xref: /linux/kernel/bpf/verifier.c (revision 31d166642c7c601c65eccf0ff2e0afe9a0538be2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 
23 #include "disasm.h"
24 
25 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
26 #define BPF_PROG_TYPE(_id, _name) \
27 	[_id] = & _name ## _verifier_ops,
28 #define BPF_MAP_TYPE(_id, _ops)
29 #include <linux/bpf_types.h>
30 #undef BPF_PROG_TYPE
31 #undef BPF_MAP_TYPE
32 };
33 
34 /* bpf_check() is a static code analyzer that walks eBPF program
35  * instruction by instruction and updates register/stack state.
36  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
37  *
38  * The first pass is depth-first-search to check that the program is a DAG.
39  * It rejects the following programs:
40  * - larger than BPF_MAXINSNS insns
41  * - if loop is present (detected via back-edge)
42  * - unreachable insns exist (shouldn't be a forest. program = one function)
43  * - out of bounds or malformed jumps
44  * The second pass is all possible path descent from the 1st insn.
45  * Since it's analyzing all pathes through the program, the length of the
46  * analysis is limited to 64k insn, which may be hit even if total number of
47  * insn is less then 4K, but there are too many branches that change stack/regs.
48  * Number of 'branches to be analyzed' is limited to 1k
49  *
50  * On entry to each instruction, each register has a type, and the instruction
51  * changes the types of the registers depending on instruction semantics.
52  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
53  * copied to R1.
54  *
55  * All registers are 64-bit.
56  * R0 - return register
57  * R1-R5 argument passing registers
58  * R6-R9 callee saved registers
59  * R10 - frame pointer read-only
60  *
61  * At the start of BPF program the register R1 contains a pointer to bpf_context
62  * and has type PTR_TO_CTX.
63  *
64  * Verifier tracks arithmetic operations on pointers in case:
65  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
66  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
67  * 1st insn copies R10 (which has FRAME_PTR) type into R1
68  * and 2nd arithmetic instruction is pattern matched to recognize
69  * that it wants to construct a pointer to some element within stack.
70  * So after 2nd insn, the register R1 has type PTR_TO_STACK
71  * (and -20 constant is saved for further stack bounds checking).
72  * Meaning that this reg is a pointer to stack plus known immediate constant.
73  *
74  * Most of the time the registers have SCALAR_VALUE type, which
75  * means the register has some value, but it's not a valid pointer.
76  * (like pointer plus pointer becomes SCALAR_VALUE type)
77  *
78  * When verifier sees load or store instructions the type of base register
79  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
80  * four pointer types recognized by check_mem_access() function.
81  *
82  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
83  * and the range of [ptr, ptr + map's value_size) is accessible.
84  *
85  * registers used to pass values to function calls are checked against
86  * function argument constraints.
87  *
88  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
89  * It means that the register type passed to this function must be
90  * PTR_TO_STACK and it will be used inside the function as
91  * 'pointer to map element key'
92  *
93  * For example the argument constraints for bpf_map_lookup_elem():
94  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
95  *   .arg1_type = ARG_CONST_MAP_PTR,
96  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
97  *
98  * ret_type says that this function returns 'pointer to map elem value or null'
99  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
100  * 2nd argument should be a pointer to stack, which will be used inside
101  * the helper function as a pointer to map element key.
102  *
103  * On the kernel side the helper function looks like:
104  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
105  * {
106  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
107  *    void *key = (void *) (unsigned long) r2;
108  *    void *value;
109  *
110  *    here kernel can access 'key' and 'map' pointers safely, knowing that
111  *    [key, key + map->key_size) bytes are valid and were initialized on
112  *    the stack of eBPF program.
113  * }
114  *
115  * Corresponding eBPF program may look like:
116  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
117  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
118  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
119  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
120  * here verifier looks at prototype of map_lookup_elem() and sees:
121  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
122  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
123  *
124  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
125  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
126  * and were initialized prior to this call.
127  * If it's ok, then verifier allows this BPF_CALL insn and looks at
128  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
129  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
130  * returns ether pointer to map value or NULL.
131  *
132  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
133  * insn, the register holding that pointer in the true branch changes state to
134  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
135  * branch. See check_cond_jmp_op().
136  *
137  * After the call R0 is set to return type of the function and registers R1-R5
138  * are set to NOT_INIT to indicate that they are no longer readable.
139  *
140  * The following reference types represent a potential reference to a kernel
141  * resource which, after first being allocated, must be checked and freed by
142  * the BPF program:
143  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
144  *
145  * When the verifier sees a helper call return a reference type, it allocates a
146  * pointer id for the reference and stores it in the current function state.
147  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
148  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
149  * passes through a NULL-check conditional. For the branch wherein the state is
150  * changed to CONST_IMM, the verifier releases the reference.
151  *
152  * For each helper function that allocates a reference, such as
153  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
154  * bpf_sk_release(). When a reference type passes into the release function,
155  * the verifier also releases the reference. If any unchecked or unreleased
156  * reference remains at the end of the program, the verifier rejects it.
157  */
158 
159 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
160 struct bpf_verifier_stack_elem {
161 	/* verifer state is 'st'
162 	 * before processing instruction 'insn_idx'
163 	 * and after processing instruction 'prev_insn_idx'
164 	 */
165 	struct bpf_verifier_state st;
166 	int insn_idx;
167 	int prev_insn_idx;
168 	struct bpf_verifier_stack_elem *next;
169 };
170 
171 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
172 #define BPF_COMPLEXITY_LIMIT_STATES	64
173 
174 #define BPF_MAP_PTR_UNPRIV	1UL
175 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
176 					  POISON_POINTER_DELTA))
177 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
178 
179 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
180 {
181 	return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
182 }
183 
184 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
185 {
186 	return aux->map_state & BPF_MAP_PTR_UNPRIV;
187 }
188 
189 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
190 			      const struct bpf_map *map, bool unpriv)
191 {
192 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
193 	unpriv |= bpf_map_ptr_unpriv(aux);
194 	aux->map_state = (unsigned long)map |
195 			 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
196 }
197 
198 struct bpf_call_arg_meta {
199 	struct bpf_map *map_ptr;
200 	bool raw_mode;
201 	bool pkt_access;
202 	int regno;
203 	int access_size;
204 	s64 msize_smax_value;
205 	u64 msize_umax_value;
206 	int ref_obj_id;
207 	int func_id;
208 };
209 
210 static DEFINE_MUTEX(bpf_verifier_lock);
211 
212 static const struct bpf_line_info *
213 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
214 {
215 	const struct bpf_line_info *linfo;
216 	const struct bpf_prog *prog;
217 	u32 i, nr_linfo;
218 
219 	prog = env->prog;
220 	nr_linfo = prog->aux->nr_linfo;
221 
222 	if (!nr_linfo || insn_off >= prog->len)
223 		return NULL;
224 
225 	linfo = prog->aux->linfo;
226 	for (i = 1; i < nr_linfo; i++)
227 		if (insn_off < linfo[i].insn_off)
228 			break;
229 
230 	return &linfo[i - 1];
231 }
232 
233 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
234 		       va_list args)
235 {
236 	unsigned int n;
237 
238 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
239 
240 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
241 		  "verifier log line truncated - local buffer too short\n");
242 
243 	n = min(log->len_total - log->len_used - 1, n);
244 	log->kbuf[n] = '\0';
245 
246 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
247 		log->len_used += n;
248 	else
249 		log->ubuf = NULL;
250 }
251 
252 /* log_level controls verbosity level of eBPF verifier.
253  * bpf_verifier_log_write() is used to dump the verification trace to the log,
254  * so the user can figure out what's wrong with the program
255  */
256 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
257 					   const char *fmt, ...)
258 {
259 	va_list args;
260 
261 	if (!bpf_verifier_log_needed(&env->log))
262 		return;
263 
264 	va_start(args, fmt);
265 	bpf_verifier_vlog(&env->log, fmt, args);
266 	va_end(args);
267 }
268 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
269 
270 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
271 {
272 	struct bpf_verifier_env *env = private_data;
273 	va_list args;
274 
275 	if (!bpf_verifier_log_needed(&env->log))
276 		return;
277 
278 	va_start(args, fmt);
279 	bpf_verifier_vlog(&env->log, fmt, args);
280 	va_end(args);
281 }
282 
283 static const char *ltrim(const char *s)
284 {
285 	while (isspace(*s))
286 		s++;
287 
288 	return s;
289 }
290 
291 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
292 					 u32 insn_off,
293 					 const char *prefix_fmt, ...)
294 {
295 	const struct bpf_line_info *linfo;
296 
297 	if (!bpf_verifier_log_needed(&env->log))
298 		return;
299 
300 	linfo = find_linfo(env, insn_off);
301 	if (!linfo || linfo == env->prev_linfo)
302 		return;
303 
304 	if (prefix_fmt) {
305 		va_list args;
306 
307 		va_start(args, prefix_fmt);
308 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
309 		va_end(args);
310 	}
311 
312 	verbose(env, "%s\n",
313 		ltrim(btf_name_by_offset(env->prog->aux->btf,
314 					 linfo->line_off)));
315 
316 	env->prev_linfo = linfo;
317 }
318 
319 static bool type_is_pkt_pointer(enum bpf_reg_type type)
320 {
321 	return type == PTR_TO_PACKET ||
322 	       type == PTR_TO_PACKET_META;
323 }
324 
325 static bool type_is_sk_pointer(enum bpf_reg_type type)
326 {
327 	return type == PTR_TO_SOCKET ||
328 		type == PTR_TO_SOCK_COMMON ||
329 		type == PTR_TO_TCP_SOCK ||
330 		type == PTR_TO_XDP_SOCK;
331 }
332 
333 static bool reg_type_may_be_null(enum bpf_reg_type type)
334 {
335 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
336 	       type == PTR_TO_SOCKET_OR_NULL ||
337 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
338 	       type == PTR_TO_TCP_SOCK_OR_NULL;
339 }
340 
341 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
342 {
343 	return reg->type == PTR_TO_MAP_VALUE &&
344 		map_value_has_spin_lock(reg->map_ptr);
345 }
346 
347 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
348 {
349 	return type == PTR_TO_SOCKET ||
350 		type == PTR_TO_SOCKET_OR_NULL ||
351 		type == PTR_TO_TCP_SOCK ||
352 		type == PTR_TO_TCP_SOCK_OR_NULL;
353 }
354 
355 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
356 {
357 	return type == ARG_PTR_TO_SOCK_COMMON;
358 }
359 
360 /* Determine whether the function releases some resources allocated by another
361  * function call. The first reference type argument will be assumed to be
362  * released by release_reference().
363  */
364 static bool is_release_function(enum bpf_func_id func_id)
365 {
366 	return func_id == BPF_FUNC_sk_release;
367 }
368 
369 static bool is_acquire_function(enum bpf_func_id func_id)
370 {
371 	return func_id == BPF_FUNC_sk_lookup_tcp ||
372 		func_id == BPF_FUNC_sk_lookup_udp ||
373 		func_id == BPF_FUNC_skc_lookup_tcp;
374 }
375 
376 static bool is_ptr_cast_function(enum bpf_func_id func_id)
377 {
378 	return func_id == BPF_FUNC_tcp_sock ||
379 		func_id == BPF_FUNC_sk_fullsock;
380 }
381 
382 /* string representation of 'enum bpf_reg_type' */
383 static const char * const reg_type_str[] = {
384 	[NOT_INIT]		= "?",
385 	[SCALAR_VALUE]		= "inv",
386 	[PTR_TO_CTX]		= "ctx",
387 	[CONST_PTR_TO_MAP]	= "map_ptr",
388 	[PTR_TO_MAP_VALUE]	= "map_value",
389 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
390 	[PTR_TO_STACK]		= "fp",
391 	[PTR_TO_PACKET]		= "pkt",
392 	[PTR_TO_PACKET_META]	= "pkt_meta",
393 	[PTR_TO_PACKET_END]	= "pkt_end",
394 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
395 	[PTR_TO_SOCKET]		= "sock",
396 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
397 	[PTR_TO_SOCK_COMMON]	= "sock_common",
398 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
399 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
400 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
401 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
402 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
403 };
404 
405 static char slot_type_char[] = {
406 	[STACK_INVALID]	= '?',
407 	[STACK_SPILL]	= 'r',
408 	[STACK_MISC]	= 'm',
409 	[STACK_ZERO]	= '0',
410 };
411 
412 static void print_liveness(struct bpf_verifier_env *env,
413 			   enum bpf_reg_liveness live)
414 {
415 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
416 	    verbose(env, "_");
417 	if (live & REG_LIVE_READ)
418 		verbose(env, "r");
419 	if (live & REG_LIVE_WRITTEN)
420 		verbose(env, "w");
421 	if (live & REG_LIVE_DONE)
422 		verbose(env, "D");
423 }
424 
425 static struct bpf_func_state *func(struct bpf_verifier_env *env,
426 				   const struct bpf_reg_state *reg)
427 {
428 	struct bpf_verifier_state *cur = env->cur_state;
429 
430 	return cur->frame[reg->frameno];
431 }
432 
433 static void print_verifier_state(struct bpf_verifier_env *env,
434 				 const struct bpf_func_state *state)
435 {
436 	const struct bpf_reg_state *reg;
437 	enum bpf_reg_type t;
438 	int i;
439 
440 	if (state->frameno)
441 		verbose(env, " frame%d:", state->frameno);
442 	for (i = 0; i < MAX_BPF_REG; i++) {
443 		reg = &state->regs[i];
444 		t = reg->type;
445 		if (t == NOT_INIT)
446 			continue;
447 		verbose(env, " R%d", i);
448 		print_liveness(env, reg->live);
449 		verbose(env, "=%s", reg_type_str[t]);
450 		if (t == SCALAR_VALUE && reg->precise)
451 			verbose(env, "P");
452 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
453 		    tnum_is_const(reg->var_off)) {
454 			/* reg->off should be 0 for SCALAR_VALUE */
455 			verbose(env, "%lld", reg->var_off.value + reg->off);
456 		} else {
457 			verbose(env, "(id=%d", reg->id);
458 			if (reg_type_may_be_refcounted_or_null(t))
459 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
460 			if (t != SCALAR_VALUE)
461 				verbose(env, ",off=%d", reg->off);
462 			if (type_is_pkt_pointer(t))
463 				verbose(env, ",r=%d", reg->range);
464 			else if (t == CONST_PTR_TO_MAP ||
465 				 t == PTR_TO_MAP_VALUE ||
466 				 t == PTR_TO_MAP_VALUE_OR_NULL)
467 				verbose(env, ",ks=%d,vs=%d",
468 					reg->map_ptr->key_size,
469 					reg->map_ptr->value_size);
470 			if (tnum_is_const(reg->var_off)) {
471 				/* Typically an immediate SCALAR_VALUE, but
472 				 * could be a pointer whose offset is too big
473 				 * for reg->off
474 				 */
475 				verbose(env, ",imm=%llx", reg->var_off.value);
476 			} else {
477 				if (reg->smin_value != reg->umin_value &&
478 				    reg->smin_value != S64_MIN)
479 					verbose(env, ",smin_value=%lld",
480 						(long long)reg->smin_value);
481 				if (reg->smax_value != reg->umax_value &&
482 				    reg->smax_value != S64_MAX)
483 					verbose(env, ",smax_value=%lld",
484 						(long long)reg->smax_value);
485 				if (reg->umin_value != 0)
486 					verbose(env, ",umin_value=%llu",
487 						(unsigned long long)reg->umin_value);
488 				if (reg->umax_value != U64_MAX)
489 					verbose(env, ",umax_value=%llu",
490 						(unsigned long long)reg->umax_value);
491 				if (!tnum_is_unknown(reg->var_off)) {
492 					char tn_buf[48];
493 
494 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
495 					verbose(env, ",var_off=%s", tn_buf);
496 				}
497 			}
498 			verbose(env, ")");
499 		}
500 	}
501 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
502 		char types_buf[BPF_REG_SIZE + 1];
503 		bool valid = false;
504 		int j;
505 
506 		for (j = 0; j < BPF_REG_SIZE; j++) {
507 			if (state->stack[i].slot_type[j] != STACK_INVALID)
508 				valid = true;
509 			types_buf[j] = slot_type_char[
510 					state->stack[i].slot_type[j]];
511 		}
512 		types_buf[BPF_REG_SIZE] = 0;
513 		if (!valid)
514 			continue;
515 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
516 		print_liveness(env, state->stack[i].spilled_ptr.live);
517 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
518 			reg = &state->stack[i].spilled_ptr;
519 			t = reg->type;
520 			verbose(env, "=%s", reg_type_str[t]);
521 			if (t == SCALAR_VALUE && reg->precise)
522 				verbose(env, "P");
523 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
524 				verbose(env, "%lld", reg->var_off.value + reg->off);
525 		} else {
526 			verbose(env, "=%s", types_buf);
527 		}
528 	}
529 	if (state->acquired_refs && state->refs[0].id) {
530 		verbose(env, " refs=%d", state->refs[0].id);
531 		for (i = 1; i < state->acquired_refs; i++)
532 			if (state->refs[i].id)
533 				verbose(env, ",%d", state->refs[i].id);
534 	}
535 	verbose(env, "\n");
536 }
537 
538 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
539 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
540 			       const struct bpf_func_state *src)	\
541 {									\
542 	if (!src->FIELD)						\
543 		return 0;						\
544 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
545 		/* internal bug, make state invalid to reject the program */ \
546 		memset(dst, 0, sizeof(*dst));				\
547 		return -EFAULT;						\
548 	}								\
549 	memcpy(dst->FIELD, src->FIELD,					\
550 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
551 	return 0;							\
552 }
553 /* copy_reference_state() */
554 COPY_STATE_FN(reference, acquired_refs, refs, 1)
555 /* copy_stack_state() */
556 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
557 #undef COPY_STATE_FN
558 
559 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
560 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
561 				  bool copy_old)			\
562 {									\
563 	u32 old_size = state->COUNT;					\
564 	struct bpf_##NAME##_state *new_##FIELD;				\
565 	int slot = size / SIZE;						\
566 									\
567 	if (size <= old_size || !size) {				\
568 		if (copy_old)						\
569 			return 0;					\
570 		state->COUNT = slot * SIZE;				\
571 		if (!size && old_size) {				\
572 			kfree(state->FIELD);				\
573 			state->FIELD = NULL;				\
574 		}							\
575 		return 0;						\
576 	}								\
577 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
578 				    GFP_KERNEL);			\
579 	if (!new_##FIELD)						\
580 		return -ENOMEM;						\
581 	if (copy_old) {							\
582 		if (state->FIELD)					\
583 			memcpy(new_##FIELD, state->FIELD,		\
584 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
585 		memset(new_##FIELD + old_size / SIZE, 0,		\
586 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
587 	}								\
588 	state->COUNT = slot * SIZE;					\
589 	kfree(state->FIELD);						\
590 	state->FIELD = new_##FIELD;					\
591 	return 0;							\
592 }
593 /* realloc_reference_state() */
594 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
595 /* realloc_stack_state() */
596 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
597 #undef REALLOC_STATE_FN
598 
599 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
600  * make it consume minimal amount of memory. check_stack_write() access from
601  * the program calls into realloc_func_state() to grow the stack size.
602  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
603  * which realloc_stack_state() copies over. It points to previous
604  * bpf_verifier_state which is never reallocated.
605  */
606 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
607 			      int refs_size, bool copy_old)
608 {
609 	int err = realloc_reference_state(state, refs_size, copy_old);
610 	if (err)
611 		return err;
612 	return realloc_stack_state(state, stack_size, copy_old);
613 }
614 
615 /* Acquire a pointer id from the env and update the state->refs to include
616  * this new pointer reference.
617  * On success, returns a valid pointer id to associate with the register
618  * On failure, returns a negative errno.
619  */
620 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
621 {
622 	struct bpf_func_state *state = cur_func(env);
623 	int new_ofs = state->acquired_refs;
624 	int id, err;
625 
626 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
627 	if (err)
628 		return err;
629 	id = ++env->id_gen;
630 	state->refs[new_ofs].id = id;
631 	state->refs[new_ofs].insn_idx = insn_idx;
632 
633 	return id;
634 }
635 
636 /* release function corresponding to acquire_reference_state(). Idempotent. */
637 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
638 {
639 	int i, last_idx;
640 
641 	last_idx = state->acquired_refs - 1;
642 	for (i = 0; i < state->acquired_refs; i++) {
643 		if (state->refs[i].id == ptr_id) {
644 			if (last_idx && i != last_idx)
645 				memcpy(&state->refs[i], &state->refs[last_idx],
646 				       sizeof(*state->refs));
647 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
648 			state->acquired_refs--;
649 			return 0;
650 		}
651 	}
652 	return -EINVAL;
653 }
654 
655 static int transfer_reference_state(struct bpf_func_state *dst,
656 				    struct bpf_func_state *src)
657 {
658 	int err = realloc_reference_state(dst, src->acquired_refs, false);
659 	if (err)
660 		return err;
661 	err = copy_reference_state(dst, src);
662 	if (err)
663 		return err;
664 	return 0;
665 }
666 
667 static void free_func_state(struct bpf_func_state *state)
668 {
669 	if (!state)
670 		return;
671 	kfree(state->refs);
672 	kfree(state->stack);
673 	kfree(state);
674 }
675 
676 static void clear_jmp_history(struct bpf_verifier_state *state)
677 {
678 	kfree(state->jmp_history);
679 	state->jmp_history = NULL;
680 	state->jmp_history_cnt = 0;
681 }
682 
683 static void free_verifier_state(struct bpf_verifier_state *state,
684 				bool free_self)
685 {
686 	int i;
687 
688 	for (i = 0; i <= state->curframe; i++) {
689 		free_func_state(state->frame[i]);
690 		state->frame[i] = NULL;
691 	}
692 	clear_jmp_history(state);
693 	if (free_self)
694 		kfree(state);
695 }
696 
697 /* copy verifier state from src to dst growing dst stack space
698  * when necessary to accommodate larger src stack
699  */
700 static int copy_func_state(struct bpf_func_state *dst,
701 			   const struct bpf_func_state *src)
702 {
703 	int err;
704 
705 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
706 				 false);
707 	if (err)
708 		return err;
709 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
710 	err = copy_reference_state(dst, src);
711 	if (err)
712 		return err;
713 	return copy_stack_state(dst, src);
714 }
715 
716 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
717 			       const struct bpf_verifier_state *src)
718 {
719 	struct bpf_func_state *dst;
720 	u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
721 	int i, err;
722 
723 	if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
724 		kfree(dst_state->jmp_history);
725 		dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
726 		if (!dst_state->jmp_history)
727 			return -ENOMEM;
728 	}
729 	memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
730 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
731 
732 	/* if dst has more stack frames then src frame, free them */
733 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
734 		free_func_state(dst_state->frame[i]);
735 		dst_state->frame[i] = NULL;
736 	}
737 	dst_state->speculative = src->speculative;
738 	dst_state->curframe = src->curframe;
739 	dst_state->active_spin_lock = src->active_spin_lock;
740 	dst_state->branches = src->branches;
741 	dst_state->parent = src->parent;
742 	dst_state->first_insn_idx = src->first_insn_idx;
743 	dst_state->last_insn_idx = src->last_insn_idx;
744 	for (i = 0; i <= src->curframe; i++) {
745 		dst = dst_state->frame[i];
746 		if (!dst) {
747 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
748 			if (!dst)
749 				return -ENOMEM;
750 			dst_state->frame[i] = dst;
751 		}
752 		err = copy_func_state(dst, src->frame[i]);
753 		if (err)
754 			return err;
755 	}
756 	return 0;
757 }
758 
759 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
760 {
761 	while (st) {
762 		u32 br = --st->branches;
763 
764 		/* WARN_ON(br > 1) technically makes sense here,
765 		 * but see comment in push_stack(), hence:
766 		 */
767 		WARN_ONCE((int)br < 0,
768 			  "BUG update_branch_counts:branches_to_explore=%d\n",
769 			  br);
770 		if (br)
771 			break;
772 		st = st->parent;
773 	}
774 }
775 
776 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
777 		     int *insn_idx)
778 {
779 	struct bpf_verifier_state *cur = env->cur_state;
780 	struct bpf_verifier_stack_elem *elem, *head = env->head;
781 	int err;
782 
783 	if (env->head == NULL)
784 		return -ENOENT;
785 
786 	if (cur) {
787 		err = copy_verifier_state(cur, &head->st);
788 		if (err)
789 			return err;
790 	}
791 	if (insn_idx)
792 		*insn_idx = head->insn_idx;
793 	if (prev_insn_idx)
794 		*prev_insn_idx = head->prev_insn_idx;
795 	elem = head->next;
796 	free_verifier_state(&head->st, false);
797 	kfree(head);
798 	env->head = elem;
799 	env->stack_size--;
800 	return 0;
801 }
802 
803 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
804 					     int insn_idx, int prev_insn_idx,
805 					     bool speculative)
806 {
807 	struct bpf_verifier_state *cur = env->cur_state;
808 	struct bpf_verifier_stack_elem *elem;
809 	int err;
810 
811 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
812 	if (!elem)
813 		goto err;
814 
815 	elem->insn_idx = insn_idx;
816 	elem->prev_insn_idx = prev_insn_idx;
817 	elem->next = env->head;
818 	env->head = elem;
819 	env->stack_size++;
820 	err = copy_verifier_state(&elem->st, cur);
821 	if (err)
822 		goto err;
823 	elem->st.speculative |= speculative;
824 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
825 		verbose(env, "The sequence of %d jumps is too complex.\n",
826 			env->stack_size);
827 		goto err;
828 	}
829 	if (elem->st.parent) {
830 		++elem->st.parent->branches;
831 		/* WARN_ON(branches > 2) technically makes sense here,
832 		 * but
833 		 * 1. speculative states will bump 'branches' for non-branch
834 		 * instructions
835 		 * 2. is_state_visited() heuristics may decide not to create
836 		 * a new state for a sequence of branches and all such current
837 		 * and cloned states will be pointing to a single parent state
838 		 * which might have large 'branches' count.
839 		 */
840 	}
841 	return &elem->st;
842 err:
843 	free_verifier_state(env->cur_state, true);
844 	env->cur_state = NULL;
845 	/* pop all elements and return */
846 	while (!pop_stack(env, NULL, NULL));
847 	return NULL;
848 }
849 
850 #define CALLER_SAVED_REGS 6
851 static const int caller_saved[CALLER_SAVED_REGS] = {
852 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
853 };
854 
855 static void __mark_reg_not_init(struct bpf_reg_state *reg);
856 
857 /* Mark the unknown part of a register (variable offset or scalar value) as
858  * known to have the value @imm.
859  */
860 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
861 {
862 	/* Clear id, off, and union(map_ptr, range) */
863 	memset(((u8 *)reg) + sizeof(reg->type), 0,
864 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
865 	reg->var_off = tnum_const(imm);
866 	reg->smin_value = (s64)imm;
867 	reg->smax_value = (s64)imm;
868 	reg->umin_value = imm;
869 	reg->umax_value = imm;
870 }
871 
872 /* Mark the 'variable offset' part of a register as zero.  This should be
873  * used only on registers holding a pointer type.
874  */
875 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
876 {
877 	__mark_reg_known(reg, 0);
878 }
879 
880 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
881 {
882 	__mark_reg_known(reg, 0);
883 	reg->type = SCALAR_VALUE;
884 }
885 
886 static void mark_reg_known_zero(struct bpf_verifier_env *env,
887 				struct bpf_reg_state *regs, u32 regno)
888 {
889 	if (WARN_ON(regno >= MAX_BPF_REG)) {
890 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
891 		/* Something bad happened, let's kill all regs */
892 		for (regno = 0; regno < MAX_BPF_REG; regno++)
893 			__mark_reg_not_init(regs + regno);
894 		return;
895 	}
896 	__mark_reg_known_zero(regs + regno);
897 }
898 
899 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
900 {
901 	return type_is_pkt_pointer(reg->type);
902 }
903 
904 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
905 {
906 	return reg_is_pkt_pointer(reg) ||
907 	       reg->type == PTR_TO_PACKET_END;
908 }
909 
910 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
911 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
912 				    enum bpf_reg_type which)
913 {
914 	/* The register can already have a range from prior markings.
915 	 * This is fine as long as it hasn't been advanced from its
916 	 * origin.
917 	 */
918 	return reg->type == which &&
919 	       reg->id == 0 &&
920 	       reg->off == 0 &&
921 	       tnum_equals_const(reg->var_off, 0);
922 }
923 
924 /* Attempts to improve min/max values based on var_off information */
925 static void __update_reg_bounds(struct bpf_reg_state *reg)
926 {
927 	/* min signed is max(sign bit) | min(other bits) */
928 	reg->smin_value = max_t(s64, reg->smin_value,
929 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
930 	/* max signed is min(sign bit) | max(other bits) */
931 	reg->smax_value = min_t(s64, reg->smax_value,
932 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
933 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
934 	reg->umax_value = min(reg->umax_value,
935 			      reg->var_off.value | reg->var_off.mask);
936 }
937 
938 /* Uses signed min/max values to inform unsigned, and vice-versa */
939 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
940 {
941 	/* Learn sign from signed bounds.
942 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
943 	 * are the same, so combine.  This works even in the negative case, e.g.
944 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
945 	 */
946 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
947 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
948 							  reg->umin_value);
949 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
950 							  reg->umax_value);
951 		return;
952 	}
953 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
954 	 * boundary, so we must be careful.
955 	 */
956 	if ((s64)reg->umax_value >= 0) {
957 		/* Positive.  We can't learn anything from the smin, but smax
958 		 * is positive, hence safe.
959 		 */
960 		reg->smin_value = reg->umin_value;
961 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
962 							  reg->umax_value);
963 	} else if ((s64)reg->umin_value < 0) {
964 		/* Negative.  We can't learn anything from the smax, but smin
965 		 * is negative, hence safe.
966 		 */
967 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
968 							  reg->umin_value);
969 		reg->smax_value = reg->umax_value;
970 	}
971 }
972 
973 /* Attempts to improve var_off based on unsigned min/max information */
974 static void __reg_bound_offset(struct bpf_reg_state *reg)
975 {
976 	reg->var_off = tnum_intersect(reg->var_off,
977 				      tnum_range(reg->umin_value,
978 						 reg->umax_value));
979 }
980 
981 /* Reset the min/max bounds of a register */
982 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
983 {
984 	reg->smin_value = S64_MIN;
985 	reg->smax_value = S64_MAX;
986 	reg->umin_value = 0;
987 	reg->umax_value = U64_MAX;
988 
989 	/* constant backtracking is enabled for root only for now */
990 	reg->precise = capable(CAP_SYS_ADMIN) ? false : true;
991 }
992 
993 /* Mark a register as having a completely unknown (scalar) value. */
994 static void __mark_reg_unknown(struct bpf_reg_state *reg)
995 {
996 	/*
997 	 * Clear type, id, off, and union(map_ptr, range) and
998 	 * padding between 'type' and union
999 	 */
1000 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1001 	reg->type = SCALAR_VALUE;
1002 	reg->var_off = tnum_unknown;
1003 	reg->frameno = 0;
1004 	__mark_reg_unbounded(reg);
1005 }
1006 
1007 static void mark_reg_unknown(struct bpf_verifier_env *env,
1008 			     struct bpf_reg_state *regs, u32 regno)
1009 {
1010 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1011 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1012 		/* Something bad happened, let's kill all regs except FP */
1013 		for (regno = 0; regno < BPF_REG_FP; regno++)
1014 			__mark_reg_not_init(regs + regno);
1015 		return;
1016 	}
1017 	__mark_reg_unknown(regs + regno);
1018 }
1019 
1020 static void __mark_reg_not_init(struct bpf_reg_state *reg)
1021 {
1022 	__mark_reg_unknown(reg);
1023 	reg->type = NOT_INIT;
1024 }
1025 
1026 static void mark_reg_not_init(struct bpf_verifier_env *env,
1027 			      struct bpf_reg_state *regs, u32 regno)
1028 {
1029 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1030 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1031 		/* Something bad happened, let's kill all regs except FP */
1032 		for (regno = 0; regno < BPF_REG_FP; regno++)
1033 			__mark_reg_not_init(regs + regno);
1034 		return;
1035 	}
1036 	__mark_reg_not_init(regs + regno);
1037 }
1038 
1039 #define DEF_NOT_SUBREG	(0)
1040 static void init_reg_state(struct bpf_verifier_env *env,
1041 			   struct bpf_func_state *state)
1042 {
1043 	struct bpf_reg_state *regs = state->regs;
1044 	int i;
1045 
1046 	for (i = 0; i < MAX_BPF_REG; i++) {
1047 		mark_reg_not_init(env, regs, i);
1048 		regs[i].live = REG_LIVE_NONE;
1049 		regs[i].parent = NULL;
1050 		regs[i].subreg_def = DEF_NOT_SUBREG;
1051 	}
1052 
1053 	/* frame pointer */
1054 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1055 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1056 	regs[BPF_REG_FP].frameno = state->frameno;
1057 
1058 	/* 1st arg to a function */
1059 	regs[BPF_REG_1].type = PTR_TO_CTX;
1060 	mark_reg_known_zero(env, regs, BPF_REG_1);
1061 }
1062 
1063 #define BPF_MAIN_FUNC (-1)
1064 static void init_func_state(struct bpf_verifier_env *env,
1065 			    struct bpf_func_state *state,
1066 			    int callsite, int frameno, int subprogno)
1067 {
1068 	state->callsite = callsite;
1069 	state->frameno = frameno;
1070 	state->subprogno = subprogno;
1071 	init_reg_state(env, state);
1072 }
1073 
1074 enum reg_arg_type {
1075 	SRC_OP,		/* register is used as source operand */
1076 	DST_OP,		/* register is used as destination operand */
1077 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1078 };
1079 
1080 static int cmp_subprogs(const void *a, const void *b)
1081 {
1082 	return ((struct bpf_subprog_info *)a)->start -
1083 	       ((struct bpf_subprog_info *)b)->start;
1084 }
1085 
1086 static int find_subprog(struct bpf_verifier_env *env, int off)
1087 {
1088 	struct bpf_subprog_info *p;
1089 
1090 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1091 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1092 	if (!p)
1093 		return -ENOENT;
1094 	return p - env->subprog_info;
1095 
1096 }
1097 
1098 static int add_subprog(struct bpf_verifier_env *env, int off)
1099 {
1100 	int insn_cnt = env->prog->len;
1101 	int ret;
1102 
1103 	if (off >= insn_cnt || off < 0) {
1104 		verbose(env, "call to invalid destination\n");
1105 		return -EINVAL;
1106 	}
1107 	ret = find_subprog(env, off);
1108 	if (ret >= 0)
1109 		return 0;
1110 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1111 		verbose(env, "too many subprograms\n");
1112 		return -E2BIG;
1113 	}
1114 	env->subprog_info[env->subprog_cnt++].start = off;
1115 	sort(env->subprog_info, env->subprog_cnt,
1116 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1117 	return 0;
1118 }
1119 
1120 static int check_subprogs(struct bpf_verifier_env *env)
1121 {
1122 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1123 	struct bpf_subprog_info *subprog = env->subprog_info;
1124 	struct bpf_insn *insn = env->prog->insnsi;
1125 	int insn_cnt = env->prog->len;
1126 
1127 	/* Add entry function. */
1128 	ret = add_subprog(env, 0);
1129 	if (ret < 0)
1130 		return ret;
1131 
1132 	/* determine subprog starts. The end is one before the next starts */
1133 	for (i = 0; i < insn_cnt; i++) {
1134 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1135 			continue;
1136 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1137 			continue;
1138 		if (!env->allow_ptr_leaks) {
1139 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
1140 			return -EPERM;
1141 		}
1142 		ret = add_subprog(env, i + insn[i].imm + 1);
1143 		if (ret < 0)
1144 			return ret;
1145 	}
1146 
1147 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1148 	 * logic. 'subprog_cnt' should not be increased.
1149 	 */
1150 	subprog[env->subprog_cnt].start = insn_cnt;
1151 
1152 	if (env->log.level & BPF_LOG_LEVEL2)
1153 		for (i = 0; i < env->subprog_cnt; i++)
1154 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1155 
1156 	/* now check that all jumps are within the same subprog */
1157 	subprog_start = subprog[cur_subprog].start;
1158 	subprog_end = subprog[cur_subprog + 1].start;
1159 	for (i = 0; i < insn_cnt; i++) {
1160 		u8 code = insn[i].code;
1161 
1162 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1163 			goto next;
1164 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1165 			goto next;
1166 		off = i + insn[i].off + 1;
1167 		if (off < subprog_start || off >= subprog_end) {
1168 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1169 			return -EINVAL;
1170 		}
1171 next:
1172 		if (i == subprog_end - 1) {
1173 			/* to avoid fall-through from one subprog into another
1174 			 * the last insn of the subprog should be either exit
1175 			 * or unconditional jump back
1176 			 */
1177 			if (code != (BPF_JMP | BPF_EXIT) &&
1178 			    code != (BPF_JMP | BPF_JA)) {
1179 				verbose(env, "last insn is not an exit or jmp\n");
1180 				return -EINVAL;
1181 			}
1182 			subprog_start = subprog_end;
1183 			cur_subprog++;
1184 			if (cur_subprog < env->subprog_cnt)
1185 				subprog_end = subprog[cur_subprog + 1].start;
1186 		}
1187 	}
1188 	return 0;
1189 }
1190 
1191 /* Parentage chain of this register (or stack slot) should take care of all
1192  * issues like callee-saved registers, stack slot allocation time, etc.
1193  */
1194 static int mark_reg_read(struct bpf_verifier_env *env,
1195 			 const struct bpf_reg_state *state,
1196 			 struct bpf_reg_state *parent, u8 flag)
1197 {
1198 	bool writes = parent == state->parent; /* Observe write marks */
1199 	int cnt = 0;
1200 
1201 	while (parent) {
1202 		/* if read wasn't screened by an earlier write ... */
1203 		if (writes && state->live & REG_LIVE_WRITTEN)
1204 			break;
1205 		if (parent->live & REG_LIVE_DONE) {
1206 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1207 				reg_type_str[parent->type],
1208 				parent->var_off.value, parent->off);
1209 			return -EFAULT;
1210 		}
1211 		/* The first condition is more likely to be true than the
1212 		 * second, checked it first.
1213 		 */
1214 		if ((parent->live & REG_LIVE_READ) == flag ||
1215 		    parent->live & REG_LIVE_READ64)
1216 			/* The parentage chain never changes and
1217 			 * this parent was already marked as LIVE_READ.
1218 			 * There is no need to keep walking the chain again and
1219 			 * keep re-marking all parents as LIVE_READ.
1220 			 * This case happens when the same register is read
1221 			 * multiple times without writes into it in-between.
1222 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1223 			 * then no need to set the weak REG_LIVE_READ32.
1224 			 */
1225 			break;
1226 		/* ... then we depend on parent's value */
1227 		parent->live |= flag;
1228 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1229 		if (flag == REG_LIVE_READ64)
1230 			parent->live &= ~REG_LIVE_READ32;
1231 		state = parent;
1232 		parent = state->parent;
1233 		writes = true;
1234 		cnt++;
1235 	}
1236 
1237 	if (env->longest_mark_read_walk < cnt)
1238 		env->longest_mark_read_walk = cnt;
1239 	return 0;
1240 }
1241 
1242 /* This function is supposed to be used by the following 32-bit optimization
1243  * code only. It returns TRUE if the source or destination register operates
1244  * on 64-bit, otherwise return FALSE.
1245  */
1246 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1247 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1248 {
1249 	u8 code, class, op;
1250 
1251 	code = insn->code;
1252 	class = BPF_CLASS(code);
1253 	op = BPF_OP(code);
1254 	if (class == BPF_JMP) {
1255 		/* BPF_EXIT for "main" will reach here. Return TRUE
1256 		 * conservatively.
1257 		 */
1258 		if (op == BPF_EXIT)
1259 			return true;
1260 		if (op == BPF_CALL) {
1261 			/* BPF to BPF call will reach here because of marking
1262 			 * caller saved clobber with DST_OP_NO_MARK for which we
1263 			 * don't care the register def because they are anyway
1264 			 * marked as NOT_INIT already.
1265 			 */
1266 			if (insn->src_reg == BPF_PSEUDO_CALL)
1267 				return false;
1268 			/* Helper call will reach here because of arg type
1269 			 * check, conservatively return TRUE.
1270 			 */
1271 			if (t == SRC_OP)
1272 				return true;
1273 
1274 			return false;
1275 		}
1276 	}
1277 
1278 	if (class == BPF_ALU64 || class == BPF_JMP ||
1279 	    /* BPF_END always use BPF_ALU class. */
1280 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1281 		return true;
1282 
1283 	if (class == BPF_ALU || class == BPF_JMP32)
1284 		return false;
1285 
1286 	if (class == BPF_LDX) {
1287 		if (t != SRC_OP)
1288 			return BPF_SIZE(code) == BPF_DW;
1289 		/* LDX source must be ptr. */
1290 		return true;
1291 	}
1292 
1293 	if (class == BPF_STX) {
1294 		if (reg->type != SCALAR_VALUE)
1295 			return true;
1296 		return BPF_SIZE(code) == BPF_DW;
1297 	}
1298 
1299 	if (class == BPF_LD) {
1300 		u8 mode = BPF_MODE(code);
1301 
1302 		/* LD_IMM64 */
1303 		if (mode == BPF_IMM)
1304 			return true;
1305 
1306 		/* Both LD_IND and LD_ABS return 32-bit data. */
1307 		if (t != SRC_OP)
1308 			return  false;
1309 
1310 		/* Implicit ctx ptr. */
1311 		if (regno == BPF_REG_6)
1312 			return true;
1313 
1314 		/* Explicit source could be any width. */
1315 		return true;
1316 	}
1317 
1318 	if (class == BPF_ST)
1319 		/* The only source register for BPF_ST is a ptr. */
1320 		return true;
1321 
1322 	/* Conservatively return true at default. */
1323 	return true;
1324 }
1325 
1326 /* Return TRUE if INSN doesn't have explicit value define. */
1327 static bool insn_no_def(struct bpf_insn *insn)
1328 {
1329 	u8 class = BPF_CLASS(insn->code);
1330 
1331 	return (class == BPF_JMP || class == BPF_JMP32 ||
1332 		class == BPF_STX || class == BPF_ST);
1333 }
1334 
1335 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1336 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1337 {
1338 	if (insn_no_def(insn))
1339 		return false;
1340 
1341 	return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1342 }
1343 
1344 static void mark_insn_zext(struct bpf_verifier_env *env,
1345 			   struct bpf_reg_state *reg)
1346 {
1347 	s32 def_idx = reg->subreg_def;
1348 
1349 	if (def_idx == DEF_NOT_SUBREG)
1350 		return;
1351 
1352 	env->insn_aux_data[def_idx - 1].zext_dst = true;
1353 	/* The dst will be zero extended, so won't be sub-register anymore. */
1354 	reg->subreg_def = DEF_NOT_SUBREG;
1355 }
1356 
1357 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1358 			 enum reg_arg_type t)
1359 {
1360 	struct bpf_verifier_state *vstate = env->cur_state;
1361 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1362 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1363 	struct bpf_reg_state *reg, *regs = state->regs;
1364 	bool rw64;
1365 
1366 	if (regno >= MAX_BPF_REG) {
1367 		verbose(env, "R%d is invalid\n", regno);
1368 		return -EINVAL;
1369 	}
1370 
1371 	reg = &regs[regno];
1372 	rw64 = is_reg64(env, insn, regno, reg, t);
1373 	if (t == SRC_OP) {
1374 		/* check whether register used as source operand can be read */
1375 		if (reg->type == NOT_INIT) {
1376 			verbose(env, "R%d !read_ok\n", regno);
1377 			return -EACCES;
1378 		}
1379 		/* We don't need to worry about FP liveness because it's read-only */
1380 		if (regno == BPF_REG_FP)
1381 			return 0;
1382 
1383 		if (rw64)
1384 			mark_insn_zext(env, reg);
1385 
1386 		return mark_reg_read(env, reg, reg->parent,
1387 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1388 	} else {
1389 		/* check whether register used as dest operand can be written to */
1390 		if (regno == BPF_REG_FP) {
1391 			verbose(env, "frame pointer is read only\n");
1392 			return -EACCES;
1393 		}
1394 		reg->live |= REG_LIVE_WRITTEN;
1395 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1396 		if (t == DST_OP)
1397 			mark_reg_unknown(env, regs, regno);
1398 	}
1399 	return 0;
1400 }
1401 
1402 /* for any branch, call, exit record the history of jmps in the given state */
1403 static int push_jmp_history(struct bpf_verifier_env *env,
1404 			    struct bpf_verifier_state *cur)
1405 {
1406 	u32 cnt = cur->jmp_history_cnt;
1407 	struct bpf_idx_pair *p;
1408 
1409 	cnt++;
1410 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1411 	if (!p)
1412 		return -ENOMEM;
1413 	p[cnt - 1].idx = env->insn_idx;
1414 	p[cnt - 1].prev_idx = env->prev_insn_idx;
1415 	cur->jmp_history = p;
1416 	cur->jmp_history_cnt = cnt;
1417 	return 0;
1418 }
1419 
1420 /* Backtrack one insn at a time. If idx is not at the top of recorded
1421  * history then previous instruction came from straight line execution.
1422  */
1423 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1424 			     u32 *history)
1425 {
1426 	u32 cnt = *history;
1427 
1428 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
1429 		i = st->jmp_history[cnt - 1].prev_idx;
1430 		(*history)--;
1431 	} else {
1432 		i--;
1433 	}
1434 	return i;
1435 }
1436 
1437 /* For given verifier state backtrack_insn() is called from the last insn to
1438  * the first insn. Its purpose is to compute a bitmask of registers and
1439  * stack slots that needs precision in the parent verifier state.
1440  */
1441 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1442 			  u32 *reg_mask, u64 *stack_mask)
1443 {
1444 	const struct bpf_insn_cbs cbs = {
1445 		.cb_print	= verbose,
1446 		.private_data	= env,
1447 	};
1448 	struct bpf_insn *insn = env->prog->insnsi + idx;
1449 	u8 class = BPF_CLASS(insn->code);
1450 	u8 opcode = BPF_OP(insn->code);
1451 	u8 mode = BPF_MODE(insn->code);
1452 	u32 dreg = 1u << insn->dst_reg;
1453 	u32 sreg = 1u << insn->src_reg;
1454 	u32 spi;
1455 
1456 	if (insn->code == 0)
1457 		return 0;
1458 	if (env->log.level & BPF_LOG_LEVEL) {
1459 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1460 		verbose(env, "%d: ", idx);
1461 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1462 	}
1463 
1464 	if (class == BPF_ALU || class == BPF_ALU64) {
1465 		if (!(*reg_mask & dreg))
1466 			return 0;
1467 		if (opcode == BPF_MOV) {
1468 			if (BPF_SRC(insn->code) == BPF_X) {
1469 				/* dreg = sreg
1470 				 * dreg needs precision after this insn
1471 				 * sreg needs precision before this insn
1472 				 */
1473 				*reg_mask &= ~dreg;
1474 				*reg_mask |= sreg;
1475 			} else {
1476 				/* dreg = K
1477 				 * dreg needs precision after this insn.
1478 				 * Corresponding register is already marked
1479 				 * as precise=true in this verifier state.
1480 				 * No further markings in parent are necessary
1481 				 */
1482 				*reg_mask &= ~dreg;
1483 			}
1484 		} else {
1485 			if (BPF_SRC(insn->code) == BPF_X) {
1486 				/* dreg += sreg
1487 				 * both dreg and sreg need precision
1488 				 * before this insn
1489 				 */
1490 				*reg_mask |= sreg;
1491 			} /* else dreg += K
1492 			   * dreg still needs precision before this insn
1493 			   */
1494 		}
1495 	} else if (class == BPF_LDX) {
1496 		if (!(*reg_mask & dreg))
1497 			return 0;
1498 		*reg_mask &= ~dreg;
1499 
1500 		/* scalars can only be spilled into stack w/o losing precision.
1501 		 * Load from any other memory can be zero extended.
1502 		 * The desire to keep that precision is already indicated
1503 		 * by 'precise' mark in corresponding register of this state.
1504 		 * No further tracking necessary.
1505 		 */
1506 		if (insn->src_reg != BPF_REG_FP)
1507 			return 0;
1508 		if (BPF_SIZE(insn->code) != BPF_DW)
1509 			return 0;
1510 
1511 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
1512 		 * that [fp - off] slot contains scalar that needs to be
1513 		 * tracked with precision
1514 		 */
1515 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1516 		if (spi >= 64) {
1517 			verbose(env, "BUG spi %d\n", spi);
1518 			WARN_ONCE(1, "verifier backtracking bug");
1519 			return -EFAULT;
1520 		}
1521 		*stack_mask |= 1ull << spi;
1522 	} else if (class == BPF_STX) {
1523 		if (*reg_mask & dreg)
1524 			/* stx shouldn't be using _scalar_ dst_reg
1525 			 * to access memory. It means backtracking
1526 			 * encountered a case of pointer subtraction.
1527 			 */
1528 			return -ENOTSUPP;
1529 		/* scalars can only be spilled into stack */
1530 		if (insn->dst_reg != BPF_REG_FP)
1531 			return 0;
1532 		if (BPF_SIZE(insn->code) != BPF_DW)
1533 			return 0;
1534 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1535 		if (spi >= 64) {
1536 			verbose(env, "BUG spi %d\n", spi);
1537 			WARN_ONCE(1, "verifier backtracking bug");
1538 			return -EFAULT;
1539 		}
1540 		if (!(*stack_mask & (1ull << spi)))
1541 			return 0;
1542 		*stack_mask &= ~(1ull << spi);
1543 		*reg_mask |= sreg;
1544 	} else if (class == BPF_JMP || class == BPF_JMP32) {
1545 		if (opcode == BPF_CALL) {
1546 			if (insn->src_reg == BPF_PSEUDO_CALL)
1547 				return -ENOTSUPP;
1548 			/* regular helper call sets R0 */
1549 			*reg_mask &= ~1;
1550 			if (*reg_mask & 0x3f) {
1551 				/* if backtracing was looking for registers R1-R5
1552 				 * they should have been found already.
1553 				 */
1554 				verbose(env, "BUG regs %x\n", *reg_mask);
1555 				WARN_ONCE(1, "verifier backtracking bug");
1556 				return -EFAULT;
1557 			}
1558 		} else if (opcode == BPF_EXIT) {
1559 			return -ENOTSUPP;
1560 		}
1561 	} else if (class == BPF_LD) {
1562 		if (!(*reg_mask & dreg))
1563 			return 0;
1564 		*reg_mask &= ~dreg;
1565 		/* It's ld_imm64 or ld_abs or ld_ind.
1566 		 * For ld_imm64 no further tracking of precision
1567 		 * into parent is necessary
1568 		 */
1569 		if (mode == BPF_IND || mode == BPF_ABS)
1570 			/* to be analyzed */
1571 			return -ENOTSUPP;
1572 	} else if (class == BPF_ST) {
1573 		if (*reg_mask & dreg)
1574 			/* likely pointer subtraction */
1575 			return -ENOTSUPP;
1576 	}
1577 	return 0;
1578 }
1579 
1580 /* the scalar precision tracking algorithm:
1581  * . at the start all registers have precise=false.
1582  * . scalar ranges are tracked as normal through alu and jmp insns.
1583  * . once precise value of the scalar register is used in:
1584  *   .  ptr + scalar alu
1585  *   . if (scalar cond K|scalar)
1586  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
1587  *   backtrack through the verifier states and mark all registers and
1588  *   stack slots with spilled constants that these scalar regisers
1589  *   should be precise.
1590  * . during state pruning two registers (or spilled stack slots)
1591  *   are equivalent if both are not precise.
1592  *
1593  * Note the verifier cannot simply walk register parentage chain,
1594  * since many different registers and stack slots could have been
1595  * used to compute single precise scalar.
1596  *
1597  * The approach of starting with precise=true for all registers and then
1598  * backtrack to mark a register as not precise when the verifier detects
1599  * that program doesn't care about specific value (e.g., when helper
1600  * takes register as ARG_ANYTHING parameter) is not safe.
1601  *
1602  * It's ok to walk single parentage chain of the verifier states.
1603  * It's possible that this backtracking will go all the way till 1st insn.
1604  * All other branches will be explored for needing precision later.
1605  *
1606  * The backtracking needs to deal with cases like:
1607  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1608  * r9 -= r8
1609  * r5 = r9
1610  * if r5 > 0x79f goto pc+7
1611  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1612  * r5 += 1
1613  * ...
1614  * call bpf_perf_event_output#25
1615  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1616  *
1617  * and this case:
1618  * r6 = 1
1619  * call foo // uses callee's r6 inside to compute r0
1620  * r0 += r6
1621  * if r0 == 0 goto
1622  *
1623  * to track above reg_mask/stack_mask needs to be independent for each frame.
1624  *
1625  * Also if parent's curframe > frame where backtracking started,
1626  * the verifier need to mark registers in both frames, otherwise callees
1627  * may incorrectly prune callers. This is similar to
1628  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1629  *
1630  * For now backtracking falls back into conservative marking.
1631  */
1632 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1633 				     struct bpf_verifier_state *st)
1634 {
1635 	struct bpf_func_state *func;
1636 	struct bpf_reg_state *reg;
1637 	int i, j;
1638 
1639 	/* big hammer: mark all scalars precise in this path.
1640 	 * pop_stack may still get !precise scalars.
1641 	 */
1642 	for (; st; st = st->parent)
1643 		for (i = 0; i <= st->curframe; i++) {
1644 			func = st->frame[i];
1645 			for (j = 0; j < BPF_REG_FP; j++) {
1646 				reg = &func->regs[j];
1647 				if (reg->type != SCALAR_VALUE)
1648 					continue;
1649 				reg->precise = true;
1650 			}
1651 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1652 				if (func->stack[j].slot_type[0] != STACK_SPILL)
1653 					continue;
1654 				reg = &func->stack[j].spilled_ptr;
1655 				if (reg->type != SCALAR_VALUE)
1656 					continue;
1657 				reg->precise = true;
1658 			}
1659 		}
1660 }
1661 
1662 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
1663 				  int spi)
1664 {
1665 	struct bpf_verifier_state *st = env->cur_state;
1666 	int first_idx = st->first_insn_idx;
1667 	int last_idx = env->insn_idx;
1668 	struct bpf_func_state *func;
1669 	struct bpf_reg_state *reg;
1670 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
1671 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
1672 	bool skip_first = true;
1673 	bool new_marks = false;
1674 	int i, err;
1675 
1676 	if (!env->allow_ptr_leaks)
1677 		/* backtracking is root only for now */
1678 		return 0;
1679 
1680 	func = st->frame[st->curframe];
1681 	if (regno >= 0) {
1682 		reg = &func->regs[regno];
1683 		if (reg->type != SCALAR_VALUE) {
1684 			WARN_ONCE(1, "backtracing misuse");
1685 			return -EFAULT;
1686 		}
1687 		if (!reg->precise)
1688 			new_marks = true;
1689 		else
1690 			reg_mask = 0;
1691 		reg->precise = true;
1692 	}
1693 
1694 	while (spi >= 0) {
1695 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
1696 			stack_mask = 0;
1697 			break;
1698 		}
1699 		reg = &func->stack[spi].spilled_ptr;
1700 		if (reg->type != SCALAR_VALUE) {
1701 			stack_mask = 0;
1702 			break;
1703 		}
1704 		if (!reg->precise)
1705 			new_marks = true;
1706 		else
1707 			stack_mask = 0;
1708 		reg->precise = true;
1709 		break;
1710 	}
1711 
1712 	if (!new_marks)
1713 		return 0;
1714 	if (!reg_mask && !stack_mask)
1715 		return 0;
1716 	for (;;) {
1717 		DECLARE_BITMAP(mask, 64);
1718 		u32 history = st->jmp_history_cnt;
1719 
1720 		if (env->log.level & BPF_LOG_LEVEL)
1721 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
1722 		for (i = last_idx;;) {
1723 			if (skip_first) {
1724 				err = 0;
1725 				skip_first = false;
1726 			} else {
1727 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
1728 			}
1729 			if (err == -ENOTSUPP) {
1730 				mark_all_scalars_precise(env, st);
1731 				return 0;
1732 			} else if (err) {
1733 				return err;
1734 			}
1735 			if (!reg_mask && !stack_mask)
1736 				/* Found assignment(s) into tracked register in this state.
1737 				 * Since this state is already marked, just return.
1738 				 * Nothing to be tracked further in the parent state.
1739 				 */
1740 				return 0;
1741 			if (i == first_idx)
1742 				break;
1743 			i = get_prev_insn_idx(st, i, &history);
1744 			if (i >= env->prog->len) {
1745 				/* This can happen if backtracking reached insn 0
1746 				 * and there are still reg_mask or stack_mask
1747 				 * to backtrack.
1748 				 * It means the backtracking missed the spot where
1749 				 * particular register was initialized with a constant.
1750 				 */
1751 				verbose(env, "BUG backtracking idx %d\n", i);
1752 				WARN_ONCE(1, "verifier backtracking bug");
1753 				return -EFAULT;
1754 			}
1755 		}
1756 		st = st->parent;
1757 		if (!st)
1758 			break;
1759 
1760 		new_marks = false;
1761 		func = st->frame[st->curframe];
1762 		bitmap_from_u64(mask, reg_mask);
1763 		for_each_set_bit(i, mask, 32) {
1764 			reg = &func->regs[i];
1765 			if (reg->type != SCALAR_VALUE) {
1766 				reg_mask &= ~(1u << i);
1767 				continue;
1768 			}
1769 			if (!reg->precise)
1770 				new_marks = true;
1771 			reg->precise = true;
1772 		}
1773 
1774 		bitmap_from_u64(mask, stack_mask);
1775 		for_each_set_bit(i, mask, 64) {
1776 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
1777 				/* This can happen if backtracking
1778 				 * is propagating stack precision where
1779 				 * caller has larger stack frame
1780 				 * than callee, but backtrack_insn() should
1781 				 * have returned -ENOTSUPP.
1782 				 */
1783 				verbose(env, "BUG spi %d stack_size %d\n",
1784 					i, func->allocated_stack);
1785 				WARN_ONCE(1, "verifier backtracking bug");
1786 				return -EFAULT;
1787 			}
1788 
1789 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
1790 				stack_mask &= ~(1ull << i);
1791 				continue;
1792 			}
1793 			reg = &func->stack[i].spilled_ptr;
1794 			if (reg->type != SCALAR_VALUE) {
1795 				stack_mask &= ~(1ull << i);
1796 				continue;
1797 			}
1798 			if (!reg->precise)
1799 				new_marks = true;
1800 			reg->precise = true;
1801 		}
1802 		if (env->log.level & BPF_LOG_LEVEL) {
1803 			print_verifier_state(env, func);
1804 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
1805 				new_marks ? "didn't have" : "already had",
1806 				reg_mask, stack_mask);
1807 		}
1808 
1809 		if (!reg_mask && !stack_mask)
1810 			break;
1811 		if (!new_marks)
1812 			break;
1813 
1814 		last_idx = st->last_insn_idx;
1815 		first_idx = st->first_insn_idx;
1816 	}
1817 	return 0;
1818 }
1819 
1820 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
1821 {
1822 	return __mark_chain_precision(env, regno, -1);
1823 }
1824 
1825 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
1826 {
1827 	return __mark_chain_precision(env, -1, spi);
1828 }
1829 
1830 static bool is_spillable_regtype(enum bpf_reg_type type)
1831 {
1832 	switch (type) {
1833 	case PTR_TO_MAP_VALUE:
1834 	case PTR_TO_MAP_VALUE_OR_NULL:
1835 	case PTR_TO_STACK:
1836 	case PTR_TO_CTX:
1837 	case PTR_TO_PACKET:
1838 	case PTR_TO_PACKET_META:
1839 	case PTR_TO_PACKET_END:
1840 	case PTR_TO_FLOW_KEYS:
1841 	case CONST_PTR_TO_MAP:
1842 	case PTR_TO_SOCKET:
1843 	case PTR_TO_SOCKET_OR_NULL:
1844 	case PTR_TO_SOCK_COMMON:
1845 	case PTR_TO_SOCK_COMMON_OR_NULL:
1846 	case PTR_TO_TCP_SOCK:
1847 	case PTR_TO_TCP_SOCK_OR_NULL:
1848 	case PTR_TO_XDP_SOCK:
1849 		return true;
1850 	default:
1851 		return false;
1852 	}
1853 }
1854 
1855 /* Does this register contain a constant zero? */
1856 static bool register_is_null(struct bpf_reg_state *reg)
1857 {
1858 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1859 }
1860 
1861 static bool register_is_const(struct bpf_reg_state *reg)
1862 {
1863 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
1864 }
1865 
1866 static void save_register_state(struct bpf_func_state *state,
1867 				int spi, struct bpf_reg_state *reg)
1868 {
1869 	int i;
1870 
1871 	state->stack[spi].spilled_ptr = *reg;
1872 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1873 
1874 	for (i = 0; i < BPF_REG_SIZE; i++)
1875 		state->stack[spi].slot_type[i] = STACK_SPILL;
1876 }
1877 
1878 /* check_stack_read/write functions track spill/fill of registers,
1879  * stack boundary and alignment are checked in check_mem_access()
1880  */
1881 static int check_stack_write(struct bpf_verifier_env *env,
1882 			     struct bpf_func_state *state, /* func where register points to */
1883 			     int off, int size, int value_regno, int insn_idx)
1884 {
1885 	struct bpf_func_state *cur; /* state of the current function */
1886 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1887 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
1888 	struct bpf_reg_state *reg = NULL;
1889 
1890 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1891 				 state->acquired_refs, true);
1892 	if (err)
1893 		return err;
1894 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1895 	 * so it's aligned access and [off, off + size) are within stack limits
1896 	 */
1897 	if (!env->allow_ptr_leaks &&
1898 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
1899 	    size != BPF_REG_SIZE) {
1900 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
1901 		return -EACCES;
1902 	}
1903 
1904 	cur = env->cur_state->frame[env->cur_state->curframe];
1905 	if (value_regno >= 0)
1906 		reg = &cur->regs[value_regno];
1907 
1908 	if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
1909 	    !register_is_null(reg) && env->allow_ptr_leaks) {
1910 		if (dst_reg != BPF_REG_FP) {
1911 			/* The backtracking logic can only recognize explicit
1912 			 * stack slot address like [fp - 8]. Other spill of
1913 			 * scalar via different register has to be conervative.
1914 			 * Backtrack from here and mark all registers as precise
1915 			 * that contributed into 'reg' being a constant.
1916 			 */
1917 			err = mark_chain_precision(env, value_regno);
1918 			if (err)
1919 				return err;
1920 		}
1921 		save_register_state(state, spi, reg);
1922 	} else if (reg && is_spillable_regtype(reg->type)) {
1923 		/* register containing pointer is being spilled into stack */
1924 		if (size != BPF_REG_SIZE) {
1925 			verbose_linfo(env, insn_idx, "; ");
1926 			verbose(env, "invalid size of register spill\n");
1927 			return -EACCES;
1928 		}
1929 
1930 		if (state != cur && reg->type == PTR_TO_STACK) {
1931 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1932 			return -EINVAL;
1933 		}
1934 
1935 		if (!env->allow_ptr_leaks) {
1936 			bool sanitize = false;
1937 
1938 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
1939 			    register_is_const(&state->stack[spi].spilled_ptr))
1940 				sanitize = true;
1941 			for (i = 0; i < BPF_REG_SIZE; i++)
1942 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
1943 					sanitize = true;
1944 					break;
1945 				}
1946 			if (sanitize) {
1947 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1948 				int soff = (-spi - 1) * BPF_REG_SIZE;
1949 
1950 				/* detected reuse of integer stack slot with a pointer
1951 				 * which means either llvm is reusing stack slot or
1952 				 * an attacker is trying to exploit CVE-2018-3639
1953 				 * (speculative store bypass)
1954 				 * Have to sanitize that slot with preemptive
1955 				 * store of zero.
1956 				 */
1957 				if (*poff && *poff != soff) {
1958 					/* disallow programs where single insn stores
1959 					 * into two different stack slots, since verifier
1960 					 * cannot sanitize them
1961 					 */
1962 					verbose(env,
1963 						"insn %d cannot access two stack slots fp%d and fp%d",
1964 						insn_idx, *poff, soff);
1965 					return -EINVAL;
1966 				}
1967 				*poff = soff;
1968 			}
1969 		}
1970 		save_register_state(state, spi, reg);
1971 	} else {
1972 		u8 type = STACK_MISC;
1973 
1974 		/* regular write of data into stack destroys any spilled ptr */
1975 		state->stack[spi].spilled_ptr.type = NOT_INIT;
1976 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1977 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
1978 			for (i = 0; i < BPF_REG_SIZE; i++)
1979 				state->stack[spi].slot_type[i] = STACK_MISC;
1980 
1981 		/* only mark the slot as written if all 8 bytes were written
1982 		 * otherwise read propagation may incorrectly stop too soon
1983 		 * when stack slots are partially written.
1984 		 * This heuristic means that read propagation will be
1985 		 * conservative, since it will add reg_live_read marks
1986 		 * to stack slots all the way to first state when programs
1987 		 * writes+reads less than 8 bytes
1988 		 */
1989 		if (size == BPF_REG_SIZE)
1990 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1991 
1992 		/* when we zero initialize stack slots mark them as such */
1993 		if (reg && register_is_null(reg)) {
1994 			/* backtracking doesn't work for STACK_ZERO yet. */
1995 			err = mark_chain_precision(env, value_regno);
1996 			if (err)
1997 				return err;
1998 			type = STACK_ZERO;
1999 		}
2000 
2001 		/* Mark slots affected by this stack write. */
2002 		for (i = 0; i < size; i++)
2003 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2004 				type;
2005 	}
2006 	return 0;
2007 }
2008 
2009 static int check_stack_read(struct bpf_verifier_env *env,
2010 			    struct bpf_func_state *reg_state /* func where register points to */,
2011 			    int off, int size, int value_regno)
2012 {
2013 	struct bpf_verifier_state *vstate = env->cur_state;
2014 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2015 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2016 	struct bpf_reg_state *reg;
2017 	u8 *stype;
2018 
2019 	if (reg_state->allocated_stack <= slot) {
2020 		verbose(env, "invalid read from stack off %d+0 size %d\n",
2021 			off, size);
2022 		return -EACCES;
2023 	}
2024 	stype = reg_state->stack[spi].slot_type;
2025 	reg = &reg_state->stack[spi].spilled_ptr;
2026 
2027 	if (stype[0] == STACK_SPILL) {
2028 		if (size != BPF_REG_SIZE) {
2029 			if (reg->type != SCALAR_VALUE) {
2030 				verbose_linfo(env, env->insn_idx, "; ");
2031 				verbose(env, "invalid size of register fill\n");
2032 				return -EACCES;
2033 			}
2034 			if (value_regno >= 0) {
2035 				mark_reg_unknown(env, state->regs, value_regno);
2036 				state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2037 			}
2038 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2039 			return 0;
2040 		}
2041 		for (i = 1; i < BPF_REG_SIZE; i++) {
2042 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2043 				verbose(env, "corrupted spill memory\n");
2044 				return -EACCES;
2045 			}
2046 		}
2047 
2048 		if (value_regno >= 0) {
2049 			/* restore register state from stack */
2050 			state->regs[value_regno] = *reg;
2051 			/* mark reg as written since spilled pointer state likely
2052 			 * has its liveness marks cleared by is_state_visited()
2053 			 * which resets stack/reg liveness for state transitions
2054 			 */
2055 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2056 		}
2057 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2058 	} else {
2059 		int zeros = 0;
2060 
2061 		for (i = 0; i < size; i++) {
2062 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2063 				continue;
2064 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2065 				zeros++;
2066 				continue;
2067 			}
2068 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2069 				off, i, size);
2070 			return -EACCES;
2071 		}
2072 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2073 		if (value_regno >= 0) {
2074 			if (zeros == size) {
2075 				/* any size read into register is zero extended,
2076 				 * so the whole register == const_zero
2077 				 */
2078 				__mark_reg_const_zero(&state->regs[value_regno]);
2079 				/* backtracking doesn't support STACK_ZERO yet,
2080 				 * so mark it precise here, so that later
2081 				 * backtracking can stop here.
2082 				 * Backtracking may not need this if this register
2083 				 * doesn't participate in pointer adjustment.
2084 				 * Forward propagation of precise flag is not
2085 				 * necessary either. This mark is only to stop
2086 				 * backtracking. Any register that contributed
2087 				 * to const 0 was marked precise before spill.
2088 				 */
2089 				state->regs[value_regno].precise = true;
2090 			} else {
2091 				/* have read misc data from the stack */
2092 				mark_reg_unknown(env, state->regs, value_regno);
2093 			}
2094 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2095 		}
2096 	}
2097 	return 0;
2098 }
2099 
2100 static int check_stack_access(struct bpf_verifier_env *env,
2101 			      const struct bpf_reg_state *reg,
2102 			      int off, int size)
2103 {
2104 	/* Stack accesses must be at a fixed offset, so that we
2105 	 * can determine what type of data were returned. See
2106 	 * check_stack_read().
2107 	 */
2108 	if (!tnum_is_const(reg->var_off)) {
2109 		char tn_buf[48];
2110 
2111 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2112 		verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
2113 			tn_buf, off, size);
2114 		return -EACCES;
2115 	}
2116 
2117 	if (off >= 0 || off < -MAX_BPF_STACK) {
2118 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
2119 		return -EACCES;
2120 	}
2121 
2122 	return 0;
2123 }
2124 
2125 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2126 				 int off, int size, enum bpf_access_type type)
2127 {
2128 	struct bpf_reg_state *regs = cur_regs(env);
2129 	struct bpf_map *map = regs[regno].map_ptr;
2130 	u32 cap = bpf_map_flags_to_cap(map);
2131 
2132 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2133 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2134 			map->value_size, off, size);
2135 		return -EACCES;
2136 	}
2137 
2138 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2139 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2140 			map->value_size, off, size);
2141 		return -EACCES;
2142 	}
2143 
2144 	return 0;
2145 }
2146 
2147 /* check read/write into map element returned by bpf_map_lookup_elem() */
2148 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
2149 			      int size, bool zero_size_allowed)
2150 {
2151 	struct bpf_reg_state *regs = cur_regs(env);
2152 	struct bpf_map *map = regs[regno].map_ptr;
2153 
2154 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2155 	    off + size > map->value_size) {
2156 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2157 			map->value_size, off, size);
2158 		return -EACCES;
2159 	}
2160 	return 0;
2161 }
2162 
2163 /* check read/write into a map element with possible variable offset */
2164 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2165 			    int off, int size, bool zero_size_allowed)
2166 {
2167 	struct bpf_verifier_state *vstate = env->cur_state;
2168 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2169 	struct bpf_reg_state *reg = &state->regs[regno];
2170 	int err;
2171 
2172 	/* We may have adjusted the register to this map value, so we
2173 	 * need to try adding each of min_value and max_value to off
2174 	 * to make sure our theoretical access will be safe.
2175 	 */
2176 	if (env->log.level & BPF_LOG_LEVEL)
2177 		print_verifier_state(env, state);
2178 
2179 	/* The minimum value is only important with signed
2180 	 * comparisons where we can't assume the floor of a
2181 	 * value is 0.  If we are using signed variables for our
2182 	 * index'es we need to make sure that whatever we use
2183 	 * will have a set floor within our range.
2184 	 */
2185 	if (reg->smin_value < 0 &&
2186 	    (reg->smin_value == S64_MIN ||
2187 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2188 	      reg->smin_value + off < 0)) {
2189 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2190 			regno);
2191 		return -EACCES;
2192 	}
2193 	err = __check_map_access(env, regno, reg->smin_value + off, size,
2194 				 zero_size_allowed);
2195 	if (err) {
2196 		verbose(env, "R%d min value is outside of the array range\n",
2197 			regno);
2198 		return err;
2199 	}
2200 
2201 	/* If we haven't set a max value then we need to bail since we can't be
2202 	 * sure we won't do bad things.
2203 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
2204 	 */
2205 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2206 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
2207 			regno);
2208 		return -EACCES;
2209 	}
2210 	err = __check_map_access(env, regno, reg->umax_value + off, size,
2211 				 zero_size_allowed);
2212 	if (err)
2213 		verbose(env, "R%d max value is outside of the array range\n",
2214 			regno);
2215 
2216 	if (map_value_has_spin_lock(reg->map_ptr)) {
2217 		u32 lock = reg->map_ptr->spin_lock_off;
2218 
2219 		/* if any part of struct bpf_spin_lock can be touched by
2220 		 * load/store reject this program.
2221 		 * To check that [x1, x2) overlaps with [y1, y2)
2222 		 * it is sufficient to check x1 < y2 && y1 < x2.
2223 		 */
2224 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2225 		     lock < reg->umax_value + off + size) {
2226 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2227 			return -EACCES;
2228 		}
2229 	}
2230 	return err;
2231 }
2232 
2233 #define MAX_PACKET_OFF 0xffff
2234 
2235 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2236 				       const struct bpf_call_arg_meta *meta,
2237 				       enum bpf_access_type t)
2238 {
2239 	switch (env->prog->type) {
2240 	/* Program types only with direct read access go here! */
2241 	case BPF_PROG_TYPE_LWT_IN:
2242 	case BPF_PROG_TYPE_LWT_OUT:
2243 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2244 	case BPF_PROG_TYPE_SK_REUSEPORT:
2245 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
2246 	case BPF_PROG_TYPE_CGROUP_SKB:
2247 		if (t == BPF_WRITE)
2248 			return false;
2249 		/* fallthrough */
2250 
2251 	/* Program types with direct read + write access go here! */
2252 	case BPF_PROG_TYPE_SCHED_CLS:
2253 	case BPF_PROG_TYPE_SCHED_ACT:
2254 	case BPF_PROG_TYPE_XDP:
2255 	case BPF_PROG_TYPE_LWT_XMIT:
2256 	case BPF_PROG_TYPE_SK_SKB:
2257 	case BPF_PROG_TYPE_SK_MSG:
2258 		if (meta)
2259 			return meta->pkt_access;
2260 
2261 		env->seen_direct_write = true;
2262 		return true;
2263 
2264 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2265 		if (t == BPF_WRITE)
2266 			env->seen_direct_write = true;
2267 
2268 		return true;
2269 
2270 	default:
2271 		return false;
2272 	}
2273 }
2274 
2275 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
2276 				 int off, int size, bool zero_size_allowed)
2277 {
2278 	struct bpf_reg_state *regs = cur_regs(env);
2279 	struct bpf_reg_state *reg = &regs[regno];
2280 
2281 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2282 	    (u64)off + size > reg->range) {
2283 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2284 			off, size, regno, reg->id, reg->off, reg->range);
2285 		return -EACCES;
2286 	}
2287 	return 0;
2288 }
2289 
2290 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2291 			       int size, bool zero_size_allowed)
2292 {
2293 	struct bpf_reg_state *regs = cur_regs(env);
2294 	struct bpf_reg_state *reg = &regs[regno];
2295 	int err;
2296 
2297 	/* We may have added a variable offset to the packet pointer; but any
2298 	 * reg->range we have comes after that.  We are only checking the fixed
2299 	 * offset.
2300 	 */
2301 
2302 	/* We don't allow negative numbers, because we aren't tracking enough
2303 	 * detail to prove they're safe.
2304 	 */
2305 	if (reg->smin_value < 0) {
2306 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2307 			regno);
2308 		return -EACCES;
2309 	}
2310 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
2311 	if (err) {
2312 		verbose(env, "R%d offset is outside of the packet\n", regno);
2313 		return err;
2314 	}
2315 
2316 	/* __check_packet_access has made sure "off + size - 1" is within u16.
2317 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2318 	 * otherwise find_good_pkt_pointers would have refused to set range info
2319 	 * that __check_packet_access would have rejected this pkt access.
2320 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2321 	 */
2322 	env->prog->aux->max_pkt_offset =
2323 		max_t(u32, env->prog->aux->max_pkt_offset,
2324 		      off + reg->umax_value + size - 1);
2325 
2326 	return err;
2327 }
2328 
2329 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
2330 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
2331 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
2332 {
2333 	struct bpf_insn_access_aux info = {
2334 		.reg_type = *reg_type,
2335 	};
2336 
2337 	if (env->ops->is_valid_access &&
2338 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
2339 		/* A non zero info.ctx_field_size indicates that this field is a
2340 		 * candidate for later verifier transformation to load the whole
2341 		 * field and then apply a mask when accessed with a narrower
2342 		 * access than actual ctx access size. A zero info.ctx_field_size
2343 		 * will only allow for whole field access and rejects any other
2344 		 * type of narrower access.
2345 		 */
2346 		*reg_type = info.reg_type;
2347 
2348 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
2349 		/* remember the offset of last byte accessed in ctx */
2350 		if (env->prog->aux->max_ctx_offset < off + size)
2351 			env->prog->aux->max_ctx_offset = off + size;
2352 		return 0;
2353 	}
2354 
2355 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
2356 	return -EACCES;
2357 }
2358 
2359 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2360 				  int size)
2361 {
2362 	if (size < 0 || off < 0 ||
2363 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
2364 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
2365 			off, size);
2366 		return -EACCES;
2367 	}
2368 	return 0;
2369 }
2370 
2371 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2372 			     u32 regno, int off, int size,
2373 			     enum bpf_access_type t)
2374 {
2375 	struct bpf_reg_state *regs = cur_regs(env);
2376 	struct bpf_reg_state *reg = &regs[regno];
2377 	struct bpf_insn_access_aux info = {};
2378 	bool valid;
2379 
2380 	if (reg->smin_value < 0) {
2381 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2382 			regno);
2383 		return -EACCES;
2384 	}
2385 
2386 	switch (reg->type) {
2387 	case PTR_TO_SOCK_COMMON:
2388 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2389 		break;
2390 	case PTR_TO_SOCKET:
2391 		valid = bpf_sock_is_valid_access(off, size, t, &info);
2392 		break;
2393 	case PTR_TO_TCP_SOCK:
2394 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2395 		break;
2396 	case PTR_TO_XDP_SOCK:
2397 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2398 		break;
2399 	default:
2400 		valid = false;
2401 	}
2402 
2403 
2404 	if (valid) {
2405 		env->insn_aux_data[insn_idx].ctx_field_size =
2406 			info.ctx_field_size;
2407 		return 0;
2408 	}
2409 
2410 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
2411 		regno, reg_type_str[reg->type], off, size);
2412 
2413 	return -EACCES;
2414 }
2415 
2416 static bool __is_pointer_value(bool allow_ptr_leaks,
2417 			       const struct bpf_reg_state *reg)
2418 {
2419 	if (allow_ptr_leaks)
2420 		return false;
2421 
2422 	return reg->type != SCALAR_VALUE;
2423 }
2424 
2425 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2426 {
2427 	return cur_regs(env) + regno;
2428 }
2429 
2430 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2431 {
2432 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
2433 }
2434 
2435 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2436 {
2437 	const struct bpf_reg_state *reg = reg_state(env, regno);
2438 
2439 	return reg->type == PTR_TO_CTX;
2440 }
2441 
2442 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2443 {
2444 	const struct bpf_reg_state *reg = reg_state(env, regno);
2445 
2446 	return type_is_sk_pointer(reg->type);
2447 }
2448 
2449 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2450 {
2451 	const struct bpf_reg_state *reg = reg_state(env, regno);
2452 
2453 	return type_is_pkt_pointer(reg->type);
2454 }
2455 
2456 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2457 {
2458 	const struct bpf_reg_state *reg = reg_state(env, regno);
2459 
2460 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2461 	return reg->type == PTR_TO_FLOW_KEYS;
2462 }
2463 
2464 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2465 				   const struct bpf_reg_state *reg,
2466 				   int off, int size, bool strict)
2467 {
2468 	struct tnum reg_off;
2469 	int ip_align;
2470 
2471 	/* Byte size accesses are always allowed. */
2472 	if (!strict || size == 1)
2473 		return 0;
2474 
2475 	/* For platforms that do not have a Kconfig enabling
2476 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2477 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
2478 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2479 	 * to this code only in strict mode where we want to emulate
2480 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
2481 	 * unconditional IP align value of '2'.
2482 	 */
2483 	ip_align = 2;
2484 
2485 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2486 	if (!tnum_is_aligned(reg_off, size)) {
2487 		char tn_buf[48];
2488 
2489 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2490 		verbose(env,
2491 			"misaligned packet access off %d+%s+%d+%d size %d\n",
2492 			ip_align, tn_buf, reg->off, off, size);
2493 		return -EACCES;
2494 	}
2495 
2496 	return 0;
2497 }
2498 
2499 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2500 				       const struct bpf_reg_state *reg,
2501 				       const char *pointer_desc,
2502 				       int off, int size, bool strict)
2503 {
2504 	struct tnum reg_off;
2505 
2506 	/* Byte size accesses are always allowed. */
2507 	if (!strict || size == 1)
2508 		return 0;
2509 
2510 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2511 	if (!tnum_is_aligned(reg_off, size)) {
2512 		char tn_buf[48];
2513 
2514 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2515 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
2516 			pointer_desc, tn_buf, reg->off, off, size);
2517 		return -EACCES;
2518 	}
2519 
2520 	return 0;
2521 }
2522 
2523 static int check_ptr_alignment(struct bpf_verifier_env *env,
2524 			       const struct bpf_reg_state *reg, int off,
2525 			       int size, bool strict_alignment_once)
2526 {
2527 	bool strict = env->strict_alignment || strict_alignment_once;
2528 	const char *pointer_desc = "";
2529 
2530 	switch (reg->type) {
2531 	case PTR_TO_PACKET:
2532 	case PTR_TO_PACKET_META:
2533 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
2534 		 * right in front, treat it the very same way.
2535 		 */
2536 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
2537 	case PTR_TO_FLOW_KEYS:
2538 		pointer_desc = "flow keys ";
2539 		break;
2540 	case PTR_TO_MAP_VALUE:
2541 		pointer_desc = "value ";
2542 		break;
2543 	case PTR_TO_CTX:
2544 		pointer_desc = "context ";
2545 		break;
2546 	case PTR_TO_STACK:
2547 		pointer_desc = "stack ";
2548 		/* The stack spill tracking logic in check_stack_write()
2549 		 * and check_stack_read() relies on stack accesses being
2550 		 * aligned.
2551 		 */
2552 		strict = true;
2553 		break;
2554 	case PTR_TO_SOCKET:
2555 		pointer_desc = "sock ";
2556 		break;
2557 	case PTR_TO_SOCK_COMMON:
2558 		pointer_desc = "sock_common ";
2559 		break;
2560 	case PTR_TO_TCP_SOCK:
2561 		pointer_desc = "tcp_sock ";
2562 		break;
2563 	case PTR_TO_XDP_SOCK:
2564 		pointer_desc = "xdp_sock ";
2565 		break;
2566 	default:
2567 		break;
2568 	}
2569 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2570 					   strict);
2571 }
2572 
2573 static int update_stack_depth(struct bpf_verifier_env *env,
2574 			      const struct bpf_func_state *func,
2575 			      int off)
2576 {
2577 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
2578 
2579 	if (stack >= -off)
2580 		return 0;
2581 
2582 	/* update known max for given subprogram */
2583 	env->subprog_info[func->subprogno].stack_depth = -off;
2584 	return 0;
2585 }
2586 
2587 /* starting from main bpf function walk all instructions of the function
2588  * and recursively walk all callees that given function can call.
2589  * Ignore jump and exit insns.
2590  * Since recursion is prevented by check_cfg() this algorithm
2591  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2592  */
2593 static int check_max_stack_depth(struct bpf_verifier_env *env)
2594 {
2595 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2596 	struct bpf_subprog_info *subprog = env->subprog_info;
2597 	struct bpf_insn *insn = env->prog->insnsi;
2598 	int ret_insn[MAX_CALL_FRAMES];
2599 	int ret_prog[MAX_CALL_FRAMES];
2600 
2601 process_func:
2602 	/* round up to 32-bytes, since this is granularity
2603 	 * of interpreter stack size
2604 	 */
2605 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2606 	if (depth > MAX_BPF_STACK) {
2607 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
2608 			frame + 1, depth);
2609 		return -EACCES;
2610 	}
2611 continue_func:
2612 	subprog_end = subprog[idx + 1].start;
2613 	for (; i < subprog_end; i++) {
2614 		if (insn[i].code != (BPF_JMP | BPF_CALL))
2615 			continue;
2616 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
2617 			continue;
2618 		/* remember insn and function to return to */
2619 		ret_insn[frame] = i + 1;
2620 		ret_prog[frame] = idx;
2621 
2622 		/* find the callee */
2623 		i = i + insn[i].imm + 1;
2624 		idx = find_subprog(env, i);
2625 		if (idx < 0) {
2626 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2627 				  i);
2628 			return -EFAULT;
2629 		}
2630 		frame++;
2631 		if (frame >= MAX_CALL_FRAMES) {
2632 			verbose(env, "the call stack of %d frames is too deep !\n",
2633 				frame);
2634 			return -E2BIG;
2635 		}
2636 		goto process_func;
2637 	}
2638 	/* end of for() loop means the last insn of the 'subprog'
2639 	 * was reached. Doesn't matter whether it was JA or EXIT
2640 	 */
2641 	if (frame == 0)
2642 		return 0;
2643 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2644 	frame--;
2645 	i = ret_insn[frame];
2646 	idx = ret_prog[frame];
2647 	goto continue_func;
2648 }
2649 
2650 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2651 static int get_callee_stack_depth(struct bpf_verifier_env *env,
2652 				  const struct bpf_insn *insn, int idx)
2653 {
2654 	int start = idx + insn->imm + 1, subprog;
2655 
2656 	subprog = find_subprog(env, start);
2657 	if (subprog < 0) {
2658 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2659 			  start);
2660 		return -EFAULT;
2661 	}
2662 	return env->subprog_info[subprog].stack_depth;
2663 }
2664 #endif
2665 
2666 static int check_ctx_reg(struct bpf_verifier_env *env,
2667 			 const struct bpf_reg_state *reg, int regno)
2668 {
2669 	/* Access to ctx or passing it to a helper is only allowed in
2670 	 * its original, unmodified form.
2671 	 */
2672 
2673 	if (reg->off) {
2674 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
2675 			regno, reg->off);
2676 		return -EACCES;
2677 	}
2678 
2679 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2680 		char tn_buf[48];
2681 
2682 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2683 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
2684 		return -EACCES;
2685 	}
2686 
2687 	return 0;
2688 }
2689 
2690 static int check_tp_buffer_access(struct bpf_verifier_env *env,
2691 				  const struct bpf_reg_state *reg,
2692 				  int regno, int off, int size)
2693 {
2694 	if (off < 0) {
2695 		verbose(env,
2696 			"R%d invalid tracepoint buffer access: off=%d, size=%d",
2697 			regno, off, size);
2698 		return -EACCES;
2699 	}
2700 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2701 		char tn_buf[48];
2702 
2703 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2704 		verbose(env,
2705 			"R%d invalid variable buffer offset: off=%d, var_off=%s",
2706 			regno, off, tn_buf);
2707 		return -EACCES;
2708 	}
2709 	if (off + size > env->prog->aux->max_tp_access)
2710 		env->prog->aux->max_tp_access = off + size;
2711 
2712 	return 0;
2713 }
2714 
2715 
2716 /* truncate register to smaller size (in bytes)
2717  * must be called with size < BPF_REG_SIZE
2718  */
2719 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2720 {
2721 	u64 mask;
2722 
2723 	/* clear high bits in bit representation */
2724 	reg->var_off = tnum_cast(reg->var_off, size);
2725 
2726 	/* fix arithmetic bounds */
2727 	mask = ((u64)1 << (size * 8)) - 1;
2728 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2729 		reg->umin_value &= mask;
2730 		reg->umax_value &= mask;
2731 	} else {
2732 		reg->umin_value = 0;
2733 		reg->umax_value = mask;
2734 	}
2735 	reg->smin_value = reg->umin_value;
2736 	reg->smax_value = reg->umax_value;
2737 }
2738 
2739 /* check whether memory at (regno + off) is accessible for t = (read | write)
2740  * if t==write, value_regno is a register which value is stored into memory
2741  * if t==read, value_regno is a register which will receive the value from memory
2742  * if t==write && value_regno==-1, some unknown value is stored into memory
2743  * if t==read && value_regno==-1, don't care what we read from memory
2744  */
2745 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
2746 			    int off, int bpf_size, enum bpf_access_type t,
2747 			    int value_regno, bool strict_alignment_once)
2748 {
2749 	struct bpf_reg_state *regs = cur_regs(env);
2750 	struct bpf_reg_state *reg = regs + regno;
2751 	struct bpf_func_state *state;
2752 	int size, err = 0;
2753 
2754 	size = bpf_size_to_bytes(bpf_size);
2755 	if (size < 0)
2756 		return size;
2757 
2758 	/* alignment checks will add in reg->off themselves */
2759 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
2760 	if (err)
2761 		return err;
2762 
2763 	/* for access checks, reg->off is just part of off */
2764 	off += reg->off;
2765 
2766 	if (reg->type == PTR_TO_MAP_VALUE) {
2767 		if (t == BPF_WRITE && value_regno >= 0 &&
2768 		    is_pointer_value(env, value_regno)) {
2769 			verbose(env, "R%d leaks addr into map\n", value_regno);
2770 			return -EACCES;
2771 		}
2772 		err = check_map_access_type(env, regno, off, size, t);
2773 		if (err)
2774 			return err;
2775 		err = check_map_access(env, regno, off, size, false);
2776 		if (!err && t == BPF_READ && value_regno >= 0)
2777 			mark_reg_unknown(env, regs, value_regno);
2778 
2779 	} else if (reg->type == PTR_TO_CTX) {
2780 		enum bpf_reg_type reg_type = SCALAR_VALUE;
2781 
2782 		if (t == BPF_WRITE && value_regno >= 0 &&
2783 		    is_pointer_value(env, value_regno)) {
2784 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
2785 			return -EACCES;
2786 		}
2787 
2788 		err = check_ctx_reg(env, reg, regno);
2789 		if (err < 0)
2790 			return err;
2791 
2792 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
2793 		if (!err && t == BPF_READ && value_regno >= 0) {
2794 			/* ctx access returns either a scalar, or a
2795 			 * PTR_TO_PACKET[_META,_END]. In the latter
2796 			 * case, we know the offset is zero.
2797 			 */
2798 			if (reg_type == SCALAR_VALUE) {
2799 				mark_reg_unknown(env, regs, value_regno);
2800 			} else {
2801 				mark_reg_known_zero(env, regs,
2802 						    value_regno);
2803 				if (reg_type_may_be_null(reg_type))
2804 					regs[value_regno].id = ++env->id_gen;
2805 				/* A load of ctx field could have different
2806 				 * actual load size with the one encoded in the
2807 				 * insn. When the dst is PTR, it is for sure not
2808 				 * a sub-register.
2809 				 */
2810 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
2811 			}
2812 			regs[value_regno].type = reg_type;
2813 		}
2814 
2815 	} else if (reg->type == PTR_TO_STACK) {
2816 		off += reg->var_off.value;
2817 		err = check_stack_access(env, reg, off, size);
2818 		if (err)
2819 			return err;
2820 
2821 		state = func(env, reg);
2822 		err = update_stack_depth(env, state, off);
2823 		if (err)
2824 			return err;
2825 
2826 		if (t == BPF_WRITE)
2827 			err = check_stack_write(env, state, off, size,
2828 						value_regno, insn_idx);
2829 		else
2830 			err = check_stack_read(env, state, off, size,
2831 					       value_regno);
2832 	} else if (reg_is_pkt_pointer(reg)) {
2833 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
2834 			verbose(env, "cannot write into packet\n");
2835 			return -EACCES;
2836 		}
2837 		if (t == BPF_WRITE && value_regno >= 0 &&
2838 		    is_pointer_value(env, value_regno)) {
2839 			verbose(env, "R%d leaks addr into packet\n",
2840 				value_regno);
2841 			return -EACCES;
2842 		}
2843 		err = check_packet_access(env, regno, off, size, false);
2844 		if (!err && t == BPF_READ && value_regno >= 0)
2845 			mark_reg_unknown(env, regs, value_regno);
2846 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
2847 		if (t == BPF_WRITE && value_regno >= 0 &&
2848 		    is_pointer_value(env, value_regno)) {
2849 			verbose(env, "R%d leaks addr into flow keys\n",
2850 				value_regno);
2851 			return -EACCES;
2852 		}
2853 
2854 		err = check_flow_keys_access(env, off, size);
2855 		if (!err && t == BPF_READ && value_regno >= 0)
2856 			mark_reg_unknown(env, regs, value_regno);
2857 	} else if (type_is_sk_pointer(reg->type)) {
2858 		if (t == BPF_WRITE) {
2859 			verbose(env, "R%d cannot write into %s\n",
2860 				regno, reg_type_str[reg->type]);
2861 			return -EACCES;
2862 		}
2863 		err = check_sock_access(env, insn_idx, regno, off, size, t);
2864 		if (!err && value_regno >= 0)
2865 			mark_reg_unknown(env, regs, value_regno);
2866 	} else if (reg->type == PTR_TO_TP_BUFFER) {
2867 		err = check_tp_buffer_access(env, reg, regno, off, size);
2868 		if (!err && t == BPF_READ && value_regno >= 0)
2869 			mark_reg_unknown(env, regs, value_regno);
2870 	} else {
2871 		verbose(env, "R%d invalid mem access '%s'\n", regno,
2872 			reg_type_str[reg->type]);
2873 		return -EACCES;
2874 	}
2875 
2876 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
2877 	    regs[value_regno].type == SCALAR_VALUE) {
2878 		/* b/h/w load zero-extends, mark upper bits as known 0 */
2879 		coerce_reg_to_size(&regs[value_regno], size);
2880 	}
2881 	return err;
2882 }
2883 
2884 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
2885 {
2886 	int err;
2887 
2888 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2889 	    insn->imm != 0) {
2890 		verbose(env, "BPF_XADD uses reserved fields\n");
2891 		return -EINVAL;
2892 	}
2893 
2894 	/* check src1 operand */
2895 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
2896 	if (err)
2897 		return err;
2898 
2899 	/* check src2 operand */
2900 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2901 	if (err)
2902 		return err;
2903 
2904 	if (is_pointer_value(env, insn->src_reg)) {
2905 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
2906 		return -EACCES;
2907 	}
2908 
2909 	if (is_ctx_reg(env, insn->dst_reg) ||
2910 	    is_pkt_reg(env, insn->dst_reg) ||
2911 	    is_flow_key_reg(env, insn->dst_reg) ||
2912 	    is_sk_reg(env, insn->dst_reg)) {
2913 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2914 			insn->dst_reg,
2915 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
2916 		return -EACCES;
2917 	}
2918 
2919 	/* check whether atomic_add can read the memory */
2920 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2921 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
2922 	if (err)
2923 		return err;
2924 
2925 	/* check whether atomic_add can write into the same memory */
2926 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2927 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
2928 }
2929 
2930 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
2931 				  int off, int access_size,
2932 				  bool zero_size_allowed)
2933 {
2934 	struct bpf_reg_state *reg = reg_state(env, regno);
2935 
2936 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2937 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
2938 		if (tnum_is_const(reg->var_off)) {
2939 			verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
2940 				regno, off, access_size);
2941 		} else {
2942 			char tn_buf[48];
2943 
2944 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2945 			verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
2946 				regno, tn_buf, access_size);
2947 		}
2948 		return -EACCES;
2949 	}
2950 	return 0;
2951 }
2952 
2953 /* when register 'regno' is passed into function that will read 'access_size'
2954  * bytes from that pointer, make sure that it's within stack boundary
2955  * and all elements of stack are initialized.
2956  * Unlike most pointer bounds-checking functions, this one doesn't take an
2957  * 'off' argument, so it has to add in reg->off itself.
2958  */
2959 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
2960 				int access_size, bool zero_size_allowed,
2961 				struct bpf_call_arg_meta *meta)
2962 {
2963 	struct bpf_reg_state *reg = reg_state(env, regno);
2964 	struct bpf_func_state *state = func(env, reg);
2965 	int err, min_off, max_off, i, j, slot, spi;
2966 
2967 	if (reg->type != PTR_TO_STACK) {
2968 		/* Allow zero-byte read from NULL, regardless of pointer type */
2969 		if (zero_size_allowed && access_size == 0 &&
2970 		    register_is_null(reg))
2971 			return 0;
2972 
2973 		verbose(env, "R%d type=%s expected=%s\n", regno,
2974 			reg_type_str[reg->type],
2975 			reg_type_str[PTR_TO_STACK]);
2976 		return -EACCES;
2977 	}
2978 
2979 	if (tnum_is_const(reg->var_off)) {
2980 		min_off = max_off = reg->var_off.value + reg->off;
2981 		err = __check_stack_boundary(env, regno, min_off, access_size,
2982 					     zero_size_allowed);
2983 		if (err)
2984 			return err;
2985 	} else {
2986 		/* Variable offset is prohibited for unprivileged mode for
2987 		 * simplicity since it requires corresponding support in
2988 		 * Spectre masking for stack ALU.
2989 		 * See also retrieve_ptr_limit().
2990 		 */
2991 		if (!env->allow_ptr_leaks) {
2992 			char tn_buf[48];
2993 
2994 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2995 			verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
2996 				regno, tn_buf);
2997 			return -EACCES;
2998 		}
2999 		/* Only initialized buffer on stack is allowed to be accessed
3000 		 * with variable offset. With uninitialized buffer it's hard to
3001 		 * guarantee that whole memory is marked as initialized on
3002 		 * helper return since specific bounds are unknown what may
3003 		 * cause uninitialized stack leaking.
3004 		 */
3005 		if (meta && meta->raw_mode)
3006 			meta = NULL;
3007 
3008 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3009 		    reg->smax_value <= -BPF_MAX_VAR_OFF) {
3010 			verbose(env, "R%d unbounded indirect variable offset stack access\n",
3011 				regno);
3012 			return -EACCES;
3013 		}
3014 		min_off = reg->smin_value + reg->off;
3015 		max_off = reg->smax_value + reg->off;
3016 		err = __check_stack_boundary(env, regno, min_off, access_size,
3017 					     zero_size_allowed);
3018 		if (err) {
3019 			verbose(env, "R%d min value is outside of stack bound\n",
3020 				regno);
3021 			return err;
3022 		}
3023 		err = __check_stack_boundary(env, regno, max_off, access_size,
3024 					     zero_size_allowed);
3025 		if (err) {
3026 			verbose(env, "R%d max value is outside of stack bound\n",
3027 				regno);
3028 			return err;
3029 		}
3030 	}
3031 
3032 	if (meta && meta->raw_mode) {
3033 		meta->access_size = access_size;
3034 		meta->regno = regno;
3035 		return 0;
3036 	}
3037 
3038 	for (i = min_off; i < max_off + access_size; i++) {
3039 		u8 *stype;
3040 
3041 		slot = -i - 1;
3042 		spi = slot / BPF_REG_SIZE;
3043 		if (state->allocated_stack <= slot)
3044 			goto err;
3045 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3046 		if (*stype == STACK_MISC)
3047 			goto mark;
3048 		if (*stype == STACK_ZERO) {
3049 			/* helper can write anything into the stack */
3050 			*stype = STACK_MISC;
3051 			goto mark;
3052 		}
3053 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3054 		    state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
3055 			__mark_reg_unknown(&state->stack[spi].spilled_ptr);
3056 			for (j = 0; j < BPF_REG_SIZE; j++)
3057 				state->stack[spi].slot_type[j] = STACK_MISC;
3058 			goto mark;
3059 		}
3060 
3061 err:
3062 		if (tnum_is_const(reg->var_off)) {
3063 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3064 				min_off, i - min_off, access_size);
3065 		} else {
3066 			char tn_buf[48];
3067 
3068 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3069 			verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3070 				tn_buf, i - min_off, access_size);
3071 		}
3072 		return -EACCES;
3073 mark:
3074 		/* reading any byte out of 8-byte 'spill_slot' will cause
3075 		 * the whole slot to be marked as 'read'
3076 		 */
3077 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
3078 			      state->stack[spi].spilled_ptr.parent,
3079 			      REG_LIVE_READ64);
3080 	}
3081 	return update_stack_depth(env, state, min_off);
3082 }
3083 
3084 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3085 				   int access_size, bool zero_size_allowed,
3086 				   struct bpf_call_arg_meta *meta)
3087 {
3088 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3089 
3090 	switch (reg->type) {
3091 	case PTR_TO_PACKET:
3092 	case PTR_TO_PACKET_META:
3093 		return check_packet_access(env, regno, reg->off, access_size,
3094 					   zero_size_allowed);
3095 	case PTR_TO_MAP_VALUE:
3096 		if (check_map_access_type(env, regno, reg->off, access_size,
3097 					  meta && meta->raw_mode ? BPF_WRITE :
3098 					  BPF_READ))
3099 			return -EACCES;
3100 		return check_map_access(env, regno, reg->off, access_size,
3101 					zero_size_allowed);
3102 	default: /* scalar_value|ptr_to_stack or invalid ptr */
3103 		return check_stack_boundary(env, regno, access_size,
3104 					    zero_size_allowed, meta);
3105 	}
3106 }
3107 
3108 /* Implementation details:
3109  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3110  * Two bpf_map_lookups (even with the same key) will have different reg->id.
3111  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3112  * value_or_null->value transition, since the verifier only cares about
3113  * the range of access to valid map value pointer and doesn't care about actual
3114  * address of the map element.
3115  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3116  * reg->id > 0 after value_or_null->value transition. By doing so
3117  * two bpf_map_lookups will be considered two different pointers that
3118  * point to different bpf_spin_locks.
3119  * The verifier allows taking only one bpf_spin_lock at a time to avoid
3120  * dead-locks.
3121  * Since only one bpf_spin_lock is allowed the checks are simpler than
3122  * reg_is_refcounted() logic. The verifier needs to remember only
3123  * one spin_lock instead of array of acquired_refs.
3124  * cur_state->active_spin_lock remembers which map value element got locked
3125  * and clears it after bpf_spin_unlock.
3126  */
3127 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3128 			     bool is_lock)
3129 {
3130 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3131 	struct bpf_verifier_state *cur = env->cur_state;
3132 	bool is_const = tnum_is_const(reg->var_off);
3133 	struct bpf_map *map = reg->map_ptr;
3134 	u64 val = reg->var_off.value;
3135 
3136 	if (reg->type != PTR_TO_MAP_VALUE) {
3137 		verbose(env, "R%d is not a pointer to map_value\n", regno);
3138 		return -EINVAL;
3139 	}
3140 	if (!is_const) {
3141 		verbose(env,
3142 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3143 			regno);
3144 		return -EINVAL;
3145 	}
3146 	if (!map->btf) {
3147 		verbose(env,
3148 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
3149 			map->name);
3150 		return -EINVAL;
3151 	}
3152 	if (!map_value_has_spin_lock(map)) {
3153 		if (map->spin_lock_off == -E2BIG)
3154 			verbose(env,
3155 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
3156 				map->name);
3157 		else if (map->spin_lock_off == -ENOENT)
3158 			verbose(env,
3159 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
3160 				map->name);
3161 		else
3162 			verbose(env,
3163 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3164 				map->name);
3165 		return -EINVAL;
3166 	}
3167 	if (map->spin_lock_off != val + reg->off) {
3168 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3169 			val + reg->off);
3170 		return -EINVAL;
3171 	}
3172 	if (is_lock) {
3173 		if (cur->active_spin_lock) {
3174 			verbose(env,
3175 				"Locking two bpf_spin_locks are not allowed\n");
3176 			return -EINVAL;
3177 		}
3178 		cur->active_spin_lock = reg->id;
3179 	} else {
3180 		if (!cur->active_spin_lock) {
3181 			verbose(env, "bpf_spin_unlock without taking a lock\n");
3182 			return -EINVAL;
3183 		}
3184 		if (cur->active_spin_lock != reg->id) {
3185 			verbose(env, "bpf_spin_unlock of different lock\n");
3186 			return -EINVAL;
3187 		}
3188 		cur->active_spin_lock = 0;
3189 	}
3190 	return 0;
3191 }
3192 
3193 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3194 {
3195 	return type == ARG_PTR_TO_MEM ||
3196 	       type == ARG_PTR_TO_MEM_OR_NULL ||
3197 	       type == ARG_PTR_TO_UNINIT_MEM;
3198 }
3199 
3200 static bool arg_type_is_mem_size(enum bpf_arg_type type)
3201 {
3202 	return type == ARG_CONST_SIZE ||
3203 	       type == ARG_CONST_SIZE_OR_ZERO;
3204 }
3205 
3206 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3207 {
3208 	return type == ARG_PTR_TO_INT ||
3209 	       type == ARG_PTR_TO_LONG;
3210 }
3211 
3212 static int int_ptr_type_to_size(enum bpf_arg_type type)
3213 {
3214 	if (type == ARG_PTR_TO_INT)
3215 		return sizeof(u32);
3216 	else if (type == ARG_PTR_TO_LONG)
3217 		return sizeof(u64);
3218 
3219 	return -EINVAL;
3220 }
3221 
3222 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
3223 			  enum bpf_arg_type arg_type,
3224 			  struct bpf_call_arg_meta *meta)
3225 {
3226 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3227 	enum bpf_reg_type expected_type, type = reg->type;
3228 	int err = 0;
3229 
3230 	if (arg_type == ARG_DONTCARE)
3231 		return 0;
3232 
3233 	err = check_reg_arg(env, regno, SRC_OP);
3234 	if (err)
3235 		return err;
3236 
3237 	if (arg_type == ARG_ANYTHING) {
3238 		if (is_pointer_value(env, regno)) {
3239 			verbose(env, "R%d leaks addr into helper function\n",
3240 				regno);
3241 			return -EACCES;
3242 		}
3243 		return 0;
3244 	}
3245 
3246 	if (type_is_pkt_pointer(type) &&
3247 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
3248 		verbose(env, "helper access to the packet is not allowed\n");
3249 		return -EACCES;
3250 	}
3251 
3252 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
3253 	    arg_type == ARG_PTR_TO_MAP_VALUE ||
3254 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3255 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
3256 		expected_type = PTR_TO_STACK;
3257 		if (register_is_null(reg) &&
3258 		    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
3259 			/* final test in check_stack_boundary() */;
3260 		else if (!type_is_pkt_pointer(type) &&
3261 			 type != PTR_TO_MAP_VALUE &&
3262 			 type != expected_type)
3263 			goto err_type;
3264 	} else if (arg_type == ARG_CONST_SIZE ||
3265 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
3266 		expected_type = SCALAR_VALUE;
3267 		if (type != expected_type)
3268 			goto err_type;
3269 	} else if (arg_type == ARG_CONST_MAP_PTR) {
3270 		expected_type = CONST_PTR_TO_MAP;
3271 		if (type != expected_type)
3272 			goto err_type;
3273 	} else if (arg_type == ARG_PTR_TO_CTX) {
3274 		expected_type = PTR_TO_CTX;
3275 		if (type != expected_type)
3276 			goto err_type;
3277 		err = check_ctx_reg(env, reg, regno);
3278 		if (err < 0)
3279 			return err;
3280 	} else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
3281 		expected_type = PTR_TO_SOCK_COMMON;
3282 		/* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
3283 		if (!type_is_sk_pointer(type))
3284 			goto err_type;
3285 		if (reg->ref_obj_id) {
3286 			if (meta->ref_obj_id) {
3287 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3288 					regno, reg->ref_obj_id,
3289 					meta->ref_obj_id);
3290 				return -EFAULT;
3291 			}
3292 			meta->ref_obj_id = reg->ref_obj_id;
3293 		}
3294 	} else if (arg_type == ARG_PTR_TO_SOCKET) {
3295 		expected_type = PTR_TO_SOCKET;
3296 		if (type != expected_type)
3297 			goto err_type;
3298 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
3299 		if (meta->func_id == BPF_FUNC_spin_lock) {
3300 			if (process_spin_lock(env, regno, true))
3301 				return -EACCES;
3302 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
3303 			if (process_spin_lock(env, regno, false))
3304 				return -EACCES;
3305 		} else {
3306 			verbose(env, "verifier internal error\n");
3307 			return -EFAULT;
3308 		}
3309 	} else if (arg_type_is_mem_ptr(arg_type)) {
3310 		expected_type = PTR_TO_STACK;
3311 		/* One exception here. In case function allows for NULL to be
3312 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
3313 		 * happens during stack boundary checking.
3314 		 */
3315 		if (register_is_null(reg) &&
3316 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
3317 			/* final test in check_stack_boundary() */;
3318 		else if (!type_is_pkt_pointer(type) &&
3319 			 type != PTR_TO_MAP_VALUE &&
3320 			 type != expected_type)
3321 			goto err_type;
3322 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
3323 	} else if (arg_type_is_int_ptr(arg_type)) {
3324 		expected_type = PTR_TO_STACK;
3325 		if (!type_is_pkt_pointer(type) &&
3326 		    type != PTR_TO_MAP_VALUE &&
3327 		    type != expected_type)
3328 			goto err_type;
3329 	} else {
3330 		verbose(env, "unsupported arg_type %d\n", arg_type);
3331 		return -EFAULT;
3332 	}
3333 
3334 	if (arg_type == ARG_CONST_MAP_PTR) {
3335 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3336 		meta->map_ptr = reg->map_ptr;
3337 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
3338 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
3339 		 * check that [key, key + map->key_size) are within
3340 		 * stack limits and initialized
3341 		 */
3342 		if (!meta->map_ptr) {
3343 			/* in function declaration map_ptr must come before
3344 			 * map_key, so that it's verified and known before
3345 			 * we have to check map_key here. Otherwise it means
3346 			 * that kernel subsystem misconfigured verifier
3347 			 */
3348 			verbose(env, "invalid map_ptr to access map->key\n");
3349 			return -EACCES;
3350 		}
3351 		err = check_helper_mem_access(env, regno,
3352 					      meta->map_ptr->key_size, false,
3353 					      NULL);
3354 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
3355 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
3356 		    !register_is_null(reg)) ||
3357 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
3358 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
3359 		 * check [value, value + map->value_size) validity
3360 		 */
3361 		if (!meta->map_ptr) {
3362 			/* kernel subsystem misconfigured verifier */
3363 			verbose(env, "invalid map_ptr to access map->value\n");
3364 			return -EACCES;
3365 		}
3366 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
3367 		err = check_helper_mem_access(env, regno,
3368 					      meta->map_ptr->value_size, false,
3369 					      meta);
3370 	} else if (arg_type_is_mem_size(arg_type)) {
3371 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
3372 
3373 		/* remember the mem_size which may be used later
3374 		 * to refine return values.
3375 		 */
3376 		meta->msize_smax_value = reg->smax_value;
3377 		meta->msize_umax_value = reg->umax_value;
3378 
3379 		/* The register is SCALAR_VALUE; the access check
3380 		 * happens using its boundaries.
3381 		 */
3382 		if (!tnum_is_const(reg->var_off))
3383 			/* For unprivileged variable accesses, disable raw
3384 			 * mode so that the program is required to
3385 			 * initialize all the memory that the helper could
3386 			 * just partially fill up.
3387 			 */
3388 			meta = NULL;
3389 
3390 		if (reg->smin_value < 0) {
3391 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
3392 				regno);
3393 			return -EACCES;
3394 		}
3395 
3396 		if (reg->umin_value == 0) {
3397 			err = check_helper_mem_access(env, regno - 1, 0,
3398 						      zero_size_allowed,
3399 						      meta);
3400 			if (err)
3401 				return err;
3402 		}
3403 
3404 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
3405 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
3406 				regno);
3407 			return -EACCES;
3408 		}
3409 		err = check_helper_mem_access(env, regno - 1,
3410 					      reg->umax_value,
3411 					      zero_size_allowed, meta);
3412 		if (!err)
3413 			err = mark_chain_precision(env, regno);
3414 	} else if (arg_type_is_int_ptr(arg_type)) {
3415 		int size = int_ptr_type_to_size(arg_type);
3416 
3417 		err = check_helper_mem_access(env, regno, size, false, meta);
3418 		if (err)
3419 			return err;
3420 		err = check_ptr_alignment(env, reg, 0, size, true);
3421 	}
3422 
3423 	return err;
3424 err_type:
3425 	verbose(env, "R%d type=%s expected=%s\n", regno,
3426 		reg_type_str[type], reg_type_str[expected_type]);
3427 	return -EACCES;
3428 }
3429 
3430 static int check_map_func_compatibility(struct bpf_verifier_env *env,
3431 					struct bpf_map *map, int func_id)
3432 {
3433 	if (!map)
3434 		return 0;
3435 
3436 	/* We need a two way check, first is from map perspective ... */
3437 	switch (map->map_type) {
3438 	case BPF_MAP_TYPE_PROG_ARRAY:
3439 		if (func_id != BPF_FUNC_tail_call)
3440 			goto error;
3441 		break;
3442 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
3443 		if (func_id != BPF_FUNC_perf_event_read &&
3444 		    func_id != BPF_FUNC_perf_event_output &&
3445 		    func_id != BPF_FUNC_perf_event_read_value)
3446 			goto error;
3447 		break;
3448 	case BPF_MAP_TYPE_STACK_TRACE:
3449 		if (func_id != BPF_FUNC_get_stackid)
3450 			goto error;
3451 		break;
3452 	case BPF_MAP_TYPE_CGROUP_ARRAY:
3453 		if (func_id != BPF_FUNC_skb_under_cgroup &&
3454 		    func_id != BPF_FUNC_current_task_under_cgroup)
3455 			goto error;
3456 		break;
3457 	case BPF_MAP_TYPE_CGROUP_STORAGE:
3458 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
3459 		if (func_id != BPF_FUNC_get_local_storage)
3460 			goto error;
3461 		break;
3462 	case BPF_MAP_TYPE_DEVMAP:
3463 		if (func_id != BPF_FUNC_redirect_map &&
3464 		    func_id != BPF_FUNC_map_lookup_elem)
3465 			goto error;
3466 		break;
3467 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
3468 	 * appear.
3469 	 */
3470 	case BPF_MAP_TYPE_CPUMAP:
3471 		if (func_id != BPF_FUNC_redirect_map)
3472 			goto error;
3473 		break;
3474 	case BPF_MAP_TYPE_XSKMAP:
3475 		if (func_id != BPF_FUNC_redirect_map &&
3476 		    func_id != BPF_FUNC_map_lookup_elem)
3477 			goto error;
3478 		break;
3479 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
3480 	case BPF_MAP_TYPE_HASH_OF_MAPS:
3481 		if (func_id != BPF_FUNC_map_lookup_elem)
3482 			goto error;
3483 		break;
3484 	case BPF_MAP_TYPE_SOCKMAP:
3485 		if (func_id != BPF_FUNC_sk_redirect_map &&
3486 		    func_id != BPF_FUNC_sock_map_update &&
3487 		    func_id != BPF_FUNC_map_delete_elem &&
3488 		    func_id != BPF_FUNC_msg_redirect_map)
3489 			goto error;
3490 		break;
3491 	case BPF_MAP_TYPE_SOCKHASH:
3492 		if (func_id != BPF_FUNC_sk_redirect_hash &&
3493 		    func_id != BPF_FUNC_sock_hash_update &&
3494 		    func_id != BPF_FUNC_map_delete_elem &&
3495 		    func_id != BPF_FUNC_msg_redirect_hash)
3496 			goto error;
3497 		break;
3498 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
3499 		if (func_id != BPF_FUNC_sk_select_reuseport)
3500 			goto error;
3501 		break;
3502 	case BPF_MAP_TYPE_QUEUE:
3503 	case BPF_MAP_TYPE_STACK:
3504 		if (func_id != BPF_FUNC_map_peek_elem &&
3505 		    func_id != BPF_FUNC_map_pop_elem &&
3506 		    func_id != BPF_FUNC_map_push_elem)
3507 			goto error;
3508 		break;
3509 	case BPF_MAP_TYPE_SK_STORAGE:
3510 		if (func_id != BPF_FUNC_sk_storage_get &&
3511 		    func_id != BPF_FUNC_sk_storage_delete)
3512 			goto error;
3513 		break;
3514 	default:
3515 		break;
3516 	}
3517 
3518 	/* ... and second from the function itself. */
3519 	switch (func_id) {
3520 	case BPF_FUNC_tail_call:
3521 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
3522 			goto error;
3523 		if (env->subprog_cnt > 1) {
3524 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
3525 			return -EINVAL;
3526 		}
3527 		break;
3528 	case BPF_FUNC_perf_event_read:
3529 	case BPF_FUNC_perf_event_output:
3530 	case BPF_FUNC_perf_event_read_value:
3531 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
3532 			goto error;
3533 		break;
3534 	case BPF_FUNC_get_stackid:
3535 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
3536 			goto error;
3537 		break;
3538 	case BPF_FUNC_current_task_under_cgroup:
3539 	case BPF_FUNC_skb_under_cgroup:
3540 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
3541 			goto error;
3542 		break;
3543 	case BPF_FUNC_redirect_map:
3544 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
3545 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
3546 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
3547 			goto error;
3548 		break;
3549 	case BPF_FUNC_sk_redirect_map:
3550 	case BPF_FUNC_msg_redirect_map:
3551 	case BPF_FUNC_sock_map_update:
3552 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
3553 			goto error;
3554 		break;
3555 	case BPF_FUNC_sk_redirect_hash:
3556 	case BPF_FUNC_msg_redirect_hash:
3557 	case BPF_FUNC_sock_hash_update:
3558 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
3559 			goto error;
3560 		break;
3561 	case BPF_FUNC_get_local_storage:
3562 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
3563 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
3564 			goto error;
3565 		break;
3566 	case BPF_FUNC_sk_select_reuseport:
3567 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
3568 			goto error;
3569 		break;
3570 	case BPF_FUNC_map_peek_elem:
3571 	case BPF_FUNC_map_pop_elem:
3572 	case BPF_FUNC_map_push_elem:
3573 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
3574 		    map->map_type != BPF_MAP_TYPE_STACK)
3575 			goto error;
3576 		break;
3577 	case BPF_FUNC_sk_storage_get:
3578 	case BPF_FUNC_sk_storage_delete:
3579 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
3580 			goto error;
3581 		break;
3582 	default:
3583 		break;
3584 	}
3585 
3586 	return 0;
3587 error:
3588 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
3589 		map->map_type, func_id_name(func_id), func_id);
3590 	return -EINVAL;
3591 }
3592 
3593 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
3594 {
3595 	int count = 0;
3596 
3597 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
3598 		count++;
3599 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
3600 		count++;
3601 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
3602 		count++;
3603 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
3604 		count++;
3605 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
3606 		count++;
3607 
3608 	/* We only support one arg being in raw mode at the moment,
3609 	 * which is sufficient for the helper functions we have
3610 	 * right now.
3611 	 */
3612 	return count <= 1;
3613 }
3614 
3615 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
3616 				    enum bpf_arg_type arg_next)
3617 {
3618 	return (arg_type_is_mem_ptr(arg_curr) &&
3619 	        !arg_type_is_mem_size(arg_next)) ||
3620 	       (!arg_type_is_mem_ptr(arg_curr) &&
3621 		arg_type_is_mem_size(arg_next));
3622 }
3623 
3624 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
3625 {
3626 	/* bpf_xxx(..., buf, len) call will access 'len'
3627 	 * bytes from memory 'buf'. Both arg types need
3628 	 * to be paired, so make sure there's no buggy
3629 	 * helper function specification.
3630 	 */
3631 	if (arg_type_is_mem_size(fn->arg1_type) ||
3632 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
3633 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
3634 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
3635 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
3636 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
3637 		return false;
3638 
3639 	return true;
3640 }
3641 
3642 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
3643 {
3644 	int count = 0;
3645 
3646 	if (arg_type_may_be_refcounted(fn->arg1_type))
3647 		count++;
3648 	if (arg_type_may_be_refcounted(fn->arg2_type))
3649 		count++;
3650 	if (arg_type_may_be_refcounted(fn->arg3_type))
3651 		count++;
3652 	if (arg_type_may_be_refcounted(fn->arg4_type))
3653 		count++;
3654 	if (arg_type_may_be_refcounted(fn->arg5_type))
3655 		count++;
3656 
3657 	/* A reference acquiring function cannot acquire
3658 	 * another refcounted ptr.
3659 	 */
3660 	if (is_acquire_function(func_id) && count)
3661 		return false;
3662 
3663 	/* We only support one arg being unreferenced at the moment,
3664 	 * which is sufficient for the helper functions we have right now.
3665 	 */
3666 	return count <= 1;
3667 }
3668 
3669 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
3670 {
3671 	return check_raw_mode_ok(fn) &&
3672 	       check_arg_pair_ok(fn) &&
3673 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
3674 }
3675 
3676 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
3677  * are now invalid, so turn them into unknown SCALAR_VALUE.
3678  */
3679 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
3680 				     struct bpf_func_state *state)
3681 {
3682 	struct bpf_reg_state *regs = state->regs, *reg;
3683 	int i;
3684 
3685 	for (i = 0; i < MAX_BPF_REG; i++)
3686 		if (reg_is_pkt_pointer_any(&regs[i]))
3687 			mark_reg_unknown(env, regs, i);
3688 
3689 	bpf_for_each_spilled_reg(i, state, reg) {
3690 		if (!reg)
3691 			continue;
3692 		if (reg_is_pkt_pointer_any(reg))
3693 			__mark_reg_unknown(reg);
3694 	}
3695 }
3696 
3697 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
3698 {
3699 	struct bpf_verifier_state *vstate = env->cur_state;
3700 	int i;
3701 
3702 	for (i = 0; i <= vstate->curframe; i++)
3703 		__clear_all_pkt_pointers(env, vstate->frame[i]);
3704 }
3705 
3706 static void release_reg_references(struct bpf_verifier_env *env,
3707 				   struct bpf_func_state *state,
3708 				   int ref_obj_id)
3709 {
3710 	struct bpf_reg_state *regs = state->regs, *reg;
3711 	int i;
3712 
3713 	for (i = 0; i < MAX_BPF_REG; i++)
3714 		if (regs[i].ref_obj_id == ref_obj_id)
3715 			mark_reg_unknown(env, regs, i);
3716 
3717 	bpf_for_each_spilled_reg(i, state, reg) {
3718 		if (!reg)
3719 			continue;
3720 		if (reg->ref_obj_id == ref_obj_id)
3721 			__mark_reg_unknown(reg);
3722 	}
3723 }
3724 
3725 /* The pointer with the specified id has released its reference to kernel
3726  * resources. Identify all copies of the same pointer and clear the reference.
3727  */
3728 static int release_reference(struct bpf_verifier_env *env,
3729 			     int ref_obj_id)
3730 {
3731 	struct bpf_verifier_state *vstate = env->cur_state;
3732 	int err;
3733 	int i;
3734 
3735 	err = release_reference_state(cur_func(env), ref_obj_id);
3736 	if (err)
3737 		return err;
3738 
3739 	for (i = 0; i <= vstate->curframe; i++)
3740 		release_reg_references(env, vstate->frame[i], ref_obj_id);
3741 
3742 	return 0;
3743 }
3744 
3745 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
3746 			   int *insn_idx)
3747 {
3748 	struct bpf_verifier_state *state = env->cur_state;
3749 	struct bpf_func_state *caller, *callee;
3750 	int i, err, subprog, target_insn;
3751 
3752 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
3753 		verbose(env, "the call stack of %d frames is too deep\n",
3754 			state->curframe + 2);
3755 		return -E2BIG;
3756 	}
3757 
3758 	target_insn = *insn_idx + insn->imm;
3759 	subprog = find_subprog(env, target_insn + 1);
3760 	if (subprog < 0) {
3761 		verbose(env, "verifier bug. No program starts at insn %d\n",
3762 			target_insn + 1);
3763 		return -EFAULT;
3764 	}
3765 
3766 	caller = state->frame[state->curframe];
3767 	if (state->frame[state->curframe + 1]) {
3768 		verbose(env, "verifier bug. Frame %d already allocated\n",
3769 			state->curframe + 1);
3770 		return -EFAULT;
3771 	}
3772 
3773 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
3774 	if (!callee)
3775 		return -ENOMEM;
3776 	state->frame[state->curframe + 1] = callee;
3777 
3778 	/* callee cannot access r0, r6 - r9 for reading and has to write
3779 	 * into its own stack before reading from it.
3780 	 * callee can read/write into caller's stack
3781 	 */
3782 	init_func_state(env, callee,
3783 			/* remember the callsite, it will be used by bpf_exit */
3784 			*insn_idx /* callsite */,
3785 			state->curframe + 1 /* frameno within this callchain */,
3786 			subprog /* subprog number within this prog */);
3787 
3788 	/* Transfer references to the callee */
3789 	err = transfer_reference_state(callee, caller);
3790 	if (err)
3791 		return err;
3792 
3793 	/* copy r1 - r5 args that callee can access.  The copy includes parent
3794 	 * pointers, which connects us up to the liveness chain
3795 	 */
3796 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3797 		callee->regs[i] = caller->regs[i];
3798 
3799 	/* after the call registers r0 - r5 were scratched */
3800 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3801 		mark_reg_not_init(env, caller->regs, caller_saved[i]);
3802 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3803 	}
3804 
3805 	/* only increment it after check_reg_arg() finished */
3806 	state->curframe++;
3807 
3808 	/* and go analyze first insn of the callee */
3809 	*insn_idx = target_insn;
3810 
3811 	if (env->log.level & BPF_LOG_LEVEL) {
3812 		verbose(env, "caller:\n");
3813 		print_verifier_state(env, caller);
3814 		verbose(env, "callee:\n");
3815 		print_verifier_state(env, callee);
3816 	}
3817 	return 0;
3818 }
3819 
3820 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
3821 {
3822 	struct bpf_verifier_state *state = env->cur_state;
3823 	struct bpf_func_state *caller, *callee;
3824 	struct bpf_reg_state *r0;
3825 	int err;
3826 
3827 	callee = state->frame[state->curframe];
3828 	r0 = &callee->regs[BPF_REG_0];
3829 	if (r0->type == PTR_TO_STACK) {
3830 		/* technically it's ok to return caller's stack pointer
3831 		 * (or caller's caller's pointer) back to the caller,
3832 		 * since these pointers are valid. Only current stack
3833 		 * pointer will be invalid as soon as function exits,
3834 		 * but let's be conservative
3835 		 */
3836 		verbose(env, "cannot return stack pointer to the caller\n");
3837 		return -EINVAL;
3838 	}
3839 
3840 	state->curframe--;
3841 	caller = state->frame[state->curframe];
3842 	/* return to the caller whatever r0 had in the callee */
3843 	caller->regs[BPF_REG_0] = *r0;
3844 
3845 	/* Transfer references to the caller */
3846 	err = transfer_reference_state(caller, callee);
3847 	if (err)
3848 		return err;
3849 
3850 	*insn_idx = callee->callsite + 1;
3851 	if (env->log.level & BPF_LOG_LEVEL) {
3852 		verbose(env, "returning from callee:\n");
3853 		print_verifier_state(env, callee);
3854 		verbose(env, "to caller at %d:\n", *insn_idx);
3855 		print_verifier_state(env, caller);
3856 	}
3857 	/* clear everything in the callee */
3858 	free_func_state(callee);
3859 	state->frame[state->curframe + 1] = NULL;
3860 	return 0;
3861 }
3862 
3863 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
3864 				   int func_id,
3865 				   struct bpf_call_arg_meta *meta)
3866 {
3867 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
3868 
3869 	if (ret_type != RET_INTEGER ||
3870 	    (func_id != BPF_FUNC_get_stack &&
3871 	     func_id != BPF_FUNC_probe_read_str))
3872 		return;
3873 
3874 	ret_reg->smax_value = meta->msize_smax_value;
3875 	ret_reg->umax_value = meta->msize_umax_value;
3876 	__reg_deduce_bounds(ret_reg);
3877 	__reg_bound_offset(ret_reg);
3878 }
3879 
3880 static int
3881 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
3882 		int func_id, int insn_idx)
3883 {
3884 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
3885 	struct bpf_map *map = meta->map_ptr;
3886 
3887 	if (func_id != BPF_FUNC_tail_call &&
3888 	    func_id != BPF_FUNC_map_lookup_elem &&
3889 	    func_id != BPF_FUNC_map_update_elem &&
3890 	    func_id != BPF_FUNC_map_delete_elem &&
3891 	    func_id != BPF_FUNC_map_push_elem &&
3892 	    func_id != BPF_FUNC_map_pop_elem &&
3893 	    func_id != BPF_FUNC_map_peek_elem)
3894 		return 0;
3895 
3896 	if (map == NULL) {
3897 		verbose(env, "kernel subsystem misconfigured verifier\n");
3898 		return -EINVAL;
3899 	}
3900 
3901 	/* In case of read-only, some additional restrictions
3902 	 * need to be applied in order to prevent altering the
3903 	 * state of the map from program side.
3904 	 */
3905 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
3906 	    (func_id == BPF_FUNC_map_delete_elem ||
3907 	     func_id == BPF_FUNC_map_update_elem ||
3908 	     func_id == BPF_FUNC_map_push_elem ||
3909 	     func_id == BPF_FUNC_map_pop_elem)) {
3910 		verbose(env, "write into map forbidden\n");
3911 		return -EACCES;
3912 	}
3913 
3914 	if (!BPF_MAP_PTR(aux->map_state))
3915 		bpf_map_ptr_store(aux, meta->map_ptr,
3916 				  meta->map_ptr->unpriv_array);
3917 	else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
3918 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
3919 				  meta->map_ptr->unpriv_array);
3920 	return 0;
3921 }
3922 
3923 static int check_reference_leak(struct bpf_verifier_env *env)
3924 {
3925 	struct bpf_func_state *state = cur_func(env);
3926 	int i;
3927 
3928 	for (i = 0; i < state->acquired_refs; i++) {
3929 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
3930 			state->refs[i].id, state->refs[i].insn_idx);
3931 	}
3932 	return state->acquired_refs ? -EINVAL : 0;
3933 }
3934 
3935 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
3936 {
3937 	const struct bpf_func_proto *fn = NULL;
3938 	struct bpf_reg_state *regs;
3939 	struct bpf_call_arg_meta meta;
3940 	bool changes_data;
3941 	int i, err;
3942 
3943 	/* find function prototype */
3944 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
3945 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
3946 			func_id);
3947 		return -EINVAL;
3948 	}
3949 
3950 	if (env->ops->get_func_proto)
3951 		fn = env->ops->get_func_proto(func_id, env->prog);
3952 	if (!fn) {
3953 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
3954 			func_id);
3955 		return -EINVAL;
3956 	}
3957 
3958 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
3959 	if (!env->prog->gpl_compatible && fn->gpl_only) {
3960 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
3961 		return -EINVAL;
3962 	}
3963 
3964 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
3965 	changes_data = bpf_helper_changes_pkt_data(fn->func);
3966 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
3967 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
3968 			func_id_name(func_id), func_id);
3969 		return -EINVAL;
3970 	}
3971 
3972 	memset(&meta, 0, sizeof(meta));
3973 	meta.pkt_access = fn->pkt_access;
3974 
3975 	err = check_func_proto(fn, func_id);
3976 	if (err) {
3977 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
3978 			func_id_name(func_id), func_id);
3979 		return err;
3980 	}
3981 
3982 	meta.func_id = func_id;
3983 	/* check args */
3984 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
3985 	if (err)
3986 		return err;
3987 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
3988 	if (err)
3989 		return err;
3990 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
3991 	if (err)
3992 		return err;
3993 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
3994 	if (err)
3995 		return err;
3996 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
3997 	if (err)
3998 		return err;
3999 
4000 	err = record_func_map(env, &meta, func_id, insn_idx);
4001 	if (err)
4002 		return err;
4003 
4004 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
4005 	 * is inferred from register state.
4006 	 */
4007 	for (i = 0; i < meta.access_size; i++) {
4008 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
4009 				       BPF_WRITE, -1, false);
4010 		if (err)
4011 			return err;
4012 	}
4013 
4014 	if (func_id == BPF_FUNC_tail_call) {
4015 		err = check_reference_leak(env);
4016 		if (err) {
4017 			verbose(env, "tail_call would lead to reference leak\n");
4018 			return err;
4019 		}
4020 	} else if (is_release_function(func_id)) {
4021 		err = release_reference(env, meta.ref_obj_id);
4022 		if (err) {
4023 			verbose(env, "func %s#%d reference has not been acquired before\n",
4024 				func_id_name(func_id), func_id);
4025 			return err;
4026 		}
4027 	}
4028 
4029 	regs = cur_regs(env);
4030 
4031 	/* check that flags argument in get_local_storage(map, flags) is 0,
4032 	 * this is required because get_local_storage() can't return an error.
4033 	 */
4034 	if (func_id == BPF_FUNC_get_local_storage &&
4035 	    !register_is_null(&regs[BPF_REG_2])) {
4036 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
4037 		return -EINVAL;
4038 	}
4039 
4040 	/* reset caller saved regs */
4041 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4042 		mark_reg_not_init(env, regs, caller_saved[i]);
4043 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4044 	}
4045 
4046 	/* helper call returns 64-bit value. */
4047 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
4048 
4049 	/* update return register (already marked as written above) */
4050 	if (fn->ret_type == RET_INTEGER) {
4051 		/* sets type to SCALAR_VALUE */
4052 		mark_reg_unknown(env, regs, BPF_REG_0);
4053 	} else if (fn->ret_type == RET_VOID) {
4054 		regs[BPF_REG_0].type = NOT_INIT;
4055 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
4056 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4057 		/* There is no offset yet applied, variable or fixed */
4058 		mark_reg_known_zero(env, regs, BPF_REG_0);
4059 		/* remember map_ptr, so that check_map_access()
4060 		 * can check 'value_size' boundary of memory access
4061 		 * to map element returned from bpf_map_lookup_elem()
4062 		 */
4063 		if (meta.map_ptr == NULL) {
4064 			verbose(env,
4065 				"kernel subsystem misconfigured verifier\n");
4066 			return -EINVAL;
4067 		}
4068 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
4069 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4070 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
4071 			if (map_value_has_spin_lock(meta.map_ptr))
4072 				regs[BPF_REG_0].id = ++env->id_gen;
4073 		} else {
4074 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4075 			regs[BPF_REG_0].id = ++env->id_gen;
4076 		}
4077 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
4078 		mark_reg_known_zero(env, regs, BPF_REG_0);
4079 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
4080 		regs[BPF_REG_0].id = ++env->id_gen;
4081 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
4082 		mark_reg_known_zero(env, regs, BPF_REG_0);
4083 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
4084 		regs[BPF_REG_0].id = ++env->id_gen;
4085 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
4086 		mark_reg_known_zero(env, regs, BPF_REG_0);
4087 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
4088 		regs[BPF_REG_0].id = ++env->id_gen;
4089 	} else {
4090 		verbose(env, "unknown return type %d of func %s#%d\n",
4091 			fn->ret_type, func_id_name(func_id), func_id);
4092 		return -EINVAL;
4093 	}
4094 
4095 	if (is_ptr_cast_function(func_id)) {
4096 		/* For release_reference() */
4097 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
4098 	} else if (is_acquire_function(func_id)) {
4099 		int id = acquire_reference_state(env, insn_idx);
4100 
4101 		if (id < 0)
4102 			return id;
4103 		/* For mark_ptr_or_null_reg() */
4104 		regs[BPF_REG_0].id = id;
4105 		/* For release_reference() */
4106 		regs[BPF_REG_0].ref_obj_id = id;
4107 	}
4108 
4109 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
4110 
4111 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
4112 	if (err)
4113 		return err;
4114 
4115 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
4116 		const char *err_str;
4117 
4118 #ifdef CONFIG_PERF_EVENTS
4119 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
4120 		err_str = "cannot get callchain buffer for func %s#%d\n";
4121 #else
4122 		err = -ENOTSUPP;
4123 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
4124 #endif
4125 		if (err) {
4126 			verbose(env, err_str, func_id_name(func_id), func_id);
4127 			return err;
4128 		}
4129 
4130 		env->prog->has_callchain_buf = true;
4131 	}
4132 
4133 	if (changes_data)
4134 		clear_all_pkt_pointers(env);
4135 	return 0;
4136 }
4137 
4138 static bool signed_add_overflows(s64 a, s64 b)
4139 {
4140 	/* Do the add in u64, where overflow is well-defined */
4141 	s64 res = (s64)((u64)a + (u64)b);
4142 
4143 	if (b < 0)
4144 		return res > a;
4145 	return res < a;
4146 }
4147 
4148 static bool signed_sub_overflows(s64 a, s64 b)
4149 {
4150 	/* Do the sub in u64, where overflow is well-defined */
4151 	s64 res = (s64)((u64)a - (u64)b);
4152 
4153 	if (b < 0)
4154 		return res < a;
4155 	return res > a;
4156 }
4157 
4158 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
4159 				  const struct bpf_reg_state *reg,
4160 				  enum bpf_reg_type type)
4161 {
4162 	bool known = tnum_is_const(reg->var_off);
4163 	s64 val = reg->var_off.value;
4164 	s64 smin = reg->smin_value;
4165 
4166 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
4167 		verbose(env, "math between %s pointer and %lld is not allowed\n",
4168 			reg_type_str[type], val);
4169 		return false;
4170 	}
4171 
4172 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
4173 		verbose(env, "%s pointer offset %d is not allowed\n",
4174 			reg_type_str[type], reg->off);
4175 		return false;
4176 	}
4177 
4178 	if (smin == S64_MIN) {
4179 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
4180 			reg_type_str[type]);
4181 		return false;
4182 	}
4183 
4184 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
4185 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
4186 			smin, reg_type_str[type]);
4187 		return false;
4188 	}
4189 
4190 	return true;
4191 }
4192 
4193 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
4194 {
4195 	return &env->insn_aux_data[env->insn_idx];
4196 }
4197 
4198 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
4199 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
4200 {
4201 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
4202 			    (opcode == BPF_SUB && !off_is_neg);
4203 	u32 off;
4204 
4205 	switch (ptr_reg->type) {
4206 	case PTR_TO_STACK:
4207 		/* Indirect variable offset stack access is prohibited in
4208 		 * unprivileged mode so it's not handled here.
4209 		 */
4210 		off = ptr_reg->off + ptr_reg->var_off.value;
4211 		if (mask_to_left)
4212 			*ptr_limit = MAX_BPF_STACK + off;
4213 		else
4214 			*ptr_limit = -off;
4215 		return 0;
4216 	case PTR_TO_MAP_VALUE:
4217 		if (mask_to_left) {
4218 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
4219 		} else {
4220 			off = ptr_reg->smin_value + ptr_reg->off;
4221 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
4222 		}
4223 		return 0;
4224 	default:
4225 		return -EINVAL;
4226 	}
4227 }
4228 
4229 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
4230 				    const struct bpf_insn *insn)
4231 {
4232 	return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
4233 }
4234 
4235 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
4236 				       u32 alu_state, u32 alu_limit)
4237 {
4238 	/* If we arrived here from different branches with different
4239 	 * state or limits to sanitize, then this won't work.
4240 	 */
4241 	if (aux->alu_state &&
4242 	    (aux->alu_state != alu_state ||
4243 	     aux->alu_limit != alu_limit))
4244 		return -EACCES;
4245 
4246 	/* Corresponding fixup done in fixup_bpf_calls(). */
4247 	aux->alu_state = alu_state;
4248 	aux->alu_limit = alu_limit;
4249 	return 0;
4250 }
4251 
4252 static int sanitize_val_alu(struct bpf_verifier_env *env,
4253 			    struct bpf_insn *insn)
4254 {
4255 	struct bpf_insn_aux_data *aux = cur_aux(env);
4256 
4257 	if (can_skip_alu_sanitation(env, insn))
4258 		return 0;
4259 
4260 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
4261 }
4262 
4263 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
4264 			    struct bpf_insn *insn,
4265 			    const struct bpf_reg_state *ptr_reg,
4266 			    struct bpf_reg_state *dst_reg,
4267 			    bool off_is_neg)
4268 {
4269 	struct bpf_verifier_state *vstate = env->cur_state;
4270 	struct bpf_insn_aux_data *aux = cur_aux(env);
4271 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
4272 	u8 opcode = BPF_OP(insn->code);
4273 	u32 alu_state, alu_limit;
4274 	struct bpf_reg_state tmp;
4275 	bool ret;
4276 
4277 	if (can_skip_alu_sanitation(env, insn))
4278 		return 0;
4279 
4280 	/* We already marked aux for masking from non-speculative
4281 	 * paths, thus we got here in the first place. We only care
4282 	 * to explore bad access from here.
4283 	 */
4284 	if (vstate->speculative)
4285 		goto do_sim;
4286 
4287 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
4288 	alu_state |= ptr_is_dst_reg ?
4289 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
4290 
4291 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
4292 		return 0;
4293 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
4294 		return -EACCES;
4295 do_sim:
4296 	/* Simulate and find potential out-of-bounds access under
4297 	 * speculative execution from truncation as a result of
4298 	 * masking when off was not within expected range. If off
4299 	 * sits in dst, then we temporarily need to move ptr there
4300 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
4301 	 * for cases where we use K-based arithmetic in one direction
4302 	 * and truncated reg-based in the other in order to explore
4303 	 * bad access.
4304 	 */
4305 	if (!ptr_is_dst_reg) {
4306 		tmp = *dst_reg;
4307 		*dst_reg = *ptr_reg;
4308 	}
4309 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
4310 	if (!ptr_is_dst_reg && ret)
4311 		*dst_reg = tmp;
4312 	return !ret ? -EFAULT : 0;
4313 }
4314 
4315 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
4316  * Caller should also handle BPF_MOV case separately.
4317  * If we return -EACCES, caller may want to try again treating pointer as a
4318  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
4319  */
4320 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
4321 				   struct bpf_insn *insn,
4322 				   const struct bpf_reg_state *ptr_reg,
4323 				   const struct bpf_reg_state *off_reg)
4324 {
4325 	struct bpf_verifier_state *vstate = env->cur_state;
4326 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4327 	struct bpf_reg_state *regs = state->regs, *dst_reg;
4328 	bool known = tnum_is_const(off_reg->var_off);
4329 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
4330 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
4331 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
4332 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
4333 	u32 dst = insn->dst_reg, src = insn->src_reg;
4334 	u8 opcode = BPF_OP(insn->code);
4335 	int ret;
4336 
4337 	dst_reg = &regs[dst];
4338 
4339 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
4340 	    smin_val > smax_val || umin_val > umax_val) {
4341 		/* Taint dst register if offset had invalid bounds derived from
4342 		 * e.g. dead branches.
4343 		 */
4344 		__mark_reg_unknown(dst_reg);
4345 		return 0;
4346 	}
4347 
4348 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
4349 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
4350 		verbose(env,
4351 			"R%d 32-bit pointer arithmetic prohibited\n",
4352 			dst);
4353 		return -EACCES;
4354 	}
4355 
4356 	switch (ptr_reg->type) {
4357 	case PTR_TO_MAP_VALUE_OR_NULL:
4358 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
4359 			dst, reg_type_str[ptr_reg->type]);
4360 		return -EACCES;
4361 	case CONST_PTR_TO_MAP:
4362 	case PTR_TO_PACKET_END:
4363 	case PTR_TO_SOCKET:
4364 	case PTR_TO_SOCKET_OR_NULL:
4365 	case PTR_TO_SOCK_COMMON:
4366 	case PTR_TO_SOCK_COMMON_OR_NULL:
4367 	case PTR_TO_TCP_SOCK:
4368 	case PTR_TO_TCP_SOCK_OR_NULL:
4369 	case PTR_TO_XDP_SOCK:
4370 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
4371 			dst, reg_type_str[ptr_reg->type]);
4372 		return -EACCES;
4373 	case PTR_TO_MAP_VALUE:
4374 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
4375 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
4376 				off_reg == dst_reg ? dst : src);
4377 			return -EACCES;
4378 		}
4379 		/* fall-through */
4380 	default:
4381 		break;
4382 	}
4383 
4384 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
4385 	 * The id may be overwritten later if we create a new variable offset.
4386 	 */
4387 	dst_reg->type = ptr_reg->type;
4388 	dst_reg->id = ptr_reg->id;
4389 
4390 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
4391 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
4392 		return -EINVAL;
4393 
4394 	switch (opcode) {
4395 	case BPF_ADD:
4396 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4397 		if (ret < 0) {
4398 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
4399 			return ret;
4400 		}
4401 		/* We can take a fixed offset as long as it doesn't overflow
4402 		 * the s32 'off' field
4403 		 */
4404 		if (known && (ptr_reg->off + smin_val ==
4405 			      (s64)(s32)(ptr_reg->off + smin_val))) {
4406 			/* pointer += K.  Accumulate it into fixed offset */
4407 			dst_reg->smin_value = smin_ptr;
4408 			dst_reg->smax_value = smax_ptr;
4409 			dst_reg->umin_value = umin_ptr;
4410 			dst_reg->umax_value = umax_ptr;
4411 			dst_reg->var_off = ptr_reg->var_off;
4412 			dst_reg->off = ptr_reg->off + smin_val;
4413 			dst_reg->raw = ptr_reg->raw;
4414 			break;
4415 		}
4416 		/* A new variable offset is created.  Note that off_reg->off
4417 		 * == 0, since it's a scalar.
4418 		 * dst_reg gets the pointer type and since some positive
4419 		 * integer value was added to the pointer, give it a new 'id'
4420 		 * if it's a PTR_TO_PACKET.
4421 		 * this creates a new 'base' pointer, off_reg (variable) gets
4422 		 * added into the variable offset, and we copy the fixed offset
4423 		 * from ptr_reg.
4424 		 */
4425 		if (signed_add_overflows(smin_ptr, smin_val) ||
4426 		    signed_add_overflows(smax_ptr, smax_val)) {
4427 			dst_reg->smin_value = S64_MIN;
4428 			dst_reg->smax_value = S64_MAX;
4429 		} else {
4430 			dst_reg->smin_value = smin_ptr + smin_val;
4431 			dst_reg->smax_value = smax_ptr + smax_val;
4432 		}
4433 		if (umin_ptr + umin_val < umin_ptr ||
4434 		    umax_ptr + umax_val < umax_ptr) {
4435 			dst_reg->umin_value = 0;
4436 			dst_reg->umax_value = U64_MAX;
4437 		} else {
4438 			dst_reg->umin_value = umin_ptr + umin_val;
4439 			dst_reg->umax_value = umax_ptr + umax_val;
4440 		}
4441 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
4442 		dst_reg->off = ptr_reg->off;
4443 		dst_reg->raw = ptr_reg->raw;
4444 		if (reg_is_pkt_pointer(ptr_reg)) {
4445 			dst_reg->id = ++env->id_gen;
4446 			/* something was added to pkt_ptr, set range to zero */
4447 			dst_reg->raw = 0;
4448 		}
4449 		break;
4450 	case BPF_SUB:
4451 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4452 		if (ret < 0) {
4453 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
4454 			return ret;
4455 		}
4456 		if (dst_reg == off_reg) {
4457 			/* scalar -= pointer.  Creates an unknown scalar */
4458 			verbose(env, "R%d tried to subtract pointer from scalar\n",
4459 				dst);
4460 			return -EACCES;
4461 		}
4462 		/* We don't allow subtraction from FP, because (according to
4463 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
4464 		 * be able to deal with it.
4465 		 */
4466 		if (ptr_reg->type == PTR_TO_STACK) {
4467 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
4468 				dst);
4469 			return -EACCES;
4470 		}
4471 		if (known && (ptr_reg->off - smin_val ==
4472 			      (s64)(s32)(ptr_reg->off - smin_val))) {
4473 			/* pointer -= K.  Subtract it from fixed offset */
4474 			dst_reg->smin_value = smin_ptr;
4475 			dst_reg->smax_value = smax_ptr;
4476 			dst_reg->umin_value = umin_ptr;
4477 			dst_reg->umax_value = umax_ptr;
4478 			dst_reg->var_off = ptr_reg->var_off;
4479 			dst_reg->id = ptr_reg->id;
4480 			dst_reg->off = ptr_reg->off - smin_val;
4481 			dst_reg->raw = ptr_reg->raw;
4482 			break;
4483 		}
4484 		/* A new variable offset is created.  If the subtrahend is known
4485 		 * nonnegative, then any reg->range we had before is still good.
4486 		 */
4487 		if (signed_sub_overflows(smin_ptr, smax_val) ||
4488 		    signed_sub_overflows(smax_ptr, smin_val)) {
4489 			/* Overflow possible, we know nothing */
4490 			dst_reg->smin_value = S64_MIN;
4491 			dst_reg->smax_value = S64_MAX;
4492 		} else {
4493 			dst_reg->smin_value = smin_ptr - smax_val;
4494 			dst_reg->smax_value = smax_ptr - smin_val;
4495 		}
4496 		if (umin_ptr < umax_val) {
4497 			/* Overflow possible, we know nothing */
4498 			dst_reg->umin_value = 0;
4499 			dst_reg->umax_value = U64_MAX;
4500 		} else {
4501 			/* Cannot overflow (as long as bounds are consistent) */
4502 			dst_reg->umin_value = umin_ptr - umax_val;
4503 			dst_reg->umax_value = umax_ptr - umin_val;
4504 		}
4505 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
4506 		dst_reg->off = ptr_reg->off;
4507 		dst_reg->raw = ptr_reg->raw;
4508 		if (reg_is_pkt_pointer(ptr_reg)) {
4509 			dst_reg->id = ++env->id_gen;
4510 			/* something was added to pkt_ptr, set range to zero */
4511 			if (smin_val < 0)
4512 				dst_reg->raw = 0;
4513 		}
4514 		break;
4515 	case BPF_AND:
4516 	case BPF_OR:
4517 	case BPF_XOR:
4518 		/* bitwise ops on pointers are troublesome, prohibit. */
4519 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
4520 			dst, bpf_alu_string[opcode >> 4]);
4521 		return -EACCES;
4522 	default:
4523 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
4524 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
4525 			dst, bpf_alu_string[opcode >> 4]);
4526 		return -EACCES;
4527 	}
4528 
4529 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
4530 		return -EINVAL;
4531 
4532 	__update_reg_bounds(dst_reg);
4533 	__reg_deduce_bounds(dst_reg);
4534 	__reg_bound_offset(dst_reg);
4535 
4536 	/* For unprivileged we require that resulting offset must be in bounds
4537 	 * in order to be able to sanitize access later on.
4538 	 */
4539 	if (!env->allow_ptr_leaks) {
4540 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
4541 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
4542 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
4543 				"prohibited for !root\n", dst);
4544 			return -EACCES;
4545 		} else if (dst_reg->type == PTR_TO_STACK &&
4546 			   check_stack_access(env, dst_reg, dst_reg->off +
4547 					      dst_reg->var_off.value, 1)) {
4548 			verbose(env, "R%d stack pointer arithmetic goes out of range, "
4549 				"prohibited for !root\n", dst);
4550 			return -EACCES;
4551 		}
4552 	}
4553 
4554 	return 0;
4555 }
4556 
4557 /* WARNING: This function does calculations on 64-bit values, but the actual
4558  * execution may occur on 32-bit values. Therefore, things like bitshifts
4559  * need extra checks in the 32-bit case.
4560  */
4561 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
4562 				      struct bpf_insn *insn,
4563 				      struct bpf_reg_state *dst_reg,
4564 				      struct bpf_reg_state src_reg)
4565 {
4566 	struct bpf_reg_state *regs = cur_regs(env);
4567 	u8 opcode = BPF_OP(insn->code);
4568 	bool src_known, dst_known;
4569 	s64 smin_val, smax_val;
4570 	u64 umin_val, umax_val;
4571 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
4572 	u32 dst = insn->dst_reg;
4573 	int ret;
4574 
4575 	if (insn_bitness == 32) {
4576 		/* Relevant for 32-bit RSH: Information can propagate towards
4577 		 * LSB, so it isn't sufficient to only truncate the output to
4578 		 * 32 bits.
4579 		 */
4580 		coerce_reg_to_size(dst_reg, 4);
4581 		coerce_reg_to_size(&src_reg, 4);
4582 	}
4583 
4584 	smin_val = src_reg.smin_value;
4585 	smax_val = src_reg.smax_value;
4586 	umin_val = src_reg.umin_value;
4587 	umax_val = src_reg.umax_value;
4588 	src_known = tnum_is_const(src_reg.var_off);
4589 	dst_known = tnum_is_const(dst_reg->var_off);
4590 
4591 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
4592 	    smin_val > smax_val || umin_val > umax_val) {
4593 		/* Taint dst register if offset had invalid bounds derived from
4594 		 * e.g. dead branches.
4595 		 */
4596 		__mark_reg_unknown(dst_reg);
4597 		return 0;
4598 	}
4599 
4600 	if (!src_known &&
4601 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
4602 		__mark_reg_unknown(dst_reg);
4603 		return 0;
4604 	}
4605 
4606 	switch (opcode) {
4607 	case BPF_ADD:
4608 		ret = sanitize_val_alu(env, insn);
4609 		if (ret < 0) {
4610 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
4611 			return ret;
4612 		}
4613 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
4614 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
4615 			dst_reg->smin_value = S64_MIN;
4616 			dst_reg->smax_value = S64_MAX;
4617 		} else {
4618 			dst_reg->smin_value += smin_val;
4619 			dst_reg->smax_value += smax_val;
4620 		}
4621 		if (dst_reg->umin_value + umin_val < umin_val ||
4622 		    dst_reg->umax_value + umax_val < umax_val) {
4623 			dst_reg->umin_value = 0;
4624 			dst_reg->umax_value = U64_MAX;
4625 		} else {
4626 			dst_reg->umin_value += umin_val;
4627 			dst_reg->umax_value += umax_val;
4628 		}
4629 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
4630 		break;
4631 	case BPF_SUB:
4632 		ret = sanitize_val_alu(env, insn);
4633 		if (ret < 0) {
4634 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
4635 			return ret;
4636 		}
4637 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
4638 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
4639 			/* Overflow possible, we know nothing */
4640 			dst_reg->smin_value = S64_MIN;
4641 			dst_reg->smax_value = S64_MAX;
4642 		} else {
4643 			dst_reg->smin_value -= smax_val;
4644 			dst_reg->smax_value -= smin_val;
4645 		}
4646 		if (dst_reg->umin_value < umax_val) {
4647 			/* Overflow possible, we know nothing */
4648 			dst_reg->umin_value = 0;
4649 			dst_reg->umax_value = U64_MAX;
4650 		} else {
4651 			/* Cannot overflow (as long as bounds are consistent) */
4652 			dst_reg->umin_value -= umax_val;
4653 			dst_reg->umax_value -= umin_val;
4654 		}
4655 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
4656 		break;
4657 	case BPF_MUL:
4658 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
4659 		if (smin_val < 0 || dst_reg->smin_value < 0) {
4660 			/* Ain't nobody got time to multiply that sign */
4661 			__mark_reg_unbounded(dst_reg);
4662 			__update_reg_bounds(dst_reg);
4663 			break;
4664 		}
4665 		/* Both values are positive, so we can work with unsigned and
4666 		 * copy the result to signed (unless it exceeds S64_MAX).
4667 		 */
4668 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
4669 			/* Potential overflow, we know nothing */
4670 			__mark_reg_unbounded(dst_reg);
4671 			/* (except what we can learn from the var_off) */
4672 			__update_reg_bounds(dst_reg);
4673 			break;
4674 		}
4675 		dst_reg->umin_value *= umin_val;
4676 		dst_reg->umax_value *= umax_val;
4677 		if (dst_reg->umax_value > S64_MAX) {
4678 			/* Overflow possible, we know nothing */
4679 			dst_reg->smin_value = S64_MIN;
4680 			dst_reg->smax_value = S64_MAX;
4681 		} else {
4682 			dst_reg->smin_value = dst_reg->umin_value;
4683 			dst_reg->smax_value = dst_reg->umax_value;
4684 		}
4685 		break;
4686 	case BPF_AND:
4687 		if (src_known && dst_known) {
4688 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
4689 						  src_reg.var_off.value);
4690 			break;
4691 		}
4692 		/* We get our minimum from the var_off, since that's inherently
4693 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
4694 		 */
4695 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
4696 		dst_reg->umin_value = dst_reg->var_off.value;
4697 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
4698 		if (dst_reg->smin_value < 0 || smin_val < 0) {
4699 			/* Lose signed bounds when ANDing negative numbers,
4700 			 * ain't nobody got time for that.
4701 			 */
4702 			dst_reg->smin_value = S64_MIN;
4703 			dst_reg->smax_value = S64_MAX;
4704 		} else {
4705 			/* ANDing two positives gives a positive, so safe to
4706 			 * cast result into s64.
4707 			 */
4708 			dst_reg->smin_value = dst_reg->umin_value;
4709 			dst_reg->smax_value = dst_reg->umax_value;
4710 		}
4711 		/* We may learn something more from the var_off */
4712 		__update_reg_bounds(dst_reg);
4713 		break;
4714 	case BPF_OR:
4715 		if (src_known && dst_known) {
4716 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
4717 						  src_reg.var_off.value);
4718 			break;
4719 		}
4720 		/* We get our maximum from the var_off, and our minimum is the
4721 		 * maximum of the operands' minima
4722 		 */
4723 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
4724 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
4725 		dst_reg->umax_value = dst_reg->var_off.value |
4726 				      dst_reg->var_off.mask;
4727 		if (dst_reg->smin_value < 0 || smin_val < 0) {
4728 			/* Lose signed bounds when ORing negative numbers,
4729 			 * ain't nobody got time for that.
4730 			 */
4731 			dst_reg->smin_value = S64_MIN;
4732 			dst_reg->smax_value = S64_MAX;
4733 		} else {
4734 			/* ORing two positives gives a positive, so safe to
4735 			 * cast result into s64.
4736 			 */
4737 			dst_reg->smin_value = dst_reg->umin_value;
4738 			dst_reg->smax_value = dst_reg->umax_value;
4739 		}
4740 		/* We may learn something more from the var_off */
4741 		__update_reg_bounds(dst_reg);
4742 		break;
4743 	case BPF_LSH:
4744 		if (umax_val >= insn_bitness) {
4745 			/* Shifts greater than 31 or 63 are undefined.
4746 			 * This includes shifts by a negative number.
4747 			 */
4748 			mark_reg_unknown(env, regs, insn->dst_reg);
4749 			break;
4750 		}
4751 		/* We lose all sign bit information (except what we can pick
4752 		 * up from var_off)
4753 		 */
4754 		dst_reg->smin_value = S64_MIN;
4755 		dst_reg->smax_value = S64_MAX;
4756 		/* If we might shift our top bit out, then we know nothing */
4757 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
4758 			dst_reg->umin_value = 0;
4759 			dst_reg->umax_value = U64_MAX;
4760 		} else {
4761 			dst_reg->umin_value <<= umin_val;
4762 			dst_reg->umax_value <<= umax_val;
4763 		}
4764 		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
4765 		/* We may learn something more from the var_off */
4766 		__update_reg_bounds(dst_reg);
4767 		break;
4768 	case BPF_RSH:
4769 		if (umax_val >= insn_bitness) {
4770 			/* Shifts greater than 31 or 63 are undefined.
4771 			 * This includes shifts by a negative number.
4772 			 */
4773 			mark_reg_unknown(env, regs, insn->dst_reg);
4774 			break;
4775 		}
4776 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
4777 		 * be negative, then either:
4778 		 * 1) src_reg might be zero, so the sign bit of the result is
4779 		 *    unknown, so we lose our signed bounds
4780 		 * 2) it's known negative, thus the unsigned bounds capture the
4781 		 *    signed bounds
4782 		 * 3) the signed bounds cross zero, so they tell us nothing
4783 		 *    about the result
4784 		 * If the value in dst_reg is known nonnegative, then again the
4785 		 * unsigned bounts capture the signed bounds.
4786 		 * Thus, in all cases it suffices to blow away our signed bounds
4787 		 * and rely on inferring new ones from the unsigned bounds and
4788 		 * var_off of the result.
4789 		 */
4790 		dst_reg->smin_value = S64_MIN;
4791 		dst_reg->smax_value = S64_MAX;
4792 		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
4793 		dst_reg->umin_value >>= umax_val;
4794 		dst_reg->umax_value >>= umin_val;
4795 		/* We may learn something more from the var_off */
4796 		__update_reg_bounds(dst_reg);
4797 		break;
4798 	case BPF_ARSH:
4799 		if (umax_val >= insn_bitness) {
4800 			/* Shifts greater than 31 or 63 are undefined.
4801 			 * This includes shifts by a negative number.
4802 			 */
4803 			mark_reg_unknown(env, regs, insn->dst_reg);
4804 			break;
4805 		}
4806 
4807 		/* Upon reaching here, src_known is true and
4808 		 * umax_val is equal to umin_val.
4809 		 */
4810 		dst_reg->smin_value >>= umin_val;
4811 		dst_reg->smax_value >>= umin_val;
4812 		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
4813 
4814 		/* blow away the dst_reg umin_value/umax_value and rely on
4815 		 * dst_reg var_off to refine the result.
4816 		 */
4817 		dst_reg->umin_value = 0;
4818 		dst_reg->umax_value = U64_MAX;
4819 		__update_reg_bounds(dst_reg);
4820 		break;
4821 	default:
4822 		mark_reg_unknown(env, regs, insn->dst_reg);
4823 		break;
4824 	}
4825 
4826 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
4827 		/* 32-bit ALU ops are (32,32)->32 */
4828 		coerce_reg_to_size(dst_reg, 4);
4829 	}
4830 
4831 	__reg_deduce_bounds(dst_reg);
4832 	__reg_bound_offset(dst_reg);
4833 	return 0;
4834 }
4835 
4836 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
4837  * and var_off.
4838  */
4839 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
4840 				   struct bpf_insn *insn)
4841 {
4842 	struct bpf_verifier_state *vstate = env->cur_state;
4843 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4844 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
4845 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
4846 	u8 opcode = BPF_OP(insn->code);
4847 	int err;
4848 
4849 	dst_reg = &regs[insn->dst_reg];
4850 	src_reg = NULL;
4851 	if (dst_reg->type != SCALAR_VALUE)
4852 		ptr_reg = dst_reg;
4853 	if (BPF_SRC(insn->code) == BPF_X) {
4854 		src_reg = &regs[insn->src_reg];
4855 		if (src_reg->type != SCALAR_VALUE) {
4856 			if (dst_reg->type != SCALAR_VALUE) {
4857 				/* Combining two pointers by any ALU op yields
4858 				 * an arbitrary scalar. Disallow all math except
4859 				 * pointer subtraction
4860 				 */
4861 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
4862 					mark_reg_unknown(env, regs, insn->dst_reg);
4863 					return 0;
4864 				}
4865 				verbose(env, "R%d pointer %s pointer prohibited\n",
4866 					insn->dst_reg,
4867 					bpf_alu_string[opcode >> 4]);
4868 				return -EACCES;
4869 			} else {
4870 				/* scalar += pointer
4871 				 * This is legal, but we have to reverse our
4872 				 * src/dest handling in computing the range
4873 				 */
4874 				err = mark_chain_precision(env, insn->dst_reg);
4875 				if (err)
4876 					return err;
4877 				return adjust_ptr_min_max_vals(env, insn,
4878 							       src_reg, dst_reg);
4879 			}
4880 		} else if (ptr_reg) {
4881 			/* pointer += scalar */
4882 			err = mark_chain_precision(env, insn->src_reg);
4883 			if (err)
4884 				return err;
4885 			return adjust_ptr_min_max_vals(env, insn,
4886 						       dst_reg, src_reg);
4887 		}
4888 	} else {
4889 		/* Pretend the src is a reg with a known value, since we only
4890 		 * need to be able to read from this state.
4891 		 */
4892 		off_reg.type = SCALAR_VALUE;
4893 		__mark_reg_known(&off_reg, insn->imm);
4894 		src_reg = &off_reg;
4895 		if (ptr_reg) /* pointer += K */
4896 			return adjust_ptr_min_max_vals(env, insn,
4897 						       ptr_reg, src_reg);
4898 	}
4899 
4900 	/* Got here implies adding two SCALAR_VALUEs */
4901 	if (WARN_ON_ONCE(ptr_reg)) {
4902 		print_verifier_state(env, state);
4903 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
4904 		return -EINVAL;
4905 	}
4906 	if (WARN_ON(!src_reg)) {
4907 		print_verifier_state(env, state);
4908 		verbose(env, "verifier internal error: no src_reg\n");
4909 		return -EINVAL;
4910 	}
4911 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
4912 }
4913 
4914 /* check validity of 32-bit and 64-bit arithmetic operations */
4915 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
4916 {
4917 	struct bpf_reg_state *regs = cur_regs(env);
4918 	u8 opcode = BPF_OP(insn->code);
4919 	int err;
4920 
4921 	if (opcode == BPF_END || opcode == BPF_NEG) {
4922 		if (opcode == BPF_NEG) {
4923 			if (BPF_SRC(insn->code) != 0 ||
4924 			    insn->src_reg != BPF_REG_0 ||
4925 			    insn->off != 0 || insn->imm != 0) {
4926 				verbose(env, "BPF_NEG uses reserved fields\n");
4927 				return -EINVAL;
4928 			}
4929 		} else {
4930 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
4931 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
4932 			    BPF_CLASS(insn->code) == BPF_ALU64) {
4933 				verbose(env, "BPF_END uses reserved fields\n");
4934 				return -EINVAL;
4935 			}
4936 		}
4937 
4938 		/* check src operand */
4939 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4940 		if (err)
4941 			return err;
4942 
4943 		if (is_pointer_value(env, insn->dst_reg)) {
4944 			verbose(env, "R%d pointer arithmetic prohibited\n",
4945 				insn->dst_reg);
4946 			return -EACCES;
4947 		}
4948 
4949 		/* check dest operand */
4950 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
4951 		if (err)
4952 			return err;
4953 
4954 	} else if (opcode == BPF_MOV) {
4955 
4956 		if (BPF_SRC(insn->code) == BPF_X) {
4957 			if (insn->imm != 0 || insn->off != 0) {
4958 				verbose(env, "BPF_MOV uses reserved fields\n");
4959 				return -EINVAL;
4960 			}
4961 
4962 			/* check src operand */
4963 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4964 			if (err)
4965 				return err;
4966 		} else {
4967 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
4968 				verbose(env, "BPF_MOV uses reserved fields\n");
4969 				return -EINVAL;
4970 			}
4971 		}
4972 
4973 		/* check dest operand, mark as required later */
4974 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4975 		if (err)
4976 			return err;
4977 
4978 		if (BPF_SRC(insn->code) == BPF_X) {
4979 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
4980 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
4981 
4982 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
4983 				/* case: R1 = R2
4984 				 * copy register state to dest reg
4985 				 */
4986 				*dst_reg = *src_reg;
4987 				dst_reg->live |= REG_LIVE_WRITTEN;
4988 				dst_reg->subreg_def = DEF_NOT_SUBREG;
4989 			} else {
4990 				/* R1 = (u32) R2 */
4991 				if (is_pointer_value(env, insn->src_reg)) {
4992 					verbose(env,
4993 						"R%d partial copy of pointer\n",
4994 						insn->src_reg);
4995 					return -EACCES;
4996 				} else if (src_reg->type == SCALAR_VALUE) {
4997 					*dst_reg = *src_reg;
4998 					dst_reg->live |= REG_LIVE_WRITTEN;
4999 					dst_reg->subreg_def = env->insn_idx + 1;
5000 				} else {
5001 					mark_reg_unknown(env, regs,
5002 							 insn->dst_reg);
5003 				}
5004 				coerce_reg_to_size(dst_reg, 4);
5005 			}
5006 		} else {
5007 			/* case: R = imm
5008 			 * remember the value we stored into this reg
5009 			 */
5010 			/* clear any state __mark_reg_known doesn't set */
5011 			mark_reg_unknown(env, regs, insn->dst_reg);
5012 			regs[insn->dst_reg].type = SCALAR_VALUE;
5013 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
5014 				__mark_reg_known(regs + insn->dst_reg,
5015 						 insn->imm);
5016 			} else {
5017 				__mark_reg_known(regs + insn->dst_reg,
5018 						 (u32)insn->imm);
5019 			}
5020 		}
5021 
5022 	} else if (opcode > BPF_END) {
5023 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
5024 		return -EINVAL;
5025 
5026 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
5027 
5028 		if (BPF_SRC(insn->code) == BPF_X) {
5029 			if (insn->imm != 0 || insn->off != 0) {
5030 				verbose(env, "BPF_ALU uses reserved fields\n");
5031 				return -EINVAL;
5032 			}
5033 			/* check src1 operand */
5034 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5035 			if (err)
5036 				return err;
5037 		} else {
5038 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
5039 				verbose(env, "BPF_ALU uses reserved fields\n");
5040 				return -EINVAL;
5041 			}
5042 		}
5043 
5044 		/* check src2 operand */
5045 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5046 		if (err)
5047 			return err;
5048 
5049 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
5050 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
5051 			verbose(env, "div by zero\n");
5052 			return -EINVAL;
5053 		}
5054 
5055 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
5056 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
5057 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
5058 
5059 			if (insn->imm < 0 || insn->imm >= size) {
5060 				verbose(env, "invalid shift %d\n", insn->imm);
5061 				return -EINVAL;
5062 			}
5063 		}
5064 
5065 		/* check dest operand */
5066 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
5067 		if (err)
5068 			return err;
5069 
5070 		return adjust_reg_min_max_vals(env, insn);
5071 	}
5072 
5073 	return 0;
5074 }
5075 
5076 static void __find_good_pkt_pointers(struct bpf_func_state *state,
5077 				     struct bpf_reg_state *dst_reg,
5078 				     enum bpf_reg_type type, u16 new_range)
5079 {
5080 	struct bpf_reg_state *reg;
5081 	int i;
5082 
5083 	for (i = 0; i < MAX_BPF_REG; i++) {
5084 		reg = &state->regs[i];
5085 		if (reg->type == type && reg->id == dst_reg->id)
5086 			/* keep the maximum range already checked */
5087 			reg->range = max(reg->range, new_range);
5088 	}
5089 
5090 	bpf_for_each_spilled_reg(i, state, reg) {
5091 		if (!reg)
5092 			continue;
5093 		if (reg->type == type && reg->id == dst_reg->id)
5094 			reg->range = max(reg->range, new_range);
5095 	}
5096 }
5097 
5098 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
5099 				   struct bpf_reg_state *dst_reg,
5100 				   enum bpf_reg_type type,
5101 				   bool range_right_open)
5102 {
5103 	u16 new_range;
5104 	int i;
5105 
5106 	if (dst_reg->off < 0 ||
5107 	    (dst_reg->off == 0 && range_right_open))
5108 		/* This doesn't give us any range */
5109 		return;
5110 
5111 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
5112 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
5113 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
5114 		 * than pkt_end, but that's because it's also less than pkt.
5115 		 */
5116 		return;
5117 
5118 	new_range = dst_reg->off;
5119 	if (range_right_open)
5120 		new_range--;
5121 
5122 	/* Examples for register markings:
5123 	 *
5124 	 * pkt_data in dst register:
5125 	 *
5126 	 *   r2 = r3;
5127 	 *   r2 += 8;
5128 	 *   if (r2 > pkt_end) goto <handle exception>
5129 	 *   <access okay>
5130 	 *
5131 	 *   r2 = r3;
5132 	 *   r2 += 8;
5133 	 *   if (r2 < pkt_end) goto <access okay>
5134 	 *   <handle exception>
5135 	 *
5136 	 *   Where:
5137 	 *     r2 == dst_reg, pkt_end == src_reg
5138 	 *     r2=pkt(id=n,off=8,r=0)
5139 	 *     r3=pkt(id=n,off=0,r=0)
5140 	 *
5141 	 * pkt_data in src register:
5142 	 *
5143 	 *   r2 = r3;
5144 	 *   r2 += 8;
5145 	 *   if (pkt_end >= r2) goto <access okay>
5146 	 *   <handle exception>
5147 	 *
5148 	 *   r2 = r3;
5149 	 *   r2 += 8;
5150 	 *   if (pkt_end <= r2) goto <handle exception>
5151 	 *   <access okay>
5152 	 *
5153 	 *   Where:
5154 	 *     pkt_end == dst_reg, r2 == src_reg
5155 	 *     r2=pkt(id=n,off=8,r=0)
5156 	 *     r3=pkt(id=n,off=0,r=0)
5157 	 *
5158 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
5159 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
5160 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
5161 	 * the check.
5162 	 */
5163 
5164 	/* If our ids match, then we must have the same max_value.  And we
5165 	 * don't care about the other reg's fixed offset, since if it's too big
5166 	 * the range won't allow anything.
5167 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
5168 	 */
5169 	for (i = 0; i <= vstate->curframe; i++)
5170 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
5171 					 new_range);
5172 }
5173 
5174 /* compute branch direction of the expression "if (reg opcode val) goto target;"
5175  * and return:
5176  *  1 - branch will be taken and "goto target" will be executed
5177  *  0 - branch will not be taken and fall-through to next insn
5178  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
5179  */
5180 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
5181 			   bool is_jmp32)
5182 {
5183 	struct bpf_reg_state reg_lo;
5184 	s64 sval;
5185 
5186 	if (__is_pointer_value(false, reg))
5187 		return -1;
5188 
5189 	if (is_jmp32) {
5190 		reg_lo = *reg;
5191 		reg = &reg_lo;
5192 		/* For JMP32, only low 32 bits are compared, coerce_reg_to_size
5193 		 * could truncate high bits and update umin/umax according to
5194 		 * information of low bits.
5195 		 */
5196 		coerce_reg_to_size(reg, 4);
5197 		/* smin/smax need special handling. For example, after coerce,
5198 		 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
5199 		 * used as operand to JMP32. It is a negative number from s32's
5200 		 * point of view, while it is a positive number when seen as
5201 		 * s64. The smin/smax are kept as s64, therefore, when used with
5202 		 * JMP32, they need to be transformed into s32, then sign
5203 		 * extended back to s64.
5204 		 *
5205 		 * Also, smin/smax were copied from umin/umax. If umin/umax has
5206 		 * different sign bit, then min/max relationship doesn't
5207 		 * maintain after casting into s32, for this case, set smin/smax
5208 		 * to safest range.
5209 		 */
5210 		if ((reg->umax_value ^ reg->umin_value) &
5211 		    (1ULL << 31)) {
5212 			reg->smin_value = S32_MIN;
5213 			reg->smax_value = S32_MAX;
5214 		}
5215 		reg->smin_value = (s64)(s32)reg->smin_value;
5216 		reg->smax_value = (s64)(s32)reg->smax_value;
5217 
5218 		val = (u32)val;
5219 		sval = (s64)(s32)val;
5220 	} else {
5221 		sval = (s64)val;
5222 	}
5223 
5224 	switch (opcode) {
5225 	case BPF_JEQ:
5226 		if (tnum_is_const(reg->var_off))
5227 			return !!tnum_equals_const(reg->var_off, val);
5228 		break;
5229 	case BPF_JNE:
5230 		if (tnum_is_const(reg->var_off))
5231 			return !tnum_equals_const(reg->var_off, val);
5232 		break;
5233 	case BPF_JSET:
5234 		if ((~reg->var_off.mask & reg->var_off.value) & val)
5235 			return 1;
5236 		if (!((reg->var_off.mask | reg->var_off.value) & val))
5237 			return 0;
5238 		break;
5239 	case BPF_JGT:
5240 		if (reg->umin_value > val)
5241 			return 1;
5242 		else if (reg->umax_value <= val)
5243 			return 0;
5244 		break;
5245 	case BPF_JSGT:
5246 		if (reg->smin_value > sval)
5247 			return 1;
5248 		else if (reg->smax_value < sval)
5249 			return 0;
5250 		break;
5251 	case BPF_JLT:
5252 		if (reg->umax_value < val)
5253 			return 1;
5254 		else if (reg->umin_value >= val)
5255 			return 0;
5256 		break;
5257 	case BPF_JSLT:
5258 		if (reg->smax_value < sval)
5259 			return 1;
5260 		else if (reg->smin_value >= sval)
5261 			return 0;
5262 		break;
5263 	case BPF_JGE:
5264 		if (reg->umin_value >= val)
5265 			return 1;
5266 		else if (reg->umax_value < val)
5267 			return 0;
5268 		break;
5269 	case BPF_JSGE:
5270 		if (reg->smin_value >= sval)
5271 			return 1;
5272 		else if (reg->smax_value < sval)
5273 			return 0;
5274 		break;
5275 	case BPF_JLE:
5276 		if (reg->umax_value <= val)
5277 			return 1;
5278 		else if (reg->umin_value > val)
5279 			return 0;
5280 		break;
5281 	case BPF_JSLE:
5282 		if (reg->smax_value <= sval)
5283 			return 1;
5284 		else if (reg->smin_value > sval)
5285 			return 0;
5286 		break;
5287 	}
5288 
5289 	return -1;
5290 }
5291 
5292 /* Generate min value of the high 32-bit from TNUM info. */
5293 static u64 gen_hi_min(struct tnum var)
5294 {
5295 	return var.value & ~0xffffffffULL;
5296 }
5297 
5298 /* Generate max value of the high 32-bit from TNUM info. */
5299 static u64 gen_hi_max(struct tnum var)
5300 {
5301 	return (var.value | var.mask) & ~0xffffffffULL;
5302 }
5303 
5304 /* Return true if VAL is compared with a s64 sign extended from s32, and they
5305  * are with the same signedness.
5306  */
5307 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
5308 {
5309 	return ((s32)sval >= 0 &&
5310 		reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
5311 	       ((s32)sval < 0 &&
5312 		reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
5313 }
5314 
5315 /* Adjusts the register min/max values in the case that the dst_reg is the
5316  * variable register that we are working on, and src_reg is a constant or we're
5317  * simply doing a BPF_K check.
5318  * In JEQ/JNE cases we also adjust the var_off values.
5319  */
5320 static void reg_set_min_max(struct bpf_reg_state *true_reg,
5321 			    struct bpf_reg_state *false_reg, u64 val,
5322 			    u8 opcode, bool is_jmp32)
5323 {
5324 	s64 sval;
5325 
5326 	/* If the dst_reg is a pointer, we can't learn anything about its
5327 	 * variable offset from the compare (unless src_reg were a pointer into
5328 	 * the same object, but we don't bother with that.
5329 	 * Since false_reg and true_reg have the same type by construction, we
5330 	 * only need to check one of them for pointerness.
5331 	 */
5332 	if (__is_pointer_value(false, false_reg))
5333 		return;
5334 
5335 	val = is_jmp32 ? (u32)val : val;
5336 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
5337 
5338 	switch (opcode) {
5339 	case BPF_JEQ:
5340 	case BPF_JNE:
5341 	{
5342 		struct bpf_reg_state *reg =
5343 			opcode == BPF_JEQ ? true_reg : false_reg;
5344 
5345 		/* For BPF_JEQ, if this is false we know nothing Jon Snow, but
5346 		 * if it is true we know the value for sure. Likewise for
5347 		 * BPF_JNE.
5348 		 */
5349 		if (is_jmp32) {
5350 			u64 old_v = reg->var_off.value;
5351 			u64 hi_mask = ~0xffffffffULL;
5352 
5353 			reg->var_off.value = (old_v & hi_mask) | val;
5354 			reg->var_off.mask &= hi_mask;
5355 		} else {
5356 			__mark_reg_known(reg, val);
5357 		}
5358 		break;
5359 	}
5360 	case BPF_JSET:
5361 		false_reg->var_off = tnum_and(false_reg->var_off,
5362 					      tnum_const(~val));
5363 		if (is_power_of_2(val))
5364 			true_reg->var_off = tnum_or(true_reg->var_off,
5365 						    tnum_const(val));
5366 		break;
5367 	case BPF_JGE:
5368 	case BPF_JGT:
5369 	{
5370 		u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
5371 		u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
5372 
5373 		if (is_jmp32) {
5374 			false_umax += gen_hi_max(false_reg->var_off);
5375 			true_umin += gen_hi_min(true_reg->var_off);
5376 		}
5377 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
5378 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
5379 		break;
5380 	}
5381 	case BPF_JSGE:
5382 	case BPF_JSGT:
5383 	{
5384 		s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
5385 		s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
5386 
5387 		/* If the full s64 was not sign-extended from s32 then don't
5388 		 * deduct further info.
5389 		 */
5390 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5391 			break;
5392 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
5393 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
5394 		break;
5395 	}
5396 	case BPF_JLE:
5397 	case BPF_JLT:
5398 	{
5399 		u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
5400 		u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
5401 
5402 		if (is_jmp32) {
5403 			false_umin += gen_hi_min(false_reg->var_off);
5404 			true_umax += gen_hi_max(true_reg->var_off);
5405 		}
5406 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
5407 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
5408 		break;
5409 	}
5410 	case BPF_JSLE:
5411 	case BPF_JSLT:
5412 	{
5413 		s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
5414 		s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
5415 
5416 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5417 			break;
5418 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
5419 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
5420 		break;
5421 	}
5422 	default:
5423 		break;
5424 	}
5425 
5426 	__reg_deduce_bounds(false_reg);
5427 	__reg_deduce_bounds(true_reg);
5428 	/* We might have learned some bits from the bounds. */
5429 	__reg_bound_offset(false_reg);
5430 	__reg_bound_offset(true_reg);
5431 	/* Intersecting with the old var_off might have improved our bounds
5432 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5433 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
5434 	 */
5435 	__update_reg_bounds(false_reg);
5436 	__update_reg_bounds(true_reg);
5437 }
5438 
5439 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
5440  * the variable reg.
5441  */
5442 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
5443 				struct bpf_reg_state *false_reg, u64 val,
5444 				u8 opcode, bool is_jmp32)
5445 {
5446 	s64 sval;
5447 
5448 	if (__is_pointer_value(false, false_reg))
5449 		return;
5450 
5451 	val = is_jmp32 ? (u32)val : val;
5452 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
5453 
5454 	switch (opcode) {
5455 	case BPF_JEQ:
5456 	case BPF_JNE:
5457 	{
5458 		struct bpf_reg_state *reg =
5459 			opcode == BPF_JEQ ? true_reg : false_reg;
5460 
5461 		if (is_jmp32) {
5462 			u64 old_v = reg->var_off.value;
5463 			u64 hi_mask = ~0xffffffffULL;
5464 
5465 			reg->var_off.value = (old_v & hi_mask) | val;
5466 			reg->var_off.mask &= hi_mask;
5467 		} else {
5468 			__mark_reg_known(reg, val);
5469 		}
5470 		break;
5471 	}
5472 	case BPF_JSET:
5473 		false_reg->var_off = tnum_and(false_reg->var_off,
5474 					      tnum_const(~val));
5475 		if (is_power_of_2(val))
5476 			true_reg->var_off = tnum_or(true_reg->var_off,
5477 						    tnum_const(val));
5478 		break;
5479 	case BPF_JGE:
5480 	case BPF_JGT:
5481 	{
5482 		u64 false_umin = opcode == BPF_JGT ? val    : val + 1;
5483 		u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
5484 
5485 		if (is_jmp32) {
5486 			false_umin += gen_hi_min(false_reg->var_off);
5487 			true_umax += gen_hi_max(true_reg->var_off);
5488 		}
5489 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
5490 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
5491 		break;
5492 	}
5493 	case BPF_JSGE:
5494 	case BPF_JSGT:
5495 	{
5496 		s64 false_smin = opcode == BPF_JSGT ? sval    : sval + 1;
5497 		s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
5498 
5499 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5500 			break;
5501 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
5502 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
5503 		break;
5504 	}
5505 	case BPF_JLE:
5506 	case BPF_JLT:
5507 	{
5508 		u64 false_umax = opcode == BPF_JLT ? val    : val - 1;
5509 		u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
5510 
5511 		if (is_jmp32) {
5512 			false_umax += gen_hi_max(false_reg->var_off);
5513 			true_umin += gen_hi_min(true_reg->var_off);
5514 		}
5515 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
5516 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
5517 		break;
5518 	}
5519 	case BPF_JSLE:
5520 	case BPF_JSLT:
5521 	{
5522 		s64 false_smax = opcode == BPF_JSLT ? sval    : sval - 1;
5523 		s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
5524 
5525 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5526 			break;
5527 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
5528 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
5529 		break;
5530 	}
5531 	default:
5532 		break;
5533 	}
5534 
5535 	__reg_deduce_bounds(false_reg);
5536 	__reg_deduce_bounds(true_reg);
5537 	/* We might have learned some bits from the bounds. */
5538 	__reg_bound_offset(false_reg);
5539 	__reg_bound_offset(true_reg);
5540 	/* Intersecting with the old var_off might have improved our bounds
5541 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5542 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
5543 	 */
5544 	__update_reg_bounds(false_reg);
5545 	__update_reg_bounds(true_reg);
5546 }
5547 
5548 /* Regs are known to be equal, so intersect their min/max/var_off */
5549 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
5550 				  struct bpf_reg_state *dst_reg)
5551 {
5552 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
5553 							dst_reg->umin_value);
5554 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
5555 							dst_reg->umax_value);
5556 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
5557 							dst_reg->smin_value);
5558 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
5559 							dst_reg->smax_value);
5560 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
5561 							     dst_reg->var_off);
5562 	/* We might have learned new bounds from the var_off. */
5563 	__update_reg_bounds(src_reg);
5564 	__update_reg_bounds(dst_reg);
5565 	/* We might have learned something about the sign bit. */
5566 	__reg_deduce_bounds(src_reg);
5567 	__reg_deduce_bounds(dst_reg);
5568 	/* We might have learned some bits from the bounds. */
5569 	__reg_bound_offset(src_reg);
5570 	__reg_bound_offset(dst_reg);
5571 	/* Intersecting with the old var_off might have improved our bounds
5572 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5573 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
5574 	 */
5575 	__update_reg_bounds(src_reg);
5576 	__update_reg_bounds(dst_reg);
5577 }
5578 
5579 static void reg_combine_min_max(struct bpf_reg_state *true_src,
5580 				struct bpf_reg_state *true_dst,
5581 				struct bpf_reg_state *false_src,
5582 				struct bpf_reg_state *false_dst,
5583 				u8 opcode)
5584 {
5585 	switch (opcode) {
5586 	case BPF_JEQ:
5587 		__reg_combine_min_max(true_src, true_dst);
5588 		break;
5589 	case BPF_JNE:
5590 		__reg_combine_min_max(false_src, false_dst);
5591 		break;
5592 	}
5593 }
5594 
5595 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
5596 				 struct bpf_reg_state *reg, u32 id,
5597 				 bool is_null)
5598 {
5599 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
5600 		/* Old offset (both fixed and variable parts) should
5601 		 * have been known-zero, because we don't allow pointer
5602 		 * arithmetic on pointers that might be NULL.
5603 		 */
5604 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
5605 				 !tnum_equals_const(reg->var_off, 0) ||
5606 				 reg->off)) {
5607 			__mark_reg_known_zero(reg);
5608 			reg->off = 0;
5609 		}
5610 		if (is_null) {
5611 			reg->type = SCALAR_VALUE;
5612 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
5613 			if (reg->map_ptr->inner_map_meta) {
5614 				reg->type = CONST_PTR_TO_MAP;
5615 				reg->map_ptr = reg->map_ptr->inner_map_meta;
5616 			} else if (reg->map_ptr->map_type ==
5617 				   BPF_MAP_TYPE_XSKMAP) {
5618 				reg->type = PTR_TO_XDP_SOCK;
5619 			} else {
5620 				reg->type = PTR_TO_MAP_VALUE;
5621 			}
5622 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
5623 			reg->type = PTR_TO_SOCKET;
5624 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
5625 			reg->type = PTR_TO_SOCK_COMMON;
5626 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
5627 			reg->type = PTR_TO_TCP_SOCK;
5628 		}
5629 		if (is_null) {
5630 			/* We don't need id and ref_obj_id from this point
5631 			 * onwards anymore, thus we should better reset it,
5632 			 * so that state pruning has chances to take effect.
5633 			 */
5634 			reg->id = 0;
5635 			reg->ref_obj_id = 0;
5636 		} else if (!reg_may_point_to_spin_lock(reg)) {
5637 			/* For not-NULL ptr, reg->ref_obj_id will be reset
5638 			 * in release_reg_references().
5639 			 *
5640 			 * reg->id is still used by spin_lock ptr. Other
5641 			 * than spin_lock ptr type, reg->id can be reset.
5642 			 */
5643 			reg->id = 0;
5644 		}
5645 	}
5646 }
5647 
5648 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
5649 				    bool is_null)
5650 {
5651 	struct bpf_reg_state *reg;
5652 	int i;
5653 
5654 	for (i = 0; i < MAX_BPF_REG; i++)
5655 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
5656 
5657 	bpf_for_each_spilled_reg(i, state, reg) {
5658 		if (!reg)
5659 			continue;
5660 		mark_ptr_or_null_reg(state, reg, id, is_null);
5661 	}
5662 }
5663 
5664 /* The logic is similar to find_good_pkt_pointers(), both could eventually
5665  * be folded together at some point.
5666  */
5667 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
5668 				  bool is_null)
5669 {
5670 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5671 	struct bpf_reg_state *regs = state->regs;
5672 	u32 ref_obj_id = regs[regno].ref_obj_id;
5673 	u32 id = regs[regno].id;
5674 	int i;
5675 
5676 	if (ref_obj_id && ref_obj_id == id && is_null)
5677 		/* regs[regno] is in the " == NULL" branch.
5678 		 * No one could have freed the reference state before
5679 		 * doing the NULL check.
5680 		 */
5681 		WARN_ON_ONCE(release_reference_state(state, id));
5682 
5683 	for (i = 0; i <= vstate->curframe; i++)
5684 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
5685 }
5686 
5687 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
5688 				   struct bpf_reg_state *dst_reg,
5689 				   struct bpf_reg_state *src_reg,
5690 				   struct bpf_verifier_state *this_branch,
5691 				   struct bpf_verifier_state *other_branch)
5692 {
5693 	if (BPF_SRC(insn->code) != BPF_X)
5694 		return false;
5695 
5696 	/* Pointers are always 64-bit. */
5697 	if (BPF_CLASS(insn->code) == BPF_JMP32)
5698 		return false;
5699 
5700 	switch (BPF_OP(insn->code)) {
5701 	case BPF_JGT:
5702 		if ((dst_reg->type == PTR_TO_PACKET &&
5703 		     src_reg->type == PTR_TO_PACKET_END) ||
5704 		    (dst_reg->type == PTR_TO_PACKET_META &&
5705 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5706 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
5707 			find_good_pkt_pointers(this_branch, dst_reg,
5708 					       dst_reg->type, false);
5709 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
5710 			    src_reg->type == PTR_TO_PACKET) ||
5711 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5712 			    src_reg->type == PTR_TO_PACKET_META)) {
5713 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
5714 			find_good_pkt_pointers(other_branch, src_reg,
5715 					       src_reg->type, true);
5716 		} else {
5717 			return false;
5718 		}
5719 		break;
5720 	case BPF_JLT:
5721 		if ((dst_reg->type == PTR_TO_PACKET &&
5722 		     src_reg->type == PTR_TO_PACKET_END) ||
5723 		    (dst_reg->type == PTR_TO_PACKET_META &&
5724 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5725 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
5726 			find_good_pkt_pointers(other_branch, dst_reg,
5727 					       dst_reg->type, true);
5728 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
5729 			    src_reg->type == PTR_TO_PACKET) ||
5730 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5731 			    src_reg->type == PTR_TO_PACKET_META)) {
5732 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
5733 			find_good_pkt_pointers(this_branch, src_reg,
5734 					       src_reg->type, false);
5735 		} else {
5736 			return false;
5737 		}
5738 		break;
5739 	case BPF_JGE:
5740 		if ((dst_reg->type == PTR_TO_PACKET &&
5741 		     src_reg->type == PTR_TO_PACKET_END) ||
5742 		    (dst_reg->type == PTR_TO_PACKET_META &&
5743 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5744 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
5745 			find_good_pkt_pointers(this_branch, dst_reg,
5746 					       dst_reg->type, true);
5747 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
5748 			    src_reg->type == PTR_TO_PACKET) ||
5749 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5750 			    src_reg->type == PTR_TO_PACKET_META)) {
5751 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
5752 			find_good_pkt_pointers(other_branch, src_reg,
5753 					       src_reg->type, false);
5754 		} else {
5755 			return false;
5756 		}
5757 		break;
5758 	case BPF_JLE:
5759 		if ((dst_reg->type == PTR_TO_PACKET &&
5760 		     src_reg->type == PTR_TO_PACKET_END) ||
5761 		    (dst_reg->type == PTR_TO_PACKET_META &&
5762 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5763 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
5764 			find_good_pkt_pointers(other_branch, dst_reg,
5765 					       dst_reg->type, false);
5766 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
5767 			    src_reg->type == PTR_TO_PACKET) ||
5768 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5769 			    src_reg->type == PTR_TO_PACKET_META)) {
5770 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
5771 			find_good_pkt_pointers(this_branch, src_reg,
5772 					       src_reg->type, true);
5773 		} else {
5774 			return false;
5775 		}
5776 		break;
5777 	default:
5778 		return false;
5779 	}
5780 
5781 	return true;
5782 }
5783 
5784 static int check_cond_jmp_op(struct bpf_verifier_env *env,
5785 			     struct bpf_insn *insn, int *insn_idx)
5786 {
5787 	struct bpf_verifier_state *this_branch = env->cur_state;
5788 	struct bpf_verifier_state *other_branch;
5789 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
5790 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
5791 	u8 opcode = BPF_OP(insn->code);
5792 	bool is_jmp32;
5793 	int pred = -1;
5794 	int err;
5795 
5796 	/* Only conditional jumps are expected to reach here. */
5797 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
5798 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
5799 		return -EINVAL;
5800 	}
5801 
5802 	if (BPF_SRC(insn->code) == BPF_X) {
5803 		if (insn->imm != 0) {
5804 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
5805 			return -EINVAL;
5806 		}
5807 
5808 		/* check src1 operand */
5809 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
5810 		if (err)
5811 			return err;
5812 
5813 		if (is_pointer_value(env, insn->src_reg)) {
5814 			verbose(env, "R%d pointer comparison prohibited\n",
5815 				insn->src_reg);
5816 			return -EACCES;
5817 		}
5818 		src_reg = &regs[insn->src_reg];
5819 	} else {
5820 		if (insn->src_reg != BPF_REG_0) {
5821 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
5822 			return -EINVAL;
5823 		}
5824 	}
5825 
5826 	/* check src2 operand */
5827 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5828 	if (err)
5829 		return err;
5830 
5831 	dst_reg = &regs[insn->dst_reg];
5832 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
5833 
5834 	if (BPF_SRC(insn->code) == BPF_K)
5835 		pred = is_branch_taken(dst_reg, insn->imm,
5836 				       opcode, is_jmp32);
5837 	else if (src_reg->type == SCALAR_VALUE &&
5838 		 tnum_is_const(src_reg->var_off))
5839 		pred = is_branch_taken(dst_reg, src_reg->var_off.value,
5840 				       opcode, is_jmp32);
5841 	if (pred >= 0) {
5842 		err = mark_chain_precision(env, insn->dst_reg);
5843 		if (BPF_SRC(insn->code) == BPF_X && !err)
5844 			err = mark_chain_precision(env, insn->src_reg);
5845 		if (err)
5846 			return err;
5847 	}
5848 	if (pred == 1) {
5849 		/* only follow the goto, ignore fall-through */
5850 		*insn_idx += insn->off;
5851 		return 0;
5852 	} else if (pred == 0) {
5853 		/* only follow fall-through branch, since
5854 		 * that's where the program will go
5855 		 */
5856 		return 0;
5857 	}
5858 
5859 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
5860 				  false);
5861 	if (!other_branch)
5862 		return -EFAULT;
5863 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
5864 
5865 	/* detect if we are comparing against a constant value so we can adjust
5866 	 * our min/max values for our dst register.
5867 	 * this is only legit if both are scalars (or pointers to the same
5868 	 * object, I suppose, but we don't support that right now), because
5869 	 * otherwise the different base pointers mean the offsets aren't
5870 	 * comparable.
5871 	 */
5872 	if (BPF_SRC(insn->code) == BPF_X) {
5873 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
5874 		struct bpf_reg_state lo_reg0 = *dst_reg;
5875 		struct bpf_reg_state lo_reg1 = *src_reg;
5876 		struct bpf_reg_state *src_lo, *dst_lo;
5877 
5878 		dst_lo = &lo_reg0;
5879 		src_lo = &lo_reg1;
5880 		coerce_reg_to_size(dst_lo, 4);
5881 		coerce_reg_to_size(src_lo, 4);
5882 
5883 		if (dst_reg->type == SCALAR_VALUE &&
5884 		    src_reg->type == SCALAR_VALUE) {
5885 			if (tnum_is_const(src_reg->var_off) ||
5886 			    (is_jmp32 && tnum_is_const(src_lo->var_off)))
5887 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
5888 						dst_reg,
5889 						is_jmp32
5890 						? src_lo->var_off.value
5891 						: src_reg->var_off.value,
5892 						opcode, is_jmp32);
5893 			else if (tnum_is_const(dst_reg->var_off) ||
5894 				 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
5895 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
5896 						    src_reg,
5897 						    is_jmp32
5898 						    ? dst_lo->var_off.value
5899 						    : dst_reg->var_off.value,
5900 						    opcode, is_jmp32);
5901 			else if (!is_jmp32 &&
5902 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
5903 				/* Comparing for equality, we can combine knowledge */
5904 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
5905 						    &other_branch_regs[insn->dst_reg],
5906 						    src_reg, dst_reg, opcode);
5907 		}
5908 	} else if (dst_reg->type == SCALAR_VALUE) {
5909 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
5910 					dst_reg, insn->imm, opcode, is_jmp32);
5911 	}
5912 
5913 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
5914 	 * NOTE: these optimizations below are related with pointer comparison
5915 	 *       which will never be JMP32.
5916 	 */
5917 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
5918 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
5919 	    reg_type_may_be_null(dst_reg->type)) {
5920 		/* Mark all identical registers in each branch as either
5921 		 * safe or unknown depending R == 0 or R != 0 conditional.
5922 		 */
5923 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
5924 				      opcode == BPF_JNE);
5925 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
5926 				      opcode == BPF_JEQ);
5927 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
5928 					   this_branch, other_branch) &&
5929 		   is_pointer_value(env, insn->dst_reg)) {
5930 		verbose(env, "R%d pointer comparison prohibited\n",
5931 			insn->dst_reg);
5932 		return -EACCES;
5933 	}
5934 	if (env->log.level & BPF_LOG_LEVEL)
5935 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
5936 	return 0;
5937 }
5938 
5939 /* verify BPF_LD_IMM64 instruction */
5940 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
5941 {
5942 	struct bpf_insn_aux_data *aux = cur_aux(env);
5943 	struct bpf_reg_state *regs = cur_regs(env);
5944 	struct bpf_map *map;
5945 	int err;
5946 
5947 	if (BPF_SIZE(insn->code) != BPF_DW) {
5948 		verbose(env, "invalid BPF_LD_IMM insn\n");
5949 		return -EINVAL;
5950 	}
5951 	if (insn->off != 0) {
5952 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
5953 		return -EINVAL;
5954 	}
5955 
5956 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
5957 	if (err)
5958 		return err;
5959 
5960 	if (insn->src_reg == 0) {
5961 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
5962 
5963 		regs[insn->dst_reg].type = SCALAR_VALUE;
5964 		__mark_reg_known(&regs[insn->dst_reg], imm);
5965 		return 0;
5966 	}
5967 
5968 	map = env->used_maps[aux->map_index];
5969 	mark_reg_known_zero(env, regs, insn->dst_reg);
5970 	regs[insn->dst_reg].map_ptr = map;
5971 
5972 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
5973 		regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
5974 		regs[insn->dst_reg].off = aux->map_off;
5975 		if (map_value_has_spin_lock(map))
5976 			regs[insn->dst_reg].id = ++env->id_gen;
5977 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
5978 		regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
5979 	} else {
5980 		verbose(env, "bpf verifier is misconfigured\n");
5981 		return -EINVAL;
5982 	}
5983 
5984 	return 0;
5985 }
5986 
5987 static bool may_access_skb(enum bpf_prog_type type)
5988 {
5989 	switch (type) {
5990 	case BPF_PROG_TYPE_SOCKET_FILTER:
5991 	case BPF_PROG_TYPE_SCHED_CLS:
5992 	case BPF_PROG_TYPE_SCHED_ACT:
5993 		return true;
5994 	default:
5995 		return false;
5996 	}
5997 }
5998 
5999 /* verify safety of LD_ABS|LD_IND instructions:
6000  * - they can only appear in the programs where ctx == skb
6001  * - since they are wrappers of function calls, they scratch R1-R5 registers,
6002  *   preserve R6-R9, and store return value into R0
6003  *
6004  * Implicit input:
6005  *   ctx == skb == R6 == CTX
6006  *
6007  * Explicit input:
6008  *   SRC == any register
6009  *   IMM == 32-bit immediate
6010  *
6011  * Output:
6012  *   R0 - 8/16/32-bit skb data converted to cpu endianness
6013  */
6014 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
6015 {
6016 	struct bpf_reg_state *regs = cur_regs(env);
6017 	u8 mode = BPF_MODE(insn->code);
6018 	int i, err;
6019 
6020 	if (!may_access_skb(env->prog->type)) {
6021 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
6022 		return -EINVAL;
6023 	}
6024 
6025 	if (!env->ops->gen_ld_abs) {
6026 		verbose(env, "bpf verifier is misconfigured\n");
6027 		return -EINVAL;
6028 	}
6029 
6030 	if (env->subprog_cnt > 1) {
6031 		/* when program has LD_ABS insn JITs and interpreter assume
6032 		 * that r1 == ctx == skb which is not the case for callees
6033 		 * that can have arbitrary arguments. It's problematic
6034 		 * for main prog as well since JITs would need to analyze
6035 		 * all functions in order to make proper register save/restore
6036 		 * decisions in the main prog. Hence disallow LD_ABS with calls
6037 		 */
6038 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
6039 		return -EINVAL;
6040 	}
6041 
6042 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
6043 	    BPF_SIZE(insn->code) == BPF_DW ||
6044 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
6045 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
6046 		return -EINVAL;
6047 	}
6048 
6049 	/* check whether implicit source operand (register R6) is readable */
6050 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
6051 	if (err)
6052 		return err;
6053 
6054 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
6055 	 * gen_ld_abs() may terminate the program at runtime, leading to
6056 	 * reference leak.
6057 	 */
6058 	err = check_reference_leak(env);
6059 	if (err) {
6060 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
6061 		return err;
6062 	}
6063 
6064 	if (env->cur_state->active_spin_lock) {
6065 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
6066 		return -EINVAL;
6067 	}
6068 
6069 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
6070 		verbose(env,
6071 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
6072 		return -EINVAL;
6073 	}
6074 
6075 	if (mode == BPF_IND) {
6076 		/* check explicit source operand */
6077 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
6078 		if (err)
6079 			return err;
6080 	}
6081 
6082 	/* reset caller saved regs to unreadable */
6083 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6084 		mark_reg_not_init(env, regs, caller_saved[i]);
6085 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6086 	}
6087 
6088 	/* mark destination R0 register as readable, since it contains
6089 	 * the value fetched from the packet.
6090 	 * Already marked as written above.
6091 	 */
6092 	mark_reg_unknown(env, regs, BPF_REG_0);
6093 	/* ld_abs load up to 32-bit skb data. */
6094 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
6095 	return 0;
6096 }
6097 
6098 static int check_return_code(struct bpf_verifier_env *env)
6099 {
6100 	struct tnum enforce_attach_type_range = tnum_unknown;
6101 	struct bpf_reg_state *reg;
6102 	struct tnum range = tnum_range(0, 1);
6103 
6104 	switch (env->prog->type) {
6105 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
6106 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
6107 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG)
6108 			range = tnum_range(1, 1);
6109 	case BPF_PROG_TYPE_CGROUP_SKB:
6110 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
6111 			range = tnum_range(0, 3);
6112 			enforce_attach_type_range = tnum_range(2, 3);
6113 		}
6114 	case BPF_PROG_TYPE_CGROUP_SOCK:
6115 	case BPF_PROG_TYPE_SOCK_OPS:
6116 	case BPF_PROG_TYPE_CGROUP_DEVICE:
6117 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
6118 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
6119 		break;
6120 	default:
6121 		return 0;
6122 	}
6123 
6124 	reg = cur_regs(env) + BPF_REG_0;
6125 	if (reg->type != SCALAR_VALUE) {
6126 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
6127 			reg_type_str[reg->type]);
6128 		return -EINVAL;
6129 	}
6130 
6131 	if (!tnum_in(range, reg->var_off)) {
6132 		char tn_buf[48];
6133 
6134 		verbose(env, "At program exit the register R0 ");
6135 		if (!tnum_is_unknown(reg->var_off)) {
6136 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6137 			verbose(env, "has value %s", tn_buf);
6138 		} else {
6139 			verbose(env, "has unknown scalar value");
6140 		}
6141 		tnum_strn(tn_buf, sizeof(tn_buf), range);
6142 		verbose(env, " should have been in %s\n", tn_buf);
6143 		return -EINVAL;
6144 	}
6145 
6146 	if (!tnum_is_unknown(enforce_attach_type_range) &&
6147 	    tnum_in(enforce_attach_type_range, reg->var_off))
6148 		env->prog->enforce_expected_attach_type = 1;
6149 	return 0;
6150 }
6151 
6152 /* non-recursive DFS pseudo code
6153  * 1  procedure DFS-iterative(G,v):
6154  * 2      label v as discovered
6155  * 3      let S be a stack
6156  * 4      S.push(v)
6157  * 5      while S is not empty
6158  * 6            t <- S.pop()
6159  * 7            if t is what we're looking for:
6160  * 8                return t
6161  * 9            for all edges e in G.adjacentEdges(t) do
6162  * 10               if edge e is already labelled
6163  * 11                   continue with the next edge
6164  * 12               w <- G.adjacentVertex(t,e)
6165  * 13               if vertex w is not discovered and not explored
6166  * 14                   label e as tree-edge
6167  * 15                   label w as discovered
6168  * 16                   S.push(w)
6169  * 17                   continue at 5
6170  * 18               else if vertex w is discovered
6171  * 19                   label e as back-edge
6172  * 20               else
6173  * 21                   // vertex w is explored
6174  * 22                   label e as forward- or cross-edge
6175  * 23           label t as explored
6176  * 24           S.pop()
6177  *
6178  * convention:
6179  * 0x10 - discovered
6180  * 0x11 - discovered and fall-through edge labelled
6181  * 0x12 - discovered and fall-through and branch edges labelled
6182  * 0x20 - explored
6183  */
6184 
6185 enum {
6186 	DISCOVERED = 0x10,
6187 	EXPLORED = 0x20,
6188 	FALLTHROUGH = 1,
6189 	BRANCH = 2,
6190 };
6191 
6192 static u32 state_htab_size(struct bpf_verifier_env *env)
6193 {
6194 	return env->prog->len;
6195 }
6196 
6197 static struct bpf_verifier_state_list **explored_state(
6198 					struct bpf_verifier_env *env,
6199 					int idx)
6200 {
6201 	struct bpf_verifier_state *cur = env->cur_state;
6202 	struct bpf_func_state *state = cur->frame[cur->curframe];
6203 
6204 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
6205 }
6206 
6207 static void init_explored_state(struct bpf_verifier_env *env, int idx)
6208 {
6209 	env->insn_aux_data[idx].prune_point = true;
6210 }
6211 
6212 /* t, w, e - match pseudo-code above:
6213  * t - index of current instruction
6214  * w - next instruction
6215  * e - edge
6216  */
6217 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
6218 		     bool loop_ok)
6219 {
6220 	int *insn_stack = env->cfg.insn_stack;
6221 	int *insn_state = env->cfg.insn_state;
6222 
6223 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
6224 		return 0;
6225 
6226 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
6227 		return 0;
6228 
6229 	if (w < 0 || w >= env->prog->len) {
6230 		verbose_linfo(env, t, "%d: ", t);
6231 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
6232 		return -EINVAL;
6233 	}
6234 
6235 	if (e == BRANCH)
6236 		/* mark branch target for state pruning */
6237 		init_explored_state(env, w);
6238 
6239 	if (insn_state[w] == 0) {
6240 		/* tree-edge */
6241 		insn_state[t] = DISCOVERED | e;
6242 		insn_state[w] = DISCOVERED;
6243 		if (env->cfg.cur_stack >= env->prog->len)
6244 			return -E2BIG;
6245 		insn_stack[env->cfg.cur_stack++] = w;
6246 		return 1;
6247 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
6248 		if (loop_ok && env->allow_ptr_leaks)
6249 			return 0;
6250 		verbose_linfo(env, t, "%d: ", t);
6251 		verbose_linfo(env, w, "%d: ", w);
6252 		verbose(env, "back-edge from insn %d to %d\n", t, w);
6253 		return -EINVAL;
6254 	} else if (insn_state[w] == EXPLORED) {
6255 		/* forward- or cross-edge */
6256 		insn_state[t] = DISCOVERED | e;
6257 	} else {
6258 		verbose(env, "insn state internal bug\n");
6259 		return -EFAULT;
6260 	}
6261 	return 0;
6262 }
6263 
6264 /* non-recursive depth-first-search to detect loops in BPF program
6265  * loop == back-edge in directed graph
6266  */
6267 static int check_cfg(struct bpf_verifier_env *env)
6268 {
6269 	struct bpf_insn *insns = env->prog->insnsi;
6270 	int insn_cnt = env->prog->len;
6271 	int *insn_stack, *insn_state;
6272 	int ret = 0;
6273 	int i, t;
6274 
6275 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
6276 	if (!insn_state)
6277 		return -ENOMEM;
6278 
6279 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
6280 	if (!insn_stack) {
6281 		kvfree(insn_state);
6282 		return -ENOMEM;
6283 	}
6284 
6285 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
6286 	insn_stack[0] = 0; /* 0 is the first instruction */
6287 	env->cfg.cur_stack = 1;
6288 
6289 peek_stack:
6290 	if (env->cfg.cur_stack == 0)
6291 		goto check_state;
6292 	t = insn_stack[env->cfg.cur_stack - 1];
6293 
6294 	if (BPF_CLASS(insns[t].code) == BPF_JMP ||
6295 	    BPF_CLASS(insns[t].code) == BPF_JMP32) {
6296 		u8 opcode = BPF_OP(insns[t].code);
6297 
6298 		if (opcode == BPF_EXIT) {
6299 			goto mark_explored;
6300 		} else if (opcode == BPF_CALL) {
6301 			ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
6302 			if (ret == 1)
6303 				goto peek_stack;
6304 			else if (ret < 0)
6305 				goto err_free;
6306 			if (t + 1 < insn_cnt)
6307 				init_explored_state(env, t + 1);
6308 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
6309 				init_explored_state(env, t);
6310 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
6311 						env, false);
6312 				if (ret == 1)
6313 					goto peek_stack;
6314 				else if (ret < 0)
6315 					goto err_free;
6316 			}
6317 		} else if (opcode == BPF_JA) {
6318 			if (BPF_SRC(insns[t].code) != BPF_K) {
6319 				ret = -EINVAL;
6320 				goto err_free;
6321 			}
6322 			/* unconditional jump with single edge */
6323 			ret = push_insn(t, t + insns[t].off + 1,
6324 					FALLTHROUGH, env, true);
6325 			if (ret == 1)
6326 				goto peek_stack;
6327 			else if (ret < 0)
6328 				goto err_free;
6329 			/* unconditional jmp is not a good pruning point,
6330 			 * but it's marked, since backtracking needs
6331 			 * to record jmp history in is_state_visited().
6332 			 */
6333 			init_explored_state(env, t + insns[t].off + 1);
6334 			/* tell verifier to check for equivalent states
6335 			 * after every call and jump
6336 			 */
6337 			if (t + 1 < insn_cnt)
6338 				init_explored_state(env, t + 1);
6339 		} else {
6340 			/* conditional jump with two edges */
6341 			init_explored_state(env, t);
6342 			ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
6343 			if (ret == 1)
6344 				goto peek_stack;
6345 			else if (ret < 0)
6346 				goto err_free;
6347 
6348 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
6349 			if (ret == 1)
6350 				goto peek_stack;
6351 			else if (ret < 0)
6352 				goto err_free;
6353 		}
6354 	} else {
6355 		/* all other non-branch instructions with single
6356 		 * fall-through edge
6357 		 */
6358 		ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
6359 		if (ret == 1)
6360 			goto peek_stack;
6361 		else if (ret < 0)
6362 			goto err_free;
6363 	}
6364 
6365 mark_explored:
6366 	insn_state[t] = EXPLORED;
6367 	if (env->cfg.cur_stack-- <= 0) {
6368 		verbose(env, "pop stack internal bug\n");
6369 		ret = -EFAULT;
6370 		goto err_free;
6371 	}
6372 	goto peek_stack;
6373 
6374 check_state:
6375 	for (i = 0; i < insn_cnt; i++) {
6376 		if (insn_state[i] != EXPLORED) {
6377 			verbose(env, "unreachable insn %d\n", i);
6378 			ret = -EINVAL;
6379 			goto err_free;
6380 		}
6381 	}
6382 	ret = 0; /* cfg looks good */
6383 
6384 err_free:
6385 	kvfree(insn_state);
6386 	kvfree(insn_stack);
6387 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
6388 	return ret;
6389 }
6390 
6391 /* The minimum supported BTF func info size */
6392 #define MIN_BPF_FUNCINFO_SIZE	8
6393 #define MAX_FUNCINFO_REC_SIZE	252
6394 
6395 static int check_btf_func(struct bpf_verifier_env *env,
6396 			  const union bpf_attr *attr,
6397 			  union bpf_attr __user *uattr)
6398 {
6399 	u32 i, nfuncs, urec_size, min_size;
6400 	u32 krec_size = sizeof(struct bpf_func_info);
6401 	struct bpf_func_info *krecord;
6402 	const struct btf_type *type;
6403 	struct bpf_prog *prog;
6404 	const struct btf *btf;
6405 	void __user *urecord;
6406 	u32 prev_offset = 0;
6407 	int ret = 0;
6408 
6409 	nfuncs = attr->func_info_cnt;
6410 	if (!nfuncs)
6411 		return 0;
6412 
6413 	if (nfuncs != env->subprog_cnt) {
6414 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
6415 		return -EINVAL;
6416 	}
6417 
6418 	urec_size = attr->func_info_rec_size;
6419 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
6420 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
6421 	    urec_size % sizeof(u32)) {
6422 		verbose(env, "invalid func info rec size %u\n", urec_size);
6423 		return -EINVAL;
6424 	}
6425 
6426 	prog = env->prog;
6427 	btf = prog->aux->btf;
6428 
6429 	urecord = u64_to_user_ptr(attr->func_info);
6430 	min_size = min_t(u32, krec_size, urec_size);
6431 
6432 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
6433 	if (!krecord)
6434 		return -ENOMEM;
6435 
6436 	for (i = 0; i < nfuncs; i++) {
6437 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
6438 		if (ret) {
6439 			if (ret == -E2BIG) {
6440 				verbose(env, "nonzero tailing record in func info");
6441 				/* set the size kernel expects so loader can zero
6442 				 * out the rest of the record.
6443 				 */
6444 				if (put_user(min_size, &uattr->func_info_rec_size))
6445 					ret = -EFAULT;
6446 			}
6447 			goto err_free;
6448 		}
6449 
6450 		if (copy_from_user(&krecord[i], urecord, min_size)) {
6451 			ret = -EFAULT;
6452 			goto err_free;
6453 		}
6454 
6455 		/* check insn_off */
6456 		if (i == 0) {
6457 			if (krecord[i].insn_off) {
6458 				verbose(env,
6459 					"nonzero insn_off %u for the first func info record",
6460 					krecord[i].insn_off);
6461 				ret = -EINVAL;
6462 				goto err_free;
6463 			}
6464 		} else if (krecord[i].insn_off <= prev_offset) {
6465 			verbose(env,
6466 				"same or smaller insn offset (%u) than previous func info record (%u)",
6467 				krecord[i].insn_off, prev_offset);
6468 			ret = -EINVAL;
6469 			goto err_free;
6470 		}
6471 
6472 		if (env->subprog_info[i].start != krecord[i].insn_off) {
6473 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
6474 			ret = -EINVAL;
6475 			goto err_free;
6476 		}
6477 
6478 		/* check type_id */
6479 		type = btf_type_by_id(btf, krecord[i].type_id);
6480 		if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
6481 			verbose(env, "invalid type id %d in func info",
6482 				krecord[i].type_id);
6483 			ret = -EINVAL;
6484 			goto err_free;
6485 		}
6486 
6487 		prev_offset = krecord[i].insn_off;
6488 		urecord += urec_size;
6489 	}
6490 
6491 	prog->aux->func_info = krecord;
6492 	prog->aux->func_info_cnt = nfuncs;
6493 	return 0;
6494 
6495 err_free:
6496 	kvfree(krecord);
6497 	return ret;
6498 }
6499 
6500 static void adjust_btf_func(struct bpf_verifier_env *env)
6501 {
6502 	int i;
6503 
6504 	if (!env->prog->aux->func_info)
6505 		return;
6506 
6507 	for (i = 0; i < env->subprog_cnt; i++)
6508 		env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
6509 }
6510 
6511 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
6512 		sizeof(((struct bpf_line_info *)(0))->line_col))
6513 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
6514 
6515 static int check_btf_line(struct bpf_verifier_env *env,
6516 			  const union bpf_attr *attr,
6517 			  union bpf_attr __user *uattr)
6518 {
6519 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
6520 	struct bpf_subprog_info *sub;
6521 	struct bpf_line_info *linfo;
6522 	struct bpf_prog *prog;
6523 	const struct btf *btf;
6524 	void __user *ulinfo;
6525 	int err;
6526 
6527 	nr_linfo = attr->line_info_cnt;
6528 	if (!nr_linfo)
6529 		return 0;
6530 
6531 	rec_size = attr->line_info_rec_size;
6532 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
6533 	    rec_size > MAX_LINEINFO_REC_SIZE ||
6534 	    rec_size & (sizeof(u32) - 1))
6535 		return -EINVAL;
6536 
6537 	/* Need to zero it in case the userspace may
6538 	 * pass in a smaller bpf_line_info object.
6539 	 */
6540 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
6541 			 GFP_KERNEL | __GFP_NOWARN);
6542 	if (!linfo)
6543 		return -ENOMEM;
6544 
6545 	prog = env->prog;
6546 	btf = prog->aux->btf;
6547 
6548 	s = 0;
6549 	sub = env->subprog_info;
6550 	ulinfo = u64_to_user_ptr(attr->line_info);
6551 	expected_size = sizeof(struct bpf_line_info);
6552 	ncopy = min_t(u32, expected_size, rec_size);
6553 	for (i = 0; i < nr_linfo; i++) {
6554 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
6555 		if (err) {
6556 			if (err == -E2BIG) {
6557 				verbose(env, "nonzero tailing record in line_info");
6558 				if (put_user(expected_size,
6559 					     &uattr->line_info_rec_size))
6560 					err = -EFAULT;
6561 			}
6562 			goto err_free;
6563 		}
6564 
6565 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
6566 			err = -EFAULT;
6567 			goto err_free;
6568 		}
6569 
6570 		/*
6571 		 * Check insn_off to ensure
6572 		 * 1) strictly increasing AND
6573 		 * 2) bounded by prog->len
6574 		 *
6575 		 * The linfo[0].insn_off == 0 check logically falls into
6576 		 * the later "missing bpf_line_info for func..." case
6577 		 * because the first linfo[0].insn_off must be the
6578 		 * first sub also and the first sub must have
6579 		 * subprog_info[0].start == 0.
6580 		 */
6581 		if ((i && linfo[i].insn_off <= prev_offset) ||
6582 		    linfo[i].insn_off >= prog->len) {
6583 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
6584 				i, linfo[i].insn_off, prev_offset,
6585 				prog->len);
6586 			err = -EINVAL;
6587 			goto err_free;
6588 		}
6589 
6590 		if (!prog->insnsi[linfo[i].insn_off].code) {
6591 			verbose(env,
6592 				"Invalid insn code at line_info[%u].insn_off\n",
6593 				i);
6594 			err = -EINVAL;
6595 			goto err_free;
6596 		}
6597 
6598 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
6599 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
6600 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
6601 			err = -EINVAL;
6602 			goto err_free;
6603 		}
6604 
6605 		if (s != env->subprog_cnt) {
6606 			if (linfo[i].insn_off == sub[s].start) {
6607 				sub[s].linfo_idx = i;
6608 				s++;
6609 			} else if (sub[s].start < linfo[i].insn_off) {
6610 				verbose(env, "missing bpf_line_info for func#%u\n", s);
6611 				err = -EINVAL;
6612 				goto err_free;
6613 			}
6614 		}
6615 
6616 		prev_offset = linfo[i].insn_off;
6617 		ulinfo += rec_size;
6618 	}
6619 
6620 	if (s != env->subprog_cnt) {
6621 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
6622 			env->subprog_cnt - s, s);
6623 		err = -EINVAL;
6624 		goto err_free;
6625 	}
6626 
6627 	prog->aux->linfo = linfo;
6628 	prog->aux->nr_linfo = nr_linfo;
6629 
6630 	return 0;
6631 
6632 err_free:
6633 	kvfree(linfo);
6634 	return err;
6635 }
6636 
6637 static int check_btf_info(struct bpf_verifier_env *env,
6638 			  const union bpf_attr *attr,
6639 			  union bpf_attr __user *uattr)
6640 {
6641 	struct btf *btf;
6642 	int err;
6643 
6644 	if (!attr->func_info_cnt && !attr->line_info_cnt)
6645 		return 0;
6646 
6647 	btf = btf_get_by_fd(attr->prog_btf_fd);
6648 	if (IS_ERR(btf))
6649 		return PTR_ERR(btf);
6650 	env->prog->aux->btf = btf;
6651 
6652 	err = check_btf_func(env, attr, uattr);
6653 	if (err)
6654 		return err;
6655 
6656 	err = check_btf_line(env, attr, uattr);
6657 	if (err)
6658 		return err;
6659 
6660 	return 0;
6661 }
6662 
6663 /* check %cur's range satisfies %old's */
6664 static bool range_within(struct bpf_reg_state *old,
6665 			 struct bpf_reg_state *cur)
6666 {
6667 	return old->umin_value <= cur->umin_value &&
6668 	       old->umax_value >= cur->umax_value &&
6669 	       old->smin_value <= cur->smin_value &&
6670 	       old->smax_value >= cur->smax_value;
6671 }
6672 
6673 /* Maximum number of register states that can exist at once */
6674 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
6675 struct idpair {
6676 	u32 old;
6677 	u32 cur;
6678 };
6679 
6680 /* If in the old state two registers had the same id, then they need to have
6681  * the same id in the new state as well.  But that id could be different from
6682  * the old state, so we need to track the mapping from old to new ids.
6683  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
6684  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
6685  * regs with a different old id could still have new id 9, we don't care about
6686  * that.
6687  * So we look through our idmap to see if this old id has been seen before.  If
6688  * so, we require the new id to match; otherwise, we add the id pair to the map.
6689  */
6690 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
6691 {
6692 	unsigned int i;
6693 
6694 	for (i = 0; i < ID_MAP_SIZE; i++) {
6695 		if (!idmap[i].old) {
6696 			/* Reached an empty slot; haven't seen this id before */
6697 			idmap[i].old = old_id;
6698 			idmap[i].cur = cur_id;
6699 			return true;
6700 		}
6701 		if (idmap[i].old == old_id)
6702 			return idmap[i].cur == cur_id;
6703 	}
6704 	/* We ran out of idmap slots, which should be impossible */
6705 	WARN_ON_ONCE(1);
6706 	return false;
6707 }
6708 
6709 static void clean_func_state(struct bpf_verifier_env *env,
6710 			     struct bpf_func_state *st)
6711 {
6712 	enum bpf_reg_liveness live;
6713 	int i, j;
6714 
6715 	for (i = 0; i < BPF_REG_FP; i++) {
6716 		live = st->regs[i].live;
6717 		/* liveness must not touch this register anymore */
6718 		st->regs[i].live |= REG_LIVE_DONE;
6719 		if (!(live & REG_LIVE_READ))
6720 			/* since the register is unused, clear its state
6721 			 * to make further comparison simpler
6722 			 */
6723 			__mark_reg_not_init(&st->regs[i]);
6724 	}
6725 
6726 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
6727 		live = st->stack[i].spilled_ptr.live;
6728 		/* liveness must not touch this stack slot anymore */
6729 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
6730 		if (!(live & REG_LIVE_READ)) {
6731 			__mark_reg_not_init(&st->stack[i].spilled_ptr);
6732 			for (j = 0; j < BPF_REG_SIZE; j++)
6733 				st->stack[i].slot_type[j] = STACK_INVALID;
6734 		}
6735 	}
6736 }
6737 
6738 static void clean_verifier_state(struct bpf_verifier_env *env,
6739 				 struct bpf_verifier_state *st)
6740 {
6741 	int i;
6742 
6743 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
6744 		/* all regs in this state in all frames were already marked */
6745 		return;
6746 
6747 	for (i = 0; i <= st->curframe; i++)
6748 		clean_func_state(env, st->frame[i]);
6749 }
6750 
6751 /* the parentage chains form a tree.
6752  * the verifier states are added to state lists at given insn and
6753  * pushed into state stack for future exploration.
6754  * when the verifier reaches bpf_exit insn some of the verifer states
6755  * stored in the state lists have their final liveness state already,
6756  * but a lot of states will get revised from liveness point of view when
6757  * the verifier explores other branches.
6758  * Example:
6759  * 1: r0 = 1
6760  * 2: if r1 == 100 goto pc+1
6761  * 3: r0 = 2
6762  * 4: exit
6763  * when the verifier reaches exit insn the register r0 in the state list of
6764  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
6765  * of insn 2 and goes exploring further. At the insn 4 it will walk the
6766  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
6767  *
6768  * Since the verifier pushes the branch states as it sees them while exploring
6769  * the program the condition of walking the branch instruction for the second
6770  * time means that all states below this branch were already explored and
6771  * their final liveness markes are already propagated.
6772  * Hence when the verifier completes the search of state list in is_state_visited()
6773  * we can call this clean_live_states() function to mark all liveness states
6774  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
6775  * will not be used.
6776  * This function also clears the registers and stack for states that !READ
6777  * to simplify state merging.
6778  *
6779  * Important note here that walking the same branch instruction in the callee
6780  * doesn't meant that the states are DONE. The verifier has to compare
6781  * the callsites
6782  */
6783 static void clean_live_states(struct bpf_verifier_env *env, int insn,
6784 			      struct bpf_verifier_state *cur)
6785 {
6786 	struct bpf_verifier_state_list *sl;
6787 	int i;
6788 
6789 	sl = *explored_state(env, insn);
6790 	while (sl) {
6791 		if (sl->state.branches)
6792 			goto next;
6793 		if (sl->state.insn_idx != insn ||
6794 		    sl->state.curframe != cur->curframe)
6795 			goto next;
6796 		for (i = 0; i <= cur->curframe; i++)
6797 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
6798 				goto next;
6799 		clean_verifier_state(env, &sl->state);
6800 next:
6801 		sl = sl->next;
6802 	}
6803 }
6804 
6805 /* Returns true if (rold safe implies rcur safe) */
6806 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
6807 		    struct idpair *idmap)
6808 {
6809 	bool equal;
6810 
6811 	if (!(rold->live & REG_LIVE_READ))
6812 		/* explored state didn't use this */
6813 		return true;
6814 
6815 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
6816 
6817 	if (rold->type == PTR_TO_STACK)
6818 		/* two stack pointers are equal only if they're pointing to
6819 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
6820 		 */
6821 		return equal && rold->frameno == rcur->frameno;
6822 
6823 	if (equal)
6824 		return true;
6825 
6826 	if (rold->type == NOT_INIT)
6827 		/* explored state can't have used this */
6828 		return true;
6829 	if (rcur->type == NOT_INIT)
6830 		return false;
6831 	switch (rold->type) {
6832 	case SCALAR_VALUE:
6833 		if (rcur->type == SCALAR_VALUE) {
6834 			if (!rold->precise && !rcur->precise)
6835 				return true;
6836 			/* new val must satisfy old val knowledge */
6837 			return range_within(rold, rcur) &&
6838 			       tnum_in(rold->var_off, rcur->var_off);
6839 		} else {
6840 			/* We're trying to use a pointer in place of a scalar.
6841 			 * Even if the scalar was unbounded, this could lead to
6842 			 * pointer leaks because scalars are allowed to leak
6843 			 * while pointers are not. We could make this safe in
6844 			 * special cases if root is calling us, but it's
6845 			 * probably not worth the hassle.
6846 			 */
6847 			return false;
6848 		}
6849 	case PTR_TO_MAP_VALUE:
6850 		/* If the new min/max/var_off satisfy the old ones and
6851 		 * everything else matches, we are OK.
6852 		 * 'id' is not compared, since it's only used for maps with
6853 		 * bpf_spin_lock inside map element and in such cases if
6854 		 * the rest of the prog is valid for one map element then
6855 		 * it's valid for all map elements regardless of the key
6856 		 * used in bpf_map_lookup()
6857 		 */
6858 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
6859 		       range_within(rold, rcur) &&
6860 		       tnum_in(rold->var_off, rcur->var_off);
6861 	case PTR_TO_MAP_VALUE_OR_NULL:
6862 		/* a PTR_TO_MAP_VALUE could be safe to use as a
6863 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
6864 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
6865 		 * checked, doing so could have affected others with the same
6866 		 * id, and we can't check for that because we lost the id when
6867 		 * we converted to a PTR_TO_MAP_VALUE.
6868 		 */
6869 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
6870 			return false;
6871 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
6872 			return false;
6873 		/* Check our ids match any regs they're supposed to */
6874 		return check_ids(rold->id, rcur->id, idmap);
6875 	case PTR_TO_PACKET_META:
6876 	case PTR_TO_PACKET:
6877 		if (rcur->type != rold->type)
6878 			return false;
6879 		/* We must have at least as much range as the old ptr
6880 		 * did, so that any accesses which were safe before are
6881 		 * still safe.  This is true even if old range < old off,
6882 		 * since someone could have accessed through (ptr - k), or
6883 		 * even done ptr -= k in a register, to get a safe access.
6884 		 */
6885 		if (rold->range > rcur->range)
6886 			return false;
6887 		/* If the offsets don't match, we can't trust our alignment;
6888 		 * nor can we be sure that we won't fall out of range.
6889 		 */
6890 		if (rold->off != rcur->off)
6891 			return false;
6892 		/* id relations must be preserved */
6893 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
6894 			return false;
6895 		/* new val must satisfy old val knowledge */
6896 		return range_within(rold, rcur) &&
6897 		       tnum_in(rold->var_off, rcur->var_off);
6898 	case PTR_TO_CTX:
6899 	case CONST_PTR_TO_MAP:
6900 	case PTR_TO_PACKET_END:
6901 	case PTR_TO_FLOW_KEYS:
6902 	case PTR_TO_SOCKET:
6903 	case PTR_TO_SOCKET_OR_NULL:
6904 	case PTR_TO_SOCK_COMMON:
6905 	case PTR_TO_SOCK_COMMON_OR_NULL:
6906 	case PTR_TO_TCP_SOCK:
6907 	case PTR_TO_TCP_SOCK_OR_NULL:
6908 	case PTR_TO_XDP_SOCK:
6909 		/* Only valid matches are exact, which memcmp() above
6910 		 * would have accepted
6911 		 */
6912 	default:
6913 		/* Don't know what's going on, just say it's not safe */
6914 		return false;
6915 	}
6916 
6917 	/* Shouldn't get here; if we do, say it's not safe */
6918 	WARN_ON_ONCE(1);
6919 	return false;
6920 }
6921 
6922 static bool stacksafe(struct bpf_func_state *old,
6923 		      struct bpf_func_state *cur,
6924 		      struct idpair *idmap)
6925 {
6926 	int i, spi;
6927 
6928 	/* walk slots of the explored stack and ignore any additional
6929 	 * slots in the current stack, since explored(safe) state
6930 	 * didn't use them
6931 	 */
6932 	for (i = 0; i < old->allocated_stack; i++) {
6933 		spi = i / BPF_REG_SIZE;
6934 
6935 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
6936 			i += BPF_REG_SIZE - 1;
6937 			/* explored state didn't use this */
6938 			continue;
6939 		}
6940 
6941 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
6942 			continue;
6943 
6944 		/* explored stack has more populated slots than current stack
6945 		 * and these slots were used
6946 		 */
6947 		if (i >= cur->allocated_stack)
6948 			return false;
6949 
6950 		/* if old state was safe with misc data in the stack
6951 		 * it will be safe with zero-initialized stack.
6952 		 * The opposite is not true
6953 		 */
6954 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
6955 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
6956 			continue;
6957 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
6958 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
6959 			/* Ex: old explored (safe) state has STACK_SPILL in
6960 			 * this stack slot, but current has has STACK_MISC ->
6961 			 * this verifier states are not equivalent,
6962 			 * return false to continue verification of this path
6963 			 */
6964 			return false;
6965 		if (i % BPF_REG_SIZE)
6966 			continue;
6967 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
6968 			continue;
6969 		if (!regsafe(&old->stack[spi].spilled_ptr,
6970 			     &cur->stack[spi].spilled_ptr,
6971 			     idmap))
6972 			/* when explored and current stack slot are both storing
6973 			 * spilled registers, check that stored pointers types
6974 			 * are the same as well.
6975 			 * Ex: explored safe path could have stored
6976 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
6977 			 * but current path has stored:
6978 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
6979 			 * such verifier states are not equivalent.
6980 			 * return false to continue verification of this path
6981 			 */
6982 			return false;
6983 	}
6984 	return true;
6985 }
6986 
6987 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
6988 {
6989 	if (old->acquired_refs != cur->acquired_refs)
6990 		return false;
6991 	return !memcmp(old->refs, cur->refs,
6992 		       sizeof(*old->refs) * old->acquired_refs);
6993 }
6994 
6995 /* compare two verifier states
6996  *
6997  * all states stored in state_list are known to be valid, since
6998  * verifier reached 'bpf_exit' instruction through them
6999  *
7000  * this function is called when verifier exploring different branches of
7001  * execution popped from the state stack. If it sees an old state that has
7002  * more strict register state and more strict stack state then this execution
7003  * branch doesn't need to be explored further, since verifier already
7004  * concluded that more strict state leads to valid finish.
7005  *
7006  * Therefore two states are equivalent if register state is more conservative
7007  * and explored stack state is more conservative than the current one.
7008  * Example:
7009  *       explored                   current
7010  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
7011  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
7012  *
7013  * In other words if current stack state (one being explored) has more
7014  * valid slots than old one that already passed validation, it means
7015  * the verifier can stop exploring and conclude that current state is valid too
7016  *
7017  * Similarly with registers. If explored state has register type as invalid
7018  * whereas register type in current state is meaningful, it means that
7019  * the current state will reach 'bpf_exit' instruction safely
7020  */
7021 static bool func_states_equal(struct bpf_func_state *old,
7022 			      struct bpf_func_state *cur)
7023 {
7024 	struct idpair *idmap;
7025 	bool ret = false;
7026 	int i;
7027 
7028 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
7029 	/* If we failed to allocate the idmap, just say it's not safe */
7030 	if (!idmap)
7031 		return false;
7032 
7033 	for (i = 0; i < MAX_BPF_REG; i++) {
7034 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
7035 			goto out_free;
7036 	}
7037 
7038 	if (!stacksafe(old, cur, idmap))
7039 		goto out_free;
7040 
7041 	if (!refsafe(old, cur))
7042 		goto out_free;
7043 	ret = true;
7044 out_free:
7045 	kfree(idmap);
7046 	return ret;
7047 }
7048 
7049 static bool states_equal(struct bpf_verifier_env *env,
7050 			 struct bpf_verifier_state *old,
7051 			 struct bpf_verifier_state *cur)
7052 {
7053 	int i;
7054 
7055 	if (old->curframe != cur->curframe)
7056 		return false;
7057 
7058 	/* Verification state from speculative execution simulation
7059 	 * must never prune a non-speculative execution one.
7060 	 */
7061 	if (old->speculative && !cur->speculative)
7062 		return false;
7063 
7064 	if (old->active_spin_lock != cur->active_spin_lock)
7065 		return false;
7066 
7067 	/* for states to be equal callsites have to be the same
7068 	 * and all frame states need to be equivalent
7069 	 */
7070 	for (i = 0; i <= old->curframe; i++) {
7071 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
7072 			return false;
7073 		if (!func_states_equal(old->frame[i], cur->frame[i]))
7074 			return false;
7075 	}
7076 	return true;
7077 }
7078 
7079 /* Return 0 if no propagation happened. Return negative error code if error
7080  * happened. Otherwise, return the propagated bit.
7081  */
7082 static int propagate_liveness_reg(struct bpf_verifier_env *env,
7083 				  struct bpf_reg_state *reg,
7084 				  struct bpf_reg_state *parent_reg)
7085 {
7086 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
7087 	u8 flag = reg->live & REG_LIVE_READ;
7088 	int err;
7089 
7090 	/* When comes here, read flags of PARENT_REG or REG could be any of
7091 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
7092 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
7093 	 */
7094 	if (parent_flag == REG_LIVE_READ64 ||
7095 	    /* Or if there is no read flag from REG. */
7096 	    !flag ||
7097 	    /* Or if the read flag from REG is the same as PARENT_REG. */
7098 	    parent_flag == flag)
7099 		return 0;
7100 
7101 	err = mark_reg_read(env, reg, parent_reg, flag);
7102 	if (err)
7103 		return err;
7104 
7105 	return flag;
7106 }
7107 
7108 /* A write screens off any subsequent reads; but write marks come from the
7109  * straight-line code between a state and its parent.  When we arrive at an
7110  * equivalent state (jump target or such) we didn't arrive by the straight-line
7111  * code, so read marks in the state must propagate to the parent regardless
7112  * of the state's write marks. That's what 'parent == state->parent' comparison
7113  * in mark_reg_read() is for.
7114  */
7115 static int propagate_liveness(struct bpf_verifier_env *env,
7116 			      const struct bpf_verifier_state *vstate,
7117 			      struct bpf_verifier_state *vparent)
7118 {
7119 	struct bpf_reg_state *state_reg, *parent_reg;
7120 	struct bpf_func_state *state, *parent;
7121 	int i, frame, err = 0;
7122 
7123 	if (vparent->curframe != vstate->curframe) {
7124 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
7125 		     vparent->curframe, vstate->curframe);
7126 		return -EFAULT;
7127 	}
7128 	/* Propagate read liveness of registers... */
7129 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
7130 	for (frame = 0; frame <= vstate->curframe; frame++) {
7131 		parent = vparent->frame[frame];
7132 		state = vstate->frame[frame];
7133 		parent_reg = parent->regs;
7134 		state_reg = state->regs;
7135 		/* We don't need to worry about FP liveness, it's read-only */
7136 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
7137 			err = propagate_liveness_reg(env, &state_reg[i],
7138 						     &parent_reg[i]);
7139 			if (err < 0)
7140 				return err;
7141 			if (err == REG_LIVE_READ64)
7142 				mark_insn_zext(env, &parent_reg[i]);
7143 		}
7144 
7145 		/* Propagate stack slots. */
7146 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
7147 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
7148 			parent_reg = &parent->stack[i].spilled_ptr;
7149 			state_reg = &state->stack[i].spilled_ptr;
7150 			err = propagate_liveness_reg(env, state_reg,
7151 						     parent_reg);
7152 			if (err < 0)
7153 				return err;
7154 		}
7155 	}
7156 	return 0;
7157 }
7158 
7159 /* find precise scalars in the previous equivalent state and
7160  * propagate them into the current state
7161  */
7162 static int propagate_precision(struct bpf_verifier_env *env,
7163 			       const struct bpf_verifier_state *old)
7164 {
7165 	struct bpf_reg_state *state_reg;
7166 	struct bpf_func_state *state;
7167 	int i, err = 0;
7168 
7169 	state = old->frame[old->curframe];
7170 	state_reg = state->regs;
7171 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
7172 		if (state_reg->type != SCALAR_VALUE ||
7173 		    !state_reg->precise)
7174 			continue;
7175 		if (env->log.level & BPF_LOG_LEVEL2)
7176 			verbose(env, "propagating r%d\n", i);
7177 		err = mark_chain_precision(env, i);
7178 		if (err < 0)
7179 			return err;
7180 	}
7181 
7182 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
7183 		if (state->stack[i].slot_type[0] != STACK_SPILL)
7184 			continue;
7185 		state_reg = &state->stack[i].spilled_ptr;
7186 		if (state_reg->type != SCALAR_VALUE ||
7187 		    !state_reg->precise)
7188 			continue;
7189 		if (env->log.level & BPF_LOG_LEVEL2)
7190 			verbose(env, "propagating fp%d\n",
7191 				(-i - 1) * BPF_REG_SIZE);
7192 		err = mark_chain_precision_stack(env, i);
7193 		if (err < 0)
7194 			return err;
7195 	}
7196 	return 0;
7197 }
7198 
7199 static bool states_maybe_looping(struct bpf_verifier_state *old,
7200 				 struct bpf_verifier_state *cur)
7201 {
7202 	struct bpf_func_state *fold, *fcur;
7203 	int i, fr = cur->curframe;
7204 
7205 	if (old->curframe != fr)
7206 		return false;
7207 
7208 	fold = old->frame[fr];
7209 	fcur = cur->frame[fr];
7210 	for (i = 0; i < MAX_BPF_REG; i++)
7211 		if (memcmp(&fold->regs[i], &fcur->regs[i],
7212 			   offsetof(struct bpf_reg_state, parent)))
7213 			return false;
7214 	return true;
7215 }
7216 
7217 
7218 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
7219 {
7220 	struct bpf_verifier_state_list *new_sl;
7221 	struct bpf_verifier_state_list *sl, **pprev;
7222 	struct bpf_verifier_state *cur = env->cur_state, *new;
7223 	int i, j, err, states_cnt = 0;
7224 	bool add_new_state = false;
7225 
7226 	cur->last_insn_idx = env->prev_insn_idx;
7227 	if (!env->insn_aux_data[insn_idx].prune_point)
7228 		/* this 'insn_idx' instruction wasn't marked, so we will not
7229 		 * be doing state search here
7230 		 */
7231 		return 0;
7232 
7233 	/* bpf progs typically have pruning point every 4 instructions
7234 	 * http://vger.kernel.org/bpfconf2019.html#session-1
7235 	 * Do not add new state for future pruning if the verifier hasn't seen
7236 	 * at least 2 jumps and at least 8 instructions.
7237 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
7238 	 * In tests that amounts to up to 50% reduction into total verifier
7239 	 * memory consumption and 20% verifier time speedup.
7240 	 */
7241 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
7242 	    env->insn_processed - env->prev_insn_processed >= 8)
7243 		add_new_state = true;
7244 
7245 	pprev = explored_state(env, insn_idx);
7246 	sl = *pprev;
7247 
7248 	clean_live_states(env, insn_idx, cur);
7249 
7250 	while (sl) {
7251 		states_cnt++;
7252 		if (sl->state.insn_idx != insn_idx)
7253 			goto next;
7254 		if (sl->state.branches) {
7255 			if (states_maybe_looping(&sl->state, cur) &&
7256 			    states_equal(env, &sl->state, cur)) {
7257 				verbose_linfo(env, insn_idx, "; ");
7258 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
7259 				return -EINVAL;
7260 			}
7261 			/* if the verifier is processing a loop, avoid adding new state
7262 			 * too often, since different loop iterations have distinct
7263 			 * states and may not help future pruning.
7264 			 * This threshold shouldn't be too low to make sure that
7265 			 * a loop with large bound will be rejected quickly.
7266 			 * The most abusive loop will be:
7267 			 * r1 += 1
7268 			 * if r1 < 1000000 goto pc-2
7269 			 * 1M insn_procssed limit / 100 == 10k peak states.
7270 			 * This threshold shouldn't be too high either, since states
7271 			 * at the end of the loop are likely to be useful in pruning.
7272 			 */
7273 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
7274 			    env->insn_processed - env->prev_insn_processed < 100)
7275 				add_new_state = false;
7276 			goto miss;
7277 		}
7278 		if (states_equal(env, &sl->state, cur)) {
7279 			sl->hit_cnt++;
7280 			/* reached equivalent register/stack state,
7281 			 * prune the search.
7282 			 * Registers read by the continuation are read by us.
7283 			 * If we have any write marks in env->cur_state, they
7284 			 * will prevent corresponding reads in the continuation
7285 			 * from reaching our parent (an explored_state).  Our
7286 			 * own state will get the read marks recorded, but
7287 			 * they'll be immediately forgotten as we're pruning
7288 			 * this state and will pop a new one.
7289 			 */
7290 			err = propagate_liveness(env, &sl->state, cur);
7291 
7292 			/* if previous state reached the exit with precision and
7293 			 * current state is equivalent to it (except precsion marks)
7294 			 * the precision needs to be propagated back in
7295 			 * the current state.
7296 			 */
7297 			err = err ? : push_jmp_history(env, cur);
7298 			err = err ? : propagate_precision(env, &sl->state);
7299 			if (err)
7300 				return err;
7301 			return 1;
7302 		}
7303 miss:
7304 		/* when new state is not going to be added do not increase miss count.
7305 		 * Otherwise several loop iterations will remove the state
7306 		 * recorded earlier. The goal of these heuristics is to have
7307 		 * states from some iterations of the loop (some in the beginning
7308 		 * and some at the end) to help pruning.
7309 		 */
7310 		if (add_new_state)
7311 			sl->miss_cnt++;
7312 		/* heuristic to determine whether this state is beneficial
7313 		 * to keep checking from state equivalence point of view.
7314 		 * Higher numbers increase max_states_per_insn and verification time,
7315 		 * but do not meaningfully decrease insn_processed.
7316 		 */
7317 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
7318 			/* the state is unlikely to be useful. Remove it to
7319 			 * speed up verification
7320 			 */
7321 			*pprev = sl->next;
7322 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
7323 				u32 br = sl->state.branches;
7324 
7325 				WARN_ONCE(br,
7326 					  "BUG live_done but branches_to_explore %d\n",
7327 					  br);
7328 				free_verifier_state(&sl->state, false);
7329 				kfree(sl);
7330 				env->peak_states--;
7331 			} else {
7332 				/* cannot free this state, since parentage chain may
7333 				 * walk it later. Add it for free_list instead to
7334 				 * be freed at the end of verification
7335 				 */
7336 				sl->next = env->free_list;
7337 				env->free_list = sl;
7338 			}
7339 			sl = *pprev;
7340 			continue;
7341 		}
7342 next:
7343 		pprev = &sl->next;
7344 		sl = *pprev;
7345 	}
7346 
7347 	if (env->max_states_per_insn < states_cnt)
7348 		env->max_states_per_insn = states_cnt;
7349 
7350 	if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
7351 		return push_jmp_history(env, cur);
7352 
7353 	if (!add_new_state)
7354 		return push_jmp_history(env, cur);
7355 
7356 	/* There were no equivalent states, remember the current one.
7357 	 * Technically the current state is not proven to be safe yet,
7358 	 * but it will either reach outer most bpf_exit (which means it's safe)
7359 	 * or it will be rejected. When there are no loops the verifier won't be
7360 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
7361 	 * again on the way to bpf_exit.
7362 	 * When looping the sl->state.branches will be > 0 and this state
7363 	 * will not be considered for equivalence until branches == 0.
7364 	 */
7365 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
7366 	if (!new_sl)
7367 		return -ENOMEM;
7368 	env->total_states++;
7369 	env->peak_states++;
7370 	env->prev_jmps_processed = env->jmps_processed;
7371 	env->prev_insn_processed = env->insn_processed;
7372 
7373 	/* add new state to the head of linked list */
7374 	new = &new_sl->state;
7375 	err = copy_verifier_state(new, cur);
7376 	if (err) {
7377 		free_verifier_state(new, false);
7378 		kfree(new_sl);
7379 		return err;
7380 	}
7381 	new->insn_idx = insn_idx;
7382 	WARN_ONCE(new->branches != 1,
7383 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
7384 
7385 	cur->parent = new;
7386 	cur->first_insn_idx = insn_idx;
7387 	clear_jmp_history(cur);
7388 	new_sl->next = *explored_state(env, insn_idx);
7389 	*explored_state(env, insn_idx) = new_sl;
7390 	/* connect new state to parentage chain. Current frame needs all
7391 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
7392 	 * to the stack implicitly by JITs) so in callers' frames connect just
7393 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
7394 	 * the state of the call instruction (with WRITTEN set), and r0 comes
7395 	 * from callee with its full parentage chain, anyway.
7396 	 */
7397 	/* clear write marks in current state: the writes we did are not writes
7398 	 * our child did, so they don't screen off its reads from us.
7399 	 * (There are no read marks in current state, because reads always mark
7400 	 * their parent and current state never has children yet.  Only
7401 	 * explored_states can get read marks.)
7402 	 */
7403 	for (j = 0; j <= cur->curframe; j++) {
7404 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
7405 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
7406 		for (i = 0; i < BPF_REG_FP; i++)
7407 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
7408 	}
7409 
7410 	/* all stack frames are accessible from callee, clear them all */
7411 	for (j = 0; j <= cur->curframe; j++) {
7412 		struct bpf_func_state *frame = cur->frame[j];
7413 		struct bpf_func_state *newframe = new->frame[j];
7414 
7415 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
7416 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
7417 			frame->stack[i].spilled_ptr.parent =
7418 						&newframe->stack[i].spilled_ptr;
7419 		}
7420 	}
7421 	return 0;
7422 }
7423 
7424 /* Return true if it's OK to have the same insn return a different type. */
7425 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
7426 {
7427 	switch (type) {
7428 	case PTR_TO_CTX:
7429 	case PTR_TO_SOCKET:
7430 	case PTR_TO_SOCKET_OR_NULL:
7431 	case PTR_TO_SOCK_COMMON:
7432 	case PTR_TO_SOCK_COMMON_OR_NULL:
7433 	case PTR_TO_TCP_SOCK:
7434 	case PTR_TO_TCP_SOCK_OR_NULL:
7435 	case PTR_TO_XDP_SOCK:
7436 		return false;
7437 	default:
7438 		return true;
7439 	}
7440 }
7441 
7442 /* If an instruction was previously used with particular pointer types, then we
7443  * need to be careful to avoid cases such as the below, where it may be ok
7444  * for one branch accessing the pointer, but not ok for the other branch:
7445  *
7446  * R1 = sock_ptr
7447  * goto X;
7448  * ...
7449  * R1 = some_other_valid_ptr;
7450  * goto X;
7451  * ...
7452  * R2 = *(u32 *)(R1 + 0);
7453  */
7454 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
7455 {
7456 	return src != prev && (!reg_type_mismatch_ok(src) ||
7457 			       !reg_type_mismatch_ok(prev));
7458 }
7459 
7460 static int do_check(struct bpf_verifier_env *env)
7461 {
7462 	struct bpf_verifier_state *state;
7463 	struct bpf_insn *insns = env->prog->insnsi;
7464 	struct bpf_reg_state *regs;
7465 	int insn_cnt = env->prog->len;
7466 	bool do_print_state = false;
7467 	int prev_insn_idx = -1;
7468 
7469 	env->prev_linfo = NULL;
7470 
7471 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
7472 	if (!state)
7473 		return -ENOMEM;
7474 	state->curframe = 0;
7475 	state->speculative = false;
7476 	state->branches = 1;
7477 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
7478 	if (!state->frame[0]) {
7479 		kfree(state);
7480 		return -ENOMEM;
7481 	}
7482 	env->cur_state = state;
7483 	init_func_state(env, state->frame[0],
7484 			BPF_MAIN_FUNC /* callsite */,
7485 			0 /* frameno */,
7486 			0 /* subprogno, zero == main subprog */);
7487 
7488 	for (;;) {
7489 		struct bpf_insn *insn;
7490 		u8 class;
7491 		int err;
7492 
7493 		env->prev_insn_idx = prev_insn_idx;
7494 		if (env->insn_idx >= insn_cnt) {
7495 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
7496 				env->insn_idx, insn_cnt);
7497 			return -EFAULT;
7498 		}
7499 
7500 		insn = &insns[env->insn_idx];
7501 		class = BPF_CLASS(insn->code);
7502 
7503 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
7504 			verbose(env,
7505 				"BPF program is too large. Processed %d insn\n",
7506 				env->insn_processed);
7507 			return -E2BIG;
7508 		}
7509 
7510 		err = is_state_visited(env, env->insn_idx);
7511 		if (err < 0)
7512 			return err;
7513 		if (err == 1) {
7514 			/* found equivalent state, can prune the search */
7515 			if (env->log.level & BPF_LOG_LEVEL) {
7516 				if (do_print_state)
7517 					verbose(env, "\nfrom %d to %d%s: safe\n",
7518 						env->prev_insn_idx, env->insn_idx,
7519 						env->cur_state->speculative ?
7520 						" (speculative execution)" : "");
7521 				else
7522 					verbose(env, "%d: safe\n", env->insn_idx);
7523 			}
7524 			goto process_bpf_exit;
7525 		}
7526 
7527 		if (signal_pending(current))
7528 			return -EAGAIN;
7529 
7530 		if (need_resched())
7531 			cond_resched();
7532 
7533 		if (env->log.level & BPF_LOG_LEVEL2 ||
7534 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
7535 			if (env->log.level & BPF_LOG_LEVEL2)
7536 				verbose(env, "%d:", env->insn_idx);
7537 			else
7538 				verbose(env, "\nfrom %d to %d%s:",
7539 					env->prev_insn_idx, env->insn_idx,
7540 					env->cur_state->speculative ?
7541 					" (speculative execution)" : "");
7542 			print_verifier_state(env, state->frame[state->curframe]);
7543 			do_print_state = false;
7544 		}
7545 
7546 		if (env->log.level & BPF_LOG_LEVEL) {
7547 			const struct bpf_insn_cbs cbs = {
7548 				.cb_print	= verbose,
7549 				.private_data	= env,
7550 			};
7551 
7552 			verbose_linfo(env, env->insn_idx, "; ");
7553 			verbose(env, "%d: ", env->insn_idx);
7554 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
7555 		}
7556 
7557 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
7558 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
7559 							   env->prev_insn_idx);
7560 			if (err)
7561 				return err;
7562 		}
7563 
7564 		regs = cur_regs(env);
7565 		env->insn_aux_data[env->insn_idx].seen = true;
7566 		prev_insn_idx = env->insn_idx;
7567 
7568 		if (class == BPF_ALU || class == BPF_ALU64) {
7569 			err = check_alu_op(env, insn);
7570 			if (err)
7571 				return err;
7572 
7573 		} else if (class == BPF_LDX) {
7574 			enum bpf_reg_type *prev_src_type, src_reg_type;
7575 
7576 			/* check for reserved fields is already done */
7577 
7578 			/* check src operand */
7579 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7580 			if (err)
7581 				return err;
7582 
7583 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7584 			if (err)
7585 				return err;
7586 
7587 			src_reg_type = regs[insn->src_reg].type;
7588 
7589 			/* check that memory (src_reg + off) is readable,
7590 			 * the state of dst_reg will be updated by this func
7591 			 */
7592 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
7593 					       insn->off, BPF_SIZE(insn->code),
7594 					       BPF_READ, insn->dst_reg, false);
7595 			if (err)
7596 				return err;
7597 
7598 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
7599 
7600 			if (*prev_src_type == NOT_INIT) {
7601 				/* saw a valid insn
7602 				 * dst_reg = *(u32 *)(src_reg + off)
7603 				 * save type to validate intersecting paths
7604 				 */
7605 				*prev_src_type = src_reg_type;
7606 
7607 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
7608 				/* ABuser program is trying to use the same insn
7609 				 * dst_reg = *(u32*) (src_reg + off)
7610 				 * with different pointer types:
7611 				 * src_reg == ctx in one branch and
7612 				 * src_reg == stack|map in some other branch.
7613 				 * Reject it.
7614 				 */
7615 				verbose(env, "same insn cannot be used with different pointers\n");
7616 				return -EINVAL;
7617 			}
7618 
7619 		} else if (class == BPF_STX) {
7620 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
7621 
7622 			if (BPF_MODE(insn->code) == BPF_XADD) {
7623 				err = check_xadd(env, env->insn_idx, insn);
7624 				if (err)
7625 					return err;
7626 				env->insn_idx++;
7627 				continue;
7628 			}
7629 
7630 			/* check src1 operand */
7631 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7632 			if (err)
7633 				return err;
7634 			/* check src2 operand */
7635 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7636 			if (err)
7637 				return err;
7638 
7639 			dst_reg_type = regs[insn->dst_reg].type;
7640 
7641 			/* check that memory (dst_reg + off) is writeable */
7642 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7643 					       insn->off, BPF_SIZE(insn->code),
7644 					       BPF_WRITE, insn->src_reg, false);
7645 			if (err)
7646 				return err;
7647 
7648 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
7649 
7650 			if (*prev_dst_type == NOT_INIT) {
7651 				*prev_dst_type = dst_reg_type;
7652 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
7653 				verbose(env, "same insn cannot be used with different pointers\n");
7654 				return -EINVAL;
7655 			}
7656 
7657 		} else if (class == BPF_ST) {
7658 			if (BPF_MODE(insn->code) != BPF_MEM ||
7659 			    insn->src_reg != BPF_REG_0) {
7660 				verbose(env, "BPF_ST uses reserved fields\n");
7661 				return -EINVAL;
7662 			}
7663 			/* check src operand */
7664 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7665 			if (err)
7666 				return err;
7667 
7668 			if (is_ctx_reg(env, insn->dst_reg)) {
7669 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
7670 					insn->dst_reg,
7671 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
7672 				return -EACCES;
7673 			}
7674 
7675 			/* check that memory (dst_reg + off) is writeable */
7676 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7677 					       insn->off, BPF_SIZE(insn->code),
7678 					       BPF_WRITE, -1, false);
7679 			if (err)
7680 				return err;
7681 
7682 		} else if (class == BPF_JMP || class == BPF_JMP32) {
7683 			u8 opcode = BPF_OP(insn->code);
7684 
7685 			env->jmps_processed++;
7686 			if (opcode == BPF_CALL) {
7687 				if (BPF_SRC(insn->code) != BPF_K ||
7688 				    insn->off != 0 ||
7689 				    (insn->src_reg != BPF_REG_0 &&
7690 				     insn->src_reg != BPF_PSEUDO_CALL) ||
7691 				    insn->dst_reg != BPF_REG_0 ||
7692 				    class == BPF_JMP32) {
7693 					verbose(env, "BPF_CALL uses reserved fields\n");
7694 					return -EINVAL;
7695 				}
7696 
7697 				if (env->cur_state->active_spin_lock &&
7698 				    (insn->src_reg == BPF_PSEUDO_CALL ||
7699 				     insn->imm != BPF_FUNC_spin_unlock)) {
7700 					verbose(env, "function calls are not allowed while holding a lock\n");
7701 					return -EINVAL;
7702 				}
7703 				if (insn->src_reg == BPF_PSEUDO_CALL)
7704 					err = check_func_call(env, insn, &env->insn_idx);
7705 				else
7706 					err = check_helper_call(env, insn->imm, env->insn_idx);
7707 				if (err)
7708 					return err;
7709 
7710 			} else if (opcode == BPF_JA) {
7711 				if (BPF_SRC(insn->code) != BPF_K ||
7712 				    insn->imm != 0 ||
7713 				    insn->src_reg != BPF_REG_0 ||
7714 				    insn->dst_reg != BPF_REG_0 ||
7715 				    class == BPF_JMP32) {
7716 					verbose(env, "BPF_JA uses reserved fields\n");
7717 					return -EINVAL;
7718 				}
7719 
7720 				env->insn_idx += insn->off + 1;
7721 				continue;
7722 
7723 			} else if (opcode == BPF_EXIT) {
7724 				if (BPF_SRC(insn->code) != BPF_K ||
7725 				    insn->imm != 0 ||
7726 				    insn->src_reg != BPF_REG_0 ||
7727 				    insn->dst_reg != BPF_REG_0 ||
7728 				    class == BPF_JMP32) {
7729 					verbose(env, "BPF_EXIT uses reserved fields\n");
7730 					return -EINVAL;
7731 				}
7732 
7733 				if (env->cur_state->active_spin_lock) {
7734 					verbose(env, "bpf_spin_unlock is missing\n");
7735 					return -EINVAL;
7736 				}
7737 
7738 				if (state->curframe) {
7739 					/* exit from nested function */
7740 					err = prepare_func_exit(env, &env->insn_idx);
7741 					if (err)
7742 						return err;
7743 					do_print_state = true;
7744 					continue;
7745 				}
7746 
7747 				err = check_reference_leak(env);
7748 				if (err)
7749 					return err;
7750 
7751 				/* eBPF calling convetion is such that R0 is used
7752 				 * to return the value from eBPF program.
7753 				 * Make sure that it's readable at this time
7754 				 * of bpf_exit, which means that program wrote
7755 				 * something into it earlier
7756 				 */
7757 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7758 				if (err)
7759 					return err;
7760 
7761 				if (is_pointer_value(env, BPF_REG_0)) {
7762 					verbose(env, "R0 leaks addr as return value\n");
7763 					return -EACCES;
7764 				}
7765 
7766 				err = check_return_code(env);
7767 				if (err)
7768 					return err;
7769 process_bpf_exit:
7770 				update_branch_counts(env, env->cur_state);
7771 				err = pop_stack(env, &prev_insn_idx,
7772 						&env->insn_idx);
7773 				if (err < 0) {
7774 					if (err != -ENOENT)
7775 						return err;
7776 					break;
7777 				} else {
7778 					do_print_state = true;
7779 					continue;
7780 				}
7781 			} else {
7782 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
7783 				if (err)
7784 					return err;
7785 			}
7786 		} else if (class == BPF_LD) {
7787 			u8 mode = BPF_MODE(insn->code);
7788 
7789 			if (mode == BPF_ABS || mode == BPF_IND) {
7790 				err = check_ld_abs(env, insn);
7791 				if (err)
7792 					return err;
7793 
7794 			} else if (mode == BPF_IMM) {
7795 				err = check_ld_imm(env, insn);
7796 				if (err)
7797 					return err;
7798 
7799 				env->insn_idx++;
7800 				env->insn_aux_data[env->insn_idx].seen = true;
7801 			} else {
7802 				verbose(env, "invalid BPF_LD mode\n");
7803 				return -EINVAL;
7804 			}
7805 		} else {
7806 			verbose(env, "unknown insn class %d\n", class);
7807 			return -EINVAL;
7808 		}
7809 
7810 		env->insn_idx++;
7811 	}
7812 
7813 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
7814 	return 0;
7815 }
7816 
7817 static int check_map_prealloc(struct bpf_map *map)
7818 {
7819 	return (map->map_type != BPF_MAP_TYPE_HASH &&
7820 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
7821 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
7822 		!(map->map_flags & BPF_F_NO_PREALLOC);
7823 }
7824 
7825 static bool is_tracing_prog_type(enum bpf_prog_type type)
7826 {
7827 	switch (type) {
7828 	case BPF_PROG_TYPE_KPROBE:
7829 	case BPF_PROG_TYPE_TRACEPOINT:
7830 	case BPF_PROG_TYPE_PERF_EVENT:
7831 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
7832 		return true;
7833 	default:
7834 		return false;
7835 	}
7836 }
7837 
7838 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
7839 					struct bpf_map *map,
7840 					struct bpf_prog *prog)
7841 
7842 {
7843 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
7844 	 * preallocated hash maps, since doing memory allocation
7845 	 * in overflow_handler can crash depending on where nmi got
7846 	 * triggered.
7847 	 */
7848 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
7849 		if (!check_map_prealloc(map)) {
7850 			verbose(env, "perf_event programs can only use preallocated hash map\n");
7851 			return -EINVAL;
7852 		}
7853 		if (map->inner_map_meta &&
7854 		    !check_map_prealloc(map->inner_map_meta)) {
7855 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
7856 			return -EINVAL;
7857 		}
7858 	}
7859 
7860 	if ((is_tracing_prog_type(prog->type) ||
7861 	     prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
7862 	    map_value_has_spin_lock(map)) {
7863 		verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
7864 		return -EINVAL;
7865 	}
7866 
7867 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
7868 	    !bpf_offload_prog_map_match(prog, map)) {
7869 		verbose(env, "offload device mismatch between prog and map\n");
7870 		return -EINVAL;
7871 	}
7872 
7873 	return 0;
7874 }
7875 
7876 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
7877 {
7878 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
7879 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
7880 }
7881 
7882 /* look for pseudo eBPF instructions that access map FDs and
7883  * replace them with actual map pointers
7884  */
7885 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
7886 {
7887 	struct bpf_insn *insn = env->prog->insnsi;
7888 	int insn_cnt = env->prog->len;
7889 	int i, j, err;
7890 
7891 	err = bpf_prog_calc_tag(env->prog);
7892 	if (err)
7893 		return err;
7894 
7895 	for (i = 0; i < insn_cnt; i++, insn++) {
7896 		if (BPF_CLASS(insn->code) == BPF_LDX &&
7897 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
7898 			verbose(env, "BPF_LDX uses reserved fields\n");
7899 			return -EINVAL;
7900 		}
7901 
7902 		if (BPF_CLASS(insn->code) == BPF_STX &&
7903 		    ((BPF_MODE(insn->code) != BPF_MEM &&
7904 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
7905 			verbose(env, "BPF_STX uses reserved fields\n");
7906 			return -EINVAL;
7907 		}
7908 
7909 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
7910 			struct bpf_insn_aux_data *aux;
7911 			struct bpf_map *map;
7912 			struct fd f;
7913 			u64 addr;
7914 
7915 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
7916 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
7917 			    insn[1].off != 0) {
7918 				verbose(env, "invalid bpf_ld_imm64 insn\n");
7919 				return -EINVAL;
7920 			}
7921 
7922 			if (insn[0].src_reg == 0)
7923 				/* valid generic load 64-bit imm */
7924 				goto next_insn;
7925 
7926 			/* In final convert_pseudo_ld_imm64() step, this is
7927 			 * converted into regular 64-bit imm load insn.
7928 			 */
7929 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
7930 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
7931 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
7932 			     insn[1].imm != 0)) {
7933 				verbose(env,
7934 					"unrecognized bpf_ld_imm64 insn\n");
7935 				return -EINVAL;
7936 			}
7937 
7938 			f = fdget(insn[0].imm);
7939 			map = __bpf_map_get(f);
7940 			if (IS_ERR(map)) {
7941 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
7942 					insn[0].imm);
7943 				return PTR_ERR(map);
7944 			}
7945 
7946 			err = check_map_prog_compatibility(env, map, env->prog);
7947 			if (err) {
7948 				fdput(f);
7949 				return err;
7950 			}
7951 
7952 			aux = &env->insn_aux_data[i];
7953 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7954 				addr = (unsigned long)map;
7955 			} else {
7956 				u32 off = insn[1].imm;
7957 
7958 				if (off >= BPF_MAX_VAR_OFF) {
7959 					verbose(env, "direct value offset of %u is not allowed\n", off);
7960 					fdput(f);
7961 					return -EINVAL;
7962 				}
7963 
7964 				if (!map->ops->map_direct_value_addr) {
7965 					verbose(env, "no direct value access support for this map type\n");
7966 					fdput(f);
7967 					return -EINVAL;
7968 				}
7969 
7970 				err = map->ops->map_direct_value_addr(map, &addr, off);
7971 				if (err) {
7972 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
7973 						map->value_size, off);
7974 					fdput(f);
7975 					return err;
7976 				}
7977 
7978 				aux->map_off = off;
7979 				addr += off;
7980 			}
7981 
7982 			insn[0].imm = (u32)addr;
7983 			insn[1].imm = addr >> 32;
7984 
7985 			/* check whether we recorded this map already */
7986 			for (j = 0; j < env->used_map_cnt; j++) {
7987 				if (env->used_maps[j] == map) {
7988 					aux->map_index = j;
7989 					fdput(f);
7990 					goto next_insn;
7991 				}
7992 			}
7993 
7994 			if (env->used_map_cnt >= MAX_USED_MAPS) {
7995 				fdput(f);
7996 				return -E2BIG;
7997 			}
7998 
7999 			/* hold the map. If the program is rejected by verifier,
8000 			 * the map will be released by release_maps() or it
8001 			 * will be used by the valid program until it's unloaded
8002 			 * and all maps are released in free_used_maps()
8003 			 */
8004 			map = bpf_map_inc(map, false);
8005 			if (IS_ERR(map)) {
8006 				fdput(f);
8007 				return PTR_ERR(map);
8008 			}
8009 
8010 			aux->map_index = env->used_map_cnt;
8011 			env->used_maps[env->used_map_cnt++] = map;
8012 
8013 			if (bpf_map_is_cgroup_storage(map) &&
8014 			    bpf_cgroup_storage_assign(env->prog, map)) {
8015 				verbose(env, "only one cgroup storage of each type is allowed\n");
8016 				fdput(f);
8017 				return -EBUSY;
8018 			}
8019 
8020 			fdput(f);
8021 next_insn:
8022 			insn++;
8023 			i++;
8024 			continue;
8025 		}
8026 
8027 		/* Basic sanity check before we invest more work here. */
8028 		if (!bpf_opcode_in_insntable(insn->code)) {
8029 			verbose(env, "unknown opcode %02x\n", insn->code);
8030 			return -EINVAL;
8031 		}
8032 	}
8033 
8034 	/* now all pseudo BPF_LD_IMM64 instructions load valid
8035 	 * 'struct bpf_map *' into a register instead of user map_fd.
8036 	 * These pointers will be used later by verifier to validate map access.
8037 	 */
8038 	return 0;
8039 }
8040 
8041 /* drop refcnt of maps used by the rejected program */
8042 static void release_maps(struct bpf_verifier_env *env)
8043 {
8044 	enum bpf_cgroup_storage_type stype;
8045 	int i;
8046 
8047 	for_each_cgroup_storage_type(stype) {
8048 		if (!env->prog->aux->cgroup_storage[stype])
8049 			continue;
8050 		bpf_cgroup_storage_release(env->prog,
8051 			env->prog->aux->cgroup_storage[stype]);
8052 	}
8053 
8054 	for (i = 0; i < env->used_map_cnt; i++)
8055 		bpf_map_put(env->used_maps[i]);
8056 }
8057 
8058 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
8059 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
8060 {
8061 	struct bpf_insn *insn = env->prog->insnsi;
8062 	int insn_cnt = env->prog->len;
8063 	int i;
8064 
8065 	for (i = 0; i < insn_cnt; i++, insn++)
8066 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
8067 			insn->src_reg = 0;
8068 }
8069 
8070 /* single env->prog->insni[off] instruction was replaced with the range
8071  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
8072  * [0, off) and [off, end) to new locations, so the patched range stays zero
8073  */
8074 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
8075 				struct bpf_prog *new_prog, u32 off, u32 cnt)
8076 {
8077 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
8078 	struct bpf_insn *insn = new_prog->insnsi;
8079 	u32 prog_len;
8080 	int i;
8081 
8082 	/* aux info at OFF always needs adjustment, no matter fast path
8083 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
8084 	 * original insn at old prog.
8085 	 */
8086 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
8087 
8088 	if (cnt == 1)
8089 		return 0;
8090 	prog_len = new_prog->len;
8091 	new_data = vzalloc(array_size(prog_len,
8092 				      sizeof(struct bpf_insn_aux_data)));
8093 	if (!new_data)
8094 		return -ENOMEM;
8095 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
8096 	memcpy(new_data + off + cnt - 1, old_data + off,
8097 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
8098 	for (i = off; i < off + cnt - 1; i++) {
8099 		new_data[i].seen = true;
8100 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
8101 	}
8102 	env->insn_aux_data = new_data;
8103 	vfree(old_data);
8104 	return 0;
8105 }
8106 
8107 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
8108 {
8109 	int i;
8110 
8111 	if (len == 1)
8112 		return;
8113 	/* NOTE: fake 'exit' subprog should be updated as well. */
8114 	for (i = 0; i <= env->subprog_cnt; i++) {
8115 		if (env->subprog_info[i].start <= off)
8116 			continue;
8117 		env->subprog_info[i].start += len - 1;
8118 	}
8119 }
8120 
8121 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
8122 					    const struct bpf_insn *patch, u32 len)
8123 {
8124 	struct bpf_prog *new_prog;
8125 
8126 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
8127 	if (IS_ERR(new_prog)) {
8128 		if (PTR_ERR(new_prog) == -ERANGE)
8129 			verbose(env,
8130 				"insn %d cannot be patched due to 16-bit range\n",
8131 				env->insn_aux_data[off].orig_idx);
8132 		return NULL;
8133 	}
8134 	if (adjust_insn_aux_data(env, new_prog, off, len))
8135 		return NULL;
8136 	adjust_subprog_starts(env, off, len);
8137 	return new_prog;
8138 }
8139 
8140 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
8141 					      u32 off, u32 cnt)
8142 {
8143 	int i, j;
8144 
8145 	/* find first prog starting at or after off (first to remove) */
8146 	for (i = 0; i < env->subprog_cnt; i++)
8147 		if (env->subprog_info[i].start >= off)
8148 			break;
8149 	/* find first prog starting at or after off + cnt (first to stay) */
8150 	for (j = i; j < env->subprog_cnt; j++)
8151 		if (env->subprog_info[j].start >= off + cnt)
8152 			break;
8153 	/* if j doesn't start exactly at off + cnt, we are just removing
8154 	 * the front of previous prog
8155 	 */
8156 	if (env->subprog_info[j].start != off + cnt)
8157 		j--;
8158 
8159 	if (j > i) {
8160 		struct bpf_prog_aux *aux = env->prog->aux;
8161 		int move;
8162 
8163 		/* move fake 'exit' subprog as well */
8164 		move = env->subprog_cnt + 1 - j;
8165 
8166 		memmove(env->subprog_info + i,
8167 			env->subprog_info + j,
8168 			sizeof(*env->subprog_info) * move);
8169 		env->subprog_cnt -= j - i;
8170 
8171 		/* remove func_info */
8172 		if (aux->func_info) {
8173 			move = aux->func_info_cnt - j;
8174 
8175 			memmove(aux->func_info + i,
8176 				aux->func_info + j,
8177 				sizeof(*aux->func_info) * move);
8178 			aux->func_info_cnt -= j - i;
8179 			/* func_info->insn_off is set after all code rewrites,
8180 			 * in adjust_btf_func() - no need to adjust
8181 			 */
8182 		}
8183 	} else {
8184 		/* convert i from "first prog to remove" to "first to adjust" */
8185 		if (env->subprog_info[i].start == off)
8186 			i++;
8187 	}
8188 
8189 	/* update fake 'exit' subprog as well */
8190 	for (; i <= env->subprog_cnt; i++)
8191 		env->subprog_info[i].start -= cnt;
8192 
8193 	return 0;
8194 }
8195 
8196 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
8197 				      u32 cnt)
8198 {
8199 	struct bpf_prog *prog = env->prog;
8200 	u32 i, l_off, l_cnt, nr_linfo;
8201 	struct bpf_line_info *linfo;
8202 
8203 	nr_linfo = prog->aux->nr_linfo;
8204 	if (!nr_linfo)
8205 		return 0;
8206 
8207 	linfo = prog->aux->linfo;
8208 
8209 	/* find first line info to remove, count lines to be removed */
8210 	for (i = 0; i < nr_linfo; i++)
8211 		if (linfo[i].insn_off >= off)
8212 			break;
8213 
8214 	l_off = i;
8215 	l_cnt = 0;
8216 	for (; i < nr_linfo; i++)
8217 		if (linfo[i].insn_off < off + cnt)
8218 			l_cnt++;
8219 		else
8220 			break;
8221 
8222 	/* First live insn doesn't match first live linfo, it needs to "inherit"
8223 	 * last removed linfo.  prog is already modified, so prog->len == off
8224 	 * means no live instructions after (tail of the program was removed).
8225 	 */
8226 	if (prog->len != off && l_cnt &&
8227 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
8228 		l_cnt--;
8229 		linfo[--i].insn_off = off + cnt;
8230 	}
8231 
8232 	/* remove the line info which refer to the removed instructions */
8233 	if (l_cnt) {
8234 		memmove(linfo + l_off, linfo + i,
8235 			sizeof(*linfo) * (nr_linfo - i));
8236 
8237 		prog->aux->nr_linfo -= l_cnt;
8238 		nr_linfo = prog->aux->nr_linfo;
8239 	}
8240 
8241 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
8242 	for (i = l_off; i < nr_linfo; i++)
8243 		linfo[i].insn_off -= cnt;
8244 
8245 	/* fix up all subprogs (incl. 'exit') which start >= off */
8246 	for (i = 0; i <= env->subprog_cnt; i++)
8247 		if (env->subprog_info[i].linfo_idx > l_off) {
8248 			/* program may have started in the removed region but
8249 			 * may not be fully removed
8250 			 */
8251 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
8252 				env->subprog_info[i].linfo_idx -= l_cnt;
8253 			else
8254 				env->subprog_info[i].linfo_idx = l_off;
8255 		}
8256 
8257 	return 0;
8258 }
8259 
8260 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
8261 {
8262 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8263 	unsigned int orig_prog_len = env->prog->len;
8264 	int err;
8265 
8266 	if (bpf_prog_is_dev_bound(env->prog->aux))
8267 		bpf_prog_offload_remove_insns(env, off, cnt);
8268 
8269 	err = bpf_remove_insns(env->prog, off, cnt);
8270 	if (err)
8271 		return err;
8272 
8273 	err = adjust_subprog_starts_after_remove(env, off, cnt);
8274 	if (err)
8275 		return err;
8276 
8277 	err = bpf_adj_linfo_after_remove(env, off, cnt);
8278 	if (err)
8279 		return err;
8280 
8281 	memmove(aux_data + off,	aux_data + off + cnt,
8282 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
8283 
8284 	return 0;
8285 }
8286 
8287 /* The verifier does more data flow analysis than llvm and will not
8288  * explore branches that are dead at run time. Malicious programs can
8289  * have dead code too. Therefore replace all dead at-run-time code
8290  * with 'ja -1'.
8291  *
8292  * Just nops are not optimal, e.g. if they would sit at the end of the
8293  * program and through another bug we would manage to jump there, then
8294  * we'd execute beyond program memory otherwise. Returning exception
8295  * code also wouldn't work since we can have subprogs where the dead
8296  * code could be located.
8297  */
8298 static void sanitize_dead_code(struct bpf_verifier_env *env)
8299 {
8300 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8301 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
8302 	struct bpf_insn *insn = env->prog->insnsi;
8303 	const int insn_cnt = env->prog->len;
8304 	int i;
8305 
8306 	for (i = 0; i < insn_cnt; i++) {
8307 		if (aux_data[i].seen)
8308 			continue;
8309 		memcpy(insn + i, &trap, sizeof(trap));
8310 	}
8311 }
8312 
8313 static bool insn_is_cond_jump(u8 code)
8314 {
8315 	u8 op;
8316 
8317 	if (BPF_CLASS(code) == BPF_JMP32)
8318 		return true;
8319 
8320 	if (BPF_CLASS(code) != BPF_JMP)
8321 		return false;
8322 
8323 	op = BPF_OP(code);
8324 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
8325 }
8326 
8327 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
8328 {
8329 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8330 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8331 	struct bpf_insn *insn = env->prog->insnsi;
8332 	const int insn_cnt = env->prog->len;
8333 	int i;
8334 
8335 	for (i = 0; i < insn_cnt; i++, insn++) {
8336 		if (!insn_is_cond_jump(insn->code))
8337 			continue;
8338 
8339 		if (!aux_data[i + 1].seen)
8340 			ja.off = insn->off;
8341 		else if (!aux_data[i + 1 + insn->off].seen)
8342 			ja.off = 0;
8343 		else
8344 			continue;
8345 
8346 		if (bpf_prog_is_dev_bound(env->prog->aux))
8347 			bpf_prog_offload_replace_insn(env, i, &ja);
8348 
8349 		memcpy(insn, &ja, sizeof(ja));
8350 	}
8351 }
8352 
8353 static int opt_remove_dead_code(struct bpf_verifier_env *env)
8354 {
8355 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8356 	int insn_cnt = env->prog->len;
8357 	int i, err;
8358 
8359 	for (i = 0; i < insn_cnt; i++) {
8360 		int j;
8361 
8362 		j = 0;
8363 		while (i + j < insn_cnt && !aux_data[i + j].seen)
8364 			j++;
8365 		if (!j)
8366 			continue;
8367 
8368 		err = verifier_remove_insns(env, i, j);
8369 		if (err)
8370 			return err;
8371 		insn_cnt = env->prog->len;
8372 	}
8373 
8374 	return 0;
8375 }
8376 
8377 static int opt_remove_nops(struct bpf_verifier_env *env)
8378 {
8379 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8380 	struct bpf_insn *insn = env->prog->insnsi;
8381 	int insn_cnt = env->prog->len;
8382 	int i, err;
8383 
8384 	for (i = 0; i < insn_cnt; i++) {
8385 		if (memcmp(&insn[i], &ja, sizeof(ja)))
8386 			continue;
8387 
8388 		err = verifier_remove_insns(env, i, 1);
8389 		if (err)
8390 			return err;
8391 		insn_cnt--;
8392 		i--;
8393 	}
8394 
8395 	return 0;
8396 }
8397 
8398 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
8399 					 const union bpf_attr *attr)
8400 {
8401 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
8402 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
8403 	int i, patch_len, delta = 0, len = env->prog->len;
8404 	struct bpf_insn *insns = env->prog->insnsi;
8405 	struct bpf_prog *new_prog;
8406 	bool rnd_hi32;
8407 
8408 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
8409 	zext_patch[1] = BPF_ZEXT_REG(0);
8410 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
8411 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
8412 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
8413 	for (i = 0; i < len; i++) {
8414 		int adj_idx = i + delta;
8415 		struct bpf_insn insn;
8416 
8417 		insn = insns[adj_idx];
8418 		if (!aux[adj_idx].zext_dst) {
8419 			u8 code, class;
8420 			u32 imm_rnd;
8421 
8422 			if (!rnd_hi32)
8423 				continue;
8424 
8425 			code = insn.code;
8426 			class = BPF_CLASS(code);
8427 			if (insn_no_def(&insn))
8428 				continue;
8429 
8430 			/* NOTE: arg "reg" (the fourth one) is only used for
8431 			 *       BPF_STX which has been ruled out in above
8432 			 *       check, it is safe to pass NULL here.
8433 			 */
8434 			if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
8435 				if (class == BPF_LD &&
8436 				    BPF_MODE(code) == BPF_IMM)
8437 					i++;
8438 				continue;
8439 			}
8440 
8441 			/* ctx load could be transformed into wider load. */
8442 			if (class == BPF_LDX &&
8443 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
8444 				continue;
8445 
8446 			imm_rnd = get_random_int();
8447 			rnd_hi32_patch[0] = insn;
8448 			rnd_hi32_patch[1].imm = imm_rnd;
8449 			rnd_hi32_patch[3].dst_reg = insn.dst_reg;
8450 			patch = rnd_hi32_patch;
8451 			patch_len = 4;
8452 			goto apply_patch_buffer;
8453 		}
8454 
8455 		if (!bpf_jit_needs_zext())
8456 			continue;
8457 
8458 		zext_patch[0] = insn;
8459 		zext_patch[1].dst_reg = insn.dst_reg;
8460 		zext_patch[1].src_reg = insn.dst_reg;
8461 		patch = zext_patch;
8462 		patch_len = 2;
8463 apply_patch_buffer:
8464 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
8465 		if (!new_prog)
8466 			return -ENOMEM;
8467 		env->prog = new_prog;
8468 		insns = new_prog->insnsi;
8469 		aux = env->insn_aux_data;
8470 		delta += patch_len - 1;
8471 	}
8472 
8473 	return 0;
8474 }
8475 
8476 /* convert load instructions that access fields of a context type into a
8477  * sequence of instructions that access fields of the underlying structure:
8478  *     struct __sk_buff    -> struct sk_buff
8479  *     struct bpf_sock_ops -> struct sock
8480  */
8481 static int convert_ctx_accesses(struct bpf_verifier_env *env)
8482 {
8483 	const struct bpf_verifier_ops *ops = env->ops;
8484 	int i, cnt, size, ctx_field_size, delta = 0;
8485 	const int insn_cnt = env->prog->len;
8486 	struct bpf_insn insn_buf[16], *insn;
8487 	u32 target_size, size_default, off;
8488 	struct bpf_prog *new_prog;
8489 	enum bpf_access_type type;
8490 	bool is_narrower_load;
8491 
8492 	if (ops->gen_prologue || env->seen_direct_write) {
8493 		if (!ops->gen_prologue) {
8494 			verbose(env, "bpf verifier is misconfigured\n");
8495 			return -EINVAL;
8496 		}
8497 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
8498 					env->prog);
8499 		if (cnt >= ARRAY_SIZE(insn_buf)) {
8500 			verbose(env, "bpf verifier is misconfigured\n");
8501 			return -EINVAL;
8502 		} else if (cnt) {
8503 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
8504 			if (!new_prog)
8505 				return -ENOMEM;
8506 
8507 			env->prog = new_prog;
8508 			delta += cnt - 1;
8509 		}
8510 	}
8511 
8512 	if (bpf_prog_is_dev_bound(env->prog->aux))
8513 		return 0;
8514 
8515 	insn = env->prog->insnsi + delta;
8516 
8517 	for (i = 0; i < insn_cnt; i++, insn++) {
8518 		bpf_convert_ctx_access_t convert_ctx_access;
8519 
8520 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
8521 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
8522 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
8523 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
8524 			type = BPF_READ;
8525 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
8526 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
8527 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
8528 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
8529 			type = BPF_WRITE;
8530 		else
8531 			continue;
8532 
8533 		if (type == BPF_WRITE &&
8534 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
8535 			struct bpf_insn patch[] = {
8536 				/* Sanitize suspicious stack slot with zero.
8537 				 * There are no memory dependencies for this store,
8538 				 * since it's only using frame pointer and immediate
8539 				 * constant of zero
8540 				 */
8541 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
8542 					   env->insn_aux_data[i + delta].sanitize_stack_off,
8543 					   0),
8544 				/* the original STX instruction will immediately
8545 				 * overwrite the same stack slot with appropriate value
8546 				 */
8547 				*insn,
8548 			};
8549 
8550 			cnt = ARRAY_SIZE(patch);
8551 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
8552 			if (!new_prog)
8553 				return -ENOMEM;
8554 
8555 			delta    += cnt - 1;
8556 			env->prog = new_prog;
8557 			insn      = new_prog->insnsi + i + delta;
8558 			continue;
8559 		}
8560 
8561 		switch (env->insn_aux_data[i + delta].ptr_type) {
8562 		case PTR_TO_CTX:
8563 			if (!ops->convert_ctx_access)
8564 				continue;
8565 			convert_ctx_access = ops->convert_ctx_access;
8566 			break;
8567 		case PTR_TO_SOCKET:
8568 		case PTR_TO_SOCK_COMMON:
8569 			convert_ctx_access = bpf_sock_convert_ctx_access;
8570 			break;
8571 		case PTR_TO_TCP_SOCK:
8572 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
8573 			break;
8574 		case PTR_TO_XDP_SOCK:
8575 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
8576 			break;
8577 		default:
8578 			continue;
8579 		}
8580 
8581 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
8582 		size = BPF_LDST_BYTES(insn);
8583 
8584 		/* If the read access is a narrower load of the field,
8585 		 * convert to a 4/8-byte load, to minimum program type specific
8586 		 * convert_ctx_access changes. If conversion is successful,
8587 		 * we will apply proper mask to the result.
8588 		 */
8589 		is_narrower_load = size < ctx_field_size;
8590 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
8591 		off = insn->off;
8592 		if (is_narrower_load) {
8593 			u8 size_code;
8594 
8595 			if (type == BPF_WRITE) {
8596 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
8597 				return -EINVAL;
8598 			}
8599 
8600 			size_code = BPF_H;
8601 			if (ctx_field_size == 4)
8602 				size_code = BPF_W;
8603 			else if (ctx_field_size == 8)
8604 				size_code = BPF_DW;
8605 
8606 			insn->off = off & ~(size_default - 1);
8607 			insn->code = BPF_LDX | BPF_MEM | size_code;
8608 		}
8609 
8610 		target_size = 0;
8611 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
8612 					 &target_size);
8613 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
8614 		    (ctx_field_size && !target_size)) {
8615 			verbose(env, "bpf verifier is misconfigured\n");
8616 			return -EINVAL;
8617 		}
8618 
8619 		if (is_narrower_load && size < target_size) {
8620 			u8 shift = (off & (size_default - 1)) * 8;
8621 
8622 			if (ctx_field_size <= 4) {
8623 				if (shift)
8624 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
8625 									insn->dst_reg,
8626 									shift);
8627 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
8628 								(1 << size * 8) - 1);
8629 			} else {
8630 				if (shift)
8631 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
8632 									insn->dst_reg,
8633 									shift);
8634 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
8635 								(1ULL << size * 8) - 1);
8636 			}
8637 		}
8638 
8639 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8640 		if (!new_prog)
8641 			return -ENOMEM;
8642 
8643 		delta += cnt - 1;
8644 
8645 		/* keep walking new program and skip insns we just inserted */
8646 		env->prog = new_prog;
8647 		insn      = new_prog->insnsi + i + delta;
8648 	}
8649 
8650 	return 0;
8651 }
8652 
8653 static int jit_subprogs(struct bpf_verifier_env *env)
8654 {
8655 	struct bpf_prog *prog = env->prog, **func, *tmp;
8656 	int i, j, subprog_start, subprog_end = 0, len, subprog;
8657 	struct bpf_insn *insn;
8658 	void *old_bpf_func;
8659 	int err;
8660 
8661 	if (env->subprog_cnt <= 1)
8662 		return 0;
8663 
8664 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
8665 		if (insn->code != (BPF_JMP | BPF_CALL) ||
8666 		    insn->src_reg != BPF_PSEUDO_CALL)
8667 			continue;
8668 		/* Upon error here we cannot fall back to interpreter but
8669 		 * need a hard reject of the program. Thus -EFAULT is
8670 		 * propagated in any case.
8671 		 */
8672 		subprog = find_subprog(env, i + insn->imm + 1);
8673 		if (subprog < 0) {
8674 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
8675 				  i + insn->imm + 1);
8676 			return -EFAULT;
8677 		}
8678 		/* temporarily remember subprog id inside insn instead of
8679 		 * aux_data, since next loop will split up all insns into funcs
8680 		 */
8681 		insn->off = subprog;
8682 		/* remember original imm in case JIT fails and fallback
8683 		 * to interpreter will be needed
8684 		 */
8685 		env->insn_aux_data[i].call_imm = insn->imm;
8686 		/* point imm to __bpf_call_base+1 from JITs point of view */
8687 		insn->imm = 1;
8688 	}
8689 
8690 	err = bpf_prog_alloc_jited_linfo(prog);
8691 	if (err)
8692 		goto out_undo_insn;
8693 
8694 	err = -ENOMEM;
8695 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
8696 	if (!func)
8697 		goto out_undo_insn;
8698 
8699 	for (i = 0; i < env->subprog_cnt; i++) {
8700 		subprog_start = subprog_end;
8701 		subprog_end = env->subprog_info[i + 1].start;
8702 
8703 		len = subprog_end - subprog_start;
8704 		/* BPF_PROG_RUN doesn't call subprogs directly,
8705 		 * hence main prog stats include the runtime of subprogs.
8706 		 * subprogs don't have IDs and not reachable via prog_get_next_id
8707 		 * func[i]->aux->stats will never be accessed and stays NULL
8708 		 */
8709 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
8710 		if (!func[i])
8711 			goto out_free;
8712 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
8713 		       len * sizeof(struct bpf_insn));
8714 		func[i]->type = prog->type;
8715 		func[i]->len = len;
8716 		if (bpf_prog_calc_tag(func[i]))
8717 			goto out_free;
8718 		func[i]->is_func = 1;
8719 		func[i]->aux->func_idx = i;
8720 		/* the btf and func_info will be freed only at prog->aux */
8721 		func[i]->aux->btf = prog->aux->btf;
8722 		func[i]->aux->func_info = prog->aux->func_info;
8723 
8724 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
8725 		 * Long term would need debug info to populate names
8726 		 */
8727 		func[i]->aux->name[0] = 'F';
8728 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
8729 		func[i]->jit_requested = 1;
8730 		func[i]->aux->linfo = prog->aux->linfo;
8731 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
8732 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
8733 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
8734 		func[i] = bpf_int_jit_compile(func[i]);
8735 		if (!func[i]->jited) {
8736 			err = -ENOTSUPP;
8737 			goto out_free;
8738 		}
8739 		cond_resched();
8740 	}
8741 	/* at this point all bpf functions were successfully JITed
8742 	 * now populate all bpf_calls with correct addresses and
8743 	 * run last pass of JIT
8744 	 */
8745 	for (i = 0; i < env->subprog_cnt; i++) {
8746 		insn = func[i]->insnsi;
8747 		for (j = 0; j < func[i]->len; j++, insn++) {
8748 			if (insn->code != (BPF_JMP | BPF_CALL) ||
8749 			    insn->src_reg != BPF_PSEUDO_CALL)
8750 				continue;
8751 			subprog = insn->off;
8752 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
8753 				    __bpf_call_base;
8754 		}
8755 
8756 		/* we use the aux data to keep a list of the start addresses
8757 		 * of the JITed images for each function in the program
8758 		 *
8759 		 * for some architectures, such as powerpc64, the imm field
8760 		 * might not be large enough to hold the offset of the start
8761 		 * address of the callee's JITed image from __bpf_call_base
8762 		 *
8763 		 * in such cases, we can lookup the start address of a callee
8764 		 * by using its subprog id, available from the off field of
8765 		 * the call instruction, as an index for this list
8766 		 */
8767 		func[i]->aux->func = func;
8768 		func[i]->aux->func_cnt = env->subprog_cnt;
8769 	}
8770 	for (i = 0; i < env->subprog_cnt; i++) {
8771 		old_bpf_func = func[i]->bpf_func;
8772 		tmp = bpf_int_jit_compile(func[i]);
8773 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
8774 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
8775 			err = -ENOTSUPP;
8776 			goto out_free;
8777 		}
8778 		cond_resched();
8779 	}
8780 
8781 	/* finally lock prog and jit images for all functions and
8782 	 * populate kallsysm
8783 	 */
8784 	for (i = 0; i < env->subprog_cnt; i++) {
8785 		bpf_prog_lock_ro(func[i]);
8786 		bpf_prog_kallsyms_add(func[i]);
8787 	}
8788 
8789 	/* Last step: make now unused interpreter insns from main
8790 	 * prog consistent for later dump requests, so they can
8791 	 * later look the same as if they were interpreted only.
8792 	 */
8793 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
8794 		if (insn->code != (BPF_JMP | BPF_CALL) ||
8795 		    insn->src_reg != BPF_PSEUDO_CALL)
8796 			continue;
8797 		insn->off = env->insn_aux_data[i].call_imm;
8798 		subprog = find_subprog(env, i + insn->off + 1);
8799 		insn->imm = subprog;
8800 	}
8801 
8802 	prog->jited = 1;
8803 	prog->bpf_func = func[0]->bpf_func;
8804 	prog->aux->func = func;
8805 	prog->aux->func_cnt = env->subprog_cnt;
8806 	bpf_prog_free_unused_jited_linfo(prog);
8807 	return 0;
8808 out_free:
8809 	for (i = 0; i < env->subprog_cnt; i++)
8810 		if (func[i])
8811 			bpf_jit_free(func[i]);
8812 	kfree(func);
8813 out_undo_insn:
8814 	/* cleanup main prog to be interpreted */
8815 	prog->jit_requested = 0;
8816 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
8817 		if (insn->code != (BPF_JMP | BPF_CALL) ||
8818 		    insn->src_reg != BPF_PSEUDO_CALL)
8819 			continue;
8820 		insn->off = 0;
8821 		insn->imm = env->insn_aux_data[i].call_imm;
8822 	}
8823 	bpf_prog_free_jited_linfo(prog);
8824 	return err;
8825 }
8826 
8827 static int fixup_call_args(struct bpf_verifier_env *env)
8828 {
8829 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
8830 	struct bpf_prog *prog = env->prog;
8831 	struct bpf_insn *insn = prog->insnsi;
8832 	int i, depth;
8833 #endif
8834 	int err = 0;
8835 
8836 	if (env->prog->jit_requested &&
8837 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
8838 		err = jit_subprogs(env);
8839 		if (err == 0)
8840 			return 0;
8841 		if (err == -EFAULT)
8842 			return err;
8843 	}
8844 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
8845 	for (i = 0; i < prog->len; i++, insn++) {
8846 		if (insn->code != (BPF_JMP | BPF_CALL) ||
8847 		    insn->src_reg != BPF_PSEUDO_CALL)
8848 			continue;
8849 		depth = get_callee_stack_depth(env, insn, i);
8850 		if (depth < 0)
8851 			return depth;
8852 		bpf_patch_call_args(insn, depth);
8853 	}
8854 	err = 0;
8855 #endif
8856 	return err;
8857 }
8858 
8859 /* fixup insn->imm field of bpf_call instructions
8860  * and inline eligible helpers as explicit sequence of BPF instructions
8861  *
8862  * this function is called after eBPF program passed verification
8863  */
8864 static int fixup_bpf_calls(struct bpf_verifier_env *env)
8865 {
8866 	struct bpf_prog *prog = env->prog;
8867 	struct bpf_insn *insn = prog->insnsi;
8868 	const struct bpf_func_proto *fn;
8869 	const int insn_cnt = prog->len;
8870 	const struct bpf_map_ops *ops;
8871 	struct bpf_insn_aux_data *aux;
8872 	struct bpf_insn insn_buf[16];
8873 	struct bpf_prog *new_prog;
8874 	struct bpf_map *map_ptr;
8875 	int i, cnt, delta = 0;
8876 
8877 	for (i = 0; i < insn_cnt; i++, insn++) {
8878 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
8879 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
8880 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
8881 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
8882 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
8883 			struct bpf_insn mask_and_div[] = {
8884 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
8885 				/* Rx div 0 -> 0 */
8886 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
8887 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
8888 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
8889 				*insn,
8890 			};
8891 			struct bpf_insn mask_and_mod[] = {
8892 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
8893 				/* Rx mod 0 -> Rx */
8894 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
8895 				*insn,
8896 			};
8897 			struct bpf_insn *patchlet;
8898 
8899 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
8900 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
8901 				patchlet = mask_and_div + (is64 ? 1 : 0);
8902 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
8903 			} else {
8904 				patchlet = mask_and_mod + (is64 ? 1 : 0);
8905 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
8906 			}
8907 
8908 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
8909 			if (!new_prog)
8910 				return -ENOMEM;
8911 
8912 			delta    += cnt - 1;
8913 			env->prog = prog = new_prog;
8914 			insn      = new_prog->insnsi + i + delta;
8915 			continue;
8916 		}
8917 
8918 		if (BPF_CLASS(insn->code) == BPF_LD &&
8919 		    (BPF_MODE(insn->code) == BPF_ABS ||
8920 		     BPF_MODE(insn->code) == BPF_IND)) {
8921 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
8922 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
8923 				verbose(env, "bpf verifier is misconfigured\n");
8924 				return -EINVAL;
8925 			}
8926 
8927 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8928 			if (!new_prog)
8929 				return -ENOMEM;
8930 
8931 			delta    += cnt - 1;
8932 			env->prog = prog = new_prog;
8933 			insn      = new_prog->insnsi + i + delta;
8934 			continue;
8935 		}
8936 
8937 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
8938 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
8939 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
8940 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
8941 			struct bpf_insn insn_buf[16];
8942 			struct bpf_insn *patch = &insn_buf[0];
8943 			bool issrc, isneg;
8944 			u32 off_reg;
8945 
8946 			aux = &env->insn_aux_data[i + delta];
8947 			if (!aux->alu_state ||
8948 			    aux->alu_state == BPF_ALU_NON_POINTER)
8949 				continue;
8950 
8951 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
8952 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
8953 				BPF_ALU_SANITIZE_SRC;
8954 
8955 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
8956 			if (isneg)
8957 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
8958 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
8959 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
8960 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
8961 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
8962 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
8963 			if (issrc) {
8964 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
8965 							 off_reg);
8966 				insn->src_reg = BPF_REG_AX;
8967 			} else {
8968 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
8969 							 BPF_REG_AX);
8970 			}
8971 			if (isneg)
8972 				insn->code = insn->code == code_add ?
8973 					     code_sub : code_add;
8974 			*patch++ = *insn;
8975 			if (issrc && isneg)
8976 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
8977 			cnt = patch - insn_buf;
8978 
8979 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8980 			if (!new_prog)
8981 				return -ENOMEM;
8982 
8983 			delta    += cnt - 1;
8984 			env->prog = prog = new_prog;
8985 			insn      = new_prog->insnsi + i + delta;
8986 			continue;
8987 		}
8988 
8989 		if (insn->code != (BPF_JMP | BPF_CALL))
8990 			continue;
8991 		if (insn->src_reg == BPF_PSEUDO_CALL)
8992 			continue;
8993 
8994 		if (insn->imm == BPF_FUNC_get_route_realm)
8995 			prog->dst_needed = 1;
8996 		if (insn->imm == BPF_FUNC_get_prandom_u32)
8997 			bpf_user_rnd_init_once();
8998 		if (insn->imm == BPF_FUNC_override_return)
8999 			prog->kprobe_override = 1;
9000 		if (insn->imm == BPF_FUNC_tail_call) {
9001 			/* If we tail call into other programs, we
9002 			 * cannot make any assumptions since they can
9003 			 * be replaced dynamically during runtime in
9004 			 * the program array.
9005 			 */
9006 			prog->cb_access = 1;
9007 			env->prog->aux->stack_depth = MAX_BPF_STACK;
9008 			env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
9009 
9010 			/* mark bpf_tail_call as different opcode to avoid
9011 			 * conditional branch in the interpeter for every normal
9012 			 * call and to prevent accidental JITing by JIT compiler
9013 			 * that doesn't support bpf_tail_call yet
9014 			 */
9015 			insn->imm = 0;
9016 			insn->code = BPF_JMP | BPF_TAIL_CALL;
9017 
9018 			aux = &env->insn_aux_data[i + delta];
9019 			if (!bpf_map_ptr_unpriv(aux))
9020 				continue;
9021 
9022 			/* instead of changing every JIT dealing with tail_call
9023 			 * emit two extra insns:
9024 			 * if (index >= max_entries) goto out;
9025 			 * index &= array->index_mask;
9026 			 * to avoid out-of-bounds cpu speculation
9027 			 */
9028 			if (bpf_map_ptr_poisoned(aux)) {
9029 				verbose(env, "tail_call abusing map_ptr\n");
9030 				return -EINVAL;
9031 			}
9032 
9033 			map_ptr = BPF_MAP_PTR(aux->map_state);
9034 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
9035 						  map_ptr->max_entries, 2);
9036 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
9037 						    container_of(map_ptr,
9038 								 struct bpf_array,
9039 								 map)->index_mask);
9040 			insn_buf[2] = *insn;
9041 			cnt = 3;
9042 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9043 			if (!new_prog)
9044 				return -ENOMEM;
9045 
9046 			delta    += cnt - 1;
9047 			env->prog = prog = new_prog;
9048 			insn      = new_prog->insnsi + i + delta;
9049 			continue;
9050 		}
9051 
9052 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
9053 		 * and other inlining handlers are currently limited to 64 bit
9054 		 * only.
9055 		 */
9056 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
9057 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
9058 		     insn->imm == BPF_FUNC_map_update_elem ||
9059 		     insn->imm == BPF_FUNC_map_delete_elem ||
9060 		     insn->imm == BPF_FUNC_map_push_elem   ||
9061 		     insn->imm == BPF_FUNC_map_pop_elem    ||
9062 		     insn->imm == BPF_FUNC_map_peek_elem)) {
9063 			aux = &env->insn_aux_data[i + delta];
9064 			if (bpf_map_ptr_poisoned(aux))
9065 				goto patch_call_imm;
9066 
9067 			map_ptr = BPF_MAP_PTR(aux->map_state);
9068 			ops = map_ptr->ops;
9069 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
9070 			    ops->map_gen_lookup) {
9071 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
9072 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
9073 					verbose(env, "bpf verifier is misconfigured\n");
9074 					return -EINVAL;
9075 				}
9076 
9077 				new_prog = bpf_patch_insn_data(env, i + delta,
9078 							       insn_buf, cnt);
9079 				if (!new_prog)
9080 					return -ENOMEM;
9081 
9082 				delta    += cnt - 1;
9083 				env->prog = prog = new_prog;
9084 				insn      = new_prog->insnsi + i + delta;
9085 				continue;
9086 			}
9087 
9088 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
9089 				     (void *(*)(struct bpf_map *map, void *key))NULL));
9090 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
9091 				     (int (*)(struct bpf_map *map, void *key))NULL));
9092 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
9093 				     (int (*)(struct bpf_map *map, void *key, void *value,
9094 					      u64 flags))NULL));
9095 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
9096 				     (int (*)(struct bpf_map *map, void *value,
9097 					      u64 flags))NULL));
9098 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
9099 				     (int (*)(struct bpf_map *map, void *value))NULL));
9100 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
9101 				     (int (*)(struct bpf_map *map, void *value))NULL));
9102 
9103 			switch (insn->imm) {
9104 			case BPF_FUNC_map_lookup_elem:
9105 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
9106 					    __bpf_call_base;
9107 				continue;
9108 			case BPF_FUNC_map_update_elem:
9109 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
9110 					    __bpf_call_base;
9111 				continue;
9112 			case BPF_FUNC_map_delete_elem:
9113 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
9114 					    __bpf_call_base;
9115 				continue;
9116 			case BPF_FUNC_map_push_elem:
9117 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
9118 					    __bpf_call_base;
9119 				continue;
9120 			case BPF_FUNC_map_pop_elem:
9121 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
9122 					    __bpf_call_base;
9123 				continue;
9124 			case BPF_FUNC_map_peek_elem:
9125 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
9126 					    __bpf_call_base;
9127 				continue;
9128 			}
9129 
9130 			goto patch_call_imm;
9131 		}
9132 
9133 patch_call_imm:
9134 		fn = env->ops->get_func_proto(insn->imm, env->prog);
9135 		/* all functions that have prototype and verifier allowed
9136 		 * programs to call them, must be real in-kernel functions
9137 		 */
9138 		if (!fn->func) {
9139 			verbose(env,
9140 				"kernel subsystem misconfigured func %s#%d\n",
9141 				func_id_name(insn->imm), insn->imm);
9142 			return -EFAULT;
9143 		}
9144 		insn->imm = fn->func - __bpf_call_base;
9145 	}
9146 
9147 	return 0;
9148 }
9149 
9150 static void free_states(struct bpf_verifier_env *env)
9151 {
9152 	struct bpf_verifier_state_list *sl, *sln;
9153 	int i;
9154 
9155 	sl = env->free_list;
9156 	while (sl) {
9157 		sln = sl->next;
9158 		free_verifier_state(&sl->state, false);
9159 		kfree(sl);
9160 		sl = sln;
9161 	}
9162 
9163 	if (!env->explored_states)
9164 		return;
9165 
9166 	for (i = 0; i < state_htab_size(env); i++) {
9167 		sl = env->explored_states[i];
9168 
9169 		while (sl) {
9170 			sln = sl->next;
9171 			free_verifier_state(&sl->state, false);
9172 			kfree(sl);
9173 			sl = sln;
9174 		}
9175 	}
9176 
9177 	kvfree(env->explored_states);
9178 }
9179 
9180 static void print_verification_stats(struct bpf_verifier_env *env)
9181 {
9182 	int i;
9183 
9184 	if (env->log.level & BPF_LOG_STATS) {
9185 		verbose(env, "verification time %lld usec\n",
9186 			div_u64(env->verification_time, 1000));
9187 		verbose(env, "stack depth ");
9188 		for (i = 0; i < env->subprog_cnt; i++) {
9189 			u32 depth = env->subprog_info[i].stack_depth;
9190 
9191 			verbose(env, "%d", depth);
9192 			if (i + 1 < env->subprog_cnt)
9193 				verbose(env, "+");
9194 		}
9195 		verbose(env, "\n");
9196 	}
9197 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
9198 		"total_states %d peak_states %d mark_read %d\n",
9199 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
9200 		env->max_states_per_insn, env->total_states,
9201 		env->peak_states, env->longest_mark_read_walk);
9202 }
9203 
9204 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
9205 	      union bpf_attr __user *uattr)
9206 {
9207 	u64 start_time = ktime_get_ns();
9208 	struct bpf_verifier_env *env;
9209 	struct bpf_verifier_log *log;
9210 	int i, len, ret = -EINVAL;
9211 	bool is_priv;
9212 
9213 	/* no program is valid */
9214 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
9215 		return -EINVAL;
9216 
9217 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
9218 	 * allocate/free it every time bpf_check() is called
9219 	 */
9220 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
9221 	if (!env)
9222 		return -ENOMEM;
9223 	log = &env->log;
9224 
9225 	len = (*prog)->len;
9226 	env->insn_aux_data =
9227 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
9228 	ret = -ENOMEM;
9229 	if (!env->insn_aux_data)
9230 		goto err_free_env;
9231 	for (i = 0; i < len; i++)
9232 		env->insn_aux_data[i].orig_idx = i;
9233 	env->prog = *prog;
9234 	env->ops = bpf_verifier_ops[env->prog->type];
9235 	is_priv = capable(CAP_SYS_ADMIN);
9236 
9237 	/* grab the mutex to protect few globals used by verifier */
9238 	if (!is_priv)
9239 		mutex_lock(&bpf_verifier_lock);
9240 
9241 	if (attr->log_level || attr->log_buf || attr->log_size) {
9242 		/* user requested verbose verifier output
9243 		 * and supplied buffer to store the verification trace
9244 		 */
9245 		log->level = attr->log_level;
9246 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
9247 		log->len_total = attr->log_size;
9248 
9249 		ret = -EINVAL;
9250 		/* log attributes have to be sane */
9251 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
9252 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
9253 			goto err_unlock;
9254 	}
9255 
9256 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
9257 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
9258 		env->strict_alignment = true;
9259 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
9260 		env->strict_alignment = false;
9261 
9262 	env->allow_ptr_leaks = is_priv;
9263 
9264 	ret = replace_map_fd_with_map_ptr(env);
9265 	if (ret < 0)
9266 		goto skip_full_check;
9267 
9268 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
9269 		ret = bpf_prog_offload_verifier_prep(env->prog);
9270 		if (ret)
9271 			goto skip_full_check;
9272 	}
9273 
9274 	env->explored_states = kvcalloc(state_htab_size(env),
9275 				       sizeof(struct bpf_verifier_state_list *),
9276 				       GFP_USER);
9277 	ret = -ENOMEM;
9278 	if (!env->explored_states)
9279 		goto skip_full_check;
9280 
9281 	ret = check_subprogs(env);
9282 	if (ret < 0)
9283 		goto skip_full_check;
9284 
9285 	ret = check_btf_info(env, attr, uattr);
9286 	if (ret < 0)
9287 		goto skip_full_check;
9288 
9289 	ret = check_cfg(env);
9290 	if (ret < 0)
9291 		goto skip_full_check;
9292 
9293 	ret = do_check(env);
9294 	if (env->cur_state) {
9295 		free_verifier_state(env->cur_state, true);
9296 		env->cur_state = NULL;
9297 	}
9298 
9299 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
9300 		ret = bpf_prog_offload_finalize(env);
9301 
9302 skip_full_check:
9303 	while (!pop_stack(env, NULL, NULL));
9304 	free_states(env);
9305 
9306 	if (ret == 0)
9307 		ret = check_max_stack_depth(env);
9308 
9309 	/* instruction rewrites happen after this point */
9310 	if (is_priv) {
9311 		if (ret == 0)
9312 			opt_hard_wire_dead_code_branches(env);
9313 		if (ret == 0)
9314 			ret = opt_remove_dead_code(env);
9315 		if (ret == 0)
9316 			ret = opt_remove_nops(env);
9317 	} else {
9318 		if (ret == 0)
9319 			sanitize_dead_code(env);
9320 	}
9321 
9322 	if (ret == 0)
9323 		/* program is valid, convert *(u32*)(ctx + off) accesses */
9324 		ret = convert_ctx_accesses(env);
9325 
9326 	if (ret == 0)
9327 		ret = fixup_bpf_calls(env);
9328 
9329 	/* do 32-bit optimization after insn patching has done so those patched
9330 	 * insns could be handled correctly.
9331 	 */
9332 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
9333 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
9334 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
9335 								     : false;
9336 	}
9337 
9338 	if (ret == 0)
9339 		ret = fixup_call_args(env);
9340 
9341 	env->verification_time = ktime_get_ns() - start_time;
9342 	print_verification_stats(env);
9343 
9344 	if (log->level && bpf_verifier_log_full(log))
9345 		ret = -ENOSPC;
9346 	if (log->level && !log->ubuf) {
9347 		ret = -EFAULT;
9348 		goto err_release_maps;
9349 	}
9350 
9351 	if (ret == 0 && env->used_map_cnt) {
9352 		/* if program passed verifier, update used_maps in bpf_prog_info */
9353 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
9354 							  sizeof(env->used_maps[0]),
9355 							  GFP_KERNEL);
9356 
9357 		if (!env->prog->aux->used_maps) {
9358 			ret = -ENOMEM;
9359 			goto err_release_maps;
9360 		}
9361 
9362 		memcpy(env->prog->aux->used_maps, env->used_maps,
9363 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
9364 		env->prog->aux->used_map_cnt = env->used_map_cnt;
9365 
9366 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
9367 		 * bpf_ld_imm64 instructions
9368 		 */
9369 		convert_pseudo_ld_imm64(env);
9370 	}
9371 
9372 	if (ret == 0)
9373 		adjust_btf_func(env);
9374 
9375 err_release_maps:
9376 	if (!env->prog->aux->used_maps)
9377 		/* if we didn't copy map pointers into bpf_prog_info, release
9378 		 * them now. Otherwise free_used_maps() will release them.
9379 		 */
9380 		release_maps(env);
9381 	*prog = env->prog;
9382 err_unlock:
9383 	if (!is_priv)
9384 		mutex_unlock(&bpf_verifier_lock);
9385 	vfree(env->insn_aux_data);
9386 err_free_env:
9387 	kfree(env);
9388 	return ret;
9389 }
9390