1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 #include <linux/error-injection.h> 23 #include <linux/bpf_lsm.h> 24 #include <linux/btf_ids.h> 25 26 #include "disasm.h" 27 28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 30 [_id] = & _name ## _verifier_ops, 31 #define BPF_MAP_TYPE(_id, _ops) 32 #define BPF_LINK_TYPE(_id, _name) 33 #include <linux/bpf_types.h> 34 #undef BPF_PROG_TYPE 35 #undef BPF_MAP_TYPE 36 #undef BPF_LINK_TYPE 37 }; 38 39 /* bpf_check() is a static code analyzer that walks eBPF program 40 * instruction by instruction and updates register/stack state. 41 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 42 * 43 * The first pass is depth-first-search to check that the program is a DAG. 44 * It rejects the following programs: 45 * - larger than BPF_MAXINSNS insns 46 * - if loop is present (detected via back-edge) 47 * - unreachable insns exist (shouldn't be a forest. program = one function) 48 * - out of bounds or malformed jumps 49 * The second pass is all possible path descent from the 1st insn. 50 * Since it's analyzing all pathes through the program, the length of the 51 * analysis is limited to 64k insn, which may be hit even if total number of 52 * insn is less then 4K, but there are too many branches that change stack/regs. 53 * Number of 'branches to be analyzed' is limited to 1k 54 * 55 * On entry to each instruction, each register has a type, and the instruction 56 * changes the types of the registers depending on instruction semantics. 57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 58 * copied to R1. 59 * 60 * All registers are 64-bit. 61 * R0 - return register 62 * R1-R5 argument passing registers 63 * R6-R9 callee saved registers 64 * R10 - frame pointer read-only 65 * 66 * At the start of BPF program the register R1 contains a pointer to bpf_context 67 * and has type PTR_TO_CTX. 68 * 69 * Verifier tracks arithmetic operations on pointers in case: 70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 72 * 1st insn copies R10 (which has FRAME_PTR) type into R1 73 * and 2nd arithmetic instruction is pattern matched to recognize 74 * that it wants to construct a pointer to some element within stack. 75 * So after 2nd insn, the register R1 has type PTR_TO_STACK 76 * (and -20 constant is saved for further stack bounds checking). 77 * Meaning that this reg is a pointer to stack plus known immediate constant. 78 * 79 * Most of the time the registers have SCALAR_VALUE type, which 80 * means the register has some value, but it's not a valid pointer. 81 * (like pointer plus pointer becomes SCALAR_VALUE type) 82 * 83 * When verifier sees load or store instructions the type of base register 84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 85 * four pointer types recognized by check_mem_access() function. 86 * 87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 88 * and the range of [ptr, ptr + map's value_size) is accessible. 89 * 90 * registers used to pass values to function calls are checked against 91 * function argument constraints. 92 * 93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 94 * It means that the register type passed to this function must be 95 * PTR_TO_STACK and it will be used inside the function as 96 * 'pointer to map element key' 97 * 98 * For example the argument constraints for bpf_map_lookup_elem(): 99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 100 * .arg1_type = ARG_CONST_MAP_PTR, 101 * .arg2_type = ARG_PTR_TO_MAP_KEY, 102 * 103 * ret_type says that this function returns 'pointer to map elem value or null' 104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 105 * 2nd argument should be a pointer to stack, which will be used inside 106 * the helper function as a pointer to map element key. 107 * 108 * On the kernel side the helper function looks like: 109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 110 * { 111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 112 * void *key = (void *) (unsigned long) r2; 113 * void *value; 114 * 115 * here kernel can access 'key' and 'map' pointers safely, knowing that 116 * [key, key + map->key_size) bytes are valid and were initialized on 117 * the stack of eBPF program. 118 * } 119 * 120 * Corresponding eBPF program may look like: 121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 125 * here verifier looks at prototype of map_lookup_elem() and sees: 126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 128 * 129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 131 * and were initialized prior to this call. 132 * If it's ok, then verifier allows this BPF_CALL insn and looks at 133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 135 * returns ether pointer to map value or NULL. 136 * 137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 138 * insn, the register holding that pointer in the true branch changes state to 139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 140 * branch. See check_cond_jmp_op(). 141 * 142 * After the call R0 is set to return type of the function and registers R1-R5 143 * are set to NOT_INIT to indicate that they are no longer readable. 144 * 145 * The following reference types represent a potential reference to a kernel 146 * resource which, after first being allocated, must be checked and freed by 147 * the BPF program: 148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 149 * 150 * When the verifier sees a helper call return a reference type, it allocates a 151 * pointer id for the reference and stores it in the current function state. 152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 154 * passes through a NULL-check conditional. For the branch wherein the state is 155 * changed to CONST_IMM, the verifier releases the reference. 156 * 157 * For each helper function that allocates a reference, such as 158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 159 * bpf_sk_release(). When a reference type passes into the release function, 160 * the verifier also releases the reference. If any unchecked or unreleased 161 * reference remains at the end of the program, the verifier rejects it. 162 */ 163 164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 165 struct bpf_verifier_stack_elem { 166 /* verifer state is 'st' 167 * before processing instruction 'insn_idx' 168 * and after processing instruction 'prev_insn_idx' 169 */ 170 struct bpf_verifier_state st; 171 int insn_idx; 172 int prev_insn_idx; 173 struct bpf_verifier_stack_elem *next; 174 /* length of verifier log at the time this state was pushed on stack */ 175 u32 log_pos; 176 }; 177 178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 179 #define BPF_COMPLEXITY_LIMIT_STATES 64 180 181 #define BPF_MAP_KEY_POISON (1ULL << 63) 182 #define BPF_MAP_KEY_SEEN (1ULL << 62) 183 184 #define BPF_MAP_PTR_UNPRIV 1UL 185 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 186 POISON_POINTER_DELTA)) 187 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 188 189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 190 { 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 192 } 193 194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 195 { 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 197 } 198 199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 200 const struct bpf_map *map, bool unpriv) 201 { 202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 203 unpriv |= bpf_map_ptr_unpriv(aux); 204 aux->map_ptr_state = (unsigned long)map | 205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 206 } 207 208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 209 { 210 return aux->map_key_state & BPF_MAP_KEY_POISON; 211 } 212 213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 214 { 215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 216 } 217 218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 219 { 220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 221 } 222 223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 224 { 225 bool poisoned = bpf_map_key_poisoned(aux); 226 227 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 229 } 230 231 struct bpf_call_arg_meta { 232 struct bpf_map *map_ptr; 233 bool raw_mode; 234 bool pkt_access; 235 int regno; 236 int access_size; 237 int mem_size; 238 u64 msize_max_value; 239 int ref_obj_id; 240 int func_id; 241 u32 btf_id; 242 u32 ret_btf_id; 243 }; 244 245 struct btf *btf_vmlinux; 246 247 static DEFINE_MUTEX(bpf_verifier_lock); 248 249 static const struct bpf_line_info * 250 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 251 { 252 const struct bpf_line_info *linfo; 253 const struct bpf_prog *prog; 254 u32 i, nr_linfo; 255 256 prog = env->prog; 257 nr_linfo = prog->aux->nr_linfo; 258 259 if (!nr_linfo || insn_off >= prog->len) 260 return NULL; 261 262 linfo = prog->aux->linfo; 263 for (i = 1; i < nr_linfo; i++) 264 if (insn_off < linfo[i].insn_off) 265 break; 266 267 return &linfo[i - 1]; 268 } 269 270 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 271 va_list args) 272 { 273 unsigned int n; 274 275 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 276 277 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 278 "verifier log line truncated - local buffer too short\n"); 279 280 n = min(log->len_total - log->len_used - 1, n); 281 log->kbuf[n] = '\0'; 282 283 if (log->level == BPF_LOG_KERNEL) { 284 pr_err("BPF:%s\n", log->kbuf); 285 return; 286 } 287 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 288 log->len_used += n; 289 else 290 log->ubuf = NULL; 291 } 292 293 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 294 { 295 char zero = 0; 296 297 if (!bpf_verifier_log_needed(log)) 298 return; 299 300 log->len_used = new_pos; 301 if (put_user(zero, log->ubuf + new_pos)) 302 log->ubuf = NULL; 303 } 304 305 /* log_level controls verbosity level of eBPF verifier. 306 * bpf_verifier_log_write() is used to dump the verification trace to the log, 307 * so the user can figure out what's wrong with the program 308 */ 309 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 310 const char *fmt, ...) 311 { 312 va_list args; 313 314 if (!bpf_verifier_log_needed(&env->log)) 315 return; 316 317 va_start(args, fmt); 318 bpf_verifier_vlog(&env->log, fmt, args); 319 va_end(args); 320 } 321 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 322 323 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 324 { 325 struct bpf_verifier_env *env = private_data; 326 va_list args; 327 328 if (!bpf_verifier_log_needed(&env->log)) 329 return; 330 331 va_start(args, fmt); 332 bpf_verifier_vlog(&env->log, fmt, args); 333 va_end(args); 334 } 335 336 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 337 const char *fmt, ...) 338 { 339 va_list args; 340 341 if (!bpf_verifier_log_needed(log)) 342 return; 343 344 va_start(args, fmt); 345 bpf_verifier_vlog(log, fmt, args); 346 va_end(args); 347 } 348 349 static const char *ltrim(const char *s) 350 { 351 while (isspace(*s)) 352 s++; 353 354 return s; 355 } 356 357 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 358 u32 insn_off, 359 const char *prefix_fmt, ...) 360 { 361 const struct bpf_line_info *linfo; 362 363 if (!bpf_verifier_log_needed(&env->log)) 364 return; 365 366 linfo = find_linfo(env, insn_off); 367 if (!linfo || linfo == env->prev_linfo) 368 return; 369 370 if (prefix_fmt) { 371 va_list args; 372 373 va_start(args, prefix_fmt); 374 bpf_verifier_vlog(&env->log, prefix_fmt, args); 375 va_end(args); 376 } 377 378 verbose(env, "%s\n", 379 ltrim(btf_name_by_offset(env->prog->aux->btf, 380 linfo->line_off))); 381 382 env->prev_linfo = linfo; 383 } 384 385 static bool type_is_pkt_pointer(enum bpf_reg_type type) 386 { 387 return type == PTR_TO_PACKET || 388 type == PTR_TO_PACKET_META; 389 } 390 391 static bool type_is_sk_pointer(enum bpf_reg_type type) 392 { 393 return type == PTR_TO_SOCKET || 394 type == PTR_TO_SOCK_COMMON || 395 type == PTR_TO_TCP_SOCK || 396 type == PTR_TO_XDP_SOCK; 397 } 398 399 static bool reg_type_not_null(enum bpf_reg_type type) 400 { 401 return type == PTR_TO_SOCKET || 402 type == PTR_TO_TCP_SOCK || 403 type == PTR_TO_MAP_VALUE || 404 type == PTR_TO_SOCK_COMMON; 405 } 406 407 static bool reg_type_may_be_null(enum bpf_reg_type type) 408 { 409 return type == PTR_TO_MAP_VALUE_OR_NULL || 410 type == PTR_TO_SOCKET_OR_NULL || 411 type == PTR_TO_SOCK_COMMON_OR_NULL || 412 type == PTR_TO_TCP_SOCK_OR_NULL || 413 type == PTR_TO_BTF_ID_OR_NULL || 414 type == PTR_TO_MEM_OR_NULL || 415 type == PTR_TO_RDONLY_BUF_OR_NULL || 416 type == PTR_TO_RDWR_BUF_OR_NULL; 417 } 418 419 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 420 { 421 return reg->type == PTR_TO_MAP_VALUE && 422 map_value_has_spin_lock(reg->map_ptr); 423 } 424 425 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 426 { 427 return type == PTR_TO_SOCKET || 428 type == PTR_TO_SOCKET_OR_NULL || 429 type == PTR_TO_TCP_SOCK || 430 type == PTR_TO_TCP_SOCK_OR_NULL || 431 type == PTR_TO_MEM || 432 type == PTR_TO_MEM_OR_NULL; 433 } 434 435 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 436 { 437 return type == ARG_PTR_TO_SOCK_COMMON; 438 } 439 440 static bool arg_type_may_be_null(enum bpf_arg_type type) 441 { 442 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL || 443 type == ARG_PTR_TO_MEM_OR_NULL || 444 type == ARG_PTR_TO_CTX_OR_NULL || 445 type == ARG_PTR_TO_SOCKET_OR_NULL || 446 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL; 447 } 448 449 /* Determine whether the function releases some resources allocated by another 450 * function call. The first reference type argument will be assumed to be 451 * released by release_reference(). 452 */ 453 static bool is_release_function(enum bpf_func_id func_id) 454 { 455 return func_id == BPF_FUNC_sk_release || 456 func_id == BPF_FUNC_ringbuf_submit || 457 func_id == BPF_FUNC_ringbuf_discard; 458 } 459 460 static bool may_be_acquire_function(enum bpf_func_id func_id) 461 { 462 return func_id == BPF_FUNC_sk_lookup_tcp || 463 func_id == BPF_FUNC_sk_lookup_udp || 464 func_id == BPF_FUNC_skc_lookup_tcp || 465 func_id == BPF_FUNC_map_lookup_elem || 466 func_id == BPF_FUNC_ringbuf_reserve; 467 } 468 469 static bool is_acquire_function(enum bpf_func_id func_id, 470 const struct bpf_map *map) 471 { 472 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 473 474 if (func_id == BPF_FUNC_sk_lookup_tcp || 475 func_id == BPF_FUNC_sk_lookup_udp || 476 func_id == BPF_FUNC_skc_lookup_tcp || 477 func_id == BPF_FUNC_ringbuf_reserve) 478 return true; 479 480 if (func_id == BPF_FUNC_map_lookup_elem && 481 (map_type == BPF_MAP_TYPE_SOCKMAP || 482 map_type == BPF_MAP_TYPE_SOCKHASH)) 483 return true; 484 485 return false; 486 } 487 488 static bool is_ptr_cast_function(enum bpf_func_id func_id) 489 { 490 return func_id == BPF_FUNC_tcp_sock || 491 func_id == BPF_FUNC_sk_fullsock || 492 func_id == BPF_FUNC_skc_to_tcp_sock || 493 func_id == BPF_FUNC_skc_to_tcp6_sock || 494 func_id == BPF_FUNC_skc_to_udp6_sock || 495 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 496 func_id == BPF_FUNC_skc_to_tcp_request_sock; 497 } 498 499 /* string representation of 'enum bpf_reg_type' */ 500 static const char * const reg_type_str[] = { 501 [NOT_INIT] = "?", 502 [SCALAR_VALUE] = "inv", 503 [PTR_TO_CTX] = "ctx", 504 [CONST_PTR_TO_MAP] = "map_ptr", 505 [PTR_TO_MAP_VALUE] = "map_value", 506 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 507 [PTR_TO_STACK] = "fp", 508 [PTR_TO_PACKET] = "pkt", 509 [PTR_TO_PACKET_META] = "pkt_meta", 510 [PTR_TO_PACKET_END] = "pkt_end", 511 [PTR_TO_FLOW_KEYS] = "flow_keys", 512 [PTR_TO_SOCKET] = "sock", 513 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 514 [PTR_TO_SOCK_COMMON] = "sock_common", 515 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 516 [PTR_TO_TCP_SOCK] = "tcp_sock", 517 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 518 [PTR_TO_TP_BUFFER] = "tp_buffer", 519 [PTR_TO_XDP_SOCK] = "xdp_sock", 520 [PTR_TO_BTF_ID] = "ptr_", 521 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_", 522 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_", 523 [PTR_TO_MEM] = "mem", 524 [PTR_TO_MEM_OR_NULL] = "mem_or_null", 525 [PTR_TO_RDONLY_BUF] = "rdonly_buf", 526 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null", 527 [PTR_TO_RDWR_BUF] = "rdwr_buf", 528 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null", 529 }; 530 531 static char slot_type_char[] = { 532 [STACK_INVALID] = '?', 533 [STACK_SPILL] = 'r', 534 [STACK_MISC] = 'm', 535 [STACK_ZERO] = '0', 536 }; 537 538 static void print_liveness(struct bpf_verifier_env *env, 539 enum bpf_reg_liveness live) 540 { 541 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 542 verbose(env, "_"); 543 if (live & REG_LIVE_READ) 544 verbose(env, "r"); 545 if (live & REG_LIVE_WRITTEN) 546 verbose(env, "w"); 547 if (live & REG_LIVE_DONE) 548 verbose(env, "D"); 549 } 550 551 static struct bpf_func_state *func(struct bpf_verifier_env *env, 552 const struct bpf_reg_state *reg) 553 { 554 struct bpf_verifier_state *cur = env->cur_state; 555 556 return cur->frame[reg->frameno]; 557 } 558 559 const char *kernel_type_name(u32 id) 560 { 561 return btf_name_by_offset(btf_vmlinux, 562 btf_type_by_id(btf_vmlinux, id)->name_off); 563 } 564 565 static void print_verifier_state(struct bpf_verifier_env *env, 566 const struct bpf_func_state *state) 567 { 568 const struct bpf_reg_state *reg; 569 enum bpf_reg_type t; 570 int i; 571 572 if (state->frameno) 573 verbose(env, " frame%d:", state->frameno); 574 for (i = 0; i < MAX_BPF_REG; i++) { 575 reg = &state->regs[i]; 576 t = reg->type; 577 if (t == NOT_INIT) 578 continue; 579 verbose(env, " R%d", i); 580 print_liveness(env, reg->live); 581 verbose(env, "=%s", reg_type_str[t]); 582 if (t == SCALAR_VALUE && reg->precise) 583 verbose(env, "P"); 584 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 585 tnum_is_const(reg->var_off)) { 586 /* reg->off should be 0 for SCALAR_VALUE */ 587 verbose(env, "%lld", reg->var_off.value + reg->off); 588 } else { 589 if (t == PTR_TO_BTF_ID || 590 t == PTR_TO_BTF_ID_OR_NULL || 591 t == PTR_TO_PERCPU_BTF_ID) 592 verbose(env, "%s", kernel_type_name(reg->btf_id)); 593 verbose(env, "(id=%d", reg->id); 594 if (reg_type_may_be_refcounted_or_null(t)) 595 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 596 if (t != SCALAR_VALUE) 597 verbose(env, ",off=%d", reg->off); 598 if (type_is_pkt_pointer(t)) 599 verbose(env, ",r=%d", reg->range); 600 else if (t == CONST_PTR_TO_MAP || 601 t == PTR_TO_MAP_VALUE || 602 t == PTR_TO_MAP_VALUE_OR_NULL) 603 verbose(env, ",ks=%d,vs=%d", 604 reg->map_ptr->key_size, 605 reg->map_ptr->value_size); 606 if (tnum_is_const(reg->var_off)) { 607 /* Typically an immediate SCALAR_VALUE, but 608 * could be a pointer whose offset is too big 609 * for reg->off 610 */ 611 verbose(env, ",imm=%llx", reg->var_off.value); 612 } else { 613 if (reg->smin_value != reg->umin_value && 614 reg->smin_value != S64_MIN) 615 verbose(env, ",smin_value=%lld", 616 (long long)reg->smin_value); 617 if (reg->smax_value != reg->umax_value && 618 reg->smax_value != S64_MAX) 619 verbose(env, ",smax_value=%lld", 620 (long long)reg->smax_value); 621 if (reg->umin_value != 0) 622 verbose(env, ",umin_value=%llu", 623 (unsigned long long)reg->umin_value); 624 if (reg->umax_value != U64_MAX) 625 verbose(env, ",umax_value=%llu", 626 (unsigned long long)reg->umax_value); 627 if (!tnum_is_unknown(reg->var_off)) { 628 char tn_buf[48]; 629 630 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 631 verbose(env, ",var_off=%s", tn_buf); 632 } 633 if (reg->s32_min_value != reg->smin_value && 634 reg->s32_min_value != S32_MIN) 635 verbose(env, ",s32_min_value=%d", 636 (int)(reg->s32_min_value)); 637 if (reg->s32_max_value != reg->smax_value && 638 reg->s32_max_value != S32_MAX) 639 verbose(env, ",s32_max_value=%d", 640 (int)(reg->s32_max_value)); 641 if (reg->u32_min_value != reg->umin_value && 642 reg->u32_min_value != U32_MIN) 643 verbose(env, ",u32_min_value=%d", 644 (int)(reg->u32_min_value)); 645 if (reg->u32_max_value != reg->umax_value && 646 reg->u32_max_value != U32_MAX) 647 verbose(env, ",u32_max_value=%d", 648 (int)(reg->u32_max_value)); 649 } 650 verbose(env, ")"); 651 } 652 } 653 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 654 char types_buf[BPF_REG_SIZE + 1]; 655 bool valid = false; 656 int j; 657 658 for (j = 0; j < BPF_REG_SIZE; j++) { 659 if (state->stack[i].slot_type[j] != STACK_INVALID) 660 valid = true; 661 types_buf[j] = slot_type_char[ 662 state->stack[i].slot_type[j]]; 663 } 664 types_buf[BPF_REG_SIZE] = 0; 665 if (!valid) 666 continue; 667 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 668 print_liveness(env, state->stack[i].spilled_ptr.live); 669 if (state->stack[i].slot_type[0] == STACK_SPILL) { 670 reg = &state->stack[i].spilled_ptr; 671 t = reg->type; 672 verbose(env, "=%s", reg_type_str[t]); 673 if (t == SCALAR_VALUE && reg->precise) 674 verbose(env, "P"); 675 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 676 verbose(env, "%lld", reg->var_off.value + reg->off); 677 } else { 678 verbose(env, "=%s", types_buf); 679 } 680 } 681 if (state->acquired_refs && state->refs[0].id) { 682 verbose(env, " refs=%d", state->refs[0].id); 683 for (i = 1; i < state->acquired_refs; i++) 684 if (state->refs[i].id) 685 verbose(env, ",%d", state->refs[i].id); 686 } 687 verbose(env, "\n"); 688 } 689 690 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 691 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 692 const struct bpf_func_state *src) \ 693 { \ 694 if (!src->FIELD) \ 695 return 0; \ 696 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 697 /* internal bug, make state invalid to reject the program */ \ 698 memset(dst, 0, sizeof(*dst)); \ 699 return -EFAULT; \ 700 } \ 701 memcpy(dst->FIELD, src->FIELD, \ 702 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 703 return 0; \ 704 } 705 /* copy_reference_state() */ 706 COPY_STATE_FN(reference, acquired_refs, refs, 1) 707 /* copy_stack_state() */ 708 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 709 #undef COPY_STATE_FN 710 711 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 712 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 713 bool copy_old) \ 714 { \ 715 u32 old_size = state->COUNT; \ 716 struct bpf_##NAME##_state *new_##FIELD; \ 717 int slot = size / SIZE; \ 718 \ 719 if (size <= old_size || !size) { \ 720 if (copy_old) \ 721 return 0; \ 722 state->COUNT = slot * SIZE; \ 723 if (!size && old_size) { \ 724 kfree(state->FIELD); \ 725 state->FIELD = NULL; \ 726 } \ 727 return 0; \ 728 } \ 729 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 730 GFP_KERNEL); \ 731 if (!new_##FIELD) \ 732 return -ENOMEM; \ 733 if (copy_old) { \ 734 if (state->FIELD) \ 735 memcpy(new_##FIELD, state->FIELD, \ 736 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 737 memset(new_##FIELD + old_size / SIZE, 0, \ 738 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 739 } \ 740 state->COUNT = slot * SIZE; \ 741 kfree(state->FIELD); \ 742 state->FIELD = new_##FIELD; \ 743 return 0; \ 744 } 745 /* realloc_reference_state() */ 746 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 747 /* realloc_stack_state() */ 748 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 749 #undef REALLOC_STATE_FN 750 751 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 752 * make it consume minimal amount of memory. check_stack_write() access from 753 * the program calls into realloc_func_state() to grow the stack size. 754 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 755 * which realloc_stack_state() copies over. It points to previous 756 * bpf_verifier_state which is never reallocated. 757 */ 758 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 759 int refs_size, bool copy_old) 760 { 761 int err = realloc_reference_state(state, refs_size, copy_old); 762 if (err) 763 return err; 764 return realloc_stack_state(state, stack_size, copy_old); 765 } 766 767 /* Acquire a pointer id from the env and update the state->refs to include 768 * this new pointer reference. 769 * On success, returns a valid pointer id to associate with the register 770 * On failure, returns a negative errno. 771 */ 772 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 773 { 774 struct bpf_func_state *state = cur_func(env); 775 int new_ofs = state->acquired_refs; 776 int id, err; 777 778 err = realloc_reference_state(state, state->acquired_refs + 1, true); 779 if (err) 780 return err; 781 id = ++env->id_gen; 782 state->refs[new_ofs].id = id; 783 state->refs[new_ofs].insn_idx = insn_idx; 784 785 return id; 786 } 787 788 /* release function corresponding to acquire_reference_state(). Idempotent. */ 789 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 790 { 791 int i, last_idx; 792 793 last_idx = state->acquired_refs - 1; 794 for (i = 0; i < state->acquired_refs; i++) { 795 if (state->refs[i].id == ptr_id) { 796 if (last_idx && i != last_idx) 797 memcpy(&state->refs[i], &state->refs[last_idx], 798 sizeof(*state->refs)); 799 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 800 state->acquired_refs--; 801 return 0; 802 } 803 } 804 return -EINVAL; 805 } 806 807 static int transfer_reference_state(struct bpf_func_state *dst, 808 struct bpf_func_state *src) 809 { 810 int err = realloc_reference_state(dst, src->acquired_refs, false); 811 if (err) 812 return err; 813 err = copy_reference_state(dst, src); 814 if (err) 815 return err; 816 return 0; 817 } 818 819 static void free_func_state(struct bpf_func_state *state) 820 { 821 if (!state) 822 return; 823 kfree(state->refs); 824 kfree(state->stack); 825 kfree(state); 826 } 827 828 static void clear_jmp_history(struct bpf_verifier_state *state) 829 { 830 kfree(state->jmp_history); 831 state->jmp_history = NULL; 832 state->jmp_history_cnt = 0; 833 } 834 835 static void free_verifier_state(struct bpf_verifier_state *state, 836 bool free_self) 837 { 838 int i; 839 840 for (i = 0; i <= state->curframe; i++) { 841 free_func_state(state->frame[i]); 842 state->frame[i] = NULL; 843 } 844 clear_jmp_history(state); 845 if (free_self) 846 kfree(state); 847 } 848 849 /* copy verifier state from src to dst growing dst stack space 850 * when necessary to accommodate larger src stack 851 */ 852 static int copy_func_state(struct bpf_func_state *dst, 853 const struct bpf_func_state *src) 854 { 855 int err; 856 857 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 858 false); 859 if (err) 860 return err; 861 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 862 err = copy_reference_state(dst, src); 863 if (err) 864 return err; 865 return copy_stack_state(dst, src); 866 } 867 868 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 869 const struct bpf_verifier_state *src) 870 { 871 struct bpf_func_state *dst; 872 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; 873 int i, err; 874 875 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { 876 kfree(dst_state->jmp_history); 877 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); 878 if (!dst_state->jmp_history) 879 return -ENOMEM; 880 } 881 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); 882 dst_state->jmp_history_cnt = src->jmp_history_cnt; 883 884 /* if dst has more stack frames then src frame, free them */ 885 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 886 free_func_state(dst_state->frame[i]); 887 dst_state->frame[i] = NULL; 888 } 889 dst_state->speculative = src->speculative; 890 dst_state->curframe = src->curframe; 891 dst_state->active_spin_lock = src->active_spin_lock; 892 dst_state->branches = src->branches; 893 dst_state->parent = src->parent; 894 dst_state->first_insn_idx = src->first_insn_idx; 895 dst_state->last_insn_idx = src->last_insn_idx; 896 for (i = 0; i <= src->curframe; i++) { 897 dst = dst_state->frame[i]; 898 if (!dst) { 899 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 900 if (!dst) 901 return -ENOMEM; 902 dst_state->frame[i] = dst; 903 } 904 err = copy_func_state(dst, src->frame[i]); 905 if (err) 906 return err; 907 } 908 return 0; 909 } 910 911 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 912 { 913 while (st) { 914 u32 br = --st->branches; 915 916 /* WARN_ON(br > 1) technically makes sense here, 917 * but see comment in push_stack(), hence: 918 */ 919 WARN_ONCE((int)br < 0, 920 "BUG update_branch_counts:branches_to_explore=%d\n", 921 br); 922 if (br) 923 break; 924 st = st->parent; 925 } 926 } 927 928 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 929 int *insn_idx, bool pop_log) 930 { 931 struct bpf_verifier_state *cur = env->cur_state; 932 struct bpf_verifier_stack_elem *elem, *head = env->head; 933 int err; 934 935 if (env->head == NULL) 936 return -ENOENT; 937 938 if (cur) { 939 err = copy_verifier_state(cur, &head->st); 940 if (err) 941 return err; 942 } 943 if (pop_log) 944 bpf_vlog_reset(&env->log, head->log_pos); 945 if (insn_idx) 946 *insn_idx = head->insn_idx; 947 if (prev_insn_idx) 948 *prev_insn_idx = head->prev_insn_idx; 949 elem = head->next; 950 free_verifier_state(&head->st, false); 951 kfree(head); 952 env->head = elem; 953 env->stack_size--; 954 return 0; 955 } 956 957 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 958 int insn_idx, int prev_insn_idx, 959 bool speculative) 960 { 961 struct bpf_verifier_state *cur = env->cur_state; 962 struct bpf_verifier_stack_elem *elem; 963 int err; 964 965 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 966 if (!elem) 967 goto err; 968 969 elem->insn_idx = insn_idx; 970 elem->prev_insn_idx = prev_insn_idx; 971 elem->next = env->head; 972 elem->log_pos = env->log.len_used; 973 env->head = elem; 974 env->stack_size++; 975 err = copy_verifier_state(&elem->st, cur); 976 if (err) 977 goto err; 978 elem->st.speculative |= speculative; 979 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 980 verbose(env, "The sequence of %d jumps is too complex.\n", 981 env->stack_size); 982 goto err; 983 } 984 if (elem->st.parent) { 985 ++elem->st.parent->branches; 986 /* WARN_ON(branches > 2) technically makes sense here, 987 * but 988 * 1. speculative states will bump 'branches' for non-branch 989 * instructions 990 * 2. is_state_visited() heuristics may decide not to create 991 * a new state for a sequence of branches and all such current 992 * and cloned states will be pointing to a single parent state 993 * which might have large 'branches' count. 994 */ 995 } 996 return &elem->st; 997 err: 998 free_verifier_state(env->cur_state, true); 999 env->cur_state = NULL; 1000 /* pop all elements and return */ 1001 while (!pop_stack(env, NULL, NULL, false)); 1002 return NULL; 1003 } 1004 1005 #define CALLER_SAVED_REGS 6 1006 static const int caller_saved[CALLER_SAVED_REGS] = { 1007 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1008 }; 1009 1010 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1011 struct bpf_reg_state *reg); 1012 1013 /* This helper doesn't clear reg->id */ 1014 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1015 { 1016 reg->var_off = tnum_const(imm); 1017 reg->smin_value = (s64)imm; 1018 reg->smax_value = (s64)imm; 1019 reg->umin_value = imm; 1020 reg->umax_value = imm; 1021 1022 reg->s32_min_value = (s32)imm; 1023 reg->s32_max_value = (s32)imm; 1024 reg->u32_min_value = (u32)imm; 1025 reg->u32_max_value = (u32)imm; 1026 } 1027 1028 /* Mark the unknown part of a register (variable offset or scalar value) as 1029 * known to have the value @imm. 1030 */ 1031 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1032 { 1033 /* Clear id, off, and union(map_ptr, range) */ 1034 memset(((u8 *)reg) + sizeof(reg->type), 0, 1035 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1036 ___mark_reg_known(reg, imm); 1037 } 1038 1039 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1040 { 1041 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1042 reg->s32_min_value = (s32)imm; 1043 reg->s32_max_value = (s32)imm; 1044 reg->u32_min_value = (u32)imm; 1045 reg->u32_max_value = (u32)imm; 1046 } 1047 1048 /* Mark the 'variable offset' part of a register as zero. This should be 1049 * used only on registers holding a pointer type. 1050 */ 1051 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1052 { 1053 __mark_reg_known(reg, 0); 1054 } 1055 1056 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1057 { 1058 __mark_reg_known(reg, 0); 1059 reg->type = SCALAR_VALUE; 1060 } 1061 1062 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1063 struct bpf_reg_state *regs, u32 regno) 1064 { 1065 if (WARN_ON(regno >= MAX_BPF_REG)) { 1066 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1067 /* Something bad happened, let's kill all regs */ 1068 for (regno = 0; regno < MAX_BPF_REG; regno++) 1069 __mark_reg_not_init(env, regs + regno); 1070 return; 1071 } 1072 __mark_reg_known_zero(regs + regno); 1073 } 1074 1075 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1076 { 1077 return type_is_pkt_pointer(reg->type); 1078 } 1079 1080 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1081 { 1082 return reg_is_pkt_pointer(reg) || 1083 reg->type == PTR_TO_PACKET_END; 1084 } 1085 1086 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1087 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1088 enum bpf_reg_type which) 1089 { 1090 /* The register can already have a range from prior markings. 1091 * This is fine as long as it hasn't been advanced from its 1092 * origin. 1093 */ 1094 return reg->type == which && 1095 reg->id == 0 && 1096 reg->off == 0 && 1097 tnum_equals_const(reg->var_off, 0); 1098 } 1099 1100 /* Reset the min/max bounds of a register */ 1101 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1102 { 1103 reg->smin_value = S64_MIN; 1104 reg->smax_value = S64_MAX; 1105 reg->umin_value = 0; 1106 reg->umax_value = U64_MAX; 1107 1108 reg->s32_min_value = S32_MIN; 1109 reg->s32_max_value = S32_MAX; 1110 reg->u32_min_value = 0; 1111 reg->u32_max_value = U32_MAX; 1112 } 1113 1114 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1115 { 1116 reg->smin_value = S64_MIN; 1117 reg->smax_value = S64_MAX; 1118 reg->umin_value = 0; 1119 reg->umax_value = U64_MAX; 1120 } 1121 1122 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1123 { 1124 reg->s32_min_value = S32_MIN; 1125 reg->s32_max_value = S32_MAX; 1126 reg->u32_min_value = 0; 1127 reg->u32_max_value = U32_MAX; 1128 } 1129 1130 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1131 { 1132 struct tnum var32_off = tnum_subreg(reg->var_off); 1133 1134 /* min signed is max(sign bit) | min(other bits) */ 1135 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1136 var32_off.value | (var32_off.mask & S32_MIN)); 1137 /* max signed is min(sign bit) | max(other bits) */ 1138 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1139 var32_off.value | (var32_off.mask & S32_MAX)); 1140 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1141 reg->u32_max_value = min(reg->u32_max_value, 1142 (u32)(var32_off.value | var32_off.mask)); 1143 } 1144 1145 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1146 { 1147 /* min signed is max(sign bit) | min(other bits) */ 1148 reg->smin_value = max_t(s64, reg->smin_value, 1149 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1150 /* max signed is min(sign bit) | max(other bits) */ 1151 reg->smax_value = min_t(s64, reg->smax_value, 1152 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1153 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1154 reg->umax_value = min(reg->umax_value, 1155 reg->var_off.value | reg->var_off.mask); 1156 } 1157 1158 static void __update_reg_bounds(struct bpf_reg_state *reg) 1159 { 1160 __update_reg32_bounds(reg); 1161 __update_reg64_bounds(reg); 1162 } 1163 1164 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1165 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1166 { 1167 /* Learn sign from signed bounds. 1168 * If we cannot cross the sign boundary, then signed and unsigned bounds 1169 * are the same, so combine. This works even in the negative case, e.g. 1170 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1171 */ 1172 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1173 reg->s32_min_value = reg->u32_min_value = 1174 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1175 reg->s32_max_value = reg->u32_max_value = 1176 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1177 return; 1178 } 1179 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1180 * boundary, so we must be careful. 1181 */ 1182 if ((s32)reg->u32_max_value >= 0) { 1183 /* Positive. We can't learn anything from the smin, but smax 1184 * is positive, hence safe. 1185 */ 1186 reg->s32_min_value = reg->u32_min_value; 1187 reg->s32_max_value = reg->u32_max_value = 1188 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1189 } else if ((s32)reg->u32_min_value < 0) { 1190 /* Negative. We can't learn anything from the smax, but smin 1191 * is negative, hence safe. 1192 */ 1193 reg->s32_min_value = reg->u32_min_value = 1194 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1195 reg->s32_max_value = reg->u32_max_value; 1196 } 1197 } 1198 1199 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1200 { 1201 /* Learn sign from signed bounds. 1202 * If we cannot cross the sign boundary, then signed and unsigned bounds 1203 * are the same, so combine. This works even in the negative case, e.g. 1204 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1205 */ 1206 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1207 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1208 reg->umin_value); 1209 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1210 reg->umax_value); 1211 return; 1212 } 1213 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1214 * boundary, so we must be careful. 1215 */ 1216 if ((s64)reg->umax_value >= 0) { 1217 /* Positive. We can't learn anything from the smin, but smax 1218 * is positive, hence safe. 1219 */ 1220 reg->smin_value = reg->umin_value; 1221 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1222 reg->umax_value); 1223 } else if ((s64)reg->umin_value < 0) { 1224 /* Negative. We can't learn anything from the smax, but smin 1225 * is negative, hence safe. 1226 */ 1227 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1228 reg->umin_value); 1229 reg->smax_value = reg->umax_value; 1230 } 1231 } 1232 1233 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1234 { 1235 __reg32_deduce_bounds(reg); 1236 __reg64_deduce_bounds(reg); 1237 } 1238 1239 /* Attempts to improve var_off based on unsigned min/max information */ 1240 static void __reg_bound_offset(struct bpf_reg_state *reg) 1241 { 1242 struct tnum var64_off = tnum_intersect(reg->var_off, 1243 tnum_range(reg->umin_value, 1244 reg->umax_value)); 1245 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1246 tnum_range(reg->u32_min_value, 1247 reg->u32_max_value)); 1248 1249 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1250 } 1251 1252 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1253 { 1254 reg->umin_value = reg->u32_min_value; 1255 reg->umax_value = reg->u32_max_value; 1256 /* Attempt to pull 32-bit signed bounds into 64-bit bounds 1257 * but must be positive otherwise set to worse case bounds 1258 * and refine later from tnum. 1259 */ 1260 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0) 1261 reg->smax_value = reg->s32_max_value; 1262 else 1263 reg->smax_value = U32_MAX; 1264 if (reg->s32_min_value >= 0) 1265 reg->smin_value = reg->s32_min_value; 1266 else 1267 reg->smin_value = 0; 1268 } 1269 1270 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1271 { 1272 /* special case when 64-bit register has upper 32-bit register 1273 * zeroed. Typically happens after zext or <<32, >>32 sequence 1274 * allowing us to use 32-bit bounds directly, 1275 */ 1276 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1277 __reg_assign_32_into_64(reg); 1278 } else { 1279 /* Otherwise the best we can do is push lower 32bit known and 1280 * unknown bits into register (var_off set from jmp logic) 1281 * then learn as much as possible from the 64-bit tnum 1282 * known and unknown bits. The previous smin/smax bounds are 1283 * invalid here because of jmp32 compare so mark them unknown 1284 * so they do not impact tnum bounds calculation. 1285 */ 1286 __mark_reg64_unbounded(reg); 1287 __update_reg_bounds(reg); 1288 } 1289 1290 /* Intersecting with the old var_off might have improved our bounds 1291 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1292 * then new var_off is (0; 0x7f...fc) which improves our umax. 1293 */ 1294 __reg_deduce_bounds(reg); 1295 __reg_bound_offset(reg); 1296 __update_reg_bounds(reg); 1297 } 1298 1299 static bool __reg64_bound_s32(s64 a) 1300 { 1301 if (a > S32_MIN && a < S32_MAX) 1302 return true; 1303 return false; 1304 } 1305 1306 static bool __reg64_bound_u32(u64 a) 1307 { 1308 if (a > U32_MIN && a < U32_MAX) 1309 return true; 1310 return false; 1311 } 1312 1313 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1314 { 1315 __mark_reg32_unbounded(reg); 1316 1317 if (__reg64_bound_s32(reg->smin_value)) 1318 reg->s32_min_value = (s32)reg->smin_value; 1319 if (__reg64_bound_s32(reg->smax_value)) 1320 reg->s32_max_value = (s32)reg->smax_value; 1321 if (__reg64_bound_u32(reg->umin_value)) 1322 reg->u32_min_value = (u32)reg->umin_value; 1323 if (__reg64_bound_u32(reg->umax_value)) 1324 reg->u32_max_value = (u32)reg->umax_value; 1325 1326 /* Intersecting with the old var_off might have improved our bounds 1327 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1328 * then new var_off is (0; 0x7f...fc) which improves our umax. 1329 */ 1330 __reg_deduce_bounds(reg); 1331 __reg_bound_offset(reg); 1332 __update_reg_bounds(reg); 1333 } 1334 1335 /* Mark a register as having a completely unknown (scalar) value. */ 1336 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1337 struct bpf_reg_state *reg) 1338 { 1339 /* 1340 * Clear type, id, off, and union(map_ptr, range) and 1341 * padding between 'type' and union 1342 */ 1343 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1344 reg->type = SCALAR_VALUE; 1345 reg->var_off = tnum_unknown; 1346 reg->frameno = 0; 1347 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1348 __mark_reg_unbounded(reg); 1349 } 1350 1351 static void mark_reg_unknown(struct bpf_verifier_env *env, 1352 struct bpf_reg_state *regs, u32 regno) 1353 { 1354 if (WARN_ON(regno >= MAX_BPF_REG)) { 1355 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1356 /* Something bad happened, let's kill all regs except FP */ 1357 for (regno = 0; regno < BPF_REG_FP; regno++) 1358 __mark_reg_not_init(env, regs + regno); 1359 return; 1360 } 1361 __mark_reg_unknown(env, regs + regno); 1362 } 1363 1364 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1365 struct bpf_reg_state *reg) 1366 { 1367 __mark_reg_unknown(env, reg); 1368 reg->type = NOT_INIT; 1369 } 1370 1371 static void mark_reg_not_init(struct bpf_verifier_env *env, 1372 struct bpf_reg_state *regs, u32 regno) 1373 { 1374 if (WARN_ON(regno >= MAX_BPF_REG)) { 1375 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1376 /* Something bad happened, let's kill all regs except FP */ 1377 for (regno = 0; regno < BPF_REG_FP; regno++) 1378 __mark_reg_not_init(env, regs + regno); 1379 return; 1380 } 1381 __mark_reg_not_init(env, regs + regno); 1382 } 1383 1384 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1385 struct bpf_reg_state *regs, u32 regno, 1386 enum bpf_reg_type reg_type, u32 btf_id) 1387 { 1388 if (reg_type == SCALAR_VALUE) { 1389 mark_reg_unknown(env, regs, regno); 1390 return; 1391 } 1392 mark_reg_known_zero(env, regs, regno); 1393 regs[regno].type = PTR_TO_BTF_ID; 1394 regs[regno].btf_id = btf_id; 1395 } 1396 1397 #define DEF_NOT_SUBREG (0) 1398 static void init_reg_state(struct bpf_verifier_env *env, 1399 struct bpf_func_state *state) 1400 { 1401 struct bpf_reg_state *regs = state->regs; 1402 int i; 1403 1404 for (i = 0; i < MAX_BPF_REG; i++) { 1405 mark_reg_not_init(env, regs, i); 1406 regs[i].live = REG_LIVE_NONE; 1407 regs[i].parent = NULL; 1408 regs[i].subreg_def = DEF_NOT_SUBREG; 1409 } 1410 1411 /* frame pointer */ 1412 regs[BPF_REG_FP].type = PTR_TO_STACK; 1413 mark_reg_known_zero(env, regs, BPF_REG_FP); 1414 regs[BPF_REG_FP].frameno = state->frameno; 1415 } 1416 1417 #define BPF_MAIN_FUNC (-1) 1418 static void init_func_state(struct bpf_verifier_env *env, 1419 struct bpf_func_state *state, 1420 int callsite, int frameno, int subprogno) 1421 { 1422 state->callsite = callsite; 1423 state->frameno = frameno; 1424 state->subprogno = subprogno; 1425 init_reg_state(env, state); 1426 } 1427 1428 enum reg_arg_type { 1429 SRC_OP, /* register is used as source operand */ 1430 DST_OP, /* register is used as destination operand */ 1431 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1432 }; 1433 1434 static int cmp_subprogs(const void *a, const void *b) 1435 { 1436 return ((struct bpf_subprog_info *)a)->start - 1437 ((struct bpf_subprog_info *)b)->start; 1438 } 1439 1440 static int find_subprog(struct bpf_verifier_env *env, int off) 1441 { 1442 struct bpf_subprog_info *p; 1443 1444 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1445 sizeof(env->subprog_info[0]), cmp_subprogs); 1446 if (!p) 1447 return -ENOENT; 1448 return p - env->subprog_info; 1449 1450 } 1451 1452 static int add_subprog(struct bpf_verifier_env *env, int off) 1453 { 1454 int insn_cnt = env->prog->len; 1455 int ret; 1456 1457 if (off >= insn_cnt || off < 0) { 1458 verbose(env, "call to invalid destination\n"); 1459 return -EINVAL; 1460 } 1461 ret = find_subprog(env, off); 1462 if (ret >= 0) 1463 return 0; 1464 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1465 verbose(env, "too many subprograms\n"); 1466 return -E2BIG; 1467 } 1468 env->subprog_info[env->subprog_cnt++].start = off; 1469 sort(env->subprog_info, env->subprog_cnt, 1470 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1471 return 0; 1472 } 1473 1474 static int check_subprogs(struct bpf_verifier_env *env) 1475 { 1476 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1477 struct bpf_subprog_info *subprog = env->subprog_info; 1478 struct bpf_insn *insn = env->prog->insnsi; 1479 int insn_cnt = env->prog->len; 1480 1481 /* Add entry function. */ 1482 ret = add_subprog(env, 0); 1483 if (ret < 0) 1484 return ret; 1485 1486 /* determine subprog starts. The end is one before the next starts */ 1487 for (i = 0; i < insn_cnt; i++) { 1488 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1489 continue; 1490 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1491 continue; 1492 if (!env->bpf_capable) { 1493 verbose(env, 1494 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 1495 return -EPERM; 1496 } 1497 ret = add_subprog(env, i + insn[i].imm + 1); 1498 if (ret < 0) 1499 return ret; 1500 } 1501 1502 /* Add a fake 'exit' subprog which could simplify subprog iteration 1503 * logic. 'subprog_cnt' should not be increased. 1504 */ 1505 subprog[env->subprog_cnt].start = insn_cnt; 1506 1507 if (env->log.level & BPF_LOG_LEVEL2) 1508 for (i = 0; i < env->subprog_cnt; i++) 1509 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1510 1511 /* now check that all jumps are within the same subprog */ 1512 subprog_start = subprog[cur_subprog].start; 1513 subprog_end = subprog[cur_subprog + 1].start; 1514 for (i = 0; i < insn_cnt; i++) { 1515 u8 code = insn[i].code; 1516 1517 if (code == (BPF_JMP | BPF_CALL) && 1518 insn[i].imm == BPF_FUNC_tail_call && 1519 insn[i].src_reg != BPF_PSEUDO_CALL) 1520 subprog[cur_subprog].has_tail_call = true; 1521 if (BPF_CLASS(code) == BPF_LD && 1522 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 1523 subprog[cur_subprog].has_ld_abs = true; 1524 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1525 goto next; 1526 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1527 goto next; 1528 off = i + insn[i].off + 1; 1529 if (off < subprog_start || off >= subprog_end) { 1530 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1531 return -EINVAL; 1532 } 1533 next: 1534 if (i == subprog_end - 1) { 1535 /* to avoid fall-through from one subprog into another 1536 * the last insn of the subprog should be either exit 1537 * or unconditional jump back 1538 */ 1539 if (code != (BPF_JMP | BPF_EXIT) && 1540 code != (BPF_JMP | BPF_JA)) { 1541 verbose(env, "last insn is not an exit or jmp\n"); 1542 return -EINVAL; 1543 } 1544 subprog_start = subprog_end; 1545 cur_subprog++; 1546 if (cur_subprog < env->subprog_cnt) 1547 subprog_end = subprog[cur_subprog + 1].start; 1548 } 1549 } 1550 return 0; 1551 } 1552 1553 /* Parentage chain of this register (or stack slot) should take care of all 1554 * issues like callee-saved registers, stack slot allocation time, etc. 1555 */ 1556 static int mark_reg_read(struct bpf_verifier_env *env, 1557 const struct bpf_reg_state *state, 1558 struct bpf_reg_state *parent, u8 flag) 1559 { 1560 bool writes = parent == state->parent; /* Observe write marks */ 1561 int cnt = 0; 1562 1563 while (parent) { 1564 /* if read wasn't screened by an earlier write ... */ 1565 if (writes && state->live & REG_LIVE_WRITTEN) 1566 break; 1567 if (parent->live & REG_LIVE_DONE) { 1568 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1569 reg_type_str[parent->type], 1570 parent->var_off.value, parent->off); 1571 return -EFAULT; 1572 } 1573 /* The first condition is more likely to be true than the 1574 * second, checked it first. 1575 */ 1576 if ((parent->live & REG_LIVE_READ) == flag || 1577 parent->live & REG_LIVE_READ64) 1578 /* The parentage chain never changes and 1579 * this parent was already marked as LIVE_READ. 1580 * There is no need to keep walking the chain again and 1581 * keep re-marking all parents as LIVE_READ. 1582 * This case happens when the same register is read 1583 * multiple times without writes into it in-between. 1584 * Also, if parent has the stronger REG_LIVE_READ64 set, 1585 * then no need to set the weak REG_LIVE_READ32. 1586 */ 1587 break; 1588 /* ... then we depend on parent's value */ 1589 parent->live |= flag; 1590 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1591 if (flag == REG_LIVE_READ64) 1592 parent->live &= ~REG_LIVE_READ32; 1593 state = parent; 1594 parent = state->parent; 1595 writes = true; 1596 cnt++; 1597 } 1598 1599 if (env->longest_mark_read_walk < cnt) 1600 env->longest_mark_read_walk = cnt; 1601 return 0; 1602 } 1603 1604 /* This function is supposed to be used by the following 32-bit optimization 1605 * code only. It returns TRUE if the source or destination register operates 1606 * on 64-bit, otherwise return FALSE. 1607 */ 1608 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1609 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1610 { 1611 u8 code, class, op; 1612 1613 code = insn->code; 1614 class = BPF_CLASS(code); 1615 op = BPF_OP(code); 1616 if (class == BPF_JMP) { 1617 /* BPF_EXIT for "main" will reach here. Return TRUE 1618 * conservatively. 1619 */ 1620 if (op == BPF_EXIT) 1621 return true; 1622 if (op == BPF_CALL) { 1623 /* BPF to BPF call will reach here because of marking 1624 * caller saved clobber with DST_OP_NO_MARK for which we 1625 * don't care the register def because they are anyway 1626 * marked as NOT_INIT already. 1627 */ 1628 if (insn->src_reg == BPF_PSEUDO_CALL) 1629 return false; 1630 /* Helper call will reach here because of arg type 1631 * check, conservatively return TRUE. 1632 */ 1633 if (t == SRC_OP) 1634 return true; 1635 1636 return false; 1637 } 1638 } 1639 1640 if (class == BPF_ALU64 || class == BPF_JMP || 1641 /* BPF_END always use BPF_ALU class. */ 1642 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1643 return true; 1644 1645 if (class == BPF_ALU || class == BPF_JMP32) 1646 return false; 1647 1648 if (class == BPF_LDX) { 1649 if (t != SRC_OP) 1650 return BPF_SIZE(code) == BPF_DW; 1651 /* LDX source must be ptr. */ 1652 return true; 1653 } 1654 1655 if (class == BPF_STX) { 1656 if (reg->type != SCALAR_VALUE) 1657 return true; 1658 return BPF_SIZE(code) == BPF_DW; 1659 } 1660 1661 if (class == BPF_LD) { 1662 u8 mode = BPF_MODE(code); 1663 1664 /* LD_IMM64 */ 1665 if (mode == BPF_IMM) 1666 return true; 1667 1668 /* Both LD_IND and LD_ABS return 32-bit data. */ 1669 if (t != SRC_OP) 1670 return false; 1671 1672 /* Implicit ctx ptr. */ 1673 if (regno == BPF_REG_6) 1674 return true; 1675 1676 /* Explicit source could be any width. */ 1677 return true; 1678 } 1679 1680 if (class == BPF_ST) 1681 /* The only source register for BPF_ST is a ptr. */ 1682 return true; 1683 1684 /* Conservatively return true at default. */ 1685 return true; 1686 } 1687 1688 /* Return TRUE if INSN doesn't have explicit value define. */ 1689 static bool insn_no_def(struct bpf_insn *insn) 1690 { 1691 u8 class = BPF_CLASS(insn->code); 1692 1693 return (class == BPF_JMP || class == BPF_JMP32 || 1694 class == BPF_STX || class == BPF_ST); 1695 } 1696 1697 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1698 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1699 { 1700 if (insn_no_def(insn)) 1701 return false; 1702 1703 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); 1704 } 1705 1706 static void mark_insn_zext(struct bpf_verifier_env *env, 1707 struct bpf_reg_state *reg) 1708 { 1709 s32 def_idx = reg->subreg_def; 1710 1711 if (def_idx == DEF_NOT_SUBREG) 1712 return; 1713 1714 env->insn_aux_data[def_idx - 1].zext_dst = true; 1715 /* The dst will be zero extended, so won't be sub-register anymore. */ 1716 reg->subreg_def = DEF_NOT_SUBREG; 1717 } 1718 1719 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1720 enum reg_arg_type t) 1721 { 1722 struct bpf_verifier_state *vstate = env->cur_state; 1723 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1724 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 1725 struct bpf_reg_state *reg, *regs = state->regs; 1726 bool rw64; 1727 1728 if (regno >= MAX_BPF_REG) { 1729 verbose(env, "R%d is invalid\n", regno); 1730 return -EINVAL; 1731 } 1732 1733 reg = ®s[regno]; 1734 rw64 = is_reg64(env, insn, regno, reg, t); 1735 if (t == SRC_OP) { 1736 /* check whether register used as source operand can be read */ 1737 if (reg->type == NOT_INIT) { 1738 verbose(env, "R%d !read_ok\n", regno); 1739 return -EACCES; 1740 } 1741 /* We don't need to worry about FP liveness because it's read-only */ 1742 if (regno == BPF_REG_FP) 1743 return 0; 1744 1745 if (rw64) 1746 mark_insn_zext(env, reg); 1747 1748 return mark_reg_read(env, reg, reg->parent, 1749 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 1750 } else { 1751 /* check whether register used as dest operand can be written to */ 1752 if (regno == BPF_REG_FP) { 1753 verbose(env, "frame pointer is read only\n"); 1754 return -EACCES; 1755 } 1756 reg->live |= REG_LIVE_WRITTEN; 1757 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 1758 if (t == DST_OP) 1759 mark_reg_unknown(env, regs, regno); 1760 } 1761 return 0; 1762 } 1763 1764 /* for any branch, call, exit record the history of jmps in the given state */ 1765 static int push_jmp_history(struct bpf_verifier_env *env, 1766 struct bpf_verifier_state *cur) 1767 { 1768 u32 cnt = cur->jmp_history_cnt; 1769 struct bpf_idx_pair *p; 1770 1771 cnt++; 1772 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 1773 if (!p) 1774 return -ENOMEM; 1775 p[cnt - 1].idx = env->insn_idx; 1776 p[cnt - 1].prev_idx = env->prev_insn_idx; 1777 cur->jmp_history = p; 1778 cur->jmp_history_cnt = cnt; 1779 return 0; 1780 } 1781 1782 /* Backtrack one insn at a time. If idx is not at the top of recorded 1783 * history then previous instruction came from straight line execution. 1784 */ 1785 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 1786 u32 *history) 1787 { 1788 u32 cnt = *history; 1789 1790 if (cnt && st->jmp_history[cnt - 1].idx == i) { 1791 i = st->jmp_history[cnt - 1].prev_idx; 1792 (*history)--; 1793 } else { 1794 i--; 1795 } 1796 return i; 1797 } 1798 1799 /* For given verifier state backtrack_insn() is called from the last insn to 1800 * the first insn. Its purpose is to compute a bitmask of registers and 1801 * stack slots that needs precision in the parent verifier state. 1802 */ 1803 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 1804 u32 *reg_mask, u64 *stack_mask) 1805 { 1806 const struct bpf_insn_cbs cbs = { 1807 .cb_print = verbose, 1808 .private_data = env, 1809 }; 1810 struct bpf_insn *insn = env->prog->insnsi + idx; 1811 u8 class = BPF_CLASS(insn->code); 1812 u8 opcode = BPF_OP(insn->code); 1813 u8 mode = BPF_MODE(insn->code); 1814 u32 dreg = 1u << insn->dst_reg; 1815 u32 sreg = 1u << insn->src_reg; 1816 u32 spi; 1817 1818 if (insn->code == 0) 1819 return 0; 1820 if (env->log.level & BPF_LOG_LEVEL) { 1821 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 1822 verbose(env, "%d: ", idx); 1823 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 1824 } 1825 1826 if (class == BPF_ALU || class == BPF_ALU64) { 1827 if (!(*reg_mask & dreg)) 1828 return 0; 1829 if (opcode == BPF_MOV) { 1830 if (BPF_SRC(insn->code) == BPF_X) { 1831 /* dreg = sreg 1832 * dreg needs precision after this insn 1833 * sreg needs precision before this insn 1834 */ 1835 *reg_mask &= ~dreg; 1836 *reg_mask |= sreg; 1837 } else { 1838 /* dreg = K 1839 * dreg needs precision after this insn. 1840 * Corresponding register is already marked 1841 * as precise=true in this verifier state. 1842 * No further markings in parent are necessary 1843 */ 1844 *reg_mask &= ~dreg; 1845 } 1846 } else { 1847 if (BPF_SRC(insn->code) == BPF_X) { 1848 /* dreg += sreg 1849 * both dreg and sreg need precision 1850 * before this insn 1851 */ 1852 *reg_mask |= sreg; 1853 } /* else dreg += K 1854 * dreg still needs precision before this insn 1855 */ 1856 } 1857 } else if (class == BPF_LDX) { 1858 if (!(*reg_mask & dreg)) 1859 return 0; 1860 *reg_mask &= ~dreg; 1861 1862 /* scalars can only be spilled into stack w/o losing precision. 1863 * Load from any other memory can be zero extended. 1864 * The desire to keep that precision is already indicated 1865 * by 'precise' mark in corresponding register of this state. 1866 * No further tracking necessary. 1867 */ 1868 if (insn->src_reg != BPF_REG_FP) 1869 return 0; 1870 if (BPF_SIZE(insn->code) != BPF_DW) 1871 return 0; 1872 1873 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 1874 * that [fp - off] slot contains scalar that needs to be 1875 * tracked with precision 1876 */ 1877 spi = (-insn->off - 1) / BPF_REG_SIZE; 1878 if (spi >= 64) { 1879 verbose(env, "BUG spi %d\n", spi); 1880 WARN_ONCE(1, "verifier backtracking bug"); 1881 return -EFAULT; 1882 } 1883 *stack_mask |= 1ull << spi; 1884 } else if (class == BPF_STX || class == BPF_ST) { 1885 if (*reg_mask & dreg) 1886 /* stx & st shouldn't be using _scalar_ dst_reg 1887 * to access memory. It means backtracking 1888 * encountered a case of pointer subtraction. 1889 */ 1890 return -ENOTSUPP; 1891 /* scalars can only be spilled into stack */ 1892 if (insn->dst_reg != BPF_REG_FP) 1893 return 0; 1894 if (BPF_SIZE(insn->code) != BPF_DW) 1895 return 0; 1896 spi = (-insn->off - 1) / BPF_REG_SIZE; 1897 if (spi >= 64) { 1898 verbose(env, "BUG spi %d\n", spi); 1899 WARN_ONCE(1, "verifier backtracking bug"); 1900 return -EFAULT; 1901 } 1902 if (!(*stack_mask & (1ull << spi))) 1903 return 0; 1904 *stack_mask &= ~(1ull << spi); 1905 if (class == BPF_STX) 1906 *reg_mask |= sreg; 1907 } else if (class == BPF_JMP || class == BPF_JMP32) { 1908 if (opcode == BPF_CALL) { 1909 if (insn->src_reg == BPF_PSEUDO_CALL) 1910 return -ENOTSUPP; 1911 /* regular helper call sets R0 */ 1912 *reg_mask &= ~1; 1913 if (*reg_mask & 0x3f) { 1914 /* if backtracing was looking for registers R1-R5 1915 * they should have been found already. 1916 */ 1917 verbose(env, "BUG regs %x\n", *reg_mask); 1918 WARN_ONCE(1, "verifier backtracking bug"); 1919 return -EFAULT; 1920 } 1921 } else if (opcode == BPF_EXIT) { 1922 return -ENOTSUPP; 1923 } 1924 } else if (class == BPF_LD) { 1925 if (!(*reg_mask & dreg)) 1926 return 0; 1927 *reg_mask &= ~dreg; 1928 /* It's ld_imm64 or ld_abs or ld_ind. 1929 * For ld_imm64 no further tracking of precision 1930 * into parent is necessary 1931 */ 1932 if (mode == BPF_IND || mode == BPF_ABS) 1933 /* to be analyzed */ 1934 return -ENOTSUPP; 1935 } 1936 return 0; 1937 } 1938 1939 /* the scalar precision tracking algorithm: 1940 * . at the start all registers have precise=false. 1941 * . scalar ranges are tracked as normal through alu and jmp insns. 1942 * . once precise value of the scalar register is used in: 1943 * . ptr + scalar alu 1944 * . if (scalar cond K|scalar) 1945 * . helper_call(.., scalar, ...) where ARG_CONST is expected 1946 * backtrack through the verifier states and mark all registers and 1947 * stack slots with spilled constants that these scalar regisers 1948 * should be precise. 1949 * . during state pruning two registers (or spilled stack slots) 1950 * are equivalent if both are not precise. 1951 * 1952 * Note the verifier cannot simply walk register parentage chain, 1953 * since many different registers and stack slots could have been 1954 * used to compute single precise scalar. 1955 * 1956 * The approach of starting with precise=true for all registers and then 1957 * backtrack to mark a register as not precise when the verifier detects 1958 * that program doesn't care about specific value (e.g., when helper 1959 * takes register as ARG_ANYTHING parameter) is not safe. 1960 * 1961 * It's ok to walk single parentage chain of the verifier states. 1962 * It's possible that this backtracking will go all the way till 1st insn. 1963 * All other branches will be explored for needing precision later. 1964 * 1965 * The backtracking needs to deal with cases like: 1966 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 1967 * r9 -= r8 1968 * r5 = r9 1969 * if r5 > 0x79f goto pc+7 1970 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 1971 * r5 += 1 1972 * ... 1973 * call bpf_perf_event_output#25 1974 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 1975 * 1976 * and this case: 1977 * r6 = 1 1978 * call foo // uses callee's r6 inside to compute r0 1979 * r0 += r6 1980 * if r0 == 0 goto 1981 * 1982 * to track above reg_mask/stack_mask needs to be independent for each frame. 1983 * 1984 * Also if parent's curframe > frame where backtracking started, 1985 * the verifier need to mark registers in both frames, otherwise callees 1986 * may incorrectly prune callers. This is similar to 1987 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 1988 * 1989 * For now backtracking falls back into conservative marking. 1990 */ 1991 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 1992 struct bpf_verifier_state *st) 1993 { 1994 struct bpf_func_state *func; 1995 struct bpf_reg_state *reg; 1996 int i, j; 1997 1998 /* big hammer: mark all scalars precise in this path. 1999 * pop_stack may still get !precise scalars. 2000 */ 2001 for (; st; st = st->parent) 2002 for (i = 0; i <= st->curframe; i++) { 2003 func = st->frame[i]; 2004 for (j = 0; j < BPF_REG_FP; j++) { 2005 reg = &func->regs[j]; 2006 if (reg->type != SCALAR_VALUE) 2007 continue; 2008 reg->precise = true; 2009 } 2010 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2011 if (func->stack[j].slot_type[0] != STACK_SPILL) 2012 continue; 2013 reg = &func->stack[j].spilled_ptr; 2014 if (reg->type != SCALAR_VALUE) 2015 continue; 2016 reg->precise = true; 2017 } 2018 } 2019 } 2020 2021 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2022 int spi) 2023 { 2024 struct bpf_verifier_state *st = env->cur_state; 2025 int first_idx = st->first_insn_idx; 2026 int last_idx = env->insn_idx; 2027 struct bpf_func_state *func; 2028 struct bpf_reg_state *reg; 2029 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2030 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2031 bool skip_first = true; 2032 bool new_marks = false; 2033 int i, err; 2034 2035 if (!env->bpf_capable) 2036 return 0; 2037 2038 func = st->frame[st->curframe]; 2039 if (regno >= 0) { 2040 reg = &func->regs[regno]; 2041 if (reg->type != SCALAR_VALUE) { 2042 WARN_ONCE(1, "backtracing misuse"); 2043 return -EFAULT; 2044 } 2045 if (!reg->precise) 2046 new_marks = true; 2047 else 2048 reg_mask = 0; 2049 reg->precise = true; 2050 } 2051 2052 while (spi >= 0) { 2053 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 2054 stack_mask = 0; 2055 break; 2056 } 2057 reg = &func->stack[spi].spilled_ptr; 2058 if (reg->type != SCALAR_VALUE) { 2059 stack_mask = 0; 2060 break; 2061 } 2062 if (!reg->precise) 2063 new_marks = true; 2064 else 2065 stack_mask = 0; 2066 reg->precise = true; 2067 break; 2068 } 2069 2070 if (!new_marks) 2071 return 0; 2072 if (!reg_mask && !stack_mask) 2073 return 0; 2074 for (;;) { 2075 DECLARE_BITMAP(mask, 64); 2076 u32 history = st->jmp_history_cnt; 2077 2078 if (env->log.level & BPF_LOG_LEVEL) 2079 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2080 for (i = last_idx;;) { 2081 if (skip_first) { 2082 err = 0; 2083 skip_first = false; 2084 } else { 2085 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2086 } 2087 if (err == -ENOTSUPP) { 2088 mark_all_scalars_precise(env, st); 2089 return 0; 2090 } else if (err) { 2091 return err; 2092 } 2093 if (!reg_mask && !stack_mask) 2094 /* Found assignment(s) into tracked register in this state. 2095 * Since this state is already marked, just return. 2096 * Nothing to be tracked further in the parent state. 2097 */ 2098 return 0; 2099 if (i == first_idx) 2100 break; 2101 i = get_prev_insn_idx(st, i, &history); 2102 if (i >= env->prog->len) { 2103 /* This can happen if backtracking reached insn 0 2104 * and there are still reg_mask or stack_mask 2105 * to backtrack. 2106 * It means the backtracking missed the spot where 2107 * particular register was initialized with a constant. 2108 */ 2109 verbose(env, "BUG backtracking idx %d\n", i); 2110 WARN_ONCE(1, "verifier backtracking bug"); 2111 return -EFAULT; 2112 } 2113 } 2114 st = st->parent; 2115 if (!st) 2116 break; 2117 2118 new_marks = false; 2119 func = st->frame[st->curframe]; 2120 bitmap_from_u64(mask, reg_mask); 2121 for_each_set_bit(i, mask, 32) { 2122 reg = &func->regs[i]; 2123 if (reg->type != SCALAR_VALUE) { 2124 reg_mask &= ~(1u << i); 2125 continue; 2126 } 2127 if (!reg->precise) 2128 new_marks = true; 2129 reg->precise = true; 2130 } 2131 2132 bitmap_from_u64(mask, stack_mask); 2133 for_each_set_bit(i, mask, 64) { 2134 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2135 /* the sequence of instructions: 2136 * 2: (bf) r3 = r10 2137 * 3: (7b) *(u64 *)(r3 -8) = r0 2138 * 4: (79) r4 = *(u64 *)(r10 -8) 2139 * doesn't contain jmps. It's backtracked 2140 * as a single block. 2141 * During backtracking insn 3 is not recognized as 2142 * stack access, so at the end of backtracking 2143 * stack slot fp-8 is still marked in stack_mask. 2144 * However the parent state may not have accessed 2145 * fp-8 and it's "unallocated" stack space. 2146 * In such case fallback to conservative. 2147 */ 2148 mark_all_scalars_precise(env, st); 2149 return 0; 2150 } 2151 2152 if (func->stack[i].slot_type[0] != STACK_SPILL) { 2153 stack_mask &= ~(1ull << i); 2154 continue; 2155 } 2156 reg = &func->stack[i].spilled_ptr; 2157 if (reg->type != SCALAR_VALUE) { 2158 stack_mask &= ~(1ull << i); 2159 continue; 2160 } 2161 if (!reg->precise) 2162 new_marks = true; 2163 reg->precise = true; 2164 } 2165 if (env->log.level & BPF_LOG_LEVEL) { 2166 print_verifier_state(env, func); 2167 verbose(env, "parent %s regs=%x stack=%llx marks\n", 2168 new_marks ? "didn't have" : "already had", 2169 reg_mask, stack_mask); 2170 } 2171 2172 if (!reg_mask && !stack_mask) 2173 break; 2174 if (!new_marks) 2175 break; 2176 2177 last_idx = st->last_insn_idx; 2178 first_idx = st->first_insn_idx; 2179 } 2180 return 0; 2181 } 2182 2183 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2184 { 2185 return __mark_chain_precision(env, regno, -1); 2186 } 2187 2188 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2189 { 2190 return __mark_chain_precision(env, -1, spi); 2191 } 2192 2193 static bool is_spillable_regtype(enum bpf_reg_type type) 2194 { 2195 switch (type) { 2196 case PTR_TO_MAP_VALUE: 2197 case PTR_TO_MAP_VALUE_OR_NULL: 2198 case PTR_TO_STACK: 2199 case PTR_TO_CTX: 2200 case PTR_TO_PACKET: 2201 case PTR_TO_PACKET_META: 2202 case PTR_TO_PACKET_END: 2203 case PTR_TO_FLOW_KEYS: 2204 case CONST_PTR_TO_MAP: 2205 case PTR_TO_SOCKET: 2206 case PTR_TO_SOCKET_OR_NULL: 2207 case PTR_TO_SOCK_COMMON: 2208 case PTR_TO_SOCK_COMMON_OR_NULL: 2209 case PTR_TO_TCP_SOCK: 2210 case PTR_TO_TCP_SOCK_OR_NULL: 2211 case PTR_TO_XDP_SOCK: 2212 case PTR_TO_BTF_ID: 2213 case PTR_TO_BTF_ID_OR_NULL: 2214 case PTR_TO_RDONLY_BUF: 2215 case PTR_TO_RDONLY_BUF_OR_NULL: 2216 case PTR_TO_RDWR_BUF: 2217 case PTR_TO_RDWR_BUF_OR_NULL: 2218 case PTR_TO_PERCPU_BTF_ID: 2219 return true; 2220 default: 2221 return false; 2222 } 2223 } 2224 2225 /* Does this register contain a constant zero? */ 2226 static bool register_is_null(struct bpf_reg_state *reg) 2227 { 2228 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2229 } 2230 2231 static bool register_is_const(struct bpf_reg_state *reg) 2232 { 2233 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2234 } 2235 2236 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2237 { 2238 return tnum_is_unknown(reg->var_off) && 2239 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2240 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2241 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2242 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2243 } 2244 2245 static bool register_is_bounded(struct bpf_reg_state *reg) 2246 { 2247 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2248 } 2249 2250 static bool __is_pointer_value(bool allow_ptr_leaks, 2251 const struct bpf_reg_state *reg) 2252 { 2253 if (allow_ptr_leaks) 2254 return false; 2255 2256 return reg->type != SCALAR_VALUE; 2257 } 2258 2259 static void save_register_state(struct bpf_func_state *state, 2260 int spi, struct bpf_reg_state *reg) 2261 { 2262 int i; 2263 2264 state->stack[spi].spilled_ptr = *reg; 2265 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2266 2267 for (i = 0; i < BPF_REG_SIZE; i++) 2268 state->stack[spi].slot_type[i] = STACK_SPILL; 2269 } 2270 2271 /* check_stack_read/write functions track spill/fill of registers, 2272 * stack boundary and alignment are checked in check_mem_access() 2273 */ 2274 static int check_stack_write(struct bpf_verifier_env *env, 2275 struct bpf_func_state *state, /* func where register points to */ 2276 int off, int size, int value_regno, int insn_idx) 2277 { 2278 struct bpf_func_state *cur; /* state of the current function */ 2279 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2280 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2281 struct bpf_reg_state *reg = NULL; 2282 2283 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 2284 state->acquired_refs, true); 2285 if (err) 2286 return err; 2287 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2288 * so it's aligned access and [off, off + size) are within stack limits 2289 */ 2290 if (!env->allow_ptr_leaks && 2291 state->stack[spi].slot_type[0] == STACK_SPILL && 2292 size != BPF_REG_SIZE) { 2293 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2294 return -EACCES; 2295 } 2296 2297 cur = env->cur_state->frame[env->cur_state->curframe]; 2298 if (value_regno >= 0) 2299 reg = &cur->regs[value_regno]; 2300 2301 if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) && 2302 !register_is_null(reg) && env->bpf_capable) { 2303 if (dst_reg != BPF_REG_FP) { 2304 /* The backtracking logic can only recognize explicit 2305 * stack slot address like [fp - 8]. Other spill of 2306 * scalar via different register has to be conervative. 2307 * Backtrack from here and mark all registers as precise 2308 * that contributed into 'reg' being a constant. 2309 */ 2310 err = mark_chain_precision(env, value_regno); 2311 if (err) 2312 return err; 2313 } 2314 save_register_state(state, spi, reg); 2315 } else if (reg && is_spillable_regtype(reg->type)) { 2316 /* register containing pointer is being spilled into stack */ 2317 if (size != BPF_REG_SIZE) { 2318 verbose_linfo(env, insn_idx, "; "); 2319 verbose(env, "invalid size of register spill\n"); 2320 return -EACCES; 2321 } 2322 2323 if (state != cur && reg->type == PTR_TO_STACK) { 2324 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2325 return -EINVAL; 2326 } 2327 2328 if (!env->bypass_spec_v4) { 2329 bool sanitize = false; 2330 2331 if (state->stack[spi].slot_type[0] == STACK_SPILL && 2332 register_is_const(&state->stack[spi].spilled_ptr)) 2333 sanitize = true; 2334 for (i = 0; i < BPF_REG_SIZE; i++) 2335 if (state->stack[spi].slot_type[i] == STACK_MISC) { 2336 sanitize = true; 2337 break; 2338 } 2339 if (sanitize) { 2340 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 2341 int soff = (-spi - 1) * BPF_REG_SIZE; 2342 2343 /* detected reuse of integer stack slot with a pointer 2344 * which means either llvm is reusing stack slot or 2345 * an attacker is trying to exploit CVE-2018-3639 2346 * (speculative store bypass) 2347 * Have to sanitize that slot with preemptive 2348 * store of zero. 2349 */ 2350 if (*poff && *poff != soff) { 2351 /* disallow programs where single insn stores 2352 * into two different stack slots, since verifier 2353 * cannot sanitize them 2354 */ 2355 verbose(env, 2356 "insn %d cannot access two stack slots fp%d and fp%d", 2357 insn_idx, *poff, soff); 2358 return -EINVAL; 2359 } 2360 *poff = soff; 2361 } 2362 } 2363 save_register_state(state, spi, reg); 2364 } else { 2365 u8 type = STACK_MISC; 2366 2367 /* regular write of data into stack destroys any spilled ptr */ 2368 state->stack[spi].spilled_ptr.type = NOT_INIT; 2369 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2370 if (state->stack[spi].slot_type[0] == STACK_SPILL) 2371 for (i = 0; i < BPF_REG_SIZE; i++) 2372 state->stack[spi].slot_type[i] = STACK_MISC; 2373 2374 /* only mark the slot as written if all 8 bytes were written 2375 * otherwise read propagation may incorrectly stop too soon 2376 * when stack slots are partially written. 2377 * This heuristic means that read propagation will be 2378 * conservative, since it will add reg_live_read marks 2379 * to stack slots all the way to first state when programs 2380 * writes+reads less than 8 bytes 2381 */ 2382 if (size == BPF_REG_SIZE) 2383 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2384 2385 /* when we zero initialize stack slots mark them as such */ 2386 if (reg && register_is_null(reg)) { 2387 /* backtracking doesn't work for STACK_ZERO yet. */ 2388 err = mark_chain_precision(env, value_regno); 2389 if (err) 2390 return err; 2391 type = STACK_ZERO; 2392 } 2393 2394 /* Mark slots affected by this stack write. */ 2395 for (i = 0; i < size; i++) 2396 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2397 type; 2398 } 2399 return 0; 2400 } 2401 2402 static int check_stack_read(struct bpf_verifier_env *env, 2403 struct bpf_func_state *reg_state /* func where register points to */, 2404 int off, int size, int value_regno) 2405 { 2406 struct bpf_verifier_state *vstate = env->cur_state; 2407 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2408 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2409 struct bpf_reg_state *reg; 2410 u8 *stype; 2411 2412 if (reg_state->allocated_stack <= slot) { 2413 verbose(env, "invalid read from stack off %d+0 size %d\n", 2414 off, size); 2415 return -EACCES; 2416 } 2417 stype = reg_state->stack[spi].slot_type; 2418 reg = ®_state->stack[spi].spilled_ptr; 2419 2420 if (stype[0] == STACK_SPILL) { 2421 if (size != BPF_REG_SIZE) { 2422 if (reg->type != SCALAR_VALUE) { 2423 verbose_linfo(env, env->insn_idx, "; "); 2424 verbose(env, "invalid size of register fill\n"); 2425 return -EACCES; 2426 } 2427 if (value_regno >= 0) { 2428 mark_reg_unknown(env, state->regs, value_regno); 2429 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2430 } 2431 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2432 return 0; 2433 } 2434 for (i = 1; i < BPF_REG_SIZE; i++) { 2435 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2436 verbose(env, "corrupted spill memory\n"); 2437 return -EACCES; 2438 } 2439 } 2440 2441 if (value_regno >= 0) { 2442 /* restore register state from stack */ 2443 state->regs[value_regno] = *reg; 2444 /* mark reg as written since spilled pointer state likely 2445 * has its liveness marks cleared by is_state_visited() 2446 * which resets stack/reg liveness for state transitions 2447 */ 2448 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2449 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 2450 /* If value_regno==-1, the caller is asking us whether 2451 * it is acceptable to use this value as a SCALAR_VALUE 2452 * (e.g. for XADD). 2453 * We must not allow unprivileged callers to do that 2454 * with spilled pointers. 2455 */ 2456 verbose(env, "leaking pointer from stack off %d\n", 2457 off); 2458 return -EACCES; 2459 } 2460 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2461 } else { 2462 int zeros = 0; 2463 2464 for (i = 0; i < size; i++) { 2465 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 2466 continue; 2467 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 2468 zeros++; 2469 continue; 2470 } 2471 verbose(env, "invalid read from stack off %d+%d size %d\n", 2472 off, i, size); 2473 return -EACCES; 2474 } 2475 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2476 if (value_regno >= 0) { 2477 if (zeros == size) { 2478 /* any size read into register is zero extended, 2479 * so the whole register == const_zero 2480 */ 2481 __mark_reg_const_zero(&state->regs[value_regno]); 2482 /* backtracking doesn't support STACK_ZERO yet, 2483 * so mark it precise here, so that later 2484 * backtracking can stop here. 2485 * Backtracking may not need this if this register 2486 * doesn't participate in pointer adjustment. 2487 * Forward propagation of precise flag is not 2488 * necessary either. This mark is only to stop 2489 * backtracking. Any register that contributed 2490 * to const 0 was marked precise before spill. 2491 */ 2492 state->regs[value_regno].precise = true; 2493 } else { 2494 /* have read misc data from the stack */ 2495 mark_reg_unknown(env, state->regs, value_regno); 2496 } 2497 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2498 } 2499 } 2500 return 0; 2501 } 2502 2503 static int check_stack_access(struct bpf_verifier_env *env, 2504 const struct bpf_reg_state *reg, 2505 int off, int size) 2506 { 2507 /* Stack accesses must be at a fixed offset, so that we 2508 * can determine what type of data were returned. See 2509 * check_stack_read(). 2510 */ 2511 if (!tnum_is_const(reg->var_off)) { 2512 char tn_buf[48]; 2513 2514 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2515 verbose(env, "variable stack access var_off=%s off=%d size=%d\n", 2516 tn_buf, off, size); 2517 return -EACCES; 2518 } 2519 2520 if (off >= 0 || off < -MAX_BPF_STACK) { 2521 verbose(env, "invalid stack off=%d size=%d\n", off, size); 2522 return -EACCES; 2523 } 2524 2525 return 0; 2526 } 2527 2528 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 2529 int off, int size, enum bpf_access_type type) 2530 { 2531 struct bpf_reg_state *regs = cur_regs(env); 2532 struct bpf_map *map = regs[regno].map_ptr; 2533 u32 cap = bpf_map_flags_to_cap(map); 2534 2535 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 2536 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 2537 map->value_size, off, size); 2538 return -EACCES; 2539 } 2540 2541 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 2542 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 2543 map->value_size, off, size); 2544 return -EACCES; 2545 } 2546 2547 return 0; 2548 } 2549 2550 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 2551 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 2552 int off, int size, u32 mem_size, 2553 bool zero_size_allowed) 2554 { 2555 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 2556 struct bpf_reg_state *reg; 2557 2558 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 2559 return 0; 2560 2561 reg = &cur_regs(env)[regno]; 2562 switch (reg->type) { 2563 case PTR_TO_MAP_VALUE: 2564 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 2565 mem_size, off, size); 2566 break; 2567 case PTR_TO_PACKET: 2568 case PTR_TO_PACKET_META: 2569 case PTR_TO_PACKET_END: 2570 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 2571 off, size, regno, reg->id, off, mem_size); 2572 break; 2573 case PTR_TO_MEM: 2574 default: 2575 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 2576 mem_size, off, size); 2577 } 2578 2579 return -EACCES; 2580 } 2581 2582 /* check read/write into a memory region with possible variable offset */ 2583 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 2584 int off, int size, u32 mem_size, 2585 bool zero_size_allowed) 2586 { 2587 struct bpf_verifier_state *vstate = env->cur_state; 2588 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2589 struct bpf_reg_state *reg = &state->regs[regno]; 2590 int err; 2591 2592 /* We may have adjusted the register pointing to memory region, so we 2593 * need to try adding each of min_value and max_value to off 2594 * to make sure our theoretical access will be safe. 2595 */ 2596 if (env->log.level & BPF_LOG_LEVEL) 2597 print_verifier_state(env, state); 2598 2599 /* The minimum value is only important with signed 2600 * comparisons where we can't assume the floor of a 2601 * value is 0. If we are using signed variables for our 2602 * index'es we need to make sure that whatever we use 2603 * will have a set floor within our range. 2604 */ 2605 if (reg->smin_value < 0 && 2606 (reg->smin_value == S64_MIN || 2607 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 2608 reg->smin_value + off < 0)) { 2609 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2610 regno); 2611 return -EACCES; 2612 } 2613 err = __check_mem_access(env, regno, reg->smin_value + off, size, 2614 mem_size, zero_size_allowed); 2615 if (err) { 2616 verbose(env, "R%d min value is outside of the allowed memory range\n", 2617 regno); 2618 return err; 2619 } 2620 2621 /* If we haven't set a max value then we need to bail since we can't be 2622 * sure we won't do bad things. 2623 * If reg->umax_value + off could overflow, treat that as unbounded too. 2624 */ 2625 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 2626 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 2627 regno); 2628 return -EACCES; 2629 } 2630 err = __check_mem_access(env, regno, reg->umax_value + off, size, 2631 mem_size, zero_size_allowed); 2632 if (err) { 2633 verbose(env, "R%d max value is outside of the allowed memory range\n", 2634 regno); 2635 return err; 2636 } 2637 2638 return 0; 2639 } 2640 2641 /* check read/write into a map element with possible variable offset */ 2642 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 2643 int off, int size, bool zero_size_allowed) 2644 { 2645 struct bpf_verifier_state *vstate = env->cur_state; 2646 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2647 struct bpf_reg_state *reg = &state->regs[regno]; 2648 struct bpf_map *map = reg->map_ptr; 2649 int err; 2650 2651 err = check_mem_region_access(env, regno, off, size, map->value_size, 2652 zero_size_allowed); 2653 if (err) 2654 return err; 2655 2656 if (map_value_has_spin_lock(map)) { 2657 u32 lock = map->spin_lock_off; 2658 2659 /* if any part of struct bpf_spin_lock can be touched by 2660 * load/store reject this program. 2661 * To check that [x1, x2) overlaps with [y1, y2) 2662 * it is sufficient to check x1 < y2 && y1 < x2. 2663 */ 2664 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 2665 lock < reg->umax_value + off + size) { 2666 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 2667 return -EACCES; 2668 } 2669 } 2670 return err; 2671 } 2672 2673 #define MAX_PACKET_OFF 0xffff 2674 2675 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog) 2676 { 2677 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type; 2678 } 2679 2680 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 2681 const struct bpf_call_arg_meta *meta, 2682 enum bpf_access_type t) 2683 { 2684 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 2685 2686 switch (prog_type) { 2687 /* Program types only with direct read access go here! */ 2688 case BPF_PROG_TYPE_LWT_IN: 2689 case BPF_PROG_TYPE_LWT_OUT: 2690 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 2691 case BPF_PROG_TYPE_SK_REUSEPORT: 2692 case BPF_PROG_TYPE_FLOW_DISSECTOR: 2693 case BPF_PROG_TYPE_CGROUP_SKB: 2694 if (t == BPF_WRITE) 2695 return false; 2696 fallthrough; 2697 2698 /* Program types with direct read + write access go here! */ 2699 case BPF_PROG_TYPE_SCHED_CLS: 2700 case BPF_PROG_TYPE_SCHED_ACT: 2701 case BPF_PROG_TYPE_XDP: 2702 case BPF_PROG_TYPE_LWT_XMIT: 2703 case BPF_PROG_TYPE_SK_SKB: 2704 case BPF_PROG_TYPE_SK_MSG: 2705 if (meta) 2706 return meta->pkt_access; 2707 2708 env->seen_direct_write = true; 2709 return true; 2710 2711 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 2712 if (t == BPF_WRITE) 2713 env->seen_direct_write = true; 2714 2715 return true; 2716 2717 default: 2718 return false; 2719 } 2720 } 2721 2722 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 2723 int size, bool zero_size_allowed) 2724 { 2725 struct bpf_reg_state *regs = cur_regs(env); 2726 struct bpf_reg_state *reg = ®s[regno]; 2727 int err; 2728 2729 /* We may have added a variable offset to the packet pointer; but any 2730 * reg->range we have comes after that. We are only checking the fixed 2731 * offset. 2732 */ 2733 2734 /* We don't allow negative numbers, because we aren't tracking enough 2735 * detail to prove they're safe. 2736 */ 2737 if (reg->smin_value < 0) { 2738 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2739 regno); 2740 return -EACCES; 2741 } 2742 err = __check_mem_access(env, regno, off, size, reg->range, 2743 zero_size_allowed); 2744 if (err) { 2745 verbose(env, "R%d offset is outside of the packet\n", regno); 2746 return err; 2747 } 2748 2749 /* __check_mem_access has made sure "off + size - 1" is within u16. 2750 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 2751 * otherwise find_good_pkt_pointers would have refused to set range info 2752 * that __check_mem_access would have rejected this pkt access. 2753 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 2754 */ 2755 env->prog->aux->max_pkt_offset = 2756 max_t(u32, env->prog->aux->max_pkt_offset, 2757 off + reg->umax_value + size - 1); 2758 2759 return err; 2760 } 2761 2762 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 2763 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 2764 enum bpf_access_type t, enum bpf_reg_type *reg_type, 2765 u32 *btf_id) 2766 { 2767 struct bpf_insn_access_aux info = { 2768 .reg_type = *reg_type, 2769 .log = &env->log, 2770 }; 2771 2772 if (env->ops->is_valid_access && 2773 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 2774 /* A non zero info.ctx_field_size indicates that this field is a 2775 * candidate for later verifier transformation to load the whole 2776 * field and then apply a mask when accessed with a narrower 2777 * access than actual ctx access size. A zero info.ctx_field_size 2778 * will only allow for whole field access and rejects any other 2779 * type of narrower access. 2780 */ 2781 *reg_type = info.reg_type; 2782 2783 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) 2784 *btf_id = info.btf_id; 2785 else 2786 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 2787 /* remember the offset of last byte accessed in ctx */ 2788 if (env->prog->aux->max_ctx_offset < off + size) 2789 env->prog->aux->max_ctx_offset = off + size; 2790 return 0; 2791 } 2792 2793 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 2794 return -EACCES; 2795 } 2796 2797 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 2798 int size) 2799 { 2800 if (size < 0 || off < 0 || 2801 (u64)off + size > sizeof(struct bpf_flow_keys)) { 2802 verbose(env, "invalid access to flow keys off=%d size=%d\n", 2803 off, size); 2804 return -EACCES; 2805 } 2806 return 0; 2807 } 2808 2809 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 2810 u32 regno, int off, int size, 2811 enum bpf_access_type t) 2812 { 2813 struct bpf_reg_state *regs = cur_regs(env); 2814 struct bpf_reg_state *reg = ®s[regno]; 2815 struct bpf_insn_access_aux info = {}; 2816 bool valid; 2817 2818 if (reg->smin_value < 0) { 2819 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2820 regno); 2821 return -EACCES; 2822 } 2823 2824 switch (reg->type) { 2825 case PTR_TO_SOCK_COMMON: 2826 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 2827 break; 2828 case PTR_TO_SOCKET: 2829 valid = bpf_sock_is_valid_access(off, size, t, &info); 2830 break; 2831 case PTR_TO_TCP_SOCK: 2832 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 2833 break; 2834 case PTR_TO_XDP_SOCK: 2835 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 2836 break; 2837 default: 2838 valid = false; 2839 } 2840 2841 2842 if (valid) { 2843 env->insn_aux_data[insn_idx].ctx_field_size = 2844 info.ctx_field_size; 2845 return 0; 2846 } 2847 2848 verbose(env, "R%d invalid %s access off=%d size=%d\n", 2849 regno, reg_type_str[reg->type], off, size); 2850 2851 return -EACCES; 2852 } 2853 2854 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2855 { 2856 return cur_regs(env) + regno; 2857 } 2858 2859 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 2860 { 2861 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 2862 } 2863 2864 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 2865 { 2866 const struct bpf_reg_state *reg = reg_state(env, regno); 2867 2868 return reg->type == PTR_TO_CTX; 2869 } 2870 2871 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 2872 { 2873 const struct bpf_reg_state *reg = reg_state(env, regno); 2874 2875 return type_is_sk_pointer(reg->type); 2876 } 2877 2878 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 2879 { 2880 const struct bpf_reg_state *reg = reg_state(env, regno); 2881 2882 return type_is_pkt_pointer(reg->type); 2883 } 2884 2885 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 2886 { 2887 const struct bpf_reg_state *reg = reg_state(env, regno); 2888 2889 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 2890 return reg->type == PTR_TO_FLOW_KEYS; 2891 } 2892 2893 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 2894 const struct bpf_reg_state *reg, 2895 int off, int size, bool strict) 2896 { 2897 struct tnum reg_off; 2898 int ip_align; 2899 2900 /* Byte size accesses are always allowed. */ 2901 if (!strict || size == 1) 2902 return 0; 2903 2904 /* For platforms that do not have a Kconfig enabling 2905 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 2906 * NET_IP_ALIGN is universally set to '2'. And on platforms 2907 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 2908 * to this code only in strict mode where we want to emulate 2909 * the NET_IP_ALIGN==2 checking. Therefore use an 2910 * unconditional IP align value of '2'. 2911 */ 2912 ip_align = 2; 2913 2914 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 2915 if (!tnum_is_aligned(reg_off, size)) { 2916 char tn_buf[48]; 2917 2918 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2919 verbose(env, 2920 "misaligned packet access off %d+%s+%d+%d size %d\n", 2921 ip_align, tn_buf, reg->off, off, size); 2922 return -EACCES; 2923 } 2924 2925 return 0; 2926 } 2927 2928 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 2929 const struct bpf_reg_state *reg, 2930 const char *pointer_desc, 2931 int off, int size, bool strict) 2932 { 2933 struct tnum reg_off; 2934 2935 /* Byte size accesses are always allowed. */ 2936 if (!strict || size == 1) 2937 return 0; 2938 2939 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 2940 if (!tnum_is_aligned(reg_off, size)) { 2941 char tn_buf[48]; 2942 2943 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2944 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 2945 pointer_desc, tn_buf, reg->off, off, size); 2946 return -EACCES; 2947 } 2948 2949 return 0; 2950 } 2951 2952 static int check_ptr_alignment(struct bpf_verifier_env *env, 2953 const struct bpf_reg_state *reg, int off, 2954 int size, bool strict_alignment_once) 2955 { 2956 bool strict = env->strict_alignment || strict_alignment_once; 2957 const char *pointer_desc = ""; 2958 2959 switch (reg->type) { 2960 case PTR_TO_PACKET: 2961 case PTR_TO_PACKET_META: 2962 /* Special case, because of NET_IP_ALIGN. Given metadata sits 2963 * right in front, treat it the very same way. 2964 */ 2965 return check_pkt_ptr_alignment(env, reg, off, size, strict); 2966 case PTR_TO_FLOW_KEYS: 2967 pointer_desc = "flow keys "; 2968 break; 2969 case PTR_TO_MAP_VALUE: 2970 pointer_desc = "value "; 2971 break; 2972 case PTR_TO_CTX: 2973 pointer_desc = "context "; 2974 break; 2975 case PTR_TO_STACK: 2976 pointer_desc = "stack "; 2977 /* The stack spill tracking logic in check_stack_write() 2978 * and check_stack_read() relies on stack accesses being 2979 * aligned. 2980 */ 2981 strict = true; 2982 break; 2983 case PTR_TO_SOCKET: 2984 pointer_desc = "sock "; 2985 break; 2986 case PTR_TO_SOCK_COMMON: 2987 pointer_desc = "sock_common "; 2988 break; 2989 case PTR_TO_TCP_SOCK: 2990 pointer_desc = "tcp_sock "; 2991 break; 2992 case PTR_TO_XDP_SOCK: 2993 pointer_desc = "xdp_sock "; 2994 break; 2995 default: 2996 break; 2997 } 2998 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 2999 strict); 3000 } 3001 3002 static int update_stack_depth(struct bpf_verifier_env *env, 3003 const struct bpf_func_state *func, 3004 int off) 3005 { 3006 u16 stack = env->subprog_info[func->subprogno].stack_depth; 3007 3008 if (stack >= -off) 3009 return 0; 3010 3011 /* update known max for given subprogram */ 3012 env->subprog_info[func->subprogno].stack_depth = -off; 3013 return 0; 3014 } 3015 3016 /* starting from main bpf function walk all instructions of the function 3017 * and recursively walk all callees that given function can call. 3018 * Ignore jump and exit insns. 3019 * Since recursion is prevented by check_cfg() this algorithm 3020 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 3021 */ 3022 static int check_max_stack_depth(struct bpf_verifier_env *env) 3023 { 3024 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 3025 struct bpf_subprog_info *subprog = env->subprog_info; 3026 struct bpf_insn *insn = env->prog->insnsi; 3027 bool tail_call_reachable = false; 3028 int ret_insn[MAX_CALL_FRAMES]; 3029 int ret_prog[MAX_CALL_FRAMES]; 3030 int j; 3031 3032 process_func: 3033 /* protect against potential stack overflow that might happen when 3034 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 3035 * depth for such case down to 256 so that the worst case scenario 3036 * would result in 8k stack size (32 which is tailcall limit * 256 = 3037 * 8k). 3038 * 3039 * To get the idea what might happen, see an example: 3040 * func1 -> sub rsp, 128 3041 * subfunc1 -> sub rsp, 256 3042 * tailcall1 -> add rsp, 256 3043 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 3044 * subfunc2 -> sub rsp, 64 3045 * subfunc22 -> sub rsp, 128 3046 * tailcall2 -> add rsp, 128 3047 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 3048 * 3049 * tailcall will unwind the current stack frame but it will not get rid 3050 * of caller's stack as shown on the example above. 3051 */ 3052 if (idx && subprog[idx].has_tail_call && depth >= 256) { 3053 verbose(env, 3054 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 3055 depth); 3056 return -EACCES; 3057 } 3058 /* round up to 32-bytes, since this is granularity 3059 * of interpreter stack size 3060 */ 3061 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3062 if (depth > MAX_BPF_STACK) { 3063 verbose(env, "combined stack size of %d calls is %d. Too large\n", 3064 frame + 1, depth); 3065 return -EACCES; 3066 } 3067 continue_func: 3068 subprog_end = subprog[idx + 1].start; 3069 for (; i < subprog_end; i++) { 3070 if (insn[i].code != (BPF_JMP | BPF_CALL)) 3071 continue; 3072 if (insn[i].src_reg != BPF_PSEUDO_CALL) 3073 continue; 3074 /* remember insn and function to return to */ 3075 ret_insn[frame] = i + 1; 3076 ret_prog[frame] = idx; 3077 3078 /* find the callee */ 3079 i = i + insn[i].imm + 1; 3080 idx = find_subprog(env, i); 3081 if (idx < 0) { 3082 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3083 i); 3084 return -EFAULT; 3085 } 3086 3087 if (subprog[idx].has_tail_call) 3088 tail_call_reachable = true; 3089 3090 frame++; 3091 if (frame >= MAX_CALL_FRAMES) { 3092 verbose(env, "the call stack of %d frames is too deep !\n", 3093 frame); 3094 return -E2BIG; 3095 } 3096 goto process_func; 3097 } 3098 /* if tail call got detected across bpf2bpf calls then mark each of the 3099 * currently present subprog frames as tail call reachable subprogs; 3100 * this info will be utilized by JIT so that we will be preserving the 3101 * tail call counter throughout bpf2bpf calls combined with tailcalls 3102 */ 3103 if (tail_call_reachable) 3104 for (j = 0; j < frame; j++) 3105 subprog[ret_prog[j]].tail_call_reachable = true; 3106 3107 /* end of for() loop means the last insn of the 'subprog' 3108 * was reached. Doesn't matter whether it was JA or EXIT 3109 */ 3110 if (frame == 0) 3111 return 0; 3112 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3113 frame--; 3114 i = ret_insn[frame]; 3115 idx = ret_prog[frame]; 3116 goto continue_func; 3117 } 3118 3119 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 3120 static int get_callee_stack_depth(struct bpf_verifier_env *env, 3121 const struct bpf_insn *insn, int idx) 3122 { 3123 int start = idx + insn->imm + 1, subprog; 3124 3125 subprog = find_subprog(env, start); 3126 if (subprog < 0) { 3127 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3128 start); 3129 return -EFAULT; 3130 } 3131 return env->subprog_info[subprog].stack_depth; 3132 } 3133 #endif 3134 3135 int check_ctx_reg(struct bpf_verifier_env *env, 3136 const struct bpf_reg_state *reg, int regno) 3137 { 3138 /* Access to ctx or passing it to a helper is only allowed in 3139 * its original, unmodified form. 3140 */ 3141 3142 if (reg->off) { 3143 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 3144 regno, reg->off); 3145 return -EACCES; 3146 } 3147 3148 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3149 char tn_buf[48]; 3150 3151 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3152 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 3153 return -EACCES; 3154 } 3155 3156 return 0; 3157 } 3158 3159 static int __check_buffer_access(struct bpf_verifier_env *env, 3160 const char *buf_info, 3161 const struct bpf_reg_state *reg, 3162 int regno, int off, int size) 3163 { 3164 if (off < 0) { 3165 verbose(env, 3166 "R%d invalid %s buffer access: off=%d, size=%d\n", 3167 regno, buf_info, off, size); 3168 return -EACCES; 3169 } 3170 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3171 char tn_buf[48]; 3172 3173 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3174 verbose(env, 3175 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 3176 regno, off, tn_buf); 3177 return -EACCES; 3178 } 3179 3180 return 0; 3181 } 3182 3183 static int check_tp_buffer_access(struct bpf_verifier_env *env, 3184 const struct bpf_reg_state *reg, 3185 int regno, int off, int size) 3186 { 3187 int err; 3188 3189 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 3190 if (err) 3191 return err; 3192 3193 if (off + size > env->prog->aux->max_tp_access) 3194 env->prog->aux->max_tp_access = off + size; 3195 3196 return 0; 3197 } 3198 3199 static int check_buffer_access(struct bpf_verifier_env *env, 3200 const struct bpf_reg_state *reg, 3201 int regno, int off, int size, 3202 bool zero_size_allowed, 3203 const char *buf_info, 3204 u32 *max_access) 3205 { 3206 int err; 3207 3208 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 3209 if (err) 3210 return err; 3211 3212 if (off + size > *max_access) 3213 *max_access = off + size; 3214 3215 return 0; 3216 } 3217 3218 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 3219 static void zext_32_to_64(struct bpf_reg_state *reg) 3220 { 3221 reg->var_off = tnum_subreg(reg->var_off); 3222 __reg_assign_32_into_64(reg); 3223 } 3224 3225 /* truncate register to smaller size (in bytes) 3226 * must be called with size < BPF_REG_SIZE 3227 */ 3228 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 3229 { 3230 u64 mask; 3231 3232 /* clear high bits in bit representation */ 3233 reg->var_off = tnum_cast(reg->var_off, size); 3234 3235 /* fix arithmetic bounds */ 3236 mask = ((u64)1 << (size * 8)) - 1; 3237 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 3238 reg->umin_value &= mask; 3239 reg->umax_value &= mask; 3240 } else { 3241 reg->umin_value = 0; 3242 reg->umax_value = mask; 3243 } 3244 reg->smin_value = reg->umin_value; 3245 reg->smax_value = reg->umax_value; 3246 3247 /* If size is smaller than 32bit register the 32bit register 3248 * values are also truncated so we push 64-bit bounds into 3249 * 32-bit bounds. Above were truncated < 32-bits already. 3250 */ 3251 if (size >= 4) 3252 return; 3253 __reg_combine_64_into_32(reg); 3254 } 3255 3256 static bool bpf_map_is_rdonly(const struct bpf_map *map) 3257 { 3258 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 3259 } 3260 3261 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 3262 { 3263 void *ptr; 3264 u64 addr; 3265 int err; 3266 3267 err = map->ops->map_direct_value_addr(map, &addr, off); 3268 if (err) 3269 return err; 3270 ptr = (void *)(long)addr + off; 3271 3272 switch (size) { 3273 case sizeof(u8): 3274 *val = (u64)*(u8 *)ptr; 3275 break; 3276 case sizeof(u16): 3277 *val = (u64)*(u16 *)ptr; 3278 break; 3279 case sizeof(u32): 3280 *val = (u64)*(u32 *)ptr; 3281 break; 3282 case sizeof(u64): 3283 *val = *(u64 *)ptr; 3284 break; 3285 default: 3286 return -EINVAL; 3287 } 3288 return 0; 3289 } 3290 3291 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 3292 struct bpf_reg_state *regs, 3293 int regno, int off, int size, 3294 enum bpf_access_type atype, 3295 int value_regno) 3296 { 3297 struct bpf_reg_state *reg = regs + regno; 3298 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id); 3299 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off); 3300 u32 btf_id; 3301 int ret; 3302 3303 if (off < 0) { 3304 verbose(env, 3305 "R%d is ptr_%s invalid negative access: off=%d\n", 3306 regno, tname, off); 3307 return -EACCES; 3308 } 3309 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3310 char tn_buf[48]; 3311 3312 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3313 verbose(env, 3314 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 3315 regno, tname, off, tn_buf); 3316 return -EACCES; 3317 } 3318 3319 if (env->ops->btf_struct_access) { 3320 ret = env->ops->btf_struct_access(&env->log, t, off, size, 3321 atype, &btf_id); 3322 } else { 3323 if (atype != BPF_READ) { 3324 verbose(env, "only read is supported\n"); 3325 return -EACCES; 3326 } 3327 3328 ret = btf_struct_access(&env->log, t, off, size, atype, 3329 &btf_id); 3330 } 3331 3332 if (ret < 0) 3333 return ret; 3334 3335 if (atype == BPF_READ && value_regno >= 0) 3336 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id); 3337 3338 return 0; 3339 } 3340 3341 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 3342 struct bpf_reg_state *regs, 3343 int regno, int off, int size, 3344 enum bpf_access_type atype, 3345 int value_regno) 3346 { 3347 struct bpf_reg_state *reg = regs + regno; 3348 struct bpf_map *map = reg->map_ptr; 3349 const struct btf_type *t; 3350 const char *tname; 3351 u32 btf_id; 3352 int ret; 3353 3354 if (!btf_vmlinux) { 3355 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 3356 return -ENOTSUPP; 3357 } 3358 3359 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 3360 verbose(env, "map_ptr access not supported for map type %d\n", 3361 map->map_type); 3362 return -ENOTSUPP; 3363 } 3364 3365 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 3366 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 3367 3368 if (!env->allow_ptr_to_map_access) { 3369 verbose(env, 3370 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 3371 tname); 3372 return -EPERM; 3373 } 3374 3375 if (off < 0) { 3376 verbose(env, "R%d is %s invalid negative access: off=%d\n", 3377 regno, tname, off); 3378 return -EACCES; 3379 } 3380 3381 if (atype != BPF_READ) { 3382 verbose(env, "only read from %s is supported\n", tname); 3383 return -EACCES; 3384 } 3385 3386 ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id); 3387 if (ret < 0) 3388 return ret; 3389 3390 if (value_regno >= 0) 3391 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id); 3392 3393 return 0; 3394 } 3395 3396 3397 /* check whether memory at (regno + off) is accessible for t = (read | write) 3398 * if t==write, value_regno is a register which value is stored into memory 3399 * if t==read, value_regno is a register which will receive the value from memory 3400 * if t==write && value_regno==-1, some unknown value is stored into memory 3401 * if t==read && value_regno==-1, don't care what we read from memory 3402 */ 3403 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 3404 int off, int bpf_size, enum bpf_access_type t, 3405 int value_regno, bool strict_alignment_once) 3406 { 3407 struct bpf_reg_state *regs = cur_regs(env); 3408 struct bpf_reg_state *reg = regs + regno; 3409 struct bpf_func_state *state; 3410 int size, err = 0; 3411 3412 size = bpf_size_to_bytes(bpf_size); 3413 if (size < 0) 3414 return size; 3415 3416 /* alignment checks will add in reg->off themselves */ 3417 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 3418 if (err) 3419 return err; 3420 3421 /* for access checks, reg->off is just part of off */ 3422 off += reg->off; 3423 3424 if (reg->type == PTR_TO_MAP_VALUE) { 3425 if (t == BPF_WRITE && value_regno >= 0 && 3426 is_pointer_value(env, value_regno)) { 3427 verbose(env, "R%d leaks addr into map\n", value_regno); 3428 return -EACCES; 3429 } 3430 err = check_map_access_type(env, regno, off, size, t); 3431 if (err) 3432 return err; 3433 err = check_map_access(env, regno, off, size, false); 3434 if (!err && t == BPF_READ && value_regno >= 0) { 3435 struct bpf_map *map = reg->map_ptr; 3436 3437 /* if map is read-only, track its contents as scalars */ 3438 if (tnum_is_const(reg->var_off) && 3439 bpf_map_is_rdonly(map) && 3440 map->ops->map_direct_value_addr) { 3441 int map_off = off + reg->var_off.value; 3442 u64 val = 0; 3443 3444 err = bpf_map_direct_read(map, map_off, size, 3445 &val); 3446 if (err) 3447 return err; 3448 3449 regs[value_regno].type = SCALAR_VALUE; 3450 __mark_reg_known(®s[value_regno], val); 3451 } else { 3452 mark_reg_unknown(env, regs, value_regno); 3453 } 3454 } 3455 } else if (reg->type == PTR_TO_MEM) { 3456 if (t == BPF_WRITE && value_regno >= 0 && 3457 is_pointer_value(env, value_regno)) { 3458 verbose(env, "R%d leaks addr into mem\n", value_regno); 3459 return -EACCES; 3460 } 3461 err = check_mem_region_access(env, regno, off, size, 3462 reg->mem_size, false); 3463 if (!err && t == BPF_READ && value_regno >= 0) 3464 mark_reg_unknown(env, regs, value_regno); 3465 } else if (reg->type == PTR_TO_CTX) { 3466 enum bpf_reg_type reg_type = SCALAR_VALUE; 3467 u32 btf_id = 0; 3468 3469 if (t == BPF_WRITE && value_regno >= 0 && 3470 is_pointer_value(env, value_regno)) { 3471 verbose(env, "R%d leaks addr into ctx\n", value_regno); 3472 return -EACCES; 3473 } 3474 3475 err = check_ctx_reg(env, reg, regno); 3476 if (err < 0) 3477 return err; 3478 3479 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf_id); 3480 if (err) 3481 verbose_linfo(env, insn_idx, "; "); 3482 if (!err && t == BPF_READ && value_regno >= 0) { 3483 /* ctx access returns either a scalar, or a 3484 * PTR_TO_PACKET[_META,_END]. In the latter 3485 * case, we know the offset is zero. 3486 */ 3487 if (reg_type == SCALAR_VALUE) { 3488 mark_reg_unknown(env, regs, value_regno); 3489 } else { 3490 mark_reg_known_zero(env, regs, 3491 value_regno); 3492 if (reg_type_may_be_null(reg_type)) 3493 regs[value_regno].id = ++env->id_gen; 3494 /* A load of ctx field could have different 3495 * actual load size with the one encoded in the 3496 * insn. When the dst is PTR, it is for sure not 3497 * a sub-register. 3498 */ 3499 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 3500 if (reg_type == PTR_TO_BTF_ID || 3501 reg_type == PTR_TO_BTF_ID_OR_NULL) 3502 regs[value_regno].btf_id = btf_id; 3503 } 3504 regs[value_regno].type = reg_type; 3505 } 3506 3507 } else if (reg->type == PTR_TO_STACK) { 3508 off += reg->var_off.value; 3509 err = check_stack_access(env, reg, off, size); 3510 if (err) 3511 return err; 3512 3513 state = func(env, reg); 3514 err = update_stack_depth(env, state, off); 3515 if (err) 3516 return err; 3517 3518 if (t == BPF_WRITE) 3519 err = check_stack_write(env, state, off, size, 3520 value_regno, insn_idx); 3521 else 3522 err = check_stack_read(env, state, off, size, 3523 value_regno); 3524 } else if (reg_is_pkt_pointer(reg)) { 3525 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 3526 verbose(env, "cannot write into packet\n"); 3527 return -EACCES; 3528 } 3529 if (t == BPF_WRITE && value_regno >= 0 && 3530 is_pointer_value(env, value_regno)) { 3531 verbose(env, "R%d leaks addr into packet\n", 3532 value_regno); 3533 return -EACCES; 3534 } 3535 err = check_packet_access(env, regno, off, size, false); 3536 if (!err && t == BPF_READ && value_regno >= 0) 3537 mark_reg_unknown(env, regs, value_regno); 3538 } else if (reg->type == PTR_TO_FLOW_KEYS) { 3539 if (t == BPF_WRITE && value_regno >= 0 && 3540 is_pointer_value(env, value_regno)) { 3541 verbose(env, "R%d leaks addr into flow keys\n", 3542 value_regno); 3543 return -EACCES; 3544 } 3545 3546 err = check_flow_keys_access(env, off, size); 3547 if (!err && t == BPF_READ && value_regno >= 0) 3548 mark_reg_unknown(env, regs, value_regno); 3549 } else if (type_is_sk_pointer(reg->type)) { 3550 if (t == BPF_WRITE) { 3551 verbose(env, "R%d cannot write into %s\n", 3552 regno, reg_type_str[reg->type]); 3553 return -EACCES; 3554 } 3555 err = check_sock_access(env, insn_idx, regno, off, size, t); 3556 if (!err && value_regno >= 0) 3557 mark_reg_unknown(env, regs, value_regno); 3558 } else if (reg->type == PTR_TO_TP_BUFFER) { 3559 err = check_tp_buffer_access(env, reg, regno, off, size); 3560 if (!err && t == BPF_READ && value_regno >= 0) 3561 mark_reg_unknown(env, regs, value_regno); 3562 } else if (reg->type == PTR_TO_BTF_ID) { 3563 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 3564 value_regno); 3565 } else if (reg->type == CONST_PTR_TO_MAP) { 3566 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 3567 value_regno); 3568 } else if (reg->type == PTR_TO_RDONLY_BUF) { 3569 if (t == BPF_WRITE) { 3570 verbose(env, "R%d cannot write into %s\n", 3571 regno, reg_type_str[reg->type]); 3572 return -EACCES; 3573 } 3574 err = check_buffer_access(env, reg, regno, off, size, false, 3575 "rdonly", 3576 &env->prog->aux->max_rdonly_access); 3577 if (!err && value_regno >= 0) 3578 mark_reg_unknown(env, regs, value_regno); 3579 } else if (reg->type == PTR_TO_RDWR_BUF) { 3580 err = check_buffer_access(env, reg, regno, off, size, false, 3581 "rdwr", 3582 &env->prog->aux->max_rdwr_access); 3583 if (!err && t == BPF_READ && value_regno >= 0) 3584 mark_reg_unknown(env, regs, value_regno); 3585 } else { 3586 verbose(env, "R%d invalid mem access '%s'\n", regno, 3587 reg_type_str[reg->type]); 3588 return -EACCES; 3589 } 3590 3591 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 3592 regs[value_regno].type == SCALAR_VALUE) { 3593 /* b/h/w load zero-extends, mark upper bits as known 0 */ 3594 coerce_reg_to_size(®s[value_regno], size); 3595 } 3596 return err; 3597 } 3598 3599 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 3600 { 3601 int err; 3602 3603 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 3604 insn->imm != 0) { 3605 verbose(env, "BPF_XADD uses reserved fields\n"); 3606 return -EINVAL; 3607 } 3608 3609 /* check src1 operand */ 3610 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3611 if (err) 3612 return err; 3613 3614 /* check src2 operand */ 3615 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3616 if (err) 3617 return err; 3618 3619 if (is_pointer_value(env, insn->src_reg)) { 3620 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 3621 return -EACCES; 3622 } 3623 3624 if (is_ctx_reg(env, insn->dst_reg) || 3625 is_pkt_reg(env, insn->dst_reg) || 3626 is_flow_key_reg(env, insn->dst_reg) || 3627 is_sk_reg(env, insn->dst_reg)) { 3628 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 3629 insn->dst_reg, 3630 reg_type_str[reg_state(env, insn->dst_reg)->type]); 3631 return -EACCES; 3632 } 3633 3634 /* check whether atomic_add can read the memory */ 3635 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3636 BPF_SIZE(insn->code), BPF_READ, -1, true); 3637 if (err) 3638 return err; 3639 3640 /* check whether atomic_add can write into the same memory */ 3641 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3642 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 3643 } 3644 3645 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, 3646 int off, int access_size, 3647 bool zero_size_allowed) 3648 { 3649 struct bpf_reg_state *reg = reg_state(env, regno); 3650 3651 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 3652 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 3653 if (tnum_is_const(reg->var_off)) { 3654 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 3655 regno, off, access_size); 3656 } else { 3657 char tn_buf[48]; 3658 3659 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3660 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", 3661 regno, tn_buf, access_size); 3662 } 3663 return -EACCES; 3664 } 3665 return 0; 3666 } 3667 3668 /* when register 'regno' is passed into function that will read 'access_size' 3669 * bytes from that pointer, make sure that it's within stack boundary 3670 * and all elements of stack are initialized. 3671 * Unlike most pointer bounds-checking functions, this one doesn't take an 3672 * 'off' argument, so it has to add in reg->off itself. 3673 */ 3674 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 3675 int access_size, bool zero_size_allowed, 3676 struct bpf_call_arg_meta *meta) 3677 { 3678 struct bpf_reg_state *reg = reg_state(env, regno); 3679 struct bpf_func_state *state = func(env, reg); 3680 int err, min_off, max_off, i, j, slot, spi; 3681 3682 if (tnum_is_const(reg->var_off)) { 3683 min_off = max_off = reg->var_off.value + reg->off; 3684 err = __check_stack_boundary(env, regno, min_off, access_size, 3685 zero_size_allowed); 3686 if (err) 3687 return err; 3688 } else { 3689 /* Variable offset is prohibited for unprivileged mode for 3690 * simplicity since it requires corresponding support in 3691 * Spectre masking for stack ALU. 3692 * See also retrieve_ptr_limit(). 3693 */ 3694 if (!env->bypass_spec_v1) { 3695 char tn_buf[48]; 3696 3697 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3698 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", 3699 regno, tn_buf); 3700 return -EACCES; 3701 } 3702 /* Only initialized buffer on stack is allowed to be accessed 3703 * with variable offset. With uninitialized buffer it's hard to 3704 * guarantee that whole memory is marked as initialized on 3705 * helper return since specific bounds are unknown what may 3706 * cause uninitialized stack leaking. 3707 */ 3708 if (meta && meta->raw_mode) 3709 meta = NULL; 3710 3711 if (reg->smax_value >= BPF_MAX_VAR_OFF || 3712 reg->smax_value <= -BPF_MAX_VAR_OFF) { 3713 verbose(env, "R%d unbounded indirect variable offset stack access\n", 3714 regno); 3715 return -EACCES; 3716 } 3717 min_off = reg->smin_value + reg->off; 3718 max_off = reg->smax_value + reg->off; 3719 err = __check_stack_boundary(env, regno, min_off, access_size, 3720 zero_size_allowed); 3721 if (err) { 3722 verbose(env, "R%d min value is outside of stack bound\n", 3723 regno); 3724 return err; 3725 } 3726 err = __check_stack_boundary(env, regno, max_off, access_size, 3727 zero_size_allowed); 3728 if (err) { 3729 verbose(env, "R%d max value is outside of stack bound\n", 3730 regno); 3731 return err; 3732 } 3733 } 3734 3735 if (meta && meta->raw_mode) { 3736 meta->access_size = access_size; 3737 meta->regno = regno; 3738 return 0; 3739 } 3740 3741 for (i = min_off; i < max_off + access_size; i++) { 3742 u8 *stype; 3743 3744 slot = -i - 1; 3745 spi = slot / BPF_REG_SIZE; 3746 if (state->allocated_stack <= slot) 3747 goto err; 3748 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3749 if (*stype == STACK_MISC) 3750 goto mark; 3751 if (*stype == STACK_ZERO) { 3752 /* helper can write anything into the stack */ 3753 *stype = STACK_MISC; 3754 goto mark; 3755 } 3756 3757 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3758 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) 3759 goto mark; 3760 3761 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3762 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) { 3763 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 3764 for (j = 0; j < BPF_REG_SIZE; j++) 3765 state->stack[spi].slot_type[j] = STACK_MISC; 3766 goto mark; 3767 } 3768 3769 err: 3770 if (tnum_is_const(reg->var_off)) { 3771 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 3772 min_off, i - min_off, access_size); 3773 } else { 3774 char tn_buf[48]; 3775 3776 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3777 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", 3778 tn_buf, i - min_off, access_size); 3779 } 3780 return -EACCES; 3781 mark: 3782 /* reading any byte out of 8-byte 'spill_slot' will cause 3783 * the whole slot to be marked as 'read' 3784 */ 3785 mark_reg_read(env, &state->stack[spi].spilled_ptr, 3786 state->stack[spi].spilled_ptr.parent, 3787 REG_LIVE_READ64); 3788 } 3789 return update_stack_depth(env, state, min_off); 3790 } 3791 3792 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 3793 int access_size, bool zero_size_allowed, 3794 struct bpf_call_arg_meta *meta) 3795 { 3796 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3797 3798 switch (reg->type) { 3799 case PTR_TO_PACKET: 3800 case PTR_TO_PACKET_META: 3801 return check_packet_access(env, regno, reg->off, access_size, 3802 zero_size_allowed); 3803 case PTR_TO_MAP_VALUE: 3804 if (check_map_access_type(env, regno, reg->off, access_size, 3805 meta && meta->raw_mode ? BPF_WRITE : 3806 BPF_READ)) 3807 return -EACCES; 3808 return check_map_access(env, regno, reg->off, access_size, 3809 zero_size_allowed); 3810 case PTR_TO_MEM: 3811 return check_mem_region_access(env, regno, reg->off, 3812 access_size, reg->mem_size, 3813 zero_size_allowed); 3814 case PTR_TO_RDONLY_BUF: 3815 if (meta && meta->raw_mode) 3816 return -EACCES; 3817 return check_buffer_access(env, reg, regno, reg->off, 3818 access_size, zero_size_allowed, 3819 "rdonly", 3820 &env->prog->aux->max_rdonly_access); 3821 case PTR_TO_RDWR_BUF: 3822 return check_buffer_access(env, reg, regno, reg->off, 3823 access_size, zero_size_allowed, 3824 "rdwr", 3825 &env->prog->aux->max_rdwr_access); 3826 case PTR_TO_STACK: 3827 return check_stack_boundary(env, regno, access_size, 3828 zero_size_allowed, meta); 3829 default: /* scalar_value or invalid ptr */ 3830 /* Allow zero-byte read from NULL, regardless of pointer type */ 3831 if (zero_size_allowed && access_size == 0 && 3832 register_is_null(reg)) 3833 return 0; 3834 3835 verbose(env, "R%d type=%s expected=%s\n", regno, 3836 reg_type_str[reg->type], 3837 reg_type_str[PTR_TO_STACK]); 3838 return -EACCES; 3839 } 3840 } 3841 3842 /* Implementation details: 3843 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 3844 * Two bpf_map_lookups (even with the same key) will have different reg->id. 3845 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 3846 * value_or_null->value transition, since the verifier only cares about 3847 * the range of access to valid map value pointer and doesn't care about actual 3848 * address of the map element. 3849 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 3850 * reg->id > 0 after value_or_null->value transition. By doing so 3851 * two bpf_map_lookups will be considered two different pointers that 3852 * point to different bpf_spin_locks. 3853 * The verifier allows taking only one bpf_spin_lock at a time to avoid 3854 * dead-locks. 3855 * Since only one bpf_spin_lock is allowed the checks are simpler than 3856 * reg_is_refcounted() logic. The verifier needs to remember only 3857 * one spin_lock instead of array of acquired_refs. 3858 * cur_state->active_spin_lock remembers which map value element got locked 3859 * and clears it after bpf_spin_unlock. 3860 */ 3861 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 3862 bool is_lock) 3863 { 3864 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3865 struct bpf_verifier_state *cur = env->cur_state; 3866 bool is_const = tnum_is_const(reg->var_off); 3867 struct bpf_map *map = reg->map_ptr; 3868 u64 val = reg->var_off.value; 3869 3870 if (!is_const) { 3871 verbose(env, 3872 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 3873 regno); 3874 return -EINVAL; 3875 } 3876 if (!map->btf) { 3877 verbose(env, 3878 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 3879 map->name); 3880 return -EINVAL; 3881 } 3882 if (!map_value_has_spin_lock(map)) { 3883 if (map->spin_lock_off == -E2BIG) 3884 verbose(env, 3885 "map '%s' has more than one 'struct bpf_spin_lock'\n", 3886 map->name); 3887 else if (map->spin_lock_off == -ENOENT) 3888 verbose(env, 3889 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 3890 map->name); 3891 else 3892 verbose(env, 3893 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 3894 map->name); 3895 return -EINVAL; 3896 } 3897 if (map->spin_lock_off != val + reg->off) { 3898 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 3899 val + reg->off); 3900 return -EINVAL; 3901 } 3902 if (is_lock) { 3903 if (cur->active_spin_lock) { 3904 verbose(env, 3905 "Locking two bpf_spin_locks are not allowed\n"); 3906 return -EINVAL; 3907 } 3908 cur->active_spin_lock = reg->id; 3909 } else { 3910 if (!cur->active_spin_lock) { 3911 verbose(env, "bpf_spin_unlock without taking a lock\n"); 3912 return -EINVAL; 3913 } 3914 if (cur->active_spin_lock != reg->id) { 3915 verbose(env, "bpf_spin_unlock of different lock\n"); 3916 return -EINVAL; 3917 } 3918 cur->active_spin_lock = 0; 3919 } 3920 return 0; 3921 } 3922 3923 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 3924 { 3925 return type == ARG_PTR_TO_MEM || 3926 type == ARG_PTR_TO_MEM_OR_NULL || 3927 type == ARG_PTR_TO_UNINIT_MEM; 3928 } 3929 3930 static bool arg_type_is_mem_size(enum bpf_arg_type type) 3931 { 3932 return type == ARG_CONST_SIZE || 3933 type == ARG_CONST_SIZE_OR_ZERO; 3934 } 3935 3936 static bool arg_type_is_alloc_size(enum bpf_arg_type type) 3937 { 3938 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; 3939 } 3940 3941 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 3942 { 3943 return type == ARG_PTR_TO_INT || 3944 type == ARG_PTR_TO_LONG; 3945 } 3946 3947 static int int_ptr_type_to_size(enum bpf_arg_type type) 3948 { 3949 if (type == ARG_PTR_TO_INT) 3950 return sizeof(u32); 3951 else if (type == ARG_PTR_TO_LONG) 3952 return sizeof(u64); 3953 3954 return -EINVAL; 3955 } 3956 3957 static int resolve_map_arg_type(struct bpf_verifier_env *env, 3958 const struct bpf_call_arg_meta *meta, 3959 enum bpf_arg_type *arg_type) 3960 { 3961 if (!meta->map_ptr) { 3962 /* kernel subsystem misconfigured verifier */ 3963 verbose(env, "invalid map_ptr to access map->type\n"); 3964 return -EACCES; 3965 } 3966 3967 switch (meta->map_ptr->map_type) { 3968 case BPF_MAP_TYPE_SOCKMAP: 3969 case BPF_MAP_TYPE_SOCKHASH: 3970 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 3971 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 3972 } else { 3973 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 3974 return -EINVAL; 3975 } 3976 break; 3977 3978 default: 3979 break; 3980 } 3981 return 0; 3982 } 3983 3984 struct bpf_reg_types { 3985 const enum bpf_reg_type types[10]; 3986 u32 *btf_id; 3987 }; 3988 3989 static const struct bpf_reg_types map_key_value_types = { 3990 .types = { 3991 PTR_TO_STACK, 3992 PTR_TO_PACKET, 3993 PTR_TO_PACKET_META, 3994 PTR_TO_MAP_VALUE, 3995 }, 3996 }; 3997 3998 static const struct bpf_reg_types sock_types = { 3999 .types = { 4000 PTR_TO_SOCK_COMMON, 4001 PTR_TO_SOCKET, 4002 PTR_TO_TCP_SOCK, 4003 PTR_TO_XDP_SOCK, 4004 }, 4005 }; 4006 4007 #ifdef CONFIG_NET 4008 static const struct bpf_reg_types btf_id_sock_common_types = { 4009 .types = { 4010 PTR_TO_SOCK_COMMON, 4011 PTR_TO_SOCKET, 4012 PTR_TO_TCP_SOCK, 4013 PTR_TO_XDP_SOCK, 4014 PTR_TO_BTF_ID, 4015 }, 4016 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 4017 }; 4018 #endif 4019 4020 static const struct bpf_reg_types mem_types = { 4021 .types = { 4022 PTR_TO_STACK, 4023 PTR_TO_PACKET, 4024 PTR_TO_PACKET_META, 4025 PTR_TO_MAP_VALUE, 4026 PTR_TO_MEM, 4027 PTR_TO_RDONLY_BUF, 4028 PTR_TO_RDWR_BUF, 4029 }, 4030 }; 4031 4032 static const struct bpf_reg_types int_ptr_types = { 4033 .types = { 4034 PTR_TO_STACK, 4035 PTR_TO_PACKET, 4036 PTR_TO_PACKET_META, 4037 PTR_TO_MAP_VALUE, 4038 }, 4039 }; 4040 4041 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 4042 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 4043 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 4044 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } }; 4045 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 4046 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 4047 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 4048 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } }; 4049 4050 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 4051 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 4052 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 4053 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types, 4054 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types, 4055 [ARG_CONST_SIZE] = &scalar_types, 4056 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 4057 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 4058 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 4059 [ARG_PTR_TO_CTX] = &context_types, 4060 [ARG_PTR_TO_CTX_OR_NULL] = &context_types, 4061 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 4062 #ifdef CONFIG_NET 4063 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 4064 #endif 4065 [ARG_PTR_TO_SOCKET] = &fullsock_types, 4066 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types, 4067 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 4068 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 4069 [ARG_PTR_TO_MEM] = &mem_types, 4070 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types, 4071 [ARG_PTR_TO_UNINIT_MEM] = &mem_types, 4072 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 4073 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types, 4074 [ARG_PTR_TO_INT] = &int_ptr_types, 4075 [ARG_PTR_TO_LONG] = &int_ptr_types, 4076 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 4077 }; 4078 4079 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 4080 enum bpf_arg_type arg_type, 4081 const u32 *arg_btf_id) 4082 { 4083 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4084 enum bpf_reg_type expected, type = reg->type; 4085 const struct bpf_reg_types *compatible; 4086 int i, j; 4087 4088 compatible = compatible_reg_types[arg_type]; 4089 if (!compatible) { 4090 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 4091 return -EFAULT; 4092 } 4093 4094 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 4095 expected = compatible->types[i]; 4096 if (expected == NOT_INIT) 4097 break; 4098 4099 if (type == expected) 4100 goto found; 4101 } 4102 4103 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]); 4104 for (j = 0; j + 1 < i; j++) 4105 verbose(env, "%s, ", reg_type_str[compatible->types[j]]); 4106 verbose(env, "%s\n", reg_type_str[compatible->types[j]]); 4107 return -EACCES; 4108 4109 found: 4110 if (type == PTR_TO_BTF_ID) { 4111 if (!arg_btf_id) { 4112 if (!compatible->btf_id) { 4113 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 4114 return -EFAULT; 4115 } 4116 arg_btf_id = compatible->btf_id; 4117 } 4118 4119 if (!btf_struct_ids_match(&env->log, reg->off, reg->btf_id, 4120 *arg_btf_id)) { 4121 verbose(env, "R%d is of type %s but %s is expected\n", 4122 regno, kernel_type_name(reg->btf_id), 4123 kernel_type_name(*arg_btf_id)); 4124 return -EACCES; 4125 } 4126 4127 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4128 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 4129 regno); 4130 return -EACCES; 4131 } 4132 } 4133 4134 return 0; 4135 } 4136 4137 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 4138 struct bpf_call_arg_meta *meta, 4139 const struct bpf_func_proto *fn) 4140 { 4141 u32 regno = BPF_REG_1 + arg; 4142 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4143 enum bpf_arg_type arg_type = fn->arg_type[arg]; 4144 enum bpf_reg_type type = reg->type; 4145 int err = 0; 4146 4147 if (arg_type == ARG_DONTCARE) 4148 return 0; 4149 4150 err = check_reg_arg(env, regno, SRC_OP); 4151 if (err) 4152 return err; 4153 4154 if (arg_type == ARG_ANYTHING) { 4155 if (is_pointer_value(env, regno)) { 4156 verbose(env, "R%d leaks addr into helper function\n", 4157 regno); 4158 return -EACCES; 4159 } 4160 return 0; 4161 } 4162 4163 if (type_is_pkt_pointer(type) && 4164 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 4165 verbose(env, "helper access to the packet is not allowed\n"); 4166 return -EACCES; 4167 } 4168 4169 if (arg_type == ARG_PTR_TO_MAP_VALUE || 4170 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 4171 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 4172 err = resolve_map_arg_type(env, meta, &arg_type); 4173 if (err) 4174 return err; 4175 } 4176 4177 if (register_is_null(reg) && arg_type_may_be_null(arg_type)) 4178 /* A NULL register has a SCALAR_VALUE type, so skip 4179 * type checking. 4180 */ 4181 goto skip_type_check; 4182 4183 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]); 4184 if (err) 4185 return err; 4186 4187 if (type == PTR_TO_CTX) { 4188 err = check_ctx_reg(env, reg, regno); 4189 if (err < 0) 4190 return err; 4191 } 4192 4193 skip_type_check: 4194 if (reg->ref_obj_id) { 4195 if (meta->ref_obj_id) { 4196 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 4197 regno, reg->ref_obj_id, 4198 meta->ref_obj_id); 4199 return -EFAULT; 4200 } 4201 meta->ref_obj_id = reg->ref_obj_id; 4202 } 4203 4204 if (arg_type == ARG_CONST_MAP_PTR) { 4205 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 4206 meta->map_ptr = reg->map_ptr; 4207 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 4208 /* bpf_map_xxx(..., map_ptr, ..., key) call: 4209 * check that [key, key + map->key_size) are within 4210 * stack limits and initialized 4211 */ 4212 if (!meta->map_ptr) { 4213 /* in function declaration map_ptr must come before 4214 * map_key, so that it's verified and known before 4215 * we have to check map_key here. Otherwise it means 4216 * that kernel subsystem misconfigured verifier 4217 */ 4218 verbose(env, "invalid map_ptr to access map->key\n"); 4219 return -EACCES; 4220 } 4221 err = check_helper_mem_access(env, regno, 4222 meta->map_ptr->key_size, false, 4223 NULL); 4224 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 4225 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 4226 !register_is_null(reg)) || 4227 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 4228 /* bpf_map_xxx(..., map_ptr, ..., value) call: 4229 * check [value, value + map->value_size) validity 4230 */ 4231 if (!meta->map_ptr) { 4232 /* kernel subsystem misconfigured verifier */ 4233 verbose(env, "invalid map_ptr to access map->value\n"); 4234 return -EACCES; 4235 } 4236 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 4237 err = check_helper_mem_access(env, regno, 4238 meta->map_ptr->value_size, false, 4239 meta); 4240 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) { 4241 if (!reg->btf_id) { 4242 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 4243 return -EACCES; 4244 } 4245 meta->ret_btf_id = reg->btf_id; 4246 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 4247 if (meta->func_id == BPF_FUNC_spin_lock) { 4248 if (process_spin_lock(env, regno, true)) 4249 return -EACCES; 4250 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 4251 if (process_spin_lock(env, regno, false)) 4252 return -EACCES; 4253 } else { 4254 verbose(env, "verifier internal error\n"); 4255 return -EFAULT; 4256 } 4257 } else if (arg_type_is_mem_ptr(arg_type)) { 4258 /* The access to this pointer is only checked when we hit the 4259 * next is_mem_size argument below. 4260 */ 4261 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM); 4262 } else if (arg_type_is_mem_size(arg_type)) { 4263 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 4264 4265 /* This is used to refine r0 return value bounds for helpers 4266 * that enforce this value as an upper bound on return values. 4267 * See do_refine_retval_range() for helpers that can refine 4268 * the return value. C type of helper is u32 so we pull register 4269 * bound from umax_value however, if negative verifier errors 4270 * out. Only upper bounds can be learned because retval is an 4271 * int type and negative retvals are allowed. 4272 */ 4273 meta->msize_max_value = reg->umax_value; 4274 4275 /* The register is SCALAR_VALUE; the access check 4276 * happens using its boundaries. 4277 */ 4278 if (!tnum_is_const(reg->var_off)) 4279 /* For unprivileged variable accesses, disable raw 4280 * mode so that the program is required to 4281 * initialize all the memory that the helper could 4282 * just partially fill up. 4283 */ 4284 meta = NULL; 4285 4286 if (reg->smin_value < 0) { 4287 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 4288 regno); 4289 return -EACCES; 4290 } 4291 4292 if (reg->umin_value == 0) { 4293 err = check_helper_mem_access(env, regno - 1, 0, 4294 zero_size_allowed, 4295 meta); 4296 if (err) 4297 return err; 4298 } 4299 4300 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 4301 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 4302 regno); 4303 return -EACCES; 4304 } 4305 err = check_helper_mem_access(env, regno - 1, 4306 reg->umax_value, 4307 zero_size_allowed, meta); 4308 if (!err) 4309 err = mark_chain_precision(env, regno); 4310 } else if (arg_type_is_alloc_size(arg_type)) { 4311 if (!tnum_is_const(reg->var_off)) { 4312 verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n", 4313 regno); 4314 return -EACCES; 4315 } 4316 meta->mem_size = reg->var_off.value; 4317 } else if (arg_type_is_int_ptr(arg_type)) { 4318 int size = int_ptr_type_to_size(arg_type); 4319 4320 err = check_helper_mem_access(env, regno, size, false, meta); 4321 if (err) 4322 return err; 4323 err = check_ptr_alignment(env, reg, 0, size, true); 4324 } 4325 4326 return err; 4327 } 4328 4329 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 4330 { 4331 enum bpf_attach_type eatype = env->prog->expected_attach_type; 4332 enum bpf_prog_type type = resolve_prog_type(env->prog); 4333 4334 if (func_id != BPF_FUNC_map_update_elem) 4335 return false; 4336 4337 /* It's not possible to get access to a locked struct sock in these 4338 * contexts, so updating is safe. 4339 */ 4340 switch (type) { 4341 case BPF_PROG_TYPE_TRACING: 4342 if (eatype == BPF_TRACE_ITER) 4343 return true; 4344 break; 4345 case BPF_PROG_TYPE_SOCKET_FILTER: 4346 case BPF_PROG_TYPE_SCHED_CLS: 4347 case BPF_PROG_TYPE_SCHED_ACT: 4348 case BPF_PROG_TYPE_XDP: 4349 case BPF_PROG_TYPE_SK_REUSEPORT: 4350 case BPF_PROG_TYPE_FLOW_DISSECTOR: 4351 case BPF_PROG_TYPE_SK_LOOKUP: 4352 return true; 4353 default: 4354 break; 4355 } 4356 4357 verbose(env, "cannot update sockmap in this context\n"); 4358 return false; 4359 } 4360 4361 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 4362 { 4363 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64); 4364 } 4365 4366 static int check_map_func_compatibility(struct bpf_verifier_env *env, 4367 struct bpf_map *map, int func_id) 4368 { 4369 if (!map) 4370 return 0; 4371 4372 /* We need a two way check, first is from map perspective ... */ 4373 switch (map->map_type) { 4374 case BPF_MAP_TYPE_PROG_ARRAY: 4375 if (func_id != BPF_FUNC_tail_call) 4376 goto error; 4377 break; 4378 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 4379 if (func_id != BPF_FUNC_perf_event_read && 4380 func_id != BPF_FUNC_perf_event_output && 4381 func_id != BPF_FUNC_skb_output && 4382 func_id != BPF_FUNC_perf_event_read_value && 4383 func_id != BPF_FUNC_xdp_output) 4384 goto error; 4385 break; 4386 case BPF_MAP_TYPE_RINGBUF: 4387 if (func_id != BPF_FUNC_ringbuf_output && 4388 func_id != BPF_FUNC_ringbuf_reserve && 4389 func_id != BPF_FUNC_ringbuf_submit && 4390 func_id != BPF_FUNC_ringbuf_discard && 4391 func_id != BPF_FUNC_ringbuf_query) 4392 goto error; 4393 break; 4394 case BPF_MAP_TYPE_STACK_TRACE: 4395 if (func_id != BPF_FUNC_get_stackid) 4396 goto error; 4397 break; 4398 case BPF_MAP_TYPE_CGROUP_ARRAY: 4399 if (func_id != BPF_FUNC_skb_under_cgroup && 4400 func_id != BPF_FUNC_current_task_under_cgroup) 4401 goto error; 4402 break; 4403 case BPF_MAP_TYPE_CGROUP_STORAGE: 4404 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 4405 if (func_id != BPF_FUNC_get_local_storage) 4406 goto error; 4407 break; 4408 case BPF_MAP_TYPE_DEVMAP: 4409 case BPF_MAP_TYPE_DEVMAP_HASH: 4410 if (func_id != BPF_FUNC_redirect_map && 4411 func_id != BPF_FUNC_map_lookup_elem) 4412 goto error; 4413 break; 4414 /* Restrict bpf side of cpumap and xskmap, open when use-cases 4415 * appear. 4416 */ 4417 case BPF_MAP_TYPE_CPUMAP: 4418 if (func_id != BPF_FUNC_redirect_map) 4419 goto error; 4420 break; 4421 case BPF_MAP_TYPE_XSKMAP: 4422 if (func_id != BPF_FUNC_redirect_map && 4423 func_id != BPF_FUNC_map_lookup_elem) 4424 goto error; 4425 break; 4426 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 4427 case BPF_MAP_TYPE_HASH_OF_MAPS: 4428 if (func_id != BPF_FUNC_map_lookup_elem) 4429 goto error; 4430 break; 4431 case BPF_MAP_TYPE_SOCKMAP: 4432 if (func_id != BPF_FUNC_sk_redirect_map && 4433 func_id != BPF_FUNC_sock_map_update && 4434 func_id != BPF_FUNC_map_delete_elem && 4435 func_id != BPF_FUNC_msg_redirect_map && 4436 func_id != BPF_FUNC_sk_select_reuseport && 4437 func_id != BPF_FUNC_map_lookup_elem && 4438 !may_update_sockmap(env, func_id)) 4439 goto error; 4440 break; 4441 case BPF_MAP_TYPE_SOCKHASH: 4442 if (func_id != BPF_FUNC_sk_redirect_hash && 4443 func_id != BPF_FUNC_sock_hash_update && 4444 func_id != BPF_FUNC_map_delete_elem && 4445 func_id != BPF_FUNC_msg_redirect_hash && 4446 func_id != BPF_FUNC_sk_select_reuseport && 4447 func_id != BPF_FUNC_map_lookup_elem && 4448 !may_update_sockmap(env, func_id)) 4449 goto error; 4450 break; 4451 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 4452 if (func_id != BPF_FUNC_sk_select_reuseport) 4453 goto error; 4454 break; 4455 case BPF_MAP_TYPE_QUEUE: 4456 case BPF_MAP_TYPE_STACK: 4457 if (func_id != BPF_FUNC_map_peek_elem && 4458 func_id != BPF_FUNC_map_pop_elem && 4459 func_id != BPF_FUNC_map_push_elem) 4460 goto error; 4461 break; 4462 case BPF_MAP_TYPE_SK_STORAGE: 4463 if (func_id != BPF_FUNC_sk_storage_get && 4464 func_id != BPF_FUNC_sk_storage_delete) 4465 goto error; 4466 break; 4467 case BPF_MAP_TYPE_INODE_STORAGE: 4468 if (func_id != BPF_FUNC_inode_storage_get && 4469 func_id != BPF_FUNC_inode_storage_delete) 4470 goto error; 4471 break; 4472 default: 4473 break; 4474 } 4475 4476 /* ... and second from the function itself. */ 4477 switch (func_id) { 4478 case BPF_FUNC_tail_call: 4479 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 4480 goto error; 4481 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 4482 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 4483 return -EINVAL; 4484 } 4485 break; 4486 case BPF_FUNC_perf_event_read: 4487 case BPF_FUNC_perf_event_output: 4488 case BPF_FUNC_perf_event_read_value: 4489 case BPF_FUNC_skb_output: 4490 case BPF_FUNC_xdp_output: 4491 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 4492 goto error; 4493 break; 4494 case BPF_FUNC_get_stackid: 4495 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 4496 goto error; 4497 break; 4498 case BPF_FUNC_current_task_under_cgroup: 4499 case BPF_FUNC_skb_under_cgroup: 4500 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 4501 goto error; 4502 break; 4503 case BPF_FUNC_redirect_map: 4504 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 4505 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 4506 map->map_type != BPF_MAP_TYPE_CPUMAP && 4507 map->map_type != BPF_MAP_TYPE_XSKMAP) 4508 goto error; 4509 break; 4510 case BPF_FUNC_sk_redirect_map: 4511 case BPF_FUNC_msg_redirect_map: 4512 case BPF_FUNC_sock_map_update: 4513 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 4514 goto error; 4515 break; 4516 case BPF_FUNC_sk_redirect_hash: 4517 case BPF_FUNC_msg_redirect_hash: 4518 case BPF_FUNC_sock_hash_update: 4519 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 4520 goto error; 4521 break; 4522 case BPF_FUNC_get_local_storage: 4523 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 4524 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 4525 goto error; 4526 break; 4527 case BPF_FUNC_sk_select_reuseport: 4528 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 4529 map->map_type != BPF_MAP_TYPE_SOCKMAP && 4530 map->map_type != BPF_MAP_TYPE_SOCKHASH) 4531 goto error; 4532 break; 4533 case BPF_FUNC_map_peek_elem: 4534 case BPF_FUNC_map_pop_elem: 4535 case BPF_FUNC_map_push_elem: 4536 if (map->map_type != BPF_MAP_TYPE_QUEUE && 4537 map->map_type != BPF_MAP_TYPE_STACK) 4538 goto error; 4539 break; 4540 case BPF_FUNC_sk_storage_get: 4541 case BPF_FUNC_sk_storage_delete: 4542 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 4543 goto error; 4544 break; 4545 case BPF_FUNC_inode_storage_get: 4546 case BPF_FUNC_inode_storage_delete: 4547 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 4548 goto error; 4549 break; 4550 default: 4551 break; 4552 } 4553 4554 return 0; 4555 error: 4556 verbose(env, "cannot pass map_type %d into func %s#%d\n", 4557 map->map_type, func_id_name(func_id), func_id); 4558 return -EINVAL; 4559 } 4560 4561 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 4562 { 4563 int count = 0; 4564 4565 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 4566 count++; 4567 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 4568 count++; 4569 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 4570 count++; 4571 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 4572 count++; 4573 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 4574 count++; 4575 4576 /* We only support one arg being in raw mode at the moment, 4577 * which is sufficient for the helper functions we have 4578 * right now. 4579 */ 4580 return count <= 1; 4581 } 4582 4583 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 4584 enum bpf_arg_type arg_next) 4585 { 4586 return (arg_type_is_mem_ptr(arg_curr) && 4587 !arg_type_is_mem_size(arg_next)) || 4588 (!arg_type_is_mem_ptr(arg_curr) && 4589 arg_type_is_mem_size(arg_next)); 4590 } 4591 4592 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 4593 { 4594 /* bpf_xxx(..., buf, len) call will access 'len' 4595 * bytes from memory 'buf'. Both arg types need 4596 * to be paired, so make sure there's no buggy 4597 * helper function specification. 4598 */ 4599 if (arg_type_is_mem_size(fn->arg1_type) || 4600 arg_type_is_mem_ptr(fn->arg5_type) || 4601 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 4602 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 4603 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 4604 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 4605 return false; 4606 4607 return true; 4608 } 4609 4610 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 4611 { 4612 int count = 0; 4613 4614 if (arg_type_may_be_refcounted(fn->arg1_type)) 4615 count++; 4616 if (arg_type_may_be_refcounted(fn->arg2_type)) 4617 count++; 4618 if (arg_type_may_be_refcounted(fn->arg3_type)) 4619 count++; 4620 if (arg_type_may_be_refcounted(fn->arg4_type)) 4621 count++; 4622 if (arg_type_may_be_refcounted(fn->arg5_type)) 4623 count++; 4624 4625 /* A reference acquiring function cannot acquire 4626 * another refcounted ptr. 4627 */ 4628 if (may_be_acquire_function(func_id) && count) 4629 return false; 4630 4631 /* We only support one arg being unreferenced at the moment, 4632 * which is sufficient for the helper functions we have right now. 4633 */ 4634 return count <= 1; 4635 } 4636 4637 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 4638 { 4639 int i; 4640 4641 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 4642 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 4643 return false; 4644 4645 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i]) 4646 return false; 4647 } 4648 4649 return true; 4650 } 4651 4652 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 4653 { 4654 return check_raw_mode_ok(fn) && 4655 check_arg_pair_ok(fn) && 4656 check_btf_id_ok(fn) && 4657 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 4658 } 4659 4660 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 4661 * are now invalid, so turn them into unknown SCALAR_VALUE. 4662 */ 4663 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 4664 struct bpf_func_state *state) 4665 { 4666 struct bpf_reg_state *regs = state->regs, *reg; 4667 int i; 4668 4669 for (i = 0; i < MAX_BPF_REG; i++) 4670 if (reg_is_pkt_pointer_any(®s[i])) 4671 mark_reg_unknown(env, regs, i); 4672 4673 bpf_for_each_spilled_reg(i, state, reg) { 4674 if (!reg) 4675 continue; 4676 if (reg_is_pkt_pointer_any(reg)) 4677 __mark_reg_unknown(env, reg); 4678 } 4679 } 4680 4681 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 4682 { 4683 struct bpf_verifier_state *vstate = env->cur_state; 4684 int i; 4685 4686 for (i = 0; i <= vstate->curframe; i++) 4687 __clear_all_pkt_pointers(env, vstate->frame[i]); 4688 } 4689 4690 static void release_reg_references(struct bpf_verifier_env *env, 4691 struct bpf_func_state *state, 4692 int ref_obj_id) 4693 { 4694 struct bpf_reg_state *regs = state->regs, *reg; 4695 int i; 4696 4697 for (i = 0; i < MAX_BPF_REG; i++) 4698 if (regs[i].ref_obj_id == ref_obj_id) 4699 mark_reg_unknown(env, regs, i); 4700 4701 bpf_for_each_spilled_reg(i, state, reg) { 4702 if (!reg) 4703 continue; 4704 if (reg->ref_obj_id == ref_obj_id) 4705 __mark_reg_unknown(env, reg); 4706 } 4707 } 4708 4709 /* The pointer with the specified id has released its reference to kernel 4710 * resources. Identify all copies of the same pointer and clear the reference. 4711 */ 4712 static int release_reference(struct bpf_verifier_env *env, 4713 int ref_obj_id) 4714 { 4715 struct bpf_verifier_state *vstate = env->cur_state; 4716 int err; 4717 int i; 4718 4719 err = release_reference_state(cur_func(env), ref_obj_id); 4720 if (err) 4721 return err; 4722 4723 for (i = 0; i <= vstate->curframe; i++) 4724 release_reg_references(env, vstate->frame[i], ref_obj_id); 4725 4726 return 0; 4727 } 4728 4729 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 4730 struct bpf_reg_state *regs) 4731 { 4732 int i; 4733 4734 /* after the call registers r0 - r5 were scratched */ 4735 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4736 mark_reg_not_init(env, regs, caller_saved[i]); 4737 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4738 } 4739 } 4740 4741 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 4742 int *insn_idx) 4743 { 4744 struct bpf_verifier_state *state = env->cur_state; 4745 struct bpf_func_info_aux *func_info_aux; 4746 struct bpf_func_state *caller, *callee; 4747 int i, err, subprog, target_insn; 4748 bool is_global = false; 4749 4750 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 4751 verbose(env, "the call stack of %d frames is too deep\n", 4752 state->curframe + 2); 4753 return -E2BIG; 4754 } 4755 4756 target_insn = *insn_idx + insn->imm; 4757 subprog = find_subprog(env, target_insn + 1); 4758 if (subprog < 0) { 4759 verbose(env, "verifier bug. No program starts at insn %d\n", 4760 target_insn + 1); 4761 return -EFAULT; 4762 } 4763 4764 caller = state->frame[state->curframe]; 4765 if (state->frame[state->curframe + 1]) { 4766 verbose(env, "verifier bug. Frame %d already allocated\n", 4767 state->curframe + 1); 4768 return -EFAULT; 4769 } 4770 4771 func_info_aux = env->prog->aux->func_info_aux; 4772 if (func_info_aux) 4773 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 4774 err = btf_check_func_arg_match(env, subprog, caller->regs); 4775 if (err == -EFAULT) 4776 return err; 4777 if (is_global) { 4778 if (err) { 4779 verbose(env, "Caller passes invalid args into func#%d\n", 4780 subprog); 4781 return err; 4782 } else { 4783 if (env->log.level & BPF_LOG_LEVEL) 4784 verbose(env, 4785 "Func#%d is global and valid. Skipping.\n", 4786 subprog); 4787 clear_caller_saved_regs(env, caller->regs); 4788 4789 /* All global functions return SCALAR_VALUE */ 4790 mark_reg_unknown(env, caller->regs, BPF_REG_0); 4791 4792 /* continue with next insn after call */ 4793 return 0; 4794 } 4795 } 4796 4797 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 4798 if (!callee) 4799 return -ENOMEM; 4800 state->frame[state->curframe + 1] = callee; 4801 4802 /* callee cannot access r0, r6 - r9 for reading and has to write 4803 * into its own stack before reading from it. 4804 * callee can read/write into caller's stack 4805 */ 4806 init_func_state(env, callee, 4807 /* remember the callsite, it will be used by bpf_exit */ 4808 *insn_idx /* callsite */, 4809 state->curframe + 1 /* frameno within this callchain */, 4810 subprog /* subprog number within this prog */); 4811 4812 /* Transfer references to the callee */ 4813 err = transfer_reference_state(callee, caller); 4814 if (err) 4815 return err; 4816 4817 /* copy r1 - r5 args that callee can access. The copy includes parent 4818 * pointers, which connects us up to the liveness chain 4819 */ 4820 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4821 callee->regs[i] = caller->regs[i]; 4822 4823 clear_caller_saved_regs(env, caller->regs); 4824 4825 /* only increment it after check_reg_arg() finished */ 4826 state->curframe++; 4827 4828 /* and go analyze first insn of the callee */ 4829 *insn_idx = target_insn; 4830 4831 if (env->log.level & BPF_LOG_LEVEL) { 4832 verbose(env, "caller:\n"); 4833 print_verifier_state(env, caller); 4834 verbose(env, "callee:\n"); 4835 print_verifier_state(env, callee); 4836 } 4837 return 0; 4838 } 4839 4840 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 4841 { 4842 struct bpf_verifier_state *state = env->cur_state; 4843 struct bpf_func_state *caller, *callee; 4844 struct bpf_reg_state *r0; 4845 int err; 4846 4847 callee = state->frame[state->curframe]; 4848 r0 = &callee->regs[BPF_REG_0]; 4849 if (r0->type == PTR_TO_STACK) { 4850 /* technically it's ok to return caller's stack pointer 4851 * (or caller's caller's pointer) back to the caller, 4852 * since these pointers are valid. Only current stack 4853 * pointer will be invalid as soon as function exits, 4854 * but let's be conservative 4855 */ 4856 verbose(env, "cannot return stack pointer to the caller\n"); 4857 return -EINVAL; 4858 } 4859 4860 state->curframe--; 4861 caller = state->frame[state->curframe]; 4862 /* return to the caller whatever r0 had in the callee */ 4863 caller->regs[BPF_REG_0] = *r0; 4864 4865 /* Transfer references to the caller */ 4866 err = transfer_reference_state(caller, callee); 4867 if (err) 4868 return err; 4869 4870 *insn_idx = callee->callsite + 1; 4871 if (env->log.level & BPF_LOG_LEVEL) { 4872 verbose(env, "returning from callee:\n"); 4873 print_verifier_state(env, callee); 4874 verbose(env, "to caller at %d:\n", *insn_idx); 4875 print_verifier_state(env, caller); 4876 } 4877 /* clear everything in the callee */ 4878 free_func_state(callee); 4879 state->frame[state->curframe + 1] = NULL; 4880 return 0; 4881 } 4882 4883 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 4884 int func_id, 4885 struct bpf_call_arg_meta *meta) 4886 { 4887 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 4888 4889 if (ret_type != RET_INTEGER || 4890 (func_id != BPF_FUNC_get_stack && 4891 func_id != BPF_FUNC_probe_read_str && 4892 func_id != BPF_FUNC_probe_read_kernel_str && 4893 func_id != BPF_FUNC_probe_read_user_str)) 4894 return; 4895 4896 ret_reg->smax_value = meta->msize_max_value; 4897 ret_reg->s32_max_value = meta->msize_max_value; 4898 __reg_deduce_bounds(ret_reg); 4899 __reg_bound_offset(ret_reg); 4900 __update_reg_bounds(ret_reg); 4901 } 4902 4903 static int 4904 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4905 int func_id, int insn_idx) 4906 { 4907 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4908 struct bpf_map *map = meta->map_ptr; 4909 4910 if (func_id != BPF_FUNC_tail_call && 4911 func_id != BPF_FUNC_map_lookup_elem && 4912 func_id != BPF_FUNC_map_update_elem && 4913 func_id != BPF_FUNC_map_delete_elem && 4914 func_id != BPF_FUNC_map_push_elem && 4915 func_id != BPF_FUNC_map_pop_elem && 4916 func_id != BPF_FUNC_map_peek_elem) 4917 return 0; 4918 4919 if (map == NULL) { 4920 verbose(env, "kernel subsystem misconfigured verifier\n"); 4921 return -EINVAL; 4922 } 4923 4924 /* In case of read-only, some additional restrictions 4925 * need to be applied in order to prevent altering the 4926 * state of the map from program side. 4927 */ 4928 if ((map->map_flags & BPF_F_RDONLY_PROG) && 4929 (func_id == BPF_FUNC_map_delete_elem || 4930 func_id == BPF_FUNC_map_update_elem || 4931 func_id == BPF_FUNC_map_push_elem || 4932 func_id == BPF_FUNC_map_pop_elem)) { 4933 verbose(env, "write into map forbidden\n"); 4934 return -EACCES; 4935 } 4936 4937 if (!BPF_MAP_PTR(aux->map_ptr_state)) 4938 bpf_map_ptr_store(aux, meta->map_ptr, 4939 !meta->map_ptr->bypass_spec_v1); 4940 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 4941 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 4942 !meta->map_ptr->bypass_spec_v1); 4943 return 0; 4944 } 4945 4946 static int 4947 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4948 int func_id, int insn_idx) 4949 { 4950 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4951 struct bpf_reg_state *regs = cur_regs(env), *reg; 4952 struct bpf_map *map = meta->map_ptr; 4953 struct tnum range; 4954 u64 val; 4955 int err; 4956 4957 if (func_id != BPF_FUNC_tail_call) 4958 return 0; 4959 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 4960 verbose(env, "kernel subsystem misconfigured verifier\n"); 4961 return -EINVAL; 4962 } 4963 4964 range = tnum_range(0, map->max_entries - 1); 4965 reg = ®s[BPF_REG_3]; 4966 4967 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 4968 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4969 return 0; 4970 } 4971 4972 err = mark_chain_precision(env, BPF_REG_3); 4973 if (err) 4974 return err; 4975 4976 val = reg->var_off.value; 4977 if (bpf_map_key_unseen(aux)) 4978 bpf_map_key_store(aux, val); 4979 else if (!bpf_map_key_poisoned(aux) && 4980 bpf_map_key_immediate(aux) != val) 4981 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4982 return 0; 4983 } 4984 4985 static int check_reference_leak(struct bpf_verifier_env *env) 4986 { 4987 struct bpf_func_state *state = cur_func(env); 4988 int i; 4989 4990 for (i = 0; i < state->acquired_refs; i++) { 4991 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 4992 state->refs[i].id, state->refs[i].insn_idx); 4993 } 4994 return state->acquired_refs ? -EINVAL : 0; 4995 } 4996 4997 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 4998 { 4999 const struct bpf_func_proto *fn = NULL; 5000 struct bpf_reg_state *regs; 5001 struct bpf_call_arg_meta meta; 5002 bool changes_data; 5003 int i, err; 5004 5005 /* find function prototype */ 5006 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 5007 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 5008 func_id); 5009 return -EINVAL; 5010 } 5011 5012 if (env->ops->get_func_proto) 5013 fn = env->ops->get_func_proto(func_id, env->prog); 5014 if (!fn) { 5015 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 5016 func_id); 5017 return -EINVAL; 5018 } 5019 5020 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 5021 if (!env->prog->gpl_compatible && fn->gpl_only) { 5022 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 5023 return -EINVAL; 5024 } 5025 5026 if (fn->allowed && !fn->allowed(env->prog)) { 5027 verbose(env, "helper call is not allowed in probe\n"); 5028 return -EINVAL; 5029 } 5030 5031 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 5032 changes_data = bpf_helper_changes_pkt_data(fn->func); 5033 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 5034 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 5035 func_id_name(func_id), func_id); 5036 return -EINVAL; 5037 } 5038 5039 memset(&meta, 0, sizeof(meta)); 5040 meta.pkt_access = fn->pkt_access; 5041 5042 err = check_func_proto(fn, func_id); 5043 if (err) { 5044 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 5045 func_id_name(func_id), func_id); 5046 return err; 5047 } 5048 5049 meta.func_id = func_id; 5050 /* check args */ 5051 for (i = 0; i < 5; i++) { 5052 err = check_func_arg(env, i, &meta, fn); 5053 if (err) 5054 return err; 5055 } 5056 5057 err = record_func_map(env, &meta, func_id, insn_idx); 5058 if (err) 5059 return err; 5060 5061 err = record_func_key(env, &meta, func_id, insn_idx); 5062 if (err) 5063 return err; 5064 5065 /* Mark slots with STACK_MISC in case of raw mode, stack offset 5066 * is inferred from register state. 5067 */ 5068 for (i = 0; i < meta.access_size; i++) { 5069 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 5070 BPF_WRITE, -1, false); 5071 if (err) 5072 return err; 5073 } 5074 5075 if (func_id == BPF_FUNC_tail_call) { 5076 err = check_reference_leak(env); 5077 if (err) { 5078 verbose(env, "tail_call would lead to reference leak\n"); 5079 return err; 5080 } 5081 } else if (is_release_function(func_id)) { 5082 err = release_reference(env, meta.ref_obj_id); 5083 if (err) { 5084 verbose(env, "func %s#%d reference has not been acquired before\n", 5085 func_id_name(func_id), func_id); 5086 return err; 5087 } 5088 } 5089 5090 regs = cur_regs(env); 5091 5092 /* check that flags argument in get_local_storage(map, flags) is 0, 5093 * this is required because get_local_storage() can't return an error. 5094 */ 5095 if (func_id == BPF_FUNC_get_local_storage && 5096 !register_is_null(®s[BPF_REG_2])) { 5097 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 5098 return -EINVAL; 5099 } 5100 5101 /* reset caller saved regs */ 5102 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5103 mark_reg_not_init(env, regs, caller_saved[i]); 5104 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5105 } 5106 5107 /* helper call returns 64-bit value. */ 5108 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 5109 5110 /* update return register (already marked as written above) */ 5111 if (fn->ret_type == RET_INTEGER) { 5112 /* sets type to SCALAR_VALUE */ 5113 mark_reg_unknown(env, regs, BPF_REG_0); 5114 } else if (fn->ret_type == RET_VOID) { 5115 regs[BPF_REG_0].type = NOT_INIT; 5116 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 5117 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 5118 /* There is no offset yet applied, variable or fixed */ 5119 mark_reg_known_zero(env, regs, BPF_REG_0); 5120 /* remember map_ptr, so that check_map_access() 5121 * can check 'value_size' boundary of memory access 5122 * to map element returned from bpf_map_lookup_elem() 5123 */ 5124 if (meta.map_ptr == NULL) { 5125 verbose(env, 5126 "kernel subsystem misconfigured verifier\n"); 5127 return -EINVAL; 5128 } 5129 regs[BPF_REG_0].map_ptr = meta.map_ptr; 5130 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 5131 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 5132 if (map_value_has_spin_lock(meta.map_ptr)) 5133 regs[BPF_REG_0].id = ++env->id_gen; 5134 } else { 5135 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 5136 regs[BPF_REG_0].id = ++env->id_gen; 5137 } 5138 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 5139 mark_reg_known_zero(env, regs, BPF_REG_0); 5140 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 5141 regs[BPF_REG_0].id = ++env->id_gen; 5142 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 5143 mark_reg_known_zero(env, regs, BPF_REG_0); 5144 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 5145 regs[BPF_REG_0].id = ++env->id_gen; 5146 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 5147 mark_reg_known_zero(env, regs, BPF_REG_0); 5148 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 5149 regs[BPF_REG_0].id = ++env->id_gen; 5150 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) { 5151 mark_reg_known_zero(env, regs, BPF_REG_0); 5152 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL; 5153 regs[BPF_REG_0].id = ++env->id_gen; 5154 regs[BPF_REG_0].mem_size = meta.mem_size; 5155 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL || 5156 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) { 5157 const struct btf_type *t; 5158 5159 mark_reg_known_zero(env, regs, BPF_REG_0); 5160 t = btf_type_skip_modifiers(btf_vmlinux, meta.ret_btf_id, NULL); 5161 if (!btf_type_is_struct(t)) { 5162 u32 tsize; 5163 const struct btf_type *ret; 5164 const char *tname; 5165 5166 /* resolve the type size of ksym. */ 5167 ret = btf_resolve_size(btf_vmlinux, t, &tsize); 5168 if (IS_ERR(ret)) { 5169 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 5170 verbose(env, "unable to resolve the size of type '%s': %ld\n", 5171 tname, PTR_ERR(ret)); 5172 return -EINVAL; 5173 } 5174 regs[BPF_REG_0].type = 5175 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 5176 PTR_TO_MEM : PTR_TO_MEM_OR_NULL; 5177 regs[BPF_REG_0].mem_size = tsize; 5178 } else { 5179 regs[BPF_REG_0].type = 5180 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 5181 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL; 5182 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 5183 } 5184 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL) { 5185 int ret_btf_id; 5186 5187 mark_reg_known_zero(env, regs, BPF_REG_0); 5188 regs[BPF_REG_0].type = PTR_TO_BTF_ID_OR_NULL; 5189 ret_btf_id = *fn->ret_btf_id; 5190 if (ret_btf_id == 0) { 5191 verbose(env, "invalid return type %d of func %s#%d\n", 5192 fn->ret_type, func_id_name(func_id), func_id); 5193 return -EINVAL; 5194 } 5195 regs[BPF_REG_0].btf_id = ret_btf_id; 5196 } else { 5197 verbose(env, "unknown return type %d of func %s#%d\n", 5198 fn->ret_type, func_id_name(func_id), func_id); 5199 return -EINVAL; 5200 } 5201 5202 if (is_ptr_cast_function(func_id)) { 5203 /* For release_reference() */ 5204 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 5205 } else if (is_acquire_function(func_id, meta.map_ptr)) { 5206 int id = acquire_reference_state(env, insn_idx); 5207 5208 if (id < 0) 5209 return id; 5210 /* For mark_ptr_or_null_reg() */ 5211 regs[BPF_REG_0].id = id; 5212 /* For release_reference() */ 5213 regs[BPF_REG_0].ref_obj_id = id; 5214 } 5215 5216 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 5217 5218 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 5219 if (err) 5220 return err; 5221 5222 if ((func_id == BPF_FUNC_get_stack || 5223 func_id == BPF_FUNC_get_task_stack) && 5224 !env->prog->has_callchain_buf) { 5225 const char *err_str; 5226 5227 #ifdef CONFIG_PERF_EVENTS 5228 err = get_callchain_buffers(sysctl_perf_event_max_stack); 5229 err_str = "cannot get callchain buffer for func %s#%d\n"; 5230 #else 5231 err = -ENOTSUPP; 5232 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 5233 #endif 5234 if (err) { 5235 verbose(env, err_str, func_id_name(func_id), func_id); 5236 return err; 5237 } 5238 5239 env->prog->has_callchain_buf = true; 5240 } 5241 5242 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 5243 env->prog->call_get_stack = true; 5244 5245 if (changes_data) 5246 clear_all_pkt_pointers(env); 5247 return 0; 5248 } 5249 5250 static bool signed_add_overflows(s64 a, s64 b) 5251 { 5252 /* Do the add in u64, where overflow is well-defined */ 5253 s64 res = (s64)((u64)a + (u64)b); 5254 5255 if (b < 0) 5256 return res > a; 5257 return res < a; 5258 } 5259 5260 static bool signed_add32_overflows(s64 a, s64 b) 5261 { 5262 /* Do the add in u32, where overflow is well-defined */ 5263 s32 res = (s32)((u32)a + (u32)b); 5264 5265 if (b < 0) 5266 return res > a; 5267 return res < a; 5268 } 5269 5270 static bool signed_sub_overflows(s32 a, s32 b) 5271 { 5272 /* Do the sub in u64, where overflow is well-defined */ 5273 s64 res = (s64)((u64)a - (u64)b); 5274 5275 if (b < 0) 5276 return res < a; 5277 return res > a; 5278 } 5279 5280 static bool signed_sub32_overflows(s32 a, s32 b) 5281 { 5282 /* Do the sub in u64, where overflow is well-defined */ 5283 s32 res = (s32)((u32)a - (u32)b); 5284 5285 if (b < 0) 5286 return res < a; 5287 return res > a; 5288 } 5289 5290 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 5291 const struct bpf_reg_state *reg, 5292 enum bpf_reg_type type) 5293 { 5294 bool known = tnum_is_const(reg->var_off); 5295 s64 val = reg->var_off.value; 5296 s64 smin = reg->smin_value; 5297 5298 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 5299 verbose(env, "math between %s pointer and %lld is not allowed\n", 5300 reg_type_str[type], val); 5301 return false; 5302 } 5303 5304 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 5305 verbose(env, "%s pointer offset %d is not allowed\n", 5306 reg_type_str[type], reg->off); 5307 return false; 5308 } 5309 5310 if (smin == S64_MIN) { 5311 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 5312 reg_type_str[type]); 5313 return false; 5314 } 5315 5316 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 5317 verbose(env, "value %lld makes %s pointer be out of bounds\n", 5318 smin, reg_type_str[type]); 5319 return false; 5320 } 5321 5322 return true; 5323 } 5324 5325 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 5326 { 5327 return &env->insn_aux_data[env->insn_idx]; 5328 } 5329 5330 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 5331 u32 *ptr_limit, u8 opcode, bool off_is_neg) 5332 { 5333 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 5334 (opcode == BPF_SUB && !off_is_neg); 5335 u32 off; 5336 5337 switch (ptr_reg->type) { 5338 case PTR_TO_STACK: 5339 /* Indirect variable offset stack access is prohibited in 5340 * unprivileged mode so it's not handled here. 5341 */ 5342 off = ptr_reg->off + ptr_reg->var_off.value; 5343 if (mask_to_left) 5344 *ptr_limit = MAX_BPF_STACK + off; 5345 else 5346 *ptr_limit = -off; 5347 return 0; 5348 case PTR_TO_MAP_VALUE: 5349 if (mask_to_left) { 5350 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 5351 } else { 5352 off = ptr_reg->smin_value + ptr_reg->off; 5353 *ptr_limit = ptr_reg->map_ptr->value_size - off; 5354 } 5355 return 0; 5356 default: 5357 return -EINVAL; 5358 } 5359 } 5360 5361 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 5362 const struct bpf_insn *insn) 5363 { 5364 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 5365 } 5366 5367 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 5368 u32 alu_state, u32 alu_limit) 5369 { 5370 /* If we arrived here from different branches with different 5371 * state or limits to sanitize, then this won't work. 5372 */ 5373 if (aux->alu_state && 5374 (aux->alu_state != alu_state || 5375 aux->alu_limit != alu_limit)) 5376 return -EACCES; 5377 5378 /* Corresponding fixup done in fixup_bpf_calls(). */ 5379 aux->alu_state = alu_state; 5380 aux->alu_limit = alu_limit; 5381 return 0; 5382 } 5383 5384 static int sanitize_val_alu(struct bpf_verifier_env *env, 5385 struct bpf_insn *insn) 5386 { 5387 struct bpf_insn_aux_data *aux = cur_aux(env); 5388 5389 if (can_skip_alu_sanitation(env, insn)) 5390 return 0; 5391 5392 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 5393 } 5394 5395 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 5396 struct bpf_insn *insn, 5397 const struct bpf_reg_state *ptr_reg, 5398 struct bpf_reg_state *dst_reg, 5399 bool off_is_neg) 5400 { 5401 struct bpf_verifier_state *vstate = env->cur_state; 5402 struct bpf_insn_aux_data *aux = cur_aux(env); 5403 bool ptr_is_dst_reg = ptr_reg == dst_reg; 5404 u8 opcode = BPF_OP(insn->code); 5405 u32 alu_state, alu_limit; 5406 struct bpf_reg_state tmp; 5407 bool ret; 5408 5409 if (can_skip_alu_sanitation(env, insn)) 5410 return 0; 5411 5412 /* We already marked aux for masking from non-speculative 5413 * paths, thus we got here in the first place. We only care 5414 * to explore bad access from here. 5415 */ 5416 if (vstate->speculative) 5417 goto do_sim; 5418 5419 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 5420 alu_state |= ptr_is_dst_reg ? 5421 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 5422 5423 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 5424 return 0; 5425 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 5426 return -EACCES; 5427 do_sim: 5428 /* Simulate and find potential out-of-bounds access under 5429 * speculative execution from truncation as a result of 5430 * masking when off was not within expected range. If off 5431 * sits in dst, then we temporarily need to move ptr there 5432 * to simulate dst (== 0) +/-= ptr. Needed, for example, 5433 * for cases where we use K-based arithmetic in one direction 5434 * and truncated reg-based in the other in order to explore 5435 * bad access. 5436 */ 5437 if (!ptr_is_dst_reg) { 5438 tmp = *dst_reg; 5439 *dst_reg = *ptr_reg; 5440 } 5441 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 5442 if (!ptr_is_dst_reg && ret) 5443 *dst_reg = tmp; 5444 return !ret ? -EFAULT : 0; 5445 } 5446 5447 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 5448 * Caller should also handle BPF_MOV case separately. 5449 * If we return -EACCES, caller may want to try again treating pointer as a 5450 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 5451 */ 5452 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 5453 struct bpf_insn *insn, 5454 const struct bpf_reg_state *ptr_reg, 5455 const struct bpf_reg_state *off_reg) 5456 { 5457 struct bpf_verifier_state *vstate = env->cur_state; 5458 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5459 struct bpf_reg_state *regs = state->regs, *dst_reg; 5460 bool known = tnum_is_const(off_reg->var_off); 5461 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 5462 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 5463 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 5464 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 5465 u32 dst = insn->dst_reg, src = insn->src_reg; 5466 u8 opcode = BPF_OP(insn->code); 5467 int ret; 5468 5469 dst_reg = ®s[dst]; 5470 5471 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 5472 smin_val > smax_val || umin_val > umax_val) { 5473 /* Taint dst register if offset had invalid bounds derived from 5474 * e.g. dead branches. 5475 */ 5476 __mark_reg_unknown(env, dst_reg); 5477 return 0; 5478 } 5479 5480 if (BPF_CLASS(insn->code) != BPF_ALU64) { 5481 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 5482 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 5483 __mark_reg_unknown(env, dst_reg); 5484 return 0; 5485 } 5486 5487 verbose(env, 5488 "R%d 32-bit pointer arithmetic prohibited\n", 5489 dst); 5490 return -EACCES; 5491 } 5492 5493 switch (ptr_reg->type) { 5494 case PTR_TO_MAP_VALUE_OR_NULL: 5495 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 5496 dst, reg_type_str[ptr_reg->type]); 5497 return -EACCES; 5498 case CONST_PTR_TO_MAP: 5499 /* smin_val represents the known value */ 5500 if (known && smin_val == 0 && opcode == BPF_ADD) 5501 break; 5502 fallthrough; 5503 case PTR_TO_PACKET_END: 5504 case PTR_TO_SOCKET: 5505 case PTR_TO_SOCKET_OR_NULL: 5506 case PTR_TO_SOCK_COMMON: 5507 case PTR_TO_SOCK_COMMON_OR_NULL: 5508 case PTR_TO_TCP_SOCK: 5509 case PTR_TO_TCP_SOCK_OR_NULL: 5510 case PTR_TO_XDP_SOCK: 5511 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 5512 dst, reg_type_str[ptr_reg->type]); 5513 return -EACCES; 5514 case PTR_TO_MAP_VALUE: 5515 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 5516 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 5517 off_reg == dst_reg ? dst : src); 5518 return -EACCES; 5519 } 5520 fallthrough; 5521 default: 5522 break; 5523 } 5524 5525 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 5526 * The id may be overwritten later if we create a new variable offset. 5527 */ 5528 dst_reg->type = ptr_reg->type; 5529 dst_reg->id = ptr_reg->id; 5530 5531 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 5532 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 5533 return -EINVAL; 5534 5535 /* pointer types do not carry 32-bit bounds at the moment. */ 5536 __mark_reg32_unbounded(dst_reg); 5537 5538 switch (opcode) { 5539 case BPF_ADD: 5540 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 5541 if (ret < 0) { 5542 verbose(env, "R%d tried to add from different maps or paths\n", dst); 5543 return ret; 5544 } 5545 /* We can take a fixed offset as long as it doesn't overflow 5546 * the s32 'off' field 5547 */ 5548 if (known && (ptr_reg->off + smin_val == 5549 (s64)(s32)(ptr_reg->off + smin_val))) { 5550 /* pointer += K. Accumulate it into fixed offset */ 5551 dst_reg->smin_value = smin_ptr; 5552 dst_reg->smax_value = smax_ptr; 5553 dst_reg->umin_value = umin_ptr; 5554 dst_reg->umax_value = umax_ptr; 5555 dst_reg->var_off = ptr_reg->var_off; 5556 dst_reg->off = ptr_reg->off + smin_val; 5557 dst_reg->raw = ptr_reg->raw; 5558 break; 5559 } 5560 /* A new variable offset is created. Note that off_reg->off 5561 * == 0, since it's a scalar. 5562 * dst_reg gets the pointer type and since some positive 5563 * integer value was added to the pointer, give it a new 'id' 5564 * if it's a PTR_TO_PACKET. 5565 * this creates a new 'base' pointer, off_reg (variable) gets 5566 * added into the variable offset, and we copy the fixed offset 5567 * from ptr_reg. 5568 */ 5569 if (signed_add_overflows(smin_ptr, smin_val) || 5570 signed_add_overflows(smax_ptr, smax_val)) { 5571 dst_reg->smin_value = S64_MIN; 5572 dst_reg->smax_value = S64_MAX; 5573 } else { 5574 dst_reg->smin_value = smin_ptr + smin_val; 5575 dst_reg->smax_value = smax_ptr + smax_val; 5576 } 5577 if (umin_ptr + umin_val < umin_ptr || 5578 umax_ptr + umax_val < umax_ptr) { 5579 dst_reg->umin_value = 0; 5580 dst_reg->umax_value = U64_MAX; 5581 } else { 5582 dst_reg->umin_value = umin_ptr + umin_val; 5583 dst_reg->umax_value = umax_ptr + umax_val; 5584 } 5585 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 5586 dst_reg->off = ptr_reg->off; 5587 dst_reg->raw = ptr_reg->raw; 5588 if (reg_is_pkt_pointer(ptr_reg)) { 5589 dst_reg->id = ++env->id_gen; 5590 /* something was added to pkt_ptr, set range to zero */ 5591 dst_reg->raw = 0; 5592 } 5593 break; 5594 case BPF_SUB: 5595 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 5596 if (ret < 0) { 5597 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 5598 return ret; 5599 } 5600 if (dst_reg == off_reg) { 5601 /* scalar -= pointer. Creates an unknown scalar */ 5602 verbose(env, "R%d tried to subtract pointer from scalar\n", 5603 dst); 5604 return -EACCES; 5605 } 5606 /* We don't allow subtraction from FP, because (according to 5607 * test_verifier.c test "invalid fp arithmetic", JITs might not 5608 * be able to deal with it. 5609 */ 5610 if (ptr_reg->type == PTR_TO_STACK) { 5611 verbose(env, "R%d subtraction from stack pointer prohibited\n", 5612 dst); 5613 return -EACCES; 5614 } 5615 if (known && (ptr_reg->off - smin_val == 5616 (s64)(s32)(ptr_reg->off - smin_val))) { 5617 /* pointer -= K. Subtract it from fixed offset */ 5618 dst_reg->smin_value = smin_ptr; 5619 dst_reg->smax_value = smax_ptr; 5620 dst_reg->umin_value = umin_ptr; 5621 dst_reg->umax_value = umax_ptr; 5622 dst_reg->var_off = ptr_reg->var_off; 5623 dst_reg->id = ptr_reg->id; 5624 dst_reg->off = ptr_reg->off - smin_val; 5625 dst_reg->raw = ptr_reg->raw; 5626 break; 5627 } 5628 /* A new variable offset is created. If the subtrahend is known 5629 * nonnegative, then any reg->range we had before is still good. 5630 */ 5631 if (signed_sub_overflows(smin_ptr, smax_val) || 5632 signed_sub_overflows(smax_ptr, smin_val)) { 5633 /* Overflow possible, we know nothing */ 5634 dst_reg->smin_value = S64_MIN; 5635 dst_reg->smax_value = S64_MAX; 5636 } else { 5637 dst_reg->smin_value = smin_ptr - smax_val; 5638 dst_reg->smax_value = smax_ptr - smin_val; 5639 } 5640 if (umin_ptr < umax_val) { 5641 /* Overflow possible, we know nothing */ 5642 dst_reg->umin_value = 0; 5643 dst_reg->umax_value = U64_MAX; 5644 } else { 5645 /* Cannot overflow (as long as bounds are consistent) */ 5646 dst_reg->umin_value = umin_ptr - umax_val; 5647 dst_reg->umax_value = umax_ptr - umin_val; 5648 } 5649 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 5650 dst_reg->off = ptr_reg->off; 5651 dst_reg->raw = ptr_reg->raw; 5652 if (reg_is_pkt_pointer(ptr_reg)) { 5653 dst_reg->id = ++env->id_gen; 5654 /* something was added to pkt_ptr, set range to zero */ 5655 if (smin_val < 0) 5656 dst_reg->raw = 0; 5657 } 5658 break; 5659 case BPF_AND: 5660 case BPF_OR: 5661 case BPF_XOR: 5662 /* bitwise ops on pointers are troublesome, prohibit. */ 5663 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 5664 dst, bpf_alu_string[opcode >> 4]); 5665 return -EACCES; 5666 default: 5667 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 5668 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 5669 dst, bpf_alu_string[opcode >> 4]); 5670 return -EACCES; 5671 } 5672 5673 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 5674 return -EINVAL; 5675 5676 __update_reg_bounds(dst_reg); 5677 __reg_deduce_bounds(dst_reg); 5678 __reg_bound_offset(dst_reg); 5679 5680 /* For unprivileged we require that resulting offset must be in bounds 5681 * in order to be able to sanitize access later on. 5682 */ 5683 if (!env->bypass_spec_v1) { 5684 if (dst_reg->type == PTR_TO_MAP_VALUE && 5685 check_map_access(env, dst, dst_reg->off, 1, false)) { 5686 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 5687 "prohibited for !root\n", dst); 5688 return -EACCES; 5689 } else if (dst_reg->type == PTR_TO_STACK && 5690 check_stack_access(env, dst_reg, dst_reg->off + 5691 dst_reg->var_off.value, 1)) { 5692 verbose(env, "R%d stack pointer arithmetic goes out of range, " 5693 "prohibited for !root\n", dst); 5694 return -EACCES; 5695 } 5696 } 5697 5698 return 0; 5699 } 5700 5701 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 5702 struct bpf_reg_state *src_reg) 5703 { 5704 s32 smin_val = src_reg->s32_min_value; 5705 s32 smax_val = src_reg->s32_max_value; 5706 u32 umin_val = src_reg->u32_min_value; 5707 u32 umax_val = src_reg->u32_max_value; 5708 5709 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 5710 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 5711 dst_reg->s32_min_value = S32_MIN; 5712 dst_reg->s32_max_value = S32_MAX; 5713 } else { 5714 dst_reg->s32_min_value += smin_val; 5715 dst_reg->s32_max_value += smax_val; 5716 } 5717 if (dst_reg->u32_min_value + umin_val < umin_val || 5718 dst_reg->u32_max_value + umax_val < umax_val) { 5719 dst_reg->u32_min_value = 0; 5720 dst_reg->u32_max_value = U32_MAX; 5721 } else { 5722 dst_reg->u32_min_value += umin_val; 5723 dst_reg->u32_max_value += umax_val; 5724 } 5725 } 5726 5727 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 5728 struct bpf_reg_state *src_reg) 5729 { 5730 s64 smin_val = src_reg->smin_value; 5731 s64 smax_val = src_reg->smax_value; 5732 u64 umin_val = src_reg->umin_value; 5733 u64 umax_val = src_reg->umax_value; 5734 5735 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 5736 signed_add_overflows(dst_reg->smax_value, smax_val)) { 5737 dst_reg->smin_value = S64_MIN; 5738 dst_reg->smax_value = S64_MAX; 5739 } else { 5740 dst_reg->smin_value += smin_val; 5741 dst_reg->smax_value += smax_val; 5742 } 5743 if (dst_reg->umin_value + umin_val < umin_val || 5744 dst_reg->umax_value + umax_val < umax_val) { 5745 dst_reg->umin_value = 0; 5746 dst_reg->umax_value = U64_MAX; 5747 } else { 5748 dst_reg->umin_value += umin_val; 5749 dst_reg->umax_value += umax_val; 5750 } 5751 } 5752 5753 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 5754 struct bpf_reg_state *src_reg) 5755 { 5756 s32 smin_val = src_reg->s32_min_value; 5757 s32 smax_val = src_reg->s32_max_value; 5758 u32 umin_val = src_reg->u32_min_value; 5759 u32 umax_val = src_reg->u32_max_value; 5760 5761 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 5762 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 5763 /* Overflow possible, we know nothing */ 5764 dst_reg->s32_min_value = S32_MIN; 5765 dst_reg->s32_max_value = S32_MAX; 5766 } else { 5767 dst_reg->s32_min_value -= smax_val; 5768 dst_reg->s32_max_value -= smin_val; 5769 } 5770 if (dst_reg->u32_min_value < umax_val) { 5771 /* Overflow possible, we know nothing */ 5772 dst_reg->u32_min_value = 0; 5773 dst_reg->u32_max_value = U32_MAX; 5774 } else { 5775 /* Cannot overflow (as long as bounds are consistent) */ 5776 dst_reg->u32_min_value -= umax_val; 5777 dst_reg->u32_max_value -= umin_val; 5778 } 5779 } 5780 5781 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 5782 struct bpf_reg_state *src_reg) 5783 { 5784 s64 smin_val = src_reg->smin_value; 5785 s64 smax_val = src_reg->smax_value; 5786 u64 umin_val = src_reg->umin_value; 5787 u64 umax_val = src_reg->umax_value; 5788 5789 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 5790 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 5791 /* Overflow possible, we know nothing */ 5792 dst_reg->smin_value = S64_MIN; 5793 dst_reg->smax_value = S64_MAX; 5794 } else { 5795 dst_reg->smin_value -= smax_val; 5796 dst_reg->smax_value -= smin_val; 5797 } 5798 if (dst_reg->umin_value < umax_val) { 5799 /* Overflow possible, we know nothing */ 5800 dst_reg->umin_value = 0; 5801 dst_reg->umax_value = U64_MAX; 5802 } else { 5803 /* Cannot overflow (as long as bounds are consistent) */ 5804 dst_reg->umin_value -= umax_val; 5805 dst_reg->umax_value -= umin_val; 5806 } 5807 } 5808 5809 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 5810 struct bpf_reg_state *src_reg) 5811 { 5812 s32 smin_val = src_reg->s32_min_value; 5813 u32 umin_val = src_reg->u32_min_value; 5814 u32 umax_val = src_reg->u32_max_value; 5815 5816 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 5817 /* Ain't nobody got time to multiply that sign */ 5818 __mark_reg32_unbounded(dst_reg); 5819 return; 5820 } 5821 /* Both values are positive, so we can work with unsigned and 5822 * copy the result to signed (unless it exceeds S32_MAX). 5823 */ 5824 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 5825 /* Potential overflow, we know nothing */ 5826 __mark_reg32_unbounded(dst_reg); 5827 return; 5828 } 5829 dst_reg->u32_min_value *= umin_val; 5830 dst_reg->u32_max_value *= umax_val; 5831 if (dst_reg->u32_max_value > S32_MAX) { 5832 /* Overflow possible, we know nothing */ 5833 dst_reg->s32_min_value = S32_MIN; 5834 dst_reg->s32_max_value = S32_MAX; 5835 } else { 5836 dst_reg->s32_min_value = dst_reg->u32_min_value; 5837 dst_reg->s32_max_value = dst_reg->u32_max_value; 5838 } 5839 } 5840 5841 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 5842 struct bpf_reg_state *src_reg) 5843 { 5844 s64 smin_val = src_reg->smin_value; 5845 u64 umin_val = src_reg->umin_value; 5846 u64 umax_val = src_reg->umax_value; 5847 5848 if (smin_val < 0 || dst_reg->smin_value < 0) { 5849 /* Ain't nobody got time to multiply that sign */ 5850 __mark_reg64_unbounded(dst_reg); 5851 return; 5852 } 5853 /* Both values are positive, so we can work with unsigned and 5854 * copy the result to signed (unless it exceeds S64_MAX). 5855 */ 5856 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 5857 /* Potential overflow, we know nothing */ 5858 __mark_reg64_unbounded(dst_reg); 5859 return; 5860 } 5861 dst_reg->umin_value *= umin_val; 5862 dst_reg->umax_value *= umax_val; 5863 if (dst_reg->umax_value > S64_MAX) { 5864 /* Overflow possible, we know nothing */ 5865 dst_reg->smin_value = S64_MIN; 5866 dst_reg->smax_value = S64_MAX; 5867 } else { 5868 dst_reg->smin_value = dst_reg->umin_value; 5869 dst_reg->smax_value = dst_reg->umax_value; 5870 } 5871 } 5872 5873 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 5874 struct bpf_reg_state *src_reg) 5875 { 5876 bool src_known = tnum_subreg_is_const(src_reg->var_off); 5877 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 5878 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 5879 s32 smin_val = src_reg->s32_min_value; 5880 u32 umax_val = src_reg->u32_max_value; 5881 5882 /* Assuming scalar64_min_max_and will be called so its safe 5883 * to skip updating register for known 32-bit case. 5884 */ 5885 if (src_known && dst_known) 5886 return; 5887 5888 /* We get our minimum from the var_off, since that's inherently 5889 * bitwise. Our maximum is the minimum of the operands' maxima. 5890 */ 5891 dst_reg->u32_min_value = var32_off.value; 5892 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 5893 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 5894 /* Lose signed bounds when ANDing negative numbers, 5895 * ain't nobody got time for that. 5896 */ 5897 dst_reg->s32_min_value = S32_MIN; 5898 dst_reg->s32_max_value = S32_MAX; 5899 } else { 5900 /* ANDing two positives gives a positive, so safe to 5901 * cast result into s64. 5902 */ 5903 dst_reg->s32_min_value = dst_reg->u32_min_value; 5904 dst_reg->s32_max_value = dst_reg->u32_max_value; 5905 } 5906 5907 } 5908 5909 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 5910 struct bpf_reg_state *src_reg) 5911 { 5912 bool src_known = tnum_is_const(src_reg->var_off); 5913 bool dst_known = tnum_is_const(dst_reg->var_off); 5914 s64 smin_val = src_reg->smin_value; 5915 u64 umax_val = src_reg->umax_value; 5916 5917 if (src_known && dst_known) { 5918 __mark_reg_known(dst_reg, dst_reg->var_off.value); 5919 return; 5920 } 5921 5922 /* We get our minimum from the var_off, since that's inherently 5923 * bitwise. Our maximum is the minimum of the operands' maxima. 5924 */ 5925 dst_reg->umin_value = dst_reg->var_off.value; 5926 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 5927 if (dst_reg->smin_value < 0 || smin_val < 0) { 5928 /* Lose signed bounds when ANDing negative numbers, 5929 * ain't nobody got time for that. 5930 */ 5931 dst_reg->smin_value = S64_MIN; 5932 dst_reg->smax_value = S64_MAX; 5933 } else { 5934 /* ANDing two positives gives a positive, so safe to 5935 * cast result into s64. 5936 */ 5937 dst_reg->smin_value = dst_reg->umin_value; 5938 dst_reg->smax_value = dst_reg->umax_value; 5939 } 5940 /* We may learn something more from the var_off */ 5941 __update_reg_bounds(dst_reg); 5942 } 5943 5944 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 5945 struct bpf_reg_state *src_reg) 5946 { 5947 bool src_known = tnum_subreg_is_const(src_reg->var_off); 5948 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 5949 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 5950 s32 smin_val = src_reg->s32_min_value; 5951 u32 umin_val = src_reg->u32_min_value; 5952 5953 /* Assuming scalar64_min_max_or will be called so it is safe 5954 * to skip updating register for known case. 5955 */ 5956 if (src_known && dst_known) 5957 return; 5958 5959 /* We get our maximum from the var_off, and our minimum is the 5960 * maximum of the operands' minima 5961 */ 5962 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 5963 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 5964 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 5965 /* Lose signed bounds when ORing negative numbers, 5966 * ain't nobody got time for that. 5967 */ 5968 dst_reg->s32_min_value = S32_MIN; 5969 dst_reg->s32_max_value = S32_MAX; 5970 } else { 5971 /* ORing two positives gives a positive, so safe to 5972 * cast result into s64. 5973 */ 5974 dst_reg->s32_min_value = dst_reg->u32_min_value; 5975 dst_reg->s32_max_value = dst_reg->u32_max_value; 5976 } 5977 } 5978 5979 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 5980 struct bpf_reg_state *src_reg) 5981 { 5982 bool src_known = tnum_is_const(src_reg->var_off); 5983 bool dst_known = tnum_is_const(dst_reg->var_off); 5984 s64 smin_val = src_reg->smin_value; 5985 u64 umin_val = src_reg->umin_value; 5986 5987 if (src_known && dst_known) { 5988 __mark_reg_known(dst_reg, dst_reg->var_off.value); 5989 return; 5990 } 5991 5992 /* We get our maximum from the var_off, and our minimum is the 5993 * maximum of the operands' minima 5994 */ 5995 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 5996 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 5997 if (dst_reg->smin_value < 0 || smin_val < 0) { 5998 /* Lose signed bounds when ORing negative numbers, 5999 * ain't nobody got time for that. 6000 */ 6001 dst_reg->smin_value = S64_MIN; 6002 dst_reg->smax_value = S64_MAX; 6003 } else { 6004 /* ORing two positives gives a positive, so safe to 6005 * cast result into s64. 6006 */ 6007 dst_reg->smin_value = dst_reg->umin_value; 6008 dst_reg->smax_value = dst_reg->umax_value; 6009 } 6010 /* We may learn something more from the var_off */ 6011 __update_reg_bounds(dst_reg); 6012 } 6013 6014 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 6015 struct bpf_reg_state *src_reg) 6016 { 6017 bool src_known = tnum_subreg_is_const(src_reg->var_off); 6018 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 6019 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 6020 s32 smin_val = src_reg->s32_min_value; 6021 6022 /* Assuming scalar64_min_max_xor will be called so it is safe 6023 * to skip updating register for known case. 6024 */ 6025 if (src_known && dst_known) 6026 return; 6027 6028 /* We get both minimum and maximum from the var32_off. */ 6029 dst_reg->u32_min_value = var32_off.value; 6030 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 6031 6032 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 6033 /* XORing two positive sign numbers gives a positive, 6034 * so safe to cast u32 result into s32. 6035 */ 6036 dst_reg->s32_min_value = dst_reg->u32_min_value; 6037 dst_reg->s32_max_value = dst_reg->u32_max_value; 6038 } else { 6039 dst_reg->s32_min_value = S32_MIN; 6040 dst_reg->s32_max_value = S32_MAX; 6041 } 6042 } 6043 6044 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 6045 struct bpf_reg_state *src_reg) 6046 { 6047 bool src_known = tnum_is_const(src_reg->var_off); 6048 bool dst_known = tnum_is_const(dst_reg->var_off); 6049 s64 smin_val = src_reg->smin_value; 6050 6051 if (src_known && dst_known) { 6052 /* dst_reg->var_off.value has been updated earlier */ 6053 __mark_reg_known(dst_reg, dst_reg->var_off.value); 6054 return; 6055 } 6056 6057 /* We get both minimum and maximum from the var_off. */ 6058 dst_reg->umin_value = dst_reg->var_off.value; 6059 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 6060 6061 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 6062 /* XORing two positive sign numbers gives a positive, 6063 * so safe to cast u64 result into s64. 6064 */ 6065 dst_reg->smin_value = dst_reg->umin_value; 6066 dst_reg->smax_value = dst_reg->umax_value; 6067 } else { 6068 dst_reg->smin_value = S64_MIN; 6069 dst_reg->smax_value = S64_MAX; 6070 } 6071 6072 __update_reg_bounds(dst_reg); 6073 } 6074 6075 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 6076 u64 umin_val, u64 umax_val) 6077 { 6078 /* We lose all sign bit information (except what we can pick 6079 * up from var_off) 6080 */ 6081 dst_reg->s32_min_value = S32_MIN; 6082 dst_reg->s32_max_value = S32_MAX; 6083 /* If we might shift our top bit out, then we know nothing */ 6084 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 6085 dst_reg->u32_min_value = 0; 6086 dst_reg->u32_max_value = U32_MAX; 6087 } else { 6088 dst_reg->u32_min_value <<= umin_val; 6089 dst_reg->u32_max_value <<= umax_val; 6090 } 6091 } 6092 6093 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 6094 struct bpf_reg_state *src_reg) 6095 { 6096 u32 umax_val = src_reg->u32_max_value; 6097 u32 umin_val = src_reg->u32_min_value; 6098 /* u32 alu operation will zext upper bits */ 6099 struct tnum subreg = tnum_subreg(dst_reg->var_off); 6100 6101 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 6102 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 6103 /* Not required but being careful mark reg64 bounds as unknown so 6104 * that we are forced to pick them up from tnum and zext later and 6105 * if some path skips this step we are still safe. 6106 */ 6107 __mark_reg64_unbounded(dst_reg); 6108 __update_reg32_bounds(dst_reg); 6109 } 6110 6111 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 6112 u64 umin_val, u64 umax_val) 6113 { 6114 /* Special case <<32 because it is a common compiler pattern to sign 6115 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 6116 * positive we know this shift will also be positive so we can track 6117 * bounds correctly. Otherwise we lose all sign bit information except 6118 * what we can pick up from var_off. Perhaps we can generalize this 6119 * later to shifts of any length. 6120 */ 6121 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 6122 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 6123 else 6124 dst_reg->smax_value = S64_MAX; 6125 6126 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 6127 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 6128 else 6129 dst_reg->smin_value = S64_MIN; 6130 6131 /* If we might shift our top bit out, then we know nothing */ 6132 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 6133 dst_reg->umin_value = 0; 6134 dst_reg->umax_value = U64_MAX; 6135 } else { 6136 dst_reg->umin_value <<= umin_val; 6137 dst_reg->umax_value <<= umax_val; 6138 } 6139 } 6140 6141 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 6142 struct bpf_reg_state *src_reg) 6143 { 6144 u64 umax_val = src_reg->umax_value; 6145 u64 umin_val = src_reg->umin_value; 6146 6147 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 6148 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 6149 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 6150 6151 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 6152 /* We may learn something more from the var_off */ 6153 __update_reg_bounds(dst_reg); 6154 } 6155 6156 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 6157 struct bpf_reg_state *src_reg) 6158 { 6159 struct tnum subreg = tnum_subreg(dst_reg->var_off); 6160 u32 umax_val = src_reg->u32_max_value; 6161 u32 umin_val = src_reg->u32_min_value; 6162 6163 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 6164 * be negative, then either: 6165 * 1) src_reg might be zero, so the sign bit of the result is 6166 * unknown, so we lose our signed bounds 6167 * 2) it's known negative, thus the unsigned bounds capture the 6168 * signed bounds 6169 * 3) the signed bounds cross zero, so they tell us nothing 6170 * about the result 6171 * If the value in dst_reg is known nonnegative, then again the 6172 * unsigned bounts capture the signed bounds. 6173 * Thus, in all cases it suffices to blow away our signed bounds 6174 * and rely on inferring new ones from the unsigned bounds and 6175 * var_off of the result. 6176 */ 6177 dst_reg->s32_min_value = S32_MIN; 6178 dst_reg->s32_max_value = S32_MAX; 6179 6180 dst_reg->var_off = tnum_rshift(subreg, umin_val); 6181 dst_reg->u32_min_value >>= umax_val; 6182 dst_reg->u32_max_value >>= umin_val; 6183 6184 __mark_reg64_unbounded(dst_reg); 6185 __update_reg32_bounds(dst_reg); 6186 } 6187 6188 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 6189 struct bpf_reg_state *src_reg) 6190 { 6191 u64 umax_val = src_reg->umax_value; 6192 u64 umin_val = src_reg->umin_value; 6193 6194 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 6195 * be negative, then either: 6196 * 1) src_reg might be zero, so the sign bit of the result is 6197 * unknown, so we lose our signed bounds 6198 * 2) it's known negative, thus the unsigned bounds capture the 6199 * signed bounds 6200 * 3) the signed bounds cross zero, so they tell us nothing 6201 * about the result 6202 * If the value in dst_reg is known nonnegative, then again the 6203 * unsigned bounts capture the signed bounds. 6204 * Thus, in all cases it suffices to blow away our signed bounds 6205 * and rely on inferring new ones from the unsigned bounds and 6206 * var_off of the result. 6207 */ 6208 dst_reg->smin_value = S64_MIN; 6209 dst_reg->smax_value = S64_MAX; 6210 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 6211 dst_reg->umin_value >>= umax_val; 6212 dst_reg->umax_value >>= umin_val; 6213 6214 /* Its not easy to operate on alu32 bounds here because it depends 6215 * on bits being shifted in. Take easy way out and mark unbounded 6216 * so we can recalculate later from tnum. 6217 */ 6218 __mark_reg32_unbounded(dst_reg); 6219 __update_reg_bounds(dst_reg); 6220 } 6221 6222 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 6223 struct bpf_reg_state *src_reg) 6224 { 6225 u64 umin_val = src_reg->u32_min_value; 6226 6227 /* Upon reaching here, src_known is true and 6228 * umax_val is equal to umin_val. 6229 */ 6230 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 6231 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 6232 6233 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 6234 6235 /* blow away the dst_reg umin_value/umax_value and rely on 6236 * dst_reg var_off to refine the result. 6237 */ 6238 dst_reg->u32_min_value = 0; 6239 dst_reg->u32_max_value = U32_MAX; 6240 6241 __mark_reg64_unbounded(dst_reg); 6242 __update_reg32_bounds(dst_reg); 6243 } 6244 6245 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 6246 struct bpf_reg_state *src_reg) 6247 { 6248 u64 umin_val = src_reg->umin_value; 6249 6250 /* Upon reaching here, src_known is true and umax_val is equal 6251 * to umin_val. 6252 */ 6253 dst_reg->smin_value >>= umin_val; 6254 dst_reg->smax_value >>= umin_val; 6255 6256 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 6257 6258 /* blow away the dst_reg umin_value/umax_value and rely on 6259 * dst_reg var_off to refine the result. 6260 */ 6261 dst_reg->umin_value = 0; 6262 dst_reg->umax_value = U64_MAX; 6263 6264 /* Its not easy to operate on alu32 bounds here because it depends 6265 * on bits being shifted in from upper 32-bits. Take easy way out 6266 * and mark unbounded so we can recalculate later from tnum. 6267 */ 6268 __mark_reg32_unbounded(dst_reg); 6269 __update_reg_bounds(dst_reg); 6270 } 6271 6272 /* WARNING: This function does calculations on 64-bit values, but the actual 6273 * execution may occur on 32-bit values. Therefore, things like bitshifts 6274 * need extra checks in the 32-bit case. 6275 */ 6276 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 6277 struct bpf_insn *insn, 6278 struct bpf_reg_state *dst_reg, 6279 struct bpf_reg_state src_reg) 6280 { 6281 struct bpf_reg_state *regs = cur_regs(env); 6282 u8 opcode = BPF_OP(insn->code); 6283 bool src_known; 6284 s64 smin_val, smax_val; 6285 u64 umin_val, umax_val; 6286 s32 s32_min_val, s32_max_val; 6287 u32 u32_min_val, u32_max_val; 6288 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 6289 u32 dst = insn->dst_reg; 6290 int ret; 6291 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 6292 6293 smin_val = src_reg.smin_value; 6294 smax_val = src_reg.smax_value; 6295 umin_val = src_reg.umin_value; 6296 umax_val = src_reg.umax_value; 6297 6298 s32_min_val = src_reg.s32_min_value; 6299 s32_max_val = src_reg.s32_max_value; 6300 u32_min_val = src_reg.u32_min_value; 6301 u32_max_val = src_reg.u32_max_value; 6302 6303 if (alu32) { 6304 src_known = tnum_subreg_is_const(src_reg.var_off); 6305 if ((src_known && 6306 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 6307 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 6308 /* Taint dst register if offset had invalid bounds 6309 * derived from e.g. dead branches. 6310 */ 6311 __mark_reg_unknown(env, dst_reg); 6312 return 0; 6313 } 6314 } else { 6315 src_known = tnum_is_const(src_reg.var_off); 6316 if ((src_known && 6317 (smin_val != smax_val || umin_val != umax_val)) || 6318 smin_val > smax_val || umin_val > umax_val) { 6319 /* Taint dst register if offset had invalid bounds 6320 * derived from e.g. dead branches. 6321 */ 6322 __mark_reg_unknown(env, dst_reg); 6323 return 0; 6324 } 6325 } 6326 6327 if (!src_known && 6328 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 6329 __mark_reg_unknown(env, dst_reg); 6330 return 0; 6331 } 6332 6333 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 6334 * There are two classes of instructions: The first class we track both 6335 * alu32 and alu64 sign/unsigned bounds independently this provides the 6336 * greatest amount of precision when alu operations are mixed with jmp32 6337 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 6338 * and BPF_OR. This is possible because these ops have fairly easy to 6339 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 6340 * See alu32 verifier tests for examples. The second class of 6341 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 6342 * with regards to tracking sign/unsigned bounds because the bits may 6343 * cross subreg boundaries in the alu64 case. When this happens we mark 6344 * the reg unbounded in the subreg bound space and use the resulting 6345 * tnum to calculate an approximation of the sign/unsigned bounds. 6346 */ 6347 switch (opcode) { 6348 case BPF_ADD: 6349 ret = sanitize_val_alu(env, insn); 6350 if (ret < 0) { 6351 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 6352 return ret; 6353 } 6354 scalar32_min_max_add(dst_reg, &src_reg); 6355 scalar_min_max_add(dst_reg, &src_reg); 6356 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 6357 break; 6358 case BPF_SUB: 6359 ret = sanitize_val_alu(env, insn); 6360 if (ret < 0) { 6361 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 6362 return ret; 6363 } 6364 scalar32_min_max_sub(dst_reg, &src_reg); 6365 scalar_min_max_sub(dst_reg, &src_reg); 6366 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 6367 break; 6368 case BPF_MUL: 6369 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 6370 scalar32_min_max_mul(dst_reg, &src_reg); 6371 scalar_min_max_mul(dst_reg, &src_reg); 6372 break; 6373 case BPF_AND: 6374 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 6375 scalar32_min_max_and(dst_reg, &src_reg); 6376 scalar_min_max_and(dst_reg, &src_reg); 6377 break; 6378 case BPF_OR: 6379 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 6380 scalar32_min_max_or(dst_reg, &src_reg); 6381 scalar_min_max_or(dst_reg, &src_reg); 6382 break; 6383 case BPF_XOR: 6384 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 6385 scalar32_min_max_xor(dst_reg, &src_reg); 6386 scalar_min_max_xor(dst_reg, &src_reg); 6387 break; 6388 case BPF_LSH: 6389 if (umax_val >= insn_bitness) { 6390 /* Shifts greater than 31 or 63 are undefined. 6391 * This includes shifts by a negative number. 6392 */ 6393 mark_reg_unknown(env, regs, insn->dst_reg); 6394 break; 6395 } 6396 if (alu32) 6397 scalar32_min_max_lsh(dst_reg, &src_reg); 6398 else 6399 scalar_min_max_lsh(dst_reg, &src_reg); 6400 break; 6401 case BPF_RSH: 6402 if (umax_val >= insn_bitness) { 6403 /* Shifts greater than 31 or 63 are undefined. 6404 * This includes shifts by a negative number. 6405 */ 6406 mark_reg_unknown(env, regs, insn->dst_reg); 6407 break; 6408 } 6409 if (alu32) 6410 scalar32_min_max_rsh(dst_reg, &src_reg); 6411 else 6412 scalar_min_max_rsh(dst_reg, &src_reg); 6413 break; 6414 case BPF_ARSH: 6415 if (umax_val >= insn_bitness) { 6416 /* Shifts greater than 31 or 63 are undefined. 6417 * This includes shifts by a negative number. 6418 */ 6419 mark_reg_unknown(env, regs, insn->dst_reg); 6420 break; 6421 } 6422 if (alu32) 6423 scalar32_min_max_arsh(dst_reg, &src_reg); 6424 else 6425 scalar_min_max_arsh(dst_reg, &src_reg); 6426 break; 6427 default: 6428 mark_reg_unknown(env, regs, insn->dst_reg); 6429 break; 6430 } 6431 6432 /* ALU32 ops are zero extended into 64bit register */ 6433 if (alu32) 6434 zext_32_to_64(dst_reg); 6435 6436 __update_reg_bounds(dst_reg); 6437 __reg_deduce_bounds(dst_reg); 6438 __reg_bound_offset(dst_reg); 6439 return 0; 6440 } 6441 6442 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 6443 * and var_off. 6444 */ 6445 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 6446 struct bpf_insn *insn) 6447 { 6448 struct bpf_verifier_state *vstate = env->cur_state; 6449 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6450 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 6451 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 6452 u8 opcode = BPF_OP(insn->code); 6453 int err; 6454 6455 dst_reg = ®s[insn->dst_reg]; 6456 src_reg = NULL; 6457 if (dst_reg->type != SCALAR_VALUE) 6458 ptr_reg = dst_reg; 6459 else 6460 /* Make sure ID is cleared otherwise dst_reg min/max could be 6461 * incorrectly propagated into other registers by find_equal_scalars() 6462 */ 6463 dst_reg->id = 0; 6464 if (BPF_SRC(insn->code) == BPF_X) { 6465 src_reg = ®s[insn->src_reg]; 6466 if (src_reg->type != SCALAR_VALUE) { 6467 if (dst_reg->type != SCALAR_VALUE) { 6468 /* Combining two pointers by any ALU op yields 6469 * an arbitrary scalar. Disallow all math except 6470 * pointer subtraction 6471 */ 6472 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 6473 mark_reg_unknown(env, regs, insn->dst_reg); 6474 return 0; 6475 } 6476 verbose(env, "R%d pointer %s pointer prohibited\n", 6477 insn->dst_reg, 6478 bpf_alu_string[opcode >> 4]); 6479 return -EACCES; 6480 } else { 6481 /* scalar += pointer 6482 * This is legal, but we have to reverse our 6483 * src/dest handling in computing the range 6484 */ 6485 err = mark_chain_precision(env, insn->dst_reg); 6486 if (err) 6487 return err; 6488 return adjust_ptr_min_max_vals(env, insn, 6489 src_reg, dst_reg); 6490 } 6491 } else if (ptr_reg) { 6492 /* pointer += scalar */ 6493 err = mark_chain_precision(env, insn->src_reg); 6494 if (err) 6495 return err; 6496 return adjust_ptr_min_max_vals(env, insn, 6497 dst_reg, src_reg); 6498 } 6499 } else { 6500 /* Pretend the src is a reg with a known value, since we only 6501 * need to be able to read from this state. 6502 */ 6503 off_reg.type = SCALAR_VALUE; 6504 __mark_reg_known(&off_reg, insn->imm); 6505 src_reg = &off_reg; 6506 if (ptr_reg) /* pointer += K */ 6507 return adjust_ptr_min_max_vals(env, insn, 6508 ptr_reg, src_reg); 6509 } 6510 6511 /* Got here implies adding two SCALAR_VALUEs */ 6512 if (WARN_ON_ONCE(ptr_reg)) { 6513 print_verifier_state(env, state); 6514 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 6515 return -EINVAL; 6516 } 6517 if (WARN_ON(!src_reg)) { 6518 print_verifier_state(env, state); 6519 verbose(env, "verifier internal error: no src_reg\n"); 6520 return -EINVAL; 6521 } 6522 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 6523 } 6524 6525 /* check validity of 32-bit and 64-bit arithmetic operations */ 6526 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 6527 { 6528 struct bpf_reg_state *regs = cur_regs(env); 6529 u8 opcode = BPF_OP(insn->code); 6530 int err; 6531 6532 if (opcode == BPF_END || opcode == BPF_NEG) { 6533 if (opcode == BPF_NEG) { 6534 if (BPF_SRC(insn->code) != 0 || 6535 insn->src_reg != BPF_REG_0 || 6536 insn->off != 0 || insn->imm != 0) { 6537 verbose(env, "BPF_NEG uses reserved fields\n"); 6538 return -EINVAL; 6539 } 6540 } else { 6541 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 6542 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 6543 BPF_CLASS(insn->code) == BPF_ALU64) { 6544 verbose(env, "BPF_END uses reserved fields\n"); 6545 return -EINVAL; 6546 } 6547 } 6548 6549 /* check src operand */ 6550 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6551 if (err) 6552 return err; 6553 6554 if (is_pointer_value(env, insn->dst_reg)) { 6555 verbose(env, "R%d pointer arithmetic prohibited\n", 6556 insn->dst_reg); 6557 return -EACCES; 6558 } 6559 6560 /* check dest operand */ 6561 err = check_reg_arg(env, insn->dst_reg, DST_OP); 6562 if (err) 6563 return err; 6564 6565 } else if (opcode == BPF_MOV) { 6566 6567 if (BPF_SRC(insn->code) == BPF_X) { 6568 if (insn->imm != 0 || insn->off != 0) { 6569 verbose(env, "BPF_MOV uses reserved fields\n"); 6570 return -EINVAL; 6571 } 6572 6573 /* check src operand */ 6574 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6575 if (err) 6576 return err; 6577 } else { 6578 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 6579 verbose(env, "BPF_MOV uses reserved fields\n"); 6580 return -EINVAL; 6581 } 6582 } 6583 6584 /* check dest operand, mark as required later */ 6585 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 6586 if (err) 6587 return err; 6588 6589 if (BPF_SRC(insn->code) == BPF_X) { 6590 struct bpf_reg_state *src_reg = regs + insn->src_reg; 6591 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 6592 6593 if (BPF_CLASS(insn->code) == BPF_ALU64) { 6594 /* case: R1 = R2 6595 * copy register state to dest reg 6596 */ 6597 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 6598 /* Assign src and dst registers the same ID 6599 * that will be used by find_equal_scalars() 6600 * to propagate min/max range. 6601 */ 6602 src_reg->id = ++env->id_gen; 6603 *dst_reg = *src_reg; 6604 dst_reg->live |= REG_LIVE_WRITTEN; 6605 dst_reg->subreg_def = DEF_NOT_SUBREG; 6606 } else { 6607 /* R1 = (u32) R2 */ 6608 if (is_pointer_value(env, insn->src_reg)) { 6609 verbose(env, 6610 "R%d partial copy of pointer\n", 6611 insn->src_reg); 6612 return -EACCES; 6613 } else if (src_reg->type == SCALAR_VALUE) { 6614 *dst_reg = *src_reg; 6615 /* Make sure ID is cleared otherwise 6616 * dst_reg min/max could be incorrectly 6617 * propagated into src_reg by find_equal_scalars() 6618 */ 6619 dst_reg->id = 0; 6620 dst_reg->live |= REG_LIVE_WRITTEN; 6621 dst_reg->subreg_def = env->insn_idx + 1; 6622 } else { 6623 mark_reg_unknown(env, regs, 6624 insn->dst_reg); 6625 } 6626 zext_32_to_64(dst_reg); 6627 } 6628 } else { 6629 /* case: R = imm 6630 * remember the value we stored into this reg 6631 */ 6632 /* clear any state __mark_reg_known doesn't set */ 6633 mark_reg_unknown(env, regs, insn->dst_reg); 6634 regs[insn->dst_reg].type = SCALAR_VALUE; 6635 if (BPF_CLASS(insn->code) == BPF_ALU64) { 6636 __mark_reg_known(regs + insn->dst_reg, 6637 insn->imm); 6638 } else { 6639 __mark_reg_known(regs + insn->dst_reg, 6640 (u32)insn->imm); 6641 } 6642 } 6643 6644 } else if (opcode > BPF_END) { 6645 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 6646 return -EINVAL; 6647 6648 } else { /* all other ALU ops: and, sub, xor, add, ... */ 6649 6650 if (BPF_SRC(insn->code) == BPF_X) { 6651 if (insn->imm != 0 || insn->off != 0) { 6652 verbose(env, "BPF_ALU uses reserved fields\n"); 6653 return -EINVAL; 6654 } 6655 /* check src1 operand */ 6656 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6657 if (err) 6658 return err; 6659 } else { 6660 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 6661 verbose(env, "BPF_ALU uses reserved fields\n"); 6662 return -EINVAL; 6663 } 6664 } 6665 6666 /* check src2 operand */ 6667 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6668 if (err) 6669 return err; 6670 6671 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 6672 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 6673 verbose(env, "div by zero\n"); 6674 return -EINVAL; 6675 } 6676 6677 if ((opcode == BPF_LSH || opcode == BPF_RSH || 6678 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 6679 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 6680 6681 if (insn->imm < 0 || insn->imm >= size) { 6682 verbose(env, "invalid shift %d\n", insn->imm); 6683 return -EINVAL; 6684 } 6685 } 6686 6687 /* check dest operand */ 6688 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 6689 if (err) 6690 return err; 6691 6692 return adjust_reg_min_max_vals(env, insn); 6693 } 6694 6695 return 0; 6696 } 6697 6698 static void __find_good_pkt_pointers(struct bpf_func_state *state, 6699 struct bpf_reg_state *dst_reg, 6700 enum bpf_reg_type type, u16 new_range) 6701 { 6702 struct bpf_reg_state *reg; 6703 int i; 6704 6705 for (i = 0; i < MAX_BPF_REG; i++) { 6706 reg = &state->regs[i]; 6707 if (reg->type == type && reg->id == dst_reg->id) 6708 /* keep the maximum range already checked */ 6709 reg->range = max(reg->range, new_range); 6710 } 6711 6712 bpf_for_each_spilled_reg(i, state, reg) { 6713 if (!reg) 6714 continue; 6715 if (reg->type == type && reg->id == dst_reg->id) 6716 reg->range = max(reg->range, new_range); 6717 } 6718 } 6719 6720 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 6721 struct bpf_reg_state *dst_reg, 6722 enum bpf_reg_type type, 6723 bool range_right_open) 6724 { 6725 u16 new_range; 6726 int i; 6727 6728 if (dst_reg->off < 0 || 6729 (dst_reg->off == 0 && range_right_open)) 6730 /* This doesn't give us any range */ 6731 return; 6732 6733 if (dst_reg->umax_value > MAX_PACKET_OFF || 6734 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 6735 /* Risk of overflow. For instance, ptr + (1<<63) may be less 6736 * than pkt_end, but that's because it's also less than pkt. 6737 */ 6738 return; 6739 6740 new_range = dst_reg->off; 6741 if (range_right_open) 6742 new_range--; 6743 6744 /* Examples for register markings: 6745 * 6746 * pkt_data in dst register: 6747 * 6748 * r2 = r3; 6749 * r2 += 8; 6750 * if (r2 > pkt_end) goto <handle exception> 6751 * <access okay> 6752 * 6753 * r2 = r3; 6754 * r2 += 8; 6755 * if (r2 < pkt_end) goto <access okay> 6756 * <handle exception> 6757 * 6758 * Where: 6759 * r2 == dst_reg, pkt_end == src_reg 6760 * r2=pkt(id=n,off=8,r=0) 6761 * r3=pkt(id=n,off=0,r=0) 6762 * 6763 * pkt_data in src register: 6764 * 6765 * r2 = r3; 6766 * r2 += 8; 6767 * if (pkt_end >= r2) goto <access okay> 6768 * <handle exception> 6769 * 6770 * r2 = r3; 6771 * r2 += 8; 6772 * if (pkt_end <= r2) goto <handle exception> 6773 * <access okay> 6774 * 6775 * Where: 6776 * pkt_end == dst_reg, r2 == src_reg 6777 * r2=pkt(id=n,off=8,r=0) 6778 * r3=pkt(id=n,off=0,r=0) 6779 * 6780 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 6781 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 6782 * and [r3, r3 + 8-1) respectively is safe to access depending on 6783 * the check. 6784 */ 6785 6786 /* If our ids match, then we must have the same max_value. And we 6787 * don't care about the other reg's fixed offset, since if it's too big 6788 * the range won't allow anything. 6789 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 6790 */ 6791 for (i = 0; i <= vstate->curframe; i++) 6792 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 6793 new_range); 6794 } 6795 6796 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 6797 { 6798 struct tnum subreg = tnum_subreg(reg->var_off); 6799 s32 sval = (s32)val; 6800 6801 switch (opcode) { 6802 case BPF_JEQ: 6803 if (tnum_is_const(subreg)) 6804 return !!tnum_equals_const(subreg, val); 6805 break; 6806 case BPF_JNE: 6807 if (tnum_is_const(subreg)) 6808 return !tnum_equals_const(subreg, val); 6809 break; 6810 case BPF_JSET: 6811 if ((~subreg.mask & subreg.value) & val) 6812 return 1; 6813 if (!((subreg.mask | subreg.value) & val)) 6814 return 0; 6815 break; 6816 case BPF_JGT: 6817 if (reg->u32_min_value > val) 6818 return 1; 6819 else if (reg->u32_max_value <= val) 6820 return 0; 6821 break; 6822 case BPF_JSGT: 6823 if (reg->s32_min_value > sval) 6824 return 1; 6825 else if (reg->s32_max_value < sval) 6826 return 0; 6827 break; 6828 case BPF_JLT: 6829 if (reg->u32_max_value < val) 6830 return 1; 6831 else if (reg->u32_min_value >= val) 6832 return 0; 6833 break; 6834 case BPF_JSLT: 6835 if (reg->s32_max_value < sval) 6836 return 1; 6837 else if (reg->s32_min_value >= sval) 6838 return 0; 6839 break; 6840 case BPF_JGE: 6841 if (reg->u32_min_value >= val) 6842 return 1; 6843 else if (reg->u32_max_value < val) 6844 return 0; 6845 break; 6846 case BPF_JSGE: 6847 if (reg->s32_min_value >= sval) 6848 return 1; 6849 else if (reg->s32_max_value < sval) 6850 return 0; 6851 break; 6852 case BPF_JLE: 6853 if (reg->u32_max_value <= val) 6854 return 1; 6855 else if (reg->u32_min_value > val) 6856 return 0; 6857 break; 6858 case BPF_JSLE: 6859 if (reg->s32_max_value <= sval) 6860 return 1; 6861 else if (reg->s32_min_value > sval) 6862 return 0; 6863 break; 6864 } 6865 6866 return -1; 6867 } 6868 6869 6870 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 6871 { 6872 s64 sval = (s64)val; 6873 6874 switch (opcode) { 6875 case BPF_JEQ: 6876 if (tnum_is_const(reg->var_off)) 6877 return !!tnum_equals_const(reg->var_off, val); 6878 break; 6879 case BPF_JNE: 6880 if (tnum_is_const(reg->var_off)) 6881 return !tnum_equals_const(reg->var_off, val); 6882 break; 6883 case BPF_JSET: 6884 if ((~reg->var_off.mask & reg->var_off.value) & val) 6885 return 1; 6886 if (!((reg->var_off.mask | reg->var_off.value) & val)) 6887 return 0; 6888 break; 6889 case BPF_JGT: 6890 if (reg->umin_value > val) 6891 return 1; 6892 else if (reg->umax_value <= val) 6893 return 0; 6894 break; 6895 case BPF_JSGT: 6896 if (reg->smin_value > sval) 6897 return 1; 6898 else if (reg->smax_value < sval) 6899 return 0; 6900 break; 6901 case BPF_JLT: 6902 if (reg->umax_value < val) 6903 return 1; 6904 else if (reg->umin_value >= val) 6905 return 0; 6906 break; 6907 case BPF_JSLT: 6908 if (reg->smax_value < sval) 6909 return 1; 6910 else if (reg->smin_value >= sval) 6911 return 0; 6912 break; 6913 case BPF_JGE: 6914 if (reg->umin_value >= val) 6915 return 1; 6916 else if (reg->umax_value < val) 6917 return 0; 6918 break; 6919 case BPF_JSGE: 6920 if (reg->smin_value >= sval) 6921 return 1; 6922 else if (reg->smax_value < sval) 6923 return 0; 6924 break; 6925 case BPF_JLE: 6926 if (reg->umax_value <= val) 6927 return 1; 6928 else if (reg->umin_value > val) 6929 return 0; 6930 break; 6931 case BPF_JSLE: 6932 if (reg->smax_value <= sval) 6933 return 1; 6934 else if (reg->smin_value > sval) 6935 return 0; 6936 break; 6937 } 6938 6939 return -1; 6940 } 6941 6942 /* compute branch direction of the expression "if (reg opcode val) goto target;" 6943 * and return: 6944 * 1 - branch will be taken and "goto target" will be executed 6945 * 0 - branch will not be taken and fall-through to next insn 6946 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 6947 * range [0,10] 6948 */ 6949 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 6950 bool is_jmp32) 6951 { 6952 if (__is_pointer_value(false, reg)) { 6953 if (!reg_type_not_null(reg->type)) 6954 return -1; 6955 6956 /* If pointer is valid tests against zero will fail so we can 6957 * use this to direct branch taken. 6958 */ 6959 if (val != 0) 6960 return -1; 6961 6962 switch (opcode) { 6963 case BPF_JEQ: 6964 return 0; 6965 case BPF_JNE: 6966 return 1; 6967 default: 6968 return -1; 6969 } 6970 } 6971 6972 if (is_jmp32) 6973 return is_branch32_taken(reg, val, opcode); 6974 return is_branch64_taken(reg, val, opcode); 6975 } 6976 6977 /* Adjusts the register min/max values in the case that the dst_reg is the 6978 * variable register that we are working on, and src_reg is a constant or we're 6979 * simply doing a BPF_K check. 6980 * In JEQ/JNE cases we also adjust the var_off values. 6981 */ 6982 static void reg_set_min_max(struct bpf_reg_state *true_reg, 6983 struct bpf_reg_state *false_reg, 6984 u64 val, u32 val32, 6985 u8 opcode, bool is_jmp32) 6986 { 6987 struct tnum false_32off = tnum_subreg(false_reg->var_off); 6988 struct tnum false_64off = false_reg->var_off; 6989 struct tnum true_32off = tnum_subreg(true_reg->var_off); 6990 struct tnum true_64off = true_reg->var_off; 6991 s64 sval = (s64)val; 6992 s32 sval32 = (s32)val32; 6993 6994 /* If the dst_reg is a pointer, we can't learn anything about its 6995 * variable offset from the compare (unless src_reg were a pointer into 6996 * the same object, but we don't bother with that. 6997 * Since false_reg and true_reg have the same type by construction, we 6998 * only need to check one of them for pointerness. 6999 */ 7000 if (__is_pointer_value(false, false_reg)) 7001 return; 7002 7003 switch (opcode) { 7004 case BPF_JEQ: 7005 case BPF_JNE: 7006 { 7007 struct bpf_reg_state *reg = 7008 opcode == BPF_JEQ ? true_reg : false_reg; 7009 7010 /* JEQ/JNE comparison doesn't change the register equivalence. 7011 * r1 = r2; 7012 * if (r1 == 42) goto label; 7013 * ... 7014 * label: // here both r1 and r2 are known to be 42. 7015 * 7016 * Hence when marking register as known preserve it's ID. 7017 */ 7018 if (is_jmp32) 7019 __mark_reg32_known(reg, val32); 7020 else 7021 ___mark_reg_known(reg, val); 7022 break; 7023 } 7024 case BPF_JSET: 7025 if (is_jmp32) { 7026 false_32off = tnum_and(false_32off, tnum_const(~val32)); 7027 if (is_power_of_2(val32)) 7028 true_32off = tnum_or(true_32off, 7029 tnum_const(val32)); 7030 } else { 7031 false_64off = tnum_and(false_64off, tnum_const(~val)); 7032 if (is_power_of_2(val)) 7033 true_64off = tnum_or(true_64off, 7034 tnum_const(val)); 7035 } 7036 break; 7037 case BPF_JGE: 7038 case BPF_JGT: 7039 { 7040 if (is_jmp32) { 7041 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 7042 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 7043 7044 false_reg->u32_max_value = min(false_reg->u32_max_value, 7045 false_umax); 7046 true_reg->u32_min_value = max(true_reg->u32_min_value, 7047 true_umin); 7048 } else { 7049 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 7050 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 7051 7052 false_reg->umax_value = min(false_reg->umax_value, false_umax); 7053 true_reg->umin_value = max(true_reg->umin_value, true_umin); 7054 } 7055 break; 7056 } 7057 case BPF_JSGE: 7058 case BPF_JSGT: 7059 { 7060 if (is_jmp32) { 7061 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 7062 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 7063 7064 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 7065 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 7066 } else { 7067 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 7068 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 7069 7070 false_reg->smax_value = min(false_reg->smax_value, false_smax); 7071 true_reg->smin_value = max(true_reg->smin_value, true_smin); 7072 } 7073 break; 7074 } 7075 case BPF_JLE: 7076 case BPF_JLT: 7077 { 7078 if (is_jmp32) { 7079 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 7080 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 7081 7082 false_reg->u32_min_value = max(false_reg->u32_min_value, 7083 false_umin); 7084 true_reg->u32_max_value = min(true_reg->u32_max_value, 7085 true_umax); 7086 } else { 7087 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 7088 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 7089 7090 false_reg->umin_value = max(false_reg->umin_value, false_umin); 7091 true_reg->umax_value = min(true_reg->umax_value, true_umax); 7092 } 7093 break; 7094 } 7095 case BPF_JSLE: 7096 case BPF_JSLT: 7097 { 7098 if (is_jmp32) { 7099 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 7100 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 7101 7102 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 7103 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 7104 } else { 7105 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 7106 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 7107 7108 false_reg->smin_value = max(false_reg->smin_value, false_smin); 7109 true_reg->smax_value = min(true_reg->smax_value, true_smax); 7110 } 7111 break; 7112 } 7113 default: 7114 return; 7115 } 7116 7117 if (is_jmp32) { 7118 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 7119 tnum_subreg(false_32off)); 7120 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 7121 tnum_subreg(true_32off)); 7122 __reg_combine_32_into_64(false_reg); 7123 __reg_combine_32_into_64(true_reg); 7124 } else { 7125 false_reg->var_off = false_64off; 7126 true_reg->var_off = true_64off; 7127 __reg_combine_64_into_32(false_reg); 7128 __reg_combine_64_into_32(true_reg); 7129 } 7130 } 7131 7132 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 7133 * the variable reg. 7134 */ 7135 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 7136 struct bpf_reg_state *false_reg, 7137 u64 val, u32 val32, 7138 u8 opcode, bool is_jmp32) 7139 { 7140 /* How can we transform "a <op> b" into "b <op> a"? */ 7141 static const u8 opcode_flip[16] = { 7142 /* these stay the same */ 7143 [BPF_JEQ >> 4] = BPF_JEQ, 7144 [BPF_JNE >> 4] = BPF_JNE, 7145 [BPF_JSET >> 4] = BPF_JSET, 7146 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 7147 [BPF_JGE >> 4] = BPF_JLE, 7148 [BPF_JGT >> 4] = BPF_JLT, 7149 [BPF_JLE >> 4] = BPF_JGE, 7150 [BPF_JLT >> 4] = BPF_JGT, 7151 [BPF_JSGE >> 4] = BPF_JSLE, 7152 [BPF_JSGT >> 4] = BPF_JSLT, 7153 [BPF_JSLE >> 4] = BPF_JSGE, 7154 [BPF_JSLT >> 4] = BPF_JSGT 7155 }; 7156 opcode = opcode_flip[opcode >> 4]; 7157 /* This uses zero as "not present in table"; luckily the zero opcode, 7158 * BPF_JA, can't get here. 7159 */ 7160 if (opcode) 7161 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 7162 } 7163 7164 /* Regs are known to be equal, so intersect their min/max/var_off */ 7165 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 7166 struct bpf_reg_state *dst_reg) 7167 { 7168 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 7169 dst_reg->umin_value); 7170 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 7171 dst_reg->umax_value); 7172 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 7173 dst_reg->smin_value); 7174 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 7175 dst_reg->smax_value); 7176 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 7177 dst_reg->var_off); 7178 /* We might have learned new bounds from the var_off. */ 7179 __update_reg_bounds(src_reg); 7180 __update_reg_bounds(dst_reg); 7181 /* We might have learned something about the sign bit. */ 7182 __reg_deduce_bounds(src_reg); 7183 __reg_deduce_bounds(dst_reg); 7184 /* We might have learned some bits from the bounds. */ 7185 __reg_bound_offset(src_reg); 7186 __reg_bound_offset(dst_reg); 7187 /* Intersecting with the old var_off might have improved our bounds 7188 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 7189 * then new var_off is (0; 0x7f...fc) which improves our umax. 7190 */ 7191 __update_reg_bounds(src_reg); 7192 __update_reg_bounds(dst_reg); 7193 } 7194 7195 static void reg_combine_min_max(struct bpf_reg_state *true_src, 7196 struct bpf_reg_state *true_dst, 7197 struct bpf_reg_state *false_src, 7198 struct bpf_reg_state *false_dst, 7199 u8 opcode) 7200 { 7201 switch (opcode) { 7202 case BPF_JEQ: 7203 __reg_combine_min_max(true_src, true_dst); 7204 break; 7205 case BPF_JNE: 7206 __reg_combine_min_max(false_src, false_dst); 7207 break; 7208 } 7209 } 7210 7211 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 7212 struct bpf_reg_state *reg, u32 id, 7213 bool is_null) 7214 { 7215 if (reg_type_may_be_null(reg->type) && reg->id == id) { 7216 /* Old offset (both fixed and variable parts) should 7217 * have been known-zero, because we don't allow pointer 7218 * arithmetic on pointers that might be NULL. 7219 */ 7220 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 7221 !tnum_equals_const(reg->var_off, 0) || 7222 reg->off)) { 7223 __mark_reg_known_zero(reg); 7224 reg->off = 0; 7225 } 7226 if (is_null) { 7227 reg->type = SCALAR_VALUE; 7228 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 7229 const struct bpf_map *map = reg->map_ptr; 7230 7231 if (map->inner_map_meta) { 7232 reg->type = CONST_PTR_TO_MAP; 7233 reg->map_ptr = map->inner_map_meta; 7234 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 7235 reg->type = PTR_TO_XDP_SOCK; 7236 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 7237 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 7238 reg->type = PTR_TO_SOCKET; 7239 } else { 7240 reg->type = PTR_TO_MAP_VALUE; 7241 } 7242 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 7243 reg->type = PTR_TO_SOCKET; 7244 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 7245 reg->type = PTR_TO_SOCK_COMMON; 7246 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 7247 reg->type = PTR_TO_TCP_SOCK; 7248 } else if (reg->type == PTR_TO_BTF_ID_OR_NULL) { 7249 reg->type = PTR_TO_BTF_ID; 7250 } else if (reg->type == PTR_TO_MEM_OR_NULL) { 7251 reg->type = PTR_TO_MEM; 7252 } else if (reg->type == PTR_TO_RDONLY_BUF_OR_NULL) { 7253 reg->type = PTR_TO_RDONLY_BUF; 7254 } else if (reg->type == PTR_TO_RDWR_BUF_OR_NULL) { 7255 reg->type = PTR_TO_RDWR_BUF; 7256 } 7257 if (is_null) { 7258 /* We don't need id and ref_obj_id from this point 7259 * onwards anymore, thus we should better reset it, 7260 * so that state pruning has chances to take effect. 7261 */ 7262 reg->id = 0; 7263 reg->ref_obj_id = 0; 7264 } else if (!reg_may_point_to_spin_lock(reg)) { 7265 /* For not-NULL ptr, reg->ref_obj_id will be reset 7266 * in release_reg_references(). 7267 * 7268 * reg->id is still used by spin_lock ptr. Other 7269 * than spin_lock ptr type, reg->id can be reset. 7270 */ 7271 reg->id = 0; 7272 } 7273 } 7274 } 7275 7276 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 7277 bool is_null) 7278 { 7279 struct bpf_reg_state *reg; 7280 int i; 7281 7282 for (i = 0; i < MAX_BPF_REG; i++) 7283 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 7284 7285 bpf_for_each_spilled_reg(i, state, reg) { 7286 if (!reg) 7287 continue; 7288 mark_ptr_or_null_reg(state, reg, id, is_null); 7289 } 7290 } 7291 7292 /* The logic is similar to find_good_pkt_pointers(), both could eventually 7293 * be folded together at some point. 7294 */ 7295 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 7296 bool is_null) 7297 { 7298 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7299 struct bpf_reg_state *regs = state->regs; 7300 u32 ref_obj_id = regs[regno].ref_obj_id; 7301 u32 id = regs[regno].id; 7302 int i; 7303 7304 if (ref_obj_id && ref_obj_id == id && is_null) 7305 /* regs[regno] is in the " == NULL" branch. 7306 * No one could have freed the reference state before 7307 * doing the NULL check. 7308 */ 7309 WARN_ON_ONCE(release_reference_state(state, id)); 7310 7311 for (i = 0; i <= vstate->curframe; i++) 7312 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 7313 } 7314 7315 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 7316 struct bpf_reg_state *dst_reg, 7317 struct bpf_reg_state *src_reg, 7318 struct bpf_verifier_state *this_branch, 7319 struct bpf_verifier_state *other_branch) 7320 { 7321 if (BPF_SRC(insn->code) != BPF_X) 7322 return false; 7323 7324 /* Pointers are always 64-bit. */ 7325 if (BPF_CLASS(insn->code) == BPF_JMP32) 7326 return false; 7327 7328 switch (BPF_OP(insn->code)) { 7329 case BPF_JGT: 7330 if ((dst_reg->type == PTR_TO_PACKET && 7331 src_reg->type == PTR_TO_PACKET_END) || 7332 (dst_reg->type == PTR_TO_PACKET_META && 7333 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7334 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 7335 find_good_pkt_pointers(this_branch, dst_reg, 7336 dst_reg->type, false); 7337 } else if ((dst_reg->type == PTR_TO_PACKET_END && 7338 src_reg->type == PTR_TO_PACKET) || 7339 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 7340 src_reg->type == PTR_TO_PACKET_META)) { 7341 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 7342 find_good_pkt_pointers(other_branch, src_reg, 7343 src_reg->type, true); 7344 } else { 7345 return false; 7346 } 7347 break; 7348 case BPF_JLT: 7349 if ((dst_reg->type == PTR_TO_PACKET && 7350 src_reg->type == PTR_TO_PACKET_END) || 7351 (dst_reg->type == PTR_TO_PACKET_META && 7352 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7353 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 7354 find_good_pkt_pointers(other_branch, dst_reg, 7355 dst_reg->type, true); 7356 } else if ((dst_reg->type == PTR_TO_PACKET_END && 7357 src_reg->type == PTR_TO_PACKET) || 7358 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 7359 src_reg->type == PTR_TO_PACKET_META)) { 7360 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 7361 find_good_pkt_pointers(this_branch, src_reg, 7362 src_reg->type, false); 7363 } else { 7364 return false; 7365 } 7366 break; 7367 case BPF_JGE: 7368 if ((dst_reg->type == PTR_TO_PACKET && 7369 src_reg->type == PTR_TO_PACKET_END) || 7370 (dst_reg->type == PTR_TO_PACKET_META && 7371 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7372 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 7373 find_good_pkt_pointers(this_branch, dst_reg, 7374 dst_reg->type, true); 7375 } else if ((dst_reg->type == PTR_TO_PACKET_END && 7376 src_reg->type == PTR_TO_PACKET) || 7377 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 7378 src_reg->type == PTR_TO_PACKET_META)) { 7379 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 7380 find_good_pkt_pointers(other_branch, src_reg, 7381 src_reg->type, false); 7382 } else { 7383 return false; 7384 } 7385 break; 7386 case BPF_JLE: 7387 if ((dst_reg->type == PTR_TO_PACKET && 7388 src_reg->type == PTR_TO_PACKET_END) || 7389 (dst_reg->type == PTR_TO_PACKET_META && 7390 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7391 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 7392 find_good_pkt_pointers(other_branch, dst_reg, 7393 dst_reg->type, false); 7394 } else if ((dst_reg->type == PTR_TO_PACKET_END && 7395 src_reg->type == PTR_TO_PACKET) || 7396 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 7397 src_reg->type == PTR_TO_PACKET_META)) { 7398 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 7399 find_good_pkt_pointers(this_branch, src_reg, 7400 src_reg->type, true); 7401 } else { 7402 return false; 7403 } 7404 break; 7405 default: 7406 return false; 7407 } 7408 7409 return true; 7410 } 7411 7412 static void find_equal_scalars(struct bpf_verifier_state *vstate, 7413 struct bpf_reg_state *known_reg) 7414 { 7415 struct bpf_func_state *state; 7416 struct bpf_reg_state *reg; 7417 int i, j; 7418 7419 for (i = 0; i <= vstate->curframe; i++) { 7420 state = vstate->frame[i]; 7421 for (j = 0; j < MAX_BPF_REG; j++) { 7422 reg = &state->regs[j]; 7423 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 7424 *reg = *known_reg; 7425 } 7426 7427 bpf_for_each_spilled_reg(j, state, reg) { 7428 if (!reg) 7429 continue; 7430 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 7431 *reg = *known_reg; 7432 } 7433 } 7434 } 7435 7436 static int check_cond_jmp_op(struct bpf_verifier_env *env, 7437 struct bpf_insn *insn, int *insn_idx) 7438 { 7439 struct bpf_verifier_state *this_branch = env->cur_state; 7440 struct bpf_verifier_state *other_branch; 7441 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 7442 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 7443 u8 opcode = BPF_OP(insn->code); 7444 bool is_jmp32; 7445 int pred = -1; 7446 int err; 7447 7448 /* Only conditional jumps are expected to reach here. */ 7449 if (opcode == BPF_JA || opcode > BPF_JSLE) { 7450 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 7451 return -EINVAL; 7452 } 7453 7454 if (BPF_SRC(insn->code) == BPF_X) { 7455 if (insn->imm != 0) { 7456 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 7457 return -EINVAL; 7458 } 7459 7460 /* check src1 operand */ 7461 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7462 if (err) 7463 return err; 7464 7465 if (is_pointer_value(env, insn->src_reg)) { 7466 verbose(env, "R%d pointer comparison prohibited\n", 7467 insn->src_reg); 7468 return -EACCES; 7469 } 7470 src_reg = ®s[insn->src_reg]; 7471 } else { 7472 if (insn->src_reg != BPF_REG_0) { 7473 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 7474 return -EINVAL; 7475 } 7476 } 7477 7478 /* check src2 operand */ 7479 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7480 if (err) 7481 return err; 7482 7483 dst_reg = ®s[insn->dst_reg]; 7484 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 7485 7486 if (BPF_SRC(insn->code) == BPF_K) { 7487 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 7488 } else if (src_reg->type == SCALAR_VALUE && 7489 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 7490 pred = is_branch_taken(dst_reg, 7491 tnum_subreg(src_reg->var_off).value, 7492 opcode, 7493 is_jmp32); 7494 } else if (src_reg->type == SCALAR_VALUE && 7495 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 7496 pred = is_branch_taken(dst_reg, 7497 src_reg->var_off.value, 7498 opcode, 7499 is_jmp32); 7500 } 7501 7502 if (pred >= 0) { 7503 /* If we get here with a dst_reg pointer type it is because 7504 * above is_branch_taken() special cased the 0 comparison. 7505 */ 7506 if (!__is_pointer_value(false, dst_reg)) 7507 err = mark_chain_precision(env, insn->dst_reg); 7508 if (BPF_SRC(insn->code) == BPF_X && !err) 7509 err = mark_chain_precision(env, insn->src_reg); 7510 if (err) 7511 return err; 7512 } 7513 if (pred == 1) { 7514 /* only follow the goto, ignore fall-through */ 7515 *insn_idx += insn->off; 7516 return 0; 7517 } else if (pred == 0) { 7518 /* only follow fall-through branch, since 7519 * that's where the program will go 7520 */ 7521 return 0; 7522 } 7523 7524 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 7525 false); 7526 if (!other_branch) 7527 return -EFAULT; 7528 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 7529 7530 /* detect if we are comparing against a constant value so we can adjust 7531 * our min/max values for our dst register. 7532 * this is only legit if both are scalars (or pointers to the same 7533 * object, I suppose, but we don't support that right now), because 7534 * otherwise the different base pointers mean the offsets aren't 7535 * comparable. 7536 */ 7537 if (BPF_SRC(insn->code) == BPF_X) { 7538 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 7539 7540 if (dst_reg->type == SCALAR_VALUE && 7541 src_reg->type == SCALAR_VALUE) { 7542 if (tnum_is_const(src_reg->var_off) || 7543 (is_jmp32 && 7544 tnum_is_const(tnum_subreg(src_reg->var_off)))) 7545 reg_set_min_max(&other_branch_regs[insn->dst_reg], 7546 dst_reg, 7547 src_reg->var_off.value, 7548 tnum_subreg(src_reg->var_off).value, 7549 opcode, is_jmp32); 7550 else if (tnum_is_const(dst_reg->var_off) || 7551 (is_jmp32 && 7552 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 7553 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 7554 src_reg, 7555 dst_reg->var_off.value, 7556 tnum_subreg(dst_reg->var_off).value, 7557 opcode, is_jmp32); 7558 else if (!is_jmp32 && 7559 (opcode == BPF_JEQ || opcode == BPF_JNE)) 7560 /* Comparing for equality, we can combine knowledge */ 7561 reg_combine_min_max(&other_branch_regs[insn->src_reg], 7562 &other_branch_regs[insn->dst_reg], 7563 src_reg, dst_reg, opcode); 7564 if (src_reg->id && 7565 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 7566 find_equal_scalars(this_branch, src_reg); 7567 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 7568 } 7569 7570 } 7571 } else if (dst_reg->type == SCALAR_VALUE) { 7572 reg_set_min_max(&other_branch_regs[insn->dst_reg], 7573 dst_reg, insn->imm, (u32)insn->imm, 7574 opcode, is_jmp32); 7575 } 7576 7577 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 7578 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 7579 find_equal_scalars(this_branch, dst_reg); 7580 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 7581 } 7582 7583 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 7584 * NOTE: these optimizations below are related with pointer comparison 7585 * which will never be JMP32. 7586 */ 7587 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 7588 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 7589 reg_type_may_be_null(dst_reg->type)) { 7590 /* Mark all identical registers in each branch as either 7591 * safe or unknown depending R == 0 or R != 0 conditional. 7592 */ 7593 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 7594 opcode == BPF_JNE); 7595 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 7596 opcode == BPF_JEQ); 7597 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 7598 this_branch, other_branch) && 7599 is_pointer_value(env, insn->dst_reg)) { 7600 verbose(env, "R%d pointer comparison prohibited\n", 7601 insn->dst_reg); 7602 return -EACCES; 7603 } 7604 if (env->log.level & BPF_LOG_LEVEL) 7605 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 7606 return 0; 7607 } 7608 7609 /* verify BPF_LD_IMM64 instruction */ 7610 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 7611 { 7612 struct bpf_insn_aux_data *aux = cur_aux(env); 7613 struct bpf_reg_state *regs = cur_regs(env); 7614 struct bpf_reg_state *dst_reg; 7615 struct bpf_map *map; 7616 int err; 7617 7618 if (BPF_SIZE(insn->code) != BPF_DW) { 7619 verbose(env, "invalid BPF_LD_IMM insn\n"); 7620 return -EINVAL; 7621 } 7622 if (insn->off != 0) { 7623 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 7624 return -EINVAL; 7625 } 7626 7627 err = check_reg_arg(env, insn->dst_reg, DST_OP); 7628 if (err) 7629 return err; 7630 7631 dst_reg = ®s[insn->dst_reg]; 7632 if (insn->src_reg == 0) { 7633 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 7634 7635 dst_reg->type = SCALAR_VALUE; 7636 __mark_reg_known(®s[insn->dst_reg], imm); 7637 return 0; 7638 } 7639 7640 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 7641 mark_reg_known_zero(env, regs, insn->dst_reg); 7642 7643 dst_reg->type = aux->btf_var.reg_type; 7644 switch (dst_reg->type) { 7645 case PTR_TO_MEM: 7646 dst_reg->mem_size = aux->btf_var.mem_size; 7647 break; 7648 case PTR_TO_BTF_ID: 7649 case PTR_TO_PERCPU_BTF_ID: 7650 dst_reg->btf_id = aux->btf_var.btf_id; 7651 break; 7652 default: 7653 verbose(env, "bpf verifier is misconfigured\n"); 7654 return -EFAULT; 7655 } 7656 return 0; 7657 } 7658 7659 map = env->used_maps[aux->map_index]; 7660 mark_reg_known_zero(env, regs, insn->dst_reg); 7661 dst_reg->map_ptr = map; 7662 7663 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 7664 dst_reg->type = PTR_TO_MAP_VALUE; 7665 dst_reg->off = aux->map_off; 7666 if (map_value_has_spin_lock(map)) 7667 dst_reg->id = ++env->id_gen; 7668 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 7669 dst_reg->type = CONST_PTR_TO_MAP; 7670 } else { 7671 verbose(env, "bpf verifier is misconfigured\n"); 7672 return -EINVAL; 7673 } 7674 7675 return 0; 7676 } 7677 7678 static bool may_access_skb(enum bpf_prog_type type) 7679 { 7680 switch (type) { 7681 case BPF_PROG_TYPE_SOCKET_FILTER: 7682 case BPF_PROG_TYPE_SCHED_CLS: 7683 case BPF_PROG_TYPE_SCHED_ACT: 7684 return true; 7685 default: 7686 return false; 7687 } 7688 } 7689 7690 /* verify safety of LD_ABS|LD_IND instructions: 7691 * - they can only appear in the programs where ctx == skb 7692 * - since they are wrappers of function calls, they scratch R1-R5 registers, 7693 * preserve R6-R9, and store return value into R0 7694 * 7695 * Implicit input: 7696 * ctx == skb == R6 == CTX 7697 * 7698 * Explicit input: 7699 * SRC == any register 7700 * IMM == 32-bit immediate 7701 * 7702 * Output: 7703 * R0 - 8/16/32-bit skb data converted to cpu endianness 7704 */ 7705 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 7706 { 7707 struct bpf_reg_state *regs = cur_regs(env); 7708 static const int ctx_reg = BPF_REG_6; 7709 u8 mode = BPF_MODE(insn->code); 7710 int i, err; 7711 7712 if (!may_access_skb(resolve_prog_type(env->prog))) { 7713 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 7714 return -EINVAL; 7715 } 7716 7717 if (!env->ops->gen_ld_abs) { 7718 verbose(env, "bpf verifier is misconfigured\n"); 7719 return -EINVAL; 7720 } 7721 7722 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 7723 BPF_SIZE(insn->code) == BPF_DW || 7724 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 7725 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 7726 return -EINVAL; 7727 } 7728 7729 /* check whether implicit source operand (register R6) is readable */ 7730 err = check_reg_arg(env, ctx_reg, SRC_OP); 7731 if (err) 7732 return err; 7733 7734 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 7735 * gen_ld_abs() may terminate the program at runtime, leading to 7736 * reference leak. 7737 */ 7738 err = check_reference_leak(env); 7739 if (err) { 7740 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 7741 return err; 7742 } 7743 7744 if (env->cur_state->active_spin_lock) { 7745 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 7746 return -EINVAL; 7747 } 7748 7749 if (regs[ctx_reg].type != PTR_TO_CTX) { 7750 verbose(env, 7751 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 7752 return -EINVAL; 7753 } 7754 7755 if (mode == BPF_IND) { 7756 /* check explicit source operand */ 7757 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7758 if (err) 7759 return err; 7760 } 7761 7762 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 7763 if (err < 0) 7764 return err; 7765 7766 /* reset caller saved regs to unreadable */ 7767 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7768 mark_reg_not_init(env, regs, caller_saved[i]); 7769 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7770 } 7771 7772 /* mark destination R0 register as readable, since it contains 7773 * the value fetched from the packet. 7774 * Already marked as written above. 7775 */ 7776 mark_reg_unknown(env, regs, BPF_REG_0); 7777 /* ld_abs load up to 32-bit skb data. */ 7778 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 7779 return 0; 7780 } 7781 7782 static int check_return_code(struct bpf_verifier_env *env) 7783 { 7784 struct tnum enforce_attach_type_range = tnum_unknown; 7785 const struct bpf_prog *prog = env->prog; 7786 struct bpf_reg_state *reg; 7787 struct tnum range = tnum_range(0, 1); 7788 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 7789 int err; 7790 7791 /* LSM and struct_ops func-ptr's return type could be "void" */ 7792 if ((prog_type == BPF_PROG_TYPE_STRUCT_OPS || 7793 prog_type == BPF_PROG_TYPE_LSM) && 7794 !prog->aux->attach_func_proto->type) 7795 return 0; 7796 7797 /* eBPF calling convetion is such that R0 is used 7798 * to return the value from eBPF program. 7799 * Make sure that it's readable at this time 7800 * of bpf_exit, which means that program wrote 7801 * something into it earlier 7802 */ 7803 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 7804 if (err) 7805 return err; 7806 7807 if (is_pointer_value(env, BPF_REG_0)) { 7808 verbose(env, "R0 leaks addr as return value\n"); 7809 return -EACCES; 7810 } 7811 7812 switch (prog_type) { 7813 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 7814 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 7815 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 7816 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 7817 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 7818 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 7819 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 7820 range = tnum_range(1, 1); 7821 break; 7822 case BPF_PROG_TYPE_CGROUP_SKB: 7823 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 7824 range = tnum_range(0, 3); 7825 enforce_attach_type_range = tnum_range(2, 3); 7826 } 7827 break; 7828 case BPF_PROG_TYPE_CGROUP_SOCK: 7829 case BPF_PROG_TYPE_SOCK_OPS: 7830 case BPF_PROG_TYPE_CGROUP_DEVICE: 7831 case BPF_PROG_TYPE_CGROUP_SYSCTL: 7832 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 7833 break; 7834 case BPF_PROG_TYPE_RAW_TRACEPOINT: 7835 if (!env->prog->aux->attach_btf_id) 7836 return 0; 7837 range = tnum_const(0); 7838 break; 7839 case BPF_PROG_TYPE_TRACING: 7840 switch (env->prog->expected_attach_type) { 7841 case BPF_TRACE_FENTRY: 7842 case BPF_TRACE_FEXIT: 7843 range = tnum_const(0); 7844 break; 7845 case BPF_TRACE_RAW_TP: 7846 case BPF_MODIFY_RETURN: 7847 return 0; 7848 case BPF_TRACE_ITER: 7849 break; 7850 default: 7851 return -ENOTSUPP; 7852 } 7853 break; 7854 case BPF_PROG_TYPE_SK_LOOKUP: 7855 range = tnum_range(SK_DROP, SK_PASS); 7856 break; 7857 case BPF_PROG_TYPE_EXT: 7858 /* freplace program can return anything as its return value 7859 * depends on the to-be-replaced kernel func or bpf program. 7860 */ 7861 default: 7862 return 0; 7863 } 7864 7865 reg = cur_regs(env) + BPF_REG_0; 7866 if (reg->type != SCALAR_VALUE) { 7867 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 7868 reg_type_str[reg->type]); 7869 return -EINVAL; 7870 } 7871 7872 if (!tnum_in(range, reg->var_off)) { 7873 char tn_buf[48]; 7874 7875 verbose(env, "At program exit the register R0 "); 7876 if (!tnum_is_unknown(reg->var_off)) { 7877 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7878 verbose(env, "has value %s", tn_buf); 7879 } else { 7880 verbose(env, "has unknown scalar value"); 7881 } 7882 tnum_strn(tn_buf, sizeof(tn_buf), range); 7883 verbose(env, " should have been in %s\n", tn_buf); 7884 return -EINVAL; 7885 } 7886 7887 if (!tnum_is_unknown(enforce_attach_type_range) && 7888 tnum_in(enforce_attach_type_range, reg->var_off)) 7889 env->prog->enforce_expected_attach_type = 1; 7890 return 0; 7891 } 7892 7893 /* non-recursive DFS pseudo code 7894 * 1 procedure DFS-iterative(G,v): 7895 * 2 label v as discovered 7896 * 3 let S be a stack 7897 * 4 S.push(v) 7898 * 5 while S is not empty 7899 * 6 t <- S.pop() 7900 * 7 if t is what we're looking for: 7901 * 8 return t 7902 * 9 for all edges e in G.adjacentEdges(t) do 7903 * 10 if edge e is already labelled 7904 * 11 continue with the next edge 7905 * 12 w <- G.adjacentVertex(t,e) 7906 * 13 if vertex w is not discovered and not explored 7907 * 14 label e as tree-edge 7908 * 15 label w as discovered 7909 * 16 S.push(w) 7910 * 17 continue at 5 7911 * 18 else if vertex w is discovered 7912 * 19 label e as back-edge 7913 * 20 else 7914 * 21 // vertex w is explored 7915 * 22 label e as forward- or cross-edge 7916 * 23 label t as explored 7917 * 24 S.pop() 7918 * 7919 * convention: 7920 * 0x10 - discovered 7921 * 0x11 - discovered and fall-through edge labelled 7922 * 0x12 - discovered and fall-through and branch edges labelled 7923 * 0x20 - explored 7924 */ 7925 7926 enum { 7927 DISCOVERED = 0x10, 7928 EXPLORED = 0x20, 7929 FALLTHROUGH = 1, 7930 BRANCH = 2, 7931 }; 7932 7933 static u32 state_htab_size(struct bpf_verifier_env *env) 7934 { 7935 return env->prog->len; 7936 } 7937 7938 static struct bpf_verifier_state_list **explored_state( 7939 struct bpf_verifier_env *env, 7940 int idx) 7941 { 7942 struct bpf_verifier_state *cur = env->cur_state; 7943 struct bpf_func_state *state = cur->frame[cur->curframe]; 7944 7945 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 7946 } 7947 7948 static void init_explored_state(struct bpf_verifier_env *env, int idx) 7949 { 7950 env->insn_aux_data[idx].prune_point = true; 7951 } 7952 7953 /* t, w, e - match pseudo-code above: 7954 * t - index of current instruction 7955 * w - next instruction 7956 * e - edge 7957 */ 7958 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 7959 bool loop_ok) 7960 { 7961 int *insn_stack = env->cfg.insn_stack; 7962 int *insn_state = env->cfg.insn_state; 7963 7964 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 7965 return 0; 7966 7967 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 7968 return 0; 7969 7970 if (w < 0 || w >= env->prog->len) { 7971 verbose_linfo(env, t, "%d: ", t); 7972 verbose(env, "jump out of range from insn %d to %d\n", t, w); 7973 return -EINVAL; 7974 } 7975 7976 if (e == BRANCH) 7977 /* mark branch target for state pruning */ 7978 init_explored_state(env, w); 7979 7980 if (insn_state[w] == 0) { 7981 /* tree-edge */ 7982 insn_state[t] = DISCOVERED | e; 7983 insn_state[w] = DISCOVERED; 7984 if (env->cfg.cur_stack >= env->prog->len) 7985 return -E2BIG; 7986 insn_stack[env->cfg.cur_stack++] = w; 7987 return 1; 7988 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 7989 if (loop_ok && env->bpf_capable) 7990 return 0; 7991 verbose_linfo(env, t, "%d: ", t); 7992 verbose_linfo(env, w, "%d: ", w); 7993 verbose(env, "back-edge from insn %d to %d\n", t, w); 7994 return -EINVAL; 7995 } else if (insn_state[w] == EXPLORED) { 7996 /* forward- or cross-edge */ 7997 insn_state[t] = DISCOVERED | e; 7998 } else { 7999 verbose(env, "insn state internal bug\n"); 8000 return -EFAULT; 8001 } 8002 return 0; 8003 } 8004 8005 /* non-recursive depth-first-search to detect loops in BPF program 8006 * loop == back-edge in directed graph 8007 */ 8008 static int check_cfg(struct bpf_verifier_env *env) 8009 { 8010 struct bpf_insn *insns = env->prog->insnsi; 8011 int insn_cnt = env->prog->len; 8012 int *insn_stack, *insn_state; 8013 int ret = 0; 8014 int i, t; 8015 8016 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 8017 if (!insn_state) 8018 return -ENOMEM; 8019 8020 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 8021 if (!insn_stack) { 8022 kvfree(insn_state); 8023 return -ENOMEM; 8024 } 8025 8026 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 8027 insn_stack[0] = 0; /* 0 is the first instruction */ 8028 env->cfg.cur_stack = 1; 8029 8030 peek_stack: 8031 if (env->cfg.cur_stack == 0) 8032 goto check_state; 8033 t = insn_stack[env->cfg.cur_stack - 1]; 8034 8035 if (BPF_CLASS(insns[t].code) == BPF_JMP || 8036 BPF_CLASS(insns[t].code) == BPF_JMP32) { 8037 u8 opcode = BPF_OP(insns[t].code); 8038 8039 if (opcode == BPF_EXIT) { 8040 goto mark_explored; 8041 } else if (opcode == BPF_CALL) { 8042 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 8043 if (ret == 1) 8044 goto peek_stack; 8045 else if (ret < 0) 8046 goto err_free; 8047 if (t + 1 < insn_cnt) 8048 init_explored_state(env, t + 1); 8049 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 8050 init_explored_state(env, t); 8051 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 8052 env, false); 8053 if (ret == 1) 8054 goto peek_stack; 8055 else if (ret < 0) 8056 goto err_free; 8057 } 8058 } else if (opcode == BPF_JA) { 8059 if (BPF_SRC(insns[t].code) != BPF_K) { 8060 ret = -EINVAL; 8061 goto err_free; 8062 } 8063 /* unconditional jump with single edge */ 8064 ret = push_insn(t, t + insns[t].off + 1, 8065 FALLTHROUGH, env, true); 8066 if (ret == 1) 8067 goto peek_stack; 8068 else if (ret < 0) 8069 goto err_free; 8070 /* unconditional jmp is not a good pruning point, 8071 * but it's marked, since backtracking needs 8072 * to record jmp history in is_state_visited(). 8073 */ 8074 init_explored_state(env, t + insns[t].off + 1); 8075 /* tell verifier to check for equivalent states 8076 * after every call and jump 8077 */ 8078 if (t + 1 < insn_cnt) 8079 init_explored_state(env, t + 1); 8080 } else { 8081 /* conditional jump with two edges */ 8082 init_explored_state(env, t); 8083 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 8084 if (ret == 1) 8085 goto peek_stack; 8086 else if (ret < 0) 8087 goto err_free; 8088 8089 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 8090 if (ret == 1) 8091 goto peek_stack; 8092 else if (ret < 0) 8093 goto err_free; 8094 } 8095 } else { 8096 /* all other non-branch instructions with single 8097 * fall-through edge 8098 */ 8099 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 8100 if (ret == 1) 8101 goto peek_stack; 8102 else if (ret < 0) 8103 goto err_free; 8104 } 8105 8106 mark_explored: 8107 insn_state[t] = EXPLORED; 8108 if (env->cfg.cur_stack-- <= 0) { 8109 verbose(env, "pop stack internal bug\n"); 8110 ret = -EFAULT; 8111 goto err_free; 8112 } 8113 goto peek_stack; 8114 8115 check_state: 8116 for (i = 0; i < insn_cnt; i++) { 8117 if (insn_state[i] != EXPLORED) { 8118 verbose(env, "unreachable insn %d\n", i); 8119 ret = -EINVAL; 8120 goto err_free; 8121 } 8122 } 8123 ret = 0; /* cfg looks good */ 8124 8125 err_free: 8126 kvfree(insn_state); 8127 kvfree(insn_stack); 8128 env->cfg.insn_state = env->cfg.insn_stack = NULL; 8129 return ret; 8130 } 8131 8132 static int check_abnormal_return(struct bpf_verifier_env *env) 8133 { 8134 int i; 8135 8136 for (i = 1; i < env->subprog_cnt; i++) { 8137 if (env->subprog_info[i].has_ld_abs) { 8138 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 8139 return -EINVAL; 8140 } 8141 if (env->subprog_info[i].has_tail_call) { 8142 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 8143 return -EINVAL; 8144 } 8145 } 8146 return 0; 8147 } 8148 8149 /* The minimum supported BTF func info size */ 8150 #define MIN_BPF_FUNCINFO_SIZE 8 8151 #define MAX_FUNCINFO_REC_SIZE 252 8152 8153 static int check_btf_func(struct bpf_verifier_env *env, 8154 const union bpf_attr *attr, 8155 union bpf_attr __user *uattr) 8156 { 8157 const struct btf_type *type, *func_proto, *ret_type; 8158 u32 i, nfuncs, urec_size, min_size; 8159 u32 krec_size = sizeof(struct bpf_func_info); 8160 struct bpf_func_info *krecord; 8161 struct bpf_func_info_aux *info_aux = NULL; 8162 struct bpf_prog *prog; 8163 const struct btf *btf; 8164 void __user *urecord; 8165 u32 prev_offset = 0; 8166 bool scalar_return; 8167 int ret = -ENOMEM; 8168 8169 nfuncs = attr->func_info_cnt; 8170 if (!nfuncs) { 8171 if (check_abnormal_return(env)) 8172 return -EINVAL; 8173 return 0; 8174 } 8175 8176 if (nfuncs != env->subprog_cnt) { 8177 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 8178 return -EINVAL; 8179 } 8180 8181 urec_size = attr->func_info_rec_size; 8182 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 8183 urec_size > MAX_FUNCINFO_REC_SIZE || 8184 urec_size % sizeof(u32)) { 8185 verbose(env, "invalid func info rec size %u\n", urec_size); 8186 return -EINVAL; 8187 } 8188 8189 prog = env->prog; 8190 btf = prog->aux->btf; 8191 8192 urecord = u64_to_user_ptr(attr->func_info); 8193 min_size = min_t(u32, krec_size, urec_size); 8194 8195 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 8196 if (!krecord) 8197 return -ENOMEM; 8198 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 8199 if (!info_aux) 8200 goto err_free; 8201 8202 for (i = 0; i < nfuncs; i++) { 8203 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 8204 if (ret) { 8205 if (ret == -E2BIG) { 8206 verbose(env, "nonzero tailing record in func info"); 8207 /* set the size kernel expects so loader can zero 8208 * out the rest of the record. 8209 */ 8210 if (put_user(min_size, &uattr->func_info_rec_size)) 8211 ret = -EFAULT; 8212 } 8213 goto err_free; 8214 } 8215 8216 if (copy_from_user(&krecord[i], urecord, min_size)) { 8217 ret = -EFAULT; 8218 goto err_free; 8219 } 8220 8221 /* check insn_off */ 8222 ret = -EINVAL; 8223 if (i == 0) { 8224 if (krecord[i].insn_off) { 8225 verbose(env, 8226 "nonzero insn_off %u for the first func info record", 8227 krecord[i].insn_off); 8228 goto err_free; 8229 } 8230 } else if (krecord[i].insn_off <= prev_offset) { 8231 verbose(env, 8232 "same or smaller insn offset (%u) than previous func info record (%u)", 8233 krecord[i].insn_off, prev_offset); 8234 goto err_free; 8235 } 8236 8237 if (env->subprog_info[i].start != krecord[i].insn_off) { 8238 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 8239 goto err_free; 8240 } 8241 8242 /* check type_id */ 8243 type = btf_type_by_id(btf, krecord[i].type_id); 8244 if (!type || !btf_type_is_func(type)) { 8245 verbose(env, "invalid type id %d in func info", 8246 krecord[i].type_id); 8247 goto err_free; 8248 } 8249 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 8250 8251 func_proto = btf_type_by_id(btf, type->type); 8252 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 8253 /* btf_func_check() already verified it during BTF load */ 8254 goto err_free; 8255 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 8256 scalar_return = 8257 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type); 8258 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 8259 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 8260 goto err_free; 8261 } 8262 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 8263 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 8264 goto err_free; 8265 } 8266 8267 prev_offset = krecord[i].insn_off; 8268 urecord += urec_size; 8269 } 8270 8271 prog->aux->func_info = krecord; 8272 prog->aux->func_info_cnt = nfuncs; 8273 prog->aux->func_info_aux = info_aux; 8274 return 0; 8275 8276 err_free: 8277 kvfree(krecord); 8278 kfree(info_aux); 8279 return ret; 8280 } 8281 8282 static void adjust_btf_func(struct bpf_verifier_env *env) 8283 { 8284 struct bpf_prog_aux *aux = env->prog->aux; 8285 int i; 8286 8287 if (!aux->func_info) 8288 return; 8289 8290 for (i = 0; i < env->subprog_cnt; i++) 8291 aux->func_info[i].insn_off = env->subprog_info[i].start; 8292 } 8293 8294 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 8295 sizeof(((struct bpf_line_info *)(0))->line_col)) 8296 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 8297 8298 static int check_btf_line(struct bpf_verifier_env *env, 8299 const union bpf_attr *attr, 8300 union bpf_attr __user *uattr) 8301 { 8302 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 8303 struct bpf_subprog_info *sub; 8304 struct bpf_line_info *linfo; 8305 struct bpf_prog *prog; 8306 const struct btf *btf; 8307 void __user *ulinfo; 8308 int err; 8309 8310 nr_linfo = attr->line_info_cnt; 8311 if (!nr_linfo) 8312 return 0; 8313 8314 rec_size = attr->line_info_rec_size; 8315 if (rec_size < MIN_BPF_LINEINFO_SIZE || 8316 rec_size > MAX_LINEINFO_REC_SIZE || 8317 rec_size & (sizeof(u32) - 1)) 8318 return -EINVAL; 8319 8320 /* Need to zero it in case the userspace may 8321 * pass in a smaller bpf_line_info object. 8322 */ 8323 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 8324 GFP_KERNEL | __GFP_NOWARN); 8325 if (!linfo) 8326 return -ENOMEM; 8327 8328 prog = env->prog; 8329 btf = prog->aux->btf; 8330 8331 s = 0; 8332 sub = env->subprog_info; 8333 ulinfo = u64_to_user_ptr(attr->line_info); 8334 expected_size = sizeof(struct bpf_line_info); 8335 ncopy = min_t(u32, expected_size, rec_size); 8336 for (i = 0; i < nr_linfo; i++) { 8337 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 8338 if (err) { 8339 if (err == -E2BIG) { 8340 verbose(env, "nonzero tailing record in line_info"); 8341 if (put_user(expected_size, 8342 &uattr->line_info_rec_size)) 8343 err = -EFAULT; 8344 } 8345 goto err_free; 8346 } 8347 8348 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 8349 err = -EFAULT; 8350 goto err_free; 8351 } 8352 8353 /* 8354 * Check insn_off to ensure 8355 * 1) strictly increasing AND 8356 * 2) bounded by prog->len 8357 * 8358 * The linfo[0].insn_off == 0 check logically falls into 8359 * the later "missing bpf_line_info for func..." case 8360 * because the first linfo[0].insn_off must be the 8361 * first sub also and the first sub must have 8362 * subprog_info[0].start == 0. 8363 */ 8364 if ((i && linfo[i].insn_off <= prev_offset) || 8365 linfo[i].insn_off >= prog->len) { 8366 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 8367 i, linfo[i].insn_off, prev_offset, 8368 prog->len); 8369 err = -EINVAL; 8370 goto err_free; 8371 } 8372 8373 if (!prog->insnsi[linfo[i].insn_off].code) { 8374 verbose(env, 8375 "Invalid insn code at line_info[%u].insn_off\n", 8376 i); 8377 err = -EINVAL; 8378 goto err_free; 8379 } 8380 8381 if (!btf_name_by_offset(btf, linfo[i].line_off) || 8382 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 8383 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 8384 err = -EINVAL; 8385 goto err_free; 8386 } 8387 8388 if (s != env->subprog_cnt) { 8389 if (linfo[i].insn_off == sub[s].start) { 8390 sub[s].linfo_idx = i; 8391 s++; 8392 } else if (sub[s].start < linfo[i].insn_off) { 8393 verbose(env, "missing bpf_line_info for func#%u\n", s); 8394 err = -EINVAL; 8395 goto err_free; 8396 } 8397 } 8398 8399 prev_offset = linfo[i].insn_off; 8400 ulinfo += rec_size; 8401 } 8402 8403 if (s != env->subprog_cnt) { 8404 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 8405 env->subprog_cnt - s, s); 8406 err = -EINVAL; 8407 goto err_free; 8408 } 8409 8410 prog->aux->linfo = linfo; 8411 prog->aux->nr_linfo = nr_linfo; 8412 8413 return 0; 8414 8415 err_free: 8416 kvfree(linfo); 8417 return err; 8418 } 8419 8420 static int check_btf_info(struct bpf_verifier_env *env, 8421 const union bpf_attr *attr, 8422 union bpf_attr __user *uattr) 8423 { 8424 struct btf *btf; 8425 int err; 8426 8427 if (!attr->func_info_cnt && !attr->line_info_cnt) { 8428 if (check_abnormal_return(env)) 8429 return -EINVAL; 8430 return 0; 8431 } 8432 8433 btf = btf_get_by_fd(attr->prog_btf_fd); 8434 if (IS_ERR(btf)) 8435 return PTR_ERR(btf); 8436 env->prog->aux->btf = btf; 8437 8438 err = check_btf_func(env, attr, uattr); 8439 if (err) 8440 return err; 8441 8442 err = check_btf_line(env, attr, uattr); 8443 if (err) 8444 return err; 8445 8446 return 0; 8447 } 8448 8449 /* check %cur's range satisfies %old's */ 8450 static bool range_within(struct bpf_reg_state *old, 8451 struct bpf_reg_state *cur) 8452 { 8453 return old->umin_value <= cur->umin_value && 8454 old->umax_value >= cur->umax_value && 8455 old->smin_value <= cur->smin_value && 8456 old->smax_value >= cur->smax_value; 8457 } 8458 8459 /* Maximum number of register states that can exist at once */ 8460 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 8461 struct idpair { 8462 u32 old; 8463 u32 cur; 8464 }; 8465 8466 /* If in the old state two registers had the same id, then they need to have 8467 * the same id in the new state as well. But that id could be different from 8468 * the old state, so we need to track the mapping from old to new ids. 8469 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 8470 * regs with old id 5 must also have new id 9 for the new state to be safe. But 8471 * regs with a different old id could still have new id 9, we don't care about 8472 * that. 8473 * So we look through our idmap to see if this old id has been seen before. If 8474 * so, we require the new id to match; otherwise, we add the id pair to the map. 8475 */ 8476 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 8477 { 8478 unsigned int i; 8479 8480 for (i = 0; i < ID_MAP_SIZE; i++) { 8481 if (!idmap[i].old) { 8482 /* Reached an empty slot; haven't seen this id before */ 8483 idmap[i].old = old_id; 8484 idmap[i].cur = cur_id; 8485 return true; 8486 } 8487 if (idmap[i].old == old_id) 8488 return idmap[i].cur == cur_id; 8489 } 8490 /* We ran out of idmap slots, which should be impossible */ 8491 WARN_ON_ONCE(1); 8492 return false; 8493 } 8494 8495 static void clean_func_state(struct bpf_verifier_env *env, 8496 struct bpf_func_state *st) 8497 { 8498 enum bpf_reg_liveness live; 8499 int i, j; 8500 8501 for (i = 0; i < BPF_REG_FP; i++) { 8502 live = st->regs[i].live; 8503 /* liveness must not touch this register anymore */ 8504 st->regs[i].live |= REG_LIVE_DONE; 8505 if (!(live & REG_LIVE_READ)) 8506 /* since the register is unused, clear its state 8507 * to make further comparison simpler 8508 */ 8509 __mark_reg_not_init(env, &st->regs[i]); 8510 } 8511 8512 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 8513 live = st->stack[i].spilled_ptr.live; 8514 /* liveness must not touch this stack slot anymore */ 8515 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 8516 if (!(live & REG_LIVE_READ)) { 8517 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 8518 for (j = 0; j < BPF_REG_SIZE; j++) 8519 st->stack[i].slot_type[j] = STACK_INVALID; 8520 } 8521 } 8522 } 8523 8524 static void clean_verifier_state(struct bpf_verifier_env *env, 8525 struct bpf_verifier_state *st) 8526 { 8527 int i; 8528 8529 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 8530 /* all regs in this state in all frames were already marked */ 8531 return; 8532 8533 for (i = 0; i <= st->curframe; i++) 8534 clean_func_state(env, st->frame[i]); 8535 } 8536 8537 /* the parentage chains form a tree. 8538 * the verifier states are added to state lists at given insn and 8539 * pushed into state stack for future exploration. 8540 * when the verifier reaches bpf_exit insn some of the verifer states 8541 * stored in the state lists have their final liveness state already, 8542 * but a lot of states will get revised from liveness point of view when 8543 * the verifier explores other branches. 8544 * Example: 8545 * 1: r0 = 1 8546 * 2: if r1 == 100 goto pc+1 8547 * 3: r0 = 2 8548 * 4: exit 8549 * when the verifier reaches exit insn the register r0 in the state list of 8550 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 8551 * of insn 2 and goes exploring further. At the insn 4 it will walk the 8552 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 8553 * 8554 * Since the verifier pushes the branch states as it sees them while exploring 8555 * the program the condition of walking the branch instruction for the second 8556 * time means that all states below this branch were already explored and 8557 * their final liveness markes are already propagated. 8558 * Hence when the verifier completes the search of state list in is_state_visited() 8559 * we can call this clean_live_states() function to mark all liveness states 8560 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 8561 * will not be used. 8562 * This function also clears the registers and stack for states that !READ 8563 * to simplify state merging. 8564 * 8565 * Important note here that walking the same branch instruction in the callee 8566 * doesn't meant that the states are DONE. The verifier has to compare 8567 * the callsites 8568 */ 8569 static void clean_live_states(struct bpf_verifier_env *env, int insn, 8570 struct bpf_verifier_state *cur) 8571 { 8572 struct bpf_verifier_state_list *sl; 8573 int i; 8574 8575 sl = *explored_state(env, insn); 8576 while (sl) { 8577 if (sl->state.branches) 8578 goto next; 8579 if (sl->state.insn_idx != insn || 8580 sl->state.curframe != cur->curframe) 8581 goto next; 8582 for (i = 0; i <= cur->curframe; i++) 8583 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 8584 goto next; 8585 clean_verifier_state(env, &sl->state); 8586 next: 8587 sl = sl->next; 8588 } 8589 } 8590 8591 /* Returns true if (rold safe implies rcur safe) */ 8592 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 8593 struct idpair *idmap) 8594 { 8595 bool equal; 8596 8597 if (!(rold->live & REG_LIVE_READ)) 8598 /* explored state didn't use this */ 8599 return true; 8600 8601 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 8602 8603 if (rold->type == PTR_TO_STACK) 8604 /* two stack pointers are equal only if they're pointing to 8605 * the same stack frame, since fp-8 in foo != fp-8 in bar 8606 */ 8607 return equal && rold->frameno == rcur->frameno; 8608 8609 if (equal) 8610 return true; 8611 8612 if (rold->type == NOT_INIT) 8613 /* explored state can't have used this */ 8614 return true; 8615 if (rcur->type == NOT_INIT) 8616 return false; 8617 switch (rold->type) { 8618 case SCALAR_VALUE: 8619 if (rcur->type == SCALAR_VALUE) { 8620 if (!rold->precise && !rcur->precise) 8621 return true; 8622 /* new val must satisfy old val knowledge */ 8623 return range_within(rold, rcur) && 8624 tnum_in(rold->var_off, rcur->var_off); 8625 } else { 8626 /* We're trying to use a pointer in place of a scalar. 8627 * Even if the scalar was unbounded, this could lead to 8628 * pointer leaks because scalars are allowed to leak 8629 * while pointers are not. We could make this safe in 8630 * special cases if root is calling us, but it's 8631 * probably not worth the hassle. 8632 */ 8633 return false; 8634 } 8635 case PTR_TO_MAP_VALUE: 8636 /* If the new min/max/var_off satisfy the old ones and 8637 * everything else matches, we are OK. 8638 * 'id' is not compared, since it's only used for maps with 8639 * bpf_spin_lock inside map element and in such cases if 8640 * the rest of the prog is valid for one map element then 8641 * it's valid for all map elements regardless of the key 8642 * used in bpf_map_lookup() 8643 */ 8644 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 8645 range_within(rold, rcur) && 8646 tnum_in(rold->var_off, rcur->var_off); 8647 case PTR_TO_MAP_VALUE_OR_NULL: 8648 /* a PTR_TO_MAP_VALUE could be safe to use as a 8649 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 8650 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 8651 * checked, doing so could have affected others with the same 8652 * id, and we can't check for that because we lost the id when 8653 * we converted to a PTR_TO_MAP_VALUE. 8654 */ 8655 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 8656 return false; 8657 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 8658 return false; 8659 /* Check our ids match any regs they're supposed to */ 8660 return check_ids(rold->id, rcur->id, idmap); 8661 case PTR_TO_PACKET_META: 8662 case PTR_TO_PACKET: 8663 if (rcur->type != rold->type) 8664 return false; 8665 /* We must have at least as much range as the old ptr 8666 * did, so that any accesses which were safe before are 8667 * still safe. This is true even if old range < old off, 8668 * since someone could have accessed through (ptr - k), or 8669 * even done ptr -= k in a register, to get a safe access. 8670 */ 8671 if (rold->range > rcur->range) 8672 return false; 8673 /* If the offsets don't match, we can't trust our alignment; 8674 * nor can we be sure that we won't fall out of range. 8675 */ 8676 if (rold->off != rcur->off) 8677 return false; 8678 /* id relations must be preserved */ 8679 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 8680 return false; 8681 /* new val must satisfy old val knowledge */ 8682 return range_within(rold, rcur) && 8683 tnum_in(rold->var_off, rcur->var_off); 8684 case PTR_TO_CTX: 8685 case CONST_PTR_TO_MAP: 8686 case PTR_TO_PACKET_END: 8687 case PTR_TO_FLOW_KEYS: 8688 case PTR_TO_SOCKET: 8689 case PTR_TO_SOCKET_OR_NULL: 8690 case PTR_TO_SOCK_COMMON: 8691 case PTR_TO_SOCK_COMMON_OR_NULL: 8692 case PTR_TO_TCP_SOCK: 8693 case PTR_TO_TCP_SOCK_OR_NULL: 8694 case PTR_TO_XDP_SOCK: 8695 /* Only valid matches are exact, which memcmp() above 8696 * would have accepted 8697 */ 8698 default: 8699 /* Don't know what's going on, just say it's not safe */ 8700 return false; 8701 } 8702 8703 /* Shouldn't get here; if we do, say it's not safe */ 8704 WARN_ON_ONCE(1); 8705 return false; 8706 } 8707 8708 static bool stacksafe(struct bpf_func_state *old, 8709 struct bpf_func_state *cur, 8710 struct idpair *idmap) 8711 { 8712 int i, spi; 8713 8714 /* walk slots of the explored stack and ignore any additional 8715 * slots in the current stack, since explored(safe) state 8716 * didn't use them 8717 */ 8718 for (i = 0; i < old->allocated_stack; i++) { 8719 spi = i / BPF_REG_SIZE; 8720 8721 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 8722 i += BPF_REG_SIZE - 1; 8723 /* explored state didn't use this */ 8724 continue; 8725 } 8726 8727 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 8728 continue; 8729 8730 /* explored stack has more populated slots than current stack 8731 * and these slots were used 8732 */ 8733 if (i >= cur->allocated_stack) 8734 return false; 8735 8736 /* if old state was safe with misc data in the stack 8737 * it will be safe with zero-initialized stack. 8738 * The opposite is not true 8739 */ 8740 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 8741 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 8742 continue; 8743 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 8744 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 8745 /* Ex: old explored (safe) state has STACK_SPILL in 8746 * this stack slot, but current has STACK_MISC -> 8747 * this verifier states are not equivalent, 8748 * return false to continue verification of this path 8749 */ 8750 return false; 8751 if (i % BPF_REG_SIZE) 8752 continue; 8753 if (old->stack[spi].slot_type[0] != STACK_SPILL) 8754 continue; 8755 if (!regsafe(&old->stack[spi].spilled_ptr, 8756 &cur->stack[spi].spilled_ptr, 8757 idmap)) 8758 /* when explored and current stack slot are both storing 8759 * spilled registers, check that stored pointers types 8760 * are the same as well. 8761 * Ex: explored safe path could have stored 8762 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 8763 * but current path has stored: 8764 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 8765 * such verifier states are not equivalent. 8766 * return false to continue verification of this path 8767 */ 8768 return false; 8769 } 8770 return true; 8771 } 8772 8773 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 8774 { 8775 if (old->acquired_refs != cur->acquired_refs) 8776 return false; 8777 return !memcmp(old->refs, cur->refs, 8778 sizeof(*old->refs) * old->acquired_refs); 8779 } 8780 8781 /* compare two verifier states 8782 * 8783 * all states stored in state_list are known to be valid, since 8784 * verifier reached 'bpf_exit' instruction through them 8785 * 8786 * this function is called when verifier exploring different branches of 8787 * execution popped from the state stack. If it sees an old state that has 8788 * more strict register state and more strict stack state then this execution 8789 * branch doesn't need to be explored further, since verifier already 8790 * concluded that more strict state leads to valid finish. 8791 * 8792 * Therefore two states are equivalent if register state is more conservative 8793 * and explored stack state is more conservative than the current one. 8794 * Example: 8795 * explored current 8796 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 8797 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 8798 * 8799 * In other words if current stack state (one being explored) has more 8800 * valid slots than old one that already passed validation, it means 8801 * the verifier can stop exploring and conclude that current state is valid too 8802 * 8803 * Similarly with registers. If explored state has register type as invalid 8804 * whereas register type in current state is meaningful, it means that 8805 * the current state will reach 'bpf_exit' instruction safely 8806 */ 8807 static bool func_states_equal(struct bpf_func_state *old, 8808 struct bpf_func_state *cur) 8809 { 8810 struct idpair *idmap; 8811 bool ret = false; 8812 int i; 8813 8814 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 8815 /* If we failed to allocate the idmap, just say it's not safe */ 8816 if (!idmap) 8817 return false; 8818 8819 for (i = 0; i < MAX_BPF_REG; i++) { 8820 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 8821 goto out_free; 8822 } 8823 8824 if (!stacksafe(old, cur, idmap)) 8825 goto out_free; 8826 8827 if (!refsafe(old, cur)) 8828 goto out_free; 8829 ret = true; 8830 out_free: 8831 kfree(idmap); 8832 return ret; 8833 } 8834 8835 static bool states_equal(struct bpf_verifier_env *env, 8836 struct bpf_verifier_state *old, 8837 struct bpf_verifier_state *cur) 8838 { 8839 int i; 8840 8841 if (old->curframe != cur->curframe) 8842 return false; 8843 8844 /* Verification state from speculative execution simulation 8845 * must never prune a non-speculative execution one. 8846 */ 8847 if (old->speculative && !cur->speculative) 8848 return false; 8849 8850 if (old->active_spin_lock != cur->active_spin_lock) 8851 return false; 8852 8853 /* for states to be equal callsites have to be the same 8854 * and all frame states need to be equivalent 8855 */ 8856 for (i = 0; i <= old->curframe; i++) { 8857 if (old->frame[i]->callsite != cur->frame[i]->callsite) 8858 return false; 8859 if (!func_states_equal(old->frame[i], cur->frame[i])) 8860 return false; 8861 } 8862 return true; 8863 } 8864 8865 /* Return 0 if no propagation happened. Return negative error code if error 8866 * happened. Otherwise, return the propagated bit. 8867 */ 8868 static int propagate_liveness_reg(struct bpf_verifier_env *env, 8869 struct bpf_reg_state *reg, 8870 struct bpf_reg_state *parent_reg) 8871 { 8872 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 8873 u8 flag = reg->live & REG_LIVE_READ; 8874 int err; 8875 8876 /* When comes here, read flags of PARENT_REG or REG could be any of 8877 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 8878 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 8879 */ 8880 if (parent_flag == REG_LIVE_READ64 || 8881 /* Or if there is no read flag from REG. */ 8882 !flag || 8883 /* Or if the read flag from REG is the same as PARENT_REG. */ 8884 parent_flag == flag) 8885 return 0; 8886 8887 err = mark_reg_read(env, reg, parent_reg, flag); 8888 if (err) 8889 return err; 8890 8891 return flag; 8892 } 8893 8894 /* A write screens off any subsequent reads; but write marks come from the 8895 * straight-line code between a state and its parent. When we arrive at an 8896 * equivalent state (jump target or such) we didn't arrive by the straight-line 8897 * code, so read marks in the state must propagate to the parent regardless 8898 * of the state's write marks. That's what 'parent == state->parent' comparison 8899 * in mark_reg_read() is for. 8900 */ 8901 static int propagate_liveness(struct bpf_verifier_env *env, 8902 const struct bpf_verifier_state *vstate, 8903 struct bpf_verifier_state *vparent) 8904 { 8905 struct bpf_reg_state *state_reg, *parent_reg; 8906 struct bpf_func_state *state, *parent; 8907 int i, frame, err = 0; 8908 8909 if (vparent->curframe != vstate->curframe) { 8910 WARN(1, "propagate_live: parent frame %d current frame %d\n", 8911 vparent->curframe, vstate->curframe); 8912 return -EFAULT; 8913 } 8914 /* Propagate read liveness of registers... */ 8915 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 8916 for (frame = 0; frame <= vstate->curframe; frame++) { 8917 parent = vparent->frame[frame]; 8918 state = vstate->frame[frame]; 8919 parent_reg = parent->regs; 8920 state_reg = state->regs; 8921 /* We don't need to worry about FP liveness, it's read-only */ 8922 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 8923 err = propagate_liveness_reg(env, &state_reg[i], 8924 &parent_reg[i]); 8925 if (err < 0) 8926 return err; 8927 if (err == REG_LIVE_READ64) 8928 mark_insn_zext(env, &parent_reg[i]); 8929 } 8930 8931 /* Propagate stack slots. */ 8932 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 8933 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 8934 parent_reg = &parent->stack[i].spilled_ptr; 8935 state_reg = &state->stack[i].spilled_ptr; 8936 err = propagate_liveness_reg(env, state_reg, 8937 parent_reg); 8938 if (err < 0) 8939 return err; 8940 } 8941 } 8942 return 0; 8943 } 8944 8945 /* find precise scalars in the previous equivalent state and 8946 * propagate them into the current state 8947 */ 8948 static int propagate_precision(struct bpf_verifier_env *env, 8949 const struct bpf_verifier_state *old) 8950 { 8951 struct bpf_reg_state *state_reg; 8952 struct bpf_func_state *state; 8953 int i, err = 0; 8954 8955 state = old->frame[old->curframe]; 8956 state_reg = state->regs; 8957 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 8958 if (state_reg->type != SCALAR_VALUE || 8959 !state_reg->precise) 8960 continue; 8961 if (env->log.level & BPF_LOG_LEVEL2) 8962 verbose(env, "propagating r%d\n", i); 8963 err = mark_chain_precision(env, i); 8964 if (err < 0) 8965 return err; 8966 } 8967 8968 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 8969 if (state->stack[i].slot_type[0] != STACK_SPILL) 8970 continue; 8971 state_reg = &state->stack[i].spilled_ptr; 8972 if (state_reg->type != SCALAR_VALUE || 8973 !state_reg->precise) 8974 continue; 8975 if (env->log.level & BPF_LOG_LEVEL2) 8976 verbose(env, "propagating fp%d\n", 8977 (-i - 1) * BPF_REG_SIZE); 8978 err = mark_chain_precision_stack(env, i); 8979 if (err < 0) 8980 return err; 8981 } 8982 return 0; 8983 } 8984 8985 static bool states_maybe_looping(struct bpf_verifier_state *old, 8986 struct bpf_verifier_state *cur) 8987 { 8988 struct bpf_func_state *fold, *fcur; 8989 int i, fr = cur->curframe; 8990 8991 if (old->curframe != fr) 8992 return false; 8993 8994 fold = old->frame[fr]; 8995 fcur = cur->frame[fr]; 8996 for (i = 0; i < MAX_BPF_REG; i++) 8997 if (memcmp(&fold->regs[i], &fcur->regs[i], 8998 offsetof(struct bpf_reg_state, parent))) 8999 return false; 9000 return true; 9001 } 9002 9003 9004 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 9005 { 9006 struct bpf_verifier_state_list *new_sl; 9007 struct bpf_verifier_state_list *sl, **pprev; 9008 struct bpf_verifier_state *cur = env->cur_state, *new; 9009 int i, j, err, states_cnt = 0; 9010 bool add_new_state = env->test_state_freq ? true : false; 9011 9012 cur->last_insn_idx = env->prev_insn_idx; 9013 if (!env->insn_aux_data[insn_idx].prune_point) 9014 /* this 'insn_idx' instruction wasn't marked, so we will not 9015 * be doing state search here 9016 */ 9017 return 0; 9018 9019 /* bpf progs typically have pruning point every 4 instructions 9020 * http://vger.kernel.org/bpfconf2019.html#session-1 9021 * Do not add new state for future pruning if the verifier hasn't seen 9022 * at least 2 jumps and at least 8 instructions. 9023 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 9024 * In tests that amounts to up to 50% reduction into total verifier 9025 * memory consumption and 20% verifier time speedup. 9026 */ 9027 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 9028 env->insn_processed - env->prev_insn_processed >= 8) 9029 add_new_state = true; 9030 9031 pprev = explored_state(env, insn_idx); 9032 sl = *pprev; 9033 9034 clean_live_states(env, insn_idx, cur); 9035 9036 while (sl) { 9037 states_cnt++; 9038 if (sl->state.insn_idx != insn_idx) 9039 goto next; 9040 if (sl->state.branches) { 9041 if (states_maybe_looping(&sl->state, cur) && 9042 states_equal(env, &sl->state, cur)) { 9043 verbose_linfo(env, insn_idx, "; "); 9044 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 9045 return -EINVAL; 9046 } 9047 /* if the verifier is processing a loop, avoid adding new state 9048 * too often, since different loop iterations have distinct 9049 * states and may not help future pruning. 9050 * This threshold shouldn't be too low to make sure that 9051 * a loop with large bound will be rejected quickly. 9052 * The most abusive loop will be: 9053 * r1 += 1 9054 * if r1 < 1000000 goto pc-2 9055 * 1M insn_procssed limit / 100 == 10k peak states. 9056 * This threshold shouldn't be too high either, since states 9057 * at the end of the loop are likely to be useful in pruning. 9058 */ 9059 if (env->jmps_processed - env->prev_jmps_processed < 20 && 9060 env->insn_processed - env->prev_insn_processed < 100) 9061 add_new_state = false; 9062 goto miss; 9063 } 9064 if (states_equal(env, &sl->state, cur)) { 9065 sl->hit_cnt++; 9066 /* reached equivalent register/stack state, 9067 * prune the search. 9068 * Registers read by the continuation are read by us. 9069 * If we have any write marks in env->cur_state, they 9070 * will prevent corresponding reads in the continuation 9071 * from reaching our parent (an explored_state). Our 9072 * own state will get the read marks recorded, but 9073 * they'll be immediately forgotten as we're pruning 9074 * this state and will pop a new one. 9075 */ 9076 err = propagate_liveness(env, &sl->state, cur); 9077 9078 /* if previous state reached the exit with precision and 9079 * current state is equivalent to it (except precsion marks) 9080 * the precision needs to be propagated back in 9081 * the current state. 9082 */ 9083 err = err ? : push_jmp_history(env, cur); 9084 err = err ? : propagate_precision(env, &sl->state); 9085 if (err) 9086 return err; 9087 return 1; 9088 } 9089 miss: 9090 /* when new state is not going to be added do not increase miss count. 9091 * Otherwise several loop iterations will remove the state 9092 * recorded earlier. The goal of these heuristics is to have 9093 * states from some iterations of the loop (some in the beginning 9094 * and some at the end) to help pruning. 9095 */ 9096 if (add_new_state) 9097 sl->miss_cnt++; 9098 /* heuristic to determine whether this state is beneficial 9099 * to keep checking from state equivalence point of view. 9100 * Higher numbers increase max_states_per_insn and verification time, 9101 * but do not meaningfully decrease insn_processed. 9102 */ 9103 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 9104 /* the state is unlikely to be useful. Remove it to 9105 * speed up verification 9106 */ 9107 *pprev = sl->next; 9108 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 9109 u32 br = sl->state.branches; 9110 9111 WARN_ONCE(br, 9112 "BUG live_done but branches_to_explore %d\n", 9113 br); 9114 free_verifier_state(&sl->state, false); 9115 kfree(sl); 9116 env->peak_states--; 9117 } else { 9118 /* cannot free this state, since parentage chain may 9119 * walk it later. Add it for free_list instead to 9120 * be freed at the end of verification 9121 */ 9122 sl->next = env->free_list; 9123 env->free_list = sl; 9124 } 9125 sl = *pprev; 9126 continue; 9127 } 9128 next: 9129 pprev = &sl->next; 9130 sl = *pprev; 9131 } 9132 9133 if (env->max_states_per_insn < states_cnt) 9134 env->max_states_per_insn = states_cnt; 9135 9136 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 9137 return push_jmp_history(env, cur); 9138 9139 if (!add_new_state) 9140 return push_jmp_history(env, cur); 9141 9142 /* There were no equivalent states, remember the current one. 9143 * Technically the current state is not proven to be safe yet, 9144 * but it will either reach outer most bpf_exit (which means it's safe) 9145 * or it will be rejected. When there are no loops the verifier won't be 9146 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 9147 * again on the way to bpf_exit. 9148 * When looping the sl->state.branches will be > 0 and this state 9149 * will not be considered for equivalence until branches == 0. 9150 */ 9151 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 9152 if (!new_sl) 9153 return -ENOMEM; 9154 env->total_states++; 9155 env->peak_states++; 9156 env->prev_jmps_processed = env->jmps_processed; 9157 env->prev_insn_processed = env->insn_processed; 9158 9159 /* add new state to the head of linked list */ 9160 new = &new_sl->state; 9161 err = copy_verifier_state(new, cur); 9162 if (err) { 9163 free_verifier_state(new, false); 9164 kfree(new_sl); 9165 return err; 9166 } 9167 new->insn_idx = insn_idx; 9168 WARN_ONCE(new->branches != 1, 9169 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 9170 9171 cur->parent = new; 9172 cur->first_insn_idx = insn_idx; 9173 clear_jmp_history(cur); 9174 new_sl->next = *explored_state(env, insn_idx); 9175 *explored_state(env, insn_idx) = new_sl; 9176 /* connect new state to parentage chain. Current frame needs all 9177 * registers connected. Only r6 - r9 of the callers are alive (pushed 9178 * to the stack implicitly by JITs) so in callers' frames connect just 9179 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 9180 * the state of the call instruction (with WRITTEN set), and r0 comes 9181 * from callee with its full parentage chain, anyway. 9182 */ 9183 /* clear write marks in current state: the writes we did are not writes 9184 * our child did, so they don't screen off its reads from us. 9185 * (There are no read marks in current state, because reads always mark 9186 * their parent and current state never has children yet. Only 9187 * explored_states can get read marks.) 9188 */ 9189 for (j = 0; j <= cur->curframe; j++) { 9190 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 9191 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 9192 for (i = 0; i < BPF_REG_FP; i++) 9193 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 9194 } 9195 9196 /* all stack frames are accessible from callee, clear them all */ 9197 for (j = 0; j <= cur->curframe; j++) { 9198 struct bpf_func_state *frame = cur->frame[j]; 9199 struct bpf_func_state *newframe = new->frame[j]; 9200 9201 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 9202 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 9203 frame->stack[i].spilled_ptr.parent = 9204 &newframe->stack[i].spilled_ptr; 9205 } 9206 } 9207 return 0; 9208 } 9209 9210 /* Return true if it's OK to have the same insn return a different type. */ 9211 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 9212 { 9213 switch (type) { 9214 case PTR_TO_CTX: 9215 case PTR_TO_SOCKET: 9216 case PTR_TO_SOCKET_OR_NULL: 9217 case PTR_TO_SOCK_COMMON: 9218 case PTR_TO_SOCK_COMMON_OR_NULL: 9219 case PTR_TO_TCP_SOCK: 9220 case PTR_TO_TCP_SOCK_OR_NULL: 9221 case PTR_TO_XDP_SOCK: 9222 case PTR_TO_BTF_ID: 9223 case PTR_TO_BTF_ID_OR_NULL: 9224 return false; 9225 default: 9226 return true; 9227 } 9228 } 9229 9230 /* If an instruction was previously used with particular pointer types, then we 9231 * need to be careful to avoid cases such as the below, where it may be ok 9232 * for one branch accessing the pointer, but not ok for the other branch: 9233 * 9234 * R1 = sock_ptr 9235 * goto X; 9236 * ... 9237 * R1 = some_other_valid_ptr; 9238 * goto X; 9239 * ... 9240 * R2 = *(u32 *)(R1 + 0); 9241 */ 9242 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 9243 { 9244 return src != prev && (!reg_type_mismatch_ok(src) || 9245 !reg_type_mismatch_ok(prev)); 9246 } 9247 9248 static int do_check(struct bpf_verifier_env *env) 9249 { 9250 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 9251 struct bpf_verifier_state *state = env->cur_state; 9252 struct bpf_insn *insns = env->prog->insnsi; 9253 struct bpf_reg_state *regs; 9254 int insn_cnt = env->prog->len; 9255 bool do_print_state = false; 9256 int prev_insn_idx = -1; 9257 9258 for (;;) { 9259 struct bpf_insn *insn; 9260 u8 class; 9261 int err; 9262 9263 env->prev_insn_idx = prev_insn_idx; 9264 if (env->insn_idx >= insn_cnt) { 9265 verbose(env, "invalid insn idx %d insn_cnt %d\n", 9266 env->insn_idx, insn_cnt); 9267 return -EFAULT; 9268 } 9269 9270 insn = &insns[env->insn_idx]; 9271 class = BPF_CLASS(insn->code); 9272 9273 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 9274 verbose(env, 9275 "BPF program is too large. Processed %d insn\n", 9276 env->insn_processed); 9277 return -E2BIG; 9278 } 9279 9280 err = is_state_visited(env, env->insn_idx); 9281 if (err < 0) 9282 return err; 9283 if (err == 1) { 9284 /* found equivalent state, can prune the search */ 9285 if (env->log.level & BPF_LOG_LEVEL) { 9286 if (do_print_state) 9287 verbose(env, "\nfrom %d to %d%s: safe\n", 9288 env->prev_insn_idx, env->insn_idx, 9289 env->cur_state->speculative ? 9290 " (speculative execution)" : ""); 9291 else 9292 verbose(env, "%d: safe\n", env->insn_idx); 9293 } 9294 goto process_bpf_exit; 9295 } 9296 9297 if (signal_pending(current)) 9298 return -EAGAIN; 9299 9300 if (need_resched()) 9301 cond_resched(); 9302 9303 if (env->log.level & BPF_LOG_LEVEL2 || 9304 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 9305 if (env->log.level & BPF_LOG_LEVEL2) 9306 verbose(env, "%d:", env->insn_idx); 9307 else 9308 verbose(env, "\nfrom %d to %d%s:", 9309 env->prev_insn_idx, env->insn_idx, 9310 env->cur_state->speculative ? 9311 " (speculative execution)" : ""); 9312 print_verifier_state(env, state->frame[state->curframe]); 9313 do_print_state = false; 9314 } 9315 9316 if (env->log.level & BPF_LOG_LEVEL) { 9317 const struct bpf_insn_cbs cbs = { 9318 .cb_print = verbose, 9319 .private_data = env, 9320 }; 9321 9322 verbose_linfo(env, env->insn_idx, "; "); 9323 verbose(env, "%d: ", env->insn_idx); 9324 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 9325 } 9326 9327 if (bpf_prog_is_dev_bound(env->prog->aux)) { 9328 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 9329 env->prev_insn_idx); 9330 if (err) 9331 return err; 9332 } 9333 9334 regs = cur_regs(env); 9335 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 9336 prev_insn_idx = env->insn_idx; 9337 9338 if (class == BPF_ALU || class == BPF_ALU64) { 9339 err = check_alu_op(env, insn); 9340 if (err) 9341 return err; 9342 9343 } else if (class == BPF_LDX) { 9344 enum bpf_reg_type *prev_src_type, src_reg_type; 9345 9346 /* check for reserved fields is already done */ 9347 9348 /* check src operand */ 9349 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9350 if (err) 9351 return err; 9352 9353 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 9354 if (err) 9355 return err; 9356 9357 src_reg_type = regs[insn->src_reg].type; 9358 9359 /* check that memory (src_reg + off) is readable, 9360 * the state of dst_reg will be updated by this func 9361 */ 9362 err = check_mem_access(env, env->insn_idx, insn->src_reg, 9363 insn->off, BPF_SIZE(insn->code), 9364 BPF_READ, insn->dst_reg, false); 9365 if (err) 9366 return err; 9367 9368 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 9369 9370 if (*prev_src_type == NOT_INIT) { 9371 /* saw a valid insn 9372 * dst_reg = *(u32 *)(src_reg + off) 9373 * save type to validate intersecting paths 9374 */ 9375 *prev_src_type = src_reg_type; 9376 9377 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 9378 /* ABuser program is trying to use the same insn 9379 * dst_reg = *(u32*) (src_reg + off) 9380 * with different pointer types: 9381 * src_reg == ctx in one branch and 9382 * src_reg == stack|map in some other branch. 9383 * Reject it. 9384 */ 9385 verbose(env, "same insn cannot be used with different pointers\n"); 9386 return -EINVAL; 9387 } 9388 9389 } else if (class == BPF_STX) { 9390 enum bpf_reg_type *prev_dst_type, dst_reg_type; 9391 9392 if (BPF_MODE(insn->code) == BPF_XADD) { 9393 err = check_xadd(env, env->insn_idx, insn); 9394 if (err) 9395 return err; 9396 env->insn_idx++; 9397 continue; 9398 } 9399 9400 /* check src1 operand */ 9401 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9402 if (err) 9403 return err; 9404 /* check src2 operand */ 9405 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9406 if (err) 9407 return err; 9408 9409 dst_reg_type = regs[insn->dst_reg].type; 9410 9411 /* check that memory (dst_reg + off) is writeable */ 9412 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 9413 insn->off, BPF_SIZE(insn->code), 9414 BPF_WRITE, insn->src_reg, false); 9415 if (err) 9416 return err; 9417 9418 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 9419 9420 if (*prev_dst_type == NOT_INIT) { 9421 *prev_dst_type = dst_reg_type; 9422 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 9423 verbose(env, "same insn cannot be used with different pointers\n"); 9424 return -EINVAL; 9425 } 9426 9427 } else if (class == BPF_ST) { 9428 if (BPF_MODE(insn->code) != BPF_MEM || 9429 insn->src_reg != BPF_REG_0) { 9430 verbose(env, "BPF_ST uses reserved fields\n"); 9431 return -EINVAL; 9432 } 9433 /* check src operand */ 9434 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9435 if (err) 9436 return err; 9437 9438 if (is_ctx_reg(env, insn->dst_reg)) { 9439 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 9440 insn->dst_reg, 9441 reg_type_str[reg_state(env, insn->dst_reg)->type]); 9442 return -EACCES; 9443 } 9444 9445 /* check that memory (dst_reg + off) is writeable */ 9446 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 9447 insn->off, BPF_SIZE(insn->code), 9448 BPF_WRITE, -1, false); 9449 if (err) 9450 return err; 9451 9452 } else if (class == BPF_JMP || class == BPF_JMP32) { 9453 u8 opcode = BPF_OP(insn->code); 9454 9455 env->jmps_processed++; 9456 if (opcode == BPF_CALL) { 9457 if (BPF_SRC(insn->code) != BPF_K || 9458 insn->off != 0 || 9459 (insn->src_reg != BPF_REG_0 && 9460 insn->src_reg != BPF_PSEUDO_CALL) || 9461 insn->dst_reg != BPF_REG_0 || 9462 class == BPF_JMP32) { 9463 verbose(env, "BPF_CALL uses reserved fields\n"); 9464 return -EINVAL; 9465 } 9466 9467 if (env->cur_state->active_spin_lock && 9468 (insn->src_reg == BPF_PSEUDO_CALL || 9469 insn->imm != BPF_FUNC_spin_unlock)) { 9470 verbose(env, "function calls are not allowed while holding a lock\n"); 9471 return -EINVAL; 9472 } 9473 if (insn->src_reg == BPF_PSEUDO_CALL) 9474 err = check_func_call(env, insn, &env->insn_idx); 9475 else 9476 err = check_helper_call(env, insn->imm, env->insn_idx); 9477 if (err) 9478 return err; 9479 9480 } else if (opcode == BPF_JA) { 9481 if (BPF_SRC(insn->code) != BPF_K || 9482 insn->imm != 0 || 9483 insn->src_reg != BPF_REG_0 || 9484 insn->dst_reg != BPF_REG_0 || 9485 class == BPF_JMP32) { 9486 verbose(env, "BPF_JA uses reserved fields\n"); 9487 return -EINVAL; 9488 } 9489 9490 env->insn_idx += insn->off + 1; 9491 continue; 9492 9493 } else if (opcode == BPF_EXIT) { 9494 if (BPF_SRC(insn->code) != BPF_K || 9495 insn->imm != 0 || 9496 insn->src_reg != BPF_REG_0 || 9497 insn->dst_reg != BPF_REG_0 || 9498 class == BPF_JMP32) { 9499 verbose(env, "BPF_EXIT uses reserved fields\n"); 9500 return -EINVAL; 9501 } 9502 9503 if (env->cur_state->active_spin_lock) { 9504 verbose(env, "bpf_spin_unlock is missing\n"); 9505 return -EINVAL; 9506 } 9507 9508 if (state->curframe) { 9509 /* exit from nested function */ 9510 err = prepare_func_exit(env, &env->insn_idx); 9511 if (err) 9512 return err; 9513 do_print_state = true; 9514 continue; 9515 } 9516 9517 err = check_reference_leak(env); 9518 if (err) 9519 return err; 9520 9521 err = check_return_code(env); 9522 if (err) 9523 return err; 9524 process_bpf_exit: 9525 update_branch_counts(env, env->cur_state); 9526 err = pop_stack(env, &prev_insn_idx, 9527 &env->insn_idx, pop_log); 9528 if (err < 0) { 9529 if (err != -ENOENT) 9530 return err; 9531 break; 9532 } else { 9533 do_print_state = true; 9534 continue; 9535 } 9536 } else { 9537 err = check_cond_jmp_op(env, insn, &env->insn_idx); 9538 if (err) 9539 return err; 9540 } 9541 } else if (class == BPF_LD) { 9542 u8 mode = BPF_MODE(insn->code); 9543 9544 if (mode == BPF_ABS || mode == BPF_IND) { 9545 err = check_ld_abs(env, insn); 9546 if (err) 9547 return err; 9548 9549 } else if (mode == BPF_IMM) { 9550 err = check_ld_imm(env, insn); 9551 if (err) 9552 return err; 9553 9554 env->insn_idx++; 9555 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 9556 } else { 9557 verbose(env, "invalid BPF_LD mode\n"); 9558 return -EINVAL; 9559 } 9560 } else { 9561 verbose(env, "unknown insn class %d\n", class); 9562 return -EINVAL; 9563 } 9564 9565 env->insn_idx++; 9566 } 9567 9568 return 0; 9569 } 9570 9571 /* replace pseudo btf_id with kernel symbol address */ 9572 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 9573 struct bpf_insn *insn, 9574 struct bpf_insn_aux_data *aux) 9575 { 9576 u32 datasec_id, type, id = insn->imm; 9577 const struct btf_var_secinfo *vsi; 9578 const struct btf_type *datasec; 9579 const struct btf_type *t; 9580 const char *sym_name; 9581 bool percpu = false; 9582 u64 addr; 9583 int i; 9584 9585 if (!btf_vmlinux) { 9586 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 9587 return -EINVAL; 9588 } 9589 9590 if (insn[1].imm != 0) { 9591 verbose(env, "reserved field (insn[1].imm) is used in pseudo_btf_id ldimm64 insn.\n"); 9592 return -EINVAL; 9593 } 9594 9595 t = btf_type_by_id(btf_vmlinux, id); 9596 if (!t) { 9597 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 9598 return -ENOENT; 9599 } 9600 9601 if (!btf_type_is_var(t)) { 9602 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", 9603 id); 9604 return -EINVAL; 9605 } 9606 9607 sym_name = btf_name_by_offset(btf_vmlinux, t->name_off); 9608 addr = kallsyms_lookup_name(sym_name); 9609 if (!addr) { 9610 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 9611 sym_name); 9612 return -ENOENT; 9613 } 9614 9615 datasec_id = btf_find_by_name_kind(btf_vmlinux, ".data..percpu", 9616 BTF_KIND_DATASEC); 9617 if (datasec_id > 0) { 9618 datasec = btf_type_by_id(btf_vmlinux, datasec_id); 9619 for_each_vsi(i, datasec, vsi) { 9620 if (vsi->type == id) { 9621 percpu = true; 9622 break; 9623 } 9624 } 9625 } 9626 9627 insn[0].imm = (u32)addr; 9628 insn[1].imm = addr >> 32; 9629 9630 type = t->type; 9631 t = btf_type_skip_modifiers(btf_vmlinux, type, NULL); 9632 if (percpu) { 9633 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID; 9634 aux->btf_var.btf_id = type; 9635 } else if (!btf_type_is_struct(t)) { 9636 const struct btf_type *ret; 9637 const char *tname; 9638 u32 tsize; 9639 9640 /* resolve the type size of ksym. */ 9641 ret = btf_resolve_size(btf_vmlinux, t, &tsize); 9642 if (IS_ERR(ret)) { 9643 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 9644 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 9645 tname, PTR_ERR(ret)); 9646 return -EINVAL; 9647 } 9648 aux->btf_var.reg_type = PTR_TO_MEM; 9649 aux->btf_var.mem_size = tsize; 9650 } else { 9651 aux->btf_var.reg_type = PTR_TO_BTF_ID; 9652 aux->btf_var.btf_id = type; 9653 } 9654 return 0; 9655 } 9656 9657 static int check_map_prealloc(struct bpf_map *map) 9658 { 9659 return (map->map_type != BPF_MAP_TYPE_HASH && 9660 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 9661 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 9662 !(map->map_flags & BPF_F_NO_PREALLOC); 9663 } 9664 9665 static bool is_tracing_prog_type(enum bpf_prog_type type) 9666 { 9667 switch (type) { 9668 case BPF_PROG_TYPE_KPROBE: 9669 case BPF_PROG_TYPE_TRACEPOINT: 9670 case BPF_PROG_TYPE_PERF_EVENT: 9671 case BPF_PROG_TYPE_RAW_TRACEPOINT: 9672 return true; 9673 default: 9674 return false; 9675 } 9676 } 9677 9678 static bool is_preallocated_map(struct bpf_map *map) 9679 { 9680 if (!check_map_prealloc(map)) 9681 return false; 9682 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 9683 return false; 9684 return true; 9685 } 9686 9687 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 9688 struct bpf_map *map, 9689 struct bpf_prog *prog) 9690 9691 { 9692 enum bpf_prog_type prog_type = resolve_prog_type(prog); 9693 /* 9694 * Validate that trace type programs use preallocated hash maps. 9695 * 9696 * For programs attached to PERF events this is mandatory as the 9697 * perf NMI can hit any arbitrary code sequence. 9698 * 9699 * All other trace types using preallocated hash maps are unsafe as 9700 * well because tracepoint or kprobes can be inside locked regions 9701 * of the memory allocator or at a place where a recursion into the 9702 * memory allocator would see inconsistent state. 9703 * 9704 * On RT enabled kernels run-time allocation of all trace type 9705 * programs is strictly prohibited due to lock type constraints. On 9706 * !RT kernels it is allowed for backwards compatibility reasons for 9707 * now, but warnings are emitted so developers are made aware of 9708 * the unsafety and can fix their programs before this is enforced. 9709 */ 9710 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) { 9711 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) { 9712 verbose(env, "perf_event programs can only use preallocated hash map\n"); 9713 return -EINVAL; 9714 } 9715 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 9716 verbose(env, "trace type programs can only use preallocated hash map\n"); 9717 return -EINVAL; 9718 } 9719 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 9720 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 9721 } 9722 9723 if ((is_tracing_prog_type(prog_type) || 9724 prog_type == BPF_PROG_TYPE_SOCKET_FILTER) && 9725 map_value_has_spin_lock(map)) { 9726 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 9727 return -EINVAL; 9728 } 9729 9730 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 9731 !bpf_offload_prog_map_match(prog, map)) { 9732 verbose(env, "offload device mismatch between prog and map\n"); 9733 return -EINVAL; 9734 } 9735 9736 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 9737 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 9738 return -EINVAL; 9739 } 9740 9741 if (prog->aux->sleepable) 9742 switch (map->map_type) { 9743 case BPF_MAP_TYPE_HASH: 9744 case BPF_MAP_TYPE_LRU_HASH: 9745 case BPF_MAP_TYPE_ARRAY: 9746 if (!is_preallocated_map(map)) { 9747 verbose(env, 9748 "Sleepable programs can only use preallocated hash maps\n"); 9749 return -EINVAL; 9750 } 9751 break; 9752 default: 9753 verbose(env, 9754 "Sleepable programs can only use array and hash maps\n"); 9755 return -EINVAL; 9756 } 9757 9758 return 0; 9759 } 9760 9761 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 9762 { 9763 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 9764 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 9765 } 9766 9767 /* find and rewrite pseudo imm in ld_imm64 instructions: 9768 * 9769 * 1. if it accesses map FD, replace it with actual map pointer. 9770 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 9771 * 9772 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 9773 */ 9774 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 9775 { 9776 struct bpf_insn *insn = env->prog->insnsi; 9777 int insn_cnt = env->prog->len; 9778 int i, j, err; 9779 9780 err = bpf_prog_calc_tag(env->prog); 9781 if (err) 9782 return err; 9783 9784 for (i = 0; i < insn_cnt; i++, insn++) { 9785 if (BPF_CLASS(insn->code) == BPF_LDX && 9786 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 9787 verbose(env, "BPF_LDX uses reserved fields\n"); 9788 return -EINVAL; 9789 } 9790 9791 if (BPF_CLASS(insn->code) == BPF_STX && 9792 ((BPF_MODE(insn->code) != BPF_MEM && 9793 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 9794 verbose(env, "BPF_STX uses reserved fields\n"); 9795 return -EINVAL; 9796 } 9797 9798 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 9799 struct bpf_insn_aux_data *aux; 9800 struct bpf_map *map; 9801 struct fd f; 9802 u64 addr; 9803 9804 if (i == insn_cnt - 1 || insn[1].code != 0 || 9805 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 9806 insn[1].off != 0) { 9807 verbose(env, "invalid bpf_ld_imm64 insn\n"); 9808 return -EINVAL; 9809 } 9810 9811 if (insn[0].src_reg == 0) 9812 /* valid generic load 64-bit imm */ 9813 goto next_insn; 9814 9815 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 9816 aux = &env->insn_aux_data[i]; 9817 err = check_pseudo_btf_id(env, insn, aux); 9818 if (err) 9819 return err; 9820 goto next_insn; 9821 } 9822 9823 /* In final convert_pseudo_ld_imm64() step, this is 9824 * converted into regular 64-bit imm load insn. 9825 */ 9826 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 9827 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 9828 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 9829 insn[1].imm != 0)) { 9830 verbose(env, 9831 "unrecognized bpf_ld_imm64 insn\n"); 9832 return -EINVAL; 9833 } 9834 9835 f = fdget(insn[0].imm); 9836 map = __bpf_map_get(f); 9837 if (IS_ERR(map)) { 9838 verbose(env, "fd %d is not pointing to valid bpf_map\n", 9839 insn[0].imm); 9840 return PTR_ERR(map); 9841 } 9842 9843 err = check_map_prog_compatibility(env, map, env->prog); 9844 if (err) { 9845 fdput(f); 9846 return err; 9847 } 9848 9849 aux = &env->insn_aux_data[i]; 9850 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 9851 addr = (unsigned long)map; 9852 } else { 9853 u32 off = insn[1].imm; 9854 9855 if (off >= BPF_MAX_VAR_OFF) { 9856 verbose(env, "direct value offset of %u is not allowed\n", off); 9857 fdput(f); 9858 return -EINVAL; 9859 } 9860 9861 if (!map->ops->map_direct_value_addr) { 9862 verbose(env, "no direct value access support for this map type\n"); 9863 fdput(f); 9864 return -EINVAL; 9865 } 9866 9867 err = map->ops->map_direct_value_addr(map, &addr, off); 9868 if (err) { 9869 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 9870 map->value_size, off); 9871 fdput(f); 9872 return err; 9873 } 9874 9875 aux->map_off = off; 9876 addr += off; 9877 } 9878 9879 insn[0].imm = (u32)addr; 9880 insn[1].imm = addr >> 32; 9881 9882 /* check whether we recorded this map already */ 9883 for (j = 0; j < env->used_map_cnt; j++) { 9884 if (env->used_maps[j] == map) { 9885 aux->map_index = j; 9886 fdput(f); 9887 goto next_insn; 9888 } 9889 } 9890 9891 if (env->used_map_cnt >= MAX_USED_MAPS) { 9892 fdput(f); 9893 return -E2BIG; 9894 } 9895 9896 /* hold the map. If the program is rejected by verifier, 9897 * the map will be released by release_maps() or it 9898 * will be used by the valid program until it's unloaded 9899 * and all maps are released in free_used_maps() 9900 */ 9901 bpf_map_inc(map); 9902 9903 aux->map_index = env->used_map_cnt; 9904 env->used_maps[env->used_map_cnt++] = map; 9905 9906 if (bpf_map_is_cgroup_storage(map) && 9907 bpf_cgroup_storage_assign(env->prog->aux, map)) { 9908 verbose(env, "only one cgroup storage of each type is allowed\n"); 9909 fdput(f); 9910 return -EBUSY; 9911 } 9912 9913 fdput(f); 9914 next_insn: 9915 insn++; 9916 i++; 9917 continue; 9918 } 9919 9920 /* Basic sanity check before we invest more work here. */ 9921 if (!bpf_opcode_in_insntable(insn->code)) { 9922 verbose(env, "unknown opcode %02x\n", insn->code); 9923 return -EINVAL; 9924 } 9925 } 9926 9927 /* now all pseudo BPF_LD_IMM64 instructions load valid 9928 * 'struct bpf_map *' into a register instead of user map_fd. 9929 * These pointers will be used later by verifier to validate map access. 9930 */ 9931 return 0; 9932 } 9933 9934 /* drop refcnt of maps used by the rejected program */ 9935 static void release_maps(struct bpf_verifier_env *env) 9936 { 9937 __bpf_free_used_maps(env->prog->aux, env->used_maps, 9938 env->used_map_cnt); 9939 } 9940 9941 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 9942 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 9943 { 9944 struct bpf_insn *insn = env->prog->insnsi; 9945 int insn_cnt = env->prog->len; 9946 int i; 9947 9948 for (i = 0; i < insn_cnt; i++, insn++) 9949 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 9950 insn->src_reg = 0; 9951 } 9952 9953 /* single env->prog->insni[off] instruction was replaced with the range 9954 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 9955 * [0, off) and [off, end) to new locations, so the patched range stays zero 9956 */ 9957 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 9958 struct bpf_prog *new_prog, u32 off, u32 cnt) 9959 { 9960 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 9961 struct bpf_insn *insn = new_prog->insnsi; 9962 u32 prog_len; 9963 int i; 9964 9965 /* aux info at OFF always needs adjustment, no matter fast path 9966 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 9967 * original insn at old prog. 9968 */ 9969 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 9970 9971 if (cnt == 1) 9972 return 0; 9973 prog_len = new_prog->len; 9974 new_data = vzalloc(array_size(prog_len, 9975 sizeof(struct bpf_insn_aux_data))); 9976 if (!new_data) 9977 return -ENOMEM; 9978 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 9979 memcpy(new_data + off + cnt - 1, old_data + off, 9980 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 9981 for (i = off; i < off + cnt - 1; i++) { 9982 new_data[i].seen = env->pass_cnt; 9983 new_data[i].zext_dst = insn_has_def32(env, insn + i); 9984 } 9985 env->insn_aux_data = new_data; 9986 vfree(old_data); 9987 return 0; 9988 } 9989 9990 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 9991 { 9992 int i; 9993 9994 if (len == 1) 9995 return; 9996 /* NOTE: fake 'exit' subprog should be updated as well. */ 9997 for (i = 0; i <= env->subprog_cnt; i++) { 9998 if (env->subprog_info[i].start <= off) 9999 continue; 10000 env->subprog_info[i].start += len - 1; 10001 } 10002 } 10003 10004 static void adjust_poke_descs(struct bpf_prog *prog, u32 len) 10005 { 10006 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 10007 int i, sz = prog->aux->size_poke_tab; 10008 struct bpf_jit_poke_descriptor *desc; 10009 10010 for (i = 0; i < sz; i++) { 10011 desc = &tab[i]; 10012 desc->insn_idx += len - 1; 10013 } 10014 } 10015 10016 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 10017 const struct bpf_insn *patch, u32 len) 10018 { 10019 struct bpf_prog *new_prog; 10020 10021 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 10022 if (IS_ERR(new_prog)) { 10023 if (PTR_ERR(new_prog) == -ERANGE) 10024 verbose(env, 10025 "insn %d cannot be patched due to 16-bit range\n", 10026 env->insn_aux_data[off].orig_idx); 10027 return NULL; 10028 } 10029 if (adjust_insn_aux_data(env, new_prog, off, len)) 10030 return NULL; 10031 adjust_subprog_starts(env, off, len); 10032 adjust_poke_descs(new_prog, len); 10033 return new_prog; 10034 } 10035 10036 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 10037 u32 off, u32 cnt) 10038 { 10039 int i, j; 10040 10041 /* find first prog starting at or after off (first to remove) */ 10042 for (i = 0; i < env->subprog_cnt; i++) 10043 if (env->subprog_info[i].start >= off) 10044 break; 10045 /* find first prog starting at or after off + cnt (first to stay) */ 10046 for (j = i; j < env->subprog_cnt; j++) 10047 if (env->subprog_info[j].start >= off + cnt) 10048 break; 10049 /* if j doesn't start exactly at off + cnt, we are just removing 10050 * the front of previous prog 10051 */ 10052 if (env->subprog_info[j].start != off + cnt) 10053 j--; 10054 10055 if (j > i) { 10056 struct bpf_prog_aux *aux = env->prog->aux; 10057 int move; 10058 10059 /* move fake 'exit' subprog as well */ 10060 move = env->subprog_cnt + 1 - j; 10061 10062 memmove(env->subprog_info + i, 10063 env->subprog_info + j, 10064 sizeof(*env->subprog_info) * move); 10065 env->subprog_cnt -= j - i; 10066 10067 /* remove func_info */ 10068 if (aux->func_info) { 10069 move = aux->func_info_cnt - j; 10070 10071 memmove(aux->func_info + i, 10072 aux->func_info + j, 10073 sizeof(*aux->func_info) * move); 10074 aux->func_info_cnt -= j - i; 10075 /* func_info->insn_off is set after all code rewrites, 10076 * in adjust_btf_func() - no need to adjust 10077 */ 10078 } 10079 } else { 10080 /* convert i from "first prog to remove" to "first to adjust" */ 10081 if (env->subprog_info[i].start == off) 10082 i++; 10083 } 10084 10085 /* update fake 'exit' subprog as well */ 10086 for (; i <= env->subprog_cnt; i++) 10087 env->subprog_info[i].start -= cnt; 10088 10089 return 0; 10090 } 10091 10092 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 10093 u32 cnt) 10094 { 10095 struct bpf_prog *prog = env->prog; 10096 u32 i, l_off, l_cnt, nr_linfo; 10097 struct bpf_line_info *linfo; 10098 10099 nr_linfo = prog->aux->nr_linfo; 10100 if (!nr_linfo) 10101 return 0; 10102 10103 linfo = prog->aux->linfo; 10104 10105 /* find first line info to remove, count lines to be removed */ 10106 for (i = 0; i < nr_linfo; i++) 10107 if (linfo[i].insn_off >= off) 10108 break; 10109 10110 l_off = i; 10111 l_cnt = 0; 10112 for (; i < nr_linfo; i++) 10113 if (linfo[i].insn_off < off + cnt) 10114 l_cnt++; 10115 else 10116 break; 10117 10118 /* First live insn doesn't match first live linfo, it needs to "inherit" 10119 * last removed linfo. prog is already modified, so prog->len == off 10120 * means no live instructions after (tail of the program was removed). 10121 */ 10122 if (prog->len != off && l_cnt && 10123 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 10124 l_cnt--; 10125 linfo[--i].insn_off = off + cnt; 10126 } 10127 10128 /* remove the line info which refer to the removed instructions */ 10129 if (l_cnt) { 10130 memmove(linfo + l_off, linfo + i, 10131 sizeof(*linfo) * (nr_linfo - i)); 10132 10133 prog->aux->nr_linfo -= l_cnt; 10134 nr_linfo = prog->aux->nr_linfo; 10135 } 10136 10137 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 10138 for (i = l_off; i < nr_linfo; i++) 10139 linfo[i].insn_off -= cnt; 10140 10141 /* fix up all subprogs (incl. 'exit') which start >= off */ 10142 for (i = 0; i <= env->subprog_cnt; i++) 10143 if (env->subprog_info[i].linfo_idx > l_off) { 10144 /* program may have started in the removed region but 10145 * may not be fully removed 10146 */ 10147 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 10148 env->subprog_info[i].linfo_idx -= l_cnt; 10149 else 10150 env->subprog_info[i].linfo_idx = l_off; 10151 } 10152 10153 return 0; 10154 } 10155 10156 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 10157 { 10158 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 10159 unsigned int orig_prog_len = env->prog->len; 10160 int err; 10161 10162 if (bpf_prog_is_dev_bound(env->prog->aux)) 10163 bpf_prog_offload_remove_insns(env, off, cnt); 10164 10165 err = bpf_remove_insns(env->prog, off, cnt); 10166 if (err) 10167 return err; 10168 10169 err = adjust_subprog_starts_after_remove(env, off, cnt); 10170 if (err) 10171 return err; 10172 10173 err = bpf_adj_linfo_after_remove(env, off, cnt); 10174 if (err) 10175 return err; 10176 10177 memmove(aux_data + off, aux_data + off + cnt, 10178 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 10179 10180 return 0; 10181 } 10182 10183 /* The verifier does more data flow analysis than llvm and will not 10184 * explore branches that are dead at run time. Malicious programs can 10185 * have dead code too. Therefore replace all dead at-run-time code 10186 * with 'ja -1'. 10187 * 10188 * Just nops are not optimal, e.g. if they would sit at the end of the 10189 * program and through another bug we would manage to jump there, then 10190 * we'd execute beyond program memory otherwise. Returning exception 10191 * code also wouldn't work since we can have subprogs where the dead 10192 * code could be located. 10193 */ 10194 static void sanitize_dead_code(struct bpf_verifier_env *env) 10195 { 10196 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 10197 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 10198 struct bpf_insn *insn = env->prog->insnsi; 10199 const int insn_cnt = env->prog->len; 10200 int i; 10201 10202 for (i = 0; i < insn_cnt; i++) { 10203 if (aux_data[i].seen) 10204 continue; 10205 memcpy(insn + i, &trap, sizeof(trap)); 10206 } 10207 } 10208 10209 static bool insn_is_cond_jump(u8 code) 10210 { 10211 u8 op; 10212 10213 if (BPF_CLASS(code) == BPF_JMP32) 10214 return true; 10215 10216 if (BPF_CLASS(code) != BPF_JMP) 10217 return false; 10218 10219 op = BPF_OP(code); 10220 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 10221 } 10222 10223 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 10224 { 10225 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 10226 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 10227 struct bpf_insn *insn = env->prog->insnsi; 10228 const int insn_cnt = env->prog->len; 10229 int i; 10230 10231 for (i = 0; i < insn_cnt; i++, insn++) { 10232 if (!insn_is_cond_jump(insn->code)) 10233 continue; 10234 10235 if (!aux_data[i + 1].seen) 10236 ja.off = insn->off; 10237 else if (!aux_data[i + 1 + insn->off].seen) 10238 ja.off = 0; 10239 else 10240 continue; 10241 10242 if (bpf_prog_is_dev_bound(env->prog->aux)) 10243 bpf_prog_offload_replace_insn(env, i, &ja); 10244 10245 memcpy(insn, &ja, sizeof(ja)); 10246 } 10247 } 10248 10249 static int opt_remove_dead_code(struct bpf_verifier_env *env) 10250 { 10251 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 10252 int insn_cnt = env->prog->len; 10253 int i, err; 10254 10255 for (i = 0; i < insn_cnt; i++) { 10256 int j; 10257 10258 j = 0; 10259 while (i + j < insn_cnt && !aux_data[i + j].seen) 10260 j++; 10261 if (!j) 10262 continue; 10263 10264 err = verifier_remove_insns(env, i, j); 10265 if (err) 10266 return err; 10267 insn_cnt = env->prog->len; 10268 } 10269 10270 return 0; 10271 } 10272 10273 static int opt_remove_nops(struct bpf_verifier_env *env) 10274 { 10275 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 10276 struct bpf_insn *insn = env->prog->insnsi; 10277 int insn_cnt = env->prog->len; 10278 int i, err; 10279 10280 for (i = 0; i < insn_cnt; i++) { 10281 if (memcmp(&insn[i], &ja, sizeof(ja))) 10282 continue; 10283 10284 err = verifier_remove_insns(env, i, 1); 10285 if (err) 10286 return err; 10287 insn_cnt--; 10288 i--; 10289 } 10290 10291 return 0; 10292 } 10293 10294 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 10295 const union bpf_attr *attr) 10296 { 10297 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 10298 struct bpf_insn_aux_data *aux = env->insn_aux_data; 10299 int i, patch_len, delta = 0, len = env->prog->len; 10300 struct bpf_insn *insns = env->prog->insnsi; 10301 struct bpf_prog *new_prog; 10302 bool rnd_hi32; 10303 10304 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 10305 zext_patch[1] = BPF_ZEXT_REG(0); 10306 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 10307 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 10308 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 10309 for (i = 0; i < len; i++) { 10310 int adj_idx = i + delta; 10311 struct bpf_insn insn; 10312 10313 insn = insns[adj_idx]; 10314 if (!aux[adj_idx].zext_dst) { 10315 u8 code, class; 10316 u32 imm_rnd; 10317 10318 if (!rnd_hi32) 10319 continue; 10320 10321 code = insn.code; 10322 class = BPF_CLASS(code); 10323 if (insn_no_def(&insn)) 10324 continue; 10325 10326 /* NOTE: arg "reg" (the fourth one) is only used for 10327 * BPF_STX which has been ruled out in above 10328 * check, it is safe to pass NULL here. 10329 */ 10330 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { 10331 if (class == BPF_LD && 10332 BPF_MODE(code) == BPF_IMM) 10333 i++; 10334 continue; 10335 } 10336 10337 /* ctx load could be transformed into wider load. */ 10338 if (class == BPF_LDX && 10339 aux[adj_idx].ptr_type == PTR_TO_CTX) 10340 continue; 10341 10342 imm_rnd = get_random_int(); 10343 rnd_hi32_patch[0] = insn; 10344 rnd_hi32_patch[1].imm = imm_rnd; 10345 rnd_hi32_patch[3].dst_reg = insn.dst_reg; 10346 patch = rnd_hi32_patch; 10347 patch_len = 4; 10348 goto apply_patch_buffer; 10349 } 10350 10351 if (!bpf_jit_needs_zext()) 10352 continue; 10353 10354 zext_patch[0] = insn; 10355 zext_patch[1].dst_reg = insn.dst_reg; 10356 zext_patch[1].src_reg = insn.dst_reg; 10357 patch = zext_patch; 10358 patch_len = 2; 10359 apply_patch_buffer: 10360 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 10361 if (!new_prog) 10362 return -ENOMEM; 10363 env->prog = new_prog; 10364 insns = new_prog->insnsi; 10365 aux = env->insn_aux_data; 10366 delta += patch_len - 1; 10367 } 10368 10369 return 0; 10370 } 10371 10372 /* convert load instructions that access fields of a context type into a 10373 * sequence of instructions that access fields of the underlying structure: 10374 * struct __sk_buff -> struct sk_buff 10375 * struct bpf_sock_ops -> struct sock 10376 */ 10377 static int convert_ctx_accesses(struct bpf_verifier_env *env) 10378 { 10379 const struct bpf_verifier_ops *ops = env->ops; 10380 int i, cnt, size, ctx_field_size, delta = 0; 10381 const int insn_cnt = env->prog->len; 10382 struct bpf_insn insn_buf[16], *insn; 10383 u32 target_size, size_default, off; 10384 struct bpf_prog *new_prog; 10385 enum bpf_access_type type; 10386 bool is_narrower_load; 10387 10388 if (ops->gen_prologue || env->seen_direct_write) { 10389 if (!ops->gen_prologue) { 10390 verbose(env, "bpf verifier is misconfigured\n"); 10391 return -EINVAL; 10392 } 10393 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 10394 env->prog); 10395 if (cnt >= ARRAY_SIZE(insn_buf)) { 10396 verbose(env, "bpf verifier is misconfigured\n"); 10397 return -EINVAL; 10398 } else if (cnt) { 10399 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 10400 if (!new_prog) 10401 return -ENOMEM; 10402 10403 env->prog = new_prog; 10404 delta += cnt - 1; 10405 } 10406 } 10407 10408 if (bpf_prog_is_dev_bound(env->prog->aux)) 10409 return 0; 10410 10411 insn = env->prog->insnsi + delta; 10412 10413 for (i = 0; i < insn_cnt; i++, insn++) { 10414 bpf_convert_ctx_access_t convert_ctx_access; 10415 10416 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 10417 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 10418 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 10419 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 10420 type = BPF_READ; 10421 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 10422 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 10423 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 10424 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 10425 type = BPF_WRITE; 10426 else 10427 continue; 10428 10429 if (type == BPF_WRITE && 10430 env->insn_aux_data[i + delta].sanitize_stack_off) { 10431 struct bpf_insn patch[] = { 10432 /* Sanitize suspicious stack slot with zero. 10433 * There are no memory dependencies for this store, 10434 * since it's only using frame pointer and immediate 10435 * constant of zero 10436 */ 10437 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 10438 env->insn_aux_data[i + delta].sanitize_stack_off, 10439 0), 10440 /* the original STX instruction will immediately 10441 * overwrite the same stack slot with appropriate value 10442 */ 10443 *insn, 10444 }; 10445 10446 cnt = ARRAY_SIZE(patch); 10447 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 10448 if (!new_prog) 10449 return -ENOMEM; 10450 10451 delta += cnt - 1; 10452 env->prog = new_prog; 10453 insn = new_prog->insnsi + i + delta; 10454 continue; 10455 } 10456 10457 switch (env->insn_aux_data[i + delta].ptr_type) { 10458 case PTR_TO_CTX: 10459 if (!ops->convert_ctx_access) 10460 continue; 10461 convert_ctx_access = ops->convert_ctx_access; 10462 break; 10463 case PTR_TO_SOCKET: 10464 case PTR_TO_SOCK_COMMON: 10465 convert_ctx_access = bpf_sock_convert_ctx_access; 10466 break; 10467 case PTR_TO_TCP_SOCK: 10468 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 10469 break; 10470 case PTR_TO_XDP_SOCK: 10471 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 10472 break; 10473 case PTR_TO_BTF_ID: 10474 if (type == BPF_READ) { 10475 insn->code = BPF_LDX | BPF_PROBE_MEM | 10476 BPF_SIZE((insn)->code); 10477 env->prog->aux->num_exentries++; 10478 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { 10479 verbose(env, "Writes through BTF pointers are not allowed\n"); 10480 return -EINVAL; 10481 } 10482 continue; 10483 default: 10484 continue; 10485 } 10486 10487 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 10488 size = BPF_LDST_BYTES(insn); 10489 10490 /* If the read access is a narrower load of the field, 10491 * convert to a 4/8-byte load, to minimum program type specific 10492 * convert_ctx_access changes. If conversion is successful, 10493 * we will apply proper mask to the result. 10494 */ 10495 is_narrower_load = size < ctx_field_size; 10496 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 10497 off = insn->off; 10498 if (is_narrower_load) { 10499 u8 size_code; 10500 10501 if (type == BPF_WRITE) { 10502 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 10503 return -EINVAL; 10504 } 10505 10506 size_code = BPF_H; 10507 if (ctx_field_size == 4) 10508 size_code = BPF_W; 10509 else if (ctx_field_size == 8) 10510 size_code = BPF_DW; 10511 10512 insn->off = off & ~(size_default - 1); 10513 insn->code = BPF_LDX | BPF_MEM | size_code; 10514 } 10515 10516 target_size = 0; 10517 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 10518 &target_size); 10519 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 10520 (ctx_field_size && !target_size)) { 10521 verbose(env, "bpf verifier is misconfigured\n"); 10522 return -EINVAL; 10523 } 10524 10525 if (is_narrower_load && size < target_size) { 10526 u8 shift = bpf_ctx_narrow_access_offset( 10527 off, size, size_default) * 8; 10528 if (ctx_field_size <= 4) { 10529 if (shift) 10530 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 10531 insn->dst_reg, 10532 shift); 10533 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 10534 (1 << size * 8) - 1); 10535 } else { 10536 if (shift) 10537 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 10538 insn->dst_reg, 10539 shift); 10540 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 10541 (1ULL << size * 8) - 1); 10542 } 10543 } 10544 10545 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 10546 if (!new_prog) 10547 return -ENOMEM; 10548 10549 delta += cnt - 1; 10550 10551 /* keep walking new program and skip insns we just inserted */ 10552 env->prog = new_prog; 10553 insn = new_prog->insnsi + i + delta; 10554 } 10555 10556 return 0; 10557 } 10558 10559 static int jit_subprogs(struct bpf_verifier_env *env) 10560 { 10561 struct bpf_prog *prog = env->prog, **func, *tmp; 10562 int i, j, subprog_start, subprog_end = 0, len, subprog; 10563 struct bpf_map *map_ptr; 10564 struct bpf_insn *insn; 10565 void *old_bpf_func; 10566 int err, num_exentries; 10567 10568 if (env->subprog_cnt <= 1) 10569 return 0; 10570 10571 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 10572 if (insn->code != (BPF_JMP | BPF_CALL) || 10573 insn->src_reg != BPF_PSEUDO_CALL) 10574 continue; 10575 /* Upon error here we cannot fall back to interpreter but 10576 * need a hard reject of the program. Thus -EFAULT is 10577 * propagated in any case. 10578 */ 10579 subprog = find_subprog(env, i + insn->imm + 1); 10580 if (subprog < 0) { 10581 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 10582 i + insn->imm + 1); 10583 return -EFAULT; 10584 } 10585 /* temporarily remember subprog id inside insn instead of 10586 * aux_data, since next loop will split up all insns into funcs 10587 */ 10588 insn->off = subprog; 10589 /* remember original imm in case JIT fails and fallback 10590 * to interpreter will be needed 10591 */ 10592 env->insn_aux_data[i].call_imm = insn->imm; 10593 /* point imm to __bpf_call_base+1 from JITs point of view */ 10594 insn->imm = 1; 10595 } 10596 10597 err = bpf_prog_alloc_jited_linfo(prog); 10598 if (err) 10599 goto out_undo_insn; 10600 10601 err = -ENOMEM; 10602 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 10603 if (!func) 10604 goto out_undo_insn; 10605 10606 for (i = 0; i < env->subprog_cnt; i++) { 10607 subprog_start = subprog_end; 10608 subprog_end = env->subprog_info[i + 1].start; 10609 10610 len = subprog_end - subprog_start; 10611 /* BPF_PROG_RUN doesn't call subprogs directly, 10612 * hence main prog stats include the runtime of subprogs. 10613 * subprogs don't have IDs and not reachable via prog_get_next_id 10614 * func[i]->aux->stats will never be accessed and stays NULL 10615 */ 10616 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 10617 if (!func[i]) 10618 goto out_free; 10619 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 10620 len * sizeof(struct bpf_insn)); 10621 func[i]->type = prog->type; 10622 func[i]->len = len; 10623 if (bpf_prog_calc_tag(func[i])) 10624 goto out_free; 10625 func[i]->is_func = 1; 10626 func[i]->aux->func_idx = i; 10627 /* the btf and func_info will be freed only at prog->aux */ 10628 func[i]->aux->btf = prog->aux->btf; 10629 func[i]->aux->func_info = prog->aux->func_info; 10630 10631 for (j = 0; j < prog->aux->size_poke_tab; j++) { 10632 u32 insn_idx = prog->aux->poke_tab[j].insn_idx; 10633 int ret; 10634 10635 if (!(insn_idx >= subprog_start && 10636 insn_idx <= subprog_end)) 10637 continue; 10638 10639 ret = bpf_jit_add_poke_descriptor(func[i], 10640 &prog->aux->poke_tab[j]); 10641 if (ret < 0) { 10642 verbose(env, "adding tail call poke descriptor failed\n"); 10643 goto out_free; 10644 } 10645 10646 func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1; 10647 10648 map_ptr = func[i]->aux->poke_tab[ret].tail_call.map; 10649 ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux); 10650 if (ret < 0) { 10651 verbose(env, "tracking tail call prog failed\n"); 10652 goto out_free; 10653 } 10654 } 10655 10656 /* Use bpf_prog_F_tag to indicate functions in stack traces. 10657 * Long term would need debug info to populate names 10658 */ 10659 func[i]->aux->name[0] = 'F'; 10660 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 10661 func[i]->jit_requested = 1; 10662 func[i]->aux->linfo = prog->aux->linfo; 10663 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 10664 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 10665 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 10666 num_exentries = 0; 10667 insn = func[i]->insnsi; 10668 for (j = 0; j < func[i]->len; j++, insn++) { 10669 if (BPF_CLASS(insn->code) == BPF_LDX && 10670 BPF_MODE(insn->code) == BPF_PROBE_MEM) 10671 num_exentries++; 10672 } 10673 func[i]->aux->num_exentries = num_exentries; 10674 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 10675 func[i] = bpf_int_jit_compile(func[i]); 10676 if (!func[i]->jited) { 10677 err = -ENOTSUPP; 10678 goto out_free; 10679 } 10680 cond_resched(); 10681 } 10682 10683 /* Untrack main program's aux structs so that during map_poke_run() 10684 * we will not stumble upon the unfilled poke descriptors; each 10685 * of the main program's poke descs got distributed across subprogs 10686 * and got tracked onto map, so we are sure that none of them will 10687 * be missed after the operation below 10688 */ 10689 for (i = 0; i < prog->aux->size_poke_tab; i++) { 10690 map_ptr = prog->aux->poke_tab[i].tail_call.map; 10691 10692 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 10693 } 10694 10695 /* at this point all bpf functions were successfully JITed 10696 * now populate all bpf_calls with correct addresses and 10697 * run last pass of JIT 10698 */ 10699 for (i = 0; i < env->subprog_cnt; i++) { 10700 insn = func[i]->insnsi; 10701 for (j = 0; j < func[i]->len; j++, insn++) { 10702 if (insn->code != (BPF_JMP | BPF_CALL) || 10703 insn->src_reg != BPF_PSEUDO_CALL) 10704 continue; 10705 subprog = insn->off; 10706 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 10707 __bpf_call_base; 10708 } 10709 10710 /* we use the aux data to keep a list of the start addresses 10711 * of the JITed images for each function in the program 10712 * 10713 * for some architectures, such as powerpc64, the imm field 10714 * might not be large enough to hold the offset of the start 10715 * address of the callee's JITed image from __bpf_call_base 10716 * 10717 * in such cases, we can lookup the start address of a callee 10718 * by using its subprog id, available from the off field of 10719 * the call instruction, as an index for this list 10720 */ 10721 func[i]->aux->func = func; 10722 func[i]->aux->func_cnt = env->subprog_cnt; 10723 } 10724 for (i = 0; i < env->subprog_cnt; i++) { 10725 old_bpf_func = func[i]->bpf_func; 10726 tmp = bpf_int_jit_compile(func[i]); 10727 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 10728 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 10729 err = -ENOTSUPP; 10730 goto out_free; 10731 } 10732 cond_resched(); 10733 } 10734 10735 /* finally lock prog and jit images for all functions and 10736 * populate kallsysm 10737 */ 10738 for (i = 0; i < env->subprog_cnt; i++) { 10739 bpf_prog_lock_ro(func[i]); 10740 bpf_prog_kallsyms_add(func[i]); 10741 } 10742 10743 /* Last step: make now unused interpreter insns from main 10744 * prog consistent for later dump requests, so they can 10745 * later look the same as if they were interpreted only. 10746 */ 10747 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 10748 if (insn->code != (BPF_JMP | BPF_CALL) || 10749 insn->src_reg != BPF_PSEUDO_CALL) 10750 continue; 10751 insn->off = env->insn_aux_data[i].call_imm; 10752 subprog = find_subprog(env, i + insn->off + 1); 10753 insn->imm = subprog; 10754 } 10755 10756 prog->jited = 1; 10757 prog->bpf_func = func[0]->bpf_func; 10758 prog->aux->func = func; 10759 prog->aux->func_cnt = env->subprog_cnt; 10760 bpf_prog_free_unused_jited_linfo(prog); 10761 return 0; 10762 out_free: 10763 for (i = 0; i < env->subprog_cnt; i++) { 10764 if (!func[i]) 10765 continue; 10766 10767 for (j = 0; j < func[i]->aux->size_poke_tab; j++) { 10768 map_ptr = func[i]->aux->poke_tab[j].tail_call.map; 10769 map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux); 10770 } 10771 bpf_jit_free(func[i]); 10772 } 10773 kfree(func); 10774 out_undo_insn: 10775 /* cleanup main prog to be interpreted */ 10776 prog->jit_requested = 0; 10777 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 10778 if (insn->code != (BPF_JMP | BPF_CALL) || 10779 insn->src_reg != BPF_PSEUDO_CALL) 10780 continue; 10781 insn->off = 0; 10782 insn->imm = env->insn_aux_data[i].call_imm; 10783 } 10784 bpf_prog_free_jited_linfo(prog); 10785 return err; 10786 } 10787 10788 static int fixup_call_args(struct bpf_verifier_env *env) 10789 { 10790 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 10791 struct bpf_prog *prog = env->prog; 10792 struct bpf_insn *insn = prog->insnsi; 10793 int i, depth; 10794 #endif 10795 int err = 0; 10796 10797 if (env->prog->jit_requested && 10798 !bpf_prog_is_dev_bound(env->prog->aux)) { 10799 err = jit_subprogs(env); 10800 if (err == 0) 10801 return 0; 10802 if (err == -EFAULT) 10803 return err; 10804 } 10805 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 10806 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 10807 /* When JIT fails the progs with bpf2bpf calls and tail_calls 10808 * have to be rejected, since interpreter doesn't support them yet. 10809 */ 10810 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 10811 return -EINVAL; 10812 } 10813 for (i = 0; i < prog->len; i++, insn++) { 10814 if (insn->code != (BPF_JMP | BPF_CALL) || 10815 insn->src_reg != BPF_PSEUDO_CALL) 10816 continue; 10817 depth = get_callee_stack_depth(env, insn, i); 10818 if (depth < 0) 10819 return depth; 10820 bpf_patch_call_args(insn, depth); 10821 } 10822 err = 0; 10823 #endif 10824 return err; 10825 } 10826 10827 /* fixup insn->imm field of bpf_call instructions 10828 * and inline eligible helpers as explicit sequence of BPF instructions 10829 * 10830 * this function is called after eBPF program passed verification 10831 */ 10832 static int fixup_bpf_calls(struct bpf_verifier_env *env) 10833 { 10834 struct bpf_prog *prog = env->prog; 10835 bool expect_blinding = bpf_jit_blinding_enabled(prog); 10836 struct bpf_insn *insn = prog->insnsi; 10837 const struct bpf_func_proto *fn; 10838 const int insn_cnt = prog->len; 10839 const struct bpf_map_ops *ops; 10840 struct bpf_insn_aux_data *aux; 10841 struct bpf_insn insn_buf[16]; 10842 struct bpf_prog *new_prog; 10843 struct bpf_map *map_ptr; 10844 int i, ret, cnt, delta = 0; 10845 10846 for (i = 0; i < insn_cnt; i++, insn++) { 10847 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 10848 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 10849 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 10850 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 10851 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 10852 struct bpf_insn mask_and_div[] = { 10853 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 10854 /* Rx div 0 -> 0 */ 10855 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 10856 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 10857 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 10858 *insn, 10859 }; 10860 struct bpf_insn mask_and_mod[] = { 10861 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 10862 /* Rx mod 0 -> Rx */ 10863 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 10864 *insn, 10865 }; 10866 struct bpf_insn *patchlet; 10867 10868 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 10869 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 10870 patchlet = mask_and_div + (is64 ? 1 : 0); 10871 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 10872 } else { 10873 patchlet = mask_and_mod + (is64 ? 1 : 0); 10874 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 10875 } 10876 10877 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 10878 if (!new_prog) 10879 return -ENOMEM; 10880 10881 delta += cnt - 1; 10882 env->prog = prog = new_prog; 10883 insn = new_prog->insnsi + i + delta; 10884 continue; 10885 } 10886 10887 if (BPF_CLASS(insn->code) == BPF_LD && 10888 (BPF_MODE(insn->code) == BPF_ABS || 10889 BPF_MODE(insn->code) == BPF_IND)) { 10890 cnt = env->ops->gen_ld_abs(insn, insn_buf); 10891 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 10892 verbose(env, "bpf verifier is misconfigured\n"); 10893 return -EINVAL; 10894 } 10895 10896 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 10897 if (!new_prog) 10898 return -ENOMEM; 10899 10900 delta += cnt - 1; 10901 env->prog = prog = new_prog; 10902 insn = new_prog->insnsi + i + delta; 10903 continue; 10904 } 10905 10906 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 10907 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 10908 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 10909 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 10910 struct bpf_insn insn_buf[16]; 10911 struct bpf_insn *patch = &insn_buf[0]; 10912 bool issrc, isneg; 10913 u32 off_reg; 10914 10915 aux = &env->insn_aux_data[i + delta]; 10916 if (!aux->alu_state || 10917 aux->alu_state == BPF_ALU_NON_POINTER) 10918 continue; 10919 10920 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 10921 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 10922 BPF_ALU_SANITIZE_SRC; 10923 10924 off_reg = issrc ? insn->src_reg : insn->dst_reg; 10925 if (isneg) 10926 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 10927 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 10928 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 10929 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 10930 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 10931 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 10932 if (issrc) { 10933 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 10934 off_reg); 10935 insn->src_reg = BPF_REG_AX; 10936 } else { 10937 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 10938 BPF_REG_AX); 10939 } 10940 if (isneg) 10941 insn->code = insn->code == code_add ? 10942 code_sub : code_add; 10943 *patch++ = *insn; 10944 if (issrc && isneg) 10945 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 10946 cnt = patch - insn_buf; 10947 10948 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 10949 if (!new_prog) 10950 return -ENOMEM; 10951 10952 delta += cnt - 1; 10953 env->prog = prog = new_prog; 10954 insn = new_prog->insnsi + i + delta; 10955 continue; 10956 } 10957 10958 if (insn->code != (BPF_JMP | BPF_CALL)) 10959 continue; 10960 if (insn->src_reg == BPF_PSEUDO_CALL) 10961 continue; 10962 10963 if (insn->imm == BPF_FUNC_get_route_realm) 10964 prog->dst_needed = 1; 10965 if (insn->imm == BPF_FUNC_get_prandom_u32) 10966 bpf_user_rnd_init_once(); 10967 if (insn->imm == BPF_FUNC_override_return) 10968 prog->kprobe_override = 1; 10969 if (insn->imm == BPF_FUNC_tail_call) { 10970 /* If we tail call into other programs, we 10971 * cannot make any assumptions since they can 10972 * be replaced dynamically during runtime in 10973 * the program array. 10974 */ 10975 prog->cb_access = 1; 10976 if (!allow_tail_call_in_subprogs(env)) 10977 prog->aux->stack_depth = MAX_BPF_STACK; 10978 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 10979 10980 /* mark bpf_tail_call as different opcode to avoid 10981 * conditional branch in the interpeter for every normal 10982 * call and to prevent accidental JITing by JIT compiler 10983 * that doesn't support bpf_tail_call yet 10984 */ 10985 insn->imm = 0; 10986 insn->code = BPF_JMP | BPF_TAIL_CALL; 10987 10988 aux = &env->insn_aux_data[i + delta]; 10989 if (env->bpf_capable && !expect_blinding && 10990 prog->jit_requested && 10991 !bpf_map_key_poisoned(aux) && 10992 !bpf_map_ptr_poisoned(aux) && 10993 !bpf_map_ptr_unpriv(aux)) { 10994 struct bpf_jit_poke_descriptor desc = { 10995 .reason = BPF_POKE_REASON_TAIL_CALL, 10996 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 10997 .tail_call.key = bpf_map_key_immediate(aux), 10998 .insn_idx = i + delta, 10999 }; 11000 11001 ret = bpf_jit_add_poke_descriptor(prog, &desc); 11002 if (ret < 0) { 11003 verbose(env, "adding tail call poke descriptor failed\n"); 11004 return ret; 11005 } 11006 11007 insn->imm = ret + 1; 11008 continue; 11009 } 11010 11011 if (!bpf_map_ptr_unpriv(aux)) 11012 continue; 11013 11014 /* instead of changing every JIT dealing with tail_call 11015 * emit two extra insns: 11016 * if (index >= max_entries) goto out; 11017 * index &= array->index_mask; 11018 * to avoid out-of-bounds cpu speculation 11019 */ 11020 if (bpf_map_ptr_poisoned(aux)) { 11021 verbose(env, "tail_call abusing map_ptr\n"); 11022 return -EINVAL; 11023 } 11024 11025 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 11026 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 11027 map_ptr->max_entries, 2); 11028 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 11029 container_of(map_ptr, 11030 struct bpf_array, 11031 map)->index_mask); 11032 insn_buf[2] = *insn; 11033 cnt = 3; 11034 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 11035 if (!new_prog) 11036 return -ENOMEM; 11037 11038 delta += cnt - 1; 11039 env->prog = prog = new_prog; 11040 insn = new_prog->insnsi + i + delta; 11041 continue; 11042 } 11043 11044 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 11045 * and other inlining handlers are currently limited to 64 bit 11046 * only. 11047 */ 11048 if (prog->jit_requested && BITS_PER_LONG == 64 && 11049 (insn->imm == BPF_FUNC_map_lookup_elem || 11050 insn->imm == BPF_FUNC_map_update_elem || 11051 insn->imm == BPF_FUNC_map_delete_elem || 11052 insn->imm == BPF_FUNC_map_push_elem || 11053 insn->imm == BPF_FUNC_map_pop_elem || 11054 insn->imm == BPF_FUNC_map_peek_elem)) { 11055 aux = &env->insn_aux_data[i + delta]; 11056 if (bpf_map_ptr_poisoned(aux)) 11057 goto patch_call_imm; 11058 11059 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 11060 ops = map_ptr->ops; 11061 if (insn->imm == BPF_FUNC_map_lookup_elem && 11062 ops->map_gen_lookup) { 11063 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 11064 if (cnt == -EOPNOTSUPP) 11065 goto patch_map_ops_generic; 11066 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 11067 verbose(env, "bpf verifier is misconfigured\n"); 11068 return -EINVAL; 11069 } 11070 11071 new_prog = bpf_patch_insn_data(env, i + delta, 11072 insn_buf, cnt); 11073 if (!new_prog) 11074 return -ENOMEM; 11075 11076 delta += cnt - 1; 11077 env->prog = prog = new_prog; 11078 insn = new_prog->insnsi + i + delta; 11079 continue; 11080 } 11081 11082 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 11083 (void *(*)(struct bpf_map *map, void *key))NULL)); 11084 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 11085 (int (*)(struct bpf_map *map, void *key))NULL)); 11086 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 11087 (int (*)(struct bpf_map *map, void *key, void *value, 11088 u64 flags))NULL)); 11089 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 11090 (int (*)(struct bpf_map *map, void *value, 11091 u64 flags))NULL)); 11092 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 11093 (int (*)(struct bpf_map *map, void *value))NULL)); 11094 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 11095 (int (*)(struct bpf_map *map, void *value))NULL)); 11096 patch_map_ops_generic: 11097 switch (insn->imm) { 11098 case BPF_FUNC_map_lookup_elem: 11099 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 11100 __bpf_call_base; 11101 continue; 11102 case BPF_FUNC_map_update_elem: 11103 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 11104 __bpf_call_base; 11105 continue; 11106 case BPF_FUNC_map_delete_elem: 11107 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 11108 __bpf_call_base; 11109 continue; 11110 case BPF_FUNC_map_push_elem: 11111 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 11112 __bpf_call_base; 11113 continue; 11114 case BPF_FUNC_map_pop_elem: 11115 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 11116 __bpf_call_base; 11117 continue; 11118 case BPF_FUNC_map_peek_elem: 11119 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 11120 __bpf_call_base; 11121 continue; 11122 } 11123 11124 goto patch_call_imm; 11125 } 11126 11127 if (prog->jit_requested && BITS_PER_LONG == 64 && 11128 insn->imm == BPF_FUNC_jiffies64) { 11129 struct bpf_insn ld_jiffies_addr[2] = { 11130 BPF_LD_IMM64(BPF_REG_0, 11131 (unsigned long)&jiffies), 11132 }; 11133 11134 insn_buf[0] = ld_jiffies_addr[0]; 11135 insn_buf[1] = ld_jiffies_addr[1]; 11136 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 11137 BPF_REG_0, 0); 11138 cnt = 3; 11139 11140 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 11141 cnt); 11142 if (!new_prog) 11143 return -ENOMEM; 11144 11145 delta += cnt - 1; 11146 env->prog = prog = new_prog; 11147 insn = new_prog->insnsi + i + delta; 11148 continue; 11149 } 11150 11151 patch_call_imm: 11152 fn = env->ops->get_func_proto(insn->imm, env->prog); 11153 /* all functions that have prototype and verifier allowed 11154 * programs to call them, must be real in-kernel functions 11155 */ 11156 if (!fn->func) { 11157 verbose(env, 11158 "kernel subsystem misconfigured func %s#%d\n", 11159 func_id_name(insn->imm), insn->imm); 11160 return -EFAULT; 11161 } 11162 insn->imm = fn->func - __bpf_call_base; 11163 } 11164 11165 /* Since poke tab is now finalized, publish aux to tracker. */ 11166 for (i = 0; i < prog->aux->size_poke_tab; i++) { 11167 map_ptr = prog->aux->poke_tab[i].tail_call.map; 11168 if (!map_ptr->ops->map_poke_track || 11169 !map_ptr->ops->map_poke_untrack || 11170 !map_ptr->ops->map_poke_run) { 11171 verbose(env, "bpf verifier is misconfigured\n"); 11172 return -EINVAL; 11173 } 11174 11175 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 11176 if (ret < 0) { 11177 verbose(env, "tracking tail call prog failed\n"); 11178 return ret; 11179 } 11180 } 11181 11182 return 0; 11183 } 11184 11185 static void free_states(struct bpf_verifier_env *env) 11186 { 11187 struct bpf_verifier_state_list *sl, *sln; 11188 int i; 11189 11190 sl = env->free_list; 11191 while (sl) { 11192 sln = sl->next; 11193 free_verifier_state(&sl->state, false); 11194 kfree(sl); 11195 sl = sln; 11196 } 11197 env->free_list = NULL; 11198 11199 if (!env->explored_states) 11200 return; 11201 11202 for (i = 0; i < state_htab_size(env); i++) { 11203 sl = env->explored_states[i]; 11204 11205 while (sl) { 11206 sln = sl->next; 11207 free_verifier_state(&sl->state, false); 11208 kfree(sl); 11209 sl = sln; 11210 } 11211 env->explored_states[i] = NULL; 11212 } 11213 } 11214 11215 /* The verifier is using insn_aux_data[] to store temporary data during 11216 * verification and to store information for passes that run after the 11217 * verification like dead code sanitization. do_check_common() for subprogram N 11218 * may analyze many other subprograms. sanitize_insn_aux_data() clears all 11219 * temporary data after do_check_common() finds that subprogram N cannot be 11220 * verified independently. pass_cnt counts the number of times 11221 * do_check_common() was run and insn->aux->seen tells the pass number 11222 * insn_aux_data was touched. These variables are compared to clear temporary 11223 * data from failed pass. For testing and experiments do_check_common() can be 11224 * run multiple times even when prior attempt to verify is unsuccessful. 11225 */ 11226 static void sanitize_insn_aux_data(struct bpf_verifier_env *env) 11227 { 11228 struct bpf_insn *insn = env->prog->insnsi; 11229 struct bpf_insn_aux_data *aux; 11230 int i, class; 11231 11232 for (i = 0; i < env->prog->len; i++) { 11233 class = BPF_CLASS(insn[i].code); 11234 if (class != BPF_LDX && class != BPF_STX) 11235 continue; 11236 aux = &env->insn_aux_data[i]; 11237 if (aux->seen != env->pass_cnt) 11238 continue; 11239 memset(aux, 0, offsetof(typeof(*aux), orig_idx)); 11240 } 11241 } 11242 11243 static int do_check_common(struct bpf_verifier_env *env, int subprog) 11244 { 11245 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 11246 struct bpf_verifier_state *state; 11247 struct bpf_reg_state *regs; 11248 int ret, i; 11249 11250 env->prev_linfo = NULL; 11251 env->pass_cnt++; 11252 11253 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 11254 if (!state) 11255 return -ENOMEM; 11256 state->curframe = 0; 11257 state->speculative = false; 11258 state->branches = 1; 11259 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 11260 if (!state->frame[0]) { 11261 kfree(state); 11262 return -ENOMEM; 11263 } 11264 env->cur_state = state; 11265 init_func_state(env, state->frame[0], 11266 BPF_MAIN_FUNC /* callsite */, 11267 0 /* frameno */, 11268 subprog); 11269 11270 regs = state->frame[state->curframe]->regs; 11271 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 11272 ret = btf_prepare_func_args(env, subprog, regs); 11273 if (ret) 11274 goto out; 11275 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 11276 if (regs[i].type == PTR_TO_CTX) 11277 mark_reg_known_zero(env, regs, i); 11278 else if (regs[i].type == SCALAR_VALUE) 11279 mark_reg_unknown(env, regs, i); 11280 } 11281 } else { 11282 /* 1st arg to a function */ 11283 regs[BPF_REG_1].type = PTR_TO_CTX; 11284 mark_reg_known_zero(env, regs, BPF_REG_1); 11285 ret = btf_check_func_arg_match(env, subprog, regs); 11286 if (ret == -EFAULT) 11287 /* unlikely verifier bug. abort. 11288 * ret == 0 and ret < 0 are sadly acceptable for 11289 * main() function due to backward compatibility. 11290 * Like socket filter program may be written as: 11291 * int bpf_prog(struct pt_regs *ctx) 11292 * and never dereference that ctx in the program. 11293 * 'struct pt_regs' is a type mismatch for socket 11294 * filter that should be using 'struct __sk_buff'. 11295 */ 11296 goto out; 11297 } 11298 11299 ret = do_check(env); 11300 out: 11301 /* check for NULL is necessary, since cur_state can be freed inside 11302 * do_check() under memory pressure. 11303 */ 11304 if (env->cur_state) { 11305 free_verifier_state(env->cur_state, true); 11306 env->cur_state = NULL; 11307 } 11308 while (!pop_stack(env, NULL, NULL, false)); 11309 if (!ret && pop_log) 11310 bpf_vlog_reset(&env->log, 0); 11311 free_states(env); 11312 if (ret) 11313 /* clean aux data in case subprog was rejected */ 11314 sanitize_insn_aux_data(env); 11315 return ret; 11316 } 11317 11318 /* Verify all global functions in a BPF program one by one based on their BTF. 11319 * All global functions must pass verification. Otherwise the whole program is rejected. 11320 * Consider: 11321 * int bar(int); 11322 * int foo(int f) 11323 * { 11324 * return bar(f); 11325 * } 11326 * int bar(int b) 11327 * { 11328 * ... 11329 * } 11330 * foo() will be verified first for R1=any_scalar_value. During verification it 11331 * will be assumed that bar() already verified successfully and call to bar() 11332 * from foo() will be checked for type match only. Later bar() will be verified 11333 * independently to check that it's safe for R1=any_scalar_value. 11334 */ 11335 static int do_check_subprogs(struct bpf_verifier_env *env) 11336 { 11337 struct bpf_prog_aux *aux = env->prog->aux; 11338 int i, ret; 11339 11340 if (!aux->func_info) 11341 return 0; 11342 11343 for (i = 1; i < env->subprog_cnt; i++) { 11344 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 11345 continue; 11346 env->insn_idx = env->subprog_info[i].start; 11347 WARN_ON_ONCE(env->insn_idx == 0); 11348 ret = do_check_common(env, i); 11349 if (ret) { 11350 return ret; 11351 } else if (env->log.level & BPF_LOG_LEVEL) { 11352 verbose(env, 11353 "Func#%d is safe for any args that match its prototype\n", 11354 i); 11355 } 11356 } 11357 return 0; 11358 } 11359 11360 static int do_check_main(struct bpf_verifier_env *env) 11361 { 11362 int ret; 11363 11364 env->insn_idx = 0; 11365 ret = do_check_common(env, 0); 11366 if (!ret) 11367 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 11368 return ret; 11369 } 11370 11371 11372 static void print_verification_stats(struct bpf_verifier_env *env) 11373 { 11374 int i; 11375 11376 if (env->log.level & BPF_LOG_STATS) { 11377 verbose(env, "verification time %lld usec\n", 11378 div_u64(env->verification_time, 1000)); 11379 verbose(env, "stack depth "); 11380 for (i = 0; i < env->subprog_cnt; i++) { 11381 u32 depth = env->subprog_info[i].stack_depth; 11382 11383 verbose(env, "%d", depth); 11384 if (i + 1 < env->subprog_cnt) 11385 verbose(env, "+"); 11386 } 11387 verbose(env, "\n"); 11388 } 11389 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 11390 "total_states %d peak_states %d mark_read %d\n", 11391 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 11392 env->max_states_per_insn, env->total_states, 11393 env->peak_states, env->longest_mark_read_walk); 11394 } 11395 11396 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 11397 { 11398 const struct btf_type *t, *func_proto; 11399 const struct bpf_struct_ops *st_ops; 11400 const struct btf_member *member; 11401 struct bpf_prog *prog = env->prog; 11402 u32 btf_id, member_idx; 11403 const char *mname; 11404 11405 btf_id = prog->aux->attach_btf_id; 11406 st_ops = bpf_struct_ops_find(btf_id); 11407 if (!st_ops) { 11408 verbose(env, "attach_btf_id %u is not a supported struct\n", 11409 btf_id); 11410 return -ENOTSUPP; 11411 } 11412 11413 t = st_ops->type; 11414 member_idx = prog->expected_attach_type; 11415 if (member_idx >= btf_type_vlen(t)) { 11416 verbose(env, "attach to invalid member idx %u of struct %s\n", 11417 member_idx, st_ops->name); 11418 return -EINVAL; 11419 } 11420 11421 member = &btf_type_member(t)[member_idx]; 11422 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 11423 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 11424 NULL); 11425 if (!func_proto) { 11426 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 11427 mname, member_idx, st_ops->name); 11428 return -EINVAL; 11429 } 11430 11431 if (st_ops->check_member) { 11432 int err = st_ops->check_member(t, member); 11433 11434 if (err) { 11435 verbose(env, "attach to unsupported member %s of struct %s\n", 11436 mname, st_ops->name); 11437 return err; 11438 } 11439 } 11440 11441 prog->aux->attach_func_proto = func_proto; 11442 prog->aux->attach_func_name = mname; 11443 env->ops = st_ops->verifier_ops; 11444 11445 return 0; 11446 } 11447 #define SECURITY_PREFIX "security_" 11448 11449 static int check_attach_modify_return(unsigned long addr, const char *func_name) 11450 { 11451 if (within_error_injection_list(addr) || 11452 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 11453 return 0; 11454 11455 return -EINVAL; 11456 } 11457 11458 /* non exhaustive list of sleepable bpf_lsm_*() functions */ 11459 BTF_SET_START(btf_sleepable_lsm_hooks) 11460 #ifdef CONFIG_BPF_LSM 11461 BTF_ID(func, bpf_lsm_bprm_committed_creds) 11462 #else 11463 BTF_ID_UNUSED 11464 #endif 11465 BTF_SET_END(btf_sleepable_lsm_hooks) 11466 11467 static int check_sleepable_lsm_hook(u32 btf_id) 11468 { 11469 return btf_id_set_contains(&btf_sleepable_lsm_hooks, btf_id); 11470 } 11471 11472 /* list of non-sleepable functions that are otherwise on 11473 * ALLOW_ERROR_INJECTION list 11474 */ 11475 BTF_SET_START(btf_non_sleepable_error_inject) 11476 /* Three functions below can be called from sleepable and non-sleepable context. 11477 * Assume non-sleepable from bpf safety point of view. 11478 */ 11479 BTF_ID(func, __add_to_page_cache_locked) 11480 BTF_ID(func, should_fail_alloc_page) 11481 BTF_ID(func, should_failslab) 11482 BTF_SET_END(btf_non_sleepable_error_inject) 11483 11484 static int check_non_sleepable_error_inject(u32 btf_id) 11485 { 11486 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 11487 } 11488 11489 int bpf_check_attach_target(struct bpf_verifier_log *log, 11490 const struct bpf_prog *prog, 11491 const struct bpf_prog *tgt_prog, 11492 u32 btf_id, 11493 struct bpf_attach_target_info *tgt_info) 11494 { 11495 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 11496 const char prefix[] = "btf_trace_"; 11497 int ret = 0, subprog = -1, i; 11498 const struct btf_type *t; 11499 bool conservative = true; 11500 const char *tname; 11501 struct btf *btf; 11502 long addr = 0; 11503 11504 if (!btf_id) { 11505 bpf_log(log, "Tracing programs must provide btf_id\n"); 11506 return -EINVAL; 11507 } 11508 btf = tgt_prog ? tgt_prog->aux->btf : btf_vmlinux; 11509 if (!btf) { 11510 bpf_log(log, 11511 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 11512 return -EINVAL; 11513 } 11514 t = btf_type_by_id(btf, btf_id); 11515 if (!t) { 11516 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 11517 return -EINVAL; 11518 } 11519 tname = btf_name_by_offset(btf, t->name_off); 11520 if (!tname) { 11521 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 11522 return -EINVAL; 11523 } 11524 if (tgt_prog) { 11525 struct bpf_prog_aux *aux = tgt_prog->aux; 11526 11527 for (i = 0; i < aux->func_info_cnt; i++) 11528 if (aux->func_info[i].type_id == btf_id) { 11529 subprog = i; 11530 break; 11531 } 11532 if (subprog == -1) { 11533 bpf_log(log, "Subprog %s doesn't exist\n", tname); 11534 return -EINVAL; 11535 } 11536 conservative = aux->func_info_aux[subprog].unreliable; 11537 if (prog_extension) { 11538 if (conservative) { 11539 bpf_log(log, 11540 "Cannot replace static functions\n"); 11541 return -EINVAL; 11542 } 11543 if (!prog->jit_requested) { 11544 bpf_log(log, 11545 "Extension programs should be JITed\n"); 11546 return -EINVAL; 11547 } 11548 } 11549 if (!tgt_prog->jited) { 11550 bpf_log(log, "Can attach to only JITed progs\n"); 11551 return -EINVAL; 11552 } 11553 if (tgt_prog->type == prog->type) { 11554 /* Cannot fentry/fexit another fentry/fexit program. 11555 * Cannot attach program extension to another extension. 11556 * It's ok to attach fentry/fexit to extension program. 11557 */ 11558 bpf_log(log, "Cannot recursively attach\n"); 11559 return -EINVAL; 11560 } 11561 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 11562 prog_extension && 11563 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 11564 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 11565 /* Program extensions can extend all program types 11566 * except fentry/fexit. The reason is the following. 11567 * The fentry/fexit programs are used for performance 11568 * analysis, stats and can be attached to any program 11569 * type except themselves. When extension program is 11570 * replacing XDP function it is necessary to allow 11571 * performance analysis of all functions. Both original 11572 * XDP program and its program extension. Hence 11573 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 11574 * allowed. If extending of fentry/fexit was allowed it 11575 * would be possible to create long call chain 11576 * fentry->extension->fentry->extension beyond 11577 * reasonable stack size. Hence extending fentry is not 11578 * allowed. 11579 */ 11580 bpf_log(log, "Cannot extend fentry/fexit\n"); 11581 return -EINVAL; 11582 } 11583 } else { 11584 if (prog_extension) { 11585 bpf_log(log, "Cannot replace kernel functions\n"); 11586 return -EINVAL; 11587 } 11588 } 11589 11590 switch (prog->expected_attach_type) { 11591 case BPF_TRACE_RAW_TP: 11592 if (tgt_prog) { 11593 bpf_log(log, 11594 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 11595 return -EINVAL; 11596 } 11597 if (!btf_type_is_typedef(t)) { 11598 bpf_log(log, "attach_btf_id %u is not a typedef\n", 11599 btf_id); 11600 return -EINVAL; 11601 } 11602 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 11603 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 11604 btf_id, tname); 11605 return -EINVAL; 11606 } 11607 tname += sizeof(prefix) - 1; 11608 t = btf_type_by_id(btf, t->type); 11609 if (!btf_type_is_ptr(t)) 11610 /* should never happen in valid vmlinux build */ 11611 return -EINVAL; 11612 t = btf_type_by_id(btf, t->type); 11613 if (!btf_type_is_func_proto(t)) 11614 /* should never happen in valid vmlinux build */ 11615 return -EINVAL; 11616 11617 break; 11618 case BPF_TRACE_ITER: 11619 if (!btf_type_is_func(t)) { 11620 bpf_log(log, "attach_btf_id %u is not a function\n", 11621 btf_id); 11622 return -EINVAL; 11623 } 11624 t = btf_type_by_id(btf, t->type); 11625 if (!btf_type_is_func_proto(t)) 11626 return -EINVAL; 11627 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 11628 if (ret) 11629 return ret; 11630 break; 11631 default: 11632 if (!prog_extension) 11633 return -EINVAL; 11634 fallthrough; 11635 case BPF_MODIFY_RETURN: 11636 case BPF_LSM_MAC: 11637 case BPF_TRACE_FENTRY: 11638 case BPF_TRACE_FEXIT: 11639 if (!btf_type_is_func(t)) { 11640 bpf_log(log, "attach_btf_id %u is not a function\n", 11641 btf_id); 11642 return -EINVAL; 11643 } 11644 if (prog_extension && 11645 btf_check_type_match(log, prog, btf, t)) 11646 return -EINVAL; 11647 t = btf_type_by_id(btf, t->type); 11648 if (!btf_type_is_func_proto(t)) 11649 return -EINVAL; 11650 11651 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 11652 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 11653 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 11654 return -EINVAL; 11655 11656 if (tgt_prog && conservative) 11657 t = NULL; 11658 11659 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 11660 if (ret < 0) 11661 return ret; 11662 11663 if (tgt_prog) { 11664 if (subprog == 0) 11665 addr = (long) tgt_prog->bpf_func; 11666 else 11667 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 11668 } else { 11669 addr = kallsyms_lookup_name(tname); 11670 if (!addr) { 11671 bpf_log(log, 11672 "The address of function %s cannot be found\n", 11673 tname); 11674 return -ENOENT; 11675 } 11676 } 11677 11678 if (prog->aux->sleepable) { 11679 ret = -EINVAL; 11680 switch (prog->type) { 11681 case BPF_PROG_TYPE_TRACING: 11682 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 11683 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 11684 */ 11685 if (!check_non_sleepable_error_inject(btf_id) && 11686 within_error_injection_list(addr)) 11687 ret = 0; 11688 break; 11689 case BPF_PROG_TYPE_LSM: 11690 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 11691 * Only some of them are sleepable. 11692 */ 11693 if (check_sleepable_lsm_hook(btf_id)) 11694 ret = 0; 11695 break; 11696 default: 11697 break; 11698 } 11699 if (ret) { 11700 bpf_log(log, "%s is not sleepable\n", tname); 11701 return ret; 11702 } 11703 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 11704 if (tgt_prog) { 11705 bpf_log(log, "can't modify return codes of BPF programs\n"); 11706 return -EINVAL; 11707 } 11708 ret = check_attach_modify_return(addr, tname); 11709 if (ret) { 11710 bpf_log(log, "%s() is not modifiable\n", tname); 11711 return ret; 11712 } 11713 } 11714 11715 break; 11716 } 11717 tgt_info->tgt_addr = addr; 11718 tgt_info->tgt_name = tname; 11719 tgt_info->tgt_type = t; 11720 return 0; 11721 } 11722 11723 static int check_attach_btf_id(struct bpf_verifier_env *env) 11724 { 11725 struct bpf_prog *prog = env->prog; 11726 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 11727 struct bpf_attach_target_info tgt_info = {}; 11728 u32 btf_id = prog->aux->attach_btf_id; 11729 struct bpf_trampoline *tr; 11730 int ret; 11731 u64 key; 11732 11733 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 11734 prog->type != BPF_PROG_TYPE_LSM) { 11735 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n"); 11736 return -EINVAL; 11737 } 11738 11739 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 11740 return check_struct_ops_btf_id(env); 11741 11742 if (prog->type != BPF_PROG_TYPE_TRACING && 11743 prog->type != BPF_PROG_TYPE_LSM && 11744 prog->type != BPF_PROG_TYPE_EXT) 11745 return 0; 11746 11747 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 11748 if (ret) 11749 return ret; 11750 11751 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 11752 /* to make freplace equivalent to their targets, they need to 11753 * inherit env->ops and expected_attach_type for the rest of the 11754 * verification 11755 */ 11756 env->ops = bpf_verifier_ops[tgt_prog->type]; 11757 prog->expected_attach_type = tgt_prog->expected_attach_type; 11758 } 11759 11760 /* store info about the attachment target that will be used later */ 11761 prog->aux->attach_func_proto = tgt_info.tgt_type; 11762 prog->aux->attach_func_name = tgt_info.tgt_name; 11763 11764 if (tgt_prog) { 11765 prog->aux->saved_dst_prog_type = tgt_prog->type; 11766 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 11767 } 11768 11769 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 11770 prog->aux->attach_btf_trace = true; 11771 return 0; 11772 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 11773 if (!bpf_iter_prog_supported(prog)) 11774 return -EINVAL; 11775 return 0; 11776 } 11777 11778 if (prog->type == BPF_PROG_TYPE_LSM) { 11779 ret = bpf_lsm_verify_prog(&env->log, prog); 11780 if (ret < 0) 11781 return ret; 11782 } 11783 11784 key = bpf_trampoline_compute_key(tgt_prog, btf_id); 11785 tr = bpf_trampoline_get(key, &tgt_info); 11786 if (!tr) 11787 return -ENOMEM; 11788 11789 prog->aux->dst_trampoline = tr; 11790 return 0; 11791 } 11792 11793 struct btf *bpf_get_btf_vmlinux(void) 11794 { 11795 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 11796 mutex_lock(&bpf_verifier_lock); 11797 if (!btf_vmlinux) 11798 btf_vmlinux = btf_parse_vmlinux(); 11799 mutex_unlock(&bpf_verifier_lock); 11800 } 11801 return btf_vmlinux; 11802 } 11803 11804 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 11805 union bpf_attr __user *uattr) 11806 { 11807 u64 start_time = ktime_get_ns(); 11808 struct bpf_verifier_env *env; 11809 struct bpf_verifier_log *log; 11810 int i, len, ret = -EINVAL; 11811 bool is_priv; 11812 11813 /* no program is valid */ 11814 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 11815 return -EINVAL; 11816 11817 /* 'struct bpf_verifier_env' can be global, but since it's not small, 11818 * allocate/free it every time bpf_check() is called 11819 */ 11820 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 11821 if (!env) 11822 return -ENOMEM; 11823 log = &env->log; 11824 11825 len = (*prog)->len; 11826 env->insn_aux_data = 11827 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 11828 ret = -ENOMEM; 11829 if (!env->insn_aux_data) 11830 goto err_free_env; 11831 for (i = 0; i < len; i++) 11832 env->insn_aux_data[i].orig_idx = i; 11833 env->prog = *prog; 11834 env->ops = bpf_verifier_ops[env->prog->type]; 11835 is_priv = bpf_capable(); 11836 11837 bpf_get_btf_vmlinux(); 11838 11839 /* grab the mutex to protect few globals used by verifier */ 11840 if (!is_priv) 11841 mutex_lock(&bpf_verifier_lock); 11842 11843 if (attr->log_level || attr->log_buf || attr->log_size) { 11844 /* user requested verbose verifier output 11845 * and supplied buffer to store the verification trace 11846 */ 11847 log->level = attr->log_level; 11848 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 11849 log->len_total = attr->log_size; 11850 11851 ret = -EINVAL; 11852 /* log attributes have to be sane */ 11853 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 11854 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 11855 goto err_unlock; 11856 } 11857 11858 if (IS_ERR(btf_vmlinux)) { 11859 /* Either gcc or pahole or kernel are broken. */ 11860 verbose(env, "in-kernel BTF is malformed\n"); 11861 ret = PTR_ERR(btf_vmlinux); 11862 goto skip_full_check; 11863 } 11864 11865 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 11866 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 11867 env->strict_alignment = true; 11868 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 11869 env->strict_alignment = false; 11870 11871 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 11872 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 11873 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 11874 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 11875 env->bpf_capable = bpf_capable(); 11876 11877 if (is_priv) 11878 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 11879 11880 if (bpf_prog_is_dev_bound(env->prog->aux)) { 11881 ret = bpf_prog_offload_verifier_prep(env->prog); 11882 if (ret) 11883 goto skip_full_check; 11884 } 11885 11886 env->explored_states = kvcalloc(state_htab_size(env), 11887 sizeof(struct bpf_verifier_state_list *), 11888 GFP_USER); 11889 ret = -ENOMEM; 11890 if (!env->explored_states) 11891 goto skip_full_check; 11892 11893 ret = check_subprogs(env); 11894 if (ret < 0) 11895 goto skip_full_check; 11896 11897 ret = check_btf_info(env, attr, uattr); 11898 if (ret < 0) 11899 goto skip_full_check; 11900 11901 ret = check_attach_btf_id(env); 11902 if (ret) 11903 goto skip_full_check; 11904 11905 ret = resolve_pseudo_ldimm64(env); 11906 if (ret < 0) 11907 goto skip_full_check; 11908 11909 ret = check_cfg(env); 11910 if (ret < 0) 11911 goto skip_full_check; 11912 11913 ret = do_check_subprogs(env); 11914 ret = ret ?: do_check_main(env); 11915 11916 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 11917 ret = bpf_prog_offload_finalize(env); 11918 11919 skip_full_check: 11920 kvfree(env->explored_states); 11921 11922 if (ret == 0) 11923 ret = check_max_stack_depth(env); 11924 11925 /* instruction rewrites happen after this point */ 11926 if (is_priv) { 11927 if (ret == 0) 11928 opt_hard_wire_dead_code_branches(env); 11929 if (ret == 0) 11930 ret = opt_remove_dead_code(env); 11931 if (ret == 0) 11932 ret = opt_remove_nops(env); 11933 } else { 11934 if (ret == 0) 11935 sanitize_dead_code(env); 11936 } 11937 11938 if (ret == 0) 11939 /* program is valid, convert *(u32*)(ctx + off) accesses */ 11940 ret = convert_ctx_accesses(env); 11941 11942 if (ret == 0) 11943 ret = fixup_bpf_calls(env); 11944 11945 /* do 32-bit optimization after insn patching has done so those patched 11946 * insns could be handled correctly. 11947 */ 11948 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 11949 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 11950 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 11951 : false; 11952 } 11953 11954 if (ret == 0) 11955 ret = fixup_call_args(env); 11956 11957 env->verification_time = ktime_get_ns() - start_time; 11958 print_verification_stats(env); 11959 11960 if (log->level && bpf_verifier_log_full(log)) 11961 ret = -ENOSPC; 11962 if (log->level && !log->ubuf) { 11963 ret = -EFAULT; 11964 goto err_release_maps; 11965 } 11966 11967 if (ret == 0 && env->used_map_cnt) { 11968 /* if program passed verifier, update used_maps in bpf_prog_info */ 11969 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 11970 sizeof(env->used_maps[0]), 11971 GFP_KERNEL); 11972 11973 if (!env->prog->aux->used_maps) { 11974 ret = -ENOMEM; 11975 goto err_release_maps; 11976 } 11977 11978 memcpy(env->prog->aux->used_maps, env->used_maps, 11979 sizeof(env->used_maps[0]) * env->used_map_cnt); 11980 env->prog->aux->used_map_cnt = env->used_map_cnt; 11981 11982 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 11983 * bpf_ld_imm64 instructions 11984 */ 11985 convert_pseudo_ld_imm64(env); 11986 } 11987 11988 if (ret == 0) 11989 adjust_btf_func(env); 11990 11991 err_release_maps: 11992 if (!env->prog->aux->used_maps) 11993 /* if we didn't copy map pointers into bpf_prog_info, release 11994 * them now. Otherwise free_used_maps() will release them. 11995 */ 11996 release_maps(env); 11997 11998 /* extension progs temporarily inherit the attach_type of their targets 11999 for verification purposes, so set it back to zero before returning 12000 */ 12001 if (env->prog->type == BPF_PROG_TYPE_EXT) 12002 env->prog->expected_attach_type = 0; 12003 12004 *prog = env->prog; 12005 err_unlock: 12006 if (!is_priv) 12007 mutex_unlock(&bpf_verifier_lock); 12008 vfree(env->insn_aux_data); 12009 err_free_env: 12010 kfree(env); 12011 return ret; 12012 } 12013