1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 #include <linux/error-injection.h> 23 24 #include "disasm.h" 25 26 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 27 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 28 [_id] = & _name ## _verifier_ops, 29 #define BPF_MAP_TYPE(_id, _ops) 30 #include <linux/bpf_types.h> 31 #undef BPF_PROG_TYPE 32 #undef BPF_MAP_TYPE 33 }; 34 35 /* bpf_check() is a static code analyzer that walks eBPF program 36 * instruction by instruction and updates register/stack state. 37 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 38 * 39 * The first pass is depth-first-search to check that the program is a DAG. 40 * It rejects the following programs: 41 * - larger than BPF_MAXINSNS insns 42 * - if loop is present (detected via back-edge) 43 * - unreachable insns exist (shouldn't be a forest. program = one function) 44 * - out of bounds or malformed jumps 45 * The second pass is all possible path descent from the 1st insn. 46 * Since it's analyzing all pathes through the program, the length of the 47 * analysis is limited to 64k insn, which may be hit even if total number of 48 * insn is less then 4K, but there are too many branches that change stack/regs. 49 * Number of 'branches to be analyzed' is limited to 1k 50 * 51 * On entry to each instruction, each register has a type, and the instruction 52 * changes the types of the registers depending on instruction semantics. 53 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 54 * copied to R1. 55 * 56 * All registers are 64-bit. 57 * R0 - return register 58 * R1-R5 argument passing registers 59 * R6-R9 callee saved registers 60 * R10 - frame pointer read-only 61 * 62 * At the start of BPF program the register R1 contains a pointer to bpf_context 63 * and has type PTR_TO_CTX. 64 * 65 * Verifier tracks arithmetic operations on pointers in case: 66 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 67 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 68 * 1st insn copies R10 (which has FRAME_PTR) type into R1 69 * and 2nd arithmetic instruction is pattern matched to recognize 70 * that it wants to construct a pointer to some element within stack. 71 * So after 2nd insn, the register R1 has type PTR_TO_STACK 72 * (and -20 constant is saved for further stack bounds checking). 73 * Meaning that this reg is a pointer to stack plus known immediate constant. 74 * 75 * Most of the time the registers have SCALAR_VALUE type, which 76 * means the register has some value, but it's not a valid pointer. 77 * (like pointer plus pointer becomes SCALAR_VALUE type) 78 * 79 * When verifier sees load or store instructions the type of base register 80 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 81 * four pointer types recognized by check_mem_access() function. 82 * 83 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 84 * and the range of [ptr, ptr + map's value_size) is accessible. 85 * 86 * registers used to pass values to function calls are checked against 87 * function argument constraints. 88 * 89 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 90 * It means that the register type passed to this function must be 91 * PTR_TO_STACK and it will be used inside the function as 92 * 'pointer to map element key' 93 * 94 * For example the argument constraints for bpf_map_lookup_elem(): 95 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 96 * .arg1_type = ARG_CONST_MAP_PTR, 97 * .arg2_type = ARG_PTR_TO_MAP_KEY, 98 * 99 * ret_type says that this function returns 'pointer to map elem value or null' 100 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 101 * 2nd argument should be a pointer to stack, which will be used inside 102 * the helper function as a pointer to map element key. 103 * 104 * On the kernel side the helper function looks like: 105 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 106 * { 107 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 108 * void *key = (void *) (unsigned long) r2; 109 * void *value; 110 * 111 * here kernel can access 'key' and 'map' pointers safely, knowing that 112 * [key, key + map->key_size) bytes are valid and were initialized on 113 * the stack of eBPF program. 114 * } 115 * 116 * Corresponding eBPF program may look like: 117 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 118 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 119 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 120 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 121 * here verifier looks at prototype of map_lookup_elem() and sees: 122 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 123 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 124 * 125 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 126 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 127 * and were initialized prior to this call. 128 * If it's ok, then verifier allows this BPF_CALL insn and looks at 129 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 130 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 131 * returns ether pointer to map value or NULL. 132 * 133 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 134 * insn, the register holding that pointer in the true branch changes state to 135 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 136 * branch. See check_cond_jmp_op(). 137 * 138 * After the call R0 is set to return type of the function and registers R1-R5 139 * are set to NOT_INIT to indicate that they are no longer readable. 140 * 141 * The following reference types represent a potential reference to a kernel 142 * resource which, after first being allocated, must be checked and freed by 143 * the BPF program: 144 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 145 * 146 * When the verifier sees a helper call return a reference type, it allocates a 147 * pointer id for the reference and stores it in the current function state. 148 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 149 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 150 * passes through a NULL-check conditional. For the branch wherein the state is 151 * changed to CONST_IMM, the verifier releases the reference. 152 * 153 * For each helper function that allocates a reference, such as 154 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 155 * bpf_sk_release(). When a reference type passes into the release function, 156 * the verifier also releases the reference. If any unchecked or unreleased 157 * reference remains at the end of the program, the verifier rejects it. 158 */ 159 160 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 161 struct bpf_verifier_stack_elem { 162 /* verifer state is 'st' 163 * before processing instruction 'insn_idx' 164 * and after processing instruction 'prev_insn_idx' 165 */ 166 struct bpf_verifier_state st; 167 int insn_idx; 168 int prev_insn_idx; 169 struct bpf_verifier_stack_elem *next; 170 }; 171 172 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 173 #define BPF_COMPLEXITY_LIMIT_STATES 64 174 175 #define BPF_MAP_KEY_POISON (1ULL << 63) 176 #define BPF_MAP_KEY_SEEN (1ULL << 62) 177 178 #define BPF_MAP_PTR_UNPRIV 1UL 179 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 180 POISON_POINTER_DELTA)) 181 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 182 183 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 184 { 185 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 186 } 187 188 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 189 { 190 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 191 } 192 193 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 194 const struct bpf_map *map, bool unpriv) 195 { 196 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 197 unpriv |= bpf_map_ptr_unpriv(aux); 198 aux->map_ptr_state = (unsigned long)map | 199 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 200 } 201 202 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 203 { 204 return aux->map_key_state & BPF_MAP_KEY_POISON; 205 } 206 207 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 208 { 209 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 210 } 211 212 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 213 { 214 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 215 } 216 217 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 218 { 219 bool poisoned = bpf_map_key_poisoned(aux); 220 221 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 222 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 223 } 224 225 struct bpf_call_arg_meta { 226 struct bpf_map *map_ptr; 227 bool raw_mode; 228 bool pkt_access; 229 int regno; 230 int access_size; 231 s64 msize_smax_value; 232 u64 msize_umax_value; 233 int ref_obj_id; 234 int func_id; 235 u32 btf_id; 236 }; 237 238 struct btf *btf_vmlinux; 239 240 static DEFINE_MUTEX(bpf_verifier_lock); 241 242 static const struct bpf_line_info * 243 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 244 { 245 const struct bpf_line_info *linfo; 246 const struct bpf_prog *prog; 247 u32 i, nr_linfo; 248 249 prog = env->prog; 250 nr_linfo = prog->aux->nr_linfo; 251 252 if (!nr_linfo || insn_off >= prog->len) 253 return NULL; 254 255 linfo = prog->aux->linfo; 256 for (i = 1; i < nr_linfo; i++) 257 if (insn_off < linfo[i].insn_off) 258 break; 259 260 return &linfo[i - 1]; 261 } 262 263 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 264 va_list args) 265 { 266 unsigned int n; 267 268 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 269 270 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 271 "verifier log line truncated - local buffer too short\n"); 272 273 n = min(log->len_total - log->len_used - 1, n); 274 log->kbuf[n] = '\0'; 275 276 if (log->level == BPF_LOG_KERNEL) { 277 pr_err("BPF:%s\n", log->kbuf); 278 return; 279 } 280 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 281 log->len_used += n; 282 else 283 log->ubuf = NULL; 284 } 285 286 /* log_level controls verbosity level of eBPF verifier. 287 * bpf_verifier_log_write() is used to dump the verification trace to the log, 288 * so the user can figure out what's wrong with the program 289 */ 290 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 291 const char *fmt, ...) 292 { 293 va_list args; 294 295 if (!bpf_verifier_log_needed(&env->log)) 296 return; 297 298 va_start(args, fmt); 299 bpf_verifier_vlog(&env->log, fmt, args); 300 va_end(args); 301 } 302 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 303 304 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 305 { 306 struct bpf_verifier_env *env = private_data; 307 va_list args; 308 309 if (!bpf_verifier_log_needed(&env->log)) 310 return; 311 312 va_start(args, fmt); 313 bpf_verifier_vlog(&env->log, fmt, args); 314 va_end(args); 315 } 316 317 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 318 const char *fmt, ...) 319 { 320 va_list args; 321 322 if (!bpf_verifier_log_needed(log)) 323 return; 324 325 va_start(args, fmt); 326 bpf_verifier_vlog(log, fmt, args); 327 va_end(args); 328 } 329 330 static const char *ltrim(const char *s) 331 { 332 while (isspace(*s)) 333 s++; 334 335 return s; 336 } 337 338 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 339 u32 insn_off, 340 const char *prefix_fmt, ...) 341 { 342 const struct bpf_line_info *linfo; 343 344 if (!bpf_verifier_log_needed(&env->log)) 345 return; 346 347 linfo = find_linfo(env, insn_off); 348 if (!linfo || linfo == env->prev_linfo) 349 return; 350 351 if (prefix_fmt) { 352 va_list args; 353 354 va_start(args, prefix_fmt); 355 bpf_verifier_vlog(&env->log, prefix_fmt, args); 356 va_end(args); 357 } 358 359 verbose(env, "%s\n", 360 ltrim(btf_name_by_offset(env->prog->aux->btf, 361 linfo->line_off))); 362 363 env->prev_linfo = linfo; 364 } 365 366 static bool type_is_pkt_pointer(enum bpf_reg_type type) 367 { 368 return type == PTR_TO_PACKET || 369 type == PTR_TO_PACKET_META; 370 } 371 372 static bool type_is_sk_pointer(enum bpf_reg_type type) 373 { 374 return type == PTR_TO_SOCKET || 375 type == PTR_TO_SOCK_COMMON || 376 type == PTR_TO_TCP_SOCK || 377 type == PTR_TO_XDP_SOCK; 378 } 379 380 static bool reg_type_may_be_null(enum bpf_reg_type type) 381 { 382 return type == PTR_TO_MAP_VALUE_OR_NULL || 383 type == PTR_TO_SOCKET_OR_NULL || 384 type == PTR_TO_SOCK_COMMON_OR_NULL || 385 type == PTR_TO_TCP_SOCK_OR_NULL; 386 } 387 388 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 389 { 390 return reg->type == PTR_TO_MAP_VALUE && 391 map_value_has_spin_lock(reg->map_ptr); 392 } 393 394 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 395 { 396 return type == PTR_TO_SOCKET || 397 type == PTR_TO_SOCKET_OR_NULL || 398 type == PTR_TO_TCP_SOCK || 399 type == PTR_TO_TCP_SOCK_OR_NULL; 400 } 401 402 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 403 { 404 return type == ARG_PTR_TO_SOCK_COMMON; 405 } 406 407 /* Determine whether the function releases some resources allocated by another 408 * function call. The first reference type argument will be assumed to be 409 * released by release_reference(). 410 */ 411 static bool is_release_function(enum bpf_func_id func_id) 412 { 413 return func_id == BPF_FUNC_sk_release; 414 } 415 416 static bool is_acquire_function(enum bpf_func_id func_id) 417 { 418 return func_id == BPF_FUNC_sk_lookup_tcp || 419 func_id == BPF_FUNC_sk_lookup_udp || 420 func_id == BPF_FUNC_skc_lookup_tcp; 421 } 422 423 static bool is_ptr_cast_function(enum bpf_func_id func_id) 424 { 425 return func_id == BPF_FUNC_tcp_sock || 426 func_id == BPF_FUNC_sk_fullsock; 427 } 428 429 /* string representation of 'enum bpf_reg_type' */ 430 static const char * const reg_type_str[] = { 431 [NOT_INIT] = "?", 432 [SCALAR_VALUE] = "inv", 433 [PTR_TO_CTX] = "ctx", 434 [CONST_PTR_TO_MAP] = "map_ptr", 435 [PTR_TO_MAP_VALUE] = "map_value", 436 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 437 [PTR_TO_STACK] = "fp", 438 [PTR_TO_PACKET] = "pkt", 439 [PTR_TO_PACKET_META] = "pkt_meta", 440 [PTR_TO_PACKET_END] = "pkt_end", 441 [PTR_TO_FLOW_KEYS] = "flow_keys", 442 [PTR_TO_SOCKET] = "sock", 443 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 444 [PTR_TO_SOCK_COMMON] = "sock_common", 445 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 446 [PTR_TO_TCP_SOCK] = "tcp_sock", 447 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 448 [PTR_TO_TP_BUFFER] = "tp_buffer", 449 [PTR_TO_XDP_SOCK] = "xdp_sock", 450 [PTR_TO_BTF_ID] = "ptr_", 451 }; 452 453 static char slot_type_char[] = { 454 [STACK_INVALID] = '?', 455 [STACK_SPILL] = 'r', 456 [STACK_MISC] = 'm', 457 [STACK_ZERO] = '0', 458 }; 459 460 static void print_liveness(struct bpf_verifier_env *env, 461 enum bpf_reg_liveness live) 462 { 463 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 464 verbose(env, "_"); 465 if (live & REG_LIVE_READ) 466 verbose(env, "r"); 467 if (live & REG_LIVE_WRITTEN) 468 verbose(env, "w"); 469 if (live & REG_LIVE_DONE) 470 verbose(env, "D"); 471 } 472 473 static struct bpf_func_state *func(struct bpf_verifier_env *env, 474 const struct bpf_reg_state *reg) 475 { 476 struct bpf_verifier_state *cur = env->cur_state; 477 478 return cur->frame[reg->frameno]; 479 } 480 481 const char *kernel_type_name(u32 id) 482 { 483 return btf_name_by_offset(btf_vmlinux, 484 btf_type_by_id(btf_vmlinux, id)->name_off); 485 } 486 487 static void print_verifier_state(struct bpf_verifier_env *env, 488 const struct bpf_func_state *state) 489 { 490 const struct bpf_reg_state *reg; 491 enum bpf_reg_type t; 492 int i; 493 494 if (state->frameno) 495 verbose(env, " frame%d:", state->frameno); 496 for (i = 0; i < MAX_BPF_REG; i++) { 497 reg = &state->regs[i]; 498 t = reg->type; 499 if (t == NOT_INIT) 500 continue; 501 verbose(env, " R%d", i); 502 print_liveness(env, reg->live); 503 verbose(env, "=%s", reg_type_str[t]); 504 if (t == SCALAR_VALUE && reg->precise) 505 verbose(env, "P"); 506 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 507 tnum_is_const(reg->var_off)) { 508 /* reg->off should be 0 for SCALAR_VALUE */ 509 verbose(env, "%lld", reg->var_off.value + reg->off); 510 } else { 511 if (t == PTR_TO_BTF_ID) 512 verbose(env, "%s", kernel_type_name(reg->btf_id)); 513 verbose(env, "(id=%d", reg->id); 514 if (reg_type_may_be_refcounted_or_null(t)) 515 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 516 if (t != SCALAR_VALUE) 517 verbose(env, ",off=%d", reg->off); 518 if (type_is_pkt_pointer(t)) 519 verbose(env, ",r=%d", reg->range); 520 else if (t == CONST_PTR_TO_MAP || 521 t == PTR_TO_MAP_VALUE || 522 t == PTR_TO_MAP_VALUE_OR_NULL) 523 verbose(env, ",ks=%d,vs=%d", 524 reg->map_ptr->key_size, 525 reg->map_ptr->value_size); 526 if (tnum_is_const(reg->var_off)) { 527 /* Typically an immediate SCALAR_VALUE, but 528 * could be a pointer whose offset is too big 529 * for reg->off 530 */ 531 verbose(env, ",imm=%llx", reg->var_off.value); 532 } else { 533 if (reg->smin_value != reg->umin_value && 534 reg->smin_value != S64_MIN) 535 verbose(env, ",smin_value=%lld", 536 (long long)reg->smin_value); 537 if (reg->smax_value != reg->umax_value && 538 reg->smax_value != S64_MAX) 539 verbose(env, ",smax_value=%lld", 540 (long long)reg->smax_value); 541 if (reg->umin_value != 0) 542 verbose(env, ",umin_value=%llu", 543 (unsigned long long)reg->umin_value); 544 if (reg->umax_value != U64_MAX) 545 verbose(env, ",umax_value=%llu", 546 (unsigned long long)reg->umax_value); 547 if (!tnum_is_unknown(reg->var_off)) { 548 char tn_buf[48]; 549 550 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 551 verbose(env, ",var_off=%s", tn_buf); 552 } 553 } 554 verbose(env, ")"); 555 } 556 } 557 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 558 char types_buf[BPF_REG_SIZE + 1]; 559 bool valid = false; 560 int j; 561 562 for (j = 0; j < BPF_REG_SIZE; j++) { 563 if (state->stack[i].slot_type[j] != STACK_INVALID) 564 valid = true; 565 types_buf[j] = slot_type_char[ 566 state->stack[i].slot_type[j]]; 567 } 568 types_buf[BPF_REG_SIZE] = 0; 569 if (!valid) 570 continue; 571 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 572 print_liveness(env, state->stack[i].spilled_ptr.live); 573 if (state->stack[i].slot_type[0] == STACK_SPILL) { 574 reg = &state->stack[i].spilled_ptr; 575 t = reg->type; 576 verbose(env, "=%s", reg_type_str[t]); 577 if (t == SCALAR_VALUE && reg->precise) 578 verbose(env, "P"); 579 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 580 verbose(env, "%lld", reg->var_off.value + reg->off); 581 } else { 582 verbose(env, "=%s", types_buf); 583 } 584 } 585 if (state->acquired_refs && state->refs[0].id) { 586 verbose(env, " refs=%d", state->refs[0].id); 587 for (i = 1; i < state->acquired_refs; i++) 588 if (state->refs[i].id) 589 verbose(env, ",%d", state->refs[i].id); 590 } 591 verbose(env, "\n"); 592 } 593 594 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 595 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 596 const struct bpf_func_state *src) \ 597 { \ 598 if (!src->FIELD) \ 599 return 0; \ 600 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 601 /* internal bug, make state invalid to reject the program */ \ 602 memset(dst, 0, sizeof(*dst)); \ 603 return -EFAULT; \ 604 } \ 605 memcpy(dst->FIELD, src->FIELD, \ 606 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 607 return 0; \ 608 } 609 /* copy_reference_state() */ 610 COPY_STATE_FN(reference, acquired_refs, refs, 1) 611 /* copy_stack_state() */ 612 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 613 #undef COPY_STATE_FN 614 615 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 616 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 617 bool copy_old) \ 618 { \ 619 u32 old_size = state->COUNT; \ 620 struct bpf_##NAME##_state *new_##FIELD; \ 621 int slot = size / SIZE; \ 622 \ 623 if (size <= old_size || !size) { \ 624 if (copy_old) \ 625 return 0; \ 626 state->COUNT = slot * SIZE; \ 627 if (!size && old_size) { \ 628 kfree(state->FIELD); \ 629 state->FIELD = NULL; \ 630 } \ 631 return 0; \ 632 } \ 633 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 634 GFP_KERNEL); \ 635 if (!new_##FIELD) \ 636 return -ENOMEM; \ 637 if (copy_old) { \ 638 if (state->FIELD) \ 639 memcpy(new_##FIELD, state->FIELD, \ 640 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 641 memset(new_##FIELD + old_size / SIZE, 0, \ 642 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 643 } \ 644 state->COUNT = slot * SIZE; \ 645 kfree(state->FIELD); \ 646 state->FIELD = new_##FIELD; \ 647 return 0; \ 648 } 649 /* realloc_reference_state() */ 650 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 651 /* realloc_stack_state() */ 652 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 653 #undef REALLOC_STATE_FN 654 655 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 656 * make it consume minimal amount of memory. check_stack_write() access from 657 * the program calls into realloc_func_state() to grow the stack size. 658 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 659 * which realloc_stack_state() copies over. It points to previous 660 * bpf_verifier_state which is never reallocated. 661 */ 662 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 663 int refs_size, bool copy_old) 664 { 665 int err = realloc_reference_state(state, refs_size, copy_old); 666 if (err) 667 return err; 668 return realloc_stack_state(state, stack_size, copy_old); 669 } 670 671 /* Acquire a pointer id from the env and update the state->refs to include 672 * this new pointer reference. 673 * On success, returns a valid pointer id to associate with the register 674 * On failure, returns a negative errno. 675 */ 676 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 677 { 678 struct bpf_func_state *state = cur_func(env); 679 int new_ofs = state->acquired_refs; 680 int id, err; 681 682 err = realloc_reference_state(state, state->acquired_refs + 1, true); 683 if (err) 684 return err; 685 id = ++env->id_gen; 686 state->refs[new_ofs].id = id; 687 state->refs[new_ofs].insn_idx = insn_idx; 688 689 return id; 690 } 691 692 /* release function corresponding to acquire_reference_state(). Idempotent. */ 693 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 694 { 695 int i, last_idx; 696 697 last_idx = state->acquired_refs - 1; 698 for (i = 0; i < state->acquired_refs; i++) { 699 if (state->refs[i].id == ptr_id) { 700 if (last_idx && i != last_idx) 701 memcpy(&state->refs[i], &state->refs[last_idx], 702 sizeof(*state->refs)); 703 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 704 state->acquired_refs--; 705 return 0; 706 } 707 } 708 return -EINVAL; 709 } 710 711 static int transfer_reference_state(struct bpf_func_state *dst, 712 struct bpf_func_state *src) 713 { 714 int err = realloc_reference_state(dst, src->acquired_refs, false); 715 if (err) 716 return err; 717 err = copy_reference_state(dst, src); 718 if (err) 719 return err; 720 return 0; 721 } 722 723 static void free_func_state(struct bpf_func_state *state) 724 { 725 if (!state) 726 return; 727 kfree(state->refs); 728 kfree(state->stack); 729 kfree(state); 730 } 731 732 static void clear_jmp_history(struct bpf_verifier_state *state) 733 { 734 kfree(state->jmp_history); 735 state->jmp_history = NULL; 736 state->jmp_history_cnt = 0; 737 } 738 739 static void free_verifier_state(struct bpf_verifier_state *state, 740 bool free_self) 741 { 742 int i; 743 744 for (i = 0; i <= state->curframe; i++) { 745 free_func_state(state->frame[i]); 746 state->frame[i] = NULL; 747 } 748 clear_jmp_history(state); 749 if (free_self) 750 kfree(state); 751 } 752 753 /* copy verifier state from src to dst growing dst stack space 754 * when necessary to accommodate larger src stack 755 */ 756 static int copy_func_state(struct bpf_func_state *dst, 757 const struct bpf_func_state *src) 758 { 759 int err; 760 761 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 762 false); 763 if (err) 764 return err; 765 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 766 err = copy_reference_state(dst, src); 767 if (err) 768 return err; 769 return copy_stack_state(dst, src); 770 } 771 772 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 773 const struct bpf_verifier_state *src) 774 { 775 struct bpf_func_state *dst; 776 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; 777 int i, err; 778 779 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { 780 kfree(dst_state->jmp_history); 781 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); 782 if (!dst_state->jmp_history) 783 return -ENOMEM; 784 } 785 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); 786 dst_state->jmp_history_cnt = src->jmp_history_cnt; 787 788 /* if dst has more stack frames then src frame, free them */ 789 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 790 free_func_state(dst_state->frame[i]); 791 dst_state->frame[i] = NULL; 792 } 793 dst_state->speculative = src->speculative; 794 dst_state->curframe = src->curframe; 795 dst_state->active_spin_lock = src->active_spin_lock; 796 dst_state->branches = src->branches; 797 dst_state->parent = src->parent; 798 dst_state->first_insn_idx = src->first_insn_idx; 799 dst_state->last_insn_idx = src->last_insn_idx; 800 for (i = 0; i <= src->curframe; i++) { 801 dst = dst_state->frame[i]; 802 if (!dst) { 803 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 804 if (!dst) 805 return -ENOMEM; 806 dst_state->frame[i] = dst; 807 } 808 err = copy_func_state(dst, src->frame[i]); 809 if (err) 810 return err; 811 } 812 return 0; 813 } 814 815 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 816 { 817 while (st) { 818 u32 br = --st->branches; 819 820 /* WARN_ON(br > 1) technically makes sense here, 821 * but see comment in push_stack(), hence: 822 */ 823 WARN_ONCE((int)br < 0, 824 "BUG update_branch_counts:branches_to_explore=%d\n", 825 br); 826 if (br) 827 break; 828 st = st->parent; 829 } 830 } 831 832 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 833 int *insn_idx) 834 { 835 struct bpf_verifier_state *cur = env->cur_state; 836 struct bpf_verifier_stack_elem *elem, *head = env->head; 837 int err; 838 839 if (env->head == NULL) 840 return -ENOENT; 841 842 if (cur) { 843 err = copy_verifier_state(cur, &head->st); 844 if (err) 845 return err; 846 } 847 if (insn_idx) 848 *insn_idx = head->insn_idx; 849 if (prev_insn_idx) 850 *prev_insn_idx = head->prev_insn_idx; 851 elem = head->next; 852 free_verifier_state(&head->st, false); 853 kfree(head); 854 env->head = elem; 855 env->stack_size--; 856 return 0; 857 } 858 859 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 860 int insn_idx, int prev_insn_idx, 861 bool speculative) 862 { 863 struct bpf_verifier_state *cur = env->cur_state; 864 struct bpf_verifier_stack_elem *elem; 865 int err; 866 867 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 868 if (!elem) 869 goto err; 870 871 elem->insn_idx = insn_idx; 872 elem->prev_insn_idx = prev_insn_idx; 873 elem->next = env->head; 874 env->head = elem; 875 env->stack_size++; 876 err = copy_verifier_state(&elem->st, cur); 877 if (err) 878 goto err; 879 elem->st.speculative |= speculative; 880 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 881 verbose(env, "The sequence of %d jumps is too complex.\n", 882 env->stack_size); 883 goto err; 884 } 885 if (elem->st.parent) { 886 ++elem->st.parent->branches; 887 /* WARN_ON(branches > 2) technically makes sense here, 888 * but 889 * 1. speculative states will bump 'branches' for non-branch 890 * instructions 891 * 2. is_state_visited() heuristics may decide not to create 892 * a new state for a sequence of branches and all such current 893 * and cloned states will be pointing to a single parent state 894 * which might have large 'branches' count. 895 */ 896 } 897 return &elem->st; 898 err: 899 free_verifier_state(env->cur_state, true); 900 env->cur_state = NULL; 901 /* pop all elements and return */ 902 while (!pop_stack(env, NULL, NULL)); 903 return NULL; 904 } 905 906 #define CALLER_SAVED_REGS 6 907 static const int caller_saved[CALLER_SAVED_REGS] = { 908 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 909 }; 910 911 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 912 struct bpf_reg_state *reg); 913 914 /* Mark the unknown part of a register (variable offset or scalar value) as 915 * known to have the value @imm. 916 */ 917 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 918 { 919 /* Clear id, off, and union(map_ptr, range) */ 920 memset(((u8 *)reg) + sizeof(reg->type), 0, 921 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 922 reg->var_off = tnum_const(imm); 923 reg->smin_value = (s64)imm; 924 reg->smax_value = (s64)imm; 925 reg->umin_value = imm; 926 reg->umax_value = imm; 927 } 928 929 /* Mark the 'variable offset' part of a register as zero. This should be 930 * used only on registers holding a pointer type. 931 */ 932 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 933 { 934 __mark_reg_known(reg, 0); 935 } 936 937 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 938 { 939 __mark_reg_known(reg, 0); 940 reg->type = SCALAR_VALUE; 941 } 942 943 static void mark_reg_known_zero(struct bpf_verifier_env *env, 944 struct bpf_reg_state *regs, u32 regno) 945 { 946 if (WARN_ON(regno >= MAX_BPF_REG)) { 947 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 948 /* Something bad happened, let's kill all regs */ 949 for (regno = 0; regno < MAX_BPF_REG; regno++) 950 __mark_reg_not_init(env, regs + regno); 951 return; 952 } 953 __mark_reg_known_zero(regs + regno); 954 } 955 956 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 957 { 958 return type_is_pkt_pointer(reg->type); 959 } 960 961 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 962 { 963 return reg_is_pkt_pointer(reg) || 964 reg->type == PTR_TO_PACKET_END; 965 } 966 967 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 968 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 969 enum bpf_reg_type which) 970 { 971 /* The register can already have a range from prior markings. 972 * This is fine as long as it hasn't been advanced from its 973 * origin. 974 */ 975 return reg->type == which && 976 reg->id == 0 && 977 reg->off == 0 && 978 tnum_equals_const(reg->var_off, 0); 979 } 980 981 /* Attempts to improve min/max values based on var_off information */ 982 static void __update_reg_bounds(struct bpf_reg_state *reg) 983 { 984 /* min signed is max(sign bit) | min(other bits) */ 985 reg->smin_value = max_t(s64, reg->smin_value, 986 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 987 /* max signed is min(sign bit) | max(other bits) */ 988 reg->smax_value = min_t(s64, reg->smax_value, 989 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 990 reg->umin_value = max(reg->umin_value, reg->var_off.value); 991 reg->umax_value = min(reg->umax_value, 992 reg->var_off.value | reg->var_off.mask); 993 } 994 995 /* Uses signed min/max values to inform unsigned, and vice-versa */ 996 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 997 { 998 /* Learn sign from signed bounds. 999 * If we cannot cross the sign boundary, then signed and unsigned bounds 1000 * are the same, so combine. This works even in the negative case, e.g. 1001 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1002 */ 1003 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1004 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1005 reg->umin_value); 1006 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1007 reg->umax_value); 1008 return; 1009 } 1010 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1011 * boundary, so we must be careful. 1012 */ 1013 if ((s64)reg->umax_value >= 0) { 1014 /* Positive. We can't learn anything from the smin, but smax 1015 * is positive, hence safe. 1016 */ 1017 reg->smin_value = reg->umin_value; 1018 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1019 reg->umax_value); 1020 } else if ((s64)reg->umin_value < 0) { 1021 /* Negative. We can't learn anything from the smax, but smin 1022 * is negative, hence safe. 1023 */ 1024 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1025 reg->umin_value); 1026 reg->smax_value = reg->umax_value; 1027 } 1028 } 1029 1030 /* Attempts to improve var_off based on unsigned min/max information */ 1031 static void __reg_bound_offset(struct bpf_reg_state *reg) 1032 { 1033 reg->var_off = tnum_intersect(reg->var_off, 1034 tnum_range(reg->umin_value, 1035 reg->umax_value)); 1036 } 1037 1038 static void __reg_bound_offset32(struct bpf_reg_state *reg) 1039 { 1040 u64 mask = 0xffffFFFF; 1041 struct tnum range = tnum_range(reg->umin_value & mask, 1042 reg->umax_value & mask); 1043 struct tnum lo32 = tnum_cast(reg->var_off, 4); 1044 struct tnum hi32 = tnum_lshift(tnum_rshift(reg->var_off, 32), 32); 1045 1046 reg->var_off = tnum_or(hi32, tnum_intersect(lo32, range)); 1047 } 1048 1049 /* Reset the min/max bounds of a register */ 1050 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1051 { 1052 reg->smin_value = S64_MIN; 1053 reg->smax_value = S64_MAX; 1054 reg->umin_value = 0; 1055 reg->umax_value = U64_MAX; 1056 } 1057 1058 /* Mark a register as having a completely unknown (scalar) value. */ 1059 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1060 struct bpf_reg_state *reg) 1061 { 1062 /* 1063 * Clear type, id, off, and union(map_ptr, range) and 1064 * padding between 'type' and union 1065 */ 1066 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1067 reg->type = SCALAR_VALUE; 1068 reg->var_off = tnum_unknown; 1069 reg->frameno = 0; 1070 reg->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks ? 1071 true : false; 1072 __mark_reg_unbounded(reg); 1073 } 1074 1075 static void mark_reg_unknown(struct bpf_verifier_env *env, 1076 struct bpf_reg_state *regs, u32 regno) 1077 { 1078 if (WARN_ON(regno >= MAX_BPF_REG)) { 1079 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1080 /* Something bad happened, let's kill all regs except FP */ 1081 for (regno = 0; regno < BPF_REG_FP; regno++) 1082 __mark_reg_not_init(env, regs + regno); 1083 return; 1084 } 1085 __mark_reg_unknown(env, regs + regno); 1086 } 1087 1088 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1089 struct bpf_reg_state *reg) 1090 { 1091 __mark_reg_unknown(env, reg); 1092 reg->type = NOT_INIT; 1093 } 1094 1095 static void mark_reg_not_init(struct bpf_verifier_env *env, 1096 struct bpf_reg_state *regs, u32 regno) 1097 { 1098 if (WARN_ON(regno >= MAX_BPF_REG)) { 1099 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1100 /* Something bad happened, let's kill all regs except FP */ 1101 for (regno = 0; regno < BPF_REG_FP; regno++) 1102 __mark_reg_not_init(env, regs + regno); 1103 return; 1104 } 1105 __mark_reg_not_init(env, regs + regno); 1106 } 1107 1108 #define DEF_NOT_SUBREG (0) 1109 static void init_reg_state(struct bpf_verifier_env *env, 1110 struct bpf_func_state *state) 1111 { 1112 struct bpf_reg_state *regs = state->regs; 1113 int i; 1114 1115 for (i = 0; i < MAX_BPF_REG; i++) { 1116 mark_reg_not_init(env, regs, i); 1117 regs[i].live = REG_LIVE_NONE; 1118 regs[i].parent = NULL; 1119 regs[i].subreg_def = DEF_NOT_SUBREG; 1120 } 1121 1122 /* frame pointer */ 1123 regs[BPF_REG_FP].type = PTR_TO_STACK; 1124 mark_reg_known_zero(env, regs, BPF_REG_FP); 1125 regs[BPF_REG_FP].frameno = state->frameno; 1126 } 1127 1128 #define BPF_MAIN_FUNC (-1) 1129 static void init_func_state(struct bpf_verifier_env *env, 1130 struct bpf_func_state *state, 1131 int callsite, int frameno, int subprogno) 1132 { 1133 state->callsite = callsite; 1134 state->frameno = frameno; 1135 state->subprogno = subprogno; 1136 init_reg_state(env, state); 1137 } 1138 1139 enum reg_arg_type { 1140 SRC_OP, /* register is used as source operand */ 1141 DST_OP, /* register is used as destination operand */ 1142 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1143 }; 1144 1145 static int cmp_subprogs(const void *a, const void *b) 1146 { 1147 return ((struct bpf_subprog_info *)a)->start - 1148 ((struct bpf_subprog_info *)b)->start; 1149 } 1150 1151 static int find_subprog(struct bpf_verifier_env *env, int off) 1152 { 1153 struct bpf_subprog_info *p; 1154 1155 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1156 sizeof(env->subprog_info[0]), cmp_subprogs); 1157 if (!p) 1158 return -ENOENT; 1159 return p - env->subprog_info; 1160 1161 } 1162 1163 static int add_subprog(struct bpf_verifier_env *env, int off) 1164 { 1165 int insn_cnt = env->prog->len; 1166 int ret; 1167 1168 if (off >= insn_cnt || off < 0) { 1169 verbose(env, "call to invalid destination\n"); 1170 return -EINVAL; 1171 } 1172 ret = find_subprog(env, off); 1173 if (ret >= 0) 1174 return 0; 1175 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1176 verbose(env, "too many subprograms\n"); 1177 return -E2BIG; 1178 } 1179 env->subprog_info[env->subprog_cnt++].start = off; 1180 sort(env->subprog_info, env->subprog_cnt, 1181 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1182 return 0; 1183 } 1184 1185 static int check_subprogs(struct bpf_verifier_env *env) 1186 { 1187 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1188 struct bpf_subprog_info *subprog = env->subprog_info; 1189 struct bpf_insn *insn = env->prog->insnsi; 1190 int insn_cnt = env->prog->len; 1191 1192 /* Add entry function. */ 1193 ret = add_subprog(env, 0); 1194 if (ret < 0) 1195 return ret; 1196 1197 /* determine subprog starts. The end is one before the next starts */ 1198 for (i = 0; i < insn_cnt; i++) { 1199 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1200 continue; 1201 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1202 continue; 1203 if (!env->allow_ptr_leaks) { 1204 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1205 return -EPERM; 1206 } 1207 ret = add_subprog(env, i + insn[i].imm + 1); 1208 if (ret < 0) 1209 return ret; 1210 } 1211 1212 /* Add a fake 'exit' subprog which could simplify subprog iteration 1213 * logic. 'subprog_cnt' should not be increased. 1214 */ 1215 subprog[env->subprog_cnt].start = insn_cnt; 1216 1217 if (env->log.level & BPF_LOG_LEVEL2) 1218 for (i = 0; i < env->subprog_cnt; i++) 1219 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1220 1221 /* now check that all jumps are within the same subprog */ 1222 subprog_start = subprog[cur_subprog].start; 1223 subprog_end = subprog[cur_subprog + 1].start; 1224 for (i = 0; i < insn_cnt; i++) { 1225 u8 code = insn[i].code; 1226 1227 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1228 goto next; 1229 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1230 goto next; 1231 off = i + insn[i].off + 1; 1232 if (off < subprog_start || off >= subprog_end) { 1233 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1234 return -EINVAL; 1235 } 1236 next: 1237 if (i == subprog_end - 1) { 1238 /* to avoid fall-through from one subprog into another 1239 * the last insn of the subprog should be either exit 1240 * or unconditional jump back 1241 */ 1242 if (code != (BPF_JMP | BPF_EXIT) && 1243 code != (BPF_JMP | BPF_JA)) { 1244 verbose(env, "last insn is not an exit or jmp\n"); 1245 return -EINVAL; 1246 } 1247 subprog_start = subprog_end; 1248 cur_subprog++; 1249 if (cur_subprog < env->subprog_cnt) 1250 subprog_end = subprog[cur_subprog + 1].start; 1251 } 1252 } 1253 return 0; 1254 } 1255 1256 /* Parentage chain of this register (or stack slot) should take care of all 1257 * issues like callee-saved registers, stack slot allocation time, etc. 1258 */ 1259 static int mark_reg_read(struct bpf_verifier_env *env, 1260 const struct bpf_reg_state *state, 1261 struct bpf_reg_state *parent, u8 flag) 1262 { 1263 bool writes = parent == state->parent; /* Observe write marks */ 1264 int cnt = 0; 1265 1266 while (parent) { 1267 /* if read wasn't screened by an earlier write ... */ 1268 if (writes && state->live & REG_LIVE_WRITTEN) 1269 break; 1270 if (parent->live & REG_LIVE_DONE) { 1271 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1272 reg_type_str[parent->type], 1273 parent->var_off.value, parent->off); 1274 return -EFAULT; 1275 } 1276 /* The first condition is more likely to be true than the 1277 * second, checked it first. 1278 */ 1279 if ((parent->live & REG_LIVE_READ) == flag || 1280 parent->live & REG_LIVE_READ64) 1281 /* The parentage chain never changes and 1282 * this parent was already marked as LIVE_READ. 1283 * There is no need to keep walking the chain again and 1284 * keep re-marking all parents as LIVE_READ. 1285 * This case happens when the same register is read 1286 * multiple times without writes into it in-between. 1287 * Also, if parent has the stronger REG_LIVE_READ64 set, 1288 * then no need to set the weak REG_LIVE_READ32. 1289 */ 1290 break; 1291 /* ... then we depend on parent's value */ 1292 parent->live |= flag; 1293 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1294 if (flag == REG_LIVE_READ64) 1295 parent->live &= ~REG_LIVE_READ32; 1296 state = parent; 1297 parent = state->parent; 1298 writes = true; 1299 cnt++; 1300 } 1301 1302 if (env->longest_mark_read_walk < cnt) 1303 env->longest_mark_read_walk = cnt; 1304 return 0; 1305 } 1306 1307 /* This function is supposed to be used by the following 32-bit optimization 1308 * code only. It returns TRUE if the source or destination register operates 1309 * on 64-bit, otherwise return FALSE. 1310 */ 1311 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1312 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1313 { 1314 u8 code, class, op; 1315 1316 code = insn->code; 1317 class = BPF_CLASS(code); 1318 op = BPF_OP(code); 1319 if (class == BPF_JMP) { 1320 /* BPF_EXIT for "main" will reach here. Return TRUE 1321 * conservatively. 1322 */ 1323 if (op == BPF_EXIT) 1324 return true; 1325 if (op == BPF_CALL) { 1326 /* BPF to BPF call will reach here because of marking 1327 * caller saved clobber with DST_OP_NO_MARK for which we 1328 * don't care the register def because they are anyway 1329 * marked as NOT_INIT already. 1330 */ 1331 if (insn->src_reg == BPF_PSEUDO_CALL) 1332 return false; 1333 /* Helper call will reach here because of arg type 1334 * check, conservatively return TRUE. 1335 */ 1336 if (t == SRC_OP) 1337 return true; 1338 1339 return false; 1340 } 1341 } 1342 1343 if (class == BPF_ALU64 || class == BPF_JMP || 1344 /* BPF_END always use BPF_ALU class. */ 1345 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1346 return true; 1347 1348 if (class == BPF_ALU || class == BPF_JMP32) 1349 return false; 1350 1351 if (class == BPF_LDX) { 1352 if (t != SRC_OP) 1353 return BPF_SIZE(code) == BPF_DW; 1354 /* LDX source must be ptr. */ 1355 return true; 1356 } 1357 1358 if (class == BPF_STX) { 1359 if (reg->type != SCALAR_VALUE) 1360 return true; 1361 return BPF_SIZE(code) == BPF_DW; 1362 } 1363 1364 if (class == BPF_LD) { 1365 u8 mode = BPF_MODE(code); 1366 1367 /* LD_IMM64 */ 1368 if (mode == BPF_IMM) 1369 return true; 1370 1371 /* Both LD_IND and LD_ABS return 32-bit data. */ 1372 if (t != SRC_OP) 1373 return false; 1374 1375 /* Implicit ctx ptr. */ 1376 if (regno == BPF_REG_6) 1377 return true; 1378 1379 /* Explicit source could be any width. */ 1380 return true; 1381 } 1382 1383 if (class == BPF_ST) 1384 /* The only source register for BPF_ST is a ptr. */ 1385 return true; 1386 1387 /* Conservatively return true at default. */ 1388 return true; 1389 } 1390 1391 /* Return TRUE if INSN doesn't have explicit value define. */ 1392 static bool insn_no_def(struct bpf_insn *insn) 1393 { 1394 u8 class = BPF_CLASS(insn->code); 1395 1396 return (class == BPF_JMP || class == BPF_JMP32 || 1397 class == BPF_STX || class == BPF_ST); 1398 } 1399 1400 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1401 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1402 { 1403 if (insn_no_def(insn)) 1404 return false; 1405 1406 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); 1407 } 1408 1409 static void mark_insn_zext(struct bpf_verifier_env *env, 1410 struct bpf_reg_state *reg) 1411 { 1412 s32 def_idx = reg->subreg_def; 1413 1414 if (def_idx == DEF_NOT_SUBREG) 1415 return; 1416 1417 env->insn_aux_data[def_idx - 1].zext_dst = true; 1418 /* The dst will be zero extended, so won't be sub-register anymore. */ 1419 reg->subreg_def = DEF_NOT_SUBREG; 1420 } 1421 1422 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1423 enum reg_arg_type t) 1424 { 1425 struct bpf_verifier_state *vstate = env->cur_state; 1426 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1427 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 1428 struct bpf_reg_state *reg, *regs = state->regs; 1429 bool rw64; 1430 1431 if (regno >= MAX_BPF_REG) { 1432 verbose(env, "R%d is invalid\n", regno); 1433 return -EINVAL; 1434 } 1435 1436 reg = ®s[regno]; 1437 rw64 = is_reg64(env, insn, regno, reg, t); 1438 if (t == SRC_OP) { 1439 /* check whether register used as source operand can be read */ 1440 if (reg->type == NOT_INIT) { 1441 verbose(env, "R%d !read_ok\n", regno); 1442 return -EACCES; 1443 } 1444 /* We don't need to worry about FP liveness because it's read-only */ 1445 if (regno == BPF_REG_FP) 1446 return 0; 1447 1448 if (rw64) 1449 mark_insn_zext(env, reg); 1450 1451 return mark_reg_read(env, reg, reg->parent, 1452 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 1453 } else { 1454 /* check whether register used as dest operand can be written to */ 1455 if (regno == BPF_REG_FP) { 1456 verbose(env, "frame pointer is read only\n"); 1457 return -EACCES; 1458 } 1459 reg->live |= REG_LIVE_WRITTEN; 1460 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 1461 if (t == DST_OP) 1462 mark_reg_unknown(env, regs, regno); 1463 } 1464 return 0; 1465 } 1466 1467 /* for any branch, call, exit record the history of jmps in the given state */ 1468 static int push_jmp_history(struct bpf_verifier_env *env, 1469 struct bpf_verifier_state *cur) 1470 { 1471 u32 cnt = cur->jmp_history_cnt; 1472 struct bpf_idx_pair *p; 1473 1474 cnt++; 1475 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 1476 if (!p) 1477 return -ENOMEM; 1478 p[cnt - 1].idx = env->insn_idx; 1479 p[cnt - 1].prev_idx = env->prev_insn_idx; 1480 cur->jmp_history = p; 1481 cur->jmp_history_cnt = cnt; 1482 return 0; 1483 } 1484 1485 /* Backtrack one insn at a time. If idx is not at the top of recorded 1486 * history then previous instruction came from straight line execution. 1487 */ 1488 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 1489 u32 *history) 1490 { 1491 u32 cnt = *history; 1492 1493 if (cnt && st->jmp_history[cnt - 1].idx == i) { 1494 i = st->jmp_history[cnt - 1].prev_idx; 1495 (*history)--; 1496 } else { 1497 i--; 1498 } 1499 return i; 1500 } 1501 1502 /* For given verifier state backtrack_insn() is called from the last insn to 1503 * the first insn. Its purpose is to compute a bitmask of registers and 1504 * stack slots that needs precision in the parent verifier state. 1505 */ 1506 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 1507 u32 *reg_mask, u64 *stack_mask) 1508 { 1509 const struct bpf_insn_cbs cbs = { 1510 .cb_print = verbose, 1511 .private_data = env, 1512 }; 1513 struct bpf_insn *insn = env->prog->insnsi + idx; 1514 u8 class = BPF_CLASS(insn->code); 1515 u8 opcode = BPF_OP(insn->code); 1516 u8 mode = BPF_MODE(insn->code); 1517 u32 dreg = 1u << insn->dst_reg; 1518 u32 sreg = 1u << insn->src_reg; 1519 u32 spi; 1520 1521 if (insn->code == 0) 1522 return 0; 1523 if (env->log.level & BPF_LOG_LEVEL) { 1524 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 1525 verbose(env, "%d: ", idx); 1526 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 1527 } 1528 1529 if (class == BPF_ALU || class == BPF_ALU64) { 1530 if (!(*reg_mask & dreg)) 1531 return 0; 1532 if (opcode == BPF_MOV) { 1533 if (BPF_SRC(insn->code) == BPF_X) { 1534 /* dreg = sreg 1535 * dreg needs precision after this insn 1536 * sreg needs precision before this insn 1537 */ 1538 *reg_mask &= ~dreg; 1539 *reg_mask |= sreg; 1540 } else { 1541 /* dreg = K 1542 * dreg needs precision after this insn. 1543 * Corresponding register is already marked 1544 * as precise=true in this verifier state. 1545 * No further markings in parent are necessary 1546 */ 1547 *reg_mask &= ~dreg; 1548 } 1549 } else { 1550 if (BPF_SRC(insn->code) == BPF_X) { 1551 /* dreg += sreg 1552 * both dreg and sreg need precision 1553 * before this insn 1554 */ 1555 *reg_mask |= sreg; 1556 } /* else dreg += K 1557 * dreg still needs precision before this insn 1558 */ 1559 } 1560 } else if (class == BPF_LDX) { 1561 if (!(*reg_mask & dreg)) 1562 return 0; 1563 *reg_mask &= ~dreg; 1564 1565 /* scalars can only be spilled into stack w/o losing precision. 1566 * Load from any other memory can be zero extended. 1567 * The desire to keep that precision is already indicated 1568 * by 'precise' mark in corresponding register of this state. 1569 * No further tracking necessary. 1570 */ 1571 if (insn->src_reg != BPF_REG_FP) 1572 return 0; 1573 if (BPF_SIZE(insn->code) != BPF_DW) 1574 return 0; 1575 1576 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 1577 * that [fp - off] slot contains scalar that needs to be 1578 * tracked with precision 1579 */ 1580 spi = (-insn->off - 1) / BPF_REG_SIZE; 1581 if (spi >= 64) { 1582 verbose(env, "BUG spi %d\n", spi); 1583 WARN_ONCE(1, "verifier backtracking bug"); 1584 return -EFAULT; 1585 } 1586 *stack_mask |= 1ull << spi; 1587 } else if (class == BPF_STX || class == BPF_ST) { 1588 if (*reg_mask & dreg) 1589 /* stx & st shouldn't be using _scalar_ dst_reg 1590 * to access memory. It means backtracking 1591 * encountered a case of pointer subtraction. 1592 */ 1593 return -ENOTSUPP; 1594 /* scalars can only be spilled into stack */ 1595 if (insn->dst_reg != BPF_REG_FP) 1596 return 0; 1597 if (BPF_SIZE(insn->code) != BPF_DW) 1598 return 0; 1599 spi = (-insn->off - 1) / BPF_REG_SIZE; 1600 if (spi >= 64) { 1601 verbose(env, "BUG spi %d\n", spi); 1602 WARN_ONCE(1, "verifier backtracking bug"); 1603 return -EFAULT; 1604 } 1605 if (!(*stack_mask & (1ull << spi))) 1606 return 0; 1607 *stack_mask &= ~(1ull << spi); 1608 if (class == BPF_STX) 1609 *reg_mask |= sreg; 1610 } else if (class == BPF_JMP || class == BPF_JMP32) { 1611 if (opcode == BPF_CALL) { 1612 if (insn->src_reg == BPF_PSEUDO_CALL) 1613 return -ENOTSUPP; 1614 /* regular helper call sets R0 */ 1615 *reg_mask &= ~1; 1616 if (*reg_mask & 0x3f) { 1617 /* if backtracing was looking for registers R1-R5 1618 * they should have been found already. 1619 */ 1620 verbose(env, "BUG regs %x\n", *reg_mask); 1621 WARN_ONCE(1, "verifier backtracking bug"); 1622 return -EFAULT; 1623 } 1624 } else if (opcode == BPF_EXIT) { 1625 return -ENOTSUPP; 1626 } 1627 } else if (class == BPF_LD) { 1628 if (!(*reg_mask & dreg)) 1629 return 0; 1630 *reg_mask &= ~dreg; 1631 /* It's ld_imm64 or ld_abs or ld_ind. 1632 * For ld_imm64 no further tracking of precision 1633 * into parent is necessary 1634 */ 1635 if (mode == BPF_IND || mode == BPF_ABS) 1636 /* to be analyzed */ 1637 return -ENOTSUPP; 1638 } 1639 return 0; 1640 } 1641 1642 /* the scalar precision tracking algorithm: 1643 * . at the start all registers have precise=false. 1644 * . scalar ranges are tracked as normal through alu and jmp insns. 1645 * . once precise value of the scalar register is used in: 1646 * . ptr + scalar alu 1647 * . if (scalar cond K|scalar) 1648 * . helper_call(.., scalar, ...) where ARG_CONST is expected 1649 * backtrack through the verifier states and mark all registers and 1650 * stack slots with spilled constants that these scalar regisers 1651 * should be precise. 1652 * . during state pruning two registers (or spilled stack slots) 1653 * are equivalent if both are not precise. 1654 * 1655 * Note the verifier cannot simply walk register parentage chain, 1656 * since many different registers and stack slots could have been 1657 * used to compute single precise scalar. 1658 * 1659 * The approach of starting with precise=true for all registers and then 1660 * backtrack to mark a register as not precise when the verifier detects 1661 * that program doesn't care about specific value (e.g., when helper 1662 * takes register as ARG_ANYTHING parameter) is not safe. 1663 * 1664 * It's ok to walk single parentage chain of the verifier states. 1665 * It's possible that this backtracking will go all the way till 1st insn. 1666 * All other branches will be explored for needing precision later. 1667 * 1668 * The backtracking needs to deal with cases like: 1669 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 1670 * r9 -= r8 1671 * r5 = r9 1672 * if r5 > 0x79f goto pc+7 1673 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 1674 * r5 += 1 1675 * ... 1676 * call bpf_perf_event_output#25 1677 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 1678 * 1679 * and this case: 1680 * r6 = 1 1681 * call foo // uses callee's r6 inside to compute r0 1682 * r0 += r6 1683 * if r0 == 0 goto 1684 * 1685 * to track above reg_mask/stack_mask needs to be independent for each frame. 1686 * 1687 * Also if parent's curframe > frame where backtracking started, 1688 * the verifier need to mark registers in both frames, otherwise callees 1689 * may incorrectly prune callers. This is similar to 1690 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 1691 * 1692 * For now backtracking falls back into conservative marking. 1693 */ 1694 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 1695 struct bpf_verifier_state *st) 1696 { 1697 struct bpf_func_state *func; 1698 struct bpf_reg_state *reg; 1699 int i, j; 1700 1701 /* big hammer: mark all scalars precise in this path. 1702 * pop_stack may still get !precise scalars. 1703 */ 1704 for (; st; st = st->parent) 1705 for (i = 0; i <= st->curframe; i++) { 1706 func = st->frame[i]; 1707 for (j = 0; j < BPF_REG_FP; j++) { 1708 reg = &func->regs[j]; 1709 if (reg->type != SCALAR_VALUE) 1710 continue; 1711 reg->precise = true; 1712 } 1713 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 1714 if (func->stack[j].slot_type[0] != STACK_SPILL) 1715 continue; 1716 reg = &func->stack[j].spilled_ptr; 1717 if (reg->type != SCALAR_VALUE) 1718 continue; 1719 reg->precise = true; 1720 } 1721 } 1722 } 1723 1724 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 1725 int spi) 1726 { 1727 struct bpf_verifier_state *st = env->cur_state; 1728 int first_idx = st->first_insn_idx; 1729 int last_idx = env->insn_idx; 1730 struct bpf_func_state *func; 1731 struct bpf_reg_state *reg; 1732 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 1733 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 1734 bool skip_first = true; 1735 bool new_marks = false; 1736 int i, err; 1737 1738 if (!env->allow_ptr_leaks) 1739 /* backtracking is root only for now */ 1740 return 0; 1741 1742 func = st->frame[st->curframe]; 1743 if (regno >= 0) { 1744 reg = &func->regs[regno]; 1745 if (reg->type != SCALAR_VALUE) { 1746 WARN_ONCE(1, "backtracing misuse"); 1747 return -EFAULT; 1748 } 1749 if (!reg->precise) 1750 new_marks = true; 1751 else 1752 reg_mask = 0; 1753 reg->precise = true; 1754 } 1755 1756 while (spi >= 0) { 1757 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 1758 stack_mask = 0; 1759 break; 1760 } 1761 reg = &func->stack[spi].spilled_ptr; 1762 if (reg->type != SCALAR_VALUE) { 1763 stack_mask = 0; 1764 break; 1765 } 1766 if (!reg->precise) 1767 new_marks = true; 1768 else 1769 stack_mask = 0; 1770 reg->precise = true; 1771 break; 1772 } 1773 1774 if (!new_marks) 1775 return 0; 1776 if (!reg_mask && !stack_mask) 1777 return 0; 1778 for (;;) { 1779 DECLARE_BITMAP(mask, 64); 1780 u32 history = st->jmp_history_cnt; 1781 1782 if (env->log.level & BPF_LOG_LEVEL) 1783 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 1784 for (i = last_idx;;) { 1785 if (skip_first) { 1786 err = 0; 1787 skip_first = false; 1788 } else { 1789 err = backtrack_insn(env, i, ®_mask, &stack_mask); 1790 } 1791 if (err == -ENOTSUPP) { 1792 mark_all_scalars_precise(env, st); 1793 return 0; 1794 } else if (err) { 1795 return err; 1796 } 1797 if (!reg_mask && !stack_mask) 1798 /* Found assignment(s) into tracked register in this state. 1799 * Since this state is already marked, just return. 1800 * Nothing to be tracked further in the parent state. 1801 */ 1802 return 0; 1803 if (i == first_idx) 1804 break; 1805 i = get_prev_insn_idx(st, i, &history); 1806 if (i >= env->prog->len) { 1807 /* This can happen if backtracking reached insn 0 1808 * and there are still reg_mask or stack_mask 1809 * to backtrack. 1810 * It means the backtracking missed the spot where 1811 * particular register was initialized with a constant. 1812 */ 1813 verbose(env, "BUG backtracking idx %d\n", i); 1814 WARN_ONCE(1, "verifier backtracking bug"); 1815 return -EFAULT; 1816 } 1817 } 1818 st = st->parent; 1819 if (!st) 1820 break; 1821 1822 new_marks = false; 1823 func = st->frame[st->curframe]; 1824 bitmap_from_u64(mask, reg_mask); 1825 for_each_set_bit(i, mask, 32) { 1826 reg = &func->regs[i]; 1827 if (reg->type != SCALAR_VALUE) { 1828 reg_mask &= ~(1u << i); 1829 continue; 1830 } 1831 if (!reg->precise) 1832 new_marks = true; 1833 reg->precise = true; 1834 } 1835 1836 bitmap_from_u64(mask, stack_mask); 1837 for_each_set_bit(i, mask, 64) { 1838 if (i >= func->allocated_stack / BPF_REG_SIZE) { 1839 /* the sequence of instructions: 1840 * 2: (bf) r3 = r10 1841 * 3: (7b) *(u64 *)(r3 -8) = r0 1842 * 4: (79) r4 = *(u64 *)(r10 -8) 1843 * doesn't contain jmps. It's backtracked 1844 * as a single block. 1845 * During backtracking insn 3 is not recognized as 1846 * stack access, so at the end of backtracking 1847 * stack slot fp-8 is still marked in stack_mask. 1848 * However the parent state may not have accessed 1849 * fp-8 and it's "unallocated" stack space. 1850 * In such case fallback to conservative. 1851 */ 1852 mark_all_scalars_precise(env, st); 1853 return 0; 1854 } 1855 1856 if (func->stack[i].slot_type[0] != STACK_SPILL) { 1857 stack_mask &= ~(1ull << i); 1858 continue; 1859 } 1860 reg = &func->stack[i].spilled_ptr; 1861 if (reg->type != SCALAR_VALUE) { 1862 stack_mask &= ~(1ull << i); 1863 continue; 1864 } 1865 if (!reg->precise) 1866 new_marks = true; 1867 reg->precise = true; 1868 } 1869 if (env->log.level & BPF_LOG_LEVEL) { 1870 print_verifier_state(env, func); 1871 verbose(env, "parent %s regs=%x stack=%llx marks\n", 1872 new_marks ? "didn't have" : "already had", 1873 reg_mask, stack_mask); 1874 } 1875 1876 if (!reg_mask && !stack_mask) 1877 break; 1878 if (!new_marks) 1879 break; 1880 1881 last_idx = st->last_insn_idx; 1882 first_idx = st->first_insn_idx; 1883 } 1884 return 0; 1885 } 1886 1887 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 1888 { 1889 return __mark_chain_precision(env, regno, -1); 1890 } 1891 1892 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 1893 { 1894 return __mark_chain_precision(env, -1, spi); 1895 } 1896 1897 static bool is_spillable_regtype(enum bpf_reg_type type) 1898 { 1899 switch (type) { 1900 case PTR_TO_MAP_VALUE: 1901 case PTR_TO_MAP_VALUE_OR_NULL: 1902 case PTR_TO_STACK: 1903 case PTR_TO_CTX: 1904 case PTR_TO_PACKET: 1905 case PTR_TO_PACKET_META: 1906 case PTR_TO_PACKET_END: 1907 case PTR_TO_FLOW_KEYS: 1908 case CONST_PTR_TO_MAP: 1909 case PTR_TO_SOCKET: 1910 case PTR_TO_SOCKET_OR_NULL: 1911 case PTR_TO_SOCK_COMMON: 1912 case PTR_TO_SOCK_COMMON_OR_NULL: 1913 case PTR_TO_TCP_SOCK: 1914 case PTR_TO_TCP_SOCK_OR_NULL: 1915 case PTR_TO_XDP_SOCK: 1916 case PTR_TO_BTF_ID: 1917 return true; 1918 default: 1919 return false; 1920 } 1921 } 1922 1923 /* Does this register contain a constant zero? */ 1924 static bool register_is_null(struct bpf_reg_state *reg) 1925 { 1926 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 1927 } 1928 1929 static bool register_is_const(struct bpf_reg_state *reg) 1930 { 1931 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 1932 } 1933 1934 static void save_register_state(struct bpf_func_state *state, 1935 int spi, struct bpf_reg_state *reg) 1936 { 1937 int i; 1938 1939 state->stack[spi].spilled_ptr = *reg; 1940 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1941 1942 for (i = 0; i < BPF_REG_SIZE; i++) 1943 state->stack[spi].slot_type[i] = STACK_SPILL; 1944 } 1945 1946 /* check_stack_read/write functions track spill/fill of registers, 1947 * stack boundary and alignment are checked in check_mem_access() 1948 */ 1949 static int check_stack_write(struct bpf_verifier_env *env, 1950 struct bpf_func_state *state, /* func where register points to */ 1951 int off, int size, int value_regno, int insn_idx) 1952 { 1953 struct bpf_func_state *cur; /* state of the current function */ 1954 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 1955 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 1956 struct bpf_reg_state *reg = NULL; 1957 1958 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 1959 state->acquired_refs, true); 1960 if (err) 1961 return err; 1962 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1963 * so it's aligned access and [off, off + size) are within stack limits 1964 */ 1965 if (!env->allow_ptr_leaks && 1966 state->stack[spi].slot_type[0] == STACK_SPILL && 1967 size != BPF_REG_SIZE) { 1968 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1969 return -EACCES; 1970 } 1971 1972 cur = env->cur_state->frame[env->cur_state->curframe]; 1973 if (value_regno >= 0) 1974 reg = &cur->regs[value_regno]; 1975 1976 if (reg && size == BPF_REG_SIZE && register_is_const(reg) && 1977 !register_is_null(reg) && env->allow_ptr_leaks) { 1978 if (dst_reg != BPF_REG_FP) { 1979 /* The backtracking logic can only recognize explicit 1980 * stack slot address like [fp - 8]. Other spill of 1981 * scalar via different register has to be conervative. 1982 * Backtrack from here and mark all registers as precise 1983 * that contributed into 'reg' being a constant. 1984 */ 1985 err = mark_chain_precision(env, value_regno); 1986 if (err) 1987 return err; 1988 } 1989 save_register_state(state, spi, reg); 1990 } else if (reg && is_spillable_regtype(reg->type)) { 1991 /* register containing pointer is being spilled into stack */ 1992 if (size != BPF_REG_SIZE) { 1993 verbose_linfo(env, insn_idx, "; "); 1994 verbose(env, "invalid size of register spill\n"); 1995 return -EACCES; 1996 } 1997 1998 if (state != cur && reg->type == PTR_TO_STACK) { 1999 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2000 return -EINVAL; 2001 } 2002 2003 if (!env->allow_ptr_leaks) { 2004 bool sanitize = false; 2005 2006 if (state->stack[spi].slot_type[0] == STACK_SPILL && 2007 register_is_const(&state->stack[spi].spilled_ptr)) 2008 sanitize = true; 2009 for (i = 0; i < BPF_REG_SIZE; i++) 2010 if (state->stack[spi].slot_type[i] == STACK_MISC) { 2011 sanitize = true; 2012 break; 2013 } 2014 if (sanitize) { 2015 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 2016 int soff = (-spi - 1) * BPF_REG_SIZE; 2017 2018 /* detected reuse of integer stack slot with a pointer 2019 * which means either llvm is reusing stack slot or 2020 * an attacker is trying to exploit CVE-2018-3639 2021 * (speculative store bypass) 2022 * Have to sanitize that slot with preemptive 2023 * store of zero. 2024 */ 2025 if (*poff && *poff != soff) { 2026 /* disallow programs where single insn stores 2027 * into two different stack slots, since verifier 2028 * cannot sanitize them 2029 */ 2030 verbose(env, 2031 "insn %d cannot access two stack slots fp%d and fp%d", 2032 insn_idx, *poff, soff); 2033 return -EINVAL; 2034 } 2035 *poff = soff; 2036 } 2037 } 2038 save_register_state(state, spi, reg); 2039 } else { 2040 u8 type = STACK_MISC; 2041 2042 /* regular write of data into stack destroys any spilled ptr */ 2043 state->stack[spi].spilled_ptr.type = NOT_INIT; 2044 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2045 if (state->stack[spi].slot_type[0] == STACK_SPILL) 2046 for (i = 0; i < BPF_REG_SIZE; i++) 2047 state->stack[spi].slot_type[i] = STACK_MISC; 2048 2049 /* only mark the slot as written if all 8 bytes were written 2050 * otherwise read propagation may incorrectly stop too soon 2051 * when stack slots are partially written. 2052 * This heuristic means that read propagation will be 2053 * conservative, since it will add reg_live_read marks 2054 * to stack slots all the way to first state when programs 2055 * writes+reads less than 8 bytes 2056 */ 2057 if (size == BPF_REG_SIZE) 2058 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2059 2060 /* when we zero initialize stack slots mark them as such */ 2061 if (reg && register_is_null(reg)) { 2062 /* backtracking doesn't work for STACK_ZERO yet. */ 2063 err = mark_chain_precision(env, value_regno); 2064 if (err) 2065 return err; 2066 type = STACK_ZERO; 2067 } 2068 2069 /* Mark slots affected by this stack write. */ 2070 for (i = 0; i < size; i++) 2071 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2072 type; 2073 } 2074 return 0; 2075 } 2076 2077 static int check_stack_read(struct bpf_verifier_env *env, 2078 struct bpf_func_state *reg_state /* func where register points to */, 2079 int off, int size, int value_regno) 2080 { 2081 struct bpf_verifier_state *vstate = env->cur_state; 2082 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2083 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2084 struct bpf_reg_state *reg; 2085 u8 *stype; 2086 2087 if (reg_state->allocated_stack <= slot) { 2088 verbose(env, "invalid read from stack off %d+0 size %d\n", 2089 off, size); 2090 return -EACCES; 2091 } 2092 stype = reg_state->stack[spi].slot_type; 2093 reg = ®_state->stack[spi].spilled_ptr; 2094 2095 if (stype[0] == STACK_SPILL) { 2096 if (size != BPF_REG_SIZE) { 2097 if (reg->type != SCALAR_VALUE) { 2098 verbose_linfo(env, env->insn_idx, "; "); 2099 verbose(env, "invalid size of register fill\n"); 2100 return -EACCES; 2101 } 2102 if (value_regno >= 0) { 2103 mark_reg_unknown(env, state->regs, value_regno); 2104 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2105 } 2106 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2107 return 0; 2108 } 2109 for (i = 1; i < BPF_REG_SIZE; i++) { 2110 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2111 verbose(env, "corrupted spill memory\n"); 2112 return -EACCES; 2113 } 2114 } 2115 2116 if (value_regno >= 0) { 2117 /* restore register state from stack */ 2118 state->regs[value_regno] = *reg; 2119 /* mark reg as written since spilled pointer state likely 2120 * has its liveness marks cleared by is_state_visited() 2121 * which resets stack/reg liveness for state transitions 2122 */ 2123 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2124 } 2125 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2126 } else { 2127 int zeros = 0; 2128 2129 for (i = 0; i < size; i++) { 2130 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 2131 continue; 2132 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 2133 zeros++; 2134 continue; 2135 } 2136 verbose(env, "invalid read from stack off %d+%d size %d\n", 2137 off, i, size); 2138 return -EACCES; 2139 } 2140 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2141 if (value_regno >= 0) { 2142 if (zeros == size) { 2143 /* any size read into register is zero extended, 2144 * so the whole register == const_zero 2145 */ 2146 __mark_reg_const_zero(&state->regs[value_regno]); 2147 /* backtracking doesn't support STACK_ZERO yet, 2148 * so mark it precise here, so that later 2149 * backtracking can stop here. 2150 * Backtracking may not need this if this register 2151 * doesn't participate in pointer adjustment. 2152 * Forward propagation of precise flag is not 2153 * necessary either. This mark is only to stop 2154 * backtracking. Any register that contributed 2155 * to const 0 was marked precise before spill. 2156 */ 2157 state->regs[value_regno].precise = true; 2158 } else { 2159 /* have read misc data from the stack */ 2160 mark_reg_unknown(env, state->regs, value_regno); 2161 } 2162 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2163 } 2164 } 2165 return 0; 2166 } 2167 2168 static int check_stack_access(struct bpf_verifier_env *env, 2169 const struct bpf_reg_state *reg, 2170 int off, int size) 2171 { 2172 /* Stack accesses must be at a fixed offset, so that we 2173 * can determine what type of data were returned. See 2174 * check_stack_read(). 2175 */ 2176 if (!tnum_is_const(reg->var_off)) { 2177 char tn_buf[48]; 2178 2179 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2180 verbose(env, "variable stack access var_off=%s off=%d size=%d\n", 2181 tn_buf, off, size); 2182 return -EACCES; 2183 } 2184 2185 if (off >= 0 || off < -MAX_BPF_STACK) { 2186 verbose(env, "invalid stack off=%d size=%d\n", off, size); 2187 return -EACCES; 2188 } 2189 2190 return 0; 2191 } 2192 2193 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 2194 int off, int size, enum bpf_access_type type) 2195 { 2196 struct bpf_reg_state *regs = cur_regs(env); 2197 struct bpf_map *map = regs[regno].map_ptr; 2198 u32 cap = bpf_map_flags_to_cap(map); 2199 2200 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 2201 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 2202 map->value_size, off, size); 2203 return -EACCES; 2204 } 2205 2206 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 2207 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 2208 map->value_size, off, size); 2209 return -EACCES; 2210 } 2211 2212 return 0; 2213 } 2214 2215 /* check read/write into map element returned by bpf_map_lookup_elem() */ 2216 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 2217 int size, bool zero_size_allowed) 2218 { 2219 struct bpf_reg_state *regs = cur_regs(env); 2220 struct bpf_map *map = regs[regno].map_ptr; 2221 2222 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2223 off + size > map->value_size) { 2224 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 2225 map->value_size, off, size); 2226 return -EACCES; 2227 } 2228 return 0; 2229 } 2230 2231 /* check read/write into a map element with possible variable offset */ 2232 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 2233 int off, int size, bool zero_size_allowed) 2234 { 2235 struct bpf_verifier_state *vstate = env->cur_state; 2236 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2237 struct bpf_reg_state *reg = &state->regs[regno]; 2238 int err; 2239 2240 /* We may have adjusted the register to this map value, so we 2241 * need to try adding each of min_value and max_value to off 2242 * to make sure our theoretical access will be safe. 2243 */ 2244 if (env->log.level & BPF_LOG_LEVEL) 2245 print_verifier_state(env, state); 2246 2247 /* The minimum value is only important with signed 2248 * comparisons where we can't assume the floor of a 2249 * value is 0. If we are using signed variables for our 2250 * index'es we need to make sure that whatever we use 2251 * will have a set floor within our range. 2252 */ 2253 if (reg->smin_value < 0 && 2254 (reg->smin_value == S64_MIN || 2255 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 2256 reg->smin_value + off < 0)) { 2257 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2258 regno); 2259 return -EACCES; 2260 } 2261 err = __check_map_access(env, regno, reg->smin_value + off, size, 2262 zero_size_allowed); 2263 if (err) { 2264 verbose(env, "R%d min value is outside of the array range\n", 2265 regno); 2266 return err; 2267 } 2268 2269 /* If we haven't set a max value then we need to bail since we can't be 2270 * sure we won't do bad things. 2271 * If reg->umax_value + off could overflow, treat that as unbounded too. 2272 */ 2273 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 2274 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 2275 regno); 2276 return -EACCES; 2277 } 2278 err = __check_map_access(env, regno, reg->umax_value + off, size, 2279 zero_size_allowed); 2280 if (err) 2281 verbose(env, "R%d max value is outside of the array range\n", 2282 regno); 2283 2284 if (map_value_has_spin_lock(reg->map_ptr)) { 2285 u32 lock = reg->map_ptr->spin_lock_off; 2286 2287 /* if any part of struct bpf_spin_lock can be touched by 2288 * load/store reject this program. 2289 * To check that [x1, x2) overlaps with [y1, y2) 2290 * it is sufficient to check x1 < y2 && y1 < x2. 2291 */ 2292 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 2293 lock < reg->umax_value + off + size) { 2294 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 2295 return -EACCES; 2296 } 2297 } 2298 return err; 2299 } 2300 2301 #define MAX_PACKET_OFF 0xffff 2302 2303 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 2304 const struct bpf_call_arg_meta *meta, 2305 enum bpf_access_type t) 2306 { 2307 switch (env->prog->type) { 2308 /* Program types only with direct read access go here! */ 2309 case BPF_PROG_TYPE_LWT_IN: 2310 case BPF_PROG_TYPE_LWT_OUT: 2311 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 2312 case BPF_PROG_TYPE_SK_REUSEPORT: 2313 case BPF_PROG_TYPE_FLOW_DISSECTOR: 2314 case BPF_PROG_TYPE_CGROUP_SKB: 2315 if (t == BPF_WRITE) 2316 return false; 2317 /* fallthrough */ 2318 2319 /* Program types with direct read + write access go here! */ 2320 case BPF_PROG_TYPE_SCHED_CLS: 2321 case BPF_PROG_TYPE_SCHED_ACT: 2322 case BPF_PROG_TYPE_XDP: 2323 case BPF_PROG_TYPE_LWT_XMIT: 2324 case BPF_PROG_TYPE_SK_SKB: 2325 case BPF_PROG_TYPE_SK_MSG: 2326 if (meta) 2327 return meta->pkt_access; 2328 2329 env->seen_direct_write = true; 2330 return true; 2331 2332 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 2333 if (t == BPF_WRITE) 2334 env->seen_direct_write = true; 2335 2336 return true; 2337 2338 default: 2339 return false; 2340 } 2341 } 2342 2343 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 2344 int off, int size, bool zero_size_allowed) 2345 { 2346 struct bpf_reg_state *regs = cur_regs(env); 2347 struct bpf_reg_state *reg = ®s[regno]; 2348 2349 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2350 (u64)off + size > reg->range) { 2351 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 2352 off, size, regno, reg->id, reg->off, reg->range); 2353 return -EACCES; 2354 } 2355 return 0; 2356 } 2357 2358 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 2359 int size, bool zero_size_allowed) 2360 { 2361 struct bpf_reg_state *regs = cur_regs(env); 2362 struct bpf_reg_state *reg = ®s[regno]; 2363 int err; 2364 2365 /* We may have added a variable offset to the packet pointer; but any 2366 * reg->range we have comes after that. We are only checking the fixed 2367 * offset. 2368 */ 2369 2370 /* We don't allow negative numbers, because we aren't tracking enough 2371 * detail to prove they're safe. 2372 */ 2373 if (reg->smin_value < 0) { 2374 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2375 regno); 2376 return -EACCES; 2377 } 2378 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 2379 if (err) { 2380 verbose(env, "R%d offset is outside of the packet\n", regno); 2381 return err; 2382 } 2383 2384 /* __check_packet_access has made sure "off + size - 1" is within u16. 2385 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 2386 * otherwise find_good_pkt_pointers would have refused to set range info 2387 * that __check_packet_access would have rejected this pkt access. 2388 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 2389 */ 2390 env->prog->aux->max_pkt_offset = 2391 max_t(u32, env->prog->aux->max_pkt_offset, 2392 off + reg->umax_value + size - 1); 2393 2394 return err; 2395 } 2396 2397 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 2398 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 2399 enum bpf_access_type t, enum bpf_reg_type *reg_type, 2400 u32 *btf_id) 2401 { 2402 struct bpf_insn_access_aux info = { 2403 .reg_type = *reg_type, 2404 .log = &env->log, 2405 }; 2406 2407 if (env->ops->is_valid_access && 2408 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 2409 /* A non zero info.ctx_field_size indicates that this field is a 2410 * candidate for later verifier transformation to load the whole 2411 * field and then apply a mask when accessed with a narrower 2412 * access than actual ctx access size. A zero info.ctx_field_size 2413 * will only allow for whole field access and rejects any other 2414 * type of narrower access. 2415 */ 2416 *reg_type = info.reg_type; 2417 2418 if (*reg_type == PTR_TO_BTF_ID) 2419 *btf_id = info.btf_id; 2420 else 2421 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 2422 /* remember the offset of last byte accessed in ctx */ 2423 if (env->prog->aux->max_ctx_offset < off + size) 2424 env->prog->aux->max_ctx_offset = off + size; 2425 return 0; 2426 } 2427 2428 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 2429 return -EACCES; 2430 } 2431 2432 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 2433 int size) 2434 { 2435 if (size < 0 || off < 0 || 2436 (u64)off + size > sizeof(struct bpf_flow_keys)) { 2437 verbose(env, "invalid access to flow keys off=%d size=%d\n", 2438 off, size); 2439 return -EACCES; 2440 } 2441 return 0; 2442 } 2443 2444 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 2445 u32 regno, int off, int size, 2446 enum bpf_access_type t) 2447 { 2448 struct bpf_reg_state *regs = cur_regs(env); 2449 struct bpf_reg_state *reg = ®s[regno]; 2450 struct bpf_insn_access_aux info = {}; 2451 bool valid; 2452 2453 if (reg->smin_value < 0) { 2454 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2455 regno); 2456 return -EACCES; 2457 } 2458 2459 switch (reg->type) { 2460 case PTR_TO_SOCK_COMMON: 2461 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 2462 break; 2463 case PTR_TO_SOCKET: 2464 valid = bpf_sock_is_valid_access(off, size, t, &info); 2465 break; 2466 case PTR_TO_TCP_SOCK: 2467 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 2468 break; 2469 case PTR_TO_XDP_SOCK: 2470 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 2471 break; 2472 default: 2473 valid = false; 2474 } 2475 2476 2477 if (valid) { 2478 env->insn_aux_data[insn_idx].ctx_field_size = 2479 info.ctx_field_size; 2480 return 0; 2481 } 2482 2483 verbose(env, "R%d invalid %s access off=%d size=%d\n", 2484 regno, reg_type_str[reg->type], off, size); 2485 2486 return -EACCES; 2487 } 2488 2489 static bool __is_pointer_value(bool allow_ptr_leaks, 2490 const struct bpf_reg_state *reg) 2491 { 2492 if (allow_ptr_leaks) 2493 return false; 2494 2495 return reg->type != SCALAR_VALUE; 2496 } 2497 2498 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2499 { 2500 return cur_regs(env) + regno; 2501 } 2502 2503 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 2504 { 2505 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 2506 } 2507 2508 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 2509 { 2510 const struct bpf_reg_state *reg = reg_state(env, regno); 2511 2512 return reg->type == PTR_TO_CTX; 2513 } 2514 2515 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 2516 { 2517 const struct bpf_reg_state *reg = reg_state(env, regno); 2518 2519 return type_is_sk_pointer(reg->type); 2520 } 2521 2522 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 2523 { 2524 const struct bpf_reg_state *reg = reg_state(env, regno); 2525 2526 return type_is_pkt_pointer(reg->type); 2527 } 2528 2529 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 2530 { 2531 const struct bpf_reg_state *reg = reg_state(env, regno); 2532 2533 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 2534 return reg->type == PTR_TO_FLOW_KEYS; 2535 } 2536 2537 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 2538 const struct bpf_reg_state *reg, 2539 int off, int size, bool strict) 2540 { 2541 struct tnum reg_off; 2542 int ip_align; 2543 2544 /* Byte size accesses are always allowed. */ 2545 if (!strict || size == 1) 2546 return 0; 2547 2548 /* For platforms that do not have a Kconfig enabling 2549 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 2550 * NET_IP_ALIGN is universally set to '2'. And on platforms 2551 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 2552 * to this code only in strict mode where we want to emulate 2553 * the NET_IP_ALIGN==2 checking. Therefore use an 2554 * unconditional IP align value of '2'. 2555 */ 2556 ip_align = 2; 2557 2558 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 2559 if (!tnum_is_aligned(reg_off, size)) { 2560 char tn_buf[48]; 2561 2562 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2563 verbose(env, 2564 "misaligned packet access off %d+%s+%d+%d size %d\n", 2565 ip_align, tn_buf, reg->off, off, size); 2566 return -EACCES; 2567 } 2568 2569 return 0; 2570 } 2571 2572 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 2573 const struct bpf_reg_state *reg, 2574 const char *pointer_desc, 2575 int off, int size, bool strict) 2576 { 2577 struct tnum reg_off; 2578 2579 /* Byte size accesses are always allowed. */ 2580 if (!strict || size == 1) 2581 return 0; 2582 2583 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 2584 if (!tnum_is_aligned(reg_off, size)) { 2585 char tn_buf[48]; 2586 2587 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2588 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 2589 pointer_desc, tn_buf, reg->off, off, size); 2590 return -EACCES; 2591 } 2592 2593 return 0; 2594 } 2595 2596 static int check_ptr_alignment(struct bpf_verifier_env *env, 2597 const struct bpf_reg_state *reg, int off, 2598 int size, bool strict_alignment_once) 2599 { 2600 bool strict = env->strict_alignment || strict_alignment_once; 2601 const char *pointer_desc = ""; 2602 2603 switch (reg->type) { 2604 case PTR_TO_PACKET: 2605 case PTR_TO_PACKET_META: 2606 /* Special case, because of NET_IP_ALIGN. Given metadata sits 2607 * right in front, treat it the very same way. 2608 */ 2609 return check_pkt_ptr_alignment(env, reg, off, size, strict); 2610 case PTR_TO_FLOW_KEYS: 2611 pointer_desc = "flow keys "; 2612 break; 2613 case PTR_TO_MAP_VALUE: 2614 pointer_desc = "value "; 2615 break; 2616 case PTR_TO_CTX: 2617 pointer_desc = "context "; 2618 break; 2619 case PTR_TO_STACK: 2620 pointer_desc = "stack "; 2621 /* The stack spill tracking logic in check_stack_write() 2622 * and check_stack_read() relies on stack accesses being 2623 * aligned. 2624 */ 2625 strict = true; 2626 break; 2627 case PTR_TO_SOCKET: 2628 pointer_desc = "sock "; 2629 break; 2630 case PTR_TO_SOCK_COMMON: 2631 pointer_desc = "sock_common "; 2632 break; 2633 case PTR_TO_TCP_SOCK: 2634 pointer_desc = "tcp_sock "; 2635 break; 2636 case PTR_TO_XDP_SOCK: 2637 pointer_desc = "xdp_sock "; 2638 break; 2639 default: 2640 break; 2641 } 2642 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 2643 strict); 2644 } 2645 2646 static int update_stack_depth(struct bpf_verifier_env *env, 2647 const struct bpf_func_state *func, 2648 int off) 2649 { 2650 u16 stack = env->subprog_info[func->subprogno].stack_depth; 2651 2652 if (stack >= -off) 2653 return 0; 2654 2655 /* update known max for given subprogram */ 2656 env->subprog_info[func->subprogno].stack_depth = -off; 2657 return 0; 2658 } 2659 2660 /* starting from main bpf function walk all instructions of the function 2661 * and recursively walk all callees that given function can call. 2662 * Ignore jump and exit insns. 2663 * Since recursion is prevented by check_cfg() this algorithm 2664 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 2665 */ 2666 static int check_max_stack_depth(struct bpf_verifier_env *env) 2667 { 2668 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 2669 struct bpf_subprog_info *subprog = env->subprog_info; 2670 struct bpf_insn *insn = env->prog->insnsi; 2671 int ret_insn[MAX_CALL_FRAMES]; 2672 int ret_prog[MAX_CALL_FRAMES]; 2673 2674 process_func: 2675 /* round up to 32-bytes, since this is granularity 2676 * of interpreter stack size 2677 */ 2678 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2679 if (depth > MAX_BPF_STACK) { 2680 verbose(env, "combined stack size of %d calls is %d. Too large\n", 2681 frame + 1, depth); 2682 return -EACCES; 2683 } 2684 continue_func: 2685 subprog_end = subprog[idx + 1].start; 2686 for (; i < subprog_end; i++) { 2687 if (insn[i].code != (BPF_JMP | BPF_CALL)) 2688 continue; 2689 if (insn[i].src_reg != BPF_PSEUDO_CALL) 2690 continue; 2691 /* remember insn and function to return to */ 2692 ret_insn[frame] = i + 1; 2693 ret_prog[frame] = idx; 2694 2695 /* find the callee */ 2696 i = i + insn[i].imm + 1; 2697 idx = find_subprog(env, i); 2698 if (idx < 0) { 2699 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2700 i); 2701 return -EFAULT; 2702 } 2703 frame++; 2704 if (frame >= MAX_CALL_FRAMES) { 2705 verbose(env, "the call stack of %d frames is too deep !\n", 2706 frame); 2707 return -E2BIG; 2708 } 2709 goto process_func; 2710 } 2711 /* end of for() loop means the last insn of the 'subprog' 2712 * was reached. Doesn't matter whether it was JA or EXIT 2713 */ 2714 if (frame == 0) 2715 return 0; 2716 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2717 frame--; 2718 i = ret_insn[frame]; 2719 idx = ret_prog[frame]; 2720 goto continue_func; 2721 } 2722 2723 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2724 static int get_callee_stack_depth(struct bpf_verifier_env *env, 2725 const struct bpf_insn *insn, int idx) 2726 { 2727 int start = idx + insn->imm + 1, subprog; 2728 2729 subprog = find_subprog(env, start); 2730 if (subprog < 0) { 2731 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2732 start); 2733 return -EFAULT; 2734 } 2735 return env->subprog_info[subprog].stack_depth; 2736 } 2737 #endif 2738 2739 int check_ctx_reg(struct bpf_verifier_env *env, 2740 const struct bpf_reg_state *reg, int regno) 2741 { 2742 /* Access to ctx or passing it to a helper is only allowed in 2743 * its original, unmodified form. 2744 */ 2745 2746 if (reg->off) { 2747 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 2748 regno, reg->off); 2749 return -EACCES; 2750 } 2751 2752 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2753 char tn_buf[48]; 2754 2755 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2756 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 2757 return -EACCES; 2758 } 2759 2760 return 0; 2761 } 2762 2763 static int check_tp_buffer_access(struct bpf_verifier_env *env, 2764 const struct bpf_reg_state *reg, 2765 int regno, int off, int size) 2766 { 2767 if (off < 0) { 2768 verbose(env, 2769 "R%d invalid tracepoint buffer access: off=%d, size=%d", 2770 regno, off, size); 2771 return -EACCES; 2772 } 2773 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2774 char tn_buf[48]; 2775 2776 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2777 verbose(env, 2778 "R%d invalid variable buffer offset: off=%d, var_off=%s", 2779 regno, off, tn_buf); 2780 return -EACCES; 2781 } 2782 if (off + size > env->prog->aux->max_tp_access) 2783 env->prog->aux->max_tp_access = off + size; 2784 2785 return 0; 2786 } 2787 2788 2789 /* truncate register to smaller size (in bytes) 2790 * must be called with size < BPF_REG_SIZE 2791 */ 2792 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 2793 { 2794 u64 mask; 2795 2796 /* clear high bits in bit representation */ 2797 reg->var_off = tnum_cast(reg->var_off, size); 2798 2799 /* fix arithmetic bounds */ 2800 mask = ((u64)1 << (size * 8)) - 1; 2801 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 2802 reg->umin_value &= mask; 2803 reg->umax_value &= mask; 2804 } else { 2805 reg->umin_value = 0; 2806 reg->umax_value = mask; 2807 } 2808 reg->smin_value = reg->umin_value; 2809 reg->smax_value = reg->umax_value; 2810 } 2811 2812 static bool bpf_map_is_rdonly(const struct bpf_map *map) 2813 { 2814 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 2815 } 2816 2817 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 2818 { 2819 void *ptr; 2820 u64 addr; 2821 int err; 2822 2823 err = map->ops->map_direct_value_addr(map, &addr, off); 2824 if (err) 2825 return err; 2826 ptr = (void *)(long)addr + off; 2827 2828 switch (size) { 2829 case sizeof(u8): 2830 *val = (u64)*(u8 *)ptr; 2831 break; 2832 case sizeof(u16): 2833 *val = (u64)*(u16 *)ptr; 2834 break; 2835 case sizeof(u32): 2836 *val = (u64)*(u32 *)ptr; 2837 break; 2838 case sizeof(u64): 2839 *val = *(u64 *)ptr; 2840 break; 2841 default: 2842 return -EINVAL; 2843 } 2844 return 0; 2845 } 2846 2847 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 2848 struct bpf_reg_state *regs, 2849 int regno, int off, int size, 2850 enum bpf_access_type atype, 2851 int value_regno) 2852 { 2853 struct bpf_reg_state *reg = regs + regno; 2854 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id); 2855 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off); 2856 u32 btf_id; 2857 int ret; 2858 2859 if (off < 0) { 2860 verbose(env, 2861 "R%d is ptr_%s invalid negative access: off=%d\n", 2862 regno, tname, off); 2863 return -EACCES; 2864 } 2865 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2866 char tn_buf[48]; 2867 2868 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2869 verbose(env, 2870 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 2871 regno, tname, off, tn_buf); 2872 return -EACCES; 2873 } 2874 2875 if (env->ops->btf_struct_access) { 2876 ret = env->ops->btf_struct_access(&env->log, t, off, size, 2877 atype, &btf_id); 2878 } else { 2879 if (atype != BPF_READ) { 2880 verbose(env, "only read is supported\n"); 2881 return -EACCES; 2882 } 2883 2884 ret = btf_struct_access(&env->log, t, off, size, atype, 2885 &btf_id); 2886 } 2887 2888 if (ret < 0) 2889 return ret; 2890 2891 if (atype == BPF_READ) { 2892 if (ret == SCALAR_VALUE) { 2893 mark_reg_unknown(env, regs, value_regno); 2894 return 0; 2895 } 2896 mark_reg_known_zero(env, regs, value_regno); 2897 regs[value_regno].type = PTR_TO_BTF_ID; 2898 regs[value_regno].btf_id = btf_id; 2899 } 2900 2901 return 0; 2902 } 2903 2904 /* check whether memory at (regno + off) is accessible for t = (read | write) 2905 * if t==write, value_regno is a register which value is stored into memory 2906 * if t==read, value_regno is a register which will receive the value from memory 2907 * if t==write && value_regno==-1, some unknown value is stored into memory 2908 * if t==read && value_regno==-1, don't care what we read from memory 2909 */ 2910 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 2911 int off, int bpf_size, enum bpf_access_type t, 2912 int value_regno, bool strict_alignment_once) 2913 { 2914 struct bpf_reg_state *regs = cur_regs(env); 2915 struct bpf_reg_state *reg = regs + regno; 2916 struct bpf_func_state *state; 2917 int size, err = 0; 2918 2919 size = bpf_size_to_bytes(bpf_size); 2920 if (size < 0) 2921 return size; 2922 2923 /* alignment checks will add in reg->off themselves */ 2924 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 2925 if (err) 2926 return err; 2927 2928 /* for access checks, reg->off is just part of off */ 2929 off += reg->off; 2930 2931 if (reg->type == PTR_TO_MAP_VALUE) { 2932 if (t == BPF_WRITE && value_regno >= 0 && 2933 is_pointer_value(env, value_regno)) { 2934 verbose(env, "R%d leaks addr into map\n", value_regno); 2935 return -EACCES; 2936 } 2937 err = check_map_access_type(env, regno, off, size, t); 2938 if (err) 2939 return err; 2940 err = check_map_access(env, regno, off, size, false); 2941 if (!err && t == BPF_READ && value_regno >= 0) { 2942 struct bpf_map *map = reg->map_ptr; 2943 2944 /* if map is read-only, track its contents as scalars */ 2945 if (tnum_is_const(reg->var_off) && 2946 bpf_map_is_rdonly(map) && 2947 map->ops->map_direct_value_addr) { 2948 int map_off = off + reg->var_off.value; 2949 u64 val = 0; 2950 2951 err = bpf_map_direct_read(map, map_off, size, 2952 &val); 2953 if (err) 2954 return err; 2955 2956 regs[value_regno].type = SCALAR_VALUE; 2957 __mark_reg_known(®s[value_regno], val); 2958 } else { 2959 mark_reg_unknown(env, regs, value_regno); 2960 } 2961 } 2962 } else if (reg->type == PTR_TO_CTX) { 2963 enum bpf_reg_type reg_type = SCALAR_VALUE; 2964 u32 btf_id = 0; 2965 2966 if (t == BPF_WRITE && value_regno >= 0 && 2967 is_pointer_value(env, value_regno)) { 2968 verbose(env, "R%d leaks addr into ctx\n", value_regno); 2969 return -EACCES; 2970 } 2971 2972 err = check_ctx_reg(env, reg, regno); 2973 if (err < 0) 2974 return err; 2975 2976 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf_id); 2977 if (err) 2978 verbose_linfo(env, insn_idx, "; "); 2979 if (!err && t == BPF_READ && value_regno >= 0) { 2980 /* ctx access returns either a scalar, or a 2981 * PTR_TO_PACKET[_META,_END]. In the latter 2982 * case, we know the offset is zero. 2983 */ 2984 if (reg_type == SCALAR_VALUE) { 2985 mark_reg_unknown(env, regs, value_regno); 2986 } else { 2987 mark_reg_known_zero(env, regs, 2988 value_regno); 2989 if (reg_type_may_be_null(reg_type)) 2990 regs[value_regno].id = ++env->id_gen; 2991 /* A load of ctx field could have different 2992 * actual load size with the one encoded in the 2993 * insn. When the dst is PTR, it is for sure not 2994 * a sub-register. 2995 */ 2996 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 2997 if (reg_type == PTR_TO_BTF_ID) 2998 regs[value_regno].btf_id = btf_id; 2999 } 3000 regs[value_regno].type = reg_type; 3001 } 3002 3003 } else if (reg->type == PTR_TO_STACK) { 3004 off += reg->var_off.value; 3005 err = check_stack_access(env, reg, off, size); 3006 if (err) 3007 return err; 3008 3009 state = func(env, reg); 3010 err = update_stack_depth(env, state, off); 3011 if (err) 3012 return err; 3013 3014 if (t == BPF_WRITE) 3015 err = check_stack_write(env, state, off, size, 3016 value_regno, insn_idx); 3017 else 3018 err = check_stack_read(env, state, off, size, 3019 value_regno); 3020 } else if (reg_is_pkt_pointer(reg)) { 3021 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 3022 verbose(env, "cannot write into packet\n"); 3023 return -EACCES; 3024 } 3025 if (t == BPF_WRITE && value_regno >= 0 && 3026 is_pointer_value(env, value_regno)) { 3027 verbose(env, "R%d leaks addr into packet\n", 3028 value_regno); 3029 return -EACCES; 3030 } 3031 err = check_packet_access(env, regno, off, size, false); 3032 if (!err && t == BPF_READ && value_regno >= 0) 3033 mark_reg_unknown(env, regs, value_regno); 3034 } else if (reg->type == PTR_TO_FLOW_KEYS) { 3035 if (t == BPF_WRITE && value_regno >= 0 && 3036 is_pointer_value(env, value_regno)) { 3037 verbose(env, "R%d leaks addr into flow keys\n", 3038 value_regno); 3039 return -EACCES; 3040 } 3041 3042 err = check_flow_keys_access(env, off, size); 3043 if (!err && t == BPF_READ && value_regno >= 0) 3044 mark_reg_unknown(env, regs, value_regno); 3045 } else if (type_is_sk_pointer(reg->type)) { 3046 if (t == BPF_WRITE) { 3047 verbose(env, "R%d cannot write into %s\n", 3048 regno, reg_type_str[reg->type]); 3049 return -EACCES; 3050 } 3051 err = check_sock_access(env, insn_idx, regno, off, size, t); 3052 if (!err && value_regno >= 0) 3053 mark_reg_unknown(env, regs, value_regno); 3054 } else if (reg->type == PTR_TO_TP_BUFFER) { 3055 err = check_tp_buffer_access(env, reg, regno, off, size); 3056 if (!err && t == BPF_READ && value_regno >= 0) 3057 mark_reg_unknown(env, regs, value_regno); 3058 } else if (reg->type == PTR_TO_BTF_ID) { 3059 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 3060 value_regno); 3061 } else { 3062 verbose(env, "R%d invalid mem access '%s'\n", regno, 3063 reg_type_str[reg->type]); 3064 return -EACCES; 3065 } 3066 3067 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 3068 regs[value_regno].type == SCALAR_VALUE) { 3069 /* b/h/w load zero-extends, mark upper bits as known 0 */ 3070 coerce_reg_to_size(®s[value_regno], size); 3071 } 3072 return err; 3073 } 3074 3075 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 3076 { 3077 int err; 3078 3079 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 3080 insn->imm != 0) { 3081 verbose(env, "BPF_XADD uses reserved fields\n"); 3082 return -EINVAL; 3083 } 3084 3085 /* check src1 operand */ 3086 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3087 if (err) 3088 return err; 3089 3090 /* check src2 operand */ 3091 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3092 if (err) 3093 return err; 3094 3095 if (is_pointer_value(env, insn->src_reg)) { 3096 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 3097 return -EACCES; 3098 } 3099 3100 if (is_ctx_reg(env, insn->dst_reg) || 3101 is_pkt_reg(env, insn->dst_reg) || 3102 is_flow_key_reg(env, insn->dst_reg) || 3103 is_sk_reg(env, insn->dst_reg)) { 3104 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 3105 insn->dst_reg, 3106 reg_type_str[reg_state(env, insn->dst_reg)->type]); 3107 return -EACCES; 3108 } 3109 3110 /* check whether atomic_add can read the memory */ 3111 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3112 BPF_SIZE(insn->code), BPF_READ, -1, true); 3113 if (err) 3114 return err; 3115 3116 /* check whether atomic_add can write into the same memory */ 3117 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3118 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 3119 } 3120 3121 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, 3122 int off, int access_size, 3123 bool zero_size_allowed) 3124 { 3125 struct bpf_reg_state *reg = reg_state(env, regno); 3126 3127 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 3128 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 3129 if (tnum_is_const(reg->var_off)) { 3130 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 3131 regno, off, access_size); 3132 } else { 3133 char tn_buf[48]; 3134 3135 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3136 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", 3137 regno, tn_buf, access_size); 3138 } 3139 return -EACCES; 3140 } 3141 return 0; 3142 } 3143 3144 /* when register 'regno' is passed into function that will read 'access_size' 3145 * bytes from that pointer, make sure that it's within stack boundary 3146 * and all elements of stack are initialized. 3147 * Unlike most pointer bounds-checking functions, this one doesn't take an 3148 * 'off' argument, so it has to add in reg->off itself. 3149 */ 3150 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 3151 int access_size, bool zero_size_allowed, 3152 struct bpf_call_arg_meta *meta) 3153 { 3154 struct bpf_reg_state *reg = reg_state(env, regno); 3155 struct bpf_func_state *state = func(env, reg); 3156 int err, min_off, max_off, i, j, slot, spi; 3157 3158 if (reg->type != PTR_TO_STACK) { 3159 /* Allow zero-byte read from NULL, regardless of pointer type */ 3160 if (zero_size_allowed && access_size == 0 && 3161 register_is_null(reg)) 3162 return 0; 3163 3164 verbose(env, "R%d type=%s expected=%s\n", regno, 3165 reg_type_str[reg->type], 3166 reg_type_str[PTR_TO_STACK]); 3167 return -EACCES; 3168 } 3169 3170 if (tnum_is_const(reg->var_off)) { 3171 min_off = max_off = reg->var_off.value + reg->off; 3172 err = __check_stack_boundary(env, regno, min_off, access_size, 3173 zero_size_allowed); 3174 if (err) 3175 return err; 3176 } else { 3177 /* Variable offset is prohibited for unprivileged mode for 3178 * simplicity since it requires corresponding support in 3179 * Spectre masking for stack ALU. 3180 * See also retrieve_ptr_limit(). 3181 */ 3182 if (!env->allow_ptr_leaks) { 3183 char tn_buf[48]; 3184 3185 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3186 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", 3187 regno, tn_buf); 3188 return -EACCES; 3189 } 3190 /* Only initialized buffer on stack is allowed to be accessed 3191 * with variable offset. With uninitialized buffer it's hard to 3192 * guarantee that whole memory is marked as initialized on 3193 * helper return since specific bounds are unknown what may 3194 * cause uninitialized stack leaking. 3195 */ 3196 if (meta && meta->raw_mode) 3197 meta = NULL; 3198 3199 if (reg->smax_value >= BPF_MAX_VAR_OFF || 3200 reg->smax_value <= -BPF_MAX_VAR_OFF) { 3201 verbose(env, "R%d unbounded indirect variable offset stack access\n", 3202 regno); 3203 return -EACCES; 3204 } 3205 min_off = reg->smin_value + reg->off; 3206 max_off = reg->smax_value + reg->off; 3207 err = __check_stack_boundary(env, regno, min_off, access_size, 3208 zero_size_allowed); 3209 if (err) { 3210 verbose(env, "R%d min value is outside of stack bound\n", 3211 regno); 3212 return err; 3213 } 3214 err = __check_stack_boundary(env, regno, max_off, access_size, 3215 zero_size_allowed); 3216 if (err) { 3217 verbose(env, "R%d max value is outside of stack bound\n", 3218 regno); 3219 return err; 3220 } 3221 } 3222 3223 if (meta && meta->raw_mode) { 3224 meta->access_size = access_size; 3225 meta->regno = regno; 3226 return 0; 3227 } 3228 3229 for (i = min_off; i < max_off + access_size; i++) { 3230 u8 *stype; 3231 3232 slot = -i - 1; 3233 spi = slot / BPF_REG_SIZE; 3234 if (state->allocated_stack <= slot) 3235 goto err; 3236 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3237 if (*stype == STACK_MISC) 3238 goto mark; 3239 if (*stype == STACK_ZERO) { 3240 /* helper can write anything into the stack */ 3241 *stype = STACK_MISC; 3242 goto mark; 3243 } 3244 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3245 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) { 3246 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 3247 for (j = 0; j < BPF_REG_SIZE; j++) 3248 state->stack[spi].slot_type[j] = STACK_MISC; 3249 goto mark; 3250 } 3251 3252 err: 3253 if (tnum_is_const(reg->var_off)) { 3254 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 3255 min_off, i - min_off, access_size); 3256 } else { 3257 char tn_buf[48]; 3258 3259 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3260 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", 3261 tn_buf, i - min_off, access_size); 3262 } 3263 return -EACCES; 3264 mark: 3265 /* reading any byte out of 8-byte 'spill_slot' will cause 3266 * the whole slot to be marked as 'read' 3267 */ 3268 mark_reg_read(env, &state->stack[spi].spilled_ptr, 3269 state->stack[spi].spilled_ptr.parent, 3270 REG_LIVE_READ64); 3271 } 3272 return update_stack_depth(env, state, min_off); 3273 } 3274 3275 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 3276 int access_size, bool zero_size_allowed, 3277 struct bpf_call_arg_meta *meta) 3278 { 3279 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3280 3281 switch (reg->type) { 3282 case PTR_TO_PACKET: 3283 case PTR_TO_PACKET_META: 3284 return check_packet_access(env, regno, reg->off, access_size, 3285 zero_size_allowed); 3286 case PTR_TO_MAP_VALUE: 3287 if (check_map_access_type(env, regno, reg->off, access_size, 3288 meta && meta->raw_mode ? BPF_WRITE : 3289 BPF_READ)) 3290 return -EACCES; 3291 return check_map_access(env, regno, reg->off, access_size, 3292 zero_size_allowed); 3293 default: /* scalar_value|ptr_to_stack or invalid ptr */ 3294 return check_stack_boundary(env, regno, access_size, 3295 zero_size_allowed, meta); 3296 } 3297 } 3298 3299 /* Implementation details: 3300 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 3301 * Two bpf_map_lookups (even with the same key) will have different reg->id. 3302 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 3303 * value_or_null->value transition, since the verifier only cares about 3304 * the range of access to valid map value pointer and doesn't care about actual 3305 * address of the map element. 3306 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 3307 * reg->id > 0 after value_or_null->value transition. By doing so 3308 * two bpf_map_lookups will be considered two different pointers that 3309 * point to different bpf_spin_locks. 3310 * The verifier allows taking only one bpf_spin_lock at a time to avoid 3311 * dead-locks. 3312 * Since only one bpf_spin_lock is allowed the checks are simpler than 3313 * reg_is_refcounted() logic. The verifier needs to remember only 3314 * one spin_lock instead of array of acquired_refs. 3315 * cur_state->active_spin_lock remembers which map value element got locked 3316 * and clears it after bpf_spin_unlock. 3317 */ 3318 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 3319 bool is_lock) 3320 { 3321 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3322 struct bpf_verifier_state *cur = env->cur_state; 3323 bool is_const = tnum_is_const(reg->var_off); 3324 struct bpf_map *map = reg->map_ptr; 3325 u64 val = reg->var_off.value; 3326 3327 if (reg->type != PTR_TO_MAP_VALUE) { 3328 verbose(env, "R%d is not a pointer to map_value\n", regno); 3329 return -EINVAL; 3330 } 3331 if (!is_const) { 3332 verbose(env, 3333 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 3334 regno); 3335 return -EINVAL; 3336 } 3337 if (!map->btf) { 3338 verbose(env, 3339 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 3340 map->name); 3341 return -EINVAL; 3342 } 3343 if (!map_value_has_spin_lock(map)) { 3344 if (map->spin_lock_off == -E2BIG) 3345 verbose(env, 3346 "map '%s' has more than one 'struct bpf_spin_lock'\n", 3347 map->name); 3348 else if (map->spin_lock_off == -ENOENT) 3349 verbose(env, 3350 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 3351 map->name); 3352 else 3353 verbose(env, 3354 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 3355 map->name); 3356 return -EINVAL; 3357 } 3358 if (map->spin_lock_off != val + reg->off) { 3359 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 3360 val + reg->off); 3361 return -EINVAL; 3362 } 3363 if (is_lock) { 3364 if (cur->active_spin_lock) { 3365 verbose(env, 3366 "Locking two bpf_spin_locks are not allowed\n"); 3367 return -EINVAL; 3368 } 3369 cur->active_spin_lock = reg->id; 3370 } else { 3371 if (!cur->active_spin_lock) { 3372 verbose(env, "bpf_spin_unlock without taking a lock\n"); 3373 return -EINVAL; 3374 } 3375 if (cur->active_spin_lock != reg->id) { 3376 verbose(env, "bpf_spin_unlock of different lock\n"); 3377 return -EINVAL; 3378 } 3379 cur->active_spin_lock = 0; 3380 } 3381 return 0; 3382 } 3383 3384 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 3385 { 3386 return type == ARG_PTR_TO_MEM || 3387 type == ARG_PTR_TO_MEM_OR_NULL || 3388 type == ARG_PTR_TO_UNINIT_MEM; 3389 } 3390 3391 static bool arg_type_is_mem_size(enum bpf_arg_type type) 3392 { 3393 return type == ARG_CONST_SIZE || 3394 type == ARG_CONST_SIZE_OR_ZERO; 3395 } 3396 3397 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 3398 { 3399 return type == ARG_PTR_TO_INT || 3400 type == ARG_PTR_TO_LONG; 3401 } 3402 3403 static int int_ptr_type_to_size(enum bpf_arg_type type) 3404 { 3405 if (type == ARG_PTR_TO_INT) 3406 return sizeof(u32); 3407 else if (type == ARG_PTR_TO_LONG) 3408 return sizeof(u64); 3409 3410 return -EINVAL; 3411 } 3412 3413 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 3414 enum bpf_arg_type arg_type, 3415 struct bpf_call_arg_meta *meta) 3416 { 3417 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3418 enum bpf_reg_type expected_type, type = reg->type; 3419 int err = 0; 3420 3421 if (arg_type == ARG_DONTCARE) 3422 return 0; 3423 3424 err = check_reg_arg(env, regno, SRC_OP); 3425 if (err) 3426 return err; 3427 3428 if (arg_type == ARG_ANYTHING) { 3429 if (is_pointer_value(env, regno)) { 3430 verbose(env, "R%d leaks addr into helper function\n", 3431 regno); 3432 return -EACCES; 3433 } 3434 return 0; 3435 } 3436 3437 if (type_is_pkt_pointer(type) && 3438 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 3439 verbose(env, "helper access to the packet is not allowed\n"); 3440 return -EACCES; 3441 } 3442 3443 if (arg_type == ARG_PTR_TO_MAP_KEY || 3444 arg_type == ARG_PTR_TO_MAP_VALUE || 3445 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 3446 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 3447 expected_type = PTR_TO_STACK; 3448 if (register_is_null(reg) && 3449 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) 3450 /* final test in check_stack_boundary() */; 3451 else if (!type_is_pkt_pointer(type) && 3452 type != PTR_TO_MAP_VALUE && 3453 type != expected_type) 3454 goto err_type; 3455 } else if (arg_type == ARG_CONST_SIZE || 3456 arg_type == ARG_CONST_SIZE_OR_ZERO) { 3457 expected_type = SCALAR_VALUE; 3458 if (type != expected_type) 3459 goto err_type; 3460 } else if (arg_type == ARG_CONST_MAP_PTR) { 3461 expected_type = CONST_PTR_TO_MAP; 3462 if (type != expected_type) 3463 goto err_type; 3464 } else if (arg_type == ARG_PTR_TO_CTX) { 3465 expected_type = PTR_TO_CTX; 3466 if (type != expected_type) 3467 goto err_type; 3468 err = check_ctx_reg(env, reg, regno); 3469 if (err < 0) 3470 return err; 3471 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) { 3472 expected_type = PTR_TO_SOCK_COMMON; 3473 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */ 3474 if (!type_is_sk_pointer(type)) 3475 goto err_type; 3476 if (reg->ref_obj_id) { 3477 if (meta->ref_obj_id) { 3478 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 3479 regno, reg->ref_obj_id, 3480 meta->ref_obj_id); 3481 return -EFAULT; 3482 } 3483 meta->ref_obj_id = reg->ref_obj_id; 3484 } 3485 } else if (arg_type == ARG_PTR_TO_SOCKET) { 3486 expected_type = PTR_TO_SOCKET; 3487 if (type != expected_type) 3488 goto err_type; 3489 } else if (arg_type == ARG_PTR_TO_BTF_ID) { 3490 expected_type = PTR_TO_BTF_ID; 3491 if (type != expected_type) 3492 goto err_type; 3493 if (reg->btf_id != meta->btf_id) { 3494 verbose(env, "Helper has type %s got %s in R%d\n", 3495 kernel_type_name(meta->btf_id), 3496 kernel_type_name(reg->btf_id), regno); 3497 3498 return -EACCES; 3499 } 3500 if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) { 3501 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 3502 regno); 3503 return -EACCES; 3504 } 3505 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 3506 if (meta->func_id == BPF_FUNC_spin_lock) { 3507 if (process_spin_lock(env, regno, true)) 3508 return -EACCES; 3509 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 3510 if (process_spin_lock(env, regno, false)) 3511 return -EACCES; 3512 } else { 3513 verbose(env, "verifier internal error\n"); 3514 return -EFAULT; 3515 } 3516 } else if (arg_type_is_mem_ptr(arg_type)) { 3517 expected_type = PTR_TO_STACK; 3518 /* One exception here. In case function allows for NULL to be 3519 * passed in as argument, it's a SCALAR_VALUE type. Final test 3520 * happens during stack boundary checking. 3521 */ 3522 if (register_is_null(reg) && 3523 arg_type == ARG_PTR_TO_MEM_OR_NULL) 3524 /* final test in check_stack_boundary() */; 3525 else if (!type_is_pkt_pointer(type) && 3526 type != PTR_TO_MAP_VALUE && 3527 type != expected_type) 3528 goto err_type; 3529 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 3530 } else if (arg_type_is_int_ptr(arg_type)) { 3531 expected_type = PTR_TO_STACK; 3532 if (!type_is_pkt_pointer(type) && 3533 type != PTR_TO_MAP_VALUE && 3534 type != expected_type) 3535 goto err_type; 3536 } else { 3537 verbose(env, "unsupported arg_type %d\n", arg_type); 3538 return -EFAULT; 3539 } 3540 3541 if (arg_type == ARG_CONST_MAP_PTR) { 3542 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 3543 meta->map_ptr = reg->map_ptr; 3544 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 3545 /* bpf_map_xxx(..., map_ptr, ..., key) call: 3546 * check that [key, key + map->key_size) are within 3547 * stack limits and initialized 3548 */ 3549 if (!meta->map_ptr) { 3550 /* in function declaration map_ptr must come before 3551 * map_key, so that it's verified and known before 3552 * we have to check map_key here. Otherwise it means 3553 * that kernel subsystem misconfigured verifier 3554 */ 3555 verbose(env, "invalid map_ptr to access map->key\n"); 3556 return -EACCES; 3557 } 3558 err = check_helper_mem_access(env, regno, 3559 meta->map_ptr->key_size, false, 3560 NULL); 3561 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 3562 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 3563 !register_is_null(reg)) || 3564 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 3565 /* bpf_map_xxx(..., map_ptr, ..., value) call: 3566 * check [value, value + map->value_size) validity 3567 */ 3568 if (!meta->map_ptr) { 3569 /* kernel subsystem misconfigured verifier */ 3570 verbose(env, "invalid map_ptr to access map->value\n"); 3571 return -EACCES; 3572 } 3573 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 3574 err = check_helper_mem_access(env, regno, 3575 meta->map_ptr->value_size, false, 3576 meta); 3577 } else if (arg_type_is_mem_size(arg_type)) { 3578 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 3579 3580 /* remember the mem_size which may be used later 3581 * to refine return values. 3582 */ 3583 meta->msize_smax_value = reg->smax_value; 3584 meta->msize_umax_value = reg->umax_value; 3585 3586 /* The register is SCALAR_VALUE; the access check 3587 * happens using its boundaries. 3588 */ 3589 if (!tnum_is_const(reg->var_off)) 3590 /* For unprivileged variable accesses, disable raw 3591 * mode so that the program is required to 3592 * initialize all the memory that the helper could 3593 * just partially fill up. 3594 */ 3595 meta = NULL; 3596 3597 if (reg->smin_value < 0) { 3598 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 3599 regno); 3600 return -EACCES; 3601 } 3602 3603 if (reg->umin_value == 0) { 3604 err = check_helper_mem_access(env, regno - 1, 0, 3605 zero_size_allowed, 3606 meta); 3607 if (err) 3608 return err; 3609 } 3610 3611 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 3612 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 3613 regno); 3614 return -EACCES; 3615 } 3616 err = check_helper_mem_access(env, regno - 1, 3617 reg->umax_value, 3618 zero_size_allowed, meta); 3619 if (!err) 3620 err = mark_chain_precision(env, regno); 3621 } else if (arg_type_is_int_ptr(arg_type)) { 3622 int size = int_ptr_type_to_size(arg_type); 3623 3624 err = check_helper_mem_access(env, regno, size, false, meta); 3625 if (err) 3626 return err; 3627 err = check_ptr_alignment(env, reg, 0, size, true); 3628 } 3629 3630 return err; 3631 err_type: 3632 verbose(env, "R%d type=%s expected=%s\n", regno, 3633 reg_type_str[type], reg_type_str[expected_type]); 3634 return -EACCES; 3635 } 3636 3637 static int check_map_func_compatibility(struct bpf_verifier_env *env, 3638 struct bpf_map *map, int func_id) 3639 { 3640 if (!map) 3641 return 0; 3642 3643 /* We need a two way check, first is from map perspective ... */ 3644 switch (map->map_type) { 3645 case BPF_MAP_TYPE_PROG_ARRAY: 3646 if (func_id != BPF_FUNC_tail_call) 3647 goto error; 3648 break; 3649 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 3650 if (func_id != BPF_FUNC_perf_event_read && 3651 func_id != BPF_FUNC_perf_event_output && 3652 func_id != BPF_FUNC_skb_output && 3653 func_id != BPF_FUNC_perf_event_read_value) 3654 goto error; 3655 break; 3656 case BPF_MAP_TYPE_STACK_TRACE: 3657 if (func_id != BPF_FUNC_get_stackid) 3658 goto error; 3659 break; 3660 case BPF_MAP_TYPE_CGROUP_ARRAY: 3661 if (func_id != BPF_FUNC_skb_under_cgroup && 3662 func_id != BPF_FUNC_current_task_under_cgroup) 3663 goto error; 3664 break; 3665 case BPF_MAP_TYPE_CGROUP_STORAGE: 3666 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 3667 if (func_id != BPF_FUNC_get_local_storage) 3668 goto error; 3669 break; 3670 case BPF_MAP_TYPE_DEVMAP: 3671 case BPF_MAP_TYPE_DEVMAP_HASH: 3672 if (func_id != BPF_FUNC_redirect_map && 3673 func_id != BPF_FUNC_map_lookup_elem) 3674 goto error; 3675 break; 3676 /* Restrict bpf side of cpumap and xskmap, open when use-cases 3677 * appear. 3678 */ 3679 case BPF_MAP_TYPE_CPUMAP: 3680 if (func_id != BPF_FUNC_redirect_map) 3681 goto error; 3682 break; 3683 case BPF_MAP_TYPE_XSKMAP: 3684 if (func_id != BPF_FUNC_redirect_map && 3685 func_id != BPF_FUNC_map_lookup_elem) 3686 goto error; 3687 break; 3688 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 3689 case BPF_MAP_TYPE_HASH_OF_MAPS: 3690 if (func_id != BPF_FUNC_map_lookup_elem) 3691 goto error; 3692 break; 3693 case BPF_MAP_TYPE_SOCKMAP: 3694 if (func_id != BPF_FUNC_sk_redirect_map && 3695 func_id != BPF_FUNC_sock_map_update && 3696 func_id != BPF_FUNC_map_delete_elem && 3697 func_id != BPF_FUNC_msg_redirect_map && 3698 func_id != BPF_FUNC_sk_select_reuseport) 3699 goto error; 3700 break; 3701 case BPF_MAP_TYPE_SOCKHASH: 3702 if (func_id != BPF_FUNC_sk_redirect_hash && 3703 func_id != BPF_FUNC_sock_hash_update && 3704 func_id != BPF_FUNC_map_delete_elem && 3705 func_id != BPF_FUNC_msg_redirect_hash && 3706 func_id != BPF_FUNC_sk_select_reuseport) 3707 goto error; 3708 break; 3709 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 3710 if (func_id != BPF_FUNC_sk_select_reuseport) 3711 goto error; 3712 break; 3713 case BPF_MAP_TYPE_QUEUE: 3714 case BPF_MAP_TYPE_STACK: 3715 if (func_id != BPF_FUNC_map_peek_elem && 3716 func_id != BPF_FUNC_map_pop_elem && 3717 func_id != BPF_FUNC_map_push_elem) 3718 goto error; 3719 break; 3720 case BPF_MAP_TYPE_SK_STORAGE: 3721 if (func_id != BPF_FUNC_sk_storage_get && 3722 func_id != BPF_FUNC_sk_storage_delete) 3723 goto error; 3724 break; 3725 default: 3726 break; 3727 } 3728 3729 /* ... and second from the function itself. */ 3730 switch (func_id) { 3731 case BPF_FUNC_tail_call: 3732 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 3733 goto error; 3734 if (env->subprog_cnt > 1) { 3735 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 3736 return -EINVAL; 3737 } 3738 break; 3739 case BPF_FUNC_perf_event_read: 3740 case BPF_FUNC_perf_event_output: 3741 case BPF_FUNC_perf_event_read_value: 3742 case BPF_FUNC_skb_output: 3743 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 3744 goto error; 3745 break; 3746 case BPF_FUNC_get_stackid: 3747 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 3748 goto error; 3749 break; 3750 case BPF_FUNC_current_task_under_cgroup: 3751 case BPF_FUNC_skb_under_cgroup: 3752 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 3753 goto error; 3754 break; 3755 case BPF_FUNC_redirect_map: 3756 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 3757 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 3758 map->map_type != BPF_MAP_TYPE_CPUMAP && 3759 map->map_type != BPF_MAP_TYPE_XSKMAP) 3760 goto error; 3761 break; 3762 case BPF_FUNC_sk_redirect_map: 3763 case BPF_FUNC_msg_redirect_map: 3764 case BPF_FUNC_sock_map_update: 3765 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 3766 goto error; 3767 break; 3768 case BPF_FUNC_sk_redirect_hash: 3769 case BPF_FUNC_msg_redirect_hash: 3770 case BPF_FUNC_sock_hash_update: 3771 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 3772 goto error; 3773 break; 3774 case BPF_FUNC_get_local_storage: 3775 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 3776 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 3777 goto error; 3778 break; 3779 case BPF_FUNC_sk_select_reuseport: 3780 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 3781 map->map_type != BPF_MAP_TYPE_SOCKMAP && 3782 map->map_type != BPF_MAP_TYPE_SOCKHASH) 3783 goto error; 3784 break; 3785 case BPF_FUNC_map_peek_elem: 3786 case BPF_FUNC_map_pop_elem: 3787 case BPF_FUNC_map_push_elem: 3788 if (map->map_type != BPF_MAP_TYPE_QUEUE && 3789 map->map_type != BPF_MAP_TYPE_STACK) 3790 goto error; 3791 break; 3792 case BPF_FUNC_sk_storage_get: 3793 case BPF_FUNC_sk_storage_delete: 3794 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 3795 goto error; 3796 break; 3797 default: 3798 break; 3799 } 3800 3801 return 0; 3802 error: 3803 verbose(env, "cannot pass map_type %d into func %s#%d\n", 3804 map->map_type, func_id_name(func_id), func_id); 3805 return -EINVAL; 3806 } 3807 3808 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 3809 { 3810 int count = 0; 3811 3812 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 3813 count++; 3814 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 3815 count++; 3816 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 3817 count++; 3818 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 3819 count++; 3820 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 3821 count++; 3822 3823 /* We only support one arg being in raw mode at the moment, 3824 * which is sufficient for the helper functions we have 3825 * right now. 3826 */ 3827 return count <= 1; 3828 } 3829 3830 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 3831 enum bpf_arg_type arg_next) 3832 { 3833 return (arg_type_is_mem_ptr(arg_curr) && 3834 !arg_type_is_mem_size(arg_next)) || 3835 (!arg_type_is_mem_ptr(arg_curr) && 3836 arg_type_is_mem_size(arg_next)); 3837 } 3838 3839 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 3840 { 3841 /* bpf_xxx(..., buf, len) call will access 'len' 3842 * bytes from memory 'buf'. Both arg types need 3843 * to be paired, so make sure there's no buggy 3844 * helper function specification. 3845 */ 3846 if (arg_type_is_mem_size(fn->arg1_type) || 3847 arg_type_is_mem_ptr(fn->arg5_type) || 3848 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 3849 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 3850 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 3851 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 3852 return false; 3853 3854 return true; 3855 } 3856 3857 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 3858 { 3859 int count = 0; 3860 3861 if (arg_type_may_be_refcounted(fn->arg1_type)) 3862 count++; 3863 if (arg_type_may_be_refcounted(fn->arg2_type)) 3864 count++; 3865 if (arg_type_may_be_refcounted(fn->arg3_type)) 3866 count++; 3867 if (arg_type_may_be_refcounted(fn->arg4_type)) 3868 count++; 3869 if (arg_type_may_be_refcounted(fn->arg5_type)) 3870 count++; 3871 3872 /* A reference acquiring function cannot acquire 3873 * another refcounted ptr. 3874 */ 3875 if (is_acquire_function(func_id) && count) 3876 return false; 3877 3878 /* We only support one arg being unreferenced at the moment, 3879 * which is sufficient for the helper functions we have right now. 3880 */ 3881 return count <= 1; 3882 } 3883 3884 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 3885 { 3886 return check_raw_mode_ok(fn) && 3887 check_arg_pair_ok(fn) && 3888 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 3889 } 3890 3891 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 3892 * are now invalid, so turn them into unknown SCALAR_VALUE. 3893 */ 3894 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 3895 struct bpf_func_state *state) 3896 { 3897 struct bpf_reg_state *regs = state->regs, *reg; 3898 int i; 3899 3900 for (i = 0; i < MAX_BPF_REG; i++) 3901 if (reg_is_pkt_pointer_any(®s[i])) 3902 mark_reg_unknown(env, regs, i); 3903 3904 bpf_for_each_spilled_reg(i, state, reg) { 3905 if (!reg) 3906 continue; 3907 if (reg_is_pkt_pointer_any(reg)) 3908 __mark_reg_unknown(env, reg); 3909 } 3910 } 3911 3912 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 3913 { 3914 struct bpf_verifier_state *vstate = env->cur_state; 3915 int i; 3916 3917 for (i = 0; i <= vstate->curframe; i++) 3918 __clear_all_pkt_pointers(env, vstate->frame[i]); 3919 } 3920 3921 static void release_reg_references(struct bpf_verifier_env *env, 3922 struct bpf_func_state *state, 3923 int ref_obj_id) 3924 { 3925 struct bpf_reg_state *regs = state->regs, *reg; 3926 int i; 3927 3928 for (i = 0; i < MAX_BPF_REG; i++) 3929 if (regs[i].ref_obj_id == ref_obj_id) 3930 mark_reg_unknown(env, regs, i); 3931 3932 bpf_for_each_spilled_reg(i, state, reg) { 3933 if (!reg) 3934 continue; 3935 if (reg->ref_obj_id == ref_obj_id) 3936 __mark_reg_unknown(env, reg); 3937 } 3938 } 3939 3940 /* The pointer with the specified id has released its reference to kernel 3941 * resources. Identify all copies of the same pointer and clear the reference. 3942 */ 3943 static int release_reference(struct bpf_verifier_env *env, 3944 int ref_obj_id) 3945 { 3946 struct bpf_verifier_state *vstate = env->cur_state; 3947 int err; 3948 int i; 3949 3950 err = release_reference_state(cur_func(env), ref_obj_id); 3951 if (err) 3952 return err; 3953 3954 for (i = 0; i <= vstate->curframe; i++) 3955 release_reg_references(env, vstate->frame[i], ref_obj_id); 3956 3957 return 0; 3958 } 3959 3960 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 3961 struct bpf_reg_state *regs) 3962 { 3963 int i; 3964 3965 /* after the call registers r0 - r5 were scratched */ 3966 for (i = 0; i < CALLER_SAVED_REGS; i++) { 3967 mark_reg_not_init(env, regs, caller_saved[i]); 3968 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 3969 } 3970 } 3971 3972 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 3973 int *insn_idx) 3974 { 3975 struct bpf_verifier_state *state = env->cur_state; 3976 struct bpf_func_info_aux *func_info_aux; 3977 struct bpf_func_state *caller, *callee; 3978 int i, err, subprog, target_insn; 3979 bool is_global = false; 3980 3981 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 3982 verbose(env, "the call stack of %d frames is too deep\n", 3983 state->curframe + 2); 3984 return -E2BIG; 3985 } 3986 3987 target_insn = *insn_idx + insn->imm; 3988 subprog = find_subprog(env, target_insn + 1); 3989 if (subprog < 0) { 3990 verbose(env, "verifier bug. No program starts at insn %d\n", 3991 target_insn + 1); 3992 return -EFAULT; 3993 } 3994 3995 caller = state->frame[state->curframe]; 3996 if (state->frame[state->curframe + 1]) { 3997 verbose(env, "verifier bug. Frame %d already allocated\n", 3998 state->curframe + 1); 3999 return -EFAULT; 4000 } 4001 4002 func_info_aux = env->prog->aux->func_info_aux; 4003 if (func_info_aux) 4004 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 4005 err = btf_check_func_arg_match(env, subprog, caller->regs); 4006 if (err == -EFAULT) 4007 return err; 4008 if (is_global) { 4009 if (err) { 4010 verbose(env, "Caller passes invalid args into func#%d\n", 4011 subprog); 4012 return err; 4013 } else { 4014 if (env->log.level & BPF_LOG_LEVEL) 4015 verbose(env, 4016 "Func#%d is global and valid. Skipping.\n", 4017 subprog); 4018 clear_caller_saved_regs(env, caller->regs); 4019 4020 /* All global functions return SCALAR_VALUE */ 4021 mark_reg_unknown(env, caller->regs, BPF_REG_0); 4022 4023 /* continue with next insn after call */ 4024 return 0; 4025 } 4026 } 4027 4028 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 4029 if (!callee) 4030 return -ENOMEM; 4031 state->frame[state->curframe + 1] = callee; 4032 4033 /* callee cannot access r0, r6 - r9 for reading and has to write 4034 * into its own stack before reading from it. 4035 * callee can read/write into caller's stack 4036 */ 4037 init_func_state(env, callee, 4038 /* remember the callsite, it will be used by bpf_exit */ 4039 *insn_idx /* callsite */, 4040 state->curframe + 1 /* frameno within this callchain */, 4041 subprog /* subprog number within this prog */); 4042 4043 /* Transfer references to the callee */ 4044 err = transfer_reference_state(callee, caller); 4045 if (err) 4046 return err; 4047 4048 /* copy r1 - r5 args that callee can access. The copy includes parent 4049 * pointers, which connects us up to the liveness chain 4050 */ 4051 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4052 callee->regs[i] = caller->regs[i]; 4053 4054 clear_caller_saved_regs(env, caller->regs); 4055 4056 /* only increment it after check_reg_arg() finished */ 4057 state->curframe++; 4058 4059 /* and go analyze first insn of the callee */ 4060 *insn_idx = target_insn; 4061 4062 if (env->log.level & BPF_LOG_LEVEL) { 4063 verbose(env, "caller:\n"); 4064 print_verifier_state(env, caller); 4065 verbose(env, "callee:\n"); 4066 print_verifier_state(env, callee); 4067 } 4068 return 0; 4069 } 4070 4071 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 4072 { 4073 struct bpf_verifier_state *state = env->cur_state; 4074 struct bpf_func_state *caller, *callee; 4075 struct bpf_reg_state *r0; 4076 int err; 4077 4078 callee = state->frame[state->curframe]; 4079 r0 = &callee->regs[BPF_REG_0]; 4080 if (r0->type == PTR_TO_STACK) { 4081 /* technically it's ok to return caller's stack pointer 4082 * (or caller's caller's pointer) back to the caller, 4083 * since these pointers are valid. Only current stack 4084 * pointer will be invalid as soon as function exits, 4085 * but let's be conservative 4086 */ 4087 verbose(env, "cannot return stack pointer to the caller\n"); 4088 return -EINVAL; 4089 } 4090 4091 state->curframe--; 4092 caller = state->frame[state->curframe]; 4093 /* return to the caller whatever r0 had in the callee */ 4094 caller->regs[BPF_REG_0] = *r0; 4095 4096 /* Transfer references to the caller */ 4097 err = transfer_reference_state(caller, callee); 4098 if (err) 4099 return err; 4100 4101 *insn_idx = callee->callsite + 1; 4102 if (env->log.level & BPF_LOG_LEVEL) { 4103 verbose(env, "returning from callee:\n"); 4104 print_verifier_state(env, callee); 4105 verbose(env, "to caller at %d:\n", *insn_idx); 4106 print_verifier_state(env, caller); 4107 } 4108 /* clear everything in the callee */ 4109 free_func_state(callee); 4110 state->frame[state->curframe + 1] = NULL; 4111 return 0; 4112 } 4113 4114 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 4115 int func_id, 4116 struct bpf_call_arg_meta *meta) 4117 { 4118 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 4119 4120 if (ret_type != RET_INTEGER || 4121 (func_id != BPF_FUNC_get_stack && 4122 func_id != BPF_FUNC_probe_read_str)) 4123 return; 4124 4125 ret_reg->smax_value = meta->msize_smax_value; 4126 ret_reg->umax_value = meta->msize_umax_value; 4127 __reg_deduce_bounds(ret_reg); 4128 __reg_bound_offset(ret_reg); 4129 } 4130 4131 static int 4132 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4133 int func_id, int insn_idx) 4134 { 4135 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4136 struct bpf_map *map = meta->map_ptr; 4137 4138 if (func_id != BPF_FUNC_tail_call && 4139 func_id != BPF_FUNC_map_lookup_elem && 4140 func_id != BPF_FUNC_map_update_elem && 4141 func_id != BPF_FUNC_map_delete_elem && 4142 func_id != BPF_FUNC_map_push_elem && 4143 func_id != BPF_FUNC_map_pop_elem && 4144 func_id != BPF_FUNC_map_peek_elem) 4145 return 0; 4146 4147 if (map == NULL) { 4148 verbose(env, "kernel subsystem misconfigured verifier\n"); 4149 return -EINVAL; 4150 } 4151 4152 /* In case of read-only, some additional restrictions 4153 * need to be applied in order to prevent altering the 4154 * state of the map from program side. 4155 */ 4156 if ((map->map_flags & BPF_F_RDONLY_PROG) && 4157 (func_id == BPF_FUNC_map_delete_elem || 4158 func_id == BPF_FUNC_map_update_elem || 4159 func_id == BPF_FUNC_map_push_elem || 4160 func_id == BPF_FUNC_map_pop_elem)) { 4161 verbose(env, "write into map forbidden\n"); 4162 return -EACCES; 4163 } 4164 4165 if (!BPF_MAP_PTR(aux->map_ptr_state)) 4166 bpf_map_ptr_store(aux, meta->map_ptr, 4167 meta->map_ptr->unpriv_array); 4168 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 4169 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 4170 meta->map_ptr->unpriv_array); 4171 return 0; 4172 } 4173 4174 static int 4175 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4176 int func_id, int insn_idx) 4177 { 4178 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4179 struct bpf_reg_state *regs = cur_regs(env), *reg; 4180 struct bpf_map *map = meta->map_ptr; 4181 struct tnum range; 4182 u64 val; 4183 int err; 4184 4185 if (func_id != BPF_FUNC_tail_call) 4186 return 0; 4187 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 4188 verbose(env, "kernel subsystem misconfigured verifier\n"); 4189 return -EINVAL; 4190 } 4191 4192 range = tnum_range(0, map->max_entries - 1); 4193 reg = ®s[BPF_REG_3]; 4194 4195 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 4196 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4197 return 0; 4198 } 4199 4200 err = mark_chain_precision(env, BPF_REG_3); 4201 if (err) 4202 return err; 4203 4204 val = reg->var_off.value; 4205 if (bpf_map_key_unseen(aux)) 4206 bpf_map_key_store(aux, val); 4207 else if (!bpf_map_key_poisoned(aux) && 4208 bpf_map_key_immediate(aux) != val) 4209 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4210 return 0; 4211 } 4212 4213 static int check_reference_leak(struct bpf_verifier_env *env) 4214 { 4215 struct bpf_func_state *state = cur_func(env); 4216 int i; 4217 4218 for (i = 0; i < state->acquired_refs; i++) { 4219 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 4220 state->refs[i].id, state->refs[i].insn_idx); 4221 } 4222 return state->acquired_refs ? -EINVAL : 0; 4223 } 4224 4225 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 4226 { 4227 const struct bpf_func_proto *fn = NULL; 4228 struct bpf_reg_state *regs; 4229 struct bpf_call_arg_meta meta; 4230 bool changes_data; 4231 int i, err; 4232 4233 /* find function prototype */ 4234 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 4235 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 4236 func_id); 4237 return -EINVAL; 4238 } 4239 4240 if (env->ops->get_func_proto) 4241 fn = env->ops->get_func_proto(func_id, env->prog); 4242 if (!fn) { 4243 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 4244 func_id); 4245 return -EINVAL; 4246 } 4247 4248 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 4249 if (!env->prog->gpl_compatible && fn->gpl_only) { 4250 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 4251 return -EINVAL; 4252 } 4253 4254 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 4255 changes_data = bpf_helper_changes_pkt_data(fn->func); 4256 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 4257 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 4258 func_id_name(func_id), func_id); 4259 return -EINVAL; 4260 } 4261 4262 memset(&meta, 0, sizeof(meta)); 4263 meta.pkt_access = fn->pkt_access; 4264 4265 err = check_func_proto(fn, func_id); 4266 if (err) { 4267 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 4268 func_id_name(func_id), func_id); 4269 return err; 4270 } 4271 4272 meta.func_id = func_id; 4273 /* check args */ 4274 for (i = 0; i < 5; i++) { 4275 err = btf_resolve_helper_id(&env->log, fn, i); 4276 if (err > 0) 4277 meta.btf_id = err; 4278 err = check_func_arg(env, BPF_REG_1 + i, fn->arg_type[i], &meta); 4279 if (err) 4280 return err; 4281 } 4282 4283 err = record_func_map(env, &meta, func_id, insn_idx); 4284 if (err) 4285 return err; 4286 4287 err = record_func_key(env, &meta, func_id, insn_idx); 4288 if (err) 4289 return err; 4290 4291 /* Mark slots with STACK_MISC in case of raw mode, stack offset 4292 * is inferred from register state. 4293 */ 4294 for (i = 0; i < meta.access_size; i++) { 4295 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 4296 BPF_WRITE, -1, false); 4297 if (err) 4298 return err; 4299 } 4300 4301 if (func_id == BPF_FUNC_tail_call) { 4302 err = check_reference_leak(env); 4303 if (err) { 4304 verbose(env, "tail_call would lead to reference leak\n"); 4305 return err; 4306 } 4307 } else if (is_release_function(func_id)) { 4308 err = release_reference(env, meta.ref_obj_id); 4309 if (err) { 4310 verbose(env, "func %s#%d reference has not been acquired before\n", 4311 func_id_name(func_id), func_id); 4312 return err; 4313 } 4314 } 4315 4316 regs = cur_regs(env); 4317 4318 /* check that flags argument in get_local_storage(map, flags) is 0, 4319 * this is required because get_local_storage() can't return an error. 4320 */ 4321 if (func_id == BPF_FUNC_get_local_storage && 4322 !register_is_null(®s[BPF_REG_2])) { 4323 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 4324 return -EINVAL; 4325 } 4326 4327 /* reset caller saved regs */ 4328 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4329 mark_reg_not_init(env, regs, caller_saved[i]); 4330 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4331 } 4332 4333 /* helper call returns 64-bit value. */ 4334 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 4335 4336 /* update return register (already marked as written above) */ 4337 if (fn->ret_type == RET_INTEGER) { 4338 /* sets type to SCALAR_VALUE */ 4339 mark_reg_unknown(env, regs, BPF_REG_0); 4340 } else if (fn->ret_type == RET_VOID) { 4341 regs[BPF_REG_0].type = NOT_INIT; 4342 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 4343 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4344 /* There is no offset yet applied, variable or fixed */ 4345 mark_reg_known_zero(env, regs, BPF_REG_0); 4346 /* remember map_ptr, so that check_map_access() 4347 * can check 'value_size' boundary of memory access 4348 * to map element returned from bpf_map_lookup_elem() 4349 */ 4350 if (meta.map_ptr == NULL) { 4351 verbose(env, 4352 "kernel subsystem misconfigured verifier\n"); 4353 return -EINVAL; 4354 } 4355 regs[BPF_REG_0].map_ptr = meta.map_ptr; 4356 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4357 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 4358 if (map_value_has_spin_lock(meta.map_ptr)) 4359 regs[BPF_REG_0].id = ++env->id_gen; 4360 } else { 4361 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 4362 regs[BPF_REG_0].id = ++env->id_gen; 4363 } 4364 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 4365 mark_reg_known_zero(env, regs, BPF_REG_0); 4366 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 4367 regs[BPF_REG_0].id = ++env->id_gen; 4368 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 4369 mark_reg_known_zero(env, regs, BPF_REG_0); 4370 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 4371 regs[BPF_REG_0].id = ++env->id_gen; 4372 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 4373 mark_reg_known_zero(env, regs, BPF_REG_0); 4374 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 4375 regs[BPF_REG_0].id = ++env->id_gen; 4376 } else { 4377 verbose(env, "unknown return type %d of func %s#%d\n", 4378 fn->ret_type, func_id_name(func_id), func_id); 4379 return -EINVAL; 4380 } 4381 4382 if (is_ptr_cast_function(func_id)) { 4383 /* For release_reference() */ 4384 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 4385 } else if (is_acquire_function(func_id)) { 4386 int id = acquire_reference_state(env, insn_idx); 4387 4388 if (id < 0) 4389 return id; 4390 /* For mark_ptr_or_null_reg() */ 4391 regs[BPF_REG_0].id = id; 4392 /* For release_reference() */ 4393 regs[BPF_REG_0].ref_obj_id = id; 4394 } 4395 4396 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 4397 4398 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 4399 if (err) 4400 return err; 4401 4402 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 4403 const char *err_str; 4404 4405 #ifdef CONFIG_PERF_EVENTS 4406 err = get_callchain_buffers(sysctl_perf_event_max_stack); 4407 err_str = "cannot get callchain buffer for func %s#%d\n"; 4408 #else 4409 err = -ENOTSUPP; 4410 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 4411 #endif 4412 if (err) { 4413 verbose(env, err_str, func_id_name(func_id), func_id); 4414 return err; 4415 } 4416 4417 env->prog->has_callchain_buf = true; 4418 } 4419 4420 if (changes_data) 4421 clear_all_pkt_pointers(env); 4422 return 0; 4423 } 4424 4425 static bool signed_add_overflows(s64 a, s64 b) 4426 { 4427 /* Do the add in u64, where overflow is well-defined */ 4428 s64 res = (s64)((u64)a + (u64)b); 4429 4430 if (b < 0) 4431 return res > a; 4432 return res < a; 4433 } 4434 4435 static bool signed_sub_overflows(s64 a, s64 b) 4436 { 4437 /* Do the sub in u64, where overflow is well-defined */ 4438 s64 res = (s64)((u64)a - (u64)b); 4439 4440 if (b < 0) 4441 return res < a; 4442 return res > a; 4443 } 4444 4445 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 4446 const struct bpf_reg_state *reg, 4447 enum bpf_reg_type type) 4448 { 4449 bool known = tnum_is_const(reg->var_off); 4450 s64 val = reg->var_off.value; 4451 s64 smin = reg->smin_value; 4452 4453 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 4454 verbose(env, "math between %s pointer and %lld is not allowed\n", 4455 reg_type_str[type], val); 4456 return false; 4457 } 4458 4459 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 4460 verbose(env, "%s pointer offset %d is not allowed\n", 4461 reg_type_str[type], reg->off); 4462 return false; 4463 } 4464 4465 if (smin == S64_MIN) { 4466 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 4467 reg_type_str[type]); 4468 return false; 4469 } 4470 4471 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 4472 verbose(env, "value %lld makes %s pointer be out of bounds\n", 4473 smin, reg_type_str[type]); 4474 return false; 4475 } 4476 4477 return true; 4478 } 4479 4480 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 4481 { 4482 return &env->insn_aux_data[env->insn_idx]; 4483 } 4484 4485 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 4486 u32 *ptr_limit, u8 opcode, bool off_is_neg) 4487 { 4488 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 4489 (opcode == BPF_SUB && !off_is_neg); 4490 u32 off; 4491 4492 switch (ptr_reg->type) { 4493 case PTR_TO_STACK: 4494 /* Indirect variable offset stack access is prohibited in 4495 * unprivileged mode so it's not handled here. 4496 */ 4497 off = ptr_reg->off + ptr_reg->var_off.value; 4498 if (mask_to_left) 4499 *ptr_limit = MAX_BPF_STACK + off; 4500 else 4501 *ptr_limit = -off; 4502 return 0; 4503 case PTR_TO_MAP_VALUE: 4504 if (mask_to_left) { 4505 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 4506 } else { 4507 off = ptr_reg->smin_value + ptr_reg->off; 4508 *ptr_limit = ptr_reg->map_ptr->value_size - off; 4509 } 4510 return 0; 4511 default: 4512 return -EINVAL; 4513 } 4514 } 4515 4516 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 4517 const struct bpf_insn *insn) 4518 { 4519 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K; 4520 } 4521 4522 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 4523 u32 alu_state, u32 alu_limit) 4524 { 4525 /* If we arrived here from different branches with different 4526 * state or limits to sanitize, then this won't work. 4527 */ 4528 if (aux->alu_state && 4529 (aux->alu_state != alu_state || 4530 aux->alu_limit != alu_limit)) 4531 return -EACCES; 4532 4533 /* Corresponding fixup done in fixup_bpf_calls(). */ 4534 aux->alu_state = alu_state; 4535 aux->alu_limit = alu_limit; 4536 return 0; 4537 } 4538 4539 static int sanitize_val_alu(struct bpf_verifier_env *env, 4540 struct bpf_insn *insn) 4541 { 4542 struct bpf_insn_aux_data *aux = cur_aux(env); 4543 4544 if (can_skip_alu_sanitation(env, insn)) 4545 return 0; 4546 4547 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 4548 } 4549 4550 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 4551 struct bpf_insn *insn, 4552 const struct bpf_reg_state *ptr_reg, 4553 struct bpf_reg_state *dst_reg, 4554 bool off_is_neg) 4555 { 4556 struct bpf_verifier_state *vstate = env->cur_state; 4557 struct bpf_insn_aux_data *aux = cur_aux(env); 4558 bool ptr_is_dst_reg = ptr_reg == dst_reg; 4559 u8 opcode = BPF_OP(insn->code); 4560 u32 alu_state, alu_limit; 4561 struct bpf_reg_state tmp; 4562 bool ret; 4563 4564 if (can_skip_alu_sanitation(env, insn)) 4565 return 0; 4566 4567 /* We already marked aux for masking from non-speculative 4568 * paths, thus we got here in the first place. We only care 4569 * to explore bad access from here. 4570 */ 4571 if (vstate->speculative) 4572 goto do_sim; 4573 4574 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 4575 alu_state |= ptr_is_dst_reg ? 4576 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 4577 4578 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 4579 return 0; 4580 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 4581 return -EACCES; 4582 do_sim: 4583 /* Simulate and find potential out-of-bounds access under 4584 * speculative execution from truncation as a result of 4585 * masking when off was not within expected range. If off 4586 * sits in dst, then we temporarily need to move ptr there 4587 * to simulate dst (== 0) +/-= ptr. Needed, for example, 4588 * for cases where we use K-based arithmetic in one direction 4589 * and truncated reg-based in the other in order to explore 4590 * bad access. 4591 */ 4592 if (!ptr_is_dst_reg) { 4593 tmp = *dst_reg; 4594 *dst_reg = *ptr_reg; 4595 } 4596 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 4597 if (!ptr_is_dst_reg && ret) 4598 *dst_reg = tmp; 4599 return !ret ? -EFAULT : 0; 4600 } 4601 4602 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 4603 * Caller should also handle BPF_MOV case separately. 4604 * If we return -EACCES, caller may want to try again treating pointer as a 4605 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 4606 */ 4607 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 4608 struct bpf_insn *insn, 4609 const struct bpf_reg_state *ptr_reg, 4610 const struct bpf_reg_state *off_reg) 4611 { 4612 struct bpf_verifier_state *vstate = env->cur_state; 4613 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4614 struct bpf_reg_state *regs = state->regs, *dst_reg; 4615 bool known = tnum_is_const(off_reg->var_off); 4616 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 4617 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 4618 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 4619 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 4620 u32 dst = insn->dst_reg, src = insn->src_reg; 4621 u8 opcode = BPF_OP(insn->code); 4622 int ret; 4623 4624 dst_reg = ®s[dst]; 4625 4626 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 4627 smin_val > smax_val || umin_val > umax_val) { 4628 /* Taint dst register if offset had invalid bounds derived from 4629 * e.g. dead branches. 4630 */ 4631 __mark_reg_unknown(env, dst_reg); 4632 return 0; 4633 } 4634 4635 if (BPF_CLASS(insn->code) != BPF_ALU64) { 4636 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 4637 verbose(env, 4638 "R%d 32-bit pointer arithmetic prohibited\n", 4639 dst); 4640 return -EACCES; 4641 } 4642 4643 switch (ptr_reg->type) { 4644 case PTR_TO_MAP_VALUE_OR_NULL: 4645 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 4646 dst, reg_type_str[ptr_reg->type]); 4647 return -EACCES; 4648 case CONST_PTR_TO_MAP: 4649 case PTR_TO_PACKET_END: 4650 case PTR_TO_SOCKET: 4651 case PTR_TO_SOCKET_OR_NULL: 4652 case PTR_TO_SOCK_COMMON: 4653 case PTR_TO_SOCK_COMMON_OR_NULL: 4654 case PTR_TO_TCP_SOCK: 4655 case PTR_TO_TCP_SOCK_OR_NULL: 4656 case PTR_TO_XDP_SOCK: 4657 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 4658 dst, reg_type_str[ptr_reg->type]); 4659 return -EACCES; 4660 case PTR_TO_MAP_VALUE: 4661 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 4662 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 4663 off_reg == dst_reg ? dst : src); 4664 return -EACCES; 4665 } 4666 /* fall-through */ 4667 default: 4668 break; 4669 } 4670 4671 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 4672 * The id may be overwritten later if we create a new variable offset. 4673 */ 4674 dst_reg->type = ptr_reg->type; 4675 dst_reg->id = ptr_reg->id; 4676 4677 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 4678 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 4679 return -EINVAL; 4680 4681 switch (opcode) { 4682 case BPF_ADD: 4683 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 4684 if (ret < 0) { 4685 verbose(env, "R%d tried to add from different maps or paths\n", dst); 4686 return ret; 4687 } 4688 /* We can take a fixed offset as long as it doesn't overflow 4689 * the s32 'off' field 4690 */ 4691 if (known && (ptr_reg->off + smin_val == 4692 (s64)(s32)(ptr_reg->off + smin_val))) { 4693 /* pointer += K. Accumulate it into fixed offset */ 4694 dst_reg->smin_value = smin_ptr; 4695 dst_reg->smax_value = smax_ptr; 4696 dst_reg->umin_value = umin_ptr; 4697 dst_reg->umax_value = umax_ptr; 4698 dst_reg->var_off = ptr_reg->var_off; 4699 dst_reg->off = ptr_reg->off + smin_val; 4700 dst_reg->raw = ptr_reg->raw; 4701 break; 4702 } 4703 /* A new variable offset is created. Note that off_reg->off 4704 * == 0, since it's a scalar. 4705 * dst_reg gets the pointer type and since some positive 4706 * integer value was added to the pointer, give it a new 'id' 4707 * if it's a PTR_TO_PACKET. 4708 * this creates a new 'base' pointer, off_reg (variable) gets 4709 * added into the variable offset, and we copy the fixed offset 4710 * from ptr_reg. 4711 */ 4712 if (signed_add_overflows(smin_ptr, smin_val) || 4713 signed_add_overflows(smax_ptr, smax_val)) { 4714 dst_reg->smin_value = S64_MIN; 4715 dst_reg->smax_value = S64_MAX; 4716 } else { 4717 dst_reg->smin_value = smin_ptr + smin_val; 4718 dst_reg->smax_value = smax_ptr + smax_val; 4719 } 4720 if (umin_ptr + umin_val < umin_ptr || 4721 umax_ptr + umax_val < umax_ptr) { 4722 dst_reg->umin_value = 0; 4723 dst_reg->umax_value = U64_MAX; 4724 } else { 4725 dst_reg->umin_value = umin_ptr + umin_val; 4726 dst_reg->umax_value = umax_ptr + umax_val; 4727 } 4728 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 4729 dst_reg->off = ptr_reg->off; 4730 dst_reg->raw = ptr_reg->raw; 4731 if (reg_is_pkt_pointer(ptr_reg)) { 4732 dst_reg->id = ++env->id_gen; 4733 /* something was added to pkt_ptr, set range to zero */ 4734 dst_reg->raw = 0; 4735 } 4736 break; 4737 case BPF_SUB: 4738 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 4739 if (ret < 0) { 4740 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 4741 return ret; 4742 } 4743 if (dst_reg == off_reg) { 4744 /* scalar -= pointer. Creates an unknown scalar */ 4745 verbose(env, "R%d tried to subtract pointer from scalar\n", 4746 dst); 4747 return -EACCES; 4748 } 4749 /* We don't allow subtraction from FP, because (according to 4750 * test_verifier.c test "invalid fp arithmetic", JITs might not 4751 * be able to deal with it. 4752 */ 4753 if (ptr_reg->type == PTR_TO_STACK) { 4754 verbose(env, "R%d subtraction from stack pointer prohibited\n", 4755 dst); 4756 return -EACCES; 4757 } 4758 if (known && (ptr_reg->off - smin_val == 4759 (s64)(s32)(ptr_reg->off - smin_val))) { 4760 /* pointer -= K. Subtract it from fixed offset */ 4761 dst_reg->smin_value = smin_ptr; 4762 dst_reg->smax_value = smax_ptr; 4763 dst_reg->umin_value = umin_ptr; 4764 dst_reg->umax_value = umax_ptr; 4765 dst_reg->var_off = ptr_reg->var_off; 4766 dst_reg->id = ptr_reg->id; 4767 dst_reg->off = ptr_reg->off - smin_val; 4768 dst_reg->raw = ptr_reg->raw; 4769 break; 4770 } 4771 /* A new variable offset is created. If the subtrahend is known 4772 * nonnegative, then any reg->range we had before is still good. 4773 */ 4774 if (signed_sub_overflows(smin_ptr, smax_val) || 4775 signed_sub_overflows(smax_ptr, smin_val)) { 4776 /* Overflow possible, we know nothing */ 4777 dst_reg->smin_value = S64_MIN; 4778 dst_reg->smax_value = S64_MAX; 4779 } else { 4780 dst_reg->smin_value = smin_ptr - smax_val; 4781 dst_reg->smax_value = smax_ptr - smin_val; 4782 } 4783 if (umin_ptr < umax_val) { 4784 /* Overflow possible, we know nothing */ 4785 dst_reg->umin_value = 0; 4786 dst_reg->umax_value = U64_MAX; 4787 } else { 4788 /* Cannot overflow (as long as bounds are consistent) */ 4789 dst_reg->umin_value = umin_ptr - umax_val; 4790 dst_reg->umax_value = umax_ptr - umin_val; 4791 } 4792 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 4793 dst_reg->off = ptr_reg->off; 4794 dst_reg->raw = ptr_reg->raw; 4795 if (reg_is_pkt_pointer(ptr_reg)) { 4796 dst_reg->id = ++env->id_gen; 4797 /* something was added to pkt_ptr, set range to zero */ 4798 if (smin_val < 0) 4799 dst_reg->raw = 0; 4800 } 4801 break; 4802 case BPF_AND: 4803 case BPF_OR: 4804 case BPF_XOR: 4805 /* bitwise ops on pointers are troublesome, prohibit. */ 4806 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 4807 dst, bpf_alu_string[opcode >> 4]); 4808 return -EACCES; 4809 default: 4810 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 4811 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 4812 dst, bpf_alu_string[opcode >> 4]); 4813 return -EACCES; 4814 } 4815 4816 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 4817 return -EINVAL; 4818 4819 __update_reg_bounds(dst_reg); 4820 __reg_deduce_bounds(dst_reg); 4821 __reg_bound_offset(dst_reg); 4822 4823 /* For unprivileged we require that resulting offset must be in bounds 4824 * in order to be able to sanitize access later on. 4825 */ 4826 if (!env->allow_ptr_leaks) { 4827 if (dst_reg->type == PTR_TO_MAP_VALUE && 4828 check_map_access(env, dst, dst_reg->off, 1, false)) { 4829 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 4830 "prohibited for !root\n", dst); 4831 return -EACCES; 4832 } else if (dst_reg->type == PTR_TO_STACK && 4833 check_stack_access(env, dst_reg, dst_reg->off + 4834 dst_reg->var_off.value, 1)) { 4835 verbose(env, "R%d stack pointer arithmetic goes out of range, " 4836 "prohibited for !root\n", dst); 4837 return -EACCES; 4838 } 4839 } 4840 4841 return 0; 4842 } 4843 4844 /* WARNING: This function does calculations on 64-bit values, but the actual 4845 * execution may occur on 32-bit values. Therefore, things like bitshifts 4846 * need extra checks in the 32-bit case. 4847 */ 4848 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 4849 struct bpf_insn *insn, 4850 struct bpf_reg_state *dst_reg, 4851 struct bpf_reg_state src_reg) 4852 { 4853 struct bpf_reg_state *regs = cur_regs(env); 4854 u8 opcode = BPF_OP(insn->code); 4855 bool src_known, dst_known; 4856 s64 smin_val, smax_val; 4857 u64 umin_val, umax_val; 4858 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 4859 u32 dst = insn->dst_reg; 4860 int ret; 4861 4862 if (insn_bitness == 32) { 4863 /* Relevant for 32-bit RSH: Information can propagate towards 4864 * LSB, so it isn't sufficient to only truncate the output to 4865 * 32 bits. 4866 */ 4867 coerce_reg_to_size(dst_reg, 4); 4868 coerce_reg_to_size(&src_reg, 4); 4869 } 4870 4871 smin_val = src_reg.smin_value; 4872 smax_val = src_reg.smax_value; 4873 umin_val = src_reg.umin_value; 4874 umax_val = src_reg.umax_value; 4875 src_known = tnum_is_const(src_reg.var_off); 4876 dst_known = tnum_is_const(dst_reg->var_off); 4877 4878 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 4879 smin_val > smax_val || umin_val > umax_val) { 4880 /* Taint dst register if offset had invalid bounds derived from 4881 * e.g. dead branches. 4882 */ 4883 __mark_reg_unknown(env, dst_reg); 4884 return 0; 4885 } 4886 4887 if (!src_known && 4888 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 4889 __mark_reg_unknown(env, dst_reg); 4890 return 0; 4891 } 4892 4893 switch (opcode) { 4894 case BPF_ADD: 4895 ret = sanitize_val_alu(env, insn); 4896 if (ret < 0) { 4897 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 4898 return ret; 4899 } 4900 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 4901 signed_add_overflows(dst_reg->smax_value, smax_val)) { 4902 dst_reg->smin_value = S64_MIN; 4903 dst_reg->smax_value = S64_MAX; 4904 } else { 4905 dst_reg->smin_value += smin_val; 4906 dst_reg->smax_value += smax_val; 4907 } 4908 if (dst_reg->umin_value + umin_val < umin_val || 4909 dst_reg->umax_value + umax_val < umax_val) { 4910 dst_reg->umin_value = 0; 4911 dst_reg->umax_value = U64_MAX; 4912 } else { 4913 dst_reg->umin_value += umin_val; 4914 dst_reg->umax_value += umax_val; 4915 } 4916 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 4917 break; 4918 case BPF_SUB: 4919 ret = sanitize_val_alu(env, insn); 4920 if (ret < 0) { 4921 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 4922 return ret; 4923 } 4924 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 4925 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 4926 /* Overflow possible, we know nothing */ 4927 dst_reg->smin_value = S64_MIN; 4928 dst_reg->smax_value = S64_MAX; 4929 } else { 4930 dst_reg->smin_value -= smax_val; 4931 dst_reg->smax_value -= smin_val; 4932 } 4933 if (dst_reg->umin_value < umax_val) { 4934 /* Overflow possible, we know nothing */ 4935 dst_reg->umin_value = 0; 4936 dst_reg->umax_value = U64_MAX; 4937 } else { 4938 /* Cannot overflow (as long as bounds are consistent) */ 4939 dst_reg->umin_value -= umax_val; 4940 dst_reg->umax_value -= umin_val; 4941 } 4942 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 4943 break; 4944 case BPF_MUL: 4945 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 4946 if (smin_val < 0 || dst_reg->smin_value < 0) { 4947 /* Ain't nobody got time to multiply that sign */ 4948 __mark_reg_unbounded(dst_reg); 4949 __update_reg_bounds(dst_reg); 4950 break; 4951 } 4952 /* Both values are positive, so we can work with unsigned and 4953 * copy the result to signed (unless it exceeds S64_MAX). 4954 */ 4955 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 4956 /* Potential overflow, we know nothing */ 4957 __mark_reg_unbounded(dst_reg); 4958 /* (except what we can learn from the var_off) */ 4959 __update_reg_bounds(dst_reg); 4960 break; 4961 } 4962 dst_reg->umin_value *= umin_val; 4963 dst_reg->umax_value *= umax_val; 4964 if (dst_reg->umax_value > S64_MAX) { 4965 /* Overflow possible, we know nothing */ 4966 dst_reg->smin_value = S64_MIN; 4967 dst_reg->smax_value = S64_MAX; 4968 } else { 4969 dst_reg->smin_value = dst_reg->umin_value; 4970 dst_reg->smax_value = dst_reg->umax_value; 4971 } 4972 break; 4973 case BPF_AND: 4974 if (src_known && dst_known) { 4975 __mark_reg_known(dst_reg, dst_reg->var_off.value & 4976 src_reg.var_off.value); 4977 break; 4978 } 4979 /* We get our minimum from the var_off, since that's inherently 4980 * bitwise. Our maximum is the minimum of the operands' maxima. 4981 */ 4982 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 4983 dst_reg->umin_value = dst_reg->var_off.value; 4984 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 4985 if (dst_reg->smin_value < 0 || smin_val < 0) { 4986 /* Lose signed bounds when ANDing negative numbers, 4987 * ain't nobody got time for that. 4988 */ 4989 dst_reg->smin_value = S64_MIN; 4990 dst_reg->smax_value = S64_MAX; 4991 } else { 4992 /* ANDing two positives gives a positive, so safe to 4993 * cast result into s64. 4994 */ 4995 dst_reg->smin_value = dst_reg->umin_value; 4996 dst_reg->smax_value = dst_reg->umax_value; 4997 } 4998 /* We may learn something more from the var_off */ 4999 __update_reg_bounds(dst_reg); 5000 break; 5001 case BPF_OR: 5002 if (src_known && dst_known) { 5003 __mark_reg_known(dst_reg, dst_reg->var_off.value | 5004 src_reg.var_off.value); 5005 break; 5006 } 5007 /* We get our maximum from the var_off, and our minimum is the 5008 * maximum of the operands' minima 5009 */ 5010 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 5011 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 5012 dst_reg->umax_value = dst_reg->var_off.value | 5013 dst_reg->var_off.mask; 5014 if (dst_reg->smin_value < 0 || smin_val < 0) { 5015 /* Lose signed bounds when ORing negative numbers, 5016 * ain't nobody got time for that. 5017 */ 5018 dst_reg->smin_value = S64_MIN; 5019 dst_reg->smax_value = S64_MAX; 5020 } else { 5021 /* ORing two positives gives a positive, so safe to 5022 * cast result into s64. 5023 */ 5024 dst_reg->smin_value = dst_reg->umin_value; 5025 dst_reg->smax_value = dst_reg->umax_value; 5026 } 5027 /* We may learn something more from the var_off */ 5028 __update_reg_bounds(dst_reg); 5029 break; 5030 case BPF_LSH: 5031 if (umax_val >= insn_bitness) { 5032 /* Shifts greater than 31 or 63 are undefined. 5033 * This includes shifts by a negative number. 5034 */ 5035 mark_reg_unknown(env, regs, insn->dst_reg); 5036 break; 5037 } 5038 /* We lose all sign bit information (except what we can pick 5039 * up from var_off) 5040 */ 5041 dst_reg->smin_value = S64_MIN; 5042 dst_reg->smax_value = S64_MAX; 5043 /* If we might shift our top bit out, then we know nothing */ 5044 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 5045 dst_reg->umin_value = 0; 5046 dst_reg->umax_value = U64_MAX; 5047 } else { 5048 dst_reg->umin_value <<= umin_val; 5049 dst_reg->umax_value <<= umax_val; 5050 } 5051 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 5052 /* We may learn something more from the var_off */ 5053 __update_reg_bounds(dst_reg); 5054 break; 5055 case BPF_RSH: 5056 if (umax_val >= insn_bitness) { 5057 /* Shifts greater than 31 or 63 are undefined. 5058 * This includes shifts by a negative number. 5059 */ 5060 mark_reg_unknown(env, regs, insn->dst_reg); 5061 break; 5062 } 5063 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 5064 * be negative, then either: 5065 * 1) src_reg might be zero, so the sign bit of the result is 5066 * unknown, so we lose our signed bounds 5067 * 2) it's known negative, thus the unsigned bounds capture the 5068 * signed bounds 5069 * 3) the signed bounds cross zero, so they tell us nothing 5070 * about the result 5071 * If the value in dst_reg is known nonnegative, then again the 5072 * unsigned bounts capture the signed bounds. 5073 * Thus, in all cases it suffices to blow away our signed bounds 5074 * and rely on inferring new ones from the unsigned bounds and 5075 * var_off of the result. 5076 */ 5077 dst_reg->smin_value = S64_MIN; 5078 dst_reg->smax_value = S64_MAX; 5079 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 5080 dst_reg->umin_value >>= umax_val; 5081 dst_reg->umax_value >>= umin_val; 5082 /* We may learn something more from the var_off */ 5083 __update_reg_bounds(dst_reg); 5084 break; 5085 case BPF_ARSH: 5086 if (umax_val >= insn_bitness) { 5087 /* Shifts greater than 31 or 63 are undefined. 5088 * This includes shifts by a negative number. 5089 */ 5090 mark_reg_unknown(env, regs, insn->dst_reg); 5091 break; 5092 } 5093 5094 /* Upon reaching here, src_known is true and 5095 * umax_val is equal to umin_val. 5096 */ 5097 if (insn_bitness == 32) { 5098 dst_reg->smin_value = (u32)(((s32)dst_reg->smin_value) >> umin_val); 5099 dst_reg->smax_value = (u32)(((s32)dst_reg->smax_value) >> umin_val); 5100 } else { 5101 dst_reg->smin_value >>= umin_val; 5102 dst_reg->smax_value >>= umin_val; 5103 } 5104 5105 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 5106 insn_bitness); 5107 5108 /* blow away the dst_reg umin_value/umax_value and rely on 5109 * dst_reg var_off to refine the result. 5110 */ 5111 dst_reg->umin_value = 0; 5112 dst_reg->umax_value = U64_MAX; 5113 __update_reg_bounds(dst_reg); 5114 break; 5115 default: 5116 mark_reg_unknown(env, regs, insn->dst_reg); 5117 break; 5118 } 5119 5120 if (BPF_CLASS(insn->code) != BPF_ALU64) { 5121 /* 32-bit ALU ops are (32,32)->32 */ 5122 coerce_reg_to_size(dst_reg, 4); 5123 } 5124 5125 __reg_deduce_bounds(dst_reg); 5126 __reg_bound_offset(dst_reg); 5127 return 0; 5128 } 5129 5130 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 5131 * and var_off. 5132 */ 5133 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 5134 struct bpf_insn *insn) 5135 { 5136 struct bpf_verifier_state *vstate = env->cur_state; 5137 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5138 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 5139 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 5140 u8 opcode = BPF_OP(insn->code); 5141 int err; 5142 5143 dst_reg = ®s[insn->dst_reg]; 5144 src_reg = NULL; 5145 if (dst_reg->type != SCALAR_VALUE) 5146 ptr_reg = dst_reg; 5147 if (BPF_SRC(insn->code) == BPF_X) { 5148 src_reg = ®s[insn->src_reg]; 5149 if (src_reg->type != SCALAR_VALUE) { 5150 if (dst_reg->type != SCALAR_VALUE) { 5151 /* Combining two pointers by any ALU op yields 5152 * an arbitrary scalar. Disallow all math except 5153 * pointer subtraction 5154 */ 5155 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 5156 mark_reg_unknown(env, regs, insn->dst_reg); 5157 return 0; 5158 } 5159 verbose(env, "R%d pointer %s pointer prohibited\n", 5160 insn->dst_reg, 5161 bpf_alu_string[opcode >> 4]); 5162 return -EACCES; 5163 } else { 5164 /* scalar += pointer 5165 * This is legal, but we have to reverse our 5166 * src/dest handling in computing the range 5167 */ 5168 err = mark_chain_precision(env, insn->dst_reg); 5169 if (err) 5170 return err; 5171 return adjust_ptr_min_max_vals(env, insn, 5172 src_reg, dst_reg); 5173 } 5174 } else if (ptr_reg) { 5175 /* pointer += scalar */ 5176 err = mark_chain_precision(env, insn->src_reg); 5177 if (err) 5178 return err; 5179 return adjust_ptr_min_max_vals(env, insn, 5180 dst_reg, src_reg); 5181 } 5182 } else { 5183 /* Pretend the src is a reg with a known value, since we only 5184 * need to be able to read from this state. 5185 */ 5186 off_reg.type = SCALAR_VALUE; 5187 __mark_reg_known(&off_reg, insn->imm); 5188 src_reg = &off_reg; 5189 if (ptr_reg) /* pointer += K */ 5190 return adjust_ptr_min_max_vals(env, insn, 5191 ptr_reg, src_reg); 5192 } 5193 5194 /* Got here implies adding two SCALAR_VALUEs */ 5195 if (WARN_ON_ONCE(ptr_reg)) { 5196 print_verifier_state(env, state); 5197 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 5198 return -EINVAL; 5199 } 5200 if (WARN_ON(!src_reg)) { 5201 print_verifier_state(env, state); 5202 verbose(env, "verifier internal error: no src_reg\n"); 5203 return -EINVAL; 5204 } 5205 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 5206 } 5207 5208 /* check validity of 32-bit and 64-bit arithmetic operations */ 5209 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 5210 { 5211 struct bpf_reg_state *regs = cur_regs(env); 5212 u8 opcode = BPF_OP(insn->code); 5213 int err; 5214 5215 if (opcode == BPF_END || opcode == BPF_NEG) { 5216 if (opcode == BPF_NEG) { 5217 if (BPF_SRC(insn->code) != 0 || 5218 insn->src_reg != BPF_REG_0 || 5219 insn->off != 0 || insn->imm != 0) { 5220 verbose(env, "BPF_NEG uses reserved fields\n"); 5221 return -EINVAL; 5222 } 5223 } else { 5224 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 5225 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 5226 BPF_CLASS(insn->code) == BPF_ALU64) { 5227 verbose(env, "BPF_END uses reserved fields\n"); 5228 return -EINVAL; 5229 } 5230 } 5231 5232 /* check src operand */ 5233 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5234 if (err) 5235 return err; 5236 5237 if (is_pointer_value(env, insn->dst_reg)) { 5238 verbose(env, "R%d pointer arithmetic prohibited\n", 5239 insn->dst_reg); 5240 return -EACCES; 5241 } 5242 5243 /* check dest operand */ 5244 err = check_reg_arg(env, insn->dst_reg, DST_OP); 5245 if (err) 5246 return err; 5247 5248 } else if (opcode == BPF_MOV) { 5249 5250 if (BPF_SRC(insn->code) == BPF_X) { 5251 if (insn->imm != 0 || insn->off != 0) { 5252 verbose(env, "BPF_MOV uses reserved fields\n"); 5253 return -EINVAL; 5254 } 5255 5256 /* check src operand */ 5257 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5258 if (err) 5259 return err; 5260 } else { 5261 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 5262 verbose(env, "BPF_MOV uses reserved fields\n"); 5263 return -EINVAL; 5264 } 5265 } 5266 5267 /* check dest operand, mark as required later */ 5268 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5269 if (err) 5270 return err; 5271 5272 if (BPF_SRC(insn->code) == BPF_X) { 5273 struct bpf_reg_state *src_reg = regs + insn->src_reg; 5274 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 5275 5276 if (BPF_CLASS(insn->code) == BPF_ALU64) { 5277 /* case: R1 = R2 5278 * copy register state to dest reg 5279 */ 5280 *dst_reg = *src_reg; 5281 dst_reg->live |= REG_LIVE_WRITTEN; 5282 dst_reg->subreg_def = DEF_NOT_SUBREG; 5283 } else { 5284 /* R1 = (u32) R2 */ 5285 if (is_pointer_value(env, insn->src_reg)) { 5286 verbose(env, 5287 "R%d partial copy of pointer\n", 5288 insn->src_reg); 5289 return -EACCES; 5290 } else if (src_reg->type == SCALAR_VALUE) { 5291 *dst_reg = *src_reg; 5292 dst_reg->live |= REG_LIVE_WRITTEN; 5293 dst_reg->subreg_def = env->insn_idx + 1; 5294 } else { 5295 mark_reg_unknown(env, regs, 5296 insn->dst_reg); 5297 } 5298 coerce_reg_to_size(dst_reg, 4); 5299 } 5300 } else { 5301 /* case: R = imm 5302 * remember the value we stored into this reg 5303 */ 5304 /* clear any state __mark_reg_known doesn't set */ 5305 mark_reg_unknown(env, regs, insn->dst_reg); 5306 regs[insn->dst_reg].type = SCALAR_VALUE; 5307 if (BPF_CLASS(insn->code) == BPF_ALU64) { 5308 __mark_reg_known(regs + insn->dst_reg, 5309 insn->imm); 5310 } else { 5311 __mark_reg_known(regs + insn->dst_reg, 5312 (u32)insn->imm); 5313 } 5314 } 5315 5316 } else if (opcode > BPF_END) { 5317 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 5318 return -EINVAL; 5319 5320 } else { /* all other ALU ops: and, sub, xor, add, ... */ 5321 5322 if (BPF_SRC(insn->code) == BPF_X) { 5323 if (insn->imm != 0 || insn->off != 0) { 5324 verbose(env, "BPF_ALU uses reserved fields\n"); 5325 return -EINVAL; 5326 } 5327 /* check src1 operand */ 5328 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5329 if (err) 5330 return err; 5331 } else { 5332 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 5333 verbose(env, "BPF_ALU uses reserved fields\n"); 5334 return -EINVAL; 5335 } 5336 } 5337 5338 /* check src2 operand */ 5339 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5340 if (err) 5341 return err; 5342 5343 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 5344 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 5345 verbose(env, "div by zero\n"); 5346 return -EINVAL; 5347 } 5348 5349 if ((opcode == BPF_LSH || opcode == BPF_RSH || 5350 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 5351 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 5352 5353 if (insn->imm < 0 || insn->imm >= size) { 5354 verbose(env, "invalid shift %d\n", insn->imm); 5355 return -EINVAL; 5356 } 5357 } 5358 5359 /* check dest operand */ 5360 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5361 if (err) 5362 return err; 5363 5364 return adjust_reg_min_max_vals(env, insn); 5365 } 5366 5367 return 0; 5368 } 5369 5370 static void __find_good_pkt_pointers(struct bpf_func_state *state, 5371 struct bpf_reg_state *dst_reg, 5372 enum bpf_reg_type type, u16 new_range) 5373 { 5374 struct bpf_reg_state *reg; 5375 int i; 5376 5377 for (i = 0; i < MAX_BPF_REG; i++) { 5378 reg = &state->regs[i]; 5379 if (reg->type == type && reg->id == dst_reg->id) 5380 /* keep the maximum range already checked */ 5381 reg->range = max(reg->range, new_range); 5382 } 5383 5384 bpf_for_each_spilled_reg(i, state, reg) { 5385 if (!reg) 5386 continue; 5387 if (reg->type == type && reg->id == dst_reg->id) 5388 reg->range = max(reg->range, new_range); 5389 } 5390 } 5391 5392 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 5393 struct bpf_reg_state *dst_reg, 5394 enum bpf_reg_type type, 5395 bool range_right_open) 5396 { 5397 u16 new_range; 5398 int i; 5399 5400 if (dst_reg->off < 0 || 5401 (dst_reg->off == 0 && range_right_open)) 5402 /* This doesn't give us any range */ 5403 return; 5404 5405 if (dst_reg->umax_value > MAX_PACKET_OFF || 5406 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 5407 /* Risk of overflow. For instance, ptr + (1<<63) may be less 5408 * than pkt_end, but that's because it's also less than pkt. 5409 */ 5410 return; 5411 5412 new_range = dst_reg->off; 5413 if (range_right_open) 5414 new_range--; 5415 5416 /* Examples for register markings: 5417 * 5418 * pkt_data in dst register: 5419 * 5420 * r2 = r3; 5421 * r2 += 8; 5422 * if (r2 > pkt_end) goto <handle exception> 5423 * <access okay> 5424 * 5425 * r2 = r3; 5426 * r2 += 8; 5427 * if (r2 < pkt_end) goto <access okay> 5428 * <handle exception> 5429 * 5430 * Where: 5431 * r2 == dst_reg, pkt_end == src_reg 5432 * r2=pkt(id=n,off=8,r=0) 5433 * r3=pkt(id=n,off=0,r=0) 5434 * 5435 * pkt_data in src register: 5436 * 5437 * r2 = r3; 5438 * r2 += 8; 5439 * if (pkt_end >= r2) goto <access okay> 5440 * <handle exception> 5441 * 5442 * r2 = r3; 5443 * r2 += 8; 5444 * if (pkt_end <= r2) goto <handle exception> 5445 * <access okay> 5446 * 5447 * Where: 5448 * pkt_end == dst_reg, r2 == src_reg 5449 * r2=pkt(id=n,off=8,r=0) 5450 * r3=pkt(id=n,off=0,r=0) 5451 * 5452 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 5453 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 5454 * and [r3, r3 + 8-1) respectively is safe to access depending on 5455 * the check. 5456 */ 5457 5458 /* If our ids match, then we must have the same max_value. And we 5459 * don't care about the other reg's fixed offset, since if it's too big 5460 * the range won't allow anything. 5461 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 5462 */ 5463 for (i = 0; i <= vstate->curframe; i++) 5464 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 5465 new_range); 5466 } 5467 5468 /* compute branch direction of the expression "if (reg opcode val) goto target;" 5469 * and return: 5470 * 1 - branch will be taken and "goto target" will be executed 5471 * 0 - branch will not be taken and fall-through to next insn 5472 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10] 5473 */ 5474 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 5475 bool is_jmp32) 5476 { 5477 struct bpf_reg_state reg_lo; 5478 s64 sval; 5479 5480 if (__is_pointer_value(false, reg)) 5481 return -1; 5482 5483 if (is_jmp32) { 5484 reg_lo = *reg; 5485 reg = ®_lo; 5486 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size 5487 * could truncate high bits and update umin/umax according to 5488 * information of low bits. 5489 */ 5490 coerce_reg_to_size(reg, 4); 5491 /* smin/smax need special handling. For example, after coerce, 5492 * if smin_value is 0x00000000ffffffffLL, the value is -1 when 5493 * used as operand to JMP32. It is a negative number from s32's 5494 * point of view, while it is a positive number when seen as 5495 * s64. The smin/smax are kept as s64, therefore, when used with 5496 * JMP32, they need to be transformed into s32, then sign 5497 * extended back to s64. 5498 * 5499 * Also, smin/smax were copied from umin/umax. If umin/umax has 5500 * different sign bit, then min/max relationship doesn't 5501 * maintain after casting into s32, for this case, set smin/smax 5502 * to safest range. 5503 */ 5504 if ((reg->umax_value ^ reg->umin_value) & 5505 (1ULL << 31)) { 5506 reg->smin_value = S32_MIN; 5507 reg->smax_value = S32_MAX; 5508 } 5509 reg->smin_value = (s64)(s32)reg->smin_value; 5510 reg->smax_value = (s64)(s32)reg->smax_value; 5511 5512 val = (u32)val; 5513 sval = (s64)(s32)val; 5514 } else { 5515 sval = (s64)val; 5516 } 5517 5518 switch (opcode) { 5519 case BPF_JEQ: 5520 if (tnum_is_const(reg->var_off)) 5521 return !!tnum_equals_const(reg->var_off, val); 5522 break; 5523 case BPF_JNE: 5524 if (tnum_is_const(reg->var_off)) 5525 return !tnum_equals_const(reg->var_off, val); 5526 break; 5527 case BPF_JSET: 5528 if ((~reg->var_off.mask & reg->var_off.value) & val) 5529 return 1; 5530 if (!((reg->var_off.mask | reg->var_off.value) & val)) 5531 return 0; 5532 break; 5533 case BPF_JGT: 5534 if (reg->umin_value > val) 5535 return 1; 5536 else if (reg->umax_value <= val) 5537 return 0; 5538 break; 5539 case BPF_JSGT: 5540 if (reg->smin_value > sval) 5541 return 1; 5542 else if (reg->smax_value < sval) 5543 return 0; 5544 break; 5545 case BPF_JLT: 5546 if (reg->umax_value < val) 5547 return 1; 5548 else if (reg->umin_value >= val) 5549 return 0; 5550 break; 5551 case BPF_JSLT: 5552 if (reg->smax_value < sval) 5553 return 1; 5554 else if (reg->smin_value >= sval) 5555 return 0; 5556 break; 5557 case BPF_JGE: 5558 if (reg->umin_value >= val) 5559 return 1; 5560 else if (reg->umax_value < val) 5561 return 0; 5562 break; 5563 case BPF_JSGE: 5564 if (reg->smin_value >= sval) 5565 return 1; 5566 else if (reg->smax_value < sval) 5567 return 0; 5568 break; 5569 case BPF_JLE: 5570 if (reg->umax_value <= val) 5571 return 1; 5572 else if (reg->umin_value > val) 5573 return 0; 5574 break; 5575 case BPF_JSLE: 5576 if (reg->smax_value <= sval) 5577 return 1; 5578 else if (reg->smin_value > sval) 5579 return 0; 5580 break; 5581 } 5582 5583 return -1; 5584 } 5585 5586 /* Generate min value of the high 32-bit from TNUM info. */ 5587 static u64 gen_hi_min(struct tnum var) 5588 { 5589 return var.value & ~0xffffffffULL; 5590 } 5591 5592 /* Generate max value of the high 32-bit from TNUM info. */ 5593 static u64 gen_hi_max(struct tnum var) 5594 { 5595 return (var.value | var.mask) & ~0xffffffffULL; 5596 } 5597 5598 /* Return true if VAL is compared with a s64 sign extended from s32, and they 5599 * are with the same signedness. 5600 */ 5601 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg) 5602 { 5603 return ((s32)sval >= 0 && 5604 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) || 5605 ((s32)sval < 0 && 5606 reg->smax_value <= 0 && reg->smin_value >= S32_MIN); 5607 } 5608 5609 /* Adjusts the register min/max values in the case that the dst_reg is the 5610 * variable register that we are working on, and src_reg is a constant or we're 5611 * simply doing a BPF_K check. 5612 * In JEQ/JNE cases we also adjust the var_off values. 5613 */ 5614 static void reg_set_min_max(struct bpf_reg_state *true_reg, 5615 struct bpf_reg_state *false_reg, u64 val, 5616 u8 opcode, bool is_jmp32) 5617 { 5618 s64 sval; 5619 5620 /* If the dst_reg is a pointer, we can't learn anything about its 5621 * variable offset from the compare (unless src_reg were a pointer into 5622 * the same object, but we don't bother with that. 5623 * Since false_reg and true_reg have the same type by construction, we 5624 * only need to check one of them for pointerness. 5625 */ 5626 if (__is_pointer_value(false, false_reg)) 5627 return; 5628 5629 val = is_jmp32 ? (u32)val : val; 5630 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 5631 5632 switch (opcode) { 5633 case BPF_JEQ: 5634 case BPF_JNE: 5635 { 5636 struct bpf_reg_state *reg = 5637 opcode == BPF_JEQ ? true_reg : false_reg; 5638 5639 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but 5640 * if it is true we know the value for sure. Likewise for 5641 * BPF_JNE. 5642 */ 5643 if (is_jmp32) { 5644 u64 old_v = reg->var_off.value; 5645 u64 hi_mask = ~0xffffffffULL; 5646 5647 reg->var_off.value = (old_v & hi_mask) | val; 5648 reg->var_off.mask &= hi_mask; 5649 } else { 5650 __mark_reg_known(reg, val); 5651 } 5652 break; 5653 } 5654 case BPF_JSET: 5655 false_reg->var_off = tnum_and(false_reg->var_off, 5656 tnum_const(~val)); 5657 if (is_power_of_2(val)) 5658 true_reg->var_off = tnum_or(true_reg->var_off, 5659 tnum_const(val)); 5660 break; 5661 case BPF_JGE: 5662 case BPF_JGT: 5663 { 5664 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 5665 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 5666 5667 if (is_jmp32) { 5668 false_umax += gen_hi_max(false_reg->var_off); 5669 true_umin += gen_hi_min(true_reg->var_off); 5670 } 5671 false_reg->umax_value = min(false_reg->umax_value, false_umax); 5672 true_reg->umin_value = max(true_reg->umin_value, true_umin); 5673 break; 5674 } 5675 case BPF_JSGE: 5676 case BPF_JSGT: 5677 { 5678 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 5679 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 5680 5681 /* If the full s64 was not sign-extended from s32 then don't 5682 * deduct further info. 5683 */ 5684 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5685 break; 5686 false_reg->smax_value = min(false_reg->smax_value, false_smax); 5687 true_reg->smin_value = max(true_reg->smin_value, true_smin); 5688 break; 5689 } 5690 case BPF_JLE: 5691 case BPF_JLT: 5692 { 5693 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 5694 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 5695 5696 if (is_jmp32) { 5697 false_umin += gen_hi_min(false_reg->var_off); 5698 true_umax += gen_hi_max(true_reg->var_off); 5699 } 5700 false_reg->umin_value = max(false_reg->umin_value, false_umin); 5701 true_reg->umax_value = min(true_reg->umax_value, true_umax); 5702 break; 5703 } 5704 case BPF_JSLE: 5705 case BPF_JSLT: 5706 { 5707 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 5708 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 5709 5710 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5711 break; 5712 false_reg->smin_value = max(false_reg->smin_value, false_smin); 5713 true_reg->smax_value = min(true_reg->smax_value, true_smax); 5714 break; 5715 } 5716 default: 5717 break; 5718 } 5719 5720 __reg_deduce_bounds(false_reg); 5721 __reg_deduce_bounds(true_reg); 5722 /* We might have learned some bits from the bounds. */ 5723 __reg_bound_offset(false_reg); 5724 __reg_bound_offset(true_reg); 5725 if (is_jmp32) { 5726 __reg_bound_offset32(false_reg); 5727 __reg_bound_offset32(true_reg); 5728 } 5729 /* Intersecting with the old var_off might have improved our bounds 5730 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 5731 * then new var_off is (0; 0x7f...fc) which improves our umax. 5732 */ 5733 __update_reg_bounds(false_reg); 5734 __update_reg_bounds(true_reg); 5735 } 5736 5737 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 5738 * the variable reg. 5739 */ 5740 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 5741 struct bpf_reg_state *false_reg, u64 val, 5742 u8 opcode, bool is_jmp32) 5743 { 5744 s64 sval; 5745 5746 if (__is_pointer_value(false, false_reg)) 5747 return; 5748 5749 val = is_jmp32 ? (u32)val : val; 5750 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 5751 5752 switch (opcode) { 5753 case BPF_JEQ: 5754 case BPF_JNE: 5755 { 5756 struct bpf_reg_state *reg = 5757 opcode == BPF_JEQ ? true_reg : false_reg; 5758 5759 if (is_jmp32) { 5760 u64 old_v = reg->var_off.value; 5761 u64 hi_mask = ~0xffffffffULL; 5762 5763 reg->var_off.value = (old_v & hi_mask) | val; 5764 reg->var_off.mask &= hi_mask; 5765 } else { 5766 __mark_reg_known(reg, val); 5767 } 5768 break; 5769 } 5770 case BPF_JSET: 5771 false_reg->var_off = tnum_and(false_reg->var_off, 5772 tnum_const(~val)); 5773 if (is_power_of_2(val)) 5774 true_reg->var_off = tnum_or(true_reg->var_off, 5775 tnum_const(val)); 5776 break; 5777 case BPF_JGE: 5778 case BPF_JGT: 5779 { 5780 u64 false_umin = opcode == BPF_JGT ? val : val + 1; 5781 u64 true_umax = opcode == BPF_JGT ? val - 1 : val; 5782 5783 if (is_jmp32) { 5784 false_umin += gen_hi_min(false_reg->var_off); 5785 true_umax += gen_hi_max(true_reg->var_off); 5786 } 5787 false_reg->umin_value = max(false_reg->umin_value, false_umin); 5788 true_reg->umax_value = min(true_reg->umax_value, true_umax); 5789 break; 5790 } 5791 case BPF_JSGE: 5792 case BPF_JSGT: 5793 { 5794 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1; 5795 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval; 5796 5797 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5798 break; 5799 false_reg->smin_value = max(false_reg->smin_value, false_smin); 5800 true_reg->smax_value = min(true_reg->smax_value, true_smax); 5801 break; 5802 } 5803 case BPF_JLE: 5804 case BPF_JLT: 5805 { 5806 u64 false_umax = opcode == BPF_JLT ? val : val - 1; 5807 u64 true_umin = opcode == BPF_JLT ? val + 1 : val; 5808 5809 if (is_jmp32) { 5810 false_umax += gen_hi_max(false_reg->var_off); 5811 true_umin += gen_hi_min(true_reg->var_off); 5812 } 5813 false_reg->umax_value = min(false_reg->umax_value, false_umax); 5814 true_reg->umin_value = max(true_reg->umin_value, true_umin); 5815 break; 5816 } 5817 case BPF_JSLE: 5818 case BPF_JSLT: 5819 { 5820 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1; 5821 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval; 5822 5823 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5824 break; 5825 false_reg->smax_value = min(false_reg->smax_value, false_smax); 5826 true_reg->smin_value = max(true_reg->smin_value, true_smin); 5827 break; 5828 } 5829 default: 5830 break; 5831 } 5832 5833 __reg_deduce_bounds(false_reg); 5834 __reg_deduce_bounds(true_reg); 5835 /* We might have learned some bits from the bounds. */ 5836 __reg_bound_offset(false_reg); 5837 __reg_bound_offset(true_reg); 5838 if (is_jmp32) { 5839 __reg_bound_offset32(false_reg); 5840 __reg_bound_offset32(true_reg); 5841 } 5842 /* Intersecting with the old var_off might have improved our bounds 5843 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 5844 * then new var_off is (0; 0x7f...fc) which improves our umax. 5845 */ 5846 __update_reg_bounds(false_reg); 5847 __update_reg_bounds(true_reg); 5848 } 5849 5850 /* Regs are known to be equal, so intersect their min/max/var_off */ 5851 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 5852 struct bpf_reg_state *dst_reg) 5853 { 5854 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 5855 dst_reg->umin_value); 5856 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 5857 dst_reg->umax_value); 5858 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 5859 dst_reg->smin_value); 5860 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 5861 dst_reg->smax_value); 5862 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 5863 dst_reg->var_off); 5864 /* We might have learned new bounds from the var_off. */ 5865 __update_reg_bounds(src_reg); 5866 __update_reg_bounds(dst_reg); 5867 /* We might have learned something about the sign bit. */ 5868 __reg_deduce_bounds(src_reg); 5869 __reg_deduce_bounds(dst_reg); 5870 /* We might have learned some bits from the bounds. */ 5871 __reg_bound_offset(src_reg); 5872 __reg_bound_offset(dst_reg); 5873 /* Intersecting with the old var_off might have improved our bounds 5874 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 5875 * then new var_off is (0; 0x7f...fc) which improves our umax. 5876 */ 5877 __update_reg_bounds(src_reg); 5878 __update_reg_bounds(dst_reg); 5879 } 5880 5881 static void reg_combine_min_max(struct bpf_reg_state *true_src, 5882 struct bpf_reg_state *true_dst, 5883 struct bpf_reg_state *false_src, 5884 struct bpf_reg_state *false_dst, 5885 u8 opcode) 5886 { 5887 switch (opcode) { 5888 case BPF_JEQ: 5889 __reg_combine_min_max(true_src, true_dst); 5890 break; 5891 case BPF_JNE: 5892 __reg_combine_min_max(false_src, false_dst); 5893 break; 5894 } 5895 } 5896 5897 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 5898 struct bpf_reg_state *reg, u32 id, 5899 bool is_null) 5900 { 5901 if (reg_type_may_be_null(reg->type) && reg->id == id) { 5902 /* Old offset (both fixed and variable parts) should 5903 * have been known-zero, because we don't allow pointer 5904 * arithmetic on pointers that might be NULL. 5905 */ 5906 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 5907 !tnum_equals_const(reg->var_off, 0) || 5908 reg->off)) { 5909 __mark_reg_known_zero(reg); 5910 reg->off = 0; 5911 } 5912 if (is_null) { 5913 reg->type = SCALAR_VALUE; 5914 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 5915 if (reg->map_ptr->inner_map_meta) { 5916 reg->type = CONST_PTR_TO_MAP; 5917 reg->map_ptr = reg->map_ptr->inner_map_meta; 5918 } else if (reg->map_ptr->map_type == 5919 BPF_MAP_TYPE_XSKMAP) { 5920 reg->type = PTR_TO_XDP_SOCK; 5921 } else { 5922 reg->type = PTR_TO_MAP_VALUE; 5923 } 5924 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 5925 reg->type = PTR_TO_SOCKET; 5926 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 5927 reg->type = PTR_TO_SOCK_COMMON; 5928 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 5929 reg->type = PTR_TO_TCP_SOCK; 5930 } 5931 if (is_null) { 5932 /* We don't need id and ref_obj_id from this point 5933 * onwards anymore, thus we should better reset it, 5934 * so that state pruning has chances to take effect. 5935 */ 5936 reg->id = 0; 5937 reg->ref_obj_id = 0; 5938 } else if (!reg_may_point_to_spin_lock(reg)) { 5939 /* For not-NULL ptr, reg->ref_obj_id will be reset 5940 * in release_reg_references(). 5941 * 5942 * reg->id is still used by spin_lock ptr. Other 5943 * than spin_lock ptr type, reg->id can be reset. 5944 */ 5945 reg->id = 0; 5946 } 5947 } 5948 } 5949 5950 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 5951 bool is_null) 5952 { 5953 struct bpf_reg_state *reg; 5954 int i; 5955 5956 for (i = 0; i < MAX_BPF_REG; i++) 5957 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 5958 5959 bpf_for_each_spilled_reg(i, state, reg) { 5960 if (!reg) 5961 continue; 5962 mark_ptr_or_null_reg(state, reg, id, is_null); 5963 } 5964 } 5965 5966 /* The logic is similar to find_good_pkt_pointers(), both could eventually 5967 * be folded together at some point. 5968 */ 5969 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 5970 bool is_null) 5971 { 5972 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5973 struct bpf_reg_state *regs = state->regs; 5974 u32 ref_obj_id = regs[regno].ref_obj_id; 5975 u32 id = regs[regno].id; 5976 int i; 5977 5978 if (ref_obj_id && ref_obj_id == id && is_null) 5979 /* regs[regno] is in the " == NULL" branch. 5980 * No one could have freed the reference state before 5981 * doing the NULL check. 5982 */ 5983 WARN_ON_ONCE(release_reference_state(state, id)); 5984 5985 for (i = 0; i <= vstate->curframe; i++) 5986 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 5987 } 5988 5989 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 5990 struct bpf_reg_state *dst_reg, 5991 struct bpf_reg_state *src_reg, 5992 struct bpf_verifier_state *this_branch, 5993 struct bpf_verifier_state *other_branch) 5994 { 5995 if (BPF_SRC(insn->code) != BPF_X) 5996 return false; 5997 5998 /* Pointers are always 64-bit. */ 5999 if (BPF_CLASS(insn->code) == BPF_JMP32) 6000 return false; 6001 6002 switch (BPF_OP(insn->code)) { 6003 case BPF_JGT: 6004 if ((dst_reg->type == PTR_TO_PACKET && 6005 src_reg->type == PTR_TO_PACKET_END) || 6006 (dst_reg->type == PTR_TO_PACKET_META && 6007 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6008 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 6009 find_good_pkt_pointers(this_branch, dst_reg, 6010 dst_reg->type, false); 6011 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6012 src_reg->type == PTR_TO_PACKET) || 6013 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6014 src_reg->type == PTR_TO_PACKET_META)) { 6015 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 6016 find_good_pkt_pointers(other_branch, src_reg, 6017 src_reg->type, true); 6018 } else { 6019 return false; 6020 } 6021 break; 6022 case BPF_JLT: 6023 if ((dst_reg->type == PTR_TO_PACKET && 6024 src_reg->type == PTR_TO_PACKET_END) || 6025 (dst_reg->type == PTR_TO_PACKET_META && 6026 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6027 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 6028 find_good_pkt_pointers(other_branch, dst_reg, 6029 dst_reg->type, true); 6030 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6031 src_reg->type == PTR_TO_PACKET) || 6032 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6033 src_reg->type == PTR_TO_PACKET_META)) { 6034 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 6035 find_good_pkt_pointers(this_branch, src_reg, 6036 src_reg->type, false); 6037 } else { 6038 return false; 6039 } 6040 break; 6041 case BPF_JGE: 6042 if ((dst_reg->type == PTR_TO_PACKET && 6043 src_reg->type == PTR_TO_PACKET_END) || 6044 (dst_reg->type == PTR_TO_PACKET_META && 6045 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6046 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 6047 find_good_pkt_pointers(this_branch, dst_reg, 6048 dst_reg->type, true); 6049 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6050 src_reg->type == PTR_TO_PACKET) || 6051 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6052 src_reg->type == PTR_TO_PACKET_META)) { 6053 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 6054 find_good_pkt_pointers(other_branch, src_reg, 6055 src_reg->type, false); 6056 } else { 6057 return false; 6058 } 6059 break; 6060 case BPF_JLE: 6061 if ((dst_reg->type == PTR_TO_PACKET && 6062 src_reg->type == PTR_TO_PACKET_END) || 6063 (dst_reg->type == PTR_TO_PACKET_META && 6064 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6065 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 6066 find_good_pkt_pointers(other_branch, dst_reg, 6067 dst_reg->type, false); 6068 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6069 src_reg->type == PTR_TO_PACKET) || 6070 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6071 src_reg->type == PTR_TO_PACKET_META)) { 6072 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 6073 find_good_pkt_pointers(this_branch, src_reg, 6074 src_reg->type, true); 6075 } else { 6076 return false; 6077 } 6078 break; 6079 default: 6080 return false; 6081 } 6082 6083 return true; 6084 } 6085 6086 static int check_cond_jmp_op(struct bpf_verifier_env *env, 6087 struct bpf_insn *insn, int *insn_idx) 6088 { 6089 struct bpf_verifier_state *this_branch = env->cur_state; 6090 struct bpf_verifier_state *other_branch; 6091 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 6092 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 6093 u8 opcode = BPF_OP(insn->code); 6094 bool is_jmp32; 6095 int pred = -1; 6096 int err; 6097 6098 /* Only conditional jumps are expected to reach here. */ 6099 if (opcode == BPF_JA || opcode > BPF_JSLE) { 6100 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 6101 return -EINVAL; 6102 } 6103 6104 if (BPF_SRC(insn->code) == BPF_X) { 6105 if (insn->imm != 0) { 6106 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 6107 return -EINVAL; 6108 } 6109 6110 /* check src1 operand */ 6111 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6112 if (err) 6113 return err; 6114 6115 if (is_pointer_value(env, insn->src_reg)) { 6116 verbose(env, "R%d pointer comparison prohibited\n", 6117 insn->src_reg); 6118 return -EACCES; 6119 } 6120 src_reg = ®s[insn->src_reg]; 6121 } else { 6122 if (insn->src_reg != BPF_REG_0) { 6123 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 6124 return -EINVAL; 6125 } 6126 } 6127 6128 /* check src2 operand */ 6129 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6130 if (err) 6131 return err; 6132 6133 dst_reg = ®s[insn->dst_reg]; 6134 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 6135 6136 if (BPF_SRC(insn->code) == BPF_K) 6137 pred = is_branch_taken(dst_reg, insn->imm, 6138 opcode, is_jmp32); 6139 else if (src_reg->type == SCALAR_VALUE && 6140 tnum_is_const(src_reg->var_off)) 6141 pred = is_branch_taken(dst_reg, src_reg->var_off.value, 6142 opcode, is_jmp32); 6143 if (pred >= 0) { 6144 err = mark_chain_precision(env, insn->dst_reg); 6145 if (BPF_SRC(insn->code) == BPF_X && !err) 6146 err = mark_chain_precision(env, insn->src_reg); 6147 if (err) 6148 return err; 6149 } 6150 if (pred == 1) { 6151 /* only follow the goto, ignore fall-through */ 6152 *insn_idx += insn->off; 6153 return 0; 6154 } else if (pred == 0) { 6155 /* only follow fall-through branch, since 6156 * that's where the program will go 6157 */ 6158 return 0; 6159 } 6160 6161 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 6162 false); 6163 if (!other_branch) 6164 return -EFAULT; 6165 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 6166 6167 /* detect if we are comparing against a constant value so we can adjust 6168 * our min/max values for our dst register. 6169 * this is only legit if both are scalars (or pointers to the same 6170 * object, I suppose, but we don't support that right now), because 6171 * otherwise the different base pointers mean the offsets aren't 6172 * comparable. 6173 */ 6174 if (BPF_SRC(insn->code) == BPF_X) { 6175 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 6176 struct bpf_reg_state lo_reg0 = *dst_reg; 6177 struct bpf_reg_state lo_reg1 = *src_reg; 6178 struct bpf_reg_state *src_lo, *dst_lo; 6179 6180 dst_lo = &lo_reg0; 6181 src_lo = &lo_reg1; 6182 coerce_reg_to_size(dst_lo, 4); 6183 coerce_reg_to_size(src_lo, 4); 6184 6185 if (dst_reg->type == SCALAR_VALUE && 6186 src_reg->type == SCALAR_VALUE) { 6187 if (tnum_is_const(src_reg->var_off) || 6188 (is_jmp32 && tnum_is_const(src_lo->var_off))) 6189 reg_set_min_max(&other_branch_regs[insn->dst_reg], 6190 dst_reg, 6191 is_jmp32 6192 ? src_lo->var_off.value 6193 : src_reg->var_off.value, 6194 opcode, is_jmp32); 6195 else if (tnum_is_const(dst_reg->var_off) || 6196 (is_jmp32 && tnum_is_const(dst_lo->var_off))) 6197 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 6198 src_reg, 6199 is_jmp32 6200 ? dst_lo->var_off.value 6201 : dst_reg->var_off.value, 6202 opcode, is_jmp32); 6203 else if (!is_jmp32 && 6204 (opcode == BPF_JEQ || opcode == BPF_JNE)) 6205 /* Comparing for equality, we can combine knowledge */ 6206 reg_combine_min_max(&other_branch_regs[insn->src_reg], 6207 &other_branch_regs[insn->dst_reg], 6208 src_reg, dst_reg, opcode); 6209 } 6210 } else if (dst_reg->type == SCALAR_VALUE) { 6211 reg_set_min_max(&other_branch_regs[insn->dst_reg], 6212 dst_reg, insn->imm, opcode, is_jmp32); 6213 } 6214 6215 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 6216 * NOTE: these optimizations below are related with pointer comparison 6217 * which will never be JMP32. 6218 */ 6219 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 6220 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 6221 reg_type_may_be_null(dst_reg->type)) { 6222 /* Mark all identical registers in each branch as either 6223 * safe or unknown depending R == 0 or R != 0 conditional. 6224 */ 6225 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 6226 opcode == BPF_JNE); 6227 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 6228 opcode == BPF_JEQ); 6229 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 6230 this_branch, other_branch) && 6231 is_pointer_value(env, insn->dst_reg)) { 6232 verbose(env, "R%d pointer comparison prohibited\n", 6233 insn->dst_reg); 6234 return -EACCES; 6235 } 6236 if (env->log.level & BPF_LOG_LEVEL) 6237 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 6238 return 0; 6239 } 6240 6241 /* verify BPF_LD_IMM64 instruction */ 6242 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 6243 { 6244 struct bpf_insn_aux_data *aux = cur_aux(env); 6245 struct bpf_reg_state *regs = cur_regs(env); 6246 struct bpf_map *map; 6247 int err; 6248 6249 if (BPF_SIZE(insn->code) != BPF_DW) { 6250 verbose(env, "invalid BPF_LD_IMM insn\n"); 6251 return -EINVAL; 6252 } 6253 if (insn->off != 0) { 6254 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 6255 return -EINVAL; 6256 } 6257 6258 err = check_reg_arg(env, insn->dst_reg, DST_OP); 6259 if (err) 6260 return err; 6261 6262 if (insn->src_reg == 0) { 6263 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 6264 6265 regs[insn->dst_reg].type = SCALAR_VALUE; 6266 __mark_reg_known(®s[insn->dst_reg], imm); 6267 return 0; 6268 } 6269 6270 map = env->used_maps[aux->map_index]; 6271 mark_reg_known_zero(env, regs, insn->dst_reg); 6272 regs[insn->dst_reg].map_ptr = map; 6273 6274 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 6275 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; 6276 regs[insn->dst_reg].off = aux->map_off; 6277 if (map_value_has_spin_lock(map)) 6278 regs[insn->dst_reg].id = ++env->id_gen; 6279 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 6280 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 6281 } else { 6282 verbose(env, "bpf verifier is misconfigured\n"); 6283 return -EINVAL; 6284 } 6285 6286 return 0; 6287 } 6288 6289 static bool may_access_skb(enum bpf_prog_type type) 6290 { 6291 switch (type) { 6292 case BPF_PROG_TYPE_SOCKET_FILTER: 6293 case BPF_PROG_TYPE_SCHED_CLS: 6294 case BPF_PROG_TYPE_SCHED_ACT: 6295 return true; 6296 default: 6297 return false; 6298 } 6299 } 6300 6301 /* verify safety of LD_ABS|LD_IND instructions: 6302 * - they can only appear in the programs where ctx == skb 6303 * - since they are wrappers of function calls, they scratch R1-R5 registers, 6304 * preserve R6-R9, and store return value into R0 6305 * 6306 * Implicit input: 6307 * ctx == skb == R6 == CTX 6308 * 6309 * Explicit input: 6310 * SRC == any register 6311 * IMM == 32-bit immediate 6312 * 6313 * Output: 6314 * R0 - 8/16/32-bit skb data converted to cpu endianness 6315 */ 6316 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 6317 { 6318 struct bpf_reg_state *regs = cur_regs(env); 6319 static const int ctx_reg = BPF_REG_6; 6320 u8 mode = BPF_MODE(insn->code); 6321 int i, err; 6322 6323 if (!may_access_skb(env->prog->type)) { 6324 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 6325 return -EINVAL; 6326 } 6327 6328 if (!env->ops->gen_ld_abs) { 6329 verbose(env, "bpf verifier is misconfigured\n"); 6330 return -EINVAL; 6331 } 6332 6333 if (env->subprog_cnt > 1) { 6334 /* when program has LD_ABS insn JITs and interpreter assume 6335 * that r1 == ctx == skb which is not the case for callees 6336 * that can have arbitrary arguments. It's problematic 6337 * for main prog as well since JITs would need to analyze 6338 * all functions in order to make proper register save/restore 6339 * decisions in the main prog. Hence disallow LD_ABS with calls 6340 */ 6341 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 6342 return -EINVAL; 6343 } 6344 6345 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 6346 BPF_SIZE(insn->code) == BPF_DW || 6347 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 6348 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 6349 return -EINVAL; 6350 } 6351 6352 /* check whether implicit source operand (register R6) is readable */ 6353 err = check_reg_arg(env, ctx_reg, SRC_OP); 6354 if (err) 6355 return err; 6356 6357 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 6358 * gen_ld_abs() may terminate the program at runtime, leading to 6359 * reference leak. 6360 */ 6361 err = check_reference_leak(env); 6362 if (err) { 6363 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 6364 return err; 6365 } 6366 6367 if (env->cur_state->active_spin_lock) { 6368 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 6369 return -EINVAL; 6370 } 6371 6372 if (regs[ctx_reg].type != PTR_TO_CTX) { 6373 verbose(env, 6374 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 6375 return -EINVAL; 6376 } 6377 6378 if (mode == BPF_IND) { 6379 /* check explicit source operand */ 6380 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6381 if (err) 6382 return err; 6383 } 6384 6385 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 6386 if (err < 0) 6387 return err; 6388 6389 /* reset caller saved regs to unreadable */ 6390 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6391 mark_reg_not_init(env, regs, caller_saved[i]); 6392 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6393 } 6394 6395 /* mark destination R0 register as readable, since it contains 6396 * the value fetched from the packet. 6397 * Already marked as written above. 6398 */ 6399 mark_reg_unknown(env, regs, BPF_REG_0); 6400 /* ld_abs load up to 32-bit skb data. */ 6401 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 6402 return 0; 6403 } 6404 6405 static int check_return_code(struct bpf_verifier_env *env) 6406 { 6407 struct tnum enforce_attach_type_range = tnum_unknown; 6408 const struct bpf_prog *prog = env->prog; 6409 struct bpf_reg_state *reg; 6410 struct tnum range = tnum_range(0, 1); 6411 int err; 6412 6413 /* The struct_ops func-ptr's return type could be "void" */ 6414 if (env->prog->type == BPF_PROG_TYPE_STRUCT_OPS && 6415 !prog->aux->attach_func_proto->type) 6416 return 0; 6417 6418 /* eBPF calling convetion is such that R0 is used 6419 * to return the value from eBPF program. 6420 * Make sure that it's readable at this time 6421 * of bpf_exit, which means that program wrote 6422 * something into it earlier 6423 */ 6424 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 6425 if (err) 6426 return err; 6427 6428 if (is_pointer_value(env, BPF_REG_0)) { 6429 verbose(env, "R0 leaks addr as return value\n"); 6430 return -EACCES; 6431 } 6432 6433 switch (env->prog->type) { 6434 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 6435 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 6436 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG) 6437 range = tnum_range(1, 1); 6438 break; 6439 case BPF_PROG_TYPE_CGROUP_SKB: 6440 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 6441 range = tnum_range(0, 3); 6442 enforce_attach_type_range = tnum_range(2, 3); 6443 } 6444 break; 6445 case BPF_PROG_TYPE_CGROUP_SOCK: 6446 case BPF_PROG_TYPE_SOCK_OPS: 6447 case BPF_PROG_TYPE_CGROUP_DEVICE: 6448 case BPF_PROG_TYPE_CGROUP_SYSCTL: 6449 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 6450 break; 6451 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6452 if (!env->prog->aux->attach_btf_id) 6453 return 0; 6454 range = tnum_const(0); 6455 break; 6456 default: 6457 return 0; 6458 } 6459 6460 reg = cur_regs(env) + BPF_REG_0; 6461 if (reg->type != SCALAR_VALUE) { 6462 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 6463 reg_type_str[reg->type]); 6464 return -EINVAL; 6465 } 6466 6467 if (!tnum_in(range, reg->var_off)) { 6468 char tn_buf[48]; 6469 6470 verbose(env, "At program exit the register R0 "); 6471 if (!tnum_is_unknown(reg->var_off)) { 6472 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6473 verbose(env, "has value %s", tn_buf); 6474 } else { 6475 verbose(env, "has unknown scalar value"); 6476 } 6477 tnum_strn(tn_buf, sizeof(tn_buf), range); 6478 verbose(env, " should have been in %s\n", tn_buf); 6479 return -EINVAL; 6480 } 6481 6482 if (!tnum_is_unknown(enforce_attach_type_range) && 6483 tnum_in(enforce_attach_type_range, reg->var_off)) 6484 env->prog->enforce_expected_attach_type = 1; 6485 return 0; 6486 } 6487 6488 /* non-recursive DFS pseudo code 6489 * 1 procedure DFS-iterative(G,v): 6490 * 2 label v as discovered 6491 * 3 let S be a stack 6492 * 4 S.push(v) 6493 * 5 while S is not empty 6494 * 6 t <- S.pop() 6495 * 7 if t is what we're looking for: 6496 * 8 return t 6497 * 9 for all edges e in G.adjacentEdges(t) do 6498 * 10 if edge e is already labelled 6499 * 11 continue with the next edge 6500 * 12 w <- G.adjacentVertex(t,e) 6501 * 13 if vertex w is not discovered and not explored 6502 * 14 label e as tree-edge 6503 * 15 label w as discovered 6504 * 16 S.push(w) 6505 * 17 continue at 5 6506 * 18 else if vertex w is discovered 6507 * 19 label e as back-edge 6508 * 20 else 6509 * 21 // vertex w is explored 6510 * 22 label e as forward- or cross-edge 6511 * 23 label t as explored 6512 * 24 S.pop() 6513 * 6514 * convention: 6515 * 0x10 - discovered 6516 * 0x11 - discovered and fall-through edge labelled 6517 * 0x12 - discovered and fall-through and branch edges labelled 6518 * 0x20 - explored 6519 */ 6520 6521 enum { 6522 DISCOVERED = 0x10, 6523 EXPLORED = 0x20, 6524 FALLTHROUGH = 1, 6525 BRANCH = 2, 6526 }; 6527 6528 static u32 state_htab_size(struct bpf_verifier_env *env) 6529 { 6530 return env->prog->len; 6531 } 6532 6533 static struct bpf_verifier_state_list **explored_state( 6534 struct bpf_verifier_env *env, 6535 int idx) 6536 { 6537 struct bpf_verifier_state *cur = env->cur_state; 6538 struct bpf_func_state *state = cur->frame[cur->curframe]; 6539 6540 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 6541 } 6542 6543 static void init_explored_state(struct bpf_verifier_env *env, int idx) 6544 { 6545 env->insn_aux_data[idx].prune_point = true; 6546 } 6547 6548 /* t, w, e - match pseudo-code above: 6549 * t - index of current instruction 6550 * w - next instruction 6551 * e - edge 6552 */ 6553 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 6554 bool loop_ok) 6555 { 6556 int *insn_stack = env->cfg.insn_stack; 6557 int *insn_state = env->cfg.insn_state; 6558 6559 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 6560 return 0; 6561 6562 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 6563 return 0; 6564 6565 if (w < 0 || w >= env->prog->len) { 6566 verbose_linfo(env, t, "%d: ", t); 6567 verbose(env, "jump out of range from insn %d to %d\n", t, w); 6568 return -EINVAL; 6569 } 6570 6571 if (e == BRANCH) 6572 /* mark branch target for state pruning */ 6573 init_explored_state(env, w); 6574 6575 if (insn_state[w] == 0) { 6576 /* tree-edge */ 6577 insn_state[t] = DISCOVERED | e; 6578 insn_state[w] = DISCOVERED; 6579 if (env->cfg.cur_stack >= env->prog->len) 6580 return -E2BIG; 6581 insn_stack[env->cfg.cur_stack++] = w; 6582 return 1; 6583 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 6584 if (loop_ok && env->allow_ptr_leaks) 6585 return 0; 6586 verbose_linfo(env, t, "%d: ", t); 6587 verbose_linfo(env, w, "%d: ", w); 6588 verbose(env, "back-edge from insn %d to %d\n", t, w); 6589 return -EINVAL; 6590 } else if (insn_state[w] == EXPLORED) { 6591 /* forward- or cross-edge */ 6592 insn_state[t] = DISCOVERED | e; 6593 } else { 6594 verbose(env, "insn state internal bug\n"); 6595 return -EFAULT; 6596 } 6597 return 0; 6598 } 6599 6600 /* non-recursive depth-first-search to detect loops in BPF program 6601 * loop == back-edge in directed graph 6602 */ 6603 static int check_cfg(struct bpf_verifier_env *env) 6604 { 6605 struct bpf_insn *insns = env->prog->insnsi; 6606 int insn_cnt = env->prog->len; 6607 int *insn_stack, *insn_state; 6608 int ret = 0; 6609 int i, t; 6610 6611 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 6612 if (!insn_state) 6613 return -ENOMEM; 6614 6615 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 6616 if (!insn_stack) { 6617 kvfree(insn_state); 6618 return -ENOMEM; 6619 } 6620 6621 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 6622 insn_stack[0] = 0; /* 0 is the first instruction */ 6623 env->cfg.cur_stack = 1; 6624 6625 peek_stack: 6626 if (env->cfg.cur_stack == 0) 6627 goto check_state; 6628 t = insn_stack[env->cfg.cur_stack - 1]; 6629 6630 if (BPF_CLASS(insns[t].code) == BPF_JMP || 6631 BPF_CLASS(insns[t].code) == BPF_JMP32) { 6632 u8 opcode = BPF_OP(insns[t].code); 6633 6634 if (opcode == BPF_EXIT) { 6635 goto mark_explored; 6636 } else if (opcode == BPF_CALL) { 6637 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 6638 if (ret == 1) 6639 goto peek_stack; 6640 else if (ret < 0) 6641 goto err_free; 6642 if (t + 1 < insn_cnt) 6643 init_explored_state(env, t + 1); 6644 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 6645 init_explored_state(env, t); 6646 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 6647 env, false); 6648 if (ret == 1) 6649 goto peek_stack; 6650 else if (ret < 0) 6651 goto err_free; 6652 } 6653 } else if (opcode == BPF_JA) { 6654 if (BPF_SRC(insns[t].code) != BPF_K) { 6655 ret = -EINVAL; 6656 goto err_free; 6657 } 6658 /* unconditional jump with single edge */ 6659 ret = push_insn(t, t + insns[t].off + 1, 6660 FALLTHROUGH, env, true); 6661 if (ret == 1) 6662 goto peek_stack; 6663 else if (ret < 0) 6664 goto err_free; 6665 /* unconditional jmp is not a good pruning point, 6666 * but it's marked, since backtracking needs 6667 * to record jmp history in is_state_visited(). 6668 */ 6669 init_explored_state(env, t + insns[t].off + 1); 6670 /* tell verifier to check for equivalent states 6671 * after every call and jump 6672 */ 6673 if (t + 1 < insn_cnt) 6674 init_explored_state(env, t + 1); 6675 } else { 6676 /* conditional jump with two edges */ 6677 init_explored_state(env, t); 6678 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 6679 if (ret == 1) 6680 goto peek_stack; 6681 else if (ret < 0) 6682 goto err_free; 6683 6684 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 6685 if (ret == 1) 6686 goto peek_stack; 6687 else if (ret < 0) 6688 goto err_free; 6689 } 6690 } else { 6691 /* all other non-branch instructions with single 6692 * fall-through edge 6693 */ 6694 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 6695 if (ret == 1) 6696 goto peek_stack; 6697 else if (ret < 0) 6698 goto err_free; 6699 } 6700 6701 mark_explored: 6702 insn_state[t] = EXPLORED; 6703 if (env->cfg.cur_stack-- <= 0) { 6704 verbose(env, "pop stack internal bug\n"); 6705 ret = -EFAULT; 6706 goto err_free; 6707 } 6708 goto peek_stack; 6709 6710 check_state: 6711 for (i = 0; i < insn_cnt; i++) { 6712 if (insn_state[i] != EXPLORED) { 6713 verbose(env, "unreachable insn %d\n", i); 6714 ret = -EINVAL; 6715 goto err_free; 6716 } 6717 } 6718 ret = 0; /* cfg looks good */ 6719 6720 err_free: 6721 kvfree(insn_state); 6722 kvfree(insn_stack); 6723 env->cfg.insn_state = env->cfg.insn_stack = NULL; 6724 return ret; 6725 } 6726 6727 /* The minimum supported BTF func info size */ 6728 #define MIN_BPF_FUNCINFO_SIZE 8 6729 #define MAX_FUNCINFO_REC_SIZE 252 6730 6731 static int check_btf_func(struct bpf_verifier_env *env, 6732 const union bpf_attr *attr, 6733 union bpf_attr __user *uattr) 6734 { 6735 u32 i, nfuncs, urec_size, min_size; 6736 u32 krec_size = sizeof(struct bpf_func_info); 6737 struct bpf_func_info *krecord; 6738 struct bpf_func_info_aux *info_aux = NULL; 6739 const struct btf_type *type; 6740 struct bpf_prog *prog; 6741 const struct btf *btf; 6742 void __user *urecord; 6743 u32 prev_offset = 0; 6744 int ret = 0; 6745 6746 nfuncs = attr->func_info_cnt; 6747 if (!nfuncs) 6748 return 0; 6749 6750 if (nfuncs != env->subprog_cnt) { 6751 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 6752 return -EINVAL; 6753 } 6754 6755 urec_size = attr->func_info_rec_size; 6756 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 6757 urec_size > MAX_FUNCINFO_REC_SIZE || 6758 urec_size % sizeof(u32)) { 6759 verbose(env, "invalid func info rec size %u\n", urec_size); 6760 return -EINVAL; 6761 } 6762 6763 prog = env->prog; 6764 btf = prog->aux->btf; 6765 6766 urecord = u64_to_user_ptr(attr->func_info); 6767 min_size = min_t(u32, krec_size, urec_size); 6768 6769 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 6770 if (!krecord) 6771 return -ENOMEM; 6772 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 6773 if (!info_aux) 6774 goto err_free; 6775 6776 for (i = 0; i < nfuncs; i++) { 6777 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 6778 if (ret) { 6779 if (ret == -E2BIG) { 6780 verbose(env, "nonzero tailing record in func info"); 6781 /* set the size kernel expects so loader can zero 6782 * out the rest of the record. 6783 */ 6784 if (put_user(min_size, &uattr->func_info_rec_size)) 6785 ret = -EFAULT; 6786 } 6787 goto err_free; 6788 } 6789 6790 if (copy_from_user(&krecord[i], urecord, min_size)) { 6791 ret = -EFAULT; 6792 goto err_free; 6793 } 6794 6795 /* check insn_off */ 6796 if (i == 0) { 6797 if (krecord[i].insn_off) { 6798 verbose(env, 6799 "nonzero insn_off %u for the first func info record", 6800 krecord[i].insn_off); 6801 ret = -EINVAL; 6802 goto err_free; 6803 } 6804 } else if (krecord[i].insn_off <= prev_offset) { 6805 verbose(env, 6806 "same or smaller insn offset (%u) than previous func info record (%u)", 6807 krecord[i].insn_off, prev_offset); 6808 ret = -EINVAL; 6809 goto err_free; 6810 } 6811 6812 if (env->subprog_info[i].start != krecord[i].insn_off) { 6813 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 6814 ret = -EINVAL; 6815 goto err_free; 6816 } 6817 6818 /* check type_id */ 6819 type = btf_type_by_id(btf, krecord[i].type_id); 6820 if (!type || !btf_type_is_func(type)) { 6821 verbose(env, "invalid type id %d in func info", 6822 krecord[i].type_id); 6823 ret = -EINVAL; 6824 goto err_free; 6825 } 6826 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 6827 prev_offset = krecord[i].insn_off; 6828 urecord += urec_size; 6829 } 6830 6831 prog->aux->func_info = krecord; 6832 prog->aux->func_info_cnt = nfuncs; 6833 prog->aux->func_info_aux = info_aux; 6834 return 0; 6835 6836 err_free: 6837 kvfree(krecord); 6838 kfree(info_aux); 6839 return ret; 6840 } 6841 6842 static void adjust_btf_func(struct bpf_verifier_env *env) 6843 { 6844 struct bpf_prog_aux *aux = env->prog->aux; 6845 int i; 6846 6847 if (!aux->func_info) 6848 return; 6849 6850 for (i = 0; i < env->subprog_cnt; i++) 6851 aux->func_info[i].insn_off = env->subprog_info[i].start; 6852 } 6853 6854 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 6855 sizeof(((struct bpf_line_info *)(0))->line_col)) 6856 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 6857 6858 static int check_btf_line(struct bpf_verifier_env *env, 6859 const union bpf_attr *attr, 6860 union bpf_attr __user *uattr) 6861 { 6862 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 6863 struct bpf_subprog_info *sub; 6864 struct bpf_line_info *linfo; 6865 struct bpf_prog *prog; 6866 const struct btf *btf; 6867 void __user *ulinfo; 6868 int err; 6869 6870 nr_linfo = attr->line_info_cnt; 6871 if (!nr_linfo) 6872 return 0; 6873 6874 rec_size = attr->line_info_rec_size; 6875 if (rec_size < MIN_BPF_LINEINFO_SIZE || 6876 rec_size > MAX_LINEINFO_REC_SIZE || 6877 rec_size & (sizeof(u32) - 1)) 6878 return -EINVAL; 6879 6880 /* Need to zero it in case the userspace may 6881 * pass in a smaller bpf_line_info object. 6882 */ 6883 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 6884 GFP_KERNEL | __GFP_NOWARN); 6885 if (!linfo) 6886 return -ENOMEM; 6887 6888 prog = env->prog; 6889 btf = prog->aux->btf; 6890 6891 s = 0; 6892 sub = env->subprog_info; 6893 ulinfo = u64_to_user_ptr(attr->line_info); 6894 expected_size = sizeof(struct bpf_line_info); 6895 ncopy = min_t(u32, expected_size, rec_size); 6896 for (i = 0; i < nr_linfo; i++) { 6897 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 6898 if (err) { 6899 if (err == -E2BIG) { 6900 verbose(env, "nonzero tailing record in line_info"); 6901 if (put_user(expected_size, 6902 &uattr->line_info_rec_size)) 6903 err = -EFAULT; 6904 } 6905 goto err_free; 6906 } 6907 6908 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 6909 err = -EFAULT; 6910 goto err_free; 6911 } 6912 6913 /* 6914 * Check insn_off to ensure 6915 * 1) strictly increasing AND 6916 * 2) bounded by prog->len 6917 * 6918 * The linfo[0].insn_off == 0 check logically falls into 6919 * the later "missing bpf_line_info for func..." case 6920 * because the first linfo[0].insn_off must be the 6921 * first sub also and the first sub must have 6922 * subprog_info[0].start == 0. 6923 */ 6924 if ((i && linfo[i].insn_off <= prev_offset) || 6925 linfo[i].insn_off >= prog->len) { 6926 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 6927 i, linfo[i].insn_off, prev_offset, 6928 prog->len); 6929 err = -EINVAL; 6930 goto err_free; 6931 } 6932 6933 if (!prog->insnsi[linfo[i].insn_off].code) { 6934 verbose(env, 6935 "Invalid insn code at line_info[%u].insn_off\n", 6936 i); 6937 err = -EINVAL; 6938 goto err_free; 6939 } 6940 6941 if (!btf_name_by_offset(btf, linfo[i].line_off) || 6942 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 6943 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 6944 err = -EINVAL; 6945 goto err_free; 6946 } 6947 6948 if (s != env->subprog_cnt) { 6949 if (linfo[i].insn_off == sub[s].start) { 6950 sub[s].linfo_idx = i; 6951 s++; 6952 } else if (sub[s].start < linfo[i].insn_off) { 6953 verbose(env, "missing bpf_line_info for func#%u\n", s); 6954 err = -EINVAL; 6955 goto err_free; 6956 } 6957 } 6958 6959 prev_offset = linfo[i].insn_off; 6960 ulinfo += rec_size; 6961 } 6962 6963 if (s != env->subprog_cnt) { 6964 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 6965 env->subprog_cnt - s, s); 6966 err = -EINVAL; 6967 goto err_free; 6968 } 6969 6970 prog->aux->linfo = linfo; 6971 prog->aux->nr_linfo = nr_linfo; 6972 6973 return 0; 6974 6975 err_free: 6976 kvfree(linfo); 6977 return err; 6978 } 6979 6980 static int check_btf_info(struct bpf_verifier_env *env, 6981 const union bpf_attr *attr, 6982 union bpf_attr __user *uattr) 6983 { 6984 struct btf *btf; 6985 int err; 6986 6987 if (!attr->func_info_cnt && !attr->line_info_cnt) 6988 return 0; 6989 6990 btf = btf_get_by_fd(attr->prog_btf_fd); 6991 if (IS_ERR(btf)) 6992 return PTR_ERR(btf); 6993 env->prog->aux->btf = btf; 6994 6995 err = check_btf_func(env, attr, uattr); 6996 if (err) 6997 return err; 6998 6999 err = check_btf_line(env, attr, uattr); 7000 if (err) 7001 return err; 7002 7003 return 0; 7004 } 7005 7006 /* check %cur's range satisfies %old's */ 7007 static bool range_within(struct bpf_reg_state *old, 7008 struct bpf_reg_state *cur) 7009 { 7010 return old->umin_value <= cur->umin_value && 7011 old->umax_value >= cur->umax_value && 7012 old->smin_value <= cur->smin_value && 7013 old->smax_value >= cur->smax_value; 7014 } 7015 7016 /* Maximum number of register states that can exist at once */ 7017 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 7018 struct idpair { 7019 u32 old; 7020 u32 cur; 7021 }; 7022 7023 /* If in the old state two registers had the same id, then they need to have 7024 * the same id in the new state as well. But that id could be different from 7025 * the old state, so we need to track the mapping from old to new ids. 7026 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 7027 * regs with old id 5 must also have new id 9 for the new state to be safe. But 7028 * regs with a different old id could still have new id 9, we don't care about 7029 * that. 7030 * So we look through our idmap to see if this old id has been seen before. If 7031 * so, we require the new id to match; otherwise, we add the id pair to the map. 7032 */ 7033 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 7034 { 7035 unsigned int i; 7036 7037 for (i = 0; i < ID_MAP_SIZE; i++) { 7038 if (!idmap[i].old) { 7039 /* Reached an empty slot; haven't seen this id before */ 7040 idmap[i].old = old_id; 7041 idmap[i].cur = cur_id; 7042 return true; 7043 } 7044 if (idmap[i].old == old_id) 7045 return idmap[i].cur == cur_id; 7046 } 7047 /* We ran out of idmap slots, which should be impossible */ 7048 WARN_ON_ONCE(1); 7049 return false; 7050 } 7051 7052 static void clean_func_state(struct bpf_verifier_env *env, 7053 struct bpf_func_state *st) 7054 { 7055 enum bpf_reg_liveness live; 7056 int i, j; 7057 7058 for (i = 0; i < BPF_REG_FP; i++) { 7059 live = st->regs[i].live; 7060 /* liveness must not touch this register anymore */ 7061 st->regs[i].live |= REG_LIVE_DONE; 7062 if (!(live & REG_LIVE_READ)) 7063 /* since the register is unused, clear its state 7064 * to make further comparison simpler 7065 */ 7066 __mark_reg_not_init(env, &st->regs[i]); 7067 } 7068 7069 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 7070 live = st->stack[i].spilled_ptr.live; 7071 /* liveness must not touch this stack slot anymore */ 7072 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 7073 if (!(live & REG_LIVE_READ)) { 7074 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 7075 for (j = 0; j < BPF_REG_SIZE; j++) 7076 st->stack[i].slot_type[j] = STACK_INVALID; 7077 } 7078 } 7079 } 7080 7081 static void clean_verifier_state(struct bpf_verifier_env *env, 7082 struct bpf_verifier_state *st) 7083 { 7084 int i; 7085 7086 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 7087 /* all regs in this state in all frames were already marked */ 7088 return; 7089 7090 for (i = 0; i <= st->curframe; i++) 7091 clean_func_state(env, st->frame[i]); 7092 } 7093 7094 /* the parentage chains form a tree. 7095 * the verifier states are added to state lists at given insn and 7096 * pushed into state stack for future exploration. 7097 * when the verifier reaches bpf_exit insn some of the verifer states 7098 * stored in the state lists have their final liveness state already, 7099 * but a lot of states will get revised from liveness point of view when 7100 * the verifier explores other branches. 7101 * Example: 7102 * 1: r0 = 1 7103 * 2: if r1 == 100 goto pc+1 7104 * 3: r0 = 2 7105 * 4: exit 7106 * when the verifier reaches exit insn the register r0 in the state list of 7107 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 7108 * of insn 2 and goes exploring further. At the insn 4 it will walk the 7109 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 7110 * 7111 * Since the verifier pushes the branch states as it sees them while exploring 7112 * the program the condition of walking the branch instruction for the second 7113 * time means that all states below this branch were already explored and 7114 * their final liveness markes are already propagated. 7115 * Hence when the verifier completes the search of state list in is_state_visited() 7116 * we can call this clean_live_states() function to mark all liveness states 7117 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 7118 * will not be used. 7119 * This function also clears the registers and stack for states that !READ 7120 * to simplify state merging. 7121 * 7122 * Important note here that walking the same branch instruction in the callee 7123 * doesn't meant that the states are DONE. The verifier has to compare 7124 * the callsites 7125 */ 7126 static void clean_live_states(struct bpf_verifier_env *env, int insn, 7127 struct bpf_verifier_state *cur) 7128 { 7129 struct bpf_verifier_state_list *sl; 7130 int i; 7131 7132 sl = *explored_state(env, insn); 7133 while (sl) { 7134 if (sl->state.branches) 7135 goto next; 7136 if (sl->state.insn_idx != insn || 7137 sl->state.curframe != cur->curframe) 7138 goto next; 7139 for (i = 0; i <= cur->curframe; i++) 7140 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 7141 goto next; 7142 clean_verifier_state(env, &sl->state); 7143 next: 7144 sl = sl->next; 7145 } 7146 } 7147 7148 /* Returns true if (rold safe implies rcur safe) */ 7149 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 7150 struct idpair *idmap) 7151 { 7152 bool equal; 7153 7154 if (!(rold->live & REG_LIVE_READ)) 7155 /* explored state didn't use this */ 7156 return true; 7157 7158 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 7159 7160 if (rold->type == PTR_TO_STACK) 7161 /* two stack pointers are equal only if they're pointing to 7162 * the same stack frame, since fp-8 in foo != fp-8 in bar 7163 */ 7164 return equal && rold->frameno == rcur->frameno; 7165 7166 if (equal) 7167 return true; 7168 7169 if (rold->type == NOT_INIT) 7170 /* explored state can't have used this */ 7171 return true; 7172 if (rcur->type == NOT_INIT) 7173 return false; 7174 switch (rold->type) { 7175 case SCALAR_VALUE: 7176 if (rcur->type == SCALAR_VALUE) { 7177 if (!rold->precise && !rcur->precise) 7178 return true; 7179 /* new val must satisfy old val knowledge */ 7180 return range_within(rold, rcur) && 7181 tnum_in(rold->var_off, rcur->var_off); 7182 } else { 7183 /* We're trying to use a pointer in place of a scalar. 7184 * Even if the scalar was unbounded, this could lead to 7185 * pointer leaks because scalars are allowed to leak 7186 * while pointers are not. We could make this safe in 7187 * special cases if root is calling us, but it's 7188 * probably not worth the hassle. 7189 */ 7190 return false; 7191 } 7192 case PTR_TO_MAP_VALUE: 7193 /* If the new min/max/var_off satisfy the old ones and 7194 * everything else matches, we are OK. 7195 * 'id' is not compared, since it's only used for maps with 7196 * bpf_spin_lock inside map element and in such cases if 7197 * the rest of the prog is valid for one map element then 7198 * it's valid for all map elements regardless of the key 7199 * used in bpf_map_lookup() 7200 */ 7201 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 7202 range_within(rold, rcur) && 7203 tnum_in(rold->var_off, rcur->var_off); 7204 case PTR_TO_MAP_VALUE_OR_NULL: 7205 /* a PTR_TO_MAP_VALUE could be safe to use as a 7206 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 7207 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 7208 * checked, doing so could have affected others with the same 7209 * id, and we can't check for that because we lost the id when 7210 * we converted to a PTR_TO_MAP_VALUE. 7211 */ 7212 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 7213 return false; 7214 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 7215 return false; 7216 /* Check our ids match any regs they're supposed to */ 7217 return check_ids(rold->id, rcur->id, idmap); 7218 case PTR_TO_PACKET_META: 7219 case PTR_TO_PACKET: 7220 if (rcur->type != rold->type) 7221 return false; 7222 /* We must have at least as much range as the old ptr 7223 * did, so that any accesses which were safe before are 7224 * still safe. This is true even if old range < old off, 7225 * since someone could have accessed through (ptr - k), or 7226 * even done ptr -= k in a register, to get a safe access. 7227 */ 7228 if (rold->range > rcur->range) 7229 return false; 7230 /* If the offsets don't match, we can't trust our alignment; 7231 * nor can we be sure that we won't fall out of range. 7232 */ 7233 if (rold->off != rcur->off) 7234 return false; 7235 /* id relations must be preserved */ 7236 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 7237 return false; 7238 /* new val must satisfy old val knowledge */ 7239 return range_within(rold, rcur) && 7240 tnum_in(rold->var_off, rcur->var_off); 7241 case PTR_TO_CTX: 7242 case CONST_PTR_TO_MAP: 7243 case PTR_TO_PACKET_END: 7244 case PTR_TO_FLOW_KEYS: 7245 case PTR_TO_SOCKET: 7246 case PTR_TO_SOCKET_OR_NULL: 7247 case PTR_TO_SOCK_COMMON: 7248 case PTR_TO_SOCK_COMMON_OR_NULL: 7249 case PTR_TO_TCP_SOCK: 7250 case PTR_TO_TCP_SOCK_OR_NULL: 7251 case PTR_TO_XDP_SOCK: 7252 /* Only valid matches are exact, which memcmp() above 7253 * would have accepted 7254 */ 7255 default: 7256 /* Don't know what's going on, just say it's not safe */ 7257 return false; 7258 } 7259 7260 /* Shouldn't get here; if we do, say it's not safe */ 7261 WARN_ON_ONCE(1); 7262 return false; 7263 } 7264 7265 static bool stacksafe(struct bpf_func_state *old, 7266 struct bpf_func_state *cur, 7267 struct idpair *idmap) 7268 { 7269 int i, spi; 7270 7271 /* walk slots of the explored stack and ignore any additional 7272 * slots in the current stack, since explored(safe) state 7273 * didn't use them 7274 */ 7275 for (i = 0; i < old->allocated_stack; i++) { 7276 spi = i / BPF_REG_SIZE; 7277 7278 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 7279 i += BPF_REG_SIZE - 1; 7280 /* explored state didn't use this */ 7281 continue; 7282 } 7283 7284 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 7285 continue; 7286 7287 /* explored stack has more populated slots than current stack 7288 * and these slots were used 7289 */ 7290 if (i >= cur->allocated_stack) 7291 return false; 7292 7293 /* if old state was safe with misc data in the stack 7294 * it will be safe with zero-initialized stack. 7295 * The opposite is not true 7296 */ 7297 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 7298 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 7299 continue; 7300 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 7301 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 7302 /* Ex: old explored (safe) state has STACK_SPILL in 7303 * this stack slot, but current has has STACK_MISC -> 7304 * this verifier states are not equivalent, 7305 * return false to continue verification of this path 7306 */ 7307 return false; 7308 if (i % BPF_REG_SIZE) 7309 continue; 7310 if (old->stack[spi].slot_type[0] != STACK_SPILL) 7311 continue; 7312 if (!regsafe(&old->stack[spi].spilled_ptr, 7313 &cur->stack[spi].spilled_ptr, 7314 idmap)) 7315 /* when explored and current stack slot are both storing 7316 * spilled registers, check that stored pointers types 7317 * are the same as well. 7318 * Ex: explored safe path could have stored 7319 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 7320 * but current path has stored: 7321 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 7322 * such verifier states are not equivalent. 7323 * return false to continue verification of this path 7324 */ 7325 return false; 7326 } 7327 return true; 7328 } 7329 7330 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 7331 { 7332 if (old->acquired_refs != cur->acquired_refs) 7333 return false; 7334 return !memcmp(old->refs, cur->refs, 7335 sizeof(*old->refs) * old->acquired_refs); 7336 } 7337 7338 /* compare two verifier states 7339 * 7340 * all states stored in state_list are known to be valid, since 7341 * verifier reached 'bpf_exit' instruction through them 7342 * 7343 * this function is called when verifier exploring different branches of 7344 * execution popped from the state stack. If it sees an old state that has 7345 * more strict register state and more strict stack state then this execution 7346 * branch doesn't need to be explored further, since verifier already 7347 * concluded that more strict state leads to valid finish. 7348 * 7349 * Therefore two states are equivalent if register state is more conservative 7350 * and explored stack state is more conservative than the current one. 7351 * Example: 7352 * explored current 7353 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 7354 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 7355 * 7356 * In other words if current stack state (one being explored) has more 7357 * valid slots than old one that already passed validation, it means 7358 * the verifier can stop exploring and conclude that current state is valid too 7359 * 7360 * Similarly with registers. If explored state has register type as invalid 7361 * whereas register type in current state is meaningful, it means that 7362 * the current state will reach 'bpf_exit' instruction safely 7363 */ 7364 static bool func_states_equal(struct bpf_func_state *old, 7365 struct bpf_func_state *cur) 7366 { 7367 struct idpair *idmap; 7368 bool ret = false; 7369 int i; 7370 7371 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 7372 /* If we failed to allocate the idmap, just say it's not safe */ 7373 if (!idmap) 7374 return false; 7375 7376 for (i = 0; i < MAX_BPF_REG; i++) { 7377 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 7378 goto out_free; 7379 } 7380 7381 if (!stacksafe(old, cur, idmap)) 7382 goto out_free; 7383 7384 if (!refsafe(old, cur)) 7385 goto out_free; 7386 ret = true; 7387 out_free: 7388 kfree(idmap); 7389 return ret; 7390 } 7391 7392 static bool states_equal(struct bpf_verifier_env *env, 7393 struct bpf_verifier_state *old, 7394 struct bpf_verifier_state *cur) 7395 { 7396 int i; 7397 7398 if (old->curframe != cur->curframe) 7399 return false; 7400 7401 /* Verification state from speculative execution simulation 7402 * must never prune a non-speculative execution one. 7403 */ 7404 if (old->speculative && !cur->speculative) 7405 return false; 7406 7407 if (old->active_spin_lock != cur->active_spin_lock) 7408 return false; 7409 7410 /* for states to be equal callsites have to be the same 7411 * and all frame states need to be equivalent 7412 */ 7413 for (i = 0; i <= old->curframe; i++) { 7414 if (old->frame[i]->callsite != cur->frame[i]->callsite) 7415 return false; 7416 if (!func_states_equal(old->frame[i], cur->frame[i])) 7417 return false; 7418 } 7419 return true; 7420 } 7421 7422 /* Return 0 if no propagation happened. Return negative error code if error 7423 * happened. Otherwise, return the propagated bit. 7424 */ 7425 static int propagate_liveness_reg(struct bpf_verifier_env *env, 7426 struct bpf_reg_state *reg, 7427 struct bpf_reg_state *parent_reg) 7428 { 7429 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 7430 u8 flag = reg->live & REG_LIVE_READ; 7431 int err; 7432 7433 /* When comes here, read flags of PARENT_REG or REG could be any of 7434 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 7435 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 7436 */ 7437 if (parent_flag == REG_LIVE_READ64 || 7438 /* Or if there is no read flag from REG. */ 7439 !flag || 7440 /* Or if the read flag from REG is the same as PARENT_REG. */ 7441 parent_flag == flag) 7442 return 0; 7443 7444 err = mark_reg_read(env, reg, parent_reg, flag); 7445 if (err) 7446 return err; 7447 7448 return flag; 7449 } 7450 7451 /* A write screens off any subsequent reads; but write marks come from the 7452 * straight-line code between a state and its parent. When we arrive at an 7453 * equivalent state (jump target or such) we didn't arrive by the straight-line 7454 * code, so read marks in the state must propagate to the parent regardless 7455 * of the state's write marks. That's what 'parent == state->parent' comparison 7456 * in mark_reg_read() is for. 7457 */ 7458 static int propagate_liveness(struct bpf_verifier_env *env, 7459 const struct bpf_verifier_state *vstate, 7460 struct bpf_verifier_state *vparent) 7461 { 7462 struct bpf_reg_state *state_reg, *parent_reg; 7463 struct bpf_func_state *state, *parent; 7464 int i, frame, err = 0; 7465 7466 if (vparent->curframe != vstate->curframe) { 7467 WARN(1, "propagate_live: parent frame %d current frame %d\n", 7468 vparent->curframe, vstate->curframe); 7469 return -EFAULT; 7470 } 7471 /* Propagate read liveness of registers... */ 7472 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 7473 for (frame = 0; frame <= vstate->curframe; frame++) { 7474 parent = vparent->frame[frame]; 7475 state = vstate->frame[frame]; 7476 parent_reg = parent->regs; 7477 state_reg = state->regs; 7478 /* We don't need to worry about FP liveness, it's read-only */ 7479 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 7480 err = propagate_liveness_reg(env, &state_reg[i], 7481 &parent_reg[i]); 7482 if (err < 0) 7483 return err; 7484 if (err == REG_LIVE_READ64) 7485 mark_insn_zext(env, &parent_reg[i]); 7486 } 7487 7488 /* Propagate stack slots. */ 7489 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 7490 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 7491 parent_reg = &parent->stack[i].spilled_ptr; 7492 state_reg = &state->stack[i].spilled_ptr; 7493 err = propagate_liveness_reg(env, state_reg, 7494 parent_reg); 7495 if (err < 0) 7496 return err; 7497 } 7498 } 7499 return 0; 7500 } 7501 7502 /* find precise scalars in the previous equivalent state and 7503 * propagate them into the current state 7504 */ 7505 static int propagate_precision(struct bpf_verifier_env *env, 7506 const struct bpf_verifier_state *old) 7507 { 7508 struct bpf_reg_state *state_reg; 7509 struct bpf_func_state *state; 7510 int i, err = 0; 7511 7512 state = old->frame[old->curframe]; 7513 state_reg = state->regs; 7514 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 7515 if (state_reg->type != SCALAR_VALUE || 7516 !state_reg->precise) 7517 continue; 7518 if (env->log.level & BPF_LOG_LEVEL2) 7519 verbose(env, "propagating r%d\n", i); 7520 err = mark_chain_precision(env, i); 7521 if (err < 0) 7522 return err; 7523 } 7524 7525 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 7526 if (state->stack[i].slot_type[0] != STACK_SPILL) 7527 continue; 7528 state_reg = &state->stack[i].spilled_ptr; 7529 if (state_reg->type != SCALAR_VALUE || 7530 !state_reg->precise) 7531 continue; 7532 if (env->log.level & BPF_LOG_LEVEL2) 7533 verbose(env, "propagating fp%d\n", 7534 (-i - 1) * BPF_REG_SIZE); 7535 err = mark_chain_precision_stack(env, i); 7536 if (err < 0) 7537 return err; 7538 } 7539 return 0; 7540 } 7541 7542 static bool states_maybe_looping(struct bpf_verifier_state *old, 7543 struct bpf_verifier_state *cur) 7544 { 7545 struct bpf_func_state *fold, *fcur; 7546 int i, fr = cur->curframe; 7547 7548 if (old->curframe != fr) 7549 return false; 7550 7551 fold = old->frame[fr]; 7552 fcur = cur->frame[fr]; 7553 for (i = 0; i < MAX_BPF_REG; i++) 7554 if (memcmp(&fold->regs[i], &fcur->regs[i], 7555 offsetof(struct bpf_reg_state, parent))) 7556 return false; 7557 return true; 7558 } 7559 7560 7561 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 7562 { 7563 struct bpf_verifier_state_list *new_sl; 7564 struct bpf_verifier_state_list *sl, **pprev; 7565 struct bpf_verifier_state *cur = env->cur_state, *new; 7566 int i, j, err, states_cnt = 0; 7567 bool add_new_state = env->test_state_freq ? true : false; 7568 7569 cur->last_insn_idx = env->prev_insn_idx; 7570 if (!env->insn_aux_data[insn_idx].prune_point) 7571 /* this 'insn_idx' instruction wasn't marked, so we will not 7572 * be doing state search here 7573 */ 7574 return 0; 7575 7576 /* bpf progs typically have pruning point every 4 instructions 7577 * http://vger.kernel.org/bpfconf2019.html#session-1 7578 * Do not add new state for future pruning if the verifier hasn't seen 7579 * at least 2 jumps and at least 8 instructions. 7580 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 7581 * In tests that amounts to up to 50% reduction into total verifier 7582 * memory consumption and 20% verifier time speedup. 7583 */ 7584 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 7585 env->insn_processed - env->prev_insn_processed >= 8) 7586 add_new_state = true; 7587 7588 pprev = explored_state(env, insn_idx); 7589 sl = *pprev; 7590 7591 clean_live_states(env, insn_idx, cur); 7592 7593 while (sl) { 7594 states_cnt++; 7595 if (sl->state.insn_idx != insn_idx) 7596 goto next; 7597 if (sl->state.branches) { 7598 if (states_maybe_looping(&sl->state, cur) && 7599 states_equal(env, &sl->state, cur)) { 7600 verbose_linfo(env, insn_idx, "; "); 7601 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 7602 return -EINVAL; 7603 } 7604 /* if the verifier is processing a loop, avoid adding new state 7605 * too often, since different loop iterations have distinct 7606 * states and may not help future pruning. 7607 * This threshold shouldn't be too low to make sure that 7608 * a loop with large bound will be rejected quickly. 7609 * The most abusive loop will be: 7610 * r1 += 1 7611 * if r1 < 1000000 goto pc-2 7612 * 1M insn_procssed limit / 100 == 10k peak states. 7613 * This threshold shouldn't be too high either, since states 7614 * at the end of the loop are likely to be useful in pruning. 7615 */ 7616 if (env->jmps_processed - env->prev_jmps_processed < 20 && 7617 env->insn_processed - env->prev_insn_processed < 100) 7618 add_new_state = false; 7619 goto miss; 7620 } 7621 if (states_equal(env, &sl->state, cur)) { 7622 sl->hit_cnt++; 7623 /* reached equivalent register/stack state, 7624 * prune the search. 7625 * Registers read by the continuation are read by us. 7626 * If we have any write marks in env->cur_state, they 7627 * will prevent corresponding reads in the continuation 7628 * from reaching our parent (an explored_state). Our 7629 * own state will get the read marks recorded, but 7630 * they'll be immediately forgotten as we're pruning 7631 * this state and will pop a new one. 7632 */ 7633 err = propagate_liveness(env, &sl->state, cur); 7634 7635 /* if previous state reached the exit with precision and 7636 * current state is equivalent to it (except precsion marks) 7637 * the precision needs to be propagated back in 7638 * the current state. 7639 */ 7640 err = err ? : push_jmp_history(env, cur); 7641 err = err ? : propagate_precision(env, &sl->state); 7642 if (err) 7643 return err; 7644 return 1; 7645 } 7646 miss: 7647 /* when new state is not going to be added do not increase miss count. 7648 * Otherwise several loop iterations will remove the state 7649 * recorded earlier. The goal of these heuristics is to have 7650 * states from some iterations of the loop (some in the beginning 7651 * and some at the end) to help pruning. 7652 */ 7653 if (add_new_state) 7654 sl->miss_cnt++; 7655 /* heuristic to determine whether this state is beneficial 7656 * to keep checking from state equivalence point of view. 7657 * Higher numbers increase max_states_per_insn and verification time, 7658 * but do not meaningfully decrease insn_processed. 7659 */ 7660 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 7661 /* the state is unlikely to be useful. Remove it to 7662 * speed up verification 7663 */ 7664 *pprev = sl->next; 7665 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 7666 u32 br = sl->state.branches; 7667 7668 WARN_ONCE(br, 7669 "BUG live_done but branches_to_explore %d\n", 7670 br); 7671 free_verifier_state(&sl->state, false); 7672 kfree(sl); 7673 env->peak_states--; 7674 } else { 7675 /* cannot free this state, since parentage chain may 7676 * walk it later. Add it for free_list instead to 7677 * be freed at the end of verification 7678 */ 7679 sl->next = env->free_list; 7680 env->free_list = sl; 7681 } 7682 sl = *pprev; 7683 continue; 7684 } 7685 next: 7686 pprev = &sl->next; 7687 sl = *pprev; 7688 } 7689 7690 if (env->max_states_per_insn < states_cnt) 7691 env->max_states_per_insn = states_cnt; 7692 7693 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 7694 return push_jmp_history(env, cur); 7695 7696 if (!add_new_state) 7697 return push_jmp_history(env, cur); 7698 7699 /* There were no equivalent states, remember the current one. 7700 * Technically the current state is not proven to be safe yet, 7701 * but it will either reach outer most bpf_exit (which means it's safe) 7702 * or it will be rejected. When there are no loops the verifier won't be 7703 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 7704 * again on the way to bpf_exit. 7705 * When looping the sl->state.branches will be > 0 and this state 7706 * will not be considered for equivalence until branches == 0. 7707 */ 7708 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 7709 if (!new_sl) 7710 return -ENOMEM; 7711 env->total_states++; 7712 env->peak_states++; 7713 env->prev_jmps_processed = env->jmps_processed; 7714 env->prev_insn_processed = env->insn_processed; 7715 7716 /* add new state to the head of linked list */ 7717 new = &new_sl->state; 7718 err = copy_verifier_state(new, cur); 7719 if (err) { 7720 free_verifier_state(new, false); 7721 kfree(new_sl); 7722 return err; 7723 } 7724 new->insn_idx = insn_idx; 7725 WARN_ONCE(new->branches != 1, 7726 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 7727 7728 cur->parent = new; 7729 cur->first_insn_idx = insn_idx; 7730 clear_jmp_history(cur); 7731 new_sl->next = *explored_state(env, insn_idx); 7732 *explored_state(env, insn_idx) = new_sl; 7733 /* connect new state to parentage chain. Current frame needs all 7734 * registers connected. Only r6 - r9 of the callers are alive (pushed 7735 * to the stack implicitly by JITs) so in callers' frames connect just 7736 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 7737 * the state of the call instruction (with WRITTEN set), and r0 comes 7738 * from callee with its full parentage chain, anyway. 7739 */ 7740 /* clear write marks in current state: the writes we did are not writes 7741 * our child did, so they don't screen off its reads from us. 7742 * (There are no read marks in current state, because reads always mark 7743 * their parent and current state never has children yet. Only 7744 * explored_states can get read marks.) 7745 */ 7746 for (j = 0; j <= cur->curframe; j++) { 7747 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 7748 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 7749 for (i = 0; i < BPF_REG_FP; i++) 7750 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 7751 } 7752 7753 /* all stack frames are accessible from callee, clear them all */ 7754 for (j = 0; j <= cur->curframe; j++) { 7755 struct bpf_func_state *frame = cur->frame[j]; 7756 struct bpf_func_state *newframe = new->frame[j]; 7757 7758 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 7759 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 7760 frame->stack[i].spilled_ptr.parent = 7761 &newframe->stack[i].spilled_ptr; 7762 } 7763 } 7764 return 0; 7765 } 7766 7767 /* Return true if it's OK to have the same insn return a different type. */ 7768 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 7769 { 7770 switch (type) { 7771 case PTR_TO_CTX: 7772 case PTR_TO_SOCKET: 7773 case PTR_TO_SOCKET_OR_NULL: 7774 case PTR_TO_SOCK_COMMON: 7775 case PTR_TO_SOCK_COMMON_OR_NULL: 7776 case PTR_TO_TCP_SOCK: 7777 case PTR_TO_TCP_SOCK_OR_NULL: 7778 case PTR_TO_XDP_SOCK: 7779 case PTR_TO_BTF_ID: 7780 return false; 7781 default: 7782 return true; 7783 } 7784 } 7785 7786 /* If an instruction was previously used with particular pointer types, then we 7787 * need to be careful to avoid cases such as the below, where it may be ok 7788 * for one branch accessing the pointer, but not ok for the other branch: 7789 * 7790 * R1 = sock_ptr 7791 * goto X; 7792 * ... 7793 * R1 = some_other_valid_ptr; 7794 * goto X; 7795 * ... 7796 * R2 = *(u32 *)(R1 + 0); 7797 */ 7798 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 7799 { 7800 return src != prev && (!reg_type_mismatch_ok(src) || 7801 !reg_type_mismatch_ok(prev)); 7802 } 7803 7804 static int do_check(struct bpf_verifier_env *env) 7805 { 7806 struct bpf_verifier_state *state = env->cur_state; 7807 struct bpf_insn *insns = env->prog->insnsi; 7808 struct bpf_reg_state *regs; 7809 int insn_cnt = env->prog->len; 7810 bool do_print_state = false; 7811 int prev_insn_idx = -1; 7812 7813 for (;;) { 7814 struct bpf_insn *insn; 7815 u8 class; 7816 int err; 7817 7818 env->prev_insn_idx = prev_insn_idx; 7819 if (env->insn_idx >= insn_cnt) { 7820 verbose(env, "invalid insn idx %d insn_cnt %d\n", 7821 env->insn_idx, insn_cnt); 7822 return -EFAULT; 7823 } 7824 7825 insn = &insns[env->insn_idx]; 7826 class = BPF_CLASS(insn->code); 7827 7828 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 7829 verbose(env, 7830 "BPF program is too large. Processed %d insn\n", 7831 env->insn_processed); 7832 return -E2BIG; 7833 } 7834 7835 err = is_state_visited(env, env->insn_idx); 7836 if (err < 0) 7837 return err; 7838 if (err == 1) { 7839 /* found equivalent state, can prune the search */ 7840 if (env->log.level & BPF_LOG_LEVEL) { 7841 if (do_print_state) 7842 verbose(env, "\nfrom %d to %d%s: safe\n", 7843 env->prev_insn_idx, env->insn_idx, 7844 env->cur_state->speculative ? 7845 " (speculative execution)" : ""); 7846 else 7847 verbose(env, "%d: safe\n", env->insn_idx); 7848 } 7849 goto process_bpf_exit; 7850 } 7851 7852 if (signal_pending(current)) 7853 return -EAGAIN; 7854 7855 if (need_resched()) 7856 cond_resched(); 7857 7858 if (env->log.level & BPF_LOG_LEVEL2 || 7859 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 7860 if (env->log.level & BPF_LOG_LEVEL2) 7861 verbose(env, "%d:", env->insn_idx); 7862 else 7863 verbose(env, "\nfrom %d to %d%s:", 7864 env->prev_insn_idx, env->insn_idx, 7865 env->cur_state->speculative ? 7866 " (speculative execution)" : ""); 7867 print_verifier_state(env, state->frame[state->curframe]); 7868 do_print_state = false; 7869 } 7870 7871 if (env->log.level & BPF_LOG_LEVEL) { 7872 const struct bpf_insn_cbs cbs = { 7873 .cb_print = verbose, 7874 .private_data = env, 7875 }; 7876 7877 verbose_linfo(env, env->insn_idx, "; "); 7878 verbose(env, "%d: ", env->insn_idx); 7879 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 7880 } 7881 7882 if (bpf_prog_is_dev_bound(env->prog->aux)) { 7883 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 7884 env->prev_insn_idx); 7885 if (err) 7886 return err; 7887 } 7888 7889 regs = cur_regs(env); 7890 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 7891 prev_insn_idx = env->insn_idx; 7892 7893 if (class == BPF_ALU || class == BPF_ALU64) { 7894 err = check_alu_op(env, insn); 7895 if (err) 7896 return err; 7897 7898 } else if (class == BPF_LDX) { 7899 enum bpf_reg_type *prev_src_type, src_reg_type; 7900 7901 /* check for reserved fields is already done */ 7902 7903 /* check src operand */ 7904 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7905 if (err) 7906 return err; 7907 7908 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7909 if (err) 7910 return err; 7911 7912 src_reg_type = regs[insn->src_reg].type; 7913 7914 /* check that memory (src_reg + off) is readable, 7915 * the state of dst_reg will be updated by this func 7916 */ 7917 err = check_mem_access(env, env->insn_idx, insn->src_reg, 7918 insn->off, BPF_SIZE(insn->code), 7919 BPF_READ, insn->dst_reg, false); 7920 if (err) 7921 return err; 7922 7923 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 7924 7925 if (*prev_src_type == NOT_INIT) { 7926 /* saw a valid insn 7927 * dst_reg = *(u32 *)(src_reg + off) 7928 * save type to validate intersecting paths 7929 */ 7930 *prev_src_type = src_reg_type; 7931 7932 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 7933 /* ABuser program is trying to use the same insn 7934 * dst_reg = *(u32*) (src_reg + off) 7935 * with different pointer types: 7936 * src_reg == ctx in one branch and 7937 * src_reg == stack|map in some other branch. 7938 * Reject it. 7939 */ 7940 verbose(env, "same insn cannot be used with different pointers\n"); 7941 return -EINVAL; 7942 } 7943 7944 } else if (class == BPF_STX) { 7945 enum bpf_reg_type *prev_dst_type, dst_reg_type; 7946 7947 if (BPF_MODE(insn->code) == BPF_XADD) { 7948 err = check_xadd(env, env->insn_idx, insn); 7949 if (err) 7950 return err; 7951 env->insn_idx++; 7952 continue; 7953 } 7954 7955 /* check src1 operand */ 7956 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7957 if (err) 7958 return err; 7959 /* check src2 operand */ 7960 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7961 if (err) 7962 return err; 7963 7964 dst_reg_type = regs[insn->dst_reg].type; 7965 7966 /* check that memory (dst_reg + off) is writeable */ 7967 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 7968 insn->off, BPF_SIZE(insn->code), 7969 BPF_WRITE, insn->src_reg, false); 7970 if (err) 7971 return err; 7972 7973 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 7974 7975 if (*prev_dst_type == NOT_INIT) { 7976 *prev_dst_type = dst_reg_type; 7977 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 7978 verbose(env, "same insn cannot be used with different pointers\n"); 7979 return -EINVAL; 7980 } 7981 7982 } else if (class == BPF_ST) { 7983 if (BPF_MODE(insn->code) != BPF_MEM || 7984 insn->src_reg != BPF_REG_0) { 7985 verbose(env, "BPF_ST uses reserved fields\n"); 7986 return -EINVAL; 7987 } 7988 /* check src operand */ 7989 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7990 if (err) 7991 return err; 7992 7993 if (is_ctx_reg(env, insn->dst_reg)) { 7994 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 7995 insn->dst_reg, 7996 reg_type_str[reg_state(env, insn->dst_reg)->type]); 7997 return -EACCES; 7998 } 7999 8000 /* check that memory (dst_reg + off) is writeable */ 8001 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 8002 insn->off, BPF_SIZE(insn->code), 8003 BPF_WRITE, -1, false); 8004 if (err) 8005 return err; 8006 8007 } else if (class == BPF_JMP || class == BPF_JMP32) { 8008 u8 opcode = BPF_OP(insn->code); 8009 8010 env->jmps_processed++; 8011 if (opcode == BPF_CALL) { 8012 if (BPF_SRC(insn->code) != BPF_K || 8013 insn->off != 0 || 8014 (insn->src_reg != BPF_REG_0 && 8015 insn->src_reg != BPF_PSEUDO_CALL) || 8016 insn->dst_reg != BPF_REG_0 || 8017 class == BPF_JMP32) { 8018 verbose(env, "BPF_CALL uses reserved fields\n"); 8019 return -EINVAL; 8020 } 8021 8022 if (env->cur_state->active_spin_lock && 8023 (insn->src_reg == BPF_PSEUDO_CALL || 8024 insn->imm != BPF_FUNC_spin_unlock)) { 8025 verbose(env, "function calls are not allowed while holding a lock\n"); 8026 return -EINVAL; 8027 } 8028 if (insn->src_reg == BPF_PSEUDO_CALL) 8029 err = check_func_call(env, insn, &env->insn_idx); 8030 else 8031 err = check_helper_call(env, insn->imm, env->insn_idx); 8032 if (err) 8033 return err; 8034 8035 } else if (opcode == BPF_JA) { 8036 if (BPF_SRC(insn->code) != BPF_K || 8037 insn->imm != 0 || 8038 insn->src_reg != BPF_REG_0 || 8039 insn->dst_reg != BPF_REG_0 || 8040 class == BPF_JMP32) { 8041 verbose(env, "BPF_JA uses reserved fields\n"); 8042 return -EINVAL; 8043 } 8044 8045 env->insn_idx += insn->off + 1; 8046 continue; 8047 8048 } else if (opcode == BPF_EXIT) { 8049 if (BPF_SRC(insn->code) != BPF_K || 8050 insn->imm != 0 || 8051 insn->src_reg != BPF_REG_0 || 8052 insn->dst_reg != BPF_REG_0 || 8053 class == BPF_JMP32) { 8054 verbose(env, "BPF_EXIT uses reserved fields\n"); 8055 return -EINVAL; 8056 } 8057 8058 if (env->cur_state->active_spin_lock) { 8059 verbose(env, "bpf_spin_unlock is missing\n"); 8060 return -EINVAL; 8061 } 8062 8063 if (state->curframe) { 8064 /* exit from nested function */ 8065 err = prepare_func_exit(env, &env->insn_idx); 8066 if (err) 8067 return err; 8068 do_print_state = true; 8069 continue; 8070 } 8071 8072 err = check_reference_leak(env); 8073 if (err) 8074 return err; 8075 8076 err = check_return_code(env); 8077 if (err) 8078 return err; 8079 process_bpf_exit: 8080 update_branch_counts(env, env->cur_state); 8081 err = pop_stack(env, &prev_insn_idx, 8082 &env->insn_idx); 8083 if (err < 0) { 8084 if (err != -ENOENT) 8085 return err; 8086 break; 8087 } else { 8088 do_print_state = true; 8089 continue; 8090 } 8091 } else { 8092 err = check_cond_jmp_op(env, insn, &env->insn_idx); 8093 if (err) 8094 return err; 8095 } 8096 } else if (class == BPF_LD) { 8097 u8 mode = BPF_MODE(insn->code); 8098 8099 if (mode == BPF_ABS || mode == BPF_IND) { 8100 err = check_ld_abs(env, insn); 8101 if (err) 8102 return err; 8103 8104 } else if (mode == BPF_IMM) { 8105 err = check_ld_imm(env, insn); 8106 if (err) 8107 return err; 8108 8109 env->insn_idx++; 8110 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 8111 } else { 8112 verbose(env, "invalid BPF_LD mode\n"); 8113 return -EINVAL; 8114 } 8115 } else { 8116 verbose(env, "unknown insn class %d\n", class); 8117 return -EINVAL; 8118 } 8119 8120 env->insn_idx++; 8121 } 8122 8123 return 0; 8124 } 8125 8126 static int check_map_prealloc(struct bpf_map *map) 8127 { 8128 return (map->map_type != BPF_MAP_TYPE_HASH && 8129 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 8130 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 8131 !(map->map_flags & BPF_F_NO_PREALLOC); 8132 } 8133 8134 static bool is_tracing_prog_type(enum bpf_prog_type type) 8135 { 8136 switch (type) { 8137 case BPF_PROG_TYPE_KPROBE: 8138 case BPF_PROG_TYPE_TRACEPOINT: 8139 case BPF_PROG_TYPE_PERF_EVENT: 8140 case BPF_PROG_TYPE_RAW_TRACEPOINT: 8141 return true; 8142 default: 8143 return false; 8144 } 8145 } 8146 8147 static bool is_preallocated_map(struct bpf_map *map) 8148 { 8149 if (!check_map_prealloc(map)) 8150 return false; 8151 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 8152 return false; 8153 return true; 8154 } 8155 8156 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 8157 struct bpf_map *map, 8158 struct bpf_prog *prog) 8159 8160 { 8161 /* 8162 * Validate that trace type programs use preallocated hash maps. 8163 * 8164 * For programs attached to PERF events this is mandatory as the 8165 * perf NMI can hit any arbitrary code sequence. 8166 * 8167 * All other trace types using preallocated hash maps are unsafe as 8168 * well because tracepoint or kprobes can be inside locked regions 8169 * of the memory allocator or at a place where a recursion into the 8170 * memory allocator would see inconsistent state. 8171 * 8172 * On RT enabled kernels run-time allocation of all trace type 8173 * programs is strictly prohibited due to lock type constraints. On 8174 * !RT kernels it is allowed for backwards compatibility reasons for 8175 * now, but warnings are emitted so developers are made aware of 8176 * the unsafety and can fix their programs before this is enforced. 8177 */ 8178 if (is_tracing_prog_type(prog->type) && !is_preallocated_map(map)) { 8179 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 8180 verbose(env, "perf_event programs can only use preallocated hash map\n"); 8181 return -EINVAL; 8182 } 8183 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 8184 verbose(env, "trace type programs can only use preallocated hash map\n"); 8185 return -EINVAL; 8186 } 8187 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 8188 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 8189 } 8190 8191 if ((is_tracing_prog_type(prog->type) || 8192 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) && 8193 map_value_has_spin_lock(map)) { 8194 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 8195 return -EINVAL; 8196 } 8197 8198 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 8199 !bpf_offload_prog_map_match(prog, map)) { 8200 verbose(env, "offload device mismatch between prog and map\n"); 8201 return -EINVAL; 8202 } 8203 8204 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 8205 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 8206 return -EINVAL; 8207 } 8208 8209 return 0; 8210 } 8211 8212 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 8213 { 8214 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 8215 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 8216 } 8217 8218 /* look for pseudo eBPF instructions that access map FDs and 8219 * replace them with actual map pointers 8220 */ 8221 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 8222 { 8223 struct bpf_insn *insn = env->prog->insnsi; 8224 int insn_cnt = env->prog->len; 8225 int i, j, err; 8226 8227 err = bpf_prog_calc_tag(env->prog); 8228 if (err) 8229 return err; 8230 8231 for (i = 0; i < insn_cnt; i++, insn++) { 8232 if (BPF_CLASS(insn->code) == BPF_LDX && 8233 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 8234 verbose(env, "BPF_LDX uses reserved fields\n"); 8235 return -EINVAL; 8236 } 8237 8238 if (BPF_CLASS(insn->code) == BPF_STX && 8239 ((BPF_MODE(insn->code) != BPF_MEM && 8240 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 8241 verbose(env, "BPF_STX uses reserved fields\n"); 8242 return -EINVAL; 8243 } 8244 8245 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 8246 struct bpf_insn_aux_data *aux; 8247 struct bpf_map *map; 8248 struct fd f; 8249 u64 addr; 8250 8251 if (i == insn_cnt - 1 || insn[1].code != 0 || 8252 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 8253 insn[1].off != 0) { 8254 verbose(env, "invalid bpf_ld_imm64 insn\n"); 8255 return -EINVAL; 8256 } 8257 8258 if (insn[0].src_reg == 0) 8259 /* valid generic load 64-bit imm */ 8260 goto next_insn; 8261 8262 /* In final convert_pseudo_ld_imm64() step, this is 8263 * converted into regular 64-bit imm load insn. 8264 */ 8265 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 8266 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 8267 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 8268 insn[1].imm != 0)) { 8269 verbose(env, 8270 "unrecognized bpf_ld_imm64 insn\n"); 8271 return -EINVAL; 8272 } 8273 8274 f = fdget(insn[0].imm); 8275 map = __bpf_map_get(f); 8276 if (IS_ERR(map)) { 8277 verbose(env, "fd %d is not pointing to valid bpf_map\n", 8278 insn[0].imm); 8279 return PTR_ERR(map); 8280 } 8281 8282 err = check_map_prog_compatibility(env, map, env->prog); 8283 if (err) { 8284 fdput(f); 8285 return err; 8286 } 8287 8288 aux = &env->insn_aux_data[i]; 8289 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 8290 addr = (unsigned long)map; 8291 } else { 8292 u32 off = insn[1].imm; 8293 8294 if (off >= BPF_MAX_VAR_OFF) { 8295 verbose(env, "direct value offset of %u is not allowed\n", off); 8296 fdput(f); 8297 return -EINVAL; 8298 } 8299 8300 if (!map->ops->map_direct_value_addr) { 8301 verbose(env, "no direct value access support for this map type\n"); 8302 fdput(f); 8303 return -EINVAL; 8304 } 8305 8306 err = map->ops->map_direct_value_addr(map, &addr, off); 8307 if (err) { 8308 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 8309 map->value_size, off); 8310 fdput(f); 8311 return err; 8312 } 8313 8314 aux->map_off = off; 8315 addr += off; 8316 } 8317 8318 insn[0].imm = (u32)addr; 8319 insn[1].imm = addr >> 32; 8320 8321 /* check whether we recorded this map already */ 8322 for (j = 0; j < env->used_map_cnt; j++) { 8323 if (env->used_maps[j] == map) { 8324 aux->map_index = j; 8325 fdput(f); 8326 goto next_insn; 8327 } 8328 } 8329 8330 if (env->used_map_cnt >= MAX_USED_MAPS) { 8331 fdput(f); 8332 return -E2BIG; 8333 } 8334 8335 /* hold the map. If the program is rejected by verifier, 8336 * the map will be released by release_maps() or it 8337 * will be used by the valid program until it's unloaded 8338 * and all maps are released in free_used_maps() 8339 */ 8340 bpf_map_inc(map); 8341 8342 aux->map_index = env->used_map_cnt; 8343 env->used_maps[env->used_map_cnt++] = map; 8344 8345 if (bpf_map_is_cgroup_storage(map) && 8346 bpf_cgroup_storage_assign(env->prog->aux, map)) { 8347 verbose(env, "only one cgroup storage of each type is allowed\n"); 8348 fdput(f); 8349 return -EBUSY; 8350 } 8351 8352 fdput(f); 8353 next_insn: 8354 insn++; 8355 i++; 8356 continue; 8357 } 8358 8359 /* Basic sanity check before we invest more work here. */ 8360 if (!bpf_opcode_in_insntable(insn->code)) { 8361 verbose(env, "unknown opcode %02x\n", insn->code); 8362 return -EINVAL; 8363 } 8364 } 8365 8366 /* now all pseudo BPF_LD_IMM64 instructions load valid 8367 * 'struct bpf_map *' into a register instead of user map_fd. 8368 * These pointers will be used later by verifier to validate map access. 8369 */ 8370 return 0; 8371 } 8372 8373 /* drop refcnt of maps used by the rejected program */ 8374 static void release_maps(struct bpf_verifier_env *env) 8375 { 8376 __bpf_free_used_maps(env->prog->aux, env->used_maps, 8377 env->used_map_cnt); 8378 } 8379 8380 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 8381 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 8382 { 8383 struct bpf_insn *insn = env->prog->insnsi; 8384 int insn_cnt = env->prog->len; 8385 int i; 8386 8387 for (i = 0; i < insn_cnt; i++, insn++) 8388 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 8389 insn->src_reg = 0; 8390 } 8391 8392 /* single env->prog->insni[off] instruction was replaced with the range 8393 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 8394 * [0, off) and [off, end) to new locations, so the patched range stays zero 8395 */ 8396 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 8397 struct bpf_prog *new_prog, u32 off, u32 cnt) 8398 { 8399 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 8400 struct bpf_insn *insn = new_prog->insnsi; 8401 u32 prog_len; 8402 int i; 8403 8404 /* aux info at OFF always needs adjustment, no matter fast path 8405 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 8406 * original insn at old prog. 8407 */ 8408 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 8409 8410 if (cnt == 1) 8411 return 0; 8412 prog_len = new_prog->len; 8413 new_data = vzalloc(array_size(prog_len, 8414 sizeof(struct bpf_insn_aux_data))); 8415 if (!new_data) 8416 return -ENOMEM; 8417 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 8418 memcpy(new_data + off + cnt - 1, old_data + off, 8419 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 8420 for (i = off; i < off + cnt - 1; i++) { 8421 new_data[i].seen = env->pass_cnt; 8422 new_data[i].zext_dst = insn_has_def32(env, insn + i); 8423 } 8424 env->insn_aux_data = new_data; 8425 vfree(old_data); 8426 return 0; 8427 } 8428 8429 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 8430 { 8431 int i; 8432 8433 if (len == 1) 8434 return; 8435 /* NOTE: fake 'exit' subprog should be updated as well. */ 8436 for (i = 0; i <= env->subprog_cnt; i++) { 8437 if (env->subprog_info[i].start <= off) 8438 continue; 8439 env->subprog_info[i].start += len - 1; 8440 } 8441 } 8442 8443 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 8444 const struct bpf_insn *patch, u32 len) 8445 { 8446 struct bpf_prog *new_prog; 8447 8448 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 8449 if (IS_ERR(new_prog)) { 8450 if (PTR_ERR(new_prog) == -ERANGE) 8451 verbose(env, 8452 "insn %d cannot be patched due to 16-bit range\n", 8453 env->insn_aux_data[off].orig_idx); 8454 return NULL; 8455 } 8456 if (adjust_insn_aux_data(env, new_prog, off, len)) 8457 return NULL; 8458 adjust_subprog_starts(env, off, len); 8459 return new_prog; 8460 } 8461 8462 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 8463 u32 off, u32 cnt) 8464 { 8465 int i, j; 8466 8467 /* find first prog starting at or after off (first to remove) */ 8468 for (i = 0; i < env->subprog_cnt; i++) 8469 if (env->subprog_info[i].start >= off) 8470 break; 8471 /* find first prog starting at or after off + cnt (first to stay) */ 8472 for (j = i; j < env->subprog_cnt; j++) 8473 if (env->subprog_info[j].start >= off + cnt) 8474 break; 8475 /* if j doesn't start exactly at off + cnt, we are just removing 8476 * the front of previous prog 8477 */ 8478 if (env->subprog_info[j].start != off + cnt) 8479 j--; 8480 8481 if (j > i) { 8482 struct bpf_prog_aux *aux = env->prog->aux; 8483 int move; 8484 8485 /* move fake 'exit' subprog as well */ 8486 move = env->subprog_cnt + 1 - j; 8487 8488 memmove(env->subprog_info + i, 8489 env->subprog_info + j, 8490 sizeof(*env->subprog_info) * move); 8491 env->subprog_cnt -= j - i; 8492 8493 /* remove func_info */ 8494 if (aux->func_info) { 8495 move = aux->func_info_cnt - j; 8496 8497 memmove(aux->func_info + i, 8498 aux->func_info + j, 8499 sizeof(*aux->func_info) * move); 8500 aux->func_info_cnt -= j - i; 8501 /* func_info->insn_off is set after all code rewrites, 8502 * in adjust_btf_func() - no need to adjust 8503 */ 8504 } 8505 } else { 8506 /* convert i from "first prog to remove" to "first to adjust" */ 8507 if (env->subprog_info[i].start == off) 8508 i++; 8509 } 8510 8511 /* update fake 'exit' subprog as well */ 8512 for (; i <= env->subprog_cnt; i++) 8513 env->subprog_info[i].start -= cnt; 8514 8515 return 0; 8516 } 8517 8518 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 8519 u32 cnt) 8520 { 8521 struct bpf_prog *prog = env->prog; 8522 u32 i, l_off, l_cnt, nr_linfo; 8523 struct bpf_line_info *linfo; 8524 8525 nr_linfo = prog->aux->nr_linfo; 8526 if (!nr_linfo) 8527 return 0; 8528 8529 linfo = prog->aux->linfo; 8530 8531 /* find first line info to remove, count lines to be removed */ 8532 for (i = 0; i < nr_linfo; i++) 8533 if (linfo[i].insn_off >= off) 8534 break; 8535 8536 l_off = i; 8537 l_cnt = 0; 8538 for (; i < nr_linfo; i++) 8539 if (linfo[i].insn_off < off + cnt) 8540 l_cnt++; 8541 else 8542 break; 8543 8544 /* First live insn doesn't match first live linfo, it needs to "inherit" 8545 * last removed linfo. prog is already modified, so prog->len == off 8546 * means no live instructions after (tail of the program was removed). 8547 */ 8548 if (prog->len != off && l_cnt && 8549 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 8550 l_cnt--; 8551 linfo[--i].insn_off = off + cnt; 8552 } 8553 8554 /* remove the line info which refer to the removed instructions */ 8555 if (l_cnt) { 8556 memmove(linfo + l_off, linfo + i, 8557 sizeof(*linfo) * (nr_linfo - i)); 8558 8559 prog->aux->nr_linfo -= l_cnt; 8560 nr_linfo = prog->aux->nr_linfo; 8561 } 8562 8563 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 8564 for (i = l_off; i < nr_linfo; i++) 8565 linfo[i].insn_off -= cnt; 8566 8567 /* fix up all subprogs (incl. 'exit') which start >= off */ 8568 for (i = 0; i <= env->subprog_cnt; i++) 8569 if (env->subprog_info[i].linfo_idx > l_off) { 8570 /* program may have started in the removed region but 8571 * may not be fully removed 8572 */ 8573 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 8574 env->subprog_info[i].linfo_idx -= l_cnt; 8575 else 8576 env->subprog_info[i].linfo_idx = l_off; 8577 } 8578 8579 return 0; 8580 } 8581 8582 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 8583 { 8584 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8585 unsigned int orig_prog_len = env->prog->len; 8586 int err; 8587 8588 if (bpf_prog_is_dev_bound(env->prog->aux)) 8589 bpf_prog_offload_remove_insns(env, off, cnt); 8590 8591 err = bpf_remove_insns(env->prog, off, cnt); 8592 if (err) 8593 return err; 8594 8595 err = adjust_subprog_starts_after_remove(env, off, cnt); 8596 if (err) 8597 return err; 8598 8599 err = bpf_adj_linfo_after_remove(env, off, cnt); 8600 if (err) 8601 return err; 8602 8603 memmove(aux_data + off, aux_data + off + cnt, 8604 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 8605 8606 return 0; 8607 } 8608 8609 /* The verifier does more data flow analysis than llvm and will not 8610 * explore branches that are dead at run time. Malicious programs can 8611 * have dead code too. Therefore replace all dead at-run-time code 8612 * with 'ja -1'. 8613 * 8614 * Just nops are not optimal, e.g. if they would sit at the end of the 8615 * program and through another bug we would manage to jump there, then 8616 * we'd execute beyond program memory otherwise. Returning exception 8617 * code also wouldn't work since we can have subprogs where the dead 8618 * code could be located. 8619 */ 8620 static void sanitize_dead_code(struct bpf_verifier_env *env) 8621 { 8622 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8623 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 8624 struct bpf_insn *insn = env->prog->insnsi; 8625 const int insn_cnt = env->prog->len; 8626 int i; 8627 8628 for (i = 0; i < insn_cnt; i++) { 8629 if (aux_data[i].seen) 8630 continue; 8631 memcpy(insn + i, &trap, sizeof(trap)); 8632 } 8633 } 8634 8635 static bool insn_is_cond_jump(u8 code) 8636 { 8637 u8 op; 8638 8639 if (BPF_CLASS(code) == BPF_JMP32) 8640 return true; 8641 8642 if (BPF_CLASS(code) != BPF_JMP) 8643 return false; 8644 8645 op = BPF_OP(code); 8646 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 8647 } 8648 8649 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 8650 { 8651 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8652 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 8653 struct bpf_insn *insn = env->prog->insnsi; 8654 const int insn_cnt = env->prog->len; 8655 int i; 8656 8657 for (i = 0; i < insn_cnt; i++, insn++) { 8658 if (!insn_is_cond_jump(insn->code)) 8659 continue; 8660 8661 if (!aux_data[i + 1].seen) 8662 ja.off = insn->off; 8663 else if (!aux_data[i + 1 + insn->off].seen) 8664 ja.off = 0; 8665 else 8666 continue; 8667 8668 if (bpf_prog_is_dev_bound(env->prog->aux)) 8669 bpf_prog_offload_replace_insn(env, i, &ja); 8670 8671 memcpy(insn, &ja, sizeof(ja)); 8672 } 8673 } 8674 8675 static int opt_remove_dead_code(struct bpf_verifier_env *env) 8676 { 8677 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8678 int insn_cnt = env->prog->len; 8679 int i, err; 8680 8681 for (i = 0; i < insn_cnt; i++) { 8682 int j; 8683 8684 j = 0; 8685 while (i + j < insn_cnt && !aux_data[i + j].seen) 8686 j++; 8687 if (!j) 8688 continue; 8689 8690 err = verifier_remove_insns(env, i, j); 8691 if (err) 8692 return err; 8693 insn_cnt = env->prog->len; 8694 } 8695 8696 return 0; 8697 } 8698 8699 static int opt_remove_nops(struct bpf_verifier_env *env) 8700 { 8701 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 8702 struct bpf_insn *insn = env->prog->insnsi; 8703 int insn_cnt = env->prog->len; 8704 int i, err; 8705 8706 for (i = 0; i < insn_cnt; i++) { 8707 if (memcmp(&insn[i], &ja, sizeof(ja))) 8708 continue; 8709 8710 err = verifier_remove_insns(env, i, 1); 8711 if (err) 8712 return err; 8713 insn_cnt--; 8714 i--; 8715 } 8716 8717 return 0; 8718 } 8719 8720 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 8721 const union bpf_attr *attr) 8722 { 8723 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 8724 struct bpf_insn_aux_data *aux = env->insn_aux_data; 8725 int i, patch_len, delta = 0, len = env->prog->len; 8726 struct bpf_insn *insns = env->prog->insnsi; 8727 struct bpf_prog *new_prog; 8728 bool rnd_hi32; 8729 8730 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 8731 zext_patch[1] = BPF_ZEXT_REG(0); 8732 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 8733 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 8734 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 8735 for (i = 0; i < len; i++) { 8736 int adj_idx = i + delta; 8737 struct bpf_insn insn; 8738 8739 insn = insns[adj_idx]; 8740 if (!aux[adj_idx].zext_dst) { 8741 u8 code, class; 8742 u32 imm_rnd; 8743 8744 if (!rnd_hi32) 8745 continue; 8746 8747 code = insn.code; 8748 class = BPF_CLASS(code); 8749 if (insn_no_def(&insn)) 8750 continue; 8751 8752 /* NOTE: arg "reg" (the fourth one) is only used for 8753 * BPF_STX which has been ruled out in above 8754 * check, it is safe to pass NULL here. 8755 */ 8756 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { 8757 if (class == BPF_LD && 8758 BPF_MODE(code) == BPF_IMM) 8759 i++; 8760 continue; 8761 } 8762 8763 /* ctx load could be transformed into wider load. */ 8764 if (class == BPF_LDX && 8765 aux[adj_idx].ptr_type == PTR_TO_CTX) 8766 continue; 8767 8768 imm_rnd = get_random_int(); 8769 rnd_hi32_patch[0] = insn; 8770 rnd_hi32_patch[1].imm = imm_rnd; 8771 rnd_hi32_patch[3].dst_reg = insn.dst_reg; 8772 patch = rnd_hi32_patch; 8773 patch_len = 4; 8774 goto apply_patch_buffer; 8775 } 8776 8777 if (!bpf_jit_needs_zext()) 8778 continue; 8779 8780 zext_patch[0] = insn; 8781 zext_patch[1].dst_reg = insn.dst_reg; 8782 zext_patch[1].src_reg = insn.dst_reg; 8783 patch = zext_patch; 8784 patch_len = 2; 8785 apply_patch_buffer: 8786 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 8787 if (!new_prog) 8788 return -ENOMEM; 8789 env->prog = new_prog; 8790 insns = new_prog->insnsi; 8791 aux = env->insn_aux_data; 8792 delta += patch_len - 1; 8793 } 8794 8795 return 0; 8796 } 8797 8798 /* convert load instructions that access fields of a context type into a 8799 * sequence of instructions that access fields of the underlying structure: 8800 * struct __sk_buff -> struct sk_buff 8801 * struct bpf_sock_ops -> struct sock 8802 */ 8803 static int convert_ctx_accesses(struct bpf_verifier_env *env) 8804 { 8805 const struct bpf_verifier_ops *ops = env->ops; 8806 int i, cnt, size, ctx_field_size, delta = 0; 8807 const int insn_cnt = env->prog->len; 8808 struct bpf_insn insn_buf[16], *insn; 8809 u32 target_size, size_default, off; 8810 struct bpf_prog *new_prog; 8811 enum bpf_access_type type; 8812 bool is_narrower_load; 8813 8814 if (ops->gen_prologue || env->seen_direct_write) { 8815 if (!ops->gen_prologue) { 8816 verbose(env, "bpf verifier is misconfigured\n"); 8817 return -EINVAL; 8818 } 8819 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 8820 env->prog); 8821 if (cnt >= ARRAY_SIZE(insn_buf)) { 8822 verbose(env, "bpf verifier is misconfigured\n"); 8823 return -EINVAL; 8824 } else if (cnt) { 8825 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 8826 if (!new_prog) 8827 return -ENOMEM; 8828 8829 env->prog = new_prog; 8830 delta += cnt - 1; 8831 } 8832 } 8833 8834 if (bpf_prog_is_dev_bound(env->prog->aux)) 8835 return 0; 8836 8837 insn = env->prog->insnsi + delta; 8838 8839 for (i = 0; i < insn_cnt; i++, insn++) { 8840 bpf_convert_ctx_access_t convert_ctx_access; 8841 8842 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 8843 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 8844 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 8845 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 8846 type = BPF_READ; 8847 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 8848 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 8849 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 8850 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 8851 type = BPF_WRITE; 8852 else 8853 continue; 8854 8855 if (type == BPF_WRITE && 8856 env->insn_aux_data[i + delta].sanitize_stack_off) { 8857 struct bpf_insn patch[] = { 8858 /* Sanitize suspicious stack slot with zero. 8859 * There are no memory dependencies for this store, 8860 * since it's only using frame pointer and immediate 8861 * constant of zero 8862 */ 8863 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 8864 env->insn_aux_data[i + delta].sanitize_stack_off, 8865 0), 8866 /* the original STX instruction will immediately 8867 * overwrite the same stack slot with appropriate value 8868 */ 8869 *insn, 8870 }; 8871 8872 cnt = ARRAY_SIZE(patch); 8873 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 8874 if (!new_prog) 8875 return -ENOMEM; 8876 8877 delta += cnt - 1; 8878 env->prog = new_prog; 8879 insn = new_prog->insnsi + i + delta; 8880 continue; 8881 } 8882 8883 switch (env->insn_aux_data[i + delta].ptr_type) { 8884 case PTR_TO_CTX: 8885 if (!ops->convert_ctx_access) 8886 continue; 8887 convert_ctx_access = ops->convert_ctx_access; 8888 break; 8889 case PTR_TO_SOCKET: 8890 case PTR_TO_SOCK_COMMON: 8891 convert_ctx_access = bpf_sock_convert_ctx_access; 8892 break; 8893 case PTR_TO_TCP_SOCK: 8894 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 8895 break; 8896 case PTR_TO_XDP_SOCK: 8897 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 8898 break; 8899 case PTR_TO_BTF_ID: 8900 if (type == BPF_READ) { 8901 insn->code = BPF_LDX | BPF_PROBE_MEM | 8902 BPF_SIZE((insn)->code); 8903 env->prog->aux->num_exentries++; 8904 } else if (env->prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 8905 verbose(env, "Writes through BTF pointers are not allowed\n"); 8906 return -EINVAL; 8907 } 8908 continue; 8909 default: 8910 continue; 8911 } 8912 8913 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 8914 size = BPF_LDST_BYTES(insn); 8915 8916 /* If the read access is a narrower load of the field, 8917 * convert to a 4/8-byte load, to minimum program type specific 8918 * convert_ctx_access changes. If conversion is successful, 8919 * we will apply proper mask to the result. 8920 */ 8921 is_narrower_load = size < ctx_field_size; 8922 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 8923 off = insn->off; 8924 if (is_narrower_load) { 8925 u8 size_code; 8926 8927 if (type == BPF_WRITE) { 8928 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 8929 return -EINVAL; 8930 } 8931 8932 size_code = BPF_H; 8933 if (ctx_field_size == 4) 8934 size_code = BPF_W; 8935 else if (ctx_field_size == 8) 8936 size_code = BPF_DW; 8937 8938 insn->off = off & ~(size_default - 1); 8939 insn->code = BPF_LDX | BPF_MEM | size_code; 8940 } 8941 8942 target_size = 0; 8943 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 8944 &target_size); 8945 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 8946 (ctx_field_size && !target_size)) { 8947 verbose(env, "bpf verifier is misconfigured\n"); 8948 return -EINVAL; 8949 } 8950 8951 if (is_narrower_load && size < target_size) { 8952 u8 shift = bpf_ctx_narrow_access_offset( 8953 off, size, size_default) * 8; 8954 if (ctx_field_size <= 4) { 8955 if (shift) 8956 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 8957 insn->dst_reg, 8958 shift); 8959 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 8960 (1 << size * 8) - 1); 8961 } else { 8962 if (shift) 8963 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 8964 insn->dst_reg, 8965 shift); 8966 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 8967 (1ULL << size * 8) - 1); 8968 } 8969 } 8970 8971 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 8972 if (!new_prog) 8973 return -ENOMEM; 8974 8975 delta += cnt - 1; 8976 8977 /* keep walking new program and skip insns we just inserted */ 8978 env->prog = new_prog; 8979 insn = new_prog->insnsi + i + delta; 8980 } 8981 8982 return 0; 8983 } 8984 8985 static int jit_subprogs(struct bpf_verifier_env *env) 8986 { 8987 struct bpf_prog *prog = env->prog, **func, *tmp; 8988 int i, j, subprog_start, subprog_end = 0, len, subprog; 8989 struct bpf_insn *insn; 8990 void *old_bpf_func; 8991 int err; 8992 8993 if (env->subprog_cnt <= 1) 8994 return 0; 8995 8996 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 8997 if (insn->code != (BPF_JMP | BPF_CALL) || 8998 insn->src_reg != BPF_PSEUDO_CALL) 8999 continue; 9000 /* Upon error here we cannot fall back to interpreter but 9001 * need a hard reject of the program. Thus -EFAULT is 9002 * propagated in any case. 9003 */ 9004 subprog = find_subprog(env, i + insn->imm + 1); 9005 if (subprog < 0) { 9006 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 9007 i + insn->imm + 1); 9008 return -EFAULT; 9009 } 9010 /* temporarily remember subprog id inside insn instead of 9011 * aux_data, since next loop will split up all insns into funcs 9012 */ 9013 insn->off = subprog; 9014 /* remember original imm in case JIT fails and fallback 9015 * to interpreter will be needed 9016 */ 9017 env->insn_aux_data[i].call_imm = insn->imm; 9018 /* point imm to __bpf_call_base+1 from JITs point of view */ 9019 insn->imm = 1; 9020 } 9021 9022 err = bpf_prog_alloc_jited_linfo(prog); 9023 if (err) 9024 goto out_undo_insn; 9025 9026 err = -ENOMEM; 9027 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 9028 if (!func) 9029 goto out_undo_insn; 9030 9031 for (i = 0; i < env->subprog_cnt; i++) { 9032 subprog_start = subprog_end; 9033 subprog_end = env->subprog_info[i + 1].start; 9034 9035 len = subprog_end - subprog_start; 9036 /* BPF_PROG_RUN doesn't call subprogs directly, 9037 * hence main prog stats include the runtime of subprogs. 9038 * subprogs don't have IDs and not reachable via prog_get_next_id 9039 * func[i]->aux->stats will never be accessed and stays NULL 9040 */ 9041 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 9042 if (!func[i]) 9043 goto out_free; 9044 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 9045 len * sizeof(struct bpf_insn)); 9046 func[i]->type = prog->type; 9047 func[i]->len = len; 9048 if (bpf_prog_calc_tag(func[i])) 9049 goto out_free; 9050 func[i]->is_func = 1; 9051 func[i]->aux->func_idx = i; 9052 /* the btf and func_info will be freed only at prog->aux */ 9053 func[i]->aux->btf = prog->aux->btf; 9054 func[i]->aux->func_info = prog->aux->func_info; 9055 9056 /* Use bpf_prog_F_tag to indicate functions in stack traces. 9057 * Long term would need debug info to populate names 9058 */ 9059 func[i]->aux->name[0] = 'F'; 9060 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 9061 func[i]->jit_requested = 1; 9062 func[i]->aux->linfo = prog->aux->linfo; 9063 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 9064 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 9065 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 9066 func[i] = bpf_int_jit_compile(func[i]); 9067 if (!func[i]->jited) { 9068 err = -ENOTSUPP; 9069 goto out_free; 9070 } 9071 cond_resched(); 9072 } 9073 /* at this point all bpf functions were successfully JITed 9074 * now populate all bpf_calls with correct addresses and 9075 * run last pass of JIT 9076 */ 9077 for (i = 0; i < env->subprog_cnt; i++) { 9078 insn = func[i]->insnsi; 9079 for (j = 0; j < func[i]->len; j++, insn++) { 9080 if (insn->code != (BPF_JMP | BPF_CALL) || 9081 insn->src_reg != BPF_PSEUDO_CALL) 9082 continue; 9083 subprog = insn->off; 9084 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 9085 __bpf_call_base; 9086 } 9087 9088 /* we use the aux data to keep a list of the start addresses 9089 * of the JITed images for each function in the program 9090 * 9091 * for some architectures, such as powerpc64, the imm field 9092 * might not be large enough to hold the offset of the start 9093 * address of the callee's JITed image from __bpf_call_base 9094 * 9095 * in such cases, we can lookup the start address of a callee 9096 * by using its subprog id, available from the off field of 9097 * the call instruction, as an index for this list 9098 */ 9099 func[i]->aux->func = func; 9100 func[i]->aux->func_cnt = env->subprog_cnt; 9101 } 9102 for (i = 0; i < env->subprog_cnt; i++) { 9103 old_bpf_func = func[i]->bpf_func; 9104 tmp = bpf_int_jit_compile(func[i]); 9105 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 9106 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 9107 err = -ENOTSUPP; 9108 goto out_free; 9109 } 9110 cond_resched(); 9111 } 9112 9113 /* finally lock prog and jit images for all functions and 9114 * populate kallsysm 9115 */ 9116 for (i = 0; i < env->subprog_cnt; i++) { 9117 bpf_prog_lock_ro(func[i]); 9118 bpf_prog_kallsyms_add(func[i]); 9119 } 9120 9121 /* Last step: make now unused interpreter insns from main 9122 * prog consistent for later dump requests, so they can 9123 * later look the same as if they were interpreted only. 9124 */ 9125 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9126 if (insn->code != (BPF_JMP | BPF_CALL) || 9127 insn->src_reg != BPF_PSEUDO_CALL) 9128 continue; 9129 insn->off = env->insn_aux_data[i].call_imm; 9130 subprog = find_subprog(env, i + insn->off + 1); 9131 insn->imm = subprog; 9132 } 9133 9134 prog->jited = 1; 9135 prog->bpf_func = func[0]->bpf_func; 9136 prog->aux->func = func; 9137 prog->aux->func_cnt = env->subprog_cnt; 9138 bpf_prog_free_unused_jited_linfo(prog); 9139 return 0; 9140 out_free: 9141 for (i = 0; i < env->subprog_cnt; i++) 9142 if (func[i]) 9143 bpf_jit_free(func[i]); 9144 kfree(func); 9145 out_undo_insn: 9146 /* cleanup main prog to be interpreted */ 9147 prog->jit_requested = 0; 9148 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9149 if (insn->code != (BPF_JMP | BPF_CALL) || 9150 insn->src_reg != BPF_PSEUDO_CALL) 9151 continue; 9152 insn->off = 0; 9153 insn->imm = env->insn_aux_data[i].call_imm; 9154 } 9155 bpf_prog_free_jited_linfo(prog); 9156 return err; 9157 } 9158 9159 static int fixup_call_args(struct bpf_verifier_env *env) 9160 { 9161 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 9162 struct bpf_prog *prog = env->prog; 9163 struct bpf_insn *insn = prog->insnsi; 9164 int i, depth; 9165 #endif 9166 int err = 0; 9167 9168 if (env->prog->jit_requested && 9169 !bpf_prog_is_dev_bound(env->prog->aux)) { 9170 err = jit_subprogs(env); 9171 if (err == 0) 9172 return 0; 9173 if (err == -EFAULT) 9174 return err; 9175 } 9176 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 9177 for (i = 0; i < prog->len; i++, insn++) { 9178 if (insn->code != (BPF_JMP | BPF_CALL) || 9179 insn->src_reg != BPF_PSEUDO_CALL) 9180 continue; 9181 depth = get_callee_stack_depth(env, insn, i); 9182 if (depth < 0) 9183 return depth; 9184 bpf_patch_call_args(insn, depth); 9185 } 9186 err = 0; 9187 #endif 9188 return err; 9189 } 9190 9191 /* fixup insn->imm field of bpf_call instructions 9192 * and inline eligible helpers as explicit sequence of BPF instructions 9193 * 9194 * this function is called after eBPF program passed verification 9195 */ 9196 static int fixup_bpf_calls(struct bpf_verifier_env *env) 9197 { 9198 struct bpf_prog *prog = env->prog; 9199 bool expect_blinding = bpf_jit_blinding_enabled(prog); 9200 struct bpf_insn *insn = prog->insnsi; 9201 const struct bpf_func_proto *fn; 9202 const int insn_cnt = prog->len; 9203 const struct bpf_map_ops *ops; 9204 struct bpf_insn_aux_data *aux; 9205 struct bpf_insn insn_buf[16]; 9206 struct bpf_prog *new_prog; 9207 struct bpf_map *map_ptr; 9208 int i, ret, cnt, delta = 0; 9209 9210 for (i = 0; i < insn_cnt; i++, insn++) { 9211 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 9212 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 9213 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 9214 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 9215 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 9216 struct bpf_insn mask_and_div[] = { 9217 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 9218 /* Rx div 0 -> 0 */ 9219 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 9220 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 9221 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 9222 *insn, 9223 }; 9224 struct bpf_insn mask_and_mod[] = { 9225 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 9226 /* Rx mod 0 -> Rx */ 9227 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 9228 *insn, 9229 }; 9230 struct bpf_insn *patchlet; 9231 9232 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 9233 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 9234 patchlet = mask_and_div + (is64 ? 1 : 0); 9235 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 9236 } else { 9237 patchlet = mask_and_mod + (is64 ? 1 : 0); 9238 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 9239 } 9240 9241 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 9242 if (!new_prog) 9243 return -ENOMEM; 9244 9245 delta += cnt - 1; 9246 env->prog = prog = new_prog; 9247 insn = new_prog->insnsi + i + delta; 9248 continue; 9249 } 9250 9251 if (BPF_CLASS(insn->code) == BPF_LD && 9252 (BPF_MODE(insn->code) == BPF_ABS || 9253 BPF_MODE(insn->code) == BPF_IND)) { 9254 cnt = env->ops->gen_ld_abs(insn, insn_buf); 9255 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 9256 verbose(env, "bpf verifier is misconfigured\n"); 9257 return -EINVAL; 9258 } 9259 9260 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9261 if (!new_prog) 9262 return -ENOMEM; 9263 9264 delta += cnt - 1; 9265 env->prog = prog = new_prog; 9266 insn = new_prog->insnsi + i + delta; 9267 continue; 9268 } 9269 9270 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 9271 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 9272 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 9273 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 9274 struct bpf_insn insn_buf[16]; 9275 struct bpf_insn *patch = &insn_buf[0]; 9276 bool issrc, isneg; 9277 u32 off_reg; 9278 9279 aux = &env->insn_aux_data[i + delta]; 9280 if (!aux->alu_state || 9281 aux->alu_state == BPF_ALU_NON_POINTER) 9282 continue; 9283 9284 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 9285 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 9286 BPF_ALU_SANITIZE_SRC; 9287 9288 off_reg = issrc ? insn->src_reg : insn->dst_reg; 9289 if (isneg) 9290 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 9291 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 9292 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 9293 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 9294 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 9295 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 9296 if (issrc) { 9297 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 9298 off_reg); 9299 insn->src_reg = BPF_REG_AX; 9300 } else { 9301 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 9302 BPF_REG_AX); 9303 } 9304 if (isneg) 9305 insn->code = insn->code == code_add ? 9306 code_sub : code_add; 9307 *patch++ = *insn; 9308 if (issrc && isneg) 9309 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 9310 cnt = patch - insn_buf; 9311 9312 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9313 if (!new_prog) 9314 return -ENOMEM; 9315 9316 delta += cnt - 1; 9317 env->prog = prog = new_prog; 9318 insn = new_prog->insnsi + i + delta; 9319 continue; 9320 } 9321 9322 if (insn->code != (BPF_JMP | BPF_CALL)) 9323 continue; 9324 if (insn->src_reg == BPF_PSEUDO_CALL) 9325 continue; 9326 9327 if (insn->imm == BPF_FUNC_get_route_realm) 9328 prog->dst_needed = 1; 9329 if (insn->imm == BPF_FUNC_get_prandom_u32) 9330 bpf_user_rnd_init_once(); 9331 if (insn->imm == BPF_FUNC_override_return) 9332 prog->kprobe_override = 1; 9333 if (insn->imm == BPF_FUNC_tail_call) { 9334 /* If we tail call into other programs, we 9335 * cannot make any assumptions since they can 9336 * be replaced dynamically during runtime in 9337 * the program array. 9338 */ 9339 prog->cb_access = 1; 9340 env->prog->aux->stack_depth = MAX_BPF_STACK; 9341 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 9342 9343 /* mark bpf_tail_call as different opcode to avoid 9344 * conditional branch in the interpeter for every normal 9345 * call and to prevent accidental JITing by JIT compiler 9346 * that doesn't support bpf_tail_call yet 9347 */ 9348 insn->imm = 0; 9349 insn->code = BPF_JMP | BPF_TAIL_CALL; 9350 9351 aux = &env->insn_aux_data[i + delta]; 9352 if (env->allow_ptr_leaks && !expect_blinding && 9353 prog->jit_requested && 9354 !bpf_map_key_poisoned(aux) && 9355 !bpf_map_ptr_poisoned(aux) && 9356 !bpf_map_ptr_unpriv(aux)) { 9357 struct bpf_jit_poke_descriptor desc = { 9358 .reason = BPF_POKE_REASON_TAIL_CALL, 9359 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 9360 .tail_call.key = bpf_map_key_immediate(aux), 9361 }; 9362 9363 ret = bpf_jit_add_poke_descriptor(prog, &desc); 9364 if (ret < 0) { 9365 verbose(env, "adding tail call poke descriptor failed\n"); 9366 return ret; 9367 } 9368 9369 insn->imm = ret + 1; 9370 continue; 9371 } 9372 9373 if (!bpf_map_ptr_unpriv(aux)) 9374 continue; 9375 9376 /* instead of changing every JIT dealing with tail_call 9377 * emit two extra insns: 9378 * if (index >= max_entries) goto out; 9379 * index &= array->index_mask; 9380 * to avoid out-of-bounds cpu speculation 9381 */ 9382 if (bpf_map_ptr_poisoned(aux)) { 9383 verbose(env, "tail_call abusing map_ptr\n"); 9384 return -EINVAL; 9385 } 9386 9387 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 9388 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 9389 map_ptr->max_entries, 2); 9390 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 9391 container_of(map_ptr, 9392 struct bpf_array, 9393 map)->index_mask); 9394 insn_buf[2] = *insn; 9395 cnt = 3; 9396 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9397 if (!new_prog) 9398 return -ENOMEM; 9399 9400 delta += cnt - 1; 9401 env->prog = prog = new_prog; 9402 insn = new_prog->insnsi + i + delta; 9403 continue; 9404 } 9405 9406 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 9407 * and other inlining handlers are currently limited to 64 bit 9408 * only. 9409 */ 9410 if (prog->jit_requested && BITS_PER_LONG == 64 && 9411 (insn->imm == BPF_FUNC_map_lookup_elem || 9412 insn->imm == BPF_FUNC_map_update_elem || 9413 insn->imm == BPF_FUNC_map_delete_elem || 9414 insn->imm == BPF_FUNC_map_push_elem || 9415 insn->imm == BPF_FUNC_map_pop_elem || 9416 insn->imm == BPF_FUNC_map_peek_elem)) { 9417 aux = &env->insn_aux_data[i + delta]; 9418 if (bpf_map_ptr_poisoned(aux)) 9419 goto patch_call_imm; 9420 9421 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 9422 ops = map_ptr->ops; 9423 if (insn->imm == BPF_FUNC_map_lookup_elem && 9424 ops->map_gen_lookup) { 9425 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 9426 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 9427 verbose(env, "bpf verifier is misconfigured\n"); 9428 return -EINVAL; 9429 } 9430 9431 new_prog = bpf_patch_insn_data(env, i + delta, 9432 insn_buf, cnt); 9433 if (!new_prog) 9434 return -ENOMEM; 9435 9436 delta += cnt - 1; 9437 env->prog = prog = new_prog; 9438 insn = new_prog->insnsi + i + delta; 9439 continue; 9440 } 9441 9442 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 9443 (void *(*)(struct bpf_map *map, void *key))NULL)); 9444 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 9445 (int (*)(struct bpf_map *map, void *key))NULL)); 9446 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 9447 (int (*)(struct bpf_map *map, void *key, void *value, 9448 u64 flags))NULL)); 9449 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 9450 (int (*)(struct bpf_map *map, void *value, 9451 u64 flags))NULL)); 9452 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 9453 (int (*)(struct bpf_map *map, void *value))NULL)); 9454 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 9455 (int (*)(struct bpf_map *map, void *value))NULL)); 9456 9457 switch (insn->imm) { 9458 case BPF_FUNC_map_lookup_elem: 9459 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 9460 __bpf_call_base; 9461 continue; 9462 case BPF_FUNC_map_update_elem: 9463 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 9464 __bpf_call_base; 9465 continue; 9466 case BPF_FUNC_map_delete_elem: 9467 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 9468 __bpf_call_base; 9469 continue; 9470 case BPF_FUNC_map_push_elem: 9471 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 9472 __bpf_call_base; 9473 continue; 9474 case BPF_FUNC_map_pop_elem: 9475 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 9476 __bpf_call_base; 9477 continue; 9478 case BPF_FUNC_map_peek_elem: 9479 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 9480 __bpf_call_base; 9481 continue; 9482 } 9483 9484 goto patch_call_imm; 9485 } 9486 9487 if (prog->jit_requested && BITS_PER_LONG == 64 && 9488 insn->imm == BPF_FUNC_jiffies64) { 9489 struct bpf_insn ld_jiffies_addr[2] = { 9490 BPF_LD_IMM64(BPF_REG_0, 9491 (unsigned long)&jiffies), 9492 }; 9493 9494 insn_buf[0] = ld_jiffies_addr[0]; 9495 insn_buf[1] = ld_jiffies_addr[1]; 9496 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 9497 BPF_REG_0, 0); 9498 cnt = 3; 9499 9500 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 9501 cnt); 9502 if (!new_prog) 9503 return -ENOMEM; 9504 9505 delta += cnt - 1; 9506 env->prog = prog = new_prog; 9507 insn = new_prog->insnsi + i + delta; 9508 continue; 9509 } 9510 9511 patch_call_imm: 9512 fn = env->ops->get_func_proto(insn->imm, env->prog); 9513 /* all functions that have prototype and verifier allowed 9514 * programs to call them, must be real in-kernel functions 9515 */ 9516 if (!fn->func) { 9517 verbose(env, 9518 "kernel subsystem misconfigured func %s#%d\n", 9519 func_id_name(insn->imm), insn->imm); 9520 return -EFAULT; 9521 } 9522 insn->imm = fn->func - __bpf_call_base; 9523 } 9524 9525 /* Since poke tab is now finalized, publish aux to tracker. */ 9526 for (i = 0; i < prog->aux->size_poke_tab; i++) { 9527 map_ptr = prog->aux->poke_tab[i].tail_call.map; 9528 if (!map_ptr->ops->map_poke_track || 9529 !map_ptr->ops->map_poke_untrack || 9530 !map_ptr->ops->map_poke_run) { 9531 verbose(env, "bpf verifier is misconfigured\n"); 9532 return -EINVAL; 9533 } 9534 9535 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 9536 if (ret < 0) { 9537 verbose(env, "tracking tail call prog failed\n"); 9538 return ret; 9539 } 9540 } 9541 9542 return 0; 9543 } 9544 9545 static void free_states(struct bpf_verifier_env *env) 9546 { 9547 struct bpf_verifier_state_list *sl, *sln; 9548 int i; 9549 9550 sl = env->free_list; 9551 while (sl) { 9552 sln = sl->next; 9553 free_verifier_state(&sl->state, false); 9554 kfree(sl); 9555 sl = sln; 9556 } 9557 env->free_list = NULL; 9558 9559 if (!env->explored_states) 9560 return; 9561 9562 for (i = 0; i < state_htab_size(env); i++) { 9563 sl = env->explored_states[i]; 9564 9565 while (sl) { 9566 sln = sl->next; 9567 free_verifier_state(&sl->state, false); 9568 kfree(sl); 9569 sl = sln; 9570 } 9571 env->explored_states[i] = NULL; 9572 } 9573 } 9574 9575 /* The verifier is using insn_aux_data[] to store temporary data during 9576 * verification and to store information for passes that run after the 9577 * verification like dead code sanitization. do_check_common() for subprogram N 9578 * may analyze many other subprograms. sanitize_insn_aux_data() clears all 9579 * temporary data after do_check_common() finds that subprogram N cannot be 9580 * verified independently. pass_cnt counts the number of times 9581 * do_check_common() was run and insn->aux->seen tells the pass number 9582 * insn_aux_data was touched. These variables are compared to clear temporary 9583 * data from failed pass. For testing and experiments do_check_common() can be 9584 * run multiple times even when prior attempt to verify is unsuccessful. 9585 */ 9586 static void sanitize_insn_aux_data(struct bpf_verifier_env *env) 9587 { 9588 struct bpf_insn *insn = env->prog->insnsi; 9589 struct bpf_insn_aux_data *aux; 9590 int i, class; 9591 9592 for (i = 0; i < env->prog->len; i++) { 9593 class = BPF_CLASS(insn[i].code); 9594 if (class != BPF_LDX && class != BPF_STX) 9595 continue; 9596 aux = &env->insn_aux_data[i]; 9597 if (aux->seen != env->pass_cnt) 9598 continue; 9599 memset(aux, 0, offsetof(typeof(*aux), orig_idx)); 9600 } 9601 } 9602 9603 static int do_check_common(struct bpf_verifier_env *env, int subprog) 9604 { 9605 struct bpf_verifier_state *state; 9606 struct bpf_reg_state *regs; 9607 int ret, i; 9608 9609 env->prev_linfo = NULL; 9610 env->pass_cnt++; 9611 9612 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 9613 if (!state) 9614 return -ENOMEM; 9615 state->curframe = 0; 9616 state->speculative = false; 9617 state->branches = 1; 9618 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 9619 if (!state->frame[0]) { 9620 kfree(state); 9621 return -ENOMEM; 9622 } 9623 env->cur_state = state; 9624 init_func_state(env, state->frame[0], 9625 BPF_MAIN_FUNC /* callsite */, 9626 0 /* frameno */, 9627 subprog); 9628 9629 regs = state->frame[state->curframe]->regs; 9630 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 9631 ret = btf_prepare_func_args(env, subprog, regs); 9632 if (ret) 9633 goto out; 9634 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 9635 if (regs[i].type == PTR_TO_CTX) 9636 mark_reg_known_zero(env, regs, i); 9637 else if (regs[i].type == SCALAR_VALUE) 9638 mark_reg_unknown(env, regs, i); 9639 } 9640 } else { 9641 /* 1st arg to a function */ 9642 regs[BPF_REG_1].type = PTR_TO_CTX; 9643 mark_reg_known_zero(env, regs, BPF_REG_1); 9644 ret = btf_check_func_arg_match(env, subprog, regs); 9645 if (ret == -EFAULT) 9646 /* unlikely verifier bug. abort. 9647 * ret == 0 and ret < 0 are sadly acceptable for 9648 * main() function due to backward compatibility. 9649 * Like socket filter program may be written as: 9650 * int bpf_prog(struct pt_regs *ctx) 9651 * and never dereference that ctx in the program. 9652 * 'struct pt_regs' is a type mismatch for socket 9653 * filter that should be using 'struct __sk_buff'. 9654 */ 9655 goto out; 9656 } 9657 9658 ret = do_check(env); 9659 out: 9660 /* check for NULL is necessary, since cur_state can be freed inside 9661 * do_check() under memory pressure. 9662 */ 9663 if (env->cur_state) { 9664 free_verifier_state(env->cur_state, true); 9665 env->cur_state = NULL; 9666 } 9667 while (!pop_stack(env, NULL, NULL)); 9668 free_states(env); 9669 if (ret) 9670 /* clean aux data in case subprog was rejected */ 9671 sanitize_insn_aux_data(env); 9672 return ret; 9673 } 9674 9675 /* Verify all global functions in a BPF program one by one based on their BTF. 9676 * All global functions must pass verification. Otherwise the whole program is rejected. 9677 * Consider: 9678 * int bar(int); 9679 * int foo(int f) 9680 * { 9681 * return bar(f); 9682 * } 9683 * int bar(int b) 9684 * { 9685 * ... 9686 * } 9687 * foo() will be verified first for R1=any_scalar_value. During verification it 9688 * will be assumed that bar() already verified successfully and call to bar() 9689 * from foo() will be checked for type match only. Later bar() will be verified 9690 * independently to check that it's safe for R1=any_scalar_value. 9691 */ 9692 static int do_check_subprogs(struct bpf_verifier_env *env) 9693 { 9694 struct bpf_prog_aux *aux = env->prog->aux; 9695 int i, ret; 9696 9697 if (!aux->func_info) 9698 return 0; 9699 9700 for (i = 1; i < env->subprog_cnt; i++) { 9701 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 9702 continue; 9703 env->insn_idx = env->subprog_info[i].start; 9704 WARN_ON_ONCE(env->insn_idx == 0); 9705 ret = do_check_common(env, i); 9706 if (ret) { 9707 return ret; 9708 } else if (env->log.level & BPF_LOG_LEVEL) { 9709 verbose(env, 9710 "Func#%d is safe for any args that match its prototype\n", 9711 i); 9712 } 9713 } 9714 return 0; 9715 } 9716 9717 static int do_check_main(struct bpf_verifier_env *env) 9718 { 9719 int ret; 9720 9721 env->insn_idx = 0; 9722 ret = do_check_common(env, 0); 9723 if (!ret) 9724 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 9725 return ret; 9726 } 9727 9728 9729 static void print_verification_stats(struct bpf_verifier_env *env) 9730 { 9731 int i; 9732 9733 if (env->log.level & BPF_LOG_STATS) { 9734 verbose(env, "verification time %lld usec\n", 9735 div_u64(env->verification_time, 1000)); 9736 verbose(env, "stack depth "); 9737 for (i = 0; i < env->subprog_cnt; i++) { 9738 u32 depth = env->subprog_info[i].stack_depth; 9739 9740 verbose(env, "%d", depth); 9741 if (i + 1 < env->subprog_cnt) 9742 verbose(env, "+"); 9743 } 9744 verbose(env, "\n"); 9745 } 9746 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 9747 "total_states %d peak_states %d mark_read %d\n", 9748 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 9749 env->max_states_per_insn, env->total_states, 9750 env->peak_states, env->longest_mark_read_walk); 9751 } 9752 9753 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 9754 { 9755 const struct btf_type *t, *func_proto; 9756 const struct bpf_struct_ops *st_ops; 9757 const struct btf_member *member; 9758 struct bpf_prog *prog = env->prog; 9759 u32 btf_id, member_idx; 9760 const char *mname; 9761 9762 btf_id = prog->aux->attach_btf_id; 9763 st_ops = bpf_struct_ops_find(btf_id); 9764 if (!st_ops) { 9765 verbose(env, "attach_btf_id %u is not a supported struct\n", 9766 btf_id); 9767 return -ENOTSUPP; 9768 } 9769 9770 t = st_ops->type; 9771 member_idx = prog->expected_attach_type; 9772 if (member_idx >= btf_type_vlen(t)) { 9773 verbose(env, "attach to invalid member idx %u of struct %s\n", 9774 member_idx, st_ops->name); 9775 return -EINVAL; 9776 } 9777 9778 member = &btf_type_member(t)[member_idx]; 9779 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 9780 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 9781 NULL); 9782 if (!func_proto) { 9783 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 9784 mname, member_idx, st_ops->name); 9785 return -EINVAL; 9786 } 9787 9788 if (st_ops->check_member) { 9789 int err = st_ops->check_member(t, member); 9790 9791 if (err) { 9792 verbose(env, "attach to unsupported member %s of struct %s\n", 9793 mname, st_ops->name); 9794 return err; 9795 } 9796 } 9797 9798 prog->aux->attach_func_proto = func_proto; 9799 prog->aux->attach_func_name = mname; 9800 env->ops = st_ops->verifier_ops; 9801 9802 return 0; 9803 } 9804 #define SECURITY_PREFIX "security_" 9805 9806 static int check_attach_modify_return(struct bpf_verifier_env *env) 9807 { 9808 struct bpf_prog *prog = env->prog; 9809 unsigned long addr = (unsigned long) prog->aux->trampoline->func.addr; 9810 9811 /* This is expected to be cleaned up in the future with the KRSI effort 9812 * introducing the LSM_HOOK macro for cleaning up lsm_hooks.h. 9813 */ 9814 if (within_error_injection_list(addr) || 9815 !strncmp(SECURITY_PREFIX, prog->aux->attach_func_name, 9816 sizeof(SECURITY_PREFIX) - 1)) 9817 return 0; 9818 9819 verbose(env, "fmod_ret attach_btf_id %u (%s) is not modifiable\n", 9820 prog->aux->attach_btf_id, prog->aux->attach_func_name); 9821 9822 return -EINVAL; 9823 } 9824 9825 static int check_attach_btf_id(struct bpf_verifier_env *env) 9826 { 9827 struct bpf_prog *prog = env->prog; 9828 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 9829 struct bpf_prog *tgt_prog = prog->aux->linked_prog; 9830 u32 btf_id = prog->aux->attach_btf_id; 9831 const char prefix[] = "btf_trace_"; 9832 int ret = 0, subprog = -1, i; 9833 struct bpf_trampoline *tr; 9834 const struct btf_type *t; 9835 bool conservative = true; 9836 const char *tname; 9837 struct btf *btf; 9838 long addr; 9839 u64 key; 9840 9841 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 9842 return check_struct_ops_btf_id(env); 9843 9844 if (prog->type != BPF_PROG_TYPE_TRACING && !prog_extension) 9845 return 0; 9846 9847 if (!btf_id) { 9848 verbose(env, "Tracing programs must provide btf_id\n"); 9849 return -EINVAL; 9850 } 9851 btf = bpf_prog_get_target_btf(prog); 9852 if (!btf) { 9853 verbose(env, 9854 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 9855 return -EINVAL; 9856 } 9857 t = btf_type_by_id(btf, btf_id); 9858 if (!t) { 9859 verbose(env, "attach_btf_id %u is invalid\n", btf_id); 9860 return -EINVAL; 9861 } 9862 tname = btf_name_by_offset(btf, t->name_off); 9863 if (!tname) { 9864 verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id); 9865 return -EINVAL; 9866 } 9867 if (tgt_prog) { 9868 struct bpf_prog_aux *aux = tgt_prog->aux; 9869 9870 for (i = 0; i < aux->func_info_cnt; i++) 9871 if (aux->func_info[i].type_id == btf_id) { 9872 subprog = i; 9873 break; 9874 } 9875 if (subprog == -1) { 9876 verbose(env, "Subprog %s doesn't exist\n", tname); 9877 return -EINVAL; 9878 } 9879 conservative = aux->func_info_aux[subprog].unreliable; 9880 if (prog_extension) { 9881 if (conservative) { 9882 verbose(env, 9883 "Cannot replace static functions\n"); 9884 return -EINVAL; 9885 } 9886 if (!prog->jit_requested) { 9887 verbose(env, 9888 "Extension programs should be JITed\n"); 9889 return -EINVAL; 9890 } 9891 env->ops = bpf_verifier_ops[tgt_prog->type]; 9892 } 9893 if (!tgt_prog->jited) { 9894 verbose(env, "Can attach to only JITed progs\n"); 9895 return -EINVAL; 9896 } 9897 if (tgt_prog->type == prog->type) { 9898 /* Cannot fentry/fexit another fentry/fexit program. 9899 * Cannot attach program extension to another extension. 9900 * It's ok to attach fentry/fexit to extension program. 9901 */ 9902 verbose(env, "Cannot recursively attach\n"); 9903 return -EINVAL; 9904 } 9905 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 9906 prog_extension && 9907 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 9908 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 9909 /* Program extensions can extend all program types 9910 * except fentry/fexit. The reason is the following. 9911 * The fentry/fexit programs are used for performance 9912 * analysis, stats and can be attached to any program 9913 * type except themselves. When extension program is 9914 * replacing XDP function it is necessary to allow 9915 * performance analysis of all functions. Both original 9916 * XDP program and its program extension. Hence 9917 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 9918 * allowed. If extending of fentry/fexit was allowed it 9919 * would be possible to create long call chain 9920 * fentry->extension->fentry->extension beyond 9921 * reasonable stack size. Hence extending fentry is not 9922 * allowed. 9923 */ 9924 verbose(env, "Cannot extend fentry/fexit\n"); 9925 return -EINVAL; 9926 } 9927 key = ((u64)aux->id) << 32 | btf_id; 9928 } else { 9929 if (prog_extension) { 9930 verbose(env, "Cannot replace kernel functions\n"); 9931 return -EINVAL; 9932 } 9933 key = btf_id; 9934 } 9935 9936 switch (prog->expected_attach_type) { 9937 case BPF_TRACE_RAW_TP: 9938 if (tgt_prog) { 9939 verbose(env, 9940 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 9941 return -EINVAL; 9942 } 9943 if (!btf_type_is_typedef(t)) { 9944 verbose(env, "attach_btf_id %u is not a typedef\n", 9945 btf_id); 9946 return -EINVAL; 9947 } 9948 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 9949 verbose(env, "attach_btf_id %u points to wrong type name %s\n", 9950 btf_id, tname); 9951 return -EINVAL; 9952 } 9953 tname += sizeof(prefix) - 1; 9954 t = btf_type_by_id(btf, t->type); 9955 if (!btf_type_is_ptr(t)) 9956 /* should never happen in valid vmlinux build */ 9957 return -EINVAL; 9958 t = btf_type_by_id(btf, t->type); 9959 if (!btf_type_is_func_proto(t)) 9960 /* should never happen in valid vmlinux build */ 9961 return -EINVAL; 9962 9963 /* remember two read only pointers that are valid for 9964 * the life time of the kernel 9965 */ 9966 prog->aux->attach_func_name = tname; 9967 prog->aux->attach_func_proto = t; 9968 prog->aux->attach_btf_trace = true; 9969 return 0; 9970 default: 9971 if (!prog_extension) 9972 return -EINVAL; 9973 /* fallthrough */ 9974 case BPF_MODIFY_RETURN: 9975 case BPF_TRACE_FENTRY: 9976 case BPF_TRACE_FEXIT: 9977 if (!btf_type_is_func(t)) { 9978 verbose(env, "attach_btf_id %u is not a function\n", 9979 btf_id); 9980 return -EINVAL; 9981 } 9982 if (prog_extension && 9983 btf_check_type_match(env, prog, btf, t)) 9984 return -EINVAL; 9985 t = btf_type_by_id(btf, t->type); 9986 if (!btf_type_is_func_proto(t)) 9987 return -EINVAL; 9988 tr = bpf_trampoline_lookup(key); 9989 if (!tr) 9990 return -ENOMEM; 9991 prog->aux->attach_func_name = tname; 9992 /* t is either vmlinux type or another program's type */ 9993 prog->aux->attach_func_proto = t; 9994 mutex_lock(&tr->mutex); 9995 if (tr->func.addr) { 9996 prog->aux->trampoline = tr; 9997 goto out; 9998 } 9999 if (tgt_prog && conservative) { 10000 prog->aux->attach_func_proto = NULL; 10001 t = NULL; 10002 } 10003 ret = btf_distill_func_proto(&env->log, btf, t, 10004 tname, &tr->func.model); 10005 if (ret < 0) 10006 goto out; 10007 if (tgt_prog) { 10008 if (subprog == 0) 10009 addr = (long) tgt_prog->bpf_func; 10010 else 10011 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 10012 } else { 10013 addr = kallsyms_lookup_name(tname); 10014 if (!addr) { 10015 verbose(env, 10016 "The address of function %s cannot be found\n", 10017 tname); 10018 ret = -ENOENT; 10019 goto out; 10020 } 10021 } 10022 tr->func.addr = (void *)addr; 10023 prog->aux->trampoline = tr; 10024 10025 if (prog->expected_attach_type == BPF_MODIFY_RETURN) 10026 ret = check_attach_modify_return(env); 10027 out: 10028 mutex_unlock(&tr->mutex); 10029 if (ret) 10030 bpf_trampoline_put(tr); 10031 return ret; 10032 } 10033 } 10034 10035 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 10036 union bpf_attr __user *uattr) 10037 { 10038 u64 start_time = ktime_get_ns(); 10039 struct bpf_verifier_env *env; 10040 struct bpf_verifier_log *log; 10041 int i, len, ret = -EINVAL; 10042 bool is_priv; 10043 10044 /* no program is valid */ 10045 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 10046 return -EINVAL; 10047 10048 /* 'struct bpf_verifier_env' can be global, but since it's not small, 10049 * allocate/free it every time bpf_check() is called 10050 */ 10051 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 10052 if (!env) 10053 return -ENOMEM; 10054 log = &env->log; 10055 10056 len = (*prog)->len; 10057 env->insn_aux_data = 10058 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 10059 ret = -ENOMEM; 10060 if (!env->insn_aux_data) 10061 goto err_free_env; 10062 for (i = 0; i < len; i++) 10063 env->insn_aux_data[i].orig_idx = i; 10064 env->prog = *prog; 10065 env->ops = bpf_verifier_ops[env->prog->type]; 10066 is_priv = capable(CAP_SYS_ADMIN); 10067 10068 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 10069 mutex_lock(&bpf_verifier_lock); 10070 if (!btf_vmlinux) 10071 btf_vmlinux = btf_parse_vmlinux(); 10072 mutex_unlock(&bpf_verifier_lock); 10073 } 10074 10075 /* grab the mutex to protect few globals used by verifier */ 10076 if (!is_priv) 10077 mutex_lock(&bpf_verifier_lock); 10078 10079 if (attr->log_level || attr->log_buf || attr->log_size) { 10080 /* user requested verbose verifier output 10081 * and supplied buffer to store the verification trace 10082 */ 10083 log->level = attr->log_level; 10084 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 10085 log->len_total = attr->log_size; 10086 10087 ret = -EINVAL; 10088 /* log attributes have to be sane */ 10089 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 10090 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 10091 goto err_unlock; 10092 } 10093 10094 if (IS_ERR(btf_vmlinux)) { 10095 /* Either gcc or pahole or kernel are broken. */ 10096 verbose(env, "in-kernel BTF is malformed\n"); 10097 ret = PTR_ERR(btf_vmlinux); 10098 goto skip_full_check; 10099 } 10100 10101 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 10102 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 10103 env->strict_alignment = true; 10104 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 10105 env->strict_alignment = false; 10106 10107 env->allow_ptr_leaks = is_priv; 10108 10109 if (is_priv) 10110 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 10111 10112 ret = replace_map_fd_with_map_ptr(env); 10113 if (ret < 0) 10114 goto skip_full_check; 10115 10116 if (bpf_prog_is_dev_bound(env->prog->aux)) { 10117 ret = bpf_prog_offload_verifier_prep(env->prog); 10118 if (ret) 10119 goto skip_full_check; 10120 } 10121 10122 env->explored_states = kvcalloc(state_htab_size(env), 10123 sizeof(struct bpf_verifier_state_list *), 10124 GFP_USER); 10125 ret = -ENOMEM; 10126 if (!env->explored_states) 10127 goto skip_full_check; 10128 10129 ret = check_subprogs(env); 10130 if (ret < 0) 10131 goto skip_full_check; 10132 10133 ret = check_btf_info(env, attr, uattr); 10134 if (ret < 0) 10135 goto skip_full_check; 10136 10137 ret = check_attach_btf_id(env); 10138 if (ret) 10139 goto skip_full_check; 10140 10141 ret = check_cfg(env); 10142 if (ret < 0) 10143 goto skip_full_check; 10144 10145 ret = do_check_subprogs(env); 10146 ret = ret ?: do_check_main(env); 10147 10148 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 10149 ret = bpf_prog_offload_finalize(env); 10150 10151 skip_full_check: 10152 kvfree(env->explored_states); 10153 10154 if (ret == 0) 10155 ret = check_max_stack_depth(env); 10156 10157 /* instruction rewrites happen after this point */ 10158 if (is_priv) { 10159 if (ret == 0) 10160 opt_hard_wire_dead_code_branches(env); 10161 if (ret == 0) 10162 ret = opt_remove_dead_code(env); 10163 if (ret == 0) 10164 ret = opt_remove_nops(env); 10165 } else { 10166 if (ret == 0) 10167 sanitize_dead_code(env); 10168 } 10169 10170 if (ret == 0) 10171 /* program is valid, convert *(u32*)(ctx + off) accesses */ 10172 ret = convert_ctx_accesses(env); 10173 10174 if (ret == 0) 10175 ret = fixup_bpf_calls(env); 10176 10177 /* do 32-bit optimization after insn patching has done so those patched 10178 * insns could be handled correctly. 10179 */ 10180 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 10181 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 10182 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 10183 : false; 10184 } 10185 10186 if (ret == 0) 10187 ret = fixup_call_args(env); 10188 10189 env->verification_time = ktime_get_ns() - start_time; 10190 print_verification_stats(env); 10191 10192 if (log->level && bpf_verifier_log_full(log)) 10193 ret = -ENOSPC; 10194 if (log->level && !log->ubuf) { 10195 ret = -EFAULT; 10196 goto err_release_maps; 10197 } 10198 10199 if (ret == 0 && env->used_map_cnt) { 10200 /* if program passed verifier, update used_maps in bpf_prog_info */ 10201 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 10202 sizeof(env->used_maps[0]), 10203 GFP_KERNEL); 10204 10205 if (!env->prog->aux->used_maps) { 10206 ret = -ENOMEM; 10207 goto err_release_maps; 10208 } 10209 10210 memcpy(env->prog->aux->used_maps, env->used_maps, 10211 sizeof(env->used_maps[0]) * env->used_map_cnt); 10212 env->prog->aux->used_map_cnt = env->used_map_cnt; 10213 10214 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 10215 * bpf_ld_imm64 instructions 10216 */ 10217 convert_pseudo_ld_imm64(env); 10218 } 10219 10220 if (ret == 0) 10221 adjust_btf_func(env); 10222 10223 err_release_maps: 10224 if (!env->prog->aux->used_maps) 10225 /* if we didn't copy map pointers into bpf_prog_info, release 10226 * them now. Otherwise free_used_maps() will release them. 10227 */ 10228 release_maps(env); 10229 *prog = env->prog; 10230 err_unlock: 10231 if (!is_priv) 10232 mutex_unlock(&bpf_verifier_lock); 10233 vfree(env->insn_aux_data); 10234 err_free_env: 10235 kfree(env); 10236 return ret; 10237 } 10238