1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <linux/bpf_mem_alloc.h> 30 #include <net/xdp.h> 31 #include <linux/trace_events.h> 32 #include <linux/kallsyms.h> 33 34 #include "disasm.h" 35 36 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 37 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 38 [_id] = & _name ## _verifier_ops, 39 #define BPF_MAP_TYPE(_id, _ops) 40 #define BPF_LINK_TYPE(_id, _name) 41 #include <linux/bpf_types.h> 42 #undef BPF_PROG_TYPE 43 #undef BPF_MAP_TYPE 44 #undef BPF_LINK_TYPE 45 }; 46 47 enum bpf_features { 48 BPF_FEAT_RDONLY_CAST_TO_VOID = 0, 49 BPF_FEAT_STREAMS = 1, 50 __MAX_BPF_FEAT, 51 }; 52 53 struct bpf_mem_alloc bpf_global_percpu_ma; 54 static bool bpf_global_percpu_ma_set; 55 56 /* bpf_check() is a static code analyzer that walks eBPF program 57 * instruction by instruction and updates register/stack state. 58 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 59 * 60 * The first pass is depth-first-search to check that the program is a DAG. 61 * It rejects the following programs: 62 * - larger than BPF_MAXINSNS insns 63 * - if loop is present (detected via back-edge) 64 * - unreachable insns exist (shouldn't be a forest. program = one function) 65 * - out of bounds or malformed jumps 66 * The second pass is all possible path descent from the 1st insn. 67 * Since it's analyzing all paths through the program, the length of the 68 * analysis is limited to 64k insn, which may be hit even if total number of 69 * insn is less then 4K, but there are too many branches that change stack/regs. 70 * Number of 'branches to be analyzed' is limited to 1k 71 * 72 * On entry to each instruction, each register has a type, and the instruction 73 * changes the types of the registers depending on instruction semantics. 74 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 75 * copied to R1. 76 * 77 * All registers are 64-bit. 78 * R0 - return register 79 * R1-R5 argument passing registers 80 * R6-R9 callee saved registers 81 * R10 - frame pointer read-only 82 * 83 * At the start of BPF program the register R1 contains a pointer to bpf_context 84 * and has type PTR_TO_CTX. 85 * 86 * Verifier tracks arithmetic operations on pointers in case: 87 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 88 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 89 * 1st insn copies R10 (which has FRAME_PTR) type into R1 90 * and 2nd arithmetic instruction is pattern matched to recognize 91 * that it wants to construct a pointer to some element within stack. 92 * So after 2nd insn, the register R1 has type PTR_TO_STACK 93 * (and -20 constant is saved for further stack bounds checking). 94 * Meaning that this reg is a pointer to stack plus known immediate constant. 95 * 96 * Most of the time the registers have SCALAR_VALUE type, which 97 * means the register has some value, but it's not a valid pointer. 98 * (like pointer plus pointer becomes SCALAR_VALUE type) 99 * 100 * When verifier sees load or store instructions the type of base register 101 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 102 * four pointer types recognized by check_mem_access() function. 103 * 104 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 105 * and the range of [ptr, ptr + map's value_size) is accessible. 106 * 107 * registers used to pass values to function calls are checked against 108 * function argument constraints. 109 * 110 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 111 * It means that the register type passed to this function must be 112 * PTR_TO_STACK and it will be used inside the function as 113 * 'pointer to map element key' 114 * 115 * For example the argument constraints for bpf_map_lookup_elem(): 116 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 117 * .arg1_type = ARG_CONST_MAP_PTR, 118 * .arg2_type = ARG_PTR_TO_MAP_KEY, 119 * 120 * ret_type says that this function returns 'pointer to map elem value or null' 121 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 122 * 2nd argument should be a pointer to stack, which will be used inside 123 * the helper function as a pointer to map element key. 124 * 125 * On the kernel side the helper function looks like: 126 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 127 * { 128 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 129 * void *key = (void *) (unsigned long) r2; 130 * void *value; 131 * 132 * here kernel can access 'key' and 'map' pointers safely, knowing that 133 * [key, key + map->key_size) bytes are valid and were initialized on 134 * the stack of eBPF program. 135 * } 136 * 137 * Corresponding eBPF program may look like: 138 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 139 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 140 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 141 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 142 * here verifier looks at prototype of map_lookup_elem() and sees: 143 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 144 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 145 * 146 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 147 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 148 * and were initialized prior to this call. 149 * If it's ok, then verifier allows this BPF_CALL insn and looks at 150 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 151 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 152 * returns either pointer to map value or NULL. 153 * 154 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 155 * insn, the register holding that pointer in the true branch changes state to 156 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 157 * branch. See check_cond_jmp_op(). 158 * 159 * After the call R0 is set to return type of the function and registers R1-R5 160 * are set to NOT_INIT to indicate that they are no longer readable. 161 * 162 * The following reference types represent a potential reference to a kernel 163 * resource which, after first being allocated, must be checked and freed by 164 * the BPF program: 165 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 166 * 167 * When the verifier sees a helper call return a reference type, it allocates a 168 * pointer id for the reference and stores it in the current function state. 169 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 170 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 171 * passes through a NULL-check conditional. For the branch wherein the state is 172 * changed to CONST_IMM, the verifier releases the reference. 173 * 174 * For each helper function that allocates a reference, such as 175 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 176 * bpf_sk_release(). When a reference type passes into the release function, 177 * the verifier also releases the reference. If any unchecked or unreleased 178 * reference remains at the end of the program, the verifier rejects it. 179 */ 180 181 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 182 struct bpf_verifier_stack_elem { 183 /* verifier state is 'st' 184 * before processing instruction 'insn_idx' 185 * and after processing instruction 'prev_insn_idx' 186 */ 187 struct bpf_verifier_state st; 188 int insn_idx; 189 int prev_insn_idx; 190 struct bpf_verifier_stack_elem *next; 191 /* length of verifier log at the time this state was pushed on stack */ 192 u32 log_pos; 193 }; 194 195 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 196 #define BPF_COMPLEXITY_LIMIT_STATES 64 197 198 #define BPF_MAP_KEY_POISON (1ULL << 63) 199 #define BPF_MAP_KEY_SEEN (1ULL << 62) 200 201 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE 512 202 203 #define BPF_PRIV_STACK_MIN_SIZE 64 204 205 static int acquire_reference(struct bpf_verifier_env *env, int insn_idx); 206 static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id); 207 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 208 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 209 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 210 static int ref_set_non_owning(struct bpf_verifier_env *env, 211 struct bpf_reg_state *reg); 212 static void specialize_kfunc(struct bpf_verifier_env *env, 213 u32 func_id, u16 offset, unsigned long *addr); 214 static bool is_trusted_reg(const struct bpf_reg_state *reg); 215 216 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 217 { 218 return aux->map_ptr_state.poison; 219 } 220 221 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 222 { 223 return aux->map_ptr_state.unpriv; 224 } 225 226 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 227 struct bpf_map *map, 228 bool unpriv, bool poison) 229 { 230 unpriv |= bpf_map_ptr_unpriv(aux); 231 aux->map_ptr_state.unpriv = unpriv; 232 aux->map_ptr_state.poison = poison; 233 aux->map_ptr_state.map_ptr = map; 234 } 235 236 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 237 { 238 return aux->map_key_state & BPF_MAP_KEY_POISON; 239 } 240 241 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 242 { 243 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 244 } 245 246 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 247 { 248 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 249 } 250 251 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 252 { 253 bool poisoned = bpf_map_key_poisoned(aux); 254 255 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 256 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 257 } 258 259 static bool bpf_helper_call(const struct bpf_insn *insn) 260 { 261 return insn->code == (BPF_JMP | BPF_CALL) && 262 insn->src_reg == 0; 263 } 264 265 static bool bpf_pseudo_call(const struct bpf_insn *insn) 266 { 267 return insn->code == (BPF_JMP | BPF_CALL) && 268 insn->src_reg == BPF_PSEUDO_CALL; 269 } 270 271 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 272 { 273 return insn->code == (BPF_JMP | BPF_CALL) && 274 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 275 } 276 277 struct bpf_call_arg_meta { 278 struct bpf_map *map_ptr; 279 bool raw_mode; 280 bool pkt_access; 281 u8 release_regno; 282 int regno; 283 int access_size; 284 int mem_size; 285 u64 msize_max_value; 286 int ref_obj_id; 287 int dynptr_id; 288 int map_uid; 289 int func_id; 290 struct btf *btf; 291 u32 btf_id; 292 struct btf *ret_btf; 293 u32 ret_btf_id; 294 u32 subprogno; 295 struct btf_field *kptr_field; 296 s64 const_map_key; 297 }; 298 299 struct bpf_kfunc_call_arg_meta { 300 /* In parameters */ 301 struct btf *btf; 302 u32 func_id; 303 u32 kfunc_flags; 304 const struct btf_type *func_proto; 305 const char *func_name; 306 /* Out parameters */ 307 u32 ref_obj_id; 308 u8 release_regno; 309 bool r0_rdonly; 310 u32 ret_btf_id; 311 u64 r0_size; 312 u32 subprogno; 313 struct { 314 u64 value; 315 bool found; 316 } arg_constant; 317 318 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 319 * generally to pass info about user-defined local kptr types to later 320 * verification logic 321 * bpf_obj_drop/bpf_percpu_obj_drop 322 * Record the local kptr type to be drop'd 323 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 324 * Record the local kptr type to be refcount_incr'd and use 325 * arg_owning_ref to determine whether refcount_acquire should be 326 * fallible 327 */ 328 struct btf *arg_btf; 329 u32 arg_btf_id; 330 bool arg_owning_ref; 331 bool arg_prog; 332 333 struct { 334 struct btf_field *field; 335 } arg_list_head; 336 struct { 337 struct btf_field *field; 338 } arg_rbtree_root; 339 struct { 340 enum bpf_dynptr_type type; 341 u32 id; 342 u32 ref_obj_id; 343 } initialized_dynptr; 344 struct { 345 u8 spi; 346 u8 frameno; 347 } iter; 348 struct { 349 struct bpf_map *ptr; 350 int uid; 351 } map; 352 u64 mem_size; 353 }; 354 355 struct btf *btf_vmlinux; 356 357 static const char *btf_type_name(const struct btf *btf, u32 id) 358 { 359 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 360 } 361 362 static DEFINE_MUTEX(bpf_verifier_lock); 363 static DEFINE_MUTEX(bpf_percpu_ma_lock); 364 365 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 366 { 367 struct bpf_verifier_env *env = private_data; 368 va_list args; 369 370 if (!bpf_verifier_log_needed(&env->log)) 371 return; 372 373 va_start(args, fmt); 374 bpf_verifier_vlog(&env->log, fmt, args); 375 va_end(args); 376 } 377 378 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 379 struct bpf_reg_state *reg, 380 struct bpf_retval_range range, const char *ctx, 381 const char *reg_name) 382 { 383 bool unknown = true; 384 385 verbose(env, "%s the register %s has", ctx, reg_name); 386 if (reg->smin_value > S64_MIN) { 387 verbose(env, " smin=%lld", reg->smin_value); 388 unknown = false; 389 } 390 if (reg->smax_value < S64_MAX) { 391 verbose(env, " smax=%lld", reg->smax_value); 392 unknown = false; 393 } 394 if (unknown) 395 verbose(env, " unknown scalar value"); 396 verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval); 397 } 398 399 static bool reg_not_null(const struct bpf_reg_state *reg) 400 { 401 enum bpf_reg_type type; 402 403 type = reg->type; 404 if (type_may_be_null(type)) 405 return false; 406 407 type = base_type(type); 408 return type == PTR_TO_SOCKET || 409 type == PTR_TO_TCP_SOCK || 410 type == PTR_TO_MAP_VALUE || 411 type == PTR_TO_MAP_KEY || 412 type == PTR_TO_SOCK_COMMON || 413 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 414 (type == PTR_TO_MEM && !(reg->type & PTR_UNTRUSTED)) || 415 type == CONST_PTR_TO_MAP; 416 } 417 418 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 419 { 420 struct btf_record *rec = NULL; 421 struct btf_struct_meta *meta; 422 423 if (reg->type == PTR_TO_MAP_VALUE) { 424 rec = reg->map_ptr->record; 425 } else if (type_is_ptr_alloc_obj(reg->type)) { 426 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 427 if (meta) 428 rec = meta->record; 429 } 430 return rec; 431 } 432 433 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 434 { 435 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 436 437 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 438 } 439 440 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog) 441 { 442 struct bpf_func_info *info; 443 444 if (!env->prog->aux->func_info) 445 return ""; 446 447 info = &env->prog->aux->func_info[subprog]; 448 return btf_type_name(env->prog->aux->btf, info->type_id); 449 } 450 451 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog) 452 { 453 struct bpf_subprog_info *info = subprog_info(env, subprog); 454 455 info->is_cb = true; 456 info->is_async_cb = true; 457 info->is_exception_cb = true; 458 } 459 460 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog) 461 { 462 return subprog_info(env, subprog)->is_exception_cb; 463 } 464 465 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 466 { 467 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK); 468 } 469 470 static bool type_is_rdonly_mem(u32 type) 471 { 472 return type & MEM_RDONLY; 473 } 474 475 static bool is_acquire_function(enum bpf_func_id func_id, 476 const struct bpf_map *map) 477 { 478 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 479 480 if (func_id == BPF_FUNC_sk_lookup_tcp || 481 func_id == BPF_FUNC_sk_lookup_udp || 482 func_id == BPF_FUNC_skc_lookup_tcp || 483 func_id == BPF_FUNC_ringbuf_reserve || 484 func_id == BPF_FUNC_kptr_xchg) 485 return true; 486 487 if (func_id == BPF_FUNC_map_lookup_elem && 488 (map_type == BPF_MAP_TYPE_SOCKMAP || 489 map_type == BPF_MAP_TYPE_SOCKHASH)) 490 return true; 491 492 return false; 493 } 494 495 static bool is_ptr_cast_function(enum bpf_func_id func_id) 496 { 497 return func_id == BPF_FUNC_tcp_sock || 498 func_id == BPF_FUNC_sk_fullsock || 499 func_id == BPF_FUNC_skc_to_tcp_sock || 500 func_id == BPF_FUNC_skc_to_tcp6_sock || 501 func_id == BPF_FUNC_skc_to_udp6_sock || 502 func_id == BPF_FUNC_skc_to_mptcp_sock || 503 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 504 func_id == BPF_FUNC_skc_to_tcp_request_sock; 505 } 506 507 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 508 { 509 return func_id == BPF_FUNC_dynptr_data; 510 } 511 512 static bool is_sync_callback_calling_kfunc(u32 btf_id); 513 static bool is_async_callback_calling_kfunc(u32 btf_id); 514 static bool is_callback_calling_kfunc(u32 btf_id); 515 static bool is_bpf_throw_kfunc(struct bpf_insn *insn); 516 517 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id); 518 519 static bool is_sync_callback_calling_function(enum bpf_func_id func_id) 520 { 521 return func_id == BPF_FUNC_for_each_map_elem || 522 func_id == BPF_FUNC_find_vma || 523 func_id == BPF_FUNC_loop || 524 func_id == BPF_FUNC_user_ringbuf_drain; 525 } 526 527 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 528 { 529 return func_id == BPF_FUNC_timer_set_callback; 530 } 531 532 static bool is_callback_calling_function(enum bpf_func_id func_id) 533 { 534 return is_sync_callback_calling_function(func_id) || 535 is_async_callback_calling_function(func_id); 536 } 537 538 static bool is_sync_callback_calling_insn(struct bpf_insn *insn) 539 { 540 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || 541 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); 542 } 543 544 static bool is_async_callback_calling_insn(struct bpf_insn *insn) 545 { 546 return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) || 547 (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm)); 548 } 549 550 static bool is_may_goto_insn(struct bpf_insn *insn) 551 { 552 return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO; 553 } 554 555 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx) 556 { 557 return is_may_goto_insn(&env->prog->insnsi[insn_idx]); 558 } 559 560 static bool is_storage_get_function(enum bpf_func_id func_id) 561 { 562 return func_id == BPF_FUNC_sk_storage_get || 563 func_id == BPF_FUNC_inode_storage_get || 564 func_id == BPF_FUNC_task_storage_get || 565 func_id == BPF_FUNC_cgrp_storage_get; 566 } 567 568 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 569 const struct bpf_map *map) 570 { 571 int ref_obj_uses = 0; 572 573 if (is_ptr_cast_function(func_id)) 574 ref_obj_uses++; 575 if (is_acquire_function(func_id, map)) 576 ref_obj_uses++; 577 if (is_dynptr_ref_function(func_id)) 578 ref_obj_uses++; 579 580 return ref_obj_uses > 1; 581 } 582 583 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 584 { 585 return BPF_CLASS(insn->code) == BPF_STX && 586 BPF_MODE(insn->code) == BPF_ATOMIC && 587 insn->imm == BPF_CMPXCHG; 588 } 589 590 static bool is_atomic_load_insn(const struct bpf_insn *insn) 591 { 592 return BPF_CLASS(insn->code) == BPF_STX && 593 BPF_MODE(insn->code) == BPF_ATOMIC && 594 insn->imm == BPF_LOAD_ACQ; 595 } 596 597 static int __get_spi(s32 off) 598 { 599 return (-off - 1) / BPF_REG_SIZE; 600 } 601 602 static struct bpf_func_state *func(struct bpf_verifier_env *env, 603 const struct bpf_reg_state *reg) 604 { 605 struct bpf_verifier_state *cur = env->cur_state; 606 607 return cur->frame[reg->frameno]; 608 } 609 610 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 611 { 612 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 613 614 /* We need to check that slots between [spi - nr_slots + 1, spi] are 615 * within [0, allocated_stack). 616 * 617 * Please note that the spi grows downwards. For example, a dynptr 618 * takes the size of two stack slots; the first slot will be at 619 * spi and the second slot will be at spi - 1. 620 */ 621 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 622 } 623 624 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 625 const char *obj_kind, int nr_slots) 626 { 627 int off, spi; 628 629 if (!tnum_is_const(reg->var_off)) { 630 verbose(env, "%s has to be at a constant offset\n", obj_kind); 631 return -EINVAL; 632 } 633 634 off = reg->off + reg->var_off.value; 635 if (off % BPF_REG_SIZE) { 636 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 637 return -EINVAL; 638 } 639 640 spi = __get_spi(off); 641 if (spi + 1 < nr_slots) { 642 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 643 return -EINVAL; 644 } 645 646 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 647 return -ERANGE; 648 return spi; 649 } 650 651 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 652 { 653 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 654 } 655 656 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 657 { 658 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 659 } 660 661 static int irq_flag_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 662 { 663 return stack_slot_obj_get_spi(env, reg, "irq_flag", 1); 664 } 665 666 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 667 { 668 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 669 case DYNPTR_TYPE_LOCAL: 670 return BPF_DYNPTR_TYPE_LOCAL; 671 case DYNPTR_TYPE_RINGBUF: 672 return BPF_DYNPTR_TYPE_RINGBUF; 673 case DYNPTR_TYPE_SKB: 674 return BPF_DYNPTR_TYPE_SKB; 675 case DYNPTR_TYPE_XDP: 676 return BPF_DYNPTR_TYPE_XDP; 677 case DYNPTR_TYPE_SKB_META: 678 return BPF_DYNPTR_TYPE_SKB_META; 679 default: 680 return BPF_DYNPTR_TYPE_INVALID; 681 } 682 } 683 684 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 685 { 686 switch (type) { 687 case BPF_DYNPTR_TYPE_LOCAL: 688 return DYNPTR_TYPE_LOCAL; 689 case BPF_DYNPTR_TYPE_RINGBUF: 690 return DYNPTR_TYPE_RINGBUF; 691 case BPF_DYNPTR_TYPE_SKB: 692 return DYNPTR_TYPE_SKB; 693 case BPF_DYNPTR_TYPE_XDP: 694 return DYNPTR_TYPE_XDP; 695 case BPF_DYNPTR_TYPE_SKB_META: 696 return DYNPTR_TYPE_SKB_META; 697 default: 698 return 0; 699 } 700 } 701 702 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 703 { 704 return type == BPF_DYNPTR_TYPE_RINGBUF; 705 } 706 707 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 708 enum bpf_dynptr_type type, 709 bool first_slot, int dynptr_id); 710 711 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 712 struct bpf_reg_state *reg); 713 714 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 715 struct bpf_reg_state *sreg1, 716 struct bpf_reg_state *sreg2, 717 enum bpf_dynptr_type type) 718 { 719 int id = ++env->id_gen; 720 721 __mark_dynptr_reg(sreg1, type, true, id); 722 __mark_dynptr_reg(sreg2, type, false, id); 723 } 724 725 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 726 struct bpf_reg_state *reg, 727 enum bpf_dynptr_type type) 728 { 729 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 730 } 731 732 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 733 struct bpf_func_state *state, int spi); 734 735 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 736 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 737 { 738 struct bpf_func_state *state = func(env, reg); 739 enum bpf_dynptr_type type; 740 int spi, i, err; 741 742 spi = dynptr_get_spi(env, reg); 743 if (spi < 0) 744 return spi; 745 746 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 747 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 748 * to ensure that for the following example: 749 * [d1][d1][d2][d2] 750 * spi 3 2 1 0 751 * So marking spi = 2 should lead to destruction of both d1 and d2. In 752 * case they do belong to same dynptr, second call won't see slot_type 753 * as STACK_DYNPTR and will simply skip destruction. 754 */ 755 err = destroy_if_dynptr_stack_slot(env, state, spi); 756 if (err) 757 return err; 758 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 759 if (err) 760 return err; 761 762 for (i = 0; i < BPF_REG_SIZE; i++) { 763 state->stack[spi].slot_type[i] = STACK_DYNPTR; 764 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 765 } 766 767 type = arg_to_dynptr_type(arg_type); 768 if (type == BPF_DYNPTR_TYPE_INVALID) 769 return -EINVAL; 770 771 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 772 &state->stack[spi - 1].spilled_ptr, type); 773 774 if (dynptr_type_refcounted(type)) { 775 /* The id is used to track proper releasing */ 776 int id; 777 778 if (clone_ref_obj_id) 779 id = clone_ref_obj_id; 780 else 781 id = acquire_reference(env, insn_idx); 782 783 if (id < 0) 784 return id; 785 786 state->stack[spi].spilled_ptr.ref_obj_id = id; 787 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 788 } 789 790 bpf_mark_stack_write(env, state->frameno, BIT(spi - 1) | BIT(spi)); 791 792 return 0; 793 } 794 795 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 796 { 797 int i; 798 799 for (i = 0; i < BPF_REG_SIZE; i++) { 800 state->stack[spi].slot_type[i] = STACK_INVALID; 801 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 802 } 803 804 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 805 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 806 807 bpf_mark_stack_write(env, state->frameno, BIT(spi - 1) | BIT(spi)); 808 } 809 810 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 811 { 812 struct bpf_func_state *state = func(env, reg); 813 int spi, ref_obj_id, i; 814 815 spi = dynptr_get_spi(env, reg); 816 if (spi < 0) 817 return spi; 818 819 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 820 invalidate_dynptr(env, state, spi); 821 return 0; 822 } 823 824 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 825 826 /* If the dynptr has a ref_obj_id, then we need to invalidate 827 * two things: 828 * 829 * 1) Any dynptrs with a matching ref_obj_id (clones) 830 * 2) Any slices derived from this dynptr. 831 */ 832 833 /* Invalidate any slices associated with this dynptr */ 834 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 835 836 /* Invalidate any dynptr clones */ 837 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 838 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 839 continue; 840 841 /* it should always be the case that if the ref obj id 842 * matches then the stack slot also belongs to a 843 * dynptr 844 */ 845 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 846 verifier_bug(env, "misconfigured ref_obj_id"); 847 return -EFAULT; 848 } 849 if (state->stack[i].spilled_ptr.dynptr.first_slot) 850 invalidate_dynptr(env, state, i); 851 } 852 853 return 0; 854 } 855 856 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 857 struct bpf_reg_state *reg); 858 859 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 860 { 861 if (!env->allow_ptr_leaks) 862 __mark_reg_not_init(env, reg); 863 else 864 __mark_reg_unknown(env, reg); 865 } 866 867 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 868 struct bpf_func_state *state, int spi) 869 { 870 struct bpf_func_state *fstate; 871 struct bpf_reg_state *dreg; 872 int i, dynptr_id; 873 874 /* We always ensure that STACK_DYNPTR is never set partially, 875 * hence just checking for slot_type[0] is enough. This is 876 * different for STACK_SPILL, where it may be only set for 877 * 1 byte, so code has to use is_spilled_reg. 878 */ 879 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 880 return 0; 881 882 /* Reposition spi to first slot */ 883 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 884 spi = spi + 1; 885 886 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 887 verbose(env, "cannot overwrite referenced dynptr\n"); 888 return -EINVAL; 889 } 890 891 mark_stack_slot_scratched(env, spi); 892 mark_stack_slot_scratched(env, spi - 1); 893 894 /* Writing partially to one dynptr stack slot destroys both. */ 895 for (i = 0; i < BPF_REG_SIZE; i++) { 896 state->stack[spi].slot_type[i] = STACK_INVALID; 897 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 898 } 899 900 dynptr_id = state->stack[spi].spilled_ptr.id; 901 /* Invalidate any slices associated with this dynptr */ 902 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 903 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 904 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 905 continue; 906 if (dreg->dynptr_id == dynptr_id) 907 mark_reg_invalid(env, dreg); 908 })); 909 910 /* Do not release reference state, we are destroying dynptr on stack, 911 * not using some helper to release it. Just reset register. 912 */ 913 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 914 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 915 916 bpf_mark_stack_write(env, state->frameno, BIT(spi - 1) | BIT(spi)); 917 918 return 0; 919 } 920 921 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 922 { 923 int spi; 924 925 if (reg->type == CONST_PTR_TO_DYNPTR) 926 return false; 927 928 spi = dynptr_get_spi(env, reg); 929 930 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 931 * error because this just means the stack state hasn't been updated yet. 932 * We will do check_mem_access to check and update stack bounds later. 933 */ 934 if (spi < 0 && spi != -ERANGE) 935 return false; 936 937 /* We don't need to check if the stack slots are marked by previous 938 * dynptr initializations because we allow overwriting existing unreferenced 939 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 940 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 941 * touching are completely destructed before we reinitialize them for a new 942 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 943 * instead of delaying it until the end where the user will get "Unreleased 944 * reference" error. 945 */ 946 return true; 947 } 948 949 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 950 { 951 struct bpf_func_state *state = func(env, reg); 952 int i, spi; 953 954 /* This already represents first slot of initialized bpf_dynptr. 955 * 956 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 957 * check_func_arg_reg_off's logic, so we don't need to check its 958 * offset and alignment. 959 */ 960 if (reg->type == CONST_PTR_TO_DYNPTR) 961 return true; 962 963 spi = dynptr_get_spi(env, reg); 964 if (spi < 0) 965 return false; 966 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 967 return false; 968 969 for (i = 0; i < BPF_REG_SIZE; i++) { 970 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 971 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 972 return false; 973 } 974 975 return true; 976 } 977 978 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 979 enum bpf_arg_type arg_type) 980 { 981 struct bpf_func_state *state = func(env, reg); 982 enum bpf_dynptr_type dynptr_type; 983 int spi; 984 985 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 986 if (arg_type == ARG_PTR_TO_DYNPTR) 987 return true; 988 989 dynptr_type = arg_to_dynptr_type(arg_type); 990 if (reg->type == CONST_PTR_TO_DYNPTR) { 991 return reg->dynptr.type == dynptr_type; 992 } else { 993 spi = dynptr_get_spi(env, reg); 994 if (spi < 0) 995 return false; 996 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 997 } 998 } 999 1000 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1001 1002 static bool in_rcu_cs(struct bpf_verifier_env *env); 1003 1004 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta); 1005 1006 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1007 struct bpf_kfunc_call_arg_meta *meta, 1008 struct bpf_reg_state *reg, int insn_idx, 1009 struct btf *btf, u32 btf_id, int nr_slots) 1010 { 1011 struct bpf_func_state *state = func(env, reg); 1012 int spi, i, j, id; 1013 1014 spi = iter_get_spi(env, reg, nr_slots); 1015 if (spi < 0) 1016 return spi; 1017 1018 id = acquire_reference(env, insn_idx); 1019 if (id < 0) 1020 return id; 1021 1022 for (i = 0; i < nr_slots; i++) { 1023 struct bpf_stack_state *slot = &state->stack[spi - i]; 1024 struct bpf_reg_state *st = &slot->spilled_ptr; 1025 1026 __mark_reg_known_zero(st); 1027 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1028 if (is_kfunc_rcu_protected(meta)) { 1029 if (in_rcu_cs(env)) 1030 st->type |= MEM_RCU; 1031 else 1032 st->type |= PTR_UNTRUSTED; 1033 } 1034 st->ref_obj_id = i == 0 ? id : 0; 1035 st->iter.btf = btf; 1036 st->iter.btf_id = btf_id; 1037 st->iter.state = BPF_ITER_STATE_ACTIVE; 1038 st->iter.depth = 0; 1039 1040 for (j = 0; j < BPF_REG_SIZE; j++) 1041 slot->slot_type[j] = STACK_ITER; 1042 1043 bpf_mark_stack_write(env, state->frameno, BIT(spi - i)); 1044 mark_stack_slot_scratched(env, spi - i); 1045 } 1046 1047 return 0; 1048 } 1049 1050 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1051 struct bpf_reg_state *reg, int nr_slots) 1052 { 1053 struct bpf_func_state *state = func(env, reg); 1054 int spi, i, j; 1055 1056 spi = iter_get_spi(env, reg, nr_slots); 1057 if (spi < 0) 1058 return spi; 1059 1060 for (i = 0; i < nr_slots; i++) { 1061 struct bpf_stack_state *slot = &state->stack[spi - i]; 1062 struct bpf_reg_state *st = &slot->spilled_ptr; 1063 1064 if (i == 0) 1065 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1066 1067 __mark_reg_not_init(env, st); 1068 1069 for (j = 0; j < BPF_REG_SIZE; j++) 1070 slot->slot_type[j] = STACK_INVALID; 1071 1072 bpf_mark_stack_write(env, state->frameno, BIT(spi - i)); 1073 mark_stack_slot_scratched(env, spi - i); 1074 } 1075 1076 return 0; 1077 } 1078 1079 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1080 struct bpf_reg_state *reg, int nr_slots) 1081 { 1082 struct bpf_func_state *state = func(env, reg); 1083 int spi, i, j; 1084 1085 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1086 * will do check_mem_access to check and update stack bounds later, so 1087 * return true for that case. 1088 */ 1089 spi = iter_get_spi(env, reg, nr_slots); 1090 if (spi == -ERANGE) 1091 return true; 1092 if (spi < 0) 1093 return false; 1094 1095 for (i = 0; i < nr_slots; i++) { 1096 struct bpf_stack_state *slot = &state->stack[spi - i]; 1097 1098 for (j = 0; j < BPF_REG_SIZE; j++) 1099 if (slot->slot_type[j] == STACK_ITER) 1100 return false; 1101 } 1102 1103 return true; 1104 } 1105 1106 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1107 struct btf *btf, u32 btf_id, int nr_slots) 1108 { 1109 struct bpf_func_state *state = func(env, reg); 1110 int spi, i, j; 1111 1112 spi = iter_get_spi(env, reg, nr_slots); 1113 if (spi < 0) 1114 return -EINVAL; 1115 1116 for (i = 0; i < nr_slots; i++) { 1117 struct bpf_stack_state *slot = &state->stack[spi - i]; 1118 struct bpf_reg_state *st = &slot->spilled_ptr; 1119 1120 if (st->type & PTR_UNTRUSTED) 1121 return -EPROTO; 1122 /* only main (first) slot has ref_obj_id set */ 1123 if (i == 0 && !st->ref_obj_id) 1124 return -EINVAL; 1125 if (i != 0 && st->ref_obj_id) 1126 return -EINVAL; 1127 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1128 return -EINVAL; 1129 1130 for (j = 0; j < BPF_REG_SIZE; j++) 1131 if (slot->slot_type[j] != STACK_ITER) 1132 return -EINVAL; 1133 } 1134 1135 return 0; 1136 } 1137 1138 static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx); 1139 static int release_irq_state(struct bpf_verifier_state *state, int id); 1140 1141 static int mark_stack_slot_irq_flag(struct bpf_verifier_env *env, 1142 struct bpf_kfunc_call_arg_meta *meta, 1143 struct bpf_reg_state *reg, int insn_idx, 1144 int kfunc_class) 1145 { 1146 struct bpf_func_state *state = func(env, reg); 1147 struct bpf_stack_state *slot; 1148 struct bpf_reg_state *st; 1149 int spi, i, id; 1150 1151 spi = irq_flag_get_spi(env, reg); 1152 if (spi < 0) 1153 return spi; 1154 1155 id = acquire_irq_state(env, insn_idx); 1156 if (id < 0) 1157 return id; 1158 1159 slot = &state->stack[spi]; 1160 st = &slot->spilled_ptr; 1161 1162 bpf_mark_stack_write(env, reg->frameno, BIT(spi)); 1163 __mark_reg_known_zero(st); 1164 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1165 st->ref_obj_id = id; 1166 st->irq.kfunc_class = kfunc_class; 1167 1168 for (i = 0; i < BPF_REG_SIZE; i++) 1169 slot->slot_type[i] = STACK_IRQ_FLAG; 1170 1171 mark_stack_slot_scratched(env, spi); 1172 return 0; 1173 } 1174 1175 static int unmark_stack_slot_irq_flag(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1176 int kfunc_class) 1177 { 1178 struct bpf_func_state *state = func(env, reg); 1179 struct bpf_stack_state *slot; 1180 struct bpf_reg_state *st; 1181 int spi, i, err; 1182 1183 spi = irq_flag_get_spi(env, reg); 1184 if (spi < 0) 1185 return spi; 1186 1187 slot = &state->stack[spi]; 1188 st = &slot->spilled_ptr; 1189 1190 if (st->irq.kfunc_class != kfunc_class) { 1191 const char *flag_kfunc = st->irq.kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock"; 1192 const char *used_kfunc = kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock"; 1193 1194 verbose(env, "irq flag acquired by %s kfuncs cannot be restored with %s kfuncs\n", 1195 flag_kfunc, used_kfunc); 1196 return -EINVAL; 1197 } 1198 1199 err = release_irq_state(env->cur_state, st->ref_obj_id); 1200 WARN_ON_ONCE(err && err != -EACCES); 1201 if (err) { 1202 int insn_idx = 0; 1203 1204 for (int i = 0; i < env->cur_state->acquired_refs; i++) { 1205 if (env->cur_state->refs[i].id == env->cur_state->active_irq_id) { 1206 insn_idx = env->cur_state->refs[i].insn_idx; 1207 break; 1208 } 1209 } 1210 1211 verbose(env, "cannot restore irq state out of order, expected id=%d acquired at insn_idx=%d\n", 1212 env->cur_state->active_irq_id, insn_idx); 1213 return err; 1214 } 1215 1216 __mark_reg_not_init(env, st); 1217 1218 bpf_mark_stack_write(env, reg->frameno, BIT(spi)); 1219 1220 for (i = 0; i < BPF_REG_SIZE; i++) 1221 slot->slot_type[i] = STACK_INVALID; 1222 1223 mark_stack_slot_scratched(env, spi); 1224 return 0; 1225 } 1226 1227 static bool is_irq_flag_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1228 { 1229 struct bpf_func_state *state = func(env, reg); 1230 struct bpf_stack_state *slot; 1231 int spi, i; 1232 1233 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1234 * will do check_mem_access to check and update stack bounds later, so 1235 * return true for that case. 1236 */ 1237 spi = irq_flag_get_spi(env, reg); 1238 if (spi == -ERANGE) 1239 return true; 1240 if (spi < 0) 1241 return false; 1242 1243 slot = &state->stack[spi]; 1244 1245 for (i = 0; i < BPF_REG_SIZE; i++) 1246 if (slot->slot_type[i] == STACK_IRQ_FLAG) 1247 return false; 1248 return true; 1249 } 1250 1251 static int is_irq_flag_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1252 { 1253 struct bpf_func_state *state = func(env, reg); 1254 struct bpf_stack_state *slot; 1255 struct bpf_reg_state *st; 1256 int spi, i; 1257 1258 spi = irq_flag_get_spi(env, reg); 1259 if (spi < 0) 1260 return -EINVAL; 1261 1262 slot = &state->stack[spi]; 1263 st = &slot->spilled_ptr; 1264 1265 if (!st->ref_obj_id) 1266 return -EINVAL; 1267 1268 for (i = 0; i < BPF_REG_SIZE; i++) 1269 if (slot->slot_type[i] != STACK_IRQ_FLAG) 1270 return -EINVAL; 1271 return 0; 1272 } 1273 1274 /* Check if given stack slot is "special": 1275 * - spilled register state (STACK_SPILL); 1276 * - dynptr state (STACK_DYNPTR); 1277 * - iter state (STACK_ITER). 1278 * - irq flag state (STACK_IRQ_FLAG) 1279 */ 1280 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1281 { 1282 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1283 1284 switch (type) { 1285 case STACK_SPILL: 1286 case STACK_DYNPTR: 1287 case STACK_ITER: 1288 case STACK_IRQ_FLAG: 1289 return true; 1290 case STACK_INVALID: 1291 case STACK_MISC: 1292 case STACK_ZERO: 1293 return false; 1294 default: 1295 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1296 return true; 1297 } 1298 } 1299 1300 /* The reg state of a pointer or a bounded scalar was saved when 1301 * it was spilled to the stack. 1302 */ 1303 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1304 { 1305 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1306 } 1307 1308 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1309 { 1310 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1311 stack->spilled_ptr.type == SCALAR_VALUE; 1312 } 1313 1314 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack) 1315 { 1316 return stack->slot_type[0] == STACK_SPILL && 1317 stack->spilled_ptr.type == SCALAR_VALUE; 1318 } 1319 1320 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which 1321 * case they are equivalent, or it's STACK_ZERO, in which case we preserve 1322 * more precise STACK_ZERO. 1323 * Regardless of allow_ptr_leaks setting (i.e., privileged or unprivileged 1324 * mode), we won't promote STACK_INVALID to STACK_MISC. In privileged case it is 1325 * unnecessary as both are considered equivalent when loading data and pruning, 1326 * in case of unprivileged mode it will be incorrect to allow reads of invalid 1327 * slots. 1328 */ 1329 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype) 1330 { 1331 if (*stype == STACK_ZERO) 1332 return; 1333 if (*stype == STACK_INVALID) 1334 return; 1335 *stype = STACK_MISC; 1336 } 1337 1338 static void scrub_spilled_slot(u8 *stype) 1339 { 1340 if (*stype != STACK_INVALID) 1341 *stype = STACK_MISC; 1342 } 1343 1344 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1345 * small to hold src. This is different from krealloc since we don't want to preserve 1346 * the contents of dst. 1347 * 1348 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1349 * not be allocated. 1350 */ 1351 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1352 { 1353 size_t alloc_bytes; 1354 void *orig = dst; 1355 size_t bytes; 1356 1357 if (ZERO_OR_NULL_PTR(src)) 1358 goto out; 1359 1360 if (unlikely(check_mul_overflow(n, size, &bytes))) 1361 return NULL; 1362 1363 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1364 dst = krealloc(orig, alloc_bytes, flags); 1365 if (!dst) { 1366 kfree(orig); 1367 return NULL; 1368 } 1369 1370 memcpy(dst, src, bytes); 1371 out: 1372 return dst ? dst : ZERO_SIZE_PTR; 1373 } 1374 1375 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1376 * small to hold new_n items. new items are zeroed out if the array grows. 1377 * 1378 * Contrary to krealloc_array, does not free arr if new_n is zero. 1379 */ 1380 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1381 { 1382 size_t alloc_size; 1383 void *new_arr; 1384 1385 if (!new_n || old_n == new_n) 1386 goto out; 1387 1388 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1389 new_arr = krealloc(arr, alloc_size, GFP_KERNEL_ACCOUNT); 1390 if (!new_arr) { 1391 kfree(arr); 1392 return NULL; 1393 } 1394 arr = new_arr; 1395 1396 if (new_n > old_n) 1397 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1398 1399 out: 1400 return arr ? arr : ZERO_SIZE_PTR; 1401 } 1402 1403 static int copy_reference_state(struct bpf_verifier_state *dst, const struct bpf_verifier_state *src) 1404 { 1405 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1406 sizeof(struct bpf_reference_state), GFP_KERNEL_ACCOUNT); 1407 if (!dst->refs) 1408 return -ENOMEM; 1409 1410 dst->acquired_refs = src->acquired_refs; 1411 dst->active_locks = src->active_locks; 1412 dst->active_preempt_locks = src->active_preempt_locks; 1413 dst->active_rcu_lock = src->active_rcu_lock; 1414 dst->active_irq_id = src->active_irq_id; 1415 dst->active_lock_id = src->active_lock_id; 1416 dst->active_lock_ptr = src->active_lock_ptr; 1417 return 0; 1418 } 1419 1420 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1421 { 1422 size_t n = src->allocated_stack / BPF_REG_SIZE; 1423 1424 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1425 GFP_KERNEL_ACCOUNT); 1426 if (!dst->stack) 1427 return -ENOMEM; 1428 1429 dst->allocated_stack = src->allocated_stack; 1430 return 0; 1431 } 1432 1433 static int resize_reference_state(struct bpf_verifier_state *state, size_t n) 1434 { 1435 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1436 sizeof(struct bpf_reference_state)); 1437 if (!state->refs) 1438 return -ENOMEM; 1439 1440 state->acquired_refs = n; 1441 return 0; 1442 } 1443 1444 /* Possibly update state->allocated_stack to be at least size bytes. Also 1445 * possibly update the function's high-water mark in its bpf_subprog_info. 1446 */ 1447 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size) 1448 { 1449 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n; 1450 1451 /* The stack size is always a multiple of BPF_REG_SIZE. */ 1452 size = round_up(size, BPF_REG_SIZE); 1453 n = size / BPF_REG_SIZE; 1454 1455 if (old_n >= n) 1456 return 0; 1457 1458 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1459 if (!state->stack) 1460 return -ENOMEM; 1461 1462 state->allocated_stack = size; 1463 1464 /* update known max for given subprogram */ 1465 if (env->subprog_info[state->subprogno].stack_depth < size) 1466 env->subprog_info[state->subprogno].stack_depth = size; 1467 1468 return 0; 1469 } 1470 1471 /* Acquire a pointer id from the env and update the state->refs to include 1472 * this new pointer reference. 1473 * On success, returns a valid pointer id to associate with the register 1474 * On failure, returns a negative errno. 1475 */ 1476 static struct bpf_reference_state *acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1477 { 1478 struct bpf_verifier_state *state = env->cur_state; 1479 int new_ofs = state->acquired_refs; 1480 int err; 1481 1482 err = resize_reference_state(state, state->acquired_refs + 1); 1483 if (err) 1484 return NULL; 1485 state->refs[new_ofs].insn_idx = insn_idx; 1486 1487 return &state->refs[new_ofs]; 1488 } 1489 1490 static int acquire_reference(struct bpf_verifier_env *env, int insn_idx) 1491 { 1492 struct bpf_reference_state *s; 1493 1494 s = acquire_reference_state(env, insn_idx); 1495 if (!s) 1496 return -ENOMEM; 1497 s->type = REF_TYPE_PTR; 1498 s->id = ++env->id_gen; 1499 return s->id; 1500 } 1501 1502 static int acquire_lock_state(struct bpf_verifier_env *env, int insn_idx, enum ref_state_type type, 1503 int id, void *ptr) 1504 { 1505 struct bpf_verifier_state *state = env->cur_state; 1506 struct bpf_reference_state *s; 1507 1508 s = acquire_reference_state(env, insn_idx); 1509 if (!s) 1510 return -ENOMEM; 1511 s->type = type; 1512 s->id = id; 1513 s->ptr = ptr; 1514 1515 state->active_locks++; 1516 state->active_lock_id = id; 1517 state->active_lock_ptr = ptr; 1518 return 0; 1519 } 1520 1521 static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx) 1522 { 1523 struct bpf_verifier_state *state = env->cur_state; 1524 struct bpf_reference_state *s; 1525 1526 s = acquire_reference_state(env, insn_idx); 1527 if (!s) 1528 return -ENOMEM; 1529 s->type = REF_TYPE_IRQ; 1530 s->id = ++env->id_gen; 1531 1532 state->active_irq_id = s->id; 1533 return s->id; 1534 } 1535 1536 static void release_reference_state(struct bpf_verifier_state *state, int idx) 1537 { 1538 int last_idx; 1539 size_t rem; 1540 1541 /* IRQ state requires the relative ordering of elements remaining the 1542 * same, since it relies on the refs array to behave as a stack, so that 1543 * it can detect out-of-order IRQ restore. Hence use memmove to shift 1544 * the array instead of swapping the final element into the deleted idx. 1545 */ 1546 last_idx = state->acquired_refs - 1; 1547 rem = state->acquired_refs - idx - 1; 1548 if (last_idx && idx != last_idx) 1549 memmove(&state->refs[idx], &state->refs[idx + 1], sizeof(*state->refs) * rem); 1550 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1551 state->acquired_refs--; 1552 return; 1553 } 1554 1555 static bool find_reference_state(struct bpf_verifier_state *state, int ptr_id) 1556 { 1557 int i; 1558 1559 for (i = 0; i < state->acquired_refs; i++) 1560 if (state->refs[i].id == ptr_id) 1561 return true; 1562 1563 return false; 1564 } 1565 1566 static int release_lock_state(struct bpf_verifier_state *state, int type, int id, void *ptr) 1567 { 1568 void *prev_ptr = NULL; 1569 u32 prev_id = 0; 1570 int i; 1571 1572 for (i = 0; i < state->acquired_refs; i++) { 1573 if (state->refs[i].type == type && state->refs[i].id == id && 1574 state->refs[i].ptr == ptr) { 1575 release_reference_state(state, i); 1576 state->active_locks--; 1577 /* Reassign active lock (id, ptr). */ 1578 state->active_lock_id = prev_id; 1579 state->active_lock_ptr = prev_ptr; 1580 return 0; 1581 } 1582 if (state->refs[i].type & REF_TYPE_LOCK_MASK) { 1583 prev_id = state->refs[i].id; 1584 prev_ptr = state->refs[i].ptr; 1585 } 1586 } 1587 return -EINVAL; 1588 } 1589 1590 static int release_irq_state(struct bpf_verifier_state *state, int id) 1591 { 1592 u32 prev_id = 0; 1593 int i; 1594 1595 if (id != state->active_irq_id) 1596 return -EACCES; 1597 1598 for (i = 0; i < state->acquired_refs; i++) { 1599 if (state->refs[i].type != REF_TYPE_IRQ) 1600 continue; 1601 if (state->refs[i].id == id) { 1602 release_reference_state(state, i); 1603 state->active_irq_id = prev_id; 1604 return 0; 1605 } else { 1606 prev_id = state->refs[i].id; 1607 } 1608 } 1609 return -EINVAL; 1610 } 1611 1612 static struct bpf_reference_state *find_lock_state(struct bpf_verifier_state *state, enum ref_state_type type, 1613 int id, void *ptr) 1614 { 1615 int i; 1616 1617 for (i = 0; i < state->acquired_refs; i++) { 1618 struct bpf_reference_state *s = &state->refs[i]; 1619 1620 if (!(s->type & type)) 1621 continue; 1622 1623 if (s->id == id && s->ptr == ptr) 1624 return s; 1625 } 1626 return NULL; 1627 } 1628 1629 static void update_peak_states(struct bpf_verifier_env *env) 1630 { 1631 u32 cur_states; 1632 1633 cur_states = env->explored_states_size + env->free_list_size + env->num_backedges; 1634 env->peak_states = max(env->peak_states, cur_states); 1635 } 1636 1637 static void free_func_state(struct bpf_func_state *state) 1638 { 1639 if (!state) 1640 return; 1641 kfree(state->stack); 1642 kfree(state); 1643 } 1644 1645 static void clear_jmp_history(struct bpf_verifier_state *state) 1646 { 1647 kfree(state->jmp_history); 1648 state->jmp_history = NULL; 1649 state->jmp_history_cnt = 0; 1650 } 1651 1652 static void free_verifier_state(struct bpf_verifier_state *state, 1653 bool free_self) 1654 { 1655 int i; 1656 1657 for (i = 0; i <= state->curframe; i++) { 1658 free_func_state(state->frame[i]); 1659 state->frame[i] = NULL; 1660 } 1661 kfree(state->refs); 1662 clear_jmp_history(state); 1663 if (free_self) 1664 kfree(state); 1665 } 1666 1667 /* struct bpf_verifier_state->parent refers to states 1668 * that are in either of env->{expored_states,free_list}. 1669 * In both cases the state is contained in struct bpf_verifier_state_list. 1670 */ 1671 static struct bpf_verifier_state_list *state_parent_as_list(struct bpf_verifier_state *st) 1672 { 1673 if (st->parent) 1674 return container_of(st->parent, struct bpf_verifier_state_list, state); 1675 return NULL; 1676 } 1677 1678 static bool incomplete_read_marks(struct bpf_verifier_env *env, 1679 struct bpf_verifier_state *st); 1680 1681 /* A state can be freed if it is no longer referenced: 1682 * - is in the env->free_list; 1683 * - has no children states; 1684 */ 1685 static void maybe_free_verifier_state(struct bpf_verifier_env *env, 1686 struct bpf_verifier_state_list *sl) 1687 { 1688 if (!sl->in_free_list 1689 || sl->state.branches != 0 1690 || incomplete_read_marks(env, &sl->state)) 1691 return; 1692 list_del(&sl->node); 1693 free_verifier_state(&sl->state, false); 1694 kfree(sl); 1695 env->free_list_size--; 1696 } 1697 1698 /* copy verifier state from src to dst growing dst stack space 1699 * when necessary to accommodate larger src stack 1700 */ 1701 static int copy_func_state(struct bpf_func_state *dst, 1702 const struct bpf_func_state *src) 1703 { 1704 memcpy(dst, src, offsetof(struct bpf_func_state, stack)); 1705 return copy_stack_state(dst, src); 1706 } 1707 1708 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1709 const struct bpf_verifier_state *src) 1710 { 1711 struct bpf_func_state *dst; 1712 int i, err; 1713 1714 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1715 src->jmp_history_cnt, sizeof(*dst_state->jmp_history), 1716 GFP_KERNEL_ACCOUNT); 1717 if (!dst_state->jmp_history) 1718 return -ENOMEM; 1719 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1720 1721 /* if dst has more stack frames then src frame, free them, this is also 1722 * necessary in case of exceptional exits using bpf_throw. 1723 */ 1724 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1725 free_func_state(dst_state->frame[i]); 1726 dst_state->frame[i] = NULL; 1727 } 1728 err = copy_reference_state(dst_state, src); 1729 if (err) 1730 return err; 1731 dst_state->speculative = src->speculative; 1732 dst_state->in_sleepable = src->in_sleepable; 1733 dst_state->cleaned = src->cleaned; 1734 dst_state->curframe = src->curframe; 1735 dst_state->branches = src->branches; 1736 dst_state->parent = src->parent; 1737 dst_state->first_insn_idx = src->first_insn_idx; 1738 dst_state->last_insn_idx = src->last_insn_idx; 1739 dst_state->dfs_depth = src->dfs_depth; 1740 dst_state->callback_unroll_depth = src->callback_unroll_depth; 1741 dst_state->may_goto_depth = src->may_goto_depth; 1742 dst_state->equal_state = src->equal_state; 1743 for (i = 0; i <= src->curframe; i++) { 1744 dst = dst_state->frame[i]; 1745 if (!dst) { 1746 dst = kzalloc(sizeof(*dst), GFP_KERNEL_ACCOUNT); 1747 if (!dst) 1748 return -ENOMEM; 1749 dst_state->frame[i] = dst; 1750 } 1751 err = copy_func_state(dst, src->frame[i]); 1752 if (err) 1753 return err; 1754 } 1755 return 0; 1756 } 1757 1758 static u32 state_htab_size(struct bpf_verifier_env *env) 1759 { 1760 return env->prog->len; 1761 } 1762 1763 static struct list_head *explored_state(struct bpf_verifier_env *env, int idx) 1764 { 1765 struct bpf_verifier_state *cur = env->cur_state; 1766 struct bpf_func_state *state = cur->frame[cur->curframe]; 1767 1768 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 1769 } 1770 1771 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) 1772 { 1773 int fr; 1774 1775 if (a->curframe != b->curframe) 1776 return false; 1777 1778 for (fr = a->curframe; fr >= 0; fr--) 1779 if (a->frame[fr]->callsite != b->frame[fr]->callsite) 1780 return false; 1781 1782 return true; 1783 } 1784 1785 /* Return IP for a given frame in a call stack */ 1786 static u32 frame_insn_idx(struct bpf_verifier_state *st, u32 frame) 1787 { 1788 return frame == st->curframe 1789 ? st->insn_idx 1790 : st->frame[frame + 1]->callsite; 1791 } 1792 1793 /* For state @st look for a topmost frame with frame_insn_idx() in some SCC, 1794 * if such frame exists form a corresponding @callchain as an array of 1795 * call sites leading to this frame and SCC id. 1796 * E.g.: 1797 * 1798 * void foo() { A: loop {... SCC#1 ...}; } 1799 * void bar() { B: loop { C: foo(); ... SCC#2 ... } 1800 * D: loop { E: foo(); ... SCC#3 ... } } 1801 * void main() { F: bar(); } 1802 * 1803 * @callchain at (A) would be either (F,SCC#2) or (F,SCC#3) depending 1804 * on @st frame call sites being (F,C,A) or (F,E,A). 1805 */ 1806 static bool compute_scc_callchain(struct bpf_verifier_env *env, 1807 struct bpf_verifier_state *st, 1808 struct bpf_scc_callchain *callchain) 1809 { 1810 u32 i, scc, insn_idx; 1811 1812 memset(callchain, 0, sizeof(*callchain)); 1813 for (i = 0; i <= st->curframe; i++) { 1814 insn_idx = frame_insn_idx(st, i); 1815 scc = env->insn_aux_data[insn_idx].scc; 1816 if (scc) { 1817 callchain->scc = scc; 1818 break; 1819 } else if (i < st->curframe) { 1820 callchain->callsites[i] = insn_idx; 1821 } else { 1822 return false; 1823 } 1824 } 1825 return true; 1826 } 1827 1828 /* Check if bpf_scc_visit instance for @callchain exists. */ 1829 static struct bpf_scc_visit *scc_visit_lookup(struct bpf_verifier_env *env, 1830 struct bpf_scc_callchain *callchain) 1831 { 1832 struct bpf_scc_info *info = env->scc_info[callchain->scc]; 1833 struct bpf_scc_visit *visits = info->visits; 1834 u32 i; 1835 1836 if (!info) 1837 return NULL; 1838 for (i = 0; i < info->num_visits; i++) 1839 if (memcmp(callchain, &visits[i].callchain, sizeof(*callchain)) == 0) 1840 return &visits[i]; 1841 return NULL; 1842 } 1843 1844 /* Allocate a new bpf_scc_visit instance corresponding to @callchain. 1845 * Allocated instances are alive for a duration of the do_check_common() 1846 * call and are freed by free_states(). 1847 */ 1848 static struct bpf_scc_visit *scc_visit_alloc(struct bpf_verifier_env *env, 1849 struct bpf_scc_callchain *callchain) 1850 { 1851 struct bpf_scc_visit *visit; 1852 struct bpf_scc_info *info; 1853 u32 scc, num_visits; 1854 u64 new_sz; 1855 1856 scc = callchain->scc; 1857 info = env->scc_info[scc]; 1858 num_visits = info ? info->num_visits : 0; 1859 new_sz = sizeof(*info) + sizeof(struct bpf_scc_visit) * (num_visits + 1); 1860 info = kvrealloc(env->scc_info[scc], new_sz, GFP_KERNEL_ACCOUNT); 1861 if (!info) 1862 return NULL; 1863 env->scc_info[scc] = info; 1864 info->num_visits = num_visits + 1; 1865 visit = &info->visits[num_visits]; 1866 memset(visit, 0, sizeof(*visit)); 1867 memcpy(&visit->callchain, callchain, sizeof(*callchain)); 1868 return visit; 1869 } 1870 1871 /* Form a string '(callsite#1,callsite#2,...,scc)' in env->tmp_str_buf */ 1872 static char *format_callchain(struct bpf_verifier_env *env, struct bpf_scc_callchain *callchain) 1873 { 1874 char *buf = env->tmp_str_buf; 1875 int i, delta = 0; 1876 1877 delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "("); 1878 for (i = 0; i < ARRAY_SIZE(callchain->callsites); i++) { 1879 if (!callchain->callsites[i]) 1880 break; 1881 delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "%u,", 1882 callchain->callsites[i]); 1883 } 1884 delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "%u)", callchain->scc); 1885 return env->tmp_str_buf; 1886 } 1887 1888 /* If callchain for @st exists (@st is in some SCC), ensure that 1889 * bpf_scc_visit instance for this callchain exists. 1890 * If instance does not exist or is empty, assign visit->entry_state to @st. 1891 */ 1892 static int maybe_enter_scc(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1893 { 1894 struct bpf_scc_callchain *callchain = &env->callchain_buf; 1895 struct bpf_scc_visit *visit; 1896 1897 if (!compute_scc_callchain(env, st, callchain)) 1898 return 0; 1899 visit = scc_visit_lookup(env, callchain); 1900 visit = visit ?: scc_visit_alloc(env, callchain); 1901 if (!visit) 1902 return -ENOMEM; 1903 if (!visit->entry_state) { 1904 visit->entry_state = st; 1905 if (env->log.level & BPF_LOG_LEVEL2) 1906 verbose(env, "SCC enter %s\n", format_callchain(env, callchain)); 1907 } 1908 return 0; 1909 } 1910 1911 static int propagate_backedges(struct bpf_verifier_env *env, struct bpf_scc_visit *visit); 1912 1913 /* If callchain for @st exists (@st is in some SCC), make it empty: 1914 * - set visit->entry_state to NULL; 1915 * - flush accumulated backedges. 1916 */ 1917 static int maybe_exit_scc(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1918 { 1919 struct bpf_scc_callchain *callchain = &env->callchain_buf; 1920 struct bpf_scc_visit *visit; 1921 1922 if (!compute_scc_callchain(env, st, callchain)) 1923 return 0; 1924 visit = scc_visit_lookup(env, callchain); 1925 if (!visit) { 1926 /* 1927 * If path traversal stops inside an SCC, corresponding bpf_scc_visit 1928 * must exist for non-speculative paths. For non-speculative paths 1929 * traversal stops when: 1930 * a. Verification error is found, maybe_exit_scc() is not called. 1931 * b. Top level BPF_EXIT is reached. Top level BPF_EXIT is not a member 1932 * of any SCC. 1933 * c. A checkpoint is reached and matched. Checkpoints are created by 1934 * is_state_visited(), which calls maybe_enter_scc(), which allocates 1935 * bpf_scc_visit instances for checkpoints within SCCs. 1936 * (c) is the only case that can reach this point. 1937 */ 1938 if (!st->speculative) { 1939 verifier_bug(env, "scc exit: no visit info for call chain %s", 1940 format_callchain(env, callchain)); 1941 return -EFAULT; 1942 } 1943 return 0; 1944 } 1945 if (visit->entry_state != st) 1946 return 0; 1947 if (env->log.level & BPF_LOG_LEVEL2) 1948 verbose(env, "SCC exit %s\n", format_callchain(env, callchain)); 1949 visit->entry_state = NULL; 1950 env->num_backedges -= visit->num_backedges; 1951 visit->num_backedges = 0; 1952 update_peak_states(env); 1953 return propagate_backedges(env, visit); 1954 } 1955 1956 /* Lookup an bpf_scc_visit instance corresponding to @st callchain 1957 * and add @backedge to visit->backedges. @st callchain must exist. 1958 */ 1959 static int add_scc_backedge(struct bpf_verifier_env *env, 1960 struct bpf_verifier_state *st, 1961 struct bpf_scc_backedge *backedge) 1962 { 1963 struct bpf_scc_callchain *callchain = &env->callchain_buf; 1964 struct bpf_scc_visit *visit; 1965 1966 if (!compute_scc_callchain(env, st, callchain)) { 1967 verifier_bug(env, "add backedge: no SCC in verification path, insn_idx %d", 1968 st->insn_idx); 1969 return -EFAULT; 1970 } 1971 visit = scc_visit_lookup(env, callchain); 1972 if (!visit) { 1973 verifier_bug(env, "add backedge: no visit info for call chain %s", 1974 format_callchain(env, callchain)); 1975 return -EFAULT; 1976 } 1977 if (env->log.level & BPF_LOG_LEVEL2) 1978 verbose(env, "SCC backedge %s\n", format_callchain(env, callchain)); 1979 backedge->next = visit->backedges; 1980 visit->backedges = backedge; 1981 visit->num_backedges++; 1982 env->num_backedges++; 1983 update_peak_states(env); 1984 return 0; 1985 } 1986 1987 /* bpf_reg_state->live marks for registers in a state @st are incomplete, 1988 * if state @st is in some SCC and not all execution paths starting at this 1989 * SCC are fully explored. 1990 */ 1991 static bool incomplete_read_marks(struct bpf_verifier_env *env, 1992 struct bpf_verifier_state *st) 1993 { 1994 struct bpf_scc_callchain *callchain = &env->callchain_buf; 1995 struct bpf_scc_visit *visit; 1996 1997 if (!compute_scc_callchain(env, st, callchain)) 1998 return false; 1999 visit = scc_visit_lookup(env, callchain); 2000 if (!visit) 2001 return false; 2002 return !!visit->backedges; 2003 } 2004 2005 static void free_backedges(struct bpf_scc_visit *visit) 2006 { 2007 struct bpf_scc_backedge *backedge, *next; 2008 2009 for (backedge = visit->backedges; backedge; backedge = next) { 2010 free_verifier_state(&backedge->state, false); 2011 next = backedge->next; 2012 kfree(backedge); 2013 } 2014 visit->backedges = NULL; 2015 } 2016 2017 static int update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 2018 { 2019 struct bpf_verifier_state_list *sl = NULL, *parent_sl; 2020 struct bpf_verifier_state *parent; 2021 int err; 2022 2023 while (st) { 2024 u32 br = --st->branches; 2025 2026 /* verifier_bug_if(br > 1, ...) technically makes sense here, 2027 * but see comment in push_stack(), hence: 2028 */ 2029 verifier_bug_if((int)br < 0, env, "%s:branches_to_explore=%d", __func__, br); 2030 if (br) 2031 break; 2032 err = maybe_exit_scc(env, st); 2033 if (err) 2034 return err; 2035 parent = st->parent; 2036 parent_sl = state_parent_as_list(st); 2037 if (sl) 2038 maybe_free_verifier_state(env, sl); 2039 st = parent; 2040 sl = parent_sl; 2041 } 2042 return 0; 2043 } 2044 2045 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 2046 int *insn_idx, bool pop_log) 2047 { 2048 struct bpf_verifier_state *cur = env->cur_state; 2049 struct bpf_verifier_stack_elem *elem, *head = env->head; 2050 int err; 2051 2052 if (env->head == NULL) 2053 return -ENOENT; 2054 2055 if (cur) { 2056 err = copy_verifier_state(cur, &head->st); 2057 if (err) 2058 return err; 2059 } 2060 if (pop_log) 2061 bpf_vlog_reset(&env->log, head->log_pos); 2062 if (insn_idx) 2063 *insn_idx = head->insn_idx; 2064 if (prev_insn_idx) 2065 *prev_insn_idx = head->prev_insn_idx; 2066 elem = head->next; 2067 free_verifier_state(&head->st, false); 2068 kfree(head); 2069 env->head = elem; 2070 env->stack_size--; 2071 return 0; 2072 } 2073 2074 static bool error_recoverable_with_nospec(int err) 2075 { 2076 /* Should only return true for non-fatal errors that are allowed to 2077 * occur during speculative verification. For these we can insert a 2078 * nospec and the program might still be accepted. Do not include 2079 * something like ENOMEM because it is likely to re-occur for the next 2080 * architectural path once it has been recovered-from in all speculative 2081 * paths. 2082 */ 2083 return err == -EPERM || err == -EACCES || err == -EINVAL; 2084 } 2085 2086 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 2087 int insn_idx, int prev_insn_idx, 2088 bool speculative) 2089 { 2090 struct bpf_verifier_state *cur = env->cur_state; 2091 struct bpf_verifier_stack_elem *elem; 2092 int err; 2093 2094 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL_ACCOUNT); 2095 if (!elem) 2096 return NULL; 2097 2098 elem->insn_idx = insn_idx; 2099 elem->prev_insn_idx = prev_insn_idx; 2100 elem->next = env->head; 2101 elem->log_pos = env->log.end_pos; 2102 env->head = elem; 2103 env->stack_size++; 2104 err = copy_verifier_state(&elem->st, cur); 2105 if (err) 2106 return NULL; 2107 elem->st.speculative |= speculative; 2108 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2109 verbose(env, "The sequence of %d jumps is too complex.\n", 2110 env->stack_size); 2111 return NULL; 2112 } 2113 if (elem->st.parent) { 2114 ++elem->st.parent->branches; 2115 /* WARN_ON(branches > 2) technically makes sense here, 2116 * but 2117 * 1. speculative states will bump 'branches' for non-branch 2118 * instructions 2119 * 2. is_state_visited() heuristics may decide not to create 2120 * a new state for a sequence of branches and all such current 2121 * and cloned states will be pointing to a single parent state 2122 * which might have large 'branches' count. 2123 */ 2124 } 2125 return &elem->st; 2126 } 2127 2128 #define CALLER_SAVED_REGS 6 2129 static const int caller_saved[CALLER_SAVED_REGS] = { 2130 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 2131 }; 2132 2133 /* This helper doesn't clear reg->id */ 2134 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 2135 { 2136 reg->var_off = tnum_const(imm); 2137 reg->smin_value = (s64)imm; 2138 reg->smax_value = (s64)imm; 2139 reg->umin_value = imm; 2140 reg->umax_value = imm; 2141 2142 reg->s32_min_value = (s32)imm; 2143 reg->s32_max_value = (s32)imm; 2144 reg->u32_min_value = (u32)imm; 2145 reg->u32_max_value = (u32)imm; 2146 } 2147 2148 /* Mark the unknown part of a register (variable offset or scalar value) as 2149 * known to have the value @imm. 2150 */ 2151 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 2152 { 2153 /* Clear off and union(map_ptr, range) */ 2154 memset(((u8 *)reg) + sizeof(reg->type), 0, 2155 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 2156 reg->id = 0; 2157 reg->ref_obj_id = 0; 2158 ___mark_reg_known(reg, imm); 2159 } 2160 2161 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 2162 { 2163 reg->var_off = tnum_const_subreg(reg->var_off, imm); 2164 reg->s32_min_value = (s32)imm; 2165 reg->s32_max_value = (s32)imm; 2166 reg->u32_min_value = (u32)imm; 2167 reg->u32_max_value = (u32)imm; 2168 } 2169 2170 /* Mark the 'variable offset' part of a register as zero. This should be 2171 * used only on registers holding a pointer type. 2172 */ 2173 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 2174 { 2175 __mark_reg_known(reg, 0); 2176 } 2177 2178 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 2179 { 2180 __mark_reg_known(reg, 0); 2181 reg->type = SCALAR_VALUE; 2182 /* all scalars are assumed imprecise initially (unless unprivileged, 2183 * in which case everything is forced to be precise) 2184 */ 2185 reg->precise = !env->bpf_capable; 2186 } 2187 2188 static void mark_reg_known_zero(struct bpf_verifier_env *env, 2189 struct bpf_reg_state *regs, u32 regno) 2190 { 2191 if (WARN_ON(regno >= MAX_BPF_REG)) { 2192 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 2193 /* Something bad happened, let's kill all regs */ 2194 for (regno = 0; regno < MAX_BPF_REG; regno++) 2195 __mark_reg_not_init(env, regs + regno); 2196 return; 2197 } 2198 __mark_reg_known_zero(regs + regno); 2199 } 2200 2201 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 2202 bool first_slot, int dynptr_id) 2203 { 2204 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 2205 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 2206 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 2207 */ 2208 __mark_reg_known_zero(reg); 2209 reg->type = CONST_PTR_TO_DYNPTR; 2210 /* Give each dynptr a unique id to uniquely associate slices to it. */ 2211 reg->id = dynptr_id; 2212 reg->dynptr.type = type; 2213 reg->dynptr.first_slot = first_slot; 2214 } 2215 2216 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 2217 { 2218 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 2219 const struct bpf_map *map = reg->map_ptr; 2220 2221 if (map->inner_map_meta) { 2222 reg->type = CONST_PTR_TO_MAP; 2223 reg->map_ptr = map->inner_map_meta; 2224 /* transfer reg's id which is unique for every map_lookup_elem 2225 * as UID of the inner map. 2226 */ 2227 if (btf_record_has_field(map->inner_map_meta->record, 2228 BPF_TIMER | BPF_WORKQUEUE | BPF_TASK_WORK)) { 2229 reg->map_uid = reg->id; 2230 } 2231 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 2232 reg->type = PTR_TO_XDP_SOCK; 2233 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 2234 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 2235 reg->type = PTR_TO_SOCKET; 2236 } else { 2237 reg->type = PTR_TO_MAP_VALUE; 2238 } 2239 return; 2240 } 2241 2242 reg->type &= ~PTR_MAYBE_NULL; 2243 } 2244 2245 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 2246 struct btf_field_graph_root *ds_head) 2247 { 2248 __mark_reg_known_zero(®s[regno]); 2249 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 2250 regs[regno].btf = ds_head->btf; 2251 regs[regno].btf_id = ds_head->value_btf_id; 2252 regs[regno].off = ds_head->node_offset; 2253 } 2254 2255 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 2256 { 2257 return type_is_pkt_pointer(reg->type); 2258 } 2259 2260 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 2261 { 2262 return reg_is_pkt_pointer(reg) || 2263 reg->type == PTR_TO_PACKET_END; 2264 } 2265 2266 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 2267 { 2268 return base_type(reg->type) == PTR_TO_MEM && 2269 (reg->type & 2270 (DYNPTR_TYPE_SKB | DYNPTR_TYPE_XDP | DYNPTR_TYPE_SKB_META)); 2271 } 2272 2273 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 2274 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 2275 enum bpf_reg_type which) 2276 { 2277 /* The register can already have a range from prior markings. 2278 * This is fine as long as it hasn't been advanced from its 2279 * origin. 2280 */ 2281 return reg->type == which && 2282 reg->id == 0 && 2283 reg->off == 0 && 2284 tnum_equals_const(reg->var_off, 0); 2285 } 2286 2287 /* Reset the min/max bounds of a register */ 2288 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 2289 { 2290 reg->smin_value = S64_MIN; 2291 reg->smax_value = S64_MAX; 2292 reg->umin_value = 0; 2293 reg->umax_value = U64_MAX; 2294 2295 reg->s32_min_value = S32_MIN; 2296 reg->s32_max_value = S32_MAX; 2297 reg->u32_min_value = 0; 2298 reg->u32_max_value = U32_MAX; 2299 } 2300 2301 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 2302 { 2303 reg->smin_value = S64_MIN; 2304 reg->smax_value = S64_MAX; 2305 reg->umin_value = 0; 2306 reg->umax_value = U64_MAX; 2307 } 2308 2309 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 2310 { 2311 reg->s32_min_value = S32_MIN; 2312 reg->s32_max_value = S32_MAX; 2313 reg->u32_min_value = 0; 2314 reg->u32_max_value = U32_MAX; 2315 } 2316 2317 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2318 { 2319 struct tnum var32_off = tnum_subreg(reg->var_off); 2320 2321 /* min signed is max(sign bit) | min(other bits) */ 2322 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2323 var32_off.value | (var32_off.mask & S32_MIN)); 2324 /* max signed is min(sign bit) | max(other bits) */ 2325 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2326 var32_off.value | (var32_off.mask & S32_MAX)); 2327 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2328 reg->u32_max_value = min(reg->u32_max_value, 2329 (u32)(var32_off.value | var32_off.mask)); 2330 } 2331 2332 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2333 { 2334 /* min signed is max(sign bit) | min(other bits) */ 2335 reg->smin_value = max_t(s64, reg->smin_value, 2336 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2337 /* max signed is min(sign bit) | max(other bits) */ 2338 reg->smax_value = min_t(s64, reg->smax_value, 2339 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2340 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2341 reg->umax_value = min(reg->umax_value, 2342 reg->var_off.value | reg->var_off.mask); 2343 } 2344 2345 static void __update_reg_bounds(struct bpf_reg_state *reg) 2346 { 2347 __update_reg32_bounds(reg); 2348 __update_reg64_bounds(reg); 2349 } 2350 2351 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2352 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2353 { 2354 /* If upper 32 bits of u64/s64 range don't change, we can use lower 32 2355 * bits to improve our u32/s32 boundaries. 2356 * 2357 * E.g., the case where we have upper 32 bits as zero ([10, 20] in 2358 * u64) is pretty trivial, it's obvious that in u32 we'll also have 2359 * [10, 20] range. But this property holds for any 64-bit range as 2360 * long as upper 32 bits in that entire range of values stay the same. 2361 * 2362 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311] 2363 * in decimal) has the same upper 32 bits throughout all the values in 2364 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15]) 2365 * range. 2366 * 2367 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32, 2368 * following the rules outlined below about u64/s64 correspondence 2369 * (which equally applies to u32 vs s32 correspondence). In general it 2370 * depends on actual hexadecimal values of 32-bit range. They can form 2371 * only valid u32, or only valid s32 ranges in some cases. 2372 * 2373 * So we use all these insights to derive bounds for subregisters here. 2374 */ 2375 if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) { 2376 /* u64 to u32 casting preserves validity of low 32 bits as 2377 * a range, if upper 32 bits are the same 2378 */ 2379 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value); 2380 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value); 2381 2382 if ((s32)reg->umin_value <= (s32)reg->umax_value) { 2383 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2384 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2385 } 2386 } 2387 if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) { 2388 /* low 32 bits should form a proper u32 range */ 2389 if ((u32)reg->smin_value <= (u32)reg->smax_value) { 2390 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value); 2391 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value); 2392 } 2393 /* low 32 bits should form a proper s32 range */ 2394 if ((s32)reg->smin_value <= (s32)reg->smax_value) { 2395 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2396 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2397 } 2398 } 2399 /* Special case where upper bits form a small sequence of two 2400 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to 2401 * 0x00000000 is also valid), while lower bits form a proper s32 range 2402 * going from negative numbers to positive numbers. E.g., let's say we 2403 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]). 2404 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff, 2405 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits, 2406 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]). 2407 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in 2408 * upper 32 bits. As a random example, s64 range 2409 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range 2410 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister. 2411 */ 2412 if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) && 2413 (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) { 2414 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2415 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2416 } 2417 if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) && 2418 (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) { 2419 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2420 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2421 } 2422 /* if u32 range forms a valid s32 range (due to matching sign bit), 2423 * try to learn from that 2424 */ 2425 if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) { 2426 reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value); 2427 reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value); 2428 } 2429 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2430 * are the same, so combine. This works even in the negative case, e.g. 2431 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2432 */ 2433 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2434 reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value); 2435 reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value); 2436 } 2437 } 2438 2439 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2440 { 2441 /* If u64 range forms a valid s64 range (due to matching sign bit), 2442 * try to learn from that. Let's do a bit of ASCII art to see when 2443 * this is happening. Let's take u64 range first: 2444 * 2445 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2446 * |-------------------------------|--------------------------------| 2447 * 2448 * Valid u64 range is formed when umin and umax are anywhere in the 2449 * range [0, U64_MAX], and umin <= umax. u64 case is simple and 2450 * straightforward. Let's see how s64 range maps onto the same range 2451 * of values, annotated below the line for comparison: 2452 * 2453 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2454 * |-------------------------------|--------------------------------| 2455 * 0 S64_MAX S64_MIN -1 2456 * 2457 * So s64 values basically start in the middle and they are logically 2458 * contiguous to the right of it, wrapping around from -1 to 0, and 2459 * then finishing as S64_MAX (0x7fffffffffffffff) right before 2460 * S64_MIN. We can try drawing the continuity of u64 vs s64 values 2461 * more visually as mapped to sign-agnostic range of hex values. 2462 * 2463 * u64 start u64 end 2464 * _______________________________________________________________ 2465 * / \ 2466 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2467 * |-------------------------------|--------------------------------| 2468 * 0 S64_MAX S64_MIN -1 2469 * / \ 2470 * >------------------------------ -------------------------------> 2471 * s64 continues... s64 end s64 start s64 "midpoint" 2472 * 2473 * What this means is that, in general, we can't always derive 2474 * something new about u64 from any random s64 range, and vice versa. 2475 * 2476 * But we can do that in two particular cases. One is when entire 2477 * u64/s64 range is *entirely* contained within left half of the above 2478 * diagram or when it is *entirely* contained in the right half. I.e.: 2479 * 2480 * |-------------------------------|--------------------------------| 2481 * ^ ^ ^ ^ 2482 * A B C D 2483 * 2484 * [A, B] and [C, D] are contained entirely in their respective halves 2485 * and form valid contiguous ranges as both u64 and s64 values. [A, B] 2486 * will be non-negative both as u64 and s64 (and in fact it will be 2487 * identical ranges no matter the signedness). [C, D] treated as s64 2488 * will be a range of negative values, while in u64 it will be 2489 * non-negative range of values larger than 0x8000000000000000. 2490 * 2491 * Now, any other range here can't be represented in both u64 and s64 2492 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid 2493 * contiguous u64 ranges, but they are discontinuous in s64. [B, C] 2494 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX], 2495 * for example. Similarly, valid s64 range [D, A] (going from negative 2496 * to positive values), would be two separate [D, U64_MAX] and [0, A] 2497 * ranges as u64. Currently reg_state can't represent two segments per 2498 * numeric domain, so in such situations we can only derive maximal 2499 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64). 2500 * 2501 * So we use these facts to derive umin/umax from smin/smax and vice 2502 * versa only if they stay within the same "half". This is equivalent 2503 * to checking sign bit: lower half will have sign bit as zero, upper 2504 * half have sign bit 1. Below in code we simplify this by just 2505 * casting umin/umax as smin/smax and checking if they form valid 2506 * range, and vice versa. Those are equivalent checks. 2507 */ 2508 if ((s64)reg->umin_value <= (s64)reg->umax_value) { 2509 reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value); 2510 reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value); 2511 } 2512 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2513 * are the same, so combine. This works even in the negative case, e.g. 2514 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2515 */ 2516 if ((u64)reg->smin_value <= (u64)reg->smax_value) { 2517 reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value); 2518 reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value); 2519 } else { 2520 /* If the s64 range crosses the sign boundary, then it's split 2521 * between the beginning and end of the U64 domain. In that 2522 * case, we can derive new bounds if the u64 range overlaps 2523 * with only one end of the s64 range. 2524 * 2525 * In the following example, the u64 range overlaps only with 2526 * positive portion of the s64 range. 2527 * 2528 * 0 U64_MAX 2529 * | [xxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxx] | 2530 * |----------------------------|----------------------------| 2531 * |xxxxx s64 range xxxxxxxxx] [xxxxxxx| 2532 * 0 S64_MAX S64_MIN -1 2533 * 2534 * We can thus derive the following new s64 and u64 ranges. 2535 * 2536 * 0 U64_MAX 2537 * | [xxxxxx u64 range xxxxx] | 2538 * |----------------------------|----------------------------| 2539 * | [xxxxxx s64 range xxxxx] | 2540 * 0 S64_MAX S64_MIN -1 2541 * 2542 * If they overlap in two places, we can't derive anything 2543 * because reg_state can't represent two ranges per numeric 2544 * domain. 2545 * 2546 * 0 U64_MAX 2547 * | [xxxxxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxxxxx] | 2548 * |----------------------------|----------------------------| 2549 * |xxxxx s64 range xxxxxxxxx] [xxxxxxxxxx| 2550 * 0 S64_MAX S64_MIN -1 2551 * 2552 * The first condition below corresponds to the first diagram 2553 * above. 2554 */ 2555 if (reg->umax_value < (u64)reg->smin_value) { 2556 reg->smin_value = (s64)reg->umin_value; 2557 reg->umax_value = min_t(u64, reg->umax_value, reg->smax_value); 2558 } else if ((u64)reg->smax_value < reg->umin_value) { 2559 /* This second condition considers the case where the u64 range 2560 * overlaps with the negative portion of the s64 range: 2561 * 2562 * 0 U64_MAX 2563 * | [xxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxx] | 2564 * |----------------------------|----------------------------| 2565 * |xxxxxxxxx] [xxxxxxxxxxxx s64 range | 2566 * 0 S64_MAX S64_MIN -1 2567 */ 2568 reg->smax_value = (s64)reg->umax_value; 2569 reg->umin_value = max_t(u64, reg->umin_value, reg->smin_value); 2570 } 2571 } 2572 } 2573 2574 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg) 2575 { 2576 /* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit 2577 * values on both sides of 64-bit range in hope to have tighter range. 2578 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from 2579 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff]. 2580 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound 2581 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of 2582 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a 2583 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff]. 2584 * We just need to make sure that derived bounds we are intersecting 2585 * with are well-formed ranges in respective s64 or u64 domain, just 2586 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments. 2587 */ 2588 __u64 new_umin, new_umax; 2589 __s64 new_smin, new_smax; 2590 2591 /* u32 -> u64 tightening, it's always well-formed */ 2592 new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value; 2593 new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value; 2594 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2595 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2596 /* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */ 2597 new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value; 2598 new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value; 2599 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2600 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2601 2602 /* Here we would like to handle a special case after sign extending load, 2603 * when upper bits for a 64-bit range are all 1s or all 0s. 2604 * 2605 * Upper bits are all 1s when register is in a range: 2606 * [0xffff_ffff_0000_0000, 0xffff_ffff_ffff_ffff] 2607 * Upper bits are all 0s when register is in a range: 2608 * [0x0000_0000_0000_0000, 0x0000_0000_ffff_ffff] 2609 * Together this forms are continuous range: 2610 * [0xffff_ffff_0000_0000, 0x0000_0000_ffff_ffff] 2611 * 2612 * Now, suppose that register range is in fact tighter: 2613 * [0xffff_ffff_8000_0000, 0x0000_0000_ffff_ffff] (R) 2614 * Also suppose that it's 32-bit range is positive, 2615 * meaning that lower 32-bits of the full 64-bit register 2616 * are in the range: 2617 * [0x0000_0000, 0x7fff_ffff] (W) 2618 * 2619 * If this happens, then any value in a range: 2620 * [0xffff_ffff_0000_0000, 0xffff_ffff_7fff_ffff] 2621 * is smaller than a lowest bound of the range (R): 2622 * 0xffff_ffff_8000_0000 2623 * which means that upper bits of the full 64-bit register 2624 * can't be all 1s, when lower bits are in range (W). 2625 * 2626 * Note that: 2627 * - 0xffff_ffff_8000_0000 == (s64)S32_MIN 2628 * - 0x0000_0000_7fff_ffff == (s64)S32_MAX 2629 * These relations are used in the conditions below. 2630 */ 2631 if (reg->s32_min_value >= 0 && reg->smin_value >= S32_MIN && reg->smax_value <= S32_MAX) { 2632 reg->smin_value = reg->s32_min_value; 2633 reg->smax_value = reg->s32_max_value; 2634 reg->umin_value = reg->s32_min_value; 2635 reg->umax_value = reg->s32_max_value; 2636 reg->var_off = tnum_intersect(reg->var_off, 2637 tnum_range(reg->smin_value, reg->smax_value)); 2638 } 2639 } 2640 2641 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2642 { 2643 __reg32_deduce_bounds(reg); 2644 __reg64_deduce_bounds(reg); 2645 __reg_deduce_mixed_bounds(reg); 2646 } 2647 2648 /* Attempts to improve var_off based on unsigned min/max information */ 2649 static void __reg_bound_offset(struct bpf_reg_state *reg) 2650 { 2651 struct tnum var64_off = tnum_intersect(reg->var_off, 2652 tnum_range(reg->umin_value, 2653 reg->umax_value)); 2654 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2655 tnum_range(reg->u32_min_value, 2656 reg->u32_max_value)); 2657 2658 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2659 } 2660 2661 static void reg_bounds_sync(struct bpf_reg_state *reg) 2662 { 2663 /* We might have learned new bounds from the var_off. */ 2664 __update_reg_bounds(reg); 2665 /* We might have learned something about the sign bit. */ 2666 __reg_deduce_bounds(reg); 2667 __reg_deduce_bounds(reg); 2668 __reg_deduce_bounds(reg); 2669 /* We might have learned some bits from the bounds. */ 2670 __reg_bound_offset(reg); 2671 /* Intersecting with the old var_off might have improved our bounds 2672 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2673 * then new var_off is (0; 0x7f...fc) which improves our umax. 2674 */ 2675 __update_reg_bounds(reg); 2676 } 2677 2678 static int reg_bounds_sanity_check(struct bpf_verifier_env *env, 2679 struct bpf_reg_state *reg, const char *ctx) 2680 { 2681 const char *msg; 2682 2683 if (reg->umin_value > reg->umax_value || 2684 reg->smin_value > reg->smax_value || 2685 reg->u32_min_value > reg->u32_max_value || 2686 reg->s32_min_value > reg->s32_max_value) { 2687 msg = "range bounds violation"; 2688 goto out; 2689 } 2690 2691 if (tnum_is_const(reg->var_off)) { 2692 u64 uval = reg->var_off.value; 2693 s64 sval = (s64)uval; 2694 2695 if (reg->umin_value != uval || reg->umax_value != uval || 2696 reg->smin_value != sval || reg->smax_value != sval) { 2697 msg = "const tnum out of sync with range bounds"; 2698 goto out; 2699 } 2700 } 2701 2702 if (tnum_subreg_is_const(reg->var_off)) { 2703 u32 uval32 = tnum_subreg(reg->var_off).value; 2704 s32 sval32 = (s32)uval32; 2705 2706 if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 || 2707 reg->s32_min_value != sval32 || reg->s32_max_value != sval32) { 2708 msg = "const subreg tnum out of sync with range bounds"; 2709 goto out; 2710 } 2711 } 2712 2713 return 0; 2714 out: 2715 verifier_bug(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] " 2716 "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)", 2717 ctx, msg, reg->umin_value, reg->umax_value, 2718 reg->smin_value, reg->smax_value, 2719 reg->u32_min_value, reg->u32_max_value, 2720 reg->s32_min_value, reg->s32_max_value, 2721 reg->var_off.value, reg->var_off.mask); 2722 if (env->test_reg_invariants) 2723 return -EFAULT; 2724 __mark_reg_unbounded(reg); 2725 return 0; 2726 } 2727 2728 static bool __reg32_bound_s64(s32 a) 2729 { 2730 return a >= 0 && a <= S32_MAX; 2731 } 2732 2733 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2734 { 2735 reg->umin_value = reg->u32_min_value; 2736 reg->umax_value = reg->u32_max_value; 2737 2738 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2739 * be positive otherwise set to worse case bounds and refine later 2740 * from tnum. 2741 */ 2742 if (__reg32_bound_s64(reg->s32_min_value) && 2743 __reg32_bound_s64(reg->s32_max_value)) { 2744 reg->smin_value = reg->s32_min_value; 2745 reg->smax_value = reg->s32_max_value; 2746 } else { 2747 reg->smin_value = 0; 2748 reg->smax_value = U32_MAX; 2749 } 2750 } 2751 2752 /* Mark a register as having a completely unknown (scalar) value. */ 2753 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg) 2754 { 2755 /* 2756 * Clear type, off, and union(map_ptr, range) and 2757 * padding between 'type' and union 2758 */ 2759 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2760 reg->type = SCALAR_VALUE; 2761 reg->id = 0; 2762 reg->ref_obj_id = 0; 2763 reg->var_off = tnum_unknown; 2764 reg->frameno = 0; 2765 reg->precise = false; 2766 __mark_reg_unbounded(reg); 2767 } 2768 2769 /* Mark a register as having a completely unknown (scalar) value, 2770 * initialize .precise as true when not bpf capable. 2771 */ 2772 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2773 struct bpf_reg_state *reg) 2774 { 2775 __mark_reg_unknown_imprecise(reg); 2776 reg->precise = !env->bpf_capable; 2777 } 2778 2779 static void mark_reg_unknown(struct bpf_verifier_env *env, 2780 struct bpf_reg_state *regs, u32 regno) 2781 { 2782 if (WARN_ON(regno >= MAX_BPF_REG)) { 2783 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2784 /* Something bad happened, let's kill all regs except FP */ 2785 for (regno = 0; regno < BPF_REG_FP; regno++) 2786 __mark_reg_not_init(env, regs + regno); 2787 return; 2788 } 2789 __mark_reg_unknown(env, regs + regno); 2790 } 2791 2792 static int __mark_reg_s32_range(struct bpf_verifier_env *env, 2793 struct bpf_reg_state *regs, 2794 u32 regno, 2795 s32 s32_min, 2796 s32 s32_max) 2797 { 2798 struct bpf_reg_state *reg = regs + regno; 2799 2800 reg->s32_min_value = max_t(s32, reg->s32_min_value, s32_min); 2801 reg->s32_max_value = min_t(s32, reg->s32_max_value, s32_max); 2802 2803 reg->smin_value = max_t(s64, reg->smin_value, s32_min); 2804 reg->smax_value = min_t(s64, reg->smax_value, s32_max); 2805 2806 reg_bounds_sync(reg); 2807 2808 return reg_bounds_sanity_check(env, reg, "s32_range"); 2809 } 2810 2811 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2812 struct bpf_reg_state *reg) 2813 { 2814 __mark_reg_unknown(env, reg); 2815 reg->type = NOT_INIT; 2816 } 2817 2818 static void mark_reg_not_init(struct bpf_verifier_env *env, 2819 struct bpf_reg_state *regs, u32 regno) 2820 { 2821 if (WARN_ON(regno >= MAX_BPF_REG)) { 2822 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2823 /* Something bad happened, let's kill all regs except FP */ 2824 for (regno = 0; regno < BPF_REG_FP; regno++) 2825 __mark_reg_not_init(env, regs + regno); 2826 return; 2827 } 2828 __mark_reg_not_init(env, regs + regno); 2829 } 2830 2831 static int mark_btf_ld_reg(struct bpf_verifier_env *env, 2832 struct bpf_reg_state *regs, u32 regno, 2833 enum bpf_reg_type reg_type, 2834 struct btf *btf, u32 btf_id, 2835 enum bpf_type_flag flag) 2836 { 2837 switch (reg_type) { 2838 case SCALAR_VALUE: 2839 mark_reg_unknown(env, regs, regno); 2840 return 0; 2841 case PTR_TO_BTF_ID: 2842 mark_reg_known_zero(env, regs, regno); 2843 regs[regno].type = PTR_TO_BTF_ID | flag; 2844 regs[regno].btf = btf; 2845 regs[regno].btf_id = btf_id; 2846 if (type_may_be_null(flag)) 2847 regs[regno].id = ++env->id_gen; 2848 return 0; 2849 case PTR_TO_MEM: 2850 mark_reg_known_zero(env, regs, regno); 2851 regs[regno].type = PTR_TO_MEM | flag; 2852 regs[regno].mem_size = 0; 2853 return 0; 2854 default: 2855 verifier_bug(env, "unexpected reg_type %d in %s\n", reg_type, __func__); 2856 return -EFAULT; 2857 } 2858 } 2859 2860 #define DEF_NOT_SUBREG (0) 2861 static void init_reg_state(struct bpf_verifier_env *env, 2862 struct bpf_func_state *state) 2863 { 2864 struct bpf_reg_state *regs = state->regs; 2865 int i; 2866 2867 for (i = 0; i < MAX_BPF_REG; i++) { 2868 mark_reg_not_init(env, regs, i); 2869 regs[i].subreg_def = DEF_NOT_SUBREG; 2870 } 2871 2872 /* frame pointer */ 2873 regs[BPF_REG_FP].type = PTR_TO_STACK; 2874 mark_reg_known_zero(env, regs, BPF_REG_FP); 2875 regs[BPF_REG_FP].frameno = state->frameno; 2876 } 2877 2878 static struct bpf_retval_range retval_range(s32 minval, s32 maxval) 2879 { 2880 return (struct bpf_retval_range){ minval, maxval }; 2881 } 2882 2883 #define BPF_MAIN_FUNC (-1) 2884 static void init_func_state(struct bpf_verifier_env *env, 2885 struct bpf_func_state *state, 2886 int callsite, int frameno, int subprogno) 2887 { 2888 state->callsite = callsite; 2889 state->frameno = frameno; 2890 state->subprogno = subprogno; 2891 state->callback_ret_range = retval_range(0, 0); 2892 init_reg_state(env, state); 2893 mark_verifier_state_scratched(env); 2894 } 2895 2896 /* Similar to push_stack(), but for async callbacks */ 2897 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2898 int insn_idx, int prev_insn_idx, 2899 int subprog, bool is_sleepable) 2900 { 2901 struct bpf_verifier_stack_elem *elem; 2902 struct bpf_func_state *frame; 2903 2904 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL_ACCOUNT); 2905 if (!elem) 2906 return NULL; 2907 2908 elem->insn_idx = insn_idx; 2909 elem->prev_insn_idx = prev_insn_idx; 2910 elem->next = env->head; 2911 elem->log_pos = env->log.end_pos; 2912 env->head = elem; 2913 env->stack_size++; 2914 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2915 verbose(env, 2916 "The sequence of %d jumps is too complex for async cb.\n", 2917 env->stack_size); 2918 return NULL; 2919 } 2920 /* Unlike push_stack() do not copy_verifier_state(). 2921 * The caller state doesn't matter. 2922 * This is async callback. It starts in a fresh stack. 2923 * Initialize it similar to do_check_common(). 2924 */ 2925 elem->st.branches = 1; 2926 elem->st.in_sleepable = is_sleepable; 2927 frame = kzalloc(sizeof(*frame), GFP_KERNEL_ACCOUNT); 2928 if (!frame) 2929 return NULL; 2930 init_func_state(env, frame, 2931 BPF_MAIN_FUNC /* callsite */, 2932 0 /* frameno within this callchain */, 2933 subprog /* subprog number within this prog */); 2934 elem->st.frame[0] = frame; 2935 return &elem->st; 2936 } 2937 2938 2939 enum reg_arg_type { 2940 SRC_OP, /* register is used as source operand */ 2941 DST_OP, /* register is used as destination operand */ 2942 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2943 }; 2944 2945 static int cmp_subprogs(const void *a, const void *b) 2946 { 2947 return ((struct bpf_subprog_info *)a)->start - 2948 ((struct bpf_subprog_info *)b)->start; 2949 } 2950 2951 /* Find subprogram that contains instruction at 'off' */ 2952 struct bpf_subprog_info *bpf_find_containing_subprog(struct bpf_verifier_env *env, int off) 2953 { 2954 struct bpf_subprog_info *vals = env->subprog_info; 2955 int l, r, m; 2956 2957 if (off >= env->prog->len || off < 0 || env->subprog_cnt == 0) 2958 return NULL; 2959 2960 l = 0; 2961 r = env->subprog_cnt - 1; 2962 while (l < r) { 2963 m = l + (r - l + 1) / 2; 2964 if (vals[m].start <= off) 2965 l = m; 2966 else 2967 r = m - 1; 2968 } 2969 return &vals[l]; 2970 } 2971 2972 /* Find subprogram that starts exactly at 'off' */ 2973 static int find_subprog(struct bpf_verifier_env *env, int off) 2974 { 2975 struct bpf_subprog_info *p; 2976 2977 p = bpf_find_containing_subprog(env, off); 2978 if (!p || p->start != off) 2979 return -ENOENT; 2980 return p - env->subprog_info; 2981 } 2982 2983 static int add_subprog(struct bpf_verifier_env *env, int off) 2984 { 2985 int insn_cnt = env->prog->len; 2986 int ret; 2987 2988 if (off >= insn_cnt || off < 0) { 2989 verbose(env, "call to invalid destination\n"); 2990 return -EINVAL; 2991 } 2992 ret = find_subprog(env, off); 2993 if (ret >= 0) 2994 return ret; 2995 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2996 verbose(env, "too many subprograms\n"); 2997 return -E2BIG; 2998 } 2999 /* determine subprog starts. The end is one before the next starts */ 3000 env->subprog_info[env->subprog_cnt++].start = off; 3001 sort(env->subprog_info, env->subprog_cnt, 3002 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 3003 return env->subprog_cnt - 1; 3004 } 3005 3006 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env) 3007 { 3008 struct bpf_prog_aux *aux = env->prog->aux; 3009 struct btf *btf = aux->btf; 3010 const struct btf_type *t; 3011 u32 main_btf_id, id; 3012 const char *name; 3013 int ret, i; 3014 3015 /* Non-zero func_info_cnt implies valid btf */ 3016 if (!aux->func_info_cnt) 3017 return 0; 3018 main_btf_id = aux->func_info[0].type_id; 3019 3020 t = btf_type_by_id(btf, main_btf_id); 3021 if (!t) { 3022 verbose(env, "invalid btf id for main subprog in func_info\n"); 3023 return -EINVAL; 3024 } 3025 3026 name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:"); 3027 if (IS_ERR(name)) { 3028 ret = PTR_ERR(name); 3029 /* If there is no tag present, there is no exception callback */ 3030 if (ret == -ENOENT) 3031 ret = 0; 3032 else if (ret == -EEXIST) 3033 verbose(env, "multiple exception callback tags for main subprog\n"); 3034 return ret; 3035 } 3036 3037 ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC); 3038 if (ret < 0) { 3039 verbose(env, "exception callback '%s' could not be found in BTF\n", name); 3040 return ret; 3041 } 3042 id = ret; 3043 t = btf_type_by_id(btf, id); 3044 if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 3045 verbose(env, "exception callback '%s' must have global linkage\n", name); 3046 return -EINVAL; 3047 } 3048 ret = 0; 3049 for (i = 0; i < aux->func_info_cnt; i++) { 3050 if (aux->func_info[i].type_id != id) 3051 continue; 3052 ret = aux->func_info[i].insn_off; 3053 /* Further func_info and subprog checks will also happen 3054 * later, so assume this is the right insn_off for now. 3055 */ 3056 if (!ret) { 3057 verbose(env, "invalid exception callback insn_off in func_info: 0\n"); 3058 ret = -EINVAL; 3059 } 3060 } 3061 if (!ret) { 3062 verbose(env, "exception callback type id not found in func_info\n"); 3063 ret = -EINVAL; 3064 } 3065 return ret; 3066 } 3067 3068 #define MAX_KFUNC_DESCS 256 3069 #define MAX_KFUNC_BTFS 256 3070 3071 struct bpf_kfunc_desc { 3072 struct btf_func_model func_model; 3073 u32 func_id; 3074 s32 imm; 3075 u16 offset; 3076 unsigned long addr; 3077 }; 3078 3079 struct bpf_kfunc_btf { 3080 struct btf *btf; 3081 struct module *module; 3082 u16 offset; 3083 }; 3084 3085 struct bpf_kfunc_desc_tab { 3086 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 3087 * verification. JITs do lookups by bpf_insn, where func_id may not be 3088 * available, therefore at the end of verification do_misc_fixups() 3089 * sorts this by imm and offset. 3090 */ 3091 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 3092 u32 nr_descs; 3093 }; 3094 3095 struct bpf_kfunc_btf_tab { 3096 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 3097 u32 nr_descs; 3098 }; 3099 3100 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 3101 { 3102 const struct bpf_kfunc_desc *d0 = a; 3103 const struct bpf_kfunc_desc *d1 = b; 3104 3105 /* func_id is not greater than BTF_MAX_TYPE */ 3106 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 3107 } 3108 3109 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 3110 { 3111 const struct bpf_kfunc_btf *d0 = a; 3112 const struct bpf_kfunc_btf *d1 = b; 3113 3114 return d0->offset - d1->offset; 3115 } 3116 3117 static const struct bpf_kfunc_desc * 3118 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 3119 { 3120 struct bpf_kfunc_desc desc = { 3121 .func_id = func_id, 3122 .offset = offset, 3123 }; 3124 struct bpf_kfunc_desc_tab *tab; 3125 3126 tab = prog->aux->kfunc_tab; 3127 return bsearch(&desc, tab->descs, tab->nr_descs, 3128 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 3129 } 3130 3131 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 3132 u16 btf_fd_idx, u8 **func_addr) 3133 { 3134 const struct bpf_kfunc_desc *desc; 3135 3136 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 3137 if (!desc) 3138 return -EFAULT; 3139 3140 *func_addr = (u8 *)desc->addr; 3141 return 0; 3142 } 3143 3144 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 3145 s16 offset) 3146 { 3147 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 3148 struct bpf_kfunc_btf_tab *tab; 3149 struct bpf_kfunc_btf *b; 3150 struct module *mod; 3151 struct btf *btf; 3152 int btf_fd; 3153 3154 tab = env->prog->aux->kfunc_btf_tab; 3155 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 3156 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 3157 if (!b) { 3158 if (tab->nr_descs == MAX_KFUNC_BTFS) { 3159 verbose(env, "too many different module BTFs\n"); 3160 return ERR_PTR(-E2BIG); 3161 } 3162 3163 if (bpfptr_is_null(env->fd_array)) { 3164 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 3165 return ERR_PTR(-EPROTO); 3166 } 3167 3168 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 3169 offset * sizeof(btf_fd), 3170 sizeof(btf_fd))) 3171 return ERR_PTR(-EFAULT); 3172 3173 btf = btf_get_by_fd(btf_fd); 3174 if (IS_ERR(btf)) { 3175 verbose(env, "invalid module BTF fd specified\n"); 3176 return btf; 3177 } 3178 3179 if (!btf_is_module(btf)) { 3180 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 3181 btf_put(btf); 3182 return ERR_PTR(-EINVAL); 3183 } 3184 3185 mod = btf_try_get_module(btf); 3186 if (!mod) { 3187 btf_put(btf); 3188 return ERR_PTR(-ENXIO); 3189 } 3190 3191 b = &tab->descs[tab->nr_descs++]; 3192 b->btf = btf; 3193 b->module = mod; 3194 b->offset = offset; 3195 3196 /* sort() reorders entries by value, so b may no longer point 3197 * to the right entry after this 3198 */ 3199 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 3200 kfunc_btf_cmp_by_off, NULL); 3201 } else { 3202 btf = b->btf; 3203 } 3204 3205 return btf; 3206 } 3207 3208 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 3209 { 3210 if (!tab) 3211 return; 3212 3213 while (tab->nr_descs--) { 3214 module_put(tab->descs[tab->nr_descs].module); 3215 btf_put(tab->descs[tab->nr_descs].btf); 3216 } 3217 kfree(tab); 3218 } 3219 3220 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 3221 { 3222 if (offset) { 3223 if (offset < 0) { 3224 /* In the future, this can be allowed to increase limit 3225 * of fd index into fd_array, interpreted as u16. 3226 */ 3227 verbose(env, "negative offset disallowed for kernel module function call\n"); 3228 return ERR_PTR(-EINVAL); 3229 } 3230 3231 return __find_kfunc_desc_btf(env, offset); 3232 } 3233 return btf_vmlinux ?: ERR_PTR(-ENOENT); 3234 } 3235 3236 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 3237 { 3238 const struct btf_type *func, *func_proto; 3239 struct bpf_kfunc_btf_tab *btf_tab; 3240 struct bpf_kfunc_desc_tab *tab; 3241 struct bpf_prog_aux *prog_aux; 3242 struct bpf_kfunc_desc *desc; 3243 const char *func_name; 3244 struct btf *desc_btf; 3245 unsigned long call_imm; 3246 unsigned long addr; 3247 int err; 3248 3249 prog_aux = env->prog->aux; 3250 tab = prog_aux->kfunc_tab; 3251 btf_tab = prog_aux->kfunc_btf_tab; 3252 if (!tab) { 3253 if (!btf_vmlinux) { 3254 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 3255 return -ENOTSUPP; 3256 } 3257 3258 if (!env->prog->jit_requested) { 3259 verbose(env, "JIT is required for calling kernel function\n"); 3260 return -ENOTSUPP; 3261 } 3262 3263 if (!bpf_jit_supports_kfunc_call()) { 3264 verbose(env, "JIT does not support calling kernel function\n"); 3265 return -ENOTSUPP; 3266 } 3267 3268 if (!env->prog->gpl_compatible) { 3269 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 3270 return -EINVAL; 3271 } 3272 3273 tab = kzalloc(sizeof(*tab), GFP_KERNEL_ACCOUNT); 3274 if (!tab) 3275 return -ENOMEM; 3276 prog_aux->kfunc_tab = tab; 3277 } 3278 3279 /* func_id == 0 is always invalid, but instead of returning an error, be 3280 * conservative and wait until the code elimination pass before returning 3281 * error, so that invalid calls that get pruned out can be in BPF programs 3282 * loaded from userspace. It is also required that offset be untouched 3283 * for such calls. 3284 */ 3285 if (!func_id && !offset) 3286 return 0; 3287 3288 if (!btf_tab && offset) { 3289 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL_ACCOUNT); 3290 if (!btf_tab) 3291 return -ENOMEM; 3292 prog_aux->kfunc_btf_tab = btf_tab; 3293 } 3294 3295 desc_btf = find_kfunc_desc_btf(env, offset); 3296 if (IS_ERR(desc_btf)) { 3297 verbose(env, "failed to find BTF for kernel function\n"); 3298 return PTR_ERR(desc_btf); 3299 } 3300 3301 if (find_kfunc_desc(env->prog, func_id, offset)) 3302 return 0; 3303 3304 if (tab->nr_descs == MAX_KFUNC_DESCS) { 3305 verbose(env, "too many different kernel function calls\n"); 3306 return -E2BIG; 3307 } 3308 3309 func = btf_type_by_id(desc_btf, func_id); 3310 if (!func || !btf_type_is_func(func)) { 3311 verbose(env, "kernel btf_id %u is not a function\n", 3312 func_id); 3313 return -EINVAL; 3314 } 3315 func_proto = btf_type_by_id(desc_btf, func->type); 3316 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 3317 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 3318 func_id); 3319 return -EINVAL; 3320 } 3321 3322 func_name = btf_name_by_offset(desc_btf, func->name_off); 3323 addr = kallsyms_lookup_name(func_name); 3324 if (!addr) { 3325 verbose(env, "cannot find address for kernel function %s\n", 3326 func_name); 3327 return -EINVAL; 3328 } 3329 specialize_kfunc(env, func_id, offset, &addr); 3330 3331 if (bpf_jit_supports_far_kfunc_call()) { 3332 call_imm = func_id; 3333 } else { 3334 call_imm = BPF_CALL_IMM(addr); 3335 /* Check whether the relative offset overflows desc->imm */ 3336 if ((unsigned long)(s32)call_imm != call_imm) { 3337 verbose(env, "address of kernel function %s is out of range\n", 3338 func_name); 3339 return -EINVAL; 3340 } 3341 } 3342 3343 if (bpf_dev_bound_kfunc_id(func_id)) { 3344 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 3345 if (err) 3346 return err; 3347 } 3348 3349 desc = &tab->descs[tab->nr_descs++]; 3350 desc->func_id = func_id; 3351 desc->imm = call_imm; 3352 desc->offset = offset; 3353 desc->addr = addr; 3354 err = btf_distill_func_proto(&env->log, desc_btf, 3355 func_proto, func_name, 3356 &desc->func_model); 3357 if (!err) 3358 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 3359 kfunc_desc_cmp_by_id_off, NULL); 3360 return err; 3361 } 3362 3363 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 3364 { 3365 const struct bpf_kfunc_desc *d0 = a; 3366 const struct bpf_kfunc_desc *d1 = b; 3367 3368 if (d0->imm != d1->imm) 3369 return d0->imm < d1->imm ? -1 : 1; 3370 if (d0->offset != d1->offset) 3371 return d0->offset < d1->offset ? -1 : 1; 3372 return 0; 3373 } 3374 3375 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 3376 { 3377 struct bpf_kfunc_desc_tab *tab; 3378 3379 tab = prog->aux->kfunc_tab; 3380 if (!tab) 3381 return; 3382 3383 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 3384 kfunc_desc_cmp_by_imm_off, NULL); 3385 } 3386 3387 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 3388 { 3389 return !!prog->aux->kfunc_tab; 3390 } 3391 3392 const struct btf_func_model * 3393 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 3394 const struct bpf_insn *insn) 3395 { 3396 const struct bpf_kfunc_desc desc = { 3397 .imm = insn->imm, 3398 .offset = insn->off, 3399 }; 3400 const struct bpf_kfunc_desc *res; 3401 struct bpf_kfunc_desc_tab *tab; 3402 3403 tab = prog->aux->kfunc_tab; 3404 res = bsearch(&desc, tab->descs, tab->nr_descs, 3405 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 3406 3407 return res ? &res->func_model : NULL; 3408 } 3409 3410 static int add_kfunc_in_insns(struct bpf_verifier_env *env, 3411 struct bpf_insn *insn, int cnt) 3412 { 3413 int i, ret; 3414 3415 for (i = 0; i < cnt; i++, insn++) { 3416 if (bpf_pseudo_kfunc_call(insn)) { 3417 ret = add_kfunc_call(env, insn->imm, insn->off); 3418 if (ret < 0) 3419 return ret; 3420 } 3421 } 3422 return 0; 3423 } 3424 3425 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 3426 { 3427 struct bpf_subprog_info *subprog = env->subprog_info; 3428 int i, ret, insn_cnt = env->prog->len, ex_cb_insn; 3429 struct bpf_insn *insn = env->prog->insnsi; 3430 3431 /* Add entry function. */ 3432 ret = add_subprog(env, 0); 3433 if (ret) 3434 return ret; 3435 3436 for (i = 0; i < insn_cnt; i++, insn++) { 3437 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 3438 !bpf_pseudo_kfunc_call(insn)) 3439 continue; 3440 3441 if (!env->bpf_capable) { 3442 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 3443 return -EPERM; 3444 } 3445 3446 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 3447 ret = add_subprog(env, i + insn->imm + 1); 3448 else 3449 ret = add_kfunc_call(env, insn->imm, insn->off); 3450 3451 if (ret < 0) 3452 return ret; 3453 } 3454 3455 ret = bpf_find_exception_callback_insn_off(env); 3456 if (ret < 0) 3457 return ret; 3458 ex_cb_insn = ret; 3459 3460 /* If ex_cb_insn > 0, this means that the main program has a subprog 3461 * marked using BTF decl tag to serve as the exception callback. 3462 */ 3463 if (ex_cb_insn) { 3464 ret = add_subprog(env, ex_cb_insn); 3465 if (ret < 0) 3466 return ret; 3467 for (i = 1; i < env->subprog_cnt; i++) { 3468 if (env->subprog_info[i].start != ex_cb_insn) 3469 continue; 3470 env->exception_callback_subprog = i; 3471 mark_subprog_exc_cb(env, i); 3472 break; 3473 } 3474 } 3475 3476 /* Add a fake 'exit' subprog which could simplify subprog iteration 3477 * logic. 'subprog_cnt' should not be increased. 3478 */ 3479 subprog[env->subprog_cnt].start = insn_cnt; 3480 3481 if (env->log.level & BPF_LOG_LEVEL2) 3482 for (i = 0; i < env->subprog_cnt; i++) 3483 verbose(env, "func#%d @%d\n", i, subprog[i].start); 3484 3485 return 0; 3486 } 3487 3488 static int check_subprogs(struct bpf_verifier_env *env) 3489 { 3490 int i, subprog_start, subprog_end, off, cur_subprog = 0; 3491 struct bpf_subprog_info *subprog = env->subprog_info; 3492 struct bpf_insn *insn = env->prog->insnsi; 3493 int insn_cnt = env->prog->len; 3494 3495 /* now check that all jumps are within the same subprog */ 3496 subprog_start = subprog[cur_subprog].start; 3497 subprog_end = subprog[cur_subprog + 1].start; 3498 for (i = 0; i < insn_cnt; i++) { 3499 u8 code = insn[i].code; 3500 3501 if (code == (BPF_JMP | BPF_CALL) && 3502 insn[i].src_reg == 0 && 3503 insn[i].imm == BPF_FUNC_tail_call) { 3504 subprog[cur_subprog].has_tail_call = true; 3505 subprog[cur_subprog].tail_call_reachable = true; 3506 } 3507 if (BPF_CLASS(code) == BPF_LD && 3508 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 3509 subprog[cur_subprog].has_ld_abs = true; 3510 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 3511 goto next; 3512 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 3513 goto next; 3514 off = i + bpf_jmp_offset(&insn[i]) + 1; 3515 if (off < subprog_start || off >= subprog_end) { 3516 verbose(env, "jump out of range from insn %d to %d\n", i, off); 3517 return -EINVAL; 3518 } 3519 next: 3520 if (i == subprog_end - 1) { 3521 /* to avoid fall-through from one subprog into another 3522 * the last insn of the subprog should be either exit 3523 * or unconditional jump back or bpf_throw call 3524 */ 3525 if (code != (BPF_JMP | BPF_EXIT) && 3526 code != (BPF_JMP32 | BPF_JA) && 3527 code != (BPF_JMP | BPF_JA)) { 3528 verbose(env, "last insn is not an exit or jmp\n"); 3529 return -EINVAL; 3530 } 3531 subprog_start = subprog_end; 3532 cur_subprog++; 3533 if (cur_subprog < env->subprog_cnt) 3534 subprog_end = subprog[cur_subprog + 1].start; 3535 } 3536 } 3537 return 0; 3538 } 3539 3540 static int mark_stack_slot_obj_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3541 int spi, int nr_slots) 3542 { 3543 int err, i; 3544 3545 for (i = 0; i < nr_slots; i++) { 3546 err = bpf_mark_stack_read(env, reg->frameno, env->insn_idx, BIT(spi - i)); 3547 if (err) 3548 return err; 3549 mark_stack_slot_scratched(env, spi - i); 3550 } 3551 return 0; 3552 } 3553 3554 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3555 { 3556 int spi; 3557 3558 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 3559 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 3560 * check_kfunc_call. 3561 */ 3562 if (reg->type == CONST_PTR_TO_DYNPTR) 3563 return 0; 3564 spi = dynptr_get_spi(env, reg); 3565 if (spi < 0) 3566 return spi; 3567 /* Caller ensures dynptr is valid and initialized, which means spi is in 3568 * bounds and spi is the first dynptr slot. Simply mark stack slot as 3569 * read. 3570 */ 3571 return mark_stack_slot_obj_read(env, reg, spi, BPF_DYNPTR_NR_SLOTS); 3572 } 3573 3574 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3575 int spi, int nr_slots) 3576 { 3577 return mark_stack_slot_obj_read(env, reg, spi, nr_slots); 3578 } 3579 3580 static int mark_irq_flag_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3581 { 3582 int spi; 3583 3584 spi = irq_flag_get_spi(env, reg); 3585 if (spi < 0) 3586 return spi; 3587 return mark_stack_slot_obj_read(env, reg, spi, 1); 3588 } 3589 3590 /* This function is supposed to be used by the following 32-bit optimization 3591 * code only. It returns TRUE if the source or destination register operates 3592 * on 64-bit, otherwise return FALSE. 3593 */ 3594 static bool is_reg64(struct bpf_insn *insn, 3595 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 3596 { 3597 u8 code, class, op; 3598 3599 code = insn->code; 3600 class = BPF_CLASS(code); 3601 op = BPF_OP(code); 3602 if (class == BPF_JMP) { 3603 /* BPF_EXIT for "main" will reach here. Return TRUE 3604 * conservatively. 3605 */ 3606 if (op == BPF_EXIT) 3607 return true; 3608 if (op == BPF_CALL) { 3609 /* BPF to BPF call will reach here because of marking 3610 * caller saved clobber with DST_OP_NO_MARK for which we 3611 * don't care the register def because they are anyway 3612 * marked as NOT_INIT already. 3613 */ 3614 if (insn->src_reg == BPF_PSEUDO_CALL) 3615 return false; 3616 /* Helper call will reach here because of arg type 3617 * check, conservatively return TRUE. 3618 */ 3619 if (t == SRC_OP) 3620 return true; 3621 3622 return false; 3623 } 3624 } 3625 3626 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3627 return false; 3628 3629 if (class == BPF_ALU64 || class == BPF_JMP || 3630 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3631 return true; 3632 3633 if (class == BPF_ALU || class == BPF_JMP32) 3634 return false; 3635 3636 if (class == BPF_LDX) { 3637 if (t != SRC_OP) 3638 return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX; 3639 /* LDX source must be ptr. */ 3640 return true; 3641 } 3642 3643 if (class == BPF_STX) { 3644 /* BPF_STX (including atomic variants) has one or more source 3645 * operands, one of which is a ptr. Check whether the caller is 3646 * asking about it. 3647 */ 3648 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3649 return true; 3650 return BPF_SIZE(code) == BPF_DW; 3651 } 3652 3653 if (class == BPF_LD) { 3654 u8 mode = BPF_MODE(code); 3655 3656 /* LD_IMM64 */ 3657 if (mode == BPF_IMM) 3658 return true; 3659 3660 /* Both LD_IND and LD_ABS return 32-bit data. */ 3661 if (t != SRC_OP) 3662 return false; 3663 3664 /* Implicit ctx ptr. */ 3665 if (regno == BPF_REG_6) 3666 return true; 3667 3668 /* Explicit source could be any width. */ 3669 return true; 3670 } 3671 3672 if (class == BPF_ST) 3673 /* The only source register for BPF_ST is a ptr. */ 3674 return true; 3675 3676 /* Conservatively return true at default. */ 3677 return true; 3678 } 3679 3680 /* Return the regno defined by the insn, or -1. */ 3681 static int insn_def_regno(const struct bpf_insn *insn) 3682 { 3683 switch (BPF_CLASS(insn->code)) { 3684 case BPF_JMP: 3685 case BPF_JMP32: 3686 case BPF_ST: 3687 return -1; 3688 case BPF_STX: 3689 if (BPF_MODE(insn->code) == BPF_ATOMIC || 3690 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) { 3691 if (insn->imm == BPF_CMPXCHG) 3692 return BPF_REG_0; 3693 else if (insn->imm == BPF_LOAD_ACQ) 3694 return insn->dst_reg; 3695 else if (insn->imm & BPF_FETCH) 3696 return insn->src_reg; 3697 } 3698 return -1; 3699 default: 3700 return insn->dst_reg; 3701 } 3702 } 3703 3704 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3705 static bool insn_has_def32(struct bpf_insn *insn) 3706 { 3707 int dst_reg = insn_def_regno(insn); 3708 3709 if (dst_reg == -1) 3710 return false; 3711 3712 return !is_reg64(insn, dst_reg, NULL, DST_OP); 3713 } 3714 3715 static void mark_insn_zext(struct bpf_verifier_env *env, 3716 struct bpf_reg_state *reg) 3717 { 3718 s32 def_idx = reg->subreg_def; 3719 3720 if (def_idx == DEF_NOT_SUBREG) 3721 return; 3722 3723 env->insn_aux_data[def_idx - 1].zext_dst = true; 3724 /* The dst will be zero extended, so won't be sub-register anymore. */ 3725 reg->subreg_def = DEF_NOT_SUBREG; 3726 } 3727 3728 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, 3729 enum reg_arg_type t) 3730 { 3731 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3732 struct bpf_reg_state *reg; 3733 bool rw64; 3734 3735 if (regno >= MAX_BPF_REG) { 3736 verbose(env, "R%d is invalid\n", regno); 3737 return -EINVAL; 3738 } 3739 3740 mark_reg_scratched(env, regno); 3741 3742 reg = ®s[regno]; 3743 rw64 = is_reg64(insn, regno, reg, t); 3744 if (t == SRC_OP) { 3745 /* check whether register used as source operand can be read */ 3746 if (reg->type == NOT_INIT) { 3747 verbose(env, "R%d !read_ok\n", regno); 3748 return -EACCES; 3749 } 3750 /* We don't need to worry about FP liveness because it's read-only */ 3751 if (regno == BPF_REG_FP) 3752 return 0; 3753 3754 if (rw64) 3755 mark_insn_zext(env, reg); 3756 3757 return 0; 3758 } else { 3759 /* check whether register used as dest operand can be written to */ 3760 if (regno == BPF_REG_FP) { 3761 verbose(env, "frame pointer is read only\n"); 3762 return -EACCES; 3763 } 3764 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3765 if (t == DST_OP) 3766 mark_reg_unknown(env, regs, regno); 3767 } 3768 return 0; 3769 } 3770 3771 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3772 enum reg_arg_type t) 3773 { 3774 struct bpf_verifier_state *vstate = env->cur_state; 3775 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3776 3777 return __check_reg_arg(env, state->regs, regno, t); 3778 } 3779 3780 static int insn_stack_access_flags(int frameno, int spi) 3781 { 3782 return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno; 3783 } 3784 3785 static int insn_stack_access_spi(int insn_flags) 3786 { 3787 return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK; 3788 } 3789 3790 static int insn_stack_access_frameno(int insn_flags) 3791 { 3792 return insn_flags & INSN_F_FRAMENO_MASK; 3793 } 3794 3795 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3796 { 3797 env->insn_aux_data[idx].jmp_point = true; 3798 } 3799 3800 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3801 { 3802 return env->insn_aux_data[insn_idx].jmp_point; 3803 } 3804 3805 #define LR_FRAMENO_BITS 3 3806 #define LR_SPI_BITS 6 3807 #define LR_ENTRY_BITS (LR_SPI_BITS + LR_FRAMENO_BITS + 1) 3808 #define LR_SIZE_BITS 4 3809 #define LR_FRAMENO_MASK ((1ull << LR_FRAMENO_BITS) - 1) 3810 #define LR_SPI_MASK ((1ull << LR_SPI_BITS) - 1) 3811 #define LR_SIZE_MASK ((1ull << LR_SIZE_BITS) - 1) 3812 #define LR_SPI_OFF LR_FRAMENO_BITS 3813 #define LR_IS_REG_OFF (LR_SPI_BITS + LR_FRAMENO_BITS) 3814 #define LINKED_REGS_MAX 6 3815 3816 struct linked_reg { 3817 u8 frameno; 3818 union { 3819 u8 spi; 3820 u8 regno; 3821 }; 3822 bool is_reg; 3823 }; 3824 3825 struct linked_regs { 3826 int cnt; 3827 struct linked_reg entries[LINKED_REGS_MAX]; 3828 }; 3829 3830 static struct linked_reg *linked_regs_push(struct linked_regs *s) 3831 { 3832 if (s->cnt < LINKED_REGS_MAX) 3833 return &s->entries[s->cnt++]; 3834 3835 return NULL; 3836 } 3837 3838 /* Use u64 as a vector of 6 10-bit values, use first 4-bits to track 3839 * number of elements currently in stack. 3840 * Pack one history entry for linked registers as 10 bits in the following format: 3841 * - 3-bits frameno 3842 * - 6-bits spi_or_reg 3843 * - 1-bit is_reg 3844 */ 3845 static u64 linked_regs_pack(struct linked_regs *s) 3846 { 3847 u64 val = 0; 3848 int i; 3849 3850 for (i = 0; i < s->cnt; ++i) { 3851 struct linked_reg *e = &s->entries[i]; 3852 u64 tmp = 0; 3853 3854 tmp |= e->frameno; 3855 tmp |= e->spi << LR_SPI_OFF; 3856 tmp |= (e->is_reg ? 1 : 0) << LR_IS_REG_OFF; 3857 3858 val <<= LR_ENTRY_BITS; 3859 val |= tmp; 3860 } 3861 val <<= LR_SIZE_BITS; 3862 val |= s->cnt; 3863 return val; 3864 } 3865 3866 static void linked_regs_unpack(u64 val, struct linked_regs *s) 3867 { 3868 int i; 3869 3870 s->cnt = val & LR_SIZE_MASK; 3871 val >>= LR_SIZE_BITS; 3872 3873 for (i = 0; i < s->cnt; ++i) { 3874 struct linked_reg *e = &s->entries[i]; 3875 3876 e->frameno = val & LR_FRAMENO_MASK; 3877 e->spi = (val >> LR_SPI_OFF) & LR_SPI_MASK; 3878 e->is_reg = (val >> LR_IS_REG_OFF) & 0x1; 3879 val >>= LR_ENTRY_BITS; 3880 } 3881 } 3882 3883 /* for any branch, call, exit record the history of jmps in the given state */ 3884 static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur, 3885 int insn_flags, u64 linked_regs) 3886 { 3887 u32 cnt = cur->jmp_history_cnt; 3888 struct bpf_jmp_history_entry *p; 3889 size_t alloc_size; 3890 3891 /* combine instruction flags if we already recorded this instruction */ 3892 if (env->cur_hist_ent) { 3893 /* atomic instructions push insn_flags twice, for READ and 3894 * WRITE sides, but they should agree on stack slot 3895 */ 3896 verifier_bug_if((env->cur_hist_ent->flags & insn_flags) && 3897 (env->cur_hist_ent->flags & insn_flags) != insn_flags, 3898 env, "insn history: insn_idx %d cur flags %x new flags %x", 3899 env->insn_idx, env->cur_hist_ent->flags, insn_flags); 3900 env->cur_hist_ent->flags |= insn_flags; 3901 verifier_bug_if(env->cur_hist_ent->linked_regs != 0, env, 3902 "insn history: insn_idx %d linked_regs: %#llx", 3903 env->insn_idx, env->cur_hist_ent->linked_regs); 3904 env->cur_hist_ent->linked_regs = linked_regs; 3905 return 0; 3906 } 3907 3908 cnt++; 3909 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3910 p = krealloc(cur->jmp_history, alloc_size, GFP_KERNEL_ACCOUNT); 3911 if (!p) 3912 return -ENOMEM; 3913 cur->jmp_history = p; 3914 3915 p = &cur->jmp_history[cnt - 1]; 3916 p->idx = env->insn_idx; 3917 p->prev_idx = env->prev_insn_idx; 3918 p->flags = insn_flags; 3919 p->linked_regs = linked_regs; 3920 cur->jmp_history_cnt = cnt; 3921 env->cur_hist_ent = p; 3922 3923 return 0; 3924 } 3925 3926 static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st, 3927 u32 hist_end, int insn_idx) 3928 { 3929 if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx) 3930 return &st->jmp_history[hist_end - 1]; 3931 return NULL; 3932 } 3933 3934 /* Backtrack one insn at a time. If idx is not at the top of recorded 3935 * history then previous instruction came from straight line execution. 3936 * Return -ENOENT if we exhausted all instructions within given state. 3937 * 3938 * It's legal to have a bit of a looping with the same starting and ending 3939 * insn index within the same state, e.g.: 3->4->5->3, so just because current 3940 * instruction index is the same as state's first_idx doesn't mean we are 3941 * done. If there is still some jump history left, we should keep going. We 3942 * need to take into account that we might have a jump history between given 3943 * state's parent and itself, due to checkpointing. In this case, we'll have 3944 * history entry recording a jump from last instruction of parent state and 3945 * first instruction of given state. 3946 */ 3947 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3948 u32 *history) 3949 { 3950 u32 cnt = *history; 3951 3952 if (i == st->first_insn_idx) { 3953 if (cnt == 0) 3954 return -ENOENT; 3955 if (cnt == 1 && st->jmp_history[0].idx == i) 3956 return -ENOENT; 3957 } 3958 3959 if (cnt && st->jmp_history[cnt - 1].idx == i) { 3960 i = st->jmp_history[cnt - 1].prev_idx; 3961 (*history)--; 3962 } else { 3963 i--; 3964 } 3965 return i; 3966 } 3967 3968 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3969 { 3970 const struct btf_type *func; 3971 struct btf *desc_btf; 3972 3973 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3974 return NULL; 3975 3976 desc_btf = find_kfunc_desc_btf(data, insn->off); 3977 if (IS_ERR(desc_btf)) 3978 return "<error>"; 3979 3980 func = btf_type_by_id(desc_btf, insn->imm); 3981 return btf_name_by_offset(desc_btf, func->name_off); 3982 } 3983 3984 static void verbose_insn(struct bpf_verifier_env *env, struct bpf_insn *insn) 3985 { 3986 const struct bpf_insn_cbs cbs = { 3987 .cb_call = disasm_kfunc_name, 3988 .cb_print = verbose, 3989 .private_data = env, 3990 }; 3991 3992 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3993 } 3994 3995 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3996 { 3997 bt->frame = frame; 3998 } 3999 4000 static inline void bt_reset(struct backtrack_state *bt) 4001 { 4002 struct bpf_verifier_env *env = bt->env; 4003 4004 memset(bt, 0, sizeof(*bt)); 4005 bt->env = env; 4006 } 4007 4008 static inline u32 bt_empty(struct backtrack_state *bt) 4009 { 4010 u64 mask = 0; 4011 int i; 4012 4013 for (i = 0; i <= bt->frame; i++) 4014 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 4015 4016 return mask == 0; 4017 } 4018 4019 static inline int bt_subprog_enter(struct backtrack_state *bt) 4020 { 4021 if (bt->frame == MAX_CALL_FRAMES - 1) { 4022 verifier_bug(bt->env, "subprog enter from frame %d", bt->frame); 4023 return -EFAULT; 4024 } 4025 bt->frame++; 4026 return 0; 4027 } 4028 4029 static inline int bt_subprog_exit(struct backtrack_state *bt) 4030 { 4031 if (bt->frame == 0) { 4032 verifier_bug(bt->env, "subprog exit from frame 0"); 4033 return -EFAULT; 4034 } 4035 bt->frame--; 4036 return 0; 4037 } 4038 4039 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 4040 { 4041 bt->reg_masks[frame] |= 1 << reg; 4042 } 4043 4044 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 4045 { 4046 bt->reg_masks[frame] &= ~(1 << reg); 4047 } 4048 4049 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 4050 { 4051 bt_set_frame_reg(bt, bt->frame, reg); 4052 } 4053 4054 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 4055 { 4056 bt_clear_frame_reg(bt, bt->frame, reg); 4057 } 4058 4059 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 4060 { 4061 bt->stack_masks[frame] |= 1ull << slot; 4062 } 4063 4064 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 4065 { 4066 bt->stack_masks[frame] &= ~(1ull << slot); 4067 } 4068 4069 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 4070 { 4071 return bt->reg_masks[frame]; 4072 } 4073 4074 static inline u32 bt_reg_mask(struct backtrack_state *bt) 4075 { 4076 return bt->reg_masks[bt->frame]; 4077 } 4078 4079 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 4080 { 4081 return bt->stack_masks[frame]; 4082 } 4083 4084 static inline u64 bt_stack_mask(struct backtrack_state *bt) 4085 { 4086 return bt->stack_masks[bt->frame]; 4087 } 4088 4089 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 4090 { 4091 return bt->reg_masks[bt->frame] & (1 << reg); 4092 } 4093 4094 static inline bool bt_is_frame_reg_set(struct backtrack_state *bt, u32 frame, u32 reg) 4095 { 4096 return bt->reg_masks[frame] & (1 << reg); 4097 } 4098 4099 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot) 4100 { 4101 return bt->stack_masks[frame] & (1ull << slot); 4102 } 4103 4104 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 4105 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 4106 { 4107 DECLARE_BITMAP(mask, 64); 4108 bool first = true; 4109 int i, n; 4110 4111 buf[0] = '\0'; 4112 4113 bitmap_from_u64(mask, reg_mask); 4114 for_each_set_bit(i, mask, 32) { 4115 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 4116 first = false; 4117 buf += n; 4118 buf_sz -= n; 4119 if (buf_sz < 0) 4120 break; 4121 } 4122 } 4123 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 4124 void bpf_fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 4125 { 4126 DECLARE_BITMAP(mask, 64); 4127 bool first = true; 4128 int i, n; 4129 4130 buf[0] = '\0'; 4131 4132 bitmap_from_u64(mask, stack_mask); 4133 for_each_set_bit(i, mask, 64) { 4134 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 4135 first = false; 4136 buf += n; 4137 buf_sz -= n; 4138 if (buf_sz < 0) 4139 break; 4140 } 4141 } 4142 4143 /* If any register R in hist->linked_regs is marked as precise in bt, 4144 * do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs. 4145 */ 4146 static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_jmp_history_entry *hist) 4147 { 4148 struct linked_regs linked_regs; 4149 bool some_precise = false; 4150 int i; 4151 4152 if (!hist || hist->linked_regs == 0) 4153 return; 4154 4155 linked_regs_unpack(hist->linked_regs, &linked_regs); 4156 for (i = 0; i < linked_regs.cnt; ++i) { 4157 struct linked_reg *e = &linked_regs.entries[i]; 4158 4159 if ((e->is_reg && bt_is_frame_reg_set(bt, e->frameno, e->regno)) || 4160 (!e->is_reg && bt_is_frame_slot_set(bt, e->frameno, e->spi))) { 4161 some_precise = true; 4162 break; 4163 } 4164 } 4165 4166 if (!some_precise) 4167 return; 4168 4169 for (i = 0; i < linked_regs.cnt; ++i) { 4170 struct linked_reg *e = &linked_regs.entries[i]; 4171 4172 if (e->is_reg) 4173 bt_set_frame_reg(bt, e->frameno, e->regno); 4174 else 4175 bt_set_frame_slot(bt, e->frameno, e->spi); 4176 } 4177 } 4178 4179 /* For given verifier state backtrack_insn() is called from the last insn to 4180 * the first insn. Its purpose is to compute a bitmask of registers and 4181 * stack slots that needs precision in the parent verifier state. 4182 * 4183 * @idx is an index of the instruction we are currently processing; 4184 * @subseq_idx is an index of the subsequent instruction that: 4185 * - *would be* executed next, if jump history is viewed in forward order; 4186 * - *was* processed previously during backtracking. 4187 */ 4188 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 4189 struct bpf_jmp_history_entry *hist, struct backtrack_state *bt) 4190 { 4191 struct bpf_insn *insn = env->prog->insnsi + idx; 4192 u8 class = BPF_CLASS(insn->code); 4193 u8 opcode = BPF_OP(insn->code); 4194 u8 mode = BPF_MODE(insn->code); 4195 u32 dreg = insn->dst_reg; 4196 u32 sreg = insn->src_reg; 4197 u32 spi, i, fr; 4198 4199 if (insn->code == 0) 4200 return 0; 4201 if (env->log.level & BPF_LOG_LEVEL2) { 4202 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 4203 verbose(env, "mark_precise: frame%d: regs=%s ", 4204 bt->frame, env->tmp_str_buf); 4205 bpf_fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 4206 verbose(env, "stack=%s before ", env->tmp_str_buf); 4207 verbose(env, "%d: ", idx); 4208 verbose_insn(env, insn); 4209 } 4210 4211 /* If there is a history record that some registers gained range at this insn, 4212 * propagate precision marks to those registers, so that bt_is_reg_set() 4213 * accounts for these registers. 4214 */ 4215 bt_sync_linked_regs(bt, hist); 4216 4217 if (class == BPF_ALU || class == BPF_ALU64) { 4218 if (!bt_is_reg_set(bt, dreg)) 4219 return 0; 4220 if (opcode == BPF_END || opcode == BPF_NEG) { 4221 /* sreg is reserved and unused 4222 * dreg still need precision before this insn 4223 */ 4224 return 0; 4225 } else if (opcode == BPF_MOV) { 4226 if (BPF_SRC(insn->code) == BPF_X) { 4227 /* dreg = sreg or dreg = (s8, s16, s32)sreg 4228 * dreg needs precision after this insn 4229 * sreg needs precision before this insn 4230 */ 4231 bt_clear_reg(bt, dreg); 4232 if (sreg != BPF_REG_FP) 4233 bt_set_reg(bt, sreg); 4234 } else { 4235 /* dreg = K 4236 * dreg needs precision after this insn. 4237 * Corresponding register is already marked 4238 * as precise=true in this verifier state. 4239 * No further markings in parent are necessary 4240 */ 4241 bt_clear_reg(bt, dreg); 4242 } 4243 } else { 4244 if (BPF_SRC(insn->code) == BPF_X) { 4245 /* dreg += sreg 4246 * both dreg and sreg need precision 4247 * before this insn 4248 */ 4249 if (sreg != BPF_REG_FP) 4250 bt_set_reg(bt, sreg); 4251 } /* else dreg += K 4252 * dreg still needs precision before this insn 4253 */ 4254 } 4255 } else if (class == BPF_LDX || is_atomic_load_insn(insn)) { 4256 if (!bt_is_reg_set(bt, dreg)) 4257 return 0; 4258 bt_clear_reg(bt, dreg); 4259 4260 /* scalars can only be spilled into stack w/o losing precision. 4261 * Load from any other memory can be zero extended. 4262 * The desire to keep that precision is already indicated 4263 * by 'precise' mark in corresponding register of this state. 4264 * No further tracking necessary. 4265 */ 4266 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 4267 return 0; 4268 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 4269 * that [fp - off] slot contains scalar that needs to be 4270 * tracked with precision 4271 */ 4272 spi = insn_stack_access_spi(hist->flags); 4273 fr = insn_stack_access_frameno(hist->flags); 4274 bt_set_frame_slot(bt, fr, spi); 4275 } else if (class == BPF_STX || class == BPF_ST) { 4276 if (bt_is_reg_set(bt, dreg)) 4277 /* stx & st shouldn't be using _scalar_ dst_reg 4278 * to access memory. It means backtracking 4279 * encountered a case of pointer subtraction. 4280 */ 4281 return -ENOTSUPP; 4282 /* scalars can only be spilled into stack */ 4283 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 4284 return 0; 4285 spi = insn_stack_access_spi(hist->flags); 4286 fr = insn_stack_access_frameno(hist->flags); 4287 if (!bt_is_frame_slot_set(bt, fr, spi)) 4288 return 0; 4289 bt_clear_frame_slot(bt, fr, spi); 4290 if (class == BPF_STX) 4291 bt_set_reg(bt, sreg); 4292 } else if (class == BPF_JMP || class == BPF_JMP32) { 4293 if (bpf_pseudo_call(insn)) { 4294 int subprog_insn_idx, subprog; 4295 4296 subprog_insn_idx = idx + insn->imm + 1; 4297 subprog = find_subprog(env, subprog_insn_idx); 4298 if (subprog < 0) 4299 return -EFAULT; 4300 4301 if (subprog_is_global(env, subprog)) { 4302 /* check that jump history doesn't have any 4303 * extra instructions from subprog; the next 4304 * instruction after call to global subprog 4305 * should be literally next instruction in 4306 * caller program 4307 */ 4308 verifier_bug_if(idx + 1 != subseq_idx, env, 4309 "extra insn from subprog"); 4310 /* r1-r5 are invalidated after subprog call, 4311 * so for global func call it shouldn't be set 4312 * anymore 4313 */ 4314 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4315 verifier_bug(env, "global subprog unexpected regs %x", 4316 bt_reg_mask(bt)); 4317 return -EFAULT; 4318 } 4319 /* global subprog always sets R0 */ 4320 bt_clear_reg(bt, BPF_REG_0); 4321 return 0; 4322 } else { 4323 /* static subprog call instruction, which 4324 * means that we are exiting current subprog, 4325 * so only r1-r5 could be still requested as 4326 * precise, r0 and r6-r10 or any stack slot in 4327 * the current frame should be zero by now 4328 */ 4329 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 4330 verifier_bug(env, "static subprog unexpected regs %x", 4331 bt_reg_mask(bt)); 4332 return -EFAULT; 4333 } 4334 /* we are now tracking register spills correctly, 4335 * so any instance of leftover slots is a bug 4336 */ 4337 if (bt_stack_mask(bt) != 0) { 4338 verifier_bug(env, 4339 "static subprog leftover stack slots %llx", 4340 bt_stack_mask(bt)); 4341 return -EFAULT; 4342 } 4343 /* propagate r1-r5 to the caller */ 4344 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 4345 if (bt_is_reg_set(bt, i)) { 4346 bt_clear_reg(bt, i); 4347 bt_set_frame_reg(bt, bt->frame - 1, i); 4348 } 4349 } 4350 if (bt_subprog_exit(bt)) 4351 return -EFAULT; 4352 return 0; 4353 } 4354 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { 4355 /* exit from callback subprog to callback-calling helper or 4356 * kfunc call. Use idx/subseq_idx check to discern it from 4357 * straight line code backtracking. 4358 * Unlike the subprog call handling above, we shouldn't 4359 * propagate precision of r1-r5 (if any requested), as they are 4360 * not actually arguments passed directly to callback subprogs 4361 */ 4362 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 4363 verifier_bug(env, "callback unexpected regs %x", 4364 bt_reg_mask(bt)); 4365 return -EFAULT; 4366 } 4367 if (bt_stack_mask(bt) != 0) { 4368 verifier_bug(env, "callback leftover stack slots %llx", 4369 bt_stack_mask(bt)); 4370 return -EFAULT; 4371 } 4372 /* clear r1-r5 in callback subprog's mask */ 4373 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4374 bt_clear_reg(bt, i); 4375 if (bt_subprog_exit(bt)) 4376 return -EFAULT; 4377 return 0; 4378 } else if (opcode == BPF_CALL) { 4379 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 4380 * catch this error later. Make backtracking conservative 4381 * with ENOTSUPP. 4382 */ 4383 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 4384 return -ENOTSUPP; 4385 /* regular helper call sets R0 */ 4386 bt_clear_reg(bt, BPF_REG_0); 4387 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4388 /* if backtracking was looking for registers R1-R5 4389 * they should have been found already. 4390 */ 4391 verifier_bug(env, "backtracking call unexpected regs %x", 4392 bt_reg_mask(bt)); 4393 return -EFAULT; 4394 } 4395 } else if (opcode == BPF_EXIT) { 4396 bool r0_precise; 4397 4398 /* Backtracking to a nested function call, 'idx' is a part of 4399 * the inner frame 'subseq_idx' is a part of the outer frame. 4400 * In case of a regular function call, instructions giving 4401 * precision to registers R1-R5 should have been found already. 4402 * In case of a callback, it is ok to have R1-R5 marked for 4403 * backtracking, as these registers are set by the function 4404 * invoking callback. 4405 */ 4406 if (subseq_idx >= 0 && bpf_calls_callback(env, subseq_idx)) 4407 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4408 bt_clear_reg(bt, i); 4409 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 4410 verifier_bug(env, "backtracking exit unexpected regs %x", 4411 bt_reg_mask(bt)); 4412 return -EFAULT; 4413 } 4414 4415 /* BPF_EXIT in subprog or callback always returns 4416 * right after the call instruction, so by checking 4417 * whether the instruction at subseq_idx-1 is subprog 4418 * call or not we can distinguish actual exit from 4419 * *subprog* from exit from *callback*. In the former 4420 * case, we need to propagate r0 precision, if 4421 * necessary. In the former we never do that. 4422 */ 4423 r0_precise = subseq_idx - 1 >= 0 && 4424 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 4425 bt_is_reg_set(bt, BPF_REG_0); 4426 4427 bt_clear_reg(bt, BPF_REG_0); 4428 if (bt_subprog_enter(bt)) 4429 return -EFAULT; 4430 4431 if (r0_precise) 4432 bt_set_reg(bt, BPF_REG_0); 4433 /* r6-r9 and stack slots will stay set in caller frame 4434 * bitmasks until we return back from callee(s) 4435 */ 4436 return 0; 4437 } else if (BPF_SRC(insn->code) == BPF_X) { 4438 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 4439 return 0; 4440 /* dreg <cond> sreg 4441 * Both dreg and sreg need precision before 4442 * this insn. If only sreg was marked precise 4443 * before it would be equally necessary to 4444 * propagate it to dreg. 4445 */ 4446 if (!hist || !(hist->flags & INSN_F_SRC_REG_STACK)) 4447 bt_set_reg(bt, sreg); 4448 if (!hist || !(hist->flags & INSN_F_DST_REG_STACK)) 4449 bt_set_reg(bt, dreg); 4450 } else if (BPF_SRC(insn->code) == BPF_K) { 4451 /* dreg <cond> K 4452 * Only dreg still needs precision before 4453 * this insn, so for the K-based conditional 4454 * there is nothing new to be marked. 4455 */ 4456 } 4457 } else if (class == BPF_LD) { 4458 if (!bt_is_reg_set(bt, dreg)) 4459 return 0; 4460 bt_clear_reg(bt, dreg); 4461 /* It's ld_imm64 or ld_abs or ld_ind. 4462 * For ld_imm64 no further tracking of precision 4463 * into parent is necessary 4464 */ 4465 if (mode == BPF_IND || mode == BPF_ABS) 4466 /* to be analyzed */ 4467 return -ENOTSUPP; 4468 } 4469 /* Propagate precision marks to linked registers, to account for 4470 * registers marked as precise in this function. 4471 */ 4472 bt_sync_linked_regs(bt, hist); 4473 return 0; 4474 } 4475 4476 /* the scalar precision tracking algorithm: 4477 * . at the start all registers have precise=false. 4478 * . scalar ranges are tracked as normal through alu and jmp insns. 4479 * . once precise value of the scalar register is used in: 4480 * . ptr + scalar alu 4481 * . if (scalar cond K|scalar) 4482 * . helper_call(.., scalar, ...) where ARG_CONST is expected 4483 * backtrack through the verifier states and mark all registers and 4484 * stack slots with spilled constants that these scalar registers 4485 * should be precise. 4486 * . during state pruning two registers (or spilled stack slots) 4487 * are equivalent if both are not precise. 4488 * 4489 * Note the verifier cannot simply walk register parentage chain, 4490 * since many different registers and stack slots could have been 4491 * used to compute single precise scalar. 4492 * 4493 * The approach of starting with precise=true for all registers and then 4494 * backtrack to mark a register as not precise when the verifier detects 4495 * that program doesn't care about specific value (e.g., when helper 4496 * takes register as ARG_ANYTHING parameter) is not safe. 4497 * 4498 * It's ok to walk single parentage chain of the verifier states. 4499 * It's possible that this backtracking will go all the way till 1st insn. 4500 * All other branches will be explored for needing precision later. 4501 * 4502 * The backtracking needs to deal with cases like: 4503 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 4504 * r9 -= r8 4505 * r5 = r9 4506 * if r5 > 0x79f goto pc+7 4507 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 4508 * r5 += 1 4509 * ... 4510 * call bpf_perf_event_output#25 4511 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 4512 * 4513 * and this case: 4514 * r6 = 1 4515 * call foo // uses callee's r6 inside to compute r0 4516 * r0 += r6 4517 * if r0 == 0 goto 4518 * 4519 * to track above reg_mask/stack_mask needs to be independent for each frame. 4520 * 4521 * Also if parent's curframe > frame where backtracking started, 4522 * the verifier need to mark registers in both frames, otherwise callees 4523 * may incorrectly prune callers. This is similar to 4524 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 4525 * 4526 * For now backtracking falls back into conservative marking. 4527 */ 4528 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 4529 struct bpf_verifier_state *st) 4530 { 4531 struct bpf_func_state *func; 4532 struct bpf_reg_state *reg; 4533 int i, j; 4534 4535 if (env->log.level & BPF_LOG_LEVEL2) { 4536 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 4537 st->curframe); 4538 } 4539 4540 /* big hammer: mark all scalars precise in this path. 4541 * pop_stack may still get !precise scalars. 4542 * We also skip current state and go straight to first parent state, 4543 * because precision markings in current non-checkpointed state are 4544 * not needed. See why in the comment in __mark_chain_precision below. 4545 */ 4546 for (st = st->parent; st; st = st->parent) { 4547 for (i = 0; i <= st->curframe; i++) { 4548 func = st->frame[i]; 4549 for (j = 0; j < BPF_REG_FP; j++) { 4550 reg = &func->regs[j]; 4551 if (reg->type != SCALAR_VALUE || reg->precise) 4552 continue; 4553 reg->precise = true; 4554 if (env->log.level & BPF_LOG_LEVEL2) { 4555 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 4556 i, j); 4557 } 4558 } 4559 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4560 if (!is_spilled_reg(&func->stack[j])) 4561 continue; 4562 reg = &func->stack[j].spilled_ptr; 4563 if (reg->type != SCALAR_VALUE || reg->precise) 4564 continue; 4565 reg->precise = true; 4566 if (env->log.level & BPF_LOG_LEVEL2) { 4567 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 4568 i, -(j + 1) * 8); 4569 } 4570 } 4571 } 4572 } 4573 } 4574 4575 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4576 { 4577 struct bpf_func_state *func; 4578 struct bpf_reg_state *reg; 4579 int i, j; 4580 4581 for (i = 0; i <= st->curframe; i++) { 4582 func = st->frame[i]; 4583 for (j = 0; j < BPF_REG_FP; j++) { 4584 reg = &func->regs[j]; 4585 if (reg->type != SCALAR_VALUE) 4586 continue; 4587 reg->precise = false; 4588 } 4589 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4590 if (!is_spilled_reg(&func->stack[j])) 4591 continue; 4592 reg = &func->stack[j].spilled_ptr; 4593 if (reg->type != SCALAR_VALUE) 4594 continue; 4595 reg->precise = false; 4596 } 4597 } 4598 } 4599 4600 /* 4601 * __mark_chain_precision() backtracks BPF program instruction sequence and 4602 * chain of verifier states making sure that register *regno* (if regno >= 0) 4603 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 4604 * SCALARS, as well as any other registers and slots that contribute to 4605 * a tracked state of given registers/stack slots, depending on specific BPF 4606 * assembly instructions (see backtrack_insns() for exact instruction handling 4607 * logic). This backtracking relies on recorded jmp_history and is able to 4608 * traverse entire chain of parent states. This process ends only when all the 4609 * necessary registers/slots and their transitive dependencies are marked as 4610 * precise. 4611 * 4612 * One important and subtle aspect is that precise marks *do not matter* in 4613 * the currently verified state (current state). It is important to understand 4614 * why this is the case. 4615 * 4616 * First, note that current state is the state that is not yet "checkpointed", 4617 * i.e., it is not yet put into env->explored_states, and it has no children 4618 * states as well. It's ephemeral, and can end up either a) being discarded if 4619 * compatible explored state is found at some point or BPF_EXIT instruction is 4620 * reached or b) checkpointed and put into env->explored_states, branching out 4621 * into one or more children states. 4622 * 4623 * In the former case, precise markings in current state are completely 4624 * ignored by state comparison code (see regsafe() for details). Only 4625 * checkpointed ("old") state precise markings are important, and if old 4626 * state's register/slot is precise, regsafe() assumes current state's 4627 * register/slot as precise and checks value ranges exactly and precisely. If 4628 * states turn out to be compatible, current state's necessary precise 4629 * markings and any required parent states' precise markings are enforced 4630 * after the fact with propagate_precision() logic, after the fact. But it's 4631 * important to realize that in this case, even after marking current state 4632 * registers/slots as precise, we immediately discard current state. So what 4633 * actually matters is any of the precise markings propagated into current 4634 * state's parent states, which are always checkpointed (due to b) case above). 4635 * As such, for scenario a) it doesn't matter if current state has precise 4636 * markings set or not. 4637 * 4638 * Now, for the scenario b), checkpointing and forking into child(ren) 4639 * state(s). Note that before current state gets to checkpointing step, any 4640 * processed instruction always assumes precise SCALAR register/slot 4641 * knowledge: if precise value or range is useful to prune jump branch, BPF 4642 * verifier takes this opportunity enthusiastically. Similarly, when 4643 * register's value is used to calculate offset or memory address, exact 4644 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 4645 * what we mentioned above about state comparison ignoring precise markings 4646 * during state comparison, BPF verifier ignores and also assumes precise 4647 * markings *at will* during instruction verification process. But as verifier 4648 * assumes precision, it also propagates any precision dependencies across 4649 * parent states, which are not yet finalized, so can be further restricted 4650 * based on new knowledge gained from restrictions enforced by their children 4651 * states. This is so that once those parent states are finalized, i.e., when 4652 * they have no more active children state, state comparison logic in 4653 * is_state_visited() would enforce strict and precise SCALAR ranges, if 4654 * required for correctness. 4655 * 4656 * To build a bit more intuition, note also that once a state is checkpointed, 4657 * the path we took to get to that state is not important. This is crucial 4658 * property for state pruning. When state is checkpointed and finalized at 4659 * some instruction index, it can be correctly and safely used to "short 4660 * circuit" any *compatible* state that reaches exactly the same instruction 4661 * index. I.e., if we jumped to that instruction from a completely different 4662 * code path than original finalized state was derived from, it doesn't 4663 * matter, current state can be discarded because from that instruction 4664 * forward having a compatible state will ensure we will safely reach the 4665 * exit. States describe preconditions for further exploration, but completely 4666 * forget the history of how we got here. 4667 * 4668 * This also means that even if we needed precise SCALAR range to get to 4669 * finalized state, but from that point forward *that same* SCALAR register is 4670 * never used in a precise context (i.e., it's precise value is not needed for 4671 * correctness), it's correct and safe to mark such register as "imprecise" 4672 * (i.e., precise marking set to false). This is what we rely on when we do 4673 * not set precise marking in current state. If no child state requires 4674 * precision for any given SCALAR register, it's safe to dictate that it can 4675 * be imprecise. If any child state does require this register to be precise, 4676 * we'll mark it precise later retroactively during precise markings 4677 * propagation from child state to parent states. 4678 * 4679 * Skipping precise marking setting in current state is a mild version of 4680 * relying on the above observation. But we can utilize this property even 4681 * more aggressively by proactively forgetting any precise marking in the 4682 * current state (which we inherited from the parent state), right before we 4683 * checkpoint it and branch off into new child state. This is done by 4684 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 4685 * finalized states which help in short circuiting more future states. 4686 */ 4687 static int __mark_chain_precision(struct bpf_verifier_env *env, 4688 struct bpf_verifier_state *starting_state, 4689 int regno, 4690 bool *changed) 4691 { 4692 struct bpf_verifier_state *st = starting_state; 4693 struct backtrack_state *bt = &env->bt; 4694 int first_idx = st->first_insn_idx; 4695 int last_idx = starting_state->insn_idx; 4696 int subseq_idx = -1; 4697 struct bpf_func_state *func; 4698 bool tmp, skip_first = true; 4699 struct bpf_reg_state *reg; 4700 int i, fr, err; 4701 4702 if (!env->bpf_capable) 4703 return 0; 4704 4705 changed = changed ?: &tmp; 4706 /* set frame number from which we are starting to backtrack */ 4707 bt_init(bt, starting_state->curframe); 4708 4709 /* Do sanity checks against current state of register and/or stack 4710 * slot, but don't set precise flag in current state, as precision 4711 * tracking in the current state is unnecessary. 4712 */ 4713 func = st->frame[bt->frame]; 4714 if (regno >= 0) { 4715 reg = &func->regs[regno]; 4716 if (reg->type != SCALAR_VALUE) { 4717 verifier_bug(env, "backtracking misuse"); 4718 return -EFAULT; 4719 } 4720 bt_set_reg(bt, regno); 4721 } 4722 4723 if (bt_empty(bt)) 4724 return 0; 4725 4726 for (;;) { 4727 DECLARE_BITMAP(mask, 64); 4728 u32 history = st->jmp_history_cnt; 4729 struct bpf_jmp_history_entry *hist; 4730 4731 if (env->log.level & BPF_LOG_LEVEL2) { 4732 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4733 bt->frame, last_idx, first_idx, subseq_idx); 4734 } 4735 4736 if (last_idx < 0) { 4737 /* we are at the entry into subprog, which 4738 * is expected for global funcs, but only if 4739 * requested precise registers are R1-R5 4740 * (which are global func's input arguments) 4741 */ 4742 if (st->curframe == 0 && 4743 st->frame[0]->subprogno > 0 && 4744 st->frame[0]->callsite == BPF_MAIN_FUNC && 4745 bt_stack_mask(bt) == 0 && 4746 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4747 bitmap_from_u64(mask, bt_reg_mask(bt)); 4748 for_each_set_bit(i, mask, 32) { 4749 reg = &st->frame[0]->regs[i]; 4750 bt_clear_reg(bt, i); 4751 if (reg->type == SCALAR_VALUE) { 4752 reg->precise = true; 4753 *changed = true; 4754 } 4755 } 4756 return 0; 4757 } 4758 4759 verifier_bug(env, "backtracking func entry subprog %d reg_mask %x stack_mask %llx", 4760 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4761 return -EFAULT; 4762 } 4763 4764 for (i = last_idx;;) { 4765 if (skip_first) { 4766 err = 0; 4767 skip_first = false; 4768 } else { 4769 hist = get_jmp_hist_entry(st, history, i); 4770 err = backtrack_insn(env, i, subseq_idx, hist, bt); 4771 } 4772 if (err == -ENOTSUPP) { 4773 mark_all_scalars_precise(env, starting_state); 4774 bt_reset(bt); 4775 return 0; 4776 } else if (err) { 4777 return err; 4778 } 4779 if (bt_empty(bt)) 4780 /* Found assignment(s) into tracked register in this state. 4781 * Since this state is already marked, just return. 4782 * Nothing to be tracked further in the parent state. 4783 */ 4784 return 0; 4785 subseq_idx = i; 4786 i = get_prev_insn_idx(st, i, &history); 4787 if (i == -ENOENT) 4788 break; 4789 if (i >= env->prog->len) { 4790 /* This can happen if backtracking reached insn 0 4791 * and there are still reg_mask or stack_mask 4792 * to backtrack. 4793 * It means the backtracking missed the spot where 4794 * particular register was initialized with a constant. 4795 */ 4796 verifier_bug(env, "backtracking idx %d", i); 4797 return -EFAULT; 4798 } 4799 } 4800 st = st->parent; 4801 if (!st) 4802 break; 4803 4804 for (fr = bt->frame; fr >= 0; fr--) { 4805 func = st->frame[fr]; 4806 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4807 for_each_set_bit(i, mask, 32) { 4808 reg = &func->regs[i]; 4809 if (reg->type != SCALAR_VALUE) { 4810 bt_clear_frame_reg(bt, fr, i); 4811 continue; 4812 } 4813 if (reg->precise) { 4814 bt_clear_frame_reg(bt, fr, i); 4815 } else { 4816 reg->precise = true; 4817 *changed = true; 4818 } 4819 } 4820 4821 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4822 for_each_set_bit(i, mask, 64) { 4823 if (verifier_bug_if(i >= func->allocated_stack / BPF_REG_SIZE, 4824 env, "stack slot %d, total slots %d", 4825 i, func->allocated_stack / BPF_REG_SIZE)) 4826 return -EFAULT; 4827 4828 if (!is_spilled_scalar_reg(&func->stack[i])) { 4829 bt_clear_frame_slot(bt, fr, i); 4830 continue; 4831 } 4832 reg = &func->stack[i].spilled_ptr; 4833 if (reg->precise) { 4834 bt_clear_frame_slot(bt, fr, i); 4835 } else { 4836 reg->precise = true; 4837 *changed = true; 4838 } 4839 } 4840 if (env->log.level & BPF_LOG_LEVEL2) { 4841 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4842 bt_frame_reg_mask(bt, fr)); 4843 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4844 fr, env->tmp_str_buf); 4845 bpf_fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4846 bt_frame_stack_mask(bt, fr)); 4847 verbose(env, "stack=%s: ", env->tmp_str_buf); 4848 print_verifier_state(env, st, fr, true); 4849 } 4850 } 4851 4852 if (bt_empty(bt)) 4853 return 0; 4854 4855 subseq_idx = first_idx; 4856 last_idx = st->last_insn_idx; 4857 first_idx = st->first_insn_idx; 4858 } 4859 4860 /* if we still have requested precise regs or slots, we missed 4861 * something (e.g., stack access through non-r10 register), so 4862 * fallback to marking all precise 4863 */ 4864 if (!bt_empty(bt)) { 4865 mark_all_scalars_precise(env, starting_state); 4866 bt_reset(bt); 4867 } 4868 4869 return 0; 4870 } 4871 4872 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4873 { 4874 return __mark_chain_precision(env, env->cur_state, regno, NULL); 4875 } 4876 4877 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4878 * desired reg and stack masks across all relevant frames 4879 */ 4880 static int mark_chain_precision_batch(struct bpf_verifier_env *env, 4881 struct bpf_verifier_state *starting_state) 4882 { 4883 return __mark_chain_precision(env, starting_state, -1, NULL); 4884 } 4885 4886 static bool is_spillable_regtype(enum bpf_reg_type type) 4887 { 4888 switch (base_type(type)) { 4889 case PTR_TO_MAP_VALUE: 4890 case PTR_TO_STACK: 4891 case PTR_TO_CTX: 4892 case PTR_TO_PACKET: 4893 case PTR_TO_PACKET_META: 4894 case PTR_TO_PACKET_END: 4895 case PTR_TO_FLOW_KEYS: 4896 case CONST_PTR_TO_MAP: 4897 case PTR_TO_SOCKET: 4898 case PTR_TO_SOCK_COMMON: 4899 case PTR_TO_TCP_SOCK: 4900 case PTR_TO_XDP_SOCK: 4901 case PTR_TO_BTF_ID: 4902 case PTR_TO_BUF: 4903 case PTR_TO_MEM: 4904 case PTR_TO_FUNC: 4905 case PTR_TO_MAP_KEY: 4906 case PTR_TO_ARENA: 4907 return true; 4908 default: 4909 return false; 4910 } 4911 } 4912 4913 /* Does this register contain a constant zero? */ 4914 static bool register_is_null(struct bpf_reg_state *reg) 4915 { 4916 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4917 } 4918 4919 /* check if register is a constant scalar value */ 4920 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32) 4921 { 4922 return reg->type == SCALAR_VALUE && 4923 tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off); 4924 } 4925 4926 /* assuming is_reg_const() is true, return constant value of a register */ 4927 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32) 4928 { 4929 return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value; 4930 } 4931 4932 static bool __is_pointer_value(bool allow_ptr_leaks, 4933 const struct bpf_reg_state *reg) 4934 { 4935 if (allow_ptr_leaks) 4936 return false; 4937 4938 return reg->type != SCALAR_VALUE; 4939 } 4940 4941 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env, 4942 struct bpf_reg_state *src_reg) 4943 { 4944 if (src_reg->type != SCALAR_VALUE) 4945 return; 4946 4947 if (src_reg->id & BPF_ADD_CONST) { 4948 /* 4949 * The verifier is processing rX = rY insn and 4950 * rY->id has special linked register already. 4951 * Cleared it, since multiple rX += const are not supported. 4952 */ 4953 src_reg->id = 0; 4954 src_reg->off = 0; 4955 } 4956 4957 if (!src_reg->id && !tnum_is_const(src_reg->var_off)) 4958 /* Ensure that src_reg has a valid ID that will be copied to 4959 * dst_reg and then will be used by sync_linked_regs() to 4960 * propagate min/max range. 4961 */ 4962 src_reg->id = ++env->id_gen; 4963 } 4964 4965 /* Copy src state preserving dst->parent and dst->live fields */ 4966 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4967 { 4968 *dst = *src; 4969 } 4970 4971 static void save_register_state(struct bpf_verifier_env *env, 4972 struct bpf_func_state *state, 4973 int spi, struct bpf_reg_state *reg, 4974 int size) 4975 { 4976 int i; 4977 4978 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4979 4980 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4981 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4982 4983 /* size < 8 bytes spill */ 4984 for (; i; i--) 4985 mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]); 4986 } 4987 4988 static bool is_bpf_st_mem(struct bpf_insn *insn) 4989 { 4990 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4991 } 4992 4993 static int get_reg_width(struct bpf_reg_state *reg) 4994 { 4995 return fls64(reg->umax_value); 4996 } 4997 4998 /* See comment for mark_fastcall_pattern_for_call() */ 4999 static void check_fastcall_stack_contract(struct bpf_verifier_env *env, 5000 struct bpf_func_state *state, int insn_idx, int off) 5001 { 5002 struct bpf_subprog_info *subprog = &env->subprog_info[state->subprogno]; 5003 struct bpf_insn_aux_data *aux = env->insn_aux_data; 5004 int i; 5005 5006 if (subprog->fastcall_stack_off <= off || aux[insn_idx].fastcall_pattern) 5007 return; 5008 /* access to the region [max_stack_depth .. fastcall_stack_off) 5009 * from something that is not a part of the fastcall pattern, 5010 * disable fastcall rewrites for current subprogram by setting 5011 * fastcall_stack_off to a value smaller than any possible offset. 5012 */ 5013 subprog->fastcall_stack_off = S16_MIN; 5014 /* reset fastcall aux flags within subprogram, 5015 * happens at most once per subprogram 5016 */ 5017 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 5018 aux[i].fastcall_spills_num = 0; 5019 aux[i].fastcall_pattern = 0; 5020 } 5021 } 5022 5023 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 5024 * stack boundary and alignment are checked in check_mem_access() 5025 */ 5026 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 5027 /* stack frame we're writing to */ 5028 struct bpf_func_state *state, 5029 int off, int size, int value_regno, 5030 int insn_idx) 5031 { 5032 struct bpf_func_state *cur; /* state of the current function */ 5033 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 5034 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5035 struct bpf_reg_state *reg = NULL; 5036 int insn_flags = insn_stack_access_flags(state->frameno, spi); 5037 5038 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 5039 * so it's aligned access and [off, off + size) are within stack limits 5040 */ 5041 if (!env->allow_ptr_leaks && 5042 is_spilled_reg(&state->stack[spi]) && 5043 !is_spilled_scalar_reg(&state->stack[spi]) && 5044 size != BPF_REG_SIZE) { 5045 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 5046 return -EACCES; 5047 } 5048 5049 cur = env->cur_state->frame[env->cur_state->curframe]; 5050 if (value_regno >= 0) 5051 reg = &cur->regs[value_regno]; 5052 if (!env->bypass_spec_v4) { 5053 bool sanitize = reg && is_spillable_regtype(reg->type); 5054 5055 for (i = 0; i < size; i++) { 5056 u8 type = state->stack[spi].slot_type[i]; 5057 5058 if (type != STACK_MISC && type != STACK_ZERO) { 5059 sanitize = true; 5060 break; 5061 } 5062 } 5063 5064 if (sanitize) 5065 env->insn_aux_data[insn_idx].nospec_result = true; 5066 } 5067 5068 err = destroy_if_dynptr_stack_slot(env, state, spi); 5069 if (err) 5070 return err; 5071 5072 if (!(off % BPF_REG_SIZE) && size == BPF_REG_SIZE) { 5073 /* only mark the slot as written if all 8 bytes were written 5074 * otherwise read propagation may incorrectly stop too soon 5075 * when stack slots are partially written. 5076 * This heuristic means that read propagation will be 5077 * conservative, since it will add reg_live_read marks 5078 * to stack slots all the way to first state when programs 5079 * writes+reads less than 8 bytes 5080 */ 5081 bpf_mark_stack_write(env, state->frameno, BIT(spi)); 5082 } 5083 5084 check_fastcall_stack_contract(env, state, insn_idx, off); 5085 mark_stack_slot_scratched(env, spi); 5086 if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) { 5087 bool reg_value_fits; 5088 5089 reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size; 5090 /* Make sure that reg had an ID to build a relation on spill. */ 5091 if (reg_value_fits) 5092 assign_scalar_id_before_mov(env, reg); 5093 save_register_state(env, state, spi, reg, size); 5094 /* Break the relation on a narrowing spill. */ 5095 if (!reg_value_fits) 5096 state->stack[spi].spilled_ptr.id = 0; 5097 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 5098 env->bpf_capable) { 5099 struct bpf_reg_state *tmp_reg = &env->fake_reg[0]; 5100 5101 memset(tmp_reg, 0, sizeof(*tmp_reg)); 5102 __mark_reg_known(tmp_reg, insn->imm); 5103 tmp_reg->type = SCALAR_VALUE; 5104 save_register_state(env, state, spi, tmp_reg, size); 5105 } else if (reg && is_spillable_regtype(reg->type)) { 5106 /* register containing pointer is being spilled into stack */ 5107 if (size != BPF_REG_SIZE) { 5108 verbose_linfo(env, insn_idx, "; "); 5109 verbose(env, "invalid size of register spill\n"); 5110 return -EACCES; 5111 } 5112 if (state != cur && reg->type == PTR_TO_STACK) { 5113 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 5114 return -EINVAL; 5115 } 5116 save_register_state(env, state, spi, reg, size); 5117 } else { 5118 u8 type = STACK_MISC; 5119 5120 /* regular write of data into stack destroys any spilled ptr */ 5121 state->stack[spi].spilled_ptr.type = NOT_INIT; 5122 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 5123 if (is_stack_slot_special(&state->stack[spi])) 5124 for (i = 0; i < BPF_REG_SIZE; i++) 5125 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 5126 5127 /* when we zero initialize stack slots mark them as such */ 5128 if ((reg && register_is_null(reg)) || 5129 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 5130 /* STACK_ZERO case happened because register spill 5131 * wasn't properly aligned at the stack slot boundary, 5132 * so it's not a register spill anymore; force 5133 * originating register to be precise to make 5134 * STACK_ZERO correct for subsequent states 5135 */ 5136 err = mark_chain_precision(env, value_regno); 5137 if (err) 5138 return err; 5139 type = STACK_ZERO; 5140 } 5141 5142 /* Mark slots affected by this stack write. */ 5143 for (i = 0; i < size; i++) 5144 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type; 5145 insn_flags = 0; /* not a register spill */ 5146 } 5147 5148 if (insn_flags) 5149 return push_jmp_history(env, env->cur_state, insn_flags, 0); 5150 return 0; 5151 } 5152 5153 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 5154 * known to contain a variable offset. 5155 * This function checks whether the write is permitted and conservatively 5156 * tracks the effects of the write, considering that each stack slot in the 5157 * dynamic range is potentially written to. 5158 * 5159 * 'off' includes 'regno->off'. 5160 * 'value_regno' can be -1, meaning that an unknown value is being written to 5161 * the stack. 5162 * 5163 * Spilled pointers in range are not marked as written because we don't know 5164 * what's going to be actually written. This means that read propagation for 5165 * future reads cannot be terminated by this write. 5166 * 5167 * For privileged programs, uninitialized stack slots are considered 5168 * initialized by this write (even though we don't know exactly what offsets 5169 * are going to be written to). The idea is that we don't want the verifier to 5170 * reject future reads that access slots written to through variable offsets. 5171 */ 5172 static int check_stack_write_var_off(struct bpf_verifier_env *env, 5173 /* func where register points to */ 5174 struct bpf_func_state *state, 5175 int ptr_regno, int off, int size, 5176 int value_regno, int insn_idx) 5177 { 5178 struct bpf_func_state *cur; /* state of the current function */ 5179 int min_off, max_off; 5180 int i, err; 5181 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 5182 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5183 bool writing_zero = false; 5184 /* set if the fact that we're writing a zero is used to let any 5185 * stack slots remain STACK_ZERO 5186 */ 5187 bool zero_used = false; 5188 5189 cur = env->cur_state->frame[env->cur_state->curframe]; 5190 ptr_reg = &cur->regs[ptr_regno]; 5191 min_off = ptr_reg->smin_value + off; 5192 max_off = ptr_reg->smax_value + off + size; 5193 if (value_regno >= 0) 5194 value_reg = &cur->regs[value_regno]; 5195 if ((value_reg && register_is_null(value_reg)) || 5196 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 5197 writing_zero = true; 5198 5199 for (i = min_off; i < max_off; i++) { 5200 int spi; 5201 5202 spi = __get_spi(i); 5203 err = destroy_if_dynptr_stack_slot(env, state, spi); 5204 if (err) 5205 return err; 5206 } 5207 5208 check_fastcall_stack_contract(env, state, insn_idx, min_off); 5209 /* Variable offset writes destroy any spilled pointers in range. */ 5210 for (i = min_off; i < max_off; i++) { 5211 u8 new_type, *stype; 5212 int slot, spi; 5213 5214 slot = -i - 1; 5215 spi = slot / BPF_REG_SIZE; 5216 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 5217 mark_stack_slot_scratched(env, spi); 5218 5219 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 5220 /* Reject the write if range we may write to has not 5221 * been initialized beforehand. If we didn't reject 5222 * here, the ptr status would be erased below (even 5223 * though not all slots are actually overwritten), 5224 * possibly opening the door to leaks. 5225 * 5226 * We do however catch STACK_INVALID case below, and 5227 * only allow reading possibly uninitialized memory 5228 * later for CAP_PERFMON, as the write may not happen to 5229 * that slot. 5230 */ 5231 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 5232 insn_idx, i); 5233 return -EINVAL; 5234 } 5235 5236 /* If writing_zero and the spi slot contains a spill of value 0, 5237 * maintain the spill type. 5238 */ 5239 if (writing_zero && *stype == STACK_SPILL && 5240 is_spilled_scalar_reg(&state->stack[spi])) { 5241 struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr; 5242 5243 if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) { 5244 zero_used = true; 5245 continue; 5246 } 5247 } 5248 5249 /* Erase all other spilled pointers. */ 5250 state->stack[spi].spilled_ptr.type = NOT_INIT; 5251 5252 /* Update the slot type. */ 5253 new_type = STACK_MISC; 5254 if (writing_zero && *stype == STACK_ZERO) { 5255 new_type = STACK_ZERO; 5256 zero_used = true; 5257 } 5258 /* If the slot is STACK_INVALID, we check whether it's OK to 5259 * pretend that it will be initialized by this write. The slot 5260 * might not actually be written to, and so if we mark it as 5261 * initialized future reads might leak uninitialized memory. 5262 * For privileged programs, we will accept such reads to slots 5263 * that may or may not be written because, if we're reject 5264 * them, the error would be too confusing. 5265 */ 5266 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 5267 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 5268 insn_idx, i); 5269 return -EINVAL; 5270 } 5271 *stype = new_type; 5272 } 5273 if (zero_used) { 5274 /* backtracking doesn't work for STACK_ZERO yet. */ 5275 err = mark_chain_precision(env, value_regno); 5276 if (err) 5277 return err; 5278 } 5279 return 0; 5280 } 5281 5282 /* When register 'dst_regno' is assigned some values from stack[min_off, 5283 * max_off), we set the register's type according to the types of the 5284 * respective stack slots. If all the stack values are known to be zeros, then 5285 * so is the destination reg. Otherwise, the register is considered to be 5286 * SCALAR. This function does not deal with register filling; the caller must 5287 * ensure that all spilled registers in the stack range have been marked as 5288 * read. 5289 */ 5290 static void mark_reg_stack_read(struct bpf_verifier_env *env, 5291 /* func where src register points to */ 5292 struct bpf_func_state *ptr_state, 5293 int min_off, int max_off, int dst_regno) 5294 { 5295 struct bpf_verifier_state *vstate = env->cur_state; 5296 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5297 int i, slot, spi; 5298 u8 *stype; 5299 int zeros = 0; 5300 5301 for (i = min_off; i < max_off; i++) { 5302 slot = -i - 1; 5303 spi = slot / BPF_REG_SIZE; 5304 mark_stack_slot_scratched(env, spi); 5305 stype = ptr_state->stack[spi].slot_type; 5306 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 5307 break; 5308 zeros++; 5309 } 5310 if (zeros == max_off - min_off) { 5311 /* Any access_size read into register is zero extended, 5312 * so the whole register == const_zero. 5313 */ 5314 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5315 } else { 5316 /* have read misc data from the stack */ 5317 mark_reg_unknown(env, state->regs, dst_regno); 5318 } 5319 } 5320 5321 /* Read the stack at 'off' and put the results into the register indicated by 5322 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 5323 * spilled reg. 5324 * 5325 * 'dst_regno' can be -1, meaning that the read value is not going to a 5326 * register. 5327 * 5328 * The access is assumed to be within the current stack bounds. 5329 */ 5330 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 5331 /* func where src register points to */ 5332 struct bpf_func_state *reg_state, 5333 int off, int size, int dst_regno) 5334 { 5335 struct bpf_verifier_state *vstate = env->cur_state; 5336 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5337 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 5338 struct bpf_reg_state *reg; 5339 u8 *stype, type; 5340 int insn_flags = insn_stack_access_flags(reg_state->frameno, spi); 5341 int err; 5342 5343 stype = reg_state->stack[spi].slot_type; 5344 reg = ®_state->stack[spi].spilled_ptr; 5345 5346 mark_stack_slot_scratched(env, spi); 5347 check_fastcall_stack_contract(env, state, env->insn_idx, off); 5348 err = bpf_mark_stack_read(env, reg_state->frameno, env->insn_idx, BIT(spi)); 5349 if (err) 5350 return err; 5351 5352 if (is_spilled_reg(®_state->stack[spi])) { 5353 u8 spill_size = 1; 5354 5355 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 5356 spill_size++; 5357 5358 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 5359 if (reg->type != SCALAR_VALUE) { 5360 verbose_linfo(env, env->insn_idx, "; "); 5361 verbose(env, "invalid size of register fill\n"); 5362 return -EACCES; 5363 } 5364 5365 if (dst_regno < 0) 5366 return 0; 5367 5368 if (size <= spill_size && 5369 bpf_stack_narrow_access_ok(off, size, spill_size)) { 5370 /* The earlier check_reg_arg() has decided the 5371 * subreg_def for this insn. Save it first. 5372 */ 5373 s32 subreg_def = state->regs[dst_regno].subreg_def; 5374 5375 copy_register_state(&state->regs[dst_regno], reg); 5376 state->regs[dst_regno].subreg_def = subreg_def; 5377 5378 /* Break the relation on a narrowing fill. 5379 * coerce_reg_to_size will adjust the boundaries. 5380 */ 5381 if (get_reg_width(reg) > size * BITS_PER_BYTE) 5382 state->regs[dst_regno].id = 0; 5383 } else { 5384 int spill_cnt = 0, zero_cnt = 0; 5385 5386 for (i = 0; i < size; i++) { 5387 type = stype[(slot - i) % BPF_REG_SIZE]; 5388 if (type == STACK_SPILL) { 5389 spill_cnt++; 5390 continue; 5391 } 5392 if (type == STACK_MISC) 5393 continue; 5394 if (type == STACK_ZERO) { 5395 zero_cnt++; 5396 continue; 5397 } 5398 if (type == STACK_INVALID && env->allow_uninit_stack) 5399 continue; 5400 verbose(env, "invalid read from stack off %d+%d size %d\n", 5401 off, i, size); 5402 return -EACCES; 5403 } 5404 5405 if (spill_cnt == size && 5406 tnum_is_const(reg->var_off) && reg->var_off.value == 0) { 5407 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5408 /* this IS register fill, so keep insn_flags */ 5409 } else if (zero_cnt == size) { 5410 /* similarly to mark_reg_stack_read(), preserve zeroes */ 5411 __mark_reg_const_zero(env, &state->regs[dst_regno]); 5412 insn_flags = 0; /* not restoring original register state */ 5413 } else { 5414 mark_reg_unknown(env, state->regs, dst_regno); 5415 insn_flags = 0; /* not restoring original register state */ 5416 } 5417 } 5418 } else if (dst_regno >= 0) { 5419 /* restore register state from stack */ 5420 copy_register_state(&state->regs[dst_regno], reg); 5421 /* mark reg as written since spilled pointer state likely 5422 * has its liveness marks cleared by is_state_visited() 5423 * which resets stack/reg liveness for state transitions 5424 */ 5425 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 5426 /* If dst_regno==-1, the caller is asking us whether 5427 * it is acceptable to use this value as a SCALAR_VALUE 5428 * (e.g. for XADD). 5429 * We must not allow unprivileged callers to do that 5430 * with spilled pointers. 5431 */ 5432 verbose(env, "leaking pointer from stack off %d\n", 5433 off); 5434 return -EACCES; 5435 } 5436 } else { 5437 for (i = 0; i < size; i++) { 5438 type = stype[(slot - i) % BPF_REG_SIZE]; 5439 if (type == STACK_MISC) 5440 continue; 5441 if (type == STACK_ZERO) 5442 continue; 5443 if (type == STACK_INVALID && env->allow_uninit_stack) 5444 continue; 5445 verbose(env, "invalid read from stack off %d+%d size %d\n", 5446 off, i, size); 5447 return -EACCES; 5448 } 5449 if (dst_regno >= 0) 5450 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 5451 insn_flags = 0; /* we are not restoring spilled register */ 5452 } 5453 if (insn_flags) 5454 return push_jmp_history(env, env->cur_state, insn_flags, 0); 5455 return 0; 5456 } 5457 5458 enum bpf_access_src { 5459 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 5460 ACCESS_HELPER = 2, /* the access is performed by a helper */ 5461 }; 5462 5463 static int check_stack_range_initialized(struct bpf_verifier_env *env, 5464 int regno, int off, int access_size, 5465 bool zero_size_allowed, 5466 enum bpf_access_type type, 5467 struct bpf_call_arg_meta *meta); 5468 5469 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 5470 { 5471 return cur_regs(env) + regno; 5472 } 5473 5474 /* Read the stack at 'ptr_regno + off' and put the result into the register 5475 * 'dst_regno'. 5476 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 5477 * but not its variable offset. 5478 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 5479 * 5480 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 5481 * filling registers (i.e. reads of spilled register cannot be detected when 5482 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 5483 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 5484 * offset; for a fixed offset check_stack_read_fixed_off should be used 5485 * instead. 5486 */ 5487 static int check_stack_read_var_off(struct bpf_verifier_env *env, 5488 int ptr_regno, int off, int size, int dst_regno) 5489 { 5490 /* The state of the source register. */ 5491 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5492 struct bpf_func_state *ptr_state = func(env, reg); 5493 int err; 5494 int min_off, max_off; 5495 5496 /* Note that we pass a NULL meta, so raw access will not be permitted. 5497 */ 5498 err = check_stack_range_initialized(env, ptr_regno, off, size, 5499 false, BPF_READ, NULL); 5500 if (err) 5501 return err; 5502 5503 min_off = reg->smin_value + off; 5504 max_off = reg->smax_value + off; 5505 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 5506 check_fastcall_stack_contract(env, ptr_state, env->insn_idx, min_off); 5507 return 0; 5508 } 5509 5510 /* check_stack_read dispatches to check_stack_read_fixed_off or 5511 * check_stack_read_var_off. 5512 * 5513 * The caller must ensure that the offset falls within the allocated stack 5514 * bounds. 5515 * 5516 * 'dst_regno' is a register which will receive the value from the stack. It 5517 * can be -1, meaning that the read value is not going to a register. 5518 */ 5519 static int check_stack_read(struct bpf_verifier_env *env, 5520 int ptr_regno, int off, int size, 5521 int dst_regno) 5522 { 5523 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5524 struct bpf_func_state *state = func(env, reg); 5525 int err; 5526 /* Some accesses are only permitted with a static offset. */ 5527 bool var_off = !tnum_is_const(reg->var_off); 5528 5529 /* The offset is required to be static when reads don't go to a 5530 * register, in order to not leak pointers (see 5531 * check_stack_read_fixed_off). 5532 */ 5533 if (dst_regno < 0 && var_off) { 5534 char tn_buf[48]; 5535 5536 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5537 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 5538 tn_buf, off, size); 5539 return -EACCES; 5540 } 5541 /* Variable offset is prohibited for unprivileged mode for simplicity 5542 * since it requires corresponding support in Spectre masking for stack 5543 * ALU. See also retrieve_ptr_limit(). The check in 5544 * check_stack_access_for_ptr_arithmetic() called by 5545 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 5546 * with variable offsets, therefore no check is required here. Further, 5547 * just checking it here would be insufficient as speculative stack 5548 * writes could still lead to unsafe speculative behaviour. 5549 */ 5550 if (!var_off) { 5551 off += reg->var_off.value; 5552 err = check_stack_read_fixed_off(env, state, off, size, 5553 dst_regno); 5554 } else { 5555 /* Variable offset stack reads need more conservative handling 5556 * than fixed offset ones. Note that dst_regno >= 0 on this 5557 * branch. 5558 */ 5559 err = check_stack_read_var_off(env, ptr_regno, off, size, 5560 dst_regno); 5561 } 5562 return err; 5563 } 5564 5565 5566 /* check_stack_write dispatches to check_stack_write_fixed_off or 5567 * check_stack_write_var_off. 5568 * 5569 * 'ptr_regno' is the register used as a pointer into the stack. 5570 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 5571 * 'value_regno' is the register whose value we're writing to the stack. It can 5572 * be -1, meaning that we're not writing from a register. 5573 * 5574 * The caller must ensure that the offset falls within the maximum stack size. 5575 */ 5576 static int check_stack_write(struct bpf_verifier_env *env, 5577 int ptr_regno, int off, int size, 5578 int value_regno, int insn_idx) 5579 { 5580 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5581 struct bpf_func_state *state = func(env, reg); 5582 int err; 5583 5584 if (tnum_is_const(reg->var_off)) { 5585 off += reg->var_off.value; 5586 err = check_stack_write_fixed_off(env, state, off, size, 5587 value_regno, insn_idx); 5588 } else { 5589 /* Variable offset stack reads need more conservative handling 5590 * than fixed offset ones. 5591 */ 5592 err = check_stack_write_var_off(env, state, 5593 ptr_regno, off, size, 5594 value_regno, insn_idx); 5595 } 5596 return err; 5597 } 5598 5599 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 5600 int off, int size, enum bpf_access_type type) 5601 { 5602 struct bpf_reg_state *regs = cur_regs(env); 5603 struct bpf_map *map = regs[regno].map_ptr; 5604 u32 cap = bpf_map_flags_to_cap(map); 5605 5606 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 5607 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 5608 map->value_size, off, size); 5609 return -EACCES; 5610 } 5611 5612 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 5613 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 5614 map->value_size, off, size); 5615 return -EACCES; 5616 } 5617 5618 return 0; 5619 } 5620 5621 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 5622 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 5623 int off, int size, u32 mem_size, 5624 bool zero_size_allowed) 5625 { 5626 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 5627 struct bpf_reg_state *reg; 5628 5629 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 5630 return 0; 5631 5632 reg = &cur_regs(env)[regno]; 5633 switch (reg->type) { 5634 case PTR_TO_MAP_KEY: 5635 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 5636 mem_size, off, size); 5637 break; 5638 case PTR_TO_MAP_VALUE: 5639 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 5640 mem_size, off, size); 5641 break; 5642 case PTR_TO_PACKET: 5643 case PTR_TO_PACKET_META: 5644 case PTR_TO_PACKET_END: 5645 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 5646 off, size, regno, reg->id, off, mem_size); 5647 break; 5648 case PTR_TO_MEM: 5649 default: 5650 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 5651 mem_size, off, size); 5652 } 5653 5654 return -EACCES; 5655 } 5656 5657 /* check read/write into a memory region with possible variable offset */ 5658 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 5659 int off, int size, u32 mem_size, 5660 bool zero_size_allowed) 5661 { 5662 struct bpf_verifier_state *vstate = env->cur_state; 5663 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5664 struct bpf_reg_state *reg = &state->regs[regno]; 5665 int err; 5666 5667 /* We may have adjusted the register pointing to memory region, so we 5668 * need to try adding each of min_value and max_value to off 5669 * to make sure our theoretical access will be safe. 5670 * 5671 * The minimum value is only important with signed 5672 * comparisons where we can't assume the floor of a 5673 * value is 0. If we are using signed variables for our 5674 * index'es we need to make sure that whatever we use 5675 * will have a set floor within our range. 5676 */ 5677 if (reg->smin_value < 0 && 5678 (reg->smin_value == S64_MIN || 5679 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 5680 reg->smin_value + off < 0)) { 5681 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5682 regno); 5683 return -EACCES; 5684 } 5685 err = __check_mem_access(env, regno, reg->smin_value + off, size, 5686 mem_size, zero_size_allowed); 5687 if (err) { 5688 verbose(env, "R%d min value is outside of the allowed memory range\n", 5689 regno); 5690 return err; 5691 } 5692 5693 /* If we haven't set a max value then we need to bail since we can't be 5694 * sure we won't do bad things. 5695 * If reg->umax_value + off could overflow, treat that as unbounded too. 5696 */ 5697 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 5698 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 5699 regno); 5700 return -EACCES; 5701 } 5702 err = __check_mem_access(env, regno, reg->umax_value + off, size, 5703 mem_size, zero_size_allowed); 5704 if (err) { 5705 verbose(env, "R%d max value is outside of the allowed memory range\n", 5706 regno); 5707 return err; 5708 } 5709 5710 return 0; 5711 } 5712 5713 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 5714 const struct bpf_reg_state *reg, int regno, 5715 bool fixed_off_ok) 5716 { 5717 /* Access to this pointer-typed register or passing it to a helper 5718 * is only allowed in its original, unmodified form. 5719 */ 5720 5721 if (reg->off < 0) { 5722 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 5723 reg_type_str(env, reg->type), regno, reg->off); 5724 return -EACCES; 5725 } 5726 5727 if (!fixed_off_ok && reg->off) { 5728 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 5729 reg_type_str(env, reg->type), regno, reg->off); 5730 return -EACCES; 5731 } 5732 5733 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5734 char tn_buf[48]; 5735 5736 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5737 verbose(env, "variable %s access var_off=%s disallowed\n", 5738 reg_type_str(env, reg->type), tn_buf); 5739 return -EACCES; 5740 } 5741 5742 return 0; 5743 } 5744 5745 static int check_ptr_off_reg(struct bpf_verifier_env *env, 5746 const struct bpf_reg_state *reg, int regno) 5747 { 5748 return __check_ptr_off_reg(env, reg, regno, false); 5749 } 5750 5751 static int map_kptr_match_type(struct bpf_verifier_env *env, 5752 struct btf_field *kptr_field, 5753 struct bpf_reg_state *reg, u32 regno) 5754 { 5755 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 5756 int perm_flags; 5757 const char *reg_name = ""; 5758 5759 if (btf_is_kernel(reg->btf)) { 5760 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 5761 5762 /* Only unreferenced case accepts untrusted pointers */ 5763 if (kptr_field->type == BPF_KPTR_UNREF) 5764 perm_flags |= PTR_UNTRUSTED; 5765 } else { 5766 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5767 if (kptr_field->type == BPF_KPTR_PERCPU) 5768 perm_flags |= MEM_PERCPU; 5769 } 5770 5771 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5772 goto bad_type; 5773 5774 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5775 reg_name = btf_type_name(reg->btf, reg->btf_id); 5776 5777 /* For ref_ptr case, release function check should ensure we get one 5778 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5779 * normal store of unreferenced kptr, we must ensure var_off is zero. 5780 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5781 * reg->off and reg->ref_obj_id are not needed here. 5782 */ 5783 if (__check_ptr_off_reg(env, reg, regno, true)) 5784 return -EACCES; 5785 5786 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5787 * we also need to take into account the reg->off. 5788 * 5789 * We want to support cases like: 5790 * 5791 * struct foo { 5792 * struct bar br; 5793 * struct baz bz; 5794 * }; 5795 * 5796 * struct foo *v; 5797 * v = func(); // PTR_TO_BTF_ID 5798 * val->foo = v; // reg->off is zero, btf and btf_id match type 5799 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5800 * // first member type of struct after comparison fails 5801 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5802 * // to match type 5803 * 5804 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5805 * is zero. We must also ensure that btf_struct_ids_match does not walk 5806 * the struct to match type against first member of struct, i.e. reject 5807 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5808 * strict mode to true for type match. 5809 */ 5810 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5811 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5812 kptr_field->type != BPF_KPTR_UNREF)) 5813 goto bad_type; 5814 return 0; 5815 bad_type: 5816 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5817 reg_type_str(env, reg->type), reg_name); 5818 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5819 if (kptr_field->type == BPF_KPTR_UNREF) 5820 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5821 targ_name); 5822 else 5823 verbose(env, "\n"); 5824 return -EINVAL; 5825 } 5826 5827 static bool in_sleepable(struct bpf_verifier_env *env) 5828 { 5829 return env->prog->sleepable || 5830 (env->cur_state && env->cur_state->in_sleepable); 5831 } 5832 5833 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5834 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5835 */ 5836 static bool in_rcu_cs(struct bpf_verifier_env *env) 5837 { 5838 return env->cur_state->active_rcu_lock || 5839 env->cur_state->active_locks || 5840 !in_sleepable(env); 5841 } 5842 5843 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5844 BTF_SET_START(rcu_protected_types) 5845 #ifdef CONFIG_NET 5846 BTF_ID(struct, prog_test_ref_kfunc) 5847 #endif 5848 #ifdef CONFIG_CGROUPS 5849 BTF_ID(struct, cgroup) 5850 #endif 5851 #ifdef CONFIG_BPF_JIT 5852 BTF_ID(struct, bpf_cpumask) 5853 #endif 5854 BTF_ID(struct, task_struct) 5855 #ifdef CONFIG_CRYPTO 5856 BTF_ID(struct, bpf_crypto_ctx) 5857 #endif 5858 BTF_SET_END(rcu_protected_types) 5859 5860 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5861 { 5862 if (!btf_is_kernel(btf)) 5863 return true; 5864 return btf_id_set_contains(&rcu_protected_types, btf_id); 5865 } 5866 5867 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field) 5868 { 5869 struct btf_struct_meta *meta; 5870 5871 if (btf_is_kernel(kptr_field->kptr.btf)) 5872 return NULL; 5873 5874 meta = btf_find_struct_meta(kptr_field->kptr.btf, 5875 kptr_field->kptr.btf_id); 5876 5877 return meta ? meta->record : NULL; 5878 } 5879 5880 static bool rcu_safe_kptr(const struct btf_field *field) 5881 { 5882 const struct btf_field_kptr *kptr = &field->kptr; 5883 5884 return field->type == BPF_KPTR_PERCPU || 5885 (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id)); 5886 } 5887 5888 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field) 5889 { 5890 struct btf_record *rec; 5891 u32 ret; 5892 5893 ret = PTR_MAYBE_NULL; 5894 if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) { 5895 ret |= MEM_RCU; 5896 if (kptr_field->type == BPF_KPTR_PERCPU) 5897 ret |= MEM_PERCPU; 5898 else if (!btf_is_kernel(kptr_field->kptr.btf)) 5899 ret |= MEM_ALLOC; 5900 5901 rec = kptr_pointee_btf_record(kptr_field); 5902 if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE)) 5903 ret |= NON_OWN_REF; 5904 } else { 5905 ret |= PTR_UNTRUSTED; 5906 } 5907 5908 return ret; 5909 } 5910 5911 static int mark_uptr_ld_reg(struct bpf_verifier_env *env, u32 regno, 5912 struct btf_field *field) 5913 { 5914 struct bpf_reg_state *reg; 5915 const struct btf_type *t; 5916 5917 t = btf_type_by_id(field->kptr.btf, field->kptr.btf_id); 5918 mark_reg_known_zero(env, cur_regs(env), regno); 5919 reg = reg_state(env, regno); 5920 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL; 5921 reg->mem_size = t->size; 5922 reg->id = ++env->id_gen; 5923 5924 return 0; 5925 } 5926 5927 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5928 int value_regno, int insn_idx, 5929 struct btf_field *kptr_field) 5930 { 5931 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5932 int class = BPF_CLASS(insn->code); 5933 struct bpf_reg_state *val_reg; 5934 int ret; 5935 5936 /* Things we already checked for in check_map_access and caller: 5937 * - Reject cases where variable offset may touch kptr 5938 * - size of access (must be BPF_DW) 5939 * - tnum_is_const(reg->var_off) 5940 * - kptr_field->offset == off + reg->var_off.value 5941 */ 5942 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5943 if (BPF_MODE(insn->code) != BPF_MEM) { 5944 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5945 return -EACCES; 5946 } 5947 5948 /* We only allow loading referenced kptr, since it will be marked as 5949 * untrusted, similar to unreferenced kptr. 5950 */ 5951 if (class != BPF_LDX && 5952 (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) { 5953 verbose(env, "store to referenced kptr disallowed\n"); 5954 return -EACCES; 5955 } 5956 if (class != BPF_LDX && kptr_field->type == BPF_UPTR) { 5957 verbose(env, "store to uptr disallowed\n"); 5958 return -EACCES; 5959 } 5960 5961 if (class == BPF_LDX) { 5962 if (kptr_field->type == BPF_UPTR) 5963 return mark_uptr_ld_reg(env, value_regno, kptr_field); 5964 5965 /* We can simply mark the value_regno receiving the pointer 5966 * value from map as PTR_TO_BTF_ID, with the correct type. 5967 */ 5968 ret = mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, 5969 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5970 btf_ld_kptr_type(env, kptr_field)); 5971 if (ret < 0) 5972 return ret; 5973 } else if (class == BPF_STX) { 5974 val_reg = reg_state(env, value_regno); 5975 if (!register_is_null(val_reg) && 5976 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5977 return -EACCES; 5978 } else if (class == BPF_ST) { 5979 if (insn->imm) { 5980 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5981 kptr_field->offset); 5982 return -EACCES; 5983 } 5984 } else { 5985 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5986 return -EACCES; 5987 } 5988 return 0; 5989 } 5990 5991 /* check read/write into a map element with possible variable offset */ 5992 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5993 int off, int size, bool zero_size_allowed, 5994 enum bpf_access_src src) 5995 { 5996 struct bpf_verifier_state *vstate = env->cur_state; 5997 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5998 struct bpf_reg_state *reg = &state->regs[regno]; 5999 struct bpf_map *map = reg->map_ptr; 6000 struct btf_record *rec; 6001 int err, i; 6002 6003 err = check_mem_region_access(env, regno, off, size, map->value_size, 6004 zero_size_allowed); 6005 if (err) 6006 return err; 6007 6008 if (IS_ERR_OR_NULL(map->record)) 6009 return 0; 6010 rec = map->record; 6011 for (i = 0; i < rec->cnt; i++) { 6012 struct btf_field *field = &rec->fields[i]; 6013 u32 p = field->offset; 6014 6015 /* If any part of a field can be touched by load/store, reject 6016 * this program. To check that [x1, x2) overlaps with [y1, y2), 6017 * it is sufficient to check x1 < y2 && y1 < x2. 6018 */ 6019 if (reg->smin_value + off < p + field->size && 6020 p < reg->umax_value + off + size) { 6021 switch (field->type) { 6022 case BPF_KPTR_UNREF: 6023 case BPF_KPTR_REF: 6024 case BPF_KPTR_PERCPU: 6025 case BPF_UPTR: 6026 if (src != ACCESS_DIRECT) { 6027 verbose(env, "%s cannot be accessed indirectly by helper\n", 6028 btf_field_type_name(field->type)); 6029 return -EACCES; 6030 } 6031 if (!tnum_is_const(reg->var_off)) { 6032 verbose(env, "%s access cannot have variable offset\n", 6033 btf_field_type_name(field->type)); 6034 return -EACCES; 6035 } 6036 if (p != off + reg->var_off.value) { 6037 verbose(env, "%s access misaligned expected=%u off=%llu\n", 6038 btf_field_type_name(field->type), 6039 p, off + reg->var_off.value); 6040 return -EACCES; 6041 } 6042 if (size != bpf_size_to_bytes(BPF_DW)) { 6043 verbose(env, "%s access size must be BPF_DW\n", 6044 btf_field_type_name(field->type)); 6045 return -EACCES; 6046 } 6047 break; 6048 default: 6049 verbose(env, "%s cannot be accessed directly by load/store\n", 6050 btf_field_type_name(field->type)); 6051 return -EACCES; 6052 } 6053 } 6054 } 6055 return 0; 6056 } 6057 6058 #define MAX_PACKET_OFF 0xffff 6059 6060 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 6061 const struct bpf_call_arg_meta *meta, 6062 enum bpf_access_type t) 6063 { 6064 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 6065 6066 switch (prog_type) { 6067 /* Program types only with direct read access go here! */ 6068 case BPF_PROG_TYPE_LWT_IN: 6069 case BPF_PROG_TYPE_LWT_OUT: 6070 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 6071 case BPF_PROG_TYPE_SK_REUSEPORT: 6072 case BPF_PROG_TYPE_FLOW_DISSECTOR: 6073 case BPF_PROG_TYPE_CGROUP_SKB: 6074 if (t == BPF_WRITE) 6075 return false; 6076 fallthrough; 6077 6078 /* Program types with direct read + write access go here! */ 6079 case BPF_PROG_TYPE_SCHED_CLS: 6080 case BPF_PROG_TYPE_SCHED_ACT: 6081 case BPF_PROG_TYPE_XDP: 6082 case BPF_PROG_TYPE_LWT_XMIT: 6083 case BPF_PROG_TYPE_SK_SKB: 6084 case BPF_PROG_TYPE_SK_MSG: 6085 if (meta) 6086 return meta->pkt_access; 6087 6088 env->seen_direct_write = true; 6089 return true; 6090 6091 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 6092 if (t == BPF_WRITE) 6093 env->seen_direct_write = true; 6094 6095 return true; 6096 6097 default: 6098 return false; 6099 } 6100 } 6101 6102 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 6103 int size, bool zero_size_allowed) 6104 { 6105 struct bpf_reg_state *regs = cur_regs(env); 6106 struct bpf_reg_state *reg = ®s[regno]; 6107 int err; 6108 6109 /* We may have added a variable offset to the packet pointer; but any 6110 * reg->range we have comes after that. We are only checking the fixed 6111 * offset. 6112 */ 6113 6114 /* We don't allow negative numbers, because we aren't tracking enough 6115 * detail to prove they're safe. 6116 */ 6117 if (reg->smin_value < 0) { 6118 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 6119 regno); 6120 return -EACCES; 6121 } 6122 6123 err = reg->range < 0 ? -EINVAL : 6124 __check_mem_access(env, regno, off, size, reg->range, 6125 zero_size_allowed); 6126 if (err) { 6127 verbose(env, "R%d offset is outside of the packet\n", regno); 6128 return err; 6129 } 6130 6131 /* __check_mem_access has made sure "off + size - 1" is within u16. 6132 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 6133 * otherwise find_good_pkt_pointers would have refused to set range info 6134 * that __check_mem_access would have rejected this pkt access. 6135 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 6136 */ 6137 env->prog->aux->max_pkt_offset = 6138 max_t(u32, env->prog->aux->max_pkt_offset, 6139 off + reg->umax_value + size - 1); 6140 6141 return err; 6142 } 6143 6144 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 6145 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 6146 enum bpf_access_type t, struct bpf_insn_access_aux *info) 6147 { 6148 if (env->ops->is_valid_access && 6149 env->ops->is_valid_access(off, size, t, env->prog, info)) { 6150 /* A non zero info.ctx_field_size indicates that this field is a 6151 * candidate for later verifier transformation to load the whole 6152 * field and then apply a mask when accessed with a narrower 6153 * access than actual ctx access size. A zero info.ctx_field_size 6154 * will only allow for whole field access and rejects any other 6155 * type of narrower access. 6156 */ 6157 if (base_type(info->reg_type) == PTR_TO_BTF_ID) { 6158 if (info->ref_obj_id && 6159 !find_reference_state(env->cur_state, info->ref_obj_id)) { 6160 verbose(env, "invalid bpf_context access off=%d. Reference may already be released\n", 6161 off); 6162 return -EACCES; 6163 } 6164 } else { 6165 env->insn_aux_data[insn_idx].ctx_field_size = info->ctx_field_size; 6166 } 6167 /* remember the offset of last byte accessed in ctx */ 6168 if (env->prog->aux->max_ctx_offset < off + size) 6169 env->prog->aux->max_ctx_offset = off + size; 6170 return 0; 6171 } 6172 6173 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 6174 return -EACCES; 6175 } 6176 6177 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 6178 int size) 6179 { 6180 if (size < 0 || off < 0 || 6181 (u64)off + size > sizeof(struct bpf_flow_keys)) { 6182 verbose(env, "invalid access to flow keys off=%d size=%d\n", 6183 off, size); 6184 return -EACCES; 6185 } 6186 return 0; 6187 } 6188 6189 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 6190 u32 regno, int off, int size, 6191 enum bpf_access_type t) 6192 { 6193 struct bpf_reg_state *regs = cur_regs(env); 6194 struct bpf_reg_state *reg = ®s[regno]; 6195 struct bpf_insn_access_aux info = {}; 6196 bool valid; 6197 6198 if (reg->smin_value < 0) { 6199 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 6200 regno); 6201 return -EACCES; 6202 } 6203 6204 switch (reg->type) { 6205 case PTR_TO_SOCK_COMMON: 6206 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 6207 break; 6208 case PTR_TO_SOCKET: 6209 valid = bpf_sock_is_valid_access(off, size, t, &info); 6210 break; 6211 case PTR_TO_TCP_SOCK: 6212 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 6213 break; 6214 case PTR_TO_XDP_SOCK: 6215 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 6216 break; 6217 default: 6218 valid = false; 6219 } 6220 6221 6222 if (valid) { 6223 env->insn_aux_data[insn_idx].ctx_field_size = 6224 info.ctx_field_size; 6225 return 0; 6226 } 6227 6228 verbose(env, "R%d invalid %s access off=%d size=%d\n", 6229 regno, reg_type_str(env, reg->type), off, size); 6230 6231 return -EACCES; 6232 } 6233 6234 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 6235 { 6236 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 6237 } 6238 6239 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 6240 { 6241 const struct bpf_reg_state *reg = reg_state(env, regno); 6242 6243 return reg->type == PTR_TO_CTX; 6244 } 6245 6246 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 6247 { 6248 const struct bpf_reg_state *reg = reg_state(env, regno); 6249 6250 return type_is_sk_pointer(reg->type); 6251 } 6252 6253 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 6254 { 6255 const struct bpf_reg_state *reg = reg_state(env, regno); 6256 6257 return type_is_pkt_pointer(reg->type); 6258 } 6259 6260 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 6261 { 6262 const struct bpf_reg_state *reg = reg_state(env, regno); 6263 6264 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 6265 return reg->type == PTR_TO_FLOW_KEYS; 6266 } 6267 6268 static bool is_arena_reg(struct bpf_verifier_env *env, int regno) 6269 { 6270 const struct bpf_reg_state *reg = reg_state(env, regno); 6271 6272 return reg->type == PTR_TO_ARENA; 6273 } 6274 6275 /* Return false if @regno contains a pointer whose type isn't supported for 6276 * atomic instruction @insn. 6277 */ 6278 static bool atomic_ptr_type_ok(struct bpf_verifier_env *env, int regno, 6279 struct bpf_insn *insn) 6280 { 6281 if (is_ctx_reg(env, regno)) 6282 return false; 6283 if (is_pkt_reg(env, regno)) 6284 return false; 6285 if (is_flow_key_reg(env, regno)) 6286 return false; 6287 if (is_sk_reg(env, regno)) 6288 return false; 6289 if (is_arena_reg(env, regno)) 6290 return bpf_jit_supports_insn(insn, true); 6291 6292 return true; 6293 } 6294 6295 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 6296 #ifdef CONFIG_NET 6297 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 6298 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 6299 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 6300 #endif 6301 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 6302 }; 6303 6304 static bool is_trusted_reg(const struct bpf_reg_state *reg) 6305 { 6306 /* A referenced register is always trusted. */ 6307 if (reg->ref_obj_id) 6308 return true; 6309 6310 /* Types listed in the reg2btf_ids are always trusted */ 6311 if (reg2btf_ids[base_type(reg->type)] && 6312 !bpf_type_has_unsafe_modifiers(reg->type)) 6313 return true; 6314 6315 /* If a register is not referenced, it is trusted if it has the 6316 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 6317 * other type modifiers may be safe, but we elect to take an opt-in 6318 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 6319 * not. 6320 * 6321 * Eventually, we should make PTR_TRUSTED the single source of truth 6322 * for whether a register is trusted. 6323 */ 6324 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 6325 !bpf_type_has_unsafe_modifiers(reg->type); 6326 } 6327 6328 static bool is_rcu_reg(const struct bpf_reg_state *reg) 6329 { 6330 return reg->type & MEM_RCU; 6331 } 6332 6333 static void clear_trusted_flags(enum bpf_type_flag *flag) 6334 { 6335 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 6336 } 6337 6338 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 6339 const struct bpf_reg_state *reg, 6340 int off, int size, bool strict) 6341 { 6342 struct tnum reg_off; 6343 int ip_align; 6344 6345 /* Byte size accesses are always allowed. */ 6346 if (!strict || size == 1) 6347 return 0; 6348 6349 /* For platforms that do not have a Kconfig enabling 6350 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 6351 * NET_IP_ALIGN is universally set to '2'. And on platforms 6352 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 6353 * to this code only in strict mode where we want to emulate 6354 * the NET_IP_ALIGN==2 checking. Therefore use an 6355 * unconditional IP align value of '2'. 6356 */ 6357 ip_align = 2; 6358 6359 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 6360 if (!tnum_is_aligned(reg_off, size)) { 6361 char tn_buf[48]; 6362 6363 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6364 verbose(env, 6365 "misaligned packet access off %d+%s+%d+%d size %d\n", 6366 ip_align, tn_buf, reg->off, off, size); 6367 return -EACCES; 6368 } 6369 6370 return 0; 6371 } 6372 6373 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 6374 const struct bpf_reg_state *reg, 6375 const char *pointer_desc, 6376 int off, int size, bool strict) 6377 { 6378 struct tnum reg_off; 6379 6380 /* Byte size accesses are always allowed. */ 6381 if (!strict || size == 1) 6382 return 0; 6383 6384 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 6385 if (!tnum_is_aligned(reg_off, size)) { 6386 char tn_buf[48]; 6387 6388 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6389 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 6390 pointer_desc, tn_buf, reg->off, off, size); 6391 return -EACCES; 6392 } 6393 6394 return 0; 6395 } 6396 6397 static int check_ptr_alignment(struct bpf_verifier_env *env, 6398 const struct bpf_reg_state *reg, int off, 6399 int size, bool strict_alignment_once) 6400 { 6401 bool strict = env->strict_alignment || strict_alignment_once; 6402 const char *pointer_desc = ""; 6403 6404 switch (reg->type) { 6405 case PTR_TO_PACKET: 6406 case PTR_TO_PACKET_META: 6407 /* Special case, because of NET_IP_ALIGN. Given metadata sits 6408 * right in front, treat it the very same way. 6409 */ 6410 return check_pkt_ptr_alignment(env, reg, off, size, strict); 6411 case PTR_TO_FLOW_KEYS: 6412 pointer_desc = "flow keys "; 6413 break; 6414 case PTR_TO_MAP_KEY: 6415 pointer_desc = "key "; 6416 break; 6417 case PTR_TO_MAP_VALUE: 6418 pointer_desc = "value "; 6419 break; 6420 case PTR_TO_CTX: 6421 pointer_desc = "context "; 6422 break; 6423 case PTR_TO_STACK: 6424 pointer_desc = "stack "; 6425 /* The stack spill tracking logic in check_stack_write_fixed_off() 6426 * and check_stack_read_fixed_off() relies on stack accesses being 6427 * aligned. 6428 */ 6429 strict = true; 6430 break; 6431 case PTR_TO_SOCKET: 6432 pointer_desc = "sock "; 6433 break; 6434 case PTR_TO_SOCK_COMMON: 6435 pointer_desc = "sock_common "; 6436 break; 6437 case PTR_TO_TCP_SOCK: 6438 pointer_desc = "tcp_sock "; 6439 break; 6440 case PTR_TO_XDP_SOCK: 6441 pointer_desc = "xdp_sock "; 6442 break; 6443 case PTR_TO_ARENA: 6444 return 0; 6445 default: 6446 break; 6447 } 6448 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 6449 strict); 6450 } 6451 6452 static enum priv_stack_mode bpf_enable_priv_stack(struct bpf_prog *prog) 6453 { 6454 if (!bpf_jit_supports_private_stack()) 6455 return NO_PRIV_STACK; 6456 6457 /* bpf_prog_check_recur() checks all prog types that use bpf trampoline 6458 * while kprobe/tp/perf_event/raw_tp don't use trampoline hence checked 6459 * explicitly. 6460 */ 6461 switch (prog->type) { 6462 case BPF_PROG_TYPE_KPROBE: 6463 case BPF_PROG_TYPE_TRACEPOINT: 6464 case BPF_PROG_TYPE_PERF_EVENT: 6465 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6466 return PRIV_STACK_ADAPTIVE; 6467 case BPF_PROG_TYPE_TRACING: 6468 case BPF_PROG_TYPE_LSM: 6469 case BPF_PROG_TYPE_STRUCT_OPS: 6470 if (prog->aux->priv_stack_requested || bpf_prog_check_recur(prog)) 6471 return PRIV_STACK_ADAPTIVE; 6472 fallthrough; 6473 default: 6474 break; 6475 } 6476 6477 return NO_PRIV_STACK; 6478 } 6479 6480 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth) 6481 { 6482 if (env->prog->jit_requested) 6483 return round_up(stack_depth, 16); 6484 6485 /* round up to 32-bytes, since this is granularity 6486 * of interpreter stack size 6487 */ 6488 return round_up(max_t(u32, stack_depth, 1), 32); 6489 } 6490 6491 /* starting from main bpf function walk all instructions of the function 6492 * and recursively walk all callees that given function can call. 6493 * Ignore jump and exit insns. 6494 * Since recursion is prevented by check_cfg() this algorithm 6495 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 6496 */ 6497 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx, 6498 bool priv_stack_supported) 6499 { 6500 struct bpf_subprog_info *subprog = env->subprog_info; 6501 struct bpf_insn *insn = env->prog->insnsi; 6502 int depth = 0, frame = 0, i, subprog_end, subprog_depth; 6503 bool tail_call_reachable = false; 6504 int ret_insn[MAX_CALL_FRAMES]; 6505 int ret_prog[MAX_CALL_FRAMES]; 6506 int j; 6507 6508 i = subprog[idx].start; 6509 if (!priv_stack_supported) 6510 subprog[idx].priv_stack_mode = NO_PRIV_STACK; 6511 process_func: 6512 /* protect against potential stack overflow that might happen when 6513 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 6514 * depth for such case down to 256 so that the worst case scenario 6515 * would result in 8k stack size (32 which is tailcall limit * 256 = 6516 * 8k). 6517 * 6518 * To get the idea what might happen, see an example: 6519 * func1 -> sub rsp, 128 6520 * subfunc1 -> sub rsp, 256 6521 * tailcall1 -> add rsp, 256 6522 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 6523 * subfunc2 -> sub rsp, 64 6524 * subfunc22 -> sub rsp, 128 6525 * tailcall2 -> add rsp, 128 6526 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 6527 * 6528 * tailcall will unwind the current stack frame but it will not get rid 6529 * of caller's stack as shown on the example above. 6530 */ 6531 if (idx && subprog[idx].has_tail_call && depth >= 256) { 6532 verbose(env, 6533 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 6534 depth); 6535 return -EACCES; 6536 } 6537 6538 subprog_depth = round_up_stack_depth(env, subprog[idx].stack_depth); 6539 if (priv_stack_supported) { 6540 /* Request private stack support only if the subprog stack 6541 * depth is no less than BPF_PRIV_STACK_MIN_SIZE. This is to 6542 * avoid jit penalty if the stack usage is small. 6543 */ 6544 if (subprog[idx].priv_stack_mode == PRIV_STACK_UNKNOWN && 6545 subprog_depth >= BPF_PRIV_STACK_MIN_SIZE) 6546 subprog[idx].priv_stack_mode = PRIV_STACK_ADAPTIVE; 6547 } 6548 6549 if (subprog[idx].priv_stack_mode == PRIV_STACK_ADAPTIVE) { 6550 if (subprog_depth > MAX_BPF_STACK) { 6551 verbose(env, "stack size of subprog %d is %d. Too large\n", 6552 idx, subprog_depth); 6553 return -EACCES; 6554 } 6555 } else { 6556 depth += subprog_depth; 6557 if (depth > MAX_BPF_STACK) { 6558 verbose(env, "combined stack size of %d calls is %d. Too large\n", 6559 frame + 1, depth); 6560 return -EACCES; 6561 } 6562 } 6563 continue_func: 6564 subprog_end = subprog[idx + 1].start; 6565 for (; i < subprog_end; i++) { 6566 int next_insn, sidx; 6567 6568 if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) { 6569 bool err = false; 6570 6571 if (!is_bpf_throw_kfunc(insn + i)) 6572 continue; 6573 if (subprog[idx].is_cb) 6574 err = true; 6575 for (int c = 0; c < frame && !err; c++) { 6576 if (subprog[ret_prog[c]].is_cb) { 6577 err = true; 6578 break; 6579 } 6580 } 6581 if (!err) 6582 continue; 6583 verbose(env, 6584 "bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n", 6585 i, idx); 6586 return -EINVAL; 6587 } 6588 6589 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 6590 continue; 6591 /* remember insn and function to return to */ 6592 ret_insn[frame] = i + 1; 6593 ret_prog[frame] = idx; 6594 6595 /* find the callee */ 6596 next_insn = i + insn[i].imm + 1; 6597 sidx = find_subprog(env, next_insn); 6598 if (verifier_bug_if(sidx < 0, env, "callee not found at insn %d", next_insn)) 6599 return -EFAULT; 6600 if (subprog[sidx].is_async_cb) { 6601 if (subprog[sidx].has_tail_call) { 6602 verifier_bug(env, "subprog has tail_call and async cb"); 6603 return -EFAULT; 6604 } 6605 /* async callbacks don't increase bpf prog stack size unless called directly */ 6606 if (!bpf_pseudo_call(insn + i)) 6607 continue; 6608 if (subprog[sidx].is_exception_cb) { 6609 verbose(env, "insn %d cannot call exception cb directly", i); 6610 return -EINVAL; 6611 } 6612 } 6613 i = next_insn; 6614 idx = sidx; 6615 if (!priv_stack_supported) 6616 subprog[idx].priv_stack_mode = NO_PRIV_STACK; 6617 6618 if (subprog[idx].has_tail_call) 6619 tail_call_reachable = true; 6620 6621 frame++; 6622 if (frame >= MAX_CALL_FRAMES) { 6623 verbose(env, "the call stack of %d frames is too deep !\n", 6624 frame); 6625 return -E2BIG; 6626 } 6627 goto process_func; 6628 } 6629 /* if tail call got detected across bpf2bpf calls then mark each of the 6630 * currently present subprog frames as tail call reachable subprogs; 6631 * this info will be utilized by JIT so that we will be preserving the 6632 * tail call counter throughout bpf2bpf calls combined with tailcalls 6633 */ 6634 if (tail_call_reachable) 6635 for (j = 0; j < frame; j++) { 6636 if (subprog[ret_prog[j]].is_exception_cb) { 6637 verbose(env, "cannot tail call within exception cb\n"); 6638 return -EINVAL; 6639 } 6640 subprog[ret_prog[j]].tail_call_reachable = true; 6641 } 6642 if (subprog[0].tail_call_reachable) 6643 env->prog->aux->tail_call_reachable = true; 6644 6645 /* end of for() loop means the last insn of the 'subprog' 6646 * was reached. Doesn't matter whether it was JA or EXIT 6647 */ 6648 if (frame == 0) 6649 return 0; 6650 if (subprog[idx].priv_stack_mode != PRIV_STACK_ADAPTIVE) 6651 depth -= round_up_stack_depth(env, subprog[idx].stack_depth); 6652 frame--; 6653 i = ret_insn[frame]; 6654 idx = ret_prog[frame]; 6655 goto continue_func; 6656 } 6657 6658 static int check_max_stack_depth(struct bpf_verifier_env *env) 6659 { 6660 enum priv_stack_mode priv_stack_mode = PRIV_STACK_UNKNOWN; 6661 struct bpf_subprog_info *si = env->subprog_info; 6662 bool priv_stack_supported; 6663 int ret; 6664 6665 for (int i = 0; i < env->subprog_cnt; i++) { 6666 if (si[i].has_tail_call) { 6667 priv_stack_mode = NO_PRIV_STACK; 6668 break; 6669 } 6670 } 6671 6672 if (priv_stack_mode == PRIV_STACK_UNKNOWN) 6673 priv_stack_mode = bpf_enable_priv_stack(env->prog); 6674 6675 /* All async_cb subprogs use normal kernel stack. If a particular 6676 * subprog appears in both main prog and async_cb subtree, that 6677 * subprog will use normal kernel stack to avoid potential nesting. 6678 * The reverse subprog traversal ensures when main prog subtree is 6679 * checked, the subprogs appearing in async_cb subtrees are already 6680 * marked as using normal kernel stack, so stack size checking can 6681 * be done properly. 6682 */ 6683 for (int i = env->subprog_cnt - 1; i >= 0; i--) { 6684 if (!i || si[i].is_async_cb) { 6685 priv_stack_supported = !i && priv_stack_mode == PRIV_STACK_ADAPTIVE; 6686 ret = check_max_stack_depth_subprog(env, i, priv_stack_supported); 6687 if (ret < 0) 6688 return ret; 6689 } 6690 } 6691 6692 for (int i = 0; i < env->subprog_cnt; i++) { 6693 if (si[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) { 6694 env->prog->aux->jits_use_priv_stack = true; 6695 break; 6696 } 6697 } 6698 6699 return 0; 6700 } 6701 6702 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6703 static int get_callee_stack_depth(struct bpf_verifier_env *env, 6704 const struct bpf_insn *insn, int idx) 6705 { 6706 int start = idx + insn->imm + 1, subprog; 6707 6708 subprog = find_subprog(env, start); 6709 if (verifier_bug_if(subprog < 0, env, "get stack depth: no program at insn %d", start)) 6710 return -EFAULT; 6711 return env->subprog_info[subprog].stack_depth; 6712 } 6713 #endif 6714 6715 static int __check_buffer_access(struct bpf_verifier_env *env, 6716 const char *buf_info, 6717 const struct bpf_reg_state *reg, 6718 int regno, int off, int size) 6719 { 6720 if (off < 0) { 6721 verbose(env, 6722 "R%d invalid %s buffer access: off=%d, size=%d\n", 6723 regno, buf_info, off, size); 6724 return -EACCES; 6725 } 6726 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6727 char tn_buf[48]; 6728 6729 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6730 verbose(env, 6731 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 6732 regno, off, tn_buf); 6733 return -EACCES; 6734 } 6735 6736 return 0; 6737 } 6738 6739 static int check_tp_buffer_access(struct bpf_verifier_env *env, 6740 const struct bpf_reg_state *reg, 6741 int regno, int off, int size) 6742 { 6743 int err; 6744 6745 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 6746 if (err) 6747 return err; 6748 6749 if (off + size > env->prog->aux->max_tp_access) 6750 env->prog->aux->max_tp_access = off + size; 6751 6752 return 0; 6753 } 6754 6755 static int check_buffer_access(struct bpf_verifier_env *env, 6756 const struct bpf_reg_state *reg, 6757 int regno, int off, int size, 6758 bool zero_size_allowed, 6759 u32 *max_access) 6760 { 6761 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 6762 int err; 6763 6764 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 6765 if (err) 6766 return err; 6767 6768 if (off + size > *max_access) 6769 *max_access = off + size; 6770 6771 return 0; 6772 } 6773 6774 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 6775 static void zext_32_to_64(struct bpf_reg_state *reg) 6776 { 6777 reg->var_off = tnum_subreg(reg->var_off); 6778 __reg_assign_32_into_64(reg); 6779 } 6780 6781 /* truncate register to smaller size (in bytes) 6782 * must be called with size < BPF_REG_SIZE 6783 */ 6784 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 6785 { 6786 u64 mask; 6787 6788 /* clear high bits in bit representation */ 6789 reg->var_off = tnum_cast(reg->var_off, size); 6790 6791 /* fix arithmetic bounds */ 6792 mask = ((u64)1 << (size * 8)) - 1; 6793 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 6794 reg->umin_value &= mask; 6795 reg->umax_value &= mask; 6796 } else { 6797 reg->umin_value = 0; 6798 reg->umax_value = mask; 6799 } 6800 reg->smin_value = reg->umin_value; 6801 reg->smax_value = reg->umax_value; 6802 6803 /* If size is smaller than 32bit register the 32bit register 6804 * values are also truncated so we push 64-bit bounds into 6805 * 32-bit bounds. Above were truncated < 32-bits already. 6806 */ 6807 if (size < 4) 6808 __mark_reg32_unbounded(reg); 6809 6810 reg_bounds_sync(reg); 6811 } 6812 6813 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 6814 { 6815 if (size == 1) { 6816 reg->smin_value = reg->s32_min_value = S8_MIN; 6817 reg->smax_value = reg->s32_max_value = S8_MAX; 6818 } else if (size == 2) { 6819 reg->smin_value = reg->s32_min_value = S16_MIN; 6820 reg->smax_value = reg->s32_max_value = S16_MAX; 6821 } else { 6822 /* size == 4 */ 6823 reg->smin_value = reg->s32_min_value = S32_MIN; 6824 reg->smax_value = reg->s32_max_value = S32_MAX; 6825 } 6826 reg->umin_value = reg->u32_min_value = 0; 6827 reg->umax_value = U64_MAX; 6828 reg->u32_max_value = U32_MAX; 6829 reg->var_off = tnum_unknown; 6830 } 6831 6832 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 6833 { 6834 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 6835 u64 top_smax_value, top_smin_value; 6836 u64 num_bits = size * 8; 6837 6838 if (tnum_is_const(reg->var_off)) { 6839 u64_cval = reg->var_off.value; 6840 if (size == 1) 6841 reg->var_off = tnum_const((s8)u64_cval); 6842 else if (size == 2) 6843 reg->var_off = tnum_const((s16)u64_cval); 6844 else 6845 /* size == 4 */ 6846 reg->var_off = tnum_const((s32)u64_cval); 6847 6848 u64_cval = reg->var_off.value; 6849 reg->smax_value = reg->smin_value = u64_cval; 6850 reg->umax_value = reg->umin_value = u64_cval; 6851 reg->s32_max_value = reg->s32_min_value = u64_cval; 6852 reg->u32_max_value = reg->u32_min_value = u64_cval; 6853 return; 6854 } 6855 6856 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 6857 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 6858 6859 if (top_smax_value != top_smin_value) 6860 goto out; 6861 6862 /* find the s64_min and s64_min after sign extension */ 6863 if (size == 1) { 6864 init_s64_max = (s8)reg->smax_value; 6865 init_s64_min = (s8)reg->smin_value; 6866 } else if (size == 2) { 6867 init_s64_max = (s16)reg->smax_value; 6868 init_s64_min = (s16)reg->smin_value; 6869 } else { 6870 init_s64_max = (s32)reg->smax_value; 6871 init_s64_min = (s32)reg->smin_value; 6872 } 6873 6874 s64_max = max(init_s64_max, init_s64_min); 6875 s64_min = min(init_s64_max, init_s64_min); 6876 6877 /* both of s64_max/s64_min positive or negative */ 6878 if ((s64_max >= 0) == (s64_min >= 0)) { 6879 reg->s32_min_value = reg->smin_value = s64_min; 6880 reg->s32_max_value = reg->smax_value = s64_max; 6881 reg->u32_min_value = reg->umin_value = s64_min; 6882 reg->u32_max_value = reg->umax_value = s64_max; 6883 reg->var_off = tnum_range(s64_min, s64_max); 6884 return; 6885 } 6886 6887 out: 6888 set_sext64_default_val(reg, size); 6889 } 6890 6891 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 6892 { 6893 if (size == 1) { 6894 reg->s32_min_value = S8_MIN; 6895 reg->s32_max_value = S8_MAX; 6896 } else { 6897 /* size == 2 */ 6898 reg->s32_min_value = S16_MIN; 6899 reg->s32_max_value = S16_MAX; 6900 } 6901 reg->u32_min_value = 0; 6902 reg->u32_max_value = U32_MAX; 6903 reg->var_off = tnum_subreg(tnum_unknown); 6904 } 6905 6906 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 6907 { 6908 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 6909 u32 top_smax_value, top_smin_value; 6910 u32 num_bits = size * 8; 6911 6912 if (tnum_is_const(reg->var_off)) { 6913 u32_val = reg->var_off.value; 6914 if (size == 1) 6915 reg->var_off = tnum_const((s8)u32_val); 6916 else 6917 reg->var_off = tnum_const((s16)u32_val); 6918 6919 u32_val = reg->var_off.value; 6920 reg->s32_min_value = reg->s32_max_value = u32_val; 6921 reg->u32_min_value = reg->u32_max_value = u32_val; 6922 return; 6923 } 6924 6925 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 6926 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 6927 6928 if (top_smax_value != top_smin_value) 6929 goto out; 6930 6931 /* find the s32_min and s32_min after sign extension */ 6932 if (size == 1) { 6933 init_s32_max = (s8)reg->s32_max_value; 6934 init_s32_min = (s8)reg->s32_min_value; 6935 } else { 6936 /* size == 2 */ 6937 init_s32_max = (s16)reg->s32_max_value; 6938 init_s32_min = (s16)reg->s32_min_value; 6939 } 6940 s32_max = max(init_s32_max, init_s32_min); 6941 s32_min = min(init_s32_max, init_s32_min); 6942 6943 if ((s32_min >= 0) == (s32_max >= 0)) { 6944 reg->s32_min_value = s32_min; 6945 reg->s32_max_value = s32_max; 6946 reg->u32_min_value = (u32)s32_min; 6947 reg->u32_max_value = (u32)s32_max; 6948 reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max)); 6949 return; 6950 } 6951 6952 out: 6953 set_sext32_default_val(reg, size); 6954 } 6955 6956 static bool bpf_map_is_rdonly(const struct bpf_map *map) 6957 { 6958 /* A map is considered read-only if the following condition are true: 6959 * 6960 * 1) BPF program side cannot change any of the map content. The 6961 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 6962 * and was set at map creation time. 6963 * 2) The map value(s) have been initialized from user space by a 6964 * loader and then "frozen", such that no new map update/delete 6965 * operations from syscall side are possible for the rest of 6966 * the map's lifetime from that point onwards. 6967 * 3) Any parallel/pending map update/delete operations from syscall 6968 * side have been completed. Only after that point, it's safe to 6969 * assume that map value(s) are immutable. 6970 */ 6971 return (map->map_flags & BPF_F_RDONLY_PROG) && 6972 READ_ONCE(map->frozen) && 6973 !bpf_map_write_active(map); 6974 } 6975 6976 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 6977 bool is_ldsx) 6978 { 6979 void *ptr; 6980 u64 addr; 6981 int err; 6982 6983 err = map->ops->map_direct_value_addr(map, &addr, off); 6984 if (err) 6985 return err; 6986 ptr = (void *)(long)addr + off; 6987 6988 switch (size) { 6989 case sizeof(u8): 6990 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 6991 break; 6992 case sizeof(u16): 6993 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 6994 break; 6995 case sizeof(u32): 6996 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 6997 break; 6998 case sizeof(u64): 6999 *val = *(u64 *)ptr; 7000 break; 7001 default: 7002 return -EINVAL; 7003 } 7004 return 0; 7005 } 7006 7007 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 7008 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 7009 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 7010 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type) __PASTE(__type, __safe_trusted_or_null) 7011 7012 /* 7013 * Allow list few fields as RCU trusted or full trusted. 7014 * This logic doesn't allow mix tagging and will be removed once GCC supports 7015 * btf_type_tag. 7016 */ 7017 7018 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 7019 BTF_TYPE_SAFE_RCU(struct task_struct) { 7020 const cpumask_t *cpus_ptr; 7021 struct css_set __rcu *cgroups; 7022 struct task_struct __rcu *real_parent; 7023 struct task_struct *group_leader; 7024 }; 7025 7026 BTF_TYPE_SAFE_RCU(struct cgroup) { 7027 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 7028 struct kernfs_node *kn; 7029 }; 7030 7031 BTF_TYPE_SAFE_RCU(struct css_set) { 7032 struct cgroup *dfl_cgrp; 7033 }; 7034 7035 BTF_TYPE_SAFE_RCU(struct cgroup_subsys_state) { 7036 struct cgroup *cgroup; 7037 }; 7038 7039 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 7040 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 7041 struct file __rcu *exe_file; 7042 }; 7043 7044 /* skb->sk, req->sk are not RCU protected, but we mark them as such 7045 * because bpf prog accessible sockets are SOCK_RCU_FREE. 7046 */ 7047 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 7048 struct sock *sk; 7049 }; 7050 7051 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 7052 struct sock *sk; 7053 }; 7054 7055 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 7056 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 7057 struct seq_file *seq; 7058 }; 7059 7060 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 7061 struct bpf_iter_meta *meta; 7062 struct task_struct *task; 7063 }; 7064 7065 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 7066 struct file *file; 7067 }; 7068 7069 BTF_TYPE_SAFE_TRUSTED(struct file) { 7070 struct inode *f_inode; 7071 }; 7072 7073 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry) { 7074 struct inode *d_inode; 7075 }; 7076 7077 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) { 7078 struct sock *sk; 7079 }; 7080 7081 static bool type_is_rcu(struct bpf_verifier_env *env, 7082 struct bpf_reg_state *reg, 7083 const char *field_name, u32 btf_id) 7084 { 7085 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 7086 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 7087 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 7088 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup_subsys_state)); 7089 7090 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 7091 } 7092 7093 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 7094 struct bpf_reg_state *reg, 7095 const char *field_name, u32 btf_id) 7096 { 7097 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 7098 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 7099 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 7100 7101 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 7102 } 7103 7104 static bool type_is_trusted(struct bpf_verifier_env *env, 7105 struct bpf_reg_state *reg, 7106 const char *field_name, u32 btf_id) 7107 { 7108 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 7109 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 7110 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 7111 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 7112 7113 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 7114 } 7115 7116 static bool type_is_trusted_or_null(struct bpf_verifier_env *env, 7117 struct bpf_reg_state *reg, 7118 const char *field_name, u32 btf_id) 7119 { 7120 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)); 7121 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry)); 7122 7123 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, 7124 "__safe_trusted_or_null"); 7125 } 7126 7127 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 7128 struct bpf_reg_state *regs, 7129 int regno, int off, int size, 7130 enum bpf_access_type atype, 7131 int value_regno) 7132 { 7133 struct bpf_reg_state *reg = regs + regno; 7134 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 7135 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 7136 const char *field_name = NULL; 7137 enum bpf_type_flag flag = 0; 7138 u32 btf_id = 0; 7139 int ret; 7140 7141 if (!env->allow_ptr_leaks) { 7142 verbose(env, 7143 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 7144 tname); 7145 return -EPERM; 7146 } 7147 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 7148 verbose(env, 7149 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 7150 tname); 7151 return -EINVAL; 7152 } 7153 if (off < 0) { 7154 verbose(env, 7155 "R%d is ptr_%s invalid negative access: off=%d\n", 7156 regno, tname, off); 7157 return -EACCES; 7158 } 7159 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 7160 char tn_buf[48]; 7161 7162 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7163 verbose(env, 7164 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 7165 regno, tname, off, tn_buf); 7166 return -EACCES; 7167 } 7168 7169 if (reg->type & MEM_USER) { 7170 verbose(env, 7171 "R%d is ptr_%s access user memory: off=%d\n", 7172 regno, tname, off); 7173 return -EACCES; 7174 } 7175 7176 if (reg->type & MEM_PERCPU) { 7177 verbose(env, 7178 "R%d is ptr_%s access percpu memory: off=%d\n", 7179 regno, tname, off); 7180 return -EACCES; 7181 } 7182 7183 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 7184 if (!btf_is_kernel(reg->btf)) { 7185 verifier_bug(env, "reg->btf must be kernel btf"); 7186 return -EFAULT; 7187 } 7188 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 7189 } else { 7190 /* Writes are permitted with default btf_struct_access for 7191 * program allocated objects (which always have ref_obj_id > 0), 7192 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 7193 */ 7194 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 7195 verbose(env, "only read is supported\n"); 7196 return -EACCES; 7197 } 7198 7199 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 7200 !(reg->type & MEM_RCU) && !reg->ref_obj_id) { 7201 verifier_bug(env, "ref_obj_id for allocated object must be non-zero"); 7202 return -EFAULT; 7203 } 7204 7205 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 7206 } 7207 7208 if (ret < 0) 7209 return ret; 7210 7211 if (ret != PTR_TO_BTF_ID) { 7212 /* just mark; */ 7213 7214 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 7215 /* If this is an untrusted pointer, all pointers formed by walking it 7216 * also inherit the untrusted flag. 7217 */ 7218 flag = PTR_UNTRUSTED; 7219 7220 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 7221 /* By default any pointer obtained from walking a trusted pointer is no 7222 * longer trusted, unless the field being accessed has explicitly been 7223 * marked as inheriting its parent's state of trust (either full or RCU). 7224 * For example: 7225 * 'cgroups' pointer is untrusted if task->cgroups dereference 7226 * happened in a sleepable program outside of bpf_rcu_read_lock() 7227 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 7228 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 7229 * 7230 * A regular RCU-protected pointer with __rcu tag can also be deemed 7231 * trusted if we are in an RCU CS. Such pointer can be NULL. 7232 */ 7233 if (type_is_trusted(env, reg, field_name, btf_id)) { 7234 flag |= PTR_TRUSTED; 7235 } else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) { 7236 flag |= PTR_TRUSTED | PTR_MAYBE_NULL; 7237 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 7238 if (type_is_rcu(env, reg, field_name, btf_id)) { 7239 /* ignore __rcu tag and mark it MEM_RCU */ 7240 flag |= MEM_RCU; 7241 } else if (flag & MEM_RCU || 7242 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 7243 /* __rcu tagged pointers can be NULL */ 7244 flag |= MEM_RCU | PTR_MAYBE_NULL; 7245 7246 /* We always trust them */ 7247 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 7248 flag & PTR_UNTRUSTED) 7249 flag &= ~PTR_UNTRUSTED; 7250 } else if (flag & (MEM_PERCPU | MEM_USER)) { 7251 /* keep as-is */ 7252 } else { 7253 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 7254 clear_trusted_flags(&flag); 7255 } 7256 } else { 7257 /* 7258 * If not in RCU CS or MEM_RCU pointer can be NULL then 7259 * aggressively mark as untrusted otherwise such 7260 * pointers will be plain PTR_TO_BTF_ID without flags 7261 * and will be allowed to be passed into helpers for 7262 * compat reasons. 7263 */ 7264 flag = PTR_UNTRUSTED; 7265 } 7266 } else { 7267 /* Old compat. Deprecated */ 7268 clear_trusted_flags(&flag); 7269 } 7270 7271 if (atype == BPF_READ && value_regno >= 0) { 7272 ret = mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 7273 if (ret < 0) 7274 return ret; 7275 } 7276 7277 return 0; 7278 } 7279 7280 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 7281 struct bpf_reg_state *regs, 7282 int regno, int off, int size, 7283 enum bpf_access_type atype, 7284 int value_regno) 7285 { 7286 struct bpf_reg_state *reg = regs + regno; 7287 struct bpf_map *map = reg->map_ptr; 7288 struct bpf_reg_state map_reg; 7289 enum bpf_type_flag flag = 0; 7290 const struct btf_type *t; 7291 const char *tname; 7292 u32 btf_id; 7293 int ret; 7294 7295 if (!btf_vmlinux) { 7296 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 7297 return -ENOTSUPP; 7298 } 7299 7300 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 7301 verbose(env, "map_ptr access not supported for map type %d\n", 7302 map->map_type); 7303 return -ENOTSUPP; 7304 } 7305 7306 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 7307 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 7308 7309 if (!env->allow_ptr_leaks) { 7310 verbose(env, 7311 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 7312 tname); 7313 return -EPERM; 7314 } 7315 7316 if (off < 0) { 7317 verbose(env, "R%d is %s invalid negative access: off=%d\n", 7318 regno, tname, off); 7319 return -EACCES; 7320 } 7321 7322 if (atype != BPF_READ) { 7323 verbose(env, "only read from %s is supported\n", tname); 7324 return -EACCES; 7325 } 7326 7327 /* Simulate access to a PTR_TO_BTF_ID */ 7328 memset(&map_reg, 0, sizeof(map_reg)); 7329 ret = mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, 7330 btf_vmlinux, *map->ops->map_btf_id, 0); 7331 if (ret < 0) 7332 return ret; 7333 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 7334 if (ret < 0) 7335 return ret; 7336 7337 if (value_regno >= 0) { 7338 ret = mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 7339 if (ret < 0) 7340 return ret; 7341 } 7342 7343 return 0; 7344 } 7345 7346 /* Check that the stack access at the given offset is within bounds. The 7347 * maximum valid offset is -1. 7348 * 7349 * The minimum valid offset is -MAX_BPF_STACK for writes, and 7350 * -state->allocated_stack for reads. 7351 */ 7352 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env, 7353 s64 off, 7354 struct bpf_func_state *state, 7355 enum bpf_access_type t) 7356 { 7357 int min_valid_off; 7358 7359 if (t == BPF_WRITE || env->allow_uninit_stack) 7360 min_valid_off = -MAX_BPF_STACK; 7361 else 7362 min_valid_off = -state->allocated_stack; 7363 7364 if (off < min_valid_off || off > -1) 7365 return -EACCES; 7366 return 0; 7367 } 7368 7369 /* Check that the stack access at 'regno + off' falls within the maximum stack 7370 * bounds. 7371 * 7372 * 'off' includes `regno->offset`, but not its dynamic part (if any). 7373 */ 7374 static int check_stack_access_within_bounds( 7375 struct bpf_verifier_env *env, 7376 int regno, int off, int access_size, 7377 enum bpf_access_type type) 7378 { 7379 struct bpf_reg_state *regs = cur_regs(env); 7380 struct bpf_reg_state *reg = regs + regno; 7381 struct bpf_func_state *state = func(env, reg); 7382 s64 min_off, max_off; 7383 int err; 7384 char *err_extra; 7385 7386 if (type == BPF_READ) 7387 err_extra = " read from"; 7388 else 7389 err_extra = " write to"; 7390 7391 if (tnum_is_const(reg->var_off)) { 7392 min_off = (s64)reg->var_off.value + off; 7393 max_off = min_off + access_size; 7394 } else { 7395 if (reg->smax_value >= BPF_MAX_VAR_OFF || 7396 reg->smin_value <= -BPF_MAX_VAR_OFF) { 7397 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 7398 err_extra, regno); 7399 return -EACCES; 7400 } 7401 min_off = reg->smin_value + off; 7402 max_off = reg->smax_value + off + access_size; 7403 } 7404 7405 err = check_stack_slot_within_bounds(env, min_off, state, type); 7406 if (!err && max_off > 0) 7407 err = -EINVAL; /* out of stack access into non-negative offsets */ 7408 if (!err && access_size < 0) 7409 /* access_size should not be negative (or overflow an int); others checks 7410 * along the way should have prevented such an access. 7411 */ 7412 err = -EFAULT; /* invalid negative access size; integer overflow? */ 7413 7414 if (err) { 7415 if (tnum_is_const(reg->var_off)) { 7416 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 7417 err_extra, regno, off, access_size); 7418 } else { 7419 char tn_buf[48]; 7420 7421 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7422 verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n", 7423 err_extra, regno, tn_buf, off, access_size); 7424 } 7425 return err; 7426 } 7427 7428 /* Note that there is no stack access with offset zero, so the needed stack 7429 * size is -min_off, not -min_off+1. 7430 */ 7431 return grow_stack_state(env, state, -min_off /* size */); 7432 } 7433 7434 static bool get_func_retval_range(struct bpf_prog *prog, 7435 struct bpf_retval_range *range) 7436 { 7437 if (prog->type == BPF_PROG_TYPE_LSM && 7438 prog->expected_attach_type == BPF_LSM_MAC && 7439 !bpf_lsm_get_retval_range(prog, range)) { 7440 return true; 7441 } 7442 return false; 7443 } 7444 7445 /* check whether memory at (regno + off) is accessible for t = (read | write) 7446 * if t==write, value_regno is a register which value is stored into memory 7447 * if t==read, value_regno is a register which will receive the value from memory 7448 * if t==write && value_regno==-1, some unknown value is stored into memory 7449 * if t==read && value_regno==-1, don't care what we read from memory 7450 */ 7451 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 7452 int off, int bpf_size, enum bpf_access_type t, 7453 int value_regno, bool strict_alignment_once, bool is_ldsx) 7454 { 7455 struct bpf_reg_state *regs = cur_regs(env); 7456 struct bpf_reg_state *reg = regs + regno; 7457 int size, err = 0; 7458 7459 size = bpf_size_to_bytes(bpf_size); 7460 if (size < 0) 7461 return size; 7462 7463 /* alignment checks will add in reg->off themselves */ 7464 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 7465 if (err) 7466 return err; 7467 7468 /* for access checks, reg->off is just part of off */ 7469 off += reg->off; 7470 7471 if (reg->type == PTR_TO_MAP_KEY) { 7472 if (t == BPF_WRITE) { 7473 verbose(env, "write to change key R%d not allowed\n", regno); 7474 return -EACCES; 7475 } 7476 7477 err = check_mem_region_access(env, regno, off, size, 7478 reg->map_ptr->key_size, false); 7479 if (err) 7480 return err; 7481 if (value_regno >= 0) 7482 mark_reg_unknown(env, regs, value_regno); 7483 } else if (reg->type == PTR_TO_MAP_VALUE) { 7484 struct btf_field *kptr_field = NULL; 7485 7486 if (t == BPF_WRITE && value_regno >= 0 && 7487 is_pointer_value(env, value_regno)) { 7488 verbose(env, "R%d leaks addr into map\n", value_regno); 7489 return -EACCES; 7490 } 7491 err = check_map_access_type(env, regno, off, size, t); 7492 if (err) 7493 return err; 7494 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 7495 if (err) 7496 return err; 7497 if (tnum_is_const(reg->var_off)) 7498 kptr_field = btf_record_find(reg->map_ptr->record, 7499 off + reg->var_off.value, BPF_KPTR | BPF_UPTR); 7500 if (kptr_field) { 7501 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 7502 } else if (t == BPF_READ && value_regno >= 0) { 7503 struct bpf_map *map = reg->map_ptr; 7504 7505 /* if map is read-only, track its contents as scalars */ 7506 if (tnum_is_const(reg->var_off) && 7507 bpf_map_is_rdonly(map) && 7508 map->ops->map_direct_value_addr) { 7509 int map_off = off + reg->var_off.value; 7510 u64 val = 0; 7511 7512 err = bpf_map_direct_read(map, map_off, size, 7513 &val, is_ldsx); 7514 if (err) 7515 return err; 7516 7517 regs[value_regno].type = SCALAR_VALUE; 7518 __mark_reg_known(®s[value_regno], val); 7519 } else { 7520 mark_reg_unknown(env, regs, value_regno); 7521 } 7522 } 7523 } else if (base_type(reg->type) == PTR_TO_MEM) { 7524 bool rdonly_mem = type_is_rdonly_mem(reg->type); 7525 bool rdonly_untrusted = rdonly_mem && (reg->type & PTR_UNTRUSTED); 7526 7527 if (type_may_be_null(reg->type)) { 7528 verbose(env, "R%d invalid mem access '%s'\n", regno, 7529 reg_type_str(env, reg->type)); 7530 return -EACCES; 7531 } 7532 7533 if (t == BPF_WRITE && rdonly_mem) { 7534 verbose(env, "R%d cannot write into %s\n", 7535 regno, reg_type_str(env, reg->type)); 7536 return -EACCES; 7537 } 7538 7539 if (t == BPF_WRITE && value_regno >= 0 && 7540 is_pointer_value(env, value_regno)) { 7541 verbose(env, "R%d leaks addr into mem\n", value_regno); 7542 return -EACCES; 7543 } 7544 7545 /* 7546 * Accesses to untrusted PTR_TO_MEM are done through probe 7547 * instructions, hence no need to check bounds in that case. 7548 */ 7549 if (!rdonly_untrusted) 7550 err = check_mem_region_access(env, regno, off, size, 7551 reg->mem_size, false); 7552 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 7553 mark_reg_unknown(env, regs, value_regno); 7554 } else if (reg->type == PTR_TO_CTX) { 7555 struct bpf_retval_range range; 7556 struct bpf_insn_access_aux info = { 7557 .reg_type = SCALAR_VALUE, 7558 .is_ldsx = is_ldsx, 7559 .log = &env->log, 7560 }; 7561 7562 if (t == BPF_WRITE && value_regno >= 0 && 7563 is_pointer_value(env, value_regno)) { 7564 verbose(env, "R%d leaks addr into ctx\n", value_regno); 7565 return -EACCES; 7566 } 7567 7568 err = check_ptr_off_reg(env, reg, regno); 7569 if (err < 0) 7570 return err; 7571 7572 err = check_ctx_access(env, insn_idx, off, size, t, &info); 7573 if (err) 7574 verbose_linfo(env, insn_idx, "; "); 7575 if (!err && t == BPF_READ && value_regno >= 0) { 7576 /* ctx access returns either a scalar, or a 7577 * PTR_TO_PACKET[_META,_END]. In the latter 7578 * case, we know the offset is zero. 7579 */ 7580 if (info.reg_type == SCALAR_VALUE) { 7581 if (info.is_retval && get_func_retval_range(env->prog, &range)) { 7582 err = __mark_reg_s32_range(env, regs, value_regno, 7583 range.minval, range.maxval); 7584 if (err) 7585 return err; 7586 } else { 7587 mark_reg_unknown(env, regs, value_regno); 7588 } 7589 } else { 7590 mark_reg_known_zero(env, regs, 7591 value_regno); 7592 if (type_may_be_null(info.reg_type)) 7593 regs[value_regno].id = ++env->id_gen; 7594 /* A load of ctx field could have different 7595 * actual load size with the one encoded in the 7596 * insn. When the dst is PTR, it is for sure not 7597 * a sub-register. 7598 */ 7599 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 7600 if (base_type(info.reg_type) == PTR_TO_BTF_ID) { 7601 regs[value_regno].btf = info.btf; 7602 regs[value_regno].btf_id = info.btf_id; 7603 regs[value_regno].ref_obj_id = info.ref_obj_id; 7604 } 7605 } 7606 regs[value_regno].type = info.reg_type; 7607 } 7608 7609 } else if (reg->type == PTR_TO_STACK) { 7610 /* Basic bounds checks. */ 7611 err = check_stack_access_within_bounds(env, regno, off, size, t); 7612 if (err) 7613 return err; 7614 7615 if (t == BPF_READ) 7616 err = check_stack_read(env, regno, off, size, 7617 value_regno); 7618 else 7619 err = check_stack_write(env, regno, off, size, 7620 value_regno, insn_idx); 7621 } else if (reg_is_pkt_pointer(reg)) { 7622 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 7623 verbose(env, "cannot write into packet\n"); 7624 return -EACCES; 7625 } 7626 if (t == BPF_WRITE && value_regno >= 0 && 7627 is_pointer_value(env, value_regno)) { 7628 verbose(env, "R%d leaks addr into packet\n", 7629 value_regno); 7630 return -EACCES; 7631 } 7632 err = check_packet_access(env, regno, off, size, false); 7633 if (!err && t == BPF_READ && value_regno >= 0) 7634 mark_reg_unknown(env, regs, value_regno); 7635 } else if (reg->type == PTR_TO_FLOW_KEYS) { 7636 if (t == BPF_WRITE && value_regno >= 0 && 7637 is_pointer_value(env, value_regno)) { 7638 verbose(env, "R%d leaks addr into flow keys\n", 7639 value_regno); 7640 return -EACCES; 7641 } 7642 7643 err = check_flow_keys_access(env, off, size); 7644 if (!err && t == BPF_READ && value_regno >= 0) 7645 mark_reg_unknown(env, regs, value_regno); 7646 } else if (type_is_sk_pointer(reg->type)) { 7647 if (t == BPF_WRITE) { 7648 verbose(env, "R%d cannot write into %s\n", 7649 regno, reg_type_str(env, reg->type)); 7650 return -EACCES; 7651 } 7652 err = check_sock_access(env, insn_idx, regno, off, size, t); 7653 if (!err && value_regno >= 0) 7654 mark_reg_unknown(env, regs, value_regno); 7655 } else if (reg->type == PTR_TO_TP_BUFFER) { 7656 err = check_tp_buffer_access(env, reg, regno, off, size); 7657 if (!err && t == BPF_READ && value_regno >= 0) 7658 mark_reg_unknown(env, regs, value_regno); 7659 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 7660 !type_may_be_null(reg->type)) { 7661 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 7662 value_regno); 7663 } else if (reg->type == CONST_PTR_TO_MAP) { 7664 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 7665 value_regno); 7666 } else if (base_type(reg->type) == PTR_TO_BUF) { 7667 bool rdonly_mem = type_is_rdonly_mem(reg->type); 7668 u32 *max_access; 7669 7670 if (rdonly_mem) { 7671 if (t == BPF_WRITE) { 7672 verbose(env, "R%d cannot write into %s\n", 7673 regno, reg_type_str(env, reg->type)); 7674 return -EACCES; 7675 } 7676 max_access = &env->prog->aux->max_rdonly_access; 7677 } else { 7678 max_access = &env->prog->aux->max_rdwr_access; 7679 } 7680 7681 err = check_buffer_access(env, reg, regno, off, size, false, 7682 max_access); 7683 7684 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 7685 mark_reg_unknown(env, regs, value_regno); 7686 } else if (reg->type == PTR_TO_ARENA) { 7687 if (t == BPF_READ && value_regno >= 0) 7688 mark_reg_unknown(env, regs, value_regno); 7689 } else { 7690 verbose(env, "R%d invalid mem access '%s'\n", regno, 7691 reg_type_str(env, reg->type)); 7692 return -EACCES; 7693 } 7694 7695 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 7696 regs[value_regno].type == SCALAR_VALUE) { 7697 if (!is_ldsx) 7698 /* b/h/w load zero-extends, mark upper bits as known 0 */ 7699 coerce_reg_to_size(®s[value_regno], size); 7700 else 7701 coerce_reg_to_size_sx(®s[value_regno], size); 7702 } 7703 return err; 7704 } 7705 7706 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 7707 bool allow_trust_mismatch); 7708 7709 static int check_load_mem(struct bpf_verifier_env *env, struct bpf_insn *insn, 7710 bool strict_alignment_once, bool is_ldsx, 7711 bool allow_trust_mismatch, const char *ctx) 7712 { 7713 struct bpf_reg_state *regs = cur_regs(env); 7714 enum bpf_reg_type src_reg_type; 7715 int err; 7716 7717 /* check src operand */ 7718 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7719 if (err) 7720 return err; 7721 7722 /* check dst operand */ 7723 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7724 if (err) 7725 return err; 7726 7727 src_reg_type = regs[insn->src_reg].type; 7728 7729 /* Check if (src_reg + off) is readable. The state of dst_reg will be 7730 * updated by this call. 7731 */ 7732 err = check_mem_access(env, env->insn_idx, insn->src_reg, insn->off, 7733 BPF_SIZE(insn->code), BPF_READ, insn->dst_reg, 7734 strict_alignment_once, is_ldsx); 7735 err = err ?: save_aux_ptr_type(env, src_reg_type, 7736 allow_trust_mismatch); 7737 err = err ?: reg_bounds_sanity_check(env, ®s[insn->dst_reg], ctx); 7738 7739 return err; 7740 } 7741 7742 static int check_store_reg(struct bpf_verifier_env *env, struct bpf_insn *insn, 7743 bool strict_alignment_once) 7744 { 7745 struct bpf_reg_state *regs = cur_regs(env); 7746 enum bpf_reg_type dst_reg_type; 7747 int err; 7748 7749 /* check src1 operand */ 7750 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7751 if (err) 7752 return err; 7753 7754 /* check src2 operand */ 7755 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7756 if (err) 7757 return err; 7758 7759 dst_reg_type = regs[insn->dst_reg].type; 7760 7761 /* Check if (dst_reg + off) is writeable. */ 7762 err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off, 7763 BPF_SIZE(insn->code), BPF_WRITE, insn->src_reg, 7764 strict_alignment_once, false); 7765 err = err ?: save_aux_ptr_type(env, dst_reg_type, false); 7766 7767 return err; 7768 } 7769 7770 static int check_atomic_rmw(struct bpf_verifier_env *env, 7771 struct bpf_insn *insn) 7772 { 7773 int load_reg; 7774 int err; 7775 7776 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 7777 verbose(env, "invalid atomic operand size\n"); 7778 return -EINVAL; 7779 } 7780 7781 /* check src1 operand */ 7782 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7783 if (err) 7784 return err; 7785 7786 /* check src2 operand */ 7787 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7788 if (err) 7789 return err; 7790 7791 if (insn->imm == BPF_CMPXCHG) { 7792 /* Check comparison of R0 with memory location */ 7793 const u32 aux_reg = BPF_REG_0; 7794 7795 err = check_reg_arg(env, aux_reg, SRC_OP); 7796 if (err) 7797 return err; 7798 7799 if (is_pointer_value(env, aux_reg)) { 7800 verbose(env, "R%d leaks addr into mem\n", aux_reg); 7801 return -EACCES; 7802 } 7803 } 7804 7805 if (is_pointer_value(env, insn->src_reg)) { 7806 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 7807 return -EACCES; 7808 } 7809 7810 if (!atomic_ptr_type_ok(env, insn->dst_reg, insn)) { 7811 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 7812 insn->dst_reg, 7813 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 7814 return -EACCES; 7815 } 7816 7817 if (insn->imm & BPF_FETCH) { 7818 if (insn->imm == BPF_CMPXCHG) 7819 load_reg = BPF_REG_0; 7820 else 7821 load_reg = insn->src_reg; 7822 7823 /* check and record load of old value */ 7824 err = check_reg_arg(env, load_reg, DST_OP); 7825 if (err) 7826 return err; 7827 } else { 7828 /* This instruction accesses a memory location but doesn't 7829 * actually load it into a register. 7830 */ 7831 load_reg = -1; 7832 } 7833 7834 /* Check whether we can read the memory, with second call for fetch 7835 * case to simulate the register fill. 7836 */ 7837 err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off, 7838 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 7839 if (!err && load_reg >= 0) 7840 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 7841 insn->off, BPF_SIZE(insn->code), 7842 BPF_READ, load_reg, true, false); 7843 if (err) 7844 return err; 7845 7846 if (is_arena_reg(env, insn->dst_reg)) { 7847 err = save_aux_ptr_type(env, PTR_TO_ARENA, false); 7848 if (err) 7849 return err; 7850 } 7851 /* Check whether we can write into the same memory. */ 7852 err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off, 7853 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 7854 if (err) 7855 return err; 7856 return 0; 7857 } 7858 7859 static int check_atomic_load(struct bpf_verifier_env *env, 7860 struct bpf_insn *insn) 7861 { 7862 int err; 7863 7864 err = check_load_mem(env, insn, true, false, false, "atomic_load"); 7865 if (err) 7866 return err; 7867 7868 if (!atomic_ptr_type_ok(env, insn->src_reg, insn)) { 7869 verbose(env, "BPF_ATOMIC loads from R%d %s is not allowed\n", 7870 insn->src_reg, 7871 reg_type_str(env, reg_state(env, insn->src_reg)->type)); 7872 return -EACCES; 7873 } 7874 7875 return 0; 7876 } 7877 7878 static int check_atomic_store(struct bpf_verifier_env *env, 7879 struct bpf_insn *insn) 7880 { 7881 int err; 7882 7883 err = check_store_reg(env, insn, true); 7884 if (err) 7885 return err; 7886 7887 if (!atomic_ptr_type_ok(env, insn->dst_reg, insn)) { 7888 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 7889 insn->dst_reg, 7890 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 7891 return -EACCES; 7892 } 7893 7894 return 0; 7895 } 7896 7897 static int check_atomic(struct bpf_verifier_env *env, struct bpf_insn *insn) 7898 { 7899 switch (insn->imm) { 7900 case BPF_ADD: 7901 case BPF_ADD | BPF_FETCH: 7902 case BPF_AND: 7903 case BPF_AND | BPF_FETCH: 7904 case BPF_OR: 7905 case BPF_OR | BPF_FETCH: 7906 case BPF_XOR: 7907 case BPF_XOR | BPF_FETCH: 7908 case BPF_XCHG: 7909 case BPF_CMPXCHG: 7910 return check_atomic_rmw(env, insn); 7911 case BPF_LOAD_ACQ: 7912 if (BPF_SIZE(insn->code) == BPF_DW && BITS_PER_LONG != 64) { 7913 verbose(env, 7914 "64-bit load-acquires are only supported on 64-bit arches\n"); 7915 return -EOPNOTSUPP; 7916 } 7917 return check_atomic_load(env, insn); 7918 case BPF_STORE_REL: 7919 if (BPF_SIZE(insn->code) == BPF_DW && BITS_PER_LONG != 64) { 7920 verbose(env, 7921 "64-bit store-releases are only supported on 64-bit arches\n"); 7922 return -EOPNOTSUPP; 7923 } 7924 return check_atomic_store(env, insn); 7925 default: 7926 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", 7927 insn->imm); 7928 return -EINVAL; 7929 } 7930 } 7931 7932 /* When register 'regno' is used to read the stack (either directly or through 7933 * a helper function) make sure that it's within stack boundary and, depending 7934 * on the access type and privileges, that all elements of the stack are 7935 * initialized. 7936 * 7937 * 'off' includes 'regno->off', but not its dynamic part (if any). 7938 * 7939 * All registers that have been spilled on the stack in the slots within the 7940 * read offsets are marked as read. 7941 */ 7942 static int check_stack_range_initialized( 7943 struct bpf_verifier_env *env, int regno, int off, 7944 int access_size, bool zero_size_allowed, 7945 enum bpf_access_type type, struct bpf_call_arg_meta *meta) 7946 { 7947 struct bpf_reg_state *reg = reg_state(env, regno); 7948 struct bpf_func_state *state = func(env, reg); 7949 int err, min_off, max_off, i, j, slot, spi; 7950 /* Some accesses can write anything into the stack, others are 7951 * read-only. 7952 */ 7953 bool clobber = false; 7954 7955 if (access_size == 0 && !zero_size_allowed) { 7956 verbose(env, "invalid zero-sized read\n"); 7957 return -EACCES; 7958 } 7959 7960 if (type == BPF_WRITE) 7961 clobber = true; 7962 7963 err = check_stack_access_within_bounds(env, regno, off, access_size, type); 7964 if (err) 7965 return err; 7966 7967 7968 if (tnum_is_const(reg->var_off)) { 7969 min_off = max_off = reg->var_off.value + off; 7970 } else { 7971 /* Variable offset is prohibited for unprivileged mode for 7972 * simplicity since it requires corresponding support in 7973 * Spectre masking for stack ALU. 7974 * See also retrieve_ptr_limit(). 7975 */ 7976 if (!env->bypass_spec_v1) { 7977 char tn_buf[48]; 7978 7979 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7980 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 7981 regno, tn_buf); 7982 return -EACCES; 7983 } 7984 /* Only initialized buffer on stack is allowed to be accessed 7985 * with variable offset. With uninitialized buffer it's hard to 7986 * guarantee that whole memory is marked as initialized on 7987 * helper return since specific bounds are unknown what may 7988 * cause uninitialized stack leaking. 7989 */ 7990 if (meta && meta->raw_mode) 7991 meta = NULL; 7992 7993 min_off = reg->smin_value + off; 7994 max_off = reg->smax_value + off; 7995 } 7996 7997 if (meta && meta->raw_mode) { 7998 /* Ensure we won't be overwriting dynptrs when simulating byte 7999 * by byte access in check_helper_call using meta.access_size. 8000 * This would be a problem if we have a helper in the future 8001 * which takes: 8002 * 8003 * helper(uninit_mem, len, dynptr) 8004 * 8005 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 8006 * may end up writing to dynptr itself when touching memory from 8007 * arg 1. This can be relaxed on a case by case basis for known 8008 * safe cases, but reject due to the possibilitiy of aliasing by 8009 * default. 8010 */ 8011 for (i = min_off; i < max_off + access_size; i++) { 8012 int stack_off = -i - 1; 8013 8014 spi = __get_spi(i); 8015 /* raw_mode may write past allocated_stack */ 8016 if (state->allocated_stack <= stack_off) 8017 continue; 8018 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 8019 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 8020 return -EACCES; 8021 } 8022 } 8023 meta->access_size = access_size; 8024 meta->regno = regno; 8025 return 0; 8026 } 8027 8028 for (i = min_off; i < max_off + access_size; i++) { 8029 u8 *stype; 8030 8031 slot = -i - 1; 8032 spi = slot / BPF_REG_SIZE; 8033 if (state->allocated_stack <= slot) { 8034 verbose(env, "allocated_stack too small\n"); 8035 return -EFAULT; 8036 } 8037 8038 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 8039 if (*stype == STACK_MISC) 8040 goto mark; 8041 if ((*stype == STACK_ZERO) || 8042 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 8043 if (clobber) { 8044 /* helper can write anything into the stack */ 8045 *stype = STACK_MISC; 8046 } 8047 goto mark; 8048 } 8049 8050 if (is_spilled_reg(&state->stack[spi]) && 8051 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 8052 env->allow_ptr_leaks)) { 8053 if (clobber) { 8054 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 8055 for (j = 0; j < BPF_REG_SIZE; j++) 8056 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 8057 } 8058 goto mark; 8059 } 8060 8061 if (tnum_is_const(reg->var_off)) { 8062 verbose(env, "invalid read from stack R%d off %d+%d size %d\n", 8063 regno, min_off, i - min_off, access_size); 8064 } else { 8065 char tn_buf[48]; 8066 8067 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 8068 verbose(env, "invalid read from stack R%d var_off %s+%d size %d\n", 8069 regno, tn_buf, i - min_off, access_size); 8070 } 8071 return -EACCES; 8072 mark: 8073 /* reading any byte out of 8-byte 'spill_slot' will cause 8074 * the whole slot to be marked as 'read' 8075 */ 8076 err = bpf_mark_stack_read(env, reg->frameno, env->insn_idx, BIT(spi)); 8077 if (err) 8078 return err; 8079 /* We do not call bpf_mark_stack_write(), as we can not 8080 * be sure that whether stack slot is written to or not. Hence, 8081 * we must still conservatively propagate reads upwards even if 8082 * helper may write to the entire memory range. 8083 */ 8084 } 8085 return 0; 8086 } 8087 8088 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 8089 int access_size, enum bpf_access_type access_type, 8090 bool zero_size_allowed, 8091 struct bpf_call_arg_meta *meta) 8092 { 8093 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8094 u32 *max_access; 8095 8096 switch (base_type(reg->type)) { 8097 case PTR_TO_PACKET: 8098 case PTR_TO_PACKET_META: 8099 return check_packet_access(env, regno, reg->off, access_size, 8100 zero_size_allowed); 8101 case PTR_TO_MAP_KEY: 8102 if (access_type == BPF_WRITE) { 8103 verbose(env, "R%d cannot write into %s\n", regno, 8104 reg_type_str(env, reg->type)); 8105 return -EACCES; 8106 } 8107 return check_mem_region_access(env, regno, reg->off, access_size, 8108 reg->map_ptr->key_size, false); 8109 case PTR_TO_MAP_VALUE: 8110 if (check_map_access_type(env, regno, reg->off, access_size, access_type)) 8111 return -EACCES; 8112 return check_map_access(env, regno, reg->off, access_size, 8113 zero_size_allowed, ACCESS_HELPER); 8114 case PTR_TO_MEM: 8115 if (type_is_rdonly_mem(reg->type)) { 8116 if (access_type == BPF_WRITE) { 8117 verbose(env, "R%d cannot write into %s\n", regno, 8118 reg_type_str(env, reg->type)); 8119 return -EACCES; 8120 } 8121 } 8122 return check_mem_region_access(env, regno, reg->off, 8123 access_size, reg->mem_size, 8124 zero_size_allowed); 8125 case PTR_TO_BUF: 8126 if (type_is_rdonly_mem(reg->type)) { 8127 if (access_type == BPF_WRITE) { 8128 verbose(env, "R%d cannot write into %s\n", regno, 8129 reg_type_str(env, reg->type)); 8130 return -EACCES; 8131 } 8132 8133 max_access = &env->prog->aux->max_rdonly_access; 8134 } else { 8135 max_access = &env->prog->aux->max_rdwr_access; 8136 } 8137 return check_buffer_access(env, reg, regno, reg->off, 8138 access_size, zero_size_allowed, 8139 max_access); 8140 case PTR_TO_STACK: 8141 return check_stack_range_initialized( 8142 env, 8143 regno, reg->off, access_size, 8144 zero_size_allowed, access_type, meta); 8145 case PTR_TO_BTF_ID: 8146 return check_ptr_to_btf_access(env, regs, regno, reg->off, 8147 access_size, BPF_READ, -1); 8148 case PTR_TO_CTX: 8149 /* in case the function doesn't know how to access the context, 8150 * (because we are in a program of type SYSCALL for example), we 8151 * can not statically check its size. 8152 * Dynamically check it now. 8153 */ 8154 if (!env->ops->convert_ctx_access) { 8155 int offset = access_size - 1; 8156 8157 /* Allow zero-byte read from PTR_TO_CTX */ 8158 if (access_size == 0) 8159 return zero_size_allowed ? 0 : -EACCES; 8160 8161 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 8162 access_type, -1, false, false); 8163 } 8164 8165 fallthrough; 8166 default: /* scalar_value or invalid ptr */ 8167 /* Allow zero-byte read from NULL, regardless of pointer type */ 8168 if (zero_size_allowed && access_size == 0 && 8169 register_is_null(reg)) 8170 return 0; 8171 8172 verbose(env, "R%d type=%s ", regno, 8173 reg_type_str(env, reg->type)); 8174 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 8175 return -EACCES; 8176 } 8177 } 8178 8179 /* verify arguments to helpers or kfuncs consisting of a pointer and an access 8180 * size. 8181 * 8182 * @regno is the register containing the access size. regno-1 is the register 8183 * containing the pointer. 8184 */ 8185 static int check_mem_size_reg(struct bpf_verifier_env *env, 8186 struct bpf_reg_state *reg, u32 regno, 8187 enum bpf_access_type access_type, 8188 bool zero_size_allowed, 8189 struct bpf_call_arg_meta *meta) 8190 { 8191 int err; 8192 8193 /* This is used to refine r0 return value bounds for helpers 8194 * that enforce this value as an upper bound on return values. 8195 * See do_refine_retval_range() for helpers that can refine 8196 * the return value. C type of helper is u32 so we pull register 8197 * bound from umax_value however, if negative verifier errors 8198 * out. Only upper bounds can be learned because retval is an 8199 * int type and negative retvals are allowed. 8200 */ 8201 meta->msize_max_value = reg->umax_value; 8202 8203 /* The register is SCALAR_VALUE; the access check happens using 8204 * its boundaries. For unprivileged variable accesses, disable 8205 * raw mode so that the program is required to initialize all 8206 * the memory that the helper could just partially fill up. 8207 */ 8208 if (!tnum_is_const(reg->var_off)) 8209 meta = NULL; 8210 8211 if (reg->smin_value < 0) { 8212 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 8213 regno); 8214 return -EACCES; 8215 } 8216 8217 if (reg->umin_value == 0 && !zero_size_allowed) { 8218 verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n", 8219 regno, reg->umin_value, reg->umax_value); 8220 return -EACCES; 8221 } 8222 8223 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 8224 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 8225 regno); 8226 return -EACCES; 8227 } 8228 err = check_helper_mem_access(env, regno - 1, reg->umax_value, 8229 access_type, zero_size_allowed, meta); 8230 if (!err) 8231 err = mark_chain_precision(env, regno); 8232 return err; 8233 } 8234 8235 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 8236 u32 regno, u32 mem_size) 8237 { 8238 bool may_be_null = type_may_be_null(reg->type); 8239 struct bpf_reg_state saved_reg; 8240 int err; 8241 8242 if (register_is_null(reg)) 8243 return 0; 8244 8245 /* Assuming that the register contains a value check if the memory 8246 * access is safe. Temporarily save and restore the register's state as 8247 * the conversion shouldn't be visible to a caller. 8248 */ 8249 if (may_be_null) { 8250 saved_reg = *reg; 8251 mark_ptr_not_null_reg(reg); 8252 } 8253 8254 err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL); 8255 err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL); 8256 8257 if (may_be_null) 8258 *reg = saved_reg; 8259 8260 return err; 8261 } 8262 8263 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 8264 u32 regno) 8265 { 8266 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 8267 bool may_be_null = type_may_be_null(mem_reg->type); 8268 struct bpf_reg_state saved_reg; 8269 struct bpf_call_arg_meta meta; 8270 int err; 8271 8272 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 8273 8274 memset(&meta, 0, sizeof(meta)); 8275 8276 if (may_be_null) { 8277 saved_reg = *mem_reg; 8278 mark_ptr_not_null_reg(mem_reg); 8279 } 8280 8281 err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta); 8282 err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta); 8283 8284 if (may_be_null) 8285 *mem_reg = saved_reg; 8286 8287 return err; 8288 } 8289 8290 enum { 8291 PROCESS_SPIN_LOCK = (1 << 0), 8292 PROCESS_RES_LOCK = (1 << 1), 8293 PROCESS_LOCK_IRQ = (1 << 2), 8294 }; 8295 8296 /* Implementation details: 8297 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 8298 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 8299 * Two bpf_map_lookups (even with the same key) will have different reg->id. 8300 * Two separate bpf_obj_new will also have different reg->id. 8301 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 8302 * clears reg->id after value_or_null->value transition, since the verifier only 8303 * cares about the range of access to valid map value pointer and doesn't care 8304 * about actual address of the map element. 8305 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 8306 * reg->id > 0 after value_or_null->value transition. By doing so 8307 * two bpf_map_lookups will be considered two different pointers that 8308 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 8309 * returned from bpf_obj_new. 8310 * The verifier allows taking only one bpf_spin_lock at a time to avoid 8311 * dead-locks. 8312 * Since only one bpf_spin_lock is allowed the checks are simpler than 8313 * reg_is_refcounted() logic. The verifier needs to remember only 8314 * one spin_lock instead of array of acquired_refs. 8315 * env->cur_state->active_locks remembers which map value element or allocated 8316 * object got locked and clears it after bpf_spin_unlock. 8317 */ 8318 static int process_spin_lock(struct bpf_verifier_env *env, int regno, int flags) 8319 { 8320 bool is_lock = flags & PROCESS_SPIN_LOCK, is_res_lock = flags & PROCESS_RES_LOCK; 8321 const char *lock_str = is_res_lock ? "bpf_res_spin" : "bpf_spin"; 8322 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8323 struct bpf_verifier_state *cur = env->cur_state; 8324 bool is_const = tnum_is_const(reg->var_off); 8325 bool is_irq = flags & PROCESS_LOCK_IRQ; 8326 u64 val = reg->var_off.value; 8327 struct bpf_map *map = NULL; 8328 struct btf *btf = NULL; 8329 struct btf_record *rec; 8330 u32 spin_lock_off; 8331 int err; 8332 8333 if (!is_const) { 8334 verbose(env, 8335 "R%d doesn't have constant offset. %s_lock has to be at the constant offset\n", 8336 regno, lock_str); 8337 return -EINVAL; 8338 } 8339 if (reg->type == PTR_TO_MAP_VALUE) { 8340 map = reg->map_ptr; 8341 if (!map->btf) { 8342 verbose(env, 8343 "map '%s' has to have BTF in order to use %s_lock\n", 8344 map->name, lock_str); 8345 return -EINVAL; 8346 } 8347 } else { 8348 btf = reg->btf; 8349 } 8350 8351 rec = reg_btf_record(reg); 8352 if (!btf_record_has_field(rec, is_res_lock ? BPF_RES_SPIN_LOCK : BPF_SPIN_LOCK)) { 8353 verbose(env, "%s '%s' has no valid %s_lock\n", map ? "map" : "local", 8354 map ? map->name : "kptr", lock_str); 8355 return -EINVAL; 8356 } 8357 spin_lock_off = is_res_lock ? rec->res_spin_lock_off : rec->spin_lock_off; 8358 if (spin_lock_off != val + reg->off) { 8359 verbose(env, "off %lld doesn't point to 'struct %s_lock' that is at %d\n", 8360 val + reg->off, lock_str, spin_lock_off); 8361 return -EINVAL; 8362 } 8363 if (is_lock) { 8364 void *ptr; 8365 int type; 8366 8367 if (map) 8368 ptr = map; 8369 else 8370 ptr = btf; 8371 8372 if (!is_res_lock && cur->active_locks) { 8373 if (find_lock_state(env->cur_state, REF_TYPE_LOCK, 0, NULL)) { 8374 verbose(env, 8375 "Locking two bpf_spin_locks are not allowed\n"); 8376 return -EINVAL; 8377 } 8378 } else if (is_res_lock && cur->active_locks) { 8379 if (find_lock_state(env->cur_state, REF_TYPE_RES_LOCK | REF_TYPE_RES_LOCK_IRQ, reg->id, ptr)) { 8380 verbose(env, "Acquiring the same lock again, AA deadlock detected\n"); 8381 return -EINVAL; 8382 } 8383 } 8384 8385 if (is_res_lock && is_irq) 8386 type = REF_TYPE_RES_LOCK_IRQ; 8387 else if (is_res_lock) 8388 type = REF_TYPE_RES_LOCK; 8389 else 8390 type = REF_TYPE_LOCK; 8391 err = acquire_lock_state(env, env->insn_idx, type, reg->id, ptr); 8392 if (err < 0) { 8393 verbose(env, "Failed to acquire lock state\n"); 8394 return err; 8395 } 8396 } else { 8397 void *ptr; 8398 int type; 8399 8400 if (map) 8401 ptr = map; 8402 else 8403 ptr = btf; 8404 8405 if (!cur->active_locks) { 8406 verbose(env, "%s_unlock without taking a lock\n", lock_str); 8407 return -EINVAL; 8408 } 8409 8410 if (is_res_lock && is_irq) 8411 type = REF_TYPE_RES_LOCK_IRQ; 8412 else if (is_res_lock) 8413 type = REF_TYPE_RES_LOCK; 8414 else 8415 type = REF_TYPE_LOCK; 8416 if (!find_lock_state(cur, type, reg->id, ptr)) { 8417 verbose(env, "%s_unlock of different lock\n", lock_str); 8418 return -EINVAL; 8419 } 8420 if (reg->id != cur->active_lock_id || ptr != cur->active_lock_ptr) { 8421 verbose(env, "%s_unlock cannot be out of order\n", lock_str); 8422 return -EINVAL; 8423 } 8424 if (release_lock_state(cur, type, reg->id, ptr)) { 8425 verbose(env, "%s_unlock of different lock\n", lock_str); 8426 return -EINVAL; 8427 } 8428 8429 invalidate_non_owning_refs(env); 8430 } 8431 return 0; 8432 } 8433 8434 /* Check if @regno is a pointer to a specific field in a map value */ 8435 static int check_map_field_pointer(struct bpf_verifier_env *env, u32 regno, 8436 enum btf_field_type field_type) 8437 { 8438 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8439 bool is_const = tnum_is_const(reg->var_off); 8440 struct bpf_map *map = reg->map_ptr; 8441 u64 val = reg->var_off.value; 8442 const char *struct_name = btf_field_type_name(field_type); 8443 int field_off = -1; 8444 8445 if (!is_const) { 8446 verbose(env, 8447 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 8448 regno, struct_name); 8449 return -EINVAL; 8450 } 8451 if (!map->btf) { 8452 verbose(env, "map '%s' has to have BTF in order to use %s\n", map->name, 8453 struct_name); 8454 return -EINVAL; 8455 } 8456 if (!btf_record_has_field(map->record, field_type)) { 8457 verbose(env, "map '%s' has no valid %s\n", map->name, struct_name); 8458 return -EINVAL; 8459 } 8460 switch (field_type) { 8461 case BPF_TIMER: 8462 field_off = map->record->timer_off; 8463 break; 8464 case BPF_TASK_WORK: 8465 field_off = map->record->task_work_off; 8466 break; 8467 default: 8468 verifier_bug(env, "unsupported BTF field type: %s\n", struct_name); 8469 return -EINVAL; 8470 } 8471 if (field_off != val + reg->off) { 8472 verbose(env, "off %lld doesn't point to 'struct %s' that is at %d\n", 8473 val + reg->off, struct_name, field_off); 8474 return -EINVAL; 8475 } 8476 return 0; 8477 } 8478 8479 static int process_timer_func(struct bpf_verifier_env *env, int regno, 8480 struct bpf_call_arg_meta *meta) 8481 { 8482 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8483 struct bpf_map *map = reg->map_ptr; 8484 int err; 8485 8486 err = check_map_field_pointer(env, regno, BPF_TIMER); 8487 if (err) 8488 return err; 8489 8490 if (meta->map_ptr) { 8491 verifier_bug(env, "Two map pointers in a timer helper"); 8492 return -EFAULT; 8493 } 8494 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 8495 verbose(env, "bpf_timer cannot be used for PREEMPT_RT.\n"); 8496 return -EOPNOTSUPP; 8497 } 8498 meta->map_uid = reg->map_uid; 8499 meta->map_ptr = map; 8500 return 0; 8501 } 8502 8503 static int process_wq_func(struct bpf_verifier_env *env, int regno, 8504 struct bpf_kfunc_call_arg_meta *meta) 8505 { 8506 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8507 struct bpf_map *map = reg->map_ptr; 8508 u64 val = reg->var_off.value; 8509 8510 if (map->record->wq_off != val + reg->off) { 8511 verbose(env, "off %lld doesn't point to 'struct bpf_wq' that is at %d\n", 8512 val + reg->off, map->record->wq_off); 8513 return -EINVAL; 8514 } 8515 meta->map.uid = reg->map_uid; 8516 meta->map.ptr = map; 8517 return 0; 8518 } 8519 8520 static int process_task_work_func(struct bpf_verifier_env *env, int regno, 8521 struct bpf_kfunc_call_arg_meta *meta) 8522 { 8523 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8524 struct bpf_map *map = reg->map_ptr; 8525 int err; 8526 8527 err = check_map_field_pointer(env, regno, BPF_TASK_WORK); 8528 if (err) 8529 return err; 8530 8531 if (meta->map.ptr) { 8532 verifier_bug(env, "Two map pointers in a bpf_task_work helper"); 8533 return -EFAULT; 8534 } 8535 meta->map.uid = reg->map_uid; 8536 meta->map.ptr = map; 8537 return 0; 8538 } 8539 8540 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 8541 struct bpf_call_arg_meta *meta) 8542 { 8543 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8544 struct btf_field *kptr_field; 8545 struct bpf_map *map_ptr; 8546 struct btf_record *rec; 8547 u32 kptr_off; 8548 8549 if (type_is_ptr_alloc_obj(reg->type)) { 8550 rec = reg_btf_record(reg); 8551 } else { /* PTR_TO_MAP_VALUE */ 8552 map_ptr = reg->map_ptr; 8553 if (!map_ptr->btf) { 8554 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 8555 map_ptr->name); 8556 return -EINVAL; 8557 } 8558 rec = map_ptr->record; 8559 meta->map_ptr = map_ptr; 8560 } 8561 8562 if (!tnum_is_const(reg->var_off)) { 8563 verbose(env, 8564 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 8565 regno); 8566 return -EINVAL; 8567 } 8568 8569 if (!btf_record_has_field(rec, BPF_KPTR)) { 8570 verbose(env, "R%d has no valid kptr\n", regno); 8571 return -EINVAL; 8572 } 8573 8574 kptr_off = reg->off + reg->var_off.value; 8575 kptr_field = btf_record_find(rec, kptr_off, BPF_KPTR); 8576 if (!kptr_field) { 8577 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 8578 return -EACCES; 8579 } 8580 if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) { 8581 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 8582 return -EACCES; 8583 } 8584 meta->kptr_field = kptr_field; 8585 return 0; 8586 } 8587 8588 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 8589 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 8590 * 8591 * In both cases we deal with the first 8 bytes, but need to mark the next 8 8592 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 8593 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 8594 * 8595 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 8596 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 8597 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 8598 * mutate the view of the dynptr and also possibly destroy it. In the latter 8599 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 8600 * memory that dynptr points to. 8601 * 8602 * The verifier will keep track both levels of mutation (bpf_dynptr's in 8603 * reg->type and the memory's in reg->dynptr.type), but there is no support for 8604 * readonly dynptr view yet, hence only the first case is tracked and checked. 8605 * 8606 * This is consistent with how C applies the const modifier to a struct object, 8607 * where the pointer itself inside bpf_dynptr becomes const but not what it 8608 * points to. 8609 * 8610 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 8611 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 8612 */ 8613 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 8614 enum bpf_arg_type arg_type, int clone_ref_obj_id) 8615 { 8616 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8617 int err; 8618 8619 if (reg->type != PTR_TO_STACK && reg->type != CONST_PTR_TO_DYNPTR) { 8620 verbose(env, 8621 "arg#%d expected pointer to stack or const struct bpf_dynptr\n", 8622 regno - 1); 8623 return -EINVAL; 8624 } 8625 8626 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 8627 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 8628 */ 8629 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 8630 verifier_bug(env, "misconfigured dynptr helper type flags"); 8631 return -EFAULT; 8632 } 8633 8634 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 8635 * constructing a mutable bpf_dynptr object. 8636 * 8637 * Currently, this is only possible with PTR_TO_STACK 8638 * pointing to a region of at least 16 bytes which doesn't 8639 * contain an existing bpf_dynptr. 8640 * 8641 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 8642 * mutated or destroyed. However, the memory it points to 8643 * may be mutated. 8644 * 8645 * None - Points to a initialized dynptr that can be mutated and 8646 * destroyed, including mutation of the memory it points 8647 * to. 8648 */ 8649 if (arg_type & MEM_UNINIT) { 8650 int i; 8651 8652 if (!is_dynptr_reg_valid_uninit(env, reg)) { 8653 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 8654 return -EINVAL; 8655 } 8656 8657 /* we write BPF_DW bits (8 bytes) at a time */ 8658 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 8659 err = check_mem_access(env, insn_idx, regno, 8660 i, BPF_DW, BPF_WRITE, -1, false, false); 8661 if (err) 8662 return err; 8663 } 8664 8665 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 8666 } else /* MEM_RDONLY and None case from above */ { 8667 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 8668 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 8669 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 8670 return -EINVAL; 8671 } 8672 8673 if (!is_dynptr_reg_valid_init(env, reg)) { 8674 verbose(env, 8675 "Expected an initialized dynptr as arg #%d\n", 8676 regno - 1); 8677 return -EINVAL; 8678 } 8679 8680 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 8681 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 8682 verbose(env, 8683 "Expected a dynptr of type %s as arg #%d\n", 8684 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno - 1); 8685 return -EINVAL; 8686 } 8687 8688 err = mark_dynptr_read(env, reg); 8689 } 8690 return err; 8691 } 8692 8693 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 8694 { 8695 struct bpf_func_state *state = func(env, reg); 8696 8697 return state->stack[spi].spilled_ptr.ref_obj_id; 8698 } 8699 8700 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8701 { 8702 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 8703 } 8704 8705 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8706 { 8707 return meta->kfunc_flags & KF_ITER_NEW; 8708 } 8709 8710 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8711 { 8712 return meta->kfunc_flags & KF_ITER_NEXT; 8713 } 8714 8715 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 8716 { 8717 return meta->kfunc_flags & KF_ITER_DESTROY; 8718 } 8719 8720 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg_idx, 8721 const struct btf_param *arg) 8722 { 8723 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 8724 * kfunc is iter state pointer 8725 */ 8726 if (is_iter_kfunc(meta)) 8727 return arg_idx == 0; 8728 8729 /* iter passed as an argument to a generic kfunc */ 8730 return btf_param_match_suffix(meta->btf, arg, "__iter"); 8731 } 8732 8733 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 8734 struct bpf_kfunc_call_arg_meta *meta) 8735 { 8736 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8737 const struct btf_type *t; 8738 int spi, err, i, nr_slots, btf_id; 8739 8740 if (reg->type != PTR_TO_STACK) { 8741 verbose(env, "arg#%d expected pointer to an iterator on stack\n", regno - 1); 8742 return -EINVAL; 8743 } 8744 8745 /* For iter_{new,next,destroy} functions, btf_check_iter_kfuncs() 8746 * ensures struct convention, so we wouldn't need to do any BTF 8747 * validation here. But given iter state can be passed as a parameter 8748 * to any kfunc, if arg has "__iter" suffix, we need to be a bit more 8749 * conservative here. 8750 */ 8751 btf_id = btf_check_iter_arg(meta->btf, meta->func_proto, regno - 1); 8752 if (btf_id < 0) { 8753 verbose(env, "expected valid iter pointer as arg #%d\n", regno - 1); 8754 return -EINVAL; 8755 } 8756 t = btf_type_by_id(meta->btf, btf_id); 8757 nr_slots = t->size / BPF_REG_SIZE; 8758 8759 if (is_iter_new_kfunc(meta)) { 8760 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 8761 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 8762 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 8763 iter_type_str(meta->btf, btf_id), regno - 1); 8764 return -EINVAL; 8765 } 8766 8767 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 8768 err = check_mem_access(env, insn_idx, regno, 8769 i, BPF_DW, BPF_WRITE, -1, false, false); 8770 if (err) 8771 return err; 8772 } 8773 8774 err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots); 8775 if (err) 8776 return err; 8777 } else { 8778 /* iter_next() or iter_destroy(), as well as any kfunc 8779 * accepting iter argument, expect initialized iter state 8780 */ 8781 err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots); 8782 switch (err) { 8783 case 0: 8784 break; 8785 case -EINVAL: 8786 verbose(env, "expected an initialized iter_%s as arg #%d\n", 8787 iter_type_str(meta->btf, btf_id), regno - 1); 8788 return err; 8789 case -EPROTO: 8790 verbose(env, "expected an RCU CS when using %s\n", meta->func_name); 8791 return err; 8792 default: 8793 return err; 8794 } 8795 8796 spi = iter_get_spi(env, reg, nr_slots); 8797 if (spi < 0) 8798 return spi; 8799 8800 err = mark_iter_read(env, reg, spi, nr_slots); 8801 if (err) 8802 return err; 8803 8804 /* remember meta->iter info for process_iter_next_call() */ 8805 meta->iter.spi = spi; 8806 meta->iter.frameno = reg->frameno; 8807 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 8808 8809 if (is_iter_destroy_kfunc(meta)) { 8810 err = unmark_stack_slots_iter(env, reg, nr_slots); 8811 if (err) 8812 return err; 8813 } 8814 } 8815 8816 return 0; 8817 } 8818 8819 /* Look for a previous loop entry at insn_idx: nearest parent state 8820 * stopped at insn_idx with callsites matching those in cur->frame. 8821 */ 8822 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, 8823 struct bpf_verifier_state *cur, 8824 int insn_idx) 8825 { 8826 struct bpf_verifier_state_list *sl; 8827 struct bpf_verifier_state *st; 8828 struct list_head *pos, *head; 8829 8830 /* Explored states are pushed in stack order, most recent states come first */ 8831 head = explored_state(env, insn_idx); 8832 list_for_each(pos, head) { 8833 sl = container_of(pos, struct bpf_verifier_state_list, node); 8834 /* If st->branches != 0 state is a part of current DFS verification path, 8835 * hence cur & st for a loop. 8836 */ 8837 st = &sl->state; 8838 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && 8839 st->dfs_depth < cur->dfs_depth) 8840 return st; 8841 } 8842 8843 return NULL; 8844 } 8845 8846 static void reset_idmap_scratch(struct bpf_verifier_env *env); 8847 static bool regs_exact(const struct bpf_reg_state *rold, 8848 const struct bpf_reg_state *rcur, 8849 struct bpf_idmap *idmap); 8850 8851 static void maybe_widen_reg(struct bpf_verifier_env *env, 8852 struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 8853 struct bpf_idmap *idmap) 8854 { 8855 if (rold->type != SCALAR_VALUE) 8856 return; 8857 if (rold->type != rcur->type) 8858 return; 8859 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) 8860 return; 8861 __mark_reg_unknown(env, rcur); 8862 } 8863 8864 static int widen_imprecise_scalars(struct bpf_verifier_env *env, 8865 struct bpf_verifier_state *old, 8866 struct bpf_verifier_state *cur) 8867 { 8868 struct bpf_func_state *fold, *fcur; 8869 int i, fr, num_slots; 8870 8871 reset_idmap_scratch(env); 8872 for (fr = old->curframe; fr >= 0; fr--) { 8873 fold = old->frame[fr]; 8874 fcur = cur->frame[fr]; 8875 8876 for (i = 0; i < MAX_BPF_REG; i++) 8877 maybe_widen_reg(env, 8878 &fold->regs[i], 8879 &fcur->regs[i], 8880 &env->idmap_scratch); 8881 8882 num_slots = min(fold->allocated_stack / BPF_REG_SIZE, 8883 fcur->allocated_stack / BPF_REG_SIZE); 8884 for (i = 0; i < num_slots; i++) { 8885 if (!is_spilled_reg(&fold->stack[i]) || 8886 !is_spilled_reg(&fcur->stack[i])) 8887 continue; 8888 8889 maybe_widen_reg(env, 8890 &fold->stack[i].spilled_ptr, 8891 &fcur->stack[i].spilled_ptr, 8892 &env->idmap_scratch); 8893 } 8894 } 8895 return 0; 8896 } 8897 8898 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st, 8899 struct bpf_kfunc_call_arg_meta *meta) 8900 { 8901 int iter_frameno = meta->iter.frameno; 8902 int iter_spi = meta->iter.spi; 8903 8904 return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 8905 } 8906 8907 /* process_iter_next_call() is called when verifier gets to iterator's next 8908 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 8909 * to it as just "iter_next()" in comments below. 8910 * 8911 * BPF verifier relies on a crucial contract for any iter_next() 8912 * implementation: it should *eventually* return NULL, and once that happens 8913 * it should keep returning NULL. That is, once iterator exhausts elements to 8914 * iterate, it should never reset or spuriously return new elements. 8915 * 8916 * With the assumption of such contract, process_iter_next_call() simulates 8917 * a fork in the verifier state to validate loop logic correctness and safety 8918 * without having to simulate infinite amount of iterations. 8919 * 8920 * In current state, we first assume that iter_next() returned NULL and 8921 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 8922 * conditions we should not form an infinite loop and should eventually reach 8923 * exit. 8924 * 8925 * Besides that, we also fork current state and enqueue it for later 8926 * verification. In a forked state we keep iterator state as ACTIVE 8927 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 8928 * also bump iteration depth to prevent erroneous infinite loop detection 8929 * later on (see iter_active_depths_differ() comment for details). In this 8930 * state we assume that we'll eventually loop back to another iter_next() 8931 * calls (it could be in exactly same location or in some other instruction, 8932 * it doesn't matter, we don't make any unnecessary assumptions about this, 8933 * everything revolves around iterator state in a stack slot, not which 8934 * instruction is calling iter_next()). When that happens, we either will come 8935 * to iter_next() with equivalent state and can conclude that next iteration 8936 * will proceed in exactly the same way as we just verified, so it's safe to 8937 * assume that loop converges. If not, we'll go on another iteration 8938 * simulation with a different input state, until all possible starting states 8939 * are validated or we reach maximum number of instructions limit. 8940 * 8941 * This way, we will either exhaustively discover all possible input states 8942 * that iterator loop can start with and eventually will converge, or we'll 8943 * effectively regress into bounded loop simulation logic and either reach 8944 * maximum number of instructions if loop is not provably convergent, or there 8945 * is some statically known limit on number of iterations (e.g., if there is 8946 * an explicit `if n > 100 then break;` statement somewhere in the loop). 8947 * 8948 * Iteration convergence logic in is_state_visited() relies on exact 8949 * states comparison, which ignores read and precision marks. 8950 * This is necessary because read and precision marks are not finalized 8951 * while in the loop. Exact comparison might preclude convergence for 8952 * simple programs like below: 8953 * 8954 * i = 0; 8955 * while(iter_next(&it)) 8956 * i++; 8957 * 8958 * At each iteration step i++ would produce a new distinct state and 8959 * eventually instruction processing limit would be reached. 8960 * 8961 * To avoid such behavior speculatively forget (widen) range for 8962 * imprecise scalar registers, if those registers were not precise at the 8963 * end of the previous iteration and do not match exactly. 8964 * 8965 * This is a conservative heuristic that allows to verify wide range of programs, 8966 * however it precludes verification of programs that conjure an 8967 * imprecise value on the first loop iteration and use it as precise on a second. 8968 * For example, the following safe program would fail to verify: 8969 * 8970 * struct bpf_num_iter it; 8971 * int arr[10]; 8972 * int i = 0, a = 0; 8973 * bpf_iter_num_new(&it, 0, 10); 8974 * while (bpf_iter_num_next(&it)) { 8975 * if (a == 0) { 8976 * a = 1; 8977 * i = 7; // Because i changed verifier would forget 8978 * // it's range on second loop entry. 8979 * } else { 8980 * arr[i] = 42; // This would fail to verify. 8981 * } 8982 * } 8983 * bpf_iter_num_destroy(&it); 8984 */ 8985 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 8986 struct bpf_kfunc_call_arg_meta *meta) 8987 { 8988 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 8989 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 8990 struct bpf_reg_state *cur_iter, *queued_iter; 8991 8992 BTF_TYPE_EMIT(struct bpf_iter); 8993 8994 cur_iter = get_iter_from_state(cur_st, meta); 8995 8996 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 8997 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 8998 verifier_bug(env, "unexpected iterator state %d (%s)", 8999 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 9000 return -EFAULT; 9001 } 9002 9003 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 9004 /* Because iter_next() call is a checkpoint is_state_visitied() 9005 * should guarantee parent state with same call sites and insn_idx. 9006 */ 9007 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || 9008 !same_callsites(cur_st->parent, cur_st)) { 9009 verifier_bug(env, "bad parent state for iter next call"); 9010 return -EFAULT; 9011 } 9012 /* Note cur_st->parent in the call below, it is necessary to skip 9013 * checkpoint created for cur_st by is_state_visited() 9014 * right at this instruction. 9015 */ 9016 prev_st = find_prev_entry(env, cur_st->parent, insn_idx); 9017 /* branch out active iter state */ 9018 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 9019 if (!queued_st) 9020 return -ENOMEM; 9021 9022 queued_iter = get_iter_from_state(queued_st, meta); 9023 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 9024 queued_iter->iter.depth++; 9025 if (prev_st) 9026 widen_imprecise_scalars(env, prev_st, queued_st); 9027 9028 queued_fr = queued_st->frame[queued_st->curframe]; 9029 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 9030 } 9031 9032 /* switch to DRAINED state, but keep the depth unchanged */ 9033 /* mark current iter state as drained and assume returned NULL */ 9034 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 9035 __mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]); 9036 9037 return 0; 9038 } 9039 9040 static bool arg_type_is_mem_size(enum bpf_arg_type type) 9041 { 9042 return type == ARG_CONST_SIZE || 9043 type == ARG_CONST_SIZE_OR_ZERO; 9044 } 9045 9046 static bool arg_type_is_raw_mem(enum bpf_arg_type type) 9047 { 9048 return base_type(type) == ARG_PTR_TO_MEM && 9049 type & MEM_UNINIT; 9050 } 9051 9052 static bool arg_type_is_release(enum bpf_arg_type type) 9053 { 9054 return type & OBJ_RELEASE; 9055 } 9056 9057 static bool arg_type_is_dynptr(enum bpf_arg_type type) 9058 { 9059 return base_type(type) == ARG_PTR_TO_DYNPTR; 9060 } 9061 9062 static int resolve_map_arg_type(struct bpf_verifier_env *env, 9063 const struct bpf_call_arg_meta *meta, 9064 enum bpf_arg_type *arg_type) 9065 { 9066 if (!meta->map_ptr) { 9067 /* kernel subsystem misconfigured verifier */ 9068 verifier_bug(env, "invalid map_ptr to access map->type"); 9069 return -EFAULT; 9070 } 9071 9072 switch (meta->map_ptr->map_type) { 9073 case BPF_MAP_TYPE_SOCKMAP: 9074 case BPF_MAP_TYPE_SOCKHASH: 9075 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 9076 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 9077 } else { 9078 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 9079 return -EINVAL; 9080 } 9081 break; 9082 case BPF_MAP_TYPE_BLOOM_FILTER: 9083 if (meta->func_id == BPF_FUNC_map_peek_elem) 9084 *arg_type = ARG_PTR_TO_MAP_VALUE; 9085 break; 9086 default: 9087 break; 9088 } 9089 return 0; 9090 } 9091 9092 struct bpf_reg_types { 9093 const enum bpf_reg_type types[10]; 9094 u32 *btf_id; 9095 }; 9096 9097 static const struct bpf_reg_types sock_types = { 9098 .types = { 9099 PTR_TO_SOCK_COMMON, 9100 PTR_TO_SOCKET, 9101 PTR_TO_TCP_SOCK, 9102 PTR_TO_XDP_SOCK, 9103 }, 9104 }; 9105 9106 #ifdef CONFIG_NET 9107 static const struct bpf_reg_types btf_id_sock_common_types = { 9108 .types = { 9109 PTR_TO_SOCK_COMMON, 9110 PTR_TO_SOCKET, 9111 PTR_TO_TCP_SOCK, 9112 PTR_TO_XDP_SOCK, 9113 PTR_TO_BTF_ID, 9114 PTR_TO_BTF_ID | PTR_TRUSTED, 9115 }, 9116 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 9117 }; 9118 #endif 9119 9120 static const struct bpf_reg_types mem_types = { 9121 .types = { 9122 PTR_TO_STACK, 9123 PTR_TO_PACKET, 9124 PTR_TO_PACKET_META, 9125 PTR_TO_MAP_KEY, 9126 PTR_TO_MAP_VALUE, 9127 PTR_TO_MEM, 9128 PTR_TO_MEM | MEM_RINGBUF, 9129 PTR_TO_BUF, 9130 PTR_TO_BTF_ID | PTR_TRUSTED, 9131 }, 9132 }; 9133 9134 static const struct bpf_reg_types spin_lock_types = { 9135 .types = { 9136 PTR_TO_MAP_VALUE, 9137 PTR_TO_BTF_ID | MEM_ALLOC, 9138 } 9139 }; 9140 9141 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 9142 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 9143 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 9144 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 9145 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 9146 static const struct bpf_reg_types btf_ptr_types = { 9147 .types = { 9148 PTR_TO_BTF_ID, 9149 PTR_TO_BTF_ID | PTR_TRUSTED, 9150 PTR_TO_BTF_ID | MEM_RCU, 9151 }, 9152 }; 9153 static const struct bpf_reg_types percpu_btf_ptr_types = { 9154 .types = { 9155 PTR_TO_BTF_ID | MEM_PERCPU, 9156 PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU, 9157 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 9158 } 9159 }; 9160 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 9161 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 9162 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 9163 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 9164 static const struct bpf_reg_types kptr_xchg_dest_types = { 9165 .types = { 9166 PTR_TO_MAP_VALUE, 9167 PTR_TO_BTF_ID | MEM_ALLOC 9168 } 9169 }; 9170 static const struct bpf_reg_types dynptr_types = { 9171 .types = { 9172 PTR_TO_STACK, 9173 CONST_PTR_TO_DYNPTR, 9174 } 9175 }; 9176 9177 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 9178 [ARG_PTR_TO_MAP_KEY] = &mem_types, 9179 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 9180 [ARG_CONST_SIZE] = &scalar_types, 9181 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 9182 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 9183 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 9184 [ARG_PTR_TO_CTX] = &context_types, 9185 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 9186 #ifdef CONFIG_NET 9187 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 9188 #endif 9189 [ARG_PTR_TO_SOCKET] = &fullsock_types, 9190 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 9191 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 9192 [ARG_PTR_TO_MEM] = &mem_types, 9193 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 9194 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 9195 [ARG_PTR_TO_FUNC] = &func_ptr_types, 9196 [ARG_PTR_TO_STACK] = &stack_ptr_types, 9197 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 9198 [ARG_PTR_TO_TIMER] = &timer_types, 9199 [ARG_KPTR_XCHG_DEST] = &kptr_xchg_dest_types, 9200 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 9201 }; 9202 9203 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 9204 enum bpf_arg_type arg_type, 9205 const u32 *arg_btf_id, 9206 struct bpf_call_arg_meta *meta) 9207 { 9208 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 9209 enum bpf_reg_type expected, type = reg->type; 9210 const struct bpf_reg_types *compatible; 9211 int i, j; 9212 9213 compatible = compatible_reg_types[base_type(arg_type)]; 9214 if (!compatible) { 9215 verifier_bug(env, "unsupported arg type %d", arg_type); 9216 return -EFAULT; 9217 } 9218 9219 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 9220 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 9221 * 9222 * Same for MAYBE_NULL: 9223 * 9224 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 9225 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 9226 * 9227 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 9228 * 9229 * Therefore we fold these flags depending on the arg_type before comparison. 9230 */ 9231 if (arg_type & MEM_RDONLY) 9232 type &= ~MEM_RDONLY; 9233 if (arg_type & PTR_MAYBE_NULL) 9234 type &= ~PTR_MAYBE_NULL; 9235 if (base_type(arg_type) == ARG_PTR_TO_MEM) 9236 type &= ~DYNPTR_TYPE_FLAG_MASK; 9237 9238 /* Local kptr types are allowed as the source argument of bpf_kptr_xchg */ 9239 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type) && regno == BPF_REG_2) { 9240 type &= ~MEM_ALLOC; 9241 type &= ~MEM_PERCPU; 9242 } 9243 9244 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 9245 expected = compatible->types[i]; 9246 if (expected == NOT_INIT) 9247 break; 9248 9249 if (type == expected) 9250 goto found; 9251 } 9252 9253 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 9254 for (j = 0; j + 1 < i; j++) 9255 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 9256 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 9257 return -EACCES; 9258 9259 found: 9260 if (base_type(reg->type) != PTR_TO_BTF_ID) 9261 return 0; 9262 9263 if (compatible == &mem_types) { 9264 if (!(arg_type & MEM_RDONLY)) { 9265 verbose(env, 9266 "%s() may write into memory pointed by R%d type=%s\n", 9267 func_id_name(meta->func_id), 9268 regno, reg_type_str(env, reg->type)); 9269 return -EACCES; 9270 } 9271 return 0; 9272 } 9273 9274 switch ((int)reg->type) { 9275 case PTR_TO_BTF_ID: 9276 case PTR_TO_BTF_ID | PTR_TRUSTED: 9277 case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL: 9278 case PTR_TO_BTF_ID | MEM_RCU: 9279 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 9280 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 9281 { 9282 /* For bpf_sk_release, it needs to match against first member 9283 * 'struct sock_common', hence make an exception for it. This 9284 * allows bpf_sk_release to work for multiple socket types. 9285 */ 9286 bool strict_type_match = arg_type_is_release(arg_type) && 9287 meta->func_id != BPF_FUNC_sk_release; 9288 9289 if (type_may_be_null(reg->type) && 9290 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 9291 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 9292 return -EACCES; 9293 } 9294 9295 if (!arg_btf_id) { 9296 if (!compatible->btf_id) { 9297 verifier_bug(env, "missing arg compatible BTF ID"); 9298 return -EFAULT; 9299 } 9300 arg_btf_id = compatible->btf_id; 9301 } 9302 9303 if (meta->func_id == BPF_FUNC_kptr_xchg) { 9304 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 9305 return -EACCES; 9306 } else { 9307 if (arg_btf_id == BPF_PTR_POISON) { 9308 verbose(env, "verifier internal error:"); 9309 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 9310 regno); 9311 return -EACCES; 9312 } 9313 9314 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 9315 btf_vmlinux, *arg_btf_id, 9316 strict_type_match)) { 9317 verbose(env, "R%d is of type %s but %s is expected\n", 9318 regno, btf_type_name(reg->btf, reg->btf_id), 9319 btf_type_name(btf_vmlinux, *arg_btf_id)); 9320 return -EACCES; 9321 } 9322 } 9323 break; 9324 } 9325 case PTR_TO_BTF_ID | MEM_ALLOC: 9326 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC: 9327 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 9328 meta->func_id != BPF_FUNC_kptr_xchg) { 9329 verifier_bug(env, "unimplemented handling of MEM_ALLOC"); 9330 return -EFAULT; 9331 } 9332 /* Check if local kptr in src arg matches kptr in dst arg */ 9333 if (meta->func_id == BPF_FUNC_kptr_xchg && regno == BPF_REG_2) { 9334 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 9335 return -EACCES; 9336 } 9337 break; 9338 case PTR_TO_BTF_ID | MEM_PERCPU: 9339 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU: 9340 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 9341 /* Handled by helper specific checks */ 9342 break; 9343 default: 9344 verifier_bug(env, "invalid PTR_TO_BTF_ID register for type match"); 9345 return -EFAULT; 9346 } 9347 return 0; 9348 } 9349 9350 static struct btf_field * 9351 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 9352 { 9353 struct btf_field *field; 9354 struct btf_record *rec; 9355 9356 rec = reg_btf_record(reg); 9357 if (!rec) 9358 return NULL; 9359 9360 field = btf_record_find(rec, off, fields); 9361 if (!field) 9362 return NULL; 9363 9364 return field; 9365 } 9366 9367 static int check_func_arg_reg_off(struct bpf_verifier_env *env, 9368 const struct bpf_reg_state *reg, int regno, 9369 enum bpf_arg_type arg_type) 9370 { 9371 u32 type = reg->type; 9372 9373 /* When referenced register is passed to release function, its fixed 9374 * offset must be 0. 9375 * 9376 * We will check arg_type_is_release reg has ref_obj_id when storing 9377 * meta->release_regno. 9378 */ 9379 if (arg_type_is_release(arg_type)) { 9380 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 9381 * may not directly point to the object being released, but to 9382 * dynptr pointing to such object, which might be at some offset 9383 * on the stack. In that case, we simply to fallback to the 9384 * default handling. 9385 */ 9386 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 9387 return 0; 9388 9389 /* Doing check_ptr_off_reg check for the offset will catch this 9390 * because fixed_off_ok is false, but checking here allows us 9391 * to give the user a better error message. 9392 */ 9393 if (reg->off) { 9394 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 9395 regno); 9396 return -EINVAL; 9397 } 9398 return __check_ptr_off_reg(env, reg, regno, false); 9399 } 9400 9401 switch (type) { 9402 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 9403 case PTR_TO_STACK: 9404 case PTR_TO_PACKET: 9405 case PTR_TO_PACKET_META: 9406 case PTR_TO_MAP_KEY: 9407 case PTR_TO_MAP_VALUE: 9408 case PTR_TO_MEM: 9409 case PTR_TO_MEM | MEM_RDONLY: 9410 case PTR_TO_MEM | MEM_RINGBUF: 9411 case PTR_TO_BUF: 9412 case PTR_TO_BUF | MEM_RDONLY: 9413 case PTR_TO_ARENA: 9414 case SCALAR_VALUE: 9415 return 0; 9416 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 9417 * fixed offset. 9418 */ 9419 case PTR_TO_BTF_ID: 9420 case PTR_TO_BTF_ID | MEM_ALLOC: 9421 case PTR_TO_BTF_ID | PTR_TRUSTED: 9422 case PTR_TO_BTF_ID | MEM_RCU: 9423 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 9424 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 9425 /* When referenced PTR_TO_BTF_ID is passed to release function, 9426 * its fixed offset must be 0. In the other cases, fixed offset 9427 * can be non-zero. This was already checked above. So pass 9428 * fixed_off_ok as true to allow fixed offset for all other 9429 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 9430 * still need to do checks instead of returning. 9431 */ 9432 return __check_ptr_off_reg(env, reg, regno, true); 9433 default: 9434 return __check_ptr_off_reg(env, reg, regno, false); 9435 } 9436 } 9437 9438 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 9439 const struct bpf_func_proto *fn, 9440 struct bpf_reg_state *regs) 9441 { 9442 struct bpf_reg_state *state = NULL; 9443 int i; 9444 9445 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 9446 if (arg_type_is_dynptr(fn->arg_type[i])) { 9447 if (state) { 9448 verbose(env, "verifier internal error: multiple dynptr args\n"); 9449 return NULL; 9450 } 9451 state = ®s[BPF_REG_1 + i]; 9452 } 9453 9454 if (!state) 9455 verbose(env, "verifier internal error: no dynptr arg found\n"); 9456 9457 return state; 9458 } 9459 9460 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 9461 { 9462 struct bpf_func_state *state = func(env, reg); 9463 int spi; 9464 9465 if (reg->type == CONST_PTR_TO_DYNPTR) 9466 return reg->id; 9467 spi = dynptr_get_spi(env, reg); 9468 if (spi < 0) 9469 return spi; 9470 return state->stack[spi].spilled_ptr.id; 9471 } 9472 9473 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 9474 { 9475 struct bpf_func_state *state = func(env, reg); 9476 int spi; 9477 9478 if (reg->type == CONST_PTR_TO_DYNPTR) 9479 return reg->ref_obj_id; 9480 spi = dynptr_get_spi(env, reg); 9481 if (spi < 0) 9482 return spi; 9483 return state->stack[spi].spilled_ptr.ref_obj_id; 9484 } 9485 9486 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 9487 struct bpf_reg_state *reg) 9488 { 9489 struct bpf_func_state *state = func(env, reg); 9490 int spi; 9491 9492 if (reg->type == CONST_PTR_TO_DYNPTR) 9493 return reg->dynptr.type; 9494 9495 spi = __get_spi(reg->off); 9496 if (spi < 0) { 9497 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 9498 return BPF_DYNPTR_TYPE_INVALID; 9499 } 9500 9501 return state->stack[spi].spilled_ptr.dynptr.type; 9502 } 9503 9504 static int check_reg_const_str(struct bpf_verifier_env *env, 9505 struct bpf_reg_state *reg, u32 regno) 9506 { 9507 struct bpf_map *map = reg->map_ptr; 9508 int err; 9509 int map_off; 9510 u64 map_addr; 9511 char *str_ptr; 9512 9513 if (reg->type != PTR_TO_MAP_VALUE) 9514 return -EINVAL; 9515 9516 if (!bpf_map_is_rdonly(map)) { 9517 verbose(env, "R%d does not point to a readonly map'\n", regno); 9518 return -EACCES; 9519 } 9520 9521 if (!tnum_is_const(reg->var_off)) { 9522 verbose(env, "R%d is not a constant address'\n", regno); 9523 return -EACCES; 9524 } 9525 9526 if (!map->ops->map_direct_value_addr) { 9527 verbose(env, "no direct value access support for this map type\n"); 9528 return -EACCES; 9529 } 9530 9531 err = check_map_access(env, regno, reg->off, 9532 map->value_size - reg->off, false, 9533 ACCESS_HELPER); 9534 if (err) 9535 return err; 9536 9537 map_off = reg->off + reg->var_off.value; 9538 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 9539 if (err) { 9540 verbose(env, "direct value access on string failed\n"); 9541 return err; 9542 } 9543 9544 str_ptr = (char *)(long)(map_addr); 9545 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 9546 verbose(env, "string is not zero-terminated\n"); 9547 return -EINVAL; 9548 } 9549 return 0; 9550 } 9551 9552 /* Returns constant key value in `value` if possible, else negative error */ 9553 static int get_constant_map_key(struct bpf_verifier_env *env, 9554 struct bpf_reg_state *key, 9555 u32 key_size, 9556 s64 *value) 9557 { 9558 struct bpf_func_state *state = func(env, key); 9559 struct bpf_reg_state *reg; 9560 int slot, spi, off; 9561 int spill_size = 0; 9562 int zero_size = 0; 9563 int stack_off; 9564 int i, err; 9565 u8 *stype; 9566 9567 if (!env->bpf_capable) 9568 return -EOPNOTSUPP; 9569 if (key->type != PTR_TO_STACK) 9570 return -EOPNOTSUPP; 9571 if (!tnum_is_const(key->var_off)) 9572 return -EOPNOTSUPP; 9573 9574 stack_off = key->off + key->var_off.value; 9575 slot = -stack_off - 1; 9576 spi = slot / BPF_REG_SIZE; 9577 off = slot % BPF_REG_SIZE; 9578 stype = state->stack[spi].slot_type; 9579 9580 /* First handle precisely tracked STACK_ZERO */ 9581 for (i = off; i >= 0 && stype[i] == STACK_ZERO; i--) 9582 zero_size++; 9583 if (zero_size >= key_size) { 9584 *value = 0; 9585 return 0; 9586 } 9587 9588 /* Check that stack contains a scalar spill of expected size */ 9589 if (!is_spilled_scalar_reg(&state->stack[spi])) 9590 return -EOPNOTSUPP; 9591 for (i = off; i >= 0 && stype[i] == STACK_SPILL; i--) 9592 spill_size++; 9593 if (spill_size != key_size) 9594 return -EOPNOTSUPP; 9595 9596 reg = &state->stack[spi].spilled_ptr; 9597 if (!tnum_is_const(reg->var_off)) 9598 /* Stack value not statically known */ 9599 return -EOPNOTSUPP; 9600 9601 /* We are relying on a constant value. So mark as precise 9602 * to prevent pruning on it. 9603 */ 9604 bt_set_frame_slot(&env->bt, key->frameno, spi); 9605 err = mark_chain_precision_batch(env, env->cur_state); 9606 if (err < 0) 9607 return err; 9608 9609 *value = reg->var_off.value; 9610 return 0; 9611 } 9612 9613 static bool can_elide_value_nullness(enum bpf_map_type type); 9614 9615 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 9616 struct bpf_call_arg_meta *meta, 9617 const struct bpf_func_proto *fn, 9618 int insn_idx) 9619 { 9620 u32 regno = BPF_REG_1 + arg; 9621 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 9622 enum bpf_arg_type arg_type = fn->arg_type[arg]; 9623 enum bpf_reg_type type = reg->type; 9624 u32 *arg_btf_id = NULL; 9625 u32 key_size; 9626 int err = 0; 9627 9628 if (arg_type == ARG_DONTCARE) 9629 return 0; 9630 9631 err = check_reg_arg(env, regno, SRC_OP); 9632 if (err) 9633 return err; 9634 9635 if (arg_type == ARG_ANYTHING) { 9636 if (is_pointer_value(env, regno)) { 9637 verbose(env, "R%d leaks addr into helper function\n", 9638 regno); 9639 return -EACCES; 9640 } 9641 return 0; 9642 } 9643 9644 if (type_is_pkt_pointer(type) && 9645 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 9646 verbose(env, "helper access to the packet is not allowed\n"); 9647 return -EACCES; 9648 } 9649 9650 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 9651 err = resolve_map_arg_type(env, meta, &arg_type); 9652 if (err) 9653 return err; 9654 } 9655 9656 if (register_is_null(reg) && type_may_be_null(arg_type)) 9657 /* A NULL register has a SCALAR_VALUE type, so skip 9658 * type checking. 9659 */ 9660 goto skip_type_check; 9661 9662 /* arg_btf_id and arg_size are in a union. */ 9663 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 9664 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 9665 arg_btf_id = fn->arg_btf_id[arg]; 9666 9667 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 9668 if (err) 9669 return err; 9670 9671 err = check_func_arg_reg_off(env, reg, regno, arg_type); 9672 if (err) 9673 return err; 9674 9675 skip_type_check: 9676 if (arg_type_is_release(arg_type)) { 9677 if (arg_type_is_dynptr(arg_type)) { 9678 struct bpf_func_state *state = func(env, reg); 9679 int spi; 9680 9681 /* Only dynptr created on stack can be released, thus 9682 * the get_spi and stack state checks for spilled_ptr 9683 * should only be done before process_dynptr_func for 9684 * PTR_TO_STACK. 9685 */ 9686 if (reg->type == PTR_TO_STACK) { 9687 spi = dynptr_get_spi(env, reg); 9688 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 9689 verbose(env, "arg %d is an unacquired reference\n", regno); 9690 return -EINVAL; 9691 } 9692 } else { 9693 verbose(env, "cannot release unowned const bpf_dynptr\n"); 9694 return -EINVAL; 9695 } 9696 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 9697 verbose(env, "R%d must be referenced when passed to release function\n", 9698 regno); 9699 return -EINVAL; 9700 } 9701 if (meta->release_regno) { 9702 verifier_bug(env, "more than one release argument"); 9703 return -EFAULT; 9704 } 9705 meta->release_regno = regno; 9706 } 9707 9708 if (reg->ref_obj_id && base_type(arg_type) != ARG_KPTR_XCHG_DEST) { 9709 if (meta->ref_obj_id) { 9710 verbose(env, "more than one arg with ref_obj_id R%d %u %u", 9711 regno, reg->ref_obj_id, 9712 meta->ref_obj_id); 9713 return -EACCES; 9714 } 9715 meta->ref_obj_id = reg->ref_obj_id; 9716 } 9717 9718 switch (base_type(arg_type)) { 9719 case ARG_CONST_MAP_PTR: 9720 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 9721 if (meta->map_ptr) { 9722 /* Use map_uid (which is unique id of inner map) to reject: 9723 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 9724 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 9725 * if (inner_map1 && inner_map2) { 9726 * timer = bpf_map_lookup_elem(inner_map1); 9727 * if (timer) 9728 * // mismatch would have been allowed 9729 * bpf_timer_init(timer, inner_map2); 9730 * } 9731 * 9732 * Comparing map_ptr is enough to distinguish normal and outer maps. 9733 */ 9734 if (meta->map_ptr != reg->map_ptr || 9735 meta->map_uid != reg->map_uid) { 9736 verbose(env, 9737 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 9738 meta->map_uid, reg->map_uid); 9739 return -EINVAL; 9740 } 9741 } 9742 meta->map_ptr = reg->map_ptr; 9743 meta->map_uid = reg->map_uid; 9744 break; 9745 case ARG_PTR_TO_MAP_KEY: 9746 /* bpf_map_xxx(..., map_ptr, ..., key) call: 9747 * check that [key, key + map->key_size) are within 9748 * stack limits and initialized 9749 */ 9750 if (!meta->map_ptr) { 9751 /* in function declaration map_ptr must come before 9752 * map_key, so that it's verified and known before 9753 * we have to check map_key here. Otherwise it means 9754 * that kernel subsystem misconfigured verifier 9755 */ 9756 verifier_bug(env, "invalid map_ptr to access map->key"); 9757 return -EFAULT; 9758 } 9759 key_size = meta->map_ptr->key_size; 9760 err = check_helper_mem_access(env, regno, key_size, BPF_READ, false, NULL); 9761 if (err) 9762 return err; 9763 if (can_elide_value_nullness(meta->map_ptr->map_type)) { 9764 err = get_constant_map_key(env, reg, key_size, &meta->const_map_key); 9765 if (err < 0) { 9766 meta->const_map_key = -1; 9767 if (err == -EOPNOTSUPP) 9768 err = 0; 9769 else 9770 return err; 9771 } 9772 } 9773 break; 9774 case ARG_PTR_TO_MAP_VALUE: 9775 if (type_may_be_null(arg_type) && register_is_null(reg)) 9776 return 0; 9777 9778 /* bpf_map_xxx(..., map_ptr, ..., value) call: 9779 * check [value, value + map->value_size) validity 9780 */ 9781 if (!meta->map_ptr) { 9782 /* kernel subsystem misconfigured verifier */ 9783 verifier_bug(env, "invalid map_ptr to access map->value"); 9784 return -EFAULT; 9785 } 9786 meta->raw_mode = arg_type & MEM_UNINIT; 9787 err = check_helper_mem_access(env, regno, meta->map_ptr->value_size, 9788 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ, 9789 false, meta); 9790 break; 9791 case ARG_PTR_TO_PERCPU_BTF_ID: 9792 if (!reg->btf_id) { 9793 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 9794 return -EACCES; 9795 } 9796 meta->ret_btf = reg->btf; 9797 meta->ret_btf_id = reg->btf_id; 9798 break; 9799 case ARG_PTR_TO_SPIN_LOCK: 9800 if (in_rbtree_lock_required_cb(env)) { 9801 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 9802 return -EACCES; 9803 } 9804 if (meta->func_id == BPF_FUNC_spin_lock) { 9805 err = process_spin_lock(env, regno, PROCESS_SPIN_LOCK); 9806 if (err) 9807 return err; 9808 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 9809 err = process_spin_lock(env, regno, 0); 9810 if (err) 9811 return err; 9812 } else { 9813 verifier_bug(env, "spin lock arg on unexpected helper"); 9814 return -EFAULT; 9815 } 9816 break; 9817 case ARG_PTR_TO_TIMER: 9818 err = process_timer_func(env, regno, meta); 9819 if (err) 9820 return err; 9821 break; 9822 case ARG_PTR_TO_FUNC: 9823 meta->subprogno = reg->subprogno; 9824 break; 9825 case ARG_PTR_TO_MEM: 9826 /* The access to this pointer is only checked when we hit the 9827 * next is_mem_size argument below. 9828 */ 9829 meta->raw_mode = arg_type & MEM_UNINIT; 9830 if (arg_type & MEM_FIXED_SIZE) { 9831 err = check_helper_mem_access(env, regno, fn->arg_size[arg], 9832 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ, 9833 false, meta); 9834 if (err) 9835 return err; 9836 if (arg_type & MEM_ALIGNED) 9837 err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true); 9838 } 9839 break; 9840 case ARG_CONST_SIZE: 9841 err = check_mem_size_reg(env, reg, regno, 9842 fn->arg_type[arg - 1] & MEM_WRITE ? 9843 BPF_WRITE : BPF_READ, 9844 false, meta); 9845 break; 9846 case ARG_CONST_SIZE_OR_ZERO: 9847 err = check_mem_size_reg(env, reg, regno, 9848 fn->arg_type[arg - 1] & MEM_WRITE ? 9849 BPF_WRITE : BPF_READ, 9850 true, meta); 9851 break; 9852 case ARG_PTR_TO_DYNPTR: 9853 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 9854 if (err) 9855 return err; 9856 break; 9857 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 9858 if (!tnum_is_const(reg->var_off)) { 9859 verbose(env, "R%d is not a known constant'\n", 9860 regno); 9861 return -EACCES; 9862 } 9863 meta->mem_size = reg->var_off.value; 9864 err = mark_chain_precision(env, regno); 9865 if (err) 9866 return err; 9867 break; 9868 case ARG_PTR_TO_CONST_STR: 9869 { 9870 err = check_reg_const_str(env, reg, regno); 9871 if (err) 9872 return err; 9873 break; 9874 } 9875 case ARG_KPTR_XCHG_DEST: 9876 err = process_kptr_func(env, regno, meta); 9877 if (err) 9878 return err; 9879 break; 9880 } 9881 9882 return err; 9883 } 9884 9885 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 9886 { 9887 enum bpf_attach_type eatype = env->prog->expected_attach_type; 9888 enum bpf_prog_type type = resolve_prog_type(env->prog); 9889 9890 if (func_id != BPF_FUNC_map_update_elem && 9891 func_id != BPF_FUNC_map_delete_elem) 9892 return false; 9893 9894 /* It's not possible to get access to a locked struct sock in these 9895 * contexts, so updating is safe. 9896 */ 9897 switch (type) { 9898 case BPF_PROG_TYPE_TRACING: 9899 if (eatype == BPF_TRACE_ITER) 9900 return true; 9901 break; 9902 case BPF_PROG_TYPE_SOCK_OPS: 9903 /* map_update allowed only via dedicated helpers with event type checks */ 9904 if (func_id == BPF_FUNC_map_delete_elem) 9905 return true; 9906 break; 9907 case BPF_PROG_TYPE_SOCKET_FILTER: 9908 case BPF_PROG_TYPE_SCHED_CLS: 9909 case BPF_PROG_TYPE_SCHED_ACT: 9910 case BPF_PROG_TYPE_XDP: 9911 case BPF_PROG_TYPE_SK_REUSEPORT: 9912 case BPF_PROG_TYPE_FLOW_DISSECTOR: 9913 case BPF_PROG_TYPE_SK_LOOKUP: 9914 return true; 9915 default: 9916 break; 9917 } 9918 9919 verbose(env, "cannot update sockmap in this context\n"); 9920 return false; 9921 } 9922 9923 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 9924 { 9925 return env->prog->jit_requested && 9926 bpf_jit_supports_subprog_tailcalls(); 9927 } 9928 9929 static int check_map_func_compatibility(struct bpf_verifier_env *env, 9930 struct bpf_map *map, int func_id) 9931 { 9932 if (!map) 9933 return 0; 9934 9935 /* We need a two way check, first is from map perspective ... */ 9936 switch (map->map_type) { 9937 case BPF_MAP_TYPE_PROG_ARRAY: 9938 if (func_id != BPF_FUNC_tail_call) 9939 goto error; 9940 break; 9941 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 9942 if (func_id != BPF_FUNC_perf_event_read && 9943 func_id != BPF_FUNC_perf_event_output && 9944 func_id != BPF_FUNC_skb_output && 9945 func_id != BPF_FUNC_perf_event_read_value && 9946 func_id != BPF_FUNC_xdp_output) 9947 goto error; 9948 break; 9949 case BPF_MAP_TYPE_RINGBUF: 9950 if (func_id != BPF_FUNC_ringbuf_output && 9951 func_id != BPF_FUNC_ringbuf_reserve && 9952 func_id != BPF_FUNC_ringbuf_query && 9953 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 9954 func_id != BPF_FUNC_ringbuf_submit_dynptr && 9955 func_id != BPF_FUNC_ringbuf_discard_dynptr) 9956 goto error; 9957 break; 9958 case BPF_MAP_TYPE_USER_RINGBUF: 9959 if (func_id != BPF_FUNC_user_ringbuf_drain) 9960 goto error; 9961 break; 9962 case BPF_MAP_TYPE_STACK_TRACE: 9963 if (func_id != BPF_FUNC_get_stackid) 9964 goto error; 9965 break; 9966 case BPF_MAP_TYPE_CGROUP_ARRAY: 9967 if (func_id != BPF_FUNC_skb_under_cgroup && 9968 func_id != BPF_FUNC_current_task_under_cgroup) 9969 goto error; 9970 break; 9971 case BPF_MAP_TYPE_CGROUP_STORAGE: 9972 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 9973 if (func_id != BPF_FUNC_get_local_storage) 9974 goto error; 9975 break; 9976 case BPF_MAP_TYPE_DEVMAP: 9977 case BPF_MAP_TYPE_DEVMAP_HASH: 9978 if (func_id != BPF_FUNC_redirect_map && 9979 func_id != BPF_FUNC_map_lookup_elem) 9980 goto error; 9981 break; 9982 /* Restrict bpf side of cpumap and xskmap, open when use-cases 9983 * appear. 9984 */ 9985 case BPF_MAP_TYPE_CPUMAP: 9986 if (func_id != BPF_FUNC_redirect_map) 9987 goto error; 9988 break; 9989 case BPF_MAP_TYPE_XSKMAP: 9990 if (func_id != BPF_FUNC_redirect_map && 9991 func_id != BPF_FUNC_map_lookup_elem) 9992 goto error; 9993 break; 9994 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 9995 case BPF_MAP_TYPE_HASH_OF_MAPS: 9996 if (func_id != BPF_FUNC_map_lookup_elem) 9997 goto error; 9998 break; 9999 case BPF_MAP_TYPE_SOCKMAP: 10000 if (func_id != BPF_FUNC_sk_redirect_map && 10001 func_id != BPF_FUNC_sock_map_update && 10002 func_id != BPF_FUNC_msg_redirect_map && 10003 func_id != BPF_FUNC_sk_select_reuseport && 10004 func_id != BPF_FUNC_map_lookup_elem && 10005 !may_update_sockmap(env, func_id)) 10006 goto error; 10007 break; 10008 case BPF_MAP_TYPE_SOCKHASH: 10009 if (func_id != BPF_FUNC_sk_redirect_hash && 10010 func_id != BPF_FUNC_sock_hash_update && 10011 func_id != BPF_FUNC_msg_redirect_hash && 10012 func_id != BPF_FUNC_sk_select_reuseport && 10013 func_id != BPF_FUNC_map_lookup_elem && 10014 !may_update_sockmap(env, func_id)) 10015 goto error; 10016 break; 10017 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 10018 if (func_id != BPF_FUNC_sk_select_reuseport) 10019 goto error; 10020 break; 10021 case BPF_MAP_TYPE_QUEUE: 10022 case BPF_MAP_TYPE_STACK: 10023 if (func_id != BPF_FUNC_map_peek_elem && 10024 func_id != BPF_FUNC_map_pop_elem && 10025 func_id != BPF_FUNC_map_push_elem) 10026 goto error; 10027 break; 10028 case BPF_MAP_TYPE_SK_STORAGE: 10029 if (func_id != BPF_FUNC_sk_storage_get && 10030 func_id != BPF_FUNC_sk_storage_delete && 10031 func_id != BPF_FUNC_kptr_xchg) 10032 goto error; 10033 break; 10034 case BPF_MAP_TYPE_INODE_STORAGE: 10035 if (func_id != BPF_FUNC_inode_storage_get && 10036 func_id != BPF_FUNC_inode_storage_delete && 10037 func_id != BPF_FUNC_kptr_xchg) 10038 goto error; 10039 break; 10040 case BPF_MAP_TYPE_TASK_STORAGE: 10041 if (func_id != BPF_FUNC_task_storage_get && 10042 func_id != BPF_FUNC_task_storage_delete && 10043 func_id != BPF_FUNC_kptr_xchg) 10044 goto error; 10045 break; 10046 case BPF_MAP_TYPE_CGRP_STORAGE: 10047 if (func_id != BPF_FUNC_cgrp_storage_get && 10048 func_id != BPF_FUNC_cgrp_storage_delete && 10049 func_id != BPF_FUNC_kptr_xchg) 10050 goto error; 10051 break; 10052 case BPF_MAP_TYPE_BLOOM_FILTER: 10053 if (func_id != BPF_FUNC_map_peek_elem && 10054 func_id != BPF_FUNC_map_push_elem) 10055 goto error; 10056 break; 10057 default: 10058 break; 10059 } 10060 10061 /* ... and second from the function itself. */ 10062 switch (func_id) { 10063 case BPF_FUNC_tail_call: 10064 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 10065 goto error; 10066 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 10067 verbose(env, "mixing of tail_calls and bpf-to-bpf calls is not supported\n"); 10068 return -EINVAL; 10069 } 10070 break; 10071 case BPF_FUNC_perf_event_read: 10072 case BPF_FUNC_perf_event_output: 10073 case BPF_FUNC_perf_event_read_value: 10074 case BPF_FUNC_skb_output: 10075 case BPF_FUNC_xdp_output: 10076 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 10077 goto error; 10078 break; 10079 case BPF_FUNC_ringbuf_output: 10080 case BPF_FUNC_ringbuf_reserve: 10081 case BPF_FUNC_ringbuf_query: 10082 case BPF_FUNC_ringbuf_reserve_dynptr: 10083 case BPF_FUNC_ringbuf_submit_dynptr: 10084 case BPF_FUNC_ringbuf_discard_dynptr: 10085 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 10086 goto error; 10087 break; 10088 case BPF_FUNC_user_ringbuf_drain: 10089 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 10090 goto error; 10091 break; 10092 case BPF_FUNC_get_stackid: 10093 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 10094 goto error; 10095 break; 10096 case BPF_FUNC_current_task_under_cgroup: 10097 case BPF_FUNC_skb_under_cgroup: 10098 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 10099 goto error; 10100 break; 10101 case BPF_FUNC_redirect_map: 10102 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 10103 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 10104 map->map_type != BPF_MAP_TYPE_CPUMAP && 10105 map->map_type != BPF_MAP_TYPE_XSKMAP) 10106 goto error; 10107 break; 10108 case BPF_FUNC_sk_redirect_map: 10109 case BPF_FUNC_msg_redirect_map: 10110 case BPF_FUNC_sock_map_update: 10111 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 10112 goto error; 10113 break; 10114 case BPF_FUNC_sk_redirect_hash: 10115 case BPF_FUNC_msg_redirect_hash: 10116 case BPF_FUNC_sock_hash_update: 10117 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 10118 goto error; 10119 break; 10120 case BPF_FUNC_get_local_storage: 10121 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 10122 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 10123 goto error; 10124 break; 10125 case BPF_FUNC_sk_select_reuseport: 10126 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 10127 map->map_type != BPF_MAP_TYPE_SOCKMAP && 10128 map->map_type != BPF_MAP_TYPE_SOCKHASH) 10129 goto error; 10130 break; 10131 case BPF_FUNC_map_pop_elem: 10132 if (map->map_type != BPF_MAP_TYPE_QUEUE && 10133 map->map_type != BPF_MAP_TYPE_STACK) 10134 goto error; 10135 break; 10136 case BPF_FUNC_map_peek_elem: 10137 case BPF_FUNC_map_push_elem: 10138 if (map->map_type != BPF_MAP_TYPE_QUEUE && 10139 map->map_type != BPF_MAP_TYPE_STACK && 10140 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 10141 goto error; 10142 break; 10143 case BPF_FUNC_map_lookup_percpu_elem: 10144 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 10145 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 10146 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 10147 goto error; 10148 break; 10149 case BPF_FUNC_sk_storage_get: 10150 case BPF_FUNC_sk_storage_delete: 10151 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 10152 goto error; 10153 break; 10154 case BPF_FUNC_inode_storage_get: 10155 case BPF_FUNC_inode_storage_delete: 10156 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 10157 goto error; 10158 break; 10159 case BPF_FUNC_task_storage_get: 10160 case BPF_FUNC_task_storage_delete: 10161 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 10162 goto error; 10163 break; 10164 case BPF_FUNC_cgrp_storage_get: 10165 case BPF_FUNC_cgrp_storage_delete: 10166 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 10167 goto error; 10168 break; 10169 default: 10170 break; 10171 } 10172 10173 return 0; 10174 error: 10175 verbose(env, "cannot pass map_type %d into func %s#%d\n", 10176 map->map_type, func_id_name(func_id), func_id); 10177 return -EINVAL; 10178 } 10179 10180 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 10181 { 10182 int count = 0; 10183 10184 if (arg_type_is_raw_mem(fn->arg1_type)) 10185 count++; 10186 if (arg_type_is_raw_mem(fn->arg2_type)) 10187 count++; 10188 if (arg_type_is_raw_mem(fn->arg3_type)) 10189 count++; 10190 if (arg_type_is_raw_mem(fn->arg4_type)) 10191 count++; 10192 if (arg_type_is_raw_mem(fn->arg5_type)) 10193 count++; 10194 10195 /* We only support one arg being in raw mode at the moment, 10196 * which is sufficient for the helper functions we have 10197 * right now. 10198 */ 10199 return count <= 1; 10200 } 10201 10202 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 10203 { 10204 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 10205 bool has_size = fn->arg_size[arg] != 0; 10206 bool is_next_size = false; 10207 10208 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 10209 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 10210 10211 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 10212 return is_next_size; 10213 10214 return has_size == is_next_size || is_next_size == is_fixed; 10215 } 10216 10217 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 10218 { 10219 /* bpf_xxx(..., buf, len) call will access 'len' 10220 * bytes from memory 'buf'. Both arg types need 10221 * to be paired, so make sure there's no buggy 10222 * helper function specification. 10223 */ 10224 if (arg_type_is_mem_size(fn->arg1_type) || 10225 check_args_pair_invalid(fn, 0) || 10226 check_args_pair_invalid(fn, 1) || 10227 check_args_pair_invalid(fn, 2) || 10228 check_args_pair_invalid(fn, 3) || 10229 check_args_pair_invalid(fn, 4)) 10230 return false; 10231 10232 return true; 10233 } 10234 10235 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 10236 { 10237 int i; 10238 10239 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 10240 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 10241 return !!fn->arg_btf_id[i]; 10242 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 10243 return fn->arg_btf_id[i] == BPF_PTR_POISON; 10244 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 10245 /* arg_btf_id and arg_size are in a union. */ 10246 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 10247 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 10248 return false; 10249 } 10250 10251 return true; 10252 } 10253 10254 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 10255 { 10256 return check_raw_mode_ok(fn) && 10257 check_arg_pair_ok(fn) && 10258 check_btf_id_ok(fn) ? 0 : -EINVAL; 10259 } 10260 10261 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 10262 * are now invalid, so turn them into unknown SCALAR_VALUE. 10263 * 10264 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 10265 * since these slices point to packet data. 10266 */ 10267 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 10268 { 10269 struct bpf_func_state *state; 10270 struct bpf_reg_state *reg; 10271 10272 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 10273 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 10274 mark_reg_invalid(env, reg); 10275 })); 10276 } 10277 10278 enum { 10279 AT_PKT_END = -1, 10280 BEYOND_PKT_END = -2, 10281 }; 10282 10283 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 10284 { 10285 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 10286 struct bpf_reg_state *reg = &state->regs[regn]; 10287 10288 if (reg->type != PTR_TO_PACKET) 10289 /* PTR_TO_PACKET_META is not supported yet */ 10290 return; 10291 10292 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 10293 * How far beyond pkt_end it goes is unknown. 10294 * if (!range_open) it's the case of pkt >= pkt_end 10295 * if (range_open) it's the case of pkt > pkt_end 10296 * hence this pointer is at least 1 byte bigger than pkt_end 10297 */ 10298 if (range_open) 10299 reg->range = BEYOND_PKT_END; 10300 else 10301 reg->range = AT_PKT_END; 10302 } 10303 10304 static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id) 10305 { 10306 int i; 10307 10308 for (i = 0; i < state->acquired_refs; i++) { 10309 if (state->refs[i].type != REF_TYPE_PTR) 10310 continue; 10311 if (state->refs[i].id == ref_obj_id) { 10312 release_reference_state(state, i); 10313 return 0; 10314 } 10315 } 10316 return -EINVAL; 10317 } 10318 10319 /* The pointer with the specified id has released its reference to kernel 10320 * resources. Identify all copies of the same pointer and clear the reference. 10321 * 10322 * This is the release function corresponding to acquire_reference(). Idempotent. 10323 */ 10324 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id) 10325 { 10326 struct bpf_verifier_state *vstate = env->cur_state; 10327 struct bpf_func_state *state; 10328 struct bpf_reg_state *reg; 10329 int err; 10330 10331 err = release_reference_nomark(vstate, ref_obj_id); 10332 if (err) 10333 return err; 10334 10335 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 10336 if (reg->ref_obj_id == ref_obj_id) 10337 mark_reg_invalid(env, reg); 10338 })); 10339 10340 return 0; 10341 } 10342 10343 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 10344 { 10345 struct bpf_func_state *unused; 10346 struct bpf_reg_state *reg; 10347 10348 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 10349 if (type_is_non_owning_ref(reg->type)) 10350 mark_reg_invalid(env, reg); 10351 })); 10352 } 10353 10354 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 10355 struct bpf_reg_state *regs) 10356 { 10357 int i; 10358 10359 /* after the call registers r0 - r5 were scratched */ 10360 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10361 mark_reg_not_init(env, regs, caller_saved[i]); 10362 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); 10363 } 10364 } 10365 10366 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 10367 struct bpf_func_state *caller, 10368 struct bpf_func_state *callee, 10369 int insn_idx); 10370 10371 static bool is_task_work_add_kfunc(u32 func_id); 10372 10373 static int set_callee_state(struct bpf_verifier_env *env, 10374 struct bpf_func_state *caller, 10375 struct bpf_func_state *callee, int insn_idx); 10376 10377 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, 10378 set_callee_state_fn set_callee_state_cb, 10379 struct bpf_verifier_state *state) 10380 { 10381 struct bpf_func_state *caller, *callee; 10382 int err; 10383 10384 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 10385 verbose(env, "the call stack of %d frames is too deep\n", 10386 state->curframe + 2); 10387 return -E2BIG; 10388 } 10389 10390 if (state->frame[state->curframe + 1]) { 10391 verifier_bug(env, "Frame %d already allocated", state->curframe + 1); 10392 return -EFAULT; 10393 } 10394 10395 caller = state->frame[state->curframe]; 10396 callee = kzalloc(sizeof(*callee), GFP_KERNEL_ACCOUNT); 10397 if (!callee) 10398 return -ENOMEM; 10399 state->frame[state->curframe + 1] = callee; 10400 10401 /* callee cannot access r0, r6 - r9 for reading and has to write 10402 * into its own stack before reading from it. 10403 * callee can read/write into caller's stack 10404 */ 10405 init_func_state(env, callee, 10406 /* remember the callsite, it will be used by bpf_exit */ 10407 callsite, 10408 state->curframe + 1 /* frameno within this callchain */, 10409 subprog /* subprog number within this prog */); 10410 err = set_callee_state_cb(env, caller, callee, callsite); 10411 if (err) 10412 goto err_out; 10413 10414 /* only increment it after check_reg_arg() finished */ 10415 state->curframe++; 10416 10417 return 0; 10418 10419 err_out: 10420 free_func_state(callee); 10421 state->frame[state->curframe + 1] = NULL; 10422 return err; 10423 } 10424 10425 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog, 10426 const struct btf *btf, 10427 struct bpf_reg_state *regs) 10428 { 10429 struct bpf_subprog_info *sub = subprog_info(env, subprog); 10430 struct bpf_verifier_log *log = &env->log; 10431 u32 i; 10432 int ret; 10433 10434 ret = btf_prepare_func_args(env, subprog); 10435 if (ret) 10436 return ret; 10437 10438 /* check that BTF function arguments match actual types that the 10439 * verifier sees. 10440 */ 10441 for (i = 0; i < sub->arg_cnt; i++) { 10442 u32 regno = i + 1; 10443 struct bpf_reg_state *reg = ®s[regno]; 10444 struct bpf_subprog_arg_info *arg = &sub->args[i]; 10445 10446 if (arg->arg_type == ARG_ANYTHING) { 10447 if (reg->type != SCALAR_VALUE) { 10448 bpf_log(log, "R%d is not a scalar\n", regno); 10449 return -EINVAL; 10450 } 10451 } else if (arg->arg_type & PTR_UNTRUSTED) { 10452 /* 10453 * Anything is allowed for untrusted arguments, as these are 10454 * read-only and probe read instructions would protect against 10455 * invalid memory access. 10456 */ 10457 } else if (arg->arg_type == ARG_PTR_TO_CTX) { 10458 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 10459 if (ret < 0) 10460 return ret; 10461 /* If function expects ctx type in BTF check that caller 10462 * is passing PTR_TO_CTX. 10463 */ 10464 if (reg->type != PTR_TO_CTX) { 10465 bpf_log(log, "arg#%d expects pointer to ctx\n", i); 10466 return -EINVAL; 10467 } 10468 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 10469 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 10470 if (ret < 0) 10471 return ret; 10472 if (check_mem_reg(env, reg, regno, arg->mem_size)) 10473 return -EINVAL; 10474 if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) { 10475 bpf_log(log, "arg#%d is expected to be non-NULL\n", i); 10476 return -EINVAL; 10477 } 10478 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 10479 /* 10480 * Can pass any value and the kernel won't crash, but 10481 * only PTR_TO_ARENA or SCALAR make sense. Everything 10482 * else is a bug in the bpf program. Point it out to 10483 * the user at the verification time instead of 10484 * run-time debug nightmare. 10485 */ 10486 if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) { 10487 bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno); 10488 return -EINVAL; 10489 } 10490 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 10491 ret = check_func_arg_reg_off(env, reg, regno, ARG_PTR_TO_DYNPTR); 10492 if (ret) 10493 return ret; 10494 10495 ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0); 10496 if (ret) 10497 return ret; 10498 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 10499 struct bpf_call_arg_meta meta; 10500 int err; 10501 10502 if (register_is_null(reg) && type_may_be_null(arg->arg_type)) 10503 continue; 10504 10505 memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */ 10506 err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta); 10507 err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type); 10508 if (err) 10509 return err; 10510 } else { 10511 verifier_bug(env, "unrecognized arg#%d type %d", i, arg->arg_type); 10512 return -EFAULT; 10513 } 10514 } 10515 10516 return 0; 10517 } 10518 10519 /* Compare BTF of a function call with given bpf_reg_state. 10520 * Returns: 10521 * EFAULT - there is a verifier bug. Abort verification. 10522 * EINVAL - there is a type mismatch or BTF is not available. 10523 * 0 - BTF matches with what bpf_reg_state expects. 10524 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 10525 */ 10526 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 10527 struct bpf_reg_state *regs) 10528 { 10529 struct bpf_prog *prog = env->prog; 10530 struct btf *btf = prog->aux->btf; 10531 u32 btf_id; 10532 int err; 10533 10534 if (!prog->aux->func_info) 10535 return -EINVAL; 10536 10537 btf_id = prog->aux->func_info[subprog].type_id; 10538 if (!btf_id) 10539 return -EFAULT; 10540 10541 if (prog->aux->func_info_aux[subprog].unreliable) 10542 return -EINVAL; 10543 10544 err = btf_check_func_arg_match(env, subprog, btf, regs); 10545 /* Compiler optimizations can remove arguments from static functions 10546 * or mismatched type can be passed into a global function. 10547 * In such cases mark the function as unreliable from BTF point of view. 10548 */ 10549 if (err) 10550 prog->aux->func_info_aux[subprog].unreliable = true; 10551 return err; 10552 } 10553 10554 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10555 int insn_idx, int subprog, 10556 set_callee_state_fn set_callee_state_cb) 10557 { 10558 struct bpf_verifier_state *state = env->cur_state, *callback_state; 10559 struct bpf_func_state *caller, *callee; 10560 int err; 10561 10562 caller = state->frame[state->curframe]; 10563 err = btf_check_subprog_call(env, subprog, caller->regs); 10564 if (err == -EFAULT) 10565 return err; 10566 10567 /* set_callee_state is used for direct subprog calls, but we are 10568 * interested in validating only BPF helpers that can call subprogs as 10569 * callbacks 10570 */ 10571 env->subprog_info[subprog].is_cb = true; 10572 if (bpf_pseudo_kfunc_call(insn) && 10573 !is_callback_calling_kfunc(insn->imm)) { 10574 verifier_bug(env, "kfunc %s#%d not marked as callback-calling", 10575 func_id_name(insn->imm), insn->imm); 10576 return -EFAULT; 10577 } else if (!bpf_pseudo_kfunc_call(insn) && 10578 !is_callback_calling_function(insn->imm)) { /* helper */ 10579 verifier_bug(env, "helper %s#%d not marked as callback-calling", 10580 func_id_name(insn->imm), insn->imm); 10581 return -EFAULT; 10582 } 10583 10584 if (is_async_callback_calling_insn(insn)) { 10585 struct bpf_verifier_state *async_cb; 10586 10587 /* there is no real recursion here. timer and workqueue callbacks are async */ 10588 env->subprog_info[subprog].is_async_cb = true; 10589 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 10590 insn_idx, subprog, 10591 is_bpf_wq_set_callback_impl_kfunc(insn->imm) || 10592 is_task_work_add_kfunc(insn->imm)); 10593 if (!async_cb) 10594 return -EFAULT; 10595 callee = async_cb->frame[0]; 10596 callee->async_entry_cnt = caller->async_entry_cnt + 1; 10597 10598 /* Convert bpf_timer_set_callback() args into timer callback args */ 10599 err = set_callee_state_cb(env, caller, callee, insn_idx); 10600 if (err) 10601 return err; 10602 10603 return 0; 10604 } 10605 10606 /* for callback functions enqueue entry to callback and 10607 * proceed with next instruction within current frame. 10608 */ 10609 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); 10610 if (!callback_state) 10611 return -ENOMEM; 10612 10613 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, 10614 callback_state); 10615 if (err) 10616 return err; 10617 10618 callback_state->callback_unroll_depth++; 10619 callback_state->frame[callback_state->curframe - 1]->callback_depth++; 10620 caller->callback_depth = 0; 10621 return 0; 10622 } 10623 10624 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10625 int *insn_idx) 10626 { 10627 struct bpf_verifier_state *state = env->cur_state; 10628 struct bpf_func_state *caller; 10629 int err, subprog, target_insn; 10630 10631 target_insn = *insn_idx + insn->imm + 1; 10632 subprog = find_subprog(env, target_insn); 10633 if (verifier_bug_if(subprog < 0, env, "target of func call at insn %d is not a program", 10634 target_insn)) 10635 return -EFAULT; 10636 10637 caller = state->frame[state->curframe]; 10638 err = btf_check_subprog_call(env, subprog, caller->regs); 10639 if (err == -EFAULT) 10640 return err; 10641 if (subprog_is_global(env, subprog)) { 10642 const char *sub_name = subprog_name(env, subprog); 10643 10644 if (env->cur_state->active_locks) { 10645 verbose(env, "global function calls are not allowed while holding a lock,\n" 10646 "use static function instead\n"); 10647 return -EINVAL; 10648 } 10649 10650 if (env->subprog_info[subprog].might_sleep && 10651 (env->cur_state->active_rcu_lock || env->cur_state->active_preempt_locks || 10652 env->cur_state->active_irq_id || !in_sleepable(env))) { 10653 verbose(env, "global functions that may sleep are not allowed in non-sleepable context,\n" 10654 "i.e., in a RCU/IRQ/preempt-disabled section, or in\n" 10655 "a non-sleepable BPF program context\n"); 10656 return -EINVAL; 10657 } 10658 10659 if (err) { 10660 verbose(env, "Caller passes invalid args into func#%d ('%s')\n", 10661 subprog, sub_name); 10662 return err; 10663 } 10664 10665 verbose(env, "Func#%d ('%s') is global and assumed valid.\n", 10666 subprog, sub_name); 10667 if (env->subprog_info[subprog].changes_pkt_data) 10668 clear_all_pkt_pointers(env); 10669 /* mark global subprog for verifying after main prog */ 10670 subprog_aux(env, subprog)->called = true; 10671 clear_caller_saved_regs(env, caller->regs); 10672 10673 /* All global functions return a 64-bit SCALAR_VALUE */ 10674 mark_reg_unknown(env, caller->regs, BPF_REG_0); 10675 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 10676 10677 /* continue with next insn after call */ 10678 return 0; 10679 } 10680 10681 /* for regular function entry setup new frame and continue 10682 * from that frame. 10683 */ 10684 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); 10685 if (err) 10686 return err; 10687 10688 clear_caller_saved_regs(env, caller->regs); 10689 10690 /* and go analyze first insn of the callee */ 10691 *insn_idx = env->subprog_info[subprog].start - 1; 10692 10693 bpf_reset_live_stack_callchain(env); 10694 10695 if (env->log.level & BPF_LOG_LEVEL) { 10696 verbose(env, "caller:\n"); 10697 print_verifier_state(env, state, caller->frameno, true); 10698 verbose(env, "callee:\n"); 10699 print_verifier_state(env, state, state->curframe, true); 10700 } 10701 10702 return 0; 10703 } 10704 10705 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 10706 struct bpf_func_state *caller, 10707 struct bpf_func_state *callee) 10708 { 10709 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 10710 * void *callback_ctx, u64 flags); 10711 * callback_fn(struct bpf_map *map, void *key, void *value, 10712 * void *callback_ctx); 10713 */ 10714 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 10715 10716 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 10717 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10718 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 10719 10720 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 10721 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 10722 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 10723 10724 /* pointer to stack or null */ 10725 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 10726 10727 /* unused */ 10728 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10729 return 0; 10730 } 10731 10732 static int set_callee_state(struct bpf_verifier_env *env, 10733 struct bpf_func_state *caller, 10734 struct bpf_func_state *callee, int insn_idx) 10735 { 10736 int i; 10737 10738 /* copy r1 - r5 args that callee can access. The copy includes parent 10739 * pointers, which connects us up to the liveness chain 10740 */ 10741 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 10742 callee->regs[i] = caller->regs[i]; 10743 return 0; 10744 } 10745 10746 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 10747 struct bpf_func_state *caller, 10748 struct bpf_func_state *callee, 10749 int insn_idx) 10750 { 10751 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 10752 struct bpf_map *map; 10753 int err; 10754 10755 /* valid map_ptr and poison value does not matter */ 10756 map = insn_aux->map_ptr_state.map_ptr; 10757 if (!map->ops->map_set_for_each_callback_args || 10758 !map->ops->map_for_each_callback) { 10759 verbose(env, "callback function not allowed for map\n"); 10760 return -ENOTSUPP; 10761 } 10762 10763 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 10764 if (err) 10765 return err; 10766 10767 callee->in_callback_fn = true; 10768 callee->callback_ret_range = retval_range(0, 1); 10769 return 0; 10770 } 10771 10772 static int set_loop_callback_state(struct bpf_verifier_env *env, 10773 struct bpf_func_state *caller, 10774 struct bpf_func_state *callee, 10775 int insn_idx) 10776 { 10777 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 10778 * u64 flags); 10779 * callback_fn(u64 index, void *callback_ctx); 10780 */ 10781 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 10782 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 10783 10784 /* unused */ 10785 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10786 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10787 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10788 10789 callee->in_callback_fn = true; 10790 callee->callback_ret_range = retval_range(0, 1); 10791 return 0; 10792 } 10793 10794 static int set_timer_callback_state(struct bpf_verifier_env *env, 10795 struct bpf_func_state *caller, 10796 struct bpf_func_state *callee, 10797 int insn_idx) 10798 { 10799 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 10800 10801 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 10802 * callback_fn(struct bpf_map *map, void *key, void *value); 10803 */ 10804 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 10805 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 10806 callee->regs[BPF_REG_1].map_ptr = map_ptr; 10807 10808 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 10809 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10810 callee->regs[BPF_REG_2].map_ptr = map_ptr; 10811 10812 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 10813 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 10814 callee->regs[BPF_REG_3].map_ptr = map_ptr; 10815 10816 /* unused */ 10817 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10818 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10819 callee->in_async_callback_fn = true; 10820 callee->callback_ret_range = retval_range(0, 0); 10821 return 0; 10822 } 10823 10824 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 10825 struct bpf_func_state *caller, 10826 struct bpf_func_state *callee, 10827 int insn_idx) 10828 { 10829 /* bpf_find_vma(struct task_struct *task, u64 addr, 10830 * void *callback_fn, void *callback_ctx, u64 flags) 10831 * (callback_fn)(struct task_struct *task, 10832 * struct vm_area_struct *vma, void *callback_ctx); 10833 */ 10834 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 10835 10836 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 10837 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10838 callee->regs[BPF_REG_2].btf = btf_vmlinux; 10839 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA]; 10840 10841 /* pointer to stack or null */ 10842 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 10843 10844 /* unused */ 10845 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10846 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10847 callee->in_callback_fn = true; 10848 callee->callback_ret_range = retval_range(0, 1); 10849 return 0; 10850 } 10851 10852 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 10853 struct bpf_func_state *caller, 10854 struct bpf_func_state *callee, 10855 int insn_idx) 10856 { 10857 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 10858 * callback_ctx, u64 flags); 10859 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 10860 */ 10861 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 10862 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 10863 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 10864 10865 /* unused */ 10866 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10867 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10868 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10869 10870 callee->in_callback_fn = true; 10871 callee->callback_ret_range = retval_range(0, 1); 10872 return 0; 10873 } 10874 10875 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 10876 struct bpf_func_state *caller, 10877 struct bpf_func_state *callee, 10878 int insn_idx) 10879 { 10880 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 10881 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 10882 * 10883 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 10884 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 10885 * by this point, so look at 'root' 10886 */ 10887 struct btf_field *field; 10888 10889 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 10890 BPF_RB_ROOT); 10891 if (!field || !field->graph_root.value_btf_id) 10892 return -EFAULT; 10893 10894 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 10895 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 10896 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 10897 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 10898 10899 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 10900 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10901 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10902 callee->in_callback_fn = true; 10903 callee->callback_ret_range = retval_range(0, 1); 10904 return 0; 10905 } 10906 10907 static int set_task_work_schedule_callback_state(struct bpf_verifier_env *env, 10908 struct bpf_func_state *caller, 10909 struct bpf_func_state *callee, 10910 int insn_idx) 10911 { 10912 struct bpf_map *map_ptr = caller->regs[BPF_REG_3].map_ptr; 10913 10914 /* 10915 * callback_fn(struct bpf_map *map, void *key, void *value); 10916 */ 10917 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 10918 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 10919 callee->regs[BPF_REG_1].map_ptr = map_ptr; 10920 10921 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 10922 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 10923 callee->regs[BPF_REG_2].map_ptr = map_ptr; 10924 10925 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 10926 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 10927 callee->regs[BPF_REG_3].map_ptr = map_ptr; 10928 10929 /* unused */ 10930 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 10931 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 10932 callee->in_async_callback_fn = true; 10933 callee->callback_ret_range = retval_range(S32_MIN, S32_MAX); 10934 return 0; 10935 } 10936 10937 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 10938 10939 /* Are we currently verifying the callback for a rbtree helper that must 10940 * be called with lock held? If so, no need to complain about unreleased 10941 * lock 10942 */ 10943 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 10944 { 10945 struct bpf_verifier_state *state = env->cur_state; 10946 struct bpf_insn *insn = env->prog->insnsi; 10947 struct bpf_func_state *callee; 10948 int kfunc_btf_id; 10949 10950 if (!state->curframe) 10951 return false; 10952 10953 callee = state->frame[state->curframe]; 10954 10955 if (!callee->in_callback_fn) 10956 return false; 10957 10958 kfunc_btf_id = insn[callee->callsite].imm; 10959 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 10960 } 10961 10962 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg, 10963 bool return_32bit) 10964 { 10965 if (return_32bit) 10966 return range.minval <= reg->s32_min_value && reg->s32_max_value <= range.maxval; 10967 else 10968 return range.minval <= reg->smin_value && reg->smax_value <= range.maxval; 10969 } 10970 10971 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 10972 { 10973 struct bpf_verifier_state *state = env->cur_state, *prev_st; 10974 struct bpf_func_state *caller, *callee; 10975 struct bpf_reg_state *r0; 10976 bool in_callback_fn; 10977 int err; 10978 10979 callee = state->frame[state->curframe]; 10980 r0 = &callee->regs[BPF_REG_0]; 10981 if (r0->type == PTR_TO_STACK) { 10982 /* technically it's ok to return caller's stack pointer 10983 * (or caller's caller's pointer) back to the caller, 10984 * since these pointers are valid. Only current stack 10985 * pointer will be invalid as soon as function exits, 10986 * but let's be conservative 10987 */ 10988 verbose(env, "cannot return stack pointer to the caller\n"); 10989 return -EINVAL; 10990 } 10991 10992 caller = state->frame[state->curframe - 1]; 10993 if (callee->in_callback_fn) { 10994 if (r0->type != SCALAR_VALUE) { 10995 verbose(env, "R0 not a scalar value\n"); 10996 return -EACCES; 10997 } 10998 10999 /* we are going to rely on register's precise value */ 11000 err = mark_chain_precision(env, BPF_REG_0); 11001 if (err) 11002 return err; 11003 11004 /* enforce R0 return value range, and bpf_callback_t returns 64bit */ 11005 if (!retval_range_within(callee->callback_ret_range, r0, false)) { 11006 verbose_invalid_scalar(env, r0, callee->callback_ret_range, 11007 "At callback return", "R0"); 11008 return -EINVAL; 11009 } 11010 if (!bpf_calls_callback(env, callee->callsite)) { 11011 verifier_bug(env, "in callback at %d, callsite %d !calls_callback", 11012 *insn_idx, callee->callsite); 11013 return -EFAULT; 11014 } 11015 } else { 11016 /* return to the caller whatever r0 had in the callee */ 11017 caller->regs[BPF_REG_0] = *r0; 11018 } 11019 11020 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, 11021 * there function call logic would reschedule callback visit. If iteration 11022 * converges is_state_visited() would prune that visit eventually. 11023 */ 11024 in_callback_fn = callee->in_callback_fn; 11025 if (in_callback_fn) 11026 *insn_idx = callee->callsite; 11027 else 11028 *insn_idx = callee->callsite + 1; 11029 11030 if (env->log.level & BPF_LOG_LEVEL) { 11031 verbose(env, "returning from callee:\n"); 11032 print_verifier_state(env, state, callee->frameno, true); 11033 verbose(env, "to caller at %d:\n", *insn_idx); 11034 print_verifier_state(env, state, caller->frameno, true); 11035 } 11036 /* clear everything in the callee. In case of exceptional exits using 11037 * bpf_throw, this will be done by copy_verifier_state for extra frames. */ 11038 free_func_state(callee); 11039 state->frame[state->curframe--] = NULL; 11040 11041 /* for callbacks widen imprecise scalars to make programs like below verify: 11042 * 11043 * struct ctx { int i; } 11044 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... } 11045 * ... 11046 * struct ctx = { .i = 0; } 11047 * bpf_loop(100, cb, &ctx, 0); 11048 * 11049 * This is similar to what is done in process_iter_next_call() for open 11050 * coded iterators. 11051 */ 11052 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; 11053 if (prev_st) { 11054 err = widen_imprecise_scalars(env, prev_st, state); 11055 if (err) 11056 return err; 11057 } 11058 return 0; 11059 } 11060 11061 static int do_refine_retval_range(struct bpf_verifier_env *env, 11062 struct bpf_reg_state *regs, int ret_type, 11063 int func_id, 11064 struct bpf_call_arg_meta *meta) 11065 { 11066 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 11067 11068 if (ret_type != RET_INTEGER) 11069 return 0; 11070 11071 switch (func_id) { 11072 case BPF_FUNC_get_stack: 11073 case BPF_FUNC_get_task_stack: 11074 case BPF_FUNC_probe_read_str: 11075 case BPF_FUNC_probe_read_kernel_str: 11076 case BPF_FUNC_probe_read_user_str: 11077 ret_reg->smax_value = meta->msize_max_value; 11078 ret_reg->s32_max_value = meta->msize_max_value; 11079 ret_reg->smin_value = -MAX_ERRNO; 11080 ret_reg->s32_min_value = -MAX_ERRNO; 11081 reg_bounds_sync(ret_reg); 11082 break; 11083 case BPF_FUNC_get_smp_processor_id: 11084 ret_reg->umax_value = nr_cpu_ids - 1; 11085 ret_reg->u32_max_value = nr_cpu_ids - 1; 11086 ret_reg->smax_value = nr_cpu_ids - 1; 11087 ret_reg->s32_max_value = nr_cpu_ids - 1; 11088 ret_reg->umin_value = 0; 11089 ret_reg->u32_min_value = 0; 11090 ret_reg->smin_value = 0; 11091 ret_reg->s32_min_value = 0; 11092 reg_bounds_sync(ret_reg); 11093 break; 11094 } 11095 11096 return reg_bounds_sanity_check(env, ret_reg, "retval"); 11097 } 11098 11099 static int 11100 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 11101 int func_id, int insn_idx) 11102 { 11103 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 11104 struct bpf_map *map = meta->map_ptr; 11105 11106 if (func_id != BPF_FUNC_tail_call && 11107 func_id != BPF_FUNC_map_lookup_elem && 11108 func_id != BPF_FUNC_map_update_elem && 11109 func_id != BPF_FUNC_map_delete_elem && 11110 func_id != BPF_FUNC_map_push_elem && 11111 func_id != BPF_FUNC_map_pop_elem && 11112 func_id != BPF_FUNC_map_peek_elem && 11113 func_id != BPF_FUNC_for_each_map_elem && 11114 func_id != BPF_FUNC_redirect_map && 11115 func_id != BPF_FUNC_map_lookup_percpu_elem) 11116 return 0; 11117 11118 if (map == NULL) { 11119 verifier_bug(env, "expected map for helper call"); 11120 return -EFAULT; 11121 } 11122 11123 /* In case of read-only, some additional restrictions 11124 * need to be applied in order to prevent altering the 11125 * state of the map from program side. 11126 */ 11127 if ((map->map_flags & BPF_F_RDONLY_PROG) && 11128 (func_id == BPF_FUNC_map_delete_elem || 11129 func_id == BPF_FUNC_map_update_elem || 11130 func_id == BPF_FUNC_map_push_elem || 11131 func_id == BPF_FUNC_map_pop_elem)) { 11132 verbose(env, "write into map forbidden\n"); 11133 return -EACCES; 11134 } 11135 11136 if (!aux->map_ptr_state.map_ptr) 11137 bpf_map_ptr_store(aux, meta->map_ptr, 11138 !meta->map_ptr->bypass_spec_v1, false); 11139 else if (aux->map_ptr_state.map_ptr != meta->map_ptr) 11140 bpf_map_ptr_store(aux, meta->map_ptr, 11141 !meta->map_ptr->bypass_spec_v1, true); 11142 return 0; 11143 } 11144 11145 static int 11146 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 11147 int func_id, int insn_idx) 11148 { 11149 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 11150 struct bpf_reg_state *regs = cur_regs(env), *reg; 11151 struct bpf_map *map = meta->map_ptr; 11152 u64 val, max; 11153 int err; 11154 11155 if (func_id != BPF_FUNC_tail_call) 11156 return 0; 11157 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 11158 verbose(env, "expected prog array map for tail call"); 11159 return -EINVAL; 11160 } 11161 11162 reg = ®s[BPF_REG_3]; 11163 val = reg->var_off.value; 11164 max = map->max_entries; 11165 11166 if (!(is_reg_const(reg, false) && val < max)) { 11167 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 11168 return 0; 11169 } 11170 11171 err = mark_chain_precision(env, BPF_REG_3); 11172 if (err) 11173 return err; 11174 if (bpf_map_key_unseen(aux)) 11175 bpf_map_key_store(aux, val); 11176 else if (!bpf_map_key_poisoned(aux) && 11177 bpf_map_key_immediate(aux) != val) 11178 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 11179 return 0; 11180 } 11181 11182 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit) 11183 { 11184 struct bpf_verifier_state *state = env->cur_state; 11185 enum bpf_prog_type type = resolve_prog_type(env->prog); 11186 struct bpf_reg_state *reg = reg_state(env, BPF_REG_0); 11187 bool refs_lingering = false; 11188 int i; 11189 11190 if (!exception_exit && cur_func(env)->frameno) 11191 return 0; 11192 11193 for (i = 0; i < state->acquired_refs; i++) { 11194 if (state->refs[i].type != REF_TYPE_PTR) 11195 continue; 11196 /* Allow struct_ops programs to return a referenced kptr back to 11197 * kernel. Type checks are performed later in check_return_code. 11198 */ 11199 if (type == BPF_PROG_TYPE_STRUCT_OPS && !exception_exit && 11200 reg->ref_obj_id == state->refs[i].id) 11201 continue; 11202 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 11203 state->refs[i].id, state->refs[i].insn_idx); 11204 refs_lingering = true; 11205 } 11206 return refs_lingering ? -EINVAL : 0; 11207 } 11208 11209 static int check_resource_leak(struct bpf_verifier_env *env, bool exception_exit, bool check_lock, const char *prefix) 11210 { 11211 int err; 11212 11213 if (check_lock && env->cur_state->active_locks) { 11214 verbose(env, "%s cannot be used inside bpf_spin_lock-ed region\n", prefix); 11215 return -EINVAL; 11216 } 11217 11218 err = check_reference_leak(env, exception_exit); 11219 if (err) { 11220 verbose(env, "%s would lead to reference leak\n", prefix); 11221 return err; 11222 } 11223 11224 if (check_lock && env->cur_state->active_irq_id) { 11225 verbose(env, "%s cannot be used inside bpf_local_irq_save-ed region\n", prefix); 11226 return -EINVAL; 11227 } 11228 11229 if (check_lock && env->cur_state->active_rcu_lock) { 11230 verbose(env, "%s cannot be used inside bpf_rcu_read_lock-ed region\n", prefix); 11231 return -EINVAL; 11232 } 11233 11234 if (check_lock && env->cur_state->active_preempt_locks) { 11235 verbose(env, "%s cannot be used inside bpf_preempt_disable-ed region\n", prefix); 11236 return -EINVAL; 11237 } 11238 11239 return 0; 11240 } 11241 11242 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 11243 struct bpf_reg_state *regs) 11244 { 11245 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 11246 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 11247 struct bpf_map *fmt_map = fmt_reg->map_ptr; 11248 struct bpf_bprintf_data data = {}; 11249 int err, fmt_map_off, num_args; 11250 u64 fmt_addr; 11251 char *fmt; 11252 11253 /* data must be an array of u64 */ 11254 if (data_len_reg->var_off.value % 8) 11255 return -EINVAL; 11256 num_args = data_len_reg->var_off.value / 8; 11257 11258 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 11259 * and map_direct_value_addr is set. 11260 */ 11261 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 11262 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 11263 fmt_map_off); 11264 if (err) { 11265 verbose(env, "failed to retrieve map value address\n"); 11266 return -EFAULT; 11267 } 11268 fmt = (char *)(long)fmt_addr + fmt_map_off; 11269 11270 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 11271 * can focus on validating the format specifiers. 11272 */ 11273 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 11274 if (err < 0) 11275 verbose(env, "Invalid format string\n"); 11276 11277 return err; 11278 } 11279 11280 static int check_get_func_ip(struct bpf_verifier_env *env) 11281 { 11282 enum bpf_prog_type type = resolve_prog_type(env->prog); 11283 int func_id = BPF_FUNC_get_func_ip; 11284 11285 if (type == BPF_PROG_TYPE_TRACING) { 11286 if (!bpf_prog_has_trampoline(env->prog)) { 11287 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 11288 func_id_name(func_id), func_id); 11289 return -ENOTSUPP; 11290 } 11291 return 0; 11292 } else if (type == BPF_PROG_TYPE_KPROBE) { 11293 return 0; 11294 } 11295 11296 verbose(env, "func %s#%d not supported for program type %d\n", 11297 func_id_name(func_id), func_id, type); 11298 return -ENOTSUPP; 11299 } 11300 11301 static struct bpf_insn_aux_data *cur_aux(const struct bpf_verifier_env *env) 11302 { 11303 return &env->insn_aux_data[env->insn_idx]; 11304 } 11305 11306 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 11307 { 11308 struct bpf_reg_state *regs = cur_regs(env); 11309 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 11310 bool reg_is_null = register_is_null(reg); 11311 11312 if (reg_is_null) 11313 mark_chain_precision(env, BPF_REG_4); 11314 11315 return reg_is_null; 11316 } 11317 11318 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 11319 { 11320 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 11321 11322 if (!state->initialized) { 11323 state->initialized = 1; 11324 state->fit_for_inline = loop_flag_is_zero(env); 11325 state->callback_subprogno = subprogno; 11326 return; 11327 } 11328 11329 if (!state->fit_for_inline) 11330 return; 11331 11332 state->fit_for_inline = (loop_flag_is_zero(env) && 11333 state->callback_subprogno == subprogno); 11334 } 11335 11336 /* Returns whether or not the given map type can potentially elide 11337 * lookup return value nullness check. This is possible if the key 11338 * is statically known. 11339 */ 11340 static bool can_elide_value_nullness(enum bpf_map_type type) 11341 { 11342 switch (type) { 11343 case BPF_MAP_TYPE_ARRAY: 11344 case BPF_MAP_TYPE_PERCPU_ARRAY: 11345 return true; 11346 default: 11347 return false; 11348 } 11349 } 11350 11351 static int get_helper_proto(struct bpf_verifier_env *env, int func_id, 11352 const struct bpf_func_proto **ptr) 11353 { 11354 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) 11355 return -ERANGE; 11356 11357 if (!env->ops->get_func_proto) 11358 return -EINVAL; 11359 11360 *ptr = env->ops->get_func_proto(func_id, env->prog); 11361 return *ptr && (*ptr)->func ? 0 : -EINVAL; 11362 } 11363 11364 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 11365 int *insn_idx_p) 11366 { 11367 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 11368 bool returns_cpu_specific_alloc_ptr = false; 11369 const struct bpf_func_proto *fn = NULL; 11370 enum bpf_return_type ret_type; 11371 enum bpf_type_flag ret_flag; 11372 struct bpf_reg_state *regs; 11373 struct bpf_call_arg_meta meta; 11374 int insn_idx = *insn_idx_p; 11375 bool changes_data; 11376 int i, err, func_id; 11377 11378 /* find function prototype */ 11379 func_id = insn->imm; 11380 err = get_helper_proto(env, insn->imm, &fn); 11381 if (err == -ERANGE) { 11382 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), func_id); 11383 return -EINVAL; 11384 } 11385 11386 if (err) { 11387 verbose(env, "program of this type cannot use helper %s#%d\n", 11388 func_id_name(func_id), func_id); 11389 return err; 11390 } 11391 11392 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 11393 if (!env->prog->gpl_compatible && fn->gpl_only) { 11394 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 11395 return -EINVAL; 11396 } 11397 11398 if (fn->allowed && !fn->allowed(env->prog)) { 11399 verbose(env, "helper call is not allowed in probe\n"); 11400 return -EINVAL; 11401 } 11402 11403 if (!in_sleepable(env) && fn->might_sleep) { 11404 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 11405 return -EINVAL; 11406 } 11407 11408 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 11409 changes_data = bpf_helper_changes_pkt_data(func_id); 11410 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 11411 verifier_bug(env, "func %s#%d: r1 != ctx", func_id_name(func_id), func_id); 11412 return -EFAULT; 11413 } 11414 11415 memset(&meta, 0, sizeof(meta)); 11416 meta.pkt_access = fn->pkt_access; 11417 11418 err = check_func_proto(fn, func_id); 11419 if (err) { 11420 verifier_bug(env, "incorrect func proto %s#%d", func_id_name(func_id), func_id); 11421 return err; 11422 } 11423 11424 if (env->cur_state->active_rcu_lock) { 11425 if (fn->might_sleep) { 11426 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 11427 func_id_name(func_id), func_id); 11428 return -EINVAL; 11429 } 11430 11431 if (in_sleepable(env) && is_storage_get_function(func_id)) 11432 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 11433 } 11434 11435 if (env->cur_state->active_preempt_locks) { 11436 if (fn->might_sleep) { 11437 verbose(env, "sleepable helper %s#%d in non-preemptible region\n", 11438 func_id_name(func_id), func_id); 11439 return -EINVAL; 11440 } 11441 11442 if (in_sleepable(env) && is_storage_get_function(func_id)) 11443 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 11444 } 11445 11446 if (env->cur_state->active_irq_id) { 11447 if (fn->might_sleep) { 11448 verbose(env, "sleepable helper %s#%d in IRQ-disabled region\n", 11449 func_id_name(func_id), func_id); 11450 return -EINVAL; 11451 } 11452 11453 if (in_sleepable(env) && is_storage_get_function(func_id)) 11454 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 11455 } 11456 11457 meta.func_id = func_id; 11458 /* check args */ 11459 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 11460 err = check_func_arg(env, i, &meta, fn, insn_idx); 11461 if (err) 11462 return err; 11463 } 11464 11465 err = record_func_map(env, &meta, func_id, insn_idx); 11466 if (err) 11467 return err; 11468 11469 err = record_func_key(env, &meta, func_id, insn_idx); 11470 if (err) 11471 return err; 11472 11473 /* Mark slots with STACK_MISC in case of raw mode, stack offset 11474 * is inferred from register state. 11475 */ 11476 for (i = 0; i < meta.access_size; i++) { 11477 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 11478 BPF_WRITE, -1, false, false); 11479 if (err) 11480 return err; 11481 } 11482 11483 regs = cur_regs(env); 11484 11485 if (meta.release_regno) { 11486 err = -EINVAL; 11487 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 11488 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 11489 * is safe to do directly. 11490 */ 11491 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 11492 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 11493 verifier_bug(env, "CONST_PTR_TO_DYNPTR cannot be released"); 11494 return -EFAULT; 11495 } 11496 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 11497 } else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) { 11498 u32 ref_obj_id = meta.ref_obj_id; 11499 bool in_rcu = in_rcu_cs(env); 11500 struct bpf_func_state *state; 11501 struct bpf_reg_state *reg; 11502 11503 err = release_reference_nomark(env->cur_state, ref_obj_id); 11504 if (!err) { 11505 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 11506 if (reg->ref_obj_id == ref_obj_id) { 11507 if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) { 11508 reg->ref_obj_id = 0; 11509 reg->type &= ~MEM_ALLOC; 11510 reg->type |= MEM_RCU; 11511 } else { 11512 mark_reg_invalid(env, reg); 11513 } 11514 } 11515 })); 11516 } 11517 } else if (meta.ref_obj_id) { 11518 err = release_reference(env, meta.ref_obj_id); 11519 } else if (register_is_null(®s[meta.release_regno])) { 11520 /* meta.ref_obj_id can only be 0 if register that is meant to be 11521 * released is NULL, which must be > R0. 11522 */ 11523 err = 0; 11524 } 11525 if (err) { 11526 verbose(env, "func %s#%d reference has not been acquired before\n", 11527 func_id_name(func_id), func_id); 11528 return err; 11529 } 11530 } 11531 11532 switch (func_id) { 11533 case BPF_FUNC_tail_call: 11534 err = check_resource_leak(env, false, true, "tail_call"); 11535 if (err) 11536 return err; 11537 break; 11538 case BPF_FUNC_get_local_storage: 11539 /* check that flags argument in get_local_storage(map, flags) is 0, 11540 * this is required because get_local_storage() can't return an error. 11541 */ 11542 if (!register_is_null(®s[BPF_REG_2])) { 11543 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 11544 return -EINVAL; 11545 } 11546 break; 11547 case BPF_FUNC_for_each_map_elem: 11548 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11549 set_map_elem_callback_state); 11550 break; 11551 case BPF_FUNC_timer_set_callback: 11552 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11553 set_timer_callback_state); 11554 break; 11555 case BPF_FUNC_find_vma: 11556 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11557 set_find_vma_callback_state); 11558 break; 11559 case BPF_FUNC_snprintf: 11560 err = check_bpf_snprintf_call(env, regs); 11561 break; 11562 case BPF_FUNC_loop: 11563 update_loop_inline_state(env, meta.subprogno); 11564 /* Verifier relies on R1 value to determine if bpf_loop() iteration 11565 * is finished, thus mark it precise. 11566 */ 11567 err = mark_chain_precision(env, BPF_REG_1); 11568 if (err) 11569 return err; 11570 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { 11571 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11572 set_loop_callback_state); 11573 } else { 11574 cur_func(env)->callback_depth = 0; 11575 if (env->log.level & BPF_LOG_LEVEL2) 11576 verbose(env, "frame%d bpf_loop iteration limit reached\n", 11577 env->cur_state->curframe); 11578 } 11579 break; 11580 case BPF_FUNC_dynptr_from_mem: 11581 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 11582 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 11583 reg_type_str(env, regs[BPF_REG_1].type)); 11584 return -EACCES; 11585 } 11586 break; 11587 case BPF_FUNC_set_retval: 11588 if (prog_type == BPF_PROG_TYPE_LSM && 11589 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 11590 if (!env->prog->aux->attach_func_proto->type) { 11591 /* Make sure programs that attach to void 11592 * hooks don't try to modify return value. 11593 */ 11594 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 11595 return -EINVAL; 11596 } 11597 } 11598 break; 11599 case BPF_FUNC_dynptr_data: 11600 { 11601 struct bpf_reg_state *reg; 11602 int id, ref_obj_id; 11603 11604 reg = get_dynptr_arg_reg(env, fn, regs); 11605 if (!reg) 11606 return -EFAULT; 11607 11608 11609 if (meta.dynptr_id) { 11610 verifier_bug(env, "meta.dynptr_id already set"); 11611 return -EFAULT; 11612 } 11613 if (meta.ref_obj_id) { 11614 verifier_bug(env, "meta.ref_obj_id already set"); 11615 return -EFAULT; 11616 } 11617 11618 id = dynptr_id(env, reg); 11619 if (id < 0) { 11620 verifier_bug(env, "failed to obtain dynptr id"); 11621 return id; 11622 } 11623 11624 ref_obj_id = dynptr_ref_obj_id(env, reg); 11625 if (ref_obj_id < 0) { 11626 verifier_bug(env, "failed to obtain dynptr ref_obj_id"); 11627 return ref_obj_id; 11628 } 11629 11630 meta.dynptr_id = id; 11631 meta.ref_obj_id = ref_obj_id; 11632 11633 break; 11634 } 11635 case BPF_FUNC_dynptr_write: 11636 { 11637 enum bpf_dynptr_type dynptr_type; 11638 struct bpf_reg_state *reg; 11639 11640 reg = get_dynptr_arg_reg(env, fn, regs); 11641 if (!reg) 11642 return -EFAULT; 11643 11644 dynptr_type = dynptr_get_type(env, reg); 11645 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 11646 return -EFAULT; 11647 11648 if (dynptr_type == BPF_DYNPTR_TYPE_SKB || 11649 dynptr_type == BPF_DYNPTR_TYPE_SKB_META) 11650 /* this will trigger clear_all_pkt_pointers(), which will 11651 * invalidate all dynptr slices associated with the skb 11652 */ 11653 changes_data = true; 11654 11655 break; 11656 } 11657 case BPF_FUNC_per_cpu_ptr: 11658 case BPF_FUNC_this_cpu_ptr: 11659 { 11660 struct bpf_reg_state *reg = ®s[BPF_REG_1]; 11661 const struct btf_type *type; 11662 11663 if (reg->type & MEM_RCU) { 11664 type = btf_type_by_id(reg->btf, reg->btf_id); 11665 if (!type || !btf_type_is_struct(type)) { 11666 verbose(env, "Helper has invalid btf/btf_id in R1\n"); 11667 return -EFAULT; 11668 } 11669 returns_cpu_specific_alloc_ptr = true; 11670 env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true; 11671 } 11672 break; 11673 } 11674 case BPF_FUNC_user_ringbuf_drain: 11675 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11676 set_user_ringbuf_callback_state); 11677 break; 11678 } 11679 11680 if (err) 11681 return err; 11682 11683 /* reset caller saved regs */ 11684 for (i = 0; i < CALLER_SAVED_REGS; i++) { 11685 mark_reg_not_init(env, regs, caller_saved[i]); 11686 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 11687 } 11688 11689 /* helper call returns 64-bit value. */ 11690 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 11691 11692 /* update return register (already marked as written above) */ 11693 ret_type = fn->ret_type; 11694 ret_flag = type_flag(ret_type); 11695 11696 switch (base_type(ret_type)) { 11697 case RET_INTEGER: 11698 /* sets type to SCALAR_VALUE */ 11699 mark_reg_unknown(env, regs, BPF_REG_0); 11700 break; 11701 case RET_VOID: 11702 regs[BPF_REG_0].type = NOT_INIT; 11703 break; 11704 case RET_PTR_TO_MAP_VALUE: 11705 /* There is no offset yet applied, variable or fixed */ 11706 mark_reg_known_zero(env, regs, BPF_REG_0); 11707 /* remember map_ptr, so that check_map_access() 11708 * can check 'value_size' boundary of memory access 11709 * to map element returned from bpf_map_lookup_elem() 11710 */ 11711 if (meta.map_ptr == NULL) { 11712 verifier_bug(env, "unexpected null map_ptr"); 11713 return -EFAULT; 11714 } 11715 11716 if (func_id == BPF_FUNC_map_lookup_elem && 11717 can_elide_value_nullness(meta.map_ptr->map_type) && 11718 meta.const_map_key >= 0 && 11719 meta.const_map_key < meta.map_ptr->max_entries) 11720 ret_flag &= ~PTR_MAYBE_NULL; 11721 11722 regs[BPF_REG_0].map_ptr = meta.map_ptr; 11723 regs[BPF_REG_0].map_uid = meta.map_uid; 11724 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 11725 if (!type_may_be_null(ret_flag) && 11726 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) { 11727 regs[BPF_REG_0].id = ++env->id_gen; 11728 } 11729 break; 11730 case RET_PTR_TO_SOCKET: 11731 mark_reg_known_zero(env, regs, BPF_REG_0); 11732 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 11733 break; 11734 case RET_PTR_TO_SOCK_COMMON: 11735 mark_reg_known_zero(env, regs, BPF_REG_0); 11736 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 11737 break; 11738 case RET_PTR_TO_TCP_SOCK: 11739 mark_reg_known_zero(env, regs, BPF_REG_0); 11740 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 11741 break; 11742 case RET_PTR_TO_MEM: 11743 mark_reg_known_zero(env, regs, BPF_REG_0); 11744 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 11745 regs[BPF_REG_0].mem_size = meta.mem_size; 11746 break; 11747 case RET_PTR_TO_MEM_OR_BTF_ID: 11748 { 11749 const struct btf_type *t; 11750 11751 mark_reg_known_zero(env, regs, BPF_REG_0); 11752 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 11753 if (!btf_type_is_struct(t)) { 11754 u32 tsize; 11755 const struct btf_type *ret; 11756 const char *tname; 11757 11758 /* resolve the type size of ksym. */ 11759 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 11760 if (IS_ERR(ret)) { 11761 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 11762 verbose(env, "unable to resolve the size of type '%s': %ld\n", 11763 tname, PTR_ERR(ret)); 11764 return -EINVAL; 11765 } 11766 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 11767 regs[BPF_REG_0].mem_size = tsize; 11768 } else { 11769 if (returns_cpu_specific_alloc_ptr) { 11770 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU; 11771 } else { 11772 /* MEM_RDONLY may be carried from ret_flag, but it 11773 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 11774 * it will confuse the check of PTR_TO_BTF_ID in 11775 * check_mem_access(). 11776 */ 11777 ret_flag &= ~MEM_RDONLY; 11778 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 11779 } 11780 11781 regs[BPF_REG_0].btf = meta.ret_btf; 11782 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 11783 } 11784 break; 11785 } 11786 case RET_PTR_TO_BTF_ID: 11787 { 11788 struct btf *ret_btf; 11789 int ret_btf_id; 11790 11791 mark_reg_known_zero(env, regs, BPF_REG_0); 11792 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 11793 if (func_id == BPF_FUNC_kptr_xchg) { 11794 ret_btf = meta.kptr_field->kptr.btf; 11795 ret_btf_id = meta.kptr_field->kptr.btf_id; 11796 if (!btf_is_kernel(ret_btf)) { 11797 regs[BPF_REG_0].type |= MEM_ALLOC; 11798 if (meta.kptr_field->type == BPF_KPTR_PERCPU) 11799 regs[BPF_REG_0].type |= MEM_PERCPU; 11800 } 11801 } else { 11802 if (fn->ret_btf_id == BPF_PTR_POISON) { 11803 verifier_bug(env, "func %s has non-overwritten BPF_PTR_POISON return type", 11804 func_id_name(func_id)); 11805 return -EFAULT; 11806 } 11807 ret_btf = btf_vmlinux; 11808 ret_btf_id = *fn->ret_btf_id; 11809 } 11810 if (ret_btf_id == 0) { 11811 verbose(env, "invalid return type %u of func %s#%d\n", 11812 base_type(ret_type), func_id_name(func_id), 11813 func_id); 11814 return -EINVAL; 11815 } 11816 regs[BPF_REG_0].btf = ret_btf; 11817 regs[BPF_REG_0].btf_id = ret_btf_id; 11818 break; 11819 } 11820 default: 11821 verbose(env, "unknown return type %u of func %s#%d\n", 11822 base_type(ret_type), func_id_name(func_id), func_id); 11823 return -EINVAL; 11824 } 11825 11826 if (type_may_be_null(regs[BPF_REG_0].type)) 11827 regs[BPF_REG_0].id = ++env->id_gen; 11828 11829 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 11830 verifier_bug(env, "func %s#%d sets ref_obj_id more than once", 11831 func_id_name(func_id), func_id); 11832 return -EFAULT; 11833 } 11834 11835 if (is_dynptr_ref_function(func_id)) 11836 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 11837 11838 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 11839 /* For release_reference() */ 11840 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 11841 } else if (is_acquire_function(func_id, meta.map_ptr)) { 11842 int id = acquire_reference(env, insn_idx); 11843 11844 if (id < 0) 11845 return id; 11846 /* For mark_ptr_or_null_reg() */ 11847 regs[BPF_REG_0].id = id; 11848 /* For release_reference() */ 11849 regs[BPF_REG_0].ref_obj_id = id; 11850 } 11851 11852 err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta); 11853 if (err) 11854 return err; 11855 11856 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 11857 if (err) 11858 return err; 11859 11860 if ((func_id == BPF_FUNC_get_stack || 11861 func_id == BPF_FUNC_get_task_stack) && 11862 !env->prog->has_callchain_buf) { 11863 const char *err_str; 11864 11865 #ifdef CONFIG_PERF_EVENTS 11866 err = get_callchain_buffers(sysctl_perf_event_max_stack); 11867 err_str = "cannot get callchain buffer for func %s#%d\n"; 11868 #else 11869 err = -ENOTSUPP; 11870 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 11871 #endif 11872 if (err) { 11873 verbose(env, err_str, func_id_name(func_id), func_id); 11874 return err; 11875 } 11876 11877 env->prog->has_callchain_buf = true; 11878 } 11879 11880 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 11881 env->prog->call_get_stack = true; 11882 11883 if (func_id == BPF_FUNC_get_func_ip) { 11884 if (check_get_func_ip(env)) 11885 return -ENOTSUPP; 11886 env->prog->call_get_func_ip = true; 11887 } 11888 11889 if (changes_data) 11890 clear_all_pkt_pointers(env); 11891 return 0; 11892 } 11893 11894 /* mark_btf_func_reg_size() is used when the reg size is determined by 11895 * the BTF func_proto's return value size and argument. 11896 */ 11897 static void __mark_btf_func_reg_size(struct bpf_verifier_env *env, struct bpf_reg_state *regs, 11898 u32 regno, size_t reg_size) 11899 { 11900 struct bpf_reg_state *reg = ®s[regno]; 11901 11902 if (regno == BPF_REG_0) { 11903 /* Function return value */ 11904 reg->subreg_def = reg_size == sizeof(u64) ? 11905 DEF_NOT_SUBREG : env->insn_idx + 1; 11906 } else if (reg_size == sizeof(u64)) { 11907 /* Function argument */ 11908 mark_insn_zext(env, reg); 11909 } 11910 } 11911 11912 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 11913 size_t reg_size) 11914 { 11915 return __mark_btf_func_reg_size(env, cur_regs(env), regno, reg_size); 11916 } 11917 11918 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 11919 { 11920 return meta->kfunc_flags & KF_ACQUIRE; 11921 } 11922 11923 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 11924 { 11925 return meta->kfunc_flags & KF_RELEASE; 11926 } 11927 11928 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 11929 { 11930 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 11931 } 11932 11933 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 11934 { 11935 return meta->kfunc_flags & KF_SLEEPABLE; 11936 } 11937 11938 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 11939 { 11940 return meta->kfunc_flags & KF_DESTRUCTIVE; 11941 } 11942 11943 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 11944 { 11945 return meta->kfunc_flags & KF_RCU; 11946 } 11947 11948 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta) 11949 { 11950 return meta->kfunc_flags & KF_RCU_PROTECTED; 11951 } 11952 11953 static bool is_kfunc_arg_mem_size(const struct btf *btf, 11954 const struct btf_param *arg, 11955 const struct bpf_reg_state *reg) 11956 { 11957 const struct btf_type *t; 11958 11959 t = btf_type_skip_modifiers(btf, arg->type, NULL); 11960 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 11961 return false; 11962 11963 return btf_param_match_suffix(btf, arg, "__sz"); 11964 } 11965 11966 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 11967 const struct btf_param *arg, 11968 const struct bpf_reg_state *reg) 11969 { 11970 const struct btf_type *t; 11971 11972 t = btf_type_skip_modifiers(btf, arg->type, NULL); 11973 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 11974 return false; 11975 11976 return btf_param_match_suffix(btf, arg, "__szk"); 11977 } 11978 11979 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 11980 { 11981 return btf_param_match_suffix(btf, arg, "__opt"); 11982 } 11983 11984 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 11985 { 11986 return btf_param_match_suffix(btf, arg, "__k"); 11987 } 11988 11989 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 11990 { 11991 return btf_param_match_suffix(btf, arg, "__ign"); 11992 } 11993 11994 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg) 11995 { 11996 return btf_param_match_suffix(btf, arg, "__map"); 11997 } 11998 11999 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 12000 { 12001 return btf_param_match_suffix(btf, arg, "__alloc"); 12002 } 12003 12004 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 12005 { 12006 return btf_param_match_suffix(btf, arg, "__uninit"); 12007 } 12008 12009 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 12010 { 12011 return btf_param_match_suffix(btf, arg, "__refcounted_kptr"); 12012 } 12013 12014 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg) 12015 { 12016 return btf_param_match_suffix(btf, arg, "__nullable"); 12017 } 12018 12019 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg) 12020 { 12021 return btf_param_match_suffix(btf, arg, "__str"); 12022 } 12023 12024 static bool is_kfunc_arg_irq_flag(const struct btf *btf, const struct btf_param *arg) 12025 { 12026 return btf_param_match_suffix(btf, arg, "__irq_flag"); 12027 } 12028 12029 static bool is_kfunc_arg_prog(const struct btf *btf, const struct btf_param *arg) 12030 { 12031 return btf_param_match_suffix(btf, arg, "__prog"); 12032 } 12033 12034 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 12035 const struct btf_param *arg, 12036 const char *name) 12037 { 12038 int len, target_len = strlen(name); 12039 const char *param_name; 12040 12041 param_name = btf_name_by_offset(btf, arg->name_off); 12042 if (str_is_empty(param_name)) 12043 return false; 12044 len = strlen(param_name); 12045 if (len != target_len) 12046 return false; 12047 if (strcmp(param_name, name)) 12048 return false; 12049 12050 return true; 12051 } 12052 12053 enum { 12054 KF_ARG_DYNPTR_ID, 12055 KF_ARG_LIST_HEAD_ID, 12056 KF_ARG_LIST_NODE_ID, 12057 KF_ARG_RB_ROOT_ID, 12058 KF_ARG_RB_NODE_ID, 12059 KF_ARG_WORKQUEUE_ID, 12060 KF_ARG_RES_SPIN_LOCK_ID, 12061 KF_ARG_TASK_WORK_ID, 12062 }; 12063 12064 BTF_ID_LIST(kf_arg_btf_ids) 12065 BTF_ID(struct, bpf_dynptr) 12066 BTF_ID(struct, bpf_list_head) 12067 BTF_ID(struct, bpf_list_node) 12068 BTF_ID(struct, bpf_rb_root) 12069 BTF_ID(struct, bpf_rb_node) 12070 BTF_ID(struct, bpf_wq) 12071 BTF_ID(struct, bpf_res_spin_lock) 12072 BTF_ID(struct, bpf_task_work) 12073 12074 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 12075 const struct btf_param *arg, int type) 12076 { 12077 const struct btf_type *t; 12078 u32 res_id; 12079 12080 t = btf_type_skip_modifiers(btf, arg->type, NULL); 12081 if (!t) 12082 return false; 12083 if (!btf_type_is_ptr(t)) 12084 return false; 12085 t = btf_type_skip_modifiers(btf, t->type, &res_id); 12086 if (!t) 12087 return false; 12088 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 12089 } 12090 12091 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 12092 { 12093 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 12094 } 12095 12096 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 12097 { 12098 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 12099 } 12100 12101 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 12102 { 12103 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 12104 } 12105 12106 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 12107 { 12108 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 12109 } 12110 12111 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 12112 { 12113 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 12114 } 12115 12116 static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg) 12117 { 12118 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID); 12119 } 12120 12121 static bool is_kfunc_arg_task_work(const struct btf *btf, const struct btf_param *arg) 12122 { 12123 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_TASK_WORK_ID); 12124 } 12125 12126 static bool is_kfunc_arg_res_spin_lock(const struct btf *btf, const struct btf_param *arg) 12127 { 12128 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RES_SPIN_LOCK_ID); 12129 } 12130 12131 static bool is_rbtree_node_type(const struct btf_type *t) 12132 { 12133 return t == btf_type_by_id(btf_vmlinux, kf_arg_btf_ids[KF_ARG_RB_NODE_ID]); 12134 } 12135 12136 static bool is_list_node_type(const struct btf_type *t) 12137 { 12138 return t == btf_type_by_id(btf_vmlinux, kf_arg_btf_ids[KF_ARG_LIST_NODE_ID]); 12139 } 12140 12141 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 12142 const struct btf_param *arg) 12143 { 12144 const struct btf_type *t; 12145 12146 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 12147 if (!t) 12148 return false; 12149 12150 return true; 12151 } 12152 12153 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 12154 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 12155 const struct btf *btf, 12156 const struct btf_type *t, int rec) 12157 { 12158 const struct btf_type *member_type; 12159 const struct btf_member *member; 12160 u32 i; 12161 12162 if (!btf_type_is_struct(t)) 12163 return false; 12164 12165 for_each_member(i, t, member) { 12166 const struct btf_array *array; 12167 12168 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 12169 if (btf_type_is_struct(member_type)) { 12170 if (rec >= 3) { 12171 verbose(env, "max struct nesting depth exceeded\n"); 12172 return false; 12173 } 12174 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 12175 return false; 12176 continue; 12177 } 12178 if (btf_type_is_array(member_type)) { 12179 array = btf_array(member_type); 12180 if (!array->nelems) 12181 return false; 12182 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 12183 if (!btf_type_is_scalar(member_type)) 12184 return false; 12185 continue; 12186 } 12187 if (!btf_type_is_scalar(member_type)) 12188 return false; 12189 } 12190 return true; 12191 } 12192 12193 enum kfunc_ptr_arg_type { 12194 KF_ARG_PTR_TO_CTX, 12195 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 12196 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 12197 KF_ARG_PTR_TO_DYNPTR, 12198 KF_ARG_PTR_TO_ITER, 12199 KF_ARG_PTR_TO_LIST_HEAD, 12200 KF_ARG_PTR_TO_LIST_NODE, 12201 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 12202 KF_ARG_PTR_TO_MEM, 12203 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 12204 KF_ARG_PTR_TO_CALLBACK, 12205 KF_ARG_PTR_TO_RB_ROOT, 12206 KF_ARG_PTR_TO_RB_NODE, 12207 KF_ARG_PTR_TO_NULL, 12208 KF_ARG_PTR_TO_CONST_STR, 12209 KF_ARG_PTR_TO_MAP, 12210 KF_ARG_PTR_TO_WORKQUEUE, 12211 KF_ARG_PTR_TO_IRQ_FLAG, 12212 KF_ARG_PTR_TO_RES_SPIN_LOCK, 12213 KF_ARG_PTR_TO_TASK_WORK, 12214 }; 12215 12216 enum special_kfunc_type { 12217 KF_bpf_obj_new_impl, 12218 KF_bpf_obj_drop_impl, 12219 KF_bpf_refcount_acquire_impl, 12220 KF_bpf_list_push_front_impl, 12221 KF_bpf_list_push_back_impl, 12222 KF_bpf_list_pop_front, 12223 KF_bpf_list_pop_back, 12224 KF_bpf_list_front, 12225 KF_bpf_list_back, 12226 KF_bpf_cast_to_kern_ctx, 12227 KF_bpf_rdonly_cast, 12228 KF_bpf_rcu_read_lock, 12229 KF_bpf_rcu_read_unlock, 12230 KF_bpf_rbtree_remove, 12231 KF_bpf_rbtree_add_impl, 12232 KF_bpf_rbtree_first, 12233 KF_bpf_rbtree_root, 12234 KF_bpf_rbtree_left, 12235 KF_bpf_rbtree_right, 12236 KF_bpf_dynptr_from_skb, 12237 KF_bpf_dynptr_from_xdp, 12238 KF_bpf_dynptr_from_skb_meta, 12239 KF_bpf_xdp_pull_data, 12240 KF_bpf_dynptr_slice, 12241 KF_bpf_dynptr_slice_rdwr, 12242 KF_bpf_dynptr_clone, 12243 KF_bpf_percpu_obj_new_impl, 12244 KF_bpf_percpu_obj_drop_impl, 12245 KF_bpf_throw, 12246 KF_bpf_wq_set_callback_impl, 12247 KF_bpf_preempt_disable, 12248 KF_bpf_preempt_enable, 12249 KF_bpf_iter_css_task_new, 12250 KF_bpf_session_cookie, 12251 KF_bpf_get_kmem_cache, 12252 KF_bpf_local_irq_save, 12253 KF_bpf_local_irq_restore, 12254 KF_bpf_iter_num_new, 12255 KF_bpf_iter_num_next, 12256 KF_bpf_iter_num_destroy, 12257 KF_bpf_set_dentry_xattr, 12258 KF_bpf_remove_dentry_xattr, 12259 KF_bpf_res_spin_lock, 12260 KF_bpf_res_spin_unlock, 12261 KF_bpf_res_spin_lock_irqsave, 12262 KF_bpf_res_spin_unlock_irqrestore, 12263 KF___bpf_trap, 12264 KF_bpf_task_work_schedule_signal_impl, 12265 KF_bpf_task_work_schedule_resume_impl, 12266 }; 12267 12268 BTF_ID_LIST(special_kfunc_list) 12269 BTF_ID(func, bpf_obj_new_impl) 12270 BTF_ID(func, bpf_obj_drop_impl) 12271 BTF_ID(func, bpf_refcount_acquire_impl) 12272 BTF_ID(func, bpf_list_push_front_impl) 12273 BTF_ID(func, bpf_list_push_back_impl) 12274 BTF_ID(func, bpf_list_pop_front) 12275 BTF_ID(func, bpf_list_pop_back) 12276 BTF_ID(func, bpf_list_front) 12277 BTF_ID(func, bpf_list_back) 12278 BTF_ID(func, bpf_cast_to_kern_ctx) 12279 BTF_ID(func, bpf_rdonly_cast) 12280 BTF_ID(func, bpf_rcu_read_lock) 12281 BTF_ID(func, bpf_rcu_read_unlock) 12282 BTF_ID(func, bpf_rbtree_remove) 12283 BTF_ID(func, bpf_rbtree_add_impl) 12284 BTF_ID(func, bpf_rbtree_first) 12285 BTF_ID(func, bpf_rbtree_root) 12286 BTF_ID(func, bpf_rbtree_left) 12287 BTF_ID(func, bpf_rbtree_right) 12288 #ifdef CONFIG_NET 12289 BTF_ID(func, bpf_dynptr_from_skb) 12290 BTF_ID(func, bpf_dynptr_from_xdp) 12291 BTF_ID(func, bpf_dynptr_from_skb_meta) 12292 BTF_ID(func, bpf_xdp_pull_data) 12293 #else 12294 BTF_ID_UNUSED 12295 BTF_ID_UNUSED 12296 BTF_ID_UNUSED 12297 BTF_ID_UNUSED 12298 #endif 12299 BTF_ID(func, bpf_dynptr_slice) 12300 BTF_ID(func, bpf_dynptr_slice_rdwr) 12301 BTF_ID(func, bpf_dynptr_clone) 12302 BTF_ID(func, bpf_percpu_obj_new_impl) 12303 BTF_ID(func, bpf_percpu_obj_drop_impl) 12304 BTF_ID(func, bpf_throw) 12305 BTF_ID(func, bpf_wq_set_callback_impl) 12306 BTF_ID(func, bpf_preempt_disable) 12307 BTF_ID(func, bpf_preempt_enable) 12308 #ifdef CONFIG_CGROUPS 12309 BTF_ID(func, bpf_iter_css_task_new) 12310 #else 12311 BTF_ID_UNUSED 12312 #endif 12313 #ifdef CONFIG_BPF_EVENTS 12314 BTF_ID(func, bpf_session_cookie) 12315 #else 12316 BTF_ID_UNUSED 12317 #endif 12318 BTF_ID(func, bpf_get_kmem_cache) 12319 BTF_ID(func, bpf_local_irq_save) 12320 BTF_ID(func, bpf_local_irq_restore) 12321 BTF_ID(func, bpf_iter_num_new) 12322 BTF_ID(func, bpf_iter_num_next) 12323 BTF_ID(func, bpf_iter_num_destroy) 12324 #ifdef CONFIG_BPF_LSM 12325 BTF_ID(func, bpf_set_dentry_xattr) 12326 BTF_ID(func, bpf_remove_dentry_xattr) 12327 #else 12328 BTF_ID_UNUSED 12329 BTF_ID_UNUSED 12330 #endif 12331 BTF_ID(func, bpf_res_spin_lock) 12332 BTF_ID(func, bpf_res_spin_unlock) 12333 BTF_ID(func, bpf_res_spin_lock_irqsave) 12334 BTF_ID(func, bpf_res_spin_unlock_irqrestore) 12335 BTF_ID(func, __bpf_trap) 12336 BTF_ID(func, bpf_task_work_schedule_signal_impl) 12337 BTF_ID(func, bpf_task_work_schedule_resume_impl) 12338 12339 static bool is_task_work_add_kfunc(u32 func_id) 12340 { 12341 return func_id == special_kfunc_list[KF_bpf_task_work_schedule_signal_impl] || 12342 func_id == special_kfunc_list[KF_bpf_task_work_schedule_resume_impl]; 12343 } 12344 12345 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 12346 { 12347 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 12348 meta->arg_owning_ref) { 12349 return false; 12350 } 12351 12352 return meta->kfunc_flags & KF_RET_NULL; 12353 } 12354 12355 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 12356 { 12357 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 12358 } 12359 12360 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 12361 { 12362 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 12363 } 12364 12365 static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta) 12366 { 12367 return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable]; 12368 } 12369 12370 static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta) 12371 { 12372 return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable]; 12373 } 12374 12375 static bool is_kfunc_pkt_changing(struct bpf_kfunc_call_arg_meta *meta) 12376 { 12377 return meta->func_id == special_kfunc_list[KF_bpf_xdp_pull_data]; 12378 } 12379 12380 static enum kfunc_ptr_arg_type 12381 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 12382 struct bpf_kfunc_call_arg_meta *meta, 12383 const struct btf_type *t, const struct btf_type *ref_t, 12384 const char *ref_tname, const struct btf_param *args, 12385 int argno, int nargs) 12386 { 12387 u32 regno = argno + 1; 12388 struct bpf_reg_state *regs = cur_regs(env); 12389 struct bpf_reg_state *reg = ®s[regno]; 12390 bool arg_mem_size = false; 12391 12392 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 12393 return KF_ARG_PTR_TO_CTX; 12394 12395 /* In this function, we verify the kfunc's BTF as per the argument type, 12396 * leaving the rest of the verification with respect to the register 12397 * type to our caller. When a set of conditions hold in the BTF type of 12398 * arguments, we resolve it to a known kfunc_ptr_arg_type. 12399 */ 12400 if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 12401 return KF_ARG_PTR_TO_CTX; 12402 12403 if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg)) 12404 return KF_ARG_PTR_TO_NULL; 12405 12406 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 12407 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 12408 12409 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 12410 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 12411 12412 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 12413 return KF_ARG_PTR_TO_DYNPTR; 12414 12415 if (is_kfunc_arg_iter(meta, argno, &args[argno])) 12416 return KF_ARG_PTR_TO_ITER; 12417 12418 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 12419 return KF_ARG_PTR_TO_LIST_HEAD; 12420 12421 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 12422 return KF_ARG_PTR_TO_LIST_NODE; 12423 12424 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 12425 return KF_ARG_PTR_TO_RB_ROOT; 12426 12427 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 12428 return KF_ARG_PTR_TO_RB_NODE; 12429 12430 if (is_kfunc_arg_const_str(meta->btf, &args[argno])) 12431 return KF_ARG_PTR_TO_CONST_STR; 12432 12433 if (is_kfunc_arg_map(meta->btf, &args[argno])) 12434 return KF_ARG_PTR_TO_MAP; 12435 12436 if (is_kfunc_arg_wq(meta->btf, &args[argno])) 12437 return KF_ARG_PTR_TO_WORKQUEUE; 12438 12439 if (is_kfunc_arg_task_work(meta->btf, &args[argno])) 12440 return KF_ARG_PTR_TO_TASK_WORK; 12441 12442 if (is_kfunc_arg_irq_flag(meta->btf, &args[argno])) 12443 return KF_ARG_PTR_TO_IRQ_FLAG; 12444 12445 if (is_kfunc_arg_res_spin_lock(meta->btf, &args[argno])) 12446 return KF_ARG_PTR_TO_RES_SPIN_LOCK; 12447 12448 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 12449 if (!btf_type_is_struct(ref_t)) { 12450 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 12451 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 12452 return -EINVAL; 12453 } 12454 return KF_ARG_PTR_TO_BTF_ID; 12455 } 12456 12457 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 12458 return KF_ARG_PTR_TO_CALLBACK; 12459 12460 if (argno + 1 < nargs && 12461 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 12462 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 12463 arg_mem_size = true; 12464 12465 /* This is the catch all argument type of register types supported by 12466 * check_helper_mem_access. However, we only allow when argument type is 12467 * pointer to scalar, or struct composed (recursively) of scalars. When 12468 * arg_mem_size is true, the pointer can be void *. 12469 */ 12470 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 12471 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 12472 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 12473 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 12474 return -EINVAL; 12475 } 12476 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 12477 } 12478 12479 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 12480 struct bpf_reg_state *reg, 12481 const struct btf_type *ref_t, 12482 const char *ref_tname, u32 ref_id, 12483 struct bpf_kfunc_call_arg_meta *meta, 12484 int argno) 12485 { 12486 const struct btf_type *reg_ref_t; 12487 bool strict_type_match = false; 12488 const struct btf *reg_btf; 12489 const char *reg_ref_tname; 12490 bool taking_projection; 12491 bool struct_same; 12492 u32 reg_ref_id; 12493 12494 if (base_type(reg->type) == PTR_TO_BTF_ID) { 12495 reg_btf = reg->btf; 12496 reg_ref_id = reg->btf_id; 12497 } else { 12498 reg_btf = btf_vmlinux; 12499 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 12500 } 12501 12502 /* Enforce strict type matching for calls to kfuncs that are acquiring 12503 * or releasing a reference, or are no-cast aliases. We do _not_ 12504 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 12505 * as we want to enable BPF programs to pass types that are bitwise 12506 * equivalent without forcing them to explicitly cast with something 12507 * like bpf_cast_to_kern_ctx(). 12508 * 12509 * For example, say we had a type like the following: 12510 * 12511 * struct bpf_cpumask { 12512 * cpumask_t cpumask; 12513 * refcount_t usage; 12514 * }; 12515 * 12516 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 12517 * to a struct cpumask, so it would be safe to pass a struct 12518 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 12519 * 12520 * The philosophy here is similar to how we allow scalars of different 12521 * types to be passed to kfuncs as long as the size is the same. The 12522 * only difference here is that we're simply allowing 12523 * btf_struct_ids_match() to walk the struct at the 0th offset, and 12524 * resolve types. 12525 */ 12526 if ((is_kfunc_release(meta) && reg->ref_obj_id) || 12527 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 12528 strict_type_match = true; 12529 12530 WARN_ON_ONCE(is_kfunc_release(meta) && 12531 (reg->off || !tnum_is_const(reg->var_off) || 12532 reg->var_off.value)); 12533 12534 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 12535 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 12536 struct_same = btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match); 12537 /* If kfunc is accepting a projection type (ie. __sk_buff), it cannot 12538 * actually use it -- it must cast to the underlying type. So we allow 12539 * caller to pass in the underlying type. 12540 */ 12541 taking_projection = btf_is_projection_of(ref_tname, reg_ref_tname); 12542 if (!taking_projection && !struct_same) { 12543 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 12544 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 12545 btf_type_str(reg_ref_t), reg_ref_tname); 12546 return -EINVAL; 12547 } 12548 return 0; 12549 } 12550 12551 static int process_irq_flag(struct bpf_verifier_env *env, int regno, 12552 struct bpf_kfunc_call_arg_meta *meta) 12553 { 12554 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 12555 int err, kfunc_class = IRQ_NATIVE_KFUNC; 12556 bool irq_save; 12557 12558 if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_save] || 12559 meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) { 12560 irq_save = true; 12561 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) 12562 kfunc_class = IRQ_LOCK_KFUNC; 12563 } else if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_restore] || 12564 meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) { 12565 irq_save = false; 12566 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) 12567 kfunc_class = IRQ_LOCK_KFUNC; 12568 } else { 12569 verifier_bug(env, "unknown irq flags kfunc"); 12570 return -EFAULT; 12571 } 12572 12573 if (irq_save) { 12574 if (!is_irq_flag_reg_valid_uninit(env, reg)) { 12575 verbose(env, "expected uninitialized irq flag as arg#%d\n", regno - 1); 12576 return -EINVAL; 12577 } 12578 12579 err = check_mem_access(env, env->insn_idx, regno, 0, BPF_DW, BPF_WRITE, -1, false, false); 12580 if (err) 12581 return err; 12582 12583 err = mark_stack_slot_irq_flag(env, meta, reg, env->insn_idx, kfunc_class); 12584 if (err) 12585 return err; 12586 } else { 12587 err = is_irq_flag_reg_valid_init(env, reg); 12588 if (err) { 12589 verbose(env, "expected an initialized irq flag as arg#%d\n", regno - 1); 12590 return err; 12591 } 12592 12593 err = mark_irq_flag_read(env, reg); 12594 if (err) 12595 return err; 12596 12597 err = unmark_stack_slot_irq_flag(env, reg, kfunc_class); 12598 if (err) 12599 return err; 12600 } 12601 return 0; 12602 } 12603 12604 12605 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 12606 { 12607 struct btf_record *rec = reg_btf_record(reg); 12608 12609 if (!env->cur_state->active_locks) { 12610 verifier_bug(env, "%s w/o active lock", __func__); 12611 return -EFAULT; 12612 } 12613 12614 if (type_flag(reg->type) & NON_OWN_REF) { 12615 verifier_bug(env, "NON_OWN_REF already set"); 12616 return -EFAULT; 12617 } 12618 12619 reg->type |= NON_OWN_REF; 12620 if (rec->refcount_off >= 0) 12621 reg->type |= MEM_RCU; 12622 12623 return 0; 12624 } 12625 12626 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 12627 { 12628 struct bpf_verifier_state *state = env->cur_state; 12629 struct bpf_func_state *unused; 12630 struct bpf_reg_state *reg; 12631 int i; 12632 12633 if (!ref_obj_id) { 12634 verifier_bug(env, "ref_obj_id is zero for owning -> non-owning conversion"); 12635 return -EFAULT; 12636 } 12637 12638 for (i = 0; i < state->acquired_refs; i++) { 12639 if (state->refs[i].id != ref_obj_id) 12640 continue; 12641 12642 /* Clear ref_obj_id here so release_reference doesn't clobber 12643 * the whole reg 12644 */ 12645 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 12646 if (reg->ref_obj_id == ref_obj_id) { 12647 reg->ref_obj_id = 0; 12648 ref_set_non_owning(env, reg); 12649 } 12650 })); 12651 return 0; 12652 } 12653 12654 verifier_bug(env, "ref state missing for ref_obj_id"); 12655 return -EFAULT; 12656 } 12657 12658 /* Implementation details: 12659 * 12660 * Each register points to some region of memory, which we define as an 12661 * allocation. Each allocation may embed a bpf_spin_lock which protects any 12662 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 12663 * allocation. The lock and the data it protects are colocated in the same 12664 * memory region. 12665 * 12666 * Hence, everytime a register holds a pointer value pointing to such 12667 * allocation, the verifier preserves a unique reg->id for it. 12668 * 12669 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 12670 * bpf_spin_lock is called. 12671 * 12672 * To enable this, lock state in the verifier captures two values: 12673 * active_lock.ptr = Register's type specific pointer 12674 * active_lock.id = A unique ID for each register pointer value 12675 * 12676 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 12677 * supported register types. 12678 * 12679 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 12680 * allocated objects is the reg->btf pointer. 12681 * 12682 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 12683 * can establish the provenance of the map value statically for each distinct 12684 * lookup into such maps. They always contain a single map value hence unique 12685 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 12686 * 12687 * So, in case of global variables, they use array maps with max_entries = 1, 12688 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 12689 * into the same map value as max_entries is 1, as described above). 12690 * 12691 * In case of inner map lookups, the inner map pointer has same map_ptr as the 12692 * outer map pointer (in verifier context), but each lookup into an inner map 12693 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 12694 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 12695 * will get different reg->id assigned to each lookup, hence different 12696 * active_lock.id. 12697 * 12698 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 12699 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 12700 * returned from bpf_obj_new. Each allocation receives a new reg->id. 12701 */ 12702 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 12703 { 12704 struct bpf_reference_state *s; 12705 void *ptr; 12706 u32 id; 12707 12708 switch ((int)reg->type) { 12709 case PTR_TO_MAP_VALUE: 12710 ptr = reg->map_ptr; 12711 break; 12712 case PTR_TO_BTF_ID | MEM_ALLOC: 12713 ptr = reg->btf; 12714 break; 12715 default: 12716 verifier_bug(env, "unknown reg type for lock check"); 12717 return -EFAULT; 12718 } 12719 id = reg->id; 12720 12721 if (!env->cur_state->active_locks) 12722 return -EINVAL; 12723 s = find_lock_state(env->cur_state, REF_TYPE_LOCK_MASK, id, ptr); 12724 if (!s) { 12725 verbose(env, "held lock and object are not in the same allocation\n"); 12726 return -EINVAL; 12727 } 12728 return 0; 12729 } 12730 12731 static bool is_bpf_list_api_kfunc(u32 btf_id) 12732 { 12733 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 12734 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 12735 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 12736 btf_id == special_kfunc_list[KF_bpf_list_pop_back] || 12737 btf_id == special_kfunc_list[KF_bpf_list_front] || 12738 btf_id == special_kfunc_list[KF_bpf_list_back]; 12739 } 12740 12741 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 12742 { 12743 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 12744 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 12745 btf_id == special_kfunc_list[KF_bpf_rbtree_first] || 12746 btf_id == special_kfunc_list[KF_bpf_rbtree_root] || 12747 btf_id == special_kfunc_list[KF_bpf_rbtree_left] || 12748 btf_id == special_kfunc_list[KF_bpf_rbtree_right]; 12749 } 12750 12751 static bool is_bpf_iter_num_api_kfunc(u32 btf_id) 12752 { 12753 return btf_id == special_kfunc_list[KF_bpf_iter_num_new] || 12754 btf_id == special_kfunc_list[KF_bpf_iter_num_next] || 12755 btf_id == special_kfunc_list[KF_bpf_iter_num_destroy]; 12756 } 12757 12758 static bool is_bpf_graph_api_kfunc(u32 btf_id) 12759 { 12760 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 12761 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 12762 } 12763 12764 static bool is_bpf_res_spin_lock_kfunc(u32 btf_id) 12765 { 12766 return btf_id == special_kfunc_list[KF_bpf_res_spin_lock] || 12767 btf_id == special_kfunc_list[KF_bpf_res_spin_unlock] || 12768 btf_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] || 12769 btf_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]; 12770 } 12771 12772 static bool kfunc_spin_allowed(u32 btf_id) 12773 { 12774 return is_bpf_graph_api_kfunc(btf_id) || is_bpf_iter_num_api_kfunc(btf_id) || 12775 is_bpf_res_spin_lock_kfunc(btf_id); 12776 } 12777 12778 static bool is_sync_callback_calling_kfunc(u32 btf_id) 12779 { 12780 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 12781 } 12782 12783 static bool is_async_callback_calling_kfunc(u32 btf_id) 12784 { 12785 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl] || 12786 is_task_work_add_kfunc(btf_id); 12787 } 12788 12789 static bool is_bpf_throw_kfunc(struct bpf_insn *insn) 12790 { 12791 return bpf_pseudo_kfunc_call(insn) && insn->off == 0 && 12792 insn->imm == special_kfunc_list[KF_bpf_throw]; 12793 } 12794 12795 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id) 12796 { 12797 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl]; 12798 } 12799 12800 static bool is_callback_calling_kfunc(u32 btf_id) 12801 { 12802 return is_sync_callback_calling_kfunc(btf_id) || 12803 is_async_callback_calling_kfunc(btf_id); 12804 } 12805 12806 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 12807 { 12808 return is_bpf_rbtree_api_kfunc(btf_id); 12809 } 12810 12811 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 12812 enum btf_field_type head_field_type, 12813 u32 kfunc_btf_id) 12814 { 12815 bool ret; 12816 12817 switch (head_field_type) { 12818 case BPF_LIST_HEAD: 12819 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 12820 break; 12821 case BPF_RB_ROOT: 12822 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 12823 break; 12824 default: 12825 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 12826 btf_field_type_name(head_field_type)); 12827 return false; 12828 } 12829 12830 if (!ret) 12831 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 12832 btf_field_type_name(head_field_type)); 12833 return ret; 12834 } 12835 12836 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 12837 enum btf_field_type node_field_type, 12838 u32 kfunc_btf_id) 12839 { 12840 bool ret; 12841 12842 switch (node_field_type) { 12843 case BPF_LIST_NODE: 12844 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 12845 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 12846 break; 12847 case BPF_RB_NODE: 12848 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 12849 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 12850 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_left] || 12851 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_right]); 12852 break; 12853 default: 12854 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 12855 btf_field_type_name(node_field_type)); 12856 return false; 12857 } 12858 12859 if (!ret) 12860 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 12861 btf_field_type_name(node_field_type)); 12862 return ret; 12863 } 12864 12865 static int 12866 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 12867 struct bpf_reg_state *reg, u32 regno, 12868 struct bpf_kfunc_call_arg_meta *meta, 12869 enum btf_field_type head_field_type, 12870 struct btf_field **head_field) 12871 { 12872 const char *head_type_name; 12873 struct btf_field *field; 12874 struct btf_record *rec; 12875 u32 head_off; 12876 12877 if (meta->btf != btf_vmlinux) { 12878 verifier_bug(env, "unexpected btf mismatch in kfunc call"); 12879 return -EFAULT; 12880 } 12881 12882 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 12883 return -EFAULT; 12884 12885 head_type_name = btf_field_type_name(head_field_type); 12886 if (!tnum_is_const(reg->var_off)) { 12887 verbose(env, 12888 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 12889 regno, head_type_name); 12890 return -EINVAL; 12891 } 12892 12893 rec = reg_btf_record(reg); 12894 head_off = reg->off + reg->var_off.value; 12895 field = btf_record_find(rec, head_off, head_field_type); 12896 if (!field) { 12897 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 12898 return -EINVAL; 12899 } 12900 12901 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 12902 if (check_reg_allocation_locked(env, reg)) { 12903 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 12904 rec->spin_lock_off, head_type_name); 12905 return -EINVAL; 12906 } 12907 12908 if (*head_field) { 12909 verifier_bug(env, "repeating %s arg", head_type_name); 12910 return -EFAULT; 12911 } 12912 *head_field = field; 12913 return 0; 12914 } 12915 12916 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 12917 struct bpf_reg_state *reg, u32 regno, 12918 struct bpf_kfunc_call_arg_meta *meta) 12919 { 12920 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 12921 &meta->arg_list_head.field); 12922 } 12923 12924 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 12925 struct bpf_reg_state *reg, u32 regno, 12926 struct bpf_kfunc_call_arg_meta *meta) 12927 { 12928 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 12929 &meta->arg_rbtree_root.field); 12930 } 12931 12932 static int 12933 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 12934 struct bpf_reg_state *reg, u32 regno, 12935 struct bpf_kfunc_call_arg_meta *meta, 12936 enum btf_field_type head_field_type, 12937 enum btf_field_type node_field_type, 12938 struct btf_field **node_field) 12939 { 12940 const char *node_type_name; 12941 const struct btf_type *et, *t; 12942 struct btf_field *field; 12943 u32 node_off; 12944 12945 if (meta->btf != btf_vmlinux) { 12946 verifier_bug(env, "unexpected btf mismatch in kfunc call"); 12947 return -EFAULT; 12948 } 12949 12950 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 12951 return -EFAULT; 12952 12953 node_type_name = btf_field_type_name(node_field_type); 12954 if (!tnum_is_const(reg->var_off)) { 12955 verbose(env, 12956 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 12957 regno, node_type_name); 12958 return -EINVAL; 12959 } 12960 12961 node_off = reg->off + reg->var_off.value; 12962 field = reg_find_field_offset(reg, node_off, node_field_type); 12963 if (!field) { 12964 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 12965 return -EINVAL; 12966 } 12967 12968 field = *node_field; 12969 12970 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 12971 t = btf_type_by_id(reg->btf, reg->btf_id); 12972 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 12973 field->graph_root.value_btf_id, true)) { 12974 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 12975 "in struct %s, but arg is at offset=%d in struct %s\n", 12976 btf_field_type_name(head_field_type), 12977 btf_field_type_name(node_field_type), 12978 field->graph_root.node_offset, 12979 btf_name_by_offset(field->graph_root.btf, et->name_off), 12980 node_off, btf_name_by_offset(reg->btf, t->name_off)); 12981 return -EINVAL; 12982 } 12983 meta->arg_btf = reg->btf; 12984 meta->arg_btf_id = reg->btf_id; 12985 12986 if (node_off != field->graph_root.node_offset) { 12987 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 12988 node_off, btf_field_type_name(node_field_type), 12989 field->graph_root.node_offset, 12990 btf_name_by_offset(field->graph_root.btf, et->name_off)); 12991 return -EINVAL; 12992 } 12993 12994 return 0; 12995 } 12996 12997 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 12998 struct bpf_reg_state *reg, u32 regno, 12999 struct bpf_kfunc_call_arg_meta *meta) 13000 { 13001 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 13002 BPF_LIST_HEAD, BPF_LIST_NODE, 13003 &meta->arg_list_head.field); 13004 } 13005 13006 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 13007 struct bpf_reg_state *reg, u32 regno, 13008 struct bpf_kfunc_call_arg_meta *meta) 13009 { 13010 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 13011 BPF_RB_ROOT, BPF_RB_NODE, 13012 &meta->arg_rbtree_root.field); 13013 } 13014 13015 /* 13016 * css_task iter allowlist is needed to avoid dead locking on css_set_lock. 13017 * LSM hooks and iters (both sleepable and non-sleepable) are safe. 13018 * Any sleepable progs are also safe since bpf_check_attach_target() enforce 13019 * them can only be attached to some specific hook points. 13020 */ 13021 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env) 13022 { 13023 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 13024 13025 switch (prog_type) { 13026 case BPF_PROG_TYPE_LSM: 13027 return true; 13028 case BPF_PROG_TYPE_TRACING: 13029 if (env->prog->expected_attach_type == BPF_TRACE_ITER) 13030 return true; 13031 fallthrough; 13032 default: 13033 return in_sleepable(env); 13034 } 13035 } 13036 13037 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 13038 int insn_idx) 13039 { 13040 const char *func_name = meta->func_name, *ref_tname; 13041 const struct btf *btf = meta->btf; 13042 const struct btf_param *args; 13043 struct btf_record *rec; 13044 u32 i, nargs; 13045 int ret; 13046 13047 args = (const struct btf_param *)(meta->func_proto + 1); 13048 nargs = btf_type_vlen(meta->func_proto); 13049 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 13050 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 13051 MAX_BPF_FUNC_REG_ARGS); 13052 return -EINVAL; 13053 } 13054 13055 /* Check that BTF function arguments match actual types that the 13056 * verifier sees. 13057 */ 13058 for (i = 0; i < nargs; i++) { 13059 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 13060 const struct btf_type *t, *ref_t, *resolve_ret; 13061 enum bpf_arg_type arg_type = ARG_DONTCARE; 13062 u32 regno = i + 1, ref_id, type_size; 13063 bool is_ret_buf_sz = false; 13064 int kf_arg_type; 13065 13066 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 13067 13068 if (is_kfunc_arg_ignore(btf, &args[i])) 13069 continue; 13070 13071 if (is_kfunc_arg_prog(btf, &args[i])) { 13072 /* Used to reject repeated use of __prog. */ 13073 if (meta->arg_prog) { 13074 verifier_bug(env, "Only 1 prog->aux argument supported per-kfunc"); 13075 return -EFAULT; 13076 } 13077 meta->arg_prog = true; 13078 cur_aux(env)->arg_prog = regno; 13079 continue; 13080 } 13081 13082 if (btf_type_is_scalar(t)) { 13083 if (reg->type != SCALAR_VALUE) { 13084 verbose(env, "R%d is not a scalar\n", regno); 13085 return -EINVAL; 13086 } 13087 13088 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 13089 if (meta->arg_constant.found) { 13090 verifier_bug(env, "only one constant argument permitted"); 13091 return -EFAULT; 13092 } 13093 if (!tnum_is_const(reg->var_off)) { 13094 verbose(env, "R%d must be a known constant\n", regno); 13095 return -EINVAL; 13096 } 13097 ret = mark_chain_precision(env, regno); 13098 if (ret < 0) 13099 return ret; 13100 meta->arg_constant.found = true; 13101 meta->arg_constant.value = reg->var_off.value; 13102 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 13103 meta->r0_rdonly = true; 13104 is_ret_buf_sz = true; 13105 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 13106 is_ret_buf_sz = true; 13107 } 13108 13109 if (is_ret_buf_sz) { 13110 if (meta->r0_size) { 13111 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 13112 return -EINVAL; 13113 } 13114 13115 if (!tnum_is_const(reg->var_off)) { 13116 verbose(env, "R%d is not a const\n", regno); 13117 return -EINVAL; 13118 } 13119 13120 meta->r0_size = reg->var_off.value; 13121 ret = mark_chain_precision(env, regno); 13122 if (ret) 13123 return ret; 13124 } 13125 continue; 13126 } 13127 13128 if (!btf_type_is_ptr(t)) { 13129 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 13130 return -EINVAL; 13131 } 13132 13133 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 13134 (register_is_null(reg) || type_may_be_null(reg->type)) && 13135 !is_kfunc_arg_nullable(meta->btf, &args[i])) { 13136 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 13137 return -EACCES; 13138 } 13139 13140 if (reg->ref_obj_id) { 13141 if (is_kfunc_release(meta) && meta->ref_obj_id) { 13142 verifier_bug(env, "more than one arg with ref_obj_id R%d %u %u", 13143 regno, reg->ref_obj_id, 13144 meta->ref_obj_id); 13145 return -EFAULT; 13146 } 13147 meta->ref_obj_id = reg->ref_obj_id; 13148 if (is_kfunc_release(meta)) 13149 meta->release_regno = regno; 13150 } 13151 13152 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 13153 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 13154 13155 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 13156 if (kf_arg_type < 0) 13157 return kf_arg_type; 13158 13159 switch (kf_arg_type) { 13160 case KF_ARG_PTR_TO_NULL: 13161 continue; 13162 case KF_ARG_PTR_TO_MAP: 13163 if (!reg->map_ptr) { 13164 verbose(env, "pointer in R%d isn't map pointer\n", regno); 13165 return -EINVAL; 13166 } 13167 if (meta->map.ptr && (reg->map_ptr->record->wq_off >= 0 || 13168 reg->map_ptr->record->task_work_off >= 0)) { 13169 /* Use map_uid (which is unique id of inner map) to reject: 13170 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 13171 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 13172 * if (inner_map1 && inner_map2) { 13173 * wq = bpf_map_lookup_elem(inner_map1); 13174 * if (wq) 13175 * // mismatch would have been allowed 13176 * bpf_wq_init(wq, inner_map2); 13177 * } 13178 * 13179 * Comparing map_ptr is enough to distinguish normal and outer maps. 13180 */ 13181 if (meta->map.ptr != reg->map_ptr || 13182 meta->map.uid != reg->map_uid) { 13183 if (reg->map_ptr->record->task_work_off >= 0) { 13184 verbose(env, 13185 "bpf_task_work pointer in R2 map_uid=%d doesn't match map pointer in R3 map_uid=%d\n", 13186 meta->map.uid, reg->map_uid); 13187 return -EINVAL; 13188 } 13189 verbose(env, 13190 "workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 13191 meta->map.uid, reg->map_uid); 13192 return -EINVAL; 13193 } 13194 } 13195 meta->map.ptr = reg->map_ptr; 13196 meta->map.uid = reg->map_uid; 13197 fallthrough; 13198 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 13199 case KF_ARG_PTR_TO_BTF_ID: 13200 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 13201 break; 13202 13203 if (!is_trusted_reg(reg)) { 13204 if (!is_kfunc_rcu(meta)) { 13205 verbose(env, "R%d must be referenced or trusted\n", regno); 13206 return -EINVAL; 13207 } 13208 if (!is_rcu_reg(reg)) { 13209 verbose(env, "R%d must be a rcu pointer\n", regno); 13210 return -EINVAL; 13211 } 13212 } 13213 fallthrough; 13214 case KF_ARG_PTR_TO_CTX: 13215 case KF_ARG_PTR_TO_DYNPTR: 13216 case KF_ARG_PTR_TO_ITER: 13217 case KF_ARG_PTR_TO_LIST_HEAD: 13218 case KF_ARG_PTR_TO_LIST_NODE: 13219 case KF_ARG_PTR_TO_RB_ROOT: 13220 case KF_ARG_PTR_TO_RB_NODE: 13221 case KF_ARG_PTR_TO_MEM: 13222 case KF_ARG_PTR_TO_MEM_SIZE: 13223 case KF_ARG_PTR_TO_CALLBACK: 13224 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 13225 case KF_ARG_PTR_TO_CONST_STR: 13226 case KF_ARG_PTR_TO_WORKQUEUE: 13227 case KF_ARG_PTR_TO_TASK_WORK: 13228 case KF_ARG_PTR_TO_IRQ_FLAG: 13229 case KF_ARG_PTR_TO_RES_SPIN_LOCK: 13230 break; 13231 default: 13232 verifier_bug(env, "unknown kfunc arg type %d", kf_arg_type); 13233 return -EFAULT; 13234 } 13235 13236 if (is_kfunc_release(meta) && reg->ref_obj_id) 13237 arg_type |= OBJ_RELEASE; 13238 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 13239 if (ret < 0) 13240 return ret; 13241 13242 switch (kf_arg_type) { 13243 case KF_ARG_PTR_TO_CTX: 13244 if (reg->type != PTR_TO_CTX) { 13245 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", 13246 i, reg_type_str(env, reg->type)); 13247 return -EINVAL; 13248 } 13249 13250 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 13251 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 13252 if (ret < 0) 13253 return -EINVAL; 13254 meta->ret_btf_id = ret; 13255 } 13256 break; 13257 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 13258 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) { 13259 if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) { 13260 verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i); 13261 return -EINVAL; 13262 } 13263 } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) { 13264 if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 13265 verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i); 13266 return -EINVAL; 13267 } 13268 } else { 13269 verbose(env, "arg#%d expected pointer to allocated object\n", i); 13270 return -EINVAL; 13271 } 13272 if (!reg->ref_obj_id) { 13273 verbose(env, "allocated object must be referenced\n"); 13274 return -EINVAL; 13275 } 13276 if (meta->btf == btf_vmlinux) { 13277 meta->arg_btf = reg->btf; 13278 meta->arg_btf_id = reg->btf_id; 13279 } 13280 break; 13281 case KF_ARG_PTR_TO_DYNPTR: 13282 { 13283 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 13284 int clone_ref_obj_id = 0; 13285 13286 if (reg->type == CONST_PTR_TO_DYNPTR) 13287 dynptr_arg_type |= MEM_RDONLY; 13288 13289 if (is_kfunc_arg_uninit(btf, &args[i])) 13290 dynptr_arg_type |= MEM_UNINIT; 13291 13292 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 13293 dynptr_arg_type |= DYNPTR_TYPE_SKB; 13294 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 13295 dynptr_arg_type |= DYNPTR_TYPE_XDP; 13296 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb_meta]) { 13297 dynptr_arg_type |= DYNPTR_TYPE_SKB_META; 13298 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 13299 (dynptr_arg_type & MEM_UNINIT)) { 13300 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 13301 13302 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 13303 verifier_bug(env, "no dynptr type for parent of clone"); 13304 return -EFAULT; 13305 } 13306 13307 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 13308 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 13309 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 13310 verifier_bug(env, "missing ref obj id for parent of clone"); 13311 return -EFAULT; 13312 } 13313 } 13314 13315 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 13316 if (ret < 0) 13317 return ret; 13318 13319 if (!(dynptr_arg_type & MEM_UNINIT)) { 13320 int id = dynptr_id(env, reg); 13321 13322 if (id < 0) { 13323 verifier_bug(env, "failed to obtain dynptr id"); 13324 return id; 13325 } 13326 meta->initialized_dynptr.id = id; 13327 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 13328 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 13329 } 13330 13331 break; 13332 } 13333 case KF_ARG_PTR_TO_ITER: 13334 if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) { 13335 if (!check_css_task_iter_allowlist(env)) { 13336 verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n"); 13337 return -EINVAL; 13338 } 13339 } 13340 ret = process_iter_arg(env, regno, insn_idx, meta); 13341 if (ret < 0) 13342 return ret; 13343 break; 13344 case KF_ARG_PTR_TO_LIST_HEAD: 13345 if (reg->type != PTR_TO_MAP_VALUE && 13346 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13347 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 13348 return -EINVAL; 13349 } 13350 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 13351 verbose(env, "allocated object must be referenced\n"); 13352 return -EINVAL; 13353 } 13354 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 13355 if (ret < 0) 13356 return ret; 13357 break; 13358 case KF_ARG_PTR_TO_RB_ROOT: 13359 if (reg->type != PTR_TO_MAP_VALUE && 13360 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13361 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 13362 return -EINVAL; 13363 } 13364 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 13365 verbose(env, "allocated object must be referenced\n"); 13366 return -EINVAL; 13367 } 13368 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 13369 if (ret < 0) 13370 return ret; 13371 break; 13372 case KF_ARG_PTR_TO_LIST_NODE: 13373 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13374 verbose(env, "arg#%d expected pointer to allocated object\n", i); 13375 return -EINVAL; 13376 } 13377 if (!reg->ref_obj_id) { 13378 verbose(env, "allocated object must be referenced\n"); 13379 return -EINVAL; 13380 } 13381 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 13382 if (ret < 0) 13383 return ret; 13384 break; 13385 case KF_ARG_PTR_TO_RB_NODE: 13386 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 13387 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13388 verbose(env, "arg#%d expected pointer to allocated object\n", i); 13389 return -EINVAL; 13390 } 13391 if (!reg->ref_obj_id) { 13392 verbose(env, "allocated object must be referenced\n"); 13393 return -EINVAL; 13394 } 13395 } else { 13396 if (!type_is_non_owning_ref(reg->type) && !reg->ref_obj_id) { 13397 verbose(env, "%s can only take non-owning or refcounted bpf_rb_node pointer\n", func_name); 13398 return -EINVAL; 13399 } 13400 if (in_rbtree_lock_required_cb(env)) { 13401 verbose(env, "%s not allowed in rbtree cb\n", func_name); 13402 return -EINVAL; 13403 } 13404 } 13405 13406 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 13407 if (ret < 0) 13408 return ret; 13409 break; 13410 case KF_ARG_PTR_TO_MAP: 13411 /* If argument has '__map' suffix expect 'struct bpf_map *' */ 13412 ref_id = *reg2btf_ids[CONST_PTR_TO_MAP]; 13413 ref_t = btf_type_by_id(btf_vmlinux, ref_id); 13414 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 13415 fallthrough; 13416 case KF_ARG_PTR_TO_BTF_ID: 13417 /* Only base_type is checked, further checks are done here */ 13418 if ((base_type(reg->type) != PTR_TO_BTF_ID || 13419 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 13420 !reg2btf_ids[base_type(reg->type)]) { 13421 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 13422 verbose(env, "expected %s or socket\n", 13423 reg_type_str(env, base_type(reg->type) | 13424 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 13425 return -EINVAL; 13426 } 13427 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 13428 if (ret < 0) 13429 return ret; 13430 break; 13431 case KF_ARG_PTR_TO_MEM: 13432 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 13433 if (IS_ERR(resolve_ret)) { 13434 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 13435 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 13436 return -EINVAL; 13437 } 13438 ret = check_mem_reg(env, reg, regno, type_size); 13439 if (ret < 0) 13440 return ret; 13441 break; 13442 case KF_ARG_PTR_TO_MEM_SIZE: 13443 { 13444 struct bpf_reg_state *buff_reg = ®s[regno]; 13445 const struct btf_param *buff_arg = &args[i]; 13446 struct bpf_reg_state *size_reg = ®s[regno + 1]; 13447 const struct btf_param *size_arg = &args[i + 1]; 13448 13449 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 13450 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 13451 if (ret < 0) { 13452 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 13453 return ret; 13454 } 13455 } 13456 13457 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 13458 if (meta->arg_constant.found) { 13459 verifier_bug(env, "only one constant argument permitted"); 13460 return -EFAULT; 13461 } 13462 if (!tnum_is_const(size_reg->var_off)) { 13463 verbose(env, "R%d must be a known constant\n", regno + 1); 13464 return -EINVAL; 13465 } 13466 meta->arg_constant.found = true; 13467 meta->arg_constant.value = size_reg->var_off.value; 13468 } 13469 13470 /* Skip next '__sz' or '__szk' argument */ 13471 i++; 13472 break; 13473 } 13474 case KF_ARG_PTR_TO_CALLBACK: 13475 if (reg->type != PTR_TO_FUNC) { 13476 verbose(env, "arg%d expected pointer to func\n", i); 13477 return -EINVAL; 13478 } 13479 meta->subprogno = reg->subprogno; 13480 break; 13481 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 13482 if (!type_is_ptr_alloc_obj(reg->type)) { 13483 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 13484 return -EINVAL; 13485 } 13486 if (!type_is_non_owning_ref(reg->type)) 13487 meta->arg_owning_ref = true; 13488 13489 rec = reg_btf_record(reg); 13490 if (!rec) { 13491 verifier_bug(env, "Couldn't find btf_record"); 13492 return -EFAULT; 13493 } 13494 13495 if (rec->refcount_off < 0) { 13496 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 13497 return -EINVAL; 13498 } 13499 13500 meta->arg_btf = reg->btf; 13501 meta->arg_btf_id = reg->btf_id; 13502 break; 13503 case KF_ARG_PTR_TO_CONST_STR: 13504 if (reg->type != PTR_TO_MAP_VALUE) { 13505 verbose(env, "arg#%d doesn't point to a const string\n", i); 13506 return -EINVAL; 13507 } 13508 ret = check_reg_const_str(env, reg, regno); 13509 if (ret) 13510 return ret; 13511 break; 13512 case KF_ARG_PTR_TO_WORKQUEUE: 13513 if (reg->type != PTR_TO_MAP_VALUE) { 13514 verbose(env, "arg#%d doesn't point to a map value\n", i); 13515 return -EINVAL; 13516 } 13517 ret = process_wq_func(env, regno, meta); 13518 if (ret < 0) 13519 return ret; 13520 break; 13521 case KF_ARG_PTR_TO_TASK_WORK: 13522 if (reg->type != PTR_TO_MAP_VALUE) { 13523 verbose(env, "arg#%d doesn't point to a map value\n", i); 13524 return -EINVAL; 13525 } 13526 ret = process_task_work_func(env, regno, meta); 13527 if (ret < 0) 13528 return ret; 13529 break; 13530 case KF_ARG_PTR_TO_IRQ_FLAG: 13531 if (reg->type != PTR_TO_STACK) { 13532 verbose(env, "arg#%d doesn't point to an irq flag on stack\n", i); 13533 return -EINVAL; 13534 } 13535 ret = process_irq_flag(env, regno, meta); 13536 if (ret < 0) 13537 return ret; 13538 break; 13539 case KF_ARG_PTR_TO_RES_SPIN_LOCK: 13540 { 13541 int flags = PROCESS_RES_LOCK; 13542 13543 if (reg->type != PTR_TO_MAP_VALUE && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 13544 verbose(env, "arg#%d doesn't point to map value or allocated object\n", i); 13545 return -EINVAL; 13546 } 13547 13548 if (!is_bpf_res_spin_lock_kfunc(meta->func_id)) 13549 return -EFAULT; 13550 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock] || 13551 meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) 13552 flags |= PROCESS_SPIN_LOCK; 13553 if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] || 13554 meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) 13555 flags |= PROCESS_LOCK_IRQ; 13556 ret = process_spin_lock(env, regno, flags); 13557 if (ret < 0) 13558 return ret; 13559 break; 13560 } 13561 } 13562 } 13563 13564 if (is_kfunc_release(meta) && !meta->release_regno) { 13565 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 13566 func_name); 13567 return -EINVAL; 13568 } 13569 13570 return 0; 13571 } 13572 13573 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 13574 struct bpf_insn *insn, 13575 struct bpf_kfunc_call_arg_meta *meta, 13576 const char **kfunc_name) 13577 { 13578 const struct btf_type *func, *func_proto; 13579 u32 func_id, *kfunc_flags; 13580 const char *func_name; 13581 struct btf *desc_btf; 13582 13583 if (kfunc_name) 13584 *kfunc_name = NULL; 13585 13586 if (!insn->imm) 13587 return -EINVAL; 13588 13589 desc_btf = find_kfunc_desc_btf(env, insn->off); 13590 if (IS_ERR(desc_btf)) 13591 return PTR_ERR(desc_btf); 13592 13593 func_id = insn->imm; 13594 func = btf_type_by_id(desc_btf, func_id); 13595 func_name = btf_name_by_offset(desc_btf, func->name_off); 13596 if (kfunc_name) 13597 *kfunc_name = func_name; 13598 func_proto = btf_type_by_id(desc_btf, func->type); 13599 13600 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 13601 if (!kfunc_flags) { 13602 return -EACCES; 13603 } 13604 13605 memset(meta, 0, sizeof(*meta)); 13606 meta->btf = desc_btf; 13607 meta->func_id = func_id; 13608 meta->kfunc_flags = *kfunc_flags; 13609 meta->func_proto = func_proto; 13610 meta->func_name = func_name; 13611 13612 return 0; 13613 } 13614 13615 /* check special kfuncs and return: 13616 * 1 - not fall-through to 'else' branch, continue verification 13617 * 0 - fall-through to 'else' branch 13618 * < 0 - not fall-through to 'else' branch, return error 13619 */ 13620 static int check_special_kfunc(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 13621 struct bpf_reg_state *regs, struct bpf_insn_aux_data *insn_aux, 13622 const struct btf_type *ptr_type, struct btf *desc_btf) 13623 { 13624 const struct btf_type *ret_t; 13625 int err = 0; 13626 13627 if (meta->btf != btf_vmlinux) 13628 return 0; 13629 13630 if (meta->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 13631 meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 13632 struct btf_struct_meta *struct_meta; 13633 struct btf *ret_btf; 13634 u32 ret_btf_id; 13635 13636 if (meta->func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set) 13637 return -ENOMEM; 13638 13639 if (((u64)(u32)meta->arg_constant.value) != meta->arg_constant.value) { 13640 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 13641 return -EINVAL; 13642 } 13643 13644 ret_btf = env->prog->aux->btf; 13645 ret_btf_id = meta->arg_constant.value; 13646 13647 /* This may be NULL due to user not supplying a BTF */ 13648 if (!ret_btf) { 13649 verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n"); 13650 return -EINVAL; 13651 } 13652 13653 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 13654 if (!ret_t || !__btf_type_is_struct(ret_t)) { 13655 verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n"); 13656 return -EINVAL; 13657 } 13658 13659 if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 13660 if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) { 13661 verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n", 13662 ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE); 13663 return -EINVAL; 13664 } 13665 13666 if (!bpf_global_percpu_ma_set) { 13667 mutex_lock(&bpf_percpu_ma_lock); 13668 if (!bpf_global_percpu_ma_set) { 13669 /* Charge memory allocated with bpf_global_percpu_ma to 13670 * root memcg. The obj_cgroup for root memcg is NULL. 13671 */ 13672 err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL); 13673 if (!err) 13674 bpf_global_percpu_ma_set = true; 13675 } 13676 mutex_unlock(&bpf_percpu_ma_lock); 13677 if (err) 13678 return err; 13679 } 13680 13681 mutex_lock(&bpf_percpu_ma_lock); 13682 err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size); 13683 mutex_unlock(&bpf_percpu_ma_lock); 13684 if (err) 13685 return err; 13686 } 13687 13688 struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id); 13689 if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 13690 if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) { 13691 verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n"); 13692 return -EINVAL; 13693 } 13694 13695 if (struct_meta) { 13696 verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n"); 13697 return -EINVAL; 13698 } 13699 } 13700 13701 mark_reg_known_zero(env, regs, BPF_REG_0); 13702 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 13703 regs[BPF_REG_0].btf = ret_btf; 13704 regs[BPF_REG_0].btf_id = ret_btf_id; 13705 if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) 13706 regs[BPF_REG_0].type |= MEM_PERCPU; 13707 13708 insn_aux->obj_new_size = ret_t->size; 13709 insn_aux->kptr_struct_meta = struct_meta; 13710 } else if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 13711 mark_reg_known_zero(env, regs, BPF_REG_0); 13712 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 13713 regs[BPF_REG_0].btf = meta->arg_btf; 13714 regs[BPF_REG_0].btf_id = meta->arg_btf_id; 13715 13716 insn_aux->kptr_struct_meta = 13717 btf_find_struct_meta(meta->arg_btf, 13718 meta->arg_btf_id); 13719 } else if (is_list_node_type(ptr_type)) { 13720 struct btf_field *field = meta->arg_list_head.field; 13721 13722 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 13723 } else if (is_rbtree_node_type(ptr_type)) { 13724 struct btf_field *field = meta->arg_rbtree_root.field; 13725 13726 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 13727 } else if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 13728 mark_reg_known_zero(env, regs, BPF_REG_0); 13729 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 13730 regs[BPF_REG_0].btf = desc_btf; 13731 regs[BPF_REG_0].btf_id = meta->ret_btf_id; 13732 } else if (meta->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 13733 ret_t = btf_type_by_id(desc_btf, meta->arg_constant.value); 13734 if (!ret_t) { 13735 verbose(env, "Unknown type ID %lld passed to kfunc bpf_rdonly_cast\n", 13736 meta->arg_constant.value); 13737 return -EINVAL; 13738 } else if (btf_type_is_struct(ret_t)) { 13739 mark_reg_known_zero(env, regs, BPF_REG_0); 13740 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 13741 regs[BPF_REG_0].btf = desc_btf; 13742 regs[BPF_REG_0].btf_id = meta->arg_constant.value; 13743 } else if (btf_type_is_void(ret_t)) { 13744 mark_reg_known_zero(env, regs, BPF_REG_0); 13745 regs[BPF_REG_0].type = PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED; 13746 regs[BPF_REG_0].mem_size = 0; 13747 } else { 13748 verbose(env, 13749 "kfunc bpf_rdonly_cast type ID argument must be of a struct or void\n"); 13750 return -EINVAL; 13751 } 13752 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 13753 meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 13754 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta->initialized_dynptr.type); 13755 13756 mark_reg_known_zero(env, regs, BPF_REG_0); 13757 13758 if (!meta->arg_constant.found) { 13759 verifier_bug(env, "bpf_dynptr_slice(_rdwr) no constant size"); 13760 return -EFAULT; 13761 } 13762 13763 regs[BPF_REG_0].mem_size = meta->arg_constant.value; 13764 13765 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 13766 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 13767 13768 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 13769 regs[BPF_REG_0].type |= MEM_RDONLY; 13770 } else { 13771 /* this will set env->seen_direct_write to true */ 13772 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 13773 verbose(env, "the prog does not allow writes to packet data\n"); 13774 return -EINVAL; 13775 } 13776 } 13777 13778 if (!meta->initialized_dynptr.id) { 13779 verifier_bug(env, "no dynptr id"); 13780 return -EFAULT; 13781 } 13782 regs[BPF_REG_0].dynptr_id = meta->initialized_dynptr.id; 13783 13784 /* we don't need to set BPF_REG_0's ref obj id 13785 * because packet slices are not refcounted (see 13786 * dynptr_type_refcounted) 13787 */ 13788 } else { 13789 return 0; 13790 } 13791 13792 return 1; 13793 } 13794 13795 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name); 13796 13797 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 13798 int *insn_idx_p) 13799 { 13800 bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable; 13801 u32 i, nargs, ptr_type_id, release_ref_obj_id; 13802 struct bpf_reg_state *regs = cur_regs(env); 13803 const char *func_name, *ptr_type_name; 13804 const struct btf_type *t, *ptr_type; 13805 struct bpf_kfunc_call_arg_meta meta; 13806 struct bpf_insn_aux_data *insn_aux; 13807 int err, insn_idx = *insn_idx_p; 13808 const struct btf_param *args; 13809 struct btf *desc_btf; 13810 13811 /* skip for now, but return error when we find this in fixup_kfunc_call */ 13812 if (!insn->imm) 13813 return 0; 13814 13815 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 13816 if (err == -EACCES && func_name) 13817 verbose(env, "calling kernel function %s is not allowed\n", func_name); 13818 if (err) 13819 return err; 13820 desc_btf = meta.btf; 13821 insn_aux = &env->insn_aux_data[insn_idx]; 13822 13823 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 13824 13825 if (!insn->off && 13826 (insn->imm == special_kfunc_list[KF_bpf_res_spin_lock] || 13827 insn->imm == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])) { 13828 struct bpf_verifier_state *branch; 13829 struct bpf_reg_state *regs; 13830 13831 branch = push_stack(env, env->insn_idx + 1, env->insn_idx, false); 13832 if (!branch) { 13833 verbose(env, "failed to push state for failed lock acquisition\n"); 13834 return -ENOMEM; 13835 } 13836 13837 regs = branch->frame[branch->curframe]->regs; 13838 13839 /* Clear r0-r5 registers in forked state */ 13840 for (i = 0; i < CALLER_SAVED_REGS; i++) 13841 mark_reg_not_init(env, regs, caller_saved[i]); 13842 13843 mark_reg_unknown(env, regs, BPF_REG_0); 13844 err = __mark_reg_s32_range(env, regs, BPF_REG_0, -MAX_ERRNO, -1); 13845 if (err) { 13846 verbose(env, "failed to mark s32 range for retval in forked state for lock\n"); 13847 return err; 13848 } 13849 __mark_btf_func_reg_size(env, regs, BPF_REG_0, sizeof(u32)); 13850 } else if (!insn->off && insn->imm == special_kfunc_list[KF___bpf_trap]) { 13851 verbose(env, "unexpected __bpf_trap() due to uninitialized variable?\n"); 13852 return -EFAULT; 13853 } 13854 13855 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 13856 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 13857 return -EACCES; 13858 } 13859 13860 sleepable = is_kfunc_sleepable(&meta); 13861 if (sleepable && !in_sleepable(env)) { 13862 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 13863 return -EACCES; 13864 } 13865 13866 /* Check the arguments */ 13867 err = check_kfunc_args(env, &meta, insn_idx); 13868 if (err < 0) 13869 return err; 13870 13871 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 13872 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 13873 set_rbtree_add_callback_state); 13874 if (err) { 13875 verbose(env, "kfunc %s#%d failed callback verification\n", 13876 func_name, meta.func_id); 13877 return err; 13878 } 13879 } 13880 13881 if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) { 13882 meta.r0_size = sizeof(u64); 13883 meta.r0_rdonly = false; 13884 } 13885 13886 if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) { 13887 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 13888 set_timer_callback_state); 13889 if (err) { 13890 verbose(env, "kfunc %s#%d failed callback verification\n", 13891 func_name, meta.func_id); 13892 return err; 13893 } 13894 } 13895 13896 if (is_task_work_add_kfunc(meta.func_id)) { 13897 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 13898 set_task_work_schedule_callback_state); 13899 if (err) { 13900 verbose(env, "kfunc %s#%d failed callback verification\n", 13901 func_name, meta.func_id); 13902 return err; 13903 } 13904 } 13905 13906 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 13907 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 13908 13909 preempt_disable = is_kfunc_bpf_preempt_disable(&meta); 13910 preempt_enable = is_kfunc_bpf_preempt_enable(&meta); 13911 13912 if (env->cur_state->active_rcu_lock) { 13913 struct bpf_func_state *state; 13914 struct bpf_reg_state *reg; 13915 u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER); 13916 13917 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 13918 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 13919 return -EACCES; 13920 } 13921 13922 if (rcu_lock) { 13923 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 13924 return -EINVAL; 13925 } else if (rcu_unlock) { 13926 bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({ 13927 if (reg->type & MEM_RCU) { 13928 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 13929 reg->type |= PTR_UNTRUSTED; 13930 } 13931 })); 13932 env->cur_state->active_rcu_lock = false; 13933 } else if (sleepable) { 13934 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 13935 return -EACCES; 13936 } 13937 } else if (rcu_lock) { 13938 env->cur_state->active_rcu_lock = true; 13939 } else if (rcu_unlock) { 13940 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 13941 return -EINVAL; 13942 } 13943 13944 if (env->cur_state->active_preempt_locks) { 13945 if (preempt_disable) { 13946 env->cur_state->active_preempt_locks++; 13947 } else if (preempt_enable) { 13948 env->cur_state->active_preempt_locks--; 13949 } else if (sleepable) { 13950 verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name); 13951 return -EACCES; 13952 } 13953 } else if (preempt_disable) { 13954 env->cur_state->active_preempt_locks++; 13955 } else if (preempt_enable) { 13956 verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name); 13957 return -EINVAL; 13958 } 13959 13960 if (env->cur_state->active_irq_id && sleepable) { 13961 verbose(env, "kernel func %s is sleepable within IRQ-disabled region\n", func_name); 13962 return -EACCES; 13963 } 13964 13965 if (is_kfunc_rcu_protected(&meta) && !in_rcu_cs(env)) { 13966 verbose(env, "kernel func %s requires RCU critical section protection\n", func_name); 13967 return -EACCES; 13968 } 13969 13970 /* In case of release function, we get register number of refcounted 13971 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 13972 */ 13973 if (meta.release_regno) { 13974 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 13975 if (err) { 13976 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 13977 func_name, meta.func_id); 13978 return err; 13979 } 13980 } 13981 13982 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 13983 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 13984 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 13985 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 13986 insn_aux->insert_off = regs[BPF_REG_2].off; 13987 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 13988 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 13989 if (err) { 13990 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 13991 func_name, meta.func_id); 13992 return err; 13993 } 13994 13995 err = release_reference(env, release_ref_obj_id); 13996 if (err) { 13997 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 13998 func_name, meta.func_id); 13999 return err; 14000 } 14001 } 14002 14003 if (meta.func_id == special_kfunc_list[KF_bpf_throw]) { 14004 if (!bpf_jit_supports_exceptions()) { 14005 verbose(env, "JIT does not support calling kfunc %s#%d\n", 14006 func_name, meta.func_id); 14007 return -ENOTSUPP; 14008 } 14009 env->seen_exception = true; 14010 14011 /* In the case of the default callback, the cookie value passed 14012 * to bpf_throw becomes the return value of the program. 14013 */ 14014 if (!env->exception_callback_subprog) { 14015 err = check_return_code(env, BPF_REG_1, "R1"); 14016 if (err < 0) 14017 return err; 14018 } 14019 } 14020 14021 for (i = 0; i < CALLER_SAVED_REGS; i++) 14022 mark_reg_not_init(env, regs, caller_saved[i]); 14023 14024 /* Check return type */ 14025 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 14026 14027 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 14028 /* Only exception is bpf_obj_new_impl */ 14029 if (meta.btf != btf_vmlinux || 14030 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 14031 meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] && 14032 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 14033 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 14034 return -EINVAL; 14035 } 14036 } 14037 14038 if (btf_type_is_scalar(t)) { 14039 mark_reg_unknown(env, regs, BPF_REG_0); 14040 if (meta.btf == btf_vmlinux && (meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock] || 14041 meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])) 14042 __mark_reg_const_zero(env, ®s[BPF_REG_0]); 14043 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 14044 } else if (btf_type_is_ptr(t)) { 14045 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 14046 err = check_special_kfunc(env, &meta, regs, insn_aux, ptr_type, desc_btf); 14047 if (err) { 14048 if (err < 0) 14049 return err; 14050 } else if (btf_type_is_void(ptr_type)) { 14051 /* kfunc returning 'void *' is equivalent to returning scalar */ 14052 mark_reg_unknown(env, regs, BPF_REG_0); 14053 } else if (!__btf_type_is_struct(ptr_type)) { 14054 if (!meta.r0_size) { 14055 __u32 sz; 14056 14057 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 14058 meta.r0_size = sz; 14059 meta.r0_rdonly = true; 14060 } 14061 } 14062 if (!meta.r0_size) { 14063 ptr_type_name = btf_name_by_offset(desc_btf, 14064 ptr_type->name_off); 14065 verbose(env, 14066 "kernel function %s returns pointer type %s %s is not supported\n", 14067 func_name, 14068 btf_type_str(ptr_type), 14069 ptr_type_name); 14070 return -EINVAL; 14071 } 14072 14073 mark_reg_known_zero(env, regs, BPF_REG_0); 14074 regs[BPF_REG_0].type = PTR_TO_MEM; 14075 regs[BPF_REG_0].mem_size = meta.r0_size; 14076 14077 if (meta.r0_rdonly) 14078 regs[BPF_REG_0].type |= MEM_RDONLY; 14079 14080 /* Ensures we don't access the memory after a release_reference() */ 14081 if (meta.ref_obj_id) 14082 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 14083 14084 if (is_kfunc_rcu_protected(&meta)) 14085 regs[BPF_REG_0].type |= MEM_RCU; 14086 } else { 14087 mark_reg_known_zero(env, regs, BPF_REG_0); 14088 regs[BPF_REG_0].btf = desc_btf; 14089 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 14090 regs[BPF_REG_0].btf_id = ptr_type_id; 14091 14092 if (meta.func_id == special_kfunc_list[KF_bpf_get_kmem_cache]) 14093 regs[BPF_REG_0].type |= PTR_UNTRUSTED; 14094 else if (is_kfunc_rcu_protected(&meta)) 14095 regs[BPF_REG_0].type |= MEM_RCU; 14096 14097 if (is_iter_next_kfunc(&meta)) { 14098 struct bpf_reg_state *cur_iter; 14099 14100 cur_iter = get_iter_from_state(env->cur_state, &meta); 14101 14102 if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */ 14103 regs[BPF_REG_0].type |= MEM_RCU; 14104 else 14105 regs[BPF_REG_0].type |= PTR_TRUSTED; 14106 } 14107 } 14108 14109 if (is_kfunc_ret_null(&meta)) { 14110 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 14111 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 14112 regs[BPF_REG_0].id = ++env->id_gen; 14113 } 14114 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 14115 if (is_kfunc_acquire(&meta)) { 14116 int id = acquire_reference(env, insn_idx); 14117 14118 if (id < 0) 14119 return id; 14120 if (is_kfunc_ret_null(&meta)) 14121 regs[BPF_REG_0].id = id; 14122 regs[BPF_REG_0].ref_obj_id = id; 14123 } else if (is_rbtree_node_type(ptr_type) || is_list_node_type(ptr_type)) { 14124 ref_set_non_owning(env, ®s[BPF_REG_0]); 14125 } 14126 14127 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 14128 regs[BPF_REG_0].id = ++env->id_gen; 14129 } else if (btf_type_is_void(t)) { 14130 if (meta.btf == btf_vmlinux) { 14131 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 14132 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 14133 insn_aux->kptr_struct_meta = 14134 btf_find_struct_meta(meta.arg_btf, 14135 meta.arg_btf_id); 14136 } 14137 } 14138 } 14139 14140 if (is_kfunc_pkt_changing(&meta)) 14141 clear_all_pkt_pointers(env); 14142 14143 nargs = btf_type_vlen(meta.func_proto); 14144 args = (const struct btf_param *)(meta.func_proto + 1); 14145 for (i = 0; i < nargs; i++) { 14146 u32 regno = i + 1; 14147 14148 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 14149 if (btf_type_is_ptr(t)) 14150 mark_btf_func_reg_size(env, regno, sizeof(void *)); 14151 else 14152 /* scalar. ensured by btf_check_kfunc_arg_match() */ 14153 mark_btf_func_reg_size(env, regno, t->size); 14154 } 14155 14156 if (is_iter_next_kfunc(&meta)) { 14157 err = process_iter_next_call(env, insn_idx, &meta); 14158 if (err) 14159 return err; 14160 } 14161 14162 return 0; 14163 } 14164 14165 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 14166 const struct bpf_reg_state *reg, 14167 enum bpf_reg_type type) 14168 { 14169 bool known = tnum_is_const(reg->var_off); 14170 s64 val = reg->var_off.value; 14171 s64 smin = reg->smin_value; 14172 14173 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 14174 verbose(env, "math between %s pointer and %lld is not allowed\n", 14175 reg_type_str(env, type), val); 14176 return false; 14177 } 14178 14179 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 14180 verbose(env, "%s pointer offset %d is not allowed\n", 14181 reg_type_str(env, type), reg->off); 14182 return false; 14183 } 14184 14185 if (smin == S64_MIN) { 14186 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 14187 reg_type_str(env, type)); 14188 return false; 14189 } 14190 14191 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 14192 verbose(env, "value %lld makes %s pointer be out of bounds\n", 14193 smin, reg_type_str(env, type)); 14194 return false; 14195 } 14196 14197 return true; 14198 } 14199 14200 enum { 14201 REASON_BOUNDS = -1, 14202 REASON_TYPE = -2, 14203 REASON_PATHS = -3, 14204 REASON_LIMIT = -4, 14205 REASON_STACK = -5, 14206 }; 14207 14208 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 14209 u32 *alu_limit, bool mask_to_left) 14210 { 14211 u32 max = 0, ptr_limit = 0; 14212 14213 switch (ptr_reg->type) { 14214 case PTR_TO_STACK: 14215 /* Offset 0 is out-of-bounds, but acceptable start for the 14216 * left direction, see BPF_REG_FP. Also, unknown scalar 14217 * offset where we would need to deal with min/max bounds is 14218 * currently prohibited for unprivileged. 14219 */ 14220 max = MAX_BPF_STACK + mask_to_left; 14221 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 14222 break; 14223 case PTR_TO_MAP_VALUE: 14224 max = ptr_reg->map_ptr->value_size; 14225 ptr_limit = (mask_to_left ? 14226 ptr_reg->smin_value : 14227 ptr_reg->umax_value) + ptr_reg->off; 14228 break; 14229 default: 14230 return REASON_TYPE; 14231 } 14232 14233 if (ptr_limit >= max) 14234 return REASON_LIMIT; 14235 *alu_limit = ptr_limit; 14236 return 0; 14237 } 14238 14239 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 14240 const struct bpf_insn *insn) 14241 { 14242 return env->bypass_spec_v1 || 14243 BPF_SRC(insn->code) == BPF_K || 14244 cur_aux(env)->nospec; 14245 } 14246 14247 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 14248 u32 alu_state, u32 alu_limit) 14249 { 14250 /* If we arrived here from different branches with different 14251 * state or limits to sanitize, then this won't work. 14252 */ 14253 if (aux->alu_state && 14254 (aux->alu_state != alu_state || 14255 aux->alu_limit != alu_limit)) 14256 return REASON_PATHS; 14257 14258 /* Corresponding fixup done in do_misc_fixups(). */ 14259 aux->alu_state = alu_state; 14260 aux->alu_limit = alu_limit; 14261 return 0; 14262 } 14263 14264 static int sanitize_val_alu(struct bpf_verifier_env *env, 14265 struct bpf_insn *insn) 14266 { 14267 struct bpf_insn_aux_data *aux = cur_aux(env); 14268 14269 if (can_skip_alu_sanitation(env, insn)) 14270 return 0; 14271 14272 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 14273 } 14274 14275 static bool sanitize_needed(u8 opcode) 14276 { 14277 return opcode == BPF_ADD || opcode == BPF_SUB; 14278 } 14279 14280 struct bpf_sanitize_info { 14281 struct bpf_insn_aux_data aux; 14282 bool mask_to_left; 14283 }; 14284 14285 static struct bpf_verifier_state * 14286 sanitize_speculative_path(struct bpf_verifier_env *env, 14287 const struct bpf_insn *insn, 14288 u32 next_idx, u32 curr_idx) 14289 { 14290 struct bpf_verifier_state *branch; 14291 struct bpf_reg_state *regs; 14292 14293 branch = push_stack(env, next_idx, curr_idx, true); 14294 if (branch && insn) { 14295 regs = branch->frame[branch->curframe]->regs; 14296 if (BPF_SRC(insn->code) == BPF_K) { 14297 mark_reg_unknown(env, regs, insn->dst_reg); 14298 } else if (BPF_SRC(insn->code) == BPF_X) { 14299 mark_reg_unknown(env, regs, insn->dst_reg); 14300 mark_reg_unknown(env, regs, insn->src_reg); 14301 } 14302 } 14303 return branch; 14304 } 14305 14306 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 14307 struct bpf_insn *insn, 14308 const struct bpf_reg_state *ptr_reg, 14309 const struct bpf_reg_state *off_reg, 14310 struct bpf_reg_state *dst_reg, 14311 struct bpf_sanitize_info *info, 14312 const bool commit_window) 14313 { 14314 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 14315 struct bpf_verifier_state *vstate = env->cur_state; 14316 bool off_is_imm = tnum_is_const(off_reg->var_off); 14317 bool off_is_neg = off_reg->smin_value < 0; 14318 bool ptr_is_dst_reg = ptr_reg == dst_reg; 14319 u8 opcode = BPF_OP(insn->code); 14320 u32 alu_state, alu_limit; 14321 struct bpf_reg_state tmp; 14322 bool ret; 14323 int err; 14324 14325 if (can_skip_alu_sanitation(env, insn)) 14326 return 0; 14327 14328 /* We already marked aux for masking from non-speculative 14329 * paths, thus we got here in the first place. We only care 14330 * to explore bad access from here. 14331 */ 14332 if (vstate->speculative) 14333 goto do_sim; 14334 14335 if (!commit_window) { 14336 if (!tnum_is_const(off_reg->var_off) && 14337 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 14338 return REASON_BOUNDS; 14339 14340 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 14341 (opcode == BPF_SUB && !off_is_neg); 14342 } 14343 14344 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 14345 if (err < 0) 14346 return err; 14347 14348 if (commit_window) { 14349 /* In commit phase we narrow the masking window based on 14350 * the observed pointer move after the simulated operation. 14351 */ 14352 alu_state = info->aux.alu_state; 14353 alu_limit = abs(info->aux.alu_limit - alu_limit); 14354 } else { 14355 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 14356 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 14357 alu_state |= ptr_is_dst_reg ? 14358 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 14359 14360 /* Limit pruning on unknown scalars to enable deep search for 14361 * potential masking differences from other program paths. 14362 */ 14363 if (!off_is_imm) 14364 env->explore_alu_limits = true; 14365 } 14366 14367 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 14368 if (err < 0) 14369 return err; 14370 do_sim: 14371 /* If we're in commit phase, we're done here given we already 14372 * pushed the truncated dst_reg into the speculative verification 14373 * stack. 14374 * 14375 * Also, when register is a known constant, we rewrite register-based 14376 * operation to immediate-based, and thus do not need masking (and as 14377 * a consequence, do not need to simulate the zero-truncation either). 14378 */ 14379 if (commit_window || off_is_imm) 14380 return 0; 14381 14382 /* Simulate and find potential out-of-bounds access under 14383 * speculative execution from truncation as a result of 14384 * masking when off was not within expected range. If off 14385 * sits in dst, then we temporarily need to move ptr there 14386 * to simulate dst (== 0) +/-= ptr. Needed, for example, 14387 * for cases where we use K-based arithmetic in one direction 14388 * and truncated reg-based in the other in order to explore 14389 * bad access. 14390 */ 14391 if (!ptr_is_dst_reg) { 14392 tmp = *dst_reg; 14393 copy_register_state(dst_reg, ptr_reg); 14394 } 14395 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 14396 env->insn_idx); 14397 if (!ptr_is_dst_reg && ret) 14398 *dst_reg = tmp; 14399 return !ret ? REASON_STACK : 0; 14400 } 14401 14402 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 14403 { 14404 struct bpf_verifier_state *vstate = env->cur_state; 14405 14406 /* If we simulate paths under speculation, we don't update the 14407 * insn as 'seen' such that when we verify unreachable paths in 14408 * the non-speculative domain, sanitize_dead_code() can still 14409 * rewrite/sanitize them. 14410 */ 14411 if (!vstate->speculative) 14412 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 14413 } 14414 14415 static int sanitize_err(struct bpf_verifier_env *env, 14416 const struct bpf_insn *insn, int reason, 14417 const struct bpf_reg_state *off_reg, 14418 const struct bpf_reg_state *dst_reg) 14419 { 14420 static const char *err = "pointer arithmetic with it prohibited for !root"; 14421 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 14422 u32 dst = insn->dst_reg, src = insn->src_reg; 14423 14424 switch (reason) { 14425 case REASON_BOUNDS: 14426 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 14427 off_reg == dst_reg ? dst : src, err); 14428 break; 14429 case REASON_TYPE: 14430 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 14431 off_reg == dst_reg ? src : dst, err); 14432 break; 14433 case REASON_PATHS: 14434 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 14435 dst, op, err); 14436 break; 14437 case REASON_LIMIT: 14438 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 14439 dst, op, err); 14440 break; 14441 case REASON_STACK: 14442 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 14443 dst, err); 14444 return -ENOMEM; 14445 default: 14446 verifier_bug(env, "unknown reason (%d)", reason); 14447 break; 14448 } 14449 14450 return -EACCES; 14451 } 14452 14453 /* check that stack access falls within stack limits and that 'reg' doesn't 14454 * have a variable offset. 14455 * 14456 * Variable offset is prohibited for unprivileged mode for simplicity since it 14457 * requires corresponding support in Spectre masking for stack ALU. See also 14458 * retrieve_ptr_limit(). 14459 * 14460 * 14461 * 'off' includes 'reg->off'. 14462 */ 14463 static int check_stack_access_for_ptr_arithmetic( 14464 struct bpf_verifier_env *env, 14465 int regno, 14466 const struct bpf_reg_state *reg, 14467 int off) 14468 { 14469 if (!tnum_is_const(reg->var_off)) { 14470 char tn_buf[48]; 14471 14472 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 14473 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 14474 regno, tn_buf, off); 14475 return -EACCES; 14476 } 14477 14478 if (off >= 0 || off < -MAX_BPF_STACK) { 14479 verbose(env, "R%d stack pointer arithmetic goes out of range, " 14480 "prohibited for !root; off=%d\n", regno, off); 14481 return -EACCES; 14482 } 14483 14484 return 0; 14485 } 14486 14487 static int sanitize_check_bounds(struct bpf_verifier_env *env, 14488 const struct bpf_insn *insn, 14489 const struct bpf_reg_state *dst_reg) 14490 { 14491 u32 dst = insn->dst_reg; 14492 14493 /* For unprivileged we require that resulting offset must be in bounds 14494 * in order to be able to sanitize access later on. 14495 */ 14496 if (env->bypass_spec_v1) 14497 return 0; 14498 14499 switch (dst_reg->type) { 14500 case PTR_TO_STACK: 14501 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 14502 dst_reg->off + dst_reg->var_off.value)) 14503 return -EACCES; 14504 break; 14505 case PTR_TO_MAP_VALUE: 14506 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 14507 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 14508 "prohibited for !root\n", dst); 14509 return -EACCES; 14510 } 14511 break; 14512 default: 14513 return -EOPNOTSUPP; 14514 } 14515 14516 return 0; 14517 } 14518 14519 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 14520 * Caller should also handle BPF_MOV case separately. 14521 * If we return -EACCES, caller may want to try again treating pointer as a 14522 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 14523 */ 14524 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 14525 struct bpf_insn *insn, 14526 const struct bpf_reg_state *ptr_reg, 14527 const struct bpf_reg_state *off_reg) 14528 { 14529 struct bpf_verifier_state *vstate = env->cur_state; 14530 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 14531 struct bpf_reg_state *regs = state->regs, *dst_reg; 14532 bool known = tnum_is_const(off_reg->var_off); 14533 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 14534 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 14535 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 14536 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 14537 struct bpf_sanitize_info info = {}; 14538 u8 opcode = BPF_OP(insn->code); 14539 u32 dst = insn->dst_reg; 14540 int ret, bounds_ret; 14541 14542 dst_reg = ®s[dst]; 14543 14544 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 14545 smin_val > smax_val || umin_val > umax_val) { 14546 /* Taint dst register if offset had invalid bounds derived from 14547 * e.g. dead branches. 14548 */ 14549 __mark_reg_unknown(env, dst_reg); 14550 return 0; 14551 } 14552 14553 if (BPF_CLASS(insn->code) != BPF_ALU64) { 14554 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 14555 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 14556 __mark_reg_unknown(env, dst_reg); 14557 return 0; 14558 } 14559 14560 verbose(env, 14561 "R%d 32-bit pointer arithmetic prohibited\n", 14562 dst); 14563 return -EACCES; 14564 } 14565 14566 if (ptr_reg->type & PTR_MAYBE_NULL) { 14567 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 14568 dst, reg_type_str(env, ptr_reg->type)); 14569 return -EACCES; 14570 } 14571 14572 /* 14573 * Accesses to untrusted PTR_TO_MEM are done through probe 14574 * instructions, hence no need to track offsets. 14575 */ 14576 if (base_type(ptr_reg->type) == PTR_TO_MEM && (ptr_reg->type & PTR_UNTRUSTED)) 14577 return 0; 14578 14579 switch (base_type(ptr_reg->type)) { 14580 case PTR_TO_CTX: 14581 case PTR_TO_MAP_VALUE: 14582 case PTR_TO_MAP_KEY: 14583 case PTR_TO_STACK: 14584 case PTR_TO_PACKET_META: 14585 case PTR_TO_PACKET: 14586 case PTR_TO_TP_BUFFER: 14587 case PTR_TO_BTF_ID: 14588 case PTR_TO_MEM: 14589 case PTR_TO_BUF: 14590 case PTR_TO_FUNC: 14591 case CONST_PTR_TO_DYNPTR: 14592 break; 14593 case PTR_TO_FLOW_KEYS: 14594 if (known) 14595 break; 14596 fallthrough; 14597 case CONST_PTR_TO_MAP: 14598 /* smin_val represents the known value */ 14599 if (known && smin_val == 0 && opcode == BPF_ADD) 14600 break; 14601 fallthrough; 14602 default: 14603 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 14604 dst, reg_type_str(env, ptr_reg->type)); 14605 return -EACCES; 14606 } 14607 14608 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 14609 * The id may be overwritten later if we create a new variable offset. 14610 */ 14611 dst_reg->type = ptr_reg->type; 14612 dst_reg->id = ptr_reg->id; 14613 14614 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 14615 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 14616 return -EINVAL; 14617 14618 /* pointer types do not carry 32-bit bounds at the moment. */ 14619 __mark_reg32_unbounded(dst_reg); 14620 14621 if (sanitize_needed(opcode)) { 14622 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 14623 &info, false); 14624 if (ret < 0) 14625 return sanitize_err(env, insn, ret, off_reg, dst_reg); 14626 } 14627 14628 switch (opcode) { 14629 case BPF_ADD: 14630 /* We can take a fixed offset as long as it doesn't overflow 14631 * the s32 'off' field 14632 */ 14633 if (known && (ptr_reg->off + smin_val == 14634 (s64)(s32)(ptr_reg->off + smin_val))) { 14635 /* pointer += K. Accumulate it into fixed offset */ 14636 dst_reg->smin_value = smin_ptr; 14637 dst_reg->smax_value = smax_ptr; 14638 dst_reg->umin_value = umin_ptr; 14639 dst_reg->umax_value = umax_ptr; 14640 dst_reg->var_off = ptr_reg->var_off; 14641 dst_reg->off = ptr_reg->off + smin_val; 14642 dst_reg->raw = ptr_reg->raw; 14643 break; 14644 } 14645 /* A new variable offset is created. Note that off_reg->off 14646 * == 0, since it's a scalar. 14647 * dst_reg gets the pointer type and since some positive 14648 * integer value was added to the pointer, give it a new 'id' 14649 * if it's a PTR_TO_PACKET. 14650 * this creates a new 'base' pointer, off_reg (variable) gets 14651 * added into the variable offset, and we copy the fixed offset 14652 * from ptr_reg. 14653 */ 14654 if (check_add_overflow(smin_ptr, smin_val, &dst_reg->smin_value) || 14655 check_add_overflow(smax_ptr, smax_val, &dst_reg->smax_value)) { 14656 dst_reg->smin_value = S64_MIN; 14657 dst_reg->smax_value = S64_MAX; 14658 } 14659 if (check_add_overflow(umin_ptr, umin_val, &dst_reg->umin_value) || 14660 check_add_overflow(umax_ptr, umax_val, &dst_reg->umax_value)) { 14661 dst_reg->umin_value = 0; 14662 dst_reg->umax_value = U64_MAX; 14663 } 14664 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 14665 dst_reg->off = ptr_reg->off; 14666 dst_reg->raw = ptr_reg->raw; 14667 if (reg_is_pkt_pointer(ptr_reg)) { 14668 dst_reg->id = ++env->id_gen; 14669 /* something was added to pkt_ptr, set range to zero */ 14670 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 14671 } 14672 break; 14673 case BPF_SUB: 14674 if (dst_reg == off_reg) { 14675 /* scalar -= pointer. Creates an unknown scalar */ 14676 verbose(env, "R%d tried to subtract pointer from scalar\n", 14677 dst); 14678 return -EACCES; 14679 } 14680 /* We don't allow subtraction from FP, because (according to 14681 * test_verifier.c test "invalid fp arithmetic", JITs might not 14682 * be able to deal with it. 14683 */ 14684 if (ptr_reg->type == PTR_TO_STACK) { 14685 verbose(env, "R%d subtraction from stack pointer prohibited\n", 14686 dst); 14687 return -EACCES; 14688 } 14689 if (known && (ptr_reg->off - smin_val == 14690 (s64)(s32)(ptr_reg->off - smin_val))) { 14691 /* pointer -= K. Subtract it from fixed offset */ 14692 dst_reg->smin_value = smin_ptr; 14693 dst_reg->smax_value = smax_ptr; 14694 dst_reg->umin_value = umin_ptr; 14695 dst_reg->umax_value = umax_ptr; 14696 dst_reg->var_off = ptr_reg->var_off; 14697 dst_reg->id = ptr_reg->id; 14698 dst_reg->off = ptr_reg->off - smin_val; 14699 dst_reg->raw = ptr_reg->raw; 14700 break; 14701 } 14702 /* A new variable offset is created. If the subtrahend is known 14703 * nonnegative, then any reg->range we had before is still good. 14704 */ 14705 if (check_sub_overflow(smin_ptr, smax_val, &dst_reg->smin_value) || 14706 check_sub_overflow(smax_ptr, smin_val, &dst_reg->smax_value)) { 14707 /* Overflow possible, we know nothing */ 14708 dst_reg->smin_value = S64_MIN; 14709 dst_reg->smax_value = S64_MAX; 14710 } 14711 if (umin_ptr < umax_val) { 14712 /* Overflow possible, we know nothing */ 14713 dst_reg->umin_value = 0; 14714 dst_reg->umax_value = U64_MAX; 14715 } else { 14716 /* Cannot overflow (as long as bounds are consistent) */ 14717 dst_reg->umin_value = umin_ptr - umax_val; 14718 dst_reg->umax_value = umax_ptr - umin_val; 14719 } 14720 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 14721 dst_reg->off = ptr_reg->off; 14722 dst_reg->raw = ptr_reg->raw; 14723 if (reg_is_pkt_pointer(ptr_reg)) { 14724 dst_reg->id = ++env->id_gen; 14725 /* something was added to pkt_ptr, set range to zero */ 14726 if (smin_val < 0) 14727 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 14728 } 14729 break; 14730 case BPF_AND: 14731 case BPF_OR: 14732 case BPF_XOR: 14733 /* bitwise ops on pointers are troublesome, prohibit. */ 14734 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 14735 dst, bpf_alu_string[opcode >> 4]); 14736 return -EACCES; 14737 default: 14738 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 14739 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 14740 dst, bpf_alu_string[opcode >> 4]); 14741 return -EACCES; 14742 } 14743 14744 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 14745 return -EINVAL; 14746 reg_bounds_sync(dst_reg); 14747 bounds_ret = sanitize_check_bounds(env, insn, dst_reg); 14748 if (bounds_ret == -EACCES) 14749 return bounds_ret; 14750 if (sanitize_needed(opcode)) { 14751 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 14752 &info, true); 14753 if (verifier_bug_if(!can_skip_alu_sanitation(env, insn) 14754 && !env->cur_state->speculative 14755 && bounds_ret 14756 && !ret, 14757 env, "Pointer type unsupported by sanitize_check_bounds() not rejected by retrieve_ptr_limit() as required")) { 14758 return -EFAULT; 14759 } 14760 if (ret < 0) 14761 return sanitize_err(env, insn, ret, off_reg, dst_reg); 14762 } 14763 14764 return 0; 14765 } 14766 14767 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 14768 struct bpf_reg_state *src_reg) 14769 { 14770 s32 *dst_smin = &dst_reg->s32_min_value; 14771 s32 *dst_smax = &dst_reg->s32_max_value; 14772 u32 *dst_umin = &dst_reg->u32_min_value; 14773 u32 *dst_umax = &dst_reg->u32_max_value; 14774 u32 umin_val = src_reg->u32_min_value; 14775 u32 umax_val = src_reg->u32_max_value; 14776 bool min_overflow, max_overflow; 14777 14778 if (check_add_overflow(*dst_smin, src_reg->s32_min_value, dst_smin) || 14779 check_add_overflow(*dst_smax, src_reg->s32_max_value, dst_smax)) { 14780 *dst_smin = S32_MIN; 14781 *dst_smax = S32_MAX; 14782 } 14783 14784 /* If either all additions overflow or no additions overflow, then 14785 * it is okay to set: dst_umin = dst_umin + src_umin, dst_umax = 14786 * dst_umax + src_umax. Otherwise (some additions overflow), set 14787 * the output bounds to unbounded. 14788 */ 14789 min_overflow = check_add_overflow(*dst_umin, umin_val, dst_umin); 14790 max_overflow = check_add_overflow(*dst_umax, umax_val, dst_umax); 14791 14792 if (!min_overflow && max_overflow) { 14793 *dst_umin = 0; 14794 *dst_umax = U32_MAX; 14795 } 14796 } 14797 14798 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 14799 struct bpf_reg_state *src_reg) 14800 { 14801 s64 *dst_smin = &dst_reg->smin_value; 14802 s64 *dst_smax = &dst_reg->smax_value; 14803 u64 *dst_umin = &dst_reg->umin_value; 14804 u64 *dst_umax = &dst_reg->umax_value; 14805 u64 umin_val = src_reg->umin_value; 14806 u64 umax_val = src_reg->umax_value; 14807 bool min_overflow, max_overflow; 14808 14809 if (check_add_overflow(*dst_smin, src_reg->smin_value, dst_smin) || 14810 check_add_overflow(*dst_smax, src_reg->smax_value, dst_smax)) { 14811 *dst_smin = S64_MIN; 14812 *dst_smax = S64_MAX; 14813 } 14814 14815 /* If either all additions overflow or no additions overflow, then 14816 * it is okay to set: dst_umin = dst_umin + src_umin, dst_umax = 14817 * dst_umax + src_umax. Otherwise (some additions overflow), set 14818 * the output bounds to unbounded. 14819 */ 14820 min_overflow = check_add_overflow(*dst_umin, umin_val, dst_umin); 14821 max_overflow = check_add_overflow(*dst_umax, umax_val, dst_umax); 14822 14823 if (!min_overflow && max_overflow) { 14824 *dst_umin = 0; 14825 *dst_umax = U64_MAX; 14826 } 14827 } 14828 14829 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 14830 struct bpf_reg_state *src_reg) 14831 { 14832 s32 *dst_smin = &dst_reg->s32_min_value; 14833 s32 *dst_smax = &dst_reg->s32_max_value; 14834 u32 *dst_umin = &dst_reg->u32_min_value; 14835 u32 *dst_umax = &dst_reg->u32_max_value; 14836 u32 umin_val = src_reg->u32_min_value; 14837 u32 umax_val = src_reg->u32_max_value; 14838 bool min_underflow, max_underflow; 14839 14840 if (check_sub_overflow(*dst_smin, src_reg->s32_max_value, dst_smin) || 14841 check_sub_overflow(*dst_smax, src_reg->s32_min_value, dst_smax)) { 14842 /* Overflow possible, we know nothing */ 14843 *dst_smin = S32_MIN; 14844 *dst_smax = S32_MAX; 14845 } 14846 14847 /* If either all subtractions underflow or no subtractions 14848 * underflow, it is okay to set: dst_umin = dst_umin - src_umax, 14849 * dst_umax = dst_umax - src_umin. Otherwise (some subtractions 14850 * underflow), set the output bounds to unbounded. 14851 */ 14852 min_underflow = check_sub_overflow(*dst_umin, umax_val, dst_umin); 14853 max_underflow = check_sub_overflow(*dst_umax, umin_val, dst_umax); 14854 14855 if (min_underflow && !max_underflow) { 14856 *dst_umin = 0; 14857 *dst_umax = U32_MAX; 14858 } 14859 } 14860 14861 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 14862 struct bpf_reg_state *src_reg) 14863 { 14864 s64 *dst_smin = &dst_reg->smin_value; 14865 s64 *dst_smax = &dst_reg->smax_value; 14866 u64 *dst_umin = &dst_reg->umin_value; 14867 u64 *dst_umax = &dst_reg->umax_value; 14868 u64 umin_val = src_reg->umin_value; 14869 u64 umax_val = src_reg->umax_value; 14870 bool min_underflow, max_underflow; 14871 14872 if (check_sub_overflow(*dst_smin, src_reg->smax_value, dst_smin) || 14873 check_sub_overflow(*dst_smax, src_reg->smin_value, dst_smax)) { 14874 /* Overflow possible, we know nothing */ 14875 *dst_smin = S64_MIN; 14876 *dst_smax = S64_MAX; 14877 } 14878 14879 /* If either all subtractions underflow or no subtractions 14880 * underflow, it is okay to set: dst_umin = dst_umin - src_umax, 14881 * dst_umax = dst_umax - src_umin. Otherwise (some subtractions 14882 * underflow), set the output bounds to unbounded. 14883 */ 14884 min_underflow = check_sub_overflow(*dst_umin, umax_val, dst_umin); 14885 max_underflow = check_sub_overflow(*dst_umax, umin_val, dst_umax); 14886 14887 if (min_underflow && !max_underflow) { 14888 *dst_umin = 0; 14889 *dst_umax = U64_MAX; 14890 } 14891 } 14892 14893 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 14894 struct bpf_reg_state *src_reg) 14895 { 14896 s32 *dst_smin = &dst_reg->s32_min_value; 14897 s32 *dst_smax = &dst_reg->s32_max_value; 14898 u32 *dst_umin = &dst_reg->u32_min_value; 14899 u32 *dst_umax = &dst_reg->u32_max_value; 14900 s32 tmp_prod[4]; 14901 14902 if (check_mul_overflow(*dst_umax, src_reg->u32_max_value, dst_umax) || 14903 check_mul_overflow(*dst_umin, src_reg->u32_min_value, dst_umin)) { 14904 /* Overflow possible, we know nothing */ 14905 *dst_umin = 0; 14906 *dst_umax = U32_MAX; 14907 } 14908 if (check_mul_overflow(*dst_smin, src_reg->s32_min_value, &tmp_prod[0]) || 14909 check_mul_overflow(*dst_smin, src_reg->s32_max_value, &tmp_prod[1]) || 14910 check_mul_overflow(*dst_smax, src_reg->s32_min_value, &tmp_prod[2]) || 14911 check_mul_overflow(*dst_smax, src_reg->s32_max_value, &tmp_prod[3])) { 14912 /* Overflow possible, we know nothing */ 14913 *dst_smin = S32_MIN; 14914 *dst_smax = S32_MAX; 14915 } else { 14916 *dst_smin = min_array(tmp_prod, 4); 14917 *dst_smax = max_array(tmp_prod, 4); 14918 } 14919 } 14920 14921 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 14922 struct bpf_reg_state *src_reg) 14923 { 14924 s64 *dst_smin = &dst_reg->smin_value; 14925 s64 *dst_smax = &dst_reg->smax_value; 14926 u64 *dst_umin = &dst_reg->umin_value; 14927 u64 *dst_umax = &dst_reg->umax_value; 14928 s64 tmp_prod[4]; 14929 14930 if (check_mul_overflow(*dst_umax, src_reg->umax_value, dst_umax) || 14931 check_mul_overflow(*dst_umin, src_reg->umin_value, dst_umin)) { 14932 /* Overflow possible, we know nothing */ 14933 *dst_umin = 0; 14934 *dst_umax = U64_MAX; 14935 } 14936 if (check_mul_overflow(*dst_smin, src_reg->smin_value, &tmp_prod[0]) || 14937 check_mul_overflow(*dst_smin, src_reg->smax_value, &tmp_prod[1]) || 14938 check_mul_overflow(*dst_smax, src_reg->smin_value, &tmp_prod[2]) || 14939 check_mul_overflow(*dst_smax, src_reg->smax_value, &tmp_prod[3])) { 14940 /* Overflow possible, we know nothing */ 14941 *dst_smin = S64_MIN; 14942 *dst_smax = S64_MAX; 14943 } else { 14944 *dst_smin = min_array(tmp_prod, 4); 14945 *dst_smax = max_array(tmp_prod, 4); 14946 } 14947 } 14948 14949 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 14950 struct bpf_reg_state *src_reg) 14951 { 14952 bool src_known = tnum_subreg_is_const(src_reg->var_off); 14953 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 14954 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 14955 u32 umax_val = src_reg->u32_max_value; 14956 14957 if (src_known && dst_known) { 14958 __mark_reg32_known(dst_reg, var32_off.value); 14959 return; 14960 } 14961 14962 /* We get our minimum from the var_off, since that's inherently 14963 * bitwise. Our maximum is the minimum of the operands' maxima. 14964 */ 14965 dst_reg->u32_min_value = var32_off.value; 14966 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 14967 14968 /* Safe to set s32 bounds by casting u32 result into s32 when u32 14969 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 14970 */ 14971 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 14972 dst_reg->s32_min_value = dst_reg->u32_min_value; 14973 dst_reg->s32_max_value = dst_reg->u32_max_value; 14974 } else { 14975 dst_reg->s32_min_value = S32_MIN; 14976 dst_reg->s32_max_value = S32_MAX; 14977 } 14978 } 14979 14980 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 14981 struct bpf_reg_state *src_reg) 14982 { 14983 bool src_known = tnum_is_const(src_reg->var_off); 14984 bool dst_known = tnum_is_const(dst_reg->var_off); 14985 u64 umax_val = src_reg->umax_value; 14986 14987 if (src_known && dst_known) { 14988 __mark_reg_known(dst_reg, dst_reg->var_off.value); 14989 return; 14990 } 14991 14992 /* We get our minimum from the var_off, since that's inherently 14993 * bitwise. Our maximum is the minimum of the operands' maxima. 14994 */ 14995 dst_reg->umin_value = dst_reg->var_off.value; 14996 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 14997 14998 /* Safe to set s64 bounds by casting u64 result into s64 when u64 14999 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 15000 */ 15001 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 15002 dst_reg->smin_value = dst_reg->umin_value; 15003 dst_reg->smax_value = dst_reg->umax_value; 15004 } else { 15005 dst_reg->smin_value = S64_MIN; 15006 dst_reg->smax_value = S64_MAX; 15007 } 15008 /* We may learn something more from the var_off */ 15009 __update_reg_bounds(dst_reg); 15010 } 15011 15012 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 15013 struct bpf_reg_state *src_reg) 15014 { 15015 bool src_known = tnum_subreg_is_const(src_reg->var_off); 15016 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 15017 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 15018 u32 umin_val = src_reg->u32_min_value; 15019 15020 if (src_known && dst_known) { 15021 __mark_reg32_known(dst_reg, var32_off.value); 15022 return; 15023 } 15024 15025 /* We get our maximum from the var_off, and our minimum is the 15026 * maximum of the operands' minima 15027 */ 15028 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 15029 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 15030 15031 /* Safe to set s32 bounds by casting u32 result into s32 when u32 15032 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 15033 */ 15034 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 15035 dst_reg->s32_min_value = dst_reg->u32_min_value; 15036 dst_reg->s32_max_value = dst_reg->u32_max_value; 15037 } else { 15038 dst_reg->s32_min_value = S32_MIN; 15039 dst_reg->s32_max_value = S32_MAX; 15040 } 15041 } 15042 15043 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 15044 struct bpf_reg_state *src_reg) 15045 { 15046 bool src_known = tnum_is_const(src_reg->var_off); 15047 bool dst_known = tnum_is_const(dst_reg->var_off); 15048 u64 umin_val = src_reg->umin_value; 15049 15050 if (src_known && dst_known) { 15051 __mark_reg_known(dst_reg, dst_reg->var_off.value); 15052 return; 15053 } 15054 15055 /* We get our maximum from the var_off, and our minimum is the 15056 * maximum of the operands' minima 15057 */ 15058 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 15059 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 15060 15061 /* Safe to set s64 bounds by casting u64 result into s64 when u64 15062 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 15063 */ 15064 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 15065 dst_reg->smin_value = dst_reg->umin_value; 15066 dst_reg->smax_value = dst_reg->umax_value; 15067 } else { 15068 dst_reg->smin_value = S64_MIN; 15069 dst_reg->smax_value = S64_MAX; 15070 } 15071 /* We may learn something more from the var_off */ 15072 __update_reg_bounds(dst_reg); 15073 } 15074 15075 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 15076 struct bpf_reg_state *src_reg) 15077 { 15078 bool src_known = tnum_subreg_is_const(src_reg->var_off); 15079 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 15080 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 15081 15082 if (src_known && dst_known) { 15083 __mark_reg32_known(dst_reg, var32_off.value); 15084 return; 15085 } 15086 15087 /* We get both minimum and maximum from the var32_off. */ 15088 dst_reg->u32_min_value = var32_off.value; 15089 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 15090 15091 /* Safe to set s32 bounds by casting u32 result into s32 when u32 15092 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 15093 */ 15094 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 15095 dst_reg->s32_min_value = dst_reg->u32_min_value; 15096 dst_reg->s32_max_value = dst_reg->u32_max_value; 15097 } else { 15098 dst_reg->s32_min_value = S32_MIN; 15099 dst_reg->s32_max_value = S32_MAX; 15100 } 15101 } 15102 15103 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 15104 struct bpf_reg_state *src_reg) 15105 { 15106 bool src_known = tnum_is_const(src_reg->var_off); 15107 bool dst_known = tnum_is_const(dst_reg->var_off); 15108 15109 if (src_known && dst_known) { 15110 /* dst_reg->var_off.value has been updated earlier */ 15111 __mark_reg_known(dst_reg, dst_reg->var_off.value); 15112 return; 15113 } 15114 15115 /* We get both minimum and maximum from the var_off. */ 15116 dst_reg->umin_value = dst_reg->var_off.value; 15117 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 15118 15119 /* Safe to set s64 bounds by casting u64 result into s64 when u64 15120 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 15121 */ 15122 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 15123 dst_reg->smin_value = dst_reg->umin_value; 15124 dst_reg->smax_value = dst_reg->umax_value; 15125 } else { 15126 dst_reg->smin_value = S64_MIN; 15127 dst_reg->smax_value = S64_MAX; 15128 } 15129 15130 __update_reg_bounds(dst_reg); 15131 } 15132 15133 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 15134 u64 umin_val, u64 umax_val) 15135 { 15136 /* We lose all sign bit information (except what we can pick 15137 * up from var_off) 15138 */ 15139 dst_reg->s32_min_value = S32_MIN; 15140 dst_reg->s32_max_value = S32_MAX; 15141 /* If we might shift our top bit out, then we know nothing */ 15142 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 15143 dst_reg->u32_min_value = 0; 15144 dst_reg->u32_max_value = U32_MAX; 15145 } else { 15146 dst_reg->u32_min_value <<= umin_val; 15147 dst_reg->u32_max_value <<= umax_val; 15148 } 15149 } 15150 15151 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 15152 struct bpf_reg_state *src_reg) 15153 { 15154 u32 umax_val = src_reg->u32_max_value; 15155 u32 umin_val = src_reg->u32_min_value; 15156 /* u32 alu operation will zext upper bits */ 15157 struct tnum subreg = tnum_subreg(dst_reg->var_off); 15158 15159 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 15160 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 15161 /* Not required but being careful mark reg64 bounds as unknown so 15162 * that we are forced to pick them up from tnum and zext later and 15163 * if some path skips this step we are still safe. 15164 */ 15165 __mark_reg64_unbounded(dst_reg); 15166 __update_reg32_bounds(dst_reg); 15167 } 15168 15169 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 15170 u64 umin_val, u64 umax_val) 15171 { 15172 /* Special case <<32 because it is a common compiler pattern to sign 15173 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 15174 * positive we know this shift will also be positive so we can track 15175 * bounds correctly. Otherwise we lose all sign bit information except 15176 * what we can pick up from var_off. Perhaps we can generalize this 15177 * later to shifts of any length. 15178 */ 15179 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 15180 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 15181 else 15182 dst_reg->smax_value = S64_MAX; 15183 15184 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 15185 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 15186 else 15187 dst_reg->smin_value = S64_MIN; 15188 15189 /* If we might shift our top bit out, then we know nothing */ 15190 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 15191 dst_reg->umin_value = 0; 15192 dst_reg->umax_value = U64_MAX; 15193 } else { 15194 dst_reg->umin_value <<= umin_val; 15195 dst_reg->umax_value <<= umax_val; 15196 } 15197 } 15198 15199 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 15200 struct bpf_reg_state *src_reg) 15201 { 15202 u64 umax_val = src_reg->umax_value; 15203 u64 umin_val = src_reg->umin_value; 15204 15205 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 15206 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 15207 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 15208 15209 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 15210 /* We may learn something more from the var_off */ 15211 __update_reg_bounds(dst_reg); 15212 } 15213 15214 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 15215 struct bpf_reg_state *src_reg) 15216 { 15217 struct tnum subreg = tnum_subreg(dst_reg->var_off); 15218 u32 umax_val = src_reg->u32_max_value; 15219 u32 umin_val = src_reg->u32_min_value; 15220 15221 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 15222 * be negative, then either: 15223 * 1) src_reg might be zero, so the sign bit of the result is 15224 * unknown, so we lose our signed bounds 15225 * 2) it's known negative, thus the unsigned bounds capture the 15226 * signed bounds 15227 * 3) the signed bounds cross zero, so they tell us nothing 15228 * about the result 15229 * If the value in dst_reg is known nonnegative, then again the 15230 * unsigned bounds capture the signed bounds. 15231 * Thus, in all cases it suffices to blow away our signed bounds 15232 * and rely on inferring new ones from the unsigned bounds and 15233 * var_off of the result. 15234 */ 15235 dst_reg->s32_min_value = S32_MIN; 15236 dst_reg->s32_max_value = S32_MAX; 15237 15238 dst_reg->var_off = tnum_rshift(subreg, umin_val); 15239 dst_reg->u32_min_value >>= umax_val; 15240 dst_reg->u32_max_value >>= umin_val; 15241 15242 __mark_reg64_unbounded(dst_reg); 15243 __update_reg32_bounds(dst_reg); 15244 } 15245 15246 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 15247 struct bpf_reg_state *src_reg) 15248 { 15249 u64 umax_val = src_reg->umax_value; 15250 u64 umin_val = src_reg->umin_value; 15251 15252 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 15253 * be negative, then either: 15254 * 1) src_reg might be zero, so the sign bit of the result is 15255 * unknown, so we lose our signed bounds 15256 * 2) it's known negative, thus the unsigned bounds capture the 15257 * signed bounds 15258 * 3) the signed bounds cross zero, so they tell us nothing 15259 * about the result 15260 * If the value in dst_reg is known nonnegative, then again the 15261 * unsigned bounds capture the signed bounds. 15262 * Thus, in all cases it suffices to blow away our signed bounds 15263 * and rely on inferring new ones from the unsigned bounds and 15264 * var_off of the result. 15265 */ 15266 dst_reg->smin_value = S64_MIN; 15267 dst_reg->smax_value = S64_MAX; 15268 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 15269 dst_reg->umin_value >>= umax_val; 15270 dst_reg->umax_value >>= umin_val; 15271 15272 /* Its not easy to operate on alu32 bounds here because it depends 15273 * on bits being shifted in. Take easy way out and mark unbounded 15274 * so we can recalculate later from tnum. 15275 */ 15276 __mark_reg32_unbounded(dst_reg); 15277 __update_reg_bounds(dst_reg); 15278 } 15279 15280 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 15281 struct bpf_reg_state *src_reg) 15282 { 15283 u64 umin_val = src_reg->u32_min_value; 15284 15285 /* Upon reaching here, src_known is true and 15286 * umax_val is equal to umin_val. 15287 */ 15288 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 15289 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 15290 15291 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 15292 15293 /* blow away the dst_reg umin_value/umax_value and rely on 15294 * dst_reg var_off to refine the result. 15295 */ 15296 dst_reg->u32_min_value = 0; 15297 dst_reg->u32_max_value = U32_MAX; 15298 15299 __mark_reg64_unbounded(dst_reg); 15300 __update_reg32_bounds(dst_reg); 15301 } 15302 15303 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 15304 struct bpf_reg_state *src_reg) 15305 { 15306 u64 umin_val = src_reg->umin_value; 15307 15308 /* Upon reaching here, src_known is true and umax_val is equal 15309 * to umin_val. 15310 */ 15311 dst_reg->smin_value >>= umin_val; 15312 dst_reg->smax_value >>= umin_val; 15313 15314 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 15315 15316 /* blow away the dst_reg umin_value/umax_value and rely on 15317 * dst_reg var_off to refine the result. 15318 */ 15319 dst_reg->umin_value = 0; 15320 dst_reg->umax_value = U64_MAX; 15321 15322 /* Its not easy to operate on alu32 bounds here because it depends 15323 * on bits being shifted in from upper 32-bits. Take easy way out 15324 * and mark unbounded so we can recalculate later from tnum. 15325 */ 15326 __mark_reg32_unbounded(dst_reg); 15327 __update_reg_bounds(dst_reg); 15328 } 15329 15330 static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn, 15331 const struct bpf_reg_state *src_reg) 15332 { 15333 bool src_is_const = false; 15334 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 15335 15336 if (insn_bitness == 32) { 15337 if (tnum_subreg_is_const(src_reg->var_off) 15338 && src_reg->s32_min_value == src_reg->s32_max_value 15339 && src_reg->u32_min_value == src_reg->u32_max_value) 15340 src_is_const = true; 15341 } else { 15342 if (tnum_is_const(src_reg->var_off) 15343 && src_reg->smin_value == src_reg->smax_value 15344 && src_reg->umin_value == src_reg->umax_value) 15345 src_is_const = true; 15346 } 15347 15348 switch (BPF_OP(insn->code)) { 15349 case BPF_ADD: 15350 case BPF_SUB: 15351 case BPF_NEG: 15352 case BPF_AND: 15353 case BPF_XOR: 15354 case BPF_OR: 15355 case BPF_MUL: 15356 return true; 15357 15358 /* Shift operators range is only computable if shift dimension operand 15359 * is a constant. Shifts greater than 31 or 63 are undefined. This 15360 * includes shifts by a negative number. 15361 */ 15362 case BPF_LSH: 15363 case BPF_RSH: 15364 case BPF_ARSH: 15365 return (src_is_const && src_reg->umax_value < insn_bitness); 15366 default: 15367 return false; 15368 } 15369 } 15370 15371 /* WARNING: This function does calculations on 64-bit values, but the actual 15372 * execution may occur on 32-bit values. Therefore, things like bitshifts 15373 * need extra checks in the 32-bit case. 15374 */ 15375 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 15376 struct bpf_insn *insn, 15377 struct bpf_reg_state *dst_reg, 15378 struct bpf_reg_state src_reg) 15379 { 15380 u8 opcode = BPF_OP(insn->code); 15381 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 15382 int ret; 15383 15384 if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) { 15385 __mark_reg_unknown(env, dst_reg); 15386 return 0; 15387 } 15388 15389 if (sanitize_needed(opcode)) { 15390 ret = sanitize_val_alu(env, insn); 15391 if (ret < 0) 15392 return sanitize_err(env, insn, ret, NULL, NULL); 15393 } 15394 15395 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 15396 * There are two classes of instructions: The first class we track both 15397 * alu32 and alu64 sign/unsigned bounds independently this provides the 15398 * greatest amount of precision when alu operations are mixed with jmp32 15399 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 15400 * and BPF_OR. This is possible because these ops have fairly easy to 15401 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 15402 * See alu32 verifier tests for examples. The second class of 15403 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 15404 * with regards to tracking sign/unsigned bounds because the bits may 15405 * cross subreg boundaries in the alu64 case. When this happens we mark 15406 * the reg unbounded in the subreg bound space and use the resulting 15407 * tnum to calculate an approximation of the sign/unsigned bounds. 15408 */ 15409 switch (opcode) { 15410 case BPF_ADD: 15411 scalar32_min_max_add(dst_reg, &src_reg); 15412 scalar_min_max_add(dst_reg, &src_reg); 15413 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 15414 break; 15415 case BPF_SUB: 15416 scalar32_min_max_sub(dst_reg, &src_reg); 15417 scalar_min_max_sub(dst_reg, &src_reg); 15418 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 15419 break; 15420 case BPF_NEG: 15421 env->fake_reg[0] = *dst_reg; 15422 __mark_reg_known(dst_reg, 0); 15423 scalar32_min_max_sub(dst_reg, &env->fake_reg[0]); 15424 scalar_min_max_sub(dst_reg, &env->fake_reg[0]); 15425 dst_reg->var_off = tnum_neg(env->fake_reg[0].var_off); 15426 break; 15427 case BPF_MUL: 15428 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 15429 scalar32_min_max_mul(dst_reg, &src_reg); 15430 scalar_min_max_mul(dst_reg, &src_reg); 15431 break; 15432 case BPF_AND: 15433 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 15434 scalar32_min_max_and(dst_reg, &src_reg); 15435 scalar_min_max_and(dst_reg, &src_reg); 15436 break; 15437 case BPF_OR: 15438 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 15439 scalar32_min_max_or(dst_reg, &src_reg); 15440 scalar_min_max_or(dst_reg, &src_reg); 15441 break; 15442 case BPF_XOR: 15443 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 15444 scalar32_min_max_xor(dst_reg, &src_reg); 15445 scalar_min_max_xor(dst_reg, &src_reg); 15446 break; 15447 case BPF_LSH: 15448 if (alu32) 15449 scalar32_min_max_lsh(dst_reg, &src_reg); 15450 else 15451 scalar_min_max_lsh(dst_reg, &src_reg); 15452 break; 15453 case BPF_RSH: 15454 if (alu32) 15455 scalar32_min_max_rsh(dst_reg, &src_reg); 15456 else 15457 scalar_min_max_rsh(dst_reg, &src_reg); 15458 break; 15459 case BPF_ARSH: 15460 if (alu32) 15461 scalar32_min_max_arsh(dst_reg, &src_reg); 15462 else 15463 scalar_min_max_arsh(dst_reg, &src_reg); 15464 break; 15465 default: 15466 break; 15467 } 15468 15469 /* ALU32 ops are zero extended into 64bit register */ 15470 if (alu32) 15471 zext_32_to_64(dst_reg); 15472 reg_bounds_sync(dst_reg); 15473 return 0; 15474 } 15475 15476 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 15477 * and var_off. 15478 */ 15479 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 15480 struct bpf_insn *insn) 15481 { 15482 struct bpf_verifier_state *vstate = env->cur_state; 15483 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 15484 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 15485 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 15486 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 15487 u8 opcode = BPF_OP(insn->code); 15488 int err; 15489 15490 dst_reg = ®s[insn->dst_reg]; 15491 src_reg = NULL; 15492 15493 if (dst_reg->type == PTR_TO_ARENA) { 15494 struct bpf_insn_aux_data *aux = cur_aux(env); 15495 15496 if (BPF_CLASS(insn->code) == BPF_ALU64) 15497 /* 15498 * 32-bit operations zero upper bits automatically. 15499 * 64-bit operations need to be converted to 32. 15500 */ 15501 aux->needs_zext = true; 15502 15503 /* Any arithmetic operations are allowed on arena pointers */ 15504 return 0; 15505 } 15506 15507 if (dst_reg->type != SCALAR_VALUE) 15508 ptr_reg = dst_reg; 15509 15510 if (BPF_SRC(insn->code) == BPF_X) { 15511 src_reg = ®s[insn->src_reg]; 15512 if (src_reg->type != SCALAR_VALUE) { 15513 if (dst_reg->type != SCALAR_VALUE) { 15514 /* Combining two pointers by any ALU op yields 15515 * an arbitrary scalar. Disallow all math except 15516 * pointer subtraction 15517 */ 15518 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 15519 mark_reg_unknown(env, regs, insn->dst_reg); 15520 return 0; 15521 } 15522 verbose(env, "R%d pointer %s pointer prohibited\n", 15523 insn->dst_reg, 15524 bpf_alu_string[opcode >> 4]); 15525 return -EACCES; 15526 } else { 15527 /* scalar += pointer 15528 * This is legal, but we have to reverse our 15529 * src/dest handling in computing the range 15530 */ 15531 err = mark_chain_precision(env, insn->dst_reg); 15532 if (err) 15533 return err; 15534 return adjust_ptr_min_max_vals(env, insn, 15535 src_reg, dst_reg); 15536 } 15537 } else if (ptr_reg) { 15538 /* pointer += scalar */ 15539 err = mark_chain_precision(env, insn->src_reg); 15540 if (err) 15541 return err; 15542 return adjust_ptr_min_max_vals(env, insn, 15543 dst_reg, src_reg); 15544 } else if (dst_reg->precise) { 15545 /* if dst_reg is precise, src_reg should be precise as well */ 15546 err = mark_chain_precision(env, insn->src_reg); 15547 if (err) 15548 return err; 15549 } 15550 } else { 15551 /* Pretend the src is a reg with a known value, since we only 15552 * need to be able to read from this state. 15553 */ 15554 off_reg.type = SCALAR_VALUE; 15555 __mark_reg_known(&off_reg, insn->imm); 15556 src_reg = &off_reg; 15557 if (ptr_reg) /* pointer += K */ 15558 return adjust_ptr_min_max_vals(env, insn, 15559 ptr_reg, src_reg); 15560 } 15561 15562 /* Got here implies adding two SCALAR_VALUEs */ 15563 if (WARN_ON_ONCE(ptr_reg)) { 15564 print_verifier_state(env, vstate, vstate->curframe, true); 15565 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 15566 return -EFAULT; 15567 } 15568 if (WARN_ON(!src_reg)) { 15569 print_verifier_state(env, vstate, vstate->curframe, true); 15570 verbose(env, "verifier internal error: no src_reg\n"); 15571 return -EFAULT; 15572 } 15573 err = adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 15574 if (err) 15575 return err; 15576 /* 15577 * Compilers can generate the code 15578 * r1 = r2 15579 * r1 += 0x1 15580 * if r2 < 1000 goto ... 15581 * use r1 in memory access 15582 * So for 64-bit alu remember constant delta between r2 and r1 and 15583 * update r1 after 'if' condition. 15584 */ 15585 if (env->bpf_capable && 15586 BPF_OP(insn->code) == BPF_ADD && !alu32 && 15587 dst_reg->id && is_reg_const(src_reg, false)) { 15588 u64 val = reg_const_value(src_reg, false); 15589 15590 if ((dst_reg->id & BPF_ADD_CONST) || 15591 /* prevent overflow in sync_linked_regs() later */ 15592 val > (u32)S32_MAX) { 15593 /* 15594 * If the register already went through rX += val 15595 * we cannot accumulate another val into rx->off. 15596 */ 15597 dst_reg->off = 0; 15598 dst_reg->id = 0; 15599 } else { 15600 dst_reg->id |= BPF_ADD_CONST; 15601 dst_reg->off = val; 15602 } 15603 } else { 15604 /* 15605 * Make sure ID is cleared otherwise dst_reg min/max could be 15606 * incorrectly propagated into other registers by sync_linked_regs() 15607 */ 15608 dst_reg->id = 0; 15609 } 15610 return 0; 15611 } 15612 15613 /* check validity of 32-bit and 64-bit arithmetic operations */ 15614 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 15615 { 15616 struct bpf_reg_state *regs = cur_regs(env); 15617 u8 opcode = BPF_OP(insn->code); 15618 int err; 15619 15620 if (opcode == BPF_END || opcode == BPF_NEG) { 15621 if (opcode == BPF_NEG) { 15622 if (BPF_SRC(insn->code) != BPF_K || 15623 insn->src_reg != BPF_REG_0 || 15624 insn->off != 0 || insn->imm != 0) { 15625 verbose(env, "BPF_NEG uses reserved fields\n"); 15626 return -EINVAL; 15627 } 15628 } else { 15629 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 15630 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 15631 (BPF_CLASS(insn->code) == BPF_ALU64 && 15632 BPF_SRC(insn->code) != BPF_TO_LE)) { 15633 verbose(env, "BPF_END uses reserved fields\n"); 15634 return -EINVAL; 15635 } 15636 } 15637 15638 /* check src operand */ 15639 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 15640 if (err) 15641 return err; 15642 15643 if (is_pointer_value(env, insn->dst_reg)) { 15644 verbose(env, "R%d pointer arithmetic prohibited\n", 15645 insn->dst_reg); 15646 return -EACCES; 15647 } 15648 15649 /* check dest operand */ 15650 if (opcode == BPF_NEG && 15651 regs[insn->dst_reg].type == SCALAR_VALUE) { 15652 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 15653 err = err ?: adjust_scalar_min_max_vals(env, insn, 15654 ®s[insn->dst_reg], 15655 regs[insn->dst_reg]); 15656 } else { 15657 err = check_reg_arg(env, insn->dst_reg, DST_OP); 15658 } 15659 if (err) 15660 return err; 15661 15662 } else if (opcode == BPF_MOV) { 15663 15664 if (BPF_SRC(insn->code) == BPF_X) { 15665 if (BPF_CLASS(insn->code) == BPF_ALU) { 15666 if ((insn->off != 0 && insn->off != 8 && insn->off != 16) || 15667 insn->imm) { 15668 verbose(env, "BPF_MOV uses reserved fields\n"); 15669 return -EINVAL; 15670 } 15671 } else if (insn->off == BPF_ADDR_SPACE_CAST) { 15672 if (insn->imm != 1 && insn->imm != 1u << 16) { 15673 verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n"); 15674 return -EINVAL; 15675 } 15676 if (!env->prog->aux->arena) { 15677 verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n"); 15678 return -EINVAL; 15679 } 15680 } else { 15681 if ((insn->off != 0 && insn->off != 8 && insn->off != 16 && 15682 insn->off != 32) || insn->imm) { 15683 verbose(env, "BPF_MOV uses reserved fields\n"); 15684 return -EINVAL; 15685 } 15686 } 15687 15688 /* check src operand */ 15689 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15690 if (err) 15691 return err; 15692 } else { 15693 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 15694 verbose(env, "BPF_MOV uses reserved fields\n"); 15695 return -EINVAL; 15696 } 15697 } 15698 15699 /* check dest operand, mark as required later */ 15700 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 15701 if (err) 15702 return err; 15703 15704 if (BPF_SRC(insn->code) == BPF_X) { 15705 struct bpf_reg_state *src_reg = regs + insn->src_reg; 15706 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 15707 15708 if (BPF_CLASS(insn->code) == BPF_ALU64) { 15709 if (insn->imm) { 15710 /* off == BPF_ADDR_SPACE_CAST */ 15711 mark_reg_unknown(env, regs, insn->dst_reg); 15712 if (insn->imm == 1) { /* cast from as(1) to as(0) */ 15713 dst_reg->type = PTR_TO_ARENA; 15714 /* PTR_TO_ARENA is 32-bit */ 15715 dst_reg->subreg_def = env->insn_idx + 1; 15716 } 15717 } else if (insn->off == 0) { 15718 /* case: R1 = R2 15719 * copy register state to dest reg 15720 */ 15721 assign_scalar_id_before_mov(env, src_reg); 15722 copy_register_state(dst_reg, src_reg); 15723 dst_reg->subreg_def = DEF_NOT_SUBREG; 15724 } else { 15725 /* case: R1 = (s8, s16 s32)R2 */ 15726 if (is_pointer_value(env, insn->src_reg)) { 15727 verbose(env, 15728 "R%d sign-extension part of pointer\n", 15729 insn->src_reg); 15730 return -EACCES; 15731 } else if (src_reg->type == SCALAR_VALUE) { 15732 bool no_sext; 15733 15734 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 15735 if (no_sext) 15736 assign_scalar_id_before_mov(env, src_reg); 15737 copy_register_state(dst_reg, src_reg); 15738 if (!no_sext) 15739 dst_reg->id = 0; 15740 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 15741 dst_reg->subreg_def = DEF_NOT_SUBREG; 15742 } else { 15743 mark_reg_unknown(env, regs, insn->dst_reg); 15744 } 15745 } 15746 } else { 15747 /* R1 = (u32) R2 */ 15748 if (is_pointer_value(env, insn->src_reg)) { 15749 verbose(env, 15750 "R%d partial copy of pointer\n", 15751 insn->src_reg); 15752 return -EACCES; 15753 } else if (src_reg->type == SCALAR_VALUE) { 15754 if (insn->off == 0) { 15755 bool is_src_reg_u32 = get_reg_width(src_reg) <= 32; 15756 15757 if (is_src_reg_u32) 15758 assign_scalar_id_before_mov(env, src_reg); 15759 copy_register_state(dst_reg, src_reg); 15760 /* Make sure ID is cleared if src_reg is not in u32 15761 * range otherwise dst_reg min/max could be incorrectly 15762 * propagated into src_reg by sync_linked_regs() 15763 */ 15764 if (!is_src_reg_u32) 15765 dst_reg->id = 0; 15766 dst_reg->subreg_def = env->insn_idx + 1; 15767 } else { 15768 /* case: W1 = (s8, s16)W2 */ 15769 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 15770 15771 if (no_sext) 15772 assign_scalar_id_before_mov(env, src_reg); 15773 copy_register_state(dst_reg, src_reg); 15774 if (!no_sext) 15775 dst_reg->id = 0; 15776 dst_reg->subreg_def = env->insn_idx + 1; 15777 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 15778 } 15779 } else { 15780 mark_reg_unknown(env, regs, 15781 insn->dst_reg); 15782 } 15783 zext_32_to_64(dst_reg); 15784 reg_bounds_sync(dst_reg); 15785 } 15786 } else { 15787 /* case: R = imm 15788 * remember the value we stored into this reg 15789 */ 15790 /* clear any state __mark_reg_known doesn't set */ 15791 mark_reg_unknown(env, regs, insn->dst_reg); 15792 regs[insn->dst_reg].type = SCALAR_VALUE; 15793 if (BPF_CLASS(insn->code) == BPF_ALU64) { 15794 __mark_reg_known(regs + insn->dst_reg, 15795 insn->imm); 15796 } else { 15797 __mark_reg_known(regs + insn->dst_reg, 15798 (u32)insn->imm); 15799 } 15800 } 15801 15802 } else if (opcode > BPF_END) { 15803 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 15804 return -EINVAL; 15805 15806 } else { /* all other ALU ops: and, sub, xor, add, ... */ 15807 15808 if (BPF_SRC(insn->code) == BPF_X) { 15809 if (insn->imm != 0 || (insn->off != 0 && insn->off != 1) || 15810 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 15811 verbose(env, "BPF_ALU uses reserved fields\n"); 15812 return -EINVAL; 15813 } 15814 /* check src1 operand */ 15815 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15816 if (err) 15817 return err; 15818 } else { 15819 if (insn->src_reg != BPF_REG_0 || (insn->off != 0 && insn->off != 1) || 15820 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 15821 verbose(env, "BPF_ALU uses reserved fields\n"); 15822 return -EINVAL; 15823 } 15824 } 15825 15826 /* check src2 operand */ 15827 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 15828 if (err) 15829 return err; 15830 15831 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 15832 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 15833 verbose(env, "div by zero\n"); 15834 return -EINVAL; 15835 } 15836 15837 if ((opcode == BPF_LSH || opcode == BPF_RSH || 15838 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 15839 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 15840 15841 if (insn->imm < 0 || insn->imm >= size) { 15842 verbose(env, "invalid shift %d\n", insn->imm); 15843 return -EINVAL; 15844 } 15845 } 15846 15847 /* check dest operand */ 15848 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 15849 err = err ?: adjust_reg_min_max_vals(env, insn); 15850 if (err) 15851 return err; 15852 } 15853 15854 return reg_bounds_sanity_check(env, ®s[insn->dst_reg], "alu"); 15855 } 15856 15857 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 15858 struct bpf_reg_state *dst_reg, 15859 enum bpf_reg_type type, 15860 bool range_right_open) 15861 { 15862 struct bpf_func_state *state; 15863 struct bpf_reg_state *reg; 15864 int new_range; 15865 15866 if (dst_reg->off < 0 || 15867 (dst_reg->off == 0 && range_right_open)) 15868 /* This doesn't give us any range */ 15869 return; 15870 15871 if (dst_reg->umax_value > MAX_PACKET_OFF || 15872 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 15873 /* Risk of overflow. For instance, ptr + (1<<63) may be less 15874 * than pkt_end, but that's because it's also less than pkt. 15875 */ 15876 return; 15877 15878 new_range = dst_reg->off; 15879 if (range_right_open) 15880 new_range++; 15881 15882 /* Examples for register markings: 15883 * 15884 * pkt_data in dst register: 15885 * 15886 * r2 = r3; 15887 * r2 += 8; 15888 * if (r2 > pkt_end) goto <handle exception> 15889 * <access okay> 15890 * 15891 * r2 = r3; 15892 * r2 += 8; 15893 * if (r2 < pkt_end) goto <access okay> 15894 * <handle exception> 15895 * 15896 * Where: 15897 * r2 == dst_reg, pkt_end == src_reg 15898 * r2=pkt(id=n,off=8,r=0) 15899 * r3=pkt(id=n,off=0,r=0) 15900 * 15901 * pkt_data in src register: 15902 * 15903 * r2 = r3; 15904 * r2 += 8; 15905 * if (pkt_end >= r2) goto <access okay> 15906 * <handle exception> 15907 * 15908 * r2 = r3; 15909 * r2 += 8; 15910 * if (pkt_end <= r2) goto <handle exception> 15911 * <access okay> 15912 * 15913 * Where: 15914 * pkt_end == dst_reg, r2 == src_reg 15915 * r2=pkt(id=n,off=8,r=0) 15916 * r3=pkt(id=n,off=0,r=0) 15917 * 15918 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 15919 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 15920 * and [r3, r3 + 8-1) respectively is safe to access depending on 15921 * the check. 15922 */ 15923 15924 /* If our ids match, then we must have the same max_value. And we 15925 * don't care about the other reg's fixed offset, since if it's too big 15926 * the range won't allow anything. 15927 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 15928 */ 15929 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 15930 if (reg->type == type && reg->id == dst_reg->id) 15931 /* keep the maximum range already checked */ 15932 reg->range = max(reg->range, new_range); 15933 })); 15934 } 15935 15936 /* 15937 * <reg1> <op> <reg2>, currently assuming reg2 is a constant 15938 */ 15939 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 15940 u8 opcode, bool is_jmp32) 15941 { 15942 struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off; 15943 struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off; 15944 u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value; 15945 u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value; 15946 s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value; 15947 s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value; 15948 u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value; 15949 u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value; 15950 s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value; 15951 s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value; 15952 15953 switch (opcode) { 15954 case BPF_JEQ: 15955 /* constants, umin/umax and smin/smax checks would be 15956 * redundant in this case because they all should match 15957 */ 15958 if (tnum_is_const(t1) && tnum_is_const(t2)) 15959 return t1.value == t2.value; 15960 if (!tnum_overlap(t1, t2)) 15961 return 0; 15962 /* non-overlapping ranges */ 15963 if (umin1 > umax2 || umax1 < umin2) 15964 return 0; 15965 if (smin1 > smax2 || smax1 < smin2) 15966 return 0; 15967 if (!is_jmp32) { 15968 /* if 64-bit ranges are inconclusive, see if we can 15969 * utilize 32-bit subrange knowledge to eliminate 15970 * branches that can't be taken a priori 15971 */ 15972 if (reg1->u32_min_value > reg2->u32_max_value || 15973 reg1->u32_max_value < reg2->u32_min_value) 15974 return 0; 15975 if (reg1->s32_min_value > reg2->s32_max_value || 15976 reg1->s32_max_value < reg2->s32_min_value) 15977 return 0; 15978 } 15979 break; 15980 case BPF_JNE: 15981 /* constants, umin/umax and smin/smax checks would be 15982 * redundant in this case because they all should match 15983 */ 15984 if (tnum_is_const(t1) && tnum_is_const(t2)) 15985 return t1.value != t2.value; 15986 if (!tnum_overlap(t1, t2)) 15987 return 1; 15988 /* non-overlapping ranges */ 15989 if (umin1 > umax2 || umax1 < umin2) 15990 return 1; 15991 if (smin1 > smax2 || smax1 < smin2) 15992 return 1; 15993 if (!is_jmp32) { 15994 /* if 64-bit ranges are inconclusive, see if we can 15995 * utilize 32-bit subrange knowledge to eliminate 15996 * branches that can't be taken a priori 15997 */ 15998 if (reg1->u32_min_value > reg2->u32_max_value || 15999 reg1->u32_max_value < reg2->u32_min_value) 16000 return 1; 16001 if (reg1->s32_min_value > reg2->s32_max_value || 16002 reg1->s32_max_value < reg2->s32_min_value) 16003 return 1; 16004 } 16005 break; 16006 case BPF_JSET: 16007 if (!is_reg_const(reg2, is_jmp32)) { 16008 swap(reg1, reg2); 16009 swap(t1, t2); 16010 } 16011 if (!is_reg_const(reg2, is_jmp32)) 16012 return -1; 16013 if ((~t1.mask & t1.value) & t2.value) 16014 return 1; 16015 if (!((t1.mask | t1.value) & t2.value)) 16016 return 0; 16017 break; 16018 case BPF_JGT: 16019 if (umin1 > umax2) 16020 return 1; 16021 else if (umax1 <= umin2) 16022 return 0; 16023 break; 16024 case BPF_JSGT: 16025 if (smin1 > smax2) 16026 return 1; 16027 else if (smax1 <= smin2) 16028 return 0; 16029 break; 16030 case BPF_JLT: 16031 if (umax1 < umin2) 16032 return 1; 16033 else if (umin1 >= umax2) 16034 return 0; 16035 break; 16036 case BPF_JSLT: 16037 if (smax1 < smin2) 16038 return 1; 16039 else if (smin1 >= smax2) 16040 return 0; 16041 break; 16042 case BPF_JGE: 16043 if (umin1 >= umax2) 16044 return 1; 16045 else if (umax1 < umin2) 16046 return 0; 16047 break; 16048 case BPF_JSGE: 16049 if (smin1 >= smax2) 16050 return 1; 16051 else if (smax1 < smin2) 16052 return 0; 16053 break; 16054 case BPF_JLE: 16055 if (umax1 <= umin2) 16056 return 1; 16057 else if (umin1 > umax2) 16058 return 0; 16059 break; 16060 case BPF_JSLE: 16061 if (smax1 <= smin2) 16062 return 1; 16063 else if (smin1 > smax2) 16064 return 0; 16065 break; 16066 } 16067 16068 return -1; 16069 } 16070 16071 static int flip_opcode(u32 opcode) 16072 { 16073 /* How can we transform "a <op> b" into "b <op> a"? */ 16074 static const u8 opcode_flip[16] = { 16075 /* these stay the same */ 16076 [BPF_JEQ >> 4] = BPF_JEQ, 16077 [BPF_JNE >> 4] = BPF_JNE, 16078 [BPF_JSET >> 4] = BPF_JSET, 16079 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 16080 [BPF_JGE >> 4] = BPF_JLE, 16081 [BPF_JGT >> 4] = BPF_JLT, 16082 [BPF_JLE >> 4] = BPF_JGE, 16083 [BPF_JLT >> 4] = BPF_JGT, 16084 [BPF_JSGE >> 4] = BPF_JSLE, 16085 [BPF_JSGT >> 4] = BPF_JSLT, 16086 [BPF_JSLE >> 4] = BPF_JSGE, 16087 [BPF_JSLT >> 4] = BPF_JSGT 16088 }; 16089 return opcode_flip[opcode >> 4]; 16090 } 16091 16092 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 16093 struct bpf_reg_state *src_reg, 16094 u8 opcode) 16095 { 16096 struct bpf_reg_state *pkt; 16097 16098 if (src_reg->type == PTR_TO_PACKET_END) { 16099 pkt = dst_reg; 16100 } else if (dst_reg->type == PTR_TO_PACKET_END) { 16101 pkt = src_reg; 16102 opcode = flip_opcode(opcode); 16103 } else { 16104 return -1; 16105 } 16106 16107 if (pkt->range >= 0) 16108 return -1; 16109 16110 switch (opcode) { 16111 case BPF_JLE: 16112 /* pkt <= pkt_end */ 16113 fallthrough; 16114 case BPF_JGT: 16115 /* pkt > pkt_end */ 16116 if (pkt->range == BEYOND_PKT_END) 16117 /* pkt has at last one extra byte beyond pkt_end */ 16118 return opcode == BPF_JGT; 16119 break; 16120 case BPF_JLT: 16121 /* pkt < pkt_end */ 16122 fallthrough; 16123 case BPF_JGE: 16124 /* pkt >= pkt_end */ 16125 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 16126 return opcode == BPF_JGE; 16127 break; 16128 } 16129 return -1; 16130 } 16131 16132 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;" 16133 * and return: 16134 * 1 - branch will be taken and "goto target" will be executed 16135 * 0 - branch will not be taken and fall-through to next insn 16136 * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value 16137 * range [0,10] 16138 */ 16139 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 16140 u8 opcode, bool is_jmp32) 16141 { 16142 if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32) 16143 return is_pkt_ptr_branch_taken(reg1, reg2, opcode); 16144 16145 if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) { 16146 u64 val; 16147 16148 /* arrange that reg2 is a scalar, and reg1 is a pointer */ 16149 if (!is_reg_const(reg2, is_jmp32)) { 16150 opcode = flip_opcode(opcode); 16151 swap(reg1, reg2); 16152 } 16153 /* and ensure that reg2 is a constant */ 16154 if (!is_reg_const(reg2, is_jmp32)) 16155 return -1; 16156 16157 if (!reg_not_null(reg1)) 16158 return -1; 16159 16160 /* If pointer is valid tests against zero will fail so we can 16161 * use this to direct branch taken. 16162 */ 16163 val = reg_const_value(reg2, is_jmp32); 16164 if (val != 0) 16165 return -1; 16166 16167 switch (opcode) { 16168 case BPF_JEQ: 16169 return 0; 16170 case BPF_JNE: 16171 return 1; 16172 default: 16173 return -1; 16174 } 16175 } 16176 16177 /* now deal with two scalars, but not necessarily constants */ 16178 return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32); 16179 } 16180 16181 /* Opcode that corresponds to a *false* branch condition. 16182 * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2 16183 */ 16184 static u8 rev_opcode(u8 opcode) 16185 { 16186 switch (opcode) { 16187 case BPF_JEQ: return BPF_JNE; 16188 case BPF_JNE: return BPF_JEQ; 16189 /* JSET doesn't have it's reverse opcode in BPF, so add 16190 * BPF_X flag to denote the reverse of that operation 16191 */ 16192 case BPF_JSET: return BPF_JSET | BPF_X; 16193 case BPF_JSET | BPF_X: return BPF_JSET; 16194 case BPF_JGE: return BPF_JLT; 16195 case BPF_JGT: return BPF_JLE; 16196 case BPF_JLE: return BPF_JGT; 16197 case BPF_JLT: return BPF_JGE; 16198 case BPF_JSGE: return BPF_JSLT; 16199 case BPF_JSGT: return BPF_JSLE; 16200 case BPF_JSLE: return BPF_JSGT; 16201 case BPF_JSLT: return BPF_JSGE; 16202 default: return 0; 16203 } 16204 } 16205 16206 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */ 16207 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 16208 u8 opcode, bool is_jmp32) 16209 { 16210 struct tnum t; 16211 u64 val; 16212 16213 /* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */ 16214 switch (opcode) { 16215 case BPF_JGE: 16216 case BPF_JGT: 16217 case BPF_JSGE: 16218 case BPF_JSGT: 16219 opcode = flip_opcode(opcode); 16220 swap(reg1, reg2); 16221 break; 16222 default: 16223 break; 16224 } 16225 16226 switch (opcode) { 16227 case BPF_JEQ: 16228 if (is_jmp32) { 16229 reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 16230 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 16231 reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 16232 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 16233 reg2->u32_min_value = reg1->u32_min_value; 16234 reg2->u32_max_value = reg1->u32_max_value; 16235 reg2->s32_min_value = reg1->s32_min_value; 16236 reg2->s32_max_value = reg1->s32_max_value; 16237 16238 t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off)); 16239 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 16240 reg2->var_off = tnum_with_subreg(reg2->var_off, t); 16241 } else { 16242 reg1->umin_value = max(reg1->umin_value, reg2->umin_value); 16243 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 16244 reg1->smin_value = max(reg1->smin_value, reg2->smin_value); 16245 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 16246 reg2->umin_value = reg1->umin_value; 16247 reg2->umax_value = reg1->umax_value; 16248 reg2->smin_value = reg1->smin_value; 16249 reg2->smax_value = reg1->smax_value; 16250 16251 reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off); 16252 reg2->var_off = reg1->var_off; 16253 } 16254 break; 16255 case BPF_JNE: 16256 if (!is_reg_const(reg2, is_jmp32)) 16257 swap(reg1, reg2); 16258 if (!is_reg_const(reg2, is_jmp32)) 16259 break; 16260 16261 /* try to recompute the bound of reg1 if reg2 is a const and 16262 * is exactly the edge of reg1. 16263 */ 16264 val = reg_const_value(reg2, is_jmp32); 16265 if (is_jmp32) { 16266 /* u32_min_value is not equal to 0xffffffff at this point, 16267 * because otherwise u32_max_value is 0xffffffff as well, 16268 * in such a case both reg1 and reg2 would be constants, 16269 * jump would be predicted and reg_set_min_max() won't 16270 * be called. 16271 * 16272 * Same reasoning works for all {u,s}{min,max}{32,64} cases 16273 * below. 16274 */ 16275 if (reg1->u32_min_value == (u32)val) 16276 reg1->u32_min_value++; 16277 if (reg1->u32_max_value == (u32)val) 16278 reg1->u32_max_value--; 16279 if (reg1->s32_min_value == (s32)val) 16280 reg1->s32_min_value++; 16281 if (reg1->s32_max_value == (s32)val) 16282 reg1->s32_max_value--; 16283 } else { 16284 if (reg1->umin_value == (u64)val) 16285 reg1->umin_value++; 16286 if (reg1->umax_value == (u64)val) 16287 reg1->umax_value--; 16288 if (reg1->smin_value == (s64)val) 16289 reg1->smin_value++; 16290 if (reg1->smax_value == (s64)val) 16291 reg1->smax_value--; 16292 } 16293 break; 16294 case BPF_JSET: 16295 if (!is_reg_const(reg2, is_jmp32)) 16296 swap(reg1, reg2); 16297 if (!is_reg_const(reg2, is_jmp32)) 16298 break; 16299 val = reg_const_value(reg2, is_jmp32); 16300 /* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X) 16301 * requires single bit to learn something useful. E.g., if we 16302 * know that `r1 & 0x3` is true, then which bits (0, 1, or both) 16303 * are actually set? We can learn something definite only if 16304 * it's a single-bit value to begin with. 16305 * 16306 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have 16307 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor 16308 * bit 1 is set, which we can readily use in adjustments. 16309 */ 16310 if (!is_power_of_2(val)) 16311 break; 16312 if (is_jmp32) { 16313 t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val)); 16314 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 16315 } else { 16316 reg1->var_off = tnum_or(reg1->var_off, tnum_const(val)); 16317 } 16318 break; 16319 case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */ 16320 if (!is_reg_const(reg2, is_jmp32)) 16321 swap(reg1, reg2); 16322 if (!is_reg_const(reg2, is_jmp32)) 16323 break; 16324 val = reg_const_value(reg2, is_jmp32); 16325 /* Forget the ranges before narrowing tnums, to avoid invariant 16326 * violations if we're on a dead branch. 16327 */ 16328 __mark_reg_unbounded(reg1); 16329 if (is_jmp32) { 16330 t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val)); 16331 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 16332 } else { 16333 reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val)); 16334 } 16335 break; 16336 case BPF_JLE: 16337 if (is_jmp32) { 16338 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 16339 reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 16340 } else { 16341 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 16342 reg2->umin_value = max(reg1->umin_value, reg2->umin_value); 16343 } 16344 break; 16345 case BPF_JLT: 16346 if (is_jmp32) { 16347 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1); 16348 reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value); 16349 } else { 16350 reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1); 16351 reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value); 16352 } 16353 break; 16354 case BPF_JSLE: 16355 if (is_jmp32) { 16356 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 16357 reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 16358 } else { 16359 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 16360 reg2->smin_value = max(reg1->smin_value, reg2->smin_value); 16361 } 16362 break; 16363 case BPF_JSLT: 16364 if (is_jmp32) { 16365 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1); 16366 reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value); 16367 } else { 16368 reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1); 16369 reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value); 16370 } 16371 break; 16372 default: 16373 return; 16374 } 16375 } 16376 16377 /* Adjusts the register min/max values in the case that the dst_reg and 16378 * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K 16379 * check, in which case we have a fake SCALAR_VALUE representing insn->imm). 16380 * Technically we can do similar adjustments for pointers to the same object, 16381 * but we don't support that right now. 16382 */ 16383 static int reg_set_min_max(struct bpf_verifier_env *env, 16384 struct bpf_reg_state *true_reg1, 16385 struct bpf_reg_state *true_reg2, 16386 struct bpf_reg_state *false_reg1, 16387 struct bpf_reg_state *false_reg2, 16388 u8 opcode, bool is_jmp32) 16389 { 16390 int err; 16391 16392 /* If either register is a pointer, we can't learn anything about its 16393 * variable offset from the compare (unless they were a pointer into 16394 * the same object, but we don't bother with that). 16395 */ 16396 if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE) 16397 return 0; 16398 16399 /* fallthrough (FALSE) branch */ 16400 regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32); 16401 reg_bounds_sync(false_reg1); 16402 reg_bounds_sync(false_reg2); 16403 16404 /* jump (TRUE) branch */ 16405 regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32); 16406 reg_bounds_sync(true_reg1); 16407 reg_bounds_sync(true_reg2); 16408 16409 err = reg_bounds_sanity_check(env, true_reg1, "true_reg1"); 16410 err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2"); 16411 err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1"); 16412 err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2"); 16413 return err; 16414 } 16415 16416 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 16417 struct bpf_reg_state *reg, u32 id, 16418 bool is_null) 16419 { 16420 if (type_may_be_null(reg->type) && reg->id == id && 16421 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 16422 /* Old offset (both fixed and variable parts) should have been 16423 * known-zero, because we don't allow pointer arithmetic on 16424 * pointers that might be NULL. If we see this happening, don't 16425 * convert the register. 16426 * 16427 * But in some cases, some helpers that return local kptrs 16428 * advance offset for the returned pointer. In those cases, it 16429 * is fine to expect to see reg->off. 16430 */ 16431 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 16432 return; 16433 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 16434 WARN_ON_ONCE(reg->off)) 16435 return; 16436 16437 if (is_null) { 16438 reg->type = SCALAR_VALUE; 16439 /* We don't need id and ref_obj_id from this point 16440 * onwards anymore, thus we should better reset it, 16441 * so that state pruning has chances to take effect. 16442 */ 16443 reg->id = 0; 16444 reg->ref_obj_id = 0; 16445 16446 return; 16447 } 16448 16449 mark_ptr_not_null_reg(reg); 16450 16451 if (!reg_may_point_to_spin_lock(reg)) { 16452 /* For not-NULL ptr, reg->ref_obj_id will be reset 16453 * in release_reference(). 16454 * 16455 * reg->id is still used by spin_lock ptr. Other 16456 * than spin_lock ptr type, reg->id can be reset. 16457 */ 16458 reg->id = 0; 16459 } 16460 } 16461 } 16462 16463 /* The logic is similar to find_good_pkt_pointers(), both could eventually 16464 * be folded together at some point. 16465 */ 16466 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 16467 bool is_null) 16468 { 16469 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 16470 struct bpf_reg_state *regs = state->regs, *reg; 16471 u32 ref_obj_id = regs[regno].ref_obj_id; 16472 u32 id = regs[regno].id; 16473 16474 if (ref_obj_id && ref_obj_id == id && is_null) 16475 /* regs[regno] is in the " == NULL" branch. 16476 * No one could have freed the reference state before 16477 * doing the NULL check. 16478 */ 16479 WARN_ON_ONCE(release_reference_nomark(vstate, id)); 16480 16481 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 16482 mark_ptr_or_null_reg(state, reg, id, is_null); 16483 })); 16484 } 16485 16486 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 16487 struct bpf_reg_state *dst_reg, 16488 struct bpf_reg_state *src_reg, 16489 struct bpf_verifier_state *this_branch, 16490 struct bpf_verifier_state *other_branch) 16491 { 16492 if (BPF_SRC(insn->code) != BPF_X) 16493 return false; 16494 16495 /* Pointers are always 64-bit. */ 16496 if (BPF_CLASS(insn->code) == BPF_JMP32) 16497 return false; 16498 16499 switch (BPF_OP(insn->code)) { 16500 case BPF_JGT: 16501 if ((dst_reg->type == PTR_TO_PACKET && 16502 src_reg->type == PTR_TO_PACKET_END) || 16503 (dst_reg->type == PTR_TO_PACKET_META && 16504 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 16505 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 16506 find_good_pkt_pointers(this_branch, dst_reg, 16507 dst_reg->type, false); 16508 mark_pkt_end(other_branch, insn->dst_reg, true); 16509 } else if ((dst_reg->type == PTR_TO_PACKET_END && 16510 src_reg->type == PTR_TO_PACKET) || 16511 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 16512 src_reg->type == PTR_TO_PACKET_META)) { 16513 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 16514 find_good_pkt_pointers(other_branch, src_reg, 16515 src_reg->type, true); 16516 mark_pkt_end(this_branch, insn->src_reg, false); 16517 } else { 16518 return false; 16519 } 16520 break; 16521 case BPF_JLT: 16522 if ((dst_reg->type == PTR_TO_PACKET && 16523 src_reg->type == PTR_TO_PACKET_END) || 16524 (dst_reg->type == PTR_TO_PACKET_META && 16525 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 16526 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 16527 find_good_pkt_pointers(other_branch, dst_reg, 16528 dst_reg->type, true); 16529 mark_pkt_end(this_branch, insn->dst_reg, false); 16530 } else if ((dst_reg->type == PTR_TO_PACKET_END && 16531 src_reg->type == PTR_TO_PACKET) || 16532 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 16533 src_reg->type == PTR_TO_PACKET_META)) { 16534 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 16535 find_good_pkt_pointers(this_branch, src_reg, 16536 src_reg->type, false); 16537 mark_pkt_end(other_branch, insn->src_reg, true); 16538 } else { 16539 return false; 16540 } 16541 break; 16542 case BPF_JGE: 16543 if ((dst_reg->type == PTR_TO_PACKET && 16544 src_reg->type == PTR_TO_PACKET_END) || 16545 (dst_reg->type == PTR_TO_PACKET_META && 16546 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 16547 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 16548 find_good_pkt_pointers(this_branch, dst_reg, 16549 dst_reg->type, true); 16550 mark_pkt_end(other_branch, insn->dst_reg, false); 16551 } else if ((dst_reg->type == PTR_TO_PACKET_END && 16552 src_reg->type == PTR_TO_PACKET) || 16553 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 16554 src_reg->type == PTR_TO_PACKET_META)) { 16555 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 16556 find_good_pkt_pointers(other_branch, src_reg, 16557 src_reg->type, false); 16558 mark_pkt_end(this_branch, insn->src_reg, true); 16559 } else { 16560 return false; 16561 } 16562 break; 16563 case BPF_JLE: 16564 if ((dst_reg->type == PTR_TO_PACKET && 16565 src_reg->type == PTR_TO_PACKET_END) || 16566 (dst_reg->type == PTR_TO_PACKET_META && 16567 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 16568 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 16569 find_good_pkt_pointers(other_branch, dst_reg, 16570 dst_reg->type, false); 16571 mark_pkt_end(this_branch, insn->dst_reg, true); 16572 } else if ((dst_reg->type == PTR_TO_PACKET_END && 16573 src_reg->type == PTR_TO_PACKET) || 16574 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 16575 src_reg->type == PTR_TO_PACKET_META)) { 16576 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 16577 find_good_pkt_pointers(this_branch, src_reg, 16578 src_reg->type, true); 16579 mark_pkt_end(other_branch, insn->src_reg, false); 16580 } else { 16581 return false; 16582 } 16583 break; 16584 default: 16585 return false; 16586 } 16587 16588 return true; 16589 } 16590 16591 static void __collect_linked_regs(struct linked_regs *reg_set, struct bpf_reg_state *reg, 16592 u32 id, u32 frameno, u32 spi_or_reg, bool is_reg) 16593 { 16594 struct linked_reg *e; 16595 16596 if (reg->type != SCALAR_VALUE || (reg->id & ~BPF_ADD_CONST) != id) 16597 return; 16598 16599 e = linked_regs_push(reg_set); 16600 if (e) { 16601 e->frameno = frameno; 16602 e->is_reg = is_reg; 16603 e->regno = spi_or_reg; 16604 } else { 16605 reg->id = 0; 16606 } 16607 } 16608 16609 /* For all R being scalar registers or spilled scalar registers 16610 * in verifier state, save R in linked_regs if R->id == id. 16611 * If there are too many Rs sharing same id, reset id for leftover Rs. 16612 */ 16613 static void collect_linked_regs(struct bpf_verifier_state *vstate, u32 id, 16614 struct linked_regs *linked_regs) 16615 { 16616 struct bpf_func_state *func; 16617 struct bpf_reg_state *reg; 16618 int i, j; 16619 16620 id = id & ~BPF_ADD_CONST; 16621 for (i = vstate->curframe; i >= 0; i--) { 16622 func = vstate->frame[i]; 16623 for (j = 0; j < BPF_REG_FP; j++) { 16624 reg = &func->regs[j]; 16625 __collect_linked_regs(linked_regs, reg, id, i, j, true); 16626 } 16627 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 16628 if (!is_spilled_reg(&func->stack[j])) 16629 continue; 16630 reg = &func->stack[j].spilled_ptr; 16631 __collect_linked_regs(linked_regs, reg, id, i, j, false); 16632 } 16633 } 16634 } 16635 16636 /* For all R in linked_regs, copy known_reg range into R 16637 * if R->id == known_reg->id. 16638 */ 16639 static void sync_linked_regs(struct bpf_verifier_state *vstate, struct bpf_reg_state *known_reg, 16640 struct linked_regs *linked_regs) 16641 { 16642 struct bpf_reg_state fake_reg; 16643 struct bpf_reg_state *reg; 16644 struct linked_reg *e; 16645 int i; 16646 16647 for (i = 0; i < linked_regs->cnt; ++i) { 16648 e = &linked_regs->entries[i]; 16649 reg = e->is_reg ? &vstate->frame[e->frameno]->regs[e->regno] 16650 : &vstate->frame[e->frameno]->stack[e->spi].spilled_ptr; 16651 if (reg->type != SCALAR_VALUE || reg == known_reg) 16652 continue; 16653 if ((reg->id & ~BPF_ADD_CONST) != (known_reg->id & ~BPF_ADD_CONST)) 16654 continue; 16655 if ((!(reg->id & BPF_ADD_CONST) && !(known_reg->id & BPF_ADD_CONST)) || 16656 reg->off == known_reg->off) { 16657 s32 saved_subreg_def = reg->subreg_def; 16658 16659 copy_register_state(reg, known_reg); 16660 reg->subreg_def = saved_subreg_def; 16661 } else { 16662 s32 saved_subreg_def = reg->subreg_def; 16663 s32 saved_off = reg->off; 16664 16665 fake_reg.type = SCALAR_VALUE; 16666 __mark_reg_known(&fake_reg, (s32)reg->off - (s32)known_reg->off); 16667 16668 /* reg = known_reg; reg += delta */ 16669 copy_register_state(reg, known_reg); 16670 /* 16671 * Must preserve off, id and add_const flag, 16672 * otherwise another sync_linked_regs() will be incorrect. 16673 */ 16674 reg->off = saved_off; 16675 reg->subreg_def = saved_subreg_def; 16676 16677 scalar32_min_max_add(reg, &fake_reg); 16678 scalar_min_max_add(reg, &fake_reg); 16679 reg->var_off = tnum_add(reg->var_off, fake_reg.var_off); 16680 } 16681 } 16682 } 16683 16684 static int check_cond_jmp_op(struct bpf_verifier_env *env, 16685 struct bpf_insn *insn, int *insn_idx) 16686 { 16687 struct bpf_verifier_state *this_branch = env->cur_state; 16688 struct bpf_verifier_state *other_branch; 16689 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 16690 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 16691 struct bpf_reg_state *eq_branch_regs; 16692 struct linked_regs linked_regs = {}; 16693 u8 opcode = BPF_OP(insn->code); 16694 int insn_flags = 0; 16695 bool is_jmp32; 16696 int pred = -1; 16697 int err; 16698 16699 /* Only conditional jumps are expected to reach here. */ 16700 if (opcode == BPF_JA || opcode > BPF_JCOND) { 16701 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 16702 return -EINVAL; 16703 } 16704 16705 if (opcode == BPF_JCOND) { 16706 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 16707 int idx = *insn_idx; 16708 16709 if (insn->code != (BPF_JMP | BPF_JCOND) || 16710 insn->src_reg != BPF_MAY_GOTO || 16711 insn->dst_reg || insn->imm) { 16712 verbose(env, "invalid may_goto imm %d\n", insn->imm); 16713 return -EINVAL; 16714 } 16715 prev_st = find_prev_entry(env, cur_st->parent, idx); 16716 16717 /* branch out 'fallthrough' insn as a new state to explore */ 16718 queued_st = push_stack(env, idx + 1, idx, false); 16719 if (!queued_st) 16720 return -ENOMEM; 16721 16722 queued_st->may_goto_depth++; 16723 if (prev_st) 16724 widen_imprecise_scalars(env, prev_st, queued_st); 16725 *insn_idx += insn->off; 16726 return 0; 16727 } 16728 16729 /* check src2 operand */ 16730 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16731 if (err) 16732 return err; 16733 16734 dst_reg = ®s[insn->dst_reg]; 16735 if (BPF_SRC(insn->code) == BPF_X) { 16736 if (insn->imm != 0) { 16737 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 16738 return -EINVAL; 16739 } 16740 16741 /* check src1 operand */ 16742 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16743 if (err) 16744 return err; 16745 16746 src_reg = ®s[insn->src_reg]; 16747 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 16748 is_pointer_value(env, insn->src_reg)) { 16749 verbose(env, "R%d pointer comparison prohibited\n", 16750 insn->src_reg); 16751 return -EACCES; 16752 } 16753 16754 if (src_reg->type == PTR_TO_STACK) 16755 insn_flags |= INSN_F_SRC_REG_STACK; 16756 if (dst_reg->type == PTR_TO_STACK) 16757 insn_flags |= INSN_F_DST_REG_STACK; 16758 } else { 16759 if (insn->src_reg != BPF_REG_0) { 16760 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 16761 return -EINVAL; 16762 } 16763 src_reg = &env->fake_reg[0]; 16764 memset(src_reg, 0, sizeof(*src_reg)); 16765 src_reg->type = SCALAR_VALUE; 16766 __mark_reg_known(src_reg, insn->imm); 16767 16768 if (dst_reg->type == PTR_TO_STACK) 16769 insn_flags |= INSN_F_DST_REG_STACK; 16770 } 16771 16772 if (insn_flags) { 16773 err = push_jmp_history(env, this_branch, insn_flags, 0); 16774 if (err) 16775 return err; 16776 } 16777 16778 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 16779 pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32); 16780 if (pred >= 0) { 16781 /* If we get here with a dst_reg pointer type it is because 16782 * above is_branch_taken() special cased the 0 comparison. 16783 */ 16784 if (!__is_pointer_value(false, dst_reg)) 16785 err = mark_chain_precision(env, insn->dst_reg); 16786 if (BPF_SRC(insn->code) == BPF_X && !err && 16787 !__is_pointer_value(false, src_reg)) 16788 err = mark_chain_precision(env, insn->src_reg); 16789 if (err) 16790 return err; 16791 } 16792 16793 if (pred == 1) { 16794 /* Only follow the goto, ignore fall-through. If needed, push 16795 * the fall-through branch for simulation under speculative 16796 * execution. 16797 */ 16798 if (!env->bypass_spec_v1 && 16799 !sanitize_speculative_path(env, insn, *insn_idx + 1, 16800 *insn_idx)) 16801 return -EFAULT; 16802 if (env->log.level & BPF_LOG_LEVEL) 16803 print_insn_state(env, this_branch, this_branch->curframe); 16804 *insn_idx += insn->off; 16805 return 0; 16806 } else if (pred == 0) { 16807 /* Only follow the fall-through branch, since that's where the 16808 * program will go. If needed, push the goto branch for 16809 * simulation under speculative execution. 16810 */ 16811 if (!env->bypass_spec_v1 && 16812 !sanitize_speculative_path(env, insn, 16813 *insn_idx + insn->off + 1, 16814 *insn_idx)) 16815 return -EFAULT; 16816 if (env->log.level & BPF_LOG_LEVEL) 16817 print_insn_state(env, this_branch, this_branch->curframe); 16818 return 0; 16819 } 16820 16821 /* Push scalar registers sharing same ID to jump history, 16822 * do this before creating 'other_branch', so that both 16823 * 'this_branch' and 'other_branch' share this history 16824 * if parent state is created. 16825 */ 16826 if (BPF_SRC(insn->code) == BPF_X && src_reg->type == SCALAR_VALUE && src_reg->id) 16827 collect_linked_regs(this_branch, src_reg->id, &linked_regs); 16828 if (dst_reg->type == SCALAR_VALUE && dst_reg->id) 16829 collect_linked_regs(this_branch, dst_reg->id, &linked_regs); 16830 if (linked_regs.cnt > 1) { 16831 err = push_jmp_history(env, this_branch, 0, linked_regs_pack(&linked_regs)); 16832 if (err) 16833 return err; 16834 } 16835 16836 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 16837 false); 16838 if (!other_branch) 16839 return -EFAULT; 16840 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 16841 16842 if (BPF_SRC(insn->code) == BPF_X) { 16843 err = reg_set_min_max(env, 16844 &other_branch_regs[insn->dst_reg], 16845 &other_branch_regs[insn->src_reg], 16846 dst_reg, src_reg, opcode, is_jmp32); 16847 } else /* BPF_SRC(insn->code) == BPF_K */ { 16848 /* reg_set_min_max() can mangle the fake_reg. Make a copy 16849 * so that these are two different memory locations. The 16850 * src_reg is not used beyond here in context of K. 16851 */ 16852 memcpy(&env->fake_reg[1], &env->fake_reg[0], 16853 sizeof(env->fake_reg[0])); 16854 err = reg_set_min_max(env, 16855 &other_branch_regs[insn->dst_reg], 16856 &env->fake_reg[0], 16857 dst_reg, &env->fake_reg[1], 16858 opcode, is_jmp32); 16859 } 16860 if (err) 16861 return err; 16862 16863 if (BPF_SRC(insn->code) == BPF_X && 16864 src_reg->type == SCALAR_VALUE && src_reg->id && 16865 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 16866 sync_linked_regs(this_branch, src_reg, &linked_regs); 16867 sync_linked_regs(other_branch, &other_branch_regs[insn->src_reg], &linked_regs); 16868 } 16869 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 16870 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 16871 sync_linked_regs(this_branch, dst_reg, &linked_regs); 16872 sync_linked_regs(other_branch, &other_branch_regs[insn->dst_reg], &linked_regs); 16873 } 16874 16875 /* if one pointer register is compared to another pointer 16876 * register check if PTR_MAYBE_NULL could be lifted. 16877 * E.g. register A - maybe null 16878 * register B - not null 16879 * for JNE A, B, ... - A is not null in the false branch; 16880 * for JEQ A, B, ... - A is not null in the true branch. 16881 * 16882 * Since PTR_TO_BTF_ID points to a kernel struct that does 16883 * not need to be null checked by the BPF program, i.e., 16884 * could be null even without PTR_MAYBE_NULL marking, so 16885 * only propagate nullness when neither reg is that type. 16886 */ 16887 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 16888 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 16889 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 16890 base_type(src_reg->type) != PTR_TO_BTF_ID && 16891 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 16892 eq_branch_regs = NULL; 16893 switch (opcode) { 16894 case BPF_JEQ: 16895 eq_branch_regs = other_branch_regs; 16896 break; 16897 case BPF_JNE: 16898 eq_branch_regs = regs; 16899 break; 16900 default: 16901 /* do nothing */ 16902 break; 16903 } 16904 if (eq_branch_regs) { 16905 if (type_may_be_null(src_reg->type)) 16906 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 16907 else 16908 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 16909 } 16910 } 16911 16912 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 16913 * NOTE: these optimizations below are related with pointer comparison 16914 * which will never be JMP32. 16915 */ 16916 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 16917 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 16918 type_may_be_null(dst_reg->type)) { 16919 /* Mark all identical registers in each branch as either 16920 * safe or unknown depending R == 0 or R != 0 conditional. 16921 */ 16922 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 16923 opcode == BPF_JNE); 16924 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 16925 opcode == BPF_JEQ); 16926 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 16927 this_branch, other_branch) && 16928 is_pointer_value(env, insn->dst_reg)) { 16929 verbose(env, "R%d pointer comparison prohibited\n", 16930 insn->dst_reg); 16931 return -EACCES; 16932 } 16933 if (env->log.level & BPF_LOG_LEVEL) 16934 print_insn_state(env, this_branch, this_branch->curframe); 16935 return 0; 16936 } 16937 16938 /* verify BPF_LD_IMM64 instruction */ 16939 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 16940 { 16941 struct bpf_insn_aux_data *aux = cur_aux(env); 16942 struct bpf_reg_state *regs = cur_regs(env); 16943 struct bpf_reg_state *dst_reg; 16944 struct bpf_map *map; 16945 int err; 16946 16947 if (BPF_SIZE(insn->code) != BPF_DW) { 16948 verbose(env, "invalid BPF_LD_IMM insn\n"); 16949 return -EINVAL; 16950 } 16951 if (insn->off != 0) { 16952 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 16953 return -EINVAL; 16954 } 16955 16956 err = check_reg_arg(env, insn->dst_reg, DST_OP); 16957 if (err) 16958 return err; 16959 16960 dst_reg = ®s[insn->dst_reg]; 16961 if (insn->src_reg == 0) { 16962 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 16963 16964 dst_reg->type = SCALAR_VALUE; 16965 __mark_reg_known(®s[insn->dst_reg], imm); 16966 return 0; 16967 } 16968 16969 /* All special src_reg cases are listed below. From this point onwards 16970 * we either succeed and assign a corresponding dst_reg->type after 16971 * zeroing the offset, or fail and reject the program. 16972 */ 16973 mark_reg_known_zero(env, regs, insn->dst_reg); 16974 16975 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 16976 dst_reg->type = aux->btf_var.reg_type; 16977 switch (base_type(dst_reg->type)) { 16978 case PTR_TO_MEM: 16979 dst_reg->mem_size = aux->btf_var.mem_size; 16980 break; 16981 case PTR_TO_BTF_ID: 16982 dst_reg->btf = aux->btf_var.btf; 16983 dst_reg->btf_id = aux->btf_var.btf_id; 16984 break; 16985 default: 16986 verifier_bug(env, "pseudo btf id: unexpected dst reg type"); 16987 return -EFAULT; 16988 } 16989 return 0; 16990 } 16991 16992 if (insn->src_reg == BPF_PSEUDO_FUNC) { 16993 struct bpf_prog_aux *aux = env->prog->aux; 16994 u32 subprogno = find_subprog(env, 16995 env->insn_idx + insn->imm + 1); 16996 16997 if (!aux->func_info) { 16998 verbose(env, "missing btf func_info\n"); 16999 return -EINVAL; 17000 } 17001 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 17002 verbose(env, "callback function not static\n"); 17003 return -EINVAL; 17004 } 17005 17006 dst_reg->type = PTR_TO_FUNC; 17007 dst_reg->subprogno = subprogno; 17008 return 0; 17009 } 17010 17011 map = env->used_maps[aux->map_index]; 17012 dst_reg->map_ptr = map; 17013 17014 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 17015 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 17016 if (map->map_type == BPF_MAP_TYPE_ARENA) { 17017 __mark_reg_unknown(env, dst_reg); 17018 return 0; 17019 } 17020 dst_reg->type = PTR_TO_MAP_VALUE; 17021 dst_reg->off = aux->map_off; 17022 WARN_ON_ONCE(map->max_entries != 1); 17023 /* We want reg->id to be same (0) as map_value is not distinct */ 17024 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 17025 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 17026 dst_reg->type = CONST_PTR_TO_MAP; 17027 } else { 17028 verifier_bug(env, "unexpected src reg value for ldimm64"); 17029 return -EFAULT; 17030 } 17031 17032 return 0; 17033 } 17034 17035 static bool may_access_skb(enum bpf_prog_type type) 17036 { 17037 switch (type) { 17038 case BPF_PROG_TYPE_SOCKET_FILTER: 17039 case BPF_PROG_TYPE_SCHED_CLS: 17040 case BPF_PROG_TYPE_SCHED_ACT: 17041 return true; 17042 default: 17043 return false; 17044 } 17045 } 17046 17047 /* verify safety of LD_ABS|LD_IND instructions: 17048 * - they can only appear in the programs where ctx == skb 17049 * - since they are wrappers of function calls, they scratch R1-R5 registers, 17050 * preserve R6-R9, and store return value into R0 17051 * 17052 * Implicit input: 17053 * ctx == skb == R6 == CTX 17054 * 17055 * Explicit input: 17056 * SRC == any register 17057 * IMM == 32-bit immediate 17058 * 17059 * Output: 17060 * R0 - 8/16/32-bit skb data converted to cpu endianness 17061 */ 17062 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 17063 { 17064 struct bpf_reg_state *regs = cur_regs(env); 17065 static const int ctx_reg = BPF_REG_6; 17066 u8 mode = BPF_MODE(insn->code); 17067 int i, err; 17068 17069 if (!may_access_skb(resolve_prog_type(env->prog))) { 17070 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 17071 return -EINVAL; 17072 } 17073 17074 if (!env->ops->gen_ld_abs) { 17075 verifier_bug(env, "gen_ld_abs is null"); 17076 return -EFAULT; 17077 } 17078 17079 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 17080 BPF_SIZE(insn->code) == BPF_DW || 17081 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 17082 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 17083 return -EINVAL; 17084 } 17085 17086 /* check whether implicit source operand (register R6) is readable */ 17087 err = check_reg_arg(env, ctx_reg, SRC_OP); 17088 if (err) 17089 return err; 17090 17091 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 17092 * gen_ld_abs() may terminate the program at runtime, leading to 17093 * reference leak. 17094 */ 17095 err = check_resource_leak(env, false, true, "BPF_LD_[ABS|IND]"); 17096 if (err) 17097 return err; 17098 17099 if (regs[ctx_reg].type != PTR_TO_CTX) { 17100 verbose(env, 17101 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 17102 return -EINVAL; 17103 } 17104 17105 if (mode == BPF_IND) { 17106 /* check explicit source operand */ 17107 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17108 if (err) 17109 return err; 17110 } 17111 17112 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 17113 if (err < 0) 17114 return err; 17115 17116 /* reset caller saved regs to unreadable */ 17117 for (i = 0; i < CALLER_SAVED_REGS; i++) { 17118 mark_reg_not_init(env, regs, caller_saved[i]); 17119 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 17120 } 17121 17122 /* mark destination R0 register as readable, since it contains 17123 * the value fetched from the packet. 17124 * Already marked as written above. 17125 */ 17126 mark_reg_unknown(env, regs, BPF_REG_0); 17127 /* ld_abs load up to 32-bit skb data. */ 17128 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 17129 return 0; 17130 } 17131 17132 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name) 17133 { 17134 const char *exit_ctx = "At program exit"; 17135 struct tnum enforce_attach_type_range = tnum_unknown; 17136 const struct bpf_prog *prog = env->prog; 17137 struct bpf_reg_state *reg = reg_state(env, regno); 17138 struct bpf_retval_range range = retval_range(0, 1); 17139 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 17140 int err; 17141 struct bpf_func_state *frame = env->cur_state->frame[0]; 17142 const bool is_subprog = frame->subprogno; 17143 bool return_32bit = false; 17144 const struct btf_type *reg_type, *ret_type = NULL; 17145 17146 /* LSM and struct_ops func-ptr's return type could be "void" */ 17147 if (!is_subprog || frame->in_exception_callback_fn) { 17148 switch (prog_type) { 17149 case BPF_PROG_TYPE_LSM: 17150 if (prog->expected_attach_type == BPF_LSM_CGROUP) 17151 /* See below, can be 0 or 0-1 depending on hook. */ 17152 break; 17153 if (!prog->aux->attach_func_proto->type) 17154 return 0; 17155 break; 17156 case BPF_PROG_TYPE_STRUCT_OPS: 17157 if (!prog->aux->attach_func_proto->type) 17158 return 0; 17159 17160 if (frame->in_exception_callback_fn) 17161 break; 17162 17163 /* Allow a struct_ops program to return a referenced kptr if it 17164 * matches the operator's return type and is in its unmodified 17165 * form. A scalar zero (i.e., a null pointer) is also allowed. 17166 */ 17167 reg_type = reg->btf ? btf_type_by_id(reg->btf, reg->btf_id) : NULL; 17168 ret_type = btf_type_resolve_ptr(prog->aux->attach_btf, 17169 prog->aux->attach_func_proto->type, 17170 NULL); 17171 if (ret_type && ret_type == reg_type && reg->ref_obj_id) 17172 return __check_ptr_off_reg(env, reg, regno, false); 17173 break; 17174 default: 17175 break; 17176 } 17177 } 17178 17179 /* eBPF calling convention is such that R0 is used 17180 * to return the value from eBPF program. 17181 * Make sure that it's readable at this time 17182 * of bpf_exit, which means that program wrote 17183 * something into it earlier 17184 */ 17185 err = check_reg_arg(env, regno, SRC_OP); 17186 if (err) 17187 return err; 17188 17189 if (is_pointer_value(env, regno)) { 17190 verbose(env, "R%d leaks addr as return value\n", regno); 17191 return -EACCES; 17192 } 17193 17194 if (frame->in_async_callback_fn) { 17195 exit_ctx = "At async callback return"; 17196 range = frame->callback_ret_range; 17197 goto enforce_retval; 17198 } 17199 17200 if (is_subprog && !frame->in_exception_callback_fn) { 17201 if (reg->type != SCALAR_VALUE) { 17202 verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n", 17203 regno, reg_type_str(env, reg->type)); 17204 return -EINVAL; 17205 } 17206 return 0; 17207 } 17208 17209 switch (prog_type) { 17210 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 17211 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 17212 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 17213 env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG || 17214 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 17215 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 17216 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME || 17217 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 17218 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME || 17219 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME) 17220 range = retval_range(1, 1); 17221 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 17222 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 17223 range = retval_range(0, 3); 17224 break; 17225 case BPF_PROG_TYPE_CGROUP_SKB: 17226 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 17227 range = retval_range(0, 3); 17228 enforce_attach_type_range = tnum_range(2, 3); 17229 } 17230 break; 17231 case BPF_PROG_TYPE_CGROUP_SOCK: 17232 case BPF_PROG_TYPE_SOCK_OPS: 17233 case BPF_PROG_TYPE_CGROUP_DEVICE: 17234 case BPF_PROG_TYPE_CGROUP_SYSCTL: 17235 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 17236 break; 17237 case BPF_PROG_TYPE_RAW_TRACEPOINT: 17238 if (!env->prog->aux->attach_btf_id) 17239 return 0; 17240 range = retval_range(0, 0); 17241 break; 17242 case BPF_PROG_TYPE_TRACING: 17243 switch (env->prog->expected_attach_type) { 17244 case BPF_TRACE_FENTRY: 17245 case BPF_TRACE_FEXIT: 17246 range = retval_range(0, 0); 17247 break; 17248 case BPF_TRACE_RAW_TP: 17249 case BPF_MODIFY_RETURN: 17250 return 0; 17251 case BPF_TRACE_ITER: 17252 break; 17253 default: 17254 return -ENOTSUPP; 17255 } 17256 break; 17257 case BPF_PROG_TYPE_KPROBE: 17258 switch (env->prog->expected_attach_type) { 17259 case BPF_TRACE_KPROBE_SESSION: 17260 case BPF_TRACE_UPROBE_SESSION: 17261 range = retval_range(0, 1); 17262 break; 17263 default: 17264 return 0; 17265 } 17266 break; 17267 case BPF_PROG_TYPE_SK_LOOKUP: 17268 range = retval_range(SK_DROP, SK_PASS); 17269 break; 17270 17271 case BPF_PROG_TYPE_LSM: 17272 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 17273 /* no range found, any return value is allowed */ 17274 if (!get_func_retval_range(env->prog, &range)) 17275 return 0; 17276 /* no restricted range, any return value is allowed */ 17277 if (range.minval == S32_MIN && range.maxval == S32_MAX) 17278 return 0; 17279 return_32bit = true; 17280 } else if (!env->prog->aux->attach_func_proto->type) { 17281 /* Make sure programs that attach to void 17282 * hooks don't try to modify return value. 17283 */ 17284 range = retval_range(1, 1); 17285 } 17286 break; 17287 17288 case BPF_PROG_TYPE_NETFILTER: 17289 range = retval_range(NF_DROP, NF_ACCEPT); 17290 break; 17291 case BPF_PROG_TYPE_STRUCT_OPS: 17292 if (!ret_type) 17293 return 0; 17294 range = retval_range(0, 0); 17295 break; 17296 case BPF_PROG_TYPE_EXT: 17297 /* freplace program can return anything as its return value 17298 * depends on the to-be-replaced kernel func or bpf program. 17299 */ 17300 default: 17301 return 0; 17302 } 17303 17304 enforce_retval: 17305 if (reg->type != SCALAR_VALUE) { 17306 verbose(env, "%s the register R%d is not a known value (%s)\n", 17307 exit_ctx, regno, reg_type_str(env, reg->type)); 17308 return -EINVAL; 17309 } 17310 17311 err = mark_chain_precision(env, regno); 17312 if (err) 17313 return err; 17314 17315 if (!retval_range_within(range, reg, return_32bit)) { 17316 verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name); 17317 if (!is_subprog && 17318 prog->expected_attach_type == BPF_LSM_CGROUP && 17319 prog_type == BPF_PROG_TYPE_LSM && 17320 !prog->aux->attach_func_proto->type) 17321 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 17322 return -EINVAL; 17323 } 17324 17325 if (!tnum_is_unknown(enforce_attach_type_range) && 17326 tnum_in(enforce_attach_type_range, reg->var_off)) 17327 env->prog->enforce_expected_attach_type = 1; 17328 return 0; 17329 } 17330 17331 static void mark_subprog_changes_pkt_data(struct bpf_verifier_env *env, int off) 17332 { 17333 struct bpf_subprog_info *subprog; 17334 17335 subprog = bpf_find_containing_subprog(env, off); 17336 subprog->changes_pkt_data = true; 17337 } 17338 17339 static void mark_subprog_might_sleep(struct bpf_verifier_env *env, int off) 17340 { 17341 struct bpf_subprog_info *subprog; 17342 17343 subprog = bpf_find_containing_subprog(env, off); 17344 subprog->might_sleep = true; 17345 } 17346 17347 /* 't' is an index of a call-site. 17348 * 'w' is a callee entry point. 17349 * Eventually this function would be called when env->cfg.insn_state[w] == EXPLORED. 17350 * Rely on DFS traversal order and absence of recursive calls to guarantee that 17351 * callee's change_pkt_data marks would be correct at that moment. 17352 */ 17353 static void merge_callee_effects(struct bpf_verifier_env *env, int t, int w) 17354 { 17355 struct bpf_subprog_info *caller, *callee; 17356 17357 caller = bpf_find_containing_subprog(env, t); 17358 callee = bpf_find_containing_subprog(env, w); 17359 caller->changes_pkt_data |= callee->changes_pkt_data; 17360 caller->might_sleep |= callee->might_sleep; 17361 } 17362 17363 /* non-recursive DFS pseudo code 17364 * 1 procedure DFS-iterative(G,v): 17365 * 2 label v as discovered 17366 * 3 let S be a stack 17367 * 4 S.push(v) 17368 * 5 while S is not empty 17369 * 6 t <- S.peek() 17370 * 7 if t is what we're looking for: 17371 * 8 return t 17372 * 9 for all edges e in G.adjacentEdges(t) do 17373 * 10 if edge e is already labelled 17374 * 11 continue with the next edge 17375 * 12 w <- G.adjacentVertex(t,e) 17376 * 13 if vertex w is not discovered and not explored 17377 * 14 label e as tree-edge 17378 * 15 label w as discovered 17379 * 16 S.push(w) 17380 * 17 continue at 5 17381 * 18 else if vertex w is discovered 17382 * 19 label e as back-edge 17383 * 20 else 17384 * 21 // vertex w is explored 17385 * 22 label e as forward- or cross-edge 17386 * 23 label t as explored 17387 * 24 S.pop() 17388 * 17389 * convention: 17390 * 0x10 - discovered 17391 * 0x11 - discovered and fall-through edge labelled 17392 * 0x12 - discovered and fall-through and branch edges labelled 17393 * 0x20 - explored 17394 */ 17395 17396 enum { 17397 DISCOVERED = 0x10, 17398 EXPLORED = 0x20, 17399 FALLTHROUGH = 1, 17400 BRANCH = 2, 17401 }; 17402 17403 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 17404 { 17405 env->insn_aux_data[idx].prune_point = true; 17406 } 17407 17408 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 17409 { 17410 return env->insn_aux_data[insn_idx].prune_point; 17411 } 17412 17413 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 17414 { 17415 env->insn_aux_data[idx].force_checkpoint = true; 17416 } 17417 17418 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 17419 { 17420 return env->insn_aux_data[insn_idx].force_checkpoint; 17421 } 17422 17423 static void mark_calls_callback(struct bpf_verifier_env *env, int idx) 17424 { 17425 env->insn_aux_data[idx].calls_callback = true; 17426 } 17427 17428 bool bpf_calls_callback(struct bpf_verifier_env *env, int insn_idx) 17429 { 17430 return env->insn_aux_data[insn_idx].calls_callback; 17431 } 17432 17433 enum { 17434 DONE_EXPLORING = 0, 17435 KEEP_EXPLORING = 1, 17436 }; 17437 17438 /* t, w, e - match pseudo-code above: 17439 * t - index of current instruction 17440 * w - next instruction 17441 * e - edge 17442 */ 17443 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 17444 { 17445 int *insn_stack = env->cfg.insn_stack; 17446 int *insn_state = env->cfg.insn_state; 17447 17448 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 17449 return DONE_EXPLORING; 17450 17451 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 17452 return DONE_EXPLORING; 17453 17454 if (w < 0 || w >= env->prog->len) { 17455 verbose_linfo(env, t, "%d: ", t); 17456 verbose(env, "jump out of range from insn %d to %d\n", t, w); 17457 return -EINVAL; 17458 } 17459 17460 if (e == BRANCH) { 17461 /* mark branch target for state pruning */ 17462 mark_prune_point(env, w); 17463 mark_jmp_point(env, w); 17464 } 17465 17466 if (insn_state[w] == 0) { 17467 /* tree-edge */ 17468 insn_state[t] = DISCOVERED | e; 17469 insn_state[w] = DISCOVERED; 17470 if (env->cfg.cur_stack >= env->prog->len) 17471 return -E2BIG; 17472 insn_stack[env->cfg.cur_stack++] = w; 17473 return KEEP_EXPLORING; 17474 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 17475 if (env->bpf_capable) 17476 return DONE_EXPLORING; 17477 verbose_linfo(env, t, "%d: ", t); 17478 verbose_linfo(env, w, "%d: ", w); 17479 verbose(env, "back-edge from insn %d to %d\n", t, w); 17480 return -EINVAL; 17481 } else if (insn_state[w] == EXPLORED) { 17482 /* forward- or cross-edge */ 17483 insn_state[t] = DISCOVERED | e; 17484 } else { 17485 verifier_bug(env, "insn state internal bug"); 17486 return -EFAULT; 17487 } 17488 return DONE_EXPLORING; 17489 } 17490 17491 static int visit_func_call_insn(int t, struct bpf_insn *insns, 17492 struct bpf_verifier_env *env, 17493 bool visit_callee) 17494 { 17495 int ret, insn_sz; 17496 int w; 17497 17498 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; 17499 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); 17500 if (ret) 17501 return ret; 17502 17503 mark_prune_point(env, t + insn_sz); 17504 /* when we exit from subprog, we need to record non-linear history */ 17505 mark_jmp_point(env, t + insn_sz); 17506 17507 if (visit_callee) { 17508 w = t + insns[t].imm + 1; 17509 mark_prune_point(env, t); 17510 merge_callee_effects(env, t, w); 17511 ret = push_insn(t, w, BRANCH, env); 17512 } 17513 return ret; 17514 } 17515 17516 /* Bitmask with 1s for all caller saved registers */ 17517 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1) 17518 17519 /* True if do_misc_fixups() replaces calls to helper number 'imm', 17520 * replacement patch is presumed to follow bpf_fastcall contract 17521 * (see mark_fastcall_pattern_for_call() below). 17522 */ 17523 static bool verifier_inlines_helper_call(struct bpf_verifier_env *env, s32 imm) 17524 { 17525 switch (imm) { 17526 #ifdef CONFIG_X86_64 17527 case BPF_FUNC_get_smp_processor_id: 17528 return env->prog->jit_requested && bpf_jit_supports_percpu_insn(); 17529 #endif 17530 default: 17531 return false; 17532 } 17533 } 17534 17535 struct call_summary { 17536 u8 num_params; 17537 bool is_void; 17538 bool fastcall; 17539 }; 17540 17541 /* If @call is a kfunc or helper call, fills @cs and returns true, 17542 * otherwise returns false. 17543 */ 17544 static bool get_call_summary(struct bpf_verifier_env *env, struct bpf_insn *call, 17545 struct call_summary *cs) 17546 { 17547 struct bpf_kfunc_call_arg_meta meta; 17548 const struct bpf_func_proto *fn; 17549 int i; 17550 17551 if (bpf_helper_call(call)) { 17552 17553 if (get_helper_proto(env, call->imm, &fn) < 0) 17554 /* error would be reported later */ 17555 return false; 17556 cs->fastcall = fn->allow_fastcall && 17557 (verifier_inlines_helper_call(env, call->imm) || 17558 bpf_jit_inlines_helper_call(call->imm)); 17559 cs->is_void = fn->ret_type == RET_VOID; 17560 cs->num_params = 0; 17561 for (i = 0; i < ARRAY_SIZE(fn->arg_type); ++i) { 17562 if (fn->arg_type[i] == ARG_DONTCARE) 17563 break; 17564 cs->num_params++; 17565 } 17566 return true; 17567 } 17568 17569 if (bpf_pseudo_kfunc_call(call)) { 17570 int err; 17571 17572 err = fetch_kfunc_meta(env, call, &meta, NULL); 17573 if (err < 0) 17574 /* error would be reported later */ 17575 return false; 17576 cs->num_params = btf_type_vlen(meta.func_proto); 17577 cs->fastcall = meta.kfunc_flags & KF_FASTCALL; 17578 cs->is_void = btf_type_is_void(btf_type_by_id(meta.btf, meta.func_proto->type)); 17579 return true; 17580 } 17581 17582 return false; 17583 } 17584 17585 /* LLVM define a bpf_fastcall function attribute. 17586 * This attribute means that function scratches only some of 17587 * the caller saved registers defined by ABI. 17588 * For BPF the set of such registers could be defined as follows: 17589 * - R0 is scratched only if function is non-void; 17590 * - R1-R5 are scratched only if corresponding parameter type is defined 17591 * in the function prototype. 17592 * 17593 * The contract between kernel and clang allows to simultaneously use 17594 * such functions and maintain backwards compatibility with old 17595 * kernels that don't understand bpf_fastcall calls: 17596 * 17597 * - for bpf_fastcall calls clang allocates registers as-if relevant r0-r5 17598 * registers are not scratched by the call; 17599 * 17600 * - as a post-processing step, clang visits each bpf_fastcall call and adds 17601 * spill/fill for every live r0-r5; 17602 * 17603 * - stack offsets used for the spill/fill are allocated as lowest 17604 * stack offsets in whole function and are not used for any other 17605 * purposes; 17606 * 17607 * - when kernel loads a program, it looks for such patterns 17608 * (bpf_fastcall function surrounded by spills/fills) and checks if 17609 * spill/fill stack offsets are used exclusively in fastcall patterns; 17610 * 17611 * - if so, and if verifier or current JIT inlines the call to the 17612 * bpf_fastcall function (e.g. a helper call), kernel removes unnecessary 17613 * spill/fill pairs; 17614 * 17615 * - when old kernel loads a program, presence of spill/fill pairs 17616 * keeps BPF program valid, albeit slightly less efficient. 17617 * 17618 * For example: 17619 * 17620 * r1 = 1; 17621 * r2 = 2; 17622 * *(u64 *)(r10 - 8) = r1; r1 = 1; 17623 * *(u64 *)(r10 - 16) = r2; r2 = 2; 17624 * call %[to_be_inlined] --> call %[to_be_inlined] 17625 * r2 = *(u64 *)(r10 - 16); r0 = r1; 17626 * r1 = *(u64 *)(r10 - 8); r0 += r2; 17627 * r0 = r1; exit; 17628 * r0 += r2; 17629 * exit; 17630 * 17631 * The purpose of mark_fastcall_pattern_for_call is to: 17632 * - look for such patterns; 17633 * - mark spill and fill instructions in env->insn_aux_data[*].fastcall_pattern; 17634 * - mark set env->insn_aux_data[*].fastcall_spills_num for call instruction; 17635 * - update env->subprog_info[*]->fastcall_stack_off to find an offset 17636 * at which bpf_fastcall spill/fill stack slots start; 17637 * - update env->subprog_info[*]->keep_fastcall_stack. 17638 * 17639 * The .fastcall_pattern and .fastcall_stack_off are used by 17640 * check_fastcall_stack_contract() to check if every stack access to 17641 * fastcall spill/fill stack slot originates from spill/fill 17642 * instructions, members of fastcall patterns. 17643 * 17644 * If such condition holds true for a subprogram, fastcall patterns could 17645 * be rewritten by remove_fastcall_spills_fills(). 17646 * Otherwise bpf_fastcall patterns are not changed in the subprogram 17647 * (code, presumably, generated by an older clang version). 17648 * 17649 * For example, it is *not* safe to remove spill/fill below: 17650 * 17651 * r1 = 1; 17652 * *(u64 *)(r10 - 8) = r1; r1 = 1; 17653 * call %[to_be_inlined] --> call %[to_be_inlined] 17654 * r1 = *(u64 *)(r10 - 8); r0 = *(u64 *)(r10 - 8); <---- wrong !!! 17655 * r0 = *(u64 *)(r10 - 8); r0 += r1; 17656 * r0 += r1; exit; 17657 * exit; 17658 */ 17659 static void mark_fastcall_pattern_for_call(struct bpf_verifier_env *env, 17660 struct bpf_subprog_info *subprog, 17661 int insn_idx, s16 lowest_off) 17662 { 17663 struct bpf_insn *insns = env->prog->insnsi, *stx, *ldx; 17664 struct bpf_insn *call = &env->prog->insnsi[insn_idx]; 17665 u32 clobbered_regs_mask; 17666 struct call_summary cs; 17667 u32 expected_regs_mask; 17668 s16 off; 17669 int i; 17670 17671 if (!get_call_summary(env, call, &cs)) 17672 return; 17673 17674 /* A bitmask specifying which caller saved registers are clobbered 17675 * by a call to a helper/kfunc *as if* this helper/kfunc follows 17676 * bpf_fastcall contract: 17677 * - includes R0 if function is non-void; 17678 * - includes R1-R5 if corresponding parameter has is described 17679 * in the function prototype. 17680 */ 17681 clobbered_regs_mask = GENMASK(cs.num_params, cs.is_void ? 1 : 0); 17682 /* e.g. if helper call clobbers r{0,1}, expect r{2,3,4,5} in the pattern */ 17683 expected_regs_mask = ~clobbered_regs_mask & ALL_CALLER_SAVED_REGS; 17684 17685 /* match pairs of form: 17686 * 17687 * *(u64 *)(r10 - Y) = rX (where Y % 8 == 0) 17688 * ... 17689 * call %[to_be_inlined] 17690 * ... 17691 * rX = *(u64 *)(r10 - Y) 17692 */ 17693 for (i = 1, off = lowest_off; i <= ARRAY_SIZE(caller_saved); ++i, off += BPF_REG_SIZE) { 17694 if (insn_idx - i < 0 || insn_idx + i >= env->prog->len) 17695 break; 17696 stx = &insns[insn_idx - i]; 17697 ldx = &insns[insn_idx + i]; 17698 /* must be a stack spill/fill pair */ 17699 if (stx->code != (BPF_STX | BPF_MEM | BPF_DW) || 17700 ldx->code != (BPF_LDX | BPF_MEM | BPF_DW) || 17701 stx->dst_reg != BPF_REG_10 || 17702 ldx->src_reg != BPF_REG_10) 17703 break; 17704 /* must be a spill/fill for the same reg */ 17705 if (stx->src_reg != ldx->dst_reg) 17706 break; 17707 /* must be one of the previously unseen registers */ 17708 if ((BIT(stx->src_reg) & expected_regs_mask) == 0) 17709 break; 17710 /* must be a spill/fill for the same expected offset, 17711 * no need to check offset alignment, BPF_DW stack access 17712 * is always 8-byte aligned. 17713 */ 17714 if (stx->off != off || ldx->off != off) 17715 break; 17716 expected_regs_mask &= ~BIT(stx->src_reg); 17717 env->insn_aux_data[insn_idx - i].fastcall_pattern = 1; 17718 env->insn_aux_data[insn_idx + i].fastcall_pattern = 1; 17719 } 17720 if (i == 1) 17721 return; 17722 17723 /* Conditionally set 'fastcall_spills_num' to allow forward 17724 * compatibility when more helper functions are marked as 17725 * bpf_fastcall at compile time than current kernel supports, e.g: 17726 * 17727 * 1: *(u64 *)(r10 - 8) = r1 17728 * 2: call A ;; assume A is bpf_fastcall for current kernel 17729 * 3: r1 = *(u64 *)(r10 - 8) 17730 * 4: *(u64 *)(r10 - 8) = r1 17731 * 5: call B ;; assume B is not bpf_fastcall for current kernel 17732 * 6: r1 = *(u64 *)(r10 - 8) 17733 * 17734 * There is no need to block bpf_fastcall rewrite for such program. 17735 * Set 'fastcall_pattern' for both calls to keep check_fastcall_stack_contract() happy, 17736 * don't set 'fastcall_spills_num' for call B so that remove_fastcall_spills_fills() 17737 * does not remove spill/fill pair {4,6}. 17738 */ 17739 if (cs.fastcall) 17740 env->insn_aux_data[insn_idx].fastcall_spills_num = i - 1; 17741 else 17742 subprog->keep_fastcall_stack = 1; 17743 subprog->fastcall_stack_off = min(subprog->fastcall_stack_off, off); 17744 } 17745 17746 static int mark_fastcall_patterns(struct bpf_verifier_env *env) 17747 { 17748 struct bpf_subprog_info *subprog = env->subprog_info; 17749 struct bpf_insn *insn; 17750 s16 lowest_off; 17751 int s, i; 17752 17753 for (s = 0; s < env->subprog_cnt; ++s, ++subprog) { 17754 /* find lowest stack spill offset used in this subprog */ 17755 lowest_off = 0; 17756 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 17757 insn = env->prog->insnsi + i; 17758 if (insn->code != (BPF_STX | BPF_MEM | BPF_DW) || 17759 insn->dst_reg != BPF_REG_10) 17760 continue; 17761 lowest_off = min(lowest_off, insn->off); 17762 } 17763 /* use this offset to find fastcall patterns */ 17764 for (i = subprog->start; i < (subprog + 1)->start; ++i) { 17765 insn = env->prog->insnsi + i; 17766 if (insn->code != (BPF_JMP | BPF_CALL)) 17767 continue; 17768 mark_fastcall_pattern_for_call(env, subprog, i, lowest_off); 17769 } 17770 } 17771 return 0; 17772 } 17773 17774 /* Visits the instruction at index t and returns one of the following: 17775 * < 0 - an error occurred 17776 * DONE_EXPLORING - the instruction was fully explored 17777 * KEEP_EXPLORING - there is still work to be done before it is fully explored 17778 */ 17779 static int visit_insn(int t, struct bpf_verifier_env *env) 17780 { 17781 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 17782 int ret, off, insn_sz; 17783 17784 if (bpf_pseudo_func(insn)) 17785 return visit_func_call_insn(t, insns, env, true); 17786 17787 /* All non-branch instructions have a single fall-through edge. */ 17788 if (BPF_CLASS(insn->code) != BPF_JMP && 17789 BPF_CLASS(insn->code) != BPF_JMP32) { 17790 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 17791 return push_insn(t, t + insn_sz, FALLTHROUGH, env); 17792 } 17793 17794 switch (BPF_OP(insn->code)) { 17795 case BPF_EXIT: 17796 return DONE_EXPLORING; 17797 17798 case BPF_CALL: 17799 if (is_async_callback_calling_insn(insn)) 17800 /* Mark this call insn as a prune point to trigger 17801 * is_state_visited() check before call itself is 17802 * processed by __check_func_call(). Otherwise new 17803 * async state will be pushed for further exploration. 17804 */ 17805 mark_prune_point(env, t); 17806 /* For functions that invoke callbacks it is not known how many times 17807 * callback would be called. Verifier models callback calling functions 17808 * by repeatedly visiting callback bodies and returning to origin call 17809 * instruction. 17810 * In order to stop such iteration verifier needs to identify when a 17811 * state identical some state from a previous iteration is reached. 17812 * Check below forces creation of checkpoint before callback calling 17813 * instruction to allow search for such identical states. 17814 */ 17815 if (is_sync_callback_calling_insn(insn)) { 17816 mark_calls_callback(env, t); 17817 mark_force_checkpoint(env, t); 17818 mark_prune_point(env, t); 17819 mark_jmp_point(env, t); 17820 } 17821 if (bpf_helper_call(insn)) { 17822 const struct bpf_func_proto *fp; 17823 17824 ret = get_helper_proto(env, insn->imm, &fp); 17825 /* If called in a non-sleepable context program will be 17826 * rejected anyway, so we should end up with precise 17827 * sleepable marks on subprogs, except for dead code 17828 * elimination. 17829 */ 17830 if (ret == 0 && fp->might_sleep) 17831 mark_subprog_might_sleep(env, t); 17832 if (bpf_helper_changes_pkt_data(insn->imm)) 17833 mark_subprog_changes_pkt_data(env, t); 17834 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 17835 struct bpf_kfunc_call_arg_meta meta; 17836 17837 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 17838 if (ret == 0 && is_iter_next_kfunc(&meta)) { 17839 mark_prune_point(env, t); 17840 /* Checking and saving state checkpoints at iter_next() call 17841 * is crucial for fast convergence of open-coded iterator loop 17842 * logic, so we need to force it. If we don't do that, 17843 * is_state_visited() might skip saving a checkpoint, causing 17844 * unnecessarily long sequence of not checkpointed 17845 * instructions and jumps, leading to exhaustion of jump 17846 * history buffer, and potentially other undesired outcomes. 17847 * It is expected that with correct open-coded iterators 17848 * convergence will happen quickly, so we don't run a risk of 17849 * exhausting memory. 17850 */ 17851 mark_force_checkpoint(env, t); 17852 } 17853 /* Same as helpers, if called in a non-sleepable context 17854 * program will be rejected anyway, so we should end up 17855 * with precise sleepable marks on subprogs, except for 17856 * dead code elimination. 17857 */ 17858 if (ret == 0 && is_kfunc_sleepable(&meta)) 17859 mark_subprog_might_sleep(env, t); 17860 if (ret == 0 && is_kfunc_pkt_changing(&meta)) 17861 mark_subprog_changes_pkt_data(env, t); 17862 } 17863 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 17864 17865 case BPF_JA: 17866 if (BPF_SRC(insn->code) != BPF_K) 17867 return -EINVAL; 17868 17869 if (BPF_CLASS(insn->code) == BPF_JMP) 17870 off = insn->off; 17871 else 17872 off = insn->imm; 17873 17874 /* unconditional jump with single edge */ 17875 ret = push_insn(t, t + off + 1, FALLTHROUGH, env); 17876 if (ret) 17877 return ret; 17878 17879 mark_prune_point(env, t + off + 1); 17880 mark_jmp_point(env, t + off + 1); 17881 17882 return ret; 17883 17884 default: 17885 /* conditional jump with two edges */ 17886 mark_prune_point(env, t); 17887 if (is_may_goto_insn(insn)) 17888 mark_force_checkpoint(env, t); 17889 17890 ret = push_insn(t, t + 1, FALLTHROUGH, env); 17891 if (ret) 17892 return ret; 17893 17894 return push_insn(t, t + insn->off + 1, BRANCH, env); 17895 } 17896 } 17897 17898 /* non-recursive depth-first-search to detect loops in BPF program 17899 * loop == back-edge in directed graph 17900 */ 17901 static int check_cfg(struct bpf_verifier_env *env) 17902 { 17903 int insn_cnt = env->prog->len; 17904 int *insn_stack, *insn_state; 17905 int ex_insn_beg, i, ret = 0; 17906 17907 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); 17908 if (!insn_state) 17909 return -ENOMEM; 17910 17911 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); 17912 if (!insn_stack) { 17913 kvfree(insn_state); 17914 return -ENOMEM; 17915 } 17916 17917 ex_insn_beg = env->exception_callback_subprog 17918 ? env->subprog_info[env->exception_callback_subprog].start 17919 : 0; 17920 17921 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 17922 insn_stack[0] = 0; /* 0 is the first instruction */ 17923 env->cfg.cur_stack = 1; 17924 17925 walk_cfg: 17926 while (env->cfg.cur_stack > 0) { 17927 int t = insn_stack[env->cfg.cur_stack - 1]; 17928 17929 ret = visit_insn(t, env); 17930 switch (ret) { 17931 case DONE_EXPLORING: 17932 insn_state[t] = EXPLORED; 17933 env->cfg.cur_stack--; 17934 break; 17935 case KEEP_EXPLORING: 17936 break; 17937 default: 17938 if (ret > 0) { 17939 verifier_bug(env, "visit_insn internal bug"); 17940 ret = -EFAULT; 17941 } 17942 goto err_free; 17943 } 17944 } 17945 17946 if (env->cfg.cur_stack < 0) { 17947 verifier_bug(env, "pop stack internal bug"); 17948 ret = -EFAULT; 17949 goto err_free; 17950 } 17951 17952 if (ex_insn_beg && insn_state[ex_insn_beg] != EXPLORED) { 17953 insn_state[ex_insn_beg] = DISCOVERED; 17954 insn_stack[0] = ex_insn_beg; 17955 env->cfg.cur_stack = 1; 17956 goto walk_cfg; 17957 } 17958 17959 for (i = 0; i < insn_cnt; i++) { 17960 struct bpf_insn *insn = &env->prog->insnsi[i]; 17961 17962 if (insn_state[i] != EXPLORED) { 17963 verbose(env, "unreachable insn %d\n", i); 17964 ret = -EINVAL; 17965 goto err_free; 17966 } 17967 if (bpf_is_ldimm64(insn)) { 17968 if (insn_state[i + 1] != 0) { 17969 verbose(env, "jump into the middle of ldimm64 insn %d\n", i); 17970 ret = -EINVAL; 17971 goto err_free; 17972 } 17973 i++; /* skip second half of ldimm64 */ 17974 } 17975 } 17976 ret = 0; /* cfg looks good */ 17977 env->prog->aux->changes_pkt_data = env->subprog_info[0].changes_pkt_data; 17978 env->prog->aux->might_sleep = env->subprog_info[0].might_sleep; 17979 17980 err_free: 17981 kvfree(insn_state); 17982 kvfree(insn_stack); 17983 env->cfg.insn_state = env->cfg.insn_stack = NULL; 17984 return ret; 17985 } 17986 17987 /* 17988 * For each subprogram 'i' fill array env->cfg.insn_subprogram sub-range 17989 * [env->subprog_info[i].postorder_start, env->subprog_info[i+1].postorder_start) 17990 * with indices of 'i' instructions in postorder. 17991 */ 17992 static int compute_postorder(struct bpf_verifier_env *env) 17993 { 17994 u32 cur_postorder, i, top, stack_sz, s, succ_cnt, succ[2]; 17995 int *stack = NULL, *postorder = NULL, *state = NULL; 17996 17997 postorder = kvcalloc(env->prog->len, sizeof(int), GFP_KERNEL_ACCOUNT); 17998 state = kvcalloc(env->prog->len, sizeof(int), GFP_KERNEL_ACCOUNT); 17999 stack = kvcalloc(env->prog->len, sizeof(int), GFP_KERNEL_ACCOUNT); 18000 if (!postorder || !state || !stack) { 18001 kvfree(postorder); 18002 kvfree(state); 18003 kvfree(stack); 18004 return -ENOMEM; 18005 } 18006 cur_postorder = 0; 18007 for (i = 0; i < env->subprog_cnt; i++) { 18008 env->subprog_info[i].postorder_start = cur_postorder; 18009 stack[0] = env->subprog_info[i].start; 18010 stack_sz = 1; 18011 do { 18012 top = stack[stack_sz - 1]; 18013 state[top] |= DISCOVERED; 18014 if (state[top] & EXPLORED) { 18015 postorder[cur_postorder++] = top; 18016 stack_sz--; 18017 continue; 18018 } 18019 succ_cnt = bpf_insn_successors(env->prog, top, succ); 18020 for (s = 0; s < succ_cnt; ++s) { 18021 if (!state[succ[s]]) { 18022 stack[stack_sz++] = succ[s]; 18023 state[succ[s]] |= DISCOVERED; 18024 } 18025 } 18026 state[top] |= EXPLORED; 18027 } while (stack_sz); 18028 } 18029 env->subprog_info[i].postorder_start = cur_postorder; 18030 env->cfg.insn_postorder = postorder; 18031 env->cfg.cur_postorder = cur_postorder; 18032 kvfree(stack); 18033 kvfree(state); 18034 return 0; 18035 } 18036 18037 static int check_abnormal_return(struct bpf_verifier_env *env) 18038 { 18039 int i; 18040 18041 for (i = 1; i < env->subprog_cnt; i++) { 18042 if (env->subprog_info[i].has_ld_abs) { 18043 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 18044 return -EINVAL; 18045 } 18046 if (env->subprog_info[i].has_tail_call) { 18047 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 18048 return -EINVAL; 18049 } 18050 } 18051 return 0; 18052 } 18053 18054 /* The minimum supported BTF func info size */ 18055 #define MIN_BPF_FUNCINFO_SIZE 8 18056 #define MAX_FUNCINFO_REC_SIZE 252 18057 18058 static int check_btf_func_early(struct bpf_verifier_env *env, 18059 const union bpf_attr *attr, 18060 bpfptr_t uattr) 18061 { 18062 u32 krec_size = sizeof(struct bpf_func_info); 18063 const struct btf_type *type, *func_proto; 18064 u32 i, nfuncs, urec_size, min_size; 18065 struct bpf_func_info *krecord; 18066 struct bpf_prog *prog; 18067 const struct btf *btf; 18068 u32 prev_offset = 0; 18069 bpfptr_t urecord; 18070 int ret = -ENOMEM; 18071 18072 nfuncs = attr->func_info_cnt; 18073 if (!nfuncs) { 18074 if (check_abnormal_return(env)) 18075 return -EINVAL; 18076 return 0; 18077 } 18078 18079 urec_size = attr->func_info_rec_size; 18080 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 18081 urec_size > MAX_FUNCINFO_REC_SIZE || 18082 urec_size % sizeof(u32)) { 18083 verbose(env, "invalid func info rec size %u\n", urec_size); 18084 return -EINVAL; 18085 } 18086 18087 prog = env->prog; 18088 btf = prog->aux->btf; 18089 18090 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 18091 min_size = min_t(u32, krec_size, urec_size); 18092 18093 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 18094 if (!krecord) 18095 return -ENOMEM; 18096 18097 for (i = 0; i < nfuncs; i++) { 18098 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 18099 if (ret) { 18100 if (ret == -E2BIG) { 18101 verbose(env, "nonzero tailing record in func info"); 18102 /* set the size kernel expects so loader can zero 18103 * out the rest of the record. 18104 */ 18105 if (copy_to_bpfptr_offset(uattr, 18106 offsetof(union bpf_attr, func_info_rec_size), 18107 &min_size, sizeof(min_size))) 18108 ret = -EFAULT; 18109 } 18110 goto err_free; 18111 } 18112 18113 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 18114 ret = -EFAULT; 18115 goto err_free; 18116 } 18117 18118 /* check insn_off */ 18119 ret = -EINVAL; 18120 if (i == 0) { 18121 if (krecord[i].insn_off) { 18122 verbose(env, 18123 "nonzero insn_off %u for the first func info record", 18124 krecord[i].insn_off); 18125 goto err_free; 18126 } 18127 } else if (krecord[i].insn_off <= prev_offset) { 18128 verbose(env, 18129 "same or smaller insn offset (%u) than previous func info record (%u)", 18130 krecord[i].insn_off, prev_offset); 18131 goto err_free; 18132 } 18133 18134 /* check type_id */ 18135 type = btf_type_by_id(btf, krecord[i].type_id); 18136 if (!type || !btf_type_is_func(type)) { 18137 verbose(env, "invalid type id %d in func info", 18138 krecord[i].type_id); 18139 goto err_free; 18140 } 18141 18142 func_proto = btf_type_by_id(btf, type->type); 18143 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 18144 /* btf_func_check() already verified it during BTF load */ 18145 goto err_free; 18146 18147 prev_offset = krecord[i].insn_off; 18148 bpfptr_add(&urecord, urec_size); 18149 } 18150 18151 prog->aux->func_info = krecord; 18152 prog->aux->func_info_cnt = nfuncs; 18153 return 0; 18154 18155 err_free: 18156 kvfree(krecord); 18157 return ret; 18158 } 18159 18160 static int check_btf_func(struct bpf_verifier_env *env, 18161 const union bpf_attr *attr, 18162 bpfptr_t uattr) 18163 { 18164 const struct btf_type *type, *func_proto, *ret_type; 18165 u32 i, nfuncs, urec_size; 18166 struct bpf_func_info *krecord; 18167 struct bpf_func_info_aux *info_aux = NULL; 18168 struct bpf_prog *prog; 18169 const struct btf *btf; 18170 bpfptr_t urecord; 18171 bool scalar_return; 18172 int ret = -ENOMEM; 18173 18174 nfuncs = attr->func_info_cnt; 18175 if (!nfuncs) { 18176 if (check_abnormal_return(env)) 18177 return -EINVAL; 18178 return 0; 18179 } 18180 if (nfuncs != env->subprog_cnt) { 18181 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 18182 return -EINVAL; 18183 } 18184 18185 urec_size = attr->func_info_rec_size; 18186 18187 prog = env->prog; 18188 btf = prog->aux->btf; 18189 18190 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 18191 18192 krecord = prog->aux->func_info; 18193 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 18194 if (!info_aux) 18195 return -ENOMEM; 18196 18197 for (i = 0; i < nfuncs; i++) { 18198 /* check insn_off */ 18199 ret = -EINVAL; 18200 18201 if (env->subprog_info[i].start != krecord[i].insn_off) { 18202 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 18203 goto err_free; 18204 } 18205 18206 /* Already checked type_id */ 18207 type = btf_type_by_id(btf, krecord[i].type_id); 18208 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 18209 /* Already checked func_proto */ 18210 func_proto = btf_type_by_id(btf, type->type); 18211 18212 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 18213 scalar_return = 18214 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 18215 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 18216 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 18217 goto err_free; 18218 } 18219 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 18220 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 18221 goto err_free; 18222 } 18223 18224 bpfptr_add(&urecord, urec_size); 18225 } 18226 18227 prog->aux->func_info_aux = info_aux; 18228 return 0; 18229 18230 err_free: 18231 kfree(info_aux); 18232 return ret; 18233 } 18234 18235 static void adjust_btf_func(struct bpf_verifier_env *env) 18236 { 18237 struct bpf_prog_aux *aux = env->prog->aux; 18238 int i; 18239 18240 if (!aux->func_info) 18241 return; 18242 18243 /* func_info is not available for hidden subprogs */ 18244 for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++) 18245 aux->func_info[i].insn_off = env->subprog_info[i].start; 18246 } 18247 18248 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 18249 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 18250 18251 static int check_btf_line(struct bpf_verifier_env *env, 18252 const union bpf_attr *attr, 18253 bpfptr_t uattr) 18254 { 18255 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 18256 struct bpf_subprog_info *sub; 18257 struct bpf_line_info *linfo; 18258 struct bpf_prog *prog; 18259 const struct btf *btf; 18260 bpfptr_t ulinfo; 18261 int err; 18262 18263 nr_linfo = attr->line_info_cnt; 18264 if (!nr_linfo) 18265 return 0; 18266 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 18267 return -EINVAL; 18268 18269 rec_size = attr->line_info_rec_size; 18270 if (rec_size < MIN_BPF_LINEINFO_SIZE || 18271 rec_size > MAX_LINEINFO_REC_SIZE || 18272 rec_size & (sizeof(u32) - 1)) 18273 return -EINVAL; 18274 18275 /* Need to zero it in case the userspace may 18276 * pass in a smaller bpf_line_info object. 18277 */ 18278 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 18279 GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 18280 if (!linfo) 18281 return -ENOMEM; 18282 18283 prog = env->prog; 18284 btf = prog->aux->btf; 18285 18286 s = 0; 18287 sub = env->subprog_info; 18288 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 18289 expected_size = sizeof(struct bpf_line_info); 18290 ncopy = min_t(u32, expected_size, rec_size); 18291 for (i = 0; i < nr_linfo; i++) { 18292 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 18293 if (err) { 18294 if (err == -E2BIG) { 18295 verbose(env, "nonzero tailing record in line_info"); 18296 if (copy_to_bpfptr_offset(uattr, 18297 offsetof(union bpf_attr, line_info_rec_size), 18298 &expected_size, sizeof(expected_size))) 18299 err = -EFAULT; 18300 } 18301 goto err_free; 18302 } 18303 18304 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 18305 err = -EFAULT; 18306 goto err_free; 18307 } 18308 18309 /* 18310 * Check insn_off to ensure 18311 * 1) strictly increasing AND 18312 * 2) bounded by prog->len 18313 * 18314 * The linfo[0].insn_off == 0 check logically falls into 18315 * the later "missing bpf_line_info for func..." case 18316 * because the first linfo[0].insn_off must be the 18317 * first sub also and the first sub must have 18318 * subprog_info[0].start == 0. 18319 */ 18320 if ((i && linfo[i].insn_off <= prev_offset) || 18321 linfo[i].insn_off >= prog->len) { 18322 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 18323 i, linfo[i].insn_off, prev_offset, 18324 prog->len); 18325 err = -EINVAL; 18326 goto err_free; 18327 } 18328 18329 if (!prog->insnsi[linfo[i].insn_off].code) { 18330 verbose(env, 18331 "Invalid insn code at line_info[%u].insn_off\n", 18332 i); 18333 err = -EINVAL; 18334 goto err_free; 18335 } 18336 18337 if (!btf_name_by_offset(btf, linfo[i].line_off) || 18338 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 18339 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 18340 err = -EINVAL; 18341 goto err_free; 18342 } 18343 18344 if (s != env->subprog_cnt) { 18345 if (linfo[i].insn_off == sub[s].start) { 18346 sub[s].linfo_idx = i; 18347 s++; 18348 } else if (sub[s].start < linfo[i].insn_off) { 18349 verbose(env, "missing bpf_line_info for func#%u\n", s); 18350 err = -EINVAL; 18351 goto err_free; 18352 } 18353 } 18354 18355 prev_offset = linfo[i].insn_off; 18356 bpfptr_add(&ulinfo, rec_size); 18357 } 18358 18359 if (s != env->subprog_cnt) { 18360 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 18361 env->subprog_cnt - s, s); 18362 err = -EINVAL; 18363 goto err_free; 18364 } 18365 18366 prog->aux->linfo = linfo; 18367 prog->aux->nr_linfo = nr_linfo; 18368 18369 return 0; 18370 18371 err_free: 18372 kvfree(linfo); 18373 return err; 18374 } 18375 18376 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 18377 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 18378 18379 static int check_core_relo(struct bpf_verifier_env *env, 18380 const union bpf_attr *attr, 18381 bpfptr_t uattr) 18382 { 18383 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 18384 struct bpf_core_relo core_relo = {}; 18385 struct bpf_prog *prog = env->prog; 18386 const struct btf *btf = prog->aux->btf; 18387 struct bpf_core_ctx ctx = { 18388 .log = &env->log, 18389 .btf = btf, 18390 }; 18391 bpfptr_t u_core_relo; 18392 int err; 18393 18394 nr_core_relo = attr->core_relo_cnt; 18395 if (!nr_core_relo) 18396 return 0; 18397 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 18398 return -EINVAL; 18399 18400 rec_size = attr->core_relo_rec_size; 18401 if (rec_size < MIN_CORE_RELO_SIZE || 18402 rec_size > MAX_CORE_RELO_SIZE || 18403 rec_size % sizeof(u32)) 18404 return -EINVAL; 18405 18406 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 18407 expected_size = sizeof(struct bpf_core_relo); 18408 ncopy = min_t(u32, expected_size, rec_size); 18409 18410 /* Unlike func_info and line_info, copy and apply each CO-RE 18411 * relocation record one at a time. 18412 */ 18413 for (i = 0; i < nr_core_relo; i++) { 18414 /* future proofing when sizeof(bpf_core_relo) changes */ 18415 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 18416 if (err) { 18417 if (err == -E2BIG) { 18418 verbose(env, "nonzero tailing record in core_relo"); 18419 if (copy_to_bpfptr_offset(uattr, 18420 offsetof(union bpf_attr, core_relo_rec_size), 18421 &expected_size, sizeof(expected_size))) 18422 err = -EFAULT; 18423 } 18424 break; 18425 } 18426 18427 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 18428 err = -EFAULT; 18429 break; 18430 } 18431 18432 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 18433 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 18434 i, core_relo.insn_off, prog->len); 18435 err = -EINVAL; 18436 break; 18437 } 18438 18439 err = bpf_core_apply(&ctx, &core_relo, i, 18440 &prog->insnsi[core_relo.insn_off / 8]); 18441 if (err) 18442 break; 18443 bpfptr_add(&u_core_relo, rec_size); 18444 } 18445 return err; 18446 } 18447 18448 static int check_btf_info_early(struct bpf_verifier_env *env, 18449 const union bpf_attr *attr, 18450 bpfptr_t uattr) 18451 { 18452 struct btf *btf; 18453 int err; 18454 18455 if (!attr->func_info_cnt && !attr->line_info_cnt) { 18456 if (check_abnormal_return(env)) 18457 return -EINVAL; 18458 return 0; 18459 } 18460 18461 btf = btf_get_by_fd(attr->prog_btf_fd); 18462 if (IS_ERR(btf)) 18463 return PTR_ERR(btf); 18464 if (btf_is_kernel(btf)) { 18465 btf_put(btf); 18466 return -EACCES; 18467 } 18468 env->prog->aux->btf = btf; 18469 18470 err = check_btf_func_early(env, attr, uattr); 18471 if (err) 18472 return err; 18473 return 0; 18474 } 18475 18476 static int check_btf_info(struct bpf_verifier_env *env, 18477 const union bpf_attr *attr, 18478 bpfptr_t uattr) 18479 { 18480 int err; 18481 18482 if (!attr->func_info_cnt && !attr->line_info_cnt) { 18483 if (check_abnormal_return(env)) 18484 return -EINVAL; 18485 return 0; 18486 } 18487 18488 err = check_btf_func(env, attr, uattr); 18489 if (err) 18490 return err; 18491 18492 err = check_btf_line(env, attr, uattr); 18493 if (err) 18494 return err; 18495 18496 err = check_core_relo(env, attr, uattr); 18497 if (err) 18498 return err; 18499 18500 return 0; 18501 } 18502 18503 /* check %cur's range satisfies %old's */ 18504 static bool range_within(const struct bpf_reg_state *old, 18505 const struct bpf_reg_state *cur) 18506 { 18507 return old->umin_value <= cur->umin_value && 18508 old->umax_value >= cur->umax_value && 18509 old->smin_value <= cur->smin_value && 18510 old->smax_value >= cur->smax_value && 18511 old->u32_min_value <= cur->u32_min_value && 18512 old->u32_max_value >= cur->u32_max_value && 18513 old->s32_min_value <= cur->s32_min_value && 18514 old->s32_max_value >= cur->s32_max_value; 18515 } 18516 18517 /* If in the old state two registers had the same id, then they need to have 18518 * the same id in the new state as well. But that id could be different from 18519 * the old state, so we need to track the mapping from old to new ids. 18520 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 18521 * regs with old id 5 must also have new id 9 for the new state to be safe. But 18522 * regs with a different old id could still have new id 9, we don't care about 18523 * that. 18524 * So we look through our idmap to see if this old id has been seen before. If 18525 * so, we require the new id to match; otherwise, we add the id pair to the map. 18526 */ 18527 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 18528 { 18529 struct bpf_id_pair *map = idmap->map; 18530 unsigned int i; 18531 18532 /* either both IDs should be set or both should be zero */ 18533 if (!!old_id != !!cur_id) 18534 return false; 18535 18536 if (old_id == 0) /* cur_id == 0 as well */ 18537 return true; 18538 18539 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 18540 if (!map[i].old) { 18541 /* Reached an empty slot; haven't seen this id before */ 18542 map[i].old = old_id; 18543 map[i].cur = cur_id; 18544 return true; 18545 } 18546 if (map[i].old == old_id) 18547 return map[i].cur == cur_id; 18548 if (map[i].cur == cur_id) 18549 return false; 18550 } 18551 /* We ran out of idmap slots, which should be impossible */ 18552 WARN_ON_ONCE(1); 18553 return false; 18554 } 18555 18556 /* Similar to check_ids(), but allocate a unique temporary ID 18557 * for 'old_id' or 'cur_id' of zero. 18558 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 18559 */ 18560 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 18561 { 18562 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 18563 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 18564 18565 return check_ids(old_id, cur_id, idmap); 18566 } 18567 18568 static void clean_func_state(struct bpf_verifier_env *env, 18569 struct bpf_func_state *st, 18570 u32 ip) 18571 { 18572 u16 live_regs = env->insn_aux_data[ip].live_regs_before; 18573 int i, j; 18574 18575 for (i = 0; i < BPF_REG_FP; i++) { 18576 /* liveness must not touch this register anymore */ 18577 if (!(live_regs & BIT(i))) 18578 /* since the register is unused, clear its state 18579 * to make further comparison simpler 18580 */ 18581 __mark_reg_not_init(env, &st->regs[i]); 18582 } 18583 18584 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 18585 if (!bpf_stack_slot_alive(env, st->frameno, i)) { 18586 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 18587 for (j = 0; j < BPF_REG_SIZE; j++) 18588 st->stack[i].slot_type[j] = STACK_INVALID; 18589 } 18590 } 18591 } 18592 18593 static void clean_verifier_state(struct bpf_verifier_env *env, 18594 struct bpf_verifier_state *st) 18595 { 18596 int i, ip; 18597 18598 bpf_live_stack_query_init(env, st); 18599 st->cleaned = true; 18600 for (i = 0; i <= st->curframe; i++) { 18601 ip = frame_insn_idx(st, i); 18602 clean_func_state(env, st->frame[i], ip); 18603 } 18604 } 18605 18606 /* the parentage chains form a tree. 18607 * the verifier states are added to state lists at given insn and 18608 * pushed into state stack for future exploration. 18609 * when the verifier reaches bpf_exit insn some of the verifier states 18610 * stored in the state lists have their final liveness state already, 18611 * but a lot of states will get revised from liveness point of view when 18612 * the verifier explores other branches. 18613 * Example: 18614 * 1: *(u64)(r10 - 8) = 1 18615 * 2: if r1 == 100 goto pc+1 18616 * 3: *(u64)(r10 - 8) = 2 18617 * 4: r0 = *(u64)(r10 - 8) 18618 * 5: exit 18619 * when the verifier reaches exit insn the stack slot -8 in the state list of 18620 * insn 2 is not yet marked alive. Then the verifier pops the other_branch 18621 * of insn 2 and goes exploring further. After the insn 4 read, liveness 18622 * analysis would propagate read mark for -8 at insn 2. 18623 * 18624 * Since the verifier pushes the branch states as it sees them while exploring 18625 * the program the condition of walking the branch instruction for the second 18626 * time means that all states below this branch were already explored and 18627 * their final liveness marks are already propagated. 18628 * Hence when the verifier completes the search of state list in is_state_visited() 18629 * we can call this clean_live_states() function to clear dead the registers and stack 18630 * slots to simplify state merging. 18631 * 18632 * Important note here that walking the same branch instruction in the callee 18633 * doesn't meant that the states are DONE. The verifier has to compare 18634 * the callsites 18635 */ 18636 static void clean_live_states(struct bpf_verifier_env *env, int insn, 18637 struct bpf_verifier_state *cur) 18638 { 18639 struct bpf_verifier_state_list *sl; 18640 struct list_head *pos, *head; 18641 18642 head = explored_state(env, insn); 18643 list_for_each(pos, head) { 18644 sl = container_of(pos, struct bpf_verifier_state_list, node); 18645 if (sl->state.branches) 18646 continue; 18647 if (sl->state.insn_idx != insn || 18648 !same_callsites(&sl->state, cur)) 18649 continue; 18650 if (sl->state.cleaned) 18651 /* all regs in this state in all frames were already marked */ 18652 continue; 18653 if (incomplete_read_marks(env, &sl->state)) 18654 continue; 18655 clean_verifier_state(env, &sl->state); 18656 } 18657 } 18658 18659 static bool regs_exact(const struct bpf_reg_state *rold, 18660 const struct bpf_reg_state *rcur, 18661 struct bpf_idmap *idmap) 18662 { 18663 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 18664 check_ids(rold->id, rcur->id, idmap) && 18665 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 18666 } 18667 18668 enum exact_level { 18669 NOT_EXACT, 18670 EXACT, 18671 RANGE_WITHIN 18672 }; 18673 18674 /* Returns true if (rold safe implies rcur safe) */ 18675 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 18676 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, 18677 enum exact_level exact) 18678 { 18679 if (exact == EXACT) 18680 return regs_exact(rold, rcur, idmap); 18681 18682 if (rold->type == NOT_INIT) { 18683 if (exact == NOT_EXACT || rcur->type == NOT_INIT) 18684 /* explored state can't have used this */ 18685 return true; 18686 } 18687 18688 /* Enforce that register types have to match exactly, including their 18689 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 18690 * rule. 18691 * 18692 * One can make a point that using a pointer register as unbounded 18693 * SCALAR would be technically acceptable, but this could lead to 18694 * pointer leaks because scalars are allowed to leak while pointers 18695 * are not. We could make this safe in special cases if root is 18696 * calling us, but it's probably not worth the hassle. 18697 * 18698 * Also, register types that are *not* MAYBE_NULL could technically be 18699 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 18700 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 18701 * to the same map). 18702 * However, if the old MAYBE_NULL register then got NULL checked, 18703 * doing so could have affected others with the same id, and we can't 18704 * check for that because we lost the id when we converted to 18705 * a non-MAYBE_NULL variant. 18706 * So, as a general rule we don't allow mixing MAYBE_NULL and 18707 * non-MAYBE_NULL registers as well. 18708 */ 18709 if (rold->type != rcur->type) 18710 return false; 18711 18712 switch (base_type(rold->type)) { 18713 case SCALAR_VALUE: 18714 if (env->explore_alu_limits) { 18715 /* explore_alu_limits disables tnum_in() and range_within() 18716 * logic and requires everything to be strict 18717 */ 18718 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 18719 check_scalar_ids(rold->id, rcur->id, idmap); 18720 } 18721 if (!rold->precise && exact == NOT_EXACT) 18722 return true; 18723 if ((rold->id & BPF_ADD_CONST) != (rcur->id & BPF_ADD_CONST)) 18724 return false; 18725 if ((rold->id & BPF_ADD_CONST) && (rold->off != rcur->off)) 18726 return false; 18727 /* Why check_ids() for scalar registers? 18728 * 18729 * Consider the following BPF code: 18730 * 1: r6 = ... unbound scalar, ID=a ... 18731 * 2: r7 = ... unbound scalar, ID=b ... 18732 * 3: if (r6 > r7) goto +1 18733 * 4: r6 = r7 18734 * 5: if (r6 > X) goto ... 18735 * 6: ... memory operation using r7 ... 18736 * 18737 * First verification path is [1-6]: 18738 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 18739 * - at (5) r6 would be marked <= X, sync_linked_regs() would also mark 18740 * r7 <= X, because r6 and r7 share same id. 18741 * Next verification path is [1-4, 6]. 18742 * 18743 * Instruction (6) would be reached in two states: 18744 * I. r6{.id=b}, r7{.id=b} via path 1-6; 18745 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 18746 * 18747 * Use check_ids() to distinguish these states. 18748 * --- 18749 * Also verify that new value satisfies old value range knowledge. 18750 */ 18751 return range_within(rold, rcur) && 18752 tnum_in(rold->var_off, rcur->var_off) && 18753 check_scalar_ids(rold->id, rcur->id, idmap); 18754 case PTR_TO_MAP_KEY: 18755 case PTR_TO_MAP_VALUE: 18756 case PTR_TO_MEM: 18757 case PTR_TO_BUF: 18758 case PTR_TO_TP_BUFFER: 18759 /* If the new min/max/var_off satisfy the old ones and 18760 * everything else matches, we are OK. 18761 */ 18762 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 18763 range_within(rold, rcur) && 18764 tnum_in(rold->var_off, rcur->var_off) && 18765 check_ids(rold->id, rcur->id, idmap) && 18766 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 18767 case PTR_TO_PACKET_META: 18768 case PTR_TO_PACKET: 18769 /* We must have at least as much range as the old ptr 18770 * did, so that any accesses which were safe before are 18771 * still safe. This is true even if old range < old off, 18772 * since someone could have accessed through (ptr - k), or 18773 * even done ptr -= k in a register, to get a safe access. 18774 */ 18775 if (rold->range > rcur->range) 18776 return false; 18777 /* If the offsets don't match, we can't trust our alignment; 18778 * nor can we be sure that we won't fall out of range. 18779 */ 18780 if (rold->off != rcur->off) 18781 return false; 18782 /* id relations must be preserved */ 18783 if (!check_ids(rold->id, rcur->id, idmap)) 18784 return false; 18785 /* new val must satisfy old val knowledge */ 18786 return range_within(rold, rcur) && 18787 tnum_in(rold->var_off, rcur->var_off); 18788 case PTR_TO_STACK: 18789 /* two stack pointers are equal only if they're pointing to 18790 * the same stack frame, since fp-8 in foo != fp-8 in bar 18791 */ 18792 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 18793 case PTR_TO_ARENA: 18794 return true; 18795 default: 18796 return regs_exact(rold, rcur, idmap); 18797 } 18798 } 18799 18800 static struct bpf_reg_state unbound_reg; 18801 18802 static __init int unbound_reg_init(void) 18803 { 18804 __mark_reg_unknown_imprecise(&unbound_reg); 18805 return 0; 18806 } 18807 late_initcall(unbound_reg_init); 18808 18809 static bool is_stack_all_misc(struct bpf_verifier_env *env, 18810 struct bpf_stack_state *stack) 18811 { 18812 u32 i; 18813 18814 for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) { 18815 if ((stack->slot_type[i] == STACK_MISC) || 18816 (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack)) 18817 continue; 18818 return false; 18819 } 18820 18821 return true; 18822 } 18823 18824 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env, 18825 struct bpf_stack_state *stack) 18826 { 18827 if (is_spilled_scalar_reg64(stack)) 18828 return &stack->spilled_ptr; 18829 18830 if (is_stack_all_misc(env, stack)) 18831 return &unbound_reg; 18832 18833 return NULL; 18834 } 18835 18836 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 18837 struct bpf_func_state *cur, struct bpf_idmap *idmap, 18838 enum exact_level exact) 18839 { 18840 int i, spi; 18841 18842 /* walk slots of the explored stack and ignore any additional 18843 * slots in the current stack, since explored(safe) state 18844 * didn't use them 18845 */ 18846 for (i = 0; i < old->allocated_stack; i++) { 18847 struct bpf_reg_state *old_reg, *cur_reg; 18848 18849 spi = i / BPF_REG_SIZE; 18850 18851 if (exact != NOT_EXACT && 18852 (i >= cur->allocated_stack || 18853 old->stack[spi].slot_type[i % BPF_REG_SIZE] != 18854 cur->stack[spi].slot_type[i % BPF_REG_SIZE])) 18855 return false; 18856 18857 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 18858 continue; 18859 18860 if (env->allow_uninit_stack && 18861 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 18862 continue; 18863 18864 /* explored stack has more populated slots than current stack 18865 * and these slots were used 18866 */ 18867 if (i >= cur->allocated_stack) 18868 return false; 18869 18870 /* 64-bit scalar spill vs all slots MISC and vice versa. 18871 * Load from all slots MISC produces unbound scalar. 18872 * Construct a fake register for such stack and call 18873 * regsafe() to ensure scalar ids are compared. 18874 */ 18875 old_reg = scalar_reg_for_stack(env, &old->stack[spi]); 18876 cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]); 18877 if (old_reg && cur_reg) { 18878 if (!regsafe(env, old_reg, cur_reg, idmap, exact)) 18879 return false; 18880 i += BPF_REG_SIZE - 1; 18881 continue; 18882 } 18883 18884 /* if old state was safe with misc data in the stack 18885 * it will be safe with zero-initialized stack. 18886 * The opposite is not true 18887 */ 18888 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 18889 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 18890 continue; 18891 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 18892 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 18893 /* Ex: old explored (safe) state has STACK_SPILL in 18894 * this stack slot, but current has STACK_MISC -> 18895 * this verifier states are not equivalent, 18896 * return false to continue verification of this path 18897 */ 18898 return false; 18899 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 18900 continue; 18901 /* Both old and cur are having same slot_type */ 18902 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 18903 case STACK_SPILL: 18904 /* when explored and current stack slot are both storing 18905 * spilled registers, check that stored pointers types 18906 * are the same as well. 18907 * Ex: explored safe path could have stored 18908 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 18909 * but current path has stored: 18910 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 18911 * such verifier states are not equivalent. 18912 * return false to continue verification of this path 18913 */ 18914 if (!regsafe(env, &old->stack[spi].spilled_ptr, 18915 &cur->stack[spi].spilled_ptr, idmap, exact)) 18916 return false; 18917 break; 18918 case STACK_DYNPTR: 18919 old_reg = &old->stack[spi].spilled_ptr; 18920 cur_reg = &cur->stack[spi].spilled_ptr; 18921 if (old_reg->dynptr.type != cur_reg->dynptr.type || 18922 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 18923 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 18924 return false; 18925 break; 18926 case STACK_ITER: 18927 old_reg = &old->stack[spi].spilled_ptr; 18928 cur_reg = &cur->stack[spi].spilled_ptr; 18929 /* iter.depth is not compared between states as it 18930 * doesn't matter for correctness and would otherwise 18931 * prevent convergence; we maintain it only to prevent 18932 * infinite loop check triggering, see 18933 * iter_active_depths_differ() 18934 */ 18935 if (old_reg->iter.btf != cur_reg->iter.btf || 18936 old_reg->iter.btf_id != cur_reg->iter.btf_id || 18937 old_reg->iter.state != cur_reg->iter.state || 18938 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 18939 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 18940 return false; 18941 break; 18942 case STACK_IRQ_FLAG: 18943 old_reg = &old->stack[spi].spilled_ptr; 18944 cur_reg = &cur->stack[spi].spilled_ptr; 18945 if (!check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap) || 18946 old_reg->irq.kfunc_class != cur_reg->irq.kfunc_class) 18947 return false; 18948 break; 18949 case STACK_MISC: 18950 case STACK_ZERO: 18951 case STACK_INVALID: 18952 continue; 18953 /* Ensure that new unhandled slot types return false by default */ 18954 default: 18955 return false; 18956 } 18957 } 18958 return true; 18959 } 18960 18961 static bool refsafe(struct bpf_verifier_state *old, struct bpf_verifier_state *cur, 18962 struct bpf_idmap *idmap) 18963 { 18964 int i; 18965 18966 if (old->acquired_refs != cur->acquired_refs) 18967 return false; 18968 18969 if (old->active_locks != cur->active_locks) 18970 return false; 18971 18972 if (old->active_preempt_locks != cur->active_preempt_locks) 18973 return false; 18974 18975 if (old->active_rcu_lock != cur->active_rcu_lock) 18976 return false; 18977 18978 if (!check_ids(old->active_irq_id, cur->active_irq_id, idmap)) 18979 return false; 18980 18981 if (!check_ids(old->active_lock_id, cur->active_lock_id, idmap) || 18982 old->active_lock_ptr != cur->active_lock_ptr) 18983 return false; 18984 18985 for (i = 0; i < old->acquired_refs; i++) { 18986 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap) || 18987 old->refs[i].type != cur->refs[i].type) 18988 return false; 18989 switch (old->refs[i].type) { 18990 case REF_TYPE_PTR: 18991 case REF_TYPE_IRQ: 18992 break; 18993 case REF_TYPE_LOCK: 18994 case REF_TYPE_RES_LOCK: 18995 case REF_TYPE_RES_LOCK_IRQ: 18996 if (old->refs[i].ptr != cur->refs[i].ptr) 18997 return false; 18998 break; 18999 default: 19000 WARN_ONCE(1, "Unhandled enum type for reference state: %d\n", old->refs[i].type); 19001 return false; 19002 } 19003 } 19004 19005 return true; 19006 } 19007 19008 /* compare two verifier states 19009 * 19010 * all states stored in state_list are known to be valid, since 19011 * verifier reached 'bpf_exit' instruction through them 19012 * 19013 * this function is called when verifier exploring different branches of 19014 * execution popped from the state stack. If it sees an old state that has 19015 * more strict register state and more strict stack state then this execution 19016 * branch doesn't need to be explored further, since verifier already 19017 * concluded that more strict state leads to valid finish. 19018 * 19019 * Therefore two states are equivalent if register state is more conservative 19020 * and explored stack state is more conservative than the current one. 19021 * Example: 19022 * explored current 19023 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 19024 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 19025 * 19026 * In other words if current stack state (one being explored) has more 19027 * valid slots than old one that already passed validation, it means 19028 * the verifier can stop exploring and conclude that current state is valid too 19029 * 19030 * Similarly with registers. If explored state has register type as invalid 19031 * whereas register type in current state is meaningful, it means that 19032 * the current state will reach 'bpf_exit' instruction safely 19033 */ 19034 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 19035 struct bpf_func_state *cur, u32 insn_idx, enum exact_level exact) 19036 { 19037 u16 live_regs = env->insn_aux_data[insn_idx].live_regs_before; 19038 u16 i; 19039 19040 if (old->callback_depth > cur->callback_depth) 19041 return false; 19042 19043 for (i = 0; i < MAX_BPF_REG; i++) 19044 if (((1 << i) & live_regs) && 19045 !regsafe(env, &old->regs[i], &cur->regs[i], 19046 &env->idmap_scratch, exact)) 19047 return false; 19048 19049 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) 19050 return false; 19051 19052 return true; 19053 } 19054 19055 static void reset_idmap_scratch(struct bpf_verifier_env *env) 19056 { 19057 env->idmap_scratch.tmp_id_gen = env->id_gen; 19058 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 19059 } 19060 19061 static bool states_equal(struct bpf_verifier_env *env, 19062 struct bpf_verifier_state *old, 19063 struct bpf_verifier_state *cur, 19064 enum exact_level exact) 19065 { 19066 u32 insn_idx; 19067 int i; 19068 19069 if (old->curframe != cur->curframe) 19070 return false; 19071 19072 reset_idmap_scratch(env); 19073 19074 /* Verification state from speculative execution simulation 19075 * must never prune a non-speculative execution one. 19076 */ 19077 if (old->speculative && !cur->speculative) 19078 return false; 19079 19080 if (old->in_sleepable != cur->in_sleepable) 19081 return false; 19082 19083 if (!refsafe(old, cur, &env->idmap_scratch)) 19084 return false; 19085 19086 /* for states to be equal callsites have to be the same 19087 * and all frame states need to be equivalent 19088 */ 19089 for (i = 0; i <= old->curframe; i++) { 19090 insn_idx = frame_insn_idx(old, i); 19091 if (old->frame[i]->callsite != cur->frame[i]->callsite) 19092 return false; 19093 if (!func_states_equal(env, old->frame[i], cur->frame[i], insn_idx, exact)) 19094 return false; 19095 } 19096 return true; 19097 } 19098 19099 /* find precise scalars in the previous equivalent state and 19100 * propagate them into the current state 19101 */ 19102 static int propagate_precision(struct bpf_verifier_env *env, 19103 const struct bpf_verifier_state *old, 19104 struct bpf_verifier_state *cur, 19105 bool *changed) 19106 { 19107 struct bpf_reg_state *state_reg; 19108 struct bpf_func_state *state; 19109 int i, err = 0, fr; 19110 bool first; 19111 19112 for (fr = old->curframe; fr >= 0; fr--) { 19113 state = old->frame[fr]; 19114 state_reg = state->regs; 19115 first = true; 19116 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 19117 if (state_reg->type != SCALAR_VALUE || 19118 !state_reg->precise) 19119 continue; 19120 if (env->log.level & BPF_LOG_LEVEL2) { 19121 if (first) 19122 verbose(env, "frame %d: propagating r%d", fr, i); 19123 else 19124 verbose(env, ",r%d", i); 19125 } 19126 bt_set_frame_reg(&env->bt, fr, i); 19127 first = false; 19128 } 19129 19130 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 19131 if (!is_spilled_reg(&state->stack[i])) 19132 continue; 19133 state_reg = &state->stack[i].spilled_ptr; 19134 if (state_reg->type != SCALAR_VALUE || 19135 !state_reg->precise) 19136 continue; 19137 if (env->log.level & BPF_LOG_LEVEL2) { 19138 if (first) 19139 verbose(env, "frame %d: propagating fp%d", 19140 fr, (-i - 1) * BPF_REG_SIZE); 19141 else 19142 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 19143 } 19144 bt_set_frame_slot(&env->bt, fr, i); 19145 first = false; 19146 } 19147 if (!first) 19148 verbose(env, "\n"); 19149 } 19150 19151 err = __mark_chain_precision(env, cur, -1, changed); 19152 if (err < 0) 19153 return err; 19154 19155 return 0; 19156 } 19157 19158 #define MAX_BACKEDGE_ITERS 64 19159 19160 /* Propagate read and precision marks from visit->backedges[*].state->equal_state 19161 * to corresponding parent states of visit->backedges[*].state until fixed point is reached, 19162 * then free visit->backedges. 19163 * After execution of this function incomplete_read_marks() will return false 19164 * for all states corresponding to @visit->callchain. 19165 */ 19166 static int propagate_backedges(struct bpf_verifier_env *env, struct bpf_scc_visit *visit) 19167 { 19168 struct bpf_scc_backedge *backedge; 19169 struct bpf_verifier_state *st; 19170 bool changed; 19171 int i, err; 19172 19173 i = 0; 19174 do { 19175 if (i++ > MAX_BACKEDGE_ITERS) { 19176 if (env->log.level & BPF_LOG_LEVEL2) 19177 verbose(env, "%s: too many iterations\n", __func__); 19178 for (backedge = visit->backedges; backedge; backedge = backedge->next) 19179 mark_all_scalars_precise(env, &backedge->state); 19180 break; 19181 } 19182 changed = false; 19183 for (backedge = visit->backedges; backedge; backedge = backedge->next) { 19184 st = &backedge->state; 19185 err = propagate_precision(env, st->equal_state, st, &changed); 19186 if (err) 19187 return err; 19188 } 19189 } while (changed); 19190 19191 free_backedges(visit); 19192 return 0; 19193 } 19194 19195 static bool states_maybe_looping(struct bpf_verifier_state *old, 19196 struct bpf_verifier_state *cur) 19197 { 19198 struct bpf_func_state *fold, *fcur; 19199 int i, fr = cur->curframe; 19200 19201 if (old->curframe != fr) 19202 return false; 19203 19204 fold = old->frame[fr]; 19205 fcur = cur->frame[fr]; 19206 for (i = 0; i < MAX_BPF_REG; i++) 19207 if (memcmp(&fold->regs[i], &fcur->regs[i], 19208 offsetof(struct bpf_reg_state, frameno))) 19209 return false; 19210 return true; 19211 } 19212 19213 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 19214 { 19215 return env->insn_aux_data[insn_idx].is_iter_next; 19216 } 19217 19218 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 19219 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 19220 * states to match, which otherwise would look like an infinite loop. So while 19221 * iter_next() calls are taken care of, we still need to be careful and 19222 * prevent erroneous and too eager declaration of "infinite loop", when 19223 * iterators are involved. 19224 * 19225 * Here's a situation in pseudo-BPF assembly form: 19226 * 19227 * 0: again: ; set up iter_next() call args 19228 * 1: r1 = &it ; <CHECKPOINT HERE> 19229 * 2: call bpf_iter_num_next ; this is iter_next() call 19230 * 3: if r0 == 0 goto done 19231 * 4: ... something useful here ... 19232 * 5: goto again ; another iteration 19233 * 6: done: 19234 * 7: r1 = &it 19235 * 8: call bpf_iter_num_destroy ; clean up iter state 19236 * 9: exit 19237 * 19238 * This is a typical loop. Let's assume that we have a prune point at 1:, 19239 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 19240 * again`, assuming other heuristics don't get in a way). 19241 * 19242 * When we first time come to 1:, let's say we have some state X. We proceed 19243 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 19244 * Now we come back to validate that forked ACTIVE state. We proceed through 19245 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 19246 * are converging. But the problem is that we don't know that yet, as this 19247 * convergence has to happen at iter_next() call site only. So if nothing is 19248 * done, at 1: verifier will use bounded loop logic and declare infinite 19249 * looping (and would be *technically* correct, if not for iterator's 19250 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 19251 * don't want that. So what we do in process_iter_next_call() when we go on 19252 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 19253 * a different iteration. So when we suspect an infinite loop, we additionally 19254 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 19255 * pretend we are not looping and wait for next iter_next() call. 19256 * 19257 * This only applies to ACTIVE state. In DRAINED state we don't expect to 19258 * loop, because that would actually mean infinite loop, as DRAINED state is 19259 * "sticky", and so we'll keep returning into the same instruction with the 19260 * same state (at least in one of possible code paths). 19261 * 19262 * This approach allows to keep infinite loop heuristic even in the face of 19263 * active iterator. E.g., C snippet below is and will be detected as 19264 * infinitely looping: 19265 * 19266 * struct bpf_iter_num it; 19267 * int *p, x; 19268 * 19269 * bpf_iter_num_new(&it, 0, 10); 19270 * while ((p = bpf_iter_num_next(&t))) { 19271 * x = p; 19272 * while (x--) {} // <<-- infinite loop here 19273 * } 19274 * 19275 */ 19276 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 19277 { 19278 struct bpf_reg_state *slot, *cur_slot; 19279 struct bpf_func_state *state; 19280 int i, fr; 19281 19282 for (fr = old->curframe; fr >= 0; fr--) { 19283 state = old->frame[fr]; 19284 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 19285 if (state->stack[i].slot_type[0] != STACK_ITER) 19286 continue; 19287 19288 slot = &state->stack[i].spilled_ptr; 19289 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 19290 continue; 19291 19292 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 19293 if (cur_slot->iter.depth != slot->iter.depth) 19294 return true; 19295 } 19296 } 19297 return false; 19298 } 19299 19300 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 19301 { 19302 struct bpf_verifier_state_list *new_sl; 19303 struct bpf_verifier_state_list *sl; 19304 struct bpf_verifier_state *cur = env->cur_state, *new; 19305 bool force_new_state, add_new_state, loop; 19306 int n, err, states_cnt = 0; 19307 struct list_head *pos, *tmp, *head; 19308 19309 force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) || 19310 /* Avoid accumulating infinitely long jmp history */ 19311 cur->jmp_history_cnt > 40; 19312 19313 /* bpf progs typically have pruning point every 4 instructions 19314 * http://vger.kernel.org/bpfconf2019.html#session-1 19315 * Do not add new state for future pruning if the verifier hasn't seen 19316 * at least 2 jumps and at least 8 instructions. 19317 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 19318 * In tests that amounts to up to 50% reduction into total verifier 19319 * memory consumption and 20% verifier time speedup. 19320 */ 19321 add_new_state = force_new_state; 19322 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 19323 env->insn_processed - env->prev_insn_processed >= 8) 19324 add_new_state = true; 19325 19326 clean_live_states(env, insn_idx, cur); 19327 19328 loop = false; 19329 head = explored_state(env, insn_idx); 19330 list_for_each_safe(pos, tmp, head) { 19331 sl = container_of(pos, struct bpf_verifier_state_list, node); 19332 states_cnt++; 19333 if (sl->state.insn_idx != insn_idx) 19334 continue; 19335 19336 if (sl->state.branches) { 19337 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 19338 19339 if (frame->in_async_callback_fn && 19340 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 19341 /* Different async_entry_cnt means that the verifier is 19342 * processing another entry into async callback. 19343 * Seeing the same state is not an indication of infinite 19344 * loop or infinite recursion. 19345 * But finding the same state doesn't mean that it's safe 19346 * to stop processing the current state. The previous state 19347 * hasn't yet reached bpf_exit, since state.branches > 0. 19348 * Checking in_async_callback_fn alone is not enough either. 19349 * Since the verifier still needs to catch infinite loops 19350 * inside async callbacks. 19351 */ 19352 goto skip_inf_loop_check; 19353 } 19354 /* BPF open-coded iterators loop detection is special. 19355 * states_maybe_looping() logic is too simplistic in detecting 19356 * states that *might* be equivalent, because it doesn't know 19357 * about ID remapping, so don't even perform it. 19358 * See process_iter_next_call() and iter_active_depths_differ() 19359 * for overview of the logic. When current and one of parent 19360 * states are detected as equivalent, it's a good thing: we prove 19361 * convergence and can stop simulating further iterations. 19362 * It's safe to assume that iterator loop will finish, taking into 19363 * account iter_next() contract of eventually returning 19364 * sticky NULL result. 19365 * 19366 * Note, that states have to be compared exactly in this case because 19367 * read and precision marks might not be finalized inside the loop. 19368 * E.g. as in the program below: 19369 * 19370 * 1. r7 = -16 19371 * 2. r6 = bpf_get_prandom_u32() 19372 * 3. while (bpf_iter_num_next(&fp[-8])) { 19373 * 4. if (r6 != 42) { 19374 * 5. r7 = -32 19375 * 6. r6 = bpf_get_prandom_u32() 19376 * 7. continue 19377 * 8. } 19378 * 9. r0 = r10 19379 * 10. r0 += r7 19380 * 11. r8 = *(u64 *)(r0 + 0) 19381 * 12. r6 = bpf_get_prandom_u32() 19382 * 13. } 19383 * 19384 * Here verifier would first visit path 1-3, create a checkpoint at 3 19385 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does 19386 * not have read or precision mark for r7 yet, thus inexact states 19387 * comparison would discard current state with r7=-32 19388 * => unsafe memory access at 11 would not be caught. 19389 */ 19390 if (is_iter_next_insn(env, insn_idx)) { 19391 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 19392 struct bpf_func_state *cur_frame; 19393 struct bpf_reg_state *iter_state, *iter_reg; 19394 int spi; 19395 19396 cur_frame = cur->frame[cur->curframe]; 19397 /* btf_check_iter_kfuncs() enforces that 19398 * iter state pointer is always the first arg 19399 */ 19400 iter_reg = &cur_frame->regs[BPF_REG_1]; 19401 /* current state is valid due to states_equal(), 19402 * so we can assume valid iter and reg state, 19403 * no need for extra (re-)validations 19404 */ 19405 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 19406 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 19407 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { 19408 loop = true; 19409 goto hit; 19410 } 19411 } 19412 goto skip_inf_loop_check; 19413 } 19414 if (is_may_goto_insn_at(env, insn_idx)) { 19415 if (sl->state.may_goto_depth != cur->may_goto_depth && 19416 states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 19417 loop = true; 19418 goto hit; 19419 } 19420 } 19421 if (bpf_calls_callback(env, insn_idx)) { 19422 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) 19423 goto hit; 19424 goto skip_inf_loop_check; 19425 } 19426 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 19427 if (states_maybe_looping(&sl->state, cur) && 19428 states_equal(env, &sl->state, cur, EXACT) && 19429 !iter_active_depths_differ(&sl->state, cur) && 19430 sl->state.may_goto_depth == cur->may_goto_depth && 19431 sl->state.callback_unroll_depth == cur->callback_unroll_depth) { 19432 verbose_linfo(env, insn_idx, "; "); 19433 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 19434 verbose(env, "cur state:"); 19435 print_verifier_state(env, cur, cur->curframe, true); 19436 verbose(env, "old state:"); 19437 print_verifier_state(env, &sl->state, cur->curframe, true); 19438 return -EINVAL; 19439 } 19440 /* if the verifier is processing a loop, avoid adding new state 19441 * too often, since different loop iterations have distinct 19442 * states and may not help future pruning. 19443 * This threshold shouldn't be too low to make sure that 19444 * a loop with large bound will be rejected quickly. 19445 * The most abusive loop will be: 19446 * r1 += 1 19447 * if r1 < 1000000 goto pc-2 19448 * 1M insn_procssed limit / 100 == 10k peak states. 19449 * This threshold shouldn't be too high either, since states 19450 * at the end of the loop are likely to be useful in pruning. 19451 */ 19452 skip_inf_loop_check: 19453 if (!force_new_state && 19454 env->jmps_processed - env->prev_jmps_processed < 20 && 19455 env->insn_processed - env->prev_insn_processed < 100) 19456 add_new_state = false; 19457 goto miss; 19458 } 19459 /* See comments for mark_all_regs_read_and_precise() */ 19460 loop = incomplete_read_marks(env, &sl->state); 19461 if (states_equal(env, &sl->state, cur, loop ? RANGE_WITHIN : NOT_EXACT)) { 19462 hit: 19463 sl->hit_cnt++; 19464 19465 /* if previous state reached the exit with precision and 19466 * current state is equivalent to it (except precision marks) 19467 * the precision needs to be propagated back in 19468 * the current state. 19469 */ 19470 err = 0; 19471 if (is_jmp_point(env, env->insn_idx)) 19472 err = push_jmp_history(env, cur, 0, 0); 19473 err = err ? : propagate_precision(env, &sl->state, cur, NULL); 19474 if (err) 19475 return err; 19476 /* When processing iterator based loops above propagate_liveness and 19477 * propagate_precision calls are not sufficient to transfer all relevant 19478 * read and precision marks. E.g. consider the following case: 19479 * 19480 * .-> A --. Assume the states are visited in the order A, B, C. 19481 * | | | Assume that state B reaches a state equivalent to state A. 19482 * | v v At this point, state C is not processed yet, so state A 19483 * '-- B C has not received any read or precision marks from C. 19484 * Thus, marks propagated from A to B are incomplete. 19485 * 19486 * The verifier mitigates this by performing the following steps: 19487 * 19488 * - Prior to the main verification pass, strongly connected components 19489 * (SCCs) are computed over the program's control flow graph, 19490 * intraprocedurally. 19491 * 19492 * - During the main verification pass, `maybe_enter_scc()` checks 19493 * whether the current verifier state is entering an SCC. If so, an 19494 * instance of a `bpf_scc_visit` object is created, and the state 19495 * entering the SCC is recorded as the entry state. 19496 * 19497 * - This instance is associated not with the SCC itself, but with a 19498 * `bpf_scc_callchain`: a tuple consisting of the call sites leading to 19499 * the SCC and the SCC id. See `compute_scc_callchain()`. 19500 * 19501 * - When a verification path encounters a `states_equal(..., 19502 * RANGE_WITHIN)` condition, there exists a call chain describing the 19503 * current state and a corresponding `bpf_scc_visit` instance. A copy 19504 * of the current state is created and added to 19505 * `bpf_scc_visit->backedges`. 19506 * 19507 * - When a verification path terminates, `maybe_exit_scc()` is called 19508 * from `update_branch_counts()`. For states with `branches == 0`, it 19509 * checks whether the state is the entry state of any `bpf_scc_visit` 19510 * instance. If it is, this indicates that all paths originating from 19511 * this SCC visit have been explored. `propagate_backedges()` is then 19512 * called, which propagates read and precision marks through the 19513 * backedges until a fixed point is reached. 19514 * (In the earlier example, this would propagate marks from A to B, 19515 * from C to A, and then again from A to B.) 19516 * 19517 * A note on callchains 19518 * -------------------- 19519 * 19520 * Consider the following example: 19521 * 19522 * void foo() { loop { ... SCC#1 ... } } 19523 * void main() { 19524 * A: foo(); 19525 * B: ... 19526 * C: foo(); 19527 * } 19528 * 19529 * Here, there are two distinct callchains leading to SCC#1: 19530 * - (A, SCC#1) 19531 * - (C, SCC#1) 19532 * 19533 * Each callchain identifies a separate `bpf_scc_visit` instance that 19534 * accumulates backedge states. The `propagate_{liveness,precision}()` 19535 * functions traverse the parent state of each backedge state, which 19536 * means these parent states must remain valid (i.e., not freed) while 19537 * the corresponding `bpf_scc_visit` instance exists. 19538 * 19539 * Associating `bpf_scc_visit` instances directly with SCCs instead of 19540 * callchains would break this invariant: 19541 * - States explored during `C: foo()` would contribute backedges to 19542 * SCC#1, but SCC#1 would only be exited once the exploration of 19543 * `A: foo()` completes. 19544 * - By that time, the states explored between `A: foo()` and `C: foo()` 19545 * (i.e., `B: ...`) may have already been freed, causing the parent 19546 * links for states from `C: foo()` to become invalid. 19547 */ 19548 if (loop) { 19549 struct bpf_scc_backedge *backedge; 19550 19551 backedge = kzalloc(sizeof(*backedge), GFP_KERNEL_ACCOUNT); 19552 if (!backedge) 19553 return -ENOMEM; 19554 err = copy_verifier_state(&backedge->state, cur); 19555 backedge->state.equal_state = &sl->state; 19556 backedge->state.insn_idx = insn_idx; 19557 err = err ?: add_scc_backedge(env, &sl->state, backedge); 19558 if (err) { 19559 free_verifier_state(&backedge->state, false); 19560 kfree(backedge); 19561 return err; 19562 } 19563 } 19564 return 1; 19565 } 19566 miss: 19567 /* when new state is not going to be added do not increase miss count. 19568 * Otherwise several loop iterations will remove the state 19569 * recorded earlier. The goal of these heuristics is to have 19570 * states from some iterations of the loop (some in the beginning 19571 * and some at the end) to help pruning. 19572 */ 19573 if (add_new_state) 19574 sl->miss_cnt++; 19575 /* heuristic to determine whether this state is beneficial 19576 * to keep checking from state equivalence point of view. 19577 * Higher numbers increase max_states_per_insn and verification time, 19578 * but do not meaningfully decrease insn_processed. 19579 * 'n' controls how many times state could miss before eviction. 19580 * Use bigger 'n' for checkpoints because evicting checkpoint states 19581 * too early would hinder iterator convergence. 19582 */ 19583 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; 19584 if (sl->miss_cnt > sl->hit_cnt * n + n) { 19585 /* the state is unlikely to be useful. Remove it to 19586 * speed up verification 19587 */ 19588 sl->in_free_list = true; 19589 list_del(&sl->node); 19590 list_add(&sl->node, &env->free_list); 19591 env->free_list_size++; 19592 env->explored_states_size--; 19593 maybe_free_verifier_state(env, sl); 19594 } 19595 } 19596 19597 if (env->max_states_per_insn < states_cnt) 19598 env->max_states_per_insn = states_cnt; 19599 19600 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 19601 return 0; 19602 19603 if (!add_new_state) 19604 return 0; 19605 19606 /* There were no equivalent states, remember the current one. 19607 * Technically the current state is not proven to be safe yet, 19608 * but it will either reach outer most bpf_exit (which means it's safe) 19609 * or it will be rejected. When there are no loops the verifier won't be 19610 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 19611 * again on the way to bpf_exit. 19612 * When looping the sl->state.branches will be > 0 and this state 19613 * will not be considered for equivalence until branches == 0. 19614 */ 19615 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL_ACCOUNT); 19616 if (!new_sl) 19617 return -ENOMEM; 19618 env->total_states++; 19619 env->explored_states_size++; 19620 update_peak_states(env); 19621 env->prev_jmps_processed = env->jmps_processed; 19622 env->prev_insn_processed = env->insn_processed; 19623 19624 /* forget precise markings we inherited, see __mark_chain_precision */ 19625 if (env->bpf_capable) 19626 mark_all_scalars_imprecise(env, cur); 19627 19628 /* add new state to the head of linked list */ 19629 new = &new_sl->state; 19630 err = copy_verifier_state(new, cur); 19631 if (err) { 19632 free_verifier_state(new, false); 19633 kfree(new_sl); 19634 return err; 19635 } 19636 new->insn_idx = insn_idx; 19637 verifier_bug_if(new->branches != 1, env, 19638 "%s:branches_to_explore=%d insn %d", 19639 __func__, new->branches, insn_idx); 19640 err = maybe_enter_scc(env, new); 19641 if (err) { 19642 free_verifier_state(new, false); 19643 kfree(new_sl); 19644 return err; 19645 } 19646 19647 cur->parent = new; 19648 cur->first_insn_idx = insn_idx; 19649 cur->dfs_depth = new->dfs_depth + 1; 19650 clear_jmp_history(cur); 19651 list_add(&new_sl->node, head); 19652 return 0; 19653 } 19654 19655 /* Return true if it's OK to have the same insn return a different type. */ 19656 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 19657 { 19658 switch (base_type(type)) { 19659 case PTR_TO_CTX: 19660 case PTR_TO_SOCKET: 19661 case PTR_TO_SOCK_COMMON: 19662 case PTR_TO_TCP_SOCK: 19663 case PTR_TO_XDP_SOCK: 19664 case PTR_TO_BTF_ID: 19665 case PTR_TO_ARENA: 19666 return false; 19667 default: 19668 return true; 19669 } 19670 } 19671 19672 /* If an instruction was previously used with particular pointer types, then we 19673 * need to be careful to avoid cases such as the below, where it may be ok 19674 * for one branch accessing the pointer, but not ok for the other branch: 19675 * 19676 * R1 = sock_ptr 19677 * goto X; 19678 * ... 19679 * R1 = some_other_valid_ptr; 19680 * goto X; 19681 * ... 19682 * R2 = *(u32 *)(R1 + 0); 19683 */ 19684 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 19685 { 19686 return src != prev && (!reg_type_mismatch_ok(src) || 19687 !reg_type_mismatch_ok(prev)); 19688 } 19689 19690 static bool is_ptr_to_mem_or_btf_id(enum bpf_reg_type type) 19691 { 19692 switch (base_type(type)) { 19693 case PTR_TO_MEM: 19694 case PTR_TO_BTF_ID: 19695 return true; 19696 default: 19697 return false; 19698 } 19699 } 19700 19701 static bool is_ptr_to_mem(enum bpf_reg_type type) 19702 { 19703 return base_type(type) == PTR_TO_MEM; 19704 } 19705 19706 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 19707 bool allow_trust_mismatch) 19708 { 19709 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 19710 enum bpf_reg_type merged_type; 19711 19712 if (*prev_type == NOT_INIT) { 19713 /* Saw a valid insn 19714 * dst_reg = *(u32 *)(src_reg + off) 19715 * save type to validate intersecting paths 19716 */ 19717 *prev_type = type; 19718 } else if (reg_type_mismatch(type, *prev_type)) { 19719 /* Abuser program is trying to use the same insn 19720 * dst_reg = *(u32*) (src_reg + off) 19721 * with different pointer types: 19722 * src_reg == ctx in one branch and 19723 * src_reg == stack|map in some other branch. 19724 * Reject it. 19725 */ 19726 if (allow_trust_mismatch && 19727 is_ptr_to_mem_or_btf_id(type) && 19728 is_ptr_to_mem_or_btf_id(*prev_type)) { 19729 /* 19730 * Have to support a use case when one path through 19731 * the program yields TRUSTED pointer while another 19732 * is UNTRUSTED. Fallback to UNTRUSTED to generate 19733 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 19734 * Same behavior of MEM_RDONLY flag. 19735 */ 19736 if (is_ptr_to_mem(type) || is_ptr_to_mem(*prev_type)) 19737 merged_type = PTR_TO_MEM; 19738 else 19739 merged_type = PTR_TO_BTF_ID; 19740 if ((type & PTR_UNTRUSTED) || (*prev_type & PTR_UNTRUSTED)) 19741 merged_type |= PTR_UNTRUSTED; 19742 if ((type & MEM_RDONLY) || (*prev_type & MEM_RDONLY)) 19743 merged_type |= MEM_RDONLY; 19744 *prev_type = merged_type; 19745 } else { 19746 verbose(env, "same insn cannot be used with different pointers\n"); 19747 return -EINVAL; 19748 } 19749 } 19750 19751 return 0; 19752 } 19753 19754 enum { 19755 PROCESS_BPF_EXIT = 1 19756 }; 19757 19758 static int process_bpf_exit_full(struct bpf_verifier_env *env, 19759 bool *do_print_state, 19760 bool exception_exit) 19761 { 19762 /* We must do check_reference_leak here before 19763 * prepare_func_exit to handle the case when 19764 * state->curframe > 0, it may be a callback function, 19765 * for which reference_state must match caller reference 19766 * state when it exits. 19767 */ 19768 int err = check_resource_leak(env, exception_exit, 19769 !env->cur_state->curframe, 19770 "BPF_EXIT instruction in main prog"); 19771 if (err) 19772 return err; 19773 19774 /* The side effect of the prepare_func_exit which is 19775 * being skipped is that it frees bpf_func_state. 19776 * Typically, process_bpf_exit will only be hit with 19777 * outermost exit. copy_verifier_state in pop_stack will 19778 * handle freeing of any extra bpf_func_state left over 19779 * from not processing all nested function exits. We 19780 * also skip return code checks as they are not needed 19781 * for exceptional exits. 19782 */ 19783 if (exception_exit) 19784 return PROCESS_BPF_EXIT; 19785 19786 if (env->cur_state->curframe) { 19787 err = bpf_update_live_stack(env); 19788 if (err) 19789 return err; 19790 /* exit from nested function */ 19791 err = prepare_func_exit(env, &env->insn_idx); 19792 if (err) 19793 return err; 19794 *do_print_state = true; 19795 return 0; 19796 } 19797 19798 err = check_return_code(env, BPF_REG_0, "R0"); 19799 if (err) 19800 return err; 19801 return PROCESS_BPF_EXIT; 19802 } 19803 19804 static int do_check_insn(struct bpf_verifier_env *env, bool *do_print_state) 19805 { 19806 int err; 19807 struct bpf_insn *insn = &env->prog->insnsi[env->insn_idx]; 19808 u8 class = BPF_CLASS(insn->code); 19809 19810 if (class == BPF_ALU || class == BPF_ALU64) { 19811 err = check_alu_op(env, insn); 19812 if (err) 19813 return err; 19814 19815 } else if (class == BPF_LDX) { 19816 bool is_ldsx = BPF_MODE(insn->code) == BPF_MEMSX; 19817 19818 /* Check for reserved fields is already done in 19819 * resolve_pseudo_ldimm64(). 19820 */ 19821 err = check_load_mem(env, insn, false, is_ldsx, true, "ldx"); 19822 if (err) 19823 return err; 19824 } else if (class == BPF_STX) { 19825 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 19826 err = check_atomic(env, insn); 19827 if (err) 19828 return err; 19829 env->insn_idx++; 19830 return 0; 19831 } 19832 19833 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 19834 verbose(env, "BPF_STX uses reserved fields\n"); 19835 return -EINVAL; 19836 } 19837 19838 err = check_store_reg(env, insn, false); 19839 if (err) 19840 return err; 19841 } else if (class == BPF_ST) { 19842 enum bpf_reg_type dst_reg_type; 19843 19844 if (BPF_MODE(insn->code) != BPF_MEM || 19845 insn->src_reg != BPF_REG_0) { 19846 verbose(env, "BPF_ST uses reserved fields\n"); 19847 return -EINVAL; 19848 } 19849 /* check src operand */ 19850 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 19851 if (err) 19852 return err; 19853 19854 dst_reg_type = cur_regs(env)[insn->dst_reg].type; 19855 19856 /* check that memory (dst_reg + off) is writeable */ 19857 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 19858 insn->off, BPF_SIZE(insn->code), 19859 BPF_WRITE, -1, false, false); 19860 if (err) 19861 return err; 19862 19863 err = save_aux_ptr_type(env, dst_reg_type, false); 19864 if (err) 19865 return err; 19866 } else if (class == BPF_JMP || class == BPF_JMP32) { 19867 u8 opcode = BPF_OP(insn->code); 19868 19869 env->jmps_processed++; 19870 if (opcode == BPF_CALL) { 19871 if (BPF_SRC(insn->code) != BPF_K || 19872 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL && 19873 insn->off != 0) || 19874 (insn->src_reg != BPF_REG_0 && 19875 insn->src_reg != BPF_PSEUDO_CALL && 19876 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 19877 insn->dst_reg != BPF_REG_0 || class == BPF_JMP32) { 19878 verbose(env, "BPF_CALL uses reserved fields\n"); 19879 return -EINVAL; 19880 } 19881 19882 if (env->cur_state->active_locks) { 19883 if ((insn->src_reg == BPF_REG_0 && 19884 insn->imm != BPF_FUNC_spin_unlock) || 19885 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 19886 (insn->off != 0 || !kfunc_spin_allowed(insn->imm)))) { 19887 verbose(env, 19888 "function calls are not allowed while holding a lock\n"); 19889 return -EINVAL; 19890 } 19891 } 19892 if (insn->src_reg == BPF_PSEUDO_CALL) { 19893 err = check_func_call(env, insn, &env->insn_idx); 19894 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 19895 err = check_kfunc_call(env, insn, &env->insn_idx); 19896 if (!err && is_bpf_throw_kfunc(insn)) 19897 return process_bpf_exit_full(env, do_print_state, true); 19898 } else { 19899 err = check_helper_call(env, insn, &env->insn_idx); 19900 } 19901 if (err) 19902 return err; 19903 19904 mark_reg_scratched(env, BPF_REG_0); 19905 } else if (opcode == BPF_JA) { 19906 if (BPF_SRC(insn->code) != BPF_K || 19907 insn->src_reg != BPF_REG_0 || 19908 insn->dst_reg != BPF_REG_0 || 19909 (class == BPF_JMP && insn->imm != 0) || 19910 (class == BPF_JMP32 && insn->off != 0)) { 19911 verbose(env, "BPF_JA uses reserved fields\n"); 19912 return -EINVAL; 19913 } 19914 19915 if (class == BPF_JMP) 19916 env->insn_idx += insn->off + 1; 19917 else 19918 env->insn_idx += insn->imm + 1; 19919 return 0; 19920 } else if (opcode == BPF_EXIT) { 19921 if (BPF_SRC(insn->code) != BPF_K || 19922 insn->imm != 0 || 19923 insn->src_reg != BPF_REG_0 || 19924 insn->dst_reg != BPF_REG_0 || 19925 class == BPF_JMP32) { 19926 verbose(env, "BPF_EXIT uses reserved fields\n"); 19927 return -EINVAL; 19928 } 19929 return process_bpf_exit_full(env, do_print_state, false); 19930 } else { 19931 err = check_cond_jmp_op(env, insn, &env->insn_idx); 19932 if (err) 19933 return err; 19934 } 19935 } else if (class == BPF_LD) { 19936 u8 mode = BPF_MODE(insn->code); 19937 19938 if (mode == BPF_ABS || mode == BPF_IND) { 19939 err = check_ld_abs(env, insn); 19940 if (err) 19941 return err; 19942 19943 } else if (mode == BPF_IMM) { 19944 err = check_ld_imm(env, insn); 19945 if (err) 19946 return err; 19947 19948 env->insn_idx++; 19949 sanitize_mark_insn_seen(env); 19950 } else { 19951 verbose(env, "invalid BPF_LD mode\n"); 19952 return -EINVAL; 19953 } 19954 } else { 19955 verbose(env, "unknown insn class %d\n", class); 19956 return -EINVAL; 19957 } 19958 19959 env->insn_idx++; 19960 return 0; 19961 } 19962 19963 static int do_check(struct bpf_verifier_env *env) 19964 { 19965 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 19966 struct bpf_verifier_state *state = env->cur_state; 19967 struct bpf_insn *insns = env->prog->insnsi; 19968 int insn_cnt = env->prog->len; 19969 bool do_print_state = false; 19970 int prev_insn_idx = -1; 19971 19972 for (;;) { 19973 struct bpf_insn *insn; 19974 struct bpf_insn_aux_data *insn_aux; 19975 int err, marks_err; 19976 19977 /* reset current history entry on each new instruction */ 19978 env->cur_hist_ent = NULL; 19979 19980 env->prev_insn_idx = prev_insn_idx; 19981 if (env->insn_idx >= insn_cnt) { 19982 verbose(env, "invalid insn idx %d insn_cnt %d\n", 19983 env->insn_idx, insn_cnt); 19984 return -EFAULT; 19985 } 19986 19987 insn = &insns[env->insn_idx]; 19988 insn_aux = &env->insn_aux_data[env->insn_idx]; 19989 19990 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 19991 verbose(env, 19992 "BPF program is too large. Processed %d insn\n", 19993 env->insn_processed); 19994 return -E2BIG; 19995 } 19996 19997 state->last_insn_idx = env->prev_insn_idx; 19998 state->insn_idx = env->insn_idx; 19999 20000 if (is_prune_point(env, env->insn_idx)) { 20001 err = is_state_visited(env, env->insn_idx); 20002 if (err < 0) 20003 return err; 20004 if (err == 1) { 20005 /* found equivalent state, can prune the search */ 20006 if (env->log.level & BPF_LOG_LEVEL) { 20007 if (do_print_state) 20008 verbose(env, "\nfrom %d to %d%s: safe\n", 20009 env->prev_insn_idx, env->insn_idx, 20010 env->cur_state->speculative ? 20011 " (speculative execution)" : ""); 20012 else 20013 verbose(env, "%d: safe\n", env->insn_idx); 20014 } 20015 goto process_bpf_exit; 20016 } 20017 } 20018 20019 if (is_jmp_point(env, env->insn_idx)) { 20020 err = push_jmp_history(env, state, 0, 0); 20021 if (err) 20022 return err; 20023 } 20024 20025 if (signal_pending(current)) 20026 return -EAGAIN; 20027 20028 if (need_resched()) 20029 cond_resched(); 20030 20031 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 20032 verbose(env, "\nfrom %d to %d%s:", 20033 env->prev_insn_idx, env->insn_idx, 20034 env->cur_state->speculative ? 20035 " (speculative execution)" : ""); 20036 print_verifier_state(env, state, state->curframe, true); 20037 do_print_state = false; 20038 } 20039 20040 if (env->log.level & BPF_LOG_LEVEL) { 20041 if (verifier_state_scratched(env)) 20042 print_insn_state(env, state, state->curframe); 20043 20044 verbose_linfo(env, env->insn_idx, "; "); 20045 env->prev_log_pos = env->log.end_pos; 20046 verbose(env, "%d: ", env->insn_idx); 20047 verbose_insn(env, insn); 20048 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 20049 env->prev_log_pos = env->log.end_pos; 20050 } 20051 20052 if (bpf_prog_is_offloaded(env->prog->aux)) { 20053 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 20054 env->prev_insn_idx); 20055 if (err) 20056 return err; 20057 } 20058 20059 sanitize_mark_insn_seen(env); 20060 prev_insn_idx = env->insn_idx; 20061 20062 /* Reduce verification complexity by stopping speculative path 20063 * verification when a nospec is encountered. 20064 */ 20065 if (state->speculative && insn_aux->nospec) 20066 goto process_bpf_exit; 20067 20068 err = bpf_reset_stack_write_marks(env, env->insn_idx); 20069 if (err) 20070 return err; 20071 err = do_check_insn(env, &do_print_state); 20072 if (err >= 0 || error_recoverable_with_nospec(err)) { 20073 marks_err = bpf_commit_stack_write_marks(env); 20074 if (marks_err) 20075 return marks_err; 20076 } 20077 if (error_recoverable_with_nospec(err) && state->speculative) { 20078 /* Prevent this speculative path from ever reaching the 20079 * insn that would have been unsafe to execute. 20080 */ 20081 insn_aux->nospec = true; 20082 /* If it was an ADD/SUB insn, potentially remove any 20083 * markings for alu sanitization. 20084 */ 20085 insn_aux->alu_state = 0; 20086 goto process_bpf_exit; 20087 } else if (err < 0) { 20088 return err; 20089 } else if (err == PROCESS_BPF_EXIT) { 20090 goto process_bpf_exit; 20091 } 20092 WARN_ON_ONCE(err); 20093 20094 if (state->speculative && insn_aux->nospec_result) { 20095 /* If we are on a path that performed a jump-op, this 20096 * may skip a nospec patched-in after the jump. This can 20097 * currently never happen because nospec_result is only 20098 * used for the write-ops 20099 * `*(size*)(dst_reg+off)=src_reg|imm32` which must 20100 * never skip the following insn. Still, add a warning 20101 * to document this in case nospec_result is used 20102 * elsewhere in the future. 20103 * 20104 * All non-branch instructions have a single 20105 * fall-through edge. For these, nospec_result should 20106 * already work. 20107 */ 20108 if (verifier_bug_if(BPF_CLASS(insn->code) == BPF_JMP || 20109 BPF_CLASS(insn->code) == BPF_JMP32, env, 20110 "speculation barrier after jump instruction may not have the desired effect")) 20111 return -EFAULT; 20112 process_bpf_exit: 20113 mark_verifier_state_scratched(env); 20114 err = update_branch_counts(env, env->cur_state); 20115 if (err) 20116 return err; 20117 err = bpf_update_live_stack(env); 20118 if (err) 20119 return err; 20120 err = pop_stack(env, &prev_insn_idx, &env->insn_idx, 20121 pop_log); 20122 if (err < 0) { 20123 if (err != -ENOENT) 20124 return err; 20125 break; 20126 } else { 20127 do_print_state = true; 20128 continue; 20129 } 20130 } 20131 } 20132 20133 return 0; 20134 } 20135 20136 static int find_btf_percpu_datasec(struct btf *btf) 20137 { 20138 const struct btf_type *t; 20139 const char *tname; 20140 int i, n; 20141 20142 /* 20143 * Both vmlinux and module each have their own ".data..percpu" 20144 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 20145 * types to look at only module's own BTF types. 20146 */ 20147 n = btf_nr_types(btf); 20148 if (btf_is_module(btf)) 20149 i = btf_nr_types(btf_vmlinux); 20150 else 20151 i = 1; 20152 20153 for(; i < n; i++) { 20154 t = btf_type_by_id(btf, i); 20155 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 20156 continue; 20157 20158 tname = btf_name_by_offset(btf, t->name_off); 20159 if (!strcmp(tname, ".data..percpu")) 20160 return i; 20161 } 20162 20163 return -ENOENT; 20164 } 20165 20166 /* 20167 * Add btf to the used_btfs array and return the index. (If the btf was 20168 * already added, then just return the index.) Upon successful insertion 20169 * increase btf refcnt, and, if present, also refcount the corresponding 20170 * kernel module. 20171 */ 20172 static int __add_used_btf(struct bpf_verifier_env *env, struct btf *btf) 20173 { 20174 struct btf_mod_pair *btf_mod; 20175 int i; 20176 20177 /* check whether we recorded this BTF (and maybe module) already */ 20178 for (i = 0; i < env->used_btf_cnt; i++) 20179 if (env->used_btfs[i].btf == btf) 20180 return i; 20181 20182 if (env->used_btf_cnt >= MAX_USED_BTFS) { 20183 verbose(env, "The total number of btfs per program has reached the limit of %u\n", 20184 MAX_USED_BTFS); 20185 return -E2BIG; 20186 } 20187 20188 btf_get(btf); 20189 20190 btf_mod = &env->used_btfs[env->used_btf_cnt]; 20191 btf_mod->btf = btf; 20192 btf_mod->module = NULL; 20193 20194 /* if we reference variables from kernel module, bump its refcount */ 20195 if (btf_is_module(btf)) { 20196 btf_mod->module = btf_try_get_module(btf); 20197 if (!btf_mod->module) { 20198 btf_put(btf); 20199 return -ENXIO; 20200 } 20201 } 20202 20203 return env->used_btf_cnt++; 20204 } 20205 20206 /* replace pseudo btf_id with kernel symbol address */ 20207 static int __check_pseudo_btf_id(struct bpf_verifier_env *env, 20208 struct bpf_insn *insn, 20209 struct bpf_insn_aux_data *aux, 20210 struct btf *btf) 20211 { 20212 const struct btf_var_secinfo *vsi; 20213 const struct btf_type *datasec; 20214 const struct btf_type *t; 20215 const char *sym_name; 20216 bool percpu = false; 20217 u32 type, id = insn->imm; 20218 s32 datasec_id; 20219 u64 addr; 20220 int i; 20221 20222 t = btf_type_by_id(btf, id); 20223 if (!t) { 20224 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 20225 return -ENOENT; 20226 } 20227 20228 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 20229 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 20230 return -EINVAL; 20231 } 20232 20233 sym_name = btf_name_by_offset(btf, t->name_off); 20234 addr = kallsyms_lookup_name(sym_name); 20235 if (!addr) { 20236 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 20237 sym_name); 20238 return -ENOENT; 20239 } 20240 insn[0].imm = (u32)addr; 20241 insn[1].imm = addr >> 32; 20242 20243 if (btf_type_is_func(t)) { 20244 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 20245 aux->btf_var.mem_size = 0; 20246 return 0; 20247 } 20248 20249 datasec_id = find_btf_percpu_datasec(btf); 20250 if (datasec_id > 0) { 20251 datasec = btf_type_by_id(btf, datasec_id); 20252 for_each_vsi(i, datasec, vsi) { 20253 if (vsi->type == id) { 20254 percpu = true; 20255 break; 20256 } 20257 } 20258 } 20259 20260 type = t->type; 20261 t = btf_type_skip_modifiers(btf, type, NULL); 20262 if (percpu) { 20263 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 20264 aux->btf_var.btf = btf; 20265 aux->btf_var.btf_id = type; 20266 } else if (!btf_type_is_struct(t)) { 20267 const struct btf_type *ret; 20268 const char *tname; 20269 u32 tsize; 20270 20271 /* resolve the type size of ksym. */ 20272 ret = btf_resolve_size(btf, t, &tsize); 20273 if (IS_ERR(ret)) { 20274 tname = btf_name_by_offset(btf, t->name_off); 20275 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 20276 tname, PTR_ERR(ret)); 20277 return -EINVAL; 20278 } 20279 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 20280 aux->btf_var.mem_size = tsize; 20281 } else { 20282 aux->btf_var.reg_type = PTR_TO_BTF_ID; 20283 aux->btf_var.btf = btf; 20284 aux->btf_var.btf_id = type; 20285 } 20286 20287 return 0; 20288 } 20289 20290 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 20291 struct bpf_insn *insn, 20292 struct bpf_insn_aux_data *aux) 20293 { 20294 struct btf *btf; 20295 int btf_fd; 20296 int err; 20297 20298 btf_fd = insn[1].imm; 20299 if (btf_fd) { 20300 CLASS(fd, f)(btf_fd); 20301 20302 btf = __btf_get_by_fd(f); 20303 if (IS_ERR(btf)) { 20304 verbose(env, "invalid module BTF object FD specified.\n"); 20305 return -EINVAL; 20306 } 20307 } else { 20308 if (!btf_vmlinux) { 20309 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 20310 return -EINVAL; 20311 } 20312 btf = btf_vmlinux; 20313 } 20314 20315 err = __check_pseudo_btf_id(env, insn, aux, btf); 20316 if (err) 20317 return err; 20318 20319 err = __add_used_btf(env, btf); 20320 if (err < 0) 20321 return err; 20322 return 0; 20323 } 20324 20325 static bool is_tracing_prog_type(enum bpf_prog_type type) 20326 { 20327 switch (type) { 20328 case BPF_PROG_TYPE_KPROBE: 20329 case BPF_PROG_TYPE_TRACEPOINT: 20330 case BPF_PROG_TYPE_PERF_EVENT: 20331 case BPF_PROG_TYPE_RAW_TRACEPOINT: 20332 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 20333 return true; 20334 default: 20335 return false; 20336 } 20337 } 20338 20339 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 20340 { 20341 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 20342 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 20343 } 20344 20345 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 20346 struct bpf_map *map, 20347 struct bpf_prog *prog) 20348 20349 { 20350 enum bpf_prog_type prog_type = resolve_prog_type(prog); 20351 20352 if (map->excl_prog_sha && 20353 memcmp(map->excl_prog_sha, prog->digest, SHA256_DIGEST_SIZE)) { 20354 verbose(env, "program's hash doesn't match map's excl_prog_hash\n"); 20355 return -EACCES; 20356 } 20357 20358 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 20359 btf_record_has_field(map->record, BPF_RB_ROOT)) { 20360 if (is_tracing_prog_type(prog_type)) { 20361 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 20362 return -EINVAL; 20363 } 20364 } 20365 20366 if (btf_record_has_field(map->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) { 20367 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 20368 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 20369 return -EINVAL; 20370 } 20371 20372 if (is_tracing_prog_type(prog_type)) { 20373 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 20374 return -EINVAL; 20375 } 20376 } 20377 20378 if (btf_record_has_field(map->record, BPF_TIMER)) { 20379 if (is_tracing_prog_type(prog_type)) { 20380 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 20381 return -EINVAL; 20382 } 20383 } 20384 20385 if (btf_record_has_field(map->record, BPF_WORKQUEUE)) { 20386 if (is_tracing_prog_type(prog_type)) { 20387 verbose(env, "tracing progs cannot use bpf_wq yet\n"); 20388 return -EINVAL; 20389 } 20390 } 20391 20392 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 20393 !bpf_offload_prog_map_match(prog, map)) { 20394 verbose(env, "offload device mismatch between prog and map\n"); 20395 return -EINVAL; 20396 } 20397 20398 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 20399 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 20400 return -EINVAL; 20401 } 20402 20403 if (prog->sleepable) 20404 switch (map->map_type) { 20405 case BPF_MAP_TYPE_HASH: 20406 case BPF_MAP_TYPE_LRU_HASH: 20407 case BPF_MAP_TYPE_ARRAY: 20408 case BPF_MAP_TYPE_PERCPU_HASH: 20409 case BPF_MAP_TYPE_PERCPU_ARRAY: 20410 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 20411 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 20412 case BPF_MAP_TYPE_HASH_OF_MAPS: 20413 case BPF_MAP_TYPE_RINGBUF: 20414 case BPF_MAP_TYPE_USER_RINGBUF: 20415 case BPF_MAP_TYPE_INODE_STORAGE: 20416 case BPF_MAP_TYPE_SK_STORAGE: 20417 case BPF_MAP_TYPE_TASK_STORAGE: 20418 case BPF_MAP_TYPE_CGRP_STORAGE: 20419 case BPF_MAP_TYPE_QUEUE: 20420 case BPF_MAP_TYPE_STACK: 20421 case BPF_MAP_TYPE_ARENA: 20422 break; 20423 default: 20424 verbose(env, 20425 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 20426 return -EINVAL; 20427 } 20428 20429 if (bpf_map_is_cgroup_storage(map) && 20430 bpf_cgroup_storage_assign(env->prog->aux, map)) { 20431 verbose(env, "only one cgroup storage of each type is allowed\n"); 20432 return -EBUSY; 20433 } 20434 20435 if (map->map_type == BPF_MAP_TYPE_ARENA) { 20436 if (env->prog->aux->arena) { 20437 verbose(env, "Only one arena per program\n"); 20438 return -EBUSY; 20439 } 20440 if (!env->allow_ptr_leaks || !env->bpf_capable) { 20441 verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n"); 20442 return -EPERM; 20443 } 20444 if (!env->prog->jit_requested) { 20445 verbose(env, "JIT is required to use arena\n"); 20446 return -EOPNOTSUPP; 20447 } 20448 if (!bpf_jit_supports_arena()) { 20449 verbose(env, "JIT doesn't support arena\n"); 20450 return -EOPNOTSUPP; 20451 } 20452 env->prog->aux->arena = (void *)map; 20453 if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) { 20454 verbose(env, "arena's user address must be set via map_extra or mmap()\n"); 20455 return -EINVAL; 20456 } 20457 } 20458 20459 return 0; 20460 } 20461 20462 static int __add_used_map(struct bpf_verifier_env *env, struct bpf_map *map) 20463 { 20464 int i, err; 20465 20466 /* check whether we recorded this map already */ 20467 for (i = 0; i < env->used_map_cnt; i++) 20468 if (env->used_maps[i] == map) 20469 return i; 20470 20471 if (env->used_map_cnt >= MAX_USED_MAPS) { 20472 verbose(env, "The total number of maps per program has reached the limit of %u\n", 20473 MAX_USED_MAPS); 20474 return -E2BIG; 20475 } 20476 20477 err = check_map_prog_compatibility(env, map, env->prog); 20478 if (err) 20479 return err; 20480 20481 if (env->prog->sleepable) 20482 atomic64_inc(&map->sleepable_refcnt); 20483 20484 /* hold the map. If the program is rejected by verifier, 20485 * the map will be released by release_maps() or it 20486 * will be used by the valid program until it's unloaded 20487 * and all maps are released in bpf_free_used_maps() 20488 */ 20489 bpf_map_inc(map); 20490 20491 env->used_maps[env->used_map_cnt++] = map; 20492 20493 return env->used_map_cnt - 1; 20494 } 20495 20496 /* Add map behind fd to used maps list, if it's not already there, and return 20497 * its index. 20498 * Returns <0 on error, or >= 0 index, on success. 20499 */ 20500 static int add_used_map(struct bpf_verifier_env *env, int fd) 20501 { 20502 struct bpf_map *map; 20503 CLASS(fd, f)(fd); 20504 20505 map = __bpf_map_get(f); 20506 if (IS_ERR(map)) { 20507 verbose(env, "fd %d is not pointing to valid bpf_map\n", fd); 20508 return PTR_ERR(map); 20509 } 20510 20511 return __add_used_map(env, map); 20512 } 20513 20514 /* find and rewrite pseudo imm in ld_imm64 instructions: 20515 * 20516 * 1. if it accesses map FD, replace it with actual map pointer. 20517 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 20518 * 20519 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 20520 */ 20521 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 20522 { 20523 struct bpf_insn *insn = env->prog->insnsi; 20524 int insn_cnt = env->prog->len; 20525 int i, err; 20526 20527 err = bpf_prog_calc_tag(env->prog); 20528 if (err) 20529 return err; 20530 20531 for (i = 0; i < insn_cnt; i++, insn++) { 20532 if (BPF_CLASS(insn->code) == BPF_LDX && 20533 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 20534 insn->imm != 0)) { 20535 verbose(env, "BPF_LDX uses reserved fields\n"); 20536 return -EINVAL; 20537 } 20538 20539 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 20540 struct bpf_insn_aux_data *aux; 20541 struct bpf_map *map; 20542 int map_idx; 20543 u64 addr; 20544 u32 fd; 20545 20546 if (i == insn_cnt - 1 || insn[1].code != 0 || 20547 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 20548 insn[1].off != 0) { 20549 verbose(env, "invalid bpf_ld_imm64 insn\n"); 20550 return -EINVAL; 20551 } 20552 20553 if (insn[0].src_reg == 0) 20554 /* valid generic load 64-bit imm */ 20555 goto next_insn; 20556 20557 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 20558 aux = &env->insn_aux_data[i]; 20559 err = check_pseudo_btf_id(env, insn, aux); 20560 if (err) 20561 return err; 20562 goto next_insn; 20563 } 20564 20565 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 20566 aux = &env->insn_aux_data[i]; 20567 aux->ptr_type = PTR_TO_FUNC; 20568 goto next_insn; 20569 } 20570 20571 /* In final convert_pseudo_ld_imm64() step, this is 20572 * converted into regular 64-bit imm load insn. 20573 */ 20574 switch (insn[0].src_reg) { 20575 case BPF_PSEUDO_MAP_VALUE: 20576 case BPF_PSEUDO_MAP_IDX_VALUE: 20577 break; 20578 case BPF_PSEUDO_MAP_FD: 20579 case BPF_PSEUDO_MAP_IDX: 20580 if (insn[1].imm == 0) 20581 break; 20582 fallthrough; 20583 default: 20584 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 20585 return -EINVAL; 20586 } 20587 20588 switch (insn[0].src_reg) { 20589 case BPF_PSEUDO_MAP_IDX_VALUE: 20590 case BPF_PSEUDO_MAP_IDX: 20591 if (bpfptr_is_null(env->fd_array)) { 20592 verbose(env, "fd_idx without fd_array is invalid\n"); 20593 return -EPROTO; 20594 } 20595 if (copy_from_bpfptr_offset(&fd, env->fd_array, 20596 insn[0].imm * sizeof(fd), 20597 sizeof(fd))) 20598 return -EFAULT; 20599 break; 20600 default: 20601 fd = insn[0].imm; 20602 break; 20603 } 20604 20605 map_idx = add_used_map(env, fd); 20606 if (map_idx < 0) 20607 return map_idx; 20608 map = env->used_maps[map_idx]; 20609 20610 aux = &env->insn_aux_data[i]; 20611 aux->map_index = map_idx; 20612 20613 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 20614 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 20615 addr = (unsigned long)map; 20616 } else { 20617 u32 off = insn[1].imm; 20618 20619 if (off >= BPF_MAX_VAR_OFF) { 20620 verbose(env, "direct value offset of %u is not allowed\n", off); 20621 return -EINVAL; 20622 } 20623 20624 if (!map->ops->map_direct_value_addr) { 20625 verbose(env, "no direct value access support for this map type\n"); 20626 return -EINVAL; 20627 } 20628 20629 err = map->ops->map_direct_value_addr(map, &addr, off); 20630 if (err) { 20631 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 20632 map->value_size, off); 20633 return err; 20634 } 20635 20636 aux->map_off = off; 20637 addr += off; 20638 } 20639 20640 insn[0].imm = (u32)addr; 20641 insn[1].imm = addr >> 32; 20642 20643 next_insn: 20644 insn++; 20645 i++; 20646 continue; 20647 } 20648 20649 /* Basic sanity check before we invest more work here. */ 20650 if (!bpf_opcode_in_insntable(insn->code)) { 20651 verbose(env, "unknown opcode %02x\n", insn->code); 20652 return -EINVAL; 20653 } 20654 } 20655 20656 /* now all pseudo BPF_LD_IMM64 instructions load valid 20657 * 'struct bpf_map *' into a register instead of user map_fd. 20658 * These pointers will be used later by verifier to validate map access. 20659 */ 20660 return 0; 20661 } 20662 20663 /* drop refcnt of maps used by the rejected program */ 20664 static void release_maps(struct bpf_verifier_env *env) 20665 { 20666 __bpf_free_used_maps(env->prog->aux, env->used_maps, 20667 env->used_map_cnt); 20668 } 20669 20670 /* drop refcnt of maps used by the rejected program */ 20671 static void release_btfs(struct bpf_verifier_env *env) 20672 { 20673 __bpf_free_used_btfs(env->used_btfs, env->used_btf_cnt); 20674 } 20675 20676 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 20677 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 20678 { 20679 struct bpf_insn *insn = env->prog->insnsi; 20680 int insn_cnt = env->prog->len; 20681 int i; 20682 20683 for (i = 0; i < insn_cnt; i++, insn++) { 20684 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 20685 continue; 20686 if (insn->src_reg == BPF_PSEUDO_FUNC) 20687 continue; 20688 insn->src_reg = 0; 20689 } 20690 } 20691 20692 /* single env->prog->insni[off] instruction was replaced with the range 20693 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 20694 * [0, off) and [off, end) to new locations, so the patched range stays zero 20695 */ 20696 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 20697 struct bpf_prog *new_prog, u32 off, u32 cnt) 20698 { 20699 struct bpf_insn_aux_data *data = env->insn_aux_data; 20700 struct bpf_insn *insn = new_prog->insnsi; 20701 u32 old_seen = data[off].seen; 20702 u32 prog_len; 20703 int i; 20704 20705 /* aux info at OFF always needs adjustment, no matter fast path 20706 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 20707 * original insn at old prog. 20708 */ 20709 data[off].zext_dst = insn_has_def32(insn + off + cnt - 1); 20710 20711 if (cnt == 1) 20712 return; 20713 prog_len = new_prog->len; 20714 20715 memmove(data + off + cnt - 1, data + off, 20716 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 20717 memset(data + off, 0, sizeof(struct bpf_insn_aux_data) * (cnt - 1)); 20718 for (i = off; i < off + cnt - 1; i++) { 20719 /* Expand insni[off]'s seen count to the patched range. */ 20720 data[i].seen = old_seen; 20721 data[i].zext_dst = insn_has_def32(insn + i); 20722 } 20723 } 20724 20725 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 20726 { 20727 int i; 20728 20729 if (len == 1) 20730 return; 20731 /* NOTE: fake 'exit' subprog should be updated as well. */ 20732 for (i = 0; i <= env->subprog_cnt; i++) { 20733 if (env->subprog_info[i].start <= off) 20734 continue; 20735 env->subprog_info[i].start += len - 1; 20736 } 20737 } 20738 20739 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 20740 { 20741 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 20742 int i, sz = prog->aux->size_poke_tab; 20743 struct bpf_jit_poke_descriptor *desc; 20744 20745 for (i = 0; i < sz; i++) { 20746 desc = &tab[i]; 20747 if (desc->insn_idx <= off) 20748 continue; 20749 desc->insn_idx += len - 1; 20750 } 20751 } 20752 20753 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 20754 const struct bpf_insn *patch, u32 len) 20755 { 20756 struct bpf_prog *new_prog; 20757 struct bpf_insn_aux_data *new_data = NULL; 20758 20759 if (len > 1) { 20760 new_data = vrealloc(env->insn_aux_data, 20761 array_size(env->prog->len + len - 1, 20762 sizeof(struct bpf_insn_aux_data)), 20763 GFP_KERNEL_ACCOUNT | __GFP_ZERO); 20764 if (!new_data) 20765 return NULL; 20766 20767 env->insn_aux_data = new_data; 20768 } 20769 20770 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 20771 if (IS_ERR(new_prog)) { 20772 if (PTR_ERR(new_prog) == -ERANGE) 20773 verbose(env, 20774 "insn %d cannot be patched due to 16-bit range\n", 20775 env->insn_aux_data[off].orig_idx); 20776 return NULL; 20777 } 20778 adjust_insn_aux_data(env, new_prog, off, len); 20779 adjust_subprog_starts(env, off, len); 20780 adjust_poke_descs(new_prog, off, len); 20781 return new_prog; 20782 } 20783 20784 /* 20785 * For all jmp insns in a given 'prog' that point to 'tgt_idx' insn adjust the 20786 * jump offset by 'delta'. 20787 */ 20788 static int adjust_jmp_off(struct bpf_prog *prog, u32 tgt_idx, u32 delta) 20789 { 20790 struct bpf_insn *insn = prog->insnsi; 20791 u32 insn_cnt = prog->len, i; 20792 s32 imm; 20793 s16 off; 20794 20795 for (i = 0; i < insn_cnt; i++, insn++) { 20796 u8 code = insn->code; 20797 20798 if (tgt_idx <= i && i < tgt_idx + delta) 20799 continue; 20800 20801 if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) || 20802 BPF_OP(code) == BPF_CALL || BPF_OP(code) == BPF_EXIT) 20803 continue; 20804 20805 if (insn->code == (BPF_JMP32 | BPF_JA)) { 20806 if (i + 1 + insn->imm != tgt_idx) 20807 continue; 20808 if (check_add_overflow(insn->imm, delta, &imm)) 20809 return -ERANGE; 20810 insn->imm = imm; 20811 } else { 20812 if (i + 1 + insn->off != tgt_idx) 20813 continue; 20814 if (check_add_overflow(insn->off, delta, &off)) 20815 return -ERANGE; 20816 insn->off = off; 20817 } 20818 } 20819 return 0; 20820 } 20821 20822 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 20823 u32 off, u32 cnt) 20824 { 20825 int i, j; 20826 20827 /* find first prog starting at or after off (first to remove) */ 20828 for (i = 0; i < env->subprog_cnt; i++) 20829 if (env->subprog_info[i].start >= off) 20830 break; 20831 /* find first prog starting at or after off + cnt (first to stay) */ 20832 for (j = i; j < env->subprog_cnt; j++) 20833 if (env->subprog_info[j].start >= off + cnt) 20834 break; 20835 /* if j doesn't start exactly at off + cnt, we are just removing 20836 * the front of previous prog 20837 */ 20838 if (env->subprog_info[j].start != off + cnt) 20839 j--; 20840 20841 if (j > i) { 20842 struct bpf_prog_aux *aux = env->prog->aux; 20843 int move; 20844 20845 /* move fake 'exit' subprog as well */ 20846 move = env->subprog_cnt + 1 - j; 20847 20848 memmove(env->subprog_info + i, 20849 env->subprog_info + j, 20850 sizeof(*env->subprog_info) * move); 20851 env->subprog_cnt -= j - i; 20852 20853 /* remove func_info */ 20854 if (aux->func_info) { 20855 move = aux->func_info_cnt - j; 20856 20857 memmove(aux->func_info + i, 20858 aux->func_info + j, 20859 sizeof(*aux->func_info) * move); 20860 aux->func_info_cnt -= j - i; 20861 /* func_info->insn_off is set after all code rewrites, 20862 * in adjust_btf_func() - no need to adjust 20863 */ 20864 } 20865 } else { 20866 /* convert i from "first prog to remove" to "first to adjust" */ 20867 if (env->subprog_info[i].start == off) 20868 i++; 20869 } 20870 20871 /* update fake 'exit' subprog as well */ 20872 for (; i <= env->subprog_cnt; i++) 20873 env->subprog_info[i].start -= cnt; 20874 20875 return 0; 20876 } 20877 20878 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 20879 u32 cnt) 20880 { 20881 struct bpf_prog *prog = env->prog; 20882 u32 i, l_off, l_cnt, nr_linfo; 20883 struct bpf_line_info *linfo; 20884 20885 nr_linfo = prog->aux->nr_linfo; 20886 if (!nr_linfo) 20887 return 0; 20888 20889 linfo = prog->aux->linfo; 20890 20891 /* find first line info to remove, count lines to be removed */ 20892 for (i = 0; i < nr_linfo; i++) 20893 if (linfo[i].insn_off >= off) 20894 break; 20895 20896 l_off = i; 20897 l_cnt = 0; 20898 for (; i < nr_linfo; i++) 20899 if (linfo[i].insn_off < off + cnt) 20900 l_cnt++; 20901 else 20902 break; 20903 20904 /* First live insn doesn't match first live linfo, it needs to "inherit" 20905 * last removed linfo. prog is already modified, so prog->len == off 20906 * means no live instructions after (tail of the program was removed). 20907 */ 20908 if (prog->len != off && l_cnt && 20909 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 20910 l_cnt--; 20911 linfo[--i].insn_off = off + cnt; 20912 } 20913 20914 /* remove the line info which refer to the removed instructions */ 20915 if (l_cnt) { 20916 memmove(linfo + l_off, linfo + i, 20917 sizeof(*linfo) * (nr_linfo - i)); 20918 20919 prog->aux->nr_linfo -= l_cnt; 20920 nr_linfo = prog->aux->nr_linfo; 20921 } 20922 20923 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 20924 for (i = l_off; i < nr_linfo; i++) 20925 linfo[i].insn_off -= cnt; 20926 20927 /* fix up all subprogs (incl. 'exit') which start >= off */ 20928 for (i = 0; i <= env->subprog_cnt; i++) 20929 if (env->subprog_info[i].linfo_idx > l_off) { 20930 /* program may have started in the removed region but 20931 * may not be fully removed 20932 */ 20933 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 20934 env->subprog_info[i].linfo_idx -= l_cnt; 20935 else 20936 env->subprog_info[i].linfo_idx = l_off; 20937 } 20938 20939 return 0; 20940 } 20941 20942 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 20943 { 20944 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 20945 unsigned int orig_prog_len = env->prog->len; 20946 int err; 20947 20948 if (bpf_prog_is_offloaded(env->prog->aux)) 20949 bpf_prog_offload_remove_insns(env, off, cnt); 20950 20951 err = bpf_remove_insns(env->prog, off, cnt); 20952 if (err) 20953 return err; 20954 20955 err = adjust_subprog_starts_after_remove(env, off, cnt); 20956 if (err) 20957 return err; 20958 20959 err = bpf_adj_linfo_after_remove(env, off, cnt); 20960 if (err) 20961 return err; 20962 20963 memmove(aux_data + off, aux_data + off + cnt, 20964 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 20965 20966 return 0; 20967 } 20968 20969 /* The verifier does more data flow analysis than llvm and will not 20970 * explore branches that are dead at run time. Malicious programs can 20971 * have dead code too. Therefore replace all dead at-run-time code 20972 * with 'ja -1'. 20973 * 20974 * Just nops are not optimal, e.g. if they would sit at the end of the 20975 * program and through another bug we would manage to jump there, then 20976 * we'd execute beyond program memory otherwise. Returning exception 20977 * code also wouldn't work since we can have subprogs where the dead 20978 * code could be located. 20979 */ 20980 static void sanitize_dead_code(struct bpf_verifier_env *env) 20981 { 20982 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 20983 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 20984 struct bpf_insn *insn = env->prog->insnsi; 20985 const int insn_cnt = env->prog->len; 20986 int i; 20987 20988 for (i = 0; i < insn_cnt; i++) { 20989 if (aux_data[i].seen) 20990 continue; 20991 memcpy(insn + i, &trap, sizeof(trap)); 20992 aux_data[i].zext_dst = false; 20993 } 20994 } 20995 20996 static bool insn_is_cond_jump(u8 code) 20997 { 20998 u8 op; 20999 21000 op = BPF_OP(code); 21001 if (BPF_CLASS(code) == BPF_JMP32) 21002 return op != BPF_JA; 21003 21004 if (BPF_CLASS(code) != BPF_JMP) 21005 return false; 21006 21007 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 21008 } 21009 21010 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 21011 { 21012 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 21013 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 21014 struct bpf_insn *insn = env->prog->insnsi; 21015 const int insn_cnt = env->prog->len; 21016 int i; 21017 21018 for (i = 0; i < insn_cnt; i++, insn++) { 21019 if (!insn_is_cond_jump(insn->code)) 21020 continue; 21021 21022 if (!aux_data[i + 1].seen) 21023 ja.off = insn->off; 21024 else if (!aux_data[i + 1 + insn->off].seen) 21025 ja.off = 0; 21026 else 21027 continue; 21028 21029 if (bpf_prog_is_offloaded(env->prog->aux)) 21030 bpf_prog_offload_replace_insn(env, i, &ja); 21031 21032 memcpy(insn, &ja, sizeof(ja)); 21033 } 21034 } 21035 21036 static int opt_remove_dead_code(struct bpf_verifier_env *env) 21037 { 21038 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 21039 int insn_cnt = env->prog->len; 21040 int i, err; 21041 21042 for (i = 0; i < insn_cnt; i++) { 21043 int j; 21044 21045 j = 0; 21046 while (i + j < insn_cnt && !aux_data[i + j].seen) 21047 j++; 21048 if (!j) 21049 continue; 21050 21051 err = verifier_remove_insns(env, i, j); 21052 if (err) 21053 return err; 21054 insn_cnt = env->prog->len; 21055 } 21056 21057 return 0; 21058 } 21059 21060 static const struct bpf_insn NOP = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 21061 static const struct bpf_insn MAY_GOTO_0 = BPF_RAW_INSN(BPF_JMP | BPF_JCOND, 0, 0, 0, 0); 21062 21063 static int opt_remove_nops(struct bpf_verifier_env *env) 21064 { 21065 struct bpf_insn *insn = env->prog->insnsi; 21066 int insn_cnt = env->prog->len; 21067 bool is_may_goto_0, is_ja; 21068 int i, err; 21069 21070 for (i = 0; i < insn_cnt; i++) { 21071 is_may_goto_0 = !memcmp(&insn[i], &MAY_GOTO_0, sizeof(MAY_GOTO_0)); 21072 is_ja = !memcmp(&insn[i], &NOP, sizeof(NOP)); 21073 21074 if (!is_may_goto_0 && !is_ja) 21075 continue; 21076 21077 err = verifier_remove_insns(env, i, 1); 21078 if (err) 21079 return err; 21080 insn_cnt--; 21081 /* Go back one insn to catch may_goto +1; may_goto +0 sequence */ 21082 i -= (is_may_goto_0 && i > 0) ? 2 : 1; 21083 } 21084 21085 return 0; 21086 } 21087 21088 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 21089 const union bpf_attr *attr) 21090 { 21091 struct bpf_insn *patch; 21092 /* use env->insn_buf as two independent buffers */ 21093 struct bpf_insn *zext_patch = env->insn_buf; 21094 struct bpf_insn *rnd_hi32_patch = &env->insn_buf[2]; 21095 struct bpf_insn_aux_data *aux = env->insn_aux_data; 21096 int i, patch_len, delta = 0, len = env->prog->len; 21097 struct bpf_insn *insns = env->prog->insnsi; 21098 struct bpf_prog *new_prog; 21099 bool rnd_hi32; 21100 21101 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 21102 zext_patch[1] = BPF_ZEXT_REG(0); 21103 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 21104 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 21105 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 21106 for (i = 0; i < len; i++) { 21107 int adj_idx = i + delta; 21108 struct bpf_insn insn; 21109 int load_reg; 21110 21111 insn = insns[adj_idx]; 21112 load_reg = insn_def_regno(&insn); 21113 if (!aux[adj_idx].zext_dst) { 21114 u8 code, class; 21115 u32 imm_rnd; 21116 21117 if (!rnd_hi32) 21118 continue; 21119 21120 code = insn.code; 21121 class = BPF_CLASS(code); 21122 if (load_reg == -1) 21123 continue; 21124 21125 /* NOTE: arg "reg" (the fourth one) is only used for 21126 * BPF_STX + SRC_OP, so it is safe to pass NULL 21127 * here. 21128 */ 21129 if (is_reg64(&insn, load_reg, NULL, DST_OP)) { 21130 if (class == BPF_LD && 21131 BPF_MODE(code) == BPF_IMM) 21132 i++; 21133 continue; 21134 } 21135 21136 /* ctx load could be transformed into wider load. */ 21137 if (class == BPF_LDX && 21138 aux[adj_idx].ptr_type == PTR_TO_CTX) 21139 continue; 21140 21141 imm_rnd = get_random_u32(); 21142 rnd_hi32_patch[0] = insn; 21143 rnd_hi32_patch[1].imm = imm_rnd; 21144 rnd_hi32_patch[3].dst_reg = load_reg; 21145 patch = rnd_hi32_patch; 21146 patch_len = 4; 21147 goto apply_patch_buffer; 21148 } 21149 21150 /* Add in an zero-extend instruction if a) the JIT has requested 21151 * it or b) it's a CMPXCHG. 21152 * 21153 * The latter is because: BPF_CMPXCHG always loads a value into 21154 * R0, therefore always zero-extends. However some archs' 21155 * equivalent instruction only does this load when the 21156 * comparison is successful. This detail of CMPXCHG is 21157 * orthogonal to the general zero-extension behaviour of the 21158 * CPU, so it's treated independently of bpf_jit_needs_zext. 21159 */ 21160 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 21161 continue; 21162 21163 /* Zero-extension is done by the caller. */ 21164 if (bpf_pseudo_kfunc_call(&insn)) 21165 continue; 21166 21167 if (verifier_bug_if(load_reg == -1, env, 21168 "zext_dst is set, but no reg is defined")) 21169 return -EFAULT; 21170 21171 zext_patch[0] = insn; 21172 zext_patch[1].dst_reg = load_reg; 21173 zext_patch[1].src_reg = load_reg; 21174 patch = zext_patch; 21175 patch_len = 2; 21176 apply_patch_buffer: 21177 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 21178 if (!new_prog) 21179 return -ENOMEM; 21180 env->prog = new_prog; 21181 insns = new_prog->insnsi; 21182 aux = env->insn_aux_data; 21183 delta += patch_len - 1; 21184 } 21185 21186 return 0; 21187 } 21188 21189 /* convert load instructions that access fields of a context type into a 21190 * sequence of instructions that access fields of the underlying structure: 21191 * struct __sk_buff -> struct sk_buff 21192 * struct bpf_sock_ops -> struct sock 21193 */ 21194 static int convert_ctx_accesses(struct bpf_verifier_env *env) 21195 { 21196 struct bpf_subprog_info *subprogs = env->subprog_info; 21197 const struct bpf_verifier_ops *ops = env->ops; 21198 int i, cnt, size, ctx_field_size, ret, delta = 0, epilogue_cnt = 0; 21199 const int insn_cnt = env->prog->len; 21200 struct bpf_insn *epilogue_buf = env->epilogue_buf; 21201 struct bpf_insn *insn_buf = env->insn_buf; 21202 struct bpf_insn *insn; 21203 u32 target_size, size_default, off; 21204 struct bpf_prog *new_prog; 21205 enum bpf_access_type type; 21206 bool is_narrower_load; 21207 int epilogue_idx = 0; 21208 21209 if (ops->gen_epilogue) { 21210 epilogue_cnt = ops->gen_epilogue(epilogue_buf, env->prog, 21211 -(subprogs[0].stack_depth + 8)); 21212 if (epilogue_cnt >= INSN_BUF_SIZE) { 21213 verifier_bug(env, "epilogue is too long"); 21214 return -EFAULT; 21215 } else if (epilogue_cnt) { 21216 /* Save the ARG_PTR_TO_CTX for the epilogue to use */ 21217 cnt = 0; 21218 subprogs[0].stack_depth += 8; 21219 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_1, 21220 -subprogs[0].stack_depth); 21221 insn_buf[cnt++] = env->prog->insnsi[0]; 21222 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 21223 if (!new_prog) 21224 return -ENOMEM; 21225 env->prog = new_prog; 21226 delta += cnt - 1; 21227 21228 ret = add_kfunc_in_insns(env, epilogue_buf, epilogue_cnt - 1); 21229 if (ret < 0) 21230 return ret; 21231 } 21232 } 21233 21234 if (ops->gen_prologue || env->seen_direct_write) { 21235 if (!ops->gen_prologue) { 21236 verifier_bug(env, "gen_prologue is null"); 21237 return -EFAULT; 21238 } 21239 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 21240 env->prog); 21241 if (cnt >= INSN_BUF_SIZE) { 21242 verifier_bug(env, "prologue is too long"); 21243 return -EFAULT; 21244 } else if (cnt) { 21245 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 21246 if (!new_prog) 21247 return -ENOMEM; 21248 21249 env->prog = new_prog; 21250 delta += cnt - 1; 21251 21252 ret = add_kfunc_in_insns(env, insn_buf, cnt - 1); 21253 if (ret < 0) 21254 return ret; 21255 } 21256 } 21257 21258 if (delta) 21259 WARN_ON(adjust_jmp_off(env->prog, 0, delta)); 21260 21261 if (bpf_prog_is_offloaded(env->prog->aux)) 21262 return 0; 21263 21264 insn = env->prog->insnsi + delta; 21265 21266 for (i = 0; i < insn_cnt; i++, insn++) { 21267 bpf_convert_ctx_access_t convert_ctx_access; 21268 u8 mode; 21269 21270 if (env->insn_aux_data[i + delta].nospec) { 21271 WARN_ON_ONCE(env->insn_aux_data[i + delta].alu_state); 21272 struct bpf_insn *patch = insn_buf; 21273 21274 *patch++ = BPF_ST_NOSPEC(); 21275 *patch++ = *insn; 21276 cnt = patch - insn_buf; 21277 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21278 if (!new_prog) 21279 return -ENOMEM; 21280 21281 delta += cnt - 1; 21282 env->prog = new_prog; 21283 insn = new_prog->insnsi + i + delta; 21284 /* This can not be easily merged with the 21285 * nospec_result-case, because an insn may require a 21286 * nospec before and after itself. Therefore also do not 21287 * 'continue' here but potentially apply further 21288 * patching to insn. *insn should equal patch[1] now. 21289 */ 21290 } 21291 21292 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 21293 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 21294 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 21295 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 21296 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 21297 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 21298 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 21299 type = BPF_READ; 21300 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 21301 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 21302 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 21303 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 21304 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 21305 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 21306 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 21307 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 21308 type = BPF_WRITE; 21309 } else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_B) || 21310 insn->code == (BPF_STX | BPF_ATOMIC | BPF_H) || 21311 insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) || 21312 insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) && 21313 env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) { 21314 insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code); 21315 env->prog->aux->num_exentries++; 21316 continue; 21317 } else if (insn->code == (BPF_JMP | BPF_EXIT) && 21318 epilogue_cnt && 21319 i + delta < subprogs[1].start) { 21320 /* Generate epilogue for the main prog */ 21321 if (epilogue_idx) { 21322 /* jump back to the earlier generated epilogue */ 21323 insn_buf[0] = BPF_JMP32_A(epilogue_idx - i - delta - 1); 21324 cnt = 1; 21325 } else { 21326 memcpy(insn_buf, epilogue_buf, 21327 epilogue_cnt * sizeof(*epilogue_buf)); 21328 cnt = epilogue_cnt; 21329 /* epilogue_idx cannot be 0. It must have at 21330 * least one ctx ptr saving insn before the 21331 * epilogue. 21332 */ 21333 epilogue_idx = i + delta; 21334 } 21335 goto patch_insn_buf; 21336 } else { 21337 continue; 21338 } 21339 21340 if (type == BPF_WRITE && 21341 env->insn_aux_data[i + delta].nospec_result) { 21342 /* nospec_result is only used to mitigate Spectre v4 and 21343 * to limit verification-time for Spectre v1. 21344 */ 21345 struct bpf_insn *patch = insn_buf; 21346 21347 *patch++ = *insn; 21348 *patch++ = BPF_ST_NOSPEC(); 21349 cnt = patch - insn_buf; 21350 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21351 if (!new_prog) 21352 return -ENOMEM; 21353 21354 delta += cnt - 1; 21355 env->prog = new_prog; 21356 insn = new_prog->insnsi + i + delta; 21357 continue; 21358 } 21359 21360 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 21361 case PTR_TO_CTX: 21362 if (!ops->convert_ctx_access) 21363 continue; 21364 convert_ctx_access = ops->convert_ctx_access; 21365 break; 21366 case PTR_TO_SOCKET: 21367 case PTR_TO_SOCK_COMMON: 21368 convert_ctx_access = bpf_sock_convert_ctx_access; 21369 break; 21370 case PTR_TO_TCP_SOCK: 21371 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 21372 break; 21373 case PTR_TO_XDP_SOCK: 21374 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 21375 break; 21376 case PTR_TO_BTF_ID: 21377 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 21378 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 21379 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 21380 * be said once it is marked PTR_UNTRUSTED, hence we must handle 21381 * any faults for loads into such types. BPF_WRITE is disallowed 21382 * for this case. 21383 */ 21384 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 21385 case PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED: 21386 if (type == BPF_READ) { 21387 if (BPF_MODE(insn->code) == BPF_MEM) 21388 insn->code = BPF_LDX | BPF_PROBE_MEM | 21389 BPF_SIZE((insn)->code); 21390 else 21391 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 21392 BPF_SIZE((insn)->code); 21393 env->prog->aux->num_exentries++; 21394 } 21395 continue; 21396 case PTR_TO_ARENA: 21397 if (BPF_MODE(insn->code) == BPF_MEMSX) { 21398 if (!bpf_jit_supports_insn(insn, true)) { 21399 verbose(env, "sign extending loads from arena are not supported yet\n"); 21400 return -EOPNOTSUPP; 21401 } 21402 insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32SX | BPF_SIZE(insn->code); 21403 } else { 21404 insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code); 21405 } 21406 env->prog->aux->num_exentries++; 21407 continue; 21408 default: 21409 continue; 21410 } 21411 21412 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 21413 size = BPF_LDST_BYTES(insn); 21414 mode = BPF_MODE(insn->code); 21415 21416 /* If the read access is a narrower load of the field, 21417 * convert to a 4/8-byte load, to minimum program type specific 21418 * convert_ctx_access changes. If conversion is successful, 21419 * we will apply proper mask to the result. 21420 */ 21421 is_narrower_load = size < ctx_field_size; 21422 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 21423 off = insn->off; 21424 if (is_narrower_load) { 21425 u8 size_code; 21426 21427 if (type == BPF_WRITE) { 21428 verifier_bug(env, "narrow ctx access misconfigured"); 21429 return -EFAULT; 21430 } 21431 21432 size_code = BPF_H; 21433 if (ctx_field_size == 4) 21434 size_code = BPF_W; 21435 else if (ctx_field_size == 8) 21436 size_code = BPF_DW; 21437 21438 insn->off = off & ~(size_default - 1); 21439 insn->code = BPF_LDX | BPF_MEM | size_code; 21440 } 21441 21442 target_size = 0; 21443 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 21444 &target_size); 21445 if (cnt == 0 || cnt >= INSN_BUF_SIZE || 21446 (ctx_field_size && !target_size)) { 21447 verifier_bug(env, "error during ctx access conversion (%d)", cnt); 21448 return -EFAULT; 21449 } 21450 21451 if (is_narrower_load && size < target_size) { 21452 u8 shift = bpf_ctx_narrow_access_offset( 21453 off, size, size_default) * 8; 21454 if (shift && cnt + 1 >= INSN_BUF_SIZE) { 21455 verifier_bug(env, "narrow ctx load misconfigured"); 21456 return -EFAULT; 21457 } 21458 if (ctx_field_size <= 4) { 21459 if (shift) 21460 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 21461 insn->dst_reg, 21462 shift); 21463 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 21464 (1 << size * 8) - 1); 21465 } else { 21466 if (shift) 21467 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 21468 insn->dst_reg, 21469 shift); 21470 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 21471 (1ULL << size * 8) - 1); 21472 } 21473 } 21474 if (mode == BPF_MEMSX) 21475 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 21476 insn->dst_reg, insn->dst_reg, 21477 size * 8, 0); 21478 21479 patch_insn_buf: 21480 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 21481 if (!new_prog) 21482 return -ENOMEM; 21483 21484 delta += cnt - 1; 21485 21486 /* keep walking new program and skip insns we just inserted */ 21487 env->prog = new_prog; 21488 insn = new_prog->insnsi + i + delta; 21489 } 21490 21491 return 0; 21492 } 21493 21494 static int jit_subprogs(struct bpf_verifier_env *env) 21495 { 21496 struct bpf_prog *prog = env->prog, **func, *tmp; 21497 int i, j, subprog_start, subprog_end = 0, len, subprog; 21498 struct bpf_map *map_ptr; 21499 struct bpf_insn *insn; 21500 void *old_bpf_func; 21501 int err, num_exentries; 21502 21503 if (env->subprog_cnt <= 1) 21504 return 0; 21505 21506 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 21507 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 21508 continue; 21509 21510 /* Upon error here we cannot fall back to interpreter but 21511 * need a hard reject of the program. Thus -EFAULT is 21512 * propagated in any case. 21513 */ 21514 subprog = find_subprog(env, i + insn->imm + 1); 21515 if (verifier_bug_if(subprog < 0, env, "No program to jit at insn %d", 21516 i + insn->imm + 1)) 21517 return -EFAULT; 21518 /* temporarily remember subprog id inside insn instead of 21519 * aux_data, since next loop will split up all insns into funcs 21520 */ 21521 insn->off = subprog; 21522 /* remember original imm in case JIT fails and fallback 21523 * to interpreter will be needed 21524 */ 21525 env->insn_aux_data[i].call_imm = insn->imm; 21526 /* point imm to __bpf_call_base+1 from JITs point of view */ 21527 insn->imm = 1; 21528 if (bpf_pseudo_func(insn)) { 21529 #if defined(MODULES_VADDR) 21530 u64 addr = MODULES_VADDR; 21531 #else 21532 u64 addr = VMALLOC_START; 21533 #endif 21534 /* jit (e.g. x86_64) may emit fewer instructions 21535 * if it learns a u32 imm is the same as a u64 imm. 21536 * Set close enough to possible prog address. 21537 */ 21538 insn[0].imm = (u32)addr; 21539 insn[1].imm = addr >> 32; 21540 } 21541 } 21542 21543 err = bpf_prog_alloc_jited_linfo(prog); 21544 if (err) 21545 goto out_undo_insn; 21546 21547 err = -ENOMEM; 21548 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 21549 if (!func) 21550 goto out_undo_insn; 21551 21552 for (i = 0; i < env->subprog_cnt; i++) { 21553 subprog_start = subprog_end; 21554 subprog_end = env->subprog_info[i + 1].start; 21555 21556 len = subprog_end - subprog_start; 21557 /* bpf_prog_run() doesn't call subprogs directly, 21558 * hence main prog stats include the runtime of subprogs. 21559 * subprogs don't have IDs and not reachable via prog_get_next_id 21560 * func[i]->stats will never be accessed and stays NULL 21561 */ 21562 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 21563 if (!func[i]) 21564 goto out_free; 21565 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 21566 len * sizeof(struct bpf_insn)); 21567 func[i]->type = prog->type; 21568 func[i]->len = len; 21569 if (bpf_prog_calc_tag(func[i])) 21570 goto out_free; 21571 func[i]->is_func = 1; 21572 func[i]->sleepable = prog->sleepable; 21573 func[i]->aux->func_idx = i; 21574 /* Below members will be freed only at prog->aux */ 21575 func[i]->aux->btf = prog->aux->btf; 21576 func[i]->aux->func_info = prog->aux->func_info; 21577 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 21578 func[i]->aux->poke_tab = prog->aux->poke_tab; 21579 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 21580 func[i]->aux->main_prog_aux = prog->aux; 21581 21582 for (j = 0; j < prog->aux->size_poke_tab; j++) { 21583 struct bpf_jit_poke_descriptor *poke; 21584 21585 poke = &prog->aux->poke_tab[j]; 21586 if (poke->insn_idx < subprog_end && 21587 poke->insn_idx >= subprog_start) 21588 poke->aux = func[i]->aux; 21589 } 21590 21591 func[i]->aux->name[0] = 'F'; 21592 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 21593 if (env->subprog_info[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) 21594 func[i]->aux->jits_use_priv_stack = true; 21595 21596 func[i]->jit_requested = 1; 21597 func[i]->blinding_requested = prog->blinding_requested; 21598 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 21599 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 21600 func[i]->aux->linfo = prog->aux->linfo; 21601 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 21602 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 21603 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 21604 func[i]->aux->arena = prog->aux->arena; 21605 num_exentries = 0; 21606 insn = func[i]->insnsi; 21607 for (j = 0; j < func[i]->len; j++, insn++) { 21608 if (BPF_CLASS(insn->code) == BPF_LDX && 21609 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 21610 BPF_MODE(insn->code) == BPF_PROBE_MEM32 || 21611 BPF_MODE(insn->code) == BPF_PROBE_MEM32SX || 21612 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 21613 num_exentries++; 21614 if ((BPF_CLASS(insn->code) == BPF_STX || 21615 BPF_CLASS(insn->code) == BPF_ST) && 21616 BPF_MODE(insn->code) == BPF_PROBE_MEM32) 21617 num_exentries++; 21618 if (BPF_CLASS(insn->code) == BPF_STX && 21619 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) 21620 num_exentries++; 21621 } 21622 func[i]->aux->num_exentries = num_exentries; 21623 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 21624 func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb; 21625 func[i]->aux->changes_pkt_data = env->subprog_info[i].changes_pkt_data; 21626 func[i]->aux->might_sleep = env->subprog_info[i].might_sleep; 21627 if (!i) 21628 func[i]->aux->exception_boundary = env->seen_exception; 21629 func[i] = bpf_int_jit_compile(func[i]); 21630 if (!func[i]->jited) { 21631 err = -ENOTSUPP; 21632 goto out_free; 21633 } 21634 cond_resched(); 21635 } 21636 21637 /* at this point all bpf functions were successfully JITed 21638 * now populate all bpf_calls with correct addresses and 21639 * run last pass of JIT 21640 */ 21641 for (i = 0; i < env->subprog_cnt; i++) { 21642 insn = func[i]->insnsi; 21643 for (j = 0; j < func[i]->len; j++, insn++) { 21644 if (bpf_pseudo_func(insn)) { 21645 subprog = insn->off; 21646 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 21647 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 21648 continue; 21649 } 21650 if (!bpf_pseudo_call(insn)) 21651 continue; 21652 subprog = insn->off; 21653 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 21654 } 21655 21656 /* we use the aux data to keep a list of the start addresses 21657 * of the JITed images for each function in the program 21658 * 21659 * for some architectures, such as powerpc64, the imm field 21660 * might not be large enough to hold the offset of the start 21661 * address of the callee's JITed image from __bpf_call_base 21662 * 21663 * in such cases, we can lookup the start address of a callee 21664 * by using its subprog id, available from the off field of 21665 * the call instruction, as an index for this list 21666 */ 21667 func[i]->aux->func = func; 21668 func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 21669 func[i]->aux->real_func_cnt = env->subprog_cnt; 21670 } 21671 for (i = 0; i < env->subprog_cnt; i++) { 21672 old_bpf_func = func[i]->bpf_func; 21673 tmp = bpf_int_jit_compile(func[i]); 21674 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 21675 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 21676 err = -ENOTSUPP; 21677 goto out_free; 21678 } 21679 cond_resched(); 21680 } 21681 21682 /* finally lock prog and jit images for all functions and 21683 * populate kallsysm. Begin at the first subprogram, since 21684 * bpf_prog_load will add the kallsyms for the main program. 21685 */ 21686 for (i = 1; i < env->subprog_cnt; i++) { 21687 err = bpf_prog_lock_ro(func[i]); 21688 if (err) 21689 goto out_free; 21690 } 21691 21692 for (i = 1; i < env->subprog_cnt; i++) 21693 bpf_prog_kallsyms_add(func[i]); 21694 21695 /* Last step: make now unused interpreter insns from main 21696 * prog consistent for later dump requests, so they can 21697 * later look the same as if they were interpreted only. 21698 */ 21699 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 21700 if (bpf_pseudo_func(insn)) { 21701 insn[0].imm = env->insn_aux_data[i].call_imm; 21702 insn[1].imm = insn->off; 21703 insn->off = 0; 21704 continue; 21705 } 21706 if (!bpf_pseudo_call(insn)) 21707 continue; 21708 insn->off = env->insn_aux_data[i].call_imm; 21709 subprog = find_subprog(env, i + insn->off + 1); 21710 insn->imm = subprog; 21711 } 21712 21713 prog->jited = 1; 21714 prog->bpf_func = func[0]->bpf_func; 21715 prog->jited_len = func[0]->jited_len; 21716 prog->aux->extable = func[0]->aux->extable; 21717 prog->aux->num_exentries = func[0]->aux->num_exentries; 21718 prog->aux->func = func; 21719 prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 21720 prog->aux->real_func_cnt = env->subprog_cnt; 21721 prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func; 21722 prog->aux->exception_boundary = func[0]->aux->exception_boundary; 21723 bpf_prog_jit_attempt_done(prog); 21724 return 0; 21725 out_free: 21726 /* We failed JIT'ing, so at this point we need to unregister poke 21727 * descriptors from subprogs, so that kernel is not attempting to 21728 * patch it anymore as we're freeing the subprog JIT memory. 21729 */ 21730 for (i = 0; i < prog->aux->size_poke_tab; i++) { 21731 map_ptr = prog->aux->poke_tab[i].tail_call.map; 21732 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 21733 } 21734 /* At this point we're guaranteed that poke descriptors are not 21735 * live anymore. We can just unlink its descriptor table as it's 21736 * released with the main prog. 21737 */ 21738 for (i = 0; i < env->subprog_cnt; i++) { 21739 if (!func[i]) 21740 continue; 21741 func[i]->aux->poke_tab = NULL; 21742 bpf_jit_free(func[i]); 21743 } 21744 kfree(func); 21745 out_undo_insn: 21746 /* cleanup main prog to be interpreted */ 21747 prog->jit_requested = 0; 21748 prog->blinding_requested = 0; 21749 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 21750 if (!bpf_pseudo_call(insn)) 21751 continue; 21752 insn->off = 0; 21753 insn->imm = env->insn_aux_data[i].call_imm; 21754 } 21755 bpf_prog_jit_attempt_done(prog); 21756 return err; 21757 } 21758 21759 static int fixup_call_args(struct bpf_verifier_env *env) 21760 { 21761 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 21762 struct bpf_prog *prog = env->prog; 21763 struct bpf_insn *insn = prog->insnsi; 21764 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 21765 int i, depth; 21766 #endif 21767 int err = 0; 21768 21769 if (env->prog->jit_requested && 21770 !bpf_prog_is_offloaded(env->prog->aux)) { 21771 err = jit_subprogs(env); 21772 if (err == 0) 21773 return 0; 21774 if (err == -EFAULT) 21775 return err; 21776 } 21777 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 21778 if (has_kfunc_call) { 21779 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 21780 return -EINVAL; 21781 } 21782 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 21783 /* When JIT fails the progs with bpf2bpf calls and tail_calls 21784 * have to be rejected, since interpreter doesn't support them yet. 21785 */ 21786 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 21787 return -EINVAL; 21788 } 21789 for (i = 0; i < prog->len; i++, insn++) { 21790 if (bpf_pseudo_func(insn)) { 21791 /* When JIT fails the progs with callback calls 21792 * have to be rejected, since interpreter doesn't support them yet. 21793 */ 21794 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 21795 return -EINVAL; 21796 } 21797 21798 if (!bpf_pseudo_call(insn)) 21799 continue; 21800 depth = get_callee_stack_depth(env, insn, i); 21801 if (depth < 0) 21802 return depth; 21803 bpf_patch_call_args(insn, depth); 21804 } 21805 err = 0; 21806 #endif 21807 return err; 21808 } 21809 21810 /* replace a generic kfunc with a specialized version if necessary */ 21811 static void specialize_kfunc(struct bpf_verifier_env *env, 21812 u32 func_id, u16 offset, unsigned long *addr) 21813 { 21814 struct bpf_prog *prog = env->prog; 21815 bool seen_direct_write; 21816 void *xdp_kfunc; 21817 bool is_rdonly; 21818 21819 if (bpf_dev_bound_kfunc_id(func_id)) { 21820 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 21821 if (xdp_kfunc) { 21822 *addr = (unsigned long)xdp_kfunc; 21823 return; 21824 } 21825 /* fallback to default kfunc when not supported by netdev */ 21826 } 21827 21828 if (offset) 21829 return; 21830 21831 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 21832 seen_direct_write = env->seen_direct_write; 21833 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 21834 21835 if (is_rdonly) 21836 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 21837 21838 /* restore env->seen_direct_write to its original value, since 21839 * may_access_direct_pkt_data mutates it 21840 */ 21841 env->seen_direct_write = seen_direct_write; 21842 } 21843 21844 if (func_id == special_kfunc_list[KF_bpf_set_dentry_xattr] && 21845 bpf_lsm_has_d_inode_locked(prog)) 21846 *addr = (unsigned long)bpf_set_dentry_xattr_locked; 21847 21848 if (func_id == special_kfunc_list[KF_bpf_remove_dentry_xattr] && 21849 bpf_lsm_has_d_inode_locked(prog)) 21850 *addr = (unsigned long)bpf_remove_dentry_xattr_locked; 21851 } 21852 21853 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 21854 u16 struct_meta_reg, 21855 u16 node_offset_reg, 21856 struct bpf_insn *insn, 21857 struct bpf_insn *insn_buf, 21858 int *cnt) 21859 { 21860 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 21861 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 21862 21863 insn_buf[0] = addr[0]; 21864 insn_buf[1] = addr[1]; 21865 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 21866 insn_buf[3] = *insn; 21867 *cnt = 4; 21868 } 21869 21870 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 21871 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 21872 { 21873 const struct bpf_kfunc_desc *desc; 21874 21875 if (!insn->imm) { 21876 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 21877 return -EINVAL; 21878 } 21879 21880 *cnt = 0; 21881 21882 /* insn->imm has the btf func_id. Replace it with an offset relative to 21883 * __bpf_call_base, unless the JIT needs to call functions that are 21884 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 21885 */ 21886 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 21887 if (!desc) { 21888 verifier_bug(env, "kernel function descriptor not found for func_id %u", 21889 insn->imm); 21890 return -EFAULT; 21891 } 21892 21893 if (!bpf_jit_supports_far_kfunc_call()) 21894 insn->imm = BPF_CALL_IMM(desc->addr); 21895 if (insn->off) 21896 return 0; 21897 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 21898 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 21899 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 21900 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 21901 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 21902 21903 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) { 21904 verifier_bug(env, "NULL kptr_struct_meta expected at insn_idx %d", 21905 insn_idx); 21906 return -EFAULT; 21907 } 21908 21909 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 21910 insn_buf[1] = addr[0]; 21911 insn_buf[2] = addr[1]; 21912 insn_buf[3] = *insn; 21913 *cnt = 4; 21914 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 21915 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] || 21916 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 21917 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 21918 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 21919 21920 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) { 21921 verifier_bug(env, "NULL kptr_struct_meta expected at insn_idx %d", 21922 insn_idx); 21923 return -EFAULT; 21924 } 21925 21926 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 21927 !kptr_struct_meta) { 21928 verifier_bug(env, "kptr_struct_meta expected at insn_idx %d", 21929 insn_idx); 21930 return -EFAULT; 21931 } 21932 21933 insn_buf[0] = addr[0]; 21934 insn_buf[1] = addr[1]; 21935 insn_buf[2] = *insn; 21936 *cnt = 3; 21937 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 21938 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 21939 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 21940 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 21941 int struct_meta_reg = BPF_REG_3; 21942 int node_offset_reg = BPF_REG_4; 21943 21944 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 21945 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 21946 struct_meta_reg = BPF_REG_4; 21947 node_offset_reg = BPF_REG_5; 21948 } 21949 21950 if (!kptr_struct_meta) { 21951 verifier_bug(env, "kptr_struct_meta expected at insn_idx %d", 21952 insn_idx); 21953 return -EFAULT; 21954 } 21955 21956 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 21957 node_offset_reg, insn, insn_buf, cnt); 21958 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 21959 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 21960 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 21961 *cnt = 1; 21962 } 21963 21964 if (env->insn_aux_data[insn_idx].arg_prog) { 21965 u32 regno = env->insn_aux_data[insn_idx].arg_prog; 21966 struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(regno, (long)env->prog->aux) }; 21967 int idx = *cnt; 21968 21969 insn_buf[idx++] = ld_addrs[0]; 21970 insn_buf[idx++] = ld_addrs[1]; 21971 insn_buf[idx++] = *insn; 21972 *cnt = idx; 21973 } 21974 return 0; 21975 } 21976 21977 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */ 21978 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len) 21979 { 21980 struct bpf_subprog_info *info = env->subprog_info; 21981 int cnt = env->subprog_cnt; 21982 struct bpf_prog *prog; 21983 21984 /* We only reserve one slot for hidden subprogs in subprog_info. */ 21985 if (env->hidden_subprog_cnt) { 21986 verifier_bug(env, "only one hidden subprog supported"); 21987 return -EFAULT; 21988 } 21989 /* We're not patching any existing instruction, just appending the new 21990 * ones for the hidden subprog. Hence all of the adjustment operations 21991 * in bpf_patch_insn_data are no-ops. 21992 */ 21993 prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len); 21994 if (!prog) 21995 return -ENOMEM; 21996 env->prog = prog; 21997 info[cnt + 1].start = info[cnt].start; 21998 info[cnt].start = prog->len - len + 1; 21999 env->subprog_cnt++; 22000 env->hidden_subprog_cnt++; 22001 return 0; 22002 } 22003 22004 /* Do various post-verification rewrites in a single program pass. 22005 * These rewrites simplify JIT and interpreter implementations. 22006 */ 22007 static int do_misc_fixups(struct bpf_verifier_env *env) 22008 { 22009 struct bpf_prog *prog = env->prog; 22010 enum bpf_attach_type eatype = prog->expected_attach_type; 22011 enum bpf_prog_type prog_type = resolve_prog_type(prog); 22012 struct bpf_insn *insn = prog->insnsi; 22013 const struct bpf_func_proto *fn; 22014 const int insn_cnt = prog->len; 22015 const struct bpf_map_ops *ops; 22016 struct bpf_insn_aux_data *aux; 22017 struct bpf_insn *insn_buf = env->insn_buf; 22018 struct bpf_prog *new_prog; 22019 struct bpf_map *map_ptr; 22020 int i, ret, cnt, delta = 0, cur_subprog = 0; 22021 struct bpf_subprog_info *subprogs = env->subprog_info; 22022 u16 stack_depth = subprogs[cur_subprog].stack_depth; 22023 u16 stack_depth_extra = 0; 22024 22025 if (env->seen_exception && !env->exception_callback_subprog) { 22026 struct bpf_insn *patch = insn_buf; 22027 22028 *patch++ = env->prog->insnsi[insn_cnt - 1]; 22029 *patch++ = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 22030 *patch++ = BPF_EXIT_INSN(); 22031 ret = add_hidden_subprog(env, insn_buf, patch - insn_buf); 22032 if (ret < 0) 22033 return ret; 22034 prog = env->prog; 22035 insn = prog->insnsi; 22036 22037 env->exception_callback_subprog = env->subprog_cnt - 1; 22038 /* Don't update insn_cnt, as add_hidden_subprog always appends insns */ 22039 mark_subprog_exc_cb(env, env->exception_callback_subprog); 22040 } 22041 22042 for (i = 0; i < insn_cnt;) { 22043 if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) { 22044 if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) || 22045 (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) { 22046 /* convert to 32-bit mov that clears upper 32-bit */ 22047 insn->code = BPF_ALU | BPF_MOV | BPF_X; 22048 /* clear off and imm, so it's a normal 'wX = wY' from JIT pov */ 22049 insn->off = 0; 22050 insn->imm = 0; 22051 } /* cast from as(0) to as(1) should be handled by JIT */ 22052 goto next_insn; 22053 } 22054 22055 if (env->insn_aux_data[i + delta].needs_zext) 22056 /* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */ 22057 insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code); 22058 22059 /* Make sdiv/smod divide-by-minus-one exceptions impossible. */ 22060 if ((insn->code == (BPF_ALU64 | BPF_MOD | BPF_K) || 22061 insn->code == (BPF_ALU64 | BPF_DIV | BPF_K) || 22062 insn->code == (BPF_ALU | BPF_MOD | BPF_K) || 22063 insn->code == (BPF_ALU | BPF_DIV | BPF_K)) && 22064 insn->off == 1 && insn->imm == -1) { 22065 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 22066 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 22067 struct bpf_insn *patch = insn_buf; 22068 22069 if (isdiv) 22070 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 22071 BPF_NEG | BPF_K, insn->dst_reg, 22072 0, 0, 0); 22073 else 22074 *patch++ = BPF_MOV32_IMM(insn->dst_reg, 0); 22075 22076 cnt = patch - insn_buf; 22077 22078 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22079 if (!new_prog) 22080 return -ENOMEM; 22081 22082 delta += cnt - 1; 22083 env->prog = prog = new_prog; 22084 insn = new_prog->insnsi + i + delta; 22085 goto next_insn; 22086 } 22087 22088 /* Make divide-by-zero and divide-by-minus-one exceptions impossible. */ 22089 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 22090 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 22091 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 22092 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 22093 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 22094 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 22095 bool is_sdiv = isdiv && insn->off == 1; 22096 bool is_smod = !isdiv && insn->off == 1; 22097 struct bpf_insn *patch = insn_buf; 22098 22099 if (is_sdiv) { 22100 /* [R,W]x sdiv 0 -> 0 22101 * LLONG_MIN sdiv -1 -> LLONG_MIN 22102 * INT_MIN sdiv -1 -> INT_MIN 22103 */ 22104 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); 22105 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 22106 BPF_ADD | BPF_K, BPF_REG_AX, 22107 0, 0, 1); 22108 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 22109 BPF_JGT | BPF_K, BPF_REG_AX, 22110 0, 4, 1); 22111 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 22112 BPF_JEQ | BPF_K, BPF_REG_AX, 22113 0, 1, 0); 22114 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 22115 BPF_MOV | BPF_K, insn->dst_reg, 22116 0, 0, 0); 22117 /* BPF_NEG(LLONG_MIN) == -LLONG_MIN == LLONG_MIN */ 22118 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 22119 BPF_NEG | BPF_K, insn->dst_reg, 22120 0, 0, 0); 22121 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 22122 *patch++ = *insn; 22123 cnt = patch - insn_buf; 22124 } else if (is_smod) { 22125 /* [R,W]x mod 0 -> [R,W]x */ 22126 /* [R,W]x mod -1 -> 0 */ 22127 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); 22128 *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | 22129 BPF_ADD | BPF_K, BPF_REG_AX, 22130 0, 0, 1); 22131 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 22132 BPF_JGT | BPF_K, BPF_REG_AX, 22133 0, 3, 1); 22134 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 22135 BPF_JEQ | BPF_K, BPF_REG_AX, 22136 0, 3 + (is64 ? 0 : 1), 1); 22137 *patch++ = BPF_MOV32_IMM(insn->dst_reg, 0); 22138 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 22139 *patch++ = *insn; 22140 22141 if (!is64) { 22142 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 22143 *patch++ = BPF_MOV32_REG(insn->dst_reg, insn->dst_reg); 22144 } 22145 cnt = patch - insn_buf; 22146 } else if (isdiv) { 22147 /* [R,W]x div 0 -> 0 */ 22148 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 22149 BPF_JNE | BPF_K, insn->src_reg, 22150 0, 2, 0); 22151 *patch++ = BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg); 22152 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 22153 *patch++ = *insn; 22154 cnt = patch - insn_buf; 22155 } else { 22156 /* [R,W]x mod 0 -> [R,W]x */ 22157 *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 22158 BPF_JEQ | BPF_K, insn->src_reg, 22159 0, 1 + (is64 ? 0 : 1), 0); 22160 *patch++ = *insn; 22161 22162 if (!is64) { 22163 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 22164 *patch++ = BPF_MOV32_REG(insn->dst_reg, insn->dst_reg); 22165 } 22166 cnt = patch - insn_buf; 22167 } 22168 22169 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22170 if (!new_prog) 22171 return -ENOMEM; 22172 22173 delta += cnt - 1; 22174 env->prog = prog = new_prog; 22175 insn = new_prog->insnsi + i + delta; 22176 goto next_insn; 22177 } 22178 22179 /* Make it impossible to de-reference a userspace address */ 22180 if (BPF_CLASS(insn->code) == BPF_LDX && 22181 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 22182 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) { 22183 struct bpf_insn *patch = insn_buf; 22184 u64 uaddress_limit = bpf_arch_uaddress_limit(); 22185 22186 if (!uaddress_limit) 22187 goto next_insn; 22188 22189 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); 22190 if (insn->off) 22191 *patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off); 22192 *patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32); 22193 *patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2); 22194 *patch++ = *insn; 22195 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 22196 *patch++ = BPF_MOV64_IMM(insn->dst_reg, 0); 22197 22198 cnt = patch - insn_buf; 22199 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22200 if (!new_prog) 22201 return -ENOMEM; 22202 22203 delta += cnt - 1; 22204 env->prog = prog = new_prog; 22205 insn = new_prog->insnsi + i + delta; 22206 goto next_insn; 22207 } 22208 22209 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 22210 if (BPF_CLASS(insn->code) == BPF_LD && 22211 (BPF_MODE(insn->code) == BPF_ABS || 22212 BPF_MODE(insn->code) == BPF_IND)) { 22213 cnt = env->ops->gen_ld_abs(insn, insn_buf); 22214 if (cnt == 0 || cnt >= INSN_BUF_SIZE) { 22215 verifier_bug(env, "%d insns generated for ld_abs", cnt); 22216 return -EFAULT; 22217 } 22218 22219 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22220 if (!new_prog) 22221 return -ENOMEM; 22222 22223 delta += cnt - 1; 22224 env->prog = prog = new_prog; 22225 insn = new_prog->insnsi + i + delta; 22226 goto next_insn; 22227 } 22228 22229 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 22230 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 22231 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 22232 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 22233 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 22234 struct bpf_insn *patch = insn_buf; 22235 bool issrc, isneg, isimm; 22236 u32 off_reg; 22237 22238 aux = &env->insn_aux_data[i + delta]; 22239 if (!aux->alu_state || 22240 aux->alu_state == BPF_ALU_NON_POINTER) 22241 goto next_insn; 22242 22243 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 22244 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 22245 BPF_ALU_SANITIZE_SRC; 22246 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 22247 22248 off_reg = issrc ? insn->src_reg : insn->dst_reg; 22249 if (isimm) { 22250 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 22251 } else { 22252 if (isneg) 22253 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 22254 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 22255 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 22256 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 22257 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 22258 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 22259 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 22260 } 22261 if (!issrc) 22262 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 22263 insn->src_reg = BPF_REG_AX; 22264 if (isneg) 22265 insn->code = insn->code == code_add ? 22266 code_sub : code_add; 22267 *patch++ = *insn; 22268 if (issrc && isneg && !isimm) 22269 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 22270 cnt = patch - insn_buf; 22271 22272 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22273 if (!new_prog) 22274 return -ENOMEM; 22275 22276 delta += cnt - 1; 22277 env->prog = prog = new_prog; 22278 insn = new_prog->insnsi + i + delta; 22279 goto next_insn; 22280 } 22281 22282 if (is_may_goto_insn(insn) && bpf_jit_supports_timed_may_goto()) { 22283 int stack_off_cnt = -stack_depth - 16; 22284 22285 /* 22286 * Two 8 byte slots, depth-16 stores the count, and 22287 * depth-8 stores the start timestamp of the loop. 22288 * 22289 * The starting value of count is BPF_MAX_TIMED_LOOPS 22290 * (0xffff). Every iteration loads it and subs it by 1, 22291 * until the value becomes 0 in AX (thus, 1 in stack), 22292 * after which we call arch_bpf_timed_may_goto, which 22293 * either sets AX to 0xffff to keep looping, or to 0 22294 * upon timeout. AX is then stored into the stack. In 22295 * the next iteration, we either see 0 and break out, or 22296 * continue iterating until the next time value is 0 22297 * after subtraction, rinse and repeat. 22298 */ 22299 stack_depth_extra = 16; 22300 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off_cnt); 22301 if (insn->off >= 0) 22302 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 5); 22303 else 22304 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1); 22305 insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1); 22306 insn_buf[3] = BPF_JMP_IMM(BPF_JNE, BPF_REG_AX, 0, 2); 22307 /* 22308 * AX is used as an argument to pass in stack_off_cnt 22309 * (to add to r10/fp), and also as the return value of 22310 * the call to arch_bpf_timed_may_goto. 22311 */ 22312 insn_buf[4] = BPF_MOV64_IMM(BPF_REG_AX, stack_off_cnt); 22313 insn_buf[5] = BPF_EMIT_CALL(arch_bpf_timed_may_goto); 22314 insn_buf[6] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off_cnt); 22315 cnt = 7; 22316 22317 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22318 if (!new_prog) 22319 return -ENOMEM; 22320 22321 delta += cnt - 1; 22322 env->prog = prog = new_prog; 22323 insn = new_prog->insnsi + i + delta; 22324 goto next_insn; 22325 } else if (is_may_goto_insn(insn)) { 22326 int stack_off = -stack_depth - 8; 22327 22328 stack_depth_extra = 8; 22329 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off); 22330 if (insn->off >= 0) 22331 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2); 22332 else 22333 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1); 22334 insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1); 22335 insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off); 22336 cnt = 4; 22337 22338 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22339 if (!new_prog) 22340 return -ENOMEM; 22341 22342 delta += cnt - 1; 22343 env->prog = prog = new_prog; 22344 insn = new_prog->insnsi + i + delta; 22345 goto next_insn; 22346 } 22347 22348 if (insn->code != (BPF_JMP | BPF_CALL)) 22349 goto next_insn; 22350 if (insn->src_reg == BPF_PSEUDO_CALL) 22351 goto next_insn; 22352 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 22353 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 22354 if (ret) 22355 return ret; 22356 if (cnt == 0) 22357 goto next_insn; 22358 22359 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22360 if (!new_prog) 22361 return -ENOMEM; 22362 22363 delta += cnt - 1; 22364 env->prog = prog = new_prog; 22365 insn = new_prog->insnsi + i + delta; 22366 goto next_insn; 22367 } 22368 22369 /* Skip inlining the helper call if the JIT does it. */ 22370 if (bpf_jit_inlines_helper_call(insn->imm)) 22371 goto next_insn; 22372 22373 if (insn->imm == BPF_FUNC_get_route_realm) 22374 prog->dst_needed = 1; 22375 if (insn->imm == BPF_FUNC_get_prandom_u32) 22376 bpf_user_rnd_init_once(); 22377 if (insn->imm == BPF_FUNC_override_return) 22378 prog->kprobe_override = 1; 22379 if (insn->imm == BPF_FUNC_tail_call) { 22380 /* If we tail call into other programs, we 22381 * cannot make any assumptions since they can 22382 * be replaced dynamically during runtime in 22383 * the program array. 22384 */ 22385 prog->cb_access = 1; 22386 if (!allow_tail_call_in_subprogs(env)) 22387 prog->aux->stack_depth = MAX_BPF_STACK; 22388 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 22389 22390 /* mark bpf_tail_call as different opcode to avoid 22391 * conditional branch in the interpreter for every normal 22392 * call and to prevent accidental JITing by JIT compiler 22393 * that doesn't support bpf_tail_call yet 22394 */ 22395 insn->imm = 0; 22396 insn->code = BPF_JMP | BPF_TAIL_CALL; 22397 22398 aux = &env->insn_aux_data[i + delta]; 22399 if (env->bpf_capable && !prog->blinding_requested && 22400 prog->jit_requested && 22401 !bpf_map_key_poisoned(aux) && 22402 !bpf_map_ptr_poisoned(aux) && 22403 !bpf_map_ptr_unpriv(aux)) { 22404 struct bpf_jit_poke_descriptor desc = { 22405 .reason = BPF_POKE_REASON_TAIL_CALL, 22406 .tail_call.map = aux->map_ptr_state.map_ptr, 22407 .tail_call.key = bpf_map_key_immediate(aux), 22408 .insn_idx = i + delta, 22409 }; 22410 22411 ret = bpf_jit_add_poke_descriptor(prog, &desc); 22412 if (ret < 0) { 22413 verbose(env, "adding tail call poke descriptor failed\n"); 22414 return ret; 22415 } 22416 22417 insn->imm = ret + 1; 22418 goto next_insn; 22419 } 22420 22421 if (!bpf_map_ptr_unpriv(aux)) 22422 goto next_insn; 22423 22424 /* instead of changing every JIT dealing with tail_call 22425 * emit two extra insns: 22426 * if (index >= max_entries) goto out; 22427 * index &= array->index_mask; 22428 * to avoid out-of-bounds cpu speculation 22429 */ 22430 if (bpf_map_ptr_poisoned(aux)) { 22431 verbose(env, "tail_call abusing map_ptr\n"); 22432 return -EINVAL; 22433 } 22434 22435 map_ptr = aux->map_ptr_state.map_ptr; 22436 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 22437 map_ptr->max_entries, 2); 22438 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 22439 container_of(map_ptr, 22440 struct bpf_array, 22441 map)->index_mask); 22442 insn_buf[2] = *insn; 22443 cnt = 3; 22444 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22445 if (!new_prog) 22446 return -ENOMEM; 22447 22448 delta += cnt - 1; 22449 env->prog = prog = new_prog; 22450 insn = new_prog->insnsi + i + delta; 22451 goto next_insn; 22452 } 22453 22454 if (insn->imm == BPF_FUNC_timer_set_callback) { 22455 /* The verifier will process callback_fn as many times as necessary 22456 * with different maps and the register states prepared by 22457 * set_timer_callback_state will be accurate. 22458 * 22459 * The following use case is valid: 22460 * map1 is shared by prog1, prog2, prog3. 22461 * prog1 calls bpf_timer_init for some map1 elements 22462 * prog2 calls bpf_timer_set_callback for some map1 elements. 22463 * Those that were not bpf_timer_init-ed will return -EINVAL. 22464 * prog3 calls bpf_timer_start for some map1 elements. 22465 * Those that were not both bpf_timer_init-ed and 22466 * bpf_timer_set_callback-ed will return -EINVAL. 22467 */ 22468 struct bpf_insn ld_addrs[2] = { 22469 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 22470 }; 22471 22472 insn_buf[0] = ld_addrs[0]; 22473 insn_buf[1] = ld_addrs[1]; 22474 insn_buf[2] = *insn; 22475 cnt = 3; 22476 22477 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22478 if (!new_prog) 22479 return -ENOMEM; 22480 22481 delta += cnt - 1; 22482 env->prog = prog = new_prog; 22483 insn = new_prog->insnsi + i + delta; 22484 goto patch_call_imm; 22485 } 22486 22487 if (is_storage_get_function(insn->imm)) { 22488 if (!in_sleepable(env) || 22489 env->insn_aux_data[i + delta].storage_get_func_atomic) 22490 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 22491 else 22492 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 22493 insn_buf[1] = *insn; 22494 cnt = 2; 22495 22496 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22497 if (!new_prog) 22498 return -ENOMEM; 22499 22500 delta += cnt - 1; 22501 env->prog = prog = new_prog; 22502 insn = new_prog->insnsi + i + delta; 22503 goto patch_call_imm; 22504 } 22505 22506 /* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */ 22507 if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) { 22508 /* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data, 22509 * bpf_mem_alloc() returns a ptr to the percpu data ptr. 22510 */ 22511 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0); 22512 insn_buf[1] = *insn; 22513 cnt = 2; 22514 22515 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22516 if (!new_prog) 22517 return -ENOMEM; 22518 22519 delta += cnt - 1; 22520 env->prog = prog = new_prog; 22521 insn = new_prog->insnsi + i + delta; 22522 goto patch_call_imm; 22523 } 22524 22525 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 22526 * and other inlining handlers are currently limited to 64 bit 22527 * only. 22528 */ 22529 if (prog->jit_requested && BITS_PER_LONG == 64 && 22530 (insn->imm == BPF_FUNC_map_lookup_elem || 22531 insn->imm == BPF_FUNC_map_update_elem || 22532 insn->imm == BPF_FUNC_map_delete_elem || 22533 insn->imm == BPF_FUNC_map_push_elem || 22534 insn->imm == BPF_FUNC_map_pop_elem || 22535 insn->imm == BPF_FUNC_map_peek_elem || 22536 insn->imm == BPF_FUNC_redirect_map || 22537 insn->imm == BPF_FUNC_for_each_map_elem || 22538 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 22539 aux = &env->insn_aux_data[i + delta]; 22540 if (bpf_map_ptr_poisoned(aux)) 22541 goto patch_call_imm; 22542 22543 map_ptr = aux->map_ptr_state.map_ptr; 22544 ops = map_ptr->ops; 22545 if (insn->imm == BPF_FUNC_map_lookup_elem && 22546 ops->map_gen_lookup) { 22547 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 22548 if (cnt == -EOPNOTSUPP) 22549 goto patch_map_ops_generic; 22550 if (cnt <= 0 || cnt >= INSN_BUF_SIZE) { 22551 verifier_bug(env, "%d insns generated for map lookup", cnt); 22552 return -EFAULT; 22553 } 22554 22555 new_prog = bpf_patch_insn_data(env, i + delta, 22556 insn_buf, cnt); 22557 if (!new_prog) 22558 return -ENOMEM; 22559 22560 delta += cnt - 1; 22561 env->prog = prog = new_prog; 22562 insn = new_prog->insnsi + i + delta; 22563 goto next_insn; 22564 } 22565 22566 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 22567 (void *(*)(struct bpf_map *map, void *key))NULL)); 22568 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 22569 (long (*)(struct bpf_map *map, void *key))NULL)); 22570 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 22571 (long (*)(struct bpf_map *map, void *key, void *value, 22572 u64 flags))NULL)); 22573 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 22574 (long (*)(struct bpf_map *map, void *value, 22575 u64 flags))NULL)); 22576 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 22577 (long (*)(struct bpf_map *map, void *value))NULL)); 22578 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 22579 (long (*)(struct bpf_map *map, void *value))NULL)); 22580 BUILD_BUG_ON(!__same_type(ops->map_redirect, 22581 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 22582 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 22583 (long (*)(struct bpf_map *map, 22584 bpf_callback_t callback_fn, 22585 void *callback_ctx, 22586 u64 flags))NULL)); 22587 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 22588 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 22589 22590 patch_map_ops_generic: 22591 switch (insn->imm) { 22592 case BPF_FUNC_map_lookup_elem: 22593 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 22594 goto next_insn; 22595 case BPF_FUNC_map_update_elem: 22596 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 22597 goto next_insn; 22598 case BPF_FUNC_map_delete_elem: 22599 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 22600 goto next_insn; 22601 case BPF_FUNC_map_push_elem: 22602 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 22603 goto next_insn; 22604 case BPF_FUNC_map_pop_elem: 22605 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 22606 goto next_insn; 22607 case BPF_FUNC_map_peek_elem: 22608 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 22609 goto next_insn; 22610 case BPF_FUNC_redirect_map: 22611 insn->imm = BPF_CALL_IMM(ops->map_redirect); 22612 goto next_insn; 22613 case BPF_FUNC_for_each_map_elem: 22614 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 22615 goto next_insn; 22616 case BPF_FUNC_map_lookup_percpu_elem: 22617 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 22618 goto next_insn; 22619 } 22620 22621 goto patch_call_imm; 22622 } 22623 22624 /* Implement bpf_jiffies64 inline. */ 22625 if (prog->jit_requested && BITS_PER_LONG == 64 && 22626 insn->imm == BPF_FUNC_jiffies64) { 22627 struct bpf_insn ld_jiffies_addr[2] = { 22628 BPF_LD_IMM64(BPF_REG_0, 22629 (unsigned long)&jiffies), 22630 }; 22631 22632 insn_buf[0] = ld_jiffies_addr[0]; 22633 insn_buf[1] = ld_jiffies_addr[1]; 22634 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 22635 BPF_REG_0, 0); 22636 cnt = 3; 22637 22638 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 22639 cnt); 22640 if (!new_prog) 22641 return -ENOMEM; 22642 22643 delta += cnt - 1; 22644 env->prog = prog = new_prog; 22645 insn = new_prog->insnsi + i + delta; 22646 goto next_insn; 22647 } 22648 22649 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML) 22650 /* Implement bpf_get_smp_processor_id() inline. */ 22651 if (insn->imm == BPF_FUNC_get_smp_processor_id && 22652 verifier_inlines_helper_call(env, insn->imm)) { 22653 /* BPF_FUNC_get_smp_processor_id inlining is an 22654 * optimization, so if cpu_number is ever 22655 * changed in some incompatible and hard to support 22656 * way, it's fine to back out this inlining logic 22657 */ 22658 #ifdef CONFIG_SMP 22659 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, (u32)(unsigned long)&cpu_number); 22660 insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0); 22661 insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0); 22662 cnt = 3; 22663 #else 22664 insn_buf[0] = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0); 22665 cnt = 1; 22666 #endif 22667 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22668 if (!new_prog) 22669 return -ENOMEM; 22670 22671 delta += cnt - 1; 22672 env->prog = prog = new_prog; 22673 insn = new_prog->insnsi + i + delta; 22674 goto next_insn; 22675 } 22676 #endif 22677 /* Implement bpf_get_func_arg inline. */ 22678 if (prog_type == BPF_PROG_TYPE_TRACING && 22679 insn->imm == BPF_FUNC_get_func_arg) { 22680 /* Load nr_args from ctx - 8 */ 22681 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 22682 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 22683 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 22684 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 22685 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 22686 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 22687 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 22688 insn_buf[7] = BPF_JMP_A(1); 22689 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 22690 cnt = 9; 22691 22692 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22693 if (!new_prog) 22694 return -ENOMEM; 22695 22696 delta += cnt - 1; 22697 env->prog = prog = new_prog; 22698 insn = new_prog->insnsi + i + delta; 22699 goto next_insn; 22700 } 22701 22702 /* Implement bpf_get_func_ret inline. */ 22703 if (prog_type == BPF_PROG_TYPE_TRACING && 22704 insn->imm == BPF_FUNC_get_func_ret) { 22705 if (eatype == BPF_TRACE_FEXIT || 22706 eatype == BPF_MODIFY_RETURN) { 22707 /* Load nr_args from ctx - 8 */ 22708 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 22709 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 22710 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 22711 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 22712 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 22713 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 22714 cnt = 6; 22715 } else { 22716 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 22717 cnt = 1; 22718 } 22719 22720 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22721 if (!new_prog) 22722 return -ENOMEM; 22723 22724 delta += cnt - 1; 22725 env->prog = prog = new_prog; 22726 insn = new_prog->insnsi + i + delta; 22727 goto next_insn; 22728 } 22729 22730 /* Implement get_func_arg_cnt inline. */ 22731 if (prog_type == BPF_PROG_TYPE_TRACING && 22732 insn->imm == BPF_FUNC_get_func_arg_cnt) { 22733 /* Load nr_args from ctx - 8 */ 22734 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 22735 22736 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 22737 if (!new_prog) 22738 return -ENOMEM; 22739 22740 env->prog = prog = new_prog; 22741 insn = new_prog->insnsi + i + delta; 22742 goto next_insn; 22743 } 22744 22745 /* Implement bpf_get_func_ip inline. */ 22746 if (prog_type == BPF_PROG_TYPE_TRACING && 22747 insn->imm == BPF_FUNC_get_func_ip) { 22748 /* Load IP address from ctx - 16 */ 22749 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 22750 22751 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 22752 if (!new_prog) 22753 return -ENOMEM; 22754 22755 env->prog = prog = new_prog; 22756 insn = new_prog->insnsi + i + delta; 22757 goto next_insn; 22758 } 22759 22760 /* Implement bpf_get_branch_snapshot inline. */ 22761 if (IS_ENABLED(CONFIG_PERF_EVENTS) && 22762 prog->jit_requested && BITS_PER_LONG == 64 && 22763 insn->imm == BPF_FUNC_get_branch_snapshot) { 22764 /* We are dealing with the following func protos: 22765 * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags); 22766 * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt); 22767 */ 22768 const u32 br_entry_size = sizeof(struct perf_branch_entry); 22769 22770 /* struct perf_branch_entry is part of UAPI and is 22771 * used as an array element, so extremely unlikely to 22772 * ever grow or shrink 22773 */ 22774 BUILD_BUG_ON(br_entry_size != 24); 22775 22776 /* if (unlikely(flags)) return -EINVAL */ 22777 insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7); 22778 22779 /* Transform size (bytes) into number of entries (cnt = size / 24). 22780 * But to avoid expensive division instruction, we implement 22781 * divide-by-3 through multiplication, followed by further 22782 * division by 8 through 3-bit right shift. 22783 * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr., 22784 * p. 227, chapter "Unsigned Division by 3" for details and proofs. 22785 * 22786 * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab. 22787 */ 22788 insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab); 22789 insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0); 22790 insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36); 22791 22792 /* call perf_snapshot_branch_stack implementation */ 22793 insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack)); 22794 /* if (entry_cnt == 0) return -ENOENT */ 22795 insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4); 22796 /* return entry_cnt * sizeof(struct perf_branch_entry) */ 22797 insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size); 22798 insn_buf[7] = BPF_JMP_A(3); 22799 /* return -EINVAL; */ 22800 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 22801 insn_buf[9] = BPF_JMP_A(1); 22802 /* return -ENOENT; */ 22803 insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT); 22804 cnt = 11; 22805 22806 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22807 if (!new_prog) 22808 return -ENOMEM; 22809 22810 delta += cnt - 1; 22811 env->prog = prog = new_prog; 22812 insn = new_prog->insnsi + i + delta; 22813 goto next_insn; 22814 } 22815 22816 /* Implement bpf_kptr_xchg inline */ 22817 if (prog->jit_requested && BITS_PER_LONG == 64 && 22818 insn->imm == BPF_FUNC_kptr_xchg && 22819 bpf_jit_supports_ptr_xchg()) { 22820 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2); 22821 insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0); 22822 cnt = 2; 22823 22824 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 22825 if (!new_prog) 22826 return -ENOMEM; 22827 22828 delta += cnt - 1; 22829 env->prog = prog = new_prog; 22830 insn = new_prog->insnsi + i + delta; 22831 goto next_insn; 22832 } 22833 patch_call_imm: 22834 fn = env->ops->get_func_proto(insn->imm, env->prog); 22835 /* all functions that have prototype and verifier allowed 22836 * programs to call them, must be real in-kernel functions 22837 */ 22838 if (!fn->func) { 22839 verifier_bug(env, 22840 "not inlined functions %s#%d is missing func", 22841 func_id_name(insn->imm), insn->imm); 22842 return -EFAULT; 22843 } 22844 insn->imm = fn->func - __bpf_call_base; 22845 next_insn: 22846 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 22847 subprogs[cur_subprog].stack_depth += stack_depth_extra; 22848 subprogs[cur_subprog].stack_extra = stack_depth_extra; 22849 22850 stack_depth = subprogs[cur_subprog].stack_depth; 22851 if (stack_depth > MAX_BPF_STACK && !prog->jit_requested) { 22852 verbose(env, "stack size %d(extra %d) is too large\n", 22853 stack_depth, stack_depth_extra); 22854 return -EINVAL; 22855 } 22856 cur_subprog++; 22857 stack_depth = subprogs[cur_subprog].stack_depth; 22858 stack_depth_extra = 0; 22859 } 22860 i++; 22861 insn++; 22862 } 22863 22864 env->prog->aux->stack_depth = subprogs[0].stack_depth; 22865 for (i = 0; i < env->subprog_cnt; i++) { 22866 int delta = bpf_jit_supports_timed_may_goto() ? 2 : 1; 22867 int subprog_start = subprogs[i].start; 22868 int stack_slots = subprogs[i].stack_extra / 8; 22869 int slots = delta, cnt = 0; 22870 22871 if (!stack_slots) 22872 continue; 22873 /* We need two slots in case timed may_goto is supported. */ 22874 if (stack_slots > slots) { 22875 verifier_bug(env, "stack_slots supports may_goto only"); 22876 return -EFAULT; 22877 } 22878 22879 stack_depth = subprogs[i].stack_depth; 22880 if (bpf_jit_supports_timed_may_goto()) { 22881 insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth, 22882 BPF_MAX_TIMED_LOOPS); 22883 insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth + 8, 0); 22884 } else { 22885 /* Add ST insn to subprog prologue to init extra stack */ 22886 insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth, 22887 BPF_MAX_LOOPS); 22888 } 22889 /* Copy first actual insn to preserve it */ 22890 insn_buf[cnt++] = env->prog->insnsi[subprog_start]; 22891 22892 new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, cnt); 22893 if (!new_prog) 22894 return -ENOMEM; 22895 env->prog = prog = new_prog; 22896 /* 22897 * If may_goto is a first insn of a prog there could be a jmp 22898 * insn that points to it, hence adjust all such jmps to point 22899 * to insn after BPF_ST that inits may_goto count. 22900 * Adjustment will succeed because bpf_patch_insn_data() didn't fail. 22901 */ 22902 WARN_ON(adjust_jmp_off(env->prog, subprog_start, delta)); 22903 } 22904 22905 /* Since poke tab is now finalized, publish aux to tracker. */ 22906 for (i = 0; i < prog->aux->size_poke_tab; i++) { 22907 map_ptr = prog->aux->poke_tab[i].tail_call.map; 22908 if (!map_ptr->ops->map_poke_track || 22909 !map_ptr->ops->map_poke_untrack || 22910 !map_ptr->ops->map_poke_run) { 22911 verifier_bug(env, "poke tab is misconfigured"); 22912 return -EFAULT; 22913 } 22914 22915 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 22916 if (ret < 0) { 22917 verbose(env, "tracking tail call prog failed\n"); 22918 return ret; 22919 } 22920 } 22921 22922 sort_kfunc_descs_by_imm_off(env->prog); 22923 22924 return 0; 22925 } 22926 22927 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 22928 int position, 22929 s32 stack_base, 22930 u32 callback_subprogno, 22931 u32 *total_cnt) 22932 { 22933 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 22934 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 22935 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 22936 int reg_loop_max = BPF_REG_6; 22937 int reg_loop_cnt = BPF_REG_7; 22938 int reg_loop_ctx = BPF_REG_8; 22939 22940 struct bpf_insn *insn_buf = env->insn_buf; 22941 struct bpf_prog *new_prog; 22942 u32 callback_start; 22943 u32 call_insn_offset; 22944 s32 callback_offset; 22945 u32 cnt = 0; 22946 22947 /* This represents an inlined version of bpf_iter.c:bpf_loop, 22948 * be careful to modify this code in sync. 22949 */ 22950 22951 /* Return error and jump to the end of the patch if 22952 * expected number of iterations is too big. 22953 */ 22954 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2); 22955 insn_buf[cnt++] = BPF_MOV32_IMM(BPF_REG_0, -E2BIG); 22956 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JA, 0, 0, 16); 22957 /* spill R6, R7, R8 to use these as loop vars */ 22958 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset); 22959 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset); 22960 insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset); 22961 /* initialize loop vars */ 22962 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_max, BPF_REG_1); 22963 insn_buf[cnt++] = BPF_MOV32_IMM(reg_loop_cnt, 0); 22964 insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3); 22965 /* loop header, 22966 * if reg_loop_cnt >= reg_loop_max skip the loop body 22967 */ 22968 insn_buf[cnt++] = BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5); 22969 /* callback call, 22970 * correct callback offset would be set after patching 22971 */ 22972 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt); 22973 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx); 22974 insn_buf[cnt++] = BPF_CALL_REL(0); 22975 /* increment loop counter */ 22976 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1); 22977 /* jump to loop header if callback returned 0 */ 22978 insn_buf[cnt++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6); 22979 /* return value of bpf_loop, 22980 * set R0 to the number of iterations 22981 */ 22982 insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt); 22983 /* restore original values of R6, R7, R8 */ 22984 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset); 22985 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset); 22986 insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset); 22987 22988 *total_cnt = cnt; 22989 new_prog = bpf_patch_insn_data(env, position, insn_buf, cnt); 22990 if (!new_prog) 22991 return new_prog; 22992 22993 /* callback start is known only after patching */ 22994 callback_start = env->subprog_info[callback_subprogno].start; 22995 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 22996 call_insn_offset = position + 12; 22997 callback_offset = callback_start - call_insn_offset - 1; 22998 new_prog->insnsi[call_insn_offset].imm = callback_offset; 22999 23000 return new_prog; 23001 } 23002 23003 static bool is_bpf_loop_call(struct bpf_insn *insn) 23004 { 23005 return insn->code == (BPF_JMP | BPF_CALL) && 23006 insn->src_reg == 0 && 23007 insn->imm == BPF_FUNC_loop; 23008 } 23009 23010 /* For all sub-programs in the program (including main) check 23011 * insn_aux_data to see if there are bpf_loop calls that require 23012 * inlining. If such calls are found the calls are replaced with a 23013 * sequence of instructions produced by `inline_bpf_loop` function and 23014 * subprog stack_depth is increased by the size of 3 registers. 23015 * This stack space is used to spill values of the R6, R7, R8. These 23016 * registers are used to store the loop bound, counter and context 23017 * variables. 23018 */ 23019 static int optimize_bpf_loop(struct bpf_verifier_env *env) 23020 { 23021 struct bpf_subprog_info *subprogs = env->subprog_info; 23022 int i, cur_subprog = 0, cnt, delta = 0; 23023 struct bpf_insn *insn = env->prog->insnsi; 23024 int insn_cnt = env->prog->len; 23025 u16 stack_depth = subprogs[cur_subprog].stack_depth; 23026 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 23027 u16 stack_depth_extra = 0; 23028 23029 for (i = 0; i < insn_cnt; i++, insn++) { 23030 struct bpf_loop_inline_state *inline_state = 23031 &env->insn_aux_data[i + delta].loop_inline_state; 23032 23033 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 23034 struct bpf_prog *new_prog; 23035 23036 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 23037 new_prog = inline_bpf_loop(env, 23038 i + delta, 23039 -(stack_depth + stack_depth_extra), 23040 inline_state->callback_subprogno, 23041 &cnt); 23042 if (!new_prog) 23043 return -ENOMEM; 23044 23045 delta += cnt - 1; 23046 env->prog = new_prog; 23047 insn = new_prog->insnsi + i + delta; 23048 } 23049 23050 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 23051 subprogs[cur_subprog].stack_depth += stack_depth_extra; 23052 cur_subprog++; 23053 stack_depth = subprogs[cur_subprog].stack_depth; 23054 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 23055 stack_depth_extra = 0; 23056 } 23057 } 23058 23059 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 23060 23061 return 0; 23062 } 23063 23064 /* Remove unnecessary spill/fill pairs, members of fastcall pattern, 23065 * adjust subprograms stack depth when possible. 23066 */ 23067 static int remove_fastcall_spills_fills(struct bpf_verifier_env *env) 23068 { 23069 struct bpf_subprog_info *subprog = env->subprog_info; 23070 struct bpf_insn_aux_data *aux = env->insn_aux_data; 23071 struct bpf_insn *insn = env->prog->insnsi; 23072 int insn_cnt = env->prog->len; 23073 u32 spills_num; 23074 bool modified = false; 23075 int i, j; 23076 23077 for (i = 0; i < insn_cnt; i++, insn++) { 23078 if (aux[i].fastcall_spills_num > 0) { 23079 spills_num = aux[i].fastcall_spills_num; 23080 /* NOPs would be removed by opt_remove_nops() */ 23081 for (j = 1; j <= spills_num; ++j) { 23082 *(insn - j) = NOP; 23083 *(insn + j) = NOP; 23084 } 23085 modified = true; 23086 } 23087 if ((subprog + 1)->start == i + 1) { 23088 if (modified && !subprog->keep_fastcall_stack) 23089 subprog->stack_depth = -subprog->fastcall_stack_off; 23090 subprog++; 23091 modified = false; 23092 } 23093 } 23094 23095 return 0; 23096 } 23097 23098 static void free_states(struct bpf_verifier_env *env) 23099 { 23100 struct bpf_verifier_state_list *sl; 23101 struct list_head *head, *pos, *tmp; 23102 struct bpf_scc_info *info; 23103 int i, j; 23104 23105 free_verifier_state(env->cur_state, true); 23106 env->cur_state = NULL; 23107 while (!pop_stack(env, NULL, NULL, false)); 23108 23109 list_for_each_safe(pos, tmp, &env->free_list) { 23110 sl = container_of(pos, struct bpf_verifier_state_list, node); 23111 free_verifier_state(&sl->state, false); 23112 kfree(sl); 23113 } 23114 INIT_LIST_HEAD(&env->free_list); 23115 23116 for (i = 0; i < env->scc_cnt; ++i) { 23117 info = env->scc_info[i]; 23118 if (!info) 23119 continue; 23120 for (j = 0; j < info->num_visits; j++) 23121 free_backedges(&info->visits[j]); 23122 kvfree(info); 23123 env->scc_info[i] = NULL; 23124 } 23125 23126 if (!env->explored_states) 23127 return; 23128 23129 for (i = 0; i < state_htab_size(env); i++) { 23130 head = &env->explored_states[i]; 23131 23132 list_for_each_safe(pos, tmp, head) { 23133 sl = container_of(pos, struct bpf_verifier_state_list, node); 23134 free_verifier_state(&sl->state, false); 23135 kfree(sl); 23136 } 23137 INIT_LIST_HEAD(&env->explored_states[i]); 23138 } 23139 } 23140 23141 static int do_check_common(struct bpf_verifier_env *env, int subprog) 23142 { 23143 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 23144 struct bpf_subprog_info *sub = subprog_info(env, subprog); 23145 struct bpf_prog_aux *aux = env->prog->aux; 23146 struct bpf_verifier_state *state; 23147 struct bpf_reg_state *regs; 23148 int ret, i; 23149 23150 env->prev_linfo = NULL; 23151 env->pass_cnt++; 23152 23153 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL_ACCOUNT); 23154 if (!state) 23155 return -ENOMEM; 23156 state->curframe = 0; 23157 state->speculative = false; 23158 state->branches = 1; 23159 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL_ACCOUNT); 23160 if (!state->frame[0]) { 23161 kfree(state); 23162 return -ENOMEM; 23163 } 23164 env->cur_state = state; 23165 init_func_state(env, state->frame[0], 23166 BPF_MAIN_FUNC /* callsite */, 23167 0 /* frameno */, 23168 subprog); 23169 state->first_insn_idx = env->subprog_info[subprog].start; 23170 state->last_insn_idx = -1; 23171 23172 regs = state->frame[state->curframe]->regs; 23173 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 23174 const char *sub_name = subprog_name(env, subprog); 23175 struct bpf_subprog_arg_info *arg; 23176 struct bpf_reg_state *reg; 23177 23178 verbose(env, "Validating %s() func#%d...\n", sub_name, subprog); 23179 ret = btf_prepare_func_args(env, subprog); 23180 if (ret) 23181 goto out; 23182 23183 if (subprog_is_exc_cb(env, subprog)) { 23184 state->frame[0]->in_exception_callback_fn = true; 23185 /* We have already ensured that the callback returns an integer, just 23186 * like all global subprogs. We need to determine it only has a single 23187 * scalar argument. 23188 */ 23189 if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) { 23190 verbose(env, "exception cb only supports single integer argument\n"); 23191 ret = -EINVAL; 23192 goto out; 23193 } 23194 } 23195 for (i = BPF_REG_1; i <= sub->arg_cnt; i++) { 23196 arg = &sub->args[i - BPF_REG_1]; 23197 reg = ®s[i]; 23198 23199 if (arg->arg_type == ARG_PTR_TO_CTX) { 23200 reg->type = PTR_TO_CTX; 23201 mark_reg_known_zero(env, regs, i); 23202 } else if (arg->arg_type == ARG_ANYTHING) { 23203 reg->type = SCALAR_VALUE; 23204 mark_reg_unknown(env, regs, i); 23205 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 23206 /* assume unspecial LOCAL dynptr type */ 23207 __mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen); 23208 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 23209 reg->type = PTR_TO_MEM; 23210 reg->type |= arg->arg_type & 23211 (PTR_MAYBE_NULL | PTR_UNTRUSTED | MEM_RDONLY); 23212 mark_reg_known_zero(env, regs, i); 23213 reg->mem_size = arg->mem_size; 23214 if (arg->arg_type & PTR_MAYBE_NULL) 23215 reg->id = ++env->id_gen; 23216 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 23217 reg->type = PTR_TO_BTF_ID; 23218 if (arg->arg_type & PTR_MAYBE_NULL) 23219 reg->type |= PTR_MAYBE_NULL; 23220 if (arg->arg_type & PTR_UNTRUSTED) 23221 reg->type |= PTR_UNTRUSTED; 23222 if (arg->arg_type & PTR_TRUSTED) 23223 reg->type |= PTR_TRUSTED; 23224 mark_reg_known_zero(env, regs, i); 23225 reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */ 23226 reg->btf_id = arg->btf_id; 23227 reg->id = ++env->id_gen; 23228 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 23229 /* caller can pass either PTR_TO_ARENA or SCALAR */ 23230 mark_reg_unknown(env, regs, i); 23231 } else { 23232 verifier_bug(env, "unhandled arg#%d type %d", 23233 i - BPF_REG_1, arg->arg_type); 23234 ret = -EFAULT; 23235 goto out; 23236 } 23237 } 23238 } else { 23239 /* if main BPF program has associated BTF info, validate that 23240 * it's matching expected signature, and otherwise mark BTF 23241 * info for main program as unreliable 23242 */ 23243 if (env->prog->aux->func_info_aux) { 23244 ret = btf_prepare_func_args(env, 0); 23245 if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX) 23246 env->prog->aux->func_info_aux[0].unreliable = true; 23247 } 23248 23249 /* 1st arg to a function */ 23250 regs[BPF_REG_1].type = PTR_TO_CTX; 23251 mark_reg_known_zero(env, regs, BPF_REG_1); 23252 } 23253 23254 /* Acquire references for struct_ops program arguments tagged with "__ref" */ 23255 if (!subprog && env->prog->type == BPF_PROG_TYPE_STRUCT_OPS) { 23256 for (i = 0; i < aux->ctx_arg_info_size; i++) 23257 aux->ctx_arg_info[i].ref_obj_id = aux->ctx_arg_info[i].refcounted ? 23258 acquire_reference(env, 0) : 0; 23259 } 23260 23261 ret = do_check(env); 23262 out: 23263 if (!ret && pop_log) 23264 bpf_vlog_reset(&env->log, 0); 23265 free_states(env); 23266 return ret; 23267 } 23268 23269 /* Lazily verify all global functions based on their BTF, if they are called 23270 * from main BPF program or any of subprograms transitively. 23271 * BPF global subprogs called from dead code are not validated. 23272 * All callable global functions must pass verification. 23273 * Otherwise the whole program is rejected. 23274 * Consider: 23275 * int bar(int); 23276 * int foo(int f) 23277 * { 23278 * return bar(f); 23279 * } 23280 * int bar(int b) 23281 * { 23282 * ... 23283 * } 23284 * foo() will be verified first for R1=any_scalar_value. During verification it 23285 * will be assumed that bar() already verified successfully and call to bar() 23286 * from foo() will be checked for type match only. Later bar() will be verified 23287 * independently to check that it's safe for R1=any_scalar_value. 23288 */ 23289 static int do_check_subprogs(struct bpf_verifier_env *env) 23290 { 23291 struct bpf_prog_aux *aux = env->prog->aux; 23292 struct bpf_func_info_aux *sub_aux; 23293 int i, ret, new_cnt; 23294 23295 if (!aux->func_info) 23296 return 0; 23297 23298 /* exception callback is presumed to be always called */ 23299 if (env->exception_callback_subprog) 23300 subprog_aux(env, env->exception_callback_subprog)->called = true; 23301 23302 again: 23303 new_cnt = 0; 23304 for (i = 1; i < env->subprog_cnt; i++) { 23305 if (!subprog_is_global(env, i)) 23306 continue; 23307 23308 sub_aux = subprog_aux(env, i); 23309 if (!sub_aux->called || sub_aux->verified) 23310 continue; 23311 23312 env->insn_idx = env->subprog_info[i].start; 23313 WARN_ON_ONCE(env->insn_idx == 0); 23314 ret = do_check_common(env, i); 23315 if (ret) { 23316 return ret; 23317 } else if (env->log.level & BPF_LOG_LEVEL) { 23318 verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n", 23319 i, subprog_name(env, i)); 23320 } 23321 23322 /* We verified new global subprog, it might have called some 23323 * more global subprogs that we haven't verified yet, so we 23324 * need to do another pass over subprogs to verify those. 23325 */ 23326 sub_aux->verified = true; 23327 new_cnt++; 23328 } 23329 23330 /* We can't loop forever as we verify at least one global subprog on 23331 * each pass. 23332 */ 23333 if (new_cnt) 23334 goto again; 23335 23336 return 0; 23337 } 23338 23339 static int do_check_main(struct bpf_verifier_env *env) 23340 { 23341 int ret; 23342 23343 env->insn_idx = 0; 23344 ret = do_check_common(env, 0); 23345 if (!ret) 23346 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 23347 return ret; 23348 } 23349 23350 23351 static void print_verification_stats(struct bpf_verifier_env *env) 23352 { 23353 int i; 23354 23355 if (env->log.level & BPF_LOG_STATS) { 23356 verbose(env, "verification time %lld usec\n", 23357 div_u64(env->verification_time, 1000)); 23358 verbose(env, "stack depth "); 23359 for (i = 0; i < env->subprog_cnt; i++) { 23360 u32 depth = env->subprog_info[i].stack_depth; 23361 23362 verbose(env, "%d", depth); 23363 if (i + 1 < env->subprog_cnt) 23364 verbose(env, "+"); 23365 } 23366 verbose(env, "\n"); 23367 } 23368 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 23369 "total_states %d peak_states %d mark_read %d\n", 23370 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 23371 env->max_states_per_insn, env->total_states, 23372 env->peak_states, env->longest_mark_read_walk); 23373 } 23374 23375 int bpf_prog_ctx_arg_info_init(struct bpf_prog *prog, 23376 const struct bpf_ctx_arg_aux *info, u32 cnt) 23377 { 23378 prog->aux->ctx_arg_info = kmemdup_array(info, cnt, sizeof(*info), GFP_KERNEL_ACCOUNT); 23379 prog->aux->ctx_arg_info_size = cnt; 23380 23381 return prog->aux->ctx_arg_info ? 0 : -ENOMEM; 23382 } 23383 23384 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 23385 { 23386 const struct btf_type *t, *func_proto; 23387 const struct bpf_struct_ops_desc *st_ops_desc; 23388 const struct bpf_struct_ops *st_ops; 23389 const struct btf_member *member; 23390 struct bpf_prog *prog = env->prog; 23391 bool has_refcounted_arg = false; 23392 u32 btf_id, member_idx, member_off; 23393 struct btf *btf; 23394 const char *mname; 23395 int i, err; 23396 23397 if (!prog->gpl_compatible) { 23398 verbose(env, "struct ops programs must have a GPL compatible license\n"); 23399 return -EINVAL; 23400 } 23401 23402 if (!prog->aux->attach_btf_id) 23403 return -ENOTSUPP; 23404 23405 btf = prog->aux->attach_btf; 23406 if (btf_is_module(btf)) { 23407 /* Make sure st_ops is valid through the lifetime of env */ 23408 env->attach_btf_mod = btf_try_get_module(btf); 23409 if (!env->attach_btf_mod) { 23410 verbose(env, "struct_ops module %s is not found\n", 23411 btf_get_name(btf)); 23412 return -ENOTSUPP; 23413 } 23414 } 23415 23416 btf_id = prog->aux->attach_btf_id; 23417 st_ops_desc = bpf_struct_ops_find(btf, btf_id); 23418 if (!st_ops_desc) { 23419 verbose(env, "attach_btf_id %u is not a supported struct\n", 23420 btf_id); 23421 return -ENOTSUPP; 23422 } 23423 st_ops = st_ops_desc->st_ops; 23424 23425 t = st_ops_desc->type; 23426 member_idx = prog->expected_attach_type; 23427 if (member_idx >= btf_type_vlen(t)) { 23428 verbose(env, "attach to invalid member idx %u of struct %s\n", 23429 member_idx, st_ops->name); 23430 return -EINVAL; 23431 } 23432 23433 member = &btf_type_member(t)[member_idx]; 23434 mname = btf_name_by_offset(btf, member->name_off); 23435 func_proto = btf_type_resolve_func_ptr(btf, member->type, 23436 NULL); 23437 if (!func_proto) { 23438 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 23439 mname, member_idx, st_ops->name); 23440 return -EINVAL; 23441 } 23442 23443 member_off = __btf_member_bit_offset(t, member) / 8; 23444 err = bpf_struct_ops_supported(st_ops, member_off); 23445 if (err) { 23446 verbose(env, "attach to unsupported member %s of struct %s\n", 23447 mname, st_ops->name); 23448 return err; 23449 } 23450 23451 if (st_ops->check_member) { 23452 err = st_ops->check_member(t, member, prog); 23453 23454 if (err) { 23455 verbose(env, "attach to unsupported member %s of struct %s\n", 23456 mname, st_ops->name); 23457 return err; 23458 } 23459 } 23460 23461 if (prog->aux->priv_stack_requested && !bpf_jit_supports_private_stack()) { 23462 verbose(env, "Private stack not supported by jit\n"); 23463 return -EACCES; 23464 } 23465 23466 for (i = 0; i < st_ops_desc->arg_info[member_idx].cnt; i++) { 23467 if (st_ops_desc->arg_info[member_idx].info->refcounted) { 23468 has_refcounted_arg = true; 23469 break; 23470 } 23471 } 23472 23473 /* Tail call is not allowed for programs with refcounted arguments since we 23474 * cannot guarantee that valid refcounted kptrs will be passed to the callee. 23475 */ 23476 for (i = 0; i < env->subprog_cnt; i++) { 23477 if (has_refcounted_arg && env->subprog_info[i].has_tail_call) { 23478 verbose(env, "program with __ref argument cannot tail call\n"); 23479 return -EINVAL; 23480 } 23481 } 23482 23483 prog->aux->st_ops = st_ops; 23484 prog->aux->attach_st_ops_member_off = member_off; 23485 23486 prog->aux->attach_func_proto = func_proto; 23487 prog->aux->attach_func_name = mname; 23488 env->ops = st_ops->verifier_ops; 23489 23490 return bpf_prog_ctx_arg_info_init(prog, st_ops_desc->arg_info[member_idx].info, 23491 st_ops_desc->arg_info[member_idx].cnt); 23492 } 23493 #define SECURITY_PREFIX "security_" 23494 23495 static int check_attach_modify_return(unsigned long addr, const char *func_name) 23496 { 23497 if (within_error_injection_list(addr) || 23498 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 23499 return 0; 23500 23501 return -EINVAL; 23502 } 23503 23504 /* list of non-sleepable functions that are otherwise on 23505 * ALLOW_ERROR_INJECTION list 23506 */ 23507 BTF_SET_START(btf_non_sleepable_error_inject) 23508 /* Three functions below can be called from sleepable and non-sleepable context. 23509 * Assume non-sleepable from bpf safety point of view. 23510 */ 23511 BTF_ID(func, __filemap_add_folio) 23512 #ifdef CONFIG_FAIL_PAGE_ALLOC 23513 BTF_ID(func, should_fail_alloc_page) 23514 #endif 23515 #ifdef CONFIG_FAILSLAB 23516 BTF_ID(func, should_failslab) 23517 #endif 23518 BTF_SET_END(btf_non_sleepable_error_inject) 23519 23520 static int check_non_sleepable_error_inject(u32 btf_id) 23521 { 23522 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 23523 } 23524 23525 int bpf_check_attach_target(struct bpf_verifier_log *log, 23526 const struct bpf_prog *prog, 23527 const struct bpf_prog *tgt_prog, 23528 u32 btf_id, 23529 struct bpf_attach_target_info *tgt_info) 23530 { 23531 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 23532 bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING; 23533 char trace_symbol[KSYM_SYMBOL_LEN]; 23534 const char prefix[] = "btf_trace_"; 23535 struct bpf_raw_event_map *btp; 23536 int ret = 0, subprog = -1, i; 23537 const struct btf_type *t; 23538 bool conservative = true; 23539 const char *tname, *fname; 23540 struct btf *btf; 23541 long addr = 0; 23542 struct module *mod = NULL; 23543 23544 if (!btf_id) { 23545 bpf_log(log, "Tracing programs must provide btf_id\n"); 23546 return -EINVAL; 23547 } 23548 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 23549 if (!btf) { 23550 bpf_log(log, 23551 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 23552 return -EINVAL; 23553 } 23554 t = btf_type_by_id(btf, btf_id); 23555 if (!t) { 23556 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 23557 return -EINVAL; 23558 } 23559 tname = btf_name_by_offset(btf, t->name_off); 23560 if (!tname) { 23561 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 23562 return -EINVAL; 23563 } 23564 if (tgt_prog) { 23565 struct bpf_prog_aux *aux = tgt_prog->aux; 23566 bool tgt_changes_pkt_data; 23567 bool tgt_might_sleep; 23568 23569 if (bpf_prog_is_dev_bound(prog->aux) && 23570 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 23571 bpf_log(log, "Target program bound device mismatch"); 23572 return -EINVAL; 23573 } 23574 23575 for (i = 0; i < aux->func_info_cnt; i++) 23576 if (aux->func_info[i].type_id == btf_id) { 23577 subprog = i; 23578 break; 23579 } 23580 if (subprog == -1) { 23581 bpf_log(log, "Subprog %s doesn't exist\n", tname); 23582 return -EINVAL; 23583 } 23584 if (aux->func && aux->func[subprog]->aux->exception_cb) { 23585 bpf_log(log, 23586 "%s programs cannot attach to exception callback\n", 23587 prog_extension ? "Extension" : "FENTRY/FEXIT"); 23588 return -EINVAL; 23589 } 23590 conservative = aux->func_info_aux[subprog].unreliable; 23591 if (prog_extension) { 23592 if (conservative) { 23593 bpf_log(log, 23594 "Cannot replace static functions\n"); 23595 return -EINVAL; 23596 } 23597 if (!prog->jit_requested) { 23598 bpf_log(log, 23599 "Extension programs should be JITed\n"); 23600 return -EINVAL; 23601 } 23602 tgt_changes_pkt_data = aux->func 23603 ? aux->func[subprog]->aux->changes_pkt_data 23604 : aux->changes_pkt_data; 23605 if (prog->aux->changes_pkt_data && !tgt_changes_pkt_data) { 23606 bpf_log(log, 23607 "Extension program changes packet data, while original does not\n"); 23608 return -EINVAL; 23609 } 23610 23611 tgt_might_sleep = aux->func 23612 ? aux->func[subprog]->aux->might_sleep 23613 : aux->might_sleep; 23614 if (prog->aux->might_sleep && !tgt_might_sleep) { 23615 bpf_log(log, 23616 "Extension program may sleep, while original does not\n"); 23617 return -EINVAL; 23618 } 23619 } 23620 if (!tgt_prog->jited) { 23621 bpf_log(log, "Can attach to only JITed progs\n"); 23622 return -EINVAL; 23623 } 23624 if (prog_tracing) { 23625 if (aux->attach_tracing_prog) { 23626 /* 23627 * Target program is an fentry/fexit which is already attached 23628 * to another tracing program. More levels of nesting 23629 * attachment are not allowed. 23630 */ 23631 bpf_log(log, "Cannot nest tracing program attach more than once\n"); 23632 return -EINVAL; 23633 } 23634 } else if (tgt_prog->type == prog->type) { 23635 /* 23636 * To avoid potential call chain cycles, prevent attaching of a 23637 * program extension to another extension. It's ok to attach 23638 * fentry/fexit to extension program. 23639 */ 23640 bpf_log(log, "Cannot recursively attach\n"); 23641 return -EINVAL; 23642 } 23643 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 23644 prog_extension && 23645 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 23646 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 23647 /* Program extensions can extend all program types 23648 * except fentry/fexit. The reason is the following. 23649 * The fentry/fexit programs are used for performance 23650 * analysis, stats and can be attached to any program 23651 * type. When extension program is replacing XDP function 23652 * it is necessary to allow performance analysis of all 23653 * functions. Both original XDP program and its program 23654 * extension. Hence attaching fentry/fexit to 23655 * BPF_PROG_TYPE_EXT is allowed. If extending of 23656 * fentry/fexit was allowed it would be possible to create 23657 * long call chain fentry->extension->fentry->extension 23658 * beyond reasonable stack size. Hence extending fentry 23659 * is not allowed. 23660 */ 23661 bpf_log(log, "Cannot extend fentry/fexit\n"); 23662 return -EINVAL; 23663 } 23664 } else { 23665 if (prog_extension) { 23666 bpf_log(log, "Cannot replace kernel functions\n"); 23667 return -EINVAL; 23668 } 23669 } 23670 23671 switch (prog->expected_attach_type) { 23672 case BPF_TRACE_RAW_TP: 23673 if (tgt_prog) { 23674 bpf_log(log, 23675 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 23676 return -EINVAL; 23677 } 23678 if (!btf_type_is_typedef(t)) { 23679 bpf_log(log, "attach_btf_id %u is not a typedef\n", 23680 btf_id); 23681 return -EINVAL; 23682 } 23683 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 23684 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 23685 btf_id, tname); 23686 return -EINVAL; 23687 } 23688 tname += sizeof(prefix) - 1; 23689 23690 /* The func_proto of "btf_trace_##tname" is generated from typedef without argument 23691 * names. Thus using bpf_raw_event_map to get argument names. 23692 */ 23693 btp = bpf_get_raw_tracepoint(tname); 23694 if (!btp) 23695 return -EINVAL; 23696 fname = kallsyms_lookup((unsigned long)btp->bpf_func, NULL, NULL, NULL, 23697 trace_symbol); 23698 bpf_put_raw_tracepoint(btp); 23699 23700 if (fname) 23701 ret = btf_find_by_name_kind(btf, fname, BTF_KIND_FUNC); 23702 23703 if (!fname || ret < 0) { 23704 bpf_log(log, "Cannot find btf of tracepoint template, fall back to %s%s.\n", 23705 prefix, tname); 23706 t = btf_type_by_id(btf, t->type); 23707 if (!btf_type_is_ptr(t)) 23708 /* should never happen in valid vmlinux build */ 23709 return -EINVAL; 23710 } else { 23711 t = btf_type_by_id(btf, ret); 23712 if (!btf_type_is_func(t)) 23713 /* should never happen in valid vmlinux build */ 23714 return -EINVAL; 23715 } 23716 23717 t = btf_type_by_id(btf, t->type); 23718 if (!btf_type_is_func_proto(t)) 23719 /* should never happen in valid vmlinux build */ 23720 return -EINVAL; 23721 23722 break; 23723 case BPF_TRACE_ITER: 23724 if (!btf_type_is_func(t)) { 23725 bpf_log(log, "attach_btf_id %u is not a function\n", 23726 btf_id); 23727 return -EINVAL; 23728 } 23729 t = btf_type_by_id(btf, t->type); 23730 if (!btf_type_is_func_proto(t)) 23731 return -EINVAL; 23732 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 23733 if (ret) 23734 return ret; 23735 break; 23736 default: 23737 if (!prog_extension) 23738 return -EINVAL; 23739 fallthrough; 23740 case BPF_MODIFY_RETURN: 23741 case BPF_LSM_MAC: 23742 case BPF_LSM_CGROUP: 23743 case BPF_TRACE_FENTRY: 23744 case BPF_TRACE_FEXIT: 23745 if (!btf_type_is_func(t)) { 23746 bpf_log(log, "attach_btf_id %u is not a function\n", 23747 btf_id); 23748 return -EINVAL; 23749 } 23750 if (prog_extension && 23751 btf_check_type_match(log, prog, btf, t)) 23752 return -EINVAL; 23753 t = btf_type_by_id(btf, t->type); 23754 if (!btf_type_is_func_proto(t)) 23755 return -EINVAL; 23756 23757 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 23758 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 23759 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 23760 return -EINVAL; 23761 23762 if (tgt_prog && conservative) 23763 t = NULL; 23764 23765 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 23766 if (ret < 0) 23767 return ret; 23768 23769 if (tgt_prog) { 23770 if (subprog == 0) 23771 addr = (long) tgt_prog->bpf_func; 23772 else 23773 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 23774 } else { 23775 if (btf_is_module(btf)) { 23776 mod = btf_try_get_module(btf); 23777 if (mod) 23778 addr = find_kallsyms_symbol_value(mod, tname); 23779 else 23780 addr = 0; 23781 } else { 23782 addr = kallsyms_lookup_name(tname); 23783 } 23784 if (!addr) { 23785 module_put(mod); 23786 bpf_log(log, 23787 "The address of function %s cannot be found\n", 23788 tname); 23789 return -ENOENT; 23790 } 23791 } 23792 23793 if (prog->sleepable) { 23794 ret = -EINVAL; 23795 switch (prog->type) { 23796 case BPF_PROG_TYPE_TRACING: 23797 23798 /* fentry/fexit/fmod_ret progs can be sleepable if they are 23799 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 23800 */ 23801 if (!check_non_sleepable_error_inject(btf_id) && 23802 within_error_injection_list(addr)) 23803 ret = 0; 23804 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 23805 * in the fmodret id set with the KF_SLEEPABLE flag. 23806 */ 23807 else { 23808 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 23809 prog); 23810 23811 if (flags && (*flags & KF_SLEEPABLE)) 23812 ret = 0; 23813 } 23814 break; 23815 case BPF_PROG_TYPE_LSM: 23816 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 23817 * Only some of them are sleepable. 23818 */ 23819 if (bpf_lsm_is_sleepable_hook(btf_id)) 23820 ret = 0; 23821 break; 23822 default: 23823 break; 23824 } 23825 if (ret) { 23826 module_put(mod); 23827 bpf_log(log, "%s is not sleepable\n", tname); 23828 return ret; 23829 } 23830 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 23831 if (tgt_prog) { 23832 module_put(mod); 23833 bpf_log(log, "can't modify return codes of BPF programs\n"); 23834 return -EINVAL; 23835 } 23836 ret = -EINVAL; 23837 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 23838 !check_attach_modify_return(addr, tname)) 23839 ret = 0; 23840 if (ret) { 23841 module_put(mod); 23842 bpf_log(log, "%s() is not modifiable\n", tname); 23843 return ret; 23844 } 23845 } 23846 23847 break; 23848 } 23849 tgt_info->tgt_addr = addr; 23850 tgt_info->tgt_name = tname; 23851 tgt_info->tgt_type = t; 23852 tgt_info->tgt_mod = mod; 23853 return 0; 23854 } 23855 23856 BTF_SET_START(btf_id_deny) 23857 BTF_ID_UNUSED 23858 #ifdef CONFIG_SMP 23859 BTF_ID(func, ___migrate_enable) 23860 BTF_ID(func, migrate_disable) 23861 BTF_ID(func, migrate_enable) 23862 #endif 23863 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 23864 BTF_ID(func, rcu_read_unlock_strict) 23865 #endif 23866 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 23867 BTF_ID(func, preempt_count_add) 23868 BTF_ID(func, preempt_count_sub) 23869 #endif 23870 #ifdef CONFIG_PREEMPT_RCU 23871 BTF_ID(func, __rcu_read_lock) 23872 BTF_ID(func, __rcu_read_unlock) 23873 #endif 23874 BTF_SET_END(btf_id_deny) 23875 23876 /* fexit and fmod_ret can't be used to attach to __noreturn functions. 23877 * Currently, we must manually list all __noreturn functions here. Once a more 23878 * robust solution is implemented, this workaround can be removed. 23879 */ 23880 BTF_SET_START(noreturn_deny) 23881 #ifdef CONFIG_IA32_EMULATION 23882 BTF_ID(func, __ia32_sys_exit) 23883 BTF_ID(func, __ia32_sys_exit_group) 23884 #endif 23885 #ifdef CONFIG_KUNIT 23886 BTF_ID(func, __kunit_abort) 23887 BTF_ID(func, kunit_try_catch_throw) 23888 #endif 23889 #ifdef CONFIG_MODULES 23890 BTF_ID(func, __module_put_and_kthread_exit) 23891 #endif 23892 #ifdef CONFIG_X86_64 23893 BTF_ID(func, __x64_sys_exit) 23894 BTF_ID(func, __x64_sys_exit_group) 23895 #endif 23896 BTF_ID(func, do_exit) 23897 BTF_ID(func, do_group_exit) 23898 BTF_ID(func, kthread_complete_and_exit) 23899 BTF_ID(func, kthread_exit) 23900 BTF_ID(func, make_task_dead) 23901 BTF_SET_END(noreturn_deny) 23902 23903 static bool can_be_sleepable(struct bpf_prog *prog) 23904 { 23905 if (prog->type == BPF_PROG_TYPE_TRACING) { 23906 switch (prog->expected_attach_type) { 23907 case BPF_TRACE_FENTRY: 23908 case BPF_TRACE_FEXIT: 23909 case BPF_MODIFY_RETURN: 23910 case BPF_TRACE_ITER: 23911 return true; 23912 default: 23913 return false; 23914 } 23915 } 23916 return prog->type == BPF_PROG_TYPE_LSM || 23917 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 23918 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 23919 } 23920 23921 static int check_attach_btf_id(struct bpf_verifier_env *env) 23922 { 23923 struct bpf_prog *prog = env->prog; 23924 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 23925 struct bpf_attach_target_info tgt_info = {}; 23926 u32 btf_id = prog->aux->attach_btf_id; 23927 struct bpf_trampoline *tr; 23928 int ret; 23929 u64 key; 23930 23931 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 23932 if (prog->sleepable) 23933 /* attach_btf_id checked to be zero already */ 23934 return 0; 23935 verbose(env, "Syscall programs can only be sleepable\n"); 23936 return -EINVAL; 23937 } 23938 23939 if (prog->sleepable && !can_be_sleepable(prog)) { 23940 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 23941 return -EINVAL; 23942 } 23943 23944 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 23945 return check_struct_ops_btf_id(env); 23946 23947 if (prog->type != BPF_PROG_TYPE_TRACING && 23948 prog->type != BPF_PROG_TYPE_LSM && 23949 prog->type != BPF_PROG_TYPE_EXT) 23950 return 0; 23951 23952 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 23953 if (ret) 23954 return ret; 23955 23956 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 23957 /* to make freplace equivalent to their targets, they need to 23958 * inherit env->ops and expected_attach_type for the rest of the 23959 * verification 23960 */ 23961 env->ops = bpf_verifier_ops[tgt_prog->type]; 23962 prog->expected_attach_type = tgt_prog->expected_attach_type; 23963 } 23964 23965 /* store info about the attachment target that will be used later */ 23966 prog->aux->attach_func_proto = tgt_info.tgt_type; 23967 prog->aux->attach_func_name = tgt_info.tgt_name; 23968 prog->aux->mod = tgt_info.tgt_mod; 23969 23970 if (tgt_prog) { 23971 prog->aux->saved_dst_prog_type = tgt_prog->type; 23972 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 23973 } 23974 23975 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 23976 prog->aux->attach_btf_trace = true; 23977 return 0; 23978 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 23979 return bpf_iter_prog_supported(prog); 23980 } 23981 23982 if (prog->type == BPF_PROG_TYPE_LSM) { 23983 ret = bpf_lsm_verify_prog(&env->log, prog); 23984 if (ret < 0) 23985 return ret; 23986 } else if (prog->type == BPF_PROG_TYPE_TRACING && 23987 btf_id_set_contains(&btf_id_deny, btf_id)) { 23988 verbose(env, "Attaching tracing programs to function '%s' is rejected.\n", 23989 tgt_info.tgt_name); 23990 return -EINVAL; 23991 } else if ((prog->expected_attach_type == BPF_TRACE_FEXIT || 23992 prog->expected_attach_type == BPF_MODIFY_RETURN) && 23993 btf_id_set_contains(&noreturn_deny, btf_id)) { 23994 verbose(env, "Attaching fexit/fmod_ret to __noreturn function '%s' is rejected.\n", 23995 tgt_info.tgt_name); 23996 return -EINVAL; 23997 } 23998 23999 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 24000 tr = bpf_trampoline_get(key, &tgt_info); 24001 if (!tr) 24002 return -ENOMEM; 24003 24004 if (tgt_prog && tgt_prog->aux->tail_call_reachable) 24005 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; 24006 24007 prog->aux->dst_trampoline = tr; 24008 return 0; 24009 } 24010 24011 struct btf *bpf_get_btf_vmlinux(void) 24012 { 24013 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 24014 mutex_lock(&bpf_verifier_lock); 24015 if (!btf_vmlinux) 24016 btf_vmlinux = btf_parse_vmlinux(); 24017 mutex_unlock(&bpf_verifier_lock); 24018 } 24019 return btf_vmlinux; 24020 } 24021 24022 /* 24023 * The add_fd_from_fd_array() is executed only if fd_array_cnt is non-zero. In 24024 * this case expect that every file descriptor in the array is either a map or 24025 * a BTF. Everything else is considered to be trash. 24026 */ 24027 static int add_fd_from_fd_array(struct bpf_verifier_env *env, int fd) 24028 { 24029 struct bpf_map *map; 24030 struct btf *btf; 24031 CLASS(fd, f)(fd); 24032 int err; 24033 24034 map = __bpf_map_get(f); 24035 if (!IS_ERR(map)) { 24036 err = __add_used_map(env, map); 24037 if (err < 0) 24038 return err; 24039 return 0; 24040 } 24041 24042 btf = __btf_get_by_fd(f); 24043 if (!IS_ERR(btf)) { 24044 err = __add_used_btf(env, btf); 24045 if (err < 0) 24046 return err; 24047 return 0; 24048 } 24049 24050 verbose(env, "fd %d is not pointing to valid bpf_map or btf\n", fd); 24051 return PTR_ERR(map); 24052 } 24053 24054 static int process_fd_array(struct bpf_verifier_env *env, union bpf_attr *attr, bpfptr_t uattr) 24055 { 24056 size_t size = sizeof(int); 24057 int ret; 24058 int fd; 24059 u32 i; 24060 24061 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 24062 24063 /* 24064 * The only difference between old (no fd_array_cnt is given) and new 24065 * APIs is that in the latter case the fd_array is expected to be 24066 * continuous and is scanned for map fds right away 24067 */ 24068 if (!attr->fd_array_cnt) 24069 return 0; 24070 24071 /* Check for integer overflow */ 24072 if (attr->fd_array_cnt >= (U32_MAX / size)) { 24073 verbose(env, "fd_array_cnt is too big (%u)\n", attr->fd_array_cnt); 24074 return -EINVAL; 24075 } 24076 24077 for (i = 0; i < attr->fd_array_cnt; i++) { 24078 if (copy_from_bpfptr_offset(&fd, env->fd_array, i * size, size)) 24079 return -EFAULT; 24080 24081 ret = add_fd_from_fd_array(env, fd); 24082 if (ret) 24083 return ret; 24084 } 24085 24086 return 0; 24087 } 24088 24089 /* Each field is a register bitmask */ 24090 struct insn_live_regs { 24091 u16 use; /* registers read by instruction */ 24092 u16 def; /* registers written by instruction */ 24093 u16 in; /* registers that may be alive before instruction */ 24094 u16 out; /* registers that may be alive after instruction */ 24095 }; 24096 24097 /* Bitmask with 1s for all caller saved registers */ 24098 #define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1) 24099 24100 /* Compute info->{use,def} fields for the instruction */ 24101 static void compute_insn_live_regs(struct bpf_verifier_env *env, 24102 struct bpf_insn *insn, 24103 struct insn_live_regs *info) 24104 { 24105 struct call_summary cs; 24106 u8 class = BPF_CLASS(insn->code); 24107 u8 code = BPF_OP(insn->code); 24108 u8 mode = BPF_MODE(insn->code); 24109 u16 src = BIT(insn->src_reg); 24110 u16 dst = BIT(insn->dst_reg); 24111 u16 r0 = BIT(0); 24112 u16 def = 0; 24113 u16 use = 0xffff; 24114 24115 switch (class) { 24116 case BPF_LD: 24117 switch (mode) { 24118 case BPF_IMM: 24119 if (BPF_SIZE(insn->code) == BPF_DW) { 24120 def = dst; 24121 use = 0; 24122 } 24123 break; 24124 case BPF_LD | BPF_ABS: 24125 case BPF_LD | BPF_IND: 24126 /* stick with defaults */ 24127 break; 24128 } 24129 break; 24130 case BPF_LDX: 24131 switch (mode) { 24132 case BPF_MEM: 24133 case BPF_MEMSX: 24134 def = dst; 24135 use = src; 24136 break; 24137 } 24138 break; 24139 case BPF_ST: 24140 switch (mode) { 24141 case BPF_MEM: 24142 def = 0; 24143 use = dst; 24144 break; 24145 } 24146 break; 24147 case BPF_STX: 24148 switch (mode) { 24149 case BPF_MEM: 24150 def = 0; 24151 use = dst | src; 24152 break; 24153 case BPF_ATOMIC: 24154 switch (insn->imm) { 24155 case BPF_CMPXCHG: 24156 use = r0 | dst | src; 24157 def = r0; 24158 break; 24159 case BPF_LOAD_ACQ: 24160 def = dst; 24161 use = src; 24162 break; 24163 case BPF_STORE_REL: 24164 def = 0; 24165 use = dst | src; 24166 break; 24167 default: 24168 use = dst | src; 24169 if (insn->imm & BPF_FETCH) 24170 def = src; 24171 else 24172 def = 0; 24173 } 24174 break; 24175 } 24176 break; 24177 case BPF_ALU: 24178 case BPF_ALU64: 24179 switch (code) { 24180 case BPF_END: 24181 use = dst; 24182 def = dst; 24183 break; 24184 case BPF_MOV: 24185 def = dst; 24186 if (BPF_SRC(insn->code) == BPF_K) 24187 use = 0; 24188 else 24189 use = src; 24190 break; 24191 default: 24192 def = dst; 24193 if (BPF_SRC(insn->code) == BPF_K) 24194 use = dst; 24195 else 24196 use = dst | src; 24197 } 24198 break; 24199 case BPF_JMP: 24200 case BPF_JMP32: 24201 switch (code) { 24202 case BPF_JA: 24203 case BPF_JCOND: 24204 def = 0; 24205 use = 0; 24206 break; 24207 case BPF_EXIT: 24208 def = 0; 24209 use = r0; 24210 break; 24211 case BPF_CALL: 24212 def = ALL_CALLER_SAVED_REGS; 24213 use = def & ~BIT(BPF_REG_0); 24214 if (get_call_summary(env, insn, &cs)) 24215 use = GENMASK(cs.num_params, 1); 24216 break; 24217 default: 24218 def = 0; 24219 if (BPF_SRC(insn->code) == BPF_K) 24220 use = dst; 24221 else 24222 use = dst | src; 24223 } 24224 break; 24225 } 24226 24227 info->def = def; 24228 info->use = use; 24229 } 24230 24231 /* Compute may-live registers after each instruction in the program. 24232 * The register is live after the instruction I if it is read by some 24233 * instruction S following I during program execution and is not 24234 * overwritten between I and S. 24235 * 24236 * Store result in env->insn_aux_data[i].live_regs. 24237 */ 24238 static int compute_live_registers(struct bpf_verifier_env *env) 24239 { 24240 struct bpf_insn_aux_data *insn_aux = env->insn_aux_data; 24241 struct bpf_insn *insns = env->prog->insnsi; 24242 struct insn_live_regs *state; 24243 int insn_cnt = env->prog->len; 24244 int err = 0, i, j; 24245 bool changed; 24246 24247 /* Use the following algorithm: 24248 * - define the following: 24249 * - I.use : a set of all registers read by instruction I; 24250 * - I.def : a set of all registers written by instruction I; 24251 * - I.in : a set of all registers that may be alive before I execution; 24252 * - I.out : a set of all registers that may be alive after I execution; 24253 * - insn_successors(I): a set of instructions S that might immediately 24254 * follow I for some program execution; 24255 * - associate separate empty sets 'I.in' and 'I.out' with each instruction; 24256 * - visit each instruction in a postorder and update 24257 * state[i].in, state[i].out as follows: 24258 * 24259 * state[i].out = U [state[s].in for S in insn_successors(i)] 24260 * state[i].in = (state[i].out / state[i].def) U state[i].use 24261 * 24262 * (where U stands for set union, / stands for set difference) 24263 * - repeat the computation while {in,out} fields changes for 24264 * any instruction. 24265 */ 24266 state = kvcalloc(insn_cnt, sizeof(*state), GFP_KERNEL_ACCOUNT); 24267 if (!state) { 24268 err = -ENOMEM; 24269 goto out; 24270 } 24271 24272 for (i = 0; i < insn_cnt; ++i) 24273 compute_insn_live_regs(env, &insns[i], &state[i]); 24274 24275 changed = true; 24276 while (changed) { 24277 changed = false; 24278 for (i = 0; i < env->cfg.cur_postorder; ++i) { 24279 int insn_idx = env->cfg.insn_postorder[i]; 24280 struct insn_live_regs *live = &state[insn_idx]; 24281 int succ_num; 24282 u32 succ[2]; 24283 u16 new_out = 0; 24284 u16 new_in = 0; 24285 24286 succ_num = bpf_insn_successors(env->prog, insn_idx, succ); 24287 for (int s = 0; s < succ_num; ++s) 24288 new_out |= state[succ[s]].in; 24289 new_in = (new_out & ~live->def) | live->use; 24290 if (new_out != live->out || new_in != live->in) { 24291 live->in = new_in; 24292 live->out = new_out; 24293 changed = true; 24294 } 24295 } 24296 } 24297 24298 for (i = 0; i < insn_cnt; ++i) 24299 insn_aux[i].live_regs_before = state[i].in; 24300 24301 if (env->log.level & BPF_LOG_LEVEL2) { 24302 verbose(env, "Live regs before insn:\n"); 24303 for (i = 0; i < insn_cnt; ++i) { 24304 if (env->insn_aux_data[i].scc) 24305 verbose(env, "%3d ", env->insn_aux_data[i].scc); 24306 else 24307 verbose(env, " "); 24308 verbose(env, "%3d: ", i); 24309 for (j = BPF_REG_0; j < BPF_REG_10; ++j) 24310 if (insn_aux[i].live_regs_before & BIT(j)) 24311 verbose(env, "%d", j); 24312 else 24313 verbose(env, "."); 24314 verbose(env, " "); 24315 verbose_insn(env, &insns[i]); 24316 if (bpf_is_ldimm64(&insns[i])) 24317 i++; 24318 } 24319 } 24320 24321 out: 24322 kvfree(state); 24323 return err; 24324 } 24325 24326 /* 24327 * Compute strongly connected components (SCCs) on the CFG. 24328 * Assign an SCC number to each instruction, recorded in env->insn_aux[*].scc. 24329 * If instruction is a sole member of its SCC and there are no self edges, 24330 * assign it SCC number of zero. 24331 * Uses a non-recursive adaptation of Tarjan's algorithm for SCC computation. 24332 */ 24333 static int compute_scc(struct bpf_verifier_env *env) 24334 { 24335 const u32 NOT_ON_STACK = U32_MAX; 24336 24337 struct bpf_insn_aux_data *aux = env->insn_aux_data; 24338 const u32 insn_cnt = env->prog->len; 24339 int stack_sz, dfs_sz, err = 0; 24340 u32 *stack, *pre, *low, *dfs; 24341 u32 succ_cnt, i, j, t, w; 24342 u32 next_preorder_num; 24343 u32 next_scc_id; 24344 bool assign_scc; 24345 u32 succ[2]; 24346 24347 next_preorder_num = 1; 24348 next_scc_id = 1; 24349 /* 24350 * - 'stack' accumulates vertices in DFS order, see invariant comment below; 24351 * - 'pre[t] == p' => preorder number of vertex 't' is 'p'; 24352 * - 'low[t] == n' => smallest preorder number of the vertex reachable from 't' is 'n'; 24353 * - 'dfs' DFS traversal stack, used to emulate explicit recursion. 24354 */ 24355 stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); 24356 pre = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); 24357 low = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); 24358 dfs = kvcalloc(insn_cnt, sizeof(*dfs), GFP_KERNEL_ACCOUNT); 24359 if (!stack || !pre || !low || !dfs) { 24360 err = -ENOMEM; 24361 goto exit; 24362 } 24363 /* 24364 * References: 24365 * [1] R. Tarjan "Depth-First Search and Linear Graph Algorithms" 24366 * [2] D. J. Pearce "A Space-Efficient Algorithm for Finding Strongly Connected Components" 24367 * 24368 * The algorithm maintains the following invariant: 24369 * - suppose there is a path 'u' ~> 'v', such that 'pre[v] < pre[u]'; 24370 * - then, vertex 'u' remains on stack while vertex 'v' is on stack. 24371 * 24372 * Consequently: 24373 * - If 'low[v] < pre[v]', there is a path from 'v' to some vertex 'u', 24374 * such that 'pre[u] == low[v]'; vertex 'u' is currently on the stack, 24375 * and thus there is an SCC (loop) containing both 'u' and 'v'. 24376 * - If 'low[v] == pre[v]', loops containing 'v' have been explored, 24377 * and 'v' can be considered the root of some SCC. 24378 * 24379 * Here is a pseudo-code for an explicitly recursive version of the algorithm: 24380 * 24381 * NOT_ON_STACK = insn_cnt + 1 24382 * pre = [0] * insn_cnt 24383 * low = [0] * insn_cnt 24384 * scc = [0] * insn_cnt 24385 * stack = [] 24386 * 24387 * next_preorder_num = 1 24388 * next_scc_id = 1 24389 * 24390 * def recur(w): 24391 * nonlocal next_preorder_num 24392 * nonlocal next_scc_id 24393 * 24394 * pre[w] = next_preorder_num 24395 * low[w] = next_preorder_num 24396 * next_preorder_num += 1 24397 * stack.append(w) 24398 * for s in successors(w): 24399 * # Note: for classic algorithm the block below should look as: 24400 * # 24401 * # if pre[s] == 0: 24402 * # recur(s) 24403 * # low[w] = min(low[w], low[s]) 24404 * # elif low[s] != NOT_ON_STACK: 24405 * # low[w] = min(low[w], pre[s]) 24406 * # 24407 * # But replacing both 'min' instructions with 'low[w] = min(low[w], low[s])' 24408 * # does not break the invariant and makes itartive version of the algorithm 24409 * # simpler. See 'Algorithm #3' from [2]. 24410 * 24411 * # 's' not yet visited 24412 * if pre[s] == 0: 24413 * recur(s) 24414 * # if 's' is on stack, pick lowest reachable preorder number from it; 24415 * # if 's' is not on stack 'low[s] == NOT_ON_STACK > low[w]', 24416 * # so 'min' would be a noop. 24417 * low[w] = min(low[w], low[s]) 24418 * 24419 * if low[w] == pre[w]: 24420 * # 'w' is the root of an SCC, pop all vertices 24421 * # below 'w' on stack and assign same SCC to them. 24422 * while True: 24423 * t = stack.pop() 24424 * low[t] = NOT_ON_STACK 24425 * scc[t] = next_scc_id 24426 * if t == w: 24427 * break 24428 * next_scc_id += 1 24429 * 24430 * for i in range(0, insn_cnt): 24431 * if pre[i] == 0: 24432 * recur(i) 24433 * 24434 * Below implementation replaces explicit recursion with array 'dfs'. 24435 */ 24436 for (i = 0; i < insn_cnt; i++) { 24437 if (pre[i]) 24438 continue; 24439 stack_sz = 0; 24440 dfs_sz = 1; 24441 dfs[0] = i; 24442 dfs_continue: 24443 while (dfs_sz) { 24444 w = dfs[dfs_sz - 1]; 24445 if (pre[w] == 0) { 24446 low[w] = next_preorder_num; 24447 pre[w] = next_preorder_num; 24448 next_preorder_num++; 24449 stack[stack_sz++] = w; 24450 } 24451 /* Visit 'w' successors */ 24452 succ_cnt = bpf_insn_successors(env->prog, w, succ); 24453 for (j = 0; j < succ_cnt; ++j) { 24454 if (pre[succ[j]]) { 24455 low[w] = min(low[w], low[succ[j]]); 24456 } else { 24457 dfs[dfs_sz++] = succ[j]; 24458 goto dfs_continue; 24459 } 24460 } 24461 /* 24462 * Preserve the invariant: if some vertex above in the stack 24463 * is reachable from 'w', keep 'w' on the stack. 24464 */ 24465 if (low[w] < pre[w]) { 24466 dfs_sz--; 24467 goto dfs_continue; 24468 } 24469 /* 24470 * Assign SCC number only if component has two or more elements, 24471 * or if component has a self reference. 24472 */ 24473 assign_scc = stack[stack_sz - 1] != w; 24474 for (j = 0; j < succ_cnt; ++j) { 24475 if (succ[j] == w) { 24476 assign_scc = true; 24477 break; 24478 } 24479 } 24480 /* Pop component elements from stack */ 24481 do { 24482 t = stack[--stack_sz]; 24483 low[t] = NOT_ON_STACK; 24484 if (assign_scc) 24485 aux[t].scc = next_scc_id; 24486 } while (t != w); 24487 if (assign_scc) 24488 next_scc_id++; 24489 dfs_sz--; 24490 } 24491 } 24492 env->scc_info = kvcalloc(next_scc_id, sizeof(*env->scc_info), GFP_KERNEL_ACCOUNT); 24493 if (!env->scc_info) { 24494 err = -ENOMEM; 24495 goto exit; 24496 } 24497 env->scc_cnt = next_scc_id; 24498 exit: 24499 kvfree(stack); 24500 kvfree(pre); 24501 kvfree(low); 24502 kvfree(dfs); 24503 return err; 24504 } 24505 24506 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 24507 { 24508 u64 start_time = ktime_get_ns(); 24509 struct bpf_verifier_env *env; 24510 int i, len, ret = -EINVAL, err; 24511 u32 log_true_size; 24512 bool is_priv; 24513 24514 BTF_TYPE_EMIT(enum bpf_features); 24515 24516 /* no program is valid */ 24517 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 24518 return -EINVAL; 24519 24520 /* 'struct bpf_verifier_env' can be global, but since it's not small, 24521 * allocate/free it every time bpf_check() is called 24522 */ 24523 env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL_ACCOUNT); 24524 if (!env) 24525 return -ENOMEM; 24526 24527 env->bt.env = env; 24528 24529 len = (*prog)->len; 24530 env->insn_aux_data = 24531 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 24532 ret = -ENOMEM; 24533 if (!env->insn_aux_data) 24534 goto err_free_env; 24535 for (i = 0; i < len; i++) 24536 env->insn_aux_data[i].orig_idx = i; 24537 env->prog = *prog; 24538 env->ops = bpf_verifier_ops[env->prog->type]; 24539 24540 env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token); 24541 env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token); 24542 env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token); 24543 env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token); 24544 env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF); 24545 24546 bpf_get_btf_vmlinux(); 24547 24548 /* grab the mutex to protect few globals used by verifier */ 24549 if (!is_priv) 24550 mutex_lock(&bpf_verifier_lock); 24551 24552 /* user could have requested verbose verifier output 24553 * and supplied buffer to store the verification trace 24554 */ 24555 ret = bpf_vlog_init(&env->log, attr->log_level, 24556 (char __user *) (unsigned long) attr->log_buf, 24557 attr->log_size); 24558 if (ret) 24559 goto err_unlock; 24560 24561 ret = process_fd_array(env, attr, uattr); 24562 if (ret) 24563 goto skip_full_check; 24564 24565 mark_verifier_state_clean(env); 24566 24567 if (IS_ERR(btf_vmlinux)) { 24568 /* Either gcc or pahole or kernel are broken. */ 24569 verbose(env, "in-kernel BTF is malformed\n"); 24570 ret = PTR_ERR(btf_vmlinux); 24571 goto skip_full_check; 24572 } 24573 24574 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 24575 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 24576 env->strict_alignment = true; 24577 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 24578 env->strict_alignment = false; 24579 24580 if (is_priv) 24581 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 24582 env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS; 24583 24584 env->explored_states = kvcalloc(state_htab_size(env), 24585 sizeof(struct list_head), 24586 GFP_KERNEL_ACCOUNT); 24587 ret = -ENOMEM; 24588 if (!env->explored_states) 24589 goto skip_full_check; 24590 24591 for (i = 0; i < state_htab_size(env); i++) 24592 INIT_LIST_HEAD(&env->explored_states[i]); 24593 INIT_LIST_HEAD(&env->free_list); 24594 24595 ret = check_btf_info_early(env, attr, uattr); 24596 if (ret < 0) 24597 goto skip_full_check; 24598 24599 ret = add_subprog_and_kfunc(env); 24600 if (ret < 0) 24601 goto skip_full_check; 24602 24603 ret = check_subprogs(env); 24604 if (ret < 0) 24605 goto skip_full_check; 24606 24607 ret = check_btf_info(env, attr, uattr); 24608 if (ret < 0) 24609 goto skip_full_check; 24610 24611 ret = resolve_pseudo_ldimm64(env); 24612 if (ret < 0) 24613 goto skip_full_check; 24614 24615 if (bpf_prog_is_offloaded(env->prog->aux)) { 24616 ret = bpf_prog_offload_verifier_prep(env->prog); 24617 if (ret) 24618 goto skip_full_check; 24619 } 24620 24621 ret = check_cfg(env); 24622 if (ret < 0) 24623 goto skip_full_check; 24624 24625 ret = compute_postorder(env); 24626 if (ret < 0) 24627 goto skip_full_check; 24628 24629 ret = bpf_stack_liveness_init(env); 24630 if (ret) 24631 goto skip_full_check; 24632 24633 ret = check_attach_btf_id(env); 24634 if (ret) 24635 goto skip_full_check; 24636 24637 ret = compute_scc(env); 24638 if (ret < 0) 24639 goto skip_full_check; 24640 24641 ret = compute_live_registers(env); 24642 if (ret < 0) 24643 goto skip_full_check; 24644 24645 ret = mark_fastcall_patterns(env); 24646 if (ret < 0) 24647 goto skip_full_check; 24648 24649 ret = do_check_main(env); 24650 ret = ret ?: do_check_subprogs(env); 24651 24652 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 24653 ret = bpf_prog_offload_finalize(env); 24654 24655 skip_full_check: 24656 kvfree(env->explored_states); 24657 24658 /* might decrease stack depth, keep it before passes that 24659 * allocate additional slots. 24660 */ 24661 if (ret == 0) 24662 ret = remove_fastcall_spills_fills(env); 24663 24664 if (ret == 0) 24665 ret = check_max_stack_depth(env); 24666 24667 /* instruction rewrites happen after this point */ 24668 if (ret == 0) 24669 ret = optimize_bpf_loop(env); 24670 24671 if (is_priv) { 24672 if (ret == 0) 24673 opt_hard_wire_dead_code_branches(env); 24674 if (ret == 0) 24675 ret = opt_remove_dead_code(env); 24676 if (ret == 0) 24677 ret = opt_remove_nops(env); 24678 } else { 24679 if (ret == 0) 24680 sanitize_dead_code(env); 24681 } 24682 24683 if (ret == 0) 24684 /* program is valid, convert *(u32*)(ctx + off) accesses */ 24685 ret = convert_ctx_accesses(env); 24686 24687 if (ret == 0) 24688 ret = do_misc_fixups(env); 24689 24690 /* do 32-bit optimization after insn patching has done so those patched 24691 * insns could be handled correctly. 24692 */ 24693 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 24694 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 24695 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 24696 : false; 24697 } 24698 24699 if (ret == 0) 24700 ret = fixup_call_args(env); 24701 24702 env->verification_time = ktime_get_ns() - start_time; 24703 print_verification_stats(env); 24704 env->prog->aux->verified_insns = env->insn_processed; 24705 24706 /* preserve original error even if log finalization is successful */ 24707 err = bpf_vlog_finalize(&env->log, &log_true_size); 24708 if (err) 24709 ret = err; 24710 24711 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 24712 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 24713 &log_true_size, sizeof(log_true_size))) { 24714 ret = -EFAULT; 24715 goto err_release_maps; 24716 } 24717 24718 if (ret) 24719 goto err_release_maps; 24720 24721 if (env->used_map_cnt) { 24722 /* if program passed verifier, update used_maps in bpf_prog_info */ 24723 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 24724 sizeof(env->used_maps[0]), 24725 GFP_KERNEL_ACCOUNT); 24726 24727 if (!env->prog->aux->used_maps) { 24728 ret = -ENOMEM; 24729 goto err_release_maps; 24730 } 24731 24732 memcpy(env->prog->aux->used_maps, env->used_maps, 24733 sizeof(env->used_maps[0]) * env->used_map_cnt); 24734 env->prog->aux->used_map_cnt = env->used_map_cnt; 24735 } 24736 if (env->used_btf_cnt) { 24737 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 24738 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 24739 sizeof(env->used_btfs[0]), 24740 GFP_KERNEL_ACCOUNT); 24741 if (!env->prog->aux->used_btfs) { 24742 ret = -ENOMEM; 24743 goto err_release_maps; 24744 } 24745 24746 memcpy(env->prog->aux->used_btfs, env->used_btfs, 24747 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 24748 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 24749 } 24750 if (env->used_map_cnt || env->used_btf_cnt) { 24751 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 24752 * bpf_ld_imm64 instructions 24753 */ 24754 convert_pseudo_ld_imm64(env); 24755 } 24756 24757 adjust_btf_func(env); 24758 24759 err_release_maps: 24760 if (!env->prog->aux->used_maps) 24761 /* if we didn't copy map pointers into bpf_prog_info, release 24762 * them now. Otherwise free_used_maps() will release them. 24763 */ 24764 release_maps(env); 24765 if (!env->prog->aux->used_btfs) 24766 release_btfs(env); 24767 24768 /* extension progs temporarily inherit the attach_type of their targets 24769 for verification purposes, so set it back to zero before returning 24770 */ 24771 if (env->prog->type == BPF_PROG_TYPE_EXT) 24772 env->prog->expected_attach_type = 0; 24773 24774 *prog = env->prog; 24775 24776 module_put(env->attach_btf_mod); 24777 err_unlock: 24778 if (!is_priv) 24779 mutex_unlock(&bpf_verifier_lock); 24780 vfree(env->insn_aux_data); 24781 err_free_env: 24782 bpf_stack_liveness_free(env); 24783 kvfree(env->cfg.insn_postorder); 24784 kvfree(env->scc_info); 24785 kvfree(env); 24786 return ret; 24787 } 24788