1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <linux/bpf_mem_alloc.h> 30 #include <net/xdp.h> 31 32 #include "disasm.h" 33 34 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 35 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 36 [_id] = & _name ## _verifier_ops, 37 #define BPF_MAP_TYPE(_id, _ops) 38 #define BPF_LINK_TYPE(_id, _name) 39 #include <linux/bpf_types.h> 40 #undef BPF_PROG_TYPE 41 #undef BPF_MAP_TYPE 42 #undef BPF_LINK_TYPE 43 }; 44 45 struct bpf_mem_alloc bpf_global_percpu_ma; 46 static bool bpf_global_percpu_ma_set; 47 48 /* bpf_check() is a static code analyzer that walks eBPF program 49 * instruction by instruction and updates register/stack state. 50 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 51 * 52 * The first pass is depth-first-search to check that the program is a DAG. 53 * It rejects the following programs: 54 * - larger than BPF_MAXINSNS insns 55 * - if loop is present (detected via back-edge) 56 * - unreachable insns exist (shouldn't be a forest. program = one function) 57 * - out of bounds or malformed jumps 58 * The second pass is all possible path descent from the 1st insn. 59 * Since it's analyzing all paths through the program, the length of the 60 * analysis is limited to 64k insn, which may be hit even if total number of 61 * insn is less then 4K, but there are too many branches that change stack/regs. 62 * Number of 'branches to be analyzed' is limited to 1k 63 * 64 * On entry to each instruction, each register has a type, and the instruction 65 * changes the types of the registers depending on instruction semantics. 66 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 67 * copied to R1. 68 * 69 * All registers are 64-bit. 70 * R0 - return register 71 * R1-R5 argument passing registers 72 * R6-R9 callee saved registers 73 * R10 - frame pointer read-only 74 * 75 * At the start of BPF program the register R1 contains a pointer to bpf_context 76 * and has type PTR_TO_CTX. 77 * 78 * Verifier tracks arithmetic operations on pointers in case: 79 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 80 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 81 * 1st insn copies R10 (which has FRAME_PTR) type into R1 82 * and 2nd arithmetic instruction is pattern matched to recognize 83 * that it wants to construct a pointer to some element within stack. 84 * So after 2nd insn, the register R1 has type PTR_TO_STACK 85 * (and -20 constant is saved for further stack bounds checking). 86 * Meaning that this reg is a pointer to stack plus known immediate constant. 87 * 88 * Most of the time the registers have SCALAR_VALUE type, which 89 * means the register has some value, but it's not a valid pointer. 90 * (like pointer plus pointer becomes SCALAR_VALUE type) 91 * 92 * When verifier sees load or store instructions the type of base register 93 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 94 * four pointer types recognized by check_mem_access() function. 95 * 96 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 97 * and the range of [ptr, ptr + map's value_size) is accessible. 98 * 99 * registers used to pass values to function calls are checked against 100 * function argument constraints. 101 * 102 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 103 * It means that the register type passed to this function must be 104 * PTR_TO_STACK and it will be used inside the function as 105 * 'pointer to map element key' 106 * 107 * For example the argument constraints for bpf_map_lookup_elem(): 108 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 109 * .arg1_type = ARG_CONST_MAP_PTR, 110 * .arg2_type = ARG_PTR_TO_MAP_KEY, 111 * 112 * ret_type says that this function returns 'pointer to map elem value or null' 113 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 114 * 2nd argument should be a pointer to stack, which will be used inside 115 * the helper function as a pointer to map element key. 116 * 117 * On the kernel side the helper function looks like: 118 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 119 * { 120 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 121 * void *key = (void *) (unsigned long) r2; 122 * void *value; 123 * 124 * here kernel can access 'key' and 'map' pointers safely, knowing that 125 * [key, key + map->key_size) bytes are valid and were initialized on 126 * the stack of eBPF program. 127 * } 128 * 129 * Corresponding eBPF program may look like: 130 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 131 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 132 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 133 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 134 * here verifier looks at prototype of map_lookup_elem() and sees: 135 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 136 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 137 * 138 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 139 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 140 * and were initialized prior to this call. 141 * If it's ok, then verifier allows this BPF_CALL insn and looks at 142 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 143 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 144 * returns either pointer to map value or NULL. 145 * 146 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 147 * insn, the register holding that pointer in the true branch changes state to 148 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 149 * branch. See check_cond_jmp_op(). 150 * 151 * After the call R0 is set to return type of the function and registers R1-R5 152 * are set to NOT_INIT to indicate that they are no longer readable. 153 * 154 * The following reference types represent a potential reference to a kernel 155 * resource which, after first being allocated, must be checked and freed by 156 * the BPF program: 157 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 158 * 159 * When the verifier sees a helper call return a reference type, it allocates a 160 * pointer id for the reference and stores it in the current function state. 161 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 162 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 163 * passes through a NULL-check conditional. For the branch wherein the state is 164 * changed to CONST_IMM, the verifier releases the reference. 165 * 166 * For each helper function that allocates a reference, such as 167 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 168 * bpf_sk_release(). When a reference type passes into the release function, 169 * the verifier also releases the reference. If any unchecked or unreleased 170 * reference remains at the end of the program, the verifier rejects it. 171 */ 172 173 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 174 struct bpf_verifier_stack_elem { 175 /* verifier state is 'st' 176 * before processing instruction 'insn_idx' 177 * and after processing instruction 'prev_insn_idx' 178 */ 179 struct bpf_verifier_state st; 180 int insn_idx; 181 int prev_insn_idx; 182 struct bpf_verifier_stack_elem *next; 183 /* length of verifier log at the time this state was pushed on stack */ 184 u32 log_pos; 185 }; 186 187 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 188 #define BPF_COMPLEXITY_LIMIT_STATES 64 189 190 #define BPF_MAP_KEY_POISON (1ULL << 63) 191 #define BPF_MAP_KEY_SEEN (1ULL << 62) 192 193 #define BPF_GLOBAL_PERCPU_MA_MAX_SIZE 512 194 195 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 196 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 197 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 198 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 199 static int ref_set_non_owning(struct bpf_verifier_env *env, 200 struct bpf_reg_state *reg); 201 static void specialize_kfunc(struct bpf_verifier_env *env, 202 u32 func_id, u16 offset, unsigned long *addr); 203 static bool is_trusted_reg(const struct bpf_reg_state *reg); 204 205 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 206 { 207 return aux->map_ptr_state.poison; 208 } 209 210 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 211 { 212 return aux->map_ptr_state.unpriv; 213 } 214 215 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 216 struct bpf_map *map, 217 bool unpriv, bool poison) 218 { 219 unpriv |= bpf_map_ptr_unpriv(aux); 220 aux->map_ptr_state.unpriv = unpriv; 221 aux->map_ptr_state.poison = poison; 222 aux->map_ptr_state.map_ptr = map; 223 } 224 225 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 226 { 227 return aux->map_key_state & BPF_MAP_KEY_POISON; 228 } 229 230 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 231 { 232 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 233 } 234 235 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 236 { 237 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 238 } 239 240 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 241 { 242 bool poisoned = bpf_map_key_poisoned(aux); 243 244 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 245 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 246 } 247 248 static bool bpf_helper_call(const struct bpf_insn *insn) 249 { 250 return insn->code == (BPF_JMP | BPF_CALL) && 251 insn->src_reg == 0; 252 } 253 254 static bool bpf_pseudo_call(const struct bpf_insn *insn) 255 { 256 return insn->code == (BPF_JMP | BPF_CALL) && 257 insn->src_reg == BPF_PSEUDO_CALL; 258 } 259 260 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 261 { 262 return insn->code == (BPF_JMP | BPF_CALL) && 263 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 264 } 265 266 struct bpf_call_arg_meta { 267 struct bpf_map *map_ptr; 268 bool raw_mode; 269 bool pkt_access; 270 u8 release_regno; 271 int regno; 272 int access_size; 273 int mem_size; 274 u64 msize_max_value; 275 int ref_obj_id; 276 int dynptr_id; 277 int map_uid; 278 int func_id; 279 struct btf *btf; 280 u32 btf_id; 281 struct btf *ret_btf; 282 u32 ret_btf_id; 283 u32 subprogno; 284 struct btf_field *kptr_field; 285 }; 286 287 struct bpf_kfunc_call_arg_meta { 288 /* In parameters */ 289 struct btf *btf; 290 u32 func_id; 291 u32 kfunc_flags; 292 const struct btf_type *func_proto; 293 const char *func_name; 294 /* Out parameters */ 295 u32 ref_obj_id; 296 u8 release_regno; 297 bool r0_rdonly; 298 u32 ret_btf_id; 299 u64 r0_size; 300 u32 subprogno; 301 struct { 302 u64 value; 303 bool found; 304 } arg_constant; 305 306 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 307 * generally to pass info about user-defined local kptr types to later 308 * verification logic 309 * bpf_obj_drop/bpf_percpu_obj_drop 310 * Record the local kptr type to be drop'd 311 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 312 * Record the local kptr type to be refcount_incr'd and use 313 * arg_owning_ref to determine whether refcount_acquire should be 314 * fallible 315 */ 316 struct btf *arg_btf; 317 u32 arg_btf_id; 318 bool arg_owning_ref; 319 320 struct { 321 struct btf_field *field; 322 } arg_list_head; 323 struct { 324 struct btf_field *field; 325 } arg_rbtree_root; 326 struct { 327 enum bpf_dynptr_type type; 328 u32 id; 329 u32 ref_obj_id; 330 } initialized_dynptr; 331 struct { 332 u8 spi; 333 u8 frameno; 334 } iter; 335 struct { 336 struct bpf_map *ptr; 337 int uid; 338 } map; 339 u64 mem_size; 340 }; 341 342 struct btf *btf_vmlinux; 343 344 static const char *btf_type_name(const struct btf *btf, u32 id) 345 { 346 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 347 } 348 349 static DEFINE_MUTEX(bpf_verifier_lock); 350 static DEFINE_MUTEX(bpf_percpu_ma_lock); 351 352 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 353 { 354 struct bpf_verifier_env *env = private_data; 355 va_list args; 356 357 if (!bpf_verifier_log_needed(&env->log)) 358 return; 359 360 va_start(args, fmt); 361 bpf_verifier_vlog(&env->log, fmt, args); 362 va_end(args); 363 } 364 365 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 366 struct bpf_reg_state *reg, 367 struct bpf_retval_range range, const char *ctx, 368 const char *reg_name) 369 { 370 bool unknown = true; 371 372 verbose(env, "%s the register %s has", ctx, reg_name); 373 if (reg->smin_value > S64_MIN) { 374 verbose(env, " smin=%lld", reg->smin_value); 375 unknown = false; 376 } 377 if (reg->smax_value < S64_MAX) { 378 verbose(env, " smax=%lld", reg->smax_value); 379 unknown = false; 380 } 381 if (unknown) 382 verbose(env, " unknown scalar value"); 383 verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval); 384 } 385 386 static bool type_may_be_null(u32 type) 387 { 388 return type & PTR_MAYBE_NULL; 389 } 390 391 static bool reg_not_null(const struct bpf_reg_state *reg) 392 { 393 enum bpf_reg_type type; 394 395 type = reg->type; 396 if (type_may_be_null(type)) 397 return false; 398 399 type = base_type(type); 400 return type == PTR_TO_SOCKET || 401 type == PTR_TO_TCP_SOCK || 402 type == PTR_TO_MAP_VALUE || 403 type == PTR_TO_MAP_KEY || 404 type == PTR_TO_SOCK_COMMON || 405 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 406 type == PTR_TO_MEM; 407 } 408 409 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 410 { 411 struct btf_record *rec = NULL; 412 struct btf_struct_meta *meta; 413 414 if (reg->type == PTR_TO_MAP_VALUE) { 415 rec = reg->map_ptr->record; 416 } else if (type_is_ptr_alloc_obj(reg->type)) { 417 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 418 if (meta) 419 rec = meta->record; 420 } 421 return rec; 422 } 423 424 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 425 { 426 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 427 428 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 429 } 430 431 static const char *subprog_name(const struct bpf_verifier_env *env, int subprog) 432 { 433 struct bpf_func_info *info; 434 435 if (!env->prog->aux->func_info) 436 return ""; 437 438 info = &env->prog->aux->func_info[subprog]; 439 return btf_type_name(env->prog->aux->btf, info->type_id); 440 } 441 442 static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog) 443 { 444 struct bpf_subprog_info *info = subprog_info(env, subprog); 445 446 info->is_cb = true; 447 info->is_async_cb = true; 448 info->is_exception_cb = true; 449 } 450 451 static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog) 452 { 453 return subprog_info(env, subprog)->is_exception_cb; 454 } 455 456 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 457 { 458 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 459 } 460 461 static bool type_is_rdonly_mem(u32 type) 462 { 463 return type & MEM_RDONLY; 464 } 465 466 static bool is_acquire_function(enum bpf_func_id func_id, 467 const struct bpf_map *map) 468 { 469 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 470 471 if (func_id == BPF_FUNC_sk_lookup_tcp || 472 func_id == BPF_FUNC_sk_lookup_udp || 473 func_id == BPF_FUNC_skc_lookup_tcp || 474 func_id == BPF_FUNC_ringbuf_reserve || 475 func_id == BPF_FUNC_kptr_xchg) 476 return true; 477 478 if (func_id == BPF_FUNC_map_lookup_elem && 479 (map_type == BPF_MAP_TYPE_SOCKMAP || 480 map_type == BPF_MAP_TYPE_SOCKHASH)) 481 return true; 482 483 return false; 484 } 485 486 static bool is_ptr_cast_function(enum bpf_func_id func_id) 487 { 488 return func_id == BPF_FUNC_tcp_sock || 489 func_id == BPF_FUNC_sk_fullsock || 490 func_id == BPF_FUNC_skc_to_tcp_sock || 491 func_id == BPF_FUNC_skc_to_tcp6_sock || 492 func_id == BPF_FUNC_skc_to_udp6_sock || 493 func_id == BPF_FUNC_skc_to_mptcp_sock || 494 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 495 func_id == BPF_FUNC_skc_to_tcp_request_sock; 496 } 497 498 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 499 { 500 return func_id == BPF_FUNC_dynptr_data; 501 } 502 503 static bool is_sync_callback_calling_kfunc(u32 btf_id); 504 static bool is_async_callback_calling_kfunc(u32 btf_id); 505 static bool is_callback_calling_kfunc(u32 btf_id); 506 static bool is_bpf_throw_kfunc(struct bpf_insn *insn); 507 508 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id); 509 510 static bool is_sync_callback_calling_function(enum bpf_func_id func_id) 511 { 512 return func_id == BPF_FUNC_for_each_map_elem || 513 func_id == BPF_FUNC_find_vma || 514 func_id == BPF_FUNC_loop || 515 func_id == BPF_FUNC_user_ringbuf_drain; 516 } 517 518 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 519 { 520 return func_id == BPF_FUNC_timer_set_callback; 521 } 522 523 static bool is_callback_calling_function(enum bpf_func_id func_id) 524 { 525 return is_sync_callback_calling_function(func_id) || 526 is_async_callback_calling_function(func_id); 527 } 528 529 static bool is_sync_callback_calling_insn(struct bpf_insn *insn) 530 { 531 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || 532 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); 533 } 534 535 static bool is_async_callback_calling_insn(struct bpf_insn *insn) 536 { 537 return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) || 538 (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm)); 539 } 540 541 static bool is_may_goto_insn(struct bpf_insn *insn) 542 { 543 return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO; 544 } 545 546 static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx) 547 { 548 return is_may_goto_insn(&env->prog->insnsi[insn_idx]); 549 } 550 551 static bool is_storage_get_function(enum bpf_func_id func_id) 552 { 553 return func_id == BPF_FUNC_sk_storage_get || 554 func_id == BPF_FUNC_inode_storage_get || 555 func_id == BPF_FUNC_task_storage_get || 556 func_id == BPF_FUNC_cgrp_storage_get; 557 } 558 559 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 560 const struct bpf_map *map) 561 { 562 int ref_obj_uses = 0; 563 564 if (is_ptr_cast_function(func_id)) 565 ref_obj_uses++; 566 if (is_acquire_function(func_id, map)) 567 ref_obj_uses++; 568 if (is_dynptr_ref_function(func_id)) 569 ref_obj_uses++; 570 571 return ref_obj_uses > 1; 572 } 573 574 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 575 { 576 return BPF_CLASS(insn->code) == BPF_STX && 577 BPF_MODE(insn->code) == BPF_ATOMIC && 578 insn->imm == BPF_CMPXCHG; 579 } 580 581 static int __get_spi(s32 off) 582 { 583 return (-off - 1) / BPF_REG_SIZE; 584 } 585 586 static struct bpf_func_state *func(struct bpf_verifier_env *env, 587 const struct bpf_reg_state *reg) 588 { 589 struct bpf_verifier_state *cur = env->cur_state; 590 591 return cur->frame[reg->frameno]; 592 } 593 594 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 595 { 596 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 597 598 /* We need to check that slots between [spi - nr_slots + 1, spi] are 599 * within [0, allocated_stack). 600 * 601 * Please note that the spi grows downwards. For example, a dynptr 602 * takes the size of two stack slots; the first slot will be at 603 * spi and the second slot will be at spi - 1. 604 */ 605 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 606 } 607 608 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 609 const char *obj_kind, int nr_slots) 610 { 611 int off, spi; 612 613 if (!tnum_is_const(reg->var_off)) { 614 verbose(env, "%s has to be at a constant offset\n", obj_kind); 615 return -EINVAL; 616 } 617 618 off = reg->off + reg->var_off.value; 619 if (off % BPF_REG_SIZE) { 620 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 621 return -EINVAL; 622 } 623 624 spi = __get_spi(off); 625 if (spi + 1 < nr_slots) { 626 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 627 return -EINVAL; 628 } 629 630 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 631 return -ERANGE; 632 return spi; 633 } 634 635 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 636 { 637 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 638 } 639 640 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 641 { 642 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 643 } 644 645 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 646 { 647 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 648 case DYNPTR_TYPE_LOCAL: 649 return BPF_DYNPTR_TYPE_LOCAL; 650 case DYNPTR_TYPE_RINGBUF: 651 return BPF_DYNPTR_TYPE_RINGBUF; 652 case DYNPTR_TYPE_SKB: 653 return BPF_DYNPTR_TYPE_SKB; 654 case DYNPTR_TYPE_XDP: 655 return BPF_DYNPTR_TYPE_XDP; 656 default: 657 return BPF_DYNPTR_TYPE_INVALID; 658 } 659 } 660 661 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 662 { 663 switch (type) { 664 case BPF_DYNPTR_TYPE_LOCAL: 665 return DYNPTR_TYPE_LOCAL; 666 case BPF_DYNPTR_TYPE_RINGBUF: 667 return DYNPTR_TYPE_RINGBUF; 668 case BPF_DYNPTR_TYPE_SKB: 669 return DYNPTR_TYPE_SKB; 670 case BPF_DYNPTR_TYPE_XDP: 671 return DYNPTR_TYPE_XDP; 672 default: 673 return 0; 674 } 675 } 676 677 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 678 { 679 return type == BPF_DYNPTR_TYPE_RINGBUF; 680 } 681 682 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 683 enum bpf_dynptr_type type, 684 bool first_slot, int dynptr_id); 685 686 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 687 struct bpf_reg_state *reg); 688 689 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 690 struct bpf_reg_state *sreg1, 691 struct bpf_reg_state *sreg2, 692 enum bpf_dynptr_type type) 693 { 694 int id = ++env->id_gen; 695 696 __mark_dynptr_reg(sreg1, type, true, id); 697 __mark_dynptr_reg(sreg2, type, false, id); 698 } 699 700 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 701 struct bpf_reg_state *reg, 702 enum bpf_dynptr_type type) 703 { 704 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 705 } 706 707 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 708 struct bpf_func_state *state, int spi); 709 710 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 711 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 712 { 713 struct bpf_func_state *state = func(env, reg); 714 enum bpf_dynptr_type type; 715 int spi, i, err; 716 717 spi = dynptr_get_spi(env, reg); 718 if (spi < 0) 719 return spi; 720 721 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 722 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 723 * to ensure that for the following example: 724 * [d1][d1][d2][d2] 725 * spi 3 2 1 0 726 * So marking spi = 2 should lead to destruction of both d1 and d2. In 727 * case they do belong to same dynptr, second call won't see slot_type 728 * as STACK_DYNPTR and will simply skip destruction. 729 */ 730 err = destroy_if_dynptr_stack_slot(env, state, spi); 731 if (err) 732 return err; 733 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 734 if (err) 735 return err; 736 737 for (i = 0; i < BPF_REG_SIZE; i++) { 738 state->stack[spi].slot_type[i] = STACK_DYNPTR; 739 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 740 } 741 742 type = arg_to_dynptr_type(arg_type); 743 if (type == BPF_DYNPTR_TYPE_INVALID) 744 return -EINVAL; 745 746 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 747 &state->stack[spi - 1].spilled_ptr, type); 748 749 if (dynptr_type_refcounted(type)) { 750 /* The id is used to track proper releasing */ 751 int id; 752 753 if (clone_ref_obj_id) 754 id = clone_ref_obj_id; 755 else 756 id = acquire_reference_state(env, insn_idx); 757 758 if (id < 0) 759 return id; 760 761 state->stack[spi].spilled_ptr.ref_obj_id = id; 762 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 763 } 764 765 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 766 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 767 768 return 0; 769 } 770 771 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 772 { 773 int i; 774 775 for (i = 0; i < BPF_REG_SIZE; i++) { 776 state->stack[spi].slot_type[i] = STACK_INVALID; 777 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 778 } 779 780 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 781 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 782 783 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 784 * 785 * While we don't allow reading STACK_INVALID, it is still possible to 786 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 787 * helpers or insns can do partial read of that part without failing, 788 * but check_stack_range_initialized, check_stack_read_var_off, and 789 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 790 * the slot conservatively. Hence we need to prevent those liveness 791 * marking walks. 792 * 793 * This was not a problem before because STACK_INVALID is only set by 794 * default (where the default reg state has its reg->parent as NULL), or 795 * in clean_live_states after REG_LIVE_DONE (at which point 796 * mark_reg_read won't walk reg->parent chain), but not randomly during 797 * verifier state exploration (like we did above). Hence, for our case 798 * parentage chain will still be live (i.e. reg->parent may be 799 * non-NULL), while earlier reg->parent was NULL, so we need 800 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 801 * done later on reads or by mark_dynptr_read as well to unnecessary 802 * mark registers in verifier state. 803 */ 804 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 805 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 806 } 807 808 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 809 { 810 struct bpf_func_state *state = func(env, reg); 811 int spi, ref_obj_id, i; 812 813 spi = dynptr_get_spi(env, reg); 814 if (spi < 0) 815 return spi; 816 817 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 818 invalidate_dynptr(env, state, spi); 819 return 0; 820 } 821 822 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 823 824 /* If the dynptr has a ref_obj_id, then we need to invalidate 825 * two things: 826 * 827 * 1) Any dynptrs with a matching ref_obj_id (clones) 828 * 2) Any slices derived from this dynptr. 829 */ 830 831 /* Invalidate any slices associated with this dynptr */ 832 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 833 834 /* Invalidate any dynptr clones */ 835 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 836 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 837 continue; 838 839 /* it should always be the case that if the ref obj id 840 * matches then the stack slot also belongs to a 841 * dynptr 842 */ 843 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 844 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 845 return -EFAULT; 846 } 847 if (state->stack[i].spilled_ptr.dynptr.first_slot) 848 invalidate_dynptr(env, state, i); 849 } 850 851 return 0; 852 } 853 854 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 855 struct bpf_reg_state *reg); 856 857 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 858 { 859 if (!env->allow_ptr_leaks) 860 __mark_reg_not_init(env, reg); 861 else 862 __mark_reg_unknown(env, reg); 863 } 864 865 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 866 struct bpf_func_state *state, int spi) 867 { 868 struct bpf_func_state *fstate; 869 struct bpf_reg_state *dreg; 870 int i, dynptr_id; 871 872 /* We always ensure that STACK_DYNPTR is never set partially, 873 * hence just checking for slot_type[0] is enough. This is 874 * different for STACK_SPILL, where it may be only set for 875 * 1 byte, so code has to use is_spilled_reg. 876 */ 877 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 878 return 0; 879 880 /* Reposition spi to first slot */ 881 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 882 spi = spi + 1; 883 884 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 885 verbose(env, "cannot overwrite referenced dynptr\n"); 886 return -EINVAL; 887 } 888 889 mark_stack_slot_scratched(env, spi); 890 mark_stack_slot_scratched(env, spi - 1); 891 892 /* Writing partially to one dynptr stack slot destroys both. */ 893 for (i = 0; i < BPF_REG_SIZE; i++) { 894 state->stack[spi].slot_type[i] = STACK_INVALID; 895 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 896 } 897 898 dynptr_id = state->stack[spi].spilled_ptr.id; 899 /* Invalidate any slices associated with this dynptr */ 900 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 901 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 902 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 903 continue; 904 if (dreg->dynptr_id == dynptr_id) 905 mark_reg_invalid(env, dreg); 906 })); 907 908 /* Do not release reference state, we are destroying dynptr on stack, 909 * not using some helper to release it. Just reset register. 910 */ 911 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 912 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 913 914 /* Same reason as unmark_stack_slots_dynptr above */ 915 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 916 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 917 918 return 0; 919 } 920 921 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 922 { 923 int spi; 924 925 if (reg->type == CONST_PTR_TO_DYNPTR) 926 return false; 927 928 spi = dynptr_get_spi(env, reg); 929 930 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 931 * error because this just means the stack state hasn't been updated yet. 932 * We will do check_mem_access to check and update stack bounds later. 933 */ 934 if (spi < 0 && spi != -ERANGE) 935 return false; 936 937 /* We don't need to check if the stack slots are marked by previous 938 * dynptr initializations because we allow overwriting existing unreferenced 939 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 940 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 941 * touching are completely destructed before we reinitialize them for a new 942 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 943 * instead of delaying it until the end where the user will get "Unreleased 944 * reference" error. 945 */ 946 return true; 947 } 948 949 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 950 { 951 struct bpf_func_state *state = func(env, reg); 952 int i, spi; 953 954 /* This already represents first slot of initialized bpf_dynptr. 955 * 956 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 957 * check_func_arg_reg_off's logic, so we don't need to check its 958 * offset and alignment. 959 */ 960 if (reg->type == CONST_PTR_TO_DYNPTR) 961 return true; 962 963 spi = dynptr_get_spi(env, reg); 964 if (spi < 0) 965 return false; 966 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 967 return false; 968 969 for (i = 0; i < BPF_REG_SIZE; i++) { 970 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 971 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 972 return false; 973 } 974 975 return true; 976 } 977 978 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 979 enum bpf_arg_type arg_type) 980 { 981 struct bpf_func_state *state = func(env, reg); 982 enum bpf_dynptr_type dynptr_type; 983 int spi; 984 985 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 986 if (arg_type == ARG_PTR_TO_DYNPTR) 987 return true; 988 989 dynptr_type = arg_to_dynptr_type(arg_type); 990 if (reg->type == CONST_PTR_TO_DYNPTR) { 991 return reg->dynptr.type == dynptr_type; 992 } else { 993 spi = dynptr_get_spi(env, reg); 994 if (spi < 0) 995 return false; 996 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 997 } 998 } 999 1000 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1001 1002 static bool in_rcu_cs(struct bpf_verifier_env *env); 1003 1004 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta); 1005 1006 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1007 struct bpf_kfunc_call_arg_meta *meta, 1008 struct bpf_reg_state *reg, int insn_idx, 1009 struct btf *btf, u32 btf_id, int nr_slots) 1010 { 1011 struct bpf_func_state *state = func(env, reg); 1012 int spi, i, j, id; 1013 1014 spi = iter_get_spi(env, reg, nr_slots); 1015 if (spi < 0) 1016 return spi; 1017 1018 id = acquire_reference_state(env, insn_idx); 1019 if (id < 0) 1020 return id; 1021 1022 for (i = 0; i < nr_slots; i++) { 1023 struct bpf_stack_state *slot = &state->stack[spi - i]; 1024 struct bpf_reg_state *st = &slot->spilled_ptr; 1025 1026 __mark_reg_known_zero(st); 1027 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1028 if (is_kfunc_rcu_protected(meta)) { 1029 if (in_rcu_cs(env)) 1030 st->type |= MEM_RCU; 1031 else 1032 st->type |= PTR_UNTRUSTED; 1033 } 1034 st->live |= REG_LIVE_WRITTEN; 1035 st->ref_obj_id = i == 0 ? id : 0; 1036 st->iter.btf = btf; 1037 st->iter.btf_id = btf_id; 1038 st->iter.state = BPF_ITER_STATE_ACTIVE; 1039 st->iter.depth = 0; 1040 1041 for (j = 0; j < BPF_REG_SIZE; j++) 1042 slot->slot_type[j] = STACK_ITER; 1043 1044 mark_stack_slot_scratched(env, spi - i); 1045 } 1046 1047 return 0; 1048 } 1049 1050 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1051 struct bpf_reg_state *reg, int nr_slots) 1052 { 1053 struct bpf_func_state *state = func(env, reg); 1054 int spi, i, j; 1055 1056 spi = iter_get_spi(env, reg, nr_slots); 1057 if (spi < 0) 1058 return spi; 1059 1060 for (i = 0; i < nr_slots; i++) { 1061 struct bpf_stack_state *slot = &state->stack[spi - i]; 1062 struct bpf_reg_state *st = &slot->spilled_ptr; 1063 1064 if (i == 0) 1065 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1066 1067 __mark_reg_not_init(env, st); 1068 1069 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1070 st->live |= REG_LIVE_WRITTEN; 1071 1072 for (j = 0; j < BPF_REG_SIZE; j++) 1073 slot->slot_type[j] = STACK_INVALID; 1074 1075 mark_stack_slot_scratched(env, spi - i); 1076 } 1077 1078 return 0; 1079 } 1080 1081 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1082 struct bpf_reg_state *reg, int nr_slots) 1083 { 1084 struct bpf_func_state *state = func(env, reg); 1085 int spi, i, j; 1086 1087 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1088 * will do check_mem_access to check and update stack bounds later, so 1089 * return true for that case. 1090 */ 1091 spi = iter_get_spi(env, reg, nr_slots); 1092 if (spi == -ERANGE) 1093 return true; 1094 if (spi < 0) 1095 return false; 1096 1097 for (i = 0; i < nr_slots; i++) { 1098 struct bpf_stack_state *slot = &state->stack[spi - i]; 1099 1100 for (j = 0; j < BPF_REG_SIZE; j++) 1101 if (slot->slot_type[j] == STACK_ITER) 1102 return false; 1103 } 1104 1105 return true; 1106 } 1107 1108 static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1109 struct btf *btf, u32 btf_id, int nr_slots) 1110 { 1111 struct bpf_func_state *state = func(env, reg); 1112 int spi, i, j; 1113 1114 spi = iter_get_spi(env, reg, nr_slots); 1115 if (spi < 0) 1116 return -EINVAL; 1117 1118 for (i = 0; i < nr_slots; i++) { 1119 struct bpf_stack_state *slot = &state->stack[spi - i]; 1120 struct bpf_reg_state *st = &slot->spilled_ptr; 1121 1122 if (st->type & PTR_UNTRUSTED) 1123 return -EPROTO; 1124 /* only main (first) slot has ref_obj_id set */ 1125 if (i == 0 && !st->ref_obj_id) 1126 return -EINVAL; 1127 if (i != 0 && st->ref_obj_id) 1128 return -EINVAL; 1129 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1130 return -EINVAL; 1131 1132 for (j = 0; j < BPF_REG_SIZE; j++) 1133 if (slot->slot_type[j] != STACK_ITER) 1134 return -EINVAL; 1135 } 1136 1137 return 0; 1138 } 1139 1140 /* Check if given stack slot is "special": 1141 * - spilled register state (STACK_SPILL); 1142 * - dynptr state (STACK_DYNPTR); 1143 * - iter state (STACK_ITER). 1144 */ 1145 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1146 { 1147 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1148 1149 switch (type) { 1150 case STACK_SPILL: 1151 case STACK_DYNPTR: 1152 case STACK_ITER: 1153 return true; 1154 case STACK_INVALID: 1155 case STACK_MISC: 1156 case STACK_ZERO: 1157 return false; 1158 default: 1159 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1160 return true; 1161 } 1162 } 1163 1164 /* The reg state of a pointer or a bounded scalar was saved when 1165 * it was spilled to the stack. 1166 */ 1167 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1168 { 1169 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1170 } 1171 1172 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1173 { 1174 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1175 stack->spilled_ptr.type == SCALAR_VALUE; 1176 } 1177 1178 static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack) 1179 { 1180 return stack->slot_type[0] == STACK_SPILL && 1181 stack->spilled_ptr.type == SCALAR_VALUE; 1182 } 1183 1184 /* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which 1185 * case they are equivalent, or it's STACK_ZERO, in which case we preserve 1186 * more precise STACK_ZERO. 1187 * Note, in uprivileged mode leaving STACK_INVALID is wrong, so we take 1188 * env->allow_ptr_leaks into account and force STACK_MISC, if necessary. 1189 */ 1190 static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype) 1191 { 1192 if (*stype == STACK_ZERO) 1193 return; 1194 if (env->allow_ptr_leaks && *stype == STACK_INVALID) 1195 return; 1196 *stype = STACK_MISC; 1197 } 1198 1199 static void scrub_spilled_slot(u8 *stype) 1200 { 1201 if (*stype != STACK_INVALID) 1202 *stype = STACK_MISC; 1203 } 1204 1205 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1206 * small to hold src. This is different from krealloc since we don't want to preserve 1207 * the contents of dst. 1208 * 1209 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1210 * not be allocated. 1211 */ 1212 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1213 { 1214 size_t alloc_bytes; 1215 void *orig = dst; 1216 size_t bytes; 1217 1218 if (ZERO_OR_NULL_PTR(src)) 1219 goto out; 1220 1221 if (unlikely(check_mul_overflow(n, size, &bytes))) 1222 return NULL; 1223 1224 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1225 dst = krealloc(orig, alloc_bytes, flags); 1226 if (!dst) { 1227 kfree(orig); 1228 return NULL; 1229 } 1230 1231 memcpy(dst, src, bytes); 1232 out: 1233 return dst ? dst : ZERO_SIZE_PTR; 1234 } 1235 1236 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1237 * small to hold new_n items. new items are zeroed out if the array grows. 1238 * 1239 * Contrary to krealloc_array, does not free arr if new_n is zero. 1240 */ 1241 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1242 { 1243 size_t alloc_size; 1244 void *new_arr; 1245 1246 if (!new_n || old_n == new_n) 1247 goto out; 1248 1249 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1250 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1251 if (!new_arr) { 1252 kfree(arr); 1253 return NULL; 1254 } 1255 arr = new_arr; 1256 1257 if (new_n > old_n) 1258 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1259 1260 out: 1261 return arr ? arr : ZERO_SIZE_PTR; 1262 } 1263 1264 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1265 { 1266 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1267 sizeof(struct bpf_reference_state), GFP_KERNEL); 1268 if (!dst->refs) 1269 return -ENOMEM; 1270 1271 dst->acquired_refs = src->acquired_refs; 1272 return 0; 1273 } 1274 1275 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1276 { 1277 size_t n = src->allocated_stack / BPF_REG_SIZE; 1278 1279 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1280 GFP_KERNEL); 1281 if (!dst->stack) 1282 return -ENOMEM; 1283 1284 dst->allocated_stack = src->allocated_stack; 1285 return 0; 1286 } 1287 1288 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1289 { 1290 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1291 sizeof(struct bpf_reference_state)); 1292 if (!state->refs) 1293 return -ENOMEM; 1294 1295 state->acquired_refs = n; 1296 return 0; 1297 } 1298 1299 /* Possibly update state->allocated_stack to be at least size bytes. Also 1300 * possibly update the function's high-water mark in its bpf_subprog_info. 1301 */ 1302 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size) 1303 { 1304 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n; 1305 1306 /* The stack size is always a multiple of BPF_REG_SIZE. */ 1307 size = round_up(size, BPF_REG_SIZE); 1308 n = size / BPF_REG_SIZE; 1309 1310 if (old_n >= n) 1311 return 0; 1312 1313 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1314 if (!state->stack) 1315 return -ENOMEM; 1316 1317 state->allocated_stack = size; 1318 1319 /* update known max for given subprogram */ 1320 if (env->subprog_info[state->subprogno].stack_depth < size) 1321 env->subprog_info[state->subprogno].stack_depth = size; 1322 1323 return 0; 1324 } 1325 1326 /* Acquire a pointer id from the env and update the state->refs to include 1327 * this new pointer reference. 1328 * On success, returns a valid pointer id to associate with the register 1329 * On failure, returns a negative errno. 1330 */ 1331 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1332 { 1333 struct bpf_func_state *state = cur_func(env); 1334 int new_ofs = state->acquired_refs; 1335 int id, err; 1336 1337 err = resize_reference_state(state, state->acquired_refs + 1); 1338 if (err) 1339 return err; 1340 id = ++env->id_gen; 1341 state->refs[new_ofs].id = id; 1342 state->refs[new_ofs].insn_idx = insn_idx; 1343 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1344 1345 return id; 1346 } 1347 1348 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1349 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1350 { 1351 int i, last_idx; 1352 1353 last_idx = state->acquired_refs - 1; 1354 for (i = 0; i < state->acquired_refs; i++) { 1355 if (state->refs[i].id == ptr_id) { 1356 /* Cannot release caller references in callbacks */ 1357 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1358 return -EINVAL; 1359 if (last_idx && i != last_idx) 1360 memcpy(&state->refs[i], &state->refs[last_idx], 1361 sizeof(*state->refs)); 1362 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1363 state->acquired_refs--; 1364 return 0; 1365 } 1366 } 1367 return -EINVAL; 1368 } 1369 1370 static void free_func_state(struct bpf_func_state *state) 1371 { 1372 if (!state) 1373 return; 1374 kfree(state->refs); 1375 kfree(state->stack); 1376 kfree(state); 1377 } 1378 1379 static void clear_jmp_history(struct bpf_verifier_state *state) 1380 { 1381 kfree(state->jmp_history); 1382 state->jmp_history = NULL; 1383 state->jmp_history_cnt = 0; 1384 } 1385 1386 static void free_verifier_state(struct bpf_verifier_state *state, 1387 bool free_self) 1388 { 1389 int i; 1390 1391 for (i = 0; i <= state->curframe; i++) { 1392 free_func_state(state->frame[i]); 1393 state->frame[i] = NULL; 1394 } 1395 clear_jmp_history(state); 1396 if (free_self) 1397 kfree(state); 1398 } 1399 1400 /* copy verifier state from src to dst growing dst stack space 1401 * when necessary to accommodate larger src stack 1402 */ 1403 static int copy_func_state(struct bpf_func_state *dst, 1404 const struct bpf_func_state *src) 1405 { 1406 int err; 1407 1408 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1409 err = copy_reference_state(dst, src); 1410 if (err) 1411 return err; 1412 return copy_stack_state(dst, src); 1413 } 1414 1415 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1416 const struct bpf_verifier_state *src) 1417 { 1418 struct bpf_func_state *dst; 1419 int i, err; 1420 1421 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1422 src->jmp_history_cnt, sizeof(*dst_state->jmp_history), 1423 GFP_USER); 1424 if (!dst_state->jmp_history) 1425 return -ENOMEM; 1426 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1427 1428 /* if dst has more stack frames then src frame, free them, this is also 1429 * necessary in case of exceptional exits using bpf_throw. 1430 */ 1431 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1432 free_func_state(dst_state->frame[i]); 1433 dst_state->frame[i] = NULL; 1434 } 1435 dst_state->speculative = src->speculative; 1436 dst_state->active_rcu_lock = src->active_rcu_lock; 1437 dst_state->active_preempt_lock = src->active_preempt_lock; 1438 dst_state->in_sleepable = src->in_sleepable; 1439 dst_state->curframe = src->curframe; 1440 dst_state->active_lock.ptr = src->active_lock.ptr; 1441 dst_state->active_lock.id = src->active_lock.id; 1442 dst_state->branches = src->branches; 1443 dst_state->parent = src->parent; 1444 dst_state->first_insn_idx = src->first_insn_idx; 1445 dst_state->last_insn_idx = src->last_insn_idx; 1446 dst_state->dfs_depth = src->dfs_depth; 1447 dst_state->callback_unroll_depth = src->callback_unroll_depth; 1448 dst_state->used_as_loop_entry = src->used_as_loop_entry; 1449 dst_state->may_goto_depth = src->may_goto_depth; 1450 for (i = 0; i <= src->curframe; i++) { 1451 dst = dst_state->frame[i]; 1452 if (!dst) { 1453 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1454 if (!dst) 1455 return -ENOMEM; 1456 dst_state->frame[i] = dst; 1457 } 1458 err = copy_func_state(dst, src->frame[i]); 1459 if (err) 1460 return err; 1461 } 1462 return 0; 1463 } 1464 1465 static u32 state_htab_size(struct bpf_verifier_env *env) 1466 { 1467 return env->prog->len; 1468 } 1469 1470 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx) 1471 { 1472 struct bpf_verifier_state *cur = env->cur_state; 1473 struct bpf_func_state *state = cur->frame[cur->curframe]; 1474 1475 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 1476 } 1477 1478 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) 1479 { 1480 int fr; 1481 1482 if (a->curframe != b->curframe) 1483 return false; 1484 1485 for (fr = a->curframe; fr >= 0; fr--) 1486 if (a->frame[fr]->callsite != b->frame[fr]->callsite) 1487 return false; 1488 1489 return true; 1490 } 1491 1492 /* Open coded iterators allow back-edges in the state graph in order to 1493 * check unbounded loops that iterators. 1494 * 1495 * In is_state_visited() it is necessary to know if explored states are 1496 * part of some loops in order to decide whether non-exact states 1497 * comparison could be used: 1498 * - non-exact states comparison establishes sub-state relation and uses 1499 * read and precision marks to do so, these marks are propagated from 1500 * children states and thus are not guaranteed to be final in a loop; 1501 * - exact states comparison just checks if current and explored states 1502 * are identical (and thus form a back-edge). 1503 * 1504 * Paper "A New Algorithm for Identifying Loops in Decompilation" 1505 * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient 1506 * algorithm for loop structure detection and gives an overview of 1507 * relevant terminology. It also has helpful illustrations. 1508 * 1509 * [1] https://api.semanticscholar.org/CorpusID:15784067 1510 * 1511 * We use a similar algorithm but because loop nested structure is 1512 * irrelevant for verifier ours is significantly simpler and resembles 1513 * strongly connected components algorithm from Sedgewick's textbook. 1514 * 1515 * Define topmost loop entry as a first node of the loop traversed in a 1516 * depth first search starting from initial state. The goal of the loop 1517 * tracking algorithm is to associate topmost loop entries with states 1518 * derived from these entries. 1519 * 1520 * For each step in the DFS states traversal algorithm needs to identify 1521 * the following situations: 1522 * 1523 * initial initial initial 1524 * | | | 1525 * V V V 1526 * ... ... .---------> hdr 1527 * | | | | 1528 * V V | V 1529 * cur .-> succ | .------... 1530 * | | | | | | 1531 * V | V | V V 1532 * succ '-- cur | ... ... 1533 * | | | 1534 * | V V 1535 * | succ <- cur 1536 * | | 1537 * | V 1538 * | ... 1539 * | | 1540 * '----' 1541 * 1542 * (A) successor state of cur (B) successor state of cur or it's entry 1543 * not yet traversed are in current DFS path, thus cur and succ 1544 * are members of the same outermost loop 1545 * 1546 * initial initial 1547 * | | 1548 * V V 1549 * ... ... 1550 * | | 1551 * V V 1552 * .------... .------... 1553 * | | | | 1554 * V V V V 1555 * .-> hdr ... ... ... 1556 * | | | | | 1557 * | V V V V 1558 * | succ <- cur succ <- cur 1559 * | | | 1560 * | V V 1561 * | ... ... 1562 * | | | 1563 * '----' exit 1564 * 1565 * (C) successor state of cur is a part of some loop but this loop 1566 * does not include cur or successor state is not in a loop at all. 1567 * 1568 * Algorithm could be described as the following python code: 1569 * 1570 * traversed = set() # Set of traversed nodes 1571 * entries = {} # Mapping from node to loop entry 1572 * depths = {} # Depth level assigned to graph node 1573 * path = set() # Current DFS path 1574 * 1575 * # Find outermost loop entry known for n 1576 * def get_loop_entry(n): 1577 * h = entries.get(n, None) 1578 * while h in entries and entries[h] != h: 1579 * h = entries[h] 1580 * return h 1581 * 1582 * # Update n's loop entry if h's outermost entry comes 1583 * # before n's outermost entry in current DFS path. 1584 * def update_loop_entry(n, h): 1585 * n1 = get_loop_entry(n) or n 1586 * h1 = get_loop_entry(h) or h 1587 * if h1 in path and depths[h1] <= depths[n1]: 1588 * entries[n] = h1 1589 * 1590 * def dfs(n, depth): 1591 * traversed.add(n) 1592 * path.add(n) 1593 * depths[n] = depth 1594 * for succ in G.successors(n): 1595 * if succ not in traversed: 1596 * # Case A: explore succ and update cur's loop entry 1597 * # only if succ's entry is in current DFS path. 1598 * dfs(succ, depth + 1) 1599 * h = get_loop_entry(succ) 1600 * update_loop_entry(n, h) 1601 * else: 1602 * # Case B or C depending on `h1 in path` check in update_loop_entry(). 1603 * update_loop_entry(n, succ) 1604 * path.remove(n) 1605 * 1606 * To adapt this algorithm for use with verifier: 1607 * - use st->branch == 0 as a signal that DFS of succ had been finished 1608 * and cur's loop entry has to be updated (case A), handle this in 1609 * update_branch_counts(); 1610 * - use st->branch > 0 as a signal that st is in the current DFS path; 1611 * - handle cases B and C in is_state_visited(); 1612 * - update topmost loop entry for intermediate states in get_loop_entry(). 1613 */ 1614 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st) 1615 { 1616 struct bpf_verifier_state *topmost = st->loop_entry, *old; 1617 1618 while (topmost && topmost->loop_entry && topmost != topmost->loop_entry) 1619 topmost = topmost->loop_entry; 1620 /* Update loop entries for intermediate states to avoid this 1621 * traversal in future get_loop_entry() calls. 1622 */ 1623 while (st && st->loop_entry != topmost) { 1624 old = st->loop_entry; 1625 st->loop_entry = topmost; 1626 st = old; 1627 } 1628 return topmost; 1629 } 1630 1631 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr) 1632 { 1633 struct bpf_verifier_state *cur1, *hdr1; 1634 1635 cur1 = get_loop_entry(cur) ?: cur; 1636 hdr1 = get_loop_entry(hdr) ?: hdr; 1637 /* The head1->branches check decides between cases B and C in 1638 * comment for get_loop_entry(). If hdr1->branches == 0 then 1639 * head's topmost loop entry is not in current DFS path, 1640 * hence 'cur' and 'hdr' are not in the same loop and there is 1641 * no need to update cur->loop_entry. 1642 */ 1643 if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) { 1644 cur->loop_entry = hdr; 1645 hdr->used_as_loop_entry = true; 1646 } 1647 } 1648 1649 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1650 { 1651 while (st) { 1652 u32 br = --st->branches; 1653 1654 /* br == 0 signals that DFS exploration for 'st' is finished, 1655 * thus it is necessary to update parent's loop entry if it 1656 * turned out that st is a part of some loop. 1657 * This is a part of 'case A' in get_loop_entry() comment. 1658 */ 1659 if (br == 0 && st->parent && st->loop_entry) 1660 update_loop_entry(st->parent, st->loop_entry); 1661 1662 /* WARN_ON(br > 1) technically makes sense here, 1663 * but see comment in push_stack(), hence: 1664 */ 1665 WARN_ONCE((int)br < 0, 1666 "BUG update_branch_counts:branches_to_explore=%d\n", 1667 br); 1668 if (br) 1669 break; 1670 st = st->parent; 1671 } 1672 } 1673 1674 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1675 int *insn_idx, bool pop_log) 1676 { 1677 struct bpf_verifier_state *cur = env->cur_state; 1678 struct bpf_verifier_stack_elem *elem, *head = env->head; 1679 int err; 1680 1681 if (env->head == NULL) 1682 return -ENOENT; 1683 1684 if (cur) { 1685 err = copy_verifier_state(cur, &head->st); 1686 if (err) 1687 return err; 1688 } 1689 if (pop_log) 1690 bpf_vlog_reset(&env->log, head->log_pos); 1691 if (insn_idx) 1692 *insn_idx = head->insn_idx; 1693 if (prev_insn_idx) 1694 *prev_insn_idx = head->prev_insn_idx; 1695 elem = head->next; 1696 free_verifier_state(&head->st, false); 1697 kfree(head); 1698 env->head = elem; 1699 env->stack_size--; 1700 return 0; 1701 } 1702 1703 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1704 int insn_idx, int prev_insn_idx, 1705 bool speculative) 1706 { 1707 struct bpf_verifier_state *cur = env->cur_state; 1708 struct bpf_verifier_stack_elem *elem; 1709 int err; 1710 1711 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1712 if (!elem) 1713 goto err; 1714 1715 elem->insn_idx = insn_idx; 1716 elem->prev_insn_idx = prev_insn_idx; 1717 elem->next = env->head; 1718 elem->log_pos = env->log.end_pos; 1719 env->head = elem; 1720 env->stack_size++; 1721 err = copy_verifier_state(&elem->st, cur); 1722 if (err) 1723 goto err; 1724 elem->st.speculative |= speculative; 1725 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1726 verbose(env, "The sequence of %d jumps is too complex.\n", 1727 env->stack_size); 1728 goto err; 1729 } 1730 if (elem->st.parent) { 1731 ++elem->st.parent->branches; 1732 /* WARN_ON(branches > 2) technically makes sense here, 1733 * but 1734 * 1. speculative states will bump 'branches' for non-branch 1735 * instructions 1736 * 2. is_state_visited() heuristics may decide not to create 1737 * a new state for a sequence of branches and all such current 1738 * and cloned states will be pointing to a single parent state 1739 * which might have large 'branches' count. 1740 */ 1741 } 1742 return &elem->st; 1743 err: 1744 free_verifier_state(env->cur_state, true); 1745 env->cur_state = NULL; 1746 /* pop all elements and return */ 1747 while (!pop_stack(env, NULL, NULL, false)); 1748 return NULL; 1749 } 1750 1751 #define CALLER_SAVED_REGS 6 1752 static const int caller_saved[CALLER_SAVED_REGS] = { 1753 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1754 }; 1755 1756 /* This helper doesn't clear reg->id */ 1757 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1758 { 1759 reg->var_off = tnum_const(imm); 1760 reg->smin_value = (s64)imm; 1761 reg->smax_value = (s64)imm; 1762 reg->umin_value = imm; 1763 reg->umax_value = imm; 1764 1765 reg->s32_min_value = (s32)imm; 1766 reg->s32_max_value = (s32)imm; 1767 reg->u32_min_value = (u32)imm; 1768 reg->u32_max_value = (u32)imm; 1769 } 1770 1771 /* Mark the unknown part of a register (variable offset or scalar value) as 1772 * known to have the value @imm. 1773 */ 1774 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1775 { 1776 /* Clear off and union(map_ptr, range) */ 1777 memset(((u8 *)reg) + sizeof(reg->type), 0, 1778 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1779 reg->id = 0; 1780 reg->ref_obj_id = 0; 1781 ___mark_reg_known(reg, imm); 1782 } 1783 1784 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1785 { 1786 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1787 reg->s32_min_value = (s32)imm; 1788 reg->s32_max_value = (s32)imm; 1789 reg->u32_min_value = (u32)imm; 1790 reg->u32_max_value = (u32)imm; 1791 } 1792 1793 /* Mark the 'variable offset' part of a register as zero. This should be 1794 * used only on registers holding a pointer type. 1795 */ 1796 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1797 { 1798 __mark_reg_known(reg, 0); 1799 } 1800 1801 static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1802 { 1803 __mark_reg_known(reg, 0); 1804 reg->type = SCALAR_VALUE; 1805 /* all scalars are assumed imprecise initially (unless unprivileged, 1806 * in which case everything is forced to be precise) 1807 */ 1808 reg->precise = !env->bpf_capable; 1809 } 1810 1811 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1812 struct bpf_reg_state *regs, u32 regno) 1813 { 1814 if (WARN_ON(regno >= MAX_BPF_REG)) { 1815 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1816 /* Something bad happened, let's kill all regs */ 1817 for (regno = 0; regno < MAX_BPF_REG; regno++) 1818 __mark_reg_not_init(env, regs + regno); 1819 return; 1820 } 1821 __mark_reg_known_zero(regs + regno); 1822 } 1823 1824 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 1825 bool first_slot, int dynptr_id) 1826 { 1827 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 1828 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 1829 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 1830 */ 1831 __mark_reg_known_zero(reg); 1832 reg->type = CONST_PTR_TO_DYNPTR; 1833 /* Give each dynptr a unique id to uniquely associate slices to it. */ 1834 reg->id = dynptr_id; 1835 reg->dynptr.type = type; 1836 reg->dynptr.first_slot = first_slot; 1837 } 1838 1839 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1840 { 1841 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1842 const struct bpf_map *map = reg->map_ptr; 1843 1844 if (map->inner_map_meta) { 1845 reg->type = CONST_PTR_TO_MAP; 1846 reg->map_ptr = map->inner_map_meta; 1847 /* transfer reg's id which is unique for every map_lookup_elem 1848 * as UID of the inner map. 1849 */ 1850 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1851 reg->map_uid = reg->id; 1852 if (btf_record_has_field(map->inner_map_meta->record, BPF_WORKQUEUE)) 1853 reg->map_uid = reg->id; 1854 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1855 reg->type = PTR_TO_XDP_SOCK; 1856 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1857 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1858 reg->type = PTR_TO_SOCKET; 1859 } else { 1860 reg->type = PTR_TO_MAP_VALUE; 1861 } 1862 return; 1863 } 1864 1865 reg->type &= ~PTR_MAYBE_NULL; 1866 } 1867 1868 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 1869 struct btf_field_graph_root *ds_head) 1870 { 1871 __mark_reg_known_zero(®s[regno]); 1872 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 1873 regs[regno].btf = ds_head->btf; 1874 regs[regno].btf_id = ds_head->value_btf_id; 1875 regs[regno].off = ds_head->node_offset; 1876 } 1877 1878 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1879 { 1880 return type_is_pkt_pointer(reg->type); 1881 } 1882 1883 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1884 { 1885 return reg_is_pkt_pointer(reg) || 1886 reg->type == PTR_TO_PACKET_END; 1887 } 1888 1889 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 1890 { 1891 return base_type(reg->type) == PTR_TO_MEM && 1892 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 1893 } 1894 1895 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1896 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1897 enum bpf_reg_type which) 1898 { 1899 /* The register can already have a range from prior markings. 1900 * This is fine as long as it hasn't been advanced from its 1901 * origin. 1902 */ 1903 return reg->type == which && 1904 reg->id == 0 && 1905 reg->off == 0 && 1906 tnum_equals_const(reg->var_off, 0); 1907 } 1908 1909 /* Reset the min/max bounds of a register */ 1910 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1911 { 1912 reg->smin_value = S64_MIN; 1913 reg->smax_value = S64_MAX; 1914 reg->umin_value = 0; 1915 reg->umax_value = U64_MAX; 1916 1917 reg->s32_min_value = S32_MIN; 1918 reg->s32_max_value = S32_MAX; 1919 reg->u32_min_value = 0; 1920 reg->u32_max_value = U32_MAX; 1921 } 1922 1923 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1924 { 1925 reg->smin_value = S64_MIN; 1926 reg->smax_value = S64_MAX; 1927 reg->umin_value = 0; 1928 reg->umax_value = U64_MAX; 1929 } 1930 1931 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1932 { 1933 reg->s32_min_value = S32_MIN; 1934 reg->s32_max_value = S32_MAX; 1935 reg->u32_min_value = 0; 1936 reg->u32_max_value = U32_MAX; 1937 } 1938 1939 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1940 { 1941 struct tnum var32_off = tnum_subreg(reg->var_off); 1942 1943 /* min signed is max(sign bit) | min(other bits) */ 1944 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1945 var32_off.value | (var32_off.mask & S32_MIN)); 1946 /* max signed is min(sign bit) | max(other bits) */ 1947 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1948 var32_off.value | (var32_off.mask & S32_MAX)); 1949 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1950 reg->u32_max_value = min(reg->u32_max_value, 1951 (u32)(var32_off.value | var32_off.mask)); 1952 } 1953 1954 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1955 { 1956 /* min signed is max(sign bit) | min(other bits) */ 1957 reg->smin_value = max_t(s64, reg->smin_value, 1958 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1959 /* max signed is min(sign bit) | max(other bits) */ 1960 reg->smax_value = min_t(s64, reg->smax_value, 1961 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1962 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1963 reg->umax_value = min(reg->umax_value, 1964 reg->var_off.value | reg->var_off.mask); 1965 } 1966 1967 static void __update_reg_bounds(struct bpf_reg_state *reg) 1968 { 1969 __update_reg32_bounds(reg); 1970 __update_reg64_bounds(reg); 1971 } 1972 1973 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1974 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1975 { 1976 /* If upper 32 bits of u64/s64 range don't change, we can use lower 32 1977 * bits to improve our u32/s32 boundaries. 1978 * 1979 * E.g., the case where we have upper 32 bits as zero ([10, 20] in 1980 * u64) is pretty trivial, it's obvious that in u32 we'll also have 1981 * [10, 20] range. But this property holds for any 64-bit range as 1982 * long as upper 32 bits in that entire range of values stay the same. 1983 * 1984 * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311] 1985 * in decimal) has the same upper 32 bits throughout all the values in 1986 * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15]) 1987 * range. 1988 * 1989 * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32, 1990 * following the rules outlined below about u64/s64 correspondence 1991 * (which equally applies to u32 vs s32 correspondence). In general it 1992 * depends on actual hexadecimal values of 32-bit range. They can form 1993 * only valid u32, or only valid s32 ranges in some cases. 1994 * 1995 * So we use all these insights to derive bounds for subregisters here. 1996 */ 1997 if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) { 1998 /* u64 to u32 casting preserves validity of low 32 bits as 1999 * a range, if upper 32 bits are the same 2000 */ 2001 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value); 2002 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value); 2003 2004 if ((s32)reg->umin_value <= (s32)reg->umax_value) { 2005 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2006 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2007 } 2008 } 2009 if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) { 2010 /* low 32 bits should form a proper u32 range */ 2011 if ((u32)reg->smin_value <= (u32)reg->smax_value) { 2012 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value); 2013 reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value); 2014 } 2015 /* low 32 bits should form a proper s32 range */ 2016 if ((s32)reg->smin_value <= (s32)reg->smax_value) { 2017 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2018 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2019 } 2020 } 2021 /* Special case where upper bits form a small sequence of two 2022 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to 2023 * 0x00000000 is also valid), while lower bits form a proper s32 range 2024 * going from negative numbers to positive numbers. E.g., let's say we 2025 * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]). 2026 * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff, 2027 * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits, 2028 * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]). 2029 * Note that it doesn't have to be 0xffffffff going to 0x00000000 in 2030 * upper 32 bits. As a random example, s64 range 2031 * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range 2032 * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister. 2033 */ 2034 if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) && 2035 (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) { 2036 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); 2037 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); 2038 } 2039 if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) && 2040 (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) { 2041 reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); 2042 reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); 2043 } 2044 /* if u32 range forms a valid s32 range (due to matching sign bit), 2045 * try to learn from that 2046 */ 2047 if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) { 2048 reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value); 2049 reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value); 2050 } 2051 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2052 * are the same, so combine. This works even in the negative case, e.g. 2053 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2054 */ 2055 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2056 reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value); 2057 reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value); 2058 } 2059 } 2060 2061 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2062 { 2063 /* If u64 range forms a valid s64 range (due to matching sign bit), 2064 * try to learn from that. Let's do a bit of ASCII art to see when 2065 * this is happening. Let's take u64 range first: 2066 * 2067 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2068 * |-------------------------------|--------------------------------| 2069 * 2070 * Valid u64 range is formed when umin and umax are anywhere in the 2071 * range [0, U64_MAX], and umin <= umax. u64 case is simple and 2072 * straightforward. Let's see how s64 range maps onto the same range 2073 * of values, annotated below the line for comparison: 2074 * 2075 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2076 * |-------------------------------|--------------------------------| 2077 * 0 S64_MAX S64_MIN -1 2078 * 2079 * So s64 values basically start in the middle and they are logically 2080 * contiguous to the right of it, wrapping around from -1 to 0, and 2081 * then finishing as S64_MAX (0x7fffffffffffffff) right before 2082 * S64_MIN. We can try drawing the continuity of u64 vs s64 values 2083 * more visually as mapped to sign-agnostic range of hex values. 2084 * 2085 * u64 start u64 end 2086 * _______________________________________________________________ 2087 * / \ 2088 * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX 2089 * |-------------------------------|--------------------------------| 2090 * 0 S64_MAX S64_MIN -1 2091 * / \ 2092 * >------------------------------ -------------------------------> 2093 * s64 continues... s64 end s64 start s64 "midpoint" 2094 * 2095 * What this means is that, in general, we can't always derive 2096 * something new about u64 from any random s64 range, and vice versa. 2097 * 2098 * But we can do that in two particular cases. One is when entire 2099 * u64/s64 range is *entirely* contained within left half of the above 2100 * diagram or when it is *entirely* contained in the right half. I.e.: 2101 * 2102 * |-------------------------------|--------------------------------| 2103 * ^ ^ ^ ^ 2104 * A B C D 2105 * 2106 * [A, B] and [C, D] are contained entirely in their respective halves 2107 * and form valid contiguous ranges as both u64 and s64 values. [A, B] 2108 * will be non-negative both as u64 and s64 (and in fact it will be 2109 * identical ranges no matter the signedness). [C, D] treated as s64 2110 * will be a range of negative values, while in u64 it will be 2111 * non-negative range of values larger than 0x8000000000000000. 2112 * 2113 * Now, any other range here can't be represented in both u64 and s64 2114 * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid 2115 * contiguous u64 ranges, but they are discontinuous in s64. [B, C] 2116 * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX], 2117 * for example. Similarly, valid s64 range [D, A] (going from negative 2118 * to positive values), would be two separate [D, U64_MAX] and [0, A] 2119 * ranges as u64. Currently reg_state can't represent two segments per 2120 * numeric domain, so in such situations we can only derive maximal 2121 * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64). 2122 * 2123 * So we use these facts to derive umin/umax from smin/smax and vice 2124 * versa only if they stay within the same "half". This is equivalent 2125 * to checking sign bit: lower half will have sign bit as zero, upper 2126 * half have sign bit 1. Below in code we simplify this by just 2127 * casting umin/umax as smin/smax and checking if they form valid 2128 * range, and vice versa. Those are equivalent checks. 2129 */ 2130 if ((s64)reg->umin_value <= (s64)reg->umax_value) { 2131 reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value); 2132 reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value); 2133 } 2134 /* If we cannot cross the sign boundary, then signed and unsigned bounds 2135 * are the same, so combine. This works even in the negative case, e.g. 2136 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2137 */ 2138 if ((u64)reg->smin_value <= (u64)reg->smax_value) { 2139 reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value); 2140 reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value); 2141 } 2142 } 2143 2144 static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg) 2145 { 2146 /* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit 2147 * values on both sides of 64-bit range in hope to have tighter range. 2148 * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from 2149 * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff]. 2150 * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound 2151 * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of 2152 * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a 2153 * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff]. 2154 * We just need to make sure that derived bounds we are intersecting 2155 * with are well-formed ranges in respective s64 or u64 domain, just 2156 * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments. 2157 */ 2158 __u64 new_umin, new_umax; 2159 __s64 new_smin, new_smax; 2160 2161 /* u32 -> u64 tightening, it's always well-formed */ 2162 new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value; 2163 new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value; 2164 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2165 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2166 /* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */ 2167 new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value; 2168 new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value; 2169 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2170 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2171 2172 /* if s32 can be treated as valid u32 range, we can use it as well */ 2173 if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { 2174 /* s32 -> u64 tightening */ 2175 new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; 2176 new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; 2177 reg->umin_value = max_t(u64, reg->umin_value, new_umin); 2178 reg->umax_value = min_t(u64, reg->umax_value, new_umax); 2179 /* s32 -> s64 tightening */ 2180 new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value; 2181 new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value; 2182 reg->smin_value = max_t(s64, reg->smin_value, new_smin); 2183 reg->smax_value = min_t(s64, reg->smax_value, new_smax); 2184 } 2185 } 2186 2187 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2188 { 2189 __reg32_deduce_bounds(reg); 2190 __reg64_deduce_bounds(reg); 2191 __reg_deduce_mixed_bounds(reg); 2192 } 2193 2194 /* Attempts to improve var_off based on unsigned min/max information */ 2195 static void __reg_bound_offset(struct bpf_reg_state *reg) 2196 { 2197 struct tnum var64_off = tnum_intersect(reg->var_off, 2198 tnum_range(reg->umin_value, 2199 reg->umax_value)); 2200 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2201 tnum_range(reg->u32_min_value, 2202 reg->u32_max_value)); 2203 2204 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2205 } 2206 2207 static void reg_bounds_sync(struct bpf_reg_state *reg) 2208 { 2209 /* We might have learned new bounds from the var_off. */ 2210 __update_reg_bounds(reg); 2211 /* We might have learned something about the sign bit. */ 2212 __reg_deduce_bounds(reg); 2213 __reg_deduce_bounds(reg); 2214 /* We might have learned some bits from the bounds. */ 2215 __reg_bound_offset(reg); 2216 /* Intersecting with the old var_off might have improved our bounds 2217 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2218 * then new var_off is (0; 0x7f...fc) which improves our umax. 2219 */ 2220 __update_reg_bounds(reg); 2221 } 2222 2223 static int reg_bounds_sanity_check(struct bpf_verifier_env *env, 2224 struct bpf_reg_state *reg, const char *ctx) 2225 { 2226 const char *msg; 2227 2228 if (reg->umin_value > reg->umax_value || 2229 reg->smin_value > reg->smax_value || 2230 reg->u32_min_value > reg->u32_max_value || 2231 reg->s32_min_value > reg->s32_max_value) { 2232 msg = "range bounds violation"; 2233 goto out; 2234 } 2235 2236 if (tnum_is_const(reg->var_off)) { 2237 u64 uval = reg->var_off.value; 2238 s64 sval = (s64)uval; 2239 2240 if (reg->umin_value != uval || reg->umax_value != uval || 2241 reg->smin_value != sval || reg->smax_value != sval) { 2242 msg = "const tnum out of sync with range bounds"; 2243 goto out; 2244 } 2245 } 2246 2247 if (tnum_subreg_is_const(reg->var_off)) { 2248 u32 uval32 = tnum_subreg(reg->var_off).value; 2249 s32 sval32 = (s32)uval32; 2250 2251 if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 || 2252 reg->s32_min_value != sval32 || reg->s32_max_value != sval32) { 2253 msg = "const subreg tnum out of sync with range bounds"; 2254 goto out; 2255 } 2256 } 2257 2258 return 0; 2259 out: 2260 verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] " 2261 "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n", 2262 ctx, msg, reg->umin_value, reg->umax_value, 2263 reg->smin_value, reg->smax_value, 2264 reg->u32_min_value, reg->u32_max_value, 2265 reg->s32_min_value, reg->s32_max_value, 2266 reg->var_off.value, reg->var_off.mask); 2267 if (env->test_reg_invariants) 2268 return -EFAULT; 2269 __mark_reg_unbounded(reg); 2270 return 0; 2271 } 2272 2273 static bool __reg32_bound_s64(s32 a) 2274 { 2275 return a >= 0 && a <= S32_MAX; 2276 } 2277 2278 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2279 { 2280 reg->umin_value = reg->u32_min_value; 2281 reg->umax_value = reg->u32_max_value; 2282 2283 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2284 * be positive otherwise set to worse case bounds and refine later 2285 * from tnum. 2286 */ 2287 if (__reg32_bound_s64(reg->s32_min_value) && 2288 __reg32_bound_s64(reg->s32_max_value)) { 2289 reg->smin_value = reg->s32_min_value; 2290 reg->smax_value = reg->s32_max_value; 2291 } else { 2292 reg->smin_value = 0; 2293 reg->smax_value = U32_MAX; 2294 } 2295 } 2296 2297 /* Mark a register as having a completely unknown (scalar) value. */ 2298 static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg) 2299 { 2300 /* 2301 * Clear type, off, and union(map_ptr, range) and 2302 * padding between 'type' and union 2303 */ 2304 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2305 reg->type = SCALAR_VALUE; 2306 reg->id = 0; 2307 reg->ref_obj_id = 0; 2308 reg->var_off = tnum_unknown; 2309 reg->frameno = 0; 2310 reg->precise = false; 2311 __mark_reg_unbounded(reg); 2312 } 2313 2314 /* Mark a register as having a completely unknown (scalar) value, 2315 * initialize .precise as true when not bpf capable. 2316 */ 2317 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2318 struct bpf_reg_state *reg) 2319 { 2320 __mark_reg_unknown_imprecise(reg); 2321 reg->precise = !env->bpf_capable; 2322 } 2323 2324 static void mark_reg_unknown(struct bpf_verifier_env *env, 2325 struct bpf_reg_state *regs, u32 regno) 2326 { 2327 if (WARN_ON(regno >= MAX_BPF_REG)) { 2328 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2329 /* Something bad happened, let's kill all regs except FP */ 2330 for (regno = 0; regno < BPF_REG_FP; regno++) 2331 __mark_reg_not_init(env, regs + regno); 2332 return; 2333 } 2334 __mark_reg_unknown(env, regs + regno); 2335 } 2336 2337 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2338 struct bpf_reg_state *reg) 2339 { 2340 __mark_reg_unknown(env, reg); 2341 reg->type = NOT_INIT; 2342 } 2343 2344 static void mark_reg_not_init(struct bpf_verifier_env *env, 2345 struct bpf_reg_state *regs, u32 regno) 2346 { 2347 if (WARN_ON(regno >= MAX_BPF_REG)) { 2348 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2349 /* Something bad happened, let's kill all regs except FP */ 2350 for (regno = 0; regno < BPF_REG_FP; regno++) 2351 __mark_reg_not_init(env, regs + regno); 2352 return; 2353 } 2354 __mark_reg_not_init(env, regs + regno); 2355 } 2356 2357 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2358 struct bpf_reg_state *regs, u32 regno, 2359 enum bpf_reg_type reg_type, 2360 struct btf *btf, u32 btf_id, 2361 enum bpf_type_flag flag) 2362 { 2363 if (reg_type == SCALAR_VALUE) { 2364 mark_reg_unknown(env, regs, regno); 2365 return; 2366 } 2367 mark_reg_known_zero(env, regs, regno); 2368 regs[regno].type = PTR_TO_BTF_ID | flag; 2369 regs[regno].btf = btf; 2370 regs[regno].btf_id = btf_id; 2371 if (type_may_be_null(flag)) 2372 regs[regno].id = ++env->id_gen; 2373 } 2374 2375 #define DEF_NOT_SUBREG (0) 2376 static void init_reg_state(struct bpf_verifier_env *env, 2377 struct bpf_func_state *state) 2378 { 2379 struct bpf_reg_state *regs = state->regs; 2380 int i; 2381 2382 for (i = 0; i < MAX_BPF_REG; i++) { 2383 mark_reg_not_init(env, regs, i); 2384 regs[i].live = REG_LIVE_NONE; 2385 regs[i].parent = NULL; 2386 regs[i].subreg_def = DEF_NOT_SUBREG; 2387 } 2388 2389 /* frame pointer */ 2390 regs[BPF_REG_FP].type = PTR_TO_STACK; 2391 mark_reg_known_zero(env, regs, BPF_REG_FP); 2392 regs[BPF_REG_FP].frameno = state->frameno; 2393 } 2394 2395 static struct bpf_retval_range retval_range(s32 minval, s32 maxval) 2396 { 2397 return (struct bpf_retval_range){ minval, maxval }; 2398 } 2399 2400 #define BPF_MAIN_FUNC (-1) 2401 static void init_func_state(struct bpf_verifier_env *env, 2402 struct bpf_func_state *state, 2403 int callsite, int frameno, int subprogno) 2404 { 2405 state->callsite = callsite; 2406 state->frameno = frameno; 2407 state->subprogno = subprogno; 2408 state->callback_ret_range = retval_range(0, 0); 2409 init_reg_state(env, state); 2410 mark_verifier_state_scratched(env); 2411 } 2412 2413 /* Similar to push_stack(), but for async callbacks */ 2414 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2415 int insn_idx, int prev_insn_idx, 2416 int subprog, bool is_sleepable) 2417 { 2418 struct bpf_verifier_stack_elem *elem; 2419 struct bpf_func_state *frame; 2420 2421 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2422 if (!elem) 2423 goto err; 2424 2425 elem->insn_idx = insn_idx; 2426 elem->prev_insn_idx = prev_insn_idx; 2427 elem->next = env->head; 2428 elem->log_pos = env->log.end_pos; 2429 env->head = elem; 2430 env->stack_size++; 2431 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2432 verbose(env, 2433 "The sequence of %d jumps is too complex for async cb.\n", 2434 env->stack_size); 2435 goto err; 2436 } 2437 /* Unlike push_stack() do not copy_verifier_state(). 2438 * The caller state doesn't matter. 2439 * This is async callback. It starts in a fresh stack. 2440 * Initialize it similar to do_check_common(). 2441 */ 2442 elem->st.branches = 1; 2443 elem->st.in_sleepable = is_sleepable; 2444 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2445 if (!frame) 2446 goto err; 2447 init_func_state(env, frame, 2448 BPF_MAIN_FUNC /* callsite */, 2449 0 /* frameno within this callchain */, 2450 subprog /* subprog number within this prog */); 2451 elem->st.frame[0] = frame; 2452 return &elem->st; 2453 err: 2454 free_verifier_state(env->cur_state, true); 2455 env->cur_state = NULL; 2456 /* pop all elements and return */ 2457 while (!pop_stack(env, NULL, NULL, false)); 2458 return NULL; 2459 } 2460 2461 2462 enum reg_arg_type { 2463 SRC_OP, /* register is used as source operand */ 2464 DST_OP, /* register is used as destination operand */ 2465 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2466 }; 2467 2468 static int cmp_subprogs(const void *a, const void *b) 2469 { 2470 return ((struct bpf_subprog_info *)a)->start - 2471 ((struct bpf_subprog_info *)b)->start; 2472 } 2473 2474 static int find_subprog(struct bpf_verifier_env *env, int off) 2475 { 2476 struct bpf_subprog_info *p; 2477 2478 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2479 sizeof(env->subprog_info[0]), cmp_subprogs); 2480 if (!p) 2481 return -ENOENT; 2482 return p - env->subprog_info; 2483 2484 } 2485 2486 static int add_subprog(struct bpf_verifier_env *env, int off) 2487 { 2488 int insn_cnt = env->prog->len; 2489 int ret; 2490 2491 if (off >= insn_cnt || off < 0) { 2492 verbose(env, "call to invalid destination\n"); 2493 return -EINVAL; 2494 } 2495 ret = find_subprog(env, off); 2496 if (ret >= 0) 2497 return ret; 2498 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2499 verbose(env, "too many subprograms\n"); 2500 return -E2BIG; 2501 } 2502 /* determine subprog starts. The end is one before the next starts */ 2503 env->subprog_info[env->subprog_cnt++].start = off; 2504 sort(env->subprog_info, env->subprog_cnt, 2505 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2506 return env->subprog_cnt - 1; 2507 } 2508 2509 static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env) 2510 { 2511 struct bpf_prog_aux *aux = env->prog->aux; 2512 struct btf *btf = aux->btf; 2513 const struct btf_type *t; 2514 u32 main_btf_id, id; 2515 const char *name; 2516 int ret, i; 2517 2518 /* Non-zero func_info_cnt implies valid btf */ 2519 if (!aux->func_info_cnt) 2520 return 0; 2521 main_btf_id = aux->func_info[0].type_id; 2522 2523 t = btf_type_by_id(btf, main_btf_id); 2524 if (!t) { 2525 verbose(env, "invalid btf id for main subprog in func_info\n"); 2526 return -EINVAL; 2527 } 2528 2529 name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:"); 2530 if (IS_ERR(name)) { 2531 ret = PTR_ERR(name); 2532 /* If there is no tag present, there is no exception callback */ 2533 if (ret == -ENOENT) 2534 ret = 0; 2535 else if (ret == -EEXIST) 2536 verbose(env, "multiple exception callback tags for main subprog\n"); 2537 return ret; 2538 } 2539 2540 ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC); 2541 if (ret < 0) { 2542 verbose(env, "exception callback '%s' could not be found in BTF\n", name); 2543 return ret; 2544 } 2545 id = ret; 2546 t = btf_type_by_id(btf, id); 2547 if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 2548 verbose(env, "exception callback '%s' must have global linkage\n", name); 2549 return -EINVAL; 2550 } 2551 ret = 0; 2552 for (i = 0; i < aux->func_info_cnt; i++) { 2553 if (aux->func_info[i].type_id != id) 2554 continue; 2555 ret = aux->func_info[i].insn_off; 2556 /* Further func_info and subprog checks will also happen 2557 * later, so assume this is the right insn_off for now. 2558 */ 2559 if (!ret) { 2560 verbose(env, "invalid exception callback insn_off in func_info: 0\n"); 2561 ret = -EINVAL; 2562 } 2563 } 2564 if (!ret) { 2565 verbose(env, "exception callback type id not found in func_info\n"); 2566 ret = -EINVAL; 2567 } 2568 return ret; 2569 } 2570 2571 #define MAX_KFUNC_DESCS 256 2572 #define MAX_KFUNC_BTFS 256 2573 2574 struct bpf_kfunc_desc { 2575 struct btf_func_model func_model; 2576 u32 func_id; 2577 s32 imm; 2578 u16 offset; 2579 unsigned long addr; 2580 }; 2581 2582 struct bpf_kfunc_btf { 2583 struct btf *btf; 2584 struct module *module; 2585 u16 offset; 2586 }; 2587 2588 struct bpf_kfunc_desc_tab { 2589 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2590 * verification. JITs do lookups by bpf_insn, where func_id may not be 2591 * available, therefore at the end of verification do_misc_fixups() 2592 * sorts this by imm and offset. 2593 */ 2594 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2595 u32 nr_descs; 2596 }; 2597 2598 struct bpf_kfunc_btf_tab { 2599 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2600 u32 nr_descs; 2601 }; 2602 2603 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2604 { 2605 const struct bpf_kfunc_desc *d0 = a; 2606 const struct bpf_kfunc_desc *d1 = b; 2607 2608 /* func_id is not greater than BTF_MAX_TYPE */ 2609 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2610 } 2611 2612 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2613 { 2614 const struct bpf_kfunc_btf *d0 = a; 2615 const struct bpf_kfunc_btf *d1 = b; 2616 2617 return d0->offset - d1->offset; 2618 } 2619 2620 static const struct bpf_kfunc_desc * 2621 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2622 { 2623 struct bpf_kfunc_desc desc = { 2624 .func_id = func_id, 2625 .offset = offset, 2626 }; 2627 struct bpf_kfunc_desc_tab *tab; 2628 2629 tab = prog->aux->kfunc_tab; 2630 return bsearch(&desc, tab->descs, tab->nr_descs, 2631 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2632 } 2633 2634 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2635 u16 btf_fd_idx, u8 **func_addr) 2636 { 2637 const struct bpf_kfunc_desc *desc; 2638 2639 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2640 if (!desc) 2641 return -EFAULT; 2642 2643 *func_addr = (u8 *)desc->addr; 2644 return 0; 2645 } 2646 2647 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2648 s16 offset) 2649 { 2650 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2651 struct bpf_kfunc_btf_tab *tab; 2652 struct bpf_kfunc_btf *b; 2653 struct module *mod; 2654 struct btf *btf; 2655 int btf_fd; 2656 2657 tab = env->prog->aux->kfunc_btf_tab; 2658 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2659 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2660 if (!b) { 2661 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2662 verbose(env, "too many different module BTFs\n"); 2663 return ERR_PTR(-E2BIG); 2664 } 2665 2666 if (bpfptr_is_null(env->fd_array)) { 2667 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2668 return ERR_PTR(-EPROTO); 2669 } 2670 2671 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2672 offset * sizeof(btf_fd), 2673 sizeof(btf_fd))) 2674 return ERR_PTR(-EFAULT); 2675 2676 btf = btf_get_by_fd(btf_fd); 2677 if (IS_ERR(btf)) { 2678 verbose(env, "invalid module BTF fd specified\n"); 2679 return btf; 2680 } 2681 2682 if (!btf_is_module(btf)) { 2683 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2684 btf_put(btf); 2685 return ERR_PTR(-EINVAL); 2686 } 2687 2688 mod = btf_try_get_module(btf); 2689 if (!mod) { 2690 btf_put(btf); 2691 return ERR_PTR(-ENXIO); 2692 } 2693 2694 b = &tab->descs[tab->nr_descs++]; 2695 b->btf = btf; 2696 b->module = mod; 2697 b->offset = offset; 2698 2699 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2700 kfunc_btf_cmp_by_off, NULL); 2701 } 2702 return b->btf; 2703 } 2704 2705 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2706 { 2707 if (!tab) 2708 return; 2709 2710 while (tab->nr_descs--) { 2711 module_put(tab->descs[tab->nr_descs].module); 2712 btf_put(tab->descs[tab->nr_descs].btf); 2713 } 2714 kfree(tab); 2715 } 2716 2717 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2718 { 2719 if (offset) { 2720 if (offset < 0) { 2721 /* In the future, this can be allowed to increase limit 2722 * of fd index into fd_array, interpreted as u16. 2723 */ 2724 verbose(env, "negative offset disallowed for kernel module function call\n"); 2725 return ERR_PTR(-EINVAL); 2726 } 2727 2728 return __find_kfunc_desc_btf(env, offset); 2729 } 2730 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2731 } 2732 2733 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2734 { 2735 const struct btf_type *func, *func_proto; 2736 struct bpf_kfunc_btf_tab *btf_tab; 2737 struct bpf_kfunc_desc_tab *tab; 2738 struct bpf_prog_aux *prog_aux; 2739 struct bpf_kfunc_desc *desc; 2740 const char *func_name; 2741 struct btf *desc_btf; 2742 unsigned long call_imm; 2743 unsigned long addr; 2744 int err; 2745 2746 prog_aux = env->prog->aux; 2747 tab = prog_aux->kfunc_tab; 2748 btf_tab = prog_aux->kfunc_btf_tab; 2749 if (!tab) { 2750 if (!btf_vmlinux) { 2751 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2752 return -ENOTSUPP; 2753 } 2754 2755 if (!env->prog->jit_requested) { 2756 verbose(env, "JIT is required for calling kernel function\n"); 2757 return -ENOTSUPP; 2758 } 2759 2760 if (!bpf_jit_supports_kfunc_call()) { 2761 verbose(env, "JIT does not support calling kernel function\n"); 2762 return -ENOTSUPP; 2763 } 2764 2765 if (!env->prog->gpl_compatible) { 2766 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2767 return -EINVAL; 2768 } 2769 2770 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2771 if (!tab) 2772 return -ENOMEM; 2773 prog_aux->kfunc_tab = tab; 2774 } 2775 2776 /* func_id == 0 is always invalid, but instead of returning an error, be 2777 * conservative and wait until the code elimination pass before returning 2778 * error, so that invalid calls that get pruned out can be in BPF programs 2779 * loaded from userspace. It is also required that offset be untouched 2780 * for such calls. 2781 */ 2782 if (!func_id && !offset) 2783 return 0; 2784 2785 if (!btf_tab && offset) { 2786 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2787 if (!btf_tab) 2788 return -ENOMEM; 2789 prog_aux->kfunc_btf_tab = btf_tab; 2790 } 2791 2792 desc_btf = find_kfunc_desc_btf(env, offset); 2793 if (IS_ERR(desc_btf)) { 2794 verbose(env, "failed to find BTF for kernel function\n"); 2795 return PTR_ERR(desc_btf); 2796 } 2797 2798 if (find_kfunc_desc(env->prog, func_id, offset)) 2799 return 0; 2800 2801 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2802 verbose(env, "too many different kernel function calls\n"); 2803 return -E2BIG; 2804 } 2805 2806 func = btf_type_by_id(desc_btf, func_id); 2807 if (!func || !btf_type_is_func(func)) { 2808 verbose(env, "kernel btf_id %u is not a function\n", 2809 func_id); 2810 return -EINVAL; 2811 } 2812 func_proto = btf_type_by_id(desc_btf, func->type); 2813 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2814 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2815 func_id); 2816 return -EINVAL; 2817 } 2818 2819 func_name = btf_name_by_offset(desc_btf, func->name_off); 2820 addr = kallsyms_lookup_name(func_name); 2821 if (!addr) { 2822 verbose(env, "cannot find address for kernel function %s\n", 2823 func_name); 2824 return -EINVAL; 2825 } 2826 specialize_kfunc(env, func_id, offset, &addr); 2827 2828 if (bpf_jit_supports_far_kfunc_call()) { 2829 call_imm = func_id; 2830 } else { 2831 call_imm = BPF_CALL_IMM(addr); 2832 /* Check whether the relative offset overflows desc->imm */ 2833 if ((unsigned long)(s32)call_imm != call_imm) { 2834 verbose(env, "address of kernel function %s is out of range\n", 2835 func_name); 2836 return -EINVAL; 2837 } 2838 } 2839 2840 if (bpf_dev_bound_kfunc_id(func_id)) { 2841 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2842 if (err) 2843 return err; 2844 } 2845 2846 desc = &tab->descs[tab->nr_descs++]; 2847 desc->func_id = func_id; 2848 desc->imm = call_imm; 2849 desc->offset = offset; 2850 desc->addr = addr; 2851 err = btf_distill_func_proto(&env->log, desc_btf, 2852 func_proto, func_name, 2853 &desc->func_model); 2854 if (!err) 2855 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2856 kfunc_desc_cmp_by_id_off, NULL); 2857 return err; 2858 } 2859 2860 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 2861 { 2862 const struct bpf_kfunc_desc *d0 = a; 2863 const struct bpf_kfunc_desc *d1 = b; 2864 2865 if (d0->imm != d1->imm) 2866 return d0->imm < d1->imm ? -1 : 1; 2867 if (d0->offset != d1->offset) 2868 return d0->offset < d1->offset ? -1 : 1; 2869 return 0; 2870 } 2871 2872 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 2873 { 2874 struct bpf_kfunc_desc_tab *tab; 2875 2876 tab = prog->aux->kfunc_tab; 2877 if (!tab) 2878 return; 2879 2880 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2881 kfunc_desc_cmp_by_imm_off, NULL); 2882 } 2883 2884 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2885 { 2886 return !!prog->aux->kfunc_tab; 2887 } 2888 2889 const struct btf_func_model * 2890 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2891 const struct bpf_insn *insn) 2892 { 2893 const struct bpf_kfunc_desc desc = { 2894 .imm = insn->imm, 2895 .offset = insn->off, 2896 }; 2897 const struct bpf_kfunc_desc *res; 2898 struct bpf_kfunc_desc_tab *tab; 2899 2900 tab = prog->aux->kfunc_tab; 2901 res = bsearch(&desc, tab->descs, tab->nr_descs, 2902 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 2903 2904 return res ? &res->func_model : NULL; 2905 } 2906 2907 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2908 { 2909 struct bpf_subprog_info *subprog = env->subprog_info; 2910 int i, ret, insn_cnt = env->prog->len, ex_cb_insn; 2911 struct bpf_insn *insn = env->prog->insnsi; 2912 2913 /* Add entry function. */ 2914 ret = add_subprog(env, 0); 2915 if (ret) 2916 return ret; 2917 2918 for (i = 0; i < insn_cnt; i++, insn++) { 2919 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2920 !bpf_pseudo_kfunc_call(insn)) 2921 continue; 2922 2923 if (!env->bpf_capable) { 2924 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2925 return -EPERM; 2926 } 2927 2928 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2929 ret = add_subprog(env, i + insn->imm + 1); 2930 else 2931 ret = add_kfunc_call(env, insn->imm, insn->off); 2932 2933 if (ret < 0) 2934 return ret; 2935 } 2936 2937 ret = bpf_find_exception_callback_insn_off(env); 2938 if (ret < 0) 2939 return ret; 2940 ex_cb_insn = ret; 2941 2942 /* If ex_cb_insn > 0, this means that the main program has a subprog 2943 * marked using BTF decl tag to serve as the exception callback. 2944 */ 2945 if (ex_cb_insn) { 2946 ret = add_subprog(env, ex_cb_insn); 2947 if (ret < 0) 2948 return ret; 2949 for (i = 1; i < env->subprog_cnt; i++) { 2950 if (env->subprog_info[i].start != ex_cb_insn) 2951 continue; 2952 env->exception_callback_subprog = i; 2953 mark_subprog_exc_cb(env, i); 2954 break; 2955 } 2956 } 2957 2958 /* Add a fake 'exit' subprog which could simplify subprog iteration 2959 * logic. 'subprog_cnt' should not be increased. 2960 */ 2961 subprog[env->subprog_cnt].start = insn_cnt; 2962 2963 if (env->log.level & BPF_LOG_LEVEL2) 2964 for (i = 0; i < env->subprog_cnt; i++) 2965 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2966 2967 return 0; 2968 } 2969 2970 static int check_subprogs(struct bpf_verifier_env *env) 2971 { 2972 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2973 struct bpf_subprog_info *subprog = env->subprog_info; 2974 struct bpf_insn *insn = env->prog->insnsi; 2975 int insn_cnt = env->prog->len; 2976 2977 /* now check that all jumps are within the same subprog */ 2978 subprog_start = subprog[cur_subprog].start; 2979 subprog_end = subprog[cur_subprog + 1].start; 2980 for (i = 0; i < insn_cnt; i++) { 2981 u8 code = insn[i].code; 2982 2983 if (code == (BPF_JMP | BPF_CALL) && 2984 insn[i].src_reg == 0 && 2985 insn[i].imm == BPF_FUNC_tail_call) 2986 subprog[cur_subprog].has_tail_call = true; 2987 if (BPF_CLASS(code) == BPF_LD && 2988 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2989 subprog[cur_subprog].has_ld_abs = true; 2990 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2991 goto next; 2992 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2993 goto next; 2994 if (code == (BPF_JMP32 | BPF_JA)) 2995 off = i + insn[i].imm + 1; 2996 else 2997 off = i + insn[i].off + 1; 2998 if (off < subprog_start || off >= subprog_end) { 2999 verbose(env, "jump out of range from insn %d to %d\n", i, off); 3000 return -EINVAL; 3001 } 3002 next: 3003 if (i == subprog_end - 1) { 3004 /* to avoid fall-through from one subprog into another 3005 * the last insn of the subprog should be either exit 3006 * or unconditional jump back or bpf_throw call 3007 */ 3008 if (code != (BPF_JMP | BPF_EXIT) && 3009 code != (BPF_JMP32 | BPF_JA) && 3010 code != (BPF_JMP | BPF_JA)) { 3011 verbose(env, "last insn is not an exit or jmp\n"); 3012 return -EINVAL; 3013 } 3014 subprog_start = subprog_end; 3015 cur_subprog++; 3016 if (cur_subprog < env->subprog_cnt) 3017 subprog_end = subprog[cur_subprog + 1].start; 3018 } 3019 } 3020 return 0; 3021 } 3022 3023 /* Parentage chain of this register (or stack slot) should take care of all 3024 * issues like callee-saved registers, stack slot allocation time, etc. 3025 */ 3026 static int mark_reg_read(struct bpf_verifier_env *env, 3027 const struct bpf_reg_state *state, 3028 struct bpf_reg_state *parent, u8 flag) 3029 { 3030 bool writes = parent == state->parent; /* Observe write marks */ 3031 int cnt = 0; 3032 3033 while (parent) { 3034 /* if read wasn't screened by an earlier write ... */ 3035 if (writes && state->live & REG_LIVE_WRITTEN) 3036 break; 3037 if (parent->live & REG_LIVE_DONE) { 3038 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 3039 reg_type_str(env, parent->type), 3040 parent->var_off.value, parent->off); 3041 return -EFAULT; 3042 } 3043 /* The first condition is more likely to be true than the 3044 * second, checked it first. 3045 */ 3046 if ((parent->live & REG_LIVE_READ) == flag || 3047 parent->live & REG_LIVE_READ64) 3048 /* The parentage chain never changes and 3049 * this parent was already marked as LIVE_READ. 3050 * There is no need to keep walking the chain again and 3051 * keep re-marking all parents as LIVE_READ. 3052 * This case happens when the same register is read 3053 * multiple times without writes into it in-between. 3054 * Also, if parent has the stronger REG_LIVE_READ64 set, 3055 * then no need to set the weak REG_LIVE_READ32. 3056 */ 3057 break; 3058 /* ... then we depend on parent's value */ 3059 parent->live |= flag; 3060 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 3061 if (flag == REG_LIVE_READ64) 3062 parent->live &= ~REG_LIVE_READ32; 3063 state = parent; 3064 parent = state->parent; 3065 writes = true; 3066 cnt++; 3067 } 3068 3069 if (env->longest_mark_read_walk < cnt) 3070 env->longest_mark_read_walk = cnt; 3071 return 0; 3072 } 3073 3074 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3075 { 3076 struct bpf_func_state *state = func(env, reg); 3077 int spi, ret; 3078 3079 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 3080 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 3081 * check_kfunc_call. 3082 */ 3083 if (reg->type == CONST_PTR_TO_DYNPTR) 3084 return 0; 3085 spi = dynptr_get_spi(env, reg); 3086 if (spi < 0) 3087 return spi; 3088 /* Caller ensures dynptr is valid and initialized, which means spi is in 3089 * bounds and spi is the first dynptr slot. Simply mark stack slot as 3090 * read. 3091 */ 3092 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 3093 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 3094 if (ret) 3095 return ret; 3096 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 3097 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 3098 } 3099 3100 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3101 int spi, int nr_slots) 3102 { 3103 struct bpf_func_state *state = func(env, reg); 3104 int err, i; 3105 3106 for (i = 0; i < nr_slots; i++) { 3107 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 3108 3109 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 3110 if (err) 3111 return err; 3112 3113 mark_stack_slot_scratched(env, spi - i); 3114 } 3115 3116 return 0; 3117 } 3118 3119 /* This function is supposed to be used by the following 32-bit optimization 3120 * code only. It returns TRUE if the source or destination register operates 3121 * on 64-bit, otherwise return FALSE. 3122 */ 3123 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 3124 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 3125 { 3126 u8 code, class, op; 3127 3128 code = insn->code; 3129 class = BPF_CLASS(code); 3130 op = BPF_OP(code); 3131 if (class == BPF_JMP) { 3132 /* BPF_EXIT for "main" will reach here. Return TRUE 3133 * conservatively. 3134 */ 3135 if (op == BPF_EXIT) 3136 return true; 3137 if (op == BPF_CALL) { 3138 /* BPF to BPF call will reach here because of marking 3139 * caller saved clobber with DST_OP_NO_MARK for which we 3140 * don't care the register def because they are anyway 3141 * marked as NOT_INIT already. 3142 */ 3143 if (insn->src_reg == BPF_PSEUDO_CALL) 3144 return false; 3145 /* Helper call will reach here because of arg type 3146 * check, conservatively return TRUE. 3147 */ 3148 if (t == SRC_OP) 3149 return true; 3150 3151 return false; 3152 } 3153 } 3154 3155 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3156 return false; 3157 3158 if (class == BPF_ALU64 || class == BPF_JMP || 3159 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3160 return true; 3161 3162 if (class == BPF_ALU || class == BPF_JMP32) 3163 return false; 3164 3165 if (class == BPF_LDX) { 3166 if (t != SRC_OP) 3167 return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX; 3168 /* LDX source must be ptr. */ 3169 return true; 3170 } 3171 3172 if (class == BPF_STX) { 3173 /* BPF_STX (including atomic variants) has multiple source 3174 * operands, one of which is a ptr. Check whether the caller is 3175 * asking about it. 3176 */ 3177 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3178 return true; 3179 return BPF_SIZE(code) == BPF_DW; 3180 } 3181 3182 if (class == BPF_LD) { 3183 u8 mode = BPF_MODE(code); 3184 3185 /* LD_IMM64 */ 3186 if (mode == BPF_IMM) 3187 return true; 3188 3189 /* Both LD_IND and LD_ABS return 32-bit data. */ 3190 if (t != SRC_OP) 3191 return false; 3192 3193 /* Implicit ctx ptr. */ 3194 if (regno == BPF_REG_6) 3195 return true; 3196 3197 /* Explicit source could be any width. */ 3198 return true; 3199 } 3200 3201 if (class == BPF_ST) 3202 /* The only source register for BPF_ST is a ptr. */ 3203 return true; 3204 3205 /* Conservatively return true at default. */ 3206 return true; 3207 } 3208 3209 /* Return the regno defined by the insn, or -1. */ 3210 static int insn_def_regno(const struct bpf_insn *insn) 3211 { 3212 switch (BPF_CLASS(insn->code)) { 3213 case BPF_JMP: 3214 case BPF_JMP32: 3215 case BPF_ST: 3216 return -1; 3217 case BPF_STX: 3218 if (BPF_MODE(insn->code) == BPF_ATOMIC && 3219 (insn->imm & BPF_FETCH)) { 3220 if (insn->imm == BPF_CMPXCHG) 3221 return BPF_REG_0; 3222 else 3223 return insn->src_reg; 3224 } else { 3225 return -1; 3226 } 3227 default: 3228 return insn->dst_reg; 3229 } 3230 } 3231 3232 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3233 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3234 { 3235 int dst_reg = insn_def_regno(insn); 3236 3237 if (dst_reg == -1) 3238 return false; 3239 3240 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3241 } 3242 3243 static void mark_insn_zext(struct bpf_verifier_env *env, 3244 struct bpf_reg_state *reg) 3245 { 3246 s32 def_idx = reg->subreg_def; 3247 3248 if (def_idx == DEF_NOT_SUBREG) 3249 return; 3250 3251 env->insn_aux_data[def_idx - 1].zext_dst = true; 3252 /* The dst will be zero extended, so won't be sub-register anymore. */ 3253 reg->subreg_def = DEF_NOT_SUBREG; 3254 } 3255 3256 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, 3257 enum reg_arg_type t) 3258 { 3259 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3260 struct bpf_reg_state *reg; 3261 bool rw64; 3262 3263 if (regno >= MAX_BPF_REG) { 3264 verbose(env, "R%d is invalid\n", regno); 3265 return -EINVAL; 3266 } 3267 3268 mark_reg_scratched(env, regno); 3269 3270 reg = ®s[regno]; 3271 rw64 = is_reg64(env, insn, regno, reg, t); 3272 if (t == SRC_OP) { 3273 /* check whether register used as source operand can be read */ 3274 if (reg->type == NOT_INIT) { 3275 verbose(env, "R%d !read_ok\n", regno); 3276 return -EACCES; 3277 } 3278 /* We don't need to worry about FP liveness because it's read-only */ 3279 if (regno == BPF_REG_FP) 3280 return 0; 3281 3282 if (rw64) 3283 mark_insn_zext(env, reg); 3284 3285 return mark_reg_read(env, reg, reg->parent, 3286 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3287 } else { 3288 /* check whether register used as dest operand can be written to */ 3289 if (regno == BPF_REG_FP) { 3290 verbose(env, "frame pointer is read only\n"); 3291 return -EACCES; 3292 } 3293 reg->live |= REG_LIVE_WRITTEN; 3294 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3295 if (t == DST_OP) 3296 mark_reg_unknown(env, regs, regno); 3297 } 3298 return 0; 3299 } 3300 3301 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3302 enum reg_arg_type t) 3303 { 3304 struct bpf_verifier_state *vstate = env->cur_state; 3305 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3306 3307 return __check_reg_arg(env, state->regs, regno, t); 3308 } 3309 3310 static int insn_stack_access_flags(int frameno, int spi) 3311 { 3312 return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno; 3313 } 3314 3315 static int insn_stack_access_spi(int insn_flags) 3316 { 3317 return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK; 3318 } 3319 3320 static int insn_stack_access_frameno(int insn_flags) 3321 { 3322 return insn_flags & INSN_F_FRAMENO_MASK; 3323 } 3324 3325 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3326 { 3327 env->insn_aux_data[idx].jmp_point = true; 3328 } 3329 3330 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3331 { 3332 return env->insn_aux_data[insn_idx].jmp_point; 3333 } 3334 3335 /* for any branch, call, exit record the history of jmps in the given state */ 3336 static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur, 3337 int insn_flags) 3338 { 3339 u32 cnt = cur->jmp_history_cnt; 3340 struct bpf_jmp_history_entry *p; 3341 size_t alloc_size; 3342 3343 /* combine instruction flags if we already recorded this instruction */ 3344 if (env->cur_hist_ent) { 3345 /* atomic instructions push insn_flags twice, for READ and 3346 * WRITE sides, but they should agree on stack slot 3347 */ 3348 WARN_ONCE((env->cur_hist_ent->flags & insn_flags) && 3349 (env->cur_hist_ent->flags & insn_flags) != insn_flags, 3350 "verifier insn history bug: insn_idx %d cur flags %x new flags %x\n", 3351 env->insn_idx, env->cur_hist_ent->flags, insn_flags); 3352 env->cur_hist_ent->flags |= insn_flags; 3353 return 0; 3354 } 3355 3356 cnt++; 3357 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3358 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 3359 if (!p) 3360 return -ENOMEM; 3361 cur->jmp_history = p; 3362 3363 p = &cur->jmp_history[cnt - 1]; 3364 p->idx = env->insn_idx; 3365 p->prev_idx = env->prev_insn_idx; 3366 p->flags = insn_flags; 3367 cur->jmp_history_cnt = cnt; 3368 env->cur_hist_ent = p; 3369 3370 return 0; 3371 } 3372 3373 static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st, 3374 u32 hist_end, int insn_idx) 3375 { 3376 if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx) 3377 return &st->jmp_history[hist_end - 1]; 3378 return NULL; 3379 } 3380 3381 /* Backtrack one insn at a time. If idx is not at the top of recorded 3382 * history then previous instruction came from straight line execution. 3383 * Return -ENOENT if we exhausted all instructions within given state. 3384 * 3385 * It's legal to have a bit of a looping with the same starting and ending 3386 * insn index within the same state, e.g.: 3->4->5->3, so just because current 3387 * instruction index is the same as state's first_idx doesn't mean we are 3388 * done. If there is still some jump history left, we should keep going. We 3389 * need to take into account that we might have a jump history between given 3390 * state's parent and itself, due to checkpointing. In this case, we'll have 3391 * history entry recording a jump from last instruction of parent state and 3392 * first instruction of given state. 3393 */ 3394 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3395 u32 *history) 3396 { 3397 u32 cnt = *history; 3398 3399 if (i == st->first_insn_idx) { 3400 if (cnt == 0) 3401 return -ENOENT; 3402 if (cnt == 1 && st->jmp_history[0].idx == i) 3403 return -ENOENT; 3404 } 3405 3406 if (cnt && st->jmp_history[cnt - 1].idx == i) { 3407 i = st->jmp_history[cnt - 1].prev_idx; 3408 (*history)--; 3409 } else { 3410 i--; 3411 } 3412 return i; 3413 } 3414 3415 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3416 { 3417 const struct btf_type *func; 3418 struct btf *desc_btf; 3419 3420 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3421 return NULL; 3422 3423 desc_btf = find_kfunc_desc_btf(data, insn->off); 3424 if (IS_ERR(desc_btf)) 3425 return "<error>"; 3426 3427 func = btf_type_by_id(desc_btf, insn->imm); 3428 return btf_name_by_offset(desc_btf, func->name_off); 3429 } 3430 3431 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3432 { 3433 bt->frame = frame; 3434 } 3435 3436 static inline void bt_reset(struct backtrack_state *bt) 3437 { 3438 struct bpf_verifier_env *env = bt->env; 3439 3440 memset(bt, 0, sizeof(*bt)); 3441 bt->env = env; 3442 } 3443 3444 static inline u32 bt_empty(struct backtrack_state *bt) 3445 { 3446 u64 mask = 0; 3447 int i; 3448 3449 for (i = 0; i <= bt->frame; i++) 3450 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3451 3452 return mask == 0; 3453 } 3454 3455 static inline int bt_subprog_enter(struct backtrack_state *bt) 3456 { 3457 if (bt->frame == MAX_CALL_FRAMES - 1) { 3458 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3459 WARN_ONCE(1, "verifier backtracking bug"); 3460 return -EFAULT; 3461 } 3462 bt->frame++; 3463 return 0; 3464 } 3465 3466 static inline int bt_subprog_exit(struct backtrack_state *bt) 3467 { 3468 if (bt->frame == 0) { 3469 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3470 WARN_ONCE(1, "verifier backtracking bug"); 3471 return -EFAULT; 3472 } 3473 bt->frame--; 3474 return 0; 3475 } 3476 3477 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3478 { 3479 bt->reg_masks[frame] |= 1 << reg; 3480 } 3481 3482 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3483 { 3484 bt->reg_masks[frame] &= ~(1 << reg); 3485 } 3486 3487 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3488 { 3489 bt_set_frame_reg(bt, bt->frame, reg); 3490 } 3491 3492 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3493 { 3494 bt_clear_frame_reg(bt, bt->frame, reg); 3495 } 3496 3497 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3498 { 3499 bt->stack_masks[frame] |= 1ull << slot; 3500 } 3501 3502 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3503 { 3504 bt->stack_masks[frame] &= ~(1ull << slot); 3505 } 3506 3507 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3508 { 3509 return bt->reg_masks[frame]; 3510 } 3511 3512 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3513 { 3514 return bt->reg_masks[bt->frame]; 3515 } 3516 3517 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3518 { 3519 return bt->stack_masks[frame]; 3520 } 3521 3522 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3523 { 3524 return bt->stack_masks[bt->frame]; 3525 } 3526 3527 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3528 { 3529 return bt->reg_masks[bt->frame] & (1 << reg); 3530 } 3531 3532 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot) 3533 { 3534 return bt->stack_masks[frame] & (1ull << slot); 3535 } 3536 3537 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3538 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3539 { 3540 DECLARE_BITMAP(mask, 64); 3541 bool first = true; 3542 int i, n; 3543 3544 buf[0] = '\0'; 3545 3546 bitmap_from_u64(mask, reg_mask); 3547 for_each_set_bit(i, mask, 32) { 3548 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3549 first = false; 3550 buf += n; 3551 buf_sz -= n; 3552 if (buf_sz < 0) 3553 break; 3554 } 3555 } 3556 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3557 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3558 { 3559 DECLARE_BITMAP(mask, 64); 3560 bool first = true; 3561 int i, n; 3562 3563 buf[0] = '\0'; 3564 3565 bitmap_from_u64(mask, stack_mask); 3566 for_each_set_bit(i, mask, 64) { 3567 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3568 first = false; 3569 buf += n; 3570 buf_sz -= n; 3571 if (buf_sz < 0) 3572 break; 3573 } 3574 } 3575 3576 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx); 3577 3578 /* For given verifier state backtrack_insn() is called from the last insn to 3579 * the first insn. Its purpose is to compute a bitmask of registers and 3580 * stack slots that needs precision in the parent verifier state. 3581 * 3582 * @idx is an index of the instruction we are currently processing; 3583 * @subseq_idx is an index of the subsequent instruction that: 3584 * - *would be* executed next, if jump history is viewed in forward order; 3585 * - *was* processed previously during backtracking. 3586 */ 3587 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 3588 struct bpf_jmp_history_entry *hist, struct backtrack_state *bt) 3589 { 3590 const struct bpf_insn_cbs cbs = { 3591 .cb_call = disasm_kfunc_name, 3592 .cb_print = verbose, 3593 .private_data = env, 3594 }; 3595 struct bpf_insn *insn = env->prog->insnsi + idx; 3596 u8 class = BPF_CLASS(insn->code); 3597 u8 opcode = BPF_OP(insn->code); 3598 u8 mode = BPF_MODE(insn->code); 3599 u32 dreg = insn->dst_reg; 3600 u32 sreg = insn->src_reg; 3601 u32 spi, i, fr; 3602 3603 if (insn->code == 0) 3604 return 0; 3605 if (env->log.level & BPF_LOG_LEVEL2) { 3606 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 3607 verbose(env, "mark_precise: frame%d: regs=%s ", 3608 bt->frame, env->tmp_str_buf); 3609 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 3610 verbose(env, "stack=%s before ", env->tmp_str_buf); 3611 verbose(env, "%d: ", idx); 3612 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3613 } 3614 3615 if (class == BPF_ALU || class == BPF_ALU64) { 3616 if (!bt_is_reg_set(bt, dreg)) 3617 return 0; 3618 if (opcode == BPF_END || opcode == BPF_NEG) { 3619 /* sreg is reserved and unused 3620 * dreg still need precision before this insn 3621 */ 3622 return 0; 3623 } else if (opcode == BPF_MOV) { 3624 if (BPF_SRC(insn->code) == BPF_X) { 3625 /* dreg = sreg or dreg = (s8, s16, s32)sreg 3626 * dreg needs precision after this insn 3627 * sreg needs precision before this insn 3628 */ 3629 bt_clear_reg(bt, dreg); 3630 if (sreg != BPF_REG_FP) 3631 bt_set_reg(bt, sreg); 3632 } else { 3633 /* dreg = K 3634 * dreg needs precision after this insn. 3635 * Corresponding register is already marked 3636 * as precise=true in this verifier state. 3637 * No further markings in parent are necessary 3638 */ 3639 bt_clear_reg(bt, dreg); 3640 } 3641 } else { 3642 if (BPF_SRC(insn->code) == BPF_X) { 3643 /* dreg += sreg 3644 * both dreg and sreg need precision 3645 * before this insn 3646 */ 3647 if (sreg != BPF_REG_FP) 3648 bt_set_reg(bt, sreg); 3649 } /* else dreg += K 3650 * dreg still needs precision before this insn 3651 */ 3652 } 3653 } else if (class == BPF_LDX) { 3654 if (!bt_is_reg_set(bt, dreg)) 3655 return 0; 3656 bt_clear_reg(bt, dreg); 3657 3658 /* scalars can only be spilled into stack w/o losing precision. 3659 * Load from any other memory can be zero extended. 3660 * The desire to keep that precision is already indicated 3661 * by 'precise' mark in corresponding register of this state. 3662 * No further tracking necessary. 3663 */ 3664 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 3665 return 0; 3666 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3667 * that [fp - off] slot contains scalar that needs to be 3668 * tracked with precision 3669 */ 3670 spi = insn_stack_access_spi(hist->flags); 3671 fr = insn_stack_access_frameno(hist->flags); 3672 bt_set_frame_slot(bt, fr, spi); 3673 } else if (class == BPF_STX || class == BPF_ST) { 3674 if (bt_is_reg_set(bt, dreg)) 3675 /* stx & st shouldn't be using _scalar_ dst_reg 3676 * to access memory. It means backtracking 3677 * encountered a case of pointer subtraction. 3678 */ 3679 return -ENOTSUPP; 3680 /* scalars can only be spilled into stack */ 3681 if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) 3682 return 0; 3683 spi = insn_stack_access_spi(hist->flags); 3684 fr = insn_stack_access_frameno(hist->flags); 3685 if (!bt_is_frame_slot_set(bt, fr, spi)) 3686 return 0; 3687 bt_clear_frame_slot(bt, fr, spi); 3688 if (class == BPF_STX) 3689 bt_set_reg(bt, sreg); 3690 } else if (class == BPF_JMP || class == BPF_JMP32) { 3691 if (bpf_pseudo_call(insn)) { 3692 int subprog_insn_idx, subprog; 3693 3694 subprog_insn_idx = idx + insn->imm + 1; 3695 subprog = find_subprog(env, subprog_insn_idx); 3696 if (subprog < 0) 3697 return -EFAULT; 3698 3699 if (subprog_is_global(env, subprog)) { 3700 /* check that jump history doesn't have any 3701 * extra instructions from subprog; the next 3702 * instruction after call to global subprog 3703 * should be literally next instruction in 3704 * caller program 3705 */ 3706 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 3707 /* r1-r5 are invalidated after subprog call, 3708 * so for global func call it shouldn't be set 3709 * anymore 3710 */ 3711 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3712 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3713 WARN_ONCE(1, "verifier backtracking bug"); 3714 return -EFAULT; 3715 } 3716 /* global subprog always sets R0 */ 3717 bt_clear_reg(bt, BPF_REG_0); 3718 return 0; 3719 } else { 3720 /* static subprog call instruction, which 3721 * means that we are exiting current subprog, 3722 * so only r1-r5 could be still requested as 3723 * precise, r0 and r6-r10 or any stack slot in 3724 * the current frame should be zero by now 3725 */ 3726 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3727 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3728 WARN_ONCE(1, "verifier backtracking bug"); 3729 return -EFAULT; 3730 } 3731 /* we are now tracking register spills correctly, 3732 * so any instance of leftover slots is a bug 3733 */ 3734 if (bt_stack_mask(bt) != 0) { 3735 verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt)); 3736 WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)"); 3737 return -EFAULT; 3738 } 3739 /* propagate r1-r5 to the caller */ 3740 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 3741 if (bt_is_reg_set(bt, i)) { 3742 bt_clear_reg(bt, i); 3743 bt_set_frame_reg(bt, bt->frame - 1, i); 3744 } 3745 } 3746 if (bt_subprog_exit(bt)) 3747 return -EFAULT; 3748 return 0; 3749 } 3750 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { 3751 /* exit from callback subprog to callback-calling helper or 3752 * kfunc call. Use idx/subseq_idx check to discern it from 3753 * straight line code backtracking. 3754 * Unlike the subprog call handling above, we shouldn't 3755 * propagate precision of r1-r5 (if any requested), as they are 3756 * not actually arguments passed directly to callback subprogs 3757 */ 3758 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3759 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3760 WARN_ONCE(1, "verifier backtracking bug"); 3761 return -EFAULT; 3762 } 3763 if (bt_stack_mask(bt) != 0) { 3764 verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt)); 3765 WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)"); 3766 return -EFAULT; 3767 } 3768 /* clear r1-r5 in callback subprog's mask */ 3769 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3770 bt_clear_reg(bt, i); 3771 if (bt_subprog_exit(bt)) 3772 return -EFAULT; 3773 return 0; 3774 } else if (opcode == BPF_CALL) { 3775 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 3776 * catch this error later. Make backtracking conservative 3777 * with ENOTSUPP. 3778 */ 3779 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 3780 return -ENOTSUPP; 3781 /* regular helper call sets R0 */ 3782 bt_clear_reg(bt, BPF_REG_0); 3783 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3784 /* if backtracing was looking for registers R1-R5 3785 * they should have been found already. 3786 */ 3787 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3788 WARN_ONCE(1, "verifier backtracking bug"); 3789 return -EFAULT; 3790 } 3791 } else if (opcode == BPF_EXIT) { 3792 bool r0_precise; 3793 3794 /* Backtracking to a nested function call, 'idx' is a part of 3795 * the inner frame 'subseq_idx' is a part of the outer frame. 3796 * In case of a regular function call, instructions giving 3797 * precision to registers R1-R5 should have been found already. 3798 * In case of a callback, it is ok to have R1-R5 marked for 3799 * backtracking, as these registers are set by the function 3800 * invoking callback. 3801 */ 3802 if (subseq_idx >= 0 && calls_callback(env, subseq_idx)) 3803 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3804 bt_clear_reg(bt, i); 3805 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3806 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3807 WARN_ONCE(1, "verifier backtracking bug"); 3808 return -EFAULT; 3809 } 3810 3811 /* BPF_EXIT in subprog or callback always returns 3812 * right after the call instruction, so by checking 3813 * whether the instruction at subseq_idx-1 is subprog 3814 * call or not we can distinguish actual exit from 3815 * *subprog* from exit from *callback*. In the former 3816 * case, we need to propagate r0 precision, if 3817 * necessary. In the former we never do that. 3818 */ 3819 r0_precise = subseq_idx - 1 >= 0 && 3820 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 3821 bt_is_reg_set(bt, BPF_REG_0); 3822 3823 bt_clear_reg(bt, BPF_REG_0); 3824 if (bt_subprog_enter(bt)) 3825 return -EFAULT; 3826 3827 if (r0_precise) 3828 bt_set_reg(bt, BPF_REG_0); 3829 /* r6-r9 and stack slots will stay set in caller frame 3830 * bitmasks until we return back from callee(s) 3831 */ 3832 return 0; 3833 } else if (BPF_SRC(insn->code) == BPF_X) { 3834 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 3835 return 0; 3836 /* dreg <cond> sreg 3837 * Both dreg and sreg need precision before 3838 * this insn. If only sreg was marked precise 3839 * before it would be equally necessary to 3840 * propagate it to dreg. 3841 */ 3842 bt_set_reg(bt, dreg); 3843 bt_set_reg(bt, sreg); 3844 /* else dreg <cond> K 3845 * Only dreg still needs precision before 3846 * this insn, so for the K-based conditional 3847 * there is nothing new to be marked. 3848 */ 3849 } 3850 } else if (class == BPF_LD) { 3851 if (!bt_is_reg_set(bt, dreg)) 3852 return 0; 3853 bt_clear_reg(bt, dreg); 3854 /* It's ld_imm64 or ld_abs or ld_ind. 3855 * For ld_imm64 no further tracking of precision 3856 * into parent is necessary 3857 */ 3858 if (mode == BPF_IND || mode == BPF_ABS) 3859 /* to be analyzed */ 3860 return -ENOTSUPP; 3861 } 3862 return 0; 3863 } 3864 3865 /* the scalar precision tracking algorithm: 3866 * . at the start all registers have precise=false. 3867 * . scalar ranges are tracked as normal through alu and jmp insns. 3868 * . once precise value of the scalar register is used in: 3869 * . ptr + scalar alu 3870 * . if (scalar cond K|scalar) 3871 * . helper_call(.., scalar, ...) where ARG_CONST is expected 3872 * backtrack through the verifier states and mark all registers and 3873 * stack slots with spilled constants that these scalar regisers 3874 * should be precise. 3875 * . during state pruning two registers (or spilled stack slots) 3876 * are equivalent if both are not precise. 3877 * 3878 * Note the verifier cannot simply walk register parentage chain, 3879 * since many different registers and stack slots could have been 3880 * used to compute single precise scalar. 3881 * 3882 * The approach of starting with precise=true for all registers and then 3883 * backtrack to mark a register as not precise when the verifier detects 3884 * that program doesn't care about specific value (e.g., when helper 3885 * takes register as ARG_ANYTHING parameter) is not safe. 3886 * 3887 * It's ok to walk single parentage chain of the verifier states. 3888 * It's possible that this backtracking will go all the way till 1st insn. 3889 * All other branches will be explored for needing precision later. 3890 * 3891 * The backtracking needs to deal with cases like: 3892 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 3893 * r9 -= r8 3894 * r5 = r9 3895 * if r5 > 0x79f goto pc+7 3896 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 3897 * r5 += 1 3898 * ... 3899 * call bpf_perf_event_output#25 3900 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 3901 * 3902 * and this case: 3903 * r6 = 1 3904 * call foo // uses callee's r6 inside to compute r0 3905 * r0 += r6 3906 * if r0 == 0 goto 3907 * 3908 * to track above reg_mask/stack_mask needs to be independent for each frame. 3909 * 3910 * Also if parent's curframe > frame where backtracking started, 3911 * the verifier need to mark registers in both frames, otherwise callees 3912 * may incorrectly prune callers. This is similar to 3913 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 3914 * 3915 * For now backtracking falls back into conservative marking. 3916 */ 3917 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 3918 struct bpf_verifier_state *st) 3919 { 3920 struct bpf_func_state *func; 3921 struct bpf_reg_state *reg; 3922 int i, j; 3923 3924 if (env->log.level & BPF_LOG_LEVEL2) { 3925 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 3926 st->curframe); 3927 } 3928 3929 /* big hammer: mark all scalars precise in this path. 3930 * pop_stack may still get !precise scalars. 3931 * We also skip current state and go straight to first parent state, 3932 * because precision markings in current non-checkpointed state are 3933 * not needed. See why in the comment in __mark_chain_precision below. 3934 */ 3935 for (st = st->parent; st; st = st->parent) { 3936 for (i = 0; i <= st->curframe; i++) { 3937 func = st->frame[i]; 3938 for (j = 0; j < BPF_REG_FP; j++) { 3939 reg = &func->regs[j]; 3940 if (reg->type != SCALAR_VALUE || reg->precise) 3941 continue; 3942 reg->precise = true; 3943 if (env->log.level & BPF_LOG_LEVEL2) { 3944 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 3945 i, j); 3946 } 3947 } 3948 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3949 if (!is_spilled_reg(&func->stack[j])) 3950 continue; 3951 reg = &func->stack[j].spilled_ptr; 3952 if (reg->type != SCALAR_VALUE || reg->precise) 3953 continue; 3954 reg->precise = true; 3955 if (env->log.level & BPF_LOG_LEVEL2) { 3956 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 3957 i, -(j + 1) * 8); 3958 } 3959 } 3960 } 3961 } 3962 } 3963 3964 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3965 { 3966 struct bpf_func_state *func; 3967 struct bpf_reg_state *reg; 3968 int i, j; 3969 3970 for (i = 0; i <= st->curframe; i++) { 3971 func = st->frame[i]; 3972 for (j = 0; j < BPF_REG_FP; j++) { 3973 reg = &func->regs[j]; 3974 if (reg->type != SCALAR_VALUE) 3975 continue; 3976 reg->precise = false; 3977 } 3978 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3979 if (!is_spilled_reg(&func->stack[j])) 3980 continue; 3981 reg = &func->stack[j].spilled_ptr; 3982 if (reg->type != SCALAR_VALUE) 3983 continue; 3984 reg->precise = false; 3985 } 3986 } 3987 } 3988 3989 static bool idset_contains(struct bpf_idset *s, u32 id) 3990 { 3991 u32 i; 3992 3993 for (i = 0; i < s->count; ++i) 3994 if (s->ids[i] == id) 3995 return true; 3996 3997 return false; 3998 } 3999 4000 static int idset_push(struct bpf_idset *s, u32 id) 4001 { 4002 if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids))) 4003 return -EFAULT; 4004 s->ids[s->count++] = id; 4005 return 0; 4006 } 4007 4008 static void idset_reset(struct bpf_idset *s) 4009 { 4010 s->count = 0; 4011 } 4012 4013 /* Collect a set of IDs for all registers currently marked as precise in env->bt. 4014 * Mark all registers with these IDs as precise. 4015 */ 4016 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4017 { 4018 struct bpf_idset *precise_ids = &env->idset_scratch; 4019 struct backtrack_state *bt = &env->bt; 4020 struct bpf_func_state *func; 4021 struct bpf_reg_state *reg; 4022 DECLARE_BITMAP(mask, 64); 4023 int i, fr; 4024 4025 idset_reset(precise_ids); 4026 4027 for (fr = bt->frame; fr >= 0; fr--) { 4028 func = st->frame[fr]; 4029 4030 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4031 for_each_set_bit(i, mask, 32) { 4032 reg = &func->regs[i]; 4033 if (!reg->id || reg->type != SCALAR_VALUE) 4034 continue; 4035 if (idset_push(precise_ids, reg->id)) 4036 return -EFAULT; 4037 } 4038 4039 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4040 for_each_set_bit(i, mask, 64) { 4041 if (i >= func->allocated_stack / BPF_REG_SIZE) 4042 break; 4043 if (!is_spilled_scalar_reg(&func->stack[i])) 4044 continue; 4045 reg = &func->stack[i].spilled_ptr; 4046 if (!reg->id) 4047 continue; 4048 if (idset_push(precise_ids, reg->id)) 4049 return -EFAULT; 4050 } 4051 } 4052 4053 for (fr = 0; fr <= st->curframe; ++fr) { 4054 func = st->frame[fr]; 4055 4056 for (i = BPF_REG_0; i < BPF_REG_10; ++i) { 4057 reg = &func->regs[i]; 4058 if (!reg->id) 4059 continue; 4060 if (!idset_contains(precise_ids, reg->id)) 4061 continue; 4062 bt_set_frame_reg(bt, fr, i); 4063 } 4064 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) { 4065 if (!is_spilled_scalar_reg(&func->stack[i])) 4066 continue; 4067 reg = &func->stack[i].spilled_ptr; 4068 if (!reg->id) 4069 continue; 4070 if (!idset_contains(precise_ids, reg->id)) 4071 continue; 4072 bt_set_frame_slot(bt, fr, i); 4073 } 4074 } 4075 4076 return 0; 4077 } 4078 4079 /* 4080 * __mark_chain_precision() backtracks BPF program instruction sequence and 4081 * chain of verifier states making sure that register *regno* (if regno >= 0) 4082 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 4083 * SCALARS, as well as any other registers and slots that contribute to 4084 * a tracked state of given registers/stack slots, depending on specific BPF 4085 * assembly instructions (see backtrack_insns() for exact instruction handling 4086 * logic). This backtracking relies on recorded jmp_history and is able to 4087 * traverse entire chain of parent states. This process ends only when all the 4088 * necessary registers/slots and their transitive dependencies are marked as 4089 * precise. 4090 * 4091 * One important and subtle aspect is that precise marks *do not matter* in 4092 * the currently verified state (current state). It is important to understand 4093 * why this is the case. 4094 * 4095 * First, note that current state is the state that is not yet "checkpointed", 4096 * i.e., it is not yet put into env->explored_states, and it has no children 4097 * states as well. It's ephemeral, and can end up either a) being discarded if 4098 * compatible explored state is found at some point or BPF_EXIT instruction is 4099 * reached or b) checkpointed and put into env->explored_states, branching out 4100 * into one or more children states. 4101 * 4102 * In the former case, precise markings in current state are completely 4103 * ignored by state comparison code (see regsafe() for details). Only 4104 * checkpointed ("old") state precise markings are important, and if old 4105 * state's register/slot is precise, regsafe() assumes current state's 4106 * register/slot as precise and checks value ranges exactly and precisely. If 4107 * states turn out to be compatible, current state's necessary precise 4108 * markings and any required parent states' precise markings are enforced 4109 * after the fact with propagate_precision() logic, after the fact. But it's 4110 * important to realize that in this case, even after marking current state 4111 * registers/slots as precise, we immediately discard current state. So what 4112 * actually matters is any of the precise markings propagated into current 4113 * state's parent states, which are always checkpointed (due to b) case above). 4114 * As such, for scenario a) it doesn't matter if current state has precise 4115 * markings set or not. 4116 * 4117 * Now, for the scenario b), checkpointing and forking into child(ren) 4118 * state(s). Note that before current state gets to checkpointing step, any 4119 * processed instruction always assumes precise SCALAR register/slot 4120 * knowledge: if precise value or range is useful to prune jump branch, BPF 4121 * verifier takes this opportunity enthusiastically. Similarly, when 4122 * register's value is used to calculate offset or memory address, exact 4123 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 4124 * what we mentioned above about state comparison ignoring precise markings 4125 * during state comparison, BPF verifier ignores and also assumes precise 4126 * markings *at will* during instruction verification process. But as verifier 4127 * assumes precision, it also propagates any precision dependencies across 4128 * parent states, which are not yet finalized, so can be further restricted 4129 * based on new knowledge gained from restrictions enforced by their children 4130 * states. This is so that once those parent states are finalized, i.e., when 4131 * they have no more active children state, state comparison logic in 4132 * is_state_visited() would enforce strict and precise SCALAR ranges, if 4133 * required for correctness. 4134 * 4135 * To build a bit more intuition, note also that once a state is checkpointed, 4136 * the path we took to get to that state is not important. This is crucial 4137 * property for state pruning. When state is checkpointed and finalized at 4138 * some instruction index, it can be correctly and safely used to "short 4139 * circuit" any *compatible* state that reaches exactly the same instruction 4140 * index. I.e., if we jumped to that instruction from a completely different 4141 * code path than original finalized state was derived from, it doesn't 4142 * matter, current state can be discarded because from that instruction 4143 * forward having a compatible state will ensure we will safely reach the 4144 * exit. States describe preconditions for further exploration, but completely 4145 * forget the history of how we got here. 4146 * 4147 * This also means that even if we needed precise SCALAR range to get to 4148 * finalized state, but from that point forward *that same* SCALAR register is 4149 * never used in a precise context (i.e., it's precise value is not needed for 4150 * correctness), it's correct and safe to mark such register as "imprecise" 4151 * (i.e., precise marking set to false). This is what we rely on when we do 4152 * not set precise marking in current state. If no child state requires 4153 * precision for any given SCALAR register, it's safe to dictate that it can 4154 * be imprecise. If any child state does require this register to be precise, 4155 * we'll mark it precise later retroactively during precise markings 4156 * propagation from child state to parent states. 4157 * 4158 * Skipping precise marking setting in current state is a mild version of 4159 * relying on the above observation. But we can utilize this property even 4160 * more aggressively by proactively forgetting any precise marking in the 4161 * current state (which we inherited from the parent state), right before we 4162 * checkpoint it and branch off into new child state. This is done by 4163 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 4164 * finalized states which help in short circuiting more future states. 4165 */ 4166 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 4167 { 4168 struct backtrack_state *bt = &env->bt; 4169 struct bpf_verifier_state *st = env->cur_state; 4170 int first_idx = st->first_insn_idx; 4171 int last_idx = env->insn_idx; 4172 int subseq_idx = -1; 4173 struct bpf_func_state *func; 4174 struct bpf_reg_state *reg; 4175 bool skip_first = true; 4176 int i, fr, err; 4177 4178 if (!env->bpf_capable) 4179 return 0; 4180 4181 /* set frame number from which we are starting to backtrack */ 4182 bt_init(bt, env->cur_state->curframe); 4183 4184 /* Do sanity checks against current state of register and/or stack 4185 * slot, but don't set precise flag in current state, as precision 4186 * tracking in the current state is unnecessary. 4187 */ 4188 func = st->frame[bt->frame]; 4189 if (regno >= 0) { 4190 reg = &func->regs[regno]; 4191 if (reg->type != SCALAR_VALUE) { 4192 WARN_ONCE(1, "backtracing misuse"); 4193 return -EFAULT; 4194 } 4195 bt_set_reg(bt, regno); 4196 } 4197 4198 if (bt_empty(bt)) 4199 return 0; 4200 4201 for (;;) { 4202 DECLARE_BITMAP(mask, 64); 4203 u32 history = st->jmp_history_cnt; 4204 struct bpf_jmp_history_entry *hist; 4205 4206 if (env->log.level & BPF_LOG_LEVEL2) { 4207 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4208 bt->frame, last_idx, first_idx, subseq_idx); 4209 } 4210 4211 /* If some register with scalar ID is marked as precise, 4212 * make sure that all registers sharing this ID are also precise. 4213 * This is needed to estimate effect of find_equal_scalars(). 4214 * Do this at the last instruction of each state, 4215 * bpf_reg_state::id fields are valid for these instructions. 4216 * 4217 * Allows to track precision in situation like below: 4218 * 4219 * r2 = unknown value 4220 * ... 4221 * --- state #0 --- 4222 * ... 4223 * r1 = r2 // r1 and r2 now share the same ID 4224 * ... 4225 * --- state #1 {r1.id = A, r2.id = A} --- 4226 * ... 4227 * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1 4228 * ... 4229 * --- state #2 {r1.id = A, r2.id = A} --- 4230 * r3 = r10 4231 * r3 += r1 // need to mark both r1 and r2 4232 */ 4233 if (mark_precise_scalar_ids(env, st)) 4234 return -EFAULT; 4235 4236 if (last_idx < 0) { 4237 /* we are at the entry into subprog, which 4238 * is expected for global funcs, but only if 4239 * requested precise registers are R1-R5 4240 * (which are global func's input arguments) 4241 */ 4242 if (st->curframe == 0 && 4243 st->frame[0]->subprogno > 0 && 4244 st->frame[0]->callsite == BPF_MAIN_FUNC && 4245 bt_stack_mask(bt) == 0 && 4246 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4247 bitmap_from_u64(mask, bt_reg_mask(bt)); 4248 for_each_set_bit(i, mask, 32) { 4249 reg = &st->frame[0]->regs[i]; 4250 bt_clear_reg(bt, i); 4251 if (reg->type == SCALAR_VALUE) 4252 reg->precise = true; 4253 } 4254 return 0; 4255 } 4256 4257 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 4258 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4259 WARN_ONCE(1, "verifier backtracking bug"); 4260 return -EFAULT; 4261 } 4262 4263 for (i = last_idx;;) { 4264 if (skip_first) { 4265 err = 0; 4266 skip_first = false; 4267 } else { 4268 hist = get_jmp_hist_entry(st, history, i); 4269 err = backtrack_insn(env, i, subseq_idx, hist, bt); 4270 } 4271 if (err == -ENOTSUPP) { 4272 mark_all_scalars_precise(env, env->cur_state); 4273 bt_reset(bt); 4274 return 0; 4275 } else if (err) { 4276 return err; 4277 } 4278 if (bt_empty(bt)) 4279 /* Found assignment(s) into tracked register in this state. 4280 * Since this state is already marked, just return. 4281 * Nothing to be tracked further in the parent state. 4282 */ 4283 return 0; 4284 subseq_idx = i; 4285 i = get_prev_insn_idx(st, i, &history); 4286 if (i == -ENOENT) 4287 break; 4288 if (i >= env->prog->len) { 4289 /* This can happen if backtracking reached insn 0 4290 * and there are still reg_mask or stack_mask 4291 * to backtrack. 4292 * It means the backtracking missed the spot where 4293 * particular register was initialized with a constant. 4294 */ 4295 verbose(env, "BUG backtracking idx %d\n", i); 4296 WARN_ONCE(1, "verifier backtracking bug"); 4297 return -EFAULT; 4298 } 4299 } 4300 st = st->parent; 4301 if (!st) 4302 break; 4303 4304 for (fr = bt->frame; fr >= 0; fr--) { 4305 func = st->frame[fr]; 4306 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4307 for_each_set_bit(i, mask, 32) { 4308 reg = &func->regs[i]; 4309 if (reg->type != SCALAR_VALUE) { 4310 bt_clear_frame_reg(bt, fr, i); 4311 continue; 4312 } 4313 if (reg->precise) 4314 bt_clear_frame_reg(bt, fr, i); 4315 else 4316 reg->precise = true; 4317 } 4318 4319 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4320 for_each_set_bit(i, mask, 64) { 4321 if (i >= func->allocated_stack / BPF_REG_SIZE) { 4322 verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n", 4323 i, func->allocated_stack / BPF_REG_SIZE); 4324 WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)"); 4325 return -EFAULT; 4326 } 4327 4328 if (!is_spilled_scalar_reg(&func->stack[i])) { 4329 bt_clear_frame_slot(bt, fr, i); 4330 continue; 4331 } 4332 reg = &func->stack[i].spilled_ptr; 4333 if (reg->precise) 4334 bt_clear_frame_slot(bt, fr, i); 4335 else 4336 reg->precise = true; 4337 } 4338 if (env->log.level & BPF_LOG_LEVEL2) { 4339 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4340 bt_frame_reg_mask(bt, fr)); 4341 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4342 fr, env->tmp_str_buf); 4343 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4344 bt_frame_stack_mask(bt, fr)); 4345 verbose(env, "stack=%s: ", env->tmp_str_buf); 4346 print_verifier_state(env, func, true); 4347 } 4348 } 4349 4350 if (bt_empty(bt)) 4351 return 0; 4352 4353 subseq_idx = first_idx; 4354 last_idx = st->last_insn_idx; 4355 first_idx = st->first_insn_idx; 4356 } 4357 4358 /* if we still have requested precise regs or slots, we missed 4359 * something (e.g., stack access through non-r10 register), so 4360 * fallback to marking all precise 4361 */ 4362 if (!bt_empty(bt)) { 4363 mark_all_scalars_precise(env, env->cur_state); 4364 bt_reset(bt); 4365 } 4366 4367 return 0; 4368 } 4369 4370 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4371 { 4372 return __mark_chain_precision(env, regno); 4373 } 4374 4375 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4376 * desired reg and stack masks across all relevant frames 4377 */ 4378 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4379 { 4380 return __mark_chain_precision(env, -1); 4381 } 4382 4383 static bool is_spillable_regtype(enum bpf_reg_type type) 4384 { 4385 switch (base_type(type)) { 4386 case PTR_TO_MAP_VALUE: 4387 case PTR_TO_STACK: 4388 case PTR_TO_CTX: 4389 case PTR_TO_PACKET: 4390 case PTR_TO_PACKET_META: 4391 case PTR_TO_PACKET_END: 4392 case PTR_TO_FLOW_KEYS: 4393 case CONST_PTR_TO_MAP: 4394 case PTR_TO_SOCKET: 4395 case PTR_TO_SOCK_COMMON: 4396 case PTR_TO_TCP_SOCK: 4397 case PTR_TO_XDP_SOCK: 4398 case PTR_TO_BTF_ID: 4399 case PTR_TO_BUF: 4400 case PTR_TO_MEM: 4401 case PTR_TO_FUNC: 4402 case PTR_TO_MAP_KEY: 4403 case PTR_TO_ARENA: 4404 return true; 4405 default: 4406 return false; 4407 } 4408 } 4409 4410 /* Does this register contain a constant zero? */ 4411 static bool register_is_null(struct bpf_reg_state *reg) 4412 { 4413 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4414 } 4415 4416 /* check if register is a constant scalar value */ 4417 static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32) 4418 { 4419 return reg->type == SCALAR_VALUE && 4420 tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off); 4421 } 4422 4423 /* assuming is_reg_const() is true, return constant value of a register */ 4424 static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32) 4425 { 4426 return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value; 4427 } 4428 4429 static bool __is_pointer_value(bool allow_ptr_leaks, 4430 const struct bpf_reg_state *reg) 4431 { 4432 if (allow_ptr_leaks) 4433 return false; 4434 4435 return reg->type != SCALAR_VALUE; 4436 } 4437 4438 static void assign_scalar_id_before_mov(struct bpf_verifier_env *env, 4439 struct bpf_reg_state *src_reg) 4440 { 4441 if (src_reg->type == SCALAR_VALUE && !src_reg->id && 4442 !tnum_is_const(src_reg->var_off)) 4443 /* Ensure that src_reg has a valid ID that will be copied to 4444 * dst_reg and then will be used by find_equal_scalars() to 4445 * propagate min/max range. 4446 */ 4447 src_reg->id = ++env->id_gen; 4448 } 4449 4450 /* Copy src state preserving dst->parent and dst->live fields */ 4451 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4452 { 4453 struct bpf_reg_state *parent = dst->parent; 4454 enum bpf_reg_liveness live = dst->live; 4455 4456 *dst = *src; 4457 dst->parent = parent; 4458 dst->live = live; 4459 } 4460 4461 static void save_register_state(struct bpf_verifier_env *env, 4462 struct bpf_func_state *state, 4463 int spi, struct bpf_reg_state *reg, 4464 int size) 4465 { 4466 int i; 4467 4468 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4469 if (size == BPF_REG_SIZE) 4470 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4471 4472 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4473 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4474 4475 /* size < 8 bytes spill */ 4476 for (; i; i--) 4477 mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]); 4478 } 4479 4480 static bool is_bpf_st_mem(struct bpf_insn *insn) 4481 { 4482 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4483 } 4484 4485 static int get_reg_width(struct bpf_reg_state *reg) 4486 { 4487 return fls64(reg->umax_value); 4488 } 4489 4490 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4491 * stack boundary and alignment are checked in check_mem_access() 4492 */ 4493 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4494 /* stack frame we're writing to */ 4495 struct bpf_func_state *state, 4496 int off, int size, int value_regno, 4497 int insn_idx) 4498 { 4499 struct bpf_func_state *cur; /* state of the current function */ 4500 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4501 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4502 struct bpf_reg_state *reg = NULL; 4503 int insn_flags = insn_stack_access_flags(state->frameno, spi); 4504 4505 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4506 * so it's aligned access and [off, off + size) are within stack limits 4507 */ 4508 if (!env->allow_ptr_leaks && 4509 is_spilled_reg(&state->stack[spi]) && 4510 size != BPF_REG_SIZE) { 4511 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4512 return -EACCES; 4513 } 4514 4515 cur = env->cur_state->frame[env->cur_state->curframe]; 4516 if (value_regno >= 0) 4517 reg = &cur->regs[value_regno]; 4518 if (!env->bypass_spec_v4) { 4519 bool sanitize = reg && is_spillable_regtype(reg->type); 4520 4521 for (i = 0; i < size; i++) { 4522 u8 type = state->stack[spi].slot_type[i]; 4523 4524 if (type != STACK_MISC && type != STACK_ZERO) { 4525 sanitize = true; 4526 break; 4527 } 4528 } 4529 4530 if (sanitize) 4531 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4532 } 4533 4534 err = destroy_if_dynptr_stack_slot(env, state, spi); 4535 if (err) 4536 return err; 4537 4538 mark_stack_slot_scratched(env, spi); 4539 if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) { 4540 bool reg_value_fits; 4541 4542 reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size; 4543 /* Make sure that reg had an ID to build a relation on spill. */ 4544 if (reg_value_fits) 4545 assign_scalar_id_before_mov(env, reg); 4546 save_register_state(env, state, spi, reg, size); 4547 /* Break the relation on a narrowing spill. */ 4548 if (!reg_value_fits) 4549 state->stack[spi].spilled_ptr.id = 0; 4550 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4551 env->bpf_capable) { 4552 struct bpf_reg_state *tmp_reg = &env->fake_reg[0]; 4553 4554 memset(tmp_reg, 0, sizeof(*tmp_reg)); 4555 __mark_reg_known(tmp_reg, insn->imm); 4556 tmp_reg->type = SCALAR_VALUE; 4557 save_register_state(env, state, spi, tmp_reg, size); 4558 } else if (reg && is_spillable_regtype(reg->type)) { 4559 /* register containing pointer is being spilled into stack */ 4560 if (size != BPF_REG_SIZE) { 4561 verbose_linfo(env, insn_idx, "; "); 4562 verbose(env, "invalid size of register spill\n"); 4563 return -EACCES; 4564 } 4565 if (state != cur && reg->type == PTR_TO_STACK) { 4566 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4567 return -EINVAL; 4568 } 4569 save_register_state(env, state, spi, reg, size); 4570 } else { 4571 u8 type = STACK_MISC; 4572 4573 /* regular write of data into stack destroys any spilled ptr */ 4574 state->stack[spi].spilled_ptr.type = NOT_INIT; 4575 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4576 if (is_stack_slot_special(&state->stack[spi])) 4577 for (i = 0; i < BPF_REG_SIZE; i++) 4578 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4579 4580 /* only mark the slot as written if all 8 bytes were written 4581 * otherwise read propagation may incorrectly stop too soon 4582 * when stack slots are partially written. 4583 * This heuristic means that read propagation will be 4584 * conservative, since it will add reg_live_read marks 4585 * to stack slots all the way to first state when programs 4586 * writes+reads less than 8 bytes 4587 */ 4588 if (size == BPF_REG_SIZE) 4589 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4590 4591 /* when we zero initialize stack slots mark them as such */ 4592 if ((reg && register_is_null(reg)) || 4593 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4594 /* STACK_ZERO case happened because register spill 4595 * wasn't properly aligned at the stack slot boundary, 4596 * so it's not a register spill anymore; force 4597 * originating register to be precise to make 4598 * STACK_ZERO correct for subsequent states 4599 */ 4600 err = mark_chain_precision(env, value_regno); 4601 if (err) 4602 return err; 4603 type = STACK_ZERO; 4604 } 4605 4606 /* Mark slots affected by this stack write. */ 4607 for (i = 0; i < size; i++) 4608 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type; 4609 insn_flags = 0; /* not a register spill */ 4610 } 4611 4612 if (insn_flags) 4613 return push_jmp_history(env, env->cur_state, insn_flags); 4614 return 0; 4615 } 4616 4617 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4618 * known to contain a variable offset. 4619 * This function checks whether the write is permitted and conservatively 4620 * tracks the effects of the write, considering that each stack slot in the 4621 * dynamic range is potentially written to. 4622 * 4623 * 'off' includes 'regno->off'. 4624 * 'value_regno' can be -1, meaning that an unknown value is being written to 4625 * the stack. 4626 * 4627 * Spilled pointers in range are not marked as written because we don't know 4628 * what's going to be actually written. This means that read propagation for 4629 * future reads cannot be terminated by this write. 4630 * 4631 * For privileged programs, uninitialized stack slots are considered 4632 * initialized by this write (even though we don't know exactly what offsets 4633 * are going to be written to). The idea is that we don't want the verifier to 4634 * reject future reads that access slots written to through variable offsets. 4635 */ 4636 static int check_stack_write_var_off(struct bpf_verifier_env *env, 4637 /* func where register points to */ 4638 struct bpf_func_state *state, 4639 int ptr_regno, int off, int size, 4640 int value_regno, int insn_idx) 4641 { 4642 struct bpf_func_state *cur; /* state of the current function */ 4643 int min_off, max_off; 4644 int i, err; 4645 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 4646 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4647 bool writing_zero = false; 4648 /* set if the fact that we're writing a zero is used to let any 4649 * stack slots remain STACK_ZERO 4650 */ 4651 bool zero_used = false; 4652 4653 cur = env->cur_state->frame[env->cur_state->curframe]; 4654 ptr_reg = &cur->regs[ptr_regno]; 4655 min_off = ptr_reg->smin_value + off; 4656 max_off = ptr_reg->smax_value + off + size; 4657 if (value_regno >= 0) 4658 value_reg = &cur->regs[value_regno]; 4659 if ((value_reg && register_is_null(value_reg)) || 4660 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 4661 writing_zero = true; 4662 4663 for (i = min_off; i < max_off; i++) { 4664 int spi; 4665 4666 spi = __get_spi(i); 4667 err = destroy_if_dynptr_stack_slot(env, state, spi); 4668 if (err) 4669 return err; 4670 } 4671 4672 /* Variable offset writes destroy any spilled pointers in range. */ 4673 for (i = min_off; i < max_off; i++) { 4674 u8 new_type, *stype; 4675 int slot, spi; 4676 4677 slot = -i - 1; 4678 spi = slot / BPF_REG_SIZE; 4679 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4680 mark_stack_slot_scratched(env, spi); 4681 4682 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 4683 /* Reject the write if range we may write to has not 4684 * been initialized beforehand. If we didn't reject 4685 * here, the ptr status would be erased below (even 4686 * though not all slots are actually overwritten), 4687 * possibly opening the door to leaks. 4688 * 4689 * We do however catch STACK_INVALID case below, and 4690 * only allow reading possibly uninitialized memory 4691 * later for CAP_PERFMON, as the write may not happen to 4692 * that slot. 4693 */ 4694 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 4695 insn_idx, i); 4696 return -EINVAL; 4697 } 4698 4699 /* If writing_zero and the spi slot contains a spill of value 0, 4700 * maintain the spill type. 4701 */ 4702 if (writing_zero && *stype == STACK_SPILL && 4703 is_spilled_scalar_reg(&state->stack[spi])) { 4704 struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr; 4705 4706 if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) { 4707 zero_used = true; 4708 continue; 4709 } 4710 } 4711 4712 /* Erase all other spilled pointers. */ 4713 state->stack[spi].spilled_ptr.type = NOT_INIT; 4714 4715 /* Update the slot type. */ 4716 new_type = STACK_MISC; 4717 if (writing_zero && *stype == STACK_ZERO) { 4718 new_type = STACK_ZERO; 4719 zero_used = true; 4720 } 4721 /* If the slot is STACK_INVALID, we check whether it's OK to 4722 * pretend that it will be initialized by this write. The slot 4723 * might not actually be written to, and so if we mark it as 4724 * initialized future reads might leak uninitialized memory. 4725 * For privileged programs, we will accept such reads to slots 4726 * that may or may not be written because, if we're reject 4727 * them, the error would be too confusing. 4728 */ 4729 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 4730 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 4731 insn_idx, i); 4732 return -EINVAL; 4733 } 4734 *stype = new_type; 4735 } 4736 if (zero_used) { 4737 /* backtracking doesn't work for STACK_ZERO yet. */ 4738 err = mark_chain_precision(env, value_regno); 4739 if (err) 4740 return err; 4741 } 4742 return 0; 4743 } 4744 4745 /* When register 'dst_regno' is assigned some values from stack[min_off, 4746 * max_off), we set the register's type according to the types of the 4747 * respective stack slots. If all the stack values are known to be zeros, then 4748 * so is the destination reg. Otherwise, the register is considered to be 4749 * SCALAR. This function does not deal with register filling; the caller must 4750 * ensure that all spilled registers in the stack range have been marked as 4751 * read. 4752 */ 4753 static void mark_reg_stack_read(struct bpf_verifier_env *env, 4754 /* func where src register points to */ 4755 struct bpf_func_state *ptr_state, 4756 int min_off, int max_off, int dst_regno) 4757 { 4758 struct bpf_verifier_state *vstate = env->cur_state; 4759 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4760 int i, slot, spi; 4761 u8 *stype; 4762 int zeros = 0; 4763 4764 for (i = min_off; i < max_off; i++) { 4765 slot = -i - 1; 4766 spi = slot / BPF_REG_SIZE; 4767 mark_stack_slot_scratched(env, spi); 4768 stype = ptr_state->stack[spi].slot_type; 4769 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 4770 break; 4771 zeros++; 4772 } 4773 if (zeros == max_off - min_off) { 4774 /* Any access_size read into register is zero extended, 4775 * so the whole register == const_zero. 4776 */ 4777 __mark_reg_const_zero(env, &state->regs[dst_regno]); 4778 } else { 4779 /* have read misc data from the stack */ 4780 mark_reg_unknown(env, state->regs, dst_regno); 4781 } 4782 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4783 } 4784 4785 /* Read the stack at 'off' and put the results into the register indicated by 4786 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 4787 * spilled reg. 4788 * 4789 * 'dst_regno' can be -1, meaning that the read value is not going to a 4790 * register. 4791 * 4792 * The access is assumed to be within the current stack bounds. 4793 */ 4794 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 4795 /* func where src register points to */ 4796 struct bpf_func_state *reg_state, 4797 int off, int size, int dst_regno) 4798 { 4799 struct bpf_verifier_state *vstate = env->cur_state; 4800 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4801 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 4802 struct bpf_reg_state *reg; 4803 u8 *stype, type; 4804 int insn_flags = insn_stack_access_flags(reg_state->frameno, spi); 4805 4806 stype = reg_state->stack[spi].slot_type; 4807 reg = ®_state->stack[spi].spilled_ptr; 4808 4809 mark_stack_slot_scratched(env, spi); 4810 4811 if (is_spilled_reg(®_state->stack[spi])) { 4812 u8 spill_size = 1; 4813 4814 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 4815 spill_size++; 4816 4817 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 4818 if (reg->type != SCALAR_VALUE) { 4819 verbose_linfo(env, env->insn_idx, "; "); 4820 verbose(env, "invalid size of register fill\n"); 4821 return -EACCES; 4822 } 4823 4824 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4825 if (dst_regno < 0) 4826 return 0; 4827 4828 if (size <= spill_size && 4829 bpf_stack_narrow_access_ok(off, size, spill_size)) { 4830 /* The earlier check_reg_arg() has decided the 4831 * subreg_def for this insn. Save it first. 4832 */ 4833 s32 subreg_def = state->regs[dst_regno].subreg_def; 4834 4835 copy_register_state(&state->regs[dst_regno], reg); 4836 state->regs[dst_regno].subreg_def = subreg_def; 4837 4838 /* Break the relation on a narrowing fill. 4839 * coerce_reg_to_size will adjust the boundaries. 4840 */ 4841 if (get_reg_width(reg) > size * BITS_PER_BYTE) 4842 state->regs[dst_regno].id = 0; 4843 } else { 4844 int spill_cnt = 0, zero_cnt = 0; 4845 4846 for (i = 0; i < size; i++) { 4847 type = stype[(slot - i) % BPF_REG_SIZE]; 4848 if (type == STACK_SPILL) { 4849 spill_cnt++; 4850 continue; 4851 } 4852 if (type == STACK_MISC) 4853 continue; 4854 if (type == STACK_ZERO) { 4855 zero_cnt++; 4856 continue; 4857 } 4858 if (type == STACK_INVALID && env->allow_uninit_stack) 4859 continue; 4860 verbose(env, "invalid read from stack off %d+%d size %d\n", 4861 off, i, size); 4862 return -EACCES; 4863 } 4864 4865 if (spill_cnt == size && 4866 tnum_is_const(reg->var_off) && reg->var_off.value == 0) { 4867 __mark_reg_const_zero(env, &state->regs[dst_regno]); 4868 /* this IS register fill, so keep insn_flags */ 4869 } else if (zero_cnt == size) { 4870 /* similarly to mark_reg_stack_read(), preserve zeroes */ 4871 __mark_reg_const_zero(env, &state->regs[dst_regno]); 4872 insn_flags = 0; /* not restoring original register state */ 4873 } else { 4874 mark_reg_unknown(env, state->regs, dst_regno); 4875 insn_flags = 0; /* not restoring original register state */ 4876 } 4877 } 4878 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4879 } else if (dst_regno >= 0) { 4880 /* restore register state from stack */ 4881 copy_register_state(&state->regs[dst_regno], reg); 4882 /* mark reg as written since spilled pointer state likely 4883 * has its liveness marks cleared by is_state_visited() 4884 * which resets stack/reg liveness for state transitions 4885 */ 4886 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4887 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 4888 /* If dst_regno==-1, the caller is asking us whether 4889 * it is acceptable to use this value as a SCALAR_VALUE 4890 * (e.g. for XADD). 4891 * We must not allow unprivileged callers to do that 4892 * with spilled pointers. 4893 */ 4894 verbose(env, "leaking pointer from stack off %d\n", 4895 off); 4896 return -EACCES; 4897 } 4898 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4899 } else { 4900 for (i = 0; i < size; i++) { 4901 type = stype[(slot - i) % BPF_REG_SIZE]; 4902 if (type == STACK_MISC) 4903 continue; 4904 if (type == STACK_ZERO) 4905 continue; 4906 if (type == STACK_INVALID && env->allow_uninit_stack) 4907 continue; 4908 verbose(env, "invalid read from stack off %d+%d size %d\n", 4909 off, i, size); 4910 return -EACCES; 4911 } 4912 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4913 if (dst_regno >= 0) 4914 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 4915 insn_flags = 0; /* we are not restoring spilled register */ 4916 } 4917 if (insn_flags) 4918 return push_jmp_history(env, env->cur_state, insn_flags); 4919 return 0; 4920 } 4921 4922 enum bpf_access_src { 4923 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 4924 ACCESS_HELPER = 2, /* the access is performed by a helper */ 4925 }; 4926 4927 static int check_stack_range_initialized(struct bpf_verifier_env *env, 4928 int regno, int off, int access_size, 4929 bool zero_size_allowed, 4930 enum bpf_access_src type, 4931 struct bpf_call_arg_meta *meta); 4932 4933 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 4934 { 4935 return cur_regs(env) + regno; 4936 } 4937 4938 /* Read the stack at 'ptr_regno + off' and put the result into the register 4939 * 'dst_regno'. 4940 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 4941 * but not its variable offset. 4942 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 4943 * 4944 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 4945 * filling registers (i.e. reads of spilled register cannot be detected when 4946 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 4947 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 4948 * offset; for a fixed offset check_stack_read_fixed_off should be used 4949 * instead. 4950 */ 4951 static int check_stack_read_var_off(struct bpf_verifier_env *env, 4952 int ptr_regno, int off, int size, int dst_regno) 4953 { 4954 /* The state of the source register. */ 4955 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4956 struct bpf_func_state *ptr_state = func(env, reg); 4957 int err; 4958 int min_off, max_off; 4959 4960 /* Note that we pass a NULL meta, so raw access will not be permitted. 4961 */ 4962 err = check_stack_range_initialized(env, ptr_regno, off, size, 4963 false, ACCESS_DIRECT, NULL); 4964 if (err) 4965 return err; 4966 4967 min_off = reg->smin_value + off; 4968 max_off = reg->smax_value + off; 4969 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 4970 return 0; 4971 } 4972 4973 /* check_stack_read dispatches to check_stack_read_fixed_off or 4974 * check_stack_read_var_off. 4975 * 4976 * The caller must ensure that the offset falls within the allocated stack 4977 * bounds. 4978 * 4979 * 'dst_regno' is a register which will receive the value from the stack. It 4980 * can be -1, meaning that the read value is not going to a register. 4981 */ 4982 static int check_stack_read(struct bpf_verifier_env *env, 4983 int ptr_regno, int off, int size, 4984 int dst_regno) 4985 { 4986 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4987 struct bpf_func_state *state = func(env, reg); 4988 int err; 4989 /* Some accesses are only permitted with a static offset. */ 4990 bool var_off = !tnum_is_const(reg->var_off); 4991 4992 /* The offset is required to be static when reads don't go to a 4993 * register, in order to not leak pointers (see 4994 * check_stack_read_fixed_off). 4995 */ 4996 if (dst_regno < 0 && var_off) { 4997 char tn_buf[48]; 4998 4999 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5000 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 5001 tn_buf, off, size); 5002 return -EACCES; 5003 } 5004 /* Variable offset is prohibited for unprivileged mode for simplicity 5005 * since it requires corresponding support in Spectre masking for stack 5006 * ALU. See also retrieve_ptr_limit(). The check in 5007 * check_stack_access_for_ptr_arithmetic() called by 5008 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 5009 * with variable offsets, therefore no check is required here. Further, 5010 * just checking it here would be insufficient as speculative stack 5011 * writes could still lead to unsafe speculative behaviour. 5012 */ 5013 if (!var_off) { 5014 off += reg->var_off.value; 5015 err = check_stack_read_fixed_off(env, state, off, size, 5016 dst_regno); 5017 } else { 5018 /* Variable offset stack reads need more conservative handling 5019 * than fixed offset ones. Note that dst_regno >= 0 on this 5020 * branch. 5021 */ 5022 err = check_stack_read_var_off(env, ptr_regno, off, size, 5023 dst_regno); 5024 } 5025 return err; 5026 } 5027 5028 5029 /* check_stack_write dispatches to check_stack_write_fixed_off or 5030 * check_stack_write_var_off. 5031 * 5032 * 'ptr_regno' is the register used as a pointer into the stack. 5033 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 5034 * 'value_regno' is the register whose value we're writing to the stack. It can 5035 * be -1, meaning that we're not writing from a register. 5036 * 5037 * The caller must ensure that the offset falls within the maximum stack size. 5038 */ 5039 static int check_stack_write(struct bpf_verifier_env *env, 5040 int ptr_regno, int off, int size, 5041 int value_regno, int insn_idx) 5042 { 5043 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5044 struct bpf_func_state *state = func(env, reg); 5045 int err; 5046 5047 if (tnum_is_const(reg->var_off)) { 5048 off += reg->var_off.value; 5049 err = check_stack_write_fixed_off(env, state, off, size, 5050 value_regno, insn_idx); 5051 } else { 5052 /* Variable offset stack reads need more conservative handling 5053 * than fixed offset ones. 5054 */ 5055 err = check_stack_write_var_off(env, state, 5056 ptr_regno, off, size, 5057 value_regno, insn_idx); 5058 } 5059 return err; 5060 } 5061 5062 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 5063 int off, int size, enum bpf_access_type type) 5064 { 5065 struct bpf_reg_state *regs = cur_regs(env); 5066 struct bpf_map *map = regs[regno].map_ptr; 5067 u32 cap = bpf_map_flags_to_cap(map); 5068 5069 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 5070 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 5071 map->value_size, off, size); 5072 return -EACCES; 5073 } 5074 5075 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 5076 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 5077 map->value_size, off, size); 5078 return -EACCES; 5079 } 5080 5081 return 0; 5082 } 5083 5084 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 5085 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 5086 int off, int size, u32 mem_size, 5087 bool zero_size_allowed) 5088 { 5089 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 5090 struct bpf_reg_state *reg; 5091 5092 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 5093 return 0; 5094 5095 reg = &cur_regs(env)[regno]; 5096 switch (reg->type) { 5097 case PTR_TO_MAP_KEY: 5098 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 5099 mem_size, off, size); 5100 break; 5101 case PTR_TO_MAP_VALUE: 5102 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 5103 mem_size, off, size); 5104 break; 5105 case PTR_TO_PACKET: 5106 case PTR_TO_PACKET_META: 5107 case PTR_TO_PACKET_END: 5108 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 5109 off, size, regno, reg->id, off, mem_size); 5110 break; 5111 case PTR_TO_MEM: 5112 default: 5113 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 5114 mem_size, off, size); 5115 } 5116 5117 return -EACCES; 5118 } 5119 5120 /* check read/write into a memory region with possible variable offset */ 5121 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 5122 int off, int size, u32 mem_size, 5123 bool zero_size_allowed) 5124 { 5125 struct bpf_verifier_state *vstate = env->cur_state; 5126 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5127 struct bpf_reg_state *reg = &state->regs[regno]; 5128 int err; 5129 5130 /* We may have adjusted the register pointing to memory region, so we 5131 * need to try adding each of min_value and max_value to off 5132 * to make sure our theoretical access will be safe. 5133 * 5134 * The minimum value is only important with signed 5135 * comparisons where we can't assume the floor of a 5136 * value is 0. If we are using signed variables for our 5137 * index'es we need to make sure that whatever we use 5138 * will have a set floor within our range. 5139 */ 5140 if (reg->smin_value < 0 && 5141 (reg->smin_value == S64_MIN || 5142 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 5143 reg->smin_value + off < 0)) { 5144 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5145 regno); 5146 return -EACCES; 5147 } 5148 err = __check_mem_access(env, regno, reg->smin_value + off, size, 5149 mem_size, zero_size_allowed); 5150 if (err) { 5151 verbose(env, "R%d min value is outside of the allowed memory range\n", 5152 regno); 5153 return err; 5154 } 5155 5156 /* If we haven't set a max value then we need to bail since we can't be 5157 * sure we won't do bad things. 5158 * If reg->umax_value + off could overflow, treat that as unbounded too. 5159 */ 5160 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 5161 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 5162 regno); 5163 return -EACCES; 5164 } 5165 err = __check_mem_access(env, regno, reg->umax_value + off, size, 5166 mem_size, zero_size_allowed); 5167 if (err) { 5168 verbose(env, "R%d max value is outside of the allowed memory range\n", 5169 regno); 5170 return err; 5171 } 5172 5173 return 0; 5174 } 5175 5176 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 5177 const struct bpf_reg_state *reg, int regno, 5178 bool fixed_off_ok) 5179 { 5180 /* Access to this pointer-typed register or passing it to a helper 5181 * is only allowed in its original, unmodified form. 5182 */ 5183 5184 if (reg->off < 0) { 5185 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 5186 reg_type_str(env, reg->type), regno, reg->off); 5187 return -EACCES; 5188 } 5189 5190 if (!fixed_off_ok && reg->off) { 5191 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 5192 reg_type_str(env, reg->type), regno, reg->off); 5193 return -EACCES; 5194 } 5195 5196 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5197 char tn_buf[48]; 5198 5199 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5200 verbose(env, "variable %s access var_off=%s disallowed\n", 5201 reg_type_str(env, reg->type), tn_buf); 5202 return -EACCES; 5203 } 5204 5205 return 0; 5206 } 5207 5208 static int check_ptr_off_reg(struct bpf_verifier_env *env, 5209 const struct bpf_reg_state *reg, int regno) 5210 { 5211 return __check_ptr_off_reg(env, reg, regno, false); 5212 } 5213 5214 static int map_kptr_match_type(struct bpf_verifier_env *env, 5215 struct btf_field *kptr_field, 5216 struct bpf_reg_state *reg, u32 regno) 5217 { 5218 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 5219 int perm_flags; 5220 const char *reg_name = ""; 5221 5222 if (btf_is_kernel(reg->btf)) { 5223 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 5224 5225 /* Only unreferenced case accepts untrusted pointers */ 5226 if (kptr_field->type == BPF_KPTR_UNREF) 5227 perm_flags |= PTR_UNTRUSTED; 5228 } else { 5229 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5230 if (kptr_field->type == BPF_KPTR_PERCPU) 5231 perm_flags |= MEM_PERCPU; 5232 } 5233 5234 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5235 goto bad_type; 5236 5237 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5238 reg_name = btf_type_name(reg->btf, reg->btf_id); 5239 5240 /* For ref_ptr case, release function check should ensure we get one 5241 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5242 * normal store of unreferenced kptr, we must ensure var_off is zero. 5243 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5244 * reg->off and reg->ref_obj_id are not needed here. 5245 */ 5246 if (__check_ptr_off_reg(env, reg, regno, true)) 5247 return -EACCES; 5248 5249 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5250 * we also need to take into account the reg->off. 5251 * 5252 * We want to support cases like: 5253 * 5254 * struct foo { 5255 * struct bar br; 5256 * struct baz bz; 5257 * }; 5258 * 5259 * struct foo *v; 5260 * v = func(); // PTR_TO_BTF_ID 5261 * val->foo = v; // reg->off is zero, btf and btf_id match type 5262 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5263 * // first member type of struct after comparison fails 5264 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5265 * // to match type 5266 * 5267 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5268 * is zero. We must also ensure that btf_struct_ids_match does not walk 5269 * the struct to match type against first member of struct, i.e. reject 5270 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5271 * strict mode to true for type match. 5272 */ 5273 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5274 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5275 kptr_field->type != BPF_KPTR_UNREF)) 5276 goto bad_type; 5277 return 0; 5278 bad_type: 5279 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5280 reg_type_str(env, reg->type), reg_name); 5281 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5282 if (kptr_field->type == BPF_KPTR_UNREF) 5283 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5284 targ_name); 5285 else 5286 verbose(env, "\n"); 5287 return -EINVAL; 5288 } 5289 5290 static bool in_sleepable(struct bpf_verifier_env *env) 5291 { 5292 return env->prog->sleepable || 5293 (env->cur_state && env->cur_state->in_sleepable); 5294 } 5295 5296 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5297 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5298 */ 5299 static bool in_rcu_cs(struct bpf_verifier_env *env) 5300 { 5301 return env->cur_state->active_rcu_lock || 5302 env->cur_state->active_lock.ptr || 5303 !in_sleepable(env); 5304 } 5305 5306 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5307 BTF_SET_START(rcu_protected_types) 5308 BTF_ID(struct, prog_test_ref_kfunc) 5309 #ifdef CONFIG_CGROUPS 5310 BTF_ID(struct, cgroup) 5311 #endif 5312 #ifdef CONFIG_BPF_JIT 5313 BTF_ID(struct, bpf_cpumask) 5314 #endif 5315 BTF_ID(struct, task_struct) 5316 BTF_ID(struct, bpf_crypto_ctx) 5317 BTF_SET_END(rcu_protected_types) 5318 5319 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5320 { 5321 if (!btf_is_kernel(btf)) 5322 return true; 5323 return btf_id_set_contains(&rcu_protected_types, btf_id); 5324 } 5325 5326 static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field) 5327 { 5328 struct btf_struct_meta *meta; 5329 5330 if (btf_is_kernel(kptr_field->kptr.btf)) 5331 return NULL; 5332 5333 meta = btf_find_struct_meta(kptr_field->kptr.btf, 5334 kptr_field->kptr.btf_id); 5335 5336 return meta ? meta->record : NULL; 5337 } 5338 5339 static bool rcu_safe_kptr(const struct btf_field *field) 5340 { 5341 const struct btf_field_kptr *kptr = &field->kptr; 5342 5343 return field->type == BPF_KPTR_PERCPU || 5344 (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id)); 5345 } 5346 5347 static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field) 5348 { 5349 struct btf_record *rec; 5350 u32 ret; 5351 5352 ret = PTR_MAYBE_NULL; 5353 if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) { 5354 ret |= MEM_RCU; 5355 if (kptr_field->type == BPF_KPTR_PERCPU) 5356 ret |= MEM_PERCPU; 5357 else if (!btf_is_kernel(kptr_field->kptr.btf)) 5358 ret |= MEM_ALLOC; 5359 5360 rec = kptr_pointee_btf_record(kptr_field); 5361 if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE)) 5362 ret |= NON_OWN_REF; 5363 } else { 5364 ret |= PTR_UNTRUSTED; 5365 } 5366 5367 return ret; 5368 } 5369 5370 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5371 int value_regno, int insn_idx, 5372 struct btf_field *kptr_field) 5373 { 5374 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5375 int class = BPF_CLASS(insn->code); 5376 struct bpf_reg_state *val_reg; 5377 5378 /* Things we already checked for in check_map_access and caller: 5379 * - Reject cases where variable offset may touch kptr 5380 * - size of access (must be BPF_DW) 5381 * - tnum_is_const(reg->var_off) 5382 * - kptr_field->offset == off + reg->var_off.value 5383 */ 5384 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5385 if (BPF_MODE(insn->code) != BPF_MEM) { 5386 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5387 return -EACCES; 5388 } 5389 5390 /* We only allow loading referenced kptr, since it will be marked as 5391 * untrusted, similar to unreferenced kptr. 5392 */ 5393 if (class != BPF_LDX && 5394 (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) { 5395 verbose(env, "store to referenced kptr disallowed\n"); 5396 return -EACCES; 5397 } 5398 5399 if (class == BPF_LDX) { 5400 val_reg = reg_state(env, value_regno); 5401 /* We can simply mark the value_regno receiving the pointer 5402 * value from map as PTR_TO_BTF_ID, with the correct type. 5403 */ 5404 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5405 kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field)); 5406 } else if (class == BPF_STX) { 5407 val_reg = reg_state(env, value_regno); 5408 if (!register_is_null(val_reg) && 5409 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5410 return -EACCES; 5411 } else if (class == BPF_ST) { 5412 if (insn->imm) { 5413 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5414 kptr_field->offset); 5415 return -EACCES; 5416 } 5417 } else { 5418 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5419 return -EACCES; 5420 } 5421 return 0; 5422 } 5423 5424 /* check read/write into a map element with possible variable offset */ 5425 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5426 int off, int size, bool zero_size_allowed, 5427 enum bpf_access_src src) 5428 { 5429 struct bpf_verifier_state *vstate = env->cur_state; 5430 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5431 struct bpf_reg_state *reg = &state->regs[regno]; 5432 struct bpf_map *map = reg->map_ptr; 5433 struct btf_record *rec; 5434 int err, i; 5435 5436 err = check_mem_region_access(env, regno, off, size, map->value_size, 5437 zero_size_allowed); 5438 if (err) 5439 return err; 5440 5441 if (IS_ERR_OR_NULL(map->record)) 5442 return 0; 5443 rec = map->record; 5444 for (i = 0; i < rec->cnt; i++) { 5445 struct btf_field *field = &rec->fields[i]; 5446 u32 p = field->offset; 5447 5448 /* If any part of a field can be touched by load/store, reject 5449 * this program. To check that [x1, x2) overlaps with [y1, y2), 5450 * it is sufficient to check x1 < y2 && y1 < x2. 5451 */ 5452 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 5453 p < reg->umax_value + off + size) { 5454 switch (field->type) { 5455 case BPF_KPTR_UNREF: 5456 case BPF_KPTR_REF: 5457 case BPF_KPTR_PERCPU: 5458 if (src != ACCESS_DIRECT) { 5459 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 5460 return -EACCES; 5461 } 5462 if (!tnum_is_const(reg->var_off)) { 5463 verbose(env, "kptr access cannot have variable offset\n"); 5464 return -EACCES; 5465 } 5466 if (p != off + reg->var_off.value) { 5467 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 5468 p, off + reg->var_off.value); 5469 return -EACCES; 5470 } 5471 if (size != bpf_size_to_bytes(BPF_DW)) { 5472 verbose(env, "kptr access size must be BPF_DW\n"); 5473 return -EACCES; 5474 } 5475 break; 5476 default: 5477 verbose(env, "%s cannot be accessed directly by load/store\n", 5478 btf_field_type_name(field->type)); 5479 return -EACCES; 5480 } 5481 } 5482 } 5483 return 0; 5484 } 5485 5486 #define MAX_PACKET_OFF 0xffff 5487 5488 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5489 const struct bpf_call_arg_meta *meta, 5490 enum bpf_access_type t) 5491 { 5492 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5493 5494 switch (prog_type) { 5495 /* Program types only with direct read access go here! */ 5496 case BPF_PROG_TYPE_LWT_IN: 5497 case BPF_PROG_TYPE_LWT_OUT: 5498 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5499 case BPF_PROG_TYPE_SK_REUSEPORT: 5500 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5501 case BPF_PROG_TYPE_CGROUP_SKB: 5502 if (t == BPF_WRITE) 5503 return false; 5504 fallthrough; 5505 5506 /* Program types with direct read + write access go here! */ 5507 case BPF_PROG_TYPE_SCHED_CLS: 5508 case BPF_PROG_TYPE_SCHED_ACT: 5509 case BPF_PROG_TYPE_XDP: 5510 case BPF_PROG_TYPE_LWT_XMIT: 5511 case BPF_PROG_TYPE_SK_SKB: 5512 case BPF_PROG_TYPE_SK_MSG: 5513 if (meta) 5514 return meta->pkt_access; 5515 5516 env->seen_direct_write = true; 5517 return true; 5518 5519 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5520 if (t == BPF_WRITE) 5521 env->seen_direct_write = true; 5522 5523 return true; 5524 5525 default: 5526 return false; 5527 } 5528 } 5529 5530 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5531 int size, bool zero_size_allowed) 5532 { 5533 struct bpf_reg_state *regs = cur_regs(env); 5534 struct bpf_reg_state *reg = ®s[regno]; 5535 int err; 5536 5537 /* We may have added a variable offset to the packet pointer; but any 5538 * reg->range we have comes after that. We are only checking the fixed 5539 * offset. 5540 */ 5541 5542 /* We don't allow negative numbers, because we aren't tracking enough 5543 * detail to prove they're safe. 5544 */ 5545 if (reg->smin_value < 0) { 5546 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5547 regno); 5548 return -EACCES; 5549 } 5550 5551 err = reg->range < 0 ? -EINVAL : 5552 __check_mem_access(env, regno, off, size, reg->range, 5553 zero_size_allowed); 5554 if (err) { 5555 verbose(env, "R%d offset is outside of the packet\n", regno); 5556 return err; 5557 } 5558 5559 /* __check_mem_access has made sure "off + size - 1" is within u16. 5560 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5561 * otherwise find_good_pkt_pointers would have refused to set range info 5562 * that __check_mem_access would have rejected this pkt access. 5563 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5564 */ 5565 env->prog->aux->max_pkt_offset = 5566 max_t(u32, env->prog->aux->max_pkt_offset, 5567 off + reg->umax_value + size - 1); 5568 5569 return err; 5570 } 5571 5572 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5573 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5574 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5575 struct btf **btf, u32 *btf_id) 5576 { 5577 struct bpf_insn_access_aux info = { 5578 .reg_type = *reg_type, 5579 .log = &env->log, 5580 }; 5581 5582 if (env->ops->is_valid_access && 5583 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5584 /* A non zero info.ctx_field_size indicates that this field is a 5585 * candidate for later verifier transformation to load the whole 5586 * field and then apply a mask when accessed with a narrower 5587 * access than actual ctx access size. A zero info.ctx_field_size 5588 * will only allow for whole field access and rejects any other 5589 * type of narrower access. 5590 */ 5591 *reg_type = info.reg_type; 5592 5593 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 5594 *btf = info.btf; 5595 *btf_id = info.btf_id; 5596 } else { 5597 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 5598 } 5599 /* remember the offset of last byte accessed in ctx */ 5600 if (env->prog->aux->max_ctx_offset < off + size) 5601 env->prog->aux->max_ctx_offset = off + size; 5602 return 0; 5603 } 5604 5605 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 5606 return -EACCES; 5607 } 5608 5609 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 5610 int size) 5611 { 5612 if (size < 0 || off < 0 || 5613 (u64)off + size > sizeof(struct bpf_flow_keys)) { 5614 verbose(env, "invalid access to flow keys off=%d size=%d\n", 5615 off, size); 5616 return -EACCES; 5617 } 5618 return 0; 5619 } 5620 5621 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 5622 u32 regno, int off, int size, 5623 enum bpf_access_type t) 5624 { 5625 struct bpf_reg_state *regs = cur_regs(env); 5626 struct bpf_reg_state *reg = ®s[regno]; 5627 struct bpf_insn_access_aux info = {}; 5628 bool valid; 5629 5630 if (reg->smin_value < 0) { 5631 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5632 regno); 5633 return -EACCES; 5634 } 5635 5636 switch (reg->type) { 5637 case PTR_TO_SOCK_COMMON: 5638 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 5639 break; 5640 case PTR_TO_SOCKET: 5641 valid = bpf_sock_is_valid_access(off, size, t, &info); 5642 break; 5643 case PTR_TO_TCP_SOCK: 5644 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 5645 break; 5646 case PTR_TO_XDP_SOCK: 5647 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 5648 break; 5649 default: 5650 valid = false; 5651 } 5652 5653 5654 if (valid) { 5655 env->insn_aux_data[insn_idx].ctx_field_size = 5656 info.ctx_field_size; 5657 return 0; 5658 } 5659 5660 verbose(env, "R%d invalid %s access off=%d size=%d\n", 5661 regno, reg_type_str(env, reg->type), off, size); 5662 5663 return -EACCES; 5664 } 5665 5666 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 5667 { 5668 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 5669 } 5670 5671 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 5672 { 5673 const struct bpf_reg_state *reg = reg_state(env, regno); 5674 5675 return reg->type == PTR_TO_CTX; 5676 } 5677 5678 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 5679 { 5680 const struct bpf_reg_state *reg = reg_state(env, regno); 5681 5682 return type_is_sk_pointer(reg->type); 5683 } 5684 5685 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 5686 { 5687 const struct bpf_reg_state *reg = reg_state(env, regno); 5688 5689 return type_is_pkt_pointer(reg->type); 5690 } 5691 5692 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 5693 { 5694 const struct bpf_reg_state *reg = reg_state(env, regno); 5695 5696 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 5697 return reg->type == PTR_TO_FLOW_KEYS; 5698 } 5699 5700 static bool is_arena_reg(struct bpf_verifier_env *env, int regno) 5701 { 5702 const struct bpf_reg_state *reg = reg_state(env, regno); 5703 5704 return reg->type == PTR_TO_ARENA; 5705 } 5706 5707 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 5708 #ifdef CONFIG_NET 5709 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 5710 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5711 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 5712 #endif 5713 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 5714 }; 5715 5716 static bool is_trusted_reg(const struct bpf_reg_state *reg) 5717 { 5718 /* A referenced register is always trusted. */ 5719 if (reg->ref_obj_id) 5720 return true; 5721 5722 /* Types listed in the reg2btf_ids are always trusted */ 5723 if (reg2btf_ids[base_type(reg->type)] && 5724 !bpf_type_has_unsafe_modifiers(reg->type)) 5725 return true; 5726 5727 /* If a register is not referenced, it is trusted if it has the 5728 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 5729 * other type modifiers may be safe, but we elect to take an opt-in 5730 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 5731 * not. 5732 * 5733 * Eventually, we should make PTR_TRUSTED the single source of truth 5734 * for whether a register is trusted. 5735 */ 5736 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 5737 !bpf_type_has_unsafe_modifiers(reg->type); 5738 } 5739 5740 static bool is_rcu_reg(const struct bpf_reg_state *reg) 5741 { 5742 return reg->type & MEM_RCU; 5743 } 5744 5745 static void clear_trusted_flags(enum bpf_type_flag *flag) 5746 { 5747 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 5748 } 5749 5750 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 5751 const struct bpf_reg_state *reg, 5752 int off, int size, bool strict) 5753 { 5754 struct tnum reg_off; 5755 int ip_align; 5756 5757 /* Byte size accesses are always allowed. */ 5758 if (!strict || size == 1) 5759 return 0; 5760 5761 /* For platforms that do not have a Kconfig enabling 5762 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 5763 * NET_IP_ALIGN is universally set to '2'. And on platforms 5764 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 5765 * to this code only in strict mode where we want to emulate 5766 * the NET_IP_ALIGN==2 checking. Therefore use an 5767 * unconditional IP align value of '2'. 5768 */ 5769 ip_align = 2; 5770 5771 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 5772 if (!tnum_is_aligned(reg_off, size)) { 5773 char tn_buf[48]; 5774 5775 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5776 verbose(env, 5777 "misaligned packet access off %d+%s+%d+%d size %d\n", 5778 ip_align, tn_buf, reg->off, off, size); 5779 return -EACCES; 5780 } 5781 5782 return 0; 5783 } 5784 5785 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 5786 const struct bpf_reg_state *reg, 5787 const char *pointer_desc, 5788 int off, int size, bool strict) 5789 { 5790 struct tnum reg_off; 5791 5792 /* Byte size accesses are always allowed. */ 5793 if (!strict || size == 1) 5794 return 0; 5795 5796 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 5797 if (!tnum_is_aligned(reg_off, size)) { 5798 char tn_buf[48]; 5799 5800 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5801 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 5802 pointer_desc, tn_buf, reg->off, off, size); 5803 return -EACCES; 5804 } 5805 5806 return 0; 5807 } 5808 5809 static int check_ptr_alignment(struct bpf_verifier_env *env, 5810 const struct bpf_reg_state *reg, int off, 5811 int size, bool strict_alignment_once) 5812 { 5813 bool strict = env->strict_alignment || strict_alignment_once; 5814 const char *pointer_desc = ""; 5815 5816 switch (reg->type) { 5817 case PTR_TO_PACKET: 5818 case PTR_TO_PACKET_META: 5819 /* Special case, because of NET_IP_ALIGN. Given metadata sits 5820 * right in front, treat it the very same way. 5821 */ 5822 return check_pkt_ptr_alignment(env, reg, off, size, strict); 5823 case PTR_TO_FLOW_KEYS: 5824 pointer_desc = "flow keys "; 5825 break; 5826 case PTR_TO_MAP_KEY: 5827 pointer_desc = "key "; 5828 break; 5829 case PTR_TO_MAP_VALUE: 5830 pointer_desc = "value "; 5831 break; 5832 case PTR_TO_CTX: 5833 pointer_desc = "context "; 5834 break; 5835 case PTR_TO_STACK: 5836 pointer_desc = "stack "; 5837 /* The stack spill tracking logic in check_stack_write_fixed_off() 5838 * and check_stack_read_fixed_off() relies on stack accesses being 5839 * aligned. 5840 */ 5841 strict = true; 5842 break; 5843 case PTR_TO_SOCKET: 5844 pointer_desc = "sock "; 5845 break; 5846 case PTR_TO_SOCK_COMMON: 5847 pointer_desc = "sock_common "; 5848 break; 5849 case PTR_TO_TCP_SOCK: 5850 pointer_desc = "tcp_sock "; 5851 break; 5852 case PTR_TO_XDP_SOCK: 5853 pointer_desc = "xdp_sock "; 5854 break; 5855 case PTR_TO_ARENA: 5856 return 0; 5857 default: 5858 break; 5859 } 5860 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 5861 strict); 5862 } 5863 5864 static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth) 5865 { 5866 if (env->prog->jit_requested) 5867 return round_up(stack_depth, 16); 5868 5869 /* round up to 32-bytes, since this is granularity 5870 * of interpreter stack size 5871 */ 5872 return round_up(max_t(u32, stack_depth, 1), 32); 5873 } 5874 5875 /* starting from main bpf function walk all instructions of the function 5876 * and recursively walk all callees that given function can call. 5877 * Ignore jump and exit insns. 5878 * Since recursion is prevented by check_cfg() this algorithm 5879 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 5880 */ 5881 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx) 5882 { 5883 struct bpf_subprog_info *subprog = env->subprog_info; 5884 struct bpf_insn *insn = env->prog->insnsi; 5885 int depth = 0, frame = 0, i, subprog_end; 5886 bool tail_call_reachable = false; 5887 int ret_insn[MAX_CALL_FRAMES]; 5888 int ret_prog[MAX_CALL_FRAMES]; 5889 int j; 5890 5891 i = subprog[idx].start; 5892 process_func: 5893 /* protect against potential stack overflow that might happen when 5894 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 5895 * depth for such case down to 256 so that the worst case scenario 5896 * would result in 8k stack size (32 which is tailcall limit * 256 = 5897 * 8k). 5898 * 5899 * To get the idea what might happen, see an example: 5900 * func1 -> sub rsp, 128 5901 * subfunc1 -> sub rsp, 256 5902 * tailcall1 -> add rsp, 256 5903 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 5904 * subfunc2 -> sub rsp, 64 5905 * subfunc22 -> sub rsp, 128 5906 * tailcall2 -> add rsp, 128 5907 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 5908 * 5909 * tailcall will unwind the current stack frame but it will not get rid 5910 * of caller's stack as shown on the example above. 5911 */ 5912 if (idx && subprog[idx].has_tail_call && depth >= 256) { 5913 verbose(env, 5914 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 5915 depth); 5916 return -EACCES; 5917 } 5918 depth += round_up_stack_depth(env, subprog[idx].stack_depth); 5919 if (depth > MAX_BPF_STACK) { 5920 verbose(env, "combined stack size of %d calls is %d. Too large\n", 5921 frame + 1, depth); 5922 return -EACCES; 5923 } 5924 continue_func: 5925 subprog_end = subprog[idx + 1].start; 5926 for (; i < subprog_end; i++) { 5927 int next_insn, sidx; 5928 5929 if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) { 5930 bool err = false; 5931 5932 if (!is_bpf_throw_kfunc(insn + i)) 5933 continue; 5934 if (subprog[idx].is_cb) 5935 err = true; 5936 for (int c = 0; c < frame && !err; c++) { 5937 if (subprog[ret_prog[c]].is_cb) { 5938 err = true; 5939 break; 5940 } 5941 } 5942 if (!err) 5943 continue; 5944 verbose(env, 5945 "bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n", 5946 i, idx); 5947 return -EINVAL; 5948 } 5949 5950 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 5951 continue; 5952 /* remember insn and function to return to */ 5953 ret_insn[frame] = i + 1; 5954 ret_prog[frame] = idx; 5955 5956 /* find the callee */ 5957 next_insn = i + insn[i].imm + 1; 5958 sidx = find_subprog(env, next_insn); 5959 if (sidx < 0) { 5960 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5961 next_insn); 5962 return -EFAULT; 5963 } 5964 if (subprog[sidx].is_async_cb) { 5965 if (subprog[sidx].has_tail_call) { 5966 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 5967 return -EFAULT; 5968 } 5969 /* async callbacks don't increase bpf prog stack size unless called directly */ 5970 if (!bpf_pseudo_call(insn + i)) 5971 continue; 5972 if (subprog[sidx].is_exception_cb) { 5973 verbose(env, "insn %d cannot call exception cb directly\n", i); 5974 return -EINVAL; 5975 } 5976 } 5977 i = next_insn; 5978 idx = sidx; 5979 5980 if (subprog[idx].has_tail_call) 5981 tail_call_reachable = true; 5982 5983 frame++; 5984 if (frame >= MAX_CALL_FRAMES) { 5985 verbose(env, "the call stack of %d frames is too deep !\n", 5986 frame); 5987 return -E2BIG; 5988 } 5989 goto process_func; 5990 } 5991 /* if tail call got detected across bpf2bpf calls then mark each of the 5992 * currently present subprog frames as tail call reachable subprogs; 5993 * this info will be utilized by JIT so that we will be preserving the 5994 * tail call counter throughout bpf2bpf calls combined with tailcalls 5995 */ 5996 if (tail_call_reachable) 5997 for (j = 0; j < frame; j++) { 5998 if (subprog[ret_prog[j]].is_exception_cb) { 5999 verbose(env, "cannot tail call within exception cb\n"); 6000 return -EINVAL; 6001 } 6002 subprog[ret_prog[j]].tail_call_reachable = true; 6003 } 6004 if (subprog[0].tail_call_reachable) 6005 env->prog->aux->tail_call_reachable = true; 6006 6007 /* end of for() loop means the last insn of the 'subprog' 6008 * was reached. Doesn't matter whether it was JA or EXIT 6009 */ 6010 if (frame == 0) 6011 return 0; 6012 depth -= round_up_stack_depth(env, subprog[idx].stack_depth); 6013 frame--; 6014 i = ret_insn[frame]; 6015 idx = ret_prog[frame]; 6016 goto continue_func; 6017 } 6018 6019 static int check_max_stack_depth(struct bpf_verifier_env *env) 6020 { 6021 struct bpf_subprog_info *si = env->subprog_info; 6022 int ret; 6023 6024 for (int i = 0; i < env->subprog_cnt; i++) { 6025 if (!i || si[i].is_async_cb) { 6026 ret = check_max_stack_depth_subprog(env, i); 6027 if (ret < 0) 6028 return ret; 6029 } 6030 continue; 6031 } 6032 return 0; 6033 } 6034 6035 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6036 static int get_callee_stack_depth(struct bpf_verifier_env *env, 6037 const struct bpf_insn *insn, int idx) 6038 { 6039 int start = idx + insn->imm + 1, subprog; 6040 6041 subprog = find_subprog(env, start); 6042 if (subprog < 0) { 6043 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 6044 start); 6045 return -EFAULT; 6046 } 6047 return env->subprog_info[subprog].stack_depth; 6048 } 6049 #endif 6050 6051 static int __check_buffer_access(struct bpf_verifier_env *env, 6052 const char *buf_info, 6053 const struct bpf_reg_state *reg, 6054 int regno, int off, int size) 6055 { 6056 if (off < 0) { 6057 verbose(env, 6058 "R%d invalid %s buffer access: off=%d, size=%d\n", 6059 regno, buf_info, off, size); 6060 return -EACCES; 6061 } 6062 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6063 char tn_buf[48]; 6064 6065 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6066 verbose(env, 6067 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 6068 regno, off, tn_buf); 6069 return -EACCES; 6070 } 6071 6072 return 0; 6073 } 6074 6075 static int check_tp_buffer_access(struct bpf_verifier_env *env, 6076 const struct bpf_reg_state *reg, 6077 int regno, int off, int size) 6078 { 6079 int err; 6080 6081 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 6082 if (err) 6083 return err; 6084 6085 if (off + size > env->prog->aux->max_tp_access) 6086 env->prog->aux->max_tp_access = off + size; 6087 6088 return 0; 6089 } 6090 6091 static int check_buffer_access(struct bpf_verifier_env *env, 6092 const struct bpf_reg_state *reg, 6093 int regno, int off, int size, 6094 bool zero_size_allowed, 6095 u32 *max_access) 6096 { 6097 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 6098 int err; 6099 6100 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 6101 if (err) 6102 return err; 6103 6104 if (off + size > *max_access) 6105 *max_access = off + size; 6106 6107 return 0; 6108 } 6109 6110 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 6111 static void zext_32_to_64(struct bpf_reg_state *reg) 6112 { 6113 reg->var_off = tnum_subreg(reg->var_off); 6114 __reg_assign_32_into_64(reg); 6115 } 6116 6117 /* truncate register to smaller size (in bytes) 6118 * must be called with size < BPF_REG_SIZE 6119 */ 6120 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 6121 { 6122 u64 mask; 6123 6124 /* clear high bits in bit representation */ 6125 reg->var_off = tnum_cast(reg->var_off, size); 6126 6127 /* fix arithmetic bounds */ 6128 mask = ((u64)1 << (size * 8)) - 1; 6129 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 6130 reg->umin_value &= mask; 6131 reg->umax_value &= mask; 6132 } else { 6133 reg->umin_value = 0; 6134 reg->umax_value = mask; 6135 } 6136 reg->smin_value = reg->umin_value; 6137 reg->smax_value = reg->umax_value; 6138 6139 /* If size is smaller than 32bit register the 32bit register 6140 * values are also truncated so we push 64-bit bounds into 6141 * 32-bit bounds. Above were truncated < 32-bits already. 6142 */ 6143 if (size < 4) 6144 __mark_reg32_unbounded(reg); 6145 6146 reg_bounds_sync(reg); 6147 } 6148 6149 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 6150 { 6151 if (size == 1) { 6152 reg->smin_value = reg->s32_min_value = S8_MIN; 6153 reg->smax_value = reg->s32_max_value = S8_MAX; 6154 } else if (size == 2) { 6155 reg->smin_value = reg->s32_min_value = S16_MIN; 6156 reg->smax_value = reg->s32_max_value = S16_MAX; 6157 } else { 6158 /* size == 4 */ 6159 reg->smin_value = reg->s32_min_value = S32_MIN; 6160 reg->smax_value = reg->s32_max_value = S32_MAX; 6161 } 6162 reg->umin_value = reg->u32_min_value = 0; 6163 reg->umax_value = U64_MAX; 6164 reg->u32_max_value = U32_MAX; 6165 reg->var_off = tnum_unknown; 6166 } 6167 6168 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 6169 { 6170 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 6171 u64 top_smax_value, top_smin_value; 6172 u64 num_bits = size * 8; 6173 6174 if (tnum_is_const(reg->var_off)) { 6175 u64_cval = reg->var_off.value; 6176 if (size == 1) 6177 reg->var_off = tnum_const((s8)u64_cval); 6178 else if (size == 2) 6179 reg->var_off = tnum_const((s16)u64_cval); 6180 else 6181 /* size == 4 */ 6182 reg->var_off = tnum_const((s32)u64_cval); 6183 6184 u64_cval = reg->var_off.value; 6185 reg->smax_value = reg->smin_value = u64_cval; 6186 reg->umax_value = reg->umin_value = u64_cval; 6187 reg->s32_max_value = reg->s32_min_value = u64_cval; 6188 reg->u32_max_value = reg->u32_min_value = u64_cval; 6189 return; 6190 } 6191 6192 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 6193 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 6194 6195 if (top_smax_value != top_smin_value) 6196 goto out; 6197 6198 /* find the s64_min and s64_min after sign extension */ 6199 if (size == 1) { 6200 init_s64_max = (s8)reg->smax_value; 6201 init_s64_min = (s8)reg->smin_value; 6202 } else if (size == 2) { 6203 init_s64_max = (s16)reg->smax_value; 6204 init_s64_min = (s16)reg->smin_value; 6205 } else { 6206 init_s64_max = (s32)reg->smax_value; 6207 init_s64_min = (s32)reg->smin_value; 6208 } 6209 6210 s64_max = max(init_s64_max, init_s64_min); 6211 s64_min = min(init_s64_max, init_s64_min); 6212 6213 /* both of s64_max/s64_min positive or negative */ 6214 if ((s64_max >= 0) == (s64_min >= 0)) { 6215 reg->smin_value = reg->s32_min_value = s64_min; 6216 reg->smax_value = reg->s32_max_value = s64_max; 6217 reg->umin_value = reg->u32_min_value = s64_min; 6218 reg->umax_value = reg->u32_max_value = s64_max; 6219 reg->var_off = tnum_range(s64_min, s64_max); 6220 return; 6221 } 6222 6223 out: 6224 set_sext64_default_val(reg, size); 6225 } 6226 6227 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 6228 { 6229 if (size == 1) { 6230 reg->s32_min_value = S8_MIN; 6231 reg->s32_max_value = S8_MAX; 6232 } else { 6233 /* size == 2 */ 6234 reg->s32_min_value = S16_MIN; 6235 reg->s32_max_value = S16_MAX; 6236 } 6237 reg->u32_min_value = 0; 6238 reg->u32_max_value = U32_MAX; 6239 } 6240 6241 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 6242 { 6243 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 6244 u32 top_smax_value, top_smin_value; 6245 u32 num_bits = size * 8; 6246 6247 if (tnum_is_const(reg->var_off)) { 6248 u32_val = reg->var_off.value; 6249 if (size == 1) 6250 reg->var_off = tnum_const((s8)u32_val); 6251 else 6252 reg->var_off = tnum_const((s16)u32_val); 6253 6254 u32_val = reg->var_off.value; 6255 reg->s32_min_value = reg->s32_max_value = u32_val; 6256 reg->u32_min_value = reg->u32_max_value = u32_val; 6257 return; 6258 } 6259 6260 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 6261 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 6262 6263 if (top_smax_value != top_smin_value) 6264 goto out; 6265 6266 /* find the s32_min and s32_min after sign extension */ 6267 if (size == 1) { 6268 init_s32_max = (s8)reg->s32_max_value; 6269 init_s32_min = (s8)reg->s32_min_value; 6270 } else { 6271 /* size == 2 */ 6272 init_s32_max = (s16)reg->s32_max_value; 6273 init_s32_min = (s16)reg->s32_min_value; 6274 } 6275 s32_max = max(init_s32_max, init_s32_min); 6276 s32_min = min(init_s32_max, init_s32_min); 6277 6278 if ((s32_min >= 0) == (s32_max >= 0)) { 6279 reg->s32_min_value = s32_min; 6280 reg->s32_max_value = s32_max; 6281 reg->u32_min_value = (u32)s32_min; 6282 reg->u32_max_value = (u32)s32_max; 6283 return; 6284 } 6285 6286 out: 6287 set_sext32_default_val(reg, size); 6288 } 6289 6290 static bool bpf_map_is_rdonly(const struct bpf_map *map) 6291 { 6292 /* A map is considered read-only if the following condition are true: 6293 * 6294 * 1) BPF program side cannot change any of the map content. The 6295 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 6296 * and was set at map creation time. 6297 * 2) The map value(s) have been initialized from user space by a 6298 * loader and then "frozen", such that no new map update/delete 6299 * operations from syscall side are possible for the rest of 6300 * the map's lifetime from that point onwards. 6301 * 3) Any parallel/pending map update/delete operations from syscall 6302 * side have been completed. Only after that point, it's safe to 6303 * assume that map value(s) are immutable. 6304 */ 6305 return (map->map_flags & BPF_F_RDONLY_PROG) && 6306 READ_ONCE(map->frozen) && 6307 !bpf_map_write_active(map); 6308 } 6309 6310 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 6311 bool is_ldsx) 6312 { 6313 void *ptr; 6314 u64 addr; 6315 int err; 6316 6317 err = map->ops->map_direct_value_addr(map, &addr, off); 6318 if (err) 6319 return err; 6320 ptr = (void *)(long)addr + off; 6321 6322 switch (size) { 6323 case sizeof(u8): 6324 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 6325 break; 6326 case sizeof(u16): 6327 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 6328 break; 6329 case sizeof(u32): 6330 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 6331 break; 6332 case sizeof(u64): 6333 *val = *(u64 *)ptr; 6334 break; 6335 default: 6336 return -EINVAL; 6337 } 6338 return 0; 6339 } 6340 6341 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 6342 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 6343 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 6344 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type) __PASTE(__type, __safe_trusted_or_null) 6345 6346 /* 6347 * Allow list few fields as RCU trusted or full trusted. 6348 * This logic doesn't allow mix tagging and will be removed once GCC supports 6349 * btf_type_tag. 6350 */ 6351 6352 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 6353 BTF_TYPE_SAFE_RCU(struct task_struct) { 6354 const cpumask_t *cpus_ptr; 6355 struct css_set __rcu *cgroups; 6356 struct task_struct __rcu *real_parent; 6357 struct task_struct *group_leader; 6358 }; 6359 6360 BTF_TYPE_SAFE_RCU(struct cgroup) { 6361 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 6362 struct kernfs_node *kn; 6363 }; 6364 6365 BTF_TYPE_SAFE_RCU(struct css_set) { 6366 struct cgroup *dfl_cgrp; 6367 }; 6368 6369 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 6370 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 6371 struct file __rcu *exe_file; 6372 }; 6373 6374 /* skb->sk, req->sk are not RCU protected, but we mark them as such 6375 * because bpf prog accessible sockets are SOCK_RCU_FREE. 6376 */ 6377 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 6378 struct sock *sk; 6379 }; 6380 6381 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 6382 struct sock *sk; 6383 }; 6384 6385 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 6386 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 6387 struct seq_file *seq; 6388 }; 6389 6390 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 6391 struct bpf_iter_meta *meta; 6392 struct task_struct *task; 6393 }; 6394 6395 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 6396 struct file *file; 6397 }; 6398 6399 BTF_TYPE_SAFE_TRUSTED(struct file) { 6400 struct inode *f_inode; 6401 }; 6402 6403 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 6404 /* no negative dentry-s in places where bpf can see it */ 6405 struct inode *d_inode; 6406 }; 6407 6408 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) { 6409 struct sock *sk; 6410 }; 6411 6412 static bool type_is_rcu(struct bpf_verifier_env *env, 6413 struct bpf_reg_state *reg, 6414 const char *field_name, u32 btf_id) 6415 { 6416 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 6417 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 6418 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 6419 6420 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 6421 } 6422 6423 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 6424 struct bpf_reg_state *reg, 6425 const char *field_name, u32 btf_id) 6426 { 6427 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 6428 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 6429 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 6430 6431 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 6432 } 6433 6434 static bool type_is_trusted(struct bpf_verifier_env *env, 6435 struct bpf_reg_state *reg, 6436 const char *field_name, u32 btf_id) 6437 { 6438 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 6439 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 6440 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 6441 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 6442 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 6443 6444 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 6445 } 6446 6447 static bool type_is_trusted_or_null(struct bpf_verifier_env *env, 6448 struct bpf_reg_state *reg, 6449 const char *field_name, u32 btf_id) 6450 { 6451 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)); 6452 6453 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, 6454 "__safe_trusted_or_null"); 6455 } 6456 6457 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 6458 struct bpf_reg_state *regs, 6459 int regno, int off, int size, 6460 enum bpf_access_type atype, 6461 int value_regno) 6462 { 6463 struct bpf_reg_state *reg = regs + regno; 6464 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 6465 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 6466 const char *field_name = NULL; 6467 enum bpf_type_flag flag = 0; 6468 u32 btf_id = 0; 6469 int ret; 6470 6471 if (!env->allow_ptr_leaks) { 6472 verbose(env, 6473 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6474 tname); 6475 return -EPERM; 6476 } 6477 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 6478 verbose(env, 6479 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 6480 tname); 6481 return -EINVAL; 6482 } 6483 if (off < 0) { 6484 verbose(env, 6485 "R%d is ptr_%s invalid negative access: off=%d\n", 6486 regno, tname, off); 6487 return -EACCES; 6488 } 6489 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6490 char tn_buf[48]; 6491 6492 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6493 verbose(env, 6494 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 6495 regno, tname, off, tn_buf); 6496 return -EACCES; 6497 } 6498 6499 if (reg->type & MEM_USER) { 6500 verbose(env, 6501 "R%d is ptr_%s access user memory: off=%d\n", 6502 regno, tname, off); 6503 return -EACCES; 6504 } 6505 6506 if (reg->type & MEM_PERCPU) { 6507 verbose(env, 6508 "R%d is ptr_%s access percpu memory: off=%d\n", 6509 regno, tname, off); 6510 return -EACCES; 6511 } 6512 6513 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 6514 if (!btf_is_kernel(reg->btf)) { 6515 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 6516 return -EFAULT; 6517 } 6518 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 6519 } else { 6520 /* Writes are permitted with default btf_struct_access for 6521 * program allocated objects (which always have ref_obj_id > 0), 6522 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 6523 */ 6524 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 6525 verbose(env, "only read is supported\n"); 6526 return -EACCES; 6527 } 6528 6529 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 6530 !(reg->type & MEM_RCU) && !reg->ref_obj_id) { 6531 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 6532 return -EFAULT; 6533 } 6534 6535 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 6536 } 6537 6538 if (ret < 0) 6539 return ret; 6540 6541 if (ret != PTR_TO_BTF_ID) { 6542 /* just mark; */ 6543 6544 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 6545 /* If this is an untrusted pointer, all pointers formed by walking it 6546 * also inherit the untrusted flag. 6547 */ 6548 flag = PTR_UNTRUSTED; 6549 6550 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 6551 /* By default any pointer obtained from walking a trusted pointer is no 6552 * longer trusted, unless the field being accessed has explicitly been 6553 * marked as inheriting its parent's state of trust (either full or RCU). 6554 * For example: 6555 * 'cgroups' pointer is untrusted if task->cgroups dereference 6556 * happened in a sleepable program outside of bpf_rcu_read_lock() 6557 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 6558 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 6559 * 6560 * A regular RCU-protected pointer with __rcu tag can also be deemed 6561 * trusted if we are in an RCU CS. Such pointer can be NULL. 6562 */ 6563 if (type_is_trusted(env, reg, field_name, btf_id)) { 6564 flag |= PTR_TRUSTED; 6565 } else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) { 6566 flag |= PTR_TRUSTED | PTR_MAYBE_NULL; 6567 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 6568 if (type_is_rcu(env, reg, field_name, btf_id)) { 6569 /* ignore __rcu tag and mark it MEM_RCU */ 6570 flag |= MEM_RCU; 6571 } else if (flag & MEM_RCU || 6572 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 6573 /* __rcu tagged pointers can be NULL */ 6574 flag |= MEM_RCU | PTR_MAYBE_NULL; 6575 6576 /* We always trust them */ 6577 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 6578 flag & PTR_UNTRUSTED) 6579 flag &= ~PTR_UNTRUSTED; 6580 } else if (flag & (MEM_PERCPU | MEM_USER)) { 6581 /* keep as-is */ 6582 } else { 6583 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 6584 clear_trusted_flags(&flag); 6585 } 6586 } else { 6587 /* 6588 * If not in RCU CS or MEM_RCU pointer can be NULL then 6589 * aggressively mark as untrusted otherwise such 6590 * pointers will be plain PTR_TO_BTF_ID without flags 6591 * and will be allowed to be passed into helpers for 6592 * compat reasons. 6593 */ 6594 flag = PTR_UNTRUSTED; 6595 } 6596 } else { 6597 /* Old compat. Deprecated */ 6598 clear_trusted_flags(&flag); 6599 } 6600 6601 if (atype == BPF_READ && value_regno >= 0) 6602 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 6603 6604 return 0; 6605 } 6606 6607 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 6608 struct bpf_reg_state *regs, 6609 int regno, int off, int size, 6610 enum bpf_access_type atype, 6611 int value_regno) 6612 { 6613 struct bpf_reg_state *reg = regs + regno; 6614 struct bpf_map *map = reg->map_ptr; 6615 struct bpf_reg_state map_reg; 6616 enum bpf_type_flag flag = 0; 6617 const struct btf_type *t; 6618 const char *tname; 6619 u32 btf_id; 6620 int ret; 6621 6622 if (!btf_vmlinux) { 6623 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 6624 return -ENOTSUPP; 6625 } 6626 6627 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 6628 verbose(env, "map_ptr access not supported for map type %d\n", 6629 map->map_type); 6630 return -ENOTSUPP; 6631 } 6632 6633 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 6634 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 6635 6636 if (!env->allow_ptr_leaks) { 6637 verbose(env, 6638 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6639 tname); 6640 return -EPERM; 6641 } 6642 6643 if (off < 0) { 6644 verbose(env, "R%d is %s invalid negative access: off=%d\n", 6645 regno, tname, off); 6646 return -EACCES; 6647 } 6648 6649 if (atype != BPF_READ) { 6650 verbose(env, "only read from %s is supported\n", tname); 6651 return -EACCES; 6652 } 6653 6654 /* Simulate access to a PTR_TO_BTF_ID */ 6655 memset(&map_reg, 0, sizeof(map_reg)); 6656 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 6657 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 6658 if (ret < 0) 6659 return ret; 6660 6661 if (value_regno >= 0) 6662 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 6663 6664 return 0; 6665 } 6666 6667 /* Check that the stack access at the given offset is within bounds. The 6668 * maximum valid offset is -1. 6669 * 6670 * The minimum valid offset is -MAX_BPF_STACK for writes, and 6671 * -state->allocated_stack for reads. 6672 */ 6673 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env, 6674 s64 off, 6675 struct bpf_func_state *state, 6676 enum bpf_access_type t) 6677 { 6678 int min_valid_off; 6679 6680 if (t == BPF_WRITE || env->allow_uninit_stack) 6681 min_valid_off = -MAX_BPF_STACK; 6682 else 6683 min_valid_off = -state->allocated_stack; 6684 6685 if (off < min_valid_off || off > -1) 6686 return -EACCES; 6687 return 0; 6688 } 6689 6690 /* Check that the stack access at 'regno + off' falls within the maximum stack 6691 * bounds. 6692 * 6693 * 'off' includes `regno->offset`, but not its dynamic part (if any). 6694 */ 6695 static int check_stack_access_within_bounds( 6696 struct bpf_verifier_env *env, 6697 int regno, int off, int access_size, 6698 enum bpf_access_src src, enum bpf_access_type type) 6699 { 6700 struct bpf_reg_state *regs = cur_regs(env); 6701 struct bpf_reg_state *reg = regs + regno; 6702 struct bpf_func_state *state = func(env, reg); 6703 s64 min_off, max_off; 6704 int err; 6705 char *err_extra; 6706 6707 if (src == ACCESS_HELPER) 6708 /* We don't know if helpers are reading or writing (or both). */ 6709 err_extra = " indirect access to"; 6710 else if (type == BPF_READ) 6711 err_extra = " read from"; 6712 else 6713 err_extra = " write to"; 6714 6715 if (tnum_is_const(reg->var_off)) { 6716 min_off = (s64)reg->var_off.value + off; 6717 max_off = min_off + access_size; 6718 } else { 6719 if (reg->smax_value >= BPF_MAX_VAR_OFF || 6720 reg->smin_value <= -BPF_MAX_VAR_OFF) { 6721 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 6722 err_extra, regno); 6723 return -EACCES; 6724 } 6725 min_off = reg->smin_value + off; 6726 max_off = reg->smax_value + off + access_size; 6727 } 6728 6729 err = check_stack_slot_within_bounds(env, min_off, state, type); 6730 if (!err && max_off > 0) 6731 err = -EINVAL; /* out of stack access into non-negative offsets */ 6732 if (!err && access_size < 0) 6733 /* access_size should not be negative (or overflow an int); others checks 6734 * along the way should have prevented such an access. 6735 */ 6736 err = -EFAULT; /* invalid negative access size; integer overflow? */ 6737 6738 if (err) { 6739 if (tnum_is_const(reg->var_off)) { 6740 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 6741 err_extra, regno, off, access_size); 6742 } else { 6743 char tn_buf[48]; 6744 6745 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6746 verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n", 6747 err_extra, regno, tn_buf, off, access_size); 6748 } 6749 return err; 6750 } 6751 6752 /* Note that there is no stack access with offset zero, so the needed stack 6753 * size is -min_off, not -min_off+1. 6754 */ 6755 return grow_stack_state(env, state, -min_off /* size */); 6756 } 6757 6758 /* check whether memory at (regno + off) is accessible for t = (read | write) 6759 * if t==write, value_regno is a register which value is stored into memory 6760 * if t==read, value_regno is a register which will receive the value from memory 6761 * if t==write && value_regno==-1, some unknown value is stored into memory 6762 * if t==read && value_regno==-1, don't care what we read from memory 6763 */ 6764 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 6765 int off, int bpf_size, enum bpf_access_type t, 6766 int value_regno, bool strict_alignment_once, bool is_ldsx) 6767 { 6768 struct bpf_reg_state *regs = cur_regs(env); 6769 struct bpf_reg_state *reg = regs + regno; 6770 int size, err = 0; 6771 6772 size = bpf_size_to_bytes(bpf_size); 6773 if (size < 0) 6774 return size; 6775 6776 /* alignment checks will add in reg->off themselves */ 6777 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 6778 if (err) 6779 return err; 6780 6781 /* for access checks, reg->off is just part of off */ 6782 off += reg->off; 6783 6784 if (reg->type == PTR_TO_MAP_KEY) { 6785 if (t == BPF_WRITE) { 6786 verbose(env, "write to change key R%d not allowed\n", regno); 6787 return -EACCES; 6788 } 6789 6790 err = check_mem_region_access(env, regno, off, size, 6791 reg->map_ptr->key_size, false); 6792 if (err) 6793 return err; 6794 if (value_regno >= 0) 6795 mark_reg_unknown(env, regs, value_regno); 6796 } else if (reg->type == PTR_TO_MAP_VALUE) { 6797 struct btf_field *kptr_field = NULL; 6798 6799 if (t == BPF_WRITE && value_regno >= 0 && 6800 is_pointer_value(env, value_regno)) { 6801 verbose(env, "R%d leaks addr into map\n", value_regno); 6802 return -EACCES; 6803 } 6804 err = check_map_access_type(env, regno, off, size, t); 6805 if (err) 6806 return err; 6807 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 6808 if (err) 6809 return err; 6810 if (tnum_is_const(reg->var_off)) 6811 kptr_field = btf_record_find(reg->map_ptr->record, 6812 off + reg->var_off.value, BPF_KPTR); 6813 if (kptr_field) { 6814 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 6815 } else if (t == BPF_READ && value_regno >= 0) { 6816 struct bpf_map *map = reg->map_ptr; 6817 6818 /* if map is read-only, track its contents as scalars */ 6819 if (tnum_is_const(reg->var_off) && 6820 bpf_map_is_rdonly(map) && 6821 map->ops->map_direct_value_addr) { 6822 int map_off = off + reg->var_off.value; 6823 u64 val = 0; 6824 6825 err = bpf_map_direct_read(map, map_off, size, 6826 &val, is_ldsx); 6827 if (err) 6828 return err; 6829 6830 regs[value_regno].type = SCALAR_VALUE; 6831 __mark_reg_known(®s[value_regno], val); 6832 } else { 6833 mark_reg_unknown(env, regs, value_regno); 6834 } 6835 } 6836 } else if (base_type(reg->type) == PTR_TO_MEM) { 6837 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6838 6839 if (type_may_be_null(reg->type)) { 6840 verbose(env, "R%d invalid mem access '%s'\n", regno, 6841 reg_type_str(env, reg->type)); 6842 return -EACCES; 6843 } 6844 6845 if (t == BPF_WRITE && rdonly_mem) { 6846 verbose(env, "R%d cannot write into %s\n", 6847 regno, reg_type_str(env, reg->type)); 6848 return -EACCES; 6849 } 6850 6851 if (t == BPF_WRITE && value_regno >= 0 && 6852 is_pointer_value(env, value_regno)) { 6853 verbose(env, "R%d leaks addr into mem\n", value_regno); 6854 return -EACCES; 6855 } 6856 6857 err = check_mem_region_access(env, regno, off, size, 6858 reg->mem_size, false); 6859 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 6860 mark_reg_unknown(env, regs, value_regno); 6861 } else if (reg->type == PTR_TO_CTX) { 6862 enum bpf_reg_type reg_type = SCALAR_VALUE; 6863 struct btf *btf = NULL; 6864 u32 btf_id = 0; 6865 6866 if (t == BPF_WRITE && value_regno >= 0 && 6867 is_pointer_value(env, value_regno)) { 6868 verbose(env, "R%d leaks addr into ctx\n", value_regno); 6869 return -EACCES; 6870 } 6871 6872 err = check_ptr_off_reg(env, reg, regno); 6873 if (err < 0) 6874 return err; 6875 6876 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 6877 &btf_id); 6878 if (err) 6879 verbose_linfo(env, insn_idx, "; "); 6880 if (!err && t == BPF_READ && value_regno >= 0) { 6881 /* ctx access returns either a scalar, or a 6882 * PTR_TO_PACKET[_META,_END]. In the latter 6883 * case, we know the offset is zero. 6884 */ 6885 if (reg_type == SCALAR_VALUE) { 6886 mark_reg_unknown(env, regs, value_regno); 6887 } else { 6888 mark_reg_known_zero(env, regs, 6889 value_regno); 6890 if (type_may_be_null(reg_type)) 6891 regs[value_regno].id = ++env->id_gen; 6892 /* A load of ctx field could have different 6893 * actual load size with the one encoded in the 6894 * insn. When the dst is PTR, it is for sure not 6895 * a sub-register. 6896 */ 6897 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 6898 if (base_type(reg_type) == PTR_TO_BTF_ID) { 6899 regs[value_regno].btf = btf; 6900 regs[value_regno].btf_id = btf_id; 6901 } 6902 } 6903 regs[value_regno].type = reg_type; 6904 } 6905 6906 } else if (reg->type == PTR_TO_STACK) { 6907 /* Basic bounds checks. */ 6908 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 6909 if (err) 6910 return err; 6911 6912 if (t == BPF_READ) 6913 err = check_stack_read(env, regno, off, size, 6914 value_regno); 6915 else 6916 err = check_stack_write(env, regno, off, size, 6917 value_regno, insn_idx); 6918 } else if (reg_is_pkt_pointer(reg)) { 6919 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 6920 verbose(env, "cannot write into packet\n"); 6921 return -EACCES; 6922 } 6923 if (t == BPF_WRITE && value_regno >= 0 && 6924 is_pointer_value(env, value_regno)) { 6925 verbose(env, "R%d leaks addr into packet\n", 6926 value_regno); 6927 return -EACCES; 6928 } 6929 err = check_packet_access(env, regno, off, size, false); 6930 if (!err && t == BPF_READ && value_regno >= 0) 6931 mark_reg_unknown(env, regs, value_regno); 6932 } else if (reg->type == PTR_TO_FLOW_KEYS) { 6933 if (t == BPF_WRITE && value_regno >= 0 && 6934 is_pointer_value(env, value_regno)) { 6935 verbose(env, "R%d leaks addr into flow keys\n", 6936 value_regno); 6937 return -EACCES; 6938 } 6939 6940 err = check_flow_keys_access(env, off, size); 6941 if (!err && t == BPF_READ && value_regno >= 0) 6942 mark_reg_unknown(env, regs, value_regno); 6943 } else if (type_is_sk_pointer(reg->type)) { 6944 if (t == BPF_WRITE) { 6945 verbose(env, "R%d cannot write into %s\n", 6946 regno, reg_type_str(env, reg->type)); 6947 return -EACCES; 6948 } 6949 err = check_sock_access(env, insn_idx, regno, off, size, t); 6950 if (!err && value_regno >= 0) 6951 mark_reg_unknown(env, regs, value_regno); 6952 } else if (reg->type == PTR_TO_TP_BUFFER) { 6953 err = check_tp_buffer_access(env, reg, regno, off, size); 6954 if (!err && t == BPF_READ && value_regno >= 0) 6955 mark_reg_unknown(env, regs, value_regno); 6956 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 6957 !type_may_be_null(reg->type)) { 6958 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 6959 value_regno); 6960 } else if (reg->type == CONST_PTR_TO_MAP) { 6961 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 6962 value_regno); 6963 } else if (base_type(reg->type) == PTR_TO_BUF) { 6964 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6965 u32 *max_access; 6966 6967 if (rdonly_mem) { 6968 if (t == BPF_WRITE) { 6969 verbose(env, "R%d cannot write into %s\n", 6970 regno, reg_type_str(env, reg->type)); 6971 return -EACCES; 6972 } 6973 max_access = &env->prog->aux->max_rdonly_access; 6974 } else { 6975 max_access = &env->prog->aux->max_rdwr_access; 6976 } 6977 6978 err = check_buffer_access(env, reg, regno, off, size, false, 6979 max_access); 6980 6981 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 6982 mark_reg_unknown(env, regs, value_regno); 6983 } else if (reg->type == PTR_TO_ARENA) { 6984 if (t == BPF_READ && value_regno >= 0) 6985 mark_reg_unknown(env, regs, value_regno); 6986 } else { 6987 verbose(env, "R%d invalid mem access '%s'\n", regno, 6988 reg_type_str(env, reg->type)); 6989 return -EACCES; 6990 } 6991 6992 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 6993 regs[value_regno].type == SCALAR_VALUE) { 6994 if (!is_ldsx) 6995 /* b/h/w load zero-extends, mark upper bits as known 0 */ 6996 coerce_reg_to_size(®s[value_regno], size); 6997 else 6998 coerce_reg_to_size_sx(®s[value_regno], size); 6999 } 7000 return err; 7001 } 7002 7003 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 7004 bool allow_trust_mismatch); 7005 7006 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 7007 { 7008 int load_reg; 7009 int err; 7010 7011 switch (insn->imm) { 7012 case BPF_ADD: 7013 case BPF_ADD | BPF_FETCH: 7014 case BPF_AND: 7015 case BPF_AND | BPF_FETCH: 7016 case BPF_OR: 7017 case BPF_OR | BPF_FETCH: 7018 case BPF_XOR: 7019 case BPF_XOR | BPF_FETCH: 7020 case BPF_XCHG: 7021 case BPF_CMPXCHG: 7022 break; 7023 default: 7024 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 7025 return -EINVAL; 7026 } 7027 7028 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 7029 verbose(env, "invalid atomic operand size\n"); 7030 return -EINVAL; 7031 } 7032 7033 /* check src1 operand */ 7034 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7035 if (err) 7036 return err; 7037 7038 /* check src2 operand */ 7039 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7040 if (err) 7041 return err; 7042 7043 if (insn->imm == BPF_CMPXCHG) { 7044 /* Check comparison of R0 with memory location */ 7045 const u32 aux_reg = BPF_REG_0; 7046 7047 err = check_reg_arg(env, aux_reg, SRC_OP); 7048 if (err) 7049 return err; 7050 7051 if (is_pointer_value(env, aux_reg)) { 7052 verbose(env, "R%d leaks addr into mem\n", aux_reg); 7053 return -EACCES; 7054 } 7055 } 7056 7057 if (is_pointer_value(env, insn->src_reg)) { 7058 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 7059 return -EACCES; 7060 } 7061 7062 if (is_ctx_reg(env, insn->dst_reg) || 7063 is_pkt_reg(env, insn->dst_reg) || 7064 is_flow_key_reg(env, insn->dst_reg) || 7065 is_sk_reg(env, insn->dst_reg) || 7066 (is_arena_reg(env, insn->dst_reg) && !bpf_jit_supports_insn(insn, true))) { 7067 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 7068 insn->dst_reg, 7069 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 7070 return -EACCES; 7071 } 7072 7073 if (insn->imm & BPF_FETCH) { 7074 if (insn->imm == BPF_CMPXCHG) 7075 load_reg = BPF_REG_0; 7076 else 7077 load_reg = insn->src_reg; 7078 7079 /* check and record load of old value */ 7080 err = check_reg_arg(env, load_reg, DST_OP); 7081 if (err) 7082 return err; 7083 } else { 7084 /* This instruction accesses a memory location but doesn't 7085 * actually load it into a register. 7086 */ 7087 load_reg = -1; 7088 } 7089 7090 /* Check whether we can read the memory, with second call for fetch 7091 * case to simulate the register fill. 7092 */ 7093 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7094 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 7095 if (!err && load_reg >= 0) 7096 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7097 BPF_SIZE(insn->code), BPF_READ, load_reg, 7098 true, false); 7099 if (err) 7100 return err; 7101 7102 if (is_arena_reg(env, insn->dst_reg)) { 7103 err = save_aux_ptr_type(env, PTR_TO_ARENA, false); 7104 if (err) 7105 return err; 7106 } 7107 /* Check whether we can write into the same memory. */ 7108 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7109 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 7110 if (err) 7111 return err; 7112 return 0; 7113 } 7114 7115 /* When register 'regno' is used to read the stack (either directly or through 7116 * a helper function) make sure that it's within stack boundary and, depending 7117 * on the access type and privileges, that all elements of the stack are 7118 * initialized. 7119 * 7120 * 'off' includes 'regno->off', but not its dynamic part (if any). 7121 * 7122 * All registers that have been spilled on the stack in the slots within the 7123 * read offsets are marked as read. 7124 */ 7125 static int check_stack_range_initialized( 7126 struct bpf_verifier_env *env, int regno, int off, 7127 int access_size, bool zero_size_allowed, 7128 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 7129 { 7130 struct bpf_reg_state *reg = reg_state(env, regno); 7131 struct bpf_func_state *state = func(env, reg); 7132 int err, min_off, max_off, i, j, slot, spi; 7133 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 7134 enum bpf_access_type bounds_check_type; 7135 /* Some accesses can write anything into the stack, others are 7136 * read-only. 7137 */ 7138 bool clobber = false; 7139 7140 if (access_size == 0 && !zero_size_allowed) { 7141 verbose(env, "invalid zero-sized read\n"); 7142 return -EACCES; 7143 } 7144 7145 if (type == ACCESS_HELPER) { 7146 /* The bounds checks for writes are more permissive than for 7147 * reads. However, if raw_mode is not set, we'll do extra 7148 * checks below. 7149 */ 7150 bounds_check_type = BPF_WRITE; 7151 clobber = true; 7152 } else { 7153 bounds_check_type = BPF_READ; 7154 } 7155 err = check_stack_access_within_bounds(env, regno, off, access_size, 7156 type, bounds_check_type); 7157 if (err) 7158 return err; 7159 7160 7161 if (tnum_is_const(reg->var_off)) { 7162 min_off = max_off = reg->var_off.value + off; 7163 } else { 7164 /* Variable offset is prohibited for unprivileged mode for 7165 * simplicity since it requires corresponding support in 7166 * Spectre masking for stack ALU. 7167 * See also retrieve_ptr_limit(). 7168 */ 7169 if (!env->bypass_spec_v1) { 7170 char tn_buf[48]; 7171 7172 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7173 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 7174 regno, err_extra, tn_buf); 7175 return -EACCES; 7176 } 7177 /* Only initialized buffer on stack is allowed to be accessed 7178 * with variable offset. With uninitialized buffer it's hard to 7179 * guarantee that whole memory is marked as initialized on 7180 * helper return since specific bounds are unknown what may 7181 * cause uninitialized stack leaking. 7182 */ 7183 if (meta && meta->raw_mode) 7184 meta = NULL; 7185 7186 min_off = reg->smin_value + off; 7187 max_off = reg->smax_value + off; 7188 } 7189 7190 if (meta && meta->raw_mode) { 7191 /* Ensure we won't be overwriting dynptrs when simulating byte 7192 * by byte access in check_helper_call using meta.access_size. 7193 * This would be a problem if we have a helper in the future 7194 * which takes: 7195 * 7196 * helper(uninit_mem, len, dynptr) 7197 * 7198 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 7199 * may end up writing to dynptr itself when touching memory from 7200 * arg 1. This can be relaxed on a case by case basis for known 7201 * safe cases, but reject due to the possibilitiy of aliasing by 7202 * default. 7203 */ 7204 for (i = min_off; i < max_off + access_size; i++) { 7205 int stack_off = -i - 1; 7206 7207 spi = __get_spi(i); 7208 /* raw_mode may write past allocated_stack */ 7209 if (state->allocated_stack <= stack_off) 7210 continue; 7211 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 7212 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 7213 return -EACCES; 7214 } 7215 } 7216 meta->access_size = access_size; 7217 meta->regno = regno; 7218 return 0; 7219 } 7220 7221 for (i = min_off; i < max_off + access_size; i++) { 7222 u8 *stype; 7223 7224 slot = -i - 1; 7225 spi = slot / BPF_REG_SIZE; 7226 if (state->allocated_stack <= slot) { 7227 verbose(env, "verifier bug: allocated_stack too small"); 7228 return -EFAULT; 7229 } 7230 7231 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 7232 if (*stype == STACK_MISC) 7233 goto mark; 7234 if ((*stype == STACK_ZERO) || 7235 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 7236 if (clobber) { 7237 /* helper can write anything into the stack */ 7238 *stype = STACK_MISC; 7239 } 7240 goto mark; 7241 } 7242 7243 if (is_spilled_reg(&state->stack[spi]) && 7244 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 7245 env->allow_ptr_leaks)) { 7246 if (clobber) { 7247 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 7248 for (j = 0; j < BPF_REG_SIZE; j++) 7249 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 7250 } 7251 goto mark; 7252 } 7253 7254 if (tnum_is_const(reg->var_off)) { 7255 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 7256 err_extra, regno, min_off, i - min_off, access_size); 7257 } else { 7258 char tn_buf[48]; 7259 7260 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7261 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 7262 err_extra, regno, tn_buf, i - min_off, access_size); 7263 } 7264 return -EACCES; 7265 mark: 7266 /* reading any byte out of 8-byte 'spill_slot' will cause 7267 * the whole slot to be marked as 'read' 7268 */ 7269 mark_reg_read(env, &state->stack[spi].spilled_ptr, 7270 state->stack[spi].spilled_ptr.parent, 7271 REG_LIVE_READ64); 7272 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 7273 * be sure that whether stack slot is written to or not. Hence, 7274 * we must still conservatively propagate reads upwards even if 7275 * helper may write to the entire memory range. 7276 */ 7277 } 7278 return 0; 7279 } 7280 7281 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 7282 int access_size, bool zero_size_allowed, 7283 struct bpf_call_arg_meta *meta) 7284 { 7285 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7286 u32 *max_access; 7287 7288 switch (base_type(reg->type)) { 7289 case PTR_TO_PACKET: 7290 case PTR_TO_PACKET_META: 7291 return check_packet_access(env, regno, reg->off, access_size, 7292 zero_size_allowed); 7293 case PTR_TO_MAP_KEY: 7294 if (meta && meta->raw_mode) { 7295 verbose(env, "R%d cannot write into %s\n", regno, 7296 reg_type_str(env, reg->type)); 7297 return -EACCES; 7298 } 7299 return check_mem_region_access(env, regno, reg->off, access_size, 7300 reg->map_ptr->key_size, false); 7301 case PTR_TO_MAP_VALUE: 7302 if (check_map_access_type(env, regno, reg->off, access_size, 7303 meta && meta->raw_mode ? BPF_WRITE : 7304 BPF_READ)) 7305 return -EACCES; 7306 return check_map_access(env, regno, reg->off, access_size, 7307 zero_size_allowed, ACCESS_HELPER); 7308 case PTR_TO_MEM: 7309 if (type_is_rdonly_mem(reg->type)) { 7310 if (meta && meta->raw_mode) { 7311 verbose(env, "R%d cannot write into %s\n", regno, 7312 reg_type_str(env, reg->type)); 7313 return -EACCES; 7314 } 7315 } 7316 return check_mem_region_access(env, regno, reg->off, 7317 access_size, reg->mem_size, 7318 zero_size_allowed); 7319 case PTR_TO_BUF: 7320 if (type_is_rdonly_mem(reg->type)) { 7321 if (meta && meta->raw_mode) { 7322 verbose(env, "R%d cannot write into %s\n", regno, 7323 reg_type_str(env, reg->type)); 7324 return -EACCES; 7325 } 7326 7327 max_access = &env->prog->aux->max_rdonly_access; 7328 } else { 7329 max_access = &env->prog->aux->max_rdwr_access; 7330 } 7331 return check_buffer_access(env, reg, regno, reg->off, 7332 access_size, zero_size_allowed, 7333 max_access); 7334 case PTR_TO_STACK: 7335 return check_stack_range_initialized( 7336 env, 7337 regno, reg->off, access_size, 7338 zero_size_allowed, ACCESS_HELPER, meta); 7339 case PTR_TO_BTF_ID: 7340 return check_ptr_to_btf_access(env, regs, regno, reg->off, 7341 access_size, BPF_READ, -1); 7342 case PTR_TO_CTX: 7343 /* in case the function doesn't know how to access the context, 7344 * (because we are in a program of type SYSCALL for example), we 7345 * can not statically check its size. 7346 * Dynamically check it now. 7347 */ 7348 if (!env->ops->convert_ctx_access) { 7349 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 7350 int offset = access_size - 1; 7351 7352 /* Allow zero-byte read from PTR_TO_CTX */ 7353 if (access_size == 0) 7354 return zero_size_allowed ? 0 : -EACCES; 7355 7356 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 7357 atype, -1, false, false); 7358 } 7359 7360 fallthrough; 7361 default: /* scalar_value or invalid ptr */ 7362 /* Allow zero-byte read from NULL, regardless of pointer type */ 7363 if (zero_size_allowed && access_size == 0 && 7364 register_is_null(reg)) 7365 return 0; 7366 7367 verbose(env, "R%d type=%s ", regno, 7368 reg_type_str(env, reg->type)); 7369 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 7370 return -EACCES; 7371 } 7372 } 7373 7374 /* verify arguments to helpers or kfuncs consisting of a pointer and an access 7375 * size. 7376 * 7377 * @regno is the register containing the access size. regno-1 is the register 7378 * containing the pointer. 7379 */ 7380 static int check_mem_size_reg(struct bpf_verifier_env *env, 7381 struct bpf_reg_state *reg, u32 regno, 7382 bool zero_size_allowed, 7383 struct bpf_call_arg_meta *meta) 7384 { 7385 int err; 7386 7387 /* This is used to refine r0 return value bounds for helpers 7388 * that enforce this value as an upper bound on return values. 7389 * See do_refine_retval_range() for helpers that can refine 7390 * the return value. C type of helper is u32 so we pull register 7391 * bound from umax_value however, if negative verifier errors 7392 * out. Only upper bounds can be learned because retval is an 7393 * int type and negative retvals are allowed. 7394 */ 7395 meta->msize_max_value = reg->umax_value; 7396 7397 /* The register is SCALAR_VALUE; the access check 7398 * happens using its boundaries. 7399 */ 7400 if (!tnum_is_const(reg->var_off)) 7401 /* For unprivileged variable accesses, disable raw 7402 * mode so that the program is required to 7403 * initialize all the memory that the helper could 7404 * just partially fill up. 7405 */ 7406 meta = NULL; 7407 7408 if (reg->smin_value < 0) { 7409 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 7410 regno); 7411 return -EACCES; 7412 } 7413 7414 if (reg->umin_value == 0 && !zero_size_allowed) { 7415 verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n", 7416 regno, reg->umin_value, reg->umax_value); 7417 return -EACCES; 7418 } 7419 7420 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 7421 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 7422 regno); 7423 return -EACCES; 7424 } 7425 err = check_helper_mem_access(env, regno - 1, 7426 reg->umax_value, 7427 zero_size_allowed, meta); 7428 if (!err) 7429 err = mark_chain_precision(env, regno); 7430 return err; 7431 } 7432 7433 static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7434 u32 regno, u32 mem_size) 7435 { 7436 bool may_be_null = type_may_be_null(reg->type); 7437 struct bpf_reg_state saved_reg; 7438 struct bpf_call_arg_meta meta; 7439 int err; 7440 7441 if (register_is_null(reg)) 7442 return 0; 7443 7444 memset(&meta, 0, sizeof(meta)); 7445 /* Assuming that the register contains a value check if the memory 7446 * access is safe. Temporarily save and restore the register's state as 7447 * the conversion shouldn't be visible to a caller. 7448 */ 7449 if (may_be_null) { 7450 saved_reg = *reg; 7451 mark_ptr_not_null_reg(reg); 7452 } 7453 7454 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 7455 /* Check access for BPF_WRITE */ 7456 meta.raw_mode = true; 7457 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 7458 7459 if (may_be_null) 7460 *reg = saved_reg; 7461 7462 return err; 7463 } 7464 7465 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7466 u32 regno) 7467 { 7468 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 7469 bool may_be_null = type_may_be_null(mem_reg->type); 7470 struct bpf_reg_state saved_reg; 7471 struct bpf_call_arg_meta meta; 7472 int err; 7473 7474 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 7475 7476 memset(&meta, 0, sizeof(meta)); 7477 7478 if (may_be_null) { 7479 saved_reg = *mem_reg; 7480 mark_ptr_not_null_reg(mem_reg); 7481 } 7482 7483 err = check_mem_size_reg(env, reg, regno, true, &meta); 7484 /* Check access for BPF_WRITE */ 7485 meta.raw_mode = true; 7486 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 7487 7488 if (may_be_null) 7489 *mem_reg = saved_reg; 7490 return err; 7491 } 7492 7493 /* Implementation details: 7494 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 7495 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 7496 * Two bpf_map_lookups (even with the same key) will have different reg->id. 7497 * Two separate bpf_obj_new will also have different reg->id. 7498 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 7499 * clears reg->id after value_or_null->value transition, since the verifier only 7500 * cares about the range of access to valid map value pointer and doesn't care 7501 * about actual address of the map element. 7502 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 7503 * reg->id > 0 after value_or_null->value transition. By doing so 7504 * two bpf_map_lookups will be considered two different pointers that 7505 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 7506 * returned from bpf_obj_new. 7507 * The verifier allows taking only one bpf_spin_lock at a time to avoid 7508 * dead-locks. 7509 * Since only one bpf_spin_lock is allowed the checks are simpler than 7510 * reg_is_refcounted() logic. The verifier needs to remember only 7511 * one spin_lock instead of array of acquired_refs. 7512 * cur_state->active_lock remembers which map value element or allocated 7513 * object got locked and clears it after bpf_spin_unlock. 7514 */ 7515 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 7516 bool is_lock) 7517 { 7518 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7519 struct bpf_verifier_state *cur = env->cur_state; 7520 bool is_const = tnum_is_const(reg->var_off); 7521 u64 val = reg->var_off.value; 7522 struct bpf_map *map = NULL; 7523 struct btf *btf = NULL; 7524 struct btf_record *rec; 7525 7526 if (!is_const) { 7527 verbose(env, 7528 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 7529 regno); 7530 return -EINVAL; 7531 } 7532 if (reg->type == PTR_TO_MAP_VALUE) { 7533 map = reg->map_ptr; 7534 if (!map->btf) { 7535 verbose(env, 7536 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 7537 map->name); 7538 return -EINVAL; 7539 } 7540 } else { 7541 btf = reg->btf; 7542 } 7543 7544 rec = reg_btf_record(reg); 7545 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 7546 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 7547 map ? map->name : "kptr"); 7548 return -EINVAL; 7549 } 7550 if (rec->spin_lock_off != val + reg->off) { 7551 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 7552 val + reg->off, rec->spin_lock_off); 7553 return -EINVAL; 7554 } 7555 if (is_lock) { 7556 if (cur->active_lock.ptr) { 7557 verbose(env, 7558 "Locking two bpf_spin_locks are not allowed\n"); 7559 return -EINVAL; 7560 } 7561 if (map) 7562 cur->active_lock.ptr = map; 7563 else 7564 cur->active_lock.ptr = btf; 7565 cur->active_lock.id = reg->id; 7566 } else { 7567 void *ptr; 7568 7569 if (map) 7570 ptr = map; 7571 else 7572 ptr = btf; 7573 7574 if (!cur->active_lock.ptr) { 7575 verbose(env, "bpf_spin_unlock without taking a lock\n"); 7576 return -EINVAL; 7577 } 7578 if (cur->active_lock.ptr != ptr || 7579 cur->active_lock.id != reg->id) { 7580 verbose(env, "bpf_spin_unlock of different lock\n"); 7581 return -EINVAL; 7582 } 7583 7584 invalidate_non_owning_refs(env); 7585 7586 cur->active_lock.ptr = NULL; 7587 cur->active_lock.id = 0; 7588 } 7589 return 0; 7590 } 7591 7592 static int process_timer_func(struct bpf_verifier_env *env, int regno, 7593 struct bpf_call_arg_meta *meta) 7594 { 7595 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7596 bool is_const = tnum_is_const(reg->var_off); 7597 struct bpf_map *map = reg->map_ptr; 7598 u64 val = reg->var_off.value; 7599 7600 if (!is_const) { 7601 verbose(env, 7602 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 7603 regno); 7604 return -EINVAL; 7605 } 7606 if (!map->btf) { 7607 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 7608 map->name); 7609 return -EINVAL; 7610 } 7611 if (!btf_record_has_field(map->record, BPF_TIMER)) { 7612 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 7613 return -EINVAL; 7614 } 7615 if (map->record->timer_off != val + reg->off) { 7616 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 7617 val + reg->off, map->record->timer_off); 7618 return -EINVAL; 7619 } 7620 if (meta->map_ptr) { 7621 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 7622 return -EFAULT; 7623 } 7624 meta->map_uid = reg->map_uid; 7625 meta->map_ptr = map; 7626 return 0; 7627 } 7628 7629 static int process_wq_func(struct bpf_verifier_env *env, int regno, 7630 struct bpf_kfunc_call_arg_meta *meta) 7631 { 7632 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7633 struct bpf_map *map = reg->map_ptr; 7634 u64 val = reg->var_off.value; 7635 7636 if (map->record->wq_off != val + reg->off) { 7637 verbose(env, "off %lld doesn't point to 'struct bpf_wq' that is at %d\n", 7638 val + reg->off, map->record->wq_off); 7639 return -EINVAL; 7640 } 7641 meta->map.uid = reg->map_uid; 7642 meta->map.ptr = map; 7643 return 0; 7644 } 7645 7646 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 7647 struct bpf_call_arg_meta *meta) 7648 { 7649 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7650 struct bpf_map *map_ptr = reg->map_ptr; 7651 struct btf_field *kptr_field; 7652 u32 kptr_off; 7653 7654 if (!tnum_is_const(reg->var_off)) { 7655 verbose(env, 7656 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 7657 regno); 7658 return -EINVAL; 7659 } 7660 if (!map_ptr->btf) { 7661 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 7662 map_ptr->name); 7663 return -EINVAL; 7664 } 7665 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 7666 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 7667 return -EINVAL; 7668 } 7669 7670 meta->map_ptr = map_ptr; 7671 kptr_off = reg->off + reg->var_off.value; 7672 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 7673 if (!kptr_field) { 7674 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 7675 return -EACCES; 7676 } 7677 if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) { 7678 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 7679 return -EACCES; 7680 } 7681 meta->kptr_field = kptr_field; 7682 return 0; 7683 } 7684 7685 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 7686 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 7687 * 7688 * In both cases we deal with the first 8 bytes, but need to mark the next 8 7689 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 7690 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 7691 * 7692 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 7693 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 7694 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 7695 * mutate the view of the dynptr and also possibly destroy it. In the latter 7696 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 7697 * memory that dynptr points to. 7698 * 7699 * The verifier will keep track both levels of mutation (bpf_dynptr's in 7700 * reg->type and the memory's in reg->dynptr.type), but there is no support for 7701 * readonly dynptr view yet, hence only the first case is tracked and checked. 7702 * 7703 * This is consistent with how C applies the const modifier to a struct object, 7704 * where the pointer itself inside bpf_dynptr becomes const but not what it 7705 * points to. 7706 * 7707 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 7708 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 7709 */ 7710 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 7711 enum bpf_arg_type arg_type, int clone_ref_obj_id) 7712 { 7713 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7714 int err; 7715 7716 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 7717 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 7718 */ 7719 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 7720 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 7721 return -EFAULT; 7722 } 7723 7724 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 7725 * constructing a mutable bpf_dynptr object. 7726 * 7727 * Currently, this is only possible with PTR_TO_STACK 7728 * pointing to a region of at least 16 bytes which doesn't 7729 * contain an existing bpf_dynptr. 7730 * 7731 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 7732 * mutated or destroyed. However, the memory it points to 7733 * may be mutated. 7734 * 7735 * None - Points to a initialized dynptr that can be mutated and 7736 * destroyed, including mutation of the memory it points 7737 * to. 7738 */ 7739 if (arg_type & MEM_UNINIT) { 7740 int i; 7741 7742 if (!is_dynptr_reg_valid_uninit(env, reg)) { 7743 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 7744 return -EINVAL; 7745 } 7746 7747 /* we write BPF_DW bits (8 bytes) at a time */ 7748 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7749 err = check_mem_access(env, insn_idx, regno, 7750 i, BPF_DW, BPF_WRITE, -1, false, false); 7751 if (err) 7752 return err; 7753 } 7754 7755 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 7756 } else /* MEM_RDONLY and None case from above */ { 7757 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 7758 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 7759 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 7760 return -EINVAL; 7761 } 7762 7763 if (!is_dynptr_reg_valid_init(env, reg)) { 7764 verbose(env, 7765 "Expected an initialized dynptr as arg #%d\n", 7766 regno); 7767 return -EINVAL; 7768 } 7769 7770 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 7771 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 7772 verbose(env, 7773 "Expected a dynptr of type %s as arg #%d\n", 7774 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); 7775 return -EINVAL; 7776 } 7777 7778 err = mark_dynptr_read(env, reg); 7779 } 7780 return err; 7781 } 7782 7783 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 7784 { 7785 struct bpf_func_state *state = func(env, reg); 7786 7787 return state->stack[spi].spilled_ptr.ref_obj_id; 7788 } 7789 7790 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7791 { 7792 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7793 } 7794 7795 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7796 { 7797 return meta->kfunc_flags & KF_ITER_NEW; 7798 } 7799 7800 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7801 { 7802 return meta->kfunc_flags & KF_ITER_NEXT; 7803 } 7804 7805 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7806 { 7807 return meta->kfunc_flags & KF_ITER_DESTROY; 7808 } 7809 7810 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg) 7811 { 7812 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 7813 * kfunc is iter state pointer 7814 */ 7815 return arg == 0 && is_iter_kfunc(meta); 7816 } 7817 7818 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 7819 struct bpf_kfunc_call_arg_meta *meta) 7820 { 7821 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7822 const struct btf_type *t; 7823 const struct btf_param *arg; 7824 int spi, err, i, nr_slots; 7825 u32 btf_id; 7826 7827 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */ 7828 arg = &btf_params(meta->func_proto)[0]; 7829 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */ 7830 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */ 7831 nr_slots = t->size / BPF_REG_SIZE; 7832 7833 if (is_iter_new_kfunc(meta)) { 7834 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 7835 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 7836 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 7837 iter_type_str(meta->btf, btf_id), regno); 7838 return -EINVAL; 7839 } 7840 7841 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 7842 err = check_mem_access(env, insn_idx, regno, 7843 i, BPF_DW, BPF_WRITE, -1, false, false); 7844 if (err) 7845 return err; 7846 } 7847 7848 err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots); 7849 if (err) 7850 return err; 7851 } else { 7852 /* iter_next() or iter_destroy() expect initialized iter state*/ 7853 err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots); 7854 switch (err) { 7855 case 0: 7856 break; 7857 case -EINVAL: 7858 verbose(env, "expected an initialized iter_%s as arg #%d\n", 7859 iter_type_str(meta->btf, btf_id), regno); 7860 return err; 7861 case -EPROTO: 7862 verbose(env, "expected an RCU CS when using %s\n", meta->func_name); 7863 return err; 7864 default: 7865 return err; 7866 } 7867 7868 spi = iter_get_spi(env, reg, nr_slots); 7869 if (spi < 0) 7870 return spi; 7871 7872 err = mark_iter_read(env, reg, spi, nr_slots); 7873 if (err) 7874 return err; 7875 7876 /* remember meta->iter info for process_iter_next_call() */ 7877 meta->iter.spi = spi; 7878 meta->iter.frameno = reg->frameno; 7879 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 7880 7881 if (is_iter_destroy_kfunc(meta)) { 7882 err = unmark_stack_slots_iter(env, reg, nr_slots); 7883 if (err) 7884 return err; 7885 } 7886 } 7887 7888 return 0; 7889 } 7890 7891 /* Look for a previous loop entry at insn_idx: nearest parent state 7892 * stopped at insn_idx with callsites matching those in cur->frame. 7893 */ 7894 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, 7895 struct bpf_verifier_state *cur, 7896 int insn_idx) 7897 { 7898 struct bpf_verifier_state_list *sl; 7899 struct bpf_verifier_state *st; 7900 7901 /* Explored states are pushed in stack order, most recent states come first */ 7902 sl = *explored_state(env, insn_idx); 7903 for (; sl; sl = sl->next) { 7904 /* If st->branches != 0 state is a part of current DFS verification path, 7905 * hence cur & st for a loop. 7906 */ 7907 st = &sl->state; 7908 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && 7909 st->dfs_depth < cur->dfs_depth) 7910 return st; 7911 } 7912 7913 return NULL; 7914 } 7915 7916 static void reset_idmap_scratch(struct bpf_verifier_env *env); 7917 static bool regs_exact(const struct bpf_reg_state *rold, 7918 const struct bpf_reg_state *rcur, 7919 struct bpf_idmap *idmap); 7920 7921 static void maybe_widen_reg(struct bpf_verifier_env *env, 7922 struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 7923 struct bpf_idmap *idmap) 7924 { 7925 if (rold->type != SCALAR_VALUE) 7926 return; 7927 if (rold->type != rcur->type) 7928 return; 7929 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) 7930 return; 7931 __mark_reg_unknown(env, rcur); 7932 } 7933 7934 static int widen_imprecise_scalars(struct bpf_verifier_env *env, 7935 struct bpf_verifier_state *old, 7936 struct bpf_verifier_state *cur) 7937 { 7938 struct bpf_func_state *fold, *fcur; 7939 int i, fr; 7940 7941 reset_idmap_scratch(env); 7942 for (fr = old->curframe; fr >= 0; fr--) { 7943 fold = old->frame[fr]; 7944 fcur = cur->frame[fr]; 7945 7946 for (i = 0; i < MAX_BPF_REG; i++) 7947 maybe_widen_reg(env, 7948 &fold->regs[i], 7949 &fcur->regs[i], 7950 &env->idmap_scratch); 7951 7952 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) { 7953 if (!is_spilled_reg(&fold->stack[i]) || 7954 !is_spilled_reg(&fcur->stack[i])) 7955 continue; 7956 7957 maybe_widen_reg(env, 7958 &fold->stack[i].spilled_ptr, 7959 &fcur->stack[i].spilled_ptr, 7960 &env->idmap_scratch); 7961 } 7962 } 7963 return 0; 7964 } 7965 7966 /* process_iter_next_call() is called when verifier gets to iterator's next 7967 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 7968 * to it as just "iter_next()" in comments below. 7969 * 7970 * BPF verifier relies on a crucial contract for any iter_next() 7971 * implementation: it should *eventually* return NULL, and once that happens 7972 * it should keep returning NULL. That is, once iterator exhausts elements to 7973 * iterate, it should never reset or spuriously return new elements. 7974 * 7975 * With the assumption of such contract, process_iter_next_call() simulates 7976 * a fork in the verifier state to validate loop logic correctness and safety 7977 * without having to simulate infinite amount of iterations. 7978 * 7979 * In current state, we first assume that iter_next() returned NULL and 7980 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 7981 * conditions we should not form an infinite loop and should eventually reach 7982 * exit. 7983 * 7984 * Besides that, we also fork current state and enqueue it for later 7985 * verification. In a forked state we keep iterator state as ACTIVE 7986 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 7987 * also bump iteration depth to prevent erroneous infinite loop detection 7988 * later on (see iter_active_depths_differ() comment for details). In this 7989 * state we assume that we'll eventually loop back to another iter_next() 7990 * calls (it could be in exactly same location or in some other instruction, 7991 * it doesn't matter, we don't make any unnecessary assumptions about this, 7992 * everything revolves around iterator state in a stack slot, not which 7993 * instruction is calling iter_next()). When that happens, we either will come 7994 * to iter_next() with equivalent state and can conclude that next iteration 7995 * will proceed in exactly the same way as we just verified, so it's safe to 7996 * assume that loop converges. If not, we'll go on another iteration 7997 * simulation with a different input state, until all possible starting states 7998 * are validated or we reach maximum number of instructions limit. 7999 * 8000 * This way, we will either exhaustively discover all possible input states 8001 * that iterator loop can start with and eventually will converge, or we'll 8002 * effectively regress into bounded loop simulation logic and either reach 8003 * maximum number of instructions if loop is not provably convergent, or there 8004 * is some statically known limit on number of iterations (e.g., if there is 8005 * an explicit `if n > 100 then break;` statement somewhere in the loop). 8006 * 8007 * Iteration convergence logic in is_state_visited() relies on exact 8008 * states comparison, which ignores read and precision marks. 8009 * This is necessary because read and precision marks are not finalized 8010 * while in the loop. Exact comparison might preclude convergence for 8011 * simple programs like below: 8012 * 8013 * i = 0; 8014 * while(iter_next(&it)) 8015 * i++; 8016 * 8017 * At each iteration step i++ would produce a new distinct state and 8018 * eventually instruction processing limit would be reached. 8019 * 8020 * To avoid such behavior speculatively forget (widen) range for 8021 * imprecise scalar registers, if those registers were not precise at the 8022 * end of the previous iteration and do not match exactly. 8023 * 8024 * This is a conservative heuristic that allows to verify wide range of programs, 8025 * however it precludes verification of programs that conjure an 8026 * imprecise value on the first loop iteration and use it as precise on a second. 8027 * For example, the following safe program would fail to verify: 8028 * 8029 * struct bpf_num_iter it; 8030 * int arr[10]; 8031 * int i = 0, a = 0; 8032 * bpf_iter_num_new(&it, 0, 10); 8033 * while (bpf_iter_num_next(&it)) { 8034 * if (a == 0) { 8035 * a = 1; 8036 * i = 7; // Because i changed verifier would forget 8037 * // it's range on second loop entry. 8038 * } else { 8039 * arr[i] = 42; // This would fail to verify. 8040 * } 8041 * } 8042 * bpf_iter_num_destroy(&it); 8043 */ 8044 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 8045 struct bpf_kfunc_call_arg_meta *meta) 8046 { 8047 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 8048 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 8049 struct bpf_reg_state *cur_iter, *queued_iter; 8050 int iter_frameno = meta->iter.frameno; 8051 int iter_spi = meta->iter.spi; 8052 8053 BTF_TYPE_EMIT(struct bpf_iter); 8054 8055 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 8056 8057 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 8058 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 8059 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 8060 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 8061 return -EFAULT; 8062 } 8063 8064 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 8065 /* Because iter_next() call is a checkpoint is_state_visitied() 8066 * should guarantee parent state with same call sites and insn_idx. 8067 */ 8068 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || 8069 !same_callsites(cur_st->parent, cur_st)) { 8070 verbose(env, "bug: bad parent state for iter next call"); 8071 return -EFAULT; 8072 } 8073 /* Note cur_st->parent in the call below, it is necessary to skip 8074 * checkpoint created for cur_st by is_state_visited() 8075 * right at this instruction. 8076 */ 8077 prev_st = find_prev_entry(env, cur_st->parent, insn_idx); 8078 /* branch out active iter state */ 8079 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 8080 if (!queued_st) 8081 return -ENOMEM; 8082 8083 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 8084 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 8085 queued_iter->iter.depth++; 8086 if (prev_st) 8087 widen_imprecise_scalars(env, prev_st, queued_st); 8088 8089 queued_fr = queued_st->frame[queued_st->curframe]; 8090 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 8091 } 8092 8093 /* switch to DRAINED state, but keep the depth unchanged */ 8094 /* mark current iter state as drained and assume returned NULL */ 8095 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 8096 __mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]); 8097 8098 return 0; 8099 } 8100 8101 static bool arg_type_is_mem_size(enum bpf_arg_type type) 8102 { 8103 return type == ARG_CONST_SIZE || 8104 type == ARG_CONST_SIZE_OR_ZERO; 8105 } 8106 8107 static bool arg_type_is_release(enum bpf_arg_type type) 8108 { 8109 return type & OBJ_RELEASE; 8110 } 8111 8112 static bool arg_type_is_dynptr(enum bpf_arg_type type) 8113 { 8114 return base_type(type) == ARG_PTR_TO_DYNPTR; 8115 } 8116 8117 static int int_ptr_type_to_size(enum bpf_arg_type type) 8118 { 8119 if (type == ARG_PTR_TO_INT) 8120 return sizeof(u32); 8121 else if (type == ARG_PTR_TO_LONG) 8122 return sizeof(u64); 8123 8124 return -EINVAL; 8125 } 8126 8127 static int resolve_map_arg_type(struct bpf_verifier_env *env, 8128 const struct bpf_call_arg_meta *meta, 8129 enum bpf_arg_type *arg_type) 8130 { 8131 if (!meta->map_ptr) { 8132 /* kernel subsystem misconfigured verifier */ 8133 verbose(env, "invalid map_ptr to access map->type\n"); 8134 return -EACCES; 8135 } 8136 8137 switch (meta->map_ptr->map_type) { 8138 case BPF_MAP_TYPE_SOCKMAP: 8139 case BPF_MAP_TYPE_SOCKHASH: 8140 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 8141 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 8142 } else { 8143 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 8144 return -EINVAL; 8145 } 8146 break; 8147 case BPF_MAP_TYPE_BLOOM_FILTER: 8148 if (meta->func_id == BPF_FUNC_map_peek_elem) 8149 *arg_type = ARG_PTR_TO_MAP_VALUE; 8150 break; 8151 default: 8152 break; 8153 } 8154 return 0; 8155 } 8156 8157 struct bpf_reg_types { 8158 const enum bpf_reg_type types[10]; 8159 u32 *btf_id; 8160 }; 8161 8162 static const struct bpf_reg_types sock_types = { 8163 .types = { 8164 PTR_TO_SOCK_COMMON, 8165 PTR_TO_SOCKET, 8166 PTR_TO_TCP_SOCK, 8167 PTR_TO_XDP_SOCK, 8168 }, 8169 }; 8170 8171 #ifdef CONFIG_NET 8172 static const struct bpf_reg_types btf_id_sock_common_types = { 8173 .types = { 8174 PTR_TO_SOCK_COMMON, 8175 PTR_TO_SOCKET, 8176 PTR_TO_TCP_SOCK, 8177 PTR_TO_XDP_SOCK, 8178 PTR_TO_BTF_ID, 8179 PTR_TO_BTF_ID | PTR_TRUSTED, 8180 }, 8181 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 8182 }; 8183 #endif 8184 8185 static const struct bpf_reg_types mem_types = { 8186 .types = { 8187 PTR_TO_STACK, 8188 PTR_TO_PACKET, 8189 PTR_TO_PACKET_META, 8190 PTR_TO_MAP_KEY, 8191 PTR_TO_MAP_VALUE, 8192 PTR_TO_MEM, 8193 PTR_TO_MEM | MEM_RINGBUF, 8194 PTR_TO_BUF, 8195 PTR_TO_BTF_ID | PTR_TRUSTED, 8196 }, 8197 }; 8198 8199 static const struct bpf_reg_types int_ptr_types = { 8200 .types = { 8201 PTR_TO_STACK, 8202 PTR_TO_PACKET, 8203 PTR_TO_PACKET_META, 8204 PTR_TO_MAP_KEY, 8205 PTR_TO_MAP_VALUE, 8206 }, 8207 }; 8208 8209 static const struct bpf_reg_types spin_lock_types = { 8210 .types = { 8211 PTR_TO_MAP_VALUE, 8212 PTR_TO_BTF_ID | MEM_ALLOC, 8213 } 8214 }; 8215 8216 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 8217 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 8218 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 8219 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 8220 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 8221 static const struct bpf_reg_types btf_ptr_types = { 8222 .types = { 8223 PTR_TO_BTF_ID, 8224 PTR_TO_BTF_ID | PTR_TRUSTED, 8225 PTR_TO_BTF_ID | MEM_RCU, 8226 }, 8227 }; 8228 static const struct bpf_reg_types percpu_btf_ptr_types = { 8229 .types = { 8230 PTR_TO_BTF_ID | MEM_PERCPU, 8231 PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU, 8232 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 8233 } 8234 }; 8235 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 8236 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 8237 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8238 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 8239 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8240 static const struct bpf_reg_types dynptr_types = { 8241 .types = { 8242 PTR_TO_STACK, 8243 CONST_PTR_TO_DYNPTR, 8244 } 8245 }; 8246 8247 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 8248 [ARG_PTR_TO_MAP_KEY] = &mem_types, 8249 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 8250 [ARG_CONST_SIZE] = &scalar_types, 8251 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 8252 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 8253 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 8254 [ARG_PTR_TO_CTX] = &context_types, 8255 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 8256 #ifdef CONFIG_NET 8257 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 8258 #endif 8259 [ARG_PTR_TO_SOCKET] = &fullsock_types, 8260 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 8261 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 8262 [ARG_PTR_TO_MEM] = &mem_types, 8263 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 8264 [ARG_PTR_TO_INT] = &int_ptr_types, 8265 [ARG_PTR_TO_LONG] = &int_ptr_types, 8266 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 8267 [ARG_PTR_TO_FUNC] = &func_ptr_types, 8268 [ARG_PTR_TO_STACK] = &stack_ptr_types, 8269 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 8270 [ARG_PTR_TO_TIMER] = &timer_types, 8271 [ARG_PTR_TO_KPTR] = &kptr_types, 8272 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 8273 }; 8274 8275 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 8276 enum bpf_arg_type arg_type, 8277 const u32 *arg_btf_id, 8278 struct bpf_call_arg_meta *meta) 8279 { 8280 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8281 enum bpf_reg_type expected, type = reg->type; 8282 const struct bpf_reg_types *compatible; 8283 int i, j; 8284 8285 compatible = compatible_reg_types[base_type(arg_type)]; 8286 if (!compatible) { 8287 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 8288 return -EFAULT; 8289 } 8290 8291 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 8292 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 8293 * 8294 * Same for MAYBE_NULL: 8295 * 8296 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 8297 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 8298 * 8299 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 8300 * 8301 * Therefore we fold these flags depending on the arg_type before comparison. 8302 */ 8303 if (arg_type & MEM_RDONLY) 8304 type &= ~MEM_RDONLY; 8305 if (arg_type & PTR_MAYBE_NULL) 8306 type &= ~PTR_MAYBE_NULL; 8307 if (base_type(arg_type) == ARG_PTR_TO_MEM) 8308 type &= ~DYNPTR_TYPE_FLAG_MASK; 8309 8310 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) { 8311 type &= ~MEM_ALLOC; 8312 type &= ~MEM_PERCPU; 8313 } 8314 8315 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 8316 expected = compatible->types[i]; 8317 if (expected == NOT_INIT) 8318 break; 8319 8320 if (type == expected) 8321 goto found; 8322 } 8323 8324 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 8325 for (j = 0; j + 1 < i; j++) 8326 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 8327 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 8328 return -EACCES; 8329 8330 found: 8331 if (base_type(reg->type) != PTR_TO_BTF_ID) 8332 return 0; 8333 8334 if (compatible == &mem_types) { 8335 if (!(arg_type & MEM_RDONLY)) { 8336 verbose(env, 8337 "%s() may write into memory pointed by R%d type=%s\n", 8338 func_id_name(meta->func_id), 8339 regno, reg_type_str(env, reg->type)); 8340 return -EACCES; 8341 } 8342 return 0; 8343 } 8344 8345 switch ((int)reg->type) { 8346 case PTR_TO_BTF_ID: 8347 case PTR_TO_BTF_ID | PTR_TRUSTED: 8348 case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL: 8349 case PTR_TO_BTF_ID | MEM_RCU: 8350 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 8351 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 8352 { 8353 /* For bpf_sk_release, it needs to match against first member 8354 * 'struct sock_common', hence make an exception for it. This 8355 * allows bpf_sk_release to work for multiple socket types. 8356 */ 8357 bool strict_type_match = arg_type_is_release(arg_type) && 8358 meta->func_id != BPF_FUNC_sk_release; 8359 8360 if (type_may_be_null(reg->type) && 8361 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 8362 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 8363 return -EACCES; 8364 } 8365 8366 if (!arg_btf_id) { 8367 if (!compatible->btf_id) { 8368 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 8369 return -EFAULT; 8370 } 8371 arg_btf_id = compatible->btf_id; 8372 } 8373 8374 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8375 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8376 return -EACCES; 8377 } else { 8378 if (arg_btf_id == BPF_PTR_POISON) { 8379 verbose(env, "verifier internal error:"); 8380 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 8381 regno); 8382 return -EACCES; 8383 } 8384 8385 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 8386 btf_vmlinux, *arg_btf_id, 8387 strict_type_match)) { 8388 verbose(env, "R%d is of type %s but %s is expected\n", 8389 regno, btf_type_name(reg->btf, reg->btf_id), 8390 btf_type_name(btf_vmlinux, *arg_btf_id)); 8391 return -EACCES; 8392 } 8393 } 8394 break; 8395 } 8396 case PTR_TO_BTF_ID | MEM_ALLOC: 8397 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC: 8398 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 8399 meta->func_id != BPF_FUNC_kptr_xchg) { 8400 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 8401 return -EFAULT; 8402 } 8403 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8404 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8405 return -EACCES; 8406 } 8407 break; 8408 case PTR_TO_BTF_ID | MEM_PERCPU: 8409 case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU: 8410 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 8411 /* Handled by helper specific checks */ 8412 break; 8413 default: 8414 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 8415 return -EFAULT; 8416 } 8417 return 0; 8418 } 8419 8420 static struct btf_field * 8421 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 8422 { 8423 struct btf_field *field; 8424 struct btf_record *rec; 8425 8426 rec = reg_btf_record(reg); 8427 if (!rec) 8428 return NULL; 8429 8430 field = btf_record_find(rec, off, fields); 8431 if (!field) 8432 return NULL; 8433 8434 return field; 8435 } 8436 8437 static int check_func_arg_reg_off(struct bpf_verifier_env *env, 8438 const struct bpf_reg_state *reg, int regno, 8439 enum bpf_arg_type arg_type) 8440 { 8441 u32 type = reg->type; 8442 8443 /* When referenced register is passed to release function, its fixed 8444 * offset must be 0. 8445 * 8446 * We will check arg_type_is_release reg has ref_obj_id when storing 8447 * meta->release_regno. 8448 */ 8449 if (arg_type_is_release(arg_type)) { 8450 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 8451 * may not directly point to the object being released, but to 8452 * dynptr pointing to such object, which might be at some offset 8453 * on the stack. In that case, we simply to fallback to the 8454 * default handling. 8455 */ 8456 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 8457 return 0; 8458 8459 /* Doing check_ptr_off_reg check for the offset will catch this 8460 * because fixed_off_ok is false, but checking here allows us 8461 * to give the user a better error message. 8462 */ 8463 if (reg->off) { 8464 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 8465 regno); 8466 return -EINVAL; 8467 } 8468 return __check_ptr_off_reg(env, reg, regno, false); 8469 } 8470 8471 switch (type) { 8472 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 8473 case PTR_TO_STACK: 8474 case PTR_TO_PACKET: 8475 case PTR_TO_PACKET_META: 8476 case PTR_TO_MAP_KEY: 8477 case PTR_TO_MAP_VALUE: 8478 case PTR_TO_MEM: 8479 case PTR_TO_MEM | MEM_RDONLY: 8480 case PTR_TO_MEM | MEM_RINGBUF: 8481 case PTR_TO_BUF: 8482 case PTR_TO_BUF | MEM_RDONLY: 8483 case PTR_TO_ARENA: 8484 case SCALAR_VALUE: 8485 return 0; 8486 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 8487 * fixed offset. 8488 */ 8489 case PTR_TO_BTF_ID: 8490 case PTR_TO_BTF_ID | MEM_ALLOC: 8491 case PTR_TO_BTF_ID | PTR_TRUSTED: 8492 case PTR_TO_BTF_ID | MEM_RCU: 8493 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 8494 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 8495 /* When referenced PTR_TO_BTF_ID is passed to release function, 8496 * its fixed offset must be 0. In the other cases, fixed offset 8497 * can be non-zero. This was already checked above. So pass 8498 * fixed_off_ok as true to allow fixed offset for all other 8499 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 8500 * still need to do checks instead of returning. 8501 */ 8502 return __check_ptr_off_reg(env, reg, regno, true); 8503 default: 8504 return __check_ptr_off_reg(env, reg, regno, false); 8505 } 8506 } 8507 8508 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 8509 const struct bpf_func_proto *fn, 8510 struct bpf_reg_state *regs) 8511 { 8512 struct bpf_reg_state *state = NULL; 8513 int i; 8514 8515 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 8516 if (arg_type_is_dynptr(fn->arg_type[i])) { 8517 if (state) { 8518 verbose(env, "verifier internal error: multiple dynptr args\n"); 8519 return NULL; 8520 } 8521 state = ®s[BPF_REG_1 + i]; 8522 } 8523 8524 if (!state) 8525 verbose(env, "verifier internal error: no dynptr arg found\n"); 8526 8527 return state; 8528 } 8529 8530 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8531 { 8532 struct bpf_func_state *state = func(env, reg); 8533 int spi; 8534 8535 if (reg->type == CONST_PTR_TO_DYNPTR) 8536 return reg->id; 8537 spi = dynptr_get_spi(env, reg); 8538 if (spi < 0) 8539 return spi; 8540 return state->stack[spi].spilled_ptr.id; 8541 } 8542 8543 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8544 { 8545 struct bpf_func_state *state = func(env, reg); 8546 int spi; 8547 8548 if (reg->type == CONST_PTR_TO_DYNPTR) 8549 return reg->ref_obj_id; 8550 spi = dynptr_get_spi(env, reg); 8551 if (spi < 0) 8552 return spi; 8553 return state->stack[spi].spilled_ptr.ref_obj_id; 8554 } 8555 8556 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 8557 struct bpf_reg_state *reg) 8558 { 8559 struct bpf_func_state *state = func(env, reg); 8560 int spi; 8561 8562 if (reg->type == CONST_PTR_TO_DYNPTR) 8563 return reg->dynptr.type; 8564 8565 spi = __get_spi(reg->off); 8566 if (spi < 0) { 8567 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 8568 return BPF_DYNPTR_TYPE_INVALID; 8569 } 8570 8571 return state->stack[spi].spilled_ptr.dynptr.type; 8572 } 8573 8574 static int check_reg_const_str(struct bpf_verifier_env *env, 8575 struct bpf_reg_state *reg, u32 regno) 8576 { 8577 struct bpf_map *map = reg->map_ptr; 8578 int err; 8579 int map_off; 8580 u64 map_addr; 8581 char *str_ptr; 8582 8583 if (reg->type != PTR_TO_MAP_VALUE) 8584 return -EINVAL; 8585 8586 if (!bpf_map_is_rdonly(map)) { 8587 verbose(env, "R%d does not point to a readonly map'\n", regno); 8588 return -EACCES; 8589 } 8590 8591 if (!tnum_is_const(reg->var_off)) { 8592 verbose(env, "R%d is not a constant address'\n", regno); 8593 return -EACCES; 8594 } 8595 8596 if (!map->ops->map_direct_value_addr) { 8597 verbose(env, "no direct value access support for this map type\n"); 8598 return -EACCES; 8599 } 8600 8601 err = check_map_access(env, regno, reg->off, 8602 map->value_size - reg->off, false, 8603 ACCESS_HELPER); 8604 if (err) 8605 return err; 8606 8607 map_off = reg->off + reg->var_off.value; 8608 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 8609 if (err) { 8610 verbose(env, "direct value access on string failed\n"); 8611 return err; 8612 } 8613 8614 str_ptr = (char *)(long)(map_addr); 8615 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 8616 verbose(env, "string is not zero-terminated\n"); 8617 return -EINVAL; 8618 } 8619 return 0; 8620 } 8621 8622 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 8623 struct bpf_call_arg_meta *meta, 8624 const struct bpf_func_proto *fn, 8625 int insn_idx) 8626 { 8627 u32 regno = BPF_REG_1 + arg; 8628 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8629 enum bpf_arg_type arg_type = fn->arg_type[arg]; 8630 enum bpf_reg_type type = reg->type; 8631 u32 *arg_btf_id = NULL; 8632 int err = 0; 8633 8634 if (arg_type == ARG_DONTCARE) 8635 return 0; 8636 8637 err = check_reg_arg(env, regno, SRC_OP); 8638 if (err) 8639 return err; 8640 8641 if (arg_type == ARG_ANYTHING) { 8642 if (is_pointer_value(env, regno)) { 8643 verbose(env, "R%d leaks addr into helper function\n", 8644 regno); 8645 return -EACCES; 8646 } 8647 return 0; 8648 } 8649 8650 if (type_is_pkt_pointer(type) && 8651 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 8652 verbose(env, "helper access to the packet is not allowed\n"); 8653 return -EACCES; 8654 } 8655 8656 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 8657 err = resolve_map_arg_type(env, meta, &arg_type); 8658 if (err) 8659 return err; 8660 } 8661 8662 if (register_is_null(reg) && type_may_be_null(arg_type)) 8663 /* A NULL register has a SCALAR_VALUE type, so skip 8664 * type checking. 8665 */ 8666 goto skip_type_check; 8667 8668 /* arg_btf_id and arg_size are in a union. */ 8669 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 8670 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 8671 arg_btf_id = fn->arg_btf_id[arg]; 8672 8673 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 8674 if (err) 8675 return err; 8676 8677 err = check_func_arg_reg_off(env, reg, regno, arg_type); 8678 if (err) 8679 return err; 8680 8681 skip_type_check: 8682 if (arg_type_is_release(arg_type)) { 8683 if (arg_type_is_dynptr(arg_type)) { 8684 struct bpf_func_state *state = func(env, reg); 8685 int spi; 8686 8687 /* Only dynptr created on stack can be released, thus 8688 * the get_spi and stack state checks for spilled_ptr 8689 * should only be done before process_dynptr_func for 8690 * PTR_TO_STACK. 8691 */ 8692 if (reg->type == PTR_TO_STACK) { 8693 spi = dynptr_get_spi(env, reg); 8694 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 8695 verbose(env, "arg %d is an unacquired reference\n", regno); 8696 return -EINVAL; 8697 } 8698 } else { 8699 verbose(env, "cannot release unowned const bpf_dynptr\n"); 8700 return -EINVAL; 8701 } 8702 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 8703 verbose(env, "R%d must be referenced when passed to release function\n", 8704 regno); 8705 return -EINVAL; 8706 } 8707 if (meta->release_regno) { 8708 verbose(env, "verifier internal error: more than one release argument\n"); 8709 return -EFAULT; 8710 } 8711 meta->release_regno = regno; 8712 } 8713 8714 if (reg->ref_obj_id) { 8715 if (meta->ref_obj_id) { 8716 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 8717 regno, reg->ref_obj_id, 8718 meta->ref_obj_id); 8719 return -EFAULT; 8720 } 8721 meta->ref_obj_id = reg->ref_obj_id; 8722 } 8723 8724 switch (base_type(arg_type)) { 8725 case ARG_CONST_MAP_PTR: 8726 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 8727 if (meta->map_ptr) { 8728 /* Use map_uid (which is unique id of inner map) to reject: 8729 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 8730 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 8731 * if (inner_map1 && inner_map2) { 8732 * timer = bpf_map_lookup_elem(inner_map1); 8733 * if (timer) 8734 * // mismatch would have been allowed 8735 * bpf_timer_init(timer, inner_map2); 8736 * } 8737 * 8738 * Comparing map_ptr is enough to distinguish normal and outer maps. 8739 */ 8740 if (meta->map_ptr != reg->map_ptr || 8741 meta->map_uid != reg->map_uid) { 8742 verbose(env, 8743 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 8744 meta->map_uid, reg->map_uid); 8745 return -EINVAL; 8746 } 8747 } 8748 meta->map_ptr = reg->map_ptr; 8749 meta->map_uid = reg->map_uid; 8750 break; 8751 case ARG_PTR_TO_MAP_KEY: 8752 /* bpf_map_xxx(..., map_ptr, ..., key) call: 8753 * check that [key, key + map->key_size) are within 8754 * stack limits and initialized 8755 */ 8756 if (!meta->map_ptr) { 8757 /* in function declaration map_ptr must come before 8758 * map_key, so that it's verified and known before 8759 * we have to check map_key here. Otherwise it means 8760 * that kernel subsystem misconfigured verifier 8761 */ 8762 verbose(env, "invalid map_ptr to access map->key\n"); 8763 return -EACCES; 8764 } 8765 err = check_helper_mem_access(env, regno, 8766 meta->map_ptr->key_size, false, 8767 NULL); 8768 break; 8769 case ARG_PTR_TO_MAP_VALUE: 8770 if (type_may_be_null(arg_type) && register_is_null(reg)) 8771 return 0; 8772 8773 /* bpf_map_xxx(..., map_ptr, ..., value) call: 8774 * check [value, value + map->value_size) validity 8775 */ 8776 if (!meta->map_ptr) { 8777 /* kernel subsystem misconfigured verifier */ 8778 verbose(env, "invalid map_ptr to access map->value\n"); 8779 return -EACCES; 8780 } 8781 meta->raw_mode = arg_type & MEM_UNINIT; 8782 err = check_helper_mem_access(env, regno, 8783 meta->map_ptr->value_size, false, 8784 meta); 8785 break; 8786 case ARG_PTR_TO_PERCPU_BTF_ID: 8787 if (!reg->btf_id) { 8788 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 8789 return -EACCES; 8790 } 8791 meta->ret_btf = reg->btf; 8792 meta->ret_btf_id = reg->btf_id; 8793 break; 8794 case ARG_PTR_TO_SPIN_LOCK: 8795 if (in_rbtree_lock_required_cb(env)) { 8796 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 8797 return -EACCES; 8798 } 8799 if (meta->func_id == BPF_FUNC_spin_lock) { 8800 err = process_spin_lock(env, regno, true); 8801 if (err) 8802 return err; 8803 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 8804 err = process_spin_lock(env, regno, false); 8805 if (err) 8806 return err; 8807 } else { 8808 verbose(env, "verifier internal error\n"); 8809 return -EFAULT; 8810 } 8811 break; 8812 case ARG_PTR_TO_TIMER: 8813 err = process_timer_func(env, regno, meta); 8814 if (err) 8815 return err; 8816 break; 8817 case ARG_PTR_TO_FUNC: 8818 meta->subprogno = reg->subprogno; 8819 break; 8820 case ARG_PTR_TO_MEM: 8821 /* The access to this pointer is only checked when we hit the 8822 * next is_mem_size argument below. 8823 */ 8824 meta->raw_mode = arg_type & MEM_UNINIT; 8825 if (arg_type & MEM_FIXED_SIZE) { 8826 err = check_helper_mem_access(env, regno, 8827 fn->arg_size[arg], false, 8828 meta); 8829 } 8830 break; 8831 case ARG_CONST_SIZE: 8832 err = check_mem_size_reg(env, reg, regno, false, meta); 8833 break; 8834 case ARG_CONST_SIZE_OR_ZERO: 8835 err = check_mem_size_reg(env, reg, regno, true, meta); 8836 break; 8837 case ARG_PTR_TO_DYNPTR: 8838 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 8839 if (err) 8840 return err; 8841 break; 8842 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 8843 if (!tnum_is_const(reg->var_off)) { 8844 verbose(env, "R%d is not a known constant'\n", 8845 regno); 8846 return -EACCES; 8847 } 8848 meta->mem_size = reg->var_off.value; 8849 err = mark_chain_precision(env, regno); 8850 if (err) 8851 return err; 8852 break; 8853 case ARG_PTR_TO_INT: 8854 case ARG_PTR_TO_LONG: 8855 { 8856 int size = int_ptr_type_to_size(arg_type); 8857 8858 err = check_helper_mem_access(env, regno, size, false, meta); 8859 if (err) 8860 return err; 8861 err = check_ptr_alignment(env, reg, 0, size, true); 8862 break; 8863 } 8864 case ARG_PTR_TO_CONST_STR: 8865 { 8866 err = check_reg_const_str(env, reg, regno); 8867 if (err) 8868 return err; 8869 break; 8870 } 8871 case ARG_PTR_TO_KPTR: 8872 err = process_kptr_func(env, regno, meta); 8873 if (err) 8874 return err; 8875 break; 8876 } 8877 8878 return err; 8879 } 8880 8881 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 8882 { 8883 enum bpf_attach_type eatype = env->prog->expected_attach_type; 8884 enum bpf_prog_type type = resolve_prog_type(env->prog); 8885 8886 if (func_id != BPF_FUNC_map_update_elem && 8887 func_id != BPF_FUNC_map_delete_elem) 8888 return false; 8889 8890 /* It's not possible to get access to a locked struct sock in these 8891 * contexts, so updating is safe. 8892 */ 8893 switch (type) { 8894 case BPF_PROG_TYPE_TRACING: 8895 if (eatype == BPF_TRACE_ITER) 8896 return true; 8897 break; 8898 case BPF_PROG_TYPE_SOCK_OPS: 8899 /* map_update allowed only via dedicated helpers with event type checks */ 8900 if (func_id == BPF_FUNC_map_delete_elem) 8901 return true; 8902 break; 8903 case BPF_PROG_TYPE_SOCKET_FILTER: 8904 case BPF_PROG_TYPE_SCHED_CLS: 8905 case BPF_PROG_TYPE_SCHED_ACT: 8906 case BPF_PROG_TYPE_XDP: 8907 case BPF_PROG_TYPE_SK_REUSEPORT: 8908 case BPF_PROG_TYPE_FLOW_DISSECTOR: 8909 case BPF_PROG_TYPE_SK_LOOKUP: 8910 return true; 8911 default: 8912 break; 8913 } 8914 8915 verbose(env, "cannot update sockmap in this context\n"); 8916 return false; 8917 } 8918 8919 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 8920 { 8921 return env->prog->jit_requested && 8922 bpf_jit_supports_subprog_tailcalls(); 8923 } 8924 8925 static int check_map_func_compatibility(struct bpf_verifier_env *env, 8926 struct bpf_map *map, int func_id) 8927 { 8928 if (!map) 8929 return 0; 8930 8931 /* We need a two way check, first is from map perspective ... */ 8932 switch (map->map_type) { 8933 case BPF_MAP_TYPE_PROG_ARRAY: 8934 if (func_id != BPF_FUNC_tail_call) 8935 goto error; 8936 break; 8937 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 8938 if (func_id != BPF_FUNC_perf_event_read && 8939 func_id != BPF_FUNC_perf_event_output && 8940 func_id != BPF_FUNC_skb_output && 8941 func_id != BPF_FUNC_perf_event_read_value && 8942 func_id != BPF_FUNC_xdp_output) 8943 goto error; 8944 break; 8945 case BPF_MAP_TYPE_RINGBUF: 8946 if (func_id != BPF_FUNC_ringbuf_output && 8947 func_id != BPF_FUNC_ringbuf_reserve && 8948 func_id != BPF_FUNC_ringbuf_query && 8949 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 8950 func_id != BPF_FUNC_ringbuf_submit_dynptr && 8951 func_id != BPF_FUNC_ringbuf_discard_dynptr) 8952 goto error; 8953 break; 8954 case BPF_MAP_TYPE_USER_RINGBUF: 8955 if (func_id != BPF_FUNC_user_ringbuf_drain) 8956 goto error; 8957 break; 8958 case BPF_MAP_TYPE_STACK_TRACE: 8959 if (func_id != BPF_FUNC_get_stackid) 8960 goto error; 8961 break; 8962 case BPF_MAP_TYPE_CGROUP_ARRAY: 8963 if (func_id != BPF_FUNC_skb_under_cgroup && 8964 func_id != BPF_FUNC_current_task_under_cgroup) 8965 goto error; 8966 break; 8967 case BPF_MAP_TYPE_CGROUP_STORAGE: 8968 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 8969 if (func_id != BPF_FUNC_get_local_storage) 8970 goto error; 8971 break; 8972 case BPF_MAP_TYPE_DEVMAP: 8973 case BPF_MAP_TYPE_DEVMAP_HASH: 8974 if (func_id != BPF_FUNC_redirect_map && 8975 func_id != BPF_FUNC_map_lookup_elem) 8976 goto error; 8977 break; 8978 /* Restrict bpf side of cpumap and xskmap, open when use-cases 8979 * appear. 8980 */ 8981 case BPF_MAP_TYPE_CPUMAP: 8982 if (func_id != BPF_FUNC_redirect_map) 8983 goto error; 8984 break; 8985 case BPF_MAP_TYPE_XSKMAP: 8986 if (func_id != BPF_FUNC_redirect_map && 8987 func_id != BPF_FUNC_map_lookup_elem) 8988 goto error; 8989 break; 8990 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 8991 case BPF_MAP_TYPE_HASH_OF_MAPS: 8992 if (func_id != BPF_FUNC_map_lookup_elem) 8993 goto error; 8994 break; 8995 case BPF_MAP_TYPE_SOCKMAP: 8996 if (func_id != BPF_FUNC_sk_redirect_map && 8997 func_id != BPF_FUNC_sock_map_update && 8998 func_id != BPF_FUNC_msg_redirect_map && 8999 func_id != BPF_FUNC_sk_select_reuseport && 9000 func_id != BPF_FUNC_map_lookup_elem && 9001 !may_update_sockmap(env, func_id)) 9002 goto error; 9003 break; 9004 case BPF_MAP_TYPE_SOCKHASH: 9005 if (func_id != BPF_FUNC_sk_redirect_hash && 9006 func_id != BPF_FUNC_sock_hash_update && 9007 func_id != BPF_FUNC_msg_redirect_hash && 9008 func_id != BPF_FUNC_sk_select_reuseport && 9009 func_id != BPF_FUNC_map_lookup_elem && 9010 !may_update_sockmap(env, func_id)) 9011 goto error; 9012 break; 9013 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 9014 if (func_id != BPF_FUNC_sk_select_reuseport) 9015 goto error; 9016 break; 9017 case BPF_MAP_TYPE_QUEUE: 9018 case BPF_MAP_TYPE_STACK: 9019 if (func_id != BPF_FUNC_map_peek_elem && 9020 func_id != BPF_FUNC_map_pop_elem && 9021 func_id != BPF_FUNC_map_push_elem) 9022 goto error; 9023 break; 9024 case BPF_MAP_TYPE_SK_STORAGE: 9025 if (func_id != BPF_FUNC_sk_storage_get && 9026 func_id != BPF_FUNC_sk_storage_delete && 9027 func_id != BPF_FUNC_kptr_xchg) 9028 goto error; 9029 break; 9030 case BPF_MAP_TYPE_INODE_STORAGE: 9031 if (func_id != BPF_FUNC_inode_storage_get && 9032 func_id != BPF_FUNC_inode_storage_delete && 9033 func_id != BPF_FUNC_kptr_xchg) 9034 goto error; 9035 break; 9036 case BPF_MAP_TYPE_TASK_STORAGE: 9037 if (func_id != BPF_FUNC_task_storage_get && 9038 func_id != BPF_FUNC_task_storage_delete && 9039 func_id != BPF_FUNC_kptr_xchg) 9040 goto error; 9041 break; 9042 case BPF_MAP_TYPE_CGRP_STORAGE: 9043 if (func_id != BPF_FUNC_cgrp_storage_get && 9044 func_id != BPF_FUNC_cgrp_storage_delete && 9045 func_id != BPF_FUNC_kptr_xchg) 9046 goto error; 9047 break; 9048 case BPF_MAP_TYPE_BLOOM_FILTER: 9049 if (func_id != BPF_FUNC_map_peek_elem && 9050 func_id != BPF_FUNC_map_push_elem) 9051 goto error; 9052 break; 9053 default: 9054 break; 9055 } 9056 9057 /* ... and second from the function itself. */ 9058 switch (func_id) { 9059 case BPF_FUNC_tail_call: 9060 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 9061 goto error; 9062 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 9063 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 9064 return -EINVAL; 9065 } 9066 break; 9067 case BPF_FUNC_perf_event_read: 9068 case BPF_FUNC_perf_event_output: 9069 case BPF_FUNC_perf_event_read_value: 9070 case BPF_FUNC_skb_output: 9071 case BPF_FUNC_xdp_output: 9072 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 9073 goto error; 9074 break; 9075 case BPF_FUNC_ringbuf_output: 9076 case BPF_FUNC_ringbuf_reserve: 9077 case BPF_FUNC_ringbuf_query: 9078 case BPF_FUNC_ringbuf_reserve_dynptr: 9079 case BPF_FUNC_ringbuf_submit_dynptr: 9080 case BPF_FUNC_ringbuf_discard_dynptr: 9081 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 9082 goto error; 9083 break; 9084 case BPF_FUNC_user_ringbuf_drain: 9085 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 9086 goto error; 9087 break; 9088 case BPF_FUNC_get_stackid: 9089 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 9090 goto error; 9091 break; 9092 case BPF_FUNC_current_task_under_cgroup: 9093 case BPF_FUNC_skb_under_cgroup: 9094 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 9095 goto error; 9096 break; 9097 case BPF_FUNC_redirect_map: 9098 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 9099 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 9100 map->map_type != BPF_MAP_TYPE_CPUMAP && 9101 map->map_type != BPF_MAP_TYPE_XSKMAP) 9102 goto error; 9103 break; 9104 case BPF_FUNC_sk_redirect_map: 9105 case BPF_FUNC_msg_redirect_map: 9106 case BPF_FUNC_sock_map_update: 9107 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 9108 goto error; 9109 break; 9110 case BPF_FUNC_sk_redirect_hash: 9111 case BPF_FUNC_msg_redirect_hash: 9112 case BPF_FUNC_sock_hash_update: 9113 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 9114 goto error; 9115 break; 9116 case BPF_FUNC_get_local_storage: 9117 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 9118 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 9119 goto error; 9120 break; 9121 case BPF_FUNC_sk_select_reuseport: 9122 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 9123 map->map_type != BPF_MAP_TYPE_SOCKMAP && 9124 map->map_type != BPF_MAP_TYPE_SOCKHASH) 9125 goto error; 9126 break; 9127 case BPF_FUNC_map_pop_elem: 9128 if (map->map_type != BPF_MAP_TYPE_QUEUE && 9129 map->map_type != BPF_MAP_TYPE_STACK) 9130 goto error; 9131 break; 9132 case BPF_FUNC_map_peek_elem: 9133 case BPF_FUNC_map_push_elem: 9134 if (map->map_type != BPF_MAP_TYPE_QUEUE && 9135 map->map_type != BPF_MAP_TYPE_STACK && 9136 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 9137 goto error; 9138 break; 9139 case BPF_FUNC_map_lookup_percpu_elem: 9140 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 9141 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 9142 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 9143 goto error; 9144 break; 9145 case BPF_FUNC_sk_storage_get: 9146 case BPF_FUNC_sk_storage_delete: 9147 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 9148 goto error; 9149 break; 9150 case BPF_FUNC_inode_storage_get: 9151 case BPF_FUNC_inode_storage_delete: 9152 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 9153 goto error; 9154 break; 9155 case BPF_FUNC_task_storage_get: 9156 case BPF_FUNC_task_storage_delete: 9157 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 9158 goto error; 9159 break; 9160 case BPF_FUNC_cgrp_storage_get: 9161 case BPF_FUNC_cgrp_storage_delete: 9162 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 9163 goto error; 9164 break; 9165 default: 9166 break; 9167 } 9168 9169 return 0; 9170 error: 9171 verbose(env, "cannot pass map_type %d into func %s#%d\n", 9172 map->map_type, func_id_name(func_id), func_id); 9173 return -EINVAL; 9174 } 9175 9176 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 9177 { 9178 int count = 0; 9179 9180 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 9181 count++; 9182 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 9183 count++; 9184 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 9185 count++; 9186 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 9187 count++; 9188 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 9189 count++; 9190 9191 /* We only support one arg being in raw mode at the moment, 9192 * which is sufficient for the helper functions we have 9193 * right now. 9194 */ 9195 return count <= 1; 9196 } 9197 9198 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 9199 { 9200 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 9201 bool has_size = fn->arg_size[arg] != 0; 9202 bool is_next_size = false; 9203 9204 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 9205 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 9206 9207 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 9208 return is_next_size; 9209 9210 return has_size == is_next_size || is_next_size == is_fixed; 9211 } 9212 9213 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 9214 { 9215 /* bpf_xxx(..., buf, len) call will access 'len' 9216 * bytes from memory 'buf'. Both arg types need 9217 * to be paired, so make sure there's no buggy 9218 * helper function specification. 9219 */ 9220 if (arg_type_is_mem_size(fn->arg1_type) || 9221 check_args_pair_invalid(fn, 0) || 9222 check_args_pair_invalid(fn, 1) || 9223 check_args_pair_invalid(fn, 2) || 9224 check_args_pair_invalid(fn, 3) || 9225 check_args_pair_invalid(fn, 4)) 9226 return false; 9227 9228 return true; 9229 } 9230 9231 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 9232 { 9233 int i; 9234 9235 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 9236 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 9237 return !!fn->arg_btf_id[i]; 9238 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 9239 return fn->arg_btf_id[i] == BPF_PTR_POISON; 9240 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 9241 /* arg_btf_id and arg_size are in a union. */ 9242 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 9243 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 9244 return false; 9245 } 9246 9247 return true; 9248 } 9249 9250 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 9251 { 9252 return check_raw_mode_ok(fn) && 9253 check_arg_pair_ok(fn) && 9254 check_btf_id_ok(fn) ? 0 : -EINVAL; 9255 } 9256 9257 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 9258 * are now invalid, so turn them into unknown SCALAR_VALUE. 9259 * 9260 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 9261 * since these slices point to packet data. 9262 */ 9263 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 9264 { 9265 struct bpf_func_state *state; 9266 struct bpf_reg_state *reg; 9267 9268 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9269 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 9270 mark_reg_invalid(env, reg); 9271 })); 9272 } 9273 9274 enum { 9275 AT_PKT_END = -1, 9276 BEYOND_PKT_END = -2, 9277 }; 9278 9279 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 9280 { 9281 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9282 struct bpf_reg_state *reg = &state->regs[regn]; 9283 9284 if (reg->type != PTR_TO_PACKET) 9285 /* PTR_TO_PACKET_META is not supported yet */ 9286 return; 9287 9288 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 9289 * How far beyond pkt_end it goes is unknown. 9290 * if (!range_open) it's the case of pkt >= pkt_end 9291 * if (range_open) it's the case of pkt > pkt_end 9292 * hence this pointer is at least 1 byte bigger than pkt_end 9293 */ 9294 if (range_open) 9295 reg->range = BEYOND_PKT_END; 9296 else 9297 reg->range = AT_PKT_END; 9298 } 9299 9300 /* The pointer with the specified id has released its reference to kernel 9301 * resources. Identify all copies of the same pointer and clear the reference. 9302 */ 9303 static int release_reference(struct bpf_verifier_env *env, 9304 int ref_obj_id) 9305 { 9306 struct bpf_func_state *state; 9307 struct bpf_reg_state *reg; 9308 int err; 9309 9310 err = release_reference_state(cur_func(env), ref_obj_id); 9311 if (err) 9312 return err; 9313 9314 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9315 if (reg->ref_obj_id == ref_obj_id) 9316 mark_reg_invalid(env, reg); 9317 })); 9318 9319 return 0; 9320 } 9321 9322 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 9323 { 9324 struct bpf_func_state *unused; 9325 struct bpf_reg_state *reg; 9326 9327 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 9328 if (type_is_non_owning_ref(reg->type)) 9329 mark_reg_invalid(env, reg); 9330 })); 9331 } 9332 9333 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 9334 struct bpf_reg_state *regs) 9335 { 9336 int i; 9337 9338 /* after the call registers r0 - r5 were scratched */ 9339 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9340 mark_reg_not_init(env, regs, caller_saved[i]); 9341 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); 9342 } 9343 } 9344 9345 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 9346 struct bpf_func_state *caller, 9347 struct bpf_func_state *callee, 9348 int insn_idx); 9349 9350 static int set_callee_state(struct bpf_verifier_env *env, 9351 struct bpf_func_state *caller, 9352 struct bpf_func_state *callee, int insn_idx); 9353 9354 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, 9355 set_callee_state_fn set_callee_state_cb, 9356 struct bpf_verifier_state *state) 9357 { 9358 struct bpf_func_state *caller, *callee; 9359 int err; 9360 9361 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 9362 verbose(env, "the call stack of %d frames is too deep\n", 9363 state->curframe + 2); 9364 return -E2BIG; 9365 } 9366 9367 if (state->frame[state->curframe + 1]) { 9368 verbose(env, "verifier bug. Frame %d already allocated\n", 9369 state->curframe + 1); 9370 return -EFAULT; 9371 } 9372 9373 caller = state->frame[state->curframe]; 9374 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 9375 if (!callee) 9376 return -ENOMEM; 9377 state->frame[state->curframe + 1] = callee; 9378 9379 /* callee cannot access r0, r6 - r9 for reading and has to write 9380 * into its own stack before reading from it. 9381 * callee can read/write into caller's stack 9382 */ 9383 init_func_state(env, callee, 9384 /* remember the callsite, it will be used by bpf_exit */ 9385 callsite, 9386 state->curframe + 1 /* frameno within this callchain */, 9387 subprog /* subprog number within this prog */); 9388 /* Transfer references to the callee */ 9389 err = copy_reference_state(callee, caller); 9390 err = err ?: set_callee_state_cb(env, caller, callee, callsite); 9391 if (err) 9392 goto err_out; 9393 9394 /* only increment it after check_reg_arg() finished */ 9395 state->curframe++; 9396 9397 return 0; 9398 9399 err_out: 9400 free_func_state(callee); 9401 state->frame[state->curframe + 1] = NULL; 9402 return err; 9403 } 9404 9405 static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog, 9406 const struct btf *btf, 9407 struct bpf_reg_state *regs) 9408 { 9409 struct bpf_subprog_info *sub = subprog_info(env, subprog); 9410 struct bpf_verifier_log *log = &env->log; 9411 u32 i; 9412 int ret; 9413 9414 ret = btf_prepare_func_args(env, subprog); 9415 if (ret) 9416 return ret; 9417 9418 /* check that BTF function arguments match actual types that the 9419 * verifier sees. 9420 */ 9421 for (i = 0; i < sub->arg_cnt; i++) { 9422 u32 regno = i + 1; 9423 struct bpf_reg_state *reg = ®s[regno]; 9424 struct bpf_subprog_arg_info *arg = &sub->args[i]; 9425 9426 if (arg->arg_type == ARG_ANYTHING) { 9427 if (reg->type != SCALAR_VALUE) { 9428 bpf_log(log, "R%d is not a scalar\n", regno); 9429 return -EINVAL; 9430 } 9431 } else if (arg->arg_type == ARG_PTR_TO_CTX) { 9432 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 9433 if (ret < 0) 9434 return ret; 9435 /* If function expects ctx type in BTF check that caller 9436 * is passing PTR_TO_CTX. 9437 */ 9438 if (reg->type != PTR_TO_CTX) { 9439 bpf_log(log, "arg#%d expects pointer to ctx\n", i); 9440 return -EINVAL; 9441 } 9442 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 9443 ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); 9444 if (ret < 0) 9445 return ret; 9446 if (check_mem_reg(env, reg, regno, arg->mem_size)) 9447 return -EINVAL; 9448 if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) { 9449 bpf_log(log, "arg#%d is expected to be non-NULL\n", i); 9450 return -EINVAL; 9451 } 9452 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 9453 /* 9454 * Can pass any value and the kernel won't crash, but 9455 * only PTR_TO_ARENA or SCALAR make sense. Everything 9456 * else is a bug in the bpf program. Point it out to 9457 * the user at the verification time instead of 9458 * run-time debug nightmare. 9459 */ 9460 if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) { 9461 bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno); 9462 return -EINVAL; 9463 } 9464 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 9465 ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0); 9466 if (ret) 9467 return ret; 9468 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 9469 struct bpf_call_arg_meta meta; 9470 int err; 9471 9472 if (register_is_null(reg) && type_may_be_null(arg->arg_type)) 9473 continue; 9474 9475 memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */ 9476 err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta); 9477 err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type); 9478 if (err) 9479 return err; 9480 } else { 9481 bpf_log(log, "verifier bug: unrecognized arg#%d type %d\n", 9482 i, arg->arg_type); 9483 return -EFAULT; 9484 } 9485 } 9486 9487 return 0; 9488 } 9489 9490 /* Compare BTF of a function call with given bpf_reg_state. 9491 * Returns: 9492 * EFAULT - there is a verifier bug. Abort verification. 9493 * EINVAL - there is a type mismatch or BTF is not available. 9494 * 0 - BTF matches with what bpf_reg_state expects. 9495 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 9496 */ 9497 static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 9498 struct bpf_reg_state *regs) 9499 { 9500 struct bpf_prog *prog = env->prog; 9501 struct btf *btf = prog->aux->btf; 9502 u32 btf_id; 9503 int err; 9504 9505 if (!prog->aux->func_info) 9506 return -EINVAL; 9507 9508 btf_id = prog->aux->func_info[subprog].type_id; 9509 if (!btf_id) 9510 return -EFAULT; 9511 9512 if (prog->aux->func_info_aux[subprog].unreliable) 9513 return -EINVAL; 9514 9515 err = btf_check_func_arg_match(env, subprog, btf, regs); 9516 /* Compiler optimizations can remove arguments from static functions 9517 * or mismatched type can be passed into a global function. 9518 * In such cases mark the function as unreliable from BTF point of view. 9519 */ 9520 if (err) 9521 prog->aux->func_info_aux[subprog].unreliable = true; 9522 return err; 9523 } 9524 9525 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9526 int insn_idx, int subprog, 9527 set_callee_state_fn set_callee_state_cb) 9528 { 9529 struct bpf_verifier_state *state = env->cur_state, *callback_state; 9530 struct bpf_func_state *caller, *callee; 9531 int err; 9532 9533 caller = state->frame[state->curframe]; 9534 err = btf_check_subprog_call(env, subprog, caller->regs); 9535 if (err == -EFAULT) 9536 return err; 9537 9538 /* set_callee_state is used for direct subprog calls, but we are 9539 * interested in validating only BPF helpers that can call subprogs as 9540 * callbacks 9541 */ 9542 env->subprog_info[subprog].is_cb = true; 9543 if (bpf_pseudo_kfunc_call(insn) && 9544 !is_callback_calling_kfunc(insn->imm)) { 9545 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 9546 func_id_name(insn->imm), insn->imm); 9547 return -EFAULT; 9548 } else if (!bpf_pseudo_kfunc_call(insn) && 9549 !is_callback_calling_function(insn->imm)) { /* helper */ 9550 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 9551 func_id_name(insn->imm), insn->imm); 9552 return -EFAULT; 9553 } 9554 9555 if (is_async_callback_calling_insn(insn)) { 9556 struct bpf_verifier_state *async_cb; 9557 9558 /* there is no real recursion here. timer and workqueue callbacks are async */ 9559 env->subprog_info[subprog].is_async_cb = true; 9560 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 9561 insn_idx, subprog, 9562 is_bpf_wq_set_callback_impl_kfunc(insn->imm)); 9563 if (!async_cb) 9564 return -EFAULT; 9565 callee = async_cb->frame[0]; 9566 callee->async_entry_cnt = caller->async_entry_cnt + 1; 9567 9568 /* Convert bpf_timer_set_callback() args into timer callback args */ 9569 err = set_callee_state_cb(env, caller, callee, insn_idx); 9570 if (err) 9571 return err; 9572 9573 return 0; 9574 } 9575 9576 /* for callback functions enqueue entry to callback and 9577 * proceed with next instruction within current frame. 9578 */ 9579 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); 9580 if (!callback_state) 9581 return -ENOMEM; 9582 9583 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, 9584 callback_state); 9585 if (err) 9586 return err; 9587 9588 callback_state->callback_unroll_depth++; 9589 callback_state->frame[callback_state->curframe - 1]->callback_depth++; 9590 caller->callback_depth = 0; 9591 return 0; 9592 } 9593 9594 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9595 int *insn_idx) 9596 { 9597 struct bpf_verifier_state *state = env->cur_state; 9598 struct bpf_func_state *caller; 9599 int err, subprog, target_insn; 9600 9601 target_insn = *insn_idx + insn->imm + 1; 9602 subprog = find_subprog(env, target_insn); 9603 if (subprog < 0) { 9604 verbose(env, "verifier bug. No program starts at insn %d\n", target_insn); 9605 return -EFAULT; 9606 } 9607 9608 caller = state->frame[state->curframe]; 9609 err = btf_check_subprog_call(env, subprog, caller->regs); 9610 if (err == -EFAULT) 9611 return err; 9612 if (subprog_is_global(env, subprog)) { 9613 const char *sub_name = subprog_name(env, subprog); 9614 9615 /* Only global subprogs cannot be called with a lock held. */ 9616 if (env->cur_state->active_lock.ptr) { 9617 verbose(env, "global function calls are not allowed while holding a lock,\n" 9618 "use static function instead\n"); 9619 return -EINVAL; 9620 } 9621 9622 /* Only global subprogs cannot be called with preemption disabled. */ 9623 if (env->cur_state->active_preempt_lock) { 9624 verbose(env, "global function calls are not allowed with preemption disabled,\n" 9625 "use static function instead\n"); 9626 return -EINVAL; 9627 } 9628 9629 if (err) { 9630 verbose(env, "Caller passes invalid args into func#%d ('%s')\n", 9631 subprog, sub_name); 9632 return err; 9633 } 9634 9635 verbose(env, "Func#%d ('%s') is global and assumed valid.\n", 9636 subprog, sub_name); 9637 /* mark global subprog for verifying after main prog */ 9638 subprog_aux(env, subprog)->called = true; 9639 clear_caller_saved_regs(env, caller->regs); 9640 9641 /* All global functions return a 64-bit SCALAR_VALUE */ 9642 mark_reg_unknown(env, caller->regs, BPF_REG_0); 9643 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 9644 9645 /* continue with next insn after call */ 9646 return 0; 9647 } 9648 9649 /* for regular function entry setup new frame and continue 9650 * from that frame. 9651 */ 9652 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); 9653 if (err) 9654 return err; 9655 9656 clear_caller_saved_regs(env, caller->regs); 9657 9658 /* and go analyze first insn of the callee */ 9659 *insn_idx = env->subprog_info[subprog].start - 1; 9660 9661 if (env->log.level & BPF_LOG_LEVEL) { 9662 verbose(env, "caller:\n"); 9663 print_verifier_state(env, caller, true); 9664 verbose(env, "callee:\n"); 9665 print_verifier_state(env, state->frame[state->curframe], true); 9666 } 9667 9668 return 0; 9669 } 9670 9671 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 9672 struct bpf_func_state *caller, 9673 struct bpf_func_state *callee) 9674 { 9675 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 9676 * void *callback_ctx, u64 flags); 9677 * callback_fn(struct bpf_map *map, void *key, void *value, 9678 * void *callback_ctx); 9679 */ 9680 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9681 9682 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9683 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9684 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9685 9686 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9687 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9688 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9689 9690 /* pointer to stack or null */ 9691 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 9692 9693 /* unused */ 9694 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9695 return 0; 9696 } 9697 9698 static int set_callee_state(struct bpf_verifier_env *env, 9699 struct bpf_func_state *caller, 9700 struct bpf_func_state *callee, int insn_idx) 9701 { 9702 int i; 9703 9704 /* copy r1 - r5 args that callee can access. The copy includes parent 9705 * pointers, which connects us up to the liveness chain 9706 */ 9707 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 9708 callee->regs[i] = caller->regs[i]; 9709 return 0; 9710 } 9711 9712 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 9713 struct bpf_func_state *caller, 9714 struct bpf_func_state *callee, 9715 int insn_idx) 9716 { 9717 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 9718 struct bpf_map *map; 9719 int err; 9720 9721 /* valid map_ptr and poison value does not matter */ 9722 map = insn_aux->map_ptr_state.map_ptr; 9723 if (!map->ops->map_set_for_each_callback_args || 9724 !map->ops->map_for_each_callback) { 9725 verbose(env, "callback function not allowed for map\n"); 9726 return -ENOTSUPP; 9727 } 9728 9729 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 9730 if (err) 9731 return err; 9732 9733 callee->in_callback_fn = true; 9734 callee->callback_ret_range = retval_range(0, 1); 9735 return 0; 9736 } 9737 9738 static int set_loop_callback_state(struct bpf_verifier_env *env, 9739 struct bpf_func_state *caller, 9740 struct bpf_func_state *callee, 9741 int insn_idx) 9742 { 9743 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 9744 * u64 flags); 9745 * callback_fn(u32 index, void *callback_ctx); 9746 */ 9747 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 9748 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9749 9750 /* unused */ 9751 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9752 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9753 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9754 9755 callee->in_callback_fn = true; 9756 callee->callback_ret_range = retval_range(0, 1); 9757 return 0; 9758 } 9759 9760 static int set_timer_callback_state(struct bpf_verifier_env *env, 9761 struct bpf_func_state *caller, 9762 struct bpf_func_state *callee, 9763 int insn_idx) 9764 { 9765 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 9766 9767 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 9768 * callback_fn(struct bpf_map *map, void *key, void *value); 9769 */ 9770 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 9771 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 9772 callee->regs[BPF_REG_1].map_ptr = map_ptr; 9773 9774 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9775 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9776 callee->regs[BPF_REG_2].map_ptr = map_ptr; 9777 9778 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9779 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9780 callee->regs[BPF_REG_3].map_ptr = map_ptr; 9781 9782 /* unused */ 9783 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9784 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9785 callee->in_async_callback_fn = true; 9786 callee->callback_ret_range = retval_range(0, 1); 9787 return 0; 9788 } 9789 9790 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 9791 struct bpf_func_state *caller, 9792 struct bpf_func_state *callee, 9793 int insn_idx) 9794 { 9795 /* bpf_find_vma(struct task_struct *task, u64 addr, 9796 * void *callback_fn, void *callback_ctx, u64 flags) 9797 * (callback_fn)(struct task_struct *task, 9798 * struct vm_area_struct *vma, void *callback_ctx); 9799 */ 9800 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9801 9802 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 9803 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9804 callee->regs[BPF_REG_2].btf = btf_vmlinux; 9805 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA]; 9806 9807 /* pointer to stack or null */ 9808 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 9809 9810 /* unused */ 9811 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9812 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9813 callee->in_callback_fn = true; 9814 callee->callback_ret_range = retval_range(0, 1); 9815 return 0; 9816 } 9817 9818 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 9819 struct bpf_func_state *caller, 9820 struct bpf_func_state *callee, 9821 int insn_idx) 9822 { 9823 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 9824 * callback_ctx, u64 flags); 9825 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 9826 */ 9827 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 9828 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 9829 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9830 9831 /* unused */ 9832 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9833 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9834 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9835 9836 callee->in_callback_fn = true; 9837 callee->callback_ret_range = retval_range(0, 1); 9838 return 0; 9839 } 9840 9841 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 9842 struct bpf_func_state *caller, 9843 struct bpf_func_state *callee, 9844 int insn_idx) 9845 { 9846 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 9847 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 9848 * 9849 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 9850 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 9851 * by this point, so look at 'root' 9852 */ 9853 struct btf_field *field; 9854 9855 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 9856 BPF_RB_ROOT); 9857 if (!field || !field->graph_root.value_btf_id) 9858 return -EFAULT; 9859 9860 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 9861 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 9862 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 9863 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 9864 9865 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9866 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9867 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9868 callee->in_callback_fn = true; 9869 callee->callback_ret_range = retval_range(0, 1); 9870 return 0; 9871 } 9872 9873 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 9874 9875 /* Are we currently verifying the callback for a rbtree helper that must 9876 * be called with lock held? If so, no need to complain about unreleased 9877 * lock 9878 */ 9879 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 9880 { 9881 struct bpf_verifier_state *state = env->cur_state; 9882 struct bpf_insn *insn = env->prog->insnsi; 9883 struct bpf_func_state *callee; 9884 int kfunc_btf_id; 9885 9886 if (!state->curframe) 9887 return false; 9888 9889 callee = state->frame[state->curframe]; 9890 9891 if (!callee->in_callback_fn) 9892 return false; 9893 9894 kfunc_btf_id = insn[callee->callsite].imm; 9895 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 9896 } 9897 9898 static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg) 9899 { 9900 return range.minval <= reg->smin_value && reg->smax_value <= range.maxval; 9901 } 9902 9903 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 9904 { 9905 struct bpf_verifier_state *state = env->cur_state, *prev_st; 9906 struct bpf_func_state *caller, *callee; 9907 struct bpf_reg_state *r0; 9908 bool in_callback_fn; 9909 int err; 9910 9911 callee = state->frame[state->curframe]; 9912 r0 = &callee->regs[BPF_REG_0]; 9913 if (r0->type == PTR_TO_STACK) { 9914 /* technically it's ok to return caller's stack pointer 9915 * (or caller's caller's pointer) back to the caller, 9916 * since these pointers are valid. Only current stack 9917 * pointer will be invalid as soon as function exits, 9918 * but let's be conservative 9919 */ 9920 verbose(env, "cannot return stack pointer to the caller\n"); 9921 return -EINVAL; 9922 } 9923 9924 caller = state->frame[state->curframe - 1]; 9925 if (callee->in_callback_fn) { 9926 if (r0->type != SCALAR_VALUE) { 9927 verbose(env, "R0 not a scalar value\n"); 9928 return -EACCES; 9929 } 9930 9931 /* we are going to rely on register's precise value */ 9932 err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64); 9933 err = err ?: mark_chain_precision(env, BPF_REG_0); 9934 if (err) 9935 return err; 9936 9937 /* enforce R0 return value range */ 9938 if (!retval_range_within(callee->callback_ret_range, r0)) { 9939 verbose_invalid_scalar(env, r0, callee->callback_ret_range, 9940 "At callback return", "R0"); 9941 return -EINVAL; 9942 } 9943 if (!calls_callback(env, callee->callsite)) { 9944 verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n", 9945 *insn_idx, callee->callsite); 9946 return -EFAULT; 9947 } 9948 } else { 9949 /* return to the caller whatever r0 had in the callee */ 9950 caller->regs[BPF_REG_0] = *r0; 9951 } 9952 9953 /* callback_fn frame should have released its own additions to parent's 9954 * reference state at this point, or check_reference_leak would 9955 * complain, hence it must be the same as the caller. There is no need 9956 * to copy it back. 9957 */ 9958 if (!callee->in_callback_fn) { 9959 /* Transfer references to the caller */ 9960 err = copy_reference_state(caller, callee); 9961 if (err) 9962 return err; 9963 } 9964 9965 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, 9966 * there function call logic would reschedule callback visit. If iteration 9967 * converges is_state_visited() would prune that visit eventually. 9968 */ 9969 in_callback_fn = callee->in_callback_fn; 9970 if (in_callback_fn) 9971 *insn_idx = callee->callsite; 9972 else 9973 *insn_idx = callee->callsite + 1; 9974 9975 if (env->log.level & BPF_LOG_LEVEL) { 9976 verbose(env, "returning from callee:\n"); 9977 print_verifier_state(env, callee, true); 9978 verbose(env, "to caller at %d:\n", *insn_idx); 9979 print_verifier_state(env, caller, true); 9980 } 9981 /* clear everything in the callee. In case of exceptional exits using 9982 * bpf_throw, this will be done by copy_verifier_state for extra frames. */ 9983 free_func_state(callee); 9984 state->frame[state->curframe--] = NULL; 9985 9986 /* for callbacks widen imprecise scalars to make programs like below verify: 9987 * 9988 * struct ctx { int i; } 9989 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... } 9990 * ... 9991 * struct ctx = { .i = 0; } 9992 * bpf_loop(100, cb, &ctx, 0); 9993 * 9994 * This is similar to what is done in process_iter_next_call() for open 9995 * coded iterators. 9996 */ 9997 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; 9998 if (prev_st) { 9999 err = widen_imprecise_scalars(env, prev_st, state); 10000 if (err) 10001 return err; 10002 } 10003 return 0; 10004 } 10005 10006 static int do_refine_retval_range(struct bpf_verifier_env *env, 10007 struct bpf_reg_state *regs, int ret_type, 10008 int func_id, 10009 struct bpf_call_arg_meta *meta) 10010 { 10011 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 10012 10013 if (ret_type != RET_INTEGER) 10014 return 0; 10015 10016 switch (func_id) { 10017 case BPF_FUNC_get_stack: 10018 case BPF_FUNC_get_task_stack: 10019 case BPF_FUNC_probe_read_str: 10020 case BPF_FUNC_probe_read_kernel_str: 10021 case BPF_FUNC_probe_read_user_str: 10022 ret_reg->smax_value = meta->msize_max_value; 10023 ret_reg->s32_max_value = meta->msize_max_value; 10024 ret_reg->smin_value = -MAX_ERRNO; 10025 ret_reg->s32_min_value = -MAX_ERRNO; 10026 reg_bounds_sync(ret_reg); 10027 break; 10028 case BPF_FUNC_get_smp_processor_id: 10029 ret_reg->umax_value = nr_cpu_ids - 1; 10030 ret_reg->u32_max_value = nr_cpu_ids - 1; 10031 ret_reg->smax_value = nr_cpu_ids - 1; 10032 ret_reg->s32_max_value = nr_cpu_ids - 1; 10033 ret_reg->umin_value = 0; 10034 ret_reg->u32_min_value = 0; 10035 ret_reg->smin_value = 0; 10036 ret_reg->s32_min_value = 0; 10037 reg_bounds_sync(ret_reg); 10038 break; 10039 } 10040 10041 return reg_bounds_sanity_check(env, ret_reg, "retval"); 10042 } 10043 10044 static int 10045 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 10046 int func_id, int insn_idx) 10047 { 10048 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 10049 struct bpf_map *map = meta->map_ptr; 10050 10051 if (func_id != BPF_FUNC_tail_call && 10052 func_id != BPF_FUNC_map_lookup_elem && 10053 func_id != BPF_FUNC_map_update_elem && 10054 func_id != BPF_FUNC_map_delete_elem && 10055 func_id != BPF_FUNC_map_push_elem && 10056 func_id != BPF_FUNC_map_pop_elem && 10057 func_id != BPF_FUNC_map_peek_elem && 10058 func_id != BPF_FUNC_for_each_map_elem && 10059 func_id != BPF_FUNC_redirect_map && 10060 func_id != BPF_FUNC_map_lookup_percpu_elem) 10061 return 0; 10062 10063 if (map == NULL) { 10064 verbose(env, "kernel subsystem misconfigured verifier\n"); 10065 return -EINVAL; 10066 } 10067 10068 /* In case of read-only, some additional restrictions 10069 * need to be applied in order to prevent altering the 10070 * state of the map from program side. 10071 */ 10072 if ((map->map_flags & BPF_F_RDONLY_PROG) && 10073 (func_id == BPF_FUNC_map_delete_elem || 10074 func_id == BPF_FUNC_map_update_elem || 10075 func_id == BPF_FUNC_map_push_elem || 10076 func_id == BPF_FUNC_map_pop_elem)) { 10077 verbose(env, "write into map forbidden\n"); 10078 return -EACCES; 10079 } 10080 10081 if (!aux->map_ptr_state.map_ptr) 10082 bpf_map_ptr_store(aux, meta->map_ptr, 10083 !meta->map_ptr->bypass_spec_v1, false); 10084 else if (aux->map_ptr_state.map_ptr != meta->map_ptr) 10085 bpf_map_ptr_store(aux, meta->map_ptr, 10086 !meta->map_ptr->bypass_spec_v1, true); 10087 return 0; 10088 } 10089 10090 static int 10091 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 10092 int func_id, int insn_idx) 10093 { 10094 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 10095 struct bpf_reg_state *regs = cur_regs(env), *reg; 10096 struct bpf_map *map = meta->map_ptr; 10097 u64 val, max; 10098 int err; 10099 10100 if (func_id != BPF_FUNC_tail_call) 10101 return 0; 10102 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 10103 verbose(env, "kernel subsystem misconfigured verifier\n"); 10104 return -EINVAL; 10105 } 10106 10107 reg = ®s[BPF_REG_3]; 10108 val = reg->var_off.value; 10109 max = map->max_entries; 10110 10111 if (!(is_reg_const(reg, false) && val < max)) { 10112 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 10113 return 0; 10114 } 10115 10116 err = mark_chain_precision(env, BPF_REG_3); 10117 if (err) 10118 return err; 10119 if (bpf_map_key_unseen(aux)) 10120 bpf_map_key_store(aux, val); 10121 else if (!bpf_map_key_poisoned(aux) && 10122 bpf_map_key_immediate(aux) != val) 10123 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 10124 return 0; 10125 } 10126 10127 static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit) 10128 { 10129 struct bpf_func_state *state = cur_func(env); 10130 bool refs_lingering = false; 10131 int i; 10132 10133 if (!exception_exit && state->frameno && !state->in_callback_fn) 10134 return 0; 10135 10136 for (i = 0; i < state->acquired_refs; i++) { 10137 if (!exception_exit && state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 10138 continue; 10139 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 10140 state->refs[i].id, state->refs[i].insn_idx); 10141 refs_lingering = true; 10142 } 10143 return refs_lingering ? -EINVAL : 0; 10144 } 10145 10146 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 10147 struct bpf_reg_state *regs) 10148 { 10149 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 10150 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 10151 struct bpf_map *fmt_map = fmt_reg->map_ptr; 10152 struct bpf_bprintf_data data = {}; 10153 int err, fmt_map_off, num_args; 10154 u64 fmt_addr; 10155 char *fmt; 10156 10157 /* data must be an array of u64 */ 10158 if (data_len_reg->var_off.value % 8) 10159 return -EINVAL; 10160 num_args = data_len_reg->var_off.value / 8; 10161 10162 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 10163 * and map_direct_value_addr is set. 10164 */ 10165 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 10166 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 10167 fmt_map_off); 10168 if (err) { 10169 verbose(env, "verifier bug\n"); 10170 return -EFAULT; 10171 } 10172 fmt = (char *)(long)fmt_addr + fmt_map_off; 10173 10174 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 10175 * can focus on validating the format specifiers. 10176 */ 10177 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 10178 if (err < 0) 10179 verbose(env, "Invalid format string\n"); 10180 10181 return err; 10182 } 10183 10184 static int check_get_func_ip(struct bpf_verifier_env *env) 10185 { 10186 enum bpf_prog_type type = resolve_prog_type(env->prog); 10187 int func_id = BPF_FUNC_get_func_ip; 10188 10189 if (type == BPF_PROG_TYPE_TRACING) { 10190 if (!bpf_prog_has_trampoline(env->prog)) { 10191 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 10192 func_id_name(func_id), func_id); 10193 return -ENOTSUPP; 10194 } 10195 return 0; 10196 } else if (type == BPF_PROG_TYPE_KPROBE) { 10197 return 0; 10198 } 10199 10200 verbose(env, "func %s#%d not supported for program type %d\n", 10201 func_id_name(func_id), func_id, type); 10202 return -ENOTSUPP; 10203 } 10204 10205 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 10206 { 10207 return &env->insn_aux_data[env->insn_idx]; 10208 } 10209 10210 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 10211 { 10212 struct bpf_reg_state *regs = cur_regs(env); 10213 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 10214 bool reg_is_null = register_is_null(reg); 10215 10216 if (reg_is_null) 10217 mark_chain_precision(env, BPF_REG_4); 10218 10219 return reg_is_null; 10220 } 10221 10222 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 10223 { 10224 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 10225 10226 if (!state->initialized) { 10227 state->initialized = 1; 10228 state->fit_for_inline = loop_flag_is_zero(env); 10229 state->callback_subprogno = subprogno; 10230 return; 10231 } 10232 10233 if (!state->fit_for_inline) 10234 return; 10235 10236 state->fit_for_inline = (loop_flag_is_zero(env) && 10237 state->callback_subprogno == subprogno); 10238 } 10239 10240 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 10241 int *insn_idx_p) 10242 { 10243 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 10244 bool returns_cpu_specific_alloc_ptr = false; 10245 const struct bpf_func_proto *fn = NULL; 10246 enum bpf_return_type ret_type; 10247 enum bpf_type_flag ret_flag; 10248 struct bpf_reg_state *regs; 10249 struct bpf_call_arg_meta meta; 10250 int insn_idx = *insn_idx_p; 10251 bool changes_data; 10252 int i, err, func_id; 10253 10254 /* find function prototype */ 10255 func_id = insn->imm; 10256 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 10257 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 10258 func_id); 10259 return -EINVAL; 10260 } 10261 10262 if (env->ops->get_func_proto) 10263 fn = env->ops->get_func_proto(func_id, env->prog); 10264 if (!fn) { 10265 verbose(env, "program of this type cannot use helper %s#%d\n", 10266 func_id_name(func_id), func_id); 10267 return -EINVAL; 10268 } 10269 10270 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 10271 if (!env->prog->gpl_compatible && fn->gpl_only) { 10272 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 10273 return -EINVAL; 10274 } 10275 10276 if (fn->allowed && !fn->allowed(env->prog)) { 10277 verbose(env, "helper call is not allowed in probe\n"); 10278 return -EINVAL; 10279 } 10280 10281 if (!in_sleepable(env) && fn->might_sleep) { 10282 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 10283 return -EINVAL; 10284 } 10285 10286 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 10287 changes_data = bpf_helper_changes_pkt_data(fn->func); 10288 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 10289 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 10290 func_id_name(func_id), func_id); 10291 return -EINVAL; 10292 } 10293 10294 memset(&meta, 0, sizeof(meta)); 10295 meta.pkt_access = fn->pkt_access; 10296 10297 err = check_func_proto(fn, func_id); 10298 if (err) { 10299 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 10300 func_id_name(func_id), func_id); 10301 return err; 10302 } 10303 10304 if (env->cur_state->active_rcu_lock) { 10305 if (fn->might_sleep) { 10306 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 10307 func_id_name(func_id), func_id); 10308 return -EINVAL; 10309 } 10310 10311 if (in_sleepable(env) && is_storage_get_function(func_id)) 10312 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 10313 } 10314 10315 if (env->cur_state->active_preempt_lock) { 10316 if (fn->might_sleep) { 10317 verbose(env, "sleepable helper %s#%d in non-preemptible region\n", 10318 func_id_name(func_id), func_id); 10319 return -EINVAL; 10320 } 10321 10322 if (in_sleepable(env) && is_storage_get_function(func_id)) 10323 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 10324 } 10325 10326 meta.func_id = func_id; 10327 /* check args */ 10328 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 10329 err = check_func_arg(env, i, &meta, fn, insn_idx); 10330 if (err) 10331 return err; 10332 } 10333 10334 err = record_func_map(env, &meta, func_id, insn_idx); 10335 if (err) 10336 return err; 10337 10338 err = record_func_key(env, &meta, func_id, insn_idx); 10339 if (err) 10340 return err; 10341 10342 /* Mark slots with STACK_MISC in case of raw mode, stack offset 10343 * is inferred from register state. 10344 */ 10345 for (i = 0; i < meta.access_size; i++) { 10346 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 10347 BPF_WRITE, -1, false, false); 10348 if (err) 10349 return err; 10350 } 10351 10352 regs = cur_regs(env); 10353 10354 if (meta.release_regno) { 10355 err = -EINVAL; 10356 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 10357 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 10358 * is safe to do directly. 10359 */ 10360 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 10361 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 10362 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 10363 return -EFAULT; 10364 } 10365 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 10366 } else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) { 10367 u32 ref_obj_id = meta.ref_obj_id; 10368 bool in_rcu = in_rcu_cs(env); 10369 struct bpf_func_state *state; 10370 struct bpf_reg_state *reg; 10371 10372 err = release_reference_state(cur_func(env), ref_obj_id); 10373 if (!err) { 10374 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 10375 if (reg->ref_obj_id == ref_obj_id) { 10376 if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) { 10377 reg->ref_obj_id = 0; 10378 reg->type &= ~MEM_ALLOC; 10379 reg->type |= MEM_RCU; 10380 } else { 10381 mark_reg_invalid(env, reg); 10382 } 10383 } 10384 })); 10385 } 10386 } else if (meta.ref_obj_id) { 10387 err = release_reference(env, meta.ref_obj_id); 10388 } else if (register_is_null(®s[meta.release_regno])) { 10389 /* meta.ref_obj_id can only be 0 if register that is meant to be 10390 * released is NULL, which must be > R0. 10391 */ 10392 err = 0; 10393 } 10394 if (err) { 10395 verbose(env, "func %s#%d reference has not been acquired before\n", 10396 func_id_name(func_id), func_id); 10397 return err; 10398 } 10399 } 10400 10401 switch (func_id) { 10402 case BPF_FUNC_tail_call: 10403 err = check_reference_leak(env, false); 10404 if (err) { 10405 verbose(env, "tail_call would lead to reference leak\n"); 10406 return err; 10407 } 10408 break; 10409 case BPF_FUNC_get_local_storage: 10410 /* check that flags argument in get_local_storage(map, flags) is 0, 10411 * this is required because get_local_storage() can't return an error. 10412 */ 10413 if (!register_is_null(®s[BPF_REG_2])) { 10414 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 10415 return -EINVAL; 10416 } 10417 break; 10418 case BPF_FUNC_for_each_map_elem: 10419 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10420 set_map_elem_callback_state); 10421 break; 10422 case BPF_FUNC_timer_set_callback: 10423 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10424 set_timer_callback_state); 10425 break; 10426 case BPF_FUNC_find_vma: 10427 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10428 set_find_vma_callback_state); 10429 break; 10430 case BPF_FUNC_snprintf: 10431 err = check_bpf_snprintf_call(env, regs); 10432 break; 10433 case BPF_FUNC_loop: 10434 update_loop_inline_state(env, meta.subprogno); 10435 /* Verifier relies on R1 value to determine if bpf_loop() iteration 10436 * is finished, thus mark it precise. 10437 */ 10438 err = mark_chain_precision(env, BPF_REG_1); 10439 if (err) 10440 return err; 10441 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { 10442 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10443 set_loop_callback_state); 10444 } else { 10445 cur_func(env)->callback_depth = 0; 10446 if (env->log.level & BPF_LOG_LEVEL2) 10447 verbose(env, "frame%d bpf_loop iteration limit reached\n", 10448 env->cur_state->curframe); 10449 } 10450 break; 10451 case BPF_FUNC_dynptr_from_mem: 10452 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 10453 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 10454 reg_type_str(env, regs[BPF_REG_1].type)); 10455 return -EACCES; 10456 } 10457 break; 10458 case BPF_FUNC_set_retval: 10459 if (prog_type == BPF_PROG_TYPE_LSM && 10460 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 10461 if (!env->prog->aux->attach_func_proto->type) { 10462 /* Make sure programs that attach to void 10463 * hooks don't try to modify return value. 10464 */ 10465 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 10466 return -EINVAL; 10467 } 10468 } 10469 break; 10470 case BPF_FUNC_dynptr_data: 10471 { 10472 struct bpf_reg_state *reg; 10473 int id, ref_obj_id; 10474 10475 reg = get_dynptr_arg_reg(env, fn, regs); 10476 if (!reg) 10477 return -EFAULT; 10478 10479 10480 if (meta.dynptr_id) { 10481 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 10482 return -EFAULT; 10483 } 10484 if (meta.ref_obj_id) { 10485 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 10486 return -EFAULT; 10487 } 10488 10489 id = dynptr_id(env, reg); 10490 if (id < 0) { 10491 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 10492 return id; 10493 } 10494 10495 ref_obj_id = dynptr_ref_obj_id(env, reg); 10496 if (ref_obj_id < 0) { 10497 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 10498 return ref_obj_id; 10499 } 10500 10501 meta.dynptr_id = id; 10502 meta.ref_obj_id = ref_obj_id; 10503 10504 break; 10505 } 10506 case BPF_FUNC_dynptr_write: 10507 { 10508 enum bpf_dynptr_type dynptr_type; 10509 struct bpf_reg_state *reg; 10510 10511 reg = get_dynptr_arg_reg(env, fn, regs); 10512 if (!reg) 10513 return -EFAULT; 10514 10515 dynptr_type = dynptr_get_type(env, reg); 10516 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 10517 return -EFAULT; 10518 10519 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 10520 /* this will trigger clear_all_pkt_pointers(), which will 10521 * invalidate all dynptr slices associated with the skb 10522 */ 10523 changes_data = true; 10524 10525 break; 10526 } 10527 case BPF_FUNC_per_cpu_ptr: 10528 case BPF_FUNC_this_cpu_ptr: 10529 { 10530 struct bpf_reg_state *reg = ®s[BPF_REG_1]; 10531 const struct btf_type *type; 10532 10533 if (reg->type & MEM_RCU) { 10534 type = btf_type_by_id(reg->btf, reg->btf_id); 10535 if (!type || !btf_type_is_struct(type)) { 10536 verbose(env, "Helper has invalid btf/btf_id in R1\n"); 10537 return -EFAULT; 10538 } 10539 returns_cpu_specific_alloc_ptr = true; 10540 env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true; 10541 } 10542 break; 10543 } 10544 case BPF_FUNC_user_ringbuf_drain: 10545 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10546 set_user_ringbuf_callback_state); 10547 break; 10548 } 10549 10550 if (err) 10551 return err; 10552 10553 /* reset caller saved regs */ 10554 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10555 mark_reg_not_init(env, regs, caller_saved[i]); 10556 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 10557 } 10558 10559 /* helper call returns 64-bit value. */ 10560 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 10561 10562 /* update return register (already marked as written above) */ 10563 ret_type = fn->ret_type; 10564 ret_flag = type_flag(ret_type); 10565 10566 switch (base_type(ret_type)) { 10567 case RET_INTEGER: 10568 /* sets type to SCALAR_VALUE */ 10569 mark_reg_unknown(env, regs, BPF_REG_0); 10570 break; 10571 case RET_VOID: 10572 regs[BPF_REG_0].type = NOT_INIT; 10573 break; 10574 case RET_PTR_TO_MAP_VALUE: 10575 /* There is no offset yet applied, variable or fixed */ 10576 mark_reg_known_zero(env, regs, BPF_REG_0); 10577 /* remember map_ptr, so that check_map_access() 10578 * can check 'value_size' boundary of memory access 10579 * to map element returned from bpf_map_lookup_elem() 10580 */ 10581 if (meta.map_ptr == NULL) { 10582 verbose(env, 10583 "kernel subsystem misconfigured verifier\n"); 10584 return -EINVAL; 10585 } 10586 regs[BPF_REG_0].map_ptr = meta.map_ptr; 10587 regs[BPF_REG_0].map_uid = meta.map_uid; 10588 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 10589 if (!type_may_be_null(ret_type) && 10590 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 10591 regs[BPF_REG_0].id = ++env->id_gen; 10592 } 10593 break; 10594 case RET_PTR_TO_SOCKET: 10595 mark_reg_known_zero(env, regs, BPF_REG_0); 10596 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 10597 break; 10598 case RET_PTR_TO_SOCK_COMMON: 10599 mark_reg_known_zero(env, regs, BPF_REG_0); 10600 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 10601 break; 10602 case RET_PTR_TO_TCP_SOCK: 10603 mark_reg_known_zero(env, regs, BPF_REG_0); 10604 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 10605 break; 10606 case RET_PTR_TO_MEM: 10607 mark_reg_known_zero(env, regs, BPF_REG_0); 10608 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10609 regs[BPF_REG_0].mem_size = meta.mem_size; 10610 break; 10611 case RET_PTR_TO_MEM_OR_BTF_ID: 10612 { 10613 const struct btf_type *t; 10614 10615 mark_reg_known_zero(env, regs, BPF_REG_0); 10616 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 10617 if (!btf_type_is_struct(t)) { 10618 u32 tsize; 10619 const struct btf_type *ret; 10620 const char *tname; 10621 10622 /* resolve the type size of ksym. */ 10623 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 10624 if (IS_ERR(ret)) { 10625 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 10626 verbose(env, "unable to resolve the size of type '%s': %ld\n", 10627 tname, PTR_ERR(ret)); 10628 return -EINVAL; 10629 } 10630 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10631 regs[BPF_REG_0].mem_size = tsize; 10632 } else { 10633 if (returns_cpu_specific_alloc_ptr) { 10634 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU; 10635 } else { 10636 /* MEM_RDONLY may be carried from ret_flag, but it 10637 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 10638 * it will confuse the check of PTR_TO_BTF_ID in 10639 * check_mem_access(). 10640 */ 10641 ret_flag &= ~MEM_RDONLY; 10642 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10643 } 10644 10645 regs[BPF_REG_0].btf = meta.ret_btf; 10646 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 10647 } 10648 break; 10649 } 10650 case RET_PTR_TO_BTF_ID: 10651 { 10652 struct btf *ret_btf; 10653 int ret_btf_id; 10654 10655 mark_reg_known_zero(env, regs, BPF_REG_0); 10656 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10657 if (func_id == BPF_FUNC_kptr_xchg) { 10658 ret_btf = meta.kptr_field->kptr.btf; 10659 ret_btf_id = meta.kptr_field->kptr.btf_id; 10660 if (!btf_is_kernel(ret_btf)) { 10661 regs[BPF_REG_0].type |= MEM_ALLOC; 10662 if (meta.kptr_field->type == BPF_KPTR_PERCPU) 10663 regs[BPF_REG_0].type |= MEM_PERCPU; 10664 } 10665 } else { 10666 if (fn->ret_btf_id == BPF_PTR_POISON) { 10667 verbose(env, "verifier internal error:"); 10668 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 10669 func_id_name(func_id)); 10670 return -EINVAL; 10671 } 10672 ret_btf = btf_vmlinux; 10673 ret_btf_id = *fn->ret_btf_id; 10674 } 10675 if (ret_btf_id == 0) { 10676 verbose(env, "invalid return type %u of func %s#%d\n", 10677 base_type(ret_type), func_id_name(func_id), 10678 func_id); 10679 return -EINVAL; 10680 } 10681 regs[BPF_REG_0].btf = ret_btf; 10682 regs[BPF_REG_0].btf_id = ret_btf_id; 10683 break; 10684 } 10685 default: 10686 verbose(env, "unknown return type %u of func %s#%d\n", 10687 base_type(ret_type), func_id_name(func_id), func_id); 10688 return -EINVAL; 10689 } 10690 10691 if (type_may_be_null(regs[BPF_REG_0].type)) 10692 regs[BPF_REG_0].id = ++env->id_gen; 10693 10694 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 10695 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 10696 func_id_name(func_id), func_id); 10697 return -EFAULT; 10698 } 10699 10700 if (is_dynptr_ref_function(func_id)) 10701 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 10702 10703 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 10704 /* For release_reference() */ 10705 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 10706 } else if (is_acquire_function(func_id, meta.map_ptr)) { 10707 int id = acquire_reference_state(env, insn_idx); 10708 10709 if (id < 0) 10710 return id; 10711 /* For mark_ptr_or_null_reg() */ 10712 regs[BPF_REG_0].id = id; 10713 /* For release_reference() */ 10714 regs[BPF_REG_0].ref_obj_id = id; 10715 } 10716 10717 err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta); 10718 if (err) 10719 return err; 10720 10721 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 10722 if (err) 10723 return err; 10724 10725 if ((func_id == BPF_FUNC_get_stack || 10726 func_id == BPF_FUNC_get_task_stack) && 10727 !env->prog->has_callchain_buf) { 10728 const char *err_str; 10729 10730 #ifdef CONFIG_PERF_EVENTS 10731 err = get_callchain_buffers(sysctl_perf_event_max_stack); 10732 err_str = "cannot get callchain buffer for func %s#%d\n"; 10733 #else 10734 err = -ENOTSUPP; 10735 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 10736 #endif 10737 if (err) { 10738 verbose(env, err_str, func_id_name(func_id), func_id); 10739 return err; 10740 } 10741 10742 env->prog->has_callchain_buf = true; 10743 } 10744 10745 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 10746 env->prog->call_get_stack = true; 10747 10748 if (func_id == BPF_FUNC_get_func_ip) { 10749 if (check_get_func_ip(env)) 10750 return -ENOTSUPP; 10751 env->prog->call_get_func_ip = true; 10752 } 10753 10754 if (changes_data) 10755 clear_all_pkt_pointers(env); 10756 return 0; 10757 } 10758 10759 /* mark_btf_func_reg_size() is used when the reg size is determined by 10760 * the BTF func_proto's return value size and argument. 10761 */ 10762 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 10763 size_t reg_size) 10764 { 10765 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 10766 10767 if (regno == BPF_REG_0) { 10768 /* Function return value */ 10769 reg->live |= REG_LIVE_WRITTEN; 10770 reg->subreg_def = reg_size == sizeof(u64) ? 10771 DEF_NOT_SUBREG : env->insn_idx + 1; 10772 } else { 10773 /* Function argument */ 10774 if (reg_size == sizeof(u64)) { 10775 mark_insn_zext(env, reg); 10776 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 10777 } else { 10778 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 10779 } 10780 } 10781 } 10782 10783 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 10784 { 10785 return meta->kfunc_flags & KF_ACQUIRE; 10786 } 10787 10788 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 10789 { 10790 return meta->kfunc_flags & KF_RELEASE; 10791 } 10792 10793 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 10794 { 10795 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 10796 } 10797 10798 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 10799 { 10800 return meta->kfunc_flags & KF_SLEEPABLE; 10801 } 10802 10803 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 10804 { 10805 return meta->kfunc_flags & KF_DESTRUCTIVE; 10806 } 10807 10808 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 10809 { 10810 return meta->kfunc_flags & KF_RCU; 10811 } 10812 10813 static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta) 10814 { 10815 return meta->kfunc_flags & KF_RCU_PROTECTED; 10816 } 10817 10818 static bool is_kfunc_arg_mem_size(const struct btf *btf, 10819 const struct btf_param *arg, 10820 const struct bpf_reg_state *reg) 10821 { 10822 const struct btf_type *t; 10823 10824 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10825 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10826 return false; 10827 10828 return btf_param_match_suffix(btf, arg, "__sz"); 10829 } 10830 10831 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 10832 const struct btf_param *arg, 10833 const struct bpf_reg_state *reg) 10834 { 10835 const struct btf_type *t; 10836 10837 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10838 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10839 return false; 10840 10841 return btf_param_match_suffix(btf, arg, "__szk"); 10842 } 10843 10844 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 10845 { 10846 return btf_param_match_suffix(btf, arg, "__opt"); 10847 } 10848 10849 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 10850 { 10851 return btf_param_match_suffix(btf, arg, "__k"); 10852 } 10853 10854 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 10855 { 10856 return btf_param_match_suffix(btf, arg, "__ign"); 10857 } 10858 10859 static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg) 10860 { 10861 return btf_param_match_suffix(btf, arg, "__map"); 10862 } 10863 10864 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 10865 { 10866 return btf_param_match_suffix(btf, arg, "__alloc"); 10867 } 10868 10869 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 10870 { 10871 return btf_param_match_suffix(btf, arg, "__uninit"); 10872 } 10873 10874 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 10875 { 10876 return btf_param_match_suffix(btf, arg, "__refcounted_kptr"); 10877 } 10878 10879 static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg) 10880 { 10881 return btf_param_match_suffix(btf, arg, "__nullable"); 10882 } 10883 10884 static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg) 10885 { 10886 return btf_param_match_suffix(btf, arg, "__str"); 10887 } 10888 10889 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 10890 const struct btf_param *arg, 10891 const char *name) 10892 { 10893 int len, target_len = strlen(name); 10894 const char *param_name; 10895 10896 param_name = btf_name_by_offset(btf, arg->name_off); 10897 if (str_is_empty(param_name)) 10898 return false; 10899 len = strlen(param_name); 10900 if (len != target_len) 10901 return false; 10902 if (strcmp(param_name, name)) 10903 return false; 10904 10905 return true; 10906 } 10907 10908 enum { 10909 KF_ARG_DYNPTR_ID, 10910 KF_ARG_LIST_HEAD_ID, 10911 KF_ARG_LIST_NODE_ID, 10912 KF_ARG_RB_ROOT_ID, 10913 KF_ARG_RB_NODE_ID, 10914 KF_ARG_WORKQUEUE_ID, 10915 }; 10916 10917 BTF_ID_LIST(kf_arg_btf_ids) 10918 BTF_ID(struct, bpf_dynptr_kern) 10919 BTF_ID(struct, bpf_list_head) 10920 BTF_ID(struct, bpf_list_node) 10921 BTF_ID(struct, bpf_rb_root) 10922 BTF_ID(struct, bpf_rb_node) 10923 BTF_ID(struct, bpf_wq) 10924 10925 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 10926 const struct btf_param *arg, int type) 10927 { 10928 const struct btf_type *t; 10929 u32 res_id; 10930 10931 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10932 if (!t) 10933 return false; 10934 if (!btf_type_is_ptr(t)) 10935 return false; 10936 t = btf_type_skip_modifiers(btf, t->type, &res_id); 10937 if (!t) 10938 return false; 10939 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 10940 } 10941 10942 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 10943 { 10944 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 10945 } 10946 10947 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 10948 { 10949 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 10950 } 10951 10952 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 10953 { 10954 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 10955 } 10956 10957 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 10958 { 10959 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 10960 } 10961 10962 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 10963 { 10964 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 10965 } 10966 10967 static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg) 10968 { 10969 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID); 10970 } 10971 10972 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 10973 const struct btf_param *arg) 10974 { 10975 const struct btf_type *t; 10976 10977 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 10978 if (!t) 10979 return false; 10980 10981 return true; 10982 } 10983 10984 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 10985 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 10986 const struct btf *btf, 10987 const struct btf_type *t, int rec) 10988 { 10989 const struct btf_type *member_type; 10990 const struct btf_member *member; 10991 u32 i; 10992 10993 if (!btf_type_is_struct(t)) 10994 return false; 10995 10996 for_each_member(i, t, member) { 10997 const struct btf_array *array; 10998 10999 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 11000 if (btf_type_is_struct(member_type)) { 11001 if (rec >= 3) { 11002 verbose(env, "max struct nesting depth exceeded\n"); 11003 return false; 11004 } 11005 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 11006 return false; 11007 continue; 11008 } 11009 if (btf_type_is_array(member_type)) { 11010 array = btf_array(member_type); 11011 if (!array->nelems) 11012 return false; 11013 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 11014 if (!btf_type_is_scalar(member_type)) 11015 return false; 11016 continue; 11017 } 11018 if (!btf_type_is_scalar(member_type)) 11019 return false; 11020 } 11021 return true; 11022 } 11023 11024 enum kfunc_ptr_arg_type { 11025 KF_ARG_PTR_TO_CTX, 11026 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 11027 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 11028 KF_ARG_PTR_TO_DYNPTR, 11029 KF_ARG_PTR_TO_ITER, 11030 KF_ARG_PTR_TO_LIST_HEAD, 11031 KF_ARG_PTR_TO_LIST_NODE, 11032 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 11033 KF_ARG_PTR_TO_MEM, 11034 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 11035 KF_ARG_PTR_TO_CALLBACK, 11036 KF_ARG_PTR_TO_RB_ROOT, 11037 KF_ARG_PTR_TO_RB_NODE, 11038 KF_ARG_PTR_TO_NULL, 11039 KF_ARG_PTR_TO_CONST_STR, 11040 KF_ARG_PTR_TO_MAP, 11041 KF_ARG_PTR_TO_WORKQUEUE, 11042 }; 11043 11044 enum special_kfunc_type { 11045 KF_bpf_obj_new_impl, 11046 KF_bpf_obj_drop_impl, 11047 KF_bpf_refcount_acquire_impl, 11048 KF_bpf_list_push_front_impl, 11049 KF_bpf_list_push_back_impl, 11050 KF_bpf_list_pop_front, 11051 KF_bpf_list_pop_back, 11052 KF_bpf_cast_to_kern_ctx, 11053 KF_bpf_rdonly_cast, 11054 KF_bpf_rcu_read_lock, 11055 KF_bpf_rcu_read_unlock, 11056 KF_bpf_rbtree_remove, 11057 KF_bpf_rbtree_add_impl, 11058 KF_bpf_rbtree_first, 11059 KF_bpf_dynptr_from_skb, 11060 KF_bpf_dynptr_from_xdp, 11061 KF_bpf_dynptr_slice, 11062 KF_bpf_dynptr_slice_rdwr, 11063 KF_bpf_dynptr_clone, 11064 KF_bpf_percpu_obj_new_impl, 11065 KF_bpf_percpu_obj_drop_impl, 11066 KF_bpf_throw, 11067 KF_bpf_wq_set_callback_impl, 11068 KF_bpf_preempt_disable, 11069 KF_bpf_preempt_enable, 11070 KF_bpf_iter_css_task_new, 11071 KF_bpf_session_cookie, 11072 }; 11073 11074 BTF_SET_START(special_kfunc_set) 11075 BTF_ID(func, bpf_obj_new_impl) 11076 BTF_ID(func, bpf_obj_drop_impl) 11077 BTF_ID(func, bpf_refcount_acquire_impl) 11078 BTF_ID(func, bpf_list_push_front_impl) 11079 BTF_ID(func, bpf_list_push_back_impl) 11080 BTF_ID(func, bpf_list_pop_front) 11081 BTF_ID(func, bpf_list_pop_back) 11082 BTF_ID(func, bpf_cast_to_kern_ctx) 11083 BTF_ID(func, bpf_rdonly_cast) 11084 BTF_ID(func, bpf_rbtree_remove) 11085 BTF_ID(func, bpf_rbtree_add_impl) 11086 BTF_ID(func, bpf_rbtree_first) 11087 BTF_ID(func, bpf_dynptr_from_skb) 11088 BTF_ID(func, bpf_dynptr_from_xdp) 11089 BTF_ID(func, bpf_dynptr_slice) 11090 BTF_ID(func, bpf_dynptr_slice_rdwr) 11091 BTF_ID(func, bpf_dynptr_clone) 11092 BTF_ID(func, bpf_percpu_obj_new_impl) 11093 BTF_ID(func, bpf_percpu_obj_drop_impl) 11094 BTF_ID(func, bpf_throw) 11095 BTF_ID(func, bpf_wq_set_callback_impl) 11096 #ifdef CONFIG_CGROUPS 11097 BTF_ID(func, bpf_iter_css_task_new) 11098 #endif 11099 BTF_SET_END(special_kfunc_set) 11100 11101 BTF_ID_LIST(special_kfunc_list) 11102 BTF_ID(func, bpf_obj_new_impl) 11103 BTF_ID(func, bpf_obj_drop_impl) 11104 BTF_ID(func, bpf_refcount_acquire_impl) 11105 BTF_ID(func, bpf_list_push_front_impl) 11106 BTF_ID(func, bpf_list_push_back_impl) 11107 BTF_ID(func, bpf_list_pop_front) 11108 BTF_ID(func, bpf_list_pop_back) 11109 BTF_ID(func, bpf_cast_to_kern_ctx) 11110 BTF_ID(func, bpf_rdonly_cast) 11111 BTF_ID(func, bpf_rcu_read_lock) 11112 BTF_ID(func, bpf_rcu_read_unlock) 11113 BTF_ID(func, bpf_rbtree_remove) 11114 BTF_ID(func, bpf_rbtree_add_impl) 11115 BTF_ID(func, bpf_rbtree_first) 11116 BTF_ID(func, bpf_dynptr_from_skb) 11117 BTF_ID(func, bpf_dynptr_from_xdp) 11118 BTF_ID(func, bpf_dynptr_slice) 11119 BTF_ID(func, bpf_dynptr_slice_rdwr) 11120 BTF_ID(func, bpf_dynptr_clone) 11121 BTF_ID(func, bpf_percpu_obj_new_impl) 11122 BTF_ID(func, bpf_percpu_obj_drop_impl) 11123 BTF_ID(func, bpf_throw) 11124 BTF_ID(func, bpf_wq_set_callback_impl) 11125 BTF_ID(func, bpf_preempt_disable) 11126 BTF_ID(func, bpf_preempt_enable) 11127 #ifdef CONFIG_CGROUPS 11128 BTF_ID(func, bpf_iter_css_task_new) 11129 #else 11130 BTF_ID_UNUSED 11131 #endif 11132 #ifdef CONFIG_BPF_EVENTS 11133 BTF_ID(func, bpf_session_cookie) 11134 #else 11135 BTF_ID_UNUSED 11136 #endif 11137 11138 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 11139 { 11140 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 11141 meta->arg_owning_ref) { 11142 return false; 11143 } 11144 11145 return meta->kfunc_flags & KF_RET_NULL; 11146 } 11147 11148 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 11149 { 11150 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 11151 } 11152 11153 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 11154 { 11155 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 11156 } 11157 11158 static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta) 11159 { 11160 return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable]; 11161 } 11162 11163 static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta) 11164 { 11165 return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable]; 11166 } 11167 11168 static enum kfunc_ptr_arg_type 11169 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 11170 struct bpf_kfunc_call_arg_meta *meta, 11171 const struct btf_type *t, const struct btf_type *ref_t, 11172 const char *ref_tname, const struct btf_param *args, 11173 int argno, int nargs) 11174 { 11175 u32 regno = argno + 1; 11176 struct bpf_reg_state *regs = cur_regs(env); 11177 struct bpf_reg_state *reg = ®s[regno]; 11178 bool arg_mem_size = false; 11179 11180 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 11181 return KF_ARG_PTR_TO_CTX; 11182 11183 /* In this function, we verify the kfunc's BTF as per the argument type, 11184 * leaving the rest of the verification with respect to the register 11185 * type to our caller. When a set of conditions hold in the BTF type of 11186 * arguments, we resolve it to a known kfunc_ptr_arg_type. 11187 */ 11188 if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 11189 return KF_ARG_PTR_TO_CTX; 11190 11191 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 11192 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 11193 11194 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 11195 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 11196 11197 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 11198 return KF_ARG_PTR_TO_DYNPTR; 11199 11200 if (is_kfunc_arg_iter(meta, argno)) 11201 return KF_ARG_PTR_TO_ITER; 11202 11203 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 11204 return KF_ARG_PTR_TO_LIST_HEAD; 11205 11206 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 11207 return KF_ARG_PTR_TO_LIST_NODE; 11208 11209 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 11210 return KF_ARG_PTR_TO_RB_ROOT; 11211 11212 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 11213 return KF_ARG_PTR_TO_RB_NODE; 11214 11215 if (is_kfunc_arg_const_str(meta->btf, &args[argno])) 11216 return KF_ARG_PTR_TO_CONST_STR; 11217 11218 if (is_kfunc_arg_map(meta->btf, &args[argno])) 11219 return KF_ARG_PTR_TO_MAP; 11220 11221 if (is_kfunc_arg_wq(meta->btf, &args[argno])) 11222 return KF_ARG_PTR_TO_WORKQUEUE; 11223 11224 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 11225 if (!btf_type_is_struct(ref_t)) { 11226 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 11227 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 11228 return -EINVAL; 11229 } 11230 return KF_ARG_PTR_TO_BTF_ID; 11231 } 11232 11233 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 11234 return KF_ARG_PTR_TO_CALLBACK; 11235 11236 if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg)) 11237 return KF_ARG_PTR_TO_NULL; 11238 11239 if (argno + 1 < nargs && 11240 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 11241 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 11242 arg_mem_size = true; 11243 11244 /* This is the catch all argument type of register types supported by 11245 * check_helper_mem_access. However, we only allow when argument type is 11246 * pointer to scalar, or struct composed (recursively) of scalars. When 11247 * arg_mem_size is true, the pointer can be void *. 11248 */ 11249 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 11250 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 11251 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 11252 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 11253 return -EINVAL; 11254 } 11255 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 11256 } 11257 11258 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 11259 struct bpf_reg_state *reg, 11260 const struct btf_type *ref_t, 11261 const char *ref_tname, u32 ref_id, 11262 struct bpf_kfunc_call_arg_meta *meta, 11263 int argno) 11264 { 11265 const struct btf_type *reg_ref_t; 11266 bool strict_type_match = false; 11267 const struct btf *reg_btf; 11268 const char *reg_ref_tname; 11269 u32 reg_ref_id; 11270 11271 if (base_type(reg->type) == PTR_TO_BTF_ID) { 11272 reg_btf = reg->btf; 11273 reg_ref_id = reg->btf_id; 11274 } else { 11275 reg_btf = btf_vmlinux; 11276 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 11277 } 11278 11279 /* Enforce strict type matching for calls to kfuncs that are acquiring 11280 * or releasing a reference, or are no-cast aliases. We do _not_ 11281 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 11282 * as we want to enable BPF programs to pass types that are bitwise 11283 * equivalent without forcing them to explicitly cast with something 11284 * like bpf_cast_to_kern_ctx(). 11285 * 11286 * For example, say we had a type like the following: 11287 * 11288 * struct bpf_cpumask { 11289 * cpumask_t cpumask; 11290 * refcount_t usage; 11291 * }; 11292 * 11293 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 11294 * to a struct cpumask, so it would be safe to pass a struct 11295 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 11296 * 11297 * The philosophy here is similar to how we allow scalars of different 11298 * types to be passed to kfuncs as long as the size is the same. The 11299 * only difference here is that we're simply allowing 11300 * btf_struct_ids_match() to walk the struct at the 0th offset, and 11301 * resolve types. 11302 */ 11303 if (is_kfunc_acquire(meta) || 11304 (is_kfunc_release(meta) && reg->ref_obj_id) || 11305 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 11306 strict_type_match = true; 11307 11308 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); 11309 11310 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 11311 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 11312 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 11313 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 11314 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 11315 btf_type_str(reg_ref_t), reg_ref_tname); 11316 return -EINVAL; 11317 } 11318 return 0; 11319 } 11320 11321 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 11322 { 11323 struct bpf_verifier_state *state = env->cur_state; 11324 struct btf_record *rec = reg_btf_record(reg); 11325 11326 if (!state->active_lock.ptr) { 11327 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 11328 return -EFAULT; 11329 } 11330 11331 if (type_flag(reg->type) & NON_OWN_REF) { 11332 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 11333 return -EFAULT; 11334 } 11335 11336 reg->type |= NON_OWN_REF; 11337 if (rec->refcount_off >= 0) 11338 reg->type |= MEM_RCU; 11339 11340 return 0; 11341 } 11342 11343 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 11344 { 11345 struct bpf_func_state *state, *unused; 11346 struct bpf_reg_state *reg; 11347 int i; 11348 11349 state = cur_func(env); 11350 11351 if (!ref_obj_id) { 11352 verbose(env, "verifier internal error: ref_obj_id is zero for " 11353 "owning -> non-owning conversion\n"); 11354 return -EFAULT; 11355 } 11356 11357 for (i = 0; i < state->acquired_refs; i++) { 11358 if (state->refs[i].id != ref_obj_id) 11359 continue; 11360 11361 /* Clear ref_obj_id here so release_reference doesn't clobber 11362 * the whole reg 11363 */ 11364 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 11365 if (reg->ref_obj_id == ref_obj_id) { 11366 reg->ref_obj_id = 0; 11367 ref_set_non_owning(env, reg); 11368 } 11369 })); 11370 return 0; 11371 } 11372 11373 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 11374 return -EFAULT; 11375 } 11376 11377 /* Implementation details: 11378 * 11379 * Each register points to some region of memory, which we define as an 11380 * allocation. Each allocation may embed a bpf_spin_lock which protects any 11381 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 11382 * allocation. The lock and the data it protects are colocated in the same 11383 * memory region. 11384 * 11385 * Hence, everytime a register holds a pointer value pointing to such 11386 * allocation, the verifier preserves a unique reg->id for it. 11387 * 11388 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 11389 * bpf_spin_lock is called. 11390 * 11391 * To enable this, lock state in the verifier captures two values: 11392 * active_lock.ptr = Register's type specific pointer 11393 * active_lock.id = A unique ID for each register pointer value 11394 * 11395 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 11396 * supported register types. 11397 * 11398 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 11399 * allocated objects is the reg->btf pointer. 11400 * 11401 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 11402 * can establish the provenance of the map value statically for each distinct 11403 * lookup into such maps. They always contain a single map value hence unique 11404 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 11405 * 11406 * So, in case of global variables, they use array maps with max_entries = 1, 11407 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 11408 * into the same map value as max_entries is 1, as described above). 11409 * 11410 * In case of inner map lookups, the inner map pointer has same map_ptr as the 11411 * outer map pointer (in verifier context), but each lookup into an inner map 11412 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 11413 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 11414 * will get different reg->id assigned to each lookup, hence different 11415 * active_lock.id. 11416 * 11417 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 11418 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 11419 * returned from bpf_obj_new. Each allocation receives a new reg->id. 11420 */ 11421 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 11422 { 11423 void *ptr; 11424 u32 id; 11425 11426 switch ((int)reg->type) { 11427 case PTR_TO_MAP_VALUE: 11428 ptr = reg->map_ptr; 11429 break; 11430 case PTR_TO_BTF_ID | MEM_ALLOC: 11431 ptr = reg->btf; 11432 break; 11433 default: 11434 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 11435 return -EFAULT; 11436 } 11437 id = reg->id; 11438 11439 if (!env->cur_state->active_lock.ptr) 11440 return -EINVAL; 11441 if (env->cur_state->active_lock.ptr != ptr || 11442 env->cur_state->active_lock.id != id) { 11443 verbose(env, "held lock and object are not in the same allocation\n"); 11444 return -EINVAL; 11445 } 11446 return 0; 11447 } 11448 11449 static bool is_bpf_list_api_kfunc(u32 btf_id) 11450 { 11451 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11452 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11453 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 11454 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 11455 } 11456 11457 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 11458 { 11459 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 11460 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11461 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 11462 } 11463 11464 static bool is_bpf_graph_api_kfunc(u32 btf_id) 11465 { 11466 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 11467 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 11468 } 11469 11470 static bool is_sync_callback_calling_kfunc(u32 btf_id) 11471 { 11472 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 11473 } 11474 11475 static bool is_async_callback_calling_kfunc(u32 btf_id) 11476 { 11477 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl]; 11478 } 11479 11480 static bool is_bpf_throw_kfunc(struct bpf_insn *insn) 11481 { 11482 return bpf_pseudo_kfunc_call(insn) && insn->off == 0 && 11483 insn->imm == special_kfunc_list[KF_bpf_throw]; 11484 } 11485 11486 static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id) 11487 { 11488 return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl]; 11489 } 11490 11491 static bool is_callback_calling_kfunc(u32 btf_id) 11492 { 11493 return is_sync_callback_calling_kfunc(btf_id) || 11494 is_async_callback_calling_kfunc(btf_id); 11495 } 11496 11497 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 11498 { 11499 return is_bpf_rbtree_api_kfunc(btf_id); 11500 } 11501 11502 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 11503 enum btf_field_type head_field_type, 11504 u32 kfunc_btf_id) 11505 { 11506 bool ret; 11507 11508 switch (head_field_type) { 11509 case BPF_LIST_HEAD: 11510 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 11511 break; 11512 case BPF_RB_ROOT: 11513 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 11514 break; 11515 default: 11516 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 11517 btf_field_type_name(head_field_type)); 11518 return false; 11519 } 11520 11521 if (!ret) 11522 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 11523 btf_field_type_name(head_field_type)); 11524 return ret; 11525 } 11526 11527 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 11528 enum btf_field_type node_field_type, 11529 u32 kfunc_btf_id) 11530 { 11531 bool ret; 11532 11533 switch (node_field_type) { 11534 case BPF_LIST_NODE: 11535 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11536 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 11537 break; 11538 case BPF_RB_NODE: 11539 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11540 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 11541 break; 11542 default: 11543 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 11544 btf_field_type_name(node_field_type)); 11545 return false; 11546 } 11547 11548 if (!ret) 11549 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 11550 btf_field_type_name(node_field_type)); 11551 return ret; 11552 } 11553 11554 static int 11555 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 11556 struct bpf_reg_state *reg, u32 regno, 11557 struct bpf_kfunc_call_arg_meta *meta, 11558 enum btf_field_type head_field_type, 11559 struct btf_field **head_field) 11560 { 11561 const char *head_type_name; 11562 struct btf_field *field; 11563 struct btf_record *rec; 11564 u32 head_off; 11565 11566 if (meta->btf != btf_vmlinux) { 11567 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11568 return -EFAULT; 11569 } 11570 11571 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 11572 return -EFAULT; 11573 11574 head_type_name = btf_field_type_name(head_field_type); 11575 if (!tnum_is_const(reg->var_off)) { 11576 verbose(env, 11577 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11578 regno, head_type_name); 11579 return -EINVAL; 11580 } 11581 11582 rec = reg_btf_record(reg); 11583 head_off = reg->off + reg->var_off.value; 11584 field = btf_record_find(rec, head_off, head_field_type); 11585 if (!field) { 11586 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 11587 return -EINVAL; 11588 } 11589 11590 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 11591 if (check_reg_allocation_locked(env, reg)) { 11592 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 11593 rec->spin_lock_off, head_type_name); 11594 return -EINVAL; 11595 } 11596 11597 if (*head_field) { 11598 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 11599 return -EFAULT; 11600 } 11601 *head_field = field; 11602 return 0; 11603 } 11604 11605 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 11606 struct bpf_reg_state *reg, u32 regno, 11607 struct bpf_kfunc_call_arg_meta *meta) 11608 { 11609 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 11610 &meta->arg_list_head.field); 11611 } 11612 11613 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 11614 struct bpf_reg_state *reg, u32 regno, 11615 struct bpf_kfunc_call_arg_meta *meta) 11616 { 11617 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 11618 &meta->arg_rbtree_root.field); 11619 } 11620 11621 static int 11622 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 11623 struct bpf_reg_state *reg, u32 regno, 11624 struct bpf_kfunc_call_arg_meta *meta, 11625 enum btf_field_type head_field_type, 11626 enum btf_field_type node_field_type, 11627 struct btf_field **node_field) 11628 { 11629 const char *node_type_name; 11630 const struct btf_type *et, *t; 11631 struct btf_field *field; 11632 u32 node_off; 11633 11634 if (meta->btf != btf_vmlinux) { 11635 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11636 return -EFAULT; 11637 } 11638 11639 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 11640 return -EFAULT; 11641 11642 node_type_name = btf_field_type_name(node_field_type); 11643 if (!tnum_is_const(reg->var_off)) { 11644 verbose(env, 11645 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11646 regno, node_type_name); 11647 return -EINVAL; 11648 } 11649 11650 node_off = reg->off + reg->var_off.value; 11651 field = reg_find_field_offset(reg, node_off, node_field_type); 11652 if (!field || field->offset != node_off) { 11653 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 11654 return -EINVAL; 11655 } 11656 11657 field = *node_field; 11658 11659 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 11660 t = btf_type_by_id(reg->btf, reg->btf_id); 11661 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 11662 field->graph_root.value_btf_id, true)) { 11663 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 11664 "in struct %s, but arg is at offset=%d in struct %s\n", 11665 btf_field_type_name(head_field_type), 11666 btf_field_type_name(node_field_type), 11667 field->graph_root.node_offset, 11668 btf_name_by_offset(field->graph_root.btf, et->name_off), 11669 node_off, btf_name_by_offset(reg->btf, t->name_off)); 11670 return -EINVAL; 11671 } 11672 meta->arg_btf = reg->btf; 11673 meta->arg_btf_id = reg->btf_id; 11674 11675 if (node_off != field->graph_root.node_offset) { 11676 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 11677 node_off, btf_field_type_name(node_field_type), 11678 field->graph_root.node_offset, 11679 btf_name_by_offset(field->graph_root.btf, et->name_off)); 11680 return -EINVAL; 11681 } 11682 11683 return 0; 11684 } 11685 11686 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 11687 struct bpf_reg_state *reg, u32 regno, 11688 struct bpf_kfunc_call_arg_meta *meta) 11689 { 11690 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11691 BPF_LIST_HEAD, BPF_LIST_NODE, 11692 &meta->arg_list_head.field); 11693 } 11694 11695 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 11696 struct bpf_reg_state *reg, u32 regno, 11697 struct bpf_kfunc_call_arg_meta *meta) 11698 { 11699 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11700 BPF_RB_ROOT, BPF_RB_NODE, 11701 &meta->arg_rbtree_root.field); 11702 } 11703 11704 /* 11705 * css_task iter allowlist is needed to avoid dead locking on css_set_lock. 11706 * LSM hooks and iters (both sleepable and non-sleepable) are safe. 11707 * Any sleepable progs are also safe since bpf_check_attach_target() enforce 11708 * them can only be attached to some specific hook points. 11709 */ 11710 static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env) 11711 { 11712 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 11713 11714 switch (prog_type) { 11715 case BPF_PROG_TYPE_LSM: 11716 return true; 11717 case BPF_PROG_TYPE_TRACING: 11718 if (env->prog->expected_attach_type == BPF_TRACE_ITER) 11719 return true; 11720 fallthrough; 11721 default: 11722 return in_sleepable(env); 11723 } 11724 } 11725 11726 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 11727 int insn_idx) 11728 { 11729 const char *func_name = meta->func_name, *ref_tname; 11730 const struct btf *btf = meta->btf; 11731 const struct btf_param *args; 11732 struct btf_record *rec; 11733 u32 i, nargs; 11734 int ret; 11735 11736 args = (const struct btf_param *)(meta->func_proto + 1); 11737 nargs = btf_type_vlen(meta->func_proto); 11738 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 11739 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 11740 MAX_BPF_FUNC_REG_ARGS); 11741 return -EINVAL; 11742 } 11743 11744 /* Check that BTF function arguments match actual types that the 11745 * verifier sees. 11746 */ 11747 for (i = 0; i < nargs; i++) { 11748 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 11749 const struct btf_type *t, *ref_t, *resolve_ret; 11750 enum bpf_arg_type arg_type = ARG_DONTCARE; 11751 u32 regno = i + 1, ref_id, type_size; 11752 bool is_ret_buf_sz = false; 11753 int kf_arg_type; 11754 11755 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 11756 11757 if (is_kfunc_arg_ignore(btf, &args[i])) 11758 continue; 11759 11760 if (btf_type_is_scalar(t)) { 11761 if (reg->type != SCALAR_VALUE) { 11762 verbose(env, "R%d is not a scalar\n", regno); 11763 return -EINVAL; 11764 } 11765 11766 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 11767 if (meta->arg_constant.found) { 11768 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11769 return -EFAULT; 11770 } 11771 if (!tnum_is_const(reg->var_off)) { 11772 verbose(env, "R%d must be a known constant\n", regno); 11773 return -EINVAL; 11774 } 11775 ret = mark_chain_precision(env, regno); 11776 if (ret < 0) 11777 return ret; 11778 meta->arg_constant.found = true; 11779 meta->arg_constant.value = reg->var_off.value; 11780 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 11781 meta->r0_rdonly = true; 11782 is_ret_buf_sz = true; 11783 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 11784 is_ret_buf_sz = true; 11785 } 11786 11787 if (is_ret_buf_sz) { 11788 if (meta->r0_size) { 11789 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 11790 return -EINVAL; 11791 } 11792 11793 if (!tnum_is_const(reg->var_off)) { 11794 verbose(env, "R%d is not a const\n", regno); 11795 return -EINVAL; 11796 } 11797 11798 meta->r0_size = reg->var_off.value; 11799 ret = mark_chain_precision(env, regno); 11800 if (ret) 11801 return ret; 11802 } 11803 continue; 11804 } 11805 11806 if (!btf_type_is_ptr(t)) { 11807 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 11808 return -EINVAL; 11809 } 11810 11811 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 11812 (register_is_null(reg) || type_may_be_null(reg->type)) && 11813 !is_kfunc_arg_nullable(meta->btf, &args[i])) { 11814 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 11815 return -EACCES; 11816 } 11817 11818 if (reg->ref_obj_id) { 11819 if (is_kfunc_release(meta) && meta->ref_obj_id) { 11820 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 11821 regno, reg->ref_obj_id, 11822 meta->ref_obj_id); 11823 return -EFAULT; 11824 } 11825 meta->ref_obj_id = reg->ref_obj_id; 11826 if (is_kfunc_release(meta)) 11827 meta->release_regno = regno; 11828 } 11829 11830 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 11831 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 11832 11833 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 11834 if (kf_arg_type < 0) 11835 return kf_arg_type; 11836 11837 switch (kf_arg_type) { 11838 case KF_ARG_PTR_TO_NULL: 11839 continue; 11840 case KF_ARG_PTR_TO_MAP: 11841 if (!reg->map_ptr) { 11842 verbose(env, "pointer in R%d isn't map pointer\n", regno); 11843 return -EINVAL; 11844 } 11845 if (meta->map.ptr && reg->map_ptr->record->wq_off >= 0) { 11846 /* Use map_uid (which is unique id of inner map) to reject: 11847 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 11848 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 11849 * if (inner_map1 && inner_map2) { 11850 * wq = bpf_map_lookup_elem(inner_map1); 11851 * if (wq) 11852 * // mismatch would have been allowed 11853 * bpf_wq_init(wq, inner_map2); 11854 * } 11855 * 11856 * Comparing map_ptr is enough to distinguish normal and outer maps. 11857 */ 11858 if (meta->map.ptr != reg->map_ptr || 11859 meta->map.uid != reg->map_uid) { 11860 verbose(env, 11861 "workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 11862 meta->map.uid, reg->map_uid); 11863 return -EINVAL; 11864 } 11865 } 11866 meta->map.ptr = reg->map_ptr; 11867 meta->map.uid = reg->map_uid; 11868 fallthrough; 11869 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11870 case KF_ARG_PTR_TO_BTF_ID: 11871 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 11872 break; 11873 11874 if (!is_trusted_reg(reg)) { 11875 if (!is_kfunc_rcu(meta)) { 11876 verbose(env, "R%d must be referenced or trusted\n", regno); 11877 return -EINVAL; 11878 } 11879 if (!is_rcu_reg(reg)) { 11880 verbose(env, "R%d must be a rcu pointer\n", regno); 11881 return -EINVAL; 11882 } 11883 } 11884 11885 fallthrough; 11886 case KF_ARG_PTR_TO_CTX: 11887 /* Trusted arguments have the same offset checks as release arguments */ 11888 arg_type |= OBJ_RELEASE; 11889 break; 11890 case KF_ARG_PTR_TO_DYNPTR: 11891 case KF_ARG_PTR_TO_ITER: 11892 case KF_ARG_PTR_TO_LIST_HEAD: 11893 case KF_ARG_PTR_TO_LIST_NODE: 11894 case KF_ARG_PTR_TO_RB_ROOT: 11895 case KF_ARG_PTR_TO_RB_NODE: 11896 case KF_ARG_PTR_TO_MEM: 11897 case KF_ARG_PTR_TO_MEM_SIZE: 11898 case KF_ARG_PTR_TO_CALLBACK: 11899 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11900 case KF_ARG_PTR_TO_CONST_STR: 11901 case KF_ARG_PTR_TO_WORKQUEUE: 11902 /* Trusted by default */ 11903 break; 11904 default: 11905 WARN_ON_ONCE(1); 11906 return -EFAULT; 11907 } 11908 11909 if (is_kfunc_release(meta) && reg->ref_obj_id) 11910 arg_type |= OBJ_RELEASE; 11911 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 11912 if (ret < 0) 11913 return ret; 11914 11915 switch (kf_arg_type) { 11916 case KF_ARG_PTR_TO_CTX: 11917 if (reg->type != PTR_TO_CTX) { 11918 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 11919 return -EINVAL; 11920 } 11921 11922 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11923 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 11924 if (ret < 0) 11925 return -EINVAL; 11926 meta->ret_btf_id = ret; 11927 } 11928 break; 11929 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11930 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) { 11931 if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) { 11932 verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i); 11933 return -EINVAL; 11934 } 11935 } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) { 11936 if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 11937 verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i); 11938 return -EINVAL; 11939 } 11940 } else { 11941 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11942 return -EINVAL; 11943 } 11944 if (!reg->ref_obj_id) { 11945 verbose(env, "allocated object must be referenced\n"); 11946 return -EINVAL; 11947 } 11948 if (meta->btf == btf_vmlinux) { 11949 meta->arg_btf = reg->btf; 11950 meta->arg_btf_id = reg->btf_id; 11951 } 11952 break; 11953 case KF_ARG_PTR_TO_DYNPTR: 11954 { 11955 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 11956 int clone_ref_obj_id = 0; 11957 11958 if (reg->type != PTR_TO_STACK && 11959 reg->type != CONST_PTR_TO_DYNPTR) { 11960 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 11961 return -EINVAL; 11962 } 11963 11964 if (reg->type == CONST_PTR_TO_DYNPTR) 11965 dynptr_arg_type |= MEM_RDONLY; 11966 11967 if (is_kfunc_arg_uninit(btf, &args[i])) 11968 dynptr_arg_type |= MEM_UNINIT; 11969 11970 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 11971 dynptr_arg_type |= DYNPTR_TYPE_SKB; 11972 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 11973 dynptr_arg_type |= DYNPTR_TYPE_XDP; 11974 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 11975 (dynptr_arg_type & MEM_UNINIT)) { 11976 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 11977 11978 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 11979 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 11980 return -EFAULT; 11981 } 11982 11983 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 11984 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 11985 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 11986 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 11987 return -EFAULT; 11988 } 11989 } 11990 11991 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 11992 if (ret < 0) 11993 return ret; 11994 11995 if (!(dynptr_arg_type & MEM_UNINIT)) { 11996 int id = dynptr_id(env, reg); 11997 11998 if (id < 0) { 11999 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 12000 return id; 12001 } 12002 meta->initialized_dynptr.id = id; 12003 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 12004 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 12005 } 12006 12007 break; 12008 } 12009 case KF_ARG_PTR_TO_ITER: 12010 if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) { 12011 if (!check_css_task_iter_allowlist(env)) { 12012 verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n"); 12013 return -EINVAL; 12014 } 12015 } 12016 ret = process_iter_arg(env, regno, insn_idx, meta); 12017 if (ret < 0) 12018 return ret; 12019 break; 12020 case KF_ARG_PTR_TO_LIST_HEAD: 12021 if (reg->type != PTR_TO_MAP_VALUE && 12022 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12023 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 12024 return -EINVAL; 12025 } 12026 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 12027 verbose(env, "allocated object must be referenced\n"); 12028 return -EINVAL; 12029 } 12030 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 12031 if (ret < 0) 12032 return ret; 12033 break; 12034 case KF_ARG_PTR_TO_RB_ROOT: 12035 if (reg->type != PTR_TO_MAP_VALUE && 12036 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12037 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 12038 return -EINVAL; 12039 } 12040 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 12041 verbose(env, "allocated object must be referenced\n"); 12042 return -EINVAL; 12043 } 12044 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 12045 if (ret < 0) 12046 return ret; 12047 break; 12048 case KF_ARG_PTR_TO_LIST_NODE: 12049 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12050 verbose(env, "arg#%d expected pointer to allocated object\n", i); 12051 return -EINVAL; 12052 } 12053 if (!reg->ref_obj_id) { 12054 verbose(env, "allocated object must be referenced\n"); 12055 return -EINVAL; 12056 } 12057 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 12058 if (ret < 0) 12059 return ret; 12060 break; 12061 case KF_ARG_PTR_TO_RB_NODE: 12062 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 12063 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 12064 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 12065 return -EINVAL; 12066 } 12067 if (in_rbtree_lock_required_cb(env)) { 12068 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 12069 return -EINVAL; 12070 } 12071 } else { 12072 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 12073 verbose(env, "arg#%d expected pointer to allocated object\n", i); 12074 return -EINVAL; 12075 } 12076 if (!reg->ref_obj_id) { 12077 verbose(env, "allocated object must be referenced\n"); 12078 return -EINVAL; 12079 } 12080 } 12081 12082 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 12083 if (ret < 0) 12084 return ret; 12085 break; 12086 case KF_ARG_PTR_TO_MAP: 12087 /* If argument has '__map' suffix expect 'struct bpf_map *' */ 12088 ref_id = *reg2btf_ids[CONST_PTR_TO_MAP]; 12089 ref_t = btf_type_by_id(btf_vmlinux, ref_id); 12090 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 12091 fallthrough; 12092 case KF_ARG_PTR_TO_BTF_ID: 12093 /* Only base_type is checked, further checks are done here */ 12094 if ((base_type(reg->type) != PTR_TO_BTF_ID || 12095 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 12096 !reg2btf_ids[base_type(reg->type)]) { 12097 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 12098 verbose(env, "expected %s or socket\n", 12099 reg_type_str(env, base_type(reg->type) | 12100 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 12101 return -EINVAL; 12102 } 12103 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 12104 if (ret < 0) 12105 return ret; 12106 break; 12107 case KF_ARG_PTR_TO_MEM: 12108 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 12109 if (IS_ERR(resolve_ret)) { 12110 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 12111 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 12112 return -EINVAL; 12113 } 12114 ret = check_mem_reg(env, reg, regno, type_size); 12115 if (ret < 0) 12116 return ret; 12117 break; 12118 case KF_ARG_PTR_TO_MEM_SIZE: 12119 { 12120 struct bpf_reg_state *buff_reg = ®s[regno]; 12121 const struct btf_param *buff_arg = &args[i]; 12122 struct bpf_reg_state *size_reg = ®s[regno + 1]; 12123 const struct btf_param *size_arg = &args[i + 1]; 12124 12125 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 12126 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 12127 if (ret < 0) { 12128 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 12129 return ret; 12130 } 12131 } 12132 12133 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 12134 if (meta->arg_constant.found) { 12135 verbose(env, "verifier internal error: only one constant argument permitted\n"); 12136 return -EFAULT; 12137 } 12138 if (!tnum_is_const(size_reg->var_off)) { 12139 verbose(env, "R%d must be a known constant\n", regno + 1); 12140 return -EINVAL; 12141 } 12142 meta->arg_constant.found = true; 12143 meta->arg_constant.value = size_reg->var_off.value; 12144 } 12145 12146 /* Skip next '__sz' or '__szk' argument */ 12147 i++; 12148 break; 12149 } 12150 case KF_ARG_PTR_TO_CALLBACK: 12151 if (reg->type != PTR_TO_FUNC) { 12152 verbose(env, "arg%d expected pointer to func\n", i); 12153 return -EINVAL; 12154 } 12155 meta->subprogno = reg->subprogno; 12156 break; 12157 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 12158 if (!type_is_ptr_alloc_obj(reg->type)) { 12159 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 12160 return -EINVAL; 12161 } 12162 if (!type_is_non_owning_ref(reg->type)) 12163 meta->arg_owning_ref = true; 12164 12165 rec = reg_btf_record(reg); 12166 if (!rec) { 12167 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 12168 return -EFAULT; 12169 } 12170 12171 if (rec->refcount_off < 0) { 12172 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 12173 return -EINVAL; 12174 } 12175 12176 meta->arg_btf = reg->btf; 12177 meta->arg_btf_id = reg->btf_id; 12178 break; 12179 case KF_ARG_PTR_TO_CONST_STR: 12180 if (reg->type != PTR_TO_MAP_VALUE) { 12181 verbose(env, "arg#%d doesn't point to a const string\n", i); 12182 return -EINVAL; 12183 } 12184 ret = check_reg_const_str(env, reg, regno); 12185 if (ret) 12186 return ret; 12187 break; 12188 case KF_ARG_PTR_TO_WORKQUEUE: 12189 if (reg->type != PTR_TO_MAP_VALUE) { 12190 verbose(env, "arg#%d doesn't point to a map value\n", i); 12191 return -EINVAL; 12192 } 12193 ret = process_wq_func(env, regno, meta); 12194 if (ret < 0) 12195 return ret; 12196 break; 12197 } 12198 } 12199 12200 if (is_kfunc_release(meta) && !meta->release_regno) { 12201 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 12202 func_name); 12203 return -EINVAL; 12204 } 12205 12206 return 0; 12207 } 12208 12209 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 12210 struct bpf_insn *insn, 12211 struct bpf_kfunc_call_arg_meta *meta, 12212 const char **kfunc_name) 12213 { 12214 const struct btf_type *func, *func_proto; 12215 u32 func_id, *kfunc_flags; 12216 const char *func_name; 12217 struct btf *desc_btf; 12218 12219 if (kfunc_name) 12220 *kfunc_name = NULL; 12221 12222 if (!insn->imm) 12223 return -EINVAL; 12224 12225 desc_btf = find_kfunc_desc_btf(env, insn->off); 12226 if (IS_ERR(desc_btf)) 12227 return PTR_ERR(desc_btf); 12228 12229 func_id = insn->imm; 12230 func = btf_type_by_id(desc_btf, func_id); 12231 func_name = btf_name_by_offset(desc_btf, func->name_off); 12232 if (kfunc_name) 12233 *kfunc_name = func_name; 12234 func_proto = btf_type_by_id(desc_btf, func->type); 12235 12236 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 12237 if (!kfunc_flags) { 12238 return -EACCES; 12239 } 12240 12241 memset(meta, 0, sizeof(*meta)); 12242 meta->btf = desc_btf; 12243 meta->func_id = func_id; 12244 meta->kfunc_flags = *kfunc_flags; 12245 meta->func_proto = func_proto; 12246 meta->func_name = func_name; 12247 12248 return 0; 12249 } 12250 12251 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name); 12252 12253 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 12254 int *insn_idx_p) 12255 { 12256 bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable; 12257 u32 i, nargs, ptr_type_id, release_ref_obj_id; 12258 struct bpf_reg_state *regs = cur_regs(env); 12259 const char *func_name, *ptr_type_name; 12260 const struct btf_type *t, *ptr_type; 12261 struct bpf_kfunc_call_arg_meta meta; 12262 struct bpf_insn_aux_data *insn_aux; 12263 int err, insn_idx = *insn_idx_p; 12264 const struct btf_param *args; 12265 const struct btf_type *ret_t; 12266 struct btf *desc_btf; 12267 12268 /* skip for now, but return error when we find this in fixup_kfunc_call */ 12269 if (!insn->imm) 12270 return 0; 12271 12272 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 12273 if (err == -EACCES && func_name) 12274 verbose(env, "calling kernel function %s is not allowed\n", func_name); 12275 if (err) 12276 return err; 12277 desc_btf = meta.btf; 12278 insn_aux = &env->insn_aux_data[insn_idx]; 12279 12280 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 12281 12282 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 12283 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 12284 return -EACCES; 12285 } 12286 12287 sleepable = is_kfunc_sleepable(&meta); 12288 if (sleepable && !in_sleepable(env)) { 12289 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 12290 return -EACCES; 12291 } 12292 12293 /* Check the arguments */ 12294 err = check_kfunc_args(env, &meta, insn_idx); 12295 if (err < 0) 12296 return err; 12297 12298 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 12299 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 12300 set_rbtree_add_callback_state); 12301 if (err) { 12302 verbose(env, "kfunc %s#%d failed callback verification\n", 12303 func_name, meta.func_id); 12304 return err; 12305 } 12306 } 12307 12308 if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) { 12309 meta.r0_size = sizeof(u64); 12310 meta.r0_rdonly = false; 12311 } 12312 12313 if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) { 12314 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 12315 set_timer_callback_state); 12316 if (err) { 12317 verbose(env, "kfunc %s#%d failed callback verification\n", 12318 func_name, meta.func_id); 12319 return err; 12320 } 12321 } 12322 12323 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 12324 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 12325 12326 preempt_disable = is_kfunc_bpf_preempt_disable(&meta); 12327 preempt_enable = is_kfunc_bpf_preempt_enable(&meta); 12328 12329 if (env->cur_state->active_rcu_lock) { 12330 struct bpf_func_state *state; 12331 struct bpf_reg_state *reg; 12332 u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER); 12333 12334 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 12335 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 12336 return -EACCES; 12337 } 12338 12339 if (rcu_lock) { 12340 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 12341 return -EINVAL; 12342 } else if (rcu_unlock) { 12343 bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({ 12344 if (reg->type & MEM_RCU) { 12345 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 12346 reg->type |= PTR_UNTRUSTED; 12347 } 12348 })); 12349 env->cur_state->active_rcu_lock = false; 12350 } else if (sleepable) { 12351 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 12352 return -EACCES; 12353 } 12354 } else if (rcu_lock) { 12355 env->cur_state->active_rcu_lock = true; 12356 } else if (rcu_unlock) { 12357 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 12358 return -EINVAL; 12359 } 12360 12361 if (env->cur_state->active_preempt_lock) { 12362 if (preempt_disable) { 12363 env->cur_state->active_preempt_lock++; 12364 } else if (preempt_enable) { 12365 env->cur_state->active_preempt_lock--; 12366 } else if (sleepable) { 12367 verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name); 12368 return -EACCES; 12369 } 12370 } else if (preempt_disable) { 12371 env->cur_state->active_preempt_lock++; 12372 } else if (preempt_enable) { 12373 verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name); 12374 return -EINVAL; 12375 } 12376 12377 /* In case of release function, we get register number of refcounted 12378 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 12379 */ 12380 if (meta.release_regno) { 12381 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 12382 if (err) { 12383 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 12384 func_name, meta.func_id); 12385 return err; 12386 } 12387 } 12388 12389 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 12390 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 12391 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 12392 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 12393 insn_aux->insert_off = regs[BPF_REG_2].off; 12394 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 12395 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 12396 if (err) { 12397 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 12398 func_name, meta.func_id); 12399 return err; 12400 } 12401 12402 err = release_reference(env, release_ref_obj_id); 12403 if (err) { 12404 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 12405 func_name, meta.func_id); 12406 return err; 12407 } 12408 } 12409 12410 if (meta.func_id == special_kfunc_list[KF_bpf_throw]) { 12411 if (!bpf_jit_supports_exceptions()) { 12412 verbose(env, "JIT does not support calling kfunc %s#%d\n", 12413 func_name, meta.func_id); 12414 return -ENOTSUPP; 12415 } 12416 env->seen_exception = true; 12417 12418 /* In the case of the default callback, the cookie value passed 12419 * to bpf_throw becomes the return value of the program. 12420 */ 12421 if (!env->exception_callback_subprog) { 12422 err = check_return_code(env, BPF_REG_1, "R1"); 12423 if (err < 0) 12424 return err; 12425 } 12426 } 12427 12428 for (i = 0; i < CALLER_SAVED_REGS; i++) 12429 mark_reg_not_init(env, regs, caller_saved[i]); 12430 12431 /* Check return type */ 12432 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 12433 12434 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 12435 /* Only exception is bpf_obj_new_impl */ 12436 if (meta.btf != btf_vmlinux || 12437 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 12438 meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] && 12439 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 12440 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 12441 return -EINVAL; 12442 } 12443 } 12444 12445 if (btf_type_is_scalar(t)) { 12446 mark_reg_unknown(env, regs, BPF_REG_0); 12447 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 12448 } else if (btf_type_is_ptr(t)) { 12449 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 12450 12451 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 12452 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 12453 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12454 struct btf_struct_meta *struct_meta; 12455 struct btf *ret_btf; 12456 u32 ret_btf_id; 12457 12458 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set) 12459 return -ENOMEM; 12460 12461 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 12462 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 12463 return -EINVAL; 12464 } 12465 12466 ret_btf = env->prog->aux->btf; 12467 ret_btf_id = meta.arg_constant.value; 12468 12469 /* This may be NULL due to user not supplying a BTF */ 12470 if (!ret_btf) { 12471 verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n"); 12472 return -EINVAL; 12473 } 12474 12475 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 12476 if (!ret_t || !__btf_type_is_struct(ret_t)) { 12477 verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n"); 12478 return -EINVAL; 12479 } 12480 12481 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12482 if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) { 12483 verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n", 12484 ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE); 12485 return -EINVAL; 12486 } 12487 12488 if (!bpf_global_percpu_ma_set) { 12489 mutex_lock(&bpf_percpu_ma_lock); 12490 if (!bpf_global_percpu_ma_set) { 12491 /* Charge memory allocated with bpf_global_percpu_ma to 12492 * root memcg. The obj_cgroup for root memcg is NULL. 12493 */ 12494 err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL); 12495 if (!err) 12496 bpf_global_percpu_ma_set = true; 12497 } 12498 mutex_unlock(&bpf_percpu_ma_lock); 12499 if (err) 12500 return err; 12501 } 12502 12503 mutex_lock(&bpf_percpu_ma_lock); 12504 err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size); 12505 mutex_unlock(&bpf_percpu_ma_lock); 12506 if (err) 12507 return err; 12508 } 12509 12510 struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id); 12511 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 12512 if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) { 12513 verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n"); 12514 return -EINVAL; 12515 } 12516 12517 if (struct_meta) { 12518 verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n"); 12519 return -EINVAL; 12520 } 12521 } 12522 12523 mark_reg_known_zero(env, regs, BPF_REG_0); 12524 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 12525 regs[BPF_REG_0].btf = ret_btf; 12526 regs[BPF_REG_0].btf_id = ret_btf_id; 12527 if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) 12528 regs[BPF_REG_0].type |= MEM_PERCPU; 12529 12530 insn_aux->obj_new_size = ret_t->size; 12531 insn_aux->kptr_struct_meta = struct_meta; 12532 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 12533 mark_reg_known_zero(env, regs, BPF_REG_0); 12534 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 12535 regs[BPF_REG_0].btf = meta.arg_btf; 12536 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 12537 12538 insn_aux->kptr_struct_meta = 12539 btf_find_struct_meta(meta.arg_btf, 12540 meta.arg_btf_id); 12541 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 12542 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 12543 struct btf_field *field = meta.arg_list_head.field; 12544 12545 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 12546 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 12547 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 12548 struct btf_field *field = meta.arg_rbtree_root.field; 12549 12550 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 12551 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 12552 mark_reg_known_zero(env, regs, BPF_REG_0); 12553 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 12554 regs[BPF_REG_0].btf = desc_btf; 12555 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 12556 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 12557 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 12558 if (!ret_t || !btf_type_is_struct(ret_t)) { 12559 verbose(env, 12560 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 12561 return -EINVAL; 12562 } 12563 12564 mark_reg_known_zero(env, regs, BPF_REG_0); 12565 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 12566 regs[BPF_REG_0].btf = desc_btf; 12567 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 12568 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 12569 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 12570 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 12571 12572 mark_reg_known_zero(env, regs, BPF_REG_0); 12573 12574 if (!meta.arg_constant.found) { 12575 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 12576 return -EFAULT; 12577 } 12578 12579 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 12580 12581 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 12582 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 12583 12584 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 12585 regs[BPF_REG_0].type |= MEM_RDONLY; 12586 } else { 12587 /* this will set env->seen_direct_write to true */ 12588 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 12589 verbose(env, "the prog does not allow writes to packet data\n"); 12590 return -EINVAL; 12591 } 12592 } 12593 12594 if (!meta.initialized_dynptr.id) { 12595 verbose(env, "verifier internal error: no dynptr id\n"); 12596 return -EFAULT; 12597 } 12598 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 12599 12600 /* we don't need to set BPF_REG_0's ref obj id 12601 * because packet slices are not refcounted (see 12602 * dynptr_type_refcounted) 12603 */ 12604 } else { 12605 verbose(env, "kernel function %s unhandled dynamic return type\n", 12606 meta.func_name); 12607 return -EFAULT; 12608 } 12609 } else if (btf_type_is_void(ptr_type)) { 12610 /* kfunc returning 'void *' is equivalent to returning scalar */ 12611 mark_reg_unknown(env, regs, BPF_REG_0); 12612 } else if (!__btf_type_is_struct(ptr_type)) { 12613 if (!meta.r0_size) { 12614 __u32 sz; 12615 12616 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 12617 meta.r0_size = sz; 12618 meta.r0_rdonly = true; 12619 } 12620 } 12621 if (!meta.r0_size) { 12622 ptr_type_name = btf_name_by_offset(desc_btf, 12623 ptr_type->name_off); 12624 verbose(env, 12625 "kernel function %s returns pointer type %s %s is not supported\n", 12626 func_name, 12627 btf_type_str(ptr_type), 12628 ptr_type_name); 12629 return -EINVAL; 12630 } 12631 12632 mark_reg_known_zero(env, regs, BPF_REG_0); 12633 regs[BPF_REG_0].type = PTR_TO_MEM; 12634 regs[BPF_REG_0].mem_size = meta.r0_size; 12635 12636 if (meta.r0_rdonly) 12637 regs[BPF_REG_0].type |= MEM_RDONLY; 12638 12639 /* Ensures we don't access the memory after a release_reference() */ 12640 if (meta.ref_obj_id) 12641 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 12642 } else { 12643 mark_reg_known_zero(env, regs, BPF_REG_0); 12644 regs[BPF_REG_0].btf = desc_btf; 12645 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 12646 regs[BPF_REG_0].btf_id = ptr_type_id; 12647 } 12648 12649 if (is_kfunc_ret_null(&meta)) { 12650 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 12651 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 12652 regs[BPF_REG_0].id = ++env->id_gen; 12653 } 12654 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 12655 if (is_kfunc_acquire(&meta)) { 12656 int id = acquire_reference_state(env, insn_idx); 12657 12658 if (id < 0) 12659 return id; 12660 if (is_kfunc_ret_null(&meta)) 12661 regs[BPF_REG_0].id = id; 12662 regs[BPF_REG_0].ref_obj_id = id; 12663 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 12664 ref_set_non_owning(env, ®s[BPF_REG_0]); 12665 } 12666 12667 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 12668 regs[BPF_REG_0].id = ++env->id_gen; 12669 } else if (btf_type_is_void(t)) { 12670 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 12671 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 12672 meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { 12673 insn_aux->kptr_struct_meta = 12674 btf_find_struct_meta(meta.arg_btf, 12675 meta.arg_btf_id); 12676 } 12677 } 12678 } 12679 12680 nargs = btf_type_vlen(meta.func_proto); 12681 args = (const struct btf_param *)(meta.func_proto + 1); 12682 for (i = 0; i < nargs; i++) { 12683 u32 regno = i + 1; 12684 12685 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 12686 if (btf_type_is_ptr(t)) 12687 mark_btf_func_reg_size(env, regno, sizeof(void *)); 12688 else 12689 /* scalar. ensured by btf_check_kfunc_arg_match() */ 12690 mark_btf_func_reg_size(env, regno, t->size); 12691 } 12692 12693 if (is_iter_next_kfunc(&meta)) { 12694 err = process_iter_next_call(env, insn_idx, &meta); 12695 if (err) 12696 return err; 12697 } 12698 12699 return 0; 12700 } 12701 12702 static bool signed_add_overflows(s64 a, s64 b) 12703 { 12704 /* Do the add in u64, where overflow is well-defined */ 12705 s64 res = (s64)((u64)a + (u64)b); 12706 12707 if (b < 0) 12708 return res > a; 12709 return res < a; 12710 } 12711 12712 static bool signed_add32_overflows(s32 a, s32 b) 12713 { 12714 /* Do the add in u32, where overflow is well-defined */ 12715 s32 res = (s32)((u32)a + (u32)b); 12716 12717 if (b < 0) 12718 return res > a; 12719 return res < a; 12720 } 12721 12722 static bool signed_sub_overflows(s64 a, s64 b) 12723 { 12724 /* Do the sub in u64, where overflow is well-defined */ 12725 s64 res = (s64)((u64)a - (u64)b); 12726 12727 if (b < 0) 12728 return res < a; 12729 return res > a; 12730 } 12731 12732 static bool signed_sub32_overflows(s32 a, s32 b) 12733 { 12734 /* Do the sub in u32, where overflow is well-defined */ 12735 s32 res = (s32)((u32)a - (u32)b); 12736 12737 if (b < 0) 12738 return res < a; 12739 return res > a; 12740 } 12741 12742 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 12743 const struct bpf_reg_state *reg, 12744 enum bpf_reg_type type) 12745 { 12746 bool known = tnum_is_const(reg->var_off); 12747 s64 val = reg->var_off.value; 12748 s64 smin = reg->smin_value; 12749 12750 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 12751 verbose(env, "math between %s pointer and %lld is not allowed\n", 12752 reg_type_str(env, type), val); 12753 return false; 12754 } 12755 12756 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 12757 verbose(env, "%s pointer offset %d is not allowed\n", 12758 reg_type_str(env, type), reg->off); 12759 return false; 12760 } 12761 12762 if (smin == S64_MIN) { 12763 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 12764 reg_type_str(env, type)); 12765 return false; 12766 } 12767 12768 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 12769 verbose(env, "value %lld makes %s pointer be out of bounds\n", 12770 smin, reg_type_str(env, type)); 12771 return false; 12772 } 12773 12774 return true; 12775 } 12776 12777 enum { 12778 REASON_BOUNDS = -1, 12779 REASON_TYPE = -2, 12780 REASON_PATHS = -3, 12781 REASON_LIMIT = -4, 12782 REASON_STACK = -5, 12783 }; 12784 12785 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 12786 u32 *alu_limit, bool mask_to_left) 12787 { 12788 u32 max = 0, ptr_limit = 0; 12789 12790 switch (ptr_reg->type) { 12791 case PTR_TO_STACK: 12792 /* Offset 0 is out-of-bounds, but acceptable start for the 12793 * left direction, see BPF_REG_FP. Also, unknown scalar 12794 * offset where we would need to deal with min/max bounds is 12795 * currently prohibited for unprivileged. 12796 */ 12797 max = MAX_BPF_STACK + mask_to_left; 12798 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 12799 break; 12800 case PTR_TO_MAP_VALUE: 12801 max = ptr_reg->map_ptr->value_size; 12802 ptr_limit = (mask_to_left ? 12803 ptr_reg->smin_value : 12804 ptr_reg->umax_value) + ptr_reg->off; 12805 break; 12806 default: 12807 return REASON_TYPE; 12808 } 12809 12810 if (ptr_limit >= max) 12811 return REASON_LIMIT; 12812 *alu_limit = ptr_limit; 12813 return 0; 12814 } 12815 12816 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 12817 const struct bpf_insn *insn) 12818 { 12819 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 12820 } 12821 12822 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 12823 u32 alu_state, u32 alu_limit) 12824 { 12825 /* If we arrived here from different branches with different 12826 * state or limits to sanitize, then this won't work. 12827 */ 12828 if (aux->alu_state && 12829 (aux->alu_state != alu_state || 12830 aux->alu_limit != alu_limit)) 12831 return REASON_PATHS; 12832 12833 /* Corresponding fixup done in do_misc_fixups(). */ 12834 aux->alu_state = alu_state; 12835 aux->alu_limit = alu_limit; 12836 return 0; 12837 } 12838 12839 static int sanitize_val_alu(struct bpf_verifier_env *env, 12840 struct bpf_insn *insn) 12841 { 12842 struct bpf_insn_aux_data *aux = cur_aux(env); 12843 12844 if (can_skip_alu_sanitation(env, insn)) 12845 return 0; 12846 12847 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 12848 } 12849 12850 static bool sanitize_needed(u8 opcode) 12851 { 12852 return opcode == BPF_ADD || opcode == BPF_SUB; 12853 } 12854 12855 struct bpf_sanitize_info { 12856 struct bpf_insn_aux_data aux; 12857 bool mask_to_left; 12858 }; 12859 12860 static struct bpf_verifier_state * 12861 sanitize_speculative_path(struct bpf_verifier_env *env, 12862 const struct bpf_insn *insn, 12863 u32 next_idx, u32 curr_idx) 12864 { 12865 struct bpf_verifier_state *branch; 12866 struct bpf_reg_state *regs; 12867 12868 branch = push_stack(env, next_idx, curr_idx, true); 12869 if (branch && insn) { 12870 regs = branch->frame[branch->curframe]->regs; 12871 if (BPF_SRC(insn->code) == BPF_K) { 12872 mark_reg_unknown(env, regs, insn->dst_reg); 12873 } else if (BPF_SRC(insn->code) == BPF_X) { 12874 mark_reg_unknown(env, regs, insn->dst_reg); 12875 mark_reg_unknown(env, regs, insn->src_reg); 12876 } 12877 } 12878 return branch; 12879 } 12880 12881 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 12882 struct bpf_insn *insn, 12883 const struct bpf_reg_state *ptr_reg, 12884 const struct bpf_reg_state *off_reg, 12885 struct bpf_reg_state *dst_reg, 12886 struct bpf_sanitize_info *info, 12887 const bool commit_window) 12888 { 12889 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 12890 struct bpf_verifier_state *vstate = env->cur_state; 12891 bool off_is_imm = tnum_is_const(off_reg->var_off); 12892 bool off_is_neg = off_reg->smin_value < 0; 12893 bool ptr_is_dst_reg = ptr_reg == dst_reg; 12894 u8 opcode = BPF_OP(insn->code); 12895 u32 alu_state, alu_limit; 12896 struct bpf_reg_state tmp; 12897 bool ret; 12898 int err; 12899 12900 if (can_skip_alu_sanitation(env, insn)) 12901 return 0; 12902 12903 /* We already marked aux for masking from non-speculative 12904 * paths, thus we got here in the first place. We only care 12905 * to explore bad access from here. 12906 */ 12907 if (vstate->speculative) 12908 goto do_sim; 12909 12910 if (!commit_window) { 12911 if (!tnum_is_const(off_reg->var_off) && 12912 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 12913 return REASON_BOUNDS; 12914 12915 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 12916 (opcode == BPF_SUB && !off_is_neg); 12917 } 12918 12919 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 12920 if (err < 0) 12921 return err; 12922 12923 if (commit_window) { 12924 /* In commit phase we narrow the masking window based on 12925 * the observed pointer move after the simulated operation. 12926 */ 12927 alu_state = info->aux.alu_state; 12928 alu_limit = abs(info->aux.alu_limit - alu_limit); 12929 } else { 12930 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 12931 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 12932 alu_state |= ptr_is_dst_reg ? 12933 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 12934 12935 /* Limit pruning on unknown scalars to enable deep search for 12936 * potential masking differences from other program paths. 12937 */ 12938 if (!off_is_imm) 12939 env->explore_alu_limits = true; 12940 } 12941 12942 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 12943 if (err < 0) 12944 return err; 12945 do_sim: 12946 /* If we're in commit phase, we're done here given we already 12947 * pushed the truncated dst_reg into the speculative verification 12948 * stack. 12949 * 12950 * Also, when register is a known constant, we rewrite register-based 12951 * operation to immediate-based, and thus do not need masking (and as 12952 * a consequence, do not need to simulate the zero-truncation either). 12953 */ 12954 if (commit_window || off_is_imm) 12955 return 0; 12956 12957 /* Simulate and find potential out-of-bounds access under 12958 * speculative execution from truncation as a result of 12959 * masking when off was not within expected range. If off 12960 * sits in dst, then we temporarily need to move ptr there 12961 * to simulate dst (== 0) +/-= ptr. Needed, for example, 12962 * for cases where we use K-based arithmetic in one direction 12963 * and truncated reg-based in the other in order to explore 12964 * bad access. 12965 */ 12966 if (!ptr_is_dst_reg) { 12967 tmp = *dst_reg; 12968 copy_register_state(dst_reg, ptr_reg); 12969 } 12970 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 12971 env->insn_idx); 12972 if (!ptr_is_dst_reg && ret) 12973 *dst_reg = tmp; 12974 return !ret ? REASON_STACK : 0; 12975 } 12976 12977 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 12978 { 12979 struct bpf_verifier_state *vstate = env->cur_state; 12980 12981 /* If we simulate paths under speculation, we don't update the 12982 * insn as 'seen' such that when we verify unreachable paths in 12983 * the non-speculative domain, sanitize_dead_code() can still 12984 * rewrite/sanitize them. 12985 */ 12986 if (!vstate->speculative) 12987 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 12988 } 12989 12990 static int sanitize_err(struct bpf_verifier_env *env, 12991 const struct bpf_insn *insn, int reason, 12992 const struct bpf_reg_state *off_reg, 12993 const struct bpf_reg_state *dst_reg) 12994 { 12995 static const char *err = "pointer arithmetic with it prohibited for !root"; 12996 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 12997 u32 dst = insn->dst_reg, src = insn->src_reg; 12998 12999 switch (reason) { 13000 case REASON_BOUNDS: 13001 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 13002 off_reg == dst_reg ? dst : src, err); 13003 break; 13004 case REASON_TYPE: 13005 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 13006 off_reg == dst_reg ? src : dst, err); 13007 break; 13008 case REASON_PATHS: 13009 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 13010 dst, op, err); 13011 break; 13012 case REASON_LIMIT: 13013 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 13014 dst, op, err); 13015 break; 13016 case REASON_STACK: 13017 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 13018 dst, err); 13019 break; 13020 default: 13021 verbose(env, "verifier internal error: unknown reason (%d)\n", 13022 reason); 13023 break; 13024 } 13025 13026 return -EACCES; 13027 } 13028 13029 /* check that stack access falls within stack limits and that 'reg' doesn't 13030 * have a variable offset. 13031 * 13032 * Variable offset is prohibited for unprivileged mode for simplicity since it 13033 * requires corresponding support in Spectre masking for stack ALU. See also 13034 * retrieve_ptr_limit(). 13035 * 13036 * 13037 * 'off' includes 'reg->off'. 13038 */ 13039 static int check_stack_access_for_ptr_arithmetic( 13040 struct bpf_verifier_env *env, 13041 int regno, 13042 const struct bpf_reg_state *reg, 13043 int off) 13044 { 13045 if (!tnum_is_const(reg->var_off)) { 13046 char tn_buf[48]; 13047 13048 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 13049 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 13050 regno, tn_buf, off); 13051 return -EACCES; 13052 } 13053 13054 if (off >= 0 || off < -MAX_BPF_STACK) { 13055 verbose(env, "R%d stack pointer arithmetic goes out of range, " 13056 "prohibited for !root; off=%d\n", regno, off); 13057 return -EACCES; 13058 } 13059 13060 return 0; 13061 } 13062 13063 static int sanitize_check_bounds(struct bpf_verifier_env *env, 13064 const struct bpf_insn *insn, 13065 const struct bpf_reg_state *dst_reg) 13066 { 13067 u32 dst = insn->dst_reg; 13068 13069 /* For unprivileged we require that resulting offset must be in bounds 13070 * in order to be able to sanitize access later on. 13071 */ 13072 if (env->bypass_spec_v1) 13073 return 0; 13074 13075 switch (dst_reg->type) { 13076 case PTR_TO_STACK: 13077 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 13078 dst_reg->off + dst_reg->var_off.value)) 13079 return -EACCES; 13080 break; 13081 case PTR_TO_MAP_VALUE: 13082 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 13083 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 13084 "prohibited for !root\n", dst); 13085 return -EACCES; 13086 } 13087 break; 13088 default: 13089 break; 13090 } 13091 13092 return 0; 13093 } 13094 13095 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 13096 * Caller should also handle BPF_MOV case separately. 13097 * If we return -EACCES, caller may want to try again treating pointer as a 13098 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 13099 */ 13100 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 13101 struct bpf_insn *insn, 13102 const struct bpf_reg_state *ptr_reg, 13103 const struct bpf_reg_state *off_reg) 13104 { 13105 struct bpf_verifier_state *vstate = env->cur_state; 13106 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13107 struct bpf_reg_state *regs = state->regs, *dst_reg; 13108 bool known = tnum_is_const(off_reg->var_off); 13109 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 13110 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 13111 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 13112 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 13113 struct bpf_sanitize_info info = {}; 13114 u8 opcode = BPF_OP(insn->code); 13115 u32 dst = insn->dst_reg; 13116 int ret; 13117 13118 dst_reg = ®s[dst]; 13119 13120 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 13121 smin_val > smax_val || umin_val > umax_val) { 13122 /* Taint dst register if offset had invalid bounds derived from 13123 * e.g. dead branches. 13124 */ 13125 __mark_reg_unknown(env, dst_reg); 13126 return 0; 13127 } 13128 13129 if (BPF_CLASS(insn->code) != BPF_ALU64) { 13130 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 13131 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 13132 __mark_reg_unknown(env, dst_reg); 13133 return 0; 13134 } 13135 13136 verbose(env, 13137 "R%d 32-bit pointer arithmetic prohibited\n", 13138 dst); 13139 return -EACCES; 13140 } 13141 13142 if (ptr_reg->type & PTR_MAYBE_NULL) { 13143 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 13144 dst, reg_type_str(env, ptr_reg->type)); 13145 return -EACCES; 13146 } 13147 13148 switch (base_type(ptr_reg->type)) { 13149 case PTR_TO_CTX: 13150 case PTR_TO_MAP_VALUE: 13151 case PTR_TO_MAP_KEY: 13152 case PTR_TO_STACK: 13153 case PTR_TO_PACKET_META: 13154 case PTR_TO_PACKET: 13155 case PTR_TO_TP_BUFFER: 13156 case PTR_TO_BTF_ID: 13157 case PTR_TO_MEM: 13158 case PTR_TO_BUF: 13159 case PTR_TO_FUNC: 13160 case CONST_PTR_TO_DYNPTR: 13161 break; 13162 case PTR_TO_FLOW_KEYS: 13163 if (known) 13164 break; 13165 fallthrough; 13166 case CONST_PTR_TO_MAP: 13167 /* smin_val represents the known value */ 13168 if (known && smin_val == 0 && opcode == BPF_ADD) 13169 break; 13170 fallthrough; 13171 default: 13172 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 13173 dst, reg_type_str(env, ptr_reg->type)); 13174 return -EACCES; 13175 } 13176 13177 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 13178 * The id may be overwritten later if we create a new variable offset. 13179 */ 13180 dst_reg->type = ptr_reg->type; 13181 dst_reg->id = ptr_reg->id; 13182 13183 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 13184 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 13185 return -EINVAL; 13186 13187 /* pointer types do not carry 32-bit bounds at the moment. */ 13188 __mark_reg32_unbounded(dst_reg); 13189 13190 if (sanitize_needed(opcode)) { 13191 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 13192 &info, false); 13193 if (ret < 0) 13194 return sanitize_err(env, insn, ret, off_reg, dst_reg); 13195 } 13196 13197 switch (opcode) { 13198 case BPF_ADD: 13199 /* We can take a fixed offset as long as it doesn't overflow 13200 * the s32 'off' field 13201 */ 13202 if (known && (ptr_reg->off + smin_val == 13203 (s64)(s32)(ptr_reg->off + smin_val))) { 13204 /* pointer += K. Accumulate it into fixed offset */ 13205 dst_reg->smin_value = smin_ptr; 13206 dst_reg->smax_value = smax_ptr; 13207 dst_reg->umin_value = umin_ptr; 13208 dst_reg->umax_value = umax_ptr; 13209 dst_reg->var_off = ptr_reg->var_off; 13210 dst_reg->off = ptr_reg->off + smin_val; 13211 dst_reg->raw = ptr_reg->raw; 13212 break; 13213 } 13214 /* A new variable offset is created. Note that off_reg->off 13215 * == 0, since it's a scalar. 13216 * dst_reg gets the pointer type and since some positive 13217 * integer value was added to the pointer, give it a new 'id' 13218 * if it's a PTR_TO_PACKET. 13219 * this creates a new 'base' pointer, off_reg (variable) gets 13220 * added into the variable offset, and we copy the fixed offset 13221 * from ptr_reg. 13222 */ 13223 if (signed_add_overflows(smin_ptr, smin_val) || 13224 signed_add_overflows(smax_ptr, smax_val)) { 13225 dst_reg->smin_value = S64_MIN; 13226 dst_reg->smax_value = S64_MAX; 13227 } else { 13228 dst_reg->smin_value = smin_ptr + smin_val; 13229 dst_reg->smax_value = smax_ptr + smax_val; 13230 } 13231 if (umin_ptr + umin_val < umin_ptr || 13232 umax_ptr + umax_val < umax_ptr) { 13233 dst_reg->umin_value = 0; 13234 dst_reg->umax_value = U64_MAX; 13235 } else { 13236 dst_reg->umin_value = umin_ptr + umin_val; 13237 dst_reg->umax_value = umax_ptr + umax_val; 13238 } 13239 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 13240 dst_reg->off = ptr_reg->off; 13241 dst_reg->raw = ptr_reg->raw; 13242 if (reg_is_pkt_pointer(ptr_reg)) { 13243 dst_reg->id = ++env->id_gen; 13244 /* something was added to pkt_ptr, set range to zero */ 13245 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 13246 } 13247 break; 13248 case BPF_SUB: 13249 if (dst_reg == off_reg) { 13250 /* scalar -= pointer. Creates an unknown scalar */ 13251 verbose(env, "R%d tried to subtract pointer from scalar\n", 13252 dst); 13253 return -EACCES; 13254 } 13255 /* We don't allow subtraction from FP, because (according to 13256 * test_verifier.c test "invalid fp arithmetic", JITs might not 13257 * be able to deal with it. 13258 */ 13259 if (ptr_reg->type == PTR_TO_STACK) { 13260 verbose(env, "R%d subtraction from stack pointer prohibited\n", 13261 dst); 13262 return -EACCES; 13263 } 13264 if (known && (ptr_reg->off - smin_val == 13265 (s64)(s32)(ptr_reg->off - smin_val))) { 13266 /* pointer -= K. Subtract it from fixed offset */ 13267 dst_reg->smin_value = smin_ptr; 13268 dst_reg->smax_value = smax_ptr; 13269 dst_reg->umin_value = umin_ptr; 13270 dst_reg->umax_value = umax_ptr; 13271 dst_reg->var_off = ptr_reg->var_off; 13272 dst_reg->id = ptr_reg->id; 13273 dst_reg->off = ptr_reg->off - smin_val; 13274 dst_reg->raw = ptr_reg->raw; 13275 break; 13276 } 13277 /* A new variable offset is created. If the subtrahend is known 13278 * nonnegative, then any reg->range we had before is still good. 13279 */ 13280 if (signed_sub_overflows(smin_ptr, smax_val) || 13281 signed_sub_overflows(smax_ptr, smin_val)) { 13282 /* Overflow possible, we know nothing */ 13283 dst_reg->smin_value = S64_MIN; 13284 dst_reg->smax_value = S64_MAX; 13285 } else { 13286 dst_reg->smin_value = smin_ptr - smax_val; 13287 dst_reg->smax_value = smax_ptr - smin_val; 13288 } 13289 if (umin_ptr < umax_val) { 13290 /* Overflow possible, we know nothing */ 13291 dst_reg->umin_value = 0; 13292 dst_reg->umax_value = U64_MAX; 13293 } else { 13294 /* Cannot overflow (as long as bounds are consistent) */ 13295 dst_reg->umin_value = umin_ptr - umax_val; 13296 dst_reg->umax_value = umax_ptr - umin_val; 13297 } 13298 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 13299 dst_reg->off = ptr_reg->off; 13300 dst_reg->raw = ptr_reg->raw; 13301 if (reg_is_pkt_pointer(ptr_reg)) { 13302 dst_reg->id = ++env->id_gen; 13303 /* something was added to pkt_ptr, set range to zero */ 13304 if (smin_val < 0) 13305 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 13306 } 13307 break; 13308 case BPF_AND: 13309 case BPF_OR: 13310 case BPF_XOR: 13311 /* bitwise ops on pointers are troublesome, prohibit. */ 13312 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 13313 dst, bpf_alu_string[opcode >> 4]); 13314 return -EACCES; 13315 default: 13316 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 13317 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 13318 dst, bpf_alu_string[opcode >> 4]); 13319 return -EACCES; 13320 } 13321 13322 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 13323 return -EINVAL; 13324 reg_bounds_sync(dst_reg); 13325 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 13326 return -EACCES; 13327 if (sanitize_needed(opcode)) { 13328 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 13329 &info, true); 13330 if (ret < 0) 13331 return sanitize_err(env, insn, ret, off_reg, dst_reg); 13332 } 13333 13334 return 0; 13335 } 13336 13337 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 13338 struct bpf_reg_state *src_reg) 13339 { 13340 s32 smin_val = src_reg->s32_min_value; 13341 s32 smax_val = src_reg->s32_max_value; 13342 u32 umin_val = src_reg->u32_min_value; 13343 u32 umax_val = src_reg->u32_max_value; 13344 13345 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 13346 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 13347 dst_reg->s32_min_value = S32_MIN; 13348 dst_reg->s32_max_value = S32_MAX; 13349 } else { 13350 dst_reg->s32_min_value += smin_val; 13351 dst_reg->s32_max_value += smax_val; 13352 } 13353 if (dst_reg->u32_min_value + umin_val < umin_val || 13354 dst_reg->u32_max_value + umax_val < umax_val) { 13355 dst_reg->u32_min_value = 0; 13356 dst_reg->u32_max_value = U32_MAX; 13357 } else { 13358 dst_reg->u32_min_value += umin_val; 13359 dst_reg->u32_max_value += umax_val; 13360 } 13361 } 13362 13363 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 13364 struct bpf_reg_state *src_reg) 13365 { 13366 s64 smin_val = src_reg->smin_value; 13367 s64 smax_val = src_reg->smax_value; 13368 u64 umin_val = src_reg->umin_value; 13369 u64 umax_val = src_reg->umax_value; 13370 13371 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 13372 signed_add_overflows(dst_reg->smax_value, smax_val)) { 13373 dst_reg->smin_value = S64_MIN; 13374 dst_reg->smax_value = S64_MAX; 13375 } else { 13376 dst_reg->smin_value += smin_val; 13377 dst_reg->smax_value += smax_val; 13378 } 13379 if (dst_reg->umin_value + umin_val < umin_val || 13380 dst_reg->umax_value + umax_val < umax_val) { 13381 dst_reg->umin_value = 0; 13382 dst_reg->umax_value = U64_MAX; 13383 } else { 13384 dst_reg->umin_value += umin_val; 13385 dst_reg->umax_value += umax_val; 13386 } 13387 } 13388 13389 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 13390 struct bpf_reg_state *src_reg) 13391 { 13392 s32 smin_val = src_reg->s32_min_value; 13393 s32 smax_val = src_reg->s32_max_value; 13394 u32 umin_val = src_reg->u32_min_value; 13395 u32 umax_val = src_reg->u32_max_value; 13396 13397 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 13398 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 13399 /* Overflow possible, we know nothing */ 13400 dst_reg->s32_min_value = S32_MIN; 13401 dst_reg->s32_max_value = S32_MAX; 13402 } else { 13403 dst_reg->s32_min_value -= smax_val; 13404 dst_reg->s32_max_value -= smin_val; 13405 } 13406 if (dst_reg->u32_min_value < umax_val) { 13407 /* Overflow possible, we know nothing */ 13408 dst_reg->u32_min_value = 0; 13409 dst_reg->u32_max_value = U32_MAX; 13410 } else { 13411 /* Cannot overflow (as long as bounds are consistent) */ 13412 dst_reg->u32_min_value -= umax_val; 13413 dst_reg->u32_max_value -= umin_val; 13414 } 13415 } 13416 13417 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 13418 struct bpf_reg_state *src_reg) 13419 { 13420 s64 smin_val = src_reg->smin_value; 13421 s64 smax_val = src_reg->smax_value; 13422 u64 umin_val = src_reg->umin_value; 13423 u64 umax_val = src_reg->umax_value; 13424 13425 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 13426 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 13427 /* Overflow possible, we know nothing */ 13428 dst_reg->smin_value = S64_MIN; 13429 dst_reg->smax_value = S64_MAX; 13430 } else { 13431 dst_reg->smin_value -= smax_val; 13432 dst_reg->smax_value -= smin_val; 13433 } 13434 if (dst_reg->umin_value < umax_val) { 13435 /* Overflow possible, we know nothing */ 13436 dst_reg->umin_value = 0; 13437 dst_reg->umax_value = U64_MAX; 13438 } else { 13439 /* Cannot overflow (as long as bounds are consistent) */ 13440 dst_reg->umin_value -= umax_val; 13441 dst_reg->umax_value -= umin_val; 13442 } 13443 } 13444 13445 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 13446 struct bpf_reg_state *src_reg) 13447 { 13448 s32 smin_val = src_reg->s32_min_value; 13449 u32 umin_val = src_reg->u32_min_value; 13450 u32 umax_val = src_reg->u32_max_value; 13451 13452 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 13453 /* Ain't nobody got time to multiply that sign */ 13454 __mark_reg32_unbounded(dst_reg); 13455 return; 13456 } 13457 /* Both values are positive, so we can work with unsigned and 13458 * copy the result to signed (unless it exceeds S32_MAX). 13459 */ 13460 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 13461 /* Potential overflow, we know nothing */ 13462 __mark_reg32_unbounded(dst_reg); 13463 return; 13464 } 13465 dst_reg->u32_min_value *= umin_val; 13466 dst_reg->u32_max_value *= umax_val; 13467 if (dst_reg->u32_max_value > S32_MAX) { 13468 /* Overflow possible, we know nothing */ 13469 dst_reg->s32_min_value = S32_MIN; 13470 dst_reg->s32_max_value = S32_MAX; 13471 } else { 13472 dst_reg->s32_min_value = dst_reg->u32_min_value; 13473 dst_reg->s32_max_value = dst_reg->u32_max_value; 13474 } 13475 } 13476 13477 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 13478 struct bpf_reg_state *src_reg) 13479 { 13480 s64 smin_val = src_reg->smin_value; 13481 u64 umin_val = src_reg->umin_value; 13482 u64 umax_val = src_reg->umax_value; 13483 13484 if (smin_val < 0 || dst_reg->smin_value < 0) { 13485 /* Ain't nobody got time to multiply that sign */ 13486 __mark_reg64_unbounded(dst_reg); 13487 return; 13488 } 13489 /* Both values are positive, so we can work with unsigned and 13490 * copy the result to signed (unless it exceeds S64_MAX). 13491 */ 13492 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 13493 /* Potential overflow, we know nothing */ 13494 __mark_reg64_unbounded(dst_reg); 13495 return; 13496 } 13497 dst_reg->umin_value *= umin_val; 13498 dst_reg->umax_value *= umax_val; 13499 if (dst_reg->umax_value > S64_MAX) { 13500 /* Overflow possible, we know nothing */ 13501 dst_reg->smin_value = S64_MIN; 13502 dst_reg->smax_value = S64_MAX; 13503 } else { 13504 dst_reg->smin_value = dst_reg->umin_value; 13505 dst_reg->smax_value = dst_reg->umax_value; 13506 } 13507 } 13508 13509 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 13510 struct bpf_reg_state *src_reg) 13511 { 13512 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13513 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13514 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13515 u32 umax_val = src_reg->u32_max_value; 13516 13517 if (src_known && dst_known) { 13518 __mark_reg32_known(dst_reg, var32_off.value); 13519 return; 13520 } 13521 13522 /* We get our minimum from the var_off, since that's inherently 13523 * bitwise. Our maximum is the minimum of the operands' maxima. 13524 */ 13525 dst_reg->u32_min_value = var32_off.value; 13526 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 13527 13528 /* Safe to set s32 bounds by casting u32 result into s32 when u32 13529 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 13530 */ 13531 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 13532 dst_reg->s32_min_value = dst_reg->u32_min_value; 13533 dst_reg->s32_max_value = dst_reg->u32_max_value; 13534 } else { 13535 dst_reg->s32_min_value = S32_MIN; 13536 dst_reg->s32_max_value = S32_MAX; 13537 } 13538 } 13539 13540 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 13541 struct bpf_reg_state *src_reg) 13542 { 13543 bool src_known = tnum_is_const(src_reg->var_off); 13544 bool dst_known = tnum_is_const(dst_reg->var_off); 13545 u64 umax_val = src_reg->umax_value; 13546 13547 if (src_known && dst_known) { 13548 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13549 return; 13550 } 13551 13552 /* We get our minimum from the var_off, since that's inherently 13553 * bitwise. Our maximum is the minimum of the operands' maxima. 13554 */ 13555 dst_reg->umin_value = dst_reg->var_off.value; 13556 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 13557 13558 /* Safe to set s64 bounds by casting u64 result into s64 when u64 13559 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 13560 */ 13561 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 13562 dst_reg->smin_value = dst_reg->umin_value; 13563 dst_reg->smax_value = dst_reg->umax_value; 13564 } else { 13565 dst_reg->smin_value = S64_MIN; 13566 dst_reg->smax_value = S64_MAX; 13567 } 13568 /* We may learn something more from the var_off */ 13569 __update_reg_bounds(dst_reg); 13570 } 13571 13572 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 13573 struct bpf_reg_state *src_reg) 13574 { 13575 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13576 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13577 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13578 u32 umin_val = src_reg->u32_min_value; 13579 13580 if (src_known && dst_known) { 13581 __mark_reg32_known(dst_reg, var32_off.value); 13582 return; 13583 } 13584 13585 /* We get our maximum from the var_off, and our minimum is the 13586 * maximum of the operands' minima 13587 */ 13588 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 13589 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 13590 13591 /* Safe to set s32 bounds by casting u32 result into s32 when u32 13592 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 13593 */ 13594 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 13595 dst_reg->s32_min_value = dst_reg->u32_min_value; 13596 dst_reg->s32_max_value = dst_reg->u32_max_value; 13597 } else { 13598 dst_reg->s32_min_value = S32_MIN; 13599 dst_reg->s32_max_value = S32_MAX; 13600 } 13601 } 13602 13603 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 13604 struct bpf_reg_state *src_reg) 13605 { 13606 bool src_known = tnum_is_const(src_reg->var_off); 13607 bool dst_known = tnum_is_const(dst_reg->var_off); 13608 u64 umin_val = src_reg->umin_value; 13609 13610 if (src_known && dst_known) { 13611 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13612 return; 13613 } 13614 13615 /* We get our maximum from the var_off, and our minimum is the 13616 * maximum of the operands' minima 13617 */ 13618 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 13619 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 13620 13621 /* Safe to set s64 bounds by casting u64 result into s64 when u64 13622 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 13623 */ 13624 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 13625 dst_reg->smin_value = dst_reg->umin_value; 13626 dst_reg->smax_value = dst_reg->umax_value; 13627 } else { 13628 dst_reg->smin_value = S64_MIN; 13629 dst_reg->smax_value = S64_MAX; 13630 } 13631 /* We may learn something more from the var_off */ 13632 __update_reg_bounds(dst_reg); 13633 } 13634 13635 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 13636 struct bpf_reg_state *src_reg) 13637 { 13638 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13639 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13640 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13641 13642 if (src_known && dst_known) { 13643 __mark_reg32_known(dst_reg, var32_off.value); 13644 return; 13645 } 13646 13647 /* We get both minimum and maximum from the var32_off. */ 13648 dst_reg->u32_min_value = var32_off.value; 13649 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 13650 13651 /* Safe to set s32 bounds by casting u32 result into s32 when u32 13652 * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. 13653 */ 13654 if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { 13655 dst_reg->s32_min_value = dst_reg->u32_min_value; 13656 dst_reg->s32_max_value = dst_reg->u32_max_value; 13657 } else { 13658 dst_reg->s32_min_value = S32_MIN; 13659 dst_reg->s32_max_value = S32_MAX; 13660 } 13661 } 13662 13663 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 13664 struct bpf_reg_state *src_reg) 13665 { 13666 bool src_known = tnum_is_const(src_reg->var_off); 13667 bool dst_known = tnum_is_const(dst_reg->var_off); 13668 13669 if (src_known && dst_known) { 13670 /* dst_reg->var_off.value has been updated earlier */ 13671 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13672 return; 13673 } 13674 13675 /* We get both minimum and maximum from the var_off. */ 13676 dst_reg->umin_value = dst_reg->var_off.value; 13677 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 13678 13679 /* Safe to set s64 bounds by casting u64 result into s64 when u64 13680 * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. 13681 */ 13682 if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { 13683 dst_reg->smin_value = dst_reg->umin_value; 13684 dst_reg->smax_value = dst_reg->umax_value; 13685 } else { 13686 dst_reg->smin_value = S64_MIN; 13687 dst_reg->smax_value = S64_MAX; 13688 } 13689 13690 __update_reg_bounds(dst_reg); 13691 } 13692 13693 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13694 u64 umin_val, u64 umax_val) 13695 { 13696 /* We lose all sign bit information (except what we can pick 13697 * up from var_off) 13698 */ 13699 dst_reg->s32_min_value = S32_MIN; 13700 dst_reg->s32_max_value = S32_MAX; 13701 /* If we might shift our top bit out, then we know nothing */ 13702 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 13703 dst_reg->u32_min_value = 0; 13704 dst_reg->u32_max_value = U32_MAX; 13705 } else { 13706 dst_reg->u32_min_value <<= umin_val; 13707 dst_reg->u32_max_value <<= umax_val; 13708 } 13709 } 13710 13711 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13712 struct bpf_reg_state *src_reg) 13713 { 13714 u32 umax_val = src_reg->u32_max_value; 13715 u32 umin_val = src_reg->u32_min_value; 13716 /* u32 alu operation will zext upper bits */ 13717 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13718 13719 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13720 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 13721 /* Not required but being careful mark reg64 bounds as unknown so 13722 * that we are forced to pick them up from tnum and zext later and 13723 * if some path skips this step we are still safe. 13724 */ 13725 __mark_reg64_unbounded(dst_reg); 13726 __update_reg32_bounds(dst_reg); 13727 } 13728 13729 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 13730 u64 umin_val, u64 umax_val) 13731 { 13732 /* Special case <<32 because it is a common compiler pattern to sign 13733 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 13734 * positive we know this shift will also be positive so we can track 13735 * bounds correctly. Otherwise we lose all sign bit information except 13736 * what we can pick up from var_off. Perhaps we can generalize this 13737 * later to shifts of any length. 13738 */ 13739 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 13740 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 13741 else 13742 dst_reg->smax_value = S64_MAX; 13743 13744 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 13745 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 13746 else 13747 dst_reg->smin_value = S64_MIN; 13748 13749 /* If we might shift our top bit out, then we know nothing */ 13750 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 13751 dst_reg->umin_value = 0; 13752 dst_reg->umax_value = U64_MAX; 13753 } else { 13754 dst_reg->umin_value <<= umin_val; 13755 dst_reg->umax_value <<= umax_val; 13756 } 13757 } 13758 13759 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 13760 struct bpf_reg_state *src_reg) 13761 { 13762 u64 umax_val = src_reg->umax_value; 13763 u64 umin_val = src_reg->umin_value; 13764 13765 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 13766 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 13767 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13768 13769 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 13770 /* We may learn something more from the var_off */ 13771 __update_reg_bounds(dst_reg); 13772 } 13773 13774 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 13775 struct bpf_reg_state *src_reg) 13776 { 13777 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13778 u32 umax_val = src_reg->u32_max_value; 13779 u32 umin_val = src_reg->u32_min_value; 13780 13781 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13782 * be negative, then either: 13783 * 1) src_reg might be zero, so the sign bit of the result is 13784 * unknown, so we lose our signed bounds 13785 * 2) it's known negative, thus the unsigned bounds capture the 13786 * signed bounds 13787 * 3) the signed bounds cross zero, so they tell us nothing 13788 * about the result 13789 * If the value in dst_reg is known nonnegative, then again the 13790 * unsigned bounds capture the signed bounds. 13791 * Thus, in all cases it suffices to blow away our signed bounds 13792 * and rely on inferring new ones from the unsigned bounds and 13793 * var_off of the result. 13794 */ 13795 dst_reg->s32_min_value = S32_MIN; 13796 dst_reg->s32_max_value = S32_MAX; 13797 13798 dst_reg->var_off = tnum_rshift(subreg, umin_val); 13799 dst_reg->u32_min_value >>= umax_val; 13800 dst_reg->u32_max_value >>= umin_val; 13801 13802 __mark_reg64_unbounded(dst_reg); 13803 __update_reg32_bounds(dst_reg); 13804 } 13805 13806 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 13807 struct bpf_reg_state *src_reg) 13808 { 13809 u64 umax_val = src_reg->umax_value; 13810 u64 umin_val = src_reg->umin_value; 13811 13812 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13813 * be negative, then either: 13814 * 1) src_reg might be zero, so the sign bit of the result is 13815 * unknown, so we lose our signed bounds 13816 * 2) it's known negative, thus the unsigned bounds capture the 13817 * signed bounds 13818 * 3) the signed bounds cross zero, so they tell us nothing 13819 * about the result 13820 * If the value in dst_reg is known nonnegative, then again the 13821 * unsigned bounds capture the signed bounds. 13822 * Thus, in all cases it suffices to blow away our signed bounds 13823 * and rely on inferring new ones from the unsigned bounds and 13824 * var_off of the result. 13825 */ 13826 dst_reg->smin_value = S64_MIN; 13827 dst_reg->smax_value = S64_MAX; 13828 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 13829 dst_reg->umin_value >>= umax_val; 13830 dst_reg->umax_value >>= umin_val; 13831 13832 /* Its not easy to operate on alu32 bounds here because it depends 13833 * on bits being shifted in. Take easy way out and mark unbounded 13834 * so we can recalculate later from tnum. 13835 */ 13836 __mark_reg32_unbounded(dst_reg); 13837 __update_reg_bounds(dst_reg); 13838 } 13839 13840 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 13841 struct bpf_reg_state *src_reg) 13842 { 13843 u64 umin_val = src_reg->u32_min_value; 13844 13845 /* Upon reaching here, src_known is true and 13846 * umax_val is equal to umin_val. 13847 */ 13848 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 13849 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 13850 13851 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 13852 13853 /* blow away the dst_reg umin_value/umax_value and rely on 13854 * dst_reg var_off to refine the result. 13855 */ 13856 dst_reg->u32_min_value = 0; 13857 dst_reg->u32_max_value = U32_MAX; 13858 13859 __mark_reg64_unbounded(dst_reg); 13860 __update_reg32_bounds(dst_reg); 13861 } 13862 13863 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 13864 struct bpf_reg_state *src_reg) 13865 { 13866 u64 umin_val = src_reg->umin_value; 13867 13868 /* Upon reaching here, src_known is true and umax_val is equal 13869 * to umin_val. 13870 */ 13871 dst_reg->smin_value >>= umin_val; 13872 dst_reg->smax_value >>= umin_val; 13873 13874 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 13875 13876 /* blow away the dst_reg umin_value/umax_value and rely on 13877 * dst_reg var_off to refine the result. 13878 */ 13879 dst_reg->umin_value = 0; 13880 dst_reg->umax_value = U64_MAX; 13881 13882 /* Its not easy to operate on alu32 bounds here because it depends 13883 * on bits being shifted in from upper 32-bits. Take easy way out 13884 * and mark unbounded so we can recalculate later from tnum. 13885 */ 13886 __mark_reg32_unbounded(dst_reg); 13887 __update_reg_bounds(dst_reg); 13888 } 13889 13890 static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn, 13891 const struct bpf_reg_state *src_reg) 13892 { 13893 bool src_is_const = false; 13894 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 13895 13896 if (insn_bitness == 32) { 13897 if (tnum_subreg_is_const(src_reg->var_off) 13898 && src_reg->s32_min_value == src_reg->s32_max_value 13899 && src_reg->u32_min_value == src_reg->u32_max_value) 13900 src_is_const = true; 13901 } else { 13902 if (tnum_is_const(src_reg->var_off) 13903 && src_reg->smin_value == src_reg->smax_value 13904 && src_reg->umin_value == src_reg->umax_value) 13905 src_is_const = true; 13906 } 13907 13908 switch (BPF_OP(insn->code)) { 13909 case BPF_ADD: 13910 case BPF_SUB: 13911 case BPF_AND: 13912 case BPF_XOR: 13913 case BPF_OR: 13914 case BPF_MUL: 13915 return true; 13916 13917 /* Shift operators range is only computable if shift dimension operand 13918 * is a constant. Shifts greater than 31 or 63 are undefined. This 13919 * includes shifts by a negative number. 13920 */ 13921 case BPF_LSH: 13922 case BPF_RSH: 13923 case BPF_ARSH: 13924 return (src_is_const && src_reg->umax_value < insn_bitness); 13925 default: 13926 return false; 13927 } 13928 } 13929 13930 /* WARNING: This function does calculations on 64-bit values, but the actual 13931 * execution may occur on 32-bit values. Therefore, things like bitshifts 13932 * need extra checks in the 32-bit case. 13933 */ 13934 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 13935 struct bpf_insn *insn, 13936 struct bpf_reg_state *dst_reg, 13937 struct bpf_reg_state src_reg) 13938 { 13939 u8 opcode = BPF_OP(insn->code); 13940 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 13941 int ret; 13942 13943 if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) { 13944 __mark_reg_unknown(env, dst_reg); 13945 return 0; 13946 } 13947 13948 if (sanitize_needed(opcode)) { 13949 ret = sanitize_val_alu(env, insn); 13950 if (ret < 0) 13951 return sanitize_err(env, insn, ret, NULL, NULL); 13952 } 13953 13954 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 13955 * There are two classes of instructions: The first class we track both 13956 * alu32 and alu64 sign/unsigned bounds independently this provides the 13957 * greatest amount of precision when alu operations are mixed with jmp32 13958 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 13959 * and BPF_OR. This is possible because these ops have fairly easy to 13960 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 13961 * See alu32 verifier tests for examples. The second class of 13962 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 13963 * with regards to tracking sign/unsigned bounds because the bits may 13964 * cross subreg boundaries in the alu64 case. When this happens we mark 13965 * the reg unbounded in the subreg bound space and use the resulting 13966 * tnum to calculate an approximation of the sign/unsigned bounds. 13967 */ 13968 switch (opcode) { 13969 case BPF_ADD: 13970 scalar32_min_max_add(dst_reg, &src_reg); 13971 scalar_min_max_add(dst_reg, &src_reg); 13972 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 13973 break; 13974 case BPF_SUB: 13975 scalar32_min_max_sub(dst_reg, &src_reg); 13976 scalar_min_max_sub(dst_reg, &src_reg); 13977 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 13978 break; 13979 case BPF_MUL: 13980 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 13981 scalar32_min_max_mul(dst_reg, &src_reg); 13982 scalar_min_max_mul(dst_reg, &src_reg); 13983 break; 13984 case BPF_AND: 13985 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 13986 scalar32_min_max_and(dst_reg, &src_reg); 13987 scalar_min_max_and(dst_reg, &src_reg); 13988 break; 13989 case BPF_OR: 13990 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 13991 scalar32_min_max_or(dst_reg, &src_reg); 13992 scalar_min_max_or(dst_reg, &src_reg); 13993 break; 13994 case BPF_XOR: 13995 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 13996 scalar32_min_max_xor(dst_reg, &src_reg); 13997 scalar_min_max_xor(dst_reg, &src_reg); 13998 break; 13999 case BPF_LSH: 14000 if (alu32) 14001 scalar32_min_max_lsh(dst_reg, &src_reg); 14002 else 14003 scalar_min_max_lsh(dst_reg, &src_reg); 14004 break; 14005 case BPF_RSH: 14006 if (alu32) 14007 scalar32_min_max_rsh(dst_reg, &src_reg); 14008 else 14009 scalar_min_max_rsh(dst_reg, &src_reg); 14010 break; 14011 case BPF_ARSH: 14012 if (alu32) 14013 scalar32_min_max_arsh(dst_reg, &src_reg); 14014 else 14015 scalar_min_max_arsh(dst_reg, &src_reg); 14016 break; 14017 default: 14018 break; 14019 } 14020 14021 /* ALU32 ops are zero extended into 64bit register */ 14022 if (alu32) 14023 zext_32_to_64(dst_reg); 14024 reg_bounds_sync(dst_reg); 14025 return 0; 14026 } 14027 14028 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 14029 * and var_off. 14030 */ 14031 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 14032 struct bpf_insn *insn) 14033 { 14034 struct bpf_verifier_state *vstate = env->cur_state; 14035 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 14036 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 14037 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 14038 u8 opcode = BPF_OP(insn->code); 14039 int err; 14040 14041 dst_reg = ®s[insn->dst_reg]; 14042 src_reg = NULL; 14043 14044 if (dst_reg->type == PTR_TO_ARENA) { 14045 struct bpf_insn_aux_data *aux = cur_aux(env); 14046 14047 if (BPF_CLASS(insn->code) == BPF_ALU64) 14048 /* 14049 * 32-bit operations zero upper bits automatically. 14050 * 64-bit operations need to be converted to 32. 14051 */ 14052 aux->needs_zext = true; 14053 14054 /* Any arithmetic operations are allowed on arena pointers */ 14055 return 0; 14056 } 14057 14058 if (dst_reg->type != SCALAR_VALUE) 14059 ptr_reg = dst_reg; 14060 else 14061 /* Make sure ID is cleared otherwise dst_reg min/max could be 14062 * incorrectly propagated into other registers by find_equal_scalars() 14063 */ 14064 dst_reg->id = 0; 14065 if (BPF_SRC(insn->code) == BPF_X) { 14066 src_reg = ®s[insn->src_reg]; 14067 if (src_reg->type != SCALAR_VALUE) { 14068 if (dst_reg->type != SCALAR_VALUE) { 14069 /* Combining two pointers by any ALU op yields 14070 * an arbitrary scalar. Disallow all math except 14071 * pointer subtraction 14072 */ 14073 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 14074 mark_reg_unknown(env, regs, insn->dst_reg); 14075 return 0; 14076 } 14077 verbose(env, "R%d pointer %s pointer prohibited\n", 14078 insn->dst_reg, 14079 bpf_alu_string[opcode >> 4]); 14080 return -EACCES; 14081 } else { 14082 /* scalar += pointer 14083 * This is legal, but we have to reverse our 14084 * src/dest handling in computing the range 14085 */ 14086 err = mark_chain_precision(env, insn->dst_reg); 14087 if (err) 14088 return err; 14089 return adjust_ptr_min_max_vals(env, insn, 14090 src_reg, dst_reg); 14091 } 14092 } else if (ptr_reg) { 14093 /* pointer += scalar */ 14094 err = mark_chain_precision(env, insn->src_reg); 14095 if (err) 14096 return err; 14097 return adjust_ptr_min_max_vals(env, insn, 14098 dst_reg, src_reg); 14099 } else if (dst_reg->precise) { 14100 /* if dst_reg is precise, src_reg should be precise as well */ 14101 err = mark_chain_precision(env, insn->src_reg); 14102 if (err) 14103 return err; 14104 } 14105 } else { 14106 /* Pretend the src is a reg with a known value, since we only 14107 * need to be able to read from this state. 14108 */ 14109 off_reg.type = SCALAR_VALUE; 14110 __mark_reg_known(&off_reg, insn->imm); 14111 src_reg = &off_reg; 14112 if (ptr_reg) /* pointer += K */ 14113 return adjust_ptr_min_max_vals(env, insn, 14114 ptr_reg, src_reg); 14115 } 14116 14117 /* Got here implies adding two SCALAR_VALUEs */ 14118 if (WARN_ON_ONCE(ptr_reg)) { 14119 print_verifier_state(env, state, true); 14120 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 14121 return -EINVAL; 14122 } 14123 if (WARN_ON(!src_reg)) { 14124 print_verifier_state(env, state, true); 14125 verbose(env, "verifier internal error: no src_reg\n"); 14126 return -EINVAL; 14127 } 14128 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 14129 } 14130 14131 /* check validity of 32-bit and 64-bit arithmetic operations */ 14132 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 14133 { 14134 struct bpf_reg_state *regs = cur_regs(env); 14135 u8 opcode = BPF_OP(insn->code); 14136 int err; 14137 14138 if (opcode == BPF_END || opcode == BPF_NEG) { 14139 if (opcode == BPF_NEG) { 14140 if (BPF_SRC(insn->code) != BPF_K || 14141 insn->src_reg != BPF_REG_0 || 14142 insn->off != 0 || insn->imm != 0) { 14143 verbose(env, "BPF_NEG uses reserved fields\n"); 14144 return -EINVAL; 14145 } 14146 } else { 14147 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 14148 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 14149 (BPF_CLASS(insn->code) == BPF_ALU64 && 14150 BPF_SRC(insn->code) != BPF_TO_LE)) { 14151 verbose(env, "BPF_END uses reserved fields\n"); 14152 return -EINVAL; 14153 } 14154 } 14155 14156 /* check src operand */ 14157 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14158 if (err) 14159 return err; 14160 14161 if (is_pointer_value(env, insn->dst_reg)) { 14162 verbose(env, "R%d pointer arithmetic prohibited\n", 14163 insn->dst_reg); 14164 return -EACCES; 14165 } 14166 14167 /* check dest operand */ 14168 err = check_reg_arg(env, insn->dst_reg, DST_OP); 14169 if (err) 14170 return err; 14171 14172 } else if (opcode == BPF_MOV) { 14173 14174 if (BPF_SRC(insn->code) == BPF_X) { 14175 if (BPF_CLASS(insn->code) == BPF_ALU) { 14176 if ((insn->off != 0 && insn->off != 8 && insn->off != 16) || 14177 insn->imm) { 14178 verbose(env, "BPF_MOV uses reserved fields\n"); 14179 return -EINVAL; 14180 } 14181 } else if (insn->off == BPF_ADDR_SPACE_CAST) { 14182 if (insn->imm != 1 && insn->imm != 1u << 16) { 14183 verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n"); 14184 return -EINVAL; 14185 } 14186 if (!env->prog->aux->arena) { 14187 verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n"); 14188 return -EINVAL; 14189 } 14190 } else { 14191 if ((insn->off != 0 && insn->off != 8 && insn->off != 16 && 14192 insn->off != 32) || insn->imm) { 14193 verbose(env, "BPF_MOV uses reserved fields\n"); 14194 return -EINVAL; 14195 } 14196 } 14197 14198 /* check src operand */ 14199 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14200 if (err) 14201 return err; 14202 } else { 14203 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 14204 verbose(env, "BPF_MOV uses reserved fields\n"); 14205 return -EINVAL; 14206 } 14207 } 14208 14209 /* check dest operand, mark as required later */ 14210 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 14211 if (err) 14212 return err; 14213 14214 if (BPF_SRC(insn->code) == BPF_X) { 14215 struct bpf_reg_state *src_reg = regs + insn->src_reg; 14216 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 14217 14218 if (BPF_CLASS(insn->code) == BPF_ALU64) { 14219 if (insn->imm) { 14220 /* off == BPF_ADDR_SPACE_CAST */ 14221 mark_reg_unknown(env, regs, insn->dst_reg); 14222 if (insn->imm == 1) { /* cast from as(1) to as(0) */ 14223 dst_reg->type = PTR_TO_ARENA; 14224 /* PTR_TO_ARENA is 32-bit */ 14225 dst_reg->subreg_def = env->insn_idx + 1; 14226 } 14227 } else if (insn->off == 0) { 14228 /* case: R1 = R2 14229 * copy register state to dest reg 14230 */ 14231 assign_scalar_id_before_mov(env, src_reg); 14232 copy_register_state(dst_reg, src_reg); 14233 dst_reg->live |= REG_LIVE_WRITTEN; 14234 dst_reg->subreg_def = DEF_NOT_SUBREG; 14235 } else { 14236 /* case: R1 = (s8, s16 s32)R2 */ 14237 if (is_pointer_value(env, insn->src_reg)) { 14238 verbose(env, 14239 "R%d sign-extension part of pointer\n", 14240 insn->src_reg); 14241 return -EACCES; 14242 } else if (src_reg->type == SCALAR_VALUE) { 14243 bool no_sext; 14244 14245 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 14246 if (no_sext) 14247 assign_scalar_id_before_mov(env, src_reg); 14248 copy_register_state(dst_reg, src_reg); 14249 if (!no_sext) 14250 dst_reg->id = 0; 14251 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 14252 dst_reg->live |= REG_LIVE_WRITTEN; 14253 dst_reg->subreg_def = DEF_NOT_SUBREG; 14254 } else { 14255 mark_reg_unknown(env, regs, insn->dst_reg); 14256 } 14257 } 14258 } else { 14259 /* R1 = (u32) R2 */ 14260 if (is_pointer_value(env, insn->src_reg)) { 14261 verbose(env, 14262 "R%d partial copy of pointer\n", 14263 insn->src_reg); 14264 return -EACCES; 14265 } else if (src_reg->type == SCALAR_VALUE) { 14266 if (insn->off == 0) { 14267 bool is_src_reg_u32 = get_reg_width(src_reg) <= 32; 14268 14269 if (is_src_reg_u32) 14270 assign_scalar_id_before_mov(env, src_reg); 14271 copy_register_state(dst_reg, src_reg); 14272 /* Make sure ID is cleared if src_reg is not in u32 14273 * range otherwise dst_reg min/max could be incorrectly 14274 * propagated into src_reg by find_equal_scalars() 14275 */ 14276 if (!is_src_reg_u32) 14277 dst_reg->id = 0; 14278 dst_reg->live |= REG_LIVE_WRITTEN; 14279 dst_reg->subreg_def = env->insn_idx + 1; 14280 } else { 14281 /* case: W1 = (s8, s16)W2 */ 14282 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 14283 14284 if (no_sext) 14285 assign_scalar_id_before_mov(env, src_reg); 14286 copy_register_state(dst_reg, src_reg); 14287 if (!no_sext) 14288 dst_reg->id = 0; 14289 dst_reg->live |= REG_LIVE_WRITTEN; 14290 dst_reg->subreg_def = env->insn_idx + 1; 14291 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 14292 } 14293 } else { 14294 mark_reg_unknown(env, regs, 14295 insn->dst_reg); 14296 } 14297 zext_32_to_64(dst_reg); 14298 reg_bounds_sync(dst_reg); 14299 } 14300 } else { 14301 /* case: R = imm 14302 * remember the value we stored into this reg 14303 */ 14304 /* clear any state __mark_reg_known doesn't set */ 14305 mark_reg_unknown(env, regs, insn->dst_reg); 14306 regs[insn->dst_reg].type = SCALAR_VALUE; 14307 if (BPF_CLASS(insn->code) == BPF_ALU64) { 14308 __mark_reg_known(regs + insn->dst_reg, 14309 insn->imm); 14310 } else { 14311 __mark_reg_known(regs + insn->dst_reg, 14312 (u32)insn->imm); 14313 } 14314 } 14315 14316 } else if (opcode > BPF_END) { 14317 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 14318 return -EINVAL; 14319 14320 } else { /* all other ALU ops: and, sub, xor, add, ... */ 14321 14322 if (BPF_SRC(insn->code) == BPF_X) { 14323 if (insn->imm != 0 || insn->off > 1 || 14324 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 14325 verbose(env, "BPF_ALU uses reserved fields\n"); 14326 return -EINVAL; 14327 } 14328 /* check src1 operand */ 14329 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14330 if (err) 14331 return err; 14332 } else { 14333 if (insn->src_reg != BPF_REG_0 || insn->off > 1 || 14334 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 14335 verbose(env, "BPF_ALU uses reserved fields\n"); 14336 return -EINVAL; 14337 } 14338 } 14339 14340 /* check src2 operand */ 14341 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14342 if (err) 14343 return err; 14344 14345 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 14346 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 14347 verbose(env, "div by zero\n"); 14348 return -EINVAL; 14349 } 14350 14351 if ((opcode == BPF_LSH || opcode == BPF_RSH || 14352 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 14353 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 14354 14355 if (insn->imm < 0 || insn->imm >= size) { 14356 verbose(env, "invalid shift %d\n", insn->imm); 14357 return -EINVAL; 14358 } 14359 } 14360 14361 /* check dest operand */ 14362 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 14363 err = err ?: adjust_reg_min_max_vals(env, insn); 14364 if (err) 14365 return err; 14366 } 14367 14368 return reg_bounds_sanity_check(env, ®s[insn->dst_reg], "alu"); 14369 } 14370 14371 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 14372 struct bpf_reg_state *dst_reg, 14373 enum bpf_reg_type type, 14374 bool range_right_open) 14375 { 14376 struct bpf_func_state *state; 14377 struct bpf_reg_state *reg; 14378 int new_range; 14379 14380 if (dst_reg->off < 0 || 14381 (dst_reg->off == 0 && range_right_open)) 14382 /* This doesn't give us any range */ 14383 return; 14384 14385 if (dst_reg->umax_value > MAX_PACKET_OFF || 14386 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 14387 /* Risk of overflow. For instance, ptr + (1<<63) may be less 14388 * than pkt_end, but that's because it's also less than pkt. 14389 */ 14390 return; 14391 14392 new_range = dst_reg->off; 14393 if (range_right_open) 14394 new_range++; 14395 14396 /* Examples for register markings: 14397 * 14398 * pkt_data in dst register: 14399 * 14400 * r2 = r3; 14401 * r2 += 8; 14402 * if (r2 > pkt_end) goto <handle exception> 14403 * <access okay> 14404 * 14405 * r2 = r3; 14406 * r2 += 8; 14407 * if (r2 < pkt_end) goto <access okay> 14408 * <handle exception> 14409 * 14410 * Where: 14411 * r2 == dst_reg, pkt_end == src_reg 14412 * r2=pkt(id=n,off=8,r=0) 14413 * r3=pkt(id=n,off=0,r=0) 14414 * 14415 * pkt_data in src register: 14416 * 14417 * r2 = r3; 14418 * r2 += 8; 14419 * if (pkt_end >= r2) goto <access okay> 14420 * <handle exception> 14421 * 14422 * r2 = r3; 14423 * r2 += 8; 14424 * if (pkt_end <= r2) goto <handle exception> 14425 * <access okay> 14426 * 14427 * Where: 14428 * pkt_end == dst_reg, r2 == src_reg 14429 * r2=pkt(id=n,off=8,r=0) 14430 * r3=pkt(id=n,off=0,r=0) 14431 * 14432 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 14433 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 14434 * and [r3, r3 + 8-1) respectively is safe to access depending on 14435 * the check. 14436 */ 14437 14438 /* If our ids match, then we must have the same max_value. And we 14439 * don't care about the other reg's fixed offset, since if it's too big 14440 * the range won't allow anything. 14441 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 14442 */ 14443 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14444 if (reg->type == type && reg->id == dst_reg->id) 14445 /* keep the maximum range already checked */ 14446 reg->range = max(reg->range, new_range); 14447 })); 14448 } 14449 14450 /* 14451 * <reg1> <op> <reg2>, currently assuming reg2 is a constant 14452 */ 14453 static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 14454 u8 opcode, bool is_jmp32) 14455 { 14456 struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off; 14457 struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off; 14458 u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value; 14459 u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value; 14460 s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value; 14461 s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value; 14462 u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value; 14463 u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value; 14464 s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value; 14465 s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value; 14466 14467 switch (opcode) { 14468 case BPF_JEQ: 14469 /* constants, umin/umax and smin/smax checks would be 14470 * redundant in this case because they all should match 14471 */ 14472 if (tnum_is_const(t1) && tnum_is_const(t2)) 14473 return t1.value == t2.value; 14474 /* non-overlapping ranges */ 14475 if (umin1 > umax2 || umax1 < umin2) 14476 return 0; 14477 if (smin1 > smax2 || smax1 < smin2) 14478 return 0; 14479 if (!is_jmp32) { 14480 /* if 64-bit ranges are inconclusive, see if we can 14481 * utilize 32-bit subrange knowledge to eliminate 14482 * branches that can't be taken a priori 14483 */ 14484 if (reg1->u32_min_value > reg2->u32_max_value || 14485 reg1->u32_max_value < reg2->u32_min_value) 14486 return 0; 14487 if (reg1->s32_min_value > reg2->s32_max_value || 14488 reg1->s32_max_value < reg2->s32_min_value) 14489 return 0; 14490 } 14491 break; 14492 case BPF_JNE: 14493 /* constants, umin/umax and smin/smax checks would be 14494 * redundant in this case because they all should match 14495 */ 14496 if (tnum_is_const(t1) && tnum_is_const(t2)) 14497 return t1.value != t2.value; 14498 /* non-overlapping ranges */ 14499 if (umin1 > umax2 || umax1 < umin2) 14500 return 1; 14501 if (smin1 > smax2 || smax1 < smin2) 14502 return 1; 14503 if (!is_jmp32) { 14504 /* if 64-bit ranges are inconclusive, see if we can 14505 * utilize 32-bit subrange knowledge to eliminate 14506 * branches that can't be taken a priori 14507 */ 14508 if (reg1->u32_min_value > reg2->u32_max_value || 14509 reg1->u32_max_value < reg2->u32_min_value) 14510 return 1; 14511 if (reg1->s32_min_value > reg2->s32_max_value || 14512 reg1->s32_max_value < reg2->s32_min_value) 14513 return 1; 14514 } 14515 break; 14516 case BPF_JSET: 14517 if (!is_reg_const(reg2, is_jmp32)) { 14518 swap(reg1, reg2); 14519 swap(t1, t2); 14520 } 14521 if (!is_reg_const(reg2, is_jmp32)) 14522 return -1; 14523 if ((~t1.mask & t1.value) & t2.value) 14524 return 1; 14525 if (!((t1.mask | t1.value) & t2.value)) 14526 return 0; 14527 break; 14528 case BPF_JGT: 14529 if (umin1 > umax2) 14530 return 1; 14531 else if (umax1 <= umin2) 14532 return 0; 14533 break; 14534 case BPF_JSGT: 14535 if (smin1 > smax2) 14536 return 1; 14537 else if (smax1 <= smin2) 14538 return 0; 14539 break; 14540 case BPF_JLT: 14541 if (umax1 < umin2) 14542 return 1; 14543 else if (umin1 >= umax2) 14544 return 0; 14545 break; 14546 case BPF_JSLT: 14547 if (smax1 < smin2) 14548 return 1; 14549 else if (smin1 >= smax2) 14550 return 0; 14551 break; 14552 case BPF_JGE: 14553 if (umin1 >= umax2) 14554 return 1; 14555 else if (umax1 < umin2) 14556 return 0; 14557 break; 14558 case BPF_JSGE: 14559 if (smin1 >= smax2) 14560 return 1; 14561 else if (smax1 < smin2) 14562 return 0; 14563 break; 14564 case BPF_JLE: 14565 if (umax1 <= umin2) 14566 return 1; 14567 else if (umin1 > umax2) 14568 return 0; 14569 break; 14570 case BPF_JSLE: 14571 if (smax1 <= smin2) 14572 return 1; 14573 else if (smin1 > smax2) 14574 return 0; 14575 break; 14576 } 14577 14578 return -1; 14579 } 14580 14581 static int flip_opcode(u32 opcode) 14582 { 14583 /* How can we transform "a <op> b" into "b <op> a"? */ 14584 static const u8 opcode_flip[16] = { 14585 /* these stay the same */ 14586 [BPF_JEQ >> 4] = BPF_JEQ, 14587 [BPF_JNE >> 4] = BPF_JNE, 14588 [BPF_JSET >> 4] = BPF_JSET, 14589 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 14590 [BPF_JGE >> 4] = BPF_JLE, 14591 [BPF_JGT >> 4] = BPF_JLT, 14592 [BPF_JLE >> 4] = BPF_JGE, 14593 [BPF_JLT >> 4] = BPF_JGT, 14594 [BPF_JSGE >> 4] = BPF_JSLE, 14595 [BPF_JSGT >> 4] = BPF_JSLT, 14596 [BPF_JSLE >> 4] = BPF_JSGE, 14597 [BPF_JSLT >> 4] = BPF_JSGT 14598 }; 14599 return opcode_flip[opcode >> 4]; 14600 } 14601 14602 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 14603 struct bpf_reg_state *src_reg, 14604 u8 opcode) 14605 { 14606 struct bpf_reg_state *pkt; 14607 14608 if (src_reg->type == PTR_TO_PACKET_END) { 14609 pkt = dst_reg; 14610 } else if (dst_reg->type == PTR_TO_PACKET_END) { 14611 pkt = src_reg; 14612 opcode = flip_opcode(opcode); 14613 } else { 14614 return -1; 14615 } 14616 14617 if (pkt->range >= 0) 14618 return -1; 14619 14620 switch (opcode) { 14621 case BPF_JLE: 14622 /* pkt <= pkt_end */ 14623 fallthrough; 14624 case BPF_JGT: 14625 /* pkt > pkt_end */ 14626 if (pkt->range == BEYOND_PKT_END) 14627 /* pkt has at last one extra byte beyond pkt_end */ 14628 return opcode == BPF_JGT; 14629 break; 14630 case BPF_JLT: 14631 /* pkt < pkt_end */ 14632 fallthrough; 14633 case BPF_JGE: 14634 /* pkt >= pkt_end */ 14635 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 14636 return opcode == BPF_JGE; 14637 break; 14638 } 14639 return -1; 14640 } 14641 14642 /* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;" 14643 * and return: 14644 * 1 - branch will be taken and "goto target" will be executed 14645 * 0 - branch will not be taken and fall-through to next insn 14646 * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value 14647 * range [0,10] 14648 */ 14649 static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 14650 u8 opcode, bool is_jmp32) 14651 { 14652 if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32) 14653 return is_pkt_ptr_branch_taken(reg1, reg2, opcode); 14654 14655 if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) { 14656 u64 val; 14657 14658 /* arrange that reg2 is a scalar, and reg1 is a pointer */ 14659 if (!is_reg_const(reg2, is_jmp32)) { 14660 opcode = flip_opcode(opcode); 14661 swap(reg1, reg2); 14662 } 14663 /* and ensure that reg2 is a constant */ 14664 if (!is_reg_const(reg2, is_jmp32)) 14665 return -1; 14666 14667 if (!reg_not_null(reg1)) 14668 return -1; 14669 14670 /* If pointer is valid tests against zero will fail so we can 14671 * use this to direct branch taken. 14672 */ 14673 val = reg_const_value(reg2, is_jmp32); 14674 if (val != 0) 14675 return -1; 14676 14677 switch (opcode) { 14678 case BPF_JEQ: 14679 return 0; 14680 case BPF_JNE: 14681 return 1; 14682 default: 14683 return -1; 14684 } 14685 } 14686 14687 /* now deal with two scalars, but not necessarily constants */ 14688 return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32); 14689 } 14690 14691 /* Opcode that corresponds to a *false* branch condition. 14692 * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2 14693 */ 14694 static u8 rev_opcode(u8 opcode) 14695 { 14696 switch (opcode) { 14697 case BPF_JEQ: return BPF_JNE; 14698 case BPF_JNE: return BPF_JEQ; 14699 /* JSET doesn't have it's reverse opcode in BPF, so add 14700 * BPF_X flag to denote the reverse of that operation 14701 */ 14702 case BPF_JSET: return BPF_JSET | BPF_X; 14703 case BPF_JSET | BPF_X: return BPF_JSET; 14704 case BPF_JGE: return BPF_JLT; 14705 case BPF_JGT: return BPF_JLE; 14706 case BPF_JLE: return BPF_JGT; 14707 case BPF_JLT: return BPF_JGE; 14708 case BPF_JSGE: return BPF_JSLT; 14709 case BPF_JSGT: return BPF_JSLE; 14710 case BPF_JSLE: return BPF_JSGT; 14711 case BPF_JSLT: return BPF_JSGE; 14712 default: return 0; 14713 } 14714 } 14715 14716 /* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */ 14717 static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, 14718 u8 opcode, bool is_jmp32) 14719 { 14720 struct tnum t; 14721 u64 val; 14722 14723 /* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */ 14724 switch (opcode) { 14725 case BPF_JGE: 14726 case BPF_JGT: 14727 case BPF_JSGE: 14728 case BPF_JSGT: 14729 opcode = flip_opcode(opcode); 14730 swap(reg1, reg2); 14731 break; 14732 default: 14733 break; 14734 } 14735 14736 switch (opcode) { 14737 case BPF_JEQ: 14738 if (is_jmp32) { 14739 reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 14740 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 14741 reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 14742 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 14743 reg2->u32_min_value = reg1->u32_min_value; 14744 reg2->u32_max_value = reg1->u32_max_value; 14745 reg2->s32_min_value = reg1->s32_min_value; 14746 reg2->s32_max_value = reg1->s32_max_value; 14747 14748 t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off)); 14749 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 14750 reg2->var_off = tnum_with_subreg(reg2->var_off, t); 14751 } else { 14752 reg1->umin_value = max(reg1->umin_value, reg2->umin_value); 14753 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 14754 reg1->smin_value = max(reg1->smin_value, reg2->smin_value); 14755 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 14756 reg2->umin_value = reg1->umin_value; 14757 reg2->umax_value = reg1->umax_value; 14758 reg2->smin_value = reg1->smin_value; 14759 reg2->smax_value = reg1->smax_value; 14760 14761 reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off); 14762 reg2->var_off = reg1->var_off; 14763 } 14764 break; 14765 case BPF_JNE: 14766 if (!is_reg_const(reg2, is_jmp32)) 14767 swap(reg1, reg2); 14768 if (!is_reg_const(reg2, is_jmp32)) 14769 break; 14770 14771 /* try to recompute the bound of reg1 if reg2 is a const and 14772 * is exactly the edge of reg1. 14773 */ 14774 val = reg_const_value(reg2, is_jmp32); 14775 if (is_jmp32) { 14776 /* u32_min_value is not equal to 0xffffffff at this point, 14777 * because otherwise u32_max_value is 0xffffffff as well, 14778 * in such a case both reg1 and reg2 would be constants, 14779 * jump would be predicted and reg_set_min_max() won't 14780 * be called. 14781 * 14782 * Same reasoning works for all {u,s}{min,max}{32,64} cases 14783 * below. 14784 */ 14785 if (reg1->u32_min_value == (u32)val) 14786 reg1->u32_min_value++; 14787 if (reg1->u32_max_value == (u32)val) 14788 reg1->u32_max_value--; 14789 if (reg1->s32_min_value == (s32)val) 14790 reg1->s32_min_value++; 14791 if (reg1->s32_max_value == (s32)val) 14792 reg1->s32_max_value--; 14793 } else { 14794 if (reg1->umin_value == (u64)val) 14795 reg1->umin_value++; 14796 if (reg1->umax_value == (u64)val) 14797 reg1->umax_value--; 14798 if (reg1->smin_value == (s64)val) 14799 reg1->smin_value++; 14800 if (reg1->smax_value == (s64)val) 14801 reg1->smax_value--; 14802 } 14803 break; 14804 case BPF_JSET: 14805 if (!is_reg_const(reg2, is_jmp32)) 14806 swap(reg1, reg2); 14807 if (!is_reg_const(reg2, is_jmp32)) 14808 break; 14809 val = reg_const_value(reg2, is_jmp32); 14810 /* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X) 14811 * requires single bit to learn something useful. E.g., if we 14812 * know that `r1 & 0x3` is true, then which bits (0, 1, or both) 14813 * are actually set? We can learn something definite only if 14814 * it's a single-bit value to begin with. 14815 * 14816 * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have 14817 * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor 14818 * bit 1 is set, which we can readily use in adjustments. 14819 */ 14820 if (!is_power_of_2(val)) 14821 break; 14822 if (is_jmp32) { 14823 t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val)); 14824 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 14825 } else { 14826 reg1->var_off = tnum_or(reg1->var_off, tnum_const(val)); 14827 } 14828 break; 14829 case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */ 14830 if (!is_reg_const(reg2, is_jmp32)) 14831 swap(reg1, reg2); 14832 if (!is_reg_const(reg2, is_jmp32)) 14833 break; 14834 val = reg_const_value(reg2, is_jmp32); 14835 if (is_jmp32) { 14836 t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val)); 14837 reg1->var_off = tnum_with_subreg(reg1->var_off, t); 14838 } else { 14839 reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val)); 14840 } 14841 break; 14842 case BPF_JLE: 14843 if (is_jmp32) { 14844 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); 14845 reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); 14846 } else { 14847 reg1->umax_value = min(reg1->umax_value, reg2->umax_value); 14848 reg2->umin_value = max(reg1->umin_value, reg2->umin_value); 14849 } 14850 break; 14851 case BPF_JLT: 14852 if (is_jmp32) { 14853 reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1); 14854 reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value); 14855 } else { 14856 reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1); 14857 reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value); 14858 } 14859 break; 14860 case BPF_JSLE: 14861 if (is_jmp32) { 14862 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); 14863 reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); 14864 } else { 14865 reg1->smax_value = min(reg1->smax_value, reg2->smax_value); 14866 reg2->smin_value = max(reg1->smin_value, reg2->smin_value); 14867 } 14868 break; 14869 case BPF_JSLT: 14870 if (is_jmp32) { 14871 reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1); 14872 reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value); 14873 } else { 14874 reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1); 14875 reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value); 14876 } 14877 break; 14878 default: 14879 return; 14880 } 14881 } 14882 14883 /* Adjusts the register min/max values in the case that the dst_reg and 14884 * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K 14885 * check, in which case we have a fake SCALAR_VALUE representing insn->imm). 14886 * Technically we can do similar adjustments for pointers to the same object, 14887 * but we don't support that right now. 14888 */ 14889 static int reg_set_min_max(struct bpf_verifier_env *env, 14890 struct bpf_reg_state *true_reg1, 14891 struct bpf_reg_state *true_reg2, 14892 struct bpf_reg_state *false_reg1, 14893 struct bpf_reg_state *false_reg2, 14894 u8 opcode, bool is_jmp32) 14895 { 14896 int err; 14897 14898 /* If either register is a pointer, we can't learn anything about its 14899 * variable offset from the compare (unless they were a pointer into 14900 * the same object, but we don't bother with that). 14901 */ 14902 if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE) 14903 return 0; 14904 14905 /* fallthrough (FALSE) branch */ 14906 regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32); 14907 reg_bounds_sync(false_reg1); 14908 reg_bounds_sync(false_reg2); 14909 14910 /* jump (TRUE) branch */ 14911 regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32); 14912 reg_bounds_sync(true_reg1); 14913 reg_bounds_sync(true_reg2); 14914 14915 err = reg_bounds_sanity_check(env, true_reg1, "true_reg1"); 14916 err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2"); 14917 err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1"); 14918 err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2"); 14919 return err; 14920 } 14921 14922 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 14923 struct bpf_reg_state *reg, u32 id, 14924 bool is_null) 14925 { 14926 if (type_may_be_null(reg->type) && reg->id == id && 14927 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 14928 /* Old offset (both fixed and variable parts) should have been 14929 * known-zero, because we don't allow pointer arithmetic on 14930 * pointers that might be NULL. If we see this happening, don't 14931 * convert the register. 14932 * 14933 * But in some cases, some helpers that return local kptrs 14934 * advance offset for the returned pointer. In those cases, it 14935 * is fine to expect to see reg->off. 14936 */ 14937 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 14938 return; 14939 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 14940 WARN_ON_ONCE(reg->off)) 14941 return; 14942 14943 if (is_null) { 14944 reg->type = SCALAR_VALUE; 14945 /* We don't need id and ref_obj_id from this point 14946 * onwards anymore, thus we should better reset it, 14947 * so that state pruning has chances to take effect. 14948 */ 14949 reg->id = 0; 14950 reg->ref_obj_id = 0; 14951 14952 return; 14953 } 14954 14955 mark_ptr_not_null_reg(reg); 14956 14957 if (!reg_may_point_to_spin_lock(reg)) { 14958 /* For not-NULL ptr, reg->ref_obj_id will be reset 14959 * in release_reference(). 14960 * 14961 * reg->id is still used by spin_lock ptr. Other 14962 * than spin_lock ptr type, reg->id can be reset. 14963 */ 14964 reg->id = 0; 14965 } 14966 } 14967 } 14968 14969 /* The logic is similar to find_good_pkt_pointers(), both could eventually 14970 * be folded together at some point. 14971 */ 14972 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 14973 bool is_null) 14974 { 14975 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 14976 struct bpf_reg_state *regs = state->regs, *reg; 14977 u32 ref_obj_id = regs[regno].ref_obj_id; 14978 u32 id = regs[regno].id; 14979 14980 if (ref_obj_id && ref_obj_id == id && is_null) 14981 /* regs[regno] is in the " == NULL" branch. 14982 * No one could have freed the reference state before 14983 * doing the NULL check. 14984 */ 14985 WARN_ON_ONCE(release_reference_state(state, id)); 14986 14987 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14988 mark_ptr_or_null_reg(state, reg, id, is_null); 14989 })); 14990 } 14991 14992 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 14993 struct bpf_reg_state *dst_reg, 14994 struct bpf_reg_state *src_reg, 14995 struct bpf_verifier_state *this_branch, 14996 struct bpf_verifier_state *other_branch) 14997 { 14998 if (BPF_SRC(insn->code) != BPF_X) 14999 return false; 15000 15001 /* Pointers are always 64-bit. */ 15002 if (BPF_CLASS(insn->code) == BPF_JMP32) 15003 return false; 15004 15005 switch (BPF_OP(insn->code)) { 15006 case BPF_JGT: 15007 if ((dst_reg->type == PTR_TO_PACKET && 15008 src_reg->type == PTR_TO_PACKET_END) || 15009 (dst_reg->type == PTR_TO_PACKET_META && 15010 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15011 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 15012 find_good_pkt_pointers(this_branch, dst_reg, 15013 dst_reg->type, false); 15014 mark_pkt_end(other_branch, insn->dst_reg, true); 15015 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15016 src_reg->type == PTR_TO_PACKET) || 15017 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15018 src_reg->type == PTR_TO_PACKET_META)) { 15019 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 15020 find_good_pkt_pointers(other_branch, src_reg, 15021 src_reg->type, true); 15022 mark_pkt_end(this_branch, insn->src_reg, false); 15023 } else { 15024 return false; 15025 } 15026 break; 15027 case BPF_JLT: 15028 if ((dst_reg->type == PTR_TO_PACKET && 15029 src_reg->type == PTR_TO_PACKET_END) || 15030 (dst_reg->type == PTR_TO_PACKET_META && 15031 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15032 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 15033 find_good_pkt_pointers(other_branch, dst_reg, 15034 dst_reg->type, true); 15035 mark_pkt_end(this_branch, insn->dst_reg, false); 15036 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15037 src_reg->type == PTR_TO_PACKET) || 15038 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15039 src_reg->type == PTR_TO_PACKET_META)) { 15040 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 15041 find_good_pkt_pointers(this_branch, src_reg, 15042 src_reg->type, false); 15043 mark_pkt_end(other_branch, insn->src_reg, true); 15044 } else { 15045 return false; 15046 } 15047 break; 15048 case BPF_JGE: 15049 if ((dst_reg->type == PTR_TO_PACKET && 15050 src_reg->type == PTR_TO_PACKET_END) || 15051 (dst_reg->type == PTR_TO_PACKET_META && 15052 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15053 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 15054 find_good_pkt_pointers(this_branch, dst_reg, 15055 dst_reg->type, true); 15056 mark_pkt_end(other_branch, insn->dst_reg, false); 15057 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15058 src_reg->type == PTR_TO_PACKET) || 15059 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15060 src_reg->type == PTR_TO_PACKET_META)) { 15061 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 15062 find_good_pkt_pointers(other_branch, src_reg, 15063 src_reg->type, false); 15064 mark_pkt_end(this_branch, insn->src_reg, true); 15065 } else { 15066 return false; 15067 } 15068 break; 15069 case BPF_JLE: 15070 if ((dst_reg->type == PTR_TO_PACKET && 15071 src_reg->type == PTR_TO_PACKET_END) || 15072 (dst_reg->type == PTR_TO_PACKET_META && 15073 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 15074 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 15075 find_good_pkt_pointers(other_branch, dst_reg, 15076 dst_reg->type, false); 15077 mark_pkt_end(this_branch, insn->dst_reg, true); 15078 } else if ((dst_reg->type == PTR_TO_PACKET_END && 15079 src_reg->type == PTR_TO_PACKET) || 15080 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 15081 src_reg->type == PTR_TO_PACKET_META)) { 15082 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 15083 find_good_pkt_pointers(this_branch, src_reg, 15084 src_reg->type, true); 15085 mark_pkt_end(other_branch, insn->src_reg, false); 15086 } else { 15087 return false; 15088 } 15089 break; 15090 default: 15091 return false; 15092 } 15093 15094 return true; 15095 } 15096 15097 static void find_equal_scalars(struct bpf_verifier_state *vstate, 15098 struct bpf_reg_state *known_reg) 15099 { 15100 struct bpf_func_state *state; 15101 struct bpf_reg_state *reg; 15102 15103 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 15104 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 15105 copy_register_state(reg, known_reg); 15106 })); 15107 } 15108 15109 static int check_cond_jmp_op(struct bpf_verifier_env *env, 15110 struct bpf_insn *insn, int *insn_idx) 15111 { 15112 struct bpf_verifier_state *this_branch = env->cur_state; 15113 struct bpf_verifier_state *other_branch; 15114 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 15115 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 15116 struct bpf_reg_state *eq_branch_regs; 15117 u8 opcode = BPF_OP(insn->code); 15118 bool is_jmp32; 15119 int pred = -1; 15120 int err; 15121 15122 /* Only conditional jumps are expected to reach here. */ 15123 if (opcode == BPF_JA || opcode > BPF_JCOND) { 15124 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 15125 return -EINVAL; 15126 } 15127 15128 if (opcode == BPF_JCOND) { 15129 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 15130 int idx = *insn_idx; 15131 15132 if (insn->code != (BPF_JMP | BPF_JCOND) || 15133 insn->src_reg != BPF_MAY_GOTO || 15134 insn->dst_reg || insn->imm || insn->off == 0) { 15135 verbose(env, "invalid may_goto off %d imm %d\n", 15136 insn->off, insn->imm); 15137 return -EINVAL; 15138 } 15139 prev_st = find_prev_entry(env, cur_st->parent, idx); 15140 15141 /* branch out 'fallthrough' insn as a new state to explore */ 15142 queued_st = push_stack(env, idx + 1, idx, false); 15143 if (!queued_st) 15144 return -ENOMEM; 15145 15146 queued_st->may_goto_depth++; 15147 if (prev_st) 15148 widen_imprecise_scalars(env, prev_st, queued_st); 15149 *insn_idx += insn->off; 15150 return 0; 15151 } 15152 15153 /* check src2 operand */ 15154 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 15155 if (err) 15156 return err; 15157 15158 dst_reg = ®s[insn->dst_reg]; 15159 if (BPF_SRC(insn->code) == BPF_X) { 15160 if (insn->imm != 0) { 15161 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 15162 return -EINVAL; 15163 } 15164 15165 /* check src1 operand */ 15166 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15167 if (err) 15168 return err; 15169 15170 src_reg = ®s[insn->src_reg]; 15171 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 15172 is_pointer_value(env, insn->src_reg)) { 15173 verbose(env, "R%d pointer comparison prohibited\n", 15174 insn->src_reg); 15175 return -EACCES; 15176 } 15177 } else { 15178 if (insn->src_reg != BPF_REG_0) { 15179 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 15180 return -EINVAL; 15181 } 15182 src_reg = &env->fake_reg[0]; 15183 memset(src_reg, 0, sizeof(*src_reg)); 15184 src_reg->type = SCALAR_VALUE; 15185 __mark_reg_known(src_reg, insn->imm); 15186 } 15187 15188 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 15189 pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32); 15190 if (pred >= 0) { 15191 /* If we get here with a dst_reg pointer type it is because 15192 * above is_branch_taken() special cased the 0 comparison. 15193 */ 15194 if (!__is_pointer_value(false, dst_reg)) 15195 err = mark_chain_precision(env, insn->dst_reg); 15196 if (BPF_SRC(insn->code) == BPF_X && !err && 15197 !__is_pointer_value(false, src_reg)) 15198 err = mark_chain_precision(env, insn->src_reg); 15199 if (err) 15200 return err; 15201 } 15202 15203 if (pred == 1) { 15204 /* Only follow the goto, ignore fall-through. If needed, push 15205 * the fall-through branch for simulation under speculative 15206 * execution. 15207 */ 15208 if (!env->bypass_spec_v1 && 15209 !sanitize_speculative_path(env, insn, *insn_idx + 1, 15210 *insn_idx)) 15211 return -EFAULT; 15212 if (env->log.level & BPF_LOG_LEVEL) 15213 print_insn_state(env, this_branch->frame[this_branch->curframe]); 15214 *insn_idx += insn->off; 15215 return 0; 15216 } else if (pred == 0) { 15217 /* Only follow the fall-through branch, since that's where the 15218 * program will go. If needed, push the goto branch for 15219 * simulation under speculative execution. 15220 */ 15221 if (!env->bypass_spec_v1 && 15222 !sanitize_speculative_path(env, insn, 15223 *insn_idx + insn->off + 1, 15224 *insn_idx)) 15225 return -EFAULT; 15226 if (env->log.level & BPF_LOG_LEVEL) 15227 print_insn_state(env, this_branch->frame[this_branch->curframe]); 15228 return 0; 15229 } 15230 15231 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 15232 false); 15233 if (!other_branch) 15234 return -EFAULT; 15235 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 15236 15237 if (BPF_SRC(insn->code) == BPF_X) { 15238 err = reg_set_min_max(env, 15239 &other_branch_regs[insn->dst_reg], 15240 &other_branch_regs[insn->src_reg], 15241 dst_reg, src_reg, opcode, is_jmp32); 15242 } else /* BPF_SRC(insn->code) == BPF_K */ { 15243 /* reg_set_min_max() can mangle the fake_reg. Make a copy 15244 * so that these are two different memory locations. The 15245 * src_reg is not used beyond here in context of K. 15246 */ 15247 memcpy(&env->fake_reg[1], &env->fake_reg[0], 15248 sizeof(env->fake_reg[0])); 15249 err = reg_set_min_max(env, 15250 &other_branch_regs[insn->dst_reg], 15251 &env->fake_reg[0], 15252 dst_reg, &env->fake_reg[1], 15253 opcode, is_jmp32); 15254 } 15255 if (err) 15256 return err; 15257 15258 if (BPF_SRC(insn->code) == BPF_X && 15259 src_reg->type == SCALAR_VALUE && src_reg->id && 15260 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 15261 find_equal_scalars(this_branch, src_reg); 15262 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 15263 } 15264 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 15265 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 15266 find_equal_scalars(this_branch, dst_reg); 15267 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 15268 } 15269 15270 /* if one pointer register is compared to another pointer 15271 * register check if PTR_MAYBE_NULL could be lifted. 15272 * E.g. register A - maybe null 15273 * register B - not null 15274 * for JNE A, B, ... - A is not null in the false branch; 15275 * for JEQ A, B, ... - A is not null in the true branch. 15276 * 15277 * Since PTR_TO_BTF_ID points to a kernel struct that does 15278 * not need to be null checked by the BPF program, i.e., 15279 * could be null even without PTR_MAYBE_NULL marking, so 15280 * only propagate nullness when neither reg is that type. 15281 */ 15282 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 15283 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 15284 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 15285 base_type(src_reg->type) != PTR_TO_BTF_ID && 15286 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 15287 eq_branch_regs = NULL; 15288 switch (opcode) { 15289 case BPF_JEQ: 15290 eq_branch_regs = other_branch_regs; 15291 break; 15292 case BPF_JNE: 15293 eq_branch_regs = regs; 15294 break; 15295 default: 15296 /* do nothing */ 15297 break; 15298 } 15299 if (eq_branch_regs) { 15300 if (type_may_be_null(src_reg->type)) 15301 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 15302 else 15303 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 15304 } 15305 } 15306 15307 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 15308 * NOTE: these optimizations below are related with pointer comparison 15309 * which will never be JMP32. 15310 */ 15311 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 15312 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 15313 type_may_be_null(dst_reg->type)) { 15314 /* Mark all identical registers in each branch as either 15315 * safe or unknown depending R == 0 or R != 0 conditional. 15316 */ 15317 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 15318 opcode == BPF_JNE); 15319 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 15320 opcode == BPF_JEQ); 15321 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 15322 this_branch, other_branch) && 15323 is_pointer_value(env, insn->dst_reg)) { 15324 verbose(env, "R%d pointer comparison prohibited\n", 15325 insn->dst_reg); 15326 return -EACCES; 15327 } 15328 if (env->log.level & BPF_LOG_LEVEL) 15329 print_insn_state(env, this_branch->frame[this_branch->curframe]); 15330 return 0; 15331 } 15332 15333 /* verify BPF_LD_IMM64 instruction */ 15334 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 15335 { 15336 struct bpf_insn_aux_data *aux = cur_aux(env); 15337 struct bpf_reg_state *regs = cur_regs(env); 15338 struct bpf_reg_state *dst_reg; 15339 struct bpf_map *map; 15340 int err; 15341 15342 if (BPF_SIZE(insn->code) != BPF_DW) { 15343 verbose(env, "invalid BPF_LD_IMM insn\n"); 15344 return -EINVAL; 15345 } 15346 if (insn->off != 0) { 15347 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 15348 return -EINVAL; 15349 } 15350 15351 err = check_reg_arg(env, insn->dst_reg, DST_OP); 15352 if (err) 15353 return err; 15354 15355 dst_reg = ®s[insn->dst_reg]; 15356 if (insn->src_reg == 0) { 15357 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 15358 15359 dst_reg->type = SCALAR_VALUE; 15360 __mark_reg_known(®s[insn->dst_reg], imm); 15361 return 0; 15362 } 15363 15364 /* All special src_reg cases are listed below. From this point onwards 15365 * we either succeed and assign a corresponding dst_reg->type after 15366 * zeroing the offset, or fail and reject the program. 15367 */ 15368 mark_reg_known_zero(env, regs, insn->dst_reg); 15369 15370 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 15371 dst_reg->type = aux->btf_var.reg_type; 15372 switch (base_type(dst_reg->type)) { 15373 case PTR_TO_MEM: 15374 dst_reg->mem_size = aux->btf_var.mem_size; 15375 break; 15376 case PTR_TO_BTF_ID: 15377 dst_reg->btf = aux->btf_var.btf; 15378 dst_reg->btf_id = aux->btf_var.btf_id; 15379 break; 15380 default: 15381 verbose(env, "bpf verifier is misconfigured\n"); 15382 return -EFAULT; 15383 } 15384 return 0; 15385 } 15386 15387 if (insn->src_reg == BPF_PSEUDO_FUNC) { 15388 struct bpf_prog_aux *aux = env->prog->aux; 15389 u32 subprogno = find_subprog(env, 15390 env->insn_idx + insn->imm + 1); 15391 15392 if (!aux->func_info) { 15393 verbose(env, "missing btf func_info\n"); 15394 return -EINVAL; 15395 } 15396 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 15397 verbose(env, "callback function not static\n"); 15398 return -EINVAL; 15399 } 15400 15401 dst_reg->type = PTR_TO_FUNC; 15402 dst_reg->subprogno = subprogno; 15403 return 0; 15404 } 15405 15406 map = env->used_maps[aux->map_index]; 15407 dst_reg->map_ptr = map; 15408 15409 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 15410 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 15411 if (map->map_type == BPF_MAP_TYPE_ARENA) { 15412 __mark_reg_unknown(env, dst_reg); 15413 return 0; 15414 } 15415 dst_reg->type = PTR_TO_MAP_VALUE; 15416 dst_reg->off = aux->map_off; 15417 WARN_ON_ONCE(map->max_entries != 1); 15418 /* We want reg->id to be same (0) as map_value is not distinct */ 15419 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 15420 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 15421 dst_reg->type = CONST_PTR_TO_MAP; 15422 } else { 15423 verbose(env, "bpf verifier is misconfigured\n"); 15424 return -EINVAL; 15425 } 15426 15427 return 0; 15428 } 15429 15430 static bool may_access_skb(enum bpf_prog_type type) 15431 { 15432 switch (type) { 15433 case BPF_PROG_TYPE_SOCKET_FILTER: 15434 case BPF_PROG_TYPE_SCHED_CLS: 15435 case BPF_PROG_TYPE_SCHED_ACT: 15436 return true; 15437 default: 15438 return false; 15439 } 15440 } 15441 15442 /* verify safety of LD_ABS|LD_IND instructions: 15443 * - they can only appear in the programs where ctx == skb 15444 * - since they are wrappers of function calls, they scratch R1-R5 registers, 15445 * preserve R6-R9, and store return value into R0 15446 * 15447 * Implicit input: 15448 * ctx == skb == R6 == CTX 15449 * 15450 * Explicit input: 15451 * SRC == any register 15452 * IMM == 32-bit immediate 15453 * 15454 * Output: 15455 * R0 - 8/16/32-bit skb data converted to cpu endianness 15456 */ 15457 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 15458 { 15459 struct bpf_reg_state *regs = cur_regs(env); 15460 static const int ctx_reg = BPF_REG_6; 15461 u8 mode = BPF_MODE(insn->code); 15462 int i, err; 15463 15464 if (!may_access_skb(resolve_prog_type(env->prog))) { 15465 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 15466 return -EINVAL; 15467 } 15468 15469 if (!env->ops->gen_ld_abs) { 15470 verbose(env, "bpf verifier is misconfigured\n"); 15471 return -EINVAL; 15472 } 15473 15474 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 15475 BPF_SIZE(insn->code) == BPF_DW || 15476 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 15477 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 15478 return -EINVAL; 15479 } 15480 15481 /* check whether implicit source operand (register R6) is readable */ 15482 err = check_reg_arg(env, ctx_reg, SRC_OP); 15483 if (err) 15484 return err; 15485 15486 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 15487 * gen_ld_abs() may terminate the program at runtime, leading to 15488 * reference leak. 15489 */ 15490 err = check_reference_leak(env, false); 15491 if (err) { 15492 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 15493 return err; 15494 } 15495 15496 if (env->cur_state->active_lock.ptr) { 15497 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 15498 return -EINVAL; 15499 } 15500 15501 if (env->cur_state->active_rcu_lock) { 15502 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 15503 return -EINVAL; 15504 } 15505 15506 if (env->cur_state->active_preempt_lock) { 15507 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_preempt_disable-ed region\n"); 15508 return -EINVAL; 15509 } 15510 15511 if (regs[ctx_reg].type != PTR_TO_CTX) { 15512 verbose(env, 15513 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 15514 return -EINVAL; 15515 } 15516 15517 if (mode == BPF_IND) { 15518 /* check explicit source operand */ 15519 err = check_reg_arg(env, insn->src_reg, SRC_OP); 15520 if (err) 15521 return err; 15522 } 15523 15524 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 15525 if (err < 0) 15526 return err; 15527 15528 /* reset caller saved regs to unreadable */ 15529 for (i = 0; i < CALLER_SAVED_REGS; i++) { 15530 mark_reg_not_init(env, regs, caller_saved[i]); 15531 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 15532 } 15533 15534 /* mark destination R0 register as readable, since it contains 15535 * the value fetched from the packet. 15536 * Already marked as written above. 15537 */ 15538 mark_reg_unknown(env, regs, BPF_REG_0); 15539 /* ld_abs load up to 32-bit skb data. */ 15540 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 15541 return 0; 15542 } 15543 15544 static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name) 15545 { 15546 const char *exit_ctx = "At program exit"; 15547 struct tnum enforce_attach_type_range = tnum_unknown; 15548 const struct bpf_prog *prog = env->prog; 15549 struct bpf_reg_state *reg; 15550 struct bpf_retval_range range = retval_range(0, 1); 15551 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 15552 int err; 15553 struct bpf_func_state *frame = env->cur_state->frame[0]; 15554 const bool is_subprog = frame->subprogno; 15555 15556 /* LSM and struct_ops func-ptr's return type could be "void" */ 15557 if (!is_subprog || frame->in_exception_callback_fn) { 15558 switch (prog_type) { 15559 case BPF_PROG_TYPE_LSM: 15560 if (prog->expected_attach_type == BPF_LSM_CGROUP) 15561 /* See below, can be 0 or 0-1 depending on hook. */ 15562 break; 15563 fallthrough; 15564 case BPF_PROG_TYPE_STRUCT_OPS: 15565 if (!prog->aux->attach_func_proto->type) 15566 return 0; 15567 break; 15568 default: 15569 break; 15570 } 15571 } 15572 15573 /* eBPF calling convention is such that R0 is used 15574 * to return the value from eBPF program. 15575 * Make sure that it's readable at this time 15576 * of bpf_exit, which means that program wrote 15577 * something into it earlier 15578 */ 15579 err = check_reg_arg(env, regno, SRC_OP); 15580 if (err) 15581 return err; 15582 15583 if (is_pointer_value(env, regno)) { 15584 verbose(env, "R%d leaks addr as return value\n", regno); 15585 return -EACCES; 15586 } 15587 15588 reg = cur_regs(env) + regno; 15589 15590 if (frame->in_async_callback_fn) { 15591 /* enforce return zero from async callbacks like timer */ 15592 exit_ctx = "At async callback return"; 15593 range = retval_range(0, 0); 15594 goto enforce_retval; 15595 } 15596 15597 if (is_subprog && !frame->in_exception_callback_fn) { 15598 if (reg->type != SCALAR_VALUE) { 15599 verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n", 15600 regno, reg_type_str(env, reg->type)); 15601 return -EINVAL; 15602 } 15603 return 0; 15604 } 15605 15606 switch (prog_type) { 15607 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 15608 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 15609 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 15610 env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG || 15611 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 15612 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 15613 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME || 15614 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 15615 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME || 15616 env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME) 15617 range = retval_range(1, 1); 15618 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 15619 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 15620 range = retval_range(0, 3); 15621 break; 15622 case BPF_PROG_TYPE_CGROUP_SKB: 15623 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 15624 range = retval_range(0, 3); 15625 enforce_attach_type_range = tnum_range(2, 3); 15626 } 15627 break; 15628 case BPF_PROG_TYPE_CGROUP_SOCK: 15629 case BPF_PROG_TYPE_SOCK_OPS: 15630 case BPF_PROG_TYPE_CGROUP_DEVICE: 15631 case BPF_PROG_TYPE_CGROUP_SYSCTL: 15632 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 15633 break; 15634 case BPF_PROG_TYPE_RAW_TRACEPOINT: 15635 if (!env->prog->aux->attach_btf_id) 15636 return 0; 15637 range = retval_range(0, 0); 15638 break; 15639 case BPF_PROG_TYPE_TRACING: 15640 switch (env->prog->expected_attach_type) { 15641 case BPF_TRACE_FENTRY: 15642 case BPF_TRACE_FEXIT: 15643 range = retval_range(0, 0); 15644 break; 15645 case BPF_TRACE_RAW_TP: 15646 case BPF_MODIFY_RETURN: 15647 return 0; 15648 case BPF_TRACE_ITER: 15649 break; 15650 default: 15651 return -ENOTSUPP; 15652 } 15653 break; 15654 case BPF_PROG_TYPE_SK_LOOKUP: 15655 range = retval_range(SK_DROP, SK_PASS); 15656 break; 15657 15658 case BPF_PROG_TYPE_LSM: 15659 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 15660 /* Regular BPF_PROG_TYPE_LSM programs can return 15661 * any value. 15662 */ 15663 return 0; 15664 } 15665 if (!env->prog->aux->attach_func_proto->type) { 15666 /* Make sure programs that attach to void 15667 * hooks don't try to modify return value. 15668 */ 15669 range = retval_range(1, 1); 15670 } 15671 break; 15672 15673 case BPF_PROG_TYPE_NETFILTER: 15674 range = retval_range(NF_DROP, NF_ACCEPT); 15675 break; 15676 case BPF_PROG_TYPE_EXT: 15677 /* freplace program can return anything as its return value 15678 * depends on the to-be-replaced kernel func or bpf program. 15679 */ 15680 default: 15681 return 0; 15682 } 15683 15684 enforce_retval: 15685 if (reg->type != SCALAR_VALUE) { 15686 verbose(env, "%s the register R%d is not a known value (%s)\n", 15687 exit_ctx, regno, reg_type_str(env, reg->type)); 15688 return -EINVAL; 15689 } 15690 15691 err = mark_chain_precision(env, regno); 15692 if (err) 15693 return err; 15694 15695 if (!retval_range_within(range, reg)) { 15696 verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name); 15697 if (!is_subprog && 15698 prog->expected_attach_type == BPF_LSM_CGROUP && 15699 prog_type == BPF_PROG_TYPE_LSM && 15700 !prog->aux->attach_func_proto->type) 15701 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 15702 return -EINVAL; 15703 } 15704 15705 if (!tnum_is_unknown(enforce_attach_type_range) && 15706 tnum_in(enforce_attach_type_range, reg->var_off)) 15707 env->prog->enforce_expected_attach_type = 1; 15708 return 0; 15709 } 15710 15711 /* non-recursive DFS pseudo code 15712 * 1 procedure DFS-iterative(G,v): 15713 * 2 label v as discovered 15714 * 3 let S be a stack 15715 * 4 S.push(v) 15716 * 5 while S is not empty 15717 * 6 t <- S.peek() 15718 * 7 if t is what we're looking for: 15719 * 8 return t 15720 * 9 for all edges e in G.adjacentEdges(t) do 15721 * 10 if edge e is already labelled 15722 * 11 continue with the next edge 15723 * 12 w <- G.adjacentVertex(t,e) 15724 * 13 if vertex w is not discovered and not explored 15725 * 14 label e as tree-edge 15726 * 15 label w as discovered 15727 * 16 S.push(w) 15728 * 17 continue at 5 15729 * 18 else if vertex w is discovered 15730 * 19 label e as back-edge 15731 * 20 else 15732 * 21 // vertex w is explored 15733 * 22 label e as forward- or cross-edge 15734 * 23 label t as explored 15735 * 24 S.pop() 15736 * 15737 * convention: 15738 * 0x10 - discovered 15739 * 0x11 - discovered and fall-through edge labelled 15740 * 0x12 - discovered and fall-through and branch edges labelled 15741 * 0x20 - explored 15742 */ 15743 15744 enum { 15745 DISCOVERED = 0x10, 15746 EXPLORED = 0x20, 15747 FALLTHROUGH = 1, 15748 BRANCH = 2, 15749 }; 15750 15751 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 15752 { 15753 env->insn_aux_data[idx].prune_point = true; 15754 } 15755 15756 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 15757 { 15758 return env->insn_aux_data[insn_idx].prune_point; 15759 } 15760 15761 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 15762 { 15763 env->insn_aux_data[idx].force_checkpoint = true; 15764 } 15765 15766 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 15767 { 15768 return env->insn_aux_data[insn_idx].force_checkpoint; 15769 } 15770 15771 static void mark_calls_callback(struct bpf_verifier_env *env, int idx) 15772 { 15773 env->insn_aux_data[idx].calls_callback = true; 15774 } 15775 15776 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx) 15777 { 15778 return env->insn_aux_data[insn_idx].calls_callback; 15779 } 15780 15781 enum { 15782 DONE_EXPLORING = 0, 15783 KEEP_EXPLORING = 1, 15784 }; 15785 15786 /* t, w, e - match pseudo-code above: 15787 * t - index of current instruction 15788 * w - next instruction 15789 * e - edge 15790 */ 15791 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 15792 { 15793 int *insn_stack = env->cfg.insn_stack; 15794 int *insn_state = env->cfg.insn_state; 15795 15796 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 15797 return DONE_EXPLORING; 15798 15799 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 15800 return DONE_EXPLORING; 15801 15802 if (w < 0 || w >= env->prog->len) { 15803 verbose_linfo(env, t, "%d: ", t); 15804 verbose(env, "jump out of range from insn %d to %d\n", t, w); 15805 return -EINVAL; 15806 } 15807 15808 if (e == BRANCH) { 15809 /* mark branch target for state pruning */ 15810 mark_prune_point(env, w); 15811 mark_jmp_point(env, w); 15812 } 15813 15814 if (insn_state[w] == 0) { 15815 /* tree-edge */ 15816 insn_state[t] = DISCOVERED | e; 15817 insn_state[w] = DISCOVERED; 15818 if (env->cfg.cur_stack >= env->prog->len) 15819 return -E2BIG; 15820 insn_stack[env->cfg.cur_stack++] = w; 15821 return KEEP_EXPLORING; 15822 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 15823 if (env->bpf_capable) 15824 return DONE_EXPLORING; 15825 verbose_linfo(env, t, "%d: ", t); 15826 verbose_linfo(env, w, "%d: ", w); 15827 verbose(env, "back-edge from insn %d to %d\n", t, w); 15828 return -EINVAL; 15829 } else if (insn_state[w] == EXPLORED) { 15830 /* forward- or cross-edge */ 15831 insn_state[t] = DISCOVERED | e; 15832 } else { 15833 verbose(env, "insn state internal bug\n"); 15834 return -EFAULT; 15835 } 15836 return DONE_EXPLORING; 15837 } 15838 15839 static int visit_func_call_insn(int t, struct bpf_insn *insns, 15840 struct bpf_verifier_env *env, 15841 bool visit_callee) 15842 { 15843 int ret, insn_sz; 15844 15845 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; 15846 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); 15847 if (ret) 15848 return ret; 15849 15850 mark_prune_point(env, t + insn_sz); 15851 /* when we exit from subprog, we need to record non-linear history */ 15852 mark_jmp_point(env, t + insn_sz); 15853 15854 if (visit_callee) { 15855 mark_prune_point(env, t); 15856 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 15857 } 15858 return ret; 15859 } 15860 15861 /* Visits the instruction at index t and returns one of the following: 15862 * < 0 - an error occurred 15863 * DONE_EXPLORING - the instruction was fully explored 15864 * KEEP_EXPLORING - there is still work to be done before it is fully explored 15865 */ 15866 static int visit_insn(int t, struct bpf_verifier_env *env) 15867 { 15868 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 15869 int ret, off, insn_sz; 15870 15871 if (bpf_pseudo_func(insn)) 15872 return visit_func_call_insn(t, insns, env, true); 15873 15874 /* All non-branch instructions have a single fall-through edge. */ 15875 if (BPF_CLASS(insn->code) != BPF_JMP && 15876 BPF_CLASS(insn->code) != BPF_JMP32) { 15877 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 15878 return push_insn(t, t + insn_sz, FALLTHROUGH, env); 15879 } 15880 15881 switch (BPF_OP(insn->code)) { 15882 case BPF_EXIT: 15883 return DONE_EXPLORING; 15884 15885 case BPF_CALL: 15886 if (is_async_callback_calling_insn(insn)) 15887 /* Mark this call insn as a prune point to trigger 15888 * is_state_visited() check before call itself is 15889 * processed by __check_func_call(). Otherwise new 15890 * async state will be pushed for further exploration. 15891 */ 15892 mark_prune_point(env, t); 15893 /* For functions that invoke callbacks it is not known how many times 15894 * callback would be called. Verifier models callback calling functions 15895 * by repeatedly visiting callback bodies and returning to origin call 15896 * instruction. 15897 * In order to stop such iteration verifier needs to identify when a 15898 * state identical some state from a previous iteration is reached. 15899 * Check below forces creation of checkpoint before callback calling 15900 * instruction to allow search for such identical states. 15901 */ 15902 if (is_sync_callback_calling_insn(insn)) { 15903 mark_calls_callback(env, t); 15904 mark_force_checkpoint(env, t); 15905 mark_prune_point(env, t); 15906 mark_jmp_point(env, t); 15907 } 15908 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 15909 struct bpf_kfunc_call_arg_meta meta; 15910 15911 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 15912 if (ret == 0 && is_iter_next_kfunc(&meta)) { 15913 mark_prune_point(env, t); 15914 /* Checking and saving state checkpoints at iter_next() call 15915 * is crucial for fast convergence of open-coded iterator loop 15916 * logic, so we need to force it. If we don't do that, 15917 * is_state_visited() might skip saving a checkpoint, causing 15918 * unnecessarily long sequence of not checkpointed 15919 * instructions and jumps, leading to exhaustion of jump 15920 * history buffer, and potentially other undesired outcomes. 15921 * It is expected that with correct open-coded iterators 15922 * convergence will happen quickly, so we don't run a risk of 15923 * exhausting memory. 15924 */ 15925 mark_force_checkpoint(env, t); 15926 } 15927 } 15928 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 15929 15930 case BPF_JA: 15931 if (BPF_SRC(insn->code) != BPF_K) 15932 return -EINVAL; 15933 15934 if (BPF_CLASS(insn->code) == BPF_JMP) 15935 off = insn->off; 15936 else 15937 off = insn->imm; 15938 15939 /* unconditional jump with single edge */ 15940 ret = push_insn(t, t + off + 1, FALLTHROUGH, env); 15941 if (ret) 15942 return ret; 15943 15944 mark_prune_point(env, t + off + 1); 15945 mark_jmp_point(env, t + off + 1); 15946 15947 return ret; 15948 15949 default: 15950 /* conditional jump with two edges */ 15951 mark_prune_point(env, t); 15952 if (is_may_goto_insn(insn)) 15953 mark_force_checkpoint(env, t); 15954 15955 ret = push_insn(t, t + 1, FALLTHROUGH, env); 15956 if (ret) 15957 return ret; 15958 15959 return push_insn(t, t + insn->off + 1, BRANCH, env); 15960 } 15961 } 15962 15963 /* non-recursive depth-first-search to detect loops in BPF program 15964 * loop == back-edge in directed graph 15965 */ 15966 static int check_cfg(struct bpf_verifier_env *env) 15967 { 15968 int insn_cnt = env->prog->len; 15969 int *insn_stack, *insn_state; 15970 int ex_insn_beg, i, ret = 0; 15971 bool ex_done = false; 15972 15973 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 15974 if (!insn_state) 15975 return -ENOMEM; 15976 15977 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 15978 if (!insn_stack) { 15979 kvfree(insn_state); 15980 return -ENOMEM; 15981 } 15982 15983 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 15984 insn_stack[0] = 0; /* 0 is the first instruction */ 15985 env->cfg.cur_stack = 1; 15986 15987 walk_cfg: 15988 while (env->cfg.cur_stack > 0) { 15989 int t = insn_stack[env->cfg.cur_stack - 1]; 15990 15991 ret = visit_insn(t, env); 15992 switch (ret) { 15993 case DONE_EXPLORING: 15994 insn_state[t] = EXPLORED; 15995 env->cfg.cur_stack--; 15996 break; 15997 case KEEP_EXPLORING: 15998 break; 15999 default: 16000 if (ret > 0) { 16001 verbose(env, "visit_insn internal bug\n"); 16002 ret = -EFAULT; 16003 } 16004 goto err_free; 16005 } 16006 } 16007 16008 if (env->cfg.cur_stack < 0) { 16009 verbose(env, "pop stack internal bug\n"); 16010 ret = -EFAULT; 16011 goto err_free; 16012 } 16013 16014 if (env->exception_callback_subprog && !ex_done) { 16015 ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start; 16016 16017 insn_state[ex_insn_beg] = DISCOVERED; 16018 insn_stack[0] = ex_insn_beg; 16019 env->cfg.cur_stack = 1; 16020 ex_done = true; 16021 goto walk_cfg; 16022 } 16023 16024 for (i = 0; i < insn_cnt; i++) { 16025 struct bpf_insn *insn = &env->prog->insnsi[i]; 16026 16027 if (insn_state[i] != EXPLORED) { 16028 verbose(env, "unreachable insn %d\n", i); 16029 ret = -EINVAL; 16030 goto err_free; 16031 } 16032 if (bpf_is_ldimm64(insn)) { 16033 if (insn_state[i + 1] != 0) { 16034 verbose(env, "jump into the middle of ldimm64 insn %d\n", i); 16035 ret = -EINVAL; 16036 goto err_free; 16037 } 16038 i++; /* skip second half of ldimm64 */ 16039 } 16040 } 16041 ret = 0; /* cfg looks good */ 16042 16043 err_free: 16044 kvfree(insn_state); 16045 kvfree(insn_stack); 16046 env->cfg.insn_state = env->cfg.insn_stack = NULL; 16047 return ret; 16048 } 16049 16050 static int check_abnormal_return(struct bpf_verifier_env *env) 16051 { 16052 int i; 16053 16054 for (i = 1; i < env->subprog_cnt; i++) { 16055 if (env->subprog_info[i].has_ld_abs) { 16056 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 16057 return -EINVAL; 16058 } 16059 if (env->subprog_info[i].has_tail_call) { 16060 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 16061 return -EINVAL; 16062 } 16063 } 16064 return 0; 16065 } 16066 16067 /* The minimum supported BTF func info size */ 16068 #define MIN_BPF_FUNCINFO_SIZE 8 16069 #define MAX_FUNCINFO_REC_SIZE 252 16070 16071 static int check_btf_func_early(struct bpf_verifier_env *env, 16072 const union bpf_attr *attr, 16073 bpfptr_t uattr) 16074 { 16075 u32 krec_size = sizeof(struct bpf_func_info); 16076 const struct btf_type *type, *func_proto; 16077 u32 i, nfuncs, urec_size, min_size; 16078 struct bpf_func_info *krecord; 16079 struct bpf_prog *prog; 16080 const struct btf *btf; 16081 u32 prev_offset = 0; 16082 bpfptr_t urecord; 16083 int ret = -ENOMEM; 16084 16085 nfuncs = attr->func_info_cnt; 16086 if (!nfuncs) { 16087 if (check_abnormal_return(env)) 16088 return -EINVAL; 16089 return 0; 16090 } 16091 16092 urec_size = attr->func_info_rec_size; 16093 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 16094 urec_size > MAX_FUNCINFO_REC_SIZE || 16095 urec_size % sizeof(u32)) { 16096 verbose(env, "invalid func info rec size %u\n", urec_size); 16097 return -EINVAL; 16098 } 16099 16100 prog = env->prog; 16101 btf = prog->aux->btf; 16102 16103 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 16104 min_size = min_t(u32, krec_size, urec_size); 16105 16106 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 16107 if (!krecord) 16108 return -ENOMEM; 16109 16110 for (i = 0; i < nfuncs; i++) { 16111 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 16112 if (ret) { 16113 if (ret == -E2BIG) { 16114 verbose(env, "nonzero tailing record in func info"); 16115 /* set the size kernel expects so loader can zero 16116 * out the rest of the record. 16117 */ 16118 if (copy_to_bpfptr_offset(uattr, 16119 offsetof(union bpf_attr, func_info_rec_size), 16120 &min_size, sizeof(min_size))) 16121 ret = -EFAULT; 16122 } 16123 goto err_free; 16124 } 16125 16126 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 16127 ret = -EFAULT; 16128 goto err_free; 16129 } 16130 16131 /* check insn_off */ 16132 ret = -EINVAL; 16133 if (i == 0) { 16134 if (krecord[i].insn_off) { 16135 verbose(env, 16136 "nonzero insn_off %u for the first func info record", 16137 krecord[i].insn_off); 16138 goto err_free; 16139 } 16140 } else if (krecord[i].insn_off <= prev_offset) { 16141 verbose(env, 16142 "same or smaller insn offset (%u) than previous func info record (%u)", 16143 krecord[i].insn_off, prev_offset); 16144 goto err_free; 16145 } 16146 16147 /* check type_id */ 16148 type = btf_type_by_id(btf, krecord[i].type_id); 16149 if (!type || !btf_type_is_func(type)) { 16150 verbose(env, "invalid type id %d in func info", 16151 krecord[i].type_id); 16152 goto err_free; 16153 } 16154 16155 func_proto = btf_type_by_id(btf, type->type); 16156 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 16157 /* btf_func_check() already verified it during BTF load */ 16158 goto err_free; 16159 16160 prev_offset = krecord[i].insn_off; 16161 bpfptr_add(&urecord, urec_size); 16162 } 16163 16164 prog->aux->func_info = krecord; 16165 prog->aux->func_info_cnt = nfuncs; 16166 return 0; 16167 16168 err_free: 16169 kvfree(krecord); 16170 return ret; 16171 } 16172 16173 static int check_btf_func(struct bpf_verifier_env *env, 16174 const union bpf_attr *attr, 16175 bpfptr_t uattr) 16176 { 16177 const struct btf_type *type, *func_proto, *ret_type; 16178 u32 i, nfuncs, urec_size; 16179 struct bpf_func_info *krecord; 16180 struct bpf_func_info_aux *info_aux = NULL; 16181 struct bpf_prog *prog; 16182 const struct btf *btf; 16183 bpfptr_t urecord; 16184 bool scalar_return; 16185 int ret = -ENOMEM; 16186 16187 nfuncs = attr->func_info_cnt; 16188 if (!nfuncs) { 16189 if (check_abnormal_return(env)) 16190 return -EINVAL; 16191 return 0; 16192 } 16193 if (nfuncs != env->subprog_cnt) { 16194 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 16195 return -EINVAL; 16196 } 16197 16198 urec_size = attr->func_info_rec_size; 16199 16200 prog = env->prog; 16201 btf = prog->aux->btf; 16202 16203 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 16204 16205 krecord = prog->aux->func_info; 16206 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 16207 if (!info_aux) 16208 return -ENOMEM; 16209 16210 for (i = 0; i < nfuncs; i++) { 16211 /* check insn_off */ 16212 ret = -EINVAL; 16213 16214 if (env->subprog_info[i].start != krecord[i].insn_off) { 16215 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 16216 goto err_free; 16217 } 16218 16219 /* Already checked type_id */ 16220 type = btf_type_by_id(btf, krecord[i].type_id); 16221 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 16222 /* Already checked func_proto */ 16223 func_proto = btf_type_by_id(btf, type->type); 16224 16225 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 16226 scalar_return = 16227 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 16228 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 16229 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 16230 goto err_free; 16231 } 16232 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 16233 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 16234 goto err_free; 16235 } 16236 16237 bpfptr_add(&urecord, urec_size); 16238 } 16239 16240 prog->aux->func_info_aux = info_aux; 16241 return 0; 16242 16243 err_free: 16244 kfree(info_aux); 16245 return ret; 16246 } 16247 16248 static void adjust_btf_func(struct bpf_verifier_env *env) 16249 { 16250 struct bpf_prog_aux *aux = env->prog->aux; 16251 int i; 16252 16253 if (!aux->func_info) 16254 return; 16255 16256 /* func_info is not available for hidden subprogs */ 16257 for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++) 16258 aux->func_info[i].insn_off = env->subprog_info[i].start; 16259 } 16260 16261 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 16262 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 16263 16264 static int check_btf_line(struct bpf_verifier_env *env, 16265 const union bpf_attr *attr, 16266 bpfptr_t uattr) 16267 { 16268 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 16269 struct bpf_subprog_info *sub; 16270 struct bpf_line_info *linfo; 16271 struct bpf_prog *prog; 16272 const struct btf *btf; 16273 bpfptr_t ulinfo; 16274 int err; 16275 16276 nr_linfo = attr->line_info_cnt; 16277 if (!nr_linfo) 16278 return 0; 16279 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 16280 return -EINVAL; 16281 16282 rec_size = attr->line_info_rec_size; 16283 if (rec_size < MIN_BPF_LINEINFO_SIZE || 16284 rec_size > MAX_LINEINFO_REC_SIZE || 16285 rec_size & (sizeof(u32) - 1)) 16286 return -EINVAL; 16287 16288 /* Need to zero it in case the userspace may 16289 * pass in a smaller bpf_line_info object. 16290 */ 16291 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 16292 GFP_KERNEL | __GFP_NOWARN); 16293 if (!linfo) 16294 return -ENOMEM; 16295 16296 prog = env->prog; 16297 btf = prog->aux->btf; 16298 16299 s = 0; 16300 sub = env->subprog_info; 16301 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 16302 expected_size = sizeof(struct bpf_line_info); 16303 ncopy = min_t(u32, expected_size, rec_size); 16304 for (i = 0; i < nr_linfo; i++) { 16305 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 16306 if (err) { 16307 if (err == -E2BIG) { 16308 verbose(env, "nonzero tailing record in line_info"); 16309 if (copy_to_bpfptr_offset(uattr, 16310 offsetof(union bpf_attr, line_info_rec_size), 16311 &expected_size, sizeof(expected_size))) 16312 err = -EFAULT; 16313 } 16314 goto err_free; 16315 } 16316 16317 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 16318 err = -EFAULT; 16319 goto err_free; 16320 } 16321 16322 /* 16323 * Check insn_off to ensure 16324 * 1) strictly increasing AND 16325 * 2) bounded by prog->len 16326 * 16327 * The linfo[0].insn_off == 0 check logically falls into 16328 * the later "missing bpf_line_info for func..." case 16329 * because the first linfo[0].insn_off must be the 16330 * first sub also and the first sub must have 16331 * subprog_info[0].start == 0. 16332 */ 16333 if ((i && linfo[i].insn_off <= prev_offset) || 16334 linfo[i].insn_off >= prog->len) { 16335 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 16336 i, linfo[i].insn_off, prev_offset, 16337 prog->len); 16338 err = -EINVAL; 16339 goto err_free; 16340 } 16341 16342 if (!prog->insnsi[linfo[i].insn_off].code) { 16343 verbose(env, 16344 "Invalid insn code at line_info[%u].insn_off\n", 16345 i); 16346 err = -EINVAL; 16347 goto err_free; 16348 } 16349 16350 if (!btf_name_by_offset(btf, linfo[i].line_off) || 16351 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 16352 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 16353 err = -EINVAL; 16354 goto err_free; 16355 } 16356 16357 if (s != env->subprog_cnt) { 16358 if (linfo[i].insn_off == sub[s].start) { 16359 sub[s].linfo_idx = i; 16360 s++; 16361 } else if (sub[s].start < linfo[i].insn_off) { 16362 verbose(env, "missing bpf_line_info for func#%u\n", s); 16363 err = -EINVAL; 16364 goto err_free; 16365 } 16366 } 16367 16368 prev_offset = linfo[i].insn_off; 16369 bpfptr_add(&ulinfo, rec_size); 16370 } 16371 16372 if (s != env->subprog_cnt) { 16373 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 16374 env->subprog_cnt - s, s); 16375 err = -EINVAL; 16376 goto err_free; 16377 } 16378 16379 prog->aux->linfo = linfo; 16380 prog->aux->nr_linfo = nr_linfo; 16381 16382 return 0; 16383 16384 err_free: 16385 kvfree(linfo); 16386 return err; 16387 } 16388 16389 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 16390 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 16391 16392 static int check_core_relo(struct bpf_verifier_env *env, 16393 const union bpf_attr *attr, 16394 bpfptr_t uattr) 16395 { 16396 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 16397 struct bpf_core_relo core_relo = {}; 16398 struct bpf_prog *prog = env->prog; 16399 const struct btf *btf = prog->aux->btf; 16400 struct bpf_core_ctx ctx = { 16401 .log = &env->log, 16402 .btf = btf, 16403 }; 16404 bpfptr_t u_core_relo; 16405 int err; 16406 16407 nr_core_relo = attr->core_relo_cnt; 16408 if (!nr_core_relo) 16409 return 0; 16410 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 16411 return -EINVAL; 16412 16413 rec_size = attr->core_relo_rec_size; 16414 if (rec_size < MIN_CORE_RELO_SIZE || 16415 rec_size > MAX_CORE_RELO_SIZE || 16416 rec_size % sizeof(u32)) 16417 return -EINVAL; 16418 16419 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 16420 expected_size = sizeof(struct bpf_core_relo); 16421 ncopy = min_t(u32, expected_size, rec_size); 16422 16423 /* Unlike func_info and line_info, copy and apply each CO-RE 16424 * relocation record one at a time. 16425 */ 16426 for (i = 0; i < nr_core_relo; i++) { 16427 /* future proofing when sizeof(bpf_core_relo) changes */ 16428 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 16429 if (err) { 16430 if (err == -E2BIG) { 16431 verbose(env, "nonzero tailing record in core_relo"); 16432 if (copy_to_bpfptr_offset(uattr, 16433 offsetof(union bpf_attr, core_relo_rec_size), 16434 &expected_size, sizeof(expected_size))) 16435 err = -EFAULT; 16436 } 16437 break; 16438 } 16439 16440 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 16441 err = -EFAULT; 16442 break; 16443 } 16444 16445 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 16446 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 16447 i, core_relo.insn_off, prog->len); 16448 err = -EINVAL; 16449 break; 16450 } 16451 16452 err = bpf_core_apply(&ctx, &core_relo, i, 16453 &prog->insnsi[core_relo.insn_off / 8]); 16454 if (err) 16455 break; 16456 bpfptr_add(&u_core_relo, rec_size); 16457 } 16458 return err; 16459 } 16460 16461 static int check_btf_info_early(struct bpf_verifier_env *env, 16462 const union bpf_attr *attr, 16463 bpfptr_t uattr) 16464 { 16465 struct btf *btf; 16466 int err; 16467 16468 if (!attr->func_info_cnt && !attr->line_info_cnt) { 16469 if (check_abnormal_return(env)) 16470 return -EINVAL; 16471 return 0; 16472 } 16473 16474 btf = btf_get_by_fd(attr->prog_btf_fd); 16475 if (IS_ERR(btf)) 16476 return PTR_ERR(btf); 16477 if (btf_is_kernel(btf)) { 16478 btf_put(btf); 16479 return -EACCES; 16480 } 16481 env->prog->aux->btf = btf; 16482 16483 err = check_btf_func_early(env, attr, uattr); 16484 if (err) 16485 return err; 16486 return 0; 16487 } 16488 16489 static int check_btf_info(struct bpf_verifier_env *env, 16490 const union bpf_attr *attr, 16491 bpfptr_t uattr) 16492 { 16493 int err; 16494 16495 if (!attr->func_info_cnt && !attr->line_info_cnt) { 16496 if (check_abnormal_return(env)) 16497 return -EINVAL; 16498 return 0; 16499 } 16500 16501 err = check_btf_func(env, attr, uattr); 16502 if (err) 16503 return err; 16504 16505 err = check_btf_line(env, attr, uattr); 16506 if (err) 16507 return err; 16508 16509 err = check_core_relo(env, attr, uattr); 16510 if (err) 16511 return err; 16512 16513 return 0; 16514 } 16515 16516 /* check %cur's range satisfies %old's */ 16517 static bool range_within(const struct bpf_reg_state *old, 16518 const struct bpf_reg_state *cur) 16519 { 16520 return old->umin_value <= cur->umin_value && 16521 old->umax_value >= cur->umax_value && 16522 old->smin_value <= cur->smin_value && 16523 old->smax_value >= cur->smax_value && 16524 old->u32_min_value <= cur->u32_min_value && 16525 old->u32_max_value >= cur->u32_max_value && 16526 old->s32_min_value <= cur->s32_min_value && 16527 old->s32_max_value >= cur->s32_max_value; 16528 } 16529 16530 /* If in the old state two registers had the same id, then they need to have 16531 * the same id in the new state as well. But that id could be different from 16532 * the old state, so we need to track the mapping from old to new ids. 16533 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 16534 * regs with old id 5 must also have new id 9 for the new state to be safe. But 16535 * regs with a different old id could still have new id 9, we don't care about 16536 * that. 16537 * So we look through our idmap to see if this old id has been seen before. If 16538 * so, we require the new id to match; otherwise, we add the id pair to the map. 16539 */ 16540 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 16541 { 16542 struct bpf_id_pair *map = idmap->map; 16543 unsigned int i; 16544 16545 /* either both IDs should be set or both should be zero */ 16546 if (!!old_id != !!cur_id) 16547 return false; 16548 16549 if (old_id == 0) /* cur_id == 0 as well */ 16550 return true; 16551 16552 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 16553 if (!map[i].old) { 16554 /* Reached an empty slot; haven't seen this id before */ 16555 map[i].old = old_id; 16556 map[i].cur = cur_id; 16557 return true; 16558 } 16559 if (map[i].old == old_id) 16560 return map[i].cur == cur_id; 16561 if (map[i].cur == cur_id) 16562 return false; 16563 } 16564 /* We ran out of idmap slots, which should be impossible */ 16565 WARN_ON_ONCE(1); 16566 return false; 16567 } 16568 16569 /* Similar to check_ids(), but allocate a unique temporary ID 16570 * for 'old_id' or 'cur_id' of zero. 16571 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 16572 */ 16573 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 16574 { 16575 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 16576 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 16577 16578 return check_ids(old_id, cur_id, idmap); 16579 } 16580 16581 static void clean_func_state(struct bpf_verifier_env *env, 16582 struct bpf_func_state *st) 16583 { 16584 enum bpf_reg_liveness live; 16585 int i, j; 16586 16587 for (i = 0; i < BPF_REG_FP; i++) { 16588 live = st->regs[i].live; 16589 /* liveness must not touch this register anymore */ 16590 st->regs[i].live |= REG_LIVE_DONE; 16591 if (!(live & REG_LIVE_READ)) 16592 /* since the register is unused, clear its state 16593 * to make further comparison simpler 16594 */ 16595 __mark_reg_not_init(env, &st->regs[i]); 16596 } 16597 16598 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 16599 live = st->stack[i].spilled_ptr.live; 16600 /* liveness must not touch this stack slot anymore */ 16601 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 16602 if (!(live & REG_LIVE_READ)) { 16603 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 16604 for (j = 0; j < BPF_REG_SIZE; j++) 16605 st->stack[i].slot_type[j] = STACK_INVALID; 16606 } 16607 } 16608 } 16609 16610 static void clean_verifier_state(struct bpf_verifier_env *env, 16611 struct bpf_verifier_state *st) 16612 { 16613 int i; 16614 16615 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 16616 /* all regs in this state in all frames were already marked */ 16617 return; 16618 16619 for (i = 0; i <= st->curframe; i++) 16620 clean_func_state(env, st->frame[i]); 16621 } 16622 16623 /* the parentage chains form a tree. 16624 * the verifier states are added to state lists at given insn and 16625 * pushed into state stack for future exploration. 16626 * when the verifier reaches bpf_exit insn some of the verifer states 16627 * stored in the state lists have their final liveness state already, 16628 * but a lot of states will get revised from liveness point of view when 16629 * the verifier explores other branches. 16630 * Example: 16631 * 1: r0 = 1 16632 * 2: if r1 == 100 goto pc+1 16633 * 3: r0 = 2 16634 * 4: exit 16635 * when the verifier reaches exit insn the register r0 in the state list of 16636 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 16637 * of insn 2 and goes exploring further. At the insn 4 it will walk the 16638 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 16639 * 16640 * Since the verifier pushes the branch states as it sees them while exploring 16641 * the program the condition of walking the branch instruction for the second 16642 * time means that all states below this branch were already explored and 16643 * their final liveness marks are already propagated. 16644 * Hence when the verifier completes the search of state list in is_state_visited() 16645 * we can call this clean_live_states() function to mark all liveness states 16646 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 16647 * will not be used. 16648 * This function also clears the registers and stack for states that !READ 16649 * to simplify state merging. 16650 * 16651 * Important note here that walking the same branch instruction in the callee 16652 * doesn't meant that the states are DONE. The verifier has to compare 16653 * the callsites 16654 */ 16655 static void clean_live_states(struct bpf_verifier_env *env, int insn, 16656 struct bpf_verifier_state *cur) 16657 { 16658 struct bpf_verifier_state_list *sl; 16659 16660 sl = *explored_state(env, insn); 16661 while (sl) { 16662 if (sl->state.branches) 16663 goto next; 16664 if (sl->state.insn_idx != insn || 16665 !same_callsites(&sl->state, cur)) 16666 goto next; 16667 clean_verifier_state(env, &sl->state); 16668 next: 16669 sl = sl->next; 16670 } 16671 } 16672 16673 static bool regs_exact(const struct bpf_reg_state *rold, 16674 const struct bpf_reg_state *rcur, 16675 struct bpf_idmap *idmap) 16676 { 16677 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 16678 check_ids(rold->id, rcur->id, idmap) && 16679 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 16680 } 16681 16682 enum exact_level { 16683 NOT_EXACT, 16684 EXACT, 16685 RANGE_WITHIN 16686 }; 16687 16688 /* Returns true if (rold safe implies rcur safe) */ 16689 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 16690 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, 16691 enum exact_level exact) 16692 { 16693 if (exact == EXACT) 16694 return regs_exact(rold, rcur, idmap); 16695 16696 if (!(rold->live & REG_LIVE_READ) && exact == NOT_EXACT) 16697 /* explored state didn't use this */ 16698 return true; 16699 if (rold->type == NOT_INIT) { 16700 if (exact == NOT_EXACT || rcur->type == NOT_INIT) 16701 /* explored state can't have used this */ 16702 return true; 16703 } 16704 16705 /* Enforce that register types have to match exactly, including their 16706 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 16707 * rule. 16708 * 16709 * One can make a point that using a pointer register as unbounded 16710 * SCALAR would be technically acceptable, but this could lead to 16711 * pointer leaks because scalars are allowed to leak while pointers 16712 * are not. We could make this safe in special cases if root is 16713 * calling us, but it's probably not worth the hassle. 16714 * 16715 * Also, register types that are *not* MAYBE_NULL could technically be 16716 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 16717 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 16718 * to the same map). 16719 * However, if the old MAYBE_NULL register then got NULL checked, 16720 * doing so could have affected others with the same id, and we can't 16721 * check for that because we lost the id when we converted to 16722 * a non-MAYBE_NULL variant. 16723 * So, as a general rule we don't allow mixing MAYBE_NULL and 16724 * non-MAYBE_NULL registers as well. 16725 */ 16726 if (rold->type != rcur->type) 16727 return false; 16728 16729 switch (base_type(rold->type)) { 16730 case SCALAR_VALUE: 16731 if (env->explore_alu_limits) { 16732 /* explore_alu_limits disables tnum_in() and range_within() 16733 * logic and requires everything to be strict 16734 */ 16735 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 16736 check_scalar_ids(rold->id, rcur->id, idmap); 16737 } 16738 if (!rold->precise && exact == NOT_EXACT) 16739 return true; 16740 /* Why check_ids() for scalar registers? 16741 * 16742 * Consider the following BPF code: 16743 * 1: r6 = ... unbound scalar, ID=a ... 16744 * 2: r7 = ... unbound scalar, ID=b ... 16745 * 3: if (r6 > r7) goto +1 16746 * 4: r6 = r7 16747 * 5: if (r6 > X) goto ... 16748 * 6: ... memory operation using r7 ... 16749 * 16750 * First verification path is [1-6]: 16751 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 16752 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark 16753 * r7 <= X, because r6 and r7 share same id. 16754 * Next verification path is [1-4, 6]. 16755 * 16756 * Instruction (6) would be reached in two states: 16757 * I. r6{.id=b}, r7{.id=b} via path 1-6; 16758 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 16759 * 16760 * Use check_ids() to distinguish these states. 16761 * --- 16762 * Also verify that new value satisfies old value range knowledge. 16763 */ 16764 return range_within(rold, rcur) && 16765 tnum_in(rold->var_off, rcur->var_off) && 16766 check_scalar_ids(rold->id, rcur->id, idmap); 16767 case PTR_TO_MAP_KEY: 16768 case PTR_TO_MAP_VALUE: 16769 case PTR_TO_MEM: 16770 case PTR_TO_BUF: 16771 case PTR_TO_TP_BUFFER: 16772 /* If the new min/max/var_off satisfy the old ones and 16773 * everything else matches, we are OK. 16774 */ 16775 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 16776 range_within(rold, rcur) && 16777 tnum_in(rold->var_off, rcur->var_off) && 16778 check_ids(rold->id, rcur->id, idmap) && 16779 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 16780 case PTR_TO_PACKET_META: 16781 case PTR_TO_PACKET: 16782 /* We must have at least as much range as the old ptr 16783 * did, so that any accesses which were safe before are 16784 * still safe. This is true even if old range < old off, 16785 * since someone could have accessed through (ptr - k), or 16786 * even done ptr -= k in a register, to get a safe access. 16787 */ 16788 if (rold->range > rcur->range) 16789 return false; 16790 /* If the offsets don't match, we can't trust our alignment; 16791 * nor can we be sure that we won't fall out of range. 16792 */ 16793 if (rold->off != rcur->off) 16794 return false; 16795 /* id relations must be preserved */ 16796 if (!check_ids(rold->id, rcur->id, idmap)) 16797 return false; 16798 /* new val must satisfy old val knowledge */ 16799 return range_within(rold, rcur) && 16800 tnum_in(rold->var_off, rcur->var_off); 16801 case PTR_TO_STACK: 16802 /* two stack pointers are equal only if they're pointing to 16803 * the same stack frame, since fp-8 in foo != fp-8 in bar 16804 */ 16805 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 16806 case PTR_TO_ARENA: 16807 return true; 16808 default: 16809 return regs_exact(rold, rcur, idmap); 16810 } 16811 } 16812 16813 static struct bpf_reg_state unbound_reg; 16814 16815 static __init int unbound_reg_init(void) 16816 { 16817 __mark_reg_unknown_imprecise(&unbound_reg); 16818 unbound_reg.live |= REG_LIVE_READ; 16819 return 0; 16820 } 16821 late_initcall(unbound_reg_init); 16822 16823 static bool is_stack_all_misc(struct bpf_verifier_env *env, 16824 struct bpf_stack_state *stack) 16825 { 16826 u32 i; 16827 16828 for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) { 16829 if ((stack->slot_type[i] == STACK_MISC) || 16830 (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack)) 16831 continue; 16832 return false; 16833 } 16834 16835 return true; 16836 } 16837 16838 static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env, 16839 struct bpf_stack_state *stack) 16840 { 16841 if (is_spilled_scalar_reg64(stack)) 16842 return &stack->spilled_ptr; 16843 16844 if (is_stack_all_misc(env, stack)) 16845 return &unbound_reg; 16846 16847 return NULL; 16848 } 16849 16850 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 16851 struct bpf_func_state *cur, struct bpf_idmap *idmap, 16852 enum exact_level exact) 16853 { 16854 int i, spi; 16855 16856 /* walk slots of the explored stack and ignore any additional 16857 * slots in the current stack, since explored(safe) state 16858 * didn't use them 16859 */ 16860 for (i = 0; i < old->allocated_stack; i++) { 16861 struct bpf_reg_state *old_reg, *cur_reg; 16862 16863 spi = i / BPF_REG_SIZE; 16864 16865 if (exact != NOT_EXACT && 16866 old->stack[spi].slot_type[i % BPF_REG_SIZE] != 16867 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 16868 return false; 16869 16870 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) 16871 && exact == NOT_EXACT) { 16872 i += BPF_REG_SIZE - 1; 16873 /* explored state didn't use this */ 16874 continue; 16875 } 16876 16877 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 16878 continue; 16879 16880 if (env->allow_uninit_stack && 16881 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 16882 continue; 16883 16884 /* explored stack has more populated slots than current stack 16885 * and these slots were used 16886 */ 16887 if (i >= cur->allocated_stack) 16888 return false; 16889 16890 /* 64-bit scalar spill vs all slots MISC and vice versa. 16891 * Load from all slots MISC produces unbound scalar. 16892 * Construct a fake register for such stack and call 16893 * regsafe() to ensure scalar ids are compared. 16894 */ 16895 old_reg = scalar_reg_for_stack(env, &old->stack[spi]); 16896 cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]); 16897 if (old_reg && cur_reg) { 16898 if (!regsafe(env, old_reg, cur_reg, idmap, exact)) 16899 return false; 16900 i += BPF_REG_SIZE - 1; 16901 continue; 16902 } 16903 16904 /* if old state was safe with misc data in the stack 16905 * it will be safe with zero-initialized stack. 16906 * The opposite is not true 16907 */ 16908 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 16909 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 16910 continue; 16911 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 16912 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 16913 /* Ex: old explored (safe) state has STACK_SPILL in 16914 * this stack slot, but current has STACK_MISC -> 16915 * this verifier states are not equivalent, 16916 * return false to continue verification of this path 16917 */ 16918 return false; 16919 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 16920 continue; 16921 /* Both old and cur are having same slot_type */ 16922 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 16923 case STACK_SPILL: 16924 /* when explored and current stack slot are both storing 16925 * spilled registers, check that stored pointers types 16926 * are the same as well. 16927 * Ex: explored safe path could have stored 16928 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 16929 * but current path has stored: 16930 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 16931 * such verifier states are not equivalent. 16932 * return false to continue verification of this path 16933 */ 16934 if (!regsafe(env, &old->stack[spi].spilled_ptr, 16935 &cur->stack[spi].spilled_ptr, idmap, exact)) 16936 return false; 16937 break; 16938 case STACK_DYNPTR: 16939 old_reg = &old->stack[spi].spilled_ptr; 16940 cur_reg = &cur->stack[spi].spilled_ptr; 16941 if (old_reg->dynptr.type != cur_reg->dynptr.type || 16942 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 16943 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 16944 return false; 16945 break; 16946 case STACK_ITER: 16947 old_reg = &old->stack[spi].spilled_ptr; 16948 cur_reg = &cur->stack[spi].spilled_ptr; 16949 /* iter.depth is not compared between states as it 16950 * doesn't matter for correctness and would otherwise 16951 * prevent convergence; we maintain it only to prevent 16952 * infinite loop check triggering, see 16953 * iter_active_depths_differ() 16954 */ 16955 if (old_reg->iter.btf != cur_reg->iter.btf || 16956 old_reg->iter.btf_id != cur_reg->iter.btf_id || 16957 old_reg->iter.state != cur_reg->iter.state || 16958 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 16959 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 16960 return false; 16961 break; 16962 case STACK_MISC: 16963 case STACK_ZERO: 16964 case STACK_INVALID: 16965 continue; 16966 /* Ensure that new unhandled slot types return false by default */ 16967 default: 16968 return false; 16969 } 16970 } 16971 return true; 16972 } 16973 16974 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 16975 struct bpf_idmap *idmap) 16976 { 16977 int i; 16978 16979 if (old->acquired_refs != cur->acquired_refs) 16980 return false; 16981 16982 for (i = 0; i < old->acquired_refs; i++) { 16983 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 16984 return false; 16985 } 16986 16987 return true; 16988 } 16989 16990 /* compare two verifier states 16991 * 16992 * all states stored in state_list are known to be valid, since 16993 * verifier reached 'bpf_exit' instruction through them 16994 * 16995 * this function is called when verifier exploring different branches of 16996 * execution popped from the state stack. If it sees an old state that has 16997 * more strict register state and more strict stack state then this execution 16998 * branch doesn't need to be explored further, since verifier already 16999 * concluded that more strict state leads to valid finish. 17000 * 17001 * Therefore two states are equivalent if register state is more conservative 17002 * and explored stack state is more conservative than the current one. 17003 * Example: 17004 * explored current 17005 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 17006 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 17007 * 17008 * In other words if current stack state (one being explored) has more 17009 * valid slots than old one that already passed validation, it means 17010 * the verifier can stop exploring and conclude that current state is valid too 17011 * 17012 * Similarly with registers. If explored state has register type as invalid 17013 * whereas register type in current state is meaningful, it means that 17014 * the current state will reach 'bpf_exit' instruction safely 17015 */ 17016 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 17017 struct bpf_func_state *cur, enum exact_level exact) 17018 { 17019 int i; 17020 17021 if (old->callback_depth > cur->callback_depth) 17022 return false; 17023 17024 for (i = 0; i < MAX_BPF_REG; i++) 17025 if (!regsafe(env, &old->regs[i], &cur->regs[i], 17026 &env->idmap_scratch, exact)) 17027 return false; 17028 17029 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) 17030 return false; 17031 17032 if (!refsafe(old, cur, &env->idmap_scratch)) 17033 return false; 17034 17035 return true; 17036 } 17037 17038 static void reset_idmap_scratch(struct bpf_verifier_env *env) 17039 { 17040 env->idmap_scratch.tmp_id_gen = env->id_gen; 17041 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 17042 } 17043 17044 static bool states_equal(struct bpf_verifier_env *env, 17045 struct bpf_verifier_state *old, 17046 struct bpf_verifier_state *cur, 17047 enum exact_level exact) 17048 { 17049 int i; 17050 17051 if (old->curframe != cur->curframe) 17052 return false; 17053 17054 reset_idmap_scratch(env); 17055 17056 /* Verification state from speculative execution simulation 17057 * must never prune a non-speculative execution one. 17058 */ 17059 if (old->speculative && !cur->speculative) 17060 return false; 17061 17062 if (old->active_lock.ptr != cur->active_lock.ptr) 17063 return false; 17064 17065 /* Old and cur active_lock's have to be either both present 17066 * or both absent. 17067 */ 17068 if (!!old->active_lock.id != !!cur->active_lock.id) 17069 return false; 17070 17071 if (old->active_lock.id && 17072 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch)) 17073 return false; 17074 17075 if (old->active_rcu_lock != cur->active_rcu_lock) 17076 return false; 17077 17078 if (old->active_preempt_lock != cur->active_preempt_lock) 17079 return false; 17080 17081 if (old->in_sleepable != cur->in_sleepable) 17082 return false; 17083 17084 /* for states to be equal callsites have to be the same 17085 * and all frame states need to be equivalent 17086 */ 17087 for (i = 0; i <= old->curframe; i++) { 17088 if (old->frame[i]->callsite != cur->frame[i]->callsite) 17089 return false; 17090 if (!func_states_equal(env, old->frame[i], cur->frame[i], exact)) 17091 return false; 17092 } 17093 return true; 17094 } 17095 17096 /* Return 0 if no propagation happened. Return negative error code if error 17097 * happened. Otherwise, return the propagated bit. 17098 */ 17099 static int propagate_liveness_reg(struct bpf_verifier_env *env, 17100 struct bpf_reg_state *reg, 17101 struct bpf_reg_state *parent_reg) 17102 { 17103 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 17104 u8 flag = reg->live & REG_LIVE_READ; 17105 int err; 17106 17107 /* When comes here, read flags of PARENT_REG or REG could be any of 17108 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 17109 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 17110 */ 17111 if (parent_flag == REG_LIVE_READ64 || 17112 /* Or if there is no read flag from REG. */ 17113 !flag || 17114 /* Or if the read flag from REG is the same as PARENT_REG. */ 17115 parent_flag == flag) 17116 return 0; 17117 17118 err = mark_reg_read(env, reg, parent_reg, flag); 17119 if (err) 17120 return err; 17121 17122 return flag; 17123 } 17124 17125 /* A write screens off any subsequent reads; but write marks come from the 17126 * straight-line code between a state and its parent. When we arrive at an 17127 * equivalent state (jump target or such) we didn't arrive by the straight-line 17128 * code, so read marks in the state must propagate to the parent regardless 17129 * of the state's write marks. That's what 'parent == state->parent' comparison 17130 * in mark_reg_read() is for. 17131 */ 17132 static int propagate_liveness(struct bpf_verifier_env *env, 17133 const struct bpf_verifier_state *vstate, 17134 struct bpf_verifier_state *vparent) 17135 { 17136 struct bpf_reg_state *state_reg, *parent_reg; 17137 struct bpf_func_state *state, *parent; 17138 int i, frame, err = 0; 17139 17140 if (vparent->curframe != vstate->curframe) { 17141 WARN(1, "propagate_live: parent frame %d current frame %d\n", 17142 vparent->curframe, vstate->curframe); 17143 return -EFAULT; 17144 } 17145 /* Propagate read liveness of registers... */ 17146 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 17147 for (frame = 0; frame <= vstate->curframe; frame++) { 17148 parent = vparent->frame[frame]; 17149 state = vstate->frame[frame]; 17150 parent_reg = parent->regs; 17151 state_reg = state->regs; 17152 /* We don't need to worry about FP liveness, it's read-only */ 17153 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 17154 err = propagate_liveness_reg(env, &state_reg[i], 17155 &parent_reg[i]); 17156 if (err < 0) 17157 return err; 17158 if (err == REG_LIVE_READ64) 17159 mark_insn_zext(env, &parent_reg[i]); 17160 } 17161 17162 /* Propagate stack slots. */ 17163 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 17164 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 17165 parent_reg = &parent->stack[i].spilled_ptr; 17166 state_reg = &state->stack[i].spilled_ptr; 17167 err = propagate_liveness_reg(env, state_reg, 17168 parent_reg); 17169 if (err < 0) 17170 return err; 17171 } 17172 } 17173 return 0; 17174 } 17175 17176 /* find precise scalars in the previous equivalent state and 17177 * propagate them into the current state 17178 */ 17179 static int propagate_precision(struct bpf_verifier_env *env, 17180 const struct bpf_verifier_state *old) 17181 { 17182 struct bpf_reg_state *state_reg; 17183 struct bpf_func_state *state; 17184 int i, err = 0, fr; 17185 bool first; 17186 17187 for (fr = old->curframe; fr >= 0; fr--) { 17188 state = old->frame[fr]; 17189 state_reg = state->regs; 17190 first = true; 17191 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 17192 if (state_reg->type != SCALAR_VALUE || 17193 !state_reg->precise || 17194 !(state_reg->live & REG_LIVE_READ)) 17195 continue; 17196 if (env->log.level & BPF_LOG_LEVEL2) { 17197 if (first) 17198 verbose(env, "frame %d: propagating r%d", fr, i); 17199 else 17200 verbose(env, ",r%d", i); 17201 } 17202 bt_set_frame_reg(&env->bt, fr, i); 17203 first = false; 17204 } 17205 17206 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 17207 if (!is_spilled_reg(&state->stack[i])) 17208 continue; 17209 state_reg = &state->stack[i].spilled_ptr; 17210 if (state_reg->type != SCALAR_VALUE || 17211 !state_reg->precise || 17212 !(state_reg->live & REG_LIVE_READ)) 17213 continue; 17214 if (env->log.level & BPF_LOG_LEVEL2) { 17215 if (first) 17216 verbose(env, "frame %d: propagating fp%d", 17217 fr, (-i - 1) * BPF_REG_SIZE); 17218 else 17219 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 17220 } 17221 bt_set_frame_slot(&env->bt, fr, i); 17222 first = false; 17223 } 17224 if (!first) 17225 verbose(env, "\n"); 17226 } 17227 17228 err = mark_chain_precision_batch(env); 17229 if (err < 0) 17230 return err; 17231 17232 return 0; 17233 } 17234 17235 static bool states_maybe_looping(struct bpf_verifier_state *old, 17236 struct bpf_verifier_state *cur) 17237 { 17238 struct bpf_func_state *fold, *fcur; 17239 int i, fr = cur->curframe; 17240 17241 if (old->curframe != fr) 17242 return false; 17243 17244 fold = old->frame[fr]; 17245 fcur = cur->frame[fr]; 17246 for (i = 0; i < MAX_BPF_REG; i++) 17247 if (memcmp(&fold->regs[i], &fcur->regs[i], 17248 offsetof(struct bpf_reg_state, parent))) 17249 return false; 17250 return true; 17251 } 17252 17253 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 17254 { 17255 return env->insn_aux_data[insn_idx].is_iter_next; 17256 } 17257 17258 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 17259 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 17260 * states to match, which otherwise would look like an infinite loop. So while 17261 * iter_next() calls are taken care of, we still need to be careful and 17262 * prevent erroneous and too eager declaration of "ininite loop", when 17263 * iterators are involved. 17264 * 17265 * Here's a situation in pseudo-BPF assembly form: 17266 * 17267 * 0: again: ; set up iter_next() call args 17268 * 1: r1 = &it ; <CHECKPOINT HERE> 17269 * 2: call bpf_iter_num_next ; this is iter_next() call 17270 * 3: if r0 == 0 goto done 17271 * 4: ... something useful here ... 17272 * 5: goto again ; another iteration 17273 * 6: done: 17274 * 7: r1 = &it 17275 * 8: call bpf_iter_num_destroy ; clean up iter state 17276 * 9: exit 17277 * 17278 * This is a typical loop. Let's assume that we have a prune point at 1:, 17279 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 17280 * again`, assuming other heuristics don't get in a way). 17281 * 17282 * When we first time come to 1:, let's say we have some state X. We proceed 17283 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 17284 * Now we come back to validate that forked ACTIVE state. We proceed through 17285 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 17286 * are converging. But the problem is that we don't know that yet, as this 17287 * convergence has to happen at iter_next() call site only. So if nothing is 17288 * done, at 1: verifier will use bounded loop logic and declare infinite 17289 * looping (and would be *technically* correct, if not for iterator's 17290 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 17291 * don't want that. So what we do in process_iter_next_call() when we go on 17292 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 17293 * a different iteration. So when we suspect an infinite loop, we additionally 17294 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 17295 * pretend we are not looping and wait for next iter_next() call. 17296 * 17297 * This only applies to ACTIVE state. In DRAINED state we don't expect to 17298 * loop, because that would actually mean infinite loop, as DRAINED state is 17299 * "sticky", and so we'll keep returning into the same instruction with the 17300 * same state (at least in one of possible code paths). 17301 * 17302 * This approach allows to keep infinite loop heuristic even in the face of 17303 * active iterator. E.g., C snippet below is and will be detected as 17304 * inifintely looping: 17305 * 17306 * struct bpf_iter_num it; 17307 * int *p, x; 17308 * 17309 * bpf_iter_num_new(&it, 0, 10); 17310 * while ((p = bpf_iter_num_next(&t))) { 17311 * x = p; 17312 * while (x--) {} // <<-- infinite loop here 17313 * } 17314 * 17315 */ 17316 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 17317 { 17318 struct bpf_reg_state *slot, *cur_slot; 17319 struct bpf_func_state *state; 17320 int i, fr; 17321 17322 for (fr = old->curframe; fr >= 0; fr--) { 17323 state = old->frame[fr]; 17324 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 17325 if (state->stack[i].slot_type[0] != STACK_ITER) 17326 continue; 17327 17328 slot = &state->stack[i].spilled_ptr; 17329 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 17330 continue; 17331 17332 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 17333 if (cur_slot->iter.depth != slot->iter.depth) 17334 return true; 17335 } 17336 } 17337 return false; 17338 } 17339 17340 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 17341 { 17342 struct bpf_verifier_state_list *new_sl; 17343 struct bpf_verifier_state_list *sl, **pprev; 17344 struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry; 17345 int i, j, n, err, states_cnt = 0; 17346 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); 17347 bool add_new_state = force_new_state; 17348 bool force_exact; 17349 17350 /* bpf progs typically have pruning point every 4 instructions 17351 * http://vger.kernel.org/bpfconf2019.html#session-1 17352 * Do not add new state for future pruning if the verifier hasn't seen 17353 * at least 2 jumps and at least 8 instructions. 17354 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 17355 * In tests that amounts to up to 50% reduction into total verifier 17356 * memory consumption and 20% verifier time speedup. 17357 */ 17358 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 17359 env->insn_processed - env->prev_insn_processed >= 8) 17360 add_new_state = true; 17361 17362 pprev = explored_state(env, insn_idx); 17363 sl = *pprev; 17364 17365 clean_live_states(env, insn_idx, cur); 17366 17367 while (sl) { 17368 states_cnt++; 17369 if (sl->state.insn_idx != insn_idx) 17370 goto next; 17371 17372 if (sl->state.branches) { 17373 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 17374 17375 if (frame->in_async_callback_fn && 17376 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 17377 /* Different async_entry_cnt means that the verifier is 17378 * processing another entry into async callback. 17379 * Seeing the same state is not an indication of infinite 17380 * loop or infinite recursion. 17381 * But finding the same state doesn't mean that it's safe 17382 * to stop processing the current state. The previous state 17383 * hasn't yet reached bpf_exit, since state.branches > 0. 17384 * Checking in_async_callback_fn alone is not enough either. 17385 * Since the verifier still needs to catch infinite loops 17386 * inside async callbacks. 17387 */ 17388 goto skip_inf_loop_check; 17389 } 17390 /* BPF open-coded iterators loop detection is special. 17391 * states_maybe_looping() logic is too simplistic in detecting 17392 * states that *might* be equivalent, because it doesn't know 17393 * about ID remapping, so don't even perform it. 17394 * See process_iter_next_call() and iter_active_depths_differ() 17395 * for overview of the logic. When current and one of parent 17396 * states are detected as equivalent, it's a good thing: we prove 17397 * convergence and can stop simulating further iterations. 17398 * It's safe to assume that iterator loop will finish, taking into 17399 * account iter_next() contract of eventually returning 17400 * sticky NULL result. 17401 * 17402 * Note, that states have to be compared exactly in this case because 17403 * read and precision marks might not be finalized inside the loop. 17404 * E.g. as in the program below: 17405 * 17406 * 1. r7 = -16 17407 * 2. r6 = bpf_get_prandom_u32() 17408 * 3. while (bpf_iter_num_next(&fp[-8])) { 17409 * 4. if (r6 != 42) { 17410 * 5. r7 = -32 17411 * 6. r6 = bpf_get_prandom_u32() 17412 * 7. continue 17413 * 8. } 17414 * 9. r0 = r10 17415 * 10. r0 += r7 17416 * 11. r8 = *(u64 *)(r0 + 0) 17417 * 12. r6 = bpf_get_prandom_u32() 17418 * 13. } 17419 * 17420 * Here verifier would first visit path 1-3, create a checkpoint at 3 17421 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does 17422 * not have read or precision mark for r7 yet, thus inexact states 17423 * comparison would discard current state with r7=-32 17424 * => unsafe memory access at 11 would not be caught. 17425 */ 17426 if (is_iter_next_insn(env, insn_idx)) { 17427 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 17428 struct bpf_func_state *cur_frame; 17429 struct bpf_reg_state *iter_state, *iter_reg; 17430 int spi; 17431 17432 cur_frame = cur->frame[cur->curframe]; 17433 /* btf_check_iter_kfuncs() enforces that 17434 * iter state pointer is always the first arg 17435 */ 17436 iter_reg = &cur_frame->regs[BPF_REG_1]; 17437 /* current state is valid due to states_equal(), 17438 * so we can assume valid iter and reg state, 17439 * no need for extra (re-)validations 17440 */ 17441 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 17442 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 17443 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { 17444 update_loop_entry(cur, &sl->state); 17445 goto hit; 17446 } 17447 } 17448 goto skip_inf_loop_check; 17449 } 17450 if (is_may_goto_insn_at(env, insn_idx)) { 17451 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) { 17452 update_loop_entry(cur, &sl->state); 17453 goto hit; 17454 } 17455 goto skip_inf_loop_check; 17456 } 17457 if (calls_callback(env, insn_idx)) { 17458 if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) 17459 goto hit; 17460 goto skip_inf_loop_check; 17461 } 17462 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 17463 if (states_maybe_looping(&sl->state, cur) && 17464 states_equal(env, &sl->state, cur, EXACT) && 17465 !iter_active_depths_differ(&sl->state, cur) && 17466 sl->state.may_goto_depth == cur->may_goto_depth && 17467 sl->state.callback_unroll_depth == cur->callback_unroll_depth) { 17468 verbose_linfo(env, insn_idx, "; "); 17469 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 17470 verbose(env, "cur state:"); 17471 print_verifier_state(env, cur->frame[cur->curframe], true); 17472 verbose(env, "old state:"); 17473 print_verifier_state(env, sl->state.frame[cur->curframe], true); 17474 return -EINVAL; 17475 } 17476 /* if the verifier is processing a loop, avoid adding new state 17477 * too often, since different loop iterations have distinct 17478 * states and may not help future pruning. 17479 * This threshold shouldn't be too low to make sure that 17480 * a loop with large bound will be rejected quickly. 17481 * The most abusive loop will be: 17482 * r1 += 1 17483 * if r1 < 1000000 goto pc-2 17484 * 1M insn_procssed limit / 100 == 10k peak states. 17485 * This threshold shouldn't be too high either, since states 17486 * at the end of the loop are likely to be useful in pruning. 17487 */ 17488 skip_inf_loop_check: 17489 if (!force_new_state && 17490 env->jmps_processed - env->prev_jmps_processed < 20 && 17491 env->insn_processed - env->prev_insn_processed < 100) 17492 add_new_state = false; 17493 goto miss; 17494 } 17495 /* If sl->state is a part of a loop and this loop's entry is a part of 17496 * current verification path then states have to be compared exactly. 17497 * 'force_exact' is needed to catch the following case: 17498 * 17499 * initial Here state 'succ' was processed first, 17500 * | it was eventually tracked to produce a 17501 * V state identical to 'hdr'. 17502 * .---------> hdr All branches from 'succ' had been explored 17503 * | | and thus 'succ' has its .branches == 0. 17504 * | V 17505 * | .------... Suppose states 'cur' and 'succ' correspond 17506 * | | | to the same instruction + callsites. 17507 * | V V In such case it is necessary to check 17508 * | ... ... if 'succ' and 'cur' are states_equal(). 17509 * | | | If 'succ' and 'cur' are a part of the 17510 * | V V same loop exact flag has to be set. 17511 * | succ <- cur To check if that is the case, verify 17512 * | | if loop entry of 'succ' is in current 17513 * | V DFS path. 17514 * | ... 17515 * | | 17516 * '----' 17517 * 17518 * Additional details are in the comment before get_loop_entry(). 17519 */ 17520 loop_entry = get_loop_entry(&sl->state); 17521 force_exact = loop_entry && loop_entry->branches > 0; 17522 if (states_equal(env, &sl->state, cur, force_exact ? RANGE_WITHIN : NOT_EXACT)) { 17523 if (force_exact) 17524 update_loop_entry(cur, loop_entry); 17525 hit: 17526 sl->hit_cnt++; 17527 /* reached equivalent register/stack state, 17528 * prune the search. 17529 * Registers read by the continuation are read by us. 17530 * If we have any write marks in env->cur_state, they 17531 * will prevent corresponding reads in the continuation 17532 * from reaching our parent (an explored_state). Our 17533 * own state will get the read marks recorded, but 17534 * they'll be immediately forgotten as we're pruning 17535 * this state and will pop a new one. 17536 */ 17537 err = propagate_liveness(env, &sl->state, cur); 17538 17539 /* if previous state reached the exit with precision and 17540 * current state is equivalent to it (except precision marks) 17541 * the precision needs to be propagated back in 17542 * the current state. 17543 */ 17544 if (is_jmp_point(env, env->insn_idx)) 17545 err = err ? : push_jmp_history(env, cur, 0); 17546 err = err ? : propagate_precision(env, &sl->state); 17547 if (err) 17548 return err; 17549 return 1; 17550 } 17551 miss: 17552 /* when new state is not going to be added do not increase miss count. 17553 * Otherwise several loop iterations will remove the state 17554 * recorded earlier. The goal of these heuristics is to have 17555 * states from some iterations of the loop (some in the beginning 17556 * and some at the end) to help pruning. 17557 */ 17558 if (add_new_state) 17559 sl->miss_cnt++; 17560 /* heuristic to determine whether this state is beneficial 17561 * to keep checking from state equivalence point of view. 17562 * Higher numbers increase max_states_per_insn and verification time, 17563 * but do not meaningfully decrease insn_processed. 17564 * 'n' controls how many times state could miss before eviction. 17565 * Use bigger 'n' for checkpoints because evicting checkpoint states 17566 * too early would hinder iterator convergence. 17567 */ 17568 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; 17569 if (sl->miss_cnt > sl->hit_cnt * n + n) { 17570 /* the state is unlikely to be useful. Remove it to 17571 * speed up verification 17572 */ 17573 *pprev = sl->next; 17574 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE && 17575 !sl->state.used_as_loop_entry) { 17576 u32 br = sl->state.branches; 17577 17578 WARN_ONCE(br, 17579 "BUG live_done but branches_to_explore %d\n", 17580 br); 17581 free_verifier_state(&sl->state, false); 17582 kfree(sl); 17583 env->peak_states--; 17584 } else { 17585 /* cannot free this state, since parentage chain may 17586 * walk it later. Add it for free_list instead to 17587 * be freed at the end of verification 17588 */ 17589 sl->next = env->free_list; 17590 env->free_list = sl; 17591 } 17592 sl = *pprev; 17593 continue; 17594 } 17595 next: 17596 pprev = &sl->next; 17597 sl = *pprev; 17598 } 17599 17600 if (env->max_states_per_insn < states_cnt) 17601 env->max_states_per_insn = states_cnt; 17602 17603 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 17604 return 0; 17605 17606 if (!add_new_state) 17607 return 0; 17608 17609 /* There were no equivalent states, remember the current one. 17610 * Technically the current state is not proven to be safe yet, 17611 * but it will either reach outer most bpf_exit (which means it's safe) 17612 * or it will be rejected. When there are no loops the verifier won't be 17613 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 17614 * again on the way to bpf_exit. 17615 * When looping the sl->state.branches will be > 0 and this state 17616 * will not be considered for equivalence until branches == 0. 17617 */ 17618 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 17619 if (!new_sl) 17620 return -ENOMEM; 17621 env->total_states++; 17622 env->peak_states++; 17623 env->prev_jmps_processed = env->jmps_processed; 17624 env->prev_insn_processed = env->insn_processed; 17625 17626 /* forget precise markings we inherited, see __mark_chain_precision */ 17627 if (env->bpf_capable) 17628 mark_all_scalars_imprecise(env, cur); 17629 17630 /* add new state to the head of linked list */ 17631 new = &new_sl->state; 17632 err = copy_verifier_state(new, cur); 17633 if (err) { 17634 free_verifier_state(new, false); 17635 kfree(new_sl); 17636 return err; 17637 } 17638 new->insn_idx = insn_idx; 17639 WARN_ONCE(new->branches != 1, 17640 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 17641 17642 cur->parent = new; 17643 cur->first_insn_idx = insn_idx; 17644 cur->dfs_depth = new->dfs_depth + 1; 17645 clear_jmp_history(cur); 17646 new_sl->next = *explored_state(env, insn_idx); 17647 *explored_state(env, insn_idx) = new_sl; 17648 /* connect new state to parentage chain. Current frame needs all 17649 * registers connected. Only r6 - r9 of the callers are alive (pushed 17650 * to the stack implicitly by JITs) so in callers' frames connect just 17651 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 17652 * the state of the call instruction (with WRITTEN set), and r0 comes 17653 * from callee with its full parentage chain, anyway. 17654 */ 17655 /* clear write marks in current state: the writes we did are not writes 17656 * our child did, so they don't screen off its reads from us. 17657 * (There are no read marks in current state, because reads always mark 17658 * their parent and current state never has children yet. Only 17659 * explored_states can get read marks.) 17660 */ 17661 for (j = 0; j <= cur->curframe; j++) { 17662 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 17663 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 17664 for (i = 0; i < BPF_REG_FP; i++) 17665 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 17666 } 17667 17668 /* all stack frames are accessible from callee, clear them all */ 17669 for (j = 0; j <= cur->curframe; j++) { 17670 struct bpf_func_state *frame = cur->frame[j]; 17671 struct bpf_func_state *newframe = new->frame[j]; 17672 17673 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 17674 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 17675 frame->stack[i].spilled_ptr.parent = 17676 &newframe->stack[i].spilled_ptr; 17677 } 17678 } 17679 return 0; 17680 } 17681 17682 /* Return true if it's OK to have the same insn return a different type. */ 17683 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 17684 { 17685 switch (base_type(type)) { 17686 case PTR_TO_CTX: 17687 case PTR_TO_SOCKET: 17688 case PTR_TO_SOCK_COMMON: 17689 case PTR_TO_TCP_SOCK: 17690 case PTR_TO_XDP_SOCK: 17691 case PTR_TO_BTF_ID: 17692 case PTR_TO_ARENA: 17693 return false; 17694 default: 17695 return true; 17696 } 17697 } 17698 17699 /* If an instruction was previously used with particular pointer types, then we 17700 * need to be careful to avoid cases such as the below, where it may be ok 17701 * for one branch accessing the pointer, but not ok for the other branch: 17702 * 17703 * R1 = sock_ptr 17704 * goto X; 17705 * ... 17706 * R1 = some_other_valid_ptr; 17707 * goto X; 17708 * ... 17709 * R2 = *(u32 *)(R1 + 0); 17710 */ 17711 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 17712 { 17713 return src != prev && (!reg_type_mismatch_ok(src) || 17714 !reg_type_mismatch_ok(prev)); 17715 } 17716 17717 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 17718 bool allow_trust_mismatch) 17719 { 17720 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 17721 17722 if (*prev_type == NOT_INIT) { 17723 /* Saw a valid insn 17724 * dst_reg = *(u32 *)(src_reg + off) 17725 * save type to validate intersecting paths 17726 */ 17727 *prev_type = type; 17728 } else if (reg_type_mismatch(type, *prev_type)) { 17729 /* Abuser program is trying to use the same insn 17730 * dst_reg = *(u32*) (src_reg + off) 17731 * with different pointer types: 17732 * src_reg == ctx in one branch and 17733 * src_reg == stack|map in some other branch. 17734 * Reject it. 17735 */ 17736 if (allow_trust_mismatch && 17737 base_type(type) == PTR_TO_BTF_ID && 17738 base_type(*prev_type) == PTR_TO_BTF_ID) { 17739 /* 17740 * Have to support a use case when one path through 17741 * the program yields TRUSTED pointer while another 17742 * is UNTRUSTED. Fallback to UNTRUSTED to generate 17743 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 17744 */ 17745 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 17746 } else { 17747 verbose(env, "same insn cannot be used with different pointers\n"); 17748 return -EINVAL; 17749 } 17750 } 17751 17752 return 0; 17753 } 17754 17755 static int do_check(struct bpf_verifier_env *env) 17756 { 17757 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 17758 struct bpf_verifier_state *state = env->cur_state; 17759 struct bpf_insn *insns = env->prog->insnsi; 17760 struct bpf_reg_state *regs; 17761 int insn_cnt = env->prog->len; 17762 bool do_print_state = false; 17763 int prev_insn_idx = -1; 17764 17765 for (;;) { 17766 bool exception_exit = false; 17767 struct bpf_insn *insn; 17768 u8 class; 17769 int err; 17770 17771 /* reset current history entry on each new instruction */ 17772 env->cur_hist_ent = NULL; 17773 17774 env->prev_insn_idx = prev_insn_idx; 17775 if (env->insn_idx >= insn_cnt) { 17776 verbose(env, "invalid insn idx %d insn_cnt %d\n", 17777 env->insn_idx, insn_cnt); 17778 return -EFAULT; 17779 } 17780 17781 insn = &insns[env->insn_idx]; 17782 class = BPF_CLASS(insn->code); 17783 17784 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 17785 verbose(env, 17786 "BPF program is too large. Processed %d insn\n", 17787 env->insn_processed); 17788 return -E2BIG; 17789 } 17790 17791 state->last_insn_idx = env->prev_insn_idx; 17792 17793 if (is_prune_point(env, env->insn_idx)) { 17794 err = is_state_visited(env, env->insn_idx); 17795 if (err < 0) 17796 return err; 17797 if (err == 1) { 17798 /* found equivalent state, can prune the search */ 17799 if (env->log.level & BPF_LOG_LEVEL) { 17800 if (do_print_state) 17801 verbose(env, "\nfrom %d to %d%s: safe\n", 17802 env->prev_insn_idx, env->insn_idx, 17803 env->cur_state->speculative ? 17804 " (speculative execution)" : ""); 17805 else 17806 verbose(env, "%d: safe\n", env->insn_idx); 17807 } 17808 goto process_bpf_exit; 17809 } 17810 } 17811 17812 if (is_jmp_point(env, env->insn_idx)) { 17813 err = push_jmp_history(env, state, 0); 17814 if (err) 17815 return err; 17816 } 17817 17818 if (signal_pending(current)) 17819 return -EAGAIN; 17820 17821 if (need_resched()) 17822 cond_resched(); 17823 17824 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 17825 verbose(env, "\nfrom %d to %d%s:", 17826 env->prev_insn_idx, env->insn_idx, 17827 env->cur_state->speculative ? 17828 " (speculative execution)" : ""); 17829 print_verifier_state(env, state->frame[state->curframe], true); 17830 do_print_state = false; 17831 } 17832 17833 if (env->log.level & BPF_LOG_LEVEL) { 17834 const struct bpf_insn_cbs cbs = { 17835 .cb_call = disasm_kfunc_name, 17836 .cb_print = verbose, 17837 .private_data = env, 17838 }; 17839 17840 if (verifier_state_scratched(env)) 17841 print_insn_state(env, state->frame[state->curframe]); 17842 17843 verbose_linfo(env, env->insn_idx, "; "); 17844 env->prev_log_pos = env->log.end_pos; 17845 verbose(env, "%d: ", env->insn_idx); 17846 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 17847 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 17848 env->prev_log_pos = env->log.end_pos; 17849 } 17850 17851 if (bpf_prog_is_offloaded(env->prog->aux)) { 17852 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 17853 env->prev_insn_idx); 17854 if (err) 17855 return err; 17856 } 17857 17858 regs = cur_regs(env); 17859 sanitize_mark_insn_seen(env); 17860 prev_insn_idx = env->insn_idx; 17861 17862 if (class == BPF_ALU || class == BPF_ALU64) { 17863 err = check_alu_op(env, insn); 17864 if (err) 17865 return err; 17866 17867 } else if (class == BPF_LDX) { 17868 enum bpf_reg_type src_reg_type; 17869 17870 /* check for reserved fields is already done */ 17871 17872 /* check src operand */ 17873 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17874 if (err) 17875 return err; 17876 17877 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 17878 if (err) 17879 return err; 17880 17881 src_reg_type = regs[insn->src_reg].type; 17882 17883 /* check that memory (src_reg + off) is readable, 17884 * the state of dst_reg will be updated by this func 17885 */ 17886 err = check_mem_access(env, env->insn_idx, insn->src_reg, 17887 insn->off, BPF_SIZE(insn->code), 17888 BPF_READ, insn->dst_reg, false, 17889 BPF_MODE(insn->code) == BPF_MEMSX); 17890 err = err ?: save_aux_ptr_type(env, src_reg_type, true); 17891 err = err ?: reg_bounds_sanity_check(env, ®s[insn->dst_reg], "ldx"); 17892 if (err) 17893 return err; 17894 } else if (class == BPF_STX) { 17895 enum bpf_reg_type dst_reg_type; 17896 17897 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 17898 err = check_atomic(env, env->insn_idx, insn); 17899 if (err) 17900 return err; 17901 env->insn_idx++; 17902 continue; 17903 } 17904 17905 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 17906 verbose(env, "BPF_STX uses reserved fields\n"); 17907 return -EINVAL; 17908 } 17909 17910 /* check src1 operand */ 17911 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17912 if (err) 17913 return err; 17914 /* check src2 operand */ 17915 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 17916 if (err) 17917 return err; 17918 17919 dst_reg_type = regs[insn->dst_reg].type; 17920 17921 /* check that memory (dst_reg + off) is writeable */ 17922 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 17923 insn->off, BPF_SIZE(insn->code), 17924 BPF_WRITE, insn->src_reg, false, false); 17925 if (err) 17926 return err; 17927 17928 err = save_aux_ptr_type(env, dst_reg_type, false); 17929 if (err) 17930 return err; 17931 } else if (class == BPF_ST) { 17932 enum bpf_reg_type dst_reg_type; 17933 17934 if (BPF_MODE(insn->code) != BPF_MEM || 17935 insn->src_reg != BPF_REG_0) { 17936 verbose(env, "BPF_ST uses reserved fields\n"); 17937 return -EINVAL; 17938 } 17939 /* check src operand */ 17940 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 17941 if (err) 17942 return err; 17943 17944 dst_reg_type = regs[insn->dst_reg].type; 17945 17946 /* check that memory (dst_reg + off) is writeable */ 17947 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 17948 insn->off, BPF_SIZE(insn->code), 17949 BPF_WRITE, -1, false, false); 17950 if (err) 17951 return err; 17952 17953 err = save_aux_ptr_type(env, dst_reg_type, false); 17954 if (err) 17955 return err; 17956 } else if (class == BPF_JMP || class == BPF_JMP32) { 17957 u8 opcode = BPF_OP(insn->code); 17958 17959 env->jmps_processed++; 17960 if (opcode == BPF_CALL) { 17961 if (BPF_SRC(insn->code) != BPF_K || 17962 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 17963 && insn->off != 0) || 17964 (insn->src_reg != BPF_REG_0 && 17965 insn->src_reg != BPF_PSEUDO_CALL && 17966 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 17967 insn->dst_reg != BPF_REG_0 || 17968 class == BPF_JMP32) { 17969 verbose(env, "BPF_CALL uses reserved fields\n"); 17970 return -EINVAL; 17971 } 17972 17973 if (env->cur_state->active_lock.ptr) { 17974 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 17975 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 17976 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 17977 verbose(env, "function calls are not allowed while holding a lock\n"); 17978 return -EINVAL; 17979 } 17980 } 17981 if (insn->src_reg == BPF_PSEUDO_CALL) { 17982 err = check_func_call(env, insn, &env->insn_idx); 17983 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 17984 err = check_kfunc_call(env, insn, &env->insn_idx); 17985 if (!err && is_bpf_throw_kfunc(insn)) { 17986 exception_exit = true; 17987 goto process_bpf_exit_full; 17988 } 17989 } else { 17990 err = check_helper_call(env, insn, &env->insn_idx); 17991 } 17992 if (err) 17993 return err; 17994 17995 mark_reg_scratched(env, BPF_REG_0); 17996 } else if (opcode == BPF_JA) { 17997 if (BPF_SRC(insn->code) != BPF_K || 17998 insn->src_reg != BPF_REG_0 || 17999 insn->dst_reg != BPF_REG_0 || 18000 (class == BPF_JMP && insn->imm != 0) || 18001 (class == BPF_JMP32 && insn->off != 0)) { 18002 verbose(env, "BPF_JA uses reserved fields\n"); 18003 return -EINVAL; 18004 } 18005 18006 if (class == BPF_JMP) 18007 env->insn_idx += insn->off + 1; 18008 else 18009 env->insn_idx += insn->imm + 1; 18010 continue; 18011 18012 } else if (opcode == BPF_EXIT) { 18013 if (BPF_SRC(insn->code) != BPF_K || 18014 insn->imm != 0 || 18015 insn->src_reg != BPF_REG_0 || 18016 insn->dst_reg != BPF_REG_0 || 18017 class == BPF_JMP32) { 18018 verbose(env, "BPF_EXIT uses reserved fields\n"); 18019 return -EINVAL; 18020 } 18021 process_bpf_exit_full: 18022 if (env->cur_state->active_lock.ptr && !env->cur_state->curframe) { 18023 verbose(env, "bpf_spin_unlock is missing\n"); 18024 return -EINVAL; 18025 } 18026 18027 if (env->cur_state->active_rcu_lock && !env->cur_state->curframe) { 18028 verbose(env, "bpf_rcu_read_unlock is missing\n"); 18029 return -EINVAL; 18030 } 18031 18032 if (env->cur_state->active_preempt_lock && !env->cur_state->curframe) { 18033 verbose(env, "%d bpf_preempt_enable%s missing\n", 18034 env->cur_state->active_preempt_lock, 18035 env->cur_state->active_preempt_lock == 1 ? " is" : "(s) are"); 18036 return -EINVAL; 18037 } 18038 18039 /* We must do check_reference_leak here before 18040 * prepare_func_exit to handle the case when 18041 * state->curframe > 0, it may be a callback 18042 * function, for which reference_state must 18043 * match caller reference state when it exits. 18044 */ 18045 err = check_reference_leak(env, exception_exit); 18046 if (err) 18047 return err; 18048 18049 /* The side effect of the prepare_func_exit 18050 * which is being skipped is that it frees 18051 * bpf_func_state. Typically, process_bpf_exit 18052 * will only be hit with outermost exit. 18053 * copy_verifier_state in pop_stack will handle 18054 * freeing of any extra bpf_func_state left over 18055 * from not processing all nested function 18056 * exits. We also skip return code checks as 18057 * they are not needed for exceptional exits. 18058 */ 18059 if (exception_exit) 18060 goto process_bpf_exit; 18061 18062 if (state->curframe) { 18063 /* exit from nested function */ 18064 err = prepare_func_exit(env, &env->insn_idx); 18065 if (err) 18066 return err; 18067 do_print_state = true; 18068 continue; 18069 } 18070 18071 err = check_return_code(env, BPF_REG_0, "R0"); 18072 if (err) 18073 return err; 18074 process_bpf_exit: 18075 mark_verifier_state_scratched(env); 18076 update_branch_counts(env, env->cur_state); 18077 err = pop_stack(env, &prev_insn_idx, 18078 &env->insn_idx, pop_log); 18079 if (err < 0) { 18080 if (err != -ENOENT) 18081 return err; 18082 break; 18083 } else { 18084 do_print_state = true; 18085 continue; 18086 } 18087 } else { 18088 err = check_cond_jmp_op(env, insn, &env->insn_idx); 18089 if (err) 18090 return err; 18091 } 18092 } else if (class == BPF_LD) { 18093 u8 mode = BPF_MODE(insn->code); 18094 18095 if (mode == BPF_ABS || mode == BPF_IND) { 18096 err = check_ld_abs(env, insn); 18097 if (err) 18098 return err; 18099 18100 } else if (mode == BPF_IMM) { 18101 err = check_ld_imm(env, insn); 18102 if (err) 18103 return err; 18104 18105 env->insn_idx++; 18106 sanitize_mark_insn_seen(env); 18107 } else { 18108 verbose(env, "invalid BPF_LD mode\n"); 18109 return -EINVAL; 18110 } 18111 } else { 18112 verbose(env, "unknown insn class %d\n", class); 18113 return -EINVAL; 18114 } 18115 18116 env->insn_idx++; 18117 } 18118 18119 return 0; 18120 } 18121 18122 static int find_btf_percpu_datasec(struct btf *btf) 18123 { 18124 const struct btf_type *t; 18125 const char *tname; 18126 int i, n; 18127 18128 /* 18129 * Both vmlinux and module each have their own ".data..percpu" 18130 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 18131 * types to look at only module's own BTF types. 18132 */ 18133 n = btf_nr_types(btf); 18134 if (btf_is_module(btf)) 18135 i = btf_nr_types(btf_vmlinux); 18136 else 18137 i = 1; 18138 18139 for(; i < n; i++) { 18140 t = btf_type_by_id(btf, i); 18141 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 18142 continue; 18143 18144 tname = btf_name_by_offset(btf, t->name_off); 18145 if (!strcmp(tname, ".data..percpu")) 18146 return i; 18147 } 18148 18149 return -ENOENT; 18150 } 18151 18152 /* replace pseudo btf_id with kernel symbol address */ 18153 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 18154 struct bpf_insn *insn, 18155 struct bpf_insn_aux_data *aux) 18156 { 18157 const struct btf_var_secinfo *vsi; 18158 const struct btf_type *datasec; 18159 struct btf_mod_pair *btf_mod; 18160 const struct btf_type *t; 18161 const char *sym_name; 18162 bool percpu = false; 18163 u32 type, id = insn->imm; 18164 struct btf *btf; 18165 s32 datasec_id; 18166 u64 addr; 18167 int i, btf_fd, err; 18168 18169 btf_fd = insn[1].imm; 18170 if (btf_fd) { 18171 btf = btf_get_by_fd(btf_fd); 18172 if (IS_ERR(btf)) { 18173 verbose(env, "invalid module BTF object FD specified.\n"); 18174 return -EINVAL; 18175 } 18176 } else { 18177 if (!btf_vmlinux) { 18178 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 18179 return -EINVAL; 18180 } 18181 btf = btf_vmlinux; 18182 btf_get(btf); 18183 } 18184 18185 t = btf_type_by_id(btf, id); 18186 if (!t) { 18187 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 18188 err = -ENOENT; 18189 goto err_put; 18190 } 18191 18192 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 18193 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 18194 err = -EINVAL; 18195 goto err_put; 18196 } 18197 18198 sym_name = btf_name_by_offset(btf, t->name_off); 18199 addr = kallsyms_lookup_name(sym_name); 18200 if (!addr) { 18201 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 18202 sym_name); 18203 err = -ENOENT; 18204 goto err_put; 18205 } 18206 insn[0].imm = (u32)addr; 18207 insn[1].imm = addr >> 32; 18208 18209 if (btf_type_is_func(t)) { 18210 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 18211 aux->btf_var.mem_size = 0; 18212 goto check_btf; 18213 } 18214 18215 datasec_id = find_btf_percpu_datasec(btf); 18216 if (datasec_id > 0) { 18217 datasec = btf_type_by_id(btf, datasec_id); 18218 for_each_vsi(i, datasec, vsi) { 18219 if (vsi->type == id) { 18220 percpu = true; 18221 break; 18222 } 18223 } 18224 } 18225 18226 type = t->type; 18227 t = btf_type_skip_modifiers(btf, type, NULL); 18228 if (percpu) { 18229 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 18230 aux->btf_var.btf = btf; 18231 aux->btf_var.btf_id = type; 18232 } else if (!btf_type_is_struct(t)) { 18233 const struct btf_type *ret; 18234 const char *tname; 18235 u32 tsize; 18236 18237 /* resolve the type size of ksym. */ 18238 ret = btf_resolve_size(btf, t, &tsize); 18239 if (IS_ERR(ret)) { 18240 tname = btf_name_by_offset(btf, t->name_off); 18241 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 18242 tname, PTR_ERR(ret)); 18243 err = -EINVAL; 18244 goto err_put; 18245 } 18246 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 18247 aux->btf_var.mem_size = tsize; 18248 } else { 18249 aux->btf_var.reg_type = PTR_TO_BTF_ID; 18250 aux->btf_var.btf = btf; 18251 aux->btf_var.btf_id = type; 18252 } 18253 check_btf: 18254 /* check whether we recorded this BTF (and maybe module) already */ 18255 for (i = 0; i < env->used_btf_cnt; i++) { 18256 if (env->used_btfs[i].btf == btf) { 18257 btf_put(btf); 18258 return 0; 18259 } 18260 } 18261 18262 if (env->used_btf_cnt >= MAX_USED_BTFS) { 18263 err = -E2BIG; 18264 goto err_put; 18265 } 18266 18267 btf_mod = &env->used_btfs[env->used_btf_cnt]; 18268 btf_mod->btf = btf; 18269 btf_mod->module = NULL; 18270 18271 /* if we reference variables from kernel module, bump its refcount */ 18272 if (btf_is_module(btf)) { 18273 btf_mod->module = btf_try_get_module(btf); 18274 if (!btf_mod->module) { 18275 err = -ENXIO; 18276 goto err_put; 18277 } 18278 } 18279 18280 env->used_btf_cnt++; 18281 18282 return 0; 18283 err_put: 18284 btf_put(btf); 18285 return err; 18286 } 18287 18288 static bool is_tracing_prog_type(enum bpf_prog_type type) 18289 { 18290 switch (type) { 18291 case BPF_PROG_TYPE_KPROBE: 18292 case BPF_PROG_TYPE_TRACEPOINT: 18293 case BPF_PROG_TYPE_PERF_EVENT: 18294 case BPF_PROG_TYPE_RAW_TRACEPOINT: 18295 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 18296 return true; 18297 default: 18298 return false; 18299 } 18300 } 18301 18302 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 18303 struct bpf_map *map, 18304 struct bpf_prog *prog) 18305 18306 { 18307 enum bpf_prog_type prog_type = resolve_prog_type(prog); 18308 18309 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 18310 btf_record_has_field(map->record, BPF_RB_ROOT)) { 18311 if (is_tracing_prog_type(prog_type)) { 18312 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 18313 return -EINVAL; 18314 } 18315 } 18316 18317 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 18318 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 18319 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 18320 return -EINVAL; 18321 } 18322 18323 if (is_tracing_prog_type(prog_type)) { 18324 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 18325 return -EINVAL; 18326 } 18327 } 18328 18329 if (btf_record_has_field(map->record, BPF_TIMER)) { 18330 if (is_tracing_prog_type(prog_type)) { 18331 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 18332 return -EINVAL; 18333 } 18334 } 18335 18336 if (btf_record_has_field(map->record, BPF_WORKQUEUE)) { 18337 if (is_tracing_prog_type(prog_type)) { 18338 verbose(env, "tracing progs cannot use bpf_wq yet\n"); 18339 return -EINVAL; 18340 } 18341 } 18342 18343 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 18344 !bpf_offload_prog_map_match(prog, map)) { 18345 verbose(env, "offload device mismatch between prog and map\n"); 18346 return -EINVAL; 18347 } 18348 18349 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 18350 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 18351 return -EINVAL; 18352 } 18353 18354 if (prog->sleepable) 18355 switch (map->map_type) { 18356 case BPF_MAP_TYPE_HASH: 18357 case BPF_MAP_TYPE_LRU_HASH: 18358 case BPF_MAP_TYPE_ARRAY: 18359 case BPF_MAP_TYPE_PERCPU_HASH: 18360 case BPF_MAP_TYPE_PERCPU_ARRAY: 18361 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 18362 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 18363 case BPF_MAP_TYPE_HASH_OF_MAPS: 18364 case BPF_MAP_TYPE_RINGBUF: 18365 case BPF_MAP_TYPE_USER_RINGBUF: 18366 case BPF_MAP_TYPE_INODE_STORAGE: 18367 case BPF_MAP_TYPE_SK_STORAGE: 18368 case BPF_MAP_TYPE_TASK_STORAGE: 18369 case BPF_MAP_TYPE_CGRP_STORAGE: 18370 case BPF_MAP_TYPE_QUEUE: 18371 case BPF_MAP_TYPE_STACK: 18372 case BPF_MAP_TYPE_ARENA: 18373 break; 18374 default: 18375 verbose(env, 18376 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 18377 return -EINVAL; 18378 } 18379 18380 return 0; 18381 } 18382 18383 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 18384 { 18385 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 18386 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 18387 } 18388 18389 /* find and rewrite pseudo imm in ld_imm64 instructions: 18390 * 18391 * 1. if it accesses map FD, replace it with actual map pointer. 18392 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 18393 * 18394 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 18395 */ 18396 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 18397 { 18398 struct bpf_insn *insn = env->prog->insnsi; 18399 int insn_cnt = env->prog->len; 18400 int i, j, err; 18401 18402 err = bpf_prog_calc_tag(env->prog); 18403 if (err) 18404 return err; 18405 18406 for (i = 0; i < insn_cnt; i++, insn++) { 18407 if (BPF_CLASS(insn->code) == BPF_LDX && 18408 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 18409 insn->imm != 0)) { 18410 verbose(env, "BPF_LDX uses reserved fields\n"); 18411 return -EINVAL; 18412 } 18413 18414 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 18415 struct bpf_insn_aux_data *aux; 18416 struct bpf_map *map; 18417 struct fd f; 18418 u64 addr; 18419 u32 fd; 18420 18421 if (i == insn_cnt - 1 || insn[1].code != 0 || 18422 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 18423 insn[1].off != 0) { 18424 verbose(env, "invalid bpf_ld_imm64 insn\n"); 18425 return -EINVAL; 18426 } 18427 18428 if (insn[0].src_reg == 0) 18429 /* valid generic load 64-bit imm */ 18430 goto next_insn; 18431 18432 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 18433 aux = &env->insn_aux_data[i]; 18434 err = check_pseudo_btf_id(env, insn, aux); 18435 if (err) 18436 return err; 18437 goto next_insn; 18438 } 18439 18440 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 18441 aux = &env->insn_aux_data[i]; 18442 aux->ptr_type = PTR_TO_FUNC; 18443 goto next_insn; 18444 } 18445 18446 /* In final convert_pseudo_ld_imm64() step, this is 18447 * converted into regular 64-bit imm load insn. 18448 */ 18449 switch (insn[0].src_reg) { 18450 case BPF_PSEUDO_MAP_VALUE: 18451 case BPF_PSEUDO_MAP_IDX_VALUE: 18452 break; 18453 case BPF_PSEUDO_MAP_FD: 18454 case BPF_PSEUDO_MAP_IDX: 18455 if (insn[1].imm == 0) 18456 break; 18457 fallthrough; 18458 default: 18459 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 18460 return -EINVAL; 18461 } 18462 18463 switch (insn[0].src_reg) { 18464 case BPF_PSEUDO_MAP_IDX_VALUE: 18465 case BPF_PSEUDO_MAP_IDX: 18466 if (bpfptr_is_null(env->fd_array)) { 18467 verbose(env, "fd_idx without fd_array is invalid\n"); 18468 return -EPROTO; 18469 } 18470 if (copy_from_bpfptr_offset(&fd, env->fd_array, 18471 insn[0].imm * sizeof(fd), 18472 sizeof(fd))) 18473 return -EFAULT; 18474 break; 18475 default: 18476 fd = insn[0].imm; 18477 break; 18478 } 18479 18480 f = fdget(fd); 18481 map = __bpf_map_get(f); 18482 if (IS_ERR(map)) { 18483 verbose(env, "fd %d is not pointing to valid bpf_map\n", fd); 18484 return PTR_ERR(map); 18485 } 18486 18487 err = check_map_prog_compatibility(env, map, env->prog); 18488 if (err) { 18489 fdput(f); 18490 return err; 18491 } 18492 18493 aux = &env->insn_aux_data[i]; 18494 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 18495 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 18496 addr = (unsigned long)map; 18497 } else { 18498 u32 off = insn[1].imm; 18499 18500 if (off >= BPF_MAX_VAR_OFF) { 18501 verbose(env, "direct value offset of %u is not allowed\n", off); 18502 fdput(f); 18503 return -EINVAL; 18504 } 18505 18506 if (!map->ops->map_direct_value_addr) { 18507 verbose(env, "no direct value access support for this map type\n"); 18508 fdput(f); 18509 return -EINVAL; 18510 } 18511 18512 err = map->ops->map_direct_value_addr(map, &addr, off); 18513 if (err) { 18514 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 18515 map->value_size, off); 18516 fdput(f); 18517 return err; 18518 } 18519 18520 aux->map_off = off; 18521 addr += off; 18522 } 18523 18524 insn[0].imm = (u32)addr; 18525 insn[1].imm = addr >> 32; 18526 18527 /* check whether we recorded this map already */ 18528 for (j = 0; j < env->used_map_cnt; j++) { 18529 if (env->used_maps[j] == map) { 18530 aux->map_index = j; 18531 fdput(f); 18532 goto next_insn; 18533 } 18534 } 18535 18536 if (env->used_map_cnt >= MAX_USED_MAPS) { 18537 verbose(env, "The total number of maps per program has reached the limit of %u\n", 18538 MAX_USED_MAPS); 18539 fdput(f); 18540 return -E2BIG; 18541 } 18542 18543 if (env->prog->sleepable) 18544 atomic64_inc(&map->sleepable_refcnt); 18545 /* hold the map. If the program is rejected by verifier, 18546 * the map will be released by release_maps() or it 18547 * will be used by the valid program until it's unloaded 18548 * and all maps are released in bpf_free_used_maps() 18549 */ 18550 bpf_map_inc(map); 18551 18552 aux->map_index = env->used_map_cnt; 18553 env->used_maps[env->used_map_cnt++] = map; 18554 18555 if (bpf_map_is_cgroup_storage(map) && 18556 bpf_cgroup_storage_assign(env->prog->aux, map)) { 18557 verbose(env, "only one cgroup storage of each type is allowed\n"); 18558 fdput(f); 18559 return -EBUSY; 18560 } 18561 if (map->map_type == BPF_MAP_TYPE_ARENA) { 18562 if (env->prog->aux->arena) { 18563 verbose(env, "Only one arena per program\n"); 18564 fdput(f); 18565 return -EBUSY; 18566 } 18567 if (!env->allow_ptr_leaks || !env->bpf_capable) { 18568 verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n"); 18569 fdput(f); 18570 return -EPERM; 18571 } 18572 if (!env->prog->jit_requested) { 18573 verbose(env, "JIT is required to use arena\n"); 18574 fdput(f); 18575 return -EOPNOTSUPP; 18576 } 18577 if (!bpf_jit_supports_arena()) { 18578 verbose(env, "JIT doesn't support arena\n"); 18579 fdput(f); 18580 return -EOPNOTSUPP; 18581 } 18582 env->prog->aux->arena = (void *)map; 18583 if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) { 18584 verbose(env, "arena's user address must be set via map_extra or mmap()\n"); 18585 fdput(f); 18586 return -EINVAL; 18587 } 18588 } 18589 18590 fdput(f); 18591 next_insn: 18592 insn++; 18593 i++; 18594 continue; 18595 } 18596 18597 /* Basic sanity check before we invest more work here. */ 18598 if (!bpf_opcode_in_insntable(insn->code)) { 18599 verbose(env, "unknown opcode %02x\n", insn->code); 18600 return -EINVAL; 18601 } 18602 } 18603 18604 /* now all pseudo BPF_LD_IMM64 instructions load valid 18605 * 'struct bpf_map *' into a register instead of user map_fd. 18606 * These pointers will be used later by verifier to validate map access. 18607 */ 18608 return 0; 18609 } 18610 18611 /* drop refcnt of maps used by the rejected program */ 18612 static void release_maps(struct bpf_verifier_env *env) 18613 { 18614 __bpf_free_used_maps(env->prog->aux, env->used_maps, 18615 env->used_map_cnt); 18616 } 18617 18618 /* drop refcnt of maps used by the rejected program */ 18619 static void release_btfs(struct bpf_verifier_env *env) 18620 { 18621 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 18622 env->used_btf_cnt); 18623 } 18624 18625 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 18626 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 18627 { 18628 struct bpf_insn *insn = env->prog->insnsi; 18629 int insn_cnt = env->prog->len; 18630 int i; 18631 18632 for (i = 0; i < insn_cnt; i++, insn++) { 18633 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 18634 continue; 18635 if (insn->src_reg == BPF_PSEUDO_FUNC) 18636 continue; 18637 insn->src_reg = 0; 18638 } 18639 } 18640 18641 /* single env->prog->insni[off] instruction was replaced with the range 18642 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 18643 * [0, off) and [off, end) to new locations, so the patched range stays zero 18644 */ 18645 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 18646 struct bpf_insn_aux_data *new_data, 18647 struct bpf_prog *new_prog, u32 off, u32 cnt) 18648 { 18649 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 18650 struct bpf_insn *insn = new_prog->insnsi; 18651 u32 old_seen = old_data[off].seen; 18652 u32 prog_len; 18653 int i; 18654 18655 /* aux info at OFF always needs adjustment, no matter fast path 18656 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 18657 * original insn at old prog. 18658 */ 18659 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 18660 18661 if (cnt == 1) 18662 return; 18663 prog_len = new_prog->len; 18664 18665 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 18666 memcpy(new_data + off + cnt - 1, old_data + off, 18667 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 18668 for (i = off; i < off + cnt - 1; i++) { 18669 /* Expand insni[off]'s seen count to the patched range. */ 18670 new_data[i].seen = old_seen; 18671 new_data[i].zext_dst = insn_has_def32(env, insn + i); 18672 } 18673 env->insn_aux_data = new_data; 18674 vfree(old_data); 18675 } 18676 18677 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 18678 { 18679 int i; 18680 18681 if (len == 1) 18682 return; 18683 /* NOTE: fake 'exit' subprog should be updated as well. */ 18684 for (i = 0; i <= env->subprog_cnt; i++) { 18685 if (env->subprog_info[i].start <= off) 18686 continue; 18687 env->subprog_info[i].start += len - 1; 18688 } 18689 } 18690 18691 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 18692 { 18693 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 18694 int i, sz = prog->aux->size_poke_tab; 18695 struct bpf_jit_poke_descriptor *desc; 18696 18697 for (i = 0; i < sz; i++) { 18698 desc = &tab[i]; 18699 if (desc->insn_idx <= off) 18700 continue; 18701 desc->insn_idx += len - 1; 18702 } 18703 } 18704 18705 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 18706 const struct bpf_insn *patch, u32 len) 18707 { 18708 struct bpf_prog *new_prog; 18709 struct bpf_insn_aux_data *new_data = NULL; 18710 18711 if (len > 1) { 18712 new_data = vzalloc(array_size(env->prog->len + len - 1, 18713 sizeof(struct bpf_insn_aux_data))); 18714 if (!new_data) 18715 return NULL; 18716 } 18717 18718 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 18719 if (IS_ERR(new_prog)) { 18720 if (PTR_ERR(new_prog) == -ERANGE) 18721 verbose(env, 18722 "insn %d cannot be patched due to 16-bit range\n", 18723 env->insn_aux_data[off].orig_idx); 18724 vfree(new_data); 18725 return NULL; 18726 } 18727 adjust_insn_aux_data(env, new_data, new_prog, off, len); 18728 adjust_subprog_starts(env, off, len); 18729 adjust_poke_descs(new_prog, off, len); 18730 return new_prog; 18731 } 18732 18733 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 18734 u32 off, u32 cnt) 18735 { 18736 int i, j; 18737 18738 /* find first prog starting at or after off (first to remove) */ 18739 for (i = 0; i < env->subprog_cnt; i++) 18740 if (env->subprog_info[i].start >= off) 18741 break; 18742 /* find first prog starting at or after off + cnt (first to stay) */ 18743 for (j = i; j < env->subprog_cnt; j++) 18744 if (env->subprog_info[j].start >= off + cnt) 18745 break; 18746 /* if j doesn't start exactly at off + cnt, we are just removing 18747 * the front of previous prog 18748 */ 18749 if (env->subprog_info[j].start != off + cnt) 18750 j--; 18751 18752 if (j > i) { 18753 struct bpf_prog_aux *aux = env->prog->aux; 18754 int move; 18755 18756 /* move fake 'exit' subprog as well */ 18757 move = env->subprog_cnt + 1 - j; 18758 18759 memmove(env->subprog_info + i, 18760 env->subprog_info + j, 18761 sizeof(*env->subprog_info) * move); 18762 env->subprog_cnt -= j - i; 18763 18764 /* remove func_info */ 18765 if (aux->func_info) { 18766 move = aux->func_info_cnt - j; 18767 18768 memmove(aux->func_info + i, 18769 aux->func_info + j, 18770 sizeof(*aux->func_info) * move); 18771 aux->func_info_cnt -= j - i; 18772 /* func_info->insn_off is set after all code rewrites, 18773 * in adjust_btf_func() - no need to adjust 18774 */ 18775 } 18776 } else { 18777 /* convert i from "first prog to remove" to "first to adjust" */ 18778 if (env->subprog_info[i].start == off) 18779 i++; 18780 } 18781 18782 /* update fake 'exit' subprog as well */ 18783 for (; i <= env->subprog_cnt; i++) 18784 env->subprog_info[i].start -= cnt; 18785 18786 return 0; 18787 } 18788 18789 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 18790 u32 cnt) 18791 { 18792 struct bpf_prog *prog = env->prog; 18793 u32 i, l_off, l_cnt, nr_linfo; 18794 struct bpf_line_info *linfo; 18795 18796 nr_linfo = prog->aux->nr_linfo; 18797 if (!nr_linfo) 18798 return 0; 18799 18800 linfo = prog->aux->linfo; 18801 18802 /* find first line info to remove, count lines to be removed */ 18803 for (i = 0; i < nr_linfo; i++) 18804 if (linfo[i].insn_off >= off) 18805 break; 18806 18807 l_off = i; 18808 l_cnt = 0; 18809 for (; i < nr_linfo; i++) 18810 if (linfo[i].insn_off < off + cnt) 18811 l_cnt++; 18812 else 18813 break; 18814 18815 /* First live insn doesn't match first live linfo, it needs to "inherit" 18816 * last removed linfo. prog is already modified, so prog->len == off 18817 * means no live instructions after (tail of the program was removed). 18818 */ 18819 if (prog->len != off && l_cnt && 18820 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 18821 l_cnt--; 18822 linfo[--i].insn_off = off + cnt; 18823 } 18824 18825 /* remove the line info which refer to the removed instructions */ 18826 if (l_cnt) { 18827 memmove(linfo + l_off, linfo + i, 18828 sizeof(*linfo) * (nr_linfo - i)); 18829 18830 prog->aux->nr_linfo -= l_cnt; 18831 nr_linfo = prog->aux->nr_linfo; 18832 } 18833 18834 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 18835 for (i = l_off; i < nr_linfo; i++) 18836 linfo[i].insn_off -= cnt; 18837 18838 /* fix up all subprogs (incl. 'exit') which start >= off */ 18839 for (i = 0; i <= env->subprog_cnt; i++) 18840 if (env->subprog_info[i].linfo_idx > l_off) { 18841 /* program may have started in the removed region but 18842 * may not be fully removed 18843 */ 18844 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 18845 env->subprog_info[i].linfo_idx -= l_cnt; 18846 else 18847 env->subprog_info[i].linfo_idx = l_off; 18848 } 18849 18850 return 0; 18851 } 18852 18853 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 18854 { 18855 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18856 unsigned int orig_prog_len = env->prog->len; 18857 int err; 18858 18859 if (bpf_prog_is_offloaded(env->prog->aux)) 18860 bpf_prog_offload_remove_insns(env, off, cnt); 18861 18862 err = bpf_remove_insns(env->prog, off, cnt); 18863 if (err) 18864 return err; 18865 18866 err = adjust_subprog_starts_after_remove(env, off, cnt); 18867 if (err) 18868 return err; 18869 18870 err = bpf_adj_linfo_after_remove(env, off, cnt); 18871 if (err) 18872 return err; 18873 18874 memmove(aux_data + off, aux_data + off + cnt, 18875 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 18876 18877 return 0; 18878 } 18879 18880 /* The verifier does more data flow analysis than llvm and will not 18881 * explore branches that are dead at run time. Malicious programs can 18882 * have dead code too. Therefore replace all dead at-run-time code 18883 * with 'ja -1'. 18884 * 18885 * Just nops are not optimal, e.g. if they would sit at the end of the 18886 * program and through another bug we would manage to jump there, then 18887 * we'd execute beyond program memory otherwise. Returning exception 18888 * code also wouldn't work since we can have subprogs where the dead 18889 * code could be located. 18890 */ 18891 static void sanitize_dead_code(struct bpf_verifier_env *env) 18892 { 18893 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18894 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 18895 struct bpf_insn *insn = env->prog->insnsi; 18896 const int insn_cnt = env->prog->len; 18897 int i; 18898 18899 for (i = 0; i < insn_cnt; i++) { 18900 if (aux_data[i].seen) 18901 continue; 18902 memcpy(insn + i, &trap, sizeof(trap)); 18903 aux_data[i].zext_dst = false; 18904 } 18905 } 18906 18907 static bool insn_is_cond_jump(u8 code) 18908 { 18909 u8 op; 18910 18911 op = BPF_OP(code); 18912 if (BPF_CLASS(code) == BPF_JMP32) 18913 return op != BPF_JA; 18914 18915 if (BPF_CLASS(code) != BPF_JMP) 18916 return false; 18917 18918 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 18919 } 18920 18921 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 18922 { 18923 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18924 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 18925 struct bpf_insn *insn = env->prog->insnsi; 18926 const int insn_cnt = env->prog->len; 18927 int i; 18928 18929 for (i = 0; i < insn_cnt; i++, insn++) { 18930 if (!insn_is_cond_jump(insn->code)) 18931 continue; 18932 18933 if (!aux_data[i + 1].seen) 18934 ja.off = insn->off; 18935 else if (!aux_data[i + 1 + insn->off].seen) 18936 ja.off = 0; 18937 else 18938 continue; 18939 18940 if (bpf_prog_is_offloaded(env->prog->aux)) 18941 bpf_prog_offload_replace_insn(env, i, &ja); 18942 18943 memcpy(insn, &ja, sizeof(ja)); 18944 } 18945 } 18946 18947 static int opt_remove_dead_code(struct bpf_verifier_env *env) 18948 { 18949 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18950 int insn_cnt = env->prog->len; 18951 int i, err; 18952 18953 for (i = 0; i < insn_cnt; i++) { 18954 int j; 18955 18956 j = 0; 18957 while (i + j < insn_cnt && !aux_data[i + j].seen) 18958 j++; 18959 if (!j) 18960 continue; 18961 18962 err = verifier_remove_insns(env, i, j); 18963 if (err) 18964 return err; 18965 insn_cnt = env->prog->len; 18966 } 18967 18968 return 0; 18969 } 18970 18971 static int opt_remove_nops(struct bpf_verifier_env *env) 18972 { 18973 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 18974 struct bpf_insn *insn = env->prog->insnsi; 18975 int insn_cnt = env->prog->len; 18976 int i, err; 18977 18978 for (i = 0; i < insn_cnt; i++) { 18979 if (memcmp(&insn[i], &ja, sizeof(ja))) 18980 continue; 18981 18982 err = verifier_remove_insns(env, i, 1); 18983 if (err) 18984 return err; 18985 insn_cnt--; 18986 i--; 18987 } 18988 18989 return 0; 18990 } 18991 18992 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 18993 const union bpf_attr *attr) 18994 { 18995 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 18996 struct bpf_insn_aux_data *aux = env->insn_aux_data; 18997 int i, patch_len, delta = 0, len = env->prog->len; 18998 struct bpf_insn *insns = env->prog->insnsi; 18999 struct bpf_prog *new_prog; 19000 bool rnd_hi32; 19001 19002 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 19003 zext_patch[1] = BPF_ZEXT_REG(0); 19004 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 19005 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 19006 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 19007 for (i = 0; i < len; i++) { 19008 int adj_idx = i + delta; 19009 struct bpf_insn insn; 19010 int load_reg; 19011 19012 insn = insns[adj_idx]; 19013 load_reg = insn_def_regno(&insn); 19014 if (!aux[adj_idx].zext_dst) { 19015 u8 code, class; 19016 u32 imm_rnd; 19017 19018 if (!rnd_hi32) 19019 continue; 19020 19021 code = insn.code; 19022 class = BPF_CLASS(code); 19023 if (load_reg == -1) 19024 continue; 19025 19026 /* NOTE: arg "reg" (the fourth one) is only used for 19027 * BPF_STX + SRC_OP, so it is safe to pass NULL 19028 * here. 19029 */ 19030 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 19031 if (class == BPF_LD && 19032 BPF_MODE(code) == BPF_IMM) 19033 i++; 19034 continue; 19035 } 19036 19037 /* ctx load could be transformed into wider load. */ 19038 if (class == BPF_LDX && 19039 aux[adj_idx].ptr_type == PTR_TO_CTX) 19040 continue; 19041 19042 imm_rnd = get_random_u32(); 19043 rnd_hi32_patch[0] = insn; 19044 rnd_hi32_patch[1].imm = imm_rnd; 19045 rnd_hi32_patch[3].dst_reg = load_reg; 19046 patch = rnd_hi32_patch; 19047 patch_len = 4; 19048 goto apply_patch_buffer; 19049 } 19050 19051 /* Add in an zero-extend instruction if a) the JIT has requested 19052 * it or b) it's a CMPXCHG. 19053 * 19054 * The latter is because: BPF_CMPXCHG always loads a value into 19055 * R0, therefore always zero-extends. However some archs' 19056 * equivalent instruction only does this load when the 19057 * comparison is successful. This detail of CMPXCHG is 19058 * orthogonal to the general zero-extension behaviour of the 19059 * CPU, so it's treated independently of bpf_jit_needs_zext. 19060 */ 19061 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 19062 continue; 19063 19064 /* Zero-extension is done by the caller. */ 19065 if (bpf_pseudo_kfunc_call(&insn)) 19066 continue; 19067 19068 if (WARN_ON(load_reg == -1)) { 19069 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 19070 return -EFAULT; 19071 } 19072 19073 zext_patch[0] = insn; 19074 zext_patch[1].dst_reg = load_reg; 19075 zext_patch[1].src_reg = load_reg; 19076 patch = zext_patch; 19077 patch_len = 2; 19078 apply_patch_buffer: 19079 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 19080 if (!new_prog) 19081 return -ENOMEM; 19082 env->prog = new_prog; 19083 insns = new_prog->insnsi; 19084 aux = env->insn_aux_data; 19085 delta += patch_len - 1; 19086 } 19087 19088 return 0; 19089 } 19090 19091 /* convert load instructions that access fields of a context type into a 19092 * sequence of instructions that access fields of the underlying structure: 19093 * struct __sk_buff -> struct sk_buff 19094 * struct bpf_sock_ops -> struct sock 19095 */ 19096 static int convert_ctx_accesses(struct bpf_verifier_env *env) 19097 { 19098 const struct bpf_verifier_ops *ops = env->ops; 19099 int i, cnt, size, ctx_field_size, delta = 0; 19100 const int insn_cnt = env->prog->len; 19101 struct bpf_insn insn_buf[16], *insn; 19102 u32 target_size, size_default, off; 19103 struct bpf_prog *new_prog; 19104 enum bpf_access_type type; 19105 bool is_narrower_load; 19106 19107 if (ops->gen_prologue || env->seen_direct_write) { 19108 if (!ops->gen_prologue) { 19109 verbose(env, "bpf verifier is misconfigured\n"); 19110 return -EINVAL; 19111 } 19112 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 19113 env->prog); 19114 if (cnt >= ARRAY_SIZE(insn_buf)) { 19115 verbose(env, "bpf verifier is misconfigured\n"); 19116 return -EINVAL; 19117 } else if (cnt) { 19118 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 19119 if (!new_prog) 19120 return -ENOMEM; 19121 19122 env->prog = new_prog; 19123 delta += cnt - 1; 19124 } 19125 } 19126 19127 if (bpf_prog_is_offloaded(env->prog->aux)) 19128 return 0; 19129 19130 insn = env->prog->insnsi + delta; 19131 19132 for (i = 0; i < insn_cnt; i++, insn++) { 19133 bpf_convert_ctx_access_t convert_ctx_access; 19134 u8 mode; 19135 19136 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 19137 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 19138 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 19139 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 19140 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 19141 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 19142 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 19143 type = BPF_READ; 19144 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 19145 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 19146 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 19147 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 19148 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 19149 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 19150 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 19151 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 19152 type = BPF_WRITE; 19153 } else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) || 19154 insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) && 19155 env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) { 19156 insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code); 19157 env->prog->aux->num_exentries++; 19158 continue; 19159 } else { 19160 continue; 19161 } 19162 19163 if (type == BPF_WRITE && 19164 env->insn_aux_data[i + delta].sanitize_stack_spill) { 19165 struct bpf_insn patch[] = { 19166 *insn, 19167 BPF_ST_NOSPEC(), 19168 }; 19169 19170 cnt = ARRAY_SIZE(patch); 19171 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 19172 if (!new_prog) 19173 return -ENOMEM; 19174 19175 delta += cnt - 1; 19176 env->prog = new_prog; 19177 insn = new_prog->insnsi + i + delta; 19178 continue; 19179 } 19180 19181 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 19182 case PTR_TO_CTX: 19183 if (!ops->convert_ctx_access) 19184 continue; 19185 convert_ctx_access = ops->convert_ctx_access; 19186 break; 19187 case PTR_TO_SOCKET: 19188 case PTR_TO_SOCK_COMMON: 19189 convert_ctx_access = bpf_sock_convert_ctx_access; 19190 break; 19191 case PTR_TO_TCP_SOCK: 19192 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 19193 break; 19194 case PTR_TO_XDP_SOCK: 19195 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 19196 break; 19197 case PTR_TO_BTF_ID: 19198 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 19199 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 19200 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 19201 * be said once it is marked PTR_UNTRUSTED, hence we must handle 19202 * any faults for loads into such types. BPF_WRITE is disallowed 19203 * for this case. 19204 */ 19205 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 19206 if (type == BPF_READ) { 19207 if (BPF_MODE(insn->code) == BPF_MEM) 19208 insn->code = BPF_LDX | BPF_PROBE_MEM | 19209 BPF_SIZE((insn)->code); 19210 else 19211 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 19212 BPF_SIZE((insn)->code); 19213 env->prog->aux->num_exentries++; 19214 } 19215 continue; 19216 case PTR_TO_ARENA: 19217 if (BPF_MODE(insn->code) == BPF_MEMSX) { 19218 verbose(env, "sign extending loads from arena are not supported yet\n"); 19219 return -EOPNOTSUPP; 19220 } 19221 insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code); 19222 env->prog->aux->num_exentries++; 19223 continue; 19224 default: 19225 continue; 19226 } 19227 19228 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 19229 size = BPF_LDST_BYTES(insn); 19230 mode = BPF_MODE(insn->code); 19231 19232 /* If the read access is a narrower load of the field, 19233 * convert to a 4/8-byte load, to minimum program type specific 19234 * convert_ctx_access changes. If conversion is successful, 19235 * we will apply proper mask to the result. 19236 */ 19237 is_narrower_load = size < ctx_field_size; 19238 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 19239 off = insn->off; 19240 if (is_narrower_load) { 19241 u8 size_code; 19242 19243 if (type == BPF_WRITE) { 19244 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 19245 return -EINVAL; 19246 } 19247 19248 size_code = BPF_H; 19249 if (ctx_field_size == 4) 19250 size_code = BPF_W; 19251 else if (ctx_field_size == 8) 19252 size_code = BPF_DW; 19253 19254 insn->off = off & ~(size_default - 1); 19255 insn->code = BPF_LDX | BPF_MEM | size_code; 19256 } 19257 19258 target_size = 0; 19259 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 19260 &target_size); 19261 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 19262 (ctx_field_size && !target_size)) { 19263 verbose(env, "bpf verifier is misconfigured\n"); 19264 return -EINVAL; 19265 } 19266 19267 if (is_narrower_load && size < target_size) { 19268 u8 shift = bpf_ctx_narrow_access_offset( 19269 off, size, size_default) * 8; 19270 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 19271 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 19272 return -EINVAL; 19273 } 19274 if (ctx_field_size <= 4) { 19275 if (shift) 19276 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 19277 insn->dst_reg, 19278 shift); 19279 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 19280 (1 << size * 8) - 1); 19281 } else { 19282 if (shift) 19283 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 19284 insn->dst_reg, 19285 shift); 19286 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 19287 (1ULL << size * 8) - 1); 19288 } 19289 } 19290 if (mode == BPF_MEMSX) 19291 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 19292 insn->dst_reg, insn->dst_reg, 19293 size * 8, 0); 19294 19295 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19296 if (!new_prog) 19297 return -ENOMEM; 19298 19299 delta += cnt - 1; 19300 19301 /* keep walking new program and skip insns we just inserted */ 19302 env->prog = new_prog; 19303 insn = new_prog->insnsi + i + delta; 19304 } 19305 19306 return 0; 19307 } 19308 19309 static int jit_subprogs(struct bpf_verifier_env *env) 19310 { 19311 struct bpf_prog *prog = env->prog, **func, *tmp; 19312 int i, j, subprog_start, subprog_end = 0, len, subprog; 19313 struct bpf_map *map_ptr; 19314 struct bpf_insn *insn; 19315 void *old_bpf_func; 19316 int err, num_exentries; 19317 19318 if (env->subprog_cnt <= 1) 19319 return 0; 19320 19321 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 19322 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 19323 continue; 19324 19325 /* Upon error here we cannot fall back to interpreter but 19326 * need a hard reject of the program. Thus -EFAULT is 19327 * propagated in any case. 19328 */ 19329 subprog = find_subprog(env, i + insn->imm + 1); 19330 if (subprog < 0) { 19331 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 19332 i + insn->imm + 1); 19333 return -EFAULT; 19334 } 19335 /* temporarily remember subprog id inside insn instead of 19336 * aux_data, since next loop will split up all insns into funcs 19337 */ 19338 insn->off = subprog; 19339 /* remember original imm in case JIT fails and fallback 19340 * to interpreter will be needed 19341 */ 19342 env->insn_aux_data[i].call_imm = insn->imm; 19343 /* point imm to __bpf_call_base+1 from JITs point of view */ 19344 insn->imm = 1; 19345 if (bpf_pseudo_func(insn)) { 19346 #if defined(MODULES_VADDR) 19347 u64 addr = MODULES_VADDR; 19348 #else 19349 u64 addr = VMALLOC_START; 19350 #endif 19351 /* jit (e.g. x86_64) may emit fewer instructions 19352 * if it learns a u32 imm is the same as a u64 imm. 19353 * Set close enough to possible prog address. 19354 */ 19355 insn[0].imm = (u32)addr; 19356 insn[1].imm = addr >> 32; 19357 } 19358 } 19359 19360 err = bpf_prog_alloc_jited_linfo(prog); 19361 if (err) 19362 goto out_undo_insn; 19363 19364 err = -ENOMEM; 19365 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 19366 if (!func) 19367 goto out_undo_insn; 19368 19369 for (i = 0; i < env->subprog_cnt; i++) { 19370 subprog_start = subprog_end; 19371 subprog_end = env->subprog_info[i + 1].start; 19372 19373 len = subprog_end - subprog_start; 19374 /* bpf_prog_run() doesn't call subprogs directly, 19375 * hence main prog stats include the runtime of subprogs. 19376 * subprogs don't have IDs and not reachable via prog_get_next_id 19377 * func[i]->stats will never be accessed and stays NULL 19378 */ 19379 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 19380 if (!func[i]) 19381 goto out_free; 19382 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 19383 len * sizeof(struct bpf_insn)); 19384 func[i]->type = prog->type; 19385 func[i]->len = len; 19386 if (bpf_prog_calc_tag(func[i])) 19387 goto out_free; 19388 func[i]->is_func = 1; 19389 func[i]->sleepable = prog->sleepable; 19390 func[i]->aux->func_idx = i; 19391 /* Below members will be freed only at prog->aux */ 19392 func[i]->aux->btf = prog->aux->btf; 19393 func[i]->aux->func_info = prog->aux->func_info; 19394 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 19395 func[i]->aux->poke_tab = prog->aux->poke_tab; 19396 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 19397 19398 for (j = 0; j < prog->aux->size_poke_tab; j++) { 19399 struct bpf_jit_poke_descriptor *poke; 19400 19401 poke = &prog->aux->poke_tab[j]; 19402 if (poke->insn_idx < subprog_end && 19403 poke->insn_idx >= subprog_start) 19404 poke->aux = func[i]->aux; 19405 } 19406 19407 func[i]->aux->name[0] = 'F'; 19408 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 19409 func[i]->jit_requested = 1; 19410 func[i]->blinding_requested = prog->blinding_requested; 19411 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 19412 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 19413 func[i]->aux->linfo = prog->aux->linfo; 19414 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 19415 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 19416 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 19417 func[i]->aux->arena = prog->aux->arena; 19418 num_exentries = 0; 19419 insn = func[i]->insnsi; 19420 for (j = 0; j < func[i]->len; j++, insn++) { 19421 if (BPF_CLASS(insn->code) == BPF_LDX && 19422 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 19423 BPF_MODE(insn->code) == BPF_PROBE_MEM32 || 19424 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 19425 num_exentries++; 19426 if ((BPF_CLASS(insn->code) == BPF_STX || 19427 BPF_CLASS(insn->code) == BPF_ST) && 19428 BPF_MODE(insn->code) == BPF_PROBE_MEM32) 19429 num_exentries++; 19430 if (BPF_CLASS(insn->code) == BPF_STX && 19431 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) 19432 num_exentries++; 19433 } 19434 func[i]->aux->num_exentries = num_exentries; 19435 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 19436 func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb; 19437 if (!i) 19438 func[i]->aux->exception_boundary = env->seen_exception; 19439 func[i] = bpf_int_jit_compile(func[i]); 19440 if (!func[i]->jited) { 19441 err = -ENOTSUPP; 19442 goto out_free; 19443 } 19444 cond_resched(); 19445 } 19446 19447 /* at this point all bpf functions were successfully JITed 19448 * now populate all bpf_calls with correct addresses and 19449 * run last pass of JIT 19450 */ 19451 for (i = 0; i < env->subprog_cnt; i++) { 19452 insn = func[i]->insnsi; 19453 for (j = 0; j < func[i]->len; j++, insn++) { 19454 if (bpf_pseudo_func(insn)) { 19455 subprog = insn->off; 19456 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 19457 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 19458 continue; 19459 } 19460 if (!bpf_pseudo_call(insn)) 19461 continue; 19462 subprog = insn->off; 19463 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 19464 } 19465 19466 /* we use the aux data to keep a list of the start addresses 19467 * of the JITed images for each function in the program 19468 * 19469 * for some architectures, such as powerpc64, the imm field 19470 * might not be large enough to hold the offset of the start 19471 * address of the callee's JITed image from __bpf_call_base 19472 * 19473 * in such cases, we can lookup the start address of a callee 19474 * by using its subprog id, available from the off field of 19475 * the call instruction, as an index for this list 19476 */ 19477 func[i]->aux->func = func; 19478 func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 19479 func[i]->aux->real_func_cnt = env->subprog_cnt; 19480 } 19481 for (i = 0; i < env->subprog_cnt; i++) { 19482 old_bpf_func = func[i]->bpf_func; 19483 tmp = bpf_int_jit_compile(func[i]); 19484 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 19485 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 19486 err = -ENOTSUPP; 19487 goto out_free; 19488 } 19489 cond_resched(); 19490 } 19491 19492 /* finally lock prog and jit images for all functions and 19493 * populate kallsysm. Begin at the first subprogram, since 19494 * bpf_prog_load will add the kallsyms for the main program. 19495 */ 19496 for (i = 1; i < env->subprog_cnt; i++) { 19497 err = bpf_prog_lock_ro(func[i]); 19498 if (err) 19499 goto out_free; 19500 } 19501 19502 for (i = 1; i < env->subprog_cnt; i++) 19503 bpf_prog_kallsyms_add(func[i]); 19504 19505 /* Last step: make now unused interpreter insns from main 19506 * prog consistent for later dump requests, so they can 19507 * later look the same as if they were interpreted only. 19508 */ 19509 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 19510 if (bpf_pseudo_func(insn)) { 19511 insn[0].imm = env->insn_aux_data[i].call_imm; 19512 insn[1].imm = insn->off; 19513 insn->off = 0; 19514 continue; 19515 } 19516 if (!bpf_pseudo_call(insn)) 19517 continue; 19518 insn->off = env->insn_aux_data[i].call_imm; 19519 subprog = find_subprog(env, i + insn->off + 1); 19520 insn->imm = subprog; 19521 } 19522 19523 prog->jited = 1; 19524 prog->bpf_func = func[0]->bpf_func; 19525 prog->jited_len = func[0]->jited_len; 19526 prog->aux->extable = func[0]->aux->extable; 19527 prog->aux->num_exentries = func[0]->aux->num_exentries; 19528 prog->aux->func = func; 19529 prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; 19530 prog->aux->real_func_cnt = env->subprog_cnt; 19531 prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func; 19532 prog->aux->exception_boundary = func[0]->aux->exception_boundary; 19533 bpf_prog_jit_attempt_done(prog); 19534 return 0; 19535 out_free: 19536 /* We failed JIT'ing, so at this point we need to unregister poke 19537 * descriptors from subprogs, so that kernel is not attempting to 19538 * patch it anymore as we're freeing the subprog JIT memory. 19539 */ 19540 for (i = 0; i < prog->aux->size_poke_tab; i++) { 19541 map_ptr = prog->aux->poke_tab[i].tail_call.map; 19542 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 19543 } 19544 /* At this point we're guaranteed that poke descriptors are not 19545 * live anymore. We can just unlink its descriptor table as it's 19546 * released with the main prog. 19547 */ 19548 for (i = 0; i < env->subprog_cnt; i++) { 19549 if (!func[i]) 19550 continue; 19551 func[i]->aux->poke_tab = NULL; 19552 bpf_jit_free(func[i]); 19553 } 19554 kfree(func); 19555 out_undo_insn: 19556 /* cleanup main prog to be interpreted */ 19557 prog->jit_requested = 0; 19558 prog->blinding_requested = 0; 19559 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 19560 if (!bpf_pseudo_call(insn)) 19561 continue; 19562 insn->off = 0; 19563 insn->imm = env->insn_aux_data[i].call_imm; 19564 } 19565 bpf_prog_jit_attempt_done(prog); 19566 return err; 19567 } 19568 19569 static int fixup_call_args(struct bpf_verifier_env *env) 19570 { 19571 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 19572 struct bpf_prog *prog = env->prog; 19573 struct bpf_insn *insn = prog->insnsi; 19574 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 19575 int i, depth; 19576 #endif 19577 int err = 0; 19578 19579 if (env->prog->jit_requested && 19580 !bpf_prog_is_offloaded(env->prog->aux)) { 19581 err = jit_subprogs(env); 19582 if (err == 0) 19583 return 0; 19584 if (err == -EFAULT) 19585 return err; 19586 } 19587 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 19588 if (has_kfunc_call) { 19589 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 19590 return -EINVAL; 19591 } 19592 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 19593 /* When JIT fails the progs with bpf2bpf calls and tail_calls 19594 * have to be rejected, since interpreter doesn't support them yet. 19595 */ 19596 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 19597 return -EINVAL; 19598 } 19599 for (i = 0; i < prog->len; i++, insn++) { 19600 if (bpf_pseudo_func(insn)) { 19601 /* When JIT fails the progs with callback calls 19602 * have to be rejected, since interpreter doesn't support them yet. 19603 */ 19604 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 19605 return -EINVAL; 19606 } 19607 19608 if (!bpf_pseudo_call(insn)) 19609 continue; 19610 depth = get_callee_stack_depth(env, insn, i); 19611 if (depth < 0) 19612 return depth; 19613 bpf_patch_call_args(insn, depth); 19614 } 19615 err = 0; 19616 #endif 19617 return err; 19618 } 19619 19620 /* replace a generic kfunc with a specialized version if necessary */ 19621 static void specialize_kfunc(struct bpf_verifier_env *env, 19622 u32 func_id, u16 offset, unsigned long *addr) 19623 { 19624 struct bpf_prog *prog = env->prog; 19625 bool seen_direct_write; 19626 void *xdp_kfunc; 19627 bool is_rdonly; 19628 19629 if (bpf_dev_bound_kfunc_id(func_id)) { 19630 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 19631 if (xdp_kfunc) { 19632 *addr = (unsigned long)xdp_kfunc; 19633 return; 19634 } 19635 /* fallback to default kfunc when not supported by netdev */ 19636 } 19637 19638 if (offset) 19639 return; 19640 19641 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 19642 seen_direct_write = env->seen_direct_write; 19643 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 19644 19645 if (is_rdonly) 19646 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 19647 19648 /* restore env->seen_direct_write to its original value, since 19649 * may_access_direct_pkt_data mutates it 19650 */ 19651 env->seen_direct_write = seen_direct_write; 19652 } 19653 } 19654 19655 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 19656 u16 struct_meta_reg, 19657 u16 node_offset_reg, 19658 struct bpf_insn *insn, 19659 struct bpf_insn *insn_buf, 19660 int *cnt) 19661 { 19662 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 19663 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 19664 19665 insn_buf[0] = addr[0]; 19666 insn_buf[1] = addr[1]; 19667 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 19668 insn_buf[3] = *insn; 19669 *cnt = 4; 19670 } 19671 19672 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 19673 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 19674 { 19675 const struct bpf_kfunc_desc *desc; 19676 19677 if (!insn->imm) { 19678 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 19679 return -EINVAL; 19680 } 19681 19682 *cnt = 0; 19683 19684 /* insn->imm has the btf func_id. Replace it with an offset relative to 19685 * __bpf_call_base, unless the JIT needs to call functions that are 19686 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 19687 */ 19688 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 19689 if (!desc) { 19690 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 19691 insn->imm); 19692 return -EFAULT; 19693 } 19694 19695 if (!bpf_jit_supports_far_kfunc_call()) 19696 insn->imm = BPF_CALL_IMM(desc->addr); 19697 if (insn->off) 19698 return 0; 19699 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || 19700 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { 19701 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 19702 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 19703 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 19704 19705 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) { 19706 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", 19707 insn_idx); 19708 return -EFAULT; 19709 } 19710 19711 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 19712 insn_buf[1] = addr[0]; 19713 insn_buf[2] = addr[1]; 19714 insn_buf[3] = *insn; 19715 *cnt = 4; 19716 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 19717 desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] || 19718 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 19719 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 19720 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 19721 19722 if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) { 19723 verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n", 19724 insn_idx); 19725 return -EFAULT; 19726 } 19727 19728 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 19729 !kptr_struct_meta) { 19730 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 19731 insn_idx); 19732 return -EFAULT; 19733 } 19734 19735 insn_buf[0] = addr[0]; 19736 insn_buf[1] = addr[1]; 19737 insn_buf[2] = *insn; 19738 *cnt = 3; 19739 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 19740 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 19741 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 19742 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 19743 int struct_meta_reg = BPF_REG_3; 19744 int node_offset_reg = BPF_REG_4; 19745 19746 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 19747 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 19748 struct_meta_reg = BPF_REG_4; 19749 node_offset_reg = BPF_REG_5; 19750 } 19751 19752 if (!kptr_struct_meta) { 19753 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 19754 insn_idx); 19755 return -EFAULT; 19756 } 19757 19758 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 19759 node_offset_reg, insn, insn_buf, cnt); 19760 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 19761 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 19762 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 19763 *cnt = 1; 19764 } else if (is_bpf_wq_set_callback_impl_kfunc(desc->func_id)) { 19765 struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(BPF_REG_4, (long)env->prog->aux) }; 19766 19767 insn_buf[0] = ld_addrs[0]; 19768 insn_buf[1] = ld_addrs[1]; 19769 insn_buf[2] = *insn; 19770 *cnt = 3; 19771 } 19772 return 0; 19773 } 19774 19775 /* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */ 19776 static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len) 19777 { 19778 struct bpf_subprog_info *info = env->subprog_info; 19779 int cnt = env->subprog_cnt; 19780 struct bpf_prog *prog; 19781 19782 /* We only reserve one slot for hidden subprogs in subprog_info. */ 19783 if (env->hidden_subprog_cnt) { 19784 verbose(env, "verifier internal error: only one hidden subprog supported\n"); 19785 return -EFAULT; 19786 } 19787 /* We're not patching any existing instruction, just appending the new 19788 * ones for the hidden subprog. Hence all of the adjustment operations 19789 * in bpf_patch_insn_data are no-ops. 19790 */ 19791 prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len); 19792 if (!prog) 19793 return -ENOMEM; 19794 env->prog = prog; 19795 info[cnt + 1].start = info[cnt].start; 19796 info[cnt].start = prog->len - len + 1; 19797 env->subprog_cnt++; 19798 env->hidden_subprog_cnt++; 19799 return 0; 19800 } 19801 19802 /* Do various post-verification rewrites in a single program pass. 19803 * These rewrites simplify JIT and interpreter implementations. 19804 */ 19805 static int do_misc_fixups(struct bpf_verifier_env *env) 19806 { 19807 struct bpf_prog *prog = env->prog; 19808 enum bpf_attach_type eatype = prog->expected_attach_type; 19809 enum bpf_prog_type prog_type = resolve_prog_type(prog); 19810 struct bpf_insn *insn = prog->insnsi; 19811 const struct bpf_func_proto *fn; 19812 const int insn_cnt = prog->len; 19813 const struct bpf_map_ops *ops; 19814 struct bpf_insn_aux_data *aux; 19815 struct bpf_insn insn_buf[16]; 19816 struct bpf_prog *new_prog; 19817 struct bpf_map *map_ptr; 19818 int i, ret, cnt, delta = 0, cur_subprog = 0; 19819 struct bpf_subprog_info *subprogs = env->subprog_info; 19820 u16 stack_depth = subprogs[cur_subprog].stack_depth; 19821 u16 stack_depth_extra = 0; 19822 19823 if (env->seen_exception && !env->exception_callback_subprog) { 19824 struct bpf_insn patch[] = { 19825 env->prog->insnsi[insn_cnt - 1], 19826 BPF_MOV64_REG(BPF_REG_0, BPF_REG_1), 19827 BPF_EXIT_INSN(), 19828 }; 19829 19830 ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch)); 19831 if (ret < 0) 19832 return ret; 19833 prog = env->prog; 19834 insn = prog->insnsi; 19835 19836 env->exception_callback_subprog = env->subprog_cnt - 1; 19837 /* Don't update insn_cnt, as add_hidden_subprog always appends insns */ 19838 mark_subprog_exc_cb(env, env->exception_callback_subprog); 19839 } 19840 19841 for (i = 0; i < insn_cnt;) { 19842 if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) { 19843 if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) || 19844 (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) { 19845 /* convert to 32-bit mov that clears upper 32-bit */ 19846 insn->code = BPF_ALU | BPF_MOV | BPF_X; 19847 /* clear off and imm, so it's a normal 'wX = wY' from JIT pov */ 19848 insn->off = 0; 19849 insn->imm = 0; 19850 } /* cast from as(0) to as(1) should be handled by JIT */ 19851 goto next_insn; 19852 } 19853 19854 if (env->insn_aux_data[i + delta].needs_zext) 19855 /* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */ 19856 insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code); 19857 19858 /* Make divide-by-zero exceptions impossible. */ 19859 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 19860 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 19861 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 19862 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 19863 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 19864 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 19865 struct bpf_insn *patchlet; 19866 struct bpf_insn chk_and_div[] = { 19867 /* [R,W]x div 0 -> 0 */ 19868 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 19869 BPF_JNE | BPF_K, insn->src_reg, 19870 0, 2, 0), 19871 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 19872 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 19873 *insn, 19874 }; 19875 struct bpf_insn chk_and_mod[] = { 19876 /* [R,W]x mod 0 -> [R,W]x */ 19877 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 19878 BPF_JEQ | BPF_K, insn->src_reg, 19879 0, 1 + (is64 ? 0 : 1), 0), 19880 *insn, 19881 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 19882 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 19883 }; 19884 19885 patchlet = isdiv ? chk_and_div : chk_and_mod; 19886 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 19887 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 19888 19889 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 19890 if (!new_prog) 19891 return -ENOMEM; 19892 19893 delta += cnt - 1; 19894 env->prog = prog = new_prog; 19895 insn = new_prog->insnsi + i + delta; 19896 goto next_insn; 19897 } 19898 19899 /* Make it impossible to de-reference a userspace address */ 19900 if (BPF_CLASS(insn->code) == BPF_LDX && 19901 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 19902 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) { 19903 struct bpf_insn *patch = &insn_buf[0]; 19904 u64 uaddress_limit = bpf_arch_uaddress_limit(); 19905 19906 if (!uaddress_limit) 19907 goto next_insn; 19908 19909 *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); 19910 if (insn->off) 19911 *patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off); 19912 *patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32); 19913 *patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2); 19914 *patch++ = *insn; 19915 *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 19916 *patch++ = BPF_MOV64_IMM(insn->dst_reg, 0); 19917 19918 cnt = patch - insn_buf; 19919 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19920 if (!new_prog) 19921 return -ENOMEM; 19922 19923 delta += cnt - 1; 19924 env->prog = prog = new_prog; 19925 insn = new_prog->insnsi + i + delta; 19926 goto next_insn; 19927 } 19928 19929 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 19930 if (BPF_CLASS(insn->code) == BPF_LD && 19931 (BPF_MODE(insn->code) == BPF_ABS || 19932 BPF_MODE(insn->code) == BPF_IND)) { 19933 cnt = env->ops->gen_ld_abs(insn, insn_buf); 19934 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 19935 verbose(env, "bpf verifier is misconfigured\n"); 19936 return -EINVAL; 19937 } 19938 19939 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19940 if (!new_prog) 19941 return -ENOMEM; 19942 19943 delta += cnt - 1; 19944 env->prog = prog = new_prog; 19945 insn = new_prog->insnsi + i + delta; 19946 goto next_insn; 19947 } 19948 19949 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 19950 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 19951 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 19952 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 19953 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 19954 struct bpf_insn *patch = &insn_buf[0]; 19955 bool issrc, isneg, isimm; 19956 u32 off_reg; 19957 19958 aux = &env->insn_aux_data[i + delta]; 19959 if (!aux->alu_state || 19960 aux->alu_state == BPF_ALU_NON_POINTER) 19961 goto next_insn; 19962 19963 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 19964 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 19965 BPF_ALU_SANITIZE_SRC; 19966 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 19967 19968 off_reg = issrc ? insn->src_reg : insn->dst_reg; 19969 if (isimm) { 19970 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 19971 } else { 19972 if (isneg) 19973 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 19974 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 19975 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 19976 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 19977 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 19978 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 19979 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 19980 } 19981 if (!issrc) 19982 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 19983 insn->src_reg = BPF_REG_AX; 19984 if (isneg) 19985 insn->code = insn->code == code_add ? 19986 code_sub : code_add; 19987 *patch++ = *insn; 19988 if (issrc && isneg && !isimm) 19989 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 19990 cnt = patch - insn_buf; 19991 19992 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19993 if (!new_prog) 19994 return -ENOMEM; 19995 19996 delta += cnt - 1; 19997 env->prog = prog = new_prog; 19998 insn = new_prog->insnsi + i + delta; 19999 goto next_insn; 20000 } 20001 20002 if (is_may_goto_insn(insn)) { 20003 int stack_off = -stack_depth - 8; 20004 20005 stack_depth_extra = 8; 20006 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off); 20007 insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2); 20008 insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1); 20009 insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off); 20010 cnt = 4; 20011 20012 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20013 if (!new_prog) 20014 return -ENOMEM; 20015 20016 delta += cnt - 1; 20017 env->prog = prog = new_prog; 20018 insn = new_prog->insnsi + i + delta; 20019 goto next_insn; 20020 } 20021 20022 if (insn->code != (BPF_JMP | BPF_CALL)) 20023 goto next_insn; 20024 if (insn->src_reg == BPF_PSEUDO_CALL) 20025 goto next_insn; 20026 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 20027 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 20028 if (ret) 20029 return ret; 20030 if (cnt == 0) 20031 goto next_insn; 20032 20033 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20034 if (!new_prog) 20035 return -ENOMEM; 20036 20037 delta += cnt - 1; 20038 env->prog = prog = new_prog; 20039 insn = new_prog->insnsi + i + delta; 20040 goto next_insn; 20041 } 20042 20043 /* Skip inlining the helper call if the JIT does it. */ 20044 if (bpf_jit_inlines_helper_call(insn->imm)) 20045 goto next_insn; 20046 20047 if (insn->imm == BPF_FUNC_get_route_realm) 20048 prog->dst_needed = 1; 20049 if (insn->imm == BPF_FUNC_get_prandom_u32) 20050 bpf_user_rnd_init_once(); 20051 if (insn->imm == BPF_FUNC_override_return) 20052 prog->kprobe_override = 1; 20053 if (insn->imm == BPF_FUNC_tail_call) { 20054 /* If we tail call into other programs, we 20055 * cannot make any assumptions since they can 20056 * be replaced dynamically during runtime in 20057 * the program array. 20058 */ 20059 prog->cb_access = 1; 20060 if (!allow_tail_call_in_subprogs(env)) 20061 prog->aux->stack_depth = MAX_BPF_STACK; 20062 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 20063 20064 /* mark bpf_tail_call as different opcode to avoid 20065 * conditional branch in the interpreter for every normal 20066 * call and to prevent accidental JITing by JIT compiler 20067 * that doesn't support bpf_tail_call yet 20068 */ 20069 insn->imm = 0; 20070 insn->code = BPF_JMP | BPF_TAIL_CALL; 20071 20072 aux = &env->insn_aux_data[i + delta]; 20073 if (env->bpf_capable && !prog->blinding_requested && 20074 prog->jit_requested && 20075 !bpf_map_key_poisoned(aux) && 20076 !bpf_map_ptr_poisoned(aux) && 20077 !bpf_map_ptr_unpriv(aux)) { 20078 struct bpf_jit_poke_descriptor desc = { 20079 .reason = BPF_POKE_REASON_TAIL_CALL, 20080 .tail_call.map = aux->map_ptr_state.map_ptr, 20081 .tail_call.key = bpf_map_key_immediate(aux), 20082 .insn_idx = i + delta, 20083 }; 20084 20085 ret = bpf_jit_add_poke_descriptor(prog, &desc); 20086 if (ret < 0) { 20087 verbose(env, "adding tail call poke descriptor failed\n"); 20088 return ret; 20089 } 20090 20091 insn->imm = ret + 1; 20092 goto next_insn; 20093 } 20094 20095 if (!bpf_map_ptr_unpriv(aux)) 20096 goto next_insn; 20097 20098 /* instead of changing every JIT dealing with tail_call 20099 * emit two extra insns: 20100 * if (index >= max_entries) goto out; 20101 * index &= array->index_mask; 20102 * to avoid out-of-bounds cpu speculation 20103 */ 20104 if (bpf_map_ptr_poisoned(aux)) { 20105 verbose(env, "tail_call abusing map_ptr\n"); 20106 return -EINVAL; 20107 } 20108 20109 map_ptr = aux->map_ptr_state.map_ptr; 20110 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 20111 map_ptr->max_entries, 2); 20112 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 20113 container_of(map_ptr, 20114 struct bpf_array, 20115 map)->index_mask); 20116 insn_buf[2] = *insn; 20117 cnt = 3; 20118 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20119 if (!new_prog) 20120 return -ENOMEM; 20121 20122 delta += cnt - 1; 20123 env->prog = prog = new_prog; 20124 insn = new_prog->insnsi + i + delta; 20125 goto next_insn; 20126 } 20127 20128 if (insn->imm == BPF_FUNC_timer_set_callback) { 20129 /* The verifier will process callback_fn as many times as necessary 20130 * with different maps and the register states prepared by 20131 * set_timer_callback_state will be accurate. 20132 * 20133 * The following use case is valid: 20134 * map1 is shared by prog1, prog2, prog3. 20135 * prog1 calls bpf_timer_init for some map1 elements 20136 * prog2 calls bpf_timer_set_callback for some map1 elements. 20137 * Those that were not bpf_timer_init-ed will return -EINVAL. 20138 * prog3 calls bpf_timer_start for some map1 elements. 20139 * Those that were not both bpf_timer_init-ed and 20140 * bpf_timer_set_callback-ed will return -EINVAL. 20141 */ 20142 struct bpf_insn ld_addrs[2] = { 20143 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 20144 }; 20145 20146 insn_buf[0] = ld_addrs[0]; 20147 insn_buf[1] = ld_addrs[1]; 20148 insn_buf[2] = *insn; 20149 cnt = 3; 20150 20151 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20152 if (!new_prog) 20153 return -ENOMEM; 20154 20155 delta += cnt - 1; 20156 env->prog = prog = new_prog; 20157 insn = new_prog->insnsi + i + delta; 20158 goto patch_call_imm; 20159 } 20160 20161 if (is_storage_get_function(insn->imm)) { 20162 if (!in_sleepable(env) || 20163 env->insn_aux_data[i + delta].storage_get_func_atomic) 20164 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 20165 else 20166 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 20167 insn_buf[1] = *insn; 20168 cnt = 2; 20169 20170 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20171 if (!new_prog) 20172 return -ENOMEM; 20173 20174 delta += cnt - 1; 20175 env->prog = prog = new_prog; 20176 insn = new_prog->insnsi + i + delta; 20177 goto patch_call_imm; 20178 } 20179 20180 /* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */ 20181 if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) { 20182 /* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data, 20183 * bpf_mem_alloc() returns a ptr to the percpu data ptr. 20184 */ 20185 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0); 20186 insn_buf[1] = *insn; 20187 cnt = 2; 20188 20189 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20190 if (!new_prog) 20191 return -ENOMEM; 20192 20193 delta += cnt - 1; 20194 env->prog = prog = new_prog; 20195 insn = new_prog->insnsi + i + delta; 20196 goto patch_call_imm; 20197 } 20198 20199 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 20200 * and other inlining handlers are currently limited to 64 bit 20201 * only. 20202 */ 20203 if (prog->jit_requested && BITS_PER_LONG == 64 && 20204 (insn->imm == BPF_FUNC_map_lookup_elem || 20205 insn->imm == BPF_FUNC_map_update_elem || 20206 insn->imm == BPF_FUNC_map_delete_elem || 20207 insn->imm == BPF_FUNC_map_push_elem || 20208 insn->imm == BPF_FUNC_map_pop_elem || 20209 insn->imm == BPF_FUNC_map_peek_elem || 20210 insn->imm == BPF_FUNC_redirect_map || 20211 insn->imm == BPF_FUNC_for_each_map_elem || 20212 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 20213 aux = &env->insn_aux_data[i + delta]; 20214 if (bpf_map_ptr_poisoned(aux)) 20215 goto patch_call_imm; 20216 20217 map_ptr = aux->map_ptr_state.map_ptr; 20218 ops = map_ptr->ops; 20219 if (insn->imm == BPF_FUNC_map_lookup_elem && 20220 ops->map_gen_lookup) { 20221 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 20222 if (cnt == -EOPNOTSUPP) 20223 goto patch_map_ops_generic; 20224 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 20225 verbose(env, "bpf verifier is misconfigured\n"); 20226 return -EINVAL; 20227 } 20228 20229 new_prog = bpf_patch_insn_data(env, i + delta, 20230 insn_buf, cnt); 20231 if (!new_prog) 20232 return -ENOMEM; 20233 20234 delta += cnt - 1; 20235 env->prog = prog = new_prog; 20236 insn = new_prog->insnsi + i + delta; 20237 goto next_insn; 20238 } 20239 20240 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 20241 (void *(*)(struct bpf_map *map, void *key))NULL)); 20242 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 20243 (long (*)(struct bpf_map *map, void *key))NULL)); 20244 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 20245 (long (*)(struct bpf_map *map, void *key, void *value, 20246 u64 flags))NULL)); 20247 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 20248 (long (*)(struct bpf_map *map, void *value, 20249 u64 flags))NULL)); 20250 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 20251 (long (*)(struct bpf_map *map, void *value))NULL)); 20252 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 20253 (long (*)(struct bpf_map *map, void *value))NULL)); 20254 BUILD_BUG_ON(!__same_type(ops->map_redirect, 20255 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 20256 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 20257 (long (*)(struct bpf_map *map, 20258 bpf_callback_t callback_fn, 20259 void *callback_ctx, 20260 u64 flags))NULL)); 20261 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 20262 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 20263 20264 patch_map_ops_generic: 20265 switch (insn->imm) { 20266 case BPF_FUNC_map_lookup_elem: 20267 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 20268 goto next_insn; 20269 case BPF_FUNC_map_update_elem: 20270 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 20271 goto next_insn; 20272 case BPF_FUNC_map_delete_elem: 20273 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 20274 goto next_insn; 20275 case BPF_FUNC_map_push_elem: 20276 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 20277 goto next_insn; 20278 case BPF_FUNC_map_pop_elem: 20279 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 20280 goto next_insn; 20281 case BPF_FUNC_map_peek_elem: 20282 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 20283 goto next_insn; 20284 case BPF_FUNC_redirect_map: 20285 insn->imm = BPF_CALL_IMM(ops->map_redirect); 20286 goto next_insn; 20287 case BPF_FUNC_for_each_map_elem: 20288 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 20289 goto next_insn; 20290 case BPF_FUNC_map_lookup_percpu_elem: 20291 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 20292 goto next_insn; 20293 } 20294 20295 goto patch_call_imm; 20296 } 20297 20298 /* Implement bpf_jiffies64 inline. */ 20299 if (prog->jit_requested && BITS_PER_LONG == 64 && 20300 insn->imm == BPF_FUNC_jiffies64) { 20301 struct bpf_insn ld_jiffies_addr[2] = { 20302 BPF_LD_IMM64(BPF_REG_0, 20303 (unsigned long)&jiffies), 20304 }; 20305 20306 insn_buf[0] = ld_jiffies_addr[0]; 20307 insn_buf[1] = ld_jiffies_addr[1]; 20308 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 20309 BPF_REG_0, 0); 20310 cnt = 3; 20311 20312 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 20313 cnt); 20314 if (!new_prog) 20315 return -ENOMEM; 20316 20317 delta += cnt - 1; 20318 env->prog = prog = new_prog; 20319 insn = new_prog->insnsi + i + delta; 20320 goto next_insn; 20321 } 20322 20323 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML) 20324 /* Implement bpf_get_smp_processor_id() inline. */ 20325 if (insn->imm == BPF_FUNC_get_smp_processor_id && 20326 prog->jit_requested && bpf_jit_supports_percpu_insn()) { 20327 /* BPF_FUNC_get_smp_processor_id inlining is an 20328 * optimization, so if pcpu_hot.cpu_number is ever 20329 * changed in some incompatible and hard to support 20330 * way, it's fine to back out this inlining logic 20331 */ 20332 insn_buf[0] = BPF_MOV32_IMM(BPF_REG_0, (u32)(unsigned long)&pcpu_hot.cpu_number); 20333 insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0); 20334 insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0); 20335 cnt = 3; 20336 20337 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20338 if (!new_prog) 20339 return -ENOMEM; 20340 20341 delta += cnt - 1; 20342 env->prog = prog = new_prog; 20343 insn = new_prog->insnsi + i + delta; 20344 goto next_insn; 20345 } 20346 #endif 20347 /* Implement bpf_get_func_arg inline. */ 20348 if (prog_type == BPF_PROG_TYPE_TRACING && 20349 insn->imm == BPF_FUNC_get_func_arg) { 20350 /* Load nr_args from ctx - 8 */ 20351 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 20352 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 20353 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 20354 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 20355 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 20356 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 20357 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 20358 insn_buf[7] = BPF_JMP_A(1); 20359 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 20360 cnt = 9; 20361 20362 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20363 if (!new_prog) 20364 return -ENOMEM; 20365 20366 delta += cnt - 1; 20367 env->prog = prog = new_prog; 20368 insn = new_prog->insnsi + i + delta; 20369 goto next_insn; 20370 } 20371 20372 /* Implement bpf_get_func_ret inline. */ 20373 if (prog_type == BPF_PROG_TYPE_TRACING && 20374 insn->imm == BPF_FUNC_get_func_ret) { 20375 if (eatype == BPF_TRACE_FEXIT || 20376 eatype == BPF_MODIFY_RETURN) { 20377 /* Load nr_args from ctx - 8 */ 20378 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 20379 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 20380 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 20381 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 20382 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 20383 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 20384 cnt = 6; 20385 } else { 20386 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 20387 cnt = 1; 20388 } 20389 20390 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20391 if (!new_prog) 20392 return -ENOMEM; 20393 20394 delta += cnt - 1; 20395 env->prog = prog = new_prog; 20396 insn = new_prog->insnsi + i + delta; 20397 goto next_insn; 20398 } 20399 20400 /* Implement get_func_arg_cnt inline. */ 20401 if (prog_type == BPF_PROG_TYPE_TRACING && 20402 insn->imm == BPF_FUNC_get_func_arg_cnt) { 20403 /* Load nr_args from ctx - 8 */ 20404 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 20405 20406 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 20407 if (!new_prog) 20408 return -ENOMEM; 20409 20410 env->prog = prog = new_prog; 20411 insn = new_prog->insnsi + i + delta; 20412 goto next_insn; 20413 } 20414 20415 /* Implement bpf_get_func_ip inline. */ 20416 if (prog_type == BPF_PROG_TYPE_TRACING && 20417 insn->imm == BPF_FUNC_get_func_ip) { 20418 /* Load IP address from ctx - 16 */ 20419 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 20420 20421 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 20422 if (!new_prog) 20423 return -ENOMEM; 20424 20425 env->prog = prog = new_prog; 20426 insn = new_prog->insnsi + i + delta; 20427 goto next_insn; 20428 } 20429 20430 /* Implement bpf_get_branch_snapshot inline. */ 20431 if (IS_ENABLED(CONFIG_PERF_EVENTS) && 20432 prog->jit_requested && BITS_PER_LONG == 64 && 20433 insn->imm == BPF_FUNC_get_branch_snapshot) { 20434 /* We are dealing with the following func protos: 20435 * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags); 20436 * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt); 20437 */ 20438 const u32 br_entry_size = sizeof(struct perf_branch_entry); 20439 20440 /* struct perf_branch_entry is part of UAPI and is 20441 * used as an array element, so extremely unlikely to 20442 * ever grow or shrink 20443 */ 20444 BUILD_BUG_ON(br_entry_size != 24); 20445 20446 /* if (unlikely(flags)) return -EINVAL */ 20447 insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7); 20448 20449 /* Transform size (bytes) into number of entries (cnt = size / 24). 20450 * But to avoid expensive division instruction, we implement 20451 * divide-by-3 through multiplication, followed by further 20452 * division by 8 through 3-bit right shift. 20453 * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr., 20454 * p. 227, chapter "Unsigned Division by 3" for details and proofs. 20455 * 20456 * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab. 20457 */ 20458 insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab); 20459 insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0); 20460 insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36); 20461 20462 /* call perf_snapshot_branch_stack implementation */ 20463 insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack)); 20464 /* if (entry_cnt == 0) return -ENOENT */ 20465 insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4); 20466 /* return entry_cnt * sizeof(struct perf_branch_entry) */ 20467 insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size); 20468 insn_buf[7] = BPF_JMP_A(3); 20469 /* return -EINVAL; */ 20470 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 20471 insn_buf[9] = BPF_JMP_A(1); 20472 /* return -ENOENT; */ 20473 insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT); 20474 cnt = 11; 20475 20476 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20477 if (!new_prog) 20478 return -ENOMEM; 20479 20480 delta += cnt - 1; 20481 env->prog = prog = new_prog; 20482 insn = new_prog->insnsi + i + delta; 20483 continue; 20484 } 20485 20486 /* Implement bpf_kptr_xchg inline */ 20487 if (prog->jit_requested && BITS_PER_LONG == 64 && 20488 insn->imm == BPF_FUNC_kptr_xchg && 20489 bpf_jit_supports_ptr_xchg()) { 20490 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2); 20491 insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0); 20492 cnt = 2; 20493 20494 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 20495 if (!new_prog) 20496 return -ENOMEM; 20497 20498 delta += cnt - 1; 20499 env->prog = prog = new_prog; 20500 insn = new_prog->insnsi + i + delta; 20501 goto next_insn; 20502 } 20503 patch_call_imm: 20504 fn = env->ops->get_func_proto(insn->imm, env->prog); 20505 /* all functions that have prototype and verifier allowed 20506 * programs to call them, must be real in-kernel functions 20507 */ 20508 if (!fn->func) { 20509 verbose(env, 20510 "kernel subsystem misconfigured func %s#%d\n", 20511 func_id_name(insn->imm), insn->imm); 20512 return -EFAULT; 20513 } 20514 insn->imm = fn->func - __bpf_call_base; 20515 next_insn: 20516 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 20517 subprogs[cur_subprog].stack_depth += stack_depth_extra; 20518 subprogs[cur_subprog].stack_extra = stack_depth_extra; 20519 cur_subprog++; 20520 stack_depth = subprogs[cur_subprog].stack_depth; 20521 stack_depth_extra = 0; 20522 } 20523 i++; 20524 insn++; 20525 } 20526 20527 env->prog->aux->stack_depth = subprogs[0].stack_depth; 20528 for (i = 0; i < env->subprog_cnt; i++) { 20529 int subprog_start = subprogs[i].start; 20530 int stack_slots = subprogs[i].stack_extra / 8; 20531 20532 if (!stack_slots) 20533 continue; 20534 if (stack_slots > 1) { 20535 verbose(env, "verifier bug: stack_slots supports may_goto only\n"); 20536 return -EFAULT; 20537 } 20538 20539 /* Add ST insn to subprog prologue to init extra stack */ 20540 insn_buf[0] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, 20541 -subprogs[i].stack_depth, BPF_MAX_LOOPS); 20542 /* Copy first actual insn to preserve it */ 20543 insn_buf[1] = env->prog->insnsi[subprog_start]; 20544 20545 new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, 2); 20546 if (!new_prog) 20547 return -ENOMEM; 20548 env->prog = prog = new_prog; 20549 } 20550 20551 /* Since poke tab is now finalized, publish aux to tracker. */ 20552 for (i = 0; i < prog->aux->size_poke_tab; i++) { 20553 map_ptr = prog->aux->poke_tab[i].tail_call.map; 20554 if (!map_ptr->ops->map_poke_track || 20555 !map_ptr->ops->map_poke_untrack || 20556 !map_ptr->ops->map_poke_run) { 20557 verbose(env, "bpf verifier is misconfigured\n"); 20558 return -EINVAL; 20559 } 20560 20561 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 20562 if (ret < 0) { 20563 verbose(env, "tracking tail call prog failed\n"); 20564 return ret; 20565 } 20566 } 20567 20568 sort_kfunc_descs_by_imm_off(env->prog); 20569 20570 return 0; 20571 } 20572 20573 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 20574 int position, 20575 s32 stack_base, 20576 u32 callback_subprogno, 20577 u32 *cnt) 20578 { 20579 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 20580 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 20581 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 20582 int reg_loop_max = BPF_REG_6; 20583 int reg_loop_cnt = BPF_REG_7; 20584 int reg_loop_ctx = BPF_REG_8; 20585 20586 struct bpf_prog *new_prog; 20587 u32 callback_start; 20588 u32 call_insn_offset; 20589 s32 callback_offset; 20590 20591 /* This represents an inlined version of bpf_iter.c:bpf_loop, 20592 * be careful to modify this code in sync. 20593 */ 20594 struct bpf_insn insn_buf[] = { 20595 /* Return error and jump to the end of the patch if 20596 * expected number of iterations is too big. 20597 */ 20598 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 20599 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 20600 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 20601 /* spill R6, R7, R8 to use these as loop vars */ 20602 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 20603 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 20604 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 20605 /* initialize loop vars */ 20606 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 20607 BPF_MOV32_IMM(reg_loop_cnt, 0), 20608 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 20609 /* loop header, 20610 * if reg_loop_cnt >= reg_loop_max skip the loop body 20611 */ 20612 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 20613 /* callback call, 20614 * correct callback offset would be set after patching 20615 */ 20616 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 20617 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 20618 BPF_CALL_REL(0), 20619 /* increment loop counter */ 20620 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 20621 /* jump to loop header if callback returned 0 */ 20622 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 20623 /* return value of bpf_loop, 20624 * set R0 to the number of iterations 20625 */ 20626 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 20627 /* restore original values of R6, R7, R8 */ 20628 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 20629 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 20630 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 20631 }; 20632 20633 *cnt = ARRAY_SIZE(insn_buf); 20634 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 20635 if (!new_prog) 20636 return new_prog; 20637 20638 /* callback start is known only after patching */ 20639 callback_start = env->subprog_info[callback_subprogno].start; 20640 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 20641 call_insn_offset = position + 12; 20642 callback_offset = callback_start - call_insn_offset - 1; 20643 new_prog->insnsi[call_insn_offset].imm = callback_offset; 20644 20645 return new_prog; 20646 } 20647 20648 static bool is_bpf_loop_call(struct bpf_insn *insn) 20649 { 20650 return insn->code == (BPF_JMP | BPF_CALL) && 20651 insn->src_reg == 0 && 20652 insn->imm == BPF_FUNC_loop; 20653 } 20654 20655 /* For all sub-programs in the program (including main) check 20656 * insn_aux_data to see if there are bpf_loop calls that require 20657 * inlining. If such calls are found the calls are replaced with a 20658 * sequence of instructions produced by `inline_bpf_loop` function and 20659 * subprog stack_depth is increased by the size of 3 registers. 20660 * This stack space is used to spill values of the R6, R7, R8. These 20661 * registers are used to store the loop bound, counter and context 20662 * variables. 20663 */ 20664 static int optimize_bpf_loop(struct bpf_verifier_env *env) 20665 { 20666 struct bpf_subprog_info *subprogs = env->subprog_info; 20667 int i, cur_subprog = 0, cnt, delta = 0; 20668 struct bpf_insn *insn = env->prog->insnsi; 20669 int insn_cnt = env->prog->len; 20670 u16 stack_depth = subprogs[cur_subprog].stack_depth; 20671 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 20672 u16 stack_depth_extra = 0; 20673 20674 for (i = 0; i < insn_cnt; i++, insn++) { 20675 struct bpf_loop_inline_state *inline_state = 20676 &env->insn_aux_data[i + delta].loop_inline_state; 20677 20678 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 20679 struct bpf_prog *new_prog; 20680 20681 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 20682 new_prog = inline_bpf_loop(env, 20683 i + delta, 20684 -(stack_depth + stack_depth_extra), 20685 inline_state->callback_subprogno, 20686 &cnt); 20687 if (!new_prog) 20688 return -ENOMEM; 20689 20690 delta += cnt - 1; 20691 env->prog = new_prog; 20692 insn = new_prog->insnsi + i + delta; 20693 } 20694 20695 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 20696 subprogs[cur_subprog].stack_depth += stack_depth_extra; 20697 cur_subprog++; 20698 stack_depth = subprogs[cur_subprog].stack_depth; 20699 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 20700 stack_depth_extra = 0; 20701 } 20702 } 20703 20704 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 20705 20706 return 0; 20707 } 20708 20709 static void free_states(struct bpf_verifier_env *env) 20710 { 20711 struct bpf_verifier_state_list *sl, *sln; 20712 int i; 20713 20714 sl = env->free_list; 20715 while (sl) { 20716 sln = sl->next; 20717 free_verifier_state(&sl->state, false); 20718 kfree(sl); 20719 sl = sln; 20720 } 20721 env->free_list = NULL; 20722 20723 if (!env->explored_states) 20724 return; 20725 20726 for (i = 0; i < state_htab_size(env); i++) { 20727 sl = env->explored_states[i]; 20728 20729 while (sl) { 20730 sln = sl->next; 20731 free_verifier_state(&sl->state, false); 20732 kfree(sl); 20733 sl = sln; 20734 } 20735 env->explored_states[i] = NULL; 20736 } 20737 } 20738 20739 static int do_check_common(struct bpf_verifier_env *env, int subprog) 20740 { 20741 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 20742 struct bpf_subprog_info *sub = subprog_info(env, subprog); 20743 struct bpf_verifier_state *state; 20744 struct bpf_reg_state *regs; 20745 int ret, i; 20746 20747 env->prev_linfo = NULL; 20748 env->pass_cnt++; 20749 20750 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 20751 if (!state) 20752 return -ENOMEM; 20753 state->curframe = 0; 20754 state->speculative = false; 20755 state->branches = 1; 20756 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 20757 if (!state->frame[0]) { 20758 kfree(state); 20759 return -ENOMEM; 20760 } 20761 env->cur_state = state; 20762 init_func_state(env, state->frame[0], 20763 BPF_MAIN_FUNC /* callsite */, 20764 0 /* frameno */, 20765 subprog); 20766 state->first_insn_idx = env->subprog_info[subprog].start; 20767 state->last_insn_idx = -1; 20768 20769 regs = state->frame[state->curframe]->regs; 20770 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 20771 const char *sub_name = subprog_name(env, subprog); 20772 struct bpf_subprog_arg_info *arg; 20773 struct bpf_reg_state *reg; 20774 20775 verbose(env, "Validating %s() func#%d...\n", sub_name, subprog); 20776 ret = btf_prepare_func_args(env, subprog); 20777 if (ret) 20778 goto out; 20779 20780 if (subprog_is_exc_cb(env, subprog)) { 20781 state->frame[0]->in_exception_callback_fn = true; 20782 /* We have already ensured that the callback returns an integer, just 20783 * like all global subprogs. We need to determine it only has a single 20784 * scalar argument. 20785 */ 20786 if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) { 20787 verbose(env, "exception cb only supports single integer argument\n"); 20788 ret = -EINVAL; 20789 goto out; 20790 } 20791 } 20792 for (i = BPF_REG_1; i <= sub->arg_cnt; i++) { 20793 arg = &sub->args[i - BPF_REG_1]; 20794 reg = ®s[i]; 20795 20796 if (arg->arg_type == ARG_PTR_TO_CTX) { 20797 reg->type = PTR_TO_CTX; 20798 mark_reg_known_zero(env, regs, i); 20799 } else if (arg->arg_type == ARG_ANYTHING) { 20800 reg->type = SCALAR_VALUE; 20801 mark_reg_unknown(env, regs, i); 20802 } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { 20803 /* assume unspecial LOCAL dynptr type */ 20804 __mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen); 20805 } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { 20806 reg->type = PTR_TO_MEM; 20807 if (arg->arg_type & PTR_MAYBE_NULL) 20808 reg->type |= PTR_MAYBE_NULL; 20809 mark_reg_known_zero(env, regs, i); 20810 reg->mem_size = arg->mem_size; 20811 reg->id = ++env->id_gen; 20812 } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { 20813 reg->type = PTR_TO_BTF_ID; 20814 if (arg->arg_type & PTR_MAYBE_NULL) 20815 reg->type |= PTR_MAYBE_NULL; 20816 if (arg->arg_type & PTR_UNTRUSTED) 20817 reg->type |= PTR_UNTRUSTED; 20818 if (arg->arg_type & PTR_TRUSTED) 20819 reg->type |= PTR_TRUSTED; 20820 mark_reg_known_zero(env, regs, i); 20821 reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */ 20822 reg->btf_id = arg->btf_id; 20823 reg->id = ++env->id_gen; 20824 } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { 20825 /* caller can pass either PTR_TO_ARENA or SCALAR */ 20826 mark_reg_unknown(env, regs, i); 20827 } else { 20828 WARN_ONCE(1, "BUG: unhandled arg#%d type %d\n", 20829 i - BPF_REG_1, arg->arg_type); 20830 ret = -EFAULT; 20831 goto out; 20832 } 20833 } 20834 } else { 20835 /* if main BPF program has associated BTF info, validate that 20836 * it's matching expected signature, and otherwise mark BTF 20837 * info for main program as unreliable 20838 */ 20839 if (env->prog->aux->func_info_aux) { 20840 ret = btf_prepare_func_args(env, 0); 20841 if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX) 20842 env->prog->aux->func_info_aux[0].unreliable = true; 20843 } 20844 20845 /* 1st arg to a function */ 20846 regs[BPF_REG_1].type = PTR_TO_CTX; 20847 mark_reg_known_zero(env, regs, BPF_REG_1); 20848 } 20849 20850 ret = do_check(env); 20851 out: 20852 /* check for NULL is necessary, since cur_state can be freed inside 20853 * do_check() under memory pressure. 20854 */ 20855 if (env->cur_state) { 20856 free_verifier_state(env->cur_state, true); 20857 env->cur_state = NULL; 20858 } 20859 while (!pop_stack(env, NULL, NULL, false)); 20860 if (!ret && pop_log) 20861 bpf_vlog_reset(&env->log, 0); 20862 free_states(env); 20863 return ret; 20864 } 20865 20866 /* Lazily verify all global functions based on their BTF, if they are called 20867 * from main BPF program or any of subprograms transitively. 20868 * BPF global subprogs called from dead code are not validated. 20869 * All callable global functions must pass verification. 20870 * Otherwise the whole program is rejected. 20871 * Consider: 20872 * int bar(int); 20873 * int foo(int f) 20874 * { 20875 * return bar(f); 20876 * } 20877 * int bar(int b) 20878 * { 20879 * ... 20880 * } 20881 * foo() will be verified first for R1=any_scalar_value. During verification it 20882 * will be assumed that bar() already verified successfully and call to bar() 20883 * from foo() will be checked for type match only. Later bar() will be verified 20884 * independently to check that it's safe for R1=any_scalar_value. 20885 */ 20886 static int do_check_subprogs(struct bpf_verifier_env *env) 20887 { 20888 struct bpf_prog_aux *aux = env->prog->aux; 20889 struct bpf_func_info_aux *sub_aux; 20890 int i, ret, new_cnt; 20891 20892 if (!aux->func_info) 20893 return 0; 20894 20895 /* exception callback is presumed to be always called */ 20896 if (env->exception_callback_subprog) 20897 subprog_aux(env, env->exception_callback_subprog)->called = true; 20898 20899 again: 20900 new_cnt = 0; 20901 for (i = 1; i < env->subprog_cnt; i++) { 20902 if (!subprog_is_global(env, i)) 20903 continue; 20904 20905 sub_aux = subprog_aux(env, i); 20906 if (!sub_aux->called || sub_aux->verified) 20907 continue; 20908 20909 env->insn_idx = env->subprog_info[i].start; 20910 WARN_ON_ONCE(env->insn_idx == 0); 20911 ret = do_check_common(env, i); 20912 if (ret) { 20913 return ret; 20914 } else if (env->log.level & BPF_LOG_LEVEL) { 20915 verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n", 20916 i, subprog_name(env, i)); 20917 } 20918 20919 /* We verified new global subprog, it might have called some 20920 * more global subprogs that we haven't verified yet, so we 20921 * need to do another pass over subprogs to verify those. 20922 */ 20923 sub_aux->verified = true; 20924 new_cnt++; 20925 } 20926 20927 /* We can't loop forever as we verify at least one global subprog on 20928 * each pass. 20929 */ 20930 if (new_cnt) 20931 goto again; 20932 20933 return 0; 20934 } 20935 20936 static int do_check_main(struct bpf_verifier_env *env) 20937 { 20938 int ret; 20939 20940 env->insn_idx = 0; 20941 ret = do_check_common(env, 0); 20942 if (!ret) 20943 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 20944 return ret; 20945 } 20946 20947 20948 static void print_verification_stats(struct bpf_verifier_env *env) 20949 { 20950 int i; 20951 20952 if (env->log.level & BPF_LOG_STATS) { 20953 verbose(env, "verification time %lld usec\n", 20954 div_u64(env->verification_time, 1000)); 20955 verbose(env, "stack depth "); 20956 for (i = 0; i < env->subprog_cnt; i++) { 20957 u32 depth = env->subprog_info[i].stack_depth; 20958 20959 verbose(env, "%d", depth); 20960 if (i + 1 < env->subprog_cnt) 20961 verbose(env, "+"); 20962 } 20963 verbose(env, "\n"); 20964 } 20965 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 20966 "total_states %d peak_states %d mark_read %d\n", 20967 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 20968 env->max_states_per_insn, env->total_states, 20969 env->peak_states, env->longest_mark_read_walk); 20970 } 20971 20972 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 20973 { 20974 const struct btf_type *t, *func_proto; 20975 const struct bpf_struct_ops_desc *st_ops_desc; 20976 const struct bpf_struct_ops *st_ops; 20977 const struct btf_member *member; 20978 struct bpf_prog *prog = env->prog; 20979 u32 btf_id, member_idx; 20980 struct btf *btf; 20981 const char *mname; 20982 20983 if (!prog->gpl_compatible) { 20984 verbose(env, "struct ops programs must have a GPL compatible license\n"); 20985 return -EINVAL; 20986 } 20987 20988 if (!prog->aux->attach_btf_id) 20989 return -ENOTSUPP; 20990 20991 btf = prog->aux->attach_btf; 20992 if (btf_is_module(btf)) { 20993 /* Make sure st_ops is valid through the lifetime of env */ 20994 env->attach_btf_mod = btf_try_get_module(btf); 20995 if (!env->attach_btf_mod) { 20996 verbose(env, "struct_ops module %s is not found\n", 20997 btf_get_name(btf)); 20998 return -ENOTSUPP; 20999 } 21000 } 21001 21002 btf_id = prog->aux->attach_btf_id; 21003 st_ops_desc = bpf_struct_ops_find(btf, btf_id); 21004 if (!st_ops_desc) { 21005 verbose(env, "attach_btf_id %u is not a supported struct\n", 21006 btf_id); 21007 return -ENOTSUPP; 21008 } 21009 st_ops = st_ops_desc->st_ops; 21010 21011 t = st_ops_desc->type; 21012 member_idx = prog->expected_attach_type; 21013 if (member_idx >= btf_type_vlen(t)) { 21014 verbose(env, "attach to invalid member idx %u of struct %s\n", 21015 member_idx, st_ops->name); 21016 return -EINVAL; 21017 } 21018 21019 member = &btf_type_member(t)[member_idx]; 21020 mname = btf_name_by_offset(btf, member->name_off); 21021 func_proto = btf_type_resolve_func_ptr(btf, member->type, 21022 NULL); 21023 if (!func_proto) { 21024 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 21025 mname, member_idx, st_ops->name); 21026 return -EINVAL; 21027 } 21028 21029 if (st_ops->check_member) { 21030 int err = st_ops->check_member(t, member, prog); 21031 21032 if (err) { 21033 verbose(env, "attach to unsupported member %s of struct %s\n", 21034 mname, st_ops->name); 21035 return err; 21036 } 21037 } 21038 21039 /* btf_ctx_access() used this to provide argument type info */ 21040 prog->aux->ctx_arg_info = 21041 st_ops_desc->arg_info[member_idx].info; 21042 prog->aux->ctx_arg_info_size = 21043 st_ops_desc->arg_info[member_idx].cnt; 21044 21045 prog->aux->attach_func_proto = func_proto; 21046 prog->aux->attach_func_name = mname; 21047 env->ops = st_ops->verifier_ops; 21048 21049 return 0; 21050 } 21051 #define SECURITY_PREFIX "security_" 21052 21053 static int check_attach_modify_return(unsigned long addr, const char *func_name) 21054 { 21055 if (within_error_injection_list(addr) || 21056 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 21057 return 0; 21058 21059 return -EINVAL; 21060 } 21061 21062 /* list of non-sleepable functions that are otherwise on 21063 * ALLOW_ERROR_INJECTION list 21064 */ 21065 BTF_SET_START(btf_non_sleepable_error_inject) 21066 /* Three functions below can be called from sleepable and non-sleepable context. 21067 * Assume non-sleepable from bpf safety point of view. 21068 */ 21069 BTF_ID(func, __filemap_add_folio) 21070 BTF_ID(func, should_fail_alloc_page) 21071 BTF_ID(func, should_failslab) 21072 BTF_SET_END(btf_non_sleepable_error_inject) 21073 21074 static int check_non_sleepable_error_inject(u32 btf_id) 21075 { 21076 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 21077 } 21078 21079 int bpf_check_attach_target(struct bpf_verifier_log *log, 21080 const struct bpf_prog *prog, 21081 const struct bpf_prog *tgt_prog, 21082 u32 btf_id, 21083 struct bpf_attach_target_info *tgt_info) 21084 { 21085 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 21086 bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING; 21087 const char prefix[] = "btf_trace_"; 21088 int ret = 0, subprog = -1, i; 21089 const struct btf_type *t; 21090 bool conservative = true; 21091 const char *tname; 21092 struct btf *btf; 21093 long addr = 0; 21094 struct module *mod = NULL; 21095 21096 if (!btf_id) { 21097 bpf_log(log, "Tracing programs must provide btf_id\n"); 21098 return -EINVAL; 21099 } 21100 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 21101 if (!btf) { 21102 bpf_log(log, 21103 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 21104 return -EINVAL; 21105 } 21106 t = btf_type_by_id(btf, btf_id); 21107 if (!t) { 21108 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 21109 return -EINVAL; 21110 } 21111 tname = btf_name_by_offset(btf, t->name_off); 21112 if (!tname) { 21113 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 21114 return -EINVAL; 21115 } 21116 if (tgt_prog) { 21117 struct bpf_prog_aux *aux = tgt_prog->aux; 21118 21119 if (bpf_prog_is_dev_bound(prog->aux) && 21120 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 21121 bpf_log(log, "Target program bound device mismatch"); 21122 return -EINVAL; 21123 } 21124 21125 for (i = 0; i < aux->func_info_cnt; i++) 21126 if (aux->func_info[i].type_id == btf_id) { 21127 subprog = i; 21128 break; 21129 } 21130 if (subprog == -1) { 21131 bpf_log(log, "Subprog %s doesn't exist\n", tname); 21132 return -EINVAL; 21133 } 21134 if (aux->func && aux->func[subprog]->aux->exception_cb) { 21135 bpf_log(log, 21136 "%s programs cannot attach to exception callback\n", 21137 prog_extension ? "Extension" : "FENTRY/FEXIT"); 21138 return -EINVAL; 21139 } 21140 conservative = aux->func_info_aux[subprog].unreliable; 21141 if (prog_extension) { 21142 if (conservative) { 21143 bpf_log(log, 21144 "Cannot replace static functions\n"); 21145 return -EINVAL; 21146 } 21147 if (!prog->jit_requested) { 21148 bpf_log(log, 21149 "Extension programs should be JITed\n"); 21150 return -EINVAL; 21151 } 21152 } 21153 if (!tgt_prog->jited) { 21154 bpf_log(log, "Can attach to only JITed progs\n"); 21155 return -EINVAL; 21156 } 21157 if (prog_tracing) { 21158 if (aux->attach_tracing_prog) { 21159 /* 21160 * Target program is an fentry/fexit which is already attached 21161 * to another tracing program. More levels of nesting 21162 * attachment are not allowed. 21163 */ 21164 bpf_log(log, "Cannot nest tracing program attach more than once\n"); 21165 return -EINVAL; 21166 } 21167 } else if (tgt_prog->type == prog->type) { 21168 /* 21169 * To avoid potential call chain cycles, prevent attaching of a 21170 * program extension to another extension. It's ok to attach 21171 * fentry/fexit to extension program. 21172 */ 21173 bpf_log(log, "Cannot recursively attach\n"); 21174 return -EINVAL; 21175 } 21176 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 21177 prog_extension && 21178 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 21179 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 21180 /* Program extensions can extend all program types 21181 * except fentry/fexit. The reason is the following. 21182 * The fentry/fexit programs are used for performance 21183 * analysis, stats and can be attached to any program 21184 * type. When extension program is replacing XDP function 21185 * it is necessary to allow performance analysis of all 21186 * functions. Both original XDP program and its program 21187 * extension. Hence attaching fentry/fexit to 21188 * BPF_PROG_TYPE_EXT is allowed. If extending of 21189 * fentry/fexit was allowed it would be possible to create 21190 * long call chain fentry->extension->fentry->extension 21191 * beyond reasonable stack size. Hence extending fentry 21192 * is not allowed. 21193 */ 21194 bpf_log(log, "Cannot extend fentry/fexit\n"); 21195 return -EINVAL; 21196 } 21197 } else { 21198 if (prog_extension) { 21199 bpf_log(log, "Cannot replace kernel functions\n"); 21200 return -EINVAL; 21201 } 21202 } 21203 21204 switch (prog->expected_attach_type) { 21205 case BPF_TRACE_RAW_TP: 21206 if (tgt_prog) { 21207 bpf_log(log, 21208 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 21209 return -EINVAL; 21210 } 21211 if (!btf_type_is_typedef(t)) { 21212 bpf_log(log, "attach_btf_id %u is not a typedef\n", 21213 btf_id); 21214 return -EINVAL; 21215 } 21216 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 21217 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 21218 btf_id, tname); 21219 return -EINVAL; 21220 } 21221 tname += sizeof(prefix) - 1; 21222 t = btf_type_by_id(btf, t->type); 21223 if (!btf_type_is_ptr(t)) 21224 /* should never happen in valid vmlinux build */ 21225 return -EINVAL; 21226 t = btf_type_by_id(btf, t->type); 21227 if (!btf_type_is_func_proto(t)) 21228 /* should never happen in valid vmlinux build */ 21229 return -EINVAL; 21230 21231 break; 21232 case BPF_TRACE_ITER: 21233 if (!btf_type_is_func(t)) { 21234 bpf_log(log, "attach_btf_id %u is not a function\n", 21235 btf_id); 21236 return -EINVAL; 21237 } 21238 t = btf_type_by_id(btf, t->type); 21239 if (!btf_type_is_func_proto(t)) 21240 return -EINVAL; 21241 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 21242 if (ret) 21243 return ret; 21244 break; 21245 default: 21246 if (!prog_extension) 21247 return -EINVAL; 21248 fallthrough; 21249 case BPF_MODIFY_RETURN: 21250 case BPF_LSM_MAC: 21251 case BPF_LSM_CGROUP: 21252 case BPF_TRACE_FENTRY: 21253 case BPF_TRACE_FEXIT: 21254 if (!btf_type_is_func(t)) { 21255 bpf_log(log, "attach_btf_id %u is not a function\n", 21256 btf_id); 21257 return -EINVAL; 21258 } 21259 if (prog_extension && 21260 btf_check_type_match(log, prog, btf, t)) 21261 return -EINVAL; 21262 t = btf_type_by_id(btf, t->type); 21263 if (!btf_type_is_func_proto(t)) 21264 return -EINVAL; 21265 21266 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 21267 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 21268 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 21269 return -EINVAL; 21270 21271 if (tgt_prog && conservative) 21272 t = NULL; 21273 21274 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 21275 if (ret < 0) 21276 return ret; 21277 21278 if (tgt_prog) { 21279 if (subprog == 0) 21280 addr = (long) tgt_prog->bpf_func; 21281 else 21282 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 21283 } else { 21284 if (btf_is_module(btf)) { 21285 mod = btf_try_get_module(btf); 21286 if (mod) 21287 addr = find_kallsyms_symbol_value(mod, tname); 21288 else 21289 addr = 0; 21290 } else { 21291 addr = kallsyms_lookup_name(tname); 21292 } 21293 if (!addr) { 21294 module_put(mod); 21295 bpf_log(log, 21296 "The address of function %s cannot be found\n", 21297 tname); 21298 return -ENOENT; 21299 } 21300 } 21301 21302 if (prog->sleepable) { 21303 ret = -EINVAL; 21304 switch (prog->type) { 21305 case BPF_PROG_TYPE_TRACING: 21306 21307 /* fentry/fexit/fmod_ret progs can be sleepable if they are 21308 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 21309 */ 21310 if (!check_non_sleepable_error_inject(btf_id) && 21311 within_error_injection_list(addr)) 21312 ret = 0; 21313 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 21314 * in the fmodret id set with the KF_SLEEPABLE flag. 21315 */ 21316 else { 21317 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 21318 prog); 21319 21320 if (flags && (*flags & KF_SLEEPABLE)) 21321 ret = 0; 21322 } 21323 break; 21324 case BPF_PROG_TYPE_LSM: 21325 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 21326 * Only some of them are sleepable. 21327 */ 21328 if (bpf_lsm_is_sleepable_hook(btf_id)) 21329 ret = 0; 21330 break; 21331 default: 21332 break; 21333 } 21334 if (ret) { 21335 module_put(mod); 21336 bpf_log(log, "%s is not sleepable\n", tname); 21337 return ret; 21338 } 21339 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 21340 if (tgt_prog) { 21341 module_put(mod); 21342 bpf_log(log, "can't modify return codes of BPF programs\n"); 21343 return -EINVAL; 21344 } 21345 ret = -EINVAL; 21346 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 21347 !check_attach_modify_return(addr, tname)) 21348 ret = 0; 21349 if (ret) { 21350 module_put(mod); 21351 bpf_log(log, "%s() is not modifiable\n", tname); 21352 return ret; 21353 } 21354 } 21355 21356 break; 21357 } 21358 tgt_info->tgt_addr = addr; 21359 tgt_info->tgt_name = tname; 21360 tgt_info->tgt_type = t; 21361 tgt_info->tgt_mod = mod; 21362 return 0; 21363 } 21364 21365 BTF_SET_START(btf_id_deny) 21366 BTF_ID_UNUSED 21367 #ifdef CONFIG_SMP 21368 BTF_ID(func, migrate_disable) 21369 BTF_ID(func, migrate_enable) 21370 #endif 21371 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 21372 BTF_ID(func, rcu_read_unlock_strict) 21373 #endif 21374 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 21375 BTF_ID(func, preempt_count_add) 21376 BTF_ID(func, preempt_count_sub) 21377 #endif 21378 #ifdef CONFIG_PREEMPT_RCU 21379 BTF_ID(func, __rcu_read_lock) 21380 BTF_ID(func, __rcu_read_unlock) 21381 #endif 21382 BTF_SET_END(btf_id_deny) 21383 21384 static bool can_be_sleepable(struct bpf_prog *prog) 21385 { 21386 if (prog->type == BPF_PROG_TYPE_TRACING) { 21387 switch (prog->expected_attach_type) { 21388 case BPF_TRACE_FENTRY: 21389 case BPF_TRACE_FEXIT: 21390 case BPF_MODIFY_RETURN: 21391 case BPF_TRACE_ITER: 21392 return true; 21393 default: 21394 return false; 21395 } 21396 } 21397 return prog->type == BPF_PROG_TYPE_LSM || 21398 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 21399 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 21400 } 21401 21402 static int check_attach_btf_id(struct bpf_verifier_env *env) 21403 { 21404 struct bpf_prog *prog = env->prog; 21405 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 21406 struct bpf_attach_target_info tgt_info = {}; 21407 u32 btf_id = prog->aux->attach_btf_id; 21408 struct bpf_trampoline *tr; 21409 int ret; 21410 u64 key; 21411 21412 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 21413 if (prog->sleepable) 21414 /* attach_btf_id checked to be zero already */ 21415 return 0; 21416 verbose(env, "Syscall programs can only be sleepable\n"); 21417 return -EINVAL; 21418 } 21419 21420 if (prog->sleepable && !can_be_sleepable(prog)) { 21421 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 21422 return -EINVAL; 21423 } 21424 21425 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 21426 return check_struct_ops_btf_id(env); 21427 21428 if (prog->type != BPF_PROG_TYPE_TRACING && 21429 prog->type != BPF_PROG_TYPE_LSM && 21430 prog->type != BPF_PROG_TYPE_EXT) 21431 return 0; 21432 21433 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 21434 if (ret) 21435 return ret; 21436 21437 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 21438 /* to make freplace equivalent to their targets, they need to 21439 * inherit env->ops and expected_attach_type for the rest of the 21440 * verification 21441 */ 21442 env->ops = bpf_verifier_ops[tgt_prog->type]; 21443 prog->expected_attach_type = tgt_prog->expected_attach_type; 21444 } 21445 21446 /* store info about the attachment target that will be used later */ 21447 prog->aux->attach_func_proto = tgt_info.tgt_type; 21448 prog->aux->attach_func_name = tgt_info.tgt_name; 21449 prog->aux->mod = tgt_info.tgt_mod; 21450 21451 if (tgt_prog) { 21452 prog->aux->saved_dst_prog_type = tgt_prog->type; 21453 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 21454 } 21455 21456 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 21457 prog->aux->attach_btf_trace = true; 21458 return 0; 21459 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 21460 if (!bpf_iter_prog_supported(prog)) 21461 return -EINVAL; 21462 return 0; 21463 } 21464 21465 if (prog->type == BPF_PROG_TYPE_LSM) { 21466 ret = bpf_lsm_verify_prog(&env->log, prog); 21467 if (ret < 0) 21468 return ret; 21469 } else if (prog->type == BPF_PROG_TYPE_TRACING && 21470 btf_id_set_contains(&btf_id_deny, btf_id)) { 21471 return -EINVAL; 21472 } 21473 21474 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 21475 tr = bpf_trampoline_get(key, &tgt_info); 21476 if (!tr) 21477 return -ENOMEM; 21478 21479 if (tgt_prog && tgt_prog->aux->tail_call_reachable) 21480 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; 21481 21482 prog->aux->dst_trampoline = tr; 21483 return 0; 21484 } 21485 21486 struct btf *bpf_get_btf_vmlinux(void) 21487 { 21488 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 21489 mutex_lock(&bpf_verifier_lock); 21490 if (!btf_vmlinux) 21491 btf_vmlinux = btf_parse_vmlinux(); 21492 mutex_unlock(&bpf_verifier_lock); 21493 } 21494 return btf_vmlinux; 21495 } 21496 21497 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 21498 { 21499 u64 start_time = ktime_get_ns(); 21500 struct bpf_verifier_env *env; 21501 int i, len, ret = -EINVAL, err; 21502 u32 log_true_size; 21503 bool is_priv; 21504 21505 /* no program is valid */ 21506 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 21507 return -EINVAL; 21508 21509 /* 'struct bpf_verifier_env' can be global, but since it's not small, 21510 * allocate/free it every time bpf_check() is called 21511 */ 21512 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 21513 if (!env) 21514 return -ENOMEM; 21515 21516 env->bt.env = env; 21517 21518 len = (*prog)->len; 21519 env->insn_aux_data = 21520 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 21521 ret = -ENOMEM; 21522 if (!env->insn_aux_data) 21523 goto err_free_env; 21524 for (i = 0; i < len; i++) 21525 env->insn_aux_data[i].orig_idx = i; 21526 env->prog = *prog; 21527 env->ops = bpf_verifier_ops[env->prog->type]; 21528 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 21529 21530 env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token); 21531 env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token); 21532 env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token); 21533 env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token); 21534 env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF); 21535 21536 bpf_get_btf_vmlinux(); 21537 21538 /* grab the mutex to protect few globals used by verifier */ 21539 if (!is_priv) 21540 mutex_lock(&bpf_verifier_lock); 21541 21542 /* user could have requested verbose verifier output 21543 * and supplied buffer to store the verification trace 21544 */ 21545 ret = bpf_vlog_init(&env->log, attr->log_level, 21546 (char __user *) (unsigned long) attr->log_buf, 21547 attr->log_size); 21548 if (ret) 21549 goto err_unlock; 21550 21551 mark_verifier_state_clean(env); 21552 21553 if (IS_ERR(btf_vmlinux)) { 21554 /* Either gcc or pahole or kernel are broken. */ 21555 verbose(env, "in-kernel BTF is malformed\n"); 21556 ret = PTR_ERR(btf_vmlinux); 21557 goto skip_full_check; 21558 } 21559 21560 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 21561 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 21562 env->strict_alignment = true; 21563 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 21564 env->strict_alignment = false; 21565 21566 if (is_priv) 21567 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 21568 env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS; 21569 21570 env->explored_states = kvcalloc(state_htab_size(env), 21571 sizeof(struct bpf_verifier_state_list *), 21572 GFP_USER); 21573 ret = -ENOMEM; 21574 if (!env->explored_states) 21575 goto skip_full_check; 21576 21577 ret = check_btf_info_early(env, attr, uattr); 21578 if (ret < 0) 21579 goto skip_full_check; 21580 21581 ret = add_subprog_and_kfunc(env); 21582 if (ret < 0) 21583 goto skip_full_check; 21584 21585 ret = check_subprogs(env); 21586 if (ret < 0) 21587 goto skip_full_check; 21588 21589 ret = check_btf_info(env, attr, uattr); 21590 if (ret < 0) 21591 goto skip_full_check; 21592 21593 ret = check_attach_btf_id(env); 21594 if (ret) 21595 goto skip_full_check; 21596 21597 ret = resolve_pseudo_ldimm64(env); 21598 if (ret < 0) 21599 goto skip_full_check; 21600 21601 if (bpf_prog_is_offloaded(env->prog->aux)) { 21602 ret = bpf_prog_offload_verifier_prep(env->prog); 21603 if (ret) 21604 goto skip_full_check; 21605 } 21606 21607 ret = check_cfg(env); 21608 if (ret < 0) 21609 goto skip_full_check; 21610 21611 ret = do_check_main(env); 21612 ret = ret ?: do_check_subprogs(env); 21613 21614 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 21615 ret = bpf_prog_offload_finalize(env); 21616 21617 skip_full_check: 21618 kvfree(env->explored_states); 21619 21620 if (ret == 0) 21621 ret = check_max_stack_depth(env); 21622 21623 /* instruction rewrites happen after this point */ 21624 if (ret == 0) 21625 ret = optimize_bpf_loop(env); 21626 21627 if (is_priv) { 21628 if (ret == 0) 21629 opt_hard_wire_dead_code_branches(env); 21630 if (ret == 0) 21631 ret = opt_remove_dead_code(env); 21632 if (ret == 0) 21633 ret = opt_remove_nops(env); 21634 } else { 21635 if (ret == 0) 21636 sanitize_dead_code(env); 21637 } 21638 21639 if (ret == 0) 21640 /* program is valid, convert *(u32*)(ctx + off) accesses */ 21641 ret = convert_ctx_accesses(env); 21642 21643 if (ret == 0) 21644 ret = do_misc_fixups(env); 21645 21646 /* do 32-bit optimization after insn patching has done so those patched 21647 * insns could be handled correctly. 21648 */ 21649 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 21650 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 21651 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 21652 : false; 21653 } 21654 21655 if (ret == 0) 21656 ret = fixup_call_args(env); 21657 21658 env->verification_time = ktime_get_ns() - start_time; 21659 print_verification_stats(env); 21660 env->prog->aux->verified_insns = env->insn_processed; 21661 21662 /* preserve original error even if log finalization is successful */ 21663 err = bpf_vlog_finalize(&env->log, &log_true_size); 21664 if (err) 21665 ret = err; 21666 21667 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 21668 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 21669 &log_true_size, sizeof(log_true_size))) { 21670 ret = -EFAULT; 21671 goto err_release_maps; 21672 } 21673 21674 if (ret) 21675 goto err_release_maps; 21676 21677 if (env->used_map_cnt) { 21678 /* if program passed verifier, update used_maps in bpf_prog_info */ 21679 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 21680 sizeof(env->used_maps[0]), 21681 GFP_KERNEL); 21682 21683 if (!env->prog->aux->used_maps) { 21684 ret = -ENOMEM; 21685 goto err_release_maps; 21686 } 21687 21688 memcpy(env->prog->aux->used_maps, env->used_maps, 21689 sizeof(env->used_maps[0]) * env->used_map_cnt); 21690 env->prog->aux->used_map_cnt = env->used_map_cnt; 21691 } 21692 if (env->used_btf_cnt) { 21693 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 21694 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 21695 sizeof(env->used_btfs[0]), 21696 GFP_KERNEL); 21697 if (!env->prog->aux->used_btfs) { 21698 ret = -ENOMEM; 21699 goto err_release_maps; 21700 } 21701 21702 memcpy(env->prog->aux->used_btfs, env->used_btfs, 21703 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 21704 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 21705 } 21706 if (env->used_map_cnt || env->used_btf_cnt) { 21707 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 21708 * bpf_ld_imm64 instructions 21709 */ 21710 convert_pseudo_ld_imm64(env); 21711 } 21712 21713 adjust_btf_func(env); 21714 21715 err_release_maps: 21716 if (!env->prog->aux->used_maps) 21717 /* if we didn't copy map pointers into bpf_prog_info, release 21718 * them now. Otherwise free_used_maps() will release them. 21719 */ 21720 release_maps(env); 21721 if (!env->prog->aux->used_btfs) 21722 release_btfs(env); 21723 21724 /* extension progs temporarily inherit the attach_type of their targets 21725 for verification purposes, so set it back to zero before returning 21726 */ 21727 if (env->prog->type == BPF_PROG_TYPE_EXT) 21728 env->prog->expected_attach_type = 0; 21729 21730 *prog = env->prog; 21731 21732 module_put(env->attach_btf_mod); 21733 err_unlock: 21734 if (!is_priv) 21735 mutex_unlock(&bpf_verifier_lock); 21736 vfree(env->insn_aux_data); 21737 err_free_env: 21738 kfree(env); 21739 return ret; 21740 } 21741