1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 23 #include "disasm.h" 24 25 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 26 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 27 [_id] = & _name ## _verifier_ops, 28 #define BPF_MAP_TYPE(_id, _ops) 29 #include <linux/bpf_types.h> 30 #undef BPF_PROG_TYPE 31 #undef BPF_MAP_TYPE 32 }; 33 34 /* bpf_check() is a static code analyzer that walks eBPF program 35 * instruction by instruction and updates register/stack state. 36 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 37 * 38 * The first pass is depth-first-search to check that the program is a DAG. 39 * It rejects the following programs: 40 * - larger than BPF_MAXINSNS insns 41 * - if loop is present (detected via back-edge) 42 * - unreachable insns exist (shouldn't be a forest. program = one function) 43 * - out of bounds or malformed jumps 44 * The second pass is all possible path descent from the 1st insn. 45 * Since it's analyzing all pathes through the program, the length of the 46 * analysis is limited to 64k insn, which may be hit even if total number of 47 * insn is less then 4K, but there are too many branches that change stack/regs. 48 * Number of 'branches to be analyzed' is limited to 1k 49 * 50 * On entry to each instruction, each register has a type, and the instruction 51 * changes the types of the registers depending on instruction semantics. 52 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 53 * copied to R1. 54 * 55 * All registers are 64-bit. 56 * R0 - return register 57 * R1-R5 argument passing registers 58 * R6-R9 callee saved registers 59 * R10 - frame pointer read-only 60 * 61 * At the start of BPF program the register R1 contains a pointer to bpf_context 62 * and has type PTR_TO_CTX. 63 * 64 * Verifier tracks arithmetic operations on pointers in case: 65 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 66 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 67 * 1st insn copies R10 (which has FRAME_PTR) type into R1 68 * and 2nd arithmetic instruction is pattern matched to recognize 69 * that it wants to construct a pointer to some element within stack. 70 * So after 2nd insn, the register R1 has type PTR_TO_STACK 71 * (and -20 constant is saved for further stack bounds checking). 72 * Meaning that this reg is a pointer to stack plus known immediate constant. 73 * 74 * Most of the time the registers have SCALAR_VALUE type, which 75 * means the register has some value, but it's not a valid pointer. 76 * (like pointer plus pointer becomes SCALAR_VALUE type) 77 * 78 * When verifier sees load or store instructions the type of base register 79 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 80 * four pointer types recognized by check_mem_access() function. 81 * 82 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 83 * and the range of [ptr, ptr + map's value_size) is accessible. 84 * 85 * registers used to pass values to function calls are checked against 86 * function argument constraints. 87 * 88 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 89 * It means that the register type passed to this function must be 90 * PTR_TO_STACK and it will be used inside the function as 91 * 'pointer to map element key' 92 * 93 * For example the argument constraints for bpf_map_lookup_elem(): 94 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 95 * .arg1_type = ARG_CONST_MAP_PTR, 96 * .arg2_type = ARG_PTR_TO_MAP_KEY, 97 * 98 * ret_type says that this function returns 'pointer to map elem value or null' 99 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 100 * 2nd argument should be a pointer to stack, which will be used inside 101 * the helper function as a pointer to map element key. 102 * 103 * On the kernel side the helper function looks like: 104 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 105 * { 106 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 107 * void *key = (void *) (unsigned long) r2; 108 * void *value; 109 * 110 * here kernel can access 'key' and 'map' pointers safely, knowing that 111 * [key, key + map->key_size) bytes are valid and were initialized on 112 * the stack of eBPF program. 113 * } 114 * 115 * Corresponding eBPF program may look like: 116 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 117 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 118 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 119 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 120 * here verifier looks at prototype of map_lookup_elem() and sees: 121 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 122 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 123 * 124 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 125 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 126 * and were initialized prior to this call. 127 * If it's ok, then verifier allows this BPF_CALL insn and looks at 128 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 129 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 130 * returns ether pointer to map value or NULL. 131 * 132 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 133 * insn, the register holding that pointer in the true branch changes state to 134 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 135 * branch. See check_cond_jmp_op(). 136 * 137 * After the call R0 is set to return type of the function and registers R1-R5 138 * are set to NOT_INIT to indicate that they are no longer readable. 139 * 140 * The following reference types represent a potential reference to a kernel 141 * resource which, after first being allocated, must be checked and freed by 142 * the BPF program: 143 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 144 * 145 * When the verifier sees a helper call return a reference type, it allocates a 146 * pointer id for the reference and stores it in the current function state. 147 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 148 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 149 * passes through a NULL-check conditional. For the branch wherein the state is 150 * changed to CONST_IMM, the verifier releases the reference. 151 * 152 * For each helper function that allocates a reference, such as 153 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 154 * bpf_sk_release(). When a reference type passes into the release function, 155 * the verifier also releases the reference. If any unchecked or unreleased 156 * reference remains at the end of the program, the verifier rejects it. 157 */ 158 159 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 160 struct bpf_verifier_stack_elem { 161 /* verifer state is 'st' 162 * before processing instruction 'insn_idx' 163 * and after processing instruction 'prev_insn_idx' 164 */ 165 struct bpf_verifier_state st; 166 int insn_idx; 167 int prev_insn_idx; 168 struct bpf_verifier_stack_elem *next; 169 }; 170 171 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 172 #define BPF_COMPLEXITY_LIMIT_STATES 64 173 174 #define BPF_MAP_KEY_POISON (1ULL << 63) 175 #define BPF_MAP_KEY_SEEN (1ULL << 62) 176 177 #define BPF_MAP_PTR_UNPRIV 1UL 178 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 179 POISON_POINTER_DELTA)) 180 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 181 182 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 183 { 184 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 185 } 186 187 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 188 { 189 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 190 } 191 192 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 193 const struct bpf_map *map, bool unpriv) 194 { 195 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 196 unpriv |= bpf_map_ptr_unpriv(aux); 197 aux->map_ptr_state = (unsigned long)map | 198 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 199 } 200 201 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 202 { 203 return aux->map_key_state & BPF_MAP_KEY_POISON; 204 } 205 206 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 207 { 208 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 209 } 210 211 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 212 { 213 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 214 } 215 216 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 217 { 218 bool poisoned = bpf_map_key_poisoned(aux); 219 220 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 221 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 222 } 223 224 struct bpf_call_arg_meta { 225 struct bpf_map *map_ptr; 226 bool raw_mode; 227 bool pkt_access; 228 int regno; 229 int access_size; 230 s64 msize_smax_value; 231 u64 msize_umax_value; 232 int ref_obj_id; 233 int func_id; 234 u32 btf_id; 235 }; 236 237 struct btf *btf_vmlinux; 238 239 static DEFINE_MUTEX(bpf_verifier_lock); 240 241 static const struct bpf_line_info * 242 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 243 { 244 const struct bpf_line_info *linfo; 245 const struct bpf_prog *prog; 246 u32 i, nr_linfo; 247 248 prog = env->prog; 249 nr_linfo = prog->aux->nr_linfo; 250 251 if (!nr_linfo || insn_off >= prog->len) 252 return NULL; 253 254 linfo = prog->aux->linfo; 255 for (i = 1; i < nr_linfo; i++) 256 if (insn_off < linfo[i].insn_off) 257 break; 258 259 return &linfo[i - 1]; 260 } 261 262 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 263 va_list args) 264 { 265 unsigned int n; 266 267 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 268 269 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 270 "verifier log line truncated - local buffer too short\n"); 271 272 n = min(log->len_total - log->len_used - 1, n); 273 log->kbuf[n] = '\0'; 274 275 if (log->level == BPF_LOG_KERNEL) { 276 pr_err("BPF:%s\n", log->kbuf); 277 return; 278 } 279 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 280 log->len_used += n; 281 else 282 log->ubuf = NULL; 283 } 284 285 /* log_level controls verbosity level of eBPF verifier. 286 * bpf_verifier_log_write() is used to dump the verification trace to the log, 287 * so the user can figure out what's wrong with the program 288 */ 289 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 290 const char *fmt, ...) 291 { 292 va_list args; 293 294 if (!bpf_verifier_log_needed(&env->log)) 295 return; 296 297 va_start(args, fmt); 298 bpf_verifier_vlog(&env->log, fmt, args); 299 va_end(args); 300 } 301 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 302 303 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 304 { 305 struct bpf_verifier_env *env = private_data; 306 va_list args; 307 308 if (!bpf_verifier_log_needed(&env->log)) 309 return; 310 311 va_start(args, fmt); 312 bpf_verifier_vlog(&env->log, fmt, args); 313 va_end(args); 314 } 315 316 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 317 const char *fmt, ...) 318 { 319 va_list args; 320 321 if (!bpf_verifier_log_needed(log)) 322 return; 323 324 va_start(args, fmt); 325 bpf_verifier_vlog(log, fmt, args); 326 va_end(args); 327 } 328 329 static const char *ltrim(const char *s) 330 { 331 while (isspace(*s)) 332 s++; 333 334 return s; 335 } 336 337 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 338 u32 insn_off, 339 const char *prefix_fmt, ...) 340 { 341 const struct bpf_line_info *linfo; 342 343 if (!bpf_verifier_log_needed(&env->log)) 344 return; 345 346 linfo = find_linfo(env, insn_off); 347 if (!linfo || linfo == env->prev_linfo) 348 return; 349 350 if (prefix_fmt) { 351 va_list args; 352 353 va_start(args, prefix_fmt); 354 bpf_verifier_vlog(&env->log, prefix_fmt, args); 355 va_end(args); 356 } 357 358 verbose(env, "%s\n", 359 ltrim(btf_name_by_offset(env->prog->aux->btf, 360 linfo->line_off))); 361 362 env->prev_linfo = linfo; 363 } 364 365 static bool type_is_pkt_pointer(enum bpf_reg_type type) 366 { 367 return type == PTR_TO_PACKET || 368 type == PTR_TO_PACKET_META; 369 } 370 371 static bool type_is_sk_pointer(enum bpf_reg_type type) 372 { 373 return type == PTR_TO_SOCKET || 374 type == PTR_TO_SOCK_COMMON || 375 type == PTR_TO_TCP_SOCK || 376 type == PTR_TO_XDP_SOCK; 377 } 378 379 static bool reg_type_may_be_null(enum bpf_reg_type type) 380 { 381 return type == PTR_TO_MAP_VALUE_OR_NULL || 382 type == PTR_TO_SOCKET_OR_NULL || 383 type == PTR_TO_SOCK_COMMON_OR_NULL || 384 type == PTR_TO_TCP_SOCK_OR_NULL; 385 } 386 387 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 388 { 389 return reg->type == PTR_TO_MAP_VALUE && 390 map_value_has_spin_lock(reg->map_ptr); 391 } 392 393 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 394 { 395 return type == PTR_TO_SOCKET || 396 type == PTR_TO_SOCKET_OR_NULL || 397 type == PTR_TO_TCP_SOCK || 398 type == PTR_TO_TCP_SOCK_OR_NULL; 399 } 400 401 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 402 { 403 return type == ARG_PTR_TO_SOCK_COMMON; 404 } 405 406 /* Determine whether the function releases some resources allocated by another 407 * function call. The first reference type argument will be assumed to be 408 * released by release_reference(). 409 */ 410 static bool is_release_function(enum bpf_func_id func_id) 411 { 412 return func_id == BPF_FUNC_sk_release; 413 } 414 415 static bool is_acquire_function(enum bpf_func_id func_id) 416 { 417 return func_id == BPF_FUNC_sk_lookup_tcp || 418 func_id == BPF_FUNC_sk_lookup_udp || 419 func_id == BPF_FUNC_skc_lookup_tcp; 420 } 421 422 static bool is_ptr_cast_function(enum bpf_func_id func_id) 423 { 424 return func_id == BPF_FUNC_tcp_sock || 425 func_id == BPF_FUNC_sk_fullsock; 426 } 427 428 /* string representation of 'enum bpf_reg_type' */ 429 static const char * const reg_type_str[] = { 430 [NOT_INIT] = "?", 431 [SCALAR_VALUE] = "inv", 432 [PTR_TO_CTX] = "ctx", 433 [CONST_PTR_TO_MAP] = "map_ptr", 434 [PTR_TO_MAP_VALUE] = "map_value", 435 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 436 [PTR_TO_STACK] = "fp", 437 [PTR_TO_PACKET] = "pkt", 438 [PTR_TO_PACKET_META] = "pkt_meta", 439 [PTR_TO_PACKET_END] = "pkt_end", 440 [PTR_TO_FLOW_KEYS] = "flow_keys", 441 [PTR_TO_SOCKET] = "sock", 442 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 443 [PTR_TO_SOCK_COMMON] = "sock_common", 444 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 445 [PTR_TO_TCP_SOCK] = "tcp_sock", 446 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 447 [PTR_TO_TP_BUFFER] = "tp_buffer", 448 [PTR_TO_XDP_SOCK] = "xdp_sock", 449 [PTR_TO_BTF_ID] = "ptr_", 450 }; 451 452 static char slot_type_char[] = { 453 [STACK_INVALID] = '?', 454 [STACK_SPILL] = 'r', 455 [STACK_MISC] = 'm', 456 [STACK_ZERO] = '0', 457 }; 458 459 static void print_liveness(struct bpf_verifier_env *env, 460 enum bpf_reg_liveness live) 461 { 462 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 463 verbose(env, "_"); 464 if (live & REG_LIVE_READ) 465 verbose(env, "r"); 466 if (live & REG_LIVE_WRITTEN) 467 verbose(env, "w"); 468 if (live & REG_LIVE_DONE) 469 verbose(env, "D"); 470 } 471 472 static struct bpf_func_state *func(struct bpf_verifier_env *env, 473 const struct bpf_reg_state *reg) 474 { 475 struct bpf_verifier_state *cur = env->cur_state; 476 477 return cur->frame[reg->frameno]; 478 } 479 480 const char *kernel_type_name(u32 id) 481 { 482 return btf_name_by_offset(btf_vmlinux, 483 btf_type_by_id(btf_vmlinux, id)->name_off); 484 } 485 486 static void print_verifier_state(struct bpf_verifier_env *env, 487 const struct bpf_func_state *state) 488 { 489 const struct bpf_reg_state *reg; 490 enum bpf_reg_type t; 491 int i; 492 493 if (state->frameno) 494 verbose(env, " frame%d:", state->frameno); 495 for (i = 0; i < MAX_BPF_REG; i++) { 496 reg = &state->regs[i]; 497 t = reg->type; 498 if (t == NOT_INIT) 499 continue; 500 verbose(env, " R%d", i); 501 print_liveness(env, reg->live); 502 verbose(env, "=%s", reg_type_str[t]); 503 if (t == SCALAR_VALUE && reg->precise) 504 verbose(env, "P"); 505 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 506 tnum_is_const(reg->var_off)) { 507 /* reg->off should be 0 for SCALAR_VALUE */ 508 verbose(env, "%lld", reg->var_off.value + reg->off); 509 } else { 510 if (t == PTR_TO_BTF_ID) 511 verbose(env, "%s", kernel_type_name(reg->btf_id)); 512 verbose(env, "(id=%d", reg->id); 513 if (reg_type_may_be_refcounted_or_null(t)) 514 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 515 if (t != SCALAR_VALUE) 516 verbose(env, ",off=%d", reg->off); 517 if (type_is_pkt_pointer(t)) 518 verbose(env, ",r=%d", reg->range); 519 else if (t == CONST_PTR_TO_MAP || 520 t == PTR_TO_MAP_VALUE || 521 t == PTR_TO_MAP_VALUE_OR_NULL) 522 verbose(env, ",ks=%d,vs=%d", 523 reg->map_ptr->key_size, 524 reg->map_ptr->value_size); 525 if (tnum_is_const(reg->var_off)) { 526 /* Typically an immediate SCALAR_VALUE, but 527 * could be a pointer whose offset is too big 528 * for reg->off 529 */ 530 verbose(env, ",imm=%llx", reg->var_off.value); 531 } else { 532 if (reg->smin_value != reg->umin_value && 533 reg->smin_value != S64_MIN) 534 verbose(env, ",smin_value=%lld", 535 (long long)reg->smin_value); 536 if (reg->smax_value != reg->umax_value && 537 reg->smax_value != S64_MAX) 538 verbose(env, ",smax_value=%lld", 539 (long long)reg->smax_value); 540 if (reg->umin_value != 0) 541 verbose(env, ",umin_value=%llu", 542 (unsigned long long)reg->umin_value); 543 if (reg->umax_value != U64_MAX) 544 verbose(env, ",umax_value=%llu", 545 (unsigned long long)reg->umax_value); 546 if (!tnum_is_unknown(reg->var_off)) { 547 char tn_buf[48]; 548 549 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 550 verbose(env, ",var_off=%s", tn_buf); 551 } 552 } 553 verbose(env, ")"); 554 } 555 } 556 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 557 char types_buf[BPF_REG_SIZE + 1]; 558 bool valid = false; 559 int j; 560 561 for (j = 0; j < BPF_REG_SIZE; j++) { 562 if (state->stack[i].slot_type[j] != STACK_INVALID) 563 valid = true; 564 types_buf[j] = slot_type_char[ 565 state->stack[i].slot_type[j]]; 566 } 567 types_buf[BPF_REG_SIZE] = 0; 568 if (!valid) 569 continue; 570 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 571 print_liveness(env, state->stack[i].spilled_ptr.live); 572 if (state->stack[i].slot_type[0] == STACK_SPILL) { 573 reg = &state->stack[i].spilled_ptr; 574 t = reg->type; 575 verbose(env, "=%s", reg_type_str[t]); 576 if (t == SCALAR_VALUE && reg->precise) 577 verbose(env, "P"); 578 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 579 verbose(env, "%lld", reg->var_off.value + reg->off); 580 } else { 581 verbose(env, "=%s", types_buf); 582 } 583 } 584 if (state->acquired_refs && state->refs[0].id) { 585 verbose(env, " refs=%d", state->refs[0].id); 586 for (i = 1; i < state->acquired_refs; i++) 587 if (state->refs[i].id) 588 verbose(env, ",%d", state->refs[i].id); 589 } 590 verbose(env, "\n"); 591 } 592 593 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 594 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 595 const struct bpf_func_state *src) \ 596 { \ 597 if (!src->FIELD) \ 598 return 0; \ 599 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 600 /* internal bug, make state invalid to reject the program */ \ 601 memset(dst, 0, sizeof(*dst)); \ 602 return -EFAULT; \ 603 } \ 604 memcpy(dst->FIELD, src->FIELD, \ 605 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 606 return 0; \ 607 } 608 /* copy_reference_state() */ 609 COPY_STATE_FN(reference, acquired_refs, refs, 1) 610 /* copy_stack_state() */ 611 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 612 #undef COPY_STATE_FN 613 614 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 615 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 616 bool copy_old) \ 617 { \ 618 u32 old_size = state->COUNT; \ 619 struct bpf_##NAME##_state *new_##FIELD; \ 620 int slot = size / SIZE; \ 621 \ 622 if (size <= old_size || !size) { \ 623 if (copy_old) \ 624 return 0; \ 625 state->COUNT = slot * SIZE; \ 626 if (!size && old_size) { \ 627 kfree(state->FIELD); \ 628 state->FIELD = NULL; \ 629 } \ 630 return 0; \ 631 } \ 632 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 633 GFP_KERNEL); \ 634 if (!new_##FIELD) \ 635 return -ENOMEM; \ 636 if (copy_old) { \ 637 if (state->FIELD) \ 638 memcpy(new_##FIELD, state->FIELD, \ 639 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 640 memset(new_##FIELD + old_size / SIZE, 0, \ 641 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 642 } \ 643 state->COUNT = slot * SIZE; \ 644 kfree(state->FIELD); \ 645 state->FIELD = new_##FIELD; \ 646 return 0; \ 647 } 648 /* realloc_reference_state() */ 649 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 650 /* realloc_stack_state() */ 651 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 652 #undef REALLOC_STATE_FN 653 654 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 655 * make it consume minimal amount of memory. check_stack_write() access from 656 * the program calls into realloc_func_state() to grow the stack size. 657 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 658 * which realloc_stack_state() copies over. It points to previous 659 * bpf_verifier_state which is never reallocated. 660 */ 661 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 662 int refs_size, bool copy_old) 663 { 664 int err = realloc_reference_state(state, refs_size, copy_old); 665 if (err) 666 return err; 667 return realloc_stack_state(state, stack_size, copy_old); 668 } 669 670 /* Acquire a pointer id from the env and update the state->refs to include 671 * this new pointer reference. 672 * On success, returns a valid pointer id to associate with the register 673 * On failure, returns a negative errno. 674 */ 675 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 676 { 677 struct bpf_func_state *state = cur_func(env); 678 int new_ofs = state->acquired_refs; 679 int id, err; 680 681 err = realloc_reference_state(state, state->acquired_refs + 1, true); 682 if (err) 683 return err; 684 id = ++env->id_gen; 685 state->refs[new_ofs].id = id; 686 state->refs[new_ofs].insn_idx = insn_idx; 687 688 return id; 689 } 690 691 /* release function corresponding to acquire_reference_state(). Idempotent. */ 692 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 693 { 694 int i, last_idx; 695 696 last_idx = state->acquired_refs - 1; 697 for (i = 0; i < state->acquired_refs; i++) { 698 if (state->refs[i].id == ptr_id) { 699 if (last_idx && i != last_idx) 700 memcpy(&state->refs[i], &state->refs[last_idx], 701 sizeof(*state->refs)); 702 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 703 state->acquired_refs--; 704 return 0; 705 } 706 } 707 return -EINVAL; 708 } 709 710 static int transfer_reference_state(struct bpf_func_state *dst, 711 struct bpf_func_state *src) 712 { 713 int err = realloc_reference_state(dst, src->acquired_refs, false); 714 if (err) 715 return err; 716 err = copy_reference_state(dst, src); 717 if (err) 718 return err; 719 return 0; 720 } 721 722 static void free_func_state(struct bpf_func_state *state) 723 { 724 if (!state) 725 return; 726 kfree(state->refs); 727 kfree(state->stack); 728 kfree(state); 729 } 730 731 static void clear_jmp_history(struct bpf_verifier_state *state) 732 { 733 kfree(state->jmp_history); 734 state->jmp_history = NULL; 735 state->jmp_history_cnt = 0; 736 } 737 738 static void free_verifier_state(struct bpf_verifier_state *state, 739 bool free_self) 740 { 741 int i; 742 743 for (i = 0; i <= state->curframe; i++) { 744 free_func_state(state->frame[i]); 745 state->frame[i] = NULL; 746 } 747 clear_jmp_history(state); 748 if (free_self) 749 kfree(state); 750 } 751 752 /* copy verifier state from src to dst growing dst stack space 753 * when necessary to accommodate larger src stack 754 */ 755 static int copy_func_state(struct bpf_func_state *dst, 756 const struct bpf_func_state *src) 757 { 758 int err; 759 760 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 761 false); 762 if (err) 763 return err; 764 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 765 err = copy_reference_state(dst, src); 766 if (err) 767 return err; 768 return copy_stack_state(dst, src); 769 } 770 771 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 772 const struct bpf_verifier_state *src) 773 { 774 struct bpf_func_state *dst; 775 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; 776 int i, err; 777 778 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { 779 kfree(dst_state->jmp_history); 780 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); 781 if (!dst_state->jmp_history) 782 return -ENOMEM; 783 } 784 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); 785 dst_state->jmp_history_cnt = src->jmp_history_cnt; 786 787 /* if dst has more stack frames then src frame, free them */ 788 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 789 free_func_state(dst_state->frame[i]); 790 dst_state->frame[i] = NULL; 791 } 792 dst_state->speculative = src->speculative; 793 dst_state->curframe = src->curframe; 794 dst_state->active_spin_lock = src->active_spin_lock; 795 dst_state->branches = src->branches; 796 dst_state->parent = src->parent; 797 dst_state->first_insn_idx = src->first_insn_idx; 798 dst_state->last_insn_idx = src->last_insn_idx; 799 for (i = 0; i <= src->curframe; i++) { 800 dst = dst_state->frame[i]; 801 if (!dst) { 802 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 803 if (!dst) 804 return -ENOMEM; 805 dst_state->frame[i] = dst; 806 } 807 err = copy_func_state(dst, src->frame[i]); 808 if (err) 809 return err; 810 } 811 return 0; 812 } 813 814 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 815 { 816 while (st) { 817 u32 br = --st->branches; 818 819 /* WARN_ON(br > 1) technically makes sense here, 820 * but see comment in push_stack(), hence: 821 */ 822 WARN_ONCE((int)br < 0, 823 "BUG update_branch_counts:branches_to_explore=%d\n", 824 br); 825 if (br) 826 break; 827 st = st->parent; 828 } 829 } 830 831 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 832 int *insn_idx) 833 { 834 struct bpf_verifier_state *cur = env->cur_state; 835 struct bpf_verifier_stack_elem *elem, *head = env->head; 836 int err; 837 838 if (env->head == NULL) 839 return -ENOENT; 840 841 if (cur) { 842 err = copy_verifier_state(cur, &head->st); 843 if (err) 844 return err; 845 } 846 if (insn_idx) 847 *insn_idx = head->insn_idx; 848 if (prev_insn_idx) 849 *prev_insn_idx = head->prev_insn_idx; 850 elem = head->next; 851 free_verifier_state(&head->st, false); 852 kfree(head); 853 env->head = elem; 854 env->stack_size--; 855 return 0; 856 } 857 858 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 859 int insn_idx, int prev_insn_idx, 860 bool speculative) 861 { 862 struct bpf_verifier_state *cur = env->cur_state; 863 struct bpf_verifier_stack_elem *elem; 864 int err; 865 866 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 867 if (!elem) 868 goto err; 869 870 elem->insn_idx = insn_idx; 871 elem->prev_insn_idx = prev_insn_idx; 872 elem->next = env->head; 873 env->head = elem; 874 env->stack_size++; 875 err = copy_verifier_state(&elem->st, cur); 876 if (err) 877 goto err; 878 elem->st.speculative |= speculative; 879 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 880 verbose(env, "The sequence of %d jumps is too complex.\n", 881 env->stack_size); 882 goto err; 883 } 884 if (elem->st.parent) { 885 ++elem->st.parent->branches; 886 /* WARN_ON(branches > 2) technically makes sense here, 887 * but 888 * 1. speculative states will bump 'branches' for non-branch 889 * instructions 890 * 2. is_state_visited() heuristics may decide not to create 891 * a new state for a sequence of branches and all such current 892 * and cloned states will be pointing to a single parent state 893 * which might have large 'branches' count. 894 */ 895 } 896 return &elem->st; 897 err: 898 free_verifier_state(env->cur_state, true); 899 env->cur_state = NULL; 900 /* pop all elements and return */ 901 while (!pop_stack(env, NULL, NULL)); 902 return NULL; 903 } 904 905 #define CALLER_SAVED_REGS 6 906 static const int caller_saved[CALLER_SAVED_REGS] = { 907 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 908 }; 909 910 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 911 struct bpf_reg_state *reg); 912 913 /* Mark the unknown part of a register (variable offset or scalar value) as 914 * known to have the value @imm. 915 */ 916 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 917 { 918 /* Clear id, off, and union(map_ptr, range) */ 919 memset(((u8 *)reg) + sizeof(reg->type), 0, 920 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 921 reg->var_off = tnum_const(imm); 922 reg->smin_value = (s64)imm; 923 reg->smax_value = (s64)imm; 924 reg->umin_value = imm; 925 reg->umax_value = imm; 926 } 927 928 /* Mark the 'variable offset' part of a register as zero. This should be 929 * used only on registers holding a pointer type. 930 */ 931 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 932 { 933 __mark_reg_known(reg, 0); 934 } 935 936 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 937 { 938 __mark_reg_known(reg, 0); 939 reg->type = SCALAR_VALUE; 940 } 941 942 static void mark_reg_known_zero(struct bpf_verifier_env *env, 943 struct bpf_reg_state *regs, u32 regno) 944 { 945 if (WARN_ON(regno >= MAX_BPF_REG)) { 946 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 947 /* Something bad happened, let's kill all regs */ 948 for (regno = 0; regno < MAX_BPF_REG; regno++) 949 __mark_reg_not_init(env, regs + regno); 950 return; 951 } 952 __mark_reg_known_zero(regs + regno); 953 } 954 955 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 956 { 957 return type_is_pkt_pointer(reg->type); 958 } 959 960 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 961 { 962 return reg_is_pkt_pointer(reg) || 963 reg->type == PTR_TO_PACKET_END; 964 } 965 966 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 967 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 968 enum bpf_reg_type which) 969 { 970 /* The register can already have a range from prior markings. 971 * This is fine as long as it hasn't been advanced from its 972 * origin. 973 */ 974 return reg->type == which && 975 reg->id == 0 && 976 reg->off == 0 && 977 tnum_equals_const(reg->var_off, 0); 978 } 979 980 /* Attempts to improve min/max values based on var_off information */ 981 static void __update_reg_bounds(struct bpf_reg_state *reg) 982 { 983 /* min signed is max(sign bit) | min(other bits) */ 984 reg->smin_value = max_t(s64, reg->smin_value, 985 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 986 /* max signed is min(sign bit) | max(other bits) */ 987 reg->smax_value = min_t(s64, reg->smax_value, 988 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 989 reg->umin_value = max(reg->umin_value, reg->var_off.value); 990 reg->umax_value = min(reg->umax_value, 991 reg->var_off.value | reg->var_off.mask); 992 } 993 994 /* Uses signed min/max values to inform unsigned, and vice-versa */ 995 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 996 { 997 /* Learn sign from signed bounds. 998 * If we cannot cross the sign boundary, then signed and unsigned bounds 999 * are the same, so combine. This works even in the negative case, e.g. 1000 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1001 */ 1002 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1003 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1004 reg->umin_value); 1005 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1006 reg->umax_value); 1007 return; 1008 } 1009 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1010 * boundary, so we must be careful. 1011 */ 1012 if ((s64)reg->umax_value >= 0) { 1013 /* Positive. We can't learn anything from the smin, but smax 1014 * is positive, hence safe. 1015 */ 1016 reg->smin_value = reg->umin_value; 1017 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1018 reg->umax_value); 1019 } else if ((s64)reg->umin_value < 0) { 1020 /* Negative. We can't learn anything from the smax, but smin 1021 * is negative, hence safe. 1022 */ 1023 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1024 reg->umin_value); 1025 reg->smax_value = reg->umax_value; 1026 } 1027 } 1028 1029 /* Attempts to improve var_off based on unsigned min/max information */ 1030 static void __reg_bound_offset(struct bpf_reg_state *reg) 1031 { 1032 reg->var_off = tnum_intersect(reg->var_off, 1033 tnum_range(reg->umin_value, 1034 reg->umax_value)); 1035 } 1036 1037 static void __reg_bound_offset32(struct bpf_reg_state *reg) 1038 { 1039 u64 mask = 0xffffFFFF; 1040 struct tnum range = tnum_range(reg->umin_value & mask, 1041 reg->umax_value & mask); 1042 struct tnum lo32 = tnum_cast(reg->var_off, 4); 1043 struct tnum hi32 = tnum_lshift(tnum_rshift(reg->var_off, 32), 32); 1044 1045 reg->var_off = tnum_or(hi32, tnum_intersect(lo32, range)); 1046 } 1047 1048 /* Reset the min/max bounds of a register */ 1049 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1050 { 1051 reg->smin_value = S64_MIN; 1052 reg->smax_value = S64_MAX; 1053 reg->umin_value = 0; 1054 reg->umax_value = U64_MAX; 1055 } 1056 1057 /* Mark a register as having a completely unknown (scalar) value. */ 1058 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1059 struct bpf_reg_state *reg) 1060 { 1061 /* 1062 * Clear type, id, off, and union(map_ptr, range) and 1063 * padding between 'type' and union 1064 */ 1065 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1066 reg->type = SCALAR_VALUE; 1067 reg->var_off = tnum_unknown; 1068 reg->frameno = 0; 1069 reg->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks ? 1070 true : false; 1071 __mark_reg_unbounded(reg); 1072 } 1073 1074 static void mark_reg_unknown(struct bpf_verifier_env *env, 1075 struct bpf_reg_state *regs, u32 regno) 1076 { 1077 if (WARN_ON(regno >= MAX_BPF_REG)) { 1078 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1079 /* Something bad happened, let's kill all regs except FP */ 1080 for (regno = 0; regno < BPF_REG_FP; regno++) 1081 __mark_reg_not_init(env, regs + regno); 1082 return; 1083 } 1084 __mark_reg_unknown(env, regs + regno); 1085 } 1086 1087 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1088 struct bpf_reg_state *reg) 1089 { 1090 __mark_reg_unknown(env, reg); 1091 reg->type = NOT_INIT; 1092 } 1093 1094 static void mark_reg_not_init(struct bpf_verifier_env *env, 1095 struct bpf_reg_state *regs, u32 regno) 1096 { 1097 if (WARN_ON(regno >= MAX_BPF_REG)) { 1098 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1099 /* Something bad happened, let's kill all regs except FP */ 1100 for (regno = 0; regno < BPF_REG_FP; regno++) 1101 __mark_reg_not_init(env, regs + regno); 1102 return; 1103 } 1104 __mark_reg_not_init(env, regs + regno); 1105 } 1106 1107 #define DEF_NOT_SUBREG (0) 1108 static void init_reg_state(struct bpf_verifier_env *env, 1109 struct bpf_func_state *state) 1110 { 1111 struct bpf_reg_state *regs = state->regs; 1112 int i; 1113 1114 for (i = 0; i < MAX_BPF_REG; i++) { 1115 mark_reg_not_init(env, regs, i); 1116 regs[i].live = REG_LIVE_NONE; 1117 regs[i].parent = NULL; 1118 regs[i].subreg_def = DEF_NOT_SUBREG; 1119 } 1120 1121 /* frame pointer */ 1122 regs[BPF_REG_FP].type = PTR_TO_STACK; 1123 mark_reg_known_zero(env, regs, BPF_REG_FP); 1124 regs[BPF_REG_FP].frameno = state->frameno; 1125 } 1126 1127 #define BPF_MAIN_FUNC (-1) 1128 static void init_func_state(struct bpf_verifier_env *env, 1129 struct bpf_func_state *state, 1130 int callsite, int frameno, int subprogno) 1131 { 1132 state->callsite = callsite; 1133 state->frameno = frameno; 1134 state->subprogno = subprogno; 1135 init_reg_state(env, state); 1136 } 1137 1138 enum reg_arg_type { 1139 SRC_OP, /* register is used as source operand */ 1140 DST_OP, /* register is used as destination operand */ 1141 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1142 }; 1143 1144 static int cmp_subprogs(const void *a, const void *b) 1145 { 1146 return ((struct bpf_subprog_info *)a)->start - 1147 ((struct bpf_subprog_info *)b)->start; 1148 } 1149 1150 static int find_subprog(struct bpf_verifier_env *env, int off) 1151 { 1152 struct bpf_subprog_info *p; 1153 1154 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1155 sizeof(env->subprog_info[0]), cmp_subprogs); 1156 if (!p) 1157 return -ENOENT; 1158 return p - env->subprog_info; 1159 1160 } 1161 1162 static int add_subprog(struct bpf_verifier_env *env, int off) 1163 { 1164 int insn_cnt = env->prog->len; 1165 int ret; 1166 1167 if (off >= insn_cnt || off < 0) { 1168 verbose(env, "call to invalid destination\n"); 1169 return -EINVAL; 1170 } 1171 ret = find_subprog(env, off); 1172 if (ret >= 0) 1173 return 0; 1174 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1175 verbose(env, "too many subprograms\n"); 1176 return -E2BIG; 1177 } 1178 env->subprog_info[env->subprog_cnt++].start = off; 1179 sort(env->subprog_info, env->subprog_cnt, 1180 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1181 return 0; 1182 } 1183 1184 static int check_subprogs(struct bpf_verifier_env *env) 1185 { 1186 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1187 struct bpf_subprog_info *subprog = env->subprog_info; 1188 struct bpf_insn *insn = env->prog->insnsi; 1189 int insn_cnt = env->prog->len; 1190 1191 /* Add entry function. */ 1192 ret = add_subprog(env, 0); 1193 if (ret < 0) 1194 return ret; 1195 1196 /* determine subprog starts. The end is one before the next starts */ 1197 for (i = 0; i < insn_cnt; i++) { 1198 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1199 continue; 1200 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1201 continue; 1202 if (!env->allow_ptr_leaks) { 1203 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1204 return -EPERM; 1205 } 1206 ret = add_subprog(env, i + insn[i].imm + 1); 1207 if (ret < 0) 1208 return ret; 1209 } 1210 1211 /* Add a fake 'exit' subprog which could simplify subprog iteration 1212 * logic. 'subprog_cnt' should not be increased. 1213 */ 1214 subprog[env->subprog_cnt].start = insn_cnt; 1215 1216 if (env->log.level & BPF_LOG_LEVEL2) 1217 for (i = 0; i < env->subprog_cnt; i++) 1218 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1219 1220 /* now check that all jumps are within the same subprog */ 1221 subprog_start = subprog[cur_subprog].start; 1222 subprog_end = subprog[cur_subprog + 1].start; 1223 for (i = 0; i < insn_cnt; i++) { 1224 u8 code = insn[i].code; 1225 1226 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1227 goto next; 1228 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1229 goto next; 1230 off = i + insn[i].off + 1; 1231 if (off < subprog_start || off >= subprog_end) { 1232 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1233 return -EINVAL; 1234 } 1235 next: 1236 if (i == subprog_end - 1) { 1237 /* to avoid fall-through from one subprog into another 1238 * the last insn of the subprog should be either exit 1239 * or unconditional jump back 1240 */ 1241 if (code != (BPF_JMP | BPF_EXIT) && 1242 code != (BPF_JMP | BPF_JA)) { 1243 verbose(env, "last insn is not an exit or jmp\n"); 1244 return -EINVAL; 1245 } 1246 subprog_start = subprog_end; 1247 cur_subprog++; 1248 if (cur_subprog < env->subprog_cnt) 1249 subprog_end = subprog[cur_subprog + 1].start; 1250 } 1251 } 1252 return 0; 1253 } 1254 1255 /* Parentage chain of this register (or stack slot) should take care of all 1256 * issues like callee-saved registers, stack slot allocation time, etc. 1257 */ 1258 static int mark_reg_read(struct bpf_verifier_env *env, 1259 const struct bpf_reg_state *state, 1260 struct bpf_reg_state *parent, u8 flag) 1261 { 1262 bool writes = parent == state->parent; /* Observe write marks */ 1263 int cnt = 0; 1264 1265 while (parent) { 1266 /* if read wasn't screened by an earlier write ... */ 1267 if (writes && state->live & REG_LIVE_WRITTEN) 1268 break; 1269 if (parent->live & REG_LIVE_DONE) { 1270 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1271 reg_type_str[parent->type], 1272 parent->var_off.value, parent->off); 1273 return -EFAULT; 1274 } 1275 /* The first condition is more likely to be true than the 1276 * second, checked it first. 1277 */ 1278 if ((parent->live & REG_LIVE_READ) == flag || 1279 parent->live & REG_LIVE_READ64) 1280 /* The parentage chain never changes and 1281 * this parent was already marked as LIVE_READ. 1282 * There is no need to keep walking the chain again and 1283 * keep re-marking all parents as LIVE_READ. 1284 * This case happens when the same register is read 1285 * multiple times without writes into it in-between. 1286 * Also, if parent has the stronger REG_LIVE_READ64 set, 1287 * then no need to set the weak REG_LIVE_READ32. 1288 */ 1289 break; 1290 /* ... then we depend on parent's value */ 1291 parent->live |= flag; 1292 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1293 if (flag == REG_LIVE_READ64) 1294 parent->live &= ~REG_LIVE_READ32; 1295 state = parent; 1296 parent = state->parent; 1297 writes = true; 1298 cnt++; 1299 } 1300 1301 if (env->longest_mark_read_walk < cnt) 1302 env->longest_mark_read_walk = cnt; 1303 return 0; 1304 } 1305 1306 /* This function is supposed to be used by the following 32-bit optimization 1307 * code only. It returns TRUE if the source or destination register operates 1308 * on 64-bit, otherwise return FALSE. 1309 */ 1310 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1311 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1312 { 1313 u8 code, class, op; 1314 1315 code = insn->code; 1316 class = BPF_CLASS(code); 1317 op = BPF_OP(code); 1318 if (class == BPF_JMP) { 1319 /* BPF_EXIT for "main" will reach here. Return TRUE 1320 * conservatively. 1321 */ 1322 if (op == BPF_EXIT) 1323 return true; 1324 if (op == BPF_CALL) { 1325 /* BPF to BPF call will reach here because of marking 1326 * caller saved clobber with DST_OP_NO_MARK for which we 1327 * don't care the register def because they are anyway 1328 * marked as NOT_INIT already. 1329 */ 1330 if (insn->src_reg == BPF_PSEUDO_CALL) 1331 return false; 1332 /* Helper call will reach here because of arg type 1333 * check, conservatively return TRUE. 1334 */ 1335 if (t == SRC_OP) 1336 return true; 1337 1338 return false; 1339 } 1340 } 1341 1342 if (class == BPF_ALU64 || class == BPF_JMP || 1343 /* BPF_END always use BPF_ALU class. */ 1344 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1345 return true; 1346 1347 if (class == BPF_ALU || class == BPF_JMP32) 1348 return false; 1349 1350 if (class == BPF_LDX) { 1351 if (t != SRC_OP) 1352 return BPF_SIZE(code) == BPF_DW; 1353 /* LDX source must be ptr. */ 1354 return true; 1355 } 1356 1357 if (class == BPF_STX) { 1358 if (reg->type != SCALAR_VALUE) 1359 return true; 1360 return BPF_SIZE(code) == BPF_DW; 1361 } 1362 1363 if (class == BPF_LD) { 1364 u8 mode = BPF_MODE(code); 1365 1366 /* LD_IMM64 */ 1367 if (mode == BPF_IMM) 1368 return true; 1369 1370 /* Both LD_IND and LD_ABS return 32-bit data. */ 1371 if (t != SRC_OP) 1372 return false; 1373 1374 /* Implicit ctx ptr. */ 1375 if (regno == BPF_REG_6) 1376 return true; 1377 1378 /* Explicit source could be any width. */ 1379 return true; 1380 } 1381 1382 if (class == BPF_ST) 1383 /* The only source register for BPF_ST is a ptr. */ 1384 return true; 1385 1386 /* Conservatively return true at default. */ 1387 return true; 1388 } 1389 1390 /* Return TRUE if INSN doesn't have explicit value define. */ 1391 static bool insn_no_def(struct bpf_insn *insn) 1392 { 1393 u8 class = BPF_CLASS(insn->code); 1394 1395 return (class == BPF_JMP || class == BPF_JMP32 || 1396 class == BPF_STX || class == BPF_ST); 1397 } 1398 1399 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1400 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1401 { 1402 if (insn_no_def(insn)) 1403 return false; 1404 1405 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); 1406 } 1407 1408 static void mark_insn_zext(struct bpf_verifier_env *env, 1409 struct bpf_reg_state *reg) 1410 { 1411 s32 def_idx = reg->subreg_def; 1412 1413 if (def_idx == DEF_NOT_SUBREG) 1414 return; 1415 1416 env->insn_aux_data[def_idx - 1].zext_dst = true; 1417 /* The dst will be zero extended, so won't be sub-register anymore. */ 1418 reg->subreg_def = DEF_NOT_SUBREG; 1419 } 1420 1421 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1422 enum reg_arg_type t) 1423 { 1424 struct bpf_verifier_state *vstate = env->cur_state; 1425 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1426 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 1427 struct bpf_reg_state *reg, *regs = state->regs; 1428 bool rw64; 1429 1430 if (regno >= MAX_BPF_REG) { 1431 verbose(env, "R%d is invalid\n", regno); 1432 return -EINVAL; 1433 } 1434 1435 reg = ®s[regno]; 1436 rw64 = is_reg64(env, insn, regno, reg, t); 1437 if (t == SRC_OP) { 1438 /* check whether register used as source operand can be read */ 1439 if (reg->type == NOT_INIT) { 1440 verbose(env, "R%d !read_ok\n", regno); 1441 return -EACCES; 1442 } 1443 /* We don't need to worry about FP liveness because it's read-only */ 1444 if (regno == BPF_REG_FP) 1445 return 0; 1446 1447 if (rw64) 1448 mark_insn_zext(env, reg); 1449 1450 return mark_reg_read(env, reg, reg->parent, 1451 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 1452 } else { 1453 /* check whether register used as dest operand can be written to */ 1454 if (regno == BPF_REG_FP) { 1455 verbose(env, "frame pointer is read only\n"); 1456 return -EACCES; 1457 } 1458 reg->live |= REG_LIVE_WRITTEN; 1459 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 1460 if (t == DST_OP) 1461 mark_reg_unknown(env, regs, regno); 1462 } 1463 return 0; 1464 } 1465 1466 /* for any branch, call, exit record the history of jmps in the given state */ 1467 static int push_jmp_history(struct bpf_verifier_env *env, 1468 struct bpf_verifier_state *cur) 1469 { 1470 u32 cnt = cur->jmp_history_cnt; 1471 struct bpf_idx_pair *p; 1472 1473 cnt++; 1474 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 1475 if (!p) 1476 return -ENOMEM; 1477 p[cnt - 1].idx = env->insn_idx; 1478 p[cnt - 1].prev_idx = env->prev_insn_idx; 1479 cur->jmp_history = p; 1480 cur->jmp_history_cnt = cnt; 1481 return 0; 1482 } 1483 1484 /* Backtrack one insn at a time. If idx is not at the top of recorded 1485 * history then previous instruction came from straight line execution. 1486 */ 1487 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 1488 u32 *history) 1489 { 1490 u32 cnt = *history; 1491 1492 if (cnt && st->jmp_history[cnt - 1].idx == i) { 1493 i = st->jmp_history[cnt - 1].prev_idx; 1494 (*history)--; 1495 } else { 1496 i--; 1497 } 1498 return i; 1499 } 1500 1501 /* For given verifier state backtrack_insn() is called from the last insn to 1502 * the first insn. Its purpose is to compute a bitmask of registers and 1503 * stack slots that needs precision in the parent verifier state. 1504 */ 1505 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 1506 u32 *reg_mask, u64 *stack_mask) 1507 { 1508 const struct bpf_insn_cbs cbs = { 1509 .cb_print = verbose, 1510 .private_data = env, 1511 }; 1512 struct bpf_insn *insn = env->prog->insnsi + idx; 1513 u8 class = BPF_CLASS(insn->code); 1514 u8 opcode = BPF_OP(insn->code); 1515 u8 mode = BPF_MODE(insn->code); 1516 u32 dreg = 1u << insn->dst_reg; 1517 u32 sreg = 1u << insn->src_reg; 1518 u32 spi; 1519 1520 if (insn->code == 0) 1521 return 0; 1522 if (env->log.level & BPF_LOG_LEVEL) { 1523 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 1524 verbose(env, "%d: ", idx); 1525 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 1526 } 1527 1528 if (class == BPF_ALU || class == BPF_ALU64) { 1529 if (!(*reg_mask & dreg)) 1530 return 0; 1531 if (opcode == BPF_MOV) { 1532 if (BPF_SRC(insn->code) == BPF_X) { 1533 /* dreg = sreg 1534 * dreg needs precision after this insn 1535 * sreg needs precision before this insn 1536 */ 1537 *reg_mask &= ~dreg; 1538 *reg_mask |= sreg; 1539 } else { 1540 /* dreg = K 1541 * dreg needs precision after this insn. 1542 * Corresponding register is already marked 1543 * as precise=true in this verifier state. 1544 * No further markings in parent are necessary 1545 */ 1546 *reg_mask &= ~dreg; 1547 } 1548 } else { 1549 if (BPF_SRC(insn->code) == BPF_X) { 1550 /* dreg += sreg 1551 * both dreg and sreg need precision 1552 * before this insn 1553 */ 1554 *reg_mask |= sreg; 1555 } /* else dreg += K 1556 * dreg still needs precision before this insn 1557 */ 1558 } 1559 } else if (class == BPF_LDX) { 1560 if (!(*reg_mask & dreg)) 1561 return 0; 1562 *reg_mask &= ~dreg; 1563 1564 /* scalars can only be spilled into stack w/o losing precision. 1565 * Load from any other memory can be zero extended. 1566 * The desire to keep that precision is already indicated 1567 * by 'precise' mark in corresponding register of this state. 1568 * No further tracking necessary. 1569 */ 1570 if (insn->src_reg != BPF_REG_FP) 1571 return 0; 1572 if (BPF_SIZE(insn->code) != BPF_DW) 1573 return 0; 1574 1575 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 1576 * that [fp - off] slot contains scalar that needs to be 1577 * tracked with precision 1578 */ 1579 spi = (-insn->off - 1) / BPF_REG_SIZE; 1580 if (spi >= 64) { 1581 verbose(env, "BUG spi %d\n", spi); 1582 WARN_ONCE(1, "verifier backtracking bug"); 1583 return -EFAULT; 1584 } 1585 *stack_mask |= 1ull << spi; 1586 } else if (class == BPF_STX || class == BPF_ST) { 1587 if (*reg_mask & dreg) 1588 /* stx & st shouldn't be using _scalar_ dst_reg 1589 * to access memory. It means backtracking 1590 * encountered a case of pointer subtraction. 1591 */ 1592 return -ENOTSUPP; 1593 /* scalars can only be spilled into stack */ 1594 if (insn->dst_reg != BPF_REG_FP) 1595 return 0; 1596 if (BPF_SIZE(insn->code) != BPF_DW) 1597 return 0; 1598 spi = (-insn->off - 1) / BPF_REG_SIZE; 1599 if (spi >= 64) { 1600 verbose(env, "BUG spi %d\n", spi); 1601 WARN_ONCE(1, "verifier backtracking bug"); 1602 return -EFAULT; 1603 } 1604 if (!(*stack_mask & (1ull << spi))) 1605 return 0; 1606 *stack_mask &= ~(1ull << spi); 1607 if (class == BPF_STX) 1608 *reg_mask |= sreg; 1609 } else if (class == BPF_JMP || class == BPF_JMP32) { 1610 if (opcode == BPF_CALL) { 1611 if (insn->src_reg == BPF_PSEUDO_CALL) 1612 return -ENOTSUPP; 1613 /* regular helper call sets R0 */ 1614 *reg_mask &= ~1; 1615 if (*reg_mask & 0x3f) { 1616 /* if backtracing was looking for registers R1-R5 1617 * they should have been found already. 1618 */ 1619 verbose(env, "BUG regs %x\n", *reg_mask); 1620 WARN_ONCE(1, "verifier backtracking bug"); 1621 return -EFAULT; 1622 } 1623 } else if (opcode == BPF_EXIT) { 1624 return -ENOTSUPP; 1625 } 1626 } else if (class == BPF_LD) { 1627 if (!(*reg_mask & dreg)) 1628 return 0; 1629 *reg_mask &= ~dreg; 1630 /* It's ld_imm64 or ld_abs or ld_ind. 1631 * For ld_imm64 no further tracking of precision 1632 * into parent is necessary 1633 */ 1634 if (mode == BPF_IND || mode == BPF_ABS) 1635 /* to be analyzed */ 1636 return -ENOTSUPP; 1637 } 1638 return 0; 1639 } 1640 1641 /* the scalar precision tracking algorithm: 1642 * . at the start all registers have precise=false. 1643 * . scalar ranges are tracked as normal through alu and jmp insns. 1644 * . once precise value of the scalar register is used in: 1645 * . ptr + scalar alu 1646 * . if (scalar cond K|scalar) 1647 * . helper_call(.., scalar, ...) where ARG_CONST is expected 1648 * backtrack through the verifier states and mark all registers and 1649 * stack slots with spilled constants that these scalar regisers 1650 * should be precise. 1651 * . during state pruning two registers (or spilled stack slots) 1652 * are equivalent if both are not precise. 1653 * 1654 * Note the verifier cannot simply walk register parentage chain, 1655 * since many different registers and stack slots could have been 1656 * used to compute single precise scalar. 1657 * 1658 * The approach of starting with precise=true for all registers and then 1659 * backtrack to mark a register as not precise when the verifier detects 1660 * that program doesn't care about specific value (e.g., when helper 1661 * takes register as ARG_ANYTHING parameter) is not safe. 1662 * 1663 * It's ok to walk single parentage chain of the verifier states. 1664 * It's possible that this backtracking will go all the way till 1st insn. 1665 * All other branches will be explored for needing precision later. 1666 * 1667 * The backtracking needs to deal with cases like: 1668 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 1669 * r9 -= r8 1670 * r5 = r9 1671 * if r5 > 0x79f goto pc+7 1672 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 1673 * r5 += 1 1674 * ... 1675 * call bpf_perf_event_output#25 1676 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 1677 * 1678 * and this case: 1679 * r6 = 1 1680 * call foo // uses callee's r6 inside to compute r0 1681 * r0 += r6 1682 * if r0 == 0 goto 1683 * 1684 * to track above reg_mask/stack_mask needs to be independent for each frame. 1685 * 1686 * Also if parent's curframe > frame where backtracking started, 1687 * the verifier need to mark registers in both frames, otherwise callees 1688 * may incorrectly prune callers. This is similar to 1689 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 1690 * 1691 * For now backtracking falls back into conservative marking. 1692 */ 1693 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 1694 struct bpf_verifier_state *st) 1695 { 1696 struct bpf_func_state *func; 1697 struct bpf_reg_state *reg; 1698 int i, j; 1699 1700 /* big hammer: mark all scalars precise in this path. 1701 * pop_stack may still get !precise scalars. 1702 */ 1703 for (; st; st = st->parent) 1704 for (i = 0; i <= st->curframe; i++) { 1705 func = st->frame[i]; 1706 for (j = 0; j < BPF_REG_FP; j++) { 1707 reg = &func->regs[j]; 1708 if (reg->type != SCALAR_VALUE) 1709 continue; 1710 reg->precise = true; 1711 } 1712 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 1713 if (func->stack[j].slot_type[0] != STACK_SPILL) 1714 continue; 1715 reg = &func->stack[j].spilled_ptr; 1716 if (reg->type != SCALAR_VALUE) 1717 continue; 1718 reg->precise = true; 1719 } 1720 } 1721 } 1722 1723 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 1724 int spi) 1725 { 1726 struct bpf_verifier_state *st = env->cur_state; 1727 int first_idx = st->first_insn_idx; 1728 int last_idx = env->insn_idx; 1729 struct bpf_func_state *func; 1730 struct bpf_reg_state *reg; 1731 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 1732 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 1733 bool skip_first = true; 1734 bool new_marks = false; 1735 int i, err; 1736 1737 if (!env->allow_ptr_leaks) 1738 /* backtracking is root only for now */ 1739 return 0; 1740 1741 func = st->frame[st->curframe]; 1742 if (regno >= 0) { 1743 reg = &func->regs[regno]; 1744 if (reg->type != SCALAR_VALUE) { 1745 WARN_ONCE(1, "backtracing misuse"); 1746 return -EFAULT; 1747 } 1748 if (!reg->precise) 1749 new_marks = true; 1750 else 1751 reg_mask = 0; 1752 reg->precise = true; 1753 } 1754 1755 while (spi >= 0) { 1756 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 1757 stack_mask = 0; 1758 break; 1759 } 1760 reg = &func->stack[spi].spilled_ptr; 1761 if (reg->type != SCALAR_VALUE) { 1762 stack_mask = 0; 1763 break; 1764 } 1765 if (!reg->precise) 1766 new_marks = true; 1767 else 1768 stack_mask = 0; 1769 reg->precise = true; 1770 break; 1771 } 1772 1773 if (!new_marks) 1774 return 0; 1775 if (!reg_mask && !stack_mask) 1776 return 0; 1777 for (;;) { 1778 DECLARE_BITMAP(mask, 64); 1779 u32 history = st->jmp_history_cnt; 1780 1781 if (env->log.level & BPF_LOG_LEVEL) 1782 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 1783 for (i = last_idx;;) { 1784 if (skip_first) { 1785 err = 0; 1786 skip_first = false; 1787 } else { 1788 err = backtrack_insn(env, i, ®_mask, &stack_mask); 1789 } 1790 if (err == -ENOTSUPP) { 1791 mark_all_scalars_precise(env, st); 1792 return 0; 1793 } else if (err) { 1794 return err; 1795 } 1796 if (!reg_mask && !stack_mask) 1797 /* Found assignment(s) into tracked register in this state. 1798 * Since this state is already marked, just return. 1799 * Nothing to be tracked further in the parent state. 1800 */ 1801 return 0; 1802 if (i == first_idx) 1803 break; 1804 i = get_prev_insn_idx(st, i, &history); 1805 if (i >= env->prog->len) { 1806 /* This can happen if backtracking reached insn 0 1807 * and there are still reg_mask or stack_mask 1808 * to backtrack. 1809 * It means the backtracking missed the spot where 1810 * particular register was initialized with a constant. 1811 */ 1812 verbose(env, "BUG backtracking idx %d\n", i); 1813 WARN_ONCE(1, "verifier backtracking bug"); 1814 return -EFAULT; 1815 } 1816 } 1817 st = st->parent; 1818 if (!st) 1819 break; 1820 1821 new_marks = false; 1822 func = st->frame[st->curframe]; 1823 bitmap_from_u64(mask, reg_mask); 1824 for_each_set_bit(i, mask, 32) { 1825 reg = &func->regs[i]; 1826 if (reg->type != SCALAR_VALUE) { 1827 reg_mask &= ~(1u << i); 1828 continue; 1829 } 1830 if (!reg->precise) 1831 new_marks = true; 1832 reg->precise = true; 1833 } 1834 1835 bitmap_from_u64(mask, stack_mask); 1836 for_each_set_bit(i, mask, 64) { 1837 if (i >= func->allocated_stack / BPF_REG_SIZE) { 1838 /* the sequence of instructions: 1839 * 2: (bf) r3 = r10 1840 * 3: (7b) *(u64 *)(r3 -8) = r0 1841 * 4: (79) r4 = *(u64 *)(r10 -8) 1842 * doesn't contain jmps. It's backtracked 1843 * as a single block. 1844 * During backtracking insn 3 is not recognized as 1845 * stack access, so at the end of backtracking 1846 * stack slot fp-8 is still marked in stack_mask. 1847 * However the parent state may not have accessed 1848 * fp-8 and it's "unallocated" stack space. 1849 * In such case fallback to conservative. 1850 */ 1851 mark_all_scalars_precise(env, st); 1852 return 0; 1853 } 1854 1855 if (func->stack[i].slot_type[0] != STACK_SPILL) { 1856 stack_mask &= ~(1ull << i); 1857 continue; 1858 } 1859 reg = &func->stack[i].spilled_ptr; 1860 if (reg->type != SCALAR_VALUE) { 1861 stack_mask &= ~(1ull << i); 1862 continue; 1863 } 1864 if (!reg->precise) 1865 new_marks = true; 1866 reg->precise = true; 1867 } 1868 if (env->log.level & BPF_LOG_LEVEL) { 1869 print_verifier_state(env, func); 1870 verbose(env, "parent %s regs=%x stack=%llx marks\n", 1871 new_marks ? "didn't have" : "already had", 1872 reg_mask, stack_mask); 1873 } 1874 1875 if (!reg_mask && !stack_mask) 1876 break; 1877 if (!new_marks) 1878 break; 1879 1880 last_idx = st->last_insn_idx; 1881 first_idx = st->first_insn_idx; 1882 } 1883 return 0; 1884 } 1885 1886 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 1887 { 1888 return __mark_chain_precision(env, regno, -1); 1889 } 1890 1891 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 1892 { 1893 return __mark_chain_precision(env, -1, spi); 1894 } 1895 1896 static bool is_spillable_regtype(enum bpf_reg_type type) 1897 { 1898 switch (type) { 1899 case PTR_TO_MAP_VALUE: 1900 case PTR_TO_MAP_VALUE_OR_NULL: 1901 case PTR_TO_STACK: 1902 case PTR_TO_CTX: 1903 case PTR_TO_PACKET: 1904 case PTR_TO_PACKET_META: 1905 case PTR_TO_PACKET_END: 1906 case PTR_TO_FLOW_KEYS: 1907 case CONST_PTR_TO_MAP: 1908 case PTR_TO_SOCKET: 1909 case PTR_TO_SOCKET_OR_NULL: 1910 case PTR_TO_SOCK_COMMON: 1911 case PTR_TO_SOCK_COMMON_OR_NULL: 1912 case PTR_TO_TCP_SOCK: 1913 case PTR_TO_TCP_SOCK_OR_NULL: 1914 case PTR_TO_XDP_SOCK: 1915 case PTR_TO_BTF_ID: 1916 return true; 1917 default: 1918 return false; 1919 } 1920 } 1921 1922 /* Does this register contain a constant zero? */ 1923 static bool register_is_null(struct bpf_reg_state *reg) 1924 { 1925 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 1926 } 1927 1928 static bool register_is_const(struct bpf_reg_state *reg) 1929 { 1930 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 1931 } 1932 1933 static void save_register_state(struct bpf_func_state *state, 1934 int spi, struct bpf_reg_state *reg) 1935 { 1936 int i; 1937 1938 state->stack[spi].spilled_ptr = *reg; 1939 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1940 1941 for (i = 0; i < BPF_REG_SIZE; i++) 1942 state->stack[spi].slot_type[i] = STACK_SPILL; 1943 } 1944 1945 /* check_stack_read/write functions track spill/fill of registers, 1946 * stack boundary and alignment are checked in check_mem_access() 1947 */ 1948 static int check_stack_write(struct bpf_verifier_env *env, 1949 struct bpf_func_state *state, /* func where register points to */ 1950 int off, int size, int value_regno, int insn_idx) 1951 { 1952 struct bpf_func_state *cur; /* state of the current function */ 1953 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 1954 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 1955 struct bpf_reg_state *reg = NULL; 1956 1957 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 1958 state->acquired_refs, true); 1959 if (err) 1960 return err; 1961 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1962 * so it's aligned access and [off, off + size) are within stack limits 1963 */ 1964 if (!env->allow_ptr_leaks && 1965 state->stack[spi].slot_type[0] == STACK_SPILL && 1966 size != BPF_REG_SIZE) { 1967 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1968 return -EACCES; 1969 } 1970 1971 cur = env->cur_state->frame[env->cur_state->curframe]; 1972 if (value_regno >= 0) 1973 reg = &cur->regs[value_regno]; 1974 1975 if (reg && size == BPF_REG_SIZE && register_is_const(reg) && 1976 !register_is_null(reg) && env->allow_ptr_leaks) { 1977 if (dst_reg != BPF_REG_FP) { 1978 /* The backtracking logic can only recognize explicit 1979 * stack slot address like [fp - 8]. Other spill of 1980 * scalar via different register has to be conervative. 1981 * Backtrack from here and mark all registers as precise 1982 * that contributed into 'reg' being a constant. 1983 */ 1984 err = mark_chain_precision(env, value_regno); 1985 if (err) 1986 return err; 1987 } 1988 save_register_state(state, spi, reg); 1989 } else if (reg && is_spillable_regtype(reg->type)) { 1990 /* register containing pointer is being spilled into stack */ 1991 if (size != BPF_REG_SIZE) { 1992 verbose_linfo(env, insn_idx, "; "); 1993 verbose(env, "invalid size of register spill\n"); 1994 return -EACCES; 1995 } 1996 1997 if (state != cur && reg->type == PTR_TO_STACK) { 1998 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1999 return -EINVAL; 2000 } 2001 2002 if (!env->allow_ptr_leaks) { 2003 bool sanitize = false; 2004 2005 if (state->stack[spi].slot_type[0] == STACK_SPILL && 2006 register_is_const(&state->stack[spi].spilled_ptr)) 2007 sanitize = true; 2008 for (i = 0; i < BPF_REG_SIZE; i++) 2009 if (state->stack[spi].slot_type[i] == STACK_MISC) { 2010 sanitize = true; 2011 break; 2012 } 2013 if (sanitize) { 2014 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 2015 int soff = (-spi - 1) * BPF_REG_SIZE; 2016 2017 /* detected reuse of integer stack slot with a pointer 2018 * which means either llvm is reusing stack slot or 2019 * an attacker is trying to exploit CVE-2018-3639 2020 * (speculative store bypass) 2021 * Have to sanitize that slot with preemptive 2022 * store of zero. 2023 */ 2024 if (*poff && *poff != soff) { 2025 /* disallow programs where single insn stores 2026 * into two different stack slots, since verifier 2027 * cannot sanitize them 2028 */ 2029 verbose(env, 2030 "insn %d cannot access two stack slots fp%d and fp%d", 2031 insn_idx, *poff, soff); 2032 return -EINVAL; 2033 } 2034 *poff = soff; 2035 } 2036 } 2037 save_register_state(state, spi, reg); 2038 } else { 2039 u8 type = STACK_MISC; 2040 2041 /* regular write of data into stack destroys any spilled ptr */ 2042 state->stack[spi].spilled_ptr.type = NOT_INIT; 2043 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2044 if (state->stack[spi].slot_type[0] == STACK_SPILL) 2045 for (i = 0; i < BPF_REG_SIZE; i++) 2046 state->stack[spi].slot_type[i] = STACK_MISC; 2047 2048 /* only mark the slot as written if all 8 bytes were written 2049 * otherwise read propagation may incorrectly stop too soon 2050 * when stack slots are partially written. 2051 * This heuristic means that read propagation will be 2052 * conservative, since it will add reg_live_read marks 2053 * to stack slots all the way to first state when programs 2054 * writes+reads less than 8 bytes 2055 */ 2056 if (size == BPF_REG_SIZE) 2057 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2058 2059 /* when we zero initialize stack slots mark them as such */ 2060 if (reg && register_is_null(reg)) { 2061 /* backtracking doesn't work for STACK_ZERO yet. */ 2062 err = mark_chain_precision(env, value_regno); 2063 if (err) 2064 return err; 2065 type = STACK_ZERO; 2066 } 2067 2068 /* Mark slots affected by this stack write. */ 2069 for (i = 0; i < size; i++) 2070 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2071 type; 2072 } 2073 return 0; 2074 } 2075 2076 static int check_stack_read(struct bpf_verifier_env *env, 2077 struct bpf_func_state *reg_state /* func where register points to */, 2078 int off, int size, int value_regno) 2079 { 2080 struct bpf_verifier_state *vstate = env->cur_state; 2081 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2082 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2083 struct bpf_reg_state *reg; 2084 u8 *stype; 2085 2086 if (reg_state->allocated_stack <= slot) { 2087 verbose(env, "invalid read from stack off %d+0 size %d\n", 2088 off, size); 2089 return -EACCES; 2090 } 2091 stype = reg_state->stack[spi].slot_type; 2092 reg = ®_state->stack[spi].spilled_ptr; 2093 2094 if (stype[0] == STACK_SPILL) { 2095 if (size != BPF_REG_SIZE) { 2096 if (reg->type != SCALAR_VALUE) { 2097 verbose_linfo(env, env->insn_idx, "; "); 2098 verbose(env, "invalid size of register fill\n"); 2099 return -EACCES; 2100 } 2101 if (value_regno >= 0) { 2102 mark_reg_unknown(env, state->regs, value_regno); 2103 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2104 } 2105 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2106 return 0; 2107 } 2108 for (i = 1; i < BPF_REG_SIZE; i++) { 2109 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2110 verbose(env, "corrupted spill memory\n"); 2111 return -EACCES; 2112 } 2113 } 2114 2115 if (value_regno >= 0) { 2116 /* restore register state from stack */ 2117 state->regs[value_regno] = *reg; 2118 /* mark reg as written since spilled pointer state likely 2119 * has its liveness marks cleared by is_state_visited() 2120 * which resets stack/reg liveness for state transitions 2121 */ 2122 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2123 } 2124 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2125 } else { 2126 int zeros = 0; 2127 2128 for (i = 0; i < size; i++) { 2129 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 2130 continue; 2131 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 2132 zeros++; 2133 continue; 2134 } 2135 verbose(env, "invalid read from stack off %d+%d size %d\n", 2136 off, i, size); 2137 return -EACCES; 2138 } 2139 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2140 if (value_regno >= 0) { 2141 if (zeros == size) { 2142 /* any size read into register is zero extended, 2143 * so the whole register == const_zero 2144 */ 2145 __mark_reg_const_zero(&state->regs[value_regno]); 2146 /* backtracking doesn't support STACK_ZERO yet, 2147 * so mark it precise here, so that later 2148 * backtracking can stop here. 2149 * Backtracking may not need this if this register 2150 * doesn't participate in pointer adjustment. 2151 * Forward propagation of precise flag is not 2152 * necessary either. This mark is only to stop 2153 * backtracking. Any register that contributed 2154 * to const 0 was marked precise before spill. 2155 */ 2156 state->regs[value_regno].precise = true; 2157 } else { 2158 /* have read misc data from the stack */ 2159 mark_reg_unknown(env, state->regs, value_regno); 2160 } 2161 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2162 } 2163 } 2164 return 0; 2165 } 2166 2167 static int check_stack_access(struct bpf_verifier_env *env, 2168 const struct bpf_reg_state *reg, 2169 int off, int size) 2170 { 2171 /* Stack accesses must be at a fixed offset, so that we 2172 * can determine what type of data were returned. See 2173 * check_stack_read(). 2174 */ 2175 if (!tnum_is_const(reg->var_off)) { 2176 char tn_buf[48]; 2177 2178 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2179 verbose(env, "variable stack access var_off=%s off=%d size=%d\n", 2180 tn_buf, off, size); 2181 return -EACCES; 2182 } 2183 2184 if (off >= 0 || off < -MAX_BPF_STACK) { 2185 verbose(env, "invalid stack off=%d size=%d\n", off, size); 2186 return -EACCES; 2187 } 2188 2189 return 0; 2190 } 2191 2192 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 2193 int off, int size, enum bpf_access_type type) 2194 { 2195 struct bpf_reg_state *regs = cur_regs(env); 2196 struct bpf_map *map = regs[regno].map_ptr; 2197 u32 cap = bpf_map_flags_to_cap(map); 2198 2199 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 2200 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 2201 map->value_size, off, size); 2202 return -EACCES; 2203 } 2204 2205 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 2206 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 2207 map->value_size, off, size); 2208 return -EACCES; 2209 } 2210 2211 return 0; 2212 } 2213 2214 /* check read/write into map element returned by bpf_map_lookup_elem() */ 2215 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 2216 int size, bool zero_size_allowed) 2217 { 2218 struct bpf_reg_state *regs = cur_regs(env); 2219 struct bpf_map *map = regs[regno].map_ptr; 2220 2221 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2222 off + size > map->value_size) { 2223 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 2224 map->value_size, off, size); 2225 return -EACCES; 2226 } 2227 return 0; 2228 } 2229 2230 /* check read/write into a map element with possible variable offset */ 2231 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 2232 int off, int size, bool zero_size_allowed) 2233 { 2234 struct bpf_verifier_state *vstate = env->cur_state; 2235 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2236 struct bpf_reg_state *reg = &state->regs[regno]; 2237 int err; 2238 2239 /* We may have adjusted the register to this map value, so we 2240 * need to try adding each of min_value and max_value to off 2241 * to make sure our theoretical access will be safe. 2242 */ 2243 if (env->log.level & BPF_LOG_LEVEL) 2244 print_verifier_state(env, state); 2245 2246 /* The minimum value is only important with signed 2247 * comparisons where we can't assume the floor of a 2248 * value is 0. If we are using signed variables for our 2249 * index'es we need to make sure that whatever we use 2250 * will have a set floor within our range. 2251 */ 2252 if (reg->smin_value < 0 && 2253 (reg->smin_value == S64_MIN || 2254 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 2255 reg->smin_value + off < 0)) { 2256 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2257 regno); 2258 return -EACCES; 2259 } 2260 err = __check_map_access(env, regno, reg->smin_value + off, size, 2261 zero_size_allowed); 2262 if (err) { 2263 verbose(env, "R%d min value is outside of the array range\n", 2264 regno); 2265 return err; 2266 } 2267 2268 /* If we haven't set a max value then we need to bail since we can't be 2269 * sure we won't do bad things. 2270 * If reg->umax_value + off could overflow, treat that as unbounded too. 2271 */ 2272 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 2273 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 2274 regno); 2275 return -EACCES; 2276 } 2277 err = __check_map_access(env, regno, reg->umax_value + off, size, 2278 zero_size_allowed); 2279 if (err) 2280 verbose(env, "R%d max value is outside of the array range\n", 2281 regno); 2282 2283 if (map_value_has_spin_lock(reg->map_ptr)) { 2284 u32 lock = reg->map_ptr->spin_lock_off; 2285 2286 /* if any part of struct bpf_spin_lock can be touched by 2287 * load/store reject this program. 2288 * To check that [x1, x2) overlaps with [y1, y2) 2289 * it is sufficient to check x1 < y2 && y1 < x2. 2290 */ 2291 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 2292 lock < reg->umax_value + off + size) { 2293 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 2294 return -EACCES; 2295 } 2296 } 2297 return err; 2298 } 2299 2300 #define MAX_PACKET_OFF 0xffff 2301 2302 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 2303 const struct bpf_call_arg_meta *meta, 2304 enum bpf_access_type t) 2305 { 2306 switch (env->prog->type) { 2307 /* Program types only with direct read access go here! */ 2308 case BPF_PROG_TYPE_LWT_IN: 2309 case BPF_PROG_TYPE_LWT_OUT: 2310 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 2311 case BPF_PROG_TYPE_SK_REUSEPORT: 2312 case BPF_PROG_TYPE_FLOW_DISSECTOR: 2313 case BPF_PROG_TYPE_CGROUP_SKB: 2314 if (t == BPF_WRITE) 2315 return false; 2316 /* fallthrough */ 2317 2318 /* Program types with direct read + write access go here! */ 2319 case BPF_PROG_TYPE_SCHED_CLS: 2320 case BPF_PROG_TYPE_SCHED_ACT: 2321 case BPF_PROG_TYPE_XDP: 2322 case BPF_PROG_TYPE_LWT_XMIT: 2323 case BPF_PROG_TYPE_SK_SKB: 2324 case BPF_PROG_TYPE_SK_MSG: 2325 if (meta) 2326 return meta->pkt_access; 2327 2328 env->seen_direct_write = true; 2329 return true; 2330 2331 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 2332 if (t == BPF_WRITE) 2333 env->seen_direct_write = true; 2334 2335 return true; 2336 2337 default: 2338 return false; 2339 } 2340 } 2341 2342 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 2343 int off, int size, bool zero_size_allowed) 2344 { 2345 struct bpf_reg_state *regs = cur_regs(env); 2346 struct bpf_reg_state *reg = ®s[regno]; 2347 2348 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2349 (u64)off + size > reg->range) { 2350 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 2351 off, size, regno, reg->id, reg->off, reg->range); 2352 return -EACCES; 2353 } 2354 return 0; 2355 } 2356 2357 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 2358 int size, bool zero_size_allowed) 2359 { 2360 struct bpf_reg_state *regs = cur_regs(env); 2361 struct bpf_reg_state *reg = ®s[regno]; 2362 int err; 2363 2364 /* We may have added a variable offset to the packet pointer; but any 2365 * reg->range we have comes after that. We are only checking the fixed 2366 * offset. 2367 */ 2368 2369 /* We don't allow negative numbers, because we aren't tracking enough 2370 * detail to prove they're safe. 2371 */ 2372 if (reg->smin_value < 0) { 2373 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2374 regno); 2375 return -EACCES; 2376 } 2377 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 2378 if (err) { 2379 verbose(env, "R%d offset is outside of the packet\n", regno); 2380 return err; 2381 } 2382 2383 /* __check_packet_access has made sure "off + size - 1" is within u16. 2384 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 2385 * otherwise find_good_pkt_pointers would have refused to set range info 2386 * that __check_packet_access would have rejected this pkt access. 2387 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 2388 */ 2389 env->prog->aux->max_pkt_offset = 2390 max_t(u32, env->prog->aux->max_pkt_offset, 2391 off + reg->umax_value + size - 1); 2392 2393 return err; 2394 } 2395 2396 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 2397 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 2398 enum bpf_access_type t, enum bpf_reg_type *reg_type, 2399 u32 *btf_id) 2400 { 2401 struct bpf_insn_access_aux info = { 2402 .reg_type = *reg_type, 2403 .log = &env->log, 2404 }; 2405 2406 if (env->ops->is_valid_access && 2407 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 2408 /* A non zero info.ctx_field_size indicates that this field is a 2409 * candidate for later verifier transformation to load the whole 2410 * field and then apply a mask when accessed with a narrower 2411 * access than actual ctx access size. A zero info.ctx_field_size 2412 * will only allow for whole field access and rejects any other 2413 * type of narrower access. 2414 */ 2415 *reg_type = info.reg_type; 2416 2417 if (*reg_type == PTR_TO_BTF_ID) 2418 *btf_id = info.btf_id; 2419 else 2420 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 2421 /* remember the offset of last byte accessed in ctx */ 2422 if (env->prog->aux->max_ctx_offset < off + size) 2423 env->prog->aux->max_ctx_offset = off + size; 2424 return 0; 2425 } 2426 2427 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 2428 return -EACCES; 2429 } 2430 2431 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 2432 int size) 2433 { 2434 if (size < 0 || off < 0 || 2435 (u64)off + size > sizeof(struct bpf_flow_keys)) { 2436 verbose(env, "invalid access to flow keys off=%d size=%d\n", 2437 off, size); 2438 return -EACCES; 2439 } 2440 return 0; 2441 } 2442 2443 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 2444 u32 regno, int off, int size, 2445 enum bpf_access_type t) 2446 { 2447 struct bpf_reg_state *regs = cur_regs(env); 2448 struct bpf_reg_state *reg = ®s[regno]; 2449 struct bpf_insn_access_aux info = {}; 2450 bool valid; 2451 2452 if (reg->smin_value < 0) { 2453 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2454 regno); 2455 return -EACCES; 2456 } 2457 2458 switch (reg->type) { 2459 case PTR_TO_SOCK_COMMON: 2460 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 2461 break; 2462 case PTR_TO_SOCKET: 2463 valid = bpf_sock_is_valid_access(off, size, t, &info); 2464 break; 2465 case PTR_TO_TCP_SOCK: 2466 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 2467 break; 2468 case PTR_TO_XDP_SOCK: 2469 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 2470 break; 2471 default: 2472 valid = false; 2473 } 2474 2475 2476 if (valid) { 2477 env->insn_aux_data[insn_idx].ctx_field_size = 2478 info.ctx_field_size; 2479 return 0; 2480 } 2481 2482 verbose(env, "R%d invalid %s access off=%d size=%d\n", 2483 regno, reg_type_str[reg->type], off, size); 2484 2485 return -EACCES; 2486 } 2487 2488 static bool __is_pointer_value(bool allow_ptr_leaks, 2489 const struct bpf_reg_state *reg) 2490 { 2491 if (allow_ptr_leaks) 2492 return false; 2493 2494 return reg->type != SCALAR_VALUE; 2495 } 2496 2497 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2498 { 2499 return cur_regs(env) + regno; 2500 } 2501 2502 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 2503 { 2504 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 2505 } 2506 2507 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 2508 { 2509 const struct bpf_reg_state *reg = reg_state(env, regno); 2510 2511 return reg->type == PTR_TO_CTX; 2512 } 2513 2514 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 2515 { 2516 const struct bpf_reg_state *reg = reg_state(env, regno); 2517 2518 return type_is_sk_pointer(reg->type); 2519 } 2520 2521 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 2522 { 2523 const struct bpf_reg_state *reg = reg_state(env, regno); 2524 2525 return type_is_pkt_pointer(reg->type); 2526 } 2527 2528 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 2529 { 2530 const struct bpf_reg_state *reg = reg_state(env, regno); 2531 2532 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 2533 return reg->type == PTR_TO_FLOW_KEYS; 2534 } 2535 2536 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 2537 const struct bpf_reg_state *reg, 2538 int off, int size, bool strict) 2539 { 2540 struct tnum reg_off; 2541 int ip_align; 2542 2543 /* Byte size accesses are always allowed. */ 2544 if (!strict || size == 1) 2545 return 0; 2546 2547 /* For platforms that do not have a Kconfig enabling 2548 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 2549 * NET_IP_ALIGN is universally set to '2'. And on platforms 2550 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 2551 * to this code only in strict mode where we want to emulate 2552 * the NET_IP_ALIGN==2 checking. Therefore use an 2553 * unconditional IP align value of '2'. 2554 */ 2555 ip_align = 2; 2556 2557 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 2558 if (!tnum_is_aligned(reg_off, size)) { 2559 char tn_buf[48]; 2560 2561 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2562 verbose(env, 2563 "misaligned packet access off %d+%s+%d+%d size %d\n", 2564 ip_align, tn_buf, reg->off, off, size); 2565 return -EACCES; 2566 } 2567 2568 return 0; 2569 } 2570 2571 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 2572 const struct bpf_reg_state *reg, 2573 const char *pointer_desc, 2574 int off, int size, bool strict) 2575 { 2576 struct tnum reg_off; 2577 2578 /* Byte size accesses are always allowed. */ 2579 if (!strict || size == 1) 2580 return 0; 2581 2582 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 2583 if (!tnum_is_aligned(reg_off, size)) { 2584 char tn_buf[48]; 2585 2586 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2587 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 2588 pointer_desc, tn_buf, reg->off, off, size); 2589 return -EACCES; 2590 } 2591 2592 return 0; 2593 } 2594 2595 static int check_ptr_alignment(struct bpf_verifier_env *env, 2596 const struct bpf_reg_state *reg, int off, 2597 int size, bool strict_alignment_once) 2598 { 2599 bool strict = env->strict_alignment || strict_alignment_once; 2600 const char *pointer_desc = ""; 2601 2602 switch (reg->type) { 2603 case PTR_TO_PACKET: 2604 case PTR_TO_PACKET_META: 2605 /* Special case, because of NET_IP_ALIGN. Given metadata sits 2606 * right in front, treat it the very same way. 2607 */ 2608 return check_pkt_ptr_alignment(env, reg, off, size, strict); 2609 case PTR_TO_FLOW_KEYS: 2610 pointer_desc = "flow keys "; 2611 break; 2612 case PTR_TO_MAP_VALUE: 2613 pointer_desc = "value "; 2614 break; 2615 case PTR_TO_CTX: 2616 pointer_desc = "context "; 2617 break; 2618 case PTR_TO_STACK: 2619 pointer_desc = "stack "; 2620 /* The stack spill tracking logic in check_stack_write() 2621 * and check_stack_read() relies on stack accesses being 2622 * aligned. 2623 */ 2624 strict = true; 2625 break; 2626 case PTR_TO_SOCKET: 2627 pointer_desc = "sock "; 2628 break; 2629 case PTR_TO_SOCK_COMMON: 2630 pointer_desc = "sock_common "; 2631 break; 2632 case PTR_TO_TCP_SOCK: 2633 pointer_desc = "tcp_sock "; 2634 break; 2635 case PTR_TO_XDP_SOCK: 2636 pointer_desc = "xdp_sock "; 2637 break; 2638 default: 2639 break; 2640 } 2641 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 2642 strict); 2643 } 2644 2645 static int update_stack_depth(struct bpf_verifier_env *env, 2646 const struct bpf_func_state *func, 2647 int off) 2648 { 2649 u16 stack = env->subprog_info[func->subprogno].stack_depth; 2650 2651 if (stack >= -off) 2652 return 0; 2653 2654 /* update known max for given subprogram */ 2655 env->subprog_info[func->subprogno].stack_depth = -off; 2656 return 0; 2657 } 2658 2659 /* starting from main bpf function walk all instructions of the function 2660 * and recursively walk all callees that given function can call. 2661 * Ignore jump and exit insns. 2662 * Since recursion is prevented by check_cfg() this algorithm 2663 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 2664 */ 2665 static int check_max_stack_depth(struct bpf_verifier_env *env) 2666 { 2667 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 2668 struct bpf_subprog_info *subprog = env->subprog_info; 2669 struct bpf_insn *insn = env->prog->insnsi; 2670 int ret_insn[MAX_CALL_FRAMES]; 2671 int ret_prog[MAX_CALL_FRAMES]; 2672 2673 process_func: 2674 /* round up to 32-bytes, since this is granularity 2675 * of interpreter stack size 2676 */ 2677 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2678 if (depth > MAX_BPF_STACK) { 2679 verbose(env, "combined stack size of %d calls is %d. Too large\n", 2680 frame + 1, depth); 2681 return -EACCES; 2682 } 2683 continue_func: 2684 subprog_end = subprog[idx + 1].start; 2685 for (; i < subprog_end; i++) { 2686 if (insn[i].code != (BPF_JMP | BPF_CALL)) 2687 continue; 2688 if (insn[i].src_reg != BPF_PSEUDO_CALL) 2689 continue; 2690 /* remember insn and function to return to */ 2691 ret_insn[frame] = i + 1; 2692 ret_prog[frame] = idx; 2693 2694 /* find the callee */ 2695 i = i + insn[i].imm + 1; 2696 idx = find_subprog(env, i); 2697 if (idx < 0) { 2698 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2699 i); 2700 return -EFAULT; 2701 } 2702 frame++; 2703 if (frame >= MAX_CALL_FRAMES) { 2704 verbose(env, "the call stack of %d frames is too deep !\n", 2705 frame); 2706 return -E2BIG; 2707 } 2708 goto process_func; 2709 } 2710 /* end of for() loop means the last insn of the 'subprog' 2711 * was reached. Doesn't matter whether it was JA or EXIT 2712 */ 2713 if (frame == 0) 2714 return 0; 2715 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2716 frame--; 2717 i = ret_insn[frame]; 2718 idx = ret_prog[frame]; 2719 goto continue_func; 2720 } 2721 2722 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2723 static int get_callee_stack_depth(struct bpf_verifier_env *env, 2724 const struct bpf_insn *insn, int idx) 2725 { 2726 int start = idx + insn->imm + 1, subprog; 2727 2728 subprog = find_subprog(env, start); 2729 if (subprog < 0) { 2730 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2731 start); 2732 return -EFAULT; 2733 } 2734 return env->subprog_info[subprog].stack_depth; 2735 } 2736 #endif 2737 2738 int check_ctx_reg(struct bpf_verifier_env *env, 2739 const struct bpf_reg_state *reg, int regno) 2740 { 2741 /* Access to ctx or passing it to a helper is only allowed in 2742 * its original, unmodified form. 2743 */ 2744 2745 if (reg->off) { 2746 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 2747 regno, reg->off); 2748 return -EACCES; 2749 } 2750 2751 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2752 char tn_buf[48]; 2753 2754 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2755 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 2756 return -EACCES; 2757 } 2758 2759 return 0; 2760 } 2761 2762 static int check_tp_buffer_access(struct bpf_verifier_env *env, 2763 const struct bpf_reg_state *reg, 2764 int regno, int off, int size) 2765 { 2766 if (off < 0) { 2767 verbose(env, 2768 "R%d invalid tracepoint buffer access: off=%d, size=%d", 2769 regno, off, size); 2770 return -EACCES; 2771 } 2772 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2773 char tn_buf[48]; 2774 2775 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2776 verbose(env, 2777 "R%d invalid variable buffer offset: off=%d, var_off=%s", 2778 regno, off, tn_buf); 2779 return -EACCES; 2780 } 2781 if (off + size > env->prog->aux->max_tp_access) 2782 env->prog->aux->max_tp_access = off + size; 2783 2784 return 0; 2785 } 2786 2787 2788 /* truncate register to smaller size (in bytes) 2789 * must be called with size < BPF_REG_SIZE 2790 */ 2791 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 2792 { 2793 u64 mask; 2794 2795 /* clear high bits in bit representation */ 2796 reg->var_off = tnum_cast(reg->var_off, size); 2797 2798 /* fix arithmetic bounds */ 2799 mask = ((u64)1 << (size * 8)) - 1; 2800 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 2801 reg->umin_value &= mask; 2802 reg->umax_value &= mask; 2803 } else { 2804 reg->umin_value = 0; 2805 reg->umax_value = mask; 2806 } 2807 reg->smin_value = reg->umin_value; 2808 reg->smax_value = reg->umax_value; 2809 } 2810 2811 static bool bpf_map_is_rdonly(const struct bpf_map *map) 2812 { 2813 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 2814 } 2815 2816 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 2817 { 2818 void *ptr; 2819 u64 addr; 2820 int err; 2821 2822 err = map->ops->map_direct_value_addr(map, &addr, off); 2823 if (err) 2824 return err; 2825 ptr = (void *)(long)addr + off; 2826 2827 switch (size) { 2828 case sizeof(u8): 2829 *val = (u64)*(u8 *)ptr; 2830 break; 2831 case sizeof(u16): 2832 *val = (u64)*(u16 *)ptr; 2833 break; 2834 case sizeof(u32): 2835 *val = (u64)*(u32 *)ptr; 2836 break; 2837 case sizeof(u64): 2838 *val = *(u64 *)ptr; 2839 break; 2840 default: 2841 return -EINVAL; 2842 } 2843 return 0; 2844 } 2845 2846 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 2847 struct bpf_reg_state *regs, 2848 int regno, int off, int size, 2849 enum bpf_access_type atype, 2850 int value_regno) 2851 { 2852 struct bpf_reg_state *reg = regs + regno; 2853 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id); 2854 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off); 2855 u32 btf_id; 2856 int ret; 2857 2858 if (off < 0) { 2859 verbose(env, 2860 "R%d is ptr_%s invalid negative access: off=%d\n", 2861 regno, tname, off); 2862 return -EACCES; 2863 } 2864 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2865 char tn_buf[48]; 2866 2867 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2868 verbose(env, 2869 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 2870 regno, tname, off, tn_buf); 2871 return -EACCES; 2872 } 2873 2874 if (env->ops->btf_struct_access) { 2875 ret = env->ops->btf_struct_access(&env->log, t, off, size, 2876 atype, &btf_id); 2877 } else { 2878 if (atype != BPF_READ) { 2879 verbose(env, "only read is supported\n"); 2880 return -EACCES; 2881 } 2882 2883 ret = btf_struct_access(&env->log, t, off, size, atype, 2884 &btf_id); 2885 } 2886 2887 if (ret < 0) 2888 return ret; 2889 2890 if (atype == BPF_READ) { 2891 if (ret == SCALAR_VALUE) { 2892 mark_reg_unknown(env, regs, value_regno); 2893 return 0; 2894 } 2895 mark_reg_known_zero(env, regs, value_regno); 2896 regs[value_regno].type = PTR_TO_BTF_ID; 2897 regs[value_regno].btf_id = btf_id; 2898 } 2899 2900 return 0; 2901 } 2902 2903 /* check whether memory at (regno + off) is accessible for t = (read | write) 2904 * if t==write, value_regno is a register which value is stored into memory 2905 * if t==read, value_regno is a register which will receive the value from memory 2906 * if t==write && value_regno==-1, some unknown value is stored into memory 2907 * if t==read && value_regno==-1, don't care what we read from memory 2908 */ 2909 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 2910 int off, int bpf_size, enum bpf_access_type t, 2911 int value_regno, bool strict_alignment_once) 2912 { 2913 struct bpf_reg_state *regs = cur_regs(env); 2914 struct bpf_reg_state *reg = regs + regno; 2915 struct bpf_func_state *state; 2916 int size, err = 0; 2917 2918 size = bpf_size_to_bytes(bpf_size); 2919 if (size < 0) 2920 return size; 2921 2922 /* alignment checks will add in reg->off themselves */ 2923 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 2924 if (err) 2925 return err; 2926 2927 /* for access checks, reg->off is just part of off */ 2928 off += reg->off; 2929 2930 if (reg->type == PTR_TO_MAP_VALUE) { 2931 if (t == BPF_WRITE && value_regno >= 0 && 2932 is_pointer_value(env, value_regno)) { 2933 verbose(env, "R%d leaks addr into map\n", value_regno); 2934 return -EACCES; 2935 } 2936 err = check_map_access_type(env, regno, off, size, t); 2937 if (err) 2938 return err; 2939 err = check_map_access(env, regno, off, size, false); 2940 if (!err && t == BPF_READ && value_regno >= 0) { 2941 struct bpf_map *map = reg->map_ptr; 2942 2943 /* if map is read-only, track its contents as scalars */ 2944 if (tnum_is_const(reg->var_off) && 2945 bpf_map_is_rdonly(map) && 2946 map->ops->map_direct_value_addr) { 2947 int map_off = off + reg->var_off.value; 2948 u64 val = 0; 2949 2950 err = bpf_map_direct_read(map, map_off, size, 2951 &val); 2952 if (err) 2953 return err; 2954 2955 regs[value_regno].type = SCALAR_VALUE; 2956 __mark_reg_known(®s[value_regno], val); 2957 } else { 2958 mark_reg_unknown(env, regs, value_regno); 2959 } 2960 } 2961 } else if (reg->type == PTR_TO_CTX) { 2962 enum bpf_reg_type reg_type = SCALAR_VALUE; 2963 u32 btf_id = 0; 2964 2965 if (t == BPF_WRITE && value_regno >= 0 && 2966 is_pointer_value(env, value_regno)) { 2967 verbose(env, "R%d leaks addr into ctx\n", value_regno); 2968 return -EACCES; 2969 } 2970 2971 err = check_ctx_reg(env, reg, regno); 2972 if (err < 0) 2973 return err; 2974 2975 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf_id); 2976 if (err) 2977 verbose_linfo(env, insn_idx, "; "); 2978 if (!err && t == BPF_READ && value_regno >= 0) { 2979 /* ctx access returns either a scalar, or a 2980 * PTR_TO_PACKET[_META,_END]. In the latter 2981 * case, we know the offset is zero. 2982 */ 2983 if (reg_type == SCALAR_VALUE) { 2984 mark_reg_unknown(env, regs, value_regno); 2985 } else { 2986 mark_reg_known_zero(env, regs, 2987 value_regno); 2988 if (reg_type_may_be_null(reg_type)) 2989 regs[value_regno].id = ++env->id_gen; 2990 /* A load of ctx field could have different 2991 * actual load size with the one encoded in the 2992 * insn. When the dst is PTR, it is for sure not 2993 * a sub-register. 2994 */ 2995 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 2996 if (reg_type == PTR_TO_BTF_ID) 2997 regs[value_regno].btf_id = btf_id; 2998 } 2999 regs[value_regno].type = reg_type; 3000 } 3001 3002 } else if (reg->type == PTR_TO_STACK) { 3003 off += reg->var_off.value; 3004 err = check_stack_access(env, reg, off, size); 3005 if (err) 3006 return err; 3007 3008 state = func(env, reg); 3009 err = update_stack_depth(env, state, off); 3010 if (err) 3011 return err; 3012 3013 if (t == BPF_WRITE) 3014 err = check_stack_write(env, state, off, size, 3015 value_regno, insn_idx); 3016 else 3017 err = check_stack_read(env, state, off, size, 3018 value_regno); 3019 } else if (reg_is_pkt_pointer(reg)) { 3020 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 3021 verbose(env, "cannot write into packet\n"); 3022 return -EACCES; 3023 } 3024 if (t == BPF_WRITE && value_regno >= 0 && 3025 is_pointer_value(env, value_regno)) { 3026 verbose(env, "R%d leaks addr into packet\n", 3027 value_regno); 3028 return -EACCES; 3029 } 3030 err = check_packet_access(env, regno, off, size, false); 3031 if (!err && t == BPF_READ && value_regno >= 0) 3032 mark_reg_unknown(env, regs, value_regno); 3033 } else if (reg->type == PTR_TO_FLOW_KEYS) { 3034 if (t == BPF_WRITE && value_regno >= 0 && 3035 is_pointer_value(env, value_regno)) { 3036 verbose(env, "R%d leaks addr into flow keys\n", 3037 value_regno); 3038 return -EACCES; 3039 } 3040 3041 err = check_flow_keys_access(env, off, size); 3042 if (!err && t == BPF_READ && value_regno >= 0) 3043 mark_reg_unknown(env, regs, value_regno); 3044 } else if (type_is_sk_pointer(reg->type)) { 3045 if (t == BPF_WRITE) { 3046 verbose(env, "R%d cannot write into %s\n", 3047 regno, reg_type_str[reg->type]); 3048 return -EACCES; 3049 } 3050 err = check_sock_access(env, insn_idx, regno, off, size, t); 3051 if (!err && value_regno >= 0) 3052 mark_reg_unknown(env, regs, value_regno); 3053 } else if (reg->type == PTR_TO_TP_BUFFER) { 3054 err = check_tp_buffer_access(env, reg, regno, off, size); 3055 if (!err && t == BPF_READ && value_regno >= 0) 3056 mark_reg_unknown(env, regs, value_regno); 3057 } else if (reg->type == PTR_TO_BTF_ID) { 3058 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 3059 value_regno); 3060 } else { 3061 verbose(env, "R%d invalid mem access '%s'\n", regno, 3062 reg_type_str[reg->type]); 3063 return -EACCES; 3064 } 3065 3066 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 3067 regs[value_regno].type == SCALAR_VALUE) { 3068 /* b/h/w load zero-extends, mark upper bits as known 0 */ 3069 coerce_reg_to_size(®s[value_regno], size); 3070 } 3071 return err; 3072 } 3073 3074 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 3075 { 3076 int err; 3077 3078 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 3079 insn->imm != 0) { 3080 verbose(env, "BPF_XADD uses reserved fields\n"); 3081 return -EINVAL; 3082 } 3083 3084 /* check src1 operand */ 3085 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3086 if (err) 3087 return err; 3088 3089 /* check src2 operand */ 3090 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3091 if (err) 3092 return err; 3093 3094 if (is_pointer_value(env, insn->src_reg)) { 3095 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 3096 return -EACCES; 3097 } 3098 3099 if (is_ctx_reg(env, insn->dst_reg) || 3100 is_pkt_reg(env, insn->dst_reg) || 3101 is_flow_key_reg(env, insn->dst_reg) || 3102 is_sk_reg(env, insn->dst_reg)) { 3103 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 3104 insn->dst_reg, 3105 reg_type_str[reg_state(env, insn->dst_reg)->type]); 3106 return -EACCES; 3107 } 3108 3109 /* check whether atomic_add can read the memory */ 3110 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3111 BPF_SIZE(insn->code), BPF_READ, -1, true); 3112 if (err) 3113 return err; 3114 3115 /* check whether atomic_add can write into the same memory */ 3116 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3117 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 3118 } 3119 3120 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, 3121 int off, int access_size, 3122 bool zero_size_allowed) 3123 { 3124 struct bpf_reg_state *reg = reg_state(env, regno); 3125 3126 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 3127 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 3128 if (tnum_is_const(reg->var_off)) { 3129 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 3130 regno, off, access_size); 3131 } else { 3132 char tn_buf[48]; 3133 3134 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3135 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", 3136 regno, tn_buf, access_size); 3137 } 3138 return -EACCES; 3139 } 3140 return 0; 3141 } 3142 3143 /* when register 'regno' is passed into function that will read 'access_size' 3144 * bytes from that pointer, make sure that it's within stack boundary 3145 * and all elements of stack are initialized. 3146 * Unlike most pointer bounds-checking functions, this one doesn't take an 3147 * 'off' argument, so it has to add in reg->off itself. 3148 */ 3149 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 3150 int access_size, bool zero_size_allowed, 3151 struct bpf_call_arg_meta *meta) 3152 { 3153 struct bpf_reg_state *reg = reg_state(env, regno); 3154 struct bpf_func_state *state = func(env, reg); 3155 int err, min_off, max_off, i, j, slot, spi; 3156 3157 if (reg->type != PTR_TO_STACK) { 3158 /* Allow zero-byte read from NULL, regardless of pointer type */ 3159 if (zero_size_allowed && access_size == 0 && 3160 register_is_null(reg)) 3161 return 0; 3162 3163 verbose(env, "R%d type=%s expected=%s\n", regno, 3164 reg_type_str[reg->type], 3165 reg_type_str[PTR_TO_STACK]); 3166 return -EACCES; 3167 } 3168 3169 if (tnum_is_const(reg->var_off)) { 3170 min_off = max_off = reg->var_off.value + reg->off; 3171 err = __check_stack_boundary(env, regno, min_off, access_size, 3172 zero_size_allowed); 3173 if (err) 3174 return err; 3175 } else { 3176 /* Variable offset is prohibited for unprivileged mode for 3177 * simplicity since it requires corresponding support in 3178 * Spectre masking for stack ALU. 3179 * See also retrieve_ptr_limit(). 3180 */ 3181 if (!env->allow_ptr_leaks) { 3182 char tn_buf[48]; 3183 3184 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3185 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", 3186 regno, tn_buf); 3187 return -EACCES; 3188 } 3189 /* Only initialized buffer on stack is allowed to be accessed 3190 * with variable offset. With uninitialized buffer it's hard to 3191 * guarantee that whole memory is marked as initialized on 3192 * helper return since specific bounds are unknown what may 3193 * cause uninitialized stack leaking. 3194 */ 3195 if (meta && meta->raw_mode) 3196 meta = NULL; 3197 3198 if (reg->smax_value >= BPF_MAX_VAR_OFF || 3199 reg->smax_value <= -BPF_MAX_VAR_OFF) { 3200 verbose(env, "R%d unbounded indirect variable offset stack access\n", 3201 regno); 3202 return -EACCES; 3203 } 3204 min_off = reg->smin_value + reg->off; 3205 max_off = reg->smax_value + reg->off; 3206 err = __check_stack_boundary(env, regno, min_off, access_size, 3207 zero_size_allowed); 3208 if (err) { 3209 verbose(env, "R%d min value is outside of stack bound\n", 3210 regno); 3211 return err; 3212 } 3213 err = __check_stack_boundary(env, regno, max_off, access_size, 3214 zero_size_allowed); 3215 if (err) { 3216 verbose(env, "R%d max value is outside of stack bound\n", 3217 regno); 3218 return err; 3219 } 3220 } 3221 3222 if (meta && meta->raw_mode) { 3223 meta->access_size = access_size; 3224 meta->regno = regno; 3225 return 0; 3226 } 3227 3228 for (i = min_off; i < max_off + access_size; i++) { 3229 u8 *stype; 3230 3231 slot = -i - 1; 3232 spi = slot / BPF_REG_SIZE; 3233 if (state->allocated_stack <= slot) 3234 goto err; 3235 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3236 if (*stype == STACK_MISC) 3237 goto mark; 3238 if (*stype == STACK_ZERO) { 3239 /* helper can write anything into the stack */ 3240 *stype = STACK_MISC; 3241 goto mark; 3242 } 3243 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3244 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) { 3245 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 3246 for (j = 0; j < BPF_REG_SIZE; j++) 3247 state->stack[spi].slot_type[j] = STACK_MISC; 3248 goto mark; 3249 } 3250 3251 err: 3252 if (tnum_is_const(reg->var_off)) { 3253 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 3254 min_off, i - min_off, access_size); 3255 } else { 3256 char tn_buf[48]; 3257 3258 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3259 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", 3260 tn_buf, i - min_off, access_size); 3261 } 3262 return -EACCES; 3263 mark: 3264 /* reading any byte out of 8-byte 'spill_slot' will cause 3265 * the whole slot to be marked as 'read' 3266 */ 3267 mark_reg_read(env, &state->stack[spi].spilled_ptr, 3268 state->stack[spi].spilled_ptr.parent, 3269 REG_LIVE_READ64); 3270 } 3271 return update_stack_depth(env, state, min_off); 3272 } 3273 3274 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 3275 int access_size, bool zero_size_allowed, 3276 struct bpf_call_arg_meta *meta) 3277 { 3278 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3279 3280 switch (reg->type) { 3281 case PTR_TO_PACKET: 3282 case PTR_TO_PACKET_META: 3283 return check_packet_access(env, regno, reg->off, access_size, 3284 zero_size_allowed); 3285 case PTR_TO_MAP_VALUE: 3286 if (check_map_access_type(env, regno, reg->off, access_size, 3287 meta && meta->raw_mode ? BPF_WRITE : 3288 BPF_READ)) 3289 return -EACCES; 3290 return check_map_access(env, regno, reg->off, access_size, 3291 zero_size_allowed); 3292 default: /* scalar_value|ptr_to_stack or invalid ptr */ 3293 return check_stack_boundary(env, regno, access_size, 3294 zero_size_allowed, meta); 3295 } 3296 } 3297 3298 /* Implementation details: 3299 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 3300 * Two bpf_map_lookups (even with the same key) will have different reg->id. 3301 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 3302 * value_or_null->value transition, since the verifier only cares about 3303 * the range of access to valid map value pointer and doesn't care about actual 3304 * address of the map element. 3305 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 3306 * reg->id > 0 after value_or_null->value transition. By doing so 3307 * two bpf_map_lookups will be considered two different pointers that 3308 * point to different bpf_spin_locks. 3309 * The verifier allows taking only one bpf_spin_lock at a time to avoid 3310 * dead-locks. 3311 * Since only one bpf_spin_lock is allowed the checks are simpler than 3312 * reg_is_refcounted() logic. The verifier needs to remember only 3313 * one spin_lock instead of array of acquired_refs. 3314 * cur_state->active_spin_lock remembers which map value element got locked 3315 * and clears it after bpf_spin_unlock. 3316 */ 3317 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 3318 bool is_lock) 3319 { 3320 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3321 struct bpf_verifier_state *cur = env->cur_state; 3322 bool is_const = tnum_is_const(reg->var_off); 3323 struct bpf_map *map = reg->map_ptr; 3324 u64 val = reg->var_off.value; 3325 3326 if (reg->type != PTR_TO_MAP_VALUE) { 3327 verbose(env, "R%d is not a pointer to map_value\n", regno); 3328 return -EINVAL; 3329 } 3330 if (!is_const) { 3331 verbose(env, 3332 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 3333 regno); 3334 return -EINVAL; 3335 } 3336 if (!map->btf) { 3337 verbose(env, 3338 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 3339 map->name); 3340 return -EINVAL; 3341 } 3342 if (!map_value_has_spin_lock(map)) { 3343 if (map->spin_lock_off == -E2BIG) 3344 verbose(env, 3345 "map '%s' has more than one 'struct bpf_spin_lock'\n", 3346 map->name); 3347 else if (map->spin_lock_off == -ENOENT) 3348 verbose(env, 3349 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 3350 map->name); 3351 else 3352 verbose(env, 3353 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 3354 map->name); 3355 return -EINVAL; 3356 } 3357 if (map->spin_lock_off != val + reg->off) { 3358 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 3359 val + reg->off); 3360 return -EINVAL; 3361 } 3362 if (is_lock) { 3363 if (cur->active_spin_lock) { 3364 verbose(env, 3365 "Locking two bpf_spin_locks are not allowed\n"); 3366 return -EINVAL; 3367 } 3368 cur->active_spin_lock = reg->id; 3369 } else { 3370 if (!cur->active_spin_lock) { 3371 verbose(env, "bpf_spin_unlock without taking a lock\n"); 3372 return -EINVAL; 3373 } 3374 if (cur->active_spin_lock != reg->id) { 3375 verbose(env, "bpf_spin_unlock of different lock\n"); 3376 return -EINVAL; 3377 } 3378 cur->active_spin_lock = 0; 3379 } 3380 return 0; 3381 } 3382 3383 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 3384 { 3385 return type == ARG_PTR_TO_MEM || 3386 type == ARG_PTR_TO_MEM_OR_NULL || 3387 type == ARG_PTR_TO_UNINIT_MEM; 3388 } 3389 3390 static bool arg_type_is_mem_size(enum bpf_arg_type type) 3391 { 3392 return type == ARG_CONST_SIZE || 3393 type == ARG_CONST_SIZE_OR_ZERO; 3394 } 3395 3396 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 3397 { 3398 return type == ARG_PTR_TO_INT || 3399 type == ARG_PTR_TO_LONG; 3400 } 3401 3402 static int int_ptr_type_to_size(enum bpf_arg_type type) 3403 { 3404 if (type == ARG_PTR_TO_INT) 3405 return sizeof(u32); 3406 else if (type == ARG_PTR_TO_LONG) 3407 return sizeof(u64); 3408 3409 return -EINVAL; 3410 } 3411 3412 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 3413 enum bpf_arg_type arg_type, 3414 struct bpf_call_arg_meta *meta) 3415 { 3416 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3417 enum bpf_reg_type expected_type, type = reg->type; 3418 int err = 0; 3419 3420 if (arg_type == ARG_DONTCARE) 3421 return 0; 3422 3423 err = check_reg_arg(env, regno, SRC_OP); 3424 if (err) 3425 return err; 3426 3427 if (arg_type == ARG_ANYTHING) { 3428 if (is_pointer_value(env, regno)) { 3429 verbose(env, "R%d leaks addr into helper function\n", 3430 regno); 3431 return -EACCES; 3432 } 3433 return 0; 3434 } 3435 3436 if (type_is_pkt_pointer(type) && 3437 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 3438 verbose(env, "helper access to the packet is not allowed\n"); 3439 return -EACCES; 3440 } 3441 3442 if (arg_type == ARG_PTR_TO_MAP_KEY || 3443 arg_type == ARG_PTR_TO_MAP_VALUE || 3444 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 3445 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 3446 expected_type = PTR_TO_STACK; 3447 if (register_is_null(reg) && 3448 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) 3449 /* final test in check_stack_boundary() */; 3450 else if (!type_is_pkt_pointer(type) && 3451 type != PTR_TO_MAP_VALUE && 3452 type != expected_type) 3453 goto err_type; 3454 } else if (arg_type == ARG_CONST_SIZE || 3455 arg_type == ARG_CONST_SIZE_OR_ZERO) { 3456 expected_type = SCALAR_VALUE; 3457 if (type != expected_type) 3458 goto err_type; 3459 } else if (arg_type == ARG_CONST_MAP_PTR) { 3460 expected_type = CONST_PTR_TO_MAP; 3461 if (type != expected_type) 3462 goto err_type; 3463 } else if (arg_type == ARG_PTR_TO_CTX) { 3464 expected_type = PTR_TO_CTX; 3465 if (type != expected_type) 3466 goto err_type; 3467 err = check_ctx_reg(env, reg, regno); 3468 if (err < 0) 3469 return err; 3470 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) { 3471 expected_type = PTR_TO_SOCK_COMMON; 3472 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */ 3473 if (!type_is_sk_pointer(type)) 3474 goto err_type; 3475 if (reg->ref_obj_id) { 3476 if (meta->ref_obj_id) { 3477 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 3478 regno, reg->ref_obj_id, 3479 meta->ref_obj_id); 3480 return -EFAULT; 3481 } 3482 meta->ref_obj_id = reg->ref_obj_id; 3483 } 3484 } else if (arg_type == ARG_PTR_TO_SOCKET) { 3485 expected_type = PTR_TO_SOCKET; 3486 if (type != expected_type) 3487 goto err_type; 3488 } else if (arg_type == ARG_PTR_TO_BTF_ID) { 3489 expected_type = PTR_TO_BTF_ID; 3490 if (type != expected_type) 3491 goto err_type; 3492 if (reg->btf_id != meta->btf_id) { 3493 verbose(env, "Helper has type %s got %s in R%d\n", 3494 kernel_type_name(meta->btf_id), 3495 kernel_type_name(reg->btf_id), regno); 3496 3497 return -EACCES; 3498 } 3499 if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) { 3500 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 3501 regno); 3502 return -EACCES; 3503 } 3504 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 3505 if (meta->func_id == BPF_FUNC_spin_lock) { 3506 if (process_spin_lock(env, regno, true)) 3507 return -EACCES; 3508 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 3509 if (process_spin_lock(env, regno, false)) 3510 return -EACCES; 3511 } else { 3512 verbose(env, "verifier internal error\n"); 3513 return -EFAULT; 3514 } 3515 } else if (arg_type_is_mem_ptr(arg_type)) { 3516 expected_type = PTR_TO_STACK; 3517 /* One exception here. In case function allows for NULL to be 3518 * passed in as argument, it's a SCALAR_VALUE type. Final test 3519 * happens during stack boundary checking. 3520 */ 3521 if (register_is_null(reg) && 3522 arg_type == ARG_PTR_TO_MEM_OR_NULL) 3523 /* final test in check_stack_boundary() */; 3524 else if (!type_is_pkt_pointer(type) && 3525 type != PTR_TO_MAP_VALUE && 3526 type != expected_type) 3527 goto err_type; 3528 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 3529 } else if (arg_type_is_int_ptr(arg_type)) { 3530 expected_type = PTR_TO_STACK; 3531 if (!type_is_pkt_pointer(type) && 3532 type != PTR_TO_MAP_VALUE && 3533 type != expected_type) 3534 goto err_type; 3535 } else { 3536 verbose(env, "unsupported arg_type %d\n", arg_type); 3537 return -EFAULT; 3538 } 3539 3540 if (arg_type == ARG_CONST_MAP_PTR) { 3541 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 3542 meta->map_ptr = reg->map_ptr; 3543 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 3544 /* bpf_map_xxx(..., map_ptr, ..., key) call: 3545 * check that [key, key + map->key_size) are within 3546 * stack limits and initialized 3547 */ 3548 if (!meta->map_ptr) { 3549 /* in function declaration map_ptr must come before 3550 * map_key, so that it's verified and known before 3551 * we have to check map_key here. Otherwise it means 3552 * that kernel subsystem misconfigured verifier 3553 */ 3554 verbose(env, "invalid map_ptr to access map->key\n"); 3555 return -EACCES; 3556 } 3557 err = check_helper_mem_access(env, regno, 3558 meta->map_ptr->key_size, false, 3559 NULL); 3560 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 3561 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 3562 !register_is_null(reg)) || 3563 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 3564 /* bpf_map_xxx(..., map_ptr, ..., value) call: 3565 * check [value, value + map->value_size) validity 3566 */ 3567 if (!meta->map_ptr) { 3568 /* kernel subsystem misconfigured verifier */ 3569 verbose(env, "invalid map_ptr to access map->value\n"); 3570 return -EACCES; 3571 } 3572 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 3573 err = check_helper_mem_access(env, regno, 3574 meta->map_ptr->value_size, false, 3575 meta); 3576 } else if (arg_type_is_mem_size(arg_type)) { 3577 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 3578 3579 /* remember the mem_size which may be used later 3580 * to refine return values. 3581 */ 3582 meta->msize_smax_value = reg->smax_value; 3583 meta->msize_umax_value = reg->umax_value; 3584 3585 /* The register is SCALAR_VALUE; the access check 3586 * happens using its boundaries. 3587 */ 3588 if (!tnum_is_const(reg->var_off)) 3589 /* For unprivileged variable accesses, disable raw 3590 * mode so that the program is required to 3591 * initialize all the memory that the helper could 3592 * just partially fill up. 3593 */ 3594 meta = NULL; 3595 3596 if (reg->smin_value < 0) { 3597 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 3598 regno); 3599 return -EACCES; 3600 } 3601 3602 if (reg->umin_value == 0) { 3603 err = check_helper_mem_access(env, regno - 1, 0, 3604 zero_size_allowed, 3605 meta); 3606 if (err) 3607 return err; 3608 } 3609 3610 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 3611 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 3612 regno); 3613 return -EACCES; 3614 } 3615 err = check_helper_mem_access(env, regno - 1, 3616 reg->umax_value, 3617 zero_size_allowed, meta); 3618 if (!err) 3619 err = mark_chain_precision(env, regno); 3620 } else if (arg_type_is_int_ptr(arg_type)) { 3621 int size = int_ptr_type_to_size(arg_type); 3622 3623 err = check_helper_mem_access(env, regno, size, false, meta); 3624 if (err) 3625 return err; 3626 err = check_ptr_alignment(env, reg, 0, size, true); 3627 } 3628 3629 return err; 3630 err_type: 3631 verbose(env, "R%d type=%s expected=%s\n", regno, 3632 reg_type_str[type], reg_type_str[expected_type]); 3633 return -EACCES; 3634 } 3635 3636 static int check_map_func_compatibility(struct bpf_verifier_env *env, 3637 struct bpf_map *map, int func_id) 3638 { 3639 if (!map) 3640 return 0; 3641 3642 /* We need a two way check, first is from map perspective ... */ 3643 switch (map->map_type) { 3644 case BPF_MAP_TYPE_PROG_ARRAY: 3645 if (func_id != BPF_FUNC_tail_call) 3646 goto error; 3647 break; 3648 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 3649 if (func_id != BPF_FUNC_perf_event_read && 3650 func_id != BPF_FUNC_perf_event_output && 3651 func_id != BPF_FUNC_skb_output && 3652 func_id != BPF_FUNC_perf_event_read_value) 3653 goto error; 3654 break; 3655 case BPF_MAP_TYPE_STACK_TRACE: 3656 if (func_id != BPF_FUNC_get_stackid) 3657 goto error; 3658 break; 3659 case BPF_MAP_TYPE_CGROUP_ARRAY: 3660 if (func_id != BPF_FUNC_skb_under_cgroup && 3661 func_id != BPF_FUNC_current_task_under_cgroup) 3662 goto error; 3663 break; 3664 case BPF_MAP_TYPE_CGROUP_STORAGE: 3665 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 3666 if (func_id != BPF_FUNC_get_local_storage) 3667 goto error; 3668 break; 3669 case BPF_MAP_TYPE_DEVMAP: 3670 case BPF_MAP_TYPE_DEVMAP_HASH: 3671 if (func_id != BPF_FUNC_redirect_map && 3672 func_id != BPF_FUNC_map_lookup_elem) 3673 goto error; 3674 break; 3675 /* Restrict bpf side of cpumap and xskmap, open when use-cases 3676 * appear. 3677 */ 3678 case BPF_MAP_TYPE_CPUMAP: 3679 if (func_id != BPF_FUNC_redirect_map) 3680 goto error; 3681 break; 3682 case BPF_MAP_TYPE_XSKMAP: 3683 if (func_id != BPF_FUNC_redirect_map && 3684 func_id != BPF_FUNC_map_lookup_elem) 3685 goto error; 3686 break; 3687 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 3688 case BPF_MAP_TYPE_HASH_OF_MAPS: 3689 if (func_id != BPF_FUNC_map_lookup_elem) 3690 goto error; 3691 break; 3692 case BPF_MAP_TYPE_SOCKMAP: 3693 if (func_id != BPF_FUNC_sk_redirect_map && 3694 func_id != BPF_FUNC_sock_map_update && 3695 func_id != BPF_FUNC_map_delete_elem && 3696 func_id != BPF_FUNC_msg_redirect_map && 3697 func_id != BPF_FUNC_sk_select_reuseport) 3698 goto error; 3699 break; 3700 case BPF_MAP_TYPE_SOCKHASH: 3701 if (func_id != BPF_FUNC_sk_redirect_hash && 3702 func_id != BPF_FUNC_sock_hash_update && 3703 func_id != BPF_FUNC_map_delete_elem && 3704 func_id != BPF_FUNC_msg_redirect_hash && 3705 func_id != BPF_FUNC_sk_select_reuseport) 3706 goto error; 3707 break; 3708 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 3709 if (func_id != BPF_FUNC_sk_select_reuseport) 3710 goto error; 3711 break; 3712 case BPF_MAP_TYPE_QUEUE: 3713 case BPF_MAP_TYPE_STACK: 3714 if (func_id != BPF_FUNC_map_peek_elem && 3715 func_id != BPF_FUNC_map_pop_elem && 3716 func_id != BPF_FUNC_map_push_elem) 3717 goto error; 3718 break; 3719 case BPF_MAP_TYPE_SK_STORAGE: 3720 if (func_id != BPF_FUNC_sk_storage_get && 3721 func_id != BPF_FUNC_sk_storage_delete) 3722 goto error; 3723 break; 3724 default: 3725 break; 3726 } 3727 3728 /* ... and second from the function itself. */ 3729 switch (func_id) { 3730 case BPF_FUNC_tail_call: 3731 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 3732 goto error; 3733 if (env->subprog_cnt > 1) { 3734 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 3735 return -EINVAL; 3736 } 3737 break; 3738 case BPF_FUNC_perf_event_read: 3739 case BPF_FUNC_perf_event_output: 3740 case BPF_FUNC_perf_event_read_value: 3741 case BPF_FUNC_skb_output: 3742 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 3743 goto error; 3744 break; 3745 case BPF_FUNC_get_stackid: 3746 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 3747 goto error; 3748 break; 3749 case BPF_FUNC_current_task_under_cgroup: 3750 case BPF_FUNC_skb_under_cgroup: 3751 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 3752 goto error; 3753 break; 3754 case BPF_FUNC_redirect_map: 3755 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 3756 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 3757 map->map_type != BPF_MAP_TYPE_CPUMAP && 3758 map->map_type != BPF_MAP_TYPE_XSKMAP) 3759 goto error; 3760 break; 3761 case BPF_FUNC_sk_redirect_map: 3762 case BPF_FUNC_msg_redirect_map: 3763 case BPF_FUNC_sock_map_update: 3764 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 3765 goto error; 3766 break; 3767 case BPF_FUNC_sk_redirect_hash: 3768 case BPF_FUNC_msg_redirect_hash: 3769 case BPF_FUNC_sock_hash_update: 3770 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 3771 goto error; 3772 break; 3773 case BPF_FUNC_get_local_storage: 3774 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 3775 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 3776 goto error; 3777 break; 3778 case BPF_FUNC_sk_select_reuseport: 3779 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 3780 map->map_type != BPF_MAP_TYPE_SOCKMAP && 3781 map->map_type != BPF_MAP_TYPE_SOCKHASH) 3782 goto error; 3783 break; 3784 case BPF_FUNC_map_peek_elem: 3785 case BPF_FUNC_map_pop_elem: 3786 case BPF_FUNC_map_push_elem: 3787 if (map->map_type != BPF_MAP_TYPE_QUEUE && 3788 map->map_type != BPF_MAP_TYPE_STACK) 3789 goto error; 3790 break; 3791 case BPF_FUNC_sk_storage_get: 3792 case BPF_FUNC_sk_storage_delete: 3793 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 3794 goto error; 3795 break; 3796 default: 3797 break; 3798 } 3799 3800 return 0; 3801 error: 3802 verbose(env, "cannot pass map_type %d into func %s#%d\n", 3803 map->map_type, func_id_name(func_id), func_id); 3804 return -EINVAL; 3805 } 3806 3807 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 3808 { 3809 int count = 0; 3810 3811 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 3812 count++; 3813 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 3814 count++; 3815 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 3816 count++; 3817 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 3818 count++; 3819 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 3820 count++; 3821 3822 /* We only support one arg being in raw mode at the moment, 3823 * which is sufficient for the helper functions we have 3824 * right now. 3825 */ 3826 return count <= 1; 3827 } 3828 3829 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 3830 enum bpf_arg_type arg_next) 3831 { 3832 return (arg_type_is_mem_ptr(arg_curr) && 3833 !arg_type_is_mem_size(arg_next)) || 3834 (!arg_type_is_mem_ptr(arg_curr) && 3835 arg_type_is_mem_size(arg_next)); 3836 } 3837 3838 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 3839 { 3840 /* bpf_xxx(..., buf, len) call will access 'len' 3841 * bytes from memory 'buf'. Both arg types need 3842 * to be paired, so make sure there's no buggy 3843 * helper function specification. 3844 */ 3845 if (arg_type_is_mem_size(fn->arg1_type) || 3846 arg_type_is_mem_ptr(fn->arg5_type) || 3847 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 3848 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 3849 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 3850 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 3851 return false; 3852 3853 return true; 3854 } 3855 3856 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 3857 { 3858 int count = 0; 3859 3860 if (arg_type_may_be_refcounted(fn->arg1_type)) 3861 count++; 3862 if (arg_type_may_be_refcounted(fn->arg2_type)) 3863 count++; 3864 if (arg_type_may_be_refcounted(fn->arg3_type)) 3865 count++; 3866 if (arg_type_may_be_refcounted(fn->arg4_type)) 3867 count++; 3868 if (arg_type_may_be_refcounted(fn->arg5_type)) 3869 count++; 3870 3871 /* A reference acquiring function cannot acquire 3872 * another refcounted ptr. 3873 */ 3874 if (is_acquire_function(func_id) && count) 3875 return false; 3876 3877 /* We only support one arg being unreferenced at the moment, 3878 * which is sufficient for the helper functions we have right now. 3879 */ 3880 return count <= 1; 3881 } 3882 3883 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 3884 { 3885 return check_raw_mode_ok(fn) && 3886 check_arg_pair_ok(fn) && 3887 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 3888 } 3889 3890 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 3891 * are now invalid, so turn them into unknown SCALAR_VALUE. 3892 */ 3893 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 3894 struct bpf_func_state *state) 3895 { 3896 struct bpf_reg_state *regs = state->regs, *reg; 3897 int i; 3898 3899 for (i = 0; i < MAX_BPF_REG; i++) 3900 if (reg_is_pkt_pointer_any(®s[i])) 3901 mark_reg_unknown(env, regs, i); 3902 3903 bpf_for_each_spilled_reg(i, state, reg) { 3904 if (!reg) 3905 continue; 3906 if (reg_is_pkt_pointer_any(reg)) 3907 __mark_reg_unknown(env, reg); 3908 } 3909 } 3910 3911 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 3912 { 3913 struct bpf_verifier_state *vstate = env->cur_state; 3914 int i; 3915 3916 for (i = 0; i <= vstate->curframe; i++) 3917 __clear_all_pkt_pointers(env, vstate->frame[i]); 3918 } 3919 3920 static void release_reg_references(struct bpf_verifier_env *env, 3921 struct bpf_func_state *state, 3922 int ref_obj_id) 3923 { 3924 struct bpf_reg_state *regs = state->regs, *reg; 3925 int i; 3926 3927 for (i = 0; i < MAX_BPF_REG; i++) 3928 if (regs[i].ref_obj_id == ref_obj_id) 3929 mark_reg_unknown(env, regs, i); 3930 3931 bpf_for_each_spilled_reg(i, state, reg) { 3932 if (!reg) 3933 continue; 3934 if (reg->ref_obj_id == ref_obj_id) 3935 __mark_reg_unknown(env, reg); 3936 } 3937 } 3938 3939 /* The pointer with the specified id has released its reference to kernel 3940 * resources. Identify all copies of the same pointer and clear the reference. 3941 */ 3942 static int release_reference(struct bpf_verifier_env *env, 3943 int ref_obj_id) 3944 { 3945 struct bpf_verifier_state *vstate = env->cur_state; 3946 int err; 3947 int i; 3948 3949 err = release_reference_state(cur_func(env), ref_obj_id); 3950 if (err) 3951 return err; 3952 3953 for (i = 0; i <= vstate->curframe; i++) 3954 release_reg_references(env, vstate->frame[i], ref_obj_id); 3955 3956 return 0; 3957 } 3958 3959 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 3960 struct bpf_reg_state *regs) 3961 { 3962 int i; 3963 3964 /* after the call registers r0 - r5 were scratched */ 3965 for (i = 0; i < CALLER_SAVED_REGS; i++) { 3966 mark_reg_not_init(env, regs, caller_saved[i]); 3967 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 3968 } 3969 } 3970 3971 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 3972 int *insn_idx) 3973 { 3974 struct bpf_verifier_state *state = env->cur_state; 3975 struct bpf_func_info_aux *func_info_aux; 3976 struct bpf_func_state *caller, *callee; 3977 int i, err, subprog, target_insn; 3978 bool is_global = false; 3979 3980 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 3981 verbose(env, "the call stack of %d frames is too deep\n", 3982 state->curframe + 2); 3983 return -E2BIG; 3984 } 3985 3986 target_insn = *insn_idx + insn->imm; 3987 subprog = find_subprog(env, target_insn + 1); 3988 if (subprog < 0) { 3989 verbose(env, "verifier bug. No program starts at insn %d\n", 3990 target_insn + 1); 3991 return -EFAULT; 3992 } 3993 3994 caller = state->frame[state->curframe]; 3995 if (state->frame[state->curframe + 1]) { 3996 verbose(env, "verifier bug. Frame %d already allocated\n", 3997 state->curframe + 1); 3998 return -EFAULT; 3999 } 4000 4001 func_info_aux = env->prog->aux->func_info_aux; 4002 if (func_info_aux) 4003 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 4004 err = btf_check_func_arg_match(env, subprog, caller->regs); 4005 if (err == -EFAULT) 4006 return err; 4007 if (is_global) { 4008 if (err) { 4009 verbose(env, "Caller passes invalid args into func#%d\n", 4010 subprog); 4011 return err; 4012 } else { 4013 if (env->log.level & BPF_LOG_LEVEL) 4014 verbose(env, 4015 "Func#%d is global and valid. Skipping.\n", 4016 subprog); 4017 clear_caller_saved_regs(env, caller->regs); 4018 4019 /* All global functions return SCALAR_VALUE */ 4020 mark_reg_unknown(env, caller->regs, BPF_REG_0); 4021 4022 /* continue with next insn after call */ 4023 return 0; 4024 } 4025 } 4026 4027 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 4028 if (!callee) 4029 return -ENOMEM; 4030 state->frame[state->curframe + 1] = callee; 4031 4032 /* callee cannot access r0, r6 - r9 for reading and has to write 4033 * into its own stack before reading from it. 4034 * callee can read/write into caller's stack 4035 */ 4036 init_func_state(env, callee, 4037 /* remember the callsite, it will be used by bpf_exit */ 4038 *insn_idx /* callsite */, 4039 state->curframe + 1 /* frameno within this callchain */, 4040 subprog /* subprog number within this prog */); 4041 4042 /* Transfer references to the callee */ 4043 err = transfer_reference_state(callee, caller); 4044 if (err) 4045 return err; 4046 4047 /* copy r1 - r5 args that callee can access. The copy includes parent 4048 * pointers, which connects us up to the liveness chain 4049 */ 4050 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4051 callee->regs[i] = caller->regs[i]; 4052 4053 clear_caller_saved_regs(env, caller->regs); 4054 4055 /* only increment it after check_reg_arg() finished */ 4056 state->curframe++; 4057 4058 /* and go analyze first insn of the callee */ 4059 *insn_idx = target_insn; 4060 4061 if (env->log.level & BPF_LOG_LEVEL) { 4062 verbose(env, "caller:\n"); 4063 print_verifier_state(env, caller); 4064 verbose(env, "callee:\n"); 4065 print_verifier_state(env, callee); 4066 } 4067 return 0; 4068 } 4069 4070 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 4071 { 4072 struct bpf_verifier_state *state = env->cur_state; 4073 struct bpf_func_state *caller, *callee; 4074 struct bpf_reg_state *r0; 4075 int err; 4076 4077 callee = state->frame[state->curframe]; 4078 r0 = &callee->regs[BPF_REG_0]; 4079 if (r0->type == PTR_TO_STACK) { 4080 /* technically it's ok to return caller's stack pointer 4081 * (or caller's caller's pointer) back to the caller, 4082 * since these pointers are valid. Only current stack 4083 * pointer will be invalid as soon as function exits, 4084 * but let's be conservative 4085 */ 4086 verbose(env, "cannot return stack pointer to the caller\n"); 4087 return -EINVAL; 4088 } 4089 4090 state->curframe--; 4091 caller = state->frame[state->curframe]; 4092 /* return to the caller whatever r0 had in the callee */ 4093 caller->regs[BPF_REG_0] = *r0; 4094 4095 /* Transfer references to the caller */ 4096 err = transfer_reference_state(caller, callee); 4097 if (err) 4098 return err; 4099 4100 *insn_idx = callee->callsite + 1; 4101 if (env->log.level & BPF_LOG_LEVEL) { 4102 verbose(env, "returning from callee:\n"); 4103 print_verifier_state(env, callee); 4104 verbose(env, "to caller at %d:\n", *insn_idx); 4105 print_verifier_state(env, caller); 4106 } 4107 /* clear everything in the callee */ 4108 free_func_state(callee); 4109 state->frame[state->curframe + 1] = NULL; 4110 return 0; 4111 } 4112 4113 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 4114 int func_id, 4115 struct bpf_call_arg_meta *meta) 4116 { 4117 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 4118 4119 if (ret_type != RET_INTEGER || 4120 (func_id != BPF_FUNC_get_stack && 4121 func_id != BPF_FUNC_probe_read_str)) 4122 return; 4123 4124 ret_reg->smax_value = meta->msize_smax_value; 4125 ret_reg->umax_value = meta->msize_umax_value; 4126 __reg_deduce_bounds(ret_reg); 4127 __reg_bound_offset(ret_reg); 4128 } 4129 4130 static int 4131 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4132 int func_id, int insn_idx) 4133 { 4134 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4135 struct bpf_map *map = meta->map_ptr; 4136 4137 if (func_id != BPF_FUNC_tail_call && 4138 func_id != BPF_FUNC_map_lookup_elem && 4139 func_id != BPF_FUNC_map_update_elem && 4140 func_id != BPF_FUNC_map_delete_elem && 4141 func_id != BPF_FUNC_map_push_elem && 4142 func_id != BPF_FUNC_map_pop_elem && 4143 func_id != BPF_FUNC_map_peek_elem) 4144 return 0; 4145 4146 if (map == NULL) { 4147 verbose(env, "kernel subsystem misconfigured verifier\n"); 4148 return -EINVAL; 4149 } 4150 4151 /* In case of read-only, some additional restrictions 4152 * need to be applied in order to prevent altering the 4153 * state of the map from program side. 4154 */ 4155 if ((map->map_flags & BPF_F_RDONLY_PROG) && 4156 (func_id == BPF_FUNC_map_delete_elem || 4157 func_id == BPF_FUNC_map_update_elem || 4158 func_id == BPF_FUNC_map_push_elem || 4159 func_id == BPF_FUNC_map_pop_elem)) { 4160 verbose(env, "write into map forbidden\n"); 4161 return -EACCES; 4162 } 4163 4164 if (!BPF_MAP_PTR(aux->map_ptr_state)) 4165 bpf_map_ptr_store(aux, meta->map_ptr, 4166 meta->map_ptr->unpriv_array); 4167 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 4168 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 4169 meta->map_ptr->unpriv_array); 4170 return 0; 4171 } 4172 4173 static int 4174 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4175 int func_id, int insn_idx) 4176 { 4177 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4178 struct bpf_reg_state *regs = cur_regs(env), *reg; 4179 struct bpf_map *map = meta->map_ptr; 4180 struct tnum range; 4181 u64 val; 4182 int err; 4183 4184 if (func_id != BPF_FUNC_tail_call) 4185 return 0; 4186 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 4187 verbose(env, "kernel subsystem misconfigured verifier\n"); 4188 return -EINVAL; 4189 } 4190 4191 range = tnum_range(0, map->max_entries - 1); 4192 reg = ®s[BPF_REG_3]; 4193 4194 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 4195 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4196 return 0; 4197 } 4198 4199 err = mark_chain_precision(env, BPF_REG_3); 4200 if (err) 4201 return err; 4202 4203 val = reg->var_off.value; 4204 if (bpf_map_key_unseen(aux)) 4205 bpf_map_key_store(aux, val); 4206 else if (!bpf_map_key_poisoned(aux) && 4207 bpf_map_key_immediate(aux) != val) 4208 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4209 return 0; 4210 } 4211 4212 static int check_reference_leak(struct bpf_verifier_env *env) 4213 { 4214 struct bpf_func_state *state = cur_func(env); 4215 int i; 4216 4217 for (i = 0; i < state->acquired_refs; i++) { 4218 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 4219 state->refs[i].id, state->refs[i].insn_idx); 4220 } 4221 return state->acquired_refs ? -EINVAL : 0; 4222 } 4223 4224 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 4225 { 4226 const struct bpf_func_proto *fn = NULL; 4227 struct bpf_reg_state *regs; 4228 struct bpf_call_arg_meta meta; 4229 bool changes_data; 4230 int i, err; 4231 4232 /* find function prototype */ 4233 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 4234 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 4235 func_id); 4236 return -EINVAL; 4237 } 4238 4239 if (env->ops->get_func_proto) 4240 fn = env->ops->get_func_proto(func_id, env->prog); 4241 if (!fn) { 4242 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 4243 func_id); 4244 return -EINVAL; 4245 } 4246 4247 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 4248 if (!env->prog->gpl_compatible && fn->gpl_only) { 4249 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 4250 return -EINVAL; 4251 } 4252 4253 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 4254 changes_data = bpf_helper_changes_pkt_data(fn->func); 4255 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 4256 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 4257 func_id_name(func_id), func_id); 4258 return -EINVAL; 4259 } 4260 4261 memset(&meta, 0, sizeof(meta)); 4262 meta.pkt_access = fn->pkt_access; 4263 4264 err = check_func_proto(fn, func_id); 4265 if (err) { 4266 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 4267 func_id_name(func_id), func_id); 4268 return err; 4269 } 4270 4271 meta.func_id = func_id; 4272 /* check args */ 4273 for (i = 0; i < 5; i++) { 4274 err = btf_resolve_helper_id(&env->log, fn, i); 4275 if (err > 0) 4276 meta.btf_id = err; 4277 err = check_func_arg(env, BPF_REG_1 + i, fn->arg_type[i], &meta); 4278 if (err) 4279 return err; 4280 } 4281 4282 err = record_func_map(env, &meta, func_id, insn_idx); 4283 if (err) 4284 return err; 4285 4286 err = record_func_key(env, &meta, func_id, insn_idx); 4287 if (err) 4288 return err; 4289 4290 /* Mark slots with STACK_MISC in case of raw mode, stack offset 4291 * is inferred from register state. 4292 */ 4293 for (i = 0; i < meta.access_size; i++) { 4294 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 4295 BPF_WRITE, -1, false); 4296 if (err) 4297 return err; 4298 } 4299 4300 if (func_id == BPF_FUNC_tail_call) { 4301 err = check_reference_leak(env); 4302 if (err) { 4303 verbose(env, "tail_call would lead to reference leak\n"); 4304 return err; 4305 } 4306 } else if (is_release_function(func_id)) { 4307 err = release_reference(env, meta.ref_obj_id); 4308 if (err) { 4309 verbose(env, "func %s#%d reference has not been acquired before\n", 4310 func_id_name(func_id), func_id); 4311 return err; 4312 } 4313 } 4314 4315 regs = cur_regs(env); 4316 4317 /* check that flags argument in get_local_storage(map, flags) is 0, 4318 * this is required because get_local_storage() can't return an error. 4319 */ 4320 if (func_id == BPF_FUNC_get_local_storage && 4321 !register_is_null(®s[BPF_REG_2])) { 4322 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 4323 return -EINVAL; 4324 } 4325 4326 /* reset caller saved regs */ 4327 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4328 mark_reg_not_init(env, regs, caller_saved[i]); 4329 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4330 } 4331 4332 /* helper call returns 64-bit value. */ 4333 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 4334 4335 /* update return register (already marked as written above) */ 4336 if (fn->ret_type == RET_INTEGER) { 4337 /* sets type to SCALAR_VALUE */ 4338 mark_reg_unknown(env, regs, BPF_REG_0); 4339 } else if (fn->ret_type == RET_VOID) { 4340 regs[BPF_REG_0].type = NOT_INIT; 4341 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 4342 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4343 /* There is no offset yet applied, variable or fixed */ 4344 mark_reg_known_zero(env, regs, BPF_REG_0); 4345 /* remember map_ptr, so that check_map_access() 4346 * can check 'value_size' boundary of memory access 4347 * to map element returned from bpf_map_lookup_elem() 4348 */ 4349 if (meta.map_ptr == NULL) { 4350 verbose(env, 4351 "kernel subsystem misconfigured verifier\n"); 4352 return -EINVAL; 4353 } 4354 regs[BPF_REG_0].map_ptr = meta.map_ptr; 4355 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4356 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 4357 if (map_value_has_spin_lock(meta.map_ptr)) 4358 regs[BPF_REG_0].id = ++env->id_gen; 4359 } else { 4360 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 4361 regs[BPF_REG_0].id = ++env->id_gen; 4362 } 4363 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 4364 mark_reg_known_zero(env, regs, BPF_REG_0); 4365 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 4366 regs[BPF_REG_0].id = ++env->id_gen; 4367 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 4368 mark_reg_known_zero(env, regs, BPF_REG_0); 4369 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 4370 regs[BPF_REG_0].id = ++env->id_gen; 4371 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 4372 mark_reg_known_zero(env, regs, BPF_REG_0); 4373 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 4374 regs[BPF_REG_0].id = ++env->id_gen; 4375 } else { 4376 verbose(env, "unknown return type %d of func %s#%d\n", 4377 fn->ret_type, func_id_name(func_id), func_id); 4378 return -EINVAL; 4379 } 4380 4381 if (is_ptr_cast_function(func_id)) { 4382 /* For release_reference() */ 4383 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 4384 } else if (is_acquire_function(func_id)) { 4385 int id = acquire_reference_state(env, insn_idx); 4386 4387 if (id < 0) 4388 return id; 4389 /* For mark_ptr_or_null_reg() */ 4390 regs[BPF_REG_0].id = id; 4391 /* For release_reference() */ 4392 regs[BPF_REG_0].ref_obj_id = id; 4393 } 4394 4395 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 4396 4397 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 4398 if (err) 4399 return err; 4400 4401 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 4402 const char *err_str; 4403 4404 #ifdef CONFIG_PERF_EVENTS 4405 err = get_callchain_buffers(sysctl_perf_event_max_stack); 4406 err_str = "cannot get callchain buffer for func %s#%d\n"; 4407 #else 4408 err = -ENOTSUPP; 4409 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 4410 #endif 4411 if (err) { 4412 verbose(env, err_str, func_id_name(func_id), func_id); 4413 return err; 4414 } 4415 4416 env->prog->has_callchain_buf = true; 4417 } 4418 4419 if (changes_data) 4420 clear_all_pkt_pointers(env); 4421 return 0; 4422 } 4423 4424 static bool signed_add_overflows(s64 a, s64 b) 4425 { 4426 /* Do the add in u64, where overflow is well-defined */ 4427 s64 res = (s64)((u64)a + (u64)b); 4428 4429 if (b < 0) 4430 return res > a; 4431 return res < a; 4432 } 4433 4434 static bool signed_sub_overflows(s64 a, s64 b) 4435 { 4436 /* Do the sub in u64, where overflow is well-defined */ 4437 s64 res = (s64)((u64)a - (u64)b); 4438 4439 if (b < 0) 4440 return res < a; 4441 return res > a; 4442 } 4443 4444 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 4445 const struct bpf_reg_state *reg, 4446 enum bpf_reg_type type) 4447 { 4448 bool known = tnum_is_const(reg->var_off); 4449 s64 val = reg->var_off.value; 4450 s64 smin = reg->smin_value; 4451 4452 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 4453 verbose(env, "math between %s pointer and %lld is not allowed\n", 4454 reg_type_str[type], val); 4455 return false; 4456 } 4457 4458 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 4459 verbose(env, "%s pointer offset %d is not allowed\n", 4460 reg_type_str[type], reg->off); 4461 return false; 4462 } 4463 4464 if (smin == S64_MIN) { 4465 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 4466 reg_type_str[type]); 4467 return false; 4468 } 4469 4470 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 4471 verbose(env, "value %lld makes %s pointer be out of bounds\n", 4472 smin, reg_type_str[type]); 4473 return false; 4474 } 4475 4476 return true; 4477 } 4478 4479 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 4480 { 4481 return &env->insn_aux_data[env->insn_idx]; 4482 } 4483 4484 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 4485 u32 *ptr_limit, u8 opcode, bool off_is_neg) 4486 { 4487 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 4488 (opcode == BPF_SUB && !off_is_neg); 4489 u32 off; 4490 4491 switch (ptr_reg->type) { 4492 case PTR_TO_STACK: 4493 /* Indirect variable offset stack access is prohibited in 4494 * unprivileged mode so it's not handled here. 4495 */ 4496 off = ptr_reg->off + ptr_reg->var_off.value; 4497 if (mask_to_left) 4498 *ptr_limit = MAX_BPF_STACK + off; 4499 else 4500 *ptr_limit = -off; 4501 return 0; 4502 case PTR_TO_MAP_VALUE: 4503 if (mask_to_left) { 4504 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 4505 } else { 4506 off = ptr_reg->smin_value + ptr_reg->off; 4507 *ptr_limit = ptr_reg->map_ptr->value_size - off; 4508 } 4509 return 0; 4510 default: 4511 return -EINVAL; 4512 } 4513 } 4514 4515 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 4516 const struct bpf_insn *insn) 4517 { 4518 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K; 4519 } 4520 4521 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 4522 u32 alu_state, u32 alu_limit) 4523 { 4524 /* If we arrived here from different branches with different 4525 * state or limits to sanitize, then this won't work. 4526 */ 4527 if (aux->alu_state && 4528 (aux->alu_state != alu_state || 4529 aux->alu_limit != alu_limit)) 4530 return -EACCES; 4531 4532 /* Corresponding fixup done in fixup_bpf_calls(). */ 4533 aux->alu_state = alu_state; 4534 aux->alu_limit = alu_limit; 4535 return 0; 4536 } 4537 4538 static int sanitize_val_alu(struct bpf_verifier_env *env, 4539 struct bpf_insn *insn) 4540 { 4541 struct bpf_insn_aux_data *aux = cur_aux(env); 4542 4543 if (can_skip_alu_sanitation(env, insn)) 4544 return 0; 4545 4546 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 4547 } 4548 4549 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 4550 struct bpf_insn *insn, 4551 const struct bpf_reg_state *ptr_reg, 4552 struct bpf_reg_state *dst_reg, 4553 bool off_is_neg) 4554 { 4555 struct bpf_verifier_state *vstate = env->cur_state; 4556 struct bpf_insn_aux_data *aux = cur_aux(env); 4557 bool ptr_is_dst_reg = ptr_reg == dst_reg; 4558 u8 opcode = BPF_OP(insn->code); 4559 u32 alu_state, alu_limit; 4560 struct bpf_reg_state tmp; 4561 bool ret; 4562 4563 if (can_skip_alu_sanitation(env, insn)) 4564 return 0; 4565 4566 /* We already marked aux for masking from non-speculative 4567 * paths, thus we got here in the first place. We only care 4568 * to explore bad access from here. 4569 */ 4570 if (vstate->speculative) 4571 goto do_sim; 4572 4573 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 4574 alu_state |= ptr_is_dst_reg ? 4575 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 4576 4577 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 4578 return 0; 4579 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 4580 return -EACCES; 4581 do_sim: 4582 /* Simulate and find potential out-of-bounds access under 4583 * speculative execution from truncation as a result of 4584 * masking when off was not within expected range. If off 4585 * sits in dst, then we temporarily need to move ptr there 4586 * to simulate dst (== 0) +/-= ptr. Needed, for example, 4587 * for cases where we use K-based arithmetic in one direction 4588 * and truncated reg-based in the other in order to explore 4589 * bad access. 4590 */ 4591 if (!ptr_is_dst_reg) { 4592 tmp = *dst_reg; 4593 *dst_reg = *ptr_reg; 4594 } 4595 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 4596 if (!ptr_is_dst_reg && ret) 4597 *dst_reg = tmp; 4598 return !ret ? -EFAULT : 0; 4599 } 4600 4601 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 4602 * Caller should also handle BPF_MOV case separately. 4603 * If we return -EACCES, caller may want to try again treating pointer as a 4604 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 4605 */ 4606 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 4607 struct bpf_insn *insn, 4608 const struct bpf_reg_state *ptr_reg, 4609 const struct bpf_reg_state *off_reg) 4610 { 4611 struct bpf_verifier_state *vstate = env->cur_state; 4612 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4613 struct bpf_reg_state *regs = state->regs, *dst_reg; 4614 bool known = tnum_is_const(off_reg->var_off); 4615 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 4616 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 4617 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 4618 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 4619 u32 dst = insn->dst_reg, src = insn->src_reg; 4620 u8 opcode = BPF_OP(insn->code); 4621 int ret; 4622 4623 dst_reg = ®s[dst]; 4624 4625 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 4626 smin_val > smax_val || umin_val > umax_val) { 4627 /* Taint dst register if offset had invalid bounds derived from 4628 * e.g. dead branches. 4629 */ 4630 __mark_reg_unknown(env, dst_reg); 4631 return 0; 4632 } 4633 4634 if (BPF_CLASS(insn->code) != BPF_ALU64) { 4635 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 4636 verbose(env, 4637 "R%d 32-bit pointer arithmetic prohibited\n", 4638 dst); 4639 return -EACCES; 4640 } 4641 4642 switch (ptr_reg->type) { 4643 case PTR_TO_MAP_VALUE_OR_NULL: 4644 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 4645 dst, reg_type_str[ptr_reg->type]); 4646 return -EACCES; 4647 case CONST_PTR_TO_MAP: 4648 case PTR_TO_PACKET_END: 4649 case PTR_TO_SOCKET: 4650 case PTR_TO_SOCKET_OR_NULL: 4651 case PTR_TO_SOCK_COMMON: 4652 case PTR_TO_SOCK_COMMON_OR_NULL: 4653 case PTR_TO_TCP_SOCK: 4654 case PTR_TO_TCP_SOCK_OR_NULL: 4655 case PTR_TO_XDP_SOCK: 4656 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 4657 dst, reg_type_str[ptr_reg->type]); 4658 return -EACCES; 4659 case PTR_TO_MAP_VALUE: 4660 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 4661 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 4662 off_reg == dst_reg ? dst : src); 4663 return -EACCES; 4664 } 4665 /* fall-through */ 4666 default: 4667 break; 4668 } 4669 4670 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 4671 * The id may be overwritten later if we create a new variable offset. 4672 */ 4673 dst_reg->type = ptr_reg->type; 4674 dst_reg->id = ptr_reg->id; 4675 4676 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 4677 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 4678 return -EINVAL; 4679 4680 switch (opcode) { 4681 case BPF_ADD: 4682 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 4683 if (ret < 0) { 4684 verbose(env, "R%d tried to add from different maps or paths\n", dst); 4685 return ret; 4686 } 4687 /* We can take a fixed offset as long as it doesn't overflow 4688 * the s32 'off' field 4689 */ 4690 if (known && (ptr_reg->off + smin_val == 4691 (s64)(s32)(ptr_reg->off + smin_val))) { 4692 /* pointer += K. Accumulate it into fixed offset */ 4693 dst_reg->smin_value = smin_ptr; 4694 dst_reg->smax_value = smax_ptr; 4695 dst_reg->umin_value = umin_ptr; 4696 dst_reg->umax_value = umax_ptr; 4697 dst_reg->var_off = ptr_reg->var_off; 4698 dst_reg->off = ptr_reg->off + smin_val; 4699 dst_reg->raw = ptr_reg->raw; 4700 break; 4701 } 4702 /* A new variable offset is created. Note that off_reg->off 4703 * == 0, since it's a scalar. 4704 * dst_reg gets the pointer type and since some positive 4705 * integer value was added to the pointer, give it a new 'id' 4706 * if it's a PTR_TO_PACKET. 4707 * this creates a new 'base' pointer, off_reg (variable) gets 4708 * added into the variable offset, and we copy the fixed offset 4709 * from ptr_reg. 4710 */ 4711 if (signed_add_overflows(smin_ptr, smin_val) || 4712 signed_add_overflows(smax_ptr, smax_val)) { 4713 dst_reg->smin_value = S64_MIN; 4714 dst_reg->smax_value = S64_MAX; 4715 } else { 4716 dst_reg->smin_value = smin_ptr + smin_val; 4717 dst_reg->smax_value = smax_ptr + smax_val; 4718 } 4719 if (umin_ptr + umin_val < umin_ptr || 4720 umax_ptr + umax_val < umax_ptr) { 4721 dst_reg->umin_value = 0; 4722 dst_reg->umax_value = U64_MAX; 4723 } else { 4724 dst_reg->umin_value = umin_ptr + umin_val; 4725 dst_reg->umax_value = umax_ptr + umax_val; 4726 } 4727 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 4728 dst_reg->off = ptr_reg->off; 4729 dst_reg->raw = ptr_reg->raw; 4730 if (reg_is_pkt_pointer(ptr_reg)) { 4731 dst_reg->id = ++env->id_gen; 4732 /* something was added to pkt_ptr, set range to zero */ 4733 dst_reg->raw = 0; 4734 } 4735 break; 4736 case BPF_SUB: 4737 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 4738 if (ret < 0) { 4739 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 4740 return ret; 4741 } 4742 if (dst_reg == off_reg) { 4743 /* scalar -= pointer. Creates an unknown scalar */ 4744 verbose(env, "R%d tried to subtract pointer from scalar\n", 4745 dst); 4746 return -EACCES; 4747 } 4748 /* We don't allow subtraction from FP, because (according to 4749 * test_verifier.c test "invalid fp arithmetic", JITs might not 4750 * be able to deal with it. 4751 */ 4752 if (ptr_reg->type == PTR_TO_STACK) { 4753 verbose(env, "R%d subtraction from stack pointer prohibited\n", 4754 dst); 4755 return -EACCES; 4756 } 4757 if (known && (ptr_reg->off - smin_val == 4758 (s64)(s32)(ptr_reg->off - smin_val))) { 4759 /* pointer -= K. Subtract it from fixed offset */ 4760 dst_reg->smin_value = smin_ptr; 4761 dst_reg->smax_value = smax_ptr; 4762 dst_reg->umin_value = umin_ptr; 4763 dst_reg->umax_value = umax_ptr; 4764 dst_reg->var_off = ptr_reg->var_off; 4765 dst_reg->id = ptr_reg->id; 4766 dst_reg->off = ptr_reg->off - smin_val; 4767 dst_reg->raw = ptr_reg->raw; 4768 break; 4769 } 4770 /* A new variable offset is created. If the subtrahend is known 4771 * nonnegative, then any reg->range we had before is still good. 4772 */ 4773 if (signed_sub_overflows(smin_ptr, smax_val) || 4774 signed_sub_overflows(smax_ptr, smin_val)) { 4775 /* Overflow possible, we know nothing */ 4776 dst_reg->smin_value = S64_MIN; 4777 dst_reg->smax_value = S64_MAX; 4778 } else { 4779 dst_reg->smin_value = smin_ptr - smax_val; 4780 dst_reg->smax_value = smax_ptr - smin_val; 4781 } 4782 if (umin_ptr < umax_val) { 4783 /* Overflow possible, we know nothing */ 4784 dst_reg->umin_value = 0; 4785 dst_reg->umax_value = U64_MAX; 4786 } else { 4787 /* Cannot overflow (as long as bounds are consistent) */ 4788 dst_reg->umin_value = umin_ptr - umax_val; 4789 dst_reg->umax_value = umax_ptr - umin_val; 4790 } 4791 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 4792 dst_reg->off = ptr_reg->off; 4793 dst_reg->raw = ptr_reg->raw; 4794 if (reg_is_pkt_pointer(ptr_reg)) { 4795 dst_reg->id = ++env->id_gen; 4796 /* something was added to pkt_ptr, set range to zero */ 4797 if (smin_val < 0) 4798 dst_reg->raw = 0; 4799 } 4800 break; 4801 case BPF_AND: 4802 case BPF_OR: 4803 case BPF_XOR: 4804 /* bitwise ops on pointers are troublesome, prohibit. */ 4805 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 4806 dst, bpf_alu_string[opcode >> 4]); 4807 return -EACCES; 4808 default: 4809 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 4810 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 4811 dst, bpf_alu_string[opcode >> 4]); 4812 return -EACCES; 4813 } 4814 4815 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 4816 return -EINVAL; 4817 4818 __update_reg_bounds(dst_reg); 4819 __reg_deduce_bounds(dst_reg); 4820 __reg_bound_offset(dst_reg); 4821 4822 /* For unprivileged we require that resulting offset must be in bounds 4823 * in order to be able to sanitize access later on. 4824 */ 4825 if (!env->allow_ptr_leaks) { 4826 if (dst_reg->type == PTR_TO_MAP_VALUE && 4827 check_map_access(env, dst, dst_reg->off, 1, false)) { 4828 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 4829 "prohibited for !root\n", dst); 4830 return -EACCES; 4831 } else if (dst_reg->type == PTR_TO_STACK && 4832 check_stack_access(env, dst_reg, dst_reg->off + 4833 dst_reg->var_off.value, 1)) { 4834 verbose(env, "R%d stack pointer arithmetic goes out of range, " 4835 "prohibited for !root\n", dst); 4836 return -EACCES; 4837 } 4838 } 4839 4840 return 0; 4841 } 4842 4843 /* WARNING: This function does calculations on 64-bit values, but the actual 4844 * execution may occur on 32-bit values. Therefore, things like bitshifts 4845 * need extra checks in the 32-bit case. 4846 */ 4847 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 4848 struct bpf_insn *insn, 4849 struct bpf_reg_state *dst_reg, 4850 struct bpf_reg_state src_reg) 4851 { 4852 struct bpf_reg_state *regs = cur_regs(env); 4853 u8 opcode = BPF_OP(insn->code); 4854 bool src_known, dst_known; 4855 s64 smin_val, smax_val; 4856 u64 umin_val, umax_val; 4857 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 4858 u32 dst = insn->dst_reg; 4859 int ret; 4860 4861 if (insn_bitness == 32) { 4862 /* Relevant for 32-bit RSH: Information can propagate towards 4863 * LSB, so it isn't sufficient to only truncate the output to 4864 * 32 bits. 4865 */ 4866 coerce_reg_to_size(dst_reg, 4); 4867 coerce_reg_to_size(&src_reg, 4); 4868 } 4869 4870 smin_val = src_reg.smin_value; 4871 smax_val = src_reg.smax_value; 4872 umin_val = src_reg.umin_value; 4873 umax_val = src_reg.umax_value; 4874 src_known = tnum_is_const(src_reg.var_off); 4875 dst_known = tnum_is_const(dst_reg->var_off); 4876 4877 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 4878 smin_val > smax_val || umin_val > umax_val) { 4879 /* Taint dst register if offset had invalid bounds derived from 4880 * e.g. dead branches. 4881 */ 4882 __mark_reg_unknown(env, dst_reg); 4883 return 0; 4884 } 4885 4886 if (!src_known && 4887 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 4888 __mark_reg_unknown(env, dst_reg); 4889 return 0; 4890 } 4891 4892 switch (opcode) { 4893 case BPF_ADD: 4894 ret = sanitize_val_alu(env, insn); 4895 if (ret < 0) { 4896 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 4897 return ret; 4898 } 4899 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 4900 signed_add_overflows(dst_reg->smax_value, smax_val)) { 4901 dst_reg->smin_value = S64_MIN; 4902 dst_reg->smax_value = S64_MAX; 4903 } else { 4904 dst_reg->smin_value += smin_val; 4905 dst_reg->smax_value += smax_val; 4906 } 4907 if (dst_reg->umin_value + umin_val < umin_val || 4908 dst_reg->umax_value + umax_val < umax_val) { 4909 dst_reg->umin_value = 0; 4910 dst_reg->umax_value = U64_MAX; 4911 } else { 4912 dst_reg->umin_value += umin_val; 4913 dst_reg->umax_value += umax_val; 4914 } 4915 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 4916 break; 4917 case BPF_SUB: 4918 ret = sanitize_val_alu(env, insn); 4919 if (ret < 0) { 4920 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 4921 return ret; 4922 } 4923 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 4924 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 4925 /* Overflow possible, we know nothing */ 4926 dst_reg->smin_value = S64_MIN; 4927 dst_reg->smax_value = S64_MAX; 4928 } else { 4929 dst_reg->smin_value -= smax_val; 4930 dst_reg->smax_value -= smin_val; 4931 } 4932 if (dst_reg->umin_value < umax_val) { 4933 /* Overflow possible, we know nothing */ 4934 dst_reg->umin_value = 0; 4935 dst_reg->umax_value = U64_MAX; 4936 } else { 4937 /* Cannot overflow (as long as bounds are consistent) */ 4938 dst_reg->umin_value -= umax_val; 4939 dst_reg->umax_value -= umin_val; 4940 } 4941 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 4942 break; 4943 case BPF_MUL: 4944 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 4945 if (smin_val < 0 || dst_reg->smin_value < 0) { 4946 /* Ain't nobody got time to multiply that sign */ 4947 __mark_reg_unbounded(dst_reg); 4948 __update_reg_bounds(dst_reg); 4949 break; 4950 } 4951 /* Both values are positive, so we can work with unsigned and 4952 * copy the result to signed (unless it exceeds S64_MAX). 4953 */ 4954 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 4955 /* Potential overflow, we know nothing */ 4956 __mark_reg_unbounded(dst_reg); 4957 /* (except what we can learn from the var_off) */ 4958 __update_reg_bounds(dst_reg); 4959 break; 4960 } 4961 dst_reg->umin_value *= umin_val; 4962 dst_reg->umax_value *= umax_val; 4963 if (dst_reg->umax_value > S64_MAX) { 4964 /* Overflow possible, we know nothing */ 4965 dst_reg->smin_value = S64_MIN; 4966 dst_reg->smax_value = S64_MAX; 4967 } else { 4968 dst_reg->smin_value = dst_reg->umin_value; 4969 dst_reg->smax_value = dst_reg->umax_value; 4970 } 4971 break; 4972 case BPF_AND: 4973 if (src_known && dst_known) { 4974 __mark_reg_known(dst_reg, dst_reg->var_off.value & 4975 src_reg.var_off.value); 4976 break; 4977 } 4978 /* We get our minimum from the var_off, since that's inherently 4979 * bitwise. Our maximum is the minimum of the operands' maxima. 4980 */ 4981 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 4982 dst_reg->umin_value = dst_reg->var_off.value; 4983 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 4984 if (dst_reg->smin_value < 0 || smin_val < 0) { 4985 /* Lose signed bounds when ANDing negative numbers, 4986 * ain't nobody got time for that. 4987 */ 4988 dst_reg->smin_value = S64_MIN; 4989 dst_reg->smax_value = S64_MAX; 4990 } else { 4991 /* ANDing two positives gives a positive, so safe to 4992 * cast result into s64. 4993 */ 4994 dst_reg->smin_value = dst_reg->umin_value; 4995 dst_reg->smax_value = dst_reg->umax_value; 4996 } 4997 /* We may learn something more from the var_off */ 4998 __update_reg_bounds(dst_reg); 4999 break; 5000 case BPF_OR: 5001 if (src_known && dst_known) { 5002 __mark_reg_known(dst_reg, dst_reg->var_off.value | 5003 src_reg.var_off.value); 5004 break; 5005 } 5006 /* We get our maximum from the var_off, and our minimum is the 5007 * maximum of the operands' minima 5008 */ 5009 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 5010 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 5011 dst_reg->umax_value = dst_reg->var_off.value | 5012 dst_reg->var_off.mask; 5013 if (dst_reg->smin_value < 0 || smin_val < 0) { 5014 /* Lose signed bounds when ORing negative numbers, 5015 * ain't nobody got time for that. 5016 */ 5017 dst_reg->smin_value = S64_MIN; 5018 dst_reg->smax_value = S64_MAX; 5019 } else { 5020 /* ORing two positives gives a positive, so safe to 5021 * cast result into s64. 5022 */ 5023 dst_reg->smin_value = dst_reg->umin_value; 5024 dst_reg->smax_value = dst_reg->umax_value; 5025 } 5026 /* We may learn something more from the var_off */ 5027 __update_reg_bounds(dst_reg); 5028 break; 5029 case BPF_LSH: 5030 if (umax_val >= insn_bitness) { 5031 /* Shifts greater than 31 or 63 are undefined. 5032 * This includes shifts by a negative number. 5033 */ 5034 mark_reg_unknown(env, regs, insn->dst_reg); 5035 break; 5036 } 5037 /* We lose all sign bit information (except what we can pick 5038 * up from var_off) 5039 */ 5040 dst_reg->smin_value = S64_MIN; 5041 dst_reg->smax_value = S64_MAX; 5042 /* If we might shift our top bit out, then we know nothing */ 5043 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 5044 dst_reg->umin_value = 0; 5045 dst_reg->umax_value = U64_MAX; 5046 } else { 5047 dst_reg->umin_value <<= umin_val; 5048 dst_reg->umax_value <<= umax_val; 5049 } 5050 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 5051 /* We may learn something more from the var_off */ 5052 __update_reg_bounds(dst_reg); 5053 break; 5054 case BPF_RSH: 5055 if (umax_val >= insn_bitness) { 5056 /* Shifts greater than 31 or 63 are undefined. 5057 * This includes shifts by a negative number. 5058 */ 5059 mark_reg_unknown(env, regs, insn->dst_reg); 5060 break; 5061 } 5062 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 5063 * be negative, then either: 5064 * 1) src_reg might be zero, so the sign bit of the result is 5065 * unknown, so we lose our signed bounds 5066 * 2) it's known negative, thus the unsigned bounds capture the 5067 * signed bounds 5068 * 3) the signed bounds cross zero, so they tell us nothing 5069 * about the result 5070 * If the value in dst_reg is known nonnegative, then again the 5071 * unsigned bounts capture the signed bounds. 5072 * Thus, in all cases it suffices to blow away our signed bounds 5073 * and rely on inferring new ones from the unsigned bounds and 5074 * var_off of the result. 5075 */ 5076 dst_reg->smin_value = S64_MIN; 5077 dst_reg->smax_value = S64_MAX; 5078 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 5079 dst_reg->umin_value >>= umax_val; 5080 dst_reg->umax_value >>= umin_val; 5081 /* We may learn something more from the var_off */ 5082 __update_reg_bounds(dst_reg); 5083 break; 5084 case BPF_ARSH: 5085 if (umax_val >= insn_bitness) { 5086 /* Shifts greater than 31 or 63 are undefined. 5087 * This includes shifts by a negative number. 5088 */ 5089 mark_reg_unknown(env, regs, insn->dst_reg); 5090 break; 5091 } 5092 5093 /* Upon reaching here, src_known is true and 5094 * umax_val is equal to umin_val. 5095 */ 5096 if (insn_bitness == 32) { 5097 dst_reg->smin_value = (u32)(((s32)dst_reg->smin_value) >> umin_val); 5098 dst_reg->smax_value = (u32)(((s32)dst_reg->smax_value) >> umin_val); 5099 } else { 5100 dst_reg->smin_value >>= umin_val; 5101 dst_reg->smax_value >>= umin_val; 5102 } 5103 5104 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 5105 insn_bitness); 5106 5107 /* blow away the dst_reg umin_value/umax_value and rely on 5108 * dst_reg var_off to refine the result. 5109 */ 5110 dst_reg->umin_value = 0; 5111 dst_reg->umax_value = U64_MAX; 5112 __update_reg_bounds(dst_reg); 5113 break; 5114 default: 5115 mark_reg_unknown(env, regs, insn->dst_reg); 5116 break; 5117 } 5118 5119 if (BPF_CLASS(insn->code) != BPF_ALU64) { 5120 /* 32-bit ALU ops are (32,32)->32 */ 5121 coerce_reg_to_size(dst_reg, 4); 5122 } 5123 5124 __reg_deduce_bounds(dst_reg); 5125 __reg_bound_offset(dst_reg); 5126 return 0; 5127 } 5128 5129 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 5130 * and var_off. 5131 */ 5132 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 5133 struct bpf_insn *insn) 5134 { 5135 struct bpf_verifier_state *vstate = env->cur_state; 5136 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5137 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 5138 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 5139 u8 opcode = BPF_OP(insn->code); 5140 int err; 5141 5142 dst_reg = ®s[insn->dst_reg]; 5143 src_reg = NULL; 5144 if (dst_reg->type != SCALAR_VALUE) 5145 ptr_reg = dst_reg; 5146 if (BPF_SRC(insn->code) == BPF_X) { 5147 src_reg = ®s[insn->src_reg]; 5148 if (src_reg->type != SCALAR_VALUE) { 5149 if (dst_reg->type != SCALAR_VALUE) { 5150 /* Combining two pointers by any ALU op yields 5151 * an arbitrary scalar. Disallow all math except 5152 * pointer subtraction 5153 */ 5154 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 5155 mark_reg_unknown(env, regs, insn->dst_reg); 5156 return 0; 5157 } 5158 verbose(env, "R%d pointer %s pointer prohibited\n", 5159 insn->dst_reg, 5160 bpf_alu_string[opcode >> 4]); 5161 return -EACCES; 5162 } else { 5163 /* scalar += pointer 5164 * This is legal, but we have to reverse our 5165 * src/dest handling in computing the range 5166 */ 5167 err = mark_chain_precision(env, insn->dst_reg); 5168 if (err) 5169 return err; 5170 return adjust_ptr_min_max_vals(env, insn, 5171 src_reg, dst_reg); 5172 } 5173 } else if (ptr_reg) { 5174 /* pointer += scalar */ 5175 err = mark_chain_precision(env, insn->src_reg); 5176 if (err) 5177 return err; 5178 return adjust_ptr_min_max_vals(env, insn, 5179 dst_reg, src_reg); 5180 } 5181 } else { 5182 /* Pretend the src is a reg with a known value, since we only 5183 * need to be able to read from this state. 5184 */ 5185 off_reg.type = SCALAR_VALUE; 5186 __mark_reg_known(&off_reg, insn->imm); 5187 src_reg = &off_reg; 5188 if (ptr_reg) /* pointer += K */ 5189 return adjust_ptr_min_max_vals(env, insn, 5190 ptr_reg, src_reg); 5191 } 5192 5193 /* Got here implies adding two SCALAR_VALUEs */ 5194 if (WARN_ON_ONCE(ptr_reg)) { 5195 print_verifier_state(env, state); 5196 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 5197 return -EINVAL; 5198 } 5199 if (WARN_ON(!src_reg)) { 5200 print_verifier_state(env, state); 5201 verbose(env, "verifier internal error: no src_reg\n"); 5202 return -EINVAL; 5203 } 5204 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 5205 } 5206 5207 /* check validity of 32-bit and 64-bit arithmetic operations */ 5208 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 5209 { 5210 struct bpf_reg_state *regs = cur_regs(env); 5211 u8 opcode = BPF_OP(insn->code); 5212 int err; 5213 5214 if (opcode == BPF_END || opcode == BPF_NEG) { 5215 if (opcode == BPF_NEG) { 5216 if (BPF_SRC(insn->code) != 0 || 5217 insn->src_reg != BPF_REG_0 || 5218 insn->off != 0 || insn->imm != 0) { 5219 verbose(env, "BPF_NEG uses reserved fields\n"); 5220 return -EINVAL; 5221 } 5222 } else { 5223 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 5224 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 5225 BPF_CLASS(insn->code) == BPF_ALU64) { 5226 verbose(env, "BPF_END uses reserved fields\n"); 5227 return -EINVAL; 5228 } 5229 } 5230 5231 /* check src operand */ 5232 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5233 if (err) 5234 return err; 5235 5236 if (is_pointer_value(env, insn->dst_reg)) { 5237 verbose(env, "R%d pointer arithmetic prohibited\n", 5238 insn->dst_reg); 5239 return -EACCES; 5240 } 5241 5242 /* check dest operand */ 5243 err = check_reg_arg(env, insn->dst_reg, DST_OP); 5244 if (err) 5245 return err; 5246 5247 } else if (opcode == BPF_MOV) { 5248 5249 if (BPF_SRC(insn->code) == BPF_X) { 5250 if (insn->imm != 0 || insn->off != 0) { 5251 verbose(env, "BPF_MOV uses reserved fields\n"); 5252 return -EINVAL; 5253 } 5254 5255 /* check src operand */ 5256 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5257 if (err) 5258 return err; 5259 } else { 5260 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 5261 verbose(env, "BPF_MOV uses reserved fields\n"); 5262 return -EINVAL; 5263 } 5264 } 5265 5266 /* check dest operand, mark as required later */ 5267 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5268 if (err) 5269 return err; 5270 5271 if (BPF_SRC(insn->code) == BPF_X) { 5272 struct bpf_reg_state *src_reg = regs + insn->src_reg; 5273 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 5274 5275 if (BPF_CLASS(insn->code) == BPF_ALU64) { 5276 /* case: R1 = R2 5277 * copy register state to dest reg 5278 */ 5279 *dst_reg = *src_reg; 5280 dst_reg->live |= REG_LIVE_WRITTEN; 5281 dst_reg->subreg_def = DEF_NOT_SUBREG; 5282 } else { 5283 /* R1 = (u32) R2 */ 5284 if (is_pointer_value(env, insn->src_reg)) { 5285 verbose(env, 5286 "R%d partial copy of pointer\n", 5287 insn->src_reg); 5288 return -EACCES; 5289 } else if (src_reg->type == SCALAR_VALUE) { 5290 *dst_reg = *src_reg; 5291 dst_reg->live |= REG_LIVE_WRITTEN; 5292 dst_reg->subreg_def = env->insn_idx + 1; 5293 } else { 5294 mark_reg_unknown(env, regs, 5295 insn->dst_reg); 5296 } 5297 coerce_reg_to_size(dst_reg, 4); 5298 } 5299 } else { 5300 /* case: R = imm 5301 * remember the value we stored into this reg 5302 */ 5303 /* clear any state __mark_reg_known doesn't set */ 5304 mark_reg_unknown(env, regs, insn->dst_reg); 5305 regs[insn->dst_reg].type = SCALAR_VALUE; 5306 if (BPF_CLASS(insn->code) == BPF_ALU64) { 5307 __mark_reg_known(regs + insn->dst_reg, 5308 insn->imm); 5309 } else { 5310 __mark_reg_known(regs + insn->dst_reg, 5311 (u32)insn->imm); 5312 } 5313 } 5314 5315 } else if (opcode > BPF_END) { 5316 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 5317 return -EINVAL; 5318 5319 } else { /* all other ALU ops: and, sub, xor, add, ... */ 5320 5321 if (BPF_SRC(insn->code) == BPF_X) { 5322 if (insn->imm != 0 || insn->off != 0) { 5323 verbose(env, "BPF_ALU uses reserved fields\n"); 5324 return -EINVAL; 5325 } 5326 /* check src1 operand */ 5327 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5328 if (err) 5329 return err; 5330 } else { 5331 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 5332 verbose(env, "BPF_ALU uses reserved fields\n"); 5333 return -EINVAL; 5334 } 5335 } 5336 5337 /* check src2 operand */ 5338 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5339 if (err) 5340 return err; 5341 5342 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 5343 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 5344 verbose(env, "div by zero\n"); 5345 return -EINVAL; 5346 } 5347 5348 if ((opcode == BPF_LSH || opcode == BPF_RSH || 5349 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 5350 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 5351 5352 if (insn->imm < 0 || insn->imm >= size) { 5353 verbose(env, "invalid shift %d\n", insn->imm); 5354 return -EINVAL; 5355 } 5356 } 5357 5358 /* check dest operand */ 5359 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5360 if (err) 5361 return err; 5362 5363 return adjust_reg_min_max_vals(env, insn); 5364 } 5365 5366 return 0; 5367 } 5368 5369 static void __find_good_pkt_pointers(struct bpf_func_state *state, 5370 struct bpf_reg_state *dst_reg, 5371 enum bpf_reg_type type, u16 new_range) 5372 { 5373 struct bpf_reg_state *reg; 5374 int i; 5375 5376 for (i = 0; i < MAX_BPF_REG; i++) { 5377 reg = &state->regs[i]; 5378 if (reg->type == type && reg->id == dst_reg->id) 5379 /* keep the maximum range already checked */ 5380 reg->range = max(reg->range, new_range); 5381 } 5382 5383 bpf_for_each_spilled_reg(i, state, reg) { 5384 if (!reg) 5385 continue; 5386 if (reg->type == type && reg->id == dst_reg->id) 5387 reg->range = max(reg->range, new_range); 5388 } 5389 } 5390 5391 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 5392 struct bpf_reg_state *dst_reg, 5393 enum bpf_reg_type type, 5394 bool range_right_open) 5395 { 5396 u16 new_range; 5397 int i; 5398 5399 if (dst_reg->off < 0 || 5400 (dst_reg->off == 0 && range_right_open)) 5401 /* This doesn't give us any range */ 5402 return; 5403 5404 if (dst_reg->umax_value > MAX_PACKET_OFF || 5405 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 5406 /* Risk of overflow. For instance, ptr + (1<<63) may be less 5407 * than pkt_end, but that's because it's also less than pkt. 5408 */ 5409 return; 5410 5411 new_range = dst_reg->off; 5412 if (range_right_open) 5413 new_range--; 5414 5415 /* Examples for register markings: 5416 * 5417 * pkt_data in dst register: 5418 * 5419 * r2 = r3; 5420 * r2 += 8; 5421 * if (r2 > pkt_end) goto <handle exception> 5422 * <access okay> 5423 * 5424 * r2 = r3; 5425 * r2 += 8; 5426 * if (r2 < pkt_end) goto <access okay> 5427 * <handle exception> 5428 * 5429 * Where: 5430 * r2 == dst_reg, pkt_end == src_reg 5431 * r2=pkt(id=n,off=8,r=0) 5432 * r3=pkt(id=n,off=0,r=0) 5433 * 5434 * pkt_data in src register: 5435 * 5436 * r2 = r3; 5437 * r2 += 8; 5438 * if (pkt_end >= r2) goto <access okay> 5439 * <handle exception> 5440 * 5441 * r2 = r3; 5442 * r2 += 8; 5443 * if (pkt_end <= r2) goto <handle exception> 5444 * <access okay> 5445 * 5446 * Where: 5447 * pkt_end == dst_reg, r2 == src_reg 5448 * r2=pkt(id=n,off=8,r=0) 5449 * r3=pkt(id=n,off=0,r=0) 5450 * 5451 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 5452 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 5453 * and [r3, r3 + 8-1) respectively is safe to access depending on 5454 * the check. 5455 */ 5456 5457 /* If our ids match, then we must have the same max_value. And we 5458 * don't care about the other reg's fixed offset, since if it's too big 5459 * the range won't allow anything. 5460 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 5461 */ 5462 for (i = 0; i <= vstate->curframe; i++) 5463 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 5464 new_range); 5465 } 5466 5467 /* compute branch direction of the expression "if (reg opcode val) goto target;" 5468 * and return: 5469 * 1 - branch will be taken and "goto target" will be executed 5470 * 0 - branch will not be taken and fall-through to next insn 5471 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10] 5472 */ 5473 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 5474 bool is_jmp32) 5475 { 5476 struct bpf_reg_state reg_lo; 5477 s64 sval; 5478 5479 if (__is_pointer_value(false, reg)) 5480 return -1; 5481 5482 if (is_jmp32) { 5483 reg_lo = *reg; 5484 reg = ®_lo; 5485 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size 5486 * could truncate high bits and update umin/umax according to 5487 * information of low bits. 5488 */ 5489 coerce_reg_to_size(reg, 4); 5490 /* smin/smax need special handling. For example, after coerce, 5491 * if smin_value is 0x00000000ffffffffLL, the value is -1 when 5492 * used as operand to JMP32. It is a negative number from s32's 5493 * point of view, while it is a positive number when seen as 5494 * s64. The smin/smax are kept as s64, therefore, when used with 5495 * JMP32, they need to be transformed into s32, then sign 5496 * extended back to s64. 5497 * 5498 * Also, smin/smax were copied from umin/umax. If umin/umax has 5499 * different sign bit, then min/max relationship doesn't 5500 * maintain after casting into s32, for this case, set smin/smax 5501 * to safest range. 5502 */ 5503 if ((reg->umax_value ^ reg->umin_value) & 5504 (1ULL << 31)) { 5505 reg->smin_value = S32_MIN; 5506 reg->smax_value = S32_MAX; 5507 } 5508 reg->smin_value = (s64)(s32)reg->smin_value; 5509 reg->smax_value = (s64)(s32)reg->smax_value; 5510 5511 val = (u32)val; 5512 sval = (s64)(s32)val; 5513 } else { 5514 sval = (s64)val; 5515 } 5516 5517 switch (opcode) { 5518 case BPF_JEQ: 5519 if (tnum_is_const(reg->var_off)) 5520 return !!tnum_equals_const(reg->var_off, val); 5521 break; 5522 case BPF_JNE: 5523 if (tnum_is_const(reg->var_off)) 5524 return !tnum_equals_const(reg->var_off, val); 5525 break; 5526 case BPF_JSET: 5527 if ((~reg->var_off.mask & reg->var_off.value) & val) 5528 return 1; 5529 if (!((reg->var_off.mask | reg->var_off.value) & val)) 5530 return 0; 5531 break; 5532 case BPF_JGT: 5533 if (reg->umin_value > val) 5534 return 1; 5535 else if (reg->umax_value <= val) 5536 return 0; 5537 break; 5538 case BPF_JSGT: 5539 if (reg->smin_value > sval) 5540 return 1; 5541 else if (reg->smax_value < sval) 5542 return 0; 5543 break; 5544 case BPF_JLT: 5545 if (reg->umax_value < val) 5546 return 1; 5547 else if (reg->umin_value >= val) 5548 return 0; 5549 break; 5550 case BPF_JSLT: 5551 if (reg->smax_value < sval) 5552 return 1; 5553 else if (reg->smin_value >= sval) 5554 return 0; 5555 break; 5556 case BPF_JGE: 5557 if (reg->umin_value >= val) 5558 return 1; 5559 else if (reg->umax_value < val) 5560 return 0; 5561 break; 5562 case BPF_JSGE: 5563 if (reg->smin_value >= sval) 5564 return 1; 5565 else if (reg->smax_value < sval) 5566 return 0; 5567 break; 5568 case BPF_JLE: 5569 if (reg->umax_value <= val) 5570 return 1; 5571 else if (reg->umin_value > val) 5572 return 0; 5573 break; 5574 case BPF_JSLE: 5575 if (reg->smax_value <= sval) 5576 return 1; 5577 else if (reg->smin_value > sval) 5578 return 0; 5579 break; 5580 } 5581 5582 return -1; 5583 } 5584 5585 /* Generate min value of the high 32-bit from TNUM info. */ 5586 static u64 gen_hi_min(struct tnum var) 5587 { 5588 return var.value & ~0xffffffffULL; 5589 } 5590 5591 /* Generate max value of the high 32-bit from TNUM info. */ 5592 static u64 gen_hi_max(struct tnum var) 5593 { 5594 return (var.value | var.mask) & ~0xffffffffULL; 5595 } 5596 5597 /* Return true if VAL is compared with a s64 sign extended from s32, and they 5598 * are with the same signedness. 5599 */ 5600 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg) 5601 { 5602 return ((s32)sval >= 0 && 5603 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) || 5604 ((s32)sval < 0 && 5605 reg->smax_value <= 0 && reg->smin_value >= S32_MIN); 5606 } 5607 5608 /* Adjusts the register min/max values in the case that the dst_reg is the 5609 * variable register that we are working on, and src_reg is a constant or we're 5610 * simply doing a BPF_K check. 5611 * In JEQ/JNE cases we also adjust the var_off values. 5612 */ 5613 static void reg_set_min_max(struct bpf_reg_state *true_reg, 5614 struct bpf_reg_state *false_reg, u64 val, 5615 u8 opcode, bool is_jmp32) 5616 { 5617 s64 sval; 5618 5619 /* If the dst_reg is a pointer, we can't learn anything about its 5620 * variable offset from the compare (unless src_reg were a pointer into 5621 * the same object, but we don't bother with that. 5622 * Since false_reg and true_reg have the same type by construction, we 5623 * only need to check one of them for pointerness. 5624 */ 5625 if (__is_pointer_value(false, false_reg)) 5626 return; 5627 5628 val = is_jmp32 ? (u32)val : val; 5629 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 5630 5631 switch (opcode) { 5632 case BPF_JEQ: 5633 case BPF_JNE: 5634 { 5635 struct bpf_reg_state *reg = 5636 opcode == BPF_JEQ ? true_reg : false_reg; 5637 5638 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but 5639 * if it is true we know the value for sure. Likewise for 5640 * BPF_JNE. 5641 */ 5642 if (is_jmp32) { 5643 u64 old_v = reg->var_off.value; 5644 u64 hi_mask = ~0xffffffffULL; 5645 5646 reg->var_off.value = (old_v & hi_mask) | val; 5647 reg->var_off.mask &= hi_mask; 5648 } else { 5649 __mark_reg_known(reg, val); 5650 } 5651 break; 5652 } 5653 case BPF_JSET: 5654 false_reg->var_off = tnum_and(false_reg->var_off, 5655 tnum_const(~val)); 5656 if (is_power_of_2(val)) 5657 true_reg->var_off = tnum_or(true_reg->var_off, 5658 tnum_const(val)); 5659 break; 5660 case BPF_JGE: 5661 case BPF_JGT: 5662 { 5663 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 5664 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 5665 5666 if (is_jmp32) { 5667 false_umax += gen_hi_max(false_reg->var_off); 5668 true_umin += gen_hi_min(true_reg->var_off); 5669 } 5670 false_reg->umax_value = min(false_reg->umax_value, false_umax); 5671 true_reg->umin_value = max(true_reg->umin_value, true_umin); 5672 break; 5673 } 5674 case BPF_JSGE: 5675 case BPF_JSGT: 5676 { 5677 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 5678 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 5679 5680 /* If the full s64 was not sign-extended from s32 then don't 5681 * deduct further info. 5682 */ 5683 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5684 break; 5685 false_reg->smax_value = min(false_reg->smax_value, false_smax); 5686 true_reg->smin_value = max(true_reg->smin_value, true_smin); 5687 break; 5688 } 5689 case BPF_JLE: 5690 case BPF_JLT: 5691 { 5692 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 5693 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 5694 5695 if (is_jmp32) { 5696 false_umin += gen_hi_min(false_reg->var_off); 5697 true_umax += gen_hi_max(true_reg->var_off); 5698 } 5699 false_reg->umin_value = max(false_reg->umin_value, false_umin); 5700 true_reg->umax_value = min(true_reg->umax_value, true_umax); 5701 break; 5702 } 5703 case BPF_JSLE: 5704 case BPF_JSLT: 5705 { 5706 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 5707 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 5708 5709 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5710 break; 5711 false_reg->smin_value = max(false_reg->smin_value, false_smin); 5712 true_reg->smax_value = min(true_reg->smax_value, true_smax); 5713 break; 5714 } 5715 default: 5716 break; 5717 } 5718 5719 __reg_deduce_bounds(false_reg); 5720 __reg_deduce_bounds(true_reg); 5721 /* We might have learned some bits from the bounds. */ 5722 __reg_bound_offset(false_reg); 5723 __reg_bound_offset(true_reg); 5724 if (is_jmp32) { 5725 __reg_bound_offset32(false_reg); 5726 __reg_bound_offset32(true_reg); 5727 } 5728 /* Intersecting with the old var_off might have improved our bounds 5729 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 5730 * then new var_off is (0; 0x7f...fc) which improves our umax. 5731 */ 5732 __update_reg_bounds(false_reg); 5733 __update_reg_bounds(true_reg); 5734 } 5735 5736 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 5737 * the variable reg. 5738 */ 5739 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 5740 struct bpf_reg_state *false_reg, u64 val, 5741 u8 opcode, bool is_jmp32) 5742 { 5743 s64 sval; 5744 5745 if (__is_pointer_value(false, false_reg)) 5746 return; 5747 5748 val = is_jmp32 ? (u32)val : val; 5749 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 5750 5751 switch (opcode) { 5752 case BPF_JEQ: 5753 case BPF_JNE: 5754 { 5755 struct bpf_reg_state *reg = 5756 opcode == BPF_JEQ ? true_reg : false_reg; 5757 5758 if (is_jmp32) { 5759 u64 old_v = reg->var_off.value; 5760 u64 hi_mask = ~0xffffffffULL; 5761 5762 reg->var_off.value = (old_v & hi_mask) | val; 5763 reg->var_off.mask &= hi_mask; 5764 } else { 5765 __mark_reg_known(reg, val); 5766 } 5767 break; 5768 } 5769 case BPF_JSET: 5770 false_reg->var_off = tnum_and(false_reg->var_off, 5771 tnum_const(~val)); 5772 if (is_power_of_2(val)) 5773 true_reg->var_off = tnum_or(true_reg->var_off, 5774 tnum_const(val)); 5775 break; 5776 case BPF_JGE: 5777 case BPF_JGT: 5778 { 5779 u64 false_umin = opcode == BPF_JGT ? val : val + 1; 5780 u64 true_umax = opcode == BPF_JGT ? val - 1 : val; 5781 5782 if (is_jmp32) { 5783 false_umin += gen_hi_min(false_reg->var_off); 5784 true_umax += gen_hi_max(true_reg->var_off); 5785 } 5786 false_reg->umin_value = max(false_reg->umin_value, false_umin); 5787 true_reg->umax_value = min(true_reg->umax_value, true_umax); 5788 break; 5789 } 5790 case BPF_JSGE: 5791 case BPF_JSGT: 5792 { 5793 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1; 5794 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval; 5795 5796 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5797 break; 5798 false_reg->smin_value = max(false_reg->smin_value, false_smin); 5799 true_reg->smax_value = min(true_reg->smax_value, true_smax); 5800 break; 5801 } 5802 case BPF_JLE: 5803 case BPF_JLT: 5804 { 5805 u64 false_umax = opcode == BPF_JLT ? val : val - 1; 5806 u64 true_umin = opcode == BPF_JLT ? val + 1 : val; 5807 5808 if (is_jmp32) { 5809 false_umax += gen_hi_max(false_reg->var_off); 5810 true_umin += gen_hi_min(true_reg->var_off); 5811 } 5812 false_reg->umax_value = min(false_reg->umax_value, false_umax); 5813 true_reg->umin_value = max(true_reg->umin_value, true_umin); 5814 break; 5815 } 5816 case BPF_JSLE: 5817 case BPF_JSLT: 5818 { 5819 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1; 5820 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval; 5821 5822 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5823 break; 5824 false_reg->smax_value = min(false_reg->smax_value, false_smax); 5825 true_reg->smin_value = max(true_reg->smin_value, true_smin); 5826 break; 5827 } 5828 default: 5829 break; 5830 } 5831 5832 __reg_deduce_bounds(false_reg); 5833 __reg_deduce_bounds(true_reg); 5834 /* We might have learned some bits from the bounds. */ 5835 __reg_bound_offset(false_reg); 5836 __reg_bound_offset(true_reg); 5837 if (is_jmp32) { 5838 __reg_bound_offset32(false_reg); 5839 __reg_bound_offset32(true_reg); 5840 } 5841 /* Intersecting with the old var_off might have improved our bounds 5842 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 5843 * then new var_off is (0; 0x7f...fc) which improves our umax. 5844 */ 5845 __update_reg_bounds(false_reg); 5846 __update_reg_bounds(true_reg); 5847 } 5848 5849 /* Regs are known to be equal, so intersect their min/max/var_off */ 5850 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 5851 struct bpf_reg_state *dst_reg) 5852 { 5853 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 5854 dst_reg->umin_value); 5855 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 5856 dst_reg->umax_value); 5857 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 5858 dst_reg->smin_value); 5859 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 5860 dst_reg->smax_value); 5861 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 5862 dst_reg->var_off); 5863 /* We might have learned new bounds from the var_off. */ 5864 __update_reg_bounds(src_reg); 5865 __update_reg_bounds(dst_reg); 5866 /* We might have learned something about the sign bit. */ 5867 __reg_deduce_bounds(src_reg); 5868 __reg_deduce_bounds(dst_reg); 5869 /* We might have learned some bits from the bounds. */ 5870 __reg_bound_offset(src_reg); 5871 __reg_bound_offset(dst_reg); 5872 /* Intersecting with the old var_off might have improved our bounds 5873 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 5874 * then new var_off is (0; 0x7f...fc) which improves our umax. 5875 */ 5876 __update_reg_bounds(src_reg); 5877 __update_reg_bounds(dst_reg); 5878 } 5879 5880 static void reg_combine_min_max(struct bpf_reg_state *true_src, 5881 struct bpf_reg_state *true_dst, 5882 struct bpf_reg_state *false_src, 5883 struct bpf_reg_state *false_dst, 5884 u8 opcode) 5885 { 5886 switch (opcode) { 5887 case BPF_JEQ: 5888 __reg_combine_min_max(true_src, true_dst); 5889 break; 5890 case BPF_JNE: 5891 __reg_combine_min_max(false_src, false_dst); 5892 break; 5893 } 5894 } 5895 5896 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 5897 struct bpf_reg_state *reg, u32 id, 5898 bool is_null) 5899 { 5900 if (reg_type_may_be_null(reg->type) && reg->id == id) { 5901 /* Old offset (both fixed and variable parts) should 5902 * have been known-zero, because we don't allow pointer 5903 * arithmetic on pointers that might be NULL. 5904 */ 5905 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 5906 !tnum_equals_const(reg->var_off, 0) || 5907 reg->off)) { 5908 __mark_reg_known_zero(reg); 5909 reg->off = 0; 5910 } 5911 if (is_null) { 5912 reg->type = SCALAR_VALUE; 5913 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 5914 if (reg->map_ptr->inner_map_meta) { 5915 reg->type = CONST_PTR_TO_MAP; 5916 reg->map_ptr = reg->map_ptr->inner_map_meta; 5917 } else if (reg->map_ptr->map_type == 5918 BPF_MAP_TYPE_XSKMAP) { 5919 reg->type = PTR_TO_XDP_SOCK; 5920 } else { 5921 reg->type = PTR_TO_MAP_VALUE; 5922 } 5923 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 5924 reg->type = PTR_TO_SOCKET; 5925 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 5926 reg->type = PTR_TO_SOCK_COMMON; 5927 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 5928 reg->type = PTR_TO_TCP_SOCK; 5929 } 5930 if (is_null) { 5931 /* We don't need id and ref_obj_id from this point 5932 * onwards anymore, thus we should better reset it, 5933 * so that state pruning has chances to take effect. 5934 */ 5935 reg->id = 0; 5936 reg->ref_obj_id = 0; 5937 } else if (!reg_may_point_to_spin_lock(reg)) { 5938 /* For not-NULL ptr, reg->ref_obj_id will be reset 5939 * in release_reg_references(). 5940 * 5941 * reg->id is still used by spin_lock ptr. Other 5942 * than spin_lock ptr type, reg->id can be reset. 5943 */ 5944 reg->id = 0; 5945 } 5946 } 5947 } 5948 5949 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 5950 bool is_null) 5951 { 5952 struct bpf_reg_state *reg; 5953 int i; 5954 5955 for (i = 0; i < MAX_BPF_REG; i++) 5956 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 5957 5958 bpf_for_each_spilled_reg(i, state, reg) { 5959 if (!reg) 5960 continue; 5961 mark_ptr_or_null_reg(state, reg, id, is_null); 5962 } 5963 } 5964 5965 /* The logic is similar to find_good_pkt_pointers(), both could eventually 5966 * be folded together at some point. 5967 */ 5968 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 5969 bool is_null) 5970 { 5971 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5972 struct bpf_reg_state *regs = state->regs; 5973 u32 ref_obj_id = regs[regno].ref_obj_id; 5974 u32 id = regs[regno].id; 5975 int i; 5976 5977 if (ref_obj_id && ref_obj_id == id && is_null) 5978 /* regs[regno] is in the " == NULL" branch. 5979 * No one could have freed the reference state before 5980 * doing the NULL check. 5981 */ 5982 WARN_ON_ONCE(release_reference_state(state, id)); 5983 5984 for (i = 0; i <= vstate->curframe; i++) 5985 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 5986 } 5987 5988 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 5989 struct bpf_reg_state *dst_reg, 5990 struct bpf_reg_state *src_reg, 5991 struct bpf_verifier_state *this_branch, 5992 struct bpf_verifier_state *other_branch) 5993 { 5994 if (BPF_SRC(insn->code) != BPF_X) 5995 return false; 5996 5997 /* Pointers are always 64-bit. */ 5998 if (BPF_CLASS(insn->code) == BPF_JMP32) 5999 return false; 6000 6001 switch (BPF_OP(insn->code)) { 6002 case BPF_JGT: 6003 if ((dst_reg->type == PTR_TO_PACKET && 6004 src_reg->type == PTR_TO_PACKET_END) || 6005 (dst_reg->type == PTR_TO_PACKET_META && 6006 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6007 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 6008 find_good_pkt_pointers(this_branch, dst_reg, 6009 dst_reg->type, false); 6010 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6011 src_reg->type == PTR_TO_PACKET) || 6012 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6013 src_reg->type == PTR_TO_PACKET_META)) { 6014 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 6015 find_good_pkt_pointers(other_branch, src_reg, 6016 src_reg->type, true); 6017 } else { 6018 return false; 6019 } 6020 break; 6021 case BPF_JLT: 6022 if ((dst_reg->type == PTR_TO_PACKET && 6023 src_reg->type == PTR_TO_PACKET_END) || 6024 (dst_reg->type == PTR_TO_PACKET_META && 6025 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6026 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 6027 find_good_pkt_pointers(other_branch, dst_reg, 6028 dst_reg->type, true); 6029 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6030 src_reg->type == PTR_TO_PACKET) || 6031 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6032 src_reg->type == PTR_TO_PACKET_META)) { 6033 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 6034 find_good_pkt_pointers(this_branch, src_reg, 6035 src_reg->type, false); 6036 } else { 6037 return false; 6038 } 6039 break; 6040 case BPF_JGE: 6041 if ((dst_reg->type == PTR_TO_PACKET && 6042 src_reg->type == PTR_TO_PACKET_END) || 6043 (dst_reg->type == PTR_TO_PACKET_META && 6044 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6045 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 6046 find_good_pkt_pointers(this_branch, dst_reg, 6047 dst_reg->type, true); 6048 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6049 src_reg->type == PTR_TO_PACKET) || 6050 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6051 src_reg->type == PTR_TO_PACKET_META)) { 6052 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 6053 find_good_pkt_pointers(other_branch, src_reg, 6054 src_reg->type, false); 6055 } else { 6056 return false; 6057 } 6058 break; 6059 case BPF_JLE: 6060 if ((dst_reg->type == PTR_TO_PACKET && 6061 src_reg->type == PTR_TO_PACKET_END) || 6062 (dst_reg->type == PTR_TO_PACKET_META && 6063 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6064 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 6065 find_good_pkt_pointers(other_branch, dst_reg, 6066 dst_reg->type, false); 6067 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6068 src_reg->type == PTR_TO_PACKET) || 6069 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6070 src_reg->type == PTR_TO_PACKET_META)) { 6071 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 6072 find_good_pkt_pointers(this_branch, src_reg, 6073 src_reg->type, true); 6074 } else { 6075 return false; 6076 } 6077 break; 6078 default: 6079 return false; 6080 } 6081 6082 return true; 6083 } 6084 6085 static int check_cond_jmp_op(struct bpf_verifier_env *env, 6086 struct bpf_insn *insn, int *insn_idx) 6087 { 6088 struct bpf_verifier_state *this_branch = env->cur_state; 6089 struct bpf_verifier_state *other_branch; 6090 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 6091 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 6092 u8 opcode = BPF_OP(insn->code); 6093 bool is_jmp32; 6094 int pred = -1; 6095 int err; 6096 6097 /* Only conditional jumps are expected to reach here. */ 6098 if (opcode == BPF_JA || opcode > BPF_JSLE) { 6099 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 6100 return -EINVAL; 6101 } 6102 6103 if (BPF_SRC(insn->code) == BPF_X) { 6104 if (insn->imm != 0) { 6105 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 6106 return -EINVAL; 6107 } 6108 6109 /* check src1 operand */ 6110 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6111 if (err) 6112 return err; 6113 6114 if (is_pointer_value(env, insn->src_reg)) { 6115 verbose(env, "R%d pointer comparison prohibited\n", 6116 insn->src_reg); 6117 return -EACCES; 6118 } 6119 src_reg = ®s[insn->src_reg]; 6120 } else { 6121 if (insn->src_reg != BPF_REG_0) { 6122 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 6123 return -EINVAL; 6124 } 6125 } 6126 6127 /* check src2 operand */ 6128 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6129 if (err) 6130 return err; 6131 6132 dst_reg = ®s[insn->dst_reg]; 6133 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 6134 6135 if (BPF_SRC(insn->code) == BPF_K) 6136 pred = is_branch_taken(dst_reg, insn->imm, 6137 opcode, is_jmp32); 6138 else if (src_reg->type == SCALAR_VALUE && 6139 tnum_is_const(src_reg->var_off)) 6140 pred = is_branch_taken(dst_reg, src_reg->var_off.value, 6141 opcode, is_jmp32); 6142 if (pred >= 0) { 6143 err = mark_chain_precision(env, insn->dst_reg); 6144 if (BPF_SRC(insn->code) == BPF_X && !err) 6145 err = mark_chain_precision(env, insn->src_reg); 6146 if (err) 6147 return err; 6148 } 6149 if (pred == 1) { 6150 /* only follow the goto, ignore fall-through */ 6151 *insn_idx += insn->off; 6152 return 0; 6153 } else if (pred == 0) { 6154 /* only follow fall-through branch, since 6155 * that's where the program will go 6156 */ 6157 return 0; 6158 } 6159 6160 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 6161 false); 6162 if (!other_branch) 6163 return -EFAULT; 6164 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 6165 6166 /* detect if we are comparing against a constant value so we can adjust 6167 * our min/max values for our dst register. 6168 * this is only legit if both are scalars (or pointers to the same 6169 * object, I suppose, but we don't support that right now), because 6170 * otherwise the different base pointers mean the offsets aren't 6171 * comparable. 6172 */ 6173 if (BPF_SRC(insn->code) == BPF_X) { 6174 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 6175 struct bpf_reg_state lo_reg0 = *dst_reg; 6176 struct bpf_reg_state lo_reg1 = *src_reg; 6177 struct bpf_reg_state *src_lo, *dst_lo; 6178 6179 dst_lo = &lo_reg0; 6180 src_lo = &lo_reg1; 6181 coerce_reg_to_size(dst_lo, 4); 6182 coerce_reg_to_size(src_lo, 4); 6183 6184 if (dst_reg->type == SCALAR_VALUE && 6185 src_reg->type == SCALAR_VALUE) { 6186 if (tnum_is_const(src_reg->var_off) || 6187 (is_jmp32 && tnum_is_const(src_lo->var_off))) 6188 reg_set_min_max(&other_branch_regs[insn->dst_reg], 6189 dst_reg, 6190 is_jmp32 6191 ? src_lo->var_off.value 6192 : src_reg->var_off.value, 6193 opcode, is_jmp32); 6194 else if (tnum_is_const(dst_reg->var_off) || 6195 (is_jmp32 && tnum_is_const(dst_lo->var_off))) 6196 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 6197 src_reg, 6198 is_jmp32 6199 ? dst_lo->var_off.value 6200 : dst_reg->var_off.value, 6201 opcode, is_jmp32); 6202 else if (!is_jmp32 && 6203 (opcode == BPF_JEQ || opcode == BPF_JNE)) 6204 /* Comparing for equality, we can combine knowledge */ 6205 reg_combine_min_max(&other_branch_regs[insn->src_reg], 6206 &other_branch_regs[insn->dst_reg], 6207 src_reg, dst_reg, opcode); 6208 } 6209 } else if (dst_reg->type == SCALAR_VALUE) { 6210 reg_set_min_max(&other_branch_regs[insn->dst_reg], 6211 dst_reg, insn->imm, opcode, is_jmp32); 6212 } 6213 6214 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 6215 * NOTE: these optimizations below are related with pointer comparison 6216 * which will never be JMP32. 6217 */ 6218 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 6219 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 6220 reg_type_may_be_null(dst_reg->type)) { 6221 /* Mark all identical registers in each branch as either 6222 * safe or unknown depending R == 0 or R != 0 conditional. 6223 */ 6224 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 6225 opcode == BPF_JNE); 6226 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 6227 opcode == BPF_JEQ); 6228 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 6229 this_branch, other_branch) && 6230 is_pointer_value(env, insn->dst_reg)) { 6231 verbose(env, "R%d pointer comparison prohibited\n", 6232 insn->dst_reg); 6233 return -EACCES; 6234 } 6235 if (env->log.level & BPF_LOG_LEVEL) 6236 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 6237 return 0; 6238 } 6239 6240 /* verify BPF_LD_IMM64 instruction */ 6241 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 6242 { 6243 struct bpf_insn_aux_data *aux = cur_aux(env); 6244 struct bpf_reg_state *regs = cur_regs(env); 6245 struct bpf_map *map; 6246 int err; 6247 6248 if (BPF_SIZE(insn->code) != BPF_DW) { 6249 verbose(env, "invalid BPF_LD_IMM insn\n"); 6250 return -EINVAL; 6251 } 6252 if (insn->off != 0) { 6253 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 6254 return -EINVAL; 6255 } 6256 6257 err = check_reg_arg(env, insn->dst_reg, DST_OP); 6258 if (err) 6259 return err; 6260 6261 if (insn->src_reg == 0) { 6262 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 6263 6264 regs[insn->dst_reg].type = SCALAR_VALUE; 6265 __mark_reg_known(®s[insn->dst_reg], imm); 6266 return 0; 6267 } 6268 6269 map = env->used_maps[aux->map_index]; 6270 mark_reg_known_zero(env, regs, insn->dst_reg); 6271 regs[insn->dst_reg].map_ptr = map; 6272 6273 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 6274 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; 6275 regs[insn->dst_reg].off = aux->map_off; 6276 if (map_value_has_spin_lock(map)) 6277 regs[insn->dst_reg].id = ++env->id_gen; 6278 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 6279 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 6280 } else { 6281 verbose(env, "bpf verifier is misconfigured\n"); 6282 return -EINVAL; 6283 } 6284 6285 return 0; 6286 } 6287 6288 static bool may_access_skb(enum bpf_prog_type type) 6289 { 6290 switch (type) { 6291 case BPF_PROG_TYPE_SOCKET_FILTER: 6292 case BPF_PROG_TYPE_SCHED_CLS: 6293 case BPF_PROG_TYPE_SCHED_ACT: 6294 return true; 6295 default: 6296 return false; 6297 } 6298 } 6299 6300 /* verify safety of LD_ABS|LD_IND instructions: 6301 * - they can only appear in the programs where ctx == skb 6302 * - since they are wrappers of function calls, they scratch R1-R5 registers, 6303 * preserve R6-R9, and store return value into R0 6304 * 6305 * Implicit input: 6306 * ctx == skb == R6 == CTX 6307 * 6308 * Explicit input: 6309 * SRC == any register 6310 * IMM == 32-bit immediate 6311 * 6312 * Output: 6313 * R0 - 8/16/32-bit skb data converted to cpu endianness 6314 */ 6315 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 6316 { 6317 struct bpf_reg_state *regs = cur_regs(env); 6318 static const int ctx_reg = BPF_REG_6; 6319 u8 mode = BPF_MODE(insn->code); 6320 int i, err; 6321 6322 if (!may_access_skb(env->prog->type)) { 6323 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 6324 return -EINVAL; 6325 } 6326 6327 if (!env->ops->gen_ld_abs) { 6328 verbose(env, "bpf verifier is misconfigured\n"); 6329 return -EINVAL; 6330 } 6331 6332 if (env->subprog_cnt > 1) { 6333 /* when program has LD_ABS insn JITs and interpreter assume 6334 * that r1 == ctx == skb which is not the case for callees 6335 * that can have arbitrary arguments. It's problematic 6336 * for main prog as well since JITs would need to analyze 6337 * all functions in order to make proper register save/restore 6338 * decisions in the main prog. Hence disallow LD_ABS with calls 6339 */ 6340 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 6341 return -EINVAL; 6342 } 6343 6344 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 6345 BPF_SIZE(insn->code) == BPF_DW || 6346 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 6347 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 6348 return -EINVAL; 6349 } 6350 6351 /* check whether implicit source operand (register R6) is readable */ 6352 err = check_reg_arg(env, ctx_reg, SRC_OP); 6353 if (err) 6354 return err; 6355 6356 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 6357 * gen_ld_abs() may terminate the program at runtime, leading to 6358 * reference leak. 6359 */ 6360 err = check_reference_leak(env); 6361 if (err) { 6362 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 6363 return err; 6364 } 6365 6366 if (env->cur_state->active_spin_lock) { 6367 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 6368 return -EINVAL; 6369 } 6370 6371 if (regs[ctx_reg].type != PTR_TO_CTX) { 6372 verbose(env, 6373 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 6374 return -EINVAL; 6375 } 6376 6377 if (mode == BPF_IND) { 6378 /* check explicit source operand */ 6379 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6380 if (err) 6381 return err; 6382 } 6383 6384 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 6385 if (err < 0) 6386 return err; 6387 6388 /* reset caller saved regs to unreadable */ 6389 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6390 mark_reg_not_init(env, regs, caller_saved[i]); 6391 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6392 } 6393 6394 /* mark destination R0 register as readable, since it contains 6395 * the value fetched from the packet. 6396 * Already marked as written above. 6397 */ 6398 mark_reg_unknown(env, regs, BPF_REG_0); 6399 /* ld_abs load up to 32-bit skb data. */ 6400 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 6401 return 0; 6402 } 6403 6404 static int check_return_code(struct bpf_verifier_env *env) 6405 { 6406 struct tnum enforce_attach_type_range = tnum_unknown; 6407 const struct bpf_prog *prog = env->prog; 6408 struct bpf_reg_state *reg; 6409 struct tnum range = tnum_range(0, 1); 6410 int err; 6411 6412 /* The struct_ops func-ptr's return type could be "void" */ 6413 if (env->prog->type == BPF_PROG_TYPE_STRUCT_OPS && 6414 !prog->aux->attach_func_proto->type) 6415 return 0; 6416 6417 /* eBPF calling convetion is such that R0 is used 6418 * to return the value from eBPF program. 6419 * Make sure that it's readable at this time 6420 * of bpf_exit, which means that program wrote 6421 * something into it earlier 6422 */ 6423 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 6424 if (err) 6425 return err; 6426 6427 if (is_pointer_value(env, BPF_REG_0)) { 6428 verbose(env, "R0 leaks addr as return value\n"); 6429 return -EACCES; 6430 } 6431 6432 switch (env->prog->type) { 6433 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 6434 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 6435 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG) 6436 range = tnum_range(1, 1); 6437 break; 6438 case BPF_PROG_TYPE_CGROUP_SKB: 6439 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 6440 range = tnum_range(0, 3); 6441 enforce_attach_type_range = tnum_range(2, 3); 6442 } 6443 break; 6444 case BPF_PROG_TYPE_CGROUP_SOCK: 6445 case BPF_PROG_TYPE_SOCK_OPS: 6446 case BPF_PROG_TYPE_CGROUP_DEVICE: 6447 case BPF_PROG_TYPE_CGROUP_SYSCTL: 6448 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 6449 break; 6450 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6451 if (!env->prog->aux->attach_btf_id) 6452 return 0; 6453 range = tnum_const(0); 6454 break; 6455 default: 6456 return 0; 6457 } 6458 6459 reg = cur_regs(env) + BPF_REG_0; 6460 if (reg->type != SCALAR_VALUE) { 6461 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 6462 reg_type_str[reg->type]); 6463 return -EINVAL; 6464 } 6465 6466 if (!tnum_in(range, reg->var_off)) { 6467 char tn_buf[48]; 6468 6469 verbose(env, "At program exit the register R0 "); 6470 if (!tnum_is_unknown(reg->var_off)) { 6471 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6472 verbose(env, "has value %s", tn_buf); 6473 } else { 6474 verbose(env, "has unknown scalar value"); 6475 } 6476 tnum_strn(tn_buf, sizeof(tn_buf), range); 6477 verbose(env, " should have been in %s\n", tn_buf); 6478 return -EINVAL; 6479 } 6480 6481 if (!tnum_is_unknown(enforce_attach_type_range) && 6482 tnum_in(enforce_attach_type_range, reg->var_off)) 6483 env->prog->enforce_expected_attach_type = 1; 6484 return 0; 6485 } 6486 6487 /* non-recursive DFS pseudo code 6488 * 1 procedure DFS-iterative(G,v): 6489 * 2 label v as discovered 6490 * 3 let S be a stack 6491 * 4 S.push(v) 6492 * 5 while S is not empty 6493 * 6 t <- S.pop() 6494 * 7 if t is what we're looking for: 6495 * 8 return t 6496 * 9 for all edges e in G.adjacentEdges(t) do 6497 * 10 if edge e is already labelled 6498 * 11 continue with the next edge 6499 * 12 w <- G.adjacentVertex(t,e) 6500 * 13 if vertex w is not discovered and not explored 6501 * 14 label e as tree-edge 6502 * 15 label w as discovered 6503 * 16 S.push(w) 6504 * 17 continue at 5 6505 * 18 else if vertex w is discovered 6506 * 19 label e as back-edge 6507 * 20 else 6508 * 21 // vertex w is explored 6509 * 22 label e as forward- or cross-edge 6510 * 23 label t as explored 6511 * 24 S.pop() 6512 * 6513 * convention: 6514 * 0x10 - discovered 6515 * 0x11 - discovered and fall-through edge labelled 6516 * 0x12 - discovered and fall-through and branch edges labelled 6517 * 0x20 - explored 6518 */ 6519 6520 enum { 6521 DISCOVERED = 0x10, 6522 EXPLORED = 0x20, 6523 FALLTHROUGH = 1, 6524 BRANCH = 2, 6525 }; 6526 6527 static u32 state_htab_size(struct bpf_verifier_env *env) 6528 { 6529 return env->prog->len; 6530 } 6531 6532 static struct bpf_verifier_state_list **explored_state( 6533 struct bpf_verifier_env *env, 6534 int idx) 6535 { 6536 struct bpf_verifier_state *cur = env->cur_state; 6537 struct bpf_func_state *state = cur->frame[cur->curframe]; 6538 6539 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 6540 } 6541 6542 static void init_explored_state(struct bpf_verifier_env *env, int idx) 6543 { 6544 env->insn_aux_data[idx].prune_point = true; 6545 } 6546 6547 /* t, w, e - match pseudo-code above: 6548 * t - index of current instruction 6549 * w - next instruction 6550 * e - edge 6551 */ 6552 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 6553 bool loop_ok) 6554 { 6555 int *insn_stack = env->cfg.insn_stack; 6556 int *insn_state = env->cfg.insn_state; 6557 6558 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 6559 return 0; 6560 6561 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 6562 return 0; 6563 6564 if (w < 0 || w >= env->prog->len) { 6565 verbose_linfo(env, t, "%d: ", t); 6566 verbose(env, "jump out of range from insn %d to %d\n", t, w); 6567 return -EINVAL; 6568 } 6569 6570 if (e == BRANCH) 6571 /* mark branch target for state pruning */ 6572 init_explored_state(env, w); 6573 6574 if (insn_state[w] == 0) { 6575 /* tree-edge */ 6576 insn_state[t] = DISCOVERED | e; 6577 insn_state[w] = DISCOVERED; 6578 if (env->cfg.cur_stack >= env->prog->len) 6579 return -E2BIG; 6580 insn_stack[env->cfg.cur_stack++] = w; 6581 return 1; 6582 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 6583 if (loop_ok && env->allow_ptr_leaks) 6584 return 0; 6585 verbose_linfo(env, t, "%d: ", t); 6586 verbose_linfo(env, w, "%d: ", w); 6587 verbose(env, "back-edge from insn %d to %d\n", t, w); 6588 return -EINVAL; 6589 } else if (insn_state[w] == EXPLORED) { 6590 /* forward- or cross-edge */ 6591 insn_state[t] = DISCOVERED | e; 6592 } else { 6593 verbose(env, "insn state internal bug\n"); 6594 return -EFAULT; 6595 } 6596 return 0; 6597 } 6598 6599 /* non-recursive depth-first-search to detect loops in BPF program 6600 * loop == back-edge in directed graph 6601 */ 6602 static int check_cfg(struct bpf_verifier_env *env) 6603 { 6604 struct bpf_insn *insns = env->prog->insnsi; 6605 int insn_cnt = env->prog->len; 6606 int *insn_stack, *insn_state; 6607 int ret = 0; 6608 int i, t; 6609 6610 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 6611 if (!insn_state) 6612 return -ENOMEM; 6613 6614 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 6615 if (!insn_stack) { 6616 kvfree(insn_state); 6617 return -ENOMEM; 6618 } 6619 6620 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 6621 insn_stack[0] = 0; /* 0 is the first instruction */ 6622 env->cfg.cur_stack = 1; 6623 6624 peek_stack: 6625 if (env->cfg.cur_stack == 0) 6626 goto check_state; 6627 t = insn_stack[env->cfg.cur_stack - 1]; 6628 6629 if (BPF_CLASS(insns[t].code) == BPF_JMP || 6630 BPF_CLASS(insns[t].code) == BPF_JMP32) { 6631 u8 opcode = BPF_OP(insns[t].code); 6632 6633 if (opcode == BPF_EXIT) { 6634 goto mark_explored; 6635 } else if (opcode == BPF_CALL) { 6636 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 6637 if (ret == 1) 6638 goto peek_stack; 6639 else if (ret < 0) 6640 goto err_free; 6641 if (t + 1 < insn_cnt) 6642 init_explored_state(env, t + 1); 6643 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 6644 init_explored_state(env, t); 6645 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 6646 env, false); 6647 if (ret == 1) 6648 goto peek_stack; 6649 else if (ret < 0) 6650 goto err_free; 6651 } 6652 } else if (opcode == BPF_JA) { 6653 if (BPF_SRC(insns[t].code) != BPF_K) { 6654 ret = -EINVAL; 6655 goto err_free; 6656 } 6657 /* unconditional jump with single edge */ 6658 ret = push_insn(t, t + insns[t].off + 1, 6659 FALLTHROUGH, env, true); 6660 if (ret == 1) 6661 goto peek_stack; 6662 else if (ret < 0) 6663 goto err_free; 6664 /* unconditional jmp is not a good pruning point, 6665 * but it's marked, since backtracking needs 6666 * to record jmp history in is_state_visited(). 6667 */ 6668 init_explored_state(env, t + insns[t].off + 1); 6669 /* tell verifier to check for equivalent states 6670 * after every call and jump 6671 */ 6672 if (t + 1 < insn_cnt) 6673 init_explored_state(env, t + 1); 6674 } else { 6675 /* conditional jump with two edges */ 6676 init_explored_state(env, t); 6677 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 6678 if (ret == 1) 6679 goto peek_stack; 6680 else if (ret < 0) 6681 goto err_free; 6682 6683 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 6684 if (ret == 1) 6685 goto peek_stack; 6686 else if (ret < 0) 6687 goto err_free; 6688 } 6689 } else { 6690 /* all other non-branch instructions with single 6691 * fall-through edge 6692 */ 6693 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 6694 if (ret == 1) 6695 goto peek_stack; 6696 else if (ret < 0) 6697 goto err_free; 6698 } 6699 6700 mark_explored: 6701 insn_state[t] = EXPLORED; 6702 if (env->cfg.cur_stack-- <= 0) { 6703 verbose(env, "pop stack internal bug\n"); 6704 ret = -EFAULT; 6705 goto err_free; 6706 } 6707 goto peek_stack; 6708 6709 check_state: 6710 for (i = 0; i < insn_cnt; i++) { 6711 if (insn_state[i] != EXPLORED) { 6712 verbose(env, "unreachable insn %d\n", i); 6713 ret = -EINVAL; 6714 goto err_free; 6715 } 6716 } 6717 ret = 0; /* cfg looks good */ 6718 6719 err_free: 6720 kvfree(insn_state); 6721 kvfree(insn_stack); 6722 env->cfg.insn_state = env->cfg.insn_stack = NULL; 6723 return ret; 6724 } 6725 6726 /* The minimum supported BTF func info size */ 6727 #define MIN_BPF_FUNCINFO_SIZE 8 6728 #define MAX_FUNCINFO_REC_SIZE 252 6729 6730 static int check_btf_func(struct bpf_verifier_env *env, 6731 const union bpf_attr *attr, 6732 union bpf_attr __user *uattr) 6733 { 6734 u32 i, nfuncs, urec_size, min_size; 6735 u32 krec_size = sizeof(struct bpf_func_info); 6736 struct bpf_func_info *krecord; 6737 struct bpf_func_info_aux *info_aux = NULL; 6738 const struct btf_type *type; 6739 struct bpf_prog *prog; 6740 const struct btf *btf; 6741 void __user *urecord; 6742 u32 prev_offset = 0; 6743 int ret = 0; 6744 6745 nfuncs = attr->func_info_cnt; 6746 if (!nfuncs) 6747 return 0; 6748 6749 if (nfuncs != env->subprog_cnt) { 6750 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 6751 return -EINVAL; 6752 } 6753 6754 urec_size = attr->func_info_rec_size; 6755 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 6756 urec_size > MAX_FUNCINFO_REC_SIZE || 6757 urec_size % sizeof(u32)) { 6758 verbose(env, "invalid func info rec size %u\n", urec_size); 6759 return -EINVAL; 6760 } 6761 6762 prog = env->prog; 6763 btf = prog->aux->btf; 6764 6765 urecord = u64_to_user_ptr(attr->func_info); 6766 min_size = min_t(u32, krec_size, urec_size); 6767 6768 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 6769 if (!krecord) 6770 return -ENOMEM; 6771 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 6772 if (!info_aux) 6773 goto err_free; 6774 6775 for (i = 0; i < nfuncs; i++) { 6776 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 6777 if (ret) { 6778 if (ret == -E2BIG) { 6779 verbose(env, "nonzero tailing record in func info"); 6780 /* set the size kernel expects so loader can zero 6781 * out the rest of the record. 6782 */ 6783 if (put_user(min_size, &uattr->func_info_rec_size)) 6784 ret = -EFAULT; 6785 } 6786 goto err_free; 6787 } 6788 6789 if (copy_from_user(&krecord[i], urecord, min_size)) { 6790 ret = -EFAULT; 6791 goto err_free; 6792 } 6793 6794 /* check insn_off */ 6795 if (i == 0) { 6796 if (krecord[i].insn_off) { 6797 verbose(env, 6798 "nonzero insn_off %u for the first func info record", 6799 krecord[i].insn_off); 6800 ret = -EINVAL; 6801 goto err_free; 6802 } 6803 } else if (krecord[i].insn_off <= prev_offset) { 6804 verbose(env, 6805 "same or smaller insn offset (%u) than previous func info record (%u)", 6806 krecord[i].insn_off, prev_offset); 6807 ret = -EINVAL; 6808 goto err_free; 6809 } 6810 6811 if (env->subprog_info[i].start != krecord[i].insn_off) { 6812 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 6813 ret = -EINVAL; 6814 goto err_free; 6815 } 6816 6817 /* check type_id */ 6818 type = btf_type_by_id(btf, krecord[i].type_id); 6819 if (!type || !btf_type_is_func(type)) { 6820 verbose(env, "invalid type id %d in func info", 6821 krecord[i].type_id); 6822 ret = -EINVAL; 6823 goto err_free; 6824 } 6825 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 6826 prev_offset = krecord[i].insn_off; 6827 urecord += urec_size; 6828 } 6829 6830 prog->aux->func_info = krecord; 6831 prog->aux->func_info_cnt = nfuncs; 6832 prog->aux->func_info_aux = info_aux; 6833 return 0; 6834 6835 err_free: 6836 kvfree(krecord); 6837 kfree(info_aux); 6838 return ret; 6839 } 6840 6841 static void adjust_btf_func(struct bpf_verifier_env *env) 6842 { 6843 struct bpf_prog_aux *aux = env->prog->aux; 6844 int i; 6845 6846 if (!aux->func_info) 6847 return; 6848 6849 for (i = 0; i < env->subprog_cnt; i++) 6850 aux->func_info[i].insn_off = env->subprog_info[i].start; 6851 } 6852 6853 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 6854 sizeof(((struct bpf_line_info *)(0))->line_col)) 6855 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 6856 6857 static int check_btf_line(struct bpf_verifier_env *env, 6858 const union bpf_attr *attr, 6859 union bpf_attr __user *uattr) 6860 { 6861 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 6862 struct bpf_subprog_info *sub; 6863 struct bpf_line_info *linfo; 6864 struct bpf_prog *prog; 6865 const struct btf *btf; 6866 void __user *ulinfo; 6867 int err; 6868 6869 nr_linfo = attr->line_info_cnt; 6870 if (!nr_linfo) 6871 return 0; 6872 6873 rec_size = attr->line_info_rec_size; 6874 if (rec_size < MIN_BPF_LINEINFO_SIZE || 6875 rec_size > MAX_LINEINFO_REC_SIZE || 6876 rec_size & (sizeof(u32) - 1)) 6877 return -EINVAL; 6878 6879 /* Need to zero it in case the userspace may 6880 * pass in a smaller bpf_line_info object. 6881 */ 6882 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 6883 GFP_KERNEL | __GFP_NOWARN); 6884 if (!linfo) 6885 return -ENOMEM; 6886 6887 prog = env->prog; 6888 btf = prog->aux->btf; 6889 6890 s = 0; 6891 sub = env->subprog_info; 6892 ulinfo = u64_to_user_ptr(attr->line_info); 6893 expected_size = sizeof(struct bpf_line_info); 6894 ncopy = min_t(u32, expected_size, rec_size); 6895 for (i = 0; i < nr_linfo; i++) { 6896 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 6897 if (err) { 6898 if (err == -E2BIG) { 6899 verbose(env, "nonzero tailing record in line_info"); 6900 if (put_user(expected_size, 6901 &uattr->line_info_rec_size)) 6902 err = -EFAULT; 6903 } 6904 goto err_free; 6905 } 6906 6907 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 6908 err = -EFAULT; 6909 goto err_free; 6910 } 6911 6912 /* 6913 * Check insn_off to ensure 6914 * 1) strictly increasing AND 6915 * 2) bounded by prog->len 6916 * 6917 * The linfo[0].insn_off == 0 check logically falls into 6918 * the later "missing bpf_line_info for func..." case 6919 * because the first linfo[0].insn_off must be the 6920 * first sub also and the first sub must have 6921 * subprog_info[0].start == 0. 6922 */ 6923 if ((i && linfo[i].insn_off <= prev_offset) || 6924 linfo[i].insn_off >= prog->len) { 6925 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 6926 i, linfo[i].insn_off, prev_offset, 6927 prog->len); 6928 err = -EINVAL; 6929 goto err_free; 6930 } 6931 6932 if (!prog->insnsi[linfo[i].insn_off].code) { 6933 verbose(env, 6934 "Invalid insn code at line_info[%u].insn_off\n", 6935 i); 6936 err = -EINVAL; 6937 goto err_free; 6938 } 6939 6940 if (!btf_name_by_offset(btf, linfo[i].line_off) || 6941 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 6942 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 6943 err = -EINVAL; 6944 goto err_free; 6945 } 6946 6947 if (s != env->subprog_cnt) { 6948 if (linfo[i].insn_off == sub[s].start) { 6949 sub[s].linfo_idx = i; 6950 s++; 6951 } else if (sub[s].start < linfo[i].insn_off) { 6952 verbose(env, "missing bpf_line_info for func#%u\n", s); 6953 err = -EINVAL; 6954 goto err_free; 6955 } 6956 } 6957 6958 prev_offset = linfo[i].insn_off; 6959 ulinfo += rec_size; 6960 } 6961 6962 if (s != env->subprog_cnt) { 6963 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 6964 env->subprog_cnt - s, s); 6965 err = -EINVAL; 6966 goto err_free; 6967 } 6968 6969 prog->aux->linfo = linfo; 6970 prog->aux->nr_linfo = nr_linfo; 6971 6972 return 0; 6973 6974 err_free: 6975 kvfree(linfo); 6976 return err; 6977 } 6978 6979 static int check_btf_info(struct bpf_verifier_env *env, 6980 const union bpf_attr *attr, 6981 union bpf_attr __user *uattr) 6982 { 6983 struct btf *btf; 6984 int err; 6985 6986 if (!attr->func_info_cnt && !attr->line_info_cnt) 6987 return 0; 6988 6989 btf = btf_get_by_fd(attr->prog_btf_fd); 6990 if (IS_ERR(btf)) 6991 return PTR_ERR(btf); 6992 env->prog->aux->btf = btf; 6993 6994 err = check_btf_func(env, attr, uattr); 6995 if (err) 6996 return err; 6997 6998 err = check_btf_line(env, attr, uattr); 6999 if (err) 7000 return err; 7001 7002 return 0; 7003 } 7004 7005 /* check %cur's range satisfies %old's */ 7006 static bool range_within(struct bpf_reg_state *old, 7007 struct bpf_reg_state *cur) 7008 { 7009 return old->umin_value <= cur->umin_value && 7010 old->umax_value >= cur->umax_value && 7011 old->smin_value <= cur->smin_value && 7012 old->smax_value >= cur->smax_value; 7013 } 7014 7015 /* Maximum number of register states that can exist at once */ 7016 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 7017 struct idpair { 7018 u32 old; 7019 u32 cur; 7020 }; 7021 7022 /* If in the old state two registers had the same id, then they need to have 7023 * the same id in the new state as well. But that id could be different from 7024 * the old state, so we need to track the mapping from old to new ids. 7025 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 7026 * regs with old id 5 must also have new id 9 for the new state to be safe. But 7027 * regs with a different old id could still have new id 9, we don't care about 7028 * that. 7029 * So we look through our idmap to see if this old id has been seen before. If 7030 * so, we require the new id to match; otherwise, we add the id pair to the map. 7031 */ 7032 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 7033 { 7034 unsigned int i; 7035 7036 for (i = 0; i < ID_MAP_SIZE; i++) { 7037 if (!idmap[i].old) { 7038 /* Reached an empty slot; haven't seen this id before */ 7039 idmap[i].old = old_id; 7040 idmap[i].cur = cur_id; 7041 return true; 7042 } 7043 if (idmap[i].old == old_id) 7044 return idmap[i].cur == cur_id; 7045 } 7046 /* We ran out of idmap slots, which should be impossible */ 7047 WARN_ON_ONCE(1); 7048 return false; 7049 } 7050 7051 static void clean_func_state(struct bpf_verifier_env *env, 7052 struct bpf_func_state *st) 7053 { 7054 enum bpf_reg_liveness live; 7055 int i, j; 7056 7057 for (i = 0; i < BPF_REG_FP; i++) { 7058 live = st->regs[i].live; 7059 /* liveness must not touch this register anymore */ 7060 st->regs[i].live |= REG_LIVE_DONE; 7061 if (!(live & REG_LIVE_READ)) 7062 /* since the register is unused, clear its state 7063 * to make further comparison simpler 7064 */ 7065 __mark_reg_not_init(env, &st->regs[i]); 7066 } 7067 7068 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 7069 live = st->stack[i].spilled_ptr.live; 7070 /* liveness must not touch this stack slot anymore */ 7071 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 7072 if (!(live & REG_LIVE_READ)) { 7073 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 7074 for (j = 0; j < BPF_REG_SIZE; j++) 7075 st->stack[i].slot_type[j] = STACK_INVALID; 7076 } 7077 } 7078 } 7079 7080 static void clean_verifier_state(struct bpf_verifier_env *env, 7081 struct bpf_verifier_state *st) 7082 { 7083 int i; 7084 7085 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 7086 /* all regs in this state in all frames were already marked */ 7087 return; 7088 7089 for (i = 0; i <= st->curframe; i++) 7090 clean_func_state(env, st->frame[i]); 7091 } 7092 7093 /* the parentage chains form a tree. 7094 * the verifier states are added to state lists at given insn and 7095 * pushed into state stack for future exploration. 7096 * when the verifier reaches bpf_exit insn some of the verifer states 7097 * stored in the state lists have their final liveness state already, 7098 * but a lot of states will get revised from liveness point of view when 7099 * the verifier explores other branches. 7100 * Example: 7101 * 1: r0 = 1 7102 * 2: if r1 == 100 goto pc+1 7103 * 3: r0 = 2 7104 * 4: exit 7105 * when the verifier reaches exit insn the register r0 in the state list of 7106 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 7107 * of insn 2 and goes exploring further. At the insn 4 it will walk the 7108 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 7109 * 7110 * Since the verifier pushes the branch states as it sees them while exploring 7111 * the program the condition of walking the branch instruction for the second 7112 * time means that all states below this branch were already explored and 7113 * their final liveness markes are already propagated. 7114 * Hence when the verifier completes the search of state list in is_state_visited() 7115 * we can call this clean_live_states() function to mark all liveness states 7116 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 7117 * will not be used. 7118 * This function also clears the registers and stack for states that !READ 7119 * to simplify state merging. 7120 * 7121 * Important note here that walking the same branch instruction in the callee 7122 * doesn't meant that the states are DONE. The verifier has to compare 7123 * the callsites 7124 */ 7125 static void clean_live_states(struct bpf_verifier_env *env, int insn, 7126 struct bpf_verifier_state *cur) 7127 { 7128 struct bpf_verifier_state_list *sl; 7129 int i; 7130 7131 sl = *explored_state(env, insn); 7132 while (sl) { 7133 if (sl->state.branches) 7134 goto next; 7135 if (sl->state.insn_idx != insn || 7136 sl->state.curframe != cur->curframe) 7137 goto next; 7138 for (i = 0; i <= cur->curframe; i++) 7139 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 7140 goto next; 7141 clean_verifier_state(env, &sl->state); 7142 next: 7143 sl = sl->next; 7144 } 7145 } 7146 7147 /* Returns true if (rold safe implies rcur safe) */ 7148 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 7149 struct idpair *idmap) 7150 { 7151 bool equal; 7152 7153 if (!(rold->live & REG_LIVE_READ)) 7154 /* explored state didn't use this */ 7155 return true; 7156 7157 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 7158 7159 if (rold->type == PTR_TO_STACK) 7160 /* two stack pointers are equal only if they're pointing to 7161 * the same stack frame, since fp-8 in foo != fp-8 in bar 7162 */ 7163 return equal && rold->frameno == rcur->frameno; 7164 7165 if (equal) 7166 return true; 7167 7168 if (rold->type == NOT_INIT) 7169 /* explored state can't have used this */ 7170 return true; 7171 if (rcur->type == NOT_INIT) 7172 return false; 7173 switch (rold->type) { 7174 case SCALAR_VALUE: 7175 if (rcur->type == SCALAR_VALUE) { 7176 if (!rold->precise && !rcur->precise) 7177 return true; 7178 /* new val must satisfy old val knowledge */ 7179 return range_within(rold, rcur) && 7180 tnum_in(rold->var_off, rcur->var_off); 7181 } else { 7182 /* We're trying to use a pointer in place of a scalar. 7183 * Even if the scalar was unbounded, this could lead to 7184 * pointer leaks because scalars are allowed to leak 7185 * while pointers are not. We could make this safe in 7186 * special cases if root is calling us, but it's 7187 * probably not worth the hassle. 7188 */ 7189 return false; 7190 } 7191 case PTR_TO_MAP_VALUE: 7192 /* If the new min/max/var_off satisfy the old ones and 7193 * everything else matches, we are OK. 7194 * 'id' is not compared, since it's only used for maps with 7195 * bpf_spin_lock inside map element and in such cases if 7196 * the rest of the prog is valid for one map element then 7197 * it's valid for all map elements regardless of the key 7198 * used in bpf_map_lookup() 7199 */ 7200 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 7201 range_within(rold, rcur) && 7202 tnum_in(rold->var_off, rcur->var_off); 7203 case PTR_TO_MAP_VALUE_OR_NULL: 7204 /* a PTR_TO_MAP_VALUE could be safe to use as a 7205 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 7206 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 7207 * checked, doing so could have affected others with the same 7208 * id, and we can't check for that because we lost the id when 7209 * we converted to a PTR_TO_MAP_VALUE. 7210 */ 7211 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 7212 return false; 7213 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 7214 return false; 7215 /* Check our ids match any regs they're supposed to */ 7216 return check_ids(rold->id, rcur->id, idmap); 7217 case PTR_TO_PACKET_META: 7218 case PTR_TO_PACKET: 7219 if (rcur->type != rold->type) 7220 return false; 7221 /* We must have at least as much range as the old ptr 7222 * did, so that any accesses which were safe before are 7223 * still safe. This is true even if old range < old off, 7224 * since someone could have accessed through (ptr - k), or 7225 * even done ptr -= k in a register, to get a safe access. 7226 */ 7227 if (rold->range > rcur->range) 7228 return false; 7229 /* If the offsets don't match, we can't trust our alignment; 7230 * nor can we be sure that we won't fall out of range. 7231 */ 7232 if (rold->off != rcur->off) 7233 return false; 7234 /* id relations must be preserved */ 7235 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 7236 return false; 7237 /* new val must satisfy old val knowledge */ 7238 return range_within(rold, rcur) && 7239 tnum_in(rold->var_off, rcur->var_off); 7240 case PTR_TO_CTX: 7241 case CONST_PTR_TO_MAP: 7242 case PTR_TO_PACKET_END: 7243 case PTR_TO_FLOW_KEYS: 7244 case PTR_TO_SOCKET: 7245 case PTR_TO_SOCKET_OR_NULL: 7246 case PTR_TO_SOCK_COMMON: 7247 case PTR_TO_SOCK_COMMON_OR_NULL: 7248 case PTR_TO_TCP_SOCK: 7249 case PTR_TO_TCP_SOCK_OR_NULL: 7250 case PTR_TO_XDP_SOCK: 7251 /* Only valid matches are exact, which memcmp() above 7252 * would have accepted 7253 */ 7254 default: 7255 /* Don't know what's going on, just say it's not safe */ 7256 return false; 7257 } 7258 7259 /* Shouldn't get here; if we do, say it's not safe */ 7260 WARN_ON_ONCE(1); 7261 return false; 7262 } 7263 7264 static bool stacksafe(struct bpf_func_state *old, 7265 struct bpf_func_state *cur, 7266 struct idpair *idmap) 7267 { 7268 int i, spi; 7269 7270 /* walk slots of the explored stack and ignore any additional 7271 * slots in the current stack, since explored(safe) state 7272 * didn't use them 7273 */ 7274 for (i = 0; i < old->allocated_stack; i++) { 7275 spi = i / BPF_REG_SIZE; 7276 7277 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 7278 i += BPF_REG_SIZE - 1; 7279 /* explored state didn't use this */ 7280 continue; 7281 } 7282 7283 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 7284 continue; 7285 7286 /* explored stack has more populated slots than current stack 7287 * and these slots were used 7288 */ 7289 if (i >= cur->allocated_stack) 7290 return false; 7291 7292 /* if old state was safe with misc data in the stack 7293 * it will be safe with zero-initialized stack. 7294 * The opposite is not true 7295 */ 7296 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 7297 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 7298 continue; 7299 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 7300 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 7301 /* Ex: old explored (safe) state has STACK_SPILL in 7302 * this stack slot, but current has has STACK_MISC -> 7303 * this verifier states are not equivalent, 7304 * return false to continue verification of this path 7305 */ 7306 return false; 7307 if (i % BPF_REG_SIZE) 7308 continue; 7309 if (old->stack[spi].slot_type[0] != STACK_SPILL) 7310 continue; 7311 if (!regsafe(&old->stack[spi].spilled_ptr, 7312 &cur->stack[spi].spilled_ptr, 7313 idmap)) 7314 /* when explored and current stack slot are both storing 7315 * spilled registers, check that stored pointers types 7316 * are the same as well. 7317 * Ex: explored safe path could have stored 7318 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 7319 * but current path has stored: 7320 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 7321 * such verifier states are not equivalent. 7322 * return false to continue verification of this path 7323 */ 7324 return false; 7325 } 7326 return true; 7327 } 7328 7329 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 7330 { 7331 if (old->acquired_refs != cur->acquired_refs) 7332 return false; 7333 return !memcmp(old->refs, cur->refs, 7334 sizeof(*old->refs) * old->acquired_refs); 7335 } 7336 7337 /* compare two verifier states 7338 * 7339 * all states stored in state_list are known to be valid, since 7340 * verifier reached 'bpf_exit' instruction through them 7341 * 7342 * this function is called when verifier exploring different branches of 7343 * execution popped from the state stack. If it sees an old state that has 7344 * more strict register state and more strict stack state then this execution 7345 * branch doesn't need to be explored further, since verifier already 7346 * concluded that more strict state leads to valid finish. 7347 * 7348 * Therefore two states are equivalent if register state is more conservative 7349 * and explored stack state is more conservative than the current one. 7350 * Example: 7351 * explored current 7352 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 7353 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 7354 * 7355 * In other words if current stack state (one being explored) has more 7356 * valid slots than old one that already passed validation, it means 7357 * the verifier can stop exploring and conclude that current state is valid too 7358 * 7359 * Similarly with registers. If explored state has register type as invalid 7360 * whereas register type in current state is meaningful, it means that 7361 * the current state will reach 'bpf_exit' instruction safely 7362 */ 7363 static bool func_states_equal(struct bpf_func_state *old, 7364 struct bpf_func_state *cur) 7365 { 7366 struct idpair *idmap; 7367 bool ret = false; 7368 int i; 7369 7370 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 7371 /* If we failed to allocate the idmap, just say it's not safe */ 7372 if (!idmap) 7373 return false; 7374 7375 for (i = 0; i < MAX_BPF_REG; i++) { 7376 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 7377 goto out_free; 7378 } 7379 7380 if (!stacksafe(old, cur, idmap)) 7381 goto out_free; 7382 7383 if (!refsafe(old, cur)) 7384 goto out_free; 7385 ret = true; 7386 out_free: 7387 kfree(idmap); 7388 return ret; 7389 } 7390 7391 static bool states_equal(struct bpf_verifier_env *env, 7392 struct bpf_verifier_state *old, 7393 struct bpf_verifier_state *cur) 7394 { 7395 int i; 7396 7397 if (old->curframe != cur->curframe) 7398 return false; 7399 7400 /* Verification state from speculative execution simulation 7401 * must never prune a non-speculative execution one. 7402 */ 7403 if (old->speculative && !cur->speculative) 7404 return false; 7405 7406 if (old->active_spin_lock != cur->active_spin_lock) 7407 return false; 7408 7409 /* for states to be equal callsites have to be the same 7410 * and all frame states need to be equivalent 7411 */ 7412 for (i = 0; i <= old->curframe; i++) { 7413 if (old->frame[i]->callsite != cur->frame[i]->callsite) 7414 return false; 7415 if (!func_states_equal(old->frame[i], cur->frame[i])) 7416 return false; 7417 } 7418 return true; 7419 } 7420 7421 /* Return 0 if no propagation happened. Return negative error code if error 7422 * happened. Otherwise, return the propagated bit. 7423 */ 7424 static int propagate_liveness_reg(struct bpf_verifier_env *env, 7425 struct bpf_reg_state *reg, 7426 struct bpf_reg_state *parent_reg) 7427 { 7428 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 7429 u8 flag = reg->live & REG_LIVE_READ; 7430 int err; 7431 7432 /* When comes here, read flags of PARENT_REG or REG could be any of 7433 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 7434 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 7435 */ 7436 if (parent_flag == REG_LIVE_READ64 || 7437 /* Or if there is no read flag from REG. */ 7438 !flag || 7439 /* Or if the read flag from REG is the same as PARENT_REG. */ 7440 parent_flag == flag) 7441 return 0; 7442 7443 err = mark_reg_read(env, reg, parent_reg, flag); 7444 if (err) 7445 return err; 7446 7447 return flag; 7448 } 7449 7450 /* A write screens off any subsequent reads; but write marks come from the 7451 * straight-line code between a state and its parent. When we arrive at an 7452 * equivalent state (jump target or such) we didn't arrive by the straight-line 7453 * code, so read marks in the state must propagate to the parent regardless 7454 * of the state's write marks. That's what 'parent == state->parent' comparison 7455 * in mark_reg_read() is for. 7456 */ 7457 static int propagate_liveness(struct bpf_verifier_env *env, 7458 const struct bpf_verifier_state *vstate, 7459 struct bpf_verifier_state *vparent) 7460 { 7461 struct bpf_reg_state *state_reg, *parent_reg; 7462 struct bpf_func_state *state, *parent; 7463 int i, frame, err = 0; 7464 7465 if (vparent->curframe != vstate->curframe) { 7466 WARN(1, "propagate_live: parent frame %d current frame %d\n", 7467 vparent->curframe, vstate->curframe); 7468 return -EFAULT; 7469 } 7470 /* Propagate read liveness of registers... */ 7471 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 7472 for (frame = 0; frame <= vstate->curframe; frame++) { 7473 parent = vparent->frame[frame]; 7474 state = vstate->frame[frame]; 7475 parent_reg = parent->regs; 7476 state_reg = state->regs; 7477 /* We don't need to worry about FP liveness, it's read-only */ 7478 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 7479 err = propagate_liveness_reg(env, &state_reg[i], 7480 &parent_reg[i]); 7481 if (err < 0) 7482 return err; 7483 if (err == REG_LIVE_READ64) 7484 mark_insn_zext(env, &parent_reg[i]); 7485 } 7486 7487 /* Propagate stack slots. */ 7488 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 7489 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 7490 parent_reg = &parent->stack[i].spilled_ptr; 7491 state_reg = &state->stack[i].spilled_ptr; 7492 err = propagate_liveness_reg(env, state_reg, 7493 parent_reg); 7494 if (err < 0) 7495 return err; 7496 } 7497 } 7498 return 0; 7499 } 7500 7501 /* find precise scalars in the previous equivalent state and 7502 * propagate them into the current state 7503 */ 7504 static int propagate_precision(struct bpf_verifier_env *env, 7505 const struct bpf_verifier_state *old) 7506 { 7507 struct bpf_reg_state *state_reg; 7508 struct bpf_func_state *state; 7509 int i, err = 0; 7510 7511 state = old->frame[old->curframe]; 7512 state_reg = state->regs; 7513 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 7514 if (state_reg->type != SCALAR_VALUE || 7515 !state_reg->precise) 7516 continue; 7517 if (env->log.level & BPF_LOG_LEVEL2) 7518 verbose(env, "propagating r%d\n", i); 7519 err = mark_chain_precision(env, i); 7520 if (err < 0) 7521 return err; 7522 } 7523 7524 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 7525 if (state->stack[i].slot_type[0] != STACK_SPILL) 7526 continue; 7527 state_reg = &state->stack[i].spilled_ptr; 7528 if (state_reg->type != SCALAR_VALUE || 7529 !state_reg->precise) 7530 continue; 7531 if (env->log.level & BPF_LOG_LEVEL2) 7532 verbose(env, "propagating fp%d\n", 7533 (-i - 1) * BPF_REG_SIZE); 7534 err = mark_chain_precision_stack(env, i); 7535 if (err < 0) 7536 return err; 7537 } 7538 return 0; 7539 } 7540 7541 static bool states_maybe_looping(struct bpf_verifier_state *old, 7542 struct bpf_verifier_state *cur) 7543 { 7544 struct bpf_func_state *fold, *fcur; 7545 int i, fr = cur->curframe; 7546 7547 if (old->curframe != fr) 7548 return false; 7549 7550 fold = old->frame[fr]; 7551 fcur = cur->frame[fr]; 7552 for (i = 0; i < MAX_BPF_REG; i++) 7553 if (memcmp(&fold->regs[i], &fcur->regs[i], 7554 offsetof(struct bpf_reg_state, parent))) 7555 return false; 7556 return true; 7557 } 7558 7559 7560 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 7561 { 7562 struct bpf_verifier_state_list *new_sl; 7563 struct bpf_verifier_state_list *sl, **pprev; 7564 struct bpf_verifier_state *cur = env->cur_state, *new; 7565 int i, j, err, states_cnt = 0; 7566 bool add_new_state = env->test_state_freq ? true : false; 7567 7568 cur->last_insn_idx = env->prev_insn_idx; 7569 if (!env->insn_aux_data[insn_idx].prune_point) 7570 /* this 'insn_idx' instruction wasn't marked, so we will not 7571 * be doing state search here 7572 */ 7573 return 0; 7574 7575 /* bpf progs typically have pruning point every 4 instructions 7576 * http://vger.kernel.org/bpfconf2019.html#session-1 7577 * Do not add new state for future pruning if the verifier hasn't seen 7578 * at least 2 jumps and at least 8 instructions. 7579 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 7580 * In tests that amounts to up to 50% reduction into total verifier 7581 * memory consumption and 20% verifier time speedup. 7582 */ 7583 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 7584 env->insn_processed - env->prev_insn_processed >= 8) 7585 add_new_state = true; 7586 7587 pprev = explored_state(env, insn_idx); 7588 sl = *pprev; 7589 7590 clean_live_states(env, insn_idx, cur); 7591 7592 while (sl) { 7593 states_cnt++; 7594 if (sl->state.insn_idx != insn_idx) 7595 goto next; 7596 if (sl->state.branches) { 7597 if (states_maybe_looping(&sl->state, cur) && 7598 states_equal(env, &sl->state, cur)) { 7599 verbose_linfo(env, insn_idx, "; "); 7600 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 7601 return -EINVAL; 7602 } 7603 /* if the verifier is processing a loop, avoid adding new state 7604 * too often, since different loop iterations have distinct 7605 * states and may not help future pruning. 7606 * This threshold shouldn't be too low to make sure that 7607 * a loop with large bound will be rejected quickly. 7608 * The most abusive loop will be: 7609 * r1 += 1 7610 * if r1 < 1000000 goto pc-2 7611 * 1M insn_procssed limit / 100 == 10k peak states. 7612 * This threshold shouldn't be too high either, since states 7613 * at the end of the loop are likely to be useful in pruning. 7614 */ 7615 if (env->jmps_processed - env->prev_jmps_processed < 20 && 7616 env->insn_processed - env->prev_insn_processed < 100) 7617 add_new_state = false; 7618 goto miss; 7619 } 7620 if (states_equal(env, &sl->state, cur)) { 7621 sl->hit_cnt++; 7622 /* reached equivalent register/stack state, 7623 * prune the search. 7624 * Registers read by the continuation are read by us. 7625 * If we have any write marks in env->cur_state, they 7626 * will prevent corresponding reads in the continuation 7627 * from reaching our parent (an explored_state). Our 7628 * own state will get the read marks recorded, but 7629 * they'll be immediately forgotten as we're pruning 7630 * this state and will pop a new one. 7631 */ 7632 err = propagate_liveness(env, &sl->state, cur); 7633 7634 /* if previous state reached the exit with precision and 7635 * current state is equivalent to it (except precsion marks) 7636 * the precision needs to be propagated back in 7637 * the current state. 7638 */ 7639 err = err ? : push_jmp_history(env, cur); 7640 err = err ? : propagate_precision(env, &sl->state); 7641 if (err) 7642 return err; 7643 return 1; 7644 } 7645 miss: 7646 /* when new state is not going to be added do not increase miss count. 7647 * Otherwise several loop iterations will remove the state 7648 * recorded earlier. The goal of these heuristics is to have 7649 * states from some iterations of the loop (some in the beginning 7650 * and some at the end) to help pruning. 7651 */ 7652 if (add_new_state) 7653 sl->miss_cnt++; 7654 /* heuristic to determine whether this state is beneficial 7655 * to keep checking from state equivalence point of view. 7656 * Higher numbers increase max_states_per_insn and verification time, 7657 * but do not meaningfully decrease insn_processed. 7658 */ 7659 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 7660 /* the state is unlikely to be useful. Remove it to 7661 * speed up verification 7662 */ 7663 *pprev = sl->next; 7664 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 7665 u32 br = sl->state.branches; 7666 7667 WARN_ONCE(br, 7668 "BUG live_done but branches_to_explore %d\n", 7669 br); 7670 free_verifier_state(&sl->state, false); 7671 kfree(sl); 7672 env->peak_states--; 7673 } else { 7674 /* cannot free this state, since parentage chain may 7675 * walk it later. Add it for free_list instead to 7676 * be freed at the end of verification 7677 */ 7678 sl->next = env->free_list; 7679 env->free_list = sl; 7680 } 7681 sl = *pprev; 7682 continue; 7683 } 7684 next: 7685 pprev = &sl->next; 7686 sl = *pprev; 7687 } 7688 7689 if (env->max_states_per_insn < states_cnt) 7690 env->max_states_per_insn = states_cnt; 7691 7692 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 7693 return push_jmp_history(env, cur); 7694 7695 if (!add_new_state) 7696 return push_jmp_history(env, cur); 7697 7698 /* There were no equivalent states, remember the current one. 7699 * Technically the current state is not proven to be safe yet, 7700 * but it will either reach outer most bpf_exit (which means it's safe) 7701 * or it will be rejected. When there are no loops the verifier won't be 7702 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 7703 * again on the way to bpf_exit. 7704 * When looping the sl->state.branches will be > 0 and this state 7705 * will not be considered for equivalence until branches == 0. 7706 */ 7707 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 7708 if (!new_sl) 7709 return -ENOMEM; 7710 env->total_states++; 7711 env->peak_states++; 7712 env->prev_jmps_processed = env->jmps_processed; 7713 env->prev_insn_processed = env->insn_processed; 7714 7715 /* add new state to the head of linked list */ 7716 new = &new_sl->state; 7717 err = copy_verifier_state(new, cur); 7718 if (err) { 7719 free_verifier_state(new, false); 7720 kfree(new_sl); 7721 return err; 7722 } 7723 new->insn_idx = insn_idx; 7724 WARN_ONCE(new->branches != 1, 7725 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 7726 7727 cur->parent = new; 7728 cur->first_insn_idx = insn_idx; 7729 clear_jmp_history(cur); 7730 new_sl->next = *explored_state(env, insn_idx); 7731 *explored_state(env, insn_idx) = new_sl; 7732 /* connect new state to parentage chain. Current frame needs all 7733 * registers connected. Only r6 - r9 of the callers are alive (pushed 7734 * to the stack implicitly by JITs) so in callers' frames connect just 7735 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 7736 * the state of the call instruction (with WRITTEN set), and r0 comes 7737 * from callee with its full parentage chain, anyway. 7738 */ 7739 /* clear write marks in current state: the writes we did are not writes 7740 * our child did, so they don't screen off its reads from us. 7741 * (There are no read marks in current state, because reads always mark 7742 * their parent and current state never has children yet. Only 7743 * explored_states can get read marks.) 7744 */ 7745 for (j = 0; j <= cur->curframe; j++) { 7746 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 7747 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 7748 for (i = 0; i < BPF_REG_FP; i++) 7749 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 7750 } 7751 7752 /* all stack frames are accessible from callee, clear them all */ 7753 for (j = 0; j <= cur->curframe; j++) { 7754 struct bpf_func_state *frame = cur->frame[j]; 7755 struct bpf_func_state *newframe = new->frame[j]; 7756 7757 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 7758 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 7759 frame->stack[i].spilled_ptr.parent = 7760 &newframe->stack[i].spilled_ptr; 7761 } 7762 } 7763 return 0; 7764 } 7765 7766 /* Return true if it's OK to have the same insn return a different type. */ 7767 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 7768 { 7769 switch (type) { 7770 case PTR_TO_CTX: 7771 case PTR_TO_SOCKET: 7772 case PTR_TO_SOCKET_OR_NULL: 7773 case PTR_TO_SOCK_COMMON: 7774 case PTR_TO_SOCK_COMMON_OR_NULL: 7775 case PTR_TO_TCP_SOCK: 7776 case PTR_TO_TCP_SOCK_OR_NULL: 7777 case PTR_TO_XDP_SOCK: 7778 case PTR_TO_BTF_ID: 7779 return false; 7780 default: 7781 return true; 7782 } 7783 } 7784 7785 /* If an instruction was previously used with particular pointer types, then we 7786 * need to be careful to avoid cases such as the below, where it may be ok 7787 * for one branch accessing the pointer, but not ok for the other branch: 7788 * 7789 * R1 = sock_ptr 7790 * goto X; 7791 * ... 7792 * R1 = some_other_valid_ptr; 7793 * goto X; 7794 * ... 7795 * R2 = *(u32 *)(R1 + 0); 7796 */ 7797 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 7798 { 7799 return src != prev && (!reg_type_mismatch_ok(src) || 7800 !reg_type_mismatch_ok(prev)); 7801 } 7802 7803 static int do_check(struct bpf_verifier_env *env) 7804 { 7805 struct bpf_verifier_state *state = env->cur_state; 7806 struct bpf_insn *insns = env->prog->insnsi; 7807 struct bpf_reg_state *regs; 7808 int insn_cnt = env->prog->len; 7809 bool do_print_state = false; 7810 int prev_insn_idx = -1; 7811 7812 for (;;) { 7813 struct bpf_insn *insn; 7814 u8 class; 7815 int err; 7816 7817 env->prev_insn_idx = prev_insn_idx; 7818 if (env->insn_idx >= insn_cnt) { 7819 verbose(env, "invalid insn idx %d insn_cnt %d\n", 7820 env->insn_idx, insn_cnt); 7821 return -EFAULT; 7822 } 7823 7824 insn = &insns[env->insn_idx]; 7825 class = BPF_CLASS(insn->code); 7826 7827 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 7828 verbose(env, 7829 "BPF program is too large. Processed %d insn\n", 7830 env->insn_processed); 7831 return -E2BIG; 7832 } 7833 7834 err = is_state_visited(env, env->insn_idx); 7835 if (err < 0) 7836 return err; 7837 if (err == 1) { 7838 /* found equivalent state, can prune the search */ 7839 if (env->log.level & BPF_LOG_LEVEL) { 7840 if (do_print_state) 7841 verbose(env, "\nfrom %d to %d%s: safe\n", 7842 env->prev_insn_idx, env->insn_idx, 7843 env->cur_state->speculative ? 7844 " (speculative execution)" : ""); 7845 else 7846 verbose(env, "%d: safe\n", env->insn_idx); 7847 } 7848 goto process_bpf_exit; 7849 } 7850 7851 if (signal_pending(current)) 7852 return -EAGAIN; 7853 7854 if (need_resched()) 7855 cond_resched(); 7856 7857 if (env->log.level & BPF_LOG_LEVEL2 || 7858 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 7859 if (env->log.level & BPF_LOG_LEVEL2) 7860 verbose(env, "%d:", env->insn_idx); 7861 else 7862 verbose(env, "\nfrom %d to %d%s:", 7863 env->prev_insn_idx, env->insn_idx, 7864 env->cur_state->speculative ? 7865 " (speculative execution)" : ""); 7866 print_verifier_state(env, state->frame[state->curframe]); 7867 do_print_state = false; 7868 } 7869 7870 if (env->log.level & BPF_LOG_LEVEL) { 7871 const struct bpf_insn_cbs cbs = { 7872 .cb_print = verbose, 7873 .private_data = env, 7874 }; 7875 7876 verbose_linfo(env, env->insn_idx, "; "); 7877 verbose(env, "%d: ", env->insn_idx); 7878 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 7879 } 7880 7881 if (bpf_prog_is_dev_bound(env->prog->aux)) { 7882 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 7883 env->prev_insn_idx); 7884 if (err) 7885 return err; 7886 } 7887 7888 regs = cur_regs(env); 7889 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 7890 prev_insn_idx = env->insn_idx; 7891 7892 if (class == BPF_ALU || class == BPF_ALU64) { 7893 err = check_alu_op(env, insn); 7894 if (err) 7895 return err; 7896 7897 } else if (class == BPF_LDX) { 7898 enum bpf_reg_type *prev_src_type, src_reg_type; 7899 7900 /* check for reserved fields is already done */ 7901 7902 /* check src operand */ 7903 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7904 if (err) 7905 return err; 7906 7907 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7908 if (err) 7909 return err; 7910 7911 src_reg_type = regs[insn->src_reg].type; 7912 7913 /* check that memory (src_reg + off) is readable, 7914 * the state of dst_reg will be updated by this func 7915 */ 7916 err = check_mem_access(env, env->insn_idx, insn->src_reg, 7917 insn->off, BPF_SIZE(insn->code), 7918 BPF_READ, insn->dst_reg, false); 7919 if (err) 7920 return err; 7921 7922 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 7923 7924 if (*prev_src_type == NOT_INIT) { 7925 /* saw a valid insn 7926 * dst_reg = *(u32 *)(src_reg + off) 7927 * save type to validate intersecting paths 7928 */ 7929 *prev_src_type = src_reg_type; 7930 7931 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 7932 /* ABuser program is trying to use the same insn 7933 * dst_reg = *(u32*) (src_reg + off) 7934 * with different pointer types: 7935 * src_reg == ctx in one branch and 7936 * src_reg == stack|map in some other branch. 7937 * Reject it. 7938 */ 7939 verbose(env, "same insn cannot be used with different pointers\n"); 7940 return -EINVAL; 7941 } 7942 7943 } else if (class == BPF_STX) { 7944 enum bpf_reg_type *prev_dst_type, dst_reg_type; 7945 7946 if (BPF_MODE(insn->code) == BPF_XADD) { 7947 err = check_xadd(env, env->insn_idx, insn); 7948 if (err) 7949 return err; 7950 env->insn_idx++; 7951 continue; 7952 } 7953 7954 /* check src1 operand */ 7955 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7956 if (err) 7957 return err; 7958 /* check src2 operand */ 7959 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7960 if (err) 7961 return err; 7962 7963 dst_reg_type = regs[insn->dst_reg].type; 7964 7965 /* check that memory (dst_reg + off) is writeable */ 7966 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 7967 insn->off, BPF_SIZE(insn->code), 7968 BPF_WRITE, insn->src_reg, false); 7969 if (err) 7970 return err; 7971 7972 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 7973 7974 if (*prev_dst_type == NOT_INIT) { 7975 *prev_dst_type = dst_reg_type; 7976 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 7977 verbose(env, "same insn cannot be used with different pointers\n"); 7978 return -EINVAL; 7979 } 7980 7981 } else if (class == BPF_ST) { 7982 if (BPF_MODE(insn->code) != BPF_MEM || 7983 insn->src_reg != BPF_REG_0) { 7984 verbose(env, "BPF_ST uses reserved fields\n"); 7985 return -EINVAL; 7986 } 7987 /* check src operand */ 7988 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7989 if (err) 7990 return err; 7991 7992 if (is_ctx_reg(env, insn->dst_reg)) { 7993 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 7994 insn->dst_reg, 7995 reg_type_str[reg_state(env, insn->dst_reg)->type]); 7996 return -EACCES; 7997 } 7998 7999 /* check that memory (dst_reg + off) is writeable */ 8000 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 8001 insn->off, BPF_SIZE(insn->code), 8002 BPF_WRITE, -1, false); 8003 if (err) 8004 return err; 8005 8006 } else if (class == BPF_JMP || class == BPF_JMP32) { 8007 u8 opcode = BPF_OP(insn->code); 8008 8009 env->jmps_processed++; 8010 if (opcode == BPF_CALL) { 8011 if (BPF_SRC(insn->code) != BPF_K || 8012 insn->off != 0 || 8013 (insn->src_reg != BPF_REG_0 && 8014 insn->src_reg != BPF_PSEUDO_CALL) || 8015 insn->dst_reg != BPF_REG_0 || 8016 class == BPF_JMP32) { 8017 verbose(env, "BPF_CALL uses reserved fields\n"); 8018 return -EINVAL; 8019 } 8020 8021 if (env->cur_state->active_spin_lock && 8022 (insn->src_reg == BPF_PSEUDO_CALL || 8023 insn->imm != BPF_FUNC_spin_unlock)) { 8024 verbose(env, "function calls are not allowed while holding a lock\n"); 8025 return -EINVAL; 8026 } 8027 if (insn->src_reg == BPF_PSEUDO_CALL) 8028 err = check_func_call(env, insn, &env->insn_idx); 8029 else 8030 err = check_helper_call(env, insn->imm, env->insn_idx); 8031 if (err) 8032 return err; 8033 8034 } else if (opcode == BPF_JA) { 8035 if (BPF_SRC(insn->code) != BPF_K || 8036 insn->imm != 0 || 8037 insn->src_reg != BPF_REG_0 || 8038 insn->dst_reg != BPF_REG_0 || 8039 class == BPF_JMP32) { 8040 verbose(env, "BPF_JA uses reserved fields\n"); 8041 return -EINVAL; 8042 } 8043 8044 env->insn_idx += insn->off + 1; 8045 continue; 8046 8047 } else if (opcode == BPF_EXIT) { 8048 if (BPF_SRC(insn->code) != BPF_K || 8049 insn->imm != 0 || 8050 insn->src_reg != BPF_REG_0 || 8051 insn->dst_reg != BPF_REG_0 || 8052 class == BPF_JMP32) { 8053 verbose(env, "BPF_EXIT uses reserved fields\n"); 8054 return -EINVAL; 8055 } 8056 8057 if (env->cur_state->active_spin_lock) { 8058 verbose(env, "bpf_spin_unlock is missing\n"); 8059 return -EINVAL; 8060 } 8061 8062 if (state->curframe) { 8063 /* exit from nested function */ 8064 err = prepare_func_exit(env, &env->insn_idx); 8065 if (err) 8066 return err; 8067 do_print_state = true; 8068 continue; 8069 } 8070 8071 err = check_reference_leak(env); 8072 if (err) 8073 return err; 8074 8075 err = check_return_code(env); 8076 if (err) 8077 return err; 8078 process_bpf_exit: 8079 update_branch_counts(env, env->cur_state); 8080 err = pop_stack(env, &prev_insn_idx, 8081 &env->insn_idx); 8082 if (err < 0) { 8083 if (err != -ENOENT) 8084 return err; 8085 break; 8086 } else { 8087 do_print_state = true; 8088 continue; 8089 } 8090 } else { 8091 err = check_cond_jmp_op(env, insn, &env->insn_idx); 8092 if (err) 8093 return err; 8094 } 8095 } else if (class == BPF_LD) { 8096 u8 mode = BPF_MODE(insn->code); 8097 8098 if (mode == BPF_ABS || mode == BPF_IND) { 8099 err = check_ld_abs(env, insn); 8100 if (err) 8101 return err; 8102 8103 } else if (mode == BPF_IMM) { 8104 err = check_ld_imm(env, insn); 8105 if (err) 8106 return err; 8107 8108 env->insn_idx++; 8109 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 8110 } else { 8111 verbose(env, "invalid BPF_LD mode\n"); 8112 return -EINVAL; 8113 } 8114 } else { 8115 verbose(env, "unknown insn class %d\n", class); 8116 return -EINVAL; 8117 } 8118 8119 env->insn_idx++; 8120 } 8121 8122 return 0; 8123 } 8124 8125 static int check_map_prealloc(struct bpf_map *map) 8126 { 8127 return (map->map_type != BPF_MAP_TYPE_HASH && 8128 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 8129 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 8130 !(map->map_flags & BPF_F_NO_PREALLOC); 8131 } 8132 8133 static bool is_tracing_prog_type(enum bpf_prog_type type) 8134 { 8135 switch (type) { 8136 case BPF_PROG_TYPE_KPROBE: 8137 case BPF_PROG_TYPE_TRACEPOINT: 8138 case BPF_PROG_TYPE_PERF_EVENT: 8139 case BPF_PROG_TYPE_RAW_TRACEPOINT: 8140 return true; 8141 default: 8142 return false; 8143 } 8144 } 8145 8146 static bool is_preallocated_map(struct bpf_map *map) 8147 { 8148 if (!check_map_prealloc(map)) 8149 return false; 8150 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 8151 return false; 8152 return true; 8153 } 8154 8155 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 8156 struct bpf_map *map, 8157 struct bpf_prog *prog) 8158 8159 { 8160 /* 8161 * Validate that trace type programs use preallocated hash maps. 8162 * 8163 * For programs attached to PERF events this is mandatory as the 8164 * perf NMI can hit any arbitrary code sequence. 8165 * 8166 * All other trace types using preallocated hash maps are unsafe as 8167 * well because tracepoint or kprobes can be inside locked regions 8168 * of the memory allocator or at a place where a recursion into the 8169 * memory allocator would see inconsistent state. 8170 * 8171 * On RT enabled kernels run-time allocation of all trace type 8172 * programs is strictly prohibited due to lock type constraints. On 8173 * !RT kernels it is allowed for backwards compatibility reasons for 8174 * now, but warnings are emitted so developers are made aware of 8175 * the unsafety and can fix their programs before this is enforced. 8176 */ 8177 if (is_tracing_prog_type(prog->type) && !is_preallocated_map(map)) { 8178 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 8179 verbose(env, "perf_event programs can only use preallocated hash map\n"); 8180 return -EINVAL; 8181 } 8182 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 8183 verbose(env, "trace type programs can only use preallocated hash map\n"); 8184 return -EINVAL; 8185 } 8186 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 8187 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 8188 } 8189 8190 if ((is_tracing_prog_type(prog->type) || 8191 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) && 8192 map_value_has_spin_lock(map)) { 8193 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 8194 return -EINVAL; 8195 } 8196 8197 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 8198 !bpf_offload_prog_map_match(prog, map)) { 8199 verbose(env, "offload device mismatch between prog and map\n"); 8200 return -EINVAL; 8201 } 8202 8203 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 8204 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 8205 return -EINVAL; 8206 } 8207 8208 return 0; 8209 } 8210 8211 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 8212 { 8213 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 8214 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 8215 } 8216 8217 /* look for pseudo eBPF instructions that access map FDs and 8218 * replace them with actual map pointers 8219 */ 8220 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 8221 { 8222 struct bpf_insn *insn = env->prog->insnsi; 8223 int insn_cnt = env->prog->len; 8224 int i, j, err; 8225 8226 err = bpf_prog_calc_tag(env->prog); 8227 if (err) 8228 return err; 8229 8230 for (i = 0; i < insn_cnt; i++, insn++) { 8231 if (BPF_CLASS(insn->code) == BPF_LDX && 8232 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 8233 verbose(env, "BPF_LDX uses reserved fields\n"); 8234 return -EINVAL; 8235 } 8236 8237 if (BPF_CLASS(insn->code) == BPF_STX && 8238 ((BPF_MODE(insn->code) != BPF_MEM && 8239 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 8240 verbose(env, "BPF_STX uses reserved fields\n"); 8241 return -EINVAL; 8242 } 8243 8244 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 8245 struct bpf_insn_aux_data *aux; 8246 struct bpf_map *map; 8247 struct fd f; 8248 u64 addr; 8249 8250 if (i == insn_cnt - 1 || insn[1].code != 0 || 8251 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 8252 insn[1].off != 0) { 8253 verbose(env, "invalid bpf_ld_imm64 insn\n"); 8254 return -EINVAL; 8255 } 8256 8257 if (insn[0].src_reg == 0) 8258 /* valid generic load 64-bit imm */ 8259 goto next_insn; 8260 8261 /* In final convert_pseudo_ld_imm64() step, this is 8262 * converted into regular 64-bit imm load insn. 8263 */ 8264 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 8265 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 8266 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 8267 insn[1].imm != 0)) { 8268 verbose(env, 8269 "unrecognized bpf_ld_imm64 insn\n"); 8270 return -EINVAL; 8271 } 8272 8273 f = fdget(insn[0].imm); 8274 map = __bpf_map_get(f); 8275 if (IS_ERR(map)) { 8276 verbose(env, "fd %d is not pointing to valid bpf_map\n", 8277 insn[0].imm); 8278 return PTR_ERR(map); 8279 } 8280 8281 err = check_map_prog_compatibility(env, map, env->prog); 8282 if (err) { 8283 fdput(f); 8284 return err; 8285 } 8286 8287 aux = &env->insn_aux_data[i]; 8288 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 8289 addr = (unsigned long)map; 8290 } else { 8291 u32 off = insn[1].imm; 8292 8293 if (off >= BPF_MAX_VAR_OFF) { 8294 verbose(env, "direct value offset of %u is not allowed\n", off); 8295 fdput(f); 8296 return -EINVAL; 8297 } 8298 8299 if (!map->ops->map_direct_value_addr) { 8300 verbose(env, "no direct value access support for this map type\n"); 8301 fdput(f); 8302 return -EINVAL; 8303 } 8304 8305 err = map->ops->map_direct_value_addr(map, &addr, off); 8306 if (err) { 8307 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 8308 map->value_size, off); 8309 fdput(f); 8310 return err; 8311 } 8312 8313 aux->map_off = off; 8314 addr += off; 8315 } 8316 8317 insn[0].imm = (u32)addr; 8318 insn[1].imm = addr >> 32; 8319 8320 /* check whether we recorded this map already */ 8321 for (j = 0; j < env->used_map_cnt; j++) { 8322 if (env->used_maps[j] == map) { 8323 aux->map_index = j; 8324 fdput(f); 8325 goto next_insn; 8326 } 8327 } 8328 8329 if (env->used_map_cnt >= MAX_USED_MAPS) { 8330 fdput(f); 8331 return -E2BIG; 8332 } 8333 8334 /* hold the map. If the program is rejected by verifier, 8335 * the map will be released by release_maps() or it 8336 * will be used by the valid program until it's unloaded 8337 * and all maps are released in free_used_maps() 8338 */ 8339 bpf_map_inc(map); 8340 8341 aux->map_index = env->used_map_cnt; 8342 env->used_maps[env->used_map_cnt++] = map; 8343 8344 if (bpf_map_is_cgroup_storage(map) && 8345 bpf_cgroup_storage_assign(env->prog->aux, map)) { 8346 verbose(env, "only one cgroup storage of each type is allowed\n"); 8347 fdput(f); 8348 return -EBUSY; 8349 } 8350 8351 fdput(f); 8352 next_insn: 8353 insn++; 8354 i++; 8355 continue; 8356 } 8357 8358 /* Basic sanity check before we invest more work here. */ 8359 if (!bpf_opcode_in_insntable(insn->code)) { 8360 verbose(env, "unknown opcode %02x\n", insn->code); 8361 return -EINVAL; 8362 } 8363 } 8364 8365 /* now all pseudo BPF_LD_IMM64 instructions load valid 8366 * 'struct bpf_map *' into a register instead of user map_fd. 8367 * These pointers will be used later by verifier to validate map access. 8368 */ 8369 return 0; 8370 } 8371 8372 /* drop refcnt of maps used by the rejected program */ 8373 static void release_maps(struct bpf_verifier_env *env) 8374 { 8375 __bpf_free_used_maps(env->prog->aux, env->used_maps, 8376 env->used_map_cnt); 8377 } 8378 8379 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 8380 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 8381 { 8382 struct bpf_insn *insn = env->prog->insnsi; 8383 int insn_cnt = env->prog->len; 8384 int i; 8385 8386 for (i = 0; i < insn_cnt; i++, insn++) 8387 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 8388 insn->src_reg = 0; 8389 } 8390 8391 /* single env->prog->insni[off] instruction was replaced with the range 8392 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 8393 * [0, off) and [off, end) to new locations, so the patched range stays zero 8394 */ 8395 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 8396 struct bpf_prog *new_prog, u32 off, u32 cnt) 8397 { 8398 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 8399 struct bpf_insn *insn = new_prog->insnsi; 8400 u32 prog_len; 8401 int i; 8402 8403 /* aux info at OFF always needs adjustment, no matter fast path 8404 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 8405 * original insn at old prog. 8406 */ 8407 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 8408 8409 if (cnt == 1) 8410 return 0; 8411 prog_len = new_prog->len; 8412 new_data = vzalloc(array_size(prog_len, 8413 sizeof(struct bpf_insn_aux_data))); 8414 if (!new_data) 8415 return -ENOMEM; 8416 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 8417 memcpy(new_data + off + cnt - 1, old_data + off, 8418 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 8419 for (i = off; i < off + cnt - 1; i++) { 8420 new_data[i].seen = env->pass_cnt; 8421 new_data[i].zext_dst = insn_has_def32(env, insn + i); 8422 } 8423 env->insn_aux_data = new_data; 8424 vfree(old_data); 8425 return 0; 8426 } 8427 8428 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 8429 { 8430 int i; 8431 8432 if (len == 1) 8433 return; 8434 /* NOTE: fake 'exit' subprog should be updated as well. */ 8435 for (i = 0; i <= env->subprog_cnt; i++) { 8436 if (env->subprog_info[i].start <= off) 8437 continue; 8438 env->subprog_info[i].start += len - 1; 8439 } 8440 } 8441 8442 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 8443 const struct bpf_insn *patch, u32 len) 8444 { 8445 struct bpf_prog *new_prog; 8446 8447 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 8448 if (IS_ERR(new_prog)) { 8449 if (PTR_ERR(new_prog) == -ERANGE) 8450 verbose(env, 8451 "insn %d cannot be patched due to 16-bit range\n", 8452 env->insn_aux_data[off].orig_idx); 8453 return NULL; 8454 } 8455 if (adjust_insn_aux_data(env, new_prog, off, len)) 8456 return NULL; 8457 adjust_subprog_starts(env, off, len); 8458 return new_prog; 8459 } 8460 8461 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 8462 u32 off, u32 cnt) 8463 { 8464 int i, j; 8465 8466 /* find first prog starting at or after off (first to remove) */ 8467 for (i = 0; i < env->subprog_cnt; i++) 8468 if (env->subprog_info[i].start >= off) 8469 break; 8470 /* find first prog starting at or after off + cnt (first to stay) */ 8471 for (j = i; j < env->subprog_cnt; j++) 8472 if (env->subprog_info[j].start >= off + cnt) 8473 break; 8474 /* if j doesn't start exactly at off + cnt, we are just removing 8475 * the front of previous prog 8476 */ 8477 if (env->subprog_info[j].start != off + cnt) 8478 j--; 8479 8480 if (j > i) { 8481 struct bpf_prog_aux *aux = env->prog->aux; 8482 int move; 8483 8484 /* move fake 'exit' subprog as well */ 8485 move = env->subprog_cnt + 1 - j; 8486 8487 memmove(env->subprog_info + i, 8488 env->subprog_info + j, 8489 sizeof(*env->subprog_info) * move); 8490 env->subprog_cnt -= j - i; 8491 8492 /* remove func_info */ 8493 if (aux->func_info) { 8494 move = aux->func_info_cnt - j; 8495 8496 memmove(aux->func_info + i, 8497 aux->func_info + j, 8498 sizeof(*aux->func_info) * move); 8499 aux->func_info_cnt -= j - i; 8500 /* func_info->insn_off is set after all code rewrites, 8501 * in adjust_btf_func() - no need to adjust 8502 */ 8503 } 8504 } else { 8505 /* convert i from "first prog to remove" to "first to adjust" */ 8506 if (env->subprog_info[i].start == off) 8507 i++; 8508 } 8509 8510 /* update fake 'exit' subprog as well */ 8511 for (; i <= env->subprog_cnt; i++) 8512 env->subprog_info[i].start -= cnt; 8513 8514 return 0; 8515 } 8516 8517 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 8518 u32 cnt) 8519 { 8520 struct bpf_prog *prog = env->prog; 8521 u32 i, l_off, l_cnt, nr_linfo; 8522 struct bpf_line_info *linfo; 8523 8524 nr_linfo = prog->aux->nr_linfo; 8525 if (!nr_linfo) 8526 return 0; 8527 8528 linfo = prog->aux->linfo; 8529 8530 /* find first line info to remove, count lines to be removed */ 8531 for (i = 0; i < nr_linfo; i++) 8532 if (linfo[i].insn_off >= off) 8533 break; 8534 8535 l_off = i; 8536 l_cnt = 0; 8537 for (; i < nr_linfo; i++) 8538 if (linfo[i].insn_off < off + cnt) 8539 l_cnt++; 8540 else 8541 break; 8542 8543 /* First live insn doesn't match first live linfo, it needs to "inherit" 8544 * last removed linfo. prog is already modified, so prog->len == off 8545 * means no live instructions after (tail of the program was removed). 8546 */ 8547 if (prog->len != off && l_cnt && 8548 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 8549 l_cnt--; 8550 linfo[--i].insn_off = off + cnt; 8551 } 8552 8553 /* remove the line info which refer to the removed instructions */ 8554 if (l_cnt) { 8555 memmove(linfo + l_off, linfo + i, 8556 sizeof(*linfo) * (nr_linfo - i)); 8557 8558 prog->aux->nr_linfo -= l_cnt; 8559 nr_linfo = prog->aux->nr_linfo; 8560 } 8561 8562 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 8563 for (i = l_off; i < nr_linfo; i++) 8564 linfo[i].insn_off -= cnt; 8565 8566 /* fix up all subprogs (incl. 'exit') which start >= off */ 8567 for (i = 0; i <= env->subprog_cnt; i++) 8568 if (env->subprog_info[i].linfo_idx > l_off) { 8569 /* program may have started in the removed region but 8570 * may not be fully removed 8571 */ 8572 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 8573 env->subprog_info[i].linfo_idx -= l_cnt; 8574 else 8575 env->subprog_info[i].linfo_idx = l_off; 8576 } 8577 8578 return 0; 8579 } 8580 8581 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 8582 { 8583 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8584 unsigned int orig_prog_len = env->prog->len; 8585 int err; 8586 8587 if (bpf_prog_is_dev_bound(env->prog->aux)) 8588 bpf_prog_offload_remove_insns(env, off, cnt); 8589 8590 err = bpf_remove_insns(env->prog, off, cnt); 8591 if (err) 8592 return err; 8593 8594 err = adjust_subprog_starts_after_remove(env, off, cnt); 8595 if (err) 8596 return err; 8597 8598 err = bpf_adj_linfo_after_remove(env, off, cnt); 8599 if (err) 8600 return err; 8601 8602 memmove(aux_data + off, aux_data + off + cnt, 8603 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 8604 8605 return 0; 8606 } 8607 8608 /* The verifier does more data flow analysis than llvm and will not 8609 * explore branches that are dead at run time. Malicious programs can 8610 * have dead code too. Therefore replace all dead at-run-time code 8611 * with 'ja -1'. 8612 * 8613 * Just nops are not optimal, e.g. if they would sit at the end of the 8614 * program and through another bug we would manage to jump there, then 8615 * we'd execute beyond program memory otherwise. Returning exception 8616 * code also wouldn't work since we can have subprogs where the dead 8617 * code could be located. 8618 */ 8619 static void sanitize_dead_code(struct bpf_verifier_env *env) 8620 { 8621 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8622 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 8623 struct bpf_insn *insn = env->prog->insnsi; 8624 const int insn_cnt = env->prog->len; 8625 int i; 8626 8627 for (i = 0; i < insn_cnt; i++) { 8628 if (aux_data[i].seen) 8629 continue; 8630 memcpy(insn + i, &trap, sizeof(trap)); 8631 } 8632 } 8633 8634 static bool insn_is_cond_jump(u8 code) 8635 { 8636 u8 op; 8637 8638 if (BPF_CLASS(code) == BPF_JMP32) 8639 return true; 8640 8641 if (BPF_CLASS(code) != BPF_JMP) 8642 return false; 8643 8644 op = BPF_OP(code); 8645 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 8646 } 8647 8648 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 8649 { 8650 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8651 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 8652 struct bpf_insn *insn = env->prog->insnsi; 8653 const int insn_cnt = env->prog->len; 8654 int i; 8655 8656 for (i = 0; i < insn_cnt; i++, insn++) { 8657 if (!insn_is_cond_jump(insn->code)) 8658 continue; 8659 8660 if (!aux_data[i + 1].seen) 8661 ja.off = insn->off; 8662 else if (!aux_data[i + 1 + insn->off].seen) 8663 ja.off = 0; 8664 else 8665 continue; 8666 8667 if (bpf_prog_is_dev_bound(env->prog->aux)) 8668 bpf_prog_offload_replace_insn(env, i, &ja); 8669 8670 memcpy(insn, &ja, sizeof(ja)); 8671 } 8672 } 8673 8674 static int opt_remove_dead_code(struct bpf_verifier_env *env) 8675 { 8676 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8677 int insn_cnt = env->prog->len; 8678 int i, err; 8679 8680 for (i = 0; i < insn_cnt; i++) { 8681 int j; 8682 8683 j = 0; 8684 while (i + j < insn_cnt && !aux_data[i + j].seen) 8685 j++; 8686 if (!j) 8687 continue; 8688 8689 err = verifier_remove_insns(env, i, j); 8690 if (err) 8691 return err; 8692 insn_cnt = env->prog->len; 8693 } 8694 8695 return 0; 8696 } 8697 8698 static int opt_remove_nops(struct bpf_verifier_env *env) 8699 { 8700 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 8701 struct bpf_insn *insn = env->prog->insnsi; 8702 int insn_cnt = env->prog->len; 8703 int i, err; 8704 8705 for (i = 0; i < insn_cnt; i++) { 8706 if (memcmp(&insn[i], &ja, sizeof(ja))) 8707 continue; 8708 8709 err = verifier_remove_insns(env, i, 1); 8710 if (err) 8711 return err; 8712 insn_cnt--; 8713 i--; 8714 } 8715 8716 return 0; 8717 } 8718 8719 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 8720 const union bpf_attr *attr) 8721 { 8722 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 8723 struct bpf_insn_aux_data *aux = env->insn_aux_data; 8724 int i, patch_len, delta = 0, len = env->prog->len; 8725 struct bpf_insn *insns = env->prog->insnsi; 8726 struct bpf_prog *new_prog; 8727 bool rnd_hi32; 8728 8729 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 8730 zext_patch[1] = BPF_ZEXT_REG(0); 8731 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 8732 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 8733 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 8734 for (i = 0; i < len; i++) { 8735 int adj_idx = i + delta; 8736 struct bpf_insn insn; 8737 8738 insn = insns[adj_idx]; 8739 if (!aux[adj_idx].zext_dst) { 8740 u8 code, class; 8741 u32 imm_rnd; 8742 8743 if (!rnd_hi32) 8744 continue; 8745 8746 code = insn.code; 8747 class = BPF_CLASS(code); 8748 if (insn_no_def(&insn)) 8749 continue; 8750 8751 /* NOTE: arg "reg" (the fourth one) is only used for 8752 * BPF_STX which has been ruled out in above 8753 * check, it is safe to pass NULL here. 8754 */ 8755 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { 8756 if (class == BPF_LD && 8757 BPF_MODE(code) == BPF_IMM) 8758 i++; 8759 continue; 8760 } 8761 8762 /* ctx load could be transformed into wider load. */ 8763 if (class == BPF_LDX && 8764 aux[adj_idx].ptr_type == PTR_TO_CTX) 8765 continue; 8766 8767 imm_rnd = get_random_int(); 8768 rnd_hi32_patch[0] = insn; 8769 rnd_hi32_patch[1].imm = imm_rnd; 8770 rnd_hi32_patch[3].dst_reg = insn.dst_reg; 8771 patch = rnd_hi32_patch; 8772 patch_len = 4; 8773 goto apply_patch_buffer; 8774 } 8775 8776 if (!bpf_jit_needs_zext()) 8777 continue; 8778 8779 zext_patch[0] = insn; 8780 zext_patch[1].dst_reg = insn.dst_reg; 8781 zext_patch[1].src_reg = insn.dst_reg; 8782 patch = zext_patch; 8783 patch_len = 2; 8784 apply_patch_buffer: 8785 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 8786 if (!new_prog) 8787 return -ENOMEM; 8788 env->prog = new_prog; 8789 insns = new_prog->insnsi; 8790 aux = env->insn_aux_data; 8791 delta += patch_len - 1; 8792 } 8793 8794 return 0; 8795 } 8796 8797 /* convert load instructions that access fields of a context type into a 8798 * sequence of instructions that access fields of the underlying structure: 8799 * struct __sk_buff -> struct sk_buff 8800 * struct bpf_sock_ops -> struct sock 8801 */ 8802 static int convert_ctx_accesses(struct bpf_verifier_env *env) 8803 { 8804 const struct bpf_verifier_ops *ops = env->ops; 8805 int i, cnt, size, ctx_field_size, delta = 0; 8806 const int insn_cnt = env->prog->len; 8807 struct bpf_insn insn_buf[16], *insn; 8808 u32 target_size, size_default, off; 8809 struct bpf_prog *new_prog; 8810 enum bpf_access_type type; 8811 bool is_narrower_load; 8812 8813 if (ops->gen_prologue || env->seen_direct_write) { 8814 if (!ops->gen_prologue) { 8815 verbose(env, "bpf verifier is misconfigured\n"); 8816 return -EINVAL; 8817 } 8818 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 8819 env->prog); 8820 if (cnt >= ARRAY_SIZE(insn_buf)) { 8821 verbose(env, "bpf verifier is misconfigured\n"); 8822 return -EINVAL; 8823 } else if (cnt) { 8824 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 8825 if (!new_prog) 8826 return -ENOMEM; 8827 8828 env->prog = new_prog; 8829 delta += cnt - 1; 8830 } 8831 } 8832 8833 if (bpf_prog_is_dev_bound(env->prog->aux)) 8834 return 0; 8835 8836 insn = env->prog->insnsi + delta; 8837 8838 for (i = 0; i < insn_cnt; i++, insn++) { 8839 bpf_convert_ctx_access_t convert_ctx_access; 8840 8841 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 8842 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 8843 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 8844 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 8845 type = BPF_READ; 8846 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 8847 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 8848 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 8849 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 8850 type = BPF_WRITE; 8851 else 8852 continue; 8853 8854 if (type == BPF_WRITE && 8855 env->insn_aux_data[i + delta].sanitize_stack_off) { 8856 struct bpf_insn patch[] = { 8857 /* Sanitize suspicious stack slot with zero. 8858 * There are no memory dependencies for this store, 8859 * since it's only using frame pointer and immediate 8860 * constant of zero 8861 */ 8862 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 8863 env->insn_aux_data[i + delta].sanitize_stack_off, 8864 0), 8865 /* the original STX instruction will immediately 8866 * overwrite the same stack slot with appropriate value 8867 */ 8868 *insn, 8869 }; 8870 8871 cnt = ARRAY_SIZE(patch); 8872 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 8873 if (!new_prog) 8874 return -ENOMEM; 8875 8876 delta += cnt - 1; 8877 env->prog = new_prog; 8878 insn = new_prog->insnsi + i + delta; 8879 continue; 8880 } 8881 8882 switch (env->insn_aux_data[i + delta].ptr_type) { 8883 case PTR_TO_CTX: 8884 if (!ops->convert_ctx_access) 8885 continue; 8886 convert_ctx_access = ops->convert_ctx_access; 8887 break; 8888 case PTR_TO_SOCKET: 8889 case PTR_TO_SOCK_COMMON: 8890 convert_ctx_access = bpf_sock_convert_ctx_access; 8891 break; 8892 case PTR_TO_TCP_SOCK: 8893 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 8894 break; 8895 case PTR_TO_XDP_SOCK: 8896 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 8897 break; 8898 case PTR_TO_BTF_ID: 8899 if (type == BPF_READ) { 8900 insn->code = BPF_LDX | BPF_PROBE_MEM | 8901 BPF_SIZE((insn)->code); 8902 env->prog->aux->num_exentries++; 8903 } else if (env->prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 8904 verbose(env, "Writes through BTF pointers are not allowed\n"); 8905 return -EINVAL; 8906 } 8907 continue; 8908 default: 8909 continue; 8910 } 8911 8912 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 8913 size = BPF_LDST_BYTES(insn); 8914 8915 /* If the read access is a narrower load of the field, 8916 * convert to a 4/8-byte load, to minimum program type specific 8917 * convert_ctx_access changes. If conversion is successful, 8918 * we will apply proper mask to the result. 8919 */ 8920 is_narrower_load = size < ctx_field_size; 8921 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 8922 off = insn->off; 8923 if (is_narrower_load) { 8924 u8 size_code; 8925 8926 if (type == BPF_WRITE) { 8927 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 8928 return -EINVAL; 8929 } 8930 8931 size_code = BPF_H; 8932 if (ctx_field_size == 4) 8933 size_code = BPF_W; 8934 else if (ctx_field_size == 8) 8935 size_code = BPF_DW; 8936 8937 insn->off = off & ~(size_default - 1); 8938 insn->code = BPF_LDX | BPF_MEM | size_code; 8939 } 8940 8941 target_size = 0; 8942 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 8943 &target_size); 8944 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 8945 (ctx_field_size && !target_size)) { 8946 verbose(env, "bpf verifier is misconfigured\n"); 8947 return -EINVAL; 8948 } 8949 8950 if (is_narrower_load && size < target_size) { 8951 u8 shift = bpf_ctx_narrow_access_offset( 8952 off, size, size_default) * 8; 8953 if (ctx_field_size <= 4) { 8954 if (shift) 8955 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 8956 insn->dst_reg, 8957 shift); 8958 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 8959 (1 << size * 8) - 1); 8960 } else { 8961 if (shift) 8962 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 8963 insn->dst_reg, 8964 shift); 8965 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 8966 (1ULL << size * 8) - 1); 8967 } 8968 } 8969 8970 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 8971 if (!new_prog) 8972 return -ENOMEM; 8973 8974 delta += cnt - 1; 8975 8976 /* keep walking new program and skip insns we just inserted */ 8977 env->prog = new_prog; 8978 insn = new_prog->insnsi + i + delta; 8979 } 8980 8981 return 0; 8982 } 8983 8984 static int jit_subprogs(struct bpf_verifier_env *env) 8985 { 8986 struct bpf_prog *prog = env->prog, **func, *tmp; 8987 int i, j, subprog_start, subprog_end = 0, len, subprog; 8988 struct bpf_insn *insn; 8989 void *old_bpf_func; 8990 int err; 8991 8992 if (env->subprog_cnt <= 1) 8993 return 0; 8994 8995 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 8996 if (insn->code != (BPF_JMP | BPF_CALL) || 8997 insn->src_reg != BPF_PSEUDO_CALL) 8998 continue; 8999 /* Upon error here we cannot fall back to interpreter but 9000 * need a hard reject of the program. Thus -EFAULT is 9001 * propagated in any case. 9002 */ 9003 subprog = find_subprog(env, i + insn->imm + 1); 9004 if (subprog < 0) { 9005 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 9006 i + insn->imm + 1); 9007 return -EFAULT; 9008 } 9009 /* temporarily remember subprog id inside insn instead of 9010 * aux_data, since next loop will split up all insns into funcs 9011 */ 9012 insn->off = subprog; 9013 /* remember original imm in case JIT fails and fallback 9014 * to interpreter will be needed 9015 */ 9016 env->insn_aux_data[i].call_imm = insn->imm; 9017 /* point imm to __bpf_call_base+1 from JITs point of view */ 9018 insn->imm = 1; 9019 } 9020 9021 err = bpf_prog_alloc_jited_linfo(prog); 9022 if (err) 9023 goto out_undo_insn; 9024 9025 err = -ENOMEM; 9026 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 9027 if (!func) 9028 goto out_undo_insn; 9029 9030 for (i = 0; i < env->subprog_cnt; i++) { 9031 subprog_start = subprog_end; 9032 subprog_end = env->subprog_info[i + 1].start; 9033 9034 len = subprog_end - subprog_start; 9035 /* BPF_PROG_RUN doesn't call subprogs directly, 9036 * hence main prog stats include the runtime of subprogs. 9037 * subprogs don't have IDs and not reachable via prog_get_next_id 9038 * func[i]->aux->stats will never be accessed and stays NULL 9039 */ 9040 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 9041 if (!func[i]) 9042 goto out_free; 9043 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 9044 len * sizeof(struct bpf_insn)); 9045 func[i]->type = prog->type; 9046 func[i]->len = len; 9047 if (bpf_prog_calc_tag(func[i])) 9048 goto out_free; 9049 func[i]->is_func = 1; 9050 func[i]->aux->func_idx = i; 9051 /* the btf and func_info will be freed only at prog->aux */ 9052 func[i]->aux->btf = prog->aux->btf; 9053 func[i]->aux->func_info = prog->aux->func_info; 9054 9055 /* Use bpf_prog_F_tag to indicate functions in stack traces. 9056 * Long term would need debug info to populate names 9057 */ 9058 func[i]->aux->name[0] = 'F'; 9059 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 9060 func[i]->jit_requested = 1; 9061 func[i]->aux->linfo = prog->aux->linfo; 9062 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 9063 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 9064 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 9065 func[i] = bpf_int_jit_compile(func[i]); 9066 if (!func[i]->jited) { 9067 err = -ENOTSUPP; 9068 goto out_free; 9069 } 9070 cond_resched(); 9071 } 9072 /* at this point all bpf functions were successfully JITed 9073 * now populate all bpf_calls with correct addresses and 9074 * run last pass of JIT 9075 */ 9076 for (i = 0; i < env->subprog_cnt; i++) { 9077 insn = func[i]->insnsi; 9078 for (j = 0; j < func[i]->len; j++, insn++) { 9079 if (insn->code != (BPF_JMP | BPF_CALL) || 9080 insn->src_reg != BPF_PSEUDO_CALL) 9081 continue; 9082 subprog = insn->off; 9083 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 9084 __bpf_call_base; 9085 } 9086 9087 /* we use the aux data to keep a list of the start addresses 9088 * of the JITed images for each function in the program 9089 * 9090 * for some architectures, such as powerpc64, the imm field 9091 * might not be large enough to hold the offset of the start 9092 * address of the callee's JITed image from __bpf_call_base 9093 * 9094 * in such cases, we can lookup the start address of a callee 9095 * by using its subprog id, available from the off field of 9096 * the call instruction, as an index for this list 9097 */ 9098 func[i]->aux->func = func; 9099 func[i]->aux->func_cnt = env->subprog_cnt; 9100 } 9101 for (i = 0; i < env->subprog_cnt; i++) { 9102 old_bpf_func = func[i]->bpf_func; 9103 tmp = bpf_int_jit_compile(func[i]); 9104 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 9105 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 9106 err = -ENOTSUPP; 9107 goto out_free; 9108 } 9109 cond_resched(); 9110 } 9111 9112 /* finally lock prog and jit images for all functions and 9113 * populate kallsysm 9114 */ 9115 for (i = 0; i < env->subprog_cnt; i++) { 9116 bpf_prog_lock_ro(func[i]); 9117 bpf_prog_kallsyms_add(func[i]); 9118 } 9119 9120 /* Last step: make now unused interpreter insns from main 9121 * prog consistent for later dump requests, so they can 9122 * later look the same as if they were interpreted only. 9123 */ 9124 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9125 if (insn->code != (BPF_JMP | BPF_CALL) || 9126 insn->src_reg != BPF_PSEUDO_CALL) 9127 continue; 9128 insn->off = env->insn_aux_data[i].call_imm; 9129 subprog = find_subprog(env, i + insn->off + 1); 9130 insn->imm = subprog; 9131 } 9132 9133 prog->jited = 1; 9134 prog->bpf_func = func[0]->bpf_func; 9135 prog->aux->func = func; 9136 prog->aux->func_cnt = env->subprog_cnt; 9137 bpf_prog_free_unused_jited_linfo(prog); 9138 return 0; 9139 out_free: 9140 for (i = 0; i < env->subprog_cnt; i++) 9141 if (func[i]) 9142 bpf_jit_free(func[i]); 9143 kfree(func); 9144 out_undo_insn: 9145 /* cleanup main prog to be interpreted */ 9146 prog->jit_requested = 0; 9147 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9148 if (insn->code != (BPF_JMP | BPF_CALL) || 9149 insn->src_reg != BPF_PSEUDO_CALL) 9150 continue; 9151 insn->off = 0; 9152 insn->imm = env->insn_aux_data[i].call_imm; 9153 } 9154 bpf_prog_free_jited_linfo(prog); 9155 return err; 9156 } 9157 9158 static int fixup_call_args(struct bpf_verifier_env *env) 9159 { 9160 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 9161 struct bpf_prog *prog = env->prog; 9162 struct bpf_insn *insn = prog->insnsi; 9163 int i, depth; 9164 #endif 9165 int err = 0; 9166 9167 if (env->prog->jit_requested && 9168 !bpf_prog_is_dev_bound(env->prog->aux)) { 9169 err = jit_subprogs(env); 9170 if (err == 0) 9171 return 0; 9172 if (err == -EFAULT) 9173 return err; 9174 } 9175 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 9176 for (i = 0; i < prog->len; i++, insn++) { 9177 if (insn->code != (BPF_JMP | BPF_CALL) || 9178 insn->src_reg != BPF_PSEUDO_CALL) 9179 continue; 9180 depth = get_callee_stack_depth(env, insn, i); 9181 if (depth < 0) 9182 return depth; 9183 bpf_patch_call_args(insn, depth); 9184 } 9185 err = 0; 9186 #endif 9187 return err; 9188 } 9189 9190 /* fixup insn->imm field of bpf_call instructions 9191 * and inline eligible helpers as explicit sequence of BPF instructions 9192 * 9193 * this function is called after eBPF program passed verification 9194 */ 9195 static int fixup_bpf_calls(struct bpf_verifier_env *env) 9196 { 9197 struct bpf_prog *prog = env->prog; 9198 bool expect_blinding = bpf_jit_blinding_enabled(prog); 9199 struct bpf_insn *insn = prog->insnsi; 9200 const struct bpf_func_proto *fn; 9201 const int insn_cnt = prog->len; 9202 const struct bpf_map_ops *ops; 9203 struct bpf_insn_aux_data *aux; 9204 struct bpf_insn insn_buf[16]; 9205 struct bpf_prog *new_prog; 9206 struct bpf_map *map_ptr; 9207 int i, ret, cnt, delta = 0; 9208 9209 for (i = 0; i < insn_cnt; i++, insn++) { 9210 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 9211 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 9212 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 9213 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 9214 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 9215 struct bpf_insn mask_and_div[] = { 9216 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 9217 /* Rx div 0 -> 0 */ 9218 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 9219 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 9220 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 9221 *insn, 9222 }; 9223 struct bpf_insn mask_and_mod[] = { 9224 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 9225 /* Rx mod 0 -> Rx */ 9226 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 9227 *insn, 9228 }; 9229 struct bpf_insn *patchlet; 9230 9231 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 9232 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 9233 patchlet = mask_and_div + (is64 ? 1 : 0); 9234 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 9235 } else { 9236 patchlet = mask_and_mod + (is64 ? 1 : 0); 9237 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 9238 } 9239 9240 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 9241 if (!new_prog) 9242 return -ENOMEM; 9243 9244 delta += cnt - 1; 9245 env->prog = prog = new_prog; 9246 insn = new_prog->insnsi + i + delta; 9247 continue; 9248 } 9249 9250 if (BPF_CLASS(insn->code) == BPF_LD && 9251 (BPF_MODE(insn->code) == BPF_ABS || 9252 BPF_MODE(insn->code) == BPF_IND)) { 9253 cnt = env->ops->gen_ld_abs(insn, insn_buf); 9254 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 9255 verbose(env, "bpf verifier is misconfigured\n"); 9256 return -EINVAL; 9257 } 9258 9259 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9260 if (!new_prog) 9261 return -ENOMEM; 9262 9263 delta += cnt - 1; 9264 env->prog = prog = new_prog; 9265 insn = new_prog->insnsi + i + delta; 9266 continue; 9267 } 9268 9269 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 9270 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 9271 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 9272 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 9273 struct bpf_insn insn_buf[16]; 9274 struct bpf_insn *patch = &insn_buf[0]; 9275 bool issrc, isneg; 9276 u32 off_reg; 9277 9278 aux = &env->insn_aux_data[i + delta]; 9279 if (!aux->alu_state || 9280 aux->alu_state == BPF_ALU_NON_POINTER) 9281 continue; 9282 9283 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 9284 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 9285 BPF_ALU_SANITIZE_SRC; 9286 9287 off_reg = issrc ? insn->src_reg : insn->dst_reg; 9288 if (isneg) 9289 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 9290 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 9291 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 9292 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 9293 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 9294 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 9295 if (issrc) { 9296 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 9297 off_reg); 9298 insn->src_reg = BPF_REG_AX; 9299 } else { 9300 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 9301 BPF_REG_AX); 9302 } 9303 if (isneg) 9304 insn->code = insn->code == code_add ? 9305 code_sub : code_add; 9306 *patch++ = *insn; 9307 if (issrc && isneg) 9308 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 9309 cnt = patch - insn_buf; 9310 9311 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9312 if (!new_prog) 9313 return -ENOMEM; 9314 9315 delta += cnt - 1; 9316 env->prog = prog = new_prog; 9317 insn = new_prog->insnsi + i + delta; 9318 continue; 9319 } 9320 9321 if (insn->code != (BPF_JMP | BPF_CALL)) 9322 continue; 9323 if (insn->src_reg == BPF_PSEUDO_CALL) 9324 continue; 9325 9326 if (insn->imm == BPF_FUNC_get_route_realm) 9327 prog->dst_needed = 1; 9328 if (insn->imm == BPF_FUNC_get_prandom_u32) 9329 bpf_user_rnd_init_once(); 9330 if (insn->imm == BPF_FUNC_override_return) 9331 prog->kprobe_override = 1; 9332 if (insn->imm == BPF_FUNC_tail_call) { 9333 /* If we tail call into other programs, we 9334 * cannot make any assumptions since they can 9335 * be replaced dynamically during runtime in 9336 * the program array. 9337 */ 9338 prog->cb_access = 1; 9339 env->prog->aux->stack_depth = MAX_BPF_STACK; 9340 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 9341 9342 /* mark bpf_tail_call as different opcode to avoid 9343 * conditional branch in the interpeter for every normal 9344 * call and to prevent accidental JITing by JIT compiler 9345 * that doesn't support bpf_tail_call yet 9346 */ 9347 insn->imm = 0; 9348 insn->code = BPF_JMP | BPF_TAIL_CALL; 9349 9350 aux = &env->insn_aux_data[i + delta]; 9351 if (env->allow_ptr_leaks && !expect_blinding && 9352 prog->jit_requested && 9353 !bpf_map_key_poisoned(aux) && 9354 !bpf_map_ptr_poisoned(aux) && 9355 !bpf_map_ptr_unpriv(aux)) { 9356 struct bpf_jit_poke_descriptor desc = { 9357 .reason = BPF_POKE_REASON_TAIL_CALL, 9358 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 9359 .tail_call.key = bpf_map_key_immediate(aux), 9360 }; 9361 9362 ret = bpf_jit_add_poke_descriptor(prog, &desc); 9363 if (ret < 0) { 9364 verbose(env, "adding tail call poke descriptor failed\n"); 9365 return ret; 9366 } 9367 9368 insn->imm = ret + 1; 9369 continue; 9370 } 9371 9372 if (!bpf_map_ptr_unpriv(aux)) 9373 continue; 9374 9375 /* instead of changing every JIT dealing with tail_call 9376 * emit two extra insns: 9377 * if (index >= max_entries) goto out; 9378 * index &= array->index_mask; 9379 * to avoid out-of-bounds cpu speculation 9380 */ 9381 if (bpf_map_ptr_poisoned(aux)) { 9382 verbose(env, "tail_call abusing map_ptr\n"); 9383 return -EINVAL; 9384 } 9385 9386 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 9387 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 9388 map_ptr->max_entries, 2); 9389 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 9390 container_of(map_ptr, 9391 struct bpf_array, 9392 map)->index_mask); 9393 insn_buf[2] = *insn; 9394 cnt = 3; 9395 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9396 if (!new_prog) 9397 return -ENOMEM; 9398 9399 delta += cnt - 1; 9400 env->prog = prog = new_prog; 9401 insn = new_prog->insnsi + i + delta; 9402 continue; 9403 } 9404 9405 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 9406 * and other inlining handlers are currently limited to 64 bit 9407 * only. 9408 */ 9409 if (prog->jit_requested && BITS_PER_LONG == 64 && 9410 (insn->imm == BPF_FUNC_map_lookup_elem || 9411 insn->imm == BPF_FUNC_map_update_elem || 9412 insn->imm == BPF_FUNC_map_delete_elem || 9413 insn->imm == BPF_FUNC_map_push_elem || 9414 insn->imm == BPF_FUNC_map_pop_elem || 9415 insn->imm == BPF_FUNC_map_peek_elem)) { 9416 aux = &env->insn_aux_data[i + delta]; 9417 if (bpf_map_ptr_poisoned(aux)) 9418 goto patch_call_imm; 9419 9420 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 9421 ops = map_ptr->ops; 9422 if (insn->imm == BPF_FUNC_map_lookup_elem && 9423 ops->map_gen_lookup) { 9424 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 9425 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 9426 verbose(env, "bpf verifier is misconfigured\n"); 9427 return -EINVAL; 9428 } 9429 9430 new_prog = bpf_patch_insn_data(env, i + delta, 9431 insn_buf, cnt); 9432 if (!new_prog) 9433 return -ENOMEM; 9434 9435 delta += cnt - 1; 9436 env->prog = prog = new_prog; 9437 insn = new_prog->insnsi + i + delta; 9438 continue; 9439 } 9440 9441 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 9442 (void *(*)(struct bpf_map *map, void *key))NULL)); 9443 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 9444 (int (*)(struct bpf_map *map, void *key))NULL)); 9445 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 9446 (int (*)(struct bpf_map *map, void *key, void *value, 9447 u64 flags))NULL)); 9448 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 9449 (int (*)(struct bpf_map *map, void *value, 9450 u64 flags))NULL)); 9451 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 9452 (int (*)(struct bpf_map *map, void *value))NULL)); 9453 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 9454 (int (*)(struct bpf_map *map, void *value))NULL)); 9455 9456 switch (insn->imm) { 9457 case BPF_FUNC_map_lookup_elem: 9458 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 9459 __bpf_call_base; 9460 continue; 9461 case BPF_FUNC_map_update_elem: 9462 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 9463 __bpf_call_base; 9464 continue; 9465 case BPF_FUNC_map_delete_elem: 9466 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 9467 __bpf_call_base; 9468 continue; 9469 case BPF_FUNC_map_push_elem: 9470 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 9471 __bpf_call_base; 9472 continue; 9473 case BPF_FUNC_map_pop_elem: 9474 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 9475 __bpf_call_base; 9476 continue; 9477 case BPF_FUNC_map_peek_elem: 9478 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 9479 __bpf_call_base; 9480 continue; 9481 } 9482 9483 goto patch_call_imm; 9484 } 9485 9486 if (prog->jit_requested && BITS_PER_LONG == 64 && 9487 insn->imm == BPF_FUNC_jiffies64) { 9488 struct bpf_insn ld_jiffies_addr[2] = { 9489 BPF_LD_IMM64(BPF_REG_0, 9490 (unsigned long)&jiffies), 9491 }; 9492 9493 insn_buf[0] = ld_jiffies_addr[0]; 9494 insn_buf[1] = ld_jiffies_addr[1]; 9495 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 9496 BPF_REG_0, 0); 9497 cnt = 3; 9498 9499 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 9500 cnt); 9501 if (!new_prog) 9502 return -ENOMEM; 9503 9504 delta += cnt - 1; 9505 env->prog = prog = new_prog; 9506 insn = new_prog->insnsi + i + delta; 9507 continue; 9508 } 9509 9510 patch_call_imm: 9511 fn = env->ops->get_func_proto(insn->imm, env->prog); 9512 /* all functions that have prototype and verifier allowed 9513 * programs to call them, must be real in-kernel functions 9514 */ 9515 if (!fn->func) { 9516 verbose(env, 9517 "kernel subsystem misconfigured func %s#%d\n", 9518 func_id_name(insn->imm), insn->imm); 9519 return -EFAULT; 9520 } 9521 insn->imm = fn->func - __bpf_call_base; 9522 } 9523 9524 /* Since poke tab is now finalized, publish aux to tracker. */ 9525 for (i = 0; i < prog->aux->size_poke_tab; i++) { 9526 map_ptr = prog->aux->poke_tab[i].tail_call.map; 9527 if (!map_ptr->ops->map_poke_track || 9528 !map_ptr->ops->map_poke_untrack || 9529 !map_ptr->ops->map_poke_run) { 9530 verbose(env, "bpf verifier is misconfigured\n"); 9531 return -EINVAL; 9532 } 9533 9534 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 9535 if (ret < 0) { 9536 verbose(env, "tracking tail call prog failed\n"); 9537 return ret; 9538 } 9539 } 9540 9541 return 0; 9542 } 9543 9544 static void free_states(struct bpf_verifier_env *env) 9545 { 9546 struct bpf_verifier_state_list *sl, *sln; 9547 int i; 9548 9549 sl = env->free_list; 9550 while (sl) { 9551 sln = sl->next; 9552 free_verifier_state(&sl->state, false); 9553 kfree(sl); 9554 sl = sln; 9555 } 9556 env->free_list = NULL; 9557 9558 if (!env->explored_states) 9559 return; 9560 9561 for (i = 0; i < state_htab_size(env); i++) { 9562 sl = env->explored_states[i]; 9563 9564 while (sl) { 9565 sln = sl->next; 9566 free_verifier_state(&sl->state, false); 9567 kfree(sl); 9568 sl = sln; 9569 } 9570 env->explored_states[i] = NULL; 9571 } 9572 } 9573 9574 /* The verifier is using insn_aux_data[] to store temporary data during 9575 * verification and to store information for passes that run after the 9576 * verification like dead code sanitization. do_check_common() for subprogram N 9577 * may analyze many other subprograms. sanitize_insn_aux_data() clears all 9578 * temporary data after do_check_common() finds that subprogram N cannot be 9579 * verified independently. pass_cnt counts the number of times 9580 * do_check_common() was run and insn->aux->seen tells the pass number 9581 * insn_aux_data was touched. These variables are compared to clear temporary 9582 * data from failed pass. For testing and experiments do_check_common() can be 9583 * run multiple times even when prior attempt to verify is unsuccessful. 9584 */ 9585 static void sanitize_insn_aux_data(struct bpf_verifier_env *env) 9586 { 9587 struct bpf_insn *insn = env->prog->insnsi; 9588 struct bpf_insn_aux_data *aux; 9589 int i, class; 9590 9591 for (i = 0; i < env->prog->len; i++) { 9592 class = BPF_CLASS(insn[i].code); 9593 if (class != BPF_LDX && class != BPF_STX) 9594 continue; 9595 aux = &env->insn_aux_data[i]; 9596 if (aux->seen != env->pass_cnt) 9597 continue; 9598 memset(aux, 0, offsetof(typeof(*aux), orig_idx)); 9599 } 9600 } 9601 9602 static int do_check_common(struct bpf_verifier_env *env, int subprog) 9603 { 9604 struct bpf_verifier_state *state; 9605 struct bpf_reg_state *regs; 9606 int ret, i; 9607 9608 env->prev_linfo = NULL; 9609 env->pass_cnt++; 9610 9611 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 9612 if (!state) 9613 return -ENOMEM; 9614 state->curframe = 0; 9615 state->speculative = false; 9616 state->branches = 1; 9617 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 9618 if (!state->frame[0]) { 9619 kfree(state); 9620 return -ENOMEM; 9621 } 9622 env->cur_state = state; 9623 init_func_state(env, state->frame[0], 9624 BPF_MAIN_FUNC /* callsite */, 9625 0 /* frameno */, 9626 subprog); 9627 9628 regs = state->frame[state->curframe]->regs; 9629 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 9630 ret = btf_prepare_func_args(env, subprog, regs); 9631 if (ret) 9632 goto out; 9633 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 9634 if (regs[i].type == PTR_TO_CTX) 9635 mark_reg_known_zero(env, regs, i); 9636 else if (regs[i].type == SCALAR_VALUE) 9637 mark_reg_unknown(env, regs, i); 9638 } 9639 } else { 9640 /* 1st arg to a function */ 9641 regs[BPF_REG_1].type = PTR_TO_CTX; 9642 mark_reg_known_zero(env, regs, BPF_REG_1); 9643 ret = btf_check_func_arg_match(env, subprog, regs); 9644 if (ret == -EFAULT) 9645 /* unlikely verifier bug. abort. 9646 * ret == 0 and ret < 0 are sadly acceptable for 9647 * main() function due to backward compatibility. 9648 * Like socket filter program may be written as: 9649 * int bpf_prog(struct pt_regs *ctx) 9650 * and never dereference that ctx in the program. 9651 * 'struct pt_regs' is a type mismatch for socket 9652 * filter that should be using 'struct __sk_buff'. 9653 */ 9654 goto out; 9655 } 9656 9657 ret = do_check(env); 9658 out: 9659 /* check for NULL is necessary, since cur_state can be freed inside 9660 * do_check() under memory pressure. 9661 */ 9662 if (env->cur_state) { 9663 free_verifier_state(env->cur_state, true); 9664 env->cur_state = NULL; 9665 } 9666 while (!pop_stack(env, NULL, NULL)); 9667 free_states(env); 9668 if (ret) 9669 /* clean aux data in case subprog was rejected */ 9670 sanitize_insn_aux_data(env); 9671 return ret; 9672 } 9673 9674 /* Verify all global functions in a BPF program one by one based on their BTF. 9675 * All global functions must pass verification. Otherwise the whole program is rejected. 9676 * Consider: 9677 * int bar(int); 9678 * int foo(int f) 9679 * { 9680 * return bar(f); 9681 * } 9682 * int bar(int b) 9683 * { 9684 * ... 9685 * } 9686 * foo() will be verified first for R1=any_scalar_value. During verification it 9687 * will be assumed that bar() already verified successfully and call to bar() 9688 * from foo() will be checked for type match only. Later bar() will be verified 9689 * independently to check that it's safe for R1=any_scalar_value. 9690 */ 9691 static int do_check_subprogs(struct bpf_verifier_env *env) 9692 { 9693 struct bpf_prog_aux *aux = env->prog->aux; 9694 int i, ret; 9695 9696 if (!aux->func_info) 9697 return 0; 9698 9699 for (i = 1; i < env->subprog_cnt; i++) { 9700 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 9701 continue; 9702 env->insn_idx = env->subprog_info[i].start; 9703 WARN_ON_ONCE(env->insn_idx == 0); 9704 ret = do_check_common(env, i); 9705 if (ret) { 9706 return ret; 9707 } else if (env->log.level & BPF_LOG_LEVEL) { 9708 verbose(env, 9709 "Func#%d is safe for any args that match its prototype\n", 9710 i); 9711 } 9712 } 9713 return 0; 9714 } 9715 9716 static int do_check_main(struct bpf_verifier_env *env) 9717 { 9718 int ret; 9719 9720 env->insn_idx = 0; 9721 ret = do_check_common(env, 0); 9722 if (!ret) 9723 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 9724 return ret; 9725 } 9726 9727 9728 static void print_verification_stats(struct bpf_verifier_env *env) 9729 { 9730 int i; 9731 9732 if (env->log.level & BPF_LOG_STATS) { 9733 verbose(env, "verification time %lld usec\n", 9734 div_u64(env->verification_time, 1000)); 9735 verbose(env, "stack depth "); 9736 for (i = 0; i < env->subprog_cnt; i++) { 9737 u32 depth = env->subprog_info[i].stack_depth; 9738 9739 verbose(env, "%d", depth); 9740 if (i + 1 < env->subprog_cnt) 9741 verbose(env, "+"); 9742 } 9743 verbose(env, "\n"); 9744 } 9745 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 9746 "total_states %d peak_states %d mark_read %d\n", 9747 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 9748 env->max_states_per_insn, env->total_states, 9749 env->peak_states, env->longest_mark_read_walk); 9750 } 9751 9752 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 9753 { 9754 const struct btf_type *t, *func_proto; 9755 const struct bpf_struct_ops *st_ops; 9756 const struct btf_member *member; 9757 struct bpf_prog *prog = env->prog; 9758 u32 btf_id, member_idx; 9759 const char *mname; 9760 9761 btf_id = prog->aux->attach_btf_id; 9762 st_ops = bpf_struct_ops_find(btf_id); 9763 if (!st_ops) { 9764 verbose(env, "attach_btf_id %u is not a supported struct\n", 9765 btf_id); 9766 return -ENOTSUPP; 9767 } 9768 9769 t = st_ops->type; 9770 member_idx = prog->expected_attach_type; 9771 if (member_idx >= btf_type_vlen(t)) { 9772 verbose(env, "attach to invalid member idx %u of struct %s\n", 9773 member_idx, st_ops->name); 9774 return -EINVAL; 9775 } 9776 9777 member = &btf_type_member(t)[member_idx]; 9778 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 9779 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 9780 NULL); 9781 if (!func_proto) { 9782 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 9783 mname, member_idx, st_ops->name); 9784 return -EINVAL; 9785 } 9786 9787 if (st_ops->check_member) { 9788 int err = st_ops->check_member(t, member); 9789 9790 if (err) { 9791 verbose(env, "attach to unsupported member %s of struct %s\n", 9792 mname, st_ops->name); 9793 return err; 9794 } 9795 } 9796 9797 prog->aux->attach_func_proto = func_proto; 9798 prog->aux->attach_func_name = mname; 9799 env->ops = st_ops->verifier_ops; 9800 9801 return 0; 9802 } 9803 9804 static int check_attach_btf_id(struct bpf_verifier_env *env) 9805 { 9806 struct bpf_prog *prog = env->prog; 9807 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 9808 struct bpf_prog *tgt_prog = prog->aux->linked_prog; 9809 u32 btf_id = prog->aux->attach_btf_id; 9810 const char prefix[] = "btf_trace_"; 9811 int ret = 0, subprog = -1, i; 9812 struct bpf_trampoline *tr; 9813 const struct btf_type *t; 9814 bool conservative = true; 9815 const char *tname; 9816 struct btf *btf; 9817 long addr; 9818 u64 key; 9819 9820 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 9821 return check_struct_ops_btf_id(env); 9822 9823 if (prog->type != BPF_PROG_TYPE_TRACING && !prog_extension) 9824 return 0; 9825 9826 if (!btf_id) { 9827 verbose(env, "Tracing programs must provide btf_id\n"); 9828 return -EINVAL; 9829 } 9830 btf = bpf_prog_get_target_btf(prog); 9831 if (!btf) { 9832 verbose(env, 9833 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 9834 return -EINVAL; 9835 } 9836 t = btf_type_by_id(btf, btf_id); 9837 if (!t) { 9838 verbose(env, "attach_btf_id %u is invalid\n", btf_id); 9839 return -EINVAL; 9840 } 9841 tname = btf_name_by_offset(btf, t->name_off); 9842 if (!tname) { 9843 verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id); 9844 return -EINVAL; 9845 } 9846 if (tgt_prog) { 9847 struct bpf_prog_aux *aux = tgt_prog->aux; 9848 9849 for (i = 0; i < aux->func_info_cnt; i++) 9850 if (aux->func_info[i].type_id == btf_id) { 9851 subprog = i; 9852 break; 9853 } 9854 if (subprog == -1) { 9855 verbose(env, "Subprog %s doesn't exist\n", tname); 9856 return -EINVAL; 9857 } 9858 conservative = aux->func_info_aux[subprog].unreliable; 9859 if (prog_extension) { 9860 if (conservative) { 9861 verbose(env, 9862 "Cannot replace static functions\n"); 9863 return -EINVAL; 9864 } 9865 if (!prog->jit_requested) { 9866 verbose(env, 9867 "Extension programs should be JITed\n"); 9868 return -EINVAL; 9869 } 9870 env->ops = bpf_verifier_ops[tgt_prog->type]; 9871 } 9872 if (!tgt_prog->jited) { 9873 verbose(env, "Can attach to only JITed progs\n"); 9874 return -EINVAL; 9875 } 9876 if (tgt_prog->type == prog->type) { 9877 /* Cannot fentry/fexit another fentry/fexit program. 9878 * Cannot attach program extension to another extension. 9879 * It's ok to attach fentry/fexit to extension program. 9880 */ 9881 verbose(env, "Cannot recursively attach\n"); 9882 return -EINVAL; 9883 } 9884 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 9885 prog_extension && 9886 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 9887 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 9888 /* Program extensions can extend all program types 9889 * except fentry/fexit. The reason is the following. 9890 * The fentry/fexit programs are used for performance 9891 * analysis, stats and can be attached to any program 9892 * type except themselves. When extension program is 9893 * replacing XDP function it is necessary to allow 9894 * performance analysis of all functions. Both original 9895 * XDP program and its program extension. Hence 9896 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 9897 * allowed. If extending of fentry/fexit was allowed it 9898 * would be possible to create long call chain 9899 * fentry->extension->fentry->extension beyond 9900 * reasonable stack size. Hence extending fentry is not 9901 * allowed. 9902 */ 9903 verbose(env, "Cannot extend fentry/fexit\n"); 9904 return -EINVAL; 9905 } 9906 key = ((u64)aux->id) << 32 | btf_id; 9907 } else { 9908 if (prog_extension) { 9909 verbose(env, "Cannot replace kernel functions\n"); 9910 return -EINVAL; 9911 } 9912 key = btf_id; 9913 } 9914 9915 switch (prog->expected_attach_type) { 9916 case BPF_TRACE_RAW_TP: 9917 if (tgt_prog) { 9918 verbose(env, 9919 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 9920 return -EINVAL; 9921 } 9922 if (!btf_type_is_typedef(t)) { 9923 verbose(env, "attach_btf_id %u is not a typedef\n", 9924 btf_id); 9925 return -EINVAL; 9926 } 9927 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 9928 verbose(env, "attach_btf_id %u points to wrong type name %s\n", 9929 btf_id, tname); 9930 return -EINVAL; 9931 } 9932 tname += sizeof(prefix) - 1; 9933 t = btf_type_by_id(btf, t->type); 9934 if (!btf_type_is_ptr(t)) 9935 /* should never happen in valid vmlinux build */ 9936 return -EINVAL; 9937 t = btf_type_by_id(btf, t->type); 9938 if (!btf_type_is_func_proto(t)) 9939 /* should never happen in valid vmlinux build */ 9940 return -EINVAL; 9941 9942 /* remember two read only pointers that are valid for 9943 * the life time of the kernel 9944 */ 9945 prog->aux->attach_func_name = tname; 9946 prog->aux->attach_func_proto = t; 9947 prog->aux->attach_btf_trace = true; 9948 return 0; 9949 default: 9950 if (!prog_extension) 9951 return -EINVAL; 9952 /* fallthrough */ 9953 case BPF_TRACE_FENTRY: 9954 case BPF_TRACE_FEXIT: 9955 if (!btf_type_is_func(t)) { 9956 verbose(env, "attach_btf_id %u is not a function\n", 9957 btf_id); 9958 return -EINVAL; 9959 } 9960 if (prog_extension && 9961 btf_check_type_match(env, prog, btf, t)) 9962 return -EINVAL; 9963 t = btf_type_by_id(btf, t->type); 9964 if (!btf_type_is_func_proto(t)) 9965 return -EINVAL; 9966 tr = bpf_trampoline_lookup(key); 9967 if (!tr) 9968 return -ENOMEM; 9969 prog->aux->attach_func_name = tname; 9970 /* t is either vmlinux type or another program's type */ 9971 prog->aux->attach_func_proto = t; 9972 mutex_lock(&tr->mutex); 9973 if (tr->func.addr) { 9974 prog->aux->trampoline = tr; 9975 goto out; 9976 } 9977 if (tgt_prog && conservative) { 9978 prog->aux->attach_func_proto = NULL; 9979 t = NULL; 9980 } 9981 ret = btf_distill_func_proto(&env->log, btf, t, 9982 tname, &tr->func.model); 9983 if (ret < 0) 9984 goto out; 9985 if (tgt_prog) { 9986 if (subprog == 0) 9987 addr = (long) tgt_prog->bpf_func; 9988 else 9989 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 9990 } else { 9991 addr = kallsyms_lookup_name(tname); 9992 if (!addr) { 9993 verbose(env, 9994 "The address of function %s cannot be found\n", 9995 tname); 9996 ret = -ENOENT; 9997 goto out; 9998 } 9999 } 10000 tr->func.addr = (void *)addr; 10001 prog->aux->trampoline = tr; 10002 out: 10003 mutex_unlock(&tr->mutex); 10004 if (ret) 10005 bpf_trampoline_put(tr); 10006 return ret; 10007 } 10008 } 10009 10010 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 10011 union bpf_attr __user *uattr) 10012 { 10013 u64 start_time = ktime_get_ns(); 10014 struct bpf_verifier_env *env; 10015 struct bpf_verifier_log *log; 10016 int i, len, ret = -EINVAL; 10017 bool is_priv; 10018 10019 /* no program is valid */ 10020 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 10021 return -EINVAL; 10022 10023 /* 'struct bpf_verifier_env' can be global, but since it's not small, 10024 * allocate/free it every time bpf_check() is called 10025 */ 10026 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 10027 if (!env) 10028 return -ENOMEM; 10029 log = &env->log; 10030 10031 len = (*prog)->len; 10032 env->insn_aux_data = 10033 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 10034 ret = -ENOMEM; 10035 if (!env->insn_aux_data) 10036 goto err_free_env; 10037 for (i = 0; i < len; i++) 10038 env->insn_aux_data[i].orig_idx = i; 10039 env->prog = *prog; 10040 env->ops = bpf_verifier_ops[env->prog->type]; 10041 is_priv = capable(CAP_SYS_ADMIN); 10042 10043 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 10044 mutex_lock(&bpf_verifier_lock); 10045 if (!btf_vmlinux) 10046 btf_vmlinux = btf_parse_vmlinux(); 10047 mutex_unlock(&bpf_verifier_lock); 10048 } 10049 10050 /* grab the mutex to protect few globals used by verifier */ 10051 if (!is_priv) 10052 mutex_lock(&bpf_verifier_lock); 10053 10054 if (attr->log_level || attr->log_buf || attr->log_size) { 10055 /* user requested verbose verifier output 10056 * and supplied buffer to store the verification trace 10057 */ 10058 log->level = attr->log_level; 10059 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 10060 log->len_total = attr->log_size; 10061 10062 ret = -EINVAL; 10063 /* log attributes have to be sane */ 10064 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 10065 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 10066 goto err_unlock; 10067 } 10068 10069 if (IS_ERR(btf_vmlinux)) { 10070 /* Either gcc or pahole or kernel are broken. */ 10071 verbose(env, "in-kernel BTF is malformed\n"); 10072 ret = PTR_ERR(btf_vmlinux); 10073 goto skip_full_check; 10074 } 10075 10076 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 10077 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 10078 env->strict_alignment = true; 10079 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 10080 env->strict_alignment = false; 10081 10082 env->allow_ptr_leaks = is_priv; 10083 10084 if (is_priv) 10085 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 10086 10087 ret = replace_map_fd_with_map_ptr(env); 10088 if (ret < 0) 10089 goto skip_full_check; 10090 10091 if (bpf_prog_is_dev_bound(env->prog->aux)) { 10092 ret = bpf_prog_offload_verifier_prep(env->prog); 10093 if (ret) 10094 goto skip_full_check; 10095 } 10096 10097 env->explored_states = kvcalloc(state_htab_size(env), 10098 sizeof(struct bpf_verifier_state_list *), 10099 GFP_USER); 10100 ret = -ENOMEM; 10101 if (!env->explored_states) 10102 goto skip_full_check; 10103 10104 ret = check_subprogs(env); 10105 if (ret < 0) 10106 goto skip_full_check; 10107 10108 ret = check_btf_info(env, attr, uattr); 10109 if (ret < 0) 10110 goto skip_full_check; 10111 10112 ret = check_attach_btf_id(env); 10113 if (ret) 10114 goto skip_full_check; 10115 10116 ret = check_cfg(env); 10117 if (ret < 0) 10118 goto skip_full_check; 10119 10120 ret = do_check_subprogs(env); 10121 ret = ret ?: do_check_main(env); 10122 10123 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 10124 ret = bpf_prog_offload_finalize(env); 10125 10126 skip_full_check: 10127 kvfree(env->explored_states); 10128 10129 if (ret == 0) 10130 ret = check_max_stack_depth(env); 10131 10132 /* instruction rewrites happen after this point */ 10133 if (is_priv) { 10134 if (ret == 0) 10135 opt_hard_wire_dead_code_branches(env); 10136 if (ret == 0) 10137 ret = opt_remove_dead_code(env); 10138 if (ret == 0) 10139 ret = opt_remove_nops(env); 10140 } else { 10141 if (ret == 0) 10142 sanitize_dead_code(env); 10143 } 10144 10145 if (ret == 0) 10146 /* program is valid, convert *(u32*)(ctx + off) accesses */ 10147 ret = convert_ctx_accesses(env); 10148 10149 if (ret == 0) 10150 ret = fixup_bpf_calls(env); 10151 10152 /* do 32-bit optimization after insn patching has done so those patched 10153 * insns could be handled correctly. 10154 */ 10155 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 10156 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 10157 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 10158 : false; 10159 } 10160 10161 if (ret == 0) 10162 ret = fixup_call_args(env); 10163 10164 env->verification_time = ktime_get_ns() - start_time; 10165 print_verification_stats(env); 10166 10167 if (log->level && bpf_verifier_log_full(log)) 10168 ret = -ENOSPC; 10169 if (log->level && !log->ubuf) { 10170 ret = -EFAULT; 10171 goto err_release_maps; 10172 } 10173 10174 if (ret == 0 && env->used_map_cnt) { 10175 /* if program passed verifier, update used_maps in bpf_prog_info */ 10176 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 10177 sizeof(env->used_maps[0]), 10178 GFP_KERNEL); 10179 10180 if (!env->prog->aux->used_maps) { 10181 ret = -ENOMEM; 10182 goto err_release_maps; 10183 } 10184 10185 memcpy(env->prog->aux->used_maps, env->used_maps, 10186 sizeof(env->used_maps[0]) * env->used_map_cnt); 10187 env->prog->aux->used_map_cnt = env->used_map_cnt; 10188 10189 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 10190 * bpf_ld_imm64 instructions 10191 */ 10192 convert_pseudo_ld_imm64(env); 10193 } 10194 10195 if (ret == 0) 10196 adjust_btf_func(env); 10197 10198 err_release_maps: 10199 if (!env->prog->aux->used_maps) 10200 /* if we didn't copy map pointers into bpf_prog_info, release 10201 * them now. Otherwise free_used_maps() will release them. 10202 */ 10203 release_maps(env); 10204 *prog = env->prog; 10205 err_unlock: 10206 if (!is_priv) 10207 mutex_unlock(&bpf_verifier_lock); 10208 vfree(env->insn_aux_data); 10209 err_free_env: 10210 kfree(env); 10211 return ret; 10212 } 10213