret;
9637 		const char *tname;
9638 		u32 tsize;
9639 
9640 		/* resolve the type size of ksym. */
9641 		ret = btf_resolve_size(btf_vmlinux, t, &tsize);
9642 		if (IS_ERR(ret)) {
9643 			tname = btf_name_by_offset(btf_vmlinux, t->name_off);
9644 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
9645 				tname, PTR_ERR(ret));
9646 			return -EINVAL;
9647 		}
9648 		aux->btf_var.reg_type = PTR_TO_MEM;
9649 		aux->btf_var.mem_size = tsize;
9650 	} else {
9651 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
9652 		aux->btf_var.btf_id = type;
9653 	}
9654 	return 0;
9655 }
9656 
9657 static int check_map_prealloc(struct bpf_map *map)
9658 {
9659 	return (map->map_type != BPF_MAP_TYPE_HASH &&
9660 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9661 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
9662 		!(map->map_flags & BPF_F_NO_PREALLOC);
9663 }
9664 
9665 static bool is_tracing_prog_type(enum bpf_prog_type type)
9666 {
9667 	switch (type) {
9668 	case BPF_PROG_TYPE_KPROBE:
9669 	case BPF_PROG_TYPE_TRACEPOINT:
9670 	case BPF_PROG_TYPE_PERF_EVENT:
9671 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
9672 		return true;
9673 	default:
9674 		return false;
9675 	}
9676 }
9677 
9678 static bool is_preallocated_map(struct bpf_map *map)
9679 {
9680 	if (!check_map_prealloc(map))
9681 		return false;
9682 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
9683 		return false;
9684 	return true;
9685 }
9686 
9687 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
9688 					struct bpf_map *map,
9689 					struct bpf_prog *prog)
9690 
9691 {
9692 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
9693 	/*
9694 	 * Validate that trace type programs use preallocated hash maps.
9695 	 *
9696 	 * For programs attached to PERF events this is mandatory as the
9697 	 * perf NMI can hit any arbitrary code sequence.
9698 	 *
9699 	 * All other trace types using preallocated hash maps are unsafe as
9700 	 * well because tracepoint or kprobes can be inside locked regions
9701 	 * of the memory allocator or at a place where a recursion into the
9702 	 * memory allocator would see inconsistent state.
9703 	 *
9704 	 * On RT enabled kernels run-time allocation of all trace type
9705 	 * programs is strictly prohibited due to lock type constraints. On
9706 	 * !RT kernels it is allowed for backwards compatibility reasons for
9707 	 * now, but warnings are emitted so developers are made aware of
9708 	 * the unsafety and can fix their programs before this is enforced.
9709 	 */
9710 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
9711 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
9712 			verbose(env, "perf_event programs can only use preallocated hash map\n");
9713 			return -EINVAL;
9714 		}
9715 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
9716 			verbose(env, "trace type programs can only use preallocated hash map\n");
9717 			return -EINVAL;
9718 		}
9719 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
9720 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
9721 	}
9722 
9723 	if ((is_tracing_prog_type(prog_type) ||
9724 	     prog_type == BPF_PROG_TYPE_SOCKET_FILTER) &&
9725 	    map_value_has_spin_lock(map)) {
9726 		verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
9727 		return -EINVAL;
9728 	}
9729 
9730 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
9731 	    !bpf_offload_prog_map_match(prog, map)) {
9732 		verbose(env, "offload device mismatch between prog and map\n");
9733 		return -EINVAL;
9734 	}
9735 
9736 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
9737 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
9738 		return -EINVAL;
9739 	}
9740 
9741 	if (prog->aux->sleepable)
9742 		switch (map->map_type) {
9743 		case BPF_MAP_TYPE_HASH:
9744 		case BPF_MAP_TYPE_LRU_HASH:
9745 		case BPF_MAP_TYPE_ARRAY:
9746 			if (!is_preallocated_map(map)) {
9747 				verbose(env,
9748 					"Sleepable programs can only use preallocated hash maps\n");
9749 				return -EINVAL;
9750 			}
9751 			break;
9752 		default:
9753 			verbose(env,
9754 				"Sleepable programs can only use array and hash maps\n");
9755 			return -EINVAL;
9756 		}
9757 
9758 	return 0;
9759 }
9760 
9761 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
9762 {
9763 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
9764 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
9765 }
9766 
9767 /* find and rewrite pseudo imm in ld_imm64 instructions:
9768  *
9769  * 1. if it accesses map FD, replace it with actual map pointer.
9770  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
9771  *
9772  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
9773  */
9774 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
9775 {
9776 	struct bpf_insn *insn = env->prog->insnsi;
9777 	int insn_cnt = env->prog->len;
9778 	int i, j, err;
9779 
9780 	err = bpf_prog_calc_tag(env->prog);
9781 	if (err)
9782 		return err;
9783 
9784 	for (i = 0; i < insn_cnt; i++, insn++) {
9785 		if (BPF_CLASS(insn->code) == BPF_LDX &&
9786 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9787 			verbose(env, "BPF_LDX uses reserved fields\n");
9788 			return -EINVAL;
9789 		}
9790 
9791 		if (BPF_CLASS(insn->code) == BPF_STX &&
9792 		    ((BPF_MODE(insn->code) != BPF_MEM &&
9793 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
9794 			verbose(env, "BPF_STX uses reserved fields\n");
9795 			return -EINVAL;
9796 		}
9797 
9798 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
9799 			struct bpf_insn_aux_data *aux;
9800 			struct bpf_map *map;
9801 			struct fd f;
9802 			u64 addr;
9803 
9804 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
9805 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
9806 			    insn[1].off != 0) {
9807 				verbose(env, "invalid bpf_ld_imm64 insn\n");
9808 				return -EINVAL;
9809 			}
9810 
9811 			if (insn[0].src_reg == 0)
9812 				/* valid generic load 64-bit imm */
9813 				goto next_insn;
9814 
9815 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
9816 				aux = &env->insn_aux_data[i];
9817 				err = check_pseudo_btf_id(env, insn, aux);
9818 				if (err)
9819 					return err;
9820 				goto next_insn;
9821 			}
9822 
9823 			/* In final convert_pseudo_ld_imm64() step, this is
9824 			 * converted into regular 64-bit imm load insn.
9825 			 */
9826 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
9827 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
9828 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
9829 			     insn[1].imm != 0)) {
9830 				verbose(env,
9831 					"unrecognized bpf_ld_imm64 insn\n");
9832 				return -EINVAL;
9833 			}
9834 
9835 			f = fdget(insn[0].imm);
9836 			map = __bpf_map_get(f);
9837 			if (IS_ERR(map)) {
9838 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
9839 					insn[0].imm);
9840 				return PTR_ERR(map);
9841 			}
9842 
9843 			err = check_map_prog_compatibility(env, map, env->prog);
9844 			if (err) {
9845 				fdput(f);
9846 				return err;
9847 			}
9848 
9849 			aux = &env->insn_aux_data[i];
9850 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
9851 				addr = (unsigned long)map;
9852 			} else {
9853 				u32 off = insn[1].imm;
9854 
9855 				if (off >= BPF_MAX_VAR_OFF) {
9856 					verbose(env, "direct value offset of %u is not allowed\n", off);
9857 					fdput(f);
9858 					return -EINVAL;
9859 				}
9860 
9861 				if (!map->ops->map_direct_value_addr) {
9862 					verbose(env, "no direct value access support for this map type\n");
9863 					fdput(f);
9864 					return -EINVAL;
9865 				}
9866 
9867 				err = map->ops->map_direct_value_addr(map, &addr, off);
9868 				if (err) {
9869 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
9870 						map->value_size, off);
9871 					fdput(f);
9872 					return err;
9873 				}
9874 
9875 				aux->map_off = off;
9876 				addr += off;
9877 			}
9878 
9879 			insn[0].imm = (u32)addr;
9880 			insn[1].imm = addr >> 32;
9881 
9882 			/* check whether we recorded this map already */
9883 			for (j = 0; j < env->used_map_cnt; j++) {
9884 				if (env->used_maps[j] == map) {
9885 					aux->map_index = j;
9886 					fdput(f);
9887 					goto next_insn;
9888 				}
9889 			}
9890 
9891 			if (env->used_map_cnt >= MAX_USED_MAPS) {
9892 				fdput(f);
9893 				return -E2BIG;
9894 			}
9895 
9896 			/* hold the map. If the program is rejected by verifier,
9897 			 * the map will be released by release_maps() or it
9898 			 * will be used by the valid program until it's unloaded
9899 			 * and all maps are released in free_used_maps()
9900 			 */
9901 			bpf_map_inc(map);
9902 
9903 			aux->map_index = env->used_map_cnt;
9904 			env->used_maps[env->used_map_cnt++] = map;
9905 
9906 			if (bpf_map_is_cgroup_storage(map) &&
9907 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
9908 				verbose(env, "only one cgroup storage of each type is allowed\n");
9909 				fdput(f);
9910 				return -EBUSY;
9911 			}
9912 
9913 			fdput(f);
9914 next_insn:
9915 			insn++;
9916 			i++;
9917 			continue;
9918 		}
9919 
9920 		/* Basic sanity check before we invest more work here. */
9921 		if (!bpf_opcode_in_insntable(insn->code)) {
9922 			verbose(env, "unknown opcode %02x\n", insn->code);
9923 			return -EINVAL;
9924 		}
9925 	}
9926 
9927 	/* now all pseudo BPF_LD_IMM64 instructions load valid
9928 	 * 'struct bpf_map *' into a register instead of user map_fd.
9929 	 * These pointers will be used later by verifier to validate map access.
9930 	 */
9931 	return 0;
9932 }
9933 
9934 /* drop refcnt of maps used by the rejected program */
9935 static void release_maps(struct bpf_verifier_env *env)
9936 {
9937 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
9938 			     env->used_map_cnt);
9939 }
9940 
9941 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
9942 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
9943 {
9944 	struct bpf_insn *insn = env->prog->insnsi;
9945 	int insn_cnt = env->prog->len;
9946 	int i;
9947 
9948 	for (i = 0; i < insn_cnt; i++, insn++)
9949 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
9950 			insn->src_reg = 0;
9951 }
9952 
9953 /* single env->prog->insni[off] instruction was replaced with the range
9954  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
9955  * [0, off) and [off, end) to new locations, so the patched range stays zero
9956  */
9957 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
9958 				struct bpf_prog *new_prog, u32 off, u32 cnt)
9959 {
9960 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
9961 	struct bpf_insn *insn = new_prog->insnsi;
9962 	u32 prog_len;
9963 	int i;
9964 
9965 	/* aux info at OFF always needs adjustment, no matter fast path
9966 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
9967 	 * original insn at old prog.
9968 	 */
9969 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
9970 
9971 	if (cnt == 1)
9972 		return 0;
9973 	prog_len = new_prog->len;
9974 	new_data = vzalloc(array_size(prog_len,
9975 				      sizeof(struct bpf_insn_aux_data)));
9976 	if (!new_data)
9977 		return -ENOMEM;
9978 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
9979 	memcpy(new_data + off + cnt - 1, old_data + off,
9980 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
9981 	for (i = off; i < off + cnt - 1; i++) {
9982 		new_data[i].seen = env->pass_cnt;
9983 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
9984 	}
9985 	env->insn_aux_data = new_data;
9986 	vfree(old_data);
9987 	return 0;
9988 }
9989 
9990 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
9991 {
9992 	int i;
9993 
9994 	if (len == 1)
9995 		return;
9996 	/* NOTE: fake 'exit' subprog should be updated as well. */
9997 	for (i = 0; i <= env->subprog_cnt; i++) {
9998 		if (env->subprog_info[i].start <= off)
9999 			continue;
10000 		env->subprog_info[i].start += len - 1;
10001 	}
10002 }
10003 
10004 static void adjust_poke_descs(struct bpf_prog *prog, u32 len)
10005 {
10006 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
10007 	int i, sz = prog->aux->size_poke_tab;
10008 	struct bpf_jit_poke_descriptor *desc;
10009 
10010 	for (i = 0; i < sz; i++) {
10011 		desc = &tab[i];
10012 		desc->insn_idx += len - 1;
10013 	}
10014 }
10015 
10016 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
10017 					    const struct bpf_insn *patch, u32 len)
10018 {
10019 	struct bpf_prog *new_prog;
10020 
10021 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
10022 	if (IS_ERR(new_prog)) {
10023 		if (PTR_ERR(new_prog) == -ERANGE)
10024 			verbose(env,
10025 				"insn %d cannot be patched due to 16-bit range\n",
10026 				env->insn_aux_data[off].orig_idx);
10027 		return NULL;
10028 	}
10029 	if (adjust_insn_aux_data(env, new_prog, off, len))
10030 		return NULL;
10031 	adjust_subprog_starts(env, off, len);
10032 	adjust_poke_descs(new_prog, len);
10033 	return new_prog;
10034 }
10035 
10036 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
10037 					      u32 off, u32 cnt)
10038 {
10039 	int i, j;
10040 
10041 	/* find first prog starting at or after off (first to remove) */
10042 	for (i = 0; i < env->subprog_cnt; i++)
10043 		if (env->subprog_info[i].start >= off)
10044 			break;
10045 	/* find first prog starting at or after off + cnt (first to stay) */
10046 	for (j = i; j < env->subprog_cnt; j++)
10047 		if (env->subprog_info[j].start >= off + cnt)
10048 			break;
10049 	/* if j doesn't start exactly at off + cnt, we are just removing
10050 	 * the front of previous prog
10051 	 */
10052 	if (env->subprog_info[j].start != off + cnt)
10053 		j--;
10054 
10055 	if (j > i) {
10056 		struct bpf_prog_aux *aux = env->prog->aux;
10057 		int move;
10058 
10059 		/* move fake 'exit' subprog as well */
10060 		move = env->subprog_cnt + 1 - j;
10061 
10062 		memmove(env->subprog_info + i,
10063 			env->subprog_info + j,
10064 			sizeof(*env->subprog_info) * move);
10065 		env->subprog_cnt -= j - i;
10066 
10067 		/* remove func_info */
10068 		if (aux->func_info) {
10069 			move = aux->func_info_cnt - j;
10070 
10071 			memmove(aux->func_info + i,
10072 				aux->func_info + j,
10073 				sizeof(*aux->func_info) * move);
10074 			aux->func_info_cnt -= j - i;
10075 			/* func_info->insn_off is set after all code rewrites,
10076 			 * in adjust_btf_func() - no need to adjust
10077 			 */
10078 		}
10079 	} else {
10080 		/* convert i from "first prog to remove" to "first to adjust" */
10081 		if (env->subprog_info[i].start == off)
10082 			i++;
10083 	}
10084 
10085 	/* update fake 'exit' subprog as well */
10086 	for (; i <= env->subprog_cnt; i++)
10087 		env->subprog_info[i].start -= cnt;
10088 
10089 	return 0;
10090 }
10091 
10092 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
10093 				      u32 cnt)
10094 {
10095 	struct bpf_prog *prog = env->prog;
10096 	u32 i, l_off, l_cnt, nr_linfo;
10097 	struct bpf_line_info *linfo;
10098 
10099 	nr_linfo = prog->aux->nr_linfo;
10100 	if (!nr_linfo)
10101 		return 0;
10102 
10103 	linfo = prog->aux->linfo;
10104 
10105 	/* find first line info to remove, count lines to be removed */
10106 	for (i = 0; i < nr_linfo; i++)
10107 		if (linfo[i].insn_off >= off)
10108 			break;
10109 
10110 	l_off = i;
10111 	l_cnt = 0;
10112 	for (; i < nr_linfo; i++)
10113 		if (linfo[i].insn_off < off + cnt)
10114 			l_cnt++;
10115 		else
10116 			break;
10117 
10118 	/* First live insn doesn't match first live linfo, it needs to "inherit"
10119 	 * last removed linfo.  prog is already modified, so prog->len == off
10120 	 * means no live instructions after (tail of the program was removed).
10121 	 */
10122 	if (prog->len != off && l_cnt &&
10123 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
10124 		l_cnt--;
10125 		linfo[--i].insn_off = off + cnt;
10126 	}
10127 
10128 	/* remove the line info which refer to the removed instructions */
10129 	if (l_cnt) {
10130 		memmove(linfo + l_off, linfo + i,
10131 			sizeof(*linfo) * (nr_linfo - i));
10132 
10133 		prog->aux->nr_linfo -= l_cnt;
10134 		nr_linfo = prog->aux->nr_linfo;
10135 	}
10136 
10137 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
10138 	for (i = l_off; i < nr_linfo; i++)
10139 		linfo[i].insn_off -= cnt;
10140 
10141 	/* fix up all subprogs (incl. 'exit') which start >= off */
10142 	for (i = 0; i <= env->subprog_cnt; i++)
10143 		if (env->subprog_info[i].linfo_idx > l_off) {
10144 			/* program may have started in the removed region but
10145 			 * may not be fully removed
10146 			 */
10147 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
10148 				env->subprog_info[i].linfo_idx -= l_cnt;
10149 			else
10150 				env->subprog_info[i].linfo_idx = l_off;
10151 		}
10152 
10153 	return 0;
10154 }
10155 
10156 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
10157 {
10158 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10159 	unsigned int orig_prog_len = env->prog->len;
10160 	int err;
10161 
10162 	if (bpf_prog_is_dev_bound(env->prog->aux))
10163 		bpf_prog_offload_remove_insns(env, off, cnt);
10164 
10165 	err = bpf_remove_insns(env->prog, off, cnt);
10166 	if (err)
10167 		return err;
10168 
10169 	err = adjust_subprog_starts_after_remove(env, off, cnt);
10170 	if (err)
10171 		return err;
10172 
10173 	err = bpf_adj_linfo_after_remove(env, off, cnt);
10174 	if (err)
10175 		return err;
10176 
10177 	memmove(aux_data + off,	aux_data + off + cnt,
10178 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
10179 
10180 	return 0;
10181 }
10182 
10183 /* The verifier does more data flow analysis than llvm and will not
10184  * explore branches that are dead at run time. Malicious programs can
10185  * have dead code too. Therefore replace all dead at-run-time code
10186  * with 'ja -1'.
10187  *
10188  * Just nops are not optimal, e.g. if they would sit at the end of the
10189  * program and through another bug we would manage to jump there, then
10190  * we'd execute beyond program memory otherwise. Returning exception
10191  * code also wouldn't work since we can have subprogs where the dead
10192  * code could be located.
10193  */
10194 static void sanitize_dead_code(struct bpf_verifier_env *env)
10195 {
10196 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10197 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
10198 	struct bpf_insn *insn = env->prog->insnsi;
10199 	const int insn_cnt = env->prog->len;
10200 	int i;
10201 
10202 	for (i = 0; i < insn_cnt; i++) {
10203 		if (aux_data[i].seen)
10204 			continue;
10205 		memcpy(insn + i, &trap, sizeof(trap));
10206 	}
10207 }
10208 
10209 static bool insn_is_cond_jump(u8 code)
10210 {
10211 	u8 op;
10212 
10213 	if (BPF_CLASS(code) == BPF_JMP32)
10214 		return true;
10215 
10216 	if (BPF_CLASS(code) != BPF_JMP)
10217 		return false;
10218 
10219 	op = BPF_OP(code);
10220 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
10221 }
10222 
10223 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
10224 {
10225 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10226 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10227 	struct bpf_insn *insn = env->prog->insnsi;
10228 	const int insn_cnt = env->prog->len;
10229 	int i;
10230 
10231 	for (i = 0; i < insn_cnt; i++, insn++) {
10232 		if (!insn_is_cond_jump(insn->code))
10233 			continue;
10234 
10235 		if (!aux_data[i + 1].seen)
10236 			ja.off = insn->off;
10237 		else if (!aux_data[i + 1 + insn->off].seen)
10238 			ja.off = 0;
10239 		else
10240 			continue;
10241 
10242 		if (bpf_prog_is_dev_bound(env->prog->aux))
10243 			bpf_prog_offload_replace_insn(env, i, &ja);
10244 
10245 		memcpy(insn, &ja, sizeof(ja));
10246 	}
10247 }
10248 
10249 static int opt_remove_dead_code(struct bpf_verifier_env *env)
10250 {
10251 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10252 	int insn_cnt = env->prog->len;
10253 	int i, err;
10254 
10255 	for (i = 0; i < insn_cnt; i++) {
10256 		int j;
10257 
10258 		j = 0;
10259 		while (i + j < insn_cnt && !aux_data[i + j].seen)
10260 			j++;
10261 		if (!j)
10262 			continue;
10263 
10264 		err = verifier_remove_insns(env, i, j);
10265 		if (err)
10266 			return err;
10267 		insn_cnt = env->prog->len;
10268 	}
10269 
10270 	return 0;
10271 }
10272 
10273 static int opt_remove_nops(struct bpf_verifier_env *env)
10274 {
10275 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10276 	struct bpf_insn *insn = env->prog->insnsi;
10277 	int insn_cnt = env->prog->len;
10278 	int i, err;
10279 
10280 	for (i = 0; i < insn_cnt; i++) {
10281 		if (memcmp(&insn[i], &ja, sizeof(ja)))
10282 			continue;
10283 
10284 		err = verifier_remove_insns(env, i, 1);
10285 		if (err)
10286 			return err;
10287 		insn_cnt--;
10288 		i--;
10289 	}
10290 
10291 	return 0;
10292 }
10293 
10294 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
10295 					 const union bpf_attr *attr)
10296 {
10297 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
10298 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
10299 	int i, patch_len, delta = 0, len = env->prog->len;
10300 	struct bpf_insn *insns = env->prog->insnsi;
10301 	struct bpf_prog *new_prog;
10302 	bool rnd_hi32;
10303 
10304 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
10305 	zext_patch[1] = BPF_ZEXT_REG(0);
10306 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
10307 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
10308 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
10309 	for (i = 0; i < len; i++) {
10310 		int adj_idx = i + delta;
10311 		struct bpf_insn insn;
10312 
10313 		insn = insns[adj_idx];
10314 		if (!aux[adj_idx].zext_dst) {
10315 			u8 code, class;
10316 			u32 imm_rnd;
10317 
10318 			if (!rnd_hi32)
10319 				continue;
10320 
10321 			code = insn.code;
10322 			class = BPF_CLASS(code);
10323 			if (insn_no_def(&insn))
10324 				continue;
10325 
10326 			/* NOTE: arg "reg" (the fourth one) is only used for
10327 			 *       BPF_STX which has been ruled out in above
10328 			 *       check, it is safe to pass NULL here.
10329 			 */
10330 			if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
10331 				if (class == BPF_LD &&
10332 				    BPF_MODE(code) == BPF_IMM)
10333 					i++;
10334 				continue;
10335 			}
10336 
10337 			/* ctx load could be transformed into wider load. */
10338 			if (class == BPF_LDX &&
10339 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
10340 				continue;
10341 
10342 			imm_rnd = get_random_int();
10343 			rnd_hi32_patch[0] = insn;
10344 			rnd_hi32_patch[1].imm = imm_rnd;
10345 			rnd_hi32_patch[3].dst_reg = insn.dst_reg;
10346 			patch = rnd_hi32_patch;
10347 			patch_len = 4;
10348 			goto apply_patch_buffer;
10349 		}
10350 
10351 		if (!bpf_jit_needs_zext())
10352 			continue;
10353 
10354 		zext_patch[0] = insn;
10355 		zext_patch[1].dst_reg = insn.dst_reg;
10356 		zext_patch[1].src_reg = insn.dst_reg;
10357 		patch = zext_patch;
10358 		patch_len = 2;
10359 apply_patch_buffer:
10360 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
10361 		if (!new_prog)
10362 			return -ENOMEM;
10363 		env->prog = new_prog;
10364 		insns = new_prog->insnsi;
10365 		aux = env->insn_aux_data;
10366 		delta += patch_len - 1;
10367 	}
10368 
10369 	return 0;
10370 }
10371 
10372 /* convert load instructions that access fields of a context type into a
10373  * sequence of instructions that access fields of the underlying structure:
10374  *     struct __sk_buff    -> struct sk_buff
10375  *     struct bpf_sock_ops -> struct sock
10376  */
10377 static int convert_ctx_accesses(struct bpf_verifier_env *env)
10378 {
10379 	const struct bpf_verifier_ops *ops = env->ops;
10380 	int i, cnt, size, ctx_field_size, delta = 0;
10381 	const int insn_cnt = env->prog->len;
10382 	struct bpf_insn insn_buf[16], *insn;
10383 	u32 target_size, size_default, off;
10384 	struct bpf_prog *new_prog;
10385 	enum bpf_access_type type;
10386 	bool is_narrower_load;
10387 
10388 	if (ops->gen_prologue || env->seen_direct_write) {
10389 		if (!ops->gen_prologue) {
10390 			verbose(env, "bpf verifier is misconfigured\n");
10391 			return -EINVAL;
10392 		}
10393 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
10394 					env->prog);
10395 		if (cnt >= ARRAY_SIZE(insn_buf)) {
10396 			verbose(env, "bpf verifier is misconfigured\n");
10397 			return -EINVAL;
10398 		} else if (cnt) {
10399 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
10400 			if (!new_prog)
10401 				return -ENOMEM;
10402 
10403 			env->prog = new_prog;
10404 			delta += cnt - 1;
10405 		}
10406 	}
10407 
10408 	if (bpf_prog_is_dev_bound(env->prog->aux))
10409 		return 0;
10410 
10411 	insn = env->prog->insnsi + delta;
10412 
10413 	for (i = 0; i < insn_cnt; i++, insn++) {
10414 		bpf_convert_ctx_access_t convert_ctx_access;
10415 
10416 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
10417 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
10418 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
10419 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
10420 			type = BPF_READ;
10421 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
10422 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
10423 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
10424 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
10425 			type = BPF_WRITE;
10426 		else
10427 			continue;
10428 
10429 		if (type == BPF_WRITE &&
10430 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
10431 			struct bpf_insn patch[] = {
10432 				/* Sanitize suspicious stack slot with zero.
10433 				 * There are no memory dependencies for this store,
10434 				 * since it's only using frame pointer and immediate
10435 				 * constant of zero
10436 				 */
10437 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
10438 					   env->insn_aux_data[i + delta].sanitize_stack_off,
10439 					   0),
10440 				/* the original STX instruction will immediately
10441 				 * overwrite the same stack slot with appropriate value
10442 				 */
10443 				*insn,
10444 			};
10445 
10446 			cnt = ARRAY_SIZE(patch);
10447 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
10448 			if (!new_prog)
10449 				return -ENOMEM;
10450 
10451 			delta    += cnt - 1;
10452 			env->prog = new_prog;
10453 			insn      = new_prog->insnsi + i + delta;
10454 			continue;
10455 		}
10456 
10457 		switch (env->insn_aux_data[i + delta].ptr_type) {
10458 		case PTR_TO_CTX:
10459 			if (!ops->convert_ctx_access)
10460 				continue;
10461 			convert_ctx_access = ops->convert_ctx_access;
10462 			break;
10463 		case PTR_TO_SOCKET:
10464 		case PTR_TO_SOCK_COMMON:
10465 			convert_ctx_access = bpf_sock_convert_ctx_access;
10466 			break;
10467 		case PTR_TO_TCP_SOCK:
10468 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
10469 			break;
10470 		case PTR_TO_XDP_SOCK:
10471 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
10472 			break;
10473 		case PTR_TO_BTF_ID:
10474 			if (type == BPF_READ) {
10475 				insn->code = BPF_LDX | BPF_PROBE_MEM |
10476 					BPF_SIZE((insn)->code);
10477 				env->prog->aux->num_exentries++;
10478 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
10479 				verbose(env, "Writes through BTF pointers are not allowed\n");
10480 				return -EINVAL;
10481 			}
10482 			continue;
10483 		default:
10484 			continue;
10485 		}
10486 
10487 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
10488 		size = BPF_LDST_BYTES(insn);
10489 
10490 		/* If the read access is a narrower load of the field,
10491 		 * convert to a 4/8-byte load, to minimum program type specific
10492 		 * convert_ctx_access changes. If conversion is successful,
10493 		 * we will apply proper mask to the result.
10494 		 */
10495 		is_narrower_load = size < ctx_field_size;
10496 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
10497 		off = insn->off;
10498 		if (is_narrower_load) {
10499 			u8 size_code;
10500 
10501 			if (type == BPF_WRITE) {
10502 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
10503 				return -EINVAL;
10504 			}
10505 
10506 			size_code = BPF_H;
10507 			if (ctx_field_size == 4)
10508 				size_code = BPF_W;
10509 			else if (ctx_field_size == 8)
10510 				size_code = BPF_DW;
10511 
10512 			insn->off = off & ~(size_default - 1);
10513 			insn->code = BPF_LDX | BPF_MEM | size_code;
10514 		}
10515 
10516 		target_size = 0;
10517 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
10518 					 &target_size);
10519 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
10520 		    (ctx_field_size && !target_size)) {
10521 			verbose(env, "bpf verifier is misconfigured\n");
10522 			return -EINVAL;
10523 		}
10524 
10525 		if (is_narrower_load && size < target_size) {
10526 			u8 shift = bpf_ctx_narrow_access_offset(
10527 				off, size, size_default) * 8;
10528 			if (ctx_field_size <= 4) {
10529 				if (shift)
10530 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
10531 									insn->dst_reg,
10532 									shift);
10533 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
10534 								(1 << size * 8) - 1);
10535 			} else {
10536 				if (shift)
10537 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
10538 									insn->dst_reg,
10539 									shift);
10540 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
10541 								(1ULL << size * 8) - 1);
10542 			}
10543 		}
10544 
10545 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10546 		if (!new_prog)
10547 			return -ENOMEM;
10548 
10549 		delta += cnt - 1;
10550 
10551 		/* keep walking new program and skip insns we just inserted */
10552 		env->prog = new_prog;
10553 		insn      = new_prog->insnsi + i + delta;
10554 	}
10555 
10556 	return 0;
10557 }
10558 
10559 static int jit_subprogs(struct bpf_verifier_env *env)
10560 {
10561 	struct bpf_prog *prog = env->prog, **func, *tmp;
10562 	int i, j, subprog_start, subprog_end = 0, len, subprog;
10563 	struct bpf_map *map_ptr;
10564 	struct bpf_insn *insn;
10565 	void *old_bpf_func;
10566 	int err, num_exentries;
10567 
10568 	if (env->subprog_cnt <= 1)
10569 		return 0;
10570 
10571 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10572 		if (insn->code != (BPF_JMP | BPF_CALL) ||
10573 		    insn->src_reg != BPF_PSEUDO_CALL)
10574 			continue;
10575 		/* Upon error here we cannot fall back to interpreter but
10576 		 * need a hard reject of the program. Thus -EFAULT is
10577 		 * propagated in any case.
10578 		 */
10579 		subprog = find_subprog(env, i + insn->imm + 1);
10580 		if (subprog < 0) {
10581 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
10582 				  i + insn->imm + 1);
10583 			return -EFAULT;
10584 		}
10585 		/* temporarily remember subprog id inside insn instead of
10586 		 * aux_data, since next loop will split up all insns into funcs
10587 		 */
10588 		insn->off = subprog;
10589 		/* remember original imm in case JIT fails and fallback
10590 		 * to interpreter will be needed
10591 		 */
10592 		env->insn_aux_data[i].call_imm = insn->imm;
10593 		/* point imm to __bpf_call_base+1 from JITs point of view */
10594 		insn->imm = 1;
10595 	}
10596 
10597 	err = bpf_prog_alloc_jited_linfo(prog);
10598 	if (err)
10599 		goto out_undo_insn;
10600 
10601 	err = -ENOMEM;
10602 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
10603 	if (!func)
10604 		goto out_undo_insn;
10605 
10606 	for (i = 0; i < env->subprog_cnt; i++) {
10607 		subprog_start = subprog_end;
10608 		subprog_end = env->subprog_info[i + 1].start;
10609 
10610 		len = subprog_end - subprog_start;
10611 		/* BPF_PROG_RUN doesn't call subprogs directly,
10612 		 * hence main prog stats include the runtime of subprogs.
10613 		 * subprogs don't have IDs and not reachable via prog_get_next_id
10614 		 * func[i]->aux->stats will never be accessed and stays NULL
10615 		 */
10616 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
10617 		if (!func[i])
10618 			goto out_free;
10619 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
10620 		       len * sizeof(struct bpf_insn));
10621 		func[i]->type = prog->type;
10622 		func[i]->len = len;
10623 		if (bpf_prog_calc_tag(func[i]))
10624 			goto out_free;
10625 		func[i]->is_func = 1;
10626 		func[i]->aux->func_idx = i;
10627 		/* the btf and func_info will be freed only at prog->aux */
10628 		func[i]->aux->btf = prog->aux->btf;
10629 		func[i]->aux->func_info = prog->aux->func_info;
10630 
10631 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
10632 			u32 insn_idx = prog->aux->poke_tab[j].insn_idx;
10633 			int ret;
10634 
10635 			if (!(insn_idx >= subprog_start &&
10636 			      insn_idx <= subprog_end))
10637 				continue;
10638 
10639 			ret = bpf_jit_add_poke_descriptor(func[i],
10640 							  &prog->aux->poke_tab[j]);
10641 			if (ret < 0) {
10642 				verbose(env, "adding tail call poke descriptor failed\n");
10643 				goto out_free;
10644 			}
10645 
10646 			func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1;
10647 
10648 			map_ptr = func[i]->aux->poke_tab[ret].tail_call.map;
10649 			ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux);
10650 			if (ret < 0) {
10651 				verbose(env, "tracking tail call prog failed\n");
10652 				goto out_free;
10653 			}
10654 		}
10655 
10656 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
10657 		 * Long term would need debug info to populate names
10658 		 */
10659 		func[i]->aux->name[0] = 'F';
10660 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
10661 		func[i]->jit_requested = 1;
10662 		func[i]->aux->linfo = prog->aux->linfo;
10663 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
10664 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
10665 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
10666 		num_exentries = 0;
10667 		insn = func[i]->insnsi;
10668 		for (j = 0; j < func[i]->len; j++, insn++) {
10669 			if (BPF_CLASS(insn->code) == BPF_LDX &&
10670 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
10671 				num_exentries++;
10672 		}
10673 		func[i]->aux->num_exentries = num_exentries;
10674 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
10675 		func[i] = bpf_int_jit_compile(func[i]);
10676 		if (!func[i]->jited) {
10677 			err = -ENOTSUPP;
10678 			goto out_free;
10679 		}
10680 		cond_resched();
10681 	}
10682 
10683 	/* Untrack main program's aux structs so that during map_poke_run()
10684 	 * we will not stumble upon the unfilled poke descriptors; each
10685 	 * of the main program's poke descs got distributed across subprogs
10686 	 * and got tracked onto map, so we are sure that none of them will
10687 	 * be missed after the operation below
10688 	 */
10689 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
10690 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
10691 
10692 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
10693 	}
10694 
10695 	/* at this point all bpf functions were successfully JITed
10696 	 * now populate all bpf_calls with correct addresses and
10697 	 * run last pass of JIT
10698 	 */
10699 	for (i = 0; i < env->subprog_cnt; i++) {
10700 		insn = func[i]->insnsi;
10701 		for (j = 0; j < func[i]->len; j++, insn++) {
10702 			if (insn->code != (BPF_JMP | BPF_CALL) ||
10703 			    insn->src_reg != BPF_PSEUDO_CALL)
10704 				continue;
10705 			subprog = insn->off;
10706 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
10707 				    __bpf_call_base;
10708 		}
10709 
10710 		/* we use the aux data to keep a list of the start addresses
10711 		 * of the JITed images for each function in the program
10712 		 *
10713 		 * for some architectures, such as powerpc64, the imm field
10714 		 * might not be large enough to hold the offset of the start
10715 		 * address of the callee's JITed image from __bpf_call_base
10716 		 *
10717 		 * in such cases, we can lookup the start address of a callee
10718 		 * by using its subprog id, available from the off field of
10719 		 * the call instruction, as an index for this list
10720 		 */
10721 		func[i]->aux->func = func;
10722 		func[i]->aux->func_cnt = env->subprog_cnt;
10723 	}
10724 	for (i = 0; i < env->subprog_cnt; i++) {
10725 		old_bpf_func = func[i]->bpf_func;
10726 		tmp = bpf_int_jit_compile(func[i]);
10727 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
10728 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
10729 			err = -ENOTSUPP;
10730 			goto out_free;
10731 		}
10732 		cond_resched();
10733 	}
10734 
10735 	/* finally lock prog and jit images for all functions and
10736 	 * populate kallsysm
10737 	 */
10738 	for (i = 0; i < env->subprog_cnt; i++) {
10739 		bpf_prog_lock_ro(func[i]);
10740 		bpf_prog_kallsyms_add(func[i]);
10741 	}
10742 
10743 	/* Last step: make now unused interpreter insns from main
10744 	 * prog consistent for later dump requests, so they can
10745 	 * later look the same as if they were interpreted only.
10746 	 */
10747 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10748 		if (insn->code != (BPF_JMP | BPF_CALL) ||
10749 		    insn->src_reg != BPF_PSEUDO_CALL)
10750 			continue;
10751 		insn->off = env->insn_aux_data[i].call_imm;
10752 		subprog = find_subprog(env, i + insn->off + 1);
10753 		insn->imm = subprog;
10754 	}
10755 
10756 	prog->jited = 1;
10757 	prog->bpf_func = func[0]->bpf_func;
10758 	prog->aux->func = func;
10759 	prog->aux->func_cnt = env->subprog_cnt;
10760 	bpf_prog_free_unused_jited_linfo(prog);
10761 	return 0;
10762 out_free:
10763 	for (i = 0; i < env->subprog_cnt; i++) {
10764 		if (!func[i])
10765 			continue;
10766 
10767 		for (j = 0; j < func[i]->aux->size_poke_tab; j++) {
10768 			map_ptr = func[i]->aux->poke_tab[j].tail_call.map;
10769 			map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux);
10770 		}
10771 		bpf_jit_free(func[i]);
10772 	}
10773 	kfree(func);
10774 out_undo_insn:
10775 	/* cleanup main prog to be interpreted */
10776 	prog->jit_requested = 0;
10777 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10778 		if (insn->code != (BPF_JMP | BPF_CALL) ||
10779 		    insn->src_reg != BPF_PSEUDO_CALL)
10780 			continue;
10781 		insn->off = 0;
10782 		insn->imm = env->insn_aux_data[i].call_imm;
10783 	}
10784 	bpf_prog_free_jited_linfo(prog);
10785 	return err;
10786 }
10787 
10788 static int fixup_call_args(struct bpf_verifier_env *env)
10789 {
10790 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
10791 	struct bpf_prog *prog = env->prog;
10792 	struct bpf_insn *insn = prog->insnsi;
10793 	int i, depth;
10794 #endif
10795 	int err = 0;
10796 
10797 	if (env->prog->jit_requested &&
10798 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
10799 		err = jit_subprogs(env);
10800 		if (err == 0)
10801 			return 0;
10802 		if (err == -EFAULT)
10803 			return err;
10804 	}
10805 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
10806 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
10807 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
10808 		 * have to be rejected, since interpreter doesn't support them yet.
10809 		 */
10810 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
10811 		return -EINVAL;
10812 	}
10813 	for (i = 0; i < prog->len; i++, insn++) {
10814 		if (insn->code != (BPF_JMP | BPF_CALL) ||
10815 		    insn->src_reg != BPF_PSEUDO_CALL)
10816 			continue;
10817 		depth = get_callee_stack_depth(env, insn, i);
10818 		if (depth < 0)
10819 			return depth;
10820 		bpf_patch_call_args(insn, depth);
10821 	}
10822 	err = 0;
10823 #endif
10824 	return err;
10825 }
10826 
10827 /* fixup insn->imm field of bpf_call instructions
10828  * and inline eligible helpers as explicit sequence of BPF instructions
10829  *
10830  * this function is called after eBPF program passed verification
10831  */
10832 static int fixup_bpf_calls(struct bpf_verifier_env *env)
10833 {
10834 	struct bpf_prog *prog = env->prog;
10835 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
10836 	struct bpf_insn *insn = prog->insnsi;
10837 	const struct bpf_func_proto *fn;
10838 	const int insn_cnt = prog->len;
10839 	const struct bpf_map_ops *ops;
10840 	struct bpf_insn_aux_data *aux;
10841 	struct bpf_insn insn_buf[16];
10842 	struct bpf_prog *new_prog;
10843 	struct bpf_map *map_ptr;
10844 	int i, ret, cnt, delta = 0;
10845 
10846 	for (i = 0; i < insn_cnt; i++, insn++) {
10847 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
10848 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
10849 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
10850 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
10851 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
10852 			struct bpf_insn mask_and_div[] = {
10853 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
10854 				/* Rx div 0 -> 0 */
10855 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
10856 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
10857 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
10858 				*insn,
10859 			};
10860 			struct bpf_insn mask_and_mod[] = {
10861 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
10862 				/* Rx mod 0 -> Rx */
10863 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
10864 				*insn,
10865 			};
10866 			struct bpf_insn *patchlet;
10867 
10868 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
10869 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
10870 				patchlet = mask_and_div + (is64 ? 1 : 0);
10871 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
10872 			} else {
10873 				patchlet = mask_and_mod + (is64 ? 1 : 0);
10874 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
10875 			}
10876 
10877 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
10878 			if (!new_prog)
10879 				return -ENOMEM;
10880 
10881 			delta    += cnt - 1;
10882 			env->prog = prog = new_prog;
10883 			insn      = new_prog->insnsi + i + delta;
10884 			continue;
10885 		}
10886 
10887 		if (BPF_CLASS(insn->code) == BPF_LD &&
10888 		    (BPF_MODE(insn->code) == BPF_ABS ||
10889 		     BPF_MODE(insn->code) == BPF_IND)) {
10890 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
10891 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
10892 				verbose(env, "bpf verifier is misconfigured\n");
10893 				return -EINVAL;
10894 			}
10895 
10896 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10897 			if (!new_prog)
10898 				return -ENOMEM;
10899 
10900 			delta    += cnt - 1;
10901 			env->prog = prog = new_prog;
10902 			insn      = new_prog->insnsi + i + delta;
10903 			continue;
10904 		}
10905 
10906 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
10907 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
10908 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
10909 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
10910 			struct bpf_insn insn_buf[16];
10911 			struct bpf_insn *patch = &insn_buf[0];
10912 			bool issrc, isneg;
10913 			u32 off_reg;
10914 
10915 			aux = &env->insn_aux_data[i + delta];
10916 			if (!aux->alu_state ||
10917 			    aux->alu_state == BPF_ALU_NON_POINTER)
10918 				continue;
10919 
10920 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
10921 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
10922 				BPF_ALU_SANITIZE_SRC;
10923 
10924 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
10925 			if (isneg)
10926 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
10927 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
10928 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
10929 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
10930 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
10931 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
10932 			if (issrc) {
10933 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
10934 							 off_reg);
10935 				insn->src_reg = BPF_REG_AX;
10936 			} else {
10937 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
10938 							 BPF_REG_AX);
10939 			}
10940 			if (isneg)
10941 				insn->code = insn->code == code_add ?
10942 					     code_sub : code_add;
10943 			*patch++ = *insn;
10944 			if (issrc && isneg)
10945 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
10946 			cnt = patch - insn_buf;
10947 
10948 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10949 			if (!new_prog)
10950 				return -ENOMEM;
10951 
10952 			delta    += cnt - 1;
10953 			env->prog = prog = new_prog;
10954 			insn      = new_prog->insnsi + i + delta;
10955 			continue;
10956 		}
10957 
10958 		if (insn->code != (BPF_JMP | BPF_CALL))
10959 			continue;
10960 		if (insn->src_reg == BPF_PSEUDO_CALL)
10961 			continue;
10962 
10963 		if (insn->imm == BPF_FUNC_get_route_realm)
10964 			prog->dst_needed = 1;
10965 		if (insn->imm == BPF_FUNC_get_prandom_u32)
10966 			bpf_user_rnd_init_once();
10967 		if (insn->imm == BPF_FUNC_override_return)
10968 			prog->kprobe_override = 1;
10969 		if (insn->imm == BPF_FUNC_tail_call) {
10970 			/* If we tail call into other programs, we
10971 			 * cannot make any assumptions since they can
10972 			 * be replaced dynamically during runtime in
10973 			 * the program array.
10974 			 */
10975 			prog->cb_access = 1;
10976 			if (!allow_tail_call_in_subprogs(env))
10977 				prog->aux->stack_depth = MAX_BPF_STACK;
10978 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
10979 
10980 			/* mark bpf_tail_call as different opcode to avoid
10981 			 * conditional branch in the interpeter for every normal
10982 			 * call and to prevent accidental JITing by JIT compiler
10983 			 * that doesn't support bpf_tail_call yet
10984 			 */
10985 			insn->imm = 0;
10986 			insn->code = BPF_JMP | BPF_TAIL_CALL;
10987 
10988 			aux = &env->insn_aux_data[i + delta];
10989 			if (env->bpf_capable && !expect_blinding &&
10990 			    prog->jit_requested &&
10991 			    !bpf_map_key_poisoned(aux) &&
10992 			    !bpf_map_ptr_poisoned(aux) &&
10993 			    !bpf_map_ptr_unpriv(aux)) {
10994 				struct bpf_jit_poke_descriptor desc = {
10995 					.reason = BPF_POKE_REASON_TAIL_CALL,
10996 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
10997 					.tail_call.key = bpf_map_key_immediate(aux),
10998 					.insn_idx = i + delta,
10999 				};
11000 
11001 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
11002 				if (ret < 0) {
11003 					verbose(env, "adding tail call poke descriptor failed\n");
11004 					return ret;
11005 				}
11006 
11007 				insn->imm = ret + 1;
11008 				continue;
11009 			}
11010 
11011 			if (!bpf_map_ptr_unpriv(aux))
11012 				continue;
11013 
11014 			/* instead of changing every JIT dealing with tail_call
11015 			 * emit two extra insns:
11016 			 * if (index >= max_entries) goto out;
11017 			 * index &= array->index_mask;
11018 			 * to avoid out-of-bounds cpu speculation
11019 			 */
11020 			if (bpf_map_ptr_poisoned(aux)) {
11021 				verbose(env, "tail_call abusing map_ptr\n");
11022 				return -EINVAL;
11023 			}
11024 
11025 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11026 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
11027 						  map_ptr->max_entries, 2);
11028 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
11029 						    container_of(map_ptr,
11030 								 struct bpf_array,
11031 								 map)->index_mask);
11032 			insn_buf[2] = *insn;
11033 			cnt = 3;
11034 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11035 			if (!new_prog)
11036 				return -ENOMEM;
11037 
11038 			delta    += cnt - 1;
11039 			env->prog = prog = new_prog;
11040 			insn      = new_prog->insnsi + i + delta;
11041 			continue;
11042 		}
11043 
11044 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
11045 		 * and other inlining handlers are currently limited to 64 bit
11046 		 * only.
11047 		 */
11048 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
11049 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
11050 		     insn->imm == BPF_FUNC_map_update_elem ||
11051 		     insn->imm == BPF_FUNC_map_delete_elem ||
11052 		     insn->imm == BPF_FUNC_map_push_elem   ||
11053 		     insn->imm == BPF_FUNC_map_pop_elem    ||
11054 		     insn->imm == BPF_FUNC_map_peek_elem)) {
11055 			aux = &env->insn_aux_data[i + delta];
11056 			if (bpf_map_ptr_poisoned(aux))
11057 				goto patch_call_imm;
11058 
11059 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11060 			ops = map_ptr->ops;
11061 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
11062 			    ops->map_gen_lookup) {
11063 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
11064 				if (cnt == -EOPNOTSUPP)
11065 					goto patch_map_ops_generic;
11066 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11067 					verbose(env, "bpf verifier is misconfigured\n");
11068 					return -EINVAL;
11069 				}
11070 
11071 				new_prog = bpf_patch_insn_data(env, i + delta,
11072 							       insn_buf, cnt);
11073 				if (!new_prog)
11074 					return -ENOMEM;
11075 
11076 				delta    += cnt - 1;
11077 				env->prog = prog = new_prog;
11078 				insn      = new_prog->insnsi + i + delta;
11079 				continue;
11080 			}
11081 
11082 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
11083 				     (void *(*)(struct bpf_map *map, void *key))NULL));
11084 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
11085 				     (int (*)(struct bpf_map *map, void *key))NULL));
11086 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
11087 				     (int (*)(struct bpf_map *map, void *key, void *value,
11088 					      u64 flags))NULL));
11089 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
11090 				     (int (*)(struct bpf_map *map, void *value,
11091 					      u64 flags))NULL));
11092 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
11093 				     (int (*)(struct bpf_map *map, void *value))NULL));
11094 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
11095 				     (int (*)(struct bpf_map *map, void *value))NULL));
11096 patch_map_ops_generic:
11097 			switch (insn->imm) {
11098 			case BPF_FUNC_map_lookup_elem:
11099 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
11100 					    __bpf_call_base;
11101 				continue;
11102 			case BPF_FUNC_map_update_elem:
11103 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
11104 					    __bpf_call_base;
11105 				continue;
11106 			case BPF_FUNC_map_delete_elem:
11107 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
11108 					    __bpf_call_base;
11109 				continue;
11110 			case BPF_FUNC_map_push_elem:
11111 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
11112 					    __bpf_call_base;
11113 				continue;
11114 			case BPF_FUNC_map_pop_elem:
11115 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
11116 					    __bpf_call_base;
11117 				continue;
11118 			case BPF_FUNC_map_peek_elem:
11119 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
11120 					    __bpf_call_base;
11121 				continue;
11122 			}
11123 
11124 			goto patch_call_imm;
11125 		}
11126 
11127 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
11128 		    insn->imm == BPF_FUNC_jiffies64) {
11129 			struct bpf_insn ld_jiffies_addr[2] = {
11130 				BPF_LD_IMM64(BPF_REG_0,
11131 					     (unsigned long)&jiffies),
11132 			};
11133 
11134 			insn_buf[0] = ld_jiffies_addr[0];
11135 			insn_buf[1] = ld_jiffies_addr[1];
11136 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
11137 						  BPF_REG_0, 0);
11138 			cnt = 3;
11139 
11140 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
11141 						       cnt);
11142 			if (!new_prog)
11143 				return -ENOMEM;
11144 
11145 			delta    += cnt - 1;
11146 			env->prog = prog = new_prog;
11147 			insn      = new_prog->insnsi + i + delta;
11148 			continue;
11149 		}
11150 
11151 patch_call_imm:
11152 		fn = env->ops->get_func_proto(insn->imm, env->prog);
11153 		/* all functions that have prototype and verifier allowed
11154 		 * programs to call them, must be real in-kernel functions
11155 		 */
11156 		if (!fn->func) {
11157 			verbose(env,
11158 				"kernel subsystem misconfigured func %s#%d\n",
11159 				func_id_name(insn->imm), insn->imm);
11160 			return -EFAULT;
11161 		}
11162 		insn->imm = fn->func - __bpf_call_base;
11163 	}
11164 
11165 	/* Since poke tab is now finalized, publish aux to tracker. */
11166 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
11167 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
11168 		if (!map_ptr->ops->map_poke_track ||
11169 		    !map_ptr->ops->map_poke_untrack ||
11170 		    !map_ptr->ops->map_poke_run) {
11171 			verbose(env, "bpf verifier is misconfigured\n");
11172 			return -EINVAL;
11173 		}
11174 
11175 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
11176 		if (ret < 0) {
11177 			verbose(env, "tracking tail call prog failed\n");
11178 			return ret;
11179 		}
11180 	}
11181 
11182 	return 0;
11183 }
11184 
11185 static void free_states(struct bpf_verifier_env *env)
11186 {
11187 	struct bpf_verifier_state_list *sl, *sln;
11188 	int i;
11189 
11190 	sl = env->free_list;
11191 	while (sl) {
11192 		sln = sl->next;
11193 		free_verifier_state(&sl->state, false);
11194 		kfree(sl);
11195 		sl = sln;
11196 	}
11197 	env->free_list = NULL;
11198 
11199 	if (!env->explored_states)
11200 		return;
11201 
11202 	for (i = 0; i < state_htab_size(env); i++) {
11203 		sl = env->explored_states[i];
11204 
11205 		while (sl) {
11206 			sln = sl->next;
11207 			free_verifier_state(&sl->state, false);
11208 			kfree(sl);
11209 			sl = sln;
11210 		}
11211 		env->explored_states[i] = NULL;
11212 	}
11213 }
11214 
11215 /* The verifier is using insn_aux_data[] to store temporary data during
11216  * verification and to store information for passes that run after the
11217  * verification like dead code sanitization. do_check_common() for subprogram N
11218  * may analyze many other subprograms. sanitize_insn_aux_data() clears all
11219  * temporary data after do_check_common() finds that subprogram N cannot be
11220  * verified independently. pass_cnt counts the number of times
11221  * do_check_common() was run and insn->aux->seen tells the pass number
11222  * insn_aux_data was touched. These variables are compared to clear temporary
11223  * data from failed pass. For testing and experiments do_check_common() can be
11224  * run multiple times even when prior attempt to verify is unsuccessful.
11225  */
11226 static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
11227 {
11228 	struct bpf_insn *insn = env->prog->insnsi;
11229 	struct bpf_insn_aux_data *aux;
11230 	int i, class;
11231 
11232 	for (i = 0; i < env->prog->len; i++) {
11233 		class = BPF_CLASS(insn[i].code);
11234 		if (class != BPF_LDX && class != BPF_STX)
11235 			continue;
11236 		aux = &env->insn_aux_data[i];
11237 		if (aux->seen != env->pass_cnt)
11238 			continue;
11239 		memset(aux, 0, offsetof(typeof(*aux), orig_idx));
11240 	}
11241 }
11242 
11243 static int do_check_common(struct bpf_verifier_env *env, int subprog)
11244 {
11245 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
11246 	struct bpf_verifier_state *state;
11247 	struct bpf_reg_state *regs;
11248 	int ret, i;
11249 
11250 	env->prev_linfo = NULL;
11251 	env->pass_cnt++;
11252 
11253 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
11254 	if (!state)
11255 		return -ENOMEM;
11256 	state->curframe = 0;
11257 	state->speculative = false;
11258 	state->branches = 1;
11259 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
11260 	if (!state->frame[0]) {
11261 		kfree(state);
11262 		return -ENOMEM;
11263 	}
11264 	env->cur_state = state;
11265 	init_func_state(env, state->frame[0],
11266 			BPF_MAIN_FUNC /* callsite */,
11267 			0 /* frameno */,
11268 			subprog);
11269 
11270 	regs = state->frame[state->curframe]->regs;
11271 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
11272 		ret = btf_prepare_func_args(env, subprog, regs);
11273 		if (ret)
11274 			goto out;
11275 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
11276 			if (regs[i].type == PTR_TO_CTX)
11277 				mark_reg_known_zero(env, regs, i);
11278 			else if (regs[i].type == SCALAR_VALUE)
11279 				mark_reg_unknown(env, regs, i);
11280 		}
11281 	} else {
11282 		/* 1st arg to a function */
11283 		regs[BPF_REG_1].type = PTR_TO_CTX;
11284 		mark_reg_known_zero(env, regs, BPF_REG_1);
11285 		ret = btf_check_func_arg_match(env, subprog, regs);
11286 		if (ret == -EFAULT)
11287 			/* unlikely verifier bug. abort.
11288 			 * ret == 0 and ret < 0 are sadly acceptable for
11289 			 * main() function due to backward compatibility.
11290 			 * Like socket filter program may be written as:
11291 			 * int bpf_prog(struct pt_regs *ctx)
11292 			 * and never dereference that ctx in the program.
11293 			 * 'struct pt_regs' is a type mismatch for socket
11294 			 * filter that should be using 'struct __sk_buff'.
11295 			 */
11296 			goto out;
11297 	}
11298 
11299 	ret = do_check(env);
11300 out:
11301 	/* check for NULL is necessary, since cur_state can be freed inside
11302 	 * do_check() under memory pressure.
11303 	 */
11304 	if (env->cur_state) {
11305 		free_verifier_state(env->cur_state, true);
11306 		env->cur_state = NULL;
11307 	}
11308 	while (!pop_stack(env, NULL, NULL, false));
11309 	if (!ret && pop_log)
11310 		bpf_vlog_reset(&env->log, 0);
11311 	free_states(env);
11312 	if (ret)
11313 		/* clean aux data in case subprog was rejected */
11314 		sanitize_insn_aux_data(env);
11315 	return ret;
11316 }
11317 
11318 /* Verify all global functions in a BPF program one by one based on their BTF.
11319  * All global functions must pass verification. Otherwise the whole program is rejected.
11320  * Consider:
11321  * int bar(int);
11322  * int foo(int f)
11323  * {
11324  *    return bar(f);
11325  * }
11326  * int bar(int b)
11327  * {
11328  *    ...
11329  * }
11330  * foo() will be verified first for R1=any_scalar_value. During verification it
11331  * will be assumed that bar() already verified successfully and call to bar()
11332  * from foo() will be checked for type match only. Later bar() will be verified
11333  * independently to check that it's safe for R1=any_scalar_value.
11334  */
11335 static int do_check_subprogs(struct bpf_verifier_env *env)
11336 {
11337 	struct bpf_prog_aux *aux = env->prog->aux;
11338 	int i, ret;
11339 
11340 	if (!aux->func_info)
11341 		return 0;
11342 
11343 	for (i = 1; i < env->subprog_cnt; i++) {
11344 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
11345 			continue;
11346 		env->insn_idx = env->subprog_info[i].start;
11347 		WARN_ON_ONCE(env->insn_idx == 0);
11348 		ret = do_check_common(env, i);
11349 		if (ret) {
11350 			return ret;
11351 		} else if (env->log.level & BPF_LOG_LEVEL) {
11352 			verbose(env,
11353 				"Func#%d is safe for any args that match its prototype\n",
11354 				i);
11355 		}
11356 	}
11357 	return 0;
11358 }
11359 
11360 static int do_check_main(struct bpf_verifier_env *env)
11361 {
11362 	int ret;
11363 
11364 	env->insn_idx = 0;
11365 	ret = do_check_common(env, 0);
11366 	if (!ret)
11367 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
11368 	return ret;
11369 }
11370 
11371 
11372 static void print_verification_stats(struct bpf_verifier_env *env)
11373 {
11374 	int i;
11375 
11376 	if (env->log.level & BPF_LOG_STATS) {
11377 		verbose(env, "verification time %lld usec\n",
11378 			div_u64(env->verification_time, 1000));
11379 		verbose(env, "stack depth ");
11380 		for (i = 0; i < env->subprog_cnt; i++) {
11381 			u32 depth = env->subprog_info[i].stack_depth;
11382 
11383 			verbose(env, "%d", depth);
11384 			if (i + 1 < env->subprog_cnt)
11385 				verbose(env, "+");
11386 		}
11387 		verbose(env, "\n");
11388 	}
11389 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
11390 		"total_states %d peak_states %d mark_read %d\n",
11391 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
11392 		env->max_states_per_insn, env->total_states,
11393 		env->peak_states, env->longest_mark_read_walk);
11394 }
11395 
11396 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
11397 {
11398 	const struct btf_type *t, *func_proto;
11399 	const struct bpf_struct_ops *st_ops;
11400 	const struct btf_member *member;
11401 	struct bpf_prog *prog = env->prog;
11402 	u32 btf_id, member_idx;
11403 	const char *mname;
11404 
11405 	btf_id = prog->aux->attach_btf_id;
11406 	st_ops = bpf_struct_ops_find(btf_id);
11407 	if (!st_ops) {
11408 		verbose(env, "attach_btf_id %u is not a supported struct\n",
11409 			btf_id);
11410 		return -ENOTSUPP;
11411 	}
11412 
11413 	t = st_ops->type;
11414 	member_idx = prog->expected_attach_type;
11415 	if (member_idx >= btf_type_vlen(t)) {
11416 		verbose(env, "attach to invalid member idx %u of struct %s\n",
11417 			member_idx, st_ops->name);
11418 		return -EINVAL;
11419 	}
11420 
11421 	member = &btf_type_member(t)[member_idx];
11422 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
11423 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
11424 					       NULL);
11425 	if (!func_proto) {
11426 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
11427 			mname, member_idx, st_ops->name);
11428 		return -EINVAL;
11429 	}
11430 
11431 	if (st_ops->check_member) {
11432 		int err = st_ops->check_member(t, member);
11433 
11434 		if (err) {
11435 			verbose(env, "attach to unsupported member %s of struct %s\n",
11436 				mname, st_ops->name);
11437 			return err;
11438 		}
11439 	}
11440 
11441 	prog->aux->attach_func_proto = func_proto;
11442 	prog->aux->attach_func_name = mname;
11443 	env->ops = st_ops->verifier_ops;
11444 
11445 	return 0;
11446 }
11447 #define SECURITY_PREFIX "security_"
11448 
11449 static int check_attach_modify_return(unsigned long addr, const char *func_name)
11450 {
11451 	if (within_error_injection_list(addr) ||
11452 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
11453 		return 0;
11454 
11455 	return -EINVAL;
11456 }
11457 
11458 /* non exhaustive list of sleepable bpf_lsm_*() functions */
11459 BTF_SET_START(btf_sleepable_lsm_hooks)
11460 #ifdef CONFIG_BPF_LSM
11461 BTF_ID(func, bpf_lsm_bprm_committed_creds)
11462 #else
11463 BTF_ID_UNUSED
11464 #endif
11465 BTF_SET_END(btf_sleepable_lsm_hooks)
11466 
11467 static int check_sleepable_lsm_hook(u32 btf_id)
11468 {
11469 	return btf_id_set_contains(&btf_sleepable_lsm_hooks, btf_id);
11470 }
11471 
11472 /* list of non-sleepable functions that are otherwise on
11473  * ALLOW_ERROR_INJECTION list
11474  */
11475 BTF_SET_START(btf_non_sleepable_error_inject)
11476 /* Three functions below can be called from sleepable and non-sleepable context.
11477  * Assume non-sleepable from bpf safety point of view.
11478  */
11479 BTF_ID(func, __add_to_page_cache_locked)
11480 BTF_ID(func, should_fail_alloc_page)
11481 BTF_ID(func, should_failslab)
11482 BTF_SET_END(btf_non_sleepable_error_inject)
11483 
11484 static int check_non_sleepable_error_inject(u32 btf_id)
11485 {
11486 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
11487 }
11488 
11489 int bpf_check_attach_target(struct bpf_verifier_log *log,
11490 			    const struct bpf_prog *prog,
11491 			    const struct bpf_prog *tgt_prog,
11492 			    u32 btf_id,
11493 			    struct bpf_attach_target_info *tgt_info)
11494 {
11495 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
11496 	const char prefix[] = "btf_trace_";
11497 	int ret = 0, subprog = -1, i;
11498 	const struct btf_type *t;
11499 	bool conservative = true;
11500 	const char *tname;
11501 	struct btf *btf;
11502 	long addr = 0;
11503 
11504 	if (!btf_id) {
11505 		bpf_log(log, "Tracing programs must provide btf_id\n");
11506 		return -EINVAL;
11507 	}
11508 	btf = tgt_prog ? tgt_prog->aux->btf : btf_vmlinux;
11509 	if (!btf) {
11510 		bpf_log(log,
11511 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
11512 		return -EINVAL;
11513 	}
11514 	t = btf_type_by_id(btf, btf_id);
11515 	if (!t) {
11516 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
11517 		return -EINVAL;
11518 	}
11519 	tname = btf_name_by_offset(btf, t->name_off);
11520 	if (!tname) {
11521 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
11522 		return -EINVAL;
11523 	}
11524 	if (tgt_prog) {
11525 		struct bpf_prog_aux *aux = tgt_prog->aux;
11526 
11527 		for (i = 0; i < aux->func_info_cnt; i++)
11528 			if (aux->func_info[i].type_id == btf_id) {
11529 				subprog = i;
11530 				break;
11531 			}
11532 		if (subprog == -1) {
11533 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
11534 			return -EINVAL;
11535 		}
11536 		conservative = aux->func_info_aux[subprog].unreliable;
11537 		if (prog_extension) {
11538 			if (conservative) {
11539 				bpf_log(log,
11540 					"Cannot replace static functions\n");
11541 				return -EINVAL;
11542 			}
11543 			if (!prog->jit_requested) {
11544 				bpf_log(log,
11545 					"Extension programs should be JITed\n");
11546 				return -EINVAL;
11547 			}
11548 		}
11549 		if (!tgt_prog->jited) {
11550 			bpf_log(log, "Can attach to only JITed progs\n");
11551 			return -EINVAL;
11552 		}
11553 		if (tgt_prog->type == prog->type) {
11554 			/* Cannot fentry/fexit another fentry/fexit program.
11555 			 * Cannot attach program extension to another extension.
11556 			 * It's ok to attach fentry/fexit to extension program.
11557 			 */
11558 			bpf_log(log, "Cannot recursively attach\n");
11559 			return -EINVAL;
11560 		}
11561 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
11562 		    prog_extension &&
11563 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
11564 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
11565 			/* Program extensions can extend all program types
11566 			 * except fentry/fexit. The reason is the following.
11567 			 * The fentry/fexit programs are used for performance
11568 			 * analysis, stats and can be attached to any program
11569 			 * type except themselves. When extension program is
11570 			 * replacing XDP function it is necessary to allow
11571 			 * performance analysis of all functions. Both original
11572 			 * XDP program and its program extension. Hence
11573 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
11574 			 * allowed. If extending of fentry/fexit was allowed it
11575 			 * would be possible to create long call chain
11576 			 * fentry->extension->fentry->extension beyond
11577 			 * reasonable stack size. Hence extending fentry is not
11578 			 * allowed.
11579 			 */
11580 			bpf_log(log, "Cannot extend fentry/fexit\n");
11581 			return -EINVAL;
11582 		}
11583 	} else {
11584 		if (prog_extension) {
11585 			bpf_log(log, "Cannot replace kernel functions\n");
11586 			return -EINVAL;
11587 		}
11588 	}
11589 
11590 	switch (prog->expected_attach_type) {
11591 	case BPF_TRACE_RAW_TP:
11592 		if (tgt_prog) {
11593 			bpf_log(log,
11594 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
11595 			return -EINVAL;
11596 		}
11597 		if (!btf_type_is_typedef(t)) {
11598 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
11599 				btf_id);
11600 			return -EINVAL;
11601 		}
11602 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
11603 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
11604 				btf_id, tname);
11605 			return -EINVAL;
11606 		}
11607 		tname += sizeof(prefix) - 1;
11608 		t = btf_type_by_id(btf, t->type);
11609 		if (!btf_type_is_ptr(t))
11610 			/* should never happen in valid vmlinux build */
11611 			return -EINVAL;
11612 		t = btf_type_by_id(btf, t->type);
11613 		if (!btf_type_is_func_proto(t))
11614 			/* should never happen in valid vmlinux build */
11615 			return -EINVAL;
11616 
11617 		break;
11618 	case BPF_TRACE_ITER:
11619 		if (!btf_type_is_func(t)) {
11620 			bpf_log(log, "attach_btf_id %u is not a function\n",
11621 				btf_id);
11622 			return -EINVAL;
11623 		}
11624 		t = btf_type_by_id(btf, t->type);
11625 		if (!btf_type_is_func_proto(t))
11626 			return -EINVAL;
11627 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
11628 		if (ret)
11629 			return ret;
11630 		break;
11631 	default:
11632 		if (!prog_extension)
11633 			return -EINVAL;
11634 		fallthrough;
11635 	case BPF_MODIFY_RETURN:
11636 	case BPF_LSM_MAC:
11637 	case BPF_TRACE_FENTRY:
11638 	case BPF_TRACE_FEXIT:
11639 		if (!btf_type_is_func(t)) {
11640 			bpf_log(log, "attach_btf_id %u is not a function\n",
11641 				btf_id);
11642 			return -EINVAL;
11643 		}
11644 		if (prog_extension &&
11645 		    btf_check_type_match(log, prog, btf, t))
11646 			return -EINVAL;
11647 		t = btf_type_by_id(btf, t->type);
11648 		if (!btf_type_is_func_proto(t))
11649 			return -EINVAL;
11650 
11651 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
11652 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
11653 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
11654 			return -EINVAL;
11655 
11656 		if (tgt_prog && conservative)
11657 			t = NULL;
11658 
11659 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
11660 		if (ret < 0)
11661 			return ret;
11662 
11663 		if (tgt_prog) {
11664 			if (subprog == 0)
11665 				addr = (long) tgt_prog->bpf_func;
11666 			else
11667 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
11668 		} else {
11669 			addr = kallsyms_lookup_name(tname);
11670 			if (!addr) {
11671 				bpf_log(log,
11672 					"The address of function %s cannot be found\n",
11673 					tname);
11674 				return -ENOENT;
11675 			}
11676 		}
11677 
11678 		if (prog->aux->sleepable) {
11679 			ret = -EINVAL;
11680 			switch (prog->type) {
11681 			case BPF_PROG_TYPE_TRACING:
11682 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
11683 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
11684 				 */
11685 				if (!check_non_sleepable_error_inject(btf_id) &&
11686 				    within_error_injection_list(addr))
11687 					ret = 0;
11688 				break;
11689 			case BPF_PROG_TYPE_LSM:
11690 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
11691 				 * Only some of them are sleepable.
11692 				 */
11693 				if (check_sleepable_lsm_hook(btf_id))
11694 					ret = 0;
11695 				break;
11696 			default:
11697 				break;
11698 			}
11699 			if (ret) {
11700 				bpf_log(log, "%s is not sleepable\n", tname);
11701 				return ret;
11702 			}
11703 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
11704 			if (tgt_prog) {
11705 				bpf_log(log, "can't modify return codes of BPF programs\n");
11706 				return -EINVAL;
11707 			}
11708 			ret = check_attach_modify_return(addr, tname);
11709 			if (ret) {
11710 				bpf_log(log, "%s() is not modifiable\n", tname);
11711 				return ret;
11712 			}
11713 		}
11714 
11715 		break;
11716 	}
11717 	tgt_info->tgt_addr = addr;
11718 	tgt_info->tgt_name = tname;
11719 	tgt_info->tgt_type = t;
11720 	return 0;
11721 }
11722 
11723 static int check_attach_btf_id(struct bpf_verifier_env *env)
11724 {
11725 	struct bpf_prog *prog = env->prog;
11726 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
11727 	struct bpf_attach_target_info tgt_info = {};
11728 	u32 btf_id = prog->aux->attach_btf_id;
11729 	struct bpf_trampoline *tr;
11730 	int ret;
11731 	u64 key;
11732 
11733 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
11734 	    prog->type != BPF_PROG_TYPE_LSM) {
11735 		verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
11736 		return -EINVAL;
11737 	}
11738 
11739 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
11740 		return check_struct_ops_btf_id(env);
11741 
11742 	if (prog->type != BPF_PROG_TYPE_TRACING &&
11743 	    prog->type != BPF_PROG_TYPE_LSM &&
11744 	    prog->type != BPF_PROG_TYPE_EXT)
11745 		return 0;
11746 
11747 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
11748 	if (ret)
11749 		return ret;
11750 
11751 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
11752 		/* to make freplace equivalent to their targets, they need to
11753 		 * inherit env->ops and expected_attach_type for the rest of the
11754 		 * verification
11755 		 */
11756 		env->ops = bpf_verifier_ops[tgt_prog->type];
11757 		prog->expected_attach_type = tgt_prog->expected_attach_type;
11758 	}
11759 
11760 	/* store info about the attachment target that will be used later */
11761 	prog->aux->attach_func_proto = tgt_info.tgt_type;
11762 	prog->aux->attach_func_name = tgt_info.tgt_name;
11763 
11764 	if (tgt_prog) {
11765 		prog->aux->saved_dst_prog_type = tgt_prog->type;
11766 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
11767 	}
11768 
11769 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
11770 		prog->aux->attach_btf_trace = true;
11771 		return 0;
11772 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
11773 		if (!bpf_iter_prog_supported(prog))
11774 			return -EINVAL;
11775 		return 0;
11776 	}
11777 
11778 	if (prog->type == BPF_PROG_TYPE_LSM) {
11779 		ret = bpf_lsm_verify_prog(&env->log, prog);
11780 		if (ret < 0)
11781 			return ret;
11782 	}
11783 
11784 	key = bpf_trampoline_compute_key(tgt_prog, btf_id);
11785 	tr = bpf_trampoline_get(key, &tgt_info);
11786 	if (!tr)
11787 		return -ENOMEM;
11788 
11789 	prog->aux->dst_trampoline = tr;
11790 	return 0;
11791 }
11792 
11793 struct btf *bpf_get_btf_vmlinux(void)
11794 {
11795 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
11796 		mutex_lock(&bpf_verifier_lock);
11797 		if (!btf_vmlinux)
11798 			btf_vmlinux = btf_parse_vmlinux();
11799 		mutex_unlock(&bpf_verifier_lock);
11800 	}
11801 	return btf_vmlinux;
11802 }
11803 
11804 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
11805 	      union bpf_attr __user *uattr)
11806 {
11807 	u64 start_time = ktime_get_ns();
11808 	struct bpf_verifier_env *env;
11809 	struct bpf_verifier_log *log;
11810 	int i, len, ret = -EINVAL;
11811 	bool is_priv;
11812 
11813 	/* no program is valid */
11814 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
11815 		return -EINVAL;
11816 
11817 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
11818 	 * allocate/free it every time bpf_check() is called
11819 	 */
11820 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
11821 	if (!env)
11822 		return -ENOMEM;
11823 	log = &env->log;
11824 
11825 	len = (*prog)->len;
11826 	env->insn_aux_data =
11827 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
11828 	ret = -ENOMEM;
11829 	if (!env->insn_aux_data)
11830 		goto err_free_env;
11831 	for (i = 0; i < len; i++)
11832 		env->insn_aux_data[i].orig_idx = i;
11833 	env->prog = *prog;
11834 	env->ops = bpf_verifier_ops[env->prog->type];
11835 	is_priv = bpf_capable();
11836 
11837 	bpf_get_btf_vmlinux();
11838 
11839 	/* grab the mutex to protect few globals used by verifier */
11840 	if (!is_priv)
11841 		mutex_lock(&bpf_verifier_lock);
11842 
11843 	if (attr->log_level || attr->log_buf || attr->log_size) {
11844 		/* user requested verbose verifier output
11845 		 * and supplied buffer to store the verification trace
11846 		 */
11847 		log->level = attr->log_level;
11848 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
11849 		log->len_total = attr->log_size;
11850 
11851 		ret = -EINVAL;
11852 		/* log attributes have to be sane */
11853 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
11854 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
11855 			goto err_unlock;
11856 	}
11857 
11858 	if (IS_ERR(btf_vmlinux)) {
11859 		/* Either gcc or pahole or kernel are broken. */
11860 		verbose(env, "in-kernel BTF is malformed\n");
11861 		ret = PTR_ERR(btf_vmlinux);
11862 		goto skip_full_check;
11863 	}
11864 
11865 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
11866 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
11867 		env->strict_alignment = true;
11868 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
11869 		env->strict_alignment = false;
11870 
11871 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
11872 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
11873 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
11874 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
11875 	env->bpf_capable = bpf_capable();
11876 
11877 	if (is_priv)
11878 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
11879 
11880 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
11881 		ret = bpf_prog_offload_verifier_prep(env->prog);
11882 		if (ret)
11883 			goto skip_full_check;
11884 	}
11885 
11886 	env->explored_states = kvcalloc(state_htab_size(env),
11887 				       sizeof(struct bpf_verifier_state_list *),
11888 				       GFP_USER);
11889 	ret = -ENOMEM;
11890 	if (!env->explored_states)
11891 		goto skip_full_check;
11892 
11893 	ret = check_subprogs(env);
11894 	if (ret < 0)
11895 		goto skip_full_check;
11896 
11897 	ret = check_btf_info(env, attr, uattr);
11898 	if (ret < 0)
11899 		goto skip_full_check;
11900 
11901 	ret = check_attach_btf_id(env);
11902 	if (ret)
11903 		goto skip_full_check;
11904 
11905 	ret = resolve_pseudo_ldimm64(env);
11906 	if (ret < 0)
11907 		goto skip_full_check;
11908 
11909 	ret = check_cfg(env);
11910 	if (ret < 0)
11911 		goto skip_full_check;
11912 
11913 	ret = do_check_subprogs(env);
11914 	ret = ret ?: do_check_main(env);
11915 
11916 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
11917 		ret = bpf_prog_offload_finalize(env);
11918 
11919 skip_full_check:
11920 	kvfree(env->explored_states);
11921 
11922 	if (ret == 0)
11923 		ret = check_max_stack_depth(env);
11924 
11925 	/* instruction rewrites happen after this point */
11926 	if (is_priv) {
11927 		if (ret == 0)
11928 			opt_hard_wire_dead_code_branches(env);
11929 		if (ret == 0)
11930 			ret = opt_remove_dead_code(env);
11931 		if (ret == 0)
11932 			ret = opt_remove_nops(env);
11933 	} else {
11934 		if (ret == 0)
11935 			sanitize_dead_code(env);
11936 	}
11937 
11938 	if (ret == 0)
11939 		/* program is valid, convert *(u32*)(ctx + off) accesses */
11940 		ret = convert_ctx_accesses(env);
11941 
11942 	if (ret == 0)
11943 		ret = fixup_bpf_calls(env);
11944 
11945 	/* do 32-bit optimization after insn patching has done so those patched
11946 	 * insns could be handled correctly.
11947 	 */
11948 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
11949 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
11950 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
11951 								     : false;
11952 	}
11953 
11954 	if (ret == 0)
11955 		ret = fixup_call_args(env);
11956 
11957 	env->verification_time = ktime_get_ns() - start_time;
11958 	print_verification_stats(env);
11959 
11960 	if (log->level && bpf_verifier_log_full(log))
11961 		ret = -ENOSPC;
11962 	if (log->level && !log->ubuf) {
11963 		ret = -EFAULT;
11964 		goto err_release_maps;
11965 	}
11966 
11967 	if (ret == 0 && env->used_map_cnt) {
11968 		/* if program passed verifier, update used_maps in bpf_prog_info */
11969 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
11970 							  sizeof(env->used_maps[0]),
11971 							  GFP_KERNEL);
11972 
11973 		if (!env->prog->aux->used_maps) {
11974 			ret = -ENOMEM;
11975 			goto err_release_maps;
11976 		}
11977 
11978 		memcpy(env->prog->aux->used_maps, env->used_maps,
11979 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
11980 		env->prog->aux->used_map_cnt = env->used_map_cnt;
11981 
11982 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
11983 		 * bpf_ld_imm64 instructions
11984 		 */
11985 		convert_pseudo_ld_imm64(env);
11986 	}
11987 
11988 	if (ret == 0)
11989 		adjust_btf_func(env);
11990 
11991 err_release_maps:
11992 	if (!env->prog->aux->used_maps)
11993 		/* if we didn't copy map pointers into bpf_prog_info, release
11994 		 * them now. Otherwise free_used_maps() will release them.
11995 		 */
11996 		release_maps(env);
11997 
11998 	/* extension progs temporarily inherit the attach_type of their targets
11999 	   for verification purposes, so set it back to zero before returning
12000 	 */
12001 	if (env->prog->type == BPF_PROG_TYPE_EXT)
12002 		env->prog->expected_attach_type = 0;
12003 
12004 	*prog = env->prog;
12005 err_unlock:
12006 	if (!is_priv)
12007 		mutex_unlock(&bpf_verifier_lock);
12008 	vfree(env->insn_aux_data);
12009 err_free_env:
12010 	kfree(env);
12011 	return ret;
12012 }
12013